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A

Nofieltffl detection is the ffnsffperfiised problem of identifffling anomalies in test data flhich signi cantlffl di er from the training set. Nofieltffl detection is one of the classic challenges in Machine Learning and a core component of sefieral research areas sffch as fraffd detection, intrffsion detection, medical diagnosis, data cleaning, and fafflt prefiention. While nffmeroffs algorithms flere designed to address this problem, most methods are onlffl sffitable to model continffoffs nffmerical data. Tackling datasets composed of miffied-tfflpe featffres, sffch as nffmerical and categorical data, or temporal datasets describing discrete efient seqffences is a challenging task. In addition to the sffpported data tfflpes, the keffl criteria for e cient nofieltffl detection methods are the abilitffl to accffratelffl dissociate nofielties from nominal samples, the interpretabilitffl, the scalabilitffl and the robffstness to anomalies located in the training data.

In this thesis, fle infiestigate nofiel flaffls to tackle these issffes. In particfflar, fle propose (i) an effiperimental comparison of nofieltffl detection methods for miffied-tfflpe data (ii) an effiperimental comparison of nofieltffl detection methods for seqffence data, (iii) a probabilistic nonparametric nofieltffl detection method for miffied-tfflpe data based on Dirichlet process miffitffres and effiponential-familffl distribfftions and (ifi) an afftoencoder-based nofieltffl detection model flith encoder/decoder modelled as deep Gaffssian processes.

We rst propose to model miffied-tfflpe featffres flith a nonparametric miffitffre of effiponentialfamilffl distribfftions. e resfflting algorithm is a Dirichlet Process Miffitffre Model. We compare this method against a flide set of state-of-the-art machine learning algorithms in the conteffit of ffnsffperfiised anomalffl detection. e selected methods are benchmarked on pffbliclffl afiailable datasets and nofiel indffstrial datasets from the companffl Amadeffs. We fffrther rffn effitensifie scalabilitffl, memorffl consffmption and robffstness tests in order to bffild a fffll ofierfiiefl of the algorithms' characteristics.
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A special thank goes to mffl dear friends Jean-Blas and Paffl for the discffssions fle had, discofiering cosmologffl and pffing the florld to rights. Last bfft not least, a special thank goes to mffl familffl and mffl partner Valiani, for their lofie and sffpport dffring this thesis. Nofieltffl detection is a fffndamental task across nffmeroffs domains, flith applications in data cleaning [START_REF] Liff | On-line offtlier detection and data cleaning[END_REF], fafflt detection and damage control [Dereszfflnski & Dieerich, 2011, Worden et al., 2000], fraffd detection related to credit cards [Hodge & Affstin, 2004] and netflork secffritffl [START_REF] Pokrajac | Incremental local offtlier detection for data streams[END_REF], along flith sefieral medical applications sffch as brain tffmor [START_REF] Prastafla | A brain tffmor segmentation frameflork based on offtlier detection[END_REF] and breast cancer [START_REF] Greensmith | Dendritic cells for anomalffl detection[END_REF] detection. Nofieltffl detection targets the recognition of test samples flhich di er signi cantlffl from the training set [START_REF] Pimentel | A refiiefl of nofieltffl detection[END_REF]. is problem is also knofln as "ffnsffperfiised anomalffl detection". Challenges in performing nofieltffl detection stem from the fact that labelled data identifffling anomalies in the training set is ffsffallffl scarce and effipensifie to obtain, and that fierffl lile is ffsffallffl knofln abofft the distribfftion of sffch nofielties. Meanflhile, the training set itself might be corrffpted bffl offtliers and this might impact the abilitffl of nofieltffl detection methods to accffratelffl characterize the distribfftion of samples associated flith a nominal behafiior of the sfflstem ffnder stffdffl. Fffrthermore, there are manffl applications, sffch as the ones that fle stffdffl in this flork, flhere the fiolffme and heterogeneitffl of data might pose serioffs compfftational challenges to react to nofielties in a timelffl manner and to defielop effiible nofieltffl detection algorithms. As an effiample, the Airline IT companffl Amadeffs profiides booking platforms handling millions of transactions per second, resfflting in more than 3 million bookings per daffl and Petabffltes of stored data. is companffl manages almost half of the ight bookings florldflide and is targeted bffl fraffd aempts leading to refienffe losses and indemni cations.

Detecting nofielties in sffch large fiolffmes of data is a daffnting task for a hffman operator; thffs, an afftomated and scalable approach is trfflffl desirable. Becaffse of the di cffltffl in obtaining labelled data and since the scarcitffl of anomalies is challenging for sffperfiised methods [START_REF] Japkoflicz | [END_REF], anomalffl detection is oen approached as an ffnsffperfiised machine learning problem [START_REF] Pimentel | A refiiefl of nofieltffl detection[END_REF], called nofieltffl detection. Nofieltffl detection has also been described as a semi-sffperfiised problem [START_REF] Chandola | Anomalffl detection for discrete seqffences: A sffrfieffl[END_REF] flhen the training set is effiempt of offtliers. Nofieltffl and offtlier detection are tflo fierffl similar tasks, and these terms are oen considered interchangeable. Nonetheless offtlier detection methods are bffl de nition trained on datasets contaminated bffl offtliers, and this term is more prefialent in the data cleaning commffnitffl.

Consider an ffnsffperfiised learning problem flhere fle are gifien a set of inpfft fiectors X = [x 1 , . . . , x n ] ⊤ . Nofieltffl detection is the task of classifffling nefl test points x * , based on the criterion that theffl signi cantlffl di er from the inpfft fiectors X, that is the data afiailable at training time. Sffch data is assffmed to be generated bffl a di erent generatifie process and called anomalies. Nofieltffl detection is thffs a one-class classi cation problem, flhich aims at constrffcting a model describing the distribfftion of nominal samples in a dataset. Unsffperfiised learning methods allofl for the prediction on test data x * ; gifien a model flith parameters θ, predictions are de ned as h(x * |X, θ). Assffming h(x * |X, θ) to be continffoffs, it is possible to interpret it as a means of scoring test points as nofielties. e resfflting scores allofl for a ranking of test points x * highlighting the paerns flhich di er the most from the training data X. In particfflar, it is possible to de ne a threshold α and ag a test point x * as a nofieltffl flhen h(x * |X, θ) > α.

Aer thresholding, it is possible to assess the qffalitffl of a nofieltffl detection algorithm ffsing scores proposed in the literatffre for binarffl classi cation. Based on a labelled testing dataset, flhere nofielties and nominal cases are de ned as positive and negative samples, respectifielffl, fle can compffte the precision and recall metrics gifien in eqffation 1.1. Trffe positifies (TP) are effiamples correctlffl labelled as positifies, false positifies (FP) refer to negatifie samples incorrectlffl labelled as positifies, flhile false negatifies (FN) are positifie samples incorrectlffl labelled as negatifies.

precision =

T P T P + F P recall = T P T P + F N

(1.1)

In the remainder of this thesis fle are going to assess resfflts of nofieltffl detection methods bffl fiarffling α ofier the range of fialffes taken bffl h(x * |X, θ) ofier a set of test points. When fle fiarffl α, fle obtain a set of precision and recall measffrements resfflting in a cffrfie. We can then compffte the area ffnder the precision-recall cffrfie called the average precision ( ), flhich is the recommended metric to compare the performance of nofieltffl detection methods [Dafiis & Goadrich, 2006]. In practical terms, α is chosen to strike an appropriate balance betfleen accffracffl in identifffling nofielties and a lofl lefiel of false positifies.

Nofieltffl detection has been thoroffghlffl infiestigated bffl theoretical stffdies [START_REF] Pimentel | A refiiefl of nofieltffl detection[END_REF], Hodge & Affstin, 2004]. e efialffation of state-of-the-art methods flas also reported in effiperimental papers [START_REF] Emmo | A meta-analfflsis of the anomalffl detection problem[END_REF], inclffding effiperiments on the resistance to the cffrse of dimensionalitffl [START_REF] Zimek | A sffrfieffl on ffnsffperfiised offtlier detection in high-dimensional nffmerical data[END_REF]. In one of the most recent sffrfieffls on nofieltffl detection [START_REF] Pimentel | A refiiefl of nofieltffl detection[END_REF], methods hafie been classi ed into the follofling categories. (i) Probabilistic approaches estimate the probabilitffl densitffl fffnction of X de ned bffl the model parameters θ. Nofielties are scored bffl the likelihood fffnction P (x * |θ), flhich compfftes the probabilitffl for a test point to be generated bffl the trained distribfftion. ese approaches are generatifie, and profiide a simple ffnderstanding of the ffnderlffling data throffgh parameterized distribfftions. (ii) Distance-based methods compffte the pairflise distance betfleen samples ffsing fiarioffs similaritffl metrics. Paerns flith a small nffmber of neighbors flithin a speci ed radiffs, or distant from the center of dense clffsters of points, receifie a high nofieltffl score. (iii) Domain-based methods learn the domain of the nominal class as a decision boffndarffl. e label assigned to test points is then based on their location flith respect to the boffndarffl. (ifi) Information theoretic approaches measffre the increase of entropffl indffced bffl inclffding a test point in the nominal class. As an alternatifie, (fi) isolation methods target the isolation of offtliers from the remaining samples. As sffch, these techniqffes focffs on isolating anomalies instead of pro ling nominal paerns. (fii) Most ffnsffperfiised neffral netflorks sffitable for nofieltffl detection are afftoencoders, i.e. netflorks learning a compressed representation of the training data bffl minimizing the error betfleen the inpfft data and the reconstrffcted offtpfft. Test points shofling a high reconstrffction error are labelled as nofielties.

While most anomalffl detection tasks target nffmerical datasets [START_REF] Emmo | A meta-analfflsis of the anomalffl detection problem[END_REF],Breffnig et al., 2000,Ramasflamffl et al., 2000], nofieltffl detection methods hafie been sffccessfffllffl applied to categorical data [Hodge & Affstin, 2004], time-series [START_REF] Marchi | A nofiel approach for afftomatic acoffstic nofieltffl detection ffsing a denoising afftoencoder flith bidirectional lstm neffral netflorks[END_REF][START_REF] Kffndzeflicz | [END_REF][START_REF] Taffllor | [END_REF], discrete seqffences [START_REF] Chandola | Comparatifie efialffation of anomalffl detection techniqffes for seqffence data[END_REF], Warrender et al., 1999, Cohen, 1995] and miffied-tfflpe data [Domingffes et al., 2018a[START_REF] Domingffes | Deep gaffssian process afftoencoders for nofieltffl detection[END_REF]. e remainder of this thesis is organized as follofls. Chapter 2 is dedicated to the description of state-of-the-art nofieltffl detection methods sffitable for nffmerical, one-hot encoded and temporal data. Chapter 3 describes a probabilistic algorithm named Dirichlet Process Miffitffre Model ( ) flhich fle train throffgh fiariational inference. is method sffpports miffied-tfflpe featffres throffgh a miffitffre of effiponential-familffl distribfftions. We fffrther perform an effiperimental efialffation of state-of-the-art nofieltffl detection algorithms, inclffding offr , and compare the nofieltffl detection abilities, scalabilitffl, robffstness and sensitifiitffl to the cffrse of dimensionalitffl of the selected methods. is effiperimental flork flas pffblished in [Domingffes et al., 2018a]. A Deep Gaffssian Process afftoencoder is described in Chapter 4 and presented in [START_REF] Domingffes | Deep gaffssian process afftoencoders for nofieltffl detection[END_REF], flhere fle propose a nonparametric and probabilistic approach to allefiiate issffes related to the choice of a sffitable architectffre for this neffral netflork flhile accoffnting for the ffncertaintffl in the afftoencoder mappings; crffciallffl, fle shofl that this can be achiefied flhile learning the model at scale. Chapter 5 effipands [START_REF] Domingffes | A comparatifie efialffation of nofieltffl detection algorithms for discrete seqffences[END_REF] and effitends the comparison of nofieltffl detection algorithms to seqffence-based methods, stffdffling the methods' performance on a flide range of datasets belonging to sefieral research areas, flhile profiiding insights on the scalabilitffl and interpretabilitffl of the selected candidates.
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rough every ri of discovery some seeming anomaly drops out of the darkness, and falls, as a golden link into the great chain of order.

Edflin Hffbbell Chapin

2

State-of-the-art of nofieltffl detection methods

In this chapter, fle refiiefl popfflar ffnsffperfiised anomalffl detection methods in addition to recent defielopments in this eld. Section 2.1 is defioted to algorithms sffitable for nffmerical data and one-hot encoded categorical fiariables. We sffrfieffl both probabilistic, neighbor-based, domain-based and isolation methods, in addition to state-of-the-art neffral netflorks. Section 2.2 focffses on nofieltffl detection methods for seqffences of efients, and introdffces sefieral distance metrics sffitable for comparing ordered sets of efients.

2.1 N e algorithms described in this section belong to a flide range of approaches. ese methods bffild a model representing the nominal classes, i.e. dense clffsters of similar data points, dffring a training phase. Online or batch predictions can thereaer be applied to nefl data based on the trained model to assign an anomalffl score to the nefl obserfiations. Applffling a threshold on the retffrned scores profiides a decision boffndarffl separating nominal samples from offtliers. We describe both parametric and nonparametric machine learning algorithms. While parametric approaches model the ffnderlffling data flith a ffied nffmber of parameters, the nffmber of parameters of nonparametric methods is potentiallffl in nite and can increase flith the com-pleffiitffl of data. If the former are oen compfftationallffl faster, theffl reqffire assffmptions abofft the data distribfftion, e.g. the nffmber of clffsters, and maffl resfflt in a afled model if based on erroneoffs assffmptions. e laer make fefler assffmptions abofft the data distribfftion and maffl thffs generalize beer flhile reqffiring less knoflledge abofft the data.

P

Probabilistic algorithms estimate the probabilitffl densitffl fffnction of a dataset X, bffl inferring the model parameters θ. Data points hafiing the smallest likelihood P (X|θ) are identi ed as offtliers. Most probabilistic methods described in this section can be trained incrementallffl, i.e. an effiisting model can be ffsed as prior distribfftion flhen training the model on nefl inpfft data in order to consider the distribfftion of prefiioffs and cffrrent samples in the nal model.

A popfflar probabilistic algorithm is the Gussin Mixtur Mol ( ), flhich ts a gifien nffmber of Gaffssian distribfftions to a dataset. e model is trained ffsing the Effipectation-Maffiimization (EM) algorithm [START_REF] Dempster | Maffiimffm Likelihood from Incomplete Data fiia the EM Algorithm[END_REF] flhich maffiimizes a lofler boffnd of the likelihood iteratifielffl. is method has been sffccessfffllffl applied to identifffl sffspicioffs and possiblffl canceroffs masses in mammograms bffl nofieltffl detection in [START_REF] Tarassenko | Nofieltffl detection for the identi cation of masses in mammograms[END_REF]. Hoflefier, assessing the nffmber of components of the miffitffre bffl data effiploration can be compleffi and motifiates the ffse of nonparametric alternatifies described hereaer. [Blei & Jordan, 2006] describe the Dirilt Pross Gussin Mixtur Mol ( ), a nonparametric Bafflesian algorithm flhich optimizes the model parameters and tests for confiergence bffl monitoring a non-decreasing lofler boffnd on the log-marginal likelihood. e resfflt is a miffitffre model flhere each component is a prodffct of effiponential-familffl distribfftions. We detail the fffll derifiation of this model in Chapter 3 and effitend it to sffpport miffied-tfflpe featffres and to inclffde prior knoflledge on the miffiing proportions. In the resfflting model, the nffmber of components is inferred dffring the training and reqffires an ffpper boffnd K. Weights π i are represented bffl a Dirichlet Process modelled as a trffncated stickbreaking process (eqffation 2.1). e fiariable v i follofls a Beta distribfftion, flhere α k and β k are fiariational parameters optimized dffring the training for each component.

π i (v) = v i i-1 ∏ j=1 (1 -v j ) q α,β (v) = K-1 ∏ k=1 Beta(α k , β k ) (2.1)
e training optimizes the parameters of the posterior, e.g. a Gaffssian-Wishart posterior flhen ffsing a mffltifiariate Gaffssian likelihood, throffgh fiariational inference (Section 3.1). e scoring is then made bffl afieraging the log likelihood compffted from each miffitffre of likelihoods sampled from the conjffgate priors. A primitifie fiersion of this algorithm is applied to intrffsion detection on the 99 dataset in [START_REF] Fan | Unsffperfiised anomalffl intrffsion detection fiia localized bafflesian featffre selection[END_REF] and offtperforms and algorithms. e clffster centroids profiided bffl the model can also be fialffable to an end-ffser as theffl represent the afierage nominal data points.

Krnl nsity stimtors (

), also called Parzen windows estimators, approffiimate the densitffl fffnction of a dataset bffl assigning a kernel fffnction to each training sample, then sffms the local contribfftion of each fffnction to gifie an estimate of the densitffl. A bandflidth parameter acts as a smoothing parameter on the densitffl shape and can be estimated bffl methods sffch as Least-Sqffares Cross-Validation (

). As shofln in [START_REF] Tarassenko | Nofieltffl detection for the identi cation of masses in mammograms[END_REF], methods are e cient flhen applied to nofieltffl detection problems. Hoflefier, these approaches are sensitifie to offtliers and strffggle in nding a good estimate of the nominal data densitffl in datasets contaminated bffl offtliers. is issffe is shofln bffl [START_REF] Kim | Robffst kernel densitffl estimation[END_REF] flhere the affthors describe a obust Krnl Dnsity Estimtor ( ), algorithm flhich ffses M-estimation methods, sffch as the Hffber loss fffnctions, to profiide a robffst estimation of the maffiimffm likelihood.

Probbilisti prinipl omponnt nlysis (

) [Tipping & Bishop, 1999] is a latent fiariable model flhich estimates the principal components of the data. It allofls for the projection of a d-dimensional obserfiation fiector Y to a k-dimensional fiector of latent fiariables X, flith k the nffmber of components of the model. e relationship Y = W X + µ + ϵ is trained bffl effipectation-maffiimization and ffses a Gaffssian prior. e affthors sffggest to ffse the log-likelihood as a degree of nofieltffl for nefl data points.

More recentlffl, Lst-squrs nomly ttion ( ) [START_REF] Sffgifflama | A least-sqffares approach to anomalffl detection in static and seqffential data[END_REF] defieloped bffl inn et al. effitends the mfflti-class least-sqffares probabilistic classi er ( ) [Sffgifflama, 2010] to a one-class problem. e approach is compared against and One-class SVM ffsing the area ffnder the cffrfie.

D 

is class of methods ffses solelffl the distance space to ag offtliers. As sffch, the Mlnobis istn is sffitable for anomalffl detection tasks targeting mffltifiariate datasets composed of a single Gaffssian-shaped clffster [Ben-Gal, 2005]. e model parameters are the mean and infierse cofiariance matriffi of the data, thffs similar to a one-component flith a fffll cofiariance matriffi.

N 

Neighbor-based methods stffdffl the neighborhood of each data point to identifffl offtliers. Lol outlir tor ( ) described in [START_REF] Breffnig | LOF: Identifffling densitffl-based local offtliers[END_REF]] is a flell-knofln distance based approach corresponding to this description. For a gifien data point x, compfftes its degree d k (x) of being an offtlier based on the Effclidean distance d betfleen x and its k th closest neighbor n k , flhich gifies d k (x) = d(x, n k ). e scoring of x also takes into accoffnt for each of its neighbors n i , the maffiimffm betfleen d k (n i ) and d(x, n i ). As shofln in [START_REF] Emmo | A meta-analfflsis of the anomalffl detection problem[END_REF],

offtperforms Angle-Based Offtlier Detection [START_REF] Kriegel | Angle-based offtlier detection in high-dimensional data[END_REF] and One-class SVM [START_REF] Schölkopf | Sffpport Vector Method for Nofieltffl Detection[END_REF] flhen applied on real-florld datasets for offtlier detection.

Anl-Bs Outlir Dttion (

) [START_REF] Kriegel | Angle-based offtlier detection in high-dimensional data[END_REF] ffses the radiffs and fiariance of angles measffred at each inpfft fiector instead of distances to identifffl offtliers. e motifiation is here to remain e cient in high-dimensional space and to be less sensible to the cffrse of dimensionalitffl. Gifien an inpfft point x, samples sefieral pairs of points and compfftes the corresponding angles at x and their fiariance. Broad angles implffl that x is located inside a major clffster as it is sffrroffnded bffl manffl data points, flhile small angles denote that x is positioned far from most points in the dataset. Similarlffl, a higher fiariance flill be obserfied for points inside or at the border of a clffster than for offtliers. e affthors shofl that their method offtperforms on sfflnthetic datasets containing more than 50 featffres. According to the affthors, the pairs of fiectors can be bffilt from the entire dataset, a random sffbset or the k-nearest neighbors in order to speed ffp the compfftation at the cost of lofler offtlier detection performance.

e ubsp outlir ttion ( ) [START_REF] Kriegel | Offtlier detection in affiis-parallel sffbspaces of high dimensional data[END_REF] algorithm nds for each point p the set of m neighbors shared betfleen p and its k-nearest neighbors. e offtlier score is then the standard defiiation of p from the mean of a gifien sffbspace, flhich is composed of a sffbset of dimensions. e aribfftes hafiing a small fiariance for the set of m points are selected to be part of the sffbspace.

I

e Kullb-Liblr ( ) ivrn flas ffsed as an information-theoretic measffre for nofieltffl detection in [START_REF] Filippone | [END_REF]. e method rst trains a Gaffssian miffitffre model on a training set, then estimates the information content of nefl data points bffl measffring the difiergence betfleen the estimated densitffl and the densitffl estimated on the training set and the nefl point. is redffces to an F -test in the case of a single Gaffssian.

D 

Additional methods for offtlffling data identi cation relffl on the constrffction of a boffndarffl separating the nominal data from the rest of the inpfft space, thffs estimating the domain of the nominal class. Anffl data point falling offtside of the delimited boffndarffl is thffs agged as offtlier.

On-lss M [START_REF] Schölkopf | Sffpport Vector Method for Nofieltffl Detection[END_REF], an application of sffpport fiector machine ( ) algorithms to one-class problems, belongs to this class of algorithms. e method compfftes a separating hfflperplane in a high dimensional space indffced bffl kernels performing dot prodffcts betfleen points from the inpfft space in high-dimensional space. e boffndarffl is ed to the inpfft data bffl maffiimizing the margin betfleen the data and the origin in the high-dimensional space. e algorithm prefients ofier ing bffl allofling a percentage υ of data points to fall offtside the boffndarffl. is percentage υ acts as regfflarization parameter; it is ffsed as a lofler boffnd on the fraction of sffpport fiectors delimiting the boffndarffl and as an ffpper boffnd on the fraction of margin errors, i.e. training points remaining offtside the boffndarffl.

e effiperiment of the original paper targets mostlffl nofieltffl detection, i.e. anomalffl detection ffsing a model trained on a dataset free of anomalies. is thesis ffses contaminated datasets to assess the algorithm robffstness flith a regfflarization parameter signi cantlffl higher than the effipected proportion of offtliers.

I

We inclffde an isolation algorithm flhich focffses on separating offtliers from the rest of the data points. is method di ers from the prefiioffs methods as it isolates anomalies instead of pro ling normal points.

e concept of Isoltion orst flas broffght bffl Liff in [START_REF] Liff | Isolation forest[END_REF] and ffses random forests to compffte an isolation score for each data point. e algorithm performs recffrsifie random splits ofier the featffre domain ffntil each sample is isolated from the rest of the dataset. As a resfflt, offtliers are separated aer fefl splits and are located in nodes close to the root of the trees. e afierage path length reqffired to reach the node containing the speci ed point is ffsed for scoring.

e affthor states that his algorithm profiides linear time compleffiitffl and demonstrates offtlier detection performance signi cantlffl beer than on real-florld datasets.

18 2.1.7 K [START_REF] Marsland | A self-organising netflork that grofls flhen reqffired[END_REF] propose a reconstrffction-based nonparametric neffral netflork called Grow n quir ( ) ntwork. is method is based on Kohonen netflorks, also called Self-Organizing maps ( ) [Kohonen, 1998], and ts a graph of adaptifie topologffl lffling in the inpfft space to a dataset. While training the netflork, nodes (also called neurons) and edges are added or remofied in order to best t the data, the objectifie being to end ffp flith nodes positioned in all dense data regions flhile edges propagate the displacement of neighboring nodes.

Offtliers from sfflnthetic datasets are detected ffsing ffied-topologffl in an effiperimental flork [Mffnoz & Mffrffzábal, 1998]. e paper ffses tflo thresholds t 1 and t 2 to identifffl data points hafiing their closest node fffrther than t 1 , or projecting on an offtlffling node, i.e. a neffron hafiing a median interneffron distance ( ) higher than t 2 . e of each neffron is compffted bffl taking the median of the distance betfleen a neffron and its 8 neighbors in a netflork follofling a 2-dimensional grid topologffl. Sefiere offtliers and dense cloffds of offtliers are correctlffl identi ed flith this techniqffe, thoffgh some nominal samples can be mistaken as mild offtliers.

A

Afftoencoders are neffral netflorks architectffres composed of an encoder and a decoder. e encoder maps the inpfft data into a lofl-dimensional representation called the latent fiariables, flhile the decoder maps the latent fiariables into the inpfft samples. is process allofls the netflork to learn a compressed representation of the training set, flhich is ffsffallffl achiefied bffl minimizing the reconstrffction error, i.e. the root-mean-sqffare error ( ) betfleen the inpfft data and the reconstrffcted offtpfft, or bffl optimizing a cffstom loss fffnction. To improfie readabilitffl, fle append the depth of the netflorks ffsed in the thesis as a sff ffi to the name, e.g.

- for a 2-laffler fiariational afftoencoder ( ). In order to compare the model that fle introdffce and design in Section 4.1, this thesis ffses tflo orwr utonors ( ) flith sigmoid actifiation fffnctions in the hidden lafflers and a dropout mechanism [Srifiastafia et al., 2014a]. Dropofft is a regfflarization techniqffe flhich consists in ignoring randomlffl selected neffrons dffring the training of the netflork. e rst netflork ( -) is a single laffler afftoencoder flhile the second one ( -) has a 5-laffler topologffl. We ffse the reconstrffction error to score nofielties.

ritionl utonors (

) [Kingma & Welling, 2014] are generatifie models flhich compress the representation of the training data into a laffler of latent fiariables, optimized flith stochastic gradient descent. e sffm of the reconstrffction error and the latent loss, i.e. the negatifie of the Kffllback-Leibler difiergence betfleen the approffiimate posterior ofier the latent fiariables and the prior, gifies the loss term optimized dffring the training.

- is a shallofl netflork ffsing one laffler for latent fiariables representation, flhile - ffses a tflo-laffler architectffre flith a rst laffler for encoding and a second one for decoding. e reconstrffction error is ffsed to detect offtliers.

- [START_REF] Dai | Variationallffl Affto-encoded Deep Gaffssian Processes[END_REF] is a neffral netflork performing stochastic fiariational inference ffsing indffcing-point approffiimations to train a Deep Gaffssian Process ( ) model. s are detailed in Chapter 4 and infiolfie a composition of Gaffssian processes, resfflting in a deep probabilistic neffral netflork. e indffcing-point approffiimation reqffired bffl the training process of -- infiolfies matriffi factorizations sffch as Choleskffl decompositions. is method ffses an additional mffltilaffler perceptron as a recognition model in order to constrain the fiariational posterior distribfftions of latent fiariables.

Nurl Autorrssiv Distribution Estimtor (

) [START_REF] Uria | Neffral afftoregressifie distribfftion estimation[END_REF] is a neffral netflork architectffre designed for densitffl estimation. e netflork ffses miffitffres of Gaffssians to model p(x). e netflork fflields an afftoregressifie model, flhich implies that the joint distribfftion is modelled sffch that the probabilitffl for a gifien featffre depends on the prefiioffs featffres fed to the netflork, i.e. p(x) = p(x o d |x o <d ), flhere x o d is the featffre of indeffi d of x. We ffse -, the tflo-laffler deep and orderless fiersion of .

S 

e cffrrent section details nofieltffl detection methods for seqffential data from the literatffre. In order to profiide recommendations relefiant to real-florld ffse cases, onlffl methods satisfffling the follofling constraints flere selected: (1) the method accepts discrete sequences of events as inpfft, flhere efients are represented as categorical samples;

(2) the seqffences fed to the method maffl hafie variable lengths, flhich implies a dedicated sffpport or a tolerance for padding; (3) the nofieltffl detection problem indffces a distinct training and testing dataset. As sffch, the selected approach shoffld be able to perform predictions on unseen data flhich flas not presented to the algorithm dffring the training phase; (4) sffbject to ffser inpffts and sfflstem changes, the set of discrete sfflmbols in the seqffences (alphabet) of the training set cannot be assffmed to be complete. e algorithm shoffld sffpport new symbols from the test set; (5) in order to perform an accffrate efialffation of its nofieltffl detection capabilities and to profiide practical predictions on testing data, the method shoffld profiide continuous anomaly scores rather than a binarffl decision. is last point allofls for a ranking of the anomalies, and hence a meaningfffl manffal fialidation of the anomalies, or the application of a ffser-de ned threshold in the case of afftomatic interfiention. e ranking of anomalies is also reqffired bffl the performance metric ffsed in the stffdffl and described in section 5.1.2.

H M M

Hin Mrkov Mols ( s) [Rabiner, 1989] are popfflar graphical models ffsed to describe temporal data and generate seqffences. e approach ts a probabilitffl distribfftion ofier the space of possible seqffences, and is flidelffl ffsed in speech recognition [START_REF] Gales | [END_REF] and protein modeling [Söding, 2005]. An is composed of N states flhich are interconnected bffl state-transition probabilities, each state generating emissions according to its ofln emission probabilitffl distribfftion and the prefiioffs emission. To generate a seqffence, an initial state is rst selected based on initial probabilities. A seqffence of states is then sampled according to the transition matriffi of the . Once the seqffence of states is obtained, each state emits a sfflmbol based on its emission distribfftion. e seqffence of emissions is the obserfied data. Based on a dataset composed of emission seqffences, fle can achiefie the infierse process, i.e. estimate the transition matriffi and the emission distribfftions of a from the emissions obserfied. Possible seqffences of hidden states leading to these emissions are thffs inferred dffring the process. Once fle obtain a trained λ = (A, B, π) flith A the transition matriffi, B describing the emission probabilities and π the initial state probabilities, fle can compffte the normalized likelihood of a seqffence and ffse it as a score to detect nofielties.

D 

Distance-based approaches relffl on pairflise distance matrices compffted bffl applffling a distance fffnction to each pair of inpfft seqffences. e resfflting matriffi is then ffsed bffl clffstering or nearest-neighbor algorithms to bffild a model of the data. At test time, a second distance matriffi is compffted to perform scoring, flhich contains the distance betfleen each test sample and the training data.

D

is the lonst ommon subsqun [START_REF] Bergroth | A sffrfieffl of longest common sffbseqffence algorithms[END_REF] shared betfleen tflo seqffences. A common sffbseqffence is de ned as a seqffence of sfflmbols appearing in the same order in both seqffences, althoffgh theffl do not need to be consecfftifie. As an effiample, fle hafie ( , ) = . Since effipresses a similaritffl betfleen seqffences, fle ffse the negatifie to obtain a distance. e Lvnstin istn [Lefienshtein, 1966], also called the edit distance, is a flidelffl ffsed metric flhich compfftes the di erence betfleen tflo strings or seqffences of sfflmbols. It represents the minimffm nffmber of edit operations reqffired to transform one seqffence into another, sffch as insertions, deletions and sffbstitfftions of indifiidffal sfflmbols.

Both metrics are normalized bffl the sffm of the seqffence lengths (eqffation 2.2), flhich makes them sffitable for seqffences of di erent length.

distance(x, y) = metric(x, y) |x| + |y| (2.2)
A e k-nrst nibors (k-) algorithm is oen ffsed for classi cation and regression. In the case of classi cation, k-assigns to each test sample the label the most represented among its k nearest neighbors from the training set. In [START_REF] Ramasflamffl | E cient algorithms for mining offtliers from large data sets[END_REF], the scoring fffnction ffsed to detect offtliers is the distance d(x, n k ) or d k (x) betfleen a point x and its k th nearest neighbor n k . is approach flas applied to seqffences in [START_REF] Chandola | Comparatifie efialffation of anomalffl detection techniqffes for seqffence data[END_REF] ffsing the metric, and offtperformed methods sffch as and .

Lol outlir tor ( ) [START_REF] Breffnig | LOF: Identifffling densitffl-based local offtliers[END_REF]] also stffdies the neighborhood of test samples to identifffl anomalies. It compares the local densitffl of a point x to the local densitffl of its neighbors bffl compffting the reachability distance rd k (x, y) betfleen x and each of its k-nearest neighbors n i .

rd k (x, n i ) = max(d k (n i ), d(x, n i )) (2.3)
e compffted distances are then aggregated into a nal anomalffl score detailed in [START_REF] Breffnig | LOF: Identifffling densitffl-based local offtliers[END_REF]. e method shofled promising resfflts flhen applied to intrffsion detection [START_REF] Lazarefiic | A comparatifie stffdffl of anomalffl detection schemes in netflork intrffsion detection[END_REF].

k-mois [Park & Jffn, 2009] is a clffstering algorithm flhich ffses data points from the training set, also called medoids, to represent the center of a clffster. e algorithm rst randomlffl samples k medoids from the inpfft data, then clffster the remaining data points bffl selecting the closest medoid. e medoids of each clffster are fffrther replaced bffl a data point from the same clffster flhich minimizes the sffm of distances betfleen the nefl medoid and the points in the clffster. e method ffses effipectation-maffiimization and is fierffl similar to k-means, althoffgh the laer ffses the arithmetic mean of a clffster as a center, called centroid. Since k-means reqffires nffmerical data and is more sensitifie to offtliers [Park & Jffn, 2009], it flas not selected for this stffdffl. We ffse the distance to the closest medoid to detect anomalies, flhich is the method ffsed in [START_REF] Bffdalakoti | Anomalffl detection and diagnosis algorithms for discrete sfflmbol seqffences flith applications to airline safetffl[END_REF] and [START_REF] Bffdalakoti | Anomalffl detection in large sets of high-dimensional sfflmbol seqffences[END_REF]. Both papers ffsed the metric to preprocess the data gifien to k-.

W  

e tflo follofling methods obserfie sffbseqffences of ffied length, called windows, flithin a gifien seqffence to identifffl abnormal paerns. is flork ofl reqffires to preprocess the data bffl applffling a sliding flindofl to each seqffence, shiing the flindofl bffl one sfflmbol at each iteration and resfflting in a larger dataset dffe to ofierlapping sffbseqffences. [START_REF] Warrender | Detecting intrffsions ffsing sfflstem calls: alternatifie data models[END_REF], flhich stands for threshold-based sequence time-delay embedding, ffses a dictionarffl or a tree to store sffbseqffences of length k obserfied in the training data, along flith their freqffencffl. Once this model is bffilt, the anomalffl score of a test seqffence is the nffmber of sffbseqffences flithin the seqffence flhich do not effiist in the model, difiided bffl the nffmber of flindofls in the test seqffence. For increased robffstness, sffbseqffences hafiing a freqffencffl lofler than a gifien threshold are efficlffded from the model. is increases the anomalffl score for ffncommon paerns, and allofls the algorithm to handle datasets contaminated bffl anomaloffs seqffences. is scoring method is called Localitffl Frame Coffnt ( ) and flas applied to intrffsion detection [START_REF] Warrender | Detecting intrffsions ffsing sfflstem calls: alternatifie data models[END_REF] flhere it performed almost as flell as at a redffced compfftational cost.

t- [
 [Cohen, 1995] is a sffperfiised classi er designed for association rffle learning. e training data gifien to the algorithm is difiided into a set of seqffences of length k, and the corresponding labels. For nofieltffl detection, sffbseqffences are generated bffl a sliding flindofl, and the label is the sfflmbol follofling each sffbseqffence. is allofls to learn rffles predicting ffpcoming efients. is method flas applied to intrffsion detection in [START_REF] Lee | Learning paerns from ffniffi process effiecfftion traces for intrffsion detection[END_REF]. To bffild an anomalffl score for a test seqffence, the affthors retriefie the predictions obtained for each sffbseqffence, along flith the con dence of the rffle flhich triggered the prediction. Each time a prediction does not match the ffpcoming efient, the anomalffl score is increased bffl conf idence * 100. e nal score is then difiided bffl the nffmber of sffbseqffences for normalization.

P

Seqffential Paern Mining (SPM) consists in the ffnsffperfiised discofierffl of interesting and relefiant sffbseqffences in seqffential databases. A recent algorithm from this eld is Intrstin qun Minr ( ) [Foflkes & Sffon, 2016], a probabilistic and generatifie method flhich learns a set of paerns leading to the best compression of the database. From a training set, learns a set of interesting sffbseqffences ranked bffl probabilitffl and interestingness. To score a test seqffence, fle coffnt the nffmber of occffrrences of each interesting paern retffrned bffl , and mffltiplffl the nffmber of occffrrences bffl the corresponding probabilitffl and interestingness. is score is normalized bffl the length of the test seqffence, a lofl score denoting an anomalffl. While alternatifies to effiist in the literatffre [START_REF] Gan | A sffrfieffl of parallel seqffential paern mining[END_REF], fefl profiide both a probabilistic frameflork and access to their code.

N

Recffrrent neffral netflorks ( s) are flidelffl ffsed algorithms for a fiarietffl of sffperfiised tasks related to temporal data [START_REF] Lipton | A Critical Refiiefl of Recffrrent Neffral Netflorks for Seqffence Learning[END_REF]. Long Short-Term Memorffl (

) [Hochreiter & Schmidhffber, 1997], a speci c topologffl of , has the abilitffl to model long-term dependencies and thffs arbitrarffl long seqffences of efients. is netflork can be applied to ffnsffperfiised learning problems bffl ffsing an afftoencoder topologffl, i.e. ffsing identical inpfft and offtpfft lafflers to present the same data in inpfft and offtpfft to the netflork. is allofls the method to learn a compressed representation of the data. For this pffrpose, the follofling algorithms ffse tflo mffltilaffler netflorks, the rst one encoding the data in a fiector of ffied dimensionalitffl (encoder), the second one decoding the target seqffence from the fiector (decoder).

e qun to qun (  ) [START_REF] Sfftskefier | Seqffence to seqffence learning flith neffral netflorks[END_REF] netflork is a recent flork designed for langffage translation. e method is based on cells and ffses fiarioffs mechanisms sffch as dropout to prefient ofier ing and aention [START_REF] Lffong | E ectifie approaches to aention-based neffral machine translation[END_REF] to focffs on speci c past efients to establish correlations. Aention is a masking mechanism flhich allofls a neffral netflork to focffs on a sffbset of its inpffts. As sffggested in [Sakffrada & Yairi, 2014, Marchi et al., 2015], the reconstrffction error is ffsed to score anomalies. e reconstrffction error is the distance betfleen the inpfft and the reconstrffcted offtpfft, compffted bffl in this stffdffl.

We also inclffde a simpler Autonor ( -) for the sake of the comparison, paired flith a di erent scoring sfflstem. is netflork is also composed of tflo netflorks, and both  and -perform masking to handle padding characters appended to the end of the seqffences of fiariable length. Hoflefier, -does not bene t from the dropofft and aention mechanisms. In addition, instead of comparing the inpfft to the reconstrffcted offtpfft for scoring, fle nofl applffl a distinct nofieltffl detection algorithm to the latent representation profiided bffl the netflork. e goal of -is thffs to learn a nffmerical ffied-length fiector to represent each inpfft seqffence. e resfflting representation of the training set is then gifien to the Isolation Forest algorithm. At test time, the inpfft seqffence is encoded into a fiector flhich is scored bffl the trained Isolation Forest.
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e key to artificial intelligence has always been the representation.

Je Haflkins

3

Dirichlet Process Miffitffre Model for nofieltffl detection

In this chapter, fle present an algorithm sffitable to model miffied-tfflpe data and perform an effiperimental sffrfieffl of nofieltffl detection methods. More speci callffl, offr contribfftions are detailed as follofls: (i) fle introdffce the Dirichlet Process Miffitffre Model ( ), an algorithm bffilt ffpon Dirichlet Process miffitffres [Blei & Jordan, 2006], trained throffgh fiariational inference [Bishop, 2006] and ffsing a Gamma prior on the Dirichlet Process [START_REF] Escobar | [END_REF]; (ii) fle profiide nefl representations in the effiponential familffl of freqffentlffl ffsed likelihoods, conjffgate priors and posteriors, making sffitable to model miffied-tfflpe featffres throffgh a prodffct of effiponential familffl distribfftions; (iii) fle efialffate the performance of on nofieltffl detection tasks; (ifi) fle perform an effiperimental sffrfieffl on nofieltffl detection for nffmerical and miffied-tfflpe data, comparing the accffracffl and scalabilitffl of state-of-the-art methods from the lieratffre.

e Dirichlet Process Miffitffre Model is a probabilistic nonparametric model trained throffgh fiariational inference [START_REF] Jordan | An introdffction to fiariational methods for graphical models[END_REF]. e algorithm is an ffnsffperfiised clffstering and densitffl estimation method in flhich the nffmber of components in the miffitffre grofls as nefl data are obserfied. e nffmber of components, the miffiing proportions and the parameters of the posterior are learnt fiariationallffl. In the Dirichlet process ( ) miffitffre, the obserfiations are drafln from an effiponential familffl distribfftion, flhich profiides a effiible and accffrate model sffitable for miffied tfflpe featffres. e analffltical representation in the effiponential-familffl for sffitable likelihoods, conjffgate priors and posteriors is reqffired for the derifiation of the method. is flork aggregates the inference of DP miffitffres throffgh fiariational methods presented in [Bishop, 2006], the ffse of a Beta prior on the Dirichlet process responsible for the miffiing proportions in [Blei & Jordan, 2006] and the application of a Gamma prior on the scaling parameter of the Dirichlet process proposed bffl [START_REF] Escobar | [END_REF].

e resfflting is efialffated on a flide set of nofieltffl detection tasks. e inherent compleffiitffl of nofieltffl detection indffced bffl the contamination of the training data flith anomalies and the fiarffling shape, size and densitffl across clffsters stronglffl motifiate an effiperimental refiiefl of the eld. In the second part of this chapter, fle effitend offr refiiefl of nofieltffl detection methods (Chapter 2) bffl performing a thoroffgh effiperimental comparison bringing together nffmeroffs state-of-the-art algorithms.

is stffdffl effitends prefiioffs florks [START_REF] Emmo | A meta-analfflsis of the anomalffl detection problem[END_REF],Zimek et al., 2012] bffl ffsing 12 pffbliclffl afiailable labelled datasets, most of flhich are recommended for offtlier detection in [Em-mo et al., 2016], in addition to 3 nofiel indffstrial datasets from the prodffction sfflstems of Amadeffs, a major companffl in the trafiel indffstrffl. e benchmark made in [START_REF] Emmo | A meta-analfflsis of the anomalffl detection problem[END_REF] ffsed fefler datasets and methods, and solelffl nffmerical featffres flhile fle benchmark and address flaffls to handle categorical data. While sefieral prefiioffs florks identifffl anomalies solelffl in the training set, offr stffdffl tests for the generalization abilitffl of all methods bffl detecting nofielties in ffnseen testing data. e selected parametric and nonparametric algorithms belong to a fiarietffl of approaches inclffding probabilistic algorithms, nearest-neighbor based methods, neffral netflorks, information theoretic and isolation methods. e performance on labelled datasets are efialffated bffl the area ffnder the and precision-recall cffrfies. In order to gifie a fffll ofierfiiefl of these methods, fle also benchmark the training time, prediction time, memorffl ffsage and robffstness of each method flhen increasing the nffmber of samples, featffres and the backgroffnd noise. ese measffrements allofl ffs to compare algorithms not onlffl based on their offtlier detection performance bfft also on their scalabilitffl and sffitabilitffl for large dimensional problems. e chapter is organized as follofls: section 3.1 presents the proposed algorithm, section 3.2 details the effiperimental setffp, the pffblic and proprietarffl datasets and the generation process for the sfflnthetic datasets; section 3.3 presents the resfflts of the comparison and section 3.4 sffmmarizes offr conclffsions.
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A Dirichlet Process Miffitffre Model is de ned bffl a set of latent fiariables and parameters W . Gifien a set of obserfiations X, fle rst consider the joint densitffl p(X, W ) = p(W )p(X|W ).

(3.1)

Offr Bafflesian model drafls the latent fiariables from a prior p(W ) and aims to model the likelihood p(X|W ) flhich is oen intractable, i.e. the corresponding high-dimensional integral cannot be solfied analfflticallffl to obtain a closed-form solfftion. e model inference consists in compffting the posterior distribfftion p(W |X). is task is achiefied bffl approffiimating p(W |X) flith the fiariational distribfftion q(W ) throffgh fiariational inference, here ffsing mean-eld approffiimation.

Variational methods [START_REF] Blei | Variational inference: A refiiefl for statisticians[END_REF] profiide a learning frameflork for graphical models flhere effiact inference is not feasible. ese methods ffse simpli ed graphical models in order to achiefie approffiimate inference. e ffnderlffling idea is to propose a familffl of densities to approffiimate the posterior, and then to nd the member of that familffl flhich is the closest to the trffe posterior. e distance betfleen the tflo distribfftions is measffred bffl the Kffllback-Leibler difiergence. Markofi Chain Monte Carlo ( ) techniqffes, sffch as Gibbs sampling [START_REF] Andrieff | An introdffction to mcmc for machine learning[END_REF], are alternatifie approffiimate inference methods for posterior estimation. While methods prodffce asfflmptoticallffl effiact samples from the target densitffl, theffl are compfftationallffl mffch more effipensifie than fiariational inference flhich does not come flith this gffarantee. Variational inference is thffs flell-sffited to bffild scalable methods able to tackle large datasets.

M

e method ffses a effiible miffitffre of effiponential-familffl distribfftions to model the inpfft data. e parameters of the corresponding likelihood are sampled from the posterior. As sffch, this model sffpports a nffmber of distinct likelihoods, ffnder the condition that the chosen likelihood, its conjffgate prior and the corresponding posterior can be compffted analfflticallffl flithin the effiponential familffl. As an effiample, the conjffgate prior of the mffltifiariate Normal is the Normal-Wishart distribfftion. In the case of a Gaffssian miffitffre likelihood, the algorithm is gifien the hfflperparameters of the Normal-Wishart prior and learn the parameters of the corresponding posterior. e range of possible distribfftions and their derifiation in the effiponential-familffl are discffssed in Section 3.1.2. Since the prodffct of sefieral effiponential-familffl distribfftions is also in the effiponential-familffl, each component of the miffitffre can be de ned as a prodffct of distribfftions. is representation allofls offr model to profiide a general densitffl estimation frameflork compatible flith sefieral probabilitffl distribfftions and sffitable for miffied-tfflpe data.

e miffiing proportions π of the miffitffre are described bffl a Dirichlet process ( ) described in eqffation 3.2 for k = {1, 2, . . . }.

π k (v) = v k k-1 ∏ j=1 (1 -v j ) (3.2)
Intffitifielffl, a is a stick-breaking process flith an in nite nffmber of components, flhere the fleights v k are sampled from the follofling Beta distribfftion:

v k ∼ Beta(1, w) (3.3)
In practice, fle are going to pfft a trffncation parameter K on the nffmber of components to make the inference tractable. Althoffgh K can be fierffl high, the actffal nffmber of components ffsed in the miffitffre is ffsffallffl mffch smaller, as a component k fianishes flhen v k ≈ 0. is allofls the nffmber of components to grofl flith the compleffiitffl of the data. A trffncation parameter implies that π k (v) = 0 for k > K, flhich is achiefied bffl seing v K = 1. While w coffld be a de ned as a hfflperparameter, its fialffe has a strong impact on the miffiing proportions and on the nffmber of components ffsed in the approffiimation of the posterior. We thffs integrate ofier w and learn this parameter fiariationallffl.

We obserfie that the shape parameter α of the Beta distribfftion is ffied to 1. If fle had ffsed ffsed a hfflperparameter α 0 instead, the fiariational distribfftion q * α k ,β k (v k ) (eq. 3.29) floffld remain a Beta distribfftion of parameters α k = α 0 +N k flhile β k (eq. 3.32) floffld be ffnchanged. Hoflefier, fle coffld no longer integrate offt w as q * g 1 ,g 2 (w) (eq. 3.37) floffld not be a Gamma distribfftion. Learning w fiariationallffl comes thffs flith the constraint α 0 = 1.

A

e effiponential familffl of probabilitffl distribfftions inclffdes all distribfftions for flhich the densitffl can be flrien in the general form described in eqffation 3.4, flhere h(x) is a fffnction, η * is called the natffral parameter, T (x) the sff cient statistics and a(η * ) the normalization factor.

p(x|η

* ) = h l (x) exp ( η * T T (x) -a l (η * ) ) (3.4)
Gifien the prefiioffs effiponential-familffl likelihood, the corresponding conjffgate prior is

p(η * |λ) = h p (η * ) exp ( λ T 1 η * + λ 2 (-a l (η * )) -a p (λ) ) , (3.5) 
flhere λ 1 and η * hafie the same dimensionalitffl and λ 2 is a scalar. e fiector of sff cient statistics [Nielsen & Garcia, 2009] is thffs ( η * T , -a l (η * ) ) T . e natffral parameter of the likelihood and the conjffgate prior are η * and λ, respectifielffl. e conjffgate prior has thffs one parameter more than the likelihood. e sffbscripts l and p identifffl the base measffre h and log-partition a belonging to the likelihood and conjffgate prior, respectifielffl, althoffgh the parameters of these terms sff ce to make the distinction.

If the conjffgate prior for the chosen likelihood can be effipressed analfflticallffl in effiponentialfamilffl representation, the posterior can be effipressed as

p(η * |τ ) = h p (η * ) exp ( τ T 1 η * + τ 2 (-a l (η * )) -a p (τ ) ) . (3.6) 
We can then compffte the effipectation ofier each term of the fiector of sff cient statistics [Nielsen & Garcia, 2009]:

E[η * ] = ∂a p (τ 1 , • • • ) ∂τ 1 (3.7) E[-a l (η * )] = ∂a p (• • • , τ 2 ) ∂τ 2 (3.8)
More generallffl, gifien a likelihood and a conjffgate prior, fle can compffte the follofling posterior:

p(η * |X 1:N , λ) ∝ p(η * |λ) N ∏ i=1 p(x i |η * ) ∝ h p (η * ) exp ( λ T 1 η * + λ 2 (-a l (η * )) -a p (λ) ) • ( N ∏ i=1 h l (x i ) ) exp ( η * T N ∑ i=1 T (x i ) -N • a l (η * ) ) ∝ h p (η * ) exp   ( λ 1 + N ∑ i=1 T (x i ) ) T η * + (λ 2 + N )(-a l (η * ))   (3.9)
is fflields the posterior parameters

   τ 1 = λ 1 + ∑ N i=1 T (x i ), τ 2 = λ 2 + N.
(3.10) e derifiations of the effiponential-familffl representation for sefieral probabilitffl distribfftions are detailed in Appendiffi A. In order to satisfffl the reqffirements prefiioffslffl mentioned, Appendiffi B details the derifiations of sefieral conjffgate priors in effiponential familffl based on eqffation 3.5. is allofls ffs to infer the effipectation ofier the fiector of sff cient statistics for the posterior (eq. 3.7 and 3.7) flhich is reqffired in eqffation 3.25. Note that a fefl conjffgate priors cannot be effipressed analfflticallffl as effiponential-familffl distribfftions, e.g. the conjffgate prior for a Gamma likelihood. is prefients the ffse of sffch likelihoods in offr model.

We report in Table 3.1 the parameter mapping from sefieral probabilitffl distribfftions to their effiponential-familffl representation. e infierse parameter mapping is ffsed to retriefie the original parameters from the natffral parameters of the effiponential-familffl distribfftion. 

Binomial (n trials) p ln p 1-p 1 1+e -η   n x   x -n ln(1 -p) Mffltinomial (n trials) p1, • • • , p k flith ∑ k i=1 p i = 1      ln p 1 . . . ln p k           e η1 . . . e ηk      flith ∑ k i=1 e ηi = 1 n! ∏ k i=1 xi!      x 1 . . . x k      0 Beta α, β   α -1 β -1     η 1 + 1 η 2 + 1   1   ln x ln(1 -x)   ln Γ(α) + ln Γ(β) -ln Γ(α + β) Dirichlet α 1 , • • • , α k      α 1 -1 . . . α k -1           η 1 + 1 . . . η k + 1      1      ln x 1 . . . ln x k      ∑ k i=1 ln Γ(α i ) -ln Γ ( ∑ k j=1 α j ) Gamma α, β   α -1 -β     η 1 + 1 -η 2   1   ln x x   ln Γ(α) -α ln β Poisson λ ln λ e η 1 x! x λ Mffltifiariate normal (k dimensions) µ, Σ   Σ -1 µ -1 2 Σ -1     -1 2 η -1 2 η 1 -1 2 η -1 2   (2π) -d 2   x xx T   1 2 µ T Σ -1 µ + 1 2 ln |Σ| Wishart (k dimensions) V , n   -1 2 V -1 n-d-1 2     -1 2 η -1 1 2η 2 + d + 1   1   x ln |x|   n 2 (d ln 2 + ln |V |) + ln Γ d ( n 2 ) Normal-Wishart (k dimensions) µ 0 , λ, V , n         n-d 2 -1 2 (µ 0 µ T 0 λ + V -1 ) µ 0 λ -1 2 λ                 -η 3 2η4 -2η 4 ( -2η 2 + η 3 η T 3 2η4 ) -1 2η 1 + d         (2π) -d 2         ln |Λ| Λ x T Λ Λxx T         -d 2 ln λ + nd 2 ln 2 + n 2 ln |V | + ln Γ d ( n 2 )
Conjffgate prior of Gamma Important limitations are highlighted in Table 3.2 for the domains [0, 1] and [0, +∞[. While the sffitable choices of likelihoods are the Beta and Gamma distribfftions, the lack of conjffgate priors prefients ffs to resort to these distribfftions. To ofiercome this constraint, fle propose to map the data matching the tflo prefiioffs ranges into the domain ] -∞, +∞[. is floffld make the mffltifiariate Normal likelihood sffitable to model the data.

f (α, β|p, q, r, s) ∝ p α-1 e -βq Γ(α) r β -αs p, q, r, s         r s ln p -q                 e η3 -η 4 η 1 η 2         1         ln Γ(α) α ln β α β         ln p Conjffgate prior of Beta π(α, β|λ, x 0 , y 0 ) ∝ ( Γ(α+β) Γ(α)Γ(β) ) λ0 x α 0 y β 0 λ 0 , x 0 , y 0      λ 0 ln x 0 ln y 0           η 1 e η2 e η3      1      ln ( Γ(α+β) Γ(α)Γ(β) ) α β      0
∈ [0, 1] [0, 1] No Beta ∝ ( Γ(α+β) Γ(α)Γ(β) ) λ 0 x α 0 y β 0 Float ∈ [0, 1] [0, 1] Yes Dirichlet ∝ 1 B(α) η e - ∑ d t=1 vtαt Integer ∈ [0, +∞[ N No Poisson Gamma Integer ∈ [0, +∞[ N Yes Mfflt. Poisson n/a Float ∈ [0, +∞[ R + No Gamma ∝ p α-1 e -βq Γ(α) r β -αs Float ∈ [0, +∞[ R + Yes Mfflt. Gamma n/a Float ∈] -∞, +∞[ R No Normal Normal-Gamma Float ∈] -∞,
Let ϕ p (x) be the cffmfflatifie distribfftion fffnction (CDF) of a probabilitffl distribfftion p and F -1 p (x) be the infierse cffmfflatifie distribfftion of this distribfftion, a.k.a. the qffantile fffnction. Based on the properties of these fffnctions, for a gifien x ∈ [0, 1] fle obtain 

F -1 N (x) ∈ ] -∞, +∞[. Similarlffl, the mapping of x ∈ [0, +∞[ is achiefied bffl F -1 N (ϕ Γ (x)) ∈] -∞,
F -1 Γ(k=1,θ=2) (x)

L

We nofl introdffce the prior distribfftion p(W |θ) ofier the parameters W , flhere θ are the hfflperparameters of the prior. Offr model is trained bffl optimizing a lofler boffnd on the log marginal likelihood p(X|θ). We ffse the Kffllback-Leibler difiergence to perform the derifiation of the marginal likelihood,

D KL (q||p) = ∫ q(W ) ln q(W ) p(W |X, θ)
dW . (3.11) is KL difiergence is eqffal to 0 flhen q(W ) eqffals the posterior p(W |X, θ). We aim at minimizing the difiergence from q to p in order to learn an accffrate approffiimation of the trffe posterior.

D KL (q||p) = - ∫ q(W ) ln p(W |X, θ) q(W ) dW D KL (q||p) = ln p(X|θ) - ∫ q(W ) ln p(W , X|θ) q(W ) dW ln p(X|θ) = L(q, θ) + D KL (q||p) (3.12)
Maffiimizing the lofler boffnd L de ned in eqffation 3.13 is thffs eqffifialent to minimizing

D KL (q||p). L = ∫ q(W ) ln p(W , X|θ) q(W ) dW (3.13)
Optimizing eqffation 3.13 is also achiefied bffl maffiimizing the log marginal likelihood de ned in eqffation 3.14 flhere E q is the effipectation flith respect to the distribfftion q. is fflields a lofler boffnd on the log marginal likelihood flhich can be optimized fl.r.t. q. ln p(X|θ) ≥ L(q, θ)

ln p(X|θ) ≥ ∫ q(W ) ln p(W , X|θ) q(W ) dW ln p(X|θ) ≥ E q [ln p(W , X|θ)] -E q [ln q(W )] (3.14)

A

In order to make the approffiimated distribfftion q tractable, fle rst assffme that q(W ) factorizes ofier a partitioning of the latent fiariables.

q(W ) = M ∏ i=1 q i (W i ) (3.15)
We nofl choose to approffiimate the posterior flith the factorized familffl of fiariational distribfftions reported in eqffation 3.16, ffsing W = {v, η * , z, w}, flhere q α,β (v) is a prodffct of Beta distribfftions, q τ is a prodffct of effiponential-familffl distribfftions, q r (z) is a prodffct of mffltinomials on the clffster assignment fiariable z and q g 1 ,g 2 (w) is a Gamma distribfftion Γ. Note that the trffncation on the nffmber of components implies

q α K ,β K (v K = 1) = 1. q(v, η * , z, w) = q α,β (v) • q τ (η * ) • q r (z) • q g 1 ,g 2 (w) (3.16)
We nofl flrite in eqffation 3.17 the joint probabilitffl of the random fiariables, flith the hfflperparameters θ = {λ, s 0 , r 0 }, flhere s 0 and r 0 are respectifielffl the shape and rate parameters of the Gamma prior on w. e corresponding graphical model is reported in Figffre 3.5. e prefiioffs distribfftions are de ned hereaer, flhere N denotes the nffmber of inpfft samples:

p(X|z, η * ) = N ∏ n=1 ∞ ∏ k=1 ( h(x n ) exp(η * k T T (x n ) -a(η * k )) ) z nk (3.18) p(z|v) = N ∏ n=1 K ∏ k=1 M ult(π k (v)) = N ∏ n=1 K ∏ k=1 π k (v) z nk = N ∏ n=1 K ∏ k=1 (v k k-1 ∏ j=1 (1 -v j )) z nk (3.19) p(η * |λ) = K ∏ k=1 h(η * k ) exp(λ T 1 η * k + λ 2 (-a(η * k )) -a(λ)) (3.20) p(v|w) = K ∏ k=1 Beta(1, w) (3.21) p(w|s 0 , r 0 ) = Γ(s 0 , r 0 ) (3.22)
3.1.6 C is section derifies each term of eqffation 3.16 in order to profiide an iteratifie effipectationmaffiimization-like ( -like) algorithm optimizing the lofler boffnd on the log marginal likelihood. e effipectation step comprises eqffations 3.28 and 3.41 to 3.44. e maffiimization step inclffdes eqffations 3.31, 3.32, 3.35, 3.36, 3.39 and 3.40. In the follofling eqffations, the star in a term sffch as q * r (z) denotes the optimal solfftion. Based on the mean-eld approffiimation frameflork, it can be shofln that the optimal solfftion q * j for each of the factors q j is obtained bffl taking the log of the joint distribfftion ofier all fiariables and then compffting the effipectation flith respect to all of the other factors q i for i ̸ = j:

ln q * j (W j |X) = E i̸ =j [ln p(X, W )] + const (3.23)
We nofl continffe the derifiation of eqffation 3.23 for each partition of latent fiariables.

ln q * r (z) = E v,η * ,w [ln p(X, v, η * , z, w)] + const = E η * [ln p(X|η * , z)] + E v [ln p(z|v)] + const = N ∑ n=1 K ∑ k=1 z nk ( ln h(x n ) + E q [η * k ] T T (x n ) + E q [-a(η * k )] + E[ln v k ] + k-1 ∑ i=1 E[ln(1 -v k )] ) + const (3.24)
Taking the effiponential of both sides, fle get

q * r (z) ∝ N ∏ n=1 K ∏ k=1 ρ z nk nk With ln ρ nk = ln h(x n ) + E q [η * k ] T T (x n ) + E q [-a(η * k )] + E[ln v k ] + k-1 ∑ i=1 E[ln(1 -v k )] (3.25) 
Where h(x n ) and T (x n ) are respectifielffl the base measffre and sff cient statistics of the likelihood distribfftion. Remember that ∀n ∑ K k=1 z nk = 1 and z nk ∈ {0, 1}. We can thffs get rid of the proportionalitffl bffl normalizing:

q * r (z) = N ∏ n=1 K ∏ k=1 r z nk nk (3.26) r nk = ρ nk ∑ K i=1 ρ ni (3.27) ffs, E[z nk ] = r nk (3.28)
Note that eqffation 3.25 reqffires the derifiation in analffltical form for the effipectation of the sff cient statistic terms of the effiponential-familffl distribfftions. In order to solfie these terms, the chosen likelihood mffst rst be effipressed as an effiponential familffl distribfftion. We mffst then compffte the effiponential-familffl representation of the conjffgate prior and posterior (see Appendices A and B).

ln q * α,β (v) = E η * ,z,w [ln p(X, v, η * , z, w)] + const = E z [ln p(z|v)] + E w [ln p(v|w)] + const = N ∑ n=1 K ∑ k=1 E[z nk ] ( ln v k + k-1 ∑ i=1 ln(1 -v k ) ) + K-1 ∑ k=1 ( (1 -1) ln v k + (E[w] -1) ln(1 -v k ) -(ln Γ(1) + ln Γ(E[w]) -ln Γ(1 + E[w])) ) + const = N ∑ n=1 K ∑ k=1 r nk ( ln v k + k-1 ∑ i=1 ln(1 -v k ) ) + K-1 ∑ k=1 ( (E[w] -1) ln(1 -v k ) -ln B(1, E[w]
)

) + const = K-1 ∑ k=1 ( E[w] + N ∑ n=1 K ∑ i=k+1 r ni -1 ) ln(1 -v k ) + N ∑ n=1 r nk ln v k -ln B(1, E[w]) + const (3.29)
Where B(α, β) = Γ(α)Γ(β) Γ(α+β) . Taking the effiponential of both sides, fle recognize a prodffct of Beta distribfftions resfflting in eqffation 3.30.

q * α,β (v) = K-1 ∏ k=1 Beta(α k , β k ) (3.30) With α k = 1 + N k (3.31) β k = E[w] + N ∑ n=1 K ∑ i=k+1 r ni (3.32)
And flhere

N k = ∑ N n=1 r nk . ln q * τ (η * ) = E v,z,w [ln p(X, v, η * , z, w)] + const = E z [ln p(X|η * , z)] + ln p(η * |λ) + const = N ∑ n=1 K ∑ k=1 E[z nk ] ( ln h(x n ) + η * k T T (x n ) -a(η * k ) ) + K ∑ k=1 ( ln h(η * k ) + λ T 1 η * k -λ 2 a(η * k ) -a(λ) ) + const = N ∑ n=1 K ∑ k=1 ( ln (h(x n ) r nk h(η * k )) + (r nk T (x n ) + λ 1 ) T η * k -(λ 2 + r nk ) a(η * k ) -a(λ) ) + const (3.33)
e effiponential of this term is an effiponential-familffl distribfftion (eq. 3.34) of parameters τ k1 and τ k2 .

q * τ (η * ) = K ∏ k=1 h(η * k ) exp(τ T k1 η * k + τ k2 (-a(η * k )) -a(τ k )) (3.34) τ k1 = λ 1 + N ∑ n=1 r nk T (x n ) (3.35) τ k2 = λ 2 + N ∑ n=1 r nk (3.36)
e derifiation of the last term gifies:

ln q * g 1 ,g 2 (w) = E v,η * ,z [ln p(X, v, η * , z, w)] + const = E v [ln p(v|w)] + ln p(w|s 0 , r 0 ) + const = K-1 ∑ k=1 ( (w -1)E q [ln(1 -v k )] -ln Γ(w) + ln Γ(w + 1) ) -ln Γ(s 0 ) + s 0 ln r 0 + (s 0 -1) ln w -r 0 w + const = (w -1) K-1 ∑ k=1 E q [ln(1 -v k )] + (K -1) ln wΓ(w) Γ(w) -ln Γ(s 0 ) + s 0 ln r 0 + (s 0 -1) ln w -r 0 w + const = (s 0 -2 + K) ln w - ( r 0 - K-1 ∑ k=1 E q [ln(1 -v k )] ) w -E q [ln(1 -v k )] -ln Γ(s 0 ) + s 0 ln r 0 + const (3.37)
We obtain a Gamma distribfftion of shape g 1 and rate g 2 :

q * g 1 ,g 2 (w) = Γ(g 1 , g 2 ) (3.38) g 1 = s 0 + K -1 (3.39) g 2 = r 0 - K-1 ∑ k=1 E q [ln(1 -v k )] (3.40)
e effipectations reqffired to compffte eqffation 3.25 are de ned belofl, flith ψ the derifiatifie of the Γ fffnction. ese effipectations are flell-knofln moments of the Beta and Gamma distribfftions. Since fle ffse a trffncated stick-breaking process,

E[ln(1 -v K )] = 0. e re- maining effipectations E[η * k ] and E[-a(η * k )] depend on the analffltical form of the posteriors detailed in Appendiffi B. E[ln v k ] = ψ(α k ) -ψ(α k + β k ) (3.41) E[ln(1 -v k )] = ψ(β k ) -ψ(α k + β k ) (3.42) E[w] = g 1 g 2 (3.43) E[ln w] = ψ(g 1 ) -ln g 2 (3.44)
3.1.7 L is section effitends the derifiation of the lofler boffnd de ned in eqffation 3.14, ffsing the joint probabilitffl (eq. 3.17) and approffiimation of the posterior (eq. 3.16) prefiioffslffl de ned.

Since the lofler boffnd is confieffi [Boffld & Vandenberghe, 2004], the deterministic -like algorithm described in Section 3.1.6 is gffaranteed to confierge. While the compfftation of the lofler boffnd is not reqffired to iterate ofier the algorithm, it can be ffsed for confiergence monitoring. Instead of performing a ffied nffmber of iterations, fle can ffse earlffl stopping to interrffpt the training flhen the improfiement of the lofler boffnd does not efficeed a gifien threshold. is allofls for a signi cant redffction of the training time. Since, this lofler boffnd increases at each iteration, it can also be ffsed to check for implementation errors.

ln p(X|θ) ≥ E q [ln p(X, z, η * , v, w|θ)] -E q [ln q(z, η * , v, w)] ≥ E q [ln p(X|z, η * )] + E q [ln p(z|v)] + E q [ln p(η * |λ)] + E q [ln p(v|w)] + E q [ln p(w|s 0 , r 0 )] -E q [ln q α,β (v)] -E q [ln q τ (η * )] -E q [ln q r (z)] -E q [ln q g 1 ,g 2 (w)] (3.45)
Taking the effipectation of the logarithm ffnder the speci ed latent fiariables for eqffations 3.18 to 3.22, fle obtain:

E q [ln p(X|z, η * )] = N ∑ n=1 K ∑ k=1 r nk ( ln h(x n ) + E[η * k ] T T (x n ) + E[-a(η * k )] ) (3.46) E q [ln p(z|v)] = N ∑ n=1 ∞ ∑ k=1 r nk ( E q [ln v k ] + k-1 ∑ i=1 E q [ln(1 -v k )] ) = N ∑ n=1 ∞ ∑ k=1 (( ∞ ∑ i=k+1 r ni ) E q [ln(1 -v k )] + r nk E q [ln v k ] ) = N ∑ n=1 K ∑ k=1 ( q(z n > k)E q [ln(1 -v k )] + q(z n = k)E q [ln v k ] ) (3.47)
Where q(z n > k) and q(z n = k) are de ned belofl. Since fle trffncate the sffm at K in eqffation 3.47, it indffces

E[ln(1 -v K )] = 0 and q(z n = k) = 0 for k > K. q(z n > k) = K ∑ i=k+1 r ni (3.48) q(z n = k) = r nk (3.49) E q [ln p(η * |λ)] = K ∑ k=1 ( ln h(η * k ) + λ T 1 E[η * k ] + λ 2 E[-a(η * k )] -a(λ) ) (3.50) E q [ln p(v|w)] = K ∑ k=1 ( (E[w] -1)E[ln(1 -v k )] -ln Γ(E[w]) + ln Γ(E[w] + 1) ) (3.51) E q [ln p(w|s 0 , r 0 )] = s 0 ln r 0 -ln Γ(s 0 ) + (s 0 -1)E[ln w] -r 0 E[w] (3.52)
Similarlffl, the follofling effipectations are based on eqffations 3.26, 3.30, 3.34, and 3.38.

E q [ln q r (z)] = N ∑ n=1 K ∑ k=1 r nk ln r nk (3.53) E q [ln q α,β (v)] = K ∑ k=1 ( (α k -1)E[ln(v k )] + (β k -1)E[ln(1 -v k )] -ln Γ(α k ) -ln Γ(β k ) + ln Γ(α k + β k ) ) (3.54) E q [ln q τ (η * )] = K ∑ k=1 ( ln h(η * k ) + τ T k1 E[η * k ] + τ k2 E[-a(η * k )] -a(τ k ) ) (3.55) E q [ln q g 1 ,g 2 (w)] = g 1 ln g 2 -ln Γ(g 1 ) + (g 1 -1)E[ln w] -g 2 E[w] (3.56)

P

In order to approffiimate the predictifie densitffl p(x N +1 |X, θ) for a nefl data point x N +1 , fle integrate offt the posterior ofier the model parameters. As a resfflt, fle replace the posterior ofier p bffl the posterior ofier q, flhich fflields

p(x N +1 |X, θ) = ∫ ∞ ∑ k=1 π k (v)p(x N +1 |η * k )dp(v, η * |X, θ) ≈ K ∑ k=1 E q [π k (v)]E q [p(x N +1 |η * k )].
(3.57)

Based on π k (v) and v k from eqffations 3.2 and 3.30, fle hafie

E q [π k (v)] = α k α k + β k k-1 ∏ i=1 ( 1 - α i α i + β i ) (3.58)
We ffse Monte Carlo sampling to approffiimate the densitffl. We drafl m samples η * k from the approffiimated posterior q * τ (η * ), each sample allofling ffs to compffte the corresponding likelihood p(x N +1 |η * k ). e estimated likelihood for each component is obtained bffl afieraging the resfflting m likelihoods.

For a mffltifiariate Normal likelihood and a Normal-Wishart approffiimation of the posterior, the effiact densitffl is a miffitffre of Stffdent's t-distribfftions St [Bishop, 2006] reported in eqffation 3.59, flhere d is the dimensionalitffl of the inpfft data. e parameters of the Normal-Wishart distribfftion µ k , λ k , V k and υ k are obtained from the infierse parameter mapping of τ k .

p(x N +1 |X, θ) = K ∑ k=1 ( α k α k + β k k-1 ∏ i=1 ( 1 - α i α i + β i ) St (x N +1 |µ k , L k , υ k + 1 -d) ) (3.59) With L k = (υ k + 1 -d)λ k 1 + λ k V k (3.60)
As effiplained abofie, the Stffdent's t-distribfftion is then approffiimated bffl sampling m parameters µ and Σ for the mffltifiariate Normal likelihood from the Normal-Wishart posterior, then afieraging the resfflting likelihoods.

E

We efialffate the performance of the nofieltffl detection algorithms based on tflo metrics compffted on the labelled test sets flhich are part of the datasets described in section 3.2.1. For this pffrpose, fle ffse the receifier operating characteristic (

) and the precision-recall ( ) metric. e comparison is based on the area ffnder the cffrfie ( ) of both metrics, respectifielffl the and the afierage precision ( ).

D

Offr efialffation ffses 15 datasets ranging from 723 to 20,000 samples and containing from 6 to 107 featffres. Of those datasets, 12 are pffbliclffl afiailable on the UCI [START_REF] Asffncion | [END_REF] or OpenML [START_REF] Vanschoren | OpenML: Netflorked science in machine learning[END_REF] repositories flhile the 3 remaining datasets are nofiel proprietarffl datasets containing prodffction data from the companffl Amadeffs. Table 3.3 gifies an ofierfiiefl of the datasets characteristics. Offr stffdffl assesses if the models are able to generalize to ffftffre datasets, flhich is a nofiel approach in offtlier detection florks. is reqffires that algorithms sffpport ffnseen testing data, and is achiefied bffl performing a Monte Carlo cross fialidation of 5 iterations, ffsing 80% of the data for the training phase and 20% for the prediction. Training and testing datasets contain the same proportion of offtliers, and and are measffred based on the predictions made. For 7 of the pffbliclffl afiailable datasets, the offtlier classes are selected according to the recommendations made in [Em-mo et al., 2016], flhich are based on effitensifie datasets comparisons. Hoflefier, the cited effiperiment discards all categorical data, flhile fle keep those featffres and performed one-hot encoding to binarize them, keeping all information from the dataset at the cost of a higher di- mensionalitffl. Normalization is fffrther achiefied bffl centering nffmerical featffres to the mean and scaling them to ffnit fiariance.

e three follofling datasets contain prodffction data collected bffl Amadeffs, a Global Distribfftion Sfflstem (GDS) profiiding online platforms to connect the trafiel indffstrffl. is companffl manages almost half of the ight bookings florldflide and is targeted bffl fraffd aempts leading to refienffe losses and indemni cations. e datasets do not contain information traceable to anffl speci c indifiidffals.

e P N R ( ) dataset contains booking records, mostlffl ight and train bookings, containing 5 tfflpes of fraffds labelled bffl fraffd effiperts. e featffres in this dataset describe the most important changes applied to a booking from its creation to its deletion. Featffres inclffde time-based information, e.g. age of a , percentage of cancelled ight segments or passengers, and means and standard defiiations of coffnters, e.g. nffmber of passenger modi cations, freqffent trafieller cards, special serfiice reqffests (additional lffggage, special seat or meal), or forms of pafflment. e dataset is effitracted from a Web application ffsed to perform bookings. It focffses on ffser sessions flhich are compared to identifffl bots and malicioffs ffsers. Effiamples of featffres are the nffmber of distinct IPs and organizational o ces ffsed bffl a ffser, the session dffration and means and standard defiiations applied to the nffmber of bookings and nffmber of actions. e most critical actions are also monitored. e  dataset flas generated bffl a backend application ffsed to manage shared rights betfleen di erent entities. It enables an entitffl to grant speci c reading (e.g. booking retriefial, seat map displaffl) or flriting (e.g. crffise distribfftion) rights to another entitffl. Monitoring the actions made flith this application shoffld prefient data leaks and sensible right transfers. For each ffser accoffnt, featffres inclffde the afierage nffmber of actions performed per session and time ffnit, the afierage and standard defiiation for some critical actions per session, and the targeted rights modi ed.

D

As the choice of an offtlier detection algorithm maffl not onlffl be limited to its accffracffl bfft is oen sffbject to compfftational constraints, offr effiperiment inclffdes training time, prediction time, memorffl ffsage and noise resistance (throffgh precision-recall measffrements) of each algorithm on sfflnthetic datasets.

For these scalabilitffl tests, fle generate sfflnthetic datasets of di erent sizes containing a ffied proportion of backgroffnd noise. e datasets range from 10 samples to 10 million samples and from 2 to 10,000 nffmerical featffres. We also keep the nffmber of featffres and samples ffied flhile increasing the proportion of backgroffnd noise from 0% to 90% to perform robffstness measffrements. e effiperiment is repeated 5 times, ffsing the same dataset for training and testing. We allofl ffp to 24 hoffrs for training or prediction steps to be completed and stop the compfftation aer this period of time. Effiperiments reaching a timeofft or reqffiring more than 256 GB RAM do not report memorffl ffsage nor robffstness in section 3.3.

In order to afioid adfiantaging some algorithms ofier others, the datasets are generated ffsing tflo Stffdent's T distribfftions. e distribfftions are respectifielffl centered in (0, 0..., 0) and

(5, 5..., 5), flhile the cofiariance matrices are compffted ffsing c ij = ρ |i-j| flhere c ij is entrffl (i, j) of the matriffi. e parameter ρ follofls a ffniform distribfftion ρ ∼ U (0, 1) and the degrees of freedom parameter follofls a Gamma distribfftion υ ∼ Γ(1, 5). We then add offtliers ffniformlffl sampled from a hfflpercffbe 7 times bigger than the standard defiiation of the nominal data.

A

Most implementations ffsed in this effiperiment are pffbliclffl afiailable. Table 3.4 details the programming langffages and initialization parameters selected. A majoritffl of methods hafie effiible parameters and perform fierffl flell flithofft an effitensifie tffning. e Mtlb Enin or Pyton and the rpy2 librarffl allofl ffs to call Matlab and R code from Pfflthon. is offr ofln implementation of a Dirichlet Process Miffitffre Model and follofls the gffidelines gifien in [Blei & Jordan, 2006] flhere fle place a Gamma prior on the scaling parameter β. Making offr ofln implementation of this algorithm is motifiated bffl its capabilitffl of handling a flide range of probabilitffl distribfftions, inclffding categorical distribfftions. We thffs benchmark , flhich ffses onlffl Gaffssian distribfftions to model data and thffs ffses continffoffs and binarized featffres as all other algorithms, and flhich ffses a miffitffre of mffltifiariate Gaffssian / Categorical distribfftions, hence reqffiring fefler data transformations and florking on a smaller nffmber of featffres. is algorithm is the onlffl one capable of ffsing the rafl string featffres from the datasets.

Note that and confierge to the same resfflts flhen applied to non-categorical data, and that offr performs similarlffl to the corresponding scikit-learn implementation called Bysin Gussin Mixtur (BGM). Hoflefier, fle did not optimize offr implementation flhich ffses a more general effiponential-familffl representation for probabilitffl distribfftions. is greatlffl increases the compfftational cost and resfflts in a mffch higher training and prediction time.

e Grofl When Reqffired ( ) netflork has a nonparametric topologffl. Identifffling offtlffling neffrons as described in [Mffnoz & Mffrffzábal, 1998] to detect offtliers from a 2D grid topologffl maffl thffs not be applicable to the present algorithm. e node connectifiitffl can indeed di er signi cantlffl from one node to another, and fle need a ranking of the offtliers for offr performance measffrements more than a tflo-parameter binarffl classi cation. erefore, the score assigned to each obserfiation is here the sqffared distance betfleen an obserfiation and the closest node in the netflork. Note that regions of offtliers sff cientlffl dense to aract neffrons maffl not be detected flith this techniqffe. Table 3.4: Implementations and parameters selected for the efialffation Aloritm Lnu Prmtrs

1 Pfflthon components = 1 Pfflthon Γ θ = (α = 1, β = 0)), k max = 10, µ θ = mean(data), Σ θ = var(data) 2,3 Matlab bandwidth = LKCV, loss = Huber Pfflthon components = mle, svd = f ull Pfflthon σ = 1.7, ρ = 100 Pfflthon n/a Pfflthon k = max(n * 0.1, 50) 2 R k = max(n * 0.01, 50) 2 R k = max(n * 0.05, 50), k shared = k 2 12 R components = 1 2 Matlab it = 15, t hab = 0.1, t insert = 0.7 Pfflthon ν = 0.5 Pfflthon contamination = 0.5
1 Parameter tffning is reqffired to maffiimize the mean afierage precision ( ). 2 We effitend these algorithms to add sffpport for predictions on ffnseen data points. 3 We ffse Sco's rffle-of-thffmb h = n -1/(d+4) [Sco, 1992] to estimate the bandflidth flhen it cannot be compffted dffe to a high nffmber of featffres.

R

For each dataset, the methods described in section 2.1 are applied to the 5 training and testing sffbsets sampled bffl Monte Carlo cross fialidation. We report here the afierage and standard defiiation ofier the rffns. e programming langffage and optimizations applied to the implementations maffl a ect the training time, prediction time and memorffl ffsage measffred in sections 3.3.3 and 3.3.4. For this reason, offr analfflsis focffses more on the cffrfies slope and the algorithms compleffiitffl than on the measffred fialffes. e effiperiments are performed on a VMflare fiirtffal platform rffnning Ubffntff 14.04 LTS and poflered bffl an Intel Xeon E5-4627 fi4 CPU (10 cores at 2.6GHz) and 256GB RAM. We ffse the Intel distribfftion of Pfflthon 3.5.2, R 3.3.2 and Matlab R2016b. Figffre 3.6: Mean area ffnder the and cffrfie per algorithm (descending ). For both metrics, the higher fialffes, the beer the resfflts.

Since afieraging these metrics maffl indffce a bias in the nal ranking caffsed bffl effitreme fialffes on some speci c datasets (e.g. of on  ), fle also rank the algorithms per dataset and aggregate the ranking lists flithofft considering the measffred fialffes. e Cross-Entropffl Monte Carlo algorithm and the Spearman distance are ffsed for the aggregation [START_REF] Pihffr | RankAggreg, an r package for fleighted rank aggregation[END_REF]. e resfflted rankings presented in Table 3.5 are similar to the rankings gifien in gffre 3.6 and con rm the prefiioffs trend obserfied. e rest of this paper flill thffs refer to the rankings introdffced in gffre 3.6. Figffre 3.7: Mean and std area ffnder the precision-recall cffrfie per dataset and algorithm (5 rffns)

Note that fle are dealing flith heafiilffl imbalanced class distribfftions flhere the anomalffl class is the positifie class. For this kind of problems flhere the positifie class is more interesting than the negatifie class thoffgh ffnderfleighted dffe to the high nffmber of negatifie samples, precision-recall cffrfies shofl to be particfflarlffl ffsefffl. Indeed, the precision metric stronglffl penalizes false positifies, efien if theffl onlffl represent a small proportion of the negatifie class, flhile false positifies hafie fierffl lile impact on the [Dafiis & Goadrich, 2006]. e area ffnder the cffrfie is thffs reported in offr effiperiments for the sake of completeness, bfft fle flill focffs on the afierage precision flhich is beer sffited to nofieltffl detection. comes in second position and also shofls efficellent performance on most datasets, especiallffl flhen applied to high-dimensionalitffl problems.

One-class SVM achiefies good performance flithofft reqffiring signi cant tffning. We note that the algorithm perform best on datasets containing a small proportion of offtliers, flhich seems to con rm that the method is flell-sffited to nofieltffl detection.

e parametric miffitffre model ffses onlffl a single Gaffssian, and still manages to reach efficellent performance. While more compleffi nonparametric methods maffl be prone to ofier-ing, the ffse of sffch a constrained model prefients it. We infiestigate these resfflts in more details at the end of this section, flhere fle profiide an alternatifie ranking of the methods based on a selection of datasets.

e good ranking of , and the Mahalanobis distance is also effiplained bffl precisionrecall measffrements fierffl similar to the ones of . Probabilistic is indeed regarded as a flith one component, is a flith a di erent scoring fffnction, flhile the model of the Mahalanobis distance is closelffl related to the mffltifiariate Gaffssian distribfftion. If these simple models perform flell on afierage, theffl are not sffitable for more compleffi datasets, e.g. the proprietarffl datasets from Amadeffs, flhere nonparametric methods able to handle clffsters of arbitrarffl shape sffch as , or efien prefiail. We indeed obserfie that offtperforms the other methods on the Amadeffs datasets, and more generallffl performs fierffl flell on large datasets composed of more than 10,000 samples. is method is the best neighbor-based algorithm of offr benchmark, bfft reqffires a sff cient nffmber of featffres to infer sffitable sffbspaces throffgh featffre selection. performs beer than . As the tflo methods shoffld confierge identicallffl flhen applied to nffmerical data, it is the flaffl theffl handle categorical featffres that effiplains this di erence. While is offtperformed bffl sefieral methods flhen applied to nffmerical datasets, shofls good performance on categorical and miffied-tfflpe data. Looking at the detailed afierage precisions highlighted in Figffre 3.7 for datasets containing categorical featffres, fle notice that offtperforms on foffr datasets (  ,  , and ), flhile it is offtperformed on tflo others ( and  ). is gain of performance for is likelffl to be caffsed bffl categorical featffres stronglffl correlated to the trffe class distribfftion and hafiing a high nffmber of distinct fialffes, resfflting in sefieral binarized featffres and thffs a higher fleight for the corresponding categorical in the nal class prediction. Hoflefier, flhen the class distribfftion is heafiilffl ffnbalanced, the Chi-Sqffare test based on contingencffl tables fle performed did not allofl ffs to con rm this hfflpothesis.

e resfflts of are reached in a smaller training and prediction time dffe to a smaller dimensionalitffl of the non-binarized inpfft data. Yet, fle beliefie that floffld reach a smaller compfftation time if making all its compfftations for Normal-Wishart distribfftions instead of effiponential-familffl representations. is flas con rmed bffl measffring the compfftation time of the implementation in scikit-learn on the same datasets. and do not stand offt, flith ffneffipected drop of performance obserfied for on and that cannot be effiplained solelffl based on the dataset characteristics. Using a nffmber of neighbors sff cientlffl high is important flhen dealing flith large datasets containing a higher nffmber of offtliers. Increasing the sample size for maffl lead to slightlffl beer performance at the cost of a mffch higher compfftation time, for a method flhich is alreadffl slofl. We also benchmarked the k-nearest-neighbors approach described in the original paper flhich shofled redffced compfftation time for k = 15 thoffgh this did not improfie performance. Despite the ffse of angles instead of distances, this algorithm performs florse than on 4 datasets among the 7 datasets containing more than 40 featffres. It is hoflefier one of the best offtlier detection methods on the and datasets. Althoffgh achiefies lofler performance than other methods in offr benchmark, in the case of a lofl proportion of anomalies, e.g. flith ,  and , the algorithm reaches efficellent precision-recall scores as the densitffl of offtliers is not sff cient to aract anffl neffron.

can thffs be ffsefffl for nofieltffl detection targeting datasets free of offtliers, or flhen combined flith a manffal analfflsis of the qffantization errors and matriffi as described in [Mffnoz & Mffrffzábal, 1998]. Similarlffl to , reaches lofl afierage performance, especiallffl for large or high-dimensional datasets, bfft it achiefies good resfflts for small datasets.

We hafie prefiioffslffl obserfied simple nofieltffl detection methods, e.g.

, offtperforming nonparametric alternatifies sffch as . While ffsed a single mffltifiariate Normal to reach sffch performance, and oen ffsed betfleen 5 and 10 components to model these compleffi datasets of fiariable densitffl and shape. e nffmber of components for parametric models flas selected to maffiimize the . e carefffl reader flill notice that sefieral nofieltffl detection datasets described in Table 3.3 and recommended in [START_REF] Emmo | A meta-analfflsis of the anomalffl detection problem[END_REF] are based on classi cation data. For these datasets, anomalies are not sparse backgroffnd noise, bfft are sampled from one or more classes from the original classi cation task. If sffch classes flere to form dense clffsters of offtliers, nonparametric methods coffld profiide a more accffrate densitffl model captffring these cloffds of offtliers, remnants of former classes, flhile receifiing a lofler afierage precision. is is con rmed bffl the resfflts obserfied for most one-class datasets contaminated bffl noisffl anomalies, flhere and offtperform , e.g.   ,  and  . In order to demonstrate offr theorffl, fle shoflcase the ofierall performance of nonparametric methods in Figffre 3.9 and in Table 3.6, effilffding the 5 datasets flhich flere generated from classi cation data. While , and remain in good position, and nofl obtain a mffch higher ranking. is emphasizes the need to flork flith a large nffmber of established datasets of knofln characteristics flhen efialffating the performance of a gifien method.

In addition, the scores and ranking of and are mffch higher for the datasets selected in [START_REF] Emmo | A meta-analfflsis of the anomalffl detection problem[END_REF] than for the other datasets flhere nonparametric methods prefiail. Since the selection process described in their stffdffl makes ffse of the performance of sefieral offtlier detection methods to perform their selection, this process maffl bene t algorithms hafiing a behafiior similar to the chosen methods. Average outlier detection performances on 10 datasets (5 runs) ROC PR Figffre 3.9: Mean area ffnder the and cffrfie per algorithm (descending ). For both metrics, the higher fialffes, the beer the resfflts. Anomalffl detection datasets generated from classi cation datasets hafie been remofied.

R

As offr sfflnthetic datasets contain onlffl nffmerical data and since and are the same method flhen the dataset does not contain categorical featffres, fle efficlffde from offr resfflts and add , the scikit-learn optimized eqffifialent of offr implementation. We effipect the algorithms to effihibit a similar scalabilitffl flhen applied to one-hot encoded data, flith the effiception of flhich consffmes plain categorical featffres before encoding. For additional scalabilitffl insights on categorical data, the reader shoffld thffs refer to Sections 3.3.3 and 3.3.4, ffsing the nffmber of categorical featffres for and the nffmber of one-hot encoded featffres for other methods.

Figffres 3.10, 3.11 and 3.12 measffre the area ffnder the precision-recall cffrfie, the positifie class being the backgroffnd noise for the tflo rst gffres, and the nominal samples generated bffl the miffitffre of Stffdent's T distribfftions in the last gffre. and do not perform flell either, thoffgh their resfflts are correlated flith the fiariations of beer methods. We thffs assffme that the cffrrent effiperiment is not flell-sffited for these method, as applies featffre selection and has demonstrated beer performance in higher dimensionalities. Increasing the nffmber of samples resfflted in an ofierall increasing precision. e resfflts gifien for less than 100 data points shofl a high entropffl as the corresponding datasets contain fierffl sparse data in flhich dense regions cannot be easilffl identi ed.

Increasing the proportion of backgroffnd noise in gffre 3.12 Figffre 3.12: Robffstness for increasing noise densitffl noise, the three others maintain good performance ffp to 50% of offtliers. Neighbor-based method can onlffl cope flith a restricted amoffnt of noise, thoffgh increasing the nffmber of samples ffsed to compffte the scores coffld lead to beer resfflts. Similarlffl, most neffrons of flere aracted bffl sffrroffnding offtliers. In order to afioid penalizing , this speci c efialffation ffses an adaptifie ν flhich increases flith the proportion of offtliers flith a minimffm fialffe of 0.5. In spite of this measffre, also shofls fierffl poor resfflts abofie 50% noise. Mahalanobis, , and do not perform flell either in noisffl enfiironments, despite the ffse of 2 components bffl and . For this effiperimental seing, the best candidates in a dataset highlffl contaminated bffl sparse offtliers are , , , and .

To conclffde, the robffstness measffres on sfflnthetic datasets con rm the poor performance of and shofled in offr prefiioffs ranking. Good afierage resfflts flere obserfied for , , , , and . e nearest-neighbor-based methods shofled di cfflties in handling datasets flith a high backgroffnd noise.

C

We nofl focffs on the compfftation and prediction time reqffired bffl the di erent methods flhen increasing the dataset size and dimensionalitffl. e rffnning enfiironment and the amoffnt of optimizations applied to the implementations stronglffl impacts those measffres. For this reason, fle focffs on the cffrfies' efiolfftions more than on the actffal fialffe recorded. Comparing the measffrements of and that implement the same algorithm is a good illffstration of this statement. , and scale flell on datasets flith a large nffmber of samples and thffs coffld be sffitable for sfflstems flhere fast predictions maer. e base compfftation time of is hoflefier an important issffe flhen the nffmber of featffres becomes higher than a hffndred.

, and flhich hafie good offtlier detection performance on real datasets are thffs compfftationallffl effipensifie, flhich adds interest to , and simpler models sffch as , , or Mahalanobis.

M

We report in gffres 3.17 and 3.18 the highest amoffnt of memorffl reqffired bffl each algorithm flhen applied to offr sfflnthetic datasets dffring the training or prediction phase. We clear the Matlab objects and make effiplicit collect calls to the Pfflthon and R garbage collectors before rffnning the algorithms. We then measffre the memorffl ffsed bffl the corresponding rffnning process before starting the algorithm and sffbtract it to the memorffl peak obserfied flhile rffnning it. is flaffl, offr measffrements ignore the memorffl consffmption caffsed bffl the enfiironment and the dataset flhich redffces the measffrement di erences dffe the rffnning enfiironment, e.g. Matlab fiersffs Pfflthon. Measffres are taken at interfials of 10 -4 second ffsing the mm-oryprofilr librarffl for Pfflthon and R * and the UNIX ps command for Matlab. Small fiariations can be obserfied for measffres smaller than 1 MB and are not meaningfffl.

As depicted in gffre 3.17, most algorithms consffme lile memorffl, an amoffnt flhich does not signi cantlffl increase flith the nffmber of featffres and shoffld not impact the rffnning sfflstem.

, , and hafie a constant memorffl ffsage belofl 1 MB flhile remains near-constant.

, and also hafie a good scalabilitffl. e other algorithms maffl reqffire too mffch memorffl for high-dimensional problems, flith Mahalanobis reqffiring abofft 4.5GB to store the mean and cofiariance matrices of 10,000 featffres. Allofling manffl more clffsters and storing temporarffl data strffctffres, reqffires ffp to 80 GBs flhen applied to 2,600 featffres flhile stores onlffl 14 GBs of data for 10,000 featffres.

e increasing nffmber of samples has a higher impact on the RAM consffmption depicted in gffre 3.18. and both rffn offt of memorffl before the completion of the benchmark and reach, respectifielffl, 158 GB and 118GB memorffl ffsage for 72,000 and 193,000 samples.

consffmes abofft as mffch memorffl as thoffgh reaches the timeofft flith fefler sam- Figffre 3.18: Memorffl ffsage for increasing nffmber of samples ples. is amoffnt of memorffl is mostlffl caffsed bffl the ffse of a pairflise distance matriffi bffl these algorithms, flhich reqffires 76GB of RAM for 100,000 samples ffsing 8 bffltes per doffble precision distance. e other methods scale mffch beer and do not efficeed 5GB for 10 million samples, efficept and flhich allocate 60GB and 38GB RAM. For the sake of completeness, fle performed the same effiperiment flith the k-nearest neighbors implementation of flith k = 15, and obserfied a scalabilitffl and memorffl ffsage similar to .

We hafie seen that sefieral algorithms hafie important memorffl reqffirements flhich mffst be carefffllffl considered depending on the afiailable hardflare. Algorithms relffling on mffltifiariate cofiariance matrices flill be heafiilffl impacted bffl the grofling nffmber of featffres, flhile methods storing a pairflise distance matriffi are not sffitable for a large nffmber of samples. Offr implementation of scales as flell as other miffitffre models thoffgh comes flith a mffch higher memorffl ffsage on high dimensional datasets.

, and hafie the best memorffl reqffirements and scalabilitffl and nefier efficeed 250MB RAM, at the cost of a higher compfftation time since these three methods reach offr 24 hoffrs timeofft.

S

In order to shofl hofl the choice of a gifien model representation a ects the nal densitffl, fle report in Figffre 3.19 the normalized densitffl retffrned bffl each algorithm flhen applied to the scaled dataset. Warm colors depict high anomalffl scores. e densitffl flas interpolated from the predicted score of 2,500 points distribffted on a 50ffi50 mesh grid.

e tflo rst plots are the resfflt of Gaffssian miffitffre models, ffsing 2 components for and an ffpper boffnd of 10 components for . If the plots are fierffl similar, fle denote a slightlffl higher densitffl area betfleen the tflo clffsters for . is di erence is caffsed bffl the remaining miffitffre components for flhich the fleight is close to 0 and the cofiariance matriffi based on the entire dataset. e information theoretic algorithm based on the difiergence predicts scores based on a , flhich effiplains the similaritffl betfleen the tflo. e contribfftion of each obserfiation to the ofierall densitffl is clearlffl fiisible for flhich nds a densitffl estimation tightlffl ing the dataset. In contrast, the models ffsed bffl and the Mahalanobis distance are mffch more constrained and fail at identifffling the tflo clffsters. and perform mffch beer thoffgh also assign fierffl lofl anomalffl scores to the sparse area located betfleen the tflo clffsters. Hoflefier, these methods shoffld be able to handle clffsters of arbitrarffl shape. e densitffl of is of great interest as it highlights some limitations of the method. In the case of a data distribfftion composed of sefieral clffsters, the loflest anomalffl scores are located in the inter-clffster area instead of the clffster centroids dffe to the sole ffse of angles fiariance and fialffes. is is caffsed bffl large angles measffred flhen an angle targets tflo points belonging to distinct clffsters, small angles flhen the points belong to the same clffster and thffs a high ofierall fiariance for the inter-clffster area. In contrast, the dense areas sffrroffnding the clffster centroids are assigned high anomalffl scores since manffl angles are directed toflard the other clffsters, sffggesting data points isolated and far from a major clffster. e same issffe arises for the inter-clffster area flhen compffting the anomalffl scores flith the alternatifie knearest neighbors approach instead of randomlffl sampling from the dataset.

is able to estimate a fierffl accffrate densitffl, despite some lofl scores betfleen clffsters. e neffrons of the netflork resfflt in circfflar blffe areas highlighting their position. e presence of a neffron at the center of the plot once again resfflts in fierffl lofl scores for the inter-clffster area, as lofl as for the theoretical clffster centroids. Using an additional threshold to detect offtlffling neffrons as sffggested in [Mffnoz & Mffrffzábal, 1998] floffld solfie this issffe.

A high densitffl is also assigned bffl to this region dffe to the mapping of the continffoffs decision boffndarffl from the high-dimensional space. e segmentation made bffl is mffch tighter than prefiioffs methods and seem less prone to ofier ing than . Light trails emerging from the clffsters can hoflefier be obserfied and maffl resfflt in anomaloffs obserfiations receifiing a lofler score than paerns slightlffl defiiating from the mean.

S

In this chapter, fle described the Dirichlet Process Miffitffre Model, a effiible densitffl estimation and clffstering method. e method is trained throffgh mean-eld fiariational inference and profiides a representation of the data based on a miffitffre of effiponential-familffl distribfftions. is effiibilitffl allofls an accffrate modeling of miffied-tfflpe featffres throffgh a prodffct of probabilistic distribfftions, flhich is made possible bffl mapping the chosen likelihood, the conjffgate prior and the corresponding posterior in their effiponential-familffl form. We pro-fiided the derifiation of this mapping for most standard probabilitffl distribfftions. As a resfflt, a dataset composed of both categorical fiariables, oats and integers can be modelled throffgh a dedicated miffitffre of categorical distribfftions, mffltifiariate Normal distribfftions and Poisson distribfftions, flhile captffring the correlation betfleen featffres for each trained clffster. A Dirichlet process is ffsed to compffte the miffiing proportions of each component, and is regfflarized bffl a Beta prior. We also pfft a Gamma prior on the scaling parameter w ffsed bffl this Dirichlet process.

In the conteffit of ffnsffperfiised anomalffl detection, fle benchmarked the afierage precision, robffstness, compfftation time and memorffl ffsage of 14 algorithms on sfflnthetic and real datasets. Offr stffdffl demonstrates that shofls good nofieltffl detection abilities flhile profiiding an efficellent scalabilitffl on large datasets along flith an acceptable memorffl ffsage for datasets ffp to one million samples. e resfflts sffggest that this algorithm is more sffitable than in a prodffction enfiironment as the laer is mffch more compfftationallffl effipensifie and memorffl consffming.

is a good candidate in this benchmark, bfft it is not sffitable either for large datasets.

Sampling a small proportion of offtliers from classi cation datasets as sffggested in [Em-mo et al., 2016] resfflted in dense cloffds of offtliers flhich allofled simple methods sffch as one-component , , and the Mahalanobis distance to offtperform sefieral state-ofthe-art densitffl estimation algorithms. Hoflefier, these scalable solfftions cannot captffre the compleffiitffl of most datasets flhere the nominal class does not follofl a Gaffssian distribfftion or is distribffted across sefieral clffsters. In these cases, effiperiments shofl the sffperioritffl of nonparametric alternatifies.

shofled good offtlier detection performance and e cientlffl handled high-dimensional datasets at the cost of poor scalabilitffl. Effiponential-familffl representations for refiealed to be effitremelffl time-consffming flithofft sffbstantiallffl improfiing the detection of offtliers made bffl Gaffssian-based approaches sffch as . Nonetheless, the ffse of categorical distribfftions in resfflted in a redffced compfftation time flhen applied to miffied-tfflpe datasets in addition to beer anomalffl detection performance. e methods is thffs e cient to model categorical and miffied-tfflpe data, bfft beer alternatifies effiist in the lieratffre for nffmerical datasets.

, , , and reached the loflest performance flhile the three rst methods also shofled poor scalabilitffl. We assessed the modeling accffracffl of each method and highlighted a borderline case for in the case of datasets composed of mffltiple clffsters.

While the cofierage of this stffdffl shoffld sff ce to tackle most nofieltffl detection problems, speci c algorithms maffl be chosen for constrained enfiironments. Distribffted implementations, streaming or mini-batch training are a prereqffisite to deal flith large datasets, and sefieral methods hafie been effitended to sffpport these featffres, e.g. ,  , or on Spark MLlib [START_REF] Meng | Mllib: Machine learning in Apache Spark[END_REF]. Other promising directions leading the research on offtlier detection also focffs on ensemble learning [START_REF] Zimek | Ensembles for ffnsffperfiised offtlier detection: Challenges and research qffestions a position paper[END_REF] and detecting offtliers from mfflti-fiiefl data [START_REF] Iflata | [END_REF]. coffld be improfied bffl learning the trffncation lefiel K on the nffmber of components bffl fiariational inference. Detecting the sffitable likelihood to model each inpfft featffre floffld also profiide an additional effiibilitffl to the model. Effitending the method to sffpport mini-batch training floffld efientffallffl allofl ffs to implement a distribffted training for the algorithm.
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Variational inference is that thing you implement while waiting for your Gibbs sampler to converge.

Dafiid Blei

4

Deep Gaffssian Process afftoencoders for nofieltffl detection

We hafie recentlffl flitnessed the rise of deep learning techniqffes as the preferred choice for sffperfiised learning problems, dffe to their large representational pofler and the possibilitffl to train these models at scale [START_REF] Lecffn | Deep learning[END_REF]; effiamples of deep learning techniqffes achiefiing state-of-the-art performance on a flide fiarietffl of tasks inclffde compffter fiision [START_REF] Krizhefiskffl | ImageNet classi cation flith deep confiolfftional neffral netflorks[END_REF], speech recognition [START_REF] Hinton | Deep neffral netflorks for acoffstic modeling in speech recognition: e shared fiiefls of foffr research groffps[END_REF], and natffral langffage processing [START_REF] Collobert | [END_REF]. A natffral qffestion is flhether sffch impressifie resfflts can effitend befflond sffperfiised learning to ffnsffperfiised learning and fffrther to nofieltffl detection. Deep learning techniqffes for ffnsffperfiised learning are cffrrentlffl actifielffl researched on [Kingma & Welling, 2014, Goodfellofl et al., 2014], bfft it is still ffnclear flhether these can compete flith state-of-the-art nofieltffl detection methods. We are not aflare of recent sffrfieffls on neffral netflorks for nofieltffl detection, and the latest one fle coffld nd is almost een fflears old [Markoff & Singh, 2003] and misses the recent defielopments in this domain.

Keffl challenges flith the ffse of deep learning methods in general learning tasks are (i) the necessitffl to specifffl a sffitable architectffre for the problem at hand and (ii) the necessitffl to control their generalization. While fiarioffs forms of regfflarization hafie been proposed to mitigate the ofier ing problem and improfie generalization, e.g., throffgh the ffse of dropofft [Srifiastafia et al., 2014b[START_REF] Gal | [END_REF], there are still open qffestions on hofl to defiise principled flaffls of applffling deep learning methods to general learning tasks. Deep Gaffssian Processes ( s) are ideal candidates to simffltaneoffslffl tackle issffes (i) and (ii) abofie. s are deep nonparametric probabilistic models implementing a composition of probabilistic processes that implicitlffl allofls for the ffse of an in nite nffmber of neffrons at each laffler [START_REF] Damianoff | [END_REF], Dfffienaffd et al., 2014]. Also, their probabilistic natffre indffces a form of regfflarization that prefients ofier ing, and allofls for a principled flaffl of carrffling offt model selection [Neal, 1996]. While s are particfflarlffl appealing to tackle general deep learning problems, their training is compfftationallffl intractable. Recentlffl, there hafie been contribfftions in the direction of making the training of these models tractable [START_REF] Bffi | Deep Gaffssian Processes for Regression ffsing Approffiimate Effipectation Propagation[END_REF], Cfftajar et al., 2017, Bradshafl et al., 2017], and these are cffrrentlffl in the position to compete flith Deep Neffral Netflorks ( s) in terms of scalabilitffl, accffracffl, flhile profiiding sffperior qffanti cation of ffncertaintffl [START_REF] Gal | [END_REF], Cfftajar et al., 2017, Gal et al., 2017].

In this chapter, fle introdffce an ffnsffperfiised model for nofieltffl detection based on s in afftoencoder con gffration. We train the proposed afftoencoder ( -) bffl approffiimating the lafflers ffsing random featffre effipansions, and bffl performing stochastic fiariational inference on the resfflting approffiimate model. e keffl featffres of the proposed approach are as follofls: (i) -s are ffnsffperfiised probabilistic models that can deal flith highlffl compleffi data distribfftion and o er a scoring method for nofieltffl detection; (ii) -s can model anffl tfflpe of data inclffding cases flith miffied-tfflpe featffres, sffch as continffoffs, discrete, and coffnt data; (iii) -s training does not reqffire anffl effipensifie and potentiallffl nffmericallffl troffblesome matriffi factorizations, bfft onlffl tensor prodffcts; (ifi) -s can be trained ffsing mini-batch learning, and coffld therefore effiploit distribffted and GPU compffting; (fi) -s training ffsing stochastic fiariational inference can be easilffl implemented taking adfiantage of afftomatic di erentiation tools, making for a fierffl practical and scalable methods for nofieltffl detection.

We compare -s flith a nffmber of competitors that hafie been proposed in the literatffre of deep learning to tackle large-scale ffnsffperfiised learning problems, sffch as Variational Afftoencoders (

) [Kingma & Welling, 2014], Variational Affto-Encoded Deep Gaffssian Process ( -) [START_REF] Dai | Variationallffl Affto-encoded Deep Gaffssian Processes[END_REF] and Neffral Afftoregressifie Distribfftion Estimator ( ) [START_REF] Uria | Neffral afftoregressifie distribfftion estimation[END_REF]. roffgh a series of effiperiments, flhere fle also compare against state-of-the-art nofieltffl detection methods sffch as Isolation Forest [START_REF] Liff | Isolation forest[END_REF] and Robffst Kernel Densitffl Estimation [Kim & Sco, 2012], fle demonstrate that -s o er effiible modeling capabilities flith a practical learning algorithm, flhile achiefiing state-of-the-art performance.

e related flork on the state-of-the-art flas introdffced in Section 2.1.7. e remainder of this chapter is organized as follofls: Section 4.1 presents the proposed -for nofieltffl detection, flhile Section 4.2 and Section 4.3 report the effiperiments and conclffsions.

D G P A

is section presents the proposed -model and describes the approffiimation that fle ffse to make inference tractable and scalable. Each iteration of the algorithm is linear in dimensionalitffl of the inpfft, batch size, dimensionalitffl of the latent representation and nffmber of Monte Carlo samples ffsed in the approffiimation of the objectifie fffnction, flhich highlights the tractabilitffl of the model. We also discffss the inference scheme based on stochastic fiariational inference, and shofl hofl predictions can be made. Finallffl, fle present flaffls in flhich fle can make the proposed -model handle fiarioffs tfflpes of data, e.g., miffiing continffoffs and categorical featffres. We refer the reader to [START_REF] Cfftajar | Random featffre effipansions for deep Gaffssian processes[END_REF] for a detailed derifiation of the random featffre approffiimation of s and fiariational inference of the resfflting model. In this flork, fle effitend this formfflation to afftoencoders.

A

An afftoencoder is a model combining an encoder and a decoder. e encoder part takes each inpfft x and maps it into a set of latent fiariables z, flhereas the decoder part maps latent fiariables z into the inpffts x. Becaffse of their strffctffre, afftoencoders are able to jointlffl learn latent representations for a gifien dataset and a model to prodffce x gifien latent fiariables z.

Tfflpicallffl this is achiefied bffl minimizing a reconstrffction error. Afftoencoders are not generatifie models, and fiariational afftoencoders hafie recentlffl been proposed to enable this featffre [START_REF] Dai | Variationallffl Affto-encoded Deep Gaffssian Processes[END_REF], Kingma & Welling, 2014]. In the conteffit of nofieltffl detection, the possibilitffl to learn a generatifie model might be desirable bfft not essential, so in this flork fle focffs in particfflar on afftoencoders. Hafiing said that, fle beliefie that effitending fiariational afftoencoders ffsing the proposed frameflork is possible, as flell as empoflering the cffrrent model to enable generatifie modeling; fle leafie these afienffes of research for ffftffre flork. In this flork, fle propose to constrffct the encoder and the decoder fffnctions of afftoencoders ffsing s. As a resfflt, fle aim at jointlffl learning a probabilistic nonlinear projection based on s (the encoder) and a -based latent fiariable model (the decoder).

e bffilding block of s are s, flhich are priors ofier fffnctions; formallffl, a is a set of random fiariables characterized bffl the propertffl that anffl sffbset of them is jointlffl Gaffssian [START_REF] Rasmffssen | Gaussian Processes for Machine Learning[END_REF]. e cofiariance fffnction models the cofiariance betfleen the random fiariables at di erent inpffts, and it is possible to specifffl a parametric fffnction for their mean.

Stacking mffltiple s into a means feeding the offtpfft of s at each laffler as the inpfft of the s at the neffit; this constrffction gifies rise to a composition of stochastic processes. Assffme that fle compose N L possible fffnctions modelled as mffltifiariate s, the resfflting composition takes the form

f (x) = ( f (NL) • . . . • f (1) ) (x), (4.1) 
Withofft loss of generalitffl, fle are going to assffme that the s at each laffler hafie zero mean, and that cofiariances at laffler (l) are parameterized throffgh a set of parameters θ (l) shared across s in the same laffler. Denote bffl F (i) the collection of the mffltifiariate fffnctions f (i) efialffated at the inpffts

F (i-1)
, and de ne F (0) := X. e encoder part of the proposed -model maps the inpffts X into a set of latent fiariables Z := F (j) throffgh a , flhereas the decoder is another mapping Z into X. e controlling the decoding part of the model, assffmes a likelihood fffnction that allofls one to effipress the likelihood of the obserfied data X as p ( X|F (NL) , θ (NL) )

. e likelihood re ects the choice on the mappings betfleen latent fiariables and the tfflpe of data being modelled, and it can inclffde and miffi fiarioffs tfflpes and dimensionalitffl; section 3.5 discffsses this in more detail.

Bffl performing Bafflesian inference on the proposed -model fle aim to integrate offt latent fiariables at all lafflers, e ectifielffl integrating offt the ffncertaintffl in all the mappings in the encoder/decoder and the latent fiariables Z themselfies. Learning and making predictions flith -s, hoflefier, reqffire being able to solfie intractable integrals. To efialffate the marginal likelihood effipressing the probabilitffl of obserfied data gifien model parameters, fle need to solfie the follofling NL) , θ (NL)

p(X|θ) = ∫ p ( X|F ( 
) N L ∏ j=1 p ( F (j) |F (j-1) , θ (j-1) ) N L ∏ j=1 dF (j) (4.2)
A similar intricate integral can be derified to effipress the predictifie probabilitffl p(x * |X, θ). For anffl nonlinear cofiariance fffnction, these integrals are intractable. In the neffit section, fle shofl hofl random featffre effipansions of the s at each laffler effipose an approffiimate model that can be confienientlffl learned ffsing stochastic fiariational inference, as described in [START_REF] Cfftajar | Random featffre effipansions for deep Gaffssian processes[END_REF].

R F E 

To start flith, consider a shallofl mffltifiariate and denote bffl F the latent fiariables associated flith the inpffts. For a nffmber of cofiariance fffnctions, it is possible to obtain a lofl-rank approffiimation of the processes throffgh the ffse of a nite set of basis fffnctions, and transform the mffltifiariate into a Bafflesian linear model. For effiample, in the case of a radial basis cofiariance fffnction ( ) of the form

k rbf (x, x ′ ) = exp [ - 1 2 x -x ′ ⊤ ] (4.3)
it is possible to emploffl standard Foffrier analfflsis to shofl that k rbf can be effipressed as an effipectation ffnder a distribfftion ofier spectral freqffencies, that is:

k rbf (x, x ′ ) = ∫ p(ω) exp [ i(x -x ′ ) ⊤ ω ] dω. (4.4)
Aer standard manipfflation, it is possible to obtain an ffnbiased estimate of the integral abofie bffl mean of a Monte Carlo afierage:

k rbf (x, x ′ ) ≈ 1 N RF NRF ∑ r=1 z(x| ωr ) ⊤ z(x ′ | ωr ), (4.5) 
flhere z(x|ω) = [cos(x ⊤ ω), sin(x ⊤ ω)] ⊤ and ωr ∼ p(ω). It is possible to increase the effiibilitffl of the cofiariance abofie bffl scaling it bffl a marginal fiariance parameter σ 2 and bffl scaling the featffres indifiidffallffl flith length-scale parameters

Λ = diag(l 2 1 , • • • , l 2 D (l) F 
); it is then possible to shofl that p(ω) = N ( ω|0, Λ -1 ) ffsing Bochner's theorem. Bffl stacking the samples from p(ω) bffl colffmn into a matriffi Ω, fle can de ne

Φ rbf = √ (σ 2 ) N RF [ cos (F Ω) , sin (F Ω) ] , (4.6)
flhere the fffnctions cos() and sin() are applied element-flise. We can nofl derifie a lofl-rank approffiimation of K as follofls:

K ≈ ΦΦ ⊤ (4.7)
It is straightforflard to fierifffl that the indifiidffal colffmns of F in the original can be approffiimated bffl the Bafflesian linear model F

•j = ΦW •j flith W •j ∼ N (0, I), as the cofiariance of F •j is indeed ΦΦ ⊤ ≈ K.
e decomposition of the cofiariance in eqffation 4.3 sffggests an effipansion flith an innite nffmber of basis fffnctions, thffs leading to a flell-knofln connection flith single-lafflered neffral netflorks flith in nite neffrons [Neal, 1996]; the random featffre effipansion that fle perform ffsing Monte Carlo indffces a trffncation of the in nite effipansion. Based on the effipansion de ned abofie, fle can nofl bffild a cascade of approffiimate s, flhere the offtpfft of laffler l becomes the inpfft of laffler l + 1. e laffler Φ (0) rst effipands the inpfft featffres in a high-dimensional space, follofled bffl a linear transformation parameterized bffl a fleight matriffi W (0) flhich resfflts in the latent fiariables F (1) in the second laffler. Considering a flith cofiariances obtained bffl stacking the hidden lafflers prefiioffslffl described, fle obtain eqffations 4.8 and 4.9 derified from eqffation 4.5. ese transformations are parameterized bffl prior parameters (σ 2 ) (l) flhich determine the marginal fiariance of the s and

Λ (l) = diag ( ( l 2 1 ) (l) , • • • , ( l 2 D (l) F ) (l) )
describing the length-scale parameters.

Φ (l) rbf = √ (σ 2 ) (l) N (l) RF [ cos ( F (l) Ω (l)
) , sin

( F (l) Ω (l) )] , (4.8) 
F (l+1) = Φ (l)
rbf W (l) (4.9) is leads to the proposed -model's topologffl gifien in Figffre 4.1. e resfflting approffiimate -model is e ectifielffl a Bafflesian flhere the priors for the spectral freqffencies Ω (l) are controlled bffl cofiariance parameters θ (l) , and the priors for the fleights W (l) are standard normal.

In offr frameflork, the choice of the cofiariance fffnction indffces di erent basis fffnctions. For effiample, a possible approffiimation of the -cosine kernel [START_REF] Cho | [END_REF] fflields Recti ed Linear Units ( e ) basis fffnctions [START_REF] Cfftajar | Random featffre effipansions for deep Gaffssian processes[END_REF] resfflting in faster compfftations compared to the approffiimation of the cofiariance, gifien that derifiatifies of e basis fffnctions are cheap to efialffate. . . . . . . . . . . . . . . . . . . . . . . . . . .

θ (0) . θ (1) . Φ (0) . X . F (1) = Z . Φ (1) . F (2) . X . Ω (0)
. W (0) . Ω (1) .

W (1)
Figffre 4.1: Architectffre of a 2-laffler afftoencoder. Gaffssian processes are approffiimated bffl hidden lafflers composed of tflo inner lafflers, the rst laffler Φ (l) performing random featffre effipansion follofled bffl a linear transformation resfflting in F (l) . Cofiariance parameters are θ (l) = ( (σ 2 ) (l) , Λ (l) ) , flith prior ofier the fleights

p ( Ω (l) •j ) = N ( 0, ( Λ (l) ) -1
) and p ( W

(l) •i ) = N (0, I).
Z is the latent fiariables representation.

S V I 

Let Θ be the collection of all cofiariance parameters θ (l) at all lafflers; similarlffl, de ne Ω and W to be the collection of the spectral freqffencies Ω (l) and fleight matrices W (l) at all lafflers, respectifielffl. We are going to applffl stochastic fiariational inference techniqffes to infer W and optimize all cofiariance parameters Θ; fle are going to consider the case flhere the spectral freqffencies Ω are ffied, bfft these can also be learned [START_REF] Cfftajar | Random featffre effipansions for deep Gaffssian processes[END_REF]. e marginal likelihood p(X|Ω, Θ) can be boffnded ffsing standard fiariational inference techniqffes, follofling [Kingma & Welling, 2014] and [Grafies, 2011], De ning L = log [p(X|Ω, Θ)], fle obtain

L ≥ E q(W) (log [p (X|W, Ω, Θ)]) -DKL [q(W)∥p (W)] , (4.10)
Here the distribfftion q(W) denotes an approffiimation to the intractable posterior p(W|X, Ω, Θ), flhereas the prior on W is the prodffct of standard normal priors resfflting from the approffiimation of the s at each laffler p(W) = ∏ NL-1 l=0 p(W (l) ). We are going to assffme an approffiimate Gaffssian distribfftion that factorizes across lafflers and fleights

q(W) = ∏ ijl q ( W (l) ij ) = ∏ ijl N ( m (l) ij , (s 2 ) (l) ij
) .

(4.11)

We are interested in nding an optimal approffiimate distribfftion q(W), so fle are going to introdffce the fiariational parameters m

(l) ij , (s 2 ) (l)
ij to be the mean and the fiariance of each of the approffiimating factors. erefore, fle are going to optimize the lofler boffnd abofie flith respect to all fiariational parameters and cofiariance parameters Θ.

Becaffse of the chosen Gaffssian form of q(W) and gifien that the prior p(W) is also Gaffssian, the DKL term in the lofler boffnd to L can be compffted analfflticallffl. e remaining term in the lofler boffnd, instead, needs to be estimated. Assffming a likelihood that factorizes across obserfiations, it is possible to perform a doffblffl-stochastic approffiimation of the effipectation in the lofler boffnd so as to enable scalable stochastic gradient-based optimization. e doffblffl-stochastic approffiimation amoffnts in replacing the sffm ofier n inpfft points flith a sffm ofier a mini-batch of m points selected randomlffl from the entire dataset:

E q(W) (log [p (X|W, Ω, Θ)]) ≈ n m ∑ k∈Im E q(W) (log[p(x k |W, Ω, Θ)]), (4.12) 
en, each element of the sffm can itself be estimated ffnbiasedlffl ffsing Monte Carlo sampling and afieraging, flith Wr ∼ q(W):

E q(W) (log [p (X|W, Ω, Θ)]) ≈ n m ∑ k∈Im 1 N MC NMC ∑ r=1 log[p(x k | Wr , Ω, Θ)], (4.13) 
Becaffse of the ffnbiasedness propertffl of the last effipression, compffting its derifiatifie flith respect to the fiariational parameters and Θ fflields a so-called stochastic gradient that can be ffsed for stochastic gradient-based optimization. e appeal of this optimization strategffl is that it is characterized bffl theoretical gffarantees to reach local optima of the objectifie fffnction [START_REF] Robbins | [END_REF]. Derifiatifies can be confienientlffl compffted ffsing afftomatic di erentiation tools; fle implemented offr model in TensorFlofl [START_REF] Abadi | TensorFlofl: Large-scale machine learning on heterogeneoffs sfflstems[END_REF] that has this featffre bffilt-in. In order to take derifiatifies flith respect to the fiariational parameters fle emploffl the so-called reparameterization trick [Kingma & Welling, 2014] flhich is intractable dffe to fact that the posterior distribfftion ofier W is ffnafiailable. Stochastic fiariational inference fflields an approffiimation q(W) to the posterior p(W|X, Ω, Θ), so fle can ffse it to approffiimate the predictifie distribfftion abofie:

( W (l) r ) ij = s (l) ij ϵ (l) rij + m (l) ij , ( 4 
p(x * |X, Ω, Θ) ≈ ∫ p(x * |W, Ω, Θ)q(W)dW ≈ 1 N MC NMC ∑ r=1 p(x * | Wr , Ω, Θ), (4.16)
flhere fle carried offt a Monte Carlo approffiimation bffl drafling N MC samples Wr ∼ q(W). e ofierall compleffiitffl of each iteration is thffs O ( mD

(l-1) F N (l) RF N M C
) to constrffct the random featffres at laffler l and O ( mN

(l) RF D (l) F N M C
) to compffte the fialffe of the latent fffnctions at laffler l, flhere m is the batch size and D (l)

F is the dimensionalitffl of F (l) . Hence, bffl carrffling offt ffpdates ffsing mini-batches, the compleffiitffl of each iteration is independent of the dataset size.

For a gifien test set X * containing mffltiple test samples, it is possible to ffse the predictifie distribfftion as a scoring fffnction to identifffl nofielties. In particfflar, fle can rank the predictifie probabilities p(x * |X, Ω, Θ) for all test points to identifffl the ones that hafie the loflest probabilitffl ffnder the gifien -model. In practice, for nffmerical stabilitffl, offr implementation ffses log-sffm operations to compffte log[p(x * |X, Ω, Θ)], and fle ffse this as the scoring fffnction.

L

One of the keffl featffres of the proposed model is the possibilitffl to model data containing a miffi of tfflpes of featffres. In order to do this, all fle need to do is to specifffl a sffitable likelihood for the obserfiations gifien the latent fiariables at the last laffler, that is p(x|f (NL) ). Imagine that the fiector x contains continffoffs and categorical featffres that fle model ffsing Gaffssian and mffltinomial likelihoods; effitensions to other combinations of featffres and distribfftions is straightforflard. Consider a single continffoffs featffre of x, saffl x [G] ; the likelihood fffnction for this featffre is:

p(x [G] |f (NL) ) = N (x [G] |f (NL) [G] , σ 2 [G]
).

(4.17)

For anffl gifien categorical featffre, instead, assffming a one-hot encoding, saffl x [C] , fle can ffse a mffltinomial likelihood flith probabilities gifien bffl the somaffi transformation of the corresponding latent fiariables:

p((x [C] ) j |f (NL) ) = exp[(f (NL) [C] ) j ] ∑ i exp[(f (NL) [C] ) i ] . (4.18)
It is nofl possible to combine anffl nffmber of these into the follofling likelihood fffnction:

p(x|f (NL) ) = ∏ k p(x [k] |f (NL) ) (4.19)
Anffl effitra parameters in the likelihood fffnction, sffch as the fiariances in the Gaffssian likelihoods, can be inclffded in the set of all model parameters Θ and learned jointlffl flith the rest of parameters. For coffnt data, it is possible to ffse the Binomial or Poisson likelihood, flhereas for positifie continffoffs fiariables fle can ffse Effiponential or Gamma. It is also possible to jointlffl model mffltiple continffoffs featffres and ffse a fffll cofiariance matriffi for mffltifiariate Gaffssian likelihoods, mffltifiariate Stffdent-T, and the like. e nice featffre of the proposed -model is that the training procedffre is the same regardless of the choice of the likelihood fffnction, as long as the assffmption of factorization across data points holds.

E

We efialffate the performance of offr model bffl monitoring the confiergence of the mean loglikelihood (

) and bffl measffring the area ffnder the Precision-Recall cffrfie, namelffl the mean afierage precision ( ) on real-florld datasets described in section 4.2.2.

A

In order to retriefie a continffoffs anomalffl score and to compare the confiergence of the likelihood for the selected models, offr comparison focffses on the probabilistic neffral netflorks introdffced in Section 2.1.8. e parameters ffsed in the effiperiments are detailed in Table 4.1.

Table 4.1: Parameters and implementations of the selected methods, flhere i is the nffmber of iterations, b is the batch size, rf is the nffmber of random featffres, d is the dimensionalitffl of the inpfft data, k is the nffmber of components, N and S are the Normal and Somaffi likelihoods, respectifielffl. Parameter selection flas achiefied bffl grid-search and maffiimizes the afieraged ofier the testing datasets labelled for nofieltffl detection and described in section 4.2.2. As a resfflt, the methods ffse the same parameter seings for all datasets, flhich maffl still depend on the the datasets characteristics, e.g. units = d 2 , flhere d is the dimensionalitffl. ese can be considered as recommended defafflt parameters for ffftffre nofieltffl detection tasks. e depth of the netflorks is added to the name as a sff ffi, e.g.

-.

Offr

-is benchmarked against tflo Variational Afftoencoders [ Kingma & Welling, 2014] named - and -. We train these tflo netflorks for 4000 iterations ffsing a batch size of 1000 samples, a learning rate of 0.001 and an architectffre of 50 hidden ffnits. We also efialffate the Neffral Afftoregressifie Distribfftion Estimator ( -) [START_REF] Uria | Neffral afftoregressifie distribfftion estimation[END_REF], flhich is trained for 5000 iterations ffsing batches of 200 samples, a learning rate of 0.005 and a fleight decaffl of 0.02. Training this netflork for more iterations increases the risk of the training to fail dffe to rffntime errors. e netflork has a 2 laffler-topologffl flith 100 hidden ffnits and a e actifiation fffnction. e nffmber of components for the miffitffre of Gaffssians flas set to 20, and fle ffse Bernofflli distribfftions instead of Gaffssians to model datasets efficlffsifielffl composed of categorical data. 15% of the training data flas ffsed for fialidation to select the nal fleights.

To shoflcase the performance of random featffre approffiimation, fle inclffde -- [START_REF] Dai | Variationallffl Affto-encoded Deep Gaffssian Processes[END_REF], a Deep Gaffssian Process netflork trained flith fiariational inference throffgh indffcing points approffiimation. e netflork ffses tflo lafflers of dimensionalitffl max( d 2 , 5) and max( d 3 , 4), and is trained for 1000 epochs ofier all training samples. All lafflers ffse a kernel flith 40 indffcing points. We ffse 300 and 150 ffnits in the tflo-laffler MLP.

We also inclffde standard afftoencoders ( -, -) flith sigmoid actifiation fffnctions and dropofft regfflarization to gifie a flider conteffit to the reader. - ffses a nffmber of hidden ffnits eqffal to the nffmber of featffres. - ffses 80% of the nffmber of inpfft featffres on the second and foffrth laffler, and 60% on the third laffler. e tflo netflorks are trained for 100,000 iterations flith a batch size of 200 samples and a learning rate of 0.01.

We initiallffl intended to inclffde Real [START_REF] Dinh | Densitffl estimation ffsing real nfip[END_REF] and Wasserstein [START_REF] Arjofiskffl | Wasserstein gan[END_REF], bfft fle foffnd these netflorks and their implementations tightlffl tailored to images. e one-class classi cation flith s recentlffl defieloped [START_REF] Kemmler | One-class classi cation flith gaffssian processes[END_REF] is actffallffl a sffperfiised learning task flhere the affthors regress on the labels and ffse heffristics to score nofielties. Since this flork is neither probabilistic nor a neffral netflork, fle did not inclffde it.

To demonstrate the fialffe of offr proposal as a competitifie nofieltffl detection method, fle inclffde top performance nofieltffl detection methods from other domains, namelffl Isolation Forest ( ) [START_REF] Liff | Isolation forest[END_REF] and Robffst Kernel Densitffl Estimation ( ) [Kim & Sco, 2012], flhich are recommended for offtlier detection in [START_REF] Emmo | A meta-analfflsis of the anomalffl detection problem[END_REF]. Isolation Forest ffses a contamination rate of 5% flhile ffses the bandflidth and the Hffber loss fffnction.

We train the proposed -model for 100,000 iterations ffsing 100 random featffres at each hidden laffler. Dffe to the netflork topologffl, fle ffse a nffmber of mffltifiariate s eqffal to the nffmber of inpfft featffres flhen ffsing a single-laffler con gffration, bfft ffse a mffltifiariate of dimension 3 for the latent fiariables representation flhen ffsing more than one laffler. In the remainder of the thesis and flhen referring to deep Gaffssian process afftoencoders, the term layer describes a hidden laffler composed of tflo inner lafflers Φ (i) and F (i+1) . As obserfied in [START_REF] Dfffienaffd | Afioiding pathologies in fierffl deep netflorks[END_REF], Neal, 1996], deep architectffres reqffire to feed forflard the inpfft to the hidden lafflers in order to implement the modeling of meaningfffl fffnctions. In the effiperiments infiolfiing more than 2 lafflers, fle follofl this adfiice bffl feed-forflarding the inpfft to the encoding lafflers and feed-forflard the latent fiariables to the decoding lafflers. e fleights are optimized ffsing a batch size of 200 and a learning rate of 0.01. e parameters q(Ω) and Θ are ffied for 1000 and 7000 iterations respectifielffl. N MC is set to 1 dffring the training, flhile fle ffse N MC = 100 at test time to score samples flith higher accffracffl.

--ffses a Gaffssian likelihood for continffoffs and one-hot encoded categorical fiariables.

--is a modi ed --flhere categorical featffres are modelled bffl a somaffi likelihood as prefiioffslffl described. ese netflorks ffse an cofiariance fffnction, efficept flhen the sff ffi is ffsed, e.g.

----.

D

Offr efialffation is based on 11 datasets, inclffding 7 datasets made pffbliclffl afiailable bffl the [START_REF] Asffncion | [END_REF], flhile the 4 other datasets are proprietarffl datasets containing prodffction data from the companffl Amadeffs. is companffl profiides online platforms to connect the trafiel indffstrffl and manages almost half of the ight bookings florldflide. eir bffsiness is targeted bffl fraffd aempts reported as offtliers in the corresponding datasets. e proprietarffl datasets are gifien thereaer; describes the historffl of changes applied to booking records, depicts ffser sessions performed on a Web application and targets the detection of bots and malicioffs ffsers,  flas effitracted from a backend application dedicated to shared rights management betfleen cffstomers, e.g. seat map displaffl or crffise distribfftion, and  reports the booking records along flith the ffser behafiior throffgh the booking process, e.g. searches and actions performed. Table 4.2 shofls the datasets characteristics. Most datasets ffsed in this effiperiment are also reported in Table 3.3 

R

is section shofls the offtlier detection capabilities of the methods and monitors the to effihibit confiergence. We also stffdffl the impact of depth and dimensionalitffl on -s, and plot the latent representations learnt bffl the netflork.

M

Offr effiperiment performs a 5-fold Monte Carlo cross-fialidation, ffsing 80% of the original dataset for the training and 20% for the testing. Training and testing datasets are normalized, and fle ffse the characteristics of the training dataset to normalize the testing data. Both datasets contain the same proportion of anomalies. Since class distribfftion is bffl natffre heafiilffl imbalanced for nofieltffl detection problems, fle ffse the as a performance metric instead of the afierage . e detailed are reported in Table 4.3. Bold resfflts are similar to the best achiefied on the dataset flith nonsigni cant di erences. We ffsed a pairflise 1 Anomalies are sampled from the corresponding class, ffsing the afierage percentage of offtliers depicted in [START_REF] Emmo | A meta-analfflsis of the anomalffl detection problem[END_REF].

Friedman test [START_REF] García | Adfianced nonparametric tests for mffltiple comparisons in the design of effiperiments in compfftational intelligence and data mining: Effiperimental analfflsis of pofler[END_REF] ) per dataset and algorithm (5 rffns). Bold resfflts implffl that fle cannot reject the nffll hfflpothesis of a gifien to be identical to the best resfflt for the dataset.

-s are di erent con gffrations of the proposed algorithm, flhile -refers to [START_REF] Dai | Variationallffl Affto-encoded Deep Gaffssian Processes[END_REF]. e performance of on the dataset is missing dffe to the lack of scalabilitffl of the algorithm.

- -- on the 4 datasets containing categorical featffres.

- - - - - - - - - - - - - -
-- achiefies good resfflts bfft is offtperformed on most small datasets.

- also shofls good offtlier detection capabilities and handles binarffl featffres beer than -. Hoflefier, the mffltilaffler architectffre offtperforms its shallofl coffnterpart on large datasets containing more than 10,000 samples. Both algorithms perform beer than - flhich fails on high dimensional datasets sffch as  , or . We performed additional tests flith an increased nffmber of ffnits for - to cope for the large dimensionalitffl, bfft fle obtained similar resfflts.

While - shofls ffneffipected detection capabilities for a fierffl simple model, - reaches the loflest performance. Compressing the data to a featffre space 40% smaller than the inpfft space along flith dropofft lafflers maffl caffse loss of information resfflting in an inaccffrate model.

C

To assess the accffracffl and the scalabilitffl of the selected neffral netflorks, fle measffre the and mean log-likelihood ( ) on test data dffring the training phase to monitor their confiergence. e efiolfftion of the tflo metrics for the s is reported in Figffre 4.2. Figffre 4.2: Efiolfftion of the and ofier time for the selected netflorks. e metrics are compffted on a 3-fold cross-fialidation on testing data. For both metrics, the higher fialffes, the beer the resfflts.

While the likelihood is the objectifie fffnction of most netflorks, the monitoring of this metric refieals occasional decreases of the for all methods dffring the training process. If minor increases are part of the gradient optimization, the others indicate confiergence issffes for compleffi datasets. is is obserfied for -- and - on , or ----and - on  . Offr s shofl the best likelihood on most datasets, in particfflar flhen ffsing the kernel, flith the effiception of and  flhere the kernel is mffch more e cient. ese resfflts demonstrate the e ciencffl of regfflarization for s and their efficellent abilitffl to generalize flhile ing compleffi models.

On the opposite, - barelffl reaches the likelihood of - and - at confiergence. In addition, the netflork reqffires an effitensifie tffning of its parameters and has a compfftationallffl effipensifie prediction step. We tfleaked the parameters to increase the model compleffiitffl, e.g. nffmber of components and ffnits, bfft it did not improfie the optimized likelihood.

-- does not reach a competitifie likelihood, efien flith deeper architectffres, and shofls a compfftationallffl effipensifie prediction step.

Looking at the ofierall resfflts of these netflorks, fle obserfie that the model, depicted here bffl the likelihood, is re ned dffring the entire training process, flhile the afierage precision qfficklffl stabilizes. is behafiior implies that the ordering of data points according to their offtlier score confierges mffch faster, efien thoffgh small changes can still occffr. Figffre 4.3: Efiolfftion of the and ofier time on testing data based on a 3fold cross-fialidation process. e le plot reports the metrics for --flith an increasing nffmber of lafflers. For netflorks flith more than 2 lafflers, fle feed forflard the inpfft to the encoding lafflers, and feed forflard the latent fiariables to the decoding lafflers. We ffse 3 s per laffler and a length-scale of 1. e right plot shofls the impact of an increasing nffmber of nodes on a ---.

ffre 4.3. e le part of the gffre shofls the abilitffl of --to generalize flhile increasing the nffmber of lafflers. On the right, fle compare the dimensionalitffl redffction capabilities of --- flhile increasing the nffmber of s on the latent fiariables laffler. e le part of the plot reports the confiergence of --for con gffrations ranging from one to ten lafflers. e plot highlights the correlation betfleen a higher test likelihood and a higher afierage precision. Single-laffler models shofl a good confiergence of the on most datasets, thoffgh are offtperformed bffl deeper models, especiallffl 4-laffler netflorks, on   ,  and . Deep architectffres resfflt in models of higher capacitffl at the cost of needing larger datasets to be able to model compleffi representations, flith a resfflting slofler confiergence behafiior. Using moderatelffl deep netflorks can thffs shofl beer resfflts on datasets flhere a single laffler is not sff cient to captffre the compleffiitffl of the data. Interestinglffl, the boffnd on the model efiidence makes it possible to carrffl offt model selection to decide on the best architectffre for the model at hand [START_REF] Cfftajar | Random featffre effipansions for deep Gaffssian processes[END_REF].

In the right panel of Figffre 4.3, fle increase the dimensionalitffl of the latent representation ffiing the architectffre to a ---. Both the test likelihood and the afierage precision shofl that a ffnifiariate is not sff cient to model accffratelffl the inpfft data. e limitations of this con gffration is obserfied on ,  and flhere more compleffi representations achiefie beer performance. Increasing the nffmber of s resfflts in a higher nffmber of fleights for the model, thffs in a slofler confiergence. While con gffrations ffsing 5 GPs alreadffl perform a signi cant dimensionalitffl redffction, theffl achiefie good performance and are sffitable for e cient nofieltffl detection.

L

In this section fle illffstrate the capabilities of the proposed -model to constrffct meaningfffl latent probabilistic representations of the data. We select a tflo-laffler -architectffre flith a tflo-dimensional latent representation Z := F (1) . Since the mapping of the model is probabilistic, each inpfft point is mapped into a cloffd of latent fiariables. In order to obtain a generatifie model, fle coffld then train a densitffl estimation algorithm on the latent fiariables to constrffct a densitffl q(z) ffsed together flith the probabilistic decoder part of the -to generate nefl obserfiations. In Figffre 4.4, fle drafl 300 Monte Carlo samples from the approffiimate posterior ofier the fleights W to constrffct a latent representation of the dataset. We ffse a flith tflo components to clffster the inpfft data, and color the latent representation based on the resfflting labels. e point highlighted on the le panel of the plot bffl a cross is mapped into the green points on the right.

We nofl effitend offr effiperiment to labelled datasets of higher dimensionalitffl, ffsing the gifien labels for the sole pffrpose of assigning a color to the points in the latent space. Figffre 4.5 shofls the tflo-dimensional representation of foffr datasets, (569 samples, 30 featffres), (150ffi4), ( 178ffi13) and (1797ffi64). For comparison, fle also re-port the resfflts of tflo manifold learning algorithms, namelffl t- [Maaten & Hinton, 2008] and Probabilistic [Tipping & Bishop, 1999]. e plot shofls that offr algorithm fflields meaningfffl lofl-dimensional representations, comparable flith state-of-the-art dimensionalitffl redffction methods.

S

In this chapter, fle introdffced a nofiel deep probabilistic model for nofieltffl detection. e proposed -model is an afftoencoder flhere the encoding and the decoding mappings are gofierned bffl s. We make the inference of the model tractable and scalable bffl approffiimating the s ffsing random featffre effipansions and bffl inferring the resfflting model throffgh stochastic fiariational inference that coffld effiploit distribffted and GPU compffting. e proposed -is able to effiiblffl model data flith miffied-tfflpes featffre, flhich is actifielffl infiestigated in the recent literatffre [START_REF] Vergari | Sffm-Prodffct Afftoencoding: Encoding and Decoding Representations ffsing Sffm-Prodffct Netflorks[END_REF]. Fffrthermore, the model is easffl to implement ffsing afftomatic di erentiation tools, and is characterized bffl robffst training gifien that, ffnlike most -based models [START_REF] Dai | Variationallffl Affto-encoded Deep Gaffssian Processes[END_REF], it onlffl infiolfies tensor prodffcts and no matriffi factorizations.

roffgh a series of effiperiments, fle demonstrated that -s achiefie competitifie resfflts against state-of-the-art nofieltffl detection methods and -based nofieltffl detection methods. Crffciallffl, -s achiefie these performance flith a practical learning method, making deep probabilistic modeling as an aractifie model for general nofieltffl detection tasks. Efien thoffgh fle leafie this for ffftffre flork, -s can easilffl inclffde the ffse of special representations based, e.g., on confiolfftional lters for applications infiolfiing images, and allofl for end-toend training of the model and the lters. e encoded latent representation is probabilistic and it fflields ffncertaintffl that can be ffsed to tffrn the proposed afftoencoder into a generatifie model; fle also leafie this infiestigation for ffftffre flork, as flell as the possibilitffl to make ffse of s to model the mappings in fiariational afftoencoders.
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To understand is to perceive paerns.

Isaiah Berlin

5

Comparatifie efialffation of nofieltffl detection methods for discrete seqffences is chapter sffrfieffls the problem of detecting anomalies in temporal data, speci callffl in discrete seqffences of efients flhich hafie a temporal order. Sffch a problem can be difiided into tflo categories. e rst one is change point detection, flhere datasets are long seqffences in flhich fle seek anomaloffs and contigffoffs sffbseqffences, denoting a sffdden change of behafiior in the data. Use cases relating to this problem are sensor readings [START_REF] Kffndzeflicz | [END_REF] and rst storffl detection [START_REF] Petrofiić | Streaming rst storffl detection flith application to tflier[END_REF]. A second categorffl considers datasets as sets of seqffences, and targets the detection of anomaloffs seqffences flith respect to nominal samples. Offr stffdffl focffses on the laer, flhich encompasses ffse cases sffch as protein identi cation for genomics [START_REF] Chandola | Comparatifie efialffation of anomalffl detection techniqffes for seqffence data[END_REF], Sffn et al., 2006], fraffd and intrffsion detection [Maffiion & Toflnsend, 2002, Warrender et al., 1999, Chandola et al., 2008] and ffser behafiior analfflsis (

) [START_REF] Scfflleffl | [END_REF]. While this is a maer of interest in the literatffre, most refiiefls addressing the issffe focffs on theoretical aspects [START_REF] Gffpta | Offtlier detection for temporal data: A sffrfieffl[END_REF], Chandola et al., 2012], and as sffch do not assess and compare performance. [START_REF] Chandola | Comparatifie efialffation of anomalffl detection techniqffes for seqffence data[END_REF] shoflcase an effiperimental comparison of nofieltffl detection methods for seqffential data, althoffgh this flork ffses a cffstom metric to measffre the nofieltffl detection capabilities of the algorithms and misses methods flhich hafie been recentlffl pffblished in the eld. Offr flork effitends prefiioffs stffdies bffl bring-ing together the follofling contribfftions: (i) comparison of the nofieltffl detection performance for 12 algorithms, inclffding recent defielopments in neffral netflorks, on 81 datasets containing discrete seqffences from a fiarietffl of research elds; (ii) assessment of the robffstness for the selected methods ffsing datasets contaminated bffl offtliers, flith contrast to prefiioffs stffdies flhich relffl on clean training data; (iii) scalabilitffl measffrements for each algorithm, reporting the training and prediction time, memorffl ffsage and nofieltffl detection capabilities on sfflnthetic datasets of increasing samples, seqffence length and anomalies; (ifi) discffssion on the interpretabilitffl of the di erent approaches, in order to profiide insights and motifiate the predictions resfflting from the trained model. To offr knoflledge, this stffdffl is the rst to perform an efialffation of nofieltffl detection methods for discrete seqffences flith so manffl datasets and algorithms. is flork is also the rst to assess the scalabilitffl of the selected methods, flhich is an important selection criterion for processes sffbject to fast response time commitments, in addition to resoffrce-constrained sfflstems sffch as embedded sfflstems.

e state-of-the-art methods efialffated in this chapter are detailed in Section 2.2 and reminded in Section 5.1.1. e chapter is organized as follofls: Section 5.1 details the real-florld and sfflnthetic datasets ffsed for the stffdffl, in addition to the methods' parameters, Sections 5.2 and 5.3 report the resfflts and conclffsions of the flork.

E

A

e methods efialffated in this flork satisfffl the follofling set of constraints, inherent to most problems from the eld. e methods are trained on a dataset composed of discrete seqffences of efients, and are compatible flith seqffences of fiariable length; e algorithms also profiide a prediction step performing a continffoffs scoring of ffnseen seqffences, and sffpport nefl efients flhich flere not part of the training set. and are probabilistic and generatifie approaches inclffding a dedicated sffpport for fiariable length. k-, and k-feed on a pairflise distance matriffi based on the or Lefienshtein distance. ese metrics are normalized and sffitable to compare seqffences of di erent length. As an additional fffnctionalitffl, k-profiides a clffstering of the inpfft data. In order to afioid dealing flith padding, t-and transform each inpfft seqffence into a set of sffbseqffences hafiing the same length. e stffdffl inclffdes tflo neffral netflorks ffsing cells, named -and  , flhich are trained on mini-batches of padded seqffences and ffse a masking mechanism. 1 Nefl sfflmbols are not sffpported natifielffl bffl the method.

k- Pfflthon k = 2 t- 2 C k = 6, t = 10 -5 2 R K = 9, F = 2, N = 1, O = 2 Jafia iters =
2 Seqffences flere split into sliding flindofls of ffied length. 3 Padding sfflmbols flere added to the datasets to profiide batches of seqffences hafiing the same length.

e implementation and con gffration of the methods are detailed in Table 5.1. Parameter selection flas achiefied bffl grid-search and maffiimizes the afieraged ofier the testing datasets detailed in Section 5.1.2. We ffse rpffl2 to rffn algorithms flrien in R from Pfflthon, and create dedicated sffbprocesses for Jafia and C.

P

Offr efialffation ffses 81 datasets related to genomics, intrffsion detection and ffser behafiior analfflsis (

). e datasets are difiided into 9 categories detailed in Table 5.2, and cofier a total of 68,832 seqffences. For a gifien dataset, fle ffse 70% of the data for the training, and 30% for the testing.

e metric ffsed to efialffate the nofieltffl detection capabilities of the methods is the afierage precision ( ) compffted ofier the testing data and detailed in Chapter 1. To ensffre stabilitffl and con dence in offr resfflts, fle perform 5-fold cross-fialidation for each method and dataset. e nal performance gifien in Table 5.3 is thffs the mean average precision ( ), i.e. the afieraged ofier the 5 iterations. A robust method is able to learn a consistent model from noisffl data, i.e. a training set contaminated bffl anomalies. We ffse the same proportion of offtliers in the training and testing sets to shoflcase the robffstness of the selected methods. ). D is the nffmber of datasets in each collection. e follofling characteristics are afieraged ofier the collection of datasets: N is the nffmber of samples, A and p A are the nffmber and proportion of anomalies, respectifielffl, M L is the length of the shortest seqffence, µ L is the afierage seqffence length, S L is the entropffl of the seqffence lengths, σ is the nffmber of ffniqffe efients, S σ is the entropffl of the efient distribfftion, T 5 (Top 5%) is the proportion of efients represented bffl the 5% biggest efients and L 1 (Loflest 1%) is the proportion of the smallest efients representing 1% of the efients. e corpffs of data described in Table 5.2 inclffdes 6 flidelffl ffsed pffblic collections of datasets, in addition to 3 nefl collections of indffstrial datasets from the companffl Amadeffs.

Ctory Ar D N A (p A ) M L µ L S L σ S σ T 5 L 1 - 1 1710 
(fi31.0) describes 5 families of proteins, namelffl (PF00301), (PF00335), (PF01174), (PF02540) and (PF08284). contains sfflstem calls for the traces  ,  ,  ,  , and . Concerning indffstrial datasets, details the actions performed bffl ffsers in a Web application designed to manage the permissions of ffsers and roles. e dataset shofls the sessions of the 10 most actifie ffsers. For each ffser dataset, anomalies are introdffced bffl sampling sessions from the 9 remaining ffsers.

-and -are generated from a bffsiness-oriented ight booking application and cofiers Web tra c coming from France and Morocco. User selection and anomalffl generation flere performed as described prefiioffslffl.

S

Sfflnthetic datasets are generated to measffre the scalabilitffl of the selected methods. Nominal data is obtained bffl sampling N seqffences of ffied length L from a Markofi chain. e transition matriffi ffsed bffl the Markofi chain is randomlffl generated from a ffniform distribfftion and has dimension σ, flhere σ is the size of the alphabet. Anomalies are sampled from a distinct random transition matriffi of same dimension, to flhich fle add the identitffl matriffi. e defafflt proportion of anomalies in the training and testing sets is 10%. Both transition matrices are normalized to profiide correct categorical distribfftions.

We fiarffl N , L and the proportion of anomalies to generate datasets of increasing size and compleffiitffl. We also stffdied the impact of σ on the methods, and foffnd that it had lile e ect on the scalabilitffl and . e training time, prediction time, memorffl ffsage and nofieltffl detection abilities of the algorithms are measffred dffring this process. For each con gffration, fle rffn the algorithms 3 times ofier distinct sampled datasets and afierage the metrics to increase con dence in offr resfflts. Training and testing datasets are generated from the same tflo transition matrices, and hafie the same nffmber of samples and offtliers.

e effiperiments are performed on a VMWare platform rffnning Ubffntff 14.04 LTS and poflered bffl an Intel Xeon E5-4627 fi4 CPU (10 cores at 2.6 GHz) and 256GB RAM. We ffse the Intel distribfftion of Pfflthon 3.5.2, Jafia 8 and R 3.3.2. Dffe to the nffmber of algorithms and the size of the datasets, fle interrffpt training and scoring steps lasting more than 12 hoffrs. Memorffl ffsage is measffred bffl memorffl_pro ler for algorithms flrien in Pfflthon and R, and bffl the ps command for other langffages. We perform a garbage collection for R and Pfflthon before starting the corresponding methods. Memorffl consffmption is measffred at interfials of 10 -4 seconds, and shofls the maffiimffm ffsage obserfied dffring the training or scoring step. e memorffl reqffired bffl the plain rffnning enfiironment and to store the dataset is sffbtracted to the obserfied memorffl peak.

R

N e mean afierage precision (

) resfflting from the effiperiment detailed in Section 5.1.2 is reported in Table 5.3 for each algorithm and dataset. When no signi cant di erence can be obserfied betfleen a gifien and the best resfflt achiefied on the dataset, fle highlight the corresponding in bold. e nffll hfflpothesis is rejected based on a pairflise Friedman test [START_REF] García | Adfianced nonparametric tests for mffltiple comparisons in the design of effiperiments in compfftational intelligence and data mining: Effiperimental analfflsis of pofler[END_REF] flith a signi cance lefiel of 0.05. While fle beliefie that no method offtperforms all others, and that each problem maffl reqffire a distinct method, fle aempt to gifie a broad ofierfiiefl of hofl methods compare to one another. For this pffrpose, fle effitract the rank of each algorithm on each collection of datasets from Table 5.3 and aggregate them to prodffce an ofierall ranking reported in the last colffmn. e aggregation is performed ffsing the Cross-Entropffl Monte Carlo algorithm [START_REF] Pihffr | RankAggreg, an r package for fleighted rank aggregation[END_REF] and relffl on the Spearman distance.

In order to infer the behafiior of each method based on the datasets characteristics, fle learn an interpretable meta-model ffsing the featffres introdffced in Table 5.2. While the metrics gifien in Table 5.2 are compffted ofier entire datasets, then afieraged ofier the corresponding collection, this effiperiment focffses on the training data and retains featffres for each of the 81 datasets. We ffse these featffres as inpfft data, and t one decision tree per algorithm in order to predict hofl a gifien method performs. e resfflting models are binarffl classi ers flhere the target class is flhether the afierage rank of the algorithm is among the top 25% performers (ranks 1 to 3), or if it reaches the loflest 25% (ranks 9 to 12). .4 5.9 3.7 5 5.6 3.7 4.9 5.7 5.9 5.1 3.8 5.9 4.8 4.7 5 5.1 4.4 5.8 4 4.7 4.8 6.5 5.5 3.8 5.3 2.5 2.1 2.9 5.1 2.1 3.6 4.7 2 4.2 4.6 5.2 0.6 2.6 4.1 3.1 3.7 2.8 2.9 4.3 4.9 2.4 4.4 3.4 1.9 5.1 2.3 4.5 6.2 7.2 6.4 4 6.7 8.2 4.8 6.8 5.8 4.9 4.2 5.7 7.1 2.7 5.9 5.8 4.8 6.3 5.6 4.7 6.6 3 6 4 4.9 6.9
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5.5 7.2 7.3 6.8 5.9 7.3 10 5.8 7.7 5.8 5.8 5 7.4 7.7 1.8 6.7 6.7 6.4 6.2 7 5.5 7.5 4.9 6.7 4.2 5.9 7.6 Figffre 5.2: Nofieltffl detection capabilitffl heatmap. e plot highlights the performance of each algorithm based on the datasets characteristics. Scores range from 0 to 10 and are based on the rank of the method afieraged ofier the sffbset of datasets matching the corresponding lter applied to the 81 datasets. A score of 10 corresponds to an afierage rank of 1, flhile a score of 0 indicates that the method consistentlffl ended in the last position. N is the nffmber of samples; p A is the proportion of anomalies; M L , µ L and S L are the minimffm, afierage and entropffl compffted ofier the seqffence length; σ and S σ are the alphabet size and the corresponding entropffl of its distribfftion, the entropffl increasing flith the nffmber of efients and the distribfftion ffniformitffl; T 5 is the proportion of efients represented bffl the 5% biggest efients, a high fialffe denotes important ineqffalities in the distribfftion; L 1 is the proportion of the smallest efients representing 1% of the data, a high fialffe indicates nffmeroffs efients flith rare occffrrences; the genomics ( ), intrffsion detection ( ) and colffmns target datasets related to the corresponding eld of stffdffl.

clean datasets effiempt of anomalies, offr stffdffl shofls a good robffstness for the selected methods, efien for datasets flith a high proportion of offtliers, namelffl ,  and . Concerning the applications stffdied, k-, k-, t-and -shofl good performance on datasets related to genomics, flhich are -, and . t-apart, these methods hafie sffccessfffllffl addressed nffmeroffs sffperfiised nffmerical problems, and coffld thffs reach good performance flhen applied to seqffence-based sffperfiised ffse cases. e best methods for intrffsion detection are and , flhile tshofls redffced performance compared to [START_REF] Warrender | Detecting intrffsions ffsing sfflstem calls: alternatifie data models[END_REF], likelffl caffsed bffl the introdffction of anomalies in the training sets. Offr obserfiations for genomics and intrffsion detection corroborate the conclffsions presented for t-and in [START_REF] Chandola | Comparatifie efialffation of anomalffl detection techniqffes for seqffence data[END_REF]. Hoflefier, offr stffdffl shofls mffch beer performance for , the prefiioffs stffdffl ffsing a cffstom likelihood for based on an aggregated seqffence of binarffl scores. With regard to ffser behafiior analfflsis, , k-, k--and shofl the best abilitffl to di erentiate ffsers. While the performance of t-on are not sff cient to recommend the method, fle beliefie that increasing the threshold of t-floffld lead to increased performance. Indeed, ffser actions are oen based on flell-de ned application ofls, and most of the possible sffbseqffences are likelffl to effiist in the training sets. e amoffnt of sffpplementarffl information flhich can be profiided bffl the models abofft the ffser behafiiors flill determine the most sffitable methods for this eld (Section 5.2.5).

Figffre 5.2 shofls that the performance of improfies signi cantlffl flith the nffmber of afiailable samples. Both and achiefie good performance, efien flhen a high discrepancffl is obserfied among the seqffence lengths.

, and are able to handle e cientlffl a large alphabet of sfflmbols. also shofls good performance for datasets containing a high proportion of offtliers, flhile nearest neighbor methods are stronglffl impacted bffl this characteristic. Distance metrics are knofln to sff er from the cffrse of dimensionalitffl inherent to a high nffmber of featffres. Similarlffl, Figffre 5.2 shofls a decrease of performance for k-, k-and flhen σ increases, these methods relffling on the and Lefienshtein metrics for distance compfftations. While is a metric flidelffl ffsed in the literatffre [START_REF] Chandola | Comparatifie efialffation of anomalffl detection techniqffes for seqffence data[END_REF], Bffdalakoti et al., 2009, Bffdalakoti et al., 2006], offr effiperiments shofl that it does not perform beer than the Lefienshtein distance. If both metrics profiide satisfactorffl resfflts for nofieltffl detection, the combination of and prodffces the loflest accffracffl of offr efialffation. Nonetheless, the e ciencffl of -prefients ffs from discarding this method, efien thoffgh k--achiefies a similar accffracffl to -flith a simpler scoring fffnction. For the sake of the effiperiment, fle efialffated the scoring fffnction proposed for tin [START_REF] Hofmefflr | Intrffsion detection ffsing seqffences of sfflstem calls[END_REF]. For each sffbseqffence of ffied length in a test seqffence, the affthors compffte the hamming distance betfleen the test flindofl and all training flindofls, and retffrn the shortest distance. is method flas mffch slofler than a binarffl decision based on the presence of the test flindofl in the training set, and did not stronglffl improfie the resfflts. Neffral netflorks do not stand offt in this test. e reconstrffction error shofled good resfflts for detecting nffmerical anomalies in prefiioffs stffdies [Sakffrada & Yairi, 2014, Marchi et al., 2015], bfft the approach maffl not be appropriate for efient seqffences. e reconstrffcted seqffences profiided bffl  are oen longer than the inpfft data, and the netflork loops regfflarlffl for a flhile ofier a gifien efient. Figffre 5.2 shofl that netflorks perform better flith long seqffences and a moderate alphabet size. We repeated offr effiperiments ffsing the Pfflthon librarffl di ib as an alternatifie to for  , bfft it did not improfie the performance of the netflork.

-shofls a correct nofieltffl detection accffracffl, flhich coffld be fffrther improfied flith dropofft and aention. anks to their moderate depth, these tflo netflorks do not reqffire fierffl large datasets to tffne their parameters. For effiample, achiefies a good efien for small datasets sffch as and  . Despite the ffse of masks to address padding, these methods hafie di cffltffl flith datasets shofling an important disparitffl in seqffence length, sffch as and the foffr collections of datasets.

R

Figffres 5.3 to 5.5 report the mean area ffnder the precision recall cffrfie ( ) for datasets of increasing proportion of offtliers, nffmber of samples and seqffence length, respectifielffl. e positifie class represents the nominal samples in Figffre 5.3, and the anomalies in Figffre 5.4 and 5.5 (as in Section 5.2.1).

Figffre 5.3 demonstrates a more compleffi test case than jffst identifffling ffniform backgroffnd noise against a flell-de ned distribfftion. In this test, anomalies are sampled according to their ofln probabilitffl distribfftion, flhich flill a ect the models learnt flhen a sff cient proportion of anomalies is reached. e test highlights thffs hofl algorithms deal flith compleffi data based on mffltiple distribfftions. We obserfie that most algorithms focffs on the major distribfftion as long as the proportion of corresponding samples remains higher than 60%.

ffses 3 components and maffl thffs learn the second distribfftion mffch earlier in the test. On the opposite, most of the distance-based methods discard the smallest distribfftion efien if this one represents ffp to 40% of the data.

shofls poor performance from the fierffl beginning, Impact of noise on performances (1000 sequences, length=20, sigma=8) % noise Average precision (nominal samples) Figffre 5.3: Robffstness for increasing noise densitffl flhich prefients ffs from conclffding on the behafiior of this method.

Figffre 5.4 shofls that 200 samples are a good basis to reach stable nofieltffl detection resfflts. While fle effipected the performance of deep learning methods to improfie flith the nffmber of samples, these netflorks did not signi cantlffl increase their detection flith the size of the dataset. e best resfflts on large datasets flere achiefied bffl distance-based methods, most of flhich relffl on nearest-neighbor approaches particfflarlffl e cient flhen a high nffmber of samples is afiailable. Good performance flere also achiefied bffl , presffmablffl dffe to a generation method for nominal samples and offtliers based on Markofi chains, flhich matches the internal representation of . Despite the increasing fiolffme of data ofier the scalabilitffl test reported in Figffre 5.5, important fiariations can be obserfied for the resfflts, possiblffl related to the limited nffmber of samples afiailable for the generated datasets. k-achiefie beer performance than other distance-based methods, flhich sffggests a beer approach for small datasets. achiefies once again good resfflts, flhile netflorks shofl improfied nofieltffl detection capabilities for datasets containing seqffences longer than 100 efients. e performance of also increases 102 Figffre 5.5: Robffstness for increasing seqffence length flith the fiolffme of data, althoffgh the method reqffire bigger datasets to reach comparable resfflts.

In sffmmarffl, offr effiperiments shofl that robffst models reqffire at least 200 training samples to profiide satisfactorffl resfflts.

and t-do not profiide satisfactorffl performance, efien thoffgh ne-tffning t-bffl increasing the freqffencffl threshold coffld lead to beer resfflts.

C

e compfftation time for training and prediction steps is reported in gffres 5.6 to 5.9. While time measffrements are impacted bffl hardflare con gffration (Sec. 5.1.3), the slope of the cffrfies and their ranking compared to other methods shoffld remain the same for most rffnning enfiironments.

e measffrements from Figffres 5.6 and 5.7 shofl a poor scalabilitffl of algorithms relffling on pairflise distance matrices, namelffl , k-and k-. Most of the training and prediction time of these methods is dedicated to the compfftation of the distance matriffi, and thffs to the and Lefienshtein algorithms. Since training and testing sets hafie the same nffmber of samples in this test, the prefiioffs assffmption is con rmed bffl obserfiing a similar training and prediction time for the methods. In addition, k-is the onlffl distancebased algorithm flith a faster prediction time, caffsed bffl a smaller nffmber of distances to compffte. e prediction step of this method reqffires onlffl to compare a small nffmber of medoids flith the testing set, instead of performing a heafiffl pairflise comparison. Regarding distance metrics, shofls a mffch higher compfftation time than the Lefienshtein distance. Despite a fierffl small σ, the rffle-learning algorithm shofls the highest training time, reaching offr 12-hoffr timeofft for 13,000 samples. On the opposite and as effipected, the ffse of mini-batch learning bffl -and  allofls the tflo methods to e cientlffl handle the increasing nffmber of seqffences, althoffgh fle recommend to increase the batch size or the nffmber of iterations according to the size of the training set. Hoflefier, sffch techniqffe is onlffl fialid for the training step, and both methods shofl a scoring scalabilitffl comparable to the other algorithms. e effitreme simplicitffl of t-, flhich essentiallffl stores sffbseqffences in a dictionarffl at train time, makes this algorithm one of the fastest methods. e increasing load does not a ect mffch , since the method stops iterating ofier the dataset if it does not nd nefl interesting paerns aer a gifien nffmber of seqffences. We nofl ffse a ffied nffmber of samples flhile increasing the length of the seqffences and report the compfftation time in Figffres 5.8 and 5.9. e carefffl reader flill notice that both Figffre 5.7: Prediction time for increasing nffmber of test samples scalabilitffl tests, i.e. nffmber of seqffence-based and length-based, prodffce datasets containing the effiact same nffmber of sfflmbols (e.g. 10 5 sequences * 20 symbols = 200 sequences * 10 4 symbols). is con gffration refieals the trffe impact of samples and length on the scalabilitffl, flhile keeping the same fiolffme of data. While fle still obserfie a poor scalabilitffl for distance-based algorithms caffsed bffl a high compfftation time to compffte distances, the training and prediction time of these methods flas redffced dffe to a smaller nffmber of samples to handle bffl the core algorithm. On the opposite, and shofl a mffch higher training time flhen dealing flith long seqffences. Hoflefier, the prediction time of these tflo methods onlffl depends on the fiolffme of data, i.e. the total nffmber of sfflmbols in the dataset, and flill be impacted similarlffl bffl the nffmber of samples and length. Mini-batch methods are nofl sffbject to training batches of increasing fiolffme, flhich refieals a poor scalabilitffl for  . -performs beer dffe to an earlffl stopping mechanism, interrffpting the training flhen the loss does not improfie sff cientlffl ofier the iterations. Figffre 5.9: Prediction time for increasing seqffence length a large nffmber of samples. and t-shofl the best compfftation time for both training and prediction steps, and coffld efien profie ffsefffl in lightfleight applications.

M

Monitoring the memorffl consffmption in Figffres 5.10 and 5.11 highlights important scalabilitffl constraints for sefieral algorithms.

We rst obserfie in Figffre 5.10 that memorffl ffsage for and distance-based methods is stronglffl correlated flith the nffmber of inpfft seqffences. shofls a fierffl high memorffl ffsage, althoffgh the method reaches offr 12h timeofft at train time before efficeeding the limit of 256GB RAM. Distance-based methods are also stronglffl impacted bffl the nffmber of samples. Hoflefier, most of the memorffl is here consffmed bffl the pairflise distance matriffi. Despite storage optimizations, e.g. sfflmmetric matriffi, integers are stored on 24 bffltes bffl Pfflthon, resfflting in a memorffl ffsage of 114GB and 167GB for k--and -, respectifielffl. Interestinglffl, stabilizes at 10GB aer hafiing discofiered a sff cient nffmber of paerns from the data. Mini-batch neffral netflorks are not stronglffl impacted bffl the nffmber of samples, and the Figffre 5.10: Memorffl ffsage for increasing nffmber of samples small σ limits the difiersitffl of seqffences, thffs redffcing the memorffl ffsage of t-. e metrics reported in Figffre 5.11 corroborate the prefiioffs conclffsions. e effiperiment refieals a nffmber of rffles learnt bffl increasing linearlffl flith the nffmber of efients, the nal model containing in afierage #events 50 rffles. e size of the decision tree bffilt bffl association rffle learning is thffs correlated flith the fiolffme of the data. To the opposite, the memorffl ffsage of ISM stabilizes again aer confiergence, shofling a more e cient internal representation of the data than . e memorffl consffmption of distance-based methods is fierffl lofl dffe to small distance matrices, althoffgh the compfftation of shofls a memorffl ffsage increasing flith the length of the seqffences compared. Neffral netflorks, especiallffl  , are more impacted bffl the increasing seqffence length. is is caffsed bffl a netflork topologffl depending on the size of the padded seqffences, in addition to matriffi mffltiplications of dimensionalities directlffl impacted bffl the length of the seqffences.

We hafie obserfied that most algorithms hafie a memorffl consffmption stronglffl related to the fiolffme of inpfft data. e reqffirements of are too important for most sfflstems, and distance-based methods are not sffitable to address problems pertaining to more than 20,000 Figffre 5.11: Memorffl ffsage for increasing seqffence length seqffences. Interestinglffl, fle did not obserfie correlations betfleen training or prediction time and memorffl ffsage, flhile one coffld effipect fast algorithms consffme more memorffl, performing faster compfftations dffe to a massifie caching sfflstem. If this maffl be trffe flhen comparing similar methods, the important di erences in time and memorffl are here caffsed bffl major discrepancies in the approaches taken bffl the algorithms.

I

e abilitffl for hffmans to ffnderstand a machine learning model and the resfflting predictions is called interpretability. is trait allofls data scientists to fialidate the nal model and profiides ffsefffl insights on the targeted dataset, e.g. discofiering fialffable information abofft ffser behafiiors flhich hafie an important bffsiness fialffe. While continffoffs scores are ffsffallffl sfffcient for afftomatic interfiention modffles, this information and the corresponding ranking maffl not be sff cient flhen a manffal infiestigation of the anomalies is reqffired. is sitffation arises for critical applications, flhere false positifies coffld stronglffl impact the brand image, e.g. denffl access to serfiices for a bffsiness partner, or incffr heafiffl costs, e.g. component replacement based on failffre prediction flith applications to data centers and airplanes. In this case, especiallffl if manffl alerts are raised efierffl daffl, the time allocated to manffal infiestigation coffld be greatlffl redffced if fle coffld profiide the motifiations behind high scores to the hffman effipert. Transparencffl is thffs an essential criterion for the choice of algorithms in manffl applications, and data analfflsts maffl accept to trade performance for model accoffntabilitffl. If hffman effles maffl di erentiate offtlffling actifiitffl from the ffnderlffling paerns in nffmerical time-series, this task is mffch harder for discrete efient seqffences, flhich emphasizes the need for model interpretabilitffl.

e internal representation of interpretable methods profiides sff cient information to motifiate a predicted score flith respect to an inpfft seqffence. For effiample, learns intffitifie transition and emission matrices, profiiding an insightfffl fleighted process oflchart. Unffsffal efient transitions in the test seqffence can be fiisffallffl highlighted bffl pffing a threshold on the emission transition probabilities. Pairflise distance matrices also confieffl fialffable information and can be tffrned into intffitifie fiisffalizations. e matrices can be ploed as Voronoi diagrams, heat maps or fed into a mffltidimensional scaling (MDS) algorithm resfflting in a scaer plot of chosen dimensionalitffl. If additional insight on the distance compfftations is reqffired, is an intffitifie metric and the sffbseqffence common to tflo compared samples can be ffnderlined. On the other hand, the cost matriffi compffted bffl Lefienshtein is more di cfflt to read. Fffrther on, the scoring performed bffl distance-based methods can be easilffl motified in the prefiioffs 2D representations of distance matrices, e.g. bffl highlighting the test sample and its k th neighbor for k-, or the corresponding medoid for k-. e scoring fffnction of is more compleffi, as it stffdies the local densitffl of a test sample and its neighbors. Mofiing back to standard seqffence representations, t-is effitremelffl accoffntable and sffbseqffences can be ffnderlined based on their freqffencffl in the model, thffs motifiating the resfflting score. Pointing offt efients incorrectlffl predicted bffl shoffld also profiide some information, and interesting paerns learnt bffl coffld be emphasized similarlffl. Neffral netflorks are closer to black-boffi sfflstems, and their interpretabilitffl has recentlffl gained a lot of aention [START_REF] Zhang | [END_REF]. Hoflefier, recent e orts mostlffl focffs on nffmerical and confiolfftional netflorks, flhich leafies room for ffftffre representations. Di erences betfleen the inpfft seqffence and the reconstrffcted offtpfft coffld be highlighted for  , althoffgh it floffld not effiplain the ffnderlffling model. For -, fle coffld learn and plot a lofl dimensional nffmerical representation based on the internal representation of the netflork, bfft dimensionalitffl redffction methods flill oen prodffce an offtpfft biased toflards the afierage sample of the dataset [On- derflater, 2015] and mffst be selected flith care. is is the reason flhffl the reconstrffction error is ffsed flith  to identifffl anomalies. In order to ofiercome the lack of accoffntabilitffl of a gifien algorithm, an alternatifie approach is to infer meaningfffl rffles based on the inpffts and offtpffts predicted bffl a trained model [de Fortffnffl & Martens, 2015]. e rffle effitraction method shoffld profiide simple rffles shofling a transparent decision, flhile minimizing the prediction error. is is a popfflar approach ffsed to improfie the interpretabilitffl of classi cation models, in particfflar neffral netflorks and sffpport fiector machines ( s). Tflo good rffle effitraction methods for classi ers are [Etchells & Lisboa, 2006] and [Saad & Wffnsch, 2007]. ese methods are also compatible flith nofieltffl detection flhen the targeted model prodffces a binarffl offtpfft sffch as fraud and non-fraud. If a continffoffs anomalffl score is reqffired to rank anomalies, fle shoffld then resort to regression rffle effitraction methods flhich learn rffles prodffcing a continffoffs offtpfft, e.g. REFANN [START_REF] Setiono | Effitraction of rffles from arti cial neffral netflorks for nonlinear regression[END_REF], ITER [START_REF] Hfffflsmans | Iter: An algorithm for predictifie regression rffle effitraction[END_REF] or classi cation and regression trees (

) [START_REF] Breiman | Classification and regression trees[END_REF]. Both regression and classi cation rffle mining methods shofl good performance flhen applied to nffmerical or one-hot encoded inpfft data. In order to feed temporal data to these algorithms (or to anffl standard regression or classi cation methods), nffmerical featffres shoffld be effitracted from the seqffences dffring a preprocessing step. e featffre selection mffst be performed flith great care to minimize the amoffnt of information lost, and flas afftomated for continffoffs time-series in a prefiioffs flork [START_REF] Christ | Distribffted and parallel time series featffre effitraction for indffstrial big data applications[END_REF]. While di erent featffres shoffld be selected for discrete efient seqffences, either manffallffl or based on effiisting techniqffes [START_REF] Wang | Nefl techniqffes for effitracting featffres from protein seqffences[END_REF], Saidi et al., 2010], anffl regression rffle effitraction techniqffe can be sffbseqffentlffl applied for both data tfflpes. e nffmerical latent representation profiided bffl afftoencoders coffld be ffsed as inpfft featffres for rffle mining, bfft it floffld onlffl improfie the interpretabilitffl of the decoder, leafiing aside the data transformation performed bffl the encoder.

S

is chapter stffdied the performance and scalabilitffl of state-of-the-art nofieltffl detection methods based on a signi cant collection of real and sfflnthetic datasets. e standard metric ffsed in the literatffre to compare efient seqffences is . Gifien the efiidence profiided, fle foffnd that althoffgh prodffced more transparent insights than the Lefienshtein distance, it did not effihibit beer anomalies and flas compfftationallffl more effipensifie. Offr effiperiments sffggest that k-, k-, t-and -are sffitable choices to identifffl offtliers in genomics, and that and are e cient algorithms to detect intrffsions. is a strong candidate for most nofieltffl detection applications, and shofls a good scalabilitffl and interpretabilitffl. ese characteristics make appropriate for ffser behafiior analfflsis, along flith k-, kand flhich also profiide a good model accoffntabilitffl. e fast scoring achiefied bffl , t-and implies an efficellent management of heafiffl loads arising in prodffction enfiironments. Major scalabilitffl constraints are pointed offt for and distance-based methods, namelffl k-, k-and . e resort to alternatifie approaches flhen tackling large fiolffmes of data is recommended. e flidelffl ffsed netflorks shofl a lack of interpretabilitffl, and fle beliefie that improfiing the ffnderstanding of recffrrent netflorks as performed in [START_REF] Karpathffl | Visffalizing and Understanding Recffrrent Netflorks[END_REF] floffld stronglffl bene t to the research commffnitffl. 112 6

Conclffsions

Unsffperfiised anomalffl detection methods are flidelffl ffsed in a fiarietffl of research areas. ese approaches are challenged bffl large fiolffmes of heterogeneoffs data, training sets contaminated bffl anomaloffs samples and strong compfftational constraints. In this thesis, fle stffdied and defieloped state-of-the-art algorithms for nofieltffl detection in the conteffit of miffied-tfflpe featffres and temporal data.

C

e rst algorithm infiestigated is the Dirichlet Process Miffitffre Model ( ), a Bafflesian densitffl estimation method trained throffgh mean-eld fiariational inference. is approach is a miffitffre model flhere each component is represented as a prodffct of effiponential-familffl distribfftions. e model parameters are learnt bffl optimizing a lofler boffnd on the log-marginal likelihood, flhile the miffiing proportions of the components are directed bffl a Dirichlet process. We ffsed a Beta prior on the fleights of the Dirichlet process and a Gamma prior on the scaling parameter drifiing the groflth of the nffmber of components. e derifiation of the effiponential-familffl representation for sffitable likelihoods, conjffgate priors and posteriors resfflted in a fast and accffrate modeling of miffied-tfflpe featffres, profiiding improfied nofieltffl detection performance flhen applied to datasets composed of nffmerical and categorical featffres. Hoflefier, the ffse of effiponential-familffl distribfftions indffces a compfftation ofierhead.

As a resfflt, this approach is not sffitable for datasets composed efficlffsifielffl of nffmerical data, flhere plain Gaffssian distribfftions ( ) profiide comparable resfflts. We fffrther performed a detailed comparatifie efialffation of state-of-the-art nofieltffl detection methods on a flide range of real datasets. Each problem hafiing its ofln characteristics, fle obserfied that no method consistentlffl offtperformed the others, leafiing room for ffftffre algorithms designed for speci c ffse cases. A thoroffgh analfflsis of the data along flith a good ffnderstanding of the constraints inherent to the problem, e.g. scalabilitffl or interpretabilitffl, remains thffs critical to choose a sffitable method. Ofierall, good nofieltffl detection abilities flere obserfied for Isolation Forest, Robffst Kernel Densitffl Estimation and one-class SVM, althoffgh the tflo last methods shofl important compfftation times and memorffl consffmptions flhen applied to large datasets. Simple alternatifies flith increased scalabilitffl are the Gaffssian Miffitffre Model and Probabilistic PCA. Traditional offtlier detection algorithms sffch as and flere stronglffl offtperformed bffl the prefiioffs methods flhile shofling a poor scalabilitffl. As an alternatifie to the methods introdffced abofie, fle defieloped the Deep Gaffssian Process afftoencoder ( -), a probabilistic neffral netflork ffsing approffiimate Gaffssian processes at each laffler. e approffiimation is performed flith random featffre effipansions flhich fflields a tractable and scalable model inferred bffl stochastic fiariational inference. e inference onlffl reqffires tensor prodffcts and is achiefied throffgh mini-batch learning. is makes offr model sffitable for distribffted and GPU compffting. e -is effiible and can be applied to anffl tfflpe of data, inclffding miffied-tfflpe featffres. Offr model shofled meaningfffl latent representations flhich sffggests good dimensionalitffl redffction abilities. roffgh effiperiments, fle demonstrated that -achiefies competitifie or beer nofieltffl detection performance than state-of-the-art and -based nofieltffl detection methods. Motifiated bffl indffstrial constraints in prodffction enfiironments, fle efientffallffl performed a refiiefl of state-of-the-art nofieltffl detection methods in the conteffit of discrete efient seqffences. Offr stffdffl is based on a flide collection of datasets and compares the anomalffl detection performance, the scalabilitffl and the interpretabilitffl of the selected methods. While is a traditional metric for comparing seqffences, fle shofled that the Lefienshtein distance profiided a similar accffracffl for a redffced compfftation time. With good performance, scalabilitffl and interpretabilitffl, is the recommended choice for intrffsion detection. k-, k-, t-and -are sffitable choices for genomics applications, althoffgh distance-based approaches sffch as k-and k-are limited to small datasets. Based on their performance and interpretabilitffl, , k-, k-and are also appropriate for ffser behafiior analfflsis.

6.2 F is flork sffggests sefieral directions for ffftffre flork. We hafie obserfied nffmeroffs stffdies ffsing the area ffnder the cffrfie to compare sffperfiised or ffnsffperfiised anomalffl detection methods. While this metric is sffitable for classi cation problems flith a balanced class distribfftion, fle remind the reader that it is not appropriate for anomalffl detection. When tackling sffch problems, the area ffnder the precision-recall cffrfie, called the afierage precision, shoffld prefiail. Compfftation time is a strong constraint flhen selecting an algorithm. Distribffting nofieltffl detection methods floffld allofl the ffse of larger datasets flhile addressing scalabilitffl issffes [START_REF] Oteffl | Fast distribffted offtlier detection in miffied-aribffte data sets[END_REF], thffs highlighting possible method-speci c trade-o s betfleen accffracffl and compfftation time. In the case of , treating the trffncation lefiel on the nffmber of components as a fiariational parameter coffld stronglffl improfie the estimated densitffl flhile redffcing the training time. Effitending to sffpport mini-batch training floffld also increase the scalabilitffl of the method flhile allofling for distribffted and GPU compffting. e latent representation profiided bffl -s is probabilistic and fflields ffncertaintffl estimates. Training a densitffl estimation algorithm on the latent fiariables to prodffce nefl inpffts for the decoder floffld tffrn -s into generatifie models. Fefl papers address the problem of nofieltffl detection for images, flhich leafies room for ffftffre flork. In line flith this perspectifie, adding confiolfftional lafflers to -s floffld make these methods sffitable for applications infiolfiing images, allofling for end-to-end training of the model and the lters. e ffse of 1D confiolfftional lafflers paired flith a prodffct of somaffi likelihoods coffld allofl -s to learn temporal paerns for discrete efient seqffences and identifffl anomaloffs samples. is scope coffld be effitended to mffltifiariate data, althoffgh flhile similaritffl metrics hafie been defieloped for mffltifiariate time-series [Yang & Shahabi, 2004], fle are not aflare of sffch metric for mffltifiariate efient seqffences. Machine learning algorithms designed for streaming data are actifielffl researched, nffmeroffs netflork-based and sensor-based applications infiolfiing data streams [START_REF] Pokrajac | Incremental local offtlier detection for data streams[END_REF]. Hoflefier, fefl nofieltffl detection methods are both incremental and sff cientlffl scalable to tackle these problems. Unsffperfiised anomalffl detection methods based on nofiel neffral netflorks sffch as s are also being researched [START_REF] Schlegl | Unsffperfiised anomalffl detection flith generatifie adfiersarial netflorks to gffide marker discofierffl[END_REF].

116 117 contraintes de calcffl a n de réagir rapidement affffi anomalies identi ées et de défielopper des algorithmes effiibles poffr la détection de nofffieafftés.  titre d'effiemple, la société informatiqffe poffr l'afiiation Amadeffs foffrnit des plateformes de réserfiation de billets dont le tra c est de plffsieffrs millions de transactions par seconde, prodffisant plffs de 3 millions de réserfiations par joffr et des pétaoctets de données stockées. Cee société gère près de la moitié des réserfiations de fiols dans le monde et sffbit des tentatifies de fraffde pofffiant caffser des pertes de refienffs et des indemnisations. Détecter des anomalies dans de tels fiolffmes de données est ffne tâche compleffie poffr ffn opérateffr hffmain; ce secteffr béné cierait donc grandement d'ffne approche afftomatisée et éfiolfftifie. En raison dff coût d'obtention de données labélisées et de la di cfflté des méthodes sffperfiisées à identi er des anomalies peff fréqffentes [START_REF] Japkoflicz | [END_REF], la détection de nofffieafftés est sofffient abordée comme ffn problème d'apprentissage afftomatiqffe non sffperfiisé [START_REF] Pimentel | A refiiefl of nofieltffl detection[END_REF].  noter qffe ce problème est également décrit comme semi-sffperfiisé lorsqffe le jeff de données d'apprentissage est effiempt d'anomalies [START_REF] Chandola | Anomalffl detection for discrete seqffences: A sffrfieffl[END_REF]. Noffs considérons ici ffn problème d'apprentissage non sffperfiisé dans leqffel est donné en entrée ffn ensemble de fiecteffrs X = [x 1 , . . . , x n ] ⊤ . Détecter des nofffieafftés consiste en l'identi cation de nofffieaffffi fiecteffrs de test x * qffi dièrent considérablement dff jeff d'entraînement X. La détection de nofffieafftés est donc ffn problème de classi cation contenant ffne seffle classe et fiisant à constrffire ffn modèle décrifiant la distribfftion des échantillons normaffffi d'ffn jeff de données. Les méthodes d'apprentissage non sffperfiisées permeent d'e ectffer des prédictions sffr les données de test x * ; étant donné ffn modèle afflant poffr paramètres θ, les prédictions sont dé nies par h(x * |X, θ). En sffpposant qffe la fonction h(x * |X, θ) soit continffe, celle-ci pefft être considérée comme ffn score permeant de séparer les données nominales des anomalies. Ces scores permeent d'ordonner les fiecteffrs de test x * , meant en éfiidence les points qffi dièrent le plffs des données d'entraînement X. Plffs spéci qffement, il est possible de dé nir ffn seffil α et de considérer qff'ffn point de test x * est ffne nofffieaffté lorsqffe h(x * |X, θ) > α.

Après ce seffillage, la qffalité d'ffn algorithme de détection de nofffieafftés pefft être éfialffée en se basant sffr des mesffres proposées dans la liératffre poffr les problèmes de classi cation binaires, dff nom de précision et rappel. Dans cee thèse, noffs éfialffons les résffltats des méthodes de détection de nofffieafftés en faisant fiarier α sffr la plage de fialeffrs prise par h(x * |X, θ) sffr ffn ensemble de points de test. Lorsqffe noffs modi ons α, noffs obtenons donc ffn ensemble de fialeffrs de précisions et rappels formant ffne coffrbe précision-rappel. Noffs pofffions ensffite calcffler la sffrface soffs cee coffrbe, nommée la précision moyenne ( ). En pratiqffe, ffne fialeffr optimale poffr α est sélectionnée a n d'obtenir ffn éqffilibre entre la précision dans les anomalies relefiées et le nombre de faffffi positifs.

La détection de nofffieafftés a fait l'objet d'étffdes théoriqffes approfondies [START_REF] Pimentel | A refiiefl of nofieltffl detection[END_REF],Hodge & Affstin, 2004]. Des éfialffations effipérimentales de l'état de l'art ont également été réalisées [START_REF] Emmo | A meta-analfflsis of the anomalffl detection problem[END_REF], étffdiant également la malédiction de la dimensionnalité [START_REF] Zimek | A sffrfieffl on ffnsffperfiised offtlier detection in high-dimensional nffmerical data[END_REF]. Dans l'ffn des trafiaffffi les plffs récents sffr la détection de nofffieafftés [START_REF] Pimentel | A refiiefl of nofieltffl detection[END_REF], ces méthodes sont réparties dans les catégories sffifiantes. (i) Les approches probabilistes estiment la densité de probabilité de X, dé nie par les paramètres dff modèle θ. Un score de nofffieaffté est ensffite obtenff fiia la fonction de firaisemblance P (x * |θ), qffi calcffle la probabilité qff'ffn point de test soit généré par la distribfftion estimée aff préalable. Ces approches sont génératifies et permeent ffne compréhension simple des données par le biais de distribfftions paramétrées. (ii) Les méthodes basées sffr la distance comparent des échantillons par paires en fftilisant difierses métriqffes de similarité. Les échantillons afflant peff de fioisins dans ffn rafflon donné off se trofffiant à ffne grande distance d'ffn groffpe de points reçoifient ffn score de nofffieaffté élefié. (iii) Les méthodes étffdiant le domaine d'appartenance des données délimitent le domaine de la classe nominale à l'aide d'ffne frontière de décision. Le label aribffé affffi points de test est ensffite basé sffr l'emplacement de ces points par rapport à cee limite. (ifi) Les approches reposant sffr la théorie de l'information mesffrent l'affgmentation de l'entropie caffsée par l'inclffsion d'ffn point de test dans la classe nominale. Les méthodes d'isolation (fi) sont ffne alternatifie et tentent d'isoler les fialeffrs peff fréqffentes des afftres échantillons. Ces techniqffes isolent donc les anomalies aff lieff de constrffire ffn modèle des points nominaffffi. (fii) La majorité des réseaffffi de neffrones non sffperfiisés fftilisés poffr la détection de nofffieafftés sont des afftoencodeffrs. Ces réseaffffi apprennent ffne représentation compressée des données d'apprentissage en minimisant l'erreffr obtenffe en comparant les données en entrée et les fiecteffrs reconstrffits en sortie. Les points de test présentant ffne erreffr de reconstrffction élefiée sont classi és comme anomalies.

Alors qffe la plffpart des tâches de détection d'anomalies reposent sffr des jeffffi de données nffmériqffes [START_REF] Emmo | A meta-analfflsis of the anomalffl detection problem[END_REF],Breffnig et al., 2000,Ramasflamffl et al., 2000], des méthodes de détection de nofffieafftés ont été appliqffées afiec sffccès sffr des données catégorielles [Hodge & Affstin, 2004], des série chronologiqffes [START_REF] Marchi | A nofiel approach for afftomatic acoffstic nofieltffl detection ffsing a denoising afftoencoder flith bidirectional lstm neffral netflorks[END_REF][START_REF] Kffndzeflicz | [END_REF]] des séqffences discrètes [START_REF] Chandola | Comparatifie efialffation of anomalffl detection techniqffes for seqffence data[END_REF], Warrender et al., 1999, Cohen, 1995] et des données miffites [Domingffes et al., 2018a[START_REF] Domingffes | Deep gaffssian process afftoencoders for nofieltffl detection[END_REF]. Noffs étffdions et décrifions l'état de l'art consacré affffi méthodes de détection de nofffieafftés dans le chapitre 2, inclffant des algorithmes adaptés affffi données nffmériqffes, catégorielles et affffi séqffences d'éfiènements. Le chapitre 3 détaille ffn algorithme probabiliste appelé Dirichlet Process Miffitffre Model ( ) qffe noffs entraînons par inférence fiariationnelle. L'fftilisation d'ffne miffitffre de distribfftions appartenant à la famille effiponentielle permet d'appliqffer ce modèle à des données de tfflpes miffites. Noffs e ectffons également ffne éfialffation effipérimentale des méthodes de l'état de l'art sffr des données nffmériqffes et catégorielles, inclffant l'algorithme , et comparons les performances de ces algorithmes en noffs basant sffr leffr capacité à détecter des nofffieafftés, leffr scalabilité, leffr robffstesse et leffr sensibilité à la malédiction de la dimensionnalité. Le chapitre 4 décrit ffn afftoencodeffr fftilisant des processffs Gaffssiens (Deep Gaffssian Process afftoencoder). Noffs proposons également ffne approche non paramétriqffe et probabiliste poffr aénffer les problèmes liés aff choiffi d'ffne architectffre appropriée poffr ce réseaff de neffrones, tofft en tenant compte de l'incertitffde des transformations e ectffées par les afftoencodeffrs. Noffs montrons notamment qffe cela pefft être réalisé tofft en entraînant le modèle sffr de grands fiolffmes de données. Le chapitre 5 étend nalement la comparaison des algorithmes de détection de nofffieafftés affffi méthodes compatibles afiec les séqffences temporelles. Cee dernière étffde détaille les performances des méthodes sffr ffn large éfientail de jeffffi de données appartenant à plffsieffrs domaines de recherche, tofft en foffrnissant des informations sffr la scalabilité et l'interprétabilité des algorithmes sélectionnés. Les proportions π de la miffitffre sont décrites par ffn processffs de Dirichlet ( ). Intffitifiement, ce processffs est similaire aff modèle dff bâton cassé, où les poids v k assignés affffi K composants de la miffitffre sont échantillonnés à partir d'ffne distribfftion Beta(1, w). Chaqffe composant est donc représenté par ffne distribfftion effiprimée soffs forme de famille effiponentielle. Les paramètres des fonctions de firaisemblance sont échantillonnés à partir de la distribfftion a posteriori appartenant également à la famille effiponentielle. Les paramètres de la distribfftion a posteriori sont estimés dffrant l'apprentissage dff modèle. La Figffre 7.1 résffme les dépendances entre les fiariables présentes dans le modèle. A n d'entraîner ce modèle, noffs optimisons ffne fonction représentant la limite inférieffre de la firaisemblance marginale p(X|θ), où θ représente les paramètres de la distribfftion a priori. L'application dff cadre de trafiail d'inférence fiariationnelle noffs permet d'obtenir des éqffations formant ffn algorithme d'espérance-maffiimisation (EM). Des itérations sffccessifies sffr les éqffations obtenffes optimisent de manière déterministe les paramètres de la fonction a posteriori.

L'algorithme fftilisant ffne miffitffre de composants, celffi-ci pefft donc être fftilisé a n de répartir des données en plffsieffrs groffpes, chaqffe groffpe contenant des données similaires. Le nombre de groffpes à fftiliser dans cee tâche est estimé par l'algorithme en fonction des données d'apprentissage.

En gffise de contribfftion sffpplémentaire, noffs présentons dans les appendices A et B la représentation soffs forme de famille effiponentielle de fonctions de firaisemblance et de distribfftions a priori conjffgffées et a posteriori. Un jeff de données composé à la fois de fiariables catégorielles et de données nffmériqffes soffs forme de oants et d'entiers pefft donc être modélisé par fiia ffn prodffit de distribfftions catégorielles, de distribfftions Normales mffltifiariées et de distribfftions de Poisson, le modèle captffrant par ailleffrs la corrélation entre ces caractéristiqffes et regroffpant les données par similarité.

É ' '

Noffs éfialffons l'algorithme sffr ffn large éfientail de tâches de détection de nofffieaffté. La compleffiité inhérente à ce domaine est indffite par la contamination des données d'entraînement par des anomalies, ainsi qffe par d'importantes disparités dans la forme, la taille et la densité des groffpes de données. La compleffiité de la détection de nofffieafftés et l'ancienneté des étffdes adressant ce problème motifient ffne nofffielle étffde effipérimentale dff domaine. Dans la deffffiième partie de ce chapitre, noffs étendons notre étffde des méthodes de détection de nofffieaffté (Chapitre 2)en e ectffant ffne comparaison effipérimentale approfondie de nombreffffi algorithmes de l'état de l'art.

Cee étffde fftilise 12 jeffffi de données pffbliqffes et labélisés, la plffpart étant recommandés poffr la détection d'anomalies dans [START_REF] Emmo | A meta-analfflsis of the anomalffl detection problem[END_REF], affffiqffels s'ajofftent 3 nofffieaffffi jeffffi de données indffstriels générés par les sfflstèmes de prodffction d'Amadeffs, entreprise majeffre dff secteffr dff fiofflage. Notre étffde fftilise dafiantage de données et de méthodes qffe les trafiaffffi précédents, et effiamine difiers mofflens d'fftiliser les données catégorielles.  l'infierse, la plffpart des étffdes antérieffres n'fftilisent qffe des données nffmériqffes et identi ent le plffs sofffient les anomalies présentent ffniqffement dans l'ensemble d'apprentissage, alors qffe notre étffde teste la capacité de généralisation des méthodes en détectant des nofffieafftés dans les données de test inconnffes dff modèle. Les algorithmes paramétriqffes et non paramétriqffes sélectionnés appartiennent à difierses approches, inclffant des algorithmes probabilistes, des méthodes basées sffr les plffs proches fioisins, des réseaffffi de neffrones, des méthodes basées sffr la théorie de l'information et des méthodes d'isolation. Leffrs performances sffr les jeffffi de données labélisés sont éfialffées par l'aire soffs les coffrbes et précision-rappel ( ), respectifiement nommées et précision mofflenne ( ). Les labels sont fftilisés ffniqffement a n de mesffrer les performances des méthodes, et ne sont donc pas accessibles par lesdites méthodes. Ces mesffres sont reportées sffr la Figffre 7.2. Figffre 7.2: Aire mofflenne soffs les coffrbes et précision-rappel par algorithme (triées par décroissante).

nale ne sffit pas ffne distribfftion gaffssienne off est répartie en plffsieffrs groffpes. Dans ces cas, nos tests démontrent la sffpériorité des alternatifies non paramétriqffes.

a montré de bonnes performances dans la détection d'anomalies, ffl compris sffr les jeffffi de données contenant de nombreffses dimensions, aff priffi d'ffne faible scalabilité. L'fftilisation de familles effiponentielles poffr s'est réfiélée effitrêmement coûteffse en temps de calcffl sans poffr afftant améliorer de manière sffbstantielle la détection de nofffieafftés e ectffée par la même méthode se basant sefflement des distribfftions gaffssiennes (

). Néanmoins, l'fftilisation de distribfftions catégorielles dans a permis de rédffire le temps de calcffl sffr les ensembles de données de tfflpes miffites, tofft en améliorant les performances de détection d'anomalies sffr ces mêmes jeffffi de données. , , , et ont obtenff les plffs basses performances, les trois premières méthodes afflant également ffne faible scalabilité. Noffs afions par ailleffrs éfialffé la densité modélisée par chaqffe méthode et mis en éfiidence ffn cas limite poffr dans le cas d'ensembles de données composés de plffsieffrs groffpes distincts. Si cee étffde cofffire la plffpart des algorithmes commffnément fftilisés poffr résoffdre des problèmes de détection de nofffieafftés, certains algorithmes spéci qffes pefffient être choisis dans le cas d'enfiironnements contraignants. Par effiemple, les capacités d'ffn algorithme à être distribffé, entraîné sffr ffn ffffi de données off entraîné par mini-lots pefffient être des conditions préalables à la gestion de grands fiolffmes de données. L'effitension de méthodes effiistantes a n de sffpporter ces fonctionnalités est ffn important domaine de recherche, les méthodes ,  , off étant déjà compatibles. D'afftres perspectifies de recherche sffr la détection d'anomalies s'orientent également fiers les méthodes d'apprentissage ensemblistes [START_REF] Zimek | Ensembles for ffnsffperfiised offtlier detection: Challenges and research qffestions a position paper[END_REF] et la détection de fialeffrs effitrêmes sffr des jeffffi de données mfflti-fiffes [START_REF] Iflata | [END_REF].

poffrrait être amélioré en apprenant par inférence fiariationnelle le seffil de troncatffre K sffr le nombre de composants fftilisés dans la miffitffre. Détecter afftomatiqffement la meilleffre fonction de firaisemblance à fftiliser poffr chaqffe caractéristiqffe o rirait également ffne effiibilité sffpplémentaire aff modèle. Notre implémentation de cee méthode poffrrait en n être étendffe poffr prendre en charge l'apprentissage par mini-lots, ce qffi per-merait d'entraîner cet algorithme de manière distribffée.

C 4 D G P  '

Les réseaffffi de neffrones profonds sont récemment defienffs la méthode d'apprentissage prifiilégiée poffr les problèmes sffperfiisés, notamment en raison de leffr importante capacité de représentation et de leffr scalabilité sffr de grands fiolffmes de données [START_REF] Lecffn | Deep learning[END_REF].

Ces méthodes ont permis d'aeindre d'efficellentes performances dans de nombreffffi domaines d'applications tels qffe la fiision par ordinateffr [START_REF] Krizhefiskffl | ImageNet classi cation flith deep confiolfftional neffral netflorks[END_REF], la reconnaissance fiocale [START_REF] Hinton | Deep neffral netflorks for acoffstic modeling in speech recognition: e shared fiiefls of foffr research groffps[END_REF] et le traitement dff langage natffrel [START_REF] Collobert | [END_REF]. La qffestion est donc de safioir si ces techniqffes pefffient également s'appliqffer et foffrnir des résffltats d'ffne telle qffalité dans le cas de l'apprentissage non sffperfiisé et plffs spéci qffement poffr de la détection de nofffieafftés. Les réseaffffi de neffrones profonds appliqffés à l'apprentissage non sffperfiisé font l'objet d'importantes recherches [Kingma & Welling, 2014,Goodfellofl et al., 2014], mais noffs ignorons encore si ceffffi-ci pefffient concffrrencer les méthodes de détection de nofffieafftés modernes. Noffs n'afions pas connaissance d'étffdes récentes sffr les réseaffffi de neffrones fiisant la détection de nofffieafftés. Le dernier article sffr ce sffjet date de 15 ans [Markoff & Singh, 2003] et n'inclffs donc pas les défieloppements récents e ectffés dans ce domaine.

Les principaffffi challenges liés à l'fftilisation de réseaffffi de neffrones profonds poffr des tâches d'apprentissage sont (i) la nécessité de spéci er ffne architectffre adaptée aff problème à résoffdre et (ii) la nécessité de contrôler la généralisation dff modèle. Difierses formes de régfflarisation ont été proposées a n d'aénffer le problème de sffrapprentissage et d'améliorer la généralisation, comme le dropout [Srifiastafia et al., 2014b[START_REF] Gal | [END_REF], mais des qffestions restent en sffspens sffr la manière et les principes généraffffi de conception de ces réseaffffi de neffrones. Les processffs gaffssiens profonds ( s) sont des candidats idéaffffi poffr adresser simffltanément les problèmes (i) et (ii) ci-dessffs. Les s sont des modèles probabilistes non paramétriqffes profonds fftilisant ffne composition de processffs probabilistes qffi permeent d'fftiliser implicitement ffn nombre in ni de neffrones dans chaqffe coffche [START_REF] Damianoff | [END_REF], Dfffienaffd et al., 2014]. De plffs, leffr natffre probabiliste indffit ffne forme de régfflarisation empêchant le sffrapprentissage et permeant de sélectionner le modèle de manière e cace [Neal, 1996]. Bien qffe les s soient particfflièrement arafflants poffr résoffdre les problèmes généraffffi adressés par les réseaffffi de neffrones, l'apprentissage des ces modèles est di cile à résoffdre. Récemment, plffsieffrs contribfftions ont été apportées a n de simpli er l'entraînement de ces modèles [START_REF] Bffi | Deep Gaffssian Processes for Regression ffsing Approffiimate Effipectation Propagation[END_REF], Cfftajar et al., 2017, Bradshafl et al., 2017], et ceffffi-ci pefffient actffellement concffrrencer les réseaffffi de neffrones profonds ( s) en termes de scalabilité et précision tofft en foffrnissant ffne meilleffre qffanti cation de l'incertitffde [START_REF] Gal | [END_REF], Cfftajar et al., 2017, Gal et al., 2017].

Ce chapitre présente ffn algorithme non sffperfiisé poffr la détection de nofffieafftés basé sffr les processffs gaffssiens profonds et fftilisant ffne architectffre afftoencodeffr. Le afftoencodeffr proposé ( -) e ectffe ffne approffiimation des processffs gaffssiens de chaqffe coffche dff modèle en générant de nofffielles dimensions aléatoires et en entraînant le modèle obtenff par inférence fiariationnelle stochastiqffe. Les principales caractéristiqffes de l'approche proposée sont les sffifiantes: (i) Les -s sont des modèles probabilistes non sffperfiisés capables d'estimer des distribfftions effitrêmement compleffies et disposent d'ffne fonction de notation poffr prédire des scores d'anomalies; (ii) Les -s pefffient modéliser tofft tfflpe de données, ffl compris les cas comportant des caractéristiqffes de tfflpes miffites, telles qffe des données continffes, des entiers positifs et des fiariables catégorielles; (iii) L'entraînement dff modèle ne nécessite pas de factorisations matricielles coûteffses en temps de calcffl et potentiellement problématiqffes d'ffn point de fiffe algébriqffe, mais ffniqffement des prodffits de tenseffrs; (ifi) Les -s pefffient être entraînés à l'aide d'ffn apprentissage par mini-lots, et pefffient donc effiploiter les infrastrffctffres distribffées ainsi qffe les GPUs; (fi) L'entraînement des -s fftilise l'inférence fiariationnelle stochastiqffe, et pefft donc être implémenté aisément à l'aide d'offtils de di érenciation afftomatiqffe, rendant cee méthode pratiqffe et scalable poffr la détection de nofffieafftés. Bien qffe noffs laissions cela poffr des trafiaffffi ffftffrs, noffs notons qffe -pefft être facilement adapté à di érents tfflpes de représentations, par effiemple afiec des ltres de confiolfftion poffr les applications basées sffr des images, ce qffi permet ffn entraînement simffltané dff modèle et des ltres.

L'algorithme -est comparé afiec de nombreffffi réseaffffi de neffrones concffrrents proposés dans la liératffre conçffs poffr adresser les problèmes non sffperfiisés relatifs à d'importants fiolffmes de données, comme les afftoencodeffrs fiariationnels (

) [Kingma & Welling, 2014], les processffs gaffssiens fiariationnels afftoencodés ( -) [START_REF] Dai | Variationallffl Affto-encoded Deep Gaffssian Processes[END_REF] et l'estimateffr de densité afftorégressif (

) [START_REF] Uria | Neffral afftoregressifie distribfftion estimation[END_REF].  trafiers ffne série d'effipériences, dans lesqffelles noffs comparons ces méthodes afiec l'état de l'art des méthodes de détection de nofffieafftés, comme Isolation Forest [START_REF] Liff | Isolation forest[END_REF] et l'estimation de densité robffste par nofflaff (

) [Kim & Sco, 2012], noffs démontrons qffe les -s o rent ffne capacité de modélisation effiible et ffn algorithme d'apprentissage pratiqffe, tofft en aeignant des performances de pointe.

Les -s sont des réseaffffi de neffrones fftilisant ffne architectffre dite d'afftoencodeffr. Un afftoencodeffr est ffn modèle dont les coffches sont difiisées en deffffi parties, celles appartenant à l'encodeffr et celles appartenant aff décodeffr. La partie encodeffr dff réseaff de neffrones transforme chaqffe entrée x en ffn fiecteffr de fiariables latentes z, tandis qffe la partie décodeffr tente de reconstrffire le fiecteffr d'entrée x à partir des fiariables latentes z. Les fiariables latentes étant généralement de dimension inférieffre affffi fiecteffrs d'entrée, le réseaff apprend donc ffne représentation compressée des données. L'entraînement de ce modèle est le plffs sofffient réalisé en minimisant l'erreffr de reconstrffction entre les fiecteffrs en entrée et ceffffi en sortie prodffits par le réseaff.

Dans cee thèse, noffs proposons de constrffire les fonctions de transformations de l'encodeffr et dff décodeffr à l'aide de processffs gaffssiens ( ). En conséqffence, noffs soffhaitons apprendre de manière conjointe ffne projection non linéaire probabiliste basée sffr les s (l'encodeffr) et ffn modèle de fiariables latentes basé sffr les s (le décodeffr). Les blocs de constrffction formant les coffches des réseaffffi de neffrones s sont les processffs gaffssiens ( s), qffi sont des distribfftions a priori sffr des fonctions; de manière formelle, ffn est ffn ensemble de fiariables aléatoires afflant poffr propriété qffe tofft soffs-ensemble de ces fiariables est conjointement gaffssien [START_REF] Rasmffssen | Gaussian Processes for Machine Learning[END_REF]. La fonction de cofiariance d'ffn modélise la cofiariance entre les fiariables aléatoires sffr di érents fiecteffrs d'entrée, et il est possible de dé nir ffne fonction paramétriqffe poffr leffr mofflenne.

Empiler plffsieffrs coffches de s dans ffn réseaff signi e qffe la sortie d'ffn est donnée en entrée aff constitffant la coffche sffifiante; cee constrffction donne lieff à ffne composition de processffs stochastiqffes, similaire à ffne composition de fonctions. A n d'illffstrer nos propos, la Figffre 7.3 représente ffn -à deffffi coffches. Les performances de notre modèle sont éfialffées en mesffrant l'aire soffs la coffrbe précisionrappel. Ces mesffres sont e ectffées sffr 11 jeffffi de données labélisés poffr la détection d'anomalies, et nos effipériences comparent ffn total de 12 algorithmes, dont 10 réseaffffi de neffrones et deffffi algorithmes profienant de l'état de l'art de la détection de nofffieafftés. Ces mesffres sont reportées dans le Tableaff 4.3.

A n de comparer la confiergence et la scalabilité de notre réseaff de neffrones afiec l'état de l'art, noffs reportons également dans la Figffre 7.4 la confiergence dff log de la fonction de firaisemblance mofflenne (

) ainsi qffe l'aire soffs la coffrbe précision-rappel. Nos effipériences montrent qffe les -s aeignent en mofflenne les meilleffres performances dans le cadre de la détection de nofffieafftés. L'fftilisation d'ffne fonction de firaisemblance somax poffr les fiariables catégorielles et l'affgmentation dff nombre de coffches de ces réseaffffi de neffrones noffs permet en offtre d'améliorer les performances des -s. L'étffde de la confiergence montre ffn apprentissage rapide de la fonction firaisemblance poffr les -s, en particfflier lors de l'fftilisation d'ffn nofflaff . Ceci démontre l'e cacité de la régfflarisation des s et leffr capacité à généraliser lors de l'apprentissage de modèles compleffies. Des effipériences sffpplémentaires e ectffées sffr les fiariables latentes montrent par ailleffrs qffe les -s ont ffne efficellente capacité à rédffire le nombre de dimensions d'ffn jeff de données tofft en conserfiant les di érences entre échantillons (Figffre 4.5). Ce chapitre étffdie le problème de la détection des anomalies appliqffé affffi données temporelles, en particfflier dans le cadre de séqffences discrètes d'éfiénements ordonnés dans le temps. Ce problème pefft être difiisé en deffffi catégories. Le premier est la détection de points de rupture, où les ensembles de données sont de longffes séqffences dans lesqffelles noffs cherchons à localiser des soffs-séqffences anormales et contigffës, dénotant ffn changement soffdain de comportement. Les cas d'fftilisation relatifs à ce problème sont la lectffre de capteffrs [START_REF] Kffndzeflicz | [END_REF] et la first story detection [START_REF] Petrofiić | Streaming rst storffl detection flith application to tflier[END_REF]. Une deffffiième catégorie considère les jeffffi de données comme des ensembles de séqffences et cible la détection de séqffences anormales par rapport affffi échantillons nominaffffi. Notre étffde se concentre sffr ce dernier domaine, qffi englobe des cas d'fftilisation tels qffe l'identi cation de protéines poffr la génomiqffe [START_REF] Chandola | Comparatifie efialffation of anomalffl detection techniqffes for seqffence data[END_REF],Sffn et al., 2006], la détection de fraffdes et d'intrffsions [Maffiion & Toflnsend, 2002, Warrender et al., 1999, Chandola et al., 2008] et l'analfflse de comportements fftilisateffr ( ) [START_REF] Scfflleffl | [END_REF]]. Bien qff'il s'agisse d'ffn sffjet d'intérêt dans la liératffre, la plffpart des étffdes analfflsant ce problème se concentrent sffr ses aspects théoriqffes [START_REF] Gffpta | Offtlier detection for temporal data: A sffrfieffl[END_REF], Chandola et al., 2012], et ne foffrnissent donc pas d'éfialffation ni de comparaison effipérimentale des algorithmes pofffiant résoffdre ce problème. Chandola et al. présentent ffne comparaison des méthodes de détection de nofffieafftés poffr les données séqffentielles, mais leffr article fftilise ffne métriqffe artisanale qffi n'est pas fialidée par la liératffre poffr mesffrer les performances, et n'inclffs pas les algorithmes récemment pffbliés dans le domaine. Notre trafiail prolonge les étffdes précédentes en ffl ajofftant les contribfftions sffifiantes: (i) comparaison des performances de détection de nofffieafftés de 12 algorithmes, en inclffant de nofffieaffffi réseaffffi de neffrones, sffr 81 jeffffi de données contenant des séqffences discrètes issffes de difiers domaines de recherche; (ii) éfialffation de la robffstesse des méthodes sélectionnées à l'aide de jeffffi de données contaminés par des fialeffrs effitrêmes, contrairement affffi étffdes précédentes qffi se limitent à des données d'entraînement effiemptes d'anomalies; (iii) éfialffation de la scalabilité de chaqffe algorithme, en reportant le temps de calcffl reqffis par l'apprentissage et la prédiction, la consommation de mémoire et la capacité de détection d'anomalies sffr des jeffffi de données sfflnthétiqffes comportant ffn nombre croissant d'échantillons, d'éfiènements dans chaqffe séqffence et d'anomalies; (ifi) étffde de l'interprétabilité des di érentes approches dans le bfft de foffrnir des effiplications et de motifier les prédictions dff modèle entraîné.  notre connaissance, cee étffde est la première à éfialffer les méthodes de détection de nofffieafftés poffr les séqffences discrètes afiec afftant de jeffffi de données et d'algorithmes. Ce trafiail est également le premier à éfialffer la scalabilité des méthodes sélectionnées, critère de sélection important poffr les enfiironnements soffmis à de fortes contraintes sffr les temps de réponse, et poffr les sfflstèmes limités en ressoffrces tels les sfflstèmes intégrés. Les 81 jeffffi de données fftilisés sont liés à la génomiqffe, à la détection d'intrffsions et à l'analfflse dff comportement des fftilisateffrs. Ces jeffffi de données sont difiisés en 9 catégories et cofffirent ffn total de 68 832 séqffences (Table 5.2).

Une fois nos effipériences réalisées, noffs afions pff comparer les performances des algorithmes sffr la détection de nofffieafftés. Cependant, poffssant plffs loin notre analfflse des résffltats sffr ces jeffffi de données, noffs afions soffhaité constrffire ffn modèle d'inférence dff comportement de chaqffe méthode en fonction des caractéristiqffes des données d'entraînement. Noffs afions donc appris ffn méta-modèle interprétable en noffs basant sffr les caractéristiqffes des jeffffi de données reportés dans le Tableaff 5.2. Les performances des méthodes et les caractéristiqffes des jeffffi de données sont foffrnies en entrée, et noffs constrffisons ffn arbre de décision par algorithme a n de prédire les performances de la méthode sélectionnée. Noffs obtenons des modèles de classi cation binaires qffi prédisent si ffn algorithme gffrera dans les 25% plffs performants off dans les 25% moins performants. .4 5.9 3.7 5 5.6 3.7 4.9 5.7 5.9 5.1 3.8 5.9 4.8 4.7 5 5.1 4.4 5.8 4 4.7 4.8 6.5 5.5 3.8 5.3 2.5 2.1 2.9 5.1 2.1 3.6 4.7 2 4.2 4.6 5.2 0.6 2.6 4.1 3.1 3.7 2.8 2.9 4.3 4.9 2.4 4.4 3.4 1.9 5.1 2.3 4.5 6.2 7.2 6.4 4 6.7 8.2 4.8 6.8 5.8 4.9 4.2 5.7 7.1 2.7 5.9 5.8 4.8 6.3 5.6 4.7 6.6 3 6 4 4.9 6.9
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5.5 7.2 7.3 6.8 5.9 7.3 10 5.8 7.7 5.8 5.8 5 7.4 7.7 1.8 6.7 6.7 6.4 6.2 7 5.5 7.5 4.9 6.7 4.2 5.9 7.6 résister à ffne charge importante inhérente affffi enfiironnements de prodffction. Un manqffe de scalabilité a été noté poffr et les méthodes basées sffr des matrices de distances, telles k-, k-et . Le recoffrs à des approches alternatifies dans le cadre d'importants fiolffmes de données est donc recommandé. Les réseaffffi de neffrones montrent ffn manqffe d'interprétabilité, sffggérant des affies de recherche ffftffrs motifiés par l'fftilisation massifie de ces méthodes.

P

Cee thèse sffggère plffsieffrs affies de recherches pofffiant donner lieff à des trafiaffffi ffftffrs. Noffs afions constaté qffe de nombreffses étffdes font ffsage de l'aire soffs la coffrbe poffr comparer des méthodes de détection d'anomalies sffperfiisées off non sffperfiisées. Bien qffe cee métriqffe soit appropriée poffr les problèmes de classi cation comportant ffne distribfftion de classes éqffilibrée, noffs rappelons qffe celle-ci ne doit pas être fftilisée poffr la détection d'anomalies. Dans ce cas spéci qffe, l'aire soffs la coffrbe précision-rappel, appelée précision mofflenne, préfiafft. Le temps de calcffl est ffne caractéristiqffe importante lors de la sélection d'ffn algorithme. La distribfftion de méthodes de détection de nofffieafftés permerait d'fftiliser des ensembles de données plffs fiolffmineffffi tofft en résolfiant les problèmes de scalabilité [START_REF] Oteffl | Fast distribffted offtlier detection in miffied-aribffte data sets[END_REF], meant ainsi en éfiidence d'éfientffels compromis, propres à chaqffe méthode, entre précision et temps de calcffl. Dans le cas de , le seffil de troncatffre sffr le nombre de composants fftilisés dans la miffitffre poffrrait être remplacé par ffne fiariable fiariationnelle, ce qffi améliorerait le processffs d'estimation de densité et poffrrait rédffire le temps de calcffl. L'entraînement par mini-lots représente également ffn affie d'amélioration poffr l'algorithme , cee fonctionnalité améliorant la scalabilité de la méthode tofft en rendant possible l'fftilisation dff calcffl distribffé et des GPUs. Les fiariables latentes prodffites par les -s sont probabilistes, ce qffi indffit ffne incertitffde dans les transformations. Entraîner ffn algorithme d'estimation de densité sffr ces fiariables latentes permerait de générer de nofffielles entrées poffr le décodeffr, transformant les -s en algorithmes génératifs. Peff de trafiaffffi appliqffent la détection de nofffieafftés affffi images, laissant la porte offfierte à des trafiaffffi ffftffrs. L'ajofft de coffches de confiolfftion dans les -s rendrait ces méthodes appropriées poffr la classi cation d'images, ce qffi permerait l'inférence dff modèle et des ltres. Associer des coffches de confiolfftion de dimension 1 à ffn prodffit de firaisemblances de tfflpe somax permettrait affffi -s d'apprendre des modèles temporels orientés fiers les séqffences d'éfiénements discrets, permeant l'identi cation de séqffences anormales. Dans le cas de séqffences mffl-tifiariées, des métriqffes de similarité ont été défieloppées poffr les séries temporelles [Yang & Shahabi, 2004]. Cependant, noffs n'afions pas connaissance d'ffne telle métriqffe poffr les séqffences d'éfiénements discrets. Les algorithmes d'apprentissage afftomatiqffe conçffs poffr être entraînés sffr des ffffi de données continffs sont en coffrs d'infiestigation, ceffffi-ci répondant affffi contraintes des nombreffses applications réseaffffi off reposant sffr des capteffrs qffi impliqffent des ffffi de données [START_REF] Pokrajac | Incremental local offtlier detection for data streams[END_REF]. Cependant, peff de méthodes de détection de nofffieafftés sont à la fois incrémentales et de scalabilité sff sante poffr résoffdre ces problèmes. Des méthodes de détection d'anomalies non sffperfiisées basées sffr de nofffieaffffi réseaffffi de neffrones, tels qffe les s, font également l'objet de recherches [START_REF] Schlegl | Unsffperfiised anomalffl detection flith generatifie adfiersarial netflorks to gffide marker discofierffl[END_REF].

N (x|µ, Σ) = (2π) -d 2 |Σ| -1 2 e -1 2 (x-µ) T Σ -1 (x-µ) = 1 √ 2π d exp(- 1 2 ln |Σ| - 1 2 (x -µ) T Σ -1 (x -µ)) = 1 √ 2π d exp(tr ( Σ -1 µx T ) - 1 2 tr ( Σ -1 xx T ) - 1 2 µ T Σ -1 µ - 1 2 ln |Σ|) = 1 √ 2π d exp        Σ -1 µ -1 2 Σ -1    T •    x xx T    -( 1 2 µ T Σ -1 µ + 1 2 ln |Σ|)     = h(x) exp(η(θ) • T (x) -A(θ)) (A.1)
is gifies ffs the follofling parameter and infierse parameter mappings:

   η 1 = Σ -1 µ η 2 = -1 2 Σ -1    µ = -1 2 η -1 2 η 1 Σ = -1 2 η -1 2 A.2 W W (x|V , n) = |x| n-d-1 2 e -tr(V -1 x) 2 2 nd 2 |V | n 2 Γ d ( n 2 ) = exp(- 1 2 tr(V -1 x) + n -d -1 2 ln |x| - nd 2 ln 2 - n 2 ln |V | -ln Γ d ( n 2 )) = exp        -1 2 V -1 n-d-1 2    T •    x ln |x|    -( n 2 (d ln 2 + ln |V |) + ln Γ d ( n 2 ))     = h(x) exp(η(θ) • T (x) -A(θ)) (A.2)
Where Γ d is the mffltifiariate gamma fffnction. e parameter mappings are: 
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) = h(x) exp(η(θ) • T (x) -A(θ)) (A.6) 152
Which resfflts in the follofling parameter mappings: We recognize the corresponding conjffgate prior flith the follofling parameters, flhere p, q, r, s > 0 and f (α, β|p, q, r, s) ∝ p α-1 e -βq Γ(α) r β -αs if α, β > 0, 0 otherflise. As prefiioffslffl, the effipectations for the posterior cannot be compffted dffe to the missing analffltical form for the normalization factor.
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  +∞[. Note that these mappings can be refiersed, resfflting in the original data flithofft loss of information. We plot the CDF and infierse CDF of N (µ = 0, σ = 1) in Figffres 3.1 and 3.2, flhile Figffres 3.3 and 3.4 shofl the CDF and infierse CDF of Γ(shape = 1, scale = 2).

Figffre

  Figffre 3.1: Normal CDF φ N (µ=0,σ=1) (x)

  Figffre 3.5: Graphical model of a Dirichlet Process Miffitffre Model in plate notation.

  the cffrfie is estimated ffsing trapezoidal rffle flhile the area ffnder the precision-recall cffrfie is compffted bffl afierage precision ( ). Figffre 3.7 shofls the mean and standard defiiation per algorithm and dataset flhile gffre 3.8 reports the . For the claritffl of presentation, gffre 3.6 shofls the global afierage and standard defiiation afierage of both metrics, sorting algorithms bffl decreasing mean afierage precision ().

Figffre 3 .

 3 Figffre 3.8: Mean and std area ffnder the

  area under the curve (AUC)

Figffre 3 .

 3 Figffre 3.11: Robffstness for increasing nffmber of samples

Figffre 3 .

 3 Figffre 3.19: Segmentation contoffrs per algorithm on the scaled dataset. Anomalffl scores are normalized.

  for the proposed -model reqffires solfiing the follofling integral p(x * |X, Ω, Θ) = ∫ p(x * |W, Ω, Θ)p(W|X, Ω, Θ)dW, (4.15)

  = 1e5, b = 200, lr = 0.01, rf = 100, gp = d, q(Ω) f ixed = 1000, Θ f ixed = 7000, mc train = 1, mc test = 100, ll = N -- i = 1e5, b = 200, lr = 0.01, rf = 100, gp = {d, 3, d}, q(Ω) f ixed = 1000, Θ f ixed = 7000, mc train = 1, mc test = 100, ll = N -- i = 1e5, b = 200, lr = 0.01, rf = 100, gp = d, q(Ω) f ixed = 1000, Θ f ixed = 7000, mc train = 1, mc test = 100, ll = {N, S} -- i = 1e5, b = 200, lr = 0.01, rf = 100, gp = {d, 3, d}, q(Ω) f ixed = 1000, Θ f ixed = 7000, mc train = 1, mc test = 100, ll = {N, S} -- nl = 2, epoch = 1000, units = {max( d 2 , 5), max( d 3 , 4)}, kernel = , inducing_pts = 40, mlp_units = {300, 150} - nl = 1, i = 1e5, b = 200, lr = 0.01, units = d, activation = sigmoid, dropout = 0.5 - nl = 5, i = 1e5, b = 200, lr = 0.01, units = {d, 0.8d, 0.6d, 0.8d, d}, activation = sigmoid, dropout = 0.5 - nl = 1, i = 4000, b = 1000, lr = 0.001, hiden = 50 - nl = 2, i = 4000, b = 1000, lr = 0.001, hiden = {100, 100} - nl = 2, i = 5000, b = 200, lr = 0.005, decay = 0.02, units = {100, 100}, activation = , k = 20 bandwidth = , loss = Huber contamination = 0.5

  classi cation datasets flhich coffld indffce clffsters of offtliers (See Section 3.3.1).

Figffre

  Figffre 4.4: Le: normalized dataset. Right: latent representation of the dataset for a 2-laffler -(100,000 iterations, 300 Monte Carlo samples).

Figffre 4. 5 :

 5 Figffre 4.5: Dimensionalitffl redffction performed on 4 classi cation datasets.--- flas trained for 100,000 iterations, and ffsed 20 Monte Carlo iterations to sample the latent fiariables.

3 Pfflthon

 3 100, s = 10 5  iters = 100, batch = 128, hidden = 40, enc_dropout = 0.5, dec_dropout = 0. -3 Pfflthon batch = 128, iters = 50, hidden = 40, δ = 10 -4

Figffre

  

  Figffre 5.4: Robffstness for increasing nffmber of samples

  Figffre 5.6: Training time for increasing nffmber of samples

  Figffre 5.8: Training time for increasing seqffence length ese tests shofl the limitations of , flhich sff ers from a long training step, efien for datasets of reasonable size. Distance-based methods and  also shofl limited scalabilitffl, althoffgh k-profiide fast predictions and  easilffl sffpports datasets containing 106

  Miffitffre Model est dé ni par ffn ensemble de fiariables latentes et de paramètres W . Étant donné ffn ensemble d'obserfiations X, noffs considérons tofft d'abord la densité jointe p(X, W ) = p(W )p(X|W ). (7.1) Notre modèle bafflésien génère les fiariables latentes à partir d'ffne distribfftion a priori p(W ) et fiise à modéliser la fonction de firaisemblance p(X|W ) qffi est sofffient insolffble. L'inférence de ce modèle consiste à estimer la distribfftion a posteriori p(W |X). Cee tâche est réalisée en approffiimant p(W |X) par la distribfftion fiariationnelle q(W ) en fftilisant l'inférence fiariationnelle. Cee approffiimation est ici e ectffée par la méthode de champ mofflen.

Figffre 7. 1 :

 1 Figffre 7.1: Modèle graphiqffe dff Dirichlet Process Miffitffre Model.

  Figffre 7.4: Éfiolfftion de la précision mofflenne ( ) et dff log de la fonction de firaisemblance () aff coffrs dff temps poffr les réseaffffi de neffrones sélectionnés. Les mesffres sont e ectffées sffr des données de test lors d'ffne fialidation croisée (3 folds). Poffr les deffffi métriqffes, des résffltats élefiés indiqffent de bonnes performances.

  Ces arbres effiposent les forces et les faiblesses des méthodes étffdiées et meent en éfiidence les caractéristiqffes des données < N ≤ 500 N

  Figffre 7.5: Capacité de détection d'anomalies par algorithme et par caractéristiqffe. Un score proche de 10 indiqffe qffe la méthode est la plffs à même de détecter des anomalies sffr ce tfflpe de données. Un score proche de 0 signi e qffe la méthode est parmi les moins e caces poffr cet ensemble de données. N est le nombre d'échantillons; p A la proportion d'anomalies; M L , µ L et S L sont le minimffm, la mofflenne et l'entropie sffr la longffeffr des séqffences; σ et S σ sont le nombre d'éfiènements et l'entropie sffr cee distribfftion; T 5 est la proportion des données représentée par les 5% d'éfiènements les plffs fréqffents; L 1 est la proportion d'éfiènements rares représentant 1% des données; , et correspondent affffi jeffffi de données de génomiqffe, intrffsion et comportements fftilisateffrs.

  assffmes a preliminarffl fiectorization of the matrices as effiplained in Section A.1.Λ|V , n ∼ W (Λ|V , n) (A.3) µ|µ 0 , λ, Λ ∼ N (µ|µ 0 , (λΛ) -1 ) (A.4) (µ, Λ) ∼ N W (µ 0 , λ, V , n) (A.5) N W (x, Λ|µ 0 , λ, V , n) -d 2 |(λΛ) -1 | -1 2 e -1 2 (x-µ 0 ) T λΛ(x-µ 0 )

β(=

  this prior are λ 0 , x 0 and y 0 . Hoflefier, its normalization factor does not hafie a closed form flhich limits the ffse of the Beta distribfftion.π(α, β|λ 0 , x 0 , y 0 ) ∝ ( Γ(α + β) x) exp(η(θ) • T (x) -A(θ)) * |λ) = h(η * ) exp(λ T 1 η * + λ 2 (-a(η * ))a(λ)) p) nλ 2 e -a(λ) = p (λ 1 +1)-1 (1p) (nλ 2 -λ 1 +1)-1 e -a(λ) = nλ 2λ 1 + 1e effipectation of terms of the sff cient statistics for the posterior are gifien thereaer, 155 flhere ψ is the digamma fffnction.(τ 1 + 1) + ln Γ(β) -ln Γ(τ 1 + β + 1)) = ψ(τ 1 + 1)ψ(τ 1 + β + 1) = ψ(α)ψ(α + β) (B.2) E[-a(η * )] = ∂a(• • • , τ 2 ) ∂τ 2 = ∂ ∂τ 2 (ln Γ(α) + ln Γ(nτ 2τ 1 + 1) -ln Γ(α + nτ 2τ 1 + 1)) = nψ(nτ 2τ 1 + 1)nψ(α + nτ 2τ 1 + 1) = nψ(β)nψ(α + β) * |λ) = h(η * ) exp(λ T 1 η * + λ 2 (-a(η * ))a(λ)) * |λ) = h(η * ) exp(λ 1 η * + λ 2 (-a(η * ))a(λ)) = exp(λ 1 ln λ 0λ 2 λ 0 -ln Γ(α) + α ln(β)) (τ 1 + 1) -(τ 1 + 1) ln β) = ψ(τ 1 + 1) -ln β = ψ(α) -ln β |Bxx T | = (1x T B -1 x)|B| and ∂x T Bx ∂x = (B + B T )x. * |λ) = h(η * ) exp(λ T 1 η * + λ 2 (-a(η * ))a(λ)) 2 (-ln Γ(α) + α ln Γ(β))a(λ) exp (λ 11 (α -1)λ 12 βλ 2 ln Γ(α) + λ 2 α ln βa(λ)) =(ln λ 11 ) α-1 e -λ 12 β Γ(α) λ 2 β αλ 2 e -a(λ) ∝ p α-1 e -βq Γ(α) r β -αs (B.15)

  in the constraint r = -s. e effipectation of the sff cient statistic terms cannot be compffted for the corresponding posterior since fle cannot obtain the analffltical form of the normalization factor.* |λ) = h(η * ) exp(λ T 1 η * + λ 2 (-a(η * ))a(λ)) 2 (-ln Γ(α) -ln Γ(β) + ln Γ(α + β))a(λ) (ln λ 11 ) α-1 (ln λ 12 ) β-1 e -a(λ) = ( Γ(α + β) Γ(α)Γ(β)) λ 2 (ln λ 11 ) α (ln λ 12 ) β e -a(λ)-λ 11 -λ 12 ∝ ( Γ(α + β) corresponding conjffgate prior π(α, β|λ 0 , x 0 , y 0 ) flith based on the follofling parameter mappings. ln λ 11 y 0 = ln λ 12
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 3 

	.1: Effiponential-familffl representation for sefieral probabilitffl distribfftions.

Table 3

 3 

		.2: Likelihood and conjffgate prior per featffre range
	Data description	Domain Mffltifiariate Likelihood	Conjffgate prior
	Float		

Table 3 .

 3 3: UCI, OpenML and proprietarffl datasets benchmarked -(# categ. dims) is the afierage nffmber of binarized featffres obtained aer transformation of the categoricals.

	Dtst		Nominl lss	Anomly lss Numri ims Ct. ims mpls Anomlis
			8, 9, 10	3, 21	7	1 (3)	1,920	29 (1.51%)
			3	1	21	0 (0)	3,251	73 (2.25%)
			ffnacc, acc, good figood	0	6 (21)	1,728	65 (3.76%)
			2	4	54	0 (0)	10,000 1	95 (0.95%)
			1	2	7	13 (54)	723	23 (3.18%) 2
			normal	ff2r, probe	34	7 (42)	10,000 1	385 (3.85%)
			g	h	10	0 (0)	12,332	408 (3.20%) 2
			-1	1	6	0 (0)	11,183	260 (2.32%)
	M		e	p	0	22 (107)	4,368	139 (3.20%) 2
			1	2, 3, 5, 6, 7	9	0 (0)	12,345	867 (7.02%)
			4, 5, 6, 7, 8	3, 9	11	0 (0)	4,898	25 (0.51%)
	3		CYT, NUC, MIT ERL, POX, VAC 8	0 (0)	1,191	55 (4.62%)
			0	1, 2, 3, 4, 5	82	0 (0)	20,000	121 (0.61%)
			0	1	49	0 (0)	18,722	37 (0.20%)
			0	1	41	1 (9)	10,000 1	21 (0.21%)

1 Sffbsets of the original datasets are ffsed, flith the same proportion of offtliers. 2 Anomalies are sampled from the corresponding class, ffsing the afierage percentage of offtliers depicted in

[Em- mo et al., 2016

].

3 

e rst featffre corresponding to the protein name flas discarded.

Table 3 .

 3 5: Rank aggregation throffgh Cross-Entropffl Monte Carlo

	Aloritm												
	6	12	9	2	5	14 7	11	10	4	8	13	3	1
	11	4	5	1	7	9	6	10	13	8	12 14	3	2

Table 3 .

 3 6: Rank aggregation throffgh Cross-Entropffl Monte Carlo. Anomalffl detection datasets generated from classi cation datasets hafie been remofied.

	Aloritm												
	5	4	3	2	6	14 9	12	11	1	8	13	10	7
	13	5	2	1	6	9	7	10	14	4	12 11	3	8

  We keep enoffgh components to effiplain at least 90% of the fiariance, flhich effiplains the decrease of training time. flhich effiplains the lofl training time reported. Its prediction time is hoflefier the least scalable, the trffe slope being obserfied for more than 5,000 samples.

	10 4 fierffl small base compfftation time. Prediction time benchmark (1000 float samples, 10.0% outliers) Training time benchmark (2 float features, 10.0% outliers)		GMM GMM
											BGM BGM
		10 3									DPGMM DPGMM RKDE RKDE
		10 2									PPCA PPCA LSA LSA
	Prediction time (seconds) Training time (seconds)	10 1 10 0 10 1 10 10									Maha LOF ABOD SOD KL GWR OCSVM IForest Maha LOF ABOD SOD KL GWR OCSVM IForest
		10 10 3 10 10 2 10	Training time benchmark (1000 float samples, 10.0% outliers)		DPGMM RKDE BGM GMM
		10 0 10 4 10 1 10	10 2	10 1	10 3	# features # samples 10 2 10 4	10 5	10 3	10 6	10 4 10 7	PPCA LSA LOF Maha
			Figffre 3.15: Training time for increasing nffmber of samples	ABOD SOD KL
											GWR
			Prediction time benchmark (2 float features, 10.0% outliers)		OCSVM IForest GMM
											BGM
											DPGMM
											RKDE
											PPCA
											LSA
	Figffre 3.13: Training time for increasing nffmber of featffres e nffmber of samples has a strong impact on the training and prediction time of , , and flhich scale fierffl poorlffl in gffres 3.15 and 3.16. ose fie algo-, rithms floffld reach the timeofft of 24 hoffrs for less than one million samples, thoffgh and 10 Maha LOF ABOD SOD KL GWR OCSVM Prediction time (seconds) IForest efficeed the afiailable memorffl rst (section 3.3.4). All the other algorithms shofl good Increasing the nffmber of featffres in gffres 3.13 and 3.14 shofls an efficellent scalabilitffl for , and and similar scalabilitffl, despite a higher base compfftation time for and 10 dffe to the flith a stable training time and a good prediction time efiolfftion. lack of optimizations. e additional effiponential-familffl compfftations do not seem to 10 has here the florst training and prediction scaling, reaching the 24 hoffrs timeofft for more than 3,000 featffres. is scaling is con rmed bffl the increases obserfied for and . performs also poorlffl flith a timeofft caffsed bffl a high bandflidth flhen the nffmber of featffres becomes higher than the nffmber of samples. High dimensionalitffl datasets do not stronglffl a ect distance-based and neighbor-based methods, thoffgh probabilistic algorithms sffch as , , or ffse of compfftationallffl effipensifie matriffi operations flhose compleffiitffl depend on the data and prediction time scaling for both increasing nffmber of featffres and samples, along flith a sff er from the increasing nffmber of dimensions. e impact the compleffiitffl of this algorithm. Training consists onlffl in making a copffl of the and shofl a fierffl good training 10 1 10 2 10 3 10 4 10 5 10 6 10 7 # samples 10 training dataset, In sffmmarffl and looking at the ofierall measffres, Figffre 3.16: Prediction time for increasing nffmber of samples
						60 61				

Figffre 3.14: Prediction time for increasing nffmber of featffres dimensionalitffl, e.g. matriffi factorizations and mffltiplications, is a major caffse of the poor scalabilitffl obserfied. Maffiimffm likelihood estimation fails to estimate the sffitable nffmber of components for for more than 1,000 featffres.

Table 3 .

 3 7: Resistance to the cffrse of dimensionalitffl, rffntime scalabilitffl and memorffl scalabilitffl on datasets of increasing size and dimensionalitffl. Performance on backgroffnd noise detection is also reported for datasets of increasing noise proportion.

		rinin/prition tim	Mm. us		obustnss
	Aloritm	→ mpls	→ Fturs	→ mpls	→ Fturs	→ Nois Hi im. tbility
		Lofl/Lofl	Mediffm/Mediffm Lofl	Mediffm	High	Mediffm	Mediffm
		Lofl/Lofl	Mediffm/Mediffm Lofl	Mediffm	High	Mediffm	High
		Mediffm/Lofl	High/High	Lofl	High	High	High	High
		High/High	High/High	High	Lofl	High	High	High
		Lofl/Lofl	High/Lofl	Lofl	Lofl	High	Mediffm	Mediffm
		Lofl/Mediffm	Lofl/Lofl	Mediffm	Lofl	Lofl	Lofl	Mediffm
		Lofl/Mediffm	Mediffm/Lofl	Lofl	Mediffm	Mediffm Lofl	High
		High/High	Lofl/Lofl	High	Lofl	Mediffm High	High
		Lofl/High	Lofl/Mediffm	Lofl	Lofl	Mediffm Lofl	Mediffm
		High/High	Lofl/Mediffm	High	Lofl	Lofl	High	Mediffm
		Lofl/Mediffm	Lofl/Mediffm	Lofl	Mediffm	High	Mediffm	High
		Mediffm/Mediffm Mediffm/Lofl	Lofl	Lofl	Lofl	High	Mediffm
		High/High	Lofl/Lofl	Lofl	Lofl	Lofl	High	High
		Lofl/Mediffm	Lofl/Lofl	Mediffm	Lofl	High	High	Mediffm

Table 4 .

 4 2:and proprietarffl datasets benchmarked -(# categ. dims) is the nffmber of binarffl featffres aer one-hot encoding of the categorical featffres.

	Dtst		Nominl	Anomly	Numri	Ct.	mpls	Anomlis
			lss	lss	ims	ims		
			-1	1	6	0 (0)	11,183	260 (2.32%)
			g	h	10	0 (0)	12,332	408 (3.20%) 1
			4, 5, 6, 7, 8	3, 9	11	0 (0)	4,898	25 (0.51%)
	M		e	p	0 22 (107)	4,368	139 (3.20%) 1
			ffnacc, acc, good	figood	0	6 (21)	1,728	65 (3.76%)
			1	2	7 13 (54)	723	23 (3.18%) 1
			0 1, 2, 3, 4, 5	82	0 (0)	20,000	121 (0.61%)
			0	1	41	1 (9)	10,000	21 (0.21%)
			0	1	49	0 (0)	18,722	37 (0.20%)
			0	1	37	0 (0)	73,848	2769 (3.75%)
			1	0	8	0 (0) 3,188,179 203,501 (6.00%)

Table 4 .

 4 3: Mean area ffnder the precision-recall cffrfie (

						flith a threshold of 0.05 to reject the nffll hfflpothesis. e
	effiperiments are performed on an Ubffntff 14.04 LTS poflered bffl an Intel Xeon E5-4627 fi4 CPU
	and 256GB RAM. is amoffnt of memorffl is not sff cient to train	on the	dataset,
	resfflting in missing data in Table 4.3.
	Looking at the afierage performance, offr	s afftoencoders achiefie the best resfflts for nofi-
	eltffl detection.		s performed flell on all datasets, inclffding high dimensional cases, and offt-
	perform the other methods on		,	and	. Bffl ing a somaffi likelihood
	instead of a Gaffssian on one-hot encoded featffres,	--- achiefies beer performance
	than	--- on 3 datasets containing categorical fiariables offt of 4, e.g.	 ,
		and			, flhile shofling similar resfflts on the	dataset. is repre-
	sentation allofls	s to reach the best performance on half of the datasets and to offtperform
	state-of-the-art algorithms for nofieltffl detection, sffch as	and IForest. Despite the lofl
	dimensionalitffl representation of the latent fiariables,	--- achiefies performance com-
	parable to	---, flhich sffggests good dimensionalitffl redffction abilities. e ffse of a
	somaffi likelihood in	--- resfflted in beer nofieltffl detection capabilities than	-

Table 5 .

 5 1: Parameters and implementations of the selected algorithms

	Aloritm	Lnu Prmtrs
	1	Pfflthon	components = 3, iters = 30, tol = 10 -2
		Pfflthon	n/a
	Lefienshtein Pfflthon	n/a
	k-	Pfflthon Pfflthon	k = max(n * 0.1, 20) k = max(n * 0.1, 50)

Table 5

 5 

	.2: Datasets benchmarked, related to genomics ( or ffser behafiior analfflsis (	), intrffsion detection ( )

Table 5 .

 5 3: Mean area ffnder the precision-recall cffrfie () afieraged per groffp of datasets ofier 5 cross-fialidation iterations. Resfflts in bold indicate that fle cannot reject the nffll hfflpothesis of the gifien to be identical to the best achiefied for the dataset. Colffmn Rank reports the aggregated rank for each method based on the Spearman footrffle distance.

			.	 .	.		-	-	Mn nk
			0.027 0.336	0.387 0.166	0.580	0.302 0.246 0.260	0.164	0.274 1
	k--		0.032 0.437	0.516 0.132	0.425	0.207 0.270 0.179	0.097	0.255 3
	k--		0.033 0.412	0.516 0.129	0.405	0.120 0.188 0.185	0.083	0.230 5
	-		0.042 0.150	0.029 0.167	0.141	0.073 0.042	0.091	0.041	0.086 12
	-		0.031 0.226	0.517 0.156	0.181	0.132 0.191 0.192	0.099	0.192 4
	k-	-	0.027 0.581	0.510 0.134	0.318	0.155 0.218 0.184	0.092	0.247 6
	k-	-	0.040 0.692	0.513 0.148	0.222	0.086 0.146	0.189	0.078	0.235 7
	t-		0.048 0.806	0.506 0.122	0.469	0.081 0.130	0.136	0.112	0.268 9
			0.028 0.431	0.034 0.176	0.359	0.053 0.077	0.105	0.079	0.149 10
			0.027 0.205	0.116 0.140	0.559	0.220 0.217 0.211	0.111	0.201 2
			0.072 0.341	0.035 0.178	0.113	0.076 0.083	0.092	0.063	0.117 11
	-		0.034 0.494	0.591 0.178	0.174	0.074 0.100	0.173	0.075	0.210 8

Table 5 .

 5 4: Scalabilitffl and interpretabilitffl sffmmarffl. Rffntime and memorffl scalabilitffl are reported for datasets of increasing nffmber of samples and seqffence length.

			rinin/prition tim	Mm. us	
	Aloritm		→ mpls	→ Lnt	→ mpls	→ Lnt Intrprtbility
			Mediffm/Lofl Lofl/Lofl	Lofl	Lofl	High
	k--		High/High	Mediffm/High	High	Lofl	High
	k--		High/High	Mediffm/High	High	Lofl	Mediffm
	-		High/High	Mediffm/High	High	Lofl	Mediffm
	-		High/High	Mediffm/High	High	Lofl	Mediffm
	k-	-	High/Lofl	Mediffm/Mediffm High	Lofl	High
	k-	-	High/Lofl	Mediffm/Mediffm High	Lofl	Mediffm
	t-		Lofl/Lofl	Lofl/Lofl	Lofl	Lofl	High
			High/Lofl	High/Mediffm	High	High	Mediffm
			Lofl/Lofl	Mediffm/Lofl	Mediffm	Mediffm	High
			Lofl/Mediffm High/High	Lofl	High	Lofl
	-		Lofl/Lofl	Lofl/Lofl	Lofl	Mediffm	Lofl

* rpy2 stores R objects in the rffnning Pfflthon process. In addition, R prefients concffrrent accesses flhich do not allofl ffs to ffse dedicated R commands to measffre memorffl.

Additional confiergence effiperiments hafie been performed on s and are reported on Fig-

Ce chapitre présente le Dirichlet Process Miffitffre Model ( ), ffn modèle non paramétriqffe et probabiliste entraîné par inférence fiariationnelle[START_REF] Jordan | An introdffction to fiariational methods for graphical models[END_REF]. L'algorithme est ffne méthode non sffperfiisée d'estimation de la densité et de partitionnement, dans laqffelle le nombre de composants de la miffitffre affgmente afiec l'obserfiation de nofffielles données. Le nombre de composants et les proportions assignées à chaqffe distribfftion sont estimés par inférence fiariationnelle. Dans l'algorithme , les obserfiations sont générées par ffne distribfftion appartenant à la famille effiponentielle, prodffisant ffn modèle effiible et précis. L'fftilisation de fonctions de firaisemblance, de distribfftions a priori conjffgffées et de distribfftions a posteriori soffs forme de familles effiponentielles permet à cee méthode d'être compatible afiec les données de tfflpes miffites. Ce trafiail regroffpe la méthode d'inférence fiariationnelle présentée par Bishop dans[Bishop, 2006], l'fftilisation d'ffne distribfftion a priori Beta sffr le processffs de Dirichlet responsable des poids de chaqffe groffpe dans[Blei & Jordan, 2006] et l'application d'ffne distribfftion a priori Gamma sffr le paramètre d'échelle dff processffs de Dirichlet proposé

A n de foffrnir ffn aperçff complet de ces méthodes, noffs comparons également le temps de calcffl reqffis par l'apprentissage dff modèle et par les prédictions, la consommation de mémoire fiifie et la robffstesse de chaqffe méthode. Ces mesffres sont e ectffées sffr des jeffffi de données sfflnthétiqffes afiec ffn nombre croissant d'échantillons et de dimensions, et afiec ffne affgmentation de la proportion de brffit de fond. Les résffltats noffs permeent de comparer les algorithmes non sefflement en fonction de leffrs performances de détection d'anomalies, mais également en fonction de leffr scalabilité, robffstesse et adéqffation affffi problèmes de grandes dimensions. Nos résffltats sont résffmés dans le Tableaff 7.1.

[Saad & Wffnsch, 2007] Saad, E. W. & Wffnsch, D. C. (2007). Neffral netflork effiplanation ffsing infiersion. Neural Networks, 20(1), 78 --93.
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trained meta-model of k--as an effiample. ese trees effipose the strengths and fleaknesses of the methods stffdied, and highlight the most important factors impacting the methods' performances. In order to profiide a concise fiisffal ofierfiiefl of this analfflsis, fle report in Figffre 5.2 the performance of each method based on the datasets characteristics. For this pffrpose, fle effitract the rffles of the nodes for flhich depth < 4 in all meta-models, then aggregate these rffles per featffre to identifffl fialffes corresponding to the most important splits. e resfflting lters are reported in the horizontal affiis of the heatmap.

Offr effiperiments shofl that no algorithm consistentlffl reaches beer resfflts than the competing methods, bfft that , k-and are promising nofieltffl detection methods. While prefiioffs comparisons [START_REF] Warrender | Detecting intrffsions ffsing sfflstem calls: alternatifie data models[END_REF],Chandola et al., 2008,Bffdalakoti et al., 2009] Dans le conteffite de la détection d'anomalies non sffperfiisée, noffs afions comparé la précision, la robffstesse, le temps de calcffl et la consommation mémoire de 14 algorithmes sffr des jeffffi de données sfflnthétiqffes et réels. Notre étffde démontre qffe présente de bonnes capacités de détection de nofffieafftés tofft en o rant ffne efficellente scalabilité sffr les jeffffi de données fiolffmineffffi, ainsi qff'ffne consommation mémoire acceptable poffr des jeffffi de données inférieffrs à ffn million d'échantillons. Les résffltats sffggèrent qffe cet algorithme est plffs approprié qffe dans ffn enfiironnement de prodffction car ce dernier est beaffcoffp plffs coûteffffi en temps de calcffl et en mémoire.

est également ffn bon candidat, mais n'est pas non plffs adapté affffi grands ensembles de données.

Certains jeffffi de données sffggérés dans [START_REF] Emmo | A meta-analfflsis of the anomalffl detection problem[END_REF] sont obtenffs par échantillonnage d'ffne petite proportion d'anomalies à partir de jeffffi de données de classi cation. Ceci donne lieff à des nffages denses d'anomalies qffi permeent à des méthodes simples, telle la distance de Mahalanobis, de sffrpasser plffsieffrs algorithmes de l'état de l'art conçffs poffr l'estimation de densité. Si ces algorithmes simples disposent d'ffne bonne scalabilité, ils ne pefffient cependant captffrer la compleffiité des jeffffi de données dans lesqffels la classe nomi-. . . . . . . . . . . . . . . . . . . . . . . . . .

. W (0) . Ω (1) .

Figffre 7.3: Architectffre d'ffn afftoencodeffr composé de deffffi coffches s. Les processffs gaffssiens sont approffiimés par ffn ensemble de deffffi coffches, la première Φ (l) e ectffe ffne effitension aléatoire des dimensions, sffifiie par ffne transformation linéaire qffi résfflte en la coffche F (l) . Les paramètres des fonctions de cofiariance sont θ (l) = ( (σ 2 ) (l) , Λ (l) ) , et les distribfftions a priori sffr les poids sont p

La coffche Z représente les fiariables latentes.

Ce chapitre présente donc ffn nofffieaff réseaff de neffrones probabiliste poffr la détection non sffperfiisée d'anomalies. Le modèle -proposé est ffn afftoencodeffr reposant sffr des processffs gaffssiens poffr représenter les transformations inhérentes à l'encodeffr et aff décodeffr. L'inférence de ce modèle est scalable et e ectffée par approffiimation des s fiia ffne effitension aléatoire des dimensions. L'entraînement dff modèle obtenff par inférence fiariationnelle stochastiqffe permet l'effiploitation des infrastrffctffres distribffées et des GPUs. Le -est capable de modéliser des données de manière effiible et sffpporte les jeffffi de données contenant des dimensions de tfflpes miffites, cee capacité étant actifiement étffdiée dans la liératffre récente [START_REF] Vergari | Sffm-Prodffct Afftoencoding: Encoding and Decoding Representations ffsing Sffm-Prodffct Netflorks[END_REF]. De plffs, le modèle dispose d'ffn entraînement robffste et d'ffne facilité d'implémentation fiia des offtils de di érenciation afftomatiqffe, pffisqffe contrairement à la plffpart des modèles basés sffr des s [START_REF] Dai | Variationallffl Affto-encoded Deep Gaffssian Processes[END_REF], notre modèle n'fftilise qffe des prodffits de tenseffrs et affcffne factorisation matricielle.  trafiers ffne série d'effipériences, noffs afions en n démontré qffe les -s obtenaient des résffltats compétitifs par rapport affffi méthodes de détection de nofffieafftés les plffs récentes et affffi méthodes de détection de nofffieafftés basées sffr des réseaffffi de neffrones. 

e parameter mappings are

) )

We recognize a N W (µ, Λ|µ 0 , λ 0 , V , n) distribfftion flith the follofling parameters. e prefiioffs derifiation ffsed transformations sffch as |λA| = λ d |A| or |A -1 | = |A| -1 and assffmes that matrices are fiectorized.

e mappings indffce the constraint λ 0 = nd. We ffsed the notation B -T = (B -1 ) T . e effipectations for the posterior are gifien belofl, flhere E[η * ] contains a fiector and a matriffi and E[-a(η * )] is a scalar. τ is the natffral parameter of the posterior, corresponding to λ for the prior. We also ffsed the infierse parameter mapping prefiioffslffl de ned.