Keywords: . 12, 14, 15 API Application Programming Interface. 5, 13-15, 20, 21

Les dernières évolutions des infrastructures réseaux permettent d'apporter plus d'élasticité et de dynamicité à la gestion des réseaux. La 5 eme génération de réseaux (5G) permet la création de chaînes ordonnées de fonctions sur des réseaux virtuels ("slices") qui peuvent être multi-domaines, voire multi-opérateurs. Les solutions d'orchestration centralisée habituellement trouvées dans les réseaux peuvent ne pas répondre à certains des nouveaux cas d'usage. Cette thèse plaide pour l'opportunité d'une solution distribuée au problème d'allocation de ressources pour ces chaînes ordonnées de fonctions.

Un nouvel algorithme distribué, découpé en deux parties distinctes, est proposé. La première partie calcule un chemin en prenant en compte les contraintes sur l'ordre des ressources et leur placement sur la topologie réseau. La seconde alloue les ressources en utilisant des horloges vectorielles pour l'ordonnancement des requêtes et en utilisant un mécanisme de préemption pour le faire respecter. Plusieurs heuristiques sont proposées pour chacune de ces parties. Une méthode numérique est proposée pour comparer les performances de algorithme à l'espérance mathématique. Les performances sont ensuite comparées avec celles de quatre algorithmes de l'état de l'art sur une plateforme d'évaluation basée sur le simulateur SimGrid [Cas+14]. Les résultats montrent jusqu'à 20% d'amélioration du taux d'utilisation moyen des ressources, sans dégrader les autres métriques mesurées.

This thesis advocates a distributed management of networks in some specific use cases. It addresses the problem of the allocation of resources for network slices. The main contribution is a new distributed algorithm for the allocation of resources in systems with multiple instances of multiple types of resources. Its objective is to maximise the usage rate of the resources. Multiple heuristics are proposed for this algorithm. These heuristics are evaluated and compared to algorithms from the state of the art with experiments run on a simulator based on SimGrid [START_REF] Casanova | Versatile, Scalable, and Accurate Simulation of Distributed Applications and Platforms[END_REF]. A numerical method is proposed to compute the expected value for the usage rate of the resources and is used to evaluate the performance of the algorithm.

Context and motivation

Telecommunications networks are geographically distributed, access points such as radio antennas, fibre optics terminators or even Low Earth orbiting satellites are located all over the world (or in space) to enable network access to every users. However, networks are typically managed by a logically centralised component. In the standardised architectures used by almost all network operators, each access point sends data to what is called the Core Network that is typically physically distributed to increase the network resiliency. It is logically centralised and includes a centralised database, for example the Home Subscriber Server (HSS) found in 3G and 4G mobile networks or the Unified Data Management (UDM) in 5G. In parallel, virtualisation is offering more and more elasticity to infrastructures, giving room for new paradigms for network services. The telecommunications industry has introduced the Network Functions Virtualisation (NFV) standard to leverage them. NFV enables the management of chains of network functions not only of stand-alone functions. This introduces a constraint on the order of the functions in the chains. Network slicing is another of these new paradigms that is introduced in 5G. Slices are virtual networks that can be instantiated across multiple network domains or even across multiple network providers. A centralised management might not always be a good fit for all the new multi-domain services. Having multiple providers side by side, each with their own centralised manager, and each managing a subset of the overall resources, might lead to starvation or scalability issues.

Contributions

This thesis makes the case that the allocation of resources for multi-domain network slices can be likened to a generalisation of the Mutual Exclusion problem to systems with multiple instances of multiple types of resources. First, the allocation of ordered chains of network functions is modelled as an allocation problem in a system with multiple instances of multiple types of resources.

A new distributed modular algorithm for the allocation of resources in systems with multiple instances of multiple types of resources is proposed. Few distributed algorithms from the state of the art target these systems and none of them consider the constraint on the order in which resources are used. The proposed algorithm takes this constraint into account. Its objective is to maximise the usage rate of network resources while trying to minimise the number of messages necessary. The algorithm is composed of two consecutive subroutines. The first is the path computation subroutine that select instances in the network that satisfy the constraint on the order and computes the path connecting them. The second is the allocation subroutine that allocate the selected resources. The allocation follows a total order of the requests that is computed from the allocation vectors of the request. These allocation vectors are composed of counter values set by each of the selected instance. The algorithm includes a preemption mechanism to enforce this order when multiple requests wants to allocate a same node concurrently.

Heuristics are proposed for each of the two subroutines of the algorithm. Heuristics for the path computation offer different balancing of the load across instances to maximise the usage rate. The order followed to allocate the resources during the allocation subroutine has a direct influence on the performance of the algorithm. Three heuristics with different allocation orders are proposed.

An experimental evaluation of the performance of the heuristics for both subroutines of the algorithm is presented. The performance of the allocation subroutine is compared to the mathematical expected value for the usage rate in the experimental settings. The performance is also compared with four distributed algorithms for the allocation of resources from the state of the art. Results show that, using the best heuristic, the algorithm offers up to a 20% increase of the Average Usage Rate from the best performing algorithm from the state of the art on this metric. It also shows that the same heuristic does not degrade the performance on the other metrics.

Structure of this manuscript

Chapter 2 gives some background on the evolution of networking infrastructures and some of the newest use cases that they enable. It introduces three of those evolutions. The first evolution described is the concept of Chains of Virtual Network Functions (VNFs) that allows the management of an ordered set of VNFs instead of a single VNF. It then describes Software-Defined Networking (SDN) a novel approach to network management that introduces Application Programming Interfaces (APIs) to dynamically manage networks. Finally it introduces network slices, a recent architecture proposed to have multiple virtual networks on top of NFV infrastructures. The problem addressed in this work is the allocation of resources in systems with multiple instances of multiple types of resources. This chapter describes the problem and introduces the model that is used throughout this thesis. It also describes a SDN use case that shows that stacking centralised managers might not be a fitting solution to manage distributed resources.

Chapter 3 details the state of the art of distributed solutions to the allocation of resources problem. Distributed architectures have been proposed since at least the 1960s. A seminal paper on this topic has been authored by E. W. Dijkstra in 1965 [START_REF] Dijkstra | Solution of a Problem in Concurrent Programming Control[END_REF]. He defined and solved the Mutual Exclusion problem in which multiple nodes (computers) need to use a single resource (for example a printer). In these settings a single node can use the resource at any given time and all the nodes need to use it eventually. Later works extended the problem for systems with multiple types of resources or with multiple instances of a single type of resources. A popular teaching tool for this problem is the Dining Philosophers Problem where philosophers sit around a table and have to decide who has the right to eat in a system where there is not enough silverware for everyone. These solutions have been proposed for network problems like the allocation of radio spectrum or Mobile Ad Hoc Networks. The work presented here tries to make the case that this class of solution could be suited for some of the newest use cases in networks.

Capitalising on the previous efforts listed in this state of the art, a new distributed modular algorithm for the allocation of resources is introduced in Chapter 4. This algorithm addresses the constraint of the order of the resources. Its objective is to maximise the usage of the resources for network operators. It is composed of two subroutines. A path computation subroutine that computes a path with instances of the requests type that respects the order. An allocation subroutine that allocates the resources according to a total order of the requests. This total order is computed from the counter values read on the nodes when computing the path, and then set in an allocation vector specific to each request. An algorithm is not a Swiss Army knife that can work for all settings, this is why several heuristics are proposed for both subroutines and their advantages and drawbacks listed. These heuristics and the algorithm are thoroughly evaluated in the last two chapters.

Chapter 5 shows the results of the experimental evaluation of the algorithm using the SimGrid simulator [START_REF] Casanova | Versatile, Scalable, and Accurate Simulation of Distributed Applications and Platforms[END_REF] and Open MPI [Gab+04]. The heuristics of the algorithm are compared with each other on three metrics: the Average Usage Rate, the Average Waiting Time and the Average Number of Messages. Maximising the usage of the resources raises the question of how high it could theoretically go, so a numerical solution is proposed to compute the expected value in the experimental settings, and compare it to the performance of the algorithm. Comparing the heuristics of the path computation subroutine show that load-balancing across the different instances of a type of resources improves the Average Usage Rate while degrading the length of the path. The heuristics of the allocation subroutine show the importance of the order followed to allocate the resource and that the Average Usage Rate can be improved when the probability that another request tries to allocate one of the instance is taken into account.

Then, Chapter 6 details four algorithms from the state of the art with different solutions to the problem. Dijkstra's Incremental algorithm [START_REF] Dijkstra | Hierarchical Ordering of Sequential Processes[END_REF], while being the first algorithm proposed to solve a neighbouring problem with static requests, can be easily adapted to the model and offers the best performance of the four. Chandy-Misra algorithm [CM84] was the first to formulate and solve the allocation of multiple types of resources, but is not adequate for systems where the possible requests are not known a priori. Rhee's modular algorithm [START_REF] Rhee | A Fast Distributed Modular Algorithm for Resource Allocation[END_REF] is based on a model close to the one modelled in this work. Bouabdallah-Laforest algorithm [START_REF] Bouabdallah | A Distributed Token-Based Algorithm for the Dynamic Resource Allocation Problem[END_REF] is the most recent algorithm to improve the performance in systems with one instance of multiple types of resources. Their performances are compared with that of the proposed algorithm. Results show that the best heuristic for the allocation subroutine offers an improvement from these algorithms in the experimental settings. The best heuristic allows an increase of up to 20% of the Average Usage Rate and does not degrade the two other metrics.

Finally, the general conclusion enumerates the contributions of this work and lists the current limitations, as well as possible future work. G. Fraysse, J. Lejeune, J. Sopena, and P. Sens. "Mapping the Allocation of Resources for 5G Slices to the K-MUTEX with n Instances of m Resources Problem". In: 2018 14th International Conference on Network and Service Management (CNSM), short paper. Nov. 2018, pp. 318-322 [START_REF] Fraysse | A Resource Usage Efficient Distributed Allocation Algorithm for 5G Service Function Chains[END_REF] Guillaume Fraysse, Jonathan Lejeune, Julien Sopena, and This first chapter explains the background on the evolution of network infrastructures that led to the formulation of the problem statement addressed in this work. The first section is an overview of the evolution of networks since the first telecom networks to the fifth, and currently last, generation of networks (5G). Then the next section has a closer look on some of the latest evolution of network infrastructures: Software-Defined Networking (SDN), network slicing and chains of Virtual Network Functions (VNFs). Additionally it details an end-to-end use case that leverages all these evolutions. The last section details the resource allocations problem statement and the model used throughout this thesis. It also showcases centralised solutions are not always relevant and why a distributed solution, such as the one detailed in the next chapters, can be an option.

Publications

The convergence of telecommunications and computer networks

The first networks, retroactively called Plain Old Telephony System (POTS), introduced at the end of the nineteenth century (1876) relied on analogue transmission. They were initially used for interpersonal voice calls. The most famous image of this is the very first call made by Alexander Graham Bell to his assistant Thomas Watson. Almost a century later, the first generation of cellular networks (1G) appeared in the late 1970s in Japan, it was also based on analogue transmission between the handsets and the radio towers. Figure 2.1 gives an overview of the evolution of networks. Interpersonal voice calls remained the main service offered until these networks started to be replaced by networks based on digital transmission even if other services, such as fax, started to appear. Fixed telecom networks moved to the Integrated Services Digital Network (ISDN) standard, first deployed in 1988 in the United States. ISDN made it easier to offer additional services like voicemail, conference calls, telephone exchanges for home and enterprise customers.

Mass adoption of cellular networks started in the 1990s when the Global System for Mobile Communications (GSM) standardised the 2nd Generation (2G) of mobile networks that relies on digital transmission. 2G at launch allowed interpersonal voice calls using a circuit-switched network similar to fixed networks. In circuit-switched networks, a circuit is dedicated to the communication between the two endpoints.

The idea to interconnect computers arose in the late 1950s and was enabled by the conception of new packet-switched networks. In packed-switched networks the data is grouped in packets and each packet has a header that allows the identification of the recipient and of the packet route to it. In the late 1960s the Defense Advanced Research Projects Agency (DARPA) began working on what would eventually become the Internet to interconnect computers networks. The IP and TCP protocols were both described in 1974 and are still the backbone of the World Wide Web. In 2020 most of the internet still relies on the version 4 of the IP protocol (IPv4) that has been around since 1981 [START_REF] Postel | Internet Protocol[END_REF].

At this point telecom networks, mainly used for voice calls, and computer networks relied on very different technologies. Even when telecom networks moved to digital transmission they still used a whole set of network protocols different from the TCP/IP stack of computer networks. However these networks could use common physical layers, and it became more and more common for these networks to share copper or fibre optic lines. The introduction of the Digital Subscriber Line (DSL) technology allowed to use the same copper pair to transmit both ISDN and DSL data, by using different frequencies than ISDN. DSL was introduced once the cost allowed it in the late 1990s to transmit data between subscribers most notably to provide Internet interconnection. Similarly wireless and fixed telecom networks could share parts of a common backbone, the wireless components of the Radio Access Network are only some of the parts of a cellular networks and can be connected to other nodes of the networks with landlines.

Efforts to standardise how to make voice calls using computers and computer networks started in the late 1990s and resulted in the ITU Telecommunication Standardisation Sec-tor (ITU-T) H.323 [START_REF]Visual Telephone Systems and Equipment for Local Area Networks Which Provide a Non-Guaranteed Quality of Service[END_REF] and Internet Engineering Task Force (IETF) Session Initiation Protocol (SIP) [START_REF] Handley | SIP: Session Initiation Protocol[END_REF] protocols as the first standards for Voice over IP (VoIP), respectively in 1996 and 1999.

Access to the internet from Cellular Networks was introduced with General Packet Radio Service (GPRS) in 2000 on 2G networks. This introduced an additional packetswitched network in mobile networks that were only circuit-switched before that. The next major evolution appeared with 4G networks. 4G was the first cellular networks technology to introduce VoIP on the packet-switched network, with Voice over LTE (VoLTE). This allowed future telecommunications networks to rely only on packet-switching both for voice and data services. The first commercial VoLTE service was launched in 2012 in Dallas (Texas, United States) [START_REF]MetroPCS Launches World's First Commercially Available Voice Over LTE Service and VoLTE-Capable 4G LTE Smartphone[END_REF].

Slowly computer and telecommunications networks have converged to use common network technologies. All communications have moved, or are moving, to IP networks and circuit-switched networks are becoming an artefact of the past. The latest generation of Telecommunication Networks, 5G networks, now tries to consolidate all of these evolutions to enable VoIP communications, access to IP networks from mobile phones as well as other endpoints such as computers, Internet of Things (IoT) sensors . . . This evolution also can be seen on the network infrastructures. Even if telecom networks have always included computing elements (such as processors, memory, . . .) they used to be based on dedicated hardware due to the specificity of the protocols and services that were used only in the telecom world. The main service node of the 2G/3G voice networks is the Mobile Switching Center (MSC). A typical MSC from the 1990s or 2000s was composed of a large number of specialised processors such as Digital Signal Processing (DSP) for the treatment of the signal. New network functions can for the most part be run on what is referred to as Customer of the Shelf (COTS) hardware, the same type of servers that are used by other industries requiring computing power. COTS hardware is mostly based on x86 processors.

Evolution of the architecture of services

Since the time when telecommunications and computer networks started to rely on the same IP technologies and COTS hardware, their infrastructure has evolved and started to converge too. In 2012 the European Telecommunications Standards Institute (ETSI), an industry forum composed of Network Operators, has standardised NFV [START_REF][END_REF] to leverage the recent evolution in computing and IP networking infrastructures: the virtualisation of computing resources and the programmability and management functions offered by the Cloud Computing paradigm, and Software-Defined Networking (SDN). This evolution was introduced during the lifespan of 4G but 5G, the fifth generation of mobile networks, is the first to include these evolutions from the start.

Telecommunication operators, or network service providers, host NFV infrastructures that are composed of:

Chains of Virtual Network Functions (VNFs): a Network Function is the unitary component of a NFV network. Common VNFs can be a switch, a router, a firewall or other security equipment. In the case of network service providers these services are standardised by the 3rd Generation Partnership Project (3GPP), for example in 3G and 4G networks the Home Subscriber Server (HSS) is the main user database. These functions are called VNF in the NFV context because they are virtualised. The technology's capabilities mean that a large number of virtual VNFs can be connected together in a NFV environment. Because it's done in software using virtual circuits, these connections can be set up and torn down as needed with service chain provisioning through the NFV orchestration layer.

SDN

Cloud Computing offers abstractions of computing infrastructures through the exposition of APIs by the Infrastructure as a Service (IaaS) orchestrator. Likewise SDN offers abstraction of network resources and network services through a NorthBound API exposed by a SDN controller. Origins of SDN lies in the observation [Kre+15; Ope16] that IP networks are vertically integrated by vendors in their hardware middle-boxes (switches, routers, ...). Both control plane and forwarding plane (also called data plane, or user plane) are bundled. The control plane is the part of the network component in charge of the service logic. The forwarding plane is the part in charge of forwarding the network packets. The acronym SDN first appeared in a 2009 article [START_REF] Greene | TR10: Software-Defined Networking[END_REF] to define the works done at Stanford University that led to the OpenFlow protocol as described by McKeown et al. in their seminal white-paper in 2008 [START_REF] Mckeown | OpenFlow: Enabling Innovation in Campus Networks[END_REF]. They consider that this strong integration has hindered innovation and evolution of networking architecture and made managing IP networks increasingly complex. Kreutz et al. [START_REF] Kreutz | Software-Defined Networking: A Comprehensive Survey[END_REF] cite the example of the very slow transition of IPv4 to IPv6 as an example of these limitations.

The SDN controller is the main component of the control plane. It relies on the SouthBound API to discuss with the forwarding plane that is composed of physical nodes such as switches. SDN applications can interact with the SDN controller using the NorthBound API. A sample SDN architecture, taken from [START_REF] Wickboldt | Software-Defined Networking: Management Requirements and Challenges[END_REF], is shown in Figure 2.3. In their 2013 paper Jain et al. [START_REF] Jain | B4: Experience with a Globally-Deployed Software Defined Wan[END_REF] present B4, a Wide Area Network (WAN) that connects Google's data centres across the globe with its own characteristics: it is a distinct WAN from their user facing WAN massive bandwidth requirements deployed on a limited number of sites (scalability is not expected to go beyond a few dozens sites) elastic traffic that enables to optimise the bandwidth used full control over the edge servers and the network This WAN is deployed using SDN, based on OpenFlow as the SouthBound API and a modified version of Onix [START_REF] Koponen | Onix: A Distributed Control Platform for Large-Scale Production Networks[END_REF] as the SDN controller. Their drivers for such solution was that typical WAN are over-provisioned and have 30 -40% average utilisation. This over-provisioning allow an higher resiliency to network failure but at the cost of two to three times the necessary bandwidth and equipment. Considering the massive traffic Google has to deal with, and its increase that is faster that the increase of traffic on the Internet, they chose this solution to be cost-efficient. Many of the links of this WAN run at near 100% utilisation and all links average 70% utilisation over long time periods, which is an improvement in efficiency of two to three times.

Network slicing

The 5G standard introduced the concept of network slicing [START_REF]Telecommunication Management;Study on Management and Orchestration of Network Slicing for next Generation Network[END_REF]. It is a concept independent of the notion of chains of VNFs introduced above. A slice is a virtual network composed of a set of VNFs built on top of one or several NFV infrastructures. The slicing concept was first introduced by the Next-Generation Mobile Networks (NGMN) in January 2016 [START_REF]NGMN 5G P1 Requirements & Architecture Work Stream End-to-End Architecture Description of Network Slicing Concept[END_REF]. Since then several Standards Developing Organisation (SDO) and Industry Fora have launched works to analyse the use cases and impact of network slicing. The concept is not completely new, 3GPP first introduced a concept of end-to-end slicing of 4G mobile networks in their release 13 as DEdicated CORe Network (DECOR). The resources are exposed by different APIs (Cloud, SDN, NFV MANO, ...) that can be used simultaneously by different services or users. This is a shift from traditional telecom networks where resources are often used by a single service. NFV introduced the possibility for multiple functions to share the same infrastructure but slicing also allows multiple end-to-end services to share infrastructures.

Following the introduction of networks slices in 5G, 3GPP has standardised 3 types of slices with different objectives: enhanced Mobile BroadBand (eMBB): bandwidth of 10Gbps massive Machine Type Communications (mMTC): density of up to 1 million devices/km 2 ultra-Reliable Low Latency Communication (uRLLC): as low as 1ms latency A service can not be optimised for all three, a trade-off has to be found. Some applications might require to be optimised for a single objective: Vehicle-To-Vehicle communications require uRLLC, ultra high-definition video streaming requires eMBB while massive IoT deployments may require mMTC. A use case is detailed below in Section 2.3.2.

Multi-domain services

This section first defines the different possible architectures for services that are split across multiple domains and then introduces a recent use case.

Multi-domain architectures

The standard architectures for Cloud, SDN or network slicing focused on infrastructures within a single domain. There are multiple reasons for which infrastructures might require to be deployed in multiple domains. For scalability: when a single domain reached its maximum capacity and the only way to add more capacity is to add another domain. Infrastructures can be split in multiple domains for resilience or security, for example to remove or isolate a compromised domain in case of an incident or an attack and still be able to provide the service to the user. A service can also require to leverage services from multiple providers, each in their own domain.

A domain is a set of resources with its dedicated manager. A provider can have one or more domains. For example a domain in the context of SDN is the topology and set of resources managed by one SDN controller. In the case of a Cloud it is the set of resources managed by an orchestrator, e.g., an instance of OpenStack. For a network it can be a Point of Presence (PoP), a set of VNFs in a small data centre on the border of the network.

An architecture is multi-domain when it involves multiple domains. The domains can depend from a provider, or be split between different providers. Sung et al. [START_REF] Sung | Robotron: Top-down Network Management at Facebook Scale[END_REF] gives some insight on networks consisting of multiple domains stating that large internetfacing services such as Facebook are often hosted on a network of networks, where each sub-network has unique characteristics. Facebook's network consists of edge PoPs, a backbone, and data centres. The devices, topology and management tasks vary per subnetwork. Yet, all of them must be configured correctly in order for the entire network to work.

Figure 2.5 show an example of multi-domain end-to-end architecture for network slices across three network service providers (NSP) A, B and C. Provider A is composed of three domains A1, A2 and A3. Provider B and C are both composed of a single domain. A domain here is a NFV infrastructure either with virtualised computing, storage and network resources orchestrated by OpenStack, a Cloud Orchestrator and a SDN Controller as A1, A2 and C1 or with only network resources orchestrated by a SDN controller as A3 and B1. There are two 5G slices. Slice 1 runs 4 VNFs that are hosted on 4 VMs in domains A1, A2 and C1. Slice 2 runs 2 VNFs that are hosted on 2 VMs in domains A2 and C1. Orthogonal to the slices is a management plane with specialised orchestrators that communicates with the orchestrators of the various domains to manage these VNFs.

A 5G multi-domain use case: eHealth telemedecine

The European Commission launched the 5G Infrastructure Public Private Partnership (5G PPP) [PPP] joint initiative with the European industry. 5G PPP identified several vertical industry sectors which provided their needs and potential barriers for adoption: automotive, manufacturing, media, energy, health, public safety and smart cities. As part of the projects funded by this initiative, several use cases for these verticals have been detailed. This section focuses on one in particular : eHealth in-Ambulance telemedecine [START_REF] Cristina | Vertical Sector Requirements Analysis and Use Case Definition[END_REF] from the SliceNet 5G PPP project.) by the high-definition video stream, as well as ultra-Reliable and Low-Latency communications (uRLLC) due to patient safety factors (10ms peak to peak jitter, end-to-end latency inferior to 100ms, less than 0.05% packet loss and 99,999% reliability).

Figure 2.6 shows that this use case involves 4 network service providers (NSP) [START_REF] Eurecom | Design and Prototyping of Integrated Multi-Domain SliceNet Architecture[END_REF]. Providers NSP1 and NSP3 provide connectivity with their Radio Access Networks (RAN) and the network services for the ambulance in their Core and Mobile Edge Computing (MEC) platforms, for the ambulance. Two providers are necessary to have sufficient coverage of the RANs. Provider NSP2 may be an ISP that provides the Wan-Area Network that connects the others providers and can also host other VNFs or management functions for the end-to-end use case, e.g., it can configure QoS parameters between the domains. Provider NSP4 is the enterprise domain for the hospital and its computing infrastructure as well as the devices present in the ambulance.

Resource allocation problems in networks

This thesis focuses on the problem of allocating resources in networks for multi-domain use cases. Networks rely on multiple kinds of resources and there are multiple known problems for allocating these resources. The first section introduces the problem statement

Problem statement and model

Resource model The left part of Figure 2.7 shows a system with three network service providers (NSP). Three types of resources are available: an Intrusion Detection Systems (IDS), a Firewall (FW) and a Load-Balancer (LB). There are three instances of each type of resources distributed across the three providers.

The set of resources is modelled as a non-directed connected static communication graph G=(N , E) where N is the set of nodes and E the set of edges. A node holds exactly an instance of one type of resources. C = {c 1 , c 2 , ..., c C } is the set of types of resources where C is the total number of types. An edge represents a network link.

Edges have positive weights to model the latency of the links between nodes noted W = {w 1 , w 2 , ..., w E }, ∀w x ∈ W, w x ∈ IN and w x ≥ 0. A weight of 0 on an edge models a system with multiple resources on a single node. A node with 2 resources can be modelled in the graph as two nodes holding one resource each and connected by a zero-weight edge.

The right part of Figure 2.7 shows the same system in the proposed model. [c 1 , . . . , c s] where c r ∈ C, ∀r is an ordered set of types of resources needed. The request order gives the order of the resources in the request. The order of resources can be different across requests. In an example of chain of VNFs described by the ETSI NFV Working Group [START_REF]Network Functions Virtualisation (NFV) Use Cases[END_REF], packets need to traverse an IDS, a FW and a LB.

Request model

A request Req 1 can be noted as Req 1 =Req(n 1 , [c 3 ,c 2 ,c 1]) in the system introduced above. n 1 is the requesting node, 3 types of resources c 1 , c 2 and c 3 are requested. The request order is c 3 < c 2 < c 1 , i.e., first c 3 , then c 2 and finally c 1 .

Allocation of a request

The problem addressed is to allocate the requests, i.e., select instances of types of resources in the order requested and allocate them to the requesting node. When all the instances selected are allocated, the requesting node can enter its Critical Section (CS) and start using the resource. Figure 2.8 shows a selection of instances for Req 1 : the instances in nodes n 8 , n 7 and n 5 are selected and the requesting node n 1 can use these resources in that order.

Solutions for the resource allocation problem

Telecommunications networks and computing infrastructures often have a management function. For NFV architectures ETSI introduced the MANagement and Orchestration (MANO) architectural framework [START_REF][END_REF]. A SDN network relies on a SDN controller. Cloud Computing IaaS relies on an orchestrator. This function is often centralised, i.e., a single instance manages all the resources of the domain.

Among the roles of the MANO is the placement of VNF in the NFV infrastructure. When managed by a centralised orchestrator, most of these problems are NP-hard variants of the bin packing problem. Bari et al. [Bar+15] proposed an Integer Linear Programming (ilp) formulation to optimise the operational costs and usage while respecting the Service Level Agreements (SLAs). Jia et al. [START_REF] Jia | Online Scaling of NFV Service Chains across Geo-Distributed Datacenters[END_REF] also try to minimise operational costs and propose an online algorithm, i.e., an algorithm that handles requests as they arrive, to address the problem that they classify as the multiple-knapsack problem, a problem known to be NP-hard. Carpio et al. [START_REF] Carpio | VNF Placement with Replication for Loac Balancing in NFV Networks[END_REF] address the problem of placing VNF with replicas to load-balance the network functions and try three optimisation methods (Linear Programming, Genetic Algorithm and a Random Fit Placement algorithm).

One sub-problem for the placement of VNF on a NFV infrastructure is the problem of the placement of VMs on Cloud infrastructures. Some surveys ([JS15; Wid+12]) analysed VM placement techniques aiming at improving the way VMs are placed on the baremetal machines that compose Cloud infrastructures. Mills et al. [START_REF] Mills | Comparing VM-Placement Algorithms for On-Demand Clouds[END_REF] compared 18 VM placement algorithms inspired by bin-packing literature. They conclude that the choice of the algorithm for VM placement had no significant impact, but that the algorithm for the selection of the cluster, i.e., a subset of servers in the infrastructure with their own properties, leads to the most significant impact on resource optimisation.The objective of VM placement is usually to reduce cost for a customer. However Feng et al. [START_REF] Feng | Revenue Maximization Using Adaptive Resource Provisioning in Cloud Computing Environments[END_REF] addressed it from the point of view of the provider and considered optimising the revenue as their objective. Mijumbi et al. analyse in [START_REF] Mijumbi | Management and Orchestration Challenges in Network Functions Virtualization[END_REF] some of the existing projects related to NFV MANO. They concluded that current projects focused on centralised solutions which pose scalability imitations. Centralised solutions are usually offline, i.e., they do not handle requests as they arrive but compute a solution once a set of requests has been received. This is because either the method used, or the cost and duration of the computation, does not allow the online handling of requests.

All of the above, and many more, techniques are fitting centralised architectures. Most of them handle requests offline and are not scalable to large number of resources due to their computation costs. They do not consider the multi-domain architectures described in Section 2.3.

Problems of concurrent resource allocation from multiple providers

Multi-domain use cases require an orchestration of the resources of all domains. In some cases it can be possible to have a centralised orchestrator that manages the resources of all the domains. However, this type of solution is not always available or possible. The rest of this section details an example of one of the problems that can arise when multiple centralised orchestrators are involved and each of them only manages the resources of its domain. The example shows the problem for a multi-domain SDN service.

Allocation use case This section introduces a problem faced by clients to allocate resources distributed across multiple SDN providers. The content is adapted from a paper originally published at the 21 st Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN) in 2018 [START_REF] Fraysse | Towards Multi-SDN Services: Dangers of Concurrent Resource Allocation from Multiple Providers[END_REF].

One of the SDN promises is the programmability of networks through APIs. Those APIs allow different users to access the network concurrently. Thus leading to the allocation of dedicated resources by a given domain. These APIs allow users to integrate the services exposed by domains in their applications.

A user is an application or a person (e.g., system administrator) that uses NorthBound APIs to interact with the SDN domains.

Consider two providers α and β with no prior knowledge of each others and that cannot share information. No assumption is made on the architecture of the SDN controllers themselves: they can be either centralised (like NOX [START_REF] Gude | NOX: Towards an Operating System for Networks[END_REF]) or distributed (like Onix [START_REF] Koponen | Onix: A Distributed Control Platform for Large-Scale Production Networks[END_REF] or Open Network Operating System (ONOS) [START_REF] Berde | ONOS: Towards an Open, Distributed SDN OS[END_REF]).

Figure 2.9 illustrates a use case with two users, Alice and Bob. They both want to allocate one resource from each of the two providers α and β. Depending on how their requests are processed, four results are possible. [START_REF] Berde | ONOS: Towards an Open, Distributed SDN OS[END_REF]) and one virtual switch. Each ONOS controller is connected to its virtual switch using the OpenFlow 1.3 protocol as the SouthBound API. The expected result is that once the flows in each provider are set-up, App1a (resp. App1b) the application of Alice (resp. Bob) which runs in Domain α is able to send messages to App2a (resp. App2b) the application of Alice (resp. Bob) which runs in Domain β. They are able to communicate because flows will be created between the appropriate ports of the switches. Those applications App1a,b are Python applications that send ICMP ECHO messages displayed on the standard output by App2a,b. This is represented in Figure 2.11. For this Alice (resp. Bob) requests the creation of a first flow between Pa1 and Pa2 (resp. Pb1 and Pb2) to SP α. It then requests a second flow between Pa5 and Pa6 (resp. Pb5 and Pb6) to SP β. Tunnels are pre-configured for each user to allow direct communication between the two providers: between Pa3 and Pa4 for Alice, between Pb3 and Pb4 for Bob.

On a fifth VM, Alice and Bob are simulated by Bash and Python scripts that use the NorthBound REST API of ONOS to request the creation of flows on the controllers. Each script requests the creation of a single flow by each provider. An umbrella Bash script runs the Alice and Bob scripts in a uniform random order. Random timers are also introduced in the scripts to ensure that requests are not send in the same order every The resource considered in this example is the number of flows on a SDN switch. Memory limits the maximum number of flows that can be created on each switch. In the test environment it has been set very low to allow the creation of a single flow on each switch, using the flow limit parameter in Open vSwitch.

One simulation consists on running the umbrella script, which in turn runs the two Alice and Bob scripts. After each simulation the configurations of the switches are reset. All the VMs are hosted by the same computer running the VirtualBox hypervisor.

When the Alice and Bob scripts run concurrently the four outcomes introduced above in Figure 2.9 are expected. At best only one user gets the two resources and the other is left waiting. Worst cases are the cases labelled 2 and 3, when none of the user gets all the resources required and both wait indefinitely. In this test 26.8% of the time each script/user only gets one of the two resources it is expecting. Alice got both resources 39.4% of the time and Bob 33.8% of the time. As there are four possible outcomes and requests are uniformly random, one could expect that each user gets both resources 25% of the time, and in the remaining 50% they each get only one resource. It is possible to obtain a result closer to these theoretical values but this would require to coordinate the users. This shows that the results are very difficult to predict. They depend on when each user sends his requests, when these requests are received and how they are managed by the providers.

As expected due to the random factors, running this simulation multiple times leads to slightly different numbers. However, this result is sufficient to show that a significant number of times, in this run 26.8%, none of the user can move forward as it only managed to allocate one of the two resources he required. In this case both users are said to be experiencing starvation, they need to synchronize their allocations so they can each get the resources in turn.

Starvation occurs because the resource satisfies some properties:

unshareable: the resource can be used by only one user at a given time, not preemptable: only the user who has allocated the resource can release it, not interchangeable: no other resource from another component of the system can be allocated to obtain the same result.

The resource considered here, i.e., the flow limit parameter in ONOS, satisfies these properties. Additionally the problem occurs only because in the experiment this parameter has been configured at a very low value. In a live production environment the problem would only occur if the two providers had reached their full capacity. This is unlikely to happen because engineering teams of production platform usually plan capacity to avoid this situation. For this reason this use case was not considered further after this first experiment and the next chapters focus on a different use case.

Conclusion

Network infrastructures leverage new paradigms to enable new use cases. Some of these new use cases can be multi-domain which pose the question of the adequacy of the centralised managers usually found in networks. With the apparition of network slices, the resources of network providers can be shared not only by multiple services, but also with services that use resources from other providers. Centralised solution might not be able to scale across all resources of all the domains, or a network service provider might not want to allow an external manager to access their resources. Allocating resources for network slices across multiple domains could even lead to starvation if the centralised managers in each domain do not share information as showcased in a SDN example.

This might be an opportunity to consider a distributed solution for the allocation of resources in networks. The requirement to allocate chains of network functions inside these slices create an additional constraint on the order in which the resources are allocated. The next chapter provides a state of the art of distributed solutions for the allocation of resources. Then, a new algorithm for the distributed allocation of resources is introduced in Chapter 4. Multiple heuristics for this algorithm are then evaluated in Chapter 5. The performance of the algorithm is compared to that of algorithms from the state of the art in the last chapter. The previous chapter introduced the problem of the allocation of resources for networks and the motivation for a distributed solution. The distributed allocation of resources is typically addressed as a variant of the Mutual Exclusion problem first described by E.W.Dijkstra in 1965 [START_REF] Dijkstra | Solution of a Problem in Concurrent Programming Control[END_REF]. Distributed resource allocation is not a new approach for resource allocation in networks. Several papers [BHJ02; RWX04] have considered mutual exclusion algorithms for the dynamic assignment of channels in radio spectrum. Badrinath et al. proposed in [START_REF] Br Badrinath | Structuring Distributed Algorithms for Mobile Hosts[END_REF] to use two classic mutual exclusion algorithms [Le 77;Lam78] for Mobile Ad hoc wireless NETworks (MANET). They propose modifications of these algorithms to consider the mobility of nodes to reduce the search cost and the number of messages. Following this initial work, other algorithms have been proposed to address this specific problem [WK97; WCM01; WWV01; BVP02; Ben+04]. This chapter first describes in more details the model for distributed systems used throughout this work in Section 3.1. Next, section 3.2 details a state of the art of the variants of the Mutual Exclusion problem and the multiple solutions that have been proposed to solve them. The last section 3.3 explains how the performance of these algorithms is evaluated and shows how they compare to each other. A representation of the components of the system appears in Figure 3.1, courtesy of Welch and Walter [START_REF] Welch | Link Reversal Algorithms[END_REF]. Each node executes two processes : the mutual exclusion process which manages the access to the CS the application process, that requires to enter the CS, to use the resources and release the CS The application process can request the Mutual Exclusion process to enter the CS by calling the requestCS function. The Mutual Exclusion process communicates with the other nodes: it can send and receive messages using Send(m) and Recv(m) functions. Once it becomes possible, depending on the algorithm used, the Mutual Exclusion process notifies the Application Process that it can enter the CS using the enterCS function. Once the application process is done using the resource, it notifies the Mutual Exclusion process that it wants to leave the CS and releases the resource by calling the releaseCS function In this specific system it is assumed that there is a single shared resource, but later works proposed extensions detailed below. Some of these works address systems with multiple resources, cf. Section 3.2.2. In this document, the terminology used is types of resources. Other works address systems with multiple instances of resources, cf. Section 3.2.3.

Properties of the Mutual Exclusion

A solution to the Mutual Exclusion problem needs to satisfy two properties : safety : there is at most one process in the CS liveness: each request has to be satisfied within a finite time (under the hypothesis that the allocated resources are eventually released).

If the liveness property is not respected, i.e., a node waits indefinitely to get its requests satisfied, it is said to be experiencing starvation.

All the solutions proposed to guarantee the liveness rely on a total order of the requests.

Description of the system

For the reminder of this document, the system follows an asynchronous timing model as defined in [START_REF] Lynch | Distributed Algorithms[END_REF], i.e., the separate components take steps in arbitrary order. The system is an Asynchronous Message-Passing System and is assumed to have the following properties:

1. There are N nodes in the system. 2. The system is modelled as a non-directed connected communication graph. 3.2 shows a sample system for this problem. This system is a 5-node network and there is a single instance of one type of resources held by one of the node, in green in the figure. The edges are the edges of the communication graph.

Early solutions: shared memory

The problem of Mutual Exclusion was initially introduced for systems with one instance on one type of resources. Initial solutions by Theodorus J. Dekker (referenced in [START_REF] Dijkstra | Solution of a Problem in Concurrent Programming Control[END_REF]), for systems with only two processes, and Dijkstra [START_REF] Dijkstra | Solution of a Problem in Concurrent Programming Control[END_REF], for systems with n processes, were designed for systems relying on shared memory. In such systems all the nodes access a shared memory concurrently using an atomic operation that guarantees that only one of them accesses them at a given time, i.e., it relies on a lower level (hardware, Operating system) mechanism like compare-and-swap. Dijkstra's algorithm was improved first by Donald Knuth in 1966 [START_REF] Knuth | Additional Comments on a Problem in Concurrent Programming Control[END_REF]. Then de Bruijn improved Knuth's solution in 1967 [START_REF] De Bruijn | Additional Comments on a Problem in Concurrent Programming Control[END_REF] to reduce the maximum number of turns, i.e., the number of loop iterations, before a process enters its CS to (1/2) * N * (N -1). Eisenberg and McGuire proposed a further improvement [START_REF] Eisenberg | Further Comments on Dijkstra's Concurrent Programming Control Problem[END_REF] so that no node has to wait more than (N -1) turns to enter its CS.

Leslie Lamport proposed a new solution in 1974 [Lam74], known as the Bakery algorithm as it is inspired by the method used by some bakeries (or other shops for that matter) to give tickets with a unique number to customers. This solution [START_REF] Lamport | My Writings[END_REF] is the first that does not require a lower-level Mutual Exclusion.

Mutexes are today available in most Operating Systems for the synchronisation of the threads of a program, e.g., in the Linux kernel 1 , in the FreeBSD kernel 2 or the Windows Win32 API 3 . Most programming languages offer abstractions (lipthread for C, std::mutex in C++ 4 , or have built-in mechanisms for concurrency that avoid the programmer to address the problem himself. Erlang5 and Go6 are two examples of languages based on the Communicating Sequential Processes (CSP) model [Hoa78] which relieves the developer from having to manages the concurrency himself. Java's API proposes synchronized blocks and ReentrantLock Objects.

Message passing solutions and first permission-based algorithms

Distributed systems evolved and it became more common to have independent nodes with no shared memory but that were able to communicate by the passing of messages. All the other algorithms presented below rely on the passing of messages. It is possible to use message passing to emulate shared memory [START_REF] Viveck R Cadambe | A Coded Shared Atomic Memory Algorithm for Message Passing Architectures[END_REF], so algorithms using shared memory can be adapted to message passing.

New Mutual Exclusion algorithms based on message passing appeared in the late 1970s. Lamport's 1978 landmark algorithm [Lam78] introduced the notion of logical clocks to compute a total order of the CS requests based on logical timestamps. This algorithm requires 3 * (N -1) messages in a complete communication graph. This algorithm was improved by Ricart and Agrawala in 1981 [START_REF] Ricart | An Optimal Algorithm for Mutual Exclusion in Computer Networks[END_REF] by removing the need for acknowledgement messages, thus lowering the number of required messages to 2 * (N -1). O. Carvalho and G. Roucairol [START_REF] Carvalho | On Mutual Exclusion in Computer Networks[END_REF] in turn proposed a variation of the algorithm from Ricart and Agrawala that can require less messages by considering asymmetric nodes (i.e., all nodes do not have the same exact configuration at the time of their initialisation). Sanders [START_REF] Sanders | The Information Structure of Distributed Mutual Exclusion Algorithms[END_REF] introduced in 1987 a terminology for this first type of algorithms: permission-based.

Permission-based algorithms enforce the safety property by the reception of a sufficient number of permissions from other nodes.

Quorum-based permission-based solutions

Another approach proposed was to divide the topology in smaller subsets where each node is part of one and only one of these subsets. Maekawa's 1985 algorithm [Mae85] relies on properties of finite projective planes to show that each subset needs to be only of size √ N . However it is prone to deadlocks [START_REF] Singhal | A Taxonomy of Distributed Mutual Exclusion[END_REF]. Other algorithms based on quorums where proposed in [San87; AE91; MNR91].

Token-based algorithms

Gérard Le Lann proposed a solution in 1977 [Le 77] where the nodes are connected in a ring topology and send tokens. This solution is similar to how token ring networks (IEEE standard 802.5 [IEE04]) work: a control token guarantees that a single node is transmitting at a given time. Alain K. Martin's algorithm [START_REF] Martin | Distributed Mutual Exclusion on a Ring of Processes[END_REF] relies on a similar ring topology.

After Carvalho and Roucairol proposed a modification of their algorithm, Ricart and Agrawala replied with a modification [START_REF] Ricart | Authors' Response to "on Mutual Exclusion in Computer Networks" by Carvalho and Roucairol[END_REF] of their message-passing algorithm to use a token that allows the node that holds it to enter its CS, in this algorithm the token is transmitted along a virtual topology that connects the nodes. Suzuki and Kazami [START_REF] Suzuki | A Distributed Mutual Exclusion Algorithm[END_REF] proposed in 1985 an extension of Ricart-Agrawala to transform it to a token-based algorithm using an additional PRIVILEGE message. Neilsen and Mizuno's algorithm [START_REF] Mitchell | A DAG-Based Algorithm for Distributed Mutual Exclusion[END_REF] builds a Directed Acyclic Graph (DAG) virtual topology with the nodes to circulate a token. Mukesh Singhal proposed in [START_REF] Singhal | A Heuristically-Aided Algorithm for Mutual Exclusion in Distributed Systems[END_REF] an algorithm aided by heuristic to deduce the current location of the token. Several algorithms have been proposed relying on a similar static-tree structure to send a token [START_REF] Jan | Fair Mutual Exclusion on a Graph of Processes[END_REF][START_REF] Tréhel | A Distributed Algorithm for Mutual Exclusion Based on Data Structures and Fault Tolerance[END_REF]. Some algorithms relaxed some of the usual assumptions found in other works. In Raymond [START_REF] Raymond | A Tree-Based Algorithm for Distributed Mutual Exclusion[END_REF] and Helary-Plouzeau-Raynal [START_REF] Helary | A Distributed Algorithm for Mutual Exclusion in an Arbitrary Network[END_REF] algorithms nodes only communicate with their neighbours, they do not require a knowledge of the whole topology.

Naimi-Tréhel [START_REF] Naimi | An Improvement of the logN Distributed Algorithm for Mutual Exclusion[END_REF] improved the complexity of existing token-based algorithms to logarithmic by using a dynamic tree structure. This algorithm is further described in Section 6.5.1.

Mishra and Srimani [MS90] proposed two fault-tolerant Mutual Exclusion algorithms.

The first one is an extension of [START_REF] Suzuki | A Distributed Mutual Exclusion Algorithm[END_REF], but ensure that the system can recover when a node failure is detected. The second one assumes that at any moment one of the nodes acts as a centralised controller. Nishio et al. [START_REF] Nishio | A Resilient Mutual Exclusion Algorithm for Computer Networks[END_REF] also proposed an extension of [START_REF] Suzuki | A Distributed Mutual Exclusion Algorithm[END_REF] to make it resilient to failures. Sopena et al. [START_REF] Sopena | A Fault-Tolerant Token-Based Mutual Exclusion Algorithm Using a Dynamic Tree[END_REF] proposed a fault tolerant extension of Naimi-Tréhel [START_REF] Naimi | An Improvement of the logN Distributed Algorithm for Mutual Exclusion[END_REF].

Ye-In Chang [START_REF] Chang | Design of Mutual Exclusion Algorithms for Real-Time Distributed Systems[END_REF] builds on Andrzej Goscinski work by [START_REF] Goscinski | A Synchronization Algorithm for Processes with Dynamic Priorities in Computer Networks with Node Failures[END_REF][START_REF] Goscinski | Two Algorithms for Mutual Exclusion in Real-Time Distributed Computer Systems[END_REF][START_REF] Goscinski | Distributed Operating Systems: The Logical Design[END_REF] to propose extensions of several algorithms, [SK85; Sin89; Ray89b; Lam78; RA81], to address real-time systems. In those variants requests are ordered based on priorities instead of the time when they happened. Frank Mueller also proposed algorithms based on priorities [START_REF] Mueller | Prioritized Token-Based Mutual Exclusion for Distributed Systems[END_REF][START_REF] Mueller | Priority Inheritance and Ceilings for Distributed Mutual Exclusion[END_REF]. At first permission-based algorithms required more messages to gather permissions from the nodes than what was needed by token-based algorithms to circulate a token. However, Naimi-Tréhel [START_REF] Naimi | An Improvement of the logN Distributed Algorithm for Mutual Exclusion[END_REF] (token-based) and Agrawal-El Abbadi [AE91] (permissionbased) both have complexities that are logarithmic with the number of messages, cf. the comparison the complexities of algorithms in next section 3.3. Token-based algorithms are considered more prone to failure, as on top of the possible node failures it is possible that the token gets lost or duplicated.

One instance of n types of resources: dining/drinking philosophers

The Mutual Exclusion problem was first generalised for multiple types of resources in 1971 by E.W. Dijkstra [START_REF] Dijkstra | Hierarchical Ordering of Sequential Processes[END_REF] as the Dining Philosophers Problem (DiPP). In this formulation of the problem, 5 philosophers are sitting around a table, and a table is laid for them to dine. On the table is served a spaghetti dish that can only be eaten with two forks. Each philosophers is sitting in front of one plate and there are two forks on each side of each plate. This forbids two neighbours to eat simultaneously. Such system is represented in Figure 3.3. The algorithm proposed by Dijkstra [START_REF] Dijkstra | Hierarchical Ordering of Sequential Processes[END_REF] is an incremental algorithm : the resources are allocated incrementally according to a total order of the forks. It has a side effect called the domino effect [START_REF] Randell | System Structure for Software Fault Tolerance[END_REF]. This algorithm is detailed in Section 6.2. Nancy A. Lynch [Lyn80; Lyn81] generalised the formulation of the problem to a graph with any number of nodes representing the resources connected via edges that represent the resource sharing constraints, and she proposed a graph-colouring approach to improve the performance of Dijkstra's algorithm. Francez-Rodeh [START_REF] Francez | A Distributed Abstract Data Type Implemented by a Probabilistic Communication Scheme[END_REF] proposed a symmetric distributed solutions, i.e., a system where all nodes have the same exact configuration at the time of their initialisation. Lehmann-Rabin [START_REF] Lehmann | On the Advantages of Free Choice: A Symmetric and Fully Distributed Solution to the Dining Philosophers Problem[END_REF] proposed a probabilistic solution for symmetric systems and proved that there is no perfectly symmetric non-probabilistic solution to the DiPP. In the same 1984 paper Chandy-Misra [CM84] also propose a further generalisation, the DrPP. In the DiPP requests are static: each node (philosopher) always requires the same subset of resources, i.e., his left and right forks. In the DrPP, the requests are dynamic, each node can request a different subset of the resources (bottles) at each request. An algorithm that solves the DrPP can also solve the DiPP. Even if the opposite is not true, some DiPP algorithms can be extended to solve the DrPP problem.

¤ ¢ ¦ ©

Several algorithms that target the DrPP problem, like Chandy-Misra, require that the conflict graph is known a priori. The nodes of the conflict graph are the requests. If two requests need a common resource there is an edge between the two corresponding nodes. By definition for the DiPP problem the conflict graph is always known a priori because requests are static.

Chandy-Misra [CM84], in the same paper, propose a DrPP algorithm that uses their DiPP algorithm as a first subroutine. The forks are not the resources but are auxiliary resources that allow the requesting node to allocate the bottles, which are the actual resources. Welch-Lynch [START_REF] Welch | A Modular Drinking Philosophers Algorithm[END_REF] generalised the idea of modular algorithms and their solution can use a DiPP algorithm to select a node (resp. philosopher) which enters a dining CS, then once the node is in a dining CS it can request the resources (resp. bottles) it needs.

Ginat-Shankar-Agrawala proposed an algorithm [START_REF] David Ginat | An Efficient Solution to the Drinking Philosophers Problem and Its Extensions[END_REF] that does not use a DiPP subroutine. It is based on a time-stamping approach similar to Lamport's logical clocks. Figure 3.4 shows a system with one instance of n types of resources. In this example n = 5 and each type of resources is represented on the nodes by a different shape and colour. Each edge represents a communication link between two nodes. Contrary to the settings of the DiPP problem, in this system a resource can be shared by more than 2 nodes of the system in Figure 3.3 and any node can request any resource. Algorithms that address the DiPP problem can not easily be adapted to such a system. Algorithms have been proposed to address such systems. Bouabdallah-Laforest [START_REF] Bouabdallah | A Distributed Token-Based Algorithm for the Dynamic Resource Allocation Problem[END_REF] relies on Naimi-Tréhel's mutex algorithm [START_REF] Naimi | An Improvement of the logN Distributed Algorithm for Mutual Exclusion[END_REF] to circulate a control token along the virtual tree. A node needs to own the Control Token to request its resources. This algorithm is detailed in Section 6.5.

Aomar Maddi [START_REF] Maddi | Token Based Solutions to M Resources Allocation Problem[END_REF] calls this problem the AND-Synchronisation problem where each process can get an exclusive access to a set of resources rather than to a single one. The paper distinguishes between implicit requests (when processes wait for a token to arrive) and explicit requests (when requests are sent to the processes). He introduces two algorithms, one for each case. In the algorithm for explicit requests each process holds a token for its resource, the tokens are sent to the requesting process based on a virtual clock. The algorithm for implicit requests sends these tokens along a virtual ring topology.

Awerbuch-Saks [START_REF] Awerbuch | A Dining Philosophers Algorithm with Polynomial Response Time[END_REF] proposed a further generalisation called the dynamic job scheduling problem. In this description of the problem, jobs request any number of resources and need to be scheduled. In this model, the jobs are the nodes and they are dynamic, i.e., jobs come and go. The objective of the algorithm is to minimise the waiting time (or delay) between the moment a request is initiated and the moment when the resources are allocated, cf. Section 5.1.1 for a formal definition. It uses a distributed queue to achieve a polynomial-bounded waiting time that is function of the number of conflicts. Bar-Ilan and Peleg [START_REF] Bar-Ilan | Distributed Resource Allocation Algorithms (Extended Abstract)[END_REF] proposed a further improvement on performances for synchronous complete communication systems. Another extension was proposed by Choy-Singh [START_REF] Choy | Efficient Fault-Tolerant Algorithms for Distributed Resource Allocation[END_REF] to include mechanisms for fault-tolerance using the doorway mechanism in Lamport's Bakery algorithm [Lam74]. Rhee's moduler algorithm [Rhe95; Rhe98] builds a distributed queue but like Welch-Lynch [START_REF] Welch | A Modular Drinking Philosophers Algorithm[END_REF] starts by using a DiPP or DrPP as a subroutine to get a lock on the set of resources. Instead of keeping the lock for the duration of the CS it uses it only to adjust the total order of the requests in the global scheduler, and contrary to Welch-Lynch [START_REF] Welch | A Modular Drinking Philosophers Algorithm[END_REF] it improves the performances of the algorithm used as a subroutine. Rhee's algorithm is detailed in Section 6.4. Weidman et al. [START_REF] Weidman | Explicit Dynamic Exclusion Algorithm[END_REF] also proposed to reuse Chandy-Misra as a subroutine for their dynamic allocation problem, with the same response time and message complexity as Chandy-Misra's. Sivilotti [START_REF] Paolo | A New Distributed Resource-Allocation Algorithm with Optimal Failure Locality[END_REF] proposes an algorithm that reuses Chandy-Misra's mechanism of using forks as a mean to provide dynamic priorities, and Choy-Singh's [CS95] mechanism of double doorway of thresholds to allow low-priority nodes to overtake high-priority nodes.

The Lejeune-Arantes-Sopena-Sens (LASS) algorithm [START_REF] Lejeune | Reducing Synchronization Cost in Distributed Multi-Resource Allocation Problem[END_REF] argue that the algorithms mentioned above all require a global lock to serialise the requests. Their algorithm does not require such global lock, and does not use a distributed queue either. Instead it relies on allocation vectors of counters to compute a total order of the requests. It does however make the assumption that resources are not managed locally by the nodes holding them and moves the resources along the graph during its execution.

m instances of one type of resources: k-mutex, k-out of-M

Two sub-problems have been defined for systems with m instances of one type of resources. Figure 3.5 shows a system where there are three instances, in green, of a single type of resources. Edges represent the communication links. The first sub-problem is known as the k-mutex, or as the l-exclusion problem. The system allows up to k entries to a CS. This problem is solved by algorithms such as the permission-based ones proposed by Raymond [START_REF] Raymond | A Distributed Algorithm for Multiple Entries to a Critical Section[END_REF](which extends Ricart-Agrawala), and Srimani-Reddy [START_REF] Pradip | Another Distributed Algorithm for Multiple Entries to a Critical Section[END_REF] (which extends Suzuki-Kasami). Token-based solutions have been proposed by Makki et al. [START_REF] Makki | A Token Based Distributed k Mutual Exclusion Algorithm[END_REF], Bulgannawar-Vaidya [START_REF] Bulgannawar | A Distributed K-Mutual Exclusion Algorithm[END_REF] (an extension of Tréhel [START_REF] Tréhel | A Distributed Algorithm for Mutual Exclusion Based on Data Structures and Fault Tolerance[END_REF]) and Chaudhuri-Edward [CE06; CE08]. Kakugawa et al. [START_REF] Kakugawa | A Distributed K-Mutual Exclusion Algorithm Using k-Coterie[END_REF] proposed a solution based on an extension of coteries, called k-coterie, and using logical clocks. A common data type to solve this problem in programming language is known as the counting semaphore.

The second sub-problem is when one process tries to allocate k instances of the same type (k < M) called the k-out of-M resources allocation problem. It has been defined by Michel Raynal [START_REF] Raynal | A Distributed Solution to the K-out of-M Resources Allocation Problem[END_REF] who proposed an extension of Ricart-Agrawala for the problem as the allocation of k instances sequentially using a Mutual Exclusion algorithm could lead to a deadlock. This requires that the algorithms satisfies the safety and liveness properties. The definition of the safety property is different than for the classical Mutual Exclusion problem: the number of resources which are allocated to the processes at any time is always less than or equal to M (each resource being allocated to only one process at a time). The definition for liveness remains the same. Roberto Baldoni proposed a permission-based quorum-based solution as an extension of Maekawa [START_REF] Baldoni | An O(NM(M+1/)) Distributed Algorithm for the k-out of-M Resources Allocation Problem[END_REF]. Manabe and Tajima [START_REF] Manabe | H, k)-Arbiters for h-out of-k Mutual Exclusion Problem[END_REF] proposed a permission-based algorithm based on logical clocks.

m instances of n types of resources

A more general problem is shown in Figure 3.6 shows for a system with n = 3 types of resources, and 1 (for the green resource) or 2 (for the red and blue resources) instances of each of them. Edges represent the communication links. No algorithm has been proposed specifically for systems with multiple instances of multiple types of resources. In this section are listed algorithms already mentioned in the sections above and that proposed extensions to this more general problem. Multiple algorithms addressing the DrPP have proposed extensions for cases where there are multiple instances of each resource. They all consider that instances are all equivalent and can be used indistinctly.

Token-based algorithms consider one token per instance. Bouabdallah-Laforest [BL00] mentions a more general problem than the DrPP where several instances of each type of resources are available. The extension proposed is to use a token per instance instead of a token per type of resources. Upon reception of the token a node can choose among the available instances. Maddi [Mad97] algorithm also proposes to circulate a token per instance for systems with multiple instances.

Ginat-Shankar-Agrawala [START_REF] David Ginat | An Efficient Solution to the Drinking Philosophers Problem and Its Extensions[END_REF] proposed two extensions of their DiPP algorithm to address systems with more than one instance of each resource. In their baseline model each node holds one instance of one type of resources. In the first extension, a node can hold multiple instances of one type of resources. In the second extension a node can hold multiple types of resources and multiple instances of each type. They propose to add a notion of quantity to their algorithm.

Other DrPP algorithms do not address explicitly extensions for multiple instances but can be adapted. Chandy-Misra [CM84] DrPP algorithm allows only a single node to enter its CS and use resources at a given time. Adapting it for systems with multiple instances only requires to consider that a fork can stand for any number of instances. Rhee [START_REF] Rhee | A Fast Distributed Modular Algorithm for Resource Allocation[END_REF] is dependent on the algorithm used as a subroutine to lock the resources. If the algorithm chosen can handle systems with multiple instances of each type of resources then a solution would be to consider that each resource manager needs to handle a queue per instance.

It should be noted that it can be possible to adapt the problem so that a DiPP or DrPP algorithm can be used. None of the algorithms considers the placement of the instances. Selecting any instance arbitrarily can result in a higher latency due to the distance between nodes. In this case it is possible to consider each instance as a new type of resources by itself. The problem then becomes a DiPP or DrPP. The algorithm presented in the next chapter does just that. It tries to minimise the overall length of the path connecting the nodes holding the types of resources requested and to achieve that consider that each instance is different depending on its location in the communication graph.

Classification of algorithms

A classification of the distributed algorithms for the allocation of resources has been proposed by Jonathan Lejeune in its PhD thesis [START_REF] Lejeune | Algorithmique distribuéee d'exclusion mutuelle : vers une gestion efficace des ressources[END_REF], it is represented in Figure 3.7. It sums up what has been described above. The least general problem is the original mutex problem for systems with 1 instance of 1 resource, and the most general is for systems with m instances of n types of resources. A solution that addresses a problem can also be used to solve a less general problem. For example a solution to the DiPP problem can also solve the mutex problem.

Performance evaluation and comparison

In his taxonomy [START_REF] Singhal | A Taxonomy of Distributed Mutual Exclusion[END_REF], Mukesh Singhal lists three main metrics to compare the performances of Mutual Exclusion algorithms : the message complexity: the total number of messages sent and received by a node for each request to access the shared resources.

Shared-Memory Mutex

Dek59 [Dij65] [Knu66] [dBru67] [EM72] [Lam74] Permission-based Mutex [Lam78] [RA81] [CR83] [vdSne87] [LT87] [TN87] [NLM90] [MS90] [NM91] [MNR91] [Cha94] [Mue98; Mue99] [Cad+17] Quorum-based Mutex [Mae85] [San87] [AE91] Token-based Mutex [Le 77] [RA83] [SK85] [Mar85] [NT87] [Sop+05] [HPR88] [Ray89b] [Gos89; Gos90; Gos91] k-mutex [Ray89a] [SR92] [Mak+92] [Kak+94] [BV95] [CE08] k-out of-M [Ray91a] [MT99] [Bal94]
DrPP and DiPP DrPP algorithm that considers an extension to multiple instances

[Dij71] [Lyn80; Lyn81] [FR80] [LR81] [CM84] [SP88] [GSA89] [Sin89] [AS90] [WPP91] [BP92] [PJC93] [WL93] [CS93] [CS95] [Mad97] [Rhe95; Rhe98] [BL00] [SPS00] [Lej+15]
uses extends Figure 3.8: Timeline the response time: the time interval a request waits to enter its CS after its request message has been sent out the synchronisation delay: the number of sequential messages required after a node leaves its CS for a new node to enter its CS Nancy A. Lynch's 1980 paper [START_REF] Lynch | Fast Allocation of Nearby Resources in a Distributed System[END_REF] is perhaps the first to consider the response time. Before that the most common metric considered was the number of messages.

Choy and Singh [START_REF] Choy | Efficient Fault-Tolerant Algorithms for Distributed Resource Allocation[END_REF] proposed an additional metric failure locality. They define the m-neighbourhood of a node as the set of nodes at a distance of a most m from the node in the conflict graph. They define the failure locality of an algorithm to be m if a process is free from starvation even if processes outside of its m-neighbourhood have failed.

Table 3.1, taken from [START_REF] Martin | A Survey of Distributed Mutual Exclusion Algorithms[END_REF] shows the message complexity of some permission-based algorithms. Table 3.2, also from [START_REF] Martin | A Survey of Distributed Mutual Exclusion Algorithms[END_REF], shows the performance of some token-based algorithms. In these tables N stands for the number of nodes in the system.

Authors

Problem Message complexity Dijkstra [START_REF] Dijkstra | Solution of a Problem in Concurrent Programming Control[END_REF] shared-memory Eisenberg and McGuire [START_REF] Eisenberg | Further Comments on Dijkstra's Concurrent Programming Control Problem[END_REF] shared memory Lamport's bakery [Lam74] shared memory Lamport's Logical clock [Lam78] message passing 3 * (N -1) Ricart and Agrawala [START_REF] Ricart | An Optimal Algorithm for Mutual Exclusion in Computer Networks[END_REF] message passing 2 * (N -1) Carvalho-Roucairol [START_REF] Carvalho | On Mutual Exclusion in Computer Networks[END_REF] message passing 0 to 2 * (N -1) Maekawa [Mae85] message passing/quorum i * √ N , 3 ≤ i ≤ 5 Sanders [START_REF] Sanders | The Information Structure of Distributed Mutual Exclusion Algorithms[END_REF] message passing |I i -{i}| + 2(|R i -{i}|) I is the inform set and R the request set, I is a subset of R and |I| < |R| Raynal [START_REF] Raynal | Prime Numbers as a Tool to Design Distributed Algorithms[END_REF] message passing 2 * (N -1) 2 Agrawal-El Abbadi [START_REF] Agrawal | An Efficient and Fault-Tolerant Solution for Distributed Mutual Exclusion[END_REF] message passing O(log(N)) Singhal [START_REF] Singhal | A Dynamic Information-Structure Mutual Exclusion Algorithm for Distributed Systems[END_REF] dynamic structure (N -1) to 3 * (N -1)/2 [START_REF] Ricart | Authors' Response to "on Mutual Exclusion in Computer Networks" by Carvalho and Roucairol[END_REF] message passing N Suzuki and Kazami [START_REF] Suzuki | A Distributed Mutual Exclusion Algorithm[END_REF] token L * N + (N -1) L is the number of Mutual Exclusion entries Naimi-Tréhel [START_REF] Naimi | An Improvement of the logN Distributed Algorithm for Mutual Exclusion[END_REF] token /dynamic tree log(N) van de Snepscheut [START_REF] Jan | Fair Mutual Exclusion on a Graph of Processes[END_REF] token /static tree log(N) Raymond [START_REF] Raymond | A Tree-Based Algorithm for Distributed Mutual Exclusion[END_REF] token /static tree max:2 * D, average: log(N) D is the diameter (longest path length) of the tree Table 3.2: Performance of token-based Mutex algorithms, after [START_REF] Martin | A Survey of Distributed Mutual Exclusion Algorithms[END_REF] Rhee [START_REF] Rhee | A Fast Distributed Modular Algorithm for Resource Allocation[END_REF], extending results from [START_REF] Awerbuch | A Dining Philosophers Algorithm with Polynomial Response Time[END_REF] and [START_REF] Choy | Efficient Fault-Tolerant Algorithms for Distributed Resource Allocation[END_REF], describes the complexity of several DiPP and DrPP algorithms. This is shown in Table 3.4. The variables used in the formulas are described in Table 3

Conclusion

Chapter 2 introduced the problem of the allocation of resources in networks addressed in this work. None of the distributed algorithms presented in the above state of the art address all the constraints. There are few algorithms for systems with multiples instances of multiples types of resources and none of them address the placement of the resources in the topology. None of them address the order in which the resources are used, required for chains of functions, either. Additionally some have prerequisites, like the a priori knowledge of the conflict graph.

The next chapter introduces an algorithm that address all the requirements of the problem statement with no new prerequisite. The following chapters show the evaluation of the heuristics proposed for the algorithm, as well as the comparison with some of the algorithms introduced above: Dijkstra's incremental algorithm [START_REF] Dijkstra | Hierarchical Ordering of Sequential Processes[END_REF] as well as Chandy-Misra [CM84], Rhee [START_REF] Rhee | A Fast Distributed Modular Algorithm for Resource Allocation[END_REF] and Bouabdallah-Laforest [BL00] DrPP algorithms.

Chapter 4

A distributed algorithm for the allocation of resources

It's educational

Pixies, U-Mass

This chapter details a distributed algorithm for the allocation of resources in networks, addressing the problem described in Chapter 2 to allocate ordered chains of VNFs. The algorithm was first described in the paper "A Resource Usage Efficient Distributed Allocation Algorithm for 5G Service Function Chains" published at the 2020 Distributed Applications and Interoperable Systems (DAIS) conference [START_REF] Fraysse | A Resource Usage Efficient Distributed Allocation Algorithm for 5G Service Function Chains[END_REF].

The algorithm is modular and consists of two consecutive subroutines: the path computation subroutine, detailed in Section 4.2, in which the algorithm selects the instances of types of resources to be allocated and computes a routing path between them. This path respects the order present in the request. the allocation subroutine, detailed in Section 4.3, in which the algorithm allocates the resources selected during the path computation subroutine. Each of these subroutines can choose among multiple heuristics depending on the objectives. Possible heuristics for both subroutines are introduced in Section 4.5, along with their pros and cons.

The algorithm provides a solution to the problem statement described in Section 2.4 using the system described in Section 3.1.3. It allocates requests for an ordered set of resources in a system with multiple instances of multiple types of resources. It does not assume that the communication links are First In First Out (FIFO), i.e., messages can arrive in any order. It also does not assume that the nodes have a knowledge of the full communication graph. No a priori knowledge of the conflict graph is required either.

Variables of nodes and messages

Each subroutine relies on multiple types of messages. Table 4.1 shows which message uses which variable. The variables sent with the messages are described in Table 4.2. The messages and how they use these variables are described in the next sections.

The algorithm requires nodes to keep track of several local variables. They are listed in Table 4.3. These local variables are used by both subroutines and are prefixed by self. in the pseudo-code in the next sections. The types defined for the variables are the types used in this chapter, but an implementation of the algorithm could choose other types for some of them. For example, the identifier of nodes (id variable) could be integers instead of strings.

In the pseudo-code in the next sections, it is assumed that the index for vectors starts at 0.

Variable Type

Description request couple (requestId: integer, resourceTypes:

Vector of strings)

A couple with a request identifier and the vector of all the requested types of resources. The order in the vector is the order in which the resources will be used, i.e., resourceTypes[i] is the i th resources that will be used. path

Vector of couples (id: string, length: integer) Path from the requesting node to the current node. Each couple in the vector contains a node identifier and its distance to the previous node allocVector Vector of couples (id: string, counter: integer)

The allocation vector for the request. Each couple in the vector contains the identifier of a node holding one of the type of resources requested and the value of the counter for that node applicable to the request preempter id: string The identifier of the node that initiated the preemption

Path computation

The first subroutine computes a path with nodes that hold instances of the types of resources requested and respecting the order in the request. It relies on two messages: ROUTING and ROUTING ACK.

The requesting node starts by sending an initial ROUTING message towards the node holding the first type of resources in the request. Subsequent ROUTING messages are sent by each node on the path until all the types of resources have been selected.

The last node on the path then sends a ROUTING ACK message to the requesting node.

Simultaneously this subroutine gathers the required information to build an allocation vector for the request. The allocation vectors are used to compute a total order of the requests. This is described below and then illustrated by an example in Section 4.4. When this subroutine ends, the second one described in Section 4.3 starts to allocate the resources.

This subroutine computes a valid path with the selected instances of all the requested types of resources in the order given in the request. It does not check if the instances are available.

Requesting to enter the CS

When a node wants to request resources it does so by building a first ROUTING message in the requestCS function, the pseudo-code of which is shown in Algorithm 4.1. The ordered vector of requested types of resources is given as a parameter to the function in the variable request, described in Table 4.2. For instance, request.resourceTypes[i] is the i th type of resources requested according to the order in the request. This function computes two local variables: the path (line 3), and the allocVector (line 4). The path is initialised (line 7), with a vector containing a couple: the identifier of the requesting node and 0, which is the distance between the requesting node and itself. As the request has just been initiated and no resource has been found yet, the allocVector is initialised with an empty vector (line 8).

Then, using the getPathToResourceType function, the node identifies the node to which the next message must be sent (line 11). The function updates the path variable to append the information gathered. path now contains the first two nodes of the path and the distance between them (line 12). The requesting node then sends a ROUTING message to this node (line 13) with the variables request, path and allocVector .

Finally the function requestCS synchronously waits for a ROUTING ACK message (line 16). This message will contain new values for the variables request, path and allocVector, noted respective r, p and a. These new values are sent as parameters to the allocate function, detailed in the dedicated section 4.3, that will start the allocation subroutine.

1 Function requestCS (r e q u e s t) 2 # L o c a l v a r i a b l e s 3 path : v e c t o r o f c o u p l e (i d : s t r i n g , l e n g t h : i n t e g e r) 4 a l l o c V e c t o r : v e c t o r o f c o u p l e (i d : s t r i n g , c o u n t e r : i n t e g e r) 5 6 # I n i t i a l i s a t i o n o f v a r i a b l e s 7 path ←-[(s e l f . id , 0)] 8 a l l o c V e c t o r ←-[] 9 10 # Send r e q u e s t t o f i r s t node on path 11 pathToNextResource ←-getPathToResourceType (r e q u e s t [0]) 12 path . append (pathToNextResource) 13 send ROUTING(r e q u e s t , path , a l l o c V e c t o r) to pathToNextResource . i d

Forwarding the messages

The algorithm assumes that each node in the system has some local knowledge on how to reach all the types of resources. Each node keeps an up-to-date local routing table containing the names of its neighbours, i.e., the nodes connected to it by an edge, that are closer to each type of resources as well as the distances to these nodes. Table 4.4 shows an example of a routing table for a node n 1 . The table shows that there are two instances of types of resources c 1 , each at a distance of 1. One can be reached through n 2 , the other through n 5 . The entry in the routing table is the node itself for the type of resources it holds, in the example it is assumed n 1 holds an instance of c 2 . How these routing tables are built and updated is out of scope here. The assumption is that the topology is static, cf. Section 2.4.1. The solution used in the experiments is described in Chapter 5.

Type

Next node Total distance D to of resources on the path this type of resources

c 1 n 2 1 n 5 1 c 2 n 1 0 n 5 8 n 2 10 c 3 n 5 9 n 2 11
Table 4.4: Sample routing table a node.

The getPathToResourceType function selects the next node on the path to a given type of resources, it checks its routing table and selects one of the node according to the routing heuristic. This function takes one parameter: the type of resources. It returns a couple with the identifier of one node and its distance to the current node. Routing heuristics are detailed in Section 4.5.2 and evaluated in the next chapter.

Computing the path

The pseudo-code for the handling of ROUTING messages is shown in Algorithm 4.2. Upon reception of a message of this type a node checks if the type of resources it holds (variable self.currentType) is of the next requested type (lines 20 to 23). If this is the case it appends itself to the allocVector along with the current value of its self.counter variable (line 22), and then increment self.counter (line 21). A distinct value of self.counter is attributed to each request allowing the computation of the total order of the requests, cf. Section 4.3.2.

If at least one type of resources has still not been selected (line 25), the algorithm uses the getPathToResourceType function to identify the node where to send a ROUT-ING message (line 29). It then sends the ROUTING message (line 32) with the request variable and the updated values of path and allocVector as parameters.

Otherwise, if all the types of resources have been selected, the node sends a ROUT-ING ACK message to the requesting node that will start the allocation subroutine (line 38). This message is the last sent by this subroutine and is handled in the allocation subroutine described in Section 4.3 because the allocation of resources starts when this message is received (Algorithm 4.1, line 17).

19 Function ha n d l eR o u t in g (r e q u e s t , path , a l l o c V e c t o r) 20 i f s e l f . r e s o u r c e T y p e == r e q u e s t .

Total ordering of requests

The algorithm computes a total order of the requests to preserve the liveness property, i.e., it guarantees that all requests are satisfied in a finite time. The method from the LASS algorithm [START_REF] Lejeune | Reducing Synchronization Cost in Distributed Multi-Resource Allocation Problem[END_REF] based on allocation vectors built for each request is used to compute this order.

The first step is to build the allocation vector for the request. This vector is built by each of the node on the path that holds one of the requested instances. Each node has a local counter, the local variable self.counter, that is initialised to 0. This counter acts as a logical clock, but contrary to Lamport's logical clocks [Lam78] it is local and only incremented by the node when it receives a new request. As such it is then not possible for two requests to get the same counter value for a node in their allocation vector. The first request receives the value 1, the second receives the value 2, and so on. This can be seen in line 21 for the handleRouting function.

Once the node has updated its local counter, it then updates the allocation vector with the value of its counter (line 22). The updated allocation vector is inserted in the ROUTING message when it is forwarded to the next node in the path (line 32). All the allocation vectors are different so as to enforce the total order of the requests, cf. Section 4.3.2.

Allocation

The second subroutine allocates the instances that were selected during the path computation subroutine. This allocation follows the total order defined by the allocation order heuristic and described above in Section 4.2.4. When multiple concurrent requests need to allocate the same instance, the total order of the requests is followed. If needed a preemption mechanism is present to enforce this order.

Initially all the nodes start in the IDLE state. When their instance is allocated for a request they enter the ALLOCATED state. When a node is already ALLO-CATED and receives a new request for its instance, this new request might preempt the instance if it comes before the request that had initially allocated the instance in the total order. In this case the node enters the PREEMPTING state.

Allocating the resources

The core of the allocation subroutine is based on ALLOC messages. In a system where all the nodes are initially in the IDLE state, a node that receives an ALLOC message enters the ALLOCATED state and sends an ALLOC message to the next node according to the allocation order heuristic. The operation is then repeated until the last node in the allocation order is reached. Then, the last node sends an ALLOC ACK message to the requesting node to inform it that the allocation is done. It then enters its CS and starts using the instances. Upon leaving its CS it runs the function leaveCS shown in Algorithm 4.10 and sends a END CS message that is forwarded along the path to all the nodes holding the requested types of resources. ALLOC messages are sent to nodes according to the allocation order heuristic. Some possible heuristics are detailed in the next section. To follow this allocation order, five functions are assumed to be available and their outputs depend on the selected heuristic: firstNodes: a function that takes an allocation vector as parameter and returns a vector with the identifiers of the nodes to allocate first, nextNode: a function that takes a path and a node identifier as parameters and returns the node identifier of the node in the path that comes after the node given as an input, previousNode: a function that takes a path and a node identifier as parameters and returns the node identifier of the node in the path that comes before the node given as an input, a isLast function that takes two parameters, a path and a node identifier, and returns true if the node identifier passed as a parameter is the last node on the path and false otherwise, Start of the subroutine The first step of this subroutine is to handle the ROUT-ING ACK message with the function allocate which pseudo-code is shown in Algorithm 4.3. This function is called at the end of the path computation subroutine. It uses the firstNodes function (line 42) to identify the nodes where to start the allocation depending on the allocation order heuristic. For most heuristics the vector returned by firstNodes contains a single element because they allocate resources sequentially. Once the node(s) to reach is(are) identified, the algorithm sends an ALLOC message to it(them).

To make the pseudo-code more readable, as the path has already been computed during the first subroutine, it is assumed that a sendFwd function is available. sendFwd sends a message from one node to another according to the path previously computed. When a message reaches a node on the path that does not hold any of the requested type of resources, it forwards the message to the next node in the path. This function sendFwd is used in the pseudo-code of this section instead of the send function used in the first subroutine. Handling the ALLOC message The pseudo-code for the handling of ALLOC messages is shown in Algorithm 4.4. The function relies on several of the local variables described above in Section 4.1 to keep tracks of all the allocations received. If the node is in the ALLOCATED state, the local variables allocatedRequest, allocatedPath, al-locatedVector hold respectively the identifier of the request that allocated the instance, its path, and its allocation vector. The variable currentHandler contains the identifier of the node that was next on this request, i.e., the node that is currently handling the request.

The function maintains two local variables: self.waiting and self.ignore. The self.waiting vector contains t-uples of all the requests that have tried to allocate the instance held by the current node and have not been able to yet, along with their paths and allocation vectors. The self.ignore vector contains the identifiers of requests that will be ignored when they arrive, it is necessary due to the distributed nature of the system where messages can arrive in any order. The use of these two vectors is detailed below.

At first the algorithm checks (lines 49 to 52) if the request is in the self.ignore vector. If this is the case it removes it from the vector and stops there.

If the node is currently in the IDLE state, it enters the ALLOCATED state and stores the current request, its path, and its allocation vector respectively in the allocatedRequest, allocatedPath and allocatedVector variables (lines 57 to 61). Then the algorithm checks (line 62) if the current node is the last node that needs to be allocated according to the allocation order using the isLast function. If this is the case, it means that all the types of resources have been allocated for the current request and the allocation is finished so the algorithm sends an ALLOC ACK message to the requesting node, which is also path[0] (line 63). If this is not the case it sends an ALLOC message along the path of the request to the next node according to the allocation order. The algorithm uses the currentHandler variable to store the identifier of the next node, this operation allows it to know which node to send preemptions to as detailed below (lines 66-67).

If the node is currently in the ALLOCATED state when receiving an ALLOC message, the algorithm checks (line 74) the precedence of the current request with the precedence of the request that had allocated the instance before, according to the total order of requests (cf. 4.3.2). If the current request has a lower precedence, the algorithm attempts a preemption and the node enters the PREEMPTING state (line 75). It also appends the current request, as well as the request that had previously allocated the instance, to the self.waiting vector because the two requests are now on hold. Finally it sends a PREEMPT message to the node stored in currentHandler with the values stored in allocatedRequest, allocatedPath, allocatedVector variables as parameters (line 79).

Finally if the node is in the PREEMPTING state when receiving an ALLOC message, the current request is stored in the self.waiting vector (lines 85 to 88). This request will be handled in a later call to the handleAlloc function, once the node has left this state.

Upon reception of an ALLOC ACK message a node simply enters its CS as shown in the pseudo-code in Algorithm 4.5.

Function h a n d l e A l l o c (r e q u e s t , path , a l l o c V e c t o r) # Check i f r e q u e s t i s i n t h e s e l f . i g n o r e l i s t i f r e q u e s t . r e q u e s t I d in self.ignore s e l f . i g n o r e ←-s e l f . i g n o r e = r e q u e s t . r e q u e s t I d return endif # I f IDLE send ALLOC t o next node o r # ALLOC ACK i f t h e node i s t h e node h o l d i n g t h e l a s t r e s o u r c e s w i t c h s e l f . s t a t u s c a s e IDLE : s t a t u s ←-ALLOCATED a l l o c a t e d R e q u e s t ←-r e q u e s t s e l f . w a i t i n g ←-s e l f . w a i t i n g + (r e q u e s t , path , a l l o c V e c t o r) i f comparePrecedence (a l l o c V e c t o r , a l l o c a t e d V e c t o r) < 0 s e l f . s t a t u s ←-PREEMPTING s e l f . w a i t i n g ←-s e l f . w a i t i n g + (a l l o c a t e d R e q u e s t , a l l o c a t e d P a t h ,

Computing the total order of requests

To sort the requests according to the total order, the algorithm computes the precedence of requests. A request Req i will be allocated before a request Req j if precedence(Req i) < precedence(Req j). This allows the definition of the rank of a request in the total order. Req i is said to have a lower precedence than Req j if the average of the counters of the allocation vector V Req i of Req i is lesser than the average value of the components of the allocation vector V Req j of Req j . For instance, consider two requests

Req A = Req(n 4 , [c 3 ,c 2 ,c 1]) and Req B = Req(n 6 , [c 1 ,c 2 ,c 3]).
If their allocation vectors are V Req A = ((n 6 , 3), (n 3 , 3), (n 4 , 1)) and V Req B = ((n 4 , 2), (n 3 , 2), (n 6 , 1)) Req B has a lower precedence than Req A , i.e., Req B will be allocated before Req A . The pseudo-code for the functions precedence and comparePrecedence is shown in Algorithm 4.6 and Algorithm 4.7. It is possible for the average values of two vectors to be equal. In this case a function tiebreak is assumed to be available (line 125) to break the ties between requests, for example the identifier of nodes can be used.

Preempting an instance

Since the system is distributed a request can arrive on a node already in the ALLO-CATED state for a request that has a higher precedence. This can lead to starvation.

To manage these situations the algorithm preempts the instances to enforce the total order of the requests. This relies on two messages: PREEMPT and PREEMPT ACK. These messages take an additional parameter: preempter. This variable stores the identifier of the node that initiated the preemption.

First the function handlePreempt decides whether it needs to forward the preemption, to accept it and send back a PREEMPT ACK, add the request to the self.waiting vector or to do nothing. The pseudo-code is shown in algorithm 4.8.

As it is not assumed that communication links are FIFO, it is possible that a node receives a PREEMPT message for a request that it is not aware of yet, i.e., it has not received the corresponding ALLOC message. In this case, the node is either IDLE or AL-LOCATED for another request and acknowledges the preemption, cf. the paragraph "Acknowledging the preemption" below. Otherwise, the decision depends on the current state of the node:

If the node is ALLOCATED for the request that initiated the preemption (lines 138-152), there are two sub-cases. If the node is the node holding the last requested instance, then the request has already entered its CS and it is too late to preempt the instance, the algorithm waits for the request to leave its CS and does nothing (line 140). If it is not the node holding the last requested instance then the request is appended to the self.waiting vector (line 142), the state of the node changes to PREEMPTING and a PREEMPT message is sent along the path of the request (lines 143 and 145).

If the node is PREEMPTING (lines 129-135) and the new request has a higher precedence than the request that currently holds the instance, then the request is stored in the local self.waiting vector, otherwise the node acknowledges the preemption, cf. the dedicated paragraph below.

Acknowledging the preemption If the node has accepted the preemption, it is either because it did not know the request yet or because it was already preempting the instance for a request with a lower precedence. It starts by appending the request to the self.ignore vector (line 155). After that, it sends back a PREEMPT ACK message to the node that initiated the preemption (line 156). When a node receives a PREEMPT ACK message, it executes the handlePreemptionAck function. The pseudo-code is shown in Algorithm 4.9. In any case, the node changes back its status to IDLE.

If the node receiving the message is the node that initiated the preemption then it finds the request with the lowest precedence stored in the self.waiting variable (line 163) and resumes its allocation (line 164).

Otherwise, it removes the request from the self.waiting vector (line 166) because the request is not being allocated anymore for now. Then, it sends a PREEMPT ACK message to the previous node in the path (line 167). This message is propagated until the node that initiated the preemption has been reached (line 169).

When a preemption occurs, the algorithm ensures that the resource is always released. Either the node that receives the PREEMPT message decides to release it immediately, either it waits for the current request to leave its CS. As CS have finite duration the algorithm ensures that resources are released in finite time.

Because of the distributed nature of the system, even if PREEMPT messages are sent along the same path as the ALLOC messages, a node may receive a PREEMPT before it has received the corresponding ALLOC. To deal with such situations, each node maintains a self.ignore vector. When it receives a PREEMPT for a request and it has not yet received the corresponding ALLOC, it stores the request in the self.ignore vector (line 155 of Algorithm 4.8). When it finally receives the ALLOC for a request that is present in the self.ignore vector, it ignores the ALLOC and removes the request from the vector (lines 49-52 of Algorithm 4.4).

127 Function handlePreempt (r e q u e s t , path , a l l o c V e c t o r , preempter) 128 # I f a l r e a d y i n PREEMPTING˜s t a t e , append t o w a i t i n g 129 i f s e l f . s t a t u s == PREEMPTING # I f a l l o c a t e d by t h e preempting r e q u e s t , check i f t h e node i s t h e l a s t 138 i f a l l o c a t e d R e q u e s t . r e q u e s t I d == r e q u e s t . r e q u e s t I d 139 i f i s L a s t (s e l f . i d path) 140 return 141 e l s e 142 s e l f . w a i t i n g ←-s e l f . w a i t i n g + (r e q u e s t , a l l o c V e c t o r , path)

Leaving the CS

When a node is done using the allocated instances, it leaves its CS by running the function leaveCS (Algorithm 4.10). This function is run by the requesting node and sends a END CS message to the first node in the allocation order (line 174).

172 Function leaveCS (r e q u e s t , path , a l l o c V e c t o r) 173 pathToNextResource ←-nextNode (s e l f . id , a l l o c V e c t o r) 174 sendFwd END CS(r e q u e s t , path , a l l o c V e c t o r) to pathToNextResource . i d 175 EndFunction Algorithm 4.10: Leaving the CS When a node receives a END CS message it runs the function handleEndCS shown in Algorithm 4.11. It changes its state back to IDLE (line 178). It then identifies the next node according to the allocation order (line 183) and sends it a END CS message (line 184). When the node that receives the message is the last according to the allocation order it just does not send any more message (line 182).

176 Function handleEndCS (r e q u e s t , path , a l l o c V e c t o r) 177 i f s e l f . i d in a l l o c V e c t o r 178 s e l f . s t a t u s ←-IDLE 179 s e l f . w a i t i n g ←-s e l f . w a i t i n g = (r e q u e s t , path , a l l o c V e c t o r)

Examples

The examples in this chapter are based on the system shown in Figure 4.2, this is the same system that was introduced in Section 2.4.1. 4.5 gives the routing tables for this system. In this example, node n 1 's shortest path to the type of resources c 3 is of length 9 and starts at n 5 : (n 1 , n 5 , n 7 , n 8), and node n 5 's shortest path to the type of resources c 3 is of length 8 and starts at n : (n 5 , n 7 , n 8).

Type

Node D The request Req 1 = Req(n 1 , [c 3 ,c 2 ,c 1]), previously used in Section 2.4.1, is used here as the example to describe the behaviour of the algorithm, assuming this is the only request in the system. The selection of instances found for Req 1 is shown in Figure 4.3. Figure 4.4 shows the messages sent during the execution of the algorithm for Req 1 in the sample system to select these instances. For this example, it is assumed that the getPathToResourceType function always returns the node that is the closest for a given type of resources.] and an empty allocVector. When it receives this message, n 5 runs the handleRouting function and, as it does not hold the first type of resources, sends a ROUTING message to the node n 7 returned by getPathToResourceType for c 3 with the variable path = [(n 1 , 0), (n 5 , 1), (n 7 , 7)] and an empty allocVector. When n 7 receives this message it runs the handleRouting function, and as it does not hold an instance of type c 3 either, it sends a ROUTING message to n 8 , according to the output of the getPathToResourceType function, with path = [(n 1 , 0), (n 5 , 1), (n 7 , 7), (n 8 , 1)] and an empty allocVector. When n 8 receives the ROUT-ING message, its instance is of the first requested type of resources c 3 . Assuming that its current counter value is 2, it increments its counter to 3, updates allocVector and sends a ROUTING message in the direction of a node holding the second type of resources requested c 2 , n 7 according to the output of the getPathToResourceType function.

c 1 n 2 1 n 5 1 c 2 n 1 0 n 5 8 n 2 10 c 3 n 5 9 n 2 11 (a) n 1 Type Node D c 1 n 2 0 n 5 1 n 3 10 c 2 n 1 1 n 5 8 n 3 9 c 3 n 5 9 n 3 10 (b) n 2 Type Node D c 1 n 1 n 9 c 2 n 0 n 10 c 3 n 1 n 18 (c) n 3 Type Node D c 1 n 4 0 n 3 10 c 2 n 3 1 c 3 n 6 1 n 3 19 (d) n 4 Type Node D c 1 n 5 0 n 2 1 c 2 n 1 1 n 7 7 c 3 n 7 8 n 2 11 (e) n 5 Type Node D c 1 n 1 n 10 c 2 n 1 c 3 n 0 n 19 (f)
n 1 n 5 n 7 n 8 t t 1 t 2 t 3 t 4 t 5 t 6 Req 1 ALLOCATED CS R O U T I N G [] R O U T I N G [] R O U T I N G [] R O U T I N G (n 8 , 3) R O U T I N G (n 8 , 3) (n 7 , 2) R O U T I N G A C K   (n 8 , 3) (n 7 , 2) (n 5 , 4)   A L L O C A L L O C A L L O C A L L O C A C K E N D C S E N D C S E N D C S
n 2 c n 2 =1 n 4 c n 4 =4 n 5 c n 5 =3 n 1 c n 1 =1 n 3 c n 3 =2 n 7 c n 7 =1 n 8 c n 8 =2 n 9 c n 9 =1 n 6 c n 6 =2 V Req1 = ∅ (a) t 1 : requestCS(), Req 1 is sent towards n 8 n 2 c n 2 =1 n 4 c n 4 =4 n 5 c n 5 =3 n 1 c n 1 =1 n 3 c n 3 =2 n 7 c n 7 =1 n 8 c n 8 =3 n 9 c n 9 =1 n 6 c n 6 =2 (b) t 2 : handleRouting(), n 8 's counter is incremented
n 2 c n 2 =1 n 4 c n 4 =4 n 5 c n 5 =3 n 1 c n 1 =1 n 3 c n 3 =2 n 7 c n 7 =1 n 8 c n 8 =3 n 9 c n 9 =1 n 6 c n 6 =2 V Req1 = (n 8 , 3) (a) t 3 : handleRouting(), a ROUTING message is sent to n 7 n 2 c n 2 =1 n 4 c n 4 =4 n 5 c n 5 =3 n 1 c n 1 =1 n 3 c n 3 =2 n 7 c n 7 =2 n 8 c n 8 =3 n 9 c n 9 =1 n 6 c n 6 =2
(b) t 4 : handleRouting(), n 7 's counter is incremented The variables are now path = [(n 1 , 0), (n 5 , 1), (n 7 , 7), (n 8 , 1), (n 7 , 1)] and allocV ector = [(n 8 , 3)]. When n 7 receives this message, as it holds the second type of resources requested it increments its local counter from 1 to 2 and updates allocVector. This is shown in Figure 4.6.

n 7 then sends a message to n 5 , the node in the direction of the last requested type of resources. The variables are now path = [(n 1 , 0), (n 5 , 1), (n 7 , 7), (n 8 , 1), (n 7 , 1), (n 5 , 7)] and allocV ector = [(n 8 , 3); (n 7 , 2)], cf. figure 4.7. When the message reaches n 5 , it holds the last requested type of resources. It updates path and allocVector and sends a ROUTING ACK message to the requesting node n 1 .

n 2 c n 2 =1 n 4 c n 4 =4 n 5 c n 5 =3 n 1 c n 1 =1 n 3 c n 3 =2 n 7 c n 7 =2 n 8 c n 8 =3 n 9 c n 9 =1 n 6 c n 6 =2 V Req1 = (n 8 , 3) (n 7 , 2) (a) t 5 : handleRouting(), a ROUTING message is sent to n 5 n 2 c n 2 =1 n 4 c n 4 =4 n 5 c n 5 =4 n 1 c n 1 =1 n 3 c n 3 =2 n 7 c n 7 =2 n 8 c n 8 =3 n 9 c n 9 =1 n 6 c n 6 =2
(b) t 6 : handleRouting(), n 5 's counter is incremented The allocation subroutine then starts. Assuming that the allocation order heuristic goes through the resources in the order in which they appear in the allocation vector, n 1 sends an ALLOC message to n 5 . Then further ALLOC messages are sent by n 5 to n 7 and n 7 to n 8 . Once the allocation is finished n 8 sends an ALLOC ACK back to the requesting node n 1 .

When n 1 is done using the resources it sends an END CS message to n 5 . Then subsequent END CS messages are sent by n 5 and finally n 7 . In this scenario, n 6 start the allocation of Req 3 , at t 1 shown in Figure 4.10a, by sending an ALLOC message to n 4 , the first node to hold a type of resources according to the order of the request. Upon reception of this message, n 4 enters the ALLOCATED state. Then, at t 2 (Figure 4.10b), it continues the allocation of Req 3 and sends an ALLOC message to n 6 , the node that holds the second requested type of resources. At t 7 , as shown in Figure 4.13a, n 6 receives the PREEMPT message. Because the preemption is for Req 2 and it is currently in the ALLOCATED state for Req 2 , it acknowledges the preemptions by sending back a PREEMPT ACK message to n 3 . Now that the preemption is done, n 3 can now enter the ALLOCATED state for Req 3 . At t 8 , the allocation of Req 3 is finished so n 3 sends a final ALLOC ACK to the requesting node n 6 (Figure 4.13b).

Example of two concurrent requests with preemption of an instance

ALLOCATED CS PREEMPTING A L L O C A L L O C A L L O C A L L O C A LL O C PR EE M PT P R E E M P T A C K A L L O C A C K E N D C S E N D C S E N D C S A L L O C A C K E N D C S E N D C S E N D C S Figure

Heuristics

Each of the two subroutines of the algorithm can rely on several heuristics, each with its own objective. This section details these heuristics and the pros and cons of each of them. This is then summed up in Table 4.6. All the heuristics are evaluated experimentally in the next chapter.

Routing heuristics

The path computation subroutine allows the use of various heuristics for the getPathToRe-sourceType function described in Section 4.2.2. This function takes a type of resources as an input and returns a couple with the identifier of a node and its distance to the current node.

The first heuristic, called shortest, selects the node holding one instance of the requested type of resources that is the closest from the current node, according to the routing table. This heuristic allows the minimising of the length of the path. However, it does not guarantee that the path computed for a whole request is the shortest path containing all the resources as the sum of the shortest path can be different from the shortest end-to-end path. The drawback of this heuristic is that for a given type of resources it always returns the same node, resulting in poor load-balancing across the various instances. It is mostly appropriate for systems with a single instance of each type of resources.

The second heuristic, called round-robin, performs a round-robin across the different instances of the input type of resources. For example if there are three instances of the request type of resources, the first time the getPathToResourceType is called it returns the first instance. The second time it is called, it returns the second instance then the third instance the third time. After that it starts over. It allows the balancing the load across all the instances but does not consider the distance between the nodes. The resulting path has, most of the times, a longer length than the path computed with the shortest heuristic.

Allocation order heuristics

The allocation subroutine relies on an allocation order. Each request has an associated partial request order for the resources within the request, i.e., the order in which the resources are used, cf. Section 2.4.1. The allocation order is the order used by the algorithm to allocate the resources. There is no relation between the request order and the allocation order and they can be different for a same request.

Three heuristics are proposed here to select this allocation order. For each of these heuristics, it is necessary to implement the four functions introduced in Section 4.3.1: firstNodes, nextNode, previousNode and isLast.

The reverse allocation order heuristic sends the ALLOC messages in the reverse order of the routing path. With this heuristic the path computation subroutine follows the path in one direction, and the allocation subroutine follows the path in the opposite direction returning to the requesting node. This reduces the number of required messages. This heuristic requires some minor changes to the pseudo-code in Section 4.2: lines 16-17 of function requestCS (Algorithm 4.1) and line 38 of handleRouting function (Algorithm 4.2) need to be adapted so that it is not the requesting node that receives the ROUTING ACK message.

The byvalues allocation order sends the ALLOC messages according to the values of the counters in the allocation vector. Starting by allocating the node with the highest counter value reduces the probability that requests with higher precedence arrive during the rest of the allocation of the request. Upon reception of the ROUTING ACK message the requesting node sends an ALLOC message to the node with the highest counter value in the allocation vector. The allocation then follows the order of the values of the counters in the allocation vector.

The parallel allocation order sends ALLOC messages to all the nodes present in the allocation vector in parallel. This allows the heuristic to respect the total order of the requests and does not require any preemption to enforce it. However, the experimental results detailed in Section 5.3 show that this heuristic does not give the best usage rate of resources. Other heuristics achieve a better usage rate because not enforcing the total order of requests increase concurrency. The total order is not optimal, having an optimistic strategy and not enforce it systematically improves the usage rate. This allows requests to be allocated when no conflict is detected.

Recap and example

If the allocation vector for Req 1 is V Req 1 = ((n 8 , 3), (n 7 , 2), (n 5 , 4)), the allocation for the reverse heuristic follows the order n 5 , n 7 , n 8 . For the byvalues heuristic the order is n 5 , n 8 ,n 7 because 4 > 3 > 2. In the case of the parallel heuristic, when the path computation subroutine finishes, the requesting node n 1 sends ALLOC messages to the three nodes n 8 , n 7 ,n 5 in parallel.

Table 4.6 sums up all the heuristics detailed in this section as well as their pros and cons.

Subroutine

Name

Algorithm Complexity

To compare the complexity of the algorithm with other algorithms from the state of the art, the variables introduced in Table 3.3 are used. The path computation subroutine requires ROUTING messages to go through at most every node of the system as many times as there are nodes in the requests. If the requests are of size r, then the maximum number of ROUTING messages emitted is r. The algorithm requires an additional ROUTING ACK message resulting in at most (r + 1) messages for the first subroutine.

Then, the allocation subroutine requires a similar r number of ALLOC messages with an additional ALLOC ACK at the end. There are (r + 1) of these two messages. The number of preemptions is variable but at most each of the δ conflicting requests could require a preemption for each of the r resources in a request. Therefore the maximum number of PREEMPT is δ * r. The PREEMPT are followed by PREEMPT ACK, so there are also at the most δ * r PREEMPT ACK messages. The maximum number of messages for the allocation subroutine is (r + 1) + 2 * (δ * r).

Once requests are over, the algorithm informs resources to leave their CS. This requires r END CS messages.

The maximum number of messages emitted for both subroutines is then (r + 1) + (r + 1) + 2 * (δ * r) + r = (2 * δ + 3) * r + 2, making the complexity O(r * δ).

If the system has N nodes, then it also has N resources. Each message could possibly be forwarded across all N nodes. This results in a maximum number of messages in the system to be [(2 * δ + 3) * r + 2] * N .

Conclusion

This chapter introduced a new distributed algorithm composed of two subroutines for the allocation of resources in networks. This algorithm allocates requests for an ordered set of resources in a system with multiple instances of multiple types of resources. It does not assume that nodes have a full knowledge of the communication graph. It also does not require any knowledge of the conflict graph either.

The instances of types of resources are first selected when the path is computed according to a routing heuristic. They are then allocated following an allocation order heuristic. When conflicting requests arrive on a node, a preemption occurs to enforce a total order of the requests. This total order is defined by computing the precedence of the allocation vector. The elements of this vector are the values of the local counters of each node that holds one of the selected instance.

The performance of the algorithm is impacted by the heuristics selected. The next chapter shows an experimental evaluation of the performance of all the heuristics of the algorithm. Chapter 6 then compares it to the performance of algorithms from the state of the art in the same experimental settings. This chapter gives an extensive view of the performance of the algorithm detailed in the previous chapter. First the metrics are defined in Section 5.1. Then, the experimental environment is described in Section 5.2. The performance of the heuristics presented in Section 4.5 is first evaluated for systems with 1 instance of n resources in Section 5.3, then for systems with m instances in Section 5.4. Last a method to compute the expected value is introduced in Section 5.5 and its results are compared to the performance of the heuristics of the algorithm.

The comparison of performance with algorithms from the state of the art is done in the next chapter.

Metrics and reference configuration

This section describes how the performance of algorithms is evaluated. First the metrics are defined in Section 5.1.1. Then, the next subsection defines the reference system configuration used for the tests.

Metrics definition

Three metrics are used to compare performance: the Average Usage Rate: the average percentage of used instances for the duration of the experiment. It is the sum of the times during which each resource is used divided by the overall duration of the experiment for all resources. 100% means that all resources are used all the time. 50% means that 50% of the resources are used on average. The objective is to maximise this metric, the Average Waiting Time: the average time, given in units of simulator discretized time, spent by requests between the moment at which they are emitted and the moment they are satisfied, i.e., the time between the sending of the first ROUT-ING message and the reception of the ALLOC ACK message by the requesting node. The objective is to minimise this metric, the Average Number of Messages per request: the ratio between the total number of messages sent in the system for the duration of the test and the number of requests. The objective is to minimise this metric. A test configuration consists of a large number of parameters and each of them potentially influences the results. The results are presented for a chosen reference system configuration that was selected because it is representative of the main results. An extensive evaluation of all the parameters and their impacts on performance was done.

System configuration

This evaluation led to the selection of the values presented here. The main parameters for this reference configuration are:

A topology called Cesnet200706 with 44 nodes, shown in Figure 5.1. It is extracted from the Internet Topology Zoo [START_REF] Knight | The Internet Topology Zoo[END_REF]. This topology was selected because its size is large enough to avoid bias in the results from topologies that have too few nodes. Larger topologies lead to longer simulation times to get similar results while providing no added information. In this topology, the degrees of the nodes vary from 1 to 18, with an average degree of 2.

the size of requests is constant, i.e., all requests for a given test have the same size and are for the same number of resources. This size takes multiple values in a set of tests and is represented on the X-axis of the charts. the load is set so that each node starts a new request as soon as its previous requests has ended.

For a given test, the workload contains requests that all have the same size, defined by the size of requests constant listed above. In a given request, the types of resources are all different. The types of resources in a request are selected randomly, using a uniform distribution. When a request is generated each type of resources is selected randomly across all types of resources, then (if the request is of size 2 or more) the second type of resources in the request is selected among the remaining types of resources. This is repeated until all types of resources have been selected.

For each test configuration multiple algorithms, or multiple heuristics of a single algorithm, are compared in the next sections and chapter.

Experimental environment

A simulator was developped to run the experiments. First the two implementations of the infrastructure based on the SimGrid simulator and the Open MPI library are described below. Then the Grid'5000 platform used to run the experiments is introduced.

Implementations of the infrastructure

The first infrastructure implemented, that is used for most of the experiments detailed here, is based on SimGrid [START_REF] Casanova | Versatile, Scalable, and Accurate Simulation of Distributed Applications and Platforms[END_REF] (version 3.23 from June 2019). SimGrid is an Open-Source (LGPL licence) framework for the simulation of distributed computer systems.

The second implementation available in the simulator uses the Open MPI library (version 3.1.3). Open MPI is an Open-Source implementation of the Message Passing Interface [Gab+04]. MPI is a message-passing interface standardised by the MPI Forum.

The routing tables necessary for the first subroutine of the algorithm are built statically by the simulator during the initialisation. The routing tables for all the nodes are built based on the Link and Hosts of the SimGrid configuration, using Dijkstra's Shortest Path algorithm [Dij59].

For the tests performed here, the system is put under a heavy load. Each node starts a first request after some random time, to avoid the special case where all the requests arrive at the same time. Then, when the request is finished, i.e., all resources have been allocated and the requesting node has released its CS, it sends a new request. This is repeated until the end of the test.

The duration of all experiments is the same. The time spent in CS by the requests is also constant. Empirically the value for the duration of CS was set to 300, 000 and a duration of experiment of 500, 000, 000 so that time spent in CS is orders of magnitude longer than the time spent to send a message between nodes. These durations are in the unit of discretised time used by the simulator. This approximately simulates CS of 30 seconds and for a total duration of around 14 hours for a whole simulation. Experiments show that this duration is long enough to make the impact of randomness negligible and observe similar results on each run.

The Grid'5000/SILECS platform

Simulations are run on the Grid'5000 [START_REF] Balouek | Adding Virtualization Capabilities to the Grid'5000 Testbed[END_REF], a French research platform. This platform allow the booking of full servers and the deployment of custom images of Operating Systems on it. Booking a full server ensures that no other experiment that could impact the performance is running on it. Since 2018, Grid'5000 is merging into the Super Infrastructure for Large-Scale Experimental Computer Science (SILECS) platform. A custom server image based on Debian 10 is used. This allow a precise control of what the server is running. This image includes the simulator and its dependencies such as SimGrid. A SimGrid program is mono-threaded allowing the execution of multiple simulations in parallel on a server with multiple cores/threads.

Systems with one instance of n types of resources

In this section the performances of the three heuristics for the allocation order described in Section 4.5.2 are evaluated experimentally and compared. The system considered is a system with 1 instance of n types of resources. Here n = 44 as the topology used for the tests has 44 nodes and each node holds one type of resources.

In systems with one instance of each type of resources the routing heuristic has no influence, because there is no choice to be made among instances. In this case the two heuristics introduced in Section 4.5.1 return this single instance.

Figure 5.2 shows the comparison of the performance of the three heuristics for the allocation order presented in Chapter 4: byvalues in green, reverse in blue and parallel in black.

As for all performance graphs, the three metrics presented are the three introduced in Section 5.1.1. The X-axis shows the size of the requests. The Y-axis shows the considered metric. Both axis have a logarithmic scale.

For requests of size 1, the heuristic itself has no influence on the Average Usage Rate, as can be seen in Figure 5.2a, or on the Average Waiting Time, (figure 5.2b). In such configuration, the algorithm never performs any preemption.

For requests of size 2 to 7, the Average Usage Rate decreases for all the algorithms. A minimum is reached around 8 or 9, depending on the algorithm because the probability that requests conflict increases with the size of the requests. Two requests conflict if they have at least one instance in common.

Figure 5.3 shows the probability that two requests do not conflict according to the size of the requests. This probability is the ratio of the number of possible requests in a subsystem S to the total number of possible requests. The number of resources in subsytem S is the total number of resources in the original system minus the number of resources in one request. For requests of size s, it is computed by dividing the number of permutations of size s in a system of size (Ns) by the total number of permutations of size s in the system of size N . For example, for requests of size s = 10 in the system of size N = 44 this probability is 10 P 44-10 10 P 44 ≈ 5.28%. It can also be seen that the Average Usage Rate becomes linear when the size of requests is around 15 or more. This is because the probability that requests conflict is almost 100% for requests of size 15.

When the size of requests is superior to half the size of the system, here 44 2 = 22, then it is not possible to allocate concurrently two requests. In such situations the only possibility is to allocate the requests sequentially. The usage rate of the system keeps growing linearly with the size of the requests. It is almost 100% for requests of size N as each consecutive request will allocate all the resources. It is not exactly 100% due to the cost of the algorithm. This is why the X-axis of the charts presented here stop at 22. 5.2a shows a pretty poor performance of the parallel heuristic on the Average Usage Rate compared to the other heuristics. For requests of size 7, it reaches 21.28% when the reverse reaches 24.5% and the byvalues 27.27%. The byvalues heuristic achieves a significantly better result on this metric with respectively a 28% and 11% increase on this example.

Figure 5.2b shows no notable difference in the Average Waiting Time between the three heuristics. The byvalues heuristics performs very slightly better than the others. The parallel heuristics introduces a waiting time a little longer in average than the two others Figure 5.2c shows that the Average Number of Messages is lower for the byvalues allocation order for requests of size 3 and more. The parallel heuristic requires slightly more messages but there is no significant difference. This is because the parallel heuristic requires two messages, an ALLOC and an ALLOC ACK, to allocate an instance where the other two heuristics only require one ALLOC message per resource plus an additional ALLOC ACK at the end of the allocation subroutine. The difference shrinks when the size of requests increase because the two other heuristics lead to preemptions which generate more messages. The reverse can require twice as many messages.

Figure 5.2d shows the Average Number of PREEMPT Messages, i.e., a subset of the messages shown in Figure 5.2c. It shows that the difference in performance is due to the high number of preemptions taking place when using the reverse allocation order. The probability of preemptions taking place is lower when using the byvalues and parallel allocation orders. The byvalues allocates the resources in the decreasing order of the elements in the allocation vector. A higher value for an element means that the resource it represents has been allocated more time than the others. As the requests in the simulations are generated using a linear random generator, the probability that the next requests try to allocate it again is lower. The reverse does not take into account the resource occupation at all and only allocates the resources according to the path computed for the request.

Results show that the parallel heuristic never preempts resources as it results in all the nodes knowing about the ongoing requests earlier than with other heuristics. This leads to the nodes to respect the computed total order of the requests than with other heuristics. This shows that even if the total order of the requests is necessary to decide which request should have the priority on a node, it is not the reason behind the performance. If it is enforced every time, it gives the results observed here. This shows that the computed order is far from optimal. The algorithm actually improves the performance on the Average Usage Rate by not enforcing this order when it is not needed to break the order between competing requests.

System with m instances of n types of resources

This section evaluates the performance of the different heuristics of the algorithm in systems with m instances of n types of resources. In such a system the routing heuristic has an impact on the performance. The allocation order heuristic has the same impact that was observed for systems with a single instance evaluated in the previous section, therefore only the byvalues heuristic, that gives the best performance, is evaluated. With the shortest heuristic, a node always selects the same node for a given type of resources. The result is that the load is not well balanced across all the instances, which leads to a lower Average Usage Rate when the number of instances in the system increases. For requests of size 5, the lowest Average Usage Rate observed is around 15% when there are 4 instances in Figure 5.4c. This is lower than the worst result for the configuration with a single instance of n resources in Figure 5.4a where the parallel reaches 21.28%.

As shown by the round-robin heuristic, the load balancing improves with a round-robin on the different instances of each type of resources during the path computation subroutine. For example with 4 instances of c 1 , the first request selects the first instance, the second request the second one, and so on. It starts over with the fifth request that selects the first one. The selection of the route has a significant impact when there are more than one instance of the types of resources and improves the Average Usage Rate. In a systems with multiple instances, a round-robin on all the instances allows an Average Usage Rate that is similar to that of systems with 1 instance, as can be seen when comparing the values reached by the round-robin heuristic in Figure 5.4c and the values reached by both heuristics in Figure 5.4a.

The trade-off is that the length of the path with the round-robin heuristic can be longer than with the shortest heuristic, because the different instances can be spread across the graph. Figures 5.5 show the Average Path Length computed for the requests. When there is a single instance, Figure 5.5a shows that there is no difference in the Average Path Length as the two heuristics select the single instance each time. When the number of instances increases the Average Path Length is higher when using the round-robin heuristic. Figure 5.5b shows that the difference increases with the size of the requests to reach a maximum of around 23%, the Average Path Length is a little below 26 for requests of size 11 using the shortest heuristic when it is a little above 32 with the round-robin one. In a systems where there are 4 instances as in Figure 5.5c, the difference between the two heuristics increases. For requests of size 6, the Average Path Length with the shortest heuristic is around 12, when it is 17 with round-robin, an increase of around 41%. This difference increases to reach almost 60% for requests of size 11.

Computing the expected value for the Average Usage Rate

The next chapter 6 shows experimental comparative results of the algorithm introduced in the previous chapter against several state-of-the-art algorithms. However, this evaluation raises the question of whether it is possible to get a better performance.

Computing the optimal scheduling for a set of requests is a complex numerical optimisation problem. This section describes a numerical method to compute the expected value for the Average Usage Rate in the experimental settings. This is different from computing the optimal solution but the expected value gives a good indication on the overall performance of these algorithms. As can be seen in the experimental results, the distributed mutual exclusion algorithms evaluated have significantly lower performance than the expected value on this metric. The terminology expected value refers here to what is commonly noted E(X) for a random variable X in probability theory and defined as the arithmetic mean of a large number of independent realizations of X. The result is an ideal value that could be obtained in a system with a full knowledge of the requests and the states of the nodes considering that communications have no cost (i.e. communications are instantaneous).

Description of the method

In the experimental protocol described in Section 5.1 each of the N nodes sends a request when the test begins. Each node sends a new request after its previous one was completed so that there is always N requests in the system and the system is under a constant load. This method computes the Average Usage Rate after a given number of requests. The prerequisite is that all the requests are equiprobable. This is consistent with the experimental settings described in Section 5.1.2 where the generation of requests use a uniform distribution.

It is not needed to consider the end of requests, so this system is a pure-birth process, similar to a Yule process [Kar14]. It computes the n-step transition probability of this process.

In this Markov chain, each state s i represents the total number of resources used in the system. When the system receives a new request it enters a new state if and only if all the resources it requires are available. Otherwise the state of the system does not change.

In the rest of this description, simple example systems are used to explain the states of the Markov chain and the computation of the n-state probability.

Examples

Before diving in the general method, this section provides two examples in a system with 1 instance of 4 types of resources for requests of size 1 and 2. Requests of size 1 are a special case that allows the introduction of the general idea. With requests of size 2 or more, computing the probability of occurrence of a request is more complex.

Example: system with 1 instance of 4 types of resources, requests of size s = 1 Let's first consider the case where the size s of requests is 1 in a system with 1 instance of 4 types of resources. The size of requests is constant. The value associated with each state of the chain is the number of resources used in this state. For a system of size 4 there are 5 possible states, noted {s 0 , s 1 , s 2 , s 3 , s 4 }, describing the number of resources used: {0, 1, 2, 3, 4}.

The vector of possible states is then

V states =       0 1 2 3 4       .
There are 4 possible requests, one for each of the 4 resources. Initially no resource is used (the system is in state s 0). Upon reception of a request of size 1 the system reaches state s 1 with a probability of 1, i.e., when a request of size 1 arrives on a system where no resources are currently allocated then one resource becomes allocated in 100% the cases.

When in state s 1 , requests for the currently used resource do not impact the occupation of the system and it remains in state s 1 , with a probability of 1 4 . Requests for other resources will use another resource and the systems reaches state s 2 (with a probability of 3 4). This gives the following Markov chain in The transition matrix of this Markov chain is:

M 1 =       0 1 0 0 0 0 1 4 3 4 0 0 0 0 2 4 2 4 0 0 0 0 3 4 1 4 0 0 0 0 1      
p0 is the row vector containing the initial probabilities of being in each state at time 0. Its value is:

p 0 = 1 0 0 0 0
Computing the average usage rate U sage 4 after 4 requests can be obtained with:

U sage 4 = p 4 * V states 4 = (p 0 * M 4 1) * V states 4 = 1 0 0 0 0 *       0 1 0 0 0 0 1 4 3 4 0 0 0 0 2 4 2 4 0 0 0 0 3 4 1 4 0 0 0 0 1       4 *       0 1 2 3 4       4 U sage 4 ≈
2.7344 4 ≈ 68.36%

Example: system with 1 instance of 4 types of resources, requests of size s = 2

In statistics k-permutations of n can be noted using various symbols. For readability reasons, hereafter the notation n P k is used to denote the number of k-permutations of a k-element subset of an n-set. This section introduces another example in the same system with 1 instance of 4 types of resources as the section above. For requests of size 2, the set of all possible requests is {(1, 2), (2, 1), (1, 3), (3, 1), (1, 4), (4, 1), (2, 3), (3, 2), (2, 4), (4, 2), (3, 4), (4, 3)}, i.e., all the possible k-permutations. The total number of k-permutations is 4 P 2 = 12. Requests are of size 2 and all resources are allocated at once. The set of possible states of the system is then {0, 2, 4}, i.e., either no, two or four resources are used at a given time. This gives the vector of possible states

V states =   0 2 4   .
For this example the value of p0, the row vector containing the initial probabilities of being in each state at time 0 is: At the beginning there are no resources used in the system. Whatever the first request is the system enters state s 2 , as the request is of size 2 . If the first request is {(1, 2)}, then the system may be fully occupied and enter s 4 if the second request is not in conflict with the first one. This happens only if the second request is {(3, 4)} or {(4, 3)}. This gives a probability of 2 12 . In all other cases it remains in s 2 . The Average Usage Rate U sage 4 after 4 requests of size 2 can be computed:

p 0 =
U sage 4 = p 0 * M 4 2 * V states 4 = 1 0 0 *   0 1 0 0 (4 P 2 -2 P 2) 4 P 2 2 P 2 4 P 2 0 0 1   4 *   0 2 4   4 U sage 4 = 1 0 0 *   0 1 0 0 10 12 2 12 0 0 1   4 *   0 2 4   4 ≈ 2.8426 4 ≈ 71.06%

Generalisation to requests of size s on any system with 1 instance

The examples in the sections above can be generalised to a system with 1 instance of n types of resources with requests of size s. The number of resources used in the last state of the system might not be n if s is not a divisor of n. Let's consider n the integer immediately inferior to n s * s, n ≈ n s * s. n = n when s is a divisor of n. In this case, the states of the system are s i where the number of resources used for s i is i * s and i ∈ [0, n]. For example in a systems with N = 44 nodes and for requests of size s = 3, n = 14 * 3 = 42, because it only possible to allocate 14 requests of size 3 in a system with 44 resources.

The vector of possible states of the system is :

V states =             0 s 2 * s 3 * s . . . i * s . . . n            
The total number of possible requests is the total number of k-permutations of requests of size s in a system of size n, n P s . As in the above examples, the system leaves a state to enter the next one only if the new request requires only resources that are still available. In state s i , i * s resources are currently used. There are n-(i * s) Ps n Ps possible requests for the remaining n -(i * s) resources.

This gives the Markov chain shown in Figure 5.8.

s 0 s 1 s i s i+1 s n 1 n-[(i+1) * s] Ps n Ps n Ps-n-(i+1) * s Ps n Ps n-(i * s) Ps n Ps n Ps-n-(i * s) Ps n Ps n-s Ps n Ps n Ps-n-s Ps n Ps 1 Figure 5
.8: Markov chain for the generalised case From this Markov chain, the transition matrix M n given below can be deduced.

M n =              0 1 0 0 . . . 0
            
To compute the usage rate U sage n after the n th request:

U sage n = p n * V states n = p 0 * M n n * V states n = 1 0 . . . 0 * M n n *             0 s 2 * s 3 * s . . . i * s . . . n             n
Even if computing the optimal scheduling of a specific set of requests is a NP-complete problem, this method computes the expected value of the Average Usage Rate. For an optimal scheduling of a given set of a requests, it could be higher or lower than what is computed because the optimal scheduling depends on how the set of requests can be arranged.

This method is used in the next section to compute the expected value of the Average Usage Rate for a given size of requests and compare it to the performance of the allocation orders subroutine of the algorithm detailed in Section 4.3.

Comparison with the expected value

In this section the performance of the algorithm described in Chapter 4 is compared with the mathematical expectation Average Usage Rate computed with the Markov chain detailed above in the previous section. Only the byvalues heuristic is considered in the comparison as it was the one giving the best result.

Figure 5.9 shows, in grey and noted expected value, the values of the expected value of the Average Usage Rate computed using the method presented in the above section. The figures computed using this method assume that each node emits a new request at each step, whereas in the experimental setup a new request is sent only when a previous request has released its CS.

The expected value for the Average Usage Rate is significantly higher than the results of the best heuristic of the algorithm in the previous chapter. This shows that there is still room for improvement. This expected value of the Average Usage Rate can be approached more easily with a centralised algorithm.

Conclusion

This chapter compared the performance of the various heuristics proposed for the algorithm presented in Chapter 4. It shows that for systems with a single instance, there is no difference in the path computed by the two routing heuristics shortest and round-robin. In system with multiple instances, load-balancing the requests, for example using the roundrobin heuristic improves the Average Usage Rate. Of the three heuristics proposed for the allocation order, the byvalues offers the best performance on all the three considered metrics because it limits the number of preemptions. It also does not enforce the order of the requests when it is not required.

Comparing the performance of these heuristics with the expected value of the Average Usage Rate shows that the performance of the algorithm is well below. This is because a distributed algorithm, as explained in the previous chapter, only has a partial view of the system.

It should theoretically be possible to build a consistent distributed global view of the requests that would allow a solution to get closer to the expected value. However, that could require a large number of messages (see Section 5.1.1 for the definition of metrics) that make such a solution non scalable.

The next chapter compares the algorithm with other algorithms from the state of the art, and shows that even if the performance is well below the expected value, it is better than the state of the art.

Chapter 6

Experimental comparison with state of the art algorithms That is a fact. And fact is the most stubborn thing in the world.

Mikhail Bulgakov, The Master and Margarita

This chapter compares the performance of the byvalues allocation order heuristic in-troduced in Section 4.5.2 to the performance of algorithms from the state of the art. The selected algorithms tackle the problem of the distributed allocation of resources in systems with one instance of multiple types of resources. The simulation environment and methodologies for the tests are the same that are used in Chapter 5 to compare the performance of the heuristics. Four algorithms are studied, following the chronological order of their publications:

Dijkstra's incremental algorithm [START_REF] Dijkstra | Hierarchical Ordering of Sequential Processes[END_REF], the first solution proposed to the Dining Philosophers Problem (DiPP) to allocate a static set of resources. It is also applicable to the Drinking Philosophers Problem (DrPP) and still widely used. It is described in Section 6.2

Chandy-Misra algorithm [CM84], the initial solution to the DrPP, described in Section 6.3

Rhee's algorithm [START_REF] Rhee | A Fast Distributed Modular Algorithm for Resource Allocation[END_REF] is modular and builds a distributed queue of requests. It is based on a model close to the model described in Section 2.4.1. The implementation used for the evaluation uses Chandy-Misra DrPP algorithm as a subroutine. It is described in Section 6.4

Bouabdallah-Laforest algorithm [BL00], a simple and scalable token-based algorithm that builds distributed queues for the resources to solve the DrPP, described in Section 6.5

Some of these algorithms are rather old but, as shown in the state of the art in Chapter 3, there is a limited number of recent algorithms. The most recent published algorithm seems to be the LASS algorithm [START_REF] Lejeune | Reducing Synchronization Cost in Distributed Multi-Resource Allocation Problem[END_REF] that addressed a model different than the one used here. The algorithm described in Chapter 4 reuses its scheduling based on vectors of counters to target the model described in Section 2.4.1. Before that Bouabdallah-Laforest seems to be the latest algorithm that improved significantly the performance of DrPP algorithms. Rhee's algorithm target a model that is similar to the one used here. The other selected algorithms are older but Dijkstra's still offers the best Average Usage Rate of these four algorithms. Chandy-Misra is a classic algorithm in the field. It is not expected to perform well in the model because it requires an a priori knowledge of the conflict graph. The analysis shows why it is not an adequate solution for the system. Chandy-Misra algorithm is also used as a subroutine by Rhee's algorithm.

Code for the algorithms is provided in a public Git repository: https://gitlab.com/ gfraysse/algorithms/tree/master/Distributed%C2%A0Mutual%20Exclusion/. The code is in the Go language1 because Go supports concurrency using the Communicating Sequential Processes (CSP) model [Hoa78] which, along with the syntax of the language, makes the code very similar to pseudo-code while being runnable.

These algorithms are compared to the allocation subroutine of the algorithm detailed in Chapter 4. The experimental setup remains unchanged from the previous chapter and the same reference system configuration is used. Only the byvalues allocation order heuristic of the algorithm is considered for the comparison because the results in Chapter 5 show that this heuristic gives the best performance for all metrics in the experimental settings. In Section 6.6, the performances of the four algorithms of the state of the art as well as those of the three heuristics are summed up and a global comparison is made.

The experiments show that the byvalues heuristic performs better than these selected algorithms from the state of the art on the three metrics that are measured.

System setup

In the tests presented in this chapter, the system considered is the reference system configuration described in Section 5.1.2. The system holds a single instance of 44 types of resources.

The implementations of all the algorithms rely on the same first subroutine described in Chapter 4 for the selection of the instance of types of resources and the computation of the path. In a system with multiple instances, this allows the use of any DrPP algorithm because each instance of a same type of resources becomes a specific instance once it has been selected. The DrPP algorithm has to allocated the instances selected during the path computation subroutine. This allows the comparison of the performance of the allocation subroutine heuristics to any algorithm that addresses the DrPP.

All the examples given in this chapter are based on the same scenario. The scenario considers a system with 1 instance of 5 types of resources, it is shown in Figure 6.1a. At the beginning, two sample requests Req A and Req B shown in 6.1c and 6.1d are emitted in the system. Given a global clock, Req A is emitted by n 1 before Req B is emitted by n 4 . In this configuration the path computation subroutine always returns the path to the single instance so its results are identical for all algorithms and this subroutine has no influence at all in the overall comparison. (a) Sample system with 1 instance of 5 types of resources

n 1 n 2 n 3
Types of resources

n 4 n 5 n i Node n i is in CS n i Resource of n i is ALLOCATED by Req A n i Resource of n i is ALLOCATED by Req B (b) Legend n 2 n 5 Req A : n 1 (c)

Dijkstra's Incremental algorithm

Dijkstra's Incremental algorithm [START_REF] Dijkstra | Hierarchical Ordering of Sequential Processes[END_REF] relies on a static total order of the set of resources. Despite being the oldest algorithm detailed in this chapter, it is the algorithm from the state of the art that achieves the best performance for the Average Usage Rate.

However it has the worst performance for the Average Waiting Time due to the domino effect explained below.

Description of the algorithm

The algorithm, as initially described by E. W. Dijkstra, is formulated for use in a system where processes use a shared memory. The problem addressed is the DiPP, as described in Chapter 3.

The algorithm maintains a variable mutex and 2 arrays with an entry per process: C, which holds the state of the process (among thinking, hungry or eating), and prisem, which has a value of 1 when the process can start eating and 0 otherwise. The algorithm relies on the basic operations on semaphores first described by E. W. Dijkstra in [Dijte]: P (also called wait or acquire) and V (also called signal or release). It also relies on a test(w) function that calls the V function on prisem[w] if philosopher w is allowed to eat. The pseudo-code is shown in algorithm 6.1.

1 c y c l e begin t h i n k ; The algorithm ensures that each process (or philosopher) will eventually start eating. It allocates the resources (forks) by following the numbering of the philosophers (lines 22 and 23).

Adaptation to the model E. W. Dijkstra's model is a shared-memory system, it requires the algorithm to use a mutex variable to modify the state of each node. In the model used here, each node manages its instance and its own state. The P and V operations on the prisem [w] variable are implemented by the messages ALLOC and ALLOC ACK, respectively, sent to (respectively by) node w. A local queue of pending requests on each node plays the role of the semaphore.

Also, in E. W. Dijkstra's model a resource (fork) can only be allocated by the two neighbouring nodes (philosophers). Another adaptation is required to allow for any number of resources, and not only two, to be requested according to the defined order.

Requesting the CS

When a node wants to enter its CS and allocate resources for a request, it selects, in the request, the node holding a requested resource that comes first according to the order of resources, i.e., nodes. Then, it sends an ALLOC message to this node, the P operation. If the resource is not currently allocated, the node allocates it and replies with an ALLOC ACK message, the V operation. Otherwise, the request is appended to its local queue to be handled once the request currently holding the resource has released its CS. Upon reception of an ALLOC ACK message, the requesting node sends an ALLOC message to the next node holding one of the requested resources according to the total order of the set of resources.

Releasing the CS

When a node releases its CS, it sends END CS messages to the nodes managing the allocated resources so they can release them. Then, each of these nodes looks into its local queue for pending requests that can now continue.

Pros and cons

This algorithm is easy to understand and implement. It delegates the locking of resources to a basic mutex operation. On the evaluation platform, this operation is implemented as a centralised lock on the requesting node with the ALLOC and ALLOC ACK messages playing the role of the mutex operations. It offers a good performance on the Average Usage Rate metric.

This algorithm has a drawback called the domino effect [START_REF] Randell | System Structure for Software Fault Tolerance[END_REF]. As the total order is based on the identifiers of the nodes, requests can pile up in the queue for some nodes waiting for their resources to be available. Until these resources become available all the locked resources from nodes which come before in the order of the nodes are unavailable.

Nancy A. Lynch [START_REF] Lynch | Fast Allocation of Nearby Resources in a Distributed System[END_REF][START_REF] Lynch | Upper Bounds for Static Resource Allocation in a Distributed System[END_REF] proposed an improvement of the algorithm based on a graph where the nodes represent the resources and are connected via edges that represent the resource sharing constraints. Her improvement is based on a colouring of this graph in the DiPP model described by E. W. Dijkstra where requests emitted by a node are always for the same set of resources. In the model used here, requests are not known a priori and any node can request any resource making the graph complete with one colour per node. Therefore it is impossible to optimise the colouring.

Example of execution in sample system

Initial state For the example the total order of resources is n 1 < n 2 < . . . < n 5 according to their subscript values. The execution of the sample requests Req A and Req B is shown in two figures. Figure 6.2 shows the timeline of the messages while figures 6.3 to 6.6 show how the messages are sent on the topology. At t 4 , n 1 then sends an ALLOC to n 5 (Figure 6.4a), that replies with an AL-LOC ACK at t 5 (Figure 6.4b). At t 6 , Req A is allocated and n 1 can enter its CS and use the resources of n 2 and n 5 (Figure 6.4c). When n 1 releases its CS at t 7 it sends END CS messages to n 2 and n 5 (Figure 6.5a). At t 8 , n 2 and n 5 check their local queues (Figure 6.5b). The queue of n 5 is empty for now, and n 2 read the pending request Req B in its local queue, removes it from its queue, and decides to resume it by sending an ALLOC ACK message to n 4 . Then, at t 9 n 4 sends an ALLOC message to n 5 (Figure 6.5c), which acknowledges with an ALLOC ACK at t 10 (Figure 6.6a), allowing n 2 to enter its CS and use the resources at t 11 (Figure 6.6b). Once n 4 releases its CS, at t 12 , it sends END CS messages to n 2 and n 5 (Figure 6.6c).

Req A Req B ALLOCATED CS n 1 n 2 n 3 n 4 n 5 t A L L O C A L L O C A L L O C A C K AL LO C A LL O C A C K E N D C S E N D C S A L L O C A C K A L L O C A L L O C A C K E N D C S E N D C

Message Complexity

For each request, the algorithm requires to send an ALLOC message to each node holding one of the requested resources to allocate them, which in turn sends an acknowledgement ALLOC ACK message to the requesting node. It also requires one END CS message per resource in the request to release it. There are 3 messages per resource requested, hence the message complexity of Dijkstra's incremental algorithm is O(N), where N stands for the number of resources. This is summed up in Table 3.4 in Section 3.3.

In the example here:

Req A requires the messages 1, 3, 4a, 4b, 5a and 5b to allocate the resources as well as the messages 6, 7a and 7b to release them. A total of six meaningful messages, plus three additional forwarding messages.

Req B requires the messages 2a, 2b, 2c, 8a, 8b, 8c, 9 and 10 to allocate the resources as well as the messages 11a, 11b 11c and 12 to release them. A total of six meaningful messages, plus six additional forwarding messages.

Performance evaluation Simulation results

The comparison of the results of Dijkstra's Incremental algorithm and of the byvalues allocation order heuristic on SimGrid are shown in Figure 6.7. All metrics show that allocating the resources with the byvalues allocation order heuristic gives the best results. In Figure 6.7a an improvement of up to 20%, for requests of size 6, can be seen for the Average Usage Rate. Figure 6.7c shows that the Average Waiting Time for the Incremental algorithm is significantly worse than for the byvalues heuristic for requests of size 3 and more due to the domino effect.

As shown in Figure 6.7b, byvalues does not generate more messages than the Incremental. The byvalues heuristic requires one ALLOC message per resource in the request, plus an additional ALLOC ACK at the end for a total of r + 1 messages where r is the size of the request, when the Incremental algorithm requires two messages per resource, an ALLOC and an ALLOC ACK for a total of 2 * r messages. For requests of size 5 and less, the byvalues heuristic requires less messages but for requests of 6 and more the two have a similar number of messages, this is because of preemptions. The number of PRE-EMPT andPREEMPT ACK messages increases reducing the difference in performance. This is similar to the difference between the parallel and the byvalues heuristics for the same reasons.

Real experiments with MPI

The results shown above from the simulator are confirmed with an implementation based on Open MPI version 3.1.3 [Gab+04]. The core of the experimental platform remains the same, Open MPI is implemented as an alternative execution platform from SimGrid. The implementation of the messages for this platform relies on Protocol Buffers

Chandy-Misra DrPP algorithm

The Chandy-Misra DrPP algorithm [CM84] is detailed and evaluated in this section. It is based on their DiPP algorithm. The DrPP algorithm is one of the algorithms that have been evaluated as subroutines by Rhee for his algorithm [START_REF] Rhee | A Fast Distributed Modular Algorithm for Resource Allocation[END_REF] described in the next section 6.4.

Description of the algorithm

The DrPP is a generalisation of the DiPP in which requests are dynamic, i.e., a philosopher can request any subset of resources and this subset can change across requests. In this problem the resources are bottles that the philosophers need to drink from. The forks are not resources but are auxiliary resources that are required to collect the bottles and to enter the CS. Chandy-Misra solution relies on their DiPP algorithm. In their model, bottles are associated to the same edges of the conflict graph as forks. The algorithm builds a graph which represents the precedence between pairs of conflicting processes (philosophers), called the precedence graph of the system. This graph is similar to the conflict graph, it has the same nodes and edges. However in the precedence graph, edges are oriented. They are oriented towards the philosopher holding the fork. The algorithm requires the precedence graph to be acyclic at any given time, including at the initialisation.

Requesting the CS

When a node wants to enter its CS, it first must request the forks from the philosophers holding them according to the same precedence graph used for the DiPP algorithm. When a philosopher holds all the forks he can decide to drink from the bottles that are on the same edges as the forks, or leave them. Another way to say it is that the philosopher needs to enter the DiPP CS first, which gives him a lock on the bottles that allows him to drink from them.

Releasing the CS

When a node releases its CS (resp. is done drinking), it can send the bottles it is holding to its neighbours.

Adaptation to the system

In Chandy-Misra model, bottles (resources) and forks (auxiliary resources) sit on each edge of the conflict graph. In the example given in the paper the forks and bottles are only shared by two philosophers (nodes). In the sample system described at the beginning of this chapter, any node can request any subset of resources. And this subset can change across requests. It is then necessary that each node shares a fork and a bottle with every other nodes. This means that the precedence graph becomes a complete graph. Figure 6.8a shows both the topology, with the black undirected edges, and the precedence graph where the oriented edges are represented by the orange forks. Both graphs share the same nodes.

Pros and cons

Chandy-Misra algorithm was the first to describe and solve the DrPP. Their solution allows multiple requests to allocate their resources concurrently when they do not share resources in the conflict graph. The major drawback of Chandy-Misra algorithm in the generalised setting, described just above, where any node can request any subset of resources, is that the precedence graph becomes a complete graph. So only one node can use resources at any given time.

Example of execution for the sample scenario

Initial state At t 0 the forks are held by the node with the lowest identifier. They are represented in Figure 6.8 with the handle of the fork facing the node holding it. For example in Figure 6.8a n 1 holds all its forks. The names of the fork is not shown in Figure for readability reasons but, like for the example for the DiPP algorithm, a fork is labelled f ij where i and j are the identifiers of the two nodes sharing the fork. The bottles are the resources held by the nodes. Execution Figures 6.8 and 6.9 show how the system evolves when n 1 and then n 4 want to enter their CS successively. Initially, at t 1 , n 1 holds all the forks, it can clean them and enter its CS immediately to use the resources (bottles) n 2 and n 5 (Figure 6.8a). At t 2 , n 1 releases its CS and stop using the resources (Figure 6.8b). At this moment, n 4 wants to enter its CS, it needs for that to gather the forks it does not currently hold from its neighbours in the precedence graph n 1 , n 2 and n 3 . As shown in 6.10, it starts by sending a REQ FORK message to n 1 . When it gets f 14 , at t 3 , it requests their shared fork f 24 to n 2 (Figure 6.8c). When n 4 gets f 24 , at t 4 , it then requests f 34 to n 3 (Figure 6.9a). When it finally gets f 34 , at t 5 , n 4 holds all its forks and can enter its CS and start using resources n 2 and n 5 (Figure 6.9b).

Req B CS n 1 n 2 n 3 n 4 n 5 t R E Q F O R K S E N D F O R K R E Q F O R K S E N D F O R K R E Q F O R K S E N D F O R K t 1 t 2 t 3 t 4 t 5

Message Complexity

The algorithm requires a node to send one message to each of the other nodes to request the shared forks. Then, each of these nodes needs to reply to this message to send the fork. If the node already holds a fork it does not need to send a message for this fork.

The message complexity of Chandy-Misra DiPP algorithm is O(N). This is summed up in Table 3.4 in Section 3.3. As Chandy-Misra algorithm allows only one CS at a time, only one request can be allocated at any given time so the Average Usage Rate is linear (Figure 6.11a). The usage rate can be approximated easily, for request of size 7, usage rate is approximately 7/44 ≈ 15.91%. This linear graph highlights when the Average Usage Rate becomes linear for the byvalues heuristic. The two graphs rejoin shortly after a size of 12 for requests.

Performance evaluation

The Average Number of Messages is significantly higher for Chandy-Misra algorithm than for the byvalues heuristic, as shown in Figure 6.11b. This is due to the large number of messages to manage the forks used to choose the node that enters the CS. As an example, REQ FORK and SEND FORK account for 97.8% of the total number of messages for requests of size 6. Figure 6.11c shows that the Average Waiting Time is constant for Chandy-Misra. Because a single request is in CS at a given time, all the other requests have to wait for their turn. As the algorithm is fair, they all wait for a same amount of time. Each node has to wait for 43 times the duration of a CS, 300000 in these simulations, so 43 * 300000 = 1.29 * 10 7 . It is an order of magnitude higher than for the proposed algorithm for smaller requests. This is consistent with the lower Average Usage Rate : as only one request is allocated at a given time, all the other requests wait for their turn. The two graphs rejoin for the same request size as for the Average Usage Rate. For requests of size 12 and more, both algorithms allocate requests sequentially and both are fair.

Rhee's algorithm

Rhee's algorithm [START_REF] Rhee | A Fast Distributed Modular Algorithm for Resource Allocation[END_REF] is modular and composed of two subroutines.

The first subroutine can rely on any DiPP or DrPP algorithm to get an exclusive access to the nodes holding the resources for the request. It can be any DiPP or DrPP algorithm, the article has evaluated the performance using Chandy-Misra [CM84] and Choy-Singh [START_REF] Choy | Distributed Job Scheduling Using Snapshots[END_REF] algorithms as subroutines. In terms of terminology, this algorithm requires to distinguish between the subroutine CS, i.e., the CS of the algorithm used for the first subroutine, from the algorithm CS. While in the subroutine CS the algorithm computes the position of the request in a global distributed queue. To achieve this, each node maintains a local queue of requests.

Next, during the second subroutine, requests are allocated according to the order in this queue. The queue is then updated when requests release their resources.

The intuition behind the algorithm is that by using a DrPP algorithm during the first subroutine to manage only the order in the distributed queue the lock on the processes is shorter and the performance of the selected DrPP algorithm is improved.

Description of the algorithm Adaptation to the model

In Injong Rhee's model processes, called users, try to enter their CS by requesting resources to resource managers, each resource manager manages one resource. The topology issue is not addressed, it is assumed that every users can communicate with every resource managers and that every resource managers can communicate with their peers. To adapt it to the model introduced in Section 2.4.1 resource managers are mapped to nodes. Users are mapped to nodes as well because the model assumes each node can also be a requesting node.

Requesting the CS

When a node wants to enter its algorithm CS, the first subroutine (i.e., the algorithm that has been chosen for the first subroutine) is executed to get an exclusive access to the nodes holding the requested resources. The algorithm then computes a position for the request using REPORT and MARKED messages. REPORT messages are sent by the requesting node to get information about the current queues of nodes. A node replies with a MARKED message that contains the list of currently occupied positions in its local queue. The computed position is the same in all the local queues, it is computed to be the lowest common position available among all the nodes holding resources for the request. It then leaves the subroutine CS. If it is in the first position of the local queues, it can then enter the algorithm CS and start using the resources.

When a request is the first in the local queues of the nodes holding the requesting resources, which means it is also the first in the distributed queue, each of these nodes sends a GRANT to the requesting node. When the requesting node has received GRANT from all the nodes it enters its CS.

Releasing the CS

When a node releases its algorithm CS and the allocated resources, ADV or DEC messages are sent to inform other nodes that other requests can move up in their local queues. DEC messages are sent by the nodes holding the resources that just got releases to the requesting nodes of requests in their local queues that can now move up in the queue. If a requesting node has received DEC messages from all the nodes in a request, it sends back ADV to inform them that they can move the request up in their queue. This is done asynchronously and this step does not require an exclusive access to the nodes.

Pros and cons

Rhee's algorithm improves the Average Usage Rate of the algorithms used for the subroutine evaluated in the paper: Chandy-Misra [CM84] and Choy-Singh [START_REF] Choy | Distributed Job Scheduling Using Snapshots[END_REF]. However it requires a very large number of messages to manage the distributed queue.

Example of execution in sample system

Initial state Initially the local queues of all nodes are empty, hence the distributed queue is also empty.

Execution Figures 6.12 and 6.13 to 6.16 show the execution of the algorithm for the two requests Req A and Req B introduced in Figure 6.1. Table 6.2 shows the evolution of the local queues of each node at each step. At t 1 , n 1 starts in CM CS and n 1 sends a REPORT message to the nodes holding the resources, as shown in 6.13a. Upon reception of this message each node replies with a MARKED message at t 2 (Figure 6.13b) that contains the list of positions already occupied in its local queue. In this case, all the queues being initially empty, each message contains an empty list. Based on this information, n 1 can select position 1 for Req A . Table 6.2 shows the evolution of the local queues during the execution of this example. n 1 sends a SELECT message at t 3 (Figure 6.13c) to n 2 and n 5 to inform them it has selected the first position. n 1 can then leave the CM CS as it has secured its initial place. When they receive the selection from n 1 , the nodes grant the access to their resources with a GRANT message (Figure 6.14a). At t 5 , n 1 can enter its algorithm CS and start using the resources. As n 1 has left the CM CS at t 3 , n 4 can execute CM and enter the CM CS. As for n 1 , the messages for this part are not included here for the sake of readability. It is assumed that the CM algorithm has been executed between t 3 and t 6 . Req B can then follow the same steps as Req A : it asks the nodes for a REPORT message of their occupied positions at t 6 (Figure 6.14c). The nodes reply with MARKED at t 7 (Figure 6.15a) allowing n 4 to select a position in the queues (Figure 6.15b). As position 1 is already held by Req A , it selects position 2 at t 8 (Figure 6.15b). When Req A releases its CS, n 1 sends RELEASE messages to release the resources at t 9 (Figure 6.15c). Once the resources are released, the next requests can advance in their local queues. n 2 and n 5 inform n 4 with DEC messages that its position in the distributed queue can decrease at t 10 (Figure 6.16a). n 4 accepts to advance its position in the queues and informs them with ADV messages at t 11 (Figure 6.16b). Req B is now in the first position, it can enter its algorithm CS and start using the resources at t 12 .

Req A Req B ALLOCATED CS CM CS Execution of CM algo n 1 n 2 n 3 n 4 n 5 t R E P O R T RE PO RT M A R K E D M A R K E D S E L E C T (1) SE LE C T (1) G R A N T G R A N T R E P O R T R E P O R T M A R K E D M A R K E D S E L E C T (2) S E L E C T (2) R E L E A S E R E LE A SE D E C (2) D E C (2)
A D V (2)
A D V (2) G R A N T G R A N T t 1 t

Message Complexity

Injong Rhee evaluated the performances of his algorithm using the Chandy-Misra [CM84], and Choy-Singh [START_REF] Choy | Distributed Job Scheduling Using Snapshots[END_REF] DrPP algorithms. The results show that the performance of this algorithm on the Average Waiting Time is similar no matter the algorithm used as a subroutine, with Chandy-Misra requiring less messages than Choy-Singh in his experiment settings. For the evaluation below, Rhee's algorithm relies on the Chandy-Misra [CM84] DrPP algorithm as a subroutine.

The algorithm relies on another algorithm as a first subroutine so the number of messages needed depends on the algorithm selected. For the rest of the execution the algorithm requires one REPORT, one SELECT and one GRANT per resource in the request. It also requires DEC and ADV for each conflict. The complexity is O(M sg A +rδ}) where M sg A is the number of messages of the first subroutine, r is the size of the request and δ the maximum number of conflicting requests at any time during the execution of the algorithm. , in red, the results of simulations of Rhee's algorithm [START_REF] Rhee | A Fast Distributed Modular Algorithm for Resource Allocation[END_REF] compared to the byvalues heuristic on SimGrid. These are the only figures where results are not shown for all the possible values of x due to the very high number of messages. The number of messages has a direct influence on the duration of a simulation. Because the SimGrid simulator is based on discrete events, each time a message is sent or received the execution of the thread is interrupted. So the more messages there are in a test the longer its simulation lasts. For example in the results below, for requests of size 8 the byvalues heuristic sends around 100 messages in average and Rhee's algorithm around 4325 messages (Figure 6.17b). The duration of the simulation for the algorithm in this case is around 6 minutes, while the simulation of Rhee's algorithm lasts 5220 minutes (or 4.5 days). Generating the whole graph takes weeks while providing no additional information. Only the simulations for the most significant size of requests have been evaluated on the experimental platform. The algorithm was also evaluated, along with the another algorithm described in this chapter, on other topologies with a smaller number of nodes.

Performance evaluation

As expected, the algorithm improves the Average Usage Rate from the pure Chandy-Misra DrPP algorithm as shown in Figure 6.17a. But the Average Usage Rate is still significantly lower than with the byvalues heuristic. Rhee's original paper evaluated the algorithm with Chandy-Misra[CM84] and Choy-Singh [START_REF] Choy | Distributed Job Scheduling Using Snapshots[END_REF] algorithms for the first subroutine. The results show that there is no significant difference to expect with a different algorithm because the time spent in the subroutine CS is orders of magnitude shorter than the time spent in the algorithm CS.

The Average Number of Messages, shown in Figure 6.17b, is worse than the Chandy-Misra algorithm because it adds new messages for the management of the distributed queue. It is the worst algorithm for that metric by several orders of magnitude. This metric could be improved if another algorithm than Chandy-Misra had been used for the first subroutine, however the results show that the Average Number of Messages for Rhee's algorithm grows exponentially due to the messages specific to the algorithm. Rhee's paper shows that using Chandy-Misra algorithm for the first subroutine requires less messages than when using Choy-Singh algorithm. It also shows that it requires less messages than Awerbuch-Saks [START_REF] Awerbuch | A Dining Philosophers Algorithm with Polynomial Response Time[END_REF] algorithm on most of the test cases. Rhee's own evaluation in his article show that using Choy-Singh algorithm [START_REF] Choy | Distributed Job Scheduling Using Snapshots[END_REF] rather than Chandy-Misra results in a significantly larger number of messages, around 30%.

The Average Waiting Time is improving from the Chandy-Misra algorithm. It is however slightly higher than the byvalues heuristic (Figure 6.17c).

Using another algorithm than Chandy-Misra DrPP for the first subroutine could affect, and probably improve, the results for the Average Usage Rate and Average Waiting Time, but it would not reduce the number of messages required for the management of the distributed queue.

Rhee's solution to the distributed allocation problem is based on the construction of a distributed queue of the requests. It does not try to find a better scheduling, it simply is based on the order of arrival of the requests on each node. A similar approach could be used to build an optimised queue that would increase the Average Usage Rate, but that would require synchronising all the nodes on this queue. This can be achieved with a global view of the requests for example. However that could require even more messages, which is already the main drawback of Rhee's algorithm. .17: Evaluation of Rhee's algorithm in a system with one instance of 44 types of resources.

Bouabdallah-Laforest algorithm

The Bouabdallah-Laforest [BL00] algorithm extends the Naimi-Tréhel algorithm for the exclusive access to multiple types of resources. The algorithm is token-based with a unique Control Token in the system and one Resource Token per resource. The algorithm relies on the Chang [CHA90] improvement of the Naimi-Tréhel Mutual Exclusion algorithm described hereafter to move the Control Token in an overlay tree built on top of the physical topology. First the Naimi-Tréhel algorithm is described. Then, the Bouabdallah-Laforest algorithm is explained with the same example as the other algorithms.

Naimi-Tréhel Mutex algorithm

The Naimi-Tréhel Mutex algorithm [NT87] is a token-based algorithm for Mutual Exclusion, in systems with one instance of one type of resources. This algorithm builds two virtual structures: a dynamic tree and a queue. The head of the queue is the node holding the token and the tail the last node to have requested it. The virtual tree describes the path to the tail of the queue and its root is eventually the node holding the token. Each node maintains two variables: father stores the father of the node in the tree next stores the node to send the token to when leaving the CS, i.e., the next node in the queue The algorithm uses two messages REQUEST and TOKEN to move the token in the tree. A node that wants to enter its CS requests the token with a REQUEST message. The token is sent in a TOKEN message.

The example below shows how the virtual structures are updated dynamically according to the requests of the nodes. These dynamic structures allow the algorithm to limit the number of messages. A request to enter the CS is sent only to a subset of all the nodes according to the current structure. Thank to this, the algorithm has a logarithmic complexity for the Average Number of Messages. This makes it one of the most efficient algorithms for Mutual Exclusion for this metric as shown in Section 3.3.

Example of execution

Figures 6.19 to 6.21 show a sample execution for the algorithm. The scenario is, given a global clock, n 1 requests to enter its CS, then n 3 and finally n 4 . Figure 6.22 shows the virtual structures maintained by the algorithm. The messages sent are shown in Figure 6.18. Initially the root of the virtual tree is n 1 (Figure 6.22a). At t 1 , n 1 requests to enter its CS and can do it immediately as it holds the token (cf. Figure 6.19a). Then at t 2 (Figure 6.19b), n 3 wants to enter its CS, to do so it sends a REQUEST message to n 1 which stores n 3 as its father and in its next variable (Figure 6.22b). When n 1 leaves its CS, at t 3 , it sends the token using a TOKEN message to n 3 (Figure 6.19c) and clear its next variable (Figure 6.22c). At t 4 , n 3 can enter its CS because it has received the token (Figure 6.20a). When n 4 wants to enter its CS, at t 5 (Figure 6.20b), it requests the token to its father which is n 1 . The virtual tree is updated so that n 4 is the new father of n 1 (Figure 6.22d). At t 6 , when n 1 receives the request, it does not hold the token anymore so it forwards the request to its own father n 3 (Figure 6.20c). n 4 becomes the ex father and next of n 3 , (Figure 6.22e). Finally when n 3 leaves its CS, at t 7 , it sends the token to n 4 and clear its next (Figure 6

CS

p 1 p 2 p 3 p 4 p 5 t R E Q U E S T T O K E N R E Q U E ST R E Q U E S T T O K E N t 1 t

Releasing the CS

When a node releases its CS it informs the last requesters of the resources that they are not used anymore using INQ ACK2 messages.

Pros and cons

The management of the Control Token is based on the Naimi-Tréhel Mutual Exclusion algorithm that has a low message complexity. However these messages can be sent to any node of the system because the virtual structures are independent from the topology. Therefore it is possible that a message has to go through many nodes before reaching the node it is looking for. However the requirement to hold the Control Token creates a global lock on the resources which gives poor results in terms of Average Usage Rate and Average Waiting Time.

Example of execution in sample system

Initial state At t 0 , the virtual tree of Naimi-Tréhel is initialised with n 1 as the root and n 1 holds the Control Token. Also, at t 0 , all resources are free so the list A contains all the resources {n 1 , n 2 , n 3 , n 4 , n 5 } and set B is empty. 6.24 shows the evolution of the Control Token during the execution of the algorithm. When Req A is emitted at t 1 (Figure 6.25a) n 1 updates the Control Token so that list A contains the used resources n 2 and n 5 and that set B reflects that they have been allocated for n 1 . n 1 can enter its CS. When Req B is emitted at t 2 (Figure 6.25b), n 4 requests the Control Token by sending a REQUEST CT message to n 1 which is the root of the virtual tree. At t 3 , in Figure 6.25c, n 4 receives the Control Token from n 1 in a SEND CT message and becomes the root of the virtual tree. n 4 can now read in the Control Token that the resources it needs for Req B are held by n 1 so it requests them with an INQUIRE message at t 4 (Figure 6.26a). When Req A has finished using the resources at t 5 , n 1 sends the tokens for the resources with a INQ ACK2 message to n 4 , the node holding the Control Token according to the virtual tree (Figure 6.26b). n 4 then updates the Control Token accordingly to indicate that it holds the tokens for the resources (Table 6.24). Req B can now enter its CS, at t 6 (Figure 6.26c).

Req A Req B ALLOCATED CS n 1 n 2 n 3 n 4 n 5 t R E Q U E S T C T SE N D C T IN Q U IR E I N Q A C K

Message Complexity

This algorithm has a low message complexity because Naimi-Tréhel has a logarithmic log(N) complexity for the number of messages where N is the number of nodes. On top of the REQUEST CT and SEND CT messages needed by the Naimi-Tréhel algorithm to move the Control Token, at most three messages are required for each resource in a request: one INQUIRE, one INQ ACK1 and one INQ ACK2. The algorithm requires between 0 and 3k messages, where k is the number of resources. The algorithm relies on a Control Token to allow requests to allocate their resources. This Control Token introduces a global lock when resources are not available, which explain why the algorithm has worse performance in terms of Average Usage Rate (Figure 6.27a). The byvalues heuristic has a better concurrency, allowing non-conflicting requests to be allocated.

Performance evaluation

The Bouabdallah-Laforest algorithm also requires a larger number of messages in average (Figure 6.27b). Even if its message complexity is logarithmic, more than 80% of its messages are for the circulation of the Control Token because these messages can be from any node to any node. The byvalues heuristic follows the path computed during the first subroutine and requires less messages in average. The message complexity is not sufficient to measure the difference of behaviour of the two algorithms, because it only considers the number of messages sent. This metrics shows the impact of the topology, a message might need to be forwarded by many nodes before reaching its destination. The Average Waiting Time metric is also higher with the Bouabdallah-Laforest algorithm (Figure 6.27c). Requests wait for a longer time to be allocated because the Average Usage Rate is lower. It shows how all these results compare to each other. Sorting the algorithm by Average Usage Rate the best performance on all three metrics is obtained by the algorithm introduced in Chapter 4 using the byvalues allocation order heuristic. The reverse allocation order heuristic also gives better results than the other algorithms from the state of the art for the Average Usage Rate.

Summary

Figure 6.28c shows that all algorithms, except Dijkstra's incremental due to the domino effect, have the same Average Waiting Time once the Average Usage Rate becomes linear for requests of size 10 and more. The figure also shows that all the other algorithms compute a fair scheduling of the sequential requests. Since there are as many requests in the system as there are nodes (44), each request waits for the other 43 to end before it is allocated, as seen in the evaluation of Chandy-Misra algorithm in Section 6.3.3.

From the state of the art, Dijkstra's Incremental has the best Average Usage Rate but performs the worst by several orders of magnitude for the Average Waiting Time. Rhee's algorithm comes next but requires significantly more messages than the others. Bouabdallah-Laforest is not efficient for requests of size 7 and less because of the global lock of the resource, it also requires more messages than most of the algorithms despite using the low complexity Naimi-Tréhel algorithm. Chandy-Misra can only allocate a single request at any given time and has the worst Average Usage Rate and also the second worst Average Waiting Time.

Conclusion

This chapter gives the results of experiments conducted with state-of-the-art algorithms for distributed resource allocation. They are compared to the performance of the algorithm introduced in Chapter 4. The experiments focus on systems with one instance of multiple types of resources as few algorithms address systems with multiple instances.

The results show that the proposed algorithm outperforms all the algorithms on the three metrics considered: Average Usage Rate, Average Waiting Time and Average Number of Messages. This shows that computing a total order with allocation vectors of counters as done by the LASS algorithm [START_REF] Lejeune | Reducing Synchronization Cost in Distributed Multi-Resource Allocation Problem[END_REF] removes the need for a global lock and allows for a better concurrency of requests. The drawback of the algorithm is that the number of messages depends on the number of preemptions. This information is usually not known in advance as it is dependant on the order of arrival of the messages which is typically difficult, if not impossible, to predict. This can make the algorithm non-deterministic on this metric. The parallel heuristic offers an intermediate solution because it does not require preemptions but with a lower performance on all metrics than the byvalues heuristic.

No results are shown in this chapter for systems with multiple instances. All the experiments uses the same first subroutine detailed in Chapter 4 to select the instances and compute a path so the output of this first subroutine is identical for all. A comparison between the two routing heuristics was done in the previous chapter and shows that it is the selection of the resource that changes the load-balancing and affects the performance. Bouabdallah-Laforest is the only algorithm from the state of the art and evaluated in this chapter that considered a generalisation for systems with multiple instances. It only considers that a requesting node can select one of the instances, it does not however address the method to select the instance.

Chapter 7

Conclusion "There must be some way out of here" Said the joker to the thief "There's too much confusion, I can't get no relief" Bob Dylan, All Along the Watchtower

The problem addressed in this work belongs to the larger class of problems of the distributed allocation of resources. Here the focus is on requests for the allocation of chains of VNFs in network slices modelled as an allocation problem in systems with multiple instances of multiple types of resources. A new modular distributed algorithm is introduced to address this problem. Multiple heuristics are proposed and evaluated, each with their trade-offs between increasing the usage rate, reducing the waiting time and limiting the number of messages required. This algorithm is evaluated against four algorithms from the state of the art and against the expected value. This conclusion first lists the contributions of the work presented here. Then its limitations are listed, which give room for future work.

Contributions

The work presented here is at the intersection of two research domains: networks and distributed systems. These domains intersect on multiple research topics but there is limited interest for the class of algorithms under focus here. Networks often include a centralised manager, but as shown in Chapter 2 new multi-domain use cases have emerged recently with 5G making the case for a distributed management of network resources. Instead the focus is on the allocation of chains of VNFs for 5G slices which require the distributed allocation of ordered sets of resources, here the resources are VNFs. Three contributions are detailed:

A new distributed algorithm for the allocation of resources in networks. As shown in the state of the art in Chapter 3 the allocation of resources in distributed systems is mainly addressed as a variant of the Mutual Exclusion problem. However, few works address systems with both multiple types of resources and multiple instances and none addresses them specifically. The placement of the instances in the system and the order in which the resources are used are also not considered. The new algorithm presented in Chapter 4 addresses these constraints. The instances are selected in a first subroutine to compute a path that satisfies the constraint on the order and contains instances of the requested types of resources while computing a vector of counters that allows the computation of a total order of the requests. Then, the second subroutine allocates these instances using a preemption mechanism to enforce the total order when multiple requests try to allocate an instance. Multiple heuristics are described for these two subroutines as well as their pros and cons. An extensive evaluation of the performance of multiple heuristics of the algorithm in Chapter 5 shows that the order followed to allocate the resources has a strong influence on the number of preemptions. The results show that reducing the number of preemptions improves the overall performance.

A numerical method to compute the expected value of the Average Usage Rate based on Markov chains. The method computes the expected value of the Average Usage Rate in the experimental settings where each node has always one request of constant size in the system. The performance of the algorithm is then compared with it. These ideal values could only be theoretically reached by an omniscient orchestrator informed instantly of the states of the nodes and the requests. However, the results show there is still room for improvement.

An experimental evaluation of the performance of the heuristics of the algorithm against algorithms from the state of the art The experimental comparison with algorithms from the state of the art in Chapter 6, in a simulator based on SimGrid, shows that the algorithm has better performance on the three considered metrics. A comparison using MPI on Grid'5000 is done with the algorithm of the state of the art with the best performance. It confirms that using allocation vectors of counters to compute the global order of requests gives better results than the other techniques. The results also show that the improvement does not come from the order itself but from the fact that the algorithm allows multiple requests to allocate resources at the same time if they are not trying to allocate the same instances. The trade-off of the algorithm is that the number of messages depends on the number of preemptions which can make it difficult to predict. An order based on the ordering of the nodes gives good result for the Average Usage Rate or the Average Number of Messages required but introduces a domino effect that makes the Average Waiting Time order of magnitude worse than for other methods. Other algorithms that require a global lock of the resources do not offer the same level of concurrency of the requests.

Limitations and future work

Further work is required to try to improve or evaluate in more details the performance of the algorithm. Adaptations to other systems or use cases can also be considered. Below is a list of possible future work.

Improving the performance

The byvalues heuristic offers a better performance than the algorithms of the state of the art that were evaluated, but it may be possible to improve the performance further.

Getting closer to an optimum A centralised solution with a global view of the system could be used to get closer to the expected value Average Usage Rate computed in Chapter 5. A solution that builds a global view of a distributed list of requests might improve the Average Usage Rate but the trade-off is the high number of messages that is orders of magnitude bigger than for the algorithm proposed. Both these methods might not be adapted to every system. A solution still has to be found to get closer to this maximum while keeping a low number of messages. A more thorough comparison with a global viewbased solution could highlight the pros and cons of both methods. The expected value is not an optimum, depending on the actual set of requests on a given system it might be possible to achieve better or worse results. Comparing the performance of the algorithm with an optimum would allow the quantification of this difference. As the problem is NP-hard, it might be necessary to make this comparison on smaller topologies than the 44-node topology used in the experiments described here.

Identifying other heuristics more adapted to specific objectives Other heuristics can be considered for the algorithm. For the path computation subroutine, none of the heuristic proposed is trying to minimise the length of the path. A heuristic that looks for a compromise between load-balancing and the length of the path might be interesting for some use cases. For the allocation of resources, only totally random requests are evaluated while in a production systems the set of requests might not include all the possible permutations of resources, or some requests might be more frequent than others. In these situations the generic allocation order heuristics presented here might not be the most efficient and a heuristic tailored to the actual profile of requests would be more adequate. All the allocation order heuristics described in Section 4.5 are pessimistic: they expect deadlocks to happen. In production systems where requests are less random than on the experimental platform, there might be a lower risk of deadlocks. An optimistic approach would try to allocate the resources earlier and only handle deadlocks once they are detected.

Extending the system

The model proposed for the system is not adequate for every use cases and may need to be extended, two kinds of extension are proposed here.

Extending to dynamic topologies Among the assumptions made in the model used is that the resources are placed on the nodes of a static graph while the number and placement of resources of production platforms change over time: nodes can be added or removed, voluntarily when it is linked to capacity planning or involuntarily when this is because of failures. The algorithm cannot be used as is, adaptations are required when dealing with a dynamic graph. A fault tolerance mechanism could be added to deal with the loss of nodes.

Extending to heterogeneous systems and requests The simulations shown here take a lot of parameters. The influence of each parameter was studied in details. Still, for the sake of simplification some parameters are not studied specifically in the experiments. All the edges have the same weight of 1. Having different weights for the edges is not expected to change the overall results but a real system with multiple instances and with variations of the weight of the edges, i.e., the latency of the network links, might not benefit from the algorithm if the length of paths has an impact on the service delivered by the resources. This needs to be considered when choosing the heuristic of the first subroutine to maximise the load-balancing among instances while minimising the length of paths. Also, even in systems with multiple instances, requests in the simulation are never for more than one instance for a given type of resource. This is not expected to have any influence on the results but has not been tested. Results show that the difference of performance between algorithms is linked to the load of the system.On systems with a low number of requests there might not be notable differences between algorithms.

Evaluating on a live 5G platform with actual workloads

Networks often are designed with a centralised manager and it does not make it simple to identify and implement a distributed use case other than on an experimental platform built on purpose like what was done during the course of this work. There are several steps forward left to make before we could be able to implement this algorithm on a multi-domain use case on a production-like platform. A target multi-domain architecture needs to be defined, for example a multi-domain 5G platform. The multi-domain use cases need to get more mature so research can focus on them. Then, the algorithm needs to be integrated in the multi-domain 5G platform for these use cases.

 Guardians of the Galaxy

 et al. "Towards Multi-SDN Services: Dangers of Concurrent Resource Allocation from Multiple Providers". In: 2018 21st Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN), short paper. 2018 21st Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN). Feb. 2018, pp. 1-5 [Fra+18a]

Figure 2 . 1 :

 21 Figure 2.1: Evolution of Telecom networks

Figure 2 . 3 :

 23 Figure 2.3: High-level conceptual architecture of SDN from [Wic+15]

Figure 2 . 4 :Figure 2 . 4

 2424 Figure 2.4: Network Slicing architecture, adapted from [All16]

Figure 2 . 5 :

 25 Figure 2.5: Architecture of multi-domain network slices

Figure 2 . 6 :

 26 Figure 2.6: Overview of the eHealth integrated multi-domain slicing-friendly infrastructure

3 legendFigure 2

 32 Figure 2.7: A system with 3 types of resources: c 1 (LB), c 2 (FW), and c 3 (IDS)

n 1 n 8 n 7 n 5 Req 1 :Figure 2 . 8 :

 5128 Figure 2.8: Selection of instances for Req 1

4 .

 4 Symmetrically to the previous case, Alice can allocate one resource from provider α and Bob one from provider β.

Figure 2 . 9 :

 29 Figure 2.9: Illustration of the concurrent allocation of two critical resources from two SDN providers: 4 results are possible

Figure 2 .

 2 Figure 2.10: Sample test case: 2 authors Alice and Bob and 2 SDN providers

Figure 2 .

 2 Figure 2.11: Use case implementation: each user runs a SDN application in each of the two domains α and β. Their applications send and receive ECHO messages

Figure 3 . 1 :

 31 Figure 3.1: Distributed mutual exclusion system architecture (from [WW11])

Figure 3 . 2 :

 32 Figure 3.2: Sample system with one instance of one resource, held by the green filled node.

Figure 3 . 3 :

 33 Figure 3.3: Sample system with one instance of n types of resources: the dining philosophers problem

 Chandy-Misra [CM84] relaxed this symmetry constraint and proposed a DiPP algorithm, detailed in Section 6.3, based on the acyclicity of the graph where forks are transmitted along the edges. The directions of the edges at any time guarantee that there is no cycle in the graph. Page et al.[PJC93] proposed an algorithm that improved the performances. Styer and Peterson[SP88] improved the worst case time and failure locality (cf. definition in Section 3.3) of Lynch [Lyn80; Lyn81].

Figure 3 . 4 :

 34 Figure 3.4: Sample system with one instance of n types of resources, edges represent the communication graph

Figure 3 . 5 :

 35 Figure 3.5: Sample system with m green filled instances of 1 type of resources

Figure 3 . 6 :

 36 Figure 3.6: Sample system with m instances of n types of resources

Figure 3 . 7 :

 37 Figure 3.7: Classification of problems for the distributed allocation of resources

 Contents

4. 1

 1 Variables of nodes and messages 4.2 Path computation . 4.2.1 Requesting to enter the CS . 4.2.2 Forwarding the messages . 4.2.3 Computing the path . 4.2.4 Total ordering of requests . 4.3 Allocation . 4.3.1 Allocating the resources . 4.3.2 Computing the total order of requests 4.3.3 Preempting an instance . 4.3.4 Leaving the CS . 4.4 Examples . 4.4.1 Example of running the algorithm with one request 4.4.2 Example of two concurrent requests with preemption of an instance . 4.5 Heuristics . 4.5.1 Routing heuristics . 4.5.2 Allocation order heuristics . 4.5.3 Recap and example . 4.6 Algorithm Complexity . 4.7 Conclusion .

14 15 #

 15 Wait f o r t h e ack then s t a r t t h e a l l o c a t i o n s u b r o u t i n e 16 w a i t f o r ROUTING ACK(r , p , a) 17 a l l o c a t e (r , p , a) 18 EndFunction Algorithm 4.1: requesting the CS

 r e s o u r c e T y p e s [s i z e (a l l o c V e c t o r)] 21 s e l f . c o u n t e r ←-s e l f . c o u n t e r + 1 22 a l l o c V e c t o r . append (s e l f . id , s e l f . c o u n t e r) 23 endif 24 25 i f s i z e (a l l o c v e c t o r) != s i z e (r e q u e s t . r e s o u r c e T y p e s) 26 # The end o f t h e path has not been r e a c h e d y e t 27 # send updated a l l o c V e c t o r t o next node 28 nextResourceType ←-r e q u e s t . r e s o u r c e T y p e s [s i z e (a l l o c V e c t o r)] 29 pathToNextResource ←-getPathToResourceType (nextResourceType) 30 path . append (pathToNextResource) 31 32 send ROUTING(r e q u e s t , path , a l l o c V e c t o r) to pathToNextResource . i d 33 return 34 endif 35 36 # This i s t h e c a s e when t h e path computation f i n i s h e s 37 # A l l r e s o u r c e s have been found , s e n d s ROUTING ACK t o r e q u e s t i n g node 38 send ROUTING ACK(r e q u e s t , path , a l l o c V e c t o r) to path [0] . i d 39 return 40 EndFunction Algorithm 4.2: Reception of ROUTING messages

Figure 4 . 1 :

 41 Figure 4.1: State diagram of nodes

41

 Function a l l o c a t e (r e q u e s t , path , a l l o c V e c t o r) 42 n o d e s T o A l l o c a t e ←-f i r s t N o d e s (a l l o c V e c t o r) 43 f o r node in n o d e s T o A l l o c a t e 44 sendFwd ALLOC(r e q u e s t , path , a l l o c V e c t o r) to node 45 e n d f o r 46 EndFunction Algorithm 4.3: Allocation of requests

 a l l o c a t e d V e c t o r ←-a l l o c V e c t o r a l l o c a t e d P a t h ←-path i f i s L a s t (s e l f . id , a l l o c V e c t o r) sendFwd ALLOC ACK(r e q u e s t , path , a l l o c V e c t o r) to path [0] . i d return e l s e c u r r e n t H a n d l e r ←-nextNode (s e l f . id , a l l o c a t e d P a t h) sendFwd ALLOC(r e q u e s t , path , a l l o c V e c t o r) to c u r r e n t H a n d l e r return endif # I f ALLOCATED, compare c u r r e n t and new r e q u e s t s c a s e ALLOCATED:

 a l l o c a t e d V e c t o r) sendFwd PREEMPT(a l l o c a t e d R e q u e s t , a l l o c a t e d P a t h , a l l o c a t e d V e c t o r , s e l f . i d) to c u r r e n t H a n d l e r return endif e n d c a s e # I f PREEMPTING, append t o w a i t i n g c a s e PREEMPTING:s e l f . w a i t i n g ←-s e l f . w a i t i n g + (r e q u e s t , path , a l l o c V e c t o r) return e n d c a s e e n d s w i t c h EndFunction Algorithm 4.4: Handling of ALLOC messages Function h a n d l e A l l o c A c k (r e q u e s t , path , a l l o c V e c t o r) enterCS () EndFunction Algorithm 4.5: Handling of ALLOC ACK messages

94

 Function p r e c e d e n c e (a l l o c V e c t o r) 95 # l o c a l v a r i a b l e s 96 sum : i n t e g e r 97 p r e c e d e n c e : f l o a t 98 99 sum ←-0 100 101 f o r e l e m e n t in a l l o c V e c t o r 102 sum ←-sum + e l e m e n t 103 e n d f o r 104 105 p r e c e d e n c e ←-sum / s i z e (a l l o c V e c t o r) 106 return p r e c e d e n c e 107 EndFunction Algorithm 4.6: Computing the precedence of two allocation vectors

108

 Function comparePrecedence (a l l o c V e c t o r 1 , a l l o c V e c t o r 2) 109 # l o c a l v a r i a b l e s 110 p r e c e d e n c e 1 : f l o a t 111 p r e c e d e n c e 2 : f l o a t 112 113 p r e c e d e n c e 1 ←-p r e c e d e n c e (a l l o c V e c t o r 1) 114 p r e c e d e n c e 2 ←-p r e c e d e n c e (a l l o c V e c t o r 2) 115 116 i f p r e c e d e n c e 1 < p r e c e d e n c e 2 117 return =1 118 endif 119 120 i f p r e c e d e n c e 1 > p r e c e d e n c e 2 r e c e d e n c e 1 == p r e c e d e n c e 2 125 return t i e b r e a k (p r e c e d e n c e 1 , p r e c e d e n c e 2) 126 EndFunction Algorithm 4.7: Comparing the precedence of two allocation vectors

130 i f p

 r e c e d e n c e (a l l o c V e c t o r) > p r e c e d e n c e (a l l o c a t e d V e c t o r)131 s e l f . w a i t i n g ←-s e l f . w a i t i n g + (r e q u e s t , a l l o c V e c t o r , path)

#

 143 s t a t u s ←-PREEMPTING 144 sendFwd PREEMPT(r e q u e s t , path , a l l o c V e c t o r , preempter) 145 to nextNode (s e l f . id , a l l o c V e c t o r) Only p o s s i b l e i f IDLE o r ALLOCATED by a n o t h e r r e q u e s t 150 c o n t i n u e 151 endif 152 endif 153 154 # The node a c c e p t s t h e preemption 155 i g n o r e ←-i g n o r e + (r e q u e s t , a l l o c V e c t o r , path) 156 sendFwd PREEMPT ACK(r e q u e s t , path , a l l o c V e c t o r , preempter) to preempter 157 endif 158 EndFunction Algorithm 4.8: Handling of PREEMPT messages 159 Function handlePreemptionAck (r e q u e s t , path , a l l o c V e c t o r , preempter) 160 s e l f . s t a t u s ←-IDLE 161 162 i f (s e l f . i d == preempter)163 r e q u e s t , path , a l l o c V e c t o r ←-r e q u e s t W i t h L o w e s t P r e c e d e n c e (s e l f . w a i t i n g) 164 h a n d l e A l l o c (r e q u e s t , path , a l l o c V e c t o r) 165 e l s e 166 s e l f . w a i t i n g ←-s e l f . w a i t i n g = (r e q u e s t , a l l o c V e c t o r , path) 167 p at h T oP r e vi o u s Re s o ur c e ←-p r e v i o u s N o d e (s e l f . id , a l l o c V e c t o r) 168 sendFwd PREEMPT ACK(r e q u e s t , path , a l l o c V e c t o r , preempter) 169 to pathToNextResource . i d 170 endif 171 EndFunction Algorithm 4.9: Handling of PREEMPT ACK messages

 not i s L a s t (s e l f . id , a l l o c V e c t o r) 183 pathToNextResource ←-nextNode (s e l f . id , a l l o c V e c t o r) 184 sendFwd END CS(r e q u e s t , path , a l l o c V e c t o r) to pathToNextResource . i d 185 endif 186 EndFunction Algorithm 4.11: Handling the END CS messages

Figure 4 . 2 :

 42 Figure 4.2: The sample system

Figure 4 . 4 :

 44 Figure 4.4: Algorithm execution for Req 1 , showing only the allocVector variable of ROUT-ING and ROUTING ACK messages

Figure 4 . 5 : 3 Figure 4 .5 shows n 1

 45341 Figure 4.5: Running the path computation subroutine Req 1 1/3

Figure 4 . 6 :

 46 Figure 4.6: Running the path computation subroutine Req 1 2/3

Figure 4 . 7 :

 47 Figure 4.7: Running the path computation subroutine for Req 1 3/3

Figure 4 .

 4 Figure 4.9 shows how preemption works in the case of the requests Req 2 and Req 3 described in Figure 4.8a. Initially all nodes are in the IDLE state and no other request is in the system. At the beginning of this example, the path computation subroutines of these two requests are finished and their allocation vectors have been computed, they are shown in Figure 4.8b.

3 (3 V

 33 a) Selection of instances for Req 2 and Req Req

Figure

 Figure 4.8: Sample requests Req 2 and Req 3

Figure 4 .

 4 Figure 4.10: Allocation of Req 2 and Req 3 1/4

Figure 4 .

 4 Figure 4.13: Allocation of Req 2 and Req 3 4/4

1

 1 Metrics and reference configuration 64 5.1.1 Metrics definition . 64 5.1.2 System configuration . 64 5.2 Experimental environment . 65 5.2.1 Implementations of the infrastructure 65 5.2.2 The Grid'5000/SILECS platform 66 5.3 Systems with one instance of n types of resources 66 5.4 System with m instances of n types of resources 69 5.5 Computing the expected value for the Average Usage Rate . 70 5.5.1 Description of the method . 72 5.5.2 Examples . 72 5.5.3 Generalisation to requests of size s on any system with 1 instance 74 5.5.4 Comparison with the expected value 76 5.6 Conclusion . 76 I'm worse at what I do best And for this gift, I feel blessed Nirvana, Smells like teen spirit

Figure 5 . 1 :

 51 Figure 5.1: The Cesnet200706 44-node topology used for the experiments

 (a) Average Usage Rate (b) Average Waiting Time (c) Average Number of Messages (d) Average Nb of PREEMPT Messages

Figure 5 . 2 :

 52 Figure 5.2: Comparison of allocation order heuristics in a system with one instance of 44 types of resources

Figure 5 .Figure 5 .Figure 5 .

 555 Figure 5.4: Evaluation of Average Usage Rate for various numbers of instances and types of resources

 (a) Evaluation for 1 instance of 44 types of resources (b) Evaluation for 2 instances of 22 types of resources (c) Evaluation for 4 instances of 11 types of resources Routing:shortest Allocation order:byvalues Routing:round-robin Allocation order:byvalues

Figure 5 . 5 :

 55 Figure 5.5: Evaluation of Average Path Length for various numbers of instances and types of resources

Figure 5 1 Figure 5 . 6 :

 5156 Figure 5.6: Markov chain for the example with requests of size s = 1

2 4 P 2 = 2 12(4 P 2 - 2 P 2) 4 P 2 = 10 12 1 Figure 5 . 7 :

 222422242157 Figure 5.7: Markov chain for the example with requests of size s = 2

nn

 Ps-n-(i * s) Ps n Ps n-(i * s) Ps n Ps Ps-n-(i+1) * s Ps n Ps

Figure 5 . 9 :

 59 Figure 5.9: Comparison with expected value of the Average Usage Rate in a system with one instance of 44 types of resources

Contents 6 . 1

 61 System setup . 80 6.2 Dijkstra's Incremental algorithm 80 6.2.1 Description of the algorithm . 81 6.2.2 Example of execution in sample system 82 6.2.3 Performance evaluation . 85 6.3 Chandy-Misra DrPP algorithm 87 6.3.1 Description of the algorithm . 87 6.3.2 Example of execution for the sample scenario 88 6.3.3 Performance evaluation . 89 6.4 Rhee's algorithm . 90 6.4.1 Description of the algorithm . 91 6.4.2 Example of execution in sample system 92 6.4.3 Performance evaluation . 95 6.5 Bouabdallah-Laforest algorithm 96 6.5.1 Naimi-Tréhel Mutex algorithm 97 6.5.2 Description of Bouabdallah-Laforest algorithm 100 6.5.3 Example of execution in sample system 101 6.5.4 Performance evaluation . 102 6.6 Summary . 103 6.7 Conclusion . 105

Figure 6 . 1 :

 61 Figure 6.1: Scenario used in this chapter

2 # 4 # 5 C 6 ###

 2456 P r o c e s s w a i t s f o r g l o b a l mutex 3 P(mutex) ; Once p r o c e s s w g e t s t h e mutex , i t becomes hungry P r o c e s s w r e q u e s t s t o e a t Wait f o r t h e mutex o f p r o c e s s w . 12 P(p r i s e m [w]) ; 13 # Once mutex i s a c q u i r e d , t h e p r o c e s s can e a t Once t h e p r o c e s s i s done e a t i n g , i n f o r m o t h e r s 17 # F i r s t l o c k t h e g l o b a l mutex 18 P(mutex) ; 19 # P r o c e s s i s done e a t i n g , e n t e r s t h e t h i n k i n g s t a t e 20 C [w] := 0 ; 21 # Inform both n e i g h b o u r s t h a t p r o c e s s w i s done e a t i n g 22 t e s t ((w + 1) mod 5) ; 23 t e s t ((w = 1) mod 5) ; 24 # R e l e a s e t h e g l o b a l mutex 25 V(mutex) ; 26 end . Algorithm 6.1: Dijkstra's Incremental algorithm, as originally formulated for 5 philosophers, from [Dij71].

Figure 6 . 4 :

 64 Figure 6.4: Sample execution of Dijkstra's Incremental algorithm 2/4

5 9(c) t 9 : n 4 allocates n 5 Figure 6 . 5 :

 5565 Figure 6.5: Sample execution of Dijkstra's Incremental algorithm 3/4

5 (Figure 6 . 6 :

 566 Figure 6.6: Sample execution of Dijkstra's Incremental algorithm 4/4

5 (a) t 1 : 5 (b) t 2 : 5 (c) t 3 :

 515253 initial stage, n 1 can enter CS for Req A n 1 releases its CS, n 4 requests fork from n 1 n 4 gets fork from n 1

Figure 6 .

 6 Figure 6.8: Chandy-Misra DrPP algorithm 1/2

5 (a) t 4 : 5 (b) t 5 :

 5455 Figure 6.9: Chandy-Misra DrPP algorithm 2/2

Figure 6 .

 6 Figure 6.10: Timeline of Chandy-Misra DrPP algorithm

Figure 6 .

 6 Figure 6.11 shows the results of the simulations run on SimGrid of Chandy-Misra DrPP algorithm [CM84] compared to the byvalues allocation order heuristic.As Chandy-Misra algorithm allows only one CS at a time, only one request can be allocated at any given time so the Average Usage Rate is linear (Figure6.11a). The usage rate can be approximated easily, for request of size 7, usage rate is approximately 7/44 ≈ 15.91%. This linear graph highlights when the Average Usage Rate becomes linear for the byvalues heuristic. The two graphs rejoin shortly after a size of 12 for requests.The Average Number of Messages is significantly higher for Chandy-Misra algorithm than for the byvalues heuristic, as shown in Figure6.11b. This is due to the large number

Figure 6 .

 6 Figure 6.11: Evaluation of Chandy-Misra algorithm in a system with one instance of 44 types of resources.

t 1 :t 3 :Figure 6 .

 136 Figure 6.13: Sample execution of Rhee's algorithm 1/4

 Figure 6.15: Sample execution of Rhee's algorithm 3/4

Figure 6 .

 6 Figure 6.16: Sample execution of Rhee's algorithm 4/4

Figures 6

 6 Figures 6.17 show, in red, the results of simulations of Rhee's algorithm[START_REF] Rhee | A Fast Distributed Modular Algorithm for Resource Allocation[END_REF] compared to the byvalues heuristic on SimGrid. These are the only figures where results are not shown for all the possible values of x due to the very high number of messages. The number of messages has a direct influence on the duration of a simulation. Because the SimGrid simulator is based on discrete events, each time a message is sent or received the execution of the thread is interrupted. So the more messages there are in a test the longer its simulation lasts. For example in the results below, for requests of size 8 the byvalues heuristic sends around 100 messages in average and Rhee's algorithm around 4325 messages (Figure6.17b). The duration of the simulation for the algorithm in this case is around 6 minutes, while the simulation of Rhee's algorithm lasts 5220 minutes (or 4.5 days). Generating the whole graph takes weeks while providing no additional information. Only the simulations for the most significant size of requests have been evaluated on the experimental platform. The algorithm was also evaluated, along with the another algorithm described in this chapter, on other topologies with a smaller number of nodes.As expected, the algorithm improves the Average Usage Rate from the pure Chandy-Misra DrPP algorithm as shown in Figure6.17a. But the Average Usage Rate is still significantly lower than with the byvalues heuristic. Rhee's original paper evaluated the algorithm with Chandy-Misra[CM84] and Choy-Singh[START_REF] Choy | Distributed Job Scheduling Using Snapshots[END_REF] algorithms for the first subroutine. The results show that there is no significant difference to expect with a different algorithm because the time spent in the subroutine CS is orders of magnitude shorter than the time spent in the algorithm CS.The Average Number of Messages, shown in Figure6.17b, is worse than the Chandy-Misra algorithm because it adds new messages for the management of the distributed queue. It is the worst algorithm for that metric by several orders of magnitude. This metric could be improved if another algorithm than Chandy-Misra had been used for the first subroutine, however the results show that the Average Number of Messages for Rhee's algorithm grows exponentially due to the messages specific to the algorithm. Rhee's paper shows that using Chandy-Misra algorithm for the first subroutine requires less messages than when using Choy-Singh algorithm. It also shows that it requires less messages than Awerbuch-Saks[START_REF] Awerbuch | A Dining Philosophers Algorithm with Polynomial Response Time[END_REF] algorithm on most of the test cases. Rhee's own evaluation in his article show that using Choy-Singh algorithm[START_REF] Choy | Distributed Job Scheduling Using Snapshots[END_REF] rather than Chandy-Misra results in a significantly larger number of messages, around 30%.The Average Waiting Time is improving from the Chandy-Misra algorithm. It is however slightly higher than the byvalues heuristic (Figure6.17c).

 Figures 6.17 show, in red, the results of simulations of Rhee's algorithm[START_REF] Rhee | A Fast Distributed Modular Algorithm for Resource Allocation[END_REF] compared to the byvalues heuristic on SimGrid. These are the only figures where results are not shown for all the possible values of x due to the very high number of messages. The number of messages has a direct influence on the duration of a simulation. Because the SimGrid simulator is based on discrete events, each time a message is sent or received the execution of the thread is interrupted. So the more messages there are in a test the longer its simulation lasts. For example in the results below, for requests of size 8 the byvalues heuristic sends around 100 messages in average and Rhee's algorithm around 4325 messages (Figure6.17b). The duration of the simulation for the algorithm in this case is around 6 minutes, while the simulation of Rhee's algorithm lasts 5220 minutes (or 4.5 days). Generating the whole graph takes weeks while providing no additional information. Only the simulations for the most significant size of requests have been evaluated on the experimental platform. The algorithm was also evaluated, along with the another algorithm described in this chapter, on other topologies with a smaller number of nodes.As expected, the algorithm improves the Average Usage Rate from the pure Chandy-Misra DrPP algorithm as shown in Figure6.17a. But the Average Usage Rate is still significantly lower than with the byvalues heuristic. Rhee's original paper evaluated the algorithm with Chandy-Misra[CM84] and Choy-Singh[START_REF] Choy | Distributed Job Scheduling Using Snapshots[END_REF] algorithms for the first subroutine. The results show that there is no significant difference to expect with a different algorithm because the time spent in the subroutine CS is orders of magnitude shorter than the time spent in the algorithm CS.The Average Number of Messages, shown in Figure6.17b, is worse than the Chandy-Misra algorithm because it adds new messages for the management of the distributed queue. It is the worst algorithm for that metric by several orders of magnitude. This metric could be improved if another algorithm than Chandy-Misra had been used for the first subroutine, however the results show that the Average Number of Messages for Rhee's algorithm grows exponentially due to the messages specific to the algorithm. Rhee's paper shows that using Chandy-Misra algorithm for the first subroutine requires less messages than when using Choy-Singh algorithm. It also shows that it requires less messages than Awerbuch-Saks[START_REF] Awerbuch | A Dining Philosophers Algorithm with Polynomial Response Time[END_REF] algorithm on most of the test cases. Rhee's own evaluation in his article show that using Choy-Singh algorithm[START_REF] Choy | Distributed Job Scheduling Using Snapshots[END_REF] rather than Chandy-Misra results in a significantly larger number of messages, around 30%.The Average Waiting Time is improving from the Chandy-Misra algorithm. It is however slightly higher than the byvalues heuristic (Figure6.17c).

Figure 6

 6 Figure 6.17: Evaluation of Rhee's algorithm in a system with one instance of 44 types of resources.

Figure 6 .

 6 Figure 6.19: Sample execution of Naimi-Tréhel algorithm 1/3

4 (c) t 6 : n 1 forwards the re- quest to n 3 Figure 6 .

 4636 Figure 6.20: Sample execution of Naimi-Tréhel algorithm 2/3

5 (

 5 Figure 6.21: Sample execution of Naimi-Tréhel algorithm 3/3

Figure 6 .

 6 Figure 6.24: Evolution of the Control Token

5 (a) t 1 :

 51 Req A is emitted. n 1 has the Control Token, it can enter its CS.

(b) t 2 :

 2 Req B is emitted. n 4 requests the Control Token.

4 Figure 6 .

 46 Figure 6.25: Sample execution of Bouabdallah-Laforest algorithm 1/2

t 5 : 5 (

 55 Req A finished, n 1 sends tokens to n 4 . c) t 6 : n 4 enters CS, Req B uses the resources.

Figure 6 .

 6 Figure 6.26: Sample execution of Bouabdallah-Laforest algorithm 2/2

Figures 6 .

 6 Figures 6.27 show, in blue, the results of the Bouabdallah-Laforest algorithm compared to the byvalues allocation order heuristic on simulation run on SimGrid.The algorithm relies on a Control Token to allow requests to allocate their resources. This Control Token introduces a global lock when resources are not available, which explain why the algorithm has worse performance in terms of Average Usage Rate (Figure6.27a). The byvalues heuristic has a better concurrency, allowing non-conflicting requests to be allocated.The Bouabdallah-Laforest algorithm also requires a larger number of messages in average (Figure6.27b). Even if its message complexity is logarithmic, more than 80% of its messages are for the circulation of the Control Token because these messages can be

 Average Number of Messages (c) Average Waiting Time

Figure 6 .

 6 Figure 6.27: Evaluation of Bouabdallah-Laforest algorithm in a system with one instance of 44 types of resources

Few

 papers from the state of the art detailed in Section 3.2 include experimental evaluations of the algorithms. Page et al. [PJC93] compared the Average Response Times of their algorithms to Awerbuch-Saks[AS90] and Chandy-Misra[CM84]. Rhee [Rhe95] compared the Average Response Times and Average Message Complexity of his algorithm to Awerbuch-Saks[AS90], Chandy-Misra[CM84] and Choy-Singh [CS93]. Lejeune et al.[Lej+15] compared Average Usage Rate and Average Response Time of their algorithm to Bouabdallah-Laforest [BL00] and an incremental algorithm using the Naimi-Tréhel algorithm for Mutual Exclusion.

Figure 6 .Figure 6 .

 66 Figure 6.28: Evaluation of all algorithms in a system with one instance of 44 types of resources

 Pierre Sens. "A Resource Usage Efficient Distributed Allocation Algorithm for 5G Service Function Chains". In: Distributed Applications and Interoperable Systems. Ed. by Anne Remke and Valerio Schiavoni. Lecture Notes in Computer Science. Cham: Springer International Publishing, 2020, pp. 169-185

	Chapter 2
	Background and problem statement
	If you're havin' Perl problems,
	I feel bad for you, son
	I got 99 problems,
	So I used regular expressions
	Now I have 100 problems
	Randall Munroe,
	XKCD #1171, "Perl Problems"

Contents 2.1 The convergence of telecommunications and computer networks . 10 2.2 Evolution of the architecture of services 11 2.2.1 Chains of VNFs . 13 2.2.2 SDN . 13 2.2.3 Network slicing . 15 2.3 Multi-domain services . 16 2.3.1 Multi-domain architectures . 16 2.3.2 A 5G multi-domain use case: eHealth telemedecine 16 2.4 Resource allocation problems in networks 17 2.4.1 Problem statement and model 18 2.4.2 Solutions for the resource allocation problem 19 2.4.3 Problems of concurrent resource allocation from multiple providers 20 2.5 Conclusion . 24

 Some use cases consider chains of VNFs, as detailed below.A virtualised infrastructure that leverages Cloud and SDN technologies. This allows to run the Virtual Machines or containers that host the VNF. SDN is detailed in more details in Section 2.2.2.Multiple slices or parts of slices. Slices are virtual networks running on top of one, or more, NFV infrastructure(s), they are introduced in Section 2.2.3.2.2.1 Chains of VNFsNFV infrastructures are composed of multiple VNFs. Allocation of a single VNF is not always sufficient, many use cases require multiple VNFs to inter-operate. To this end, in 2013 the ETSI NFV Industry Specification Group (ISG) identified VNF Forwarding Graphs[START_REF]Network Functions Virtualisation (NFV) Use Cases[END_REF] as a use case for NFV. A VNF Forwarding Graph defines a chain of VNFs, i.e., the sequence of VNFs that packets traverse and are analogous to the connection with cables of physical appliances.Figure2.2 shows two chains of VNF, in blue and green, in a system where three VNFs are available: a firewall (FW), an Intrusion Detection System (IDS) and a load-balancer (LB). The red chain uses successively the FW, IDS and LB. The blue chain only uses the FW and LB.

	FW	IDS	LB
			Server
	NFV infrastructure

Figure 2.2: Example of Service Functions Chaining: two chains in red and blue

 1. Alice can allocate resource from both providers α and β. Bob cannot allocate any. 2. Symmetrically to the previous case, Bob can allocate resource from both providers α and β. Alice cannot allocate any.

3. Alice can allocate one resource from providers β and Bob one from α.

Table 2 .

 2 [START_REF]1 Network Functions Virtualisation (NFV); Management and Orchestration[END_REF] shows the results when the simulation is run 1000 times.

	Result	Occurrence
	Alice gets none, Bob gets two re-	33.8%
	sources	
	Alice and Bob gets one resource	26.8%
	each (either from α or β)	
	Alice gets two resources, Bob gets	39.4%
	none	

Table 2 .

 2 1: Sample result observed when simulation is run 1000 times

 Properties of the Mutual Exclusion 27 3.1.3 Description of the system . 27 3.2 Distributed algorithms for the allocation of resources: state of the art and taxonomy . 28

	Chapter 3
	State of the art
	Contents
	3.1 Definition and model for distributed resource allocation . . . 26
	3.1.1 Definition of distributed mutual exclusion 26
	3.1.2 3.2.1 One instance of one type of resources: the Mutex problem . . . 28
	3.2.2 One instance of n types of resources: dining/drinking philosophers 30
	3.2.3 m instances of one type of resources: k-mutex, k-out of-M . . . 33
	3.2.4 m instances of n types of resources 34
	3.2.5 Classification of algorithms . 35
	3.3 Performance evaluation and comparison 35
	3.4 Conclusion . 38
	He's clever, [. . .], I must admit there
	are some smart people even among
	the intelligentsia.
	Mikhail Bulgakov, The Master and
	Margarita

 The Mutual Exclusion problem was first described by Dijkstra in 1965[START_REF] Dijkstra | Solution of a Problem in Concurrent Programming Control[END_REF] for systems with N nodes that share one resource. In such systems each node, sometimes also called site, is an autonomous computing unit that can run processes. Each node runs a Mutual Exclusion algorithm locally that allows it to enter the Critical Section (CS) and to use the resource exclusively. When a node needs to use the resource it execute requestCS function. When it is done using the resource it runs a releaseCS function. The Mutual Exclusion problem is the coordination of all the nodes such that a single node can enter its CS at a given time, i.e., when the node is the sole user of the resource while the others are waiting. It is assumed that the CS has a finite duration, i.e., the resource will eventually be released. A conflict occurs when multiple nodes are requesting the same resource at a given time. An extensive formal description of distributed systems has been made by Lynch et Fischer in 1981[START_REF] Lynch | On Describing the Behavior and Implementation of Distributed Systems[END_REF].

	3.1 Definition and model for distributed resource al-
	location		
	3.1.1 Definition of distributed mutual exclusion
		Application Process	
	requestCS	enterCS	releaseCS
	Mutual Exclusion Process
	Send(m)		Recv(m)
		Network	

Table 3 .

 3

	Authors	Problem	Message
			complexity
	Le Lann[Le 77]	message passing	
	Ricart and Agrawala		

1: Performance of permission-based Mutex algorithms, after

[START_REF] Martin | A Survey of Distributed Mutual Exclusion Algorithms[END_REF]

 .3.

	Variable	Value represented
	δ	maximum number of conflicting processes at any time
	U	number of nodes IDs
	r	maximum number of resources in a request
	k	maximum number of resources in the system

Table 3 .

 3 3: Variables used for performance evaluation

	Authors	Pb	Message
			complexity
	Dijkstra[Dij71]	DrPP	O(N)
	Lynch[Lyn81]	DiPP	O(δ)
	Styer and Peterson[SP88]	DiPP	O(δ log(δ+1))
	Choy and Singh[CS92]	DiPP	O(δ)
	Page et al.[PJC93]	DiPP	O(δ 2)
	Chandy and Misra[CM84]	DrPP	O(N)
	Rhee[Rhe95]	DrPP	O(max{δ 2 , rδ})
	Awerbuch and Saks[AS90]	dyn	O(δ 2 log(U))
	Weidman et al.[WPP91]	dyn	O(δ)
	Bar-Ilan and Peleg[BP92]	dyn	O(δlog(U))
	Choy and Singh 1[CS93]	dyn	O(δ 2 + δlog * (U))
	Choy and Singh 2[CS93]	dyn	O(δlog * (U))
	Choy and Singh 3[CS93] O(δ Ginat et al.[GSA89] dyn dyn > 0 and < 2 k
	Bouabdallah-Laforest[BL00] dyn	O(log(N)

2

+ δlog * (U)) Rhee

[START_REF] Rhee | A Fast Distributed Modular Algorithm for Resource Allocation[END_REF]

dyn O(max{δ 2 + δlog * (U), rδ})

Table 3 .

 3

4: Performance of DiPP and DrPP algorithms, from

[START_REF] Rhee | A Fast Distributed Modular Algorithm for Resource Allocation[END_REF]

Table 4 .

 4

	Local variable	Type	Role
	id	string	The identifier of the node
	resourceType	string	The type of resources held by the node
	counter	integer	The counter of the node. This counter is
			used to compute the total order of the
			requests, cf. Section 4.3.2.
	waiting	vector of t-uple(request,	Set of identifiers of requests waiting for
		path, allocVector)	their turn to be allocated.
	ignore	vector of integer	Set of request identifiers to be ignored upon
			arrival, needed to deal with the distributed
			nature of the system.
	status	one of {IDLE, ALLO-	Current status of the node
		CATED, PREEMPT-	
		ING}	
	allocatedRequest same as request, path and	Variables of the request
	allocatedPath	allocVector variables of	currently allocated on the
	allocatedVector	messages, cf. Table 4.2	node
	currentHandler	string	Identifier of the

2: Variables used in messages next node in the allocation order of the request currently allocated on the node (allocatedRequest), i.e., the node currently handling this request Table 4.3: Local variables of nodes

Table 4 .

 4 n 6 5: Routing tables for nodes of system from figure 4.2. D is for Distance.

	Type	Node	D						
	c 1	n 5	7	Type	Node	D	Type	Node	D
	c 2	n 7 n 5	0 8		c 1 c 2	n 7 n 7		8 1	c 1 c 2	n n	8 1
		n 8	1			n 8		0		n	0
	c 3	n 9	1		c 3	n 9		1	c 3	n	1
		n 5	18			n 7		19		n	19
		(g) n 7				(h) n 8				(i) n 9
	4.4.1 Example of running the algorithm with one request
				Req 1 :	n 1	n 8	n 7	n 5	
			Figure 4.3: Sample request Req 1	

 4.8: Sample requests Req 2 and Req 3 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10 t 11 t 12 t 13 t 14 t 15 t 16 t 17 t 18

	n 3	
	n 4	
	n 6	
	t	
	t 1 Req 2	Req 3

 4.9: Allocations for Req 4 and Req 5 , preemption of n 6 by Req 4

	n 1	n 2	n 4	n 1	n 2	n 4
		n 3			n 3	
	n 5		n 6	n 5		n 6
	n 7			n 7		
	n 8	n 9		n 8	n 9	

(a) t 1 : allocate(), the allocation of Req 3 starts. n 3 sends an ALLOC message to n 4 .

(b) t 2 : handleAlloc(), allocation of Req 2 continues. n 4 sends an ALLOC message to n 6 .

 Req 2 and sends an AL-LOC message to n 3 which enters the ALLOCATED state. Then, at t 4 (Figure4.11b), n 3 continues the allocation of Req 2 with an ALLOC message to n 6 . Req 3 continues. n 6 sends an ALLOC message to n 3 . : handleAlloc(), n 3 receives Req 3 after it has sent an ALLOC message for Req 2 . It enters the PREEMPTING state and sends a PREEMPT message to n 6 . Figure 4.12: Allocation of Req 2 and Req 3 3/4At t 5 (Figure4.12a), n 6 continues the allocation of Req 3 with an ALLOC message to n 3 . Due to the distributed nature of the system, the last two messages cross each other. When it receives the ALLOC message for Req 3 , n 3 is already in the ALLOCATED state for Req 2 . It checks the precedence of the two requests using their allocation vectors, and computes that Req 3 has the priority over Req 2 . It then decides to start a preemption and enters the PREEMPTING state. Because it has already sent an allocation message to n 6 for Req 2 it sends a PREEMPT message to n 6 at t 6 .

	n 1	n 2	n 4	n 1	n 2			n 4
		n 3						n 3
	n 5 n 5 n 1 (a) t n 2 n 7 n 8 n 9 n 6 n 5 n 7 n 8 (b) t n 2 n 4 n 3 n 7 n 8 n 9 n 6 n 2 n 5 n 1 n 7 n 8 n 2 n 4 n 1 n 3 n 7 n 8 n 9 n 1 n 7 n 8 (b) t 6 n 2 n 5 n 6 n 5	n 9 n 9	n 2 n 2	n 3 n 9	n 3	n 6 n 4 n 6	n 4 n 6

(a) t 3 : allocate(), allocation of Req 2 starts. n 4 sends an ALLOC message to n 3 . 4 : allocation of Req 2 continues. n 3 sends an ALLOC message to n 6 .

Figure 4.11: Allocation of Req 2 and Req 3 2/4 At t 3 , as shown in Figure 4.11a, n 4 starts the allocation of 5 : handleAlloc(), allocation of (a) t 7 : handleAlloc(), n 6 sends a PRE-EMPT ACK message. Upon reception n 6 becomes ALLOCATED for Req 3 . (b) t 8 : handleAlloc(), Req 3 ends. n 3 sends an ALLOC ACK message to the requesting node n 6 .

 Figure 6.2: Timeline of sample execution of Dijkstra's Incremental algorithm Execution At t 1 , n 1 requests to enter its CS for Req A . It sends an ALLOC message to n 2 , the node in the request that comes first according to the order (Figure 6.3a).At t 2 , n 4 requests to enter its CS for Req B . Similarly to n 1 , it first sends an AL-LOC message to n 2 . n 2 is already ALLOC for Req A so it stores Req B in a local queue of pending requests (Figure6.3b). At t 3 , n 2 replies with an ALLOC ACK to n 1 because it has received Req A first (Figure6.3c), as shown by the timeline in Figure6.2.

	[Req B]	n 3			[Req B]	n 3			[Req B]	n 3
	n 2		n 4		n 2				n 4	n 2	n 4
	4a	4b				5b		5a	
	n 1	n 5				n 1		n 5		n 1	n 5
	(a) t 4 : Req A continues	(b) t 5 : Req A allocation fin-	(c) t 6 : Req A is allocated
				ishes				
										S
		t 1	t 2	t 3	t 4	t 5	t 6	t 7	t 8	t 9 t 10 t 11 t 12
		n 3				[Req B]	n 3		[Req B]	n 3
	n 2			n 4		n 2	2c			n 4	n 2	n 4
									2b
	1									2a	3
	n 1		n 5				n 1		n 5	n 1	n 5
	(a) t 1 : Req A is emitted from	(b) t 2 : Req B is emitted from	(c) t 3 : Req A continues, n 2
	n 1 and tries to allocate n 2	n 4 . It is stored in the local	acknowledges
	first				queue of n 2 .		
		Figure 6.3: Sample execution of Dijkstra's Incremental algorithm 1/4

Table 6 . 1 :

 61 2 for Request size Dijkstra's Incremental reverse heuristic Average Usage Rate with Open MPI

	byvalues heuristic

 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10 t 11 t 12 Figure6.12: Timeline of sample execution of Rhee's algorithm n 1 needs to execute Chandy-Misra (hereafter CM) algorithm to enter the CM CS for Req A and n 4 needs to execute CM to enter the CM CS for Req B . Section 6.3 showed that only one of them can enter the CM CS at any given time. In this example n 1 is the first to enter the CM CS. The messages and steps of the CM algorithm are not included here for the sake of readability.

Table 6 . 2 :

 62 Node time t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 Evolution of the local queues of the nodes with time

	t 10	t 11	t 12

6 : Req B is in CM CS. n 4 sends REPORT Figure 6.14: Sample execution of Rhee's algorithm 2/4

 .22f). At t 8 , n 4 can enter its CS. Evolution of the virtual structures during the execution of Naimi-Tréhel algorithm 6.5.2 Description of Bouabdallah-Laforest algorithm Each node keeps a local list of the Resource Tokens it is holding. The Control Token maintains two lists : a list A holding all the free instances, a (key, value) set B telling which node has last requested an instance. The keys are instances of types of resources, the values are nodes. With the Bouabdallah-Laforest algorithm, because it relies on the virtual structures of the Naimi-Tréhel, a node can send a message to any node of the communication graph, i.e. topology. For instance when a node requests the Control Token. This requires each node to have a full knowledge of the communication graph, when the system allows a node to have a partial view of the graph. However, in a system with one instance of multiple types of resources, according to the description in Section 4.2.2, each node has a knowledge on how to reach each type of resources. In this case, it means that each node knows how to reach any node of the communication graph allowing to use the same experimental setup. Evaluating the algorithm on a system with multiple instances would require additional development. When a node wants to enter its CS it first asks for the Control Token using the overlay structure of the Naimi-Tréhel algorithm. Once it holds the Control Token, it can either use the resources to enter its CS, if all the requested resources are free, or it can request the missing resources by sending INQUIRE messages to the last requesters of these resources, according to the B set. In return these nodes update their next to be the node that sent the INQUIRE and reply with a INQ ACK1 messages. If a node holds some resources when it receives the INQUIRE message then it send the Resource Token in the INQ ACK1. When the requesting node has received INQ ACK1 messages from all the nodes it can unlock the Control Token.

	p 1 (a) t 1 : p 1 is the root of the p 2 p 3 p 4 p 5 virtual tree p 1 p 2 p 3 p 4 p 5 (d) t 5 : p 4 wants to enter its CS. It becomes the root of the virtual tree. While p 1 forwards the request to p 3 , no node has p 3 as its father p i p j p i .father = p j p 1 p 2 p 3 p 4 (b) t 2 : p 3 becomes the root p 5 of the virtual tree and the next of p 1 p 1 p 2 p 3 p 4 p 5 (e) t 6 : p 4 becomes the root of the virtual tree and the next of p 3 p i (g) Legend Figure 6.22: Adaptation to the system Requesting the CS	p 1 p 3 p 4 (c) t 3 -t 4 : p 1 has released its p 2 p 5 CS. It clears its next when sending the token to p 3 p 1 p 2 p 3 p 4 p 5 (f) t 7 -t 8 : p 3 releases its CS and clears its next p j p i .next=p j

 2 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 8 t 9 t 10 Figure 6.23: Timeline of sample execution of Bouabdallah-Laforest algorithm {n 1 , n 2 , n 3 , n 4 , n 5 } {} t 1 {n 1 , n 3 , n 4 } {(n 1 , {n 2 , n 5 })}

	t Holder	list A	set B
	t 0		
		n 1	
	t 2		
	t 3		
	t 4 t 5 t 6	n 4		{(n 4 , {n 2 , n 5 })}

https://www.kernel.org/doc/html/latest/locking/mutex-design.html

https://www.freebsd.org/cgi/man.cgi?query=mutex&sektion=9

https://docs.microsoft.com/en-us/windows/win32/sync/mutex-objects

https://en.cppreference.com/w/cpp/thread/mutex

https://cacm.acm.org/magazines/2010/9/98014-erlang/fulltext

https://golang.org/doc/faq#csp

MessagesVariable request path allocVector preempterROUTING X X X ROUTING ACK X X X ALLOC X X X ALLOC ACK X X X PREEMPT X X X X PREEMPT ACK X X X X END CS X X XTable 4.1: Variables used by messages

https://golang.org/

https://developers.google.com/protocol-buffers

The tests are done on the same Cesnet200706 44-node topology. The application instances are split across 4 servers. There is no correlation between the Grid'5000 servers used and the nodes of the topology, the nodes of the topology are distributed randomly on the 4 servers. Each Grid'5000 server runs 11 application instances. The network configuration is standard for Open MPI, no specific events are programmed. All communications use the MPI primitives to send and receive messages and are not optimised in case two nodes are on the same physical Grid'5000 server, but MPI may optimise these communications. However the network latency is not analysed for these tests. As for the simulation based on SimGrid, there are 44 types of resources and a single instance of each of them. As for the simulation the duration of the CS is constant, it is set to 20 seconds. The duration of each test is also constant and set to 30 minutes. Table 6.1 shows some numerical results for the Average Usage Rate. There is no significant difference on how algorithms compare to each other from what is observed on the simulator. Numerical values vary from the simulator but remain comparable.

List of Figures