
HAL Id: tel-03127236
https://theses.hal.science/tel-03127236

Submitted on 1 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fluid dynamic instabilities in complex flow systems
Raffaele Longobardi

To cite this version:
Raffaele Longobardi. Fluid dynamic instabilities in complex flow systems. Fluids mechanics
[physics.class-ph]. Université Paul Sabatier - Toulouse III; Università degli studi (Salerne, Italie),
2019. English. �NNT : 2019TOU30103�. �tel-03127236�

https://theses.hal.science/tel-03127236
https://hal.archives-ouvertes.fr


THÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par l'Université Toulouse 3 - Paul Sabatier

Cotutelle internationale : Università degli studi di Salerno 

Présentée et soutenue par

Raffaele LONGOBARDI

Le 15 février 2019

Instabilité hydrodynamique dans les systèmes d'écoulement
complexes

Ecole doctorale : MEGEP - Mécanique, Energétique, Génie civil, Procédés

Spécialité : Dynamique des fluides 

Unité de recherche :
IMFT - Institut de Mécanique des Fluides de Toulouse 

Thèse dirigée par
David FABRE et Paolo LUCHINI

Jury
M. Franco AUTERI, Rapporteur

M. Lutz LESSHAFFT, Rapporteur
Mme Fabrizia CAIAZZO, Examinatrice
M. Maurizio QUADRIO, Examinateur
M. David FABRE, Directeur de thèse

M. Paolo LUCHINI, Directeur de thèse



FONDO SOCIALE EUROPEO
Programma Operativo Nazionale 2000/2006

”Ricerca Scientifica, Sviluppo Tecnologico, Alta Formazione”
Regioni dell’Obiettivo 1 - Misura III.4

”Formazione superiore ed universitaria”

Department of Industrial Engineering
Ph.D. Course in Industrial Engineering

XXXI Cycle

Fluid dynamic instabilities in complex
flow systems

Supervisors:

Prof. Paolo Luchini
Prof. David Fabre

Coordinator:

Prof. Francesco Dons̀ı

Ph.D. Student:

Raffaele Longobardi

Academic Year 2017/2018





I

Dedication

To my cousin Irene, who will live forever in my heart...



II



Contents III

Contents

Abstract XXIX

Abstract in French XXXI

Introduction 1
0.1 A "romantic" introduction to fluid−dynamic instability . 1
0.2 Classification of fluid dynamic instabilities . . . . . . . . . 4
0.3 Scopes of the thesis . . . . . . . . . . . . . . . . . . . . . . 7

0.3.1 Superhydrophobic surfaces . . . . . . . . . . . . . . 7
0.3.2 Micro T−Mixer with superhydrophobic surfaces . . 9
0.3.3 Acoustic properties of the flow passing through one

or two circular apertures . . . . . . . . . . . . . . . 10
0.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . 12

1 Theoretical background 17
1.1 The Navier−Stokes equations: incompressible formulation 17

1.1.1 Boundary conditions on the SHS: the Navier slip
length . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2 The linearized Navier−Stokes Equations (LNSE) . . . . . 20
1.3 Linear Stability Theory (LST) . . . . . . . . . . . . . . . . 22
1.4 Local stability theory . . . . . . . . . . . . . . . . . . . . . 24
1.5 Stability of weakly non parallel flows . . . . . . . . . . . . 26
1.6 Stability of non parallel flows . . . . . . . . . . . . . . . . 29

1.6.1 Global stability analysis . . . . . . . . . . . . . . . 30
1.6.2 A little hint to the TriGlobal stability analysis . . 33

1.7 The acoustic conductivity/impedance and the Nyquist sta-
bility criterion . . . . . . . . . . . . . . . . . . . . . . . . . 33



IV Contents

1.7.1 Definitions . . . . . . . . . . . . . . . . . . . . . . 33
1.7.2 Nyquist stability criterion . . . . . . . . . . . . . . 36

1.8 The Navier−Stokes equations: compressible formulation . 38
1.9 Global stability theory applied to compressible Navier−Stokes

equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
1.10 Modelling the local effect of the compressibility using the

Helmholtz resonator . . . . . . . . . . . . . . . . . . . . . 42
1.11 Adjoint equations and structural sensitivity . . . . . . . . 44

1.11.1 Adjoint Navier−Stokes equations . . . . . . . . . . 44
1.11.2 Structural Sensitivity . . . . . . . . . . . . . . . . . 46

2 Numerical methods 49
2.1 FreeFem++ . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.2 Mesh generation and automatic mesh adaptation . . . . . 50
2.3 Weak formulation of the Navier−Stokes equations: carte-

sian incompressible case . . . . . . . . . . . . . . . . . . . 53
2.4 Choose of the Finite Element space . . . . . . . . . . . . . 55
2.5 Discretization of the variational problem . . . . . . . . . . 56
2.6 Weak formulation of the Navier−Stokes equations in cylin-

drical coordinates . . . . . . . . . . . . . . . . . . . . . . . 57
2.7 Finite element discretization of the augmented model . . . 59
2.8 Weak formulation of the compressible Navier− Stokes equa-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
2.9 Resolution algorithms . . . . . . . . . . . . . . . . . . . . 61

2.9.1 Base flow computation . . . . . . . . . . . . . . . . 61
2.9.2 Eigenvalue computation . . . . . . . . . . . . . . . 62

2.10 The complex coordinate mapping . . . . . . . . . . . . . . 66
2.11 Boundary treatment for compressible flow simulation . . . 69

3 Stability ans sensitivity analysis of a T−shaped micro−mixer
with superhydrophobic surfaces 73
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2 Flow configuration and problem formulation . . . . . . . . 75
3.3 Boundary conditions over superhydrophobic surfaces . . . 77
3.4 Global stability analysis . . . . . . . . . . . . . . . . . . . 79
3.5 Numerical implementation . . . . . . . . . . . . . . . . . . 82
3.6 Results and discussions . . . . . . . . . . . . . . . . . . . . 83



Contents V

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4 The acoustic impedance of a laminar viscous jet passing
through a circular aperture in a thin plate 95
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.2 Problem definition and review of inviscid models . . . . . 99

4.2.1 Problem definition . . . . . . . . . . . . . . . . . . 99
4.2.2 Steady flow . . . . . . . . . . . . . . . . . . . . . . 101
4.2.3 Unsteady flow : Conductivity and Impedance con-

cepts . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.2.4 The classical Rayleigh solution in the absence of

mean flow . . . . . . . . . . . . . . . . . . . . . . . 104
4.2.5 Review and criticism of Howe’s inviscid model . . . 104

4.3 The viscous problem: analysis and numerical method for
the linear approach . . . . . . . . . . . . . . . . . . . . . . 106
4.3.1 General equations . . . . . . . . . . . . . . . . . . 106
4.3.2 Upstream domain . . . . . . . . . . . . . . . . . . . 108
4.3.3 Downstream domain : boundary conditions and

change of coordinates . . . . . . . . . . . . . . . . 109
4.3.4 Numerical implementation . . . . . . . . . . . . . . 113

4.4 Results for the steady base flow . . . . . . . . . . . . . . . 116
4.5 Results for the unsteady flow . . . . . . . . . . . . . . . . 120

4.5.1 Structure of the unsteady flow for Re = 500 . . . . 120
4.5.2 Efficiency of the complex mapping technique . . . 121
4.5.3 Impedance and conductivity . . . . . . . . . . . . . 126
4.5.4 The quasi−static limit for Ω→ 0. . . . . . . . . . . 130

4.6 Direct Numerical Simulations of a harmonically forced jet 131
4.7 Summary and discussion . . . . . . . . . . . . . . . . . . . 136

5 Impedance and instabilities of the flow through a circular
aperture 143
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . 148

5.2.1 Geometry, parameters, and modelling hypotheses . 148
5.2.2 Characterization of the unsteady regime and Impedance

definition . . . . . . . . . . . . . . . . . . . . . . . 149
5.2.3 Impedance-based instability criteria . . . . . . . . 150



VI Contents

5.3 Linearized Navier Stokes Equations and numerical methods154
5.3.1 Starting equations . . . . . . . . . . . . . . . . . . 154
5.3.2 Base-flow equations . . . . . . . . . . . . . . . . . . 155
5.3.3 Linear equations . . . . . . . . . . . . . . . . . . . 155
5.3.4 Numerical method . . . . . . . . . . . . . . . . . . 157

5.4 Base flows : study of the recirculation region . . . . . . . 158
5.5 Linear results for the forced problem . . . . . . . . . . . . 162

5.5.1 Case β = 0.3 . . . . . . . . . . . . . . . . . . . . . 162
5.5.2 Case β = 1 . . . . . . . . . . . . . . . . . . . . . . 165
5.5.3 Parametric study . . . . . . . . . . . . . . . . . . . 167

5.6 Linear stability results . . . . . . . . . . . . . . . . . . . . 172
5.6.1 Eigenvalues . . . . . . . . . . . . . . . . . . . . . . 172
5.6.2 Eigenmodes and adjoint-based sensitivity . . . . . 173

5.7 Conclusions and perspectives . . . . . . . . . . . . . . . . 175

6 Compressible and incompressible stability analysis of the
flow through a bird−call 179
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 180
6.2 Geometry configuration and governing equations . . . . . 181
6.3 Global Stability Approach . . . . . . . . . . . . . . . . . . 183

6.3.1 Incompressible analysis . . . . . . . . . . . . . . . 184
6.3.2 Modeling the effect of compressibility of the cavity

in an "augmented incompressible approach" . . . . 184
6.3.3 Full compressible approach . . . . . . . . . . . . . 186

6.4 Numerical methods . . . . . . . . . . . . . . . . . . . . . . 186
6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.5.1 Incompressible results . . . . . . . . . . . . . . . . 187
6.5.2 Effect of compressibility . . . . . . . . . . . . . . . 188
6.5.3 An example of practical application . . . . . . . . . 192

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7 Concluding remarks 195

Conclusions 195



8 Estratto in lingua italiana 199
8.1 Introduzione . . . . . . . . . . . . . . . . . . . . . . . . . . 199
8.2 Stabilità e sensitività del flusso in un canale a T con su-

perfici superidrofobiche . . . . . . . . . . . . . . . . . . . . 201
8.3 Calcolo dell’ impedenza acustica e stabilità del flusso pas-

sante per un foro circolare . . . . . . . . . . . . . . . . . . 206
8.4 Studio del suono prodotto da un fischietto per il richi-

amo di uccelli: confronto tra approccio comprimibile ed
incomprimibile . . . . . . . . . . . . . . . . . . . . . . . . 215

9 Résumé en françias 219
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 219
9.2 Stabilité du flux dans un microcanal T avec des surfaces

super hydrophobes . . . . . . . . . . . . . . . . . . . . . . 221
9.3 Calculation de l’impédance acustique pour un flux oscil-

lant passant par un trou circulier . . . . . . . . . . . . . . 226
9.4 Étude du son produit par un sifflement l’appeau des chas-

seurs:comparaison entre l’approche comprimable et l’approche
incomprimable . . . . . . . . . . . . . . . . . . . . . . . . 236

References 255

A Appendix 257

Appendix 257
A.1 Inviscid stability analysis of a cylindrical vortex sheet . . . 257

A.1.1 Equations . . . . . . . . . . . . . . . . . . . . . . . 257
A.1.2 Temporal stability analysis . . . . . . . . . . . . . 258
A.1.3 Spatial stability analysis . . . . . . . . . . . . . . . 259

A.2 Numerical Validations . . . . . . . . . . . . . . . . . . . . 259
A.2.1 Complex mapping validation . . . . . . . . . . . . 260
A.2.2 Robustness of the complex mapping . . . . . . . . 262
A.2.3 Mesh convergence . . . . . . . . . . . . . . . . . . 263
A.2.4 Numerical efficiency . . . . . . . . . . . . . . . . . 265

A.3 The complex base flow . . . . . . . . . . . . . . . . . . . . 266
A.4 Link between impedance and reflection coefficient . . . . . 267



VIII Contents

A.5 Details on the complex mapping technique and mesh val-
idations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270



Acknowledgements

I would like to thank prof. Paolo Luchini for giving me this great
opportunity, for his support along the last 5 years and for his patience:
I am proud to have been your student. In the same way, I am deeply
grateful to David Fabre for having accepted and hosted me for one year
at the IMFT. It is been a great experience to work in Toulouse and,
above all, it is been a great pleasure to work with you.
Thanks to prof. Flavio Giannetti for his adjoint support during this
years and for his friendship.
I want to thank prof. Franco Auteri and prof. Lutz Lesshafft for having
accepted to review this thesis.

I wish to thank my parents Franco and Teresa and my sister Irene
whose unconditional love has been precious to overcome a lot of difficul-
ties encountered during my life: your support has been fundamental to
become who I am.

I am very grateful to many colleagues and friends at the department,
both in Salerno and in Toulouse. I can never forget the lunch times
spent with Antonello and Fabio in the T12 lab in Salerno: thank you
very much for your continuous support. I am deeply indebted to Chiara:
you encouraged me every time, even if I saw all black, and please remem-
ber me when you’ll become prof! Thanks to Omar, my Turkish friend
met in Toulouse and my "french professor", for the great moments spent
together. Thank you Nicola and Giuseppe for your friendship, the re-
ciprocal respect and the interesting discussions, not only about fluid
mechanics.



X Acknowledgements

Thank you Caterina for giving us a (second ?) possibility: we met
for the first time at the beginning of my PhD, then we went our separate
ways but, at the end of this journey, we meet again. I am very happy to
share and celebrate this success with you and I am sure that this is only
the first of many!

Last but not least, I want to thank myself. This PhD has been quite
hard and full of obstacles but if now I am here to write the acknowledge-
ments, it is because I never gave up: this thesis is my pride and, now, I
am proud of myself.

Raffaele Longobardi



List of publications

• Acoustic impedance and hydrodynamic instability of the flow through
a circular aperture in a thick plate; R. Longobardi, D. Fabre, V.
Citro, P. Bonnefis, P. Luchini. Under review; Journal of Fluid
Mechanics.

• The acoustic impedance of a laminar viscous jet through a thin
circular aperture; D. Fabre, R. Longobardi, P. Bonnefis, P. Luchini.
Accepted, in press; Journal of Fluid Mechanics.

• Studying the sound production in the hole−tone configuration us-
ing compressible and incompressible global stability analyses; R.
Longobardi, D. Fabre, P. Bonnefis, V. Citro, F. Giannetti, P. Lu-
chini. In proceeding of IUTAM Symposium on “Critical flow dy-
namics involving moving/deformable structures with design appli-
cations”; in press, Springer.

• Stability and sensitivity analysis of a T−shaped micro−mixer with
superhydrophobic surfaces; R. Longobardi, V. Citro, L. Siconolfi,
F. Giannetti, P. Luchini. In proceeding of XXIII conference of the
Italian Association of Theoretical and Applied Mechanics, 2017;
ISBN: 978-889-42484-7-0.



XII List of publications



List of Figures XIII

List of Figures

1 The smoke of a cigarette representing the laminar−turbulent
transition phenomenon. . . . . . . . . . . . . . . . . . . . 2

2 (a) Picture of Osborne Reynolds doing its experiments;
(b) General schematization of Reynolds experimental re-
sults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Drag reduction of an aircraft due to the development of
new technologies. . . . . . . . . . . . . . . . . . . . . . . . 4

4 (a) Boundary layer transition over a wing. (b) Von−Karman
wake around a circular cylinder at Re = 50. . . . . . . . . 5

5 Classification of the stability of a flow in terms of impulse
response: (a) stable, (b) convectively unstable and (c)
absolutely unstable (from Huerre and Monkewitz (1990)) . 6

6 Examples of natural surfaces: (a) the shark skin with the
denticles; (b) the lotus leaf as example of superhydropho-
bic surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . 8

7 (a) Isotropic vs (b) anisotropic superhydrophobic surface
(from Clavijo et al. (2015)). . . . . . . . . . . . . . . . . . 8

8 Representation of a T−mixer. . . . . . . . . . . . . . . . . 9
9 The case of a gas turbine with a perforated acoustic liner,

useful both to cool the mechanical parts and to absorb the
sound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

10 An example of bird−call. . . . . . . . . . . . . . . . . . . . 11

1.1 Schematic representation of a superhydrophobic surface
highlighting the no slip and free shear regions. . . . . . . . 19

1.2 Geometrical interpretation of the Navier slip length λ. . . 20



XIV List of Figures

1.3 Comparison between the numerical solution (lines) and
the PIV measurement (symbols) of a channel flow over a
superhydrophobic surface: the filled symbols show mea-
surements above the ribs, whereas the empty symbols are
taken above the gas-water interface (from Ou and Roth-
stein (2005)). . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Real vs. imaginary part of the complex eigenvalue depict-
ing the possible stability scenarios within the relative time
evolution of the perturbation (from Taira et al. (2017)). . 23

1.5 Neutral stability curve for plane Poiseouille flow for k
(taken from HarrarII and Osborne (2003)). . . . . . . . . . 25

1.6 Neutral stability curve for a Blasius boundary layer for
k = 0 (taken from Longobardi (2015)). . . . . . . . . . . . 27

1.7 N−factor for a Blasius boundary layer at various frequen-
cies: — parallel flow assumption; – – – non parallel flow
correction (taken from Longobardi (2015)). . . . . . . . . 28

1.8 Flow visualization of the wake of a circular cylinder at
Re = 2000: it is possible to observe a large recirculation
region characterized by strongly non parallel effects. . . . 29

1.9 Flow passing through a circular hole. . . . . . . . . . . . . 34
1.10 Example of Nyquist diagram. In white the stable region,

in yellow the area of conditional stability and in orange
the area of hydrodynamic instability. . . . . . . . . . . . . 37

1.11 Sketch of the birdcall configuration. An example of the
real configuration used in this paper is depicted in the
upper right corner of the figure. . . . . . . . . . . . . . . . 42

2.1 Example of mesh obtained using the automatic mesh adap-
tation procedure for the wake of a circular cylinder (from
Fabre et al. (2018a)). . . . . . . . . . . . . . . . . . . . . . 52

2.2 (a) P2 and (b) P1 finite element. . . . . . . . . . . . . . . 56
2.3 Sketch of the FreeFem++ script with the variational for-

mulation of the Navier−Stokes equations. . . . . . . . . . 57
2.4 Comparison between ARPACK library and the inverse it-

eration algorithm 2 for a disk in a confined pipe. . . . . . 64
2.5 Possible routes for the solution of the adjoint problem

(from Meneghello (2013)). . . . . . . . . . . . . . . . . . . 65



List of Figures XV

2.6 Example of computational domain (in scale) used for com-
pressible stability analysis: in orange the physical domain;
the sponge is coloured according to its intensity from the
light green (minimum value) to the dark green (maximum
value). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.1 Flow configuration (not in scale) and frame of reference. . 76

3.2 Interpretation of the Navier slip length Rothstein (2010) . 78

3.3 Three−dimensional view of Γshs and definition of the θ
angle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.4 Total velocity distribution for Re=500: (a) symmetric
steady flow for λ = 0 and θ = 0◦; (b) asymmetric steady
supercritical flow for λ = 0.02 and θ = 45◦. In both
figures, the white lines represent the edges of the recircu-
lation bubbles. . . . . . . . . . . . . . . . . . . . . . . . . 84

3.5 Velocity components at y = −1 for Re=500: (a) symmet-
ric steady flow for λ = 0 and θ = 0◦; (b) asymmetric
steady supercritical flow for λ = 0.02 and θ = 45◦. . . . . 84

3.6 (a) Critical Reynolds number of the first bifurcation as
function of λ and θ. (b) Growth rate of the leading eigen-
value as function of the spanwise wavenumber k. . . . . . 85

3.7 Examples of bifurcation diagrams. . . . . . . . . . . . . . 86

3.8 Real part of the direct global modes of the symmetric un-
stable base flow for Re=455, λ = 0.03, θ = 60◦ and k = 0:
(a) u−component, (b) v−component , (c) w−component
, (d) pressure. (e) Modulus of the adjoint velocity field
|u†|; (f) modulus of the adjoint pressure |p†| of the sym-
metric unstable base flow for Re=455, λ = 0.03, θ = 60◦

and k = 0. The white lines represent the edges of the
recirculation bubbles of the base flow. . . . . . . . . . . . 87

3.9 Structural sensitivity map for (a) Re=520 without super-
hydrophobic surfaces and (b) Re=455, λ = 0.03, θ = 60◦

and k = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88



XVI List of Figures

3.10 (a) Critical Reynolds number of the secondary bifurcation
as function of λ and θ. (b) Growth Rate of the leading un-
stable eigenvalue as function of k and Re for λ = 0.02 and
θ = 15◦. (c) Optimal wavenumber k and (d) frequency ω
corresponding to the critical conditions as function of λ
and θ. Note that for θ = 0◦ and 90◦ the modes are steady
and the optimal frequency is equal to zero. . . . . . . . . . 89

3.11 Real part of the direct global modes for the unstable asym-
metric base flow for Re = 639, λ = 0.03, θ = 60o, k = 1.7
and ω ≈ 0.474: (a) u−component, (b) v−component ,
(c) w−component , (d) pressure. (e) Modulus of the ad-
joint velocity field |u†|; (f) modulus of the adjoint pres-
sure |p†| of the unstable asymmetric base flow for Re=639,
λ = 0.03, θ = 60◦, k = 1.7 and ω ≈ 0.474. The white lines
represent the edges of the recirculation bubbles of the base
flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.12 Structural sensitivity map of the secondary instability for
(a) Re=754 , k = 2.0 without superhydrophobic surfaces
and (b) Re=639, λ = 0.03, θ = 60 and k = 1.7. . . . . . . 92

4.1 Sketch of the oscillating flow through a circular aperture
in a thin plate. . . . . . . . . . . . . . . . . . . . . . . . . 100

4.2 Structure of the meshM1 obtained at the end of the mesh
adaptation process, and nomenclature of boundaries. The
mesh is adapted to both the base flow for Re = 1000 and
the harmonic perturbation for ω = 2. The insert shows a
zoom of the mesh structure in the rangeX ∈ [−0.5; 0.8]Rh
and R ∈ [0.5; 1.3]Rh. Note that owing to the coordinate
mapping, the actual dimension of the outlet domain is
[xmax, rmax] = [1022 + 306i, 337]. . . . . . . . . . . . . . . 113

4.3 (a)Base flow for Re = 500 (in physical coordinates (x, r),
without mapping). Upper part : axial velocity Ux and
streamlines. Lower part : vorticity Ξ. (b) Profiles of the
axial velocity (upper) and vorticity (lower) at x = 0 (—
·· —), x = 5Rh (– –) and x = 10Rh (—). . . . . . . . . . 117

4.4 Same of figure 4.3 but for Re = 3000. . . . . . . . . . . . . 117



List of Figures XVII

4.5 Radius of the shear layer rs(x) for Re = 100 (—), Re =
500 (– –), Re = 1500 (– · –), Re = 2000 (— —) and
Re = 3000 (– · · –). The vertical thick line represents the
edge of the hole. . . . . . . . . . . . . . . . . . . . . . . . 118

4.6 Vena contracta coefficient as function of Re. The circles
(©) indicate the values of the vena contracta coefficient
corresponing to the Reynolds number reported in figure 4.5.119

4.7 Harmonic perturbation for Re = 500,Ω = 3 computed in
physical coordinates (x, r) (mesh M0). Real part of the
axial velocity component u′x (upper) and vorticity ξ′(lower).120

4.8 Harmonic perturbation for Re = 500,Ω = 3 (in physical
coordinates (x, r) ; mesh M0) on the axis of symmetry.
Real (—) and imaginary (– –) part of the axial velocity
component u′x (thin lines) and pressure p′ (thick lines). . . 121

4.9 Harmonic perturbation for Re = 500,Ω = 3 (in numerical
coordinates (X,R) with complex mapping ; mesh M1).
Real part of the axial velocity component u′x (upper) and
vorticity (lower). . . . . . . . . . . . . . . . . . . . . . . . 122

4.10 (a) Pressure contours of the perturbation p′ computed in
physical coordinates (mesh M0 ; upper part) and with the
complex mapping (mesh M1 ; lower part). (b) Pressure of
the perturbation on the symmetry axis p′(X, 0) with (—)
and without (– –) the complex mapping (Re = 500 ; Ω = 3).123

4.11 Same of figures 4.10(a) and (b) but for Re = 1000. The
inserted plot (c) displays a zoom in the near hole region
in order to catch the pressure jump across the hole. . . . . 124

4.12 (a) Resistance ZR and (b) reactance −ZI/Ω for Re = 100
(—), Re = 500 (– –), Re = 1500 (– · –), Re = 2000 (—
—) and Re = 3000 (– · · –). . . . . . . . . . . . . . . . . 126

4.13 (a) Real part γ and (b) imaginary part δ of the Rayleigh
conductivity. Plain lines: LNSE results for Re = 3000.
Dash-dotted lines: Howe’s original model. Dotted lines:
Howe’s modified model. . . . . . . . . . . . . . . . . . . . 127

4.14 Argument φ of the impedance, for Re = 100 (—), Re =
500 (– –), Re = 1500 (– · –), Re = 2000 (— —) and
Re = 3000 (– · · –), and from Howe’s modified model (· · ·). 127



XVIII List of Figures

4.15 Vorticity snapshot at (a) Ω = 0.5, (b) Ω = 2, (c) Ω = 4
for ε = 10−2, Re = 1000 and t = 25. The line with arrows
is the edge of the jet, i.e. the streamline originating from
the edge of the hole. . . . . . . . . . . . . . . . . . . . . . 133

4.16 Time series of the pressure drop ∆p(t) and the velocity at
(x, r) = (10, 0.5) for Ω = 0.5 (a and b) and Ω = 2 (c and
d). Full line is for ε = 0.1 and dashed line is for ε = 0.05. 134

4.17 Discrete spectra of ∆p(t) for ε = 10−1 (©), ε = 10−2 (�),
ε = 10−3 (♦), ε = 10−4 (O) and (a) Ω = 0.5, (b) Ω = 2
and (c) Ω = 4. . . . . . . . . . . . . . . . . . . . . . . . . 135

5.1 Sketch of the flow configuration (not in scale) represent-
ing the oscillating flow through a circular hole in a thick
plate and definition of the geometrical parameters. We
report also the decomposition of the flow quantities in the
upstream and downstream boundaries. . . . . . . . . . . . 149

5.2 (a) and (b) example of situation leading to conditional in-
stability. (c) and (d) example of situation leading to hy-
drodynamical instability. The regions of conditional and
hydrodynamic instabilities are represented by yellow and
orange areas, respectively. . . . . . . . . . . . . . . . . . . 152

5.3 Structure of the mesh M1 obtained using complex map-
ping and mesh adaptation for β = 1, and nomenclature of
the boundaries (see appendix B for details on mesh gen-
eration an validation). A zoom of the mesh is reported in
the range X ∈ [−2.5; 0.5]Rh and R ∈ [0.1; 1.8]Rh. . . . . . 158

5.4 Contour plot of (a) axial velocity of the base flow and (b)
vorticity field computed at Re = 1500 and β = 1. . . . . . 159

5.5 Contour plot of the axial component of the base flow
at: (a) Re = 800, (b) Re = 1200, (c) Re = 1600, (d)
Re = 2000. The structure of the recirculation region is
highlighted using streamlines. The aspect ratio β is equal
to 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.6 (a) Intensity of the recirculation flow inside the hole and
(b) vena contracta coefficient as function of Re. Here we
use a solid line for β = 0.3, dashes for β = 0.6, long dashes
for β = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 161



List of Figures XIX

5.7 Impedance of the flow through a circular aperture with
aspect ratio β = 0.3. Left: Plot of ZR (solid line) and
ZI (dashed line) as a function of the perturbation fre-
quency Ω; Right: Nyquist diagrams for (a, b),Re = 800,
(c, d),Re = 1200, (e, f),Re = 1600, (g, h),Re = 2000. . . 163

5.8 Structure of the unsteady flow for β = 0.3 and Re =
1600. Left row: real part of the pressure; right row: real
part of the axial velocity. First row (a,b): Ω = 2.6 and
Zh = −0.425 − 1.719i, Second row (c,d): Ω = 5.45 and
Zh = 0.736 − 3.861i, third row (e,f): Ω = 8.25 and Zh =
−0.085 − 5.762i. The color range is rescaled using the
distortion function fS defined in (5.19). . . . . . . . . . . 164

5.9 Impedance results for β = 1. Left: Plot of ZR (solid line)
and ZI (dashed line) as a function of the perturbation
frequency Ω; Right: Nyquist diagrams for (a, b),Re = 800,
(c, d),Re = 1200, (e, f),Re = 1600, (g, h),Re = 2000. . . . 166

5.10 Structure of the unsteady flows for β = 1 and Re = 1600.
Left: real part of the pressure; right: real part of the axial
velocity. First row (a, b) Ω = 0.8; second row (c, d) Ω =
1.6; third row (e, f) ω = 2.5; fourth row (g, h) ω = 3.6;
third row (i, j) ω = 4.5. The colorrange is rescaled using
the distortion function fS defined in (5.19). . . . . . . . . 168

5.11 Thresholds for the onset of conditional instability (C1 to
C4) and of hydrodynamical instability (H2 and H3). . . . 169

5.12 Frequencies corresponding to conditional instability (C1
to C4) and of hydrodynamical instability (H2 and H3). . 169

5.13 (a) Nondimensional growth rates Ωi = (Rh/UM )ωi and
(b) nondimensional oscillation rates Ωr = (Rh/UM )ωr
as function of Re, computed through the linear stabil-
ity approach (lines) and the order-one expansion based
on impedance predictions (symbols). . . . . . . . . . . . . 172

5.14 Structure of the unstable eigenmodes H2 for β = 1;Re =
1500 (a, b) and H3 for β = 1;Re = 1570 (c, d). Same
representation as in figure 5.10. . . . . . . . . . . . . . . 174

5.15 Structure of the adjoint eigenmodes (a, c) and structural
sensitivity fields (b, d) associated to the eigenmodes plot-
ted in figure 5.14. . . . . . . . . . . . . . . . . . . . . . . . 175



XX List of Figures

6.1 Sketch of the birdcall configuration, frame of reference
and definition of the main geometrical parameters. An
example of computational mesh is also reported in light
gray. An example of the real configuration used in this
paper is depicted in the upper right corner of the figure. . 181

6.2 (a) Growth Rate and (b) frequency of the most unsta-
ble modes as function of Re. The stable region, namely
<(σ) < 0 is filled in gray. . . . . . . . . . . . . . . . . . . . 187

6.3 Real part of the pressure (<(p′)) for the four unstable
branches at the critical Reynolds number: (a) Re = 363,
ω ≈ 3.3; (b) Re = 406, ω ≈ 5.4; (c) Re = 639, ω ≈ 7.7;
(d) Re = 934, ω ≈ 10.2. . . . . . . . . . . . . . . . . . . . 188

6.4 (a) Growth Rate and (b) frequency of the most unsta-
ble modes as function of Re. The red lines are the in-
compressible results, the blue lines are the model’s results
whereas the green lines are the full compressible results,
both computed at Ma = 0.05. The first branch B1 is re-
ported with full lines, the second branch B2 with dashed
lines, the third branch B3 with dash−dot lines and the
fourth branch B4 with dash−double dot lines. The stable
region, namely <(σ) < 0 is filled in gray. . . . . . . . . . . 189

6.5 Same of figure 6.4 but for Ma = 0.1. In these figures we
omit the incompressible results. . . . . . . . . . . . . . . . 190

6.6 Real part of the pressure global modes <(p′) for: (a) Re =
800, Ma = 0.05 and ω ≈ 4.95; (b) Re = 1400, Ma = 0.1
and ω ≈ 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.7 (a) Growth Rate and (b) frequency of the most unsta-
ble modes as function of Re and Ma. The legend is the
same of figure 6.2: the full symbols with solid lines are the
incompressible results whereas the empty symbols con-
nected by dashed lines are the compressible augmented
ones. The stable region, namely <(σ) < 0 is filled in gray. 193

8.1 Curva di stabilità neutra al variare di λ e θ. . . . . . . . . 202



List of Figures XXI

8.2 Campo di velocità a Re=500: (a) flusso stazionario sim-
metrico calcolato per λ = 0 e θ = 0◦; (b) flusso asim-
metrico supercritico ottenuto per λ = 0.02 e θ = 45◦. In
entrambe le figure, la linea bianca rappresenta il contorno
della bolla di ricircolo. . . . . . . . . . . . . . . . . . . . . 203

8.3 (a) Numero di Reynolds critico della seconda instabilità
funzione di λ e θ. (b) Tasso di crescita dei disturbi fun-
zione di k and Re per λ = 0.02 e θ = 15◦. (c) Numero
d’onda trasversale k e (d) frequenza ω nelle condizioni
critiche funzione di λ and θ. Per θ = 0◦ e 90◦ i modi
risultano essere stazionari. . . . . . . . . . . . . . . . . . . 203

8.4 Sensitività strutturale per (a) Re=520 senza superfici su-
peridrofobiche, (b) Re=455, λ = 0.03, θ = 60◦ and k = 0,
(c) Re=754 senza superfici superidrofobiche e (b) Re=639,
λ = 0.03, θ = 60◦ e k = 1.7. . . . . . . . . . . . . . . . . 205

8.5 Flusso oscillante passante attraverso un foro circolare. . . 206
8.6 (a) Velocità assiale e (b) campo di vorticità del flusso base

a Re = 1500 e β = 1. . . . . . . . . . . . . . . . . . . . . . 207
8.7 Velocità assiale del flusso base a β = 1 e: (a) Re = 800, (b)

Re = 1200, (c) Re = 1600, (d) Re = 2000. La struttura
della zona di ricircolo è evidenziata dalle linee di corrente. 208

8.8 (a) Resistenza ZR e (b) reattanza −ZI/Ω calcolate β = 0
e: Re = 100 (—), Re = 500 (– –), Re = 1500 (– · –),
Re = 2000 (— —) and Re = 3000 (– · · –). . . . . . . . . 209

8.9 Impedenze calcolate a β = 1. sinistra) resistenza ZR
(linea piena) e reattanza ZI (linea tratteggiata) funzione
della frequenza Ω; destra) rispettivi diagrammi di Nyquist
per (a, b),Re = 800, (c, d),Re = 1200, (e, f),Re = 1600,
(g, h),Re = 2000. . . . . . . . . . . . . . . . . . . . . . . . 211

8.10 Valori di soglia per la stabilità condizionale (C1 to C4) e
l’instabilità idrodinamica(H2 and H3). . . . . . . . . . . . 212

8.11 Frequenze corrispondenti alla stabilità condizionale (C1
to C4) ed all’instabilità idrodinamica (H2 and H3). . . . 212

8.12 (a) Tasso di crescita dei disutrbi σ e (b) frequenza ω fun-
zione di Re per il foro a β = 1. ottenuti dall’analisi di
stabilità globale (linee piene) e dall’ analisi delle impe-
denze (linee tratteggiate). . . . . . . . . . . . . . . . . . . 213



XXII List of Figures

8.13 Modi diretti (a & b), modi aggiunti (c & d) e sensitività
strutturale (e & f) fper gli autovalori instabili a Re = 1500
(colonna di sinistra) e Re = 1700 (colonna di destra). Le
linee nere nelle figure (e) ed (f) rappresentano il contorno
della bolla di riciricolo. . . . . . . . . . . . . . . . . . . . . 214

8.14 Configurazione generale studiata in questo paragrafo e
definizione dei parametri geometrici. . . . . . . . . . . . . 215

8.15 (a) Tasso di crescita dei disturbi e (b) frequenza dei modi
instabili al variare del numero di Reynolds. Le linee rosse
sono i risultati ottenuti usando le equazioni incomprimi-
bili,le linee blu sono i risultati ottenuti utilizzando il mod-
ello mentre le linee verdi sono i risultati ottenuti utiliz-
zando le equazioni comprimibili, entrambe per Ma = 0.05. 216

8.16 Lo stesso della figura 8.15 ma per Ma = 0.1. In questo
caso i risultati incomprimibili sono stati omessi. . . . . . . 217

8.17 RParte reale della pressione del modo globale <(p′) per:
(a) Re = 800, Ma = 0.05 e ω ≈ 4.95; (b) Re = 1400,
Ma = 0.1 e ω ≈ 7.1 . . . . . . . . . . . . . . . . . . . . . . 218

9.1 Courbe de stabilité neutre en fonction de λ et θ. . . . . . 222
9.2 Gamme de vitesse Re=500: (a) flux stationnaire symétrique

calculé pour λ = 0 et θ = 0◦; (b) flux asymétrique super-
critique obtenu pour λ = 0.02 et θ = 45◦. Dans les deux
figures, la ligne blanche représente le contour de la bulle
de recirculation. . . . . . . . . . . . . . . . . . . . . . . . . 223

9.3 (a) Nombre de Reynolds critique de la deuxième insta-
bilité en fonction de λ et θ. (b) Taux de croissance des
troubles function dek et Re pour λ = 0.02 et θ = 15◦. (c)
Nombre d’onde transversale k et (d) fréquence ω dans les
conditions critiques function de λ et θ. Pour θ = 0◦ e 90◦

les modes sont stabilisées. . . . . . . . . . . . . . . . . . . 223
9.4 Sensitivité structurelle pour (a) Re=520 sans surfaces su-

perhydrophobes, (b) Re=455, λ = 0.03, θ = 60◦ and
k = 0, (c) Re=754 sans surfaces superhydrophobes e (b)
Re=639, λ = 0.03, θ = 60◦ e k = 1.7. . . . . . . . . . . . 224

9.5 Flux oscillant passant par un trou circulier. . . . . . . . . 226



List of Figures XXIII

9.6 (a) Vitesse axiale et (b) champ de vorticité du flux base à
Re = 1500 et β = 1. . . . . . . . . . . . . . . . . . . . . . 227

9.7 Vitesse axiale du flux base à β = 1 e: (a) Re = 800, (b)
Re = 1200, (c) Re = 1600, (d) Re = 2000. La structure
de la zonne de recirculation est surlignée par les lignes de
courant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

9.8 (a) Resistance ZR e (b) reactance −ZI/Ω calculées β = 0
et: Re = 100 (—), Re = 500 (– –), Re = 1500 (– · –),
Re = 2000 (— —) and Re = 3000 (– · · –). . . . . . . . . 230

9.9 Impédences calculés à β = 1. gauche) résistance ZR (ligne
pleine) et réactance ZI (ligne pointillée) fonction de la
fréquence Ω; droite) respectifs diagrammes de Nyquist
pour (a, b),Re = 800, (c, d),Re = 1200, (e, f),Re = 1600,
(g, h),Re = 2000. . . . . . . . . . . . . . . . . . . . . . . . 231

9.10 Valeurs de seuil pour la stabilité conditionelle (C1 to C4)
et l’instabilité hydrodynamique(H2 and H3). . . . . . . . 232

9.11 Frequences correspondants à la stabilité conditionelle (C1
to C4) ed all’instabilité hydrodynamique (H2 and H3). . 232

9.12 (a) Taux de croissance des troubles σ et (b) fréquence ω
fonction de Re pour le trou à β = 1. Obtenus de l’analyse
de stabilité globale (lignes pleines) et de l’analyse des im-
pédences (lignes pointillées). . . . . . . . . . . . . . . . . . 233

9.13 Mode directs (a & b), mode adjoint (c & d) et sensitiv-
ité structurelle (e & f) pour les valeur propes instables à
Re = 1500 (colonne de gauche) et Re = 1700 (colonne de
droite). Les lignes noires dans les figure(e) et (f) repre-
sentent le contour de la bulle de recirculation. . . . . . . . 234

9.14 Configuration générale etudiée dans ce paragraphe et déf-
inition des paramètres géométriques. . . . . . . . . . . . . 236

9.15 (a) Taux de croissance des troubles et (b) fréquence des
mods instables en variation du nombre de Reynolds. Le
lignes rouges répresentent les résultats obtenus avec l’utilise
des équations incompréssibles,les lignes bleues répresen-
tent les résultats obtenus en utilisant le model et les lignes
vertes sont les résultats obtenus avec les équations com-
préssibles, les deux pour Ma = 0.05. . . . . . . . . . . . . 237



9.16 Le même que la figure9.15 mais pour Ma = 0.1. Dans ce
cas les résultats incomprimables ont été omis. . . . . . . . 238

9.17 RPartie réelle de la préssion du mode globale <(p′) pour:
(a) Re = 800, Ma = 0.05 e ω ≈ 4.95; (b) Re = 1400,
Ma = 0.1 e ω ≈ 7.1 . . . . . . . . . . . . . . . . . . . . . . 239

A.1 Spatial stability analysis of a top-hat jet: – –, kr; · · ·, −ki;
—, cr = Re(ω/k). . . . . . . . . . . . . . . . . . . . . . . 259

A.2 Comparison between the results of impedances obtained
using the complex coordinate mapping (—♦—, mesh M1)
and without mapping with Lout = 40Rh (—©—, mesh
M8) and Lout = 80Rh (—�—, mesh M0) at Re = 500. . . 261

A.3 Impedances computed using the complex coordinate map-
ping (—♦—, mesh M1) and without mapping with Lout =
80Rh (—©—, mesh M0) and Lout = 160Rh (—�—, mesh
M9) at Re = 2000. . . . . . . . . . . . . . . . . . . . . . . 261

A.4 Pressure perturbation on the symmetry axis for Re =
2000 and Ω = 3 computed with complex mapping (mesh
M1 ; —) and without complex mapping (mesh M9 with
Lout = 160Rh ; – –). . . . . . . . . . . . . . . . . . . . . . 262

A.5 (a) Real part and (b) imaginary part of the impedance
at Re = 3000 computed with the mesh M1 (—�—), M2

(—4—), M3 (—O—), M4 (—♦—) and M5 (—©—). . . 263

A.6 (a) Real part and (b) imaginary part of the impedance
at Re = 3000 computed with the mesh M1 (—�—), M6

(—©—) and M7 (—♦—). . . . . . . . . . . . . . . . . . 264

A.7 Relative error calculated on the absolute value of the impedance
between the meshes M6 −M7 (– – ♦ – –) and the meshes
M1 −M7 (—©—) at Re = 3000. . . . . . . . . . . . . . 264

A.8 Real (upper part) and imaginary (lower part) of the axial
velocity Ux of the base flow at Re = 3000. . . . . . . . . 266

A.9 (a) Structure of meshes M2 (upper) and M4 (lower) ; (b)
pressure component of the eigenmode H2 as computed
using mesh M2 (upper) and M4 (lower). . . . . . . . . . . 272



List of Figures XXV

A.10 Spectra computed with three different meshes : × (red
online): mesh M1 (complex mapping); ∗ (green online):
mesh M3 (no mapping, Xmax = 30); + (blue online):
mesh M4 (no mapping, Xmax = 60). (a): β = 1;Re =
1700 ; (b): β = 1;Re = 2000 . . . . . . . . . . . . . . . . . 274



XXVI List of Figures



List of Tables XXVII

List of Tables

4.1 Values of the impedance in the low-frequency range. Com-
parison of values obtained numerically with a very small
Ω, quasi-static approximation (4.38), and simplified ap-
proximation obtained assuming ∂α/∂Re = 0. . . . . . . . 131

4.2 Comparison between the DNS and the linear approxima-
tion in term of pressure drop of the mean (base) flow and
impedances. . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.1 Geometrical parameters of the birdcall. The labels are re-
ferred to the one reported in figure 6.1. All the quantities
are non−dimensionalized using the diameter of the first
hole. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

A.1 Descriptions of numerical meshes M0−9 in term of dimen-
sions, mapping parameters, and number of triangles nt. . . 260

A.2 Characteristic of the meshes used for the convergence anal-
ysis using the mapping parameters reported in table A.4
and convergence of the base flow. Note that nd.o.f. is the
number of degrees of freedom of the mesh. . . . . . . . . . 263

A.3 CPU time on a standard computer (MacBook Pro 2012,
2.5 GHz Intel Core i5, 4 Gb RAM) required for (a) com-
putation of a base-flow and generation of an adapted mesh
following the procedure explained in section 4, (b) resolu-
tion of a linear problem for a single value of Ω, and (c)
full parametric study of the impedance, including gener-
ation of base flow and mesh, and resolution of 100 linear
problems in the range Ω ∈ [0− 6]. . . . . . . . . . . . . . . 265



A.4 Description of meshes M1-M4 built for β = 1 following
four different strategies. [LM , LC , LA, γc, RM , RA] : pa-
rameters defining the coordinate mapping. [xmax, rmax]:
effective dimensions in physical coordinates. δM : pre-
scribed value of the maximum grid step. Adapt.: mesh
adaptation strategy (see text). Nv : number of vertices
of the mesh obtained at the outcome of the adaptation
process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

A.5 Eigenvalues computed with four different meshes for Re =
1600 and Re = 2000 (β = 1) . . . . . . . . . . . . . . . . . 275



Abstract

Stability analysis is a very powerful tool in order to investigate the
properties of a complex fluid system. For example, it turns out to be
very useful for understanding the laminar−turbulent transition scenario
or to investigate the dynamic evolution of a fluid in very complex situa-
tions such as wakes, jets, recirculation bubbles etc. In this work, linear
stability theory has been applied to very different situations. In the
first part, we investigate the stability characteristics of a 2D T−shaped
micro−mixer, a very common device in micro− and nano−fluidics, fitted
with an anisotropic superhydrophobic texture on the walls of the outlet
channel, using a global stability approach. A parametric analysis has
been carried out by varying the surface properties, i.e. the equivalent
slip length of the grooves and their orientation angle with respect to the
direction of the main pressure gradient. We characterize both the pri-
mary and the secondary instability of such kind of flow. We show that in
some conditions, the presence of the SHS generates an unsteady insta-
bility apt to improve the mixing in the channel. The second and third
parts concern the linearized study of an incompressible laminar viscous
jet passing through a circular aperture. In particular, in the second part
we considered the flow passing through a hole of zero thickness. We
compute the response of such kind of flow to harmonic perturbations.
We characterize both the spatial amplification of perturbations and the
impedance, defined as the ratio between the pressure jump and the flow
rate across the hole, which is a key quantity to investigate the response
of the jet to an acoustic forcing. Owing to the strong spatial amplifica-
tion of the perturbation the computation requires a special treatment of
the downstream boundary conditions, and quickly becomes impossible
when the Reynolds number is increased. We introduce a method based
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on the analytical continuation in the complex plane of the axial coordi-
nate, thus extending the range of Reynolds number investigated up to
Re = 3000. The third part concerns the stability of a jet through a circu-
lar aperture in a thick plate. Experiments and simulations show that if
the plate is thick enough, strong periodic oscillations can occur and lead
to characteristic whistling tones, suggesting the existence of a feedback
mechanism that supports self−sustained oscillations. We show that, con-
trary to previous expectations, the feedback mechanism is not related to
acoustics and an instability can exist even in a purely incompressible
description. We investigate the stability properties of such kind of flow
using both the Nyquist criterion, based on the impedance analysis, and
the classical global stability approach. Finally, we perform a structural-
sensitivity analysis showing that the instability of such kind of flows is
connected to the presence of a recirculation region in the hole. In the
last part of the thesis we apply the stability analysis to the production
of sound in a more traditional configuration, namely the birdcall, where
the flow is constrained to pass through two successive holes in curved
rigid plates. Although the production of sound in this classical whistle
is a compressible phenomenon, an incompressible approach can provide
some useful information at least in the region near the hole. We thus
initially perform a purely incompressible stability analysis. We identify
the critical conditions, the global frequencies, and discuss the structure
of the resulting global eigenmodes. In order to reintroduce and evaluate
compressible effects, which can be relevant in the cavity between the
two holes, we model the cavity as a Helmholtz resonator and couple it
to the incompressible simulation. Finally, a fully compressible stability
analysis is performed in order to check the accuracy of these simplified
approaches in term of critical conditions, global frequencies and structure
of the modes.



Abstract in French

L’analyse de stabilité est un outil très puissant pour étudier les pro-
priétés d’un système fluide complexe, telles que des sillages, des jets,
des bulles de recirculation, etc. Dans ce travail, la théorie de la sta-
bilité linéaire a été appliquée à des situations très différentes. Dans
la première partie, nous étudions les caractéristiques de stabilité d’un
micro-mélangeur bidimensionnel en forme de T avec une texture super
hydrophobe anisotrope à la surface du canal de sortie, utilisant une ap-
proche de stabilité globale. Une analyse paramétrique a été réalisée en
faisant varier les propriétés de la surface, c’est-à-dire la longueur équiv-
alente de glissement des rainures et leur angle d’orientation par rapport
à la direction principale du gradient de pression. Nous avons carac-
térisé à la fois l’instabilité primaire et secondaire de ce type de flux.
Nous avons montré que dans certaines conditions, la présence de la SHS
génère une instabilité instable, capable d’améliorer le mélange dans le
canal. Les deuxième et troisième parties concernent l’étude d’un jet lam-
inaire visqueux à travers une ouverture circulaire utilisant une approche
linéarisée incompressible. En particulier, dans la deuxième partie, nous
avons considéré un écoulement passant par un trou d’épaisseur nulle.
Nous avons calculé la réponse de ce type de flux à des perturbations
harmoniques. Nous avons caractérisé à la fois l’amplification spatiale
des perturbations et l’impédance, qui est une quantité essentielle pour
étudier la réponse du jet avec un forçage acoustique, défini comme le
rapport entre le saut de pression et le flux traversant le trou. La na-
ture convertive de l’instabilité conduit à des très grandes amplifications
spatiales, Surtout à grand nombre de Reynolds, qui rendent impossible
le calcul direct en coordonnées physiques de la perturbation linéaire et
de l’impédance associée. Nous avons introduit une méthode basée sur la
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continuation analytique de la coordonnée axiale dans le plan complexe
qui nous permet d’étendre la gamme du nombre de Reynolds étudié
jusqu’à Re = 3000. La troisième partie concerne la stabilité d’un jet à
travers une ouverture circulaire dans une plaque épaisse. Les expériences
et les simulations montrent que si la plaque est suffisamment épaisse, de
fortes oscillations périodiques peuvent se produire et conduire à des siffle-
ments caractéristiques, suggérant l’existence d’un mécanisme de rétroac-
tion conduisant à des oscillations auto-entretenues. Nous avons montré
que, contrairement aux attentes précédentes, le mécanisme de rétroaction
n’est pas lié à l’acoustique, mais qu’une instabilité peut exister dans un
cadre purement incompressible. Nous étudions les propriétés de stabilité
de ce type d’écoulement en utilisant à la fois le critère de Nyquist, basé
sur l’analyse d’impédance, et l’approche classique de stabilité globale.
Enfin, l’analyse de sensibilité structurelle a montré que l’instabilité est
associée à l’existence d’une région de recirculation dans le trou. Dans la
dernière partie, nous avons appliqué l’analyse de stabilité pour étudier
la production sonore d’une configuration plus réaliste, à savoir l’appeau
des chasseurs, où le flux est contraint de passer par deux trous successifs
dans des plaques incurvées. Bien que le sifflet soit lié à des phénomènes
compressibles, l’approche incompressible peut fournir des informations
utiles, du moins dans la région proche du trou, où, dans certaines condi-
tions, l’écoulement peut être considéré incompressible. Nous avons util-
isé initialement une approche de stabilité purement incompressible pour
identifier les conditions critiques, les fréquences globales et la structure
des modes propres globaux résultants. Afin d’évaluer les effets compress-
ibles, qui peuvent être pertinents dans la cavité entre les deux trous, nous
avons modélisé la cavité comme un résonateur de Helmholtz. Enfin, une
analyse de la stabilité compressible complète est effectuée afin de vérifier
la validité de ces approches simplifiées.
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0.1 A "romantic" introduction to fluid−dynamic
instability

Every-day life experiences contain some simple insights for the un-
derstand of flow stability. If you observe the smoke of a cigarette, for
example, you can see that just above the cigarette it ascends right up-
ward in a regular manner, but at a certain distance above the cigarette
it appears irregular and chaotic. In the first case the flow motion is de-
fined "laminar", while in the second one it is defined "turbulent" (see
figure 1). The transition from laminar to turbulent isn’t a sudden and
well defined phenomenon and understanding how a fluid develops from
a laminar regime to turbulence has been the attention of very much re-
searcher during the last century and still it isn’t fully understood.
Laminar-turbulent transition can be related to the concept of flow sta-
bility : as for a generic dynamical system, a laminar flow is said to be
stable if it returns to its initial state after the application of any small
perturbation; on the contrary a laminar flow is defined unstable if the
disturbances generated by small perturbations don’t disappear but they
growth (in space and time) causing the transition to turbulence.
From a stoical point of view, the first experiments on transition were
carried out by Osborne Reynolds in 1883 (Reynolds, 1884), which used
a glass pipe injecting ink at its central line in order to observe the fluid
motion when varying quantities such as the fluid velocity U, the pipe’s
radius r and the cinematic viscosity of the flow ν. Finally he defined a
non-dimensional parameter Re = Ur

ν , after known as Reynolds number,
that was found to govern the laminar-turbulent transition phenomenon.



2 Introduction

Figure 1: The smoke of a cigarette representing the laminar−turbulent tran-
sition phenomenon.

In particular, he observed that at "low" Reynolds numbers the flow was
laminar while, increasing the Reynolds number over a certain threshold,
known as critical Reynolds number (Recr), the flow became turbulent,
as sketched in figure 2. It is important to remark that the Recr repre-
sents only the beginning of the transition phenomenon: it doesn’t mean
that the flow will become turbulent, since damping effects could avoid it
and the critical Reynolds number can be interpreted as the start of the
transition process. It is possible to define also a transitional Reynolds
number, Retr, as the value at which the fluid flow shows a fully turbu-
lent behaviour. However, defining exactly when the transition starts and
when the flow can be considered fully turbulent is not so simple and the
study of laminar−turbulent transition phenomenon remains still an open
problem, involving the interest of both academic research and industry,
above all in the aeronautical field. Air transport, in fact, contributes
about 3% to the global gas emissions, and the air traffic expected to
triple by 2050. Meeting the EU’s climate and energy objectives will
require a drastic reduction of the sector’s environmental impact by re-



Introduction 3

Figure 2: (a) Picture of Osborne Reynolds doing its experiments; (b) General
schematization of Reynolds experimental results.

ducing its emissions. In this context, a great contribution is given by the
program CleanSky2, a joint technology initiative (JTI) between pub-
lic and private institutions, that is aimed to reduce the civil aircraft
noise and gas emission; in particular, the principal objectives is to re-
duce the CO2 and NOX emissions between the 20% and 30%1. In order
to reach these objectives, the principal aeronautical industries focused
their attention both on the design of new efficient engines but also on the
aerodynamical design of more performing wings. In particular, it is im-
portant to underline that to maintain a laminar and attached flow over
the wing generates a drag reduction respect to a turbulent flow and, in
this matter, the aeronautical industry started to develop "Laminar Flow
Control" techniques (see (Jahanmiri, 2011) for an exhaustive review),
able to reduce drag also of about the 15%, as reported in figure 3, lead-
ing to a fuel saving and to a reduction of gas emissions. In this context
(but also in other industrial context where a drag reduction is required),
it is clear the importance of a full comprehension of the transition phe-
nomena, a problem still open and not fully solved, in order to develop
efficient and robust control techniques.

1http://www.cleansky.eu/
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Figure 3: Drag reduction of an aircraft due to the development of new tech-
nologies.

0.2 Classification of fluid dynamic instabilities

Before starting to talk about the mathematical theory of the flow
instabilities, it seems important to give a general (but not exhaustive)
classification of the fluid dynamic instabilities. A first great classification
can be made between asymptomatically stable systems, if the solution
tends to zero when the time tends to infinity and marginally stable sys-
tems if the systems are stable, but not asymptomatically: it seems that
in this second case the solution is bounded while in the first one it tends
to zero.

Another classification can be done about the spatio−temporal evo-
lution of an instability, In particular, it is possible to make a difference
between convective and absolute instability (Drazin and Reid, 2004).

• Convective instability

This kind of instability is characterized by the fact that distur-
bances are convected away and amplified by the mean flow. In
this particular case, the instability grows in time while travelling
away from the region in which the initial disturbance is applied and
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Figure 4: (a) Boundary layer transition over a wing. (b) Von−Karman wake
around a circular cylinder at Re = 50.

the flow can remain laminar until the disturbance has travelled a
certain distance from the source over which it grows following a
specific amplification rate and eventually becoming turbulent. On
the other hand, in the absence of continuous forcing, the flow even-
tually returns to its initial state. This is the case of a boundary
layer forced with small amplitude perturbations, as depicted in
figure 4(a).

• Absolute instability

On the contrary of the previous situation, the absolute instability
is characterized by the fact that disturbances grow exponentially
in time in a fixed point of the space, leading to turbulence. This
kind on instability can be found in different flow regimes, as for
example in the wake of bluff body, as reported in figure 4(b).

A comparison between the evolution in space and time of a stable, con-
vectively unstable and absolutely unstable solution is given in figure 5.

Another important classification of fluid dynamics instabilities can
be given on the basis of the characteristic forces that trigger them.

• Inviscid Instability

This kind of instability is relative to large Reynolds number flow,
in which the viscous effects are neglected (inviscid). According to
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Figure 5: Classification of the stability of a flow in terms of impulse response:
(a) stable, (b) convectively unstable and (c) absolutely unstable (from Huerre
and Monkewitz (1990))

this theory, the flow with an inflection point of the velocity field
are unstable, while the flow without any inflection point are stable
at high Reynolds numbers.

• Viscous Instability

During the past, it was believed that also viscous profiles without
any inflection point were stable: indeed it was found that viscosity
can have a destabilizing effect as for example in Poiseouille flows.
In this case the stability equation is known as Orr-Sommerfeld
equation, derived at first for parallel flows but applied, during the
years, also to weakly non parallel flows such as boundary layers
(the mathematical justification can be found in the multiple-scale
analysis, explained in §1.5).

• Algebraic instability

There instabilities are not related to the modal growth of the per-
turbation and they can be inviscid or viscous. In suck kind of insta-
bilities the linear modal growth is by−passed and they are relevant
to study the by−pass transition of a boundary layer subjected to
high level of disturbances (Zuccher et al., 2004). In this case the
transition is promoted by low frequency three−dimensional distur-
bances, as known as streaks.
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0.3 Scopes of the thesis

This thesis is about the use of the linear stability theory in complex
fluid systems in order to explain some arising peculiar phenomena. In
fact, the stability theory is able not only to study the transition to tur-
bulence but also to explain some particular features of a fluid system,
such as symmetry breaking, self−sustained processes, the occurrence of
bifurcations etc... Moreover, using the properties of the direct and ad-
joint eigenmodes, it is possible to investigate the sensitivity of the flow
to the instability, in order to localize the instability core and clarify the
instability mechanism.
To these purposes, numerical tools have been developed using the open
source code FreeFem++2, considering both cartesian and axial−symmetric
geometry. A brief description of the various problems considered in this
thesis is givel in the following subsections; however, all the details within
the main results can be found in dedicated chapters.

0.3.1 Superhydrophobic surfaces

Natural surfaces are never smooth, but on the contrary they are
always rough, porous, irregular, anisotropic etc... Although these "ir-
regularities" have dimensions of some micron, interacting with the flow
passing over them, they are able to significantly changes the its proper-
ties and characteristics.
A classical example of relevant natural surface is the shark skin, shown
in figure 6(a) as it appears if seen by a microscope. One can see that it
is not smooth but it is constituted a series of so called denticles that are
able to reduce the skin friction and leading to the shark to swim faster
(Oeffner and Lauder, 2012).
Another interesting example of natural surfaces are the superhydropho-
bic surfaces (SHS), consisting in micro grooves containing trapped gas
bubbles. Thanks to this properties, SHS reduce the solid−fluid interac-
tion leading, in the general case, to a drag reduction. A famous example
of SHS is the lotus leaf, depicted in figure 6(b).
As function of the topology of the surface, it is possible to classify the
superhydrophobic surfaces in two macro families:

2http://www.freefem.org/
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(a) 

(b) 

Figure 6: Examples of natural surfaces: (a) the shark skin with the denticles; 

(b) the lotus leaf as example of super hydrophobic surfaces. 
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Figure 7: (a) Isotropic vs (b) anisotropic superhydrophobic surface (from 
Clavijo et al. (2015)). 
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Figure 8: Representation of a T−mixer.

• Isotropic surfaces, characterized by the fact that grooves has not a
preferential direction of alignment (figure 7 (a));

• Anisotropic surfaces, where grooves are all aligned with a precise
direction (figure 7 (b)).

0.3.2 Micro T−Mixer with superhydrophobic surfaces

The first problem addressed in this thesis is the stability of the flow in
a T−shaped micro mixer with superhydrophobic surfaces (SHS) on the
outlet channel, as shown in figure 8. As reported in dedicated literature
(see for example Daniello et al. (2009)), SHS are able to reduce the
turbulent skin friction also in macro channels since, in this case, what
is important is that they act on the viscous sub−layer. Instead, as far
as the stability and transition are concerned, SHS result to be effective
only in micro−channels with characteristic dimensions of few millimetres
(Rothstein, 2010). We choose to investigate the flow in a T−mixer since
they are very common in microfluidics and often they are also used simply
as junction elements in more complex micro systems (Fani, 2013). We
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Figure 9: The case of a gas turbine with a perforated acoustic liner, useful
both to cool the mechanical parts and to absorb the sound.

show that the presence of such kind of surfaces can largely influence
the stability and so the mixing properties of the flow into the T−mixer.
From a technical point of view, the presence of the SHS has been taken
into account using the Navier slip boundary condition (Navier, 1823),
namely considering a partial slip of the flow on the SHS surface: this
argument will be further explore in dedicated paragraphs.

0.3.3 Acoustic properties of the flow passing through one
or two circular apertures

It is known that the flow passing through one or two circular holes
can absorb or generate sound, typically in the form of a strong whistle,
and it is relevant in many practical situations such as the flow pass-
ing through a cooling system of a gas turbine (see figure 9), the human
or bird whistle, the wind instruments, tea kettles etc... However, the
causes and mechanism of the whistle generation are still not fully un-
derstood. In this thesis we try to clarify some mechanics in whistle gen-
eration: starting from the crucial hypothesis that whistle is generated



Introduction 11

Figure 10: An example of bird−call.

by self−sustained oscillations, we use the stability approach in order to
clarify some mechanism leading to the sound emissions of various flow
configuration. In particular, we start from the most simple configura-
tion, namely the viscous flow passing through a circular aperture in a
thin plate. This is a classical problem first introduced by Rayleigh (1896)
in a purely acoustic regime, namely without considering the presence of
a mean flow. Moreover, Rayleigh introduced a key quantities, the so
called Rayleigh conductivity, playing a crucial role in the study of the
stability characteristic of such kind of flow configurations. The solution
of this classical problem allows us to introduce the linearized theory and
to substantiate its validity comparing the linear results with the ones
obtained using non linear simulations, namely the solution in time of the
full Navier−Stokes equations .
After this first step, we consider the effect of the thickness of the plate
on the flow and whistle properties of such kind of flow configuration. In
particular, we introduce a Nyquist stability criterion based on the anal-
ysis of the acoustic impedance, a key quantities strictly linked with the
Rayleigh conductivity; then we solve a classical eigenvalue problem in
order to validate the stability criterion previously introduced, varying
the thickness of the plate. Moreover, using the concept of structural
sensitivity, we identify the instability core.
Finally, we investigate a more complicate and realistic configuration,

namely the flow passing through two circular apertures in curved plates:
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this configuration is also known as bird−call and it is shown in figure
10. We use a global stability analysis in order to clarify the mechanism
of whistle emission. We find that the mechanism of whistle generation is
quite different for this configuration respect to the previous since the cav-
ity between the two holes plays a crucial role both in whistle generation
and in the frequency selection process. We introduce also the effect of
the flow compressibility considering both a simplified model based on the
Helmholtz equations and the full compressible Navier−Stokes equations,
discussing about the range of validity of the simplified model.

0.4 Thesis outline

The present thesis is organized in 5 chapters as follow:

• In Chapter 1 the general equations, the theory and the methodol-
ogy are introduced. In particular, we first introduce the equation
governing the motion of an incompressible flows, namely the incom-
pressible Navier−Stokes equations. Then, we introduce the linear
stability theory, that is largely used in literature to characterize
the dynamical response of numerous systems to little disturbances
(see for example Reed et al. (1996), Chomaz (2005)). We first start
introducing the linear stability theory applied to parallel (such as
pipe flows) and weakly non parallel flows (such as boundary layers),
also known as local stability theory. Then we relax some hypothesis
introducing the so called global stability theory, that is more rele-
vant in the context of this thesis. In fact, global stability theory, is
a very powerful tools to study the dynamical behaviour of strongly
non parallel flows, as for example cavity flows, bluff body wakes
etc... We introduce also another very powerful tool in the stability
context, namely the adjoint Navier−Stokes equations, largely used
to identify optimal perturbations (Luchini, 2000), namely the ini-
tial conditions that maximize the energy growth of a disturbance,
study the receptivty of a flow to external disturbances (Zuccher and
Luchini, 2014), in fluid control (Marquet and Sipp, 2010; Carnar-
ius et al., 2010; Carini et al., 2015) and to identify the most sen-
sitive regions of a flow to an instability (Giannetti and Luchini,
2007; Marquet et al., 2008). Here, we use the adjoint equations to
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calculate the structural sensitivity of the instability for both the
T−mixer and the flow passing through a circular hole, in order to
identify the instability core. Finally, we introduce the global sta-
bility theory applied to the compressible Navier−Stokes equations,
that is applied to study the bird−call configuration.

• In Chapter 2 we report the main numerical tools used in this the-
sis. In particular, in the first part we introduce the Finite Element
Method (FEM) and the FreeFem++ open source library. The sec-
ond part, instead, is dedicated to the numerical algorithms.

• Chapter 3 is about the stability and sensitivity analysis of a T−shaped
micro−mixer with superhydrophobic surfaces.We perform a global
stability analysis of such kind of flow configuration varying the
properties of the SHS, namely its height and orientation respect to
the main pressure gradient direction, and we compare results with
a classical T−mixer without SHS. We investigate the transition
scenario, first characterized by a pitchfork supercritical bifurcation
that breaks the symmetry of the flow. The presence of the SHS
leads to a reduction of the critical Reynolds number of the first bi-
furcation. Then, we investigate the existence of a 3D instability of
the 2D asymmetric flow. We find that the presence of SHS reduce
the critical Reynolds number also for the second bifurcation. How-
ever, the more interesting results is that, for particular parameters
of the SHS, the secondary instability of the flow is characterized
by an Hopf supercritical bifurcation, meaning that the flow shows
self−sustained oscillations on 3D plane, leading to an improvement
of the mixing efficiency between the two fluids coming from the two
inlet channels. The contents of this chapter have been presented to
the AIMETA conference (Salerno, September 2017) and published
in the conference proceeding.

• Chapter 4 is about the acoustic impedance of the laminar flow
passing through a circular aperture in a thin plate. Actually, this
is a classical problem already introduced and solved by Rayleigh
(1896) without considering the mean flow and by Howe (1979) in
the inviscid case. In this context, we introduce the effect of vis-
cosity and we calculate the impedance for the thin hole using the
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solution of the linearized Navier−Stokes equations. The solution of
such kind of problem is difficult from a computational point of view
since the flow results to be highly convective unstable increasing
the Reynolds number, so that the perturbation levels can become
so great to be compared to the machine precision, leading to nu-
merical round−off problems and so to an inaccurate evaluation of
the acoustic impedance. In order to solve this problem, an original
method based on the complex mapping of the axial coordinate has
been rigorously introduced and tested. This trick lead us to com-
pute the acoustic impedance up to Re = 3000. Finally, we verify
the validity of the linearized theory by solving in time the non lin-
ear Navier−Stokes equations. We find that, although results show
a strongly non linear behaviour, the acoustic properties of such
kind of flow configuration are well predict by using the linearized
approach.
The contents of this chapter have been presented to the Euromech
colloquium 591 on "Three−dimensional instability mechanisms in
transitional and turbulent flows" (Bari, September 2017) and a
full paper is under review for the publication in Journal of Fluid
Mechanics.

• Chapter 5 discusses the same topic introduced in chapter 4, but
for a circular hole in a thick plate. Using the same numerical
tools previously introduced in chapter 4, we calculate the acoustic
impedance varying the Reynolds number and the thickness of the
hole. Using a Nyquist stability criterion, we demonstrate, for some
parameters, the possibility of the purely hydrodynamical system to
show self−sustained oscillation that are directly linked to the whis-
tle emission. Moreover, we describe also the possibility to have an
instability if the purely hydrodynamical system is coupled with an
outer system, ad for example an acoustic resonator. Finally, using
the global stability approach, we confirm the results found using
the Nyquist stability criterion and, thanks to the direct−adjoint
properties, we calculate the structural sensitivity of the instabil-
ity. We demonstrate the crucial role that the thickness of the plate
plays into the instability generation: in fact we find that the in-
stability core is localized on the edge of the recirculation bubble
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forming below the hole.
Results of this chapter have been presented to the Euromech collo-
quium 591 on "Three−dimensional instability mechanisms in tran-
sitional and turbulent flows" (Bari, Septermber 2017) and a full
paper has been submitted to Journal of Fluid Mechanics.

• In Chapter 6 we study the whistling properties of a bird−call, that
is a more realistic geometry, using a global stability approach. In
particular, an "augmented model" based on the Helmholtz equa-
tion has been introduced in order to take into account the effects
of the local compressibility of the flow in the region near the holes.
Results have been compared with the ones obtained considering
the full compressible Navier−Stokes equations, but with very low
Mach numbers. In particular we found that the model is able to
give suitable results when the hypothesis of acoustically compact
geometry is respected, namely the acoustic wavelength must be
greater that the main geometrical dimensions. We discuss in detail
the limit of validity of the model and finally we give an example of
a real experiment3.
The contents of this chapter have been presented to the IUTAM
Symposium on “Critical flow dynamics involving moving/deformable
structures with design applications” (Santorini, June 2018) and the
full paper has been accepted for the publication as conference pro-
ceeding.

Finally, in the last chapter, we try to give some general conclusions of
this thesis.

3Actually some preliminary experiments have been carried out at IMFT and it is
planned to deepen this topic in next year.
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Chapter 1

Theoretical background

1.1 The Navier−Stokes equations: incompress-
ible formulation

The motion of fluids is described by the Navier−Stokes equations, a
system of partial differential equations (PDEs) first proposed by Claude−Louis
Navier and Geroge Gabriel Stokes. Assuming the flow as a continuous
medium, with a constant density ρ (hypothesis of incompressibility) and
a direct proportionality between the viscous stress and the strain rate,
namely a Newtonian fluid, the Navier−Stokes equations can be written
in their non−dimensional form as follow:

∇ · u = 0

∂tu + (u · ∇)u +∇p− 1

Re
∆2u = 0

 , (1.1)

where u(x, t) is the velocity vector, namely (u, v, w) for the cartesian case
and (ux, ur, uθ) in the axis−symmetric one, x is the vector containing
the spatial coordinate, namely (x, y, z) for the cartesian case and (x, r, θ)
in the axis−symmetric one and p(x, t) is the reduced pressure. Re is the
Reynolds number defined as:

Re =
UrefLref

ν
, (1.2)

with Uref and Lref respectively the velocity and length characteristic
scale of a certain problem and ν the cinematic viscosity of the flow. In
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this thesis, we use the cartesian formulation of the Navier−Stokes equa-
tions in order to study the stability of the flow in the T−mixer whereas,
for geometrical consideration, the acoustic of circular hole has been stud-
ied using the axial−symmetric version of the Navier−Stokes equations.
The solution in time of the Navier−stokes equations (1.1) fully describes
the motion of a fluid. Analytical solutions of the system (1.1) are known
only in very simple cases whereas, in order to study more complicated
configuration, a numerical resolution is necessary. However, the numer-
ical resolution in time of the full three−dimensional problem can be
difficult (or also impossible) from a computational point of view both
in term of memory required for the computation but also for the com-
putational time. In this thesis, since we are interested to the stability
and transition, we use a linearized approach, assuming that the flow can
be decomposed in a steady base flow and a perturbation of small am-
plitude so that a linearization is justified. We show that the use of the
linearized dynamic of the equations (1.1) can give very important infor-
mation about the stability of the flow and it can be applied to study very
different phenomena, even if at the beginning they can seem so different.

1.1.1 Boundary conditions on the SHS: the Navier slip
length

In order to be solved, the Navier−Stokes equations 1.1 must be com-
pleted with suitable boundary and initial conditions: these conditions are
different for each problem and so they will be specified in dedicated chap-
ters. However, classical boundary conditions are no−slip at wall (u = 0,
an imposed velocity profile at inlet, ad−hoc symmetry boundary condi-
tions on the symmetry axis in the cylindrical case, and traction−free at
an open outlet (−pn + Re−1∇u · n = 0). One of the arguments of this
thesis is the stability of the flow over a superhydrophobic surface and a
crucial point is the use of a correct boundary condition on such kind of
surfaces. The SHS, in fact, can be seen as an alternation between no
slip (wall) and no shear (gas bubbles) zones, as depicted in figure 1.1,
and in fact the hamletic question arising in many dedicated articles and
textbooks treating SHS is to slip or not to slip?, or, in other words, how
is it possible to take into account this alternation between no−slip and
free−shear regions? The most accepted answer is to use the partial slip
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Figure 1.1: Schematic representation of a superhydrophobic surface high-
lighting the no slip and free shear regions.

Navier boundary condition (Navier, 1823) that can be written as:

u‖|wall = λ
∂u‖

∂n

∣∣∣
wall

(1.3)

with u‖ is the vector containing the velocity components tangential to
the surface and n is the outer normal vector. According to the equation
(1.3), the velocity at the wall is proportional to the shear strain rate
∂u‖/∂n via the Navier slip length λ, representing the fictitious distance
below the surface where the velocity vanishes if the flow field is extended
linearly through the solid wall Lauga and Stone (2003). If λ = 0 a classi-
cal no slip boundary conditions is retrieved whereas, on the contrary, for
λ → ∞ a perfect slip boundary condition is obtained: the geometrical
interpretation of the Navier slip length is depicted in figure 1.2. The
boundary condition for the velocity component normal to the surface,
instead, derives from the continuity equation (that for incompressible
fluids can be seen as a constrain equation) and it is a non penetration
boundary condition, namely u · n = 0. However, for superhydrophobic
walls, it is correct to impose a null vertical velocity on the groove but a
question could arise in case of wetted state, namely when the liquid pen-
etrates into the gas bubble (also known as Wenzel state): is it possible
to define a slip length also for the vertical velocity component? Luchini
(2013) demonstrated that even for turbulent flows the near wall region
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Figure 1.2: Geometrical interpretation of the Navier slip length λ.

can be described using the Stokes equations and the near wall Stokes
problem has two degrees of freedom, so that only two slip length can be
defined: imposing a null vertical velocity at a certain y rather that at
another one has only a secondary effects on results.
The effectiveness of the Navier slip boundary condition has been exper-
imentally observed and some classical results for the Poiseuille flow over
a superhydrophobic surface are reported in figure 1.3. In equation (1.3)
the same slip length λ has been used for all the velocity components,
meaning that there are no preferential direction of the surface: the con-
dition (1.3) is able to describe an isotropic texture. In chapter 3 we will
show how to extend the condition (1.3) to an anisotropic texture.

1.2 The linearized Navier−Stokes Equations (LNSE)

In order to study the linearized dynamic of the Navier−Stokes equa-
tions, the following flow decomposition has to be introduced:
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Figure 1.3: Comparison between the numerical solution (lines) and the PIV
measurement (symbols) of a channel flow over a superhydrophobic surface: the
filled symbols show measurements above the ribs, whereas the empty symbols
are taken above the gas-water interface (from Ou and Rothstein (2005)).

u(x, t) = U(x) + εû(x, t) +O(ε2)

p(x, t) = P (x) + εp̂(x, t) +O(ε2)

}
, (1.4)

where the quantities in capital letters are the steady base flow whereas
the quantities with the hat are the perturbation of small amplitude ε.
Inserting the flow decomposition (1.4) into the Navier−Stokes equations
(1.1) and linearizing, two sets of PDE’s are obtained: one for the base
flow (order O(ε0)) and one for the perturbation O(ε1). Here we suppose
that the base flow is steady and so it is a solution of the steady version
of the non linear Navier−Stokes equations (1.1): a more complicated
theory (the Floquet stability analisys) can be used for time periodical
base flow but this is out from our purposes (see (Barkley and Henderson,
1996) for details).
The temporal evolution of the perturbation, instead, is governed by the
so called Linearized Navier−Stokes equations (LNSE) that can be writ-
ten as follow:
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∇ · û = 0

∂tû + L{U, Re}û +∇p̂ = 0

}
, (1.5)

where L is the linearized Navier−Stokes operator defined as:

L{U, Re}û = (U · ∇)û + (û · ∇)U− 1

Re
∆2û. (1.6)

In order to solve the differential problems (1.5), we have to impose
the appropriate conditions at the boundaries of the domain under inves-
tigation and a suitable initial condition as well. These conditions will be
specified in dedicated chapters for each different problem studied in this
thesis.

1.3 Linear Stability Theory (LST)

If we are interested to study the stability of the flow system for t→
∞, we can represent the perturbation, namely q̂(x, t) = [û, p̂]T (x, t) with
a Fourier expansion1

q̂(x, t) = q̃(x)eσt + c.c. (1.7)

where q̃(x) = [ũ, p̃]T (x), σ = γ + iω is, in general,a complex quan-
tity (particular considerations will be done in dedicated part of this
manuscript when necessary) and c.c. stands for the complex conjugate.
Inserting this ansatz into the equations (1.5), we can rewrite the LNSE
as follow:

∇ · ũ = 0

σũ + L{U, Re}ũ +∇p̃ = 0

}
. (1.8)

In the more general case the system (1.8) is a generalized eigenvalue
problem and σ = γ + iω is the complex eigenvalue. The real part γ of
the eigenvalue σ is the temporal growth rate of the perturbation whereas

1Actually the name of Fourier transform is not so appropriate since this is more
similar to a Laplace transform because the exponent σ is, in the more general case, a
complex quantity.
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Figure 1.4: Real vs. imaginary part of the complex eigenvalue depicting the
possible stability scenarios within the relative time evolution of the perturba-
tion (from Taira et al. (2017)).

the imaginary part ω represents the frequency. For γ < 0, the flow is
stable whereas for γ > 0 it is unstable and self−sustained oscillation of
frequency ω can be observed. The neutral stability condition, instead, is
observed for γ = 0: in this case the perturbation has a purely harmonic
time evolution and it is neither dumped nor amplified. The scenarios
described above are summarized in figure 1.4. Up until now, no con-
siderations have been made about the spatial coordinate. Actually, as
function of the specific problem, it is possible to find some homogeneous
directions of the flow: in this way a Fourier representation of the homo-
geneous direction is licit, leading to a simplification of the problem and
a reduction of the computational cost. In a general case, following the
notation adopted by Juniper M. et. al. (Juniper et al., 2014), we can
apply the following transformation to the amplitude of the perturbation:

q̃ = q′eiΘ (1.9)

where Θ changes as function of the considerations about the directional
flow homogeneities.
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1.4 Local stability theory

From an historical point of view, the linear stability analysis was ap-
plied to parallel channel flows, as for examples plane Couette or Poiseouille
flows, characterized by two homogeneous spatial directions, namely the
streamwise and the spanwise one. This implies that the wall normal
and the streamwise gradient of the base flow are negligible, leading to
a monodimensional base flow (U(y)) and the following representation of
the perturbation:

q̃(x) = q′(y)ei(αx+kz) + c.c (1.10)

where α and k are respectively the streamwise and the spanwise wavenum-
bers. Inserting the expansion (1.10) into the LNSE (1.8), we obtain a set
of ODEs (Ordinary Differential Equations), known also as Orr−Sommerfeld
equations:

iαu′ + ∂yv
′ + ikw′ = 0

σu′ + iαUu′ + ∂yUv
′ + iαp′ − 1

Re
(∂2
yu
′ − α2u′ − k2u′) = 0

σv′ + iαUv′ + ∂yp
′ − 1

Re
(∂2
yv
′ − α2v′ − k2v′) = 0

σw′ + iαUw′ + ikp′ − 1

Re
(∂2
yw
′ − α2w′ − k2w′) = 0


.

(1.11)
The equations (1.11), completed by homogeneous boundary condi-

tions, represent a generalized eigenvalue problem. The eigenvalue q′

exists only for values of α, k and σ satisfying the following dispersion
relation:

D(α, k, σ,Re) = 0. (1.12)

At this point, two different scenario are possible. We can be interested
to study the temporal growth of the disturbance: in this case α and k
are real and σ = γ + iω is the complex eigenvalue, that is provided by
the dispersion relation (1.12) and gives informations about the stability
of the system. The eigenvalue problem (1.11) has to be solved varying
the Reynolds number: we can define a critical Reynolds number Recr as
the Re at which the flow pass from a stable state to an unstable one,
namely when the growth rate is equal to zero: this condition is also
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Figure 1.5: Neutral stability curve for plane Poiseouille flow for k (taken from
HarrarII and Osborne (2003)).

known as marginally stability. A very important result of the stability
analysis is the neutral curve, namely the locus of point on the plane
α − Re at which γ = 0: in figure 1.5 we report as example the neutral
curve for the Poiseouille flow, showing that the critical Reynolds number
is Recr ≈ 5772 at α ≈ 1.02. The neutral curve has been obtained for
k = 0: in fact, for plane and parallel flows the Squire theorem states
that the first instability is for bidimensional disturbances.
On the other hand, we could also be interested in the spatial growth

of the disturbance in space, for example in the streamwise direction: in
this case k is real, σ = −iω is purely imaginary and α = αr + iαi is the
complex eigenvalue provided by the dispersion relation (1.12). In this
case, if αi < 0, the system results to be unstable, whereas it is stable for
αi > 0; finally, αr represents the frequency of oscillation of the distur-
bances.
The computational solution of such kind of problems is very fast: usually
for such kind of flows the base flow is expressed with an analytical func-
tion and the stability problem consists in a one dimensional eigenvalue
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problem that can be solved in a very efficient way using, for example,
finite difference of spectral collocation methods. Note that the spatial
stability analysis is a little more complicated as the eigenvalue problem
is non linear respect to α.
The theory reported in this paragraph has been written for plane flows.
however, without any difficulties, it can written also for axialsymmetric
monodimensional flows, such as a Poiseouille flow in a pipe. In this case,
the expansion (1.10) becomes:

q̃(x) = q′(r)ei(αx+mθ) + c.c (1.13)

where the azimuthal wavenumber must be integer, namely m ∈ N. The
stability analysis shown about the parallel flow is also known as local,
because the study of the stability properties of the fluid is reduced to the
solution of a one dimensional problem independent from the streamwise
location.

1.5 Stability of weakly non parallel flows

The spatial stability analysis can be applied, for example, to study
the receptivity and the transition to the turbulence of a boundary layer.
Actually the boundary layer is a weakly non parallel flow, because it
shows a slow growth in the streamwise direction, almost in the region far
from the leading edge. However, it is possible to generalize the stability
theory written for parallel flows to the weakly non parallel ones, using
a multiple scale or WKBJ approach (Bender and Orszag, 2013). With-
out going into the details, this method consist of introduce a slowness
parameter ε through the changing of scale X = εx. The fundamental
hypothesis of this method is that it is possible to write the solution in a
power series, namely:

q̃(X, y, z) = ei(φ(X)/ε)+kz
∞∑
n=0

q′n(X, y)εn, (1.14)

where the streamwise wavenumber α(X) = ∂Xφ(X). Substituting the
expansion (1.14) into the equations (1.8), separating the various order ε,
a hierarchy of equation is obtained (Zuccher and Luchini, 2014). What is
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Figure 1.6: Neutral stability curve for a Blasius boundary layer for k = 0
(taken from Longobardi (2015)).

possible to demonstrate is that at the order ε0 the same equations for the
parallel flow stability are obtained (i.e. equations (1.11)): fixing ω and k
real, the eigenvalue problem has to be solved at each streamwise location
and the eigenvalue α is no more constant, but it results to be function
of the slowing variable X. The location at which the eigenvalue changes
its sign is called neutral point. The higher order equations, instead,
give the correction to the eigenvalue due to the spatial growth and the
non−parallelism of the boundary layer. An example of neutral stability
curve for a Blasius boundary layer is reported in figure 1.6 for a bidien-
sional disturbance (k = 0): the critical Reynolds number, based on the
boundary layer thickness, is Recr ≈ 302 at a non dimensional frequency
F = ων/U∞×106 ≈ 240. The unstable waves growing into the boundary
layer are also known as Tollmien−Schlichting waves, from the names of
the scientists that for first observed this phenomenon (Tollmien et al.,
1961). The instability of a boundary layer is convective and boundary
layer flows are also known as noise amplifier (Sipp and Marquet, 2013):
in fact they can be seen as black boxes in which a disturbance enters
and it is convectively amplified (or attenuated if the system is stable)
at a certain streamwise distance. The study of the spatial stability of a
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Figure 1.7: N−factor for a Blasius boundary layer at various frequencies:
— parallel flow assumption; – – – non parallel flow correction (taken from
Longobardi (2015)).

boundary layer is fundamental for understanding its transition to turbu-
lence. There are various semi−empirical methods in literature that uses
the results of the stability analysis to predict the boundary layer tran-
sition. In fact, the transition location and the corresponding is different
from the one at which there is the first neutral point xN , i.e. the abscissa
at which the imaginary part of the eigenvalue changes in sign, because
of the convective nature of the instability. One of the most used method
is the so called eN . According to this method, it is possible to define the
N−factor as:

N =

∫ x

xN

−αi(εx)dx′. (1.15)

From experiments, it has been observed that the transition location
is achieved when N = 9, corresponding to an amplification of the initial
disturbance of ∼ 80dB. The equation (1.15) can be improved solving
the higher order equations of the multiple scale expansion and adding
to αi the correction due to the growth of the boundary layer. For a
flat plate Blasius boundary layer the non parallel correction is not so
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Figure 1.8: Flow visualization of the wake of a circular cylinder at Re = 2000:
it is possible to observe a large recirculation region characterized by strongly
non parallel effects.

important, as depicted in figure 1.7: however, it can become crucial for
boundary layers over more complicated geometries, as for example the
wing of an air plane. The stability analysis of boundary layer is also
called non−local because it consists in the solution of a one dimensional
problem at each streamwise coordinate.

1.6 Stability of non parallel flows

The stability theory described in the previous paragraphs is appli-
cable only to parallel or weakly non parallel flows. In many real ap-
plications,however, the fluid shows strongly non parallel effects, as for
example recirculation regions in bluff body wakes (see figure 1.8): in
these situations the parallel assumption is no more valid and the local
stability analysis cannot be applied. In this context, no assumptions can
be made about the spatial structure of the modes and all the spatial
directions, in the more general case, must be treated as eigendirections,
namely they are considered inhomogeneous. Since no considerations are
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made about the spatial directions, the stability analysis of such kind of
flows is usually called global, a term first introduced by Joseph (1966). In
particular, when no assumptions can be made on all the three spatial di-
rections (namely in the more general case), the stability analysis is called
TriGlobal (Theofilis, 2011). However, there are situations in which the
fluid can be considered homogeneous in one spatial direction: the base
flow is usually bidimensional whereas it is possible to consider a three
dimensional perturbation expanding its solution in a Fourier series along
the homogeneous direction. In this case, the arising stability analysis
is also known as BiGlobal (Theofilis, 2011). In this thesis we use only
the BiGlobal stability approach and, for simplicity, we will call it simply
global, as already done by numerous authors in literature.

1.6.1 Global stability analysis

If the fluid shows only one homogeneous direction, it is possible to
simplify the full three−dimensional problem in a two dimensional one.
Let us consider the cartesian case: if the flow configuration shows a
spatial direction, as for example the spanwise one (z), greater that the
others, the derivative of the base flow respect to z are equal to zero and
so the base flow is bidimensional, namely U(x) = [U(x, y), V (x, y)] (save
for the case discussed in chapter 3 where the flow is three dimensional
but dependent only by two spatial directions). The Fourier expansion
(1.9) for the perturbation, instead, has to be written as:

q̃(x) = q′(x, y)eikz + c.c., (1.16)

where k ∈ R is the real spanwise wavenumber.
Putting the ansatz (1.16) into the LNSE (1.8) written in cartesian coor-



Chapter 1. Theoretical background 31

dinates, the following set of PDEs is obtained:

∂xu
′ + ∂yv

′ + ikw′ = 0

σu′ + U∂xu
′ + u′∂xU + V ∂yu

′ + v′∂yU + ikUw′ + ∂xp
′ = 0

1

Re
(∂2
x2u
′ + ∂2

y2u
′ − k2u′)

σv′ + U∂xv
′ + u′∂xV + V ∂yv

′ + v′∂yV + kV w′ + ∂yp
′ =

=
1

Re
(∂2
x2v
′ + ∂2

y2v
′ − k2v′)

σw′ + U∂xw
′ + V ∂yw

′ + ikw′ − 1

Re
(∂2
x2w

′ + ∂2
y2w

′ − k2w′) = 0


.

(1.17)
In axialsymmetric flows, under such geometrical symmetries, it is pos-
sible to consider as homogeneous direction the azimuthal one (θ). All
the derivatives of the baseflow respect to the azimuthal coordinate θ are
equal to zero so that the resulting baseflow is bidimensional (U(x) =
[Ux(x, r), Ur(x, r)])2. For such king of flows, the perturbation can be
expanded in Fourier series as:

q̃(x) = q′(x, r)eimθ + c.c., (1.18)

where the azimuthal wavenumber m ∈ N is a natural number for peri-
odicity reasons. Putting the ansatz (1.18) into the LNSE (1.8) written

2Note that without difficulties it is possible to consider also swirling flows in which
the baseflow is three dimensional but dependent only by the radial and axial coordi-
nates (see for example Montagnani (2018))
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in axialsymmetric coordinate, the following set of PDEs is obtained:

∂xu
′
x +

1

r
∂r(ru

′
r) +

im

r
u′θ = 0

σu′x + 2∂x(Uxu
′
x) +

1

r
∂r(rUxu

′
r + rUru

′
x) +

im

r
Uxu

′
θ + ∂xp

′ =

=
1

Re

(
∂2
x2u
′
x

1

r
∂r(r∂ru

′
x)− m2

r2
u′θ

)
σu′r + ∂x(Uxu

′
r + u′xUr) +

1

r
(2∂r(rUru

′
r) + imUru

′
θ) + ∂rp

′ =

=
1

Re

(
∂2
x2u
′
x + ∂r(

1

r
∂r(ru

′
r)) +

m2

r2
(u′r − 2u′θ)

)
σu′θ + ∂x(Uxu

′
θ) +

1

r
∂r(rUru

′
θ) +

Uru
′
θ

m
+

1

r
∂θp
′ =

=
1

Re

(
∂2
x2u
′
θ +

1

r
∂2
r2(ru′θ) +

m2

r2
(u′θ − 2u′r)

)



.

(1.19)
However, in this thesis, we are interested only to axialsymmetric distur-
bances, thus we consider only the case for m = 0. Boundary conditions
for problems (1.17) and (1.19) will be specified for the specific problems
in dedicated chapters.
Both the problems (1.17) and (1.19) can be recast in the form of a gen-
eralized linear twodimensional eigenvalue problem

[AAA(U , Re)− σBBB]q ′ = 0 (1.20)

where AAA can be seen as a stiffness matrix and BBB is the mass matrix
(Cano-Lozano et al., 2016); the exact expression of these matrices is
given in dedicated chapters. As per the local stability, the flow results
to be unstable if the growth rate γ > 0 whereas ω is the oscillation fre-
quency of the disturbances; the Reynolds number at which γ changes in
sign is called, also in this case, critical Reynolds number (Recr).
The eigenvector q′ corresponding to an unstable eigenvalue σ is also
called global mode: its shape is very important because it gives a picture
of what happens into the flow and how the oscillations are driven.
The nature of such kind of instability is very different from the local
and non local ones. In fact, in this case, the disturbances don’t grow
while they are convected but rather they growth in time manifesting
self−sustained spatial oscillations: a typical example is the Von−Karman
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wake behind a circular cylinder, that occurs at a critical Reynolds num-
ber equal to Recr ≈ 47. For this reasons, such kind of flow instability is
called global and it is an absolute instability; moreover, the flows which
show this features are called global oscillators (Sipp et al., 2010).

1.6.2 A little hint to the TriGlobal stability analysis

In many real applications it can happen that the flow has no homo-
geneous spatial directions. Typical examplex are, for example, a jet in
crossflow (see for example Bagheri et al. (2009)), the flow past a sphere
(see for exmple Fabre et al. (2008)) or past an emispherical roughness
element (see for example Citro et al. (2015b). In this cases, the gener-
alized three−dimensional eigenvalue problem (1.8) has to be solved and
the computation is very hard. In fact, the discretized matrix of a one
dimensional eigenvalue problem is in the order of few MB, the one of a
bidimensional eigenvalue problem is in the order of some GB whereas the
discretization of a full tridimensional eigenvalue problem leads to a huge
matrix in the order of TB (Theofilis, 2003). It is evident that the direct
inversion (but also the storage) of the discretization matrix for a three
dimensional problem is impossible and some special tricks are required,
as time marching combined with stabilization methods for computing a
stable base flow also post bifurcation (for more details see Åkervik et al.
(2006); Citro et al. (2017)).

1.7 The acoustic conductivity/impedance and the
Nyquist stability criterion

1.7.1 Definitions

In chapters 4 and 5, we study the acoustic and stability properties of
the flow passing through a circular hole; the general flow configuration is
sketched in figure 1.9. The hole connects two semi−infinite open spaces;
the pressure difference between the inlet and outlet generates a net flow
rate through the hole: the result is the generation of a jet at the edge
of the hole characterized by the vena contracta phenomenon. Since the
main objective of this study is to characterize the interaction between
the jet and an acoustic perturbation, it is fair to decompose the pressure
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(x, r, t)

Figure 1.9: Flow passing through a circular hole.

(and so also the resulting flow rate) in a steady mean part and a purely
harmonic monochromatic perturbation of small amplitude ε, namely:

pin(t) = Pin + εp′ine
−iωt

pout(t) = Pout + εp′oute
−iωt

q(t) = Q+ εq′e−iωt

 , (1.21)

where ω ∈ R is the angular frequency of the perturbation. Note that
the decomposition (1.21) is equivalent to the (1.4) imposing σ = −iω:
this is fair since, in this context, we are interested to describe a purely
harmonic perturbation without a growth (or decaying) rate.
Let’s focus, now, the attention on the unsteady harmonic part of the flow
and in particular on the relation between the pressure jump and the flow
across the hole. Rayleigh (1896) introduced the concept of conductivity
(KR), a key quantity defined as the proportionality coefficient between
the acceleration of the fluid particles located within the hole and the
pressure jump across the hole. More specifically,

KR =
−iωρq′

(p′in − p′out)
. (1.22)

The conductivity is, in the general case, a complex quantity, and has
the dimension of a length. The conductivity is classically decomposed
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as (Howe, 1979):
KR = 2Rh(γ − iδ), (1.23)

where Rh is the radius of the hole, the real part γ of the conductivity
represents the inertia of the system whereas its imaginary part δ is linked
to the average value of the power absorbed by the hole. In fact, for har-
monic perturbations, it possible to write the power exchanged between
the perturbation and the mean flow as:

〈Π〉 =
〈
([p′in − p′out]e−iωt + c.c.)(q′e−iωt + c.c.)

〉
= 2<([p′in − p′out]q̄′),

(1.24)
where the brackets < · > represent the averaging over a complete oscil-
lation period 2π/ω, < stands for the real part and the overbar denotes
the complex conjugate. Using the definition of the conductivity (1.22),
the formula (1.24) directly leads to:

〈Π〉 =
4Rhδ

ρω
|p′in − p′out|2. (1.25)

So, when δ > 0, this term represents a resistance (or the ability to absorb
acoustic energy), meaning that exciting the jet at a given frequency
necessitates the provision of energy by an outer system. Conversely,
a negative δ means that oscillations of the jet can supply to an outer
system, which can be for instance an acoustic resonator.

As an alternative to the Rayleigh conductivity, we can also define
another key quantity, namely the impedance of the aperture (Zh). Fol-
lowing the electronic analogy, it is defined as the ratio between the driven
force and the effect, and so, in this specific case, as the ratio between the
pressure jump and the flow rate across the hole:

Zh =
(p′in − p′out)

q′

(
= − iωρ

KR

)
(1.26)

From (1.26), it is easy to verify the direct link existing between the con-
ductivity and the impedance meaning that, using some due adjustments,
the two concept are completely interchangeable, at least from a theoreti-
cal and conceptual point of view. As a consequence,the impedance is also
a complex quantity as well, with physical dimension Mass · Length−2 ·
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Time−1. In the following, we decompose the impedance as

Zh =
ρUM
R2
h

(ZR + iZI) , (1.27)

where UM is the mean velocity of the flow through the hole, ZR is the
dimensionless resistance and ZI is the dimensionless reactance. It is easy
to verify that the equation (1.24) for the power absorbed by the hole can
be written as function of ZR as follows:

〈Π〉 = 2
ρUM
R2
h

ZR|q′|2, (1.28)

So, when ZR > 0, this term represents a resistance whereas a nega-
tive ZR means that there is power generation and oscillations of the jet
can supply to an outer system, which can be for instance an acoustic
resonator.

1.7.2 Nyquist stability criterion

The situation in which ZR < 0 could lead to think that the system is
unstable since it is generating energy rather that dissipate it. However,
following Conciauro and Puglisi (1981) who studied the stability of elec-
trical circuits, a negative value of the resistance does not directly involve
that the system is unstable but it means that the concerned dynamical
system is active: in fact, the condition of ZR < 0 is only necessary but
not sufficient to have an instability of the system. In conclusion, the
situation with ZR < 0 is sometimes referred as conditional stability since
the coupling with an outer system, for example in this context an outer
acoustic resonator, could bring to an instability and so to the presence
of self−sustained processes.
Until now, we focus our attention on only the real part of the impedance
that is linked to the energy dissipation/production of the system. How-
ever, the inertial effects play a crucial role on the stability of the system
and in fact, in order to understand the stability properties of the jet, a
combined analysis of the sign of both the real and imaginary part of the
impedance is necessary. In fact, we stated that the condition of ZR < 0 is
necessary in order to have an instability. However, if the imaginary part
of the impedance, namely the reactance or equivalently the inertia of the
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Figure 1.10: Example of Nyquist diagram. In white the stable region, in
yellow the area of conditional stability and in orange the area of hydrodynamic
instability.

perturbation, is positive (ZI > 0), the purely hydrodynamical system
becomes unstable: under this conditions the jet shows self−sustained
oscillations leading to whistle generation (Karlsson and Åbom, 2011).
Finally, the condition at which the jet results to be marginally stable
is when the whole impedance shows a complex zero, namely Zh = 0.
The marginally stable condition has also an easy physical interpretation:
since the impedance is defined as the ratio between the pressure jump
and the flow rate across the hole, Zh = 0 means that there is the pos-
sibility of a flow rate without a pressure jump and it is related to the
instability of the system.
The stability criteria described above can be easily summarized in

an unique Nyquist stability criterion. If we plot the real part of the
impedance versus its imaginary part (the Nyquist diagram), three dif-
ferent region can be identified: the right side of the diagram (ZR > 0)
is the region of stability, the third quadrant (ZR < 0 and ZI < 0) is
the region of conditional stability whereas the second quadrant (ZR < 0
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and ZI > 0) is the region of hydrodynamical instability; an example of
Nyquist diagram is depicted in figure 1.10. FollowingKierkegaard et al.
(2012), the number of critical zeros can be identified as the number of
times the contour of the impedance Zh(ω) encircles the origin. However,
the disadvantage of the Nyquist diagram is that we loose information
about the frequencies so that the associated frequencies of the critical
zeros should be evaluated plotting the real and imaginary part of the
impedance versus the frequency in a separate graphic.
Finally, the curious reader could ask why we introduce both the concept
of conductivity and impedance but we use only the latter one to write the
Nyquist stability criterion. The answer is that the same conclusions can
be reached using the concept of conductivity rather than the impedance
one. However, when the system is marginally stable the impedance goes
to zero and the conductivity goes to infinity (Zh = 0⇒ KR →∞). For
such kind of system, an analytical solution for the impedance and/or
conductivity does not exist but it must be reconstructed from numeri-
cal or experimental data in which it results easier to identify something
that is equal to zero rather than something that tends to infinity. So, in
the case of thin holes (chapter 4) acting as a sound attenuators (δ > 0
and equivalently ZR > 0), most authors have used the conductivity as
initially introduced by Rayleigh and also in this thesis we used both the
concept when studying thin holes. On the other hand, in case of thick
hole (chapter 5) we use only the concept of impedance, for the reasons
explained above.

1.8 The Navier−Stokes equations: compressible
formulation

The final part of this thesis is about the stability of the flow passing
through a bird−call, considering the effects of the compressibility. In
particular, these effects have been taken into account using both the full
compressible Navier−Stokes equations and a simplified augmented model
coupling a Helmholtz acoustic resonator to the incompressible equations.
We first report the compressible formulation of the Navier−Stokes equa-
tions and the linearized compressible Navier−Stokes equations; finally we
describe the augmented model. We consider an ideal gas with a Prandtl
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number Pr = µcp/κ equal to 0.7, where cp is the constant specific heat, κ
is the thermal conductivity and µ is the dynamic viscosity. Moreover, we
hypothize that the viscosity and the thermal conductivity don’t change
with the temperature Yamouni et al. (2013). Under these assumptions,
the non dimensionalized compressible Navier−Stokes equations can be
written as:

∂tρ+ u · ∇ρ+ ρ∇ · u = 0

ρ∂tu + ρu · ∇u +
1

γMa2
∇p− 1

Re
∇ · τ(u) = 0

ρ∂tT + ρu · ∇T + (γ − 1)p∇ · u =

= γ(γ − 1)
Ma2

Re
τ(u) : d(u) +

γ

PrRe
∆2T

p− ρT = 0


, (1.29)

where γ is the ratio of specific heats (equal to 1.4 for the air), ρ and
T are respectively the density and the temperature, d(u) and τ(u) are
respectively the strain and stress tensor, whose explicit expression is:

d(u) =
1

2

(
∇u +∇uT

)
, τ(u) = [2d(u)− 2

3
(∇ · u)I] (1.30)

The first equation is the mass conservation, the second the momentum,
the third the internal energy and the forth the ideal gas law, for a total of
six scalar equations for the six unknown variables (density, three veloci-
ties components, temperature and pressure) in the full three dimensional
case (or four scalar equations for four unknown terms in the bidimen-
sional case)3. The equations (1.29) clearly result to be valid for both
cartesian and axialsymmetric flows. However, in this thesis, we consider
only the axialsymmetric formulation for the compressible case; thus the
velocity vector is defined as u(x, r, t) = (ux, ur) where x and r repre-
sent the axial and radial coordinates whereas ux and ur are respectively
the axial and radial velocity components. Equations (1.29) have been
non dimensionalized using some reference quantities Uref , Pref , Tref ,
ρref and Lref respectively for the velocity, pressure, temperature, den-
sity and length. However, it is possible to observe into the momentum

3This isn’t the only possible set of equations for compressible flows: for example
if we replace the internal energy equation with the total entropy one, a different set
of PDEs describing the motion of a compressible flow arises
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equation that the pressure gradient is proportional to Ma−2, leading to
a singularity when Ma → 0 (the incompressible limit): this generates
numerical issues when solving numerically the equations (1.29) at very
low Mach number, as done in this thesis. In order to avoid these prob-
lems, following Fani et al. (2018), we define the dimensionless pressure as
P − Pref
ρrefU

2
ref

; thus, the compressible Navier Stokes equations can be written

as:

∂tρ+ u · ∇ρ+ ρ∇ · u = 0

ρ∂tu + ρu · ∇u +∇p− 1

Re
∇ · τ(u) = 0

ρ∂tT + ρu · ∇T + (γ − 1)ρT∇ · u =

= γ(γ − 1)
Ma2

Re
τ(u) : d(u)− γ

PrRe
∆2T

ρT − 1− γMa2p = 0


, (1.31)

where no terms proportional to Ma−2 are present into the equations.
Note that with this last formulation the incompressible limit is retrieved
simply putting Ma = 0 into the equations ( and also in the numeri-
cal code) without a limit operation. Finally, the Reynolds and Mach
numbers are respectively defined as:

Re =
ρrefUrefLref

µ
, Ma =

Uref√
γRTref

, (1.32)

where R is the ideal gas constant (R ≈ 8.314472J/molK). The refer-
ences scales, within the boundary conditions, are specified in the dedi-
cated chapter.

1.9 Global stability theory applied to compress-
ible Navier−Stokes equations

The linear stability theory reported in previous paragraph can be
clearly applied also to investigate the stability properties of a compress-
ible flow. In order to study the linearized dynamic of the compressible
Navier−Stokes equations, the following flow decomposition has to be
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introduced:

ρ(x, t) = ρB(x) + ερ̂(x, t) +O(ε2)

u(x, t) = U(x) + εû(x, t) +O(ε2)

p(x, t) = P (x) + εp̂(x, t) +O(ε2)

T (x, t) = TB(x) + εT̂ (x, t) +O(ε2)


, (1.33)

Introducing the flow decomposition (1.33) into the compressible Navier
Stokes equations (1.31) and linearizing, we obtain a set linear PDEs
describing the linear dynamic of the perturbation, namely the linearized
compressible Navier Stokes equations (LCNSE). Then, as function of
the spatial and temporal behaviour of the perturbation, it is possible
to do the same expansions done for the incompressible case, leading
to local or global stability equations. In this thesis, we are interested
to the global modes for axialsymmetric perturbation; thus we use the
Fourier expansion (1.18) particularized for m = 0 but with the state
vector q′ = [ρ′,u′, p′, T ′], leading to the following set of equations for the
perturbation:

σρ′ + U · ∇ρ′ + u′ · ∇ρB + ρB∇ · u′ + ρ′∇ ·U = 0

σρBu′ + ρ′U · ∇U + ρBu′ · ∇U + ρBU · ∇u′ +∇p′ − 1

Re
∇ · τ(u′) = 0

σρBT
′ + ρ′U · ∇TB + ρBu′ · ∇TB + ρBU · ∇T ′ +

+(γ − 1) (ρ′TB∇ ·U + ρBT
′∇ ·U + ρBTB∇ · u′) +

−γ(γ − 1)
Ma2

Re
[
τ(u′) : d(U) + τ(U) : d(u′)

]
− γ

PrRe
∆2T

′ = 0

ρ′TB + ρBT
′ − 1− γMa2p′ = 0


.

(1.34)
Finally, equations (1.34) ban be recast in the form of a generalized eigen-
value problem as in equation (1.20) and solved respect to the complex
eigenvalue σ.
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Figure 1.11: Sketch of the birdcall configuration. An example of the real
configuration used in this paper is depicted in the upper right corner of the
figure.

1.10 Modelling the local effect of the compress-
ibility using the Helmholtz resonator

In chapter 6 we study the stability and acoustic properties of a bird-
call configuration, depicted in figure 1.11. The birdcall is constituted
by two successive holes forming a cavity. If we want to consider the
effect of the compressibility of the flow, we can solve the compressible
Navier−Stokes equations. However, the numerical solution of the com-
pressible equations is notoriously more expensive than the solution of the
incompressible ones. Motivated by this fact, we try to model the effect
of the compressibility using a simplified model coupled to the incom-
pressible Navier−Stokes equations. The main hypothesis of this model is
that the flow can be assumed locally incompressible, namely the acoustic
wavelength is greater that the main geometrical parameters. In particu-
lar, for the geometry investigated here:

λac =
2π

Maω
� {Dh, Dcav, Hcav}, (1.35)

with ω the angular frequency of the acoustic wave. The condition (1.35)
is also known as acoustic compactness of the geometry.
Under this hypothesis, in fact, it is possible to consider, in first approx-
imation, that the flow is locally incompressible so that pressure can be
considered constant inside the cavity between the two holes (and also
density since we are in the incompressible regime). Thus, it is fair to
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model the cavity as an Helmholtz resonator (Bonnefis, 2014) and the
the compressibility effects are taken into account imposing a spring−like
impedance boundary condition on the upper wall of the cavity rather
than a no slip one. The variation of the mass into the cavity can be
written, in dimensional form, as (Fry, 2016):

∂tdm
d
cav = −ρdQdcav (1.36)

where md
cav = ρdV d

cav and Qdcav are respectively the mass of the fluid in-
side the cavity and the flow rate outgoing from the cavity, whereas V d

cav

is the volume of the cavity. Note that the superscript ””d refers to di-
mensional quantities. Under the hypothesis of adiabatic and isoentropic
system, the link between pressure and density inside the cavity is:

pdcav = cd0
2
ρdcav, (1.37)

where cd0
2 is the speed of sound. Using the isoentropic condition (1.37) in

equation (1.36) and applying the non dimensionalization of the variables,
the following equation is obtained:

∂tpcav +
1

χc
Qcav = 0 with χc = VcavMa2. (1.38)

The coefficient χc can be defined as a compressibility parameter: it is
interesting to observe that the compressibility effects are influenced both
by the Mach number and the volume of the cavity. The unknown terms
pcav and Qcav are called augmented variables and they are linked with
the incompressible unknown terms through their definition:

pcav =
1

Scav

∫
Scav

pdS

Qcav =

∫
Scav

u · ndS

 , (1.39)

where Scav is the surface of the upper wall of the cavity. Since we are
interested to the global modes, we apply the Fourier decomposition to
the equation (1.38) that becomes:

σp′cav +
1

χc
Q′cav = 0 (1.40)
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Finally, coupling the equations (1.40) and (1.39) with the incompressible
LNSE (1.19), we are able to write the augmented model as:

∇ · u′ = 0

σu′ + (u′ · ∇)U + (U · ∇)u′ +∇p′ − 1

Re
∆2u

′ = 0

σp′cav +
1

χc
Q′cav = 0

1

Scav

∫
Scav

p′dS = p′cav∫
Scav

u′ · ndS = Q′cav


, (1.41)

where the operators gradient, divergence and laplacian are written in
axialsymmetric coordinates.
Equations (1.41) can be recast in a generalized eigenvalue problem and
its discretization matrix is the same of the incompressible problem with
the adjoint of two rows and two columns for the two new variables p′cav
and Q′cav which are called augmented unknown variables. In chapter
6 we discuss the range of validity and applicability of this augmented
model.

1.11 Adjoint equations and structural sensitivity

1.11.1 Adjoint Navier−Stokes equations

A very powerful tool in functional analysis is the adjoint of a linear
operator. The use of adjoint equations in the context of fluid dynamic
stability has been recently reviewed by Luchini and Bottaro (2014). In
fluid mechanics, the adjoint equations are fundamental to understand
the receptivity process of a boundary layer (Hill, 1995), the nature of the
global instabilities (Giannetti and Luchini, 2007) or in problem involving
optimization and flow control (Luchini, 2000).

The adjoint linearized Navier–Stokes operator can be defined using
the generalized lagrangian identity (Ince, 1926). Given a pair of suitably
differentiable fields û = [û, p] and û† = [û†, p†],using the differentiation
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by parts, the following lagrangian identity can be defined:

[(∂tû + L{U,Re}û +∇p̂) · u† +∇ · u†p†]+

+[û · (∂tû† + L†{U,Re}û† +∇p̂†) + p̂∇ · û†] =

= ∂t(û · û†) +∇ · J(û, û†, p̂, p̂†),

(1.42)

where J is known as bilinear contaminator (Giannetti and Luchini, 2007)

J(û, û†, p̂, p̂†) = (U · ∇)û† −∇U · û† +
1

Re
∆2û

†, (1.43)

L{U, Re} is the linearized Navier−Stokes operator defined by equation
(1.6) and L†{U, Re} is the adjoint linearized Navier−Stokes operator
defined as:

L†{U,Re}û† = (U · ∇)û† −∇U · û† +
1

Re
∆2û

†. (1.44)

Finally, analysing the second term between square brackets in equation
(1.42), it is possible to define the adjoint linearized Navier−Stokes equa-
tions as:

∇ · û† = 0

∂tû
† + L†{U,Re}û† +∇p̂† = 0

}
, (1.45)

It is interesting to observe that the convective part in (1.44) has an
opposite sign with respect to the direct operator (1.6): in fact the adjoint
solution is convected in the opposite direction of the direct one.

In order to obtain a generalized adjoint eigenvalue problem, we can
follow the normal mode ansaltz:

q̂†(x, t) = q̃†(x)e−σt + c.c., (1.46)

leading to the following adjoint eigenvalue problem:

∇ · ũ† = 0

−σũ† + L†{U,Re}ũ† +∇p̃† = 0

}
. (1.47)

The corresponding set of boundary conditions for the adjoint system is
is obtained by imposing the elimination of the boundary terms after the
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application of the generalized lagrangian identity. The system (1.47) is
a generalized three−dimensional adjoint eigenvalue problem: then the
same considerations about the spatial properties of the flow, discussed
previously for the direct global modes, can be done also for the adjoint,
leading both to one, two or three dimensional adjoint eigenproblems.

From a physical point of view, the adjoint eigenmode can be inter-
preted as the initial condition which has maximum projection along the
direction of the corresponding eigenmode. This implies that the adjoint
of the most amplified direct mode corresponds to the optimal perturba-
tion which maximizes the growth of energy as t → ∞. Moreover, the
adjoint eigenmodes give us important informations about the receptivity
of the instability, namely the capability of the flow to accept and amplify
external disturbances. In particular, it is possible to demonstrate that
|ũ†| represents the receptivity to a momentum forcing whereas |p̃†| is the
receptivity to mass injections (Giannetti and Luchini, 2007).

1.11.2 Structural Sensitivity

One interesting property is that the direct and adjoint eigenvalues
are complex conjugate whereas the direct and adjoint eigenvectors have
very different structures. The reason is that the Navier−Stokes equa-
tions are not self−adjoint, namely L 6= L†: this property is also known
as non normality of the Navier−Stokes operator (Chomaz, 2005). This
means that a separate analysis of the direct and adjoint modes is not sat-
isfactory for identifying the instability mechanism.Giannetti and Luchini
(2007) performed a structural sensitivity analysis of the Navier−Stokes
equations. Thus, they studied the effect of any structural modification of
the Navier−Stokes operator on the modification of the eigenvalue. They
modelled the feedback mechanism triggering the instability using a lo-
cal force proportional to the velocity disturbance acting as a momentum
source in the LNSE. This procedure leads to the definition of the so
called Structural Sensitivity tensor:

S(x) =
ũ† ⊗ ũ∫
V

(ũ†ũ)dV

(1.48)
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A spatial map of this tensor can be build considering a norm: in par-
ticular it is possible to demonstrate that the spectral norm leads to the
maximum coupling between the component of the structural sensitivity
tensor (Luchini et al., 2008). The maximum values of the spatial map
indicate the regions where the feedback mechanism is stronger, or, in
other words, the regions where the instability mechanism acts: the region
where the structural sensitivity map reaches its maximum is sometimes
called also wavemaker in order to remark that it depicts the zones where
the instability, and so the unstable waves, rises up. This technique re-
sults to be very efficient to study the instability mechanism of complex
fluid systems and in this thesis has been used to characterize the insta-
bility mechanism of both the T−mixer and the flow passing through a
thick circular hole.
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Chapter 2

Numerical methods

The following chapter can be divided in three main parts. In the first
part, it is reported a description of the Finite Element Method (FEM) ap-
plied to discretize the Navier−Stokes equations (base flow, LNSE, direct
and adjoint eigenvalue problems...): in particular, we focus the attention
on FreeFem++ (http://www.freefem.org/), the open source library
used in this thesis, giving in parallel the theoretical notions about the
finite element discretization.

The second part, instead, describes the main algorithms used to solve
the various problems of this thesis.

Finally, in the third part, we report two numerical tricks to treat the
boundaries. In particular, we detail the complex mapping method used
to compute the impedances of the flow passing through one hole; then,
we explain the the sponge zone technique used to solve the compressible
equations.

2.1 FreeFem++

FreeFem++ is an open source finite element library developed at IN-
RIA (Institut national de recherche en informatique et en automatique)
by F. Hecht (Hecht, 2012) and it has an its own language based on the
C++ syntax. It is a compilative object oriented language, meaning that
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in order to solve the problem it is necessary to import the appropriate
libraries. FreFem++ implements all the necessaries structures to solve
a 2D or 3D differential problem: in particular with FreeFem++ it is
possible to solve both linear and non−linear elliptical, hyperbolic and
parabolic problems.
A typical FreeFem++ code can be divided in the following three steps:

• Definition of the numerical domain and mesh generation;

• Choose of the appropriate finite element space;

• Definition of the problem, within its boundary conditions, in its
weak formulation;

• Choose of the appropriate solver and solution of the discretized
problem.

Actually, from a practical point of view, the finite element space is defined
after the definition of the variational formulation of the problem. In fact,
choosing the FEM space independently from the equations that must be
solved could bring to numerical instability problems.

2.2 Mesh generation and automatic mesh adap-
tation

The first step to solve a numerical problem is the definition of a nu-
merical domain and a computational grid, usually known as mesh. In
FreeFem++, it is possible both to import geometry and mesh as input
files (as for example geometry generated by a CAD software and then
meshed with dedicated external software) or to build the geometry and
the mesh by using internal commands and libraries, as done in this the-
sis. In particular, the geometry can be simply defined using parametric
curves. Then, at each line, it is attributed a label: usually the same
label is assigned to boundaries with the same boundary conditions since,
as we will see in the dedicated paragraph, it results easier to impose the
boundary conditions.
The triangular mesh, for 2D problems, can be generated using the bamg
(Bidimensional Anisotropic Mesh Generator) library (Hecht, 1998b), based
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on the the Delaunay-Voronoi triangulation (Delaunay, 1934) of the do-
main. In other words, the density of the mesh in the domain is function
of the number of vertices on its boundaries. The distribution of the
vertices on the boundaries, instead, is regulated by the definition of a
metric M : one possibility is to take as metric of the mesh the parametric
function used to define the geometry. In other words, if the geometry
has been defined using linear parametric functions, the vertices of the
mesh are equispaced whereas for polynomial distributions, for examples,
the density of the mesh is higher in some regions rather than in other
ones. The FreeFem++ syntax to generate a border is given below:

border border_name (t=min,max){x=f1(t); y=f2(t);
label=label_name;};

where border_name is the name of the border, label_name is the label,
t is the parameter, f1(t) and f2(t) are the functions defining the met-
rics M. Moreover, it is possible to define interior boundaries so that the
domain results to be splitted in different regions where different grid den-
sities can be imposed. Thus, it is possible to refine the mesh where the
gradient of the solution are expected to be higher, as for example in the
wake of a bluff body. However, the inconvenient of this methodology is
that the design of the mesh is made on the base of a priori consideration
of the solution.
A valid alternative to this method is to use an automatic mesh adaptation
algorithm. A very powerful tool implemented in this FreeFem++, in fact,
is the adaptmesh command (Hecht, 1998a). This command uses as met-
ric the Hessian matrix of an objective function uobj , namelyM = ∇∇uobj .
To build an optimal mesh, it is possible to choose as objective function
the solution of the equation, as for example the base flow solution or the
direct and/or adjoint global modes1. So, the step to obtain an adapted
mesh are the following ones:

• Define a coarse mesh;

• Solve the (linear or non linear) problem, with the method that are
explained in next paragraphs;

1Note that the optimal mesh adapted on the structure of the baseflow can be very
different from the one adapted on the global modes and so the choice of the objective
function is clearly linked to the scope of the dedicated analysis.
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Figure 2.1: Example of mesh obtained using the automatic mesh adaptation
procedure for the wake of a circular cylinder (from Fabre et al. (2018a)).

• Adapt the mesh on the solution of the problem;

• Solve the problem on the new mesh.

Note that the procedure described above can be iterated until a suit-
able mesh is reached. The precision of the adaptation procedure can be
controlled by specifying an objective value for the interpolation error of
the function on the new mesh. The automatic mesh adaptation method
brings to two main advantages: no a priori consideration must be done in
order to build the mesh; the mesh is adapted only where it is necessary
and it can results also very coarse in regions where gradient of the solu-
tion are absent. This methodology has been recently reviewed by Fabre
et al. (2018a)2 using as benchmark case the linear and non linear global
modes in the wake of a circular cylinder: they found that this procedure
allows to obtain suitable results by using coarser meshes with respect to
the ones used by the current literature; an example of adapted mesh for
the wake of a cylinder is reported in figure 2.1.
The methodology described above has been used in this thesis to adapt
the mesh when studying the flow passing through a circular aperture:

2https://github.com/erbafdavid/StabFem
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in fact the crucial point of that analysis is to capture the deep gradient
that are present in the forming jet; an accurate description is given in
the dedicated chapters.

2.3 Weak formulation of the Navier−Stokes equa-
tions: cartesian incompressible case

To solve Navier−Stokes equations using finite element method, we
need of their variational formulation. Here only the discretization of
the non linear equations for the base flow (steady state Navier−Stokes
equations) is reported. However, the discetization of the LNSE can be
achieved in the same way without difficulties. We report the strong (or
differential) formulation of the steady state Navier−Stokes equations for
the baseflow:

∇ ·U = 0

(U · ∇)U +∇P − 1

Re
∆2U = 0

 . (2.1)

We classically multiply equations (2.1) by test functions [U+, P+] and
then we integrate over the domain V :

∀[U+, P+],

∫
V

((U·∇)U+∇P− 1

Re
∆2U)·U+dV +

∫
V
P+(∇·U)dV = 0.

(2.2)
The following identity is used to rewrite the pressure gradient term:∫

V
∇ · (PU+)dV =

∫
V
∇P ·U+dV +

∫
V
P (∇ ·U+)dV. (2.3)

Using the theorem of the divergence, the l.h.s of the equation (2.3) can
be recast in this way:∫

V
∇ · (PU+)dV =

∫
S
P (U+ · n)dS, (2.4)

where n is the normal unit vector and where S is the boundary of the
integration domain V .
As regard the laplacian term, instead, it is written using the Gauss−Green



54 Chapter 2. Numerical methods

lemma, namely the generalization of the integration by part to a multi
dimensional domain:

−
∫
V

∆2U ·U+dV = −
∫
V

(∇ · ∇U) ·U+dV =

=

∫
V
∇U : ∇U+dV −

∫
S

(∇U · n)dS,
(2.5)

where : is the tensorial product between two vectors, namely
d∑

k=1

d∑
j=1

∂juk∂ju
+
k ,

with d the dimension of the velocity vector (d = 2 for bidimensional
flows and d = 3 in three dimensional cases). Joining the border integral
present in the equations (2.4) and (2.5), and remembering the definition
of directional derivative, we obtain the following integral:∫

S
(

1

Re
∂nU− Pn) ·U+dS. (2.6)

A typical outflow boundary conditions for open boundaries is the expres-
sion into the integral (2.6) equal to zero. In order to impose a Dirichelet
boundary condition, as for example the no slip at wall or a velocity pro-
file at inlet, there are two main possibilities. The former is to choose a
test function U+ that is null on the "Dirichelet" border. The latter is to
use the penalization method, namely putting a very great number on the
diagonal of the discrete matrix: this is the method used in FreeFem++
to impose the Dirichelet boundary condition. In conclusion, it is possi-
ble to write the weak formulation of the incompressible Navier−Stokes
equations as follow:

∀[U+, P+], NS(U, P ) =

=

∫
V

[((U · ∇)U)U+ − P (∇ ·U+) +
1

Re
∇U : ∇U+ − P+(∇ ·U)]dV = 0.

(2.7)
Finally, the last problem is about the imposition of a Robin (mixed)
boundary condition, as for example the partial slip Navier boundary
condition (1.3) used to simulate the superhydrophobic surface. In the
general case, the normal derivative of the velocity present into the in-
tegral (2.6) is not equal to zero but it is equal to a prescribed value,
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for example ∂nU = g on SR, where SR is the portion of the domain
border on which the Robin boundary condition is applied. In order to
impose such kind of boundary condition, it is sufficient to add to the
weak formulation of the Navier−Stokes equations (2.7) the border inte-

gral
∫
SR

gdS.

2.4 Choose of the Finite Element space

A finite element space is a space of polynomial functions on elements,
with certain matching properties at edges, vertices etc. In Navier−Stokes
equations, the unknown variables are, in the incompressible formulation,
the velocity u and pressure p: the choice of the finite element space
on which to project these two variables is not independent but they
must respect the Ladyzhenskaya-Babuska-Brezzi compatibility condition
(Boffi et al., 2013). This condition establishes that in a 2D domain
with triangular finite elements, the discretized unknown variables uh
and ph (where the subscript h stands for the discrete counterpart of
the continuous unknown variables) must belong to finite element spaces
defined by polynomial elements which have the following ratio between
their degrees of freedom (respectively for velocity and pressure):

Pk+2/Pk. (2.8)

The exception to the condition (2.8) is given by the Taylor−Hood ele-
ments, generalized as:

Pk/Pk−1 with k>1 . (2.9)

It is possible to demonstrate that the truncation error of such kind of
elements is O(hk). In this thesis, classical Taylor−Hood P2 − P1 have
been used to discretize respectively velocity and pressure, resulting in
a second order accurate discretization. The degrees of freedom used on
each triangle for velocity and pressure are reported in figure 2.2.
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Figure 2.2: (a) P2 and (b) P1 finite element.

2.5 Discretization of the variational problem

Once the variational formulation of the problem has been defined
and the FE spaces have been choosen, it is possible to assemble the
discrete matrices. Let’s define nm the total number of nodes of the
mesh. Since we use quadratic element for the velocity field and linear
ones for the pressure, the total number of degrees of freedom is given
by nd.o.f = nm(2nm − 1)2. Using the Galerkin approximaton method
(for more details see Ern and Guermond (2013)), the discrete unknown
variables can be projected on the finite element space through these
relation:

U(x) ≈
2nm−1∑
i=1

UiΦ
u
i (x)

P (x) ≈
nm∑
k=1

PkΦ
p
k(x),

 . (2.10)

where the unknown terms are Ui and Pk with i ∈ [1, 2nm − 1] and
kin[1, nm]. The Φu

i and Φp
k, instead, are the basis functions of the finite

element space and it is possible to choose as basis functions the test func-
tions U+ and P+. Putting the approximation (2.10) into the continuous
variational formulation (2.7), it is possible to obtain the discrete system
(for more details see for example Canton (2013)).This operation is made
automatically by FreeFem++ libraries through the command int2d().
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1 // Th is the mesh
2 fespace XXMh(Th,[P2,P2,P1]); //FEspace (Taylor Hood)
3 XXMh [u1,u2,p];//unknown functions (u,v,p)
4 XXMh [v1,v2,q];//test functions (u^+,v^+,p^+)
5

6 //Definition of some useful macro function
7 macro ugrad(u1,u2,v) (u1*dx(v)+u2*dy(v)) //
8 macro Ugrad(u1,u2,v1,v2) [ugrad(u1,u2,v1),ugrad(u1,u2,v2)]//
9

10 ///Definition of the Navier-Stokes problem
11 varf vNS ([u1,u2,p],[v1,v2,v3,q]) =
12 int2d(Th)(
13 + nu * ( dx(u1)*dx(v1) + dy(u1)*dy(v1)
14 + dx(u2)*dx(v2) + dy(u2)*dy(v2)
15 + dx(u3)*dx(v3) + dy(u3)*dy(v3)
16 )
17 + p*q*(1e-10) ////Sabilization term
18 - p*dx(v1) - p*dy(v2) //
19 + dx(u1)*q+ dy(u2)*q
20 + Ugrad(u1,u2,u1,u2)’*[v1,v2]
21 )
22 //Add here the boundary conditions
23 + boundary conditions;

Figure 2.3: Sketch of the FreeFem++ script with the variational formulation
of the Navier−Stokes equations.

An example of Navier−Stokes definition in FreeFem++, for cartesian
coordinates, is given in figure 2.3.

2.6 Weak formulation of the Navier−Stokes equa-
tions in cylindrical coordinates

The variational formulation for the Navier−Stokes equations in cylin-
drical coordinate is a little different from the one in cartesian coordinates.
In fact, integrating by parts the laplacian terms leads to different formu-
lations due to the difference in the expression of the gradient of a vector
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field in the two reference systems. In particular, in cartesian coordinate
the weak formulation of the laplacian terms can be written as:

∇U : ∇U+|cart = ∂x(U)∂x(U+) + ∂y(U)∂y(U
+)+

+ ∂x(V )∂x(V +) + ∂y(V )∂y(V
+).

(2.11)

In cylindrical coordinates, instead, it results:

∇U : ∇U+|cyl = ∂x(Ux)∂x(U+
x ) + ∂r(Ux)∂r(U

+
x )+

+ ∂x(Ur)∂x(U+
r ) + ∂r(Ur)∂r(U

+
r )

+
1

r2
UrU

+
r

(2.12)

Moreover, the elementary volume, in cylindrical coordinate, is expressed
as dV = 2πrdxdr, whereas in cartesian coordinate it is classically dV =
dxdy. Since FreeFem++ computes only cartesian integral, and in order
to have the same definition for the differential operators in both carte-
sian and cylindrical coordinates (so that it is easy to adapt a cartesian
code to a cylindrical one), the Navier−Stokes variational formulation in
axialsymmetric coordinate can be arranged as:

∀[U+, P+], NS(U, P ) =

=

∫
V
r((U · ∇)U)U+dV

−
∫
V
rP (∇ ·U+)dV −

∫
V
PU+

r dV

+
1

Re

∫
V
r∇U : ∇U+dV +

1

Re

∫
V

1

r
UrU

+
r dV

−
∫
V
rP+(∇ ·U)dV −

∫
V
UrP

+dV = 0,

(2.13)

where the volume dS = dxdr, the divergence is ∇ · (·) = ∂x(·) + ∂r(·),
the gradient is ∇(·) = [∂x(·); ∂r(·)] and the tensorial product is the one
defined by equation (2.11).
Finally, the choose of the finite element space is the same already dis-
cussed in the previous paragraph. The FreeFem++ code for the Navier−Stokes
equations in cylindrical coordinates is the same sketched in figure 2.3
with the already discussed adjoint of the terms reported in equation
(2.13).
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2.7 Finite element discretization of the augmented
model

In this section, we report the approach used to discretize and im-
plement in FreeFem++ the augmented model (1.41). Let’s suppose to
have discretized the incompressible eigenvalue problem (1.19); the arising
discrete eigenvalue problem can be written as:

[Ainc − σBinc]q
′
inc = 0, (2.14)

where the vector q′inc is:

q′inc = [u′x,1, · · · , u′x,2n(m)−1, u
′
r,1, · · · , u′r,2n(m)−1, p

′
1, · · · , p′n(m)]

T . (2.15)

In a finite element fashion, the augmented model, instead, can be written
as:

[Aaug − σBaug]q
′
aug = 0, (2.16)

with

q′aug = [q′inc, p
′
cav, Q

′
cav]

T =

= [u′x,1, · · · , u′x,2n(m)−1, u
′
r,1, · · · , u′r,2n(m)−1, p

′
1, · · · , p′n(m), p

′
cav, Q

′
cav]

T .

(2.17)
The matrix Aaug and Baug has two more rows and columns respect to
Ainc and Binc and their explicit expression is given below:

Aaug =


Ainc + TGV

∫
Scav

(u′ · n)(u′
+ · n)dS 0 −TGV

Scav

∫
Scav

u′
+ · ndS

0 0 − 1

χc
1

Hcav

∫
Hcav

p′dx −1 0

 ,
(2.18)

Baug =

Binc 0 0
0 1 0
0 0 0

 , (2.19)

where Scav is the lateral surface of the cavity due to the revolution of

Hcav around the symmetry axis (Scav =

∫
Hcav

2πrdrdx, Hcav is sketched
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in figure 1.11) and TGV = 1030 is a very great value (in french Tres
Grand Valeur) and it is necessary to correctly impose Dirichelet bound-
ary conditions since FreeFem++ uses the penalization method.

2.8 Weak formulation of the compressible Navier−
Stokes equations

The variational formulation of the compressible Navier−Stokes equa-
tions (1.31) can be retrieved using the same approach seen in previous
paragraph. Since for compressible flows there are two more unknown
variables, namely the density ρ and temperature T , it is necessary to de-
fine two additional test functions, respectively ρ+ and T+. Multiplying
the equations (1.31) for the complete set of test functions, integrating
over the whole domain and applying the same theorems already seen
for the incompressible case, the arising variational formulation for com-
pressible Navier−Stokes equations in cylindrical coordinates (1.31) is
eventually written as:

∀[ρ+,U+, P+, T+], NS(ρB,U, P, TB) =

= −
∫
V
rρ+(ρB∇ ·U + U · ∇ρB)dV −

∫
V
ρ+ρBUrdV +

∫
V
rP (∇ ·U+)dV

− 2

Re

∫
V
rd(U) : ∇U+dV +

2

3Re

∫
V
r(∇ ·U)(∇ ·U+)dV

− 4

3Re

∫
V

1

r
UrU

+
r dV −

∫
V
rρb(((U · ∇)U)U+)dV −

∫
V
rT+U · ∇TBdV

− (γ − 1)

∫
V
rT+ρBTB∇ ·UdV − (γ − 1)

∫
V
T+ρBTBUrdV

+ γ(γ − 1)
2Ma2

Re

∫
V
rT+d(U) : d(U)dV

− γ(γ − 1)
2Ma2

3Re

∫
V
rT+(∇ ·U)2dV
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+ γ(γ − 1)
4Ma2

3Re

∫
V
T+ 1

r
U2
r dV −

γ

PrRe

∫
V
r∇T∇T+dV

−
∫
V
rP+(1 + γMa2P − ρBTB)dV.

Here, dV and all the operators are the one already specified for the
axialsymmetric case.
Finally, the variational formulation written above has been discretized
using P2 elements for the velocity field and P1 elements for the pressure,
density and temperature.

2.9 Resolution algorithms

2.9.1 Base flow computation

The steady base flow is solution of the non linear Navier−Stokes equa-
tions. The solution has been achieved using a classical Newton−Raphson
method. Introducing the weak formulation of the Linearized Navier−Stokes
equation as3:

∀[U+, P+], LNSE(U, P )(δU, δP ) =∫
V

[((δU · ∇)U + (U · ∇)δu)U+ − δP (∇ ·U+)

+
1

Re
∇δU : ∇U+ − p+(∇ · δU)]dV = 0,

(2.20)

the Newton algorithm can be written as follow:
In practice, at point 1 the guess field is generally taken as the base

flow computed at a lower value of the Reynolds number. The whole
algorithm is thus repeated for increasing values of the Reynolds number
to generate a family of base flow. The initial guess for the lower initial
Reynolds number, instead, can be generated or using few steps of a time
integration of the equation (1.1) or solving the Stokes equations. At
each step, the matrix inversion at the point 3 has been achieved using

3For sake of brevity only the weak formulation of the incompressible LNSE in
cartesian coordinates has been introduced; however, following the theory and the
considerations of previous paragraphs it is easy to write the LNSE also in axialsym-
metric coordinates or for compressible flows.
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Algorithm 1 Newton−Raphson Algorithm

1: Choose a guess Wg = [Ug, P g] and a tolerance ε (usually ε = 10−12);
2: procedure Newton−Raphson Method([Ug, P g])
3: Solve the linear system LNSE(Wg)(δW) = −NS(Wg) where
NS(Wg) is defined by equation (2.7);

4: Update the initial guess as Wg ←Wg + δW;
5: if ||δW||2> ε then
6: Go to the step 3;
7: else
8: return

the library UMFPACK64 4 (Davis, 2003) for incompressible flows and
the parallel library MUMPS5 (Amestoy et al., 2000) in the compressible
case; these libraries are both already implemented in FreeFem++.

2.9.2 Eigenvalue computation

Once obtained the base flow, the generalized eigenvalues problem for
the direct and the adjoint eigenvalues problems have to be solved.

Direct problem After the spatial discretization the problem (1.20),
together with the appropriate boundary conditions, can be written as
follows:

[A(U , Re)− σB ] · z = 0 (2.21)

where z is the discrete direct or right eigenvector. If we are interested
to the whole eigenvalue spectrum, we can use the ARPACK library6

(Lehoucq et al., 1998) implemented in FreeFem++: this library uses
the Arnoldi iterative method to obtain the solution of the eigenvalue
problem. In particular, the Arnoldi iterations are performed on a Krylov
subspace: the dimension of the subspace’s basis is set equal to 2Nev + 1,
where Nev is the number of required eigenvalues. At each iteration, the
solution of the linear problem is performed with the same solver used for

4http://faculty.cse.tamu.edu/davis/suitesparse.html
5http://mumps.enseeiht.fr/index.php?page=home
6https://www.caam.rice.edu/software/ARPACK/
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the base flow computation and the tolerance of the iteration process has
been set equal to 10−9.
Instead of searching the whole eigenvalue spectrum, we could also be
interested to find only one eigenvalue, namely the most unstable one.
For this purpose, we used the so called inverse iteration algorithm which
can be written as follow:

Algorithm 2 Shift and Invert alghoritm

1: Choose a shift σsh, and an initial guess for the eigenvalue σ(0), the
eigenvector z0 and a tolerance ε;

2: procedure Shift and Invert(z,σ)
3: Define C = [A− σshB];
4: Solve Cz(n+1) = Bz(n)

5: Choose a projection vector zproj , as for example zproj = z(n+1);

6: Calculate Ξ =
< z(n+1), z(n+1) >

< z(n+1), z(n) >
7:

8: Update σ(n+1) = σsh +
1

Ξ
9: Calculate err = ‖σ(n+1) − σ(n)‖;
10: if err > ε then

11: σ(n) ← σ(n+1) , z(n) ← z(n+1)√
|< z(n+1), z(n+1) > |

and go to the

step 4;
12: else
13: return

Note that at step 11 we choose to normalize the eigenvector at each
iteration only to avoid possible floating−points. The exit tolerance has
been setted equal to 10−9. If the initial guess on the eigenvalue and
the eigenvector is close to the solution, the convergence of this algo-
rithm is very fast (3 or 4 iteration). So, usually, the standard procedure
is to search the whole spectrum using ARPACK at a certain Reynolds
number, in order to have an idea of the location of the most unstable
eigenvalues; then, the most unstable eigenvalues are followed using the
inverse iteration algorithm (that is more rapid with respect to ARPACK)
increasing the Reynolds number and choosing as initial guess of the al-
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Figure 2.4: Comparison between ARPACK library and the inverse iteration
algorithm 2 for a disk in a confined pipe.

gorithm the solution computed for the previous Reynolds number.
The inverse iteration algorithm 2 has been implemented in FreeFem++
and it has been tested for a more simple problem, namely a disk in
a confined pipe. In particular, we calculate the whole spectrum using
ARPACK and then we compute the most unstable eigenvalues using the
inverse iteration algorithm 2. Results are depicted in figure 2.4, showing
a perfect agreement between the two methods.

Adjoint problem The solution of the adjoint problem can be achieved
using two different approaches, as sketched in figure 2.5. The first op-
tion is to solve the adjoint equations and it is indicated with continuous
arrows in figure 2.5: the adjoint equations are here defined applying the
generalized lagrangian identity to the continuous linear direct problem,
as seen in previous chapter. As results, we obtain the continuous ad-
joint equations (1.47) that can be discretized and then solved with the
methods seen in previous paragraphs. This approach requires two differ-
ent discretizations, one for the direct and one for the adjoint equations.
Actually, in a finite element fashion, this is not properly true since the
integration by parts used to define the adjoint equations is the same
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Figure 2.5: Possible routes for the solution of the adjoint problem (from
Meneghello (2013)).

used to obtain the weak formulation from the differential one. Thus, the
adjoint equations can be obtained simply inverting unknown functions
and test functions. However, in this case, it is necessary to define the
boundary conditions for the adjoint problem, operation that can results
to be complicated and articulated in some circumstances.

The alternative way to compute the adjoint solution is represented by
the dashed arrows in figure 2.5. In this case, the adjoint equations can be
defined starting from the discretized linear direct problem rather than
the continuous one. Thus, in this case, it is possible to demonstrate
that the adjoint discrete matrix is equal to the hermitian (transpose
and complex conjugate) of the discrete direct one (Luchini and Bottaro,
2014), namely:

L†h = LHh , (2.22)

where the subscript (·)h indicates the discretized version of the linear
operators. This is valid for any kind of discretization method. As a
consequence, the adjoint eigenvector can be seen as the left eigenvector
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of the direct linear problem (2.14), namely:

z † · [A(U , Re)− σB ] = 0 (2.23)

The eigenvalue problem (2.21) can thus be solved using the methods
seen in previous paragraph, or better direct and adjoint solutions can
be achieved in the same moment choosing the adjoint eigenvector as
projection in step 5 of the inverse iteration algorithm (2). Finally, the
discrete adjoint approach has the advantage that the direct and adjoint
eigenvalues are the same at machine precision (Luchini and Bottaro,
2014).

Normalization of the eigenvectors Eigenvectors are defined up to
a constant and so they must be normalized. The choose of the normal-
ization is arbitrary; however, we prefer to spent some words about our
choices, above all on the adjoint. The normalization of the direct vector
can be made, for example, imposing that the maximum of a velocity
component is equal to one. A convenient (but arbitrary) choice for the

adjoint, instead, is to impose that
∫
V

(u′
† ·u′)dV = 1: in fact, it is possi-

ble to recognize in this term the denominator of the structural sensitivity
(1.48) so that we have to compute only the numerator of the equation
(1.48) to compute the structural sensitivity. Finally, it is interesting to
observe that the structural sensitivity tensor is independent from the
normalization of the adjoint eigenvector.

2.10 The complex coordinate mapping

In chapter 4 and 5, we treat the problem of the viscous flow passing
through a circular aperture subject to an harmonic perturbation, as for
example an acoustic gust; the flow configuration is depicted in figure
1.9.The total flow field can thus separated in a steady base flow, gov-
erned by the steady non−linear Navier−Stokes equations, and a purely
harmonic perturbation with a little amplitude, whose dynamic is ruled
by the LNSE. The main characteristics of such kind of flows are the
follows:
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• The steady base flow is driven by the pressure drop between the
inlet and the outlet part of the domain, generating a flow rate
through the hole. Thus, the arising jet forming at the lip of the hole
becomes parallel after several diameters but with a radius smaller
than the one of the hole (vena contracta phenomenon). Moreover,
for thick holes, another peculiar characteristic of the flow is the
recirculation bubble forming below the hole.

• On the other hand, the harmonic perturbation is characterized by
a vortex sheet generated ad the edge of the hole and surrounding
the steady jet. A crucial point is that, due to the strongly spatially
unstable nature of the jet, all perturbations are strongly amplified
along the axial direction.

The latter point leads to numerical difficulties when computing the so-
lution of the LNSE subjected to an harmonic perturbation. In fact,
the pressure field p′(x, r) can reach huge levels (reaching 1015 or even
more for Re ≈ 3000) for large x, and this conflicts with the necessity
of imposing the boundary condition p′out = 0 at a finite distance xmax
corresponding to the boundary of the computational domain. Moreover,
even using very large values for xmax, the ratio between the pressure level
in the vicinity of the hole and downstream can become of the order of
the numerical round-off error (10−15 using double-precision), leading to
the impossibility to accurately compute the structure of the perturbation
in the vicinity of the hole and so to a wrong pressure level at inlet. We
demonstrate in chapter 4 that without any numerical tricks is impossible
to achieve suitable results in term of impedance for Re & 1500.
In order to substantiate this fact, we briefly review the classical Kelvin−Helmholtz
instability for a planar shear layer; in particular, since this is only a
simplified and a qualitative analysis, we use the inviscid model whose
solution is available in close form(see for an exhaustive treatment the
textbooks by Drazin and Reid (2004) or Charru (2011)). Let us consider
as base flow a shear layer separating two regions of constant axial veloc-
ity, namely u′x = U for r < 0 and u′x = 0 for r > 0. Now assume that
the perturbation consists of a displacement of the shear layer (see figure
1.9 in the form:

η(x, r, t) ∝ eiαx−iωt, (2.24)
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and assume a similar modal expansion for the velocity potential in the
upper and lower regions. Imposing the matching conditions at the in-
terface of the two regions leads to the following expression of the phase
velocity:

c ≡ ω

α
=

1± i
2

U. (2.25)

The relation (2.25) implies that in a spatial stability framework a per-
turbation with real frequency ω is spatially amplified downstream with a
complex wavenumber α and the solution diverges at x→ +∞. So, when
the axial coordinate x is real, it is not possible to write a finite solution
for the displacement of the shear layer η(x, r, t). However, the problem
can be bypassed considering an analytical continuation of the function
η(x, t) with a complex variable x. In the specific case of the inviscid jet,
as arg(α) = −π/4, the function η(x, r, t) converges as soon as |x|→ ∞
in a direction of the complex plane verifying π/4 < arg(x) < 5π/4.
These considerations, made on a simplified model, suggest to extend this
methodology to the viscous case in order to try to overcome the prob-
lem, namely using a complex coordinate change x = Gx(X) which maps
a (real) numerical coordinate X defined over a finite-size computational
downstream domain X ∈ [−Lin;Lout], onto the physical coordinate x
in a way that it enters the complex plane and follows a direction where
the perturbation is spatially damped. Note that the idea is conceptu-
ally similar to the Perfectly Matching Layer (PML) method, which is a
numerical approach largely used in electromagnetics, acoustics or com-
pressible fluid dynamics to impose non-reflection boundary condition in
wave-propagation problems (see Colonius (2004) for a complete review).
Moreover, another peculiarities of this problem is to correctly impose the
outflow boundary condition very far from the hole. In order to overcome
to this requirement, we combine the complex mapping with a coordinate
stretching in order to have short numerical domains and large physical
ones.
Finally, in order to have a physical and a numerical domain with the
same proportions, we also used a stretching r = Gr(R) for the radial
coordinate from R ∈ [0, Rout] to r ∈ [0, rout]. However, for the radial
coordinate no complex deformation has been used, since it is not crucial
in terms of perturbation amplification. Details about the design of the
stretching and mapping functions are given in chapter 4 and 5, since
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they are a little bit different between the cases of thin and thick holes.
Although the complex mapping has been implemented to tackle prob-
lems linked to perturbation issues, it has been applied also to the base
flow computation, in order to be consistent with the change of coordi-
nates. Moreover, this allows to use shorter numerical domain.
Finally, it remains to specify the numerical boundary conditions effec-
tively used at the boundaries of the numerical domain R = Rout (cor-
responding to r = rout) and X = Lout (corresponding to x = xmax).
In the framework of finite elements, it is usual to impose outlet bound-
ary conditions in order to take advantage of the integration by parts
leading to the weak formulation. Thus, the most natural condition for
open domains emerging in this way is the zero-traction condition, namely
−pn + Re−1∇u · n = 0. In the present case, we used the zero-traction
condition as an approximation of the physical condition p = 0 for both
the base flow and perturbation computations. However, this is fair since
the viscous stresses are negligible in the vicinity of the boundaries of an
open domain.
A peculiarity of this method is that outflow boundary conditions are ef-
fectively applied at a location xmax located in the complex plane. The
validity of this method is not justified by rigorous mathematical argu-
ment, but only by the fact that it effectively works, as demonstrated in
chapter 4.
Finally, we want to underline that the use of complex coordinate map-
ping for linear problems involving a single spatial coordinate is customary
in stability studies, and mathematical theorems are available to justify
how to chose the integration contour as function of the singularities of
the problem (see for example Bender and Orszag (2013)). On the other
hand, its use for solving a non linear problem (i.e. computation of the
base flow) involving two spatial coordinates is totally new to our knowl-
edge.

2.11 Boundary treatment for compressible flow
simulation

Boundary treatment is a crucial point in unsteady compressible flow
simulations. In fact, the unsteadiness of the equations implies that the
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sound waves (that are not contemplated in the incompressible model)
are free to travel into the domain. Once one wave arrives on a numerical
boundary, it is naturally reflected by it and, if the intent is to simulate
an open boundary, this reflection has not any physical sense. This im-
plies that in order to achieve suitable results, a special treatment of the
open boundaries is necessary in the simulation of unsteady compressible
flows. In order to solve this problem, several strategies are available in
literature and an exhaustive review can be found in Colonius (2004).
In chapter 6, we use the stability analysis applied to the compressible
Navier−Stokes equations in order to characterize the acoustic properties
of a birdcall (see figures 10 and 1.11). The computation of the base flow
has been achieved without any special boundary treatment, since we are
interested to a steady base flow whereas a special boundary treatment
has been used in order to solve the stability problem for the harmonic
perturbation. In particular, we choose to use the sponge zone technique.
According to this technique, the whole domain is splitted in two re-
gions: a physical domain, namely the domain on which we are interested
to the physical solution and a sponge region which is able to absorb
without reflect the sound waves generated into the physical domain. In
order to implement the sponge region, following Rowley et al. (2002),
we introduce the term −β(r̂)q′ on the r.h.s of the linearized compress-
ible Navier−Stokes equations (1.34), where r̂ =

√
x2 + r2, whereas the

damping function β > 0, according to Yamouni et al. (2013), has been
designed as follow:

β̂(r̂) =

∣∣∣∣ 1

Ma

∣∣∣∣ 2αin
R2
s,in

(r̂ −Rin), if x < 0 and r̂ > Rin

β̂(r̂) =

∣∣∣∣ 1

Ma

∣∣∣∣ 2αout
R2
s,out

(r̂ −Rout), if x > 0 and r̂ > Rout

β̂(r̂) = 0, otherwise


,

(2.26)
where Rin and Rout are the inlet and outlet ray of the physical domain;
Rs,in and Rs,out, instead, are the length of the sponge zones (see figure
2.6). The length of the sponge region is chosen so that it is ten times
grater than the acoustic wavelength λac = 2πω/Ma: this means that the
dimension of the sponge region is greater as the frequency increase or
the Mach decrease. The coefficient αin and αout, instead, can be seen as
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Figure 2.6: Example of computational domain (in scale) used for compress-
ible stability analysis: in orange the physical domain; the sponge is coloured
according to its intensity from the light green (minimum value) to the dark
green (maximum value).

the coefficient of the exponential attenuation of the acoustic waves into
the sponge: they have been fixed so that 2αin/R

2
s,in = 2αout/R

2
s,out ≈

O(10−4). Moreover, a coarser grid has been used in the sponge region
since this helps the dissipation and so the absorption of the sound waves.
An example of computational domain used for the compressible stability
analysis (chapter 6) is reported in figure 2.6: the orange region is the
physical domain whereas the exterior one is the sponge that is coloured
as function of its intensity. Note that, according to equation (2.26),
the sponge reaches its minimum value on the boundary of the physical
domain (light green in figure 2.6) and then it grows until the external
boundary where it reaches its maximum vale (dark green in figure 2.6).



72 Chapter 2. Numerical methods



Chapter 3. Stability ans sensitivity analysis of a T−shaped
micro−mixer with superhydrophobic surfaces 73

Chapter 3

Stability ans sensitivity
analysis of a T−shaped
micro−mixer with
superhydrophobic surfaces

Superhydrophobic surfaces (SHSs) are characterized by a stable layer
of gas trapped in micro− or nano− grooves, with a consequently reduc-
tion of the solid−fluid contact area and of the corresponding skin−friction
drag. SHSs have been largely studied and applied for drag−reduction of
turbulent flows in macro−channels, while as concern transition to turbu-
lence, they result to be effective only in micro−channels with dimensions
of few millimetres.
In this context, this work aims at investigating the stability properties
of the flow in a 2D T-mixer employing anisotropic SHSs in the outlet
channel. Global stability analyses of the resulting flow fields have been
carried out varying the characteristics of the SHSs, i.e. the slip equiv-
alent length λ and the orientation angle θ of the grooves to the main
pressure gradient direction. Starting from a steady and symmetric flow
solution at low Reynolds numbers, the transition scenario is first char-
acterized by a pitchfork supercritical bifurcation that drives the system
towards a new asymmetric steady state. The use of SHSs always leads
to a reduction of the critical Reynolds number for the onset of this first
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bifurcation, compared to the T−mixer with solid walls. The neutral
stability curves of this bifurcation together with the destabilising global
modes will be discussed. In addition, the existence of a 3D bifurcation on
the nominal 2D flow configuration has been investigated. Finally, using
the properties of the adjoint operator, a structural sensitivity analysis is
performed in order to localise the core of the instability and to better
understand its nature.

3.1 Introduction

For a long time, people tried to obtain drag reduction employing sur-
faces as smooth as possible, but nature seems not to be in agreement.
Actually, natural surfaces are never smooth and they present some small
surface irregularities that, interacting with the fluid flowing over them,
can change significantly its properties. An example is the shark skin that
is covered by the so called denticles (Bottaro, 2014), i.e. flexible surface
protrusions of characteristic length of 100µm, that are able to reduce the
hydrodynamic resistance (Oeffner and Lauder, 2012). Another very in-
teresting example of natural surfaces are the superhydrophobic surfaces
(SHSs), consisting of grooves containing trapped gas, as for example the
lotus leaves. The grooves can be considered as micro and nano structure
on the solid wall and, thanks to the trapped gas, they are able to reduce
the fluid−solid interaction, reducing the skin friction (Rothstein, 2010).
Recent studies have demonstrated that they are able to reduce the skin
friction in turbulent macro−channels (Ou and Rothstein, 2005), while,
as concern transition to turbulence, they result to be effective only in
micro−channels with characteristic dimensions of few millimetres (Ou
et al., 2004).
As function of the topology of the surface, it is possible to classify the
superhydrophobic surfaces in two macro families: in particular we talk
about isotropic superhydrophobic surface when the grooves have not a
preferential direction of alignment, while we refer to an anisotropic su-
perhydrophobic surface when the grooves are all aligned with some di-
rection, forming an array (Clavijo et al., 2015).
In the past, the problem of small dimensions has limited the use of su-
perhydrophobic surfaces for industrial applications because of the lack
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of technology to produce them but, during the last years, their use is
catching on thanks to new technologies.
The stability properties of flow configurations involving sperhydrophobic
walls have been largely investigated in literature for parallel flows using
modal (Lauga and Cossu, 2005) and non modal (Min and Kim, 2005)
stability theory. As concern the study of more complex fluid systems,
instead, we can found some examples about stability properties of a su-
perhydrophobic cylinder, investigated using the global stability approach
(Auteri et al., 2016) and the direct numerical simulation (DNS) (Legen-
dre et al., 2009). In all these previous works, the superhydrophobicity of
the walls have been taken into account using a simple slip boundary con-
ditions for the velocity component parallel to the mean flow. Muralidhar
et al. (2011) carried out experiments over a superhydrophobic cylinder,
showing that the flow properites as the vortex shedding frequency and
the separation point are strongly influenced by the orientation of the
grooves respect to the mean flow. Pralits et al. (2017) investigated the
stability of the channel flow with superhydrophobic surfaces using a ten-
sorial form of the slip boundary condition.
In this paper, we investigate the stability properties of the flow into a
micro T−mixer employing anisotropic superhydrophobic surfaces on the
outlet central channel: the existence of some kind of instability leads
to an improvement of the mixing efficiency. T−shaped micromixers are
very used in microfluidics to promote mixing between two fluids and
their stability and mixing properties have been largely studied in litera-
ture (Fani et al., 2013, 2014; Siconolfi et al., 2015).
A global stability analysis has been carried out varying the slip length
and the orientation of the grooves with respect to the main pressure
gradient direction. We compared our results against the ones obtained
considering a classical T−mixer with smooth walls.

3.2 Flow configuration and problem formulation

We consider the incompressible flow of a newtonian fluid inside a
T−shaped micro−mixer made by two inlet channels and one outlet chan-
nel. The flow configuration is shown in Figure 3.1, together with the
adopted frame of reference. The same height h has been considered for
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Figure 3.1: Flow configuration (not in scale) and frame of reference.

both the inflow and the outflow channels, and their lengths, Lin and Lout
respectively, have been chosen in order to guarantee that the proposed
results are independent of the domain size (Lashgari et al., 2014). In
particular, the selected dimensions are Lin = 10, Lout = 30 and h = 1
(see Figure 3.1).

The fluid motion can be described by the unsteady incompressible
Navier−Stokes (NS) equations that, in their non−dimensional form, can
be written as follows:

∇ ·U = 0 (3.1a)

∂U
∂t

+ (U · ∇)U +∇P − 1

Re
∆U = 0 (3.1b)

where U (x, t) = (U, V,W )T is the velocity vector and P (x, t) is the
reduced pressure. The equations (3.1) are made dimensionless con-
sidering the height of the channel h as characteristic length scale and
the maximum velocity at the center of the two inlet boundaries, i.e.
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Umax = U(0, h/2, 0), as characteristic velocity. Thus, the Reynolds num-
ber Re is defined as Re = Umaxh/ν, where ν is the cinematic viscosity.
The system (3.1) has to be supplemented by appropriate boundary condi-
tions. In particular, a Poiseuille velocity profile, i.e. U(y) = −4Umaxy/h(1−
y/h)sgn(x), is imposed at the two inlet boundaries (Γin), where sgn(x) =
x/|x|. At the outflow (Γout), the standard traction-free boundary con-
dition has been considered, i.e. n · [(Re)−1∇U − P I ] = 0 , where n
is the wall-normal direction and I is the identity matrix. Concerning
the lateral walls, different boundary conditions are imposed in order to
highlight their effect on the dynamics of the flow. In particular, on Γw
homogeneous boundary conditions are imposed for all the components of
the velocity vector (U = 0 ), while Γshs are the superhydrophobic sur-
faces: in the section 3.3 we will discuss about the boundary conditions
to impose on these walls.

3.3 Boundary conditions over superhydrophobic
surfaces

The classical no−slip hypothesis, that can be observed from a macro-
scopic point of view, can not be applied when micro and nano scales are
considered (Stone et al., 2004). This phenomenon has been largely inves-
tigated in experimental (Cottin-Bizonne et al., 2005; Joly et al., 2006),
theoretical (Bocquet and Barrat, 1994; Belyaev and Vinogradova, 2010)
and numerical (Venkatesan and Ganesan, 2015; Jang et al., 2016) stud-
ies, in which the use of the Navier boundary conditions (Navier, 1823) is
suggested instead of the classical no−slip ones. If we considered isotropic
SHSs, the Navier boundary condition can be written as:

U ‖|wall = λ
∂U ‖
∂n

∣∣∣
wall

(3.2)

where U ‖ is the vector containing the velocity components tangential to
the surface and n is the outer normal vector.
According to the equation (3.2), the velocity at the wall is proportional
to the shear strain rate ∂U ‖/∂n via the λ parameter, that can be in-
terpreted as a slip length, i.e. the fictitious distance below the surface
where the velocity vanishes if the flow field is extended linearly through
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Figure 3.2: Interpretation of the Navier slip length Rothstein (2010)

the solid wall (Lauga and Stone, 2003). Thus, the Navier condition
models the presence of alternate no−slip and free−slip regions, under
the hypothesis that the gas inside the grooves does not exerts any shear
stress on the liquid that flows above (Luchini and Bottaro, 2014).

If λ = 0, the classical no-slip boundary condition is obtained while,
for λ→∞, a slip condition is recovered (Figure 3.2).

In the case of isotropic SHSs, only one slip length is defined for all the
flow directions. On the other hand, if we consider an anisotropic SHS,
in which periodic arrays of micro or nano grooves are aligned along the
flow direction, it is necessary to extend the Navier slip condition (3.2)
introducing a slip tensor (Bazant and Vinogradova, 2008), because the
slip length is different for the two tangential components of the velocity
vector.

With reference to Figure 3.3, the tensorial Navier boundary condition
on Γshs can be written as:

U ‖|Γshs
= Λ

∂U ‖
∂n

∣∣∣
Γshs

(3.3)

where, in our frame of reference, U‖ = (V,W )T and Λ is the slip
tensor defined as:

Λ = Rθ

[
λ‖ 0
0 λ⊥

]
RT
θ , Rθ =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(3.4)
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Figure 3.3: Three−dimensional view of Γshs and definition of the θ angle.

In equation (3.4), λ‖ and λ⊥ represent respectively the transverse
and longitudinal slip length, i.e. the eigenvalues of the slip tensor Λ
respectively for θ = 0◦, i.e. with the grooves aligned with y, and θ = 90◦

, i.e. with the grooves aligned with z: thanks to the rotation matrix,
equation (3.4) allows us to calculate the effective slip lengths in any
direction defined by the angle θ.
For anisotropic SHS with grooves aligned to the mean pressure gradient
and under the hypothesis of small separation between slip regions (Lauga
and Stone, 2003), we have that λ‖ = 2λ⊥ (Belyaev and Vinogradova,
2010; Teo and Khoo, 2009): in this paper we will present the results
as function of only λ‖ and in order to simplify the notation we will use
just λ. Finally, as concern the boundary conditions on the wall−normal
component of the velocity vector, the boundary condition on Γshs is
U · n = 0. This condition derives from the continuity equation and it
means that there is no−penetration of the fluid at wall.

3.4 Global stability analysis

The stability characteristics have been here studied using a modal
analysis. The total flow field Q(x, y, z, t) = [U , P ]T = [U, V,W,P ]T is
considered as the sum of a steady base flow Qb(x, y) = [U b, Pb]

T =
[Ub, Vb,Wb, Pb]

T and an unsteady perturbation q ′(x, y, z, t) = [u ′, p′]T =
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[u′, v′, w′, p′]T of small amplitude ε, i.e.:

U (x, y, z, t) = U b(x, y) + εu ′(x, y, z, t) + . . . (3.5a)

P (x, y, z, t) = Pb(x, y) + εp′(x, y, z, t) + . . . (3.5b)

Inserting the equations (3.5) in the NS equations (3.1) and lineariz-
ing around the base state Qb(x, y), two systems of PDEs are obtained,
describing the structure of the base flow and the linear evolution of the
perturbation. The base flow is governed by the steady version of (3.1).
In this case, although the problem is bidimensional, also a spanwise com-
ponentWb(x, y) is present (Vinogradova and Belyaev, 2011; Quéré, 2008)
because of the Navier boundary condition (3.3) and it is equal to zero
only for the two special cases of θ = 0◦ and θ = 90◦. The dynamics
of the perturbation is then described by the linearized Navier−Stokes
equations (LNSE), that can be written as follows:

∇ · u ′ = 0 (3.6a)

∂u ′

∂t
+ L{U b, Re}u ′ +∇p′ = 0 (3.6b)

where L{U b, Re} is the linearized Navier−Stokes operator:

L{U b, Re}u ′ = (U b · ∇)u ′ + (u ′ · ∇)U b −
1

Re
∆u ′ (3.7)

In the present study, the perturbation is searched in the form of nor-
mal modes. Since the flow is homogeneous in the spanwise direction, we
can decompose the perturbation into Fourier modes in time and spanwise
direction:

q ′(x, y, z, t) = q(x, y)exp(σt+ ikz) + c.c. (3.8)

where q(x, y) = [u , p]T = [u, v, w, p]T , k ∈ R is the Fourier spanwise
wavenumber, σ ∈ C is the complex angular frequency and c.c. stands
for the complex conjugate term. Introducing the ansatz (3.8) into the
LNSE (3.6), the following set of PDEs is obtained:

∇k · u = 0 (3.9a)
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σu + (U b · ∇k)u + (u · ∇)U b +∇kp−
1

Re
∆ku = 0 (3.9b)

where we define ∇k = [∂x(·), ∂y(·), ik]T and ∆k = (∂x2(·) + ∂y2(·) −
k2).

The set of equations (3.9) can be rewritten also as

[AAA(U b, Re, k)− σBBB]q = 0 (3.10)

where linear operators AAA and BBB have the following expressions:

AAA =


C + D + ∂xUb ∂yUb 0 ∂x(·)

∂xVb C + D + ∂yVb 0 ∂y(·)
∂xWb ∂yWb C + D ik
∂x(·) ∂y(·) ik 0

 ,

BBB =


−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 0


(3.11)

in which C = (U b · ∇k) and D = −(Re)−1∆k represent respectively the
advection of the perturbation by the base flow and its viscous diffusion
(Citro et al., 2015c).

The global stability problem (3.9) has to be completed with the
boundary conditions, that can be directly derived from the flow the de-
composition (3.5). Thus, homogeneous Dirichlet boundary conditions,
i.e. (u = 0 ), is considered on Γin and Γw, while Neumann traction-free
boundary conditions on Γout (n · [(Re)−1∇u − pI ] = 0).
As regard the SHS walls, i.e. on Γshs, Navier slip boundary conditions of
the same type of (3.3) are imposed on the tangential components of the
perturbation (Lauga and Cossu, 2005), while no−penetration is imposed
on the wall−normal direction, i.e.:

u‖|Γshs
= Λ

∂u‖
∂n

∣∣∣
Γshs

, u |Γshs
· n = 0 (3.12)

The linear system (3.10), together with the boundary conditions, is
a generalized eigenvalue problem for the complex angular frequency σ =
γ + iω, where γ and ω are the growth rate and the angular frequency of
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the perturbations, respectively. In particular, if γ > 0, the disturbances
grow exponentially in time and, thus, the flow is unstable.

The adjoint equations can be derived using the generalized Lagrangian
identity as reviewed by Luchini and Bottato (Luchini and Bottaro, 2014),
that leads to the following set of PDEs:

∇k · u† = 0 (3.13a)

−σu† + (U b · ∇k)u† −∇U b · u† +∇kp† +
1

Re
∆ku† = 0 (3.13b)

The corresponding set of boundary conditions for system (3.13) is here
obtained by imposing the elimination of the boundary terms after the
application of the generalized Lagrangian identity and the Green theorem
(Marquet et al., 2009).

From the combination of the direct and adjoint global modes, the
structural sensitivity tensor can be evaluated, identifying the core of the
instability (Giannetti and Luchini, 2007). This tensor can be expressed
as follow:

S(x0, y0) =
u†(x0, y0)⊗ u(x0, y0)∫∫

Ω
(u† · u)dΩ

(3.14)

where Ω is the whole domain and u† ⊗ u is the dyadic product between
the direct and the adjoint mode1.

3.5 Numerical implementation

The equations for the base flow, for the direct and adjoint linear prob-
lems have been discretized is space using a finite−element formulation
with Taylor-Hood elements. The implementation has been carried out
using the open−source solver FreeFem++ (http://www.freefem.org/).
The domain has been discretized using the mesh generator BAMG imple-
mented in FreeFem++ (Hecht, 2012), that employes a Delaunay-Voronoi

1Different norm of the S tensor can be used in order to build a spatial map of the
structural sensitivity. In the present study, the spectral norm have been chosen, that
gives the maximum coupling among the velocity components (Pralits et al., 2010).
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triangulation of the domain (Weatherill, 1992). Finer grid regions have
been generated near the corners at the confluence between the two inlets
and the outlet channel, in order to correctly describe the high velocity
gradients.

First, the base flow has been here solved using the classical Newton−Raphson
procedure for all the different angles θ and the slip lengths λ considered.
Then, the spatial discretization of the direct linear problem (3.9) leads
to a definition of following eigenvalue problem (Tammisola et al., 2014):

[A(U b, Re, k)− σB ] · z = 0 (3.15)

where matrices A and B represent the dicretization of the inherent op-
erators, and z is the discrete direct eigenvector. The discrete adjoint is
used for the sensitivity analysis: the eigenvalues of the direct and adjoint
problems coincide to machine precision (see Luchini and Bottaro (2014)
for more detail). Considering the same mesh grid used for the evaluation
of the base flow, the eigenvalue problems have been solved exploiting an
Arnoldi method already implemented in the ARPACK library (Lehoucq
et al., 1997) in FreeFem++.

3.6 Results and discussions

The stability analysis of both the first and the secondary instabil-
ity has been carried out, varying the angle θ between 0◦ and 90◦ and
λ = [0.001; 0.006; 0.01; 0.02; 0.03; 0.04; 0.05]. Pralits et al. (2017) demon-
strated that, for parallel channel flows, the Navier−slip boundary con-
ditions is a good approximation for λ < 0.05 and, already for λ = 0.1,
the relative error committed in the evaluation of the eigenvalue is about
10%. In the present analysis, due to the complexity of the flow configu-
ration, the maximum value of λ have been fixed at λ∗ = max(λ) = 0.05.
In Figure 3.4, two examples of the velocity distribution at Re = 500

and different parameters λ and θ are presented. In particular, figure 3.4
(a) shows the case of the T−mixer with classical no−slip boundary con-
ditions on the wall: the flow is symmetric and it is characterized by two
recirculation regions in the first part of the outlet channel, between the
sections at y = 0 and y = −2. Figure 3.5 (a) shows the velocity profiles
for the two components Ub and Vb extracted at y = −1. In Figure 3.4
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Figure 3.4: Total velocity distribution for Re=500: (a) symmetric steady flow
for λ = 0 and θ = 0◦; (b) asymmetric steady supercritical flow for λ = 0.02 and
θ = 45◦. In both figures, the white lines represent the edges of the recirculation
bubbles.

(a)
-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

-0.4 -0.2  0  0.2  0.4

x

10*Ub(x,-1)
Vb(x,-1)

(b)
-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-0.4 -0.2  0  0.2  0.4

x

10*Ub(x,-1)
Vb(x,-1)

10*Wb(x,-1)

Figure 3.5: Velocity components at y = −1 for Re=500: (a) symmetric steady
flow for λ = 0 and θ = 0◦; (b) asymmetric steady supercritical flow for λ = 0.02
and θ = 45◦.



Chapter 3. Stability ans sensitivity analysis of a T−shaped
micro−mixer with superhydrophobic surfaces 85

(a)
 360

 380

 400

 420

 440

 460

 480

 500

 520

 0  0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

R
e

 λ

θ=0
θ=15
θ=30
θ=45
θ=60
θ=75
θ=90

(b)
-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0  0.5  1  1.5  2  2.5  3  3.5  4

γ

k

Re=520 ; λ=0 ; θ=0
Re=455 ; λ=0.03 ; θ=60

Figure 3.6: (a) Critical Reynolds number of the first bifurcation as function of
λ and θ. (b) Growth rate of the leading eigenvalue as function of the spanwise
wavenumber k.

(b), the velocity distribution obtained in presence of superhydrophobic
surfaces is presented at Re = 500. In this case, the outflow channel walls
are characterized by λ = 0.02 and θ = 45◦. The symmetric configuration
becomes unstable and, thus, the resulting stable flow field is asymmetric
and characterized by two recirculation regions of different length. The
symmetry breakdown is also observed in Figure 3.5 (b), where velocity
profiles extracted at y = −1 are reported. Here, it is possible to observe
that the spanwise velocity component of the base flow Wb, induced by
the presence of the grooves on the surface, becomes relevant only ap-
proaching the walls, while it is almost null in the center of the channel,
i.e. at x = 0.
In order to investigate the properties of the first instability, a global
stability analysis has been carried out, varying the properties of the sur-
faces. As first test, stability analyses of a T−mixer with classical no−slip
surfaces have been performed in order to check the convergence of our
code. The critical Reynolds numbers for the first bifurcation as a func-
tion of the superhydrophobic surface parameters λ and θ are reported
in Figure 3.6 (a). As general results, it is clearly visible that the critical
Reynolds number obtained considering the superhydrophobic surfaces is
always smaller with respect to that obtained for the configuration with
no-slip wall conditions. Moreover, fixing the θ angle, it decreases mono-
tonically with the slip length λ and it results to be smaller for grooves
aligned to the main pressure gradient (θ = 0◦) rather than perpendicu-
lar ones (θ = 90◦). Finally, from Figure 3.6 (b), we can conclude that
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Figure 3.7: Examples of bifurcation diagrams.

the first bifurcation is a steady, because the growth rate of the leading
eigenvalue is maximum for k = 0.
In order to further investigate the characteristics of the first instability,
we introduce a measure of the asymmetry of the base flow: the velocity
Ub component along the x−axis extracted at the point (x∗, y∗) = (0,−3)
(see Lashgari et al. (2014)). This quantity is here reported in Figure 3.7,
confirming that the first instability is a supercritical pitchfork bifurca-
tion.
Figures 3.8 (a−c) show the real part of the velocity components of the
leading global mode for the unstable symmetric base flow at Re = 455,
λ = 0.03, θ = 60◦ and k = 0. It is clear that the most significative
component of the global mode is the v−component, that reaches the
maximum value in the regions of the recirculation bubbles. In particu-
lar, in one recirculation region the velocity perturbation is in the same
direction of the base flow, while it has opposite direction in the other
one. The same behaviour can be observed on the pressure field shown
in Figure 3.8 (d). This leads to the symmetry breakdown and to the
formation of an asymmetric base flow, as already shown in Figure 3.4.
Finally, from Figure 3.8 (a,b) we can note that the v−component of the
perturbation is one order of magnitude bigger than the vertical one, in-



Chapter 3. Stability ans sensitivity analysis of a T−shaped
micro−mixer with superhydrophobic surfaces 87

(a) (b)

(c) (d)

(e) (f)

Figure 3.8: Real part of the direct global modes of the symmetric unstable
base flow for Re=455, λ = 0.03, θ = 60◦ and k = 0: (a) u−component, (b)
v−component , (c) w−component , (d) pressure. (e) Modulus of the adjoint
velocity field |u†|; (f) modulus of the adjoint pressure |p†| of the symmetric
unstable base flow for Re=455, λ = 0.03, θ = 60◦ and k = 0. The white lines
represent the edges of the recirculation bubbles of the base flow.
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(a) (b)

Figure 3.9: Structural sensitivity map for (a) Re=520 without superhy-
drophobic surfaces and (b) Re=455, λ = 0.03, θ = 60◦ and k = 0.

dicating a lift−up mechanism of the instability (Brandt, 2014).
In order to investigate the receptivity properties of this flow configura-
tion, the adjoint field has been also computed varying the parameters θ
and λ . In Figure 3.8 (e) it is shown the absolute value of the adjoint
velocity field for Re = 455, λ = 0.03, θ = 60◦ and k = 0. This quan-
tity represents the receptivity of the instability to a momentum forcing
(Giannetti and Luchini, 2003) and it reaches its maximum value in the
region of the recirculation bubble and near the vertical wall of the inlet
channels. In addition, the most receptive region to mass injection are
reported in Figure 3.8 (f), where the modulus of the adjoint pressure |p†|
is depicted.
Finally, starting from the direct and the adjoint modes, the structural
sensitivity tensor has been evaluated for different values of λ and θ and
the general shape of the corresponding sensitivity maps can be seen in
Figure 3.9: in particular Figure 3.9 (a) represents the structural sensi-
tivity for a T−mixer with smooth surfaces at Re = 520 whereas Figure
3.9 (b) reports the sensitivity map at Re = 455 with a surface charac-
terized by λ = 0.03, θ = 60◦ and k = 0. The instability core consists
in a couple of symmetric lobes located on the edges of the recirculation
bubbles, that is very common for this kind of flows (see, for examples,
Lashgari et al. (2014) or Marquet et al. (2009)). Moreover, the shape
of the structural sensitivity map is not affected by the presence of the
superhydrophobic surfaces, meaning that they are not able to modify the
instability mechanism with respect to the smooth case.
The asymmetric base flow that grows up after the first bifurcation re-
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mains stable until the second critical Reynolds number is reached: in this
case the flow bifurcates again but, this time, the leading global modes
result to be three−dimensional, i.e. characterized by a Fourier number
k into the spanwise direction. The critical Reynolds numbers of the sec-
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Figure 3.10: (a) Critical Reynolds number of the secondary bifurcation as
function of λ and θ. (b) Growth Rate of the leading unstable eigenvalue as
function of k and Re for λ = 0.02 and θ = 15◦. (c) Optimal wavenumber k and
(d) frequency ω corresponding to the critical conditions as function of λ and θ.
Note that for θ = 0◦ and 90◦ the modes are steady and the optimal frequency
is equal to zero.

ondary instability are reported in Figure 3.10 (a) as function of λ and θ
and the general trend is the same of the one discussed for the first in-
stability. In Figure 3.10 (b), instead, we reported the growth rate of the
leading eigenvalue as function of the spanwise wavenumber k at various
Reynolds number, for λ = 0.02 and θ = 15◦. It is possible to highlight
that, for this condition, the critical Reynolds number is Recr,II ≈ 621
for kopt ≈ 2.0. Figure 3.10 (c) shows the optimal spanwise wavenumber
corresponding to all the critical conditions explored here: we can observe
that for θ = 15◦ and θ = 75◦, the curves are similar to the ones obtained
respectively for θ = 0◦ and θ = 90◦. Finally, a very important feature
emerges analyzing the Figure 3.10 (d): the bifurcation, in fact, results to
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be unsteady for the angle θ 6= 0◦, 90◦. This characteristic is very impor-
tant since the oscillation of the flow can improve the mixing efficiency.
The optimal frequency ωopt, reported in Figure 3.10 (d), reaches its max-
imum for θ = 45◦ and, moreover, for little value of the slip length, it is
equal for angle complementary to 90◦ while the various curves are no
more overlapped as λ is increased. This transition from steady to un-
steady modes has been found also in other system depending by multiple
parameters, as for example for the stability analysis of non−Newtonian
flows in closed (Haque et al., 2012) and open (Citro et al., 2014) cavities.
In Figure 3.11 (a−d), the real parts of the leading unstable global mode
at Re = 639, λ = 0.03, θ = 60◦ and k = 1.7 are shown. We can note
that the asymmetry of the base flow is reflected also on the structure of
the mode. Also in this case, the vertical component of the perturbation
(u−component) is very small with respect to the other ones. The recep-
tivity of the instability to a momentum forcing is here investigated by
using the adjoint field, and reported in Figure 3.11 (e) for the case of
Re = 639, λ = 0.03, θ = 60◦, k = 1.7. It results to be not symmetric as
for the first instability and its maximum value is near the lateral wall of
the inlet channel opposite to the longer recirculation bubble. However,
a moderate value is reached into the longer recirculation bubble. Similar
considerations can be done for the receptivity to mass injection, repre-
sented in Figure 3.11 (f).
In order to localize the instability core, Figure 3.12 shows the structural
sensitivity of the secondary instability for the unstable base flow. In
particular, as for the first instability, we report in Figure 3.12 (a) the
case with smooth walls at Re = 754 and k = 2.0 and in Figure 3.12 (b)
the case with a superhydrophobic surface at Re = 639 and characterized
by λ = 0.03, θ = 60◦ and k = 1.7. This field reaches its maximum into
the longer recirculation bubble for both cases meaning, as per the first
instability, that the presence of the superhydrophobic surface does not
change the instability mechanism.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.11: Real part of the direct global modes for the unstable asymmet-
ric base flow for Re = 639, λ = 0.03, θ = 60o, k = 1.7 and ω ≈ 0.474: (a)
u−component, (b) v−component , (c) w−component , (d) pressure. (e) Mod-
ulus of the adjoint velocity field |u†|; (f) modulus of the adjoint pressure |p†| of
the unstable asymmetric base flow for Re=639, λ = 0.03, θ = 60◦, k = 1.7 and
ω ≈ 0.474. The white lines represent the edges of the recirculation bubbles of
the base flow.
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(a) (b)

Figure 3.12: Structural sensitivity map of the secondary instability for (a)
Re=754 , k = 2.0 without superhydrophobic surfaces and (b) Re=639, λ =
0.03, θ = 60 and k = 1.7.

3.7 Conclusions

In this paper we investigate the first and secondary instability char-
acteristic of a 2D T−shaped micro−mixer with an anisotropic superhy-
drophobic texture on the surfaces of the outlet channel. In particular,
parametric analyses have been carried out varying the surface’s prop-
erties, i.e. the equivalent length λ of the grooves and their orientation
angle θ with respect to the main pressure gradient direction.
The superhydrophobic surface has been treated using a tensorial version
of the Navier slip boundary conditions, according to which the velocity
components parallel to the surface are proportional via λ to the their
normal derivative and, following the dedicate literature (see for example
Lauga and Cossu (2005), Pralits et al. (2017) or Min and Kim (2005)).
This condition has been imposed both to the base flow and to the per-
turbation.
A large set of global stability analyses has been carried out and, using
the direct−adjoint properties, we have identified the core of the instabil-
ity.
We found that, as for the benchmark case of a classical T−mixer with-
out superhydrophobic surfaces, the flow undergoes a first pitchfork su-
percritical bifurcation, that drives the flow towards a new asymmetric
steady stable state. After the first bifurcation, as the Reynolds number
increases, a three dimensional instability of the asymmetric base flow
occurs. In particular, we found that the second bifurcation is unsteady,
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except for θ = 0◦, 90◦, i.e. when the grooves are respectively parallel and
orthogonal to the main pressure gradient direction. For all the inves-
tigated cases, the critical Reynolds number of both first and secondary
instability have been found to be smaller in comparison with the config-
uration without superhydrophobic surfaces. This means that the onset
of the instability is in general anticipated by the presence of the super-
hydrophobic surfaces.
Finally, the core of the first instability is localized on the edges of both
the recirculation bubbles, while the core of the secondary instability is
just concentrated into the longer one.
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Chapter 4

The acoustic impedance of a
laminar viscous jet passing
through a circular aperture in
a thin plate

The unsteady axisymmetric flow through a circular aperture in a
thin plate subjected to harmonic forcing (for instance under the effect
of an incident acoustic wave) is a classical problem first considered by
Howe (Proc. R. Soc. London. A, vol. 366, 1979, pp. 205 − 223), us-
ing an inviscid model. The purpose of this work is to reconsider this
problem through a numerical resolution of the incompressible linearized
Navier−Stokes equations (LNSE) in the laminar régime, corresponding
to Re = [500, 5000]. We first compute a steady base flow which allows
us to describe the vena contracta phenomenon in agreement with exper-
iments. We then solve a linear problem allowing to characterize both
the spatial amplification of perturbations and the impedance (or equiva-
lently the Rayleigh conductivity), which is a key quantity to investigate
the response of the jet to acoustic forcing. Since the linear perturbation
is characterized by a strong spatial amplification, the numerical resolu-
tion requires the use of a complex mapping of the axial coordinate in
order to enlarge the range of Reynolds number investigated. The results
show that the impedances computed with Re & 1500 collapse onto a sin-
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gle curve, indicating that a large-Reynolds number asymptotic regime is
effectively reached. However, expressing the results in terms of con-
ductivity leads to substantial deviation with respect to Howe’s model.
Finally, we investigate the case of finite amplitude perturbations through
direct numerical simulations (DNS). We show that the impedance pre-
dicted by the linear approach remains valid for amplitudes up to order
10−1, despite the fact that the spatial evolution of perturbations in the
jet is strongly nonlinear.

4.1 Introduction

The problem of the flow passing through a circular aperture in a
plate is encountered in many practical applications, as for example fuel
injectors, cooling system for gas turbines or wind instruments. When
subjected to harmonic forcing, for instance under the effect of an inci-
dent acoustic wave, the vortex sheet formed at the rim of the aperture
becomes periodically modulated and acts as a spatial amplifier of Kelvin-
Helmholtz instability, reorganizing the jet into an array of vortex rings.
This feature is an essential part of the sound production mechanism in
situations where the jet subsequently passes through a second aperture,
a configuration known as “hole-tone” and encountered for instance in
tea kettles (Henrywood and Agarwal, 2013) and birdcalls (Fabre et al.,
2014a). The generation of vorticity is also an efficient mechanism to
dissipate the acoustic energy. As a consequence, the use of multiply
perforated plates traversed by a mean flow (or bias flow) is widely used
as a sound attenuator device in many industrial applications, such as
combustion system (Hughes and Dowling, 1990; Rupp et al., 2012).

The unsteady, periodic flow through a circular hole in a zero-thickness
plate was initially solved by Rayleigh (1945) using inviscid, potential
theory. The key result of his solution is the proportionality between the
net pressure force felt from both sides of the hole and the acceleration of
the fluid, so that the whole situation can be modeled by assuming that
there is a rigid plug of fluid, with area Ah = πR2

h and equivalent length
`eff , oscillating across the aperture, where Rh is the radius of the hole.

The case where the flow has a mean component (or bias flow) in
addition to the oscillating component was considered by Howe (1979).
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He introduced a key quantity, the Rayleigh conductivity KR, defined
as the ratio of the acceleration of the fluid particles located within the
aperture to the net force exerted on it. The real part of the conductivity
generalizes the concept of equivalent length `eff previously introduced
by Rayleigh, while its imaginary part is directly proportional to the
flux of energy transferred from the imposed oscillatory flow to the jet.
Under the hypothesis of high Reynolds number, low Mach number, and
assuming that the oscillating flow is of small amplitude with respect to
the mean (or bias) flow, Howe derived a theoretical model describing
the vorticity shed at the rim of the aperture and predicting the real and
imaginary parts of the conductivity by analytical formulas. The main
features and caveats of Howe’s model will be reviewed in section 4.2.5.

In recent years, a number of studies have considered the interac-
tion between acoustics and perforated plates in more complex situa-
tions including multiple holes (Hughes and Dowling, 1990), turbulent
flows either parallel or tangential to the plates (Eldredge et al., 2007; ?;
Mann et al., 2013), different geometries including honeycombs (Zhang
and Bodony, 2016) and slit resonators (Tam et al., 2005), or additional
physical effects such as thermoacoustic instabilites (Rupp et al., 2012).
In the case where the thickness of the hole is not small compared to its ra-
dius, results substantially deviate from Howe’s predictions, and a number
of studies have proposed improvements of the original model to enlarge
its range of validity (Bellucci et al., 2004; Jing and Sun, 2000; Yang and
Morgans, 2017). In the case where the amplitude of the oscillating flow
becomes comparable to that of the mean flow, nonlinearities also lead to
substantial deviations (Jing and Sun, 2002; Scarpato, 2014). However,
in the case of small-amplitude oscillations and short holes, Howe’s model
still constitutes the cornerstone for theoretical modelling of such flows
(Scarpato et al., 2012).

In view of the above discussed literature, we can note that all avail-
able theoretical model are of inviscid nature and describe the vorticity
production in terms of vortex sheets, thus these models are expected to
be relevant only in the large-Reynolds limit. An alternative way, which
allows to incorporate viscous effects in a rigorous way and to consider
arbitrary values of the Reynolds number, is to use Linearized Navier-
Stokes equations (LNSE). A number of studies have considered jet flows
under this framework. Garnaud et al. (2013) considered the spatial am-



98
Chapter 4. The acoustic impedance of a laminar viscous jet passing

through a circular aperture in a thin plate

plification properties of an incompressible jet using a laminar base-flow
solution for Re ≤ 1000. Even more recent works have considered the
case of compressible jets forMa ≈ 0.9 in the turbulent range (Re ≈ 106)
using a mean-flow obtained from experimental results (?), RANS simu-
lations (Jeun et al., 2016), or LES simulations (Schmidt et al., 2017; ?).
However, the focus of these studies was to characterize the spatial ampli-
fication properties of the jet and the sound radiation in the downstream
domain due to vortex-shedding effects, which are different questions to
the one we are considering here. Moreover, all the cited works considered
a jet with imposed outlet velocity profile and did not consider the whole
process of formation of a jet through a plate from an upstream domain
to a downstream one, which is a necessity to correctly treat our problem.

It should also be noted that the application of LNSE to jet flows is
much more difficult for the high-Reynolds, laminar range Re ≈ [500 −
5000] which is considered in this paper than for to the turbulent range.
In effect, in the laminar range, the shear layers bounding the jet remain
very sharp far downstream, leading to strong amplifications of convec-
tive instabilities extending very far away. It is thus difficult to design
a method capturing both the spatial growth of perturbations in the ax-
ial direction, which can reach huge levels when the axial distance and
the Reynolds number are large, and the coupling between the flow rate
and the pressure jump, which is relevant when considering the possible
coupling with an acoustical system. On the other hand, in the turbu-
lent range, the shear layers of the jet spread rapidly in the downstream
direction, leading to stabilization of the convective instabilities within a
distance of about ten diameters of the jet.

The objectives of the present paper can thus be summarized in three
main points.

(i) First, we wish to design a numerical approach based on Linearized
Navier-Stokes Equations, to compute the Rayleigh conductivity of
the flow through a hole in the laminar but high-Reynolds range. We
will introduce a convenient method based on a change of variable of
the axial coordinate x in the complex plane (inspired by the PML
method used in linear acoustics) which allows to perform accurate
computations up to Re ≈ 104.

(ii) Secondly, we wish to reconsider the case of a hole of zero thickness
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initially investigated by Howe. We document the structure of base
flow, with particular focus on the vena contracta phenomenon. We
then describe the spatial structures corresponding to the linear re-
sponse of the jet to harmonic forcing. The velocity and vorticity
components of these structures allow to describe the spatial ampli-
fication by the jet, while the pressure components give access to the
Rayleigh conductivity. We will compute and display the Rayleigh
conductivities (as well as the equivalent concept of impedance) as
function of forcing frequency and Reynolds number in the range
102 − 104 and compare with the inviscid predictions of Howe.

(iii) Finally, the third objective is to assess the validity of the linearized
Navier-Stokes Equations with respect to perturbations of finite am-
plitude ε. For this purpose, we will conduct a Direct Numerical
Simulation (DNS) of the forced axial−symmetric Navier−Stokes
equations in the range ε = [10−4 − 10−1]. Results show that the
impedances are effectively well predicted by linearized Navier−Stokes
equations (LNSE) up to ε = 10−1, despite the fact that the evolu-
tion of vorticity perturbations in the jets are strongly nonlinear.

As briefly discussed in the bibliographical review, in the case where
the plate is not thin and the holes are sufficiently long, different mecha-
nisms take place and the jet can cease to act as a sound damper to be-
come a sound generator (Jing and Sun, 2000; Yang and Morgans, 2017).
The conductivity/impedance concepts are useful tools to characterize
the mechanisms in this case. A full characterization of the impedance
of finite-thickness holes using the method introduced here as well as a
discussion of impedance-based instability criteria will be presented in a
forthcoming paper.

4.2 Problem definition and review of inviscid mod-
els

4.2.1 Problem definition

The situation considered here is the flow of a viscous fluid of density ρ
and viscosity ν through a circular hole or radius Rh and area Ah = πR2

h
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(x, r, t)

Figure 4.1: Sketch of the oscillating flow through a circular aperture in a thin
plate.

inside a planar thin plate of thickness negligible respect to the radius,
connecting an inner and an outer open domain, as shown in figure 4.1.
We note Q the mean volumetric flow rate across the aperture, and from
that later quantity we classically define the mean velocity as UM =
Q/Ah. Thus the Reynolds number of the flow is defined as:

Re =
2RhUM

ν
≡ 2Q

πRhν
. (4.1)

When subjected to harmonic forcing with frequency ω, a second dimen-
sionless parameter naturally emerges: the dimensionless frequency Ω (or
Strouhal number) defined as:

Ω =
ωRh
UM

(4.2)

The final goal of our study is to characterize the interaction of the jet
with acoustic waves, and in the general case this calls for a description
using compressible equations. However, in many situations, it is justified
to consider that the flow is locally incompressible, and hence to assume
a uniform density ρ of the fluid. This simplification is justified under
two hypotheses. First, the Mach number Ma = UM/c0 based on the
mean velocity of the jet must be small enough. Secondly, all lenghtscales
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charactering the aperture (here, the only relevant one is the radius Rh
since the thickness is assumed to be zero) have to be small compared to
the acoustic wavelength λac = 2πc0/ω. This latter hypothesis is often
referred to in acoustic textbooks as the acoustic compactness hypothesis.
In dimensionless terms, the hypothesis can be formulated as λac/Rh =
2π/(MaΩ) & 10, so for the largest frequencies considered here (Ω ≈ 6)
it is valid up to Ma ≈ 0.1. For a flow of air through a typical hole of
radius Rh = 1mm, the condition Ma ≈ 0.1 corresponds to Re ≈ 4500,
confirming the relevance of the range of parameters investigated in the
present paper.

Under these two hypotheses, it is justified to assume that far away
from the hole, the pressure levels in the upstream and downstream re-
gions tend to uniform values noted respectively pin(t) and pout(t). In the
harmonic regime, the upstream and downstream pressure levels as well
as the flow rate will be expanded as : pin(t)

pout(t)
q(t)

 =

 Pin
Pout
Q

+ ε

 p′in
p′out
q′

 e−iωt + c.c., (4.3)

where ε is a given amplitude of the harmonic perturbation and ω ∈ R is
the oscillation rate. The interaction of the jet with external systems can
thus be characterized by the sole relationship between the pressure drop
[p′in − p′out] and the flow rate q′ of the harmonic part.

Ultimately, if one wants to introduce the jet in the description of an
acoustic system of much larger dimensions, the description (4.3) can be
matched with an external solution derived from the equations of acous-
tics. Such a matching is not conducted here but examples will be given
in a forthcoming paper.

4.2.2 Steady flow

The steady flow corresponding to the present situation is globally
characterized by the mean pressure drop [Pin − Pout] and the mean flow
rate Q. In the inviscid case, a classical model to relate these quanti-
ties was proposed by Levi−Civita and Prandtl. The model consists of a
vortex sheet formed at the hole and surrounding the jet (see figure 1).
After several diameters, the jet becomes parallel, but with a radius RJ
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smaller than that of the hole. We classically call the ratio of surfaces
α = (πR2

J)/(πR2
h) the vena contracta coefficient. This coefficient is clas-

sically associated to the pressure loss across the aperture. Assuming a
constant velocity UJ inside the jet (see figure 4.1), the conservation of
flux through the hole leads to Q = πR2

JUJ = πR2
hU

2
M . Applying the

Bernoulli theorem along streamlines passing through the hole thus leads
to

[Pin − Pout] =
ρU2

J

2
=
ρU2

M

2α2
, (4.4)

that links the pressure jump across the hole and the mean velocity (or
flow rate) inside it. Theoretical inviscid calculations by Prandtl and
Levi−Civita provided the value α = 0.5, that represents also the lower
limit for this coefficient. Smith and Walker (1923), instead, estimated
the vena contracta coefficient α = π/(2 + π) ≈ 0.611 for round inviscid
jets discharging in open spaces. This value has been found to agree very
well with experiments (Cummings and Eversman, 1983) and numerical
calculations (Scarpato et al., 2011) at very high Reynolds number.

4.2.3 Unsteady flow : Conductivity and Impedance con-
cepts

We now consider the relationship between the pressure jump and the
flow rate in the unsteady case, under the hypothesis of harmonic pertur-
bations 4.3. As explained in the introduction, the Rayleigh conductivity
(KR) is defined as the proportionality coefficient between the accelera-
tion of the fluid particules located within the hole and the pressure jump
across the hole. More specifically,

KR =
−iωρq′

(p′in − p′out)
. (4.5)

The conductivity is, in the general case, a complex quantity, and has
the dimension of a length. Following Howe, it is classically noted KR =
2Rh(γ − iδ). The real part γ represents the inertia of the system, while
the imaginary part δ is directly related to the average value of the power
absorbed by the hole. In effect, for harmonic perturbations described
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with the convention (2.2), the power is given by

〈Π〉 =
〈
([p′in − p′out]e−iωt + c.c.)(q′e−iωt + c.c.)

〉
= 2<([p′in − p′out]q̄′)

(4.6)
Where the brackets < · > represent the averaging over a complete period
of oscillation 2π/ω, < means the real part and the overbar denotes the
complex conjugate. Using the definition of the conductivity, this formula
directly leads to

〈Π〉 =
4Rhδ

ρω
|p′in − p′out|2. (4.7)

So, when δ > 0, this term represents a resistance (or the ability to absorb
acoustic energy), meaning that exciting the jet at a given frequency
necessitates the provision of energy by an outer system.

As an alternative to the Rayleigh conductivity, we can also define the
impedance of the aperture (Zh) as the ratio between the pressure jump
and the flow rate:

Zh =
(p′in − p′out)

q′

(
−iωρ
KR

)
(4.8)

The impedance is also a complex quantity, with physical dimension
Mass · Length−2 · Time−1. In the following we decompose it as

Zh =
ρUM
R2
h

(ZR + iZI) , (4.9)

where ZR is the dimensionless resistance and ZI is the dimensionless
reactance. It is easy to verify that the equation (4.6) for the power
absorbed by the hole can be written as function of ZR as follows:

〈Π〉 = 2
ρUM
R2
h

ZR|q′|2, (4.10)

The Rayleigh conductivity and the impedance are conceptually and
practically interchangeable quantities, and both have been used in the
literature to characterize the interaction of a jet flow with acoustic fields.
In the case of thin holes acting as a sound attenuators, most authors have
used the conductivity as initially introduced by Howe. On the other
hand, in cases where the jet can act as an energy source for external
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acoustic systems and lead to instabilities, it proves to be more conve-
nient to employ the impedance (Fabre et al., 2014a; Yang and Morgans,
2016). In the present paper, we will use both concepts. A more detailed
discussion of impedance-based instability criteria and a parametric study
of the impedance of long holes will be given in a forthcoming paper.

4.2.4 The classical Rayleigh solution in the absence of
mean flow

The problem initially solved by (Rayleigh, 1945) is the simplest sit-
uation corresponding to the absence of mean flow. In this case, the
problem admits an analytical solution under the framework of potential
flow theory. This solution yields a direct proportionality between the
flow acceleration and the pressure jump, namely

(p′in − p′out) = − iρω
2Rh

q′. (4.11)

The classical interpretation of this result is that the fluid in the vicinity
of the hole behaves as a simple solid plug with mass m = ρπR2

h`eff
oscillating across the hole, where `eff is the equivalent length of the
plug given by `eff = πRh/2.

When reformulated in terms of conductivity (resp. impedance) and
using the nodimensionalization choices introduced in the previous sec-
tion, the Rayleigh solution thus corresponds to γ = 1; δ = 0 (resp.
ZR = 0;ZI = −iΩ/2). An obvious consequence is that under this model,
the power absorbed by the hole predicted by (4.10) is exactly zero.

4.2.5 Review and criticism of Howe’s inviscid model

We now review and discuss in more detail the classical model of
Howe already mentioned in the introduction. Howe models the jet as
a cylindrical vortex sheet of constant radius Rh formed at the rim of
the aperture. He subsequently assumes a vorticity perturbation of this
vortex sheet with the form

¸′ = σH(x)δ(r −Rh)exp [−iω(t− x/Uc)] , (4.12)

where δ andH are respectively the Dirac and Heavyside functions, Uc the
assumed convection velocity of vorticity structures, and σ the amplitude
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of the vorticity perturbation. This later parameter is determined by im-
posing a Kutta condition (Crighton, 1985), requiring finite velocity and
pressure fluctuations an the rim of the hole. Starting from this point, and
going through a series of very technical mathematical transformations,
Howe was eventually able to predict the Rayleigh conductivity under the
following analytical form:

KR = 2Rh(γ−iδ) = 2Rh

{
1+

(π/2)I1(ΩH)e−ΩH − iK1(ΩH) sinh(ΩH)

ΩH [(π/2)I1(ΩH)e−ΩH + iK1(ΩH) cosh(ΩH)]

}
,

(4.13)
where I1 and K1 are the order one modified Bessel functions of respec-
tively first and second kind and ΩH = ωRh/Uc is the Strouhal number.

Despite its mathematical rigor, a number of starting hypotheses of
Howe’s model are questionable. The main caveats of the model can be
summarized in four points:

• First, the study models the mean flow as a cylindrical vortex sheet
with radius Rh, and constant velocity UM , hence completely over-
looks the vena contracta phenomenon discussed above. In a subse-
quent step of his analysis (page 215 of his paper), Howe intended to
incorporate partially this effect in his model, but this a posteriori
modification remains imperfect.

• Secondly, Howe’s model assumes that the perturbation affects only
the strength of the vortex sheet but not its location, so that the
perturbed vortex sheet is assumed to remain perfectly cylindrical.
A better starting point would be to assume a vortex sheet with
location given by (see figure 4.1):

rJ(r) = RJ + εη(x, r, t) = RJ + εη′(r)exp [ik(ω)x− iωt] , (4.14)

where k(ω) = kr + iki is complex wavenumber which has to be
determined as function of the frequency ω. The inviscid stability
analysis of this model is a classical problem whose solution can be
found, for instance, in Batchelor and Gill (1962) or in Abid et al.
(1993). For completeness, this problem is reviewed in the appendix
A.1.
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• Thirdly, the starting point of Howe’s analysis (4.12) assumes that
the perturbations are convected at a constant velocity Uc which
is assumed to be half the velocity of the jet. This choice is justi-
fied by analogy with the classical result for the Kelvin-Helmholtz
instability of a planar vortex sheet. This choice is a questionable
simplification and it would seem more rigorous to predict Uc us-
ing spatial stability analysis of the cylindrical vortex sheet model,
namely Uc = kr/ω. This analysis shows that for small frequencies
the convection velocity is actually closer to the velocity of the jet
than half its value (see appendix A.1).

• Finally, Howe completely ignores the fact that perturbations of the
vortex sheet are spatially amplified in addition to being convected.

According to the two last criticisms, it would thus seem more appropriate
to replace the starting point (4.12) by the following ansatz:

¸′ = σH(x)δ
(
rJ(r)−RJ − εη′(r)exp [ik(ω)x− iωt]

)
exp [ik(ω)x− iωt] .

(4.15)
We have not intended to reconstruct the whole analysis from this modi-
fied starting point, an option which would anyway not address the first
criticism discussed above (vena contracta effect) and would remain lim-
ited to the high−Reynolds numbers range. Instead, our chosen approach
to address the problem is to compute the impedance (or alternatively the
conductivity) through a global resolution of the linearized Navier-Stokes
equations (LNSE) for given values of the Reynolds number.

4.3 The viscous problem: analysis and numerical
method for the linear approach

4.3.1 General equations

Taking the diameter of the hole Dh = 2Rh as a length scale and the
mean velocity UM as a velocity scale, the problem is governed by the
axial-symmetric incompressible dimensionless Navier-Stokes equations:

∇ · u = 0

∂tu + (u · ∇)u +∇p− 1

Re
∇2u = 0

 , (4.16)
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where u(x, r, t) = (ux, ur) and p is the reduced pressure. The variable x
and r are respectively the axial and radial coordinate while ux and ur
represent the axial and radial velocity components.

The flow is further decomposed into a base flow (U, P ) associated
with the mean flux Q and a harmonic perturbation ε(u′, p′)e−iωt associ-
ated with the oscillating flow rate q′e−iωt. A crucial hypothesis in this
treatment is that the amplitude of the harmonic perturbation is small,
namely ε � 1. Inserting this decomposition into the Navier−Stokes
equations (4.16) and linearizing, two different sets of PDE’s are obtained:

• First, the leading order yields the base flow equations:

∇ ·U = 0

(U · ∇)U +∇P − 1

Re
∇2U = 0

 . (4.17)

The link between the base flow (U, P ) and the quantities Pin, Pout,
Q introduced in §4.2 is given by the asymptotic matching condi-
tions and flow rate definition as follows:

P (x, r) → Pin for
√
x2 + r2 →∞ and x < 0, (4.18)

P (x, r) → Pout for
√
x2 + r2 →∞ and x > 0,(4.19)∫

S
U · ndS = Q, (4.20)

where S is any surface traversed by the flow and n a normal unitary
vector oriented in the direction of the flow.

• Secondly, the ε-order yields the linearized Navier−Stokes equations
(LNSE) governing the perturbation:

∇ · u′ = 0

−iωu′ + (U · ∇)u′ + (u′ · ∇)U +∇p′ − 1

Re
∇2u′ = 0

 .

(4.21)
The link with the quantities p′in, p

′
out, q′ introduced in section 2
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and allowing to define the impedance/conductivity is:

p′(x, r) → p′in for
√
x2 + r2 →∞ and x < 0, (4.22)

p′(x, r) → p′out for
√
x2 + r2 →∞ and x > 0,(4.23)∫

S
u′ · ndS = q′. (4.24)

Note that, as is customary when dealing with incompressible flows,
the pressure is defined up to an arbitrary constant. We can choose this
constant by setting Pout = 0 and p′out = 0 in equations (4.19) and (4.23),
so that the mean pressure and fluctuating pressure drops is actually given
by [Pin − Pout] = Pin, [p′in − p′out] = p′in.

With the addition of no-slip conditions U = u′ = 0 on the upstream
and downstream surfaces of the plate (noted Γw) and symmetry condi-
tions Ur = u′r = 0; ∂Ux/∂r = ∂u′x/∂r = 0 at the axis (noted Γaxis),
the set of equations (4.17−4.24) completely defines the nonlinear prob-
lem allowing to compute the vena contracta coefficient α and the linear
problem allowing to compute the impedance/conductivity.

In practice, the boundary conditions at
√
x2 + r2 have to be imposed

at the boundaries of a finite computational domain, both upstream and
downstream. Treatment of these boundary conditions requires special
attention and is detailed in the next sections.

4.3.2 Upstream domain

As sketched in figure 4.1, the upstream domain is expected to origi-
nate from an upstream container of large dimension, and sufficiently far
away from the hole. Moreover, the flow is assumed to be radially conver-
gent. However, in the numerical implementation, it is required to specify
a given geometry for this upstream domain. Here, we chose to assume
that the upstream region is a closed cavity of cylindrical section, with
radius Rin and length Lin. The volumetric flux conditions (4.20) and
(4.24) are imposed by assuming that both the base flow and the pertur-
bation velocities are constant along the bottom of the cavity, noted Γin
(see figure 4.2), i.e.

U = Q/Sinn

u′ = q′/Sinn

}
on Γin, (4.25)
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where Sin = πR2
in is the area of the bottom wall. The values of Q and

q′ have been selected in order to have a mean velocity equal to one into
the hole, for both the base flow and the perturbation. The pressure
levels Pin and p′in, which are required for the calculation of the mean
pressure loss (and the vena contracta coefficient) and the impedance (or
conductivity), are extracted by averaging along the inlet boundary :

Pin = 2π/Sin

∫ Rin

0
P (r)rdr

p′in = 2π/Sin

∫ Rin

0
p′(r)rdr

 on Γin. (4.26)

Since the upstream cavity used in our mesh definition is expected to
represent an upper domain of infinite extend, its precise geometry has
no real importance, but is dimension has to be large enough so that the
results are independent of this geometry. In practice we verified that
the choice Lin = Rin = 10Rh fulfills this conditions. Finally, at the
lateral wall of the cavity for r = Rin (noted Γlat), we simply choose
non-penetration (ur = 0) and no-stress (∂rux = 0) conditions for both
base flow and perturbation. This condition ensures that the volumic flux
imposed at the bottom of the cavity effectively corresponds with the one
traversing the hole preventing the occurrence of an unphysical boundary
layer that would be obtained using a no-slip condition.

4.3.3 Downstream domain : boundary conditions and change
of coordinates

The treatment of the outlet boundary conditions is a delicate point
here, as the structure of the perturbation leads to some difficulties, es-
pecially when the Reynolds number becomes large. In effect, due to
the strongly spatially unstable nature of the jet, all perturbations are
strongly amplified along the axial direction. In particular, the pressure
field p′(x, r) can be reach huge levels (reaching 1015 or even more for
Re ≈ 3000) along the axis (r = 0) for large x, and this conflicts with the
necessity of imposing the boundary condition p′out = 0 at a finite distance
xmax corresponding to the boundary of the computational domain.

To detail the origin of the problem and introduce the idea used to
overcome it, let us review the classical modeling of the Kelvin-Helmholtz
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instability for a planar shear layer of zero thickness in the inviscid case.
The formal derivation can be found in any classical textbook on hydro-
dynamical stability (see for example Drazin and Reid (2004) or Charru
(2011)). Consider as base flow a shear layer separating two regions of
constant axial velocity, namely ux = U for r < 0 and ux = 0 for r > 0.
Now assume that the perturbation consists of a displacement of the shear
layer with the form

η(x, r, t) ∝ eikx−iωt, (4.27)

and assume a similar modal expansion for the velocity potential in the
upper and lower regions. Matching the two regions at the interface leads
to the classical dispersion relation:

c ≡ ω

k
=

1± i
2

U, (4.28)

In a temporal stability framework, this means that a perturbation with
a real wavenumber k is convected downstream with a phase velocity
U/2 and temporally amplified with a growth rate Uk/2. On the other
hand, in a spatial stability framework which is more relevant here, a
perturbation with real frequency ω will be spatially amplified down-
stream with a complex wavenumber k and will diverge at x → +∞.
This divergence forbids a global resolution of the function η(x, t) when
the variable x is real. However, the problem disappears if we consider
an analytical continuation of the function η(x, t) with a complex variable
x. More specifically, as arg(k) = −π/4, the function η(x, t) becomes
convergent as soon as |x|→ ∞ in a direction of the complex plane veri-
fying π/4 < arg(x) < 5π/4. These considerations suggest a possible way
to overcome the problem, namely using a complex coordinate change
x = Gx(X) which maps a (real) numerical coordinate X defined over
a finite-size computational downstream domain X ∈ [−Lin;Lout], onto
the physical coordinate x in a way that it enters the complex plane and
follows a direction where the perturbation is spatially damped.

The coordinate mapping effectively transforms the outlet location
X = Lout into a location x = xmax = Gx(Lout) located into the complex
plane. In order for the boundary conditions at the outlet X = Lout of the
computational domain to best represent the physical boundary condition
at |x|→ ∞, it is desirable for xmax = Gx(Lout) to be as large as possible.
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This can be achieved using coordinate stretching in order to have short
numerical domains and large physical ones.

Combining both ideas, namely stretching and complex mapping, we
designed the following mapping function from numerical coordinate X
to physical coordinate x:

x = Gx(X) = X1−
(
X

LA

)2
2

[
1 + iγc tanh

(
X

2LC

)2
]

for X > 0,

= X for X < 0.
(4.29)

This function is characterized by three parameters which have the follow-
ing interpretation. First, the parameter LC controls the transition range
from real coordinate to complex coordinate. For X � LC the mapping
is almost identity (Gx(X) ≈ X) so that the transition with the upstream,
unmapped domain is as smooth as possible. For X ≈ Lc the imaginary
part of the corresponding physical coordinate x gradually increases. For
X � Lc the argument of x asymptotes to a constant value, namely
arg(x) ≈ tan−1(γc). The third parameter LA controls the stretching
effect associated to the coordinate mapping. This parameter has to be
chosen so that LA > Lout. LA →∞ means no coordinate stretching, so
that the real part of xmax is the same as the dimension Lout of the com-
putational domain, while if LA − Lout is small the corresponding xmax
is rejected very far away in the complex plane.

Finally, although the issue is less crucial respect to the axial coordi-
nate, we also used a mapping r = Gr(R) to stretch the radial coordinate
from R ∈ [0, Rout] to r ∈ [0, rout] in order to enlarge the effective radial
dimension of the physical domain. Here there is no point in using a
complex deformation, so we used the following mapping function :

r = Gr(R) = RM +
R−RM[

1−
(
R−RM
RA −RM

)2
]2 for X > 0 and R > RA,

= R otherwise
(4.30)

This function leaves the radial coordinate unchanged in the region
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r < RM where the jet develops, but it stretches the limit of the domain
from Rout to rout = Gr(Rout) which is very large as soon as RA is close
to Rout (with the constraint RA > Rout).

Having explained this change of coordinates, it remains to specify
the numerical boundary conditions effectively used at the boundaries of
the numerical domain R = Rout (corresponding to r = rout) and X =
Lout (corresponding to x = xmax). In the framework of finite elements,
the usual way to impose outlet conditions is to take advantage of the
integration by parts leading to the weak formulation. The most natural
condition emerging in this way is the zero-traction condition, namely
−pn + Re−1∇u · n = 0. In the present case, we used the zero-traction
condition as an approximation of the physical condition p = 0 for both
the base flow and perturbation computations. This choice is justified if
the viscous stresses are negligible in the vicinity of the boundaries of the
domain, which turns to be the case here.

We stress that using the present method, outflow boundary condi-
tions are effectively applied at a location xmax located the complex plane.
The validity of the method is not justified by rigorous mathematical argu-
ment, but only by the fact that it effectively works. Detailed validations
are given in appendix A.2.1 of this paper. In particular, we show that at
low Reynolds numbers results obtained with and without complex map-
ping are identical, and are independent upon the precise choice of the
parameters (γc, LC , LA) of the mapping function.

Note that the idea of using a complex coordinate mapping is not com-
pletely new. Indeed the method is conceptually similar to the Perfectly
Matching Layer (PML) method, which is a numerical approach largely
used in electromagnetics and acoustics to impose non-reflection bound-
ary conditions in wave-propagation problems (see Colonius (2004) for a
complete review). In stability studies of incompressible flows, complex
coordinate mappings have also been used is linear problems involving
a single spatial coordinate and characterized by a critical layer singu-
larity (see for instance ?) and mathematical theorems are available to
justify how to chose the mapping as function of the singularities of the
problem (see for example Bender and Orszag (2013)). However, we are
not aware of any usage of such methods to get rid of convective amplifi-
cations (which is a different issue compared to reflexion of waves along
boundaries and critical-layer singularities). The usage of complex map-
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Figure 4.2: Structure of the mesh M1 obtained at the end of the mesh adap-
tation process, and nomenclature of boundaries. The mesh is adapted to both
the base flow for Re = 1000 and the harmonic perturbation for ω = 2. The
insert shows a zoom of the mesh structure in the range X ∈ [−0.5; 0.8]Rh

and R ∈ [0.5; 1.3]Rh. Note that owing to the coordinate mapping, the actual
dimension of the outlet domain is [xmax, rmax] = [1022 + 306i, 337].

pings for solving a nonlinear problem (i.e. computation of the base flow)
involving two spatial coordinates is also totally new to our knowledge.

4.3.4 Numerical implementation

The numerical resolution of the problem was performed with a fi-
nite element method, using the FreeFem++ (http://www.freefem.org)
open source code (Hecht (2012)). The procedure follows the classical
approach initially introduced by Sipp and Lebedev (2007). The only no-
table originalities are the introduction of the complex mapping into the
weak formulation, and the use of mesh adaptation using the adaptmesh
command provided by the Freefem++ (see Fabre et al. (2018c) for a
demonstration of the efficiency of this method for solving linear and
nonlinear problems arising from stability analysis).

In order to solve the problem, the base flow and perturbation equa-



114
Chapter 4. The acoustic impedance of a laminar viscous jet passing

through a circular aperture in a thin plate

tions have first to be expressed in terms of the mapped coordinates. The
treatment of both sets of equations in very similar so we document only
the base flow equations. First, the spatial derivatives have to be modified
as follows :

∂x ≡ Hx(X)∂X with Hx =
1

∂XGx(X)

∂r ≡ Hr(R)∂R with Hr =
1

∂RGr(R)

 , (4.31)

The steady incompressible Navier-Stokes equations (4.17) thus take
the following form :

Hx∂XUx +Hr/r∂R(rUr) = 0

C {Ux}+Hx∂XP −
1

Re
[Hx∂X(Hx∂XUx) +Hr/r∂R(rHr∂rUx)] = 0

C {Ur}+Hr∂RP −
1

Re

[
Hx∂X(Hx∂XUr)− Ur/r2 +Hr/r∂R(rHr∂rUr)

]
= 0


(4.32)

where, from (4.30), r = Gr(R) and C {·} = UxHx∂X(·)+UrHr∂R(·). The
weak formulation is classically obtained by multiplying by test func-
tions [U+

x , U
+
r , P

+] and integrating over the domain. Note that this
integration has to be done over the physical domain, so in terms of
the numerical variables the elementary volume of integration is dV =
2πrdrdx = 2π(HxHr)−1rdRdX ≡ 2π(HxHr)−1Gr(R)dRdX . After in-
tegration by parts of the pressure gradient and Laplacian terms of the
equation (4.32), we are thus lead to the following weak formulation of
the mapped Navier−Stokes equations:

−
∫ [

U+
x (UxHx∂XUx + UrHr∂RUx) + U+

r (UxHx∂XUr + UrHr∂RUr)
]

dV

+

∫ [
P
(
Hx∂XU+

x +Hr∂RU+
r + U+

r /r
)
− P+ (Hx∂XUx +Hr∂RUr + Ur/r)

]
dV

− 1

Re

∫ [
H2
x∂XUx∂XU

+
x +H2

r∂RUx∂RU
+
x

]
dV

− 1

Re

∫ [
H2
x∂XUr∂XU

+
r +H2

r∂RUr∂RU
+
r + UrU

+
r /r

2
]

dV

= 0.
(4.33)
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Note that with this formulation, the no-traction boundary conditions at
the outlet boundary, as well as the symmetry condition at the axis and
the zero tangential stress condition at the lateral wall of the cavity are
automatically satisfied thanks to the integration by parts. The other
boundary conditions are imposed by penalization.

The LNSE (4.21) is treated in a similar way, leading to the following
weak formulation:

iω
∫

[U+
x u
′
x + Uru

′
r] dV

+

∫ [
U+
x

(
UxHx∂Xu′x + u′xHx∂XUx + u′rHr∂RUx + UrHr∂Ru′x

)]
dV

+

∫ [
+U+

r

(
UxHx∂Xur + u′xHx∂XUr + u′rHr∂RUr + UrHr∂Ru′r

)]
dV

−
∫ [

p′
(
Hx∂XU+

x +Hr∂RU+
r + U+

r /r
)

+ P+
(
Hx∂Xu′x +Hr∂Ru′r + u′r/r

)]
dV

+
1

Re

∫ [
H2
x∂Xu

′
x∂XU

+
x +H2

r∂Ru
′
x∂RU

+
x

]
dV

+
1

Re

∫ [
H2
x∂Xu

′
r∂XU

+
r +H2

r∂Ru
′
r∂RU

+
r + u′rU

+
r /r

2
]

dV

= 0.
(4.34)

Once the weak formulation is written, the discrete matrix are as-
sembled using classical Taylor−Hood (P2, P2, P1) finite elements for the
spatial discretization.

The use of mesh adaptation to generate a efficient mesh is done in a
way very similar as explained in Fabre et al. (2018c). The procedure is
as follows :

(i) we generate an initial coarse mesh using the Delaunay-Voronoi
triangulation of the domain.

(ii) we use Newton iteration to compute a base flow at a moderate
value of the Reynolds (for instance Re = 10).

(iii) we adapt the mesh to the base flow solution of the previous step
and recompute the base flow on the resulting mesh.

(iv) we repeat points (ii) and (iii) for gradually increasing values the
Reynolds number up Re = 1000.

After this stage, we are guaranteed to have a mesh yielding converged
results as for base flow characteristics.
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(v) we solve the linear problem for a value of ω in the range of interest,
adapt the mesh to fit with the corresponding structure, and recompute
the base flow on the resulting mesh.

After this stage, we are ensured to have a mesh yielding converged
results for both the base flow and the perturbation for a given ω. For even
better efficiency, it is also possible to do the last mesh adaptation (v)
for two values of ω spanning the range of parameters in which converged
results are expected.

To obtain the results presented in the next sections, two different
meshes were designed in this way. The first mesh, noted M0 is generated
without the use of complex mapping, with a large domain corresponding
to Lout = xmax = 80. This mesh was used to compute impedances at
low Reynolds (up to 1000) and to plot the base flow characteristics. The
second, noted M1, uses complex mapping and was used for most results
at larger Reynolds values. The structure of this mesh M1 is illustrated
in figure 4.2

Additional meshes were designed for convergence tests and for demon-
strations of the robustness of the complex mapping technique. Details
are given in appendix A.2. The full characteristics of all meshes designed
in this study (including M0 and M1) are given in table A.4, in appendix
A.2.2. We mention that the number of grid points nt in M1 is about half
the value compared to mesh M0.

4.4 Results for the steady base flow

The first step in the approach is the computation of the base flow. We
report two examples of base flows calculated at Re = 500 (figure 4.3) and
Re = 3000 (figure 4.4). Here computations are done in physical coordi-
nates using mesh M0. In both cases the streamlines show the transition
across the hole from a radially converging flow to a quasi−parallel flow.
They also indicate an entrainment effect of the outer flow which is also a
well−known feature of such flows. Moreover, observing the axial velocity
profiles in the upper part of figures 4.3(b) and 4.4(b), we can note that
the jet becomes more parallel as far as the Reynolds number increases.
In these figures, we also reported the velocity profile into the hole, con-
sisting in an almost constant profile with UM = 1 and dimensions equal
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Figure 4.5: Radius of the shear layer rs(x) for Re = 100 (—), Re = 500 (–
–), Re = 1500 (– · –), Re = 2000 (— —) and Re = 3000 (– · · –). The vertical
thick line represents the edge of the hole.

to the radius of the hole Rh.
We calculated also the vorticity of the base flow as Ξ = ∂xUr−∂rUx,

reported in the lower part of figures 4.3 and 4.4. As can be observed the
jet is bounded by a very thin shear layer with high levels of vorticity,
especially at high Reynolds numbers, agreeing with the inviscid theory
used by many authors (Howe, 1979; Yang and Morgans, 2016, 2017).
Moreover, from the lower part of figures 4.3(b) and 4.4(b), we noted that
the vorticity reaches highest levels near the hole and then it is attenuated
while it is convected downstream.

The radius of the shear layer rs(x) can be extracted from the base flow
fields by localizing the streamline growing up from the edge of the hole.
The actual shape of the jet has a great influence on the calculation of the
impedance and many analytical model are based on its reconstruction
from experimental or numerical datas (Jing and Sun, 2000; Mendez and
Eldredge, 2009; Yang and Morgans, 2016). We reported our results in
figure 4.5 for various Reynolds numbers. For Re = 100 the jet is not
parallel: the inertia of the flow is low and the jet is accelerated only for
a short distance; then, the effect of viscosity leads to a diffusion of the
jet. For higher Reynolds numbers, instead, the inertial effects dominate
the system: the fluid is accelerated for a long distance and the radius of
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number reported in figure 4.5.

the jet diverges very far (not reported here). Moreover, it is very clear
that the jet is almost parallel and for high Reynolds numbers and the
radius of the jet results to be approximatively RJ ≈ 0.8.

As recalled in §4.2.2, this effect is classically measured through the
introduction of the vena contracta coefficient α which is directly related
to the pressure drop [Pin−Pout]. We calculated the vena contracta coef-
ficient inverting the equation (4.4) as function of the Reynolds number.
The results are shown in figure 4.6: we noted the curve grows with the
Reynolds number, then it reach a maximum at Re ≈ 120 and then it
assumes an asymptotic behavior as Re →∞, leading to α ≈ 0.61, which
is in agreement with classical results (Smith and Walker, 1923). Finally,
we estimated the radius of the ideal jet at large Reynolds number using
the relation RJ ≈ Rh

√
α ≈ 0.78, where α is classically assumed 0.61:

this value is in very good agreement with the value RJ ≈ 0.8 extracted
from the figure 4.5.



Chapter 4. The acoustic impedance of a laminar viscous jet passing 

120 through a circular aperture in a thin plate 

4 

3 

2 

� o ...... ---.......;•;.....ill,,,,l-..-..-...;;a;..;:;.��------
-1 

-2 

-3 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

X 

25 

15 

-5 

-15 

-25 

75 

45 

15 

-15 

-45 

-75 

Figure 4. 7: Harmonic perturbation for Re= 500, !l = 3 computed in physical 
coordinates (x, r) (mesh M0). Real part of the axial velocity component u� 
(upper) and vorticity e'(lower). 

4.5 Results for the unsteady flow 

4.5.1 Structure of the unsteady flow for Re= 500 

Let us now investigate the structure of the flow perturbation due to 
harmonic forcing. Figure 4.7 displays this structure for a moderate value 
of the Reynolds number, namely Re = 500, and for D = 3, computed in 
physical coordinates without mapping (mesh M0). As can be observed, 
the effect of a periodic forcing is to generate vortical structures in the jet 
which are amplified and convected in the downstream direction. In the 
case plotted, the maximum level is reached at about x � 8. Progressing 
further downstream, the perturbations are no longer amplified but begin 
to slowly decrease, until vanishing for x ;::, 20. This is consistent with 
the fact that for x ;::, 8 the shear layer bounding the jet has diffused ( as 
documented in figure 4.3(b)) and is not steep enough to sustain a spatial 
instability. 

In figure 4.8 we display the values taken along the axis of the jet by 
the axial velocity u�( x, 0) and the pressure p1 ( x, 0) associated to the har
monic perturbation previously described. One can clearly observe that 
the pressure perturbation asymptotes to different limit values in the up
stream and downstream domains, allowing to deduce the pressure jump 
[p�n � P�t l which is the key parameter allowing to define the impedance 
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Figure 4.8: Harmonic perturbation for Re = 500,Ω = 3 (in physical coordi-
nates (x, r) ; mesh M0) on the axis of symmetry. Real (—) and imaginary (–
–) part of the axial velocity component u′x (thin lines) and pressure p′ (thick
lines).

and/or the conductivity. In the upstream region the asymptote is reached
rapidly and the pressure is almost constant with p′(x, 0) ≈ p′in = 1.8−3i
for x . −3. On the other hand, in the downstream region, the asymp-
totic limit (which amounts to p′out = 0 owing to the way the boundary
conditions are introduced in the problem, see section 3) is only reached
for x & 25, after the spatial growth and subsequent decay.

4.5.2 Efficiency of the complex mapping technique

Figure 4.9 displays the structure of the perturbation for the same
parameters as in figure 4.7, but using the complex mapping technique
(with mesh M1). Accordingly, the structure is plotted as function of the
(real) numerical coordinates [X,R]. As one can observe, the complex
mapping technique completely fulfills the goal of getting rid of the strong
spatial amplification in the downstream direction.

Of course, the spatial structure displayed in figure 4.9 has no physical
meaning as soon as X > 0, because a point (X,R) in the numerical
domain correspond to a point (x, r) in the physical domain for some
complex x defined by x = G(X), and there is no easy way to access
the structure of the perturbation for some real x. However, since our
focus is on the impedance of the jets, we are not interested in a full
characterization of the perturbation field but only by a determination of
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Figure 4.9: Harmonic perturbation for Re = 500,Ω = 3 (in numerical coordi-
nates (X,R) with complex mapping ; mesh M1). Real part of the axial velocity
component u′x (upper) and vorticity (lower).

the associated pressure jump.
Figure 4.10 compares the results obtained with and without complex

mapping (again for Re = 500 and Ω = 3), focussing on the pressure com-
ponent p′ (real part) of the harmonic disturbance. In figure 4.10(a) the
same iso−levels are used for both results without complex mapping (up-
per half) and with complex mapping (lower half). The comparison shows
again that the structure computed without complex mapping quickly
grows to reach large values saturating the iso-levels, while the structure
computed with complex mapping nicely decays to rapidly reach zero.
Figure 4.10(b) complements the comparison with plots of the pressure
field along the axis. The comparison confirms that in the inlet region
(X < 0) the results exactly coincide. For 0 < X . 1.25 the results with
complex mapping remain qualitatively similar to the ones without map-
ping while for X & 1.25 they become completely different and rapidly
decay to zero. This not surprising, as our definition the mapping func-
tion defining our mesh contains a parameter LC = 1.25 such that for
X < LC the corresponding physical variable x = Gx(X) is almost real
while for X > LC it is fully complex.

Let us now consider the caseRe = 1000, Ω = 3. The pressure p′ of the
harmonic disturbance is plotted in figures 4.11(a) and (b), with the same
conventions as in figure 4.10. Inspection shows that the results without
complex mapping lead to the same difficulties as for Re = 500 but the
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Figure 4.11: Same of figures 4.10(a) and (b) but for Re = 1000. The inserted
plot (c) displays a zoom in the near hole region in order to catch the pressure
jump across the hole.
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spatial growth is much more pronounced. In this case, the pressure
levels reach an amplitude of order 103 for x ≈ 15 and the asymptotic
value p′out = 0 is only reached for x & 70. This justifies that to correctly
resolve this mode, we had to <design the dimension of mesh M0 as large
as Lout = 80. On the other hand, results obtained with complex mapping
behave very similarly as for Re = 500, and the asymptotic limit p′out = 0
is reached quite rapidly, for X & 8.

In figures 4.11(b), the pressure levels of the results with and without
complex mapping are so different that it is impossible to check that the
pressure p′ effectively asymptotes to the same limits p′in and p′out in both
cases. To remedy this, figure 4.11(c) shows a zoom of the results in figure
4.11(b), in the region close to the hole. This representation confirms that
the two computations lead to identical results in the upstream region
where no mapping is used (and in particular that the upstream limit p′in is
the same), and that for the case using complex mapping the downstream
limit is reached after only a few oscillations with amplitudes of order one.

Figures 4.10 and 4.11 thus confirms that the use of complex mapping
is a convenient and efficient way to access to the pressure jump p′in−p′out
associated to the harmonic perturbation without having to deal with
the strong spatial amplifications. It is worth pointing out that in this
method is also computationally economical, as the number of point in
mesh M1 is about half that of the unmapped case M0. The figures also
indicate that the difficulties encountered when solving the problem in
physical coordinates without mapping become worse as the Reynolds
number becomes large. In practice, as soon as Re & 1500, the huge
levels reached by the perturbations in the far-field region lead to round-
off errors and it becomes impossible to resolve accurately the near-field
region. We verified that enlarging the domain to dimensions Lout to even
larger than 80 does not improve the results. Using "sponge" regions with
artificially large viscosity was also tried as an alternative idea to get rid
of the problems associated to huge spatial amplifications, but this idea
proved to be unsuccessful. At the end the only efficient way we found to
obtain reliable results for Re & 1500 was to use the complex mapping
technique. An illustration of the failure of the resolution in physical
variables for large Reynolds is given in appendix B.1 (figures A.3 and
A.4).

Note that in order to be consistent, the base flow also needs to be
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Figure 4.12: (a) Resistance ZR and (b) reactance −ZI/Ω for Re = 100 (—),
Re = 500 (– –), Re = 1500 (– · –), Re = 2000 (— —) and Re = 3000 (– · · –).

computed with the same numerical coordinates. The structure of the
base flow in mapped coordinates has no physical meaning for the same
reasons as the harmonic perturbation, but we verified that the pressure
jump and the associated vena contracta coefficient are identical to results
in physical coordinates. We detail this in appendix A.3, and display an
example of base flow obtained in such a way in figure A.8.

4.5.3 Impedance and conductivity

Having illustrated the structure of the perturbation due to a har-
monic forcing and justified the validity of the numerical method, we now
come to the most important result of this work, namely prediction of the
impedance as function of Re and Ω.

Figure 4.12 displays the real and imaginary parts of the impedance,
calculated according to the equation (4.8), as a function of the forcing
frequency Ω at various Reynolds numbers

As for the resistance (plot a), only the case Re = 100 is notably
different from the other ones. On the other hand, the results obtained
for Re > 1500 seem to collapse in a unique curve, indicating that a
large-Reynolds number asymptotic regime is attained after this value.
The resistance is maximum in the small-frequency limit Ω ≈ 0, with a
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Figure 4.13: (a) Real part γ and (b) imaginary part δ of the Rayleigh con-
ductivity. Plain lines: LNSE results for Re = 3000. Dash-dotted lines: Howe’s
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–), Re = 1500 (– · –), Re = 2000 (— —) and Re = 3000 (– · · –), and from
Howe’s modified model (· · ·).
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value ZR ≈ 0.85 which will be explained in the next section. As Ω is
increased, ZR first decreases to reach a minimum for Ω ≈ 3.5 and then it
reaches a quasi−constant value equal to 0.53. Moreover, one can observe
that the resistance increases with the Reynolds number for all the value
of the frequency Ω. One can note that the resistance is always positive,
meaning that, according to the equation (4.10), the jet is an energy sink
and so, in order to excite the jet at a given frequency, we need to provide
energy from an outer system, as just observed by Howe (1979) for an
inviscid flow.

The reactance ZI is documented in plot b, but as this quantity turns
out to be a negative and approximately linear function of Ω, it is more
practical to plot −ZI/Ω as function of Ω. Under this representation,
we can make the same observation as for the resistance, regarding the
existence of a high-Reynolds asymptotic regime for Re & 1500, and the
notable difference of the case Re = 100. Note that in the large-frequency
range, the curves indicate an asymptotic trend given by ZI/Ω ≈ 0.5.
This value matches with that predicted by the simple Rayleigh model
(section 2.3), indicating that for large frequencies, the impedance of the
hole is at leading order the same as in the absence of a mean flow.

We now document the results using the equivalent concept of con-
ductivity (see section 2.2), and compare with the predictions of Howe’s
model. Just as for the impedance, the results for Re & 1500 collapse
onto a single curve characterizing a High-Reynolds number asymptotic
regime. In figure 4.13 we plot with a thick line the results obtained for
Re = 3000 which are representative of this regime.

As explained in section 2.5, Howe’s expression for the conductivity
(4.13) is expressed in terms of ΩH = ωRh/Uc where Uc is the convection
velocity of the structures along the vortex sheet, whose choice is one
of the most questionable points of the analysis. In the initial model,
Howe disregarded the venna contracta phenomenon and assumed a jet
with radius Rh and velocity UJ = UM . Then, assuming Uc = UM/2
leads to ΩH = 2Ω. The values for γ and δ obtained with this choice are
plotted in the figure with dash-dotted lines. As can be seen, in this initial
version Howe’s model rather badly agrees with our LNSE results. In a
subsequent step of his analysis, Howe argued that the effect of the vena
contracta can be partly accounted for by using the more appropriate
choice UJ = 2UM . This choice leads to Uc = UM and hence ΩH = Ω.
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The predictions of this modified model are plotted in dashed lines on the
figure. As can be seen, the agreement with LNSE results is improved but
the curves still differ notably, especially as for the imaginary part δ (plot
b) in the range Ω ≈ 2 where Howe’s modified model underestimates the
numerically computed one by approximately 30%. On the other hand,
the model overestimates the real part γ for Ω . 2 by about 10% and
underestimates it for Ω & 2 with the same amount.

As discussed in section 2.5, the result of Howe is expressed in terms
of a nondimensional frequency ΩH = ΩRh/Uc based on the convection
velocity of vorticity structures along the vortex sheet Uc, whose precise
value is questionable. In figure 4.13 we followed the original choice of
Howe Uc = UM which leads to ΩH = Ω. We also tried to compare the re-
sults using improved modelings of Uc, leading only to mild ameliorations
of the agreement

Finally, a useful quantity which can be extracted from the impedance
is the delay angle of the pressure with respect to the velocity:

φ = arg(Zh) = tan−1

(
ZI
ZR

)
(4.35)

This quantity has been used in a number of experiments, as it allows
to discriminate the cases where the impedance is mainly resistive (φ ≈ 0)
from the ones where it is mainly reactive (φ ≈ −π/2). This quantity is
plotted in figure 4.14, confirming that the behavior switches from purely
resistive to purely reactive as the frequency is increased. We also ob-
serve in this plot a collapse of the curves obtained in the high-Reynolds
asymptotic regime Re & 1500.The angle φ extracted from Howe’s modi-
fied model is also plotted in the figure (note that in terms of conductivity,
the definition of φ translates into φ = π/2 − arg(KR) = −tan−1(γ/δ)).
Again, a substantial deviation is observed, especially in the range of in-
termediate frequencies Ω ≈ 2 where the deviation can be as large as
π/12 ≡ 15o. Oddly, the inviscid Howe model turns out to give better
predictions for the case Re = 100 than for the high-Reynolds number
regime.
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4.5.4 The quasi−static limit for Ω→ 0.

We have observed that in the limit of small frequencies (Ω → 0),
the impedance becomes purely real and tends to a constant value. This
limit value can be predicted using a quasi−static approximation, and
this property will be used to verify the consistency of our impedance
calculations. As explained in section 2.3 for a steady flow, the pressure
jump and the mean velocity across the hole are related through the
Bernoulli equation which can be written under the form (4.4)

∆p =
ρu2

M

2α2(ReM )
, (4.36)

Assuming ∆p = ∆P + ∆p′ and uM = UM + u′M , inserting into (4.36)
with ReM = (UM +u′M )Rh/ν = Re(1 +u′M/UM ) and linearizing lead to

∆P + ∆p′ ≈
ρU2

M

2α2
+
ρu′MUM
α2

(
1− 1

α

∂α

∂Re

)
. (4.37)

Remembering now that ∆P = (ρU2
M )/(2α2), this equation allows to

obtain a prediction for the impedance which is assumed to be valid in
the quasi-static limit (Ω→ 0):

ZQS =
∆p′

πR2
hu
′
M

=
ρUM
α2πR2

h

(
1− 1

α

∂α

∂Re
Re
)
. (4.38)

Table 1 compares the impedance computed using the method of the
previous section for a small value of the frequency, namely Ω = 10−6 , to
the quasi-static prediction (4.38) obtained using the base-flow character-
istics computed in section 4. One can note that the results agree with less
that 1% of error. Finally, we can note that the term (1/α)(∂α/∂Re)Re
in equation (4.38) is small because α is a slowly varying function of Re.
The fourth column of table 4.1 gives the prediction of the quasi-static
impedance obtained when neglecting this term. The comparison shows
that this simplified prediction is still an excellent approximation, and
slightly overestimates the actual value except for the case Re = 100,
where it underestimates it. This is consistent with the fact that the
α− Re curve reaches a maximum for Re ≈ 120 (see figure 4.6).

The low-frequency limit was also addressed by Howe in the framework
of his model. A Taylor series of the expression (4.13) leads to δ ≈ πΩH/4
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Re ZR(Ω = 10−6) ZQS
ρUM
α2πR2

h

100 0.778957 0.778985 0.784964
500 0.828280 0.828228 0.813912
1500 0.854970 0.854510 0.843178
2000 0.860562 0.868020 0.849696
3000 0.867572 0.866437 0.857986

Table 4.1: Values of the impedance in the low-frequency range. Comparison
of values obtained numerically with a very small Ω, quasi-static approximation
(4.38), and simplified approximation obtained assuming ∂α/∂Re = 0.

(equation 3.15(b) of Howe’s paper), which, when expressed in terms of
impedance, translates into ZR ≈ (2/π)(Uc/UM ) ≈ 0.637(Uc/UM ). Thus,
the choice Uc/UM = 1 made by Howe actually yields a prediction for
ZR which underestimates the High-Reynolds value by approximatively
37%. Note that this mismatch can also be observed in figure 4.13(b)
regarding the initial slope of the curve δ(Ω). This error in the quasi-
static limit may be cancelled using an ad-hoc choice of Uc/UM , but as
previously explained, such a modification does not improve substantially
the agreement in other ranges of Ω.

4.6 Direct Numerical Simulations of a harmoni-
cally forced jet

In order both to validate the linearized approach for small amplitudes
and to investigate the influence of nonlinearities for larger amplitudes,
we performed Direct Numerical Simulations by integrating in time the
Navier−Stokes equations (4.16) for a harmonically forced jet. The DNS
are performed using FreeFem++ on the same mesh M0 as used in the
previous section for resolution in physical coordinates (note that the com-
plex mapping technique is fitted to the resolution of the linearized prob-
lem but is not relevant for nonlinear simulations). The numerical code
used for time-integration is very similar to the one used by in Marquet
et al. (2008). The equations are advanced in time using a partly implicit
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second−order accurate scheme. The time derivative are approximated
using a three-step backward finite difference scheme. The pressure, the
laplacian term and the continuity equation are implicit while the con-
vective terms are explicit and treated using a characteristics methods
(Boukir et al., 1997).

As initial conditions, we used the steady solution of the Navier−Stokes
equations [U;P ] obtained as as described in §4.3.4. We used the same
boundary conditions as for the LNSE, namely no-stress on Γw, symme-
try on Γaxis, stress−free conditions on Γlat and traction−free on Γout.
At the inflow, we forced the problem on the axial velocity component as
follows :

ux(t) = Uin[1 + ε sin(ωt)]

ur = 0

}
on Γin, (4.39)

where Uin = Q/Sin and Q has been selected as just discussed in section
4.3.2. The pressure drop ∆p(t) necessary to define the impedance is is
then extracted using

∆p(t) = pin(t)−pout(t) = 2π/Sin

∫ Rin

0
p(r, t)rdr−2π/Sout

∫ Rout

0
p(r, t)rdr.

(4.40)
For the simulations, we fixed the Reynolds number to Re = 1000 and

investigated the effect of both the frequency in the range Ω ∈ [0.5 − 4]
and the amplitude in the range ε ∈ [10−4, 10−1]. Simulations were run
for sufficiently long time so that a periodical behaviour of the solution is
achieved. Actually, the transient time is very short and a we observed a
limit cycle after only a few periods of forcing. In order to calculate the
impedance, about 10 periods were simulated.

Figure 4.15 displays a snapshot of the vorticity for ε = 10−2 and
Ω = 0.5, 2 and 4. We also display the streamline originating from the
edge of the hole, which can be identified with the surface of the jet
η(x, t) of figure 4.1. We can observe that under the effect of forcing, the
shear layer bounding the jet reorganises into an array of vortices which
are convected downstream. Note that the distance at which the vortex
array appears is much larger in the lower frequency case, because the
spatial instability of the jet is less active at low frequencies. The overall
structure of the vorticity is consistent with studies which have used DNS
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Figure 4.16: Time series of the pressure drop ∆p(t) and the velocity at
(x, r) = (10, 0.5) for Ω = 0.5 (a and b) and Ω = 2 (c and d). Full line is for
ε = 0.1 and dashed line is for ε = 0.05.

of a harmonically forced to characterize the spatial amplification process
(Kiya et al., 1996; Shaabani-Ardali et al., 2017).

Figure 4.16 displays the time series of the pressure drop ∆p(t) (plots
a and b) and the axial velocity at position (x, r) = (10, 0.5), chosen to
be in the region where roll-up occurs. Two values of the frequency and
amplitude are chosen, namely Ω = 0.5; 2 and ε = 0.1; 0.05. The plots of
the pressure drop show that this quantify is remarkably sinusoidal, even
for the largest values of the amplitude. The oscillation levels for ε = 0.1
are about twice those for ε = 0.05, confirming that the pressure drop is
indeed proportional to the forcing. Remarkably, in all cases displayed,
the pressure almost instantaneously stabilises to a sinusoidal limit cy-
cle, and a transient regime is almost unnoticeable, except for the very
first time steps. The velocity signals show a rather different behaviour.
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Figure 4.17: Discrete spectra of ∆p(t) for ε = 10−1 (©), ε = 10−2 (�),
ε = 10−3 (♦), ε = 10−4 (O) and (a) Ω = 0.5, (b) Ω = 2 and (c) Ω = 4.

For Ω = 0.5, the signal is very far from sinusoidal and displays a rich
harmonical content. This confirms that the roll-up process occurring in
this region is strongly nonlinear. The limit cycle at x = 10 also takes
time to establish, a fact associated to the time of convection of vortex
structures. It is finally remarkable that the amplitude of oscillation for
ε = 0.1 is not double compared to that for ε = 0.05. This is also observed
for Ω = 2, where the cases with ε = 0.1 and ε = 0.05 saturate to a limit
cycle (closer to sinusoidal in this case) of same amplitude.

The pressure signal can be analysed in a finer way by decomposing
into as a Fourier series in the form:

∆p(t) = ∆p0 +

∞∑
j=1

∆pj sin(jΩt− φj). (4.41)

I practise, to discard the transient effects, the Fourier transformation
was applied to the time for t > 10 (even if in most cases there is actually
almost no transient effects, as documented above). Figure 4.17 displays
the discrete spectra, namely the absolute value of the amplitudes |∆pj | as
function of j, extracted from all performed DNS. The j = 0 component
∆p0 corresponds to the pressure drop associated to the mean flow, and
is almost independent of ε. The j = 1 component ∆p1 corresponds to
the amplitude at the fundamental forcing frequency. This quantity is
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observed to be proportional to ε, confirming that the response to forcing
is essentially linear. The components ∆pj with j > 0 corresponds to the
higher harmonics. These components are generally smaller than 10−4

hence negligible. The case ε = 10−1 leads to the largest values for the
higher harmonics, but they still remain one order of magnitude smaller
than the response at the driving frequency.

Truncating the Fourier series to the two first terms, i.e.

∆p(t) ≈ ∆p0 + ∆p1 sin(ωt− φ1) (4.42)

and remembering that the flow rate can be written as

q(t) = UinπR
2
in︸ ︷︷ ︸

q0

+UinπR
2
inε︸ ︷︷ ︸

q1

sin(ωt), (4.43)

we can calculate the impedance using only the first Fourier component
of the pressure:

ZR = ∆p1/q1 cos(φ1),

ZI = ∆p1/q1 sin(φ1).

}
(4.44)

Table 4.2 displays the mean pressure drop ∆p0 and the impedance
deduced from the DNS results for all cases simulated, and compares them
to the LNSE results of sections 4 and 5.

As for ∆p0, the LNSE results displayed in the table actually corre-
sponds to the pressure drop associated to the base flow, namely steady
solution of the NSE, while the DNS results correspond to the mean flow
obtained by time-averaging. There is a subtle difference between these
concepts (Barkley, 2006), and the difference is expected to be of order
ε2. This is in agreement with the fact that deviations are only notable
for the largest amplitude ε = 10−1.

As for the impedances, it is remarkable that the LNSE results provide
an excellent approximation to the DNS results, with a relative error less
than 1% except for high frequency and large where it increases a little
(we found the maximum relative error about 4% at ω = 4 and ε = 0.1).

4.7 Summary and discussion

The main goal of this study was to reconsider the classical problem of
the response of an axisymmetric jet through a circular aperture through
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Method, Frequency ε ∆p0 ZR ZI

10−1 1.315197 0.823836 0.306126
DNS, Ω = 0.5 10−2 1.308922 0.823949 0.304707

10−3 1.308850 0.823755 0.305271
10−4 1.308849 0.822438 0.305119

LNSE, Ω = 0.5 — 1.308657 0.823451 0.307814

10−1 1.318342 0.642373 0.384001
DNS, Ω = 2 10−2 1.308899 0.631512 0.379576

10−3 1.308842 0.628868 0.376664
10−4 1.308849 0.628365 0.375493

LNSE, Ω = 2 — 1.308657 0.627929 0.377853

10−1 1.332050 0.524558 0.458023
DNS, Ω = 4 10−2 1.309361 0.506036 0.467145

10−3 1.308858 0.502835 0.465519
10−4 1.308850 0.503785 0.465163

LNSE, Ω = 4 — 1.308657 0.502442 0.467931

Table 4.2: Comparison between the DNS and the linear approximation in
term of pressure drop of the mean (base) flow and impedances.
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a plate of small thickness to harmonic forcing. This problem was initially
considered by Howe who proposed an inviscid model which is still the
basis of most studies of this problem. However a number of starting
hypotheses of Howe’s model are questionable. In order to reconsider
the problem on more rigorous grounds, our chosen approach has been to
numerically solve the problem using Linearized Navier−Stokes Equations
(LNSE).

The first step of the LNSE approach consists of computing a base
flow corresponding to the steady laminar flow through the aperture. Sec-
tion 4 was devoted to the description of this base flow. Upstream of the
aperture, it essentially consists of a radially convergent flow, while down-
stream of the aperture, the flow forms a quasi parallel jet bounded by a
thin vorticity layer originating from the rim. As classically observed in
experiments, the radius of the jet is smaller than the radius of the aper-
ture. We documented this effect in terms of the vena contracta coefficient
α. Our numerical results indicate an almost constant value α ≈ 0.61 in
the range 103 < Re < 104, in agreement with classical experiments.

The second step of the LNSE approach consists of solving a linear
problem for small-amplitude disturbances with harmonic temporal de-
pendance. A standard implementation of this method, starting from a
formulation in terms of physical coordinates (x, r) on a numerical domain
"large enough" to resolve correctly the structure of the linear perturba-
tion (typically [rmax, xmax] = [20, 80]), was first tried. This first imple-
mentation was found to lead to difficulties in the high-Reynolds number
range, leading to the impossibility to obtain reliable results as soon as
Re & 1000. These difficulties were analyzed, and the problem was found
to be linked to the strong spatial amplification properties of the jet. To
overcome these difficulties, a convenient method was designed, which
consists of reformulating the problems in terms of a mapped complex
coordinate X(x). The idea of using complex coordinates is not new in
linear acoustics, and is at the basis of the Perfectly Matched Layer (PLM)
method to prevent reflections of the acoustic waves on the boundaries
of the domain. However, to our knowledge, the use of such a method in
strictly incompressible problems is new. We show that an appropriate
choice of the mapping function allows to get rid of the spatial amplifica-
tion of the perturbation in the axial, mapped direction.

Although the spatial structure of the perturbation has no longer a
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physical interpretation when computed using complex coordinates, we
demonstrated that the global quantities depending only from the pres-
sure jump across the hole, such as the vena contracta coefficient and
the impedances are well resolved. This method thus allows to obtain
meaningful results using a much smaller numerical domain (typically
[Rmax, Lout] = [15, 15]) and incidentally a much lighter numerical grid.

Using this method, we then characterized the response of the jet to
harmonic forcing by computing its impedance, namely the ratio between
the fluctuating pressure jump and fluctuating flow rate across the aper-
ture, which is a key quantity used by acousticians to characterize the
interaction of jet flows with acoustic fields. In all cases the real part of
the impedance was found to be positive, meaning that exciting the jet
at a given frequency necessitates the provision of energy from an outer
system. Moreover, the impedance was found to become independent of
the precise value of Re as soon as Re & 1500, indicating the existence of
a high-Reynolds number asymptotic regime.

Results in this high-Reynolds number regime were compared to pre-
dictions of Howe’s model. The comparison was done in terms of the
Rayleigh conductivity, which is a concept directly related to the impedance
and used by a fraction of the acoustic community as an alternative. Com-
parison shows substantial deviations, especially in the range of interme-
diate nondimensional frequencies, indicating that some of the hypotheses
underlying Howe’s model are too restrictive.

Finally, to confirm the validity of our linearized approach, we also
performed direct numerical simulations considering harmonic perturba-
tion with small but finite amplitude ε. The spatial structure of the per-
turbations computed in this way showed a rapid saturation of the spatial
instability towards an array of vortex rings, very different from the struc-
ture computed using LNSE. Despite this, the values of the impedance
extracted from these DNS, as well as the properties of the mean flow,
were found to be in excellent agreement with LNSE results, with a max-
imum relative error of only a few percents for ε = 0.1. This result
confirms that the LNSE is an efficient method to predict the impedance,
even in cases where the spatial evolution of the perturbations is rapidly
dominated by nonlinear effects.

We end this discussion with a few closing remarks. First, coming
back on the complex mapping technique used in the LNSE approach,
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we stress that this method was designed to overcome a mathematical
difficulty linked to the linear problem, namely strong spatial amplification
extending very far away in the axial direction. As so, this method is not
suited to a direct numerical solution in the nonlinear regime, and the
DNS presented in section 6 were thus performed in physical coordinates.
On the other hand, the method is potentially usable for studying the
linear stability of large class of flows characterized by nearly-parallel
spatially unstable regions, such as the wakes of blunt or profiled bodies.
We are currently investigating the applicability of complex mapping for
such problems.

Secondly, since our whole approach relies on an assumed laminar base
flow, one may question the applicability of our results when considering
turbulent jets. Although the precise threshold is difficult to predict,
transition to turbulence in such jets is typically thought to take place
in the range Re ∈ [103 − 104]. However, when transition takes place,
turbulence is only observed in the downstream region located after the
near-field vena contracta region which remains essentially laminar. Hav-
ing observed in our DNS that the nonlinear evolution of vortex structures
in the far-field do not affect the value of the impedance, we can postulate
that the same is true regarding nonlinear effects due tu turbulence, as
thus that our results, obtained under the hypothesis of a laminar flow,
are actually applicable to turbulent jets in a large range of parameters.

Third, in the whole study, we have have only considered axisymmet-
ric disturbances to the flow. Non-axisymmetric disturbances also exist
in such flows, and in high-Reynolds jets their signature has been de-
tected among turbulent structures ?. However, such non-axisymmetric
disturbances are not associated to a net flow rate through the hole. So,
they are expected to be much less coupled to acoustic disturbances, and
indeed it is not possible to describe them in terms of an impedance.

Finally, we have mentioned in the introduction that in the case where
the thickness of the plate is not small compared to the radius of the hole,
the jet can cease to act as a sound damper to become a sound generator,
leading to the possibility of self-sustained oscillations of the jet. In such a
case, the impedance concept is a useful tool to characterize the instability
mechanism, and the numerical method designed in the present paper is
directly applicable to investigation of such instabilities. A parametric
study of the response of jets through plates of finite thickness to harmonic
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forcing is underway and will be presented in a forthcoming paper.
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Chapter 5

Acoustic impedance and
hydrodynamic instability of
the flow through a circular
aperture in a thick plate

We study the unsteady flow of a viscous fluid passing through a
circular aperture in a plate characterized by a non-zero thickness. We
investigate this problem by solving the incompressible Linearized Navier-
Stokes Equations (LNSE) around a laminar base flow, in both the forced
regime (allowing to characterize the coupling of the flow with acoustic
resonators) and the autonomous regime (allowing to identify the possi-
bility of purely hydrodynamical instabilities). In the forced regime, we
calculate the impedances and discuss the stability properties in terms of
a Nyquist diagram. We show that such diagrams allow to predict two
kinds of instabilities: (i) a conditional instability linked to the overreflex-
ion of an acoustic wave but requiring the existence of an conveniently
tuned external acoustic resonator, and (ii) a purely hydrodynamic insta-
bility existing even in a strictly incompressible framework. A parametric
study is conducted to predict the range of existence of both instabilities
in terms of the Reynolds number and the aspect ratio of the aperture.
Analysing the structure of the linearly forced flow allows to show that the
instability mechanism is closely linked to the existence of a recirculation
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region within the thickness of the plate. We then investigate the au-
tonomous regime using a standard normal-mode analysis. The analysis
confirms the existence of the purely hydrodynamical instability in accor-
dance with the impedance-based criterion. The spatial structure of the
unstable eigenmodes are found to be similar to the structure of the cor-
responding unsteady flows computed using the forced problem. Analysis
of the adjoint eigenmodes and of the adjoint-based structural sensitivity
confirms that the origin of the instability lies in the recirculation region
existing within the thickness of the plate.

5.1 Introduction

The unsteady flow through an aperture separating two fluid domains,
either closed (ducts, chambers, resonators) or open, is encountered in a
large number of applications. This situation is also of fundamental im-
portance in the design of musical instruments. A fundamental milestone
in the study of such problems is the classical Rayleigh (1945) solution
of the inviscid, potential flow through a circular hole, in the absence of
mean flow. This solution shows that the situation is globally equiva-
lent to the simple assumption of a rigid plug of fluid with an "effective
length" leff oscillating across the aperture. This Rayleigh solution is
often invoked in simple models of acoustic devices and is, for instance, a
key ingredient in the modelling of the so-called Helmholtz resonator.

In the case where the aperture is traversed by a mean flow, the fluid
no longer behaves as an ideal, rigid plug but generally acts as an energy
dissipator. This property is used in many industrial applications where
one wants to suppress acoustical waves (see for instance the bibliogra-
phy cited in Fabre et al. (2018b)). This energy dissipation is generally
associated to a transfer of energy to the flow through the excitation of
vortical structures along the shear layer bounding the jet. The situa-
tion was investigated theoretically by Howe (1979), who introduced a
complex quantity called conductivity KR which generalizes Rayleigh’s
"effective length". The knowledge of KR(ω) as function of the forcing
frequency ω, or of the closely related quantity Z(ω) = −iω/KR(ω) called
the impedance, allows to fully characterize the possible interaction of the
flow with acoustic waves. In particular, the real part of the impedance
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(which is positive for a zero-thickness hole), is directly linked to the en-
ergy flux transferred from the waves to the flow. Howe subsequently
derived a potential model predicting the conductivity (and impedance)
in the case of a hole of zero thickness. Despite its mathematical rigour,
Howe’s model starts from very simplified hypotheses regarding the shape
and the location of the vortex sheet and its convective velocity. Re-
cently, Fabre et al. (2018b) reviewed Howe’s problem using Linearized
Navier−Stokes equations in order to take into account the effect of the
viscosity and the exact shape of the vortex sheet. They showed that for
Re & 1500, results are quite independent from the Reynolds number but
significantly deviates from Howe’s ones, above all for intermediate fre-
quencies. Nevertheless, in both Howe’s model and Fabre et al. (2018b)’s
improved solution, the behaviour of the hole remains dissipative (as-
sociated to a positive real part of the impedance), in accordance with
experimental and numerical investigations.

The case where the thickness of the plate in which the hole is drilled is
not small compared to its diameter leads to a completely different situa-
tion, as the jet flow can now act as a sound generator instead of a sound
attenuator. The first observation of this property seems to have been
made by Bouasse (1929), who reported that jets through thick plates
could produce a well-reproducible whistling, with a frequency roughly
proportional to the hole thickness. This observation remained unnoticed
(as many other findings of the surprisingly rich experimental work of
Bouasse), but was rediscovered in the 21th century by Jing and Sun
(2000) and Su et al. (2015) who, in an effort to improve the design of
perforated plates used as sound dampers, reported that in some circum-
stances, these devices could lose their ability to damp acoustic waves and
lead to self-sustained whistlings. Numerical simulations by Kierkegaard
et al. (2012) showed that in the range of parameters where such whislings
occur, the mean flow through the hole is characterized by a recircula-
tion bubble, either trapped within the thickness of the plate, or fully
detached. However, the precise role of this recirculation bubble in the
sound-production phenomenon remains to be clarified.

The ability of the jet flow to provide acoustical energy is associated to
a positive real part of the impedance, so computation or measurement of
this quantity offers a convenient way to characterise these phenomena. A
number of analytical and semi−empirical models (Jing and Sun (2000),
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Bellucci et al. (2004)) have been proposed to predict the impedance of
such finite-length holes. Confrontation with experiments Su et al. (2015)
and numerical simulations Eldredge et al. (2007) have revealed the lack of
robustness of such models which all contain ad−hoc parameters. Yang
and Morgans (2016) and Yang and Morgans (2017) developed a more
elaborate semi−analytical model based on the actual shape of the vortex
sheet, and furthermore including the effect of compressibility within the
thickness of the hole. However, their approach remains potential and
cannot account for the effect of viscosity within the thickness of the
shear layer, nor for the dependence of the impedance with respect to the
Reynolds number.

Linearised Navier-Stokes Equations (LNSE), offers a more satisfying
framework to access the impedance of such holes, with a full incorpora-
tion of viscous effects. As already pointed out, this approach has been
carried out in Fabre et al. (2018b) for a zero-thickness hole, leading to
notable improvements of Howe’s classical inviscid model. This approach
has also been applied to a the flow trough a finite-thickness hole by
Kierkegaard et al. (2012) in a range of parameters characterized by self-
sustained whistlings. These authors also showed that computation of
the impedance for a forced problem (with real ω) can be used, thanks
to Nyquist diagrams, to predict an instability criterion for eigenmodes
(with complex ω) of the unforced, self-sustained problem. A similar ap-
proach will be carried out in the present paper. However, our work dif-
fers from that of Kierkegaard et al. (2012) by a number of points. First,
Kierkegaard et al. (2012) considered a constriction within a long pipe,
while we consider a small aperture connecting an upstream and a down-
stream domain considered of large dimension. Secondly, Kierkegaard
et al. (2012) considered a case where the Mach number based on the
maximum velocity is not small and used compressible LNSE. On the
other hand, our study starts from the incompressible equations under
an acoustical compactness hypothesis. Third, Kierkegaard et al. (2012)
considered a High-Reynolds turbulent situation and built their linearized
approach around a mean flow obtained by RANS simulations. On our
side, we consider a lower range of Reynolds number and build our ap-
proach around a laminar base flow consistent with the LNSE framework.
Finally Kierkegaard et al. (2012) explicitly considered the coupling with
an acoustic resonator by introducing a wave reflection condition at the
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inlet of the pipe, and hence their Nyquist-based stability criterion is only
relevant to this situation. In our case, we wish to characterize the po-
tential of the jet to lead to self-sustained oscillations regardless of the
nature of the acoustic environment, and even in the case where there are
no acoustic resonators at all. The situation we investigate is thus more
simple and "academic", but by ruling out the geometry of the upstream
and downstream domains and the Mach number parameter, we are able
to conduct a full parametric study of the problem, an objective which
was not achievable considering the choices of Kierkegaard et al. (2012).

The remainder of the paper is organized as follows :

• In section 2, after defining the geometry and the parameters of
the study, we define the concept of impedance, and explain how,
thanks to the use of Nyquist diagrams, this quantity can be used
to predict the stability properties of the jet flow. We show that two
kinds of instabilities are possible in this context : (i) a conditional
instability corresponding to an overreflexion of acoustic waves in
some range of frequencies, leading to an effective instability only if
the jet is coupled to a conveniently tuned acoustic resonator, and
(ii) a purely hydrodynamical instability which manifests regardless
of the existence of an acoustic resonator, and exists even in the
case of a strictly incompressible flow.

• In section 3, we recall the Linearized Navier Stokes Equations, and
the numerical resolution method, as already presented in Fabre
et al. (2018b). We show how this formalism can be used to solve
both a harmonically forced problem for real frequencies ω allowing
to compute the impedances, and a homogeneous eigenvalue prob-
lem allowing to compute the complex frequencies ωr + iωi allowing
to characterize the purely hydrodynamical instabilities.

• In section 4, we detail the structure of the base flow corresponding
to the steady jet as function of the Reynolds number Re and aspect
ratio β of the hole. We detail in particular the vena contracta co-
efficient characterizing the relationship between the mean pressure
drop and mean flux through the hole, and the range of existence
and spatial structure of the recirculation region which forms within
the thickness of the hole.
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• In section 5, we present results of the LNSE approach in the har-
monically forced regime. We present the computed impedances for
selected values of Re and β. We document the structure of the lin-
early forced flows, in particular within the recirculation region. We
eventually provide a parametric map allowing to predict the ranges
of existence of both conditional and hydrodynamical instatilities in
the Re− β parameter plane.

• In section 6, we present results of the LNSE approach in the ho-
mogeneous regime. We confirm the existence of the purely hy-
drodynamical instability, in accordance with the impedance-based
predictions. We further detail the structure of the eigenmodes, the
adjoint eigenmodes and the adjoint-based structural sensitivity, al-
lowing to highlight once again the role of the recirculation region
on the instability mechanism.

• Finally, section 7 summarizes the findings an discusses a few per-
spectives opened by our work.

5.2 Problem definition

5.2.1 Geometry, parameters, and modelling hypotheses

The situation investigated in the present paper is sketched in figure
5.1. We consider a fluid of viscosity ν and density ρ discharging through
a circular aperture of radius Rh in a planar thick plate with thickness
Lh. The domains located upstream and downstream of the hole are
supposed of large dimensions compared to the dimensions of the hole, so
that the geometry is characterized by a single dimensionless parameter,
the aspect ratio β defined as

β =
Lh

2Rh
. (5.1)

The zero-thickness limit case (β = 0) is investigated in detail in Fabre
et al. (2018b); in the present paper we consider holes with finite thickness
in the range β ∈ [0.1− 2].

The pressure difference between the inlet and the outlet domain,
namely ∆P = [Pin − Pout], generates a net flow Q = UMAh through
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Figure 5.1: Sketch of the flow configuration (not in scale) representing the
oscillating flow through a circular hole in a thick plate and definition of the ge-
ometrical parameters. We report also the decomposition of the flow quantities
in the upstream and downstream boundaries.

the hole, where Ah = πR2
h is the area of the hole and UM is the mean

velocity. This mean flow is characterized by a Reynolds number defined
as :

Re =
2RhUM

ν
≡ 2Q

πRhν
. (5.2)

Following Fabre et al. (2018b), we will suppose that the mean Mach
number is small, and that the dimensions of the hole are small com-
pared to the acoustical wavelengths (acoustical compactness hypothesis).
These hypotheses allow to assume that the flow is locally incompressible
in the region of the hole. An example of matching with an outer acoustic
field is presented in appendix A.

5.2.2 Characterization of the unsteady regime and Impedance
definition

To characterize the behaviour of the jet in the unsteady regime, we
assume that far away from the hole the pressure levels in the upstream
and downstream regions tend to uniform values denoted as pin(t) and
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pout(t). We will further assume that both the pressure drop ∆p(t) and
the flow rate q(t) are perturbed by a small-amplitude deviations from
the mean state characterized by a frequency ω (possibly complex):

(
∆p(t)
q(t)

)
=

(
[Pin − Pout]

Q

)
+ ε

(
[p′in − p′out]

q′

)
e−iωt + c.c., (5.3)

Zh(ω) =
[p′in − p′out]

q′
(5.4)

Note that with the present definition the impedance has physical dimen-
sions M · T−1L−4. We will also introduce a nondimensional impedance
defined as

Z =
R2
h

ρUM
Zh ≡ ZR + iZI , (5.5)

where the real part of the impedance ZR is the dimensionless resistance
while its imaginary part ZI is the reactance. In presentation of the
results, the frequency will be represented in a nondimensional way by
introducing the Strouhal number Ω as follows:

Ω =
ωRh
UM

. (5.6)

As already stated in the introduction, the sign of the real part of
the impedance ZR (or resistance) is directly proportional to the energy
flux 〈Π〉 transferred to the flow through 〈Π〉 = 2ρUM/(R

2
h)ZR|q′|2. The

demonstration of this property can be found in Howe (1979), and is also
reproduced in Fabre et al. (2018b).

5.2.3 Impedance-based instability criteria

We now explain the links between impedance and instabilities, and
show how simple instability criteria can be formulated using Nyquist
diagrams (namely representations of Zr versus Zi).

• First, as already discussed, the sign of the real part of the impedance
ZR(ω) (or resistance) as function of the real frequency ω is a di-
rect indicator of a possible instability. However, one should insist
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that the condition ZR < 0 is a necessary but not sufficient condi-
tion for instability. In the context of electrical circuits (Conciauro
and Puglisi (1981)), a system with negative resistance is said to be
active in the sense that it effectively leads to an instability if con-
nected to a reactive circuit allowing oscillations in the right range
of frequencies. In the present context, this situation is referred
as conditional instability and requires the presence of a correctly
tuned acoustic oscillator (a cavity and/or a pipe) connected up-
stream (or downstream) of the aperture.
The demonstration that ZR < 0 is a necessary condition for con-
ditional instability can be explicited in two ways. First, as already
stated, ZR is directly linked to the energy flux transferred from
acoustic waves to the jet. Thus, if ZR > 0 the jet behaves as an
energy sink, while if ZR < 0 it acts as an energy source. Sec-
ondly, one can also establishes this link by studying the reflection
of acoustic waves onto the hole. This argument is carried out in
appendix A, where we conduct an asymptotic matching between
the locally incompressible solution in the vicinity of the hole and
an outer solution of the acoustic problem. The conclusion of this
analysis is that in the limit of small Mach number, an incident
acoustic wave coming from the upstream domain is overreflected if
and only if ZR < 0.
A situation leading to conditional instability is illustrated in fig-
ure 5.2a − b. Plot (a) shows the real and imaginary parts of
the impedance in a situation where ZR is negative in an inter-
val [ω1, ω2], and Zi does not change sign. When represented in a
Nyquist diagram, the criterion can be formulated as follows: the
system is conditionally unstable if the Nyquist curves enter the half-
plane ZR < 0.

• Secondly, when considered as an analytical function of the complex
frequency ω = ωr + iωi, the impedance can be used to formu-
late a second instability criterion, namely: the system is unstable,
regardless of the properties of its environment if there exists a com-
plex zero of the impedance function such that ωi > 0. Indeed, for
complex values of ω the modal dependence reads e−iωt = e−iωrteωit,
thus solutions with the form 5.3 are exponentially growing if ωi > 0.
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Figure 5.2: (a) and (b) example of situation leading to conditional instability.
(c) and (d) example of situation leading to hydrodynamical instability. The
regions of conditional and hydrodynamic instabilities are represented by yellow
and orange areas, respectively.
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In the context of electrical circuits, this situation is referred to as
absolute instability in opposition to the conditional instability dis-
cussed above. Since the term "absolute" has a different meaning
in the hydrodynamic stability community (as opposed to convec-
tive instabilities, see e.g. Huerre and Monkewitz (1990)), we prefer
to adopt the term purely hydrodynamical instabilities to describe
this case, emphasizing the fact that they can occur in a strictly
incompressible framework.

Physically, the condition Zh(ω) = 0 implies that there exist modal
solutions of the linearized problem in which pressure jump [p′in −
p′out] is exactly zero. In other terms, the total pressure jump
across the hole is imposed as a constant (i.e. [pin(t) − pout(t)] =
[Pin − Pout]) but the flow rate q(t) is allowed to vary. This kind
of boundary condition is a bit uncommon for incompressible flow
problems. However, one must keep in mind that the incompress-
ible solution is only valid locally in the vicinity of the hole. In
appendix A, we conduct an asymptotic matching with an outer
acoustic solution and show that in the limit of small Mach number,
the condition Zh(ω) = 0 with complex ω and ωi > 0 corresponds
to a spontaneous self-oscillation of the flow across the hole associ-
ated to the radiation of acoustical waves in both the upstream and
downstream domains.

In practise, the number of complex zeros of the analytically con-
tinued impedance Zh(ω) and their location in the complex plane
can be deduced from the representation of Zh(ω) for real values
ω using classical Nyquist criterion, which states that there exists
an unstable zero of the impedance if and only if the Nyquist curve
encircles the origin in the anticlockwise direction. A weaker but
practically equivalent version of this criterion can be formulated
as follows: the system is unstable in a purely hydrodynamical way
if the Nyquist curve enters the quarter-plane defined by ZR < 0 ;
ZI > 0. A situation leading to purely hydrodynamical instability is
illustrated in figure 5.2c− d.
In addition to providing an instability criterion, the knowledge of
the impedance for real ω can also be used to predict an approx-
imation of the complex zeros in the case where ωi is small. for
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this sake, let us suppose that the Nyquist curve passes close to
the origin, and let us note ω0 the value for which the norm of the
complex impedance |Z(ω)| is smallest. The location of this point
is illustrated in figures 5.2c − d. Searching for the complex zero
as ω = ω0 + δω and working with a Taylor series around ω0 leads
to Z(ω0) + (∂Z/∂ω)ω0

δω = 0, hence providing an estimation as
follows :

ω ≈ ω0 −
Z(ω0)(∂Z/∂ω)ω0∣∣(∂Z/∂ω)ω0

∣∣2 (5.7)

It can be shown that <(Z(ω0)(∂Z/∂ω)ω0
) = 0 (a simple geometri-

cal interpretation being that the line joining the point Z(ω0) to the
origin and the line tangent to the Nyquist curve at ω0 are orthogo-
nal to each other). Hence, the correction appearing in 5.7 directly
provides an estimation of the amplification rate ωi.

5.3 Linearized Navier Stokes Equations and nu-
merical methods

In the previous section, the linearly perturbed flow across a hole was
considered from a general point of view, focussing on the impedance
and its link with possible instabilities. In the present section, we intro-
duce the LNSE framework, and show how this framework can be used
both to compute the impedance through resolution of a forced problem
and to directly address the instability problem through resolution of an
autonomous problem.

5.3.1 Starting equations

The fluid motion is governed by the Navier-Stokes equations:

∂

∂t

[
u
0

]
= NS

[
u
p

]
=

[
−u · ∇u−∇p+ Re−1∇2u

∇ · u

]
(5.8)

where p is the reduced pressure field. Since we are in axial-symmetric flow
configuration, we decompose the velocity vector u in an axial component
ux and in a radial component ur.
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The Linearized Navier-Stokes framework consists of expanding the
flow as a steady base-flow plus a small-amplitude modal perturbation as
follows: [

u
p

]
=

[
u0

p0

]
+ ε

[
u′

p′

]
e−iωt. (5.9)

5.3.2 Base-flow equations

The base flow is the solution of the steady version of the Navier-
Stokes equations:

NS[u0; p0] = 0

with the following set of boundary conditions:

P (x, r)→ Pin as
√
x2 + r2 →∞ and x < 0

P (x, r)→ Pout as
√
x2 + r2 →∞ and x > 0∫

S u0 · ndS = Q.

(5.10)

where S is any surface traversed by the flow. It is convenient to choose
S as the inlet of the domain so that the latter equation can be imposed
as a Dirichlet boundary condition.

5.3.3 Linear equations

The linear perturbation obeys the following equations :

−iωB[u′; p′] = LNS0[u′; p′], (5.11)

where LNS0 is the linearized Navier-Stokes operator around the base
flow and B is a weight operator defined as follows:

LNS0

[
u′

p′

]
=

[
− (u0 · ∇u′ + u′ · ∇u0)−∇p′ + Re−1∇2u′

∇ · u′
]

; B =

[
1 0
0 0

]
(5.12)

This set of equations is complemented by the following boundary
conditions :

p′(x, r) → p′in for
√
x2 + r2 →∞ and x < 0, (5.13)

p′(x, r) → p′out for
√
x2 + r2 →∞ and x > 0, (5.14)∫

S
u′ · ndS = q′. (5.15)
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This set of equations for the perturbations is relevant to both the
forced problem and the autonomous problem. The difference is in the
handling of the boundary conditions:

• For the forced problem, a non-zero q′ is imposed (fixed arbitrarily
to q′ = πR2

h; such that the associated mean velocity u′M is 1). Eq.
(5.15) thus constitutes a non-homogeneous boundary condition at
the inlet plane. On the other hand, since only p′in−p′out is relevant,
one can set p′out = 0 without loss of generality. Eq. (5.14) thus
leads to a homogeneous boundary condition at the outlet plane.
The problem can be symbolically written as

[LNS0 − iωB] [u′; p′] = F ,

where the definition of LNS0 implicitly contains the homogeneous
boundary condition at the outlet, and F represents symbolically
the non-homogeneous boundary condition at the inlet. This prob-
lem is nonsingular and readily solved. The pressure jump p′in al-
lowing to define the impedance is subsequently deduced from Eq.
(5.13).

• For the homogeneous problem, as discussed in sec. 2, the relevant
boundary conditions are p′in = p′out and we can take p′in = p′out =
0 without loss of generality. Thus, Eqs. (5.13) and (5.14) both
lead to homogeneous boundary conditions. Using the eigenmode
notation [u′, p′] = [û, p̂] for the perturbation, the problem can be
symbolically written in the form

[LNS∗0 − iωB] [û; p̂] = 0

where the operator LNS∗0 implicitly contains the homogeneous
conditions at both upstream and downstream boundaries.

This problem is a generalized eigenvalue one, and thus admits so-
lutions for a discrete set of complex eigenvalues ω = ωr + ωi. The
flow rate q̂ associated to the eigenmodes through 5.15 is generally
nonzero, but the eigenmodes can be arbitrarily rescaled such that
q̂ = πR2

h.
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Aside from the determinations of the (direct) eigenmodes [û, p̂], it
is also useful to study the structure of the adjoint eigenmodes [û†, p̂†],
namely the eigenmodes of the adjoint operator LNS∗†0 . The importance
of adjoint eigenmodes in fluid mechanics has been reviewed by ?. Here,
since this concept has been largely discussed in a lot of previous papers
like Citro et al. (2016b) and Citro et al. (2015a), we prefer to avoid to
derive the adjoint problem. We refer to Luchini and Bottaro (2014) for
a detailed discussion of the topic.

The structural sensitivity of a hydrodynamic oscillator is also used in
the present manuscript to identify the flow region where the mechanism
of instability acts. The so-called wavemaker can be spatially localized
by inspecting the spatial map obtained from the sensitivity tensor:

S(x, r) =
û†(x, r)⊗û(x, r)∫
D û†(x, r)û(x, r)dD

(5.16)

where D is the computational domain. This region is responsible for
the instability mechanism, i.e. one can think that the direct mode is
emanated from the wavemaker region.

5.3.4 Numerical method

The results presented here are obtained with the same numerical code
adopted in Fabre et al. (2018b). In particular, we used the open source
code FreeFem++ that implements the finite-element method to solve the
several problems described in the present paper. The main originalities
of the present implementation are the use of complex mapping in the
axial direction to overcome problems associated to the large convective
amplification of structures in the dowstream direction (see Fabre et al.
(2018b)), and the systematic use of mesh adaptation to substantially re-
duce the required number of d.o.f. (following a methodology described
in Fabre et al. (2018c) ; Fabre et al. (2018b)). An example of unstruc-
tured grid obtained in this way is displayed in figure 5.3. Note that
the downstream dimension Lout in numerical coordinates seems rather
short; however, as the coordinate mapping used in this case involves a
stretching the actual dimension in physical coordinates is much larger
(see details in appendix B).
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Figure 5.3: Structure of the mesh M1 obtained using complex mapping and
mesh adaptation for β = 1, and nomenclature of the boundaries (see appendix
B for details on mesh generation an validation). A zoom of the mesh is reported
in the range X ∈ [−2.5; 0.5]Rh and R ∈ [0.1; 1.8]Rh.

All the codes and the scripts used in the present manuscript are
available online on the github page dedicated to the StabFem project
(github.com/erbafdavid/StabFem). As a consequence, most of the re-
sult presented herein can be easily obtained by running the inherent
script in the StabFem project. On a standard laptop, all the computa-
tions discussed below can be obtained in only a few hours. The valida-
tion of the solver and of the proposed numerical approach is presented
in the review dedicated to StabFem (Fabre et al., 2018c). The complex
mapping adopted in the downstream domain is discussed in detail by
Fabre et al. (2018b). A brief survey about this topic is also reported in
Appendix B.

5.4 Base flows : study of the recirculation region

A typical base flow is depicted in figure 5.4 for a Reynolds number
Re = 1500 and β = 1. The flow is characterized by an upstream ra-
dially converging flow turning into an almost parallel jet. However, an
important feature is the occurrence of a recirculation region within the
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Figure 5.4: Contour plot of (a) axial velocity of the base flow and (b) vorticity 
field computed at Re = 1500 and /3 = 1. 

thickness of the hole. The vorticity field reaches its maximum near the 
leading edge, namely the left edge of the hole, and is highly concen
trated in the region of maximum shear stress. Figure 5.5 illustrates the 
structure of the flow in the close vicinity of the aperture, for f3 = 1. 
The recirculation region at Re= 800 takes the form of a narrow bubble 
trapped close to the upstream corner. As the Reynolds is increased, this 
bubble expands towards the downstream corner, until it opens up and 
involves an entraiment of the outer fluid which enters inside the thickness 
of the plate. Note that for Re = 800, the recirculation region still con
tains a bubble of closed streamlines, but detached from the wall. Further 
on, this bubble disappears and for Re= 1600 the recirculation region is 
fully open. 

The intensity of the recirculation region can be characterized by the 
maximum level of negative velocity within the thickness of the hole, 
namely U

max 
= max(-u

x
o)- This quantity is plotted in figure 5.6(a) as 

function of the Reynolds number for /3 = 0.3, 0.6 and 1. It is observed 
that in all cases, the recirculation region shows up for Re � 400. The 
intensity of the recirculation region first grows as the trapped bubble 
extends to reach the downstream corner, and then decreases as it turns 
into a fully open one. Not surprisingly, the intensity is larger in the case 
of a thicker hole, as the bubble is able to extend over a longer region. 

The steady flow is characterized by the classical phenomenon of the 
vena contracta, i.e. a reduction in the area/diameter of the jet after it 
emerges from the circular hole. This process produces a pressure loss 
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Figure 5.5: Contour plot of the axial component of the base flow at: (a)
Re = 800, (b) Re = 1200, (c) Re = 1600, (d) Re = 2000. The structure of
the recirculation region is highlighted using streamlines. The aspect ratio β is
equal to 1.
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Figure 5.6: (a) Intensity of the recirculation flow inside the hole and (b) vena
contracta coefficient as function of Re. Here we use a solid line for β = 0.3,
dashes for β = 0.6, long dashes for β = 1.

across the aperture. To estimate this loss, we can apply the Bernoulli
theorem along a streamline passing thought the hole:

Pin − Pout =
ρU2

J

2
=
α2ρU2

M

2
; (5.17)

here, the classical vena contracta coefficient α is introduced as follows:

α = (πR2
J)/(πR2

h), (5.18)

where RJ is the jet radius where the flow becomes parallel. There exist
several estimations of this coefficient: theoretical prediction by Borda
reads α = 1/2 while the hodograph method (Gilbarg, 1960) provides
α ≈ 0.61.

We document on figure 5.6(b) the vena contracta coefficient α de-
duced from the pressure drop computed from the base flows. It is found
that for Re ≈ 104 the vena contracta coefficient reaches a value close
to 0.61 in all cases, again in accordance with literature results. Note
that for the thicker case (β = 1) α is lower than in the other cases for
Re . 100, meaning that the pressure drop is weaker, but it is maximal
for Re ≈ 2000, a value corresponding approximately to the transition
from a closed to an open recirculation region.

Note that ? reports that for β = 0.3 the vena contracta coefficient
decreases from 0.70 to 0.61 as Re raises from 103 to 104. This is consistent
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with our findings. The literature generally attributes this decrease of
α to the laminar-turbulent transition. Since our base-flow solution is
strictly laminar, we can rule out this argument. It seems more relevant
to attribute the decrease of α to the transition between attached and
fully detached recirculation region.

5.5 Linear results for the forced problem

We turn now to analyse the results obtained by the numerical reso-
lution of the forced problem. We chose two different cases characterized
by β = 0.3 and β = 1.

5.5.1 Case β = 0.3

As previously introduced, the most important quantity associated to
the unsteady flow is the impedance Z = ZR + iZI . This quantity is
plotted as function of the frequency in figure 5.7 for Reynolds ranging
from 800 to 2000. The plots in the left column display ZR and ZI
as function of Ω (note that as ZI is generally negative and increasing
with Ω, it is convenient to plot −ZI/Ω). The right column display the
corresponding Nyquist diagrams.

For Re = 800 (plots (a) and (b)), the system presents a small fre-
quency interval near Ω ≈ 2.2 with negative values of the real part of the
impedance ZR. As explained in section 5.2.3, this property is directly
related to a possible instability. On the other hand, the imaginary part
ZI is always negative in the range of frequencies considered.

As the Reynolds number is increased further, one observes that the
region of negative ZR gets larger and reaches larger values. Note also
that the negative, minimum value of ZR is associated to a maximum of
−ZI/Ω. Increasing the Reynolds number enlarges the range of ω where
the system has negative values of ZR. The cases (e), (g) associated
to Re = 1600, 2000 show a second region of conditional instability for
higher frequencies in the range near Ω ≈ 8.5. This is again associated
with a maximum of −ZI/Ω. Note that for Reynolds numbers up to 2000
we do not find a hydrodynamic instability. We recall that the number
of unstable modes (absolute instability) is associated to the number of
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Figure 5.7: Impedance of the flow through a circular aperture with aspect
ratio β = 0.3. Left: Plot of ZR (solid line) and ZI (dashed line) as a function
of the perturbation frequency Ω; Right: Nyquist diagrams for (a, b),Re = 800,
(c, d),Re = 1200, (e, f),Re = 1600, (g, h),Re = 2000.
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Figure 5.8: Structure of the unsteady flow for β = 0.3 and Re = 1600. Left
row: real part of the pressure; right row: real part of the axial velocity. First
row (a,b): Ω = 2.6 and Zh = −0.425− 1.719i, Second row (c,d): Ω = 5.45 and
Zh = 0.736− 3.861i, third row (e,f): Ω = 8.25 and Zh = −0.085− 5.762i. The
color range is rescaled using the distortion function fS defined in (5.19).

times the contour of the complex impedance Zh encircles the origin. This
condition is never satisfied in figure 5.7.

To explain these trends, and in particular the possibility for negative
ZR, we now depict in figure 5.8 the structure of the flow perturbation
for three values of the frequency, corresponding to the two first minima
(5.8a, b and 5.8e, f) and a positive maximum (5.8c, d) of ZR(Ω). The
plots on in the left column display the pressure component p′, and show
that the conditionally unstable cases (5.8a and 5.8e) are associated to
negative pressure levels in the upstream region, while they are positive
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in the stable case (5.8c). Recalling that the pressure level far away in the
downstream region is set to zero, this means that in the unstable cases
the fluctuating flow goes against the pressure gradient.

The plots in the right column (5.8b, d, f) display the axial velocity
component u′x. This quantity displays strong gradients in the region of
the shear layer, confirming that the perturbed flow actually corresponds
to oscillations of this shear layer, as assumed in Howe’s model and rep-
resented schematically in figure 5.1.

An important feature visible on both the pressure plots and the axial
velocity plots is that the number of structures of opposite sign (red/blue
patches in the figures) within the thickness of the hole is quantified. In
effect, we observe respectively 1, 2 and three structures within the hole.
This observation for the three first extrema of ZR can be generalized as
follows : Minima of ZR (potentially unstable situations) are associated to
odd number of structures within the thickness while maxima of ZR (most
stable situations) are associated to even number of structures within the
thickness of the hole. This point was observed for all cases investigated,
and will be further demonstrated in next paragraph for β = 1.

Note that, due to the strongly convective nature of the instability, it is
impossible to use a linearly scaled color range to visualize the structures
both in the region of the hole (where p′ and u′x are of order one) and in
the jet region (where these quantities may reach levels 100 times larger
of higher). This feature was already identified for the zero-thickness
case by Fabre et al. (2018b). To overcome this difficulty, in figure 5.8
and subsequent figures, we rescale the color range thanks to a distortion
function fS defined as

fs(ζ) = Ssign(ζ) log (1 + |ζ|/S) . (5.19)

This function is chosen so that the colorange is linear when the plotted
quantity ζ verifies |ζ|� S and turns to logarithmic when |ζ|� S. In the
plots the value of S is adjusted on order to allow the best visualization.

5.5.2 Case β = 1

We now consider the case of a thicker hole with aspect ratio β = 1.
Figure 5.9 plots the impedance for Re from 800 to 2000. As in the
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Figure 5.9: Impedance results for β = 1. Left: Plot of ZR (solid line)
and ZI (dashed line) as a function of the perturbation frequency Ω; Right:
Nyquist diagrams for (a, b),Re = 800, (c, d),Re = 1200, (e, f),Re = 1600,
(g, h),Re = 2000.
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previous case detailed in sec. 5.5.1, one can see the existence of several
frequency intervals where ZR becomes negative.

The real and imaginary part of the impedance Zh are always positive
for Re = 800 (see fig. 5.9a ). As a consequence, the associated Nyquist
curve plotted in fig. 5.9b does not cross the ZR = 0 axis. The system
displays two intervals of conditional instability at Re = 1200, around
Ω ≈ 2.5 and Ω ≈ 4.7, respectively. Note that the real part ZR presents
larger oscillations than in the corresponding case at β = 0.3.

When the Reynolds number is increased, both real and imaginary
parts of the impedance reach very large values. Figure 5.9e plots ZR and
−ZI/Ω for Re = 1600 and reveals four intervals of conditional instability
and one interval of hydrodynamical instability. Another important result
which can be seen in this figure is the existence of true zeros of the
impedance. This happens in particular at Ω ≈ 2.07. This property
reveals the existence of a purely hydrodynamical instability as discussed
in sec. 3. This point will be further confirmed in sec. 5.6. Further
increasing the Reynolds number to Re = 2000 produces a second interval
of hydrodynamical instability around Ω = 4.4.

Figure 5.10 depicts the structure of the oscillating flows for five values
of ω corresponding to three minima and two maxima of ZR. Inspection
of these plots allows to confirm the observations made in the previous
paragraph for β = 0.3. First, the pressure level is the upstream region
is positive (resp. negative) for the conditionally unstable cases where
ZR is minimum (resp. for the most stable cases where ZR is maximum).
Secondly, as can be seen especially in the axial velocity plots on the
right column, the number of structures (patches of alternating colors)
within the thickness of the hole is respectively 1,2,3,4,5 for the cases
plotted here. This fully confirms the rule enunciated in the previous
paragraph, namely that the conditionally unstable cases correspond to
an odd number of structures within the hole.

5.5.3 Parametric study

In the previous sections, we documented the impedance results for
β = 0.3 and β = 1. In both cases, when increasing the Reynolds num-
ber, we observed the emergence of an increasing number of intervals of
conditional instability, associated with the crossing of the real axis in the
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Figure 5.10: Structure of the unsteady flows for β = 1 and Re = 1600. Left:
real part of the pressure; right: real part of the axial velocity. First row (a, b)
Ω = 0.8; second row (c, d) Ω = 1.6; third row (e, f) ω = 2.5; fourth row (g, h)
ω = 3.6; third row (i, j) ω = 4.5. The colorrange is rescaled using the distortion
function fS defined in (5.19).
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Figure 5.11: Thresholds for the onset of conditional instability (C1 to C4)
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and of hydrodynamical instability (H2 and H3).
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Nyquist diagram by successive "loops" of the Nyquist curve. In addition,
but only for β = 1, we observed the emergence of an increasing number
of purely hydrodynamical instabilities associated to the encircling of the
origin by successive loops of the same curve. In this section, we present
the results of a parametric study which allowed to identify the regions of
conditional and hydrodynamical instabilities in the range β = [0.1− 2] ;
Re = [500− 2000].

Figure 5.11 shows the critical Reynolds number associated to each
instability branch as a function of the aspect ratio β. In this figure,
curves labelled C1 to C4 correspond to the first four branches of condi-
tional instabilities, while branches H2 and H3 correspond to the first two
branches of hydrodynamical instabilities. We adopted this labelling be-
cause these instabilities are associated to the same "loops" in the Nyquist
curve as modes C2 and C3. Note that no crossing of the origin was ever
observed along the first loop; this is why the figure does not display any
H1 branch.

For short holes, branch C1 is the first to become unstable and branches
C2, C3 etc... are only encountered at substantially larger Re. This is
compatible with the results of figure 5.7 for β = 0.3, which indicates
that branch C1 becomes unstable slightly below Re = 800 and branch
C2 between 1200 and 1600. The situation is different for longer holes
as branches C2, C3 successively become the most unstable ones. For
instance, for β = 1, conditional instability first happens along branch
C2 just above Re = 800, and as Re is further increased branch C3, C4
and C1 are then encountered in this order. This is again fully compatible
with the Nyquist diagrams of figure 5.9.

Hydrodynamical instabilities generally occur at larger Reynolds than
conditional instabilities, and are encountered only for sufficiently thick
holes (β > 0.5). For β = 1, branch H2 becomes unstable for Re ≈ 1500
and branch H3 for Re ≈ 1700. This is again fully compatible with the
Nyquist representations in figure 5.9.

We finally notice that for β < 0.1 no instability is found in the
range investigated. This suggests that the limit case of zero thickness is
unconditionally stable, in accordance with the classical model of Howe
and our previous investigation of this case (Fabre et al., 2018b).

The frequencies associated to the each of the instability branches are
plotted in figure 5.12. We start by plotting the Strouhal number based
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on the hole radius Rh as a function of the aspect ratio β. Note that
the frequencies associated to hydrodynamical instabilities H2 and H3
closely follows those associated to conditional instabilities C2 and C3,
thus confirming our nomenclature choice.

It is interesting to note that all branches indicate that the frequency
is inversely proportional to the aspect ratio of the hole. This suggest
that instead of the definition Ω used up to here, it may be better to
define a Strouhal number based on the thickness of the hole as follows:

StL =
fL

UM
≡ Ωβ

π
. (5.20)

Plotting results using this definition leads to figure 5.12b, which confirms
that the Strouhal number is almost independant of the aspect ratio for
all branches.

The Strouhal number associated to branch C1 corresponds to StL ≈
0.25. This value is in good accordance with observations of the leading
whistling frequency of jets in a number of experimental and numerical
studies. For instance, Kierkegaard et al. (2012) indicate St ≈ 0.26,
Testud et al. (2009),reports values in the range [0.2-0.3], while ? recorded
values in the range [0.26-0.29]. This accordance suggests that in all of
these works, the instability is of conditional type.

The branch H2 indicates the existence of a purely hydrodynamical
instability associated to an almost constant value of the Strouhal number
StL ≈ 0.65 in the whole range β ∈ [0.4 − 1.5]. This implies that a jet
through a hole joining two open domains would spontaneously whistle
at such frequencies, even in the absence of an acoustic resonator. We are
not aware in the recent literature of such an observation, as in all the
cited works the hole was fitted at the outlet of a long pipe which played
the role of the acoustic resonator needed for conditional instability.

To our knowledge, the only observations of whistling of the flow
through a large plate is the work of Bouasse (1929). This author in-
deed reported that the whistling frequency is proportional to the thole
thickness, but unfortunately did not express this result in terms of a
Strouhal number.
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Figure 5.13: (a) Nondimensional growth rates Ωi = (Rh/UM )ωi and (b)
nondimensional oscillation rates Ωr = (Rh/UM )ωr as function of Re, computed
through the linear stability approach (lines) and the order-one expansion based
on impedance predictions (symbols).

5.6 Linear stability results

The possible existence of a purely hydrodynamical instability, indi-
cated by the impedance results of the previous sections, will now be
confirmed through a global stability approach, which consists of solving
an autonomous eigenvalue problem arising from the LNSE, as explained
in section 3.

5.6.1 Eigenvalues

The stability characteristics of the base flow are assessed monitor-
ing the evolution of the leading global modes. Figure 5.13(a) shows the
growth rate ωi for three least stable modes for β = 1. Two of them
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become unstable in the plotted range of Re. The first branch becomes
unstable at Re ≈ 1500 while the second one presents a critical Reynolds
number equal to Re ≈ 1700. This is fully compatible with the impedance
predictions corresponding to branches H2 and H3 discussed in the pre-
vious section.

Figure 5.13(b) displays the oscillation rate ωr for the same three
modes. The three branches display an almost constant value of the
radius-based Strouhal number Ω. The values for the unstable modes are
Ω ≈ 2.1 and Ω ≈ 4.2, in perfect accordance with the expected values for
modes H2 and H3.

Note that figure 5.13(a− b) displays the existence of a third branch
of eigenvalue which is always stable. The corresponding frequency is
observed for Ω ≈ 0.5, which corresponds to a value for which the first
"loop" of the Nyquist curve comes close to zero, but does not encircle it.
This allows to identify this mode with the "H1" mode which was missing
in fig. (5.11). This mode actually exists as a global mode but remains
stable for all values of Re and β in the investigated range.

As discussed in section 2, in addition to providing an instability crite-
rion, knowledge of the impedance for real ω also provides an estimation
of the eigenvalues associated to the purely hydrodynamical instability
valid in the case where ωi is small. To demonstrate this, we have plotted
with symbols in figure 5.13(a) the prediction of the asymptotic formula
(5.7). As can be seen, this formula coincides very well with the numer-
ically computed eigenvalues, but deviations are observed as soon as the
dimensionless growth rate exceeds a value of about 0.1.

5.6.2 Eigenmodes and adjoint-based sensitivity

We now depict in the upper part of figure 5.14 the structure of the
unstable modes computed for Re = 1500 and Re = 1700, respectively.
We display the pressure component (a, e) and the axial velocity compo-
nent (b, f) using the same representation as for the forced structures in
figure 5.10.

The structure of the modes are dominated by axially extended stream-
wise velocity disturbances located downstream of the aperture and is in-
deed very similar to the structures obtained in the linearly forced prob-
lem. Note that the levels of the pressure components are now tending to
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Figure 5.14: Structure of the unstable eigenmodes H2 for β = 1;Re = 1500
(a, b) and H3 for β = 1;Re = 1570 (c, d). Same representation as in figure 5.10.

zero both upstream and downstream, in accordance with the boundary
conditions expected for the purely hydrodynamical instabilities. Apart
from this, the eigenmode H2 has strong similarities with the structure of
the forced mode C2 for Re = 1600 (figure 5.10e− f) and the eigenmode
H3 with the forced mode C3 (figure 5.10i− j). The spatial wavelengths
are slightly larger than the corresponding forced modes, in accordance
with the fact that the frequencies are slightly smaller.

Finally, figure 5.15 completes the description of the eigenmodes by
a plot of their associated adjoint fields and structural sensitivity. The
adjoint modes (plots a, b) show that the region of maximum receptivity
to momentum forcing is localized near the leading edge of the hole. The
spatial oscillations develop in the upstream region. In striking contrast
with the direct mode structure, the receptivity decays rapidly both up-
stream and downstream of the aperture. The distribution of the adjoint
fields are also preserved over the range of Reynolds numbers investigated
here.

The sensitivity is displayed by plotting the quantity Sw corresponding
to the norm of the structural sensitivity tensor defined by eq. (5.16). The
sensitivity for both eigenmodes is essentially localized along the shear
layer detaching from the upstream corner of the hole. This confirms
that the region responsible for the instability mechanism (the wavemaker
region) is the boundary of the recirculation bubble formed within the
thickness of the plate.
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Figure 5.15: Structure of the adjoint eigenmodes (a, c) and structural sensi-
tivity fields (b, d) associated to the eigenmodes plotted in figure 5.14.

Interestingly, the structural sensitivity also reaches significant levels
in a second region located downstream of the aperture, especially for the
mode H3. Note that a similar feature was also observed for instabilities of
co-flowing jets (Canton et al., 2017). This result indicates that a positive
instability feedback enhancing the instability mechanism may also come
from the downstream region. This finding may be linked to the role of
wavepackets propagating along the shear layer bounding the jet on the
emergence of self-sustained oscillations (Schmidt et al., 2017).

5.7 Conclusions and perspectives

In this paper, we investigated the unsteady behaviour of a laminar
viscous jet through a circular aperture in a thick plate, using Linearised
Navier-Stokes Equations (LNSE). This method allows us to compute the
impedance of the flow, which provides useful information on the coupling
between the flow and the acoustic waves, and on the prediction of the
stability or instability of the system. Impedance calculations allowed
us to map the regime of existence of two kind of possible instabilities:
(i) a conditional instability associated to an overreflection of acoustic
waves, and (ii) a purely hydrodynamical instability associated to the
spontaneous self-oscillation related to sound radiation both upstream
and downstream. Both these instabilities can be predicted in a simple
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way by plotting the impedance in a Nyquist diagram.
The main outcome of our study is the parametric study of sec. 5.5.3

providing a cartography of the regions of instability as function of the
Reynolds number and the aspect ratio β of the hole. The zero-thickness
case (β = 0) is stable in accordance with previous studies. For β & 0.1 we
observe conditional instabilities in several frequency intervals, the pre-
ferred mode of conditional instability (C1) for short holes corresponds to
a Strouhal number St ≈ 0.25, a value for which experimental observa-
tions confirm the existence of an instability mechanism coupling the jet to
its acoustic environment. The purely hydrodynamical instability, on the
other hand, is observed for longer holes (β & 0.5) and higher Reynolds
numbers (Re & 1500). The preferred mode for β ≈ 1 is associated to a
higher value of the Strouhal number, namely St ≈ 0.65.

In addition to the characterization of both type of instabilities through
impedance calculations, we conducted a standard linear stability analysis
(based on the computation of eigenvalues) which confirmed the range of
existence of the purely hydrodynamical instability and allowed to char-
acterize the spatial structure of the eigenmodes. Downstream of the
aperture, the eigenmodes are characterized by a strong spatial amplifi-
cation due to the convectively unstable nature of the jet. The instability
mechanism is better revealed by inspecting the adjoint eigenmodes and
the adjoint-based structural sensitivity, which reveal that the core of the
instability mechanism lies in the shear layer detaching from the upstream
edge of the hole. This observation suggests that the recirculation region
existing within the thickness of the hole plays a key role.

By considering a locally incompressible flow and an idealized geom-
etry corresponding to a circular hole with sharp corners connecting two
domains of large extension, we have been able to focus on the hydrody-
namical aspects of the whistling jet phenomenon, and characterize them
without any precise reference of the acoustic environment. However, the
study shows that the most powerful instability is the conditional one
which requires the presence of an acoustic resonator. We thus plan to
continue this study considering more realistic situations involving a res-
onator. Three configurations are particularly interesting. The first is the
case where the upstream domain is a closed cavity acting as a Helmholtz
resonator. The second is the case where the hole is fitted at the outlet
of a long pipe. This configuration is called the Pfeifenton and has made
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the object of investigations in the 1950’s (see ?) which have to be re-
considered in view of the present model. The last one is the hole-tone
configuration corresponding to a jet passing through two successive holes.
NLSE has been recently applied to this case (Longobardi et al., 2018)
considering both a fully compressible approach and an "augmented in-
compressible approach" in which resonators are modelled by equivalent
impedances. Such an approach is a promising one for the whole class of
problems considered here, and more generally for the study of musical
instruments (Fabre et al., 2014b).

Aside from the characterization of the conditional instability in more
realistic geometries, future works should be conducted to confirm the
existence of the purely hydrodynamical instability in absence of acoustic
resonators. To our knowledge, the only reporting of a whistling jet in the
case of a hole connecting two open domains of large dimensions is the
work by Bouasse in the 1920’s. Experiments and numerical simulations
should be conducted in this range to confirm our predictions.

Finally, since our study points out the important role of the shear
layer formed at the upstream corner of the hole, future experimental
and numerical studies should pay special attention to the sharpness of
this corner. A preliminary study using LNSE and considering rounded
corners indeed reveals that even a very small radius of curvature notably
delays the onset of instabilities.
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Chapter 6

Studying the sound
production in the hole−tone
configuration using
compressible and
incompressible global
stability analyses

We study the jet passing through two successive circular holes, also
known as hole-tone configuration. Such flow is relevant to many appli-
cations like human whistling, wind instruments and tea kettles.

Recently, Fabre et al. (2014c) investigated this flow configuration
adopting a global stability approach, showing that the whistling is linked
to a purely incompressible instability of the jet between the two holes. In
this work, we focus our attention on a little different and more realistic
geometry, known as birdcall configuration, consisting into two successive
holes in curved thick plates.

Although the whistle is related to compressible phenomena, the in-
compressible approach can provide some useful information, at least in
the region near the hole, where, in some conditions, the flow can be con-
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sidered incompressible. We thus initially perform a purely incompress-
ible stability approach. We identify the critical conditions, the global
frequencies and discuss the structure of the resulting global eigenmodes.
In order to reintroduce and evaluate compressible effects, which can be
relevant into the cavity between the two holes, we model the cavity as a
Helmholtz resonator and couple it to the incompressible simulation. Fi-
nally, a full compressible stability analysis is performed in order to check
the accuracy of these simplified approaches in term of critical conditions,
global frequencies and structure of the modes.

6.1 Introduction

It is known that the flow passing through two circular holes in thick
plates, also known as hole−tone configuration, gives rise to a whistle
tone and this situation is encountered in various practical situations,
such as human whistling, wind instruments or tea kettles. Such kind
of problems attracted the interest of numerous acoustic researches such
as Helmholtz (1878), Rayleigh (1896) and Bouasse (1929), which in-
vestigated the problem majorly from an acoustic point of view, namely
without considering the existence of a mean flow and its dynamics. More
recently Henrywood and Agarwal (2013) investigated the hole−tone con-
figuration from an experimental point of view, identifying two regimes:
at low velocities the whistle frequency is selected by the cavity between
the two holes whereas at high speed regimes the jet dynamics is more
relevant in the frequency selection process. Recently, Fabre et al. (2014c)
studied this problem by using an incompressible analysis thanks to the
assumption of acoustically compact holes: they assumed the wavelength
of the sound wave greater than the characteristic length scales of the
cavity and holes. In particular, they used the global approach to com-
pute the stability characteristics of the flow system. They found that the
frequency selection is triggered by the hydrodynamic regime, although
the whistle is related to compressible phenomena.
In this paper we study a more realistic geometry, namely the birdcall
configuration (more details about the geometry are given in section 6.2).
We investigate the whistling properties of this flow configuration using a
global stability analysis. In particular, the main objectives of the paper
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can be summarized as follows:

(i) Characterization of the incompressible (hydrodynamic) mechanism;
we apply the classical global stability approach to the Navier−Stokes
system, showing the existence of various unstable branches.

(ii) Modeling the effect of compressibility by assuming the cavity as an
Helmholtz resonator; we impose a complex spring−like impedance
boundary condition on the upper wall of the cavity.

(iii) Validation of the model by using a full compressible stability anal-
ysis.

6.2 Geometry configuration and governing equa-
tions

x

r

5 0 5 10
0

1

2

3

4

Figure 6.1: Sketch of the birdcall configuration, frame of reference and defi-
nition of the main geometrical parameters. An example of computational mesh
is also reported in light gray. An example of the real configuration used in this
paper is depicted in the upper right corner of the figure.

The birdcall configuration is a more realistic evolution of the classical
hole−tone one. It consists in two successive holes in thick curved plates
with the two diameters of similar dimensions. Figure 6.1 shows the ge-
ometry considered in this paper and an example of the mesh used for the
computations. This geometry models a real whistle shown in the upper
right corner of figure 6.1. In the actual case, the first hole is greater than
the second one, whereas the thickness is considered the same for both
the plates. More details about the geometrical parameters of the birdcall
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Rcav Hcav Rh,1 Rh,2 e
3 2 0.5 0.42 0.1

Table 6.1: Geometrical parameters of the birdcall. The labels are referred
to the one reported in figure 6.1. All the quantities are non−dimensionalized
using the diameter of the first hole.

are reported in table 6.1. The birdcall connects two open spaces, whose
dimensions are taken sufficiently large in order to guarantee domain size
independent results. The mean flow moves from left to right driven by a
pressure difference and it is constrained to pass through the holes, form-
ing a recirculation region into the cavity and free shear layers into the
cavity and past the second hole.
Here, we present the theoretical framework for the compressible Navier−Stokes
equations: the incompressible formulation can be retrieved just taking
the limitMa→ 0. In particular, we assumed an ideal gas with a Prandtl
number Pr = µcp/κ equal to 0.7, where cp is the constant specific heat,
κ is the thermal conductivity and µ is the dynamic viscosity. Moreover,
we suppose that the viscosity and the thermal conductivity don’t change
with the temperature (Yamouni et al., 2013). Under these assumptions,
the compressible Navier−Stokes equations can be written as:

∂tρ+ u · ∇ρ+ ρ∇ · u = 0

ρ∂tu + ρu · ∇u +∇p− 1

Re
∇ · τ(u) = 0

ρ∂tT + ρu · ∇T + (γ − 1)ρT∇ · u =

= γ(γ − 1)
Ma2

Re
τ(u) : d(u)− γ

PrRe
∆2T

ρT − 1− γMa2p = 0


, (6.1)

where γ is the ratio of specific heats (here equal to 1.4), ρ and T are
respectively the density and the temperature, d(u) = 1

2

(
∇u +∇uT

)
is

the strain tensor and τ(u) = [2d(u)− 2
3(∇ · u)I] is the stress tensor per

unit viscosity. The velocity vector is defined as u(x, r, t) = (ux, ur) where
x and r represent the axial and radial coordinates whereas ux and ur are
respectively the axial and radial velocity components. The equations are
non dimensionalized using the diameter of the first hole as length scale,
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the mean velocity into the first hole Um as velocity scale and the internal
density ρin and temperature Text as density and temperature references;
the dimensionless pressure, following Fani et al. (2018), is defined as
p− pext
ρinU2

m

. As direct consequence of these choices, the Reynolds number

Re and Mach number Ma are defined as:

Re =
2Rh,1ρinUm

µ
=

2ṁ

µπRh,1
, Ma =

Um√
γRText

where R is the ideal gas constant and ṁ the mass flow rate across the first
hole. System (6.1) has to be completed by suitable boundary conditions.
In particular, we assume no−slip and adiabatic conditions on the solid
walls and appropriate conditions on the axis (see Fabre et al. (Under
review) for more details). The flow is forced to move through the holes
by a pressure jump; thus, we should impose a given pressure on both
inlet and outlet. Since the pressure jump is not known a priori, we
prefer to impose velocity at the inlet as in Fabre et al. (Under review).
In particular, we impose the asymptotical Stokes solution provided by
Harrison (1919) with the density equal to its reference value ρin. The
inlet mass flow rate is chosen in order to have a unitary mean velocity
into the first hole in the incompressible case; then, we use the same
mass flow rate also for the compressible simulation. On the other side,
we impose the reference value of the temperature Text and no stress
boundary conditions at the outlet. In this way, the pressure jump across
the two holes is automatically provided by the solution of the system
(6.1).

6.3 Global Stability Approach

The main hypothesis of this work is that sound emissions are related
to self−sustained oscillations caused by an instability of the flow. Here
we use the global stability approach to shade light on this mechanism
since it is largely applied in literature to explain self−sustained instabil-
ities (Citro et al., 2014) of various flow configurations, such ad jets and
wakes (Citro et al., 2016a). In order to tackle the problem, we decom-
pose the total flow field into a steady base flow and a time harmonic
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perturbation, namely:

q(x, t) = QB(x) + εq′(x)exp(σt), (6.2)

with ε << 1. Inserting the ansatz (6.2) into the Navier−Stokes equations
and linearizing, we obtain two sets of PDEs; in particular, we find that
the base flow is described by the steady state Navier−Stokes equations
whereas the perturbation is governed by the Linearized Navier−Stokes
Equations (LNSE). Imposing suitable boundary conditions to the LNSE,
we are left with a generalized eigenvalue problem. The arising leading
complex eigenvalue σ provides important information about the dynamic
evolution of the system: if <(σ) < 0 the system is asymptotically sta-
ble whereas <(σ) > 0 indicates a system asymptotically unstable. The
imaginary part of the eigenvalue, namely =(σ) = ω, is the frequency of
the global mode.

6.3.1 Incompressible analysis

In the limit of Ma = 0, the dynamic evolution of the flow is well
described by the incompressible Navier−Stokes equations. As mentioned
in the introduction, one of the our aim is to use the incompressible limit
(Ma = 0) to characterize the dynamics of the birdcall. In this case,
system (6.1) is reduced to the standard incompressible Navier−Stokes
equations. As described above, introducing the flow decomposition (6.2)
into the governing equations and linearizing, we obtain two problems.
The resulting eigenvalue problem can be written as follow:

∇ · u′ = 0

σu′ + (UB · ∇)u′ + (u′ · ∇)UB +∇p′ − 1

Re
∇2u′ = 0

 . (6.3)

6.3.2 Modeling the effect of compressibility of the cavity
in an "augmented incompressible approach"

The aim of this section is to include the effect of the compressibility
by using a simple model coupled to the incompressible equations. In
particular, the main hypothesis of this model is that the geometry is
acoustically compact, namely the main geometrical parameters of the
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birdcall (diameter and distance between the two holes) result to be much
smaller than the acoustic wavelength: under this hypothesis, in fact, we
can retain that the flow is locally incompressible, leading to a constant
value of the pressure inside the cavity (and also of the density since
we are in the incompressible regime). If the pressure is constant, we can
model the cavity as an Helmholtz resonator (Bonnefis, 2014): in this case
we take into account of the compressibility effect imposing a spring−like
impedance boundary condition on the upper wall of the cavity rather
than a no slip one. The variation of the mass into the cavity can be
written, in dimensional form, as (Fry, 2016):

∂tdm
d
cav = −ρdQdcav (6.4)

where md
cav = ρdV d

cav and Qdcav are respectively the mass of the fluid in-
side the cavity and the flow rate outgoing from the cavity, whereas V d

cav

is the volume of the cavity. Note that the superscript ””d refers to di-
mensional quantities. For an adiabatic and isoentropic thermodynamical
system, pressure and density are linked through the following relation:

pdcav = cd0
2
ρdcav, (6.5)

where cd0
2 is the speed of sound. Using the isoentropic condition (6.5)

in equation (6.4), applying the non dimensionalization of the variables,
and using the Fourier transform for the time derivative, the following
equation is obtained:

σpcav +
1

χc
Qcav = 0 with χc = VcavMa2. (6.6)

The coefficient χc can be defined as a compressibility parameter and it
is clear that the compressibility effects are influenced both by the Mach
number and the volume of the cavity. The unknown terms pcav and Qcav
are the augmented variables and they are linked with the incompressible
unknown terms through:

pcav =
1

Scav

∫
Scav

p′dS

Qcav =

∫
Scav

u′ · ndS

 , (6.7)
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where Scav is the surface of the upper wall of the cavity. Coupling the
equations (6.6) and (6.7) with the incompressible linearized Navier−Stokes
system (6.3), a generalized eigenvalue problem is obtained: its solution
provides information about the stability of the augmented system with
the modeled compressibility.

6.3.3 Full compressible approach

We also use the full compressible stability analysis in order to check
the accuracy of the results obtained with the two previously described
approaches.The system of equations governing the stability of the com-
pressible flow reads as:

σρ′ + U · ∇ρ′ + u′ · ∇ρB + ρB∇ · u′ + ρ′∇ ·U = 0

σρBu′ + ρ′U · ∇U + ρBu′ · ∇U + ρBU · ∇u′ +∇p′ − 1

Re
∇ · τ(u′) = 0

σρBT
′ + ρ′U · ∇TB + ρBu′ · ∇TB + ρBU · ∇T ′ +

+(γ − 1) (ρ′TB∇ ·U + ρBT
′∇ ·U + ρBTB∇ · u′) +

−γ(γ − 1)
Ma2

Re
[
τ(u′) : d(U) + τ(U) : d(u′)

]
− γ

PrRe
∆2T

′ = 0

ρ′TB + ρBT
′ − 1− γMa2p′ = 0


.

(6.8)

6.4 Numerical methods

We use the finite element method implemented in the open source
code FreeFem++ (Hecht, 2012) (http://www.freefem.org/) in order
to solve the various problems of this paper. The unknown terms have
been discretized using a triangular unstructured mesh, generated by
the built−in Bamg routine. We use classical Taylor−Hood elements
(P2 − P2 − P1) for the incompressible equations. On the other hand,
in the compressible case, we adopt P2 elements for the velocity and
P1 for the other variables, namely pressure, density and temperature.
After having obtained the variational formulations of the various prob-
lems, matrices of the arising discrete systems have been assembled by
FreeFem++ libraries. The nonlinear equations for the base flow have
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been solved using a classical Newton method: at each iterative step the
matrix inversion has been performed using the parallel MUMPS library.
As far as the stability problems are concerned, we first use ARPACK
library in order to localize the eigenvalues in the complex plain; then,
the leading ones have been followed using the inverse iteration algorithm
in order to have cheapest computations. In the compressible computa-
tion, in order to avoid the unphysical reflections of the acoustic waves
from the inflow and outflow boundaries, we use a sponge zone technique
combined with a grid stretching in order to assorbe and dissipate the
acoustic waves (for more details see Rowley et al. (Rowley et al., 2002)).

6.5 Results

6.5.1 Incompressible results
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Figure 6.2: (a) Growth Rate and (b) frequency of the most unstable modes
as function of Re. The stable region, namely <(σ) < 0 is filled in gray.

In this section, we report results obtained in the incompressible regime.
In particular, figure 6.2 shows the growth rates and the frequencies of the
most unstable eigenvalues as function of the Reynolds number. We find
the existence of four unstable branches quantized in frequency, which
is almost constant with the Reynolds number. At low Reynolds num-
bers, the dynamic is driven by the first branch (B1), with a frequency
of ω ≈ 3.3; as the Reynolds number increases, the growth rates of the
second (B2) and then with the third (B3) branch become dominant
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Figure 6.3: Real part of the pressure (�(p')) for the four unstable branches 
at the critical Reynolds number: (a) Re= 363, w,::::; 3.3; (b) Re= 406, w,::::; 5.4; 
(c) Re= 639, w,::::; 7.7; (cl) Re= 934, w,::::; 10.2. 

with frequencies respectively of w � 5.5 and w � 7.7. The fourth un
stable branch (B4), on the other hand, is characterized by a frequency 
of w � 10.2, and never becomes dominant in term of the growth rate 
respect to the other ones, almost in the range of Reynolds numbers in
vestigated. Figure 6.3 depicts the structure of the pressure for the four 
unstable branches at their critical Reynolds numbers. First, it is possi
ble to observe that at low frequencies the spatial structure of the global 
modes extends for a longer distance from the birdcall. Secondly, the four 
different unstable branches are characterized by very different structures 
between the two holes. The first branch is characterized by one pressure 
node between the two holes, the second one by two pressure nodes and 
so on: this means that there is a direct link between the frequency quan
tization and the pressure oscillations between the two holes (Matsuura 
and Nakano, 2012). 

6.5.2 Effect of compressibility 

Once characterized the incompressible dynamics, we investigate the 
effect of the compressibility of the flow. In particular, we compare the 
full compressible results with the one obtained using the Helmholtz res
onator augmented mode! described in section 6.3.2, in order to validate 
it and discuss its range of validity. Figure 6.4 depicts the growth rates 
and the frequencies obtained using the augmented mode! and the full 
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Figure 6.4: (a) Growth Rate and (b) frequency of the most unstable modes
as function of Re. The red lines are the incompressible results, the blue lines
are the model’s results whereas the green lines are the full compressible results,
both computed at Ma = 0.05. The first branch B1 is reported with full lines,
the second branch B2 with dashed lines, the third branch B3 with dash−dot
lines and the fourth branch B4 with dash−double dot lines. The stable region,
namely <(σ) < 0 is filled in gray.

compressible approach at Ma = 0.05, within the incompressible results:
even if the Mach number is very low, the compressibility seems to have
a considerable effect on such kind of flow configuration, as already ob-
served by Yamouni et al. (Yamouni et al., 2013). In particular, we can
see that compressibility has a destabilizing effect on the first two unsta-
ble branches, in opposition to what happens in the compressible wakes
(Meliga et al., 2010). Moreover, compressible effects tends to reduce the
frequency of the unstable modes and this effect is as strong as the fre-
quency gets larger. As can be noted from numerical results, the model
well predicts both the growth rates and the frequencies of the unstable
modes for the lower branches, namely the branch B1 and B2, whereas it
gives less accurate results for the higher ones. In figure 6.5 we report the
comparison between the model and compressible results at Ma = 0.1.
We can observe that we don’t find any unstable eigenvalues belonging
to the branch B1, almost in the range of Reynolds number investigated.
Moreover, as far as the other branches goes, it easy to note that the
model is not able to predict the results of the full compressible simula-
tions.
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Figure 6.5: Same of figure 6.4 but for Ma = 0.1. In these figures we omit the
incompressible results.

The prediction capability of the model is strictly related to the acoustic
wavelength:

λac =
2π

ω

1

Ma
. (6.9)

In fact, the main hypothesis of the model is the local incompressibility
of the flow, meaning that the acoustic wavelength must be greater than
the characteristic lengthscale of the considered geometry. However, from
equation (6.9) it is easy to verify that the acoustic wavelength decreases
when the Mach number and the frequency increase and this explains why
the model fails at high frequencies and larger Mach numbers. For the
geometry considered in this paper, the greater characteristic lengthscale
is the diameter of the cavity, namely Dcav = 2Rcav (see figure 6.1 and
table 6.1).Numerical simulations confirm that the model is able to pro-
vide accurate results until λac > 2Dcav = 12 for the geometry considered
here: if such relation does not hold, the acoustic waves are able to pen-
etrate into the cavity and the pressure cannot be considered constant
anymore contradicting the hypothesis of the model.
Finally, in figure 6.6, we depict the real part of the pressure of the

global modes computed using the compressible equations. In particular,
in figure 6.6(a) we report <(p′) for Re = 800,Ma = 0.05 and ω ≈ 4.95, a
case where the model returns good results, as it is possible to verify from
figure 6.4. In particular, it is possible to observe that the acoustic waves,
propagating into the far field as spherical waves, have a wavelength equal
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Figure 6.6: Real part of the pressure global modes <(p′) for: (a) Re = 800,
Ma = 0.05 and ω ≈ 4.95; (b) Re = 1400, Ma = 0.1 and ω ≈ 7.1

to λac ≈ 25, so that the relation of validity of the model is respected.
In figure 6.6(a) it is also shown the zoom of the near field, with a dif-
ferent color scale, showing the same pressure patterns already observed
for the incompressible mode and a constant pressure into the cavity. In
figure 6.6(b), instead, we report <(p′) for Re = 1400, Ma = 0.1 and
ω ≈ 7.1. In this case, the acoustic wavelength is equal to λac ≈ 8.85 and
the model is outside its range of validity, as it is possible to verify from
figure 6.5. Here, we can observe that pressure is not constant anymore
into the cavity. Moreover, also the acoustic directivity seems to change
when the acoustic wave is able to penetrate into the cavity, as largely
reviewed by Yamouni et al. (2013).
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6.5.3 An example of practical application

In this last paragraph we try to set up a real experiment, that is the
next step of our research. In the previous paragraph, we varied both
the Reynolds and the Mach numbers independently, in order to test the
augmented model and define its range of validity. Actually, if we want to
simulate a real situation, this is not true, since the Reynolds and Mach
numbers result to be linked, as shown by Fabre et al. (Ercoftac Sig. 33,
La certosa di Pontignano (Siena). In particular, the Mach number results
to be proportional to the Reynolds number:

Ma =
Udm
cd0

=
νd

Dd
h,1c

d
0︸ ︷︷ ︸

Kp

Re. (6.10)

In order to simulate the experiment, we use the measures of a real bird-
call depicted in the upper right corner of figure 6.1. In particular, the
dimensional diameter of the first hole results to be equal to Dd

h,1 = 3mm

whereas the air temperature is hypothesized to be T d = 300K: the
other properties of the air have been obtained from a standard table,
leading to a value of Kp ≈ 1.5 · 10−5. The range of Reynolds number
investigated here is Re ∈ [300− 1650] leading to a range of Mach num-
ber Ma ∈ [0.004 − 0.025]. The use of the model rather than the full
compressible simulation is here justified, at least for this specific geom-
etry, by three main statements: first, the higher Mach number is small
enough to have a good accuracy of the model, as demonstrated in the
previous section; secondly, the full compressible simulation at very low
Mach numbers can result very expansive since the acoustic wavelength
grows, requiring very big domains with very long sponge zones; finally,
the model has a very fast computation respect to the full compressible
case, since we don’t need sponge regions.
In figure 6.7 we report the comparison between the incompressible re-

sults and the one obtained with the augmented model. One can note
that for the first two lower branches results are very slowly affected by
compressibility, both in term of growth rate and frequency and the in-
compressible approximation is able to give good results. On the other
hand, the effects of the compressibility are larger for the branches three
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Figure 6.7: (a) Growth Rate and (b) frequency of the most unstable modes
as function of Re and Ma. The legend is the same of figure 6.2: the full sym-
bols with solid lines are the incompressible results whereas the empty symbols
connected by dashed lines are the compressible augmented ones. The stable
region, namely <(σ) < 0 is filled in gray.

and four. However, for all the unstable branches, we can observe two
common features: (1) the compressibility has a destabilizing effect for
this flow configuration; (2) the frequency is usually smaller than it is in
the incompressible case. This effect is more enhanced when the Reynolds
(and consequently the Mach number) increases.

6.6 Conclusions

In this paper we investigate the whistling properties of a birdcall
using the global stability approach. In particular, we first use a full
incompressible approach in order to characterize the dynamic of such
kind of flow configuration. We find four unstable branches which are
quantized in frequency. The associate pressure field of the leading global
modes shows pressure oscillations between the two holes and such pat-
tern is conserved along each branch: in fact the first branch has only
one pressure node, the second one is characterized by two pressure nodes
and so on.
Once the incompressible dynamic has been characterized, we have con-
sidered the effect of the flow compressibility. In particular, we have first
modeled the cavity between the two holes as an Helmholtz resonator.
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Then, we have performed a full compressible stability analysis in order
to test the model and figure out the range of validity of both the incom-
pressible approximation and the augmented model. We have found that
the compressibility has an important effect on the stability of such kind
of system, in term of both growth rate and frequency: in general, the
compressibility reduces the frequency of the global modes, for almost all
low Mach numbers investigated.
Numerical results have shown that the model is able to give accurate
results only when the acoustic wavelength is greater that two cavity di-
ameters, namely λac > 2Dcav, almost for the configuration investigated
in this paper.
The last part of the paper, finally, is about a practical application: in
fact we have simulated a real experiment, in which the Reynolds and
Mach number are proportional through a parameter that is function of
the real geometry and air conditions. We have considered the effect of
the compressibility using the model since the relation of validity is re-
spected. We have found that, in a real experiment, the incompressible
approximation gives good results for low Reynolds (and Mach) numbers
and low frequencies, whereas the effect of compressibility is relevant at
higher frequencies and Reynolds (and Mach) numbers.



Chapter 7

Concluding remarks

In this final section we summarize the main conclusions of this thesis.
However, more detailed conclusions can be found at the end of chapters
3, 4, 5 and 6.

The main topic of this thesis is the application of the linear stability
analysis in order to investigate the dynamical properties of complex flow
systems. Linear stability theory consists to separate the flow field in a
steady part, solution of the steady state Navier−Stokes equations, and
an unsteady perturbation that can be considered harmonic. Thus, the
perturbation is supposed to be of small amplitude so that the equations
governing the perturbation can be linearized, leading to the Linearized
Navier−Stokes equations. The study of such kind of equations allowed
us to investigate the stability characteristics of different flow systems.
Moreover, we introduce also the adjoint equations, an other very powerful
tool in stability analysis, that allowed us to investigate the nature of the
instabilities.

In order to tackle the various problems encountered in this thesis, we
use the open source code FreeFem++ which turned out to be very ver-
satile and adaptable. Moreover, some of the results obtained in chapter
5 have been obtained using StabFem (Fabre et al., 2018c), a powerful
and practical interface between FreeFem++ and Matlab (that is more
user friendly), developed by David Fabre in collaboration with many
other colleagues; moreover, the source codes are available at the follow-
ing github link: https://github.com/erbafdavid/StabFem.
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The first problem investigated in this thesis is the stability of the
flow in a micro T−mixer with superhydrophobic surfaces on the outlet
channel. The presence of such kind of surface has been taken into ac-
count using the Navier slip boundary condition. We demonstrate that
the presence of such kind of surfaces has a destabilizing effect on the
flow. In particular, the flow encounter a first bidimensional pitchfork
bifurcation that drives the base flow from a symmetric steady condition
to a new stable asymmetric steady one. Then, increasing the Reynolds
number, the flow encounter a three dimensional bifurcation that is steady
in case of smooth wall and unsteady when a superhydrophobic surface is
considered, leading to an improvement of the mixing properties of such
kind of devices.

The Linearized Navier−Stokes equations have been used to study
the acoustic and hydrodynamical properties of the flow passing through
a circular aperture as well. This situation is encountered in many prac-
tical and industrial applications as for example the injectors, the cooling
holes of the gas turbine or wind instruments. The arising main flow
is characterized by a jet with a diameter shorted than the one of the
hole, due to the vena contracta phenomenon, and a recirculation bubble
below the hole, when the thickness is enough large. When subject to
acoustic forcing, the jet can act both as acoustic dissipator and acoustic
amplifier, generating, in the latter case, a strong whistle with a precise
frequency. We first consider the simplest situation of the hole in a thin
plate subject to harmonic forcing, generated for example by an acoustic
field. This is a classical problem already considered by many authors
as for example Rayleigh (1896) and Howe (1979) in the inviscid regime.
In particular, these authors found that in case of zero thickness hole,
the jet acts as an energy sink. the use of the Linearized Navier−Stokes
equations, however, allowed us to rigorously introduce the effect of the
viscosity. In order to study the acoustic and stability characteristic of
such kind of flow, we introduce the concept of acoustic impedance Z, a
key quantity defined as the ratio between the pressure jump and the flow
rate across the hole. In particular, its real part is a resistance ZR and
it is related to dissipative effects whereas its imaginary part ZI is linked
to inertial effects and so it is a reactance. We calculate the impedance
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varying the Reynolds number and the frequency of the forcing term and
we found that this flow system is always stable also in the viscous case,
although results are quite different from the inviscid ones. However, the
numerical resolution of the Linearized Navier−Stokes for such kind of
flow is notoriously difficult since they are strongly convectively unstable,
above all when the Reynolds number is high. In order to overcome to
this problem, we introduce a technique based on the analytical contin-
uation of the axial coordinate in the complex plane, where the strong
oscillations of the perturbation are absorbed; this technique allowed us
to obtain suitable results up to Re = 105.

Using the same numerical technique, we investigate the situation of
the flow passing through a hole with a non zero thickness. In particular,
we identify three main regimes as function of the signs of the real and
imaginary part of the impedance. First, if ZR and ZI are both positive,
the flow is stable. Secondly, the situation in which both ZR and ZI are
negative is called conditional stability: in fact, although the jet acts as
an energy source (ZR < 0), the negative inertial effects don’t allow the
existence of an instability of the purely hydrodynamical system. How-
ever, the system can become unstable if coupled with an outer system
able to change the sign of the reactance, as for example an acoustic res-
onator. Finally, if ZR < 0 and ZI > 0 the purely hydrodynamical system
results to be unstable. We conduct a full parametric analysis varying the
Reynolds number, the forcing frequency and the ratio between the length
and the diameter of the hole β, identifying three conditional stable and
two purely hydrodynamical unstable branches. In order to verify this
last results, we use the classical global stability approach, finding a very
good agreement between the impedance and classical stability results.
Finally, we calculate the adjoint fields and the structural sensitivity for
the unstable branches: we found that the instability core is located along
the shear layer detaching from the upstream corner of the hole.

Finally, in the last part of this work, we investigate the whistling
properties of a birdcall, a more realistic geometry constituted by two
successive holes in thick plates, using the global stability approach. In
particular, we first characterize the incompressible regime in term of
unstable branches and spatial structure of the global modes. Then, under
the hypothesis of acoustic compactness geometry, we introduce the effect
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of compressibility using a simplified augmented model considering the
cavity between the two holes a Helmholtz resonator (constant pressure
level). Finally, we perform a full compressible stability analysis using
the compressible Navier−Stokes equations in order to check the validity
of both the incompressible and augmented model. Numerical results
have shown that the model is able to give accurate results only when
the acoustic wavelength is greater that two cavity diameters, namely
λac > 2Dcav, almost for the configuration investigated in this paper.
However, in the last part we try to simulate a real experiment in which
Reynolds and Mach are not independent parameters but they are linked
by a precise relation once the real geometry is fixed. We have found that,
in a real experiment, the incompressible approximation gives good results
for low Reynolds (and Mach) numbers and low frequencies, whereas the
effect of compressibility is relevant at higher frequencies and Reynolds
(and Mach) numbers.
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Chapter 8

Estratto in lingua italiana

8.1 Introduzione

Il presente lavoro di tesi è basato sull’applicazione della teoria della
stabilità lineare alle equazioni di Navier−Stokes per spiegare fenomeni
atipici in sistemi fluidodinamici complessi. La teoria della stabilità lin-
eare è largamente utilizzata nel campo della fluidodinamica per investi-
gare fenomeni quali la transizione laminare−turbolento dello strato lim-
ite, rottura di simmetrie, oscillazioni autosostenute, l’occorrenza di bi-
forcazioni etc... Inoltre, usando le proprietà degli autovettori diretti e ag-
giunti (Luchini and Bottaro, 2014), è stato possibile studiare la sensitiv-
ità dei flussi alle instabilità, al fine di localizzare il nucleo dell’instabilità
e chiarirne i meccansmi (Giannetti and Luchini, 2007).
I temi affrontati in questa tesi possono essere riassunti come segue:

• Stabilità del flusso in un micro canale a T con superfici superidro-
fobiche;

• Calcolo dell’impedenza acoustica per un flusso oscillante passante
per un foro circolare a spessore nullo;

• Impedenza acustica e stabilità del flusso passante per un foro cir-
colare con spessore non nullo;

• Studio del suono emesso da un fischietto per il richiamo di uccelli:
confronto tra approccio comprimibile e incomprimibile.
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In questo estratto verranno presentati i principali risultati per ognuna
delle tematiche affrontate. La teoria generale e le equazioni di governo
sono state omesse; tuttavia, quando necessario, saranno fatti alcuni richi-
ami toerici.
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8.2 Stabilità e sensitività del flusso in un canale
a T con superfici superidrofobiche

La prima problematica affrontata in questa tesi riguarda la stabilità
di flussi su superfici superidrofobiche; un famoso esempio di superficie su-
peridrofobica è la foglia di loto. Tali superfici sono costituite da scalana-
ture in cui è imprigionata aria: grazie a questa proprietà l’interazione
tra la parete solida e il fluido che vi scorre sopra è ridotta, portando,
per esempio, alla riduzione dell’attrito viscoso. Le superfici superidro-
fobiche sono largamente utilizzare in macro canali turbolenti al fine di
ridurre l’attrito mentre, nei confronti della stabilità, esse risultano essere
effettive solo in micro−canali (Rothstein, 2010). L’obiettivo principale
di questo lavoro è lo studio della stabilità di un flusso in un canale a T
dotato di superfici superidrofobiche. In particolare, uno studio paramet-
rico è stato fatto al variare delle proprietà della superficie, ovvero altezza
delle scalanature e angolo di orientazione rispetto al gradiente principale
di pressione; infine, i risultati sono stati confrontati con quelli ottenuti
considerando le superifici del canale liscie.
La superficie superidrofobica può essere rappresentata, dal punto di vista
matematico, tramite la condizione di scorrimento parziale teorizzata da
Navier (1823); nella sua forma più generale essa è scritta come:

U ‖|Γshs
= Λ

∂U ‖
∂n

∣∣∣
Γshs

(8.1)

dove U‖ è il vettore velocità costituito dalle componenti parallele alla
parete e Λ è il tensore di slip definito come:

Λ = Rθ

[
λ‖ 0
0 λ⊥

]
RT
θ , Rθ =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(8.2)

dove θ è l’angolo formato tra le scalanature e la direzione del grandiente
di pressione nel canale, λ‖ and λ⊥ sono rispettivamente le lunghezze di
slip in direzione parallela e ortogonale al flusso e Rθ è la matrice di ro-
tazione. Tale condizione è stata applicata sia al calcolo del flusso base
che alla perturbazione. In particolare, sono state considerate superifici
superidrofobiche anisotropiche, per cui vale la relazione λ‖ = 2λ⊥.
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Figure 8.1: Curva di stabilità neutra al variare di λ e θ.

In figura 8.1 è risportata la curva di stabilità neutra del flusso al vari-
are della lunghezza di slip e dell’angolo tra le scalanture ed il gradiente
di pressione; in particolare, la condizione di parete liscia si verifica per
λ = 0. La presenza della superficie superidrofobica ha un effetto desta-
bilizzante sul flusso rispetto al caso di parete liscia: infatti il numeri di
Reynolds critico risulta essere più basso all’ aumentare della lunghezza
di scorrimento; inoltre, a parità di lunghezza di scorrimento, il flusso
risulta essere più instabile per scalanature parallele al gradiente di pres-
sione (θ = 0) piuttosto che per scalanature ortogonali (θ = 90). Infine,
la frequenza degli autovalori instabili risulta essere nulla, ovvero vi è una
rottura della simmetria del flusso che però trova un’altra condizione di
stabilità stazionaria asimmetrica (vedi figure 8.2), senza l’insorgere di
oscillazioni, ovvero il flusso attraversa una biforcazione di tipo pitchfork
supercritica.

Una volta superata la prima biforcazione, il flusso asimmetrico rapp-
resentato in figure 8.2(b) rimane stabile fino a quando non si raggiunge
il numero di Reynolds critico della seconda instabilità. Le curve neutre
della seconda instabilità sono riportate in figure 8.3. In particolare, il
trend generale rimane lo stesso di quello discusso per la prima instabilità.
Tuttavia, due differenze sostanziali possono essere osservate in questo
caso. La prima è che l’instabilità è tridimensionale, ovvero caratteriz-
zata da un certo numero d’onda trasversale k diverso da zero. Inoltre,
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Figure 8.2: Campo di velocità a Re=500: (a) flusso stazionario simmetrico
calcolato per λ = 0 e θ = 0◦; (b) flusso asimmetrico supercritico ottenuto
per λ = 0.02 e θ = 45◦. In entrambe le figure, la linea bianca rappresenta il
contorno della bolla di ricircolo.
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Figure 8.3: (a) Numero di Reynolds critico della seconda instabilità funzione
di λ e θ. (b) Tasso di crescita dei disturbi funzione di k and Re per λ = 0.02
e θ = 15◦. (c) Numero d’onda trasversale k e (d) frequenza ω nelle condizioni
critiche funzione di λ and θ. Per θ = 0◦ e 90◦ i modi risultano essere stazionari.
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tranne per i casi θ = 0, 90, l’instabilità risulta essere instazionaria: la fre-
quenza aumenta all’aumentare della lunghezza di slip ed è massima per
θ = 45. Questo fenomento è molto importante poichè l’instazionarietà
indotta dalla presenza della superficie superidrofobica favorisce il misce-
lamento del fluido all’interno del canale d’uscita. Infine, sfruttando le
proprietà degli autovettori diretti u e aggiunti u†, è stata calcolata la
sensitività strutturale sia della prima che della seconda instabilità come
la norma del seguente tensore:

S(x0, y0) =
u†(x0, y0)⊗ u(x0, y0)∫∫

Ω
(u† · u)dΩ

, (8.3)

dove Ω è l’intero dominio di integrazione.
La mappa spaziale della sensitività strutturale è riportata in figure

8.4 per la prima instabilità (figure (a) e (b)) e per la seconda instabil-
ità (figure (c) e (d)), sia nel caso di pareti liscie (colonna di sinistra)
che con pareti dotate di superfici superidrofobiche (colonna di destra).
Per quanto riguarda la prima instabilità, è possibile notare che il nu-
cleo dell’instabilità (il massimo) è localiizato sul bordo della bolla ricir-
colo, mentre per quanto riguarda la seconda instabilità esso è locallizato
all’interno della bolla di ricircolo più lunga. Infine, è possibile notare che
la presenza della superficie superidrofobica non cambia il meccanismo
dell’instabilità.
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(a) (b)

(c) (d)

Figure 8.4: Sensitività strutturale per (a) Re=520 senza superfici superidro-
fobiche, (b) Re=455, λ = 0.03, θ = 60◦ and k = 0, (c) Re=754 senza superfici
superidrofobiche e (b) Re=639, λ = 0.03, θ = 60◦ e k = 1.7.
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(x, r, t)

Figure 8.5: Flusso oscillante passante attraverso un foro circolare.

8.3 Calcolo dell’ impedenza acustica e stabilità
del flusso passante per un foro circolare

Il flusso passante attraverso un foro è una situazione che si incontra
in numerosi applicazioni reali, come per esempio i sistemi di raffred-
damento delle turbine, gli iniettori o gli strumenti musicali. Esso può
talvolta generare un forte e caratteristico fischio ma, tuttavia, le cause e
i meccanismi che sono alla base della generazione di tale fischio non sono
ancora ben noti.
In questo paragrafo ci proponiamo di caratterizzare le proprietà acus-

tiche e fluidodinamiche di un flusso viscoso passante attraverso un foro
circolare soggetto ad un forzamento armonico, per esempio un campo
acustico: la configurazione utilizzata è riportata in figura 8.5. E’ possi-
bile definire un parametro caratteristico del foro come il rapporto tra la
sua lunghezza e il suo diametro, ovvero β = Lh/2Rh. Il foro mette in
comunicazione due spazi semi−infiniti; l’inlet si trova a una certa pres-
sione pin mentre l’outlet si trova ad un livello di pressione differente pout,
eventualmente uguale a zero. Considerando il regime armonico, è pos-
sibile decomporre il flusso totale in una parte stazionaria ed una parte
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Figure 8.6: (a) Velocita assiale e (b) campo di vorticita de! flusso base a 
Re = 1500 e /3 = 1. 

oscillante, ovvero: 

-i.wt e + c.c., (8.4) 

dove s e l'ampiezza della perturbazione e w E lR e la frequenza. 11 flusso 
base e caratterizzato da un getto che si stacca dal bordo del foro. 11 
getto, a sua volta, ha un raggio minore di quello del foro stesso per via 
del fenomeno della vena contracta. Inoltre, se il parametro (3 none nullo, 
vi e la formazione di una bolla di ricircolo all'interno del foro. Un es
empio di soluzione per il flusso base per Re = 1500 e (3 = 1 e riportata 
in figura 8.6 in termini di velocita assiale (parte superiore) e vorticita 
(parte inferiore ). E' possibile notare come il flusso, a monte del foro, 
converga radialmente, per poi formare, alcuni diametri a valle del foto, 
un getto parallelo all'asse. La vorticita, invece, e tutta conventrata sul 
bordo della bolla di ricircolo e raggiunge il suo massimo vicino al bordo 
del foro. La figura 8.7 mostra, invece, la struttura della zona di ricircolo 
all'aumentare del numero di Reynolds. A Re = 800, la zona di ricircolo 
e piccola e concentrata vicino al bordo sinistro del foro. All'aumentare 
del numero di Reynolds, invece, essa si allunga fino a raggiungere una 
lunghezza maggiore del foro stesso, aprendosi verso l'esterno. 

Per quanto riguarda, invece, la parte instazionaria, e possibile definire 
una grandezza chiave, ovvero l'impedenza acustica, come il rapporto tra 
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Figure 8.7: Velocita assiale de! f:lusso base a /3 = 1 e: (a) Re = 800, (b) 
Re = 1200, ( c) Re = 1600, ( d) Re = 2000. La struttura della zona di ricircolo 
e evidenziata dalle linee di corrente. 

il salto di pressione e il flusso netto attraverso il foro: 

I I 

Z Pin - Pout 
h

= 

q' 
(8.5) 

L'impedenza definita nell'equazione (8.5) e, nel caso generale, una quan
tita complessa, ovvero zh = zR+iZJ. La sua parte real ZR e rappresenta 
la resistenza mentre la sua parte immaginaria ZJ tiene conto degli effetti 
di inerzia del sistema ed e quindi una reattanza. E' possibile dimostrare 
che ZR > 0 e direttamente colloegato ad un assorbimento di potenza, 
ovvero il sistema dinamico si comporta come una resistenza; al contrario 
ZR < 0 e associato a generazione di potenza. Tuttavia, quest'ultima 
condizione non e direttamente collegata all'instabilita del sistema stesso 
( Conciauro and Puglisi, 1981), ma piuttosto significa che il sistema e 
attivo. Un valore negativo della resistenza e condizione necessaria ma 
non sufficiente per avere un'instabilita del sistema. Questa situazione 
e anche nota come stabilita condizionale poiche l'accoppiamento con un 
sistema esterno (per esempio un risonatore acustico) potrebbe generare 
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Re = 3000 (– · · –).

instabilità e presenza di oscillazioni autosostenute. Ciò che determina,
invece, l’instabilità di un sistema attivo è il segno della reattanza, poichè
è collegata agli effetti inerziali. In particolare, per un sistema attivo
(ovvero con ZR < 0), se ZI > 0 il sistema risulta instabile, implicando
l’esistenza di oscillazioni autosostenute e generazione sonora. Infine, la
condizione di stabilità marginale, si ha se Zh = 0.
Il calcolo dell’impedenza si basa sulla risoluzione nmerica delle equazioni
linearizzate di Navier−Stokes con un forzaggio armonico all’ ingresso del
dominio. Tuttavia, la soluzione di tali equazioni può creare problemi
numerici poichè la perturbazione risulta essere convettivamente molt in-
stabile e il suo valore può facilmente diventare maggiore di 1015 (preci-
sione macchina), portando a problemi di arrotorndamento e quindi ad
una stima sbagliata del salto di pressione. PEr ovviare questo problema
è stata sviluppata una tecnica basata sulla mappatura nel piano com-
plesso della coordinata assiale: in questo modo le oscillazioni vengono
assorbite nel piano complesso, portando quindi ad una corretta valu-
tazione del salto di pressione fino a Re ≈ 105. Per magiori dettagli e per
l’espressione matematica della funzione di mapping si rimanda a Fabre
et al. (2018b). Si riportano, in figura 8.8, le impedenze calcolare per il
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foro a spessore nullo (β = 0) al variare del numero di Reynolds. Come
è possibile vedere, tale configurazione risulta essere sempre stabile e i
risultati tendono a collassare in una sola curva per Re & 1500.
All’aumentare dello spesore del foro (e quindi di β), invece, emergono
situazioni più interessanti. Si riportano, in figura 8.9, le impedenze in
funzione della frequenza di oscillazione della perturbazione (colonna di
sinistra) ed i relativi diagrammi di Nyquist (colonna di destra). La re-
sistenza e la reattanza per Re = 800 risultano essere sempre positive,
per cui il sistema è stabile. A Re = 1200, invece, vi sono due zone di sta-
bilità condizionata, attorno a Ω ≈ 2.5 e Ω ≈ 4.7. A Re = 1600, invece,
il sistema incontra la prima regione di instabilità idrodinamica, attorno
ad Ω ≈ 2.07. E’ possibile osservare, per questo caso, che il rispettivo
diagramma di Nyquist ha fatto un giro attorno all’origine degli assi. In-
fine, per Re = 2000, vi sono 4 zone di stabilità condizionata e due di
instabilità idrodinamica, per Ω ≈ 2.2 e Ω ≈ 4.5.

Infine, nelle figure 8.10 e 8.11, si riporta l’analisi parametrica com-
pleta al variare di β e Re. In particolare, è possibile individuare 4 rami
condizionalmente stabili e 2 rami instabili. Tutte le curve in figura 8.10
presentano un minimo per un certo β che cresce all’aumentare del nu-
mero del ramo considerato. Inoltre, è possibile notarte che per tutti i β la
condizione di stabilità condizionale insorge sempre prima dell’instabilità
idrodinamica. In figura 8.11 si riportano le frequenze corrispondenti alle
curve riportate in figura 8.10. E’ interessante notare che se si una la
lunghezza del foro (figura (c)) piuttosto che il suo raggio (figura (b))
per adimensionalizzare la frequenza, i vari rami sono caratterizzati da
frequenze quasi costanti. Ciò significa che le frequenze di oscillazione del
sistema sono inversamente proporzionali allo spessore del foro, come già
osservato da Bouasse (1929).

Al fine di verificare i risultati ottenuti tramite l’analisi delle impe-
denze in termini di instabilità iderodinamica, è stata condotta un’analisi
di stabilità globale. Si riporta, in figura 8.12, il confronto tra i risultati
ottenuti dall’analisi di stabilità globale (linee piene) e dalle impedenze
(linee tratteggiate). E’ possibile osservare che, per quanto riguarda il
tasso di crescita dei disturbi, i due metodi restituiscono esattamente gli
stessi risultati al punto neutro (σ = 0) e divergono invece all’allontanarsi
dal punto neutro stesso. Per quanto riguarda le frequenze, invece, i due
metodi restituiscono esattamente gli stessi valori.
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Figure 8.12: (a) Tasso di crescita dei disutrbi σ e (b) frequenza ω funzione
di Re per il foro a β = 1. ottenuti dall’analisi di stabilità globale (linee piene)
e dall’ analisi delle impedenze (linee tratteggiate).
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Figure 8.13: Modi diretti (a & b), modi aggiunti (c & d) e sensitività strut-
turale (e & f) fper gli autovalori instabili a Re = 1500 (colonna di sinistra) e
Re = 1700 (colonna di destra). Le linee nere nelle figure (e) ed (f) rappresen-
tano il contorno della bolla di riciricolo.

Infine, si riportano in figura 8.13 i modi diretti (figure (a) e (b)) e i modi
aggiunti (figure (c) e (d)) ottenuti per i modi instabili rispettivamente a
Re = 1500 e Re = 1700. Il modo diretto propaga a valle del foro men-
tre quello aggiunto propaga a monte. In particolare, quest’ultimo ha un
massimo vicino al bordo sinistro del foro, che è quindi la zona del flusso
più ricettiva ad un forzamento esterno.
Infine, applicando l’equazione (8.3), è stata calcolata la sensitività strut-
turale per i due casi considerati (figure (e) ed (f)). Per entrami i casi la
sensitività strutturale risulta essere massima sul bordo della bolla di ricir-
colo, confermando che l’instabilità è strettamente collegata all’esistenza
della zona di ricircolo stesso.
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8.4 Studio del suono prodotto da un fischietto
per il richiamo di uccelli: confronto tra ap-
proccio comprimibile ed incomprimibile
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Figure 8.14: Configurazione generale studiata in questo paragrafo e
definizione dei parametri geometrici.

L’ultima parte di questa tesi riguarda lo studio di una configurazione
più realistica, ovvero un fischietto utilizzato per il richiamo di uccelli,
rappresentato in figura 8.14. Il flusso passa attraverso due fori circo-
lari consecutivi situati in pareti curve; tra i due fori vi è una cavità.
L’obiettivo principale di questo paragrafo è la comprensione, tramite
l’analisi di stabilità globale, del suono prodotto dal fischietto. In par-
ticolare, in primo luogo è stato utilizzato un approccio incomprimibile
per identificare e caratterizzare i vari rami instabili. In secondo luogo,
invece, l’effetto della comprimibilità è stato modellato considerando la
cavità tra i due fori come un risonatore di Helmholtz, nella condione di
basso numeri di Mach. L’ipotesi principale di questo modello è quella
della compattezza acustica della geometria, ovvero che il numero d’onda
acustico λac = 2π/ωMa deve essere molto maggiore dei parametri ge-
ometrici che caratterizzano la geometria stessa, qauli diamtri o dimen-
sioni della cavità. Sotto quest’ipotesi è possibile considerare la cavità a
pressione (e densità costante) e quindi modellarla come un risonatore di
Helmholtz: l’effetto della comprimibilità del fluido è incluso sostituendo
una condizione al contorno sull’impedenza sulla parete superiore della
cavità piuttosto che una classica condizione di non penetrazione (Bon-
nefis, 2014). Considerando, all’interno della cavità, il flusso isoentropico,
dopo vari passaggi (vedi Fry (2016)), è possibile scrivere la relazione tra
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pressione della cavità e portata volumetrica come segue:

∂tpcav +
1

χc
Qcav = 0 with χc = VcavMa2, (8.6)

dove il coefficiente χc è il parametro di comprimibilità, funzione del nu-
meri di Mach e del volume effettivo della cavità.
La pressione e la portata volumetrica, invece, sono definite come:

pcav =
1

Scav

∫
Scav

p′dS

Qcav =

∫
Scav

u′ · ndS

 , (8.7)

dove Scav è la superficie laterale della cavità. Le equazioni (8.6) e (8.7)
vengono poi accoppiate alle equazioni di Navier−Stokes incomprimibili,
a cui poi è applicata la teoria della stabilità globale per il calcolo della
stabilità.
Infine, sono state considerate le equazioni di Navier−Stokes comprimibili
per discutere la validità del suddetto modello. In figura (8.15) si ripor-
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Figure 8.15: (a) Tasso di crescita dei disturbi e (b) frequenza dei modi insta-
bili al variare del numero di Reynolds. Le linee rosse sono i risultati ottenuti
usando le equazioni incomprimibili,le linee blu sono i risultati ottenuti utiliz-
zando il modello mentre le linee verdi sono i risultati ottenuti utilizzando le
equazioni comprimibili, entrambe per Ma = 0.05.

tano i risultati ottenuti per Ma = 0.05 insieme ai risultati incomprimi-
bili. Sebbene il numero di mach è relativamente basso, la comprimibilità
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sembra avere un effetto notevole su questa configurazione, come già os-
servato da Yamouni et al. (2013). In particolare, la comprimibilità ha
un effetto destabilizzante per i primi due rami instabili, cioè quelli a fre-
quenza ω ≈ 3 wd ω ≈ 4.5. Inoltre, la comprimibilità tende ad abbassare
la frequenza dei modi globali. I risultati ottenuti utilizzando il modello
sono, per questo numero di Mach e questa particolare geometria, molto
buoni rispetto a quelli ottenuti con le equazioni comprimibili, sopratutto
per basse frequenze. In figura 8.16, invece, si riportano i risultati ottenuti
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Figure 8.16: Lo stesso della figura 8.15 ma per Ma = 0.1. In questo caso i
risultati incomprimibili sono stati omessi.

per Ma = 0.1. Non si osservano modi instabili appartenenti al primo
ramo, perlomeno per i numeri di Reynolds considerati. Inoltre, è facile
notare che il modello non è in grado di predire i risultati ottenuti tramite
le equazioni comprimibili. L’ipotesi fondamentale del modello è che il
numero d’onda acustico λac deve essere molto maggiore delle caratteris-
tiche fondamentali della geometria o, più precisamente, della più grande
di esse. In questo caso, la dimensione geometria più grande è il diametro
della cavità Dcav = 2Rcav. Le simulazioni numeriche mostrano che il
modello funziona fin quando λac > 2Dcav = 12 per la geometria consid-
erata qui. Se tale relazione non è rispettata, l’onda acustica è in grado
di penetrare nella cavità e la pressione non può più esssere considerata
costante, contraddicendo una delle ipotesi del modello.
Infine, si riportano in figura 6.6 la parte reale della pressione del modo
globale ottenuto simulando le equazioni comprimibili; in particolare, in
figura 6.6(a) si riporta il modo globale ottenuto per Re = 800,Ma = 0.05
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Figure 8.17: RParte reale della pressione del modo globale <(p′) per: (a)
Re = 800, Ma = 0.05 e ω ≈ 4.95; (b) Re = 1400, Ma = 0.1 e ω ≈ 7.1

e ω = 4.95, un caso in cui il modello è in grado di predire i risultati com-
primibili: infatti la lunghezza dell’onda acustica, in questo caso, è pari
a λac ≈ 25: l’ingrandimento riportato nella medesima figura della zona
vicino al foro mostra che la pressione risulta essere costante nella cavità.
In figura 6.6(b) si riporta, invece, il modo globale ottenuto per Re =
1400, Ma = 0.1 e ω = 7.1, un caso in cui il modello non è in grado di
predire i risultati comprimibili. In questo caso la lunghezza dell’onda
acustica è pari a λac ≈ 8.85, ovvero fuori dal range di validità del mod-
ello. Da un ingrandimento fatto nella zona della cavità si nota che la
pressione, in questo caso, non è costante ma si nota una sorta di dis-
continuità causata dalla penetrazione dell’onda acustica all’interno della
cavità.
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Chapter 9

Résumé en françias

9.1 Introduction

Le travail de thèse que je presente est basé sur l’application de la
théorie de la stabilité lineaire à les équations de Navier−Stokes pour ex-
pliquer des phénomènes atypiques dans systemes hydrodynamiques com-
plexes. La théorie de la stabilité lineaire est largement utilisée en matière
de dynamique des fluydes pour examiner phénomènes comme la transi-
tion laminaire−turbulent de la couche limite, rupture de symétrie, oscil-
lations auto-entretenues, l’apparition de bifurcations,etc... Par ailleurs,
en utilisant les proprietés des vecteurs propres directes et ajoutés (Lu-
chini and Bottaro, 2014), la sensibilité des de flux à les instabilités a
pu être etudiée. Cela a été fait avec la finalité de localiser le centre de
l’instabilité et en clarifier ses mécanismes (Giannetti and Luchini, 2007).
Les thèmes traités dans cette thèse peuvent être résumés comme suivant:

• Stabilité du flux dans un microcanal en forme de T avec des surfaces
super hydrophobes;

• Calculation de l’impédance acustique pour un flux oscillant passant
par un trou circulier avec épaisseur nulle;

• Impédance acustique et stabilité du flux passant par un trou cir-
culier avec épaisser pas nulle;

• Étude du son émis par un sifflement pour l’appeau des chasseurs:
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comparaison entre approche compréssible et approche incomprés-
sible.

Les principaux résultats par chaqune des thèmes abordés vont être pre-
sentés dans cet extrait. La théorie générale et les equations gover-
nants ont été omises; toutefois, quand il sera necessaire, des références
théoriques seront fournies.
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9.2 Stabilité du flux dans un microcanal T avec
des surfaces super hydrophobes

La prémière problématique abordée dans cette thèse porte sur la
stabilité des flux sur surfaces superhydrophobes; un exemple de surface
superhydrophobe bien connu c’est la feuille de lotus. Ces surfaces sont
constituées par des rainures qui retiennent l’aire: grâce à cette compo-
sition, l’interaction entre la paroi solide et le fluide qui coule dessus est
réduite, en produisant une réduction du frottement visqueux. Les sur-
faces superhydrophobes sont largement utilisées dans macro canaux afin
de réduire le frottement, alors que pour la stabilité elles sont effectives
seulement dans les microcanaux (Rothstein, 2010). L’objectif princi-
pal de ce travail c’est l’étude de la stabilité d’un flux dans un canal en
forme de T avec surfaces superhydrophobes. En particulier, une étude
paramétrique à été fait à mesure que les propriétés de la surface changent,
c’est-à-dire la hateur des rainures et l’angle d’orientation par rapport au
gradient principal du pression; finalement, les résultats ont été comparés
avec ceux obtenus en considerant des surfaces du canal lisses.
La surface superhydrophobe peut être réprésenté, sur le plan mathéma-
tique, avec la condition de glissement partiel théorisé par Navier (1823);
dans sa forme la plus générale la condition est écrite comme:

U ‖|Γshs
= Λ

∂U ‖
∂n

∣∣∣
Γshs

(9.1)

ou U‖ c’est le vecteur de la vitesse constitué par les composantes
parallèles à la paroi et Λ c’est le tenseur de slip, defini comme:

Λ = Rθ

[
λ‖ 0
0 λ⊥

]
RT
θ , Rθ =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(9.2)

ou θ c’est l’angle formé par les rainures et la direction du scalanature e
la direction du gradient de pression dans le canal, λ‖ et λ⊥ sont respec-
tivement les longueurs de slip en direction parallèle et orthogonale au
flux et Rθ c’est la matrice de rotation. Cette condition a été appliquée
tant pour la calculation du flux base que pour la perturbation. En par-
ticulier, des surfaces superhydrophobes anisotropes ont été considerés,
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Figure 9.1: Courbe de stabilité neutre en fonction de λ et θ.

pour lesquelles nous appliquons la relation λ‖ = 2λ⊥.
À la figure 9.1la courbe de stabilité neutre du flux est reportée en fonc-
tion au changement de la longueur de slip et du angle entre les rainures et
le gradient de pression; en particulier, la condition de paroi lisse se pro-
duit pour λ = 0. La présence de la surface superhydrophobe déstabilise
le flux par rapport au cas de paroi lisse: en fait le nombre de Reynolds
critique s’abaisse avec l’augmentation de la longueur de glissement; en
outre, a égalité de lungueur d’écoulement, le flux s’avère être plus insta-
ble pour rainures parallèles au gradient de pression (θ = 0) plutôt que
pour rainures ortogonels(θ = 90). Finallement, la fréquence des résultats
instables est nulle, c’est à dire que il y a une rupture de la symétrie du
flux que, toutefois, trouve une autre condition de stabilité stationnaire
asymmetrique. (figure 9.2), sans oscillations, à savoir que le flux traverse
une biforcation du type supercritique pitchfork.

Une fois dépassée la première bifurcation, le flux asymetrique représenté
dans la figure 9.2(b) reste stable jusqu’a quand le nombre de Reynolds
critique de la deuxième instabilité est atteint. Le courbes neutres de la
deuxième instabilité sont presentées dans les figures 9.3. En particulier,
la tendance générale reste la même de cela discutée pour la prémière
instabilité. Toutefois, deux différences substantielles peuvent être ob-
servées dans ce cas. La prémière c’est que l’instabilité est tridimen-
sionelle, c’est-à-dire caractérisée par un certain nombre numero d’onde
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Figure 9.3: (a) Nombre de Reynolds critique de la deuxième instabilité en
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(a) (b)

(c) (d)

Figure 9.4: Sensitivité structurelle pour (a) Re=520 sans surfaces superhy-
drophobes, (b) Re=455, λ = 0.03, θ = 60◦ and k = 0, (c) Re=754 sans surfaces
superhydrophobes e (b) Re=639, λ = 0.03, θ = 60◦ e k = 1.7.

transversale k différent de zéro. En outre, sauf pour les cas θ = 0, 90,
l’instabilité n’est pas stactionaire: la frequence augmente avec l’augmentation
de la longueur de slip et est maximale pour θ = 45. Ce phénomène
est très important puisque l’instationarité induite par la présence de la
surface superhydrophobe favorise la mélange du fluide dans le canal de
sortie. Enfin, en utilisant les propriétés des vecteur propes directs u
et en adjoint u†, nous avons calculé la sensitivité structurale tant de
la première que de la deuxième instabilité, comme la norme du tenseur
suivant:

S(x0, y0) =
u†(x0, y0)⊗ u(x0, y0)∫∫

Ω
(u† · u)dΩ

, (9.3)

ou Ω c’est l’entier domaine d’integration.
Le plan spatial de la sensitivité structurelle est indiqué dans les fig-
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ures 9.4 pour la prémière instabilité (figure (a) et (b)) et pour la deux-
ième instabilité (figure (c) et (d)), aussi bien dans le cas de parois lisses
(colonne de gauche) et pour le cas avec parois avec surface superhy-
drophobe (colonne de droite). Pour ce qui concerne la prémière instabil-
ité, c’est possible de rémarquer que le noyau d’instabilité (le maximum)
est localisé au bord de la bulle de recirculation, alors que pour ce qui con-
cerne la deuxième instabilité le noyau est localisé à l’intérieur de la bulle
de recirculation la plus longue. Enfin, il est possible de rémarquer que
la présence de la surface superhydrophobe ne change pas le mécanisme
d’instabilité.
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(x, r, t)

Figure 9.5: Flux oscillant passant par un trou circulier.

9.3 Calculation de l’impédance acustique pour
un flux oscillant passant par un trou circulier

Le flux passant à travis d’un trou c’est une situation que peut être
encontrée dans plusieurs applications réels, par exemple les systèmes de
refroidissement des turbines, les injecteurs ou les instruments de musique
a vent. Le flux peut parfois générer un sifflement fort et caractéristique
mais toutefois les causes et les mécanismes qui sont à la base de la généra-
tion de ce sifflement ne sont pas encore bien connus.
L’objectif de ce paragraphe est caractériser les propriétés acustiques et
hydrodynamiques d’un écoulement visqueux passant pour un trou cir-
culier soumis à un forcement armonique, par exemple un champ acous-
tique: la configuration utilisée est montrée dans la figure 9.5. Il est pos-
sible de definir un paramètre caractéristique du trou comme le rapport
entre sa longueur et son diamètre, c’est-à-dire β = Lh/2Rh. Le trou crée
un lien entre deux espaces semi−infinis; l’inlet se trouve à une certaine
préssion pin alors que l’outlet se trouve à un niveau de préssion différent
pout, éventuellement égale à zero. Considérant le régime armonique, il
est possible de décomposer le flux total dans une partie stationaire et
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une partie oscillante,c'est-a-dire: 

( Pin ( t) ) ( Pin ) ( P:n ) P=t ( t) Pout + t: P1=t 
q(t) Q q' 

-iwt + e c.c., (9.4) 

uu E: c'est l'ampleur de la perturbation et w E lR est la frequence. Le champ de base est caracterise par un jet que se detache du bord du trou. Le jet, a son tour, a un rayon inferieur de celui du trou a cause du phenomene de la vena contrncta. En outre, si le parametre /3 n'est pas nulle, ii y a la formation d'une bulle de recirculation a l'interieur du trou. Un exemple de solution pour le champ de base pour Re = 1500 et /3 = 1 est montre dans la figure 9.6 en termes de vitesse axiale (partie superiore) et vorticite (partie inferieure). II est possible de remarquer que le flux, en amonte du trou, converge radialement, pour former, a une distance de quelques diametres en aval du trou, un jet parallel a l'axe. La vorticite, par contre, est totalement concentre sur le bord de la bulle de recirculation et atteint sa valeur maximale pres du bord du trou. La figure 9.7 montre, par contre, la structure de la zonne de recirculation lorsque le nombre de Reynolds augmente. Avec Re = 800, la zonne de recirculation est petite et concentree pres du al bord gauche du trou. Par contre, avec l'augmentation du nombre de Reynolds, la zone s'allonge jusqu'a atteindre une longueur plus grande du trou-meme, en s'ouvrant vers l 'exterieur. 
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Figure 9. 7: Vitesse axiale du flux base a /3 = 1 e: (a) Re = 800, (b) Re = 1200, 
(c) Re = 1600, (d) Re = 2000. La structure de la zonne de recirculation est 
surlignee par les lignes de courant. 

Pour ce qui concerne la partie non-stationnaire, il est possible de 
definir une grandeur cle, c'est-a-dire !'impedance acoustique, comme le 
rapport entre la difference de pression et le flux net par le trou: 

I I 

Z Pin� Pout 
h

= 

q' 
(9.5) 

L'impedance definie dans !'equation (9.5) est, dans le cas generale, une 
quantite complexe, c'est-a-dire Zh = ZR + iZ1. Sa partie reelle ZR 

est representee par la resistance alors que la partie imaginaire Z1 tient 
compte des effects d'inertie du systeme et done c'est une reactance. Il est 
possible de demontrer que ZR > 0 est directement lie a une absorption 
de puissance, a savoir le systeme dynamique agit comme une resistance; 
par contre, ZR < 0 est associe avec une generation de puissance. Toute
fois, cette derniere condition n'est pas directement liee avec l'instabilite 
du systeme (Conciauro and P uglisi, 1981), mais plutot �a signifie que 
le systeme est actif U ne valeur negatif de la resistance est une condi
tion necessaire mais pas suffisant pour avoir une instabilite du systeme. 
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Cette situation est connue aussi commestabilité conditionelle, puis que
le couplage avec un système extérieur (par exemple un système acous-
tique) pourrait générer de l’ instabilité avec la présence des oscillations
autosoutenues. Ce que détérmine, par contre, l’instabilité d’un système
actif c’est le signe de la réactance, puis que elle est liée aux effets inér-
tiels. En particulier, pour un système actif (donc avec ZR < 0), si ZI > 0
le système se montre instable, impliquant l’existance des oscillations au-
tosouténues et génération sonore. Finalement, on a une condition de
stabilité marginale si Zh = 0.
Le calcul de l’impédance est basé sur la résolution numerique des equa-
tions linearisées de Navier−Stokes avec un forçage harmonique à l’entrée
du domaine. Toutefois, la solution de ces équations peut créer prob-
lèmes numeriques parce que la perturbation semble être très instable
numériquement et sa valeur peut aisément devenir plus de 1015 (pré-
cision machine), emmenant problèmes de arrondissement et donc à une
estimation erronée du saut de préssion. Pour rémedier à ce problème, une
tecnique basée sur la cartographie dans le plan complex de la coordon-
née axiale a été développée: de cette façon les oscillations sont absorbées
dans le plan complex, en obtenant une évaluation correcte du saut de
préssion jusqu’a Re ≈ 105. Pour plus de détails sur l’expréssion matem-
atique de la fonction de mapping merci de consulterFabre et al. (2018b).
Dans la figure 9.8, ils sont reportées les impédences calculée pour le trou
avec épaisseur nulle (β = 0) proportionèllement au changement du nom-
bre de Reynolds. Comme nous pouvons remarquer, cette configuration
s’avère être toujours stable et les résultats tendent à s’effondrer dans une
seule courbe pour Re & 1500.
Avec l’augmentation d’épasseur du trou (et donc de β), par contre, des
résultats plus intéressant émergent. Dans la figure 9.9, il y a reportés les
impédences en fonction de la fréquence d’oscillation de la perturbation
(colonne de gauche) et les rélatifs diagrammes de Nyquist (colonne de
droite). La résistance et la réactance pour Re = 800 apparaissent comme
toujours positifs, donc le système est stable. Avec Re = 1200, par con-
tre, il y a deux zonnes de stabilité conditionelle, autours à Ω ≈ 2.5 et
Ω ≈ 4.7. Avec Re = 1600, en revanche, le systeme face la prémière region
d’instabilité hydrodynamique pour Ω ≈ 2.07. Il est possible de remar-
quer, pour ce cas, que respectif diagramme de Nyquist a fait un tour
autours l’origine des axes. Enfin, pour Re = 2000, il y a 4 zonnes de sta-
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Figure 9.8: (a) Resistance ZR e (b) reactance −ZI/Ω calculées β = 0 et:
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Re = 3000 (– · · –).

bilité conditionelle e deux de instabilité hydrodynamique, pour Ω ≈ 2.2
et Ω ≈ 4.5.

Finalement, dans les figures 9.10 et 9.11, on réporte l’analyse parametrique
totale en fonction de la variation de β et Re. En particulier, il est possible
d’identifier 4 branches conditionellement stables et 2 branches instables.
Toutes les courbes dans la figure 9.10 présentent un minimum pour un
certain β qui grandit avec l’augmentation du nombre du branche consid-
eré. En outre, il est possible de rémarquer que pour tous les β la condition
de stabilité conditionelle se lève toujours avant de l’instabilité hydrody-
namique. Dans la figure 9.11 on indique les frequences corrispondenti
alle curve riportate in figura 9.10. Il est interessant de noter que si on
utilise la longueur du trou (figure (c)) plutôt que son rayon (figura (b))
pour dedemensionaliser la fréquence, les différents branches sont carac-
terisés par fréquences presque constants. Cela signifie que les fréquences
d’oscillation du système sont inversement proportionelles à l’épaisseur
du trou , comee dejà observe parBouasse (1929).

À fin de verifier les résultats obtenus à travers l’analyse des impé-
dences en termes de instabilité hydrodynamique, une analyse de stabilité
globale a été faite. Dans la figure 9.12, on présente la comparaison en-
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Figure 9.9: Impédences calculés à β = 1. gauche) résistance ZR (ligne pleine)
et réactance ZI (ligne pointillée) fonction de la fréquence Ω; droite) respectifs
diagrammes de Nyquist pour (a, b),Re = 800, (c, d),Re = 1200, (e, f),Re =
1600, (g, h),Re = 2000.



232 Chapter 9. Résumé en françias

         β

R
e

0 0.5 1 1.5 2
500

1000

1500

2000

2500

3000

C1

C2

C3
C4

H2 H3

Figure 9.10: Valeurs de seuil pour la stabilité conditionelle (C1 to C4) et
l’instabilité hydrodynamique(H2 and H3).

          β

 Ω

0 0.5 1 1.5 2
0

2

4

6

8

10

C1 C2 C3 C4

H2

H3

(a)

          β

S
t
 L

0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

C1

C2

C3

C4

H2

H3

(b)

Figure 9.11: Frequences correspondants à la stabilité conditionelle (C1 to
C4) ed all’instabilité hydrodynamique (H2 and H3).
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Figure 9.12: (a) Taux de croissance des troubles σ et (b) fréquence ω fonction
de Re pour le trou à β = 1. Obtenus de l’analyse de stabilité globale (lignes
pleines) et de l’analyse des impédences (lignes pointillées).
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Figure 9.13: Mode directs (a & b), mode adjoint (c & d) et sensitivité struc-
turelle (e & f) pour les valeur propes instables à Re = 1500 (colonne de gauche)
et Re = 1700 (colonne de droite). Les lignes noires dans les figure(e) et (f) rep-
resentent le contour de la bulle de recirculation.

tre les résultats obtenus de l’analyse de stabilité globale (lignes pleines)
et des impédences (lignes pointillées).Pour ce qui concerne le taux de
croissance des troubles, il est possible de rémarquer que les deux méth-
odes restituent les memes résultats au point neutre(σ = 0) et divergent,
par contre, avec l’eloignement du point neutre même. En concernant les
fréquences, par contre, les deux méthodes restituent exactement les les
mêmes valeurs.
Finalement, on réporte dans la figure 9.13 les modes directs (figure (a)
e (b)) et les modes adjoint (figure (c) et (d)) obtenus pour les modes
instables réspectivement à Re = 1500 et Re = 1700. Le mode direct
diffuse en aval du trou, alors que le mode adjoint diffuse en amont. En
particulier, celui-ci a un maximum proche au bords gauche du troue, que
donc est la zonne du flux la plus réceptive à un forcement extérieur.
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Enfin, en utilisant l’équationn (9.3), on a calculé la sensitivité struc-
turelle pour le deux cas considérés (figure (e) et (f)). Pour les deux cas
la sensitivité strucutrelle est maximale au bord de la boule de recircu-
lation, et cela confirme que l’instabilité est étroitement liée à l’existence
de la zonne de recirculation.
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9.4 Étude du son produit par un sifflement l’appeau
des chasseurs:comparaison entre l’approche
comprimable et l’approche incomprimable
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Figure 9.14: Configuration générale etudiée dans ce paragraphe et définition
des paramètres géométriques.

La dernière partie de cette thèse couvre l’étude d’une configuration
plus réalistique, c’est-à-dire un sifflet realisé pour l’appeau des chas-
seurs, representé dans la figure 9.14. Le flux passe au travers de deux
trous circuliers consécutives situés dans parois incurvées; entre les deux
trous il y a une cavité. L’objectif principale de ce paragraphe c’est la
compréhension, par une analyse de stabilité globale, du son produit par
le sifflet. En particulier, prémierement on a utilisé un incompressible
pour identifier et caractériser les branches instables. Ensuite, l’effet de
la comprimibilité a été modelé en considerant la cavité entre les deux
trous comme résonateur de Helmholtz, dans la condition de bas nombres
de Mach. L’hypothèse principale de ce modèle est cela de la compac-
ité acoustique de la géometrie, c’est-à-dire que le nombre d’onde acous-
tique λac = 2π/ωMa doit être beaoucoup plus grand des paramètres
géometriques qui caractérisent la géometrie, comme les diametres ou les
dimensions de la cavité. Sous cet hypothèse, il est possible de considerer
la cavité avec une pression et une densité constantes et donc on peut la
modéler comme un résoneur de Helmholtz: l’effet de la compressibilité du
fluid est inclus en remplaçant une condition au contour sur l’impédance
sur la paroi supérieure de la cavité, plutôt que une classique condition
de non pénétration (Bonnefis, 2014). En considerant, à l’intérieur de la
cavité, le flux isentropique, après différentes étapes(vedi Fry (2016)), il
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est possible d’écrire la rélation entre la préssion de la cavité et le débit
volumetrique comme suivant:

∂tpcav +
1

χc
Qcav = 0 with χc = VcavMa2, (9.6)

ou le coefficient χc est le paramètre de compressibilité, la fonction du
nombre de Mach e du volume effectif de la cavité.
La préssione et le débit volumétrique sont définis comme suivant:

pcav =
1

Scav

∫
Scav

p′dS

Qcav =

∫
Scav

u′ · ndS

 , (9.7)

uu Scav c’est la surface latérale de la cavité. Les équations (9.6) et (9.7)
sont ensuite couplées avec les équations de Navier−Stokes incompress-
ibles, auxquels ensuite est appliqué la théorie de la stabilité globale pour
le calcul de la stabilité.
Finalement, on a consideré les équations de Navier−Stokes compressibles
pour discuter la validité de ce model. Dans la figure (9.15) on réporte
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Figure 9.15: (a) Taux de croissance des troubles et (b) fréquence des mods
instables en variation du nombre de Reynolds. Le lignes rouges répresentent les
résultats obtenus avec l’utilise des équations incompréssibles,les lignes bleues
répresentent les résultats obtenus en utilisant le model et les lignes vertes sont
les résultats obtenus avec les équations compréssibles, les deux pourMa = 0.05.

les résultats obtenus pour Ma = 0.05 avec les résultats incompréssi-
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bles. Bien que le nombre de Mach soit rélativement bas, la comprimi-
bilité semble avoir un éffet sur cette configuration, comme dejà observé
par Yamouni et al. (2013). En particulier, la comprimibilité a un effet
déstabilisateur pour les premiers deux branches instables, donc ceux à
fréquence ω ≈ 3 wd ω ≈ 4.5. En outre, la comprimibilité tend à baisser la
fréquence des modes globaux. Les resultats obtenu en utilisant le model
sont, pour ce nombre de Mach et cette géometrie particulière, très bons
si comparés avec ceux obtenus avec les équations comprimibles,surtout
pour basses fréquences. Dans la figure 9.16, par contre, ils se trouvent
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Figure 9.16: Le même que la figure9.15 mais pour Ma = 0.1. Dans ce cas les
résultats incomprimables ont été omis.

les résultats obtenus pour Ma = 0.1. Il n’y a pas de modes instables
au premier branche, au moins pour les nombres de Reynolds considerés.
En outre, c’est facile de remarquer que le model ne peut pas prédire
les resultats obtenus avec les équations comprimibles. L’hypothèse fun-
damentale du modèle c’est que le nombre d’onde acoustique λac doit
être beaucoup plus grand que les caractéristiques fondamentals de la
géometrie ou, plus exactement, de la plus grande entre elles. Dans ce
cas, la dimension géometrique la plus grande est le diamètre de la cav-
ité Dcav = 2Rcav. Les simulations numériques montrent que le model
marche jusqu’a λac > 2Dcav = 12 pour la géometrie ici considerée. Si
cette rélation n’est pas considerée, l’onde acoustique peut penetrer dans
la cavité et la préssion ne peut plus être considéré constante, en contre-
disant une des hypothèses du model.
Finalement, dans la figure 6.6 se trouve la partie réelle de la préssion



Chapter 9. Résumé en françias 239

Figure 9.17: RPartie réelle de la préssion du mode globale <(p′) pour: (a)
Re = 800, Ma = 0.05 e ω ≈ 4.95; (b) Re = 1400, Ma = 0.1 e ω ≈ 7.1

du mode global obtenu en simulant les équations comprimibles ; dans
la figure 6.6(a) nous réportons le mode globale obtenu pourRe = 800,
Ma = 0.05 e ω = 4.95, un cas dans le quel le model peut prédire les
resultats comprimibles: en fait la longueur de l’onde acoustique, dans
ce cas, est de λac ≈ 25: l’ingrandissement reporté dans la même figure
de la zonne proche du trou montre que la préssion est constante dans la
cavité.
Dans la figure6.6(b) nous avons, par contre,le mode globale obtenu pour
Re = 1400, Ma = 0.1 e ω = 7.1, un cas dans le quel le model ne peut
pas prédire les résultats comprimibles. Dans ce cas, la longueur de l’onde
acoustique est s’élève à λac ≈ 8.85, donc hors du range de validité du
model. Grâce à un agrandissement fait dans la zonne de la cavité nous
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puovons remarquer que la préssion, dans ce cas, n’est pas constante mais
nous pouvons remarquer une discontinuité causée par la pénétration de
l’onde acoustique à l’intérieur de la cavité.
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Appendix

A.1 Inviscid stability analysis of a cylindrical vor-
tex sheet

In this appendix we review the stability analysis of a cylindrical
vortex sheet, a classical problem first addressed by Batchelor and Gill
(1962).

A.1.1 Equations

We consider as a base flow a cylindrical jet with a top-hat profile,
with radius RJ and velocity UJ :

Ux(r) =

{
UJ if r < RJ ;
0 if r > RJ .

(A.1)

This corresponds to a cylindrical shear layer. The stability analysis
of this flow can be studied by adding small perturbations in potential
form, both inside (φo) and outside (φi) the jet. These perturbations are
searched in eigenmode form as follows :

φi = AIm(kr)ei(kx−ωt); φo = BKm(kr)ei(kx−ωt); η = Cei(kx−ωt)

(A.2)
Where r = RJ + η is the location of the jet edge.



258 Appendix

The matching conditions at r = R are continuity of the pressure
(pi = po) , and kinematical conditions connecting the temporal derivative
of η to the radial velocity ∂φ/∂r. Hence :

i(ω − kUJ)φi(RJ) = iωφo(RJ),

−iωη = (∂φo/∂r)r=RJ
,

i(kUJ − ω)η = (∂φi/∂r)r=RJ
.

Eliminating constants A,B,C, we get the following dispersion rela-
tion :

D(ω, k) = (ω − kUJ)2 + L0(kRJ)ω2 = 0 (A.3)

Where

L0(k) = −I
′
0(kRJ)K0(kRJ)

I0(kRJ)K ′0(kRJ)

Note that this dispersion relation generalizes the classical one for
Kelvin-Helmholtz instability of a infinitely thin shear layer (obtained by
replacing L0(k) by one). In the short-wavelength range (kRJ � 1), L0 is
close to one and the problem is effectively equivalent to the planar shear
layer. On the other hand, in the long-wavelength range (kRJ � 1), L0

tends to zero leading to different trends.

A.1.2 Temporal stability analysis

In a temporal stability framework (k ∈ R), the dispersion relation
leads to :

c =
ω

k
= UJ

1± i
√
L0

1 + L0
, (A.4)

where c = cr+ici is the phase velocity. The real part of the phase velocity
represents the convection velocity of the disturbance, which corresponds
to the term noted Uc in Howe’s model. In the short-wave range, L0 ≈ 1
leading to cr = UJ/2, which is the classical result for a planar shear
layer. On the other hand, in the long-wave range, the asymptotic trends
becomes cr ≈ UJ .
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Figure A.1: Spatial stability analysis of a top-hat jet: – –, kr; · · ·, −ki; —,
cr = Re(ω/k).

A.1.3 Spatial stability analysis

In a spatial stability framework, which is more relevant here, ω ∈ R
and the problem has to be solved for the complex eigenvalue k. The
dispersion relation has no analytical solution but is easily solved numer-
ically. Results are reported in figure A.1. The spatial amplification rate
−ki and the real part of the wavenumber kr (related to the wavelength)
are both increasing functions of ω. In the spatial framework one can still
define the convection velocity of perturbations as cr = Re(ω/k). This
quantity is plotted in the figure with a thick line. We observe that the
spatial analysis essentially leads to the same conclusion, namely the con-
vection velocity of perturbations is close to UJ/2 in the high-frequency
(i.e. short-wavelength) regime and close to UJ in the low-frequency (i.e.
long-wavelength) regime.

A.2 Numerical Validations

In this appendix, we provide additional results obtained by varying
the defining the mesh dimensions, grid density density as well as the
parameters defining the complex mapping function. All meshes used
in the study are described in table A.4. Meshes M0 and M1 are the
reference meshes used in the paper, respectively without and with the
use of complex mapping. Meshes M2−7 are additional meshes using
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Mesh Rin Lin Rout Lout LC LA γc RM RA xmax rmax nt
M0 10 10 20 80 – – – – – 80 20 101403
M1 10 10 15 15 1.25 16 0.3 5 16 1022+306i 337 53352
M2 10 10 15 15 1.25 16 0.5 5 16 1022 + 511i 337 26649
M3 10 10 15 15 1.25 20 0.3 5 20 78 + 23i 38 52587
M4 10 10 15 15 2.50 16 0.3 5 16 1022 + 306i 337 37972
M5 15 15 15 15 1.25 16 0.3 5 16 1022 + 306i 337 54782
M6 10 10 15 15 1.25 16 0.3 5 16 1022 + 306i 337 28579
M7 10 10 15 15 1.25 16 0.3 5 16 1022 + 306i 337 254093
M8 10 10 20 40 – – – – – 40 20 66759
M9 10 10 20 160 – – – – – 160 20 182659

Table A.1: Descriptions of numerical meshes M0−9 in term of dimensions,
mapping parameters, and number of triangles nt.

complex mapping, with different choices for the dimensions, parameters,
and/or density. Meshes M8−9 are additional meshes without complex
mapping, with different dimensions in the axial direction.

A.2.1 Complex mapping validation

We first provide a few additional results to illustrate the failure of
the resolution in physical coordinates to compute the impedance for large
Reynolds numbers, and the efficiency of the complex mapping technique
to resolve it.

Figure A.2 displays a comparison between the impedances for Re =
500 calculated using the reference meshes as well as an additional mesh
M8 designed without complex mapping and a with a shorter axial di-
mension. As one can observe, in this range of Reynolds number, results
obtained with and without complex mapping a re almost identical : the
curves are perfectly overlapped for ZR whereas for ZI a little difference
exists but with relative errors less than 1%.

Figure A.3 present a similar comparison for Re = 2000, using this
time an additional mesh without complex mapping of longer axial di-
mension (mesh M9 with Lout = 160Rh). From the figure, it is clear that
the computation of the impedance without the mapping is impossible.
The reference mesh M0 leads to non-physical oscillations in the range
Ω & 2. Doubling the size of the domain does not lead to notable im-
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Figure A.2: Comparison between the results of impedances obtained using
the complex coordinate mapping (—♦—, mesh M1) and without mapping with
Lout = 40Rh (—©—, mesh M8) and Lout = 80Rh (—�—, mesh M0) at
Re = 500.
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Figure A.3: Impedances computed using the complex coordinate mapping
(—♦—, mesh M1) and without mapping with Lout = 80Rh (—©—, mesh M0)
and Lout = 160Rh (—�—, mesh M9) at Re = 2000.
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Figure A.4: Pressure perturbation on the symmetry axis for Re = 2000 and
Ω = 3 computed with complex mapping (mesh M1 ; —) and without complex
mapping (mesh M9 with Lout = 160Rh ; – –).

provements, and the use of complex mapping proves to be the only way
to obtain reliable results.

To illustrate further the failure of the numerical resolution without
complex mapping, we report in figure A.4 the pressure of the perturba-
tion on the symmetry axis for Re = 2000 and Ω = 3. As can be seen,
the amplitudes in physical coordinates reach levels of order 107. As a
consequence, round off errors can occur, leading to an error propagation
in all the domain and so a wrong pressure level at inlet. This is visible in
the insert plot displaying a zoom in the inlet region, showing a mismatch
between the results with and without complex mapping.

A.2.2 Robustness of the complex mapping

In order to validate the mapping and to verify its robustness, we
performed a sensitivity analysis of the impedances to geometrical and
mapping parameters variation. In figure A.5 we compare the impedances
for at Re = 3000, computed with meshes M1−5. One can observe that
the curves are all overlaid to the reference curves, namely the mesh M1

used to calculate the impedances in section 4.5.3, showing the robustness
and the efficiency of the mapping formula used.

Finally, the last numerical issue is about the thickness of the hole.
In the whole paper we assume a zero thickness hole, but to generate the
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Figure A.5: (a) Real part and (b) imaginary part of the impedance at Re =
3000 computed with the mesh M1 (—�—), M2 (—4—), M3 (—O—), M4

(—♦—) and M5 (—©—).

Mesh nt nd.o.f. α(Re = 500) α(Re = 2000)

M1 53352 241797 0.625367 0.612052
M6 28579 129911 0.625370 0.612059
M7 254093 1146799 0.625366 0.612052

Table A.2: Characteristic of the meshes used for the convergence analysis
using the mapping parameters reported in table A.4 and convergence of the
base flow. Note that nd.o.f. is the number of degrees of freedom of the mesh.

mesh we had to specify a small but finite value. We set it to 10−4 and
we verified that results were insensitive to this length.

A.2.3 Mesh convergence

The last issue to consider for numerical validation is the sensitivity
of results to grid density. As explained in section 3, the mesh generation
process involves mesh adaptation thanks to the adaptmesh command
of the FreeFem++ software. Although the procedure is automatic, its
efficiency can be tuned by specifying an interpolation error parameter.



264 Appendix

Ω

Z
R

0 1 2 3 4 5 6

0.5

0.6

0.7

0.8

0.9
(a)

Ω

Z

I 
/ 

Ω
0 1 2 3 4 5 6

0.3

0.35

0.4

0.45

0.5
(b)

Figure A.6: (a) Real part and (b) imaginary part of the impedance at Re =
3000 computed with the mesh M1 (—�—), M6 (—©—) and M7 (—♦—).
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Case Base flow Single linear problem full parametric study

Mesh M0, Re = 1500 11 min 15 s 1 min 55 s 144 min 25 s
Mesh M1, Re = 3000 4 min 48 s 1 min 15 s 78 min 55 s

Table A.3: CPU time on a standard computer (MacBook Pro 2012, 2.5 GHz
Intel Core i5, 4 Gb RAM) required for (a) computation of a base-flow and
generation of an adapted mesh following the procedure explained in section 4,
(b) resolution of a linear problem for a single value of Ω, and (c) full paramet-
ric study of the impedance, including generation of base flow and mesh, and
resolution of 100 linear problems in the range Ω ∈ [0− 6].

Mesh M1 was obtained using the default value 5 · 10−3. Two additional
meshes were designed, respectively with interpolation error 10−2 (mesh
M6) and 10−3 (mesh M7). Table A.2 gives the number of triangles nt
of each of these meshes, as well as the corresponding number of degrees
of freedom (nd.o.f ) of the finite-element discretization. In the two least
columns of the table, we reported the values obtained for the vena con-
tracta coefficient for Re = 500 and Re = 2000 with each of these meshes.
One can observe that results are accurate up to the fourth digit. In figure
A.6 we compare the impedances computed with each of these meshes for
Re = 3000. The figure shows that the curves are completely overlapped.
We also quantified the relative error of the meshes M1 and M6 with re-
spect to M7 for all the frequencies. From figure A.7 we can observe that
the maximum relative error committed using the mesh M6 is around
0.38%, whereas the maximum error is reduced to 0.005% using the mesh
M1.

A.2.4 Numerical efficiency

One of the advantages of using LNSE compared to full DNS is that
the first approach only requires resolution of a small amount of linear
problems, while the second one requires a time-integration of the equa-
tions over a long time covering several periods of oscillation to ensure
convergence. In this section we demonstrate the numerical efficiency of
the method by indicating in table 3 the CPU time required for the vari-
ous steps of the analysis. As can be seen, the amount of time to obtain
an impedance curve Z(Ω) in the range Ω ∈ [0− 6] (including generation
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Ux of the base flow at Re = 3000. 

of the base flow and adapted mesh, and resolution of elementary prob
lems for 100 values of !.l spanning the range) on a standard computer 
is of the order of 144 minutes using resolution in real coordinates, and 
can be reduced to as small as 78 minutes using the complex mapping 
method. 

As a comparison, using the DNS time-stepped we have used for gener
ating the results displayed in section 6, using Mo, a time-step dt = 2-10-3 

and performing 50000 time steps to cover several oscillation periods re
quired a total CPU time of about 90 hours, for a single value of the 
parameters !.l and f. 

A.3 The complex base flow 

As mentioned in section 3 and detailed in appendix B, as soon as 
Re > 1500, converged results for the impedance can only be obtained 
using the complex mapping technique. For consistency of the whole 
approach, in such cases the base flow also has to be corn puted in the 
same coordinates. 

In this appendix we briefly document the structure of the base flow 
when computed in terms of complex mapped coordinates. Figure A.8 
displays the axial velocity component of the base flow U

x 
obtained in 
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this way. This quantity is actually the analytical continuation of the
axial velocity (displayed in figure 4.4) in the complex x-plane. The real
part (upper plot) has a structure similar to the one in real coordinates
plotted in figure 4.4, but one can observe that the thin shear layer rapidly
enlarges as one progresses along the X direction. This is mostly an effect
of the stretching involved in the coordinate mapping: the computation
is made with Lout = 15 and LA = 16, so that the position in the X
direction corresponding to |x|→ ∞ is actually just a little outside of the
computational domain.

The lower part displays the imaginary part of Ux. Here the complex
coordinate mapping is done with LC = 1.25, so the imaginary part
becomes significant above this value in the X direction.

A.4 Link between impedance and reflection co-
efficient

The objective of this appendix is to establish the link between the
impedance of the aperture and the reflection coefficient of an acoustic
wave. For this purpose, we will perform an asymptotic matching between
the incompressible "inner" solution investigated in the main part of the
paper and a compressible "outer solution" expressed in terms of spherical
acoustic waves.

We thus consider an outer solution composed in the upstream domain
of an incident convergent spherical wave of amplitude A and a reflected
divergent spherical wave of amplitudeB, and in the downstream region of
a transmitted spherical diverging wave of amplitude C. We use spherical
coordinates and assume a pressure field p′(rs, t) and a velocity field u′ =
u′rs(rx, t)ers where rs =

√
r2 + x2 is the spherical radial coordinate and

ers is the unit vector in the radial direction. The pressure and axial
velocity fields have the classical expressions:

p′(rs, t) =


A

rs
e−i(krs+ωt) +

B

rs
ei(krs−ωt) x < 0;

C

rs
ei(krs−ωt) x > 0.

(A.5)
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u′rs(rs, t) =


A

iρω

(
1

r2
s

− ik

rs

)
e−i(krs+ωt) +

B

iρω

(
1

r2
s

+
ik

rs

)
ei(krs−ωt) x < 0;

C

iρω

(
1

r2
s

+
ik

rs

)
ei(krs−ωt) x > 0.

(A.6)
where k = ωc0 is the acoustical wavenumber and c0 is the speed of

sound. The inner limit (rs → 0) of this outer solution can be expressed
as follows:

p′(rs, t) ≈


(

(A+B)

rs
+ ik(B −A)

)
e−iωt x < 0;(

C

rs
+ ikC

)
e−iω x > 0.

(A.7)

u′rs(rs, t) ≈


(A+B)

ρiωr2
s

e−iωt x < 0;

C

ρiωr2
s

e−iωt x > 0.
(A.8)

The outer limit of the inner solution (i.e the incompressible solution
considered in the main part of the paper) is a spherical source (resp.
sink) of flow rate q′ in the downstream (resp. upstream) domain and
reads:

u′rs(rs, t) ≈


−q′

2πr2
s

e−iωt x < 0;

q′

2πr2
s

e−iωt x > 0.
(A.9)

p′(rs, t) ≈


(
p′in +

ρiωq′

2πrs

)
e−iωt x < 0;(

p′out −
ρiωq′

2πrs

)
e−iω x > 0.

(A.10)

Note that the latter expressions comprise both the constant levels
p′out, p′in and a subdominant term proportional to 1/rs which was not
mentioned in the main part of the paper. The latter corresponds to the
pressure field associated to an unsteady incompressible source/sink.
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The matching is done by identifying the coefficients of similar terms
in Eqs. (A.7), (A.8), (A.9), (A.10). This leads to:

(A+B) =
−ρiωq′

2π
, (A.11)

ik(B −A) = p′in, (A.12)

C =
−ρiωq′

2π
, (A.13)

ikC = p′out (A.14)

The two latter relations can be combined with the introduction of the
radiation impedance Zrad:

Zrad =
p′out
q′

=
ρω2

2πc0
(A.15)

The expressions can be eventually combined to express the amplitude
reflection coefficient B/A in terms of the hole impedance Zh and the
radiation impedance just introduced:

B

A
=

−Zh
Zh + 2Zrad

(A.16)

The energy reflection coefficient R is eventually deduced as:

R =
|B|2

|A|2
=

|Zh|2

|Zh|2+4Zrad (Re(Zh) + Zrad)
(A.17)

These expressions yield the following conclusions :

• the energy reflection R is larger than 1 (overreflexion condition) if
and only if Re(Zh) + Zrad < 0. In dimensionless terms, this leads
to

ZR +
MΩ2

2π
< 0

(where M is the Mach number), which reduces to the simpler con-
dition ZR < 0 given in section 2 in the limit M � 1.

• B/A is infinite if and only if Re(Zh) + 2Zrad = 0. The situation
B/A = ∞ corresponds to a situation where a wave is emitted
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upstream (B 6= 0) in the absence of an incident wave (A = 0),
hence to a spontaneous self-oscillation associated to emission of
sound both upstream and downstream. We recognize the definition
of the purely hydrodynamical instability described in sec. 2. In
dimensionless terms, the condition leads to

Z +
MΩ2

π
= 0

which reduces to the simpler condition ZR = ZI = 0 given in
section 2 in the limit M � 1.

Note that the assumption of an incident converging spherical wave
coming from a semi-infinite space adopted here is questionable; clearly
other choices are possible for modelling the upper domain. For instance,
the case where the upper domain is a long pipe of radius Rp � Rh and
the incident wave is a plane wave can also be considered, and the analysis
leads to practically identical conclusions.

A.5 Details on the complex mapping technique
and mesh validations

As identified in Fabre et al. (2018b), a severe numerical difficulty
arises in the resolution of the LNSE equations (for both forced and au-
tonomous problems) due to the strong spatial amplification of linear per-
turbations. In this previous paper, usage of a complex coordinate map-
ping was proposed as an efficient way to overcome this difficulty. Fabre
et al. (2018b) demonstrated that in conjunction with mesh adaptation,
this method allows both to significantly reduce the required number of
mesh points and to extend the range of application of the LNSE up to
Re ≈ 3000.

In this appendix we give some detail about the implementation and
efficiency of this technique for present study. The technique has been
used for both forced (impedance) and autonomous (eigenvalues) com-
putations, but we only document its performances for the autonomous
problem, restricting to the case β = 1.
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Lout Rout LM LC LA γc RM RA xmax rmax δM Adapt. Nv

M1 15 15 0 2.5 17 0.3 5 17 503+149i 337 1 BF+F 19320
M2 20 15 5 1 – 0.5 – – 20+8i 15 0.5 BF+M 19075
M3 30 20 – – – – – – 30 20 1 BF+M+A 30695
M4 60 20 – – – – – – 60 20 0.25 BF+F 49999

Table A.4: Description of meshes M1-M4 built for β = 1 following four differ-
ent strategies. [LM , LC , LA, γc, RM , RA] : parameters defining the coordinate
mapping. [xmax, rmax]: effective dimensions in physical coordinates. δM : pre-
scribed value of the maximum grid step. Adapt.: mesh adaptation strategy
(see text). Nv : number of vertices of the mesh obtained at the outcome of the
adaptation process.

In the present paper, the mappings from numerical coordinates (X,R)
to physical coordinates (x, r) are slightly different from the ones used in
Fabre et al. (2018b), and defined as follows:

x = Gx(X) = LM + X−LM1−
(
X − LM
LA − LM

)2
2

[
1 + iγc tanh

(
X−LM

2LC

)2
]

for X < LM ,

= X for LM < X < Lout.
(A.18)

r = Gr(R) = RM +
R−RM[

1−
(
R−RM
RA −RM

)2
]2 for X > 0 and RA < R < Rout,

= R otherwise
(A.19)

Note that the mapping of the x-mapping involves both an imaginary
part (controlled by the parameter γc) and a stretching (controlled by the
parameter LA.) The difference with Fabre et al. (2018b) is the presence
of an additional parameter Lm such that the complex mapping only
applies for x > Lm.

The set of parameters used and the corresponding dimension of the
domain in complex coordinates are reported in table A.4.

For validation of the method it is essential to demonstrate that the
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Figure A.9: (a) Structure of meshes M2 (upper) and M4 (lower) ; (b) pressure
component of the eigenmode H2 as computed using mesh M2 (upper) and M4

(lower).
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results are effectively independent of the values of the parameters. In
the present study we have mainly used two kind of meshes involving
complex mapping, with properties detailed in table A.4. The first one,
named M1, and already plotted in fig. 3, is very similar to the one
used in Fabre et al. (2018b) for the case of the zero-thickness hole. This
kind of mesh has been used for the impedance-based parametric study
of section 5.3. On the other hand, since the coordinate mappings applies
for x > LM = 0, it is not suited to represent the linear forced flow
and eigenmode structures. The second one kind of mesh, named M2,
has no stretching (thus parameters LA and RA are not relevant) but
only complex mapping. This kind of mesh has been used to plot the
structures (figures 8,10 and 14) since complex mapping only applies for
x > LM = 5, outside of the chosen range of these figures. The two meshes
also differ by the mesh adaptation strategy : mesh M1 is adapted to the
base flow for RE = 2000 and two forced flow structures computed for two
values of Ω spanning the range of the parametric study, namely Ω = 0.5
and Ω = 4.5, following the same strategy as in Fabre et al. (2018b). On
the other hand, mesh M1 is adapted to the base flow and the two leading
eigenmodes H1 and H2, following the same strategy as in Fabre et al.
(2018c).

For validation purposes, we have also designed two meshes M3 and
M4 which do not involve coordinate mapping. These meshes are designed
with a longer axial dimension Lout, and and are characterized and are
significantly heavier in terms of number of vertices.

Figure A.9(a) displays the structure of meshes M2 M4. It is found
that the mesh adaptation strategy used for mesh M2 is most efficient
to concentrate the grid points in the most significant regions of the flow
(inside the hole) while M4 concentrates a much larger number of points
in the far downstream regions.

Figure A.10 superposes the numerically computed spectra using meshes
M1, M3 and M4 for Re = 1700 and 2000. As usual, along with the eigen-
values of the physically relevant modes H1, H2, H3, the spectra display
a large number of spurious eigenvalues. As can be seen, both meshes
M3 and M4 lead to the presence of spurious modes in the unstable part
(ωi > 0) of the complex plane, and as the Reynolds number is increase
they come dangerously close to the physical eigenvalues. On the other
hand, the complex mapping used for mesh M1 results in a good separa-
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Figure A.10: Spectra computed with three different meshes : × (red online):
mesh M1 (complex mapping); ∗ (green online): mesh M3 (no mapping, Xmax =
30); + (blue online): mesh M4 (no mapping, Xmax = 60). (a): β = 1;Re =
1700 ; (b): β = 1;Re = 2000

tion between the physical eigenvalues and the spurious ones, which are
substantially shifted in the stable part (ωi < 0) of the complex plane.
Note, however, that use of the complex mapping does not allow to com-
pute the complex conjugates of modes H1, H2, H3 located in the ωr < 0
half-plane. For reasons discussed in Fabre et al. (2018b), using a complex
mapping with γc > 0 only allows to suppress the spatial amplification of
linear forced structures (or eigenmodes) with ωr > 0. Instead, choosing
γc < 0 would give access to the other half of the spectrum.

Table A.5 displays the eigenvalues H1, H2, H3 computed for Re =
1600 and Re = 2000 using all meshes considered here. The table confirms
that the results obtained using complex mapping are independent upon
the values of the parameters (value for M1 and M2 are very close to each
other despite the fact that the parameters are very different). They also
show that the meshes M3 and M4 are less reliable despite the fact that
they contain a larger number of vertices.

Finally, figure A.9(b) depicts the structure of the eigenmode H2 com-
puted using meshes M2 and M4 for Re = 1600. As the complex mapping
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Re = 1600
H1 H2 H3

M1 -0.1176i + 0.5000 0.0809i + 2.1007 -0.0942i + 4.1245
M2 -0.1164i + 0.5014 0.0813i + 2.1108 -0.0925i + 4.1207
M3 -0.1259i + 0.5017 0.13916i + 2.1051 -0.1051i + 4.1359
M4 -0.1189i + 0.5017 0.0840i + 2.0953 -0.1955i + 4.0984

Re = 2000
H1 H2 H3

M1 -0.0450i + 0.5610 0.3010i + 2.2434 0.2408i + 4.3205
M2 -0.0438i + 0.5619 0.3042i + 2.2476 0.2427i + 4.3170
M3 -0.0421i + 0.5645 0.3114i + 2.2467 0.2287i + 4.3268
M4 -0.0420i + 0.5628 0.2965i + 2.2399 0.1232 + 4.2807

Table A.5: Eigenvalues computed with four different meshes for Re = 1600
and Re = 2000 (β = 1)

for mesh M2 only applies for x > Lm = 5, the structure for x < Lm is
expected to be identical as when computed without this method. The
figure confirms that this is effectively the case. On the other hand, for
x > Lm the eigenmode computed in physical coordinates still displays
a spatial amplification up to a very large downstream distance. On the
other hand, the complex mapping results in a suppression of this spatial
amplification.

Note that figure A.9(b) makes use of a nonuniform colormap by plot-
ting fS(p′) as explained in sec. 5.1. Without this trick it would be im-
possible to give a good representation of the structure, as the maximum
values p′ are of order 1.8 · 103 and 3 · 105 for M2 and M4, respectively.
Hence use of the complex mapping limits the round-off errors due to
the very large maximal levels reached far downstream. Note that on
the other hand, this visualization method enhances the numerical im-
precision in the external parts of the flow (|R|> 2) where the mesh is
less refined (but where mesh refinement is not necessary for accurate
computation of the eigenvalues).


