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Overview

Trapdoors are a two-face key concept in modern cryptography. They are primarily
related to the concept of trapdoor function used in asymmetric cryptography. A
trapdoor function is a one-to-one mapping that is easy to compute, but for which
the inverse function is difficult to compute without special information, called the
trapdoor. Such a trapdoor is essential in public key encryption algorithms and digital
signatures as it ensures that only the person who knows the secret information can
decrypt or sign messages. In this case, the trapdoor mechanism is always public and
fully detailed.

The second concept of trapdoor considers by-design mathematical backdoors and
is a key issue in symmetric cryptography. In this case, the aim is to insert hidden
mathematical weaknesses which enable one who knows them to break the cipher. The
existence of a backdoor is hence a strongly undesirable property. While the term of
trapdoor has been already used in the very few literature covering this issue, we suggest
however to use the term of backdoor to describe hidden mathematical weaknesses
in symmetric cryptography in order to avoid ambiguity. This thesis is focused
on backdoors in block ciphers or, more specifically, on Substitution-Permutation
Networks (SPN).

Inserting a backdoor in an encryption algorithm gives an effective cryptanalysis
of the cipher to the designer. However, like any other cipher, this backdoor cipher
may be vulnerable to classical cryptanalysis. If a classical attack can easily break
it, the asymmetry between the designer and those who do not know the backdoor
disappears; thus, the backdoor cipher is just a weak cipher.

Differential [13] and linear [74] cryptanalysis are considered as the most important
attacks against block ciphers [64]. As mentioned in [41], any new cipher should at
least be accompanied by a detailed analysis of its strength against these two attacks.
The practical resistance of a block cipher against differential and linear cryptanalysis
is assessed by the differential probability or linear potential of an optimal differential
or linear trail respectively. When these values are low enough, the cipher is said
to be practically secure. To prevent differential and linear cryptanalysis, the cipher
designer chooses building blocks which provide high resistance against both these
attacks. Nevertheless, the mathematical structure of the backdoor strongly reduces
the choice of these building blocks and the usual strategies may no longer be useful.

In [76], Matsui presented an algorithm that computes an optimal trail in a
Feistel cipher. In other words, the execution of this algorithm can prove the cipher
practical security. The algorithm complexity remaining too high for the cipher

i



FEAL, two successive improvements have been proposed in [87] then [3]. Although
an adaptation of Matsui’s algorithm is straightforward for SPN, the block size of
modern ciphers makes it computationally infeasible. The first contribution of this
thesis is an improvement of this algorithm for SPN [8] and has received a best paper
award. We introduce several optimizations paying special attention to SPN whose
diffusion layer is a bit permutation. Because bit permutations do not provide high
diffusion, the cipher security is hard to establish without a close analysis. Such
mappings are generally chosen for efficiency purposes. On the contrary, diffusion
layers providing high diffusion yield sufficient bounds to prove the cipher security
but can be more computationally expensive. Therefore, such an algorithm is more
useful for SPN using bit permutations.

Spending months computing the practical security of a known cipher is not a
problem. However, the cipher designer has to repeat this search several times in
order to optimize the choice of the cipher components or the number of rounds. Our
algorithm meets this need since its execution time on the full Present [17] is below
one second on a laptop computer.

Now we have a tool to evaluate the security of an SPN with regard to differential
and linear cryptanalysis, we turn our attention to backdoor ciphers. The family of
backdoor ciphers covered by this thesis is a generalization of the imprimitive ciphers
introduced by Paterson in [88]. For such ciphers, the round function preserves a
partition of the message space no matter the round keys used, and hence the same
applies to the full cipher. This partition forms the backdoor and yields a powerful
cryptanalysis with a suitably chosen key schedule. Even if the mathematical theory
of the backdoor is given, no general algorithm details how to construct the building
blocks of the cipher. Moreover, the author wondered what are the possible partitions
for this backdoor. Caranti and al. [31] answered this question by proving that only
linear partitions can be considered. Along a similar line, Harpes considered in his
thesis [50] backdoor ciphers mapping a partition of the plaintexts to a partition of
the ciphertexts. As these partitions are not necessarily equal, this family generalizes
Paterson’s one. These ciphers are called partition-based backdoor ciphers.

The main contribution of this thesis is an extension of Paterson and Harpes’ works
for SPN. In our study, we consider an SPN mapping a partition of the plaintexts
to one of the ciphertexts, no matter what the round keys are. In other words, we
assume that this property holds independently of the key schedule and the cipher key.
Firstly, we prove that the round function of such an SPN must at least map a linear
partition to another linear one. This result generalizes [31] since we consider the
full cipher and not only the round function. It should be stressed that the apparent
combinatorial aspect of our assumption is reduced to an algebraic one. Since it is
easy to show that any linear transformation maps every linear partition to another
one, the diffusion layer can be bypassed so that the substitution layer necessarily
maps a linear partition to another one.

The substitution layer consists of several S-boxes evaluated in parallel. The
natural problem that arises is to determine the properties that the previous result
implies on each S-box. This refinement is far more complicated than the previous
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one because it requires a deep analysis of the structure of the linear partitions with
respect to the substitution layer. We eventually managed to prove that at least one
of the S-boxes must map a linear partition to another one. To summarize, the study
of the full cipher is reduced to that of the S-boxes.

In the light of this result, we are now interested in designing an S-box mapping a
linear partition to another one with the best resistance against differential and linear
cryptanalysis. We show how the Krasner-Kaloujnine embedding theorem yields an
internal decomposition of such S-boxes. Using this decomposition, we manage to
derive bounds for the differential and linear properties of backdoor S-boxes and we
present an algorithm to design S-boxes which almost reach these bounds. Combining
our reduction result with these bounds, we derive a criterion which can prove that
an SPN does not belong to this family of backdoor ciphers. All these results were
published in [9] and [12].

The last part puts into practice our theoretical treatment of partition-based
backdoor ciphers. First, we present a toy backdoor SPN and break it with a key-
schedule dependent attack suggested by Paterson but not detailed. Finally we present
BEA-1 (standing for Backdoored Encryption Algorithm), a real-size backdoor cipher
inspired by the current standard of symmetric encryption, namely the AES. Our
cipher encrypts 80-bit data blocks using using 120-bit cipher key and is designed to
resist linear and differential cryptanalysis. Conversely, the backdoor enables recovery
of the full 120-bit cipher key in just a few seconds on a laptop computer using only
216 chosen plaintext blocks. This cipher was presented in [11] as a challenge. Its
cryptanalysis was then outlined in [11] and detailed in [12]. It should be mentioned
that my teaching activity led me to consider Venn Diagrams. As a result, we
published a new infinite family of Venn diagrams in [7].

This thesis is organized as follows. Firstly, Chapter 1 recalls the definition
of substitution-permutation networks and the differential and linear cryptanalysis.
An algorithm performing a security analysis with respect to these attacks is then
described in Chapter 2. Backdoor ciphers are then the focus of this thesis from
Chapter 3 to the end. In Chapter 3, we investigate the structure of partition-based
backdoor ciphers and prove that their study can be reduced to their S-boxes. Next,
Chapter 4 is devoted to the analysis of such S-boxes and ends with a toy backdoor
cipher illustrating the results of these two chapters. Finally, Chapter 5 concludes
our work by introducing BEA-1, a real-size backdoor cipher, and explains how its
backdoor can be exploited to break it effectively.
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Chapter 1
Substitution-Permutation Networks

This chapter aims at offering an introduction of substitution-permutation networks
and their cryptanalysis. We start with notation, some terminologies and basic results.
Then, we present in Section 1.2 the main definitions concerning blocks ciphers and
we focus particularly on Substitution-Permutation Networks (SPN). After given an
example of such ciphers, we explore the two mains attacks of SPN, namely differential
and linear cryptanalysis, in Sections 1.3 and 1.4 respectively. Finally, we conclude
this chapter with a discussion on the security of SPN against these attacks.

1.1. Preliminaries

Let us begin with notation and some conventions. The cardinality of a finite set
E is denoted by #E. The complement of a subset F of E consists of all elements
in E not in F and is denoted by F c. Let f be a mapping from E to F and g be a
mapping from F to G. The composition of g on f is the mapping g ○ f from E to G
which maps x to g(f(x)). A permutation of E is any bijective mapping from E to
E. If σ and τ are permutations of E, then we often write στ instead of σ ○ τ , namely
we omit the small circle when composing permutations to fit the abstract formalism
of permutation groups.

Let n and m be two positive integers. The Galois field of order two is denoted by
F2. Every vector space considered in this thesis will be over the finite field F2. The
set of all n-bit sequences is identified with the n-dimensional vector space Fn2 . In
this space, the addition denoted by + can be seen as a bitwise exclusive or (Xor).
The zero vector (0, . . . , 0) is simply denoted by 0n. The concatenation of two binary
vectors x and y is denoted (x ∥ y). Similarly, if f ∶ Fn2 → Fn2 and g ∶ Fm2 → Fm2 are two
mappings, then (f ∥ g) denote the mapping from Fn+m2 to Fn+m2 which maps (x ∥ y)
to (f(x) ∥ g(y)). Moreover, we should mentioned that the space Fnm2 will be often
identified with (Fn2)m by gathering the bits in m bundles of n components.

Now, let us recall basic properties on linear algebra. For a complete introduction,
the reader should refer to the work of Lang [68]. The dot product of two vectors x
and y in Fn2 , denoted by ⟨x, y⟩, is defined by the rule

⟨x, y⟩ = x × y⊺ = y × x⊺ =
n−1
∑
i=0
xiyi ,

1



Chapter 1 – Substitution-Permutation Networks

where x⊺ denotes the transpose of x. It is well-known that the dot product is a
bilinear form, namely for all x, y, z in Fn2 and all λ in F2, it holds that

⟨x + y, z⟩ = ⟨x, z⟩ + ⟨y, z⟩ , ⟨x, y + z⟩ = ⟨x, y⟩ + ⟨x, z⟩ , ⟨λx, y⟩ = ⟨x,λy⟩ = λ⟨x, y⟩ .

In addition, the dot product satisfies the followings two properties:

• (symmetric) for every x and y in Fn2 , ⟨x, y⟩ = ⟨y, x⟩.
• (non-degenerate) for any x in Fn2 , if ⟨x, y⟩ = 0 for all y in Fn2 , then x = 0.

If E is a subset of Fn2 , we denote by E⊥ the set of all elements x in Fn2 which are
perpendicular to all elements of E with respect to the dot product, that is to say,

E⊥ = {x ∈ Fn2 ∣ ∀y ∈ E, ⟨x, y⟩ = 0} .

It is easily seen from the properties of the dot product that E⊥ is a subspace of Fn2 .
Therefore, E⊥ is called the orthogonal space of E. Moreover, E⊥ = span(E)⊥.

Definition 1.1 (Transpose). Let L ∶ Fn2 → Fm2 be a linear mapping. There exists
a unique mapping L⊺ ∶ Fm2 → Fn2 , called the transpose of L, such that

⟨L(x), y⟩ = ⟨x,L⊺(y)⟩

for all x in Fn2 and all y in Fm2 . Furthermore, if A is the n×m matrix in F2 satisfying
L(x) = x ×A, then L⊺ is given by L⊺(y) = y ×A⊺.

Proof. First, observe that for all elements x and y of Fn2 and Fm2 , we have

⟨L(x), y⟩ = L(x) × y⊺ = x ×A × y⊺ = x × (y ×A⊺)⊺ = ⟨x,L⊺(y)⟩ .

It remains to prove the uniqueness of this mapping. Suppose that L′ and L′′ are
two mappings from Fm2 to Fn2 satisfying the required property. Let x and y be
elements of Fn2 and Fm2 . By assumption, it follows that ⟨x,L′(y)⟩ = ⟨x,L′′(y)⟩, or
equivalently, ⟨x,L′(y) + L′′(y)⟩ = 0 because of the bilinearity of the dot product.
Therefore, L′(y) + L′′(y) = 0 as this equality holds for all x in Fn2 and as the dot
product is non-degenerate. Consequently, L′(y) = L′′(y) as desired. ∎

Proposition 1.2. Let L ∶ Fn2 → Fm2 be a linear mapping. The kernel of L⊺ is the
orthogonal space of the image of L, that is Ker(L⊺) = Im(L)⊥.

Proof. By definition, the kernel of L⊺ is the set of elements of Fm2 mapped to 0n
by L⊺. If y lies in Fm2 , then L⊺(y) = 0 if and only if ⟨x,L⊺(y)⟩ = 0 for every x in Fn2
since the dot product is non-degenerate. Next,

Ker(L⊺) = {y ∈ Fm2 ∣ ∀x ∈ Fn2 , ⟨x,L⊺(y)⟩ = 0} = {y ∈ Fm2 ∣ ∀x ∈ Fn2 , ⟨L(x), y⟩ = 0}
= {y ∈ Fm2 ∣ ∀x ∈ Im(L), ⟨x, y⟩ = 0} = Im(L)⊥ .

The result is proven. ∎
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1.2. Substitution-Permutation Networks

Cryptology is the science of secrets. It aims at enabling two parties, called Alice
and Bob, to communicate over an insecure channel. A channel can be any medium
of communication, for instance a telephone line or a computer network. It is said
insecure whenever a third party can intercept or modify the sent messages. Cryptology
is divided into two complementary parts. On the one hand, cryptography gathers the
methods to protect the information. Naturally, this includes confidentiality which
ensures that an adversary intercepting the messages cannot gain information about
the content of the communication. However, cryptography is equally interested
in integrity (ensuring that the message you received was the message sent) and
authenticity (ensuring the source of the messages). On the other hand, cryptanalysis
intends to break the security provided by cryptography.

Confidentiality is provided using an encryption algorithm. In symmetric-key
cryptography, Alice and Bob must share a secret key before they can communicate
over an insecure channel. Assume that Alice wants to communicate with Bob. The
message she wants to send is called the plaintext. Then, using the secret key, Alice
encrypts the message. The resulting data is called the ciphertext and should conceal
any information about the plaintext. Next, Alice sends the ciphertext to Bob. The
latter can decrypt this ciphertext using the same secret key and hence recover the
original message.

Symmetric-key encryption algorithms are divided into block ciphers and stream
ciphers. In this thesis, we consider only block ciphers, for an overview of stream
ciphers the reader can consult [77] for instance. A block cipher is an encryption
algorithm processing fixed length blocks of data using a secret key, called the cipher
key [39]. We introduce now its formal definition.

Definition 1.3 (Block Cipher). Let n and κ be positive integers. A block cipher
is a mapping E ∶ Fκ2 ×Fn2 → Fn2 that takes a κ-bit cipher key K and an n-bit plaintext
p and returns the n-bit corresponding ciphertext c = E(K,p).
Furthermore, for each cipher key K in Fκ2 , the mapping EK ∶ p↦ E(k, p) is required
to be a permutation of Fn2 .

The integer n is the block size of the cipher and κ it its key length. The mapping
EK is the encryption function associated with the cipher key K. Its inverse mapping
is the decryption function and is denoted by DK . It is worth observing that each
encryption function EK must be bijective to enable decryption. Indeed, assuming
that EK in not injective, there exist two different plaintexts p and p′ such that
c = EK(p) = EK(p′). Then, the receiver who wants to decrypt c cannot decide
whether the corresponding plaintext is p or p′. Moreover, the mapping EK is either
bijective or not injective because Fn2 is a finite set, justifying the definition.

A block cipher on its own cannot be used to encrypt any message. In fact,
it processes only fixed length messages by definition. Generally the block size n
ranges between 64 and 128. In order to encrypt long messages whose lengths are not
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k[0]

k[1]

k[r−1]

pK

c

F

F

F

Key
ScheduleE

⋮

Figure 1.1: Representation of an iterative block cipher (see Definition 1.4).

necessarily a multiple of the block size, we must specify how this primitive is used.
These specifications are called modes of operation of a block cipher. Informally, a
mode of operation splits the message into several n-bit blocks. Then, these blocks
are linked together and encrypted using the block cipher. The first standardization
of modes of operation was in [84], originally for the Data Encryption Standard
(DES [83]). In this publication, four modes were presented called ECB, CBC, CFB
and OFB. After the publication of the next standard of block ciphers, namely the
Advanced Encryption Standard (AES [85]), another standardization was published
by the National Institute of Standards and Technology in [86].

Block ciphers come in all shapes and sizes. Let us now introduce an important
class which includes almost all modern block ciphers.

Definition 1.4 (Iterative Block Cipher). A block cipher E ∶ Fκ2 × Fn2 is said to
be an r-round iterative block cipher if it consists of the following two mappings.

• An algorithm called the key schedule which processes the cipher key K in Fκ2
and produces r round keys k[0], . . . , k[r−1] in Fl2.

• A mapping F ∶ Fl2 ×Fn2 → Fn2 called the round function, such that for any cipher
key K, the encryption function can be written as

EK = Fk[r−1] ○ ⋯ ○ Fk[0] .

Remark 1.5. The integer l is called the round key length. For a significant
proportion of iterative block ciphers, the round key length is equal to the block size.
The mapping Fk from Fn2 to Fn2 which maps a block x to F (k, x) is called the round
function associated with the round key k. Naturally, each mapping Fk must be a
permutation of Fn2 . A diagrammatic representation of an iterative block cipher is
given in Figure 1.1.
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Iterative BC Key-Alternating BC SPN

F

⊕

F ′

⊕

σ

π

k[i]

k[i] k[i]

Figure 1.2: The round functions of iterative block ciphers, key-alternating block
ciphers and SPNs (Definitions 1.4, 1.6 and 1.10).

Definition 1.6 (Key-Alternating Cipher). A key-alternating block cipher is
an iterative block cipher such that

• the round key length is equal to the block size n,
• there exists an unkeyed permutation F ′ of Fn2 such that each round function
Fk maps a block x to F ′(x + k).

The round function of a key-alternating cipher is illustrated in Figure 1.2. As
said in [40], a key-alternating cipher consists of an alternating sequence of unkeyed
rounds and simple bitwise key additions. Indeed, when considering two elements
of Fn2 , their addition corresponds to the addition in the vector space Fn2 , namely
a bitwise addition in F2. Moreover, the addition in the finite field F2 is just an
exclusive or (XOR). Consequently, this operation is often denoted by the symbol ⊕
in cryptography. However, since we will consider direct sums of vector spaces, we
denote the sum in Fn2 by the symbol + to avoid confusion.

Remark 1.7. It should be mentioned that in the encryption process of a key-
alternating block cipher, a round key is added after the last round. According to
Kerckhoffs’ Principle [59], the attacker knows every detail of the encryption, except of
course the secret key. Therefore, if the encryption ends with the unkeyed permutation
F ′, the attacker can undo this step. To save useless processing, the last step must
be unknown to the cryptanalyst. Summarizing, the key schedule of an r-round
key-alternating cipher derives r + 1 round keys k[0], . . . , k[r] in Fn2 from a cipher key
K in Fκ2 and the last key k[r] is added at the end of the encryption.

Denote by αk the permutation of Fn2 which maps x to x + k, that is to say αk
represents the addition of the round key k. Assume that k[0], . . . , k[r] are the round
keys derived from a cipher key K. Then, the encryption function is given by

Ek = αk[r] ○ F ′ ○ αk[r−1]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F
k[r−1]

○⋯ ○ F ′ ○ αk[0]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

F
k[0]

.

Closely related to key-alternating block ciphers is the concept of long-key cipher
introduced by Daemen and Rijmen in [40].
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Definition 1.8 (Long-Key Cipher). A long-key cipher is a key-alternating
cipher with a trivial key schedule. The cipher key consists of the concatenation of
the r + 1 round keys, and hence is n(r + 1)-bit long.

Certainly, long-key ciphers are not used in practice as they require too long cipher
keys. They are used only to study key-alternating ciphers. By the long-key cipher
associated with a key-alternating cipher, we mean the cipher obtained when we
ignore its key schedule and consider independent round keys.

In his seminal paper in 1949 [91], Shannon introduced the main design principles
used nowadays in block ciphers, namely confusion and diffusion. To quote Shannon,
“The method of confusion is to make the relation between the simple statistics of the
ciphertext and the simple description of the key a very complex and involved one”
and “in the method of diffusion the statistical structure of the plaintext which leads
to its redundancy is dissipated into long range statistics in the ciphertext”. These
concepts can be interpreted in several ways, a nice adaptation is due to Massey [73]:

Confusion: The ciphertext statistics should depend on the plaintext statistics in a
manner too complicated to be exploited by the cryptanalyst.

Diffusion: Each digit of the plaintext and each digit of the secret key should
influence many digits of the ciphertext.

A class of key-alternating block ciphers directly inspired by Shannon’s work is
the Substitution Permutation Networks (shorten as SPN). The round function of
an SPN consists of three distinct stages: a key addition, a substitution layer and
a permutation or diffusion layer. The key addition includes unknown material to
the cryptanalyst, the substitution and diffusion layers provide respectively confusion
and diffusion. One of the building blocks of any SPN is called a Substitution-box or
simply an S-box.

Definition 1.9 (S-Box). An n-bit S-box is a mapping form Fn2 to Fn2 . In this
thesis, we require an S-box to be a permutation of Fn2 .

In the substitution layer, the nm-bit data block is seen as m bundles of n bits.
Then, m S-boxes are evaluated in parallel on each bundle of the block. For this
reason, the substitution layer is said to be a bricklayer function [39]. On the other
hand, the diffusion layer consists of the evaluation of some linear mappings (generally
one) but processes the data block as a whole since it is intended to provide diffusion.

Definition 1.10 (SPN). Let m and n be positive integers and let S0, . . . , Sm−1 be
n-bit S-boxes.

• The substitution layer is denoted by σ and maps (xi)0≤i<m to (Si(xi))0≤i<m.
• The diffusion layer is a linear permutation denoted by π ∶ Fnm2 → Fnm2 .

A Substitution-Permutation Network is a key-alternating block cipher such that the
unkeyed round function F ′ is equal to π ○ σ.

Denoting by k[0], . . . , k[r] the round keys derived from a cipher key K, the
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encryption function of an SPN is hence defined to be

EK = αk[r] ○ π ○ σ ○ αk[r−1]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F
k[r−1]

○⋯ ○ π ○ σ ○ αk[0]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

F
k[0]

.

A comparison between the round function of an iterative cipher, a key-alternating
cipher and an SPN is illustrated in Figure 1.2. It is worthwhile to note that the
substitution layer is the only step which is not linear or affine. In order to make
the cipher secure, the S-boxes must be highly nonlinear. The exact meaning of this
statement will be detailed in Section 1.5.1.
Remark 1.11. We should mention that the last round of an SPN may not include
the diffusion layer, see for instance the AES. Indeed, for all k and x in Fnm2 we have

αk ○ π(x) = k + π(x) = π(π−1(k)) + π(x) = π(π−1(k) + x) = π ○ απ−1(k)(x) .

Thus, using an equivalent last-round key, the encryption process ends with a per-
mutation known by the cryptanalyst. As a consequence, the diffusion layer in the
last round does not offer any additional security and is often removed for efficiency
purposes.

Before concluding this section with an example of SPN, we introduce a class of
diffusion layers particularly used in lightweight block ciphers.

Definition 1.12 (bit permutation). A linear mapping π ∶ Fnm2 → Fnm2 is said to
be a bit permutation if there exists a permutation φ of J0, nmJ such that

π(x0, . . . , xnm−1) = (xφ−1(0), . . . , xφ−1(nm−1)) .

Remark 1.13. Despite appearances, using φ−1 on the indices is natural. The bit
with index i is mapped to the index φ(i). Equivalently, the bit mapped to the index
i was originally at the index φ−1(i).
Example 1.14. Let us introduce a 5-round SPN, called ToyCipher, which encrypts
a 16-bit block using a 16-bit cipher key. Thus, for this cipher r = 5 and nm = κ = 16.
The substitution layer σ evaluates in parallel one 4-bit S-box denoted by S. This
S-box is given in hexadecimal notation at the bottom of Figure 1.3. For instance, S
maps 2 to D or equivalently S(0010) = 1101. Similarly,

σ(2,F,F,1) = (S(2), S(F), S(F), S(1)) = (D,6,6,3) .

The diffusion layer π is the bit permutation associated with the permutation φ of
J0,16J defined by the formula

φ(i) = 4(imod 4) + ⌊ i4⌋ .

This bit permutation is drawn from the block cipher Present [17] and its small scale
variants Small-Present [69]. For instance φ(0) = 0, φ(1) = 4, φ(2) = 8, φ(3) = 12,
φ(4) = 1 and

π(D663) = π(
0
1

1
1
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1

4
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5
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1
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) = 8E79 .
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k0[1] k1[1] k2[1] k3[1]

k0[2] k1[2] k2[2] k3[2]

k0[3] k1[3] k2[3] k3[3]
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k[1]

k[2]

k[3]

k[4]

k[5]

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 7 3 D 9 C 2 4 8 A B 1 0 E F 5 6

Figure 1.3: The encryption algorithm ToyCipher.
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Key Schedule Message encryption
0000 0000 0000 0000 = 0000 Plaintext

k[0] 0000 0000 0000 0000 = 0000 → 0000 0000 0000 0000 = 0000 After ⊕k[0]

S/⊕ 1 0111 0001 0000 0000 = 7100 0111 0111 0111 0111 = 7777 After σ
0000 1111 1111 1111 = 0FFF After π

k[1] 0010 0000 0000 1110 = 200E → 0010 1111 1111 0001 = 2FF1 After ⊕k[1]

S/⊕ 2 1101 0010 0000 1110 = D20E 1101 0110 0110 0011 = D663 After σ
1000 1110 0111 1001 = 8E79 After π

k[2] 0100 0001 1101 1010 = 41DA → 1100 1111 1010 0011 = CFA3 After ⊕k[2]

S/⊕ 3 1100 0010 1101 1010 = C2DA 1110 0110 0001 1001 = E619 After σ
1001 1100 1100 0011 = 9CC3 After π

k[3] 0101 1011 0101 1000 = 5B58 → 1100 0111 1001 1011 = C79B After ⊕k[3]

S/⊕ 4 0010 1111 0101 1000 = 2F58 1110 1000 1011 0000 = E8B0 After σ
1110 1000 1010 0010 = E8A2 After π

k[4] 1110 1011 0000 0101 = EB05 → 0000 0011 1010 0111 = 03A7 After ⊕k[4]

S/⊕ 5 0101 1110 0000 0101 = 5E05 0111 1001 0001 1000 = 7918 After σ
k[5] 1100 0000 1010 1011 = C0AB → 1011 1001 1011 0011 = B9B3 Ciphertext

Figure 1.4: Encryption of 0000 with ToyCipher using the cipher key K = 0000.

The round function Fk consists of an addition with k, a substitution layer then a
diffusion layer. With k = 200E and x = 0FFF, we have

Fk(x) = π ○ σ(0FFF + 200E) = π ○ σ(2FF1) = π(D663) = 8E79 .

As explained in Remark 1.11, the last round does not have a diffusion layer. An
illustration of the whole encryption of ToyCipher function is given in Figure 1.3.

The key schedule derives 6 round keys k[0], . . . , k[5] from the cipher key K. The
first round key k[0] is equal to the cipher key K. To compute the round key k[i+1]

form k[i], apply the S-box S to the first bundle and add a round constant ri to the
next bundle. The constant ri is just the binary decomposition of the integer i + 1.
Then rotate by 5 bit positions to the left all the bits to obtain k[i+1]. In Figure 1.4,
we describe step by step the whole encryption process of the plaintext block 0000
using the cipher key 0000.

1.3. Differential Cryptanalysis

One of the most important and powerful [39, 64] attacks against block ciphers is
differential cryptanalysis, proposed by Biham and Shamir in [13, 14]. A formalization
of this attack was then proposed by Lai, Massey and Murphy in [67]. Differential
cryptanalysis is a chosen plaintext attack which requires the encryption of pairs
of plaintexts that have a fixed difference. Then, the attack exploits a non-uniform
distribution of the differences between pairs of outputs to recover partial information
on the last-round key of the cipher. This section is organized as follows. First we
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give the main idea of the attack and illustrate it with an example. Then, we explore
the theoretical framework of this attack in Section 1.3.2

1.3.1. General Idea of the Attack

The difference between two elements x and x∗ of Fn2 is defined to be x − x∗ but since
each element is its own additive inverse in Fn2 , it is simply equal to x + x∗. The main
property used in differential cryptanalysis is that for every round key k, we have

(x + k) + (x∗ + k) = x + x∗ . (1.1)

In other words, the difference between x and x∗ is invariant under the round key
addition.

A successful differential cryptanalysis relies on the existence of a differential
holding with high probability, which we define now. Let f be a mapping from Fn2 to
Fn2 . A differential over f is a pair (a, b) of elements of Fn2 . Given a differential (a, b),
the elements a and b are called the input and output difference patterns respectively.
Then, a differential (a, b) predicts that when two inputs x and x∗ have difference a,
then their images f(x) and f(x∗) have difference b with a certain probability. It is
easily seen that x and x∗ have difference a if and only if x∗ = x + a. Equivalently, a
differential (a, b) predicts that when x is uniformly distributed over Fn2 , the value
f(x) + f(x + a) is equal to b with a certain probability. This probability is naturally
defined as follows.

Definition 1.15 (Differential Probability). Let f ∶ Fn2 → Fn2 be a mapping. The
differential probability of (a, b) over f is denoted by DPf(a, b) and defined to be

DPf(a, b) =
#{x ∈ Fn2 ∣ f(x) + f(x + a) = b}

2n .

Consider an r-round substitution permutation network E ∶ Fκ2 × Fnm2 → Fnm2 and
assume that the last round does not have a diffusion layer. Given a cipher key K, we
denote by EK (r−1) the r − 1 first rounds of the encryption function EK . Therefore

EK
(r−1) = Fk[r−2] ○ ⋯ ○ Fk[0] and hence EK = (αk[r] ○ σ ○ αk[r−1]) ○EK (r−1) .

In a classical differential cryptanalysis of E, we do not use a differential over the
r-round encryption function EK , but on the (r − 1)-round encryption EK (r−1). Then,
a differential (a, b) over r − 1 rounds can be exploited in a differential cryptanalysis
when its average probability over all the cipher keys is large enough.

The main idea of the attack is the following. Assume that (a, b) is an (r−1)-round
differential which holds with probability q for a significant proportion of the cipher
keys. Let K be the unknown cipher key. First, generate pairs (p, p + a) of plaintexts
and require their encryption under the cipher key K. The pairs obtained are denoted
by (c, c∗). In order to have some pairs (c, c∗) satisfying c+ c∗ = b, we may use C × q−1

plaintext pairs with C ≥ 5. Assume that k is a candidate for the last-round key k[r].
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Then we decrypt the last round of each pair (c, c∗) using the candidate k and we
denote

y = σ−1(c + k) and y∗ = σ−1(c∗ + k) .
If the candidate key k is the right key, then the equation y + y∗ = b should hold with
probability q since (a, b) is an (r−1)-round differential. Otherwise, when k is a wrong
candidate, we hope that the equation y + y∗ = b holds with probability significantly
less than q. This assumption is known as the hypothesis of wrong-key randomization
[51]. Indeed, it seems natural to think that the (r + 1)-round differential (a, b) holds
with probability less than the (r − 1)-round differential (a, b), and when k is a wrong
key, the pair (y, y∗) is equivalent to an (r + 1)-round encryption of (p, p + a).

To recover information on the last-round key, we may proceed as follows. For each
candidate k for the last-round key, decrypt the last round for each pair (c, c∗) and
save the number Nk of pairs (y, y∗) such that y + y∗ = b. Then the key k maximizing
the value Nk should be equal to the last-round key k[r]. As will be seen in the next
example, we only decrypt partially the last round in an effective cryptanalysis, and
thus we recover a few bits of the last-round key.
Example 1.16. Let us now present a differential cryptanalysis of our SPN
ToyCipher introduced in Example 1.14. Since this cipher consists of five rounds,
we must first find a 4-round differential holding with high probability. Finding such
a differential is generally not easy because the vast majority of the differentials are
useless in a differential cryptanalysis. For instance, the 4-round differential (a, b)
with

a = (0,8,0,0) and b = (0,0,7,0)
has an average probability over the cipher keys equal to 1.22 × 2−16. This value was
computed via an exhaustive search, which is possible thanks to the small block size
and key length of this cipher. A differential cryptanalysis based on this differential
would require the encryption of more than 216 different pairs of plaintexts (x,x + a).
However, there are only 216 such pairs since there are 216 different blocks.

We will explain in the next section and in Chapter 2 how to find high probability
differentials, in this example we explain how such a differential can be used to recover
key information. Consider the 4-round differential (a, b) where

a = b = (0,4,0,0) .

The average probability of this differential over all the cipher keys is
1

216 ∑
K∈F16

2

DPEK (4)(0400,0400) ≈ 2688.2
216 ≈ 1.31 × 2−5 .

The repartition of all the differential probabilities DPEK (4)(0400,0400) is illustrated
at the top of Figure 1.5. For instance, there are 1298 cipher keys K such that

2624
216 < DPEK (4)(0400,0400) ≤ 2656

216 .

Moreover, this differential holds with probability greater than 2−5 for 85% of the
cipher keys. In view of these results, the differential (a, b) holds with high probability
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Initialisation: Find a High Probability 4-Round Differential
More than 90% of the cipher keys K satisfy DPEK

(4)(0400, 0400) > 1888 / 216 ≈ 1.8 × 2−6.
More than 50% of the cipher keys K satisfy DPEK

(4)(0400, 0400) > 2624 / 216 ≈ 1.3 × 2−5.
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Part 1: Get Plaintext/Ciphertext Pairs
Choose N plaintext pairs (p, p∗) such that p + p∗ = 0400 and request the corresponding ciphertext
pairs (c, c∗) encrypted under the unknown cipher key K.

Part 2: Recover Some Bits of the Last Round Key
For each candidate k̃1

[5], decrypt partially the last round of the pairs (c, c∗) such that ci = c∗i for all
i in {0, 2, 3} and c1 + c∗1 lies in {1, 4, 6, 9, B}. The key k̃1

[5] maximizing the number of pairs (y1, y∗1)
satisfying y1 + y∗1 = 4 should be equal to k1
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Figure 1.5: A differential cryptanalysis of ToyCipher.
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(compared to 2−16) for a significant proportion of the cipher keys and can hence be
used in a differential cryptanalysis.

As explained before, a differential cryptanalysis requires the encryption of C × q−1

pairs of plaintexts where q is the average probability of the 4-round differential. With
C = 5, this amounts to

N = 5 × 216

2688.2 ≈ 122 ≈ 27

pairs of chosen plaintexts. To generate these pairs, choose N random plaintexts p
and form the pairs (p, p + 0400). Thus, all the bits of p and p∗ = p + 0400 are equal
except the bit with index 5, starting from 0. Let K be the unknown cipher key and
request for the encryption of all these pairs. Then, we obtain N pairs (c, c∗) such
that

c = EK(p) and c∗ = EK(p + 0400) .

Let (p, p∗) be one of these pairs and denote by (x,x∗) its 4-round encryption,
that is x = EK(4)(p) and x∗ = EK(4)(p∗). The following reasoning is illustrated in
Part 1 of Figure 1.5. Assume that x + x∗ = 0400. Such a pair is called a right pair,
or equivalently we say that (p, p∗) follows the differential (a, b). By extension, its
corresponding ciphertext pair (c, c∗) is also said to be a right pair. Adding the next
round key, the pair (x,x∗) becomes

(y, y∗) = (x + k[4], x∗ + k[4]) .

By assumption and according to Equation (1.1), the difference between y and y∗
remains unchanged and is equal to 0400. We must now understand how this difference
propagates through the substitution layer. First, note that

y0 = y∗0 , y1 = y∗1 + 4 , y2 = y∗2 , y3 = y∗3 .

Denote by z and z∗ the images of y and y∗ under σ. It goes without saying that
for each i in {0,2,3}, we have zi = z∗i and hence zi + z∗i = 0. It remains to explain
what are the possible values for the difference z1 + z∗1 . This is done by computing
the values z1 + z∗1 for all possible y1 and y∗1 = y1 + 4 in F4

2:

S(0) + S(4) = S(4) + S(0) = C + 7 = B , S(8) + S(C) = S(C) + S(8) = E + A = 4 ,
S(1) + S(5) = S(5) + S(1) = 2 + 3 = 1 , S(9) + S(D) = S(D) + S(9) = F + B = 4 ,
S(2) + S(6) = S(6) + S(2) = 4 + D = 9 , S(A) + S(E) = S(E) + S(A) = 5 + 1 = 4 ,
S(3) + S(7) = S(7) + S(3) = 8 + 9 = 1 , S(B) + S(F) = S(F) + S(B) = 6 + 0 = 6 .

Therefore, the difference z1 + z∗1 lies in the set {1,4,6,9,B}. Finally, c and c∗ are
obtained by adding the last-round key k[5] to z and z∗ respectively, so c+ c∗ = z + z∗.
To summarize, we have proven that if (p, p∗) is a right pair, then

c0 + c∗0 = c2 + c∗2 = c3 + c∗3 = 0 , and c1 + c∗1 ∈ {1,4,6,9,B} . (1.2)

To recover information on the last-round key, we must count for each candidate
key k the number of pairs (c, c∗) satisfying the equation

σ−1(c + k) + σ−1(c∗ + k) = 0400 .

13
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Figure 1.6: A differential cryptanalysis of ToyCipher.

According to the preceding discussion, if a pair (c, c∗) does not satisfy (1.2), then
this pair is necessarily a wrong pair. To avoid useless computing, we apply a filtering
process which discards the wrong pairs and we denote by F the set of the filtered
pairs. Let k be a candidate key and let i be a bundle index in {0,2,3}. For each
filtered pair (c, c∗), we have

ci = c∗i and hence S−1(ci + ki) + S−1(c∗i + ki) = 0 .

Therefore, this differential gives no information on ki[5] for each i in {0,2,3}, so we
can only recover information on k1[5]. This is good news because we would otherwise
have to decrypt the last round for all of the 216 possible round keys, yielding a
complexity greater than the brute force. Finally, the cryptanalysis ends as follows.
For each k1 in F4

2, compute its score

Nk1 = #{(c, c∗) ∈ F ∣ S−1(c1 + k1) + S−1(c∗1 + k1) = 4} .

Then, the higher the score Nk1 is, the more likely k1 is equal to k1[5]. This step is
illustrated in Part 2 of Figure 1.5. The experimental success probabilities of this
differential cryptanalysis with respect to the constant C are given in Figure 1.6.
Define the rank of the right key k1[5] to be

Rk = #{k1 ∈ F4
2 ∣ Nk1 ≥ Nk1 [5]} .

If the rank is equal to 1, then the cryptanalysis recovers the right bundle within the
set F4

2, giving four bits of information. When the rank is less than 2, two choices
remain for k1[5] instead of 16. Thus, we have at least three bits of information.
Similarly, we have (at least) two bits of information when Nk ≥ 4 and one bit if
Nk ≥ 8. As can be seen in Figure 1.6, when C = 5 this attack recovers one bit of
information with probability 90.2%, two and three bits with probability 74.7% and
65.2%, and recovers the exact bundle with probability 50.9%.
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1.3 – Differential Cryptanalysis

1.3.2. Differential Trails

Having explained how a high probability differential can be exploited in a crypt-
analysis, now is the time to present the theory of differentials. This presentation
is inspired by the works of Lai, Massey [67] and Daemen, Rijmen [39, 40]. In this
section we consider a generic r-round SPN E ∶ Fκ2 × Fnm2 → Fnm2 such that for each
cipher key K,

EK = Fk[r−1] ○ ⋯ ○ Fk[0] with Fk[i] = π ○ σ ○ αk[i] .

It is worth observing that the last round includes and ends with a diffusion layer.
This definition makes sense here because the differentials used in an attack have fewer
rounds that the whole cipher. Thus, the SPN considered here should be thought as
a reduced-round version of the cipher attacked.

The standard method used to find a high probability differential relies on the study
of a difference propagation through the components of the SPN. We have already
seen that a difference remains unchanged by a key addition. The next proposition
describes how a difference propagates through the substitution and diffusion layers.

Proposition 1.17. Let a and b be two difference patterns in Fnm2 . Then

DPσ(a, b) =
m−1
∏
i=0

DPSi(ai, bi) and DPπ(a, b) =
⎧⎪⎪⎨⎪⎪⎩

1 if π(a) = b ,
0 otherwise .

In other words, given an input difference pattern a, each S-box Si transforms
independently ai to bi with a certain probability and the diffusion layer always maps a
to π(a) = b. Following the idea of propagation of a difference through the encryption
process, we introduce the next definition.

Definition 1.18 (Differential Trail). An r-round differential trail is a family
T = (a[0], . . . , a[r]) of (r + 1) difference patterns in Fnm2 . Let K be a cipher key. The
fixed-key differential probability of T is defined to be

DPEK(T ) =
#{x ∈ Fnm2 ∣ ∀1 ≤ i ≤ r, E(i)

K (x) +E(i)
K (x + a[0]) = a[i]}

2nm .

Let (x,x∗) be a pair of plaintexts. We should say that (x,x∗) follows the
differential trail T = (a[i])i≤r if

• the difference between x and x∗ is equal to a[0], and
• for each 1 ≤ i ≤ r, the difference between the i-round encryptions of x and x∗ is

equal to a[i].

Using this vocabulary, the fixed-key differential probability of T can equivalently be
defined as the probability that a pair chosen uniformly at random follows the trail
T given that its difference is equal to the input pattern a[0]. Therefore, the trail
T predicts the evolution of an input difference after each round of the encryption
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process whereas a differential only predicts its output difference. These two concepts
are related via the following proposition.

Proposition 1.19. Let (a, b) be an r-round differential and let K be a cipher key.
Denote by Ea,b the set of all trails (a[i])i≤r such that a[0] = a and a[r] = b. Then

DPEK(a, b) = ∑
T ∈Ea,b

DPEK(T ) .

This result is in fact quite intuitive since each pair following the differential
naturally follows one and only one trail, namely the trail consisting of its intermediate
differences. Conversely, a pair following a trail (a[i])i≤r such that a[0] = a and a[r] = b
obviously follows the r-round differential (a, b). So far we have only considered fixed-
key probabilities. However, these results may not describe what can be expected
when attacking an unknown cipher key. For this purpose we introduce the next
definition.

Definition 1.20 (DP(T )). The (expected) differential probability of a trail T ,
denoted by DP(T ), is the average fixed-key differential probability of T over the
associated long-key cipher.

Recall that the long-key cipher associated with our SPN is the cipher obtained
by disregarding the key schedule and considering independent round keys. Explicitly,
the differential probability of T is given by

DP(T ) = 1
(2nm)r

× ∑
K∈(Fnm2 )r

DPEK(T ) .

Remark 1.21. By virtue of Proposition 1.17, a difference can have a non-
deterministic transition only during the substitution layer. Given a trail T = (a[i])i≤r,
we denote by b[i] the element π−1(a[i+1]) for each i < r. Thus, an r-round trail can
alternatively be seen as the sequence ((a[i], b[i]))i<r.

Theorem 1.22. Let T = (a[i])i≤r be a differential trail. The differential probability
of T is given by

DP(T ) =
r−1
∏
i=0

DPσ(a[i], b[i]) =
r−1
∏
i=0

m−1
∏
j=0

DPSj(aj [i], bj [i]) ,

where b[i] = π−1(a[i+1]) for each i < r.

This theorem has a significant practical impact since the differential probability
of a trail can be computed by multiplying a few differential probabilities over the
S-boxes. Computing the full differential probability matrix DPSj of the n-bit S-
box Sj has complexity O(22n). Since substitution-permutation networks generally
have n-bit S-boxes with n less than or equal to 8, all these matrices are easily
computed. Moreover, the formula of the previous theorem can be simplified further
by introducing the notion of active S-boxes.
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Definition 1.23 (Active S-Box). Let T = (a[i])i≤r be a differential trail with a
nonzero differential probability. The S-box Sj is said to be active at round i if the
pattern aj [i] is nonzero, otherwise Sj is inactive.

Proposition 1.24. Let T = (a[i])i≤r be a nonzero probability differential trail. Let
i < r and j ≤ m be nonnegative integers. Then aj [i] = 0n if and only if bj [i] = 0n.
Consequently, Theorem 1.22 can be restated as

DP(T ) = ∏
i,j ∣ aj [i]≠0

DPSj(aj [i], bj [i]) .

Proof. To simplify the notation, denote by a′ and b′ the patterns aj [i] and bj [i].
According to Theorem 1.22, DPSj(a′, b′) is nonzero as DP(T ) is nonzero by hypothesis.
Because Sj is one-to-one, DPSj(a′,0n) is nonzero if and only if a′ = 0n. Further,
DPSj(0n, b′) is nonzero only when b′ = 0n. Finally, observe that DPSj(0n,0n) = 1.
The result follows. ∎

Definition 1.25 (EDP). The expected differential probability of an r-round differ-
ential (a, b), denoted by EDP(a, b), is the average fixed-key differential probability
of (a, b) over the associated long-key cipher.

Theorem 1.26. Let (a, b) be an r-round differential. Denote by Ea,b the set of all
trails (a[i])i≤r such that a[0] = a and a[r] = b. The expected differential probability of
(a, b) is given by

EDP(a, b) = ∑
T ∈Ea,b

DP(T ) .

The expected differential probability of a differential is the theoretical value
reflecting its usefulness. However, this notion has two downsides. First, the set
Ea,b generally grows exponentially with the number of rounds and it should be
very difficult to enumerate all its trails. Consequently, in real size substitution
permutation networks, it is almost impossible to compute an expected differential
probability. However, this value can often be approximated using several high
probability differential trials.

Secondly, the expected differential probability does not take into account the effect
of the key schedule and provides only an average value. Thus, in a cryptanalysis,
we tacitly assume that the fixed-key differential probability over the cipher key
being attacked is approximately equal to its expected differential probability. This
assumption is known as the hypothesis of stochastic equivalence [67].

Example 1.27. In Example 1.16, we have considered the 4-round differential (a, b)
with a = b = 0400. Denote by (x,x∗) the pair (4100,4500) of plaintexts and consider
the cipher key K = 0000. Since x + x∗ is equal to 0400, this input pair has the
required input difference. Throughout the 4-round encryption process, this pair is
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a[0] = (0,4,0,0) a[2] = (0,1,0,0)
b[0] = (0,1,0,0) b[2] = (0,4,0,0)
a[1] = (0,0,0,4) a[3] = (0,4,0,0)
b[1] = (0,0,0,4) b[3] = (0,4,0,0)

DP(T ) = 4
16 ×

6
16 ×

4
16 ×

6
16

= 576
164 = 1.125 × 2−7

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 16 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1 ⋅ 6 ⋅ 2 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ 2 ⋅
2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 2 6 6 ⋅ ⋅ ⋅ ⋅
3 ⋅ ⋅ ⋅ ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 6 ⋅ ⋅ ⋅ 4 ⋅
4 ⋅ 4 ⋅ ⋅ 6 ⋅ 2 ⋅ ⋅ 2 ⋅ 2 ⋅ ⋅ ⋅ ⋅
5 ⋅ ⋅ ⋅ ⋅ ⋅ 10 ⋅ 2 ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ 2
6 ⋅ 2 ⋅ 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 ⋅ 2 ⋅ 6
7 ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ 2 ⋅ ⋅ ⋅ ⋅ 2 ⋅ 6 4
8 ⋅ 2 2 ⋅ ⋅ ⋅ ⋅ ⋅ 2 2 ⋅ ⋅ 2 4 2 ⋅
9 ⋅ ⋅ 2 2 ⋅ ⋅ ⋅ ⋅ 2 2 ⋅ ⋅ 4 4 ⋅ ⋅
A ⋅ ⋅ 2 2 2 ⋅ 2 4 ⋅ 2 2 ⋅ ⋅ ⋅ ⋅ ⋅
B ⋅ ⋅ 2 2 ⋅ ⋅ 4 4 ⋅ ⋅ 2 2 ⋅ ⋅ ⋅ ⋅
C ⋅ ⋅ ⋅ ⋅ ⋅ 2 2 ⋅ 4 4 ⋅ ⋅ 2 ⋅ ⋅ 2
D ⋅ ⋅ ⋅ ⋅ 2 ⋅ ⋅ 2 4 2 ⋅ 2 2 2 ⋅ ⋅
E ⋅ ⋅ 4 4 ⋅ 2 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 2 ⋅
F ⋅ 2 4 2 ⋅ ⋅ 2 2 ⋅ ⋅ ⋅ ⋅ 2 ⋅ ⋅ 2

24 ×DPS(a, b)

Figure 1.7: A differential trail included in the 4-round differential (0400,0400).
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transformed as follows:
x x∗ Difference

4100 4500 → 0400
EK (1) ∶ 8B77 8B73 → 0001
EK (2) ∶ 3019 3119 → 0100
EK (3) ∶ B265 B665 → 0400
EK (4) ∶ 795F 7D5F → 0400

Since the output difference is equal to the output pattern b, this pair follows the
differential (a, b). More precisely, this pair follows the differential trail T = (a[i])i≤4
where

a[0] = 0400 , a[1] = 0001 , a[2] = 0100 , a[3] = 0400 , a[4] = 0400 .

This trial is illustrated in Figure 1.7 where b[i] = π−1(a[i]), as suggested by Remark
1.21. The active S-boxes are emphasized. Thus there are only four active S-boxes
in this trial, which is the minimum. The differential probability matrix of S is also
given in the same figure. As seen in Example 1.16,

S(y1) + S(y1 + 4) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if y1 ∈ {1,3,5,7} , 9 if y1 ∈ {2,6} ,
4 if y1 ∈ {8,9,A,C,D,E} , B if y1 ∈ {0,4} .
6 if y1 ∈ {B,F} ,

This relation explains the row indexed by 4 of the matrix DPS. By virtue of Corollary
1.24, it suffices to multiply the probabilities of the active S-boxes to find that the
(expected) probability of the trail T is equal to 1.125 × 2−7, as shown in Figure 1.7.

It turns out that there are six trails associated with the differential (a, b). These
trails are given in Figure 1.8, sorted by differential probability. According to Theorem
1.26, the expected differential probability of (a, b) is the sum of the differential
probabilities of these trails, that is

EDP(a, b) =
6
∑
i=1

DP(Ti) =
346133
8388608 ≈ 1.32 × 2−5 .

Recall that in the preceding example, we have found that the average fixed-key of
this differential including the key schedule is approximately equal to 1.31×2−5. Thus,
the theoretical expected differential probability is very close to the real value in this
example.

To conclude, it should be mentioned that the trail T1 is not the 4-round trail which
has the highest probability. Using the algorithm given in the next chapter, it can be
proven that the optimal 4-round trial is the trail To(=)(a[i])i≤q such that a[i] = 0505
for every i ≤ 4. This trail has a differential probability equal to (10

16)8 ≈ 1.49 × 2−6

which is greater than DP(T1) ≈ 1.2 × 2−6. However, we have computed that
1

216 ∑
K∈F16

2

DPEK (4)(0505,0505) ≈ 1714.3
216 ≈ 1.67 × 2−6 .

Therefore, the differential associated with an optimal trail is not necessarily an
optimal differential.
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T1 T2 T3 T4 T5 T6

a[0] (0,4,0,0) (0,4,0,0) (0,4,0,0) (0,4,0,0) (0,4,0,0) (0,4,0,0)
b[0] (0,4,0,0) (0,4,0,0) (0,1,0,0) (0,1,0,0) (0,B,0,0) (0,B,0,0)
a[1] (0,4,0,0) (0,4,0,0) (0,0,0,4) (0,0,0,4) (4,0,4,4) (4,0,4,4)
b[1] (0,4,0,0) (0,1,0,0) (0,0,0,4) (0,0,0,1) (4,0,4,9) (9,0,9,4)
a[2] (0,4,0,0) (0,0,0,4) (0,1,0,0) (0,0,0,1) (1,A,0,1) (A,1,0,A)
b[2] (0,4,0,0) (0,0,0,4) (0,4,0,0) (0,0,0,4) (4,4,0,4) (4,4,0,4)
a[3] (0,4,0,0) (0,1,0,0) (0,4,0,0) (0,1,0,0) (0,D,0,0) (0,D,0,0)
b[3] (0,4,0,0) (0,4,0,0) (0,4,0,0) (0,4,0,0) (0,4,0,0) (0,4,0,0)

DP 64/164 42×62/164 42×62/164 44/164 24×42×62/168 26×4×6/168

≈ 1.2 × 2−6 1.1 × 2−7 1.1 × 2−7 1.0 × 2−8 1.1 × 2−19 1.5 × 2−22

Figure 1.8: The trails composing the 4-round differential (0400,0400).

1.4. Linear cryptanalysis

After differential cryptanalysis, linear cryptanalysis is the main attack against block
ciphers. This cryptanalysis was introduced by Matsui in [74, 75] for the DES and
was the first attack which recovered experimentally a DES key. However, it should be
mentioned that the idea of linear cryptanalysis was proposed earlier by Tardy-Corfdir
and Gilbert [96] in an attack against the cipher FEAL-4.

Linear cryptanalysis is a known plaintext attack, which is an advantage over
differential cryptanalysis. The main idea of this attack is to use a linear approximation
of a reduced-round version of the cipher to recover information on some round keys.
As was the case for the presentation of differential cryptanalysis, we first formalize
the idea of linear cryptanalysis and give an example. Then we describe the theory of
this attack in Section 1.4.2.

1.4.1. General Idea of the Attack

For a linear cryptanalysis to be successful, one must find a linear approximation
of the cipher with high linear potential. First, let us define the concepts of linear
approximation and linear potential. Let f be a mapping from Fn2 to Fn2 . Intuitively,
we want to approximate a linear combination of the output bits of f by a linear
combination of its input bits. In other words, we want a relation of the form

⟨a, x⟩ = ⟨b, f(x)⟩ , (1.3)

where the n-bit vectors a and b are called the input and output selection patterns of
the approximation. Thus, a linear approximation over f is simply defined to be a
pair (a, b) of elements of Fn2 . Of course, such an approximation holds with a certain
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probability. But it is worthwhile to note that, if Equation (1.3) quite never holds
then the relation

⟨a, x⟩ = ⟨b, f(x)⟩ + 1 (1.4)
holds with high probability. From a cryptanalytic point of view, using Equation (1.3)
or (1.4) does not matter as they yield the same amount of information. The worst
case is when (1.3) holds for exactly the half of the inputs x. In this case, the left
side gives no information on the right side, and hence on f . The usefulness of an
approximation is characterized by its correlation or linear potential.

Definition 1.28 (Correlation and Linear Potential). Let f ∶ Fn2 → Fn2 be a
mapping and (a, b) be an approximation over f . The correlation of the approximation
(a, b) is defined to be

Cf(a, b) = 2 ⋅ #{x ∈ Fn2 ∣ ⟨a, x⟩ = ⟨b, f(x)⟩}
2n − 1 .

The linear potential LP of (a, b) is the square of its correlation, namely

LPf(a, b) = Cf(a, b)2 .

Remark 1.29. The definition of the correlation can be equivalently restated as

Cf(a, b) = 2 ⋅ Px(⟨a, x⟩ = ⟨b, f(x)⟩) − 1 .

Thus, the correlation of any approximation ranges from −1 to 1 included. Then,
the linear potential of an approximation ranges from 0 to 1. A correlation or linear
potential equal to zero gives no information. The closer the absolute correlation or
linear potential is to one, the more information it yields on f . Finally, it should be
noted that several authors speak about linear probability rather than potential. We
strongly encourage the term potential as this quantity is not a probability.

As for differential cryptanalysis, consider an r-round substitution permutation
network E ∶ Fκ2 ×Fnm2 → Fnm2 and assume that the last round does not have a diffusion
layer, thus

EK = (αk[r] ○ σ ○ αk[r−1]) ○E(r−1)
K .

A classical linear cryptanalysis of E is based on an approximation (a, b) over the
(r − 1)-round encryption EK (r−1) which has high linear potential for virtually all
cipher keys K. Let K be a cipher key. Then note that

⟨a, x⟩ = ⟨b,E(r−1)
K (x) + k[r−1]⟩

⇐⇒ ⟨a, x⟩ = ⟨b,E(r−1)
K (x)⟩ + ⟨b, k[r−1]⟩ .

Since ⟨b, k[r−1]⟩ does not depend on x, the correlation of the approximation (a, b)
over αk[r−1] ○EK (r−1) is equal to the correlation of (a, b) over EK (r−1) up to the sign.
Therefore,

CR′(a, b) = ±CR(a, b)
LPR′(a, b) = LPR(a, b)

where {R = E(r−1)
K ,

R′ = αk[r−1] ○E(r−1)
K .

(1.5)
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Assume that (a, b) is an (r − 1)-round approximation with linear potential q
for a significant fraction of the cipher keys and let K denote the unknown cipher
key. For the cryptanalysis to be successful, it turns out that we need N = C × q−1

known plaintext/ciphertext pairs (p, c). To recover information on the last-round
key, proceed as follows. For each candidate key k for k[r], compute the value

Pk = (2 ×#{(p, c) ∣ ⟨a, p⟩ = ⟨b, σ−1(c + k)⟩} −N)2
.

Then the key k maximizing the value Pk should be equal to the last-round key k[r].
Again, the assumption that a wrong key k should have a value Pk less than Pk[r] is
called the hypothesis of wrong-key randomization [51].

Example 1.30. In this example we describe a linear cryptanalysis of our ToyCi-
pher introduced in Example 1.14. Again we will not focus on how to find a suitable
linear approximation of the reduced-round cipher but rather explain how to use one.
Consider the 4-round linear approximation (a, b) where

a = b = (0,0,2,0) .

The average linear potential of this approximation over every cipher key is

1
216 ∑

K∈F16
2

LPEK (4)(0020,0020) ≈ 6914.6
216 ≈ 1.69 × 2−4 .

This value was computed via an exhaustive search. The distribution of all linear
potentials LPEK (4)(0020,0020) is given at the top of Figure 1.9. For instance, the
inequalities

4416
216 < LPEK (4)(0020,0020) ≤ 4480

216

hold for 2400 cipher keys. Compared with Figure 1.5, the repartition of theses poten-
tials is more complicated and key-dependent than the repartition of the differential
probabilities. We will explain this weird behavior in Section 1.4.2.

Let K be an unknown cipher key. This linear cryptanalysis is known to be
successful only when C × q−1 plaintext/ciphertext pairs are available. With C = 5,
this attack requires

N = 5 × 216

6914.6 ≈ 47 ≈ 26

known plaintexts. Assume we are given N pairs (p, c) such that c = EK(c). Let k be
a candidate of k[5]. Following the principle of linear cryptanalysis, we must compute
the value

Pk = (2 ×#{(p, c) ∣ ⟨a, p⟩ = ⟨b, σ−1(c + k)⟩} −N)2
. (1.6)

Observe that for each pair (p, c), it holds that

⟨a, p⟩ = ⟨b, σ−1(c + k)⟩⇐⇒ ⟨0020, p⟩ = ⟨0020, σ−1(c + k)⟩
⇐⇒ ⟨2, p2⟩ = ⟨2, S−1(c2 + k2)⟩ .
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Initialisation: Find a High Potential 4-Round approximation
More than 90% of the cipher keys K satisfy LPEK

(4)(0020, 0020) ≥ 3840 / 216 ≈ 1.8 × 2−6.
More than 43% of the cipher keys K satisfy LPEK

(4)(0020, 0020) ≥ 8384 / 216 ≈ 1.2 × 2−5.
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Part 1: Get Plaintext/Ciphertext Pairs
Choose N plaintext pairs (p, p∗) such that p + p∗ = 0400 and request the corresponding ciphertext
pairs (c, c∗) encrypted under the unknown cipher key K.

Part 2: Recover Some Bits of the Last Round Key
For each candidate k̃2

[5], decrypt partially the last round for every ciphertext.
The key k̃2

[5] maximizing (2 ×#{(p2, y2) ∣ ⟨p2, 2⟩ = ⟨y2, 2⟩} −N)2 should be equal to k1
[5].

Figure 1.9: A linear cryptanalysis of ToyCipher.
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Figure 1.10: A differential cryptanalysis of ToyCipher.

Replacing in (1.6) yields

Pk = (2 ×#{(p, c) ∣ ⟨2, p2⟩ = ⟨2, S−1(c2 + k2)⟩} −N)2
. (1.7)

Since the value Pk does not depend on k0, k1 and k3, the cryptanalysis cannot give
any information on the corresponding bundles of the last-round key. To recover
information on k2[5], proceed as follows. For each candidate k2 for k2[5], compute
the value Pk2 given in (1.7). Then the higher Pk2 is, the more likely k2 is equal
to k2[5]. This cryptanalysis is illustrated in Parts 1 and 2 of Figure 1.9 and its
success probability is given in Figure 1.10. For instance, if C = 5, the attack recovers
one, two and three bits of information with probability 81.1%, 60.5% and 41.0%
respectively. Unlike the differential cryptanalysis in Example 1.16, this attack never
obtains four bits of information. This does not mean that the correct bundle k2[5] is
never recovered but that there is at least another key with a score greater than or
equal to its score.

1.4.2. Linear Approximations and Linear Trails

In this section, we explore the theory of linear approximations. All the results and
definitions are drawn from the works of Daemen and Rijmen [39, 40]. Let f be a
mapping from Fn2 to Fn2 . The matrix Cf formed by the correlations between all the
selection patterns is called the correlation matrix of f . The next lemma explains how
the correlation matrix of a composition can be derived from the correlation matrices
of its components.

Lemma 1.31. Let f and g be two mappings from Fn2 to Fn2 . The correlation matrix
of the composite g ○ f is equal to Cf ×Cg. Thus, for all a, b in Fn2 , we have

Cg○f(a, b) = ∑
i∈Fn2

Cf(a, i) ×Cg(i, b) .
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Consider a generic r-round substitution-permutation network E ∶ Fκ2 ×Fnm2 → Fnm2
where the encryption function can be expressed for each cipher key K as

EK = Fk[r−1] ○ ⋯ ○ Fk[0] with Fk[i] = π ○ σ ○ αk[i] .

Again, the last round includes and ends with a diffusion layer. First, we look at the
correlation of an approximation over the basic steps of the round function, namely
the key addition, the substitution layer and the diffusion layer.

Proposition 1.32. Let a, b be two selection patterns in Fnm2 and let k be a round
key. The correlations of the approximation (a, b) over each step of the round function
are given by

Cαk(a, b) = δa,b(−1)⟨a,k⟩ , Cσ(a, b) =
m−1
∏
i=0

CSi(ai, bi) , Cπ(a, b) = δa,π⊺(b) .

By analogy with differential trails, let us introduce the concept of linear trails.
Even if the applications of linear trails are similar to the ones of differential trails,
these two concepts are by nature very different.

Definition 1.33 (Linear Trail). An r-round linear trail is a family T = (a[i])i≤r
of r + 1 selection patterns. The correlation contribution of T is defined to be

C(T ) =
r−1
∏
i=0

Cπσ(a[i], a[i+1]) .

When considering the fixed-key correlation of an r-round approximation or the
average of these correlations, the correlation contribution of a linear trail is just an
intermediate variable. Unlike differential trails, a linear trail does not have a concrete
meaning. Indeed, a pair can follow a differential trail but it is meaningless to say
that the messages (or worse one message) follow a linear trail. An approximation
does not consider the messages individually but the whole encryption function.

Definition 1.34 (Active S-Box). Let T = (a[i])i≤r be a linear trail with a nonzero
correlation contribution. The S-box Sj is said to be active at round i if the pattern
aj [i] is nonzero, otherwise Sj is inactive.

Remark 1.35. Generally, we say that Sj is active when bj is nonzero. However,
these two definitions are equivalent when considering bijective S-boxes, as ensured
by the following proposition.

Proposition 1.36. Let T = (a[i])i≤r be a nonzero correlation linear trail. Let i < r
and j ≤ m be nonnegative integers. Denote by b[i] the element π⊺(a[i+1]). Then
aj [i] = 0n if and only if bj [i] = 0n. Consequently, Definition 1.33 can be restated as

C(T ) = ∏
i,j ∣ aj [i]≠0

CSj(aj [i], bj [i]) and LP(T ) = ∏
i,j ∣ aj [i]≠0

LPSj(aj [i], bj [i]) .
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Proof. To simplify the notation, denote by a′ and b′ the patterns aj [i] and bj [i] and
by S the S-box Sj. Since C(T ) is assumed to be nonzero, it must be the case that
CS(a′, b′) is nonzero. We contend that CS(a′,0n) = δa′,0n , where δ is the Kronecker
delta. To prove this, first observe that CS(0n,0n) = 1. Now, assume that a′ is
nonzero. By definition, ⟨0n, S(x)⟩ = 0 for any x in Fn2 . Next, the cardinality of
{x ∈ Fn2 ∣ ⟨a, x⟩ = 0} is equal to 2n−1 since any linear Boolean function is balanced.
This proves that CS(a′,0n) = 0 whenever a′ is nonzero. The same argument proves
that CS−1(b′,0n) = δb′,0n . Then, it is well-known that CS−1(b′,0n) = CS(0n, b′) (see
[39, Equation 7.30]) and thus CS(0n, b′) = δ0n,b′ . It follows that a′ = 0n if and only if
b′ = 0n. Finally, Lemma 1.31 and Proposition 1.32 imply that

Cπσ(a[i], a[i+1]) = ∑
c∈Fnm2

Cσ(a[i], c) ×Cπ(c, a[i+1]) = ∑
c∈Fnm2

Cσ(a[i], c) × δ(c, b[i])

= Cσ(a[i], b[i]) =
m−1
∏
j=0

CSj(aj [i], bj [i]) .

The result follows. ∎

Let us now present the result relating linear trails and r-round linear approxima-
tions. The following proposition should be compared to Proposition 1.19, which is
its counterpart about differential cryptanalysis.

Proposition 1.37. Let (a, b) be an r-round approximation and let K be a cipher
key. Denote by Ea,b the set of all trails (a[i])i≤r such that a[0] = a, a[r] = b. Given a
trail T in Ea,b, denote by ⟨T ,K⟩ the element ∑r

i=0⟨a[i], k[i]⟩ of F2. Then the fixed-key
correlation of (a, b) is given by

CEK(a, b) = ∑
T ∈Ea,b

(−1)⟨T ,K⟩ C(T ) .

In contrast with differential, the correlation of an r-round approximation is a
signed sum of the correlation contributions of its associated linear trails. When the
high absolute correlation trails are added with the same sign, the amplitude of the
whole correlation will be higher. In this case, we speak of constructive interference.
Otherwise, when these trails have different signs, the whole correlation can be close
or even equal to zero and we speak of destructive interference. This result explains
the strange distribution of the correlations in Figure 1.9 of Example 1.30.

Definition 1.38 (ELP). The expected linear potential of an r-round approximation
(a, b), denoted by ELP(a, b), is the average fixed-key linear potential of (a, b) over
the associated long-key cipher.

Theorem 1.39. Let (a, b) be an r-round approximation and denote by Ea,b the
set of all trails (a[i])i≤r such that a[0] = a, a[r] = b. The expected linear potential of
(a, b) is given by

ELP(a, b) = ∑
T ∈Ea,b

LP(T ) .
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LP #Trails LP #Trails LP #Trails
1.60 × 2−4 1 1.80 × 2−21 1 1.00 × 2−28 2
1.27 × 2−10 2 1.13 × 2−21 2 1.13 × 2−29 15
1.42 × 2−11 4 1.27 × 2−22 2 1.27 × 2−30 21
1.00 × 2−16 1 1.42 × 2−23 1 1.00 × 2−32 15
1.27 × 2−18 1 1.00 × 2−24 5 1.12 × 2−33 44
1.42 × 2−19 1 1.13 × 2−25 3 1.00 × 2−36 55
1.60 × 2−20 2 1.27 × 2−26 15
1.00 × 2−20 4 1.42 × 2−27 7

Figure 1.11: All linear potentials of the linear trails associated with the 4-round
approximation (0020,0020).

This time, the sum consists of nonnegative terms and thus there is no destructive
interference. The expected linear potential is a powerful indicator of the cipher’s
security against linear cryptanalysis. Nonetheless, it must be kept in mind that the
actual correlation is highly key-dependent as established by Proposition 1.37. Finally,
the expected linear potential has the same downsides as the expected differential
probability. This value is generally impossible to compute precisely and one should
make the hypothesis of stochastic equivalence [51] to relate this notion with the
cipher’s security.
Example 1.40. Using the preceding theory of linear approximations, we now study
the 4-round linear approximation (a, b) with a = b = 0020 introduced in Example
1.30. With an exhaustive search, we found that there are exactly 204 linear trails
associated with the linear approximation (a, b). In Figure 1.11, we gather the trails
according to their linear potentials. The trail which has the best linear potential
is simply the trail T = (a[i])i≤4 where a[i] = 0020. Since the diffusion layer is a bit
permutation, its transpose is equal to its inverse, that is π⊺ = π−1. It is then easily
seen that b[i] = 0020 for each i < r. By virtue of Proposition 1.36, the correlation of
T can be computed using the correlation matrix of S, given in Figure 1.12. Thus,

C(T ) = ∏
i,j ∣ aj [i]≠0

CS(aj [i], bj [i]) = CS(2,2)4 = (−12
16)

4 = ( 9
16)

2 .

The linear potential of T is then ( 9
16)4 ≈ 1.60 × 2−4. According to Theorem 1.39, the

expected linear potential of the approximation (a, b) can be computed as follows:

ELP(a, b) = ∑
T ∈Ea,b

LP(T ) = 1.63 × 2−4 .

As we can see, this value is dominated by the linear potential of the best trail. In
Example 1.30 we have found that the average fixed-key linear potential including the
key schedule is equal to 1.69 × 2−4, so is very close to the excepted linear potential.
This shows that the linear potential of one high potential linear trail can well
approximate the average potential of the associated approximation.
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0 1 2 3 4 5 6 7 8 9 A B C D E F
0 16 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1 ⋅ ⋅ 4 -4 -8 ⋅ -4 -4 ⋅ -8 4 4 ⋅ ⋅ 4 -4
2 ⋅ ⋅ -12 4 ⋅ ⋅ -4 -4 -4 -4 ⋅ ⋅ 4 4 ⋅ ⋅
3 ⋅ 8 ⋅ ⋅ ⋅ ⋅ 8 ⋅ -4 -4 -4 4 -4 4 4 4
4 ⋅ -8 ⋅ ⋅ 8 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 8 ⋅ ⋅ 8 ⋅
5 ⋅ ⋅ -4 -4 ⋅ 8 4 -4 ⋅ ⋅ -4 -4 ⋅ -8 4 -4
6 ⋅ ⋅ -4 4 ⋅ ⋅ -4 4 4 -4 ⋅ ⋅ -12 -4 ⋅ ⋅
7 ⋅ ⋅ ⋅ ⋅ ⋅ 8 ⋅ -8 4 4 4 4 -4 4 -4 4
8 ⋅ ⋅ 4 4 ⋅ ⋅ -4 -4 ⋅ ⋅ -12 4 ⋅ ⋅ -4 -4
9 ⋅ ⋅ ⋅ 8 -8 ⋅ ⋅ ⋅ ⋅ 8 ⋅ ⋅ ⋅ ⋅ 8 ⋅
A ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 12 -4 -4 -4 4 4 4 4
B ⋅ -8 4 4 ⋅ ⋅ 4 -4 -4 -4 ⋅ -8 -4 4 ⋅ ⋅
C ⋅ -8 -4 -4 -8 ⋅ 4 4 ⋅ ⋅ -4 4 ⋅ ⋅ -4 4
D ⋅ ⋅ ⋅ ⋅ ⋅ 8 ⋅ 8 ⋅ ⋅ ⋅ ⋅ ⋅ 8 ⋅ -8
E ⋅ ⋅ ⋅ 8 ⋅ ⋅ 8 ⋅ 4 -4 4 4 4 -4 -4 -4
F ⋅ ⋅ -4 -4 ⋅ -8 4 -4 4 4 ⋅ ⋅ -4 4 ⋅ -8

24 ×CS(a, b)
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1 ⋅ ⋅ 1 1 4 ⋅ 1 1 ⋅ 4 1 1 ⋅ ⋅ 1 1
2 ⋅ ⋅ 9 1 ⋅ ⋅ 1 1 1 1 ⋅ ⋅ 1 1 ⋅ ⋅
3 ⋅ 4 ⋅ ⋅ ⋅ ⋅ 4 ⋅ 1 1 1 1 1 1 1 1
4 ⋅ 4 ⋅ ⋅ 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 ⋅ ⋅ 4 ⋅
5 ⋅ ⋅ 1 1 ⋅ 4 1 1 ⋅ ⋅ 1 1 ⋅ 4 1 1
6 ⋅ ⋅ 1 1 ⋅ ⋅ 1 1 1 1 ⋅ ⋅ 9 1 ⋅ ⋅
7 ⋅ ⋅ ⋅ ⋅ ⋅ 4 ⋅ 4 1 1 1 1 1 1 1 1
8 ⋅ ⋅ 1 1 ⋅ ⋅ 1 1 ⋅ ⋅ 9 1 ⋅ ⋅ 1 1
9 ⋅ ⋅ ⋅ 4 4 ⋅ ⋅ ⋅ ⋅ 4 ⋅ ⋅ ⋅ ⋅ 4 ⋅
A ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 9 1 1 1 1 1 1 1
B ⋅ 4 1 1 ⋅ ⋅ 1 1 1 1 ⋅ 4 1 1 ⋅ ⋅
C ⋅ 4 1 1 4 ⋅ 1 1 ⋅ ⋅ 1 1 ⋅ ⋅ 1 1
D ⋅ ⋅ ⋅ ⋅ ⋅ 4 ⋅ 4 ⋅ ⋅ ⋅ ⋅ ⋅ 4 ⋅ 4
E ⋅ ⋅ ⋅ 4 ⋅ ⋅ 4 ⋅ 1 1 1 1 1 1 1 1
F ⋅ ⋅ 1 1 ⋅ 4 1 1 1 1 ⋅ ⋅ 1 1 ⋅ 4

24 × LPS(a, b)

Figure 1.12: The correlation and linear potential matrices of S.

We will not explain here the complex and surprising distribution of the fixed-key
correlations (a, b) illustrated in Figure 1.9. Indeed, these correlations depend on the
interaction between the expanded key and the 204 linear trails associated with (a, b).
However, we study another approximation whose linear potential distribution is even
more surprising but simpler to explain.

In the remainder of this example, consider the 4-round linear approximation (a, b)
where a = b = 0400. It can be proven via an exhaustive search that the four linear
trails T1, . . . ,T4 presented in Figure 1.13 are the only trails associated with (a, b).
At the left of Figure 1.14 is illustrated the distribution of the fixed-key correlations
of (a, b), including the key schedule. Therefore, the correlation CEK (4)(0400,0400)
respectively is equal to 0, 2−3 and 2−2 for a proportion of 3

8 ,
1
2 and 1

8 of the cipher
keys. According to Proposition 1.37, the fixed-key correlation of (a, b) is a signed
combination of the correlations of the Ti, that is

CEK(0400,0400) =
4
∑
i=1

(−1)⟨Ti,K⟩ C(Ti) .

Seeing the trails Ti as elements of (F16
2 )5, we have

T1 = (0400,0400,0400,0400,0400) , T3 = (0400,0004,0100,0400,0400) ,
T2 = (0400,0400,0004,0100,0400) , T4 = (0400,0004,0001,0100,0400) .

Clearly, these four trails are linearly independent and thus, all the possible signed
sums are equally likely when considering the long-key cipher. These sums are given
at the right of Figure 1.14. This explains the distribution of the correlations of (a, b).
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T1 T2 T3 T4

a[0] (0,4,0,0) (0,4,0,0) (0,4,0,0) (0,4,0,0)
b[0] (0,4,0,0) (0,4,0,0) (0,1,0,0) (0,1,0,0)
a[1] (0,4,0,0) (0,4,0,0) (0,0,0,4) (0,0,0,4)
b[1] (0,4,0,0) (0,1,0,0) (0,0,0,4) (0,0,0,1)
a[2] (0,4,0,0) (0,0,0,4) (0,1,0,0) (0,0,0,1)
b[2] (0,4,0,0) (0,0,0,4) (0,4,0,0) (0,0,0,4)
a[3] (0,4,0,0) (0,1,0,0) (0,4,0,0) (0,1,0,0)
b[3] (0,4,0,0) (0,4,0,0) (0,4,0,0) (0,4,0,0)

C 84/164 84/164 84/164 84/164

= 2−4 2−4 2−4 2−4

Figure 1.13: The trails associated with the 4-round approximation (0400,0400).
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Figure 1.14: Correlations of the 4-round approximation (0400,0400).
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1.5. Security Evaluation of SPN Building Blocks

As explained in Sections 1.3.2 and 1.4.2, the effectiveness of a differential is assessed by
its expected differential probability and the effectiveness of a linear approximation by
its expected linear potential. Naturally, a block cipher is resistant against differential
and linear cryptanalysis when there exists no effective differential and approximation
over the (r − 1)-round encryption function. Equivalently, the cipher is secure when
the maximum expected differential probability (MEDP) or linear potential (MELP)
is low enough, namely if the corresponding attacks require more plaintext/ciphertext
pairs than the block size allows.

According to Theorem 1.26, the expected probability of a given differential is hard
to compute and Theorem 1.39 establishes the same result for linear cryptanalysis.
Therefore, computing the MEDP and MELP are even harder. Nonetheless, we have
seen that the expected probability of a differential can be approximated by the
probability of its best trail and the same holds for a linear approximation. Relying
on these facts, Kanda et al. [57] introduced four measures of security which can be
divided into two categories according to the security they imply.

• The provable security of a cipher is evaluated by two measures called precise
and theoretical. The precise measure gives the MEDP (resp. MELP) whereas
the theoretical measure only gives an upper-bound of this value.

• The practical security of a cipher is assessed by two measures called heuristic
and practical. The heuristic measure gives the maximum differential probability
(resp. linear potential) of all trails while the practical measure upper-bounds
this value.

Because computing even the heuristic measure can be a challenging problem, most
of ciphers’ security is assessed by the practical measure.

The standard strategy to design a secure cipher is to ensure that each differential
or linear trail activates many S-boxes and that all the S-boxes of the cipher have
good resistances against linear and differential cryptanalysis.

Definition 1.41. Let S be an n-bit S-box. The maximum differential probability,
correlation and linear potential of S, denoted respectively by DPmax

S , Cmax
S and LPmax

S ,
are defined to be

DPmax
S = max{DP(a, b) ∣ a ∈ (Fn2)∗, b ∈ Fn2} ,

Cmax
S = max{ ∣C(a, b)∣ ∣ a ∈ Fn2 , b ∈ (Fn2)∗} ,

LPmax
S = max{LP(a, b) ∣ a ∈ Fn2 , b ∈ (Fn2)∗} = (Cmax

S )2 .

Remark 1.42. According to Propositions 1.24 and 1.36, these maximums can be
searched only for a and b both nonzero.
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1.5.1. Perfect S-Boxes

This section deals with the resistance of S-boxes with respect to differential and
linear cryptanalysis. The theory covering this topic considers a larger class function.
Following [33], an (n,m)-function is defined to be a mapping from Fn2 to Fm2 . There
are also known as vectorial Boolean function. Thus, according to our conventions,
an n-bit S-box is a bijective (n,n)-function.

1.5.1.a. Almost Perfect Nonlinear Functions

Let F be an (n,m)-function. For each a in Fn2 and b in Fm2 , denote by δF (a, b) the
number of solutions to the equation F (x) + F (x + a) = b. These values are clearly
related to the differential probabilities of F by the formula

2n ×DPF (a, b) = δF (a, b) . (1.8)

Remark 1.43. In Section 1.3.2, we have only defined the differential probabilities for
n-bit S-boxes. This notion can naturally be extended to (n,m)-functions, precisely
using Equation (1.8).

Definition 1.44 (differentially δ-uniform function [80]). Let δ be an integer.
An (n,m)-function F is said to be differentially δ-uniform if for all nonzero a in Fn2
and all b in Fm2 , it holds that δF (a, b) ≤ δ. Equivalently, F is differentially δ-uniform
if

2n ×DPmax
F ≤ δ .

Let a be any nonzero element of Fn2 . Obviously, for each x in Fn2 , there exists a
unique b in Fm2 such that F (x) + F (x + a) = b. Therefore

∑
b∈Fm2

δF (a, b) = 2n .

In order to minimize the maximum of the δF (a, b) with b in Fm2 , their sum must be
uniformly distributed over the all these values, proving the bound

max
a∈(Fn2 )∗, b∈Fm2

δF (a, b) ≥ 2n−m . (1.9)

Consequently, any (n,m)-function is at least 2n−m-uniform. An (n,m)-function
which meets this bound is called perfect nonlinear [79]. Referring to Equation (1.8),
we see that F is perfect nonlinear if and only if DPmax

F is minimal. Thus, perfect
nonlinear functions provide optimal resistance against differential cryptanalysis.

It worthwhile to note that if x is solution to the equation F (x) + F (x + a) = b,
then so is x + a. Thus, when a is nonzero, δF (a, b) is even (this result remains true
when a = 0, but requires another argument). It follows that

max
a∈(Fn2 )∗, b∈Fm2

δF (a, b) ≥ 2 . (1.10)
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Assume that F is an (n,n)-function. According to Equation (1.9), F must be 1-
uniform to be perfect nonlinear. However, Equation (1.10) ensures that any function
is at least 2-uniform. This proves that there does not exist perfect nonlinear (n,n)-
functions. Because (n,n)-functions are widely used in cryptography, particularly
n-bit S-boxes, Nyberg introduced the following definition in [82].

Definition 1.45 (APN function). Any 2-uniform (n,n)-function is said to be
almost perfect nonlinear (APN).

Remark 1.46. Using the notation introduced at the beginning of Section 1.5.1,
an (n,n)-function F is almost perfect nonlinear if and only if DPmax

F = 2−(n−1).
Additionally, we may stress that the term almost is ambiguous because APN functions
are optimal for their size, as noted in [33].

1.5.1.b. Almost Bent Functions

Let F be an (n,m)-function. For each a in Fn2 and b in Fm2 , denote by λF (a, b) the
integer

∑
x∈Fn2

(−1)⟨a,x⟩+⟨b,F (x)⟩ .

The family ΛF consisting of all the values λF (a, b) is called the Walsh spectrum of F .
Up to scaling, the Walsh spectrum of F is equivalent to its correlation matrix. More
precisely, for all selection patterns a and b in Fn2 and Fm2 respectively, we have

λF (a, b) = 2n ×CF (a, b) .

Indeed, denoting by Ei the set of all elements x in Fn2 such that the sum ⟨a, x⟩ +
⟨b,F (x)⟩ is equal to i in F2, we have

λF (a, b) = ∑
x∈Fn2

(−1)⟨a,x⟩+⟨b,F (x)⟩ = ∑
x∈E0

(−1)0 + ∑
x∈E1

(−1)1 = #E0 −#E1 . (1.11)

Clearly, the set E1 is the relative complement of E0 in Fn2 and thus #E1 = 2n −#E0.
Replacing in (1.11), we obtain

λF (a, b) = 2#E0 − 2n . (1.12)

Next, observe that the set E0 is equal to {x ∈ Fn2 ∣ ⟨a, x⟩ = ⟨b,F (x)⟩}. The result then
follows from the definition of CF (a, b).

The nonlinearity of an (n,m)-function F was introduced by Nyberg in [81] and
is defined to be

NL(F ) = 2n−1 − 1
2 max
a∈Fn2 , b∈(F

m
2 )∗

∣λF (a, b)∣ = 2n−1(1 −Cmax
F ) .

Referring to (1.12), it is easily seen that each value λF (a, b) in the Walsh spectrum
of F is even. Therefore, NL(F ) is an integer. In addition, it can be proven that the
nonlinearity of F is upper-bounded as follows:

NL(F ) ≤ 2n−1 − 2n
2 −1 .
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This inequality is known as the covering radius bound. An (n,m)-function meeting
this bound with equality is said to be bent. Since the right side of this inequality
is an integer if and only if n is even, bent functions cannot exist when n is odd.
Using the maximum absolute correlation of F , the covering radius bound can be
equivalently rewritten as

2n ×Cmax
F ≥ 2n

2 .

Thus, the function F is bent if and only if Cmax
F is minimal. This restatement stresses

that bent functions are exactly the (n,m)-functions which are the most resistant to
linear cryptanalysis. However, Nyberg proved in [79] that such functions exist only
if n ≥ 2m. Therefore, n-bit S-boxes cannot be bent.

Remark 1.47. It turns out that these bent functions are exactly the perfect
nonlinear functions introduced in the previous section, as shown in [79]. Thus, bent
functions are optimal with respect to differential and linear cryptanalysis.

Since the covering radius bound is not tight for every (n,m)-function, Chabaud
and Vaudenay improved this inequality in [35, Theorem 4]. Their bound is now
called the Sidelnikov-Chabaud-Vaudenay bound (shorten as SCV bound) because
Sidelnikov had published earlier an equivalent result in [92]. For the particular case
of (n,n)-functions, this bound gives

NL(F ) ≤ 2n−1 − 2n−1
2 . (1.13)

Definition 1.48 (AB function [35]). An (n,n)-function is said to be Almost
Bent (AB) if its nonlinearity meets the bound (1.13) with equality.

Remark 1.49. Using the notation introduced at the beginning of Section 1.5.1, the
SCV bound (1.13) can be restated in the following equivalent ways

2n ×Cmax
F ≥ 2n+1

2 , Cmax
F ≥ 2−n−1

2 , LPmax
F ≥ 2−(n−1) . (1.14)

Again, the term almost in the previous definition is ambiguous because AB functions
are optimal.

When n is even, the right side of the SCV bound (1.13) is not an integer. Therefore,
almost bent functions exist only if n is odd. To conclude, we should recall the result
of Chabaud and Vaudenay [35] linking AB and APN functions.

Theorem 1.50. Any almost bent function is almost perfect nonlinear.

1.5.1.c. Known AB and APN Permutations

By a power function, we mean an (n,n)-function F which has the form F (x) = xd
when we identify the space Fn2 with the finite field F2n . Several almost perfect
nonlinear power functions are known when n is even, but they cannot be used as
S-boxes in a substitution permutation network because they are not bijective. Indeed,
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Function Exponent d Conditions Proven in
Gold functions 2i + 1 gcd(i, n) = 1 [45, 80]
Kasami functions 22i − 2i + 1 gcd(i, n) = 1 [58]
Welch function 2t + 3 n = 2t + 1 [28, 29, 44]
Niho function 2t + 2 t

2 − 1, t even n = 2t + 1 [43, 53]
2t + 2 3t+1

2 − 1, t odd

Figure 1.15: Known AB (and APN) power permutations x ↦ xd over F2n with n
odd.

Function Exponent d Conditions Proven in
Gold functions 2i + 1 gcd(i, n) = 1, n ≡ 2 mod 4 [45, 80]
Kasami functions 22i − 2i + 1 gcd(i, n) = 1, n ≡ 2 mod 4 [58]
Inverse function 2n − 2 – [66]

Figure 1.16: Known power permutations F ∶ x↦ xd over F2n with n even such that
F is 4-uniform and 2n ×Cmax

F = 2n+2
2 .

it is proven in [33, Section 2.1.3] that an APN power function is a permutation of Fn2
if and only if n is odd.

In Figure 1.15, we enumerate the known almost bent power functions of F2n with
n odd. According to Theorem 1.50, these functions are also almost perfect nonlinear,
which proves in particular that they are permutations of F2n . In other words, these
power permutations are S-boxes with optimal resistance against differential and
linear cryptanalysis.

When n is even, we already know that AB functions, and hence AB permutations
do not exit. The existence of APN permutations with n even has been a long-standing
open question. However, in 2009 Dillon et al. [18] exhibited an APN permutation on
6 bits. So far, it is the only APN permutation of Fn2 known when n is even, up to
equivalence.

Therefore, when n is even we generally use n-bit S-boxes F with parameters close
to AB and APN functions, namely 4-uniform permutations such that 2n×Cmax

F = 2n+2
2 .

All the 4-bit S-boxes have been classified in [72] and we now know that these values
are optimal for n = 4. Figure 1.16 gives the known power permutations with these
parameters. Observe that if n is a multiple of 4, the only known power permutation
reaching these values is the inversion. This explains why the S-box of the AES is
affine-equivalent to the inversion in F28 .

1.5.2. Branch Number of the Diffusion Layer

In the previous section, we have describe how to design a substitution layer resistant
to differential and linear cryptanalysis. Now we focus on the diffusion layer of an SPN.
By virtue of Propositions 1.17 and 1.32, the diffusion layer alone cannot provide any
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resistance to these attacks since it is linear. However, the diffusion layer can enhance
the resistance provided by the substitution layer. The wide trail strategy is a design
principle of block ciphers introduced by Daemen and Rijmen in [39]. Following this
strategy, the diffusion layer should ensure that any linear of differential trail activate
a large number of S-boxes.

The Hamming weight of an element x of Fn2 , denoted by w(x), is the number
of nonzero components of x, that is w(x) = #{0 ≤ i < n ∣ xi ≠ 0}. By analogy,
we define the bundle weight of an element x in (Fn2)m to be the number wn(x) of
nonzero bundles of x, so wn(x) = #{0 ≤ i < m ∣ xi ≠ 0n}. The following definition
characterizes the efficiency of the diffusion provided by the diffusion layer with respect
to differential and linear cryptanalysis.

Definition 1.51 (Branch Number). Let λ ∶ (Fn2)m → (Fn2)m be a F2-linear
mapping. The differential branch number BD and the linear branch number BL of λ
(with respect to Fn2 ) are defined by

BD(λ) = min{wn(x) +wn( λ(x)) ∣ x ∈ (Fn2)m, x ≠ 0} ,
BL(λ) = min{wn(x) +wn(λ⊺(x)) ∣ x ∈ (Fn2)m, x ≠ 0} .

Clearly, the differential and linear branch numbers of λ are upper-bounded by
m + 1. The linear mapping λ whose branch numbers meet this bound with equality
is said to be MDS or a perfect diffusion layer. In fact, perfect diffusions layers can
be constructed from MDS codes, the reader can refer to [39, Sections 2.2 and 9.6].

Let us consider a generic SPN. The branch numbers of the diffusion layer can be
used to derive important bounds on the maximal differential probability or linear
potential of a trail. Therefore, the cipher’s security can easily be assessed using the
practical measure. The following theorem comes from [39, Theorem 9.3.1].

Theorem 1.52. Consider a generic SPN and denote by S0, . . . , Sm−1 its n-bit S-
boxes and by π ∶ Fnm2 → Fnm2 its diffusion layer. The maximum differential probability
and linear potential of any 2-round trail are respectively upper-bounded by

(max
i<m

DPmax
Si

)BD(π) and (max
i<m

LPmax
Si

)BL(π)
.
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Security Evaluation of SPN

Differential [13] and linear [74] cryptanalysis are considered as the most important
attacks against block ciphers [64]. As mentioned in [41], any new cipher should at
least be accompanied by a detailed analysis of its strength against these two attacks.
We have seen in Chapter 1 that the security of a cipher is assessed by the maximum
expected differential probability (MEDP) or linear potential (MELP). When these
values are low enough, the cipher is provably secure [57]. Nevertheless, computing
the MEDP and MELP or even finding a useful upper bound remains a challenging
open problem and the common proofs of security focus only on differential and linear
trails. A cipher is then said to be practically secure when the maximum differential
probability or linear potential of all trails gives rise to an ineffective cryptanalysis.
Finally, it should be stressed that all these security measures tacitly assume that the
round keys are independent. The cryptographer then assumes that these theoretical
measures reflect the actual security when the round keys are fixed and derived from
a key schedule. This hypothesis, called stochastic equivalence [67], seems to hold for
almost all secure ciphers.

To prevent differential and linear cryptanalysis, the SPN designer must first
choose S-boxes providing high resistance against both these attacks. These choices
define the substitution layer of the cipher. Concerning the diffusion layer, two main
families stand out. On one hand, the diffusion of the cipher can be done using a
bit permutation. Even if bit permutations do not provide the best security, they
are generally chosen for efficiency purposes. Indeed, in the last few years, many
lightweight block ciphers using bit permutations have been suggested [17, 36, 95].
A recent survey of lightweight block ciphers can be found in [15]. On the other
hand, the diffusion layer can involve a more complicated linear mapping defined for
example as a matrix product over finite fields. Such mappings are generally more
computationally expensive but they also provide high diffusion, ensuring that every
trail activates a minimum number of S-boxes. Relying on this property, the designer
can derive bounds on the maximum differential probability and linear potential of
any trail and simply prove the practical security of its cipher.

However, the bounds obtained for an SPN which uses bit permutations may
not suffice to prove its security. In fact, bit permutations have the smallest branch
number possible among all linear permutations and the cipher security is hard to
establish without a close analysis. The same observation may apply for backdoor
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ciphers since the mathematical structure of the backdoor strongly reduces the choice
of the cipher’s primitives. Thus, the usual strategies to thwart differential and linear
cryptanalysis may no longer be useful. This motivates alternative methods to prove
the security with respect to these attacks.

In this chapter, we describe a fully automatic algorithm finding an optimal
differential or linear trail in an SPN. Our contribution was presented in [8]. The first
algorithm finding optimal trails was introduced by Matsui in [76] for Feistel ciphers.
Running his algorithm several times on the DES, Matsui found a permutation of
the S-boxes making the DES stronger against differential and linear cryptanalysis.
The algorithm complexity remaining too high for the cipher FEAL, two successive
improvements have been proposed in [87] then [3]. Although an adaptation of
Matsui’s algorithm is straightforward for SPN, the block size (from 64 to 128 bits) of
modern ciphers makes it computationally infeasible. This fact was also highlighted
by Collard et al. [37] who then proposed a few improvements to use this algorithm
on the cipher Serpent. In addition, it should be mentioned that another variation
was exposed by Ali and Heys in [1]. They gave up finding an optimal trail to
reduce the complexity. On the other side, their algorithm cannot prove the cipher
practical security, but may still help the cryptanalyst to perform a differential or
linear cryptanalysis. Our algorithm is an adaptation of [3, 76, 87] for SPN. We
introduce several optimizations paying special attention to ciphers which have a bit
permutation as diffusion layer.

After a brief summary of differential and linear cryptanalysis, the next section
exposes a straightforward adaptation of Matsui’s algorithm to compute optimal trails
in substitution-permutation networks. An example of execution is then given in
Section 2.2. All our optimizations are explained intuitively in this example and then
formalized in Section 2.3. Finally, we present our results and close this chapter in
Section 2.4.

2.1. Search for an Optimal trail

Throughout this section, we consider a generic r-round substitution-permutation
network E ∶ Fκ2 × Fnm2 → Fnm2 such that for each cipher key K,

EK = Fk[r−1] ○ ⋯ ○ Fk[0] with Fk[i] = π ○ σ ○ αk[i] .

As explained in Section 1.3.2 and 1.4.2, the last round includes and ends with a
diffusion layer because the linear approximations or differentials used in an attack
have fewer rounds that the whole cipher. We denote by S0, . . . , Sm−1 the n-bit S-boxes
of the substitution layer. Recall that the differential probability and linear potential
matrices of an S-box S are defined for all a, b in Fn2 by the formulae

DPS(a, b) = 2−n ×#{x ∈ Fn2 ∣ S(x) + S(x + a) = b} ,

LPS(a, b) = (2−(n−1) ×#{x ∈ Fn2 ∣ ⟨a, x⟩ = ⟨b, S(x)⟩} − 1)2
.
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The maximum differential probability and linear potential of S are then defined to
be

DPmax
S = max{DP(a, b) ∣ a, b ∈ (Fn2)∗} , LPmax

S = max{LP(a, b) ∣ a, b ∈ (Fn2)∗} .

According to Definitions 1.18 and 1.33, an r-round differential or linear trail is a
family (a[0])i≤r of r+1 patterns in Fnm2 . In this chapter, it is however more convenient
to specify for each round the input and output patterns of the substitution layer.
Therefore, we equivalently define a differential or linear trail T to be a family
((a[i], b[i])i<r of r pairs of input/output patterns such that for each i < r − 1,

a[i+1] =
⎧⎪⎪⎨⎪⎪⎩

π(b[i]) for differential trails ,
(π⊺)−1(b[i]) for linear trails .

The equivalence between these two definitions follows from Propositions 1.17 and
1.31. Additionally, if the diffusion layer π is a bit permutation, it can be proven that
(π⊺)−1 = π. In this case, the same structure can be seen as a differential or linear
trail. Next, the differential probability and the linear potential of the trail T are
given by

DP(T ) =
r−1
∏
i=0

DPσ(a[i], b[i]) = ∏
i,j ∣ aj [i]≠0

DPSj(aj [i], bj [i]) ,

LP(T ) =
r−1
∏
i=0

LPσ(a[i], b[i]) = ∏
i,j ∣ aj [i]≠0

LPSj(aj [i], bj [i]) ,

as established by Propositions 1.24 and 1.36. In other words, the differential proba-
bility of a trail is obtained by multiplying the differential probabilities of its active
S-boxes.

Definition 2.1 (Optimal Trail). An r-round differential trail which has maximum
probability among all r-round trails is said to be optimal. Naturally, we define an
optimal linear trail to be a trail which has maximal linear potential. In this case, its
probability (or potential) is denoted by po

(r).

It is worth noting that there may exist more than one optimal trail. In the
context of our search algorithm, a candidate for an input pattern a in Fnm2 is an
output pattern b such that DPσ(a, b) is nonzero. Of course, if we search for an
optimal linear trail, this condition becomes LPσ(a, b) ≠ 0. If T = ((a[i], b[i]))i<r is
an r-round trail, we denote by T [i,j] the sub-trail ((a[k], b[k]))i≤k≤j. Finally, we will
need the following definition.

Definition 2.2 (Trail Extension). Let r1 and r2 be integers such that 0 ≤ r1 ≤ r2.
Let T1 and T2 be r1 and r2-round trails respectively. The trail T2 extends T1 if
T2[0,r−1] = T . In this case, T2 = T1 ∥ T2[r,r′−1].
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2.1.1. General Principle

Let us now present a straightforward adaptation of Matsui’s search algorithm for
substitution-permutation networks. First, we explain how this algorithm computes
an optimal differential trail. Then we will detail the changes that need to be made
to compute an optimal linear trail.

Let us denote R the actual number of rounds of the SPN. The algorithm presented
in this chapter computes an optimal R-round trail without requiring any a priori
knowledge. This algorithm is based on another search algorithm called OptTrailEst
which takes as arguments:

• an integer r ≥ 2 representing the current number of rounds,
• the probabilities (po

(i))1≤i<r of optimal i-round trails,
• an estimation pe

(r) of the probability po
(r) of the optimal trail searched,

and returns an optimal r-round trail denoted by To(r). The knowledge of (po
(i))1≤i<r

and pe
(r) speeds up the search. Next, an automatic management of the estimation pe

(r)

will be proposed in Section 2.3.5 yielding the algorithm OptTrail. To summarize,
the search algorithm OptTrail takes only r and (po

(i))1≤i<r as inputs and still outputs
an optimal r-round trail.

Let us now explain how the algorithm OptTrail can be used to compute an
optimal R-round trail from scratch. First, observe that po

(1) can be easily computed
(cf Remark 2.8). Then, compute

To
(r) = OptTrail (r, (po

(i))1≤i<r) and po
(r) = DP(To

(r))

for r from 2 to R. The latter computation gives the desired result, as illustrated in
Figure 2.1.

The rest of this section is dedicated to the algorithm OptTrailEst given in Figure
2.2. Let us explain how this algorithm works. First, suppose that the conditions on
lines 9 and 18 are always true and that pe

(r) is equal to 0. Under this assumption,
the algorithm runs implicitly through the trees of all r-round trails and saves one
which has a maximum probability in the variable To(r). Observe that the first and
last rounds have a special treatment that speeds up the search. When the program
reaches the function Round(s, T (s−1), p(s−1)), the current trail is

T (s−1) = ((a[0], b[0]), . . . , (a[s−2], b[s−2])) ,

DP(T (s−1)) =
s−2
∏
i=0

DPσ(a[i], b[i]) = p(s−1) .

The input pattern a[s−1] for this round equals π(b[s−2]). Then, for each candidates
b[s−1] for a[s−1], the current trail T (s−1) is extended by (a[s−1], b[s−1]) and the search
for the next round is called. Therefore, the program performs a depth-first search.
When the algorithm reaches the function LastRound(), it is not hard to compute
the output pattern b[r−1] maximizing the probability of the last round. The trail is
then saved only if its probability is greater than the probability pe

(r) of the best trail
To(r) found up to this point. It remains to explain the conditions on lines 9 and 18.
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po
(1)

OptTrail

po
(2)

po
(1)

po
(2)

OptTrail

po
(3)

po
(1)

po
(2)

po
(3)

OptTrail

po
(4)

Input. The number R of rounds of the cipher.
Output. An optimal R-round trail To(R).

1 po
(1) ← max{DPσ(a, b) ∣ a, b ∈ (Fn2)m}

2 For r from 2 to R do
3 To(r) ← OptTrail(r, (po

(i))1≤i<r)
4 po

(r) ← DP(To(r))
5 Return To(R)

Figure 2.1: Use of OptTrail.

Definition 2.3 (rank-s bound). Let T be an s-round trail with 1 ≤ s < r. Its
probability is said to be less than the rank-s bound if

DP(T ) < pe
(r)

po
(r−s) .

This condition on the probability of the current trail allows to prune the search
tree without missing an optimal trail. It can be rewritten as

DP(T ) × po
(r−s) < pe

(r)

and means that even if the trail is extended by an optimal (r − s)-round trail, the
probability of the whole trail would be less than pe

(r).
The significance of pe

(r) is now clear. If pe
(r) > po

(r), a trail expandable into an
optimal r-round trail can be cut. Furthermore, no trail will be saved because of the
condition on line 25. On the other hand, the closer pe

(r) is from po
(r), the stronger is

the pruning condition and the lower is the complexity of OptTrailEst.

Theorem 2.4. According to the results recalled in introduction of this section, the
algorithm OptTrailEst can compute an optimal linear trail simply by replacing
every DP by LP and every π(. . .) by (π⊺)−1(. . .).

2.1.2. Proof of the Algorithm

Having explained the general principle of the algorithm, it remains now to prove the
optimality of the trail returned.
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Algorithm 1 – OptTrailEst(r, (po
(i))1≤i<r, pe

(r))
Input. The current number r of rounds (r ≥ 2), the probabilities (po

(i))1≤i<r and an
estimation pe

(r) of po
(r)

Output. Depending on the estimation pe
(r), this algorithm returns :

• an optimal r-round trail To(r) if pe
(r) ≤ po

(r) ;
• the empty trail if pe

(r) > po
(r).

1 To(r) ← ()
2 For each non-zero output pattern b[0] do
3 Call FirstRound(b[0])
4 Return To(r)

5 Function FirstRound(b[0])
6 a[0] ← arg max{DPσ(a, b[0]) ∣ a ∈ Fnm2 }
7 T (1) ← ((a[0], b[0]))
8 p(1) ← DPσ(a[0], b[0])
9 If p(1) is not less than the rank-one bound then
10 If r > 2 then
11 Call Round(2, T (1), p(1))
12 Else
13 Call LastRound(T (1), p(1))

14 Function Round(s, T (s−1), p(s−1))
15 a[s−1] ← π(b[s−2])
16 For each candidate b[s−1] for a[s−1] do
17 p(s) ← p(s−1) ×DPσ(a[s−1], b[s−1])
18 If p(s) is not less than the rank-s bound then
19 T (s) ← T (s−1) ∥ (a[s−1], b[s−1])
20 If s + 1 < r then
21 Call Round(s + 1, T (s), p(s))
22 Else
23 Call LastRound(T (s), p(s))

24 Function LastRound(T (r−1), p(r−1))
25 a[r−1] ← π(b[r−2])
26 b[r−1] ← arg max{DPσ(a[r−1], b) ∣ b ∈ Fnm2 }
27 p(r) ← p(r−1) ×DPσ(a[r−1], b[r−1])
28 If p(r) ≥ pe

(r) then
29 T (r) ← T (r−1) ∥ (a[r−1], b[r−1])
30 To(r) ← T (r) The current trail is saved
31 pe

(r) ← p(r)

Figure 2.2: The search algorithm OptTrailEst for an optimal trail.
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Lemma 2.5. Let s be an integer such that 1 ≤ s < r. Let T be an s-round trail
whose probability is less than the rank-s bound. Then, there does not exist any
r-round trail extending T with probability greater than or equal to pe

(r).

Proof. By contradiction, assume that Tr is an r-round trail extending T such that
DP(Tr) ≥ pe

(r). Then the probability of the (r − s)-round trail Tr [s,r−1] is

DP (Tr [s,r−1]) = DP(T ) ×DP(Tr [s,r−1])
DP(T )

= DP(T ∥ Tr [s,r−1])
DP(T )

= DP(Tr)
DP(T )

.

By assumption, DP(T ) is strictly less than pe
(r)/po

(r−s). Note that this strict inequality
implies that pe

(r) is nonzero. It follows that

DP (Tr [s,r−1]) = DP(Tr)
DP(T )

≥ pe
(r)

DP(T )
> pe

(r)

pe
(r) / po

(r−s) = po
(r−s) .

By definition of po
(r−s), this leads to a contradiction which proves the result. ∎

Theorem 2.6 (validity of the algorithm). Depending on the estimation pe
(r),

the algorithm OptTrailEst returns
• an optimal r-round trail To(r) if pe

(r) ≤ po
(r) ;

• the empty trail if pe
(r) > po

(r).

Proof. Suppose the condition on the bound to be removed. If pe
(r) is less than po

(r),
an optimal trail is saved in To(r), otherwise To(r) remains empty. Then, Lemma 2.5
ensures that the pruning condition avoids only the trails which have probabilities
strictly less than pe

(r). The result still holds. ∎

2.2. A Detailed Example

The algorithm OptTrailEst is a depth-first search within the trees of all r-round
differential trails together with a pruning mechanism which cuts only non-optimal
trails. Any enhancement of this pruning condition directly impacts the algorithm
complexity. Thus, a good algorithmic optimization of OptTrailEst rests on the
right balance between cost and efficiency of such an enhancement.

Before addressing the formal treatment of our optimizations in Section 2.3, we
introduce an example explaining each of them intuitively. Let us consider a 16-
bit substitution permutation network quite similar to the ToyCipher presented
in Example 1.14. First, it is worth recalling that the differential probability of a
trail is computed over the associated long-key cipher. The key-schedule is thus
disregarded throughout this chapter. To make this example more interesting, the
substitution layer involves now four different 4-bit S-boxes denoted by S0, S1, S2
and S3. The definition of these S-boxes and their respective differential probability
matrices are given in Figure 2.3. As can be seen, the S-box S0 is optimal with respect
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x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S0(x) E A 1 2 7 F D 6 C 3 0 9 8 4 5 B
S1(x) C A E 0 D 3 1 8 B 2 9 4 5 6 7 F
S2(x) 5 9 F 8 6 0 A 3 7 C 4 1 E 2 D B
S3(x) 9 5 7 D A C 2 4 E F 6 B 0 1 8 3

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 16 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ 2 2 ⋅ ⋅ ⋅ 2 2 ⋅ 2 2 ⋅ 2 2
2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 2 4 ⋅ 2 2 ⋅ 4
3 ⋅ 4 2 4 ⋅ 2 ⋅ ⋅ ⋅ ⋅ ⋅ 2 2 ⋅ ⋅ ⋅
4 ⋅ ⋅ 2 ⋅ 4 4 ⋅ 2 ⋅ 2 ⋅ ⋅ 2 ⋅ ⋅ ⋅
5 ⋅ 2 ⋅ ⋅ ⋅ ⋅ ⋅ 2 2 ⋅ ⋅ 4 2 2 ⋅ 2
6 ⋅ ⋅ ⋅ 2 ⋅ ⋅ 2 ⋅ 4 2 ⋅ ⋅ 2 4 ⋅ ⋅
7 ⋅ 2 ⋅ ⋅ 2 2 2 4 2 ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅
8 ⋅ 2 2 ⋅ ⋅ ⋅ ⋅ ⋅ 2 2 ⋅ 4 ⋅ 2 ⋅ 2
9 ⋅ ⋅ 2 4 ⋅ ⋅ 4 2 2 ⋅ ⋅ ⋅ ⋅ 2 ⋅ ⋅
A ⋅ 2 4 2 2 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 2 ⋅
B ⋅ ⋅ 2 ⋅ ⋅ ⋅ ⋅ 2 ⋅ 2 4 ⋅ 2 ⋅ 4 ⋅
C ⋅ ⋅ ⋅ ⋅ 2 ⋅ 2 ⋅ ⋅ 2 ⋅ 2 2 2 2 2
D ⋅ ⋅ 2 2 4 ⋅ 2 2 ⋅ ⋅ 4 ⋅ ⋅ ⋅ ⋅ ⋅
E ⋅ 4 ⋅ ⋅ ⋅ 2 4 2 ⋅ 2 ⋅ 2 ⋅ ⋅ ⋅ ⋅
F ⋅ ⋅ ⋅ ⋅ ⋅ 4 ⋅ ⋅ ⋅ ⋅ 4 ⋅ ⋅ ⋅ 4 4

24 ×DPS0(a, b)
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ 2 ⋅ ⋅ 2 ⋅ 2 4 ⋅ ⋅ ⋅ 2 4 ⋅
2 ⋅ ⋅ 6 ⋅ ⋅ ⋅ 2 ⋅ ⋅ 2 2 2 2 ⋅ ⋅ ⋅
3 ⋅ 2 2 ⋅ 2 2 ⋅ ⋅ ⋅ ⋅ 2 2 2 ⋅ ⋅ 2
4 ⋅ 2 ⋅ ⋅ 2 ⋅ ⋅ ⋅ 2 2 ⋅ 2 ⋅ ⋅ 4 2
5 ⋅ 2 ⋅ 2 ⋅ ⋅ 4 4 ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ 2
6 ⋅ ⋅ 4 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 4 ⋅ ⋅
7 ⋅ 2 ⋅ ⋅ 4 2 ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ 4 ⋅ 2
8 ⋅ ⋅ ⋅ ⋅ 2 2 2 6 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
9 ⋅ 2 ⋅ ⋅ ⋅ ⋅ 2 ⋅ ⋅ 2 2 2 ⋅ ⋅ 4 2
A ⋅ ⋅ 2 ⋅ 2 4 ⋅ ⋅ ⋅ ⋅ 2 ⋅ 2 ⋅ 4 ⋅
B ⋅ ⋅ 2 2 2 ⋅ ⋅ 2 2 ⋅ ⋅ 2 2 2 ⋅ ⋅
C ⋅ 2 ⋅ ⋅ ⋅ ⋅ 2 ⋅ 2 4 ⋅ ⋅ 4 ⋅ ⋅ 2
D ⋅ 4 ⋅ ⋅ ⋅ 2 ⋅ 2 2 ⋅ 2 ⋅ ⋅ ⋅ ⋅ 4
E ⋅ ⋅ ⋅ ⋅ 2 2 2 2 ⋅ ⋅ 4 4 ⋅ ⋅ ⋅ ⋅
F ⋅ ⋅ ⋅ 6 ⋅ 2 ⋅ ⋅ 2 2 2 ⋅ ⋅ 2 ⋅ ⋅

24 ×DPS1(a, b)

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 16 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ ⋅ ⋅ 2 4 2 ⋅ 2 ⋅ 2 4 ⋅ ⋅ ⋅
2 ⋅ 2 ⋅ 6 ⋅ ⋅ ⋅ ⋅ ⋅ 2 2 ⋅ 2 2 ⋅ ⋅
3 ⋅ ⋅ ⋅ ⋅ ⋅ 4 4 ⋅ 2 ⋅ 2 ⋅ ⋅ 2 ⋅ 2
4 ⋅ ⋅ ⋅ 2 ⋅ 2 ⋅ ⋅ ⋅ 6 2 2 ⋅ ⋅ 2 ⋅
5 ⋅ ⋅ 4 ⋅ ⋅ 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 ⋅ ⋅ 4
6 ⋅ ⋅ ⋅ 2 ⋅ ⋅ ⋅ 2 2 2 6 ⋅ ⋅ ⋅ ⋅ 2
7 ⋅ 2 ⋅ 2 ⋅ ⋅ 4 ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ 2 4
8 ⋅ ⋅ 4 ⋅ ⋅ 2 ⋅ 2 4 2 ⋅ 2 ⋅ ⋅ ⋅ ⋅
9 ⋅ 2 ⋅ ⋅ 2 ⋅ ⋅ ⋅ ⋅ 2 ⋅ ⋅ 2 ⋅ 8 ⋅
A ⋅ 4 ⋅ ⋅ 4 ⋅ ⋅ ⋅ 4 ⋅ ⋅ 4 ⋅ ⋅ ⋅ ⋅
B ⋅ ⋅ ⋅ 2 2 ⋅ ⋅ ⋅ 2 ⋅ ⋅ ⋅ ⋅ 8 ⋅ 2
C ⋅ 2 4 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 2 ⋅ 2 ⋅
D ⋅ ⋅ ⋅ ⋅ 2 2 ⋅ 8 ⋅ ⋅ 2 2 ⋅ ⋅ ⋅ ⋅
E ⋅ 4 4 ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ 2 ⋅ ⋅ 2 ⋅ 2
F ⋅ ⋅ ⋅ ⋅ 6 ⋅ 4 2 ⋅ ⋅ ⋅ ⋅ ⋅ 2 2 ⋅

24 ×DPS2(a, b)
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 16 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1 ⋅ 4 ⋅ ⋅ ⋅ ⋅ 4 ⋅ ⋅ ⋅ 2 2 2 2 ⋅ ⋅
2 ⋅ ⋅ 2 ⋅ 2 ⋅ ⋅ ⋅ 10 ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅
3 ⋅ ⋅ 2 2 2 2 ⋅ ⋅ ⋅ 4 ⋅ ⋅ ⋅ ⋅ 4 ⋅
4 ⋅ ⋅ ⋅ 2 ⋅ 2 ⋅ ⋅ 2 4 ⋅ ⋅ ⋅ ⋅ 6 ⋅
5 ⋅ ⋅ ⋅ 4 ⋅ 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 8
6 ⋅ 4 ⋅ ⋅ ⋅ ⋅ 4 ⋅ ⋅ ⋅ 2 2 2 2 ⋅ ⋅
7 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 8 ⋅ ⋅ ⋅ 4 ⋅ 4 ⋅ ⋅
8 ⋅ 2 ⋅ ⋅ ⋅ ⋅ 2 4 ⋅ ⋅ 6 ⋅ ⋅ 2 ⋅ ⋅
9 ⋅ 2 ⋅ ⋅ ⋅ ⋅ 2 ⋅ ⋅ ⋅ ⋅ 6 6 ⋅ ⋅ ⋅
A ⋅ ⋅ 6 ⋅ ⋅ 2 ⋅ ⋅ ⋅ 2 ⋅ ⋅ ⋅ ⋅ 2 4
B ⋅ ⋅ 2 6 4 ⋅ ⋅ ⋅ 2 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
C ⋅ ⋅ ⋅ 2 6 ⋅ ⋅ ⋅ ⋅ 2 ⋅ ⋅ ⋅ ⋅ 2 4
D ⋅ ⋅ 4 ⋅ 2 6 ⋅ ⋅ 2 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
E ⋅ 2 ⋅ ⋅ ⋅ ⋅ 2 4 ⋅ ⋅ ⋅ 2 6 ⋅ ⋅ ⋅
F ⋅ 2 ⋅ ⋅ ⋅ ⋅ 2 ⋅ ⋅ ⋅ 6 ⋅ ⋅ 6 ⋅ ⋅

24 ×DPS3(a, b)

Figure 2.3: The S-boxes and their difference probability matrices used in Section 2.2.
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to differential cryptanalysis [72] whereas the others are not. More precisely, their
maximal differential probabilities are given by

DPmax
S0 = 4

16 , DPmax
S1 = 6

16 , DPmax
S2 = 8

16 , DPmax
S3 = 10

16 .

The substitution layer of this cipher is the permutation σ of (F4
2)4 defined by the

formula
σ(x0, x1, x2, x3) = (S0(x0), S1(x1), S2(x2), S3(x3)) .

For instance, σ maps 0000 to EC59. Next, the diffusion layer is the bit permutation
associated with the permutation φ of J0,16J defined by the rule

φ(i) = 4(imod 4) + ⌊ i4⌋ .

Thus, this diffusion layer is exactly the same as the one of ToyCipher. We now
know the full specification of the round function.

Clearly, an optimal 1-round differential trail activates only the S-box which has
the highest differential probability, namely S3 for this cipher. As can be seen in
Figure 2.3, DPS3(2,8) = 10

16 , so the pair (2,8) of input/output difference patterns has
the maximal probability over S3. Consequently, the differential trail

To
(1) = ((a[0], b[0])) = (((0,0,0,2), (0,0,0,8)))

is optimal and holds with probability po
(1) = 10

16 . In this example, the trail To(1)

happens to be the only 1-round optimal trail. However, if all the S-boxes are equal to
S0, it goes without saying that there are many optimal 1-round differential trails. For
each 1 ≤ w ≤ 4, we denote by DPmax

(w) the maximal probability of a 1-round differential
trail activating w S-boxes. The previous discussion ensures that

DPmax
(1) = DP(To

(1)) = 10
16 .

Naturally, a 1-round trail activating two S-boxes has maximum probability if and only
if it activates S2 and S3 with their maximum differential probabilities. Therefore,

DPmax
(2) = DPmax

S2 ×DPmax
S3 = 8

16 ×
10
16 = 80

162 .

Similarly, we can compute that

DPmax
(3) =

3
∏
i=1

DPmax
Si

= 480
163 and DPmax

(4) =
3
∏
i=0

DPmax
Si

= 1920
164 .

Assume that the SPN described above consists of seven rounds. To compute an
optimal 7-round differential trail, the algorithm OptTrailEst requires the probabil-
ities po

(i) of optimal i-round trails for each 1 ≤ i < 7 and an estimation pe
(7) of the

probability of the 7-round optimal trail searched. As explained in Section 2.1.1, the
probabilities (po

(i))i<7 are obtained with five previous iterations of OptTrail. These
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To(1) To(2) To(3) To(4) To(5) To(6)

a[0] (0,0,0,2) (0,0,A,0) (0,0,F,0) (0,0,F,0) (0,0,0,2) (0,0,A,0)
b[0] (0,0,0,8) (0,0,1,0) (0,0,4,0) (0,0,4,0) (0,0,0,8) (0,0,1,0)
a[1] (0,0,0,2) (0,2,0,0) (0,2,0,0) (1,0,0,0) (0,0,0,2)
b[1] (0,0,0,8) (0,2,0,0) (0,2,0,0) (4,0,0,0) (0,0,0,8)
a[2] (0,0,4,0) (0,0,4,0) (0,8,0,0) (1,0,0,0)
b[2] (0,0,9,0) (0,0,9,0) (0,8,0,0) (4,0,0,0)
a[3] (2,0,0,2) (4,0,0,0) (0,8,0,0)
b[3] (A,0,0,8) (4,0,0,0) (0,8,0,0)
a[4] (0,8,0,0) (4,0,0,0)
b[4] (0,7,0,0) (4,0,0,0)
a[5] (0,8,0,0)
b[5] (0,7,0,0)

DP 10/16 40/162 63/163 40×63/165 120×42/165 120×43/166

Figure 2.4: The optimal trails of the example

Global variables
po
(6) = 120×43/166 pe

(7) = 120×44/167

Max probabilities for w S-boxes
DPmax

(1) = 10/16 DPmax
(3) = 480/163

DPmax
(2) = 80/162 DPmax

(4) = 1920/164

⊕

6 rounds

a[0]

b[0]

S0 S1 S2 S3

Figure 2.5: Example of Run for OptTrailEst

optimal trails are given in Figure 2.4. Recall that their probabilities are computed by
simply multiplying the differential probabilities of their active S-boxes. For instance,

DP(To
(3)) = DPS3(F,4) ×DPS2(2,2) ×DPS3(4,9) ×DPS0(2,A) ×DPS4(2,8)

= ( 6
16)

3 × 4
16 ×

10
16 =

40×63

165 .

Finally, we choose pe
(7) = (120×44)/167 as estimation of po

(7). Recall that an automatic
management of this estimation will given later in Section 2.3.5. But for now, let us
detail some carefully chosen steps of the algorithm OptTrailEst. The parameters of
this execution are summarized in Figure 2.5.

2.2.1. Search Algorithm for the First Round

Following the algorithm OptTrailEst, we must try to extend all the output patterns
b[0] of the first round. Intuitively, a trail activating (w + 1) S-boxes in the first
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Global variables
po
(6) = 120×43/166 pe

(7) = 120×44/167

Sorted candidates
DPS0(3,1) = 4/16 DPS0(7,1) = 2/16
DPS0(E,1) = 4/16 DPS0(8,1) = 2/16
DPS0(5,1) = 2/16 DPS0(A,1) = 2/16

⊕

6 rounds

a[0]

b[0]

S0 S1 S2 S3

Figure 2.6: Example of Run for FirstRound() – Part 1

round is less likely to be optimal than a trail activating w S-boxes in this same
round. Therefore, the patterns b[0] should not be tested in the natural order but
according to the number of S-boxes they activate, or equivalently to their bundle
weights (see Section 1.5.2). Indeed, once a 7-round trail with probability higher than
the estimation pe

(7) is found, this estimation is updated and the pruning condition is
enhanced for the rest of the execution. Consequently, the earlier high probability
trails are found, the lower is the complexity of this algorithm.

Thus, the first pattern we may try to extend is b[0] = (1,0,0,0). This step is
illustrated in Figure 2.6. We are now executing the function FirstRound. First, an
input pattern a[0] maximizing the probability DPσ(a[0], b[0]) must be picked out.
Because S0 is the only S-box activated by b[0], this amounts to find an element a0
maximizing DPS0(a0,1) and then define a[0] = (a0,0,0,0). All the nonzero differential
probabilities of the form DPS0(a0,1) are enumerated in Figure 2.6. These values
are directly drawn from the difference probability matrix of S0 previously given in
Figure 2.3. Thus, a0 can be equal to 3 or E, it does not matter. Our current trail
T (1) is then equal to

T (1) = ((a[0], b[0])) = (((3,0,0,0), (1,0,0,0)))

and DP(T (1)) = 4
16 . To obtain a 7-round trail, the current trail T (1) must be extended

by a 6-round trail. In the best-case scenario, its 6-round extension is optimal and
the resulting 7-round trail has probability

DP(T (1)) × po
(6) = 4

16 ×
120 × 43

166 = 120 × 44

167

which is (greater than or) equal to the estimation pe
(7). Consequently, its probability

is consistent with our estimation and it is worth trying to extend the trail T (1).
Assuming that our estimation is less than po

(7), this means that the current trail can
potentially be extended into an optimal 7-round trail. This trail is then handled by
the function Round(2) and the input pattern for this second round is

a[1] = π(b[0]) = (0,0,0,8) .

This function, helped by all its recursive calls, tries all possible extensions of T (1).
Unfortunately any of them yields an optimal 7-round trail.
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Global variables
po
(6) = 120×43/166 pe

(7) = 120×44/167

Sorted candidates
DPS0(1,9) = 2/16 DPS0(8,9) = 2/16
DPS0(2,9) = 2/16 DPS0(B,9) = 2/16
DPS0(4,9) = 2/16 DPS0(C,9) = 2/16
DPS0(6,9) = 2/16 DPS0(E,9) = 2/16

⊕

6 rounds

a[0]

b[0]

S0 S1 S2 S3

Figure 2.7: Example of Run for FirstRound() – Part 2

The next step of the algorithm OptTrailEst is simply to try to extend another
difference pattern b[0]. Certainly, we try b[0] = (2,0,0,0), then b[0] = (3,0,0,0) and
so on. Let us skip these steps until we reach the pattern b[0] = (9,0,0,0), represented
in Figure 2.7. Again, the function FirstRound requires to select an input pattern
a[0] that maximizes the probability of the current trail. Since this step is repeated
many times during the execution of OptTrailEst, all the input patterns

arg max{DPSi(ai, bi) ∣ ai ∈ Fn2}

for every i < n and every bi in Fn2 should be computed and stored before running the
algorithm. This time, all the candidates a0 have the same differential probability, so
we choose a0 = 1 and the current trail becomes

T (1) = ((a[0], b[0])) = (((1,0,0,0), (9,0,0,0))) and DP(T (1)) = 2
16 .

If T (1) is extended by an optimal 6-round trail, the resulting trail has probability

DP(T (1)) × po
(6) = 2

16 ×
120 × 43

166 = 120 × 2 × 43

167

which less than our estimation. Using the vocabulary introduced in Section 2.1.1,
the probability of the current trail is less than the rank-1 bound and this trail (and
thus all its extensions) can be discarded without missing an optimal 7-round trail.

Once all the patterns b[0] activating one S-box in the first round are handled,
we consider the patterns activating two S-boxes. Before trying to extend all these
patterns, we should test if this effort is worthwhile. Since DPmax

(2) is equal to 80
162 , the

best 1-round trail that can be obtained in the function FirstRound has probability
80
162 . By computing

DPmax
(2) ×po

(6) = 80
162 ×

120 × 43

166 = 20
16 × pe

(7)

we see that this probability is greater than pe
(7) so these patterns must be considered.

Nevertheless, applying the same test to the patterns which activate three S-boxes in
the first round yields

DPmax
(3) ×po

(6) = 480
163 ×

120 × 43

166 = 120
162 × pe

(7) < pe
(7) .
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Global variables
po
(3) = 63/163 pe

(7) = 120×44/167

po
(4) = 40×63/165

Current trail
a[0] = (0,2,0,0) a[1] = (0,0,4,0)
b[0] = (0,2,0,0) b[1] = (0,0,9,0)

DP(T (2)) = 62/162

Max probabilities for w S-boxes
DPmax

(1) = 10/16 DPmax
(3) = 480/163

DPmax
(2) = 80/162 DPmax

(4) = 1920/164

Sorted Candidates
DPS0(2,A) = 4/16 DPS3(2,8) = 10/16
DPS0(2,F) = 4/16 DPS3(2,2) = 2/16
DPS0(2,8) = 2/16 DPS3(2,4) = 2/16
DPS0(2,9) = 2/16 DPS3(2,E) = 2/16
DPS0(2,C) = 2/16
DPS0(2,D) = 2/16

⊕

⊕

⊕

a[0]

b[0]

a[1]

b[1]

a[2]

b[2]

S0

S0

S0

S1

S1

S1

S2

S2

S2

S3

S3

S3

S1

S2

S0 S3

4 rounds
Figure 2.8: Example of Run for Round(3) – Part 1

Consequently, it is useless to consider the patterns b[0] activating three or four
S-boxes in the first round. To conclude, using this additional costless test, we have
considered

(4
1) × 161 + (4

2) × 162 = 1 600

patterns instead of 216 = 65 536.

2.2.2. Search Algorithm for the Round Function

To explain our optimizations of the function Round, assume that we have already
handle the first two rounds and that the current trail T (2) is as illustrated in Figure
2.8. This trail has a differential probability equal to 62

162 and the input pattern of the
third round is

a[2] = π(b[1]) = (2,0,0,2) .

According to the function Round(3), every candidate b[2] for a[2] must be considered
and then tested by the pruning mechanism. However, we will create these candidates
recursively bundle by bundle. For this purpose, the output candidate patterns of
the two active S-boxes are sorted according to their probabilities. First, we choose
the best output pattern for S0, namely b0[2] = A, represented in Figure 2.9. Before
selecting the output pattern for the other active S-box, this first choice should
be tested as follows. The current probability for this round is DPS0(2,A) and it
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⊕

2 rounds, DP(T (2)) = 62/162

4 rounds

a[2]

b[2]

S0 S1 S2 S3

⊕

⊕

2 rounds, DP(T (2)) = 62/162

Permutation + 3 rounds

a[2]

b[2]

a[3]

b[3]

S0 S1 S2 S3

S0 S1 S2 S3

Figure 2.9: Example of Run for Round(3) – Part 2

remains one active S-box. The differential probability of this other S-box is clearly
upper-bounded by DPmax

(1) and thus the probability of the round is upper-bounded
by the product DPS0(2,A) ×DPmax

(1) . Since it remains four rounds before reaching a
7-round trail, the probability of any extension can be upper-bounded by

DP(T (2)) × (DPS0(2,A) ×DPmax
(1) ) × po

(4) = 62

162 ×
4
16 ×

10
16 ×

40 × 63

165 . (2.1)

This value is greater than the estimation pe
(7), and hence our first choice b0[2] = A

seems to be a good one.
We now introduce a second pruning condition for this same candidate. This

new condition applies whenever the diffusion layer of the SPN is a bit permutation.
Observe that the candidate b0[0] = A activates two S-boxes in the next round. And no
matter what the choice of second candidate is, the input pattern of the next round
will activate at least two S-boxes. We have already upper-bounded the probability
of this round by DPS0(2,A) ×DPmax

(1) . The probability of the next round is at most
equal to DPmax

(2) and it remains three rounds to reach the seven rounds. Therefore,
the probability of any extension is upper-bounded by

DP(T (2)) × (DPS0(2,A) ×DPmax
(1) ) ×DPmax

(2) ×po
(3) = 62

162 ×
4
16 ×

10
16 ×

10
16 ×

63

163 . (2.2)

This probability is greater than the estimation and our first choice is now completely
confirmed.

Next, we focus on the second active S-box, namely S3. Referring to Figure 2.8,
the first candidate that must be chosen is b3[2] = 8. With this choice, the output
pattern b[2] of this round is complete and equal to (A,0,0,8). However, this pattern
must pass the two pruning tests before the current trail can be extended. It is
easily checked from Figure 2.10 that these tests involve the same computation as
in (2.1) and (2.2), so they accept the output pattern b[2]. Finally, the pattern
a[3] = π(b[2]) = (9,0,8,0) is handled by the function Round(4).

50



2.2 – A Detailed Example

⊕

2 rounds, DP(T (2)) = 62/162

4 rounds

a[2]

b[2]

S0 S1 S2 S3

⊕

⊕

2 rounds, DP(T (2)) = 62/162

Permutation + 3 rounds

a[2]

b[2]

a[3]

b[3]

S0 S1 S2 S3

S0 S1 S2 S3

Figure 2.10: Example of Run for Round(3) – Part 3

Once all the extensions of a[3] are explored, the other candidates for a[2] need
to be considered. According to Figure 2.8, the second best candidate for a3[2] is
b3[2] = 2. Again, the probability of any 4-round extension of the current trail is
upper-bounded by

DP(T (2)) × (DPS0(2,A) ×DPS3(2,2)) × po
(4) = 62

162 ×
4
16 ×

2
16 ×

40 × 63

165 .

This time, this upper bound is less than the estimation pe
(7) and this candidate is

discarded. In other words, the probability of the current trail is less than the rank-3
bound. Recall that the candidates are sorted according to their probabilities. Hence
the remaining two candidates 4 and E for a3[2] can also be discarded without any
additional computing. Since every candidate of the second active S-box has been
considered, this recursive call ends and we go back to the first active S-box.

Referring to Figure 2.8, the next candidate for a0[2] is b0[2] = F. Since this new
candidate has the same differential probability as its predecessor, the first pruning
mechanism computes the same upper bound as in (2.1) and validates this choice.
However, Figure 2.11 illustrates that this candidate activates every S-box in the next
round. The second upper bound is hence

DP(T (2)) × (DPS0(2,F) ×DPmax
(1) )) ×DPmax

(4) ×po
(3) = 62

162 ×
4
16 ×

10
16 ×

1920
164 × 63

163 ,

which is less than the estimation, discarding this candidate. The next candidate is
b0[2] = 8. The probability of any complete extension of this trail is upper-bounded by

DP(T (2)) × (DPS0(2,8) ×DPmax
(1) )) × po

(4) = 62

162 ×
2
16 ×

10
16 ×

40 × 63

165 .

This bound is less than the estimation. As a consequence this and the three remaining
candidates for a0[2] are all rejected, which completes the search for all extensions of
the trail T (2) and this recursive call to Round(3).
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⊕

2 rounds, DP(T (2)) = 62/162

4 rounds

a[2]

b[2]

S0 S1 S2 S3

⊕

⊕

2 rounds, DP(T (2)) = 62/162

Permutation + 3 rounds

a[2]

b[2]

a[3]

b[3]

S0 S1 S2 S3

S0 S1 S2 S3

Figure 2.11: Example of Run for Round(3) – Part 4

To conclude, let us compare the number of patterns considered by the optimized
and non-optimized versions of Round. Following the algorithm OptTrailEst given
in Section 2.1.1, we would have to try every candidate b[2] for a[2], namely the 24
patterns in

{(b0
[2],0,0, b3

[2]) ∣ b0
[2] ∈ {8,9,A,C,D,F}, b3

[2] ∈ {2,4,8,E}} .

In this optimized version, we have considered only the two complete output patterns
(A,0,0,8), (A,0,0,2) and the two half patterns (F,0,0,?), (2,0,0,?). Moreover, it
is worth observing that all the sorted output candidates over each S-box with their
respective differential probabilities should be computed and stored before starting
the search. Similarly, all the rank-s bounds pe

(r) / po
(r−s) are updated and stored

after each modification of the estimation. Finally, the probability of the current
trail is computed recursively. Therefore, each pruning test requires at most two
multiplications and one comparison.

2.2.3. Search Algorithm for the Last Round

To finish this example, we should consider the function LastRound. Nevertheless,
this function is called only few times during the execution of OptTrailEst and is
already very efficient. Assume that the current 6-round trail T (6) is as in Figure
2.12. The corresponding input pattern of this last round is

a[6] = π(b[5]) = π(4,0,0,0) = (0,8,0,0) .

Therefore there is only one S-box activated in the last round. Its best output
candidate is also obtained by choosing the best output candidate for each active
S-box. In this case, we must choose an element b1[6] maximizing the probability
DPS1(8, b1[6]). According to the difference probability matrix of S1 given in Figure
2.3, the only choice is b1[6] = 7. Thus, the final output pattern b[6] is equal to
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Current trail
a[0] = (0,0,0,2) a[3] = (4,0,0,0)
b[0] = (0,0,0,8) b[3] = (4,0,0,0)
a[1] = (1,0,0,0) a[4] = (0,8,0,0)
b[1] = (4,0,0,0) b[4] = (0,8,0,0)
a[2] = (0,8,0,0) a[5] = (4,0,0,0)
b[2] = (0,8,0,0) b[5] = (4,0,0,0)

⊕

6 rounds, DP(T (6)) = 20×44/166

a[6]

b[6]

S0 S1 S2 S3S1

Figure 2.12: Example of Run for LastRound()

(0,7,0,0). It remains to compute the differential probability of this 7-round trail
and compare it with the estimation. We have

DP(T (7)) = DP(T (6)) ×DPσ(a[6], b[6]) = 20 × 44

166 × 6
16 = 120 × 44

167 .

Therefore, its probability is equal to the estimation, so this trail is saved in To(7).
The estimation pe

(7) is then updated even if in this case its value does not change.
The call to the function LastRound and the algorithm continues the execution of
Round(6).

2.3. Optimizations

This section is dedicated to give a theoretical framework to the optimizations
introduced in the previous example. First observe that the first loop of OptTrailEst
requires to call the function FirstRound for all non-zero output differences b[0]. Since
there are 2nm − 1 such differences, we can lower-bound its complexity by 264 or 2128

for real-sized substitution-permutation networks. Therefore, this algorithm must be
optimized for any practical execution.

2.3.1. Construction of the First Output Pattern

As we have said above, the number of calls to the function FirstRound() is a problem
that must be solved. To optimize this step, a partition of the set of all non-zero
differences is defined. Then, we give an effective way to test whether no difference in
one part can be the beginning of an optimal trail.

For each integer w such that 1 ≤ w ≤ m, we denote by DPmax
(w) the maximal

probability of any 1-round trail activating w S-boxes. In other words,

DPmax
(w) = max{DPσ(a, b) ∣ a, b ∈ (Fn2)m such that wn(a) = w} ,

where wn(a) denotes the bundle weight of a. Then, let us sort the differential
probabilities DPmax

Si
in the decreasing order. This is equivalent to define a permutation

τ of J0,mJ such that for each i <m − 1, it holds that

DPmax
Sτ(i)

≥ DPmax
Sτ(i+1)

.
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Proposition 2.7. Let w be an integer such that 1 ≤ w ≤m. Then,

DPmax
(w) =

w−1
∏
i=0

DPmax
Sτ(i)

.

Proof. Let a be an input pattern activating w S-boxes and b be an output pattern.
For each 0 ≤ i <m, denote by pi the differential probability DPSi(ai, bi). Let ρ be a
permutation of J0,mJ such that pρ(i) ≥ pρ(i+1) for all i <m − 1. Since the pattern a
activates w S-boxes, it must be the case that pρ(i) = 0 for each i ≥ w. Thus,

DPσ(a, b) =
m−1
∏
i=0

DPSi(ai, bi) =
m−1
∏
i=0

pi =
m−1
∏
i=0

pρ(i) =
w−1
∏
i=0

pρ(i) ≤
w−1
∏
i=0

DPmax
Sρ(i)

.

By definition of τ , DPmax
Sρ(i)

≤ DPmax
Sτ(i)

for each 0 ≤ i < w. Therefore,

DPσ(a, b) ≤
w−1
∏
i=0

DPmax
Sτ(i)

. (2.3)

As this inequality holds for every a and b in (Fm2 )n such that wn(a) = w, it follows
that

max{DPσ(a, b) ∣ a, b ∈ (Fm2 )n,wn(a) = w} ≤
w−1
∏
i=0

DPmax
Sτ(i)

.

Clearly, there exists a pair (a, b) of input/output patterns with wn(a) = w such that
DPσ(a, b) meets the bound (2.3) with equality, proving our proposition. ∎
Remark 2.8. It goes without saying that DPmax

(1) ≥ . . . ≥ DPmax
(m) hold. Thus, the

probability of an optimal one-round trail is

po
(1) = max{DPσ(a, b) ∣ a, b ∈ (Fnm2 )∗} = DPmax

(1) = DPmax
Sτ(0)

.

Of course, the differential probability matrices DPSi and the probabilities DPmax
Si

and DPmax
(i) are computed and stored before starting the search.

Theorem 2.9. Let w and w′ be two integers such that 1 ≤ w ≤ w′ ≤m. If DPmax
(w)

is less than the rank-one bound, then there exists no r-round trail activating w′

S-boxes in the first round with probability greater than or equal to pe
(r).

Proof. Assume that DPmax
(w) is less than the rank-one bound. Let T be a one-round

trail activating w′ S-boxes. By definition, DP(T ) ≤ DPmax
(w′). Then, the inequality

DPmax
(w′) ≤ DPmax

(w) obviously holds, and thus DP(T ) ≤ DPmax
(w) . Therefore, DP(T ) is

less than the rank-one bound and Lemma 2.5 ensures that there does not exist
any r-round trail extending T with probability greater than or equal to pe

(r). This
concludes the proof. ∎

This theorem states that whenever DPmax
(w) is less than the rank-one bound, we

only have to test the output differences b[0] activating at most (w−1) S-boxes. There
are

w−1
∑
i=1

(m
w
)(2n − 1)i
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Algorithm 2 – OptTrailEst

1 To(r) ← ()
2 For w from 1 to m do
3 If DPmax

(w) is lower than the rank-one bound then
4 Exit the loop
5 Else
6 For each output pattern b[0] activating w S-boxes do
7 Call FirstRound(b[0])
8 Return To(r)

Figure 2.13: First optimization – construction of the first difference

such differences, compared to 2nm − 1 without this optimization.

We have run the final algorithm with several SPN having a bit permutation
as linear layer. With m = 16 and n = 4, DPmax

(4) was always less than the rank-one
bound, and hence there was at most 221 difference patterns b[0] to test instead of
264. With m = 16 and n = 8, the gap is even larger since DPmax

(3) was always less
than the rank-one bound, yielding 221 difference patterns to test instead of 2128. The
algorithm optimized with Theorem 2.9 is described in Figure 2.13.

2.3.2. The Round Function

Following Matsui’s algorithm [76], the output candidates of the function Round are
constructed recursively. Let a denote the input difference of the current round.
According to Propositions 1.24 and 1.36, any candidate b for a can be constructed
by selecting an output pattern for each S-box activated by a. The following theorem
establishes that the pruning mechanism can be applied bundle by bundle.

Theorem 2.10. Let s be an integer such that 1 ≤ s ≤ r and T be an s-round
trail. Denote by x0 < . . . < xw−1 the indices of the S-boxes activated by a[s−1] where
w = wn(a[s−1]). Let v be an integer satisfying 1 ≤ v ≤ w. If

DP (T [0,s−2]) (
v−1
∏
i=0

DPSxi
(a[s−1]

xi , b
[s−1]
xi )) ×DPmax

(w−v)

is less than the s-rank bound, then for every pattern c satisfying:
• cxi = bxi [s−1] for each i < v − 1, and
• DPSxv−1

(axv−1 [s−1] , cxv−1) ≤ DPSxv−1
(axv−1 [s−1] , bxv−1

[s−1]),
there does not exist any r-round trail extending T [0,s−2] ∥ (a[s−1], c) with probability
greater than or equal to pe

(r).

Proof. Let c be an output pattern satisfying the required conditions. If c is not
a candidate for a[s−1], then DPσ(a[s−1], c) = 0 and any trail extending the current
trail T [0,s−2] ∥ (a[s−1], c) has also zero probability. Therefore, we assume that c is a
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candidate for a[s−1] in the following. By hypothesis,

DPσ(a[s−1], c) =
w−1
∏
i=0

DPSxi
(a[s−1]

xi , cxi)

= (
v−1
∏
i=0

DPSxi
(a[s−1]

xi , cxi )) × (
w−1
∏
i=v

DPSxi
(a[s−1]

xi , cxi)) ,

And thus

DPσ(a[s−1], c) ≤ (
v−1
∏
i=0

DPSxi
(a[s−1]

xi , b
[s−1]
xi )) × (

w−1
∏
i=v

DPSxi
(a[s−1]

xi , cxi))

≤ (
v−1
∏
i=0

DPSxi
(a[s−1]

xi , b
[s−1]
xi )) ×DPmax

(w−v) .

Next, we have the inequality

DP(T [0,s−2] ∥ (a[s−1], c)) = DP(T [0,s−2]) ×DPσ(a[s−1], c)

≤ DP(T [0,s−2]) × (
v−1
∏
i=0

DPSxi
(a[s−1]

xi , b
[s−1]
xi )) ×DPmax

(w−v) .

Consequently, the probability of T [0,s−2] ∥ (a[s−1], c) is less than the s-rank bound.
The result then is a consequence of Lemma 2.5. ∎

2.3.3. Active S-Boxes in the Next Round

Throughout this part, the linear layer π is assumed to be a bit permutation. Denote
by LASB the mapping from (Fn2)m to Fm2 which maps a pattern c to the m-bit vector
LASB(c) = (xi)i<m where xi is equal to one if and only if the bundle ci is nonzero. In
other words, LASB(c) is a compact representation of the S-boxes activated by the
pattern c and LASB should be read “List of the Active S-Boxes”.

Given two elements L and L′ of Fm2 , we denote by L ∨ L′ their bitwise OR.
Moreover, we say that two patterns c and c′ seen as elements of Fnm2 are disjoint
if for all bit indices i ≤ nm, the equation ci = c′i implies that ci = c′i = 0. It should
be noted that if two disjoint patterns c and c′ are seen as elements of (Fn2)m, then
ci = c′i also implies that ci = c′i = 0n for each i <m. Let c be a pattern and i <m be
a nonnegative integer. By c∣i we mean the element of (Fn2)m where all bundles are
zero, except the one of index i which is equal to ci. In other words,

(xj)j<m = c∣i⇐⇒
⎧⎪⎪⎨⎪⎪⎩

xi = ci and
xj = 0n if j ≠ i .

Before stating and proving the pruning condition involving the active S-boxes in the
next round, we introduce two preliminary results.

Lemma 2.11. Let c0, . . . , cw−1 be w pairwise mutually disjoint patterns. Then

LASB (
w−1
∑
i=0

ci) =
w−1
⋁
i=0

LASB(ci) .
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Proof. The result is certainly true when w = 1, so assume that w = 2. Denote by L0,
L1 and L the lists of S-boxes activated by c0, c1 and (c0 + c1) respectively. Let i <m
be an integer. Next, we have the following equivalences

Li = 0⇔ c0
i + c1

i = 0n⇔ c0
i = c1

i = 0n⇔ L0
i = L1

i = 0 .

Therefore, L = L0 ∨L1. The result follows by induction on w as cw−1 and (∑w−2
i=0 ci)

are clearly mutually disjoint. ∎

Corollary 2.12. Let b be an output pattern. Let 1 ≤ w ≤m be an integer and let
0 ≤ x0 < . . . < xw−1 <m be w indices. Then,

LASB (π(
w−1
∑
i=0

b∣xi)) =
w−1
⋁
i=0

LASB(π(b∣xi)) .

Proof. Since the diffusion layer π is linear, it holds that

π(
w−1
∑
i=0

b∣xi) =
w−1
∑
i=0

π(b∣xi) .

Clearly, the patterns b∣xi are mutually disjoint. Since π is a bit permutation, it must
be the case that the π(b∣xi) are also disjoint. Finally, the relation

LASB (
w−1
∑
i=0

π(b∣xi)) =
w−1
⋁
i=0

LASB(π(b∣xi))

follows from Lemma 2.11, which concludes the proof. ∎

Theorem 2.13. We use the same notation as in Theorem 2.10 except that s < r − 1.
Let w′ denote the Hamming weight of ⋁v−1

i=0 LASB(π(b[s−1]∣xi)). If

[DP (T [0,s−2]) (
v−1
∏
i=0

DPSxi
(a[s−1]

xi , b
[s−1]
xi )) ×DPmax

(w−v) ] ×DPmax
(w′)

is less than the rank-(s + 1) bound, then for every output pattern c satisfying

cxi = bxi [s−1] for each i < v ,

there does not exist any r-round trail extending T [0,s−2] ∥ (a[s−1], c) with probability
greater than or equal to pe

(r).

Proof. Following the proof of Theorem 2.10, we can assume that c is a candidate
for a[s−1] and deduce the upper bound

DP(T [0,s−2] ∥ (a[s−1], c)) ≤ DP(T [0,s−2]) × (
v−1
∏
i=0

DPSxi
(a[s−1]

xi , b
[s−1]
xi )) ×DPmax

(w−v) .

Define a[s] = π(c). Let b[s] be any output pattern. Similarly, we can assume that
b[s] is a candidate for a[s]. Let w′′ denote the bundle weight of a[s] which is clearly
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equal to the Hamming weight of LASB(a[s]). According to Corollary 2.12,

LASB(a[s]) = LASB(π(b[s−1])) = LASB (π(
w−1
∑
i=0

b[s−1]∣xi)) =
w−1
⋁
i=0

LASB(π(b[s−1]∣xi))

= (
v−1
⋁
i=0

LASB(π(b[s−1]∣xi))) ∨ (
w−1
⋁
i=v

LASB(π(b[s−1]∣xi))) .

As a consequence,

w′′ = w(LASB(a[s])) ≤ w (
v−1
⋁
i=0

LASB(π(b[s−1]∣xi))) = w′ ,

and thus DPmax
(w′′) ≥ DPmax

(w′). Eventually,

DP(T [0,s−2] ∥ (a[s−1], c) ∥ (a[s], b[s])) = DP(T [0,s−2] ∥ (a[s−1], c)) ×DPσ(a[s], b[s])

≤ [DP(T [0,s−2]) × (
v−1
∏
i=0

DPSxi
(a[s−1]

xi , b
[s−1]
xi )) ×DPmax

(w−v) ] ×DPmax
(w′′)

≤ [DP(T [0,s−2]) × (
v−1
∏
i=0

DPSxi
(a[s−1]

xi , b
[s−1]
xi )) ×DPmax

(w−v) ] ×DPmax
(w′) .

Therefore, the probability of T [0,s−2] ∥ (a[s−1], c) ∥ (a[s], b[s]) is less than the rank-
(s + 1) bound and there exists no r-round trail extending it with probability greater
than or equal to pe

(r). Using the fact that this property holds for all b[s], the desired
result is proven. ∎

The search procedure Round optimized with Theorems 2.10 and 2.13 is described
in Figure 2.14.

2.3.4. Test on the Bound

All the previous results can be preserved while strengthening the condition on
the bound. Suppose we have found a trail with probability greater than or equal
to pe

(r). The estimation pe
(r) is then equal to the differential probability of this

trail. Now, assume that the probability of the current s-round trail T satisfies
DP(T ) ⋅ po

(r−s) = pe
(r). In this case, the probability DP(T ) is not less than the

rank-s bound and the algorithm tries all its possible extensions. However, the
previous equality implies that in the best-case scenario, we find an r-round trail with
probability pe

(r). Because such a trail is already known, the extension of T can be
aborted. This discussion proves that Definition 2.3 can be enhanced as follows.

Definition 2.14 (rank-s bound). Let T be a s-round trail with s < r. Its
probability is less than the rank-s bound if

(To
(r) = () and DP(T ) < pe

(r)

po
(r−s)) or (To

(r) ≠ () and DP(T ) ≤ pe
(r)

po
(r−s)) .
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Algorithm 3 – Round(s, T (s−1), p(s−1))
Input. T = ((a[0], b[0]), . . . , (a[s−2], b[s−2]))

1 a[s−1] ← π(a[s−2])
2 b[s−1] ← 0nm
3 p(s,0) ← p(s−1)

4 T (s) ← T (s−1) ∥ (a[s−1], b[s−1])
5 w ← wn(a[s−1])
6 Denote x0 < . . . < xw−1 the indices of the S-boxes activated by a[s−1].
7 X ← (x0, . . . , xw−1)
8 L(0) ← 0m
9 Call RoundRec(s, 1, T (s), p(s,0), L(0), X)
10 Function RoundRec(s, v, T (s), p(s,v−1), L(v−1), X)
11 If v = w then
12 p(s) ← p(s,w−1)

13 If s + 1 < r then
14 Call Round(s + 1, T (s), p(s))
15 Else
16 Call LastRound(T (s), p(s))
17 Else
18 x ← xv−1
19 For each b

[s−1]
x sorted in decreasing order according to

DPSx(a
[s−1]
x , ⋅ ) do

20 p(s,v) ← p(s,v−1) ×DPSx(a
[s−1]
x , b

[s−1]
x )

21 If p(s,v) ×DPmax
(w−s) is less than the rank-s bound then

22 Exit the loop Theorem 2.10
23 If π is a bit permutation then
24 L(v) ← L(v−1) ∨ LASB(π(b[s−1]∣x))
25 w′ ← w(L(v))
26 If p(s,v) ×DPmax

(w−s) ×DPmax
(w′) is not less than the rank-(s + 1)

bound then
27 Call RoundRec(s, v + 1, T (s), p(s,v), L(v), X) Theorem 2.13
28 Else
29 Call RoundRec(s, v + 1, T (s), p(s,v), L(v), X)

Figure 2.14: Second optimization – the search function Round
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Algorithm 4 – OptTrail(r, (po
(i))1≤i<r)

Input. The current number r of rounds and the probabilities (po
(i))1≤i<r

Output. An optimal r-round trail To(r)

1 To(r) ← ()
2 pe

(r) ← po
(r−1)

3 While To(r) is empty do
4 pe

(r) ← pe
(r) / 2

5 To(r) ← OptTrailEst(r, (po
(i))1≤i<r, pe

(r))
6 Return To(r)

Figure 2.15: Automatic estimation management

2.3.5. Automatic Management of the Estimation

As explained in Section 2.1.1, the estimation pe
(r) determines the complexity of

the algorithm OptTrailEst. Several methods yield good estimations of po
(r). For

instance, an iterative trail can be used. Following an idea of Ohta, Moriai and Aoki
[87], let us introduce the algorithm OptTrail. The latter has two main advantages.
Firstly, the estimation management is completely automatic, that is to say, no
knowledge is required on the SPN. Secondly, its complexity has the same order of
magnitude as OptTrailEst runs with pe

(r) = po
(r) / 2.

The algorithm OptTrail is presented in Figure 2.15. To understand how it works,
it is worth recalling that OptTrailEst finds no trail whenever pe

(r) > po
(r) as ensured

by Theorem 2.6. In this case, the best trail To(r) remains empty at the end of the
execution of this algorithm. Since po

(r) ≤ po
(r−1), we begin by running OptTrailEst

with the estimation pe
(r) = po

(r−1) /2. Then, this estimation is divided by two after each
execution OptTrailEst until an optimal trail is found. This happens whenever the
condition pe

(r) ≤ po
(r) becomes true. It is not hard to see that we have the following

proposition.

Proposition 2.15. The complexity of OptTrailEst decreases as the input pe
(r)

increases.

In addition, we have observed experimentally that the complexity of the algorithm
OptTrailEst executed with pe

(r) ≥ 24 ⋅ po
(R), is negligible compared to its complexity

when running with pe
(r) = po

(R) /2. This discussion justifies that OptTrail has roughly
the same complexity as OptTrailEst.

2.4. Results

Experiments and simulations have been performed by a AMD Phenom II X4 965
Black Edition 3.4 GHz processor. The running time for a R-round cipher includes
the precomputations and R − 1 calls to OptTrail, as explained in Section 2.1.1.
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To prove the practical security of Present [17] against differential cryptanalysis,
the authors have shown that the probability of any 5-round trail is upper-bounded by
2−20 and had exhibited a 5-round trail of probability 2−21. The algorithm presented
here allows us to prove in 0.3 second that this upper bound is met with equality.
They have then deduced that any 25-round trail probability is upper-bounded by
2−100. Our algorithm shows that the optimal trail probability is 2−110 in 0.5 second.
The number of rounds is not a problem since an optimal 64-round trail is computed
in just 2 seconds. Note that Present has 32 rounds.

The permutation used in SmallPresent [69] (and in Present) can be general-
ized for all positive integers n and m. Denote by φn,m the permutation of J0, nmJ
defined by the rule

φ(i) =m(imod n) + ⌊ i
m
⌋ .

We have constructed a 128-bit SPN on the same model as Present to test our
algorithm efficiency. Define π to be the bit permutation associated with φ8,16 and
the S-boxes to be all equal to the AES S-box [39]. Using this algorithm, an optimal
13-round differential trail with probability 2−89 was obtained in 7.1 seconds.

To analyze Puffin security against differential cryptanalysis, Cheng et al [36]
have upper-bounded the probability of an optimal 31-round trail by 2−62. In 0.02
second, we have computed a trail meeting this bound.

Finally, we have tested our algorithm on Iceberg [95]. However, its diffusion
layer is not a bit permutation so the optimization presented in Section 2.3.3 is no
longer applicable. The authors have upper-bounded the probability of an optimal
16-round differential trail by 2−160. We proved that it is in fact 2−171,6 in 2.3 seconds.
All these results are outlined in Figure 2.16.

Block Round Upper- Best Running
size number bound probability time

Present 64 5 2−20 2−20 0.3 s
Present 64 25 2−100 2−110 0.5 s
Present-like 128 13 – 2−89 7.1 s
Puffin 64 31 2−62 2−62 0.02 s
Iceberg 64 16 2−160 2−171.6 2.3 s

Figure 2.16: Summary of Results

To conclude, we have presented in this chapter a generic algorithm that computes
an optimal differential or linear trail in an SPN. Running this algorithm may allow
to prove the practical security of the block cipher. In the opposite case of a weak
cipher, the returned trail gives rise to a powerful differential or linear cryptanalysis of
the cipher. Especially optimized for SPN whose diffusion layer is a bit permutation,
we are able to find an optimal differential trail of Present and Puffin within one
second. Block cipher designers have then a powerful tool which can be run several
times in order to improve their cipher primitives.
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Chapter 3
Partition-Based Backdoor Ciphers

One of the first backdoor ciphers was created in 1997 by Rijmen and Preneel [89].
Their S-boxes are constructed to have one high correlation between the zero mapping
and a sum of certain output bits. The knowledge of this correlation yields a high
potential linear trail which is used to recover a part of the key with linear cryptanalysis.
Such a weakness is generally pointed out by the first line of the S-boxes’ correlation
matrices. Yet, if the output size of the S-boxes is large enough, their computation
is too expensive. Relying on this fact, the authors claimed that their backdoor is
undetectable, even if one knows its global design. Nevertheless, Wu and al. [100]
disproved this by discovering a way to recover the backdoor. It is worthwhile to
mention that in practice, if a real cipher containing a backdoor is given, the presence
of the backdoor will certainly not be revealed.

More recently in [2], the authors created non-surjective S-boxes embedding a
parity check to create a backdoor cipher. The message space is thus divided into
cosets and leads to an attack on this DES-like cipher in less than 223 operations.
The security of the whole algorithm, particularly against linear and differential
cryptanalysis is not given and the authors admit that their attack is dependent on
the first and last permutation of the cipher. Finally, the non-surjective S-boxes may
lead to detect easily the backdoor by simply calculating the image of each input
vector. This problem is naturally avoided in a Substitution-Permutation Network in
which S-boxes are bijective by definition.

Our approach is mainly a generalization of the ideas presented by Paterson in [88].
In this article, a DES-like backdoor cipher exploiting a weakness induced by the round
functions is presented. The group generated by the round functions acts imprimitively
on the message space. In other words, the round function preserves a partition of
the message space no matter the round keys used, and hence the same applies to the
full cipher. This partition forms the backdoor. Paterson then introduced a backdoor
cipher composed of 32 rounds and using an 80-bit cipher key. The backdoor can
seriously compromise the cipher security using 232 chosen plaintexts. Moreover, when
combined with a carefully chosen key schedule, the backdoor enables recovery of
the key using 241 operations and a few known plaintexts. Even if the mathematical
material to build the backdoor is given, no general algorithm details the S-boxes’
construction. As the author acknowledges, the S-boxes of his backdoor cipher are
incomplete: half of the ciphertext bits are independent of half of the plaintext bits
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and the security against a differential attack is not as high as one might expect.
Moreover, the author wondered whether the partition of the message space had to
be linear, that is to say made up with every coset of a linear subspace. Caranti
and al. [31] answered Paterson’s question by proving that if the group generated by
the round functions is imprimitive, then the partition of the message space must be
linear.

In his thesis [50], Harpes considered backdoor ciphers mapping a partition of
the plaintexts to a partition of the ciphertexts independently of the cipher key used.
As these partitions are not necessarily equal, this family generalizes Paterson’s one.
These ciphers are called partition-based backdoor ciphers throughout this thesis.
When the input and output partitions are equal, we speak of imprimitive backdoor
ciphers to fit Paterson’s work. More generally, a probabilistic partition-based backdoor
cipher is a cipher which behaves like a partition-based cipher with high probability.
Harpes suggested using such a backdoor with its partitioning cryptanalysis [52] to
recover some bits of the cipher key using known or chosen plaintext/ciphertext pairs.

Along a similar line to Paterson’s imprimitive ciphers, the group generated by
the round functions has required much attention. This group was first studied by
Coppersmith and Grossman in [38]. Then, Kaliski et al. asked whether the DES is
a group and provided strong evidence that it is not the case [56]. This group was
proved to be the alternating group later in [97]. The next standard block cipher,
namely the AES, was proven to generate also the alternating group in [94, 98]. Even
if a secure cipher must generate a large group, it has been shown that this condition
is not sufficient in [78]. Indeed, the authors described a very weak block cipher
generating the symmetric group. More recently, Caranti et al. [31] introduced a
class of block ciphers for which it is easier to prove that the group generated by
the round functions is primitive. To demonstrate the efficiency of their framework,
they applied it to the AES. Their results were then improved in [30, 32, 5, 4] and
can then be used to prove that this group is either the alternating group or the
symmetric group. Finally, we should mention another active area of research about
backdoor ciphers which considers the so-called hidden sum [24, 25, 19]. This family
of backdoor ciphers relies on an alternative vector space structure which can be used
to break the cipher.

The backdoor ciphers covered by this thesis, namely imprimitive and partition-
based ciphers with their probabilistic variants, are introduced formally in the next
section. We also recall several ways to exploit the backdoors of imprimitive ciphers but
these attacks can easily be extended to partition-based backdoors. A cryptanalysis
of a probabilistic backdoor cipher will be detailed later in Chapter 5.

The remainder of this chapter focuses only on non-probabilistic partition-based
backdoor substitution-permutation networks. More precisely, we study the structure
of such ciphers when the backdoor holds no matter the round keys used, that is to
say independently of the key schedule. We explore in Section 3.2 how the partition
of the message space evolves through each step of the encryption process and prove
that the study of the whole cipher can be reduced to the study of its substitution
layer. Then, we spend quite a bit of time in Section 3.3 showing that this study can
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be restricted further to that of one single S-box. Lastly, our results are summarized
in Section 3.4 which concludes this chapter. The content of this chapter was first
published in [9] and then developed in [12].

3.1. Partition-Based Backdoor Ciphers

This section introduces every family of backdoor ciphers covered by this thesis.
To detail these backdoors, we may recall some classical results and definitions in
Section 3.1.1. Readers acquainted with basic facts on imprimitive groups may jump
immediately to Section 3.1.2 which presents imprimitive backdoor ciphers. Then
Section 3.1.3 recalls how to take advantage of such a backdoor while Section 3.1.4
deals with its generalizations. To conclude this introduction, other closely related
attacks are given in Section 3.1.5.

3.1.1. Imprimitive Group Actions

The symmetric group on X, denoted by Sym(X), is the set of all permutations of
X together with the operation of composition. Even if it is quite common to define
the composition of two permutations σ, τ in Sym(X) by σ ○ τ ∶ x↦ τ(σ(x)) when
studying permutation groups, we will keep the convention that σ ○ τ(x) = σ(τ(x))
throughout this and the following chapters. In other words, permutations are still
evaluated from right to left in a composition.

Definition 3.1 (Group Action). Let G be a group and let X be a set. A
(left) group action is a mapping G ×X → X, (g, x) ↦ g ⋅ x such that the following
statements hold:

• e ⋅ x = x for any x in X, (e denotes the identity element of G);
• g ⋅ (h ⋅ x) = (gh) ⋅ x for all g, h in G and all x in X.

Alternatively, a group action can be defined as a group homomorphism φ from G to
the symmetric group Sym(X).

Let us explain the equivalence between these two definitions of a group action.
Let G be a group acting on X. Define the mapping φ from G to Sym(X) which
maps an element g of G to the permutation

φg ∶X →X , x↦ g ⋅ x .

Let g be an element of G. It is easily seen that φg−1 ○ φg = φg ○ φg−1 = IdX and hence
φg is a permutation of X, ensuring that φ is well-defined. It remains to prove that φ
is a homomorphism. Let h be an element of G. For any x in X, it holds that

(φg ○ φh)(x) = φg(φh(x)) = φg(h ⋅ x) = g ⋅ (h ⋅ x) = (gh) ⋅ x = φgh(x) .

Thus, the action of G on X yields a homomorphism φ from G to Sym(X).

65



Chapter 3 – Partition-Based Backdoor Ciphers

Conversely, let φ be a homomorphism from a group G to the symmetric group
on a set X. Define the mapping ⋅ from G ×X to X by the rule g ⋅ x = φg(x). Let g
and h be two elements of G. Then, for every x in X, we have

e ⋅ x = φe(x) = IdX(x) = x and
g ⋅ (h ⋅ x) = φg(φh(x)) = (φg ○ φh)(x) = φgh(x) = (gh) ⋅ x .

This discussion establishes the equivalence between the two definitions.
A permutation group on X is a subgroup of Sym(X). Permutation groups are

closely tied to group actions. Indeed, a permutation group G on X naturally acts
on X by g ⋅ x = g(x) for all g in G and all x in X. In this case, the corresponding
homomorphism from G to Sym(X) is simply the inclusion mapping.

Inversely, let G be a group acting on X and let φ denote the corresponding
homomorphism. Then, the image φ(G) is a permutation group on X called the
permutation group induced on X by G. Moreover, if φ is one-to-one, G is isomorphic
to φ(G) and the action of G on X is said to be faithful. In such a case, the notions
of permutation groups and group actions are the same.

Before defining imprimitive group actions, we need to introduce the following
two definitions.

Definition 3.2 (Transitivity). The action of a group G on a set X is said to be
transitive if for all x1 and x2 in X, there exists an element g of G such that g ⋅x1 = x2.

Definition 3.3 (G-invariant Partition). Let G be a group acting on a set X. A
partition B of X is said to be a G-invariant partition (or a block system of G) if
every element g of G preserves B, that is to say, if B = {g ⋅B ∣ B ∈ B} where g ⋅B
denotes the set {g ⋅ x ∣ x ∈ B}.

Any group G acting on a set X has at least two G-invariant partitions, namely
B = {X} and B = {{x} ∣ x ∈X}. These partitions are said to be trivial.

Definition 3.4 (Imprimitivity). Let G be a group acting transitively on X. The
action of G on X is said to be imprimitive if there exists a non-trivial G-invariant
partition of X. Otherwise, the group is said to act primitively.

A permutation group G on X is naturally said to be imprimitive when its induced
action on X is imprimitive. Moreover, it should be noted that any subgroup of an
imprimitive permutation group is also imprimitive.

Lemma 3.5. Let G be a group acting imprimitively on a set X and let B be a
non-trivial G-invariant partition. For all parts B1 and B2 in B, there exists g in G
such that g ⋅B1 = B2.

Proof. Let B1 and B2 be two parts of B. Let x1 and x2 be elements of B1 and B2
respectively. As the action of G on X is transitive, there exists an element g of G
such that g ⋅ x1 = x2. Thus, x2 belongs to both g ⋅B1 and B2. Note that g ⋅B1 is a
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part of B because B is G-invariant. It follows that g ⋅B1 = B2 since these two parts
have a non-empty intersection. ∎

Remark 3.6. Any part B of a G-invariant partition B is called a block. Generally,
permutation group books [42, 55, 99] deal with blocks rather than G-invariant
partitions because such partitions are uniquely determined by any of their blocks.
Indeed, Lemma 3.5 implies that B = {g ⋅ B ∣ g ∈ G}. Alternatively, a block B of
G can be defined to be a non-empty subset of X such that for every g in G, the
subsets g ⋅B and B are either disjoint or equal. For this reason, it is common to
define an imprimitive group action to be a transitive action which has a non-trivial
block. Finally, note that G-invariant partitions are called block systems in [6, 42, 55],
imprimitive systems in [90] and complete block systems in [88, 99].

Let G be a group acting on X and assume that B is a G-invariant partition.
Denote by B a fixed block in B. Given any block B′, Lemma 3.5 ensures that there
exists an element g of G such that g ⋅B = B′. Denoting by φ the homomorphism
associated with the action of G on X, we know that the mapping φg ∶ x ↦ g ⋅ x is
a permutation of X. As a consequence, B and B′ have the same cardinality. This
discussion proves the following corollary.

Corollary 3.7. Let G be a group acting imprimitively on a set X and let B be a non-
trivial G-invariant partition. Every part of B have the same cardinality. Assuming
that X is finite, we have the relation #X = #B ×#B where B is any block of B.

In mathematics, we generally ties together different objects which are similar when
considering their structures. These similar objects are then said to be isomorphic.
Let G and H be two groups acting respectively on X and Y . For these actions to
be isomorphic, the groups G and H must have the same structure, namely being
isomorphic as groups. However, this condition cannot be sufficient since it disregards
how the groups G and H act on their respective sets. For instance, the group
Sym({1,2}) acts naturally on {1,2} but can also act trivially on {1,2} by always
fixing every element. These two actions are very different while they have the same
group and set. For this reason, we introduce the following stronger notion.

Definition 3.8 (Permutation Isomorphism). Let G act on X and let H act on
Y . The action of G on X is permutation isomorphic to H on Y if there exists an
isomorphism ϕ ∶ G → H and a bijection λ ∶ X → Y satisfying for every g in G and
every x in X the relation

λ(g ⋅ x) = ϕ(g) ⋅ λ(x) .

Remark 3.9. The condition that the relation λ(g ⋅ x) = ϕ(g) ⋅ λ(x) holds for every
x in X is equivalent to saying that the diagram in Figure 3.1 commutes. The
terminology permutation isomorphism is also used in [42, pp. 17] and [6]. However,
the same notion is called a G-space isomorphism in [26, pp. 6], and more simply an
isomorphism in [90, pp. 282].

Assume that the action of G on X is permutation isomorphic to H on Y . Then,
this action is uniquely determined by the other action. Indeed, for any g in G and
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X X

Y Y

g

ϕ(g)

λ λ↺

Figure 3.1: Diagrammatic representation of a permutation isomorphism (see Defini-
tion 3.8). Note that g denotes the mapping X → X, x ↦ g ⋅ x and similarly, ϕ(g)
denotes Y → Y , y ↦ ϕ(g) ⋅ y.

any x in X, we have
g ⋅ x = λ−1(ϕ(g) ⋅ λ(x)) .

Let B be any G-invariant partition. For every h in H, we have

h ⋅ λ(B) = ϕ(ϕ−1(h)) ⋅ λ(B) = λ(ϕ−1(h) ⋅ B) = λ(B)

Thus, λ(B) is a H-invariant partition. Consequently, if the action of G on X is
imprimitive, then so is the action of H on Y .

3.1.2. Imprimitive Backdoor ciphers

Backdoors based on imprimitive permutation groups were introduced by Paterson in
[88]. We restate here their theoretical framework using our notation. This family
of backdoor ciphers belongs to the class of iterated block ciphers. We may recall
that the encryption process of an iterated block cipher (see Definition 1.4) consists
of the composition of round functions applied to the plaintext with different round
keys. More formally, the message, cipher key and round key spaces are respectively
Fn2 , Fκ2 and Fl2, where n is the block size, κ the cipher key length and l the round
key length. The round function is a family (Fk)k∈Fl2 of keyed permutations of the
message space Fn2 . Then, the r-round encryption function E associated with the
round keys k[0], . . . , k[r−1] is given by

Ek[0],...,k[r−1] = Fk[r−1] ○ ⋯ ○ Fk[0] .

In practice, the round keys (k[i])i<r are derived from a cipher key K using a key
schedule. Nevertheless, the key schedule is disregarded by the main framework of
imprimitive backdoor ciphers, which considers only independent round keys. As will
be seen at the end of Chapter 4, a carefully designed key schedule can remarkably
improve the backdoor, but for now it is simpler to ignore this part of the cipher.

By the group generated by the round functions, we mean the subgroup G of
Sym(Fn2) defined to be

G = ⟨Fk ∣ k ∈ Fl2⟩ .

Being a permutation group on Fn2 , it naturally acts on the message space by the rule
g ⋅ x = g(x) for every g in G and x in Fn2 . Even if we will only consider this group in
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the remainder of this section, we may introduce two other similar groups to stress its
relevance. First, let Gr be the group generated by the r-round encryption functions
with independent round keys, namely

Gr = ⟨Ek[0],...,k[r−1] ∣ k[0], . . . , k[r−1] ∈ Fl2⟩ .

Then Gcipher is defined in the same way as Gr except that the round keys are derived
from all possible cipher keys using the cipher’s key schedule. In other words, Gcipher
is generated by all the encryption functions of the cipher. In [54, Lemma 1], it has
been proven that Gcipher is a subgroup of Gr, itself being a subgroup of G. As a
consequence, if G is an imprimitive permutation group, then so are Gr and Gcipher.

An imprimitive backdoor cipher is an iterated block cipher such that the per-
mutation group G generated by its round functions is imprimitive. Naturally, the
cipher’s designer has to be aware of this property, otherwise we should not talk about
backdoor. Now, suppose that G is an imprimitive permutation group on Fn2 . Then,
there exists by definition a non-trivial G-invariant partition B of Fn2 . Corollary 3.7
establishes that the number of blocks in B divides the cardinality of Fn2 , that is 2n.
Thus, the partition B contains 2d blocks with 1 < d < n and we can write

B = {B0, . . . ,B2d−1} .

Furthermore, each block Bi has cardinality 2n−d. Let g be an element of G. Since the
partition B is G-invariant, the image of any block under g is still a block. Equivalently,
the permutation g of Fn2 induces a permutation ḡ of J0,2dJ which maps i to the
unique index j satisfying g(Bi) = Bj. Using this notation, a block Bi is mapped to
Bḡ(i) by g.

3.1.3. Exploiting the backdoor

There are several ways to take advantage of this backdoor. We begin with the
most basic, but also the one which works for every imprimitive backdoor cipher. As
explained above, Gcipher is a subgroup of G, so every encryption function lies in G.
Let K be a cipher key and let g denote its associated encryption function EK . This
means that when several plaintexts lying in a same block Bi are encrypted with g,
the corresponding ciphertexts lie in the same block Bḡ(i). Such a property can be
used by the following chosen-plaintext attack. For each index 0 ≤ i < 2d, choose a
plaintext pi in Bi and request their corresponding ciphertexts ci. With those data,
we can recover the induced permutation ḡ. Indeed, the image of any index i under ḡ
is the index of the block containing ci.

Now, assume that we are given a ciphertext c whose corresponding plaintext is
unknown. First, we must find the index j of the block Bj containing c. Next, we
know that the plaintext lies in the block Bḡ−1(j), that is to say, in a subset of size
2n−d. If we know that p is a meaningful message, our uncertainty on p can be further
restricted by canceling the meaningless messages in Bḡ−1(j). If d is large, typically
when n

2 < d < n, then this cryptanalysis requires a huge amount of chosen plaintexts
but also gives precise information on the plaintext. Similarly, if d is small, this attack
gives little information on the plaintext but only needs a few chosen plaintexts.
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Relying only on this basic cryptanalysis, the cipher designer needs to choose
between quantity of data required and efficiency of the backdoor. However, such a
choice can be avoided if the imprimitive cipher has several non-trivial G-invariant
partitions. Assume that

A = {A0, . . . ,A2a−1} and B = {B0, . . . ,B2b−1}

are two G-invariant partitions. Up to a rearrangement of the blocks, it can be assumed
that 0n lies in both A0 and B0. It is well-known that a non-empty intersection of
two blocks of G is still a block (see for instance [99, Proposition 6.1]). Then, A0 ∩B0
is a block and

A ∩ B = {g(A0 ∩B0) ∣ g ∈ G} = {A ∩B ∣ A ∈ A,B ∈ B} ∖ {∅}

is a (possibly trivial) G-invariant partition. This result will be generalized later in
Proposition 3.20. Denote by 2d the number of elements in the intersection A0 ∩B0.
Then, we know that each block of A ∩ B has also cardinality 2d.

The basic cryptanalysis detailed above can be enhanced as follows. Again, denote
by g the encryption function associated with the unknown cipher key. Using 2a
chosen plaintexts and the corresponding ciphertexts, recover the permutation ḡA
induced by g on the partition A. Similarly, recover the permutation ḡB induced on B
with 2b other chosen plaintexts. Next, given a ciphertext c, find the indices jA and
jB such that c lies in both AjA and BjB . Finally, the plaintext corresponding to c
lies in

AiA ∩BiB where iA = (ḡA)−1(jA) and iB = (ḡB)−1(jB) .

To summarize, this cryptanalysis requires 2a + 2b ≤ 2max(a,b)+1 chosen plaintexts and
yields 2d possible plaintexts for each ciphertext.

Maybe the most interesting set of parameters for this cryptanalysis are a = b = n
2

and d = 0. In this case, the partitions A and B consist of 2n
2 blocks, each of cardinality

2n
2 . The intersection A0 ∩B0 contains only 2d = 1 element, so the partition A ∩ B is

equal to {{x} ∣ x ∈ Fn2}. Once the permutations ḡA and ḡB have been recovered with
2n

2 +1 chosen plaintexts, the cryptanalyst can decrypt any ciphertext. In other words,
the cryptanalyst has an alternative decryption algorithm as he does not recover
the cipher key. Using the common vocabulary introduced in [62, 63], this attack
performs a global deduction. Intuitively, the messages in Fn2 are arranged in a 2n

2 × 2n
2

matrix. Each block A of A represents a row and each block B of B a column of this
matrix. The mappings ḡA and ḡB describe how g permutes the rows and columns
respectively. Given a ciphertext, this attack recovers the row and the column of the
plaintext, and hence the plaintext itself. An example of such a backdoor cipher is
given in [88, Section 3.3].

Finally, let us explain the key-schedule-dependent attack outlined by Paterson in
his article. Even if this attack can be generalized using several G-invariant partitions,
we consider hereinafter only one G-invariant partition B for simplicity. The main
idea is to design a key schedule such that every induced permutation EK of B is
uniquely determined by a part of the cipher key K. Equivalently, we require the
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existence of a (non-trivial) partition K = {I0, . . . , Im−1} of Fκ2 such that all the cipher
keys belonging to a same part of K induce the same permutation of B, that is to say

∀K,K ′ ∈ Fκ2 , (∃I ∈ K , K ∈ I and K ′ ∈ I)Ô⇒ (EK = EK′) .

Such a property can be used to carry out a key recovery attack. Let K be an
unknown cipher key. Assume that the cryptanalyst has a few plaintext/ciphertext
pairs (pi, ci). It is worthwhile to mention that this attack does not require a lot
of data, only two or three pairs could be sufficient. Denote by [x] the block of B
containing the message x in Fn2 . Then, proceed as follows.

• For each class I in K, choose a cipher key K̃ in I and test whether the equalities
EK̃([pi]) = [ci] hold for all pairs (pi, ci). Observe that EK̃([pi]) = [ci] holds if
and only if EK̃(pi) lies in the same block as ci. This equivalent statement is
more convenient for a real implementation.

• Then, for each candidate class I, check for every cipher key K̃ in I if EK̃(pi) = ci
hold for all pairs (pi, ci).

Although this cryptanalysis was sketched by Paterson, no real example was given
in his paper. In [9, Section 6], we introduced a toy imprimitive backdoor cipher
vulnerable to this key schedule cryptanalysis. The cipher key space is divided
into 2κ

2 classes, each containing 2κ
2 keys. When this attack is performed with two

plaintext/ciphertext pairs, the first step requires at most 2×2κ
2 encryptions. Generally,

only one candidate class has to be tested in the second step, thereby requiring at
most 2 × 2κ

2 encryptions. Thus, the average-case complexity of this attack is O(2κ
2 ),

compared with the exhaustive search which requires 2κ encryptions. In Section 4.3,
we will detail a toy backdoor cipher combining several G-invariant partitions with a
key schedule dependent cryptanalysis.

3.1.4. Generalizations

Now we turn our attention to generalizations of imprimitive backdoor ciphers proposed
by Harpes in his thesis [50]. So far, we have considered backdoor ciphers preserving
a partition B of the message space. More generally, a Partition-Based Backdoor
Cipher is a cipher mapping a partition of the plaintext space to a partition of the
ciphertext space, no matter the cipher key used. An imprimitive cipher is then a
partition-based cipher whose input and output partitions are equal. More formally,
we introduce the following definition.

Definition 3.10 (Partition-Based Backdoor Cipher). An iterated n-bit block
cipher E is called a partition-based backdoor cipher if there exist two partitions A
and B of Fn2 such that for every cipher key K in Fκ2 the following relationship holds:

{EK(A) ∣ A ∈ A} = B .

Since EK must be a permutation of Fn2 to allow decryption, it is easily seen that
the partitions A and B necessarily have the same number of parts. Such backdoor
ciphers are the focus of this and the next chapter. The toy backdoor cipher given at
the end of Chapter 4 will also illustrate this generalization.
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Partitioning Cryptanalysis is an attack on iterated block ciphers introduced by
Harpes in [52]. As differential cryptanalysis uses a pair (a, b) of difference patterns,
partitioning cryptanalysis considers a pair of partitions (A,B), where A is a partition
of the plaintexts and B a partition of the set of inputs of the last round. A pair
(A,B) is effective if for almost all cipher keys, the inputs of the last round function
are non-uniformly distributed over the blocks of B when the plaintexts are uniformly
chosen among one fixed block A of A. Then, the attack exploits this non-uniform
behavior to recover information on the last round key, in the same way as linear and
differential cryptanalysis do.

In the light of this attack, we should relax the definition of partition-based back-
door ciphers to include any iterated cipher designed to be vulnerable to partitioning
cryptanalysis. To avoid confusion, we suggest the following definition.

Definition 3.11 (Probabilistic Partition-Based Backdoor Cipher).
An r-round iterative block cipher E ∶ Fκ2 × Fn2 → Fn2 is said to be a probabilistic
partition-based backdoor cipher if there exists a pair (A,B) of partitions of Fn2
satisfying the following property: for almost all cipher keys K in Fκ2 and for each
part A of A, there exists a part BA,K of B such that for every other part B it holds
that

Px∈A(E(r−1)
K (x) ∈ BA,K) ≫ Px∈A(E(r−1)

K (x) ∈ B) .

In other words, for almost all cipher keys K in Fκ2 and for each part A of A,
the (r − 1)-round encryption function EK (r−1) maps a significant proportion of the
plaintexts lying in A to a part BA,K of B and the remaining plaintexts in A should
be spread over the other parts of B. Again, this property must be intended by the
designer to call it a backdoor. Chapter 5 will be dedicated to BEA-1, our backdoor
cipher inspired by Paterson and Harpes’ work and by the theory developed in this
and the next chapters.

3.1.5. Links With Other Attacks

Before addressing the formal treatment of partition-based backdoor ciphers, we may
digress a little from backdoors and expose a cryptanalysis closely related to our topic.
In [70], Leander et al. developed a new cryptanalysis, called invariant subspace
attack, breaking the PRINTCipher [61] for a significant fraction of its keys. Its
efficiency has then been proven on several ciphers [21, 49, 71]. The general idea of
this attack can be outlined as follows. Let F denote the SP-layer of a Substitution-
Permutation network, that is, the round function without the key addition. Then,
assume that F maps a coset of a given subspace V to another coset of V . In other
words, there exist a and b such that F (a + V ) = b + V . Here, the addition is made in
Fn2 , and hence corresponds with the XOR operation. The round function associated
with the round key k is then defined by Fk ∶ x↦ F (x+k). If the round key k belongs
to the coset a + b + V , then it holds that

Fk(b + V ) = F (b + k + V ) = F (a + V ) = b + V ,
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hence the name of invariant subspace. Therefore, if every round key lies in this
particular coset, the affine subspace b + V is preserved by the full encryption process.
Such a property enables a very efficient distinguisher. As additional results, they
also showed that the invariant subspace attack

• implies a truncated differential attack to be possible (the probability of the
truncated differential characteristic is however highly key-dependent);

• implies the existence of strongly biased linear approximations for weak keys
(independently of the number of rounds).

This attack was generalized in 2015 by Leander, Minaud and Rønjom [71]. They
proposed a generic algorithm that is able to detect invariant subspaces. Indeed, their
initial invariant subspaces on PRINTCipher were found empirically.

Following the idea of the invariant subspace attack, Grassi et al. [47, 48] introduced
the subspace trail cryptanalysis. Given r + 1 subspaces V [0], . . . , V [r], it is assumed
that the image of any coset of V [i] under the SP-network is included in a coset
of V [i+1]. That is to say, for each a[i], there exists a[i+1] such that the following
inclusion holds

F (a[i] + V [i]) ⊆ a[i+1] + V [i+1] .

In this case, it is easy to see the all the round functions Fk inherit such a property. The
family of subspaces (V [i])i≤r is said to be a subspace trail. Naturally, the dimension
of V [i] must be less than or equal to the dimension of V [i+1]. In contrast to the
invariant subspace attack, Grassi et al. relaxed the assumption that the coset has
to be invariant. Here, the considered subset becomes the coset of possibly different
increasingly dimensional subspaces throughout the encryption. However, the authors
also required this property to hold for each coset of V [0] instead of one. Therefore,
this cryptanalysis is not a generalization, but a variation of the invariant subspace
attack. As will become clear in the next section, the family of backdoors covered in
this thesis is closely related to constant-dimensional subspace trails.

3.2. Substitution-Permutation Networks and Partitions

This section aims at studying an SPN which maps a partition of the plaintexts to a
partition of the ciphertexts. When the cipher key K is fixed, the encryption function
EK is just a permutation of the message space. Therefore, any partition A of the
plaintexts is mapped to the partition EK(A) of the ciphertexts. Nonetheless, to
exploit the backdoor, the designer needs to know the pair of partitions (A,EK(A)).
The problem is that the output partition EK(A) depends a priori on the cipher key
K, which is unknown to the attacker. The simplest way to solve this problem is to
require that the partitions EK(A) are independent of the cipher keys K. In other
words, we want all the partitions EK(A) to be equal to a fixed partition B.

As with differential and linear cryptanalysis, taking account of the exact effect of
the key schedule seems to be a challenging problem. Therefore, the key schedule will
deliberately be omitted throughout this chapter. This amounts to consider an SPN
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mapping a partition A to a fixed partition B, independently of the round keys used.
In the following subsection, we introduce some definitions and preliminary results.

3.2.1. Linear Partitions

Since we are concerned with ciphers which associate a partition of the ciphertext
space to another partition of the plaintext space, let us introduce the following
definition.

Definition 3.12. Let f be a permutation of E and A, B be two partitions of E.
Let f(A) denote the set {f(A) ∣ A ∈ A}. We say that f maps A to B if f(A) = B. If
A = B, we says that f preserves the partition A.

The two partitions {{x} ∣ x ∈ E} and {E} are called the trivial partitions of E.
Observe that, for any permutation f of E,

f({{x} ∣ x ∈ E}) = {{x} ∣ x ∈ E} and f({E}) = {E} .

That is, every permutation preserves the two trivial partitions. Moreover it should
be highlighted that if f maps A to B and if A is non-trivial, then so is B.

Example 3.13. Let E denote the set J0, 8J and consider the two partitions A, B of
E defined to be A = {{0, 1, 4},{2, 6},{3, 7},{5}} and B = {{0, 2, 7},{1},{3, 5},{4, 6}}.
Let f be the permutation of E defined as follows:

0↦ 7 , 1↦ 0 , 2↦ 3 , 3↦ 6 , 4↦ 2 , 5↦ 1 , 6↦ 5 , 7↦ 4 .

By definition,

f(A) = {f(A) ∣ A ∈ A} = {f({0,1,4}), f({2,6}), f({3,7}), f({5})}
= { {7,0,2} , {3,5} , {6,4} , {1} } .

The equality f(A) = B holds, and thus f maps the partition A to B.

Lemma 3.14. Let f be a permutation of E and A, B be two partitions of E. If for
any part A of A, f(A) is a part of B, then f maps A to B.

Proof. Suppose that for all A in A, f(A) lies in B. By hypothesis, f(A) is included
in B. It remains to show that B is a subset of f(A). Let B be a part of B and let
y be an element of B. Since f is surjective, there exists x in E such that f(x) = y.
Furthermore, there exists a unique part A of A which contains x as A is a partition de
E. Then, y belongs to f(A) and B. Observe that f(A) and B are two non-disjoint
parts of B. Consequently, f(A) = B and B belongs to f(A). The result follows. ∎

In this chapter, we will consider a special kind of partitions which is composed of
all the cosets of a linear subspace. Such partitions have already been introduced by
Harpes [50, Definition 4.4] and are recalled below.
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.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F

f(x) 0. 1E 08 04 13 0F 18 14 10 19 15 0E 0D 03 1C 07 17
1. 12 11 0B 1B 09 05 1F 00 0A 01 02 1A 06 0C 1D 16

Figure 3.2: The permutation f of Example 3.17.
00 + V

02 +W

01 + V

06 +W

02 + V

04 +W

03 + V

01 +W

08 + V

05 +W

09 + V

07 +W

0A + V

00 +W

0B + V

03 +W

00 07 1A 1D 01 06 1B 1C 02 05 18 1F 03 04 19 1E 08 0F 12 15 09 0E 13 14 0A 0D 10 17 0B 0C 11 16

02 0C 10 1E 06 08 14 1A 04 0A 16 18 01 0F 13 1D 05 0B 17 19 07 09 15 1B 00 0E 12 1C 03 0D 11 1F

Figure 3.3: The permutation f mapping L(V ) to L(W ) where V = span(07,1A) and
W = span(0E,12).

Definition 3.15 (linear partition). Let A be a partition of Fn2 . Let V denote its
part containing 0n. The partition A is said to be linear if V is a subspace of Fn2 and
if every part of A is a coset of V in Fn2 , in other words, if

A = {x + V ∣ x ∈ Fn2} = Fn2 / V .

We denote by L(V ) such a partition.

Remark 3.16. It turns out that the linear partitions associated with the two trivial
subspaces of Fn2 , that is {0n} and Fn2 , correspond with the two trivial partitions of
Fn2 . Moreover, if V is a non-trivial subspace of Fn2 , then the linear partition L(V ) is
also non-trivial.
Example 3.17. Consider the subspaces V and W of F5

2 defined to be

V = span(07,1A) = {00,07,1A,1D} and W = span(0E,12) = {00,0E,12,1C} .

Since both V and W are 2-dimensional subspaces of F5
2, the quotient spaces L(V ) =

F5
2 /V and L(W ) = F5

2 /W are 3-dimensional. In other words, the two linear partitions
L(V ) and L(W ) have 23 = 8 parts. It can be verified that

L(V ) = {V ,01 + V ,02 + V ,03 + V ,08 + V ,09 + V ,0A + V ,0B + V } ,
L(W ) = {W,01 +W,02 +W,03 +W,04 +W,05 +W,06 +W,07 +W} .

For instance, the part 0B + V of the linear partition L(V ) is the coset of V with
respect to 0B. Explicitly, it is equal to

0B + V = {0B + 00,0B + 07,0B + 1A,0B + 1D} = {0B,0C,11,16} .

Now, consider the permutation f of F5
2 given in Figure 3.2. The image of 0B + V

under f is

f(0B + V ) = f({0B,0C,11,16}) = {0D,03,11,1F}
= {03 + 0E,03 + 00,03 + 12,03 + 1F} = 03 +W .
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Observe that f(0B + V ) is a coset of W so a part of L(W ). The images of all cosets
of V under f are displayed in Figure 3.3. Since any of them is a part of L(W ), the
permutation f maps L(V ) to L(W ). It is worthwhile to observe that a permutation
mapping a linear partition to another one does not need to be itself linear or even
affine. Indeed, f is certainly not linear as f(00) = 1E ≠ 00. By contradiction, suppose
that f is an affine transformation. Then, there exist a linear mapping L ∶ F5

2 → F5
2

and an element c of F5
2 such that f(x) = L(x) + c holds for all x in F5

2. Therefore,

f(x) + f(y) + f(z) = L(x) + c +L(y) + c +L(z) + c = L(x + y + z) + c = f(x + y + z)

for all x, y and z in F5
2. Observe that

f(00) + f(01) + f(02) = 1E + 08 + 04 = 12 ≠ 13 = f(00 + 01 + 02) .

Thus, f is not an affine transformation.

Lemma 3.18. Let V , W be two subspaces of Fn2 and f be a permutation of Fn2
which maps L(V ) to L(W ). For any x in Fn2 , f maps x + V to f(x) +W .

Proof. Let x be an element of Fn2 . By hypothesis, there exists y in Fn2 such that
f(x + V ) = y +W . Observe that x lies in x + V , so f(x) lies in both y +W and
f(x)+W . Since y +W and f(x)+W are two non-disjoint parts of L(W ), they must
be equal. Thus, f(x + V ) = f(x) +W . ∎

Example 3.19. In Example 3.17, we have seen that f(0B + V ) = 03 +W . Since f
maps L(V ) to L(W ), the previous lemma states that f(0B+V ) = f(0B)+W = 0D+W .
There is however no contradiction here because 0D belongs to 03 +W . Consequently,
the cosets 03 +W and 0D +W are equal.

The following two propositions are interesting properties of linear partitions which
will be used in the rest of this chapter.

Proposition 3.20. Let V1, V2,W1,W2 be four subspaces of Fn2 and f be a permuta-
tion of Fn2 which maps L(V1) to L(W1) and L(V2) to L(W2). Then f maps L(V1∩V2)
to L(W1 ∩W2).

Proof. Let x+ (V1 ∩V2) be a part L(V1 ∩V2). Observe that x+ (V1 ∩V2) = (x+V1)∩
(x + V2). Now,

f(x + (V1 ∩ V2)) = f((x + V1) ∩ (x + V2)) = f(x + V1) ∩ f(x + V2)

as f is one-to-one. Then, Lemma 3.18 ensures that f(x + V1) = f(x) +W1 and
f(x + V2) = f(x) +W2. Next,

f(x + (V1 ∩ V2)) = (f(x) +W1) ∩ (f(x) +W2) = f(x) + (W1 ∩W2) .

This show that the image of any part of L(V1 ∩V2) under f lies in L(W1 ∩W2). The
result is then a consequence of Lemma 3.14. ∎
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Proposition 3.21. Let V , W be two subspaces of Fn2 and f be a permutation of
Fn2 which maps L(V ) to L(W ). There exists an automorphism L of Fn2 such that
L(V ) =W . In particular, V and W are isomorphic.

Proof. By definition, f(V ) belongs to L(W ). Thus, there exists an element x of Fn2
such that f(V ) = x +W . Consequently, V and W have the same finite cardinality.
Hence, V andW have the same dimension denoted by d. Let (vi)0≤i<d and (wi)0≤i<d be
two bases of V and W respectively. According to the incomplete basis theorem, there
exist two families (vi)d≤i<n and (wi)d≤i<n such that BV = (vi)0≤i<n et BW = (wi)0≤i<n
are two bases of Fn2 . Denoting by L the linear mapping which maps vi to wi for all
0 ≤ i < n, we get an automorphism of Fn2 satisfying the equality L(V ) =W . ∎

Example 3.22. Consider again the permutation f of F5
2 defined as in Figure 3.9.

As seen in the previous example, the permutation maps the linear partition L(V ) to
L(W ). Then, Proposition 3.21 ensures that there exists a linear permutation L of F5

2
such that L(V ) =W . Following its proof, consider the bases (07,1A) and (0E,12) of
V and W respectively and complete them into the following bases of F5

2

BV = (vi)i<5 = (07,1A,01,02,08) and BW = (wi)i<5 = (0E,12,01,02,04) .

Then, the mapping L can be defined by the rule L(vi) = wi for each i < 5. This linear
transformation will be used in the next chapter.

3.2.2. The Key Addition and Diffusion Layer

Before tackling the full SPN, we look at its basic operations and building-blocks.
Recall that the round function is made up of a key addition, a substitution layer
and a diffusion layer. The attacker knows the specifications of the substitution
and diffusion layers but he does not know the round key used in the key addition.
Therefore, the key addition should not be considered as one operation but rather as a
family of permutations. To get back to the subject at hand, we must first determine
the partitions A which are mapped to a unique partition under the action of all
round keys.

The next proposition explains the fundamental property of linear partitions
according to the key addition. This result was introduced by Harpes in [50, Lemma
4.3] and [52, Theorem 4]. Later, Caranti et al. gave a similar result expressed for
imprimitive groups in [31]. For convenience, we restate and prove this result with
our own notation.

Proposition 3.23. Let n be a positive integer. Let A and B be two partitions
of Fn2 . For each k in Fn2 , let αk denote the permutation of Fn2 defined by the rule
αk(x) = x + k. Then, the permutation αk maps A to B for any k in Fn2 if and only if
A = B and A is a linear partition.

Proof. Firstly, suppose that αk(A) = B for any k in Fn2 . Especially, choosing k = 0n
gives α0n(A) = B, and thus A = B since α0n is the identity mapping. Let V denote
the part of A containing 0n. It is sufficient to show that V is a subgroup of Fn2
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because any subgroup of Fn2 is also a F2-linear subspace of Fn2 . Let v1 and v2 be two
elements of V . Since αv1(0n) = v1, the intersection αv1(V ) ∩ V is non-empty. We
know that αv1 maps A to A, so αv1(V ) lies in A. Thus, αv1(V ) = V since A is a
partition. It follows that αv1(v2) = v1 + v2 is an element of V . Therefore, the subset
V of Fn2 is closed under the operation of addition and because every element of Fn2 is
its own inverse, V is a subgroup of Fn2 . Furthermore, for any x in Fn2 , αx(V ) = x + V
must be a part of A. Thus, A is linear.

Conversely, suppose that the partition A is linear and that A = B. Let V denote
the part of A containing 0n and let x be an element of Fn2 . Then,

αx(A) = αx({y + V ∣ y ∈ Fn2}) = {(x + y) + V ∣ y ∈ Fn2} = A .

The result is proven. ∎

Even if this result was easily obtained, it has maybe the most important impact
on our study. Due to this result and its generalization given later in the next section,
only linear partitions will be considered. By definition, the linear partitions are
quotient spaces, and hence highly structured algebraic objects. Consequently, the
apparent combinatorial aspect of our study is reduced to an algebraic problem.
This result is indeed quite restrictive since the linear partitions account for a small
proportion of all partitions.
Example 3.24. Let n and k be non-negative integers and q be a prime power.
The q-binomial (or Gaussian) coefficient is defined to be

[n
d
]
q

=
d

∏
i=1

1 − qn−i+1

1 − qi .

It can be proven that this coefficient counts the number of d-dimensional subspaces
of an n-dimensional vector space over the finite field Fq [46]. Therefore, the number
of subspaces of F3

2 is given by

3
∑
d=0

[3
d
]

2
= 1 + 1 − 23

1 − 2 + (1 − 23)(1 − 22)
(1 − 2)(1 − 22)

+ (1 − 23)(1 − 22)(1 − 21)
(1 − 2)(1 − 22)(1 − 23)

= 1 + 7 + 7 + 1 = 16 .

Since a linear partition of F3
2 is uniquely determined by a subspace of F3

2, there
are exactly 16 linear partitions. All these partitions are represented graphically
at the top of Figure 3.4. For instance, the linear partition associated with the
subspace span(2,4) = {0,2,4,6} is L(span(2,4)) = {{0,2,4,6},{1,3,5,7}}. The
On-line Encyclopedia of Integer Sequences (OEIS [93]) includes almost all known
integer sequences. The 2-binomial coefficients are given in the sequence A022166
and their sums are given in A006116.

Proposition 3.23 states that, among the set of all the partitions of Fn2 , only the
linear ones yield a unique output partition for every key. The Bell number Bm counts
the number of partitions of a set of size m (see sequence A000110). Thus, the number
of partitions of Fn2 is B2n . For n = 3, there are B8 = 4140 partitions in all. Hence, the
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Every linear partitions over F3
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Figure 3.4: All linear partitions and key additions in F3
2.
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Figure 3.5: The key additions preserving the partition L(span(6)).

linear partitions represent a fraction of 16/B8 ≈ 2−8.0. This ratio falls greatly as n
increases. In fact, for n = 4, only 67/B16 ≈ 2−27.2 are linear and for n = 5, this ratio
becomes 374/B32 ≈ 2−78.2. This underlines how Proposition 3.23 is restrictive.

All the key additions are given at the bottom of Figure 3.4. The reverse implication
of Proposition 3.23 states that any linear partition is preserved by all the key additions.
For instance,

α2(L(span(6)) = {f({0,6}), f({1,7}), f({2,4}), f({3,5})}
= { {2,4} , {3,5} , {0,6} , {1,7} } = L(span(6)) .

Thus, the permutation α2 preserves L(span(6)). Figure 3.5 illustrates graphically
that this linear partition is preserved by all the key additions. It is then not hard to
check that the same holds for every linear partition given in Figure 3.4.

Now that we know linear partitions are of major importance, we focus on how
the diffusion layer deals with these partitions.

Proposition 3.25. Let n be a positive integer. Let L be an automorphism of Fn2
and V a subspace of Fn2 . Then, L(L(V )) = L(L(V )). In particular, L maps a linear
partition to another one.

Proof. Since L is an automorphism, we have

L(L(V )) = L({x + V ∣ x ∈ Fn2}) = {L(x + V ) ∣ x ∈ Fn2}
= {L(x) +L(V ) ∣ x ∈ Fn2} = {x′ +L(V ) ∣ x′ ∈ Fn2} .

Moreover, L(V ) is a subspace of Fn2 because L is a linear mapping. Consequently,
L(L(V )) = L(L(V )). ∎

If V and W are two subspaces of Fn2 , it is straightforward to design a linear
permutation L of Fn2 mapping L(V ) to L(W ). Indeed, Proposition 3.25 establishes
that L maps L(V ) to L(W ) if and only if L(V ) =W . In other words, we only need
to consider the image of V and not the whole linear partition L(V ).
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3.2.3. From the Encryption Function to the Substitution Layer

Along with the two results of the previous section, we can now address our main
issue. For the rest of this chapter, we consider a generic SPN whose parameters are
defined as follows.

Let m, n and r be positive integers.
Let S0, . . . , Sm−1 be n-bit S-boxes.

• The addition of the round key k is denoted by αk ∶ Fnm2 → Fnm2 , x↦ x + k.
• The substitution layer is denoted by σ and maps (xi)0≤i<m to (Si(xi))0≤i<m.
• The diffusion layer is a linear permutation denoted by π ∶ Fnm2 → Fnm2 .

The round function Fk associated with the round key k is defined to be Fk = πσαk.
The encryption function associated with the round keys K = (k[0], . . . , k[r]) in
(Fnm2 )r+1 is defined to be

EK = αk[r]Fk[r−1] . . . Fk[0] .

We can now prove the following result.

Theorem 3.26. Let A and B be two partitions of Fnm2 . Suppose for any (r + 1)-
tuples of round keys K = (k[0], . . . , k[r]) in (Fnm2 )r+1 that the encryption function
EK maps A to B. Define A[0] = A and for all 1 ≤ i ≤ r, A[i] = (πσ)i(A). Then,

• A[r] = B;
• for any 0 ≤ i < r and for any k[i] in Fnm2 , Fk[i](A[i]) = A[i+1];
• for any 0 ≤ i ≤ r, A[i] is a linear partition.

Proof. Observe that for the round key k = 0nm, the key addition α0nm is the identity
mapping on Fnm2 , and thus F0nm = πσα0nm = πσ. Now, choosing K = (k[0], . . . , k[r]) =
(0nm, . . . ,0nm) gives

B = EK(A[0]) = αk[r]Fk[r−1] . . . Fk[0](A[0]) = α0nm(F0nm)r(A[0])
= (πσ)r(A[0]) = A[r] .

Let 0 ≤ i < r be an integer. Let k[i] be any element of Fnm2 . Define k[j] = 0nm for all
0 ≤ j ≤ r such that j ≠ i. By hypothesis, the equality αk[r]Fk[r−1] . . . Fk[0](A[0]) = A[r]

holds. Thus,

Fk[i] . . . Fk[0](A[0]) = (αk[r]Fk[r−1] . . . Fk[i+1])−1(A[r]) .

On one hand,

Fk[i] . . . Fk[0](A[0]) = Fk[i](Fk[i−1] . . . Fk[0])(A[0]) = Fk[i](F0nm)i(A[0])
= Fk[i](πσ)i(A[0]) = Fk[i](A[i]) .

On the other hand,

(αk[r]Fk[r−1] . . . Fk[i+1])−1(A[r]) = (α0nm(F0nm)r−(i+1))−1(A[r])
= ((πσ)r−(i+1))−1(A[r]) = A[i+1] .
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Therefore, Fk[i](A[i]) = A[i+1], or equivalently αk[i](A[i]) = (πσ)−1(A[i+1]). Since this
equality holds for every k[i], Proposition 3.23 states that the partition A[i] is linear.

It remains to show that A[r] is linear as the previous argument holds only for
i < r. Let k[r] be an element of Fnm2 . Define k[i] = 0nm for each 0 ≤ i < r. Then,

A[r] = αk[r]Fk[r−1] . . . Fk[0](A[0]) = αk[r](F0nm)r(A[0]) = αk[r](A[r]) .

Again, Proposition 3.23 implies that A[r] is linear and the result is proven. ∎

This theorem can be restated in the following way. Firstly, the input partition
A and the output partition B must be linear. This result generalizes Proposition
3.23 in the sense that it applies to the full cipher and not only to the key addition.
As was pointed in Example 3.24, linear partitions are very specific partitions. This
means that our combinatorial hypothesis implies to consider only algebraic objects.

Secondly, we have only supposed that the encryption function maps A to B after r
rounds. Nevertheless, Theorem 3.26 ensures that each iteration of the round function
also maps a fixed linear partition to another one. As a consequence, the study of the
full cipher is reduced to the study of the round function. Additionally, this result
can be strengthened as follows.

Corollary 3.27. Keep the notation of Theorem 3.26. For all 0 ≤ i ≤ r, let V [i]

denote the part of A[i] containing 0. According to Theorem 3.26, A[i] = L(V [i]). Let
0 ≤ i < r be an integer. Then,

σ(L(V [i])) = L(W [i]) .

where W [i] denotes the subspace π−1(V [i+1]). In particular, the substitution layer
must at least map one linear partition to another one.

Proof. By definition, πσ(A[i]) = A[i+1] or, equivalently, σ(A[i]) = π−1(A[i+1]). This
equality can be restated as

σ(L(V [i])) = π−1(L(V [i+1])) .

As π is an automorphism of Fnm2 , then so π−1 is. Next, Proposition 3.25 ensures that
π−1(L(V [i+1])) = L(π−1(V [i+1])). The result follows. ∎

A diagrammatic representation of Theorem 3.26 and Corollary 3.27 is given in
Figure 3.6. This highlights that the input partition is always transformed in the same
way through each basic operation of the encryption process. The results obtained
so far can be summarized as follows: if an SPN maps a partition A of the plaintext
space to a partition B of the ciphertext space no matter the round keys used, then the
substitution layer has to map at least one linear partition to another one. This shows
that our study can be reduced to the substitution layer without loss of generality.
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Assumption

A

B

EK

Theorem 3.26

A[0]

A[r]

Fk[0]

A[1]

⋮

Fk[r−1]

⊕ k[r]

A[r−1]

A[r]

Corollary 3.27

L(V [0])

L(V [r])

⊕ k[0]

π

σ

L(V [0])

L(W [0])

L(V [1])

⋮

⊕ k[r−1]

π

⊕ k[r]

σ

L(V [r−1])

L(V [r−1])

L(W [r−1])

L(V [r])

Figure 3.6: Results of Section 3.2.3.
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.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F

S0(x)
0. 1F 19 03 05 1D 1B 01 07 14 12 1C 1A 16 10 1E 18
1. 0E 08 09 0F 0C 0A 0B 0D 04 02 17 11 06 00 15 13

S1(x)
0. 02 19 11 14 1B 0E 0C 07 15 0A 01 00 0D 1C 1D 12
1. 06 1E 10 16 05 13 17 1F 18 04 09 0B 1A 08 0F 03

S2(x)
0. 1E 08 04 13 0F 18 14 10 19 15 0E 0D 03 1C 07 17
1. 12 11 0B 1B 09 05 1F 00 0A 01 02 1A 06 0C 1D 16

S3(x)
0. 03 0A 10 1A 15 04 1C 0E 12 18 02 0B 06 14 0C 1D
1. 1B 09 11 00 0F 05 1F 16 08 19 01 13 1E 17 0D 07

Figure 3.7: Specification of the S-boxes used throughout Section 3.3.

3.3. Structure of the Substitution Layer

In the remainder of this chapter, V and W will denote two subspaces of (Fn2)m.

As explained in the previous section, it remains to understand how the substitution
layer can map the linear partition L(V ) to L(W ). This problem is far more complex
for the substitution layer than it was for the diffusion layer. The reasons for this
are twofold. First, the substitution layer is non-linear. It is even the only part of
the SPN which is not affine. As a consequence, to map the linear partition L(V ) to
L(W ), we have to consider all the parts of both partitions and not only the subspaces
V and W , as was the case for the diffusion layer (see Proposition 3.25).

Secondly, the substitution layer should not be considered as a whole, but as the
parallel application of its S-boxes. Therefore our problem becomes the following.
Given two subspaces V and W , what are the necessary and/or sufficient conditions
on the S-boxes for the substitution layer to map L(V ) to L(W ).

Before going any further, let us introduce an example that we will continue
throughout this section.

Example 3.28. Consider the substitution layer made up of the four 5-bit S-boxes
S0, S1, S2 and S3 described in Figure 3.7. Its parameters are then m = 4 and n = 5.
Observe that the S-box S2 was previously studied in Example 3.17. Define the two
families EV = (vi)0≤i<7 and EW = (wi)0≤i<7 of elements of (F5

2)4 as follows:
v0 = (10, 00, 00, 17) ,

v1 = (08, 00, 00, 17) ,

v2 = (04, 00, 00, 0B) ,

v3 = (02, 00, 00, 1C) ,

v4 = (01, 00, 00, 1C) ,

v5 = (00, 00, 1A, 00) ,

v6 = (00, 00, 07, 00) .

w0 = (10, 00, 00, 15) ,

w1 = (08, 00, 00, 1D) ,

w2 = (04, 00, 00, 15) ,

w3 = (02, 00, 00, 08) ,

w4 = (01, 00, 00, 00) ,

w5 = (00, 00, 12, 00) ,

w6 = (00, 00, 0E, 00) .

Finally, define V and W to be the subspaces spanned by EV and EW respectively.
Note that the family EV is linearly independent because it is echelonized. Hence, EV
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is a basis of V . The same applies for EW and W . As a consequence, V and W are
both 7-dimensional subspaces of (F5

2)4.
We claim that the substitution layer σ maps L(V ) to L(W ). Naturally, we will

not verify this statement by hand because it requires to check for each of the 213

cosets of V that the 27 images of its elements under σ lies in the same coset of W .
However, the reader who is reluctant to accept this claim is encouraged to check it
with a computer.

3.3.1. Truncating the substitution layer

To understand how the substitution layer can maps L(V ) to L(W ), we will adopt a
divide and conquer strategy. That is to say, we want to break down this problem
into several independent sub-problems, each involving fewer S-boxes than the full
substitution layer. The first idea is to truncate the substitution layer and the
subspaces V and W to get a local view of what happens on some S-boxes.

Definition 3.29 (Truncation and Substitution Layer). Let E be any non-
empty subset of J0,mJ and define the following mappings

TE ∶ (Fn2)m Ð→ (Fn2)E σE ∶ (Fn2)E Ð→ (Fn2)E

(xi)0≤i<m z→ (xi)i∈E (xi)i∈E z→ (Si(xi))i∈E .

If E has cardinality p, then we identify (Fn2)E with (Fn2)p.

The mapping TE allows to shorten a vector of (Fn2)m to keep only the coordinates
whose indices belong to E. The application σE is a substitution layer truncated to
the S-boxes whose indices lie in E.
Remark 3.30. Note that TE is a linear mapping. Observe that σJ0,mJ is the
substitution layer of the SPN. Moreover, the truncated substitution layer σ{i} and
the S-box Si are equal for all 0 ≤ i <m.

Proposition 3.31 (Truncating to a few S-boxes). Suppose that σ maps L(V )
to L(W ). Let E be a non-empty subset of J0,mJ. Then, the permutation σE maps
L(TE(V )) to L(TE(W )).

Proof. Let x = (xi)i∈E be an element of (Fn2)E. Let y be the element of (Fn2)m
defined by the rule yi = xi if i belongs to E and yi = 0n otherwise. Thus, TE(y) = x.
By hypothesis, σ maps L(V ) to L(W ). Hence, Lemma 3.18 implies that, σ(y +V ) =
σ(y) +W . Next,

TE(σ(y + V )) = TE(σ(y)) +TE(W )
since TE is a linear mapping. Furthermore,

TE(σ(y + V )) = TEσ({y + v ∣ v ∈ V }) = {TEσ(y + v) ∣ v ∈ V }
= {σE(TE(y + v)) ∣ v ∈ V } = σE({TE(y + v) ∣ v ∈ V })
= σE({TE(y) +TE(v) ∣ v ∈ V }) = σE(TE(y) +TE(V )) .
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(07, 03) + T{0,3}(V ) Ð→ (07, 1A) + T{0,3}(W )

(07, 03) + (00, 00) z→ (07, 1A) + (00, 00)
(07, 03) + (01, 1C) z→ (07, 1A) + (06, 1D)
(07, 03) + (02, 1C) z→ (07, 1A) + (1C, 1D)
(07, 03) + (03, 00) z→ (07, 1A) + (1A, 00)
(07, 03) + (04, 0B) z→ (07, 1A) + (02, 08)
(07, 03) + (05, 17) z→ (07, 1A) + (04, 15)
(07, 03) + (06, 17) z→ (07, 1A) + (1E, 15)
(07, 03) + (07, 0B) z→ (07, 1A) + (18, 08)
(07, 03) + (08, 17) z→ (07, 1A) + (1F, 15)
(07, 03) + (09, 0B) z→ (07, 1A) + (19, 08)
(07, 03) + (0A, 0B) z→ (07, 1A) + (17, 08)
(07, 03) + (0B, 17) z→ (07, 1A) + (11, 15)
(07, 03) + (0C, 1C) z→ (07, 1A) + (1D, 1D)
(07, 03) + (0D, 00) z→ (07, 1A) + (1B, 00)
(07, 03) + (0E, 00) z→ (07, 1A) + (15, 00)
(07, 03) + (0F, 1C) z→ (07, 1A) + (13, 1D)

(07, 03) + T{0,3}(V ) Ð→ (07, 1A) + T{0,3}(W )

(07, 03) + (10, 17) z→ (07, 1A) + (0A, 15)
(07, 03) + (11, 0B) z→ (07, 1A) + (0C, 08)
(07, 03) + (12, 0B) z→ (07, 1A) + (0D, 08)
(07, 03) + (13, 17) z→ (07, 1A) + (0B, 15)
(07, 03) + (14, 1C) z→ (07, 1A) + (08, 1D)
(07, 03) + (15, 00) z→ (07, 1A) + (0E, 00)
(07, 03) + (16, 00) z→ (07, 1A) + (0F, 00)
(07, 03) + (17, 1C) z→ (07, 1A) + (09, 1D)
(07, 03) + (18, 00) z→ (07, 1A) + (14, 00)
(07, 03) + (19, 1C) z→ (07, 1A) + (12, 1D)
(07, 03) + (1A, 1C) z→ (07, 1A) + (07, 1D)
(07, 03) + (1B, 00) z→ (07, 1A) + (01, 00)
(07, 03) + (1C, 0B) z→ (07, 1A) + (16, 08)
(07, 03) + (1D, 17) z→ (07, 1A) + (10, 15)
(07, 03) + (1E, 17) z→ (07, 1A) + (05, 15)
(07, 03) + (1F, 0B) z→ (07, 1A) + (03, 08)

Figure 3.8: σ{0,3} mapping a coset of T{0,3}(V ) to a coset of T{0,3}(W ).

Therefore, σE(x +TE(V )) = TE(σ(y)) +TE(W ). In other words, the image of any
part of L(TE(V )) under σE lies in L(TE(W )). The result is a consequence of Lemma
3.14. ∎

Example 3.32. By choosing E = {0,3}, the previous proposition ensures that the
truncated substitution layer σ{0,3} maps L(T{0,3}(V )) to L(T{0,3}(W )). First, it is
easy to see that

T{0,3}(V ) = span((10,17), (08,17), (04,0B), (02,1C), (01,1C)) ,
T{0,3}(W ) = span((10,15), (08,1D), (04,15), (02,08), (01,00)) .

Again, we will not explicitly check that σ{0,3} maps L(T{0,3}(V )) to L(T{0,3}(W ))
but limit ourselves to prove that the coset (07,03)+T{0,3}(V ) is mapped to one coset
of T{0,3}(W ). Its image can be found using Lemma 3.18 as follow

σ{0,3}((07,03) +T{0,3}(V )) = σ{0,3}((07,03)) +T{0,3}(W )
= (07,1A) +T{0,3}(W ) .

The images of every element of this coset are given in Figure 3.8. For instance,

σ{0,3}((07,03) + (01,1C)) = σ{0,3}(06,1F) = (S0(06), S3(1F)) = (01,07)
= (07,1A) + (06,1D) .

This explains the second image.

Choosing E = {i} in Proposition 3.31 gives that the S-box Si maps L(T{i}(V ))
to L(T{i}(W )). As this result holds for each index i in J0,mJ, we deduce that

σ(L(V )) = L(W ) Ô⇒ ∀i ∈ J0,mJ, Si(L(T{i}(V ))) = L(T{i}(W )) . (3.1)
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00 + V ′

03 +W ′

01 + V ′

02 +W ′

02 + V ′

05 +W ′

03 + V ′

07 +W ′

04 + V ′

00 +W ′

05 + V ′

04 +W ′

06 + V ′

01 +W ′

07 + V ′

06 +W ′

00 0B 17 1C 01 0A 16 1D 02 09 15 1E 03 08 14 1F 04 0F 13 18 05 0E 12 19 06 0D 11 1A 07 0C 10 1B

03 0B 16 1E 02 0A 17 1F 05 0D 10 18 07 0F 12 1A 00 08 15 1D 04 0C 11 19 01 09 14 1C 06 0E 13 1B

Figure 3.9: The S-box S3 mapping L(V ′) to L(W ′) where V ′ = span(0B,17) and
W ′ = span(08,15).

However, the equivalence does not hold in general. Hence, this only gives a necessary
condition on each S-box. In other words, this means that we can lose information
when considering each S-box independently. The next example stresses this fact.
Example 3.33. In our example, the truncated subspaces T{i}(V ) and T{i}(W ) are
the following:

T{0}(V ) = F5
2 , T{1}(V ) = {00} , T{2}(V ) = span(07,1A) , T{3}(V ) = span(0B,17) ,

T{0}(W ) = F5
2 , T{1}(W ) = {00} , T{2}(W ) = span(0B,17) , T{3}(W ) = span(08,15) .

First, observe that the truncated subspaces for S0 and S1 are trivial. Hence, the
associated linear partitions are also trivial and no information on S0 or S1 can be
drawn from (3.1). Yet, the last two truncated subspaces are non-trivial and (3.1)
gives the following equalities:

S2(L(span(07,1A))) = L(span(0B,17)) ,
S3(L(span(0B,17))) = L(span(08,15)) .

The first property has already been highlighted in Example 3.17 and in Figure 3.3.
The second one is represented in Figure 3.9.

Let us now show that the converse of Implication 3.1 does not hold in general.
Consider the substitution layer σ′ made up of the four S-boxes S′0, S′1, S′2 and S′3
where

S′0 = S1 , S′1 = S1 , S′2 = S2 , S′3 = S3 .

Thus, this new substitution layer differs from σ by only one S-box. Recall that
the linear partition associated with T{0}(V ) = T{0}(W ) is trivial. Therefore, S′0
necessarily preserves this partition. As the other S-boxes remain the same, the right
side of (3.1) still holds for σ′, that is

∀i ∈ J0,4J, S′i(L(T{i}(V ))) = L(T{i}(W )) .

However, we will prove that σ′ does not map L(V ) to L(W ). Suppose by contradic-
tion that it does. Then Proposition 3.31 ensures that σ′{0,3} maps L(T{0,3}(V )) to
L(T{0,3}(W )). By Lemma 3.18,

σ′{0,3}((07,03) +T{0,3}(V )) = σ′{0,3}(07,03) +T{0,3}(W )
= (S′0(07), S′3(03)) +T{0,3}(W )
= (S1(07), S3(03)) +T{0,3}(W ) = (07,1A) +T{0,3}(W ) .
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Then

σ′{0,3}((07,03) + (01,1C)) = σ′{0,3}(06,1F) = (S′0(06), S′3(1F)) = (S1(06), S3(1F))
= (0C,07) = (07,1A) + (0B,1D) .

This is a contradiction since (0B,1D) does not belong to T{0,3}(W ) as it can be seen
in Figure 3.8. As a consequence, the substitution layer σ′ does not map L(V ) to
L(W ).

As shown in the previous example, truncating the substitution layer and the
subspaces V and W to each S-box independently of the others is too restrictive in
general. This suggests that some S-boxes can in a way be linked together. That
is to say, considering them independently results in a loss of information on the
subspaces V and W . Recall that we are interested in splitting the problem of finding
all the substitution layers σ mapping L(V ) to L(W ) into several independent smaller
problems. Taking into account that some S-boxes can be linked together, we require
the following:

• a sub-problem can involve several S-boxes;
• the same S-box cannot be involved in two different sub-problems (in other

words, the sub-problems are independent);
• each S-box is involved in one sub-problem (possibly trivial).

This is naturally formalized by a partition I of J0,mJ. Each part I of I represents a
sub-problem and its elements are the indices of the S-boxes involved in. By virtue of
Proposition 3.31, it holds that

σ(L(V )) = L(W ) Ô⇒ ∀I ∈ I, σI(L(TI(V ))) = L(TI(W )) . (3.2)

The next section aims to find a sufficient condition on the partition I to obtain
the equivalence. In such a case, this means that combining the solutions of these
sub-problems yields a substitution layer mapping L(V ) to L(W ) and vice versa.

3.3.2. Structure of the Subspaces V and W

With the aim of finding partitions for which the converse of (3.2) holds, let us
introduce a few definitions and notation.

Definition 3.34 (Wall, VE and WE). Let E be a subset of J0,mJ. The wall
associated with E, denoted by WallE, is defined to be

WallE = {x ∈ (Fn2)m ∣ ∀i ∈ Ec, xi = 0n} .

Moreover, we denote by VE the intersection of V and WallE, that is VE = V ∩WallE =
{v ∈ V ∣ ∀i ∈ Ec, vi = 0n}. The subspace WE is defined in the same way.

Remark 3.35. The notion of wall was introduced by Aragona and Calderini [4, 22].
It is easily seen that

WallE =
m−1
∏
i=0

Wall[i]E with Wall[i]E =
⎧⎪⎪⎨⎪⎪⎩

{0n} if i ∈ Ec ,

Fn2 if i ∈ E .
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v0 = (15, 00, 00, 00) ,

v1 = (0D, 00, 00, 00) ,

v2 = (03, 00, 00, 00) ,

v3 = (04, 00, 00, 0B) ,

v4 = (01, 00, 00, 1C) ,

v5 = (00, 00, 1A, 00) ,

v6 = (00, 00, 07, 00) .

w0 = (14, 00, 00, 00) ,

w1 = (0E, 00, 00, 00) ,

w2 = (01, 00, 00, 00) ,

w3 = (04, 00, 00, 15) ,

w4 = (02, 00, 00, 08) ,

w5 = (00, 00, 12, 00) ,

w6 = (00, 00, 0E, 00) .

AV = span(v5, v6) ,

BV = span(v0, v1, v2) ,

CV = span(v0, v1, v2, v3, v4) ,

DV = span(v0, v1, v2, v5, v6) .

AW = span(w5, w6) ,

BW = span(w0, w1, w2) ,

CW = span(w0, w1, w2, w3, w4) ,

DW = span(w0, w1, w2, w5, w6) .

V∅ = {0}

V{0} = BV V{1} = {0} V{2} = AV V{3} = {0}

V{0,1}=BV V{0,2}=CV

V{0,3}=DV

V{1,2}=AV

V{1,3}={0} V{2,3}=AV

V{0,1,2}=CV V{0,1,3}=DV V{0,2,3}=V V{1,2,3}=AV

V{0,1,2,3} = V

Figure 3.10: The subspaces VE, WE for each subset E of {0,1,2,3}.

Thus, a wall is the Cartesian product of trivial spaces for each S-box. Additionally,
if E ⊆ F , then WallE ⊆ WallF and hence VE ⊆ VF and WE ⊆WF .

The subspaces WallE are essential in the study of the substitution layer because
the latter always preserves the partition L(WallE) regardless of its S-boxes. This
result, together with Proposition 3.20, establishes the following corollary.

Corollary 3.36. Let E be a subset of J0,mJ. If σ maps L(V ) to L(W ), then σ
also maps L(VE) to L(WE).

Example 3.37. All the subspaces VE are graphically represented in Figure 3.10.
For instance,

V{0} = span((15,00,00,00), (0D,00,00,00), (03,00,00,00)) .

Additionally, this figure also highlights the expected inclusions given by Remark 3.35.
Observe that BV = (vi)0≤i<7 is a basis of V . This new basis is more convenient than
the standard basis EV previously introduced in Example 3.28 since all the VE are
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00 + V ′

04 +W ′

01 + V ′

02 +W ′

04 + V ′

06 +W ′

05 + V ′

00 +W ′

00 03 0D 0E 15 16 18 1B 01 02 0C 0F 14 17 19 1A 04 07 09 0A 11 12 1C 1F 05 06 08 0B 10 13 1D 1E

04 05 0A 0B 10 11 1E 1F 02 03 0C 0D 16 17 18 19 06 07 08 09 12 13 1C 1D 00 01 0E 0F 14 15 1A 1B

Figure 3.11: The S-box S0 mapping L(V ′) to L(W ′) where V ′ = span(03,0D,15)
and W ′ = span(01,0E,14).

then easily described. It is worth noting that the same picture remains valid for the
subspace W . For example,

W{0} = span((14,00,00,00), (0E,00,00,00), (01,00,00,00)) .

This emphasizes that when the substitution layer maps L(V ) to L(W ), the subspaces
V and W have the same structure.

According to Corollary 3.36, the substitution layer maps L(V{0}) to L(W{0}).
Next, truncate to E = {0} using Proposition 3.31 to obtain

S0(L(span(03,0D,15))) = L(span(01,0E,14)) .

This property is depicted in Figure 3.11. Finally, it should be underlined that with
Proposition 3.31 alone, no property can be established on the S-box S0 (see Example
3.33).

Definition 3.38 (Projection PE). Let E be a subset of J0,mJ. The projection
PE from (Fn2)m onto WallE is defined to be PE(x0, . . . , xm−1) = (y0, . . . , ym−1) where
yi = xi if i belongs to E and yi = 0n otherwise.

Remark 3.39. It is not hard to see that PE is a linear mapping and that VE is
always a subspace of PE(V ). Moreover, it holds that TE(V ) = TE(PE(V )).

The next lemma gives some relations between the previous definitions. It is quite
important and will be used several times by the end of the current chapter.

Lemma 3.40. Let I be a partition of J0,mJ. Then V equals the internal direct sum
⊕I∈I VI if and only if VI = PI(V ) for any part I of I. In this case, the decomposition
of an element v of V is v = ∑I∈I PI(v).

Proof. Suppose that V =⊕I∈I VI . Let I be a part of I. Since VI is always included
in PI(V ), only PI(V ) ⊆ VI needs to be verified. Let v = (v0, . . . , vm−1) be an element
of V . We must prove that PI(v) lies in VI . By hypothesis, v can be uniquely written
as ∑J∈I vJ where vJ belongs to VJ . For every i in I, we have

(PI(v))i = vi = ∑
J∈I

(vJ)i = (vI)i ,

since (vJ) = 0n for all parts J of I distinct from I. As PI(v)i = 0n = (vI)i for each i
in Ic, we have PI(v) = vI . Thus, PI(v) is included in VI .
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Conversely, suppose that VI = PI(V ) for all I in I. Let v be an element of
V . Clearly, v = ∑I∈I PI(v). By hypothesis, PI(v) belongs to VI for any I in I.
The uniqueness of this decomposition directly follows from the definition of the VI .
Therefore, V =⊕I∈I VI . ∎

Remark 3.41. Suppose that I is a partition of J0,mJ such that V =⊕I∈I VI . The
previous lemma, together with Remark 3.39, establishes that TI(V ) = TI(VI) for
each part I of I.

Proposition 3.42 (Substitution layer structure). Let I be a partition of
J0,mJ satisfying both V = ⊕I∈I VI and W = ⊕I∈IWI . The permutation σ maps
L(V ) to L(W ) if and only if σI maps L(TI(V )) to L(TI(W )) for any I in I.

Proof. The implication follows from Proposition 3.31. Conversely, suppose that σI
maps L(TI(V )) to L(TI(W )) for any I in I. First, let us prove that V and W have
the same number of elements. Let I be a part of I. Since σI maps L(TI(V )) to
L(TI(W )), Proposition 3.21 states that TI(V ) and TI(W ) are isomorphic. Then
TI(VI) and TI(WI) are isomorphic by Remark 3.41. It is not hard to see that the
restriction of TI to VI is one-to-one. Therefore, TI(VI) is isomorphic to VI and
similarly, TI(WI) is isomorphic to WI . Gathering together these results, we deduce
that VI and WI are isomorphic for each part I of I. Consequently, V =⊕I∈I VI and
W =⊕I∈IWI have the same dimension, and thus the same number of elements.

To prove that σ maps L(V ) to L(W ), it is sufficient to show that the equality
σ(x + V ) = σ(x) +W holds for any element x of Fnm2 thanks to Lemma 3.14. Hence,
let x belong to Fnm2 . The discussion above implies that σ(x + V ) and σ(x) +W have
the same cardinality. Thus, we just need to verify that σ(x + V ) ⊆ σ(x) +W . Let v
be any element of V . By hypothesis and by Lemma 3.18, for each part I of I, there
exists tI in TI(W ) such that

σI(TI(x) +TI(v)) = σI(TI(x)) + tI .

Observe that for any index 0 ≤ i <m, denoting by [i] the unique part of I containing
i, we have the following:

σ(x + v)i = σ[i](T[i](x) +T[i](v))i = σ[i](T[i](x))i + (t[i])i
= σ(x)i + (t[i])i .

Then, define w = (w0, . . . ,wm−1) by wi = (t[i])i. This yields the equality

σ(x + v) = σ(x) +w .

It remains to explain why w lies in W . By hypothesis, W =⊕I∈IWI . Because
tI is in TI(W ), there exists w′

I in W such that TI(w′
I) = tI . As TI = TI ○ PI , we

have tI = TI(PI(w′
I)) = TI(wI) with wI = PI(w′

I). Next, Lemma 3.40 states that
WI = PI(W ) for any part I of I thus wI belongs to WI . Finally, it is easy to see that
w = ∑I∈I wI , and hence w belongs to W . Summarizing, this proves that σ(x + V ) is
included in σ(x) +W , as desired. ∎
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The preceding proposition establishes that the converse of Implication (3.2) (page
88) holds whenever the partition I satisfies both V =⊕I∈I VI and W =⊕I∈IWI . For
such a partition, the problem of finding all the substitution layers σ mapping L(V )
to L(W ) can equivalently be broken down into the independent sub-problems of
finding all the σI mapping L(TI(V )) to L(TI(W )) for each part I of I.

3.3.3. Linked and Independent S-Boxes

Of course, there may be several partitions I such that V =⊕I∈I VI and W =⊕I∈IWI ,
each yielding a different decomposition of the substitution layer. A few of these
decompositions are certainly more interesting or easier to solve. The purpose of this
section is to study such partitions. Let us begin with the following lemma.

Lemma 3.43. Suppose that σ maps L(V ) to L(W ). For every partition I of
J0,mJ, V =⊕I∈I VI if and only if W =⊕I∈IWI .

Proof. Let I be a partition of J0,mJ. Suppose that V =⊕I∈I VI . Firstly, let us prove
that W = ∑I∈IWI . Since the WI are subspaces of W , the inclusion ∑I∈IWI ⊆ W
clearly holds. Now, let us prove the converse inclusion. Let w be an element of W .
Define x = σ−1(0nm) = (S−1

i (0n))0≤i<m. According to Lemma 3.18, we have

σ(x + V ) = σ(x) +W = σ(σ−1(0nm)) +W =W .

Hence, there exists an element v of V satisfying the equality σ(x + v) = w. Then,
Lemma 3.40 ensures that v = ∑I∈I PI(v). For any 0 ≤ i <m, we have

σ(x +PI(v))i = Si(xi +PI(v)i) =
⎧⎪⎪⎨⎪⎪⎩

Si(xi + vi) if i ∈ I ,
Si(xi + 0n) = 0n if i ∈ Ic .

Consequently, σ(x +PI(v)) lies in WallI and W , so in WI . Note that

w = σ(x + v) =∑
I∈I
σ(x +PI(v))

since I is a partition of J0,mJ. The inclusion W ⊆ ∑I∈IWI follows. Finally, the
definition of the WI implies that W =⊕I∈IWI .

Conversely, suppose that W =⊕I∈IWI . Following the previous reasoning with
σ−1 instead of σ gives the equality V =⊕I∈I VI , as desired. ∎

The contrapositive of Lemma 3.43 is the following: if there exists a partition I
such that V =⊕I∈I VI and W ≠⊕I∈IWI or such that V ≠⊕I∈I VI and W =⊕I∈IWI ,
then there exists no substitution layer mapping L(V ) to L(W ). Because we intend
to study the substitution layers mapping L(V ) to L(W ), Lemma 3.43 suggests to
assume the following.

Assumption 3.44. For the remainder of this section, we assume that for any
partition I of J0,mJ, it holds that

V =⊕
I∈I

VI ⇐⇒W =⊕
I∈I

WI .
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0,1,2,3

0,1,23 0,2,13
0,3,12

1,2,03
1,3,02 2,3,01

0,123 1,023 2,013 3,012

01,23

02,13

03,12

0123

Figure 3.12: The partitions I of {0,1,2,3} such that V =⊕I∈I VI .

Proposition 3.42, together with the preceding assumption, suggests the following
definition.

Definition 3.45 (Decomposition Partition). A decomposition partition (with
respect to V and W ) is a partition of J0,mJ such that V =⊕I∈I VI .

Remark 3.46 (Partial Order on Partitions). Recall that if I and J are two
partitions of J0,mJ, then the partition I is said to be finer than J if for any part I
in I, there exists a part J in J such that I ⊆ J .

Example 3.47. The purpose of this example is to find all the decomposition
partitions with regards to V and W . By virtue of Lemma 3.40, the subspace V can
be decomposed as ⊕I∈I VI if and only if VI is equal to PI(V ) for each part I of I.
The eight framed subspaces in the middle of Figure 3.10 are exactly those which
satisfy VE = PE(V ). Hence, the decomposition partitions are the partitions whose
parts are selected from the following:

∅, {1}, {2}, {1,2}, {0,3}, {0,1,3}, {0,2,3}, {0,1,2,3} .

It is then easy to check that the decomposition partitions of V are:

{{1},{2},{0,3}} , {{1},{0,2,3}} , {{2},{0,1,3}} ,
{{0,3},{1,2}} and {{0,1,2,3}} .
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In Figure 3.12, all the partitions of J0,4J are ordered by the “finer-than” rela-
tion and the decomposition partitions are emphasized. What stands out is that
the decomposition partition {{1},{2},{0,3}} is finer than all other decomposition
partitions.

The existence of this least decomposition partition in the example above is a very
welcome and non-trivial property. This means that all the truncated substitution
layers obtained using Proposition 3.42 are the smallest possible. Thus, such a
partition should be preferred to any other decomposition partition. We will now
prove that this least decomposition partition always exists.

Notation 3.48 (Partition Intersection). Let I and J be two partitions of J0,mJ.
We denote by I ∩ J the set {I ∩ J ∣ (I, J) ∈ I × J } ∖ {∅}. Note that I ∩ J is a
partition of J0,mJ finer than I and J .

Lemma 3.49. Let I and J be two partitions of J0,mJ such that V = ⊕I∈I VI =
⊕J∈J VJ . Then, V =⊕K∈I∩J VK .

Proof. Let K be a part of I ∩J . According to Lemma 3.40, we only have to prove
that PK(V ) = VK . Clearly, VK ⊆ PK(V ). Thus, it remains to show that PK(V ) ⊆ VK .
Since or more precisely that PK(V ) ⊆ VK . By definition, there exists parts I and
J of I and J such that K = I ∩ J . Let v be an element of V . Since V = ⊕I′∈I VI′ ,
Lemma 3.40 ensures that PI(v) lies in VI , hence in V . In the same way, using the
relation V = ⊕J ′∈J VJ ′ , we deduce that PJ(PI(v)) lies in VJ , so in V . Note that
PJ(PI(v)) = PI∩J(v) = PK(v). Therefore, PK(v) belongs to V ∩WallK = VK . ∎

Proposition 3.50. The set of the partitions I of J0,mJ satisfying V =⊕I∈I VI has
a least element denoted Ild.

Proof. Let P denote the set of all the partitions I of J0,mJ satisfying V =⊕I∈I VI .
By virtue of Lemma 3.49, the set P is closed under the operation of intersection.
Then, it is sufficient to define Ild to be the intersection of all the elements of P. ∎

Consequently, the only decomposition partition that will be considered in the
remainder of this chapter is the least decomposition partition Ild. The following
definition is inspired by Proposition 3.42 and Proposition 3.50.

Definition 3.51 (Linked and independent S-boxes). Suppose that σ maps
L(V ) to L(W ). Let I be a part of Ild.

• If I = {i}, the S-box Si is said to be independent of the other S-boxes.
Moreover, if V{i} = {0nm} or V{i} = Wall{i}, the S-box Si is said to be inactive.
Otherwise, Si is active.

• If #I ≥ 2, then the S-boxes whose indices lie in I are said to be linked together.

Remark 3.52. Let 0 ≤ i < m be an integer. We have already noted that
the substitution layer σ always preserves L({0nm}) and L(Wall{i}). In addition,
Proposition 3.42 ensures that σ maps L(V{i}) to L(W{i}). Consequently, if V{i} =
{0nm} or if V{i} = Wall{i}, then V{i} =W{i}.
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Suppose that the S-box Si is independent with regards to the subspaces V and W .
As established by Proposition 3.42 and Remark 3.41, if Si is replaced with another
S-box S′i, then this new substitution layer still maps L(V ) to L(W ) provided that
S′i maps L(T{i}(V{i})) to L(T{i}(W{i})).

Suppose further that Si is active. By definition, {0nm} ⊊ V{i} ⊊ Wall{i}. Observe
that the restriction of T{i} to Wall{i} is one-to-one, hence

{0n} = T{i}({0nm}) ⊊ T{i}(V{i}) ⊊ T{i}(Wall{i}) = Fn2 .

Thus, T{i}(V{i}) is a non-trivial subspace of Fn2 and the requirement that S′i maps
L(T{i}(V{i})) to L(T{i}(W{i})) is also non-trivial. Therefore, an independent active
S-box can be chosen independently of the other S-boxes but has to respect the
structure of the subspaces V and W .

Now suppose that Si is inactive. By definition, V{i} = {0nm} or V{i} = Wall{i}.
Then the equality V{i} =W{i} follows from Remark 3.52 and we have

T{i}(V{i}) = T{i}(W{i}) = {0n} or T{i}(V{i}) = T{i}(W{i}) = Fn2 .

In either case, the condition that S′i maps L(T{i}(V{i})) to L(T{i}(W{i})) is trivial
and any S-box fulfills it. As a consequence, an independent inactive S-box can be
freely chosen. In other words, such an S-box has no impact on the fact that σ maps
L(V ) to L(W ).

Finally, suppose that some S-boxes are linked together. If only one of these
S-boxes is replaced independently of the others, then the desired property of the
substitution layer may not hold.
Example 3.53. As we have seen in Example 3.47 and Figure 3.12, the least decom-
position partition with regards to the subspaces V and W is Ild = {{1},{2},{0,3}}.
By Proposition 3.42, the substitution layer maps L(V ) to L(W ) if and only if the
following equalities hold:

σ{0,3}(L(T{0,3}(V ))) = L(T{0,3}(W )) ,
S1(L(T{1}(V )) = L(T{1}(W )) ,
S2(L(T{2}(V )) = L(T{2}(W )) .

Thus, the S-box S1 is independent of the other S-boxes, the same applies to S2 and
the S-boxes S0 and S3 are linked together. As it was already noted in Figure 3.10,
we have

V{1} = {(00,00,00,00)} and V{2} = span((00,00,1A,00), (00,00,07,00)) .

Therefore, the S-box S2 is active while S1 is inactive.

3.3.4. The Forbidden Case

Throughout this section, we assume that the substitution layer σ maps L(V ) to
L(W ). In order to prove the last main theorem of this chapter, we need to consider
the following particular case.
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Proposition 3.54. Let I be a decomposition partition. Let I be a part of I
such that #I ≥ 2 and let E be a non-empty proper subset of I. Suppose that
VE = VI∖E = {0nm} and PE(V ) = WallE. Then, for all i in E, Si is an affine mapping.

If the subspace V satisfies the assumption of the proposition above, then at least
one of S-boxes has to be affine. Nowadays, an SPN whose substitution layer has an
affine S-box cannot be taken seriously. Additionally, such a cipher is likely to be very
weak to differential and linear cryptanalysis. This discussion explains the title of
this section.
Example 3.55. As seen in Example 3.47, the least decomposition partition
is Ild = {{1},{2},{0,3}}. Its only part of cardinality greater than or equal to 2
is I = {0,3}. The non-empty proper subsets if I are the E = {0} and E = {1}.
According to Figure 3.10, we have V{0} ≠ {020}. Consequently, Proposition 3.54 does
not apply to this example and this is good news because none of the S-boxes is affine.
Otherwise, this would have disproved the contrapositive of Proposition 3.54.

Now let us introduced another example. Consider a substitution layer σ′ made
up two 3-bit S-boxes S′0 and S′1, hence its parameters are m = 2 and n = 3. Define
the subspaces V ′ and W ′ of (F3

2)2 to be

V ′ =W ′ = span((4,4), (2,2), (1,1)) = {(x,x) ∣ x ∈ F3
2} .

Finally, suppose that σ′ maps L(V ′) to L(W ′). It is easily seen that

V ′
∅ = {(0,0)} , V ′

{0} = {(0,0)} , V ′
{1} = {(0,0)} , V ′

{0,1} = V ,
P∅(V ′) = Wall∅ , P{0}(V ′) = Wall{0} , P{1}(V ′) = Wall{1} , P{0,1}(V ′) = V .

Thus, the least decomposition partition with regards to V ′ and W ′ is {{0,1}}. The
S-boxes S′0 and S′1 are then linked together. Choosing E = {0} in Proposition 3.54
ensures that S′0 must be affine. Similarly, we can prove that S′1 must also be affine
by considering E = {1}. As a result, any substitution layer σ′ mapping L(V ′) to
L(W ′) is necessary affine. These subspaces are thus completely prohibited as the
whole cipher is then affine.

The rest of this section is devoted to the proof of Proposition 3.54.

Lemma 3.56. Let E be a subset of J0,mJ. Suppose that VE = VEc = {0nm} and
PE(V ) = WallE. Then WE =WEc = {0nm} and TE(V ) = TE(W ) = (Fn2)p with p = #E.

Proof. Recall that σ maps L(VE) to L(WE). Then, Proposition 3.21 states that
VE and WE are isomorphic, so WE = {0nm}. By a similar argument, we obtain
the equality WEc = {0nm}. Now, it is easy to see that TE = TE ○ PE. Hence,
TE(V ) = TE(PE(V )) = TE(WallE) = (Fn2)p where p denotes #E. By Proposition 3.31,
σE maps L(TE(V )) to L(TE(W )). It follows that TE(V ) and TE(W ) are isomorphic
and TE(W ) is also equal to (Fn2)p. ∎

Lemma 3.57. Let E be a subset of J0,mJ. Then #V = #TE(V ) ×#VEc .
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Proof. Let p denote #E. Consider the restriction of the linear mapping TE to V .
Its kernel is

Ker(TE) = {v ∈ V ∣ TE(v) = 0np} = {v ∈ V ∣ ∀i ∈ E,vi = 0n} = VEc .

From the first isomorphism theorem, the quotient space V /VEc is isomorphic to the
image TE(V ). Particularly, the equality #V /#VEc = #TE(V ) holds. ∎

Lemma 3.58. Let E = J0, pJ with 0 ≤ p < m. Suppose that VE = VEc = {0nm}
and TE(V ) = (Fn2)p. There exist two isomorphisms ϕ ∶ TE(V ) → TEc(V ) and
ψ ∶ TE(W )→ TEc(W ) such that

V = {[y ∥ ϕ(y)] ∣ y ∈ (Fn2)p} and W = {[z ∥ ψ(z)] ∣ z ∈ (Fn2)p} .

Proof. Lemma 3.57 ensures that #V = #TE(V )×#VEc . By hypothesis, VEc = {0nm},
so #VEc = 1. It follows that #V = #TE(V ). Therefore, V and TE(V ) have
the same dimension d. Let B = (b[i])0≤i<d be a basis of TE(V ). By definition,
there exists a family (c[i])0≤i<d of vectors in V such that TE(c[i]) = b[i]. That is,
c[i] = [b[i] ∥ TEc(c[i])]. Note that the vectors c[0], . . . , c[d−1] are linearly independent
as the b[i] are, and thus (c[i])0≤i<d is a basis of V . Define the linear mapping
ϕ ∶ TE(V ) → TEc(V ) by the equalities ϕ(b[i]) = TEc(c[i]) for every 0 ≤ i < d. Let v
be an element of V . Since (c[i])0≤i<d is a basis of V , the vector v can be written as
v = ∑d−1

i=0 λic
[i] where the λi are elements of F2. Next,

v =
d−1
∑
i=0
λic

[i] =
d−1
∑
i=0
λi[b[i] ∥ TEc(c[i])] =

d−1
∑
i=0
λi[b[i] ∥ ϕ(b[i])]

= [
d−1
∑
i=0
λib

[i] ∥
d−1
∑
i=0
λiϕ(b[i])] = [

d−1
∑
i=0
λib

[i] ∥ ϕ(
d−1
∑
i=0
λib

[i])] = [y ∥ ϕ(y)]

where y denotes the element ∑d−1
i=0 λib

[i] of TE(V ). Consequently, every element of
V can be written in the desired form. As the converse inclusion is clear from the
definition of ϕ, the equality V = {[y ∥ ϕ(y)] ∣ y ∈ (Fn2)p} follows. Hence, the mapping
ϕ is onto. Applying Lemma 3.57 with the subset Ec gives #V = #TEc(V ) ×#VE =
#TEc(V ), and thus TEc(V ) is also a d-dimensional subspace. Therefore, ϕ is an
isomorphism. Because of Lemma 3.56, our assumptions about V also hold for W .
Thus, the same argument yields an isomorphism ψ ∶ TE(W ) → TEc(W ) satisfying
W = {[z ∥ ψ(z)] ∣ z ∈ (Fn2)p}. ∎

Lemma 3.59. Let p be a non-negative integer and let f ∶ (Fn2)p → (Fn2)p. Suppose
that there exists a mapping g ∶ (Fn2)p → (Fn2)p satisfying f(x + y) = f(x) + g(y) for
all x and y in (Fn2)p. Then f is an affine mapping.

Proof. Let y be an element of (Fn2)p. Choosing x = 0np yields f(0np+y) = f(0np)+g(y),
and thus g(y) = f(y) + f(0np). Therefore, the equalities

f(x + y) + f(0np) = f(x) + g(y) + f(0np) = f(x) + (f(y) + f(0np)) + f(0np)
= (f(x) + f(0np)) + (f(y) + f(0np))
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hold for all x and y in (Fn2)p. This proves that the mapping x ↦ f(x) + f(0np) is
linear. The result follows. ∎

Lemma 3.60. Let I be a part of a decomposition partition and let E be a subset
of I. The following equalities hold:

PE(TI(V )) = TI(PE(V )) and (TI(V ))E = TI(VE) .

Remark 3.61. The statement of the lemma above is an abuse of notation. The
domain of the projection PE on the left side of the first equality is (Fn2)I whereas
the domain of PE on the other side is (Fn2)m. Similarly, (TI(V ))E denotes the set
TI(V ) ∩WallIE where WallIE = {x ∈ (Fn2)I ∣ ∀i ∈ I ∖E,xi = 0n} is the wall associated
with E in (Fn2)I .
Proof. Let x be an element of (Fn2)m. We have

TI(PE(x)) = TI((δi∈E ⋅ xi)i<m) = (δi∈E ⋅ xi)i∈I = PE((xi)i∈I) = PE(TI(x)) .

Thus, TI ○PE = PE ○TI and the first equality follows.
Observe that WallE ⊆ WallI because E ⊆ I. Thus, WallI ∩WallE = WallE. Since

I is a part of a decomposition partition, Lemma 3.40 implies that PI(V ) = VI . Hence,
we have

VE = V ∩WallE = V ∩ (WallI ∩WallE) = (V ∩WallI) ∩WallE = VI ∩WallE
= PI(V ) ∩WallE .

Note that PI(V ) and WallE are two subsets of WallI . In addition, the restriction of
TI to WallI is clearly one-to-one. Therefore,

TI(VE) = TI(PI(V ) ∩WallE) = TI(PI(V )) ∩TI(WallE) = TI(V ) ∩WallIE = TI(V )E ,

The result is proven. ∎
We have now all the tools needed to prove Proposition 3.54. For convenience, we

recall its statement.

Let I be a decomposition partition. Let I be a part of I such that #I ≥ 2 and
let E be a non-empty proper subset of I. Suppose that VE = VI∖E = {0nm} and
PE(V ) = WallE. Then, for all i in E, Si is an affine mapping.

Proof (of Proposition 3.54). Denote m′ the cardinality of I. Define σ′ = σI ,
V ′ = TI(V ) and W ′ = TI(W ). Proposition 3.31 establishes that σ′ maps L(V ′) to
L(W ′). Then, Lemma 3.60 states that

V ′
E = (TI(V ))E = TI(VE) = TI({0nm}) = {0nm′} .

Similarly, V ′
I∖E = {0nm′} and PE(V ′) = WallE. Consequently, we can assume without

loss of generality that I = {J0,mJ} and I = J0,mJ.
Even if it means to change the order of the S-boxes and the bundles of the spaces

V and W , we can assume that E = J0, pJ with 0 < p < m, and hence Ec = Jp,mJ.

98



3.3 – Structure of the Substitution Layer

Thus, every element x of Fnm2 can be written as [TE(x) ∥ TEc(x)]. Define q =m − p.
Firstly, note that TE(V ) = TE(W ) = (Fn2)p by Lemma 3.56. According to Lemma
3.58, there exist two isomorphisms ϕ ∶ TE(V ) → TEc(V ) and ψ ∶ TE(W ) → TEc(W )
such that

V = {[y ∥ ϕ(y)] ∣ y ∈ (Fn2)p} and W = {[z ∥ ψ(z)] ∣ z ∈ (Fn2)p} .

Let g be the permutation of (Fn2)p defined by the formula

g(y) = ψ−1(σEc(ϕ(y)) + σEc(0nq)) .

Before going any further, we should explain why g is well-defined. Let y be an element
of (Fn2)p = TE(V ). First, ϕ(y) belongs to TEc(V ). By Proposition 3.31, σEc maps
L(TEc(V )) to L(TEc(W )). Then, the part TEc(V ) is mapped to σEc(0nq) +TEc(W )
according to Lemma 3.18. Therefore, σEc(ϕ(y))+ σEc(0nq) lies in TEc(W ), and thus
ψ−1 brings it back to TE(W ) = (Fn2)p.

Let x be an element of (Fn2)p. From Lemma 3.18, we have the following:

σ([x ∥ 0nq] + V ) = σ([x ∥ 0nq]) +W .

On one hand,

σ([x ∥ 0nq] + V ) = σ({[x ∥ 0nq] + [y ∥ ϕ(y)] ∣ y ∈ (Fn2)p})
= σ({[x + y ∥ ϕ(y)] ∣ y ∈ (Fn2)p})
= {[σE(x + y) ∥ σEc(ϕ(y))] ∣ y ∈ (Fn2)p} .

On the other hand,

σ([x ∥ 0nq]) +W = {σ([x ∥ 0nq]) + [z ∥ ψ(z)] ∣ z ∈ (Fn2)p}
= {[σE(x) ∥ σEc(0nq)]) + [z ∥ ψ(z)] ∣ z ∈ (Fn2)p}
= {[σE(x) + z ∥ σEc(0nq) + ψ(z)] ∣ z ∈ (Fn2)p} .

Let y be an element of (Fn2)p. Since [σE(x + y) ∥ σEc(ϕ(y))] belongs to the part
σ([x ∥ 0nq]) +W , there exists z in (Fn2)p satisfying the following two equations:

{
σE(x + y) = σE(x) + z ,
σEc(ϕ(y)) = σEc(0nq) + ψ(z) .

(3.3)

The bottom equation can be restated as z = g(y). Combining with the top equation,
we see that

σE(x + y) = σE(x) + g(y) .
Since this equality holds for all x and y in (Fn2)p, Lemma 3.59 states that the
truncated substitution layer σE is an affine mapping.

Now, it remains to prove that all the S-boxes involved in σE are affine mappings.
Let i be an element of E. The mapping Ii ∶ Fn2 → (Fn2)m, x ↦ (δi,0x, . . . , δi,m−1x) is
clearly linear (where δi,j = 1 if i = j and 0 otherwise). Observe that Si = σ{i} = T{i}σEIi.
Therefore, the S-box Si is the composition of several affine (or linear) mappings, and
hence, is itself an affine mapping. ∎
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3.3.5. Reduction to one S-Box

To prove our main result about the substitution layer, we need the following two
preliminary lemmas.
Lemma 3.62. Let I be an element of Ild. Let E be a non-empty proper subset of
I. Then VE ⊊ PE(V ) and PE(V ) ≠ {0nm}.
Proof. By construction, VE is a subset of PE(V ). Let us prove that VE ≠ PE(V ). By
contradiction, suppose that VE = PE(V ). Let v be an element of V . By hypothesis,
PE(v) belongs to VE. Especially, PE(v) lies in V , so v +PE(v) also lies in V . Since
v + PE(v) = PEc(v), we deduce that PEc(v) belongs to VEc . Let J denotes the
partition {E,Ec}. Lemma 3.40 states that V = ⊕J∈J VJ . Then, V = ⊕K∈Ild∩J VK
follows from Lemma 3.49. Observe that the partition Ild ∩J is strictly finer than Ild
because E is a proper subset of I. This is a contradiction, and therefore VE ⊊ PE(V ).

By contradiction, suppose that PE(V ) = {0nm}. From the previous result, we
obtain {0nm} ⊆ VE ⊊ PE(V ) = {0nm}, which is a contradiction. As a consequence,
PE(V ) ≠ {0nm}. ∎

Lemma 3.63. Let I be a part of Ild and E be a non-empty proper subset of I.
• If VE is a wall, then VE = Wall∅ = {0nm}.
• If PE(V ) is a wall, then PE(V ) = WallE.

Proof. By contradiction, suppose that VE is any wall different from {0nm}. Hence,
there exists a non-empty subset F of E such that VE = WallF . Therefore WallF ⊆ V
and so WallF = WallF ∩ V = VF . Next, WallF = VF ⊆ PF (V ) ⊆ WallF , and thus
VF = PF (V ). Since F is a non-empty proper subset of I, we have a contradiction
with Lemma 3.62. Consequently, VE = {0nm}.

By contradiction, suppose that PE(V ) is any wall different from WallE. There
exists a proper subset F of E such that PE(V ) = WallF . Thus, for every v in V
and every i in E ∖ F , PE(v)i = 0n. As a consequence, PE∖F (V ) = {0nm}. This is a
contradiction with Lemma 3.62 because E ∖ F is a non-empty proper subset of I.
The result follows. ∎

Now we have all the results needed, let us state and prove the main result of
Section 3.3 which is depicted in Figure 3.13.

Theorem 3.64. Let n ≥ 2 and m be two positive integers. Let S0, . . . , Sm−1 be
n-bit S-boxes. Define the permutation σ of (Fn2)m which maps the element (xi)0≤i<m
to (Si(xi))0≤i<m. Let V and W be two subspaces of (Fn2)m such that σ maps L(V )
to L(W ). Suppose that V is not a wall. Then, at least one of the S-boxes maps a
non-trivial linear partition to another one.

Proof. Let us prove this result by complete induction on the number m of S-boxes.
Suppose that m = 1. In this case, σ = S0. By hypothesis, V is different from {0n}
and Fn2 . Hence, L(V ) is a non-trivial partition and S0 maps L(V ) to L(W ).

Let m ≥ 2 be an integer. Suppose that the result holds for any positive integer
strictly less than m. Firstly, suppose that all the S-boxes are independent. In
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Assumption

L(V ) ≠ WallE

L(W ) ≠ WallE

σ

Theorem 3.64

L(V )

L(W )

L(Vi)

L(Wi)

S0 . . . Si . . . Sm−1

Figure 3.13: Diagrammatic representation of Theorem 3.64.

other words, Ild = {{i} ∣ i ∈ J0,mJ}. If each S-box is inactive, then V is a wall,
a contradiction with our hypothesis. Thus, there exists at least one active S-box
Si. In this case, {0nm} ⊊ V{i} ⊊ Wall{i}. According to Lemma 3.40, the equality
P{i}(V ) = V{i} holds. Then, T{i}(V{i}) = T{i}(P{i}(V )) = T{i}(V ) is a non-trivial
subspace of Fn2 , so L(T{i}(V )) is also non-trivial. Finally, Proposition 3.31 states
that Si maps L(T{i}(V )) to L(T{i}(W )), and thus the result holds in this case.

Now, suppose that some S-boxes are linked together. Then, there exists an
element I of Ild such that #I ≥ 2. Next, at least one of the following three cases
holds.

1. Suppose that there exists a non-empty proper subset E of I such that PE(V ) is
not a wall. Let p denote the cardinality of E. Recall that TE(PE(V )) = TE(V ).
It follows that TE(V ) is not a wall of (Fn2)p. According to Proposition 3.31,
σE maps L(TE(V )) to L(TE(W )). Note that E is a non-empty proper subset
of I, so of J0,mJ. Hence p < m, so the induction hypothesis ensures that at
least one of the S-boxes of σE maps a non-trivial partition to another one.

2. Suppose that there exists a non-empty proper subset E of I such that VE is
not a wall. Recall that σ maps L(VE) to L(WE). Proposition 3.31 ensures
that σE maps L(TE(VE)) to L(TE(WE)). It is easily seen that TE(VE) is not
a wall. As before, the result is a consequence of the induction hypothesis.

3. Suppose that there exists a non-empty proper subset E of I such that PE(V ),
VE and VI∖E are all walls. Then, Lemma 3.63 implies that PE(V ) = WallE and
VE = VI∖E = {0nm}. According to Proposition 3.54, the S-boxes whose indices
belong to E are affine mappings. Combining Proposition 3.25 and 3.23, we see
that these S-boxes map any non-trivial linear partition to another one.

In any case, the result holds for this integer m. The result follows by induction. ∎
Example 3.65. It is worthwhile to note that the proof of Theorem 3.64 is construc-
tive. Therefore, it gives a method to find necessary conditions on the S-boxes for
the substitution layer to map L(V ) to L(W ). Let us apply this method to our main
example.

The first step is equivalent to what had been done in Examples 3.47 and 3.53.
Consider the least decomposition partition Ild = {{1},{2},{0,3}} and deduce that:
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• S1 is inactive;
• S2 is active and maps L(span(07,1A)) to L(span(0E,12)) (see Figure 3.3);
• S0 and S3 are linked together.

Now, consider the part I = {0,3} of Ild. Thus, the non-empty proper subsets of I
are {0} and {3}. The first case requires to compute the following projections:

P{0}(V ) = Wall{0} and P{3}(V ) = span((00,00,00,0B), (00,00,00,1C)) .

Thus, P{3}(V ) is not a wall. As in Example 3.33 and Figure 3.9, we see that S3 maps
L(0B,1C) to L(08,15) by truncating σ and the subspaces P{3}(V ), P{3}(W ) to {3}.
Now, we need to compute the following subspaces:

V{0} = span((03,00,00,00), (0D,00,00,00), (15,00,00,00)) and V{3} = Wall∅ .

Since V{0} is not a wall, the second case applies. Then, truncate the substitution
layer σ and the subspaces V{0} and W{0} to prove that S0 maps L(03,0D,15) to
L(01,0E,14). This property was stressed in Example 3.37 and Figure 3.10. Finally,
recall that the third case does not apply to these subspaces, as observed in Example
3.55.

The preceding example covers only the first and the second cases in the treatment
of linked S-boxes given by the proof of Theorem 3.64. To illustrate the third case,
we introduced the following example.
Example 3.66. Let n =m = 3. Thus, the substitution layer σ is made up of three
3-bit S-boxes denoted by S0, S1 and S2. Define the subspaces V and W of (F3

2)3 to
be

V =W = {(x, y, x + y) ∣ x, y ∈ F3
2}

and assume that the substitution layer σ maps L(V ) to L(W ). By definition, it
holds that P∅(V ) = {(0,0,0)} and P{0,1,2}(V ) = V . Then, for each non-empty proper
subset E of {0,1,2}, it is easily seen that PE(V ) = WallE. For instance,

P{0,1}(V ) = {(x, y,0) ∣ x, y ∈ F3
2} = Wall{0,1} .

We know that V∅ = {(0,0,0)} and V{0,1,2}(V ) = V . The other subspaces VE are the
following:

V{0} = {(0,0,0)} , V{1} = {(0,0,0)} , V{2} = {(0,0,0)} ,
V{0,1} = {(x,x,0) ∣ x ∈ F3

2} , V{0,2} = {(x,0, x) ∣ x ∈ F3
2} , V{1,2} = {(0, x, x) ∣ x ∈ F3

2} .

Thus, the equality PE(V ) = VE holds only for E = ∅ and E = {0, 1, 2}. Consequently,
the least decomposition partition is Ild = {{0,1,2}}, and hence all the S-boxes are
linked together.

From now on, we follow the method given in the proof of Theorem 3.64. As
previously noted, for each non-empty proper subset E of {0,1,2}, the projection
PE(V ) is a wall. Therefore, the first case does not apply to this example. We move on
to the second case. By induction, the substitution layer and the subspaces V{0,1} and
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W{0,1} are truncated to {0,1}. Hence, we now consider the permutation σ′ = σ{0,1}
which maps L(V ′) to L(W ′) where

V ′ =W ′ = T{0,1}(V{0,1}) = {(x,x) ∣ x ∈ F3
2} .

Such a substitution layer has already been studied in Example 3.55. Recall that

V ′
∅ = {(0,0)} , V ′

{0} = {(0,0)} , V ′
{1} = {(0,0)} , V ′

{0,1} = V ,
P∅(V ′) = Wall∅ , P{0}(V ′) = Wall{0} , P{1}(V ′) = Wall{1} , P{0,1}(V ′) = V .

Thus, the least decomposition partition with regards to V ′ and W ′ is {{0, 1}}. Since
V ′
{0}, V ′

{1}, P{0}(V ′) and P{1}(V ′) are all walls, the first and second cases do not apply.
Choosing E = {0} and E = {1} in the third case proves that S0 and S1 are affine
mappings. Come back to the full substitution layer. Similarly, it is straightforward
to verify that S2 must be affine by truncating σ and the subspaces V{0,2}, W{0,2} to
{0,2}. To summarize, we have proven that any substitution layer mapping L(V ) to
L(W ) is necessarily affine.

3.4. Conclusion

In this chapter, we have studied a generic SPN mapping a partition of the plaintexts
to a partition of the ciphertexts, independently of the round keys used. Combining
Theorem 3.26 and Corollary 3.27, we proved that there exist two families (V [i])0≤i≤r
and (W [i])0≤i<r of subspaces such that the substitution layer σ maps L(V [i]) to
L(W [i]) for each 0 ≤ i < r. This result has been illustrated in Figure 3.6.

First, suppose that all the V [i] are walls. In such a case, the diffusion layer of
the cipher is probably not playing its role (or the round number is very small). As
it is generally the case, suppose that there is no diffusion layer in the last round
of the SPN. Then, the input and the output partitions are both linear partitions
associated with walls. This implies that some ciphertext bundles are independent of
some plaintext bundles. Such a property must be avoided in any good cipher. To
characterize a diffusion layer which does not have this weakness, Calderini introduced
the following definition in [23].

Definition 3.67 (Strongly Proper r-Round Diffusion Layer). The diffusion
layer π is said to be strongly proper over r rounds if for each proper wall W , there
exists an integer 1 ≤ i < r such that πi(W ) is not a wall.

Assuming that the diffusion layer of the SPN is strongly proper over r rounds, at
least one of the V [i] is not a wall. This second case is far more interesting than the
previous one. By virtue of Theorem 3.64, at least one of the S-boxes must map a
non-trivial linear partition to another one, as illustrated in Figure 3.13.

Thus, we have proven in this chapter that any partition-based backdoor SPN
with a strongly proper diffusion layer has at least one S-box mapping a non-trivial
linear partition to another one. The following chapter aims at designing such an
S-box with the best security against differential and linear cryptanalysis.
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Chapter 4
Analysis of a Backdoor S-Box

In the preceding chapter, we have considered a generic substitution-permutation
network together with a partition-based backdoor holding independently of the key
schedule. Assuming that its diffusion layer is strongly proper, we have proven that
at least one S-box must map a linear partition to another one, thereby reducing the
study of the whole cipher to the study of one single S-box.

As said in introduction, differential and linear cryptanalysis are considered as
the most important attacks against block ciphers, and therefore any new cipher
should be proven secure against these two attacks. Since the S-boxes are the only
building-blocks of an SPN which are not affine, they must provide sufficient resistance
to make the whole cipher secure. On the other hand, the diffusion layer aims at
spreading the confusion provided by the substitution layer through the whole message.
But even with a carefully designed diffusion layer, an SPN which has poor S-boxes is
unlikely to achieve performance and security. To summarize, if we want our backdoor
cipher to be secure against these attacks, then we must design an S-box mapping a
linear partition to another one while providing good differential and linear properties.
This is the purpose of this chapter.

Firstly, Section 4.1 explains how an S-box mapping a linear partition to another
one can be associated with an imprimitive S-box which has the same properties
with respect to differential and linear cryptanalysis. Then, we recall a fundamental
decomposition result of imprimitive S-boxes. Secondly, Section 4.2 relates the linear
and differential properties of an imprimitive S-box to the ones of its decomposition.
Following these results, we derive an algorithm to design strong S-boxes mapping
a linear partition to another one. Next, a toy partition-based backdoor cipher is
given in Section 4.3. This example illustrates the results of the previous and this
chapters. Lastly, we discuss ways to prevent partition-based backdoor ciphers in
Section 4.4. The content of this chapter was published in the same papers as the
previous chapter, that is in [9] and [12].

4.1. Structure of a Backdoor S-Box

Optimal differential and linear resistances of vectorial Boolean functions are generally
studied by means of equivalence relations preserving their properties. Following
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the terminology introduced in [20], the three widely used equivalence relations are
affine-equivalence, EA-equivalence (Extended Affine) and CCZ-equivalence (Carlet-
Charpin-Zinoviev [34, Proposition 3]), sorted here from the least to the most general.
In our treatment of backdoor S-boxes we will use the simplest, namely the affine-
equivalence.

Recall that two permutations S1 and S2 of Fn2 are said to be affine-equivalent if
there exist two linear mappings L1, L2 of Fn2 and two elements v1, v2 of Fn2 such that

∀x ∈ Fn2 , S2(x) = L2(S1(L1(x) + v1)) + v2 . (4.1)

It is well known that affine-equivalent S-boxes have the same security against differ-
ential and linear cryptanalysis [80, Proposition 1]. Indeed, assuming that S1 and S2
are affine-equivalent, it is straightforward to prove that for all a, b in Fn2 , we have

DPS2(a, b) = DPS1(L1(a), L−1
2 (b)) , (4.2)

LPS2(a, b) = LPS1((L−1
1 )⊺(a), L⊺2(b)) , (4.3)

see for instance [27, Proposition 2.16]. The first relation means that their differential
probability matrices are equal up to row and column permutations. The second is its
analogous for linear potentials. More precisely, their correlation matrices are linked
by

CS2(a, b) = (−1)⟨a,L−1
1 (v1)⟩+⟨b,v2⟩ CS1((L−1

1 )⊺(a), L⊺2(b)) . (4.4)

Thus, they are equal up to row and column permutations and up to the signs of their
coefficients.

Coming back to partition-based backdoor S-boxes, let V and W be two subspaces
of Fn2 and suppose that S′ is an n-bit S-Box mapping the partition L(V ) to L(W ).
Then there exists an automorphism L of Fn2 mapping the subspace V to W , as
ensured by Proposition 3.21. Naturally its inverse L−1 maps W to V and Proposition
3.25 states that L−1 maps the partition L(W ) to L(V ). Finally, the S-box S defined
to be L−1 ○ S′ is by construction affine-equivalent to S′ and preserves the partition
L(V ). This discussion establishes the following Proposition.

Proposition 4.1. Let V and W be two subspaces of Fn2 and let S′ be an n-bit
S-box mapping L(V ) to L(W ). There exists an affine-equivalent S-box S to S′
preserving L(V ).

Remark 4.2. Conversely, suppose that S preserves the partition L(V ). Let W
be any subspace isomorphic to V and denote by L an isomorphism from V to W .
By Proposition 3.25, the composite L ○ S maps L(V ) to L(W ) and is obviously
affine-equivalent to S.

Example 4.3. Let us consider the 5-bit S-box S′ given in Figure 4.1. This S-box
has already been met in Examples 3.17 and 3.28 (denoted by f and S2 respectively).
Thus, we know that S′ maps L(V ) to L(W ) where

V = span(07,1A) and W = span(0E,12) .
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.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F

S′(x) 0. 1E 08 04 13 0F 18 14 10 19 15 0E 0D 03 1C 07 17
1. 12 11 0B 1B 09 05 1F 00 0A 01 02 1A 06 0C 1D 16

L−1(x) 0. 00 01 02 03 08 09 0A 0B 0D 0C 0F 0E 05 04 07 06
1. 18 19 1A 1B 10 11 12 13 15 14 17 16 1D 1C 1F 1E

S(x) 0. 1F 0D 08 1B 06 15 10 18 14 11 07 04 03 1D 0B 13
1. 1A 19 0E 16 0C 09 1E 00 0F 01 02 17 0A 05 1C 12

Figure 4.1: Construction of the S-Box S used throughout Chapter 4.

00 + V

02 + V

01 + V

0A + V

02 + V

08 + V

03 + V

01 + V

08 + V

09 + V

09 + V

0B + V

0A + V

00 + V

0B + V

03 + V

00 07 1A 1D 01 06 1B 1C 02 05 18 1F 03 04 19 1E 08 0F 12 15 09 0E 13 14 0A 0D 10 17 0B 0C 11 16

02 05 18 1F 0A 0D 10 17 08 0F 12 15 01 06 1B 1C 09 0E 13 14 0B 0C 11 16 00 07 1A 1D 03 04 19 1E

Figure 4.2: The permutation S preserving L(V ) where V = span(07,1A).

Referring back to Example 3.22, we end up with an automorphism L of F5
2 satisfying

L(V ) =W . Its inverse L−1 and the composite S = L−1S′ are given in Figure 4.1. For
instance, S(07) = L−1(S′(07)) = L−1(10) = 18.

By construction, this new permutation S is equivalent to S′ and preserves the
linear partition L(V ), as can be seen in Figure 4.2. The similarity between Figures
3.3 and 4.2 is striking, thereby clarifying the choices we have made when constructing
the automorphism L in Example 3.22. This S-box S will be studied throughout this
chapter.

As a consequence of Proposition 4.1, it can be assumed without loss of generality
that the subspaces V and W are equal when studying the linear and differential
properties of an S-box mapping L(V ) to L(W ). Therefore, we consider the following
in the remainder of this section:

• let V be a d-dimensional non-trivial subspace of Fn2 ,
• let U be a complement space of V ,
• let S be an n-bit S-box preserving L(V ).

Since U is a complement subspace of V , the space Fn2 is equal to the direct sum
U ⊕ V . In other words, every element x of Fn2 can be uniquely written as the sum
x = u + v where u and v belong to U and V respectively. Let [u] denote the coset of
V with respect to u. Thus, [u] = u + V is the unique part of L(V ) containing u and
we have

L(V ) = {[u] ∣ u ∈ U} .
Since V is d-dimensional, the complement space U is (n−d)-dimensional. In addition,
we have the inequalities

1 ≤ d ≤ n − 1 and 1 ≤ n − d ≤ n − 1
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because V is assumed to be a non-trivial subspace of Fn2 .
The following theorem describes the structure of permutations preserving a linear

partition. A similar result has been introduced by Harpes in his thesis [50, Theorem
5.6]. However, our statement will be more appropriate for the next results of this
chapter.

Theorem 4.4 (Decomposition of an Imprimitive S-Box). Let S be an n-bit
S-box preserving L(V ). There exist a unique permutation ρ of U and a unique family
of permutations (τu)u∈U of V such that, for all x = u + v in Fn2 ,

S(u + v) = ρ(u) + τu(v) .

Conversely, if ρ is a permutation of U and if (τu)u∈U is a family of permutations of
V , then the mapping S′ defined by the rule S′(u + v) = ρ(u) + τu(v) preserves L(V ).

As will be seen in Section 4.1.3, this theorem is a corollary of Krasner-Kaloujnine
embedding theorem [65] (see Theorem 4.13). But for convenience, we give below a
direct proof.
Proof. By hypothesis, S preserves L(V ). Thus, S induces a permutation ρ of U
defined as follows. Let u be an element of U . Hence, there exists a unique u′ in U
such as S([u]) = [u′]. Define then ρ(u) = u′. For each element u of U , define the
permutation τu of V which maps v to S(u + v) + ρ(u). By construction, for any u in
U and any v in V we have

τu(v) = S(u + v) + ρ(u) and hence S(u + v) = ρ(u) + τu(v) .

The existence of the permutations ρ and τu is proven. Now, let us show their unique-
ness. Suppose that there exist a permutation ρ̃ of U and a family of permutations
(τ̃u)u∈U of V satisfying the result. Let (u, v) be an element of U × V . By hypothesis,
we have the relation

ρ(u) + τu(v) = ρ̃(u) + τ̃u(v) .

Because the sum of U and V is direct, it follows that ρ(u) = ρ̃(u) and τu(v) = τ̃u(v).
The uniqueness of ρ and the τu follows.

Conversely, let ρ be a permutation of U and (τu)u∈U be a family of permutations of
V . Denote by S′ the mapping from Fn2 to Fn2 defined by the rule S′(u+v) = ρ(u)+τu(v).
Because ρ and the τu are permutations of U and V respectively the mapping S′ is a
permutation of U ⊕ V = Fn2 . For every element u of U , it holds that

S′([u]) = {S′(u + v) ∣ v ∈ V } = {ρ(u) + τu(v) ∣ v ∈ V }
= ρ(u) + {τu(v) ∣ v ∈ V } = ρ(u) + V = [ρ(u)] .

Hence, S′ preserves the linear partition L(V ), as desired. ∎

This theorem is of great significance as it yields a general construction for
imprimitive S-boxes using permutations with smaller domains. Intuitively, this result
can be explained as follows. We already know that the linear partition L(V ) consists
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of cosets of V . By permuting the elements of each coset [u], the whole partition
is left unchanged. The way we permute the elements of [u] is represented by the
permutation τu of V , namely u + v is mapped to u + τu(v). Therefore, we need a
family (τu)u∈U to represent all these local permutations. Up to this point, each coset
is mapped to itself, so it remains to explain how the cosets are permuted. This is the
role of the permutation ρ of U . Thus the coset [u] is mapped as a whole to [ρ(u)],
that is to say, each element u + τu(v) is mapped to ρ(u) + τu(v). To summarize,
the family (τu)u∈U describes how the elements are moved inside each part and the
permutation ρ tells us how S permutes the parts of the partition L(V ).
Example 4.5. Again, we consider the S-box S introduced in Example 4.3. Define
the following complement subspace of V :

U = span(01,02,08) = {00,01,02,03,08,09,0A,0B} .

Figure 4.2 shows that S induces a permutation ρ of U . For instance, ρ(01) = 0A
because S maps the coset [01] to [0A]. Next, for each u in U , define the permutation
τu of V by the rule τu(v) = S(u + v) + ρ(u). For instance,

τ01(07) = S(01 + 07) + ρ(01) = S(06) + ρ(01) = 10 + 0A = 1A .

This decomposition of S is illustrated in Figure 4.3. For example, the image of 06
under S is computed as follows. First, 06 is uniquely written as the sum u+v = 01+07
of an element u in U with an element v of V . Hence, 06 lies in the coset

[01] = 01 + V = 01 + {00,07,1A,1D} = {01,06,1B,1C} .

The first step consists in moving 06 inside the coset [01], or equivalently modifying
its component in V . Thus, 06 is mapped to 01 + τ01(07) = 01 + 1A = 1B. The second
step permutes the coset representatives in U , and hence leaves the elements of same
coset in the same relative positions. The element 1B = 01 + 1A is then mapped to
ρ(01) + 1A = 0A + 1A = 10. Therefore, the S-box S maps 06 to 10.

The next three subsections aim at explaining how Theorem 4.4 can be seen
as a corollary of Krasner-Kaloujnine embedding theorem. Since this result has
already been proven, the reader can jump directly to Section 4.2 for a first reading.
Nevertheless, this connection highlights the group structure behind the decomposition
of an S-box preserving a linear partition, bringing us back to imprimitive groups.

4.1.1. Wreath Product

As direct products for finite-dimensional vector spaces, wreath products naturally
arise when studying imprimitive permutation groups. The result justifying this
analogy is known as Krasner-Kaloujnine embedding theorem. Informally, it estab-
lishes that every imprimitive permutation group can be embedded into a wreath
product, namely seen as a subgroup of a wreath product up to isomorphism. Roughly
speaking, this result implies that wreath products are the biggest imprimitive groups.

In this section, we recall the definition of wreath products. However, it turns out
that there are several ways to define wreath products. Several groups are involved in
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00
+
V

= =

01
+
V

= =

02
+
V

= =

03
+
V

= =

08
+
V

= =

09
+
V

= =

0A
+
V

= =

0B
+
V

= =

16 1D 1D 1D 16
11 1A 1A 1A 11
0C 07 07 07 0C
0B 00 00 00 0B

+ + +
0B 0B 0B

17 1D 1D 1D 17
10 1A 1A 1A 10
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1C 1D 1D 1D 1C
1B 1A 1A 1A 1B
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+ + +
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1D 1D 1D 1D 1D
1A 1A 1A 1A 1A
07 07 07 07 07
00 00 00 00 00

+ + +
00 00 00

x v τu(v) τu(v) S(x)
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u u ρ(u)
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τ01
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τ08

τ09
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ρ

Figure 4.3: The permutation S preserving L(V ) where V = span(07,1A).
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this structure and each of them can act on the right or on the left. The following
choices are made in order to derive Theorem 4.4 from Krasner-Kaloujnine embedding
theorem. Because some of them are very unusual, all the results will be proven. To see
other classic representations of wreath products, readers may refer to [42, 26, 6, 55].
Wreath products are based on the so-called semidirect products recalled below.

Definition 4.6 (Outer Semidirect Product). Let N and H be two groups and
let φ be a homomorphism from H to Aut(N). To simplify the reading, let ⋆ denote
the group law of N and let φh denote the automorphism of N associated with an
element h of H. The semidirect product of H and N , denoted by H ⋉φ N , is the
group formed by the Cartesian product H ×N together with the following binary
operation

(h1, n1)⍟ (h2, n2) = (h1h2, φh−1
2
(n1) ⋆ n2) .

Remark 4.7. As explained in Definition 3.1, an action of a group G on X can be
defined to be a homomorphism from G to Sym(X). The homomorphism φ is then
an action of H on N whose image is included in the subgroup Aut(N) of Sym(N).
In this case, the group H is said to act by automorphisms on N . Finally, it should
be noted that when this action is trivial (namely φh = IdN for every h in H), the
semidirect product of H and N is just their direct product.
Proof. First, let us prove that (eH , eN) is the identity element of H ⋉φN . Let (h,n)
be an element of H ×N . It holds that

(h,n)⍟ (eH , eN) = (heH , φe−1
H
(n) ⋆ eN) = (h,φeH(n)) = (h, Id(n)) = (h,n) ,

(eH , eN)⍟ (h,n) = (eHh,φh−1(eN) ⋆ n) = (h, eN ⋆ n) = (h,n) .

Thus, (eH , eN) is the identity element. Now, let us prove that (h−1, φh(n−1)) is the
inverse of (h,n).

(h,n)⍟ (h−1, φh(n−1)) = (hh−1, φh(n) ⋆ φh(n−1)) = (eH , φh(n ⋆ n−1))
= (eH , φh(eN)) = (eH , eN) ,

(h−1, φh(n−1))⍟ (h,n) = (h−1h,φh−1(φh(n−1)) ⋆ n) = (eH , φh−1h(n−1) ⋆ n)
= (eH , φeH(n−1) ⋆ n) = (eH , n−1 ⋆ n) = (eH , eN) .

Finally, it remains to prove that ⍟ is associative. Let (h1, n1), (h2, n2) and (h3, n3)
be three elements of H ×N . We have

(h1, n1)⍟ [(h2, n2)⍟ (h3, n3)] = (h1, n1)⍟ (h2h3, φh−1
3
(n2) ⋆ n3)

= (h1h2h3, φ(h2h3)−1(n1) ⋆ φh−1
3
(n2) ⋆ n3) ,

[(h1, n1)⍟ (h2, n2)]⍟ (h3, n3) = (h1h2, φh−1
2
(n1) ⋆ n2)⍟ (h3, n3)

= (h1h2h3, φh−1
3
(φh−1

2
(n1) ⋆ n2) ⋆ n3) .

Observe that

φh−1
3
(φh−1

2
(n1) ⋆ n2) = φh−1

3
(φh−1

2
(n1)) ⋆ φh−1

3
(n2) = φh−1

3 h−1
2
(n1) ⋆ φh−1

3
(n2)

= φ(h2h3)−1(n1) ⋆ φh−1
3
(n2) .
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Consequently, the associativity of the binary operation ⍟ follows and the desired
result is proven. ∎

Proposition 4.8. Let A be a group and let B be a group acting on a set I. Define
φ ∶ B →S(AI) which maps an element b of B to the permutation

φb ∶ AI Ð→ AI

(ai)i∈I z→ (ab−1⋅i)i∈I .

Then, φ is a homomorphism whose image is included in Aut(AI).

Remark 4.9. Using the vocabulary introduced in Remark 4.7, the group B acts
on the direct product AI by automorphisms. This action is quite simple as B only
permutes the components of the elements of AI in the natural way. Let (ai)i∈I be
an element of AI and let (a′i)i∈I = φb((ai)i∈I) denote its image under the action of
a given b in B. The component ai is moved to the index b ⋅ i, and hence ai = a′b⋅i
leading to the equality (ai)i∈I = (a′b⋅i)i∈I . Equivalently, (ab−1⋅i)i∈I = (a′i)i∈I , whence
φb((ai)i∈I) = (ab−1⋅i)i∈I . This discussion explains the definition of the action φ.
Proof. First, let us prove that φ is well-defined. Let b be an element of B. We need
to prove that φb is a permutation of AI . Let (ai)i∈I be an element of AI . We have
φb−1 ○ φb((ai)i∈I) = φb−1((ab−1⋅i)i∈I) = (ab−1⋅(b⋅i))i∈I = (ab−1b⋅i)i∈I = (aeB ⋅i)i∈I = (ai)i∈I .

Similarly, φb ○ φb−1 = IdAI . As a consequence, φb is a permutation of AI and φ is
well-defined. Now, let us prove that φ is a group homomorphism. Let b1, b2 be two
elements of B and let (ai)i∈I be an element of AI . Next,

φb1 ○ φb2((ai)i∈I) = φb1((ab−1
2 ⋅i)i∈I) = (ab−1

2 b−1
1 ⋅i)i∈I = (a(b1b2)−1⋅i)i∈I = φb1b2((ai)i∈I) .

It follows that φb1 ○ φb2 = φb1b2 proving that φ is a homomorphism. Let b be an
element of B. To prove that the image of φ is included in Aut(AI), it suffices to
show that φb is a homomorphism. For all (ai)i∈I and (a′i)i∈I in AI , it holds that

φb((ai)i∈I × (a′i)i∈I) = φb((aia′i)i∈I) = (ab−1⋅ia
′
b−1⋅i)i∈I = (ab−1⋅i)i∈I × (a′b−1⋅i)i∈I

= φb((ai)i∈I) × φb((a′i)i∈I) .
This concludes the proof of our proposition. ∎

Given two groups A and B acting respectively on X and I, their wreath product
A ≀B naturally acts on the product I ×X. Intuitively, the set I ×X may be thought
as a collection of #I copies of the set X. Similarly, the wreath product A ≀B contains
#I copies of the group A, each acting on its associated copy of X. Then, B acts on
I ×X by permuting the copies of X. The resulting action of A ≀B on I ×X is thus
imprimitive since it preserves these copies.

Definition 4.10 (Wreath Product). Let A be a group and let B be a group
acting on a set I. The wreath product of A and B denoted by A ≀B, is defined to be
the semidirect product B ⋉φ AI where φ is given in Proposition 4.8. Explicitly, the
group law of A ≀B is given for all (b, (ai)i∈I) and (b′, (a′i)i∈I) in B ×AI by

(b, (ai)i∈I)⍟ (b′, (a′i)i∈I) = (bb′, φb′−1((ai)i∈I) × (a′i)i∈I) = (bb′, (ab′⋅ia′i)i∈I) .
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Proposition 4.11 (Imprimitive Action of A ≀B). Let A and B be two groups
and suppose that A acts on X and that B acts on I. Then, the wreath product
A ≀B acts on I ×X by

(b, (ai)i∈I) ⋅ (j, x) = (b ⋅ j, aj ⋅ x)

for all (b, (ai)i∈I) in B ×AI and (j, x) in I ×X. Furthermore, let Xi denote the set
{i} ×X for each i in I. Then, A ≀B preserves the partition {Xi ∣ i ∈ I}.

Remark 4.12. In other words, B = {Xi ∣ i ∈ I} is an (A ≀B)-invariant partition of
I ×X. Since this partition is non-trivial (whenever #I,#X ≥ 2), the wreath product
A ≀B acts imprimitively on I ×X.

Proof. Let (j, x) be an element of I ×X. Observe that

(eB, (eA)i∈I) ⋅ (j, x) = (eB ⋅ j, eA ⋅ x) = (j, x) .

Thus, the element (j, x) is fixed under the action of the identity element of A ≀B.
Now, let (b, (ai)i∈I) and (b′, (a′i)i∈I) be two elements of A ≀B. On the one hand,

(b, (ai)i∈I) ⋅ [(b′, (a′i)i∈I) ⋅ (j, x)] = (b, (ai)i∈I) ⋅ (b′ ⋅ j, a′j ⋅ x) = (bb′ ⋅ j, a′b′⋅ja′j ⋅ x) .

On the other hand,

[(b, (ai)i∈I) ⋅ (b′, (a′i)i∈I)] ⋅ (j, x) = (bb′, (ab′⋅ia′i)i∈I) ⋅ (j, x) = (bb′ ⋅ j, ab′⋅ja′j ⋅ x) .

Therefore, A ≀B acts on I ×X.

It remains to prove that this action preserves the partition {Xi ∣ i ∈ I}. Let
g = (b, (ai)i∈I) be an element of A ≀B and let j be an element of I. We will prove
that g ⋅Xj =Xb⋅j. Let g ⋅ (j, x) be an element of g ⋅Xj. Then g ⋅ (j, x) = (b ⋅ j, aj ⋅ x)
belongs to Xb⋅j. Thus, g ⋅Xj is included in Xb⋅j. Now, let (b ⋅ j, x) be an element of
Xb⋅j. Then (j, a−1

j ⋅ x) belongs to Xj and

g ⋅ (j, a−1
j ⋅ x) = (b ⋅ j, aja−1

j ⋅ x) = (b ⋅ j, x) .

Thus, (b ⋅ j, x) lies in g ⋅Xj. Therefore, g ⋅Xj =Xb⋅j. The desired result follows from
Lemma 3.14. ∎

4.1.2. Krasner-Kaloujnine Embedding Theorem

It is now time to state Krasner-Kaloujnine embedding theorem which relates every
imprimitive group action to the imprimitive action of a wreath product.
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Theorem 4.13 (Krasner, Kaloujnine [65]). Let G be an imprimitive permuta-
tion group on a set E and let P be a G-invariant partition of E. Let R be a system
of distinct representatives of P . For each r in R, let [r] denote the unique part of P
containing r. Let r0 be an element of R.

• Let A be the permutation group on [r0] induced by the action of the set-wise
stabilizer of [r0] in G.

• Let B be the permutation group on R induced by G.
Then E may be identified with R × [r0] in a such way that G on E is permutation
isomorphic to a subgroup of A ≀B acting imprimitively on R × [r0].

Proof. For each r in R, choose an element tr of G satisfying tr([r0]) = [r]. Such
elements exist by virtue of Lemma 3.5. Let λ be the mapping from E to R × [r0]
which maps x to (r, t−1

r (x)) where r is the unique element of R such that x ∈ [r].
Finally, let ϕ denote the mapping from G to A ≀B defined by the formula

ϕ(g) = (ḡ, (t−1
ḡ(r) ○ g ○ tr)r∈R)

where ḡ ∶ R → R maps r to the representative of [g(r)] in R. We will prove that
(ϕ,λ) is a permutation isomorphism from G on E to ϕ(G) on R × [r0].

Let us begin by showing that λ is a bijection. Since #E = #P × #P0, it is
sufficient to prove that λ is one-to-one. Let x and x′ be two elements of E such
that λ(x) = λ(x′). Denote r and r′ the elements of R satisfying x ∈ [r] and x′ ∈ [r′].
Hence, the equality λ(x) = λ(x′) becomes (r, t−1

r (x)) = (r′, t−1
r′ (x)). This implies that

t−1
r (x) = t−1

r (x′) and finally that x = x′ as t−1
r is a permutation of E.

Now, we will prove that ϕ is a one-to-one homomorphism. Let g1 and g2 be two
elements of G. It holds that

ϕ(g1)⍟ ϕ(g2) = (ḡ1, (t−1
ḡ1(r)g1tr)r∈R)⍟ (ḡ2, (t−1

ḡ2(r)g2tr)r∈R)
= (ḡ1ḡ2, (t−1

ḡ1(ḡ2(r))g1tḡ2(r)t
−1
ḡ2(r)g2tr)r∈R)

= (g1g2, (t−1
g1g2(r)g1g2tr)r∈R) = ϕ(g1g2) .

Therefore, ϕ is a homomorphism. We still have to prove that ϕ is one-to-one. Assume
that ϕ(g1) = ϕ(g2). This hypothesis can be restated as follows

(ḡ1, (t−1
ḡ1(r)g1tr)r∈R) = (ḡ2, (t−1

ḡ2(r)g2tr)r∈R) . (4.5)

Let x be an element of E and let r be its representative in R. Then, x0 = t−1
r (x)

belongs to [r0]. By assumption,

(tḡ1(r))−1g1tr(x0) = (tḡ2(r))−1g2tr(x0) .

Simplifying, we obtain (tḡ1(r))−1g1(x) = (tḡ2(r))−1g2(x). Equation 4.5 implies that
ḡ1 = ḡ2. Thus, ḡ1(r) = ḡ2(r) and (tḡ1(r))−1 = (tḡ2(r))−1. Consequently, g1(x) = g2(x).
As this equality holds for all x in E, is follows that g1 and g2 are equal, proving that
ϕ is one-to-one.
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Let x be an element of E and let g be an element of G. It remains to prove that
λ(g(x)) = ϕ(g) ⋅ λ(x). Let r be the representative of x in R. Then,

ϕ(g) ⋅ λ(x) = (ḡ, (t−1
ḡ(r)gtr)r∈R) ⋅ (r, t−1

r (x)) = (ḡ(r), t−1
ḡ(r)gtr(t−1

r (x)))
= (ḡ(r), t−1

ḡ(r)g(x)) = λ(g(x)) .

The result is proven. ∎

Theorem 4.4 establishes that any imprimitive permutation group can be embedded
into a wreath product. In the following, we use the same notation as in Theorem 4.4.
Observe that A is a subgroup of Sym([r0]) and that B is a subgroup of Sym(R).
Therefore, the group G can be identified with a subgroup of the wreath product
W = Sym([r0]) ≀ Sym(R). More formally, G is a subgroup of the (isomorphic) image
of W under ϕ−1.

Conversely, Proposition 4.11 ensures that the action ofW on R×[r0] is imprimitive
and preserves the partition

Q = {{r} × [r0] ∣ r ∈ R} .

Hence ϕ−1(W ) preserves the partition λ−1(Q) = P . Combining these two results, we
see that ϕ−1(W ) is the biggest permutation group on E preserving the partition P.

By assumption, P is a G-invariant partition of E. Let p denote the cardinality
of R and let q denote the cardinality of [r0]. In other words, P consists of p parts,
each of cardinality q by virtue of Corollary 3.7. The discussion above proves that the
number of permutations of E preserving P is equal to the order of Sym([r0])≀Sym(R),
given by

#(Sym(R) × Sym([r0])R) = (p!) × (q!)p . (4.6)

4.1.3. Application of the Embedding Theorem

Recall that V is a d-dimensional subspace of Fn2 and S is an n-bit S-box preserving
L(V ). Since U is a complement space of V , the partition L(V ) is equal to {[u] ∣ u ∈
U}. Thus, U is a system of distinct representatives of L(V ).

Let G denote the subgroup of Sym(Fn2) generated by S and the key additions
{αx ∣ x ∈ Fn2}. By assumption, S preserves L(V ) and by Proposition 3.23, each key
addition preserves L(V ). Hence, the linear partition L(V ) is G-invariant. Note that
for each x and y in Fn2 , the equality αx+y(x) = y holds. Consequently, the group G is
transitive and imprimitive because L(V ) is assumed to be non-trivial.

Following the proof of Theorem 4.13, let tu denote the key addition αu for each
u in U . It is easily seen that tu([0]) = tu(V ) = u + V = [u] so this definition meets
the requirements of the proof. Moreover, we know that αu is an involution, hence
(αu)−1 = αu. Define the following mappings:

λ ∶ Fn2 Ð→ U × V ϕ ∶ GÐ→ Sym(U) × Sym(V )U

xz→ (ux, tux(x)) , g z→ (ḡ, (t−1
ḡ(u)gtu)u∈U) ,
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where ux denotes the representative in U of [x]. Let x = u + v be an element of Fn2
and let g be an element of G. Then,

λ(x) = (u,αu(x)) = (u,u + u + v) = (u, v) ,
ϕ(g) = (ḡ, (t−1

ḡ(u)gtu)u∈U) = (ḡ, (αḡ(u)gαu)u∈U) .

Since (λ,ϕ) is a permutation isomorphism from G on Fn2 to Sym(V ) ≀ Sym(U) on
U × V , the equality λ(g(x)) = ϕ(g) ⋅ λ(x) holds. Note that

ϕ(g) ⋅ λ(x) = (ḡ, (αḡ(u)gαu)u∈U) ⋅ (u, v) = (ḡ(u), αḡ(u)gαu(v))
= (ḡ(u), ḡ(u) + g(u + v)) .

Therefore,

g(u + v) = λ−1(ϕ(g) ⋅ λ(x)) = λ−1(ḡ(u), ḡ(u) + g(u + v))
= ḡ(u) + (ḡ(u) + g(u + v)) .

Let ρ denote the permutation S̄ of U and for each u in U , let τu denote the permutation
of V defined by the rule τu(v) = ρ(u) + S(u + v). Then, apply the preceding equality
with g = S to obtain

S(u + v) = ρ(u) + τu(v) .

This proves that the decomposition of S given by Theorem 4.4 can be obtained using
Krasner-Kaloujnine embedding theorem.

Even though it might seem harder to derive Theorem 4.4 from Theorem 4.13
rather than to prove it directly, this new perspective emphasizes the group structure
associated with the decomposition of imprimitive S-boxes. For instance, suppose
that S′ is another n-bit S-box preserving P. Denote by ϕ(S′) = (ρ′, (τ ′u)u∈U) the
decomposition of S′. As ϕ is a homomorphism, ϕ(SS′) = ϕ(S)⍟ ϕ(S′). Then, the
decomposition of SS′ is given for any x = u + v in Fn2 by

SS′(u + v) = ρρ′(u) + τρ′(u)τ ′u(v) .

In addition, the decomposition of S−1 is given by the formula

S−1(u + v) = ρ−1(u) + τ−1
ρ(u) .

Finally, Equation (4.6) asserts that the number of S-boxes preserving L(V ) is given
by

(2n−d !) × (2d !)2n−d .

4.2. Differential and linear analyses

First, let us recall some basic facts about the differential and linear properties of
S-boxes detailed in Chapter 1. Consider an n-bit S-box S and two elements a, b of
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Fn2 . The probability of the differential (a, b) and the correlation of the approximation
(a, b) with respect to S are defined to be

DPS(a, b) = 2−n ×#{x ∈ Fn2 ∣ S(x) + S(x + a) = b} ,
CS(a, b) = 2−(n−1) ×#{x ∈ Fn2 ∣ ⟨a, x⟩ = ⟨b, S(x)⟩} − 1 .

The linear potential of the approximation (a, b) of S is then the square of its
correlation, that is LPS(a, b) = CS(a, b)2. The maximum differential probability
DPmax

S , the maximum absolute correlation Cmax
S and the maximum linear potential

LPmax
S of S are defined to be

DPmax
S = max{DP(a, b) ∣ a ∈ (Fn2)∗, b ∈ Fn2} ,

Cmax
S = max{ ∣C(a, b)∣ ∣ a ∈ Fn2 , b ∈ (Fn2)∗} ,

LPmax
S = max{LP(a, b) ∣ a ∈ Fn2 , b ∈ (Fn2)∗} = (Cmax

S )2 .

Moreover, in Chapter 1 Section 1.5.1, we have observed that DPS(a, b) is a multiple
of 2−(n−1) and that DPmax

S ≥ 2−(n−1). According to the Sidelnikov-Chabaud-Vaudenay
bound (see Equations (1.13) and (1.14)), we have

Cmax
S ≥ 2−n−1

2 , LPmax
S ≥ 2−(n−1) . (4.7)

Now, assume that S preserves the partition L(V ). In the previous section, we
have proven that S can be constructed using permutations with smaller domains.
More precisely, Theorem 4.4 establishes the existence of a permutation ρ of U and
permutations (τu)u∈U of V such that the relation

S(u + v) = ρ(u) + τu(v)

holds for every x = u + v in Fn2 . This decomposition is fixed in the remainder
of this section. In view of this result, it is natural to wonder if the differential
probabilities and linear potentials of S are related to the ones of the permutations in
its decomposition. The first problem is that these notions are defined for vectorial
Boolean function whereas the domains of ρ and the τu are proper subspaces of Fn2 . To
solve this problem, we identify U with Fn−d2 and V with Fd2 using two isomorphisms,
and then consider the permutations induced by ρ and the τu on these sets.
Notation 4.14. Let BU = (ui)i<n−d and BV = (vi)i<n−d be two bases of U and V
respectively. Define the following mappings:

LU ∶ Fn−d2 Ð→ U LV ∶ Fd2 Ð→ V

(xn−d−1, . . . , x0)z→ ∑n−d−1
i=0 xiui , (yd−1, . . . , y0)z→ ∑d−1

i=0 yivi .

It is easily seen that LU and LV are both isomorphisms of vector spaces. Define ρ̄ to
be the permutation L−1

U ○ ρ ○ LU induced by ρ on Fn−d2 . Similarly, for each u in U ,
denote by τ̄u the permutation L−1

V ○ τu ○LV induced by τu on Fd2.
The following lemma explains how a permutation µ of an m-dimensional subspace

W of Fn2 is linked to the differential probabilities and correlations of its induced
permutation µ̄ on Fm2 .
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Lemma 4.15. Let W be an m-dimensional subspace of Fn2 and let L be an
isomorphism from Fm2 to W . Consider a permutation µ of W and denote by µ̄ its
induced permutation L−1 ○ µ ○L on Fm2 . Let a and b be elements of W and denote
a′ = L−1(a), b′ = L−1(b), at = L⊺(a) and bt = L⊺(b). Then,

2m ×DPµ̄(a′, b′) = #{w ∈W ∣ µ(w) + µ(w + a) = b} ,
2m−1 × (Cµ̄(at, bt) + 1) = #{w ∈W ∣ ⟨a,w⟩ = ⟨b, µ(w)⟩} .

Proof. We begin with the correlation matrix of the permutation µ̄ induced by µ on
Fm2 . It is easily seen that

2m−1 × (Cµ̄(at, bt) + 1) = #{x ∈ Fm2 ∣ ⟨at, x⟩ = ⟨bt, µ̄(x)⟩}
= #{x ∈ Fm2 ∣ ⟨L⊺(a), x⟩ = ⟨L⊺(b), L−1µL(x)⟩}
= #{x ∈ Fm2 ∣ ⟨a,L(x)⟩ = ⟨b, µ(L(x))⟩} .

Denote by E the set on the right side of the previous equation. As L is bijective, the
set E and its image L(E) have the same cardinality. Thus, replacing E by L(E)
yields

2m−1 × (Cµ̄(at, bt) + 1) = #{w ∈W ∣ ⟨a,w⟩ = ⟨b, µ(w)⟩} .

Next, it remains to prove the statement about the differential probability of µ̄.
By definition,

2m ×DPµ̄(a′, b′) = #{x ∈ Fm2 ∣ µ̄(x) + µ̄(x + a′) = b′}
= #{x ∈ Fm2 ∣ L−1µL(x) +L−1µL(x +L−1(a)) = L−1(b)} .

Because L is bijective, L(x) = L(y) if and only if x = y. Therefore,

2m ×DPµ̄(a′, b′) = #{x ∈ Fm2 ∣ L(L−1µL(x) +L−1µL(x +L−1(a))) = LL−1(b)}
= #{x ∈ Fm2 ∣ µ(L(x)) + µ(L(x) + a) = b} .

Again, considering the image of the last set under L, we obtain

2m ×DPµ̄(a′, b′) = #{w ∈W ∣ µ(w) + µ(w + a) = b} ,

as was to be shown. ∎
Example 4.16. Consider the bases BU = (01,02,08) and BV = (07,1A) of the
subspaces U and V . Next, we define the isomorphisms LU ∶ F3

2 → U and LV ∶ F2
2 → V

following the construction given in Notation 4.14. For instance,

LU(6) = LU(110) = 1u2 + 1u1 + 0u0 = 08 + 02 = 0A .

Explicitly, these isomorphisms are given in Figure 4.4. We can now compute the
permutation ρ̄ of F3

2 and the permutations τ̄u of F2
2. For example,

ρ̄(1) = (L−1
U ○ ρ ○LU)(1) = L−1

U (ρ(01)) = L−1
U (0A) = 6 .

The permutation ρ̄ and the family (τ̄u)u∈U are illustrated in Figure 4.5, which should
be compared to the original decomposition of S represented in Figure 4.3.
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x 0 1 2 3 4 5 6 7

LU(x) 00 01 02 03 08 09 0A 0B

x 0 1 2 3

LV (x) 00 07 1A 1D

Figure 4.4: The linear transformations LU and LV .

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

τ̄00 τ̄01 τ̄02 τ̄03 τ̄08 τ̄09 τ̄0A τ̄0B

0

0

1

1

2

2

3

3

4

4

5

5

6

6

7

7

ρ̄

Figure 4.5: The family of permutations (τ̄u)u∈U and the permutation ρ̄.

4.2.1. Correlation Matrices and Linear Potentials

Until now, we have divided our imprimitive S-box S into several smaller permutations
and then transformed these permutations in order to reveal their differential and
linear properties. We begin by investigating the correlation matrix of S. Our first
result links some of its coefficients with the ones of the correlation matrix of ρ̄. Even
if the following theorem involves only few coefficients of CS, it has a significant
practical impact because these coefficients happen to be the greatest in general, and
hence determine the resistance of S against linear cryptanalysis.

Theorem 4.17. Let a and b be two elements of V ⊥ and denote by at and bt their
respective images under L⊺U . Then,

CS(a, b) = Cρ̄(at, bt) and hence LPS(a, b) = LPρ̄(at, bt) .

Proof. Let x = u + v be an element of Fn2 . According to Theorem 4.4, the decompo-
sition of S(u + v) is ρ(u) + τu(v). Consequently,

⟨a, u + v⟩ = ⟨b, S(u + v)⟩⇐⇒ ⟨a, u⟩ + ⟨a, v⟩ = ⟨b, ρ(u)⟩ + ⟨b, τu(v)⟩

as the dot product is bilinear. Recall that a and b belong to V ⊥ by assumption, so
⟨a, v⟩ and ⟨b, τu(v)⟩ are both equal to 0. This discussion proves that

{u + v ∈ Fn2 ∣ ⟨a, u + v⟩ = ⟨b, S(u + v)⟩} = {u + v ∈ Fn2 ∣ ⟨a, u⟩ = ⟨b, ρ(u)⟩} .
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Finally, combining Lemma 4.15 and the previous equation, we obtain

2n−1(CS(a, b) + 1) = #{u + v ∈ Fn2 ∣ ⟨a, u⟩ = ⟨b, ρ(u)⟩}
= #V ×#{u ∈ U ∣ ⟨a, u⟩ = ⟨b, ρ(u)⟩}
= 2d × 2n−d−1(Cρ̄(at, bt) + 1) ,

which simplifies to give CS(a, b) = Cρ̄(at, bt), as desired. ∎

Remark 4.18. Consider the transpose L⊺U of LU seen as a mapping from Fn−d2 to
Fn2 instead of U . Thus, L⊺U is a mapping from Fn2 to Fn−d2 which cannot be injective
since d > 1. According to Proposition 1.2, its kernel can be calculated as follows

Ker(L⊺U) = (ImLU)⊥ = U⊥ .

Then, observe that U⊥ ∩ V ⊥ = (U + V )⊥ = (Fn2)⊥ = {0}. Consequently, the restriction
of L⊺U to the orthogonal space of V in Fn2 is injective and hence bijective because of
the rank-nullity theorem. This discussion proves that the pairs (at, bt) as defined in
Theorem 4.17 are all distinct. Therefore, Cρ̄ is a submatrix of CS.

Corollary 4.19. The maximum linear potential of S is lower bounded by 2−(n−d−1).

Proof. As noted in Equation (4.7), there exist two elements at and bt of Fn−d2 both
non-zero such that

∣Cρ̄(at, bt)∣ = Cmax
ρ̄ ≥ 2−n−d−1

2 .

Let a and b denote the images of at and bt under (L⊺U)−1. Then, Theorem 4.17 implies
that

∣CS(a, b)∣ = ∣Cρ̄(at, bt)∣ ≥ 2−n−d−1
2 .

Multiplying both sides of this inequality by themselves yields LPS(a, b) ≥ 2−(n−d−1).
Finally, observe that a and b are non-zero and the result is proven. ∎

Remark 4.20. As explained in Section 1.5.1.c, the maximum absolute correlation
of any 4-bit S-box is lower bounded by 2 4+2

2 × 2−4 = 2−1. Therefore, if n − d = 4
the previous reasoning yields the lower bound LPmax

S ≥ 2−2, strengthening Corollary
4.19. Similarly, we know that every 2-bit S-box is affine, so has maximum absolute
correlation equals to 1. Thus, the maximum linear potential of S is also equal to 1
when n − d = 2.
Example 4.21. First of all, we should explicit the transpose of LU . Recall that
we have defined LU to be the linear mapping from F3

2 to F5
2 satisfying LU(1) = 01,

LU(2) = 02 and LU(4) = 08. Therefore, for any x in F3
2, we have

LU(x) = (x2, x1, x0) ×
⎛
⎜
⎝

0 1 0 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟
⎠
= x ×AU .

By definition, its transpose is the mapping L⊺U from F5
2 to F3

2 defined by the rule

L⊺U(x) = (x4, . . . , x0) ×A⊺
U = (x3, x1, x0) .
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Recall that V was defined to be the subspace of F5
2 spanned by {07,1A}. It is easily

checked that the vectors in {05,0B,13} are linearly independent and orthogonal to
each element of the previous basis of V . Thus, the family (05,0B,13) is a basis of
V ⊥ because this subspace is 3-dimensional. The restriction of L⊺U to V ⊥ is explicitly
given by

L⊺U(00) = 0 , L⊺U(0B) = 7 , L⊺U(13) = 3 , L⊺U(18) = 4 ,
L⊺U(05) = 1 , L⊺U(0E) = 6 , L⊺U(16) = 2 , L⊺U(1D) = 5 .

As noted above, this restriction is a bijection. We will now reorder the rows and
columns of the correlation matrix of S to highlight that Cρ̄ is one of its submatrices.
Following Theorem 4.17, the firsts row and column indices should be

(L⊺U)−1(0)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

00

, (L⊺U)−1(1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

05

, . . . , (L⊺U)−1(6)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

0E

, (L⊺U)−1(7)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

0B

.

The correlation matrix of S is illustrated in Figure 4.6 in its original then reordered
forms. Next, Figure 4.7 shows that the top left 8 × 8 submatrix of the reordered
form of CS is exactly the correlation matrix of ρ̄. It goes without saying that the
coefficients affected by Theorem 4.17 stress the structure of such a correlation matrix.
Moreover we see that they determine the absolute maximal correlation of S, as it is
generally the case. Finally, it is worth noting that

LPmax
S = (16

32)
2
= 2−2 ,

and thus S meets the bound of Corollary 4.19 with equality.

4.2.2. Differential Probabilities

Along a similar line, we will investigate the differential probabilities of S and their
links with the decomposition of S. But before stating our main results, we need two
preliminary lemmas.

Lemma 4.22. Let a = ua + va and b = ub + vb be two elements of Fn2 . Denote by U
the set {u ∈ U ∣ ρ(u) + ρ(u + ua) = ub}. Then,

2n ×DPS(a, b) = ∑
u∈U

#{v ∈ V ∣ τu(v) + τu+ua(v + va) = vb} .

Proof. Let x be any element of Fn2 . Consider the following equation

S(x) + S(x + a) = b . (4.8)

Write x as the sum u + v. According to Theorem 4.4, Equation (4.8) is equivalent to

ρ(u) + τu(v) + ρ(u + ua) + τu+ua(v + va) = ub + vb . (4.9)
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00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
00 32 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
01 ⋅ 12 -12 8 -4 ⋅ ⋅ -4 -8 -4 4 ⋅ 4 ⋅ ⋅ 4 8 -4 -12 ⋅ 4 ⋅ ⋅ 4 ⋅ -4 -12 -8 -4 ⋅ ⋅ -4
02 ⋅ -12 8 -12 -4 ⋅ -4 -8 -4 ⋅ 4 ⋅ ⋅ -12 ⋅ 12 4 ⋅ -4 ⋅ ⋅ -4 ⋅ 4 ⋅ -4 -8 -4 4 ⋅ 4 8
03 ⋅ 8 -12 12 ⋅ ⋅ -4 -4 4 4 ⋅ ⋅ -4 -12 ⋅ 8 -4 4 8 ⋅ -4 -4 ⋅ ⋅ ⋅ ⋅ 4 4 8 ⋅ 4 12
04 ⋅ -4 -4 ⋅ -4 ⋅ 8 -12 ⋅ 4 4 ⋅ -4 -8 ⋅ -12 ⋅ 4 4 ⋅ -4 8 ⋅ 4 ⋅ -4 -4 ⋅ 12 ⋅ -8 -12
05 ⋅ ⋅ ⋅ ⋅ ⋅ 16 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ -16 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 16 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 16 ⋅ ⋅
06 ⋅ ⋅ 4 4 8 ⋅ 4 -4 -4 4 8 ⋅ 12 -4 ⋅ ⋅ -12 -12 ⋅ ⋅ -4 4 ⋅ 8 ⋅ 8 4 -4 ⋅ ⋅ 12 -4
07 ⋅ -4 ⋅ 4 -12 ⋅ -4 ⋅ -4 8 12 ⋅ -8 4 ⋅ 4 -12 -8 4 ⋅ 8 -4 ⋅ -4 ⋅ 4 ⋅ -4 -4 ⋅ -12 ⋅
08 ⋅ 8 4 -4 ⋅ ⋅ 12 12 -12 4 ⋅ ⋅ -4 4 ⋅ 8 -4 4 8 ⋅ -4 -4 ⋅ ⋅ ⋅ ⋅ -12 4 8 ⋅ 4 -4
09 ⋅ 4 ⋅ -4 -4 ⋅ 4 ⋅ 4 -8 4 ⋅ 8 -4 ⋅ -4 -4 8 12 ⋅ -8 -12 ⋅ 4 ⋅ -4 ⋅ -12 -12 ⋅ -4 ⋅
0A ⋅ -4 -4 ⋅ -4 ⋅ -8 -12 ⋅ 4 -12 ⋅ -4 8 ⋅ 4 ⋅ 4 4 ⋅ -4 -8 ⋅ 4 ⋅ 12 -4 ⋅ -4 ⋅ 8 -12
0B ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ -16 ⋅ ⋅ 16 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 16 ⋅ ⋅ ⋅ ⋅ 16 ⋅ ⋅
0C ⋅ -4 -8 -4 4 ⋅ -12 8 -12 ⋅ -4 ⋅ ⋅ -4 ⋅ 4 -4 ⋅ 4 ⋅ ⋅ 4 ⋅ 12 ⋅ -12 8 4 -4 ⋅ -4 -8
0D ⋅ ⋅ 4 4 8 ⋅ 4 -4 -4 -12 8 ⋅ -4 -4 ⋅ ⋅ 4 4 ⋅ ⋅ 12 -12 ⋅ 8 ⋅ 8 4 12 ⋅ ⋅ -4 -4
0E ⋅ ⋅ ⋅ ⋅ ⋅ 16 ⋅ ⋅ ⋅ ⋅ ⋅ 16 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ -16 ⋅ 16 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0F ⋅ -4 -12 -8 12 ⋅ ⋅ -4 8 -4 4 ⋅ 4 ⋅ ⋅ 4 -8 -4 4 ⋅ 4 ⋅ ⋅ -12 ⋅ -4 -12 8 -4 ⋅ ⋅ -4
10 ⋅ -8 4 12 ⋅ ⋅ -4 12 4 4 ⋅ ⋅ -4 -12 ⋅ -8 -4 4 -8 ⋅ -4 -4 ⋅ ⋅ ⋅ ⋅ -12 4 -8 ⋅ 4 -4
11 ⋅ -4 ⋅ 4 4 ⋅ 12 ⋅ 12 8 -4 ⋅ -8 4 ⋅ 4 4 -8 4 ⋅ 8 -4 ⋅ 12 ⋅ -12 ⋅ -4 -4 ⋅ 4 ⋅
12 ⋅ 4 -4 -8 -12 ⋅ ⋅ 4 8 4 -4 ⋅ 12 ⋅ ⋅ -4 -8 4 -4 ⋅ 12 ⋅ ⋅ 12 ⋅ 4 -4 8 4 ⋅ ⋅ 4
13 ⋅ ⋅ ⋅ ⋅ ⋅ -16 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ -16 ⋅ ⋅ ⋅ ⋅ -16 ⋅ ⋅ ⋅ ⋅ 16 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
14 ⋅ 4 8 4 -4 ⋅ -4 -8 -4 ⋅ 4 ⋅ ⋅ 4 ⋅ -4 4 ⋅ 12 ⋅ ⋅ 12 ⋅ 4 ⋅ -4 -8 12 -12 ⋅ 4 8
15 ⋅ ⋅ 4 4 -8 ⋅ 4 -4 -4 -12 -8 ⋅ -4 -4 ⋅ ⋅ -12 4 ⋅ ⋅ 12 4 ⋅ -8 ⋅ -8 4 -4 ⋅ ⋅ 12 -4
16 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ -16 ⋅ ⋅ -16 ⋅ -16 ⋅ ⋅ ⋅ ⋅ 16 ⋅ ⋅
17 ⋅ 4 4 ⋅ 4 ⋅ -8 -4 ⋅ 12 12 ⋅ 4 8 ⋅ -4 ⋅ 12 -4 ⋅ 4 -8 ⋅ -4 ⋅ -12 4 ⋅ 4 ⋅ 8 -4
18 ⋅ ⋅ ⋅ ⋅ ⋅ 16 ⋅ ⋅ ⋅ ⋅ ⋅ -16 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ -16 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ -16 ⋅ ⋅
19 ⋅ 4 4 ⋅ 4 ⋅ 8 -4 ⋅ 12 -4 ⋅ 4 -8 ⋅ 12 ⋅ 12 -4 ⋅ 4 8 ⋅ -4 ⋅ 4 4 ⋅ -12 ⋅ -8 -4
1A ⋅ -4 -8 -4 -12 ⋅ 4 8 4 ⋅ 12 ⋅ ⋅ -4 ⋅ 4 12 ⋅ 4 ⋅ ⋅ 4 ⋅ -4 ⋅ 4 8 4 -4 ⋅ 12 -8
1B ⋅ -8 -12 -4 ⋅ ⋅ 12 -4 -12 4 ⋅ ⋅ -4 4 ⋅ -8 -4 4 -8 ⋅ -4 -4 ⋅ ⋅ ⋅ ⋅ 4 4 -8 ⋅ 4 12
1C ⋅ -12 -4 8 4 ⋅ ⋅ 4 -8 4 -4 ⋅ 12 ⋅ ⋅ -4 8 4 12 ⋅ 12 ⋅ ⋅ -4 ⋅ 4 -4 -8 4 ⋅ ⋅ 4
1D ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ -16 ⋅ ⋅ -16 ⋅ ⋅ ⋅ ⋅ 16 ⋅ ⋅ -16 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1E ⋅ ⋅ 4 4 -8 ⋅ 4 -4 -4 4 -8 ⋅ 12 -4 ⋅ ⋅ 4 -12 ⋅ ⋅ -4 -12 ⋅ -8 ⋅ -8 4 12 ⋅ ⋅ -4 -4
1F ⋅ -12 ⋅ 12 -4 ⋅ 4 ⋅ 4 -8 4 ⋅ 8 12 ⋅ 12 -4 8 -4 ⋅ -8 4 ⋅ 4 ⋅ -4 ⋅ 4 4 ⋅ -4 ⋅

00 05 16 13 18 1D 0E 0B 01 02 03 04 06 07 08 09 0A 0C 0D 0F 10 11 12 14 15 17 19 1A 1B 1C 1E 1F
00 32 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
05 ⋅ 16 16 ⋅ ⋅ 16 -16 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
16 ⋅ ⋅ -16 -16 -16 16 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
13 ⋅ -16 ⋅ -16 16 ⋅ -16 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
18 ⋅ 16 ⋅ -16 ⋅ -16 ⋅ -16 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1D ⋅ ⋅ -16 16 ⋅ ⋅ -16 -16 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0E ⋅ 16 -16 ⋅ 16 ⋅ ⋅ 16 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0B ⋅ ⋅ ⋅ ⋅ 16 16 16 -16 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
01 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 12 -12 8 -4 ⋅ -4 -8 -4 4 4 ⋅ 4 8 -4 -12 4 ⋅ 4 -4 -12 -8 -4 ⋅ -4
02 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ -12 8 -12 -4 -4 -8 -4 ⋅ 4 ⋅ -12 12 4 ⋅ -4 ⋅ -4 4 -4 -8 -4 4 4 8
03 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 8 -12 12 ⋅ -4 -4 4 4 ⋅ -4 -12 8 -4 4 8 -4 -4 ⋅ ⋅ 4 4 8 4 12
04 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ -4 -4 ⋅ -4 8 -12 ⋅ 4 4 -4 -8 -12 ⋅ 4 4 -4 8 4 -4 -4 ⋅ 12 -8 -12
06 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 4 8 4 -4 -4 4 8 12 -4 ⋅ -12 -12 ⋅ -4 4 8 8 4 -4 ⋅ 12 -4
07 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ -4 ⋅ 4 -12 -4 ⋅ -4 8 12 -8 4 4 -12 -8 4 8 -4 -4 4 ⋅ -4 -4 -12 ⋅
08 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 8 4 -4 ⋅ 12 12 -12 4 ⋅ -4 4 8 -4 4 8 -4 -4 ⋅ ⋅ -12 4 8 4 -4
09 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 ⋅ -4 -4 4 ⋅ 4 -8 4 8 -4 -4 -4 8 12 -8 -12 4 -4 ⋅ -12 -12 -4 ⋅
0A ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ -4 -4 ⋅ -4 -8 -12 ⋅ 4 -12 -4 8 4 ⋅ 4 4 -4 -8 4 12 -4 ⋅ -4 8 -12
0C ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ -4 -8 -4 4 -12 8 -12 ⋅ -4 ⋅ -4 4 -4 ⋅ 4 ⋅ 4 12 -12 8 4 -4 -4 -8
0D ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 4 8 4 -4 -4 -12 8 -4 -4 ⋅ 4 4 ⋅ 12 -12 8 8 4 12 ⋅ -4 -4
0F ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ -4 -12 -8 12 ⋅ -4 8 -4 4 4 ⋅ 4 -8 -4 4 4 ⋅ -12 -4 -12 8 -4 ⋅ -4
10 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ -8 4 12 ⋅ -4 12 4 4 ⋅ -4 -12 -8 -4 4 -8 -4 -4 ⋅ ⋅ -12 4 -8 4 -4
11 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ -4 ⋅ 4 4 12 ⋅ 12 8 -4 -8 4 4 4 -8 4 8 -4 12 -12 ⋅ -4 -4 4 ⋅
12 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 -4 -8 -12 ⋅ 4 8 4 -4 12 ⋅ -4 -8 4 -4 12 ⋅ 12 4 -4 8 4 ⋅ 4
14 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 8 4 -4 -4 -8 -4 ⋅ 4 ⋅ 4 -4 4 ⋅ 12 ⋅ 12 4 -4 -8 12 -12 4 8
15 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 4 -8 4 -4 -4 -12 -8 -4 -4 ⋅ -12 4 ⋅ 12 4 -8 -8 4 -4 ⋅ 12 -4
17 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 4 ⋅ 4 -8 -4 ⋅ 12 12 4 8 -4 ⋅ 12 -4 4 -8 -4 -12 4 ⋅ 4 8 -4
19 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 4 ⋅ 4 8 -4 ⋅ 12 -4 4 -8 12 ⋅ 12 -4 4 8 -4 4 4 ⋅ -12 -8 -4
1A ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ -4 -8 -4 -12 4 8 4 ⋅ 12 ⋅ -4 4 12 ⋅ 4 ⋅ 4 -4 4 8 4 -4 12 -8
1B ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ -8 -12 -4 ⋅ 12 -4 -12 4 ⋅ -4 4 -8 -4 4 -8 -4 -4 ⋅ ⋅ 4 4 -8 4 12
1C ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ -12 -4 8 4 ⋅ 4 -8 4 -4 12 ⋅ -4 8 4 12 12 ⋅ -4 4 -4 -8 4 ⋅ 4
1E ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 4 -8 4 -4 -4 4 -8 12 -4 ⋅ 4 -12 ⋅ -4 -12 -8 -8 4 12 ⋅ -4 -4
1F ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ -12 ⋅ 12 -4 4 ⋅ 4 -8 4 8 12 12 -4 8 -4 -8 4 4 -4 ⋅ 4 4 -4 ⋅

V ⊥

V ⊥

Figure 4.6: The reordered correlation matrix of S (multiplied by 25).
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4.2 – Differential and linear analyses

00 05 16 13 18 1D 0E 0B
00 32 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
05 ⋅ 16 16 ⋅ ⋅ 16 -16 ⋅
16 ⋅ ⋅ -16 -16 -16 16 ⋅ ⋅
13 ⋅ -16 ⋅ -16 16 ⋅ -16 ⋅
18 ⋅ 16 ⋅ -16 ⋅ -16 ⋅ -16
1D ⋅ ⋅ -16 16 ⋅ ⋅ -16 -16
0E ⋅ 16 -16 ⋅ 16 ⋅ ⋅ 16
0B ⋅ ⋅ ⋅ ⋅ 16 16 16 -16

25 ×CS(a, b)
0 1 2 3 4 5 6 7

0 8 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1 ⋅ 4 4 ⋅ ⋅ 4 -4 ⋅
2 ⋅ ⋅ -4 -4 -4 4 ⋅ ⋅
3 ⋅ -4 ⋅ -4 4 ⋅ -4 ⋅
4 ⋅ 4 ⋅ -4 ⋅ -4 ⋅ -4
5 ⋅ ⋅ -4 4 ⋅ ⋅ -4 -4
6 ⋅ 4 -4 ⋅ 4 ⋅ ⋅ 4
7 ⋅ ⋅ ⋅ ⋅ 4 4 4 -4

23 ×Cρ̄(a, b)

Figure 4.7: The 8× 8 top left submatrix of the reordered correlation matrix of S and
the correlation matrix of ρ̄.

Observe that ρ(u) + ρ(u + ua) lies in U and τu(v) + τu+ua(v + va) lies in V . Since Fn2
is the direct sum of U and V , Equation (4.9) holds if and only if the following two
equations hold:

ρ(u) + ρ(u + ua) = ub and (4.10)
τu(v) + τu+ua(v + va) = vb . (4.11)

By definition, the statement “u ∈ U” is equivalent to Equation (4.10). Then, denoting
by P (u, v) the assertion “Equation (4.11) holds”, we have

2n ×DPS(a, b) = #{x ∈ Fn2 ∣ (4.8) holds}
= #{(u, v) ∈ U × V ∣ u ∈ U and P (u, v)} = ∑

u∈U
#{v ∈ V ∣ P (u, v)} .

The result is proven. ∎

Lemma 4.23. Let λ, µ be two permutations of V . For each va, vb in V , denote by
D(va, vb) the set {v ∈ V ∣ µ(v) + λ(v + va) = vb}. Let va, vb be elements of V . Then,

∑
ṽb∈V

#D(va, ṽb) = ∑
ṽa∈V

#D(ṽa, vb) = #V .

Proof. Firstly, we contend that ⋃ṽb∈V D(va, ṽb) is equal to V . Indeed, V is included
in ⋃ṽb∈V D(va, ṽb) since any element v belongs to D(va, µ(v) + λ(v + va)) and the
converse inclusion clearly holds. It goes without saying that the sets D(va, ṽb) are
pairwise disjoint. Thus,

#V = # ⋃
ṽb∈V

D(va, ṽb) = ∑
ṽb∈V

#D(va, ṽb) .

Next, we claim that ⋃ṽa∈V D(ṽa, vb) is equal to V . As previously, we only need to
prove that V is included in ⋃ṽa∈V D(ṽa, vb). Let v in V . Since λ is onto, there exists
an element x of V such that λ(x) = µ(v) + vb. Then, v lies in D(x + v, vb), proving
our claim. Moreover, the sets D(ṽa, vb) are pairwise disjoint because λ is one-to-one,
implying that #V = ∑ṽa∈V #D(ṽa, vb) as desired. ∎
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Chapter 4 – Analysis of a Backdoor S-Box

Now is the time to introduce our first theorem about the differential probabilities
of S. Unlike Theorem 4.17, the next result involves all the coefficients of the matrix
DPS, thereby underlining its global structure.

Theorem 4.24. Let a = ua + va and b = ub + vb be elements of Fn2 and denote by u′a
and u′b their images under L−1

U . It holds that

∑
i∈[ua]

DPS(i, b) =∑
j∈[ub]

DPS(a, j) = DPρ̄(u′a, u′b) .

Especially, DPS(a, b) ≤ DPρ̄(u′a, u′b) and thus DPmax
S ≤ DPmax

ρ̄ .

Proof. Denote by U the set {u ∈ U ∣ ρ(u) + ρ(u + ua) = ub}. According to Lemma
4.22, we have

2n ×∑
i∈[ua]

DPS(i, b) = 2n ×∑
ṽa∈V

DPS(ua + ṽa, b)

=∑
ṽa∈V

(∑
u∈U

#{v ∈ V ∣ τu(v) + τu+ua(v + ṽa) = vb}) .

Reversing the order of summation, we get

2n ×∑
i∈[ua]

DPS(i, b) =∑
u∈U

( ∑
ṽa∈V

#{v ∈ V ∣ τu(v) + τu+ua(v + ṽa) = vb}) .

In the same way, it can be proven that

2n ×∑
j∈[ub]

DPS(a, j) = ∑
u∈U

( ∑
ṽb∈V

#{v ∈ V ∣ τu(v) + τu+ua(v + va) = ṽb}) .

By virtue of Lemma 4.23, we have

2n ×∑
i∈[ua]

DPS(i, b) = 2n ×∑
j∈[ub]

DPS(a, j) = ∑
u∈U

#V = #U × 2d .

Finally, Lemma 4.15 ensures that #U = 2n−d ×DPρ̄(u′a, u′b). The result follows. ∎

The next result is the analog of Theorem 4.17 for the differential probabilities. In
a similar way, it considers few coefficients of DPS but these coefficients are generally
the greatest. Therefore, this result will be used to derive a lower bound on the
resistance of S against differential cryptanalysis.

Theorem 4.25. Let va and vb be two elements of V and denote by v′a and v′b their
respective images under L−1

V . Then

DPS(va, vb) =
1

2n−d ∑u∈U
DPτ̄u(v′a, v′b) .

Particularly, the family (DPS(va, vb))va,vb∈V is uniquely determined by (DPτ̄u)u∈U .
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4.2 – Differential and linear analyses

Proof. Applying Lemma 4.22 with a = 0 + va and b = 0 + vb yields

2n ×DPS(va, vb) = ∑
u∈U

#{v ∈ V ∣ τu(v) + τu(v + va) = vb} ,

since U = {u ∈ U ∣ ρ(u) + ρ(u + 0) = 0} = U . Then, Lemma 4.15 ensures that

∑
u∈U

#{v ∈ V ∣ τu(v) + τu(v + va) = vb} = ∑
u∈U

2d ×DPτ̄u(v′a, v′b) .

Simplifying, we obtain the desired result. ∎

Corollary 4.26. The maximum differential probability of S is lower bounded by
the smallest multiple of 2−(n−1) being directly greater than or equal to 1

2d−1 .

Proof. Let va be a nonzero element of V . Applying Theorem 4.24 with a = 0 + va
and b = 0 + 0 yields

∑
j∈[0]

DPS(va, j) = DPρ̄(0,0) = 1 .

Since [0] = V , we have ∑v∈V DPS(va, v) = 1. Moreover, we know that DPS(va,0) = 0
because va is nonzero and S is a permutation. Thus, there are at most 2d−1 elements
v in V such that DPS(va, v) is nonzero. In order to minimize DPmax

S , we would
ideally require that DPS(va, v) = 1

2d−1 for each nonzero element v of V . The result
follows since any coefficient DPS(va, v) must be a multiple of 2−(n−1). ∎

Example 4.27. As was the case for Example 4.21, we will reorder the matrix DPS

to illustrate Theorems 4.24 and 4.25. Recall that the subspaces U and V can be
expressed as

U = {LU(x) ∣ x ∈ F3
2} = {00,01,02,03,08,09,0A,0B} ,

V = {LV (x) ∣ x ∈ F2
2} = {00,07,1A,1D} .

Then, Theorem 4.24 suggests to consider the rows and columns of DPS coset by
coset. In other words, the row and column indices may be reordered as follows:

LU(0) +LV (0) , LU(0) +LV (1) , LU(0) +LV (2) , LU(0) +LV (3) ,
⋯ ⋯ ⋯ ⋯

LU(7) +LV (0) , LU(7) +LV (1) , LU(7) +LV (2) , LU(7) +LV (3) .

The natural and reordered forms of the matrix DPS are represented in Figure 4.8.
Thanks to this representation, it is now obvious that this matrix is highly structured.
But to understand it, we give the differential probabilities matrices of ρ̄ and (τ̄u)u∈U
in Figure 4.9. It is easily seen how ρ̄ globally shapes the matrix DPS. According to
Theorem 4.24, if we fix a row and add all the coefficients whose column indices lie in
the same coset, then we obtain a coefficient of DPρ̄. For instance, consider the row
06 = 01 + 07 and the coset [02]. Then

∑
j∈[02]

DPS(06, j) = DPS(06,02) + DPS(06,05) + DPS(06,18) + DPS(06,1F)
= 4

32 + 0 + 0 + 4
32

= 1
4 = DPρ̄(L−1

U (01), L−1
U (02)) = DPρ̄(1,2) .
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00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
00 32 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
01 ⋅ ⋅ ⋅ 4 ⋅ 4 ⋅ ⋅ 2 ⋅ ⋅ ⋅ ⋅ ⋅ 4 2 ⋅ ⋅ 2 4 ⋅ 2 ⋅ ⋅ 4 ⋅ ⋅ ⋅ ⋅ ⋅ 4 ⋅
02 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 2 ⋅ ⋅ ⋅ 4 2 2 ⋅ ⋅ 2 2 2 2 8 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
03 ⋅ ⋅ ⋅ 2 2 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 ⋅ ⋅ ⋅ 4 ⋅ ⋅ ⋅ ⋅ ⋅ 4 4 4 2 ⋅ ⋅ ⋅ ⋅ 2 ⋅
04 ⋅ ⋅ ⋅ 2 2 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 ⋅ ⋅ ⋅ 4 ⋅ ⋅ ⋅ ⋅ ⋅ 4 4 4 2 ⋅ ⋅ ⋅ ⋅ 2 ⋅
05 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 2 4 8 ⋅ ⋅ 2 2 4 ⋅ 2 2 2 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
06 ⋅ ⋅ 4 ⋅ 4 ⋅ ⋅ ⋅ 2 ⋅ ⋅ ⋅ ⋅ ⋅ 4 2 ⋅ ⋅ 2 4 ⋅ 2 ⋅ ⋅ ⋅ 4 ⋅ ⋅ ⋅ ⋅ ⋅ 4
07 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 12 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 8 ⋅ ⋅ 12 ⋅ ⋅
08 ⋅ 2 2 ⋅ ⋅ 2 2 ⋅ 2 ⋅ ⋅ 4 4 ⋅ ⋅ 2 ⋅ ⋅ 2 ⋅ ⋅ 2 ⋅ ⋅ 2 ⋅ ⋅ 2 2 ⋅ ⋅ 2
09 ⋅ ⋅ ⋅ 4 ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ ⋅ 4 ⋅ 2 ⋅ ⋅ ⋅ ⋅ 2 2 ⋅ 4 ⋅ ⋅ 4 ⋅ 4 4 ⋅ ⋅ ⋅
0A ⋅ 2 ⋅ ⋅ ⋅ 4 2 ⋅ ⋅ 2 2 ⋅ ⋅ 2 2 ⋅ 2 ⋅ ⋅ 2 2 ⋅ ⋅ 2 4 ⋅ ⋅ 2 2 ⋅ ⋅ ⋅
0B ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 ⋅ ⋅ 4 ⋅ 4 ⋅ ⋅ ⋅ ⋅ ⋅ 4 ⋅ ⋅ ⋅ 4 ⋅ 8 ⋅ ⋅ 4 ⋅
0C ⋅ ⋅ ⋅ 4 4 ⋅ ⋅ ⋅ 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 ⋅ 4 ⋅ ⋅ ⋅ ⋅ 4 ⋅ ⋅ ⋅ ⋅ 8 ⋅ ⋅ ⋅
0D ⋅ 2 4 ⋅ ⋅ ⋅ 2 ⋅ ⋅ 2 2 ⋅ ⋅ 2 2 ⋅ 2 ⋅ ⋅ 2 2 ⋅ ⋅ 2 ⋅ ⋅ ⋅ 2 2 ⋅ ⋅ 4
0E ⋅ 4 ⋅ ⋅ 4 ⋅ 4 ⋅ ⋅ 2 ⋅ 4 ⋅ ⋅ 2 ⋅ ⋅ 4 ⋅ 2 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 ⋅
0F ⋅ 2 2 ⋅ ⋅ 2 2 ⋅ 2 ⋅ ⋅ 4 4 ⋅ ⋅ 2 ⋅ ⋅ 2 ⋅ ⋅ 2 ⋅ ⋅ 2 ⋅ ⋅ 2 2 ⋅ ⋅ 2
10 ⋅ 2 ⋅ ⋅ ⋅ 4 2 ⋅ ⋅ 2 2 ⋅ ⋅ 2 2 ⋅ 2 ⋅ ⋅ 2 2 ⋅ ⋅ 2 4 ⋅ ⋅ 2 2 ⋅ ⋅ ⋅
11 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 8 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 4 ⋅ ⋅ ⋅ ⋅ 4 ⋅ 4 ⋅ 4 ⋅ ⋅ ⋅ ⋅ 4 ⋅
12 ⋅ 2 2 ⋅ ⋅ 2 2 ⋅ 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ 4 2 ⋅ ⋅ 2 4 ⋅ 2 ⋅ ⋅ 2 2 ⋅ ⋅ 2
13 ⋅ 4 ⋅ 4 ⋅ ⋅ 4 ⋅ ⋅ 2 ⋅ 4 ⋅ ⋅ 2 ⋅ ⋅ 4 ⋅ 2 2 ⋅ ⋅ ⋅ ⋅ 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
14 ⋅ ⋅ ⋅ ⋅ 4 ⋅ ⋅ ⋅ ⋅ 2 ⋅ ⋅ 4 ⋅ 2 ⋅ ⋅ ⋅ ⋅ 2 2 ⋅ 4 ⋅ ⋅ ⋅ ⋅ 4 4 ⋅ 4 ⋅
15 ⋅ 2 2 ⋅ ⋅ 2 2 ⋅ 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ 4 2 ⋅ ⋅ 2 4 ⋅ 2 ⋅ ⋅ 2 2 ⋅ ⋅ 2
16 ⋅ 8 ⋅ 4 4 ⋅ ⋅ ⋅ 4 ⋅ 4 ⋅ ⋅ 4 ⋅ ⋅ ⋅ ⋅ 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
17 ⋅ 2 4 ⋅ ⋅ ⋅ 2 ⋅ ⋅ 2 2 ⋅ ⋅ 2 2 ⋅ 2 ⋅ ⋅ 2 2 ⋅ ⋅ 2 ⋅ ⋅ ⋅ 2 2 ⋅ ⋅ 4
18 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 2 4 ⋅ 8 ⋅ 2 2 4 ⋅ 2 2 2 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
19 ⋅ ⋅ 4 2 2 ⋅ ⋅ ⋅ ⋅ ⋅ 4 4 ⋅ 4 ⋅ ⋅ ⋅ 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ ⋅ ⋅ ⋅ 2 4
1A ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 8 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 12 ⋅ ⋅ 12 ⋅ ⋅
1B ⋅ ⋅ 4 4 ⋅ ⋅ ⋅ ⋅ 2 4 ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ ⋅ 2 ⋅ 4 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 4
1C ⋅ ⋅ ⋅ ⋅ 4 4 ⋅ ⋅ 2 4 ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ ⋅ 2 ⋅ 4 2 ⋅ ⋅ 4 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1D ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 12 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 12 ⋅ ⋅ 8 ⋅ ⋅
1F ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 2 ⋅ ⋅ ⋅ 4 2 2 ⋅ 8 2 2 2 2 ⋅ 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1E ⋅ ⋅ 4 2 2 ⋅ ⋅ ⋅ ⋅ ⋅ 4 4 ⋅ 4 ⋅ ⋅ ⋅ 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 ⋅ ⋅ ⋅ ⋅ 2 4

00 07 1A 1D 01 06 1B 1C 02 05 18 1F 03 04 19 1E 08 0F 12 15 09 0E 13 14 0A 0D 10 17 0B 0C 11 16
00 32 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
07 ⋅ 12 8 12 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1A ⋅ 8 12 12 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1D ⋅ 12 12 8 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
01 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 4 ⋅ 4 ⋅ ⋅ 4 2 2 2 2 ⋅ 4 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
06 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 ⋅ ⋅ 4 ⋅ 4 4 ⋅ 2 2 2 2 ⋅ 4 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1B ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 ⋅ ⋅ 4 4 ⋅ ⋅ 4 2 2 2 2 4 ⋅ ⋅ 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1C ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 4 ⋅ ⋅ 4 4 ⋅ 2 2 2 2 4 ⋅ ⋅ 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
02 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 2 2 2 2 2 2 2 ⋅ 4 ⋅ 4 ⋅ ⋅ ⋅ 8
05 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 2 2 2 2 2 2 2 4 ⋅ 4 ⋅ 8 ⋅ ⋅ ⋅
18 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 2 2 2 2 2 2 2 4 ⋅ 4 ⋅ ⋅ 8 ⋅ ⋅
1F ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 2 2 2 2 2 2 2 ⋅ 4 ⋅ 4 ⋅ ⋅ 8 ⋅
03 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 4 ⋅ 2 2 2 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 4 ⋅ 4 ⋅ 4
04 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 4 ⋅ 2 2 2 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 4 ⋅ 4 ⋅ 4
19 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 ⋅ ⋅ 4 2 2 2 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 4 ⋅ ⋅ 4 ⋅ 4 ⋅
1E ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 ⋅ ⋅ 4 2 2 2 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 4 ⋅ ⋅ 4 ⋅ 4 ⋅
08 ⋅ ⋅ ⋅ ⋅ 2 2 2 2 2 2 2 2 ⋅ ⋅ ⋅ ⋅ 2 2 2 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 4 ⋅ ⋅
0F ⋅ ⋅ ⋅ ⋅ 2 2 2 2 2 2 2 2 ⋅ ⋅ ⋅ ⋅ 2 2 2 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 4 ⋅ ⋅
12 ⋅ ⋅ ⋅ ⋅ 2 2 2 2 2 2 2 2 ⋅ ⋅ ⋅ ⋅ 2 2 2 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 4
15 ⋅ ⋅ ⋅ ⋅ 2 2 2 2 2 2 2 2 ⋅ ⋅ ⋅ ⋅ 2 2 2 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 4
09 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 4 ⋅ ⋅ ⋅ ⋅ 4 ⋅ 4 ⋅ ⋅ ⋅ ⋅ ⋅ 2 2 2 2 ⋅ ⋅ ⋅ ⋅ ⋅ 4 ⋅ 4
0E ⋅ ⋅ ⋅ ⋅ 4 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 ⋅ 4 ⋅ ⋅ ⋅ ⋅ 2 2 2 2 ⋅ ⋅ ⋅ ⋅ 4 ⋅ 4 ⋅
13 ⋅ ⋅ ⋅ ⋅ 4 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 ⋅ 4 ⋅ ⋅ ⋅ ⋅ ⋅ 2 2 2 2 ⋅ ⋅ ⋅ ⋅ 4 ⋅ 4 ⋅
14 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 4 ⋅ ⋅ ⋅ ⋅ ⋅ 4 ⋅ 4 ⋅ ⋅ ⋅ ⋅ 2 2 2 2 ⋅ ⋅ ⋅ ⋅ ⋅ 4 ⋅ 4
0A ⋅ ⋅ ⋅ ⋅ 2 2 2 2 ⋅ 4 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 2 2 2 2 2 2 2 ⋅ ⋅ ⋅ ⋅
0D ⋅ ⋅ ⋅ ⋅ 2 2 2 2 4 ⋅ ⋅ 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 2 2 2 2 2 2 2 ⋅ ⋅ ⋅ ⋅
10 ⋅ ⋅ ⋅ ⋅ 2 2 2 2 ⋅ 4 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 2 2 2 2 2 2 2 ⋅ ⋅ ⋅ ⋅
17 ⋅ ⋅ ⋅ ⋅ 2 2 2 2 4 ⋅ ⋅ 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 2 2 2 2 2 2 2 2 ⋅ ⋅ ⋅ ⋅
0B ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 8 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 4 ⋅ 4 ⋅ 4 ⋅ ⋅ ⋅ ⋅ 4 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
0C ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 8 ⋅ ⋅ ⋅ ⋅ 4 4 ⋅ ⋅ 4 ⋅ 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 4 ⋅ ⋅ ⋅ ⋅
11 ⋅ ⋅ ⋅ ⋅ ⋅ 8 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 4 ⋅ 4 ⋅ 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 4 ⋅ ⋅ ⋅ ⋅
16 ⋅ ⋅ ⋅ ⋅ 8 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 4 4 ⋅ ⋅ 4 ⋅ 4 ⋅ ⋅ ⋅ ⋅ ⋅ 4 4 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

[00]

[00]

[01]

[01]

[02]

[02]

[03]

[03]

[08]

[08]

[09]

[09]

[0A]

[0A]

[0B]

[0B]

Figure 4.8: The reordered differential probabilities matrix of S (multiplied by 25).
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0 1 2 3 4 5 6 7
0 8 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
1 ⋅ ⋅ 2 2 2 2 ⋅ ⋅
2 ⋅ ⋅ ⋅ ⋅ 2 2 2 2
3 ⋅ ⋅ 2 2 ⋅ ⋅ 2 2
4 ⋅ 2 2 ⋅ 2 ⋅ ⋅ 2
5 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2
6 ⋅ 2 2 ⋅ ⋅ 2 2 ⋅
7 ⋅ 2 ⋅ 2 2 ⋅ 2 ⋅

23 ×DPρ̄

0 1 2 3
0 4 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ 4
2 ⋅ ⋅ 4 ⋅
3 ⋅ 4 ⋅ ⋅

22 ×DPτ̄03

0 1 2 3
0 4 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ 4
2 ⋅ 4 ⋅ ⋅
3 ⋅ ⋅ 4 ⋅

22 ×DPτ̄02

0 1 2 3
0 4 ⋅ ⋅ ⋅
1 ⋅ ⋅ ⋅ 4
2 ⋅ ⋅ 4 ⋅
3 ⋅ 4 ⋅ ⋅

22 ×DPτ̄01

0 1 2 3
0 4 ⋅ ⋅ ⋅
1 ⋅ 4 ⋅ ⋅
2 ⋅ ⋅ ⋅ 4
3 ⋅ ⋅ 4 ⋅

22 ×DPτ̄00

0 1 2 3
0 4 ⋅ ⋅ ⋅
1 ⋅ 4 ⋅ ⋅
2 ⋅ ⋅ ⋅ 4
3 ⋅ ⋅ 4 ⋅

22 ×DPτ̄0B

0 1 2 3
0 4 ⋅ ⋅ ⋅
1 ⋅ ⋅ 4 ⋅
2 ⋅ ⋅ ⋅ 4
3 ⋅ 4 ⋅ ⋅

22 ×DPτ̄0A

0 1 2 3
0 4 ⋅ ⋅ ⋅
1 ⋅ ⋅ 4 ⋅
2 ⋅ 4 ⋅ ⋅
3 ⋅ ⋅ ⋅ 4

22 ×DPτ̄09

0 1 2 3
0 4 ⋅ ⋅ ⋅
1 ⋅ 4 ⋅ ⋅
2 ⋅ ⋅ 4 ⋅
3 ⋅ ⋅ ⋅ 4

22 ×DPτ̄08

Figure 4.9: The differential probabilities matrices of ρ̄ and (τ̄u)u∈U .

Moreover, a similar result holds when we fix a column. Next, Theorem 4.25 ensures
that the submatrix (DPS(va, vb))va,vb∈V is the average of the matrices DPτ̄u . For
instance,

DPS(07,1D) = 1
8 × (∑

u∈U
DPτ̄u(L−1

V (07), L−1
V (1D))) = 1

8 × (∑
u∈U

DPτ̄u(1,3))

= 1
8 × (0 + 1 + 1 + 1 + 0 + 0 + 0 + 0) = 3

8 = 12
32 .

To conclude, let us take a look at the bound given in Corollary 4.26. The maximal
differential probability of S is lower bounded by the smallest multiple of 2−(5−1) = 2

32
greater than

1
22 − 1 =

10 + 2
3

32 hence 12
32 .

Since DPmax
S = 12

32 this bound is tight for (n, d) = (5,2).

4.2.3. Designing a Backdoor S-Box

Relying on the results obtained so far, we will derive a construction for almost
optimal partition-based backdoor S-boxes. For this purpose, let us summarize what
we have learned from the three theorems of this section.

• According to Theorems 4.17 and 4.24 the maximum linear potential and
differential probability of the permutation ρ̄ should be as low as possible.

• In addition, Theorem 4.25 ensures that the sum of the matrices DPτ̄u should
have the smallest possible coefficients.

All the bounds given by Corollaries 4.19, 4.26 and Remark 4.20 for each 2 ≤ n ≤ 10
and 1 ≤ d < n are gathered in Figure 4.10.
Remark 4.28. By an (n, d)-PBB S-box, we mean an n-bit partition-based backdoor
S-box mapping the linear partition associated with a d-dimensional subspace to
another linear partition. As can be seen in Figure 4.10, if d is close to 0, any
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Figure 4.10: Lower bounds on maximum differential probability and linear potential
of an S-box S mapping L(V ) to L(W ) where V and W are both d-dimensional
subspaces of Fn2 .
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(n, d)-PBB S-box is weak against differential cryptanalysis. Inversely, is d is close to
n, then any (n, d)-PBB S-box is weak against linear cryptanalysis. Therefore, an
(n, d)-PBB S-box which resists differential and linear cryptanalysis must be such
that d ≈ n

2 .
Let n be a positive integer. Choose two proper d-dimensional subspaces V and

W of Fn2 and an isomorphism L from V to W . We now detail how to design a “good”
S-box mapping L(V ) to L(W ). First, choose a complement subspace U of V in Fn2
and define the isomorphisms LU and LV . Then, proceed as follows.

1. Construct a permutation ρ̄ of Fn−d2 which is (almost) optimal with respect to
differential and linear cryptanalysis.

2. Construct a family of permutations (τ̄u)u∈U of Fd2 such that the sum (denoted
by SDP) of their differential probability matrices satisfies

1
2n−d × max

a,b∈(Fn2 )∗
SDP(a, b) is close to the bound of Corollary 4.26 .

3. Define the permutation S of Fn2 by the formula

S(u + v) = (LU ○ ρ̄ ○L−1
U )(u) + (LV ○ τ̄u ○L−1

V )(v) .

4. If DPmax
S and LPmax

S are close to the bounds of Figure 4.10, then L ○ S is a
good S-box mapping L(V ) to L(W ). Otherwise, return to Step 1.

The reader may refer to Section 1.5.1.c which enumerates several families of
permutations with optimal (or almost optimal) resistance against differential and
linear cryptanalysis. Once we have such a permutation, other permutations which
have the same differential and linear properties can be obtained using the affine-
equivalence (see Equation (4.1)), the EA-equivalence or the CCZ-equivalence [34] (see
[20]). When d is greater than 4, we suggest to search for the family of permutations
(τ̄u)u∈U among the permutations with good differential properties. In practice, we
obtain partition-based backdoor S-boxes close to the bounds of Figure 4.10 after a
small number of iterations.

4.3. A Toy Partition-Based Backdoor Cipher

Before concluding in the next section, we introduce a toy partition-based backdoor
cipher called TBC (standing for Toy Backdoor Cipher) to illustrate this and the
previous chapters.

4.3.1. Specification of TBC

TBC is a substitution-permutation network processing a 36-bit block of plaintext
using a 36-bit cipher key. The round function of TBC is quite simple and is largely
inspired from the lightweight cipher Present [17] and its small-scale variants Small-
Present [69]. Just as in all substitution permutation networks, the round function
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.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F

0. 37 34 17 3E 1A 0E 10 04 15 1C 3D 3C 12 26 30 24
1. 13 2A 31 02 0F 2B 2D 0B 11 00 1B 20 05 21 07 03
2. 3F 1E 35 16 32 06 18 2E 1F 14 1D 36 38 2C 3A 0C
3. 3B 08 33 0A 0D 09 25 01 19 28 39 22 2F 23 27 29

Figure 4.11: The 6-bit S-box S (left) and the 12-bit diffusion D (right) of TBC.

⊕

S S S S S S

k[i]

Figure 4.12: The round function Fk[i] of TBC.

consists of a round-key addition, a substitution layer and a diffusion layer. The
substitution layer uses one 6-bit S-box which is applied six times in parallel across the
36 bits of the block. This S-box is denoted by S and is defined in Figure 4.11. Then
the diffusion layer is a bit permutation (see Definition 1.12) given by the formula

φ(i) = 6 × (imod 6) + ⌊ i6⌋ .

A diagrammatic representation of the round function is provided in Figure 4.12. The
encryption process consists of 21 iterative applications of this round function, then
ends with a key addition. Therefore, the last round is equal to the other rounds and
the encryption requires 22 round keys.

The TBC key schedule is inspired by the AES-128 key schedule. The cipher key
K is also the first round key k[0] and each round key k[i] is computed by applying
a function Gi to the preceding round key k[i−1]. This function uses a 12-bit linear
permutation D illustrated in Figure 4.11. Explicitly, the linear diffusion D is defined
for each x in F12

2 by the rule

D(x0, . . . , x11) = (x2 + x3 + x10 + x11, x10 + x11,
x4 + x5 + x8 + x9 , x8 + x9 ,
x0 + x1 + x6 + x7 , x6 + x7 ,
x5 + x11 , x11 ,
x3 + x7 , x7 ,
x1 + x9 , x9 ) .
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RC

S S

D

⊕

D

⊕

D

⊕

k0[i]

k0[i+1]

k1[i]

k1[i+1]

k2[i]

k2[i+1]

k3[i]

k3[i+1]

k4[i]

k4[i+1]

k5[i]

k5[i+1]

Figure 4.13: The round function Gi of TBC key schedule.

For instance, D maps (30 ∥ 07) to (0C ∥ 31). Now, let us explain how the round
function Gi of the key schedule derives the round key k[i+1] from k[i]. First, the
diffusion D is applied three times in parallel to k[i] to obtain a 36-bit block denoted
by x, that is to say

D(k[i]
0 ∥ k[i]

1 ) = (x0 ∥ x1) , D(k[i]
2 ∥ k[i]

3 ) = (x2 ∥ x3) , D(k[i]
4 ∥ k[i]

5 ) = (x4 ∥ x5) .

Then, compute (y4 ∥ y5) = (S(x4 + ri) ∥ S(x5)). Here x4 + ri denotes the addition
of the round constant ri which is performed in F6

2, so is just a bitwise exclusive or
(Xor) between x6 and ri. The round constant ri is equal to the integer i+1 expressed
in binary. For instance r0 = 01 and r9 = 0A. Finally, the next round key k[i+1] is
computed as follows:

(k0
[i+1] ∥ k1

[i+1]) = (x0 ∥ x1) + (y4 ∥ y5) ,
(k2

[i+1] ∥ k3
[i+1]) = (x2 ∥ x3) + (k0

[i+1] ∥ k1
[i+1]) ,

(k4
[i+1] ∥ k5

[i+1]) = (x4 ∥ x5) + (k2
[i+1] ∥ k3

[i+1]) .

An illustration of the round function of TBC key schedule is given in Figure 4.13.

4.3.2. Differential and Linear Cryptanalysis

It is easily checked with a computer that the S-box S has maximum linear potential
equal to 2−2 and maximum differential probability equal to 14

64 = 1.75 × 2−3. Since
any linear or differential trail has at least one active S-box per round, we can upper
bound the potential of an optimal 20-round linear trail by (2−2)20 = 2−40 and the
probability of an optimal 20-round differential trail by (1.75 × 2−3)20 ≈ 1.11 × 2−46.

Using the algorithm OptTrail presented in Chapter 2, we have proven that the
potential of an optimal 19-round linear trail is really equal to 2−40 but the probability
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of an optimal 19-round differential trial is equal to 1.76 × 2−49. Therefore, a linear
cryptanalysis would require c×240 known plaintext/ciphertext pairs and a differential
cryptanalysis c × 249 chosen plaintext/ciphertext pairs with c ≥ 5. Since there are
only 236 different plaintext blocks, this cipher is practically secure against differential
and linear cryptanalysis.

Observe that we have used here the heuristic measure [57], so we have never
considered the probability of an optimal 19-round differential. As will be seen in
Section 4.3.4, TBC is actually weak with respect to differential cryptanalysis.

4.3.3. The Backdoor

As claimed in introduction, TBC is a partition-based backdoor cipher. Thus, the
encryption function maps a partition of the plaintext space to a partition of the
ciphertext space, no matter the cipher key used. More precisely, this property still
holds with independent round keys, and hence the theoretical framework of Chapter
3 applies.

Since the diffusion layer of TBC is strongly proper over 1 round, we know that
the S-box S maps a non-trivial linear partition L(V ) to another partition L(W ).
Actually, S preserves the partition L(V ) where V is the subspace of F6

2 defined to be

V = span(20,08,02) = {(x5,0, x3,0, x1,0) ∣ x5, x3, x1 ∈ F2} .

Probably the simplest complement subspace U of V in F6
2 is

U = span(10,04,01) = {(0, x4,0, x2,0, x0) ∣ x4, x2, x0 ∈ F2} .

Therefore, L(V ) is equal to {u + V ∣ u ∈ U}. Knowing that S preserves L(V ), it is
easily seen that the substitution layer preserves any linear partition of the form

L(
5
∏
i=0
Ei) where for each i, Ei = {06} or Ei = V or Ei = F6

2 .

Denote by π the diffusion layer of TBC. If π maps the subspace E = ∏5
i=0Ei to

E′ =∏5
i=0E

′
i, then one (and only one) of the following cases holds

• E = E′ = (V × {06})3,
• E = (F6

2 × {06})3 and E′ = V 6,
• E = V 6 and E′ = (F6

2 × {06})3,
• E = E′ = (F6

2 × V )3.

All these cases are illustrated in Figure 4.14. Next, we can easily derive the next
theorem from Proposition 3.23 and 3.25.

Theorem 4.29 (TBC Round Function). The round function F of TBC
preserves at the same time the linear partitions L((V × {06})3) and L((F6

2 × V )3).
Moreover, it maps L((F6

2 × {06})3) to L(V 6) and vice versa. Since the encryption
function is a composition of 21 round functions with a final round key addition, the
same result holds for the whole encryption process.
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Figure 4.14: Spaces used by the linear mappings of TBC.
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4.3.3.a. Basic and Multiple Partitions Attacks

In Chapter 3 Section 3.1.3, we have presented several ways to exploit such a backdoor
following Paterson’s work [88]. Denoting by G the group generated by the round
functions, Theorem 4.29 ensures that L((V × {06})3) and L((F6

2 × V )3) are two
G-invariant partitions. Consider for instance the partition B = L((V × {06})3). First,
we need an efficient description of B, namely we require that

• it must be easy to give one representative message for each part of B,
• given a message x, it must be easy to enumerate all the messages lying in the

same part of B as x.
Because U is a complement subspace of V , the subspace (U × F6

2)3 is a complement
of (V × {06})3 in (F6

2)6. Hence, we have

L((V × {06})3) = {u + (V × {06})3 ∣ u ∈ (U × F6
2)3} .

Thus, each message in (F6
2)6 can be written as

((v00,u01, v02,u03, v04,u05), (u10,u11,u12,u13,u14,u15), (v20,u21, v22,u23, v24,u25),
(u30,u31,u32,u33,u34,u35), (v40,u41, v42,u43, v44,u45), (u50,u51,u52,u53,u54,u55)) .

The bits ui give the coset representative of the message and bits vi represent its
index within this coset.

We can now present a basic cryptanalysis. Let K be an unknown cipher key and
denote by EK the encryption function of TBC associated with K. For each u in
(U ×F6

2)3, require its encryption c = EK(u) and denote by cu its coset representative
in (U × F6

2)3. Thus, we have to store 227 pairs (u, cu). Next, assume that we are
given an unknown ciphertext c. We can then compute its coset representative cu and
obtain a representative of the corresponding plaintext. In other words, the plaintext
lies in the set cu + (V × {06})3.

To summarize, this cryptanalysis requires 227 chosen plaintexts. Then, we recover
29 plaintext candidates for each unknown ciphertext, compromising seriously the
security of TBC. Inversely, the same cryptanalysis based on the partition L((F6

2×V )3)
requires only 29 chosen plaintexts but yields 27 bits of uncertainty on each plaintext.

Finally, it is a simple matter to verify that this cryptanalysis can be generalized
to any partition-based backdoor cipher. Knowing that the encryption function maps
L((F6

2 × {06})3) to L(V 6), we can attack the cipher with 218 chosen plaintexts. Then
we can recover 18 bits of the plaintext corresponding to an unknown ciphertext.
Since the encryption process also maps L(V 6) to L((F6

2 ×{06})3), we deduce another
cryptanalysis with the same parameters. Nonetheless, these two attacks can be
combined as described in Section 3.1.3. The resulting cryptanalysis needs 2 × 218

chosen plaintexts but can then recover 27 bits of any plaintext.

4.3.3.b. Key Schedule Dependent Attack

Even if this last cryptanalysis gives a clear advantage to any attacker aware of the
backdoor, we can do much better using a key schedule dependent attack. As can
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be seen in Figure 4.14, the diffusion D preserves the partitions L(V × {06}) and
L(F6

2 ×V ), maps L(F6
2 × {06}) to L(V 2) and maps L(V 2) to L(F6

2 × {06}). Referring
now to Figure 4.13, it is straightforward to check that Theorem 4.29 still holds if we
consider the round function of the key schedule.

Corollary 4.30 (TBC Key Schedule). Each round Gi of TBC key schedule
preserves L((V × {06})3) and L((F6

2 × V )3). In addition, it maps L((F6
2 × {06})3) to

L(V 6) and inversely.

Assume that A and B are two subspaces of F36
2 such that for each round key k

the round function Fk maps L(A) to L(B). Consider two round keys k and k′ lying
in the same coset of A. Since the linear partition L(A) is equal to the quotient space
F36

2 /A and since the cosets k +A and k′ +A are equal, the key additions αk and αk′
induce the same permutation of L(A). As a consequence, for each message x in F36

2 ,
it holds that

Fk(x +A) = Fk′(x +A) or equivalently Fk(x) +B = Fk′(x) +B .

Combining this observation with Corollary 4.30, we deduce the following theorem.

Theorem 4.31 (Key Schedule Dependent Attack). Denote by (L(A),L(B))
an input/output partition pair given by Theorem 4.29. If two cipher keys K and K ′

lie in the same coset of A, then for each message x in F36
2 , we have

EK(x) +B = EK′(x) +B .

Let us now detail an efficient key schedule dependent cryptanalysis of TBC. Let
K be the unknown cipher key. Then obtain a few plaintext/ciphertext pairs (pi, ci).
According to our experiments, only two or three pairs are sufficient. For simplicity
of explanation, denote the cipher key K by

((v00,u01, v02,u03, v04,u05), (v10,u11, v12,u13, v14,u15), (v20,u21, v22,u23, v24,u25),
(v30,u31, v32,u33, v34,u35), (v40,u41, v42,u43, v44,u45), (v50,u51, v52,u53, v54,u55)) .

The first step considers the subspaces A = B = (F6
2×V )3. According to Theorem 4.31,

if a cipher key K ′ lies in the same coset of A as K, then for each index i, EK′(pi)
and ci lie in the same coset of B. This property can be used in the following key
recovery attack.

1. For each representative K ′ in ({06} ×U)3, test whether EK′(pi) and ci lie in
the same coset of (F6

2 × V )3 for each index i.

Among the 29 representatives tested, it should remain only one or two candidates.
Thus, we can assume that we now know the bits uij for all i, j in {1,3,5}. For the
second step, consider the subspaces A = V 6 and B = (F6

2 × {06})3.

2. For each candidate representative found in step 1,
Denote by (uij)i,j∈{1,3,5} the bits found previously.
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For each representative K ′ in U6 such that u′ij = uij for all i, j in {1, 3, 5},
test whether EK′(pi) and ci lie in the same coset of (F6

2 × {06})3 for each
index i.

After this step, we can assume that we know the bits uij for all 0 ≤ i < 6 and j in
{1,3,5}. For the third step, consider the subspaces A = B = (V × {06})3.

3. For each candidate representative found in step 2,
Denote by (uij)0≤i<6, j∈{1,3,5} the bits found previously.
For each representative K ′ in (U ×F6

2)3 such that u′ij = uij for all i, j, test
whether EK′(pi) and ci lie in the same coset of (V × {06})3 for each index
i.

Now, we know all the cipher key bits except (vij)i,j∈{0,2,4}. These nine remaining bits
are found with an exhaustive search.

4. For each candidate representative found in step 3,
Denote by (uij)ij and (vij)i,j∈{0,2,4} the bits found previously.
For each cipher K ′ such that u′ij = uij and v′ij = vij , test whether EK′(pi) =
ci holds for each index i.

A candidate cipher key in step 4 is almost always equal to the true cipher key K.
Using two pairs (pi, ci), each step requires at most 2 × 29 encryptions. Assuming

that there is only one candidate after each step, this cryptanalysis computes 4× 210 =
212 encryptions to recover the cipher key. We found experimentally that on average,
this attack performs almost 210 encryptions.

4.3.4. The Flaws of This Cipher

The main flaw of TBC is that the S-boxes are incomplete, namely there are some
output bits independent of some input bits. Unfortunately, the whole encryption
function inherits this bad property. For instance, for any message x in (F6

2)6 we have

EK(x + (F6
2 × {06})3) = EK({(y0, x1, y2, x3, y4, x5) ∣ y0, y2, y4 ∈ F6

2}) = EK(x) + V 6 .

As a consequence, every output bits which has odd index is independent of the
bundles 1, 3, and 5. This proves that TBC cannot seem to be secure, even when we
are not aware of the backdoor.

The second flaw of TBC relies on an attack introduced by Knudsen in [60], called
truncated differential cryptanalysis. An n-bit truncated difference pattern a is an
element of {0,1,⋆}n. By the set of the difference patterns associated with a, we
mean

{a} = {(x0, . . . , xn−1) ∈ Fn2 ∣ ∀i < n, (ai ∈ F2 ⇒ xi = ai)} .

For instance, the set associated with the truncated pattern (1⋆01⋆) is

{1⋆01⋆} = {10010,10011,11010,11011} .

Alternatively, a truncated difference pattern can be seen as a collection of difference
patterns. Then an r-round truncated differential is a pair (a, b) of truncated patterns
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which predicts that if two plaintexts have a difference lying in {a}, then their
corresponding ciphertexts have a difference lying in {b} with some probability. As
explained in [64, pp. 156], the term truncated draws attention to the fact that only
some bits of the output difference are predicted.

Caranti et al. established a link between imprimitive ciphers and truncated
differential cryptanalysis in [31, Corollary 4.1]. Their result can be easily generalized
to partition-based backdoor ciphers with independent round keys.

Proposition 4.32. Let E be a partition-based backdoor cipher mapping L(V )
to L(W ). If the difference of two plaintexts lies in V , then the difference of their
ciphertexts lies in W .

Proof. Consider two plaintexts p and p′ such that p + p′ is in V . Then, there exists
v in V such that p = p′ + v and hence p and p′ lis in the same coset of V . Since EK
maps L(V ) to L(W ), EK(p) belongs to the same coset of W as EK(p′). The result
follows. ∎

Now, observe that the subspace V used in the backdoor of TBC can be written
as V = {⋆0⋆0⋆0}. Combining this observation with Proposition 4.32, it is easily
seen that each input/output partitions pairs of Theorem 4.29 yields a truncated
differential with probability 1. However, we can argue that finding such a truncated
differential is equivalent to recover the backdoor.

This link with truncated differential cryptanalysis also affects the resistance of
TBC with respect to classical differential cryptanalysis. Indeed, we have just seen
that the truncated differential (a, b) where

a = b = (0⋆0⋆0⋆,000000,0⋆0⋆0⋆,000000,0⋆0⋆0⋆,000000)

holds with probability ones over any number of rounds since the round function
preserves the partition L((V × 06)3). Consequently, the (classical) differential (a, b)
with

a = b = (20,00,00,00,00,00)

also holds with high probability. Our experiments showed that this probability is
close to 2−9. Therefore, TBC is vulnerable to differential cryptanalysis, even if it
seemed secure using the heuristic measure.

4.4. Preventing Partition-Based Backdoors

To conclude this theoretical treatment of partition-based backdoor ciphers, we will
now present two criteria to prove that an SPN does not have such a backdoor. In
the previous chapter, we have considered a generic SPN which maps a partition
of the plaintext to a partition of the ciphertexts independently of the round keys
used. We have then proven that when its diffusion layer is strongly proper, at least
one of its S-boxes must map a linear partition to another one. In this chapter,
the differential and linear properties of such S-boxes have been studied. We then
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derive lower bounds on their resistance to these attacks in Corollaries 4.19, 4.26 and
Remark 4.20. Therefore, if all the S-boxes of an SPN have a better resistance than
what is possible to achieve using backdoor S-boxes, then the cipher does not have a
partition-based backdoor. This proves the following theorem.

Theorem 4.33. Consider an nm-bit substitution permutation network with m
S-boxes over Fn2 . Assume that its diffusion layer is strongly proper over r rounds. If
each S-box Si is such that for each 1 ≤ d ≤ n−1, the values LPmax

Si
and DPmax

Si
are less

than the bounds given in Figure 4.10, then the SPN does not have a partition-based
backdoor holding with independent round keys.

Moreover, if the values LPmax
Si

and DPmax
Si

are significantly less than the bounds in
Figure 4.10, then the SPN is unlikely to be a probabilistic partition-based backdoor
cipher. For instance, this criterion can be used to prove that the AES [39] is not a
(probabilistic) partition-based backdoor cipher. As explained in [23], its diffusion
layer is strongly proper over 2 rounds. In addition, the maximum linear potential
and differential probability of the AES S-box are far below the lower bounds given in
Figure 4.10, no matter what the dimension d of the subspace V is. As a consequence,
this S-box does not map any linear partition to another one.

The results of this chapter can also be used to recover a partition-based backdoor.
Consider an S-box S mapping a linear partition L(V ) to L(W ). Paying particular
attention to the correlation and differential probability matrices of S, it should not
be difficult to recover the subspaces V and W . Indeed, Theorems 4.17 and 4.25
suggest to consider the greatest coefficients of these matrices to recover the subspaces
V ⊥ and V respectively, provided that V is equal to W . However, using Proposition
4.1 and Equations (4.2) and (4.4) it is straightforward to generalize these theorems
to S-boxes mapping a linear partition to another one.

The second criteria is due to Calderini and was introduced recently in [23]. In this
paper, the author considers translation-based cipher, a family of ciphers introduced
in [30] which generalizes our definition of SPN. Intuitively, a translation-based cipher
is a substitution-permutation network in which the substitution and diffusion layers
can be round-dependent. Moreover, the key-schedule must be surjective for at least
one round, which is normally the case. We restate below Calderini’s criteria for
substitution-permutation networks.

Definition 4.34 (Strongly d-Anti-Invariant S-Box [30]). Let f ∶ Fn2 → Fn2 be
a mapping satisfying f(0n) = 0n and let 1 ≤ d < n. The mapping f is said to be
strongly d-anti-invariant if any proper subspace V of Fn2 whose image f(V ) is also a
subspace of Fn2 has dimension strictly less than n − d.
An S-box S is said to be strongly d-anti-invariant if its equivalent S-box S′ defined
by the formula S′(x) = S(x) + S(0) is strongly d-anti-invariant.

Remark 4.35. If S is strongly d-anti-invariant, then S is also i-anti-invariant for
each 1 ≤ i ≤ d. As proven in [4], S is strongly 1-anti-invariant if and only if LPmax

S < 1.
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Proposition 4.36. Assume that for each S-box Si, there exists an integer di < n
such that the following two conditions hold:

• 2n ×DPmax
Si

≤ 2dri ,
• Si is strongly (di − 1)-anti-invariant.

The permutation σ maps a linear partition L(V ) to another linear partition L(W )
if and only if both V and W are walls.

Theorem 4.37. Suppose that the substitution layer satisfies the two conditions of
Proposition 4.36 and that the diffusion layer is strongly proper over r rounds. Then,
the SPN is not a partition-based backdoor cipher.

This result is complementary to our criteria since it gives other conditions. How-
ever, we will see in the next chapter that it gives no information about probabilistic
partition-based backdoor ciphers.
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Backdoored Encryption Algorithm 1

BEA-1 (standing for Backdoored Encryption Algorithm) is a real-size probabilistic
partition-based backdoor ciphers whose design relies on the theory developed in
Chapters 3 and 4. This cipher is largely inspired by the AES, the current standard
of block ciphers, and is proven to be practically secure against linear and differential
cryptanalysis. Nonetheless, the backdoor enables recovery of the full 120-bit cipher
key in just a few seconds on a laptop computer using only 216 chosen plaintext blocks.
The success probability of this cryptanalysis was experimentally verified to be greater
that 95%.

This chapter is organized as follows. First, the specification of the cipher BEA-1
and its security analysis against linear and differential cryptanalysis are given in
Section 5.1. Next, Section 5.2 explores the hidden property of the algorithm and its
design. Secondly, the main idea of the cryptanalysis is illustrated and formalized
in Section 5.3. The full cryptanalysis of BEA-1 is then detailed in Section 5.4. To
conclude, we compare our attack to Harpes’ partitioning cryptanalysis and expose
some advantages of probabilistic partition-based backdoors. Our cipher BEA-1 was
introduced as a challenge in [10]. Its cryptanalysis was then outlined in [11] and
described in [12].

5.1. Presentation of BEA-1

The cipher BEA-1 is directly inspired by Rijndael [39], the block cipher designed
by Joan Daemen and Vincent Rijmen, now known as the AES [85]. Our algorithm
encrypts 80-bit plaintext blocks using a 120-bit cipher key. Unlike the AES, the
internal state is not seen as a matrix of bytes but as an array of 10-bit bundles.
Therefore, the message and key spaces are respectively (F10

2 )8 and (F10
2 )12.

5.1.1. Specification of the Encryption Process

The encryption consists in applying eleven times a simple keyed operation called
round function to the data block. A different 80-bit round key is used for each
iteration of the round function. Since the last round is slightly different and uses
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two round keys, the encryption requires twelve 80-bit round keys. These round keys
are derived from the 120-bit cipher key using a key schedule.

Like any other Substitution-Permutation Network, the round function is made
up of three stages: a key addition, a substitution layer and a diffusion layer.

• The key addition is just a bitwise “exclusive or” (XOR) between the data block
and the round key.

• The substitution layer consists in the parallel evaluation of four different 10-bit
S-boxes and is the only part of the cipher which is not affine. These S-boxes
are referred to as S0, S1, S2, S3 and are defined in Figures A.5, A.7, A.9 and
A.11 given in Appendix. They should not be confused with the secret S-boxes
S0, S1, S2 and S3, only used in the design and the cryptanalysis of BEA-1.

• Following the design principles of the AES, the diffusion layer comes in two
parts: the ShiftRows and the MixColumns operations. The first part is a
bundle permutation. The second evaluates in parallel the linear transformation
M ∶ (F10

2 )4 → (F10
2 )4 processing four 10-bit bundles. Because of its linearity, M

is only defined over the standard basis of (F10
2 )4 in Figure A.3 in Appendix.

For convenience, its inverse M−1 is also in the same figure.
The pseudo-code for the key schedule is given in Figure 5.1 together with an

illustration providing an overview of its structure. This representation also emphasizes
the similarities between the key schedules of BEA-1 and Rijndael. In the same way,
Figure 5.2 describes the encryption process of BEA-1.
Remark 5.1. The decryption is straightforward from the encryption since all the
transformations are bijective. Thus, to decrypt, we just have to apply the inverse
operations in the reverse order. It should be stressed that the key addition and the
ShiftRows are involutions, therefore the same operations are used in the decryption
process. Finally, note that the inverse S-boxes are not given here but can be computed
by using the equation S−1

i (S(x)) = x holding for each x in F10
2 .

5.1.2. Differential and Linear Cryptanalysis

The differential and linear branch numbers of the linear transformation were recalled
in Section 1.5.2. With an exhaustive search, it can be checked that the branch
numbers of M are both equal to five, which is the maximum. According to Theorem
1.52, any 2-round trail actives at least five S-boxes. Thus, a 10-round trail actives at
least 25 S-boxes.

It is not hard to verify with a computer that every S-box has a maximum
differential probability less than 40

210 = 1.25 × 2−5 and a maximum linear potential
equal to 2−4. Therefore, the differential probability and linear potential of any
10-round trail are upper-bounded by (1.25 × 2−5)25 ≈ 1.03 × 2−117 and (2−4)25 = 2−100

respectively. Consequently, a differential cryptanalysis of the 10-round version of
our cipher would require at least 2117 chosen plaintext/ciphertext pairs and a linear
cryptanalysis would require 2100 known plaintext/ciphertext pairs.

Even if this is a rough approximation since it does not take into account the
inter-column diffusion provided by the ShiftRows operation, it suffices to prove the
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Algorithm 5 – ExpandKey
Input. The 120-bit cipher key K = (K0, . . . ,K11) ∈ (F10

2 )12.
Output. The twelve 80-bit round keys k[0], . . . , k[11] ∈ (F10

2 )8.

1 (k0, . . . , k11)← (K0, . . . ,K11)

2 For i from 0 to 6 do
3 x←M(k12i+8, . . . , k12i+11)
4 x← (Sj(xj))j<4
5 x← (x0 ⊕ (3i mod 210), x1, x2, x3)
6 (k12i+12, . . . , k12i+15)← (k12i+0, . . . , k12i+3 )⊕ x
7 (k12i+16, . . . , k12i+19)← (k12i+4, . . . , k12i+7 )⊕ (k12i+12, . . . , k12i+15)
8 (k12i+20, . . . , k12i+23)← (k12i+8, . . . , k12i+11)⊕ (k12i+16, . . . , k12i+19)

9 For r from 0 to 11 do
10 k[r] ← (k8r+i)i<8

11 Return k[0], . . . , k[11]

M

RC

S0 S1 S2 S3

⊕
⊕

⊕

k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11

k12 k13 k14 k15 k16 k17 k18 k19 k20 k21 k22 k23

Figure 5.1: The key schedule of BEA-1.
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Algorithm 6 – Encrypt
Input. The 120-bit master key K ∈ (F10

2 )12 and the 80-bit plaintext block p ∈ (F10
2 )8.

Output. The 80-bit ciphertext block c ∈ (F10
2 )8.

1 k[0], . . . , k[11] ← ExpandKey(K)
2 x← p

3 For r from 0 to 9 do
4 x← x⊕ k[r] AddRoundKey
5 x← (Simod 4(xi))i<8 SubBundles
6 x← (x0, x5, x2, x7, x4, x1, x6, x3) ShiftRows
7 x← (M ∥M)(x) MixColumns

8 x← x⊕ k[10] AddRoundKey
9 x← (Simod 4(xi))i<8 SubBundles
10 x← (x0, x5, x2, x7, x4, x1, x6, x3) ShiftRows
11 x← x⊕ k[11] AddRoundKey

12 Return x

⊕

M M

S0 S1 S2 S3 S0 S1 S2 S3

R
ou

nd
Fu

nc
tio

nk[i]

⊕

⊕

S0 S1 S2 S3 S0 S1 S2 S3

La
st

R
ou

nd

k[10]

k[11]

Figure 5.2: The round function of BEA-1.
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cipher’s practical resistance against classical differential and linear cryptanalysis. In
fact, there are only 280 different plaintext/ciphertext pairs for a fixed cipher key.

5.2. Design of the Backdoor

The presentation of secret structure of BEA-1 comes in two parts. First, Section
5.2.1 explains the nature of this backdoor and provides all the results needed to
address the cryptanalysis. Then, the design of BEA-1’s building-blocks is given in
Sections 5.2.2 and 5.2.3. The reader who just wants to understand how the backdoor
works can skip these two sections. Indeed, they are more technical and are also
independent of the remainder of this chapter.

5.2.1. The Linear Partitions Throughout the Encryption

As said in introduction, the backdoor of BEA-1 relies on the theoretical framework
developed in Chapters 3 and 4. Thus, it should not be surprising that linear
partitions must play a key role in it. For this purpose, let us introduce the following
5-dimensional subspaces of F10

2

V0 = span(266,343,3ED,354,17F) , W0 = span(16A,11B,306,05E,0B8) ,
V1 = span(398,229,34C,251,37B) , W1 = span(04B,3B7,0D5,027,2C8) ,
V2 = span(0BA,155,307,37E,318) , W2 = span(1A9,095,107,36F,2A3) ,
V3 = span(1D1,21E,134,0DC,15A) , W3 = span(0F0,2FE,191,332,1A6) .

Denote by V and W the 40-dimensional subspaces ∏7
i=0 Vimod 4 and ∏7

i=0Wimod 4 of
message space (F10

2 )8. Therefore, the linear partitions L(V ) and L(W ) are both
made up with 240 cosets, each containing 240 elements.

The S-boxes S0, S1, S2 and S3 given in the specification of BEA-1 are actually
derived from the secret S-boxes S0, S1, S2 and S3 given in Figures A.4, A.6, A.8 and
A.10 in Appendix. The relation between the secret S-boxes Si and their modified
versions Si will be detailed later in Section 5.2.2. In the first place, let us state the
following theorem relating BEA-1 to the theory of partition-based backdoor ciphers.

Theorem 5.2. Consider the encryption function of BEA-1 where the modified
S-boxes S0, S1, S2 and S3 are replaced with their secret counterparts S0, S1, S2 and
S3. Then, the round function preserves the linear partition L(V ) of (F10

2 )8 and the
last round maps L(V ) to L(W ), no matter the round keys used. As a consequence,
the full encryption maps L(V ) to L(W ).

More precisely, Figure 5.3 depicts the evolution of the linear partition L(V )
throughout each primitive of the secret encryption process. For instance, we can see
that the S-box Si maps the linear partition L(Vi) to L(Wi) and hence the substitution
layer maps L(V ) to L(W ). Similarly, the diffusion layer comes back to the original
partition since it maps L(W ) to L(V ).
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⊕
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Figure 5.3: The linear partitions throughout the round function.

Remark 5.3. Theorem 5.2, as well as Theorem 5.4 stated hereinafter, will be
proven in Sections 5.2.2 and 5.2.3. Indeed, they establish the main properties of the
backdoor and are hence closely related to the design of the cipher’s primitives.

Thanks to Theorem 5.2, we can now explain our choices for the Vi and Wi. Each
of these subspaces of F10

2 is a 5-dimensional linear code whose minimal distance is
equal to 4. This property ensures that the Hamming distance of any two different
elements lying in the same coset is at least equal to 4. The subspaces V and W of
F80

2 inherit this property. Thus, if p is a plaintext, then any other plaintext p′ lying
in the same coset of V differs from p in at least four bits. Considering the secret
encryption function, Theorem 5.2 establishes that their ciphertexts c and c′ belong
to the same coset of W . Thus, c and c′ have at least four different bits. As it will
become clear in the next two sections, the subspaces Vi and Wi could have been
freely chosen among the 5-dimensional subspaces of F10

2 . We surmised that using
linear codes with high minimal distance should reduce the likelihood of observing
the backdoor by accident, hence our choice for the Vi and Wi.

Having explained the main property of the secret encryption function, now is the
time to introduce the following theorem establishing a link between the secret cipher
and BEA-1.

Theorem 5.4. Let F and E denote the round function and the encryption function
of BEA-1 using the secret S-boxes. Let p = p[0] be any plaintext. Define the following
elements with respect to the round keys k[0], . . . , k[10]:

p[i+1] = Fk[i](p[i]) and p[i+1] = Fk[i](p[i]) for 0 ≤ i < 11 .

Assume that the round keys k[0], . . . , k[10] are independent and uniformly distributed.
The probability that all the equations p[i] = p[i] hold for each 1 ≤ i ≤ 11 is given by

(( 944
1024)

6 × ( 925
1024)

2)11 ≈ 2−11 .

Therefore, the probability that p is encrypted equally with E and E can be approxi-
mated by 2−11.
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Remark 5.5. The fact that the MixColumns operation is replaced with a key
addition in the last round of BEA-1 does not matter in Theorem 5.4. For the sake
of simplicity, we then ignore this detail. This explains why the last round key k[11]

does not appear in the statement of this result.

Needless to say, the hypothesis that the round keys are independent and uniformly
distributed is mathematically wrong in any practical cryptanalysis. Indeed, the twelve
80-bit round keys are all extracted from one 120-bit cipher key. However, the cipher
key needs to have (at least) 960 bits to provide independence and uniform distribution
to its round keys. Such a cipher key must be related to the concept of long-key
cipher, see Definition 1.8. Nonetheless, if the cipher key is uniformly distributed, the
same applies for each round key.

In our cryptanalysis of BEA-1, we are given plaintexts with their ciphertexts
encrypted under a fixed cipher key. Even if we forget about the independence of the
round keys, each plaintext must be encrypted with a random cipher key to make use
of Theorem 5.4.

Fortunately, our experiments suggest that the proportion of the plaintexts en-
crypted equally with EK and EK is approximately 2−11, even when the round keys
are derived from a fixed cipher key K. To put it another way, if P is a subset of the
plaintext space (F10

2 )8, it seems reasonable to assume that

#{p ∈ P ∣ EK(p) = EK(p)} ≈ #P
211 . (5.1)

Now, suppose that P is included in a coset of V denoted by x + V . As the secret
encryption function EK maps L(V ) to L(W ) (see Theorem 5.2), we know that the
image of P under EK is included in a coset of W . More precisely, Lemma 3.18
establishes that EK(P) is included in y +W where y = EK(x). Hence,

{p ∈ P ∣ EK(p) = EK(p)} ⊆ {p ∈ P ∣ EK(p) ∈ (y +W )} . (5.2)

Combining (5.1) with (5.2), we conclude that approximately #P × 2−11 ciphertexts
in C = Ek(P) belong to y +W . In addition, we have observed that the ciphertexts
c = EK(p) such that EK(p) ≠ EK(p) are spread over the 240 cosets of W .

The backdoor of BEA-1 is hence the following. First, choose a set P of 216

plaintexts uniformly chosen in one coset x+V and collect their ciphertexts C = EK(P)
encrypted under an unknown cipher key K. Then search for the most represented
coset of W in C and denote by y one of its representatives. According to our
experiments, this coset should have roughly 216−11 = 32 elements and the second most
represented coset is unlikely to have more than six elements. As a consequence of
the preceding discussion, we know that the coset x + V is mapped to y +W by the
secret encryption function EK . This information can then be used to recover the
cipher key K with a low computation cost, as detailed later in Sections 5.3 and 5.4.

To conclude this section, observe that no particular property of the key schedule
has been used. It can be proven that each round of the key schedule preserves the
linear partition L(∏11

i=0Wimod 4), provided that the S-boxes Si are replaced with their
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secret equivalents Si. This implies that if two cipher keys K and K ′ are in the same
coset of∏11

i=0Wimod 4, then we can approximate the probability that each pair of round
keys k[i] et k′[i] are in the same coset of W by (9443 ⋅ 925 ⋅ 2−40)7 ≈ 2−3.5. However,
for this property to be easily exploitable, the round keys ought to stay in the same
coset of V instead of W (which can be simply achieved by switching the mappings
M and (S0 ∥ S1 ∥ S2 ∥ S3) in the key schedule). Therefore, if compared with our
cryptanalysis, this property appears not to be very useful and was intentionally left
as a wrong track.

5.2.2. The Substitution Layer

The nature of the hidden property of BEA-1 having been emphasized, this and the
following sections detail the design of the cipher’s primitives and prove Theorems
5.2 and 5.4 stated above. As explained in introduction, these two sections are aimed
at the reader who wants to understand how BEA-1 was made. For a first read,
it is possible to jump directly to Section 5.3 explaining the basic principle of the
cryptanalysis using the backdoor.

Let {0∗} and {∗0} denote respectively the subspaces {05} × F5
2 and F5

2 × {05} of
F10

2 . It should be noted that {∗0} is a complement space of {0∗} in F10
2 . The design

of each secret S-box Si rests upon a permutation S′
i of F10

2 preserving the linear
partition L({0∗}). Following Theorem 4.4, we just need to choose a permutation ρi
of {∗0} and a family (τi,u)u∈{∗0} of permutations of {0∗}. Then, we define S′

i for all
x = u + v in F10

2 to be

S′
i(x) = S′

i(u + v) = ρi(u) + τi,u(v) ,

where u is in {∗0} and v in {0∗}. The permutations ρi and τi,u were selected following
the method given in Section 4.2.3, in order to maximize the resistance of S′

i against
both differential and linear cryptanalysis.

Figure A.1 in Appendix defines the linear mappings LVi and LWi
(for 0 ≤ i < 4)

over the standard basis of F10
2 . It is worthwhile to note that these mappings are

automorphisms of F10
2 . Moreover, LVi({0∗}) = Vi and LWi

({0∗}) = Wi. By virtue
of Proposition 3.25, we know that LVi maps L({0∗}) to L(Vi) and that LWi

maps
L({0∗}) to L(Wi). Last, but not least, define for each 0 ≤ i < 4 the secret S-box Si
to be

Si = LWi
○ S′

i ○ (LVi)−1 .

These S-boxes are given in Figures A.4, A.6, A.8 and A.10 in Appendix. Obviously,
(LVi)−1 maps L(Vi) to L({0∗}), then S′

i preserves L({0∗}), and LWi
maps L({0∗})

to L(Wi). This implies the following proposition.

Proposition 5.6. For each 0 ≤ i < 4, the secret S-box Si maps L(Vi) to L(Wi).

Remark 5.7. If the reader is interested in an explicit definition of the permutations
ρi and the families of permutations (τi,u)i∈{∗0}, they can be recovered in the following
way. First, compute S′

i = (LWi
)−1 ○ Si ○LVi using the tables of Figures A.1 and A.4
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(or A.6, A.8, A.10). As noted previously, the permutation S′
i preserves the linear

partition L({0∗}). To obtain its decomposition, we just have to follow the proof
of Theorem 4.4. Thus, for each u in {∗0}, define ρi(u) to be the unique element
of {∗0} ∪ (S′

i(u) + {0∗}). It is not hard to see that ρi(u) is simply equal to the
element of F10

2 where the five leftmost bits are exactly the ones of S′
i(u) and the five

remaining bits are all zero. Lastly, for each u in {∗0}, let τi,u be the permutation of
{0∗} defined to be τi,u(v) = S′

i(u + v) + ρi(u). Again, τi,u(v) is just the 10-bit vector
having its five leftmost bits all zero and its five rightmost bits identical to the ones
of S′

i(u + v). Naturally, the permutations ρi and τi,u can be seen as permutations of
F5

2 (instead of {∗0} and {0∗}) to obtain the more convenient definition

S′
i(u ∥ v) = (ρi(u) ∥ τi,u(v)) .

The modified S-boxes Si given in the specification of BEA-1 are such that
Si(x) = Si(x) for almost all input x in F10

2 . For instance, S0(x) = S0(x) for all
except 80 elements x in F10

2 . The images of these 80 particular points are emphasized
in Figures A.4 and A.5. These modifications were chosen so as to improve the
differential and linear resistances of S0 compared to the original secret S-box S0.
More generally, Si and Si have 80 different images for i in {0, 1, 2}. The last modified
S-box S3 is less close to it secret equivalent since S3 and S3 have 99 different images.

Consequently, if x is uniformly distributed over F10
2 , then the equality Si(x) =

Si(x) holds with probability qi where

q0 = q1 = q2 =
944
1024 and q3 =

925
1024 .

This implies that when x is uniformly distributed over (F10
2 )8, the images of x

under the secret and the modified substitution layers are equal with probability
q = (∏3

i=0 qi)2.
Let p = p[0] be a plaintext. In the following, we use the notation of Theorem 5.4.

If k[i] is uniformly distributed, then so is p[i] + k[i]. Thus, p[i+1] = Fk[i](p[i]) is equal
to p[i+1] = Fk[i](p[i]) with probability q. Assuming moreover that the round keys are
independent implies that the events p[i] = p[i] for each 1 ≤ i ≤ 11 are independent.
Therefore, the probability that the equalities p[i] = p[i] hold for all 1 ≤ i ≤ 11 is given
by q11. This discussion proves Theorem 5.4.

5.2.3. The Diffusion Layer

Some components used to design the linear transformation M are defined over the
finite field F25 . In order to have an explicit construction of this field, we consider the
irreducible polynomial X5 +X2 + 1 over F2 and define F25 to be the quotient ring
F2[X]/(X5+X2+1). Let α denote the equivalence class of X in F25 . By construction,
the equality α5 + α2 + 1 = 0 holds, or equivalently, α5 = α2 + 1. Each element of F25

can hence be uniquely written as ∑4
i=0 xiα

i where (x4, . . . , x0) belongs to F5
2. More

precisely, the family (αi)i<5 is a basis of F25 seen as a 5-dimensional vector space
over F2. The field F25 will then be identified with (F2)5 via the isomorphism from F5

2
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to F25 mapping (x4, . . . , x0) to ∑4
i=0 xiα

i. For instance, the element α2 + α + 1 in F25

is identified with 07 in F5
2. Now define the 4× 4 matrices MU and MV over F25 to be

⎛
⎜⎜⎜
⎝

a b c d
b a d c
c d a b
d c b a

⎞
⎟⎟⎟
⎠

MU ∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a = α4 + α2 ,
b = α4 + α3 + α2 + α + 1 ,
c = α3 + α2 ,
d = α4 + α2 + 1 ,

MV ∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a = α3 + α2 + 1 ,
b = α4 + α3 + α2 + α ,
c = α4 + α2 + α ,
d = α3 .

It can be verified that these matrices are MDS. In other words, the [8, 4]-linear code
having G = [Id4,MU] as generator matrix has minimal distance equal to 5, which is
the maximum achievable.

Each of these matrices naturally induces an automorphism of (F25)4, and hence
of (F10

2 )4. For instance, MU maps the element x = (x0, x1, x2, x3) to x×MU . Observe
that we chose to see elements of (F10

2 )4 as row vectors to keep the common notation
of linear codes.

Example 5.8. To illustrate this notation, let us compute the image of the element
x = (00,02,00,00) of (F10

2 )4 under the automorphism induced by MU . First, x is
identified with the element (0, α,0,0) of (F25)4. Then,

(0, α,0,0) ×MU = (α(α4 + α3 + α2 + α + 1), α(α4 + α2), α(α4 + α2 + 1), α(α3 + α2))
= ( α5 + α4 + α3 + α2 + α, α5 + α3, α5 + α3 + α, α4 + α3)
= ( α4 + α3 + α + 1, α3 + α2 + 1, α3 + α2 + α + 1, α4 + α3) .

Therefore, (00,02,00,00) ×MU = (1B,0D,0F,18).

As was the case for the secret S-boxes Si, the linear transformation M rests upon
the linear transformation M ′ defined as follows:

M ′ ∶ (F10
2 )4 Ð→ (F10

2 )4

(ui ∥ vi)i<4 z→ (ρ(u)i ∥ τu(v)i)i<4

where ρ(u) = u×MU and τu(v) = v×MV +PU→V (u). The strength of this construction
is that M ′ inherits the linear and differential branch numbers of MU and MV , as
stated in the proposition hereunder. But first, we introduce the following example.

Example 5.9. Let us compute the image of x = (000,070,000,000) under M ′. As
a first step, observe that x can be written as

x = (00 ∥ 00,03 ∥ 10,00 ∥ 00,00 ∥ 00) = (ui ∥ vi)i<4 ,

where u = (00,03,00,00) and v = (00,10,00,00). Let e9 = (00,02,00,00) and
e10 = (00,01,00,00). Then u = e9+e10, it is indeed its decomposition over the standard
basis of (F5

2)4. Thus, for any linear mapping L, it holds that L(u) = L(e9) +L(e10).
The image of u under ρ can hence be computed by

ρ(u) = ρ(e9) + ρ(e10) = (1B,0D,0F,18) + (1F,14,15,0C) = (04,19,1A,14) .
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In the same way,

τu(v) = v ×MV + PU→V (e9) + PU→V (e10)
= (16,0E,14,02) + (0F,11,0C,16) + (11,0E,02,0A) = (08,11,1A,1E) .

Consequently, M ′(x) = (04 ∥ 08,19 ∥ 11,1A ∥ 1A,14 ∥ 1E) = (088,331,35A,29E).

Proposition 5.10. The linear and the differential branch numbers of M ′ are both
equal to 5. Thus, M ′ is a perfect diffusion layer.

Proof. Let x = (ui ∥ vi)i<4 be a nonzero element of (F10
2 )4. In order to prove that

the differential branch number of M ′ is equal to 5, we need to show that w10(x) +
w10(M ′(x)) is greater than or equal to 5. First, assume that u = (ui)i<4 is nonzero.
Using the fact that MU is MDS, we obtain the inequality w5(u) +w5(u ×MU) ≥ 5.
Next,

5 ≤ w5(u) +w5(ρ(u)) = w10((ui ∥ 0)i<4) +w10((ρ(u)i ∥ 0)i<4)
≤ w10((ui ∥ vi)i<4) +w10((ρ(u)i ∥ τu(v)i)i<4) = w10(x) +w10(M ′(x)) .

Now, suppose that u = 0. It must be the case that v ≠ 0 as x is nonzero by definition.
Again, it holds that w5(v) +w5(v ×MV ) ≥ 5 because MV is also MDS. Then,

5 ≤ w5(v) +w5(τ0(v)) = w10((0 ∥ vi)i<4) +w10((0 ∥ τ0(v)i)i<4)
= w10(x) +w10(M ′(x)) .

We have proven that w10(x) +w10(M ′(x)) ≥ 5 for any nonzero element x of (F10
2 )4.

Consequently, the differential branch number of M ′ is greater than or equal to 5.
The equality BD(M ′) = 5 follows as 5 is the maximum achievable. Similarly, it can
be proven that M ′ has also the maximum linear branch number. It follows that M ′

is a perfect diffusion layer and the result is proven. ∎
Recall that the notation {0∗} denotes the subspace {05} × F5

2 and that the linear
mappings LVi and LWi

(see Figure A.1) map respectively L({0∗}) to L(Vi) and
L({0∗}) to L(Wi). It is then easily seen that M ′ maps {0∗}4 to itself. Thus, M ′

preserves the partition L({0∗}4) by Proposition 3.25. Finally, define

M = (LV0 ∥ LV1 ∥ LV2 ∥ LV3) ○M ′ ○ (LW0 ∥ LW1 ∥ LW2 ∥ LW3)−1 .

From its definition, it is straightforward to check that M maps the linear partition
L(∏3

i=0Wi) to L(∏3
i=0 Vi).

Example 5.11. We are going to compute M(000,080,000,000). First, we have

(LW0 ∥ LW1 ∥ LW2 ∥ LW3)−1(000,080,000,000)
= (L−1

W0(000), L−1
W1(080), L−1

W2(000), L−1
W3(000)) = (000,070,000,000) .

Then, the image of (000,070,000,000) under M ′ is (088,331,35A,29E), as already
established in Example 5.9. Finally,

M(000,080,000,000) = (LV0 ∥ LV1 ∥ LV2 ∥ LV3)(088,331,35A,29E)
= (15E,0BF,1E2,04F) .
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Indeed, LV0(088) = LV0(080) +LV0(008) = 21D + 343 = 15E. The three other bundles
are computed in the same manner.

Because each mapping LVi or LWi
operates on different bundles and is invertible,

it is clear that the linear and differential branch numbers of M are the same as M ′.
This discussion completes the proof of the following corollary.

Corollary 5.12. The linear mapping M is a perfect diffusion layer which maps
L(∏3

i=0Wi) to L(∏3
i=0 Vi).

In conclusion, Proposition 3.23 ensures that any key addition preserves all the
linear partitions, and hence it preserves L(V ). Next, it has been proven in Section
5.2.2 that every secret S-box Si maps L(Vi) to L(Wi). Thus, the secret substitution
layer maps L(V ) to L(W ). It is clear that the ShiftRows operation is linear and
maps W to itself. According to Proposition 3.25, this mapping preserves L(W ).
Finally, the MixColumn operation maps L(W ) to L(V ) by Corollary 5.12. This
discussion is summarized in Figure 5.3 and proves Theorem 5.2 previously given in
Section 5.2.1.

5.3. Main Idea of the Cryptanalysis

As we have seen in Section 5.2.1, the cipher BEA-1 does not map a linear partition
to another one, but behaves as though it did for a non-negligible fraction of the
message space. This non-trivial property can be used to recover the cipher key in an
operational cryptanalysis close to Harpes’s basic partitioning cryptanalysis [52]. But
before considering the full cipher, we give the main idea of this attack.

5.3.1. A Detailed Example

To explain how to take advantage of this backdoor, we introduce a toy example.
First, let us mention that the notation of this section is independent of the remainder
of this chapter. The message space of this toy cipher is simply F6

2. Then, consider
the subspaces V and W of F6

2 defined to be
V = span(01,02,10,20) = {(x3, x2,0,0, x1, x0) ∣ x ∈ F4

2} ,
W = span(01,02,04,10) = {(0, x3,0, x2, x1, x0) ∣ x ∈ F4

2} .
Thus, L(V ) = {x+V ∣ x ∈ {00,04,08,0C}} and L(W ) = {y +W ∣ y ∈ {00,08,20,28}}.

Let S be the permutation of F6
2 given in Figure 5.4. We define another permutation

S of F6
2 satisfying S(x) = S(x) for any input x in F6

2 except 00, 01, 04, 05, 08, 09,
0C and 0D. The images of these eight specific points under S are also given in Figure
5.4. By analogy with Section 5.2, the permutation S represents the secret S-box
used to design the trapdoor whereas S represents the modified S-box given in the
specification of the algorithm. Lastly, define the following keyed mappings

Fk ∶ F6
2 Ð→ F6

2 Fk ∶ F6
2 Ð→ F6

2

xz→ S(x) + k , xz→ S(x) + k ,
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.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .A .B .C .D .E .F

S(x)

0. 1C 1E 1F 08 39 3A 3C 2A 13 05 02 03 37 20 24 31
1. 0D 18 0A 1A 3B 2D 29 3E 14 07 11 10 25 26 21 35
2. 1B 19 0B 1D 2B 2F 2C 28 15 01 16 06 27 36 30 32
3. 0C 09 0F 0E 3F 2E 3D 38 00 17 04 12 22 23 33 34

S(x) 0. 39 05 13 1C 37 20 1E 3A

Figure 5.4: The secret and modified S-boxes.

representing respectively the secret and the modified round functions. Naturally, the
key k can be any element of F6

2.
It can be easily verified that the secret S-box S maps L(V ) to L(W ). In fact, we

have

S(00 + V ) = 08 +W , S(08 + V ) = 00 +W ,

S(04 + V ) = 28 +W , S(0C + V ) = 20 +W .

In contrast with the secret permutation S, the modified S-box S does not map L(V )
to L(W ). However the equality S(x) = S(x) holds with probability 56/64 assuming
that x is uniformly distributed over F6

2. This can be stated equivalently as

#{x ∈ F6
2 ∣ S(x) = S(x)} = 26 − 8 = 56 .

It should also be noted that this statement remains valid when considering their
inverse mappings, that is #{y ∈ F6

2 ∣ S−1(y) = S−1(y)} = 56. Indeed, if x is an element
of F6

2 such that S(x) = S(x), then y = S(x) satisfies the equality S−1(y) = S−1(y).
As a consequence,

#{x ∈ F6
2 ∣ S(x) = S(x)} ≤ #{y ∈ F6

2 ∣ S−1(y) = S−1(y)} .

The converse inequality can be proven in the same way, establishing the equality.
Now, consider the subset P of F6

2 defined hereinafter. We assume that the round
key is k = 37. The image of P under S and its encryption with F37 are given below.

P = {

∈ (00+V )
³·µ
22 ,

∈ (04+V )
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
04,05,06,15,16,17,27,34,35,36 ,

∈ (08+V )
³¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹µ
18,3A ,

∈ (0C+V )
³¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹µ
0D,0F } ,

S(P) = { 0B , 39,3A,3C,2D,29,3E,28,3F,2E,3D , 14,04 , 20,31 } ,
F37(P) = { 3C

´¸¶
∈ (28+W )

, 0E,0D,0B,1A,1E,09,1F,08,19,0A
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈ (08+W )

, 23,33
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
∈ (20+W )

, 17,06
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
∈ (00+W )

} .

It should be stressed that the coset 04 + V is significantly more represented in P
than any other coset of V . Since F37 maps the linear partition L(V ) to L(W ), the
messages belonging to the same coset of V are all mapped to the same coset of W .
Therefore, the most represented coset of W in F37(P) has also ten elements.
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Encryption of P with F37
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Encryption of P with F37

Figure 5.5: Encryption with F37 and F37.

As we have seen above, the modified round function F37 does not map L(V ) to
L(W ). Figure 5.5 displays the differences between the encryption of P with F37 and
its encryption with F37 by highlighting the messages x in P such that S(x) ≠ S(x)
(that is 04, 05 and 0D) and their images throughout the encryption.

To explain these differences, let us first consider the set Q of the ten messages
lying in both P and 04 + V . Knowing that the equality S(x) = S(x) holds with
probability 56/64 when x is uniformly distributed, it seems reasonable to assume that
only 10 × 56/64 = 8.75 messages of Q will remain in the same coset when computing
their images under S. By comparing with the actual messages in Q, we can see that
this is a good approximation since eight messages in S(Q) belong to the same coset
of W .

Q = { 04,05 , 06,15,16,17,27,34,35,36 } = P ∩ (04 + V ) ,
S(Q) = { 13,1C

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
∉ (28+W )

, 3C,2D,29,3E,28,3F,2E,3D
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∈ (28+W )

} .

Needless to say, there are also eight messages in F37(Q) lying in the same coset of
W because the key addition preserves L(W ).

We focus now to the set P as a whole. According to the discussion above, we
know that the most represented coset of W in F37(P) has at least eight elements.
We have seen that the images under S of messages lying in the same coset may not
stay together. Nonetheless, the converse can also be true and messages in different
cosets may end up in the same coset. This is exactly what happens with the message
0D, as illustrated in Figure 5.5. Consequently, the most represented coset in F37(P)
has actually nine elements.

The fact that the most represented coset may not only lose but occasionally
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Figure 5.6: Decryption with the right key and with a wrong key.

retrieve elements, should be seen as a side effect. Its impact remains low when
• one coset has significantly more elements than all other cosets (say at least 5

times more), and
• when the number of messages is less than the total number of cosets.

We must nevertheless keep this fact in mind to understand why the right key will
not necessarily have the best score.

It is now time to explain how to recover the round key using only the set
C = F37(P) of encrypted messages. First, we have to determine the most represented
coset in C. In our example, this coset is 08 +W with nine messages, and u = 08 is
one of its representatives.

Now, assume that k is the round key used to encrypt C. We need to find the
coset of V which is mapped to u +W by the secret round function Fk. According to
Lemma 3.18, Fk maps t+V to Fk(t)+W . A representative of this coset of V is then
t = S−1(u + k). Finally, the score of the guessed key k is the number of messages
F −1
k (c) = S−1(c + k) which belong to the theoretical coset t + V , that is to say

score(k) = #{c ∈ C ∣ S−1(c + k) ∈ (t + V )} .

Figure 5.6 illustrates the scoring process applied to the right key (37) and to a wrong
key (07). We naturally recover the set P and the coset t+ V = 34+ V = 04+ V when
using the right key. Thus, the score of k = 37 is equal to 10. In the same way, the
score of k = 07 is the number of decrypted messages in the coset t+V = 32+V = 00+V ,
so score(07) = 8.

Let us now explain why a wrong key tends to have a lower score than the right key.
First, the addition of the wrong key randomizes the cosets and the messages within.
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Key 0B 12 1C 37 03 05 10 1D 20 21 22 2C 2F 35 36 38
Score 11 10 10 10 9 9 9 9 9 9 9 9 9 9 9 9
Key 3B 3C 3D 00 01 02 04 06 07 08 09 0A 0E 0F 11 13
Score 9 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8
Key 18 19 1E 1F 24 25 26 27 2A 2B 2D 2E 30 34 39 3A
Score 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Key 0C 0D 14 15 16 17 1A 1B 23 28 29 31 32 33 3E 3F
Score 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Figure 5.7: The scores for each key.

Recall that when the input x is uniformly distributed, the equality S−1(x) = S−1(x)
holds with probability 56/64. The most represented coset after the addition of the
wrong key should then lose some elements by applying S−1. Thus, the score of any
wrong key should be less than or equal to 8.

It goes without saying that the previous discussion gives just the main idea of
the cryptanalysis. For some wrong keys, the side effects are significant and their
scores can even be higher than the score of the right key, as shown in Figure 5.7.
Indeed, the key 37 is one the four best keys, but is not the one which has the highest
score (0B). For this reason, we will not only return the best key but also the NbCand
candidate keys having the highest scores when running this cryptanalysis.

5.3.2. Formalization of the Attack

The aim of this section is to formalize and to generalize the cryptanalysis introduced
previously in Section 5.3.1. As we have just seen, this attack really begins in Figure
5.6. The very first data needed is the set C containing the encrypted messages under
the unknown key, given by

C = {04,05,06,0D,0F,15,16,17,18,22,27,34,35,36,3A} .

Naturally, C is included in the set C = F6
2 of all possible ciphertexts. Similarly, the

set of all possible round keys is denoted by K = F6
2. Next, define the keyed mapping

G ∶ K ×C Ð→ F6
2

(k, c)z→ S−1(c + k) .

Each mapping Gk ∶ c ↦ G(k, c) is the inverse of the round function Fk. The secret
counterpart of G is G ∶ (k, c)↦ S−1(c + k). Observe that for each round key k, the
mapping Gk maps L(W ) to L(V ). It is also necessary to know the most represented
coset u +W in C. Using this notation, the cryptanalysis is formalized in Algorithm
7. Finally, to include potential information on the round keys, this attack processes
only a subset K of K .

More generally, the parameters can be outlined as follows.
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Algorithm 7 – SelectKeys(G, G, K, C, u, V, NbCand)
Input. See Section 5.3.2.
Output. The set Cand containing the NbCand best keys together with their scores.

1 Cand ← []
2 For each k ∈ K do

Computation of the score of k
3 Score ← 0
4 For each c ∈ C do
5 t ← G(k,u)
6 If G(k, c) lies in t + V then
7 Score ← Score + 1

Saving k if it is one of the NbCand best keys
8 If the cardinality of Cand is lower than NbCand then
9 Insert (k,Score) in Cand
10 Else if Score is greater than the lowest score in Cand then
11 Remove the lowest scored key of Cand
12 Insert (k,Score) in Cand
13 Return Cand

• The sets of all possible keys and ciphertexts are referred to as K and C .
• The keyed mapping G ∶ K ×C → E typically undoes (or partially undoes) one

or two rounds of the encryption process.
• Its secret counterpart is denoted by G ∶ K × C → E. It is assumed that Gk

maps a linear partition L(W ) to another partition L(V ) no matter the key k
used.

• The set of the given ciphertexts is denoted by C. The set of the keys that must
be scored by this attack is denoted by K.

• It is assumed that there is a coset ofW containing significantly more ciphertexts
than any other coset. The element u of C is a representative of this coset.

• Finally, NbCand is the number of candidate keys to return.

Remark 5.13. Taking a closer look at Algorithm 7, we can see that the structure
Cand requires an efficient way to remove the lowest scored key. In our implementation,
Cand is a sorted array of couples (s,L) where L is a list containing the keys having
the score s. Since there are very few different scores, the sorted insertion in Cand is
(almost) in constant time. Removing the lowest scored key is also in constant time.
Thus, the time complexity of this cryptanalysis is O(#K ×#C).

5.4. Cryptanalysis of BEA-1 Using the Backdoor

The algorithm SelectKeys (see Algorithm 7) detailed into the previous section
enables recovery of information on the last round key, using the fact that the round
function acts as a function mapping a linear partition to another one with high
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probability. In this section, we explain how this algorithm can be used to recover
the full 120-bit cipher key in just a few seconds on a laptop computer.

This cryptanalysis requires N = 216 chosen plaintexts and their corresponding
ciphertexts encrypted under one unknown cipher key K. As BEA-1 operates on
80-bit blocks, this amounts to 2 × 640 KiB of data. The plaintexts only need to be
uniformly chosen in one coset of V and there is no requirement on the cipher key.

Our cryptanalysis is naturally divided in five distinct parts. First, we give a brief
overview of each part. By hypothesis, all the plaintexts are in the same coset of V .
As explained in Section 5.2.1, a coset of W should be more represented among the
ciphertexts. The first part is aimed at finding a representative u of this coset. The
second part consists in using the algorithm SelectKeys to find 215 candidates for
the full 80-bit last round key k[11]. Next, relying on a property of the key schedule,
SelectKeys is applied to these 215 candidates to find the right last key in a third
part. So far, we have recovered 80 bits of the cipher key. Knowing the last round key,
it is then possible to undo the last round of each ciphertext. The fourth part is really
close to the first one and provides 215 candidates for the 40 remaining bits. Finally,
deduce the 215 candidate cipher keys from k[11] and the preceding candidates. The
last part involves testing these cipher keys on the plaintext/ciphertext pairs available
to find the right one.

The presentation of our cryptanalysis is structured as follows. First, we provide
the full attack in Algorithm 5.4. Then, each part of this algorithm is detailed in one
dedicated section. It should be noted that we keep the notation of Section 5.2 (and
not that of Section 5.3) in the remainder of this chapter.

5.4.1. Part 1: Finding the Right Output Coset

Let P denote the set of the 216 plaintexts uniformly chosen in one coset of V and let
C = {EK(p) ∣ p ∈ P} denote the set of their ciphertexts. As said previously, we first
need to find the most represented coset of W in C. Let Ui be the subspace of F10

2
defined to be Ui = LWi

({∗0}) for each 0 ≤ i < 3. Since {∗0} is a complement space
of {0∗} and LWi

is an automorphism, we know that Ui is a complement space of
LWi

({0∗}) =Wi. Define U to be the subspace ∏7
i=0Uimod 4 of (F10

2 )8. Of course, U is
a complement space of W .

Let c be a ciphertext and u = (ui)i<8 be in U . Because both U and W are product
spaces, it is easily seen that u is the unique representative in U of the coset c +W if,
and only if, ci and ui are in the same coset of Wimod 4 for each i < 8. We deduce the
following efficient way to compute the representative in U of the coset c +W . First,
precompute the four tables RepWi such that, for each x in F10

2 , RepWi[x] gives the
representative in Ui of x +Wi. These tables are just arrays of 1024 integers. Then,
the representative of c = (ci)i<8 is just u = (RepWimod 4[ci])i<8.

To find the most represented coset of W in C, we first compute the representative
in U of each ciphertext as described above. Then, we search for the representative
which occurs the most. Any naive algorithm should work since there are only 215

representatives.
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Algorithm 8 – Cryptanalysis of BEA-1 Using the Backdoor
Input. The number N of plaintext/ciphertext pairs (typically, N ≈ 215).

• A set P of N plaintexts uniformly chosen in one coset of V .
• The corresponding ciphertexts encrypted under one (unknown) cipher key K.

The set {EK(p) ∣ p ∈ P} of these ciphertexts in denoted by C.
Output. The cipher key K or "Failure" in case of failure.

1 NbCand ← 215

Part 1: find the representative of the output coset.
2 u ← the element u ∈ U maximizing the cardinality of C ∩ (u +W )

Part 2: find the 215 best candidates for k[11].
3 E ← {3}
4 Cand ← {(ki)i∈E ∣ k3 ∈ F10

2 }
5 For each idx ∈ [7,0,4,1,5,2,6] do
6 E ← E ∪ {idx}
7 Define GE, GE, CE and VE as in Section 5.4.2
8 KE ← {(ki)i∈E ∣ kidx ∈ F10

2 and (ki)i∈E∖{idx} ∈ Cand}
9 Cand ← SelectKeys(GE,GE,KE,CE, (ui)i∈E, VE,NbCand)

Part 3: find k[11] among its candidates.
10 E ← {0,2,5,7}
11 Define G, G and V ′ as in Section 5.4.3
12 Cand ← SelectKeys(G,G,Cand,CE, (ui)i∈E, V,NbCand)
13 k[11] ← the key with the highest score in Cand

Part 4: find the 215 best candidates for (k′[10]
i )4≤i<8.

14 Define C′ and u′ as in Section 5.4.4
15 E ← {4}
16 Cand ← {(k′i)i∈E ∣ k′4 ∈ F10

2 }
17 For each idx ∈ [7,5,6] do
18 E ← E ∪ {idx}
19 Define GE, GE, C′E and VE as in Section 5.4.4
20 K′E ← {(k′i)i∈E ∣ k′idx ∈ F10

2 and (k′i)i∈E∖{idx} ∈ Cand}
21 Cand ← SelectKeys(GE,GE,K′E,C′E, (u′

i)i∈E, VE,NbCand)

Part 5: find the cipher key K.
22 For each (k′i [10])4≤i<8 ∈ Cand do
23 (ki[10])4≤i<8 ← M((k′i [10])4≤i<8)
24 K ← the cipher key corresponding to (ki[10])4≤i<8 and k[11]

25 If EK(p) = c for all plaintext/ciphertext pairs (p, c) then
26 Return K
27 Return "Failure"
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Figure 5.8: Cryptanalysis using the backdoor (Part 2).

5.4.2. Part 2: Obtaining Candidates for the Last Round Key

This part is intended to find candidates for the last round key k[11] using the algorithm
SelectKeys (see Algorithm 7) to undo the last round of BEA-1. However, if this
algorithm is naively applied, then the last round has to be undone for each of the 216

ciphertexts and 280 possible values of k[11], yielding an order of 296 time complexity.
To solve this problem, the 215 candidates for k[11] are obtained bundle by bundle,

as illustrated in Figure 5.8. First, we partially decrypt the bundles of index 3 and
7. We begin by these bundles since they both involve the S-box S3, being the most
different from its secret equivalent. Following the notation of SelectKeys, the set
containing the ciphertexts is C{3,7} = {(c3, c7) ∣ c ∈ C} and the set of the keys is
K{3,7} = {(k3, k7) ∣ k3, k7 ∈ F10

2 }. The mapping used to partially decrypt the last round
of these ciphertexts is

G{3,7} ∶ (F10
2 )2 × (F10

2 )2 Ð→ (F10
2 )2

((k3, k7), (c3, c7))z→ (S−1
3 (c3 + k3), S−1

3 (c7 + k7)) .

Its secret equivalent G{3,7} is obtained by replacing S3 with S3. The two remaining
inputs of the algorithm are the representative u = (u3,u7) of the most represented
coset of (W3)2, and the subspace (V3)2 of (F10

2 )2. It is worth observing that G{3,7}
maps L((W3)2) to L((V3)2) as required by the algorithm. Running SelectKeys with
these arguments generates a set Cand containing 215 candidates for (k3[11], k7[11])
instead of 220.

From now on, each step seeks to add a new bundle to our candidates for the last
round key k[11]. The next bundle to add has index 0. Let E denote the set {0,3,7}
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of the current bundle’s indices. Since we have no information on the value of k0[11],
the set of the possible values for (ki[11])i∈E is

KE = {(ki)i∈E ∣ k0 ∈ F10
2 , (k3, k7) ∈ Cand} .

Following the idea of the first step, we define CE = {(ci)i∈E ∣ (ci)i<8 ∈ C} and

GE ∶ (F10
2 )E × (F10

2 )E Ð→ (F10
2 )E

((ki)i∈E, (ci)i∈E)z→ (S−1
imod 4(ci + ki))i∈E .

Then, define GE by replacing Si with Si and let VE denote the subspace ∏i∈E Vimod 4
of (F10

2 )E. The set Cand obtained by running SelectKeys with these parameters
contains 215 candidates for (k0[11], k3[11], k7[11]).

According to Algorithm 5.4, the index of the next bundle is 4. Actually, the order
of the bundle’s indices were chosen such as to involve the S-boxes S3, then S0, S1
and finally S2. The current indices are in the set E = {0, 3, 4, 7}. Similarly, we define

KE = {(ki)i∈E ∣ k4 ∈ F10
2 , (k0, k3, k7) ∈ Cand}

to include the information on k[11] gathered by the previous step. Finally, define CE,
GE, GE and VE as above. Again, the algorithm SelectKeys yields 215 candidates
for (ki[11])i∈E.

This time, let us take a closer look at the implementation of this step. Because
#KE = 225 and #CE = 216, a straightforward implementation of SelectKeys requires
241 partial round decryptions, as explained by Remark 5.13. Algorithm 9 provides our
implementation of SelectKeys for this step. As we can see, the previous candidates
are used to filter the ciphertexts before attacking k4 by brute force. For each of the
215 candidates, initializing the filter requires 216 partial decryptions. On average, it
remains roughly 26 ciphertexts after the filtering process. The loop over k4 hence
requires 216 partial decryptions. Consequently, this implementation performs about
232 partial decryptions instead of 241.

Naturally, the 215 candidates for the full round key k[11] are obtained by repeating
this method for the four remaining bundles. We will conclude by observing that
the complexity of each step decreases since the filtering process improves as the
algorithm progresses.

5.4.3. Part 3: Finding the Last Round Key

So far, we have found 215 candidates for the 80-bit key k[11]. This part intends to
recover the right key among these candidates, relying on the key schedule’s structure.
Let us consider the last round of the key schedule in order to derive a relation
between k[10] and k[11]. In Figure 5.1:

• k[9 ] = (k0[9 ], . . . , k7[9 ]) corresponds with (k0 , . . . , k7 ),
• k[10] = (k0[10], . . . , k7[10]) corresponds with (k8 , . . . , k15),
• k[11] = (k0[11], . . . , k7[11]) corresponds with (k16, . . . , k23).
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Algorithm 9 – An implementation of the step idx=4 in part 2.

1 Cand ← []

2 For each of the 215 candidates (k0, k3, k7) for (k[11]
0 , k

[11]
3 , k

[11]
7 ) do

Initialization of the filter over the ciphertexts
3 Filter ← ∅
4 (t0, t3, t7) ← (S−1

0 (k0 + u0),S−1
3 (k3 + u3),S−1

3 (k7 + u7))
5 For each c ∈ C do
6 (t0, t3, t7) ← (S−1

0 (k0 + c0), S−1
3 (k3 + c3), S−1

3 (k7 + c7))
7 If t0 ∈ (t0 + V0) and t3 ∈ (t3 + V3) and t7 ∈ (t7 + V3) then
8 Filter ← Filter ∪ {c}

Loop over the new bundle of the key
9 For each k4 ∈ F10

2 do
10 Score ← 0
11 t4 ← S−1

0 (k4 + u4)
12 For each c ∈ Filter do
13 t4 ← S−1

0 (k4 + u4)
14 If t4 ∈ (t4 + V0) then
15 Score ← Score + 1

Saving (k0, k3, k4, k7) if its score is high enough
16 If #Cand ≤ 215 then
17 Insert ((k0, k3, k4, k7),Score) in Cand
18 Else if Score is greater than the lowest score in Cand then
19 Remove the lowest scored key of Cand
20 Insert ((k0, k3, k4, k7),Score) in Cand

21 Return Cand
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Figure 5.9: Cryptanalysis using the backdoor (Part 3).

It is then easily seen that

(k[10]
0 , k

[10]
1 , k

[10]
2 , k

[10]
3 ) = (k[11]

0 , k
[11]
1 , k

[11]
2 , k

[11]
3 ) + (k[11]

4 , k
[11]
5 , k

[11]
6 , k

[11]
7 ) .

Thus, the 40 leftmost bits of k[10] are determined by k[11]. Using this equality, it is
possible to partially decrypt the last two rounds for every candidate for k[11]. Again,
the algorithm SelectKeys is used to distinguish between candidates.

Instead of wasting time understanding the definition of G stated hereinafter, we
encourage the reader to compare it with Figure 5.9 which speaks for itself. Let us
consider

G′ ∶ (F 10
2 )8 × (F10

2 ){0,2,5,7} z→ (F10
2 )4

((ki)i<8, (ci)i∈{0,2,5,7})z→ (S−1
0 (c0 + k0) + k0 + k4, S

−1
1 (c5 + k5) + k1 + k5,

S−1
2 (c2 + k2) + k2 + k6, S

−1
3 (c7 + k7) + k3 + k7) .

Then, let G be the mapping from (F 10
2 )8 × (F10

2 ){0,2,5,7} to (F10
2 )4 given by

G = (S0 ∥ S1 ∥ S2 ∥ S3)−1 ○M−1 ○G′ .

Define G in the same way as before and let V ′ =∏3
i=0 Vi. Finally, run Selectkeys

as in line 12 of Algorithm 5.4. The candidate which has the highest score is then the
last round key k[11].

To explain why Parts 2 and 3 of this cryptanalysis are complementary, let us
take a closer look at the 215 candidates obtained previously. Most of them are in fact
really close to k[11], more precisely, they have at most three bundles different from
k[11]. This observation is not surprising because when decrypting the last round,
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each bundle of the key affects only one bundle of the output. As a direct consequence,
close candidates give rise to close one-round decrypted ciphertexts. This explains
why the algorithm SelectKeys, as used in Part 2, may assign similar scores to close
candidates.

By contrast, the mapping G defined above yields very different outputs when used
with close candidate keys. Such a property comes from the high diffusion provided by
M−1. Thus, this part is more effective where the previous part has its main weakness.
Moreover, the side effects are limited here since we decrypt two rounds instead of
one.

5.4.4. Part 4: Obtaining Candidates for the Remaining Bits

The round function of the key schedule being bijective, it is sufficient to know the 120
output bits of the last round to compute the cipher key. Until now, we have recovered
the last round key k[11], accounting for 80 of these 120 bits. The 40 remaining bits
are the 40 rightmost bits of k[10], also denoted by (ki[10])4≤i<8. This fourth part
intends to find 215 candidates for these unknown bits.

Since the key k[11] is now known, it is possible to undo the last round for every
ciphertext. The cryptanalysis is then reduced to the attack of the second to last
round. However, the method used in Part 2 cannot be directly applied here since
the second to last round involves the MDS mapping M . Let x and k be elements of
(F10

2 )4 and observe that

M(x) + k =M(x) +M(M−1(k)) =M(x +M−1(k)) =M(x + k′)

where k′ = M−1(k). Thus, the key addition and the mapping M can be switched
provided that the key is replaced. According to this observation, define

(k′i [10])4≤i<8 =M−1((ki[10])4≤i<8) .

Therefore, the last two rounds of BEA-1 can equivalently be represented as in Figure
5.10.

Thanks to this representation, candidates for the key (k′i [10])4≤i<8 can be obtained
using SelectKeys as in Part 2. To this end, we first need to partially undo the last
round using k[11]. Following Figure 5.10, define

f ∶ (F10
2 ){1,3,4,6} Ð→ (F10

2 )4

(ci)i∈{1,3,4,6} z→M−1(S−1
0 (c4 + k4

[11]), S−1
1 (c1 + k1

[11]),
S−1

2 (c6 + k6
[11]), S−1

3 (c3 + k3
[11])) .

The set {f((ci)i∈{1,3,4,6}) ∣ c ∈ C} of these “new” ciphertexts is denoted by C′ and the
corresponding coset representative is u′ = f((ui)i∈{1,3,4,6}). To be more consistent
with Figure 5.10, the bundles of u′ and of the elements of C′ are indexed from 4 to
7 included. The remainder of the attack is similar to Part 2 as the candidates are
obtained bundle by bundle. The first step gets candidates for the bundle’s indices 4
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Figure 5.10: Cryptanalysis using the backdoor (Part 4).

and 7. The second and the third steps add the indices 5 and 6 respectively. If E
denotes the set of the current bundle’s indices, then the parameters of SelectKeys
are the set C′E = {(c′i)i∈E ∣ (c′i)4≤i<8 ∈ C′}, the mapping

GE ∶ (F10
2 )E × (F10

2 )E Ð→ (F10
2 )E

((k′i)i∈E, (c′i)i∈E)z→ (S−1
imod 4(c′i + k′i))i∈E ,

its equivalent GE and the subspace VE = ∏i∈E Vimod 4 of (F10
2 )E. The other details

are given in Algorithm 5.4. At the end of this part, every candidate k′ = (k′i)4≤i<8 for
(k′i [10])4≤i<8 gives rise to a candidate k =M(k′) for (ki[10])4≤i<8.

5.4.5. Part 5: Deducing the Cipher Key

Concatenating the candidates for (ki[10])4≤i<8 with k[11] yields 215 candidates for the
output of the key schedule’s last round. To obtain the corresponding candidates for
the cipher key, we need to reverse the rounds of the key schedule.

Referring to Figure 5.1, the i-th round of the key schedule maps the element
(X0,X1,X2) of (F40

2 )3 to (Y0, Y1, Y2) according to the following equalities

Y0 =X0 + fi(X2) , Y1 = Y0 +X1 , Y2 = Y1 +X2 ,

where fi denotes the permutation of (F10
2 )4 defined for each X to be

fi(X) = (3i mod 210,0,0,0) + (S0 ∥ S1 ∥ S2 ∥ S3) ○M(X) .

Using this notation, it easily seen that

X0 = Y0 + fi(Y1 + Y2) , X1 = Y0 + Y1 , X2 = Y1 + Y2 .
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These equalities describe how to reverse each round of the key schedule, and thus
how to recover the 215 candidate cipher keys.

Finally, it just remains to test these cipher key candidates to complete the
cryptanalysis. To be efficient, choose one plaintext/ciphertext pair (p, c) and check
whether or not the encryption of p under the candidate K is equal to c. In case of
equality, repeat this process for all pairs available to prevent false positive results.
Otherwise, the candidate is discarded. Obviously, the right cipher key is the one
which passes all tests.

5.5. Conclusion

When parallelized and optimized as described in Algorithm 9, our cryptanalysis of
BEA-1 recovers the full 120-bit cipher key in about 20 seconds on a laptop computer.
Thanks to its small computing time, we performed several times this attack and
verified experimentally that its success probability is greater than 95%. When this
attack fails, the cryptanalyst can generally still recover the cipher key with the same
data but needs more than 215 candidates in each step. Thus, using more candidates
increases the success probability but also the time-complexity of the cryptanalysis.

As noted in Section 5.3, the main idea our cryptanalysis is really close to Harpes’
partitioning cryptanalysis [52]. However, some significant differences emerge. First,
the number of parts in the output partition is assumed to be small in a partitioning
cryptanalysis. Typically, this number is equal to 2, 4 or 8. In contrast, the output
partition used in our cryptanalysis consists of all the 240 cosets of the subspace W .

Second, partitioning cryptanalysis considers classes of the last round keys where
only a few bits influence the output cosets of the messages. Because its complexity is
proportional to the number of key classes, a partitioning cryptanalysis is efficient only
if this number is reasonably small. In the case of BEA-1, each bit of the last round
key impacts the output cosets of the messages. In other words, whenever one bit of
the last round key is changed, at least one plaintext is encrypted in another coset of
W . Since there are 280 possible last round keys, a basic partitioning cryptanalysis
is ineffective on BEA-1. This problem was addressed in the second part of our
cryptanalysis (see Section 5.4.2) as we introduced a trick to compute the best round
keys bundle by bundle.

Additionally, a partitioning cryptanalysis updates for each key class as many
counters as there are cosets in the output partition. In our algorithm SelectKeys
presented in Section 5.3.2, we manage only one counter per key as we exploit the secret
structure of the round function and the output coset of the ciphertext space. Lastly,
our attack recovers the full 120-bit cipher key whereas a partitioning cryptanalysis
recovers only a few bits of the last round key.

We should now compare probabilistic and non-probabilistic partition-based back-
door ciphers. By virtue of Theorem 5.2, BEA-1 can be transformed into a partition-
based backdoor cipher by simply replacing its S-boxes Si with their secret counterparts
Si. Now, assume further that
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• the last round of BEA-1 includes the MixColumns operation,
• the key schedule also uses the secret S-boxes and
• the mappings M and (S0 ∥ . . . ∥ S3) are switched in the round function of the

key schedule (see Figure 5.1).
It is easily seen that the round function of this new version of BEA-1 preserves the
linear partition L(V ) and the same applies to the whole encryption function. As
observed at the end of Section 5.2.1, when two cipher keys K and K ′ are in the same
coset of∏11

i=0 Vimod 4, then the derived round keys k[i] and k′[i] are pairwise in the same
coset of V . As a consequence, this backdoor cipher is vulnerable to the key schedule
dependent attack presented in Section 3.1.3. Using one or two known plaintexts, the
coset containing the cipher key is obtained with at most 260 encryptions and then
the right cipher key is searched within the 260 elements of this coset. Summarizing,
this cryptanalysis recovers the cipher key using at most 261 encryptions or 260 on
average. By comparison, our cryptanalysis of the probabilistic version requires 216

chosen plaintexts but has a much better time complexity. Moreover, the differential
probability and linear potential matrices of the modified S-boxes Si are much less
suspicious than the ones of the secret S-boxes Si.

Before concluding this thesis, let us consider the two criteria to prevent partition-
based backdoors given in Section 4.4. We begin with Calderini’s criterion. As well as
the AES, the diffusion layer of BEA-1 is strongly proper over two rounds. It can be
proven with an exhaustive search that for each secret S-box Si, any subspace V of
F10

2 such that W = Si(V ) + Si(0) is also a subspace of F10
2 is at most 6-dimensional.

Consequently, the secret S-boxes are strongly 3-anti-invariant. Since the smallest
integer ri such that 210 ×DPmax

Si ≤ 2ri is 6, the conditions of Theorem 4.37 are not
fulfilled and we hopefully cannot prove that non-probabilistic version of BEA-1 is
not a partition-based backdoor cipher, as it is one. Nonetheless, it can be verified
that every modified S-box Si is strongly 7-anti-invariant. Calderini’s criterion then
proves that BEA-1 is not a partition-based backdoor cipher. This fact does not
contradicts Theorem 4.37 since BEA-1 is a probabilistic partition-based backdoor
cipher. However, this proves that Calderini’s criterion does not apply to this broader
family of backdoor ciphers.

Let us now consider our criterion given in Theorem 4.33. By simply looking at
the maximum differential probability and linear potential of each S-box, we can see
that the conditions are not fulfilled neither for BEA-1 or its non-probabilistic version.
Moreover, since these maximum values are really close to the bounds of Figure 4.10,
our criterion suggests that each S-box might almost maps a linear partition associated
with a 5-dimensional subspace to another one.

To conclude let us motivate future research around backdoor ciphers. Even if by-
design backdoors are undesirable in block ciphers, their study can contribute to design
better ciphers and to improve our understanding of classical cryptanalysis. In fact,
partition-based backdoor ciphers are closely related to invariant subspace, constant-
dimensional subspace trail and partitioning cryptanalysis. We proved in Chapter
3 that plausible partition-based backdoor ciphers must have S-boxes equivalent to
imprimitive S-boxes. Then, we showed in Chapter 4 that such S-boxes are either
highly resistant to differential cryptanalysis or to linear cryptanalysis but not both.
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Chapter 5 – Backdoored Encryption Algorithm 1

As a consequence, our study yields unexpected links between differential, linear and
partitioning cryptanalysis. Combined with the complementary work of Calderini,
we have now two criteria to prove that a cipher does not have a partition-based
backdoor but further interesting researches should be dedicated to prove other criteria
for the probabilistic version. Along a similar line, a new variation of differential
cryptanalysis was recently proposed by Blondeau, Civino and Sala [16]. This new
perspective is directly inspired by the family of backdoor ciphers based on hidden
sums [19]. In addition, searching for backdoors naturally implies to consider different
properties than the ones addressed by classical cryptanalysis, thereby increasing the
chance of discovering new effective attacks. Finally, it is worth recalling that the
question whether backdoors that are both efficient and undetectable can be inserted
in practical block ciphers remains open.
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Appendix A
Specifications of BEA-1 Building Blocks

In this appendix, we give the specifications of the mappings used in our probabilistic
partition-based cipher BEA-1.

x 200 100 080 040 020 010 008 004 002 001

LV0(x) 334 259 21D 0E4 193 266 343 3ED 354 17F
LV1(x) 3DA 306 39E 262 080 398 229 34C 251 37B
LV2(x) 295 237 131 3D1 26B 0BA 155 307 37E 318
LV3(x) 290 15D 0F8 2BE 25F 1D1 21E 134 0DC 15A

LW0(x) 3E8 386 067 19C 158 16A 11B 306 05E 0B8
LW1(x) 364 33E 3A7 119 1D2 04B 3B7 0D5 027 2C8
LW2(x) 324 188 3CB 1B0 131 1A9 095 107 36F 2A3
LW3(x) 262 1A5 34E 0B7 3ED 0F0 2FE 191 332 1A6

(LV0)−1(x) 3BF 268 0BB 379 17B 055 061 2F9 354 1F2
(LV1)−1(x) 13D 0AD 020 2C7 36D 2B4 314 047 0D7 14C
(LV2)−1(x) 361 070 133 02A 2B8 3CC 0DC 21A 08B 184
(LV3)−1(x) 1E9 3D1 0BE 245 0F6 357 1DA 074 318 26D

(LW0)−1(x) 026 0E9 104 29D 351 053 207 3F9 332 187
(LW1)−1(x) 142 1B0 070 3D3 196 088 2E0 0B7 2BB 398
(LW2)−1(x) 02D 0AA 205 0F1 375 19A 3AF 1F2 339 265
(LW3)−1(x) 0A6 3B3 045 32B 1E4 29A 2AD 27A 069 168

Figure A.1: The transformation mappings given over the standard basis of F10
2 .
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Appendix A – Specifications of BEA-1 Building Blocks

x x ×MU x ×MV PU→V (x)
(10,00,00,00) (07,06,1E,17) (0E,16,02,14) (07,01,1C,18)
(08,00,00,00) (11,03,0F,19) (07,0B,01,0A) (05,16,14,03)
(04,00,00,00) (1A,13,15,1E) (11,17,12,05) (0A,01,1C,1C)
(02,00,00,00) (0D,1B,18,0F) (1A,19,09,10) (02,1F,1E,1C)
(01,00,00,00) (14,1F,0C,15) (0D,1E,16,08) (01,1B,13,04)
(00,10,00,00) (06,07,17,1E) (16,0E,14,02) (07,08,01,11)
(00,08,00,00) (03,11,19,0F) (0B,07,0A,01) (02,1E,1B,1F)
(00,04,00,00) (13,1A,1E,15) (17,11,05,12) (16,06,1E,0D)
(00,02,00,00) (1B,0D,0F,18) (19,1A,10,09) (0F,11,0C,16)
(00,01,00,00) (1F,14,15,0C) (1E,0D,08,16) (11,0E,02,0A)
(00,00,10,00) (1E,17,07,06) (02,14,0E,16) (1F,0C,08,1B)
(00,00,08,00) (0F,19,11,03) (01,0A,07,0B) (17,15,17,16)
(00,00,04,00) (15,1E,1A,13) (12,05,11,17) (1D,04,0E,00)
(00,00,02,00) (18,0F,0D,1B) (09,10,1A,19) (11,0E,19,15)
(00,00,01,00) (0C,15,14,1F) (16,08,0D,1E) (16,1F,06,14)
(00,00,00,10) (17,1E,06,07) (14,02,16,0E) (0F,03,16,03)
(00,00,00,08) (19,0F,03,11) (0A,01,0B,07) (0B,12,03,0D)
(00,00,00,04) (1E,15,13,1A) (05,12,17,11) (1F,1D,1B,02)
(00,00,00,02) (0F,18,1B,0D) (10,09,19,1A) (18,12,0A,15)
(00,00,00,01) (15,0C,1F,14) (08,16,1E,0D) (17,05,05,05)

Figure A.2: The linear mappings over (F10
2 )4 associated with MU , MV and the linear

mapping PU→V .
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x M(x) M−1(x)
(200,000,000,000) (13E,20F,253,0BC) (2D8,209,353,243)
(100,000,000,000) (35C,13E,212,110) (0F5,1BD,210,210)
(080,000,000,000) (32C,199,2C5,07A) (1E9,3FE,238,329)
(040,000,000,000) (3C6,010,0EC,261) (002,246,2E2,380)
(020,000,000,000) (231,120,322,016) (322,3FD,3D5,0E5)
(010,000,000,000) (2D9,10A,0C4,095) (0AD,337,3C5,2D4)
(008,000,000,000) (215,11F,1E0,2E7) (08D,04D,016,34C)
(004,000,000,000) (23F,15B,0C7,0A7) (1AB,11E,05F,3A4)
(002,000,000,000) (344,394,342,165) (1AE,1E9,2CB,245)
(001,000,000,000) (112,1BC,36C,0C5) (10B,221,09D,398)
(000,200,000,000) (0E6,0ED,314,289) (395,295,38D,129)
(000,100,000,000) (17E,011,198,3C5) (2D7,1F4,378,157)
(000,080,000,000) (15E,0BF,1E2,04F) (0BD,1B1,18E,2AB)
(000,040,000,000) (006,131,32E,12B) (3AA,29E,239,1C0)
(000,020,000,000) (39A,062,38C,2EB) (3D9,069,21B,11B)
(000,010,000,000) (1F4,1C5,1FF,31D) (06D,1BE,3EB,0BE)
(000,008,000,000) (022,37D,08D,3D4) (3D1,236,09D,2F1)
(000,004,000,000) (13B,2FA,328,38C) (0EB,2FD,3C3,176)
(000,002,000,000) (0CC,32A,01A,2DB) (055,128,25A,17F)
(000,001,000,000) (237,252,004,0F8) (07D,2BB,037,3C8)
(000,000,200,000) (009,175,254,3ED) (0A6,050,36D,016)
(000,000,100,000) (2D5,29F,072,04D) (263,36C,361,369)
(000,000,080,000) (09A,1DD,336,34B) (0C8,111,34B,38E)
(000,000,040,000) (269,2CC,27E,1CD) (169,1A1,02D,39B)
(000,000,020,000) (1B2,0A7,178,208) (009,1D9,3CC,131)
(000,000,010,000) (189,2AB,1A6,39D) (141,222,031,28A)
(000,000,008,000) (0DC,0B1,061,3DE) (1C7,3F1,063,33C)
(000,000,004,000) (019,08E,280,1A7) (084,128,167,20B)
(000,000,002,000) (38B,1A6,221,260) (0D0,34D,18C,354)
(000,000,001,000) (075,380,371,2E9) (15E,23B,378,376)
(000,000,000,200) (099,176,3BC,031) (03D,208,27E,249)
(000,000,000,100) (38E,3D2,2CD,21C) (005,38F,215,2DF)
(000,000,000,080) (1C7,259,17E,0BE) (14F,3D2,0E2,1C7)
(000,000,000,040) (165,3BA,19B,0F7) (211,2D9,1B2,362)
(000,000,000,020) (37F,282,3A4,3D8) (13C,355,058,07F)
(000,000,000,010) (256,130,382,067) (19A,0E6,364,0F2)
(000,000,000,008) (370,1D0,3CD,07F) (322,319,244,300)
(000,000,000,004) (22D,1C8,221,18B) (2BE,1DD,223,1FA)
(000,000,000,002) (058,044,3A0,281) (04A,1EC,1B6,3B4)
(000,000,000,001) (28D,172,3EA,24E) (015,371,2DC,0E2)

Figure A.3: Specification of the diffusion M and its inverse M−1.
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Appendix A – Specifications of BEA-1 Building Blocks

..0 ..1 ..2 ..3 ..4 ..5 ..6 ..7 ..8 ..9 ..A ..B ..C ..D ..E ..F

00. 0BA 026 0A0 1E1 183 3DB 1A4 084 110 350 085 2E5 3B4 195 359 2E6
01. 33A 26B 209 07E 1CE 2E3 0C0 136 129 0C8 3D6 054 040 3F2 09F 322
02. 11B 07F 139 07D 2CF 02A 268 227 10A 1C5 12B 016 16C 20D 1E7 35B
03. 313 0CD 11E 1E6 117 355 182 0E6 094 1B9 19C 28C 255 336 0AF 19D
04. 2BC 1A9 31B 02E 282 2AE 272 2E9 3AA 1DD 013 2D3 30F 35A 159 1BB
05. 3DD 12A 248 3C7 28B 191 025 173 018 38D 1A1 185 007 156 378 312
06. 10B 143 05D 3FA 038 3DE 081 0F9 2D1 3FB 1C7 302 1DC 16A 2D8 23F
07. 030 1EB 3AF 311 36D 3BD 3C9 348 261 1AF 071 3EE 3BA 3AB 1B8 3CA
08. 290 118 21B 0F6 3FF 122 1B2 360 1D6 1B6 3D4 3BB 3B3 0EA 097 308
09. 3A9 086 0AE 15A 253 058 0BB 3D5 14B 1A3 23E 053 35D 277 384 0E2
0A. 233 2B8 2AF 0D0 1B1 105 0B3 215 2A2 27F 2DB 17E 12C 3A2 18E 2AC
0B. 321 09C 294 04C 036 2F1 3D2 18D 14C 304 128 069 198 2F4 3DC 370
0C. 138 324 23C 1FD 082 247 005 0A3 0F0 273 152 17B 1A0 1C8 04E 132
0D. 12F 0CC 075 10E 3E0 021 1AE 211 3E6 17A 276 289 0A9 123 01F 048
0E. 201 08F 0B1 002 179 32E 120 1AC 1E3 109 079 37C 297 096 12D 323
0F. 165 0AC 18B 0AB 1FF 13D 25B 3D3 111 22B 21C 1BE 187 30E 34A 318
10. 269 343 29F 395 1AD 1D2 023 3ED 1B3 35E 2D7 044 0F1 3F1 310 0A7
11. 287 3C3 2A5 213 3E4 3DA 0FD 140 38E 2C2 154 254 15F 02C 1FB 1ED
12. 1C6 051 062 090 214 230 190 15D 0A1 186 032 0B9 1DA 239 3D1 383
13. 331 06D 02D 009 2FC 3AD 2AA 363 1EF 38F 39A 2DC 3BF 106 39B 31F
14. 03E 0DE 1BC 067 0CF 155 2CE 240 05E 0E8 0C4 149 08C 3E5 2A1 150
15. 1D1 228 3DF 0E0 3F6 193 19B 27D 2B0 35C 0E3 171 180 022 00E 358
16. 161 0EE 365 15B 0C3 2CD 3E1 06C 119 283 31E 2B9 212 226 076 382
17. 38C 1D3 15C 0B2 22C 314 056 216 364 11C 1E9 020 176 389 2F2 073
18. 06F 27E 027 14E 177 26D 1BA 0EC 033 194 3C6 2F9 221 0E1 3F4 0B7
19. 14F 293 144 0FB 2F0 2F3 0F4 1CC 0C6 065 028 315 3E2 2DD 274 0FA
1A. 17C 041 080 2C5 072 08D 339 2A3 1F1 1DF 2F5 28A 015 188 246 206
1B. 091 03F 259 18F 1C3 27B 319 153 0D2 0BD 2D0 064 000 379 2F6 2A9
1C. 142 0F5 3EF 03B 3F8 344 3BC 265 0E7 334 238 08E 0AA 174 267 162
1D. 112 1D0 01C 292 2C0 0E9 2B6 301 0C1 30D 369 1C0 1E4 1F7 08A 2FA
1E. 3CB 34D 2BE 28F 09A 39D 232 262 333 2F8 397 2C4 06E 27A 317 017
1F. 327 26C 325 167 05B 36C 362 004 3F7 0F7 20B 22D 222 2D2 0CA 196
20. 33F 347 17D 349 146 170 367 18A 1DE 0B5 099 3BE 2C1 0BC 2A0 01B
21. 11D 010 342 169 366 2EC 088 361 291 131 2FF 199 18C 3B0 00D 24F
22. 031 063 3B6 281 0A5 070 1CB 07B 270 2CC 398 32B 1C1 396 278 39E
23. 160 0FF 1A2 0D4 024 24B 178 1BD 326 2EF 28D 299 21F 24A 103 042
24. 141 256 229 218 0EB 260 145 050 035 0E5 300 3AE 1E2 34E 223 20A
25. 164 02F 0C5 210 1A6 258 3F5 32D 1B4 2EA 1C4 3D0 381 371 392 101
26. 3C8 3F3 1F2 10F 0D1 1BF 2D6 320 390 25E 249 341 33B 203 3B5 23A
27. 09E 095 2C8 3A6 0F2 263 108 3B9 3E8 3C4 2BB 2B7 36E 13E 2C9 376
28. 014 00F 0DA 133 163 05C 0A4 1E5 019 37D 043 1FC 184 07A 3FE 03D
29. 0FE 25F 26E 3B7 21A 2E8 3B1 1B7 012 2CA 0C2 113 001 271 1D8 275
2A. 16F 1C9 0AD 236 2AB 3CF 3EC 24E 3F0 1D4 3CC 2BF 2C3 338 1B5 25C
2B. 181 052 243 1F3 11F 2EE 332 32C 1CD 3A8 2B4 34F 0D3 305 006 124
2C. 13F 13C 19E 3A0 2DE 2E2 3CE 345 3CD 0EF 205 31A 23D 34C 059 19F
2D. 1E0 307 3F9 217 337 0DB 14D 353 127 0CE 385 114 107 3D7 057 288
2E. 04F 2B2 2CB 039 234 2B5 2E1 32A 2FB 115 116 37B 3A5 092 373 17F
2F. 21E 06B 087 2FD 2ED 2BA 1EA 125 208 16E 2FE 2E0 0B4 3C2 3C1 21D
30. 11A 01D 3EA 047 157 25D 1D9 37F 16D 20E 098 2B1 340 22E 241 078
31. 1F5 0ED 192 298 3A7 30C 1CF 05F 351 0E4 335 046 151 24C 1EE 235
32. 12E 2A6 1A5 061 3A1 29C 011 066 093 03A 38A 1F8 1F0 3B2 134 356
33. 225 20C 3D9 2E4 0A8 0BE 1FE 0FC 0C7 377 2F7 07C 074 045 1E8 05A
34. 36B 36F 37E 375 04D 1FA 257 13B 089 220 399 00B 158 2D5 068 280
35. 357 0DD 0BF 1B0 2A7 23B 1CA 3FC 00A 330 2A4 200 3EB 008 126 0A6
36. 09B 37A 284 2D4 0F3 28E 237 31D 0DF 368 386 060 374 31C 29A 26A
37. 100 394 1F9 04B 391 39F 30B 00C 077 2EB 01A 231 29B 049 202 224
38. 0C9 2DA 2A8 286 06A 189 130 279 1EC 29D 104 387 32F 316 207 137
39. 0DC 02B 1D7 034 354 39C 0B6 329 3E3 3A4 0D9 245 2B3 0D6 33E 252
3A. 0CB 1DB 172 296 14A 04A 244 250 1F6 2AD 2C6 346 09D 388 328 3A3
3B. 2C7 3E7 29E 3C0 0D5 22A 1F4 168 3FD 242 102 3C5 0F8 251 264 2DF
3C. 27C 029 003 38B 10C 380 10D 295 303 197 33C 219 13A 306 166 2D9
3D. 175 19A 0D8 3D8 0A2 26F 3B8 1C2 148 30A 0B8 24D 1A7 121 15E 372
3E. 25A 266 22F 135 0B0 055 01E 3AC 083 285 34B 1D5 3E9 393 2E7 037
3F. 20F 0D7 1A8 1AB 16B 36A 352 204 2BD 08B 147 1AA 35F 03C 309 33D

Figure A.4: Specification of the secret S-box S0.
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..0 ..1 ..2 ..3 ..4 ..5 ..6 ..7 ..8 ..9 ..A ..B ..C ..D ..E ..F

00. 0BA 026 0A0 1E1 183 3DB 1A4 083 110 350 085 2E5 3B4 195 359 2E6
01. 33A 26B 209 217 1CE 2E3 0C0 136 129 0C8 3D6 054 040 3F2 09F 322
02. 11B 07F 139 07D 2CF 02A 268 227 246 1C5 12B 3B6 16C 20D 1E7 35B
03. 313 0CD 11E 1E6 117 355 182 0E6 094 1B9 19C 28C 2B9 336 0AF 19D
04. 2BC 1A9 31B 02E 282 2AE 272 2E9 3AA 1DD 013 2D3 30F 35A 159 1BB
05. 11C 12A 248 3C7 28B 191 025 173 018 38D 1A1 185 007 156 378 312
06. 0C9 143 05D 3FA 038 3DE 081 0F9 2D1 3FB 1C7 3E0 1DC 16A 2D8 23F
07. 030 1EB 3AF 311 36D 3BD 3C9 348 261 1AF 071 3EE 3BA 3AB 1B8 3CA
08. 22B 118 279 0F6 3FF 122 1B2 360 1D6 1B6 3D4 3BB 3B3 0EA 097 308
09. 3A9 086 0AE 15A 253 058 0BB 3D5 01D 1A3 23E 053 35D 277 384 0E2
0A. 233 2B8 2AF 0D0 1B1 105 0B3 215 2A2 27F 2DB 17E 12C 3A2 18E 2AC
0B. 321 09C 294 04C 036 2F1 3D2 18D 188 349 128 069 198 2F4 3DC 370
0C. 138 324 23C 1FD 082 247 005 0A3 0F0 273 152 17B 1A0 1C8 04E 34C
0D. 12F 0CC 075 10E 290 021 1AE 211 3E6 17A 276 289 3B5 123 01F 048
0E. 201 08F 29A 002 179 32E 120 1AC 1E3 109 079 37C 297 096 12D 323
0F. 165 0AC 18B 0AB 1FF 230 25B 3D3 111 07E 21C 1BE 187 30E 34A 318
10. 269 343 29F 395 1AD 1D2 023 2DE 1B3 35E 2D7 044 206 3F1 310 0A7
11. 287 3C3 2A5 213 3E4 3DA 0FD 140 38E 2C2 154 254 15F 02C 1FB 1ED
12. 1C6 051 062 090 214 14B 190 15D 0A1 186 032 0B9 1DA 239 3D1 383
13. 331 06D 02D 009 2FC 3AD 2AA 363 1EF 38F 39A 2DC 3BF 106 39B 31F
14. 03E 0DE 1BC 067 0CF 155 2CE 240 05E 0E8 0C4 149 08C 3E5 2A1 150
15. 1D1 228 3DF 0E0 3F6 193 19B 27D 2B0 35C 0E3 171 180 022 00E 358
16. 161 0EE 365 15B 0C3 2CD 3E1 06C 119 283 0F1 3B9 212 226 076 382
17. 38C 1D3 15C 0B2 22C 314 056 216 364 3DD 1E9 020 176 389 2F2 073
18. 06F 27E 027 14E 177 26D 1BA 0EC 25A 194 3C6 2F9 221 0E1 3F4 0B7
19. 14F 293 144 0FB 2F0 3ED 0F4 1CC 0C6 065 028 315 3E2 2DD 274 0FA
1A. 0D3 041 080 2C5 072 08D 339 2A3 1F1 1DF 2F5 267 015 0B1 275 21B
1B. 091 03F 259 18F 1C3 27B 319 153 0D2 0BD 2D0 064 000 379 2F6 2A9
1C. 142 0F5 3EF 03B 3F8 344 3BC 265 0E7 334 238 08E 347 174 18C 162
1D. 112 1D0 01C 292 2C0 0E9 2B6 301 0C1 30D 369 1C0 1E4 1F7 08A 2FA
1E. 3CB 34D 2BE 28F 09A 39D 232 262 333 2F8 397 2C4 06E 27A 317 017
1F. 327 26C 325 167 05B 36C 362 004 3F7 0F7 20B 22D 222 2D2 0CA 196
20. 33F 3B2 17D 302 146 170 367 18A 1DE 0B5 099 3BE 2C1 0BC 2A0 01B
21. 11D 010 342 169 366 2EC 088 361 291 131 2FF 199 1CA 3B0 00D 24F
22. 2B7 063 3EB 281 0A5 070 1CB 07B 270 2CC 398 32B 1C1 396 278 39E
23. 160 0FF 1A2 0D4 024 24B 178 1BD 326 2EF 28D 392 21F 24A 10B 042
24. 141 256 229 218 0EB 260 145 050 035 0E5 300 3AE 1E2 34E 223 20A
25. 164 02F 0C5 210 1A6 258 3F5 32D 1B4 2EA 1C4 3D0 381 371 2D9 101
26. 3C8 3F3 1F2 10F 0D1 1BF 2D6 320 390 25E 249 341 33B 203 087 23A
27. 09E 095 2C8 3A6 0F2 263 108 307 3E8 3C4 2BB 14C 36E 13E 2C9 376
28. 014 00F 0DA 133 163 05C 0AA 1E5 019 37D 043 1FC 184 07A 3FE 03D
29. 0FE 25F 26E 3B7 135 2E8 3B1 1B7 012 2CA 0C2 113 001 271 1D8 01A
2A. 16F 1C9 0AD 236 299 3CF 3EC 24E 3F0 1D4 3CC 2BF 2C3 338 1B5 25C
2B. 181 052 243 1F3 11F 2EE 332 32C 034 3A8 2B4 34F 031 305 006 124
2C. 13F 13C 19E 3A0 17C 2E2 3CE 345 3CD 0EF 205 31A 23D 06B 059 19F
2D. 1E0 3D8 3F9 103 337 0DB 14D 353 127 0CE 385 114 107 3D7 057 288
2E. 04F 2B2 2CB 039 234 2B5 2E1 32A 2FB 115 116 37B 3A5 092 373 17F
2F. 21E 2AB 37F 2FD 2ED 2BA 1EA 125 208 16E 33C 0A9 2F3 3C2 3C1 21D
30. 11A 0A4 3EA 047 157 25D 1D9 10A 16D 20E 098 2B1 340 22E 241 078
31. 1F5 0ED 31E 298 3A7 30C 1CF 05F 351 0E4 335 046 151 24C 1EE 235
32. 12E 2A6 1A5 061 3A1 29C 011 066 093 03A 38A 1F8 1F0 084 134 356
33. 225 20C 3D9 2E4 0A8 0BE 1FE 0FC 0C7 377 2F7 07C 074 045 1E8 05A
34. 36B 36F 37E 375 04D 1FA 257 13B 089 220 399 00B 158 2D5 068 280
35. 357 0DD 0BF 1B0 2A7 23B 255 3FC 00A 330 2A4 200 016 008 126 0A6
36. 09B 37A 284 2D4 0F3 28E 237 31D 0DF 368 386 060 374 31C 033 26A
37. 100 394 1F9 04B 391 39F 30B 00C 077 2EB 3E3 231 29B 049 202 224
38. 132 2DA 2A8 286 06A 189 130 13D 1EC 29D 104 387 32F 316 207 137
39. 0DC 02B 1D7 21A 354 39C 0B6 329 285 3A4 0D9 245 2B3 0D6 33E 252
3A. 0CB 1DB 172 296 192 04A 244 250 1F6 2AD 2C6 346 09D 388 328 3A3
3B. 2C7 3E7 29E 3C0 0D5 22A 1F4 168 3FD 242 102 3C5 0F8 251 264 2DF
3C. 27C 029 003 38B 10C 380 10D 295 303 197 1CD 219 13A 306 166 304
3D. 175 19A 0D8 28A 0A2 26F 3B8 1C2 148 30A 0B8 24D 1A7 121 15E 372
3E. 0B4 266 22F 2FE 0B0 055 01E 3AC 14A 2E0 34B 1D5 3E9 393 2E7 037
3F. 20F 0D7 1A8 1AB 16B 36A 352 204 2BD 08B 147 1AA 35F 03C 309 33D

Figure A.5: Specification of the modified S-box S0.
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Appendix A – Specifications of BEA-1 Building Blocks

..0 ..1 ..2 ..3 ..4 ..5 ..6 ..7 ..8 ..9 ..A ..B ..C ..D ..E ..F

00. 021 09B 37A 3AB 0DF 016 1FE 004 07C 3BE 141 397 300 185 00C 1A7
01. 2FA 3AA 235 0B9 003 3CF 14A 18F 356 363 055 2E4 168 0CF 373 379
02. 2CA 33B 16B 393 283 2E0 2B9 3E9 12F 247 3AD 07B 288 146 30F 3C8
03. 15C 01F 22C 0F8 10F 35D 367 343 1EC 047 008 062 2CF 019 36B 148
04. 0B4 2E3 25E 234 0D2 1F8 184 2FF 2EB 2BB 3A1 34F 312 10B 2EA 04D
05. 1B1 2FE 084 3CC 216 337 0D4 08D 21F 035 1F5 32A 1AA 182 24B 1BF
06. 245 257 01E 34E 375 197 292 1DD 14D 190 27E 18D 137 3A3 228 392
07. 010 34C 389 114 3B9 28B 325 210 1E7 30B 388 335 094 088 038 1C2
08. 305 38E 112 0AA 01B 260 3C1 104 30E 3D4 0EF 079 347 382 22E 09D
09. 1E6 087 278 20D 25B 060 215 2C6 3E0 0A1 3F9 179 252 1B5 105 368
0A. 029 1E9 2C4 2C5 037 233 204 133 3BD 20B 37D 1AE 115 116 1B2 2F3
0B. 266 333 08F 050 1B9 328 26F 1EA 1A9 0E6 291 2ED 05E 162 1EE 362
0C. 15B 351 20F 17D 08B 2D5 259 271 14F 2F5 011 3E7 14B 391 248 0B2
0D. 119 3CD 160 23E 06A 0D0 3C3 01C 171 3D3 349 061 16F 0FB 1DF 342
0E. 082 074 218 2E9 3B3 225 2F9 230 020 223 151 0C5 2A9 0FE 096 045
0F. 0F2 0DA 03A 015 049 370 14C 255 369 193 344 20E 164 3A6 03D 387
10. 24C 030 315 3CA 2EE 0C6 02C 203 107 0F1 3FE 244 26C 264 1C6 1C9
11. 0B1 090 36F 28F 1A3 19D 0BE 317 19B 25C 117 0ED 395 0BF 37E 3E4
12. 35C 3FB 103 2E6 36E 11E 213 279 316 38C 277 286 081 068 3D1 1F7
13. 3C5 095 2FC 09F 2B5 332 05C 38A 3B8 09E 2DD 358 19F 111 2A7 2B0
14. 091 329 106 10E 012 273 2EC 033 080 174 2DB 1C7 102 2D3 123 1B0
15. 03F 2D4 364 131 0A6 275 00A 386 052 3DC 339 11A 211 02A 27F 0DD
16. 318 27B 17B 2D7 1E4 285 144 269 3F4 1EF 093 3BB 307 08E 3B0 0EB
17. 209 2CB 0BB 3A5 129 0AC 027 028 3E6 0E5 221 125 159 2B7 0F9 37C
18. 054 32D 3F6 031 053 29F 23C 2A1 0D9 237 11D 232 1B3 1C1 380 2C1
19. 0C7 360 0D6 265 34A 17F 296 3E1 20C 0A2 1F6 207 0CB 040 1D5 026
1A. 200 121 134 2AB 2FB 272 0D7 07E 001 262 27A 1FF 299 3EB 1FA 0A8
1B. 253 006 128 195 14E 289 0F6 3A8 3D2 261 178 3E5 2C0 0B7 303 181
1C. 097 22A 32E 166 306 0FC 139 138 0F7 1AC 1FD 29B 0AF 041 2CC 0CA
1D. 23B 1F2 25D 0EC 314 20A 03C 338 3C6 0C0 158 28C 3E8 21E 06E 263
1E. 0C4 085 1BD 051 3E2 153 013 0F3 2B6 1A8 17C 2DC 2C7 3B7 33C 29E
1F. 0B5 27C 3F2 398 194 099 0A9 320 35A 366 2C2 05D 1F9 226 098 04E
20. 05A 3AC 33E 0E8 0A7 186 100 17E 126 32B 110 05F 1A5 390 3CE 1FC
21. 11F 3D6 3D5 13C 2BD 251 355 065 336 3DF 152 07A 086 1B6 308 188
22. 0DC 124 15F 075 2E7 39E 046 302 32C 2CE 1DA 3AF 267 066 394 12B
23. 06D 371 2AF 12A 378 319 24D 1D7 37F 3A2 21D 157 31A 3FF 238 2DA
24. 071 31B 256 3F3 33D 280 30C 08C 21C 058 1CD 2D6 165 3A0 077 354
25. 022 32F 359 2BC 374 1EB 30A 192 1CF 1BA 06B 0A0 177 183 28E 2A8
26. 29C 130 323 122 331 201 3B1 0BC 25A 0D8 34B 11B 24F 2E8 1F1 3F5
27. 31C 254 346 376 11C 000 243 0C8 381 0E9 22D 01A 161 3D0 07F 1E0
28. 295 175 04F 3C4 1AF 2A2 191 2F7 34D 36C 2E2 3D7 02E 3CB 0F5 2F6
29. 0C1 30D 025 1F3 01D 1D3 06C 13B 109 2DF 38B 31F 18C 0E1 231 10D
2A. 36D 3DB 377 1DB 16D 09C 024 242 072 39B 31D 2C9 149 206 089 0A3
2B. 0EA 057 250 2CD 38F 2A0 0B3 169 12D 309 2D8 2AD 3F0 3F1 1C8 043
2C. 268 2A3 1D6 28A 1CA 324 2AA 02F 1DE 3C7 0D3 274 147 219 02D 2B2
2D. 1D8 13F 383 3DA 3ED 26A 0AE 1DC 301 2A4 350 2F2 0AB 2A6 3D8 014
2E. 2D2 352 108 0E3 270 229 1A1 29D 1BE 06F 002 059 0A4 198 23A 044
2F. 064 258 348 39C 176 2B4 007 3C2 33F 217 287 073 3B2 15E 03B 167
30. 2B8 2D0 340 0F4 0BD 2F0 353 39A 18A 29A 399 246 1CB 02B 1A2 2E1
31. 3FC 212 1B7 032 281 357 120 048 322 3A9 3B6 33A 196 1BB 1FB 19A
32. 1E2 0AD 101 0F0 22F 227 0B6 345 0C2 220 07D 298 3EF 0B8 2F1 0DE
33. 304 0E4 202 0D1 21B 005 12C 0EE 13A 3BF 092 00D 05B 009 37B 365
34. 0DB 2AC 27D 39D 3A7 214 0CC 1AD 2E5 2DE 1D9 1E5 1C0 3DE 140 24A
35. 2B3 26B 1F0 3C0 3A4 04A 039 2C3 0BA 078 1D4 1E3 16A 145 170 2C8
36. 00B 35B 1AB 127 2BF 16E 2BE 241 1E1 063 334 2B1 136 3EE 384 1C5
37. 23D 2D1 042 372 3BA 1ED 0FA 327 0C9 018 1C3 396 3F8 26E 1BC 187
38. 034 3FD 310 118 1D1 076 22B 143 208 38D 39F 0D5 3B4 199 3C9 3B5
39. 0E2 13D 10A 284 156 150 173 155 3DD 15D 0CD 163 1A0 0C3 10C 341
3A. 180 1A6 321 00E 276 03E 25F 3EC 189 3E3 1D0 1CC 26D 205 17A 3FA
3B. 35E 036 35F 2F8 067 2BA 2A5 16C 3D9 2FD 297 18E 113 0FD 313 0E7
3C. 15A 1B8 08A 239 04B 326 083 385 2F4 19C 12E 017 3BC 224 135 290
3D. 09A 311 240 13E 0A5 24E 069 18B 0FF 236 36A 1A4 04C 3AE 1E8 31E
3E. 132 23F 222 070 2AE 3EA 249 023 293 0B0 330 21A 28D 1CE 154 172
3F. 1F4 056 00F 2EF 361 1D2 0E0 1C4 19E 282 1B4 3F7 294 142 2D9 0CE

Figure A.6: Specification of the secret S-box S1.
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..0 ..1 ..2 ..3 ..4 ..5 ..6 ..7 ..8 ..9 ..A ..B ..C ..D ..E ..F

00. 021 09B 37A 3AB 0DF 016 1FE 004 07C 3BE 141 397 300 185 00C 1A7
01. 2FA 3AA 235 0B9 003 3CF 14A 18F 356 363 173 2E4 168 0CF 373 379
02. 2CA 326 16B 393 283 2E0 2B9 3E9 12F 247 3D8 07B 288 146 30F 267
03. 15C 01F 22C 0F8 10F 35D 367 343 1EC 047 008 062 2CF 3D6 36B 148
04. 0B4 2E3 25E 234 0D2 1F8 184 2FF 2EB 2BB 3A1 34F 312 10B 2EA 04D
05. 1B1 2FE 084 229 216 337 0D4 08D 21F 035 164 32A 1AA 182 24B 1BF
06. 245 257 01E 34E 375 197 292 1DD 14D 190 27E 13D 137 3A3 228 392
07. 010 34C 389 114 3B9 28B 325 210 1E7 30B 388 1A1 094 088 038 1C2
08. 305 38E 112 0AA 01B 260 3C1 104 30E 3D4 0EF 079 347 382 22E 09D
09. 1E6 087 278 20D 25B 060 215 2C6 3E0 055 3F9 179 252 1B5 105 368
0A. 029 1E9 2C4 2C5 037 233 204 133 3BD 20B 37D 1AE 03D 116 1B2 2F3
0B. 266 333 08F 050 1B9 328 26F 1EA 1A9 0E6 291 2ED 05E 162 1EE 362
0C. 15B 351 20F 17D 08B 2D5 259 271 14F 2F5 011 3E7 14B 391 248 0B2
0D. 119 3CD 160 23E 06A 0D0 3C3 01C 171 3D3 349 061 16F 0FB 1DF 342
0E. 082 068 218 2E9 3B3 225 2F9 230 020 223 151 0C5 2A9 0FE 096 045
0F. 0F2 0DA 03A 015 049 370 14C 255 369 193 38A 20E 0B1 3A6 039 387
10. 24C 030 315 3CA 0A1 0C6 02C 203 107 115 3FE 244 26C 264 1C6 1C9
11. 123 090 36F 28F 1A3 19D 0BE 317 19B 25C 117 0ED 395 0BF 37E 3E4
12. 04C 3FB 103 2E6 3C8 11E 3D1 279 316 38C 277 286 081 074 213 1F7
13. 3C5 095 2FC 09F 2B5 332 05C 31F 324 09E 2DD 3FC 19F 111 2A7 2B0
14. 091 329 106 10E 012 273 2EC 341 080 174 2DB 1C7 102 2D3 2EE 1B0
15. 03F 2D4 364 131 0A6 275 00A 386 052 3DC 339 11A 211 02A 27F 0DD
16. 318 27B 17B 2D7 1E4 285 0AC 269 3F4 1EF 093 3BB 307 08E 3B0 0EB
17. 209 2CB 0BB 3A5 129 1CA 027 028 3E6 064 221 125 159 2B7 0F9 37C
18. 054 32D 3F6 031 053 29F 23C 2A1 0D9 237 336 232 1B3 1C1 380 2C1
19. 1DA 360 30C 265 34A 17F 296 3E1 20C 0A2 1F6 207 0F1 040 1D5 026
1A. 200 121 134 2AB 2FB 272 0D7 07E 001 262 27A 1FF 299 3EB 1FA 39F
1B. 253 006 128 36E 14E 289 0F6 3A8 3D2 261 178 3E5 2C0 0B7 303 181
1C. 097 22A 32E 166 306 0FC 139 138 3BF 1AC 1FD 29B 0AF 041 2CC 0CA
1D. 23B 1F2 25D 0EC 314 20A 03C 120 3C6 0C0 158 28C 3E8 21E 06E 263
1E. 0C4 085 1BD 051 3E2 153 013 0F3 2B6 1A8 17C 2DC 2C7 3B7 33C 29E
1F. 0B5 27C 3F2 398 194 099 0A9 320 35A 366 2C2 05D 1F9 226 098 04E
20. 05A 3AC 33E 0E8 0A7 186 1D8 17E 126 32B 110 05F 1A5 390 3CE 1FC
21. 11F 019 3D5 13C 2BD 251 355 065 1F5 3DF 152 07A 086 1B6 308 188
22. 0DC 124 15F 075 2E7 39E 046 302 32C 2CE 3CC 3AF 208 066 394 12B
23. 06D 371 2AF 12A 378 319 24D 1D7 37F 3A2 21D 157 31A 3FF 3B2 2DA
24. 071 31B 256 3F3 33D 280 144 08C 21C 058 1CD 2D6 165 3A0 077 354
25. 022 32F 359 2BC 374 1EB 30A 192 1CF 1BA 06B 0A0 177 183 28E 2A8
26. 29C 130 323 122 331 201 3B1 0BC 25A 0D8 34B 11B 24F 2E8 1F1 3F5
27. 31C 254 346 376 11C 000 243 0C8 381 0E9 22D 01A 161 3D0 07F 1E0
28. 295 175 04F 3C4 1AF 2A2 191 2F7 34D 36C 2E2 3D7 0F7 18B 0F5 2F6
29. 0C1 30D 025 1F3 01D 1D3 06C 13B 109 2DF 38B 2E5 18C 0E1 231 10D
2A. 36D 3DB 377 1DB 16D 09C 024 242 072 39B 31D 2C9 149 0F0 089 0A3
2B. 0EA 057 250 2CD 38F 2A0 0B3 169 12D 309 2D8 2AD 358 3F1 1C8 043
2C. 268 2A3 1D6 28A 3EC 18D 2AA 02F 1DE 3C7 0D3 274 147 219 02D 2B2
2D. 0CC 13F 383 3DA 3ED 26A 0AE 1DC 301 2A4 350 2F2 0AB 2A6 39A 014
2E. 2D2 352 108 0E3 270 3E3 02E 29D 1BE 06F 002 059 0A4 198 23A 044
2F. 0CB 258 348 39C 176 2B4 007 3C2 33F 217 287 073 238 15E 03B 167
30. 2B8 2D0 340 0F4 0BD 2F0 353 100 18A 29A 399 246 1CB 02B 1A2 2E1
31. 3F0 212 1B7 032 281 357 3AD 048 322 3A9 3B6 33A 196 1BB 1FB 19A
32. 1E2 0AD 101 033 22F 227 0B6 345 0C2 220 07D 298 3EF 0B8 2F1 0DE
33. 304 0E4 202 0D1 21B 005 12C 0EE 13A 0C7 092 00D 05B 009 37B 365
34. 0DB 2AC 27D 39D 3A7 214 338 1AD 335 2DE 1D9 1E5 1C0 3DE 140 24A
35. 2B3 26B 1F0 3C0 3A4 04A 0A8 2C3 0BA 078 1D4 1E3 16A 145 170 2C8
36. 00B 35B 1AB 127 2BF 16E 2BE 241 1E1 063 334 2B1 136 3EE 3B8 1C5
37. 23D 2D1 042 372 3BA 1ED 0FA 327 0C9 018 1C3 396 3F8 26E 1BC 187
38. 034 3FD 310 118 1D1 076 22B 143 38D 33B 0E5 0D5 3B4 199 3C9 3B5
39. 0E2 195 10A 284 156 150 11D 155 3DD 15D 0CD 163 1A0 0C3 10C 35C
3A. 180 1A6 321 00E 276 03E 25F 0D6 189 206 1D0 1CC 26D 205 17A 3FA
3B. 35E 036 35F 2F8 067 2BA 2A5 16C 3D9 2FD 297 18E 113 0FD 313 0E7
3C. 15A 1B8 08A 239 04B 384 083 385 2F4 19C 12E 017 3BC 224 135 290
3D. 09A 311 240 13E 0A5 24E 069 3CB 0FF 236 36A 1A4 344 3AE 1E8 31E
3E. 132 23F 222 070 2AE 3EA 249 023 293 0B0 330 21A 28D 1CE 154 172
3F. 1F4 056 00F 2EF 361 1D2 0E0 1C4 19E 282 1B4 3F7 294 142 2D9 0CE

Figure A.7: Specification of the modified S-box S1.
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Appendix A – Specifications of BEA-1 Building Blocks

..0 ..1 ..2 ..3 ..4 ..5 ..6 ..7 ..8 ..9 ..A ..B ..C ..D ..E ..F

00. 12E 38B 18E 131 039 10D 2DE 246 286 2BE 315 384 21D 1A5 06D 0CA
01. 2A2 2CE 264 085 374 3BB 3B9 1B7 0DE 3BC 207 002 392 1B5 0BA 318
02. 39C 2EE 13C 125 227 063 27E 126 0AA 082 305 15C 206 0A0 009 3C6
03. 100 3F3 2AD 199 102 108 1DB 30E 310 245 0A8 116 022 3C1 028 332
04. 1E1 2E7 0DA 255 0CB 07C 2A0 240 150 165 258 2C8 0C4 334 36B 2D1
05. 1E0 138 39A 0FF 1A7 10C 353 19B 171 038 3BD 000 3A2 1B8 282 2EB
06. 1D4 3D4 20F 23C 0D7 154 012 0DF 10F 237 04E 155 2E2 189 01E 121
07. 1B4 381 273 123 052 12C 158 033 2D2 3D3 23B 3B8 2F7 160 341 124
08. 337 1E6 3BE 327 0BD 096 2E4 107 1C2 263 2A4 2CF 244 196 36A 16D
09. 0A1 2C3 004 049 303 3A3 09E 361 065 1B0 05D 319 21B 249 2B2 399
0A. 198 26A 080 1B1 340 28A 33C 316 0FC 37F 1A8 134 17F 3DF 34F 3E5
0B. 2D9 32A 34A 1D1 09D 3FB 0BE 3A8 383 036 3B6 222 22E 2B6 3A6 0FA
0C. 1C1 0B2 113 3E8 129 34C 153 333 07E 01F 01D 213 299 0F8 130 1B9
0D. 182 0A2 1A1 1CD 119 210 24C 020 097 3F0 280 112 04C 14D 1EB 307
0E. 386 0AE 322 2FE 217 3D7 1AF 345 05B 3F5 110 1C8 03C 1C5 35A 0C0
0F. 3F1 238 338 1CB 0F4 2B4 00F 3A1 242 03D 1DA 1B3 003 114 3FA 313
10. 35F 0C5 261 2C1 15D 28F 390 1C9 1DD 3C7 14F 11D 066 04D 03B 0E9
11. 2BA 2FD 347 191 044 0B8 194 148 256 360 326 257 1AE 396 09B 2CD
12. 1E7 3CD 1FF 269 040 3E7 08A 216 0C9 33B 3D9 1BC 2B1 325 11B 16F
13. 053 22A 186 180 27D 11F 2A9 13E 3E1 0D4 24E 1D2 2FC 3C9 1FB 31A
14. 3DE 1D7 025 372 339 2C7 2ED 25F 3E6 098 2EF 247 0E8 2D3 105 09F
15. 2CC 36D 31F 24B 1D8 241 068 211 2AF 3EA 355 35C 026 2BD 0B5 0EF
16. 35B 233 05A 1BE 291 368 137 035 298 140 26B 1E4 379 07F 3EB 164
17. 20B 12D 375 1BF 12F 1AA 18B 268 3F4 364 0F7 057 0B9 3C5 060 19D
18. 22B 17C 11C 0B1 23A 3B4 05F 2F5 219 224 3CC 042 06F 39D 218 023
19. 215 177 190 395 274 359 0E2 2E9 397 0F1 010 099 17D 08E 314 317
1A. 0DC 03F 1AC 1A6 132 152 195 3AD 3E9 3C2 019 0F0 0CD 074 178 174
1B. 184 3E0 084 2FB 1A9 0B7 250 27B 06C 13B 0FB 296 297 30F 350 14E
1C. 007 10E 19C 055 351 034 175 103 272 02D 2C0 21C 047 20D 0E3 29B
1D. 13F 1DF 162 376 0BF 1CA 3EC 2B9 3FE 388 133 29D 33A 304 1FE 059
1E. 13D 19A 294 02B 127 1E8 275 07B 14C 018 031 15B 0A3 0EC 27C 087
1F. 38D 3B0 284 1FA 1F5 00A 3E2 02E 228 285 34B 311 075 2F1 1C4 094
20. 3FF 202 27F 2F9 30D 135 33F 301 3D8 2C6 3D2 309 0EA 073 1F1 289
21. 3B5 093 111 0B4 20E 1BA 1F7 24A 394 157 366 336 39B 017 25C 3C4
22. 1EC 2BC 144 1E9 193 16A 33D 344 295 079 2B7 2D4 38A 17A 292 0AC
23. 0F2 35E 1EF 0BB 1BB 071 2DA 3F7 3D1 037 2AB 330 0B0 2DB 07A 22D
24. 00C 149 0AF 290 2E0 122 283 32E 3AE 3C3 1D9 2E5 37B 0BC 265 32D
25. 089 2CB 115 081 18A 0E5 05C 1A3 287 0D0 276 32C 0C3 30B 226 1C0
26. 2F3 0A5 062 2AA 185 091 208 156 230 320 385 28E 21E 3F9 11E 05E
27. 159 281 0C8 37C 0DD 188 04F 26E 33E 2F8 3A0 3B3 3C8 0A9 1A2 3AA
28. 302 36E 38F 19E 212 142 24D 0B3 141 3EF 1CE 262 145 362 346 176
29. 1E3 14B 3A9 3DD 1C6 3F8 070 0D3 1EA 3BA 248 146 201 243 1F6 205
2A. 0A7 20A 2F6 00E 267 26D 2A7 31D 2D0 0D1 38E 006 30A 3E3 2C5 28B
2B. 2D5 3A7 1D5 3A4 101 2D7 34E 2B5 072 26C 090 1F8 1F9 3AF 1F0 0C2
2C. 2C2 21A 06A 0AB 1FC 109 16B 15E 161 38C 1CC 271 279 369 342 1D6
2D. 01A 016 352 173 34D 354 181 235 254 23F 16C 030 03E 1C3 2EA 0CF
2E. 18C 078 18D 01B 117 393 3F2 39E 37D 1BD 24F 10A 29A 0A4 08D 187
2F. 015 046 0C1 251 00D 348 014 21F 001 008 2CA 321 1B2 1B6 043 147
30. 223 0B6 054 1AB 0FD 373 31E 323 20C 151 10B 288 045 041 349 2E3
31. 32F 0ED 277 179 278 3F6 23E 252 077 04A 120 200 308 300 312 04B
32. 1ED 048 30C 183 0D2 39F 3B7 0AD 3FD 204 050 1C7 197 2F2 221 209
33. 1F3 343 051 1F2 169 266 25A 26F 0F3 2B0 095 17B 31B 0F6 0E6 2DC
34. 225 36C 1EE 253 058 0E1 021 31C 3D6 1AD 167 2AC 06B 23D 398 032
35. 35D 2FA 00B 391 239 0F5 335 02C 083 143 02A 29E 36F 214 104 14A
36. 0E4 1E5 19F 2E1 1FD 356 28D 07D 11A 0EE 0EB 370 358 1DC 163 056
37. 367 03A 2D6 363 229 3DA 08B 382 270 2E8 2FF 168 027 2AE 170 28C
38. 2A3 08C 1CF 076 389 32B 2EC 2A5 2C9 2A6 29C 3ED 09C 0CC 2A8 203
39. 0FE 293 29F 2F4 0E7 232 0CE 3AB 13A 011 3DB 220 0D8 1F4 22F 236
3A. 17E 1A4 27A 128 329 324 067 365 024 2B8 3E4 0D6 3AC 3A5 172 306
3B. 16E 0DB 3C0 25B 088 2D8 3BF 380 259 2A1 1E2 377 02F 029 2F0 2BF
3C. 2C4 136 2BB 3B1 1DE 3D5 01C 25E 2B3 069 0A6 106 0D5 3DC 118 2E6
3D. 2DD 1D3 18F 371 064 260 0C7 0E0 0C6 1D0 3EE 0D9 37A 387 3CB 234
3E. 3D0 15F 3B2 08F 15A 013 331 328 06E 25D 0F9 092 166 378 3CE 139
3F. 005 09A 12B 061 231 1A0 3CF 3CA 2DF 192 086 357 22C 12A 3FC 37E

Figure A.8: Specification of the secret S-box S2.
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..0 ..1 ..2 ..3 ..4 ..5 ..6 ..7 ..8 ..9 ..A ..B ..C ..D ..E ..F

00. 12E 38B 18E 131 039 10D 2DE 246 286 2BE 315 384 21D 142 06D 0CA
01. 2A2 2CE 264 085 374 3BB 3B9 1B7 3E6 3BC 207 002 392 1B5 0BA 318
02. 39C 2EE 1DA 125 019 063 27E 126 19A 082 305 0E3 206 0A0 009 3C6
03. 100 3F3 2AD 199 102 108 1DB 2F0 310 245 0A8 116 022 3C1 028 332
04. 1E1 2E7 0DA 2B7 0CB 07C 2A0 240 150 165 258 2C8 0C4 334 36B 2D1
05. 1E0 138 39A 0FF 1A7 10C 353 19B 171 038 3BD 000 3A2 1B8 282 2EB
06. 1D4 3D4 20F 23C 0D7 154 012 0DF 3A8 237 09E 155 2E2 189 2F2 136
07. 1B4 381 273 123 052 12C 158 033 2D2 3D3 23B 3B8 2F7 160 341 124
08. 337 1E6 3BE 327 1D3 045 2E4 107 1C2 263 2A4 2CF 244 196 36A 16D
09. 0A1 2C3 004 049 209 3A3 221 361 01E 1B0 05D 319 21B 249 2B2 399
0A. 198 26A 080 1B1 340 28A 33C 316 0FC 37F 1A8 134 17F 3DF 34F 3E5
0B. 2D9 32A 34A 1D1 09D 3FB 0BE 3EA 383 036 3B6 222 22E 2B6 3A6 0FA
0C. 1C1 0B2 113 3E8 129 34C 153 333 07E 01F 01D 213 299 0F8 130 1B9
0D. 182 0A2 1A1 3D5 119 10F 24C 020 097 3F0 280 112 04C 14D 1EB 307
0E. 386 0AE 322 2FE 0C5 3D7 1AF 345 05B 3F5 110 1C8 03C 1C5 35A 0C0
0F. 3F1 15B 338 1CB 0F4 2B4 00F 3A1 242 03D 29D 1B3 003 114 3FA 313
10. 35F 217 261 2C1 15D 28F 390 1C9 1DD 3C7 14F 11D 066 04D 03B 0E9
11. 2BA 2FD 347 191 044 0B8 194 148 256 360 326 257 1AE 396 09B 2CD
12. 1E7 3CD 1FF 269 040 3E7 08A 216 0C9 33B 3D9 1BC 2B1 325 11B 16F
13. 053 22A 186 180 27D 11F 2A9 13E 3E1 0D4 24E 1D2 2FC 3C9 1FB 31A
14. 3DE 1D7 025 372 339 2C7 2ED 25F 0A7 098 2EF 247 0E8 2D3 105 09F
15. 2CC 36D 31F 24B 1D8 241 068 211 2AF 0AA 355 35C 026 2BD 238 0EF
16. 35B 233 05A 1BE 291 368 137 035 298 140 26B 1E4 379 07F 3EB 164
17. 20B 12D 375 1BF 12F 1AA 18B 268 3F4 364 0F7 1CC 0B9 3C5 060 19D
18. 22B 17C 11C 0B1 23A 3B4 05F 2F5 219 224 0E5 042 06F 39D 218 023
19. 1DE 177 190 395 274 359 0E2 2E9 397 0F1 010 099 17D 08E 314 317
1A. 0DC 03F 1AC 1A6 132 152 195 3AD 3E9 3C2 1BB 0F0 0CD 074 178 174
1B. 184 3E0 389 2FB 1A9 0B7 250 27B 06C 13B 0FB 296 297 30F 350 14E
1C. 007 10E 19C 055 351 034 175 103 272 02D 2C0 21C 047 20D 0EA 29B
1D. 13F 1DF 162 376 0BF 1CA 3EC 2B9 3FE 388 133 0A9 33A 304 1FE 059
1E. 13D 0BD 294 02B 127 1E8 275 07B 14C 018 031 1C6 0A3 0EC 27C 087
1F. 38D 3B0 284 1FA 1F5 00A 3E2 02E 228 285 34B 311 075 2F1 1C4 094
20. 3FF 202 27F 2F9 30D 135 33F 301 3D8 2C6 3D2 309 057 073 1F1 289
21. 3B5 3CE 111 0B4 20E 1BA 1F7 24A 394 157 366 336 39B 017 25C 3C4
22. 1EC 2BC 144 1E9 193 16A 33D 344 295 079 027 2D4 38A 17A 292 0AC
23. 0F2 35E 1EF 0BB 106 071 2DA 3F7 084 037 2AB 330 0B0 2DB 07A 22D
24. 00C 149 0AF 290 2E0 122 283 32E 3AE 3C3 1D9 2E5 37B 0BC 265 32D
25. 089 2CB 115 081 18A 255 05C 1A3 287 0D0 276 32C 0C3 30B 226 1C0
26. 2F3 0A5 121 2AA 210 091 208 3EE 230 320 385 28E 21E 3F9 11E 05E
27. 159 281 0C8 37C 0DD 188 04F 26E 33E 2F8 3A0 3B3 3C8 227 1A2 3AA
28. 302 36E 38F 19E 212 13C 24D 0B3 141 3EF 1CE 262 145 362 346 176
29. 1E3 14B 3A9 3DD 093 3F8 070 0D3 1EA 3BA 248 146 201 243 1F6 205
2A. 1CD 20A 2F6 00E 267 26D 2A7 1FC 2D0 0D1 38E 006 30A 3E3 2C5 28B
2B. 2D5 3A7 1D5 3A4 101 2D7 34E 2B5 072 26C 090 1F8 1F9 3AF 1F0 0C2
2C. 2C2 21A 06A 0AB 1EE 109 16B 15E 161 38C 156 271 279 369 342 1D6
2D. 01A 016 352 173 34D 354 181 185 1A5 23F 16C 030 215 1C3 2EA 0CF
2E. 0DE 078 18D 01B 117 393 3F2 39E 37D 1BD 24F 18C 29A 0A4 08D 187
2F. 015 065 0C1 251 00D 348 014 21F 001 008 2CA 321 1B2 1B6 043 147
30. 223 0B6 054 1AB 0FD 373 31E 323 20C 151 10B 288 2DF 041 349 2E3
31. 32F 0ED 277 179 278 3F6 23E 252 077 04A 120 200 308 300 312 04B
32. 1ED 048 30C 183 0D2 39F 3B7 0AD 3FD 204 050 1C7 197 3BF 046 04E
33. 1F3 343 051 1F2 169 266 25A 26F 0F3 2B0 095 17B 31B 0F6 0E6 2DC
34. 225 36C 377 253 058 0E1 021 31C 3D6 1AD 167 2AC 06B 23D 398 032
35. 35D 2FA 00B 391 239 0F5 335 02C 083 143 02A 29E 36F 214 104 14A
36. 0E4 096 19F 2E1 1FD 30E 28D 07D 11A 0EE 0EB 370 358 1DC 163 056
37. 367 03A 2D6 363 229 3DA 08B 1E5 270 2E8 2FF 168 10A 2AE 170 28C
38. 2A3 08C 1CF 076 3D1 32B 2EC 2A5 2C9 2A6 29C 3ED 09C 0CC 2A8 203
39. 0FE 293 29F 2F4 0E7 232 0CE 3AB 13A 011 3DB 220 0D8 1F4 22F 236
3A. 062 1A4 27A 128 329 324 067 365 024 2B8 3E4 0D6 3AC 3A5 172 306
3B. 16E 0DB 3C0 25B 088 2D8 303 380 259 2A1 1E2 0B5 02F 029 356 2BF
3C. 2C4 03E 2BB 3B1 17E 3CC 01C 25E 2B3 069 0A6 15C 0D5 3DC 118 2E6
3D. 2DD 235 18F 371 064 260 0C7 0E0 0C6 1D0 254 0D9 37A 387 3CB 234
3E. 3D0 15F 3B2 08F 15A 013 331 328 06E 25D 0F9 092 166 378 31D 139
3F. 005 09A 12B 061 231 1A0 3CF 3CA 382 192 086 357 22C 12A 3FC 37E

Figure A.9: Specification of the modified S-box S2.
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Appendix A – Specifications of BEA-1 Building Blocks

..0 ..1 ..2 ..3 ..4 ..5 ..6 ..7 ..8 ..9 ..A ..B ..C ..D ..E ..F

00. 1AD 084 1B5 30A 25A 151 174 3F9 113 3B4 35B 291 332 170 021 31E
01. 00E 2FC 023 0B0 376 259 2BC 378 031 050 359 1FF 26C 0D5 214 0BD
02. 1AB 0AB 3AC 036 0E2 2F6 07A 0EA 2CB 0FE 24E 280 057 073 219 3EA
03. 2E2 27C 032 162 285 13C 0B6 1ED 0B3 2F5 2C6 34B 335 093 298 37A
04. 273 17E 30F 2E7 14B 3BC 1CE 039 315 01A 144 1C4 20A 3A9 362 10D
05. 235 1D9 2F9 0A4 052 0E3 17F 061 02C 140 0E1 156 10E 250 288 1BE
06. 07C 2B8 05D 242 192 0A8 3B0 0DB 129 2AF 063 3AF 3D1 0C8 0A6 029
07. 2B9 3B8 092 078 2A2 06E 2CF 3CF 0EF 0E7 019 1F1 07E 1BB 2C7 251
08. 36A 2CA 076 216 2E5 0E6 1DD 2FE 390 277 1D2 394 2C5 022 05A 396
09. 0F4 265 0FD 150 027 111 2EC 29C 3DF 11F 2A1 158 388 1D3 3C8 386
0A. 38B 279 064 1A4 028 34F 1D5 352 2C8 257 3C4 355 0B7 322 2C1 317
0B. 1DF 1A9 137 3DC 015 096 2AA 2A4 3F6 1A3 3DA 086 2E8 343 36F 11A
0C. 0A5 38D 328 348 292 308 3F4 059 31C 1AC 1E4 3BF 1C2 36D 1D8 0ED
0D. 191 3D3 3D4 046 0E8 373 034 23C 102 3C5 11E 393 00B 2D7 2DA 00F
0E. 209 230 19D 184 1B8 339 360 240 011 305 17A 324 344 045 3F0 0F3
0F. 1C6 0B4 08D 18E 035 0C9 345 0D3 37D 3CA 284 3EF 00D 197 36B 06B
10. 08B 10B 18A 218 3DE 32A 2CC 0AE 254 3FC 066 246 24D 232 0A2 145
11. 2DB 199 37F 1E1 392 3F3 1C8 1CD 136 2D0 325 27B 068 1F5 077 22D
12. 1E2 2F4 0B2 2E9 3CC 296 2EA 116 30D 276 02D 11B 09C 25E 157 195
13. 3A1 3F2 3D7 130 258 227 0D4 26B 1FB 1EA 379 329 179 2D5 0C4 09F
14. 39E 09E 1FD 15B 126 2B3 15E 012 21A 372 356 154 042 017 217 19B
15. 1F8 261 3ED 14A 22F 110 037 1B7 079 201 3C9 0EE 2B6 107 3CB 302
16. 19E 21D 1E5 205 25F 3BD 196 198 337 069 32E 0DF 3EE 272 0BC 3C2
17. 01D 37B 3C0 0A3 22E 123 2A9 0DE 2A7 2FF 3A5 05B 38F 047 1B4 350
18. 1EE 0A1 29D 1FC 024 29B 3A3 115 3BE 215 09A 37E 2A0 0C2 377 0B1
19. 149 04A 0E9 365 3D6 2E3 200 35A 17B 0D7 134 3D0 36E 336 334 1F6
1A. 1DC 3B2 2B1 2AB 3F1 1FA 067 06C 020 211 233 28D 0DA 34C 20C 1A8
1B. 28F 389 349 3F5 2FB 1CF 383 387 0CB 08F 0C0 135 3A7 2B0 346 30E
1C. 163 33C 32F 1EF 0FA 125 244 226 1C1 35E 1A2 252 1E9 3A0 146 3D8
1D. 148 353 0FF 37C 09D 2C0 268 048 117 1E3 2A6 003 323 0AD 1D7 313
1E. 072 18D 297 39A 0C7 12D 016 222 056 27A 287 095 366 293 3E0 354
1F. 369 299 190 10F 25B 183 080 1B6 361 3AA 3E1 318 2BA 15C 0D8 1DB
20. 342 2EE 1AE 04F 1A7 2CD 2F8 03A 01F 0BA 188 090 2B7 382 16F 0C5
21. 1B0 2D2 1CC 3B9 267 153 24B 1E7 0D2 0FC 33B 0F7 3BB 25C 1C7 0D9
22. 00C 271 0AA 1C5 357 1E8 01E 3FE 081 245 314 294 164 13F 212 340
23. 141 1B9 2C3 02E 087 0E4 13E 26A 171 249 22B 206 138 001 0A0 23F
24. 02B 2BB 06F 05E 275 20E 3B3 12A 28A 100 2AC 22A 263 0F9 1C0 21B
25. 203 303 35C 295 088 008 3E5 0DD 307 105 121 185 0A7 3EC 11C 347
26. 094 39D 1B2 02A 3B1 204 114 312 167 131 304 290 231 3E7 2D3 3D2
27. 2C2 32C 3E6 2F1 009 10C 327 2F2 2D1 1BA 2FD 35D 253 2EF 282 3D9
28. 338 14F 1B1 28B 330 2F0 18C 175 12E 169 2D9 223 2F3 255 0C3 13D
29. 398 15F 16D 2DC 2BD 0FB 3FA 2ED 147 161 01B 04B 17D 28C 058 3C1
2A. 1A6 21F 1DA 27F 124 2BF 39C 005 054 35F 143 3CE 19A 043 12F 104
2B. 0CF 286 18B 243 006 106 333 152 1BF 3FF 3B7 1EC 30B 098 08E 1D1
2C. 089 3CD 1F0 210 2EB 309 2F7 13B 20D 3AD 02F 0EC 11D 1BD 3A8 38E
2D. 311 1E6 3FB 0AF 2E1 12B 220 03D 0F1 2FA 208 16C 28E 181 33A 119
2E. 033 10A 0CA 2A5 010 31F 3BA 1F3 3B5 2DD 193 2AD 283 085 00A 32B
2F. 0F5 3AB 1D0 2E6 0EB 2DF 2B2 06A 065 38C 18F 364 33E 0B8 2CE 1F2
30. 289 142 266 132 3E2 24C 101 24A 39B 09B 097 1A0 229 375 320 062
31. 33D 118 3EB 03C 15A 281 1A1 207 3C7 331 319 082 127 34E 07B 239
32. 23A 300 0B5 01C 2B5 1E0 39F 180 321 133 26F 371 1B3 363 26D 23E
33. 0C6 165 0F6 19C 070 0E0 367 1DE 247 213 053 109 2D6 2B4 3DB 29E
34. 30C 1CB 0E5 1F7 15D 2E0 013 236 2A3 228 0BB 14D 018 278 155 1C9
35. 178 0CD 370 07D 3A6 23B 049 2D4 397 0BF 1BC 21E 399 3F8 0AC 004
36. 34A 055 04D 14C 33F 13A 301 05C 3A2 112 2DE 075 3F7 391 040 326
37. 2D8 000 0DC 0D1 041 14E 20B 1A5 166 168 051 22C 31B 0CC 16E 172
38. 1CA 2C4 3C3 0A9 03F 173 27E 08A 25D 1F9 014 17C 044 16B 380 176
39. 31D 3E9 108 139 2C9 04C 187 071 29F 381 316 038 0CE 06D 34D 1AA
3A. 122 2A8 1C3 04E 368 351 202 38A 225 189 194 306 026 0F0 248 08C
3B. 05F 19F 2BE 270 060 083 186 3DD 2AE 0C1 23D 160 241 0F8 1EB 385
3C. 374 177 3E4 358 1FE 099 120 1D4 3A4 310 030 1AF 1F4 0BE 074 16A
3D. 274 1D6 21C 3FD 3C6 238 234 262 3D5 31A 395 27D 3E8 128 002 29A
3E. 32D 0D0 341 26E 0B9 224 237 0F2 2E4 12C 103 025 20F 260 3AE 269
3F. 07F 03B 03E 007 182 159 091 3B6 3E3 384 264 0D6 36C 256 221 24F

Figure A.10: Specification of the secret S-box S3.
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..0 ..1 ..2 ..3 ..4 ..5 ..6 ..7 ..8 ..9 ..A ..B ..C ..D ..E ..F

00. 200 084 1B5 30A 25A 151 174 3F9 113 3B4 35B 291 332 170 021 31E
01. 00E 2FC 023 0B0 3A9 259 2BC 378 031 050 0D0 1FF 26C 0D5 214 23E
02. 1AB 0AB 3AC 036 0E2 2F6 07A 0EA 2CB 0FE 24E 280 138 073 219 3EA
03. 2E2 27C 032 162 285 13C 0B6 1ED 0B3 2F5 2C6 34B 335 1EF 26E 37A
04. 273 17E 30F 2E7 14B 3BC 1CE 039 315 01A 144 1C4 20A 17B 362 10D
05. 235 1D9 2F9 0A4 052 0E3 0BD 061 02C 140 0E1 156 10E 250 288 1BE
06. 07C 2B8 05D 242 192 0A8 3B0 0DB 129 2AF 063 3AF 3D1 0C8 0A6 029
07. 2B9 3B8 0D2 078 2A2 06E 2CF 3CF 0EF 0E7 019 1F1 07E 1BB 2C7 251
08. 36A 2CA 076 216 2E5 0E6 1DD 2FE 390 277 1D2 394 2C5 022 05A 396
09. 0F4 265 0FD 150 057 111 2EC 29C 3DF 11F 13A 158 388 1D3 3C8 386
0A. 38B 279 064 1A4 028 22F 1D5 352 2C8 257 3C4 355 104 322 2C1 382
0B. 1DF 1A9 137 3DC 015 096 2AA 2A4 3F6 1A3 3DA 086 2E8 343 233 11A
0C. 0A5 38D 328 348 292 132 3F4 059 31C 1AC 1C6 3BF 1C2 36D 1D8 0ED
0D. 191 3D3 3D4 3DE 0E8 373 034 23C 224 3C5 11E 393 00B 308 2DA 00F
0E. 209 230 19D 184 1B8 339 360 2D7 011 305 17A 324 344 128 3F0 0F3
0F. 317 0B4 08D 18E 035 0C9 345 0D3 37D 3CA 284 3EF 00D 197 36B 06B
10. 08B 10B 18A 218 046 32A 2CC 0AE 254 3FC 066 246 24D 232 0A2 145
11. 2DB 199 37F 1E1 392 3F3 1C8 1CD 136 2D0 325 27B 068 1F5 077 22D
12. 12F 2F4 0B2 2E9 3CC 296 2EA 116 30D 276 02D 266 09C 25E 157 195
13. 3A1 3F2 3D7 130 258 227 0D4 26B 027 1EA 379 329 179 2D5 0C4 09F
14. 39E 09E 1FD 15B 126 2B3 15E 012 21A 372 356 154 042 017 217 19B
15. 1F8 261 3ED 14A 1FB 110 037 1B7 079 045 3C9 0EE 2B6 107 3CB 302
16. 19E 21D 1E5 205 25F 3BD 196 198 337 069 32E 0DF 3EE 201 0BC 3C2
17. 01D 37B 3C0 0A3 22E 123 2A9 0DE 2A7 2FF 3A5 05B 38F 047 1B4 350
18. 0CB 0A1 29D 1FC 024 29B 3A3 2A1 3BE 215 09A 37E 2A0 0C2 377 0B1
19. 149 33B 323 365 3D6 2E3 082 35A 38C 0D7 134 3D0 36E 336 334 1F6
1A. 1DC 3B2 2B1 213 3F1 1FA 380 06C 020 211 033 28D 0DA 34C 20C 1A8
1B. 28F 369 349 3F5 2FB 1CF 383 387 35E 08F 29A 135 3A7 2B0 346 30E
1C. 163 33C 32F 093 0FA 125 244 226 1C1 1EE 1A2 252 1E9 3A0 146 3D8
1D. 148 353 0FF 37C 09D 2C0 268 048 117 1E3 2A6 003 11B 0AD 1D7 313
1E. 072 18D 297 39A 0C7 12D 016 222 056 1CB 287 095 366 293 3E0 354
1F. 13E 299 190 10F 25B 183 080 1B6 361 3AA 3E1 318 2BA 15C 0D8 1DB
20. 342 2EE 1AE 04F 1A7 2CD 2F8 03A 06A 0BA 188 090 2B7 1E4 16F 0C5
21. 1B0 2D2 1CC 3B9 267 153 24B 1E7 20B 0FC 2E6 0F7 3BB 376 1C7 0D9
22. 00C 271 0AA 1C5 357 1E8 01E 3FE 081 245 314 294 164 13F 212 340
23. 141 1B9 120 02E 34F 0E4 092 26A 171 249 22B 206 0C0 001 0A0 23F
24. 02B 2BB 06F 05E 275 20E 3B3 12A 28A 100 2AC 22A 263 0F9 1C0 21B
25. 203 303 35C 295 088 008 3E5 0DD 307 105 121 185 0A7 3EC 11C 347
26. 094 39D 1B2 02A 3B1 204 114 312 167 131 304 290 231 3E7 2D3 3D2
27. 2C2 32C 3E6 04A 009 10C 327 1BD 2D1 1BA 2FD 35D 253 2EF 282 3D9
28. 338 14F 1B1 28B 330 2F0 18C 175 12E 169 2D9 223 2F3 255 0C3 13D
29. 398 15F 16D 2DC 2BD 0FB 3FA 2ED 147 161 01B 04B 17D 28C 058 3C1
2A. 1A6 21F 1DA 0E9 124 2BF 39C 005 054 35F 143 3CE 19A 043 36F 1F3
2B. 0CF 286 18B 243 006 106 333 152 1BF 3FF 3B7 1EC 30B 098 08E 1D1
2C. 089 3CD 1F0 210 2EB 309 2F7 13B 20D 3AD 02F 0EC 11D 06D 3A8 38E
2D. 311 1E6 3FB 0AF 2E1 12B 220 03D 0F1 2FA 208 16C 28E 181 33A 119
2E. 109 10A 0CA 2A5 010 31F 3BA 0B7 3B5 2DD 193 2AD 283 085 00A 32B
2F. 2A8 3AB 1D0 2F1 0EB 2DF 298 1DE 065 17C 18F 364 33E 0B8 2CE 1F2
30. 289 142 2B2 0D6 3E2 24C 101 24A 39B 09B 097 1A0 229 375 320 062
31. 33D 118 3EB 03C 15A 281 1A1 207 3C7 331 319 27A 127 34E 07B 239
32. 23A 300 0B5 01C 2B5 1E0 39F 180 321 133 26F 371 1B3 363 26D 0F5
33. 0C6 165 0F6 19C 070 0E0 367 002 247 389 053 27F 2D6 2B4 3DB 29E
34. 30C 1AD 0E5 22C 15D 2E0 013 236 2A3 228 0BB 14D 018 278 155 1C9
35. 178 0CD 370 07D 3A6 23B 049 2D4 397 0BF 1BC 21E 399 3F8 0AC 004
36. 34A 055 04D 14C 33F 1F7 301 05C 3A2 112 2DE 075 3F7 391 040 326
37. 2D8 000 0DC 0D1 041 14E 067 160 166 168 051 0A9 31B 0CC 16E 172
38. 1CA 2C4 3C3 1E2 03F 173 27E 08A 25D 1F9 014 17F 044 16B 2F2 176
39. 31D 3E9 108 139 2C9 04C 187 071 29F 381 316 038 0CE 2C3 34D 1AA
3A. 122 225 1C3 04E 368 351 202 38A 102 189 194 306 026 0F0 248 08C
3B. 05F 19F 2BE 270 060 083 186 3DD 2AE 0C1 23D 272 241 0F8 1EB 01F
3C. 374 177 3E4 358 1FE 099 2AB 1D4 3A4 310 030 1AF 1F4 0BE 074 16A
3D. 274 1D6 21C 3FD 3C6 238 234 262 3D5 31A 395 27D 3E8 240 1A5 087
3E. 32D 359 341 25C 0B9 115 237 0F2 2E4 12C 103 025 20F 260 3AE 269
3F. 07F 03B 03E 007 182 159 091 3B6 3E3 384 264 385 36C 256 221 24F

Figure A.11: Specification of the modified S-box S3.
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Appendice B
Résumé long en français

Les trappes jouent un double rôle dans la cryptographie moderne. Même si elles
sont essentielles en cryptographie asymétrique, leur rôle est tout autre lorsque l’on
considère la cryptographie symétrique. Dans ce cas, une trappe désigne une faiblesse
mathématique insérée volontairement au cœur du chiffrement, permettant à son
concepteur de le casser efficacement. Une telle propriété est alors fortement indésirable.
Pour qu’un chiffrement à trappe puisse inspirer confiance, il doit fournir les mêmes
preuves de sécurité que tout autre chiffrement.

La première partie de cette thèse se concentre sur les analyses de sécurité par
rapport aux deux principales cryptanalyses des chiffrements par blocs, à savoir les
attaques différentielles et linéaires. Nous commençons par rappeler les fondements
théoriques de ces deux cryptanalyses dans la section B.1. Nous détaillons ensuite
notre algorithme permettant une évaluation automatique de la résistance des réseaux
de substitutions-permutations aux cryptanalyses différentielle et linéaire dans la
section B.2.

La seconde partie est quant à elle dédiée à l’étude d’une famille de chiffrements à
trappes introduite par Paterson et Harpes. Ces chiffrements envoient une partition
des messages clairs sur une partition des messages chiffrés indépendamment des clés
utilisées. Tout d’abord, nous étudierons la structure de tels chiffrements dans la
section B.3. Nous obtiendrons ensuite des bornes sur leur sécurité dans la section B.4
puis nous expliquerons comment les primitives du chiffrement doivent être conçues
pour atteindre ces bornes. Enfin, nous conclurons dans la section B.5 en présentant
BEA-1, un chiffrement à trappe grandeur nature développé à partir de notre théorie.
Bien qu’il soit résistant aux cryptanalyses différentielle et linéaire, la connaissance
de la trappe permet de retrouver la clé de 120 bits en seulement quelques secondes
sur un portable.

B.1. Réseaux de substitutions-permutations

La cryptologie est la science des secrets. Elle a pour objectif de permettre à deux
parties, appelées généralement Alice et Bob, de communiquer sur un canal non
sécurisé. Un canal peut désigner n’importe quel moyen de communication, comme une
ligne téléphonique ou un réseau informatique. Il est dit non sécurisé dès qu’une tierce
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partie peut intercepter ou modifier les messages envoyés. La cryptologie est divisée en
deux parties complémentaires. D’une part, la cryptographie regroupe les différentes
méthodes de protection de l’information. Cela inclut naturellement la confidentialité
assurant qu’un adversaire interceptant un message ne peut obtenir aucune information
sur son contenu. Cependant, la cryptographie s’intéresse également à l’intégrité
(assurant que le message reçu est identique à celui envoyé) et à l’authenticité (prouvant
l’identité de la source du message). D’autre part, la cryptanalyse a pour objectif de
casser la sécurité assurée par la cryptographie.

La confidentialité s’obtient via un algorithme de chiffrement. Dans le contexte de
la cryptographie à clé secrète, Alice et Bob doivent s’échanger une clé secrète avant
de pouvoir communiquer sur un canal non sécurisé. Supposons qu’Alice souhaite
communiquer avec Bob. L’information qu’elle souhaite partager s’appelle le message
clair. Ensuite, à l’aide de la clé secrète et de l’algorithme de chiffrement, Alice chiffre
le message clair et obtient un message chiffré qu’elle envoie à Bob. Ce dernier peut
alors déchiffrer le message chiffré à l’aide de la clé secrète qu’il partage avec Alice et
recouvre ainsi le message original.

B.1.1. Définitions

Les algorithmes de chiffrement à clé secrète sont eux-mêmes divisés entre les chiffre-
ments par blocs et les chiffrements par flots. Nous ne considérons dans cette thèse que
les chiffrements par blocs ; cependant le lecteur peut se renseigner sur les chiffrements
par flots en lisant par exemple [77]. Un chiffrement par blocs est un algorithme
opérant sur des blocs de données de longueur fixée utilisant une clé secrète, appelée
clé de chiffrement [39].

Définition B.1 (Chiffrement par blocs). Soient n et κ deux entiers naturels non
nuls. un chiffrement par blocs est une application E ∶ Fκ2 ×Fn2 → Fn2 prenant en entrée
un clé de chiffrement de κ bits, un bloc de message clair de n bits et produit le bloc
chiffré c = E(K,p) associé de n bits.
De plus, pour toute clé de chiffrement K dans Fκ2 , l’application EK ∶ p↦ E(k, p) doit
être une permutation de Fn2 .

L’entier n correspond à la taille des blocs du chiffrement et κ désigne la longueur
de sa clé. L’application EK est appelée fonction de chiffrement associée à la clé de
chiffrement K. Son inverse est appelée fonction de déchiffrement et est notée DK .
Remarquons enfin qu’un chiffrement par blocs seul ne peut chiffrer qu’un message
de longueur fixe, généralement entre 64 et 128 bits. Pour chiffrer un message de
longueur quelconque, on utilise conjointement au chiffrement par blocs un mode
de chiffrement expliquant comment l’utiliser. Introduisons maintenant une famille
majeure comprenant presque tous les chiffrements par blocs modernes.
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Définition B.2 (chiffrements itérés). Un chiffrement par blocs E ∶ Fκ2 × Fn2 est
dit itéré sur r rondes s’il est formé des deux applications suivantes.

• Un algorithme appelé cadenceur des clés de rondes transforme la clé de chiffre-
ment K dans Fκ2 en r clés de rondes k[0], . . . , k[r−1] dans Fl2.

• Une application F ∶ Fl2 × Fn2 → Fn2 appelée fonction de ronde, telle que pour
toute clé de chiffrement K, la fonction de chiffrement peut s’écrire

EK = Fk[r−1] ○ ⋯ ○ Fk[0] .

k[0]

k[1]

k[r−1]

pK

c

F

F

F

Cadenceur
des clés
de rondes

E

⋮

Figure B.1 : Représentation d’un chiffrement itéré (voir la définition B.2).

Remarque B.3. L’entier l est appelé longueur des clés de rondes. L’application Fk
de Fn2 vers Fn2 envoyant un bloc x sur F (k, x) est appelée fonction de ronde associée
à la clé de ronde k. Naturellement, chaque application Fk doit être une permutation
de Fn2 . La figure B.1 donne une représentation schématique d’un tel chiffrement.

Parmi les chiffrements itérés, on trouve les réseaux de substitutions-permutations
(abrégés en SPN) qui sont directement inspirés des travaux de Shannon [91]. La
fonction de ronde d’un SPN est constituée de trois étapes : l’ajout de clé, la couche
de substitution et la couche de diffusion (ou de permutation). L’une des primitives
d’un SPN est appelée boîte de substitution, ou simplement S-box.

Définition B.4 (S-Box). Une S-box sur n bits est une application de Fn2 vers Fn2 .
Dans cette thèse, nous supposerons que les S-boxes sont bijectives.

Dans la couche de substitution, le bloc de nm bits est vu comme m paquets de
n bits. Ensuite, m S-boxes sont évaluées en parallèle sur chacun de ses paquets. À
l’inverse, la couche de diffusion traite le bloc de données dans son ensemble.
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Définition B.5 (SPN). Soientm et n deux entiers naturels non nuls et S0, . . . , Sm−1
des S-boxes sur n bits.

• L’ajout de la clé de ronde k et notée αk ∶ Fnm2 → Fnm2 et envoie x sur x + k.
• La couche de substitution est notée σ et envoie (xi)0≤i<m sur (Si(xi))0≤i<m.
• La couche de diffusion est une permutation linéaire notée π ∶ Fnm2 → Fnm2 .

Un réseau de substitutions-permutations est un chiffrement itéré dont la fonction
ronde est Fk = π ○ σ ○ αk.

En notant k[0], . . . , k[r] les clés de rondes extraites de la clé de chiffrement K, la
fonction de chiffrement d’un SPN est donc donnée par

EK = αk[r] ○ π ○ σ ○ αk[r−1]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
F
k[r−1]

○⋯ ○ π ○ σ ○ αk[0]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

F
k[0]

.

Avant de conclure cette partie, nous introduisons une famille de couches de diffusion
particulièrement utilisée dans les algorithmes de chiffrement à bas coûts.

Définition B.6 (permutation des bits). Une application linéaire π ∶ Fnm2 → Fnm2
est appelée permutation des bits s’il existe une permutation φ de J0, nmJ vérifiant

π(x0, . . . , xnm−1) = (xφ−1(0), . . . , xφ−1(nm−1)) .

B.1.2. Cryptanalyse différentielle

La cryptanalyse différentielle, introduite par Biham et Shamir dans [13, 14] est
aujourd’hui l’une des attaques majeures contre les chiffrements par blocs [39, 64]. Il
s’agit d’une attaque à clairs choisis nécessitant le chiffrement de plusieurs pairs de
messages clairs dont la différence est fixée. L’attaque exploite ensuite une distribution
non uniforme parmi les différences entre les paires de chiffrés pour obtenir de
l’information sur la dernière clé de ronde du chiffrement.

B.1.2.a. Idée générale de l’attaque

La différence entre deux éléments x et x∗ de Fn2 est définie par x − x∗ mais comme
chaque élément de Fn2 est son propre opposé, elle s’écrit plus simplement x + x∗. La
propriété principale utilisée dans la cryptanalyse différentielle est que pour toute clé
de ronde k, on a

(x + k) + (x∗ + k) = x + x∗ . (B.1)

Autrement dit, la différence entre x et x∗ est invariante sous l’ajout de la clé.
Une cryptanalyse différentielle efficace repose sur l’existence d’une différentielle

de probabilité élevée, que nous définissons maintenant. Soit f une application de
Fn2 vers Fn2 . Une différentielle relativement à f est une paire (a, b) d’éléments de Fn2 .
Étant donnée une différentielle (a, b), les éléments a et b sont respectivement appelés
motifs de différence d’entrée et de sortie. Ensuite, une différentielle (a, b) prédit que
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lorsque la différence entre deux entrées x et x∗ vaut a, la différence entre leurs images
f(x) et f(x∗) sera égale à b avec une certaine probabilité. Clairement, la différence
entre x et x∗ vaut a si et seulement si x∗ = x+a. Aussi, une différentielle (a, b) prédit
que lorsque x est uniformément distribué sur Fn2 , la quantité f(x) + f(x + a) sera
égale à b avec la probabilité définie comme suit.

Définition B.7 (probabilité d’une différentielle). Soit f ∶ Fn2 → Fn2 une applica-
tion. La probabilité de la différentielle (a, b) relativement à f est notée DPf(a, b) et
définie par

DPf(a, b) =
#{x ∈ Fn2 ∣ f(x) + f(x + a) = b}

2n .

L’idée générale de l’attaque est la suivante. Supposons que (a, b) est une différen-
tielle sur (r − 1) rondes de probabilité q pour une proportion significative des clés de
chiffrement. Soit K une clé de chiffrement inconnue de l’attaquant. Premièrement, on
génère des paires de messages clairs de la forme (p, p + a) et on récupère leur chiffré.
Afin d’obtenir quelques paires chiffrées (c, c∗) vérifiant c + c∗ = b, il faut chiffrer aux
alentours de C × q−1 paires de clairs avec C ≥ 5. On suppose que k est un candidat
pour la dernière clé de ronde k[r]. On déchiffre alors la dernière ronde pour chacune
des paires (c, c∗) avec le candidat k puis on note

y = σ−1(c + k) et y∗ = σ−1(c∗ + k) .

Si la clé candidate k est correcte, alors l’équation y + y∗ = b doit être satisfaite avec
probabilité q puisque (a, b) est une différentielle sur (r−1) rondes. Autrement, quand
k est un mauvais choix, on espère que l’équation y + y∗ = b soit vérifiée avec une
probabilité significativement inférieure à q. Cette hypothèse est connue sous le nom
d’hypothèse de randomisation par clé incorrecte [51].

De l’information peut alors être récupérée sur la dernière clé de ronde. Pour
chaque candidat k, on déchiffre la dernière ronde de chaque paire (c, c∗) puis on
sauvegarde le nombre Nk de paires (y, y∗) vérifiant y + y∗ = b. La clé k maximisant
le compteur Nk a de forte chance d’être égale à la dernière clé de ronde k[r]. En
pratique, on déchiffre seulement partiellement la dernière ronde et l’on recouvre alors
quelques bits de la dernière clé.

B.1.2.b. Pistes différentielles

Maintenant que nous avons expliqué comment exploiter une différentielle de probabi-
lité élevée dans une cryptanalyse, nous détaillons la théorie des différentielles. Nous
considérons donc un SPN générique E ∶ Fκ2 × Fnm2 → Fnm2 sur r rondes tel que pour
toute clé de chiffrement K,

EK = Fk[r−1] ○ ⋯ ○ Fk[0] avec Fk[i] = π ○ σ ○ αk[i] .

Notons que ce SPN doit être vu comme une version restreinte composée de moins de
rondes que le chiffrement réellement attaqué.
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La méthode habituelle pour déterminer des différentielles efficaces repose sur la
notion de piste différentielle.

Définition B.8 (piste différentielle). Une piste différentielle sur r-rondes est
une famille T = (a[0], . . . , a[r]) de (r + 1) motifs de différences dans Fnm2 . Soit K une
clé de chiffrement. La probabilité différentielle à clé fixée de T est définie par

DPEK(T ) =
#{x ∈ Fnm2 ∣ ∀1 ≤ i ≤ r, E(i)

K (x) +E(i)
K (x + a[0]) = a[i]}

2nm .

Soit (x,x∗) une paire de messages clairs. On dit que la paire (x,x∗) suit la piste
différentielle T = (a[i])i≤r si

• la différence entre x et x∗ vaut a[0], et
• pour tout 1 ≤ i ≤ r, la différence entre les chiffrés sur i rondes de x et x∗ vaut
a[i].

Ainsi, la piste T prédit l’évolution d’une différence d’entrée au travers des différentes
rondes du chiffrement alors qu’une différentielle prédit seulement sa différence de
sortie. Ces deux concepts sont réunis dans la proposition suivante.

Proposition B.9. Soit (a, b) une différentielle sur r rondes et soit K une clé de
chiffrement. En notant Ea,b l’ensemble des pistes (a[i])i≤r vérifiant a[0] = a et a[r] = b,
on a

DPEK(a, b) = ∑
T ∈Ea,b

DPEK(T ) .

Pour l’instant, nous avons seulement considéré les probabilités à clé fixée. Ces
résultats peuvent cependant ne pas refléter l’efficacité moyenne d’une attaque réelle.
Pour cela, nous introduisons la définition suivante.

Définition B.10 (DP(T )). La probabilité différentielle moyenne d’une piste T ,
notée DP(T ), est sa probabilité différentielle à clé fixée moyenne lorsque les clés de
rondes sont indépendantes et uniformément distribuées. Explicitement, on a

DP(T ) = 1
(2nm)r

× ∑
K∈(Fnm2 )r

DPEK(T ) .

Théorème B.11. La probabilité d’une piste différentielle T = (a[i])i≤r est donnée
par

DP(T ) =
r−1
∏
i=0

DPσ(a[i], b[i]) =
r−1
∏
i=0

m−1
∏
j=0

DPSj(aj [i], bj [i]) = ∏
i,j ∣ aj [i]≠0

DPSj(aj [i], bj [i]) ,

où b[i] = π−1(a[i+1]) avec i < r.

Ce théorème est important en pratique puisqu’il permet de déterminer la proba-
bilité différentielle d’une piste en multipliant quelques probabilités différentielles sur
des S-boxes qui sont facilement calculables.
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Définition B.12 (EDP). La probabilité différentielle moyenne d’une différentielle
(a, b) sur r rondes, notée EDP(a, b), est sa probabilité différentielle à clé fixée moyenne
lorsque les clés de rondes sont indépendantes et uniformément distribuées.

Théorème B.13. Soit (a, b) une différentielle sur r rondes. En notant Ea,b l’ensemble
des pistes (a[i])i≤r vérifiant a[0] = a et a[r] = b, on a

EDP(a, b) = ∑
T ∈Ea,b

DP(T ) .

La probabilité moyenne d’une différentielle est une valeur théorique qui reflète
son efficacité. Cette note possède cependant deux inconvénients. Premièrement,
l’ensemble Ea,b croît généralement de manière exponentielle avec le nombre de rondes
ce qui rend l’énumération complète des pistes le composant très difficile. Pour des
SPN de taille réelle, il est donc presque impossible de calculer cette valeur. Elle
peut cependant être approchée en utilisant plusieurs pistes différentielles de forte
probabilité.

Deuxièmement, la probabilité moyenne d’une différentielle ne tient pas compte
de l’effet de l’algorithme de cadencement des clés de rondes. Dans une cryptanalyse,
on suppose tacitement que la probabilité à clé fixée d’une différentielle est proche de
sa probabilité moyenne. Cette hypothèse est connue comme l’hypothèse d’équivalence
stochastique [67].

B.1.3. Cryptanalyse linéaire

Après la cryptanalyse différentielle, la cryptanalyse linéaire est l’attaque principale
contre les chiffrements par blocs. Elle fut introduite par Matsui dans [74, 75] qui
a proposé la première attaque capable de retrouver expérimentalement une clé du
DES. Il s’agit d’une attaque à clairs connus, ce qui est un avantage comparé à la
cryptanalyse différentielle.

B.1.3.a. Idée générale de l’attaque

Une approximation linéaire de fort potentiel linéaire est la clé d’une cryptanalyse
linéaire efficace. Commençons par définir ces deux concepts. Soit f une application
de Fn2 vers Fn2 . Intuitivement, nous souhaitons approcher une combinaison linéaire
des bits de sortie de f par une combinaison linéaire de ses bits d’entrée. Nous voulons
donc une relation de la forme

⟨a, x⟩ = ⟨b, f(x)⟩ , (B.2)

où les vecteurs de n bits a et b sont appelés les motifs de sélection de l’entrée et de
la sortie de l’approximation. Aussi, une approximation linéaire de f est simplement
définie comme une paire (a, b) d’éléments de Fn2 . Une telle approximation est bien

187



Appendice B – Résumé long en français

évidemment vérifiée avec une certaine probabilité, mais notons que si l’équation (B.2)
n’est presque jamais satisfaite, l’équation

⟨a, x⟩ = ⟨b, f(x)⟩ + 1 (B.3)

est vérifiée avec une forte probabilité. Du point de vue de l’attaque, les équations
(B.2) et (B.3) apportent la même quantité d’information. Le pire cas se produit
lorsque l’équation (B.2) est satisfaite pour exactement la moitié des entrées x. Dans
ce cas, le membre gauche n’apporte aucune information sur le droit. L’efficacité d’une
approximation est alors caractérisée par sa corrélation, ou son potentiel.

Définition B.14 (corrélation et potentiel linéaire). Soient f ∶ Fn2 → Fn2 une
application et (a, b) une approximation de f . La corrélation de (a, b) est définie par

Cf(a, b) = 2 ⋅ #{x ∈ Fn2 ∣ ⟨a, x⟩ = ⟨b, f(x)⟩}
2n − 1 .

Son potentiel linéaire LP est alors le carré de sa corrélation, c’est-à-dire

LPf(a, b) = Cf(a, b)2 .

Remarque B.15. La corrélation d’une approximation est comprise entre −1 et 1. Son
potentiel linéaire va donc de 0 à 1. Plus la corrélation absolue (ou le potentiel linéaire)
d’une approximation est proche de 1, plus l’approximation donne de l’information
sur f .

Comme pour la cryptanalyse différentielle, nous considérons un SPN E ∶ Fκ2 ×
Fnm2 → Fnm2 sur r rondes en supposant que la dernière ronde ne possède pas de couche
de diffusion, ainsi

EK = (αk[r] ○ σ ○ αk[r−1]) ○E(r−1)
K .

Une cryptanalyse linéaire classique de E repose sur une approximation (a, b) de
EK (r−1) ayant un fort potentiel linéaire pour la majorité des clés de chiffrement K.
Soit K une clé de chiffrement. Remarquons que

⟨a, x⟩ = ⟨b,E(r−1)
K (x) + k[r−1]⟩

⇐⇒ ⟨a, x⟩ = ⟨b,E(r−1)
K (x)⟩ + ⟨b, k[r−1]⟩ .

Puisque ⟨b, k[r−1]⟩ ne dépend pas de x, la corrélation de l’approximation (a, b) de
αk[r−1] ○EK (r−1) est égale à celle de la même approximation de EK (r−1) au signe près.
Par conséquent

CR′(a, b) = ±CR(a, b)
LPR′(a, b) = LPR(a, b)

avec {R = E(r−1)
K ,

R′ = αk[r−1] ○E(r−1)
K .

(B.4)

Notons q le potentiel moyen de l’approximation (a, b) des (r − 1) premières
rondes. Pour que la cryptanalyse soit efficace, il faut environ N = C × q−1 couples de
clairs/chiffrés (p, c). On peut alors récupérer de l’information sur la dernière clé de
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ronde de la manière suivante. Pour chaque clé candidate k pour k[r], on calcule la
valeur

Pk = (2 ×#{(p, c) ∣ ⟨a, p⟩ = ⟨b, σ−1(c + k)⟩} −N)2
.

La clé k maximisant la valeur Pk est alors probablement la dernière clé de ronde k[r].
À nouveau, l’hypothèse que pour toute clé incorrecte k, la valeur Pk est inférieure à
Pk[r] est appelée hypothèse de randomisation par clé incorrecte [51].

B.1.3.b. Approximations et pistes linéaires

Cette section est consacrée à la théorie des approximations linéaires proposée par
Daemen et Rijmen [39, 40]. Par analogie avec les pistes différentielles, nous introdui-
sons le concept de piste linéaire. Même si l’application des pistes linéaires semble
similaire à celle des pistes différentielles, ces deux concepts sont très différents par
nature.

Définition B.16 (piste linéaire). Une piste linéaire sur r rondes est une famille
T = (a[i])i≤r de r + 1 motifs de sélection. La contribution de corrélation de T est
définie par

C(T ) =
r−1
∏
i=0

Cπσ(a[i], a[i+1]) .

Lorsque l’on considère la corrélation à clé fixée d’une approximation sur r rondes
ou la moyenne de ces corrélations, la contribution de corrélation d’une piste linéaire
n’est simplement qu’une variable intermédiaire. À l’inverse d’une piste différentielle,
une piste linéaire ne possède pas d’interprétation concrète. En effet, une paire peut
suivre une piste différentielle, mais dire que des messages suivent une piste linéaire
n’a aucun sens. Une approximation ne considère par les messages séparément mais
plutôt la fonction de chiffrement dans son ensemble.

Proposition B.17. Soit T = (a[i])i≤r une piste linéaire de corrélation non nulle. En
notant b[i] l’élément π⊺(a[i+1]) pour tout entier naturel i < r, on a

C(T ) = ∏
i,j ∣ aj [i]≠0

CSj(aj [i], bj [i]) et LP(T ) = ∏
i,j ∣ aj [i]≠0

LPSj(aj [i], bj [i]) .

Présentons maintenant un résultat reliant les pistes linéaires aux approximations.
La proposition suivante doit être vue comme l’homologue de la proposition B.9 pour
la cryptanalyse linéaire.

Proposition B.18. Soit (a, b) une approximation linéaire sur r rondes et soit K
une clé de chiffrement. Notons Ea,b l’ensemble des pistes linéaires (a[i])i≤r vérifiant
a[0] = a, a[r] = b. Étant donnée une piste T dans Ea,b, on note ⟨T ,K⟩ l’élément
∑r
i=0⟨a[i], k[i]⟩ de F2. La corrélation à clé fixée de (a, b) est alors donnée par

CEK(a, b) = ∑
T ∈Ea,b

(−1)⟨T ,K⟩ C(T ) .
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Contrairement à la probabilité différentielle, la corrélation d’une approximation
est une somme signée des contributions de corrélation de ses pistes associées. Quand
plusieurs pistes de grandes corrélations absolues sont ajoutées avec le même signe,
l’amplitude de la corrélation globale s’accroît. On parle dans ce cas d’interférence
constructive. Autrement, quand ces pistes ont des signes différents, la corrélation
globale peut s’approcher de zéro et on parle d’interférence destructive.

Définition B.19 (ELP). Le potentiel linéaire moyen d’une approximation (a, b)
sur r rondes, noté ELP(a, b), est le potentiel linéaire à clé fixée moyen lorsque les
clés de rondes sont indépendantes et uniformément distribuées.

Théorème B.20. Soit (a, b) une approximation linéaire sur r rondes. En notant
Ea,b l’ensemble des pistes (a[i])i≤r vérifiant a[0] = a et a[r] = b, on a

ELP(a, b) = ∑
T ∈Ea,b

LP(T ) .

Cette fois, la somme ne contient que des terme positifs donc il n’y a plus d’inter-
férences destructives. Le potentiel linéaire moyen constitue un puissant indicateur de
la résistance d’un chiffrement à la cryptanalyse linéaire. Néanmoins, nous devons
garder à l’esprit que la corrélation réelle est fortement dépendante de la clé utilisée,
comme le précise la proposition B.18. Enfin, le potentiel linéaire moyen possède
les mêmes inconvénients que la probabilité différentielle moyenne. Cette valeur est
pratiquement impossible à calculer précisément et on doit admettre l’hypothèse
d’équivalence stochastique [51] pour l’assimiler à la résistance réelle d’un chiffrement.

B.2. Évaluation de la sécurité des SPN

Les cryptanalyses différentielle [13] et linéaire [74] sont considérées comme les deux
attaques principales contre les chiffrements par blocs [64]. Comme il est mentionné
dans [41], tout nouveau système de chiffrement devrait au moins être accompagné
d’une analyse détaillée prouvant sa résistance à ces deux attaques. Nous avons vu
dans le chapitre précédent que la sécurité d’un système de chiffrement est évaluée
par sa probabilité différentielle moyenne maximale (maximum expected differential
probability ou MEDP) ou son potentiel linéaire moyen maximal (MELP). Quand
ces valeurs sont suffisamment basses, le chiffrement est sécurisé [57]. Cependant,
calculer ces valeurs, voir simplement les majorer efficacement demeure un problème
ouvert et les preuves classiques de sécurité se concentrent uniquement sur les pistes
différentielles et linéaires. Un chiffrement est alors dit sécurisé en pratique lorsque la
probabilité différentielle (ou le potentiel linéaire) de toutes les pistes est trop faible
pour permettre une cryptanalyse efficace. Enfin, il convient de souligner que ces
mesures de sécurité supposent implicitement que les clés de rondes soient choisies
indépendamment et de manière uniforme. Le cryptanaliste suppose ensuite que ces
mesures théoriques reflètent la sécurité réelle lorsque les clés de rondes sont extraites
d’une clé maitresse fixée via un cadenceur de clés. Cette hypothèse, dite d’équivalence
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stochastique [67], semble être vérifiée pour presque tous les chiffrements utilisés en
pratique.

Pour se prémunir des cryptanalyses différentielle et linéaire, le concepteur d’un
SPN doit tout d’abord choisir des S-boxes ayant une grande résistance contres ces
deux attaques. Ces choix conditionnent la couche de substitution de chiffrement.
Concernant la couche de diffusion linéaire, deux grandes familles se distinguent.
D’une part, la diffusion du chiffrement peut être assurée pour une permutation
des bits. Même si ces applications linéaires ne fournissent pas la meilleure sécurité,
elles sont généralement choisies pour leur efficacité calculatoire. En effet, durant les
dernière années, plusieurs chiffrements à bas coûts utilisant des permutations de bits
ont été proposés [17, 36, 95]. Une liste récente détaillée peut être trouvée dans [15].
D’autre part, la diffusion peut reposer sur une application linéaire plus compliquée
comme un produit matriciel sur un corps fini par exemple. De telles applications sont
généralement plus coûteuses en calculs mais délivrent en contrepartie une grande
diffusion qui assure que toutes les pistes activent un nombre minimal de S-boxes.
En s’appuyant sur cette propriété, le concepteur peut calculer des bornes sur la
probabilité différentielle maximale ou sur le potentiel linéaire maximal de n’importe
quelle piste et prouve ainsi la sécurité pratique de son chiffrement.

Cependant, les bornes obtenues pour un SPN ayant une permutation des bits
comme diffusion linéaire ne suffisent généralement pas pour démontrer sa sécurité.
En effet, les permutations de bits ont le plus petit nombre de branches possible parmi
toutes les permutations linéaires. La sécurité du chiffrement est alors difficile à établir
sans une analyse détaillée. La même observation devrait s’appliquer aux chiffrements
à trappes puisque la structure mathématique de la trappe réduit sévèrement le choix
des primitives sur chiffrement. Aussi, les stratégies habituelles pour prévenir les
cryptanalyses différentielle et linéaire peuvent ne plus s’appliquer. Cette discussion
motive des méthodes alternatives pour démontrer la sécurité d’un chiffrement face à
ces attaques.

Dans ce chapitre, nous présentons un algorithme entièrement automatique calcu-
lant une piste différentielle ou linéaire optimale dans un SPN. Cette contribution a été
présentée dans [8]. Le premier algorithme calculant des pistes optimales fut introduit
par Matsui dans [76] pour les chiffrements de Feistel. En l’exécutant plusieurs fois sur
le DES, Matsui trouva une permutation des S-boxes rendant le DES plus résistant
aux cryptanalyses différentielle et linéaire. Cependant, la complexité de l’algorithme
étant trop élevée pour l’appliquer au chiffrement FEAL, deux améliorations succes-
sives furent proposées dans [87] puis [3]. Bien que l’algorithme de Matsui s’adapte
aux SPN, la taille des blocs des chiffrements modernes (de 64 à 128 bits) le rend
impraticable. Ce fait a également été mis en évidence par Collard et al. [37] qui ont
alors présenté quelques améliorations pour l’appliquer au chiffrement Serpent. Pour
finir, mentionnons qu’une autre variation fut proposée par Ali et Heys dans [1]. Leur
algorithme ne peut cependant pas démontrer la sécurité pratique d’un chiffrement
puisqu’il ne trouve pas nécessairement une piste optimale.

Notre algorithme est une adaptation de [3, 76, 87] pour les SPN. Nous introduisons
plusieurs optimisations en portant une attention particulière aux chiffrements dont
la diffusion linéaire est réalisée au moyen d’une permutation des bits.
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Après un rappel sur les cryptanalyse différentielle et linéaire, nous présenterons une
adaptation directe de l’algorithme de Matsui pour calculer une piste optimale dans un
réseau de substitutions-permutations. Nos différentes optimisations algorithmiques
seront présentées dans la section B.2.2. Enfin, nous présenterons nos résultats et
conclurons dans la section B.2.3.

B.2.1. Recherche d’une piste optimale

B.2.1.a. Rappels et définitions

Dans cette section, nous considérons un réseau de substitutions-permutations gé-
nérique E ∶ Fκ2 × Fnm2 → Fnm2 sur r rondes défini pour toute clé de chiffrement K
par

EK = Fk[r−1] ○ ⋯ ○ Fk[0] avec Fk[i] = π ○ σ ○ αk[i] .
Notons que la dernière ronde comprend la couche de diffusion π puisque les différen-
tielles et les approximations linéaires utilisées dans une cryptanalyse s’applique sur
un nombre de rondes inférieur à celui du chiffrement complet. Notons S0, . . . , Sm−1 les
S-boxes sur n bits de la couche de substitution. Rappelons que les matrices des pro-
babilités différentielles et des potentiels linéaires d’une S-box S sont respectivement
définies pour tous a et b dans Fn2 par

DPS(a, b) = 2−n ×#{x ∈ Fn2 ∣ S(x) + S(x + a) = b} ,

LPS(a, b) = (2−(n−1) ×#{x ∈ Fn2 ∣ ⟨a, x⟩ = ⟨b, S(x)⟩} − 1)2
.

La probabilité différentielle maximale et le potentiel linéaire maximal de S sont alors
définis par

DPmax
S = max{DP(a, b) ∣ a, b ∈ (Fn2)∗} , LPmax

S = max{LP(a, b) ∣ a, b ∈ (Fn2)∗} .
D’après les définitions B.8 et B.16, une piste différentielle ou linéaire sur r rondes est
une famille (a[0])i≤r de r+1 motifs dans Fnm2 . Dans ce chapitre, il convient de spécifier
pour chaque ronde les motifs en entrée et en sortie de la couche de substitution.
Aussi, nous pouvons définir de manière équivalente une piste différentielle ou linéaire
T comme une famille ((a[i], b[i])i<r de r paires de motifs d’entrée et de sortie tels
que pout tout i < r − 1,

a[i+1] =
⎧⎪⎪⎨⎪⎪⎩

π(b[i]) pour les pistes différentielles ,
(π⊺)−1(b[i]) pour les pistes linéaires .

De plus, dans le cas où la diffusion est réalisée par une permutation des bits π, on
peut montrer que (π⊺)−1 = π donc la même structure peut aussi bien représenter une
piste différentielle que linéaire. Enfin, la probabilité d’une piste différentielle et le
potentiel d’une piste linéaire T sont respectivement donnés par

DP(T ) =
r−1
∏
i=0

DPσ(a[i], b[i]) = ∏
i,j ∣ aj [i]≠0

DPSj(aj [i], bj [i]) ,

LP(T ) =
r−1
∏
i=0

LPσ(a[i], b[i]) = ∏
i,j ∣ aj [i]≠0

LPSj(aj [i], bj [i]) ,

192



B.2 – Évaluation de la sécurité des SPN

comme établi dans le théorème B.11 et la proposition B.17. Autrement dit, la proba-
bilité différentielle d’une piste s’obtient en multipliant les probabilités différentielles
de ses S-boxes actives.

Définition B.21 (Piste optimale). Toute piste différentielle sur r rondes de
probabilité maximale parmi l’ensemble des pistes sur r rondes est dite optimale. On
définit de manière analogue une piste linéaire optimale. Dans ce cas, sa probabilité
(ou potentiel) est notée po

(r).

Dans le contexte de notre algorithme de recherche, un candidat pour un motif
d’entrée a dans Fnm2 est un motif de sortie b tel que DPσ(a, b) est non nul. Na-
turellement, si l’on recherche une piste linéaire optimale, cette condition devient
LPσ(a, b) ≠ 0. Si T = ((a[i], b[i]))i<r est une piste sur r rondes, on note T [i,j] la piste
extraite ((a[k], b[k]))i≤k≤j. Pour terminer, on introduit la définition suivante.

Définition B.22 (prolongement d’une piste). Soient r1 et r2 deux entiers tels
que 0 ≤ r1 ≤ r2. Soient T1 et T2 deux pistes sur r1 et r2 rondes respectivement. On dit
que la piste T2 prolonge T1 si T2[0,r−1] = T . Dans ce cas, T2 = T1 ∥ T2[r,r′−1].

B.2.1.b. Principe général

Présentons maintenant une adaptation directe de l’algorithme de Matsui pour les
réseaux de substitutions-permutations (SPN). Premièrement, nous expliquerons
comment cet algorithme calcule une piste différentielle optimale. Nous détaillerons
ensuite les changements à effectuer pour calculer une piste linéaire optimale.

Notons R le nombre réel de rondes du SPN. L’algorithme présenté dans ce
chapitre calcule une piste optimale sur R rondes tout en ne nécessitant aucune
connaissance sur le chiffrement. Il est construit à partir d’un second algorithme
appelé OptTrailEst prenant les arguments suivants :

• un entier r ≥ 2 représentant le nombre courant de rondes ;
• les probabilités (po

(i))1≤i<r des pistes optimales sur i rondes ;
• une estimation pe

(r) de la probabilité po
(r) de la piste optimale recherchée.

Il renvoie une piste optimale sur r rondes notée To(r). La connaissance des proba-
bilités (po

(i))1≤i<r et de l’estimation pe
(r) accélère la recherche. Ensuite, une gestion

automatique de l’estimation pe
(r) sera proposée dans la section B.2.2.e, donnant lieu

à l’algorithme OptTrail. Pour résumer, l’algorithme de recherche OptTrail prend
seulement r et (po

(i))1≤i<r en entrées et produit toujours une piste optimale sur r
rondes.

Expliquons maintenant comment l’algorithme OptTrail peut être utilisé pour
calculer une piste optimale sur R rondes à partir de rien. Premièrement, observons
que po

(1) se calcule facilement. Ensuite, on calcule

To
(r) = OptTrail (r, (po

(i))1≤i<r) et po
(r) = DP(To

(r))

pour r allant de 2 à R. Ce dernier calcul donne le résultat souhaité. Cette procédure
est illustrée dans la figure B.2.
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po
(1)

OptTrail

po
(2)

po
(1)

po
(2)

OptTrail

po
(3)

po
(1)

po
(2)

po
(3)

OptTrail

po
(4)

Entrée. Le nombre R de rondes du chiffrement.
Sortie. Une piste optimale To(R) sur R rondes.

1 po
(1) ← max{DPσ(a, b) ∣ a, b ∈ (Fn2)m}

2 Pour r allant de 2 à R faire
3 To(r) ← OptTrail(r, (po

(i))1≤i<r)
4 po

(r) ← DP(To(r))
5 Renvoyer To(R)

Figure B.2 : Utilisation de l’algorithme OptTrail.

Le reste de cette section est dédié à l’algorithme OptTrailEst donné dans la
figure B.3. Expliquons maintenant son fonctionnement. Premièrement, on suppose
que les conditions présentes aux lignes 9 et 18 sont toujours vraies et que l’estimation
pe
(r) est nulle. Sous cette hypothèse, l’algorithme parcourt implicitement les arbres

de toutes les pistes sur r rondes et en sauvegarde une de probabilité maximale dans
la variable To(r). Observons tout de même que la première et la dernière rondes ont
un traitement particulier pour accélérer la recherche. Quand le programme atteint la
fonction Round(s, T (s−1), p(s−1)), la piste courante est

T (s−1) = ((a[0], b[0]), . . . , (a[s−2], b[s−2])) ,

DP(T (s−1)) =
s−2
∏
i=0

DPσ(a[i], b[i]) = p(s−1) .

Le motif d’entrée a[s−1] pour cette ronde est égal à π(b[s−2]). Ensuite, pour chaque
candidat b[s−1] pour a[s−1], la piste courante T (s−1) est prolongée par (a[s−1], b[s−1])
et la procédure de recherche pour la ronde suivante est appelée. Par conséquent,
le programme effectue un parcours en profondeur. Quand l’algorithme atteint la
fonction LastRound(), il est simple de calculer le motif de sortie b[r−1] maximisant la
probabilité de la dernière ronde. La piste est sauvegardée uniquement si sa probabilité
est supérieure à la probabilité pe

(r) de la meilleure piste To(r) trouvée à cet instant. Il
reste donc à expliquer les conditions aux lignes 9 et 18.
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Algorithme 10 – OptTrailEst(r, (po
(i))1≤i<r, pe

(r))
Entrée. Le nombre de rondes courant r (avec r ≥ 2), les probabilités (po

(i))1≤i<r et
une estimation pe

(r) de po
(r)

Sortie. Suivant l’estimation pe
(r), cet algorithme renvoie :

• une piste sur r rondes optimale To(r) si pe
(r) ≤ po

(r) ;
• une piste vide si pe

(r) > po
(r).

1 To(r) ← ()
2 Pour chaque motif de sortie b[0] non nul faire
3 Appeler FirstRound(b[0])
4 Renvoyer To(r)

5 Fonction FirstRound(b[0])
6 a[0] ← arg max{DPσ(a, b[0]) ∣ a ∈ Fnm2 }
7 T (1) ← ((a[0], b[0]))
8 p(1) ← DPσ(a[0], b[0])
9 Si p(1) n’est pas inférieur à la borne de rang un alors
10 Si r > 2 alors
11 Appeler Round(2, T (1), p(1))
12 Sinon
13 Appeler LastRound(T (1), p(1))
14 Fonction Round(s, T (s−1), p(s−1))
15 a[s−1] ← π(b[s−2])
16 Pour chaque candidat b[s−1] pour a[s−1] faire
17 p(s) ← p(s−1) ×DPσ(a[s−1], b[s−1])
18 Si p(s) n’est pas inférieur à la borne de rang s alors
19 T (s) ← T (s−1) ∥ (a[s−1], b[s−1])
20 Si s + 1 < r alors
21 Appeler Round(s + 1, T (s), p(s))
22 Sinon
23 Appeler LastRound(T (s), p(s))
24 Fonction LastRound(T (r−1), p(r−1))
25 a[r−1] ← π(b[r−2])
26 b[r−1] ← arg max{DPσ(a[r−1], b) ∣ b ∈ Fnm2 }
27 p(r) ← p(r−1) ×DPσ(a[r−1], b[r−1])
28 Si p(r) ≥ pe

(r) alors
29 T (r) ← T (r−1) ∥ (a[r−1], b[r−1])
30 To(r) ← T (r) La piste courante est sauvegardée
31 pe

(r) ← p(r)

Figure B.3 : L’algorithme OptTrailEst.
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Définition B.23 (borne de rang s). Soit T une piste sur s rondes avec 1 ≤ s < r.
Sa probabilité est dite inférieure à la borne de rang s si

DP(T ) < pe
(r)

po
(r−s) .

Cette condition sur la probabilité de la piste courante permet d’élaguer l’arbre
de recherche sans manquer de pistes optimales. Elle peut se réécrire en

DP(T ) × po
(r−s) < pe

(r)

et elle signifie que même si la piste est prolongée par une piste optimale sur (r − s)
rondes, sa probabilité sera inférieure à pe

(r).
L’importance de l’estimation pe

(r) est maintenant claire. Si pe
(r) > po

(r), une piste
prolongeable en une piste optimale sur r rondes peut être coupée. De plus, aucune
piste ne sera sauvegardée à cause de la condition à la ligne 25. D’autre part, plus
l’estimation pe

(r) est proche de po
(r), plus la condition d’élagage est efficace et donc

plus la complexité de l’algorithme OptTrailEst est faible.

Théorème B.24. L’algorithme OptTrailEst peut calculer une piste linéaire opti-
male en remplaçant simplement toutes les occurrences de DP par LP et toutes les
occurrences de π(. . .) par (π⊺)−1(. . .).

B.2.2. Optimisations

Remarquons tout d’abord que la première boucle de OptTrailEst appelle la fonction
FirstRound pour chaque différence non nulle b[0]. Puisqu’il y a 2nm − 1 différences
non nulles, on peut minorer la complexité de l’algorithme par 264 ou 2128 pour des
SPN de taille réelle. Aussi, cette partie doit être optimisée pour toute application
pratique.

B.2.2.a. Construction du premier motif de sortie

Comme nous venons de le souligner, le nombre d’appels à la fonction FirstRound()
est un problème qu’il faut impérativement résoudre. Pour optimiser cette étape,
une partition de l’ensemble des différences non nulles est introduite. Ensuite, nous
donnerons une manière efficace de tester si aucune différence dans une partie peut
être le début d’une piste optimale.

Pour chaque entier w tel que 1 ≤ w ≤ m, nous notons DPmax
(w) la probabilité

maximale d’une piste sur une ronde activant w S-boxes. Autrement dit,

DPmax
(w) = max{DPσ(a, b) ∣ a, b ∈ (Fn2)m tels que wn(a) = w} ,

où wn(a) désigne le poids par paquet de a. Ensuite, nous trions les probabilités
DPmax

Si
dans l’ordre décroissant. Cela revient à définir une permutation τ de J0,mJ

vérifiant pour tout i <m − 1 l’inégalité

DPmax
Sτ(i)

≥ DPmax
Sτ(i+1)

.
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Algorithme 11 – OptTrailEst

1 To(r) ← ()
2 Pour w allant de 1 à m faire
3 Si DPmax

(w) est inférieur à la borne de rang un alors
4 Quitter la boucle
5 Sinon
6 Pour chaque motif de sortie b[0] activant w S-boxes faire
7 Appeler FirstRound(b[0])
8 Renvoyer To(r)

Figure B.4 : Première optimisation – construction de la première différence

Proposition B.25. Soit w un entier tel que 1 ≤ w ≤m. Alors,

DPmax
(w) =

w−1
∏
i=0

DPmax
Sτ(i)

.

Remarque B.26. On a clairement DPmax
(1) ≥ . . . ≥ DPmax

(m) . Aussi, la probabilité d’une
piste optimale sur une ronde est donnée par

po
(1) = max{DPσ(a, b) ∣ a, b ∈ (Fnm2 )∗} = DPmax

(1) = DPmax
Sτ(0)

.

Bien entendu, les matrices différentielles DPSi et les probabilités DPmax
Si

et DPmax
(i)

sont pré-calculées avant d’initier la recherche.

Théorème B.27. Soient w et w′ deux entiers tels que 1 ≤ w ≤ w′ ≤m. Si DPmax
(w) est

inférieur à la borne de rang un, alors il n’existe aucune piste sur r rondes activant
w′ S-boxes dans la première ronde de probabilité supérieure ou égale à pe

(r).

Nous avons exécuté l’algorithme final sur plusieurs SPN ayant une permutation
des bits comme couche de diffusion. Avec m = 16 et n = 4, DPmax

(4) était toujours
inférieur à la borne de rang un, donc il y avait au plus 221 différences de sortie à tester
au lieu de 264. Avec m = 16 et n = 8, l’écart était encore plus grand puisque DPmax

(3)
était toujours inférieur à la borne de rang un, donnant seulement 221 différences à
tester au lieu de 2128. L’algorithme optimisé à l’aide du théorème B.27 est décrit
dans la figure B.4.

B.2.2.b. La fonction de ronde

En suivant l’algorithme de Matsui [76], les candidats de sortie dans la fonction Round
sont construits récursivement. Notons a la différence en entrée de la ronde courante.
On sait que les candidats b associés à a peuvent être construits en choisissant un
motif de sortie pour chaque S-box activée par a. Le théorème suivant établit que la
condition d’élagage peut s’appliquer paquet par paquet.
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Théorème B.28. Soient s un entier tel que 1 ≤ s ≤ r et T une piste sur s rondes.
Notons x0 < . . . < xw−1 les indices des S-boxes activées par a[s−1] où w = wn(a[s−1]).
Soit v un entier vérifiant 1 ≤ v ≤ w. Si le produit

DP (T [0,s−2]) (
v−1
∏
i=0

DPSxi
(a[s−1]

xi , b
[s−1]
xi )) ×DPmax

(w−v)

est inférieur à la borne de rang s, alors pour tout motif c vérifiant :
• cxi = bxi [s−1] pour tout i < v − 1 et
• DPSxv−1

(axv−1 [s−1] , cxv−1) ≤ DPSxv−1
(axv−1 [s−1] , bxv−1

[s−1])
il n’existe aucune piste sur r ronde prolongeant T [0,s−2] ∥ (a[s−1], c) de probabilité
supérieure ou égale à pe

(r).

B.2.2.c. Les S-Boxes actives à la ronde suivante

Supposons ici que la couche de diffusion π est une permutation des bits. Notons
LASB l’application de (Fn2)m vers Fm2 qui envoie un motif c sur le vecteur de m bits
LASB(c) = (xi)i<m où xi vaut un si et seulement si ci est non nul. En d’autres termes,
LASB(c) est une représentation compacte des S-boxes activées par le motif c et LASB
se lit : liste des S-boxes actives.

Étant donnés deux éléments L et L′ de Fm2 , on note L ∨ L′ leur OU exclusif
bit-à-bit. Soit c un motif et i <m un entier positif. On note c∣i l’élément de (Fn2)m
ayant toutes ces composantes à zéro, exceptée celle d’indice i valant c − i. Autrement
dit,

(xj)j<m = c∣i⇐⇒
⎧⎪⎪⎨⎪⎪⎩

xi = ci et
xj = 0n if j ≠ i .

Théorème B.29. On garde les notations du théorème B.28 sauf que s < r − 1. Soit
w′ le poids de Hamming de ⋁v−1

i=0 LASB(π(b[s−1]∣xi)). Si le produit

[DP (T [0,s−2]) (
v−1
∏
i=0

DPSxi
(a[s−1]

xi , b
[s−1]
xi )) ×DPmax

(w−v) ] ×DPmax
(w′)

est inférieur à la borne de rang (s + 1), alors pour tout motif c vérifiant :

cxi = bxi [s−1] pour tout i < v ,

il n’existe aucune piste sur r rondes prolongeant T [0,s−2] ∥ (a[s−1], c) de probabilité
supérieure ou égale à pe

(r).

La fonction Round optimisée à l’aide des théorèmes B.28 et B.29 est donnée dans
la figure B.5.
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Algorithme 12 – Round(s, T (s−1), p(s−1))
Entrée. T = ((a[0], b[0]), . . . , (a[s−2], b[s−2]))

1 a[s−1] ← π(a[s−2])
2 b[s−1] ← 0nm
3 p(s,0) ← p(s−1)

4 T (s) ← T (s−1) ∥ (a[s−1], b[s−1])
5 w ← wn(a[s−1])
6 Noter x0 < . . . < xw−1 les indices des S-boxes activées par a[s−1].
7 X ← (x0, . . . , xw−1)
8 L(0) ← 0m
9 Appeler RoundRec(s, 1, T (s), p(s,0), L(0), X)
10 Fonction RoundRec(s, v, T (s), p(s,v−1), L(v−1), X)
11 Si v = w alors
12 p(s) ← p(s,w−1)

13 Si s + 1 < r alors
14 Appeler Round(s + 1, T (s), p(s))
15 Sinon
16 Appeler LastRound(T (s), p(s))
17 Sinon
18 x ← xv−1
19 Pour chaque b

[s−1]
x triés par ordre décroissant selon

DPSx(a
[s−1]
x , ⋅ ) faire

20 p(s,v) ← p(s,v−1) ×DPSx(a
[s−1]
x , b

[s−1]
x )

21 Si p(s,v) ×DPmax
(w−s) est inférieur à la borne de rang s alors

22 Quitter la boucle Théorème B.28
23 Si π est une permutation des bits alors
24 L(v) ← L(v−1) ∨ LASB(π(b[s−1]∣x))
25 w′ ← w(L(v))
26 Si p(s,v) ×DPmax

(w−s) ×DPmax
(w′) n’est pas inférieur à la borne de

rang (s + 1) alors
27 Appeler RoundRec(s, v + 1, T (s), p(s,v), L(v), X) Théorème B.29
28 Sinon
29 Appeler RoundRec(s, v + 1, T (s), p(s,v), L(v), X)

Figure B.5 : Deuxième optimisation – la fonction de recherche Round
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Algorithme 13 – OptTrail(r, (po
(i))1≤i<r)

Entrée. Le nombre de rondes courant r et les probabilités (po
(i))1≤i<r

Sortie. Une piste sur r rondes optimale To(r)

1 To(r) ← ()
2 pe

(r) ← po
(r−1)

3 Tant que To(r) est vide faire
4 pe

(r) ← pe
(r) / 2

5 To(r) ← OptTrailEst(r, (po
(i))1≤i<r, pe

(r))
6 Renvoyer To(r)

Figure B.6 : Gestion automatique de l’estimation.

B.2.2.d. Le test sur la borne

L’ensemble des résultats précédents peuvent être préservés tout en renforçant la
condition sur la borne. Supposons que nous ayons déjà trouvé une piste de probabilité
supérieure ou égale à pe

(r). L’estimation pe
(r) est alors égale à la probabilité différentielle

de cette piste. Maintenant, supposons que la probabilité de la piste courante T sur
s rondes vérifie DP(T ) ⋅ po

(r−s) = pe
(r). Dans ce cas, la probabilité DP(T ) n’est pas

inférieure à la borne de rang s et l’algorithme teste tous ses prolongements possibles.
Cependant, l’égalité précédente implique que dans le meilleur cas, nous trouverons
une piste sur r rondes de probabilité pe

(r). Étant donné qu’une telle piste est déjà
connue, l’extension de T n’est pas nécessaire. Cette discussion montre que la définition
B.23 peut être renforcée comme suit.

Définition B.30 (borne de rang s). Soit T une piste sur s < r rondes. Sa
probabilité est inférieure à la borne de rang s si

(To
(r) = () et DP(T ) < pe

(r)

po
(r−s)) ou (To

(r) ≠ () et DP(T ) ≤ pe
(r)

po
(r−s)) .

B.2.2.e. Gestion automatique de l’estimation

Comme expliqué dans la section B.2.1.b, l’estimation pe
(r) conditionne la complexité

de l’algorithme OptTrailEst. Plusieurs méthodes permettent d’obtenir de bonnes
estimations de po

(r). Citons par exemple l’utilisation de pistes itératives. Notre
algorithme OptTrail est construit à partir d’une idée de Ohta, Moriai et Aoki
[87] et possède deux avantages majeurs. Premièrement, la gestion de l’estimation
est entièrement automatique et donc aucune étude de chiffrement n’est nécessaire.
Ensuite, sa complexité est du même ordre de grandeur que l’algorithme OptTrailEst
exécuté avec pe

(r) = po
(r) / 2.

L’algorithme OptTrail est présenté dans la figure B.6. Pour comprendre son
fonctionnement, il convient de rappeler que OptTrailEst ne trouve aucune piste
quand pe

(r) > po
(r). Dans ce cas, la piste To(r) reste vide après l’exécution de l’algorithme.
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Puisque po
(r) ≤ po

(r−1), on commence par lancer OptTrailEst avec pe
(r) = po

(r−1) / 2
comme estimation. Cette estimation est alors divisée par deux après chaque exécution
de OptTrailEst jusqu’à ce qu’une piste optimale soit trouvée, ce qui ce produit à
partir du moment où la condition pe

(r) ≤ po
(r) devient vraie.

De plus, nous avons observé expérimentalement que la complexité de l’algorithme
OptTrailEst exécuté avec pe

(r) ≥ 24 ⋅ po
(R) est négligeable comparée à celle de son

exécution avec pe
(r) = po

(R) / 2. Cela justifie que la complexité de OptTrail est à peu
près la même que celle de OptTrailEst.

B.2.3. Résultats

Nos expérimentations et simulations ont été réalisées sur un processeur AMD Phenom
II X4 965 Black Edition 3.4 GHz. Le temps d’exécution de notre algorithme pour un
chiffrement sur R rondes comprend tous les pré-calculs ainsi que les R − 1 appels à
OptTrail, comme expliqué dans la section B.2.1.b.

Pour démontrer la sécurité pratique de Present [17] face à la cryptanalyse
différentielle, ses auteurs ont démontré que la probabilité d’une piste sur 5 rondes
est majorée par 2−20 et ont exhibé une piste de probabilité 2−21. Notre algorithme
permet de démontrer en 0,3 seconde que cette borne est atteinte. Ils ont ensuite
déduit que la probabilité d’une piste sur 25 rondes est majorée par 2−100. Notre
algorithme a déterminé en 0,5 seconde que la probabilité d’une piste optimale vaut
2−110. Le nombre de ronde n’est ici pas problématique puisque le calcul d’une piste
optimale sur 64 rondes ne prend que deux secondes.

La permutation des bits utilisée dans l’algorithme SmallPresent [69] (ainsi
que dans Present) peut être généralisée pour tous entiers naturels n et m. Notons
φn,m la permutation de J0, nmJ définie par

φ(i) =m(imod n) + ⌊ i
m
⌋ .

Nous avons construit un SPN opérant sur des blocs de 128-bits et similaire à Present
pour tester l’efficacité de notre algorithme. Nous définissons π comme la diffusion
linéaire associée à la permutation des bits φ8,16 puis les S-boxes toutes égales à celle
de l’AES [39]. En exécutant notre algorithme, nous obtenons en 7,1 secondes une
piste différentielle optimale sur 13 rondes de probabilité 2−89.

Afin d’analyser la sécurité du chiffrement Puffin [36] contre la cryptanalyse
différentielle, ses auteurs avaient majoré la probabilité d’une piste optimale sur 31
rondes par 2−62. Nous avons calculé une piste atteignant cette borne en 0,02 seconde.

Finalement, nous avons testé notre algorithme sur Iceberg [95]. Étant donné
que la diffusion linéaire du chiffrement n’est pas réalisée au moyen d’une simple
permutation des bits, l’optimisation présentée à la section B.2.2.c ne s’applique pas.
Les concepteurs du chiffrement avaient majoré la probabilité d’une piste différentielle
optimale sur 16 rondes par 2−160. Notre algorithme a prouvé qu’elle est en fait égale
à 2−171,6 en 2,3 secondes. Ces résultats sont résumés dans la figure B.7.
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Taille Nombre Majorant Meilleure Temps
des blocs de rondes probabilité d’exécution

Present 64 5 2−20 2−20 0.3 s
Present 64 25 2−100 2−110 0.5 s
Present-like 128 13 – 2−89 7.1 s
Puffin 64 31 2−62 2−62 0.02 s
Iceberg 64 16 2−160 2−171.6 2.3 s

Figure B.7 : Liste des résultats

Pour conclure, nous avons présenté dans ce chapitre un algorithme générique
calculant une piste différentielle ou linéaire optimale dans un réseau de substitutions-
permutations. L’exécution de cet algorithme peut permettre de prouver la sécurité
pratique d’un chiffrement par blocs. À l’inverse, si le chiffrement est faible, la piste
renvoyée permet de l’attaquer efficacement avec une cryptanalyse différentielle ou
linéaire. Spécialement optimisé pour les SPN dont la diffusion linéaire est assurée
par une permutation des bits, nous avons trouvé des pistes différentielles optimales
pour Present et Puffin en moins d’une seconde. Par conséquent, notre algorithme
constitue un puissant outil pour le concepteur de SPN qui peut être exécuté plusieurs
fois afin d’optimiser les primitives du chiffrement.

B.3. Chiffrements à trappes basées sur des partitions

Les chiffrements à trappes étudiés dans cette thèse sont principalement une générali-
sation des idées présentées par Paterson dans [88]. Cet article présente un chiffrement
à trappe inspiré du DES exploitant une faiblesse induite par sa fonction de ronde. En
effet, l’action du groupe engendré par les fonctions de ronde sur l’espace des messages
est imprimitive. Autrement dit, la fonction de ronde préserve une partition de l’espace
de message indépendamment des clés de rondes utilisées. La même propriété reste
naturellement vraie pour le chiffrement complet. Cette partition secrète constitue la
trappe. Paterson a ensuite présenté un chiffrement à trappe composé de 32 rondes et
utilisant une clé de 80 bits. Sa trappe peut compromettre sérieusement sa sécurité en
utilisant 232 clairs choisis. De plus, une fois combinée à un algorithme de cadencement
des clés rondes bien choisi, elle permet de retrouver la clé avec quelques clairs connus
et un effort de 241 opérations. Même si les concepts mathématiques de la trappe sont
donnés, aucun algorithme ne détaille la construction des S-boxes. Comme l’auteur le
reconnait, la sécurité de son chiffrement à trappe face à la cryptanalyse différentielle
n’est pas aussi élevée que ce que l’on pourrait attendre et la moitié des bits des
chiffrés sont indépendants de la moitié des bits des messages clairs. Enfin, l’auteur
se demandait si les partitions utilisées doivent être linéaires, c’est-à-dire constituées
des classes d’un sous-espace vectoriel. Caranti and al. [31] répondirent ensuite à
cette question en prouvant que si le groupe généré par les fonctions de rondes est
imprimitif, alors la partition de l’espace des messages est nécessairement linéaire.

202



B.3 – Chiffrements à trappes basées sur des partitions

B.3.1. Généralisations

Dans ce chapitre, nous considérons une généralisation des chiffrements à trappe
imprimitifs introduite par Harpes dans sa thèse [50]. Un chiffrement à trappe basée
sur des partitions est un chiffrement envoyant une partition de l’ensemble des messages
clairs sur une partition de l’ensemble des messages chiffrés, indépendamment de la
clé utilisée. Cette notion généralise donc les chiffrements imprimitifs pour lesquels
les partitions d’entrée et de sortie sont égales. Plus formellement, on introduit les
deux définitions suivantes.

Définition B.31. Soient f une permutation d’un ensemble E et A, B deux partitions
de E. Notons f(A) l’ensemble {f(A) ∣ A ∈ A}. On dit que f envoie A sur B si
f(A) = B. De plus, si A = B, on dit que f préserve la partition A.

Définition B.32 (chiffrement à trappe basée sur des partitions). Un chiffre-
ment itéré E opérant sur des blocs de n bits est appelé un chiffrement à trappe basée
sur des partitions s’il existe deux partitions A et B de Fn2 telles que pour toute clé
de chiffrement K dans Fκ2 on a

Ek(A) = B .

Comme EK doit être une permutation de Fn2 pour permettre le déchiffrement, on
vérifie facilement que les partitions A et B ont nécessairement le même nombre de
parties.

La cryptanalyse partitionnante est une attaque contre les chiffrements itérés
par blocs introduite par Harpes dans [52]. De manière similaire à la cryptanalyse
différentielle qui utilise une paire (a, b) de motifs de différences, la cryptanalyse
partitionnante considère une paire de partitions (A,B), où A représente la partition
des messages clairs et B la partition de l’ensemble des entrées de la dernière ronde.
Une paire (A,B) est dite efficace si pour presque toutes les clé de chiffrement, les
entrées de la dernière ronde ne sont pas uniformément distribuées sur les blocs
de B quand les messages clairs sont uniformément choisis parmi un bloc fixé A
de A. Ensuite, l’attaque exploite ce comportement non-uniforme pour récupérer
de l’information sur la dernière clé de ronde, de la même manière que le font les
cryptanalyses différentielle et linéaire.

À la lumière de cette attaque, il convient de relâcher la définition d’un chiffrement à
trappe basée sur des partitions afin d’inclure les chiffrements créés intentionnellement
pour être faible à la cryptanalyse partitionnante. Pour éviter toute confusion, nous
proposons la définition suivante.
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Définition B.33 (Chiffrement à trappe probabiliste). Un chiffrement itéré sur
r rondes E ∶ Fκ2 × Fn2 → Fn2 est appelé un chiffrement à trappe probabiliste basée sur
des partitions s’il existe une paire (A,B) de partitions de Fn2 vérifiant la propriété
suivante : pour presque toutes les clés de chiffrement K dans Fκ2 et pour chaque
partie A dans A, il existe une partie BA,K dans B telle que pour toute autre partie
B on a

Px∈A(E(r−1)
K (x) ∈ BA,K) ≫ Px∈A(E(r−1)

K (x) ∈ B) .

Autrement dit, pour la majorité des clés de chiffrement K dans Fκ2 et pour
chaque partie A de A, la fonction de chiffrement sur (r − 1) notée EK (r−1) envoie
une proportion significative des messages clairs dans A sur une seule partie BA,K

de B et les autres messages dans A sont éparpillés dans les autres parties de B.
Naturellement, une telle propriété doit être voulue par le concepteur du chiffrement
pour pouvoir parler de trappe. Nous discuterons à la fin de cette thèse de BEA-1,
notre chiffrement à trappe inspiré des travaux de Paterson et Harpes et conçu avec
la théorie que nous exposons maintenant.

B.3.2. Réseaux de substitutions-permutations et partitions

L’objectif de cette section est l’étude d’un réseau de substitutions-permutations
(SPN) envoyant une partition des messages clairs sur une partition des messages
chiffrés. Quand la clé de chiffrement est fixée, la fonction de chiffrement EK est une
simple permutation de l’espace des messages. Aussi, n’import quelle partition A des
clairs est envoyée sur la partition EK(A) des chiffrés. Néanmoins, pour exploiter la
trappe, le concepteur doit connaître la paire de partitions (A,EK(A)). Le problème
est que la partition de sortie EK(A) dépend a priori de la clé de chiffrement K, qui
est inconnue de l’attaquant. La manière la plus simple pour résoudre ce problème
consiste à imposer que les partitions EK(A) soient indépendantes de la clé K. En
d’autres termes, nous souhaitons que toutes les partitions EK(A) soient égales à une
partition fixée B.

Comme pour les cryptanalyses différentielle et linéaire, la prise en compte exacte
l’algorithme de cadencement des clés de rondes est un problème difficile. Aussi,
le cadenceur de clés sera délibérément omis tout au long de cette section. Cela
revient à considérer un SPN envoyant une partition A sur une partition fixée B
indépendamment des clés de rondes utilisées.

Comme nous le verrons dans le prochain résultat, l’étude de tels chiffrements
repose sur un type particulier de partitions formées des classes modulo un sous-espace
vectoriel. Ces partitions ont déjà été introduites par Harpes [50, Définition 4.4].
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Définition B.34 (partition linéaire). Soit A une partition de Fn2 . Notons V sa
partie contenant 0n. La partition A est dite linéaire si V est un sous-espace vectoriel
de Fn2 et si chaque partie dans A est une classe modulo V dans Fn2 , c’est-à-dire si

A = {x + V ∣ x ∈ Fn2} = Fn2 / V .

Cette partition est alors notée L(V ).

B.3.3. De la fonction de chiffrement à la substitution

Pour exposer les prochains résultats, nous fixons plusieurs notations en considérant
un réseau de substitutions-permutations générique. Soient m, n et r trois entiers
naturels non nuls. Soient S0, . . . , Sm−1 des S-boxes sur n bits.

• L’addition de la clé de ronde k est notée αk ∶ Fnm2 → Fnm2 , x↦ x + k.
• La couche de substitution est notée σ et envoie (xi)i<m sur (Si(xi))i<m.
• La couche de diffusion est une permutation linéaire notée π ∶ Fnm2 → Fnm2 .

La fonction de ronde Fk associée à la clé de ronde k est définie par Fk = πσαk.
Enfin, la fonction de chiffrement associée aux clés de rondes K = (k[0], . . . , k[r]) dans
(Fnm2 )r+1 est définie par

EK = αk[r]Fk[r−1] . . . Fk[0] .

Nous pouvons maintenant présenter nos principaux résultats sur les chiffrements à
trappe préservant une partition.

Théorème B.35. Soient A et B deux partitions de Fnm2 . Supposons pour chaque
(r + 1)-uplet de clés de ronde K = (k[0], . . . , k[r]) dans (Fnm2 )r+1 que la fonction de
chiffrement EK envoie A sur B. Posons

A[0] = A et ∀1 ≤ i ≤ r , A[i] = (πσ)i(A) .
Alors,

• A[r] = B ;
• pour tout 0 ≤ i < r et pour tout k[i] dans Fnm2 , Fk[i](A[i]) = A[i+1] ;
• pour tout 0 ≤ i ≤ r, la partition A[i] est linéaire.

Corollaire B.36. On conserve les notations du théorème précédent. Pour tout
0 ≤ i ≤ r, on note V [i] la partie de A[i] contenant 0. On sait alors que A[i] = L(V [i]).
Soit i < r un entier naturel. Alors,

σ(L(V [i])) = L(W [i]) .

où W [i] désigne le sous-espace vectoriel π−1(V [i+1]). En particulier, la couche de
substitution doit envoyer une partition linéaire sur une autre.

La figure B.8 illustre schématiquement les résultats du théorème B.35 ainsi que de
son corollaire B.36. Cette représentation souligne que la partition d’entrée est toujours
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Hypothèse

A

B

EK

Théorème B.35

A[0]

A[r]

Fk[0]

A[1]

⋮

Fk[r−1]

⊕ k[r]

A[r−1]

A[r]

Corollaire B.36

L(V [0])

L(V [r])

⊕ k[0]

π

σ

L(V [0])

L(W [0])

L(V [1])

⋮

⊕ k[r−1]

π

⊕ k[r]

σ

L(V [r−1])

L(V [r−1])

L(W [r−1])

L(V [r])

Figure B.8 : Illustration du théorème B.35 et de son corollaire B.36.
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transformée de la même façon au travers des différentes opérations du processus de
chiffrement. Jusqu’à présent, nous avons donc expliqué que lorsqu’un SPN envoie une
partition A des messages clairs sur une partition B des chiffrés indépendamment des
clés de rondes, alors sa couche de substitution doit nécessairement envoyer au moins
une partition linéaire sur une autre. En conséquence, notre étude peut être restreinte
à la couche de substitution sans perte de généralité. Pour cela, nous rappelons la
définition suivante.

Définition B.37 (mur). Soit E un sous-ensemble de J0,mJ. Le mur associé E que
l’on note WallE, est défini par

WallE = {x ∈ (Fn2)m ∣ ∀i ∈ Ec, xi = 0n} .

Remarque B.38. La notion de mur a été introduite par Aragona et Calderini
[4, 22]. On voit facilement que

WallE =
m−1
∏
i=0

Wall[i]E avec Wall[i]E =
⎧⎪⎪⎨⎪⎪⎩

{0n} if i ∈ Ec ,

Fn2 if i ∈ E .

Ainsi, un mur correspond au produit cartésien de sous-espaces triviaux pour chaque
S-box.

Les sous-espaces WallE sont essentiels pour l’étude de la couche de substitution
puisque cette dernière préserve toujours la partition L(WallE), indépendamment de
ses S-boxes.

Théorème B.39. Soient n ≥ 2 et m deux entiers strictement positifs. Soient
S0, . . . , Sm−1 des S-boxes sur n bits. Notons σ la permutation de (Fn2)m envoyant
(xi)0≤i<m sur (Si(xi))0≤i<m. Enfin, considérons deux sous-espaces V et W de (Fn2)m
tels que σ envoie L(V ) sur L(W ). En supposant que V n’est pas un mur, au moins
l’une des S-boxes envoie une partition linéaire non triviale sur une autre.

B.3.4. Analyse des résultats

Dans un premier temps, supposons que tous les V [i] sont des murs. Si un tel cas
se produit, la couche de diffusion du chiffrement ne joue probablement pas son rôle
(ou sinon le nombre de rondes est trop faible). Comme c’est généralement le cas,
supposons qu’il n’y ait pas de diffusion linéaire dans la dernière ronde du SPN. Alors,
les partitions d’entré et de sortie sont toutes deux linéaires et associées à des murs.
Cela implique que certains bits des chiffrés sont indépendants de certains bits des
messages clairs. Une telle propriété doit naturellement être évitée dans tout bon
chiffrement. Afin de caractériser une diffusion linéaire ne possédant pas cette faiblesse,
Calderini a introduit la définition suivante dans [23].

Définition B.40 (diffusion fortement propre sur r rondes). La couche de
diffusion est dite fortement propre sur r rondes si pour chaque mur propre W , il
existe un entier 1 ≤ i < r tel que πi(W ) n’est pas un mur.
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Supposons maintenant que la couche de diffusion est fortement propre sur r
rondes. Alors au moins l’un des V [i] n’est pas un mur. Ce second cas est nettement
plus intéressant que le précédent. En vertu du théorème B.39, au moins l’une des
S-boxes doit envoyer une partition linéaire non triviale sur une autre.

En résumé, nous avons prouvé dans cette section que tout chiffrement à trappe
basée sur des partitions ayant une diffusion fortement propre doit avoir au moins une
S-box envoyant une partition linéaire non triviale sur une autre. La section suivante
cherche alors à concevoir de telles S-boxes tout en maximisant leur résistance aux
cryptanalyses différentielle et linéaire.

B.4. Analyse d’une S-box à trappe

En poursuivant l’étude menée dans la section précédente, nous devons maintenant
étudier la résistance aux cryptanalyses différentielle et linéaire des S-boxes envoyant
une partition linéaire sur une autre. On peut alors montrer que si S1 est une S-box
envoyant L(V ) sur L(W ), alors il existe une S-box S2 préservant L(V ) qui possède les
mêmes propriétés différentielles et linéaires que S1. Autrement, on peut supposer sans
perte de généralité que V =W dans cette étude. Par conséquent, nous considérons
dans toute cette section

• un sous-espace vectoriel non trivial V de Fn2 de dimension d,
• un sous-espace supplémentaire U de V , et
• une S-box S sur n bits préservant la partition linéaire L(V ).

Puisque U est un supplémentaire de V , l’espace Fn2 est égal à la somme directe U ⊕V .
Autrement dit, tout élément x de Fn2 s’écrit de manière unique sous la forme x = u+v
avec u et v des éléments de U et V respectivement. Notons [u] la classe u modulo
V . Ainsi, [u] = u + V est l’unique partie dans L(V ) contenant u et nous avons

L(V ) = {[u] ∣ u ∈ U} .

Puisque V est de dimension d, son complémentaire U est de dimension n − d. De
plus, on a les inégalités

1 ≤ d ≤ n − 1 et 1 ≤ n − d ≤ n − 1

car V est par hypothèse un sous-espace non trivial de Fn2 .

B.4.1. Structure d’une S-box à trappe

Le théorème suivant précise la structure interne des permutations préservant une
partition linéaire. Un résultat similaire fut introduit par Harpes [50, Theorem 5.6].
Cependant, notre formulation sera plus appropriée pour exposer les autres résultats
de cette section.
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Théorème B.41 (décomposition d’une S-box imprimitive). Soit S une S-box
sur n bits préservant L(V ). Il existe une unique permutation ρ de U et une unique
famille de permutations (τu)u∈U de V telles que, pour tout x = u + v dans Fn2 ,

S(u + v) = ρ(u) + τu(v) .

Réciproquement, si ρ est une permutation de U et si (τu)u∈U est une famille de
permutations de V , alors l’application S′ définie par la relation S′(u+v) = ρ(u)+τu(v)
préserve L(V ).

Ce théorème est fondamental pour notre étude puisqu’il fournit une construction
générale pour obtenir une S-box imprimitive à l’aide de plusieurs permutations
définies sur de plus petits ensembles. Intuitivement, ce résultat peut s’expliquer
comme suit. Nous savons déjà que la partition linéaire L(V ) est formée des classes
modulo V . En permutant les éléments de chaque classe [u], la partition entière est
préservée. La manière exacte de permuter les éléments de la classe [u] est représentée
par la permutation τu de V , à savoir u + v est envoyé sur u + τu(v). Par conséquent,
il nous faut une famille (τu)u∈U pour représenter toutes ses permutations locales.
Jusqu’ici, chaque classe est envoyée sur elle-même. Il reste donc à expliquer comment
les classes sont permutées. C’est la permutation ρ de U qui assure ce rôle. Ainsi, la
classe [u] est envoyée sans permutation interne sur [ρ(u)]. Autrement dit, chaque
élément u + τu(v) est envoyé sur ρ(u) + τu(v). En résumé, la famille (τu)u∈U décrit
comment les éléments sont déplacés à l’intérieur de chaque classe et la permutation
ρ explique comment S permute les classes entres elles.

B.4.2. Analyses différentielle et linéaire

Premièrement, rappelons quelques résultats basiques sur les propriétés différentielles
et linéaires d’une S-box. Considérons une S-box S sur n bits ainsi que deux éléments a
et b de Fn2 . La probabilité de la différentielle (a, b) et la corrélation de l’approximation
(a, b) relativement à S sont définies par

DPS(a, b) = 2−n ×#{x ∈ Fn2 ∣ S(x) + S(x + a) = b} ,
CS(a, b) = 2−(n−1) ×#{x ∈ Fn2 ∣ ⟨a, x⟩ = ⟨b, S(x)⟩} − 1 .

Le potentiel linéaire de l’approximation (a, b) de S est alors le carré de sa corrélation,
c’est-à-dire LPS(a, b) = CS(a, b)2. La probabilité différentielle maximale DPmax

S , la
corrélation absolue maximale Cmax

S et le potentiel linéaire maximal LPmax
S de S sont

définis par

DPmax
S = max{DP(a, b) ∣ a ∈ (Fn2)∗, b ∈ Fn2} ,

Cmax
S = max{ ∣C(a, b)∣ ∣ a ∈ Fn2 , b ∈ (Fn2)∗} ,

LPmax
S = max{LP(a, b) ∣ a ∈ Fn2 , b ∈ (Fn2)∗} = (Cmax

S )2 .

Notons enfin que nous avons les inégalités suivantes

Cmax
S ≥ 2−n−1

2 , LPmax
S ≥ 2−(n−1) . (B.5)
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Maintenant, supposons que S préserve la partition L(V ). Le théorème B.41 établit
l’existence d’une permutation ρ de U et des permutations (τu)u∈U de V telles que

S(u + v) = ρ(u) + τu(v)

pour tout élément x = u + v de Fn2 . Nous fixons cette décomposition pour le reste de
la section.

Étant donné ce résultat, il est naturel de se demander si les propriétés différentielles
et linéaires de S sont reliées à celles des permutations de sa décomposition. Cependant,
ces propriétés sont définies pour des fonctions booléennes vectorielles alors que les
permutations ρ et τu sont définies sur des sous-espaces propres de Fn2 . Pour y remédier,
nous allons identifier U avec Fn−d2 et V avec Fd2 à l’aide de deux isomorphismes puis
considérer les permutations induites par ρ et les τu sur ces espaces.

Notation B.42. Soient BU = (ui)i<n−d et BV = (vi)i<n−d deux bases respectives de
U et V . Posons

LU ∶ Fn−d2 Ð→ U LV ∶ Fd2 Ð→ V

(xn−d−1, . . . , x0)z→ ∑n−d−1
i=0 xiui , (yd−1, . . . , y0)z→ ∑d−1

i=0 yivi .

On voit facilement que LU et LV sont tous deux des isomorphismes d’espaces
vectoriels. On définit alors ρ̄ comme la permutation L−1

U ○ ρ ○ LU induite par ρ sur
Fn−d2 . De la même manière, pour chaque u dans U , on définit τ̄u comme la permutation
L−1
V ○ τu ○LV induite par τu sur Fd2.

B.4.2.a. Matrices de corrélations et potentiels linéaires

Jusqu’ici, nous avons divisé notre S-box imprimitive S en plusieurs permutations
puis transformé ses permutations afin d’étudier leurs propriétés différentielles et
linéaires. Commençons par étudier la matrice de corrélation de S. Notre premier
résultat relie certains de ses coefficients à ceux de la matrice de corrélation de ρ̄.
Même si le prochain théorème ne prend en compte que quelques coefficients de CS,
il est très important en pratique puisque ces coefficients sont généralement les plus
grands en valeur absolue. Ils conditionnent donc la résistance de S à la cryptanalyse
linéaire.

Théorème B.43. Soient a et b deux éléments de V ⊥. Notons at et bt leurs images
respectives par L⊺U . Alors,

CS(a, b) = Cρ̄(at, bt) et donc LPS(a, b) = LPρ̄(at, bt) .

Remarque B.44. Notons que les paires (at, bt) définies dans le théorème précédent
sont toutes distinctes. Par conséquent, Cρ̄ est une sous-matrice de CS.

Corollaire B.45. Le potentiel linéaire maximal de S est minoré par 2−(n−d−1).
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B.4.2.b. Probabilités différentielles

De la même manière, nous allons maintenant nous intéresser aux liens entre les
probabilités différentielles de S et celles des permutations de sa décomposition. À
l’inverse du théorème B.43, le résultat suivant prend en compte l’ensemble des
coefficients de la matrice DPS et met ainsi en évidence sa structure globale.

Théorème B.46. Soient a = ua + va et b = ub + vb deux éléments de Fn2 . Notons u′a
et u′b leurs images par L−1

U . On a

∑
i∈[ua]

DPS(i, b) =∑
j∈[ub]

DPS(a, j) = DPρ̄(u′a, u′b) .

En particulier, DPS(a, b) ≤ DPρ̄(u′a, u′b) et donc DPmax
S ≤ DPmax

ρ̄ .

Le prochain résultat est l’analogue du théorème B.43 pour les probabilités dif-
férentielles. De même, il considère seulement quelques coefficients de DPS mais
généralement les plus grands. En conséquence, il sera utilisé pour obtenir une borne
inférieure sur la résistance de S à la cryptanalyse différentielle.

Théorème B.47. Soient va et vb deux éléments de V . Notons v′a et v′b leurs images
respectives par L−1

V . Alors,

DPS(va, vb) =
1

2n−d ∑u∈U
DPτ̄u(v′a, v′b) .

En particulier, la sous-matrice (DPS(va, vb))va,vb∈V est uniquement déterminée par
(DPτ̄u)u∈U .

Corollaire B.48. La probabilité différentielle maximale de S est minorée par le
plus petit multiple de 2−(n−1) directement supérieur ou égal à 1

2d−1 .

B.4.2.c. Conception d’une S-Box à trappe

En s’appuyant sur les résultats précédents, nous allons obtenir un algorithme pour
construire des S-boxes à trappe basée sur partitions atteignant presque les bornes
des corollaires B.45, B.48 résumées dans la figure B.9. Commençons par résumer les
conditions obtenues.

• D’après les théorèmes B.43 et B.46, le potentiel linéaire maximal et la probabilité
différentielle maximale de la permutation ρ̄ doivent être les plus faibles possibles.

• De plus, le théorème B.47 précise que la somme des matrices DPτ̄u doit avoir
les plus petits coefficients possibles.

Remarque B.49. Si d est proche de 0, la S-box est faible à la cryptanalyse différen-
tielle. À l’inverse si d est proche de n, elle est faible à la cryptanalyse linéaire. Ainsi,
une s-box à trappe résistante à ces deux cryptanalyses doit vérifier d ≈ n

2 .
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Figure B.9 : Bornes inférieures sur la probabilité différentielle maximale et sur le
potentiel linéaire maximal d’une S-box envoyant L(V ) sur L(W ) où V et W sont
deux sous-espaces de Fn2 de dimension d.
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Soit n un entier naturel non nul. On choisit deux sous-espaces propres V et W de
Fn2 de dimension d ainsi qu’un isomorphisme L de V vers W . Détaillons maintenant
comment concevoir une bonne S-box envoyant L(V ) sur L(W ). Premièrement, on
choisit un supplémentaire U de V dans Fn2 puis on construit les isomorphismes LU
et LV . Ensuite, on procède comme suit.

1. On construit une permutation ρ̄ de Fn−d2 étant (presque) optimale relativement
aux cryptanalyses différentielle et linéaire.

2. On construit une famille de permutations (τ̄u)u∈U de Fd2 telle que la somme
(notée SDP) de leurs matrices de probabilités différentielles vérifie la propriété :

1
2n−d × max

a,b∈(Fn2 )∗
SDP(a, b) est proche de la borne du corollaire B.48 .

3. On définit alors la permutation S de Fn2 par

S(u + v) = (LU ○ ρ̄ ○L−1
U )(u) + (LV ○ τ̄u ○L−1

V )(v) .

4. Si DPmax
S et LPmax

S sont proches des bornes données dans la figure B.9, alors
L ○ S est une bonne S-box envoyant L(V ) sur L(W ). Sinon, on retourne à
l’étape 1.

En pratique, on obtient une S-box à trappe dont les propriétés différentielles
et linéaires sont proches des bornes de la figure B.9 après un nombre restreint
d’itérations.

B.4.3. Se prémunir des trappes basées sur des partitions

Pour conclure cette partie théorique sur les chiffrements à trappes basées sur des
partitions, nous présentons un critère dérivé de nos résultats pour démontrer qu’un
chiffrement ne possède pas une telle trappe. Dans la section précédente, nous avons
considéré un SPN générique envoyant une partition des messages clairs sur une
partition des messages chiffrés indépendamment des clés de rondes utilisées. Nous
avons montré que lorsque sa couche de diffusion linéaire est fortement propre, au
moins l’une de ses S-boxes envoie une partition linéaire non triviale sur une autre.
Nous avons ensuite étudié les propriétés différentielles et linéaires de telles S-boxes
dans la présente section. De cette étude, nous avons déduit des bornes supérieures sur
leur résistance aux cryptanalyses différentielle et linéaire. En conséquence, si toutes
les S-boxes d’un SPN ont des résistances plus élevées que ce qu’il est atteignable
avec des S-boxes à trappe, le chiffrement n’a pas de trappe basée sur des partitions.
Cela démontre le théorème suivant.

Théorème B.50. Considérons un réseau de substitutions-permutations sur nm
bits constitué de m S-boxes sur n bits. Supposons que sa couche de diffusion soit
fortement propre sur r rondes. Si chaque S-box Si est telle que pour tout 1 ≤ d ≤ n−1,
les valeurs LPmax

Si
et DPmax

Si
sont inférieures aux bornes données dans la figure B.9,

alors le SPN n’a pas de trappe basée sur des partitions valable pour des clés de
rondes indépendantes.
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De plus, si les valeurs LPmax
Si

et DPmax
Si

sont significativement inférieures aux bornes
de la figure B.9, alors il est peu probable que le SPN ait une trappe probabiliste basée
sur des partitions. Par exemple, ce critère permet de montrer que l’AES [39] n’a pas
de trappe (probabiliste) basée sur des partitions. Comme expliqué dans [23], sa couche
de diffusion est fortement propre sur deux rondes. De plus, la probabilité différentielle
maximale et le potentiel linéaire maximal de sa S-box sont bien en-dessous des
bornes de la figure B.9, pour toute les dimensions d possibles du sous-espace V . Par
conséquent, cette S-box n’envoie aucune partition linéaire sur une autre.

B.5. Conclusion

En guise d’application de notre théorie des chiffrements à trappes (probabilistes)
basées sur des partitions, nous avons conçu BEA-1 (pour Backdoored Encryption
Algorithm), un chiffrement à trappe largement inspiré de l’AES, le standard actuel
de chiffrement par blocs. L’algorithme BEA-1 est prouvé résistant en pratique aux
cryptanalyses différentielle et linéaire. Cependant, la cryptanalyse utilisant la trappe
secrète permet de retrouver entièrement la clé maitresse de 120 bits en 20 secondes
sur un ordinateur portable. L’attaque ne requiert que 216 blocs de messages clairs
choisis ce qui représente moins de 2 Mo de données. Comme son temps d’exécution est
faible, nous avons effectué la cryptanalyse plusieurs fois et vérifié que sa probabilité
de succès est supérieure à 95%. En cas d’échec, l’attaquant peut tout de même
retrouver la clé de chiffrement la plupart du temps avec les mêmes données mais les
paramètres de la cryptanalyse doivent être modifiés manuellement et l’attaque a une
plus grande complexité.

L’idée générale de notre cryptanalyse est proche de la cryptanalyse partitionnante
de Harpes [52] avec cependant quelques différences significatives. Premièrement, la
cryptanalyse partitionnante suppose que le nombre de parties composant la partition
de sortie est faible, typiquement égal à 2, 4 ou 8. À l’inverse, la partition utilisée
dans notre trappe est composée des 240 classes d’un sous-espace vectoriel.

Ensuite, la cryptanalyse partitionnante considère des classes de candidats pour la
dernière clé de ronde où seulement quelques bits conditionnent les classes des chiffrés.
Comme sa complexité est proportionnelle au nombre de classes de clés, cette attaque
n’est efficace seulement si ce nombre est raisonnablement petit. Dans le cas de BEA-1,
chaque bit de la dernière clé de ronde influence les classes des chiffrés. Puisqu’il y a
280 clés possibles pour la dernière ronde, une cryptanalyse partitionnante basique
n’est pas appliquable sur BEA-1.

De plus, une cryptanalyse partitionnante utilise pour chaque classe de clés autant
de compteurs qu’il y a de parties dans la partition de sortie. Notre cryptanalyse
n’utilise quant-à-elle qu’un seul compteur par clé. Enfin, notre attaque permet de
retrouver l’ensemble des 120 bits de la clé de chiffrement alors qu’une cryptanalyse
partitionnante n’obtient que quelques bits de la dernière clé de ronde.

Comme dernière remarque sur notre chiffrement à trappe BEA-1, nous souhaitons
souligner que le critère énoncé en fin de section B.4 suggère que chacune de ses S-
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boxes peut envoyer presque sûrement une partition linéaire associée à un sous-espace
de dimension cinq sur une autre telle partition. En utilisant les résultats précédents,
une étude des matrices différentielles et des matrices de corrélation de chaque S-box
révèle alors les sous-espaces utilisés et donc une partie de la trappe.

Pour conclure, notons que même si l’existence d’une trappe est une propriété non
désirable dans un chiffrement par blocs, leur étude peut contribuer à la conception
de chiffrements plus sécurisés ainsi qu’à améliorer notre compréhension des cryptana-
lyses classiques. En effet, les chiffrements à trappes basées sur des partitions sont
étroitement liés aux sous-espaces invariants, aux pistes de sous-espaces de dimension
constante ainsi qu’à la cryptanalyse partitionnante. Nous avons montré dans la
section B.3 que les chiffrements étudiés doivent avoir des S-boxes équivalentes à des
S-boxes imprimitives. Ensuite, nous avons montré dans la section B.4 que de telles
S-boxes peuvent être fortement résistantes soit à la cryptanalyse différentielle, soit à
la cryptanalyse linéaire, mais pas au deux. En conséquence, notre étude a établi des
liens inattendus entre les cryptanalyses différentielle, linéaire et partitionnante. En
combinant nos travaux avec ceux de Calderini, nous disposons maintenant de deux
critères permettant de montrer qu’un chiffrement n’a pas de trappe basée sur des
partitions. Dans la même lignée, citons les travaux récents de Blondeau, Civino et
Sala [16] proposant une nouvelle variante de la cryptanalyse différentielle directement
inspirée d’une famille de chiffrements à trappes basées sur des sommes cachées [19].
De plus, la recherche de trappes nous fait naturellement considérer des propriétés
différentes de celles utilisées dans les cryptanalyses classiques, augmentant ainsi
nos chances de découvrir de nouvelles attaques efficaces. Enfin, soulignons que la
question de savoir si des trappes efficaces et indétectables peuvent être insérées dans
des chiffrements de confiance aux yeux de la communauté reste ouverte.
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Analyse combinatoire des chiffrements par blocs avec trappes

Résumé. Les trappes jouent un double rôle dans la cryptographie moderne. Même si
elles sont essentielles en cryptographie asymétrique, leur rôle est tout autre lorsque
l’on considère la cryptographie symétrique. Dans ce cas, une trappe désigne une
faiblesse mathématique insérée volontairement au cœur du chiffrement, permettant
à son concepteur de le casser efficacement. Une telle propriété est alors fortement
indésirable. Pour qu’un chiffrement à trappe puisse inspirer confiance, il doit
fournir les mêmes preuves de sécurité que tout autre chiffrement. La première
partie de cette thèse se concentre sur les analyses de sécurité par rapport aux
deux principales cryptanalyses des chiffrements par blocs, à savoir les attaques
différentielles et linéaires.
La seconde partie est quant à elle dédiée à l’étude d’une famille de chiffrements à
trappes introduite par Paterson et Harpes. Ces chiffrements envoient une partition
des messages clairs sur une partition des messages chiffrés indépendamment des
clés utilisées. Tout d’abord, nous étudions la structure de tels chiffrements puis
obtenons des bornes sur leur sécurité. Nous expliquons ensuite comment les
primitives du chiffrement doivent être conçues pour atteindre ces bornes. Enfin,
nous présentons BEA-1, un chiffrement à trappe grandeur nature développé à
partir de cette théorie. Bien qu’il soit résistant aux cryptanalyses différentielle et
linéaire, la connaissance de la trappe permet de retrouver la clé de 120 bits en
seulement quelques secondes sur un portable.
Mots clés : cryptographie, trappes, partitions.

Combinatorial Analysis of Block Ciphers With Trapdoors

Abstract. Trapdoors are a two-face key concept in modern cryptography. Even if
they are essential in asymmetric cryptography, their role is reversed in symmetric
cryptography. In this case, the aim is to insert hidden mathematical weaknesses
which enable one who knows them to break the cipher, making the existence of a
trapdoor a strongly undesirable property. For a backdoor cipher to be trusted, it
must provide the same security proofs than any other cipher. The first part of
this thesis focuses on a security analysis with respect to the two mains attacks on
block ciphers, namely differential and linear cryptanalysis.
The second part is devoted to the study of a family of backdoor ciphers introduced
by Paterson and Harpes. These ciphers maps a partition of the plaintexts to a
partition of the ciphertexts independently of the keys used. First the structure of
such ciphers is investigated and bounds of their security are obtained. We then
explain how the basic components of a backdoor cipher can be designed to achieve
these bounds. Finally we introduce BEA-1, a real-size backdoor cipher based on
this theory. This cipher resists differential and linear cryptanalysis whereas the
knowledge of the trapdoor enables recovery of the full 120-bit cipher key in just a
few second on a laptop computer.
Keywords: Cryptography, Trapdoors, Partitions.
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