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Thèse présentée et soutenue à Palaiseau, le 20 Decembre 2018, par

OLEKSANDR MOTORNYI

Composition du Jury :

Mario ROCCA
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iii

Acknowledgements
First and foremost, I would like to thank my advisor, Nathalie Vast for giving me an
opportunity to work on this challenging and exciting project, for her guidance, continuous
support and motivation. During my PhD project I have learned a great deal about solid
state physics and variety of powerful approaches used to solve problems that emerge in
modern research. I would like also to thank Michele Raynaud for her guidance during the
project, with whom I had many fruitful discussions.

I would like to thank Kees van der Beek, the former director of the Laboratoire des
Solides Irradiés of the École Polytechnique, for having welcomed me at LSI. I thank Prof.
Vyacheslav Silki and Dr. Hans-Christian Weissker for having accepted to review the
manuscript and to participate in the jury of this thesis; Prof. Mario Rocca, for having
accepted to chair the jury; Dr. Alberto Zobelli and Dr. Andrea Dal Corso for having
accepted to be members of the jury of this thesis. Their feedback on my thesis and our
insightful discussions were invaluable.

I am very grateful to my collaborator Andrea Dal Corso, for hospitality at SISSA, for
plenty of interesting scientific discussions and help with implementation of new features in
the EELS project. His assistance in understanding of electronic band structure of complex
surfaces is greatly appreciated. I am also thankful to Stefano Baroni and Iurii Timrov for
insightful discussions during my time in Trieste.

I would like to thank all members of the group “Théorie de la Science des Matériaux”
including Mariya Romanova, Maksim Markov, Olivier Hardouin Duparc, Gaston Kané,
Liang Liang, Zhangxuan Fan, Aminata Doucoure, Amrita Chakraborti, Romuald Bejaud.
In particular I am very thankful to Jelena Sjakste with whom I shared the office all these
years and to Giulina Barbarino with whom I shared the office during the first year. I am
grateful for interesting discussions and their help and support throughout my time in LSI.
I would like also to thank our system administrator, Andrea Cucca, for keeping the IT
system working well and for his help with all kinds of computer issues as well as Andrea
Sartirana for his help with LLR-LSI cluster. I am very grateful to all LSI members who
created a great scientific environment at the lab.

I would like to thank my parents for their unending support and love throughout my
PhD and my whole life. I am also grateful to my friend Hanna for all her help during last
few months of my PhD, Sergei (Telnov), Sergey (Syaber), Andrej and my friends all over
the world.

I would like to separately thank my beloved girlfriend, Anastasiia, for her endless love,
support and enormous patience during these years.

Finally, I acknowledge the financial support from Université Paris-Saclay.



iv



v

Résumé
Cette thèse de doctorat est dédiée à l’étude, avec des méthodes de calcul ab initio, des
plasmons de surface et des états électronique de surface de surfaces d’or, plates ou compor-
tant des marches (surfaces vicinales), par la simulation numérique de spectres de perte
d’énergie électronique (EEL) au moyen de la théorie de la fonctionnelle de la densité
(DFT) et de la théorie de perturbation de la fonctionnelle de la densité dépendant du
temps (TDDFPT). L’influence du couplage spin-orbite (CSO) et celle de la géométrie de
la surface ont été étudiées. Dans l’or cristallin, j’ai étudié l’effet des électrons de semi-
coeur sur les spectres EEL à moment transféré quasi-nul. J’ai montré en particulier que
pour produire un spectre EEL sur une large gamme de fréquences, de 0 à 60 eV, il est
nécessaire de tenir compte des électrons de semicoeur dans le pseudopotentiel, et qu’ils
peuvent néanmoins être gelés dans le coeur pour l’étude de la partie basse en énergie
du spectre EEL, pour des énergies inférieures à 15 eV. J’ai réalisé des développements
méthodologiques pour la TDDFPT avec CSO couplée à l’emploi de pseudopotentiels ul-
tradoux, qui ont permis l’implémentation pratique de cette approche dans les algorithmes
de Liouville-Lanczos et de Sternheimer de Quantum ESPRESSO. J’ai utilisé avec suc-
cès ces approches qui m’ont permis de traiter des systèmes à plusieurs centaines d’atomes
dans la cellule unitaire. J’ai examiné à nouveau le spectre EEL de l’or cristallin à moment
transféré quasi-nul, montrant en particulier les traces d’un plasmon non-écranté 6s dans
le spectre EEL calculé sans inclure les effets de CSO. J’ai ensuite montré que l’inclusion
du CSO a un effet petit mais détectable sur le spectre EEL et le pic de plasmon, donnant
un meilleur accord avec des résultats expérimentaux obtenus en utilisant la technique de
réflexion EELS à q = 0. Enfin, en utilisant la nouvelle implémentation de l’algorithme
de Liouville-Lacnzos avec les pseudopotentiels ultradoux avec CSO, j’ai calculé le spectre
EELS pour la surface d’or (111) afin de comprendre l’influence du CSO sur le plasmon
de surface acoustique (PAS). Ce type de plasmon a une énergie qui varie linéairement en
fonction du moment (dispersion linéaire), d’où le qualificatif d’“acoustique”. J’ai trouvé
que la dispersion du PAS de Au(111) est légèrement modifiée par le CSO, provenant du
fait que la structure de bandes est elle-même modifiée par le dédoublement de Rashba
de certains niveaux électroniques de surface, dédoublement induit par le CSO. Puis, pour
étudier les effets de géométrie de la surface sur les états de surface électroniques et les
plasmons de surface, j’ai étudié les surfaces vicinales (322), (455) et (788) de l’or. J’ai en
particulier mené l’étude théorique des états électroniques de surface, et analysé l’évolution
de l’état électronique de surface de Shockley entre la surface plate Au(111) et les surfaces
ayant des marches dont les terrasses avaient différentes largeurs. J’ai montré la transi-
tion d’un état de surface résonant pour Au(322) à un état localisé pour Au(455) et pour
Au(788), ainsi que le passage d’un état 2D étendu à travers la marche pour Au(322) à
un état quasi-1D confiné dans la terrasse de la marche pour Au(455) et pour Au(788).
Ces résultats sont en accord avec des résultats d’expériences de photoémission, et avec
ceux d’un modèle de potentiel périodique de Kronig-Penney. J’ai calculé le spectre EELS
pour la surface d’or (455) que j’ai modélisée par une tranche de 5 nm d’or séparée de ses
voisines (répétées périodiquement) par 5 nm de vide. J’ai identifié la signature du plas-
mon acoustique de surface. J’ai montré que, pour un moment transféré perpendiculaire
à la marche de la surface, la dispersion du PAS n’est pas modifiée par rapport à celle du
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PAS de la surface plate Au(111) pour q < 0.125 Å−1. Cependant, pour des valeurs plus
grandes du moment transféré, le pic du PAS a une énergie plus basse que celle du PAS
de Au(111), montrant la signature du confinement du PAS et suggérant que deux types
de PAS peuvent se produire: un plasmon intra(sous)bande, similaire à celui de la surface
Au(111), et un plasmon inter(sub)band, caractéristique de cette surface vicinale. Enfin,
les perspectives de ce travail de thèse sont discutées.
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Introduction

The birth of plasmonics took place at the very beginning of the twentieth century, when
Wood [1] observed an unusual phenomenon during the study of light distribution in a
diffraction grating spectrum. Lord Rayleigh attempted to explain this phenomenon, how-
ever it was not until 1941 when Fano [2] associated the so-called Wood anomalies with
surface waves and suggested that they are linked to the dielectric properties of the mate-
rial. Later on, Pines [3] and Ritchie [4] have developed the theory of plasma oscillations
in solids and have suggested that careful investigation of the low energy losses in a sin-
gle metal should be made. The first experimental evidence of plasma oscillations on an
aluminum surface was demonstrated by Powell and Swan [5] a few years later. This
phenomenon is called surface plasmon - a collective oscillation of the free electron den-
sity similar to plasma oscillations observed in ionized gases [6]. As collective phenomena,
plasmons are driven by the Coulomb interaction between electrons in contrast with single-
particle excitations that e.g. involve the dipolar transition of a single electron from an
occupied to an unoccupied state. After this discovery, surface plasmons have been widely
studied and characterized both experimentally and theoretically for various materials and
systems. Nowadays, noble metals such as gold and silver are the most used materials
for plasmonics applications as they have well defined plasmons and possess other useful
properties, for instance gold is very stable and is not easily oxidized.

In order to understand all of the system properties as well as to explain and predict new
effects, it is crucial to complement experiments with theory and numerical simulations.
Theoretical descriptions of plasmons extend from the classical electrodynamical treatment
and simple jellium model to the fully ab initio time-dependent density functional theory
(TDDFT) approach [7, 8], depending on the needs of each particular problem. For in-
stance, the classical electrodynamical approaches are fairly successful for structures that
are larger than 10 nm [9] but start to fail for small-size structures, where quantum effects
should be accounted for, like it was done, for instance, for the noble-metal nanoclusters
in Ref. [10].

Over a decade ago, a new type of surface plasmons has been theoretically predicted [11]
and experimentally reported [12], the so-called acoustic surface plasmon (ASP) that ex-
hibits a behavior different from the behavior of conventional surface plasmon (CSP) and
cannot be predicted with the classical electrodynamics. It is believed that the ASP re-
sults from the incomplete screening of the 2D electron gas of the Shockley surface state
by the underlying 3D bulk electron system, and thus is considered as a modified 2D sheet
plasmon. The ASP is a low energy excitation compared to the CSP and has a linear dis-
persion in contrast to the CSP with a parabolic dispersion. Their low energy may allow

1
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the ASP to participate in many dynamical processes involving electrons and phonons.
Additionally, due to the sound-like dispersion (hence the name) a signal consisting of sev-
eral ASP waves can propagate along the surface without distortion. Experimentally, ASP
excitations were observed on various surfaces, namely the Be (0001) [12], Au(111) [13],
Cu(111) [14, 15] surfaces as well as on the high Miller’s index Au(788) surface [16]. The
latter case of the vicinal Au(788) surface is of special interest from the viewpoint of ap-
plications, as the step-terrace structure of the surface provides the intrinsic grating of the
surface on the atomic level allowing, potentially, to couple the ASP to the light. The-
oretical models have been proposed to explain the origin and the behavior of ASPs in
metals that support Shockley states [17] [18], however there are still some discrepancies
and controversies between the model, experiment and ab initio calculations, as, for ex-
ample, a simplified model used in Ref. [16] cannot fully reproduce the experimental ASP
dispersion of Au(788) and it was suggested that fully ab initio study is required.

From the viewpoint of ab initio calculations, calculations of big periodic systems like
high Miller’s index surfaces are a very challenging or even unfeasible computational task
for the traditional TDDFT methods that involve solving a Dyson-like equation [19, 20],
and thus alternative approaches are required. In my thesis I use the recently developed
time-dependent density functional perturbation theory (TDDFPT) Liouville-Lanczos ap-
proach [21, 22, 23, 24, 25, 26], that allow to significantly reduce the CPU time and memory
required for the calculations. Using this method I can compute the electron energy-loss
(EEL) spectra for an arbitrary transferred momentum q that can be compared to the
results of EEL spectroscopy or inelastic X-Ray scattering (IXS) experiments. In the last
Chapter I will show the results of TDDFPT simulations of 5 nm of gold separated by 5
nm of vacuum. Thus, I demonstrate that the computation of plasmonic properties on the
quantum level at the linear order is within reach and can become a routine task in a near
future.

One of the goals of my thesis was to make a further development and implementa-
tion of the Liouville-Lanczos approach that would allow to use full relativistic ultrasoft
pseudopotentials in order to reduce even more the computational cost of the calculations.
The next objective of the thesis was to use the newly implemented method in order to
study the influence of the spin-orbit coupling (SOC) on the EEL spectra of the bulk and
of the (111) surface of gold and specifically to study the influence of SOC on the ASP of
the Au(111) surface. During the second year of my PhD the collaboration with Andrea
Dal Corso from the Scuola Internazionale Superiore di Studi Avanzati (SISSA) of Trieste
(Italy) has been established and I have taken benefit from three visits to SISSA financed
in part by the MAX EU project from SISSA, from the Ecole Doctorale Interfaces of Uni-
versity Paris-Saclay and from my supervisor’s contracts. The goal of the project was the
methodological development and implementation of the Liouville-Lanczos algorithm for
the full relativistic ultrasoft pseudopotentials.

The second major goal of the thesis was to perform an ab initio study of the three
vicinal surfaces of Au(111): Au(332), Au(455) and Au(788). This study was twofold:
the first part was aimed at understanding the behavior and evolution of the Shockley
state of the Au(111) surface depending on the surface geometry. The second one, was
to study the behavior of the ASP in one of these systems, in order to understand how
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the surface geometry might influence the properties of the ASP and, in perspective, to
better understand the experiments on the Au(788) surface. As discussed in Chapter 8,
the Au(322) surface was discarded from the possible numerical applications because the
Shockley state, which is believed to give rise to the ASP excitation, is a linear combination
of the 2D state and 3D bulk states (hence it is classified as a surface resonance) and is
not expected to be observable as a distinct peak in the calculated EEL spectrum. Thus,
the focus of the study was shifted to the ASP of the Au(455) surface.

In this work, calculations in a high performance computing (HPC) environment have
been performed. Approximately 5 millions hours of CPU time have been spent in total.
In particular, I have spent about 2 millions hours of CPU time in the Grand Équipement
National de Calcul Intensif (GENCI): GENCI-CINES, GENCI-TGCC and GENCI-IDRIS
(project 2210), 2 millions in the framework of the PRACE project (project number
2017174202) in the Jülich Supercomputing Centre (JSC) and about 1 million hours on
the local LSI-LLR cluster.

thesis is organized in two part. In the first part I present the state-of-the-art methods
and give a brief overview of the results of existing theoretical and experimental studies on
EEL spectra and plasmons of gold. In the second part I present my results which consist
of the theoretical, numerical and methodological developments and of a detailed study of
surface states and plasmons of high Miller’s index surfaces of gold.

The part I contains 3 chapters.
In Chapter 1 I will give an introduction to the linear response approach and TDDFPT

used to solve the linear response problem. In particular I will focus on two approaches:
the self-consistent Sternheimer approach and the recursive Liouville-Lanczos approach
that are then compared and generalized to the full relativistic ultrasoft pseudopotential
scheme in Chapter 4.

In Chapter 2 I will give a definition of surface states and resonances and will give an
overview of the geometry of flat and vicinal surfaces of gold. I will then discuss shortly
the results of some experimental works where these surfaces were studied using ARPES
revealing that the Shockley state becomes confined in Au(788) and Au (23 23 21) surfaces.
Later in the Chapter 5 I will compare the results of my ab initio calculations to these
experiments.

In Chapter 3 I will give an introduction to plasmons with a specific focus on con-
ventional and acoustic surface plasmons of noble metals. I will discuss results of some
theoretical works where EEL spectra of Au have been studied using TDDFPT and I will
point out the limitations of the most common exchange and correlation kernel approxi-
mations used in DFT. Finally I will discuss the ASP of noble metal surfaces and some
controversies between different experimental and theoretical works.

The part II contains 5 chapters.
In Chapter 4 I will present the methodological developments aimed at the general-

ization to the full relativistic ultrasoft pseudopotential scheme of the Sternheimer and
Liouville-Lanczos approaches presented in Chapter 1. I will show some results on the
comparison of the performance of these two approaches and the results of benchmarking
of the Liouville-Lanczos approach performance in the HPC environment.

In Chapter 5 I will present the results of the ab initio study of the surface states
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on vicinal Au(322), Au(455) and Au(788) surfaces. I will discuss how the refolding of
the band structure of such surfaces significantly complicates the analysis of the DFT
calculations and show that nevertheless valuable information about surface states can be
obtained. I will show how the Shockley state evolve depending on the surface geometry
and compare my results to the previous experimental data.

In Chapter 6 I will present the results of EEL spectrum calculations for bulk Au
and discuss the magnitude of the spin-orbit coupling effect both for vanishing and finite
transferred momentum. I will show how the inclusion of spin-orbit coupling brings the
calculated EEL spectrum for vanishing momentum into better agreement with experi-
ments and show how the effect of the spin-orbit coupling on the EEL spectra fade out for
bigger momentum values.

In the Chapter 7 I will discuss the effect of spin-orbit coupling on the EEL spectrum
and the ASP of the Au(111) surface. I show how the EEL spectrum of Au(111) is very
similar to the EEL spectrum of bulk Au. I will also discuss the influence of SOC on the
ASP dispersion of the Au(111) surface, showing that it is small but noticeable, and that
there must be other factors that contribute to the discrepancies between the experimental
and theoretical results.

In Chapter 8 I will discuss the EEL spectrum and the ASP of the Au(455) surface sim-
ulated as a gold slab with a thickness of 5 nm. I will show that the overall EEL spectrum
of the Au(455) surface is modified for a vanishing transferred momentum compared to the
spectrum of Au(111). I will also discuss the dispersion of the ASP of the Au(455) surface
and compare it to that of the Au(111) surface, as well as to the experimental results on
Au(788) from a qualitative viewpoint.

Finally, I will draw general conclusions and perspectives.
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Chapter 1

Time dependent density functional
theory (TDDFT) for the calculation
of dielectric properties of solids

This chapter aimed at providing an overview of the time dependent density functional
theory (TDDFT) problem and its link to material properties that can be measured ex-
perimentally. The main goal of this chapter is to provide a starting point and outline
the current state of the art for the methodological development presented in Chapter 4.
First I discuss TDDFT within the linear response framework, the showing key equations
and defining the main quantities. Then I will define the dielectric function and its link
to the quantities measured in electron energy loss spectroscopy (EELS) experiments. Fi-
nally I will point out the advantages, drawbacks and limitations of the time dependent
density functional perturbation theory (TDDFPT) through the Liouville-Lanczos and
Sternheimer aprroaches. Finally, I will discuss possible improvements that can be done
in future, some of which I discuss in the Chapter 4.

1.1 Linear response approach and dielectric function

1.1.1 Linear response theory
In the general case, the susceptibility of a system is defined through the first-order response
of an observable Â to a time-dependent external field fext(t):

δA(t) =
ˆ t

t0

dt′χ(t− t′)fext(t′), (1.1)

where fext(t) = 0 for t < t0. In the linear response framework relevant to this work we
assume that the external perturbation takes the form of a weak time-dependent potential:

Vext(r, t) = V 0
ext(r) + V ′ext(r, t), (1.2)

where V 0
ext(r) is the static external potential of the unperturbed system and V ′ext(r, t)

is the time-dependent perturbation. The density of the perturbed system in the linear

7
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response regime is given by
n(r, t) = n0(r) + n′(r, t), (1.3)

where n0(r) is the density of the unperturbed system and n′(r, t) is the first order density
response of the system, that reads [20]:

n′(r, t) =
ˆ ∞
−∞

dt′
ˆ
dr′χ(r, r′, t− t′)V ′ext(r′, t′). (1.4)

where χ is the linear density response function defined as:

χ(r, r′, t− t′) = δn(r, t)
δVext(r′, t′)

∣∣∣∣∣
Vext(r′,t′)=V 0

ext(r′)
. (1.5)

One possible way to obtain the susceptibility of the system is to solve the Dyson-like
screening equation [19]. However, I am not using this approach in my work and thus will
not discuss it in the present chapter.

1.1.2 Dielectric function
A system under a weak external perturbation Vext(r, t) will be polarized and the total
potential will be the sum of the external and induced potentials Vtot = Vext + Vind. At
the linear response level we can define the microscopic dielectric function that relates the
total potential Vtot to the applied potential Vext as:

Vtot(r, t) =
ˆ ∞
−∞

dt′
ˆ
dr′ ε−1(r, r′, t− t′)Vext(r′, t′). (1.6)

Let us Fourier-transform Eq. (1.4) and (1.6) to pass from the time- to frequency-domain:

n′(r, ω) =
ˆ
dr′χ(r, r′, ω)V ′ext(r′, ω). (1.7)

Vtot(r, ω) =
ˆ
dr′ ε−1(r, r′, ω)Vext(r′, ω). (1.8)

Alternatively, we can write the total potential Vtot(r, ω) as:

Vtot(r, ω) = Vext(r, ω) +
ˆ
dr′

e2n′(r, ω)
|r− r′|

, (1.9)

where e is the electron charge. Together, Eqs. (1.7), (1.8) and (1.9) result in the following
expression for the microscopic dielectric function:

ε−1(r, r′, ω) = δ(r− r′) + e2
ˆ
dr′′

χ(r′′, r′, ω)
|r− r′|

. (1.10)

For a periodic system one can also perform a Fourier transform from the real to the
reciprocal space obtaining:

ε−1
G,G′(q, ω) = δG,G′ + vG(q)χG,G′(q, ω), (1.11)
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where vG(q) = 4πe2/|q + G|2 is the Fourier transform of the Coulomb potential e2/|r−r′|.
Finally, the macroscopic dielectric function is defined for G = G′ = 0 as:

εM(q, ω) =
[

1
ε−1

G,G(q, ω)

]
G,G′=0

, (1.12)

where the wavevector q belongs to the first Brillouin zone. εM(q, ω) is a measurable
quantity that can be related to different spectroscopies. Optical absorption or electron
energy loss (EEL) spectrum at vanishing transferred momentum yield the macroscopic
dielectric function or the loss function at q = 0. EEL at finite momentum transfer or
inelastic X-ray scattering (IXS) spectroscopy probes the loss function or the dynamical
structure factor at finite q. EELS is of specific interest for my work, as I compute EEL
spectra and compare to some of the experimental results. In an EELS experiment, the
inelastic scattering probability of an incoming electron by the electrons of the solid, given
by the double-differential cross-section d2σ/(dωdΩ) is measured, which is linked to the
macroscopic dielectric function εM defined above:

d2σ

dωdΩ ∼ Im[ 1
εM(q, ω) ], (1.13)

where q is the transferred momentum, ω is the measured electron energy loss, and dΩ is
the elemental solid-angle in which the scattering occurs.

1.2 Time dependent density functional perturbation
theory (TDDFPT) equations

In this section I present the framework of TDDFPT equations to solve the linear response
problem. As I have mentioned in a previous section, one way to obtain a susceptibility χ
(or a dielectric function ε) is to solve a Dyson-like screening equation. While this method
is powerful and well established, in my work I have been using an alternative approach
that comes from the density functional perturbation theory (DFPT) [27] and a Lanczos
recursive algorithm that, together, allow to significantly reduce the computational cost
of the calculation, and thus enables to compute the dielectric properties of very large
systems that consist of hundreds of atoms.

1.2.1 The Sternheimer equations
The time-dependent Kohn-Sham equation [28] for an auxilary fictious system of non-
interacting particles in the scalar relativistic (without spin-orbit coupling) case reads:

i~
∂ψn,k(r, t)

∂t
= ĤKS(r, t)ψn,k(r, t), (1.14)

where ψn,k(r, t) and ĤKS(r, t) are the time-dependent Kohn-Sham wavefunction and
Hamiltonian respectively. The density of such a system reads:

n(r, t) =
N∑
n

|ψn(r, t)|2, (1.15)
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where N is the number of occupied states in insulators or semiconductors.1
In the linear response framework the external perturbation action on the system is

assumed to be weak and thus can be given in the form of Eq. (1.2). In this case the
Hamiltonian of Eq. (1.14) reads:

ĤKS(r, t) = Ĥ0(r) + V ′(r, t), (1.16)

where Ĥ0(r) is the Hamiltonian of the unperturbed system that, in the Kohn-Sham ap-
proach, reads:

Ĥ0(r) = − ~2

2m0
∇2 + V 0

ext(r) + V 0
Hxc(r), (1.17)

and the linearized self-consistent Kohn-Sham perturbation reads:

V ′(r, t) = V ′ext(r, t) + V ′Hxc(r, t), (1.18)

where V ′ext(r, t) is the external time-dependent perturbation and V ′Hxc(r, t) is the time-
dependent Hartree-plus-XC potential induced due to the external perturbing potential
V ′ext(r, t).

The density of the perturbed system in the linear response regime is given by Eq. (1.3).
Finally, the Kohn-Sham wavefunctions in Eq. (1.14) ψn,k(r, t) can be decomposed into:

ψn,k(r, t) = e−iεn,kt/~
[
ψ0
n,k(r) + ψ

′

n,k(r, t)
]
, (1.19)

where ψ0
n,k(r) and εn,k are the KS wavefunctions and energy of the unperturbed system

and ψ′
n,k(r, t) is its first order variation, or response wavefunction.

Equation (1.14) and its complex conjugate can be linearized taking into account only
the first-order response and using the fact that due to the time-reversal symmetry Ĥ0 ∗ =
Ĥ0, V ′∗

ext(r, t) = V ′ext(r, t), V
′∗
Hxc(r, t) = V

′
Hxc(r, t), ψ0∗

n,−k = ψ0
n,k and ε∗n = εn:

i~
∂ψ

′
n,k(r, t)
∂t

= (Ĥ0 − ε0
n,k)ψ′

n,k(r, t) + (V ′

Hxc(r, t) + (V ′

ext(r, t))ψ0
n,k(r), (1.20)

− i~
∂ψ

′∗
n,k(r, t)
∂t

= (Ĥ0 − ε0
n,k)ψ′∗

n,k(r, t) + (V ′

Hxc(r, t) + (V ′

ext(r, t))ψ0∗
n,k(r), (1.21)

Finally using the Fourier transformation and applying a projector onto the empty states
P̂c = 1− P̂v where c stands for conduction band state and v stands for the valence band
states, we obtain:

(Ĥ0 − ε0
n,k − ~ω)P̂cψ

′

n,k(r, ω) + P̂cV
′

Hxc(r, ω)ψ0
n,k(r) = −P̂cV

′

ext(r, ω)ψ0
n,k(r), (1.22)

(Ĥ0− ε0
n,−k + ~ω)P̂cψ

′∗
n,k(r,−ω) + P̂cV

′∗
Hxc(r,−ω)ψ0

n,k(r) = −P̂cV
′∗
ext(r,−ω)ψ0

n,k(r), (1.23)

where n now spans only the occupied state manifold.
1In a metal Eq.(1.15) reads n(r, t) =

∑N
n fn|ψn(r, t)|2, where fn is the equilibrium Fermi-Dirac elec-

tronic occupations.
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Finally, using the wavefunctions in the form of Eq. (1.19) in (1.15) and its Fourier
transformation one can obtain the first order density response n′(r, ω):

n′(r, ω) =
BZ∑
k

∑
n

ψ0∗
n,k(r)

[
ψ

′∗
n,k(r,−ω) + ψ

′

n,k(r, ω)
]

(1.24)

The set of equations (1.22), (1.23) and the corresponding charge density response (1.24)
is called the Sternheimer equations. This system can be solved self-consistently for each
value of the frequency ω allowing to obtain the susceptibility χ of the system and thus
the dielectric function of the system. I note that the use of a projector onto empty states
P̂c allows to avoid the calculation of the empty states [27] that is necessary in other
approaches and thus enables the computation for systems with a large number of atoms.

1.2.2 The quantum Liouville equation
Equivalently, instead of Eq. (1.14) as a starting point, one can use the quantum Liouville
equation [21, 22, 23, 24, 25, 26]:

i~
dρ̂(t)
dt

=
[
ĤKS(t), ρ̂(t)

]
, (1.25)

where ρ̂(t) is the reduced one-electron KS density-matrix whose kernel reads:

ρ(r, r′, t) =
∑

ψv(r, t)ψ∗v(r′, t), (1.26)

where v runs over valence states and n(r, t) = ρ(r, r, t). Equation (1.25) can be linearized
in the same manner as eq. (1.14), leading to the linearized Liouvillian equation that is
equivalent to the set of Sternheimer’s equations (1.22), (1.23):

(~ω − L̂) · ˆ̄ρ′(ω) =
[
Ṽ ′ext(ω), ρ̂0

]
. (1.27)

The action of the Liouvillian superoperator L̂ onto ρ̂ is defined as:

L̂ · ρ̂′ =
[
Ĥ0, ρ̂′

]
+
[
V ′Hxc[ρ̂′], ρ̂0

]
. (1.28)

Here ρ̂′(r, ω) = ρ̂(r, ω)− ρ̂0(r) is the response density matrix and ρ̂0(r) is the unperturbed
density matrix, whereas V ′Hxc in (1.28) is:

V ′Hxc(r, ω) =
ˆ
KHxc(r, r′)n′(r′, ω) dr′, (1.29)

where KHxc(r, r′) is the sum of the Hartree and exchange and correlation kernels (Hartree-
plus+XC kernel):

κ(r, r′) = e2

|r− r′|
+ fxc(r, r′), (1.30)

and fxc is the exchange-correlation kernel. Equation (1.27) can be solved using the Lanczos
recursive scheme [21, 22, 23, 24, 25, 26] for all of the frequencies at once, resulting in the
susceptibility χ.
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1.2.3 TDDFPT in extended systems
So far, I have not specified the perturbation that acts on the system neither I used the
fact that we are dealing with periodic systems. In an EELS experiment the weak external
perturbation is one free electrons that can be described as a plane wave ei(q·r−ωt). The
perturbing potential can be written as:

V ′ext(r, t) =
∞̂

−∞

Ṽ ′ext(r, ω) e−iωt dω =
∞̂

0

[
Ṽ ′ext(r, ω) e−iωt + c.c.

]
dω, (1.31)

where Ṽ ′ext(r, ω) can be further decomposed into Fourier monochromatic q components:

Ṽ ′ext(r, ω) =
1BZ∑

q
eiq·r ṽext,q(r, ω), ṽext,q(r + R, ω) = ṽext,q(r, ω), (1.32)

where ṽext,q(r, ω) = 1 in the case of free electrons, and R is the radius-vector of the
primitive unit cell. The same decomposition can be done for the Hartree-plus-XC response
potential in Eq. (1.18), yielding:

Ṽ ′(r, ω) =
BZ∑
q
eiq·r ṽq(r, ω), ṽq(r, ω) = ṽext,q(r, ω) + ṽHxc,q(r, ω). (1.33)

where ṽHxc,q(r, ω) is a lattice-periodic function.
According to the Bloch theorem, in a periodic system, the ground state Kohn-Sham

wavefunction can be written as:

ψ0
n,k(r) = eik·r u0

n,k(r), u0
n,k(r + R) = u0

n,k(r), (1.34)

where u0
n,k(r) is the lattice periodic function. Let us now define the projector onto empty

states in periodic systems:

P̂c =
unocc∑
n,k

ψ0
n,k(r)ψ0 ∗

n,k(r′) =
∑

k
eik·r P k

c e
−ik·r′

, (1.35)

where the summation runs over unoccupied states n, and P k′
c is the projector onto empty

states at point k, which reads:

P̂ k
c =

unocc∑
n

u0
n′,k(r)u0 ∗

n,k(r′) = 1−
occ∑
n

u0
n,k(r)u0 ∗

n,k(r′). (1.36)

Finally, we can define the unperturbed Hamiltonian Ĥ0
k as:

Ĥ0
k = e−i(k)·r Ĥ0 ei(k)·r. (1.37)
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1.2.3.a The Sterheimer equations

Now we can write the Sternheimer equations (1.22), (1.23) only for the lattice-periodic
part of the response wavefunctions and potential2:

(Ĥ0
k+q−εn,k−~ω)P̂ k+q

c u′n,k+q(r, ω)+P̂ k+q
c v′Hxc,q(r, ω)u0

n,k(r) = −P̂ k+q
c ṽ′ext,q(r, ω)u0

n,k(r),
(1.38)

(Ĥ0
k+q−εn,k+~ω)P̂ k+q

c u′ ∗n,−k−q(r,−ω)+P̂ k+q
c ṽ′Hxc,q(r, ω)u0

n,k(r) = −P̂ k+q
c ṽ′ext,q(r, ω)u0

n,k(r).
(1.39)

where u′n,k+q(r, ω) and u′ ∗n,−k−q(r,−ω) are lattice periodic components of response wave-
functions ψ′∗

n,−k(r,−ω) and ψ′
n,k(r, ω). I have used the fact that due to the time-reversal

symmetry the following relations hold for unperturbed wavefunctions u0 ∗
n,−k(r) = u0

n,k(r)
and for the potential ṽ′ ∗−q(r,−ω) = ṽ′q(r, ω).

Finally, the response charge-density can also be decomposed into monochromatic q
components:

n′(r, ω) =
∑

q
eiq·r n′q(r, ω), (1.40)

where n′q(r, ω) is the lattice-periodic part which reads:

n′q(r, ω) = 2
∑
n,k

u0 ∗
n,k(r)

[
ũ′n,k+q(r, ω) + ũ′ ∗n,−k−q(r,−ω)

]
. (1.41)

1.2.3.b The quantum Liouville equation

Alternatively Sternheimer equations (1.38) and (1.39) can be rewritten into the quantum
Liouville equation:

(~ωÎ − L̂q) · ρ̂′q(r, ω) = [ṽ′ext,q(r, ω), ρ̂0(r)], (1.42)

with the response density matrix:

ρ′q(r, r′;ω) = 2
∑
n,k

[
u′n,k+q(r, ω)u0 ∗

n,k(r′) + u′ ∗n,−k−q(r′,−ω)u0 ∗
n,k(r)

]
. (1.43)

I note that the susceptibility χ(q, ω) in this formalism is given by:

χ(q, ω) =
〈
ṽ′ext,q(r, ω)

∣∣∣(~ω − L̂)−1 · [ṽ′ext,q(r, ω), ρ̂0(r)]
〉
. (1.44)

It can be efficiently calculated using the Lanczos recursive scheme [24, 26].

1.2.4 Batch representation of TDDFPT equations
The response density (1.41) at any given frequency ω is determined by the two following
sets of response orbitals also called batches [21, 24]:

x = {u′n,k+q(r, ω)}, (1.45)
2For notational convenience I have changed k to −k in the second equation
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y = {u′ ∗n,−k−q(r,−ω)}. (1.46)
It is convenient (in non-magentic systems [29] where the off-diagonal elements of the spin-
polarized density matrix are zero) to perform a 45◦ rotation in the space of batches to pass
to standard batch representation (SBR) defining q = {qn,k+q(r)} and p = {pn,k+q(r)},
where

qn,k+q(r) = 1
2 [u′n,k+q(r, ω) + u′ ∗n,−k−q(r,−ω)], (1.47)

pn,k+q(r) = 1
2 [u′n,k+q(r, ω)− u′ ∗n,−k−q(r,−ω)]. (1.48)

In the SBR, the lattice-periodic monochromatic q component of the response charge-
density reads [see Eq. (1.41)]:

n′q(r, ω) = 4
∑
n,k

u0 ∗
n,k(r) qn,k+q(r). (1.49)

In the SBR, the quantum Liouville equation (1.27), or equivalently the Sterheimer
equations (1.22) and (1.23), can be written in the matrix form:(

~ω −D̂q

−D̂q − 2K̂q ~ω

)(
q
p

)
=
(

0
{P̂ k+q

c ṽ′ext,q(r, ω)u0
n,k(r)}

)
, (1.50)

where the action of the D̂q and K̂q superoperators on the batches of orbitals is defined
as:

D̂q · qn,k+q(r) = (Ĥ0
k+q − εn,k) qn,k+q(r), (1.51)

and
K̂q · qn,k+q(r) = 2P̂ k+q

c

∑
n′,k′

ˆ
Knk;n′k′(r, r′) qn′,k′+q(r′) dr′, (1.52)

where the kernel Knk;n′k′(r, r′) reads:

Knk;n′k′(r, r′) = κ(r, r′)u0
n,k(r)u0 ∗

n′,k′(r′), (1.53)

where κ(r, r′) is the Hartree-plus-XC kernel.

Let us write the susceptibility χ(q, ω) in the SBR. The components of the matrix
elements of Eq. (1.44) in the SBR read:

ṽ′ext,q(r, ω) SBR−→

 {P̂ k+q
c ṽ′ext,q(r, ω)u0

n,k(r)}
0

 , (1.54)

and

[ ṽ′ext,q(r, ω), ρ̂0(r) ] SBR−→

 0
{P̂ k+q

c ṽ′ext,q(r, ω)u0
n,k(r)}

 . (1.55)

Hence, the susceptibility χ(q, ω) reads:

χ(q, ω) =
〈

({P̂ k+q
c ṽ′ext,q u

0
n,k}, 0)

∣∣∣∣(~ωÎ − L̂q)−1 · (0, {P̂ k+q
c ṽ′ext,q u

0
n,k})

〉
, (1.56)
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where
L̂q =

(
0 D̂q

D̂q + 2K̂q 0

)
, (1.57)

or, equivalently [see Eq. (1.50)],

χ(q, ω) =
〈

({P̂ k+q
c ṽ′ext,q u

0
n,k}, 0)

∣∣∣∣
(

~ω −D̂q

−D̂q − 2K̂q ~ω

)−1 ( 0
{P̂ k+q

c ṽ′ext,q u
0
n,k}

)〉
.

(1.58)
If the exchange and correlation kernel is adiabatic (i.e. κ(r, r′) does not have an explicit
dependence on ω) the Liouvillian superoperator (1.57) is frequency independent and thus
the susceptibility χ can be efficiently computed using the Lanczos recursive algorithm for
any desired range and number of frequencies at the same computational cost. This is
important in materials where semicore states need to be included in the valence region of
the pseudopotential thus extending a frequency range where spectra can be computed.

1.2.5 Full relativistic TDDFT equations
For systems where spin-orbit coupling (SOC) should be accounted for, in principle, one has
to start from the Dirac (or Dirac-Kohn-Sham) equation for a 4-component spinor under
the action of an external quadri-potential. It has been shown, however that in DFT
calculations relativistic corrections can be included via the pseudopotentials, allowing to
solve Pauli-type Kohn-Sham equations for 2-component spinors [30]. In this case the
all-electron, Dirac-like Kohn-Sham equations are solved for the isolated atom and then
Pauli-like Kohn-Sham equations are solved, tayloring the effective potential to reproduce
the solution of the FR atomic Dirac-like equations. The starting point of the FR treatment
of the time-dependent problem is the generalization of Eq. (1.14):

(1.59)

where ψσk,v(r, t) is the two-component spinor, Hσ1,σ2 is the 2× 2 Hamiltonian and σ is the
spin index that takes two values: ↑ and ↓. The density is also a 2×2 matrix that contains
also spin density, and reads:

nσ1,σ2(r, t) =
∑
k,v
ψ′∗σ1

k,v (r, t)ψ′σ2
k,v(r, t), (1.60)

and the electron density is the trace of density matrix nσ1,σ2(r, t):

n(r, t) =
∑

k,v,σ
ψ′∗σk,v(r, t)ψ′σk,v(r, t), (1.61)

In Sec. 1.2.1 in order to obtain the second equation (1.21) (or (1.39) in Sec. 1.2.3) I could
simply take the complex-conjugate of the Eq. (1.14) and linearize it. In the present case
one has to apply the time-reversal operator T̂ to Eq. (1.59):

T̂ = −iσyK, (1.62)
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where σy is the Pauli matrix and K is the complex conjugate operator. I note that, in
fact, in the scalar relativistic case T̂ = K, so taking a complex-conjugate of the equation
is equivalent to applying the time-reversal operator. Linearization of Eq. (1.59) and its
time-reversed counterpart gives:∑

σ2

[
Hσ1σ2

k+q − εn,k − ~ω)
]
P̂ k+q
c ũ′σ2

n,k+q(r, ω) = −P̂ k+qṽq(r, ω)u0σ1
n,k(r) (1.63)

∑
σ2

[
Hσ1σ2

k+q − εn,−k + ~ω)
]
T̂ P̂ k+q

c ũ′σ2
n,−k−q(r,−ω) = −P̂ k+qṽq(r, ω)T̂ u0σ1

n,−k(r) (1.64)

with the response density that reads:

n′q(r, ω) =
∑

k,v,σ

(
u0σ∗
n,k (r)ũ′σn,k+q(r, ω) + T̂ u0σ∗

n,−k(r)T̂ ũ′σn,−k−q(r,−ω)
)

(1.65)

I note that in this work I have assumed a non-magnetic system, which means that the
Hamiltonian of the unperturbed system commutes with the time reversal operator. It
allowed to use the same Hσ1σ2

k+q in Eq. (1.64) as in Eq. (1.63). Finally due to the time-
reversal symmetry of the unperturbed system one can replace T̂ u0σ

n,−k(r) with u0σ
n,k(r) and

obtain the response density in the form similar to the Eq. (1.41):

n′q(r, ω) =
∑

k,v,σ
u0σ∗
n,k (r)

(
ũ′σn,k+q(r, ω) + T̂ ũ′σn,−k−q(r,−ω)

)
(1.66)

For the systems where time-reversal symmetry does not hold, i.e. magentic systems, one
has to consider also magentizations density (off diagonal elements of 2× 2 density matrix
in Eq. (1.60)) and keep the density in the form of Eq. (1.65) as it was done in Ref. [29].

1.3 Conclusions
In this chapter I gave an overview of the current state of the art for the TDDFPT ap-
proaches to the linear response problem. I have defined the susceptibility of the system in
the linear response framework and shown the relation between the dielectric function of the
material and susceptibility. I have presented two distinct TDDFPT approaches, namely
the Sternheimer and the Liouville-Lanczos methods, that allow the ab initio calculation
of the susceptibility of the system without the need of computing numerous empty states
contrarily to the approaches that involve the solution of Dyson-like equation [19]. The
price to pay for this advantage is that the information about the orbital origin of the exci-
tation cannot be retrieved in TDDFPT. Between the Sternheimer and Liouville-Lanczos
approaches, the former is more general as it does not require the Hatree-plus-XC kernel
to be frequency independent, while the Liouville-Lanczos approach allows to calculate the
electronic susceptibility χ for any number of frequencies at the same cost, significantly
reducing the amount of CPU time needed to calculate the same spectrum. The formal-
ism presented in this chapter has been developed for norm-conserving pseudopotentials
and implemented in the TDDFPT branch [24, 25, 26] of the Quantum ESPRESSO
suite [31, 32] prior to this work. The extension of the Liouville-Lanczos approach to the
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calculation of spin-fluctuation spectra in magnetic system has also been done recently [29].
Other possible extensions include the generalization and implementation of the presented
formalism to full relativistic ultrasoft pseudopotentials, PAW scheme and higher order
response. Chapter 4 of my thesis is devoted to the first direction: the generalization of
TDDFPT to full relativistic ultrasoft pseudopotentials.
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Chapter 2

Flat and vicinal Au(111) surfaces.
Surface states and resonances.

Surfaces states in noble metals have been extensively studied both theoretically and ex-
perimentally in the past decades. Special attention has been paid to the L-gap Shockley
state in Au, Ag, and Cu(111) surfaces, as it was predicted [11], [18], [17] to support an
acoustic surface plasmon excitation that was later found in Be(0001) [12], Cu(111) [14]
and Au(111) [13] surfaces. In this chapter I give an overview of the crystal structure and
surface states on both flat and stepped Au(111) surfaces. First, I discuss the Shockley
surface state on the flat Au(111) [33], [34] and its evolution in the case of stepped (111)
Au surfaces [35]. Then I discuss the difference in the surface state behavior of various
vicinal surfaces in two distinct cases: electron confinement within the step, for the case
of wide terraces, and electron propagation across the step array for narrow terraces.

2.1 Crystal structure of bulk Au and flat Au(111)
surface

Bulk gold has the face-centered cubic (FCC) crystal structure shown in Fig. 2.1(a), with
an experimental lattice constant a = 4.07 Å at room temperature. Different surfaces
can be obtained by a cut through the crystal in the direction of the desired plane. In
Fig. 2.1(a) the (111) plane is shown, that results in the (111) surface shown in Fig. 2.1(b).
The Au(111) surface has 3 types of inequivalent atomic planes depicted with different
colors in Fig. 2.1(b). Atoms of the Au(111) surface form a close packed hexagonal lattice
with a 3 fold symmetry.

The bulk Brillouin zone (BBZ) and surface Brillouin zone (SBZ) of Au and Au(111)
with high symmetry points are reported in Fig. 2.2. As one can see in this figure, the
SBZ is obtained by projecting the BBZ onto the desired direction, in this case (111).

I would like to point out that the flat Au(111) surface is not stable and does not
have the structure of the ideally cut crystal shown in Fig. 2.1 - it undergoes a 22 ×

√
3

herring-bone reconstruction [36]. I note, however, that this reconstruction can be usually
neglected in the electronic structure calculations, as it has been shown to have a minimal

19
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(a) (b)

Figure 2.1: Crystal structure of (a) bulk Au that shows a (111) plane and (b) top view
of the Au(111) surface; Atoms colored as brown, green and orange are atoms that belong
to the first, second and third layers respectively.

impact on the surface electronic structure [37].

Figure 2.2: The bulk Brillouin zone (BBZ) and (111) surface Brillouin zone (SBZ) of
gold. From Ref. [38].

2.2 Surface states of noble metals

2.2.1 Surface states
In an infinite crystal, orbitals of valence electrons overlap forming continuous electronic
bands that extend over the whole crystal and are separated by gaps in some regions of
the momentum space. In finite crystals the symmetry at the surface is broken and surface
states can emerge in forbidden bulk energy gaps. Since these states lie in the gap of
bulk states they cannot extend into the crystal and effectively form a quasi-2D gas at the
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surface. The wavefunction of the surface state is exponentially damped in the direction
perpendicular to the surface. If one model a crystal as a semi-infinite chain of periodically
arranged atoms and solve the Schrodinger equation for this system [39] one would obtain
following solutions for the surface state wavefunction:

ψ(z) = Aie
−kzcos(Gz/2 + δ) (2.1)

for the region inside (index i the crystal (z < 0) and

ψ(z) = Aoe
−λz (2.2)

for the region outside (index o) the crystal (z > 0). Here Ai and Ao are normalization
constants, G is the reciprocal lattice vector along the z-direction, δ is a phase that goes
from 0 to π/2, k and λ are the decay coefficients.

Surface states on noble metals are very sensitive to surface defects like adsorbates or
steps and thus offer an ideal tool to study low dimensional electronic properties. Sur-
face states can be studied using various experimental tools including scanning tunnel
microscopy (STM) and angle-resolved photoemission spectroscopy (ARPES) as well as
theoretically using ab initio methods like density functional theory (DFT) [40, 41].

2.2.2 Surface states of the flat Au(111) surface
The Au(111) surface band structure calculated in the scalar relativistic (SR) ultrasoft
pseudopotential scheme is reported in Fig. 2.3. In this calculation the surface state is
defined as a state for which |ψ|2 > 0.6 on the first two layers of the surface. The Shockley
surface stated associated with the zone-boundary hybridization at the L-point of the BBZ
is located in the so-called the L-gap of projected bulk bands at the center of the SBZ, Γ
0.4 eV below the Fermi level and has a parabolic free-electron like dispersion away from
Γ around the band minimum. This surface state has mainly a sp character and extends
deep into the bulk of the metal, hence a thick slab is required in order to decouple the
two surfaces in the slab-supercell geometry.

Inclusion of the spin-orbit coupling (SOC) leads to noteworthy changes in the surface
band structure (shown in Fig. 2.4) that have been discussed in details in [34]. The most
relevant effect of SOC for this work is the Rashba splitting of the Shockley surface state
into two parabolic bands separated along k|| and slightly shifted downward compared to
the SR calculation. However, except for this fact, the general behavior of the surface state
remains the same in both SR and FR cases: it has a nearly free-electron like dispersion
with the minimum around 0.4 eV below the Fermi level. I point out that in both cases
(SR and FR) there is a well defined gap in the projected bulk band structure (PBS) at Γ
point that is sometimes called the L-gap as the L symmetry point of the bulk Brillouin
zone is projected onto the Γ point of the surface Brillouin zone.

2.2.3 Surface states and surface resonances
When speaking about surface states it is important to distinguish between the so-called
"true" surface states and surface resonances. On the one hand "true" surface states are
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Figure 2.3: LDA scalar relativistic (SR) surface band structure of Au(111) simulated by
a 21-layer slab. Reproduced after Ref. [34] using similar parameters. Zero of energy is
rhe Fermi level.
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Figure 2.4: LDA full relativistic (FR) surface band structure of Au(111) simulated as
21-layer slab. Reproduced after Ref. [34] using similar parameters. Zero of energy is rhe
Fermi level.

usually located in the gap of the projected bulk bands, thus these state are well localized
at the surface and do not mix with bulk states. Alternatively, the surface state can exist
within the continuum of bulk states if they are distinguished by the symmetry, making
the coupling between surface and bulk bands symmetry forbidden.

Surface resonances, on the other hand, are states located within the projected bulk
bands of the same symmetry, thus they can mix with bulk states forming somewhat



2.2. SURFACE STATES OF NOBLE METALS 23

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0  10  20  30  40  50  60

L

Au Au Au Au Au Au Au Au Au Au

|
ψ

(z
)|

2
 (

a
.u

.−
1
)

z (a.u.)

(a)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  10  20  30  40  50  60

|
ψ

(z
)|

2
 (

a
.u

.−
1
)

z (a.u.)

M
−

Au Au Au Au Au Au Au Au Au Au

(b)

Figure 2.5: Au(111) surface planar averages of (a) the "true" (i.e. non-resonant) surface
state of Au(111) at the Γ point (red line) and its fit with Eq. (2.1) using the following
parameters: Ai = 0.011, k = 0.0715, G/2 = 0.706, δ = −3/2π. (b) the surface resonance
of Au(111) at the M point of Fig. 2.3 (SR calculation).

localized states that can extend deep into the bulk. In this case in equation (2.1) term ekz

will be replaced by ekz + B where B defines the part of the state that extends infinitely
in the bulk of the surface.

In Fig. 2.5 I show the plots of the planar average of the charge density that correspond
to surface state and surface resonance from the band structure in Fig. 2.3. In Fig. 2.5(a)
the planar average for the L-gap Shockley state at Γ shows that while the state penetrates
deep into the bulk it is still localized and can be described using Eq. (2.1) (black dashed
line). The charge density planar average in Fig. 2.5(b) for state at about -6.5 eV atM , on
the other hand, shows that it has a bulk tail while been partially localized on the surface,
hence it is identified as a surface resonance. I point out that in this particular case the
surface resonance is quite well localized at the surface allowing an easy identification - in
general it can have a more intense bulk tail, making the identification more difficult, as
one will see in Chapter 5.
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2.3 Vicinal Au(111) surfaces

2.3.1 Vicinal Au(111) surface geometry and projected bulk bands
Stepped Au(111) surfaces, also known as high Miller’s index surfaces or vicinal surfaces
are obtained by cutting the single crystal with a plane that deviated from the (111) plane
by a small miscut angle. The resulting surface will consist of flat terraces of the (111)
plane separated by monoatomic steps, characterized by the terrace width L, step array
periodicity d, miscut angle α and the step height h. In this case, the regular array of
steps form a periodic array of step potential barriers, with a barrier-to-barrier distance
equal to d. The schematic side view of the vicinal surface is reported in Fig. 2.6. I point
out that change of the geometry of the surface leads also to the change of the unit cell
type and SBZ shape for the vicinal surface from the hexagonal to tho orthorhombic one
(see Fig. 2.7). Contrarily to the Au(111) case shown in Fig. 2.2 where the L point of the
BBZ in the [111] direction was projecting onto the Γ point of the SBZ pf the Au(111)
surface, in the vicinal surface case, the L point projection will be shifted by π/d and will
become the SBZ edge Y . I also note that the Au(111) surface can be described using the
orthorhombic unit cell, however it will not be the smallest possible unit cell. Hence I will
refer to the hexagonal unit cell of the Au(111) surface as to the primitive cell.

Figure 2.6: Side view of the vicinal surface structure. Adopted from the Ref. [42].

It is crucial to note that the gap at the Fermi level of the projected bulk bands at the Γ
point (see Fig. 2.3) might no longer be supported on vicinal surfaces. In Fig. 2.8 I report
the scheme from Ref [42] that shows the evolution of the gap in the PBS. In this scheme
the circles describe the bulk Fermi surface in the first Brillouin zone with its characteristic
necks. Dark shaded regions indicate the projection of bulk states from the two halves of
the Fermi surface, whereas light shaded areas correspond to bulk states projected from
one side of the Fermi surface. In the cases of Au(111) (α = 0°) and Au(788) (α = 3.5°)
the projections of the two necks from the opposite sides of the Fermi surface overlap form
a gap at Γ. When increasing the miscut angle, the region where the projections of the
two necks overlap will be getting small until a certain critical angle αc, at which the gap
at Γ will close (αc = 10.2°for Au(111) vicinal surfaces [35]). As one can see, for Au(788)
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Figure 2.7: SBZ with high-symmetry point of (a) the hexagonal Au(111) surface and of
(b) the orthorhombic Au(111) vicinal surface.

(α = 3.5°) the gap at the SBZ center that supports the L-neck state is present, while for
Au(322) (α = 11°) bulk states are projected over the whole SBZ and thus only surface
resonance can exist.
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Figure 2.8: . Bulk band projection at E = EF onto vicinal surfaces with small and high
miscut angles in the xz plane. Dark-grey zones are the regions where bands are projected
from both sides of the BZ, whereas light-grey zones present projection only from half a
side. From Ref. [42].

2.3.2 Vicinal Au(111) surface states
Stability, self organization and surface states for different vicinal surfaces of Au have
been studied thoroughly in the past decades [43, 44, 45, 46, 35], revealing, in particular,
that the L-gap Shockley state of the (111) Au surface is significantly modified between
the flat Au(111) and vicinal surfaces with narrow or wide terraces [46, 35]. It has been
shown using ARPES that on the vicinal surface with a narrow terrace, Au(322), the
surface state becomes a surface resonance as due to the relatively big miscut angle (11.4°)
the gap in the PBS at the Fermi level around Γ point vanishes (see Fig. 2.8). Thus, the
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(a)
(b)

Figure 2.9: 2.9(a) Terrace modulated versus 2.9(b) Average surface modulated character
of the surface state .

surface state overlaps with bulk states decreasing significantly the localization of the state
near the surface. On the other hand, the terrace width is narrow enough to allow the
electrons that belong to surface state to propagate across the surface plane in the direction
perpendicular to the step. At variance, for the small miscut angles of Au(788) and Au(21
23 23), the gap in the PBS in maintained allowing to support a "true" Shokley surface
state. The wide terraces of Au(788) and Au(21 23 23) surfaces lead to the confinement of
the surface state within each terrace. In this case a surface state behaves like a quantum
well state which, contrasting to the free electron surface state of Au(111) with parabolic
dispersion, forms weakly dispersive subbands.

2.3.3 Surface state modulation
Finally, one should distinguish between the terrace modulated and average-surface mod-
ulated character of the surface state shown in Fig. 2.9. In the former case, that occurs
for the well-confined 1D states, one can say that the 1D state does not ’see’ the average,
stepped surface. It means that the electron in this state is effectively in a 1D quantum
well and its wavefunction will be decaying into the bulk in the direction perpendicular to
the terrace, as shown in Fig. 2.9(a). In the latter case, however, the electrons of the 2D
state can propagate across the whole surface as it shown in Fig. 2.9(b). In this case the
electron moves in a superlattice and its wavefunction will be decaying into the bulk in the
direction perpendicular to the average surface that differs from the terrace plane by the
miscut angle.

2.3.4 The Kronig-Penney model for the surface state confine-
ment

Simple analysis of the band structure for vicinal surfaces can be performed in the frame-
work of the 1D Kronig-Penney model as the step lattice can be viewed as an array of
potential barriers. For this purpose I will adapt the notation of [47, 42]. For the array
of δ-Dirac potential barriers U0bδ(x) following quantities are defined: q0 = (m∗/~2)U0b,
q =

√
(2m∗/~2)(E − E0) where E0 is the energy of the band bottom for the free electron

case (infinite terrace width). Finally the transmission coefficient T = |T |eiφ is defined as
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T = q/(q + iq0). Then the dispersion relation for the electron takes the following form:

cos(qL+ φ) = |T |cos(kxL), (2.3)

or, in terms of energy

E(kx) = ~2

2m∗L2 [cos−1(|T |cos kxL)− φ]2. (2.4)

This model contains only one adjustable parameter, the barrier strength U0b, that can be
obtained from the fit of this equation onto the calculated or measured surface state bands,
allowing the direct quantitative comparison of the obtained results. It has been already
successfully used for the analysis of the ARPES results for vicinal surfaces of Au(111) and
Cu(111) [35, 46, 42, 48]

2.4 Conclusions
In this chapter I have briefly reviewed the surface structure and surfaces states of the flat
and some vicinal Au(111) surfaces. I have discussed the Shockley surface state on flat
Au(111) surface pointing out that taking into account SOC is important to observe the
two Rashba split Shockley surface states at the center of SBZ. Apart from the Rashba
splitting, SOC is not crucial to observe the surface state in ab initio calculation as the
latter is already seen at the scalar relativistic level. Then I have discussed the general
structure of (111) vicinal surfaces and significant modifications of surface states due to
the geometry change, such as the transition between surface state and surface resonance,
terrace modulated versus average-surface modulated states.
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Chapter 3

EEL spectrum and plasmon
excitations of Au.

Electron energy loss (EEL) spectroscopy [49] is a powerful experimental method that
allows one to measure the change in kinetic energy -the energy loss- of electrons after their
interaction with a sample. This technique can be used to obtain structural and chemical
information about a specimen -from the high-energy loss region of the spectrum- as well
as information about valence electron excitations -from the low-energy loss region of the
spectrum-. In particular, the valence region of the spectra contains information about the
band structure and dielectric properties of the material: plasmons, surface plasmons and
interband transitions. For some materials like aluminum, the valence EEL spectrum has
a simple structure containing one single, well-defined, plasmon peak for which the Drude
model is a pertinent approximation.

In materials where the behavior of valence electron is far from the (quasi) free electron
model however, the EEL spectrum contains many peaks from single, to collective and to
superposition of collective and single excitations, that make it difficult to analyze. Indeed,
noble metals, such as Au, that is the main material I will be studying is one of these cases.

In this chapter I will give an overview of the existing experimental and theoretical
EEL spectra for bulk and surfaces of gold focusing on the conventional bulk and surface
plasmons as well as on acoustic surface plasmons. First, I will discuss the types of plas-
monic excitations that can be observed in EELS experiments. Then I will discuss the
recent ab initio calculations of EEL spectra for Au, their comparsion with experiments
and will point out limitations of the conventional approximations.

3.1 Bulk and surface plasmons

3.1.1 The Drude model
In the Drude model [50] for the dielectric function of metals that assumes free (or nearly
free) electrons, the dielectric function ε reads:

ε(ω) = 1−
ω2
p

ω(ω + iγ) , (3.1)
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where ωp is the plasma frequency and γ is the damping time (or equivalently the in-
verse relaxation time τ = 1/γ). Corresponding real and imaginary part of the dielectric
funtction are:

Re[ε] = 1−
ω2
p

ω2 + γ2 Im[ε] =
γω2

p

ω(ω2 + γ2) (3.2)

The Drude model is a good approximation for free-electron metals like aluminum. For
non-free-electron like materials (e.g. silver) the band structure effects should be taken
into account.

3.1.2 Bulk plasmon
A bulk plasmon is a collective oscillation of the free electron density in the bulk of the
material. For the case of q → 0 the condition of bulk plasmon excitation that can be
obtained from the Drude model, is the following: Re[ε(q, ω)] = 0 and Im[ε(q, ω)] should
have a local minimum. In the free electron model, the frequency of the bulk plasmon at
q → 0 is determined by the density of valence electrons:

ωBP =
√

4πne2

me

, (3.3)

where n is electron density, me is the mass of the electron and e is the electron charge.
For the case of finite momentum transfer ωBP ∼ q2. In real systems the actual value of
ωBP may deviate from the value that can be obtained from Eq. (3.3) due to the presence
of an interband transition with a frequency lower than the free electron plasma frequency,
that screens the bulk plasmon and pushes it down in frequency as explained with the
help of a simple model given in Ref. [51] and the supplemental material (SM) of Ref. [52].
In that model a system consists of a free electron gas with a plasma frequency ωBP that
coexists with a bound Lorentz oscillator of frequency ω1. Assuming that damping terms
are small, the dielectric function is reduced to its real part:

ε(ω) = 1− ω2
BP

ω2 + f1ω
2
BP

ω2
1 − ω2 , (3.4)

with f1 being the oscillator strength for bound electrons. In this system collective oscilla-
tions will occur at the frequency where ε(ω) = 0. For the noble metals ωBP � ω1 and the
dielectric function of Eq. (3.4) will become zero at two frequencies Ω1 ≈ ω1(1+f1)−1/2 and
Ω1 ≈ ωBP (1 +f1)1/2. If the imaginary part of dielectric function at one of this frequencies
is small the plasmon excitation can develop.

3.1.3 Surface plasmons
While bulk plasmons appear in the bulk of the material and can be observed in most
metals and semiconductors, surface plasmons occur at the interface between a material
surface and a dielectric medium. A surface plasmon is a collective oscillation of the free
electron density at the interface and forms a wave propagating along the interface. By
contrast to the bulk plasmon that occurs when Re[ε(q, ω)] = 0 the surface plasmon is
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excited when Re[ε(q, ω)] = −1 [53] (generally speaking Re[ε(q, ω)] = −εdm, where εdm is
the dielectric function on the media above the surface). One should also note that in bulk
materials plasmons occur in any direction of the electron wave vector, while in the case of
a surface the wavevector should have the component parallel to the surface (denoted as
q|| further in text). In the free electron model, the frequency of the plasmon is once again
governed by the electron density and, consequently, is proportional to the bulk plasmon
frequency:

ωSP = ωBP√
2
. (3.5)

For the case of a finite momentum transfer ωSP ∼ q2
||. Similarly to the case of bulk, ωSP

changes due to the presence of interband transitions in real systems. The surface plasmon
can be coupled to the light, forming surface plasmon polariton that allows to confine
light in the subwavelength region and propagate it along the surface. The non-linear
dispersion has the consequence that the propagation of nonmonochromatic wavepackets
becomes problematic and cannot occur without distortion.

3.1.4 Acoustic surface plasmons

For the case of a 2D electron gas it has been predicted [54] that surface plasmons will
exhibit a square-root dispersion ω2D ∼

√q|| and it was shown for the case of graphene
that even better light confinement with respect to conventional surface plasmons (CSP)
can be achieved. Although similar to the CSP, this kind of dispersion does not allow
a distortionless propagation. A new type of 2D surface plasmon called acoustic surface
plasmon has been predicted [11] to exist on a 3D metal surface when a partially occupied
2D Shockley surface state interacts with the underlying 3D electron gas and, as a result
of this screening of the quasi-2D band, the dispersion of the 2D surface plasmon changes
from a square-root like behavior to a linear one:

ωASP = αv2D
f q, (3.6)

where α is a coefficient close to the unity that depends on the separation between the
quasi-2D electron gas formed by the Shockley state and the underlying 3D electrons as well
as on its penetration character, v2D

f is the 2D Fermi velocity and q is a in-plane wavector.
Typical ASP energy lies in the range of 0.2-1.5 eV. On the one hand, the low excitation
energy may allow ASP to participate in many dynamical processes involving electrons
and phonons. On the other hand, due to the sound-like dispersion, a signal consisting of
several ASP waves can propagate along the surface without distortion. They thus could
be used to localize the electro-magnetic field near the surface and enhance it without
distortion. ASP has been observed experimentally on Be (0001) [12], Au (111) [13], Cu
(111) and Au (788) surfaces [16].
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3.2 EEL spectra of bulk Au and Au surfaces. Bulk
and surface plasmons in EELS

3.2.1 Bulk Au
Dielectric properties of bulk and surface of Au have been thoroughly studied theoretically
in the past decades. Those studies include both the calculation of the dielectric function
for q=0 (optical case) and for finite value of q. Notably, the role of localized d-bands,
crystal local fields and exchange-correlation functional were investigated. In particular it
has been shown [55] (see Fig. 3.1(a) ) that d-bands are essential to reproduce the structure
of the EEL spectra and to provide a polarizable background which significantly lowers
the free electron plasma frequency and damps the bulk (and surface) plasmon peak. This
effects, as well as the influence of the local fields, exchange-correlation functional have
been studied further [52] with a special attention to the EEL spectra for E>10 eV. In
particular, it has been shown (see Fig. 3.1(b) that local fields start to have an effect on
the loss spectra from 10 eV and lead to more pronounced changes at higher energies, while
the effect of the TDLDA kernel, compared to the RPA one, is quite small. As one can
see in Fig. 3.1(b) agreement between the ab initio calculations and experimental results
for EEL specta of Au is good except for the plasmon peak for reasons that I will discuss
in the Chapter 6.

I would like to note also that in Ref. [52] other noble metals have been studied revealing
similar trends in the behavior of the loss function for Cu and Ag.

3.2.2 Adequation and limitations of LDA/GGA for the predic-
tion of plasmons

As I have pointed out in the previous section good agreement between theoretical and
experimental loss function was observed in Ref. [52] with the notable exception of the
bulk plasmon peak position that is severely damped in Au and is damped and shifted
in Ag. This occurs as the energy of the 5d bands in Au (and 4d in Ag) are to high
in the LDA or GGA leading to the underestimation of the 5d->6s interband transition
onset and thus complete screening of the bulk plasmon in Au (see. Sec. 3.1.2 and SM
of the Ref. [52]). It has been shown that by using the GW corrections or orbital-depend
GLLBSC exchange-and-correlation functional it is possible to restore the correct interband
transition energy and thus the plasmon peak in the EEL spectra. The same trend is
observed for surfaces of Au and Ag: for the Au(111) surface the surface plasmon peak
does not develop in LDA according to Ref. [58] and for the Ag(111) surface it appears less
sharp and redshifted [58]. In both cases the use of GLLBSC potential allows to restore
the correct position of the surface plasmon peak and to make it more sharp for Ag(111)
surface. Improvements of the bulk and surface plasmons description is also expected from
the GW or LDA+U approaches [59, 52]. Nonetheless, since gold as well as any other metal
does not have a gap between the valence and conducting band LDA and GGA are usually
considered pertinent approximations for the EEL spectrum simulations, contrarily to the
semiconductors, where electron-hole interactions and excitonic effects should be properly
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(a)

(b)

Figure 3.1: EEL spectra for bulk Au: (a)(a) The solid and dot-dashed lines represent
the results of RPA calculation including and excluding local-field effects, the dotted line
represents the result of assigning 5d electrons to the core and the dashed line is the ex-
periment results of Ref. [56] (adopted from Ref. [55], (b)(b) Comparison of EEL spectrum
calculations using different approximations with experimental REELS results of Ref. [57]
(adopted from Ref. [52]).
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accounted for using many-body approaches like GW or Bethe-Salpeter equation [19, 60].

3.2.3 Acoustic surface plasmon in EELS experiments and sim-
ulations

An acoustic surface plasmon (ASP) on gold surface has been first predicted to exist [11, 17,
18] and then found experimentally [61, 13] on the Au(111) surface as well as on the Cu(111)
surface [14, 15]. In the first experiments [61] on Au(111) the reported ASP dispersion has
been significantly larger than expected, raising a question of the understanding of the
underlying physics. On the other hand, dispersion of the Au(111) ASP measured in
more thorough experiments in Ref. [13] is in good agreement with ab initio calculation
performed for Au(111) surface [58, 13] for ASP energies up to 0.6 eV. One of the key
results of these studies was that α < 1 in Eq.(3.6) contrarily to the theoretical predictions
based on the 1D model. Indeed, the assumption that ASP results from the screening of
the surface electron states by the majority of faster bulk electrons turns out to be inexact.
A similar situation was observed for Cu(111): in the first experiments [14] it appeared
that α > 1 however later it has been demonstrated [15] that the fit of experimental peaks
in Ref. [14] was not done correctly, and that the actual situation in Cu(111) resembles that
of Au(111) surface with α < 1. It is worth to note that ab initio dispersion of Ref. [58]
agreed quite well with first experiments [14] but gives a too high slope compared to the
most recent results [15].

3.2.4 Identification of ASP in the calculations
In the ab initio calculations of Refs. [58, 13] ASP was identified in different ways. In
Refs. [12, 62, 13] the surface response function [63, 64] has been computed for the surface
simulated as a slab for different values of q. Maxima of this response function in low
energy region of spectra that have linear dispersion with respect to q have been identified
as ASP. In Ref. [58] a different way has been implemented. In addition to the calculation
of the surface response function, the dielectric band structures of surfaces have been
computed, where authors have identified a stand-out band that represent the surface
mode that comes from the Shockley surface state and that is responsible for the ASP
excitation.

3.3 Conclusions
In this Chapter I gave a brief overview of the types of plasmonic excitations that can
exist in noble metals and of existing studies, both theoretical and experimental of EEL
spectra and plasmons. Multiple theoretical studies have been performed on the EEL
spectra of bulk Au and other noble metals in the past decades, focusing on different
approximations and calculations aspects except influence of the spin-orbit coupling. It
has been shown that good agreement between ab initio calculations with experiments is
reached even for LDA exchange-correlation functional with the one prominent exception
of the bulk plasmon that appears shifted and damped. This issue can be fixed by the use
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of more advanced approaches such as the GW method or the use of the orbital-dependent
GLLBSC functional. While properties of bulk and conventional surface plasmons for
noble metals seem to be well understood, there are certain contradictions when it comes
to the acoustic surface plasmons on Au(111) and Cu(111) surfaces. Thus the goal of the
present work is to perform the missing study of SOC influence on EEL spectra of Au bulk
and (111) surface and then to study the ASP dispersion with SOC in an effort to bring
more insight on its properties for Au(111) surface.
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Chapter 4

Methodological and software
development

This chapter is devoted to the methodological and software development aimed at the gen-
eralization of the TDDFPT approach presented in Chapter 1 to the full-relativistic (FR)
ultrasoft pseudopotentials (USPP). First I will present the TDDFPT equations in the
scalar-relativistic USPP scheme, that has been implemented in the Quantum ESPRESSO
suite before this work and is not yet published. Then I will show the way to generalize it
to the FR case. Finally I will give the comparison of different TDDFPT implementations,
namely the Sternheimer and the Liouville-Lanczos approaches and I will conclude with
further perspectives of these development.

The work presented in this Chapter was done in close collaboration with Andrea Dal
Corso. Most of the methodological development was done during my three week-long
visits to SISSA (Trieste, Italy). The paper on the comparison of the Sternheimer and
Liouville-Lanczos approaches has been accepted for publication [65] and the development
part has not been published yet.

4.1 TDDFPT in the scalar relativistic USPP scheme
Ultrasoft pseudopotentials allow to significantly reduce the kinetic energy cutoff for wave-
functions in calculations with a plane wave basis set. In the past decades numerous
developments have been done to generalize DFPT for lattice dynamics [66, 67], electric
field perturbations [68] and TDDFPT for optical absorption of molecules [22] to the SR
USPP scheme. Moreover, DFT [69] and DFPT for lattice dynamics [70] have been also
generalized to the FR USPP scheme.

4.1.1 TDDFPT equation in the USPP scheme
In the USPP scheme [71] the electronic charge density is written as:

n(r, t) =
∑
i,k
〈ψi,k |K(r) |ψi,k〉 , (4.1)

39
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where K(r) contains an augmentation term:

K(r) = |r〉 〈r|+
∑
Inm

QI
mn(r) |βIm〉 〈βIn| (4.2)

where the augmentation functions QI
mn(r) are localized in the core region of the atom

I and calculated together with the PP. I note that by setting the augmentation term
to zero one can recover the electronic density of the norm-conserving pseudopotential
(NCPP) scheme. Projector functions βIn(r) ≡ βIn(r − RI) are also defined and centered
for each atom and are provided with PP, indices m and n run over the β functions that
are equivalent to Kleinman-Bylander projectors in the NCPP scheme [72].

The basic TDDFPT equation in the USPP scheme remains similar [73] to the Eq. (1.14)
for the NCPP scheme:

i~Ŝ
∂ψi,k(r, t)

∂t
= ĤKS(r, t)ψi,k(r, t), (4.3)

where Ŝ is an overlap operator ensuring the generalized orthonormalization constraint in
the USPP scheme:

〈ψi|Ŝ|ψj〉 = δij (4.4)
and Ŝ is defined as:

Ŝ = 1 +
∑
Inm

qmn |βIn〉 〈βIm| , (4.5)

or in the coordinate representation

S(r1, r2) = δ(r1 − r2) +
∑
Inm

qInmβ
I
n(r1 −RI)βIm(r2 −RI), (4.6)

where coefficients qInm =
´
drQI

mn(r) are the augmentation function integrals. Once again,
if augmentation functions are zero we will retrieve the NCPP Kohn-Sham equation in the
Kleinman-Bylander form [72] and a standard orthonormalization constraint. I note that
in the USPP scheme the projector onto empty states is also modified:

P̂c =
unocc∑
i

|ψi〉 〈ψi| Ŝ (4.7)

and we also introduce its Hermitian conjugate form:

P̂ †c =
unocc∑
i

Ŝ |ψi〉 〈ψi| . (4.8)

4.1.2 Response density in the USPP scheme
The linear term of the response charge density in the USPP scheme reads:

n′(r, ω) =
∑
i,k
ψ0∗
i,k(r)ψ′

i,k(r, ω) +
∑
i,k
ψ0
i,k(r)ψ′∗

i,k(r,−ω)+
∑
i,k

∑
Inm

QI
mn(r)

[
〈ψ′

i,k(−ω)|βIm〉 〈βIn|ψ0
i,k〉+ 〈ψ0

i,k|βIm〉 〈βIn|ψ
′

i,k(ω)〉
]

(4.9)



4.1. TDDFPT IN THE SCALAR RELATIVISTIC USPP SCHEME 41

Let us now find the expression for the lattice periodic part of the density response. We
start with the scalar products of the β functions with unperturbed wavefunctions ψ0:

〈βIn|ψ0
i,k〉 =

ˆ
drβIn(r−RI)eikru0

i,k(r). (4.10)

To proceed further we change variables: RI = Rµ + ds and r −Rµ = r′ where Rµ now
denotes the coordinate of the µ-th unit cell where the atom I is found, and ds is the
coordinate of atom s of the unit cell µ. Thus:

〈βIn|ψ0
i,k〉 =

ˆ
drβsn(r′ − ds)eikr′

eikRµu0
i,k(r′) = eikRµ 〈βsn|ψ0

i,k〉 , (4.11)

and
〈ψ0

i,k|βIm〉 = e−ikRµ 〈ψ0
i,k|βsm〉 . (4.12)

Now we do the similar operation with the scalar products of the β functions with the
response wavefunctions ψ′ also expanding it into monochromatic q components:

〈
ψ′i,k(−ω)

∣∣∣ βIm〉 =
∑

q
e−i(k+q)Rµ

ˆ
drβsn(r′ − ds)e−i(k+q)r′

u
′∗
i,k(r′,−ω) =

∑
q
e−i(k+q)Rµ

〈
u′i,k+q(−ω)

∣∣∣ e−i(k+q)r
∣∣∣ βsn〉 , (4.13)

and 〈
βIn
∣∣∣ψ′i,k(ω)

〉
=
∑

q
ei(k+q)Rµ

〈
βsn
∣∣∣ ei(k+q)r

∣∣∣u′i,k+q(ω)
〉
. (4.14)

Using these relations and time-reversal symmetry for the unperturbed wavefunction we
obtain a final expression for the density response:

n′(r, ω)q =
∑
i,k
u

(0)∗
i,k (r)

[
u∗i,−k−q(r,−ω) + ui,k+q(r, ω)

]
+
∑
i,k

∑
s,m,n

Q̃sq
m,n(r− ds)×

×
[
< u′i,−k−q(−ω)|ei(k+q)r|βsm >< βsn|ψ

(0)
i,−k > + < ψ

(0)
i,k |βsm > 〈βsn|ei(k+q)r|u′i,k+q(ω)〉

]
,

(4.15)

where
eiqrQ̃sq

m,n =
∑
l

eiqRlQs
m,n(r−Rl − ds). (4.16)

4.1.3 The Sternheimer equations in the USPP scheme
Making the same assumptions of weak perturbation and linear response approach used in
Sec. 1.2.1 to obtain the TDDFT Sternheimer equations we obtain:

(Ĥ0 − (ε0
i,k + ~ω)Ŝ)P̂cψ

′

i,k(r, ω) = −P̂ †c V ′(r, ω)ψ0
i,k(r), (4.17)

(Ĥ0 − (ε0
i,−k − ~ω)Ŝ)P̂cψ

′∗
i,k(r,−ω) = −P̂ †c V

′∗(r,−ω)ψ0
i,k(r). (4.18)
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As in Sec. 1.2.3 in the periodic systems we can write equations (4.17), (4.18) as:

(Ĥ0 − (ε0
i,k + ~ω)Ŝ)P̂c

∑
q
ei(k+q)ru

′

i,k+q(r, ω) = −P̂ †c
∑

q
V ′q(r, ω)ei(k+q)ru0

i,k(r), (4.19)

(Ĥ0 − (ε0
i,−k − ~ω)Ŝ)P̂c

∑
q
e−i(−k+q)ru

′∗
i,−k+q(r,−ω) = −P̂ †c

∑
q
V

′∗
q (r,−ω)ei(−k+q)ru0

i,k(r),

(4.20)
While these equation resemble Eq. (1.22), (1.23) the change to the potential V ′(r, ω) on
the right-hand side of the equations has more a complicated form [71, 67] because we have
to account for the augmentation term:

V ′q(r, ω)eiqr =
[ˆ

dr′eiqr′
K(r′) +

ˆ
dr′eiqr′

V
′q
Hxc(r

′, ω)K(r′)
]
. (4.21)

We start with the first term in parentheses 1 applied to the wavefunction eikru0
i,k(r):

ˆ
dr′′
ˆ
dr′eiqr′

K(r′, r, r′′)eikr′′
u0
i,k(r′′) = eiqreikru0

i,k(r)+
∑
Inm

ˆ
dr′eiqr′

QI
m,n(r′ − ds −Rµ)βIm(r− ds −Rµ)

〈
βIn
∣∣∣ψ0

i,k

〉
. (4.22)

Now let us once again pass from the indices I to (µ, s) and make the same variable change
as for the charge density:
ˆ
dr′′
ˆ
dr′eiqr′

K(r′, r, r′′)eikr′′
u0
i,k(r′′) = ei(k+q)ru0

i,k(r)+
∑
µsmn

eiqRµ

ˆ
dr′′eiqr′′

Qs
m,n(r′′ − ds)βsm(r− ds −Rµ)eikRµ

〈
βsn
∣∣∣ψ0

i,k

〉
. (4.23)

Note that we can expand βsm(r − ds − Rµ) in Fourier series and reduce the summation
over µ to a summation over the reciprocal lattice vectors G:∑

µ

ei(q+k)Rµβsm(r − ds − Rµ) = ei(q+k)r∑
G
βsm(k + q + G)eiGre−i(k+q+G)ds . (4.24)

Finally, the first term in Eq. (4.21) reads:
ˆ
dr′′
ˆ
dr′eiqr′

K(r′, r, r′′)eikr′′
u0
i,k(r′′) = ei(k+q)ru0

i,k(r)+∑
smn

eiqRµI(0)s,q
m,n ei(q+k)r∑

G
βsm(k + q + G)eiGre−i(k+q+G)ds

〈
βsn
∣∣∣ψ0

i,k

〉
, (4.25)

where we define I(0)s,q
m,n as:

I(0)s,q
m,n =

ˆ
eiqrQs

m,n(r− ds)dr. (4.26)

1Here I am using the coordinate representation of K(r) from Eq. (4.2):K(r′, r, r′′) = δ(r − r′)δ(r −
r′′) +

∑
Inm QI

mn(r−RI)βI
m(r′ −RI)βI∗

n (r′′ −RI)
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The second term in Eq. (4.21) gives the same expression as Eq. (4.25) but with I(0)s,q
m,n

replaced by I(3)s,q
m,n :

I(3)s,q
m,n =

ˆ
eiqrV

′q
Hxc(r, ω)Qs

m,n(r− ds)dr. (4.27)

Finally, the TDDFPT Sternheimer equations in the USPP scheme for the lattice periodic
components of the response wavefunction take the following form:[

H
(0)
k+q − (εi,k + ~ω)Sk+q

]
P k+q
c u′i,k+q(r, ω) = −P †k+q

c u
(0)
i,k(r)−P †k+q

c

∑
s,m,n

(I(0)s,q
m,n +I(3)s,q

m,n )×

×
∑
G
βsm(k + q + G)e−i(k+q+G)dseiGr < βsm|ψ

(0)
i,k >, (4.28)

[
H

(0)
k+q − (εi,k − ~ω)Sk+q

]
P k+q
c u′∗i,−k−q(r,−ω) = −P †k+q

c u
(0)
i,k(r)−P †k+q

c

∑
s,m,n

(I(0)s,q
m,n +I(3)s,q

m,n )×

×
∑
G
βsm(k + q + G)e−i(k+q+G)dseiGr < βsm|ψ

(0)
i,k >, (4.29)

The set of equations (4.28) and (4.29) can be solved self-consistently for each separate
value of the frequency ω in order to obtain the electronic susceptibility χ of the system.
The use of the USPP scheme introduces additional complexity into the formalism and
calculations (i.e. terms that were not present in the NCPP scheme should be computed),
however allows to gain performance as a lower value of the kinetic energy cutoff is required.

4.1.4 The quantum Liouville equation in the USPP scheme
I would like to point out that the general form of the quantum Liouville equation in the
standard batch representation presented in Sec. 1.2.4 for the NCPP scheme (see Eq. (1.50))
remains similar in the USPP scheme:(

ω −D̂USq
−D̂USq − 2K̂USq ω

)(
qq
pp

)
=
(

0
yq

)
, (4.30)

where the action of the operators D̂USq and K̂USq on the batches are defined as:

D̂USq · qq =
{

(S−1
k+qĤ

0
k+q − εi,k) |qi,k+q〉

}
, (4.31)

and

K̂USq · qq =
{
S−1

k+qP̂
†k+q
c

[
V ′Hxc,q(ω)|u0

i,k〉+
∑
s,mn

I(3)s,q
mn (ω) |βs,k+q

m 〉〈βsm|ψ0
i,k〉
]}

(4.32)

while yq is

yq =
{
S−1

k+qP̂
†k+q
c

[
|u0
i,k〉+

∑
s,mn

I(0)s,q
mn |βs,k+q

m 〉〈βsm|ψ0
i,k〉
]}

. (4.33)

where the inverse overlap operator Ŝ−1 can be obtained from the condition ŜŜ−1 =
1 [22].
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4.1.5 The fully relativistic case
Finally, I will generalize TDDFPT in the USPP scheme to the fully relativistic (FR) ultra-
soft pseudopotentials. The notations I use in this section are largely based on Refs. [69, 70]
where DFT and DFPT have been extended to the FR-USPP scheme. Density matrix in
this framework becomes the combination of Eqs. (4.1) and (1.60):

nσ,σ
′(r, t) =

∑
i,k,σ1,σ2

〈
ψi,k,σ1

∣∣∣Kσ,σ′

σ1,σ2(r)
∣∣∣ψi,k,σ2

〉
, (4.34)

where now the operator Kσ,σ′
σ1,σ2(r) is defined through the augmentation functions QI

mn and
projector functions βIn as in the SR case, and spin dependent factors fσ,σ

′

l,j,ml;l,j,m′
l
are used

to write spin-angle functions with spherical harmonics [69]:

Kσ,σ′

σ1,σ2(r, r1, r2) = δ(r−r′)δ(r−r′′)δσ,σ1δσ,′σ2+
∑
Inm

∑
In1m1

QI
mn(r−RI)fσ1,σ

m1,mβ
I
m1(r′−RI)fσ

′,σ2
n1,n β

I∗
n1(r′′−RI).

(4.35)
Similarly, the overlap operator Ŝ becomes spin dependent:

Sσ,σ
′(r1, r2) =

∑
σ1

ˆ
drKσ1,σ1

σ,σ′ (r, r1, r2). (4.36)

Let us now write the first Sternheimer equation (4.17) for the FR case:∑
σ′

[
Ĥ0,σ,σ′ − (ε0

i,k + ~ω)Ŝσ,σ′]
P̂cψ

′

i,k,σ′(r, ω) = −P̂ †c
∑
σ′
V

′σ,σ′(r, ω)ψ0
i,k,σ′(r)., (4.37)

Let us make some additional definitions before rewriting this equation:

P̂ †,σ1,σ2
c =

unocc∑
i,k′,σ3

Ŝσ1,σ3 |ψi,k′,σ3〉 〈ψi,k′,σ2 | , (4.38)

and Π̂c = T P̂cT
†:

Π̂σ1,σ2
c =

unocc∑
i,k′,σ3

Ŝσ1,σ3 |Tψi,k′,σ3〉 〈Tψi,k′,σ2 | , (4.39)

where T is the time reversal operator as in Eq. (1.62). Now, using this definitions we can
write Eq. (4.37) and its time-reversal counterpart as:∑

σ′

[
Ĥ0,σ,σ′ − (ε0

i,k + ~ω)Ŝσ,σ′] (
P̂cψ

′

i,k(r, ω)
)
σ′

= −
∑
σ2,σ′

P̂ †,σ,σ2
c V

′σ2,σ′(r, ω)ψ0
i,k,σ′(r),

(4.40)∑
σ′

[
Ĥ0,σ,σ′ − (ε0

i,k − ~ω)Ŝσ,σ′] (Π̂cTψ
′

i,k(r,−ω)
)
σ′

= −
∑
σ2,σ′

Π̂†,σ,σ2
c

(
TV

′σ2,σ′(r,−ω)ψ0
i,k(r)

)
σ′
,

(4.41)
and the electron density response reads:

n′(r, ω) =
∑

i,k,σ,σ1,σ2

[〈(
Tψ0

i,k

)
σ1

∣∣∣∣Kσ,σ
σ1,σ2(r)

∣∣∣∣ (Π̂cTψ
′

i,k(−ω)
)
σ2

〉
+
〈
ψ0
i,k,σ1

∣∣∣Kσ,σ
σ1,σ2(r)

∣∣∣ P̂cψ′

i,k,σ2(ω)
〉]
.

(4.42)
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Now, we can rewrite these equations only for lattice periodic parts of the response wave-
functions and density, defining as in Sec. 1.2.3 k + q components of all operators starting
with the density:

n′(r, ω)q =
∑

i,k,σ,σ1,σ2

[〈(
Tu0

i,−k

)
σ1

∣∣∣∣ e−ikr1Kσ,σ
σ1,σ2(r)ei(k+q)r2

∣∣∣∣ (Π̂−k−q
c Tu

′

i,−k−q(−ω)
)
σ2

〉

+
〈
u0
i,k,σ1

∣∣∣ e−ikr1Kσ,σ
σ1,σ2(r)ei(k+q)r2

∣∣∣ P̂ k+q
c u

′

i,k+q,σ2(ω)
〉]
, (4.43)

or, if we recall the time-reversal symmetry for the unperturbed wavefunctions:

n′(r, ω)q =
∑

i,k,σ,σ1,σ2

〈
u0
i,k,σ1

∣∣∣ e−ikr1Kσ,σ
σ1,σ2(r)ei(k+q)r2

∣∣∣∣(Π̂−k−q
c Tu

′

i,−k−q(−ω)
)
σ2

+ P̂ k+q
c u

′

i,k+q,σ2(ω)
〉
. (4.44)

Finally, we can write the Sternheimer equations as:∑
σ′

[
Ĥ0,σ,σ′

k+q − (ε0
i,k + ~ω)Ŝσ,σ

′

k+q

] (
P̂ k+q
c u

′

i,k+q(r, ω)
)
σ′

=

−
∑
σ2,σ′

P̂ †,σ,σ2,k+q
c e−i(k+q)rV

′σ2,σ′(r, ω)eikru0
i,k,σ′(r), (4.45)

∑
σ′

[
Ĥ0,σ,σ′

k+q − (ε0
i,−k − ~ω)Ŝσ,σ

′

k+q

] (
Π̂−k−q
c Tu

′

i,−k−q(r,−ω)
)
σ′

=

−
∑
σ2,σ′

Π̂†,σ,σ2,−k−q
c e−i(k+q)rV

′σ2,σ′(r, ω)eikr
(
Tu0

i,−k(r)
)
σ′
. (4.46)

We can transform Eqs. (4.45) and (4.46) into the final set of equations using time-reversal
symmetry:∑

σ′

[
Ĥ0,σ,σ′

k+q − (ε0
i,k + ~ω)Ŝσ,σ

′

k+q

] (
P̂ k+q
c u

′

i,k+q(r, ω)
)
σ′

=

−
∑
σ2,σ′

P̂ †,σ,σ2,k+q
c e−i(k+q)rV

′σ2,σ′(r, ω)eikru0
i,k,σ′(r), (4.47)

∑
σ′

[
Ĥ0,σ,σ′

k+q − (ε0
i,k − ~ω)Ŝσ,σ

′

k+q

] (
P̂ k+q
c Tu

′

i,−k−q(r,−ω)
)
σ′

=

−
∑
σ2,σ′

P̂ †,σ,σ2,k+q
c e−i(k+q)rV

′σ2,σ′(r, ω)eikru0
i,k,σ′(r), (4.48)

In order to compute the response potential V ′σ2,σ′(r, ω) on the right hand side of these
equations the same strategy is used as in Sec. 4.1.1 for Eq. (4.21) for each spin index pair
σ2, σ

′. I note that these equations can be reduced to the equations of the NCPP scheme
by taking the augmentation part equal to zero. Similarly one can also reduce them to the
scalar relativistic case.
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Like before, the set of the Sternheimer equations (4.47) and (4.48) can be solved self-
consistently for each value of the frequency ω in order to obtain the susceptibility χ. They
also can be rewritten in the form of the quantum Liouville equation (see Sec. 4.1.4) in a
straightforward way. I note, however, that in the FR USPP scheme, the inverse of the
overlap operator Ŝ−1 in Eq. (4.31) and (4.31) becomes also spin dependent, adding more
complexity to its evaluation. The full derivation of the Ŝ−1 operator in the FR case will
be given elsewhere in future publications.

4.2 Comparison of the Sternheimer and Liouville-
Lanczos approaches

The Liouville-Lanczos recursive scheme has been implemented in the turboEELS code of
the TDDFPT branch of the Quantum ESPRESSO suite [21, 22, 23, 24, 25, 26] prior
to this work for FR and SR NCPP schemes (see Chapter 1) and for SR USPP scheme
(see Sec. 4.1.1, 4.1.4 of this chapter). However, the latter was not working efficiently: I
have made several modifications that allowed to (1) fix a problem that would have led
to incorrect results for unit cells containing more than two atoms and (2) gain overall
performance by removing some redundant operations.

4.2.1 Comparison of EEL spectra calculated with turboEELS
and thermo_pw codes

In this section I would like to present a performance comparison for EEL spectrum calcula-
tions using Sternheimer (as implemented in thermo_pw code version 0.6.0) and Liouville-
Lanczos (as implemented in turboEELS code of Quantum ESPRESSO version 6.0)
approaches. The codes were tested for bulk bismuth because previous calculations are
available [74] and for bulk gold for which numerous studies are available (see Chapter 3)
and which I have studied in Chapter 6.

In figure 4.1, I report EEL spectra for bulk Bi obtained both with the thermo_pw
code, and with turboEELS : results are in perfect agreement with each other and with
previous calculations [74], both with and without SOC. We point out that the TDDFPT
calculations were performed with, as input, data coming from the same (DFT) ground
state self-consistent calculation.

Figure 4.2 shows the comparison of the EEL spectra for bulk Au obtained by thermo_pw
and turboEELS codes. Obtained results are in agreement with previous ab initio calcula-
tions of the EELS for Au [52]. In figure 4.2 one can see a severely damped plasmon peak
around 2.5 eV and numerous interband transition at higher energies. Spectrum for Au
will be discussed in Chapter 6. In this section I focus solely on the performance.

Figure 4.3 shows the relative difference between EEL spectra computed with the
thermo_pw and turboEELS codes. Beyond 2 eV the agreement is perfect and the two
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codes agree within 1%. Below 2 eV, the loss function is tending to 0 and the magnitude
of the relative difference becomes higher as the loss function does not tend to 0 in the
same way. Indeed, oscillations that are intrinsic to the Lanczos approach are magnified
in the difference at low energy. As in the case of Bi, agreement is perfect, that indicates
that both codes are well-suited to handle either semimetallic or metallic materials.
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Figure 4.1: Bulk Bi. Loss function for a
transferred momentum q = 0.013 Å−1 in the
z-direction obtained using: turboEELS code
withoutand with spin-orbit coupling (SOC),
and thermo_pw code without and with SOC.
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out spin-orbit coupling. Loss functions obtained with turboEELS and thermo_pw codes
are shown (left-hand side abscissa). Time required for turboEELS to compute the whole
spectrum and for thermo_pw to compute the loss function for five frequencies in the
corresponding frequency range is shown (right-hand side ordinate).

4.2.2 Performance comparison
In figure 4.4, we show the comparison of the performance of both codes in terms of CPU
time for bulk Bi without SOC. One can see that the turboEELS code is more efficient
than the thermo_pw code on a wide frequency range. We note that calculations in a low
frequency region (0-10 eV) are considerably faster, by a factor of 2-3, than in the middle
and high frequency region (10-30 eV).
In table 4.1, we show the amount of time, number of CPU cores and number of frequencies
used to obtain curves in fig. 4.2 and 4.4. In the last column of table 4.1, the number of
frequency is given, showing on average how many frequencies can be calculated with
thermo_pw when consuming the same amount of CPU time needed for turboEELS to
calculate the whole spectra. We point out that the ratio may however depend on the
selected frequency range.

Performance comparison for the calculation with SOC is not shown in the present
work. Taking SOC into account roughly increases the required CPU time by a factor of
4 for both codes, without influencing their relative performance.

I have done a comparison between results and performance of the codes and of the cor-
responding methods that allow us to calculate EEL spectra. It has been found that results
obtained using the Sternheimer equation and the Liouville-Lanczos approach are in per-
fect agreement with each other for semiconducting (not shown), semimetallic and metallic
samples. However, as anticipated, the performance of the Liouville-Lanczos method as
implemented in the turboEELS code is significantly better when the range of frequencies
is wide. In principle it is possible to calculate EEL spectra on a 0-250 eV range at the
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Table 4.1: Performance comparison of the turboEELS and thermo_pw codes for bulk Bi
and Au.

System # of CPU cores # of frequencies (ω) Time (h) average # of ω for thermo_pw to
match turboEELS CPU time

Bi turboEELS 72 any 10
Bi thermo_pw 72 130 118 11
Au turboEELS 240 any 0.75
Au thermo_pw 240 600 16 28

same computational cost as on the 0-25 eV interval, although it might be necessary to
include core electrons in the pseudopotential in order to describe high-energy excitations
correctly. One can see that it is convenient to use the thermo_pw code for a precise cal-
culation of the susceptibility in a narrow frequency range. I note that after obtaining the
results reported in this section additional level of the parallelization of the Sternheimer
approach calculation was implemented by Andrea Dal Corso that allowed to enhance its
performance (not shown in this work).

4.2.3 Testing of the Liouville-Lanczos algorithm in a high per-
formance computing environment

During the second year of the PhD I have been doing extensive performance and scaling
testing of the turboEELS in the preparation of a PRACE project submission. In this
paragraph I will give a brief summary of these results. Tests were performed on the CURIE
machine of the CEA-TGCC in the frame of the PRACE preparatory access project.

4.2.3.a Strong scaling

First I have tested the strong scaling of the code that defines how the solution time varies
with the number of processors for a fixed total problem size. The strong scaling properties
of the turboEELS code were tested on a 16 layer slab of the (111) Au surface with a 8-nm-
size vacuum. Calculation have been performed using 102 k-points to sample the Brillouin
zone in the self-consistent field (SCF) calculation, to obtain the ground state total energy,
density and self-consistent Kohn-Sham potential. The k-point grid was unfolded with
symmetry operation for the non self-consistent (NSCF) calculation, in which properties
are computed both for k and k+q points. The number of k (and k+q) amounted to
1056 points in the NSCF calculations. The turboEELS code was then ran with the 1056
points, and its performance is presented in the Table 4.2 and Fig. 4.5. Calculations were
parallelized on the k points and on the plane-waves. The fast-Fourier transform (FFT)
used to go back and forth from real space to the reciprocal (dual) space, was performed
on the same number of cores (10 cores for each pool of k-points). As one can see in the
table, the code scales rather well up to 1020 cores, even though the examined system was
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a rather small one, and consisted in 16 atoms in a unit cell. Such a behavior is general
for turboEELS.

# of cores absolute timing (s) speedup
170 3060 1
340 1626 1.88
510 1149 2.66
1020 660 4.63

Table 4.2: Strong scaling properties of the turboEELS code.

Figure 4.5: Strong scaling properties of the turboEELS code. Black line shows the real
scaling and red line shows the ideal linear scaling.

4.2.3.b Weak scaling

The following table and figure show the weak scaling of the turboEELS code. In this test
the size of the system was increased (in this case the number of layers and thus number of
electrons and size of the supercell) along with the number of cores on which calculations
were performed, keeping the workload of a single core practically the same. When adding
electrons to the system, the time required to perform the calculation in proportional to
Nv∗Npw∗ln(Npw), where Nv is the number of bands and Npw is the number of plane-waves.

In the Table 4.3 the column “theoretical core # ratio ” shows the theoretical multipli-
cator of the number of cores used for 3 layers that should be use to keep the core workload
the same while increasing the number of layers. Due to the code specificity this number
cannot be fulfilled exactly, thus the closest possible numbers were selected (column “real
ratio”) and final timing has been renormalized with respect to the real and theoretical
ration. From the Table 4.3 and Figure 4.6 one can see that the turboEELS code is very
efficient in terms of strong scaling. In fact, one can see that the performance on the bigger
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systems is better than on the smallest one. This arises from the fact that performing FFT
on 10 cores is more efficient for big systems, while for small systems this number should
be decreased. It the present tests this number was fixed in order to keep the results as
coherent as possible.

# of layers Npw
turboEELS
timing, s # of cores theoretical core

# ratio real ratio renormalized
timing

3 2071 1284 20 1.00 1.0 1284
6 4141 1037 90 4.36 4.5 1070
12 8281 1158 400 18.9 20 1226

Table 4.3: Weak scaling properties of the turboEELS code.

Figure 4.6: Weak scaling properties of the turboEELS code. Black line shows the real
scaling and red line shows the ideal linear scaling.

4.2.4 Implementation
On view of the good results of this section the Liouville-Lanczos approach was imple-
mented in the thermo_pw code by Andrea Dal Corso. Then also the generalization of
TDDFPT to the FR USPP scheme (Sec. 4.1.5) has been implemented by Andrea Dal
Corso for both Liouville-Lanczos recursive and Sternheimer self-consistent approaches.
I have thoroughly tested this implementation and made modifications that allowed to
restart the Liouville-Lanczos calculation if it was interrupted from the save point or from
the successful calculation in order to perform more iterations. Other modification allows to
perform the response calculation in a random-phase approximation (RPA) without crys-
tal local field effects. As the Liouville-Lanczos approach implementation in thermo_pw
has proven to be more about 20-25% faster than its implementation in turboEELS code
I have been using it during the last year of my PhD.
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4.3 Conclusions
In this chapter I have presented the TDDFPT in scalar relativistic ultrasoft pseudopoten-
tial scheme and, for the first time, the generalization of TDDFPT to the fully relativistic
ultrasoft pseudopotential scheme. The methodological development of Sec. 4.1.5 led to the
very efficient implementations of both the Sternheimer and Liouville-Lanczos approaches
to the solution of the linear response problem and thus computation of the susceptibility
of the systems where spin-orbit coupling should be accounted for and high kinetic energy
cutoffs might not be affordable, like surfaces. In perspective this can be generalized fur-
ther to the magnetic excitations in the FR USPP scheme to allow magnon calculations.
Other directions include the generalization to PAW scheme and going beyond the linear
response framework in order to include non-linear effects. Finally, the development and
implementation of TDDFPT+U approach [75] should prove useful for the application
to materials where LDA/GGA gives a poor description of strongly correlated localized
electron states.

Last but not least, I have studied the performance of the Liouville-Lanczos and the
Sternheimer approaches and scaling of the Liouville-Lanczos approach in a HPC environ-
ment. I have shown that their Liouville-Lanczos approach is indeed fast compared to the
Sternheimer approach and is perfectly suited for the simulation of large system in a HPC
environment judging from its scaling properties. Together it makes the Liouville-Lanczos
approach the best available method for the simulations of EEL spectra for periodic sys-
tems containing hundreds of atoms like vicinal Au surfaces for which I have obtained 15
million core hours on the JUWELS cluster (Jülich Supercomputing Centre, Germany) in
the framework of 16-th PRACE project access call “Acoustic surface plasmon in vicinal
Au surfaces from first principle electron energy loss spectra simulations” .



Chapter 5

Ab initio calculations of the surface
band structure and of the surface
states of vicinal Au(111)

In this chapter I show the results of ab initio calculations of the surface band structure and
the surface states for stepped Au(111) surfaces: Au(322), Au(455) and Au(788). First,
I discuss the phenomenon of the band gap closure at the Γ-point, at the Fermi level,
depending on the miscut angle and I show, through the calculation of the band structure
for bulk Au, the evolution of the gap at the Γ-point for the stepped surface. Then I
discuss and explain the refolding of the band structure for stepped surfaces through the
refolding of the band structure for the supercell of Au(111) and difficulties that arise from
the refolding. Finally, I show the results of the surface state calculations for Au(322),
Au(455) and Au(788) and discuss the evolution of the surface states as a function of the
terrace width and miscut angle.

5.1 Methodology for the study of surface states of
vicinal surfaces

In Sec. 2.2.2 I have shown how the surface states look like for the Au(111) surface: it
consists of the surface band structure on top of the projected bulk band structure (PBS)
and states that meet a given localization criterion for the square modulus of the Kohn-
Sham wavefunctions |ψ|2 > 0.6 on the two topmost surface layers. This procedure can be
tentatively separated into three steps:

1. Obtain the PBS of the surface and its band structure.

2. In the band structure, identify states that meet the selected localization criterion.

3. Locate the position of the localized states with respect to the gaps in the PBS in
order to make a surface state/surface resonance assignment.

53
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This procedure is straightforward for Au(111) or similar simple surfaces. In fact this pro-
cedure is well automatized in the thermo_pw module [76] for the Quantum ESPRESSO
suite [31, 32].

Unfortunately, this procedure is not as straightforward for the vicinal surfaces due to
the refolding of the band structure of the vicinal surfaces that complicates the obtainment
of the PBS and band structure as well as the precise location of the localized states in
the PBS gaps. In this Section I will discuss the possible solutions and workarounds for
this problem.

5.1.1 Band structure refolding for supercells and superlattices
of Au(111) vicinal surfaces

As I have introduced in Section 2.3, vicinal surfaces of Au(111) form a kind of superlattice
with an orthorombic unit cell. The unit cell consists of a certain number (m) of Au(111)
rows along the x-direction and of a monoatomic step along the y-direction. From the
viewpoint of the unit cell and Brillouin zone geometry it looks similar to the supercell of
the Au(111) surface in the orthorhombic geometry elongated along y, like it is shown in
Fig. 5.1. This will have a twofold influence of the SBZ: first, it will have a rectangular
form instead of the hexagonal form of the standard unit cell of Au(111) and second, the
dimension of the SBZ in the y direction will be approximately m times smaller than the
dimension in the x direction or than the dimensions of the SBZ of the hexagonal primitive
cell of Au(111).

(a) (b)

Figure 5.1: Side view of the surface structure of (a) the Au(111) surface and (b) the
Au(455) surface.

Obtaining the ab initio band structure of the vicinal surface similar to the band struc-
ture of the Au(111) surface shown in Fig. 2.3 is not straightforward: first, the shape of the
SBZ is different, thus it is not possible to calculate band structure along the same path.
Second, the narrowing of the SBZ leads to the refolding of the bands of the primitive cell
SBZ into the smaller SBZ of the supercell. In Fig. 5.2 I show three different SBZ plotted
on the same scale: the hexagon is the SBZ of hexagonal primitive cell of Au(111) (see
also Sec. 2.1), the big rectangle is the SBZ of Au(111) in the orthorhombic geometry and
the smaller rectangle is the SBZ of the Au(455) surface. Let us first consider the simplest
case of the band structure of Au(111) in the supercell with the orthorhombic geometry.
In this case the length of the Γ −M ′ path in the SBZ of the primitive cell is twice the
length of the Γ − Y path in the SBZ of the supercell - as a result the band structure
calculated in the supercell along the Γ − Y path will be twice folded along the Γ −M ′

path and the M ′ point refolded at the Γ point of the supercell SBZ. Similarly, supercell
band structure calculated along the Γ−X path will contain bands along the Γ−M path
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in the SBZ of the primitive cell and along the M ′ − K ′ path that will refold along this
direction in the SBZ of the supercell. A similar reasoning can be applied to other paths
and points in SBZ of supercell and primitive cell. Analogically, when one increases the
length of the supercell along x, the width of the rectangular SBZ will decrease, leading
to the increase of the band structure refolding factor1. For the above discussed Au(111)
supercell in the orthorhombic geometry the refolding factor is equal to 2 as the length of
the Γ−M ′ path in the SBZ of the primitive cell is twice the length of the Γ− Y path in
the SBZ of the supercell (Fig 5.2).

K

M S111

M ′ K ′

Γ
X

Y 111

X

S455Y 455

Figure 5.2: SBZ of the hexagonal primitive cell and orthorhombic supercell of Au(111)
and Au(455).

Result of the direct band structure calculation for Au(111) in the supercell with the
orthorhombic geometry is shown in Fig. 5.3. Here one can readily observe the results
of the refolding of the band structure: for instance at the Γ point of the SBZ of the
primitive cell there is a wide gap spanning between -1.1 eV < E < 3.1 eV (see Fig. 2.3) -
instead in Fig. 5.3 we see at the Fermi level some bands that used to be at the M point
of the primitive cell SBZ in Fig. 2.3. In the present case the exact supercell of Au(111)
was used thus allowing to perform unfolding of the band structure using the state-of-the-
art bandUP code [77, 78]. Result of the band structure calculation performed along the
special path in the supercell SBZ and unfolded along the K − Γ−M path in the SBZ of
the primitive cell is shown in Fig. 5.4. I point out that despite the refolding of the band
structure it is still possible to identify the surface states from the direct band structure
calculation for the supercell, as it is shown in Fig. 5.3 with blue dots.

Now, let us consider vicinal surfaces of Au(111) and the corresponding ab initio band
structure calculations. As I have already discussed in the Chapter 2 a vicinal surface
of Au(111) consists of flat (111) terraces separated with monoatomic steps and has the
orthorombic unit cell with the rectangular SBZ shown in Fig. 5.2. Consequently, the
band structure of such a surface will be refolded in a way similar to the refolding of
the bands for Au(111) in the orthorhombic geometry with a refolding factor that will
depend on the terrace width. Unfortunately, the straightforward unfolding of the bands

1The refolding factor is defined as the ratio between the primitive cell SBZ dimension and the supercell
SBZ dimension.
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Figure 5.3: Band structure of 10 layers of Au(111) in the orthorhombic geometry calcu-
lated without SOC. Blue dots are surface states identified with the localization criterion
of |ψ|2 > 0.6 on the two topmost surface layers.
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Figure 5.4: (a) Band structure of 10 layers Au(111) calculated along the K−Γ−M path
(b) band structure of 10 layers Au(111) in the orthorhombic supercell geometry calculated
along the special path in the SBZ of the supercell and unfolded on the K−Γ−M path of
the SBZ of the primitive cell. Unfolding was performed using the bandUP code [77, 78].

for vicinal surfaces in the way it has been done for the Au(111) supercell, is not possible.
In order to utilize the unfolding procedure performed for the supercell of Au(111) it
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is required that the supercell is commensurate with the primitive cell - a requirement
that cannot be fulfilled due to the non-zero miscut angle between the vicinal and (111)
surfaces. Nevertheless, analysis of the band structure refolding for the Au(111) supercell
gives a general idea of the character of the band structure refolding that will apply as
well for the vicinal surfaces, as its unit cell and SBZ have the same shape as the Au(111)
supercell. In Fig. 5.5 I show the results of the band structure calculation for the Au(455)
surface. One can see that it indeed resembles the band structure for the Au(111) supercell
shown in Fig. 5.3 - for instance, there is a band gap below the Fermi level around X and
S special points in both band structures. However, due to the refolding factor that is
about 9 for Au(455) compared to 2 for Au(111), a more detailed band structure analysis
is impossible without the unfolding. On the other hand, my main interest lies in the
L-gap derived surface state that can be identified and studied from the refolded band
structure calculation, complemented with the bulk band structure calculations that allow
the identification of the band gap at the Fermi level of the vicinal surface.
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Figure 5.5: Band structure of the Au(455) surface. Direct calculation.

5.1.2 Gap in the projected bulk band structure for flat and
stepped Au(111)

In Sections 2.2.2 and 2.3 I have already discussed briefly the gap in the projected bulk
band structure (PBS) at the Fermi level of the surface Brillouin zone (SBZ) center, for
both flat and stepped Au(111) surfaces. In the present section I discuss the gap in the PBS
as a function of the miscut angle α. Due to the refolding of the band structure discussed
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in the previous section, the PBS of the vicinal surface cannot be routinely obtained in
the manner it was done for the Au(111) surface in Fig. 2.3 using the thermo_pw code,
however it is still possible to analyze it for the selected point in the SBZ.

In order to understand how the PBS looks like at a given point in the SBZ, one has
to calculate the band structure of the bulk along the line in the bulk Brillouin zone that
passes through this point parallel to the surface orientation direction: PBS of the surface
at this point of the SBZ will contain all the points of the bulk band structure along this
line. This is illustrated in Fig. 5.6 for the Γ point of the Au(111) surface and Γ point of
the Au(322) surface. For instance, in Fig. 5.7, the PBS of the Au(111) surface is shown
along with the bulk band structure along the Γ − L line that is projected onto the Γ
point of the SBZ. Indeed, one can see that there are two gaps in Fig. 5.7(b): the first one
between -7.3 eV < E < -4.9 eV and the second one between -1.1 eV < E < 3.1 eV that
results in the corresponding gap at the Γ point of the PBS in Fig. 5.7(a).

Figure 5.6: Bulk Brillouin zone of Au. Blue dashed line corresponds to the [111] direction
(Γ− L line) and red dashed line to the [322] direction (Γ− A line)

In a similar way one can also study the PBS of any surface including the Au(322),
(455) and (788) vicinal surfaces that I have aimed to study in my project. One has to
calculate a band structure of bulk Au along the line that passes through the Γ point and
the intersection point A of the corresponding direction ([322], [455] or [788]) with the
hexagonal face of the bulk Brillouin zone. The line Γ−A for the Au(322) surface is shown
in Fig. 5.6 with the red dashed line. In Fig. 5.8 I report band structures of bulk Au that
correspond to the gap of Au(322), (455) and (788) surfaces. One can see that for the
case of the Au(322) surface reported in Fig. 5.8(a) the band gap at Γ of the SBZ shrinks
from the value of 4.2 eV for the Au(111) surface (Fig. 5.7(b)) to the value of 2.6 eV and
is no longer present at the Fermi level. At variance, for the cases of Au(455) and Au(788)
shown in Fig. 5.8(c) and Fig. 5.8(b), the band gap is smaller (3.5 eV for Au(455) and 3.9
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Figure 5.7: (a) PBS of Au(111) (yellow shaded regions) and (b) bulk band structure of
Au plotted along the Γ− L line that illustrates how the PBS of Au(111) at Γ is formed.

eV for Au(788)) than the one for the Au(111) surface shown in Fig. 5.7 but is still present
at the Fermi level. From the viewpoint of band structure of such surfaces the shrinking
of the band gap at the Fermi level is a significant change. As I have already discussed
in the Section 2.2 a "true" (i.e., non-resonant) surface state can be supported only within
the gap of the PBS or when outside the gap of the PBS if its bulk band has a symmetry
different from the symmetry of the surface state. This means that the Shockley surface
state briefly discussed in Section 2.2.2 cannot be supported in Au(322) where, instead,
only surface resonances can be observed, while it can exist in Au(455) and Au(788).

5.1.3 Assignment of the surface state

In this Section I have demonstrated how the band structure of vicinal surfaces is refolded
and how it leads to the complication of the surface state study procedure outlined in
the beginning of the Section. I have shown how, using the calculations for bulk Au, one
can nevertheless understand the formation of the PBS and that even from the refolded
band structure one can still extract and identify the surface state. In order to obtain
the final confirmation that surface states identified in my calculations are indeed derived
from the Shockley surface state of the Au(111) surface I also calculate the projections of
the surface state wavefunctions onto the atomic orbitals: since the Shockley state of the
Au(111) surface projects mainly on p atomic orbitals so should the surface states derived
from it.

5.1.4 Surface state modulation

In the Section 2.3.3 I gave the definition of the surface state modulated by the average
surface and by the terrace. In order to distinguish the terrace modulated states from the
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Figure 5.8: Bulk bands of Au(111) that project onto the Γ point in the SBZ of (a)
Au(322), (b) Au(788) and (c) Au(455) surfaces.

average-surface modulated states or intermediate states I use the modified Eq. (2.1):

ψ(z) = Aie
kzcos(Gmz/2 + δ). (5.1)

Here Gm should be equal to 2π/a cos(α) (a is the distance between the consequent (111)
layers) for the terrace modulated state and will be smaller than 2π/a cos(α) for the
intermediate or average surface modulated state. For the Au(111) surface a = 4.45 a.u.,
and since it is a flat surface Gm/2 = G = 0.706 a.u.−1. The values for the Gm/2 of the
vicinal surfaces assuming the terrace modulated state are summarized in the last column
of Table 5.1.
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Figure 5.8: (continued) Bulk bands of Au(111) that project onto the Γ point in the SBZ
of (a) Au(322), (b) Au(788) and (c) Au(455) surfaces.
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5.2 The surface states of the vicinal Au(111) surfaces

Let us now concentrate on the ab initio study of the surface state on three vicinal Au(111)
surfaces: Au(322), Au(455) and Au(788). As I have discussed in the Chapter 2.3, exper-
imentally using ARPES technique, a surface resonance has been observed on Au(322)
and a "true" surface state has been observed on Au(788) and Au(23 23 21). In the first
case, Au(322) surface, as shown in Fig. 5.8(a), the band gap at the Fermi level is closed
(see also Section 5.1.2) due to a relatively big miscut angle and only a surface resonance
exists in this case. Also, as terraces are quite narrow (12 Å), electrons that belong to the
surface state can propagate from terrace to terrace across the step, forming a 2D resonant
surface state. On the other hand, the Au(455) and Au(788) surfaces support a gap at the
Fermi level (see Fig. 5.8(b), 5.8(c)) allowing the "true" surface state to exist. In contrast
with Au(322), it has been shown experimentally [46, 35] that the electrons of the surface
state of Au(788) do not propagate across the step, forming a confined quasi-1D quantum
well-like state. The Au(455) surface presents an intermediate case of the surface state in
the PBS gap that will be partially confined within the terrace. Table 5.2 summarizes the
projections of the surface states for the Au(111), Au(322) Au(455) and Au(788) surfaces
onto atomic orbitals that will be discussed later. Table 5.3 summarizes the parameters of
the KP model used to fit the surface states.

Surface miscut angle Terrace width, Å Gap at EF Gm/2, a.u.−1

Au(111) 0° ∞ Yes 0.706
Au(322) 11.4° 12 No 0.692
Au(455) 5.76° 23.3 Yes 0.702
Au(788) 3.51° 38.3 Yes 0.7045

Table 5.1: Summary of the key parameters of the vicinal surfaces studied in the present
work.

5.2.1 Calculations details

All calculations in this section have been performed at the scalar relativistic LDA level
using the ultrasoft pseudoptential with the kinetic energy cut-off for wavefunctions Ecut =
30 Ry and 300 Ry for the electronic density. In all cases the experimental bulk lattice
parameter was used to generate the slab. Sampling of the Brillouin zone was performed
using Monkhorst -Pack k-point mesh of 4x12x1, 2x26x1 and 2x16 for Au(322), Au(788)
and Au(455) respectively. Surface slab supercells were constructed in a way that the
vicinal surface plane is perpendicular to z direction with a vacuum of 30 a.u. along z in
order to decouple slabs in the neighboring supercells. Surface states and resonances were
identified as those where the sum of the |ψ|2 on the outer layers was more than 0.4-0.6.
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Surface Point Na NL(111) s p d

Au(111) Γ 2 2 0.15 0.54 0.04
Au(111)(whole) Γ 21 21 0.18 0.73 0.06

Au(322) Y 20 4 0.1 0.37 0.13
Au(322)(whole) Y 105 21 0.15 0.54 0.3

Au(455) Γ 22 2 0.1 0.45 0.08
Au(455)(whole) Γ 253 23 0.13 0.67 0.17

Au(455) Y 44 4 0.12 0.45 0.11
Au(455)(whole) Y 253 23 0.15 0.59 0.24

Au(788) Γ 34 2 0.13 0.48 0.08
Au(788)(whole) Γ 255 17 0.16 0.65 0.16

Au(788) Y 51 3 0.13 0.44 0.09
Au(788)(whole) Y 255 17 0.15 0.59 0.23

Table 5.2: Orbital decomposition of the surface states and resonances. Na is the number
of atoms on which the wavefunctions were projected and NL is the equivalent number
of (111) layers. Every second row shows the orbital decomposition of the state over the
whole slab.

Au(322) Au(322) [35, 42] Au(788) Au(788) [35, 42] Au(455)
U0b eVÅ 1.1 1.1 2.1 2.2 1.8
m∗x,me 0.257 0.28(0.27) 0.25 0.255 0.25
∆E, eV 0.11 0.1 0.04 0.03 0.08

Table 5.3: Summary of the parameters of the Kronig-Penney (KP) model used to fit the
surface state and surface resonance parameters obtained through ab initio calculations and
KP model parameters used to fit the experimental data (when available) from Ref. [35, 42]

5.2.2 The surface state of Au(322)
I start with the Au(322) surface with the miscut angle α = 11.4◦. In Fig. 5.9 I show
the part of the band structure of Au(322) where blue dots mark the states that are
partially localized on the surface, green and golden dots mark the experimental results
from Ref. [35] shifted upwards. For convenience refolded bands or bands that belong
to the PBS are not shown. Partially localized states were identified as states for which
|ψ|2 > 0.6 for the 20 surface-atoms (∼ 4 layers of Au(111)).

In this band structure one can observe several localized states around -0.2 eV close to
the Y point of the SBZ that have parabolic like dispersion in the Y −Γ direction. I point
out that as a surface resonance is mixed with bulk states in the band structure calculation
it can be represented by an energy window and not by a single state, unlike "true" surface
states. In Fig. 5.9 one can indeed see that there are multiple partially localized states that
span from -0.3 eV to -0.1 eV close to the minimum at the Y point. Tentative edges of the
energy window for this surface resonance are marked with blue dashed lines. To enable
easier comparison between the calculated surface band dispersion for Au(322) with the
experimental surface band dispersion for Au(322) obtained using ARPES [35] the latter is
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Figure 5.9: The dispersion of the Au(322) surface state. Blue dots mark the states
identified as partially localized, purple and red symbols mark the experimental results [35]
shifted up by 0.14 eV. Arrows mark the surface states for which planar averages are shown
in Fig. 5.10. The Au(322) surface was modeled with a 105 atom slab (∼ 50 Å thickness).

shifted up in energy by 0.14 eV to match band minimum. From this result we can see that
the shape, and thus the effective mass, of the calculated dispersion of the Au(322) surface
resonance is in good agreement with the dispersion measured experimentally, however it
is shifted upwards in energy with respect to experimental dispersion. There are a few
possible reasons for such a discrepancy: first, the calculation for Au(322) might not be
fully converged and, second, the shift can be due to the spin-orbit coupling that was
neglected in this calculation while it is know to shift the Shockley state of Au(111) down
by approximately 0.1 eV [34].

Now let us concentrate on the character of this surface resonance, specifically on the
planar averages of the charge density and charge density distribution with respect to the
step. In Fig. 5.10 I show the planar averages for three states at Y from -0.3 eV to -0.1 eV
and at two other points close to the Fermi level (marked with arrows in Fig. 5.9). These
states show a behavior typical of a surface resonance: they are partially localized within
10 a.u. around the surface and they extend infinitely into the bulk. I also point out that
this surface resonance projects mainly onto the p atomic orbitals of the topmost surface
layers, similarly to the Shockley surface state of Au(111) as one can see from the Table 5.2:
60% of the surface state wavefunction at Y projects onto the four topmost layers, while
for the Shockley state of the Au(111) surface, 70% of its wavefunction projects onto the
two topmost layers. I also note the higher overall contribution from the d states.
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Figure 5.10: Planar averages of the surface resonance states of Au(322) at (a) the Y point,
(b) and (c) points where the surface resonance is around -0.1 eV (below) and around 0.1
eV (above the Fermi level) marked with arrow in Fig. 5.9. Vertical dashed lines indicate
the position of the surface. Different colors correspond to wavefunctions with different
eigenvalues identified as surface resonances at the same k-point.
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Figure 5.10: (continued) Planar averages of the surface resonance states of Au(322) at
(a) the Y point, (b) and (c) points where the surface resonance is around -0.1 eV (below)
and around 0.1 eV (above the Fermi level) marked with arrow in Fig. 5.9. Vertical dashed
lines indicate the position of the surface. Different colors correspond to wavefunctions
with different eigenvalues identified as surface resonances at the same k-point.

Figure 5.11: Sideview of the Au(322) isosurface of the charge density distribution for the
surface resonance at the bottom of the band at Y point (Fig 5.10(a)).
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Planar averages allow us to distinguish between bulk states, "true" surface states and
surface resonances, however they do not give any information regarding the propagation
character of the surface electrons. In order to determine whether the electrons of the
surface state propagate across the step or is confined within the terrace one has to look at
the distribution of the charge density at the surface. In Fig. 5.11 I show the isosurface of
the combined charge density for the surface resonance shown in Fig. 5.10 at the Y point.
One can see here that indeed this surface resonance is not confined within the surface
and has a 2D average-surface character as the charge density (and thus the wavefunction)
decays in the direction perpendicular to the (322) plane. This state is not a terrace
modulate state. It is also confirmed with the equation (5.1) applied to the surface state
planar average: the parameter Gm = 0.6315 a.u.−1 while it would be Gm = 0.691 a.u.−1

for the terrace modulated state (Table 5.1).
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Figure 5.12: The dispersion of the surface state of the Au(322) surface is shown as blue
dots. The solid black line shows the results of the band dispersion obtained with the 1D
KP model.

Following Refs. [35, 42] using the 1D Kronig-Penney (KP) model it is possible to fit
the KP bands on the ab initio calculation and to estimate the step barrier strength from
the shift of the surface resonance band minimum with respect to the minimum of the
surface state on the flat Au(111). Using the equation (2.4) with E0 = −0.4 eV as a
reference surface state energy for flat Au(111). I have calculated the dispersion of the
bands in the 1D periodic potential shown in Fig. 5.12 with black line using the barrier
strength U0b = 1.1 eV and the effective mass m∗ = 0.257me obtained from the parabolic
fit of the bands in the y direction (along the Y − S path). Ab initio surface bands are
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shown as blue dots, and the magenta curve shows the free electron dispersion. One can
see that the bands obtained using the KP model are in good agreement with my ab inito
calculations. These results are consistent with results obtained in Ref. [42] as it can be
seen from the Table 5.3. I point out that in Ref. [35] the effective mass m∗x obtained with
a parabolic fit of the surface band dispersion is slightly higher than the effective mass m∗y
in the y direction or in Au(111) - this can be readily explained with the KP model, as the
m∗ at the band bottom will always be higher than that of the free-electron. Also, unlike
the ARPES experiments [35, 42], in ab initio calculations it is easier to access to the
unoccupied states, allowing the better assessment of the KP model calculation accuracy.
In this case, in Fig. 5.12 one can see that the small gap is opened at 0.6 eV above the
Fermi level between the top of the first subband and the bottom of the second one. The
size of the gap obtained from the 1D KP model agrees with the gap observed in my ab
initio surface state band structure.

5.2.3 The surface state of Au(788)

Let us now concentrate on the Au(788) vicinal surface with the miscut angle α = 3.5◦
where it has been observed [35, 42, 48] that the surface state displays weakly dispersing
bands typical of a 1D quantum well. In Fig. 5.13 I show the part of the ab initio band
structure that contains the surface band dispersion along the Y − Γ path marked as blue
dots and experimental data extracted from Ref. [48] marked with red point and line. The
experimental data is shifted upwards by 0.1 eV to enable an easier comparison between
the experimental and ab initio results. Like in Ref. [48] I observed several dispersive
subbands that are characteristic of the quantum well. Again as in the case for Au(322), the
agreement between calculations and experiments is quite good provided that experimental
bands are shifted upwards by 0.1 eV. Such a shift can arise from the spin-orbit coupling
that was neglected in this calculation and is known to shift the Shockley surface state by
approximately 0.1 eV.

Let me start with the surface state localization at various SBZ points and its character.
First, I show the planar average in Fig. 5.14 for the first subband bottom at Y and
maximum at Γ and for the second subband maximum at Y . At the first subband bottom
at Y in Fig. 5.14 one can see that the surface state, while being well localized at the
surface, has nonetheless a bulk tail typical of a surface resonance, as, close to the edge
of the SBZ surface the state can mix with bulk states. However, at the center of the
SBZ, where there is a well defined gap in the PBS, the surface state charge density planar
average behaves much alike the charge density planar average of the surface state of the
Au(111) surface that was shown in Fig. 2.5(a). Like in the previous cases of Au(111) and
Au(322) this surface state projects mainly onto the p atomic orbitals of the surface atoms
as one can see in Table 5.2. I note that for the Shockley states at Γ, 69% of the surface
state projects onto the two topmost surface layers, much like the Shockley state of the
Au(111) surface. At variance, the surface resonance at Y is only partially localized, with
65% projecting onto the three topmost surface layers. Next, I show the isosurfaces of the
charge density of the surface state at these points. Unlike the case of the Au(322) surface
presented in the Section 5.2.2, the charge density distribution of the Au(788) surface state
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Figure 5.13: The dispersion of the surface state of the Au(788) surface is indicated with
blue dots and the experimental surface state dispersion [48] shifted up by 0.1 eV is indi-
cated with red crosses and lines.

indicates that the wavefunction of this surface state decays in the direction perpendicular
to the terrace plane, meaning that this surface state is a 2D terrace modulated state. It
is indeed confirmed with the equation (5.1) applied to the surface state planar average at
Γ as Gm = 0.704 a.u.−1, which is the value close to the one reported in Table 5.1 for the
ideal terrace modulated state.

In the same way it was done for the Au(322) surface, it is possible to apply the 1D KP
model in order to analyze the surface band dispersion and estimate the barrier strength.
Using the barrier strength U0b = 2.1 eV and the effective mass m∗ = 0.25me I have
obtained the band dispersion shown in Fig. 5.16. One can see in this figure that there
is a qualitative agreement between ab initio and model calculations: in both cases the
bands are split into weakly dispersive subbands of the particle in 1D periodic potential,
however the maximums of the first and second subbands in ab initio calculations are
slightly shifted up by 0.04 eV that might indicate that the m∗ obtained by the parabolic
fit of the bands in the y direction is higher than the real value of the effective mass for this
band. Alternatively it might indicate that the simple 1D KP model cannot be applied in
this case without some modifications.
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Figure 5.14: Planar averages of the surface states of Au(788) at (a) the bottom of the
first subband at the Y point, (b) the top of the first subband at the Γ point and (c) the
top of the second subband at the Y point. Different colors correspond to wavefunctions
with different eigenvalues identified as surface resonances at the same k-point.
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Figure 5.14: (continued) Planar averages of the surface states of Au(788) at (a) the
bottom of the first subband at the Y point, (b) the top of the first subband at the Γ
point and (c) the top of the second subband at the Y point. Different colors correspond
to wavefunctions with different eigenvalues identified as surface resonances at the same
k-point.

5.2.4 The surface state of Au(455)
In this section I discuss the intermediate case between narrow and wide terraces of Au(322)
and Au(788), namely the Au(455) surface with the miscut angle α = 5.77◦ - small enough
to have the band gap opening at the Γ point - and with an average terrace width of
L = 23.5 Å. Such a value of the terrace width is small enough to ensure that the surface
state will have mainly a 2D character. Unfortunately experimental data for the Au(455)
surface is not available as this surface can undergo reconstruction and faceting [44]. As
before, I start with the surface band dispersion along the Y − Γ path shown in Fig. 5.17.
Along with the calculated bands, I also depict in this figure the results obtained using
the 1D KP model that will be discussed later in this section. In this figure one can see
that indeed, the Au(455) surface presents an intermediate case between the Au(322) and
Au(788) in terms of the surface band dispersion: while it clearly shows that the surface
state is split into subbands, its dispersion is not as weak as the dispersion of the first
subband of Au(788).

Now let us take a closer look on the localization of the surface state shown in Fig. 5.18.
Similarly to the results shown in Fig. 5.14, at the bottom of the first subband at the Y
point, the surface state has a bulk tail in the wavefunction due to the mixing with the
bulk states at the edges of the SBZ, while at the top of the first subband at the Γ point,
where there is a gap in the PBS, the surface state becomes a true gap surface state like
the Shockley state of the Au(111) surface. However, the behavior of the surface state
wavefunction in-plane, and the way it decays into the bulk, are qualitatively different
from the behavior of the surface state of Au(788) shown in Fig. 5.15. At the Y point
the Au(455) surface state appears to behave like a 2D average-surface modulated state:
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(a)

(b)

Figure 5.15: Charge density distribution isosurface of the surface states of Au(788) at
(a) the bottom of the first subband at the Y point and (b) the top of the first subband
at the Γ point.
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Figure 5.16: The surface state dispersion (blue dots) of the Au(788) surface together with
results obtained with the 1D KP model (green crosses).
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Figure 5.17: The surface state dispersion (blue dots) of the Au(455) surface together with
results obtained with the 1D KP model for the Au(455) (red line) and the Au(111) (black
line) surfaces.

it is not confined within the terrace and it decays approximately in the [455] direction.
Although at Γ the state appears to be confined within the terrace it still ’sees’ the average-
surface as it decays in the direction between [455] and [111], and not in the [111] direction
like the surface state at Γ of Au(788) shown in Fig. 5.15(b). This is confirmed as well
with the Eq. (5.1), where Gm = 0.675 a.u.−1 while it would be 0.701 a.u.−1 for a terrace
modulated state (see Table 5.1). I also note that these two values lie closer to each other
compared to those of the Au(322) surface, indicating that the character of the Au(455)
surface is somewhere in between the terrace modulated and the average surface modulated
state.

Finally, let me briefly discuss the fit of the calculated bands with the KP model.
The solid red line in Fig. 5.17 shows the results of the KP model calculation for the
band dispersion in Au(455) using the barrier strength of U0b = 1.8 eV and effective mass
m∗ = 0.25 me obtained with a parabolic fit of band dispersion in the y direction. The solid
black line shows the corresponding free electron dispersion. As in the case of Au(788) I
note that while the minima of subbands are quite well reproduced with the simple model,
the maximum of the band at Γ in the ab initio calculation is shifted up, indicating that
the effective mass is smaller than the one of the flat Au(111) surface.
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Figure 5.18: Planar averages of the surface states of Au(455) at (a) the bottom of
the first subband at the Y point and at the (b) top of the first subband at the Γ point.
Different colors correspond to wavefunctions with different eigenvalues identified as surface
resonances at the same k-point.
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(a)

(b)

Figure 5.19: The charge density distribution isosurface of the surface states of Au(455)
at (a) the bottom of the first subband at the Y point and (b) the top of the first subband
at the Γ point.
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5.3 Summary and outlook

This chapter is devoted to the calculation and analysis of the surface band structure and
surface states obtained by means of ab initio DFT calculations.

First, I have discussed in details the formation of the surface band structure for the
vicinal surfaces. I have shown how the gap in the PBS evolves depending on the miscut
angle with the Au(111) surface through the computation of bulk band structure along the
special path in the Brillouin zone, confirming that the gap at the Fermi level shrinks with
increasing the miscut angle. Then I have discussed and explained the refolding of the band
structure in supercell calculations, specifically in the case of the orthorhombic supercell
of flat and vicinal Au(111). I have demonstrated how one can understand the complex
refolded band structure using simple geometrical reasoning. Then I have performed an
unfolding of the band structure for the small orthorhombic supercell of Au(111).

Second, I have performed an ab initio calculations for three vicinal surfaces, Au(322),
Au(788) and Au(455) at the scalar-relativistic LDA level. I have shown, using projections
onto the atomic orbitals, that Shockley states in the gap of the bulk PBS of the Au(455)
and Au(788) surfaces are almost as localized as the Shockley state of the Au(111) surface.
At variance, the resonant surface states are less localized on the surface and have a
tail that extends infinitely in the bulk of the slab. Nevertheless all these surface states
and resonances mainly project on the p atomic orbitals, like the surface state of the
Au(111) surface. I also note that resonant surface states project more on the d atomic
orbitals compared to the Shockley state, indicating the strong mixing with bulk d bands.
I have demonstrated that surface state dispersion and character obtained with ab initio
calculations are in good qualitative agreement with earlier experimental results, i.e. I have
observed a 2D surface resonance for Au(322) that shows an average-surface modulated
character and a partially confined quasi-1D surface state for the Au(788) surface that
forms weakly dispersive subbands that have a terrace modulated character.

Last, I have used the 1D Kronig-Penney model in order to perform a quantitative
comparison between surface bands of three surfaces and experiments. For Au(322) the
agreement between the ab initio results, model calculation and experiments is remarkable,
showing the same barrier strength, band bottom shift and effective mass for experimental
and theoretical band dispersions. Moreover, the surface band dispersion calculated with
the 1D Kronig-Penney model is in perfect agreement with the ab initio surface band
dispersion, proving that the model is suitable for this system. At variance, fitting of
the calculated surface band dispersion with the Kronig-Penney model underestimates the
maxima of the subbands for both Au(455) and Au(788) surfaces, while giving an overall
good qualitative picture. I assume two possible reasons for this discrepancy: either the
calculations performed to obtained these results are not fully converged, or more likely,
the simple 1D model is not completely suitable for these systems.

In perspective, the surface bands of Au(788) and Au(455) should be investigated thor-
oughly with SOC in order to resolve the discrepancies between model, calculations and
experiments, in particular to understand the magnitude of the SOC-induced energy shift.
In addition one could study Au(23 23 21), as this surface has wide terraces allowing the
total confinement shown in the ARPES experiments. Finally, in this chapter I have shown
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that using ab initio DFT calculations it is possible to conduct a thorough study of the
surface state of vicinal surfaces. I have also shown that using a simple 1D KP model it
is possible to fit the resulting dispersion. It means that in principal, by performing cal-
culations for a variety of similar surfaces it would be possible to create a comprehensive
database of the KP model parameters that would allow to interpolate them onto other
surfaces and accurately predict the surface state dispersion for other similar surfaces with-
out performing calculations. At variance, for more complex systems, i.e. nanowires on
vicinal surfaces or adsorbed nanoparticles I would not expect the KP model to work as
good. Rather, for these kind of surfaces the methodology I used in this chapter to study
the surface states of vicinal surfaces can be employed.
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Chapter 6

Ab initio calculation of EEL spectra
for bulk Au. Influence of spin-orbit
coupling

In this chapter I present the results of ab initio calculations of EEL spectra for bulk
Au and the Au(111) surface with and without SOC. To date multiple ab initio studies
of valence EEL spectra have been performed for bulk Au [57, 52] or for the Au(111)
surface [58] in order to characterize surface plasmon, revealing and discussing the origin
of various peaks in EEL spectra [52] and obtaining the dispersion of the acoustic surface
plasmon [58] showing the good agreement with the experimental results. It was suggested
by the author of the Ref. [58] that the remaining discrepancy between the ab initio ASP
dispersion and experimental results for Au(111) might be due to the neglect of SOC in the
calculations. Before studying the EEL spectra of the Au(111) surface I will first discuss
in details bulk Au. In this chapter I will discuss the bulk Au EEL spectrum for vanishing
q and revisit the discussion of the peaks in the low-energy region of the spectrum. Then
I will discuss the effect of including SOC on EEL spectra of bulk Au for both vanishing
and finite values of q and I will show that inclusion of SOC for a vanishing transferred
momentum improves the agreement with the experimental results.

6.1 EEL spectra of bulk Au

In this section the influence of SOC on the EEL spectrum and plasmon of bulk Au is
discussed. Inclusion of SOC in the DFT calculations leads to splittings and slight shifts
of the d-bands in the Au Kohn-Sham bandstructure [69], thus interband transition peaks
in the EEL spectra that dominate valence EEL spectra (see Sec.3.2.1) are expected to shift
and split accordingly. In addition, it might have an influence on the position and intensity
of the bulk plasmon peak in the EEL spectrum as the 5d → 6s interband transition is
also shifted in energy.

79
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6.1.1 Computational details
Calculations have been performed by using scalar-relativistic (SR) or fully-relativistic
(FR) ultrasoft pseudopotentials with 11 electrons in the valence region and the LDA
approximation for the exchange-correlation functional except for the EEL spectrum cal-
culations for vanishing q. In that case I have used the optimized norm-conserving PBE
pseudopotential containing 19 electrons in the valence region and aimed to reproduce ex-
perimental results in a wider frequency region than the pseudopotential with 11 electrons
in the valence region (see details on pseudopotential and exchange-correlation approxi-
mation selection in Appendix).

I have used the experimental lattice constant at room temperature a0 = 7.71 a.u. and
the kinetic-energy cutoff Ecut = 20 Ry for 11 electron pseudopotential and Ecut = 20 Ry
for 19 electron pseudopotential, which was sufficient to obtained converged EEL spectra
up to E=30 eV. The sampling of the first Brillouin zone (BZ) was performed using a
uniform 32x32x32 k point mesh centered at the Γ point. Methfessel-Paxton smearing
with a broadening parameter of 0.002 Ry was used for the ground-state calculation.

EEL spectrum calculations were performed using the Liouville-Lanczos approach im-
plemented in the thermo_pw module for QUANTUM Espresso package. In order to
obtain the converged EEL spectrum 4000 Lanzos iteration with extrapolation to 20000
iterations were performed for each value of the transferred momentum. A Lorentzian
broadening of 0.01 Ry is used to plot the EEL spectra.

6.1.2 EEL spectra of bulk Au
6.1.2.a EEL spectrum of bulk Au without SOC

First, I would like to briefly revisit the EEL spectrum of bulk Au in the scalar-relativistic
approximation. In the Fig. 6.1 I show the loss function of bulk Au and the corresponding
dielectric function computed using an optimized norm-conserving pseudopotential with
19 electrons in the valence region (see Appendix A.1). Table. 6.1 summarizes the most
prominent peaks and their origins in the loss function (peak labeling for peaks 1-6 has
been adapted from Ref. [52]) (see also Fig. 3.1(b)).

While the bulk plasmon peak and peaks 2-6 have been thoroughly discussed [55, 52],
I would like to pay a closer attention to peaks labeled 1 and 2′ in Fig. 6.1(a).

Peak 1 in the SM of Ref. [52] has been attributed to the plasmon-type resonance, as ε1
vanishes and a local minimum is observed in ε2 (see Fig.6.1(b)). To further elaborate on
this assumption I note that one can extend a model used to explain a red-shift of the bulk
plasmon in Sec. 3.1.2 adding another bound oscillator with frequency ω1 in the Eq. (3.4):

ε(ω) = 1− ω2
BP

ω2 + f1ω
2
BP

ω2
1 − ω2 + f2ω

2
BP

ω2
2 − ω2 , (6.1)

where ω1 = 2.6 eV is the frequency of the interband transition onset around X and
ω2 = 7 eV is the frequency of the second interband transition produced by d → s and
d → p transitions along the W − K path in the Brillouin zone [79]. If one assumes
f1 = f2 = 1 (similarly to supplemental material of Ref. [52]) ε(ω) of Eq. (6.1) will vanish
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Figure 6.1: (a) EEL spectra for bulk Au with 19 electrons (black line) and with 1 electron
(red line) in the valence calculated without SOC at the experimental lattice parameter for
vanishing q. The inset shows the loss spectra for different values of q (spectra are offset
for clarity) of plasmon-type excitations 1′, 1, 2′ in the 0-15 eV region. (b) Real (solid line)
and imaginary (dashed line) part of the dielectric function of bulk Au with 19 electron
pseudopotential.
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peak # ω,eV origin comments

1′ (BP) 2.2 Bulk plasmon screened by 5d
Severely damped due to
the underestimation of

the interband transition onset
1 (5d BP) 5.3 Plasmon-type resonance from 5d
2′(UP) 10.5 Screened BP from 6s
2 15.4

Classical Drude-Lindhard oscillators [51, 52]
3 24
4 31
5 37
6 44

Table 6.1: Summary of the position ang origins of peaks labeled in EEL spectra for
vanishing q shown in Fig. 6.1(a). Labels 1′ and 2′ are supplemental to the labels given in
Ref. [52](see Fig. 3.1(b)).

around ω = 2 eV and ω = 5.8 eV. Indeed, ε1 attains small negative values around 2.7 eV
and vanishes at 5 eV with ε2 having local minima leading to severely damped plasmon at
2 eV and a broad plasmon peak at 5.3 eV.

Contrarily to the two plasmon-type peaks 1 and 1’, the peak 2′ at 10.5 eV in Fig. 6.1(a)
has not been discussed so far. Inspection of ε1, ε2 in Fig. 6.1(b) suggests the collective
oscillation nature of this peak (ε1 = 0 and local minimum in ε2). In Fig. 6.1(a) I show
comparison of the loss function obtained with the pseudopotential that includes 5d elec-
trons and loss function obtained with the pseudopotential where 5d electrons are frozen
in the core. In the latter case, due to the absence of 5d electrons, the well defined Drude
plasmon peak is developed at 10.1 eV, close to the peak 2′, indicating that peak 2′ might
be a remnant of the unscreened bulk plasmon (UP).

Assigning peaks 1 and 2’ to the plasmon excitation screened by a second interband
transition and to the unscreened plasmon respectively, is backed by the fact that these
peaks disperse with the increase of the transferred momentum q, which is characteristic
of collective excitations and not of interband transitions.

In conclusion, I have shown that signatures of plasmons in EEL spectra of bulk Au
are more complex than previously believed.

6.1.2.b EEL spectrum of bulk Au with SOC

In the previous subsection I have reviewed and discussed the EEL spectrum of bulk Au
computed without SOC focusing on the low energy plasmon excitations. In order to study
the influence of SOC on the bulk Au EEL spectrum and bulk plasmon I have performed
simulations for both vanishing and finite transferred momenta q. In Figure 6.2, I show the
comparison of the EEL spectra of Au within SR and FR approximations along with the
dielectric function computed using an optimized norm-conserving pseudopotential with 19
electrons in the valence region. In Fig. 6.3 I show the comparison of experimental REELS
spectra and of EEL spectra computed with and without SOC with big peak broadening
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to mimic the experimental resolution along with the corresponding band structure. As
one can see, differences between two spectra are small (Table 6.2 summarizes the SOC
induced changes). The main change in peak position involves the unscreened plasmon
peak 2′, which is blue shifted by 0.4 eV and split by 1.5 eV into 2 peaks. The overall
shape of the spectrum is left unchanged. In particular, the bulk plasmon peak (marked
with an arrow), that is already severely damped and shifted in the SR approximation,
remains unchanged. I also note that peak 2′ is absent in the experimental spectrum and
practically disappears in the EEL spectra computed with SOC and with a big value of
the peak broadening. For this peak the agreement between theory and experiment is
improved with inclusion of SOC.

peak # ω (eV) Change in the shape
1′ (BP) 2.2 Unchanged
1 (5d BP) 5.3 Loses some intensity
2′(UP) 10.9 Split by 1.5 eV and loses intensity
2 15.4 Unchanged
3 24 Loses intensity
4 31 Loses intensity
5 37 Unchanged
6 44 Unchanged

Table 6.2: SOC-induced changes in the peak positions and shape of the EEL spectrum
for vanishing q reported in Fig. 6.4(a).

The influence of the SOC becomes less pronounced for bigger values of the transferred
momentum q. In Fig. 6.4 I show the bulk Au EEL spectrum computed for finite values
of the transferred momentum q (0.39, 0.77 and 1.39 Å−1). In Fig. 6.5 I show the absolute
difference between spectra computed with and without SOC. While for the smallest q =
0.39 Å−1 there are still some difference between SR and FR calculations (i.e. peak 1 is
less intense in FR calculation and peak 2 develops only for FR case similar to the case of
vanishing q) starting from q = 0.77 Å−1 two EEL spectra become very close. The possible
reason for this is following: for the small value of q, e−iqr ≈ 1 − iqr and only dipole-
allowed transitions contribute to the spectra. For larger values of q other transitions start
to contribute, thus smearing out the peaks including the peaks that have developed due
to the inclusion of SOC in the calculations. The increasing similarity as a function of q
is seen in the four panels of Fig. 6.5, where I report the absolute value of the difference
in intensity between the FR and SR calculations (black line). Of course, the higher the
modulus of the transferred momentum, the smaller the average difference in intensity (red
horizontal line).
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Figure 6.2: (a)The EEL spectra for bulk Au without (black lines) and with (red lines)
SOC calculated at the experiment lattice parameter for vanishing q. (b) Real (solid line)
and imaginary (dashed line) part of the dielectric function of bulk Au.
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Figure 6.3: (a) EEL spectra for bulk Au without (black lines) and with (red lines) SOC
calculated at the experiment lattice parameter for vanishing q compared with REELS
experiment results (pink line) [57]. (b) LDA Kohn-Sham band structures of bulk Au with
(red lines) and without SOC (black lines).
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Figure 6.4: EEL spectra for bulk Au without (black lines) and with (red lines) SOC
calculated at the experiment lattice parameter for three different values of q: (a) 0.03,
(b) 0.39, (c) 0.77 and (d) 1.39 Å−1. The shaded area represents the energy range where
the 11 electron pseudopotential shows some differences with respect to the 19 electron
pseudopotential.
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Figure 6.4: (continued) EEL spectra for bulk Au without (black lines) and with (red
lines) SOC calculated at the experiment lattice parameter for three different values of
q: (a) 0.03, (b) 0.39, (c) 0.77 and (d) 1.39 Å−1. The shaded area represents the energy
range where the 11 electron pseudopotential shows some differences with respect to the
19 electron pseudopotential.
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Figure 6.5: Absolute value (black line) and average (red line) of the difference between
EEL spectra obtained with and without SOC spectra for different values of q (note the
different scale on ordinate axis): (a) vanishing q (Fig. 6.4(a)), (b) 0.39 Å−1 (Fig. 6.4(b)),
(c) 0.77 Å−1 (Fig. 6.4(c)) and (d) 1.39 Å−1 (Fig. 6.4(d)).
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Figure 6.5: (continued) Absolute value (black line) and average (red line) of the difference
between EEL spectra obtained with and without SOC spectra for different values of q
(note the different scale on ordinate axis): (a) vanishing q (Fig. 6.4(a)), (b) 0.39 Å−1

(Fig. 6.4(b)), (c) 0.77 Å−1 (Fig. 6.4(c)) and (d) 1.39 Å−1 (Fig. 6.4(d)).
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6.2 Conclusion and perspective
This chapter is devoted to the study of the EEL spectra of bulk Au and, for the first
time, to the influence of spin orbit coupling (SOC) on it. First, I have compared the
ab initio results for EEL spectra of bulk Au calculated with and without SOC for the
different values of transferred momentum q. Analysis of the low energy EEL spectra in
this region allowed me to assign the peak at 10 eV (labeled 2′) to the reminiscence of
the unscreened bulk plasmon of the 6s electron. In conclusion, the inclusion of SOC in
the EEL spectrum calculations of bulk Au leads to minor but noticeable modifications
of both interband transitions and bulk plasmon peaks in the loss spectra. I have shown
that differences between spectra computed with and without SOC fade out for high values
of q and that, as a rule, the higher the transferred momentum the smaller the average
effect of SOC on the EEL spectrum. I would like to point out the remarkable agreement
of the loss function obtained in the fully relativistic calculation with the experimental
loss function obtained in REELS experiment [57] - while positions of peaks 1′ and 1 are
underestimated in LDA, peak 2′ becomes more damped in the fully relativistic calculation
in better agreement with experiment than the scalar relativistic calculation.



Chapter 7

Ab initio calculation of the EEL
spectra of the Au(111) surface.
Influence of spin-orbit coupling

In this Chapter, the EEL spectra of the Au(111) surface and the influence of spin-orbit
coupling (SOC) on the EEL spectrum and the acoustic surface plasmon (ASP) of Au(111)
are investigated. The effect of the inclusion of SOC on the EEL spectra of bulk Au has
been discussed in Sec. 6.1, where I have shown that it has a small but still noticeable effect.
The ASP originates from the Shockley states specific to the surface (see. Sec. 3.1.4). As
discussed in Sec. 2.2.2, the surface state of Au(111) is moved by 0.1 eV down in energy and
is split into two parabolic states. The influence of SOC on the ASP is studied in the present
Chapter. I will start with the discussion of EEL spectra of Au (111) without and with SOC
and its comparison with bulk Au EEL spectra from Section 6.1.2. Then I will discuss
the ASP of the Au(111) surface, its identification in my calculations and compare my
results to other experimental and theoretical works. Finally, I will discuss modifications
of the ASP dispersion obtained from EEL spectrum calculations with SOC and discuss the
discrepancies between experimental and ab initio results. These calculations were made
possible because of the theoretical and numerical development reported in Chapter 4.

7.1 Computational details
Calculations have been performed with the same approximation as in Sec. 6.1.2.a, using
the same 11 electron ultrasoft pseudopotential and the experimental lattice constant.
In order to simulate the surface, the slab supercell approach was used. A supercell was
constructed with twenty one layers of gold and a vacuum space of 3 nm between slabs. The
sampling of the first BZ was performed using a uniform 24x24x1 k point mesh centered
at the Γ point. A Methfessel-Paxton smearing with a broadening parameter of 0.002
Ry was used for the ground-state calculation. Two Lorentzian broadenings of 0.01 Ry
and 0.003 Ry are used to respectively plot the EEL spectrum and to determine the ASP
peak position. The calculation for the Au slab with the Pt monolayer was performed by
substiting surface Au atoms with Pt atoms without changing the lattice parameter.
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Figure 7.1: Au(111) surface EEL spectrum (black line) compared to the Au(111) EEL
spectrum derived from the bulk (Fig. 6.4(a)) using Eq. (7.1) (red line) calculated without
SOC. The shaded area represents the energy range where the 11 electron pseudopotential
shows some differences with respect to the 19 electrons pseudopotential.

7.2 EELS spectra of the Au(111) surface

7.2.1 The EEL spectra of the Au(111) surface without SOC

Let us first examine the overall EEL spectrum of the Au(111) surface and verify that
it is consistent with the EEL spectra of bulk Au and results obtained in other works.
In the long wavelength limit the loss function of the semi-infinite solid (neglecting the
momentum dispersion) can be written as [38]:

Ls(ω) = −Im 1
ε(ω) + 1 , (7.1)

where ε(ω) is the frequency-dependent dielectric function of the bulk solid. While in
my simulation I have neither a semi-infinite crystal, nor a semi-infinite vacuum above, I
still consider the equation above a decent approximation that allows me to distinguish
bulk-derived features in the spectrum from surface contributions. Indeed, one can see in
Fig. 7.1 that peaks in the surface loss spectra are in a good agreement with peaks in the
loss function derived from the bulk dielectric function.
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Figure 7.2: The Au(111) surface EEL spectra without (black lines) and with (red lines)
SOC calculated at the experimental lattice parameter for (a) vanishing in-plane q and
(b) finite in-plane q = 0.175 Å−1. The shaded area represents the energy range where
the 11 electron pseudopotential shows some differences with respect to the 19 electrons
pseudopotential.
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7.2.2 The EEL spectra of the Au(111) surface with SOC
In Fig. 7.2(a) I report the first Au(111) EEL spectrum calculation with SOC compared to
the calculation without SOC from the previous section. SOC does not have a significant
influence on the conventional surface plasmon and interband transition peaks of the loss
spectrum. In Fig. 7.2 I show EEL spectra of Au(111) for vanishing and finite values of q
with and without SOC. One can see that SOC modifies the same peaks and in the same
way as for the bulk Au EEL spectrum discussed in Sec. 6.1.2.b.

7.3 Study of the acoustic surface plasmons
The Au(111) surface can support conventional and acoustic surface plasmons (ASP).
While the former is heavily damped and shifted due to the overestimation of the 5d band
energy in LDA, the latter originates from the surface state that is well described by DFT-
LDA [34]. ASP has a linear dispersion ω ∼ αvF q, thus there is no ASP peak in the EEL
spectrum with vanishing q, however it appears for the higher values of q as it is seen on
the zooms of the EEL spectra for q = 0.025 Å−1 and q = 0.175 Å−1 in Fig. 7.3. Here I
point out that while it is enough to perform 2500 iterations to obtain the converged EEL
spectrum for E>1.5 eV, additional (up to 4000) Lanczos iterations are required to obtain
the converged ASP peak. Moreover, SOC-induced splitting of the Shockley state into two
surface states could potentially lead to two acoustic surface plasmon modes. I will show
that actually this is not the case in my calculation.

7.3.1 ASP identification
In section 3.2.4 I have explained the methods used so far to identify ASP in previous
experimental and theoretical studies. Due to the nature of the Liouville-Lanczos method
used to calculate EEL spectra it is not possible to directly assign the excitations that
appear in the loss spectrum to certain bands and transitions, adding some complexity to
the analysis of the results. In the present work I have performed several tests that allow
an indirect identification of the low-energy peak in EEL spectra as the Shockley surface
state derived ASP excitation:

1. ASP is an in-plane excitation, i.e. it requires the transferred wave-vector to be
in the plane parallel to the surface-vacuum interface. I have performed the EEL
spectrum calculation for q in the direction perpendicular to the surface and I have
not observed any meaningful excitations in the low-energy part of the spectrum.
This fact suggest that the excitation observed when q is in-plane has a surface
nature.

2. In order to check whether the low energy peak is connected to the surface state,
I have performed the EELS calculation for the Au(111) surface covered with a
monolayer of Pt and have not observed any ASP like peak, as such a surface support
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Figure 7.3: Zoom of the EEL spectra reported in Fig. 7.2 showing (a) the absence of the
ASP peak for q = 0.025 Å−1 and (b) the presence for q = 0.175 Å−1.
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only an unoccupied Shockley-like surface state, and thus, the ASP cannot be excited
in this system.

3. I have performed an EEL spectrum calculation for the bulk Au using the unit cell
with the hexagonal geometry (like the unit cell for Au(111)) in order to verify
that the observed low-energy excitation I assign to ASP is neither a bulk derived
excitation nor a numerical artifact coming from the system geometry.

4. I have compared the loss function shown in Ref. [58] for Au(111) with the loss
function from my calculations. As one can see in Fig. 7.5(b) the shapes of the two
loss functions are very similar to each other with the ASP peak position in my
calculation being 0.04 eV higher than in Ref. [58]. Keeping in mind that I use a
different approach (the Liouville-Lanczos approach in the ultrasoft pseudopotential
scheme versus the solution of the Dyson equation in the projector augmented wave
scheme) and different exchange and correlation functional (LDA versus GLLB-sc) I
conclude that a very good agreement between the two calculations is reached.

Finally, the results I have obtained agree well with previous ab initio calculations per-
formed in Refs. [58, 13] in the scalar-relativistic theory (Fig. 7.7(a)). By itself each of the
performed test is not enough to assign the observed excitations to ASPs. Together they
give a certain degree of confidence in the identification of these excitations as ASPs. I es-
timate a maximum error bar of the ASP peak position in my calculation to be ∼ 0.03 eV.

7.3.2 Position of the electron-hole continuum
In Ref. [58, 13] ab initio studies of the ASP dispersion of Au(111) have been performed
in the SR theory. In both works the ASP had a dispersion close to linear, ωASP = αv2D

f q,
with α < 1, meaning that the ASP mode runs inside the continuum for intraband electron-
hole excitations within the Shockley surface state (SS) band. The electron-hole continuum
has been reported in Fig. 7.7(a) as dashed and dot-dashed line to the upper edges of bulk
and Shockley state electron-hole pairs continuum respectively. Both have been computed
in the following way:

Ee−h(q) = E(kf + q)− E(kf ), (7.2)

where Ee−h denotes the edge of electron-hole pair continuum at a wavevector q, E(k)
corresponds to the energy of the electron band of interest (bulk band that crosses the
Fermi level or Shockley state) at wavevector k and kf is the Fermi wavevector.

7.3.3 Electron velocity in the surface state
It has been argued in Ref. [13] that α < 1 is a result of the incomplete dynamical screening
of the majority of slow bulk electrons by fast surface electrons is Shockley SS, contrary
to the previous predictions [17, 18]. However, authors of Ref. [58] suggested that the
ASP dispersion is governed by the surface mode in the dielectric band structure (see
Sec. 3.2.4) rather than by the Fermi velocity of the surface state, as the rigid shift of the
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Figure 7.4: (a) The Au(111) EEL spectrum computed for q = 0.125 Å−1 in (red) and out
(black) of the surface plane; (b) pure Au(111) EEL spectrum (red) and Au(111) with one
monolayer of Pt EEL spectrum (black) for q = 0.125 Å−1.
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Figure 7.5: (a) Au(111) EEL spectrum (red) and bulk Au EEL spectrum (black) in the
same geometry as Au(111) computed for q = 0.125 Å−1; (b) Au(111) EEL spectrum
obtained in this work (red) and in Ref. [58](black crosses) for q = 0.125 Å−1.
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Calculation SR FR SR shifted
v2D
F , a.u. 0.36 0.4, 0.38 0.385
< v2D

F >, a.u. - 0.39 -

Table 7.1: Fermi velocities v2D
F of the surface states in my calculation (see also Fig. 7.6).

< v2D
F > is the average of Fermi velocities in the cases where there are more than one

state (FR).

surface band (and thus the change in vf ) does not result in significant modification of
the ASP energies. While the method I use does not presently provide an access to the
dielectric band structure, one might assume that SOC will not change it significantly as
I will explain now. The Fermi velocity for the surface state does not change drastically
as one can see in Fig. 7.6 where I report the velocity of the surface state of Au(111).
One can see that the v2D

f is slightly higher for the surface state doublet obtained with
SOC mainly due to the lower position of the Shockley surface state in the SOC case: if
the Shockley obtained without SOC is shifted down by 0.1 eV in energy (black dashed
line), the behavior of the velocity matches the case with SOC. Potentially, splitting of
the Shockley surface state into two could lead into splitting of the ASP into two, however
since the difference between v2D

f of the two Rashba split states is ∼ 6% it is most probable
that a single excitation will be observed.

7.3.4 Dispersion of the ASP without SOC
In order to obtain the ASP dispersion and compare it to theoretical results from previous
works [58, 13], I have performed 5 EEL spectrum calculations for different values of q
without SOC and tracked the position of the ASP peak in the low-energy part of each
spectrum. The resulting dispersion is shown in Fig. 7.7.

7.3.5 Dispersion of the ASP with SOC
In order to study the influence of SOC on the ASP, I have performed 5 EEL spectrum
calculations for different values of q taking SOC into account. To my knowledge this is the
first report of the calculation of EEL spectra for the Au(111) surface with SOC. Despite
the Rashba splitting of the Shockley state, only one ASP peak is observed in obtained
spectra. The resulting ASP dispersion in the FR theory is reported in Fig. 7.7(b) together
with my SR calculation and experimental results [80]. As one can see in this figure, the
inclusion of SOC does not lead to a significant change in the ASP behavior: the difference
between the ASP energy for the biggest value of q amount to 0.04 eV.

7.3.6 Slope of the ASP dispersion
In Table 7.2 I summarize the value of α (see Sec. 3.1.4) obtained from the linear fit
ωASP = αv2D

F q of the ASP dispersion in different works. In this fit I have used values of
the unshifted v2D

F in the SR case and the average < v2D
F > in the FR case reported in
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Figure 7.6: Au(111) surface electron velocity distribution vs. energy of the surface state
without (black line) and with (red lines) SOC. The black dashed line corresponds to the
surface state obtained without SOC and shifted downwards in energy by 0.1 eV to mimic
the effect of SOC energy shift.
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Source SR FR SR (Ref. [58]) SR (Ref. [13]) Experiment (Ref. [13])
α 0.9 0.81 0.95(?) 0.96, 1.02 0.83, 0.89
v2D
F , a.u. 0.36 0.39 0.35(?) 0.35 0.35

Table 7.2: Summary of the linear fits (ωASP = αv2D
F q) of ASP dispersion obtained in the

different works shown in Fig. 7.7. Authors of Ref. [58] have not given their value for the
effective mass nor the surface state Fermi velocity so they were assumed to be similar to
other works, the two values of α for Ref. [13] correspond to fit up to q = 0.15Å−1 and
q = 0.25Å−1 respectively.

the table 7.1. Here one can see that the inclusion of SOC does not lead to a significant
modification of the ASP dispersion, thus the discrepancy between the theoretical and
experimental results remains. In fact the coefficient α of the ASP dispersion calculated
with SOC is slightly lower than α of the ASP dispersion calculated without SOC, however
taking into account the error bar of the ASP peak position determination (∼ 0.03 eV)
this difference can be considered as small. The agreement between experimental and ab
initio results is excellent for q < 0.15 Å, however for larger momenta ab initio calculations
overestimate the ASP energy obtained in experiments.

7.3.7 Discussions
The disagreement between calculations and experiment cannot be attributed to the decay
of the ASP into electron-hole pair excitations (see Sec. 7.3.2), since the ASP dispersion
curves run entirely inside both bulk and Shockley state electron-hole pair continuum as
one can see in Fig.7.7(a). Thus, it is important to discuss further possible sources of
discrepancy, since the introduction of SOC does not resolve it. First, it is possible that
the accuracy of the measured ASP peak positions becomes lower for bigger values of q,
where all of the three theoretical results ( [58, 13] and mine) start to deviate from the
experimental one. It was pointed out in the study of ASP of Cu(111) [15] that for higher
transferred momenta, the most prominent feature in the low energy part of the spectra
is wide and contains various contributions. Thus unambiguous identification of the ASP
peak in the spectra becomes a challenging task for the experimentalists. Second, it is
possible that I have not accounted for all effects that can influence ASP - in my calculations
I have used the simple LDA approximation for the exchange-correlation functional which
however seems appropriate for the surface states (see 5). It is also known that the DFT
does not provide an accurate description of image states that can interact with the surface
state [81].
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Figure 7.7: Ab initio acoustic surface plasmon dispersion of the Au(111) surface. (a) Com-
parison of SR ab initio ASP dispersion (black line) with SR ab initio calculations of
Ref. [58] (magenta line) and Ref. [13] (red line). The green dotted and dash-dotted lines
represent the upper edges of bulk and Shockley electron-hole pair continuum respectively
(b) Comparison of the ASP dispersion obtained with (black line) and without (red line)
SOC with the experimental results [13] (magenta line). Black and red lines correspond
to the calculation with and without SOC respectively. Calculations have been performed
for a slab with 21 layers of gold atoms and 3 nm of vacuum.
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7.4 Conclusion and perspective
This chapter is devoted to the study of the influence of spin orbit coupling (SOC) on
the EEL spectra of the Au(111) surface and on the acoustic surface plasmon (ASP)
excitation of the Au(111) surface, as well as the comparison with previous experimental
and theoretical studies performed without inclusion of SOC. First, I have compared the
ab initio results for the EEL spectrum of the Au(111) surface for small q without SOC
to the EEL spectrum of bulk Au, showing that indeed, the majority of peaks in the EEL
spectrum of the Au(111) surface originates from bulk excitations. Then I have shown
that the effect of SOC on the EEL spectrum of the Au(111) surface is similar to the one
of the EEL spectrum of bulk Au discussed in Chapter 6 - small but noticeable. Finally I
have studied the ASP dispersion with SOC and compared it to previous experimental and
ab initio results obtained without SOC. I have seen that the inclusion of SOC does not
modify significantly neither the intensity nor the position of the ASP peak in EEL spectra,
suggesting that there might be other factors contributing to the discrepancy between the
experimental and ab initio results. Nevertheless, I can conclude that the Liouville-Lanczos
approach used in this work allowed to study, for the first time, the influence of SOC on the
EEL spectra of the Au(111) surface as well as the ASP excitation of the Au (111) surface.
Obtained results suggest that SOC leads to small modifications, with all of the most
prominent features already captured in scalar-relativistic calculations. They also suggest
that ab initio study of the vicinal Au(788) surface, where ASP has been experimentally
observed [16], and of the Au(455) surface„ can be performed within a scalar-relativistic
approximation.
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Chapter 8

The EEL spectra and the acoustic
surface plasmon of the Au(455)
surface.

This chapter is devoted to the ab initio study of the EEL spectra and acoustic surface
plasmon (ASP) of the vicinal Au(455) surface.

As I have briefly discussed before, the ASP has a sound-like dispersion and is able to
confine light to a much higher degree compared to conventional surface plasmons (CSP).
This property is ideal for various applications, i.e. propagation of wavepackets without
a distortion. However, the excitation of the ASP with light remains an open question
- for example a grating of the surface used to excite CSP should be performed on the
atomistic level to allow coupling of light to ASP. Stepped surfaces, on the other hand,
have a potential to support ASP as it has been shown experimentally for Au(788) [16]
and provide the required atomic level grating.

In this chapter I will focus on the ab initio study of the stepped Au(455) surface
whose structure is similar to the Au(788) surface but not as hard from the computational
point of view. I note that to my knowledge it is the first EEL spectrum calculation for
a periodic system of such a size, that was made possible thanks to the development of
the Liouville-Lanczos approach for TDDFPT in past works and implementations done in
Chapter 4. I will first briefly discuss the overall EEL spectrum of the Au(455) surface
and show its similarities to the EEL spectrum of Au(111). Then I will discuss the ASP
dispersion for the Au(455) surface and compare it to that of the Au(111) surface. Finally
I will draw some conclusions and discuss the future perspectives.

8.1 Calculation details
Calculations have been performed within the same approximation as in Sec. 6.1.2.a using
the same 11 electron scalar relativistic ultrasoft pseudopotential and the experimental lat-
tice constant. Effects of SOC were not included in the present work. In order to simulate
the surface the slab supercell approach was used. The Au(455) surface has been modeled
with a 5 nm thick slab and 5 nm of vacuum in the supercell. The slab contains 209 Au
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atoms and sampling of the first Brillouin zone has been done using a 16x2x1 Monkhorst-
Pack k-point mesh. The Methfessel-Paxton smearing with a broadening parameter of
0.02 Ry was used for the ground-state calculation. 10000 Lanczos iterations have been
performed for each value of q in order to obtain a converged ASP peak.

8.2 The EEL spectrum of the Au(455) surface

8.2.1 Vanishing transferred momentum
Let us start with the EEL spectrum of the Au(455) surface for the vanishing transferred
momentum and compare it to the spectrum of the Au(111) surface computed in Chapter 7.
In Fig. 8.1 I report the EEL spectrum of the Au(445) and Au(111) surfaces for vanishing
value of q in the direction perpendicular to the step. As one can see in the region
of interband transitions (E > 12 eV) most peaks remain similar in both position and
intensity showing that indeed most of the Au(455) spectrum is Au(111)-derived. However,
contrarily to the Au(111) surface where the conventional surface plasmon is so damped
that it becomes practically indistinguishable [58], one can see in Fig. 8.1 that the CSP is
more pronounced on the Au(455) surface. This could mean that the screening of the CSP
by 5d bands for the Au(455) surface is weaker compared to the Au(111) surface, most
probably around the step, as the terrace itself consists of the Au(111) plane. It is also
possible but less probable that the CSP emerges as a result of some unaccounted numerical
or convergence error, like a spurious interaction between step edges of the opposite sides
of the slab due to a (supposed) insufficient slab thickness that was absent for the flat
Au(111) surface.

8.2.2 Finite transferred momentum
While for a vanishing momentum the two EEL spectra reported in Fig. 8.1 do show some
differences, i.e. the CSP peak is more pronounced in the loss function of the Au(455)
surface, these differences fade out for a bigger value of q. In Fig. 8.2 I report the EEL
spectrum of the Au(111) and Au(455) surfaces for q = 0.226 Å−1 in the direction per-
pendicular to the step. As one can see the two EEL spectra become nearly identical for
this value of q. Thus one can tentatively conclude that while the spectrum for q → 0
is sensitive to the surface geometry, the spectrum at finite q is less sensitive to it. A
confirmation of this hypothesis would require calculations for more different values of q
and for the surface with different, but similar geometry, for instance Au(788).
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Figure 8.1: Au(455) (black line) and Au(111) (red line) EEL spectra for vanishing q → 0
in the direction perpendicular to the step. The shaded area represents the energy range
where the 11 electron pseudopotential shows some differences with respect to the 19
electron pseudopotential.
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0.226 Å−1 in the direction perpendicular to the step. The shaded area represents the
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8.3 Acoustic surface plasmons

8.3.1 Aim of the work
One of the main objectives of the present PhD work is the study of the effects of the
structural geometry on the ASP. This requires to study EEL spectra for surfaces other
than the Au(111) surface. The surface geometry has been reported for Au(111), Au(322),
Au(455) and Au(788) in Chapter 5. For the Au(322) surface in spite of the interest for
the resonant surface state seen in the band structure, it was shown that the miscut angle
(11.4°) is too large to support the surface state in the projected band structure gap. Thus
it is expected to hinder the excitation of the ASP on the Au(322) surface, as in the case
of the surface resonance it is only weakly localized on the surface and heavily mixed with
the underlaying continuum of bulk states and I do not expect it to give a rise to an ASP
excitation. ASP on the Au(111) surface has been studied both theoretically (Refs. [58, 13]
and Chapter 7 of this thesis) and experimentally [61, 13] and the ASP on the Au(788)
surface has been studied experimentally in Ref. [16] with a simple model used to calculate
a theoretical ASP dispersion.

8.3.2 Computational compromise
In my work it has been decided to study the Au(455) surface as it offers a convenient
compromise. On the one hand, it is a stepped surface where a partial confinement of
the Shockley surface state was observed in my calculations, thus making it similar to the
Au(788) surface from this point of view. On the other hand, as the terrace width is smaller
in the Au(455) surface compared to the Au(788) surface (23 Å versus 39 Å) the size of
the supercell required to model the slab of the same thickness is considerably smaller
which allows to reduce the overall computational cost of the EEL spectrum calculations
for the Au(455) surface. The ultimate price to pay for this decision is an absence of
the experimental data for the ASP of the Au(455) surface, as in the experiments this
surface is not stable and undergoes strong reconstruction [44]. It was also decided not to
include spin-orbit coupling in these calculation as according to the results I have shown
in the Chapter 7 it has a relatively small effect on the ASP dispersion of the Au(111)
surface, while inclusion of SOC increases the spent CPU time at least by a factor of 4.
Nevertheless, the cost of such calculations remains high - a calculation of a EEL spectrum
for a single value of q takes approximately 145000 cluster core-hours on 4320 cores and
requires about 6800 GB of RAM on the JUWELS cluster (Jülich, Germany), while a
similar calculation but for the Au(111) surface takes around 4000 core-hours on 720 cores
and requires 300 GB of RAM on the same cluster.

8.3.3 Electron velocity in the surface state of Au(455)
Similarly to Section 7.3.3, I start with the inspection of the electron velocity in the
Shockley surface state. In Fig. 8.4 I report the electron velocity distribution of the surface
state across the step (along the red line in the first Brillouin zone of the Au(455) surface
shown in Fig. 8.3). I note that due to the anisotropy of the surface, the Shockley state
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Surface Au(111) Au(455)
v2D
F , a.u. 0.36 0.18

Table 8.1: Fermi velocities v2D
F of the Shockley surface state in my calculations (see also

Fig. 8.4) for the Au(111) and Au(455) surfaces.

Γ X

SY
across
the step

along the step

Figure 8.3: The first Brillouin zone of the Au(455) surface. The red line shows the
direction along which the electron velocity distribution in Fig. 8.4 is shown.

will have a parabolic dispersion along the step and split into sub-bands across the step
(see. Chapter 5). This is the reason of the choice of the path in Fig. 8.3 along which the
electron velocity was calculated. I also note that for the sake of convenience, the velocity
reported in Fig 8.4 has been computed from the 1D Kronig-Penney fit of the ab initio
calculated surface state. In table 8.1, I summarize the Fermi velocity of the Shockley state
of the Au(111) and Au(455) surfaces. As one can see, the vF of the Au(455) surface state
is twice smaller than vF of the Au(111) surface state. Assuming that the ASP dispersion
follows the same law as it did for the Au(111) surface, ωASP = αv2D

f q and has a similar
α, it would mean that a single ASP peak with an energy about twice smaller in Au(455)
than in the Au(111) surface should be observed.

8.3.4 The ASP dispersion

In Fig. 8.5, I report the dispersion of the ASP across the step of the Au(455) surface along
with the ASP dispersion of the Au(111) surface reported in Chapter 7. One can see that
dispersion lines practically coincide for q < 0.125 Å, while for bigger values of q, the ASP
of Au(455) runs just slightly below the ASP of Au(111), contrarily to the expectation
made in previous section that it would have a twice smaller energy. These results agree
with the experimental results for the Au(788) obtained in Ref. [16] where the upper ASP
branch has a dispersion very similar to the one of the Au(111) surface up to the value of
q ∼ 0.2 Å−1.

In fact, for higher values of q where it exceeds reciprocal lattice vectors G0 so that
multiples of G0 can be transferred, the ASP became localized within terraces of Au(788).
Thus the smaller ASP energy for q > 0.125 Å of Au(455) in my calculations can be the
trace of the ASP localization, that should, in principal, become more pronounced for
bigger values of q.
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8.3.5 Discussion
The fact that the dispersion of the ASP of the Au(455) surface reported in Fig. 8.5 does
not follow the same law as the ASP dispersion of Au(111), ωASP = αv2D

f q (Eq. (3.6))
and has a similar slope despite the twice smaller vF , suggests that the situation is more
complex than it was considered in the model for ASP [11, 17]. Indeed, it was assumed
that the surface state is represented by a single parabolic band, which is the case for the
Au(111) surface. This assumption does not hold for the Au(455) nor for the Au(788)
surface, where the parabolic band is split into subbands due to the step-induced periodic
potential. In such a system with subbands there might be two types of excitations: an
intrasubband plasmon, similar to the one of the Au(111) surface, that involves only one
surface state subband and an intersubband plasmon that involves the transitions from the
occupied subband to the next unoccupied subband. As the next subbands have higher
values of the electron velocity it will naturally result in a higher plasmon energy than
the one suggested by Eq. (3.6). In this case I would expect that that the ASP dispersion
will have minigaps at the Brillouin zone borders that would correspond to the minigaps
between the surface state subbands. In order to verify this theory additional calculations
will be required in order to probe more q points around the zone border. Even then it
might be obscured due to the finite width of the ASP peaks in the EEL spectrum.

8.4 Conclusions and perspectives
This chapter is devoted to the study of the EEL spectra and ASP of the Au(455) surface
and their comparison with the Au(111) surface. I have shown that, as expected, the EEL
spectrum of Au(455) largely resembles the EEL spectrum of the Au(111) surface for finite
q and shows notable differences at vanishing q.

The dispersion of the ASP of the Au(455) surface practically coincides with the dis-
persion of the Au(111) ASP for q < 0.125Å and shows signs of confinement for q > 0.125
Å. The main result of the present work is the fact that the geometry of the surface turns
out to have a significant effect on the ASP dispersion of the Au(455) surface. I suggest
that this is due to the nature of the ASP excitation in complex surfaces in which the
Shockley state is split into subbands: in such systems intrasubband and intersubband
plasmons may coexist. I have shown that for the applications where one is interested
in a uniform plasmon propagation velocity one should consider a region of small values
of q (q < 0.125 Å−1 for the Au(455) surface), as the surface geometry does not have a
significant impact on the ASP dispersion in this region. In other cases however, when
one will deal with higher momentum transfer values, a special attention is required, as
the ASP may be confined and will not have a linear dispersion. Thus one might have to
consider to make a dedicated material design aimed at the optimization of the surface
geometry and its properties using ab initio methods.

Due to the fact that in the experiments one cannot study the Au(455) surface which
undergoes strong reconstruction the study performed in this chapter is mainly academical.
Nevertheless, I have shown that indeed, on vicinal surfaces where the Shockley surface
state is observed, the ASP can be seen in the EEL spectrum. More importantly, this
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study has shown the powerfulness of the Liouville-Lanczos approach when it comes to
the simulations of large systems that would be unfeasible with any other state-of-the art
method. In the future it will be possible not just to perform a full ab initio study of
the ASP of the Au(788) surface but also to simulate and study EEL spectra of ASP of
complex nanostructures, i.e. nanowires on vicinal surfaces. Such calculations will allow to
use a first-principles approach to the material design for plasmonic applications, allowing
to make more accurate predictions than simplified models before conducting any actual
experiments.
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General conclusions and perspectives

This thesis has been devoted to the ab initio study of plasmons and surface states of gold
surfaces and to understand the role of spin-orbit coupling (SOC) and of surface geometry.
I used density functional theory (DFT) [40, 41] and a recently developed Liouville-Lanczos
approach [21, 22, 23, 24, 25, 26] to time dependent density functional theory (TDDFT)
that allows one to compute EEL spectra for periodic systems in a very effective manner,
that was generalized to the full relativistic ultrasoft pseudopotential scheme in this work.

I have conducted a thorough study of the surface states and resonances on the three
Au(111) vicinal surfaces: Au(322), Au(455) and Au(788). I have shown that despite
the challenges introduced due to the surface structure (big unit cell and band structure
refolding), the surface state of the vicinal surfaces can be studied using the ab initio
DFT approach. First, I have discussed in details how the band structure refolds for
vicinal surfaces and how the projected bulk band structure (PBS) can be understood.
Then I have computed the surface band structures for the Au(322), Au(455) and Au(788)
surfaces identifying for each surface the Shockley surface states and surface resonances
through the study of the planar averages of the charge density and projections of the
surface state wavefunctions onto the atomic orbitals. The latter allowed to unambiguously
conclude that all of the identified surface states and resonances are derived from the
Shockley state of the flat Au(111) surface. Using the 1D Kronig-Penney model I have fitted
the surface state dispersion and compared the fit parameters with those available from
previous experimental works, finding a remarkable agreement. Finally I have proposed a
way to distinguish between the terrace modulated and average surface modulated state
and successfully used the criterion for the surface resonance of Au(322) and Shockley state
of Au(455) and Au(788).

In collaboration with Andrea Dal Corso I have made a generalization of the Liouville-
Lanczos (LL) approach to TDDFPT to the full relativistic ultrasoft pseudopotential
scheme. The LL approach was already superior in terms of performance to the traditional
TDDFT approach based on the solution of the Dyson-like equation for susceptibility. The
use of ultrasoft pseudopotentials allows to reduce the number of plane waves needed in the
calculations and thus to further improve the LL approach performance. These method-
ological improvements allow to perform very accurate EEL spectra simulations for systems
of unprecedented size that in the past were considered unfeasible from the computational
point of view.

I have thoroughly studied EEL spectra of bulk Au for different values of transferred
momentum with and without SOC. I have re-examined the low energy (<15 eV) EEL
spectrum and shown that plasmon signatures in EEL spectra of Au are more complex

115



116 CHAPTER 8. CONCLUSIONS

that previously believed as it contains a peak of the unscreened Drude plasmon. I have
then shown that while the SOC does not change EEL spectrum of bulk Au drastically, it
does improve the overall agreement with experimental results, in particular with respect
to the unscreened Drude plasmon. Finally I have shown that the effect of SOC becomes
progressively smaller with increasing value of the transferred momentum and, eventually,
the EEL spectrum calculated with SOC practically coincides with the spectrum calculated
without SOC.

I have also studied the EEL spectrum of the Au(111) surface and acoustic surface
plasmon (ASP) dispersion of Au(111) as well as the role of SOC. I have shown that
indeed, the major part of the surface EEL spectrum is derived from the EEL spectrum
of bulk. Thus, the inclusion of SOC in the EEL spectrum calculations for the Au(111)
surface leads to changes in the spectrum that are similar to the bulk case. I have then
studied the ASP dispersion of the Au(111) surface with and without SOC and compared to
the previous experimental and ab initio results obtained without SOC. I have shown that
SOC does not significantly modify the ASP peak, neither its position nor its intensity but,
nevertheless, slightly improves the agreement with the experimental results. This finding
disproves the hypothesis that neglecting SOC in the past calculations was the reason of
the discrepancy between experimental and theoretical results and suggests that another
mechanism is responsible for the discrepancy.

I have studied, for the first time, the EEL spectra and ASP of the Au(455) surface. I
have shown that for a vanishing value of the transferred momentum the EEL spectrum
of Au(455) resembles that of the Au(111) surface, with the notable exception of the con-
ventional surface plasmon that is severely damped for the Au(111) surface in LDA and
becomes more pronounced for the Au(455) surface. Finally, I have studied the ASP dis-
persion of the Au(455) surface. I have shown that for a transferred momentum smaller
that 0.125 Å−1 the surface geometry has little to no impact on the ASP dispersion, while
for bigger values of the transferred momentum the energy of the ASP of Au(455) is smaller
than that of the Au(111) surface. I have suggested that it is due to the splitting of the
Shockley state into subbands of the Au(455) surface, as in such a system two types of ASP
excitation would be possible: an intrasubband plasmon similar to the one of the Au(111)
surface that involves an excitation within a single subband, and an intersubbands plasmon
that involves transitions between occupied and unoccupied subbands of the surface state.

The perspectives of this PhD work are numerous.
• Acoustic surface plasmons of the Au(788) surface

In the present work I have studied ASP of the Au(455) surface, that was chosen
as a compromise between the computational cost of the calculations and expected
physical properties. The used method, however, can be readily applied to the more
realistic Au(788) surface that would allow a direct comparison with experimental
results [16]. Tests on the Au(788) surface have shown that such calculations are
feasible.
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• Surface state of complex surfaces
In my thesis I have decisively demonstrated that with the use of DFT it is possible
to accurately predict and characterize the Shockley surface state on vicinal surfaces
of Au(111). The next step would then be a characterization of the surface states
of even more complex structures, i.e. nanowires on vicinal surfaces or surfaces with
adsorbants that might prove interesting for future plasmonic applications.

• Material design
One of the most challenging part of the design of materials with desired properties
is the high cost of the experiments and the long time required to perform numerous
experiments, thus theoretical approaches are often used in order to narrow down the
list of possible candidates that will be used in the actual experiments. The Liouville-
Lanczos approach has the twofold advantage compare to more traditional TDDFT
methods in this aspect. On the one hand, due to the high speed of the calculations,
it can be used in high-throughput studies, where hundreds or thousands of materials
should be studied in a routine manner. On the other hand, due to its unprecedented
performance it can be used to study systems that contain hundreds of atoms that
were deemed unfeasible before [16].

• The Liouville-Lanczos approach
One of the important achievements of my PhD was an extension of the Liouville-
Lanczos approach to the full relativistic ultrasoft pseudopotential scheme. This
approach can be considered to be the next-generation method and thus further
developments should be done. Namely, TDDFPT+U approach, calculations with
hybrid functionals for strongly correlated materials and non-linear response for plas-
monic applications beyond the linear order.
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Appendix A

EEL spectra convergence

A.1 Pseudopotential.
The most common practice for gold and other noble metals is to use pseudopotential
with 11 valence electron - 6s1 and semi-core 5d10 for the case of Au: it provides enough
accuracy for many applications and does not require as many computational resources as
pseudopotentials that include more core or semi-core electrons in the valence region. In my
studies of EEL spectra and ASP I have tested several types of pseudopotentials comparing
the results of EEL spectrum calculations for bulk Au with previous full potential linearized
augmented plane-wave (FP-LAPW) calculations [52] that have a good agreement with
EELS experiments [57]. I have found that the best agreement with FP-LAPW calculations
is reached when the optimized norm-conserving pseudopotential [82, 83] with 19 valence
electrons configuration 5s25p65d106s1 is used (see Fig. A.1).

EEL spectra calculated with pseudopotential that contain 11 electrons in the valence
region agrees well with FP-LAPW calculations (and with 19 electrons pseudopotential)
for E<15eV (see Fig. A.1(b)), while for E>15eV peaks in loss spectrum are blue-shifted by
1-2 eV. I have verified that both LDA and GGA exchange-correlation functional yield the
same EEL spectrum if the same lattice constant is used, however for Au theoretical lattice
constant obtained with LDA agrees much better than lattice constant obtained with GGA.
As my main goal was to study plasmons, specifically acoustic surface plasmons that are
found in a low energy part of EEL spectra (E<5 eV) I have decided to use LDA ultrasoft
pseudopotential from pslibrary 1.0.0 [84] with 11 electrons in the valence region of the
pseudopotential.
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Figure A.1: Bulk Au EEL spectra computed with (a) the pseudopotential with 19 elec-
trons in the valence region and previous FP-LAPW calculations [52] (b) the pseudopo-
tential with 11 electrons [84] in the valence region that was used in this work and the
pseudopotential with 19 electrons in the valence region.
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A.2 Convergence of the EEL spectrum with respect
to the vacuum size

Throughout my whole PhD I have been using a slab-vacuum supercell approach in order
to simulate the semi-infinite surface. Thus it is important to use a vacuum of the size that
would be enough to decouple the slabs in the neighboring unit cells. In order to determine
the adequate vacuum size I have performed a series of tests for the Ag(111) surface and
the Au(111) surface. In the Fig. A.2 I report the EEL spectra convergence with respect
to the vacuum for the Ag(111) surface at in-plane q = 0.017Å−1. As one can see the full
convergence is achieved for value of vacuum between 8 nm and 16 nm that is a quite large
value. I note, however that the value of q used is tests was very small, and since long-
ranged interactions scale as ∼ q−1 it implies strong slab-to-slab long-ranged interaction.
On the other hand in my work I do not use such a small value of q. In Fig. A.3 I report the
Au(111) surface EEL spectra convergence with respect to the vacuum for three values of
q: 0.026 Å−1, 0.0523 Å−1, 0.125 Å−1. As one can see, for the smallest q = 0.026 Å−1 the
convergence is indeed slow and a thick vacuum layer is required to decouple neighboring
unit cells. However the smaller value of the transferred momentum I have used in my
work is q = 0.0523 Å−1 - already for this value the spectra for the 3 nm and 5 nm of
vacuum differ only in the intensity for E<25 eV, while for the bigger q = 0.125 Å−1 all
three spectra are identical. Thus one can conclude that the vacuum of 3 nm and 5 nm
that I have used throughout this work is sufficient.
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Figure A.2: Ag(111) EEL spectrum calculated using different size of vacuum for the 16
layers slab.
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Figure A.3: Au(111) EEL spectrum calculated using different size of vacuum for the 21
layers slab and using three different values of in-plane q: (a) 0.026 Å−1, (b) 0.0523 Å−1,(c)
0.125 Å−1
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Figure A.3: (continued) Au(111) EEL spectrum calculated using different size of vacuum
for the 21 layers slab and using three different values of in-plane q: (a) 0.026 Å−1, (b)
0.0523 Å−1,(c) 0.125 Å−1
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Résumé : Cette thèse de doctorat est dédiée
à l’étude, avec des méthodes de calcul ab initio,
des plasmons de surface et des états de surface
de surfaces d’or, plates ou vicinales, par la simu-
lation numérique de spectres de perte d’énergie
électronique (EEL) au moyen de la théorie de la fonc-
tionnelle de la densité (DFT) et de la théorie de per-
turbation de la fonctionnelle de la densité dépendant
du temps (TDDFPT). L’influence du couplage spin-
orbite (CSO) et celle de la géométrie de la surface
ont été étudiées. J’ai réalisé des développements
méthodologiques pour la TDDFPT avec CSO couplé
à l’emploi de pseudopotentiels ultradoux, qui ont per-
mis l’implémentation pratique de cette approche dans
les algorithmes de Liouville-Lanczos et de Sternhei-
mer. J’ai utilisé ces approches qui m’ont permis de
traiter des systèmes à plusieurs centaines d’atomes.
J’ai montré que l’inclusion du CSO a un effet petit
mais détectable sur le spectre EEL et le pic de plas-
mon, donnant un meilleur accord avec l’expérience
à q = 0. J’ai trouvé que la dispersion du plas-
mon acoustique de surface (PAS) de Au (111) est
légèrement modifiée par le CSO. Pour étudier les

effets de géométrie, j’ai étudié les surfaces vici-
nales (322), (455) et (788) de l’or. J’ai mené l’étude
théorique des états électroniques de surface, et ana-
lysé l’évolution de l’état de surface de Shockley entre
la surface plate Au(111) et les surfaces ayant des
marches dont les terrasses avaient différentes lar-
geurs. J’ai montré la transition d’un état de surface
résonant pour Au(322) à un état localisé pour Au(455)
et pour Au(788), ainsi que le passage d’un état 2D
étendu à travers la marche pour Au(322) à un état
quasi-1D confiné dans la terrasse de la marche pour
Au(455) et pour Au(788). Ces résultats sont en ac-
cord avec l’expérience, et avec ceux du modèle de
potentiel périodique de Kronig-Penney. J’ai calculé le
spectre EELS pour la surface d’or (455) et identifié
la signature du plasmon acoustique de surface. J’ai
montré que, pour un moment transféré perpendicu-
laire à la marche de la surface, la dispersion du PAS
n’est pas modifiée par rapport à celle du PAS de la
surface plate Au(111) pour q < 0.125 Å−1. Cepen-
dant, pour q > 0.125 Å−1le pic du PAS a une énergie
plus basse que celle du PAS de Au(111), montrant la
signature du confinement du PAS.

Title : Ab initio study of electronic surface states and plasmons of gold: role of the spin-orbit coupling and
surface geometry.
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Abstract : The PhD thesis is devoted to the ab
initio study of surface plasmons and surface states
of flat and vicinal surfaces of Au through the si-
mulation of electron energy loss (EEL) spectra by
means of the density functional theory (DFT) and
the time-dependent density functional perturbation
theory (TDDFPT). The influence of the spin-orbit cou-
pling (SOC) and of the surface geometry has been
investigated. I have made methodological develop-
ments for TDDFPT with SOC in the ultrasoft pseu-
dopotential scheme that led to the implementation of
SOC in the Liouville-Lanczos and Sternheimer ap-
proaches that allowed me to model systems with hun-
dreds of atoms. I have demonstrated that SOC has
a small but noticeable effect on the Au EEL spec-
trum and plasmon peak, bringing the calculated spec-
trum into a better agreement with experimental re-
sults at q = 0. I have observed that the disper-
sion of the acoustic surface plasmon (ASP) on the
Au(111) surface is slightly modified by SOC.To inves-
tigate the effect of geometry I have studied the vici-
nal (322), (455) and (788) surfaces of Au. In particular

I have performed the theoretical study of the surface
states, analyzing the evolution of the Shockley surface
state from the flat Au(111) surface towards the sur-
faces with terraces of different width. I have shown the
surface-resonance to surface-state transition and the
average-surface-modulated to the terrace-modulated
state transition from (322) to (455) and to (788) sur-
faces, as well as the transition from the extended 2D
state to the quasi-1D state confined within the terrace.
These results are in agreement with experiments and
results obtained with the Kronig-Penney periodic po-
tential model. I have performed the EEL spectrum cal-
culations for the Au(455) surface and identified signa-
tures of the ASP in these spectra, showing that for the
case of the transferred electron wavevector momen-
tum perpendicular to the step, the ASP dispersion is
not changed with respect to the ASP dispersion of the
Au(111) surface for q < 0.125 Å−1. For q > 0.125 Å−1,
however, the ASP peak has a lower energy compa-
red to the ASP peak of the Au(111) surface, showing
signs of the ASP confinement.
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