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Abstract

The goal of this thesis is to develop deep learning approaches to model and analyse 3D shapes.
Progress in this field could democratize artistic creation of 3D assets which currently requires
time and expert skills with technical software. We focus on the design of deep learning solutions
for two particular tasks, key to many 3D modeling applications: single-view reconstruction and
shape matching.

A single-view reconstruction (SVR) method takes as input a single image and predicts a 3D
model of the physical world which produced that image. SVR dates back to the early days of
computer vision. In particular, in the 1960s, Lawrence G. Roberts proposed to align simple 3D
primitives to an input image making the assumption that the physical world is made of simple
geometric shapes like cuboids. Another approach proposed by Berthold Horn in the 1970s is to
decompose the input image in intrinsic images and use those to predict the depth of every input
pixel. Since several configurations of shapes, texture and illumination can explain the same
image, both approaches need to make assumptions on the distribution of textures and 3D shapes
to resolve the ambiguity. In this thesis, we learn these assumptions from large-scale datasets
instead of manually designing them. Learning SVR also allows to reconstruct complete 3D
models, including parts which are not visible in the input image.

Shape matching aims at finding correspondences between 3D objects. Solving this task
requires both a local and global understanding of 3D shapes which is hard to achieve. We
propose to train neural networks on large-scale datasets to solve this task and capture knowledge
implicitly through their internal parameters. Shape matching supports many 3D modeling
applications such as attribute transfer, automatic rigging for animation, or mesh editing.

The first technical contribution of this thesis is a new parametric representation of 3D
surfaces which we model using neural networks. The choice of data representation is a critical
aspect of any 3D reconstruction algorithm. Until recently, most of the approaches in deep 3D
model generation were predicting volumetric voxel grids or point clouds, which are discrete
representations. Instead, we present an alternative approach that predicts a parametric surface
deformation i.e. a mapping from a template to a target geometry. To demonstrate the benefits of
such a representation, we train a deep encoder-decoder for single-view reconstruction using our
new representation. Our approach, dubbed AtlasNet, is the first deep single-view reconstruction
approach able to reconstruct meshes from images without relying on an independent post-
processing. And it can perform such a reconstruction at arbitrary resolution without memory
issues. A more detailed analysis of AtlasNet reveals it also generalizes better to categories it
has not been trained on than other deep 3D generation approaches.
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Our second main contribution is a novel shape matching approach based purely on recon-
struction via deformations. We show that the quality of the shape reconstructions is critical to
obtain good correspondences, and therefore introduce a test-time optimization scheme to refine
the learned deformations. For humans and other deformable shape categories deviating by a
near-isometry, our approach can leverage a shape template and isometric regularization of the
surface deformations. As category exhibiting non-isometric variations, such as chairs, do not
have a clear template, we also learn how to deform any shape into any other and leverage cycle-
consistency constraints to learn meaningful correspondences. Our matching-by-reconstruction
strategy operates directly on point clouds, is robust to many types of perturbations, and outper-
formed the state of the art by 15% on dense matching of real human scans.
Keywords: deep learning, surface generation, single-view reconstruction, shape matching



Résumé

L’objectif de cette thèse est de développer des approches d’apprentissage profond pour modéli-
ser et analyser les formes 3D. Les progrès dans ce domaine pourraient démocratiser la création
artistique de modèles 3D, actuellement réservée à quelques experts du domaine et couteuse
en temps. En particulier, nous nous concentrons sur deux tâches clefs pour la modélisation
3D : reconstruire un modèle 3D à partir d’une seule image et mettre des modèles 3D en
correspondance.

Une méthode de reconstruction 3D à partir d’une seule image (SVR) est un algorithme qui
prend comme entrée une seule image et prédit un modèle 3D du monde physique qui a produit
cette image. Ce problème remonte aux premiers jours de la vision par ordinateur. Étant donné
que plusieurs configurations de formes, de textures et d’éclairage peuvent expliquer la même
image il faut formuler des hypothèses sur la distribution des textures et des formes 3D pour
résoudre cette ambiguïté. Dans cette thèse, nous apprenons ces hypothèses directement à partir
de grandes bases de données, au lieu de les concevoir manuellement ad hoc. Les méthodes
d’apprentissage pour la SVR nous permettent aussi d’effectuer une reconstruction complète et
réaliste de l’objet, y compris des parties qui ne sont pas visibles dans l’image d’entrée.

La mise en correspondance de formes vise à établir des correspondances entre des objets
3D. Résoudre cette tâche nécessite à la fois une compréhension locale et globale des formes
3D qui est difficile à obtenir. Pour cela, nous proposons d’entrainer des réseaux neuronaux
sur de grands jeux de données pour apprendre ces connaissances implicitement. La mise en
correspondance de formes a de nombreuses applications en modélisation 3D telles que le
transfert d’attribut, le gréement automatique pour l’animation ou l’édition de maillage.

La première contribution technique de cette thèse est une nouvelle représentation para-
métrique des surfaces 3D, que nous modélisons avec des réseaux neuronaux. Le choix de la
représentation des données est un aspect critique de tout algorithme de reconstruction 3D.
Jusqu’à récemment, la plupart des approches profondes en génération 3D prédisaient des grilles
volumétriques de voxel ou des nuages de points, qui sont des représentations discrètes. Au lieu
de cela, nous présentons une approche qui prédit une déformation paramétrique de surface,
c’est-à-dire une déformation d’un modèle source vers une forme objectif. Pour démontrer
les avantages de cette nouvelle représentation, nous l’utilisons pour la reconstruction 3D à
partir d’une seule image. Notre approche, baptisée AtlasNet, est la première approche profonde
de SVR capable de reconstruire des maillages à partir d’images sans s’appuyer sur un post-
traitement, et peut le faire à une résolution arbitraire sans problèmes de mémoire. Une analyse
plus détaillée d’AtlasNet révèle qu’il généralise également mieux que les autres approches par
apprentissage aux catégories sur lesquelles il n’a pas été entrainé.
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Notre deuxième contribution est une nouvelle approche de correspondance de formes
entièrement basée sur des reconstructions par déformation de surface. Nous montrons que la
qualité des reconstructions 3D est essentielle pour obtenir de bonnes correspondances. Nous
introduisons donc une optimisation au moment de l’inférence pour affiner les déformations
apprises. Pour les humains et d’autres catégories de formes déformables qui différent d’une
quasi-isométrie, notre approche peut tirer parti d’un modèle de catégorie et d’une régularisation
des déformations vers l’isométrie. Comme les catégories présentant des variations non isomé-
triques, telles que les chaises, n’ont pas de modèle clair, nous apprenons à déformer n’importe
quelle forme en n’importe quelle autre et tirons parti des contraintes de cohérence du cycle
pour apprendre des correspondances qui respectent la sémantique des objets. Notre approche
de correspondance de formes fonctionne directement sur les nuages de points, elle est robuste à
de nombreux types de perturbations et a surpassé l’état de l’art de 15% sur des scans d’humains
réels.
Mots clés : apprentissage profond, génération de surface, reconstruction à partir d’une seule
image, correspondance de formes
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Introduction



2 Introduction

1.1 Goals

The goal of this thesis is to develop deep learning methods to model and analyse 3D shapes
with a focus on two 3D computer vision tasks: (i) 3D shape reconstruction from a single image
(ii) and correspondence estimation between 3D models. These two tasks are illustrated in
Figure 1.1.

Single-view reconstruction aims at reconstructing the full 3D geometry of an object or a
scene from an image. For example, in Figure 1.1, a 3D mesh is generated from a single 2D
RGB image. Note that we try to hallucinate the unseen parts in the image, which makes the
problem very hard. In contrast with early approaches based on optimization and hand-crafted
priors, the goal of this thesis is to develop a deep learning solution for this task and learn
data-driven priors from large-scale datasets. In particular, we focus on the problem of finding a
3D data representation that is compatible with a deep learning approach, and can capture 3D
shape information at a high resolution. In chapter 3, we introduce the first deep method that
reconstructs a mesh out of a single image.

3D shape matching aims at estimating point-to-point correspondences between two 3D
models. It is a long-standing challenge of computational geometry. Shape matching has a wide
range of applications such as 3D scan alignment, attribute transfer between shapes, and shape
interpolation. In contrast to classical methods that solve this problem independently on each
pair of shapes, the goal of this thesis is to train deep learning solutions on large-scale datasets
to solve the shape matching problem jointly on many pairs. In chapter 4, we introduce a new
approach to solve this tasks by reconstructing shapes via their deformation from a common
template. Figure 1.1 shows a visualization of the shape matching problem, tackled with our
approach on a human pair. Our approach improves state-of-the-art performances on standards
benchmarks. In chapter 5, we lift the requirement for a common template and extend the
method to all categories of objects, even those exhibiting high intra-class variations like the
chair category.

1.2 Motivations

Single-image reconstruction and 3D shape matching are motivated by a wide range of industrial
applications spanning 3D modeling, augmented reality and virtual reality, scene understanding,
image understanding, and robotics. Figure 1.2 and figure 1.3 illustrates these applications.
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(a) Single-view shape reconstruction: Given an input image, our approach presented in Chapter 3
creates a parametric 3D polygonal mesh. Note how the unseen parts are correctly hallucinated.

(b) Shape Matching: Given two input shapes without correspondences (left) , our approach presented in
Chapter 4 establishes dense correspondences between them (right). Correspondences are suggested
by color.

Figure 1.1 The two different tasks addressed in this thesis : single-view shape reconstruction
and matching. Animated figures, best seen in Acrobat Reader.

3D modeling. Our main motivation for tackling shape matching and single-view reconstruc-
tion is to support digital artists with next-generation tools to author 3D content. 3D creation is
hard, time-consuming and requires a lot of expertise. Similar to a painting that requires many
layers of paint, many sub-tasks must be completed to build a 3D model. Take for instance 3D
character design. The artist starts with coarse geometry creation, then takes many local passes
to refine it with wrinkles, veins, skin hair, skin color and finally ends with rigging. Throughout
the creation process, 3D artists rely on their skills and a palette of local editing tools, applying
one stroke at a time. Instead, efficient shape matching and shape generation algorithms would
enable higher level controls in order to author 3D assets.

Ideally, developing deep learning approaches for shape matching and single-view recon-
struction leads to three high-level tools illustrated in Figure 1.2:

• Warm-start modeling tools that project coarse user input to the space of “plausible” 3D
shapes. Figure 1.1 shows a single-view reconstruction example and Figure 1.2a shows an
example of adding textures automatically to a model.
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(a) Mesh parameterization. We establish continuous bijections between a 3D
surface (left) and optimized planar patches (middle). This is particularly useful
to apply texture on a 3D object (right).

(b) Signal transfer accross arbitrary shapes. We transfer a toy checkerboard
signal from a source object (left) to a target untextured object by deforming the
source in the target (middle). Colors suggest correspondences.

(c) Shape Morphing We interpolate between two real chairs, as a way to continu-
ously explore the collection of chairs. Click here for the video.

Figure 1.2 Applications in this thesis useful for 3D modelling.

https://www.youtube.com/watch?v=kp59GLjZUWM
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• refinement tools that support the user with high-level controls to customize existing
shapes using attribute transfer based on correspondences. For instance, Figure 1.2b
shows transfer of textures between two real shapes.

• exploration tools that enable 3D artists to search the space of realistic shapes a recon-
struction algorithm can produce. See for instance in Figure 1.2c a shape interpolation.

Smart image editing. Some image editions, like viewpoint modification or object inser-
tion/removal, requires a good 3D understanding of the scene depicted in the image. Indeed,
during a small view-point modification, the 2D projection of a frontal object evolves differently
from the 2D projection of a background object, which tend to vary less. It also involves difficult
visibility issues : parts of the objects, originally unseen, appear in the new viewpoint, while
others become occluded. Getting a plausible 3D representation from an image is thus a very
useful proxy task for image editing since such a 3D model captures all information of depth and
visibility from any viewpoint. For example, Mildenhall et al. (2020) propose an editing tool to
change the camera view-point a posteriori and hallucinate unseen parts at a high resolution
using 3D reconstruction techniques (see Figure 1.3b).

Shape generation and matching could in particular be used for:

• Object manipulation, to realistically rotate an object in an image by respecting illumi-
nation changes and resolving the new visibility issues.

• Object insertion/removal, to add or remove an object from an image by respecting
illumination changes and resolving the new visibility issues.

Augmented Reality. Augmented Reality (AR) is an emerging field with huge prospective
impact. One of its form boils down to building a digital 3D model of the world around us and
"augmenting" it by inserting additional digital object (see Figure 1.3c). Key to this task is the
ability to recreate a 3D model of the environment in real-time, with methods that are robust
to the sensor’s noise. In that regard, current results in shape generation are already promising
and show that we can generate coarse 3D geometry from images in milliseconds Groueix et al.
(2018a); Häne et al. (2017); Mescheder et al. (2019); Park et al. (2019a). Recently, Gkioxari
et al. (2019) showcased a joint detection/reconstruction pipeline that reconstructs a full 3D
scene with a separate 3D primitive for each object. Another important aspect of AR is the
ability to change the appearance of existing object, by applying digital paint on a physical
object. The key to achieve this is to put the reconstructed object in dense correspondence
with another one and transfer appearance attributes between them. Generation and matching
methods could be used to design:
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(a) 3D modelling: ZBRUSH gallery, Ana
de Armas. High-quality 3D modelling
takes time and expertise, for lack of
high-level smart control tools.

(b) Smart Image Editing: Mildenhall
et al. (2020) reconstruct a 3D scene
from images. A user can then explore
novel view-points a posteriori.

(c) Augmented Reality: Trying new fur-
niture configurations at home before
buying.a

ahttp://www.design-confidential.
com/5037-2/

(d) Virtual Reality 3D reconstruction by
CyArk prior to a 2016 damaging earth-
quake in Bagan, Myanmar. Built dur-
ing the 10th century.

(e) Robotics: Application to autonomous
driving. Ideally, all moving objects are
detected by the 3D LIDAR. a

ahttps://www.popsci.
com/cars/article/2013-09/
google-self-driving-car/

(f) Smart humans controls: Using ac-
tion detection, Ayotle turn physical ob-
jects into a tactile interfaces. a

ahttp://www.influencia.net/
fr/actualites/in,innovations,
anytouch-monde-devient-tactile,
2660.html

Figure 1.3 Industrial applications of this thesis. Animated figure best viewed in Acrobat
Reader.

http://pixologic.com/zbrush/gallery/
http://pixologic.com/zbrush/gallery/
http://www.design-confidential.com/5037-2/
http://www.design-confidential.com/5037-2/
https://www.cyark.org/
https://www.popsci.com/cars/article/2013-09/google-self-driving-car/
https://www.popsci.com/cars/article/2013-09/google-self-driving-car/
https://www.popsci.com/cars/article/2013-09/google-self-driving-car/
http://www.influencia.net/fr/actualites/in,innovations,anytouch-monde-devient-tactile,2660.html
http://www.influencia.net/fr/actualites/in,innovations,anytouch-monde-devient-tactile,2660.html
http://www.influencia.net/fr/actualites/in,innovations,anytouch-monde-devient-tactile,2660.html
http://www.influencia.net/fr/actualites/in,innovations,anytouch-monde-devient-tactile,2660.html
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• A style modification tool modifying the color, texture pattern of any furniture from a
large online database of exemplar furniture’s without modifying the geometry of the
furniture. For instance in Figure 1.2a, a new texture is applied automatically on a 3D
object.

• A content modification tool modifying the geometry of objects such as a piece of
furniture using a large online database of exemplar furniture’s without modifying its
texture.

Virtual Reality. Creating fully immersive worlds has strong connections to the previously
mentioned field of 3D modeling. One of the particular interest of 3D-generation-from-
photographs methods in Virtual Reality (VR) is the visualization of historical scenes that
no longer exists in the physical world. As shown in Figure 1.3d, in Bagan, Myanmar, the start-
up CyArk used multi-view reconstruction (MVR) methods to make a digital 3D reconstruction
of the site before its partial destruction in the wakes of a 2016 earth-quake. More broadly,
3D reconstructions methods (MVR and SVR) could help archive our previous architectural
heritage and change the way we engage with historical data.

Robotics. To make robots grasp objects, Corona et al. (2020) propose to first estimate the
3D shape of an object, and then plan a grasping motion. Their approach use our 3D shape
representation, presented in Chapter 3. This idea also can also work for autonomous cars,
first reconstructing their environment from their sensors (LIDARs) and then making a driving
decision (see Figure1.3e). Note that in this case, the robot is equipped with more than a
single RGB sensor to reconstruct 3D shapes. In this thesis, we consider the single-image
reconstruction scenario.

Smart human controls. Putting humans and objects in correspondences enables new appli-
cations in human/machine interaction, as shown in Figure 1.3f. Think for instance of a human
clapping his hands to light a room. More broadly, any object, regardless of its size or its surface,
could be made tactile and interactive1. Correspondence results for humans using a method
presented in this are shown in Figure 1.1b, and detailed in Chapter 4.

1Ayotle

https://www.cyark.org/
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1.3 Approach and Context

Single image 3D reconstruction and shape matching are complex tasks: a solution requires the
answer to thousands of sub-questions. Imagine trying to reconstruct a photographed room in
3D. "Which objects is in the room?", "how are they arranged spatially?", "Which are visible
parts and which parts must be hallucinated?", "Which priors can I use to estimate the occluded
parts?". Early approaches tried to handcraft explicit priors, and give explicit answers to all
these questions.

Instead, the central idea of this thesis is to learn priors for these tasks with deep learning
from large-scale data collections.

We know from research in image generation that such an approach can be extremely
powerful. Deep networks for image generation have progressed from low-resolution blurry
image generation to high-quality detailed image generation Brock et al. (2019) in a short 5-year
period. It has unleashed a tide of new digital art2. Similarly in 3D, we propose to exploit data
to to learn priors for generation and matching and export the deep learning revolution to 3D
creation.

This is a timely effort: more and more data is available that could allow to learn meaningful
priors, and hardware/software solutions to process it keep improving. Scanning a 3D object has
become as easy as opening a mobile app Kolev et al. (2014). Microsoft Kinects enable a user
to easily capture an entire room Newcombe et al. (2011). The collective effort from industries
and artists to build digital models of objects with Computer-aided Design has led to public
libraries with millions of 3D objects: ShapeNet Chang et al. (2015) has over 3 millions models
(see Figure1.4a), the ABC dataset Koch et al. (2019) has a million models. On the other hand,
both academics and industrials like NVIDIA and Google have adapted Graphics Processing
Units (GPU) from their original purpose to perform parallel tensor operations, which helps
process this huge amount of data. In this thesis, GPUs are operated through the Pytorch library.
Pytorch Paszke et al. (2019) is an open source machine learning framework without which we
would still be implementing our first paper. The GPUs used for this thesis, NVIDIA’s Titan X
Pascal (see Figure 1.4b), have 3584 parallel workers operating at 1417MHz.

To sum up, we use deep learning to develop new methods for shape matching and single-
view reconstruction. It can be done at this point in time because data and hardware have become
massively available.

2e.g., Colie Wertz, ship design, Memo Akten, Learning to see: Gloomy Sunday

https://pytorch.org/
https://www.instagram.com/p/By8j0RHB6Q1/
https://vimeo.com/260612034
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(a) Data: ShapeNet 3D object dataset. More
than 51k annotated 3D objects, across 55
categories.

(b) Hardware: 4 NVIDIA Titan X Pascal
GPU Hephaistos is not mentioned in the
acknowledgement but he worked the hard-
est.

Figure 1.4 The backbones of this work: data and hardware.

1.4 Challenges

The first critical challenge we faced to develop deep learning approaches for 3D shape modelling
was to design a suitable representation of 3D shapes. The second challenge we faced was to
find ways to train neural networks with limited 3D annotations.

3D Data Representation for deep 3D generation. The choice of 3D data representation is
a determining factor in most 3D approaches. A specific constraint to deep learning approaches
is that the representation must also be a differentiable function. For instance, though meshes
are widely used to represent 3D shapes, they are hard to generate with neural networks
because properties such as mesh connectivity and number of points are discete. A standard
representation for 3D generation and analysis has yet to be determined. A good representation
should be a differentiable function, that can model fine-geometric details with reasonnable
memory consumption.

Figure 1.5 compares three types of 3D data representation used in deep approaches for
the task of single-image reconstruction. An appealing representation is discetized volumetric
voxel grids since their are the natural extension of pixels in 3D. This allows to easily extend the
successful 2D operators like convolution to 3D. However, this representation is memory-hungry
and cannot capture fine details with current hardware constraints Choy et al. (2016). Another
popular approach is to generate point clouds with neural networks which is memory efficient
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(a) Input Image (b) Voxels (c) Point Cloud (d) Mesh

Figure 1.5 Challenge: 3D Data Representation. Comparison of three types of 3D data
representation on the task of single-view reconstruction. From a 2D RGB image (a),
3D-R2N2 Choy et al. (2016) reconstructs a voxel-based 3D model (b), PointSetGen
Fan et al. (2017) a point cloud based 3D model (c), and our AtlasNet a triangular
mesh (d).

since it models the surface of 3D shape instead of their volume. Point clouds however lack the
connectivity between the points which is useful in many downstream applications and makes
them hard to visualize.

3D Annotations. Deep neural networks training requires a form of supervisory signal. Unfor-
tunately, while 3D data is widely available, an important challenge for shape matching is that
3D correspondences annotations are scarce, expensive and not always well-defined. The task
of single-image reconstruction also lacks large-scale datasets with dense 2D/3D annotations.

An ideal dataset for correspondences would have a large number of scans with varying
shapes and pose. However, manual labeling is extremely expensive for the correspondence
problem. A typical scan such as those used in Chapter 4’s benchmark has about 105 points.
Annotating correspondences points by points a single scan thus takes 28h at the impossible
speed of 1 point / second.

Moreover, correspondence annotations are not always well defined. For a human scan,
non-salient points on the skin are for instance hard to track with high precision through different
poses. This problem is even more clear for categories of object exhibiting high-intra class
variability like the "chair" category. Consider the two chairs in Figure 1.6: where does a point
on the armrest of the deck chair map on the one-legged ball chair?

To generalize across many categories, we need to develop training strategies to learn
generation and matching without point-to-point or pixel-to-point annotations. This is a hard
and important problem: how to teach correspondences to a neural net without showing it
correspondences?
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Figure 1.6 Challenge: 3D correspondence annotations. Two 3d chairs from the
ShapeNet Chang et al. (2015) dataset, used in this thesis. Shape matching an-
notations are not avaible for such data with high topological variations.

1.5 Contributions

To tackle these challenges, we present two main contributions.

A Deep parametric 3D surface representation. We introduce a new 3D model representa-
tion based on deep parametric surface deformations. The key idea is to predict, with
a simple Multi-Layered Perceptron, continuous parametric functions that can deform
a template surface into target surfaces. After training, the neural network encodes a
parametric family of deformation functions, and each shape is represented by one of
these deformations. This deep representation models the surface of 3D shape. It is
memory efficient, and can model fine-grained details. We use our new representation to
introduce the first deep learning approach to direct single-image mesh reconstruction and
to improve the state-of-the-art in shape matching.

Shape matching by deep deformation. We relate shape matching with 3D reconstruction
by an analysis-by-synthesis strategy. We propose to densely match 3D models by
reconstructing them via deep deformations. Key to the success of our matching-by-
deformation approach is to learn accurate and semantically meaningful deformations. In
the absence of annotated data, we use an unsupervised reconstruction loss, the Chamfer
distance, to learn accurate reconstruction. For shape categories that deviate by near-
isometries such as human, our approach leverage a shape template and we regularize
our deformation towards isometry. For other categories exhibiting high intra-class
topological variability such as chairs, we learn deformations of any shape into any other
and enforce cycle-consistency constraints to learn meaningful correspondences. Our
approach operates directly on raw point clouds. It is robust to many types of perturbation
and outperformed the state of the art by 15% on human scans.



12 Introduction

1.6 Thesis outline

This thesis is organized as follows:

Chapter 2: Related Work. We start by providing an overview of prior methods performing
single-image 3D reconstruction and shape matching. We first discuss classic approaches,
then deep-approaches leveraging data collections, most related to this thesis.

Chapter 3: AtlasNet. This chapter introduces the first contribution of this thesis: our new
3D data representation, based on parametric surface deformations. We first explain how
deep neural networks can parameterize surface deformations. We then give theoreti-
cal guaranties and explain how our new representation is related to the mathematical
definition of a surface. We empirically compare our representation with other 3D repre-
sentations on the task of single-view reconstruction on the ShapeNet benchmark Chang
et al. (2015). In particular, we show that our new 3D representation can generalize better
to categories it has not been trained on. We also provide results showing its potential for
other applications, such as morphing, parametrization, super-resolution, matching, and
co-segmentation.

Chapter 4: 3D-CODED. We develop the idea of modelling deformations with deep networks
to design a new approach to shape matching. Our approach follows a analysis-by-
synthesis strategy: we show how to estimate state-of-the-art dense correspondences
between human scans by reconstructing them via deep deformation of a common template.
We provide evidence that the quality of the reconstructions are critical to get accurate
correspondences. Based on this insight, we introduce an optimization scheme to refine the
deformations predicted by the neural network. We experimentally compare against other
approaches on the FAUST benchmark Bogo et al. (2014) and show that our matching-
by-reconstruction approach improves on state-of-the-art, and is robust to many types of
perturbations.

Chapter 5: Cycle-Consistent Deformations. We present a template-free method to perform
shape matching in diverse shape collections, in the absence of annotations. Our approach
builds on the success of our matching-by-reconstruction strategy. In the absence of a
common template for classes exhibiting a large degree of topological variations, we pro-
pose to learn deformations of any shape in any other. To learn semantically meaningful
deformations, we propose to use cycle-consistency to define a notion of good correspon-
dences in groups of objects and use it as a supervisory signal to train our networks. We
experimentally compare against other approaches on the task of segmentation transfer
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across shapes from ShapeNet. We show that our approach is competitive with state-of-
the-art methods when annotated training data is readily available, but outperforms them
by a large margin when not much data is annotated.

Chapter 6: Conclusion. This chapter reflects on the contributions of the thesis and suggests
on directions of future work.
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Figure 1.7 Thesis timeline from 2016 to 2020.

1.7 Publication List

Figure 1.7 summarises the highlights of this thesis. Three papers are presented in the
manuscript.

• Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan Russell, and Mathieu
Aubry. (2018) AtlasNet: A Papier-Mache Approach to Learning 3D Surface Generation.
In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

• Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan Russell, and Mathieu
Aubry. (2018) 3D-CODED : 3D Correspondences by Deep Deformation. In Proceedings
of the European Conference on Computer Vision (ECCV).

• Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan Russell, and Mathieu
Aubry. (2019) Unsupervised cycle-consistent deformation for shape matching. Computer
Graphics Forum (SGP).

We open-sourced the code corresponding to the papers 3, incorporated AtlasNet in Kaolin 4,
a python library designed to accelerate 3D Deep Learning Research by Jatavallabhula et al.
(2019) and created webpages 5 for each project with additional visualizations of the results of
the thesis. The webpages received overall around 12k unique visitors while the various codes
on Github received a total of 800 stars and 110 forks. I received the best poster award for
AtlasNet at the PAISS6 summer school in 2018.

3https://github.com/ThibaultGROUEIX
4https://github.com/NVIDIAGameWorks/kaolin/
5http://imagine.enpc.fr/~groueixt/
6https://project.inria.fr/paiss/home-2018/

https://github.com/NVIDIAGameWorks/kaolin/
https://github.com/ThibaultGROUEIX
https://github.com/NVIDIAGameWorks/kaolin/
http://imagine.enpc.fr/~groueixt/
https://project.inria.fr/paiss/home-2018/
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I also participated in two workshops Adelson and Pentland (1996); Hodan et al. (2018):

• Tomas Hodan and others. (2018) A Summary of the 4th International Workshop on
Recovering 6D Object Pose. In Proceedings of the European Conference on Computer
Vision (ECCV).

• R. M. Dyke and others. (2019) Shape correspondence with isometric and non-isometric
deformations. In Eurographics Workshop on 3D Object Retrieval

During my PhD, I also took part in two other projects which are not discussed in this
manuscript Deprelle et al. (2019); Monnier et al. (2020):

• Theo Deprelle, Thibault Groueix, Matthew Fisher, Vladimir G Kim, Bryan C Russell,
and Mathieu Aubry. (2019) Learning elementary structures for 3D shape generation and
matching. In Advances in Neural Information Processing Systems (Neurips)

• Tom Monnier, Thibault Groueix, and Mathieu Aubry. (2020) Deep Transformation-
Invariant Clustering. In Arxiv.

I presented my work in several research teams, namely BAIR (Berkeley), MILA (LIP6 -
Jussieu), Onera team DTIM, IGN Team Matis, LRI team Tau, Telecom ParisTech team 3D,
Adobe Research, Huawei Research, and Naver Labs Europe.
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This chapter briefly introduces deep learning, then reviews shape matching and single view
reconstruction approaches related to our work.

2.1 Deep Learning

All the algorithms presented in this thesis are deep-learning-based. The thesis assumes that
the reader is familiar with learning and in particular deep learning, and otherwise suggests
Goodfellow et al. (2016) for a good introduction. We call our algorithms deep-learning-based
because they incorporate these 4 key elements: a data collection, a neural network architecture,
an energy function, and an optimization method to minimize the energy with respect to the
parameters of the architecture.

• Data collection. It is the set of all the training samples. In this thesis, we rely on large
public datasets like ShapeNet Chang et al. (2015) and SURREAL Varol et al. (2017).
We use these datasets both in unsupervised frameworks, where we use the raw 3D data
without any annotation, and in a supervised framework where we use annotations such
as 2D renderings or correspondence annotations.

• Neural network architecture. It is a parametric family of differentiable functions.
A common architecture, used in this thesis, is the Multi-layer-Perceptron (MPL) by
Rosenblatt (1958). MPLs are stacks of linear and non-linear functions.

• Energy function. It is a differentiable function, chosen so that its minimum corresponds
to the notion of "success" of the neural net output on the training samples.

• Optimization method. A global optimization is impossible because the function we
want to minimize is in general non-convex. We thus rely on methods doing local
optimization. Deterministic optimisation methods minimizing the energy function with
gradient descent over the full data collection are usually infeasible due to its size. We
thus rely on stochastic local optimization methods. In this thesis we use everywhere
the Pytorch Paszke et al. (2019) implementation of the Adam optimizer Kingma and Ba
(2014) which includes momentum and adaptative learning rates.

We draw our motivation to use deep learning from inspiring successes. Neural networks
have famously outperformed humans at image classification He et al. (2016a); Huang et al.
(2017); Krizhevsky et al. (2012), achieve high-quality image generation Goodfellow et al.
(2014); Karras et al. (2019); Park et al. (2019b). They have also demonstrated super-human
performances at games like Chess, Go Silver et al. (2016, 2018), and Starcraft Vinyals et al.
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(2019). Applied on text data, neural networks translate text to speech van den Oord et al.
(2016), speech to text Graves et al. (2013), and can translate content from one language to
another Vaswani et al. (2017). Overall neural network have pushed the research boundaries in
many fields. This thesis explores how they can be applied to shape matching and single-view
reconstruction.

Autoencoders. Autoencoders are a particular type of neural networks used extensively in
this thesis. Given an input sample, the encoder part of the autoencoder first compress it in
a lower-dimensional latent code. From this latent code, the decoder part of the autoencoder
attempts to reconstruct the input. By extension, we call encoder networks any neural network
that learns a representation from an input signal (not only for reconstruction). In this thesis,
we use a PointNet encoder from Qi et al. (2017a) to extract embeddings from point clouds,
and a ResNet encoder from He et al. (2016b) to encode images. We call decoder network, any
architecture that reconstructs a target from an implicit embedding. In Chapter 3, we learn a
new decoder architecture which outputs deformed surfaces and compare against other types of
decoder outputing point clouds and voxels.

2.2 Shape matching

Shape matching is a long-standing problem in shape analysis. The goal is to find point-to-point
correspondences between two different shapes.

We start by reviewing methods that directly predict dense correspondences via optimization
on two shapes, then we review 3D shape descriptors, and correspondence methods in function
space. Finally, we discuss approaches that solve the correspondence problem jointly on a
collection of shapes, most related to our work.

Note that we simply give an overview of these different types of approaches, an exhaustive
description of all methods is out of the scope of this thesis. For a more detailed survey the
reader can refer to Tam et al. (2013); van Kaick et al. (2011).

Assumptions and shape representation. Throughout the chapter, we consider shapes that
are 2D manifolds embedded in the 3D euclidean space. The length of the shortest curve
between two points on such a 2D manifold is called the geodesic distance. We call "intrinsic"
properties that are fully defined by the geodesic distance. We call "isometric" transformations
that preserve the geodesic distances between any pair of points in a shape.

We seek to estimate correspondences between shape X and shape Y . We assume that X
and Y differ by a near-isometric transformation, except in the Iterative Closest Point method
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where we assume they differ by a rigid transformation. The set of human shapes in different
poses is of particular interest to this thesis. Note that two human shapes indeed differ by a
near-isometric transformations, where the "near" comes from skin elasticity due to muscle
contraction in a specific pose.

Depending of the approach, X and Y can be represented by point clouds, meshes or surfaces.
Both point cloud and meshes are standard 3D data representations. Point clouds can always be
sampled from meshes, and in turn meshes can be recovered from point clouds if they are dense
enough and equipped with normals Kazhdan and Hoppe (2013). A common data source for
meshes are Computer-Aided Design (CAD) models, though CAD models are often unclean
and non-watertight.

Point-cloud based correspondence approaches can work directly on raw 3D scans of a
physical object but cannot leverage shape properties like geodesic distances and curvature.
These properties are useful to develop shape matching algorithms because they are invariant to
isometric transformations.

Reasoning directly on surfaces is often an important step to develop a mesh-based cor-
respondence approach. Geodesic distances, Gaussian curvature and the Laplace-Beltrami
operator are typically first defined on a differentiable surface. The surface being discretized in
a mesh, the operator on the mesh is built to be a good approximation of the operator on the
differentiable surface. In the rest of the chapter, it will always be explicitly stated whether X
and Y are represented by point clouds, meshes or surfaces.

2.2.1 Direct optimization

In this section, we discuss classical methods that compute correspondences by direct optimiza-
tion on two shapes. We first review Iterative Closest Point (ICP), then minimum distorsion
metric approaches. ICP operates under the assumption that the two shapes differ by a rigid de-
formation while minimum distorsion metric tackle the more general problem of near-isometric
deformations.

2.2.1.1 Iterative Closest Point (ICP).

Proposed in the early nineties Besl and McKay (1992); Besl and McKay (1992); Chen and
Medioni (1992), ICP is the base algorithm for rigid alignment of two point clouds. The spirit of
this method is to iteratively find a rigid transformation i.e. a rotation R and a translation T that
deforms the source point cloud X into the target points Y . The iterations stop when a stopping
criterion is met, typically when the reconstruction error no longer diminishes. The pseudo-code
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for the algorithm is described in algorithm 1.

Algorithm 1: Iterative Closest Point
Data: Two point clouds X and Y

1 while Stopping Criterion not met do
2 (1) Match the point in X to the points in Y through nearest neighbors;
3 (2) Find the best rotation R and translation T to apply on X that minimizes the

pairwise distance between the matches with a least square minimization;
4 (3) Apply R and T on X ;

5 end
Result: The set of matches between X and Y , through nearest neighbors.

ICP works on raw point clouds and can generalize to n-dimensional point clouds. However,
it only works if the two input shapes are already roughly aligned. Otherwise, it converges to
a poor local minimum. Though the original ICP can only work if the two shapes differ by a
rigid transformation, it was later extended by Amberg et al. (2007) to non-rigid alignment. The
extension is also iterative in the sense that it alternates between rigid ICP steps and non-rigid
parametric transformations. In chapter 5, we propose a method to train a deep neural network
to deform any shape into any other shape from the same category. The neural network training
is also an iterative process and uses a nearest-neighbor-based energy function, and can thus be
interpreted as a neural ICP.

2.2.1.2 Minimum Distorsion Metric

ICP assumes that two shapes differ by a rigid transformations. The space of rigid transforma-
tions can also be defined as any transformation that preserves the euclidean distance between
pairs of points. Another space that one can consider is the one that preserve geodesic distances
on the shape i.e. isometric transformations. Consider for instance a sheet of paper that someone
is bending: the euclidean distance between the opposite corners vary in 3D but their geodesic
distance remain unchanged.

In the following, we briefly present three important strategies that have been developed
to predict correspondence maps minimizing the deviation from isometry. Elad and Kimmel
(2003) propose to lift each shape into a high dimensional space where euclidean distances
between pairs of high-dimensional points is equal to the geodesic distance between these points,
then apply rigid alignment methods in the high-dimensional space. Mémoli and Sapiro (2005)
generalize this intuition and recast the objective as minimizing the Gromov-Hausdorff Distance.
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Finally, Bronstein et al. (2006b) generalize previous approaches in a geodesic distorsion
minimization framework. We detail those three approaches in the following paragraphs.

Multi Dimensional Scaling (MDS) To minimize the deviation of the correspondence map
from isometry, Elad and Kimmel (2003) propose to embbed each shape independently in
Rn with a transformation φ. φ is optimized such that Euclidean distances in the embedding
space approximates geodesic distances on the shapes. Achieving this simplifies the problem:
instead of searching for the best isometry in the 3D space, we now can look for the best rigid
transformation in a high-dimensional space, with ICP for instance. There are several strategies
to optimize φ. In the original MDS paper, Elad and Kimmel (2003) propose to minimize the
stress function:

stressp(φ) =

(∫∫
x1,x2∈X

(
dX (x1,x2)−||φ(x1) ,φ(x2)||L2

)p
dax1dax2

) 1
p

, (2.1)

where φ is a function from R3 to Rn, x1 and x2 are a pair of points on shape X , dX (x1,x2)

is the geodesic distance between them, dax1 and dax2 are infinitesimal surface elements on
shape X , p is an arbitrary integer (possibly taken as infinity which replaces the integrals by a
maximum).

To find a minimizer of the stress function, Elad and Kimmel (2003) propose a least-squares
method, and Ovsjanikov et al. (2008) use a spectral analysis of the Laplace-Beltrami operator.
Elad and Kimmel (2003) suggest to choose the dimension n of the embedding space as the
smallest integer such that the the optimum of the stress function is below a certain threshold.
Figure 2.1 presents examples of optimized transformation φ on several shapes.

The Gromov-Hausdorff Distance As already mentionned, aligning shapes with MDS is a
2-step process: first find a minimizer of the stress function for each shape X and Y , then align
the embeddings with a rigid transform algorithm (ICP). Instead of a two-step process, Mémoli
and Sapiro (2005) propose to jointly predict transformations for each shape, φX for shape X
and φY for shape Y , and minimize jointly over φX and φY the Hausdorff-distance dH(X ,Y) of
their associated embeddings in Rn. The optimum defines a distance between shape X and Y ,
called the Gromov-Hausdorff distance dGH(X ,Y).

dGH(X ,Y)≡ inf
φX ,φY

dH(φX (X ),φY(Y)) (2.2)
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Figure 2.1 Figure from Elad and Kimmel (2003). Multi-dimensional scaling visualizations on
bending versions of two shapes. The first raw shows four versions of isometric input
shapes and the second raw is their MDS-mapping, where the dimensionality of the
embedding space has been set to 3 for visualization purposes. Note the isometric
shapes are mapped to similar embeddings.

Where dGH is the Gromov-Hausdorff distance, φX and φY are isometries from R3 equipped
with geodesic distances to Rn equipped with euclidean distances, and dH is the Hausdorff
distance: the maximum distance of any point on surface X to any point on surface Y .

The Gromov-Hausdorff distance can be interpreted as the Hausdorff distance between X
and Y up to the isometries φX and φY .

Generalized MDS (GMDS) A problem of these embedding-based techniques is that they
measure deviations from isometry only approximately in the embedding space. To avoid using
explicitly the intermediate embedding space, the Gromov-Hausdorff distance can be expressed
for bounded shapes with two transformations φX →Y and φY→X respectively from X to Y and
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Y to X as:

dGH(X ,Y) =
1
2

inf
φX →Y
φY→X

max{stress∞ φY→X ,stress∞ φX →Y ,dis(φX →Y ,φY→X )} (2.3)

with

dis(φX →Y ,φY→X )≡ sup
x∈X ,y∈Y

|dX (x,φY→X (y))−dY(y,φX →Y(x))| (2.4)

Where x and y are points on X an Y respectively, dX (resp. dY ) is the geodesic distance
on X (resp. Y). stress∞ φY→X and stress∞ φX →Y encourage isometric mappings while
dis(φX →Y ,φY→X ) encourages φX →Y and φY→X to be inverse of each other. Though this
formulation avoids using explicitly an embedding space, Bronstein et al. (2006b) argues that it
is is inappropriate to match partial shapes and restricts the objective to:

dGMDS(X ,Y) =
1
2

inf
φX →Y

stress∞ φX →Y (2.5)

This simplification of the Gromov-Hausdorff distance leads to the generalized multidimen-
sional scaling objective (GMDS) - also called generalized stress function as:

φ
∗
X →Y = argmin

φX →Y

(∫∫
x1,x2∈X

(dX (x1,x2)−dY (φX →Y (x1) ,φX →Y (x2)))
p dax1dax2

) 1
p

(2.6)

WhenX and Y are representation by meshes with n points, solving the GMDS is a quadratic
assignment problem (QAP), where the minimum is sought over the space of n×n permutation
matrices. Note that while the GMDS is hard to solve, it is simply based on a measure of
distorsion, making it a natural candidate for learned methods without supervision as it does
not require any annotated correspondences. In Chapter 4, we use a similar loss to regularize
parametric deformations to learn unsupervised correspondences.

Solving the GMDS in practice Several approaches have succeeded in reducing the complex-
ity of this QAP problem.

• Convex relaxations. Chen and Koltun (2015) propose a convex relaxations of the
permutation matrix by considering soft assignments instead of hard assignments. They
solve the dual of the relaxed problem with a Linear Program (LP) solver. Rodolà et al.
(2012) propose another relaxation based on game-theory of a variant of the GMDS called
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the Lipschitz formulation obtained by replacing the geodesic distances dX and dY by
log distances. Their relaxation outputs a sparse set of reliable correspondences. Like a
number of other methods optimizing for soft correspondence, this does not usually scale
to full-resolution of discretized models, but can be particularly useful to initialize dense
methods. On the contrary, our method in chapter 4 predicts dense correspondences.

• Hierarchical matching. Sahillioglu and Yemez (2011) propose to reduce the search
space of n×n permutation matrices by exploiting the fact that the optimal mapping is
found among functions that maps nearby vertices on the source shape to nearby vertices
on the target. Hence the matching can be performed in a coarse-to-fine fashion. After
solving the full problem on few salient points, they use coarse solutions to guide the
optimisation for gradually larger problem until dense matching. This idea is also present
in D.Raviv et al. (2013) and Bronstein et al. (2006a) to remedy the convergence problem
involved in the optimization of the stress function.

• Conformal Maps. Kim et al. (2011); Lipman and Funkhouser (2009) also propose
to reduce the search space to the space of conformal mappings. Conformal maps are
functions that locally preserve angles and contain the space of isometric transform as
a sub-space. Polynomial-time search algorithms for the GMDS are available in the
space of conformal maps. A practical example of this idea is the Mobius Voting strategy
from Lipman and Funkhouser (2009). Their appraoch exploits the fact that the group
of conformal maps between two sphere, called the Mobius group, is parametrized by 6
parameters. Estimating the these 6 parameters can be done with a Hough voting strategy.
To estimate a conformal map from X to Y , they map both shapes to a sphere with
conformal maps then solve the problem on the sphere. This is illustrated in Figure 2.2.
Kim et al. (2011) propose to increase the expressivity of the conformal map model by
blending several conformal maps together.

Though well-posed theoretically, minimum distorsion metric approaches are hard to opti-
mise and often lead to a poor local minima Bronstein et al. (2006a). Inspired by the success of
2D descriptors, a complementary approach to approaches based on minimum distorsion metric
has been to match 3D shape descriptors.

2.2.2 Local correspondence by shape descriptors.

Finding good 3D descriptors has been a very active area of research. Local shape descriptors
are discriminative embeddings of the neighborhood (potentially the full shape) of a point on a
shape. Descriptors are often used to obtain a sparse set of reliable correspondences to initialise
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Figure 2.2 Figure from Lipman and Funkhouser (2009). After mapping both genus-0 shapes
X and X to a sphere with conformal maps ΦX and ΦX , the problem of finding the
conformal mapping g between X and X is translated to finding the 6 parameters of
the conformal ΦY ◦g◦Φ

−1
X between the two spheres.

dense methods. Thus, ideal shape descriptors should be: discriminative, concise, and cheap to
compute, and robust (i.e. have some notion of invariance).

We start by explaining how to use descriptors to get a set of reliable correspondences via
outlier rejection. We then discuss 3D descriptors starting with three classical descriptors: Spin
Images Johnson (1997), 3D Shape Context Belongie and Malik (2000); Kokkinos et al. (2012),
and Shape HOG Zaharescu et al. (2009) descriptors. Then we review three spectral descriptors:
the Global Point Signature Rustamov (2007), the Heat Kernel Signature Sun et al. (2009a) and
the Wave Kernel Signature Aubry et al. (2011) and discuss an early approach that learn optimal
spectral descriptors Litman and Bronstein (2013).

Our approach developed in Chapter 4 for shape matching do not rely on shape descriptors,
but we compare against approaches using shape descriptors and outperform them.

2.2.2.1 Sparse set of reliable correspondences by outlier rejection

A possible strategy to extract a sparse set of reliable correspondences from shape descrip-
tors is to use an outlier rejection method like RANSAC Fischler and Bolles (1981). Indeed,
considering the set of nearest-neighbor pairs on the descriptors, the quality of a sub-set of
correspondences can be measured via their induced distorsion on the whole set with the GMDS.
One can thus sample subsets and select the subset that induces the lowest distorsion, which
should not contain any outlier. Getting a good sparse set of correspondences is critical to
initialize approaches solving the GMDS problem. Indeed, the GMDS problem is non-convex,
so the optimization is sensitive to an initial guess Bronstein et al. (2006a).
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2.2.2.2 Classical descriptors

We start by reviewing three classical shape descriptors: Spin Images Johnson (1997), 3D Shape
Context Belongie and Malik (2000); Kokkinos et al. (2012), and Shape HOG Zaharescu et al.
(2009) descriptors.

Spin image. This idea was introduced by Johnson (1997); Johnson and Hebert (1999) for
point clouds with normals. For each point, a cylindrical coordinate system is defined with
the described point at the center and its normal as the cylinder axis. A 2D histogram of point
density is then computed in a predefined neighbourhood on the elevation and radius of each
neighbor point.

Shape Context. The shape context descriptor was originally designed for images by Belongie
et al. (2002) and was later extended to 3D meshes by Kokkinos et al. (2012); Körtgen et al.
(2003). Given a mesh, a histogram is computed on the log-polar coordinates of neighboring
points using geodesic distances. To solve the orientation ambiguity, the final descriptor is the
modulus of the Fourier transform of the image histogram.

Shape HOG. Like Shape Context, shape HOGs Zaharescu et al. (2009) computes histograms
in log-polar coordinates. However, it discriminates on texture information instead of density of
points. To achieve this, it stores in each bin of the histograms the dominant gradient orientations
of the projected texture. This descriptor assumes that textures are available while the other
discussed descriptors do not.

2.2.2.3 Spectral descriptors

Spectral descriptors are based on the Laplace-Beltrami (LB) operator on a surface. The
eigenvalues and eigenfunctions of the LB operator are invariant to isometric transformation of
the surface. The eigenfunctions also form a basis of the space of functions on the surface. Any
linear combination of those eigenfunctions is therefore intrinsic.

Global Point signature (GPS). The GPS Rustamov (2007) of a point is the concatenated
values of the first eigenfunctions at that point scaled by the the square root of the norm of the
eigenvalue. This descriptor is not very robust to slight modification of the shape, which can
change the order of the eigenfunctions.
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The Heat Kernel Signature (HKS). The HKS Sun et al. (2009b) is a standard spectral shape
signature. The HKS uses low-pass filters. The idea is based on the physical link between
the Laplace-Beltrami operator and the heat diffusion process. The HKS descriptor at point x
has a physical interpretation : it measures the quantity of heat at position x and time t after
heating exactly and only that point at time 0. The HKS was extended to model a volumetric
heat diffusion process by D.Raviv et al. (2013) and a scale-invariant HKS was designed by
Bronstein and Kokkinos (2010).

Wave Kernel Signature (WKS). Similar to HKS, the WKS Aubry et al. (2011) can be seen
as a family of filters applied to the LB eigenfunctions, but while the HKS uses low pass filters,
the WKS uses band filters and thus tends to be more discriminative than the HKS.

Optimal Spectral descriptors. To improve spectral shape descriptors, a natural idea is to
replace hand-crafted linear combination of LB eigenfunctions with learned combinations.
This idea has already proved successful in image matching: Brown et al. (2011); DeTone
et al. (2017); Dusmanu et al. (2019); Luo et al. (2019); Revaud et al. (2019); Zagoruyko and
Komodakis (2015) learn data-driven 2D descriptors and demonstrate their superiority over
handcrafted 2D descriptors. Litman and Bronstein (2013) propose a parametric family of
transfer functions, formed with the Laplace-Beltrami eigen-functions, which includes the HKS
and the WKS as particular instanciations. They propose to learn an optimal spectral descriptor
from that family using a joint optimization on a collection of human shapes. Their optimized
descriptors shows noticeable improvement upon handcrafted descriptors. Further approaches
leveraging shape collections to learn local shape descriptors, in particular using deep learning
techniques, are discussed in Section 2.2.4.3.

2.2.3 Correspondence in function space.

Instead of mapping points, Ovsjanikov et al. (2012) propose to map functions between two
surfaces X and Y . We start by discussing how to build a functional representation of the
correspondence problem, and present its advantages. Finally, we discuss deep approaches
learning functional maps on shape collections.

2.2.3.1 From point correspondences to function correspondences.

Given point-to-point correspondences, one can get function-to-function correspondences. In-
deed, given point-to-point correspondences defined by a bijection T : X →Y , we can associate
to any scalar function f : X → R , the function g on Y defined as g = f ◦T −1. This induces
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correspondences on the space of all scalar functions F(X ,R) abstracted by the functional
TF : F(X ,R)→F(Y,R).

To get the correspondences of a point given a functional representation, one can apply
the functional on the Dirac function. However, while one can associate to each bijection T a
functional TF , there exist functionals that do not correspond to bijective transformations between
the shapes. Thus, given an arbitrary functional, a Dirac can be associated to a distribution which
is not a Dirac and further post-processing is needed to extract point-to-point correspondences.

The key advantage of a functional representation is that the functional TF is a linear operator
in the space of functions F(X ,R). As a consequence, most natural constraints on a mapping,
such as descriptor preservation, landmark correspondences, part preservation and distorsion
minimization become linear in this formulation. On the contrary, incorporating these constraints
in a direct point-to-point approach leads to difficult non-convex optimizations. Solving the
mapping functions also enables function transfer in a collection of shapes like part segmentation
without establishing point to-point correspondences.

2.2.3.2 The functional map as a matrix.

The space of functions F(X ,R) and F(Y,R) can be decomposed in an orthonormal basis. A
simple example of such a basis is the family of all Diracs. Since the operator TF is linear, the
problem of matching all functions can thus be reduced to matching the base functions. While
the number of base functions can be infinite, this formulation allows flexibility in the choice of
orthonormal basis. For surfaces, the Laplace-Beltrami eigenbase is a natural extension of the
Fourier orthonormal base. The first eigenfunctions of this basis represents well low-frequencies.
In fact, Aflalo et al. (2014) have shown that Laplacian eigenbases are optimal for representing
smooth functions on a surface. This means that by restricting the linear decomposition of a
function to the first eigenvalues, we apply a low-pass filter on the fonction that preserves the low
frequency and mid frequency components and lose the high-frequencies. This approximation
makes the problem of aligning the basis functions computationally tractable, and the functional
map can be represented a matrix of correspondences between the base functions, as illustrated
in Figure 2.3.

One of the main limitation of functional maps is that the functional representation, especially
restricted the first functions of a basis, do not directly give point-to-point correspondences.

2.2.3.3 Deep functional maps.

Functional maps are a powerful generic tool working for a large variety of shapes. Many shape
correspondence approaches build on functional maps, and a full review is outside the scope of
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Figure 2.3 Figure from http://www.lix.polytechnique.fr/ maks/fmaps_SIG17_course/slides/lecture0.pdf.
Point-to-point correspondences between shapes (surface or pointcloud) gives
function-to-function correspondences. The induced functional map TF mapping
functions on a shape to functions on the other shape is a linear operator which can
be represented as a matrix given a basis.

this work. However, we present quickly two approaches exploiting functional maps on shape
collections that are the most related to our work. Note that section 2.2.4 will discuss more
generally learning correspondences on shape collections.

Similarly to Litman and Bronstein (2013), Litany et al. (2017) learn spectral shape descrip-
tors using the functional representations between all pairs in a shape collection. They propose to
first refines an initial shape descriptor with a shared neural network across shapes. This neural
network is a shared Multi Layered Perceptron (MLP) that takes as input the multi-dimensional
descriptor of a point on a shape and applies a non-linear function on it. In their approach,
this MLP is the only trained module and aim enhance the initial descriptor into a refined
descriptor. After this step, the refined descriptor is projected on the basis of functions used by
the matrix-based functional representation. This gives a vector in the functional representation
of the refined descriptor applied on a point of a shape. Corresponding descriptors can finally
be matched through linear matrix constraints. Their key insight is that the pipeline predicting
the mapping between two shapes given shape descriptors and ground-truth point-to-point
correspondences is end-to-end differentiable, so the shared MLP can be trained via backpropa-
gation on a collection of 100 human shapes with correspondence annotations from the FAUST
dataset Bogo et al. (2016). Halimi et al. (2019) extended this idea to an unsupervised setting by
minimizing only for low-induced distorsion by the functional.

Both approaches share the same limitations as the original functional map approach: the
resulting functional map only aligns basis functions and additional optimization is required to
extract consistent point-to-point correspondences, or a smooth template deformation for surface

http://www.lix.polytechnique.fr/~maks/fmaps_SIG17_course/slides/lecture0.pdf
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reconstruction Ovsjanikov et al. (2012). These method also relies on a hand-crafted point-
wise descriptor as initialization Tombari et al. (2010) and use neural networks to improve the
descriptor. In contrast, in Chapter 5, we introduce a method that does not rely on hand-crafted
features (it only takes point coordinates as input) and directly outputs a template deformation.

2.2.4 Shape matching in collections.

Some common categories, such as humans, benefit from a profusion of existing data Bogo
et al. (2014); Zuffi et al. (2017) and can leverage strong class-specific priors for shape matching
through the use of an explicit template. We start this section by briefly describing how to
construct and use a morphable template for the category of human scans. Another approach
to leverage class-specific knowledge is to run the direct optimization approaches jointly on
many pairs of shape from the same category. We discuss in particular an approach leveraging
cycle-consistency on the collection to improve individual mappings by Nguyen et al. (2011).
Finally we present learning approaches that cast shape matching as a classification problem
called the "labeling problem".

2.2.4.1 Template-based shape matching for humans

Correspondences of humans shapes is of particular interest to this thesis since the algorithm we
develop for shape matching in chapter 4 is compared against other approaches on a benchmark
of human correspondences. For humans, shape matching approaches using a morphable model
of the human body outperform direct optimization approaches. We first discuss how to construct
such a model, then explain how to fit the model to new shapes to achieve correspondences.

Creating a morphable template. Creating a morphable template is a difficult task which
took more than a decade of research to reach the current level of maturity Allen et al. (2002,
2003, 2006); Loper et al. (2015); Zuffi and Black. (2015). The Skinned Multi-Person Linear
(SMPL) model by Loper et al. (2015) is currently a standard human model. SMPL is a
parametric mesh model with two sets of control parameters, θ and β. θ controls the pose of
the human while β controls the shape appearance of the model. The full spectrum of pose and
shapes can be explored by varying θ and β. Figure 2.4 shows 25 samples. We use the SMPL
model in Chapter 4 to generate training data for shape matching with dense correspondence
labels.

SMPL is based on several ideas. Starting from a base mesh in a resting pose, each vertex on
the mesh is linearly linked to a skeletal structure. The pose parameters θ control the axis-angle
rotation parameter of each joint with respect to its ancestor in the skeletal structure. This is
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Figure 2.4 Figure from Loper et al. (2015). Samples from the SMPL model. Decomposition
of SMPL parameters into pose and shape: Shape parameters β vary across different
subjects from left to right, while pose parameters θ vary from top to bottom for
each subject.

known as Blend Skinning Wang and Phillips (2002). The human body has local variations
depending on pose and shape. To account for these variation, the base shape is updated
depending on the pose parameters θ, and blended with a linear combinations of diverse shapes
controlled by parameter β. The general idea is to slightly modify the base shape prior to blend
skinning in order to minimize the artifacts Lewis et al. (2000).

Recently, Pavlakos et al. (2019) has extended the SMPL model with fully articulated hands
and an expressive face. Zuffi et al. (2018, 2017) has extended the SMPL model to animals
including lions, cats, tigers, dogs, horses, cows, foxes, deers, zebras, and hippos.

Using class-specific models for matching. Fitting the SMPL model to a given shape is not
convex with regard to parameters (β,θ) which makes it hard in practice. To reach a good local
minimum, the fitting objective function is typically regularized. Bogo et al. (2016) propose two
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regularization terms: an interpenetration penalization of the body parts, and a prior for realistic
poses and shape learned with a Variational AutoEncoder (VAE).

In chapter 4, instead of learning SMPL parameters (β,θ) for human reconstruction, we let
a deep neural network learn how to deform a base human mesh.

2.2.4.2 Joint optimization with cycle-consistency

Shapes categories exhibiting a large degree a topological variation, like chairs, do not have a
clear template. Class-specific context can still be exploited by jointly optimizing shape matching
on the entire shape collection while encouraging cycle-consistency of the correspondence
maps Huang and Guibas (2013); Huang et al. (2012); Kim et al. (2012); Nguyen et al. (2011);
Rustamov et al. (2013). In particular, given a collection of shapes and estimated maps between
them Nguyen et al. (2011) construct of graph where each node is a shape. Edges between shapes
are scored using the average deviation of 3-cycles involving the edge. If the map associated
to that edge is poor, then all 3-cycles involving it will have poor cycle-consistency and thus
the average will have a high error score. Conversely, if the map is accurate, and the ratio of
accurate mappings is sufficiently high in the graph, then the average error score will be low.
In the end, maps are improved by replacing the original maps with composed maps along the
shortest paths in this graph. Composing maps is easy to do in the functional map framework
since it is a matrix multiplication of the two functionals.

Joint optimization techniques are very powerful, but involve optimizing for many degrees
of freedom with complex non-convex objective functions, and takes minutes or hours. To make
matters worse, joint analysis usually scales in a super-linear manner with the number of shapes,
and if a new shape is added to a collection, the entire optimization needs to be repeated.

Recently, learning-based correspondence techniques were used to address these limitations.
They are fast, typically only requiring a forward pass through a neural network, and they enable
joint analysis of a collection of shapes, since multiple shapes are typically used during training.

2.2.4.3 Learning correspondences through the labeling problem.

Rodola et al. (2014) introduce the labeling problem in one of the first learning-based method for
shape matching. The labeling problem views shape matching as a classification task where the
goal is to predict the index of each point on a common template. Matching two shapes can thus
be done by labeling both shapes. The labeling problem is learned on a training set of annotated
shapes with a cross-entropy loss comparing predicted labels and ground truth labels, which is
standard for classification. Rodola et al. (2014) learn the labeling problem with a "shallow"
random forest applied applied on WKS descriptors. In addition to the classification loss, the
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distorsion induced by the predicted labels is minimized by a regularization loss formulated in
the functional map framework.

Recent trends to learn shape matching solve the labeling problem with deep neural networks
and can be categorized between intrinsic and extrinsic methods. Intrinsic approaches operate
on surfaces and are invariant to isometric deformations of the surface. Note that the optimal
spectral descriptors discussed in 2.2.2 and deep functional maps discussed in 2.2.3 are intrinsic
methods. We first focus on intrinsic approaches based on non euclidean CNNs. We then discuss
another line of work, called here extrinsic deep matching, that operates on the 3D space and are
not invariant to isometric transformation. In the literature, extrinsic deep approaches often do
not solve the labeling problem but solve the simpler classification problem of part labels for
each points. In Chapter 4, we introduce a new extrinsic deep approach.

Deep Intrinsic Approaches based on Non-Euclidean CNNs. An important effort has been
made to generalize CNN on 2D regular grids to non-Euclidean domains (surfaces). Convo-
lutions on meshes are only a particular case of general graph neural networks, which has
received a lot of attention Bronstein et al. (2017); Kipf and Welling (2017); Simonovsky and
Komodakis (2017). We refer readers to Wu et al. (2019) for a recent survey on the subject. Like
convolutions in the euclidean 2D plane, convolutions on arbitrary surfaces can either be done in
the spatial domain by sliding a kernel on the shape, or in the spectral domain by applying a filter
on the Laplace-Beltrami operator eigenfunctions. We start by discussing spatial approaches
then spectral approaches.

Spatial CNN. Masci et al. (2015) were the first to introduce a geodesic CNN model
operating on meshes, which performs non-euclidean convolutions by sliding a window over
the manifold. The key consideration is how to extract a patch around a point. In Masci et al.
(2015), local geodesic coordinates in a bounded radius are used in place of image ‘patches’.
This can be seen as an adaptation of the shape context descriptor to neural networks. Like
shape context Belongie et al. (2002), the polar coordinates are defined up to arbitrary rotation
θ ∈ [0,2π[ due to the ambiguity in the selection of the origin of the angular coordinate. The
ambiguity is resolved by taking the maximum over all possible rotations of the extracted patch
Rθ. Alternatively, Boscaini et al. (2016a) (ACNN) use anisotropic LB operators Andreux
et al. (2014) to extract intrinsic patches on manifolds. Finally, Monti et al. (2017) present
MoNet, a generalization of previous hand-crafted patch extractor and learn an optimized
patch extractor. This extends the framework to arbitrary graphs. Figure 2.5 illustrates how
these spatial non-euclidean CNNs extract a neighboorhood around each point. Figure 2.6



2.2 Shape matching 35

Figure 2.5 Figure from Monti et al. (2017). Left: intrinsic local polar coordinates ρ,θ on
manifold around a point marked in white. Right: patch kernels used in different
generalizations of convolution on the manifold (hand-crafted in GCNN and ACNN
and learned in MoNet). Red curves represent the 0.5 level set.

compares non-euclidean CNN methods with Blended Intrinsic Maps Kim et al. (2011) for
human correspondences, showing the superiority of learned approaches.

Spectral CNN. Bruna et al. (2014) defined a generalization of convolution in the spectral
domain. In the Euclidean case, the Convolution Theorem states that the convolution operator is
diagonalized in the Fourier basis. Similarly on a surface one can define a non-shift-invariant
convolution by multiplying the spectral decomposition of a function in the Laplace-Beltrami
basis. Spectral kernels lack spatial localisation and are harder to interpret than spatial kernels.
The main limitation of spectral approaches is that the kernel depends on the Laplace-Beltrami
basis and thus generalize poorly to different shapes. To mitigate this drawback and generalize
better, Yi et al. (2016b) propose to transport back and forth the basis to a canonical base of
functions shared across the shape collection and apply the kernels in the canonical base.

Deep Extrinsic Approaches for shape segmentation. Extrinsic 3D shape encoders have
tremendously progressed in the past 5 years. These neural networks are not applied to the
true labeling problem problem but rather to the task of labelling shape parts, and only recently
to fine-grained segmentation Mo et al. (2019b). A full survey is out of the scope of this
thesis, but we highlight the milestones in the following. Extrinsic shape encoders can be
divided depending on how they represent 3D shapes. We focus on neural network that analyse
volumetric representations (voxels) and point clouds.

Volumetric methods. Voxels are the natural extension of pixels in 3D. A general advantage
of this choice of representation is that most pixel-based operators are easy to generilize to voxels.
Choy et al. (2016) propose to use 3D convolutions on the voxel-grid to perform inference on
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Figure 2.6 Figure from Monti et al. (2017). Pointwise error (geodesic distance from
groundtruth) of different correspondence methods on the FAUST humans dataset,
demonstrating the strenghts of deep learned approaches over direct optimization
methods.

volumes. The main limitation of this approach is that 3D convolution are memory-hungry and
this limits the analysis to low spatial resolution. Riegler et al. (2017) propose an octree-based
optimization of the 3D convolutions operator based on the observation that the output of a 3D
convolutional kernel is the same inside an octree region and only varies at the border. They
demonstrates results on 3d facade part segmentation, however the facades are initially aligned
which is a favorable setting for extrinsic approaches.

PointCloud methods. The main challenge to process point clouds with deep networks is
to design architectures that are invariant to any permutation of the points. It has been an open
challenge until the pioneering work of PointNet Qi et al. (2017a). To achieve this invariance,
the main idea of PointNet is to stack: a high dimensional embedding by feeding each point to a
shared MLP, and a symmetric function that aggregates information across points, typically a
max operation. This simple yet powerful idea had an incredible impact in the community and
spanned many follow-ups.
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Figure 2.7 Figure from Wang et al. (2018b). Dynamic Graph CNN part correspondence results
for chairs and lamps

While aggregating global information with a max function is appealing because of simplicity,
it is also one the major limitation of PointNet. Inspired by the successes of hierarchical filters
in images, the same group of authors Qi et al. (2017b) design a hierachical PointNet called
PointNet++. The idea is to stack shared PointNet networks applied on the neighbourghood of
each point. Though simple, it is hard to put in practice and requires careful tuning of many
parameters. Like for non-euclidean CNNs, how to define a good neighbourghood is a key
question. PointNet++ uses a ball of constant radius while Dynamic Graph CNN (DGCNN)
Wang et al. (2018b) uses the k-nearest neighbors. To get all the points inside the ball radius
or the k-nearest neighbors, PointNet++ uses the Euclidean metric on the spacial position of
the points while Wang et al. (2018b) uses the Euclidean metric on the current embeddings.
PointNet++ and DGCNN demonstrate state-of-the-art part segmentation of difficult categories
from the ShapeNet dataset Chang et al. (2015), exhibiting heavy topological variations (see
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Figure 2.7). Compared to the initial PointNet, they are also significantly heavier in memory
which explains why PointNet remains a neural architecture of choice in many pipelines: a
simplified PointNet architecture is used in all the chapters of this thesis.

Despite tremendous progresses, extrinsic deep methods typically only achieve shape seg-
mentation. In contrast, in chapter 4 and 5, we present the first extrinsic deep methods to perform
dense matching.

2.3 Single-view reconstruction

Taking a single image and estimating the physical world which produced that image is a
fundamental problem in computer vision. It dates back at least to Lawrence G. Robert who
phrase his goal almost 60 years ago as: "to make it possible for a computer to reconstruct and
display a three-dimensional array of solid objects from a single photograph". This inverse
graphics problem is underconstrained. Indeed, many different combinations of textures and
lightning conditions can reproduce a specific image.

Adelson and Pentland (1996) have a beautiful metaphor to illustrate that many physical
interpretations of a single image are possible. Looking at the image in Figure 2.8, different
artists have different ways of explaining the scene depending on their own biases. A painter
would see a canvas painted with the image, a sculptor would see it as an arrangement of bent
shapes and a gaffer would see texture-less planar surface lit by a arrangement of various lights.
In between those three extreme explanations exists a range of possible explanations, in which
lies the most likely solution seen in Figure 2.8.b: A twice bent planar surface with a stroke of
paint.

This problem is known to be underconstrained at least since the 11th century. Studying
how the human visual system operates, the scientist Alhazen states in his "Book of Optics"
that: "Nothing of what is visible, apart from light and color, can be perceived by pure sensation,
but only by discernment, inference, and recognition, in addition to sensation". This hints at a
statistical formulation of the problem. Among all possible physical explanation of an image,
the goal is to find the one that maximizes a particular prior on 3D shapes, in other words, the
most likely explanation based on past observations.

First, we discuss approaches estimating a depth map from a single-image. Classical methods
tackle this problem through the "intrinsic image problem" which aims at explaining a single
image by a depth map image, a reflectance image, and an illumination model Horn (1974). We
also discuss learning approaches to predict depth maps. Depth maps however only describe
the visible part of a photographed object. Second, we discuss approaches that rely on one or
several 3D templates to estimate the full shape of a object from a single image. Last, we discuss
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Figure 2.8 Figure from Barron and Malik (2015). A visualization of Adelson and Pentland’s
“workshop” metaphor Adelson and Pentland (1996). 1(b) is the most likely interpre-
tation of the image in 1(a), but it could be a painting, a sculpture, or an arrangement
of lights

recent deep approaches that learn implicit shape priors from data collections instead of using
templates and reconstruct 3D shapes using volumetric functions, point-clouds or meshes.

Note that AtlasNet, our approach to SVR developed in Chapter 3, also learns implicit priors
with deep networks and reconstruct shapes by predicting surface deformations.

2.3.1 Depth from a single image

We start by discussing the classical "intrinsic image" formulation of the SVR problem, then
discuss approaches that learns to predict a depth map from an image.

2.3.1.1 Intrinsic image decomposition

In 1978, Barrow and Tenebaum defined the problem of “intrinsic images”: recovering shape,
reflectance, and illumination from a single image Barrow et al. (1978). Solving the intrinsic
image problem enables image editing application such as shadow removal Kwatra et al. (2012),
image colorization Liu et al. (2008), image re-texturing Carroll et al. (2011), and scene
relighting Duchêne et al. (2015). A complete presentation of these applications is outside the
scope of this thesis but some applications from Barron and Malik (2015) are illustrated in
figure 2.9 and the reader can refer to Bonneel et al. (2017) for a good survey.



40 Related Work

Figure 2.9 Figure from Barron and Malik (2015). Graphics applications of intrinsic image
decomposition. Given only a single image, the algorithm estimates an object’s
shape, reflectance, or illumination. Any of those three scene properties can then be
modified.

Two specific simplified approaches of this complex inverse problem are particularly relevant
to us in the context of SVR:

1. Overloading terminology, “intrinsic images” has evolved in the problem of separating
an image I into a shading image S and a reflectance image R linked by the following
equation:

I = R ·S (2.7)

Such a separation in reflectance and shading assumes a Lambertian model of light
diffusion, do not account for color bleeding nor specular surfaces. In this problem, the
number of unknowns is twice the number of equations.

2. Shape from Shading: recovering the shape of an object given a single image, assuming
illumination and reflectance are known. The original formulation of the problem is
from Horn (1975). A more detailed survey of classic shape from shading methods can be
found in Horn and Brooks (1989); Ruo Zhang et al. (1999).

Both problems need to be solved to go from a single image to a 3D shape but both problems
are ill-posed. Figure 2.10 illustrates two well-known sources of ambiguity for Shape-from-
shading: the bas-relief ambiguity, and the convex-concave ambiguity. As noted by Koenderink
et al. (1996), both computational algorithms and the visual system face these ambiguities and
have two means to deal with them: use some prior knowledge about the world Ikeuchi and
Horn (1981), or use more than a single image. Approaches using more than a single-image to
reconstruct shape, like an image from another viewpoint Hartley and Zisserman (2004); Triggs
et al. (2000), or with different lightning conditions Basri and Jacobs (2001); Woodham (1992)
are beyond the scope of this thesis. We now discuss classical assumptions used in optimization
approaches for intrinsic image decomposition and shape-from-shading.
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Figure 2.10 Figure from Prados (2006) a) The crater illusion Pentland (1984): From the image
we perceive two craters, a small and a big one. But we can turn these craters
into volcanoes (although upside down) if we imagine the light source to be at the
bottom of the picture rather than at the top. This picture is actually that of a pair
of ash cones in the Hawaiian Island, not that of a pair of craters. b-c) “Bas-relief
Ambiguity” Belhumeur et al. (1999): Frontal and side views of a marble bas-relief
sculpture. Notice how the frontal views appear to have full 3-dimensional depth,
while the side view reveals the flattening. This demonstrates that the image b)
can be produced by two surfaces: the three-dimensional surface we imagine by
visualizing image b) and the actual bas-relief which is at the origin of the two
photos b) and c).

Retinex theory of lightness constancy Land and McCann (1971) is one of earliest priors
to solve the intrinsic image problem. It states that low-gradients in an image can be explained
by shading variation while high gradient are texture variations from the reflectance image.
Following this insight, the reflectance image is assumed to be piecewise constant. In practice,
this assumption can be modelled by computing the likelyhood of neighbouring-pixel variations
under assumption of a heavy-tail distribution (the variation should be small and sparse).

Parsimony of reflectance Gehler et al. (2011); Omer and Werman (2004) is another
useful prior to solve the intrinsic image problem which complements the Retinex prior. The
assumption is that the reflectance image only has a few discrete colors. In practice, the entropy
of the reflectance image is minimized to obtain a sparse palette of colors.

Color prior of reflectance Barron and Malik (2015) states that some colors are more likely
than others in the reflectance image. White-balance or autocontrast algorithms rely on similar
priors: the white-world assumption penalizes reflectance for being non-white, the gray-world
assumption penalizes reflectance for being non-gray.
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Shape Smoothness Jinggang Huang et al. (2000); Woodford et al. (2008) is a standard
assumption in Shape from Shading algorithm. 3D shapes tend to bend rarely which can be
modeled by minimizing the variation of mean curvature. This can be viewed as the extension
of Retinex theory to 3D shapes which makes sense since image statistics are the projection of
3D shapes statistics.

Shape contours Brady and Yuille (1984); Koenderink (1984); Mamassian et al. (1996)
are also useful in Shape from Shading algorithm. The normal at an image contour point is
orthogonal to the view vector and the tangent plane of the contour.

These cues are at the core of the first optimization approaches to single-image reconstruction.
More recently, Zhou et al. (2015) learn priors on reflectance with deep networks, while Li and
Snavely (2018); Ma et al. (2018); Takuya Narihira and Yu (2015) use Convolutional Neural
Networks to directly infer an intrinsic image decomposition directly from an input image.

2.3.1.2 Learning depth prediction

Several approaches avoid an explicit decomposition in a shading and reflectance image and
directly infer a depth map from a single image by learning to solve this task on a data collection.
In this section, we present an overview of such methods doing "monocular depth estimation".
An important aspect of the latest approaches in this category is that they work on real outdoor
images, and full 3D scenes. They do not however reconstruct the unseen parts of a scene.
In contrast, template-based methods and deep single-view object reconstructions methods
discussed in the next sections only work at the object level, but reconstruct the full object
including the unseen parts.

In their seminal approach called Make3D, Saxena et al. (2009) proposed to group pixels in
the input image into super-pixels and explain each super-pixel by a local plane in 3D. They
cast this as a supervised learning problem and train an linear model to predict the orientation
and 3D location of each plane using a dataset of laser scans. Since global image context is a
useful cue for depth prediction, the predictions are post-processed by a Markov Random Field.

More recently, Eigen et al. (2014) use Convolutional Neural Networks taking directly
as input a single image and predicting a depth map, and train them with a fully supervised
regression loss function. Eigen and Fergus (2015) show that a multi-task training objective
including semantic segmentation of the image helps for depth estimation. Building on this
approach, Bo Li et al. (2015) propose to post-process the predicting depth maps with Conditional
Random Fields.
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Figure 2.11 Figure from Fu et al. (2018). Single-image Depth Prediction on KITTI Geiger
et al. (2013). Eigen et al. (2014) cast depth estimation as a regression problem
while Fu et al. (2018) propose DORN, an ordinal classification approach.

Instead of a regression problem, Su et al. (2019) propose to cast depth estimation as a
classification problem by discretizing the range of depth predictions. A standard classification
loss like the cross-entropy ignores the order that class labels might have and penalizes equally
a wrong classification regardless of the class. This is not well suited to quantized depth
values which have a clear order, so Fu et al. (2018) use an ordinal classification loss yielding
long-standing state-of-the-art results, illustrated in Figure 2.11.

Godard et al. (2017) propose to learn on stereo data without depth supervision. In their
approach, given the left image of a calibrated stereo pair, a neural network predicts the disparity
maps between the left and right image, which are later used to reconstruct the stereo pair
by sampling. In contrast to other approaches, this network is training with an unsupervised
reconstruction loss on binocular stereo footages, and yields competitive performance.

2.3.2 Template alignment methods

The seminal work of Lawrence G. Robert introduces a different line of approaches using shape
templates to reconstruct the full shape of a object or a scene from a single image Roberts
(1963). In his own words: "we shall assume that the objects seen could be constructed out
of parts with which we are familiar. That is, either the whole object is a transformation of a
preconceived model, or else it can be broken into parts that are. ... The only requirement is that
we have a complete description of the three-dimensional structure of each model.". We start
the discussion with methods using arrangement of simple templates like cuboids, then discuss
methods that suppose access to a predefined 3D model of the full shape and finally discuss
methods using more complicated morphable templates.

2.3.2.1 Alignment of simple geometric templates

Early approaches used a simplification of the world, called the blocks world, in which 3D
shapes are polyhedral in a uniform background. This assumption enables using projective
image formation models: 3d lines map to 2d lines and polyhedral faces to polygons. Using
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this assumption, Roberts (1963) proposes a computational approach to SVR that first extracts
lines in an image, then matches the projected 3D lines of polyhedrals to the extracted lines. A
practical applications based on the blocks world assumption was the MIT robot reconstructing
block structures from an input image in a constrained environment. The reader interested
in early successes of computer vision can see a video of the demo at the address: http:
//projects.csail.mit.edu/films/aifilms/digitalFilms/9mp4/88-eye.mp4.

Despite these results, it became clear that the blocks world assumption does not hold in real
world scenes. In a effort to use a less restrictive assumption of 3D objects, Thomas Binford
proposes to use Generalized Cylinders templates Binford (1971). Generalized Cylinders can be
seen as sweeps of a cross-section along a curved axis. Another classical family of templates are
Superquadrics Pentland (1986). Superquadrics are parametric family of shapes, which include
cubes, octahedra, cylinders, lozenges and spindles.

These ideas had a strong echo in the psycho-physics community. Irving Biederman proposed
a model of the human visual system based on morphable Generalized Cylinders called geons.
His theory presented in Biederman (1985, 1987), called recognition-by-components, suggests
that our visual system recognizes object by separating them into arrangement of geons, and thata
set of 36 types of geons are enough to describe most daily objects. A cup would for instance be
split in two geons: a cylinder and a handle. Our perception of a specific geons arrangement
would then be compared with past observations to recognize the object. Biederman supports
his theory with an analog theory on the composition of speech stating that a combination of 55
phonemes can make up any word in any language.

At the time, approaches based on blocks, Generalized Cylinders or Superquadrics required
considerable hand-crafting and constrained settings to reconstruct 3D shapes from 2D views.
The drastic improvement brought by machine learning can be understood in light of Pentland
(1986) quote: "The computation of such a depth map has been the major focus of effort in
vision research over the last decade and, although the final results are not in, the betting is that
such depth maps are impossible to obtain in the general, unconstrained situation."

Reignited by the seminal work of Tulsiani et al. (2016) three decades later, several ap-
proaches use deep learning to learn how to reconstruct 3D object with arrangement of simple
templates. Tulsiani et al. (2016) propose to let a neural network predict a set of parameter
for cuboids given an input image. These parameters include rotation, translation, scaling
and occurrence of each cuboid in a sampled object from the data collection. The network is
trained with a global reconstruction loss on a collection of pairs 2D image/3D shape. Instead of
cuboids, Paschalidou et al. (2020, 2019) use Superquadrics and predict their shape, position
and occurrence with a neural network.

http://projects.csail.mit.edu/films/aifilms/digitalFilms/9mp4/88-eye.mp4
http://projects.csail.mit.edu/films/aifilms/digitalFilms/9mp4/88-eye.mp4
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Figure 2.12 Primitive-based reconstructions. Figure from Tulsiani et al. (2016) and Paschali-
dou et al. (2019). Primitive reconstructions are structure, parsimonious and provide
part correspondence across shapes.

Predicting part occurrence in a shape is a hard challenge for these methods because it is
non-differentiable. Tulsiani et al. (2016) propose to use reinforcement learning to learn an
occurrence probability for each primitive which makes their learning procedure is unstable.
Paschalidou et al. (2019) cast the objective as a supervised learning problem using a astute
mathematical reformulation of the problem. While this leads to stable training, primitives
tend to specialize to regions of space rather than structural functions. On the applications
side, Tulsiani et al. (2016) demonstrate that primitive-based reconstructions can be consistent
across different instances without explicit supervision. Figure 2.16 shows qualitative examples
of recent methods for primitive-based reconstruction. Paschalidou et al. (2020) subdivide
recursively the shape in Superquadrics yielding a hierarchical structure, and predict an estimate
of the quality of the reconstruction used as a criterion to stop the recursive subdivision.

Beside single-image shape reconstruction, Tulsiani et al. (2016) demonstrate that primitive-
based reconstructions can be consistent across different instances without explicit supervision.
Figure 2.16 shows qualitative examples of deep-learning based methods aligning simple
templates for reconstruction.

2.3.2.2 Alignment by recognition

Another approach is to apply image classification methods to select an "example" from a
collection of 3D shapes, then align that "example" to the input image. This naturally gives a
prior for unseen parts in the image but generalize poorly outside of the set of examples, and
requires the entire collection to be available at test time. This tasks is called Category-level
2D-3D alignment and generalizes Instance-level 2D-3D alignment dating back to Roberts’s
PhD, which assumes prior knowledge of the 3D model and only focuses on alignment.
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Previous methods rely on bag-of-features for classification Csurka et al. (2004); Opelt et al.
(2004) and use image cues for alignment like contours Mundy (2006); Russell et al. (2011), or
local features Rothganger et al. (2006). Modern approaches based on Convolutional Neural
Networks are the state of the art at image classification and object detection since 2012 Girshick
et al. (2014); He et al. (2016b); Krizhevsky et al. (2012). Similarly for 3D object alignment,
also called 6D pose estimation, neural network based approaches achieve the state of the art Li
et al. (2018b); Xiao et al. (2019).

2.3.2.3 Human morphable template

Instead of simple templates like cuboids, several approaches use complex morphable templates
to reconstruct 3D shapes, and in particular 3D shapes of humans. There is a strong focus on
single-view reconstruction of human shapes because of commercial applications. Creating
personalized 3D avatars has applications ranging from video games, virtual try-on of clothes,
to healthcare management. Automatic human reconstruction is also likely to play a key role in
action recognition Weinzaepfel and Rogez (2019). Indeed current action recognition systems
tend to rely on image context but other elements are likely key to predict human intent, such
as hand, face and body poses. In this thesis, we also place a strong emphasis on human
reconstruction, especially in Chapter 4 for shape matching. We start by discussing single-part
models describing only the hand or the face, then morphable templates of the full human body.

Morphable templates of the human body parts. Earlier reconstruction approaches split
the human body to simplify the problem and focus on hands and faces. We refer the reader
to Brunton et al. (2014); Zollhöfer et al. (2018) for a survey on face reconstruction and to Yuan
et al. (2018) for a survey on hand reconstruction. Since the pioneering method of Blanz and
Vetter (1999), many approaches tackle face reconstruction by blending a PCA decomposition of
faces Ekman and Friesen (1978). More recently, Hasson et al. (2019a) leverage MANO, a hand
morphable template following SMPL formulation of the human body Romero et al. (2017). In
their approach, a neural networks predicts the parameters of the MANO model from an image.
Note that Hasson et al. (2019a) also use our single-image object reconstruction approach from
Chapter 3 to jointly reconstruct manipulated objects.

Holistic human templates. Most related to our work in Chapter 3 and Chapter 4 are methods
that reconstruct humans from a single image using a mophable template of the full human
body. Interestingly, Pavlakos et al. (2019) shows that holistic approaches reconstructing the full
body perform better at hand reconstruction than approaches specialized for hands.To estimate a
full body shape, the reference morphable template is SMPL Loper et al. (2015). Many deep
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Figure 2.13 Figure from Kanazawa et al. (2018a). Real-time single-view reconstruction of
humans using a morphable template Loper et al. (2015). The method infers the
full 3D body even in case of occlusions and truncations.

approaches use neural networks to estimate SMPL parameters from an image. The two key
challenges are that: there is a lack a 3D annotated pairs (image, corresponding 3D model), and
many SMPL parameters can explain the same image.

Faced with the lack of annotated data for human reconstruction, Bogo et al. (2016) use
as input a pre-trained network trained for single-image 2D-joint estimation for which there is
training data. They train a neural network to estimate SMPL parameters and ensure that the
projected 3D keypoints match the 2D keypoints. Instead of relying on 2D key-joint estimation,
Varol et al. (2018) directly fit the SMPL model to an image and supervise the model with a
reprojection loss. Even if no large-scale annotated data exist for human template fitting, they
leverage all 3D annotations available in a multi-task framework. In addition to the reprojection
loss, their model is trained for 2D segmentation, 2D pose predictions, and 3D pose predictions.

Since many pose and shape parameters can explain the same image, Pavlakos et al. (2019)
discard unrealistic poses that interpenetrate, Bogo et al. (2016) learn a shape prior with a
Variational AutoEncoder (VAE) to encourage realistic pose and shapes parameters. Instead of a
VAE, Kanazawa et al. (2018a) train a GAN discriminator which tells whether the parameters are
from a real pose or not. Figure 2.13 illustrate template-fitting examples using their approach.

Approaches that use morphable template have improved a lot recently and now work on
in-the-wild data Kanazawa et al. (2018a). The main limitation of these approaches is that they
assume the existence of a morphable template for the reconstructed category. This assumption
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holds for humans and some animals Zuffi et al. (2018, 2017), but do not hold for arbitrary
object categories.

2.3.3 Deep learning for single-image reconstruction of arbitrary objects

Leveraging morphable template enable accurate reconstructions of 3D shape, but such template
are hard to create and only exist for a few object categories. In this section, we discuss the
deep learning approaches most related to this thesis that predict the full 3D shape of arbitrary
objects.

Deep SVR approaches are typically structured in an autoencoder architecture. This splits
the task into two implicit sub-objectives. The encoder network is tasked to extract high-level
information from the input image in the form of an embedding vector (typically in R1024). The
decoder use this embedding to generates a 3D shape. This decoupling is convenient since
encoders and decoders architectures can be easily switched.

Most deep approaches, including this thesis, use the ResNet architecture from He et al.
(2016a) to encode images. The decoder network and especially the choice of data representation
is the main discriminative factor among deep SVR methods. In the following we briefly detail
decoder architectures for SVR in volumetric representation Choy et al. (2016); Mescheder et al.
(2019), point clouds Fan et al. (2017), and meshes Wang et al. (2018a). In Chapter 3, we
introduce a decoder architecture that learn parametric surface deformation and can generate a
mesh. Note that this has been a very active field of research in the last years and many of the
methods we discuss in this section have been developed during the PhD work presented here.

2.3.3.1 Volumetric representations

One of the earliest shape representation for deep SVR is the voxel representation. A voxel grid
is a 3D regular grid which regularly subdivides a bounding box in the 3D space. Voxels are
the natural extension of pixels in 3D. Their value is 1 if there the voxel is inside the shape and
otherwise. This representation can be defined for any topology but assumes a clear notion of
interior and exterior, which is not the case for thin parts like the sails of a boat.

The structural similarity between voxels and pixels allows direct generalization of 2D
operators. Choy et al. (2016) propose a decoder architecture which is simply a stack of 3D
convolutional filters and non-linearities. This influential idea was reused to reconstruct voxel
grids from various input types like several images Choy et al. (2016); Girdhar et al. (2016), 3D
objects with missing shape parts Han et al. (2017); Wu et al. (2015) and sketches Delanoy et al.
(2018). The bottleneck of such direct volumetric representation is memory consumption. It
scales cubicaly with the resolution which limits the reconstructions to coarse resolutions.
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Figure 2.14 Volumetric reconstructions. Figure from Xu et al. (2019). Qualitative recon-
structions from real-world examples (input image and two views of the 3D re-
construction). In contrast, our method in chapter 3 learns parametric surface
deformations.

To overcome this memory issue, subsequent work has optimized the grid storage with
octrees Häne et al. (2017); Riegler et al. (2017); Tatarchenko et al. (2017). Also to adress the
memory issue, Li et al. (2017) split the object in parts and generate a voxel representations of
each part instead instead of the bounding box.

Recently, Chen and Zhang (2019); Mescheder et al. (2019); Park et al. (2019a) introduced
a line of work closely related to the method developed in chapter 3. They propose to let a
neural network learn a piece-wise linear approximation of the continuous occupancy function.
Chen and Zhang (2019); Park et al. (2019a) approximate the signed distance function of an
object instead of the occupancy grid. The signed distance function gives analytical access to
surface normals. Xu et al. (2019) feed this new representation with global and local image
features and achieve a big qualitative step forward in single-view reconstruction of volumetric
representations. These methods and our method in chapter 3 share the same insight: letting a
neural network learn piece-wise linear approximation of a continuous function.

2.3.3.2 Point-Cloud representation.

Instead of modeling volumes, Fan et al. (2017) propose to reconstruct point clouds with neural
networks. In a simplified version of their work, to generate a point cloud with N points, an
embedding is extracted from an input image and later fed to a Multi-Layered Perceptron (MLP)
which outputs N 3-channel neurons. Each neurons then abstract a 3D point. To train the
autoencoder, they compare the Chamfer distance or the Earth-Mover distance Rubner et al.
(2000). While the Chamfer distance is easy to compute since it is an embarrassingly parallel
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Figure 2.15 Point-based reconstructions. Figure from Fan et al. (2017). Qualitative re-
constructions from real-world examples (input image and two views of the 3D
reconstruction). In contrast, our method in chapter 3 generates meshes.

nearest-neighbor based loss, the earth-mover distance computes the optimal transport plan
between the two pointclouds. In this thesis, we also train our deep networks with the Chamfer
Distance.

A limitation of reconstructing point clouds is the lack of surface connectivity (e.g., triangular
surface tessellation), as shown in Figure 2.15. In contrast, in Chapter 3, our new representation
can output directly a mesh.

2.3.3.3 Mesh

Building on Fan et al. (2017), we introduce in Chapter 3, concurrently to Wang et al. (2018a),
the first neural mesh decoder, called AtlasNet. AtlasNet, Pixel2mesh Wang et al. (2018a) and
Pixel2mesh++ Wen et al. (2019) are based on the deformation of a template surface. In contrast
to volumetric approaches, they do not model topological variation well but are well-suited
to model thin-structures. To perform surface deformations of a template mesh into a target
mesh, Pixel2mesh and Pixel2mesh++ rely on graph-CNN for non-euclidean manifold while
we approximate surface deformations with piece-wise linear function encoded in an MLP. We
refer the reader to Wu et al. (2019) for a survey on graph-CNN for non-euclidean surfaces.

Interestingly, the idea of deforming surfaces through MLPs predicting a piece-wise linear
approximation of the deformation concurrently emerges in the work of Yang et al. (2018).
While we apply surface deformation to do single-image reconstruction of meshes, Yang et al.
(2018) use this representation for self-supervised feature learning. More precisely, they train an
autoencoder on 3D shapes and show that the latent features are discriminative since a linear
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Figure 2.16 Mesh-based reconstructions. Figure from Wang et al. (2018a). Qualitative
reconstructions from real-world examples. Results for our method can be found in
chapter 3.

SVM get high classification score with them.

Figure 2.17 compares the latest deep approaches discussed in this section. While there has
been significant progress in single-view reconstruction in the past years, the main challenges
ahead are now to make it work on real world data, scale the current results to full scenes, and
solve the original intrinsic image problem: reconstructing more than plain geometry but also
texture, material properties and illumination (light-fields).

We conclude this section with an interesting discussion initiated by Tatarchenko et al. (2019)
on what do deep autoencoders doing single-view reconstruction actually learn. It is hard to
tell how trained neural networks infer a 3D shape from an image since the whole process is
implicit. The thesis of Tatarchenko et al. (2019) is that they tend more to solve a recognition
problem rather than a reconstruction problem. In other words, they would typically use global
information on the image to select an instance from the training set that looks similar to the
input, but would not rely on local low-level image cues to reconstruct corresponding local 3D
geometry.

Two recognition baselines are proposed to back this claim. The first baseline use k-means
on 3D shapes from ShapeNet and train a classification convolutional neural network to predict
for each train image its cluster center assignment. The second baseline perform shape retrieval:
a CNN is trained to align image embeddings with shape embeddings (obtained with Multi
Dimensional Scaling), then shape are selected via nearest-neighbors in the embedding space.
Both simple recognition baselines outperform deep approaches, which suggests that deep
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Figure 2.17 Deep single-view reconstruction methods comparison. Figure from Xu et al.
(2019). 3DN Wang et al. (2019a), AtlasNet (Chapter 3), Pix2Mesh Wang et al.
(2018a) are based on surface deformation while IMNET Chen and Zhang (2019),
OccNet Mescheder et al. (2019), DISN Xu et al. (2019) predict volumetric func-
tions.
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auto-encoder may also learn recognition under the hood.





Chapter 3

AtlasNet: A Papier-Mache Approach to
Learning 3D Surface Generation
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(a) Possible Inputs (b) Output Mesh from the 2D Image (c) Output Atlas (optimized)

2D Image

(d) Textured Output
3D Point Cloud

(e) 3D Printed Output

Figure 3.1 Given input as either a 2D image or a 3D point cloud (a), we automatically generate
a corresponding 3D mesh (b) and its atlas parameterization (c). We can use the
recovered mesh and atlas to apply texture to the output shape (d) as well as 3D print
the results (e).

Abstract

In this chapter, we introduce the key idea behind the line of work presented in this thesis:
representing 3D surfaces by their deformation of a template and modelling these parametric
deformations with neural networks. In contrast to deep methods generating voxel grids or point
clouds, our approach naturally infers a surface representation of the shape. Beyond its novelty,
our new shape generation framework, AtlasNet, comes with significant advantages, such as
improved precision and generalization capabilities, and the possibility to generate a shape of
arbitrary resolution without memory issues. We demonstrate these benefits and compare to
strong baselines on the ShapeNet benchmark for two applications: (i) auto-encoding shapes,
and (ii) single-view reconstruction from a still image. We also provide results showing its
potential for other applications, such as morphing, parametrization, super-resolution, matching,
and co-segmentation.

The work presented in this chapter was initially presented in:

"AtlasNet: A Papier-Mache Approach to Learning 3D Surface Generation", Thibault
Groueix, Matthew Fisher, Vladimir G. Kim, Bryan Russell, and Mathieu Aubry, In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR 2018).
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3.1 Introduction

Significant progress has been made on learning good representations for images, allowing
impressive applications in image generation Isola et al. (2017); Zhu et al. (2017). However,
learning a representation for generating high-resolution 3D shapes remains an open chal-
lenge. Representing a shape as a volumetric function Choy et al. (2016); Häne et al. (2017);
Tatarchenko et al. (2017) only provides voxel-scale sampling of the underlying smooth and
continuous surface. In contrast, a point cloud Qi et al. (2017a,b) provides a representation
for generating on-surface details Fan et al. (2017), efficiently leveraging sparsity of the data.
However, points do not directly represent neighborhood information, making it difficult to
approximate the smooth low-dimensional manifold structure with high fidelity.

To remedy shortcomings of these representations, surfaces are a popular choice in geometric
modeling. A surface is commonly modeled by a polygonal mesh: a set of vertices, and a
list of triangular or quad primitives composed of these vertices, providing piecewise planar
approximation to the smooth manifold. Each mesh vertex contains a 3D (XYZ) coordinate,
and, frequently, a 2D (UV) embedding to a plane. The UV parameterization of the surface
provides an effective way to store and sample functions on surfaces, such as normals, additional
geometric details, textures, and other reflective properties such as BRDF and ambient occlusion.
One can imagine converting point clouds or volumetric functions produced with existing learned
generative models as a simple post-process. However, this requires solving two fundamental,
difficult, and long-standing challenges in geometry processing: global surface parameterization
and meshing.

In this chapter, we explore learning the surface representation directly. Inspired by the
formal definition of a surface as a topological space that locally resembles the Euclidean plane,
we seek to approximate the target surface locally by mapping a set of squares to the surface
of the 3D shape. The use of multiple such squares allows us to model complex surfaces with
non-disk topology. Our representation of a shape is thus extremely similar to an atlas, as we will
discuss in Section 3.3. The key strength of our method is that it jointly learns a parameterization
and an embedding of a shape. This helps in two directions. First, by ensuring that our 3D
points come from 2D squares we favor learning a continuous and smooth 2-manifold structure.
Second, by generating a UV parameterization for each 3D point, we generate a global surface
parameterization, which is key to many applications such as texture mapping and surface
meshing. Indeed, to generate the mesh, we simply transfer a regular mesh from our 2D squares
to the 3D surface, and to generate a regular texture atlas, we simply optimize the metric of the
square to become as-isometric-as-possible to the corresponding 3D shape (Fig. 3.1).
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Since our work deforms primitive surface elements into a 3D shape, it can be seen as
bridging the gap between the recent works that learn to represent 3D shapes as a set of simple
primitives, with a fixed, low number of parameters Tulsiani et al. (2016) and those that represent
3D shapes as an unstructured set of points Fan et al. (2017). It can also be interpreted as learning
a factored representation of a surface, where a point on the shape is represented jointly by a
vector encoding the shape structure and a vector encoding its position. Finally, it can be seen as
an attempt to bring to 3D the power of convolutional approaches for generating 2D images Isola
et al. (2017); Zhu et al. (2017) by sharing the network parameters for parts of the surface.

Our contributions. In this chapter:

• We propose a novel approach to 3D surface generation, dubbed AtlasNet, which is com-
posed of a union of learnable parametrizations. These learnable parametrizations trans-
form a set of 2D squares to the surface, covering it in a way similar to placing strips of
chapter on a shape to form a papier-mâché. The parameters of the transformations come
both from the learned weights of a neural network and a learned representation of the
shape.

• We show that the learned parametric transformation maps locally everywhere to a surface,
naturally adapts to its underlying complexity, can be sampled at any desired resolution,
and allows for the transfer of a tessellation or texture map to the generated surface.

• We demonstrate the advantages of our approach both qualitatively and quantitatively on
high resolution surface generation from (potentially low resolution) point clouds and 2D
images

• We demonstrate the potential of our method for several applications, including shape
interpolation, parameterization, and shape collections alignment.

All the code is available at the project webpage1.

3.2 Learning representations for 2-manifolds

3D shape analysis and generation has a long history in computer vision. We already discussed
several approaches in Section 2.3, in particular 3D shape generation using deep networks. In
this section, we only discuss the most directly related works for representation learning for
2-manifolds A polygon mesh is a widely-used representation for the 2-manifold surface of 3D
shapes. Establishing a connection between the surface of the 3D shape and a 2D domain, or
surface parameterization, is a long-standing problem in geometry processing, with applications

1https://github.com/ThibaultGROUEIX/AtlasNet.

https://github.com/ThibaultGROUEIX/AtlasNet
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in texture mapping, re-meshing, and shape correspondence Hormann et al. (2008). Various
related representations have been used for applying neural networks on surfaces. The geometry
image representation Gu et al. (2002); Sander et al. (2003) views 3D shapes as functions
(e.g., vertex positions) embedded in a 2D domain, providing a natural input for 2D neural
networks Sinha et al. (2016). Various other parameterization techniques, such as local polar
coordinates Boscaini et al. (2016a); Masci et al. (2015) and global seamless maps Maron et al.
(2017) have been used for deep learning on 2-manifolds.

Unlike these methods, we do not need our input data to be parameterized. Instead, we
learn the parameterization directly from point clouds. Moreover, these methods assume that
the training and testing data are 2-manifold meshes, and thus cannot easily be used for surface
reconstructions from point clouds or images.

3.3 Locally parameterized surface generation

In this section, we detail the theoretical motivation for our approach and present some theoretical
guarantees.

We seek to learn to generate a surface of a 3D shape. A subset S of R3 is a 2-manifold if,
for every point p ∈ S , there is an open set U in R2 and an open set W in R3 containing p such
that S ∩W is homeomorphic to U . The set homeomorphism from S ∩W to U is called a chart,
and its inverse a parameterization. A set of charts such that their images cover the 2-manifold
is called an atlas of the 2-manifold. The ability to learn an atlas for a 2-manifold would allow a
number of applications, such as transfer of a tessellation to the 2-manifold for meshing and
texture mapping (via texture atlases). In this paper, we use the word surface in a slightly more
generic sense than 2-manifold, allowing for self-intersections and disjoint sets.

We consider a local parameterization of a 2-manifold and explain how we learn to approxi-
mate it. More precisely, let us consider a 2-manifold S , a point p ∈ S and a parameterization ϕ

of S in a local neighborhood of p. We can assume that ϕ is defined on the open unit square
]0,1[2 by first restricting ϕ to an open neighborhood of ϕ−1(p) with disk topology where it is
defined (which is possible because ϕ is continuous) and then mapping this neighborhood to the
unit square.

We pose the problem of learning to generate the local 2-manifold previously defined as
one of finding a parameterizations ϕθ(x) with parameters θ which map the open unit 2D
square ]0,1[2 to a good approximation of the desired 2-manifold Sloc. Specifically, calling
Sθ = ϕθ(]0,1[2), we seek to find parameters θ minimizing the following objective function,

min
θ
L(Sθ,Sloc)+λR(θ) , (3.1)
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where L is a loss over 2-manifolds,R is a regularization function over parameters θ, and λ is a
scalar weight. In practice, instead of optimizing a loss over 2-manifolds L, we optimize a loss
over point sets sampled from these 2-manifolds such as Chamfer and Earth-Mover distance.

One question is, how do we represent the functions ϕθ? A good family of functions should
(i) generate 2-manifolds and (ii) be able to produce a good approximation of the desired 2-
manifolds Sloc. We show that multilayer perceptrons (MLPs) with rectified linear unit (ReLU)
nonlinearities almost verify these properties, and thus are an adequate family of functions.
Since it is difficult to design a family of functions that always generate a 2-manifold, we relax
this constraint and consider functions that locally generate a 2-manifold.

Proposition 1. Let f be a multilayer perceptron with ReLU nonlinearities. There exists a finite
set of polygons Pi, i ∈ {1, ...,N} such that on each Pi f is an affine function: ∀x ∈ Pi, f (x) =
Aix+ b, where Ai are 3× 2 matrices. If for all i, rank(Ai) = 2, then for any point p in the
interior of one of the Pis there exists a neighborhood N of p such that f (N ) is a 2-manifold.

The fact that f is locally affine is a direct consequence of the fact that we use ReLU non-
linearities. If rank(Ai) = 2 the inverse of Aix+b is well defined on the surface and continuous,
thus the image of the interior of each Pi is a 2-manifold.

To draw analogy to texture atlases in computer graphics, we call the local functions we
learn to approximate a 2-manifold learnable parameterizations and the set of these functions A
a learnable atlas. Note that in general, an MLP locally defines a rank 2 affine transformation
and thus locally generates a 2-manifold, but may not globally as it may intersect or overlap with
itself. The second reason to choose MLPs as a family is that they can allow us to approximate
any continuous surface.

Proposition 2. Let S be a 2-manifold that can be parameterized on the unit square. For any
ε > 0 there exists an integer K such that a multilayer perceptron with ReLU non linearities and
K hidden units can approximate S with a precision ε.

Proof. This is a consequence of the universal representation theorem Hornik (1991)

In the next section, we show how to train such MLPs to align with a desired surface.

3.4 AtlasNet

In this section we introduce our model, AtlasNet, which decodes a 3D surface given an encoding
of a 3D shape. This encoding can come from many different representations such as a point
cloud or an image (see Figure 3.2 for examples).
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Figure 3.2 Shape generation approaches. All three approaches take as input a latent shape
representation (that can be learned jointly with a reconstruction objective) and
generate as output a set of points. (a) A baseline deep architecture would simply
decode this latent representation into a set of points of a given size. (b) Our approach
takes as additional input a 2D point sampled uniformly in the unit square and uses
it to generate a single point on the surface. Our output is thus the continuous image
of a planar surface. In particular, we can easily infer a mesh of arbitrary resolution
on the generated surface elements. (c) This strategy can be repeated multiple times
to represent a 3D shape as the union of several surface elements.

3.4.1 Learning to decode a surface

Our goal is, given a feature representation x for a 3D shape, to generate the surface of the shape.
As discussed in Section 3.3, an MLP with ReLUs Dθ with parameters θ can locally generate a
surface by learning to map points in R2 to surface points in R3. To generate a given surface,
we need several of these learnable charts to represent a surface. In practice, we consider N
learnable parameterizations φθi for i ∈ {1, ...,N}. To train the MLP parameters θi, we need to
address two questions: (i) how to define the distance between the generated and target surface,
and (ii) how to account for the shape feature x in the MLP? To represent the target surface, we
use the fact that, independent of the representation that is available to us, we can sample points
on it. LetA be a set of points sampled in the unit square [0,1]2 and S a set of points sampled on
the target surface. Next, we incorporate the shape feature x by simply concatenating them with
the sampled point coordinates p ∈ A before passing them as input to the MLPs. Our model is
illustrated in Figure 3.2b. Notice that the MLPs are not explicitly prevented from encoding the
same area of space, but their union should cover the full shape. Our MLPs do depend on the
random initialization, but similar to convolutional filter weights the network learns to specialize
to different regions in the output without explicit biases. We then minimize the Chamfer loss
between the set of generated 3D points and S,

L(θ) = ∑
p∈A

N

∑
i=1

min
q∈S
|φθi (p;x)−q|2 + ∑

q∈S
min

i∈{1, ...,N}
min
p∈A
|φθi (p;x)−q|2 . (3.2)
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The left part of equation 4.3 encourages all the deformed points φθi (p;x) sampled from A
to be close to S. On the contrary, the right part of the equation encourages all the deformed
points q from A to be close to deformed points φθi (p;x) from S.

3.4.2 Implementation details

We consider two tasks: (i) to auto-encode a 3D shape given an input 3D point cloud, and (ii) to
reconstruct a 3D shape given an input RGB image. For the auto-encoder, we used an encoder
based on PointNet Qi et al. (2017a), which has proven to be state of the art on point cloud
analysis on ShapeNet and ModelNet40 benchmarks. This encoder transforms an input point
cloud into a latent vector of dimension k = 1024. We experimented with input point clouds
of 250 to 2500 points. For images, we used ResNet-18 He et al. (2016b) as our encoder. The
architecture of our decoder is 4 fully-connected layers of size 1024, 512, 256, 128 with ReLU
non-linearities on the first three layers and tanh on the final output layer. We always train with
output point clouds of size 2500 evenly sampled across all of the learned parameterizations
– scaling above this size is time-consuming because our implementation of Chamfer loss
has a compute cost that is quadratic in the number of input points. We experimented with
different basic weight regularization options but did not notice any generalization improvement.
Sampling of the learned parameterizations as well as the ground truth point-clouds is repeated
at each training step to avoid over-fitting. To train for single-view reconstruction, we obtained
the best results by training the encoder and using the decoder from the point cloud autoencoder
with fixed parameters. Finally, we noticed that sampling points regularly on a grid on the
learned parameterization yields better performance than sampling points randomly. All results
used this regular sampling.

3.4.3 Mesh generation

The main advantage of our approach is that during inference, we can easily generate a mesh of
the shape.

Propagate the patch-grid edges to the 3D points. The simplest way to generate a mesh of
the surface is to transfer a regular mesh on the unit square to 3D, connecting in 3D the images
of the points that are connected in 2D. Note that our method allows us to generate such meshes
at very high resolution, without facing memory issues, since the points can be processed in
batches. We typically use 22500 points. As shown in the results section, such meshes are
satisfying, but they can have several drawbacks: they will not be closed, may have small holes
between the images of different learned parameterizations, and different patches may overlap.
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Generate a highly dense point cloud and use Poisson surface reconstruction (PSR) Kazh-
dan and Hoppe (2013). To avoid the previously mentioned drawbacks, we can additionally
densely sample the surface and use a mesh reconstruction algorithm. We start by generating a
surface at a high resolution, as explained above. We then shoot rays at the model from infinity
and obtain approximately 100000 points, together with their oriented normals, and then can use
a standard oriented cloud reconstruction algorithm such as PSR to produce a triangle mesh. We
found that high quality normals as well as high density point clouds are critical to the success
of PSR, which are naturally obtained using this method.

Sample points on a closed surface rather than patches. To obtain a closed mesh directly
from our method, without requiring the PSR step described above, we can sample the input
points from the surface of a 3D sphere instead of a 2D square. The quality of this method
depends on how well the underlying surface can be represented by a sphere, which we will
explore in Section 3.5.1.

3.5 Results

In this section we show qualitative and quantitative results on the tasks of auto-encoding 3D
shapes and single-view reconstruction and compare against several baselines. In addition to
these tasks, we also demonstrate several additional applications of our approach.

Data. We evaluated our approach on the standard ShapeNet Core dataset (v2) Chang et al.
(2015). The dataset consists of 3D models covering 13 object categories with 1K-10K shapes
per category. We used the training and validation split provided by Choy et al. (2016) for our
experiments to be comparable with previous approaches. We used the rendered views provided
by Choy et al. (2016) and sampled 3D points on the shapes using Wang et al. (2017).

Evaluation criteria. We evaluated our generated shape outputs by comparing to ground truth
shapes using two criteria. First, we compared point sets for the output and ground-truth shapes
using Chamfer distance (“CD”). While this criteria compares two point sets, it does not take
into account the surface/mesh connectivity. To account for mesh connectivity, we compared
the output and ground-truth meshes using the “Metro” criteria using the publicly available
METRO software Cignoni et al. (1998), which is the average Euclidean distance between the
two meshes.

Points baseline. In addition to existing baselines, we compare our approach to the multi-
layer perceptron “Points baseline” network shown in Figure 3.2a. The Points baseline network
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(a) Ground truth (b) Pts baseline (c) PSR on ours (d) Ours sphere (e) Ours 1 (f) Ours 25 (g) Ours 125

Figure 3.3 Auto-encoder. We compare the original meshes (a) to meshes obtained by running
PSR on the point clouds generated by the baseline (b) and on the densely sampled
point cloud from our generated mesh (c), and to our method generating a surface
from a sphere (d), 1 (e), 25 (f), and 125(g) learnable parameterizations. Notice the
fine details in (f) and (g) : e.g. the plane’s engine and the jib of the ship.

consists of four fully connected layers with output dimensions of size 1024, 512, 256, 7500 with
ReLU non-linearities, batch normalization on the first three layers, and a hyperbolic-tangent
non-linearity after the final fully connected layer. The network outputs 2500 3D points and
has comparable number of parameters to our method with 25 learned parameterizations. The
baseline architecture was designed to be as close as possible to the MLP used in AtlasNet. As
the network outputs points and not a mesh, we also trained a second network that outputs 3D
points and normals, which are then passed as inputs to Poisson surface reconstruction (PSR)
Kazhdan and Hoppe (2013) to generate a mesh (“Points baseline + normals”). The network
generates outputs in R6 representing both the 3D spatial position and normal. We optimized
Chamfer loss in this six-dimensional space and normalized the normals to 0.1 length as we
found this trade-off between the spatial coordinates and normals in the loss worked best. As
density is crucial to PSR quality, we augmented the number of points by sampling 20 points in
a small radius in the tangent plane around each point Kazhdan and Hoppe (2013). We noticed
significant qualitative and quantitative improvements and the results shown in this paper use
this augmentation scheme.

3.5.1 Auto-encoding 3D shapes

In this section we evaluate our approach to generate a shape given an input 3D point cloud
and compare against the Points baseline. We evaluate how well our approach can generate the



3.5 Results 65

Method CD Metro
Oracle 2500 pts 0.85 1.56
Oracle 125K pts - 1.26
Points baseline 1.91 -
Points baseline + normals 2.15 1.82 (PSR)
Ours - 1 patch 1.84 1.53
Ours - 1 sphere 1.72 1.52
Ours - 5 patches 1.57 1.48
Ours - 25 patches 1.56 1.47
Ours - 125 patches 1.51 1.41

Table 3.1 3D reconstruction. Comparison of our approach against a point-generation baseline
(“CD” - Chamfer distance, multiplied by 103, computed on 2500 points; “Metro”
values are multiplied by 10). Note that our approach can be directly evaluated by
Metro while the baseline requires performing PSR Kazhdan and Hoppe (2013).
These results can be compared with an Oracle sampling points directly from the
ground truth 3D shape followed by PSR (top two rows). See text for details.

shape, how it can generalize to object categories not seen during training, and its sensitivity to
the number of patches.

Evaluation on surface generation. We report quantitative results for shape generation from
point clouds in Table 3.1, where each approach is trained over all ShapeNet categories and
results are averaged over all categories. Notice that our approach out-performs the Points
baseline on both the Chamfer distance and Metro criteria, even when using a single learned
parameterization (patch). Also, the Points baseline + normals has worse Chamfer distance than
the Points baseline without normals indicating that predicting the normals decreases the quality
of the point cloud generation.

We also report performance for two “oracle” outputs indicating upper bounds in Table 3.1.
The first oracle (“Oracle 2500 pts”) randomly samples 2500 points+normals from the ground
truth shape and applies PSR. The Chamfer distance between the random point set and the
ground truth gives an upper bound on performance for point-cloud generation. Notice that
our method out-performs the surface generated from the oracle points. The second oracle
(“Oracle 125K pts”) applies PSR on all 125K points+normals from the ground-truth shape. It
is interesting to note that the Metro distance from this result to the ground truth is not far from
the one obtained with our method.

We show qualitative comparisons in Figure 3.3. Notice that the PSR from the baseline point
clouds (Figure 3.3b) look noisy and lower quality than the meshes produced directly by our
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Category Points Ours Ours
baseline 1 patch 125 patches

chair
LOO 3.66 3.43 2.69
All 1.88 1.97 1.55

car
LOO 3.38 2.96 2.49
All 1.59 2.28 1.56

watercraft
LOO 2.90 2.61 1.81
All 1.69 1.69 1.23

plane
LOO 6.47 6.15 3.58
All 1.11 1.04 0.86

Table 3.2 Generalization across object categories. Comparison of our approach with vary-
ing number of patches against the point-generating baseline to generate a specific
category when training on all other ShapeNet categories. Chamfer distance is re-
ported, multiplied by 103, computed on 2500 points. Notice that our approach with
125 patches out-performs all baselines when generalizing to the new category. For
reference, we also show performance when we train over all categories.

method and PSR performed on points generated from our method as described in Section 3.4.3
(Figure 3.3c).

Sensitivity to number of patches. We show in Table 3.1 our approach with varying number
of learnable parameterizations (patches) in the atlas. Notice how our approach improves as we
increase the number of patches. Moreover, we also compare with the approach described in
Section 3.4.3 which samples points on the 3D unit sphere instead of 2D patches to obtain a
closed mesh. Notice that sampling from a sphere quantitatively out-performs a single patch,
but multiple patches perform better.

We show qualitative results for varying number of learnable parameterizations in Figure 3.3.
As suggested by the quantitative results, the visual quality improves with the number of
parameterizations. However, more artifacts appear with more parameterizations, such as close-
but-disconnected patches (e.g., sail of the sailboat) . We thus used 25 patches for the single-view
reconstruction experiments (Section 3.5.2)

Generalization across object categories. An important desired property of a shape auto-
encoder is that it generalizes well to categories it has not been trained on. To evaluate this, we
trained our method on all categories but one target category (“LOO”) for chair, car, watercraft,
and plane categories, and evaluated on the held-out category. The corresponding results are
reported in Table 3.2 and Figure 3.4. We also include performance when the methods are
trained on all of the categories including the target category (“All”) for comparison. Notice
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(a) Not trained on chairs (b) Trained on all categories

Figure 3.4 Generalization. (a) Our method (25 patches) can generate surfaces close to a
category never seen during training. It, however, has more artifacts than if it has
seen the category during training (b), e.g., thin legs and armrests.

pla. ben. cab. car cha. mon. lam. spe. fir. cou. tab. cel. wat. mean
Ba CD 2.91 4.39 6.01 4.45 7.24 5.95 7.42 10.4 1.83 6.65 4.83 4.66 4.65 5.50
PSG CD 3.36 4.31 8.51 8.63 6.35 6.47 7.66 15.9 1.58 6.92 3.93 3.76 5.94 6.41
Ours CD 2.54 3.91 5.39 4.18 6.77 6.71 7.24 8.18 1.63 6.76 4.35 3.91 4.91 5.11
Ours Metro 1.31 1.89 1.80 2.04 2.11 1.68 2.81 2.39 1.57 1.78 2.28 1.03 1.84 1.89

Table 3.3 Single-View Reconstruction (per category). The mean is taken category-wise. The
Chamfer Distance reported is computed on 1024 points, after running ICP alignment
with the GT point cloud, and multiplied by 103. The Metro distance is multiplied by
10.

that we again out-perform the point-generating baseline on this leave-one-out experiment and
that performance improves with more patches. The car category is especially interesting since
when trained on all categories the baseline has better results than our method with 1 patch and
similar to our method with 125 patches. If not trained on cars, both our approaches clearly
outperform the baseline, showing that at least in this case, our approach generalizes better than
the baseline. The visual comparison shown Figure 3.4 gives an intuitive understanding of the
consequences of not training for a specific category. When not trained on chairs, our method
seems to struggle to define clear thin structures, like legs or armrests, especially when they are
associated to a change in the topological genus of the surface. This is expected as these types
of structures are not often present in the categories the network was trained on.

3.5.2 Single-view reconstruction

We evaluate the potential of our method for single-view reconstruction. We compare qualita-
tively our results with three state-of-the-art methods, PointSetGen Fan et al. (2017), 3D-R2N2
Choy et al. (2016) and HSP Häne et al. (2017) in Figure 3.5. To perform the comparison for
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(a) Input (b) 3D-R2N2 (c) HSP (d) PSG (e) Ours

Figure 3.5 Single-view reconstruction comparison. From a 2D RGB image (a), 3D-R2N2
Choy et al. (2016) reconstructs a voxel-based 3D model (b), HSP Häne et al. (2017)
reconstructs a octree-based 3D model (c), PointSetGen Fan et al. (2017) a point
cloud based 3D model (d), and our AtlasNet a triangular mesh (e).

PointSetGen Fan et al. (2017) and 3D-R2N2 Choy et al. (2016), we used the trained models
made available online by the authors. For HSP Häne et al. (2017), we asked the authors to
run their method on the images in Fig. 3.5. Note that since their model was trained on images
generated with a different renderer, this comparison is not absolutely fair. To remove the bias
we also compared our results with HSP on real images for which none of the methods was
trained (Fig. 3.6) which also demonstrates the ability of our network to generalize to real
images.

Figure 3.5 emphasizes the importance of the type of output (voxels for 3D-N2D2 and HSP,
point cloud for PointSetGen, mesh for us) for the visual appearance of the results. Notice the
small details visible on our meshes that may be hard to see on the unstructured point cloud
or volumetric representation. Also, it is interesting to see that PointSetGen tends to generate
points inside the volume of the 3D shape while our result, by construction, generates points on
a surface.
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(a) Input (b) HSP (c) Ours

Figure 3.6 Single-view reconstruction comparison on natural images. From a 2D RGB
image taken from internet (a), HSP Häne et al. (2017) reconstructs a octree-based
3D model (b), and our AtlasNet a triangular mesh (c).

To perform a quantitative comparison against PointSetGen Fan et al. (2017), we evaluated
the Chamfer distance between generated points and points from the original mesh for both
PointSetGen and our method with 25 learned parameterizations. However, the PointSetGen
network was trained with a translated, rotated, and scaled version of ShapeNet with parameters
we did not have access to. We thus first had to align the point clouds resulting from PointSetGen
to the ShapeNet models used by our algorithm. We randomly selected 260 shapes, 20 from
each category, and ran the iterative closest point (ICP) algorithm Besl et al. (1992) to optimize
a similarity transform between PointSetGen and the target point cloud. Note that this opti-
mization improves the Chamfer distance between the resulting point clouds, but is not globally
convergent. We checked visually that the point clouds from PointSetGen were correctly aligned,
and display all alignments on the project webpage2. To have a fair comparison we ran the same
ICP alignment on our results. In Table 3.3 we compared the resulting Chamfer distance. Our
method provides the best results on 6 categories whereas PointSetGen and the baseline are best
on 4 and 3 categories, respectively. Our method is better on average and generates point clouds
of a quality similar to the state of the art. We also report the Metro distance to the original
shape, which is the most meaningful measure for our method.

2http://imagine.enpc.fr/~groueixt/atlasnet/PSG.html.

http://imagine.enpc.fr/~groueixt/atlasnet/PSG.html
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(a) Shape interpolation.

Reference
object

Inferred
atlas

Shape
correspondences

(b) Shape correspondences.

(c) Mesh parameterization.

Figure 3.7 Applications. Results from three applications of our method. See text for details.

To quantitatively compare against HSP Häne et al. (2017), we retrained our method on their
publicly available data since train/test splits are different from 3D-R2N2 Choy et al. (2016) and
they made their own renderings of ShapeNet data. Results are in Table 3.4. More details are in
the supplementary Groueix et al. (2018b).

Chamfer Metro
HSP Häne et al. (2017) 11.6 1.49
Ours (25 patches) 9.52 1.09

Table 3.4 Single-view reconstruction. Quantitative comparison against HSP Häne et al.
(2017), a state of the art octree-based method. The average error is reported, on
100 shapes from each category. The Chamfer Distance reported is computed on 104

points, and multiplied by 103. The Metro distance is multiplied by 10

3.5.3 Additional applications

Shape interpolation. Figure 3.7a shows shape interpolation. Each row shows interpolated
shapes generated by our AtlasNet, starting from the shape in the first column to the shape in the
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last. Each intermediate shape is generated using a weighted sum of the latent representations of
the two extreme shaped. Notice how the interpolated shapes gradually add armrests in the first
row, and chair legs in the last.

Finding shape correspondences. Figure 3.7b shows shape correspondences. We colored
the surface of reference chair (left) according to its 3D position. We transfer the surface colors
from the reference shape to the inferred atlas (middle). Finally, we transfer the atlas colors to
other shapes (right) such that points with the same color are parametrized by the same point in
the atlas. Notice that we get semantically meaningful correspondences, such as the chair back,
seat, and legs without any supervision from the dataset on semantic information.

Mesh parameterization Most existing rendering pipelines require an atlas for texturing a
shape (Figure 3.7c). A good parameterization should minimize amount of area distortion
(Ea) and stretch (Es) of a UV map. We computed average per-triangle distortions for 20
random shapes from each category and found that our inferred atlas usually has relatively
high texture distortion (Ea = 1.9004,Es = 6.1613, where undistorted map has Ea =Es = 1).
Our result, however, is well-suited for distortion minimization because all meshes have disk-
like topology and inferred map is bijective, making it easy to further minimize distortion
with off-the-shelf geometric optimization Kovalsky et al. (2016), yielding small distortion
(Ea=1.0016,Es=1.025, see bottom row for example).

Limitations and impact We describe two limitations with our approach, illustrated in Fig-
ure 3.8. First, when a small number of learned parameterizations are used, the network has
to distort them too much to recreate the object. This leads, when we try to recreate a mesh,
to small triangles in the learned parameterization space being distorted and become large
triangles in 3D covering undesired regions. On the other hand, as the number of learned
parameterization increases, results ave visually less pleasing, showing many small separated
surface elements overlapping and not stitched together. Bednarík et al. (2020) address some of
AtlasNet limitations by introducing different types of regularization, especially conformal, to
limit distorsion and a penalty loss that discourage overlapping. The official Github repository
for AtlasNet incorporate these ideas in a separate branch.

AtlasNet has also inspired other works from the research community. Two papers in
particular propose new ways to use the framework. Williams et al. Williams et al. (2019)
leverage the AtlasNet architecture as a deep geometric prior to reconstruct surfaces from noisy
point-clouds without learning. Lin et al. Lin et al. (2019) adapted our model to reconstruct 3D
meshes from RGB videos. AtlasNet was also used by Hasson et al. (2019b) to jointly reconstruct



72 AtlasNet: A Papier-Mache Approach to Learning 3D Surface Generation

(a) Excess of distortion. Notice how, compared to the original point cloud (left), the generated
pointcloud (middle) with 1 learned parameterization is valid, but the mapping from squares to
surfaces enforces too much distortion leading to error when propagating the grid edges in 3D
(right).

(b) Topological issues. Notice how, compared to the original point cloud (left), the generated
pointcloud (middle) with 125 learned parameterizations is valid, but the 125 generated surfaces
overlap and are not stiched together (right).

Figure 3.8 Limitations. Two main artifacts are highlighted : (a) Excess of distortion when
too small a number of learned parameterizations is used, and (b) growing errors in
the topology of the reconstructed mesh as the number of learned parameterization
increases.

hands and manipulated objects from images, paving to way towards single-image reconstruction
of several objects and their interaction. Finally, Mescheder et al. (2019); Mildenhall et al. (2020);
Park et al. (2019a); Wang et al. (2018b) also use neural networks to model piece-wise linear
approximations of continuous 3D representations, but model volumetric representations instead
of surfaces.

More results We provide some additional results in Annexe A, including :

• 3D autoencoding experiments of human shapes.

• Super Resolution qualitative results on 3D chairs
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• Detailed quantitative results, per category, for SVR and autoencoding experiments on
ShapeNet

• More qualitative results on SVR and autoencoding

• Experiments with regularization

• Shape Correspondence qualitative results.

We also provide interactive results online:

• A 3D web server to compare AtlasNet with 3D-R2N2 Choy et al. (2016) and PointSet-
Gen Fan et al. (2017), on SVR and autoencoding, showing 10 qualitative example for
each of the 13 ShapeNet categories.

• Videos of 3D shape interpolation to complement the results of Figure 3.7a.

3.6 Conclusion

We have introduced an approach to generate parametric surface elements for 3D shapes. We
have shown its benefits for 3D shape and single-view reconstruction, out-performing existing
baselines. In addition, we have shown its promises for shape interpolation, finding shape
correspondences, and mesh parameterization. Our approach opens up applications in generation
and synthesis of meshes for 3D shapes, similar to still image generation Isola et al. (2017); Zhu
et al. (2017).

The next direction we choose to explore more was the potential of AtlasNet to provide
meaningful correspondences between shape. Indeed, as can be seen in Figure 3.7b, we can
infer correspondences between two scans simply by reconstructing them from deformations
of the same template surface. Those correspondences have the advantage of being obtained
without any supervision at this point and are dense. In the next chapter, we are going to build
on this and propose a method for dense correspondences that outperforms the state of the art by
15%.

http://imagine.enpc.fr/~groueixt/atlasnet/viewer-svr/
https://www.youtube.com/watch?v=kp59GLjZUWM
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Abstract

In this Chapter, we show how the idea to learn surface deformations can be build extended to
provide state-of-the-art shape matching results. We introduce Shape Deformation Networks
which jointly encode 3D shapes and correspondences. This is achieved by factoring the surface
representation into (i) a template, that parameterizes the surface, and (ii) a learnt global feature
vector that parameterizes the transformation of the template into the input surface. By predicting
this feature for a new shape, we implicitly predict correspondences between this shape and
the template. We show that these correspondences can be improved by an additional step
which optimize the shape feature by minimizing the Chamfer distance between the input and
transformed template. We demonstrate that our simple approach improves on state-of-the-art
results on the difficult FAUST challenge. We show, on the TOSCA dataset, that our method is
robust to many types of perturbations, and generalizes to non-human shapes. This robustness
allows it to perform well on real unclean, meshes from the the SCAPE dataset our outperform
all other approaches in the SHREC 2019 shape matching challenge.

The work presented in this chapter was initially presented in:

"3D-CODED : 3D Correspondences by Deep Deformation", Thibault Groueix, Matthew
Fisher, Vladimir G. Kim, Bryan Russell, and Mathieu Aubry, In Proceedings of the European
Conference on Computer Vision (ECCV 2018).

(a) Input Shape (b) Template (c) Deformed template

Figure 4.1 Our approach predicts shape correspondences by learning a consistent mesh param-
eterization with a shared template. Colors show correspondences.
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4.1 Introduction

There is a growing demand for techniques that make use of the large amount of 3D content
generated by modern sensor technology. A particular task that would be useful to analyze this
data is to establish reliable 3D shape correspondences between scans from raw sensor data
or between scans and a template 3D shape. This process is challenging due to low sensor
resolution and high sensor noise, especially for articulated shapes, such as humans or animals,
that exhibit significant non-rigid deformations and shape variations.

Traditional approaches to estimating shape correspondences for articulated objects typically
rely on intrinsic surface analysis either optimizing for an isometric map or leveraging intrinsic
point descriptors Sun et al. (2009a). To improve correspondence quality, these methods
have been extended to take advantage of category-specific data priors Boscaini et al. (2016b).
Effective human-specific templates and registration techniques have been developed over the
last decade Zuffi and Black. (2015), but these methods require significant effort and domain-
specific knowledge to design the parametric deformable template, create an objective function
that ensures alignment of salient regions and is not prone to being stuck in local minima, and
develop an optimization strategy that effectively combines a global search for a good heuristic
initialization and a local refinement procedure.

In this chapter, we propose Shape Deformation Networks, a comprehensive, all-in-one
solution to template-driven shape matching. A Shape Deformation Network learns to deform
a template shape to align with an input observed shape. Given two input shapes, we align
the template to both inputs and obtain the final map between the inputs by reading off the
correspondences from the template.

We train our Shape Deformation Network as part of an encoder-decoder architecture, which
jointly learns an encoder network that takes a target shape as input and generates a global
feature representation, and a decoder Shape Deformation Network that takes as input the
global feature and deform the template into the target shape. At test time, we improve our
template-input shape alignment by optimizing locally the Chamfer distance between target and
generated shape over the global feature representation which is passed in as input to the Shape
Deformation Network. Critical to the success of our Shape Deformation Network is the ability
to learn to deform a template shape to targets with varied appearances and articulation. We
achieve this ability by training our network on a very large corpus of shapes.

In contrast to previous work Zuffi and Black. (2015), our method does not require a
manually designed deformable template; the deformation parameters and degrees of freedom
are implicitly learned by the encoder. Furthermore, while our network can take advantage of
known correspondences between the template and the example shapes, which are typically
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available when they have been generated using some parametric model Bogo et al. (2014); Varol
et al. (2017), we show it can also be trained without correspondence supervision. This ability
allows the network to learn from a large collection of shapes lacking explicit correspondences.

We demonstrate that with sufficient training data this simple approach achieves state-of-
the-art results and outperforms techniques that require complex multi-term objective functions
instead of the simple reconstruction loss used by our method.

4.2 Method

Our goal is, given a reference shape Sr and a target shape St , to return a set of point corre-
spondences C between the shapes. We do so using two key ideas. First, we learn to predict
a transformation between the shapes instead of directly learning the correspondences. This
transformation, from 3D to 3D can indeed be represented by a neural network more easily
than the association between variable and large number of points. The second idea is to learn
transformations only from one template A to any shape. Indeed, the large variety of possible
poses of humans makes considering all pairs of possible poses intractable during training. We
instead decouple the correspondence problem into finding two sets of correspondences to a
common template shape. We can then form our final correspondences between the input shapes
via indexing through the template shape. An added benefit is during training we simply need to
vary the pose for a single shape and use the known correspondences to the template shape as
the supervisory signal.

Our approach has three main steps which are visualized figure 5.2. First, a feed-forward
pass through our encoder network generates an initial global shape descriptor (Section 4.2.1).
Second, we use gradient descent through our decoder Shape Deformation Network to refine
this shape descriptor to improve the reconstruction quality (Section 4.2.2). We can then use the
template to match points between any two input shapes (Section 4.2.3).

4.2.1 Learning 3D shape reconstruction by template deformation

To put an input shape S in correspondence with a templateA, our first goal is to design a neural
network that will take S as input and predict transformation parameters. We do so by training
an encoder-decoder architecture. The encoder Eφ defined by its parameters φ takes as input 3D
points, and is a simplified version of the network presented in Qi et al. (2017a). It applies to
each input 3D point coordinate a multi-layer perceptron with hidden feature size of 64, 128 and
1024, then maxpooling over the resulting features over all points followed by a linear layer,
leading to feature of size 1024 Eφ (S). This feature, together with the 3D coordinates of a
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(a) Network training

(b) Local optimization of feature x

(c) Correspondences

Figure 4.2 Method overview. (a) A feed-forward pass in our autoencoder encodes input point
cloud S to latent code E (S) and reconstruct S using E (S) to deform the template
A. (b) We refine the reconstruction D (A,E (S)) by performing a regression step
over the latent variable x, minimizing the Chamfer distance between D (A,x) and
S. (c) Finally, given two point clouds Sr and St, to match a point qr on Sr to a
point qt on St, we look for the nearest neighbor pr of qr in D (A,xr), which is by
design in correspondence with pt ; and look for the nearest neighbor qt of pt on St.
Red indicates what is being optimised.

point on the template p ∈ A, are taken as input to the decoder Dθ with parameters θ, which is
trained to predict the position q of the corresponding point in the input shape. This decoder
Shape Deformation Network is a multi-layer perceptron with hidden layers of size 1024, 512,
254 and 128, followed by a hyperbolic tangent. This architecture maps any points from the
template domain to the reconstructed surface. By sampling the template more or less densely,
we can generate an arbitrary number of output points by sequentially applying the decoder over
sampled template points.



80 3D-CODED : 3D Correspondences by Deep Deformation

This encoder-decoder architecture is trained end-to-end. We assume that we are given as

input a training set of N shapes
{
S(i)

}N

i=1
with each shape having a set of P vertices

{
q j
}P

j=1.
We consider two training scenarios: one where the correspondences between the template and
the training shapes are known (supervised case) and one where they are unknown (unsupervised
case). Supervision is typically available if the training shapes are generated by deforming a
parametrized template, but real object scans are typically obtained without correspondences.

4.2.1.1 Supervised loss.

In the supervised case, we assume that for each point q j on a training shape we know the corre-
spondence p j↔ q j to a point p j ∈A on the template A. Given these training correspondences,
we learn the encoder Eφ and decoder Dθ by simply optimizing the following reconstruction
losses,

Lsup(θ,φ) =
N

∑
i=1

P

∑
j=1
|Dθ

(
p j;Eφ

(
S(i)

))
−q(i)

j |
2 (4.1)

where the sums are over all P vertices of all N example shapes.

4.2.1.2 Unsupervised loss.

In the case where correspondences between the exemplar shapes and the template are not
available, we also optimize the reconstructions, but also regularize the deformations toward
isometries. For reconstruction, we use the Chamfer distance LCD between the inputs Si and
reconstructed point clouds Dθ

(
A;Eφ

(
S(i)

))
. For regularization, we use two different terms.

The first term LLap encourages the Laplacian operator defined on the template and the deformed
template to be the same (which is the case for isometric deformations of the surface). The
second term Ledges encourages the ratio between edges length in the template and its deformed
version to be close to 1. More details on these different losses are given in B. The final loss we
optimize is:

Lunsup = LCD +λLapLLap +λedgesLedges (4.2)

where λLap and λedges control the influence of regularizations against the data term LCD. They
are both set to 5.10−3 in our experiments.

We optimize the loss using the Adam solver, with a learning rate of 10−3 for 25 epochs
then 10−4 for 2 epochs, batches of 32 shapes, and 6890 points per shape.

One interesting aspect of our approach is that it learns jointly a parameterization of the
input shapes via the decoder and to perdict the parameters Eφ (S) for this parameterization via
the encoder. However, the predicted parameters Eφ (S) for an input shape S are not necessarily
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optimal, because of the limited power of the encoder. Optimizing these parameters turns out to
be important for the final results, and is the focus of the second step of our pipeline.

4.2.2 Optimizing shape reconstruction

We now assume that we are given a shape S as well as learned weights for the encoder Eφ

and decoder Dθ networks. To find correspondences between the template shape and the
input shape, we will use a nearest neighbor search to find correspondences between that
input shape and its reconstruction. For this step to work, we need the reconstruction to be
accurate. The reconstruction given by the parameters Eφ (S) is only approximate and can
be improved. Since we do not know correspondences between the input and the generated
shape, we cannot minimize the loss given in equation (4.1), which requires correspondences.
Instead, we minimize with respect to the global feature x the Chamfer distance between the
reconstructed shape and the input:

LCD(x;S) = ∑
p∈A

min
q∈S
|Dθ (p;x)−q|2 + ∑

q∈S
min
p∈A
|Dθ (p;x)−q|2 . (4.3)

Starting from the parameters predicted by our first step x = Eφ (S), we optimize this
loss using the Adam solver for 3,000 iterations with learning rate 5 ∗ 10−4. Note that the
good initialization given by our first step is key since Equation( 4.3) corresponds to a highly
non-convex problem, as shown in Figure 4.8.

4.2.3 Finding 3D shape correspondences

To recover correspondences between two 3D shapes Sr and St , we first compute the parameters
to deform the template to these shapes, xr and xt , using the two steps outlined in section 4.2.1
and 4.2.2. Next, given a 3D point qr on the reference shape Sr, we first find the point p on the
template A such that its transformation with parameters xr, Dθ (p;xr) is closest to qr. Finally
we find the 3D point qt on the target shape St that is the closest to the transformation of p
with parameters xt , Dθ (p;xt). Our algorithm is summarized in Algorithm 2 and illustrated in
Figure 5.2.
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Algorithm 2: Algorithm for finding 3D shape correspondences
Input :Reference shape Sr and target shape St
Output :Set of 3D point correspondences C

1 #Regression steps over latent code to find best reconstruction of Sr and St

2 xr← argminxLCD (x;Sr) #detailed in equation (4.3)
3 xt ← argminxLCD (x;St) #detailed in equation (4.3)
4 C ←∅
5 # Matching of qr ∈ Sr to qt ∈ St
6 foreach qr ∈ Sr do
7 p← argminp′∈A |Dθ (p′;xr)−qr|2

8 qt ← argminq′∈St |Dθ (p;xt)−q′|2
9 C ← C ∪{(qr,qt)}

10 end
11 return C

(a) SURREAL Varol et al. (2017) (b) Bent shapes (c) FAUST Bogo et al. (2014)

Figure 4.3 Examples of the different datasets used in the paper.

4.3 Results

4.3.1 Datasets

4.3.1.1 Synthetic training data.

To train our algorithm, we require a large set of shapes. We thus rely on synthetic data for
training our model.

For human shapes, we use SMPL Bogo et al. (2014), a state-of-the-art generative model
for synthetic humans. To obtain realistic human body shape and poses from the SMPL model,
we sampled 2.105 parameters estimated in the SURREAL dataset Varol et al. (2017). One
limitation of the SURREAL dataset is it does not include any humans bent over. Without
adapted training data, our algorithm generalized poorly to these poses. To overcome this
limitation, we generated an extension of the dataset. We first manually estimated 7 key-joint
parameters (among 23 joints in the SMPL skeletons) to generate bent humans. We then sampled
randomly the 7 parameters around these values, and used parameters from the SURREAL
dataset for the other pose and body shape parameters. Note that not all meshes generated with
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this strategy are realistic as shown in figure 4.3. They however allow us to better cover the
space of possible poses, and we added 3 ·104 shapes generated with this method to our dataset.
Our final dataset thus has 2.3 ·105 human meshes with a large variety of realistic poses and
body shapes.

For animal shapes, we use the SMAL model, which provides the equivalent of SMPL for
several animals Zuffi et al. (2017) . Recent papers estimate model parameters from images,
but no large-scale parameter set is yet available. For training we thus generated models from
SMAL with random parameters (drawn from a Gaussian distribution of ad-hoc variance 0.2).
This approach works for the 5 categories available in SMAL. In SMALR, Zuffi et al. (2018)
showed that the SMAL model could be generalized to other animals using only an image dataset
as input, demonstrating it on 17 additional categories. Note that since the templates for two
animals are in correspondences, our method can be used to get inter-category correspondences
for animals. We qualitatively demonstrate this on hippopotamus/horses in the Annex B.

4.3.1.2 Testing data.

We evaluate our algorithm on the FAUST Bogo et al. (2014), TOSCA Bronstein et al. (2008),
SHREC Dyke et al. (2019b) SCAPE Anguelov et al. (2005) datasets.

The FAUST dataset consists of 100 training and 200 testing scans of approximately 170,000
vertices. They may include noise and have holes, typically missing part of the feet. In this paper,
we never used the training set, except for a single baseline experiment, and we focus on the test
set. Two challenges are available, focusing on intra- and inter-subject correspondences. The
error is the average Euclidean distance between the estimated projection and the ground-truth
projection. We evaluated our method through the online server and are the best public results
on the ’inter’ challenge at the time of submission1.

The SCAPE Anguelov et al. (2005) dataset has two sets of 71 meshes : the first set consists
of real scans with holes and occlusions and the second set are registered meshes aligned to the
first set. The poses are different from both our training dataset and FAUST.

The SHREC Dyke et al. (2019b) dataset has 19 pairs of models to be matched; the pairings
are between a thin clothed mannequin and a larger mannequin, ensuring significant non-
isometry.

TOSCA is a dataset produced by deforming 3 template meshes (human, dog, and horse).
Each mesh is deformed into multiple poses, and might have various additional perturbations
such as random holes in the surface, local and global scale variations, noise in vertex positions,
varying sampling density, and changes in topology.

1http://faust.is.tue.mpg.de/challenge/Inter-subject_challenge

http://faust.is.tue.mpg.de/challenge/Inter-subject_challenge
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4.3.1.3 Shape normalization.

To be processed and reconstructed by our network, the training and testing shapes must be
normalized in a similar way. Since the vertical direction is usually known, we used synthetic
shapes with approximately the same vertical axis. We also kept a fixed orientation around this
vertical axis, and at test time selected the one out of 50 different orientations which leads to
the smaller reconstruction error in term of Chamfer distance. Finally, we centered all meshes
according to the center of their bounding box and, for the training data only, added a random
translation in each direction sampled uniformly between -3cm and 3cm to increase robustness.

4.3.2 Experiments

In this part, we analyze the key components of our pipeline.

4.3.2.1 Results on FAUST.

The method presented above leads to the best results to date on the FAUST-inter dataset: 2.878
cm : an improvement of 8% over state of the art, 3.12cm for Zuffi and Black. (2015) and
4.82cm for Litany et al. (2017). Although it cannot take advantage of the fact that two meshes
represent the same person, our method is also the second best performing (average error of
1.99 cm) on FAUST-intra challenge.

(a) SCAPE Anguelov et al.
(2005)

(b) TOSCA Bronstein
et al. (2008)

(c) TOSCA animals Bronstein et al.
(2008)

Figure 4.4 Other datasets. Left images show the input, right images the reconstruction with
colors showing correspondences. Our method works with real incomplete scans (a),
strong synthetic perturbations (b), and on non-human shapes (c).
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Figure 4.5 Comparison with learning-based shape matching approaches on the SCAPE dataset.
Our method is trained on synthetic data, FMNet was trained on FAUST data, and all
other methods on SCAPE. We outperform all methods except FMNet even though
our method was trained on a different dataset.

4.3.2.2 Results on SCAPE : real and partial data.

The SCAPE dataset provides meshes aligned to real scans and includes poses different from
our training dataset. When applying a network trained directly on our SMPL data, we obtain
satisfying performance, namely 3.14cm average Euclidean error. Quantitative comparison of
correspondence quality in terms of geodesic error are given in Fig 4.5. We outperform all
methods except for Deep Functional Maps Litany et al. (2017). SCAPE also allows evaluation
on real partial scans. Quantitatively, the error on these partial meshes is 4.04cm, similar to the
performance on the full meshes. Qualitative results are shown in Fig 4.4a.

4.3.2.3 Results on SHREC and TOSCA : robustness to perturbations.

The TOSCA dataset provides several versions of the same synthetic mesh with different
perturbations. We found that our method, still trained only on SMPL or SMAL data, is
robust to all perturbations (isometry, noise, shotnoise, holes, micro-holes, topology changes,
and sampling), except scale, which can be trivially fixed by normalizing all meshes to have
consistent surface area. Examples of representative qualitative results are shown Fig 4.4b and
quantitative results are reported in Annexe B.

The SHREC workshop challenge provides several mannequins to be matched in different
poses and with different orientations. Our method, trained only on SMPL data, outperforms all
other approaches compared in the workshop Bouaziz and Pauly (2013); Dyke et al. (2019a);
Li et al. (2019); R3DS (2018); Sahillioğlu (2018); Vestner et al. (2017). This goes to show
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Figure 4.6 Figure from SHREC workshop Dyke et al. (2019b) summarizing a quantitative
comparison of 3D-CODED with learning-based shape matching approaches. Our
method is trained on SMPL data, and is the fastest to converge to 100%.

that 3D-CODED can generalised to other datasets. The quantitative comparison on SHREC is
reported in Figure 4.6, while Figure illustrates the generalization capabilities of 3D-CODED
on SHREC mannequins and a monstrous example provided by Zhongshi Jiang.

We thank Zhongshi Jiang who contributed a qualitative example of a monstrous shape that
further highlight the generalization capabilities of the method.

4.3.2.4 Reconstruction optimization.

Because the nearest neighbors used in the matching step are sensitive to small errors in
alignment, the second step of our pipeline which finds the optimal features for reconstruction, is
crucial to obtain high quality results. This optimization however converges to a good optimum
only if it is initialized with a reasonable reconstruction, as visualized in Figure 4.8. Since we
optimize using Chamfer distance, and not correspondences, we also rely on the fact that the

https://cs.nyu.edu/~zhongshi/
https://cs.nyu.edu/~zhongshi/
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Figure 4.7 Two qualitative examples showing that our method is able to generalize beyond
the SMPL data it was trained on. Left. Figure from SHREC workshop Dyke et al.
(2019b) showing a mannequin reconstruction. Right. We thank Zhongshi Jiang
who contributed this qualitative example of a reconstruction of a monstrous shape
that further highlights the generalization capabilities of the method.

network was trained to generate humans in correspondence and we expect the optimized shape
to still be meaningful.

Table 4.1 reports the associated quantitative results on FAUST-inter. We can see that: (i)
optimizing the latent feature to minimize the Chamfer distance between input and output
provides a strong boost; (ii) using a better (more uniform) sampling of the shapes when training
our network provided a better initialization; (iii) using a high resolution sampling of the
template (∼200k vertices) for the nearest-neighbor step provide an additional small boost in
performance.

Method Faust error (cm)
Without regression 6.29
With regression 3.255
With regression + Regular Sampling 3.048
With regression + Regular Sampling + High-Res template 2.641

Table 4.1 Importance of the reconstruction optimization step. Optimizing the latent feature
is key to our results. Regular point sampling for training and high resolution for the
nearest neighbor step provide an additional boost.

https://cs.nyu.edu/~zhongshi/
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(a) Input (b) Random init. (c) Incorrect init. (d) Valid init.

Figure 4.8 Reconstruction optimization. The quality of the initialization (i.e. the first step
of our algorithm) is crucial for the deformation optimization. For a given target
shape (a) and for different initializations (left of (b), (c) and (d)) the figure shows
the results of the optimization. If the initialization is random (b) or incorrect (c),
the optimization converges to bad local minima. With a reasonable initialization (d)
it converges to a shape very close to the target ((d), right).

4.3.2.5 Necessary amount of training data.

Training on a large and representative dataset is also crucial for our method. To analyze the
effect of training data, we ran our method without re-sampling FAUST points regularly and with
a low resolution template for different training sets: FAUST training set, 2×105 SURREAL
shapes, and 2.3×105, 104 and 103 shapes from our augmented dataset. The quantitative results
are reported Table 4.2 and qualitative results can be seen in Figure 4.9. The FAUST training set
only include 10 different poses and is too small to train our network to generalize. Training
on many synthetic shapes from the SURREAL dataset Varol et al. (2017) helps overcome this
generalization problem. However, if the synthetic dataset does not include any pose close to
test poses (such as bent-over humans), the method will fail on these poses (4 test pairs of shapes
out of 40). Augmenting the dataset as described in section 4.3.1 overcomes this limitation. As
expected the performance decreases with the number of training shapes, respectively to 5.76cm
and 4.70cm average error on FAUST-inter.

training data Faust error (cm)
FAUST training set 18.22
non-augmented synthetic dataset 2×105 shapes 5.63
augmented synthetic data, 103 shapes 5.76
augmented synthetic data, 104 shapes 4.70
augmented synthetic data, 2.3×105 shapes 3.26

Table 4.2 FAUST-inter results when training on different datasets. Adding synthetic data
reduce the error by a factor of 3, showing its importance. The difference in perfor-
mance between the basic synthetic dataset and its augmented version is mostly due
to failure on specific poses, as in Figure 4.3 .
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(a) Input (b) FAUST training data (c) Augm. synth. training data

Figure 4.9 Importance of the training data. For a given target shape (a) reconstructed shapes
when the network is trained on FAUST training set (b) and on our augmented
synthetic training set (c), before (left) and after (right) the optimization step.

4.3.2.6 Unsupervised correspondences.

We investigate whether our method could be trained without correspondence supervision.
We started by simply using the reconstruction loss described in Equation (4.3). One could
indeed expect that an optimal way to deform the template into training shapes would respect
correspondences. However, we found that the resulting network did not respect correspondences
between the template and the input shape, as visualized figure 4.10. However, these results
improve with adequate regularization such as the one presented in Equation (4.2), encouraging
regularity of the mapping between the template and the reconstruction. We trained such a
network with the same training data as in the supervised case but without any correspondence
supervision and obtained a 4.88cm of error on the FAUST-inter data, i.e. similar to Deep
Functional Map Litany et al. (2017) which had an error of 4.83 cm. This demonstrates that our
method can be efficient even without correspondence supervision.

4.3.2.7 Rotation invariance

We handled rotation invariance by rotating the shape and selecting the orientation for which the
reconstruction is optimal. As an alternative, we tried to learn a network directly invariant to
rotations around the vertical axis. It turned out the performances were slightly worse on FAUST-
inter (3.10cm), but still better than the state of the art. We believe this is due to the limited
capacity of the network and should be tried with a larger network. However, interestingly,

Loss Faust error (cm)
Chamfer distance, eq. 4.3 (unsupervised) 8.727
Chamfer distance + Regularization, eq. 4.2 (unsupervised) 4.835
Correspondences, eq. 4.1 (supervised) 2.641

Table 4.3 Results with and without supervised correspondences. Adding regularization helps
the network find a better local minimum in terms of correspondences.
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(a) Input
(FAUST)

(b) P.C.
after optim.

(c) Mesh after op-
tim.

(d) P.C. after
optim+regul

(e) Mesh after
optim+regul

Figure 4.10 Unsupervised correspondences. We visualize for different inputs (a), the point
clouds (P.C.) predicted by our approach (b,d) and the corresponding meshes (c,e).
Note that without regularization, because of the strong distortion, the meshes
appear to barely match to the input, while the point clouds are reasonable. On the
other hand surface regularization creates reasonable meshes.

this rotation invariant network seems to have increased robustness and provided slightly better
results on SCAPE.

4.3.2.8 Failure cases

Figure 4.11 shows the two main sources of error our algorithm faces:

• Nearest-neighbor step in overlapping regions failure: a point is matched with the closest
point in Euclidean distance but the match is very far in geodesic distance. This could be
addressed by adding some regularity in the matches found by the nearest neighbor step.
We leave this to future work.

• Failures in reconstruction: in such cases, the initial guess of the autoencoder is just too
far away from the input, and the regression step fails.

More results We provide some additional results in Annexe B, including:

• Experiments with a different choice of template.

• Quantitative results against perturbations on TOSCA.

• Cross-category correspondences on animals.
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(a) Input (b) Rec. 1 (c) Rec. 2. (d) Error.

Figure 4.11 Error visualization Given the input mesh (a), our autoencoder makes an initial
reconstruction (b), optimized by a regression step (c). The average in centimeters
over each vertex of (a), of the Euclidean distance between its projection and the
ground truth, is reported (d). Red vertices have an error higher than 20cm, blue
ones lower than 2cm. The largest error are observed in places where the Euclidean
distance is small, while the geodesic distance is high, such as touching skin (zoom
in on the leg). In such region, the nearest neighbors step is match a vertex in mesh
A in a distant (in terms of geodesic distance) vertex in mesh A’s reconstruction.
High error can also come from a bad reconstruction, such as the head of the second
example.

• Details on the regularization of the unsupervised loss.

• Experiments with asymmetric Chamfer distance

Note that are available online:

• Online benchmark result for the FAUST inter and intra challenges.

• The workshop paper detailing the comparison of 3D-CODED with other approaches on
SHREC data Dyke et al. (2019b).

4.4 Conclusion

We have demonstrated an encoder-decoder deep network architecture that can generate human
shape correspondences competitive with state-of-the-art approaches and that uses only simple
reconstruction and correspondence losses. Our key insight is to factor the problem into an
encoder network that produces a global shape descriptor, and a decoder Shape Deformation
Network that uses this global descriptor to map points on a template back to the original geom-
etry. A straightforward regression step uses gradient descent through the Shape Deformation
Network to significantly improve the final correspondence quality.

http://faust.is.tue.mpg.de/challenge/Inter-subject_challenge
http://faust.is.tue.mpg.de/challenge/Intra-subject_challenge
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A key element in our approach is the template to be deformed. For humans, we arbitrarily
chose it to be a neutral human. In a subsequent work done by Theo Deprelle, we introduce two
approaches to jointly learn the template surface deformations and learn the optimal template
shape Deprelle et al. (2019). Learning the optimal template shapes yields better shape recon-
structions and thus improves performances for shape matching.

In Chapter 3 and Chapter 4, we have introduced a new way to represent 3D shapes using
deformations encoded by neural networks. Using this new data representation, we made an
important bridge between the matching problem and 3D generation, and advance the state-of-
the-art in both tasks.

Putting shapes in correspondences through a common template is not possible for man-
made shapes, such as chairs, and table because of topological variations. In the next chapter, we
extend the correspondence method to arbitrary categories of object and address two challenges:
it is not possible to define a common template for some complex object categories, and such
categories are also costly and difficult to annotate.



Chapter 5

Unsupervised cycle-consistent
deformation for shape matching
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Abstract

In this chapter, we propose a self-supervised approach to deep surface deformation in the
absence of annotated data for correspondences. In contrast to chapter 4, we do not assume the
existence of a template nor that pairs of shapes differ by an a near-isometric deformations. Given
a pair of shapes from any category, our algorithm directly predicts a parametric transformation
from one shape to the other respecting correspondences. Our insight is to use cycle-consistency
to define a notion of good correspondences in groups of objects and use it as a supervisory
signal to train our network. We demonstrate the efficacy of our approach by using it to transfer
segmentation across shapes. We show, on Shapenet, that our approach is competitive with
comparable state-of-the-art methods when annotated training data is readily available, but
outperforms them by a large margin in the few-shot segmentation scenario.

The work presented in this chapter was initially presented in:

"Unsupervised cycle-consistent deformation for shape matching.", Thibault Groueix, Matthew
Fisher, Vladimir G. Kim, Bryan Russell, and Mathieu Aubry, In Computer Graphics Forum
(SGP 2019).

Figure 5.1 Shape deformation with cycle-consistency. Our approach takes a pair (A,B) of point-
clouds as input and predicts a deformation of A into B. During training, a cycle-consistent
loss on a shape triplet (A, B, C) allows the method to learn semantically consistent de-
formations fA,B, fB,C, fC,A without any priors. Red arrows represent the learned shape
deformation function and green arrows indicate the projection of the deformed shape onto
the nearest point on the surface of the target shape.
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5.1 Introduction

Large collections of 3D models enable data-driven techniques for interactive geometry model-
ing, shape synthesis, image-based reconstruction, and shape completion Mitra et al. (2014).
Many of these techniques require the collection to have additional surface annotations such as
segmentation into functional Yi et al. (2016a) or geometric parts Li et al. (2018a). The notion of
parts and their granularity can vary significantly across different tasks, so many novel applica-
tions require new types of annotations Mo et al. (2019a); Qi et al. (2017a); Wang et al. (2019b).
Deep learning algorithms have recently achieved state-of-the-art in automatically predicting
such surface annotations Qi et al. (2017a,b); Wang et al. (2018b). However, they typically
require a significant number of training examples for every shape category, which limits their
applicability, and bears significant start-up cost in introducing a new type of annotation. In this
chapter, we propose a new deep learning approach which leverages large non-annotated object
collections to perform few-shot segmentation.

We rely on the idea to use shape matching to transfer labels from similar examples. This
approach has been shown to be robust in extreme “few-shot” learning scenarios Yi et al. (2016a)
and can work robustly even in heterogeneous datasets as long as labeled models roughly span
all the shape variations. The few-shots segmentation problem then amount to the fundamental
problem of identifying correspondences between shapes. There is a vast amount of work on
shape matching, which can be roughly separated in two trends: (i) classical optimization based
approaches; (ii) recent approaches where correspondences are directly predicted by a neural
network.

Traditional, optimization-based methods such as iterative closest point (ICP) algorithm,
are fast and effective with good initial guesses and few degrees of freedom (e.g., a rigid mo-
tion) Rusinkiewicz and Levoy (2001). More flexible correspondence algorithms for dissimilar
models usually require significantly more compute time to optimize for larger number of de-
grees of freedom Brown and Rusinkiewicz (2007); Chen and Koltun (2015); Kim et al. (2011).
Since directly matching dissimilar shapes poses significant challenges, these methods often rely
on joint analysis of the entire collection Kim et al. (2012), leveraging cycle consistency priors
during optimization Huang and Guibas (2013); Nguyen et al. (2011). These joint correspon-
dence estimation methods tend to be very compute heavy and as new models are added to the
collection, the entire optimization needs to be repeated. We thus turned to deep learning-based
approaches.

Indeed, with the recent advances in neural networks for geometry analysis, learning-based
methods have been proposed to address the matching problem. We have proposed in Chapter 4 a
deep approach to learn to deform a human body template to the target point cloud, even without
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correspondence supervision. This approach is efficient, however it has to be trained specifically
for each template, limiting this method to analysis of geometrically and topologically similar
shape collections, such as human bodies. If such a template is not available, we showed with
AtlasNet in Chapter 3, that one can pick a very generic shape (e.g., a sphere) and still obtain
some notion of correspondences.

In this chapter, we propose a novel neural network architecture that learns to match shapes
directly, without relying on a pre-defined template, by learning to predict deformations that
aligns points on the source shape to points on the target. Note that the transformation can be
much more complex than a rigid transformation, and that the space of meaningful transformation
is defined implicitly by the (unlabelled) training data. We encode both source and target shapes
and then predict the deformed position for every point on the source conditioned on these two
codes, unlike prior work that use a fixed template common to all the shapes. We show that the
results obtained can be greatly improved if the network is trained not only with a reconstruction
loss, which encourages it to deform the source shape into the target shape, but also using
a cycle consistency loss. Indeed a deformation which respects correspondences should be
consistent between pairs of shapes i.e., the deformation from A to B should be the inverse
of the deformation from B to A . More generally, in larger cycles of shapes [A1, ...,Ai, ..,AN ],
global consistency is achieved if the composition of the N successive mappings from Ai to Ai+1

is identity. This new consistency loss used during training can be seen as playing a role similar
to the global consistency objective used in optimization-based approaches. Finally, our network
is trained in an self-supervised manner using only shape reconstruction and cycle consistency
losses.

We demonstrate the effectiveness of our approach for shape matching by propagating
segmentations in a few-shot learning setting on the ShapeNet part dataset Yi et al. (2016a). We
first show that in this extreme case with very few training examples, PointNet Qi et al. (2017a), a
strongly supervised method, fails to generalize. Then, we propose several strategies for picking
source shapes and propagate the signal from them, using our predicted correspondences. We
demonstrate that even with a simple strategy, such as picking the source with smallest Chamfer
distance, our method is better at transferring segmentations than other fast correspondence
techniques such as ICP with rigid transformation and a learning-based method such as AtlasNet,
that aligns sphere and plane templates.
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(a) Parameter prediction network. (b) Deformation network.

Figure 5.2 Shape Deformation approach. Our methods take as input a pair (source A, target
B) of shapes and aims at predicting the deformation of A in B. In (a), A and B are
encoded with Pointnets Qi et al. (2017a) into a latent feature vector, from which
an MLP predicts transformation parameters, used in (b) to deform A into B, by
stacking Transformation Layers (TL) and Fully-Connected Layers (FC).

5.2 Related Work

The related work on dense shape correspondences and 3D shape segmentation in discussed in
Section 2.2. We discuss methods using cycle-consistency as a supervisory signal and discuss
the specific case of few-shot segmentation.

Cycle-consistent correspondences Nguyen et al. (2011) propose to use cycle-consistency in
a joint optimization to refine pairwise correspondences in a shape collection. Cycle-consistency
was also use in the context of deep learning by Zhou et al. (2016) to train deep networks
to predict correspondences between images of different instances of objects from the same
category. In this work, views rendered from different viewpoints from a 3D model were used
to avoid the trivial identity flow solution, but no correspondence between 3D shapes was
predicted.

Few-shot mesh segmentation We demonstrate the value of our method for few-shot seg-
mentation transfer. While many techniques have been developed for strongly supervised mesh
segmentation Kalogerakis et al. (2017, 2010); Li et al. (2018a); Qi et al. (2017a,b); Wang et al.
(2018b), they typically rely on many training examples and fail in a few-shot scenarios (see
Table 5.1). In these cases, some framework propose to rely on propagating annotations from
most similar annotated shapes via global or local shape matching Yi et al. (2016a). In fact, it
is common for correspondence techniques to be evaluated and used for transferring various
signals between shapes Azencot et al. (2017); Kim et al. (2011); Ovsjanikov et al. (2012).
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5.3 Learning asymmetric cycle-consistent shape matching

We address the surface matching problem by training a model that takes as inputs a source
shape, a target shape, and a point on the source shape and generates the corresponding point
on the target shape. As pointed out in Chapter 3, a learnable model allows for efficient
surface matching, which is in contrast to approaches requiring optimization over a collection of
pairwise shape matches Nguyen et al. (2011).

We assume that shapes are represented as point sets sampled from the shapes’ surface.
Given point sets A and B, our goal is to learn a mapping function fA,B that takes a 3D point
p ∈ A to its corresponding point q ∈ B. If f is a function on points and A a set of points, we
denote by f (A) the set { f (p),∀p ∈ A}.

First, similarly to our work on unsupervised template-based shape correspondence presented
in Chapter 4, we use a Chamfer loss to minimize the distance between deformed source fA,B(A)
and the target B. Unlike prior work, however, we do not assume that all of our shapes are
derived from the same template and directly predict template-free correspondences between
pairs of shapes.

Second, we seek to leverage the success of cycle consistency, which has been used in shape
collection optimization Nguyen et al. (2011) and more recently in self-supervised learning ?,
during training of our learnable mapping function. Formally, for N shapes X1, . . . ,XN that are
assumed to be put into correspondence, we enforce that the learnable mapping function fA,B

satisfies,
∀p ∈ X1, fX1,X2 ◦ · · · ◦ fXN−1,XN ◦ fXN ,X1(p) = p. (5.1)

We use cycle-consistency training losses for cycles of lengths two and three as it implies
consistency for cycles of any length Nguyen et al. (2011). We visualize our cycle-consistency
loss in Figure 5.1.

5.4 Approach

We describe our learnable mapping function fA,B, implemented as a two-stage neural network,
in Section 5.4.1, our training losses in Section 5.4.2, and application to segmentation in
Section 5.4.3.

5.4.1 Architecture

The architecture of our shape transformation model from a source shape A to a target shape
B is visualized in Figure 5.2 and can be separated into two parts: (a) a parameter prediction
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network which outputs transformation parameters given the two shapes (Figure 5.2a); (b) a
deformation network that transforms the first shape into the second one using the predicted
parameters (Figure 5.2b). We now describe these two components.

To predict transformation parameters, A and B are first passed into two independent
PointNet networks Qi et al. (2017a) leading to feature encodings vA and vB of size 512. The
resulting concatenated descriptor vAB = [vA,vB] contains information about the pair (A, B). A
multilayer perceptron (MLP) then predicts transformation parameters vectors p1, · · · , pK from
this concatenated feature.

The deformation network (Figure 5.2b) takes a surface point in R3 and outputs the associated
deformed point. The network is composed of K modules each with the same architecture. Let’s
call xk−1 the input of module k and xk its output. The operation computed by this module is:

xk = Ak (Wk (sk · xk−1 +bk)) , (5.2)

where Wk is the matrix of parameters of a fully-connected layer in R64x64, "·" refers to the
Hadamard (term to term) product, Ak is the activation function for module k and [sk,bk] = pk

are the transformation parameters, both in in R64, corresponding to a scale and a bias in each
dimension. Note that this is similar to the architecture of the T-net modules in Jaderberg et al.
(2015); Qi et al. (2017a), but using fewer predicted parameters. Also note that equation 5.2
is differentiable, which enables the two sub-networks to be trained jointly in an end-to-end
fashion. In all of our experiments we used K = 7 modules, 64 dimensions for each intermediary
feature and ReLU activations for all but the last layer, for which we used a hyperbolic tangent.
We train for 500 epochs with Adam Kingma and Ba (2014) starting with a learning rate of 0.01
divided by 10 after 400 epochs.

5.4.2 Training Losses

We train our deformation by minimizing the sum over several components: a loss enforcing
cycle consistency LCy, Chamfer distance loss LCh, and a self reconstruction loss LSR :

Ltotal = LSR +LCh +LCy

We only use the self-reconstruction loss to stabilize the beginning of the training and disable it
after 30 epochs to focus on cycle consistency and reconstruction losses. We train all parameters
in our network by sampling triplets (A,B,C) of shapes which are needed by our 3-cycle
consistency and enforcing all other losses on all the associated deformations. We first explain
how we sampled these triplets, then detail the different terms of our loss.
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5.4.2.1 Training shape sampling

For our cycle-consistency loss, we require a valid mapping across shape triplet (A, B, C). As
different shape categories may have different topologies, we train category-specific networks.
Furthermore, as there may be topological changes within a single category, for shape A, we
randomly sample shapes B and C from the K nearest neighbors of A under chamfer distance.
We take K = 20 and demonstrate in the ablation study the superiority of this approach over
random sampling of shape triplets.

We apply data augmentation ψ on each sampled shape in this order : a random rotation
around the Z axis of a random angle between −40and40, an anisotropic scaling of random
scale between 0.75 and 1.25, a bounding box normalization, and a small random translation
below 0.03.

5.4.2.2 Cycle-consistency loss

The cycle consistency loss is based on the intuition that a point deformed through any cycle of
deformations should be mapped back to itself. One way to enforce consistency would be to
compute composite functions, for two shapes X and Y minimizing ∥p− fY,X ◦ fX ,Y (p)∥ for all
p in X . However fX ,Y (p) is typically not an element of Y , and computing fY,X ◦ fX ,Y (p) would
thus require computing the deformations fY,X of other points than the points of Y . To avoid this,
we consider instead projections of the deformed shapes to the target shapes. More precisely,
we define the shape projection operator π

πX(p) = argminq∈X∥p−q∥ (5.3)

and enforce 2-cycle consistency between X and Y by minimizing

Cy2(X ,Y ) =
1
|X | ∑

p∈X
|p− fY,X ◦πY ◦ fX ,Y (p)|2 (5.4)

and cycle consistency for the (X ,Y,Z) cycle by minimizing

Cy3(X ,Y,Z) =
1
|X | ∑

p∈X
|p− fZ,X ◦πZ ◦ fY,Z ◦πY ◦ fX ,Y (p)|2 (5.5)

Our full cycle-consistency loss LCy is simply defined by summing over possible all possible
two and three cycles using a sampled triplet (A, B, C).

LCy = ∑
X ,Y,Z∈{A,B,C}s.t.{X ,Y,Z}={A,B,C}

Cy2(X ,Y )+Cy3(X ,Y,Z) (5.6)
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Enforcing 2- and 3-cycle consistency implies consistency for any cycle Nguyen et al. (2011).

5.4.2.3 Reconstruction loss

As discussed in section 5.3, we want to enforce that every point in the target shape is well
reconstructed, but not necessarily that any point in the source shape is mapped to the target
shape, in case some part appear in the source and not the target. We thus used asymmetric
Chamfer distance to quantify how well the network has generated the target shape. More
precisely, given a pair of shapes (X,Y), the asymmetric chamfer Ch(X ,Y ) computes the average
distance between a point q ∈ Y and its nearest neighbor in X .

Ch(X ,Y ) =
1
|X | ∑q∈Y

min
p∈X
∥p−q∥2 . (5.7)

Given a training triplet (A,B,C), we define the reconstruction loss by summing the asym-
metric chamfer loss on all 6 possible (source, target) couples.

LCh = ∑
X ,Y∈{(A,B),(A,C),(B,C)}

Ch( fX ,Y (X),Y )+Ch( fY,X(Y ),X) (5.8)

If segmentation is available for the training shapes, we can compute the distance in equation
5.7 on each segment independently, which would add supervision on the correspondences. We
of course do not use such labels for our few-shot learning experiments, but show in Table 5.2 it
can be used if available to slightly boost our results.

5.4.2.4 Self-reconstruction loss

We can fully supervise the deformation by manually deforming a shape with a known transfor-
mation. We found such a supervision was helpful to stabilize and speed up the beginning of our
training. Concretely, we sampled deformations ψ similar to what we did for data augmentation
(described above in 5.4.2.1) by composing (1) a rotation, (2) an anisotropic scaling, and (3)
a rescaling to a centered bounding box. Given a transformation ψ, we compute the average
distance between the two images of a point p ∈ A under ψ and the predicted mapping function
fA,ψ(A).

SR(A,ψ) =
1
|A| ∑p∈A

∥∥ fA,ψ(A)(p)−ψ(p)
∥∥

2 (5.9)
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Our corresponding self-reconstruction loss LSR is the sum of this loss for each of the three
point clouds in the triplet (A, B, C) with different random transformations.

LSR = SR(A,ψ)+SR(B,ψ′)+SR(C,ψ′′) (5.10)

5.4.3 Application to segmentation

Learning a deformation between two shapes provides an intuitive method to transfer label
information, such as a part segmentation, from a labeled shape to an unlabeled one. In this
formulation, we assume we are given a (small) number of labeled shapes, and seek to label
each point on an unlabeled test shape. This requires us to decide which of the labeled shapes
we should use as the source to propagate labels to the target shapes.

Selection Criteria. Given a target T , We manually define 4 possible source selection criteria:

• Nearest Neighbor: The source shape S that minimizes the Chamfer distance between S
and T is selected.

• Deformation Distance: The source shape S that minimizes the Chamfer distance be-
tween fS,T (S) and T is selected.

• Cosine Distance: The source shape S that minimizes the cosine distance distance be-
tween the PointNet encodings vS and vT is selected.

• Cycle Consistency: The source shape S that minimizes 2-cycle loss for the pair (S,T ) is
selected.

Having selected a pair (S,T ), labels can be transferred directly with our approach.

Voting strategy. Instead of selecting a single source shape to get labels from, combining
several voting shapes allows for better segmentation. We select the K-best sources, and make
each source shape vote with equal weight for the label of each target point. We evaluate the
benefits of this voting approach in Section 5.5.2.2.

5.5 Results

In this section, we show qualitative and quantitative results on the tasks of few-shot and
supervised semantic segmentation and compare against several baselines.
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Figure 5.3 Qualitative results. For each input shape (a), we select the top nearest neighbor
from 400 training examples with part segmentations using the cycle-consistency
criterion (b). We apply our approach to deform the retrieved shape to align with the
input shape (c). Given the deformed shape, we transfer the labels onto the input
shape (d). For each category, we show the top results that maximize IoU with the
ground truth (e). For comparison, we show the Identity baseline in (f). Notice how
our method successfully transfers labels and improves over the baseline.
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Figure 5.4 Failures. Example failures include when a retrieved shape has inconsistent annota-
tion (rows 1,2,5) and poor deformation due to different topology (rows 3,4).

Data and evaluation criteria. We evaluated our approach on the standard ShapeNet part
dataset Yi et al. (2016a). We restricted ourselves to the 5 most populated categories, namely
Airplane, Car, Chair, Lamp, and Table. Point clouds sampled on mesh objects are densely
labeled for segmentation with one to five parts. We follow Qi et al. Qi et al. (2017a) and report
the mean intersection over union (mIoU) between the predicted and ground truth segmentation
across instances in a category.

Baselines. We compare our unsupervised approach against supervised and unsupervised
approaches. We used PointNet as a supervised baseline. Our unsupervised baselines include a
learned approach derived from Atlasnet and variants of iterative closest points (ICP) Besl et al.
(1992); Zhang (1994). As presented in Chapter 3, AtlasNet is a template-based reconstruction
method that predicts a transformation of the template matching the target shape. The learned
deformations have been observed to be semantically consistent. To transfer segmentation labels
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Figure 5.5 Mapping function quality. We apply a checkerboard colorization scheme on the
source (left), and use our approach to deform (middle) the source shape to the
target shape (right). The labels are transferred from the deformed shape to the
target shape through nearest neighbors. For each category, we show a example
of good reconstruction (top) and poor reconstruction (bottom). Notice the high
quality of the mapping in both cases.

from a source to a target, we project the source labels on the source reconstruction through
nearest neighbors, then on the template through dense correspondence between the template
and the source reconstruction. Similarly, we transfer labels on the template to the target by
dense correspondence and nearest neighbors. AtlasNet is trained on the same train/test splits
as our approach. We consider two settings of AtlasNet – with 10 patches or 1 sphere as the
template. Additionally, we use two standard shape alignment baselines. First, labels can be
transferred from source to target through nearest neighbor matching, which we call the Identity
baseline. An immediate refinement over this baseline is to apply ICP to align the source to the
target, and then use nearest neighbors. We call the latter the ICP baseline.

5.5.1 Qualitative Results

Correspondences. In figure 5.5 we visualize in more detail the correspondences obtained
with our approach. We visualize how each point on the source shape is deformed and transferred
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Figure 5.6 Cycle-consistency performance. We apply a checkerboard colorization scheme
on the source (left), and use our approach with cycle-constistency (top) and without
(bottom) to deform (middle) the source shape to the target shape (right). The
labels are transferred from the deformed shape to the target shape through nearest
neighbors.

to the target shape using a colored checkerboard. For each example, we show a successful
deformation (top) and a failure case (bottom). Note how the checkerboard appears nicely
deformed in the case of successful deformation, and still appears consistent on some parts in
the failure cases.

Cycle-consistency. In figure 5.6 we compare the mappings learned by our approach with and
without cycle-consistency loss. The Chamfer Distance is a point based loss with no control over
the amount of distorsion. Notice in this case that the deformed source has large triangles. It
indicates that the mapping learned by a Chamfer loss alone is not smooth, and can’t be used in
label tranfer. On the other hand, the cycle-consistency loss leads to a smooth and high quality
mapping.

Segmentation transfer. When looking at the results, a first surprising observation is the
high quality of the identity baseline (this is quantitatively confirmed in Table 5.2). Indeed, the
different criteria tend to select shapes that are really close to the target. To focus on interesting
examples, we selected in Figure 5.3 the pairs that maximize the performance improvement
provided by our method compared to the identity baseline using the cycle-consistency-selection
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10 shots Selection Criterion Airplane Car Chair Lamp Table

(a) Pointnet - 14.0±8.0 11.7±10.4 21.1±13.1 26.0±13.2 43.5±15.5

(b) Atlasnet Patch Nearest Neighbors 62.6±2.4 52.3±9.1 72.1±1.2 62.8±2.2 61.6±3.7
(c) Atlasnet Sphere Nearest Neighbors 62.2±2.2 52.9±9.1 70.2±1.2 59.3±1.8 60.0±5.1
(d) ICP Nearest Neighbors 65.5±3.1 61.3±1.1 75.8±1.2 64.8±5.0 64.9±3.9
(e) Ours Nearest Neighbors 67.1±2.9 61.4±1.1 78.9±1.1 65.8±5.2 66.1±4.5

(f) Ours Cycle Consistency 67.9±3.0 60.2±3.4 81.8±0.7 69.1±5.4 68.8±4.0
(g) Ours Oracle 74.9±3.0 68.6±2.4 86.4±0.6 80.3±3.8 77.8±2.1

Table 5.1 Few-shot segmentation:. We compare (e, f) our approach with (a) Pointnet Qi et al.
(2017a), a supervised method, trained per category, (b, c) two unsupervised baselines
based on Atlasnet and (e) ICP. We pre-train all (b, c , e, f) unsupervised approaches
on the train splits (without labels). Given a target shape T and 10 segmented train
samples, we select T ’s nearest neighbors S. In Atlasnet (b, c), labels are propagated
through the template. In this approach (e, f, g), labels are propagated from TS to T.
We report in (g) the best performance of our method over the 10 shots. The mean
IoU is reported. Results are averaged over 10 runs.

criterion. The richness of the learned deformations allows our method to find meaningful
correspondences in cases where the training example is far from the target shape and the
identity baseline does not work. Note that the deformations are often far from isometric. Thus,
methods such as 3D-CODED or the approaches of Kanazawa et al. (2018b); Wang et al. (2018a)
that rely on regularization toward isometric deformations, would likely fail.

Failure cases. Figure 5.4 shows failures of our method. We show for each category the pair
(S,T ) which minimizes our segmentation transfer performance. It is clear that the corresponding
shapes are rare and specific object instances. We observe two main sources of errors. First,
in some cases where we correctly deform S in T , the ground truth labeling was inconsistent,
leading to large errors. For example, notice how the source airplane has a single label. Second,
S and T are sometimes too distant topologically so that a high-fidelity reconstruction of T is
impossible by deforming S. For example, notice how the pole of the lamp has been erroneously
inflated to match the target shape.

5.5.2 Quantitative Results

5.5.2.1 Few-shot Segmentation

In this section, we evaluate our approach on the task of transferring semantic labels from a
small set of segmented shapes to unlabeled data.
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Figure 5.7 Criteria and voting strategies. Study of the number of voting shapes for the
transfer of segmentation label, across 4 criteria (see 5.4.3) - Nearest Neighbors,
Deformation Distance, Cosine Distance and Cycle Consistency -, and across 5
Shapenet categories. Our transformation method (solid lines) almost always enhance
the identity baseline (dashed lines). We report a supervised baseline, Pointnet Qi
et al. (2017a) and the oracle source which maximizes IoU for our method. Notice
how the oracle significantly outperforms the Pointnet baseline, making the search
of a strong selection criterion a good direction. Our models are category specific
and trained without segmentation supervision. All of the train set is searched to
maximize each criterion.

We report quantitative results for few-shot semantic segmentation on point clouds in
Table 5.1. Note that the learning-based methods are all trained separately for each category.
Since the results depend on the sampled shapes used in the training set, we report the average
and standard deviation over ten randomly sampled training sets. We use the Nearest Neighbors
criterion to pair sources and targets and compare our approach against all baselines (b, c, d,
e). Notice that our approach out-performs all baselines on all categories. Interestingly, the
AtlasNet baseline is not on par with ICP, hinting at the difficulty of predicting two consistent
deformations of the template.

We find that the Cycle Consistency criterion (f) is a stronger selection criterion than Nearest
Neighbors and boosts the results simply by selecting a better (Source, Target) pair. We also
report an oracle source-shape selection with our approach where the source shape maximising
IoU with the target is selected, which corresponds to the scenario where an optimal source
shape is selected. Notice the large improvement of the oracle, showing the quality of our
deformations and the potential of our method.
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5.5.2.2 Supervised segmentation

Our method is not designed to be competitive when many training samples are available.
Indeed, it solves for the deformation against each of the provided segmented shapes, which
for large numbers of examples can be computationally expensive compared to feed-forward
segmentation predictions like PointNet Qi et al. (2017a). One forward pass through our network
deforms a source shape in a target shape in 7 milliseconds (ms), with a 7ms standard deviation
(std). ICP takes 28 ms with a 17 std1. Here, however, we study the performance of our method
in this case, using the segmentation of the many training shapes as supervision during training
and making the ten best shapes vote during testing. We report results of our unsupervised
method. In addition, we consider adding supervision to our approach by computing Chamfer
distances over points with the same segmentation label. The corresponding results are reported
in Table 5.2

Table 5.2 shows that, when using all the annotations, nearest neighbors is again a sur-
prisingly good baseline, only slightly below performance of PointNet. Despite the good
performance of the identity baseline, our method outperforms it in all categories and per-
forms on par with PointNet. Note that the encoders of our approach incorporate two PointNet
architectures, which makes this result intuitive.

Table 5.2 also highlights the importance of the criterion selection. Notice the significant
boost in each category gained by carefully choosing the selection criterion over the Nearest
Neighbors criterion. The exciting performance of the oracle, way over the PointNet baseline, is
another incentive at carefully designing selection criteria.

Finally, notice that our unsupervised trained model is on par with our supervised one. The
boost gained by supervised training is marginal except in the car category. It confirms that our
cycle-consistent loss is efficient to enforce meaningful part correspondence.

5.5.2.3 Selection criteria and voting strategy

Figure 5.7 shows a quantitative comparison on all criteria, on all category for the identity
baseline and our approach using a voting strategy with different number of shapes. The oracle,
and PointNet performances are also reported. The Deformation Distance criterion outperforms
all other criteria but remains far from the oracle. The oracle performs better than the PointNet
baseline across all categories. As a sanity check, we observe that our method outperforms the
identity baseline in all settings, showing that it helps to apply our method to transfer labels
from S to T .

1We use Open3D Zhou et al. (2018) to compute ICP ran on Intel i7-6900K - 3.2 GHz and run our method on
an NVIDIA TITAN X.
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Selection Airplane Car Chair Lamp Table

(a) Pointnet - 83.4 74.9 89.6 80.8 80.6

(b) Identity NN 81.3 74.0 86.1 78.4 78.9

(c) Ours unsup NN 81.5 73.9 86.6 78.8 79.2
(d) Ours unsup Best criterion 83.4 74.6 88.4 79.8 79.7
(e) Ours unsup Oracle 87.9 78.9 93.0 93.9 89.3

(f) Ours sup NN 81.2 75.9 86.9 78.4 79.0
(g) Ours sup Best criterion 83.5 76.4 88.8 79.3 79.9
(h) Ours sup Oracle 88.0 80.2 93.1 93.4 89.4

Table 5.2 Supervised segmentation:. We compare our approach with (a) Pointnet Qi et al.
(2017a) and (b) Identity baseline. Our approach can be trained with part supervision
(f, g, h) or without (c, d, e). Given a target shape T and the segmented train set, we
compare 3 types of source shapes : (b, c, f) T ’s Nearest Neighbors; (d, g) the best
shape among all criteria see 5.4.3; and (e, h) the a posteriori best shape over all train
sample. A voting strategy is used on the top 10 shapes in (b, c, d, f, g). The mean
IoU is reported.

Figure 5.7 also confirms that using several source shapes is beneficial when many annotated
examples are available. In the limit, when all source shapes vote and selection criterion does
not matter anymore, an average labelling is predicted with poor performances, which again
outlines the importance of source selection. Using nine source shapes performs the best across
most criteria and categories when all the training annotations can be used.

5.5.3 Ablation Study

In this section we conduct an ablation study to empirically validate our approach. Table 5.3
shows performances without the cycle loss, without Chamfer loss, and without any specific
triplet sampling strategy during training, simply selecting random shapes.

Table 5.3 shows that the cycle consistency loss is critical to the success of our method
(relative drop of 23% in IoU). Training without Chamfer distance as a reconstruction loss
performs slightly better than the identity baseline and 3% below our approach. This highlight
the fact that the cycle consistency loss also acts as a reconstruction loss. Finally, our triplet
sampling strategy during training provides a small boost.
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Car/100 shots Nearest Neighbor Oracle

(a) Identity 67.60 73.59

(b) Ours 68.19 75.87
(c) Ours w/o cycle loss 52.78 59.63
(d) Ours w/o chamfer 66.21 74.31
(e) Ours w/o knn restriction 67.70 75.23

Table 5.3 Ablation Study:. Given a target shape T and 100 segmented train samples, we select
T ’s nearest neighbors S (1st column), and the oracle source shape which maximizes
performances for our approach . (2nd column). We compare (a) the identity baseline,
with (b) our approach, trained without label supervision, and (c, d, e) its ablations.
The mean IoU is reported. Results are computed on the Car category.

Figure 5.8 Hyperparameter study. Study of the influence of the cycle consistency loss from
not having it (absciss point "0") to having only the cycle loss (absciss point "inf").
For each target shape, we use the Nearest Neighbors (see 5.4.3) criterion to select
sources from the full training set. A voting strategy is used on the top 10 source
shapes. The mean IoU is reported

5.5.4 Hyperparameter Study

Figure 5.8 demonstrates once more that the cycle-consistency loss is the pivotal insight of our
method. It also outlines the stability of the results for different weightings of our losses. Note
how performances are maintained even in the extreme case with only the cycle-consistency loss.
Indeed, the identity function is not a trivial minimum of the cycle consistency loss because of
the projection step.

5.6 Conclusion

We have extended the correspondence approach of Chapter 4 to arbitrary categories by learn-
ing a parametric transformation between two surfaces and leveraging cycle-consistency as a
supervisory signal to predict meaningful correspondences. Our method does not require an
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object template, can operate without any inter-shape correspondences supervision, and does
not assume the deformation is nearly isometric. We demonstrate that our method is able to
transfer segmentation labels from a very small number of labeled examples significantly better
than state-of-the-art methods, and match the segmentation performance when a larger training
dataset is provided.

We believe that the large gap between our performance and the “oracle shape” which pro-
vides maximal accuracy shows that using learned deformations to transfer labels, investigating
ways to better understand what source models should be selected and new ways to aggregate
information across multiple sources is a very promising research direction.



Chapter 6

Conclusion



114 Conclusion

In this chapter, we summarize our contributions, discuss their impact on the research
community and outline research direction they open.

6.1 Contributions

We introduced a new representation for 3D shape, based on surface deformation, and used it to
advance the state-of-the-art in single-view reconstruction and shape matching.

• In Chapter 3, we propose an atlas-based modeling of 3D shape. The method learns
continuous deformations of a collection of planar patches to reconstruct the surface of a
target object. We showcased the strengths of this representation by reconstructing, from
a single image, 3D objects spanning 13 categories. Since the learned deformation are
continuous, a meshing of the 2D planar patches can be propagated to the 3D surface
via the deformation. This makes AtlasNet the first method able to generate a mesh, at
arbitrary resolution.

• In Chapter 4, we propose to leverage class information to obtain transformations that
respect ground-truth correspondences between shapes. For categories spanned by an
underlying template, we propose to deform the template to reconstruct all target shapes
and predict dense correspondences between two shapes through the template. The
transformations are first learned on a large collection on 3D shapes and then refined at
test-time on each new sample with an unsupervised reconstruction objective. Thus is
this approach, we use learning to provide a good initialization to a local optimization
problem. Our method directly consumes noisy point clouds and we demonstrate it is
robust to different types of perturbation. Our approach to shape matching advances the
state of the art by 15%.

• In Chapter 5, we extend our method to directly deform any shape into any other shape
without using a template. This generalize the previous approach to all categories, even
those for which no natural template exists and no annotated correspondences are available
for training. Our key insight is to use cycle-consistency to regularize the deformations
towards low-distorsion and semantically meaningful deformations. We showcase the
strengths and generality of the approach by transferring attributes in shape collection
with high intra-category variations.
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6.2 Impact

The key take-away from this thesis is that we introduce continuous representations instead
of the traditional discretized methods. In all the chapters of this thesis, our purpose was to
learn deformations from a reference surface to a target surface, which is modeled either with
R2 → R3 functions or R3 → R3 functions. Previous work applies operators on discretized
grids of R2 or R3, which is prohibitive in terms of memory consumption when trying to model
high-resolution objects. Instead, we simply use MLP to learn continuous approximations of 3D
representations. As demonstrated by our experiments, it produces significantly higher quality
reconstructions than prior discretized approaches, at just a fraction of the storage cost.

Taking a more precise look a what those MLPs are doing, one can arguy that they simply
learn optimised discretization of the input space, like octrees would do but in a hand-crafted way.
Indeed, MLPs are piece-wise linear functions and during training, they learns how to discretize
the input space by using the ReLU non-linearities adequately in order to best minimize its loss.
With that in mind, we conjecture that those learned discretization are superior to hand-crafted
regular discretization because they are more efficient: they achieve better results with less
memory consumption.

This conjecture was verified in other works as well. In CVPR 2019, three papers use
MLPs to encode volumetric representation of objects Chen and Zhang (2019); Mescheder
et al. (2019); Park et al. (2019a). In particular, Chen and Zhang (2019); Park et al. (2019a)
model the signed distance function and Mescheder et al. (2019) encode the occupancy function.
Both the signed distance function and the occupancy function are R3→ R functions, and the
results of these three papers once again demonstrated that learning the discretization through
the internal parameters of a deep neural net was the superior approach. Mildenhall et al. (2020)
also demonstrated strong reconstruction results on full 3D scenes using this insight. In their
approach, called Nerf, the radiance functions of a 3D scene, a R5→ R4 function, is encoded in
the weights of an MLP. Their MLP is optimized on a single 3D scene, without learning which
shows that this insight holds not only for learned approaches but also optimization methods.
This is in line with our obervations in 3D-CODED, where we used learning tp train MLPs and
optimized them at test-time on a single 3D shape. Figure 6.1 illustrate the results of Nerf.

All this corpus of work consistently verifies the strength and generality of learning optimized
discretization instead of relying on handcrafted ones. This aspect of our contribution is thus a
general insight that transfers to other types of data such as image and video.
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6.3 The Future

In this section, we discuss three exciting directions to extend the results of the thesis. First, we
propose to explore continuous representations of images and videos. Our second direction is to
enrich 3D representations with semantic attributes that describe material properties. Lastly, we
think that a key to extend the current results to all objects and full 3D scenes is to incorporate
structure in the generation process.

6.3.1 Continuous representation for images and videos

This thesis and other works Chen and Zhang (2019); He et al. (2016b); Mescheder et al. (2019);
Mildenhall et al. (2020) has established the strengths of MLPs to approximate continuous
representation. This general idea could also impact other types of data such as image or
video. A continuous representation for images could be an MLP representing an R2→ R3

function from pixel space to color space. A video could be continuously represented by a MLP
representing a R3→R3 from pixel and time space to color space. First, one obvious advantage
of a continuous representation is that is can be sampled at an arbitrary resolution making
applications like super-resolution of slow-motion trivial to implement. Second, continuous
representations could be useful for compression. Video compression is a major modern tech
challenge since about 80% of internet traffic is videos. Deep learning exploiting redundancy
in video collections could lead to the next important boost in video compression. Lastly,
continuous representation for images and videos also give analytic access to color gradients
with regards to time and image location. This could boost image processing methods currently
using estimated gradients.

6.3.2 Rich 3D representations

Generating more than spatial geometry is one of the next critical challenges in 3D generation.
AtlasNet and later approaches demonstrate that coarse geometry can be generated from a single
image. However, all information about texture, material and light propagation is ignored. These
properties are essential to create quality 3D assets and are captured implicitly in 2D images.
So, moving forward, we want to generate richer 3D representations describing them as well.
Ideally, an enriched 3D model has (1) a quad mesh for spatial geometry, (2) a displacement
map capturing fine geometric details (3) a texture map for color (4) a bidirectional reflectance
distribution function (BRDF) to describe light propagation on the surface. Ideally we would
learn high-quality model generation with a dataset of enriched 3D model but such models are
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Figure 6.1 Figure from Nerf website Mildenhall et al. (2020). Full 3D scene reconstruction
from multi-view images. Nerf remarkably generates more than spatial geometry:
high-resolution texture information is implicitly captured in the scene representation.
Note this is not explicitly shown by Nerf authors here.

in fact scarce in the public domain. Instead, in the following, we detail two scenarios to learn
with multi-view images or videos.

Enriching parametric representations with multi-view images: A first approach to learn
enriched model generation is to use several images looking at the same object. Similar to what
we did in chapter 5, it is possible to use consistency constraints as supervision. A possible cycle
between 2D and 3D representations already proposed in Mildenhall et al. (2020); Sitzmann
et al. (2019) in an optimization context is first 2D image −→ 3D model −→ second 2D image.
In this cycle, from a first image a neural net generates a 3D model, which is rendered from
the viewpoint of a second image. The rendering matches the second image if the generated
3D model meets two conditions: (1) its spatial geometry must be accurate, (2) its properties -
texture, displacement maps and BRDF - must recreate the surface color observed in the second
image. Mildenhall et al. (2020) already show exciting results by optimizing a neural net on a
single 3D scene, as shown in Figure 6.1. A concrete step to take would be to add the BRDF and
the light field to the 3D representations modelled by MLP, simply by augmenting the number
of dimensions of the output of the MLP. Indeed, BRDF and light fields are usually smooth
and regular, and we previously showed with 3D surfaces that neural networks were very good
at parametrizing such families of function. A general advantage of learning 3D generation

http://www.matthewtancik.com/nerf
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with image data is that large-scale image collections are widely available and span much more
object categories than 3D datasets currently do. Thus training from images alone would lead to
a massive step forward in the diversity of objects we can generate.

Enriching parametric representations with videos: Videos also offer rich 3D signal. Com-
pared to multi-view images, the observed object might have its own dynamic motion. In addition
to its inherent material properties, it should be possible to extend 3D generation to model the
time dimension of the object. Time being continuous by nature, 3D object dynamics form a
smooth family of function, and are good candidates to be modelled by neural 3D mappings. A
concrete application would be human tracking in videos, with dense correspondences across
time, done by 3D template fitting like in Chapter 4.

6.3.3 Structured generation of 3D geometry

Deep Structured Generation of full 3D scenes: Current deep generation methods struggle
to generate structured 3D scenes. Works such as Mildenhall et al. (2020) do reconstruct full
3D scenes from multi-view images but without any structure and not in a learning framework.
Structure is also useful for downstream application of scene generation such as animation. One
approach to add structure is to view 3D scenes as arrangements of objects. With this assumption,
a generation method has to understand which objects are present and where they are. Our initial
experiments show that even when restricting ourselves to the minimal synthetic examples of
random arrangement of 3D spheres, AtlasNet fails to perform satisfactory reconstructions. The
main problem in trying to map a set of parts to a target is predicting the occurrence of each part,
because it is a discrete notion, hardly differentiable. Not only improvement in this area could
have a large impact in scaling generation methods from objects to scenes, but we find this to be
a common problem appearing in other works: Li et al. (2018a); Paschalidou et al. (2019) cast
occurrence prediction as supervised deep learning problem, but reinforcement learning might
be a better way to look at it since it is a discrete decision problem Tulsiani et al. (2016). To gain
insights on this problem, one possible approach is to lift in 3D the 2D region proposal methods
(e.g., Faster RCNN Ren et al. (2015)) since they give compelling results on a similar problem
for images. A first concrete step in that direction was taken by Gkioxari et al. (2019) by adding
a mesh decoder branch to a mask-rcnn architecture, in order to reconstruct a 3D scene of each
detected object in an image.

Deep Structured Generation to all 3D objects: Interestingly, objects are to scenes what
elementary parts are to objects. As for scenes, we think generating 3D object with a part
structure is a key step for generalization. Learning parts has the additional long-term advantage
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Figure 6.2 Primitive-based reconstructions. Figure from Deprelle et al. (2019). Qualitative
visualizations of automatically learned primitives (called "learned elementary struc-
tures") for shape reconstruction and matching from real-world examples. This work
complements the approach presented in chapter 3.

of enabling part-based editing of a 3D asset from a human editor. We believe in the following
insight: while there are thousands of object categories and modeling each of them is intractable,
all man-made objects are essentially made of the same parts. For example, an algorithm able
to generate 3D chairs by assembling elementary parts should generalize to tables as those
categories are made of the same elementary parts. We have already taken concrete steps in this
direction. In our NeurIPS publication, Theo Drepelle showed that the elementary parts can
be learned Deprelle et al. (2019). To learn part shapes, the main idea is that template-based
deformation methods such as AtlasNet or 3D-CODED from chapter 3 and 4 are end-end-end
differentiable with regard the template they deform. One possibility to learn parts is thus to
consider the template points as learnable parameters of AtlasNet and 3D-CODED. Deprelle
et al. (2019) also propose another possibility to learn parts by learning their surface deformation
from an initial simple shape, and using them template in AtlasNet or 3D-CODED. Excitingly,
both approaches lead to clear improvement in shape generation and shape matching which goes
to show that learning parts is an important problem. Perhaps even more exciting, the learned
parts tend to have semantic meaning even though no semantic supervision was used during
training. Figure 6.2 shows discovered parts on the plane category including a shape reactor, a
wing and a plane tail.





Appendix A

Additional Results on AtlasNet

This appendix provides more detailed quantitative and qualitative results highlighting the
strengths and limitations of AtlasNet.

A.1 Detailed results, per category

These tables report the metro reconstruction error and the chamfer distance error. It surprisingly
shows that our method with 25 learned parameterizations outperforms our method with 125
learned parameterizations in 7 categories out of 13 for the metro distance, but is significantly
worse on the cellphone category, resulting in the 125 learned parameterizations approach being
better on average. This is not mirrored in the Chamfer distance.

pla. ben. cab. car cha. mon. lam. spe. fir. cou. tab. cel. wat. mean
Baseline PSR 2.71 2.12 1.98 2.24 2.68 1.78 2.58 2.29 1.03 1.90 2.66 1.15 2.46 2.12
Baseline PSR PA 1.38 1.97 1.75 2.04 2.08 1.53 2.51 2.25 1.46 1.57 2.06 1.15 1.80 1.82
Ours 1 patch 1.11 1.41 1.70 1.93 1.76 1.35 2.01 2.30 1.01 1.46 1.46 0.87 1.46 1.53
Ours 1 sphere 1.03 1.33 1.64 1.99 1.76 1.30 2.06 2.33 0.93 1.41 1.59 0.79 1.54 1.52
Ours 5 patch 0.99 1.36 1.65 1.90 1.79 1.28 2.00 2.27 0.92 1.37 1.57 0.76 1.40 1.48
Ours 25 patch 0.96 1.35 1.63 1.96 1.49 1.22 1.86 2.22 0.93 1.36 1.31 1.41 1.35 1.47
Ours 125 patch 1.01 1.30 1.58 1.90 1.36 1.29 1.95 2.29 0.85 1.38 1.34 0.76 1.37 1.41

Table A.1 Auto-Encoder (per category). The mean is taken category-wise. The Metro
Distance is reported, multiplied by 10. The meshes were contructed by propagating
the patch grid edges.
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pla. ben. cab. car cha. mon. lam. spe. fir. cou. tab. cel. wat. mean
Baseline 1.11 1.46 1.91 1.59 1.90 2.20 3.59 3.07 0.94 1.83 1.83 1.71 1.69 1.91
Baseline + normal 1.25 1.73 2.19 1.74 2.19 2.52 3.89 3.51 0.98 2.13 2.17 1.87 1.88 2.15
Ours 1 patch 1.04 1.43 1.79 2.28 1.97 1.83 3.06 2.95 0.76 1.90 1.95 1.29 1.69 1.84
Ours 1 sphere 0.98 1.31 2.02 1.75 1.81 1.83 2.59 2.94 0.69 1.73 1.88 1.30 1.51 1.72
Ours 5 patch 0.96 1.21 1.64 1.76 1.60 1.66 2.51 2.55 0.68 1.64 1.52 1.25 1.46 1.57
Ours 25 patch 0.87 1.25 1.78 1.58 1.56 1.72 2.30 2.61 0.68 1.83 1.52 1.27 1.33 1.56
Ours 125 patch 0.86 1.15 1.76 1.56 1.55 1.69 2.26 2.55 0.59 1.69 1.47 1.31 1.23 1.51

Table A.2 Auto-Encoder (per category). The mean is taken category-wise. The Chamfer
Distance is reported, multiplied by 103.

pla. ben. cab. car cha. mon. lam. spe. fir. cou. tab. cel. wat. mean
metro HSP 1.10 1.84 1.28 1.06 1.61 1.66 1.93 1.77 1.05 1.37 1.93 1.39 1.34 1.49

Ours 25 patch 0.77 1.01 1.04 0.92 1.19 1.22 1.26 1.46 0.95 1.19 1.27 0.83 1.09 1.09
chamfer HSP 2.60 17.4 14.3 1.77 10.0 19.4 9.46 21.7 2.34 12.9 20.2 13.2 4.89 11.6

Ours 25 patch 1.33 14.1 12.5 1.29 7.23 17.5 6.99 17.8 1.69 11.2 17.0 10.6 4.20 9.52

Table A.3 Single-view reconstruction. Quantitative comparison against HSP Häne et al.
(2017), a state of the art octree-based method. The average error is reported, on
100 shapes from each category. The Chamfer Distance reported is computed on 104

points, and multiplied by 103. The Metro distance is multiplied by 10.

A.2 Regularisation

In the autoencoder experiment, we tried using weight decay with different weight. The best
results were obtained without any regularization.

Weight Decay Ours : 25 patches
10−3 8.57
10−4 4.84
10−5 3.42
0 1.56

Table A.4 Regularization on Auto-Encoder (per category). The mean is taken category-
wise. The Chamfer Distance is reported, multiplied by 103.
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A.3 Additional Single View Reconstruction qualitative re-
sults

In this figure, we show one example of single-view reconstruction per category and compare
with the state of the art, PointSetGen and 3D-R2N2. We consistently show that our method
produces a better reconstruction.

A.4 Additional Autoencoder qualitative results

In this figure, we show one example per category of autoencoder reconstruction for the baseline
and our various approaches to reconstruct meshes, detailed in the main paper. We show how
we are able to recreate fine surfaces.

A.5 Additional Shape Correspondences qualitative results

We color each vertex of the reference object by its distance to the gravity center of the object,
and transfer these colors to the inferred atlas. We then propagate them to other objects of the
same category, showing semantically meaningful correspondences between them. Results for
the plane and watercraft categories are shown and generalize to all categories.

A.6 Deformable shapes.

We ran an experiment on human shape to show that our method is also suitable for reconstructing
deformable shapes. The FAUST dataset Bogo et al. (2014) is a collection of meshes representing
several humans in different poses. We used 250 shapes for training, and 50 for validation
(without using the ground truth correspondences in any way). In table A.5, we report the
reconstruction error in term of Chamfer distance and Metro distance for our method with 25
squarred parameterizations, our methods with a sphere parametrization, and for the baseline.
We found results to be consistent with the analysis on ShapeNet. Qualitative results are shown
in figure A.5, revealing that our method leads to qualitatively good reconstructions.

A.7 Point cloud super-resolution

AtlasNet can generate pointclouds or meshes of arbitrary resolution simply by sampling more
points. Figure A.6 shows qualitative results of our approach with 25 patches generating high
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(a) input (b) 3D-R2N2 (c) PSG (d) Ours

Figure A.1 Single-view reconstruction comparison: From a 2D RGB image (a), 3D-R2N2
reconstructs a voxel-based 3D model (b), PointSetGen a point cloud based 3D
model (c), and our AtlasNet a triangular mesh (d).
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(a) Ground truth (b) PSR on ours (c) Ours sphere (d) Ours 25

Figure A.2 Autoencoder comparison: We compare the original meshes (a) to meshes ob-
tained by running PSR (b) on the dense point cloud sampled from our generated
mesh, and to our method generating a surface from a sphere (c), and 25 (d) learnable
parameterizations. pt
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Figure A.3 Shape correspondences: a reference watercraft (left) is colored by distance to the
center, with the jet colormap. We transfer the surface colors to the inferred atlas for
the reference shape (middle). Finally, we transfer the atlas colors to other shapes
(right). Notice that we get semantically meaningful correspondences, without any
supervision from the dataset on semantic information. All objects are generated by
the autoencoder, with 25 learned parametrizations.

Figure A.4 Shape correspondences: a reference plane (left) is colored by distance to the
center, with the jet colormap. We transfer the surface colors to the inferred atlas for
the reference shape (middle). Finally, we transfer the atlas colors to other shapes
(right). Notice that we get semantically meaningful correspondences, such as the
nose and tail of the plane, and the tip of the wings, without any supervision from
the dataset on semantic information. All objects are generated by the autoencoder,
with 25 learned parametrizations.
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Figure A.5 Deformable shapes. Our method learned on 250 shapes from the FAUST dataset
to reconstructs a human in different poses. Each color represent one of the 25
parametrizations.

Chamfer Metro
25 patches 15.47 11.62
1 Sphere 15.78 15.22
1 Ref. Human 16.39 13.46

Table A.5 3D Reconstruction on FAUST Bogo et al. (2014). We trained the baseline and our
method sampling the points according from 25 square patches, and from a sphere
on the human shapes from the FAUST dataset. We report Chamfer distance (x 104)
on the points and Metro distance (x10) on the meshes.
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2500
points

250
points

(a) Low-Res Input (b) High-Res reconstruction

Figure A.6 Super resolution. Our approach can generate meshes at arbitrary resolutions, and
the pointnet encoder Qi et al. (2017a) can take pointclouds of varying resolution
as input. Given the same shape sampled at the training resolution of 2500, or 10
times less points, we generate high resolution meshes with 122500 vertices. This
can be viewed as the 3D equivalent of super-resolution on 2D pixels.

resolution meshes with 122500 points. Moreover, PointNet is able to take an arbitrary number
of points as input and encodes a minimal shape based on a subset of the input points. This is a
double-edged sword : while it allows the autoencoder to work with varying number of input
points, it also prevent it from reconstructing very fine details, as they are not used by PointNet
and thus not present in the latent code. We show good results using only 250 input points,
despite the fact that we train using 2500 input points which shows the capacity of our decoder
to interpolate a surface from a small number of input points, and the flexibility of our pipeline.

A.8 Details on the comparison against HSP Häne et al. (2017)

We perform a quantitative comparison against an octree-based state of the art method. AtlasNet
is trained with 25 learned parameterizations on the same data as their publicly available trained
model1. 100 random samples are drawn from each category from the test split. We evaluated
the the quality of the reconstruction using the Chamfer distance on the unnormalized meshes,
and the metro distance. Voxelised versions of meshes often appear inflated. This bias can
appear for HSP, where we observed that the generated meshes were slightly larger than the

1https://github.com/chaene/hsp.

https://github.com/chaene/hsp
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original meshes. We ran an ICP alignment procedure on the generated meshes for both methods
to remove this bias. In table A.3, we report per category results. As AtlasNet was specifically
trained to optimise the chamfer distance, we outperform HSP in every category. AtlasNet also
outperforms HSP in metro distance in each category for the metro distance, for which none
of the two algorithm where trained to optimise. List of sampled used, ans trained model for
AtlasNet are available in the github repository.





Appendix B

Additional Results on 3D-CODED

B.1 Choice of template

The template is a critical element for our method. We experimented with three different
templates: (i) a “FAUST” template associated with SMPL parameters fitted to a body in a
neutral pose in the FAUST training set, (ii) a “zero” template corresponding to the “zero” shape
of SMPL, and (iii) a “separated” template in which this “zero” shape is modified to have the legs
better separated and the arms higher. In this experiment, the points are not sampled regularly
on the surface, and a low resolution template is used. Figure B.1 shows the different templates,
while table B.1 shows quantitative results using the different templates. Interestingly, the best
results were obtained with the more “natural” template, selected in the “FAUST” training
dataset, rather than with the templates from simple SMPL parameters, where points from
different body parts seem easier to separate.

(a) “FAUST” template (b) “Zero” template (c) “Separated” template

Figure B.1 Shapes for template study. We evaluate three different template shapes used in
our model.
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template 0 Faust error (cm)
“FAUST” template 3.255
“Zero” template 3.385
“Separated” template 3.314

Table B.1 Comparison of different template shapes. We compare different choices for the
template shape shown in Figure B.1. Notice that the neutral “FAUST” template
performs best out of the three tested shapes.

Perturbation Error (cm) Perturbation Error (cm) Perturbation Error (cm)

Noise

1 4.58

Scale

1 4.73

Holes

1 4.71
2 3.87 2 4.78 2 4.71
3 3.93 3 4.66 3 4.72
4 3.67 4 4.62 4 4.69
5 3.91 5 4.67 5 4.84

ShotNoise

1 4.66

Local scale

1 4.18

Microholes

1 4.71
2 2.64 2 3.65 2 4.72
3 3.03 3 3.62 3 4.82
4 2.72 4 3.75 4 4.69
5 3.00 5 3.56 5 3.53

Sampling

1 4.82

Topology

1 3.99

Isometry

1 4.72
2 4.78 2 4.38 2 4.69
3 4.61 3 4.37 3 4.79
4 3.72 4 4.31 4 4.85
5 9.93 5 7.53 5 4.74

Table B.2 Quantitative results for perturbations on TOSCA for the horse category

B.2 Quantitative results for perturbations on TOSCA

We quantitatively evaluate the robustness of our method to perturbation on the TOSCA dataset.
This dataset consists of several versions of the same synthetic mesh with different perturbations,
specifically: noise, shotnoise, sampling, scale, local scale, topology, holes, microholes, and
isometry. We experimented on the horse model. In Table B.2 we report quantitative results for
each perturbation (with a gradual strength from 1 to 5) and show qualitative reconstruction with
correspondences suggested by colors for each category with maximum strength in Figure B.2.
We found that we are robust to all categories of noise under study, except for strong variation in
sampling (964 points instead of 19948) Surprisingly, adding noise can enhance the quantitative
error.
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(a) Noise (b) Shotnoise (c) Holes

(d) Microholes (e) Sampling (f) Topology

(g) Isometry (h) Scale (i) Local scale

Figure B.2 Robustness to perturbations on TOSCA for the horse category. Correspon-
dences are suggested by color. Notice the overall robustness to all perturbations,
with small errors on the ears, tail or legs.
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Figure B.3 Inter-class correspondences on animals. Correspondences are suggested by
color.

B.3 Cross-category correspondances on animals

SMAL synthetic are in correspondences across categories. Hence the template for two dif-
ferent categories are in correspondence and our approach can be trivially extended to get
correspondences for animals from different species. Qualitative evidence of this is show in
Figure B.3.

B.4 Regularization for the unsupervised case

In the unsupervised case of equation 4.2, if the autoencoder is trained using the Chamfer
distance alone, it falls into a bad local minimum with high distorsion of the template to
reconstruct the input shape. For example the left foot is propagated on left hand in Figure 4.10.
This distortion is consistent across shapes, so correspondences are still possible, and perform
reasonably well with an average error of 8.727cm on the FAUST-inter challenge. However, we
expect that by minimizing distorsion in the generated shape, the Shape Deformation Network
will learn to map an arm to an arm, and a foot to a foot, which will naturally encourage
correspondences. We added two regularization losses to achieve this: an edge loss Ledges and a
laplacian loss LLap.
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B.4.1 Edge loss Ledges

Let (V,E) be the graph of the template and V r the reconstructed vertices.

Ledges(V r) =
1

#E
· ∑
(i, j)∈E

|
∥V r

i −V r
j ∥

∥Vi−Vj∥
−1 | (B.1)

This enforces edges to keep the same length in the template and the generated mesh. We use
Ledges = 0.005. For instance, if the length of an edge doubles the contribution to the loss is
Ledges ·1.0 = 0.005 which is equivalent (in terms of contribution to the loss function) to a error
of placement of 7.1cm. In other words, in terms on loss for the network, it is equivalent to
double an edge’s length or to misplace a point by 3.2cm.

B.4.2 Laplacian loss LLap

Similar to Kanazawa et. al. ?, we use the Laplacian regularization. The Laplacian matrix L is
defined as :

Li, j =


di if i = j
−1 if (i, j) ∈ E
0 otherwize

(B.2)

[LV ]i = ∑
(i, j)∈E

Vi−Vj

= di · (Vi−
∑(i, j)∈E Vj

di
)

(B.3)

This is an approximation of the following integral as explained in Sorkine (2006).

lim
γ−→0

1
| γ |

∫
v∈γ

(vi− v)dl(v) =−H(vi) ·ni (B.4)

where:

• H(vi) is the mean curvature

• ni is the surface normal

We follow Meyer et al. (2001) and use cotangent weights in the Laplacian which have been
shown to have better geometric discretization.

[LcV ]i =
1

Ωi
∑
i∼ j

1
2
(cotαi j + cotβi j)(Vi−Vj) (B.5)
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(a) target T (b) Result R (c) R attracts T (d) T attracts R (e) Both ways

Figure B.4 Asymmetric Chamfer loss in reconstruction optimization. Given an input scan,
with holes (a), our network outputs a reconstruction result (b), that can be improved
by an optimization step. When the scan has holes, it is better to only consider a
loss where the scan attracts the reconstruction (d), rather than using a loss where
reconstruction attracts the scan (c), or the Chamfer distance where they attract each
other (e).

where :

• Ωi is the size of the Voronoi cell of i

• αi j and βi j denote the two angles opposite of edge (i, j)

Our Laplacian loss is thus written :

LLap(V g) = 1t ·Lc · (V template−V r) (B.6)

We use λlaplace = 0.005. In practice we notice that using Laplacian regularization constrains
the network to keep sound surfaces. It may still suffer from error in symmetry and can still
invert right and left, and front and back.

B.5 Asymmetric Chamfer distance

Figure B.4 illustrates that optimizing an asymmetric Chamfer distance can in some cases,
especially when the 3D scans have holes, produce qualitatively better results. However, Ta-
ble B.3 shows that the symmetric version of the Chamfer distance performs better. Investigating
how other losses behave, such the Earth-Mover distance loss (also known as Wasserstein loss)
behave is left to future work.
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Method Faust error (cm)
Without regression 6.29
With regression, Chamfer asym (R attracts T) 4.023
With regression, Chamfer asym (T attracts R) 3.336
With regression (both ways) 3.255

Table B.3 Analysis on the Chamfer distance. We compare the latent feature search with
Chamfer Distance against latent feature searches with asymmetric Chamfer distances.
On average, the Chamfer distance (symmetric) performs better (no regular sampling
on the surface, low-resolution template).
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