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Abstract

The goal of stylized rendering is to render 3D scenes in the visual style
intended by an artist. This often entails reproducing, with some degree of
automation, the visual features typically found in 2D illustrations that con-
stitute the “style” of an artist. Examples of these features include the de-
piction of light and shade, the representation of the contours of objects, or
the strokes on a canvas that make a painting. This field is relevant today
in domains such as computer-generated animation or video games, where
studios seek to differentiate themselves with styles that deviate from photo-
realism. In this thesis, we explore stylization techniques that can be easily
inserted into existing real-time rendering pipelines, and propose two novel
techniques in this domain.

Our first contribution is a workflow that aims to facilitate the design of
complex stylized shading models for 3D objects. Designing a stylized shad-
ing model that follows artistic constraints and stays consistent under a vari-
ety of lighting conditions and viewpoints is a difficult and time-consuming
process. Specialized shading models intended for stylization exist but are
still limited in the range of appearances and behaviors they can reproduce.
We propose a way to build and experiment with complex shading models
by combining several simple shading behaviors using a layered approach,
which allows a more intuitive and efficient exploration of the design space of
shading models.

In our second contribution, we present a pipeline to render 3D scenes in
painterly styles, simulating the appearance of brush strokes, using a combi-
nation of procedural noise and local image filtering in screen-space. Image
filtering techniques can achieve a wide range of stylized effects on 2D pic-
tures and video: our goal is to use those existing filtering techniques to stylize
3D scenes, in a way that is coherent with the underlying animation or cam-
era movement. This is not a trivial process, as naive approaches to filtering
in screen-space can introduce visual inconsistencies around the silhouette of
objects. The proposed method ensures motion coherence by guiding filters
with information from G-buffers, and ensures a coherent stylization of silhou-
ettes in a generic way.





Résumé

Le but du rendu stylisé est de produire un rendu d’une scène 3D dans le
style visuel particulier voulu par un artiste. Cela nécessite de reproduire au-
tomatiquement sur ordinateur certaines caractéristiques d’illustrations tradi-
tionnelles: par exemple, la façon dont un artiste représente les ombres et la
lumière, les contours des objets, ou bien les coups de pinceau qui ont servi
à créer une peinture. Les problématiques du rendu stylisé sont pertinentes
dans des domaines comme la réalisation de films d’animation 3D ou le jeu
vidéo, où les studios cherchent de plus en plus à se démarquer par des styles
visuels originaux. Dans cette thèse, nous explorons des techniques de stylisa-
tion qui peuvent s’intégrer dans des pipelines de rendu temps-réel existants,
et nous proposons deux contributions.

La première est un outil de création de modèles d’illumination stylisés
pour des objets 3D. La conception de ces modèles est complexe et coûteuse
en temps, car ils doivent produire un résultat cohérent sous une multitude
d’angles de vue et d’éclairages. Nous proposons une méthode qui facilite la
création de modèles d’illumination pour le rendu stylisé, en les décomposant
en sous-modèles plus simples à manipuler.

Notre seconde contribution est un pipeline de rendu de scènes 3D dans
un style peinture, qui utilise une combinaison de bruits procéduraux 3D et
de filtrage en espace écran. Des techniques de filtrage d’image ont déjà été
proposées pour styliser des images ou des vidéos: le but de ce travail est
d’utiliser ces filtres pour styliser des scènes 3D tout en gardant la cohérence
du mouvement. Cependant, directement appliquer un filtre en espace écran
produit des défauts visuels au niveau des silhouettes des objets. Nous pro-
posons une méthode qui permet d’assurer la cohérence du mouvement, en
guidant les filtres d’images avec des informations sur la géométrie extraites
de G-buffers, et qui élimine les défauts aux silhouettes.
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Chapter 1

Introduction

1.1 Introduction to stylized rendering

Stylized rendering has also been historically called “non-photorealistic ren-
dering” (NPR). This term naturally draws a comparison to its counterpart,
photorealistic rendering: where photorealism strives to simulate as accu-
rately as possible the behavior of light in a scene according to physical rules,
stylized rendering instead tries to follow the depiction rules of illustrators,
which rely on abstraction, simplification, or emphasis of particular features
of a scene. Artists being human, these rules are arguably much harder to
formalize.

In short, the goal of stylized rendering is to propose methods to pro-
duce images and animations, in a computer-assisted way, that exhibit “styl-
ized” features. Typically, stylized features include the visual characteristics
of hand-drawn 2D illustration, such as enhanced contour lines, or brush
strokes. But more generally, this can be any visual feature that is not the
result of a physical simulation of light propagation, but that instead results
from an artistic intention.

In this thesis, we focus in particular on the depiction of 3D scenes, which is
the production of a 2D picture that represents a 3D scene, in a chosen artistic
style. Notably, this focus excludes most forms of abstract art, whereby the
goal is not necessarily to depict a “real” 3D scene, but instead to express ab-
stract visuals or concepts. It is also distinct from purely computer-generated
art, or algorithmic art which is generated by an algorithm without the under-
lying goal of reproducing a 3D scene.

Stylized rendering methods provide some degree of automation that alle-
viates the work of an artist: currently, most stylized animations are made by
painting every frame by hand, which requires large amounts of artist time
(Figure 1.1). Automatic stylization can alleviate this process and facilitate
the work of artists, allowing them to focus on the exploration of different
styles: given some description of an artistic style, stylized animations could
instead be produced with standard 3D animation techniques on the under-
lying scene, i.e. moving objects around in the scene, or moving the camera
viewpoint.

The field of stylized rendering is still relevant today: while the increase
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in graphics processing power fostered the developement of efficient pho-
torealistic rendering techniques, it did not have the same impact on non-
photorealistic techniques, and there is still a growing demand for looks that
deviate from pure photorealism and the historical look of 3D computer graph-
ics. This is especially true in “artistic” domains such as in animation or video
games, as studios seek novel and distinctive styles to differentiate themselves
from competitors. For video games, automatic stylization is even more im-
portant because of the unpredictability of some parameters: notably, the cam-
era viewpoint and the lighting of the scene. Players can control these in a
way that the artist cannot predict at design time, and the stylization tech-
nique must remain coherent under every configuration. Additionally, styl-
ized rendering is often used in other interactive contexts, such as scientific
visualization, architectural visualization, historical reconstruction, or cartog-
raphy. While some of these applications are arguably less “artistic”, they
nevertheless share many of the same challenges: abstraction, emphasis, etc.

Automatic depiction of 3D scenes in a particular artistic style is a long-
standing challenge in the computer graphics community. It differs from pho-
torealistic rendering in the depiction of several features:

Contour lines: In traditional illustration, the contours of objects are often
drawn explicitly as they convey important clues about the shape. This
corresponds to the NPR subdomain of line-based rendering.

Light and shade: Illustrators depict illumination in a scene in ways that de-
viate significantly from photorealism. Examples of this include the
placement and shape of highlights on an object. Again, this is for clar-
ity and expressivity purposes. The stylized shading subdomain of NPR
strives to model the rules for the depiction of light and shade in vari-
ous contexts (paintings, technical illustration, etc.), and also to provide
tools to design such shadings directly in 3D scenes.

Marks: Traditional paintings are made with marks in the picture plane (e.g.
brush strokes) that do not correspond directly to a point on the surface
of the depicted object. This contrasts with traditional computer graph-
ics, where the fundamental unit of depiction is the pixel instead of the
stroke: pixels map directly to a point on a surface by projection. Some
techniques reproduce the appearance of paintings by directly emulat-
ing the painting process: i.e. explicitly placing and rendering discrete
strokes on a canvas. This forms the domain of stroke-based rendering.
However, this is not the only way: for instance, appearance transfer tech-
niques can transfer painterly styles from an input exemplar image to a
target image without explicitly manipulating discrete strokes.

There exists a great variety of artistic styles, and thus different rules and
processes to depict contours and shading, and to place brush strokes, that
vary from artist to artist. Traditional painting alone already represents a near-
endless source of style examples, with its many different media, techniques,
and tools, each with their own distinctive visual characteristics. Since more
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FIGURE 1.1: Top: screen capture from The Old Man and the Sea,
made by hand with approximately 29000 oil-painted frames.
Bottom: screen capture from Loving Vincent, 65000 oil-painted
frames, hand-painted by a team of 100 painters. Alleviating the
work needed to produce such animations and allowing artists
to explore new, more complex styles is one of the goals of styl-

ized rendering.

recently, a greater variety of styles is attainable through digital painting, the
use of computer tools that emulate painting on a digital canvas. This diver-
sity makes it hard to formulate a common framework for stylized rendering.
Instead, a lot of techniques focus on reproducing one style in particular. For
example, specialized stylization techniques have been proposed to reproduce
the appearance of oil paintings [Sem+16], or watercolor [Bou+06].

Another challenge lies in the fact that many artistic styles exhibit visual
properties that are fundamentally related to the two-dimensional nature of
the picture plane. This raises profound questions about how to translate and
apply an artistic style to a 3D animation:

• First, how should the style look like when animated? For many styles,
there are no animated references that we can compare the synthesized
result against. Also, creating convincing animations of 3D scenes that
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retain a 2D look is challenging: naive approaches to animate a style ex-
hibit distracting visual artifacts, due to the well known problem of tem-
poral coherence [BBT11] of stylized animations. We provide an overview
of this problem in Section 1.3.

• Second, what user interface should we provide to control the appear-
ance of the animated styles? What degree of control should we offer to
the artist over the end result? We will see that there is usually a tradeoff
between the degree of local control offered to the user and the applica-
bility of the method in varying scenarios.

The goal of this thesis is twofold: first, to propose stylized rendering tech-
niques that are easily and intuitively controllable by artists, and usable in
interactive contexts. Second, we strive to explore new rendering techniques
that can reproduce a wider range of styles, while still keeping an acceptable
degree of temporal coherence.

In this regard, we make two contributions for stylizing 3D scenes in in-
teractive contexts: a tool to design stylized shading models using intuitive
primitives, and a novel screen-space rendering technique to reproduce a va-
riety of styles using image filters with improved motion coherence.

Before going into more details about these contributions in Chapters 2
and 3, we first present general notions related to stylization of 3D scenes:

• In Section 1.2, we present the notion of style as proposed by Willats
and Durand [WD05], and its different components. The vocabulary
they introduced is useful to describe and classify stylization techniques
in the rest of this thesis.

• In Section 1.3, an overview of the issue of temporal coherence of stylized
animations is provided. This is useful to understand the design choices
made when exploring stylization techniques.

• In Section 1.4, we explore the stylized rendering under the technical
angle: i.e. how stylization is implemented in traditional real-time ren-
dering pipelines. We describe ways to do stylization at different stages,
and show that they correspond to different tradeoffs in the temporal
coherence issue.

• Finally, in Section 1.5, we explore the stylization under the angle of user
interaction: we list several interaction techniques, with concrete exam-
ples, and show that they do not provide the same degree of artistic
control over the result.

1.2 Defining artistic style

Before diving into the technical details and challenges of rendering a 3D
scene in a particular artistic style, it is necessary to clarify what is meant by
“style”.
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Generally, the notion of artistic style encompasses many aspects. It can
refer to the medium used: whether it’s an oil painting, a watercolor, a digital
painting, a sculpture, a 3D model, etc. It can also refer to painting techniques
or the appearance of brush strokes on a picture: the thin, visible brush strokes
of impressionism or the small dots of paint of pointillism. Style can also be rec-
ognized through the ways light and shade are depicted. Indeed, the treat-
ment of lighting varies widely between different kinds of illustration: for
instance, there is a clear difference between the smooth depiction of shade
in renaissance paintings and the sharp contrasts between light and shadow
in comic book illustration. Style is also recognizable in the shape and form
of depicted objects: while some illustrators strive to reach optical realism,
respecting proportions, perspective and foreshortening, others opt for more
abstracted, deformed, or deconstructed shapes. This diversity of style is es-
pecially striking in comic-book illustration, which is also concerned with the
depiction of movement.

At first glance, the multitude of aspects makes the notion of artistic style
hard to formalize. Willats and Durand [WD05] organized these all these as-
pects in four systems, involved in the depiction of 3D scenes:

• The spatial system, which controls the mapping of 3D spatial properties
to 2D properties. Typically, this represents the projection matrices used
to map 3D coordinates to 2D.

• The primitive system, which "maps primitives in object space (points,
lines, surfaces, volumes) to primitives in picture space (points, lines,
regions)". For instance, line-based rendering must perform a mapping
from the silhouette lines in 3D space to lines in the picture plane.

• The attribute system, which determines the rendering attributes (color,
texture, width, etc.) of the picture primitives. Shading is an example
of attribute system that assigns a color to primitives from a lighting
environment.

• The mark system, which governs how the primitives are rendered ac-
cording to their attributes. As Willats and Durand note, the marks
used in traditional computer graphics are simply the pixels of the im-
age. However, in stylized rendering, more complex marks systems can
be used (e.g. stroke-based rendering, where primitives (points, lines, re-
gions) are depicted by placing and rendering brush strokes on the pic-
ture plane.)

This separation into systems provides a useful framework for classifying
computer depiction techniques: we occasionally refer to these terms when
describing a stylization method.

The contributions we propose in this thesis are related to the attributes
and mark systems. First, we propose a way to create stylized shading, which
can be seen as an attribute system that defines the color of primitives accord-
ing to parameters of the scene (the light sources). Our second contribution is
a set of image processing techniques to render stylization marks on 3D scenes,
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driven by various attributes (including shading): this falls in the category of
mark systems.

1.3 Temporal coherence of animations

As we’ve seen, stylized depiction of 3D scenes involves both the motion of
3D objects and the motion of 2D features that live in the picture plane. There
is a fundamental mismatch between those two spaces, which gives rise to
the issue of temporal coherence. In this section, we explore this mismatch in
more detail, and describe what is needed to ensure the temporal coherence
of animations.

1.3.1 Primary and secondary space

In the context of traditional and computer depiction, a distinction is made
between the primary space, which is the coordinate space where the scene
“lives”, and the secondary space, which is where the scene is drawn [WD05].
Primary space is the 3D cartesian space, and the secondary space is usually a
2D cartesian space that represents the canvas, physical or virtual.

Willats and Durand remarked that traditional computer graphics focus on
the description of geometry in the primary space. Yet, they also argue that
describing a style in secondary space (the 2D picture plane) allows for more
flexibility in the specification of the depiction rules of traditional illustration,
and generally leads to more intuitive user interfaces.

An illustration of this is the treatment of brush strokes: in contrast from
photorealistic rendering, which uses individual pixels as the mark system,
rendering techniques that strive to reproduce the look of 2D illustrations
must reproduce the brush (or pencil, etc.) strokes used by the artist. These
marks fundamentally “live” in the 2D picture plane: they are placed on the
canvas during painting, and are not part of the artist’s mental model of the
3D scene. This is why many stylized rendering techniques describe and ren-
der marks in the secondary space (also assimilated to screen-space, in the con-
text of rendering), with attributes also defined in secondary space (for exam-
ple the size and orientation of marks on the screen).

1.3.2 Fundamental goals of temporally coherent animations

Describing and rendering marks in the secondary space becomes more com-
plex when animation comes into play. Indeed, when the viewpoint of the
camera changes, or the objects in the scene move, the marks used to render
the scene must update accordingly, and special care must be taken to en-
sure the temporal coherence of the resulting animation, as naive approaches
often exhibit distracting artifacts: marks suddenly appearing and disappear-
ing from frame to frame (popping artifacts), or that appear to slide on objects
(sliding artifacts), creating parasitic secondary motion.
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Flatness

Motion coherence Temporal continuity

FIGURE 1.2: The three goals of temporally coherent anima-
tions: motion coherence (marks follow the motion of the under-
lying objects closely), temporal continuity (marks do not flicker
from frame to frame), and flatness (the result has a 2D appear-
ance, as if painted on a canvas). The tradeoff between those
three properties is represented by Bénard, Bousseau, and Thol-

lot [BBT11] as a triangle.

This is inherently a difficult problem because the motion of 2D marks is
constrained to the picture plane, and is often at odds with the 3D motion of
the underlying scene. Bénard, Bousseau, and Thollot [BBT11] have formal-
ized the concept of temporal coherence of stylized animations in a set of three
fundamental goals (Figure 1.2), and evaluated several stylization techniques
against those goals:

Flatness: Flatness is what makes a stylized result look like a painting on a 2D
canvas rather than a 3D texture-mapped object. Concretely, this corre-
sponds to the capacity of a system to render stylization marks directly
in the secondary space (the picture plane), independently of the geom-
etry of the scene, that are not affected by perspective deformation and
foreshortening, and maintain a constant density on the screen. It is a
key component in reproducing the appearance of hand-drawn illustra-
tions and animations.

Temporal continuity: The resulting animation should be fluid, and avoid
popping or and flickering artifacts that occur when a mark used for ren-
dering suddenly appears, disappears or flickers irregularly from frame
to frame during the animation.

Motion coherence: Having the marks at fixed locations in the secondary
space results in the so-called shower-door effect [Mei96]: the scene ap-
pears to be moving under a fixed screen, and breaks the illusion of look-
ing at a dynamic painting. Because of that, stylization marks should
maintain motion coherence: the motion of the marks should follow the
motion of the underlying scene as much as possible.

As Bénard, Bousseau, and Thollot remarked, the mismatch between 2D
and 3D cannot be fully reconciled: every solution is a tradeoff between the
three goals (Figure 1.2). Ultimately, the fitness and artistic quality of a styl-
ization algorithm is evaluated by comparing the result with an equivalent
hand-drawn 2D animation, when there is one. In this regard, it is interesting
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to note that hand-drawn animations themselves do not strictly follow tem-
poral coherence rules. One example of this is temporal continuity: not only
temporal continuity is hard to maintain by hand, but animators can also am-
plify temporal discontinuities for artistic purposes. Some stylized rendering
techniques even provide ways to introduce controlled temporal discontinu-
ities into the synthesized animation [Fiš+14].

This is also true, to some extent, for motion coherence: in highly con-
trolled contexts such as hand-made animation, motion coherence can be man-
aged manually by artists, and played with for various purposes. However,
in interactive contexts where an artist has no control over each individual
frame of the animation after rendering, it is crucial to have strong motion
coherence, as uncontrolled secondary motion in the stylization is rarely de-
sired. We tackle this issue in Chapter 3, where we propose a technique to
render 3D scenes in a painterly style that ensures motion coherence.

1.4 Stylization in the real-time rendering pipeline

Stylization techniques make very different hypotheses on the nature and
quantity of input data about the scene to depict. Some methods require a
full 3D geometrical model of the scene, whereas others will only need in-
formation defined in the 2D image plane. They also differ by their target
applications: in real-time contexts, such as video games or visualization, em-
phasis is put on performance, and the amount of data to be processed must
be limited. Conversely, in the animation industry, the available time budget
to render a frame is typically much greater, as they do not require interac-
tivity for the spectator. Still, interactivity during the design process and the
ability to quickly iterate over the result are highly valued features of styliza-
tion techniques, which reinforces the usefulness of real-time techniques.

This is why, in this thesis, we proposed stylization techniques that inte-
grate into traditional pipelines for rendering 3D scenes in real-time, to fa-
cilitate their use by technical artists. In this section, we first present a brief
overview of the standard 3D rendering pipeline, detailing the different pieces
of data used (geometry, textures, etc.), and the related vocabulary that we
later employ when describing stylized rendering techniques. Based on this
pipeline, we will then see which degrees of freedom are available in the
pipeline to do stylization.

After this section, the reader should have an overview of the process of
rendering 3D scenes in real-time with the standard rendering pipeline, and
how to model the appearance of objects in this context.

1.4.1 Overview of real-time rendering pipeline

In this section, we provide a brief overview of the traditional real-time ren-
dering pipeline (summarized in Figure 1.3). Such a pipeline can be mapped
directly to the hardware rendering pipeline implemented in Graphics Pro-
cessing Units (GPUs). Some stages of the pipeline are programmable through
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Geometry processing
‣ Vertex transform
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Fragment processing
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‣ Texture mapping
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Projected geometry Raster image
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FIGURE 1.3: High-level overview of the rendering pipeline
as typically implemented in hardware on a GPU. Rasteriza-
tion marks the passage from 3D coordinates (object- and view-

space) to 2D screen-space.

shaders: this can be used to customize the final appearance of objects on the
screen.

The pipeline can be roughly divided into the following parts: first, the
geometry processing stages, which transform the input geometry (typically
a triangle mesh) to the view-space of the camera, and then to the 2D screen-
space. This step is programmable through the vertex, tesselation and geom-
etry shaders. Then, rasterization converts the geometry into a sequence of
fragments, which are then handed to the fragment processing stage, which
performs per-fragment calculations, such as shading or texture mapping.
This stage is programmable through fragment shaders. Finally, the pipeline
can also contain one or more post-processing stages, that perform screen-
space operations on the final color image. Some examples of post-processing
operations are color grading, tonemapping, contour detection and enhance-
ment, among many others.

1.4.2 G-buffers and deferred rendering techniques

A variant of this pipeline, first proposed by Saito and Takahashi [ST90], con-
sists in rendering the geometrical properties of the scene into screen-space
images called G-buffers (see Figure 1.4). These images, containing normals,
tangents and depth at every pixel on the screen, are then used for subsequent
post-processing using only 2D image processing operations. Saito and Taka-
hashi [ST90] first demonstrated this approach for extracting and rendering
contour lines, and for shading.

Since then, their approach has spawned the field of deferred rendering tech-
niques: The principle is to first render all data needed to compute the final
color of a pixel into G-buffers, and perform the actual calculation as a post-
processing pass on those G-buffers. A common instance of this is deferred
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FIGURE 1.4: Overview of a deferred rendering pipeline. The
scene is first rasterized into a set of G-buffers containing screen-
space geometry information for visible surfaces (normals, tan-
gents, depth, color, ...). Calculations to obtain the final result
(shading, ambient occlusion, etc.) are done in a 2D post-process

pass on those G-buffers.

shading, where the surface normals, diffuse color and material properties are
first rendered into G-buffers, and the actual shading calculation is “deferred”
to a post-processing pass.

Deferred rendering has several advantages:

• It reduces overdraw: the useless calculations done for each fragment that
end up being discarded because they are occluded by another surface.
With deferred shading, the calculations are only done once for every
visible pixel on the screen, instead of once per fragment.

• Post-processing passes can employ image filters that access neighbor-
ing pixels, which is impossible with single-pass fragment processing.

• Image processing techniques used in post-process can still benefit from
geometrical information inside G-buffers.

Applications of deferred rendering include contour extraction and en-
hancement, depth of field simulation, ambient occlusion, motion blur, etc.
For a more detailed list of advantages and applications, we refer the reader
to the overview of Thaler [Tha11]. In Section 3.2.3 we provide examples of
deferred rendering techniques in the context of non-photorealistic rendering.
Additionally, we make use of this technique in our two contributions.

1.4.3 Where to stylize?

In a real-time rendering pipeline, the visual appearance of an object is the in-
teraction between several pieces of data at different stages of the pipeline. All
of these can be manipulated to get a stylized result. We show that depend-
ing on the stage we act upon, this has a different impact on the temporal
coherence of the result.

Geometry First, the geometry of the object itself can be stylized. This can
actually be done by the artist before rendering: indeed, modelling a char-
acter with exaggerated, non-realistic shapes is already a form of stylization.
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The animations associated to the geometry (movement and deformation of
objects) also have a crucial role in the final look: it is a challenging task to
author 3D animations that do not appear too synthetic and break the feeling
of looking at a hand-drawn animation. However, authoring stylized shapes
and animations is out of the scope of this work.

Some techniques have been proposed to alter the geometry dynamically
during rendering: for instance, Rademacher [Rad99] blended between dif-
ferent deformations of a base model according to the camera viewpoint, in
order to capture artistic distortions of 2D hand-drawn animations. Botkin
[Bot09] used normal displacement to perturb the geometry of 3D models in
a scene. By cycling this perturbation each frame, and blending the results
across frames, they achieved an appearance reminiscent of layered, transpar-
ent brush strokes.

Since the geometry of the object itself is modified, the result stays per-
fectly coherent with respect to the motion of the camera or objects. However,
simple geometry warping is usually not sufficient to reproduce 2D effects
that have a constant size in screen-space.

Additional geometry anchored to the object can also be used as proxies to
render stylization effects. One instance of this is stroke-based rendering, which
consists in distributing flat proxy geometry that face the camera (billboards)
on the surface of objects to simulate brush strokes. A review of stroke-based
rendering techniques for 3D scenes is provided in Section 3.2.1.

Lighting The position, type and intensity of lights in a scene can be ad-
justed with an artistic intent. Some techniques ease this process by auto-
matically adjusting lights according to user-provided constraints on the fi-
nal appearance: an overview is provided in Section 2.2.1. Note that this
is not specific to real-time pipelines, and also applies to offline renderers.
It is also a form of stylization that is still usable within the constraints of
physically-based rendering: indeed, it is very common for artists working
with physically-based pipelines to “cheat” by placing lights in some view
configurations to emphasize a particular element on the screen. However,
this is harder to do in fully interactive contexts.

Textures Details on the surface of objects are usually stored in textures, and
can be manually painted by artists. However, the main limitation of texture
mapping for stylization is that all details appear flattened on the surface of
the object and are affected by perspective deformation, reinforcing the 3D
appearance of the result. Notably, brush strokes that live in the picture plane
cannot be reproduced with standard texture mapping. Extensions to tra-
ditional texture mapping that provide better flatness have been proposed:
these are reviewed in Section 3.2.2.

Shading model The shading model mediates the interaction between the
incoming illumination (from the lights and secondary sources), the shape,
and the surface properties (color, etc.). The combination of a shading model
and its parameters (which can be spatially varying via texture mapping) is
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usually called a material. In physically-based rendering, shading models
are derived from Bidirectional Reflectance Distribution Functions (BRDFs),
which describe the amount of light reflected according to incoming and out-
going light directions. In illustration, the rules for the depiction of light
and shade deviate significantly from photorealism. As such, several non-
photorealistic shading models have been proposed that are inspired by those
rules: we review them in Section 2.2.2. Note that the shading model is a func-
tion defined on the surface of objects, in primary space: as such, the shading
model alone cannot account for style marks in the picture plane. Following
the classification of [WD05], the shading can be seen as an attribute system
that provides the attributes of the marks to render. Stylization through shad-
ing models is the subject of our first contribution that we present in Chap-
ter 2.

Post-processing After the scene is rendered, we get a 2D color image, onto
which screen-space post-processing filters can be applied. This stage is well-
suited for stylization, because screen-space directly corresponds to the sec-
ondary space, or 2D picture plane. Thus, it makes sense to perform styl-
ization in screen-space. Furthermore, with deferred rendering, the color im-
age is complemented by G-buffers which contain geometrical information.
They make the link between object-space (3D) and screen-space (2D). This
is why techniques that make use of G-buffers are sometimes called “2.5D”
techniques. This offers great flexibility, but this comes at the cost of limited
information about geometry, since occluded surfaces are lost. In Chapter 3
we explore the use of screen-space post-processing filters for stylization, and
demonstrate how they can be guided with G-buffers to ensure motion coher-
ence.

1.5 Artistic control of stylized rendering techniques

The challenges raised by automatic stylization are not limited to the techni-
cal aspects of rendering: depending on the application domain, stylization
techniques must also provide some degree of artistic control (or art direction)
and interactivity to be practically useful [Ise16]. This motivates the pursuit
of stylization techniques that can render images at interactive rates, but also
raises the question of how to interact with users.

Isenberg [Ise16] noted that there are different categories of target users
within the field of non-photorealistic rendering, each having different expec-
tations in terms of interactivity. On one hand, non-photorealistic rendering
has been concerned with the needs of users with artistic skills, such as profes-
sional illustrators which are usually familiar with traditional or digital paint-
ing tools: they seek tools that alleviate the most tedious parts of their work,
but that do not compromise the ability to do fine-grained modifications on
the result. As such, for this target audience, methods providing low-level
control are preferred. On the other hand, another goal of NPR is to provide
stylization tools for non-artists, that do not require extensive artistic skills.
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These tools naturally favor more high-level controls. In this thesis, we tar-
geted users with technical and artistic knowledge, and sought to design tools
that provide low-level control over the stylization of 3D scenes.

The type of control that can be offered to the artist also depends on the
context: if the result to be displayed is a static view of a scene, then it is
reasonable to allow the artist to make local edits directly on the rendered
image. However, if the viewpoint is animated the edits have to be replicated
for each frame of the animation, either manually or semi-automatically with
a propagation method. If the viewpoint is unpredictable, such as in video
games, then local edits in screen-space are outright impossible. The same is
true for lights in a scene: in animated movies, artists can adjust lights to alter
the appearance of objects locally. This is much more difficult to do in video
games, if the lighting can be influenced dynamically by players. All of this
puts constraints on the degree of control available to artists, and the type of
interaction we can offer.

In the following paragraphs, we briefly describe several interaction para-
digms that are found in non-photorealistic rendering techniques. We distin-
guish between direct interaction with local control, global parameters, by-example
approaches, and programmable approaches. Individual techniques may use a
combination of several of these paradigms to cover a wider range of the in-
teraction spectrum.

Interaction through global parameters Stylization algorithms can have glo-
bal parameters that control the behavior of the algorithm for the whole scene
or the whole animation. They offer a very coarse-grained and high-level con-
trol over the stylization. For instance, procedural texturing techniques such
as Perlin noise usually provide a fixed set of high-level parameters that con-
trol the look of the generated texture.

This kind of high-level control does not require artistic skills from users,
provided that the parameters have an intuitive and predictable effect on the
generated result. However, high-level control alone is not sufficient for artists
and must be complemented with other inputs.

Interaction through exemplars Exemplar-based stylization (or style trans-
fer) methods take the scene to stylize and a style exemplar as input, and
sythesize a result with the same appearance as the input exemplar.

An example of this for 3D scenes is the lit-sphere technique of Sloan et al.
[Slo+01], where the input exemplar is a shaded sphere painted by an artist.
The synthesis is done by matching the normals of the exemplar sphere with
the normals of the objects to stylize. Stroke-based rendering techniques also
fall in this category, as users typically provide a small texture exemplar for
the stamp used to draw the strokes.

Example-based methods make for very straightforward interactions with
users, as they just have to provide an exemplar. However, the complexity
of the input exemplars depends on the degrees of freedom in the result: i.e.
if the lighting in the scene can change, then an example must be provided
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for all possible lighting conditions. This can become impractical for highly
dynamic scenes.

Another line of research for exemplar-based style transfer on 2D images
was started by Hertzmann et al. with Image Analogies. In this framework,
the input exemplar is a pair of images: a source unstylized image, and the
corresponding stylized image. The image analogy algorithm learns the map-
ping between the two and can then transfer the stylization to another source
image. It has since been extended to animations with temporal continuity
[HJN03; Bén+13] and 3D renderings [Fiš+16]. More recently, Gatys, Ecker,
and Bethge [GEB16] first demonstrated the use of deep neural networks to
transfer style features from an exemplar to a target image. This technique
has been the target of various improvements and extensions [Jin+17; SID17].
In those techniques, stylization is seen as an optimization problem: maxi-
mizing the visual similarity of the source exemplar and the target at some
given scale. The main drawback is that the quality of the synthesized result
is unpredictable, and there is no way to ensure that the optimization result
matches the intent of the artist.

Direct interaction and local control Local control is the ability to make lo-
cal edits in space (in the scene or the canvas) or in time (across the animation
timeline). Local control is usually paired with direct interaction. Direct in-
teraction is when the user interacts directly on a view of the scene to stylize,
instead of indirectly through a set of adjustable parameters.

In the context of 3D scenes, local control can be done at various levels: at
the parameter level, by locally adjusting parameters of the stylization algo-
rithm in object-space (for instance, in the art-directed watercolor rendering
system of Montesdeoca, Seah, and Rall [MSR16]), or at the primitive level,
by directly embedding primitives in 3D space (as in Overcoat [Sch+11]).

One drawback is that, as more local control is provided, it can become
difficult to propagate, generalize or animate the edits automatically in highly
dynamic environments. However, the main advantage is that the artist has a
fine-grained control over the end result and can fine-tune the appearance as
precisely as needed.

User-defined rules and programs Another approach is to allow users to
program their own rules in the system, with varying degrees of flexibil-
ity. This approach is widely used in practice through shaders in the graph-
ics pipeline, which specify geometry transformations and shading, among
other things. Several renderers and game engines propose specialized node-
based editors to design shaders without having to write shader code 1 2. A
programmable approach has also been proposed for line-based rendering by
Grabli et al. [Gra+10], and implemented in the Blender modeling software

1Unreal Engine: Essential Material Concepts https://docs.unrealengine.com/en-US/
Engine/Rendering/Materials/IntroductionToMaterials

2Unity: Shader Graph https://unity3d.com/shader-graph

https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/IntroductionToMaterials
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/IntroductionToMaterials
https://unity3d.com/shader-graph
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as the freestyle rendering engine 3. Additionally, Schmid et al. [Sch+10] pro-
posed a programmable approach to render motion effects.

Programmable approaches can potentially provide very precise control,
even in very dynamic scenarios. However, the main drawback is that some
degree of technical knowledge is required from the users. Also, depending
on how the program needs to be specified (e.g. in the form of code, or using
a visual representation), these approaches might not be suitable for the quick
exploration of different styles.

1.6 Goals of this thesis

The main motivation for this work is to render 3D scenes in new visual styles.
Many stylization techniques focus on reproducing specific media or tech-
niques: e.g. cartoon style, watercolor, oil painting, charcoal, stippling, hatch-
ing... In this work, we do not attempt to reproduce one particular style, but
rather try to facilitate the exploration of the design space of 3D scene styliza-
tion, by proposing both design tools and new rendering techniques. In doing
so, we want to support styles that exhibit 2D illustrative features: this is still
a challenge and an active area of research, in part because of the issues linked
to temporal coherence. A motivating long-term goal behind this research is
to provide generic building blocks for stylization that can reproduce a variety
of 2D illustrative styles on 3D scenes, with art-directed temporal coherence
properties.

We more specifically target users with artistic skills. We aim to propose
art creation tools that assist users rather than fully automatic techniques, and
to put the artist “into the loop”, as suggested by Winnemöller [Win13]. In
this regard, another of our concerns is to provide techniques that can be eas-
ily plugged into existing artist workflows: for this reason, we favored post-
processing techniques that require only minimal modifications to the stan-
dard real-time rendering pipeline.

1.6.1 Summary of contributions

The design space of 3D scene stylization is large: as we’ve seen previously,
it is possible to add stylized features to the shape of the objects in the scene,
the animation, the light and shadows in the scene, the materials, etc. In this
work, we focus on two aspects: first, the depiction of stylized light and shade
in 3D scenes through stylized shading models; second, the rendering of 3D
scenes with stylization marks (brush strokes). Following the classification of
Willats and Durand, this corresponds respectively to the stylization of the
attributes of marks, and the rendering of the marks themselves.

3Freestyle introduction - Blender Manual https://docs.blender.org/manual/ko/dev/
render/freestyle/introduction.html

https://docs.blender.org/manual/ko/dev/render/freestyle/introduction.html
https://docs.blender.org/manual/ko/dev/render/freestyle/introduction.html
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Designing stylized shading models

Our first contribution is a workflow for designing stylized shading models
on 3D objects. In computer graphics, designing a shading model that behaves
in a desired way is challenging, because of the complex interactions between
materials, geometry, and lighting environment. It is a time-consuming task,
that often involves writing custom shader code. For photorealistic appear-
ances, newer physically based shading techniques tend to provide an intu-
itive and coherent workflow for artists, but they are of limited use in the con-
text of non-photorealistic shading styles. On the other hand, existing stylized
shading techniques are either too specialized or require considerable hand-
tuning of unintuitive parameters to give a satisfactory result.

In the proposed workflow, we organize the design process of individual
shading effects in three independent stages: control of its global behavior on
the object, addition of procedural details, and colorization. Inspired by the
formulation of existing shading models, we expose different shading behav-
iors to the artist through parametrizations, which have a meaningful visual in-
terpretation. Multiple shading effects can then be composited to obtain com-
plex dynamic appearances. The proposed workflow is fully interactive, with
real-time feedback, and allows the intuitive exploration of stylized shading
effects, while keeping coherence under varying viewpoints and light config-
urations. Furthermore, it makes use of the deferred shading technique, making
it easily integrable in existing rendering pipelines.

Rendering brush strokes on 3D objects with image filters

Our second contribution is more technical, and deals with the usage of image
filtering techniques in the context of the stylization of 3D scenes. We recog-
nize that a wide range of stylized effects can be achieved on 2D pictures and
video using only image filtering techniques. We explore the use of image
filters in the post-processing stage of 3D scenes, in combination with proce-
dural texturing techniques, to reproduce the appearance of brush strokes on
3D objects. During this stage, having access to geometrical data in G-buffers,
we show that it is possible to guide the image filters to generate strokes that
are coherent with the motion of the scene. However, a naive approach has
several issues regarding the coherence of the generated marks outside the
silhouette of objects.

We describe a post-processing pipeline that solves these issues and al-
lows the use of image filters that can alter the original footprint of objects in
G-buffers. This pipeline is fully implemented on the GPU as a set of post-
processing passes, and can be evaluated at interactive rates. We show how
common image filtering techniques, when integrated in our pipeline and in
combination with G-buffer data, can be used to reproduce a wide range of
“digitally-painted” appearances, such as directed brush strokes with irregu-
lar silhouettes, while keeping a certain degree of motion coherence.
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Chapter 2

A workflow for designing stylized
shading effects

2.1 Introduction

When depicting objects, 2D illustrators use light and shade in ways that de-
viate significantly from realism and physical rules of light propagation. In-
stead, it is often used to emphasize a part of the scene that the artist deems
more important, or to convey a particular mood or emotion. One of the goals
of stylized shading techniques is to translate artistic rules for the depiction of
light and shade into formalized models that can be applied automatically in
the context of the rendering of animated 3D scenes on a computer. This is a
difficult problem because, in general, stylized lighting effects do not reflect a
physical truth and as such are not easily simulated. This difficulty is exacer-
bated by the fact that for some of these effects, the only 2D reference available
is static: there is no consensus on how a stylized light-and-shade depiction
should look like under movement of the object or of the viewpoint. They
must be rendered and animated by taking into account the intention of the
artist, and they are not easily unified under a single rendering framework.

In 3D computer graphics, light and shade is a part of appearance design,
which is the process of adjusting materials, surface details, and lighting to
achieve a desired look for an object in a scene. As with 2D illustration, it is
possible to tweak shading and lighting in 3D scenes to achieve emphasis of a
particular object, abstraction or to convey mood. However, shading design is
a complex process involving multiple interconnected aspects: the appearance
of an object in a 3D scene is the result of the interaction between the material,
the object geometry, lighting environment, and camera viewpoint. And, con-
trary to 2D illustration, the artist may not have control over the viewpoint
of the camera or even the lighting (e.g. in interactive art applications, such
as video games). Because of that, designing a shading that accurately repro-
duces a desired appearance and that stays visually coherent under varying
viewpoints and lighting conditions is a challenge requiring both artistic and
technical skills. In many industries, such as computer animation and video
games, it is a time-consuming task often entrusted to dedicated artists.

Using physically-based models for shading alleviates some of that com-
plexity. The formulation and the parameters of these models are derived
from physical phenomena: they ensure a coherent and plausible appearance
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for any geometry, under any viewpoint and lighting environment. They also
have the advantage of working almost directly with captured data (e.g. cap-
tured lighting environments, or scanned materials), which greatly reduces
the time spent in designing materials. However, they are by design un-
suitable for reproducing any kind of non-physical lighting effect commonly
found in illustration.

In contrast, stylized shading models are not physically correct or plausi-
ble. Their goals are related to depiction rather than accurate light simulation.
For instance, stylized shading models are used in visualization to communi-
cate information about the shape and material of an object in a more efficient
way than realistic shading models. An example of this is Gooch shading
[Goo+98], which modifies in a non-physical way the illumination term to
reveal surfaces in shadow. Some models have been designed to reproduce
particular artistic styles in 2D illustration: for example, the well-known and
well-studied toon shading technique was designed to mimic styles found in
comic books.

However, in general, shading rules in illustration are hard to character-
ize, because contrary to physically based models, they are not directly linked
to geometric and physical properties of the scene. Because of that, many
stylized shading techniques are limited to specific styles, and usually simple
dynamic behaviors.

2.1.1 Light and shade in 2D illustration

The concept of light and shade in 2D illustration is very broad: a depicted
surface can be said to “catch the light” in many different ways, usually non-
physical, and sometimes not consistent between different objects. An artist
can play on the depiction of shading to various ends: as clues for the mate-
rial of an object, to enhance specific features of a shape, to attract the focus
of the spectator to some location on the image, or to set the mood of a scene.
For instance, Hogarth [Hog91] proposed five different categories of light and
shade in 2D illustrations with traditional media (pencil, pen-and-ink, char-
coal, etc.). Each of them have different purposes: for instance, the so-called
sculptural light is used to ensure that all details of the form of an object are
revealed, regardless of whether there is an actual light shining on them.

Additionally, there are even more different rules and techniques when
color is added. Custom color gradients can be used in place of photograph-
ically accurate illumination gradients for emphasis, abstraction, or as short-
cuts for complex lighting effects (Figure 2.1) or convey the appearance of
particular materials (Figure 2.2).

This great variety in the depiction of light and shade in both traditional
and digital illustration raises the traditional question in stylized rendering:
how to reproduce these appearances automatically on 3D scenes? As with
other sub-domains of stylized rendering, stylized shading is no exception:
the artistic rules for light and shade depiction are the rules of artists, and
differ from traditional computer graphics or physical models in significant
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FIGURE 2.1: Illumination gradients in illustration are often
modified in non-physical ways. In this example, taken from a
digital painting tutorial, illumination gradients on human skin
are made more appealing by artifically increasing the satura-
tion at the transition between lit and shadowed (left). A similar
technique is used to emulate the visual appearance of subsur-
face scattering of strong lights inside the skin (right). Source:
Basic to Advanced Color Theory and Illustration Techniques for Pho-

toshop http://www.floobynooby.com/ICG/artvalues.html

FIGURE 2.2: In the lambertian shading model, the perceived
brightness of a lit surface (intensity profile) falls off linearly
according to the geometry term (the cosine of the angle be-
tween the surface normal and the light direction), resulting in a
smooth illumination gradient that conveys diffuse appearance
(left). In illustration, simple modifications to this profile can
convey dramatically different clues about the material: mak-
ing the gradient “jump” when facing the light gives the im-
pression of a specular highlight (middle), while introducing a
small jump in the middle of the gradient gives off a metallic
look (right). However, translating this technique to 3D is non-
trivial because the appearance has to be coherent under dy-
namic viewpoints and lighting conditions. Source: see above.

http://www.floobynooby.com/ICG/artvalues.html
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ways. They vary in subtle ways from artist to artist, which makes it even
more difficult to propose a generalized model for stylized shading.

Adding interactivity and dynamic behavior also makes the design pro-
cess more difficult, as the behavior of lighting effects must now be coherent
with motion in addition to shape. For instance, some effects like metallic
highlights are expected to slide on the object when moving the viewpoint,
contrary to diffuse lighting which stays fixed to a surface until the light them-
selves are moved. Thus, illustration tricks like the one shown in Figure 2.2 to
convey metallic appearances will not work in dynamic 3D scenes. In a way,
this means that, under animation, some “important” realistic behaviors of
light and shade must be kept so that the intended appearance is not broken.

While this makes stylized shading in dynamic 3D scenes more challeng-
ing, it also greatly expands the design space for artists. Instead of reproduc-
ing specific examples of 2D light and shade into 3D, another challenge would
be to propose efficient tools to let artists explore this design space, in order to
create novel stylized appearances.

2.1.2 Our contribution

In this chapter, we present a method, targeted at technical artists, for de-
signing and exploring complex stylized shading effects by combining sim-
ple building blocks, in the form of simple shading behaviors. The proposed
building blocks have intuitive visual interpretations: our intent is to make
them easy to combine in order to create complex shading behaviors by pro-
gressive refinement. Going further, our intent is also to provide a practical
framework for decomposing complex shading effects found in illustration,
and more generally, to facilitate the exploration of the design space of styl-
ized shading.

Our main contribution is to decouple the design of individual shading ef-
fects in three independent aspects: (1) Choosing and tuning the global shad-
ing behavior (diffuse, specular, rim lighting, etc.) of an effect; (2) Adding de-
tails and visual complexity; (3) Colorizing the effect.

The final stylized appearance is then obtained by layering several of those
shading effects. We provide interactive tools to edit each aspect, allowing the
artist to precisely tune each part of the final appearance with a direct visual
feedback. Our method automatically keeps a consistent result under varying
viewpoints and light configurations. We show that our approach can be used
to add spatially and temporally coherent details, mimicking various shading
effects in a direct and flexible manner.

2.2 Related work

In computer graphics, stylized depiction of light and shade in a scene can be
achieved through several ways: by manipulating the lights themselves, or by
changing the way light interacts with a surface, through specialized shading
models. First, we review the techniques that manipulate the lighting envi-
ronment (position, intensity, color of lights) to achieve a stylized look. Note
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that, with those techniques, the simulation of light can still follow physical
rules. Then, we review existing literature on shading models that achieve
non-photorealistic appearances.

2.2.1 Editing lighting environments

One form of lighting manipulation is inverse lighting techniques: given some
artistic constraints on the final image (e.g. the position and color of an high-
light, the size of a shadow cast by an object, etc.), the goal is to infer the
parameters of the lights in the scene: their number, position, color, and type.
Notable work in this category include work by Pellacini et al. [Pel+07]. How-
ever, inverse lighting is usually expressed as a complex non-linear optimiza-
tion problem: it thus suffers from the common issue that the optimization re-
sult may not match the intent of the artist. Several techniques propose a more
direct control over the appearance by allowing the user to make non-physical
edits to an existing physical result, allowing the user to move and deform re-
flections [Rit+09], shadows, highlights, refractions [Rit+10; Sch+13], or even
the propagation of light rays [KPD10]. However, deforming existing phys-
ical effects are impractical for stylized appearances that differ significantly
from realistic results.

In contrast, the approach of Okabe et al. [Oka+07] allows users to design
image-based lighting environments from scratch by directly painting the de-
sired appearance on a 3D model. Their tool supports arbitrary BRDF models.
Still, these techniques cannot be extended to take into account other scene or
object attributes typically used for stylization, such as surface curvature, and
as such have limited flexibility for representing arbitrary stylized shadings.
Lighting environments and materials can also be acquired from real objects.
Providing tools that allows artists to intuitively edit captured environments
after acquisition is an important area of work [Pel10; Zub+15].

All these methods are mainly used to provide artistic direction for phys-
ically-based simulation while maintaining a plausible realistic appearance:
fundamentally altering the behavior and appearance of light and shade is
not their primary goal. Furthermore, a wide range of shading effects found
in 2D illustration cannot be reproduced solely by tweaking the lighting en-
vironment: stylization often depends on other attributes of the scene, such
as surface curvature. For such effects, specialized shading models must be
used.

Lit-spheres Lit-Spheres (also called matcaps) provide another direct and flex-
ible way to specify the appearance of an object. In the system originally de-
scribed by Sloan et al. [Slo+01], the appearance is represented by an image
of a sphere. The target object is then shaded by environment mapping using
this image. This image can be captured, reconstructed from a drawing or
a photograph, or painted using digital painting tools. It can accommodate
multiple shading styles, from realistic to toon-like, without the unintuitive
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control imposed by a BRDF. They give immediate plausible results with lit-
tle to no manual adjustment required, and are now widely used for shad-
ing in 3D modeling software 1 2. However, they are limited to static light-
ing as the final appearance depends only on the camera viewpoint. Note
that lit-spheres can capture not only shading but also textural details of the
appearance. However, those details are subject to stretching and compres-
sion artifacts on shapes with a lot of curvature variations. Todo, Anjyo, and
Yokoyama [TAY13] extended this technique by defining the lit-sphere in a
light-dependent space, allowing dynamic lighting environments, and further
refined it by adding brush stroke effects and highlight shape control that are
not subject to deformations (Figure 2.3). However, the range of dynamic be-
haviors (i.e. how the shading reacts to position and viewpoint changes) that
can be modeled with this technique is still limited.

FIGURE 2.3: Examples of lit-sphere shading with the method
of Todo, Anjyo, and Yokoyama [TAY13]. Images taken from the

paper.

2.2.2 Stylized shading models

Simple shading models derived from physical principles of light propagation
are usually not suited to reproduce light and shade found in illustrations, as
they do not convey information about a shape in the most effective way pos-
sible. To illustrate this, let’s consider lambertian shading, used in computer
graphics as a physical model of purely diffuse surfaces. In this model, a color
term c is multiplied by the incoming light Iin and modulated by the geometric
term (max(0, n.l)) that accounts for the angle at which the light is striking the
surface:

Ilambertian = c× Iin ×max(0, n.l) (2.1)

In this model, surfaces facing away from the light appear black and flat: de-
tails about the shape are lost. The half-lambert shading model is a simple

1Pixologic ZBrush Features http://pixologic.com/zbrush/features/Materials/
2Shading - Blender Manual https://docs.blender.org/manual/nb/dev/editors/

3dview/properties/shading.html

http://pixologic.com/zbrush/features/Materials/
https://docs.blender.org/manual/nb/dev/editors/3dview/properties/shading.html
https://docs.blender.org/manual/nb/dev/editors/3dview/properties/shading.html
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non-physical alteration of the lambertian model to reveal those shadowed
surfaces:

Ihalf-lambert = c× Iin(
1
2
+

1
2

n.l) (2.2)

Note that the geometric term has been replaced by the unclamped geometric
term n.l, and rescaled so that it lies in [0; 1]. This simple modification appears
in many stylized shading models [Goo+98; RBD06; MFE07], as a way to con-
vey the shape of an object more clearly, regardless of lighting conditions.

In illustration, changes in illumination of a surface are also depicted by
hue shifts in addition to variations in luminance: notably, the shadows tend
to be depicted with a cool color instead of black. From this observation,
Gooch et al. [Goo+98] proposed a shading model that reproduces these hue
shifts by using a cool-to-warm color map, obtained by combining a blue-to-
yellow gradient with the lambertian shading gradient (black to object color).
The half-lambert modification is used to interpolate into this color map, so
that the form is revealed even on surfaces facing away from the light.

FIGURE 2.4: Comparison between standard Phong shading and
Gooch shading. With Phong shading, surfaces facing away
from the light appear flat, and surface detail is lost. Gooch
shading reveals all surface details, even when they do not face

the light. Image source: [Goo+98].

Similar hue shifts are present in watercolors: illumination in watercolor
is painted with layers of pigments with varying dilution. More pigments
are deposited on dark regions, while brightly lit regions actually correspond
to an absence of pigments. The varying pigment density produces changes
in the color temperature in addition to changes in value [LM01]. Although
simulation models for the diffusion of watercolor pigments exist [Cur+97],
most real-time watercolor stylization techniques use simplified shading, fil-
tering, and color modification models to approximate diffusion effects and
color variations due to pigment density [LM01; BWK05; Bou+06; MSR16].
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These shading models work best when it is possible to adjust the lighting
accordingly. However, in some contexts, it is not possible to control precisely
the lighting. This is notably the case in video games, where designers have
only limited control over the position of the lights relative to characters, as
the latter can be moved around the scene. Yet, for gameplay purposes, char-
acters should be clearly identifiable at all times, in widely varying lighting
conditions. Mitchell, Francke, and Eng [MFE07] described the shading tech-
niques used to effectively convey the shape and silhouettes of stylized char-
acters in the video game Team Fortress 2. The shading model they described
is composed of many components: an ambient term, diffuse and specular
terms, and a rim-lighting term to reveal silhouettes. This shows that shading
techniques can rapidly grow complex in highly dynamic environments: in
our work, we seek a way to rapidly explore combinations of shading terms
to design such complex models.

To properly depict surface details at various scales, many non-physical
shading techniques have been proposed: Rusinkiewicz, Burns, and DeCarlo
[RBD06] used a custom shading model based on the half-lambertian to en-
hance the perception of both the overall shape and details. This shading
model is modulated by a user-controlled exaggeration parameter. By evalu-
ating the shading at multiple scales, from fully detailed to heavily smoothed
geometry, the user can separately control the degree of emphasis of the over-
all shape and of the surface details. Another common way to enhance the
shape details is to modulate the basic shading term with surface curvature
to better reveal ridges and creases [Ver+09; Ver+10; Ver+11a]. Vergne et al.
[Ver+08] proposed a generalization of curvature-based shading: through the
apparent relief descriptor, they are able to extract specific features of a shape,
such as ridges, valleys and flat regions with more flexibility and more intu-
itive control than previous methods. The extracted information can then be
used as an additional input to stylized shading models, to increase the range
of achievable appearances. Note that some of these techniques make use of
screen-space filtering to enhance shading.

Toon shading The intent of toon shading techniques is to mimic light-and-
shade depiction in cartoons and cel animation. They use few colors (typically
under five colors) to depict illumination gradients. Visually, this results in
characteristic color bands. The position and size of the bands can be adjusted
by artists through a color ramp.

Many extensions to the basic toon shading model have been proposed:
for instance, X-toon [BTM06] extends the traditional toon shading by allow-
ing users to vary tone detail according to a view-dependent scene attribute
(e.g. the scene depth), effectively replacing the traditional 1D toon color ramp
with a 2D texture (Figure 2.5). Another extension of toon shading was pro-
posed by Todo, Anjyo, and Igarashi [TAI09]: their approach can reproduce
various expressive lighting effects used in hand-drawn cartoon animation,
such as the straight lighting effects used for the depiction of flat reflective
surfaces.
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FIGURE 2.5: X-Toon shading [BTM06] example at different
abstraction levels and associated 2D toon texture map. The
abstraction level can be linked to view-dependent scene at-

tributes, such as scene depth. Images taken from the paper.

Highlights Specular highlights convey important material clues about a
surface. When depicting them, illustrators also take great liberties with physics.
Recognizing this, several techniques have been proposed to provide artistic
control over the shape and behavior of highlights on a surface. Anjyo, Wem-
ler, and Baxter [AWB06] propose a method to alter the shape of a cartoon
highlight in various ways: translation, deformation, rotation, squaring and
splitting (see Figure 2.6). These properties can be animated over time with a
keyframing system. BRDFshop [CPK06] allows one to create physically cor-
rect BRDFs from hand-painted highlights instead of indirectly manipulating
numerical values. Finally, in the system of Pacanowski et al. [Pac+08], the
shape and color gradient of the highlight can be directly sketched in a 2D
plane oriented perpendicularly to the reflected direction.

FIGURE 2.6: Tweakable light and shade: dragging the highlight
on a surface, squaring, scaling, and splitting. Image source:

[AWB06]

However, all these techniques are specialized for specular highlights. While
they provide good artistic control and can lead to highly stylized results, they
tend to have a very localized impact on the final image. In this work, we seek
a more generic approach for artistic control of shading: our intuition is that
there is value in a system that would use the same kind of primitives for vari-
ous shading effects, and that would allow artists to combine those primitives
in novel ways, instead of considering specific effects in isolation.
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This is similar to shade trees [Coo84], and more recent graphical shader
editors 3 4 that represent the shading equations as a tree of operation nodes.
However, while these approaches are very flexible, they are also very low-
level, to the point that they approach the same degree of flexibility as shader
code. Thus, they can be seen as a way of structuring and visualizing shader
code, but do not reduce its inherent complexity and do not immediately fa-
cilitate exploration of different appearances.

In the context of 2D vector illustration, a closer approach is Vector Shade
Trees [Lop+13]. This system can be used to construct complex appearances
by arranging a set of basic shade nodes in a compositing tree. These nodes are
specialized vector primitives that are derived from illustration guidelines for
material depiction. With their system, an artist can quickly imitate the ap-
pearance of transparent, translucent or reflective objects by combining a few
of these primitives. This is close to what we want to achieve in the context of
3D scenes: one of our goals is to allow artists to use some of these guidelines
in the context of 3D animated scenes with dynamic lighting environments.

FIGURE 2.7: Material design in 2D illustration with Vector Shade
Trees. The user arranges multiple basic shading primitives in
a compositing tree (left). The material can then be applied to
vector line drawings (middle, right). Image source: [Lop+13]

Our approach is most closely related to the work of Vanderhaeghe et al.
[Van+11] with Dynamic stylized shading primitives. Their system can repro-
duce various stylized shadings with a layered combination of primitives.
Primitives are composed of a base shading parametrization that can vary
continuously between diffuse and specular behaviors, and parameters can
be tweaked to control the anisotropy of the shading effect, and the shape of
the intensity profile. The approach we propose is similar, but with lower-
level primitives: Instead of having a single adjustable parametrization, we
allow users to freely mix-and-match simpler parametrizations representing
different shading behaviors (e.g. diffuse, specular, etc.) and scene properties
(e.g. curvature) to create novel behaviors.

In the recent work on barycentric shaders by Akleman, Liu, and House
[ALH16], shading is art-directed via user-provided control images, which are
then mixed according to weight images derived from usual shading parametriza-
tions (diffuse, specular, rim-lighting, depth) and remapping functions.

3Unreal Engine: Essential Material Concepts https://docs.unrealengine.com/en-US/
Engine/Rendering/Materials/IntroductionToMaterials

4Unity: Shader Graph https://unity3d.com/shader-graph

https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/IntroductionToMaterials
https://docs.unrealengine.com/en-US/Engine/Rendering/Materials/IntroductionToMaterials
https://unity3d.com/shader-graph
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This is similar to the system we propose, although our system does not in-
corporate local control via textures, and we adopted a lower-level approach
in which we chose to directly expose the functions that define the illumina-
tion profile as discrete 1D texture maps, editable on-the-fly by the user with
various tools. Additionally, we expose basic operations on parametrizations
to combine them and create new shading behaviors, and locally perturb them
to convey hints about the small-scale geometry of the surface.

2.3 Motivation and overview

Shading design is a tedious process, especially with highly dynamic 3D scenes.
We’ve seen that a lot of different models exist, yet they share some common
terms in their formulation. For example, diffuse effects are always based
upon the geometric term n · l. Similarly, the surface curvature is often used
in shading models for emphasizing details. These models only differ by how
they map those basic shading terms to actual colors on the screen.

Designers know how to combine these terms into full models to achieve
artistic goals: reveal shapes in more detail, convey mood in a scene effec-
tively, etc. But this is often done through a tedious process of fine-tuning
coefficients of shading terms and writing shader code. In this chapter, we
propose a tool to facilitate exploration of, and experimentation with, shad-
ing models. In our tool, the user designs a shading by layering one or more
shading effects each representing one independent component of the result-
ing shading. We structure the design process of individual shading effects in
clear, distinct steps:

• Choosing and tuning the behavior of a shading term. This is done through
combinations of base parametrizations and value maps: they control how
the shading effect will move and spread on the object when changing
viewpoints or lights. Base parametrizations are modeled after the basic
terms common to many shading models.

• Controlling the color gradient. The illumination gradient of a shading
effect is controlled through a 1D color map, directly editable by the user.

• Adding small-scale details to shading effects using perturbations that
locally modify parametrizations. To keep the appearance spatially and
temporally coherent, details are generated using 3D procedural noises.

An overview of the different steps of our workflow is provided in Fig-
ure 2.8. A typical session with our tool starts with the user loading the object
onto which they wish to design the shading, and setting the lighting config-
uration (number and position of lights). From then on, users can refine the
appearance of the object on the screen by adding one or more shading effects
in a layered fashion. The design process is fully dynamic: at any point the
user is able to move the camera or the lights and the displayed appearance
will update accordingly.
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From a technical standpoint, the system is implemented on the GPU as a
series of screen-space operations on standard G-buffers: surface normals and
tangents, depth, etc. It thus falls in the category of deferred shading techniques.

Silhouette

Specular

Diffuse

Diffuse

Base Parametrization
Value Map 

Parametrization Edition Colorization

Diffuse 
Effect

Specular 
Effect

Silhouette 
Effect

Perturbation

Diffuse

FIGURE 2.8: Illustration of our workflow showing an exam-
ple with three appearance effects. A user can modify and com-
bine base parametrizations to design the shading behavior (blue
nodes) of an appearance effect, using value maps and combi-
nation operations. A color map (green nodes) is then applied
on the designed behavior to colorize the effect. Output effects
are then composited to obtain the final appearance. Perturba-
tions (orange nodes) can be attached to every operation in or-
der to add procedural details to an effect. The orientation of the
perturbation can be controlled by the gradient of a shading be-
havior (as shown here), or by an external vector field, such as a

tangent map.

2.4 Shading behaviors

Shading behaviors describe the location and extent of a shading effect and its
dynamic behavior when moving the object, the light, or the viewpoint. Users
of our system design behaviors by first choosing and optionally combining
base parametrizations. Then, a value map is applied on base parametrizations,
to adjust the intensity profile of the resulting effect.

Formally, since we are in a deferred shading configuration, a shading be-
havior can be seen as a screen-space value: shade(x, y), with (x, y) being the
screen-space position. In more detail, we define a shading behavior as the ap-
plication of a value map f : [0, 1] → [0, 1] on a parametrization p(x, y) ∈ [0, 1].
For clarity we omit (x, y) in the rest of the chapter. Thus:

shade = f (p)
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The parametrization p is a screen-space term derived from G-buffers (nor-
mals, depth, etc.) and global scene parameters (light positions, viewpoint)
and that describes a base shading behavior. We provide several base parametriza-
tions that represent common shading behaviors. They can be used as-is or
combined to produce more complex behaviors.

2.4.1 Base parametrizations

li

n

ri

v

hi

n Surface normal
li Light direction: unit vector to light i
ri Reflected light direction
v View direction: unit vector to eye position

hi =
li+v
|li+v|

Halfway vector between
the light direction i and view direction

FIGURE 2.9: Local geometry used in the definition of base
parametrizations.

In computer graphics, shading models are composed of a sum of shad-
ing terms that model different behaviors. For instance, the Phong shading
model [Pho75] has both a diffuse term and a specular term, for diffuse light
and specular highlights. Individually, most shading terms depend on scalar
values derived from the local geometry of the surface, the viewpoint, and
the position of the lights. For example, terms that account for diffuse light-
ing have a dependency on the geometric term n · l (the cosine of the angle be-
tween the light and the surface normal); specular highlights depend on n · h
or r · v depending on the model; Fresnel reflection effects are usually approx-
imated with a term that depends on n · v. In this work, we call these values
parametrizations. They determine the global behavior of a shading term on a
surface: how it will move and spread in response to light and view changes.

As in the technique of Akleman, Liu, and House [ALH16], we propose to
use several base parametrizations to encode basic shading behaviors. These
are derived from observation of the terms that appear frequently in shading
models. In addition to terms derived from the local surface geometry used
in physical models, we also add screen-space terms such as the screen-space
surface curvature, which can be used to enhance shape features.

Diffuse behavior: Diffuse shading effects depend only on the geometric term
n · l. Notably, they are not view-dependent and do not slide on the ob-
ject when moving the viewpoint. In our workflow, diffuse behaviors
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are parameterized by an angular remapping of the geometric term:

pdiffuse = 1− acos (n · li) /π

This limits the distortion of illumination profiles on surfaces. A similar
remapping is employed in the system of Vanderhaeghe et al. [Van+11].
Similarly to the half-lambert model, the geometric term is not clamped
between 0 and 1 and can be used to reveal geometry that is not facing
the light. Note that there is a base diffuse parametrization for each light
in the scene.

Specular behavior: Similarly, specular behaviors are parameterized by:

pspecular = 1− acos (n · hi) /π

where hi =
li+v
|li+v| . They are used to add specular highlights to objects.

Silhouette: shading behaviors that affect the object silhouettes are parame-
terized by:

psilhouette = 1− 2× acos (n · v) /π

This term ranges from 0 at grazing view angles, to 1 on normals ori-
ented towards the camera. In shading models, dependencies on the
n · v term typically appear in rim-lighting terms, to position lighting ef-
fects on silhouettes, or to mimic the contribution of a Fresnel term.

Curvature: Curvature shading effects are parameterized by the screen-space
view-dependent mean curvature κ [Ver+11a], remapped in the [0, 1]
range:

pcurvature = 0.5× (1 + tanh (s× κ))

where s is a user-controllable parameter to adjust the covered value
range. It can be used in combination with other parametrizations to
position shading effects on sharp object features.

Thickness: the thickness parametrization is defined by the distance between
the projected front and back object faces.

pthickness = |zfront − zback|

This requires a slight modification to the classic rendering pipeline to
keep track of both the frontmost and the backmost depths. We found
that it can provide a good visual approximation of translucency effects
for simple geometries that do not have large hollow parts.

A visualization of those parametrizations on a test object for a given light
position and viewpoint is provided in Figure 2.10.
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Diffuse Specular Silhouettes Curvature Thickness

FIGURE 2.10: Visualization of base parametrizations on a given
object, for a given light position and viewpoint. Parametriza-
tions are in the [0, 1] value range, from black to white. Users are
able to see the how a parametrization evolves by dynamically

moving lights and the camera.

Identity Sharp Glossy Stylized

FIGURE 2.11: Use of value maps on a specular base
parametrization to produce highlights of varying glossiness,

and a stylized effect.

2.4.2 Value maps

The shading behavior described by a parametrization can be refined with the
value map f , stored in a 1D texture. By default the value map is initialized to
the identity function and does not modify the behavior of the parametriza-
tion p, so the user sees one of the images of Figure 2.10. It can be modi-
fied it to, for instance, increase the value range of a parametrization, modify
the falloff at shading terminators in a manner similar to Mitchell, Francke,
and Eng [MFE07], introduce toon-like hard value transitions, or change the
spread and falloff of specular highlights (see Figure 2.11).

2.4.3 Composition

A user can choose one of the base parametrizations unmodified, or can de-
sign more complex behaviors by combining them together using traditional
compositing operators: multiply, which can be used for masking part of para-
metrizations, akin to a logical and operation; and screen, which has the oppo-
site effect of multiply and can be used to merge the behavior of two parametriza-
tions together (logical or). In formal terms, given two parametrizations pa
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and pb:

pscreen = 1− (1− pa) · (1− pb)

pmultiply = pa · pb

This compositing approach to combining parametrizations provides the
most flexibility and is also more intuitive to users already familiar with com-
positing software. In tandem with value maps, the composition operators
can be used to restrain the location and spread of a shading effect. For in-
stance, assume that the user wants a shading effect that behaves like specular
highlights, but that is only present on sharp edges. This can be achieved with
a base specular parametrization, multiplied by the curvature parametrization
with a value map to filter desired areas of high curvature.

2.5 Perturbation terms

Parametrizations can be modified with procedural noise before applying a
color map, in a manner similar to domain warping. In our system, this is im-
plemented as perturbations: optional operations that modulate the parametriza-
tion p of a shading behavior with a locally varying perturbation term d based
on solid procedural noise.

Warping locally modifies the behavior of a parametrization: it allows de-
tails that are revealed by the shading effect. In constrast, compositing the
details over the final result would produce details everywhere regardless of
shading and would not affect the underlying behavior of the shading. Fur-
thermore, procedural noise allows users to quickly experiment with adding
visual details on an object, without needing to modify the geometry or to
manually paint textures.

In the following paragraphs, p′ is the perturbed parametrization, p is the
original parametrization p′ is the combination of the original parameter p
with a spatially varying perturbation term d ∈ [0, 1], given by the evaluation
of a procedural noise, using one of the operations below:

Offsetting p′ is given by offsetting the original parameter with the pertur-
bation term and clamping the result in [0, 1], following the formula

p′ = clamp (p + scale× (d− 0.5))

where scale is a user-defined scaling factor. A typical use for this op-
erator is to jitter the boundaries of hard shading features introduced
in a value map (such as terminators or hard specular highlights). The
strength of this effect is controlled by the scaling factor s, as shown in
Figure 2.12. For parametrizations that depend on the surface normal,
the offsetting operation can reproduce effects that are perceptually sim-
ilar to bump mapping.
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Behavior Noise Offsetting (s = 1/10) Offsetting (s = 1)

FIGURE 2.12: Offsetting examples. (Top) A toon shading tran-
sition offset with a gradient noise. (Bottom) A specular behav-
ior offset with a cellular noise produces highlights with com-
plex shapes. A high scale parameter increases the size of the

jitter effect.

Texturing p′ is given by:
p′ = p · d

The perturbation term will affect the object globally instead of being
localized at shading terminators. Thus, in contrast with offsetting, this
operation can be said to add textural details. A usage example of this
operator is given in Figure 2.15(g).

Multiple perturbation steps can be chained together allowing complex
dynamic stylized appearances. The perturbation term d comes from the
evaluation of a 3D (solid) procedural noise in model space. This avoids
the shower-door artifacts commonly found with 2D procedural noise. An-
other advantage of procedural noises compared to bitmap images is that
they do not need any surface parametrization and can be evaluated in real-
time on animated, deformable objects. In our deferred implementation, the
solid noise is evaluated in screen-space, using the G-buffer containing the
3D model-space position. This results in a 2D image containing perturbation
values at all positions on the screen. In our implementation, we provide two
choices of noise models to generate this perturbation term:

Gradient noise: A grayscale solid gradient noise (Perlin noise) [Per85]. The
user can control its frequency, amplitude (centered on 0.5) and number of oc-
taves. For example, low amplitude gradient noise used with offsetting can
produce a bumpy appearance on objects with hard shading or sharp high-
lights, as show in Figure 2.12.
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Cellular noise: This is the model described by Worley [Wor96]. It generates
structured details resembling scales with a user-defined frequency and regu-
larity. Figure 2.12 shows cellular noise perturbing a specular parametrization
to alter the shape of a specular highlight and give the impression of surface
irregularities.

2.5.1 Line Integral Convolution

Additionally, to increase the range of achievable appearances with procedu-
ral solid noise, a user can optionally apply a Line Integral Convolution(LIC)
[CL93] filter on the generated solid noise. LIC filters are mostly used for the
visualization of vector fields, but have also been used for stylization pur-
poses [LM01]. The technique we propose in our pipeline is similar to the
latter: the apply the LIC filter in the 2D image containing the generated solid
noise. Two options are proposed to the user for the vector field used to guide
the LIC filter:

1. The LIC is guided by the screen-space gradient of the parametrization
being perturbed. This gradient can optionally be rotated 90 degrees.
This allows brush- and sketch-like effects that are oriented according to
shading features.

2. The LIC is guided by a vector field defined on the surface of the object,
projected in screen-space (for instance, the projected surface tangents
or normals).

We show in Section 2.8 that this step allows the user to approximate a
range of anisotropic shading effects and appearances, such as a brushed
metal look, view- and light-dependent cross-hatching effects, or painterly
strokes oriented according to the illumination falloff.

2.6 Colorization and compositing

Finally, the colorized result of one appearance effect is obtained by applying
a 1D color map on the shading behavior: a 1D color map is a function f :
[0, 1]→ [0, 1]4 stored in a 1D RGBA texture. An artist can edit this color map
to change the shading tones, alpha channel and falloff of shading features.
Note that there is only one color mapping operation per shading effect.

The result of individual shading effects are then blended together accord-
ing to a stack of compositing operations to obtain the final appearance, as
shown in Figure 2.8. In addition to regular alpha blending, several stan-
dard compositing operations are available at this stage, including the multi-
ply, screen and overlay blend modes.

2.7 User interface

During the design process, the user has to edit 1D value maps and color
maps. We chose to expose them directly instead of having a model with
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FIGURE 2.13: Blurring a specular highlight with the click-and-
drag interface on the object. (Left) With the highlight color map
currently selected, the user draws a stroke on the object to de-
fine the range of parameters to blur on the color map. (Right)

Result of the blur operation.

parameters for artistic flexibility. However, editing these maps can also be
tedious: to alleviate this, we provide editing tools to faciliate frequent oper-
ations done on color and value maps, which should be familiar to users of
digital painting software:

Flat The flat tool paints a constant color or value over the selected parameter
range. This is useful to create toon-like color bands.

Gradient The gradient tool paints a linear gradient. It can be used to paint
smooth tonal variations.

Blur The blur tool applies a 1D gaussian blur over the selected parameter
range. A typical use case is to increase perceived glossiness of an object
by blurring the falloff of a specular highlight.

These tools operate on a parameter range of the map. The range can be
selected by clicking and dragging 1D view of the map, or directly on the ob-
ject by drawing a stroke: in the latter case, the parameter range is determined
by looking up the values of the associated parametrization at the endpoints
of the stroke. An example of user interaction is shown in Figure 2.13.

2.8 Results

Our workflow is implemented in C++ and OpenGL. All operations are done
on the GPU. While there is considerable room for improvement on the per-
formance of our implementation (most of our image passes could be fused
in one single shader pass), our system still keeps interactive frame rates (>
20 FPS), even for complex styles. Note that our system only requires normal
and depth maps for calculating the base parametrizations, and position maps
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(a) (b) (c) (d)

FIGURE 2.14: Simple toon shading (a). Our system easily al-
lows details to be added with different offsetting noises (b,c)

and offsetting scales (c,d).

for coherent 3D noise. Thus, it can be easily integrated into any pipeline that
produces these three outputs.

A user starts by loading a mesh from a file, and by adding a first appear-
ance effect. The initial view shows the default shading behavior. From then
on, the user can edit the value map or color map by clicking and dragging
on the mesh or directly on the associated 1D textures, add a perturbation
operation, or add new appearance effects. All modifications are reflected in
real-time on the mesh. The designed appearance stays independent of the
model used for editing: this allows the user to change the mesh during a
design session and resume editing operations on this new mesh seamlessly.
Our interface also provides controls for adjusting global parameters, such as
the position of the lights (azimuth and elevation), or the scaling parameter
for the surface curvature. These controls are shared by all appearance effects.
The user can also move the camera at any time by clicking and dragging on
the object.

Directional lights can be added in a scene as needed, each light having
its own associated Diffuse and Specular parametrizations. This way, a user
can bind shading features to one particular light. Their directions can be con-
trolled individually, or rotated all at once as a single lighting environment. By
progressively adding different effects that depend on different lights, users
can emulate complex lighting environments, as shown in Figure 2.15(e).

Figure 2.14 shows how our framework can accommodate simple toon
shading effects with one appearance effect parameterized by a Diffuse be-
havior (a). In (b-d) we add a perturbation operation with the offsetting mode,
using unmodified gradient noise (b), and cellular noise (c,d). In (c,d) we vary
the scale parameter s of the offsetting to increase or decrease the amount of
added detail.

In Figure 2.15, we show various styles achievable with our system. Sim-
ple toon shading (a) is implemented with only one appearance effect. The
shading tones were painted directly on the object using the flat tool. In (b),
the same color map was smoothed and parameterized by a Silhouette behav-
ior instead of Diffuse. A glossy specular highlight was added as a second
appearance effect. Figure 2.15(c) illustrates the use of the thickness base
parametrization to give a convincing impression of a translucent material.
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In (d), we combined a simple diffuse effect with a silhouette lighting effect
appearing only in unlit regions. In (e), we illustrate the ability of our system
to bind appearance effects to different lights: two glossy specular effects were
added and parameterized by two different lights. In (f), we offset a specular
highlight with a high-frequency cellular noise to reproduce a glinting effect.
The use of procedural noise allows a coherent result when moving the light.
In (g), we illustrate the effect of the texturing perturbation mode. Two per-
pendicularly oriented noises are combined with a diffuse behavior using a
texturing operation. The result is oriented along the image-space gradient
of the diffuse term and follows its variations. Finally, in (h) we re-used the
metallic appearance shown in (b) and applied an offsetting operation with
an oriented noise in order to reproduce a brushed metal appearance.

In Figure 2.16 we illustrate the behavior of a complex combination of ap-
pearance effects under varying lighting conditions. The appearance shown is
composed of a base diffuse effect (orange), and an edge lighting effect (cyan)
that appears only on object silhouettes and regions of high curvature. The
behavior of this effect was designed by merging the Silhouette and Curva-
ture behaviors using the Screen mode, and by multiplying the result with a
remapped Diffuse behavior, so that the effect appears only in the unlit part
of the object. By providing simple compositing operations to combine and
remap shading behaviors, our system allows fast prototyping of such com-
plex shading behaviors without the need for extensive technical knowledge.

Figure 2.17 shows the decomposition of an appearance effect based on
surface curvature: we combined, using the multiply blending mode, value-
mapped Specular (b) and Curvature (a) behaviors to obtain highlights local-
ized on sharp object edges that behave specularly (c). The final result is
shown in (d). We then transferred this style to other objects, as shown in
the bottom row. The size of the edge highlight effect can be modified either
by tweaking the value map used to select the desired curvature range or by
adjusting the global scaling parameter for curvature.

2.9 Conclusion

We proposed a workflow and a set of editing tools to design stylized ap-
pearances on 3D objects coherent under light and viewpoint changes. Our
main contribution is the separation of the design of individual appearance
effects in three aspects: shading behavior of the effect, addition of procedural
details, and colorization. This decomposition offers a more precise and pre-
dictable result than offline appearance transfer techniques, while being more
flexible and easier to use for non-technical artists than specialized shading
models. Our workflow allows stylization results to be calculated in real-time
and is thus usable in interactive contexts such as visualization, 3D modeling,
or video games.

We have provided several base parametrizations that encode common
shading behaviors and proposed ways to control their size and placement
on an object. For non-technical artists, we feel that this approach is more



48 Chapter 2. A workflow for designing stylized shading effects

direct for designing complex behaviors than hand-written shaders, and re-
sembles the shading design process in 2D digital painting. It could however
benefit from more base parametrizations: notably, a limitation of our current
system is the inability to reproduce convincing refraction effects for translu-
cent objects. More work is needed in this direction to provide intuitive base
parametrizations for these effects. The same is true for global illumination
effects such as color bleeding between objects in a scene, or subsurface scat-
tering, for which we should provide specialized parametrizations.

Currently, the parametrizations are only defined on pixels covered by the
rasterized object. This means that all shading and appearance effects are cut
at object silhouettes. A possible improvement to our system would be to
extend parametrizations in a region surrounding the object in order to create
appearance effects that alter the object silhouette, such as a glow effect. In
Chapter 3, we describe the challenges of doing so, and propose solutions.

Concerning procedural details, the combination of 3D gradient noise and
line integral convolution ended up being sufficient for a wide range of ap-
pearances. Our system can also be used with cellular noise to produce medium-
scale details, but could be extended with other kinds of structured noises.

The use of 3D noise produces details that are fully coherent with scene
motion. However, there are cases where a more 2D aspect is desired: in
this case, our stylization approach could be extended with coherent 2D noise
primitives [Bén+10]. Another limitation of our system in this aspect is that
small-scale procedural details on shading features are not preserved when
transferring the appearance to a mesh with high-frequency geometric de-
tail. In these scenarios, we would want shading effects to ignore the high-
frequency geometric details. This could be done by rendering parametrizations
with a smoothed out mesh, or by prefiltering the existing parametrizations
to remove high-frequency variations.

In our model, complex shading behaviors can be obtained by combining
parametrizations using standard compositing operators and value maps. In
a future work, we would like to automate part of this process by inferring
parametrizations from an artist provided value distribution made with con-
ventional digital painting tools.
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FIGURE 2.15: Various styles obtained with our system, and
corresponding layer decompositions. See Section 2.8 for details.
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FIGURE 2.16: Our system allows complex spatially and tem-
porally coherent behaviors with varying light directions. Here,
curved regions and silhouettes are enhanced with a bluish color

when the diffuse component gets darker.

(a) Curvature (b) Specular (c) Multiplied (d) Result

FIGURE 2.17: Combining parameterizations: user-defined cur-
vature (a) and specular (b) behaviors are multiplied together
(c) in order to ensure that the highlights appear only on highly
curved regions (d). The corresponding style is then directly
transferred to other input objects, as shown in the bottom row.
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Chapter 3

Motion coherent stylization with
marks in post-processing

3.1 Introduction

In both traditional and digital painting, the artist creates the picture by plac-
ing and accumulating marks on the canvas. These marks can be, among other
things, pencil lines that depict contours, or brush strokes that fill the inside
of objects. Similarly to the way artists depict light and shade, the distribu-
tion, shape and size of marks on the canvas, vary widely from artist to artist.
This is a very versatile process in terms of the achievable appearances: in
some styles, the marks are clearly visible on the final result, with their bound-
aries clearly defined. In others, the marks blend continuously, blurring the
boundaries and making them indistinguishable from each other, resulting
in a smoother appearance. Because of that, marks are essential components
in the definition of an artistic style. Some styles with prominent and easily
recognizable brush stroke techniques are shown in Figure 3.1.

Note that these marks fundamentally live in the secondary space, i.e. the 2D
picture plane. Notably, from a computer graphics point of view, this means
that such marks should not be affected by perspective transformation, fore-
shortening, or zooming of the camera: they should maintain a constant size
on the screen regardless of where the camera is and how the surface is ori-
ented in 3D. Because of that, such stylization marks should preferably be
drawn as 2D primitives in screen-space. However, stylizing animated 3D
scenes this way is challenging, because of the mismatch between the flatness
of the marks (their 2D appearance and behavior on the picture plane), and
the underlying 3D geometry and motion of the scene. As we’ve seen in Sec-
tion 1.3, this mismatch is the source of various temporal coherence artifacts,
detailed in the report by Bénard, Bousseau, and Thollot [BBT11]. As a re-
sult, all stylization methods that strive to reproduce 2D marks are tradeoffs
between preserving flatness and avoiding temporal coherence artifacts.

Numerous stylized rendering techniques have been proposed to simu-
late the visual appearance of traditional painting marks, forming the field
of painterly rendering. A straightforward approach is stroke-based rendering,
which simulates the painting process by placing and rendering many small
discrete textured primitives representing the painting marks. However, they
are directly affected by temporal continuity issues. Also, the individual stroke
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FIGURE 3.1: Importance of strokes in defining and recognizing
an artistic style in traditional media: individual paint strokes
are highly regular, and clearly distinguisable in the pointillist
painting by Delaunay (left). In contrast, in this detail from Van
Gogh’s The Starry Night (right), the brush strokes are much less
regular: they vary in size and shape. In both cases, the orienta-
tion of the strokes does not follow the same rules in every part
of the image: some strokes seem to be oriented in the direction
of light propagation (of the sun on the left, and of the stars on
the right), while others conform to tangible objects in the scene.
In the context of animated 3D scenes, controlling the distribu-
tion and attributes of strokes on the screen without introducting
temporal coherence artifacts is one of the main challenges of the

NPR community.

primitives should be drawn in a consistent order to avoid flickering, which
is a non-trivial problem.

Promising advancements in the rendering of stylization marks have been
made with techniques based on dynamic textures [BBT09] and procedural
noise [Bén+10; KP11]. However, with these models the range of achievable
appearances tends to be more limited. In the case of procedural noise models,
it is also more difficult to generate highly structured marks.

Meanwhile, good stylization results have been obtained for images and
videos with local image filtering techniques. Local image filters can be evalu-
ated independently for each pixel, and depend on a fixed-size neighborhood
(the filter window) around the pixel on the original image, as illustrated in
Figure 3.2. Common examples of filters used for visual abstraction and sim-
plification of pictures are morphological operators (erosion, dilation), and bi-
laterial filtering [TM98]. Furthermore, image filters can be guided to follow
local image structure (such as contours or luminance edges) using flow-based
filtering techniques. And, in combination with procedural noise, they can be
used to reproduce brush-like appearances [Sem+16]. Finally, since image fil-
tering techniques fundamentally operate in the picture plane, the resulting
appearances tend to have a convincing 2D look.
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FIGURE 3.2: Local image filtering process (here: bilateral filter).
A pixel in the output image depends only on a neighborhood

of fixed size of the original image, centered on the pixel.

3.1.1 Stylization of 3D scenes with local image filters

In this work, we explore the use of guided local image filters, in combination
with sources of visual detail (procedural noise, for instance), to reproduce
stylization marks on 3D scenes, during the post-processing stage: i.e. when
the scene has been rasterized into G-buffers. This is motivated by several
reasons:

• First, we feel that image filtering techniques have not been widely ex-
plored in the context of the stylization of 3D scenes in real-time. Many
post-processing techniques have been proposed for the extraction and
enhancement of contours, for abstraction, or to reproduce various shad-
ing effects (e.g. ambient occlusion), but very few methods exist to gen-
erate coherent stylization marks at this stage.

• Image filtering techniques map very well to evaluation on a GPU, and
real-time performance is now relatively easy to achieve. Furthermore,
extensive literature exists on how to speed up the computation of image
filters on GPU.

• Whereas stroke-based rendering lends itself to reproducing styles with
distinguishable marks, techniques based on image filtering might a bet-
ter fit for styles where the color of adjacent strokes can smoothly mix.

• From a practical point-of-view, post-processing techniques are usually
favored by technical artists as they can be easily plugged into render-
ing pipelines, the majority of which are already using some form of
deferred shading and readily expose the G-buffers of the scene. No
modification of the original geometry is required. Stroke-based ren-
dering techniques, in contrast, require significant modifications to the
pipeline, and additional geometry passes.
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3.1.2 Challenges and contribution

This set of advantages seems to make image filtering an attractive choice for
stylization. It is also a good compromise for temporal coherence: with im-
age filtering it is easy to maintain a flat appearance, yet, by guiding image
filters with G-buffer data, it is possible to maintain some degree of motion
coherence. However, this approach presents some challenges because of one
desired property: being able to render style marks slightly outside the raster-
ized footprint of objects. The issue is that local image filters that are guided
by geometric data from G-buffers are limited to filling the inside of the ras-
terized footprint of objects. This is a significant drawback, because the style
marks tend to stop abruptly at silhouettes, creating a dissonance between the
stylized interior of the object and the fact that we can still see the unaltered
silhouette of the underlying geometry (see Figure 3.11).

Our core contribution is centered around allowing image filters to al-
ter the perceived silhouette of an object in a way that stays globally coher-
ent with the motion. We propose a set of screen-space operations to inflate
the data contained in G-buffers with a controllable radius in order to have
motion-coherent data outside the original footprint of the object. This ex-
tended data can then be used to guide local image filters. This combination
of motion coherence and footprint extension requires a careful handling of
internal silhouettes because different styles can overlap at these locations.
The approach that we present here explicitly deals with this issue, avoiding
visual artifacts.

To summarize, our contribution allows the creation of stylization pipelines
for 3D scenes that:

• Use only screen-space data contained in G-buffers;

• Are fully evaluated on the GPU;

• Ensure strong motion coherence;

• Enable the design of various styles that extend beyond the rasterized
footprint of the object.

This work has been published and presented at the Expressive 2018 con-
ference [Blé+18].

Structure of this chapter First, an overview of existing mark-based styliza-
tion techniques is proposed in Section 3.2. In Sections 3.3 and 3.6, we present
a typical structure of stylization pipeline based on a combination of local im-
age filtering guided by G-buffers, and solid procedural noise. Through this
example, we illustrate the issues that arise at object silhouettes when repro-
ducing marks. In Sections 3.4 and 3.5, we detail our G-buffer inflation method
and how we handled the difficult cases of internal silhouettes. Many local
image filters can be adapted to work with our method: we show some exam-
ples of achievable styles in full pipelines in Section 3.7.
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3.2 Related Work

Rendering a 3D scene in a way that is visually reminiscent of the brush
strokes of an artist is a long standing problem in stylized rendering. This is
usually referred to as painterly rendering. Painterly rendering techniques have
been proposed for static images, videos and 3D scenes. For an overview of
painterly rendering techniques, we refer the reader to the reviews of Bénard,
Bousseau, and Thollot [BBT11] and Hegde, Gatzidis, and Tian [HGT13].

In this section, we explore painterly rendering techniques, with an em-
phasis on region stylization, under three different angles: first, techniques
that achieve a painterly style by explicitly rendering discrete paint strokes
sequentially on a canvas: these methods form the field of stroke-based render-
ing; then, techniques that emulate the impression of brush strokes with tex-
turing; and finally, techniques where the marks are implicit and result from
the application of image processing techniques.

3.2.1 Explicit marks: stroke-based rendering

Following the Paint by Numbers system of Haeberli [Hae90], considerable
work has been done on stroke-based rendering from 2D images [Her98; GCS02;
HE04; Zen+09; ZZ11]. The general principle behind these approaches has
been summarized by Hertzmann [Her03]: it consists in "painting" color re-
gions of an image by placing discrete marks (brush strokes, stipples, etc.) on
a canvas, optimizing their size, length, and orientation according to some
depiction goals. These methods have been extended to video by moving the
strokes according to the optical flow [Lit97].

When 3D information is available, temporal coherence can be improved
by anchoring the marks to the 3D geometry, as was first proposed by Meier
[Mei96]: their system distributes particles on 3D surface that serve as an-
chors for drawing small, straight textured strokes in screen-space, sometimes
called "splats". A particle-based approach is also employed by Curtis [Cur98]
to produce sketchy animated drawings.

However, maintaining constant density and size of strokes in image-space
requires adding or removing strokes along the animation, leading to tem-
poral discontinuities. Most of the previous works in this category try to
improve the continuity by carefully distributing the anchor points, and by
blending strokes that appear or disappear in a meaningful way [Kow+99;
Kal+02; Van+07; LSF10].

Stroke placement can also be guided by the user, as in the WYSIWYG
NPR system of Kalnins et al. [Kal+02]: within their system, users annotate
the 3D model with textured strokes to represent silhouettes, creases, or re-
gions via hatching. When the viewpoint changes, the system automatically
adapts the position, length and density of the strokes to maintain the orig-
inal appearance, if necessary by synthesizing longer strokes from a smaller
exemplar.

Strokes can also be placed manually by the artist in 3D, generalizing the
concept of painting to the 3D space. This is the case of Disney’s Deep Canvas
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FIGURE 3.3: Appearance obtained using Meier’s stroke-based
painterly rendering system. The image is composed of many
small textured splats anchored to an underlying geometry to

preserve motion coherence. Image from [Mei96].

[KL03], and more recently, the Overcoat system [Sch+11]: Overcoat provides
a 3D canvas around a proxy object inside which artists can embed arbitrary
stroke paths. No automatic placement is made: an artist draws 2D strokes
on a view of the object, which are then embedded in 3D space with an opti-
mization process. The stroke themselves are rendered by distributing splats
along the stroke paths. The system has been extended with skinning and
keyframing-based animations of strokes [Bas+13]. Finally, the rendering of
the strokes can be improved by using example-based texture synthesis in-
stead of splats [Zhe+17].

The main drawback of stroke-based rendering techniques for animations
is the difficulty of maintaining both a constant screen-space density of strokes
(which is important for flatness), and minimizing the sudden changes in the
distribution of the strokes (which is important for temporal continuity). Com-
mon issues with temporal continuity are the popping of the strokes as their
anchor points become disoccluded, and sudden changes in the rendering or-
der of strokes. For 3D painting approaches such as Deep Canvas and Over-
coat, another thing to consider is the order of the strokes as painted by the
artist, which presents a challenge for compositing [Bar+11]. However, one
advantage with stroke-based rendering is that it is easy to alter the silhouette
of an object, as strokes drawn in screen-space do not have to “stay inside”
the rasterized footprint of the object on which they are anchored (only the
anchor points need to).

In general, stroke-based approaches are well-suited for styles with clearly
distinguishable strokes, but may be less adapted to styles where marks can
smoothly blend between each other. Smoother appearances have been demon-
strated in Overcoat, but this necessitates a high density of semi-transparent
strokes: the amount of geometry required in this case can be costly. In real-
time contexts such as video games, this prompted alternative approaches and
approximations [Imh+15], or highly specialized GPU rendering pipelines
[Eva15].
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FIGURE 3.4: WYSIWYG NPR system of Kalnins et al. [Kal+02].
Users have annotated the contours, and shaded areas with
textured strokes. The system ensures a consistent look when

changing viewpoints and zooming. Images from [Kal+02]

FIGURE 3.5: 3D painting obtained with the Overcoat system,
composed of approximately 5000 strokes. Strokes are painted
manually by an artist on a 2D view, and automatically embed-
ded by the system in a 3D space surrounding the proxy object.

Result from [Sch+11].

3.2.2 Texture-based approaches

To avoid temporal discontinuities and decrease the cost of rendering addi-
tional geometry, stylization marks can instead be rendered into a texture be-
forehand, and then applied to an object by texture mapping. Texture map-
ping ensures a perfect motion coherence of the marks without temporal dis-
continuities. In the case where a parametrization of the surface is not avail-
able, solid texturing techniques can be employed, where the textures are de-
fined as 3D volumes, and texture coordinates are derived from object-space
vertex coordinates.

To generate those textures, procedural texturing techniques can be used.
We refer the reader to the survey conducted by Lagae et al. [Lag+10] for a
comprehensive overview of the different kinds of noise functions and their
uses in computer graphics. Examples of widely used procedural models
include Perlin Noise [Per85] or Cellular Noise [Wor96]. Most procedural
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models are usable as 3D solid noise for use in solid texturing scenarios: see
Lewis [Lew89] for an overview. Procedural models are attractive in com-
puter graphics because of their ability to be evaluated on-the-fly, and their
low memory cost compared to texture images. They are also randomly accessi-
ble [Lag+10], meaning that they can be easily evaluated at different locations
in parallel, which is a necessary property for efficient GPU evaluation.

However, texture-mapped marks, procedural or not, maintain a strong
3D appearance, as they are affected by perspective distortion and foreshort-
ening, and do not maintain a constant density on the screen when zooming.
Texture mapping techniques specialized for NPR have been designed to cre-
ate a flatter appearance. Klein et al. [Kle+00] proposed art maps, an adap-
tation of the classic mip-mapping technique for non-photorealistic appear-
ances. During texturing, the mip-map level of a texture is selected based on
projected size of a screen pixel on the surface. By putting marks at different
scales in each mip-map level, they are able to maintain a constant mark size
on the screen regardless of foreshortening. A similar approach has been used
for real-time hatching with tonal art maps [Pra+01; Web+02]. The Dynamic
Solid Textures of Bénard, Bousseau, and Thollot [BBT09] adapt this principle
to solid textures with a fractalisation approach, in which the original solid
texture is blended multiple times at doubling frequencies. They adjust these
frequencies dynamically to allow for continuous “infinite zoom”, keeping a
similar texture appearance at multiple zoom levels.

Alternatively, texturing a scene in screen-space provides a good flat ap-
pearance, as the texture is not subject to perspective deformations. How-
ever, this is subject to the shower-door effect. Techniques have been prop-
sosed to prevent this: Cunzi et al. [Cun+03] used a 2D similarity transform
that matches the motion of the scene to animate the screen-space texture.
Bousseau et al. [Bou+06] blended multiple layers of screen-space noise, each
layer being anchored to a point on the 3D object.

However, while these approaches successfully avoid the shower-door ef-
fect, they are more suited to stochastic textures containing small-scale and
random features (e.g. paper) but not adapted to large-scale structured fea-
tures (e.g. brush strokes). Other methods are better suited for that: In Breslav
et al. [Bre+07] approach, objects are textured in screen-space with small pat-
terns anchored to an object, which are deformed from frame to frame to en-
sure a continuous flat appearance. Bénard et al. [Bén+10] proposed a special-
ized procedural noise model based on Gabor noise [Lag+09], and showed a
wide variety of styles with a 2D appearance (Figure 3.6). Yet, textural details
generated with only procedural noise still keep a very synthetic look.

Volumetric texturing Texturing can be extended outside the surface of an
object by using 3D volumetric textures rendered with ray-marching [KK89;
PH89]. Later works focused on improving the performance of this approach
to real-time frame rates by approximating volumes with layers of additional
geometry [MN98; Len+01; DN09]. We refer the reader to the survey of Ko-
niaris et al. [Kon+14] for a comprehensive overview of this type of approaches.
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FIGURE 3.6: Appearances obtained with the NPR Gabor noise
of Bénard et al. [Bén+10], reproducing painterly styles with

marks. Images taken from the paper.

However, the goal of these methods is to be as close as possible to a realistic
appearance, and are usually poorly suited to reproduce flat styles.

3.2.3 Image processing techniques

Image filtering techniques are ubiquitous and used in all domains dealing
with images: medical imaging, computer vision, computer graphics, ... and
for various purposes: denoising, detection of contours, visual simplification,
etc. Originally, image processing techniques are made to work on classic
color images. They can be used in the 3D rendering pipeline of 3D scenes in
the post-processing stage. However, some image processing techniques are
tailored for use in a post-processing context, and make use of the additional
data contained in G-buffers (depth and normal information, notably). For
an overview of image processing techniques in the context of the stylization
of images and videos, we refer the reader to the survey of Kyprianidis et al.
[Kyp+13]. We distinguish global and local image filtering techniques: local fil-
tering techniques work on a per-pixel basis, each pixel of the output image
depending only on a fixed pixel neighborhood in the original image (Fig-
ure 3.2), whereas global filtering techniques cannot be expressed efficiently
this way. An example of global image algorithm is mean shift [CM02], which
has been used in stylization to segment regions of similar color and texture
for abstraction of images and videos [DS02; Bou+07]. Appearance transfer
techniques derived from image analogies [Her+01] are other examples.

Here, we put emphasis on local image filtering techniques, as they can
be implemented efficiently on a GPU. Examples of local image filtering tech-
niques include morphological operations (used in the watercolor pipeline of
Bousseau et al. [Bou+06]), and bilateral filtering [TM98]. Flow-guided filter-
ing techniques, in which the filter kernels are oriented according to a 2D flow,
have been used for abstraction [KD08; KLC09; KK11], and synthesis of paint
strokes [Sem+16].

In this work, instead of abstracting details away from a picture, we seek to
use local image filters to instead add stylization marks to a rendering of a 3D
scene. In previous literature, elongated brush-like marks have been synthe-
sized by filtering procedurally generated noise patterns with an anisotropic
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image filter. Commonly used for this purpose is the Line Integral Convo-
lution [CL93], which was originally proposed for the visualization of vector
fields. This technique has been adapted to reproduce watercolor washes in
texture space [LM01] and pencil drawings [MNI01; YMI04]. A variant of this
technique has also been used to generate glass patterns [PP09], which have
also been remarked for their painterly quality. Semmo et al. [Sem+16] used a
flow-based Gaussian filter for synthesizing oil paint textures (Figure 3.7).

We follow this general principle of filtering noise to create marks and use
it as a post-process pass, driven by geometrical data from G-buffers, to styl-
ize 3D scenes coherently. To summarize, our system can be seen as a hy-
brid between a texture-space and an image-space approach: we use motion-
coherent noise textures mapped on objects as a base for subsequent filtering
in image-space, and also as a way to control certain aspects of the filters. This
hybrid approach allows us to strike an advantageous balance between flat-
ness and motion coherence. We show how they can be used to reproduce
“digitally painted” styles, that range from visible discrete strokes to more
continuous appearances.

FIGURE 3.7: Oil paint filtering of Semmo et al. Paint strokes
were generated by blurring noise using a flow-guided Gaussian

filter. Images from [Sem+16].

Post-processing techniques Even in the context of 3D scenes, local image
filters are still widely used in the form of post-processing passes. Using G-
buffers [ST90], post-processing filters also have access to geometry informa-
tion in screen-space (sometimes called “2.5D” information, as it is 3D in-
formation stored in 2D images). G-buffer based methods have since been
ported to GPU architectures, as first demonstrated by Nienhaus and Döll-
ner [ND04a]. They are now widely used in the industry, as standard buffers
in compositing software, and also in the rendering pipeline of many video
games, in the form of deferred shading. Because of their simplicity, the fact
that their complexity is independent of the input geometry, and the fact that
they can be very efficiently implemented on GPUs, they are an attractive
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alternative to object-space techniques in many scenarios such as contour ex-
traction and stylization [ST90; Lee+07; Ver+11b], ambient occlusion, depth of
field effects, etc.

A large number of NPR techniques make use of the geometry information
in G-buffers. In addition, there exists hybrid methods that combine object-
space processing and screen-space post-processing on G-buffers [TC00; ND04b;
BWK05; MSR16]. Notably, Nienhaus and Döllner [ND04b] use an hybrid ap-
proach to render sketchy contour lines: in order to have motion-coherent
noise to perturb the contour lines, which lie outside the rasterized footprint
of the object, they first inflate the initial geometry, and render the inflated
version textured with procedural noise.

Expanding the data contained in G-buffers is an essential part of our
pipeline, in order to generate marks that extend outside the screen-space
boundaries of the object. In contrast to the approach of Nienhaus and Döll-
ner, our technique is purely screen-space, and does not require additional
geometry passes: we expand the G-buffer data with an inflation filter.

3.3 Motivation and overview

FIGURE 3.8: Tutorial on how to digitally paint fur: the artist
starts by laying down splats of paint, then spreads it out-
wards the surface of the object (black sphere) with a smudge
tool. This painting process is an inspiration for an auto-
matic painterly stylization pipeline based on a combination
of procedural noise (for the splats), and guided image fil-
tering (for the smudging). c© Nate Hallinan (Cropped ver-
sion of https://www.deviantart.com/natehallinanart/art/

Painting-Creature-Fur-423413686)

To illustrate the motivation behind the proposed pipeline, consider Figure
3.8, which is a tutorial on how to paint fur on an object with digital painting

https://www.deviantart.com/natehallinanart/art/Painting-Creature-Fur-423413686
https://www.deviantart.com/natehallinanart/art/Painting-Creature-Fur-423413686
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tools. The artist starts by painting color splats with a brush tool. Then, using
the smudge tool, the artist spreads the splats along the surface of the sphere,
creating strands of fur. By repeating this process multiple times, a fur-like
appearance can be obtained.

Our intuition is that it should be possible to reproduce this process with
a combination of procedural texturing (for the initial paint splats) and an
anisotropic image filter (for the smudging). To ensure a coherent motion of
the strands of fur, the filter should be guided by a flow derived from the ge-
ometry data in G-buffers (e.g. the projected screen-space normals). As we’ve
seen in the previous section, methods exist that can reproduce volumetric fur
in real-time. But they tend to keep a 3D look at all times. In that aspect, im-
age filters can more accurately model what the artist does with paint using
the smudging tool.

An example of such a pipeline is summarized in Figure 3.9. First, spots of
color are masked from a textured and shaded color input with a thresholded
solid cellular noise, to ensure robust motion coherence. The solid noise can
be generated from the object-space position G-buffer. Then, a convolution
filter is applied, with an anisotropic spatial kernel of radius r, and locally ro-
tated according to an input flow derived from G-buffers (here: the projected
screen-space normals), to transform the spots into elongated paint strokes.

This particular pipeline is generalizable to other kinds of styles. In our
work, we consider pipelines that have the same general structure and com-
ponents as Figure 3.9:

• One or more source of motion coherent details (e.g. procedural noise)
that serve as “seeds” for the marks: this role is fulfilled by solid noise
in our previous example, but other techniques could be used [BBT09;
Bén+10].

• Operations that combine the motion-coherent details with other scene
attributes (e.g. shaded color).

• An image filter, usually guided by G-buffers, that synthesizes marks
from the motion-coherent detail.

The only constraint that we impose on the image filter is locality: the re-
sult of a filter operation at a pixel should only depend on a local pixel neigh-
borhood of radius r around the pixel in the input images, that we call the
filter window. This allows the filters to be efficiently implemented on GPUs.

However, this pipeline has two main issues. First, the stylization stops
abruptly at the silhouette of objects. We solve this by inflating the footprint
of objects contained in G-buffers, in order to guide the filters in a controllable
radius around the object. We describe this technique in Section 3.4. This,
in turn, raises an issue when distinct surface parts are present under a filter
neighborhood, because the inflation produces incoherent data. We explic-
itly deal with this in our technique by recognizing that, in those cases, the
inflation and filtering steps should be done separately for each object. In
Section 3.5, we explain the issue in more detail, and describe the local seg-
mentation algorithm that we used to detect the offending cases and perform
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FIGURE 3.9: Schematic overview of a screen-space stylization
pipeline to reproduce stylization marks with a combination of
procedural solid noise and image filtering. First, spots on the
shaded and textured input image are masked with cellular solid
noise. Those masked spots are then filtered with a local image
filter, guided by a 2D flow derived from the scene G-buffers.
Using a filter with an elongated footprint, we are able to gener-

ate stroke-like features.

inflation separately. Finally, in Section 3.6, we cover the details of filter evalu-
ation and blending, and show how to integrate image filters into our pipeline.
Figure 3.10 provides an overview of the full pipeline.

3.4 Inflation

3.4.1 Problem overview

In the pipeline described in 3.9, the marks generated by the filters cannot
go beyond the footprint of the object in the G-buffers (Figure 3.11(a)), as the
data needed to guide the filter is not defined there. Yet, having irregular
silhouettes contributes greatly to the perceived flatness of the look, and are a
key aspect of some styles: for instance, a plausible painted fur should extend
outside the silhouette of the underlying object.

Our first contribution is to fill the missing information by inflating the
footprint of objects in G-buffers (Figure 3.11(b)). To that end, we propose a
local image filter that performs inflation in screen-space, that is equivalent to
inflating an object geometrically before rasterization by translating vertices
along their normals. This equivalence is important to preserve the motion
coherence of the extended G-buffer data. Once the necessary information for
guiding the filter is available, the strokes can naturally extend outside the
rasterized footprint of the object.

3.4.2 Filter formulation

We extend G-buffer data by mimicking a real inflation of the original 3D ob-
ject, as if we displaced the vertices of the model along their associated nor-
mals before rasterization. Let us consider a pixel p0, being the center of a
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Auxiliary stylization inputs
(shading, procedural noise, flows, etc.)

G-buffers (normals, depth, tangents, etc.)

FilteringInflation

Local segmentation

Local surface part information

Blending

Normals, depth

Inputs
Inflation & 
segmentation

Filtering & 
blending

FIGURE 3.10: Our pipeline takes standard G-buffers (depth,
normal, positions, etc.) and auxiliary buffers (scene shading,
procedural noise, etc) as input. From the depth and normal
buffers, a segmentation algorithm identifies the distinct sur-
face parts under every filter neighborhood. The algorithm we
employ is a soft K-means segmentation. The local informa-
tion about surface parts is then passed on to the inflation pass,
that generates inflated versions of all G-buffers and auxiliary
inputs needed to drive the image filter. The local image filter
is then evaluated separately for each detected surface part with
the necessary input data (inflated G-buffer data, colors, etc) as
guidance. Finally, the last step consists in blending the filter

results at locations with stylization overlaps.

circular neighborhood of radius r (the filter window) in a G-buffer. Our goal
is to look for pixels p in the neighborhood that would be at the p0 position
if the corresponding object had really been inflated before being rasterized.
Intuitively, this can be done by checking if, when a point p is displaced along
the projected screen-space normal with a given radius, p = p0. In other
words, for every pixel p0, we look for points p such that p0 = p + rn(p),
where n(p) is the projected screen-space normal at point p. Points p that sat-
isfy this equation can be seen as anchor points as they can be used to inflate
any G-buffer (by simply fetching the data at point p instead of p0).

In practice, we work on discrete buffers, and this equation is usually not
satisfied. Instead, we assign a weight wp to each point under the filter win-
dow that evaluates the fitness of the point for inflation. We define it as a
Gaussian of the distance between the warped pixel p + rn(p) and the filter
window center p0:

wp = exp
(
−‖p0, p + rn(p)‖2

σ2

)
, (3.1)

where σ controls the tolerance towards the displacement error.
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FIGURE 3.11: (a) The local image filter guided by G-buffer data
cannot be evaluated outside the footprint of the object in the G-
buffers: the generated marks stop abruptly at the contour. (b)
We “inflate” the footprint of objects with the radius of the filter
window r, in all G-buffers that are used by the filter, allowing
the filter to be evaluated outside the original footprint, and the

marks to go beyond the contours.

Normals

Colors

Weights
wp

FIGURE 3.12: Inflation: (top) effect of σ on the size of the
clusters, (middle) inflated normal map, (bottom) inflated color.
Low σ values make the averaged region more localized, as few
normals are considered fit for inflation. Conversely, higher σ
values result in a wider region being averaged when inflating
G-buffer data. This can lead to more stable animations, at the
price of a loss of detail on high-frequency data, as shown with

the noisy color image in the bottom row.

The inflated data at p0 is then calculated by averaging the data under the
filter window S, weighted by wp:

Iinflated =
∑p∈S wp I(p)

∑p∈S wp
, (3.2)
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where I(p) represents the buffer data being inflated (depth, normals, colors,
etc.). A visualization of weights and inflated data is provided in Figure 3.12.

3.5 Segmentation

3.5.1 Problem overview

(a)

(b)

G-buffer Inflation Stylization

✓

✗

r

FIGURE 3.13: (a) When dealing with internal contours, a naive
screen-space inflation fails where overlapping surfaces occur
because a single surface is considered for each pixel. (b) Our
approach uses a local segmentation in order to inflate and filter

separately each overlapping surface part.

Inflation and filtering are ambiguous when parts of an object are over-
lapping each other (e.g. when there are internal contours). This is because
inflation and filtering have no knowledge of multiple surface parts that may
exist under a filter window.

This is illustrated with two spheres in Figure 3.13: visually, we would
expect two sets of overlapping strokes in different directions (one for each
sphere). The naive approach (in Figure 3.13(a)), keeps only one direction,
which results in the green strokes not being properly oriented.

The main insight in our method is that in cases where multiple surface
parts (separated by a contour) are present under a filter window, filtering
should be done separately for each part. This means that, at these locations,
the local image filter should be evaluated multiple times per pixel, with dif-
ferent guiding parameters for each detected surface part, and then blended
together. The inflation should also be done separately, since each surface part
may propagate different data.

A large portion of the proposed pipeline is dedicated to the detection and
proper handling of these stylization overlaps. Our solution (Figure 3.13(b)) is
to locally detect pixels affected by stylization overlaps by identifying and lo-
cating the different surface parts under their associated filter neighborhood.
For that, we propose a local segmentation method, based on soft K-means
[Bau15]. This information is handed over to the inflation and stylization
passes so that they can inflate and filter each surface part independently.
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3.5.2 Algorithm
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FIGURE 3.14: Handling overlapping inflated data on a style
guided by screen-space normals. (Top) Normals and weights
obtained on two filter windows. Multiple separate clusters of
wp are visible under windows with more than a single surface
part. (Second) Averaging all data leads to unnatural direction
fields. This is what happens by default with the naive infla-
tion filter. (Third) averaging only front-most surfaces produces
discontinuities in the resulting stylization. (Bottom) in our ap-
proach the weight maps are first segmented into clusters to styl-

ize each part independently before compositing them.

When different parts of the surface are overlapping in the inflated version
(due to internal contours, multiple silhouettes, T-junctions, etc.), the relation
p0 = p+ rn(p) can be satisfied by more than one anchor point p under the fil-
ter window. This is shown in Figure 3.14, where several clusters of weighted
points stand out, and corresponds to the case where multiple surface parts
are present under a filter window.

In that case, we would like Equation 3.2 to be applied independently on
each cluster to ensure that each part is inflated separately. Figure 3.14 illus-
trates what happens with naive approaches, in contrast to our solution, on
a style similar to the one shown in Figure 3.11, where an image filter is ori-
ented along surface normals to “smudge” colors outside the silhouettes of the
object. In the second row, the normals of all clusters are averaged together,
resulting in an unnatural direction field for guiding the style.

In the third row, only the weights of the top-most surface are considered.
As a unique direction is computed per pixel, only the front surface will be
correctly stylized, producing discontinuities when styles of front and back
surfaces should overlap. Our solution is presented in the last row, where
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we locally segment and stylize each overlapping part independently before
recomposing the final result.

Note that if the surface parts belonged to distinct objects in the scene, they
could be separated by assigning different identifiers to objects and recovering
them in a G-buffer. However, in the general case, internal silhouettes can
appear even within the same object: this would require users of our system
to split the geometry of objects in parts that do not exhibit internal silhouettes
under any viewpoint. This is complex to do manually, and an automatic
approach would still require an upstream pre-processing of the geometry of
the scene.

Instead, our approach is to segment the clusters of wp under a filter win-
dow. This classification has to be done locally under every filter window (i.e.
for an input size of width W and height H, the classification must be done
under W × H filter windows). Thus, in order to maintain interactive frame
rates, the algorithm must not be too computationally expensive.

We chose the weighted soft K-means [Bau15] algorithm, as it is less compu-
tationally and memory-intensive than other classes of segmentation meth-
ods. It is also well suited to parallel GPU evaluation in a fragment shader.
Note that K-means classifies input data into a fixed number of K clusters.
However, there may be less than K surface parts under a filter window: to
avoid over-segmentation in those cases, the soft variant of K-means was used,
which allows overlapping clusters. As an alternative to soft K-means, clus-
tering with a Gaussian mixture model was also tested, but did not significantly
improve the quality of the resulting segmentation, and required more mem-
ory to store the additional shape parameters of the gaussians for each pixel.
Mean shift was also considered, but was found to be too memory-intensive
to be implemented inside a fragment shader.

Input data The data to be segmented takes the form d(p) = (x, y, z), where
(x, y) is the offset of the pixel under the filter window and z is the depth of
the surface at this position. Note that all components are remapped into the
range [−1; 1] so that they have the same impact on the segmentation. Each
data point is weighted by wp (Equation 3.1). Intuitively, the K-means will
segment different clusters of weights (using wp) and thus clearly distinguish
pixels that belong to different surface parts in a filter window. Adding z
improves this segmentation for parts that contain the same normal with dif-
ferent depths.

Initialization The initial clusters are distributed linearly along the z dimen-
sion inside the filter window:

µ
(0)
k =

(
0, 0, zmin + k

zmax − zmin

K

)
, (3.3)

where µ
(0)
k ∈ R3, k ∈ [0, K − 1] is the centroid of the cluster k at step 0

and zmin/max are the minimal and maximal surface depths under the filter
window. We found this simple and fast initialization to work well in most
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cases, as overlapping inflated parts usually tend to have significantly differ-
ent depths. We also experimented with distributing the initial clusters along
the first principal component of the data points under the filter window, ob-
tained with principal component analysis. However, we saw no discernible
improvement over the simple initialization.

Cluster membership weights Each data point is soft-assigned to a cluster,
meaning that each of them can partially belong to all clusters. The cluster
membership weight of the data point at p to cluster k is noted mk(p), with
∑K−1

k=0 mk(p) = 1. It can be interpreted as the probability that p effectively
belongs to cluster k. We define the membership weights mk(p) for the data
point d(p) as the softmax distance from the point to the cluster centroid, as
suggested by Bauckhage [Bau15]:

mk(p) =
e−β‖d(p)−µk‖2

∑K−1
k=0 e−β‖d(p)−µk‖2 , (3.4)

β being the stiffness parameter, controlling the segmentation sensitivity: a
higher stiffness value will result in more clearly separated clusters, but with
an increasing risk of over-segmentation of nearby points.

Centroid update For each iteration of the algorithm, we update the cluster
centroids µk ∈ R3 from the weighted data points under the filter window S
using the following formula:

µ
(t+1)
k =

∑p∈S wpm(t)
k (p)d(p)

∑p∈S wpm(t)
k (p)

. (3.5)

We stop the process when a specified maximum number N of iterations is
reached. We used N = 8 for all the examples shown in the paper. The result
of the algorithm is a fixed K number of clusters represented by their centroid
µk = (µk,x, µk,y, µk,z), each representing a local surface part. We finally sort
those clusters by depth, µ0 being the closest to the camera, and µK−1 the
farthest.

Figure 3.15 shows the result of our segmentation on three local windows.
We used K = 3 in all the results shown in this paper as there is rarely more
than 3 distinct surface parts under the filter window, but more clusters could
be used if needed (especially when using very large neighborhoods). Thanks
to the soft assignement used in the K-means algorithm, multiple clusters can
overlap when the number of surface parts is less than K. This is shown in
Figure 3.15(a). If all clusters are located at the same place, then all pixels
equally belong to the three of them. The corresponding inflation on a normal
map is shown on the right, where we α-blend the resulting normals when
multiple parts are overlapping.
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Inflation Following the K-means, the inflated G-buffer data for cluster k
can be calculated by modifying Equation 3.2 as follows:

Iinflated,k =
∑p∈S mk(p)wp I(p)

∑p∈S mk(p)wp
. (3.6)

We now have, for each pixel, K inflation results, that correspond to at most K
different surface parts.

(a)

(b)
(c)

µ0

µ1
µ2

µ0µ1,µ2

µ0,µ1,µ2

FIGURE 3.15: (Left) K-means segmentation results with K = 3.
Under filter windows where only one or two distinct surface
parts are present (a,b), the clustering associates multiple cen-
troids to the same surface part. (Right) visualization of the in-
flated normal map. Regions with overlapping inflated normals

are represented by blending them on top of each other.

3.6 Filtering and Blending

In this section, we describe how 2D image filters used for stylization are in-
tegrated in our pipeline.

3.6.1 Assigning clusters to individual pixels

We want to apply stylization filters independently for each distinct surface
part under the filter window. So we need to be able to mask out all pixels not
belonging to the surface part being considered, as otherwise data belonging
to different surface parts may be averaged together (e.g. the color of two
different surfaces may bleed onto each other, which is not the desired result).

Our K-means segmentation locates anchor points on these surface parts,
but the cluster membership weights mk do not allow us to directly say whether
a pixel belongs to a given surface part. Indeed, as seen in Figure 3.12, the
weights quickly decrease according to the distance between the pixel and the
cluster centroid. For most pixels we have wp ≈ 0, meaning that their nor-
mals are all pointing “away” from the window center p0. Still it does not
mean that they do not belong to a surface part, it rather means than when
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FIGURE 3.16: Extending the initial segmentation to all pixels
under the filter window. Red: cluster 0; green: cluster 1; blue:
cluster 2. (a) The initial K-means segmentation is only reliable
for pixels with significant weights wp. (b) Prior to adjusting
σn and σz to the current scene, the cluster assignments may be
imprecise or incomplete (black parts are unclassified regions).
(c) Adjusted σn to increase the tolerance to normal variations
with respect to the normal at the cluster center. The distinct

surface parts are properly detected and classified.

inflated they do not reach the window center. However, the cluster member-
ship weights mk cannot be relied upon for pixels with a low weight in the
segmentation (i.e. wp ≈ 0).

Instead of using the cluster membership weights mk, our strategy for de-
ciding whether a pixel belongs to a surface part detected by the K-means is
to simply consider the depth differences and the normal deviations between
the current pixel and the cluster centroid that corresponds to the surface part.
The pixel is considered as belonging to the surface part if this difference is
under a certain threshold. In the end, pixels not assigned to any previously
detected surface part are put in a so-called residual cluster, and treated sepa-
rately in the stylization.

The depth and normal deviations ∆z,k(p) and ∆n,k(p) for a given point p
with respect to centroid µk are defined as follows:

∆n,k(p) = exp (−σn acos (n(µk) · n(p))) , (3.7)
∆z,k(p) = exp (−σz |z(µk)− z(p)|) , (3.8)

with n(µk) the approximate normal associated with cluster k, and z(µk) the
screen-space depth of the centroid. We note n(p) the screen-space normal at
p. As either ∆n,k or ∆d,k may be more suited to discriminate between surface
parts, depending on the shape of the object in the filter window, we take the
minimum of the two:

∆k(p) = min(∆n,k(p), ∆z,k(p)). (3.9)

The σn and σz parameters control the tolerance of the classification to
depth and normal differences, respectively. They are scene-wide parame-
ters and can be adjusted by the user as needed. Note that one of σn and σz
can be set to zero to disable the influence of the normal variations and depth
variations, respectively. The membership of a pixel to cluster k, noted m′k, is
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obtained by thresholding the final weight ∆k:

m′k =

{
0 if ∆k < 0.5
1 otherwise

(3.10)

It is important for the filters that as much pixels as possible under the
filter window are properly assigned to a matching surface part. It is up to the
user to ensure that the surface parts are properly segmented by adjusting the
σn and σz parameters. Figure 3.16 illustrates this process.

In Section 3.8, we discuss guidelines on the input geometry and filter win-
dow size to avoid over-segmentation. Note that, as with the K-means seg-
mentation, the resulting clusters can overlap (a pixel under the filter window
can belong to more than one cluster), and thus ∑K−1

k=0 m′k(p) 6= 1.

Residual cluster Pixels that have not been assigned into any previously
detected cluster (i.e. ∀k, m′k = 0) are put in the residual cluster. It represents
all pixels for which we could not assign a surface part previously detected
by K-means. Still, this residual cluster needs to be taken into account by the
filters to avoid holes in the stylized result, so it is treated similarly to the
classes detected by the segmentation. We define the membership weight of a
pixel p to the residual cluster, m′residual(p), as:

m′residual(p) = max

(
0, 1−∑

k
m′k(p)

)
. (3.11)

The residual cluster holds all surface parts that contain no anchor point under
the filter window (often, because their anchor points are occluded). Thus, we
cannot obtain coherent data for those surfaces by inflation. Nevertheless,
extended G-buffer data for the residual cluster, required by the filters, is still
calculated as the average of all its pixels:

Iinflated,residual(p) =
∑p∈S m′residual(p)I(p)

∑p∈S m′residual(p)
. (3.12)

In practice, this approach properly fills stylization holes due to imprecise
segmentation, as shown in Figure 3.17, and the lack of motion coherence is
not easily noticeable.

3.6.2 Stylization filters

In this section, we describe several concrete examples of stylization filters
that we use to generate the results presented in Section 3.7. We show how
these filters can be made motion-coherent and silhouette-aware with relative
ease inside our pipeline. The stylization filter is calculated separately for each
surface part, meaning all pixels that do not belong to the surface part being
considered are masked out during evaluation. The stylization filter is also
calculated for the residual cluster, resulting in a total of K + 1 evaluations per
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(a) Local geometry (b) Per-pixel 
cluster assignment

(c) Without residual cluster (d) With residual cluster

FIGURE 3.17: Clustering failures and importance of the resid-
ual cluster. Top row: (a) Local geometry under the offending
filter neighborhood. (b) Clustering result and cluster assign-
ment of the pixels. In black: pixels without an assigned cluster.
The soft k-means segmentation missed a surface part (the leg)
because the associated surface normals do not point towards
the center of the filter window. This leads to pixels without an
assigned cluster, that together form the residual cluster. Bottom
row: (c) Not taking into account the residual cluster results in
visible holes in the filtered result. (d) Our solution filters the

residual cluster separately to fill the holes.

pixel. The final color is obtained by blending intermediate filter results in
depth order.

Auxiliary buffers Our styles are based on several buffers commonly used
in image-space stylization approaches. The simplest one is the color Icolor(p) ∈
[0; 1]4. Depending on the desired style it can be a flat color, a texture mapped
on the object, a simple shading, or a more complex result obtained with stan-
dard procedural texturing techniques. All color values in the pipeline are
considered to be in premultiplied alpha space: given a color C = (cr, cg, cb, ca)
of opacity ca, wC = (wcr, wcg, wcb, wca) is the same base color with opacity
wca.

In most styles, we use 3D procedural noises Inoise(p) ∈ [0; 1] as a basis
for generating motion-coherent procedural details. It is generated in post-
processing from the object-space position buffer and relieves the users of the
burden of providing their own noise-like texture on the object, although this
workflow is also possible. Finally we use 2D direction flows Iflow(p) derived
from available G-buffers (normals, tangents, curvature, etc.).
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All these buffers can be inflated when needed, making it possible to ap-
ply filters outside the original rasterized footprint of the object, with correct
overlaps.

Line Integral Convolution filter A typical stylization filter is the Line Inte-
gral Convolution (LIC) [CL93] that can be used to produce fiber-like textures
for fur or brush strokes. This class of filter has previously been used for styl-
ization purposes [LM01; PP09].

To reproduce a painterly appearance, we multiply the color input Icolor by
the noise texture Inoise, modulating the opacity of the color input. The intent
is to mask out colored spots in the original color input, that are then spread
along the provided flow field by the LIC filter, creating elongated color flats
reminiscent of brush strokes.

For the filter window centered at p0, the resulting filtered value for class
k is defined by:

Ck(p0) =
L

∑
s=−L

f (s/L)m′k(κ(s))Inoise(κ(s))Icolor(κ(s))
f (s/L)

, (3.13)

with L being the length of the convolution path, and f : [−1; 1] → [0; 1] a
convolution profile used to control the spread of the colored spots. The per-
pixel cluster membership weights m′k(κ(s)) are used to mask out all pixels
outside of the considered surface part. The convolution path κ(s) is defined
as:

κ(s) = p0 + s× Iflow
inflated,k(p0) (3.14)

i.e. a straight line oriented along the inflated flow. The length of the convo-
lution path should be chosen so as to avoid going outside the filter window.

Modified Line Integral Convolution filter Due to the opacity modulation
of the color input, the result of the LIC is semitransparent. Standard proce-
dural texturing techniques can be used to process the opacity of the result in
order to produce less washed-out strokes. Alternatively, we propose a minor
variation in the normalization term in Formula 3.13 to fill the opacity gaps
between the strokes, producing a more continuous painterly appearance:

C′k(p0) =
L

∑
s=−L

f (s/L)m′k Inoise(κ(s))Icolor(κ(s))
f (s/L)

(
(1−m′k) + m′k Inoise(κ(s))

) (3.15)

with m′k = m′k(κ(s)). A comparison of the resulting appearances is shown in
Figure 3.18.

LIC control The number of strokes and their weights can be controlled
through the noise parameters. In practice, we used a thresholded cellular
noise [Wor96] to reproduce most stroke-like appearances. This noise masks
out round colored spots that serve as “seed points” for stroke generation.
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Original LIC Modified LICCellular spotsOriginal color

FIGURE 3.18: Comparison of the original and our modified
formulation of the LIC filter.

Their size and smoothness are controlled through the thresholding parame-
ters. The resulting aspect of the strokes can also be controlled through the
integration profile function f . In combination with the modified LIC filter
in Equation 3.15, we found that a gaussian integration profile with an user-
adjustable width α (i.e. f (x) = e− x2

α2 ) provides intuitive control over the re-
sulting appearance: low values of α tend to produce more clearly separated
color flats, while increasing α results in a flatter profile that tends to blend
the color of neighboring strokes together, resulting in a more continuous ap-
pearance.

Brush convolution filter The LIC filters previously described can be gener-
alized by replacing the integration path by an arbitrary user-provided foot-
print. This is inspired by Implicit Brushes [Ver+11b], and sparse convolution
noise [Lew84]. When used in tandem with thresholded cellular noise, the
brush pattern is replicated on every cell, and can be used to reproduce a vari-
ety of different styles with proper handling of silhouettes. Examples of such
styles are given in Figure 3.24. The result of those filters can be processed
afterwards with standard procedural texturing techniques to refine the style
(thresholding, color mapping, etc.).

3.6.3 Blending of intermediate filter results

The filter results for each individual cluster Ck, k ∈ [0; K − 1], and the filter
result for the residual cluster, Cr, need to be composited together in depth
order to get the final stylized result. The clusters k ∈ [0; K − 1] are sorted
by depth. As the presence of a residual cluster is often due to occlusions by
classes on top, we consider that the residual cluster is behind all other clus-
ters during compositing. Thus, the final compositing order should be first
CK−1 composited over Cr, then CK−2 composited over the previous result,
and so on up to C0.

However, as the segmentation algorithm may produce overlapping clus-
ters when the number of effective surface parts are less than K under the
classification window, we must avoid compositing twice filter results that
correspond to the same surface part, since it may result in wrong colors for
semitransparent styles. A robust way to handle this is to first identify sets of
overlapping clusters, average the filter results that belong to a set of overlap-
ping clusters and then blend the result of each set.



76 Chapter 3. Motion coherent stylization with marks in post-processing

To detect if a cluster k overlaps with another, we consider mµk = mk(µk),
the cluster membership weights of the centroids. If mµk < 1 then the cen-
troid is also partially assigned to another cluster, meaning that there is an
overlap between two clusters. We therefore can consider mµk as the contri-
bution weight of cluster k. Due to clusters being sorted by depth, overlaps
can only happen between successive clusters. Note that the residual cluster
never overlaps with any other class, so it is unconditionally blended first.

We describe here for K = 3, but generalizable to higher values of K, an
enumeration of all the possible cluster configurations using the middle clus-
ter weight mµ1 to distinguish between the four cases, shown in Figure 3.19.
Let C f be the final blended result,

• if mµ1 ≈ 1 then all clusters are likely distinct, and all intermediate results
should be blended on top of each other:

C f = C0 over C1 over C2 over Cr

• if mµ1 ≈ 1/2 then mµ1 is overlapping either mµ0 or mµ2 :

– if mµ0 < mµ2 then mµ1 is likely overlapping mµ0 , and mµ2 is a distinct
cluster:

C f =
mµ0C0 + mµ1C1

mµ0 + mµ1

over C2 over Cr

– if mµ2 > mµ0 then mµ1 is likely overlapping mµ2 , and mµ0 is a distinct
cluster:

C f = C0 over
mµ1C1 + mµ2C2

mµ1 + mµ2

over Cr

• finally, if mµ1 ≈ 1/3 then all three clusters are likely overlapping:

C f =
mµ0C0 + mµ1C1 + mµ2C2

mµ0 + mµ1 + mµ2

over Cr

In practice, the cluster membership weight mµ1 may take intermediate values
between 1, 1/2 and 1/3. To avoid discontinuities, we calculate the blending
result for all four cases and interpolate between those according to the value
of mµ1 . Note that the standard “over” blending operator can be replaced by
other blend modes as desired.

3.7 Results

Figures 3.20, 3.22 and 3.23 present several styles using our line integral con-
volution, showing that it can create discrete stylization marks that extend
outside the original object. These styles can be seen in motion, demonstrat-
ing the coherence of the marks, in the supplemental video of the associated
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(a) 3-cluster configuration

(b) 2-cluster configurations

(c)1-cluster configuration

FIGURE 3.19: Contribution weights for K = 3 under 3-cluster
(a), 2-cluster (b) and single cluster (c) configurations. Clusters
0,1 and 2 associated colors are respectively red, green and blue.
The contribution weight of the middle cluster mµ1 can be used

to identify the current configuration.

paper [Blé+18]. Unless specified otherwise, all results presented in this sec-
tion have been made with N = 8 K-means iterations, and with σ = 1.

In Figure 3.23(a), a LIC is directed by a constant flow, whereas in Fig-
ure 3.20, solid gradient noise is used to locally perturb the orientation of the
directing flow (surface tangents). This produces a wavier appearance. Aux-
iliary maps that drive the stylization filters can also vary over time, as shown
in Figure 3.22 where a gradient noise is animated to evoke a fur moved by
the wind.

Figures 3.23(b,c,d,f,g) illustrate various painterly appearances obtained
with our modified LIC filter. In Figure 3.23(d), the filter is directed by the
inflated surface tangents; whereas in Figures 3.23(c,f,g), the filter is directed
by the inflated screen-space normals. These filters can be used in various
ways to create novel styles: in Figure 3.23(b), we introduce perturbations in
the directing flow, but also introduce color variations along the integration
path, producing a fur-like effect.

More geometrical effects can also be emulated with image filters, such as
the wobbled silhouette of Figure 3.23(e). Here, the integration profile f of the
modified LIC filter is designed to simulate a displacement along the directing
flow (normals). The length of the integration path, and thus the amount of
displacement, is locally modulated by a low-frequency solid noise that has
been inflated outside the original object footprint. In Figure 3.23(h) a low-
frequency solid gradient noise is applied on the object, slightly inflated, then
processed in the stylization step to extract isolines. The result is composited
on top of the original object.
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FIGURE 3.20: Using standard G-buffers and auxiliary buffers
(noise, shading) as input, our pipeline can reproduce styliza-
tion effects that extend outside the original rasterized foot-
print of the object. Visual features produced by the filters stay
coherent under motion or viewpoint changes. The complete
post-processing pipeline to generate this style is shown in Fig-

ure 3.21.

Finally, Figure 3.24 shows several examples obtained with the brush con-
volution filter. The ability to choose any arbitrary brush footprint provides
great artistic freedom.

3.7.1 Performance

Our pipeline was implemented as a set of (unoptimized) OpenGL fragment
shaders in the Gratin software [VB15]. Its performance is mainly affected by
the radius of the filter window as well as the target resolution. The stylization
filter complexity also has an impact on performances. The following table
provides the number of frames per second for varying radii, resolutions and
style modes. These numbers were measured on the “bunny” object, on the
styles in Figures 3.20 (LIC) and 3.24 (brush), using K = 3 and with a Nvidia
GeForce GTX 1080 Ti graphics card.

Resolution Filter r = 15 r = 20 r = 30

512x512 LIC 7.3 3.8 2
Brush 3.4 1.5 0.8

1024x1024 LIC 4.3 2.9 0.54
Brush 0.8 0.4 0.2

Interactive framerates are usually obtained with simple styles and small
screen resolutions. Optimizations necessary to improve performances and al-
low our pipeline to be included in real-time applications such as video games
are left for future works.
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Shaded+textured Masked spots

Flow

Image filter

Filtered

Solid noise input
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Shaded+textured

Solid noise input
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Inflation filter

＊

Normal map Depth buffer

Local segmentation

Filtered

Filtered (per-class)

Filtered

Blending

FIGURE 3.21: Complete post-processing pipeline to generate a
painterly style. First, the G-buffers and auxiliary buffers (noise
maps) are processed (blue region) to generate the inputs to the
filtering stage (orange region). The flow guiding the filter is in-
flated (green region), using the results of the local segmentation

of overlapping silhouettes.

3.8 Discussion

Segmentation quality Our local segmentation produces best results when
the filter window contains enough data to cluster and with objects having
rather smooth geometry. Local oversegmentation and per-pixel classification
errors tend to occur in regions with large variations of depth or normal ori-
entations, such as heavily slanted areas or regions with high curvature. In
such cases, noticeable visual artifacts or holes may appear in the result. A
good rule of thumb is to choose a filter window smaller than the smallest
geometrical feature in the G-buffers but large enough to have enough data
(e.g. r > 10). This, however, limits the size of the stylized features, and the
amount of geometric detail in the original geometry. However, the impact
of the latter is rather low, since the fine geometric features of highly detailed
meshes would be lost anyway after applying the stylization filters, as shown
in Figure 3.26.

Large filter windows are more likely to contain more overlapping inflated
surface parts, and may require increasing K. As shown in Figure 3.27, if the
effective number of distinct surfaces parts is higher than K, some of them will
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FIGURE 3.22: Random variations introduced by solid noise can
be animated, such as in this example with a fur-like style. Seg-

mentation parameters: β = 15, σz = 20, σn = 2

be grouped in the resulting clusters, which may lead to undesirable artifacts
in the inflated buffers. By following the rule of thumb above and limiting the
filter window size, we found that smooth objects with low geometrical detail
rarely need more than K = 3 clusters for a correct detection of overlaps in
inflation.

Finally, the segmentation is affected by the amplitude of depth discon-
tinuities at silhouettes. It is sometimes necessary to increase the stiffness
parameter β and/or adjust the per-pixel classification weights σz and σn to
increase the sensitivity to depth differences, and, if necessary, increase the
weight given to normal differences. Figure 3.25 shows visual artifacts that
might appear in case of undersegmentation and oversegmentation, for vary-
ing values of σn. It shows a simple visual style consisting of marks directed
by the surface normals. For high values of σn, the per-pixel segmentation
may become too conservative and assign fringe pixels to the residual clus-
ter. As the residual cluster spans unrelated surface parts, the corresponding
inflated data blends two conflicting orientations, resulting in a distracting in-
teraction at the boundary between the two spheres (σn = 13). Conversely,
low values of σn or outright disabling the contribution of normals by setting
σn = 0, can lead to undersegmentation: the surface parts are not properly
segmented during filtering and the color of different surface parts may bleed
onto each other (σn = 0, σn = 1.5).

Inflation of concave surface parts The inflation result is not well defined
in concave surface parts, as an infinite number of surface points may over-
lap when inflated. In those configurations, the weights wp form elongated
regions with no local maximum, and are hence not easily detected as a single
cluster by the local segmentation. The K-means algorithm will distribute cen-
troids along the region, splitting it into multiple clusters in an unpredictable
way. This is an inherently difficult case for stylization, as it is difficult to find
a coherent anchor point on the surface. It is not handled in our pipeline, but
we found that in practice those cases are rare and easily identifiable.

Undetected surface parts and residual cluster Some surface parts under
the filter window are missed by the K-means segmentation pass when no
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(a) (b) (c)

(d) (e) () (g) (h)

β=11
σn =2
σz =10

β=15
σn =2
σz =20

β=15
σn =0
σz =20

β=11
σn =2
σz =10

β=11
σn =2
σz =8

β=22
σn =3
σz =20

FIGURE 3.23: Various results obtained with LIC based filters.
Model (b) by Sketchfab user Katerina Novakova (CC-BY-SA).
Bunny model (d,e,f) by Sketchfab user Bernardo 3D (CC-BY).

Octopus model by Lukáš Marek (CC-BY).

pixel belonging to the surface part has an adequate screen-space normal that
displaces it towards the window center. In most cases, this happens because
the corresponding anchor point for inflation is occluded by another surface.
Significant complexity is needed during per-pixel segmentation to account
for missed surface parts. Our solution, which is to manually separate all
pixels not belonging to a detected cluster into a residual cluster, cannot ac-
curately preserve motion coherence, as the extended data for this cluster is
not obtained by inflation. More generally, it can be seen as a limitation of
screen-space algorithms: information about occluded surfaces are lost, but
is sometimes needed to get coherent data. However, this slight incoherence
is usually not noticeable as it is often occluded by the stylization of other
surface parts.

Disocclusions and aliasing A pervasive issue in stylized rendering tech-
niques based on stroke primitives is how to handle disocclusions when a
primitive becomes visible during camera or object motion. Our pipeline is
not based on stroke primitives, but instead uses a combination of solid noise,
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FIGURE 3.24: Styles obtained with the brush convolution filter
over a thresholded cellular noise. Top left: cellular noise pattern
before convolution. Top right, bottom row: result after convo-
lution with the specified brush footprint. By varying the brush
pattern, a variety of different appearances can be reproduced.
In the “grass” example (top right), the brush patterns are ori-
ented by the inflated screen-space normals. For these results

β = 11, σz = 10, σn = 2.

2D filtering, and standard procedural texturing techniques to achieve a sim-
ilar appearance. Yet, this process is also subject to visual artifacts due to
disocclusions and aliasing. Depending on the stylization filter, noise features
that become suddenly visible can introduce large changes in the results from
one frame to another (popping). The same is true for aliasing artifacts in the
noise, which tend to be amplified by the stylization filters. This could be
improved as a future work with better sampling and filtering of the noise.

This effect can also be seen with aliasing due to rasterization (jagged
edges). Increasing the resolution of the G-buffer can mitigate this, at the
cost of speed and memory usage. Hardware anti-aliasing techniques such
as multisample anti-aliasing could also be used, but would require modifica-
tions to the segmentation pass to work with multisampled textures. Another
solution to alleviate various kinds of aliasing issues would be temporal su-
persampling. This is left as a possible future improvement to the pipeline.

Pipeline parameters In addition to the parameters of the stylization filters,
which are out of the scope of our contribution, the user may have to adjust
several parameters of the segmentation (σ, β, σn, σz, filter window radius r)
to obtain an accurate result for a given object. This can be a tedious process as
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σn =0 σn =3σn =1.5 σn =6 σn =13

Under-segmentation Over-segmentation

FIGURE 3.25: Influence of σn on the segmentation and filtered
result. Pixels assigned to the residual class are shown in black in
the classification result (lower-right windows). For these results

β = 11, σz = 10.

FIGURE 3.26: Geometry details finer than the filter size are lost
during the stylization process, and can lead to visual artifacts as
K-means does not handle the many small overlapping surface

parts.

some segmentation failure cases may only appear under certain viewpoints.
Currently, a visualization of the local segmentation results under a filter win-
dow is provided to ease this process, but an improvement would be to infer
some of those parameters, either from the geometry if it is available, or from
a global analysis of the contents of the G-buffers.

Comparison with object-space inflation Our approach does not require
modification of the input geometry or the rendering pipeline. An alterna-
tive to our screen-space inflation algorithm could be done during the vertex
processing stage, as in the technique of Nienhaus and Döllner [ND04b], and
overlapping surface parts could be recovered using a depth peeling technique
(storing multiple depths per pixel). Such an approach may be more effi-
cient for high inflation radii at the cost of a more complex rendering pipeline.
However our per-pixel classification stage would still be necessary in order
to assign each pixel to a surface part within a filtering window.

3.9 Conclusion

We presented a post-processing stylization pipeline that allows stylization
that extends outside object boundaries. Our main contribution in this pa-
per is a post-processing technique to extend image filters that depend on
G-buffer data outside the rasterized object boundaries in a motion coherent
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✗(a) (b) (c) (d)

FIGURE 3.27: Segmentation failure for K = 3 clusters. Un-
der the filter window, 4 distinct surface parts overlap when in-
flated. The K-means algorithm merged two unrelated surface
parts in the same cluster (blue cluster), impacting the inflated

result.

way, and with proper handling of overlaps at silhouettes. This pipeline only
requires standard G-buffers as input (normal map, depth map), allowing it
to be embedded in the compositing stage of most rendering software. This
technique was then put to the test by integrating several well-known im-
age filtering techniques. Instead of striving to reproduce a particular artistic
style, our intent is to provide a generic way to make arbitrary image filters
motion-coherent and silhouette-aware. We impose a very limited amount of
restrictions on the image filters, thus providing a flexible stylization method
capable of reproducing a wide variety of appearances. In the future, we
would like to integrate more image filtering techniques into our pipeline, and
further experiment to discover novel styles. In the process, we plan to take
inspiration from styles found in digital paintings as we feel that such styles
have not yet been widely explored in the context of the interactive rendering
of 3D scenes.
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Chapter 4

Conclusion and Perspectives

We have presented two contributions in the field of stylization of 3D scenes: a
tool to design and explore stylized shading models by composition of simple
primitives, and a generic post-processing pipeline that uses image filtering
techniques to stylize 3D scenes in a painterly style. In this chapter, we dis-
cuss what potential improvements on those two aspects (stylized depiction
of light and shade, and painterly stylization) could be made in future work.

4.1 Shading design

We have presented a tool to design stylized shading models. We mainly tar-
geted technical artists having previous experience in desiging shading mod-
els in 3D scenes. One of the goals of this tool was to facilitate the exploration
of stylized depictions of light and shade, and avoid spending time writing
shader code by hand. This, in turn, would allow artists to converge more
quickly to a shading model that best fits their needs for a given 3D object or
complete 3D scene.

4.1.1 User study

As a future work, we would like to conduct an actual user study on those
artists, and measure the time saved compared to writing shader code by
hand. A possible evaluation protocol would be to have artists reproduce a
given shading style in a limited time using both approaches (directly writing
shaders, and using our tool) and compare the time spent for each approach.
It would also be interesting to compare our layered approach to shading de-
sign with the node-based shader editors implemented in many game engines
and 3D modeling software. This would allow us to compare the efficiency
of a representation in successive layers versus a more free-form node graph
representation.

More than making the exploration of the design space of shading faster,
one of our goals was also to enable the discovery of new shading models.
To that end, we proposed ways to combine parametrizations to create novel
shading behaviors but it is still unclear whether this “bottom-up” approach
to shading design can lead to the discovery of new styles for 3D scenes. More
people trying the tool are needed to conclusively answer this question.
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4.1.2 Casual usage by non-technical users

It would also be interesting to perform a user study on non-technical users,
outside the audience that we originally targeted. We believe, after having
used the system for a while, that such a tool has potential uses for non-
technical users, as an easily accessible appearance design tool. Such a study
would provide clues as to what kind of interface and vocabulary would be
necessary for less technically-skilled users. We expect that some work will
have to be done on the shading primitives exposed to the users, and also the
vocabulary employed: in this work, we focused on artists who have knowl-
edge of shading terms employed in computer graphics (e.g. diffuse and spec-
ular components, rim-lighting terms, etc.), whereas non-technical users may
not be familiar with this vocabulary. In practice, traditional illustrators em-
ploy quite different vocabulary and classifications when talking about light
and shade: for instance, Hogarth [Hog91] proposed five different categories
of light depiction: single-source light, double-source light, diffused light, moon-
light, and sculptural light. This differs considerably from the primitives that
we proposed. It might be interesting to propose higher-level “presets” that
directly reproduce those shading types used in traditional illustration.

4.1.3 Extend the range of achievable appearances

This last point also raises the question of the range of appearances that we can
reproduce with our system, especially when considering illustrative shading
styles. For instance, in the so-called sculptural lighting style, each continuous
part of a shape is shaded “as if the light falls on the center” (of the shape)
[Hog91], independently of whether the shape is actually facing a light, or the
camera: this allows revealing each continuous part of a shape with maximum
clarity (Figure 4.1).

Currently, there is no way to capture the “center” of a shape with our
parametrizations, and no way to accurately reproduce that kind of effect.
Some techniques, such as exaggerated shading [RBD06], dyamically adjust the
position of the light locally, in order to reveal shapes even in regions not
facing the light (Figure 4.2). This may be better suited as a starting point to
reproduce this particular shading style. As future work, we would like to
integrate such techniques into our system as additional parametrizations.

Another interesting area of research that we would like to pursue is to
find a way to more directly express some concepts of shading in 2D illustra-
tion into shading models for 3D objects. This also entails extending shading
models with terms that only have meaning in screen-space (instead of only
using local surface properties): for instance, to reproduce sculptural shad-
ing, propose a shading model that depends on the 2D center of shapes in
screen-space.
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FIGURE 4.1: Sculptural shading example by Burne Hoga-
rth. This shading style reveals all parts of the shape, produc-
ing highlights centered on each continuous component of the

shape. Image source: [Hog91]

4.1.4 Integration into existing modeling software

One way of having more users trying our tool is to integrate it into existing
3D creation toolsets. Commercial plugins for stylized shading design exist 1 2

3 4 but usually target specific looks (toon shading, in particular). Our system
could be easily implemented into existing rendering pipelines as a deferred
shading pass. Also, while our system is currently implemented with multiple
screen-space passes (one per layer) for historical reasons, it could be easily
merged into a single pass: thus, as a future extension, it should be feasible
to export the layers as one fragment shader that would be usable in game
engines, for instance.

4.1.5 Inference from hand-painted input

Another axis of research that we would like to explore is the possibility of
automatically inferring a shading model from a hand-painted input, in com-
plement of the manual edition of layers. With stroke annotations painted
by the user, the system would deduce on-the-fly the combination of input
parametrizations that best fits the shading intent of the user.

In the general case, given a finished painting, this is difficult to do. An
online approach is more suited to this case, as the user could progressively
refine the result of the inference by painting additional strokes. Additional

1PSOFT Pencil+ https://www.psoft.co.jp/en/product/pencil/3dsmax/
2ToonKit http://cogumelosoftworks.com/index.php/toonkit/
3Maneki R© http://maneki.sh/
4cebas finalToonTM 4.0 https://www.cebas.com/index.php?pid=productinfo&prd_id=

192

https://www.psoft.co.jp/en/product/pencil/3dsmax/
http://cogumelosoftworks.com/index.php/toonkit/
http://maneki.sh/
https://www.cebas.com/index.php?pid=productinfo&prd_id=192
https://www.cebas.com/index.php?pid=productinfo&prd_id=192
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(A) Diffuse shading (B) Exaggerated shading

FIGURE 4.2: Comparison between simple diffuse shading and
exaggerated shading [RBD06]. Exaggerated shading can reveal
shape even in regions not lit by the diffuse term, by locally ad-
justing the lights. Such a technique might be a good starting
point for reproducing a variety of illustrative styles. Images

taken from the supplemental material of [RBD06].

hints may be provided by the user besides strokes, e.g. in the form of con-
straints for the inference algorithm.

This would be similar to the style transfer method proposed by Fišer et al.
[Fiš+16], although in their system, the relation between the real illumination
of the scene and the painted depiction is captured globally on the whole im-
age, and then synthesized with image analogies. In our case, the inference
result would be an explicit shading model (i.e. a function of the local surface
properties, viewpoint, and lights) and usable as such in real-time contexts.
Such an approach would be especially powerful when combined with a fall-
back to the manual editing of layers, and possibly, with local control of the
shading (e.g. through normal maps, or through perturbations): for instance,
we could propose a painting interface that would let the user paint local tone
variations on the surface of an object and automatically translate them into
coherent local adjustments of the geometry or the normal map. This way,
with additional local control, we could potentially cover both ends of the
interaction spectrum, and it would be a significant step towards a compre-
hensive framework for stylized depiction of light and shade.

4.2 Rendering in a painterly appearance

Discrete stylization marks, in the form of brush strokes, seems to be a dis-
tinctive feature of so-called painterly artistic styles. The ability to distinguish
individual brush strokes in the end result seems to reinforce the feeling of
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looking at a hand-painted picture. It is thus an important feature to repro-
duce in stylized rendering.

In Chapter 3, we have presented a way to render painterly strokes that are
coherent with the motion of the scene with a combination of procedural noise
and local image filters guided by G-buffers. We saw that it is more compli-
cated than it seems at first glance because of coherence issues at silhouettes.
The core of our contribution is to propose a generic way to solve these is-
sues, and enable the use of any kind of local image filter in that context, to
reproduce painterly appearances.

As we’ve seen, this approach to rendering marks avoids some drawbacks
of stroke-based rendering and might be more flexible in terms of achievable
appearances: again, a thorough study with more users is required to confirm
this. The protocol for such a study would be similar to the one for the shading
design tool: first, present participants with a reference style to reproduce, and
a set of stylization filters integrated within our pipeline; then, measure how
efficiently the participants can achieve a desired look from a reference (time
spent, and degree of satisfaction with the result).

4.2.1 User interface for desiging image filters

So far our work on this approach to stylization has mostly been under a tech-
nical angle: how to resolve the issues that appear when using image filters
naively with G-buffers.

We’ve demonstrated that such a system can reproduce interesting painterly
appearances, but the examples that we show have been hand-crafted with a
combination of procedural noise and custom image filters that have limited
artistic control. The brush convolution filter provides some artistic control,
but we feel that this only scratches the surface of what is achievable with lo-
cal image filters guided by G-buffers. Currently, an artist has to resort to the
low-level implementation of the filters in shader code in order to try out new
effects with complex dynamic behaviors: thus, our system is currently not
suitable for fast experimentation with styles.

As with shading, a more efficient way of exploring this design space is
needed. An area of research that is complementary to our contribution that
we would like to explore is the artist-guided design of image filters: that is,
provide an interactive tool to design local image filters, from the input of an
artist, instead of having to program them manually.

In this regard, a first improvement of the current system would be to unify
all filter parameters that affect the appearance under a common interface.
To illustrate this, consider the style presented in Figure 3.21. Currently, the
parameters controlling the appearance are split between the noise used to
generate the “anchor points” (frequency, jitter, amplitude, thresholding pa-
rameters), the filter itself (filter radius, convolution profile), the flow used
to guide the filter (either the screen-space normals, tangents, or a constant
flow), and the noise used to perturb the latter (type, frequency, amplitude,
etc.). All of these are specified in separate parts of the pipeline.
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From a user interface point of view, it would be beneficial to abstract the
internal structure of the pipeline and provide a unified interface to control
the stylization process as a whole, with parameters that have an intuitive ef-
fect on the appearance. For this, it is possible to take inspiration from the
parameters exposed in most digital painting software to control brush pa-
rameters: e.g. size of the splats, color, rotation, jitter, opacity falloff, and in
our case, the length and density of the strokes on the surface.

More advanced behaviors, such as filters with dynamically varying foot-
prints, could be also be controlled by the user, potentially through a pro-
grammable approach, abstracting away the details of filter evaluation and
the handling of silhouettes. There again, it is possible to take inspiration from
existing painting software that provides programmable control over brush
appearance.

4.3 Digital painting case study

In this thesis, our approach to stylization has been mostly “bottom-up”: pro-
viding low-level primitives that, through exploration of the design space,
would eventually allow the reproduction of existing 2D illustrative styles.
Still, we feel that there is also value in a “top-down” study of styles in 2D
illustration, that consists in “reverse-engineering” existing styles from a 2D
hand-painted reference. Many works on stylization followed this approach,
by studying one particular technique, style, or media.

In this regard, the field of digital painting seems to be largely untapped.
In the broad sense, digital painting comprises a set of algorithms, rendering
techniques, and interaction techniques to make paintings on a 2D digital can-
vas. In itself, digital painting can be used in the same way than traditional
media, and specialized tools exist that simulate traditional paint and provide
a natural painting experience 5. But, in general, digital painting software can
provide a very low-level control over the painting process, and, at the same
time, efficient shortcuts to paint large amount of detail, usually faster than
traditional painting techniques.

An example of this is the way digital artists use custom brushes to quickly
place patterns, and add details to paintings (e.g. leaves, grass, fur, water: see
Figure 4.3). These brushes have a variety of adjustable parameters (such as
size, rotation, jitter, pressure sensitivity, etc.). Some tools provide even more
complex control over the brushes in the form of small programs 6. These
brushes can also be used to control the mixing of colors through smudge tools.
The precise control available to artists has led to the creation of painting tech-
niques specific to the digital medium. This, in turn, contributed to the devel-
opment of digital painting as a recognizable style in itself.

5Rebelle https://www.escapemotions.com/products/rebelle/
6BLACK INK http://blackink.bleank.com/

https://www.escapemotions.com/products/rebelle/
http://blackink.bleank.com/
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FIGURE 4.3: Examples of custom digital brushes used for
various purposes. Cropped version of http://cobravenom.
deviantart.com/art/My-Brush-Pack-565102840 by De-

viantArt user CobraVenom.

An interesting aspect of digital painting is that the blending of paint on a
canvas is still algorithmic in nature. While it is difficult to accurately repro-
duce the visual richness and nuances of paint in traditional media with con-
ventional digital painting tools, digital painting has the advantage of being
more directly expressible in terms of simple algorithms, without resorting to
physical simulation. Conventional digital painting tools also share some vo-
cabulary with computer graphics (e.g. the names of the different blending
modes), which might lessen the distance between artists and researchers. All
of this, in our opinion, makes digital painting a promising target of study, not
only as a target for reproduction of traditional media, but also as a standalone
media for artistic expression, with its own characteristic styles.

This axis of research is also motivated by the large amount of reference
art available. This is due to several factors: the democratization of digital
painting tools (such as graphics tablets) and thus a lower barrier to entry;
more sophisticated software with advanced brush simulation models; and,
importantly, the ability to easily share and publish digital art online.

The actual painting process is complex, but fortunately it is well docu-
mented by artists themselves. An exemple of this are material studies, such
as the one shown in Figure 4.4, which are useful as reference points to com-
pare our results to. Additionally, a wide corpus of step-by-step “tutorial”

http://cobravenom.deviantart.com/art/My-Brush-Pack-565102840
http://cobravenom.deviantart.com/art/My-Brush-Pack-565102840
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paintings are available, and provide valuable insight on how artists natu-
rally decompose the painting process. For instance, taking the example of
Figure 4.5, we see that the painting of the fur is done with multiple layers of
brush strokes with an uniform appearance, followed by a final color correc-
tion that accounts for lighting. Reproducing the final result in one go with
a single image filter seems daunting. But reproducing each layer individu-
ally, following the artist-provided decomposition, is much more manageable.
This could be implemented by complementing our layer-based shading de-
sign tool with a screen-space post-process of each layer to generate brush
strokes, thus combining our two contributions into a more comprehensive
system.

This is not a trivial addition, however, as shading and strokes are closely
interlinked: our shading design tool would have to be extended to provide
the local attributes of the filters, in addition to their color (for instance, the ori-
entation of the strokes, their width, etc.). This is technically possible with the
stylization pipeline presented in Chapter 3, but relies on the user program-
ming its desired behavior by hand with shaders. In this regard, considerable
work is needed to provide an intuitive interface for artists: for instance, as
with shading, the formulas giving the stroke parameters could be inferred
from a user-provided exemplar set of strokes.

This also raises the question of the placement of the strokes. For strokes
that represent concrete, material details in the scene, such as hair or fur, the
strokes should be anchored on the object. To begin, anchor points could be
procedurally generated using solid noise, like we did, or even manually dis-
tributed by an artist if desired. But stroke placement is more complicated
for “immaterial” features, such as highlights or contours, because we expect
those features to not be anchored on the surface, but to move and deform in
response to changes in the viewpoint. A large body of work has already been
done on drawing stylized contours in a temporally coherent way. But single,
long strokes are also used to depict shading features, such as the sharp, thin
white highlights on the “blood” material in Figure 4.4, or the red highlights
in the creases of the “cloth” material. Depending on the complexity of the
shading model used to produce those highlights, it can be difficult to coher-
ently place and draw those strokes across frames. For such effects, it might
be more appropriate to use an image filtering approach that does not rely on
anchor points.

To conclude, we feel that digital painting has recently grown into a full-
fledged medium for artistic expression, as artists adopted digital painting
tools into their workflow and started to create techniques specifically target-
ing this medium. The ability to easily manipulate and share digital media al-
lowed the wide diffusion of those techniques, in the form of online tutorials
and step-by-step paintings, which provide valuable insight into the artistic
depiction process. Additionally, the digital nature of the media might make
those techniques more easily translatable into rendering algorithms for the
stylization of 3D scenes. For these reasons, we would like to make digital
painting a basis for future work in new stylization techniques.
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FIGURE 4.4: Top: digital painting study of various mate-
rials. Picture by tudormorris on Reddit (https://imgur.com/
gc1HUJz). Bottom left: zoom-in on the “metal” material. Bottom
right: our attempt at reproducing the “metal” material with our

shading design tool.

https://imgur.com/gc1HUJz
https://imgur.com/gc1HUJz
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FIGURE 4.5: Step-by-step painting of fur. A large number of
tutorial decompositions of digital painting techniques are made
available by digital artists and could serve as a starting point for
further study, in view of automatic reproduction of those styles
on 3D objects. Picture by DeviantArt user ryky (https://www.
deviantart.com/ryky/art/Easy-fur-tutorial-411937415)

https://www.deviantart.com/ryky/art/Easy-fur-tutorial-411937415
https://www.deviantart.com/ryky/art/Easy-fur-tutorial-411937415
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and D. Sýkora. “Color me noisy: Example-based rendering of
hand-colored animations with temporal noise control”. In: Com-
puter Graphics Forum 33.4 (2014).

[Fiš+16] Jakub Fišer, Ond\vrej Jamriška, Michal Lukáč, Eli Shechtman,
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