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Abstract
English

Dynamical systems are important mathematical models used to describe the temporal
evolution of systems. Often dynamical systems are equipped with parameters that
allow the models to better capture the characteristics of the abstracted phenomena. An
important question around dynamical systems is to formally determine whether a model
(biased by its parameters) behaves well.

In this thesis we deal with two main questions concerning discrete-time polynomial
dynamical systems: 1) the reachability computation problem, i.e, given a set of initial
conditions and a set of parameters, compute the set of states reachable by the system in
a bounded time horizon; 2) the parameter synthesis problem, i.e., given a set of initial
conditions, a set of parameters, and a specification, find the largest set of parameters
such that all the behaviors of the system staring from the set of initial conditions satisfy
the specification.

The reachability computation problem for nonlinear dynamical systems is well known
for being nontrivial. Difficulties arise in handling and representing sets generated by
nonlinear transformations. In this thesis we adopt a common technique that consists in
over-approximating the complex reachable sets with sets that are easy to manipulate.
The challenge is to determine accurate over-approximations. We propose methods to
finely over-approximate the images of sets using boxes, parallelotopes, and a new data
structure called parallelotope bundles (that are collections of parallelotopes whose in-
tersections symbolically represent polytopes). These approximation techniques are the
basic steps of our reachability algorithm.

The synthesis of parameters aims at determining the values of the parameters such
that the system behaves as expected. This feature can be used, for instance, to tune a
model so that it imitates the modeled phenomenon with a sufficient level of precision.
The contributions of this thesis concerning the parameter synthesis problem are twofold.
Firstly, we define a new semantics for the Signal Temporal Logic (STL) that allows one
to formalize a specification and reason on sets of parameters and flows of behaviors. Sec-
ondly, we define an algorithm to compute the synthesis semantics of a formula against a
discrete-time dynamical system. The result of the algorithm constitutes a conservative
solution of the parameter synthesis problem. The developed methods for both reacha-
bility computation and parameter synthesis exploit and improve Bernstein coefficients
computation.

The techniques defined in this thesis have been implemented in a tool called Sapo.
The effectiveness of our methods is validated by the application of our tool to several
polynomial dynamical systems.





Abstract
French

Les systèmes dynamiques sont des modèles mathématiques importants utilisés pour
décrire l’évolution temporelle d’un processus physique. Souvent, les systèmes dynamiques
sont équipés des paramètres qui permettent aux modèles de mieux saisir les caractéri-
stiques observées des phénomènes. Une question importante est celle de déterminer
formellement si un modèle paramétrique peut reproduire des comportement observés ou
satisfait une propriété.

Dans cette thèse, nous traitons deux questions concernant les systèmes dynamiques
polynômiaux à temps discret: 1) Calcul d’atteignabilité, i.e, étant donné un ensemble
de conditions initiales et un ensemble de paramètres, calculer l’ensemble d’états at-
teignables par le système dans un horizon de temps borné; 2) Synthèse de paramètres,
i.e., étant donné un ensemble de conditions initiales, un ensemble de paramètres, et une
spécification, trouver le plus grand ensemble de paramètres tel que tous les comporte-
ments du système à partir de l’ensemble de conditions initiales satisfont la spécification.

Le calcul d’atteignabilité pour les systèmes dynamiques non-linéaires est bien connu
pour être un problème difficile. Des difficultés surgissent dans le traitement et la re-
présentation des ensembles générés par des transformations non-linéaires. Dans cette
thèse, nous adoptons une technique qui consiste à approximer des ensembles d’états
atteignables complexes par des ensembles qui sont plus faciles à manipuler. Le défi
est de garantir une bonne précision d’approximation. Nous proposons des méthodes
pour approximer les images des ensembles par des polynômes en utilisant des bôıtes,
des parallélotopes, et une nouvelle structure appelées ”parallelotope bundle” (qui sont
des collections de parallelotopes dont les intersections représentent symboliquement des
polytopes). Ces techniques d’approximation sont les étapes de base de notre algorithme
de calcul d’atteignabilité.

La synthèse de paramètres vise à déterminer les valeurs des paramètres telles que le
système se comporte comme prévu. Cette fonctionnalité peut être utilisée, par exemple,
pour ajuster un modèle de sorte qu’il imite le phénomène avec un degré de précision
suffisant. Les contributions de cette thèse concernant le problème de la synthèse de
paramètres comprennent deux volets. Premièrement, nous définissons une nouvelle
sémantique pour la logique STL ”Signal Temporal Logic” permettant de formaliser une
spécification et de raisonner sur des ensembles de paramètres et les flux de trajectoires.
Deuxièmement, nous définissons un algorithme pour calculer la sémantique de synthèse
d’une formule par rapport à un système dynamique. Le résultat de l’algorithme con-
stitue une solution du problème de la synthèse de paramètres. Les méthodes mises au
point pour le calcul d’atteignabilité et la synthèse de paramètres exploitent et améliorent
le calcul des coefficients de Bernstein des polynômes.

Les techniques définies dans cette thèse ont été implantées dans un outil appelé Sapo.
L’efficacité de nos méthodes est validée par l’application de notre outil à plusieurs cas.





Contents

1 Introduction 1
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Reachability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.4 Parameter Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 Reachability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Parameter Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.1 Reachability Analysis . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3.2 Parameter Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.3 Tool Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Dynamical Systems and Parameters 15
2.1 Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Parametric Continuous-Time Dynamical Systems . . . . . . . . . 16
2.1.2 Discrete-Time Dynamical Systems . . . . . . . . . . . . . . . . . 17

2.2 Parameter Synthesis Problem . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.1 The Parameter Synthesis Problem . . . . . . . . . . . . . . . . . 21

2.3 Two Important Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Parametric Reachability 23
3.1 Parametric Reachability Problem . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Reachability Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Trajectory-Based Reachability . . . . . . . . . . . . . . . . . . . 26
3.3.2 Set-Based Reachability . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 (Un)Decidability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Set Image Computation 31
4.1 Single Step Reachable Set Approximation . . . . . . . . . . . . . . . . . 31

4.1.1 Polytopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.2 Polytope-Based Set Image . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Bounding Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



x Contents

4.2.1 Bernstein Basis and Coefficients . . . . . . . . . . . . . . . . . . 35
4.2.2 Parametric Bernstein Basis and Coefficients . . . . . . . . . . . . 39
4.2.3 Computation of upper bound and lower bound . . . . . . . . . . 40
4.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.1 Box-Based Set Image . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Parallelotopes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4.1 Representation Conversion . . . . . . . . . . . . . . . . . . . . . 48
4.4.2 Parallelotope-Based Set Image . . . . . . . . . . . . . . . . . . . 49

4.5 Parallelotope Bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5.1 Bundle Data Structure . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5.2 Bundle-Based Set Image . . . . . . . . . . . . . . . . . . . . . . . 62

4.6 Bernstein Coefficients Computation . . . . . . . . . . . . . . . . . . . . . 67
4.6.1 Improving Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.6.2 Symbolic Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.6.3 Improving Precision . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Parameter Synthesis 79
5.1 Signal Temporal Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2 STL Synthesis Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 (Un)Decidability . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3 Synthesis Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.3.1 Overall Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.3.2 Until Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.3.3 Shortcuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.3.4 Correctness and Complexity . . . . . . . . . . . . . . . . . . . . . 97

5.4 The Polynomial Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.4.1 Parameter Set Representation and Manipulation . . . . . . . . . 100
5.4.2 Single Step Evolution . . . . . . . . . . . . . . . . . . . . . . . . 100
5.4.3 Basic Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Tool and Experimental Results 109
6.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.1.1 Sapo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.1.2 STL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.1.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.1.4 Base Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.1.5 Bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.1.6 Parallelotope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.1.7 Variables Generator . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.1.8 Linear System Set . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.1.9 Linear System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.2 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.2.1 Test System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.2.2 SIR Epidemic Model . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.2.3 Influenza . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.2.4 Ebola . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



Contents xi

6.2.5 Honeybees Site Choice . . . . . . . . . . . . . . . . . . . . . . . . 123
6.2.6 Quadcopter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3 Related Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7 Conclusion 129
7.1 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.2 Further Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130





1
Introduction

1.1 Motivations

1.1.1 Models

A model is a simplified representation of something that is real, that is not the same
as the modeled thing, but hopefully it is enough precise to be useful. A mathematical
model is a model described by a mathematical formalism.

Since ancient times, humans used mathematical models to represent and simplify
the real world aiming to understand the complexity of the surrounding events. For
instance, numbers, appeared for the first time around 30.000 BC, were probably the
first mathematical model used to abstract a quantity observable in real life. Since then,
many areas benefited of mathematical abstraction and several milestones in human
knowledge were achieved with the help of models. Some examples [173] are given by
Eratosthenes of Cyrene (around 250 BC), who approximated the circumference of the
Earth with a geometrical model, Ptolemy (around 150 AD) who used circles to predict
the movement of planets, or Giotto di Bondone and Filippo Brunelleschi (around 1300
AD) who exploited geometry to abstract and picture the reality giving birth to the
perspective.

Nowadays numerous domains benefit of mathematical models. Besides the classic
natural and engineering disciplines, such as physics, mechanical engineering, and biol-
ogy, models find application also in relatively recent fields such as political sciences,
economics, or sociology. This wide range of applications requires the models to have a
certain level of versatility and, no wonder, several formalisms have been developed, in-
cluding but not limited to stochastic models, game theoretic models, discrete automata,
and dynamical systems.

The function of a model varies depending on its use. There are several contexts in
which models can be useful. Some examples are:

• Disclose phenomena: models can be used to better understand phenomena, in-
vestigating the relationships between various elements and formalizing the acting
dynamics;



2 1. Introduction

• Make predictions: once that a model has been constructed, it can be used to
predict the behaviors of the modeled system or understand the causes that brought
the system to a particular configuration;

• Make decisions: the ability of the models to make predictions can be used to
simulate different future scenarios and then provide assistance in decision making.

All these features can be extremely useful, but they are effectively exploitable only
if we are able to simulate the model, i.e., we use the mathematical model to imitate
the abstracted phenomenon by carrying out a sequence of calculations. Moreover, the
simulations provided by the model should be reliable, meaning that they should capture
the characteristics of the modeled phenomenon with a sufficient level of precision.

There are several ways to construct a model from a set of observations. Two com-
mon techniques are interpolation and model fitting. In interpolation the construction of
the model is completely driven by data, without the exploitation of any mathematical
knowledge about the modeled phenomenon. In model fitting, the modeler posses math-
ematical hypothesis on the observed phenomenon and tries to calibrate this knowledge,
often abstracted through a preexisting model, with the observations. If the simulations
of the built model match the collected data and correctly predict future observations,
then the model is validated. If this is not the case, i.e., the simulations provided by
the model are inadequate, then model either needs to be redesigned, or it needs to be
recalibrated with the experimental data. The verification of the correctness and the cal-
ibration of a model are the central topics of this thesis. In particular, we will focus on
one of the most important and exploited class of mathematical models called dynamical
systems.

1.1.2 Dynamical Systems

Dynamical systems are models that describe the relationship between elements in a se-
quence. This relationship captures the change of the terms of the sequence from one
period to another one. If the change takes place over discrete time instants, the dynam-
ical system is said to be discrete-time. Otherwise, if the change happens continuously,
the dynamical system is called continuous-time. The mathematical tools used to formal-
ize discrete-time and continuous-time dynamical systems are difference and differential
equations, respectively. In this work we will mainly focus on discrete-time dynamical
systems and hence on difference equations.

In the following we give an intuition of the definition of dynamical systems and
we introduce the problems we are interested in. Chapter 2 will be devoted to the
formalization of dynamical systems.

Difference Equations A discrete-time dynamical system can be represented by a
model of difference equations of the form:

xk+1 = f(xk)

where f : Rn → Rn. The difference equations of a dynamical system represent an infinite
set of functions through which it is possible to generate a sequence that constitutes the
numerical solution of the model and, at a higher level, the model prediction.
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Figure 1.1: Evolution of the Lotka-Volterra discrete-time dynamical system representing
the interactions between snowshoe hares x and lynxes y with initial conditions x0 = 35,
y0 = 5.

From a given initial condition x0, it is possible to obtain the next term x1 apply-
ing the function f to x0, i.e., x1 = f(x0). Iterating this scheme, one can compute the
sequence x0,x1,x2, . . . that represents the model prediction (or simulation). This iter-
ative approach is adopted whenever it is not possible to analytically solve the difference
equations for a given initial condition, meaning that there is not an explicit formula
to describe xk in function of k and x0. This is often the case for nonlinear dynamical
systems, that are systems whose difference equations right sides involve nonlinear func-
tions. In this thesis we will focus on nonlinear dynamical systems, specifically on the
polynomial case.

Example 1. A popular nonlinear dynamical system is the predator-prey model, also
known as the Lotka-Volterra model [142, 187]. A particular instance of discrete-time
predator-pray model used to describe the dynamics between lynxes and snowshoe hares [94]
consists in the following difference equations:

xk+1 = xk + (0.48xk − 0.02xkyk)0.01

yk+1 = yk + (0.02xkyk − 0.92yk)0.01
(1.1)

In this model the variables xk and yk represent the number of snowshoe hares and
lynxes, respectively, at time k. The constants terms appearing in the difference equations
regulate the interactions between species.

Figure 1.1 depicts the sequence generated from the initial conditions x0 = 35 and
y0 = 5. The data have been obtained iterating the difference equations 2000 times.

Parameters A general mathematical model can often be used to characterize similar
situations that differ from specific assumptions. For instance, in Example 1 we used
the predator-pray model to describe the dynamics between lynxes and snowshoe hares.
However, Volterra originally developed the predator-pray model taking inspiration from
observations of fishes in the Adriatic sea [125].

What makes the same set of Lotka-Volterra equations applicable in different con-
texts, like sea or mountains, are parameters, that are constant terms that determine
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Figure 1.2: Evolution of the parametric discrete-time Lotka-Volterra dynamical system
representing the interactions between prays x and predators y with initial conditions
x0 = 35, y0 = 5, and parameters α = 1.3, β = 0.5, γ = 0.7, and δ = 0.1.

a specific form of a model without compromising its general nature. This means that
with one model (such as the Lotka-Volterra equations) and different parameter values,
it is possible to characterize several phenomena with similar dynamics (such as fishes
and fishermen, or lynxes and snowshoe hares). Hence, parameters are a useful tool for
tuning and adapting models to observations and diverse phenomena.

A parametric discrete-time dynamical system can be represented by a collection of
difference equations of the form:

xk+1 = f(xk,p)

where f : Rn×Rm → Rn. To obtain a sequence x0,x1,x2, . . . from the initial condition
x0 and parameters p, it is sufficient to iterate the difference equations keeping the
parameter p constant.

Example 2. We now present the parametric version of the Lotka-Volterra model, al-
ready encountered in Example 1, introducing parameters p = (α, β, γ, δ). The model is
composed by the following parametric difference equations:

xk+1 = xk + (αxk − βxkyk)0.01

yk+1 = yk + (δxkyk − γyk)0.01
(1.2)

Figure 1.1 depicts the sequence generated from the initial conditions x0 = 35 and
y0 = 5, and parameter instantiated with values α = 1.3, β = 0.5, γ = 0.7, and δ = 0.1.
The sequence has been obtained iterating the parametric difference equations 2000 times.

Note that the model of Example 1 is a special case of the parametric version of the
Lotka-Volterra model with parameters set to α = 0.48, β = 0.02, γ = 0.92, and δ = 0.02.
Comparing Figure 1.1 with Figure 1.2 we can observe how different parameter values
affect the progress of the dynamical system.

Example 2 gives us the intuition of how parameters give flexibility to dynamical
systems. Indeed, they can be used to adapt the general structure of a model to specific
cases.
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There is a famous quote attributed to John von Neumann by Enrico Fermi [76] that
summarizes the importance of parameters and the flexibility that their variations can
give to a model: “With four parameters I can fit an elephant, and with five I can make
him wiggle his trunk”.1

1.1.3 Reachability

An interesting problem involving dynamical systems is the verification of their soundness
with respect to a given specification. Let us imagine that a dynamical system has been
constructed to study the behavior of a device involved in a safety-critical scenario, i.e, a
situation in which a failure of the system may cause serious consequences. In this case,
we may want to verify that the modeled device always behaves well and there is no risk
in using it.

Several techniques have been developed to study and analyze dynamical systems.
Among these, there is formal verification, where it is required to formally establish
whether a dynamical system satisfies a given specification.

An approach to formal verification consists of computing all its possible behaviors
and testing them against the specification. However, it is of usual interest to verify
the model for a uncertain set of initial conditions and parameters (possibly infinite),
rather than for single ones. This means that an exhaustive verification procedure may
deal with an infinity of simulations. The problem of computing all the states visited
by a dynamical system is often call reachability problem. Chapter 3 is dedicated to the
definition and analysis of this problem.

One might suspect that a finite number of simulations is sufficient to verify a dy-
namical system, but often there are situations in which small changes in the initial
conditions, or in the parameters, cause wild variations in the system behaviors.

Example 3. Let us consider the following discrete-time dynamical system:

xk+1 = (1− xk)xk

Figure 1.3 shows two evolutions of the system with different initial conditions. In one
case x0 = 0.05, in the other x0 = −0.05. From the figure we can observe how a small
change in the initial condition can sensibly affect the evolution of the dynamical system.
For x0 = 0.05, the system tends to approach zero, while for x0 = −0.05 it diverges
towards minus infinity.

Example 3 gives us the intuition that with a finite number of simulations, we might
miss some sequences whose behaviors completely differ from the others. Hence, in
general, a sampling-based approach may not be sufficient to verify and compute the
reachable set of a dynamical system.

The reachability and formal verification problems attracted a lot of attention in
the last two decades. Several techniques to handle infinite sets of behaviors as unique
objects have been developed. However, their attentions have been mainly posed on linear
dynamical systems, i.e., systems whose equations are linear functions. As a matter of
fact, if the verification of linear dynamical systems has found numerous solutions, the

1In literature there are attempts of fitting elephants with parameters (see [188, 145]).
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Figure 1.3: Evolutions with different initial conditions (x0 = 0.05 and x0 = −0.05). A
small change in the initial condition can affect the evolution of the dynamical system.

analysis of nonlinear dynamical systems remains an open problem that has not yet found
general and efficient solutions. Hence, methods to deal with nonlinear systems, that are
particularly hard to handle, are needed.

Chapter 4 is dedicated to the development of techniques for the computation of
reachable sets of nonlinear (specifically, polynomial) discrete-time dynamical systems.
These techniques are useful for the verification of dynamical systems, but they will also
play a fundamental role in the identification of valid sets of parameters.

1.1.4 Parameter Synthesis

Parameters play an important role in the versatility of models. The closeness of a model
to the abstracted phenomenon is sensibly influenced by the values of its parameters. It is
therefore important to understand how to find good parameter values in order to obtain
reliable models. Finding parameters that relate a model with experimental data is a
fundamental step in model construction that takes the name of parameter estimation.

One major difficulty in parameter estimation is that models may require many pa-
rameters, and most of them are neither measurable nor available in literature. Moreover,
since often there are many parameter values that can match the observations, param-
eter estimation is based not only on the error between the model simulations output
and the observations, but also on the model robustness with respect to parameter varia-
tion. From a modeling point of view, robust parameters allow the model to fit new data
without compromising the fit to the previous ones. This suggests us the importance of
working with sets of parameters, rather than with single values.

Example 4. Let us consider the following parametric discrete-time dynamical sys-
tem [95]:

xk+1 = p(1− xk)xk

Figure 1.4 shows its evolutions from the initial condition x0 = 0.7 and the two different
parameter values p = 3.250 (Figure 1.4a) and p = 3.525 (Figure 1.4b). From the figure
we can observe how a slight change in the parameter sensibly affects the evolution of the
dynamical system.
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(a) p = 3.250. (b) p = 3.525.

Figure 1.4: Evolutions under different parameter values. A small change in the param-
eters can affect the evolution of the dynamical system.

Example 4 shows how systems can be sensitive to small parameter changes. This
means that whenever working with possibly infinite sets of parameters, a finite number
of simulations may not be exhaustive, since we may miss some interesting parameters.

In literature it is possible to find several criteria for parameters estimation. One of
the most common methods consists in finding parameters that minimize a cost function
describing the difference between the model simulations and the experimental observa-
tions. Some examples of cost functions are, for instance, least-squares, Chebyshev cri-
terion, or sums of absolute deviations. However, these approaches can typically handle
finite sets of parameters, while in this work we aim to consider the parameter estimation
problem from a formal verification perspective working with possibly infinite sets.

Lifting the parameter estimation problem to the formal verification field, we can
recast the question of finding valid parameter values as determining all the parameters
so that all the executions of threated dynamical system, starting from a set of initial
conditions, satisfy a given specification. This problem is often referred as the parame-
ter synthesis problem [109] since usually, from a raw set of parameters, it required to
synthesize a subset of valid ones.

In Chapter 5 we study the parameter synthesis problem for discrete-time dynamical
system and infinite sets of initial conditions and parameters, with a special focus to the
polynomial case. We will formalize the problem with the aid of a particular temporal
logic and we will propose an algorithm to compute valid sets of parameters.

1.2 Related Works

We now give an overview on the main existing techniques for reachability analysis and
parameter synthesis.
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1.2.1 Reachability

In recent years, reachability analysis has attracted a lot of interest especially in the
context of formal verification of dynamical and hybrid systems. The large amount of
techniques that have arisen can be cataloged by the complexity of system dynamics
and the nature of sets. We now summarize the existing techniques for reachability and
analysis of dynamical and hybrid system (see Table 1.1).

Linear Systems The computation of reachable sets for linear dynamical systems has
been one of the most studied problems by the hybrid system verification community.
This class of systems has the nice property that the convexity of sets is preserved under
transformation. For this reason, convex geometric objects represent a valid tool for
flowpipe constructions.

Convex polyhedra have been successfully used in various works. Some basic convex
polyhedra are hyper-rectangles [178, 38] and parallelotopes [127, 128], that offer a good
trade-off between the system dimension and precision. Zonotopes [96, 97, 3] are poly-
hedra whose facets are centrally symmetric. Their representation scales very efficiently
in dimension but their intersection is difficult to compute. Techniques based on general
convex polyhedra in combination with optimization are [107, 41, 42, 43, 186, 85, 169].
Support functions [137, 138], that are symbolic representations of convex polyhedra,
have been successfully applied to systems with hundreds of state variables.

Other techniques are ellipsoidal-based methods [132, 27, 131] and exact symbolic
methods with semialgebraic sets [4, 135, 159].

Tools based on these ideas are CheckMate [43], HyTech [107], d/dt [6], MPT [134],
PHAVer [85], SpaceEx [87], and Ellipsoidal Toolbox (ET) [133].

Nonlinear Systems If the reachability problem for linear systems has been widely
studied and many efficient solutions have been proposed, the problem of computing
reachable sets of nonlinear systems remains rather open and the application of the
techniques developed so far is limited to systems with few variables.

A way to deal with the complexity of nonlinear systems, is to consider a subclass of
nonlinear dynamics. For instance, multi-affine functions are polynomials in which each
variable appears with degree at most one. These functions, even if they are nonlinear
(a term can be the product of several linear variables), have nice convexity properties.
In this case, reachability analysis on methods have been proposed in [18, 20].

General polynomial systems have been threated in [52, 56, 164, 57, 172, 171], where
different polynomial representations (such as Bézier simplex or Bernstein basis) are used
to reduce the complexity of the original nonlinear system.

One of the issues related to nonlinear systems is the loss of convexity of a transformed
set. One way to deal with this problem is to over-approximate flowpipes with convex
sets, as done in [9], or to work directly with nonconvex sets, like for instance orthogonal
polyhedra [28, 58]. Other approaches are based on the projections of sets to lower-
dimensional spaces [101], interval sets and symbolic computations [165, 77, 88, 36],
differential algebraic logic [160, 161], and Taylor models [22, 37].

Some of the tools born from the exposed ideas are d/dt [6], Ariadne [9], Coho [101],
KeYmaera [162], pyHybrid Analysis [35], dReach [126], and Flow* [39].
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Linear Nonlinear

Polytopes

Box/Parallelotopes [178, 38, 127, 128] [22, 37, 56, 164, 57]
Zonotopes [96, 97, 3]
Templates [107, 41, 42, 43, 186, 85, 169]
Support Functions [137, 138]

Ellipsoids [132, 27, 131]
Symbolic [4, 135, 159] [161, 165, 77, 88, 35]

Table 1.1: Summary of reachability analysis techniques.

1.2.2 Parameter Synthesis

The classification of the developed methods for the synthesis of valid parameters is non-
trivial since the problem can be posed in several forms. Indeed, the problem of finding
valid parameters has been studied under different perspectives from several communi-
ties, each of which differs in the formulation of the problem.

Table 1.2 summarizes and attempt of classification of the existing parameter synthe-
sis techniques. In the well developed theory of bifurcation for dynamical systems, one
aims to find a robust set of parameters that do not undergo a bifurcation under any vari-
ation of the parameters within that set. Usually, methods for studying bifurcations are
analytical, in the sense that they qualitatively study the dynamics that define the model.
Some examples are methods based on the analysis of the eigenvalues of the Jacobian
matrix, the Routh-Hurwitz stability criteria [92, 93], or the Floquet multipliers [65].

Different techniques based on numerical calculations are, for instance, [139, 86, 109]
in which the parameter synthesis problem is recast into a problem of state estimation by
considering parameters as additional state variables of the system with zero derivatives.
In [24, 25] a combination of abstraction and numerical reachability analysis is proposed
for the estimation of parameters of multiaffine hybrid automata. The numerical param-
eter estimation for ODE biological systems using cost function optimization has been
considered, for instance, by [146, 150, 100].

A different family of approaches, closer to computer science symbolic methods, has
been inspired by model checking. Some of these methods are purely symbolical, others
involve combinations of symbolic abstraction and model checking. Examples of pure
symbolic methods are [10, 30] where the parameter synthesis problem is faced adapting
standard model checking techniques. The drawback of this rigorous approach, typi-
cally intrinsic to model checking, is the state-space explosion problem. Some attempts
to tackle this complexity issue have been done by proposing a parallel model checker
that can also be used to synthesize parameters [29]. A similar approach based on
the satisfaction of logical formulas is given in [141]. Here the synthesis is preformed
using δ-satisfiability, i.e., the δ-approximation of the satisfaction level of the involved
formulas. Also differential dynamic logic has been used to verify parametric hybrid
systems [160, 161].

A special focus on the parameter synthesis for genetic regulatory networks have been
posed by [17, 13, 14, 15, 16]. In this case, the parameter and state spaces of the models
are first abstracted and then analyzed by techniques inspired by model checking. This
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Analytic Numeric Symbolic Stochastic

[124]

[92] [93]

[65]

[24] [25]

[70] [69]

[146][150][100]

[34], [66] [161]

[17] [14] [13] [15] [16]

[10] [30] [29] [141]

[45] [129]

[154] [12] [113]

[23]

Table 1.2: Summary of parameter synthesis techniques.

technique has been successfully applied in various cases, but its drawback is that discrete
abstractions are generally hard to compute.

Parameter synthesis has been considered also for stochastic systems. A randomized
method for detecting good parameters has been proposed in [129], while [12] develops
a method, inspired by model checking, for monitoring stochastic models and their pa-
rameters. Other examples of methods based on random optimization for parameter
identification are [154, 113, 23].

The works on parameter synthesis that are the closest to this thesis are [70, 69],
where the parameter and initial sets are represented as a union of boxes and systematic
simulations and sensitivity analysis [72, 53] are employed to approximate the reachable
set. This method can be applied to ordinary differential equations (ODEs) as well as
to black-box systems. Our work differs from this in the parameter set representation:
we will use polytopes and refine the parameter sets using linear constraints, which
allows us to obtain more compact representations and discovering dependencies between
parameters. Moreover, in our methods the refinement of the initial parameter set will
be dynamically guided by the information on the property violation.

Some examples of tools that can be used to synthesize and analyze parameters
are HyTech [109], RoVerGeNe [15], KeYmaera [162], Breach [69], dReach [126], and
SpaceRover [25].

1.3 Contributions

In the following sections we summarize the main contributions of this thesis concerning
reachability analysis and parameter synthesis for dynamical systems.

1.3.1 Reachability Analysis

Set Representation and Image Computation In this work we develop three tech-
niques to over-approximate reachable sets and compute the transformation of sets under
polynomial functions. These methods are essential for the construction of flowpipes that
over-approximate the trajectories of a dynamical system starting from a set of initial
conditions and being influenced by a set of parameters. We develop techniques of poly-
nomial set image over-approximation for:

• Boxes (or hyperrectangles) [73], i.e., the generalization of rectangles on higher
dimensions;

• Parallelotopes [54], i.e., the generalization of parallelograms on higher dimensions;
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• Parallelotope bundles [75], i.e., finite sets of parallelotopes whose intersections
generate polytopes.

The designed techniques share at their cores a property of Bernstein coefficients of
polynomials. This approach was originally developed in [181, 57] for the reachability
analysis of polynomial dynamical systems and boxes. In this work we first extend the
original technique to parametric dynamical systems with boxes. Then, we define a new
way of approximating and transforming sets using parallelotopes always in combination
with Bernstein coefficients. This new feature allows one to adopt more flexible sets and
obtain finer over-approximating flowpipes. Finally, we further improve the parallelotope-
based approximation technique by defining parallelotope bundles, that are sets of paral-
lelotopes whose intersections symbolically represent polytopes. We define this new data
structure to represent polytopes and, exploiting the ability of over-approximating the im-
ages of single parallelotopes, we define a family of operations for the over-approximation
of the images of polytopes. We will exploit parallelotope bundles to define a new reach-
ability algorithm for parametric polynomial dynamical systems that produces flowpipes
that are finer than the box-based and parallelotopes-based ones.

Bernstein Coefficients Computation Bernstein coefficients are necessary to ex-
press polynomials in Bernstein form [21]. They own several interesting properties [83]
including the ability of providing upper and lower bounds of polynomial over the unit
box domain [174]. The techniques developed in this work heavily exploit Bernstein co-
efficients. Hence, their computation affects the efficiency and precision of our methods.
In this work we contribute to the computation of Bernstein coefficients in several ways:

• We define a new improved matrix method [73] to efficiently compute the Bernstein
coefficients of a given polynomial;

• We introduce the symbolic parametric computation [54] of Bernstein coefficients
to avoid redundant computations;

• We propose a heuristic for subdividing [73] Bernstein coefficients and obtaining
tighter bounds of polynomials.

The matrix method [168] is a technique for computing Bernstein coefficients based on
operations on multidimensional matrices that avoids redundant computations. In this
work we advance the original matrix method defining a more efficient way of transposing
multidimensional matrices. Speeding-up the multidimensional transposition, we boost
the computation of Bernstein coefficients and consequently the flowpipe construction
for polynomial dynamical systems.

Studying our first reachability algorithm, we noted that we computed similar Bern-
stein coefficients for different sets. From certain prospectives, we were wasting com-
putations in redundant calculations. For this reason, we developed a new method for
symbolically computing the Bernstein coefficients associated with a particular set that
allows the reachability algorithm to precompute the coefficients only once and then in-
stantiate them runtime. This strategy drastically reduces the computational times of
our reachability and parameter synthesis algorithms.

Our final contribution in the context of Bernstein coefficients concerns the precision
of the provided bounds. We developed a subdivision technique to tighten the bounds



12 1. Introduction

and generate finer set image over-approximations based on partial derivatives of the
threated polynomials and the spatial positions of Bernstein coefficients.

1.3.2 Parameter Synthesis

Parameter Synthesis and Signal Temporal Logic Signal Temporal Logic (in
short STL) [143, 144] is a logic suitable for specifying properties of dense-time real-
valued signals. In this thesis we adopt STL to formalize the properties that a dynamical
system must meet. The contributions of this work that involve parameter synthesis and
STL are:

• The definition of the parameter synthesis problem [55] for dynamical systems
through STL specifications;

• The definition of the synthesis semantics [55] for STL formulas;

• The realization of a parameter synthesis algorithm [55] for discrete-time dynamical
systems and STL properties.

In this thesis we formalize the parameter synthesis problem for dynamical systems with
respect to STL formulas, i.e., given a dynamical system, a set of initial conditions, a set
of parameters, and an STL formula, we want to find the largest subset of parameters
such that all the trajectories of the system starting from the set of initial conditions
satisfy the formula. Since there might be a infinity of trajectories to analyze, we group
them in a unique flowpipe that over-approximates all the states that a system can
reach. However, STL formulas are usually evaluated on single signals, that in this
case are single trajectories generated by our dynamical system. In order to evaluate a
flow of trajectories, we need to adapt the usual semantics of STL. For this reason, we
define a new semantics, called synthesis semantics, that allows us to reason on flows of
trajectories and whose application to STL formulas produces sets of parameters such
that the given formulas are satisfied.

We also define a synthesis algorithm that computes the synthesis semantics of an
STL formula for a given discrete-time dynamical system. In particular, our algorithm
receives in input a dynamical system, a set of initial conditions, a set of parameters,
and an STL formula. It produces in output a subset of parameters such that all the
trajectories starting from the set of initial conditions satisfy the STL formula. We pro-
pose an instance of our algorithm for polynomial discrete-time dynamical systems whose
reachable sets can be over-approximated by boxes or parallelotopes, and parameter sets
can be represented by polytopes. We prove the correctness and study the computational
complexity of our synthesis algorithm.

1.3.3 Tool Implementation

The reachability analysis and parameter synthesis techniques developed in this thesis
have been implemented in a C++ tool called Sapo. The main features of our tool are
the following:

• Efficient computation of Bernstein coefficients of polynomials in power basis;
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• Construction of flowpipes that over-approximate reachable sets of polynomial (pos-
sibly parametric) discrete-time dynamical systems;

• Synthesis of valid parameter sets with respect to STL specifications for polynomial
discrete-time dynamical systems.

The computation of Bernstein coefficients is based on our improved matrix method. The
flowpipe construction can be carried out using boxes, parallelotopes, and parallelotope
bundles. For the parametric dynamical system, the sets of parameters can be represented
as polytopes. The parameter synthesis algorithms supports boxes and parallelotopes
to represent sets of states reached by the system and polytopes to represent sets of
parameters.

1.4 Structure of the Thesis

The thesis is structured in the following chapters:

2. Dynamical Systems and Parameters: we begin with the definitions of parametric
dynamical system and trajectories. Some illustrative examples are shown to ex-
hibit how parameters influence the evolution of systems. We will give an intuition
of what the parameter synthesis problem is and conclude the chapter posing two
important questions that are the core of this thesis: how to compute all the states
visited by a parametric dynamical system in a finite time horizon, and how to find
sets of valid parameter values so that a dynamical system behaves well?

3. Parametric Reachability : in this chapter we define and become familiar with the
parametric reachability problem, i.e., the problem of determining all the states
visited by a parametric dynamical system. We will briefly describe the classical
numerical integration schemes and see how it can be used to compute the trajec-
tories generated by dynamical systems. Then, we will focus on the computation of
reachable sets and we will see that the already developed methods can be grouped
in two large categories: trajectory-based and set-based techniques. In this work,
we will focus on the second one. The chapter ends with a brief discussion about
the decidability of the reachability problem;

4. Set Image Computation: in this chapter, with the aim of developing a set-based
reachability algorithm for polynomial dynamical systems, we focus on the problem
of computing the polynomial image of a set. As we will discover later, this will be
a fundamental task also for the parameter synthesis problem. The chapter starts
with the problem formulation and an hypothetical solution based on the polytopic
over-approximation of the set. This approach requires the optimization of the
transforming function. Hence, we will introduce Bernstein polynomials whose
coefficients can be used to bound polynomials. We will first adapt the standard
Bernstein coefficients and their properties to the parametric case, and then we will
present some new techniques to over-approximate images of sets through boxes,
parallelotopes, and parallelotope bundles. We conclude the chapter proposing new
methods to efficiently compute Bernstein coefficients;
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5. Parameter Synthesis: this chapter is dedicated to the parameter synthesis prob-
lem. In particular, we will give the definition of STL logic and define the new
synthesis semantics that allows us to reason on flows of trajectories and sets of
parameters. Thus, we will formalize the parameter synthesis problem for dynami-
cal system through STL specifications. After briefly discussing the decidability of
the problem, we will present our synthesis algorithm, describing its structure and
analyzing its correctness and computational complexity;

6. Tool and Experimental Results: the developed techniques have been implemented
in a tool that is described and evaluated in this chapter. Two main parts compose
it: in the first, we will expose the structure of the implemented tool presenting its
main modules and discussing some implementation choices; in the second, we will
apply our tool to some polynomial dynamical systems and evaluate the developed
techniques;

7. Conclusion and Future Works: the thesis ends with some conclusive thoughts and
discussions on the possible future directions that this work can follow.



2
Dynamical Systems and

Parameters

In this chapter we introduce the notion of dynamical systems, important mathematical
objects widely used to model phenomena evolving in time. The modern theory of
dynamical system dates back to end of the 19th century in the study of the evolution of
the solar system [31].1 Since then, dynamical systems have found numerous applications
in important research fields, such as astronomy, biology, physics, and economics.

A dynamical system is often designed to model an observed phenomenon. In order to
tune the model with the observations, one generally recurs to parameters, i.e., constant
terms of the dynamical system that determine a specific form of the system, but not
its general nature. Hence, parameters can be used to capture different evolutions of the
modeled phenomenon without distorting the dynamical system. However, an important
question is: “How to find the values of the parameters in such a way that the dynamical
system evolves as expected?”.

This chapter begins with the formalization of dynamical systems, introducing two
fundamental classes: the continuous-time dynamical systems (Section 2.1.1) and the
discrete-time dynamical systems (Section 2.1.2). In both cases, we will emphasize the
role of parameters. Later, we will introduce the questions that are at the core of this
work, that are the reachability and the parameter synthesis problems for dynamical
systems (Section 2.2.1).

A dynamical system is said to be parametric if its dynamics involve parameters, i.e.,
constant terms whose values are fixed a priori.

2.1 Dynamical Systems

We begin with some basic notions (some taken from [118]) necessary to define dynamical
systems.

1It is no surprise that the evolution of a state of a dynamical system is often called orbit.
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The state of a system is a description that is sufficient to predict its future. In this
work we deal with memoryless systems, i.e., systems for which at time t it is possible
to predict the future states without recurring to states prior to t. The space of possible
system states is called the state space of the dynamical system.

The nature of a dynamical system is related to the structure of time it relies on.
If the time of a system ranges on non-negative real values, then the system is called
continuous, while if the time is described by naturals, then the system is said discrete.
The evolution of the system over time is a continuous trajectory (in the continuous-time
case) or a sequence (in the discrete-time case) of states through the state space.

The rules that allow us to determine the state of the systems are called dynamics or
also laws of evolution. Typically the dynamics of dynamical systems are described by
differential equations or difference equations depending on whether they are continuous-
time or discrete-time, respectively. Finally, the initial condition is the state at an initial
time from which the evolution starts.

2.1.1 Parametric Continuous-Time Dynamical Systems

Parametric continuous-time dynamical systems are dynamical systems that evolve through
continuous time and include parameters in their definition.

Definition 1 (Parametric Continuous-Time Dynamical System). A parametric continuous-
time dynamical system is a tuple C = (X ,P, f) where:

• X ⊆ Rn is the state space;

• P ⊆ Rm is the parameter space;

• f : X × P → X is a well-behaving vector field.2

The evolutions of a parametric continuous-time dynamical system are governed by
differential equations of the form:

ẋ = f(x,p) (2.1)

where x ∈ X are the state variables of the system and p ∈ P are the parameters.
The fundamental difference between state variables and parameters is that during the
evolution of the dynamical system the values of the state variables can change, while
the values of the parameters are constant.

For every parameter p ∈ P, if we assume f(x,p) globally Lipschitz continuous in
x [140], we guarantee the existence and uniqueness of a solution of the differential
equation ẋ = f(x,p) for every initial condition in X and parameter p ∈ P. The
uniqueness of the solutions ensures that the system is deterministic, i.e., from equal
initial conditions and time lengths, the system evolves identically.

We now formalize the concept of evolution of a dynamical system giving the definition
of trajectory.

Definition 2 (Trajectory of Parametric Continuous-Time Dynamical System). A tra-
jectory of a parametric continuous-time dynamical system C = (X ,P, f) starting from

2By well-behaving we mean that the function f has finite derivatives (of all orders) at all points.



2.1. Dynamical Systems 17

a state x ∈ X with parameter p ∈ P is a function ξpx : R≥0 → X such that ξpx is the
solution of the differential equation ẋ = f(x,p) with initial condition x and parameter
p, that is:

ξpx (0) = x and ∀t ∈ R≥0, ξ̇px (t) = f(ξpx (t),p). (2.2)

Let C = (X ,P, f) be a parametric continuous-time dynamical system, X0 ⊆ X be
a set of initial conditions, and P ⊆ P be a set of parameters. The set of all possible
continuous trajectories of C having initial conditions in X0 and parameters in P is:

Ξ(X0, P ) = {ξpx0
| x0 ∈ X0,p ∈ P, and ξpx0

is a trajectory of C}. (2.3)

Example 5. An example of continuous-time dynamical system is the SIR model [123],
often used in biology to model the spread of an epidemic disease.

The SIR model is a dynamical system defined as C = (X ,P, f), with X = R3, P = R2,
and f = (fs, fi, fr) such that:

ṡ = fs(s, i, r) = − βsi/N
i̇ = fi(s, i, r) = βsi/N − γi
ṙ = fr(s, i, r) = γi

(2.4)

The system describes a population of N ∈ R≥0 individuals partitioned in three com-
partments: s is the group of susceptible individuals who have not been exposed to the
disease, i is the class of infected individuals, and r are the removed individuals who
recovered from the disease. The migration of individuals from one compartment to an-
other is regulated by two parameters: β is the probability for a susceptible individual to
become infected once there is a contact with an sick person; 1/γ is the mean infection
period, that is the time necessary for an infected individual to migrate to the removed
compartment.

We now compute some evolutions of the SIR model showing that different parameter
values for the same set of initial conditions generate different trajectories. In our simu-
lations, we normalized the population, i.e., N = 1. Figure 2.1 shows two sets of trajecto-
ries generated by the same initial conditions picked in s0 = 0.80, i0 ∈ [0.15, 0.2], r0 = 0.00
up to time t = 30. In first case, the parameter values are β = 0.35 and γ = 0.05, while
in the second β = 0.40 and γ = 0.01. Note how a change in the parameters affects the
course of the dynamical system.

2.1.2 Discrete-Time Dynamical Systems

We now move to parametric discrete-time dynamical systems, i.e., dynamical systems
that evolve in discrete time and include parameters in their definition.

Definition 3 (Parametric Discrete-Time Dynamical System). A parametric discrete-
time dynamical system is a tuple D = (X ,P, f) where:

• X ⊆ Rn is the state space;

• P ⊆ Rm is the parameter space;

• f : X × P → X is a function.
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(a) Evolution of infected individuals i in
time.

(b) Evolution of susceptible s, infected i,
and removed r individuals in space.

Figure 2.1: Trajectories of continuous-time SIR system with different parameters but
same initial conditions.

The evolutions of parametric discrete-time dynamical systems are governed by dif-
ference equation of the form:

xk+1 = f(xk,p) (2.5)

where x ∈ X is the state of the system, p ∈ P are the parameters, and k ∈ N is a
discrete time variable. During the evolution of the dynamical system the state variables
can change their values, while the parameters remain constant. Let us formalize the
concept of evolution through the definition of trajectory.

Definition 4 (Trajectory of Parametric Discrete-Time Dynamical System). A trajec-
tory of a parametric discrete-time dynamical system D = (X ,P, f) starting from an
initial state x ∈ X with parameter p ∈ P is a function ξpx : N → X such that ξpx is the
solution of the difference equation xk+1 = f(xk,p) with initial condition x, that is:

ξpx (0) = x and ∀t ∈ N>0, ξ
p
x (t+ 1) = f(ξpx (t),p). (2.6)

Note that differently from the continuous-time systems, a trajectory of a discrete-
time system consists in a sequence of states obtainable by iterating the function f .

Let D = (X ,P, f) be a parametric discrete-time dynamical system, X0 ⊆ X be a
set of initial conditions, and P ⊆ P be a set of parameters. The set of all possible
trajectories of D with initial conditions in X0 and parameters in P is defined as:

Ξ(X0, P ) = {ξpx0
| x0 ∈ X0,p ∈ P, and ξpx0

is a trajectory of D}. (2.7)

Example 6. This example presents the discrete-time variant of the SIR epidemic model
defined in Example 5. Also in this case the population is partitioned in the three com-
partments of susceptible s, infected i, and removed r individuals. The interactions
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(a) Evolution of infected individuals i in
time.

(b) Evolution of susceptible s, infected i,
and removed r individuals in space.

Figure 2.2: Trajectories of discrete-time SIR systems with different parameters but same
initial conditions.

between different compartments are regulated by the parameters β and γ. The paramet-
ric discrete-time SIR model is defined as D = (X ,P, f) with X = R3, P = R2, and
f = (fs, fi, fr) where:

sk+1 = fs(sk, ik, rk) = sk − βskik/N
ik+1 = fi(sk, ik, rk) = ik + βskik/N − γik
rk+1 = fr(sk, ik, rk) = rk + γik

(2.8)

Figure 2.2 shows two sets of trajectories generated from the normalized initial condi-
tions picked inside the set s0 = 0.80, i0 ∈ [0.15, 0.2], r0 = 0.00 and different parameters
up to time t = 30. In first case the parameter values are β = 0.35 and γ = 0.05, in the
second β = 0.40 and γ = 0.01. From the figure we observe that different parameters lead
to different sets of trajectories.

2.2 Parameter Synthesis Problem

From now on, we will assume that the state space X and the parameter space P of a
generic dynamical system (continuous-time or discrete-time) S = (X ,P, f) are Cartesian
products of R whose exponents depend on the number of variables and parameters
appearing in the dynamics f . For instance, for f : Rn×Rm → Rn, S = (Rn,Rm, f). For
brevity, with a slight abuse of terminology, by “dynamical system” or just “system” we
mean the dynamics f of a generic dynamical systems S = (X ,P, f). These shortcuts will
allow us to define dynamical systems by giving directly the dynamics, without specifying
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each time the state and parameter spaces.

An Illustrative Example

Consider the parametric discrete-time SIR model presented in Example 6, with the same
set of initial conditions s0 = 0.80, i0 ∈ [0.15, 0.2], r0 = 0.00, and the set of parameters
β ∈ [0.35, 0.40] and γ ∈ [0.01, 0.05]. Differently from the previous examples, now we
consider a set of parameters, rather than single values.

Suppose we are asked to find the largest subset of parameter values such that: “Al-
ways between time 0 and 30, the number of infected individuals i is below 0.70”. We call
this requirement the specification, or property, to be satisfied.

From Figure 2.2 we can see that there are some parameters such that the system
satisfies the specification and others that do not. For instance, the values β = 0.35 and
γ = 0.05 seem to be good candidates, since the plotted trajectories are always below
0.70 between time 0 and 30. On the contrary, the trajectories generated with values
β = 0.45 and γ = 0.01 assume values larger than 0.70, thus these parameters do not
satisfy the specification.

Formalize Requirements Using Temporal Logic

Observing the property “Always between time 0 and 30, the number of infected individ-
uals i is below 0.70”, we notice the combination of two distinct aspects:

• a temporal requirement: “Always between time 0 and 30 . . . ” that predicates on
the evolution of the system over time;

• a state-space requirement: “. . . the number of infected individuals i is below 0.70”
that constraints the values that the system variables can assume.

This kind of requirements can be suitably formalized using temporal logics [163],
formalisms that allow the specification and reasoning on properties involving time.

Temporal logics are typically adopted in the context of formal verification, where a
formula specifies the acceptable behaviors of a system and an algorithm is used to check
whether all the behaviors of the system satisfy the formula. This procedure is commonly
known as model checking [46]. Recently, temporal logic has found applications outside
formal verification, for instance in monitoring [143, 59, 78, 106]. In this case, a formal
model is not necessary, since the system can be treated as a black box whose observable
behaviors can be monitored by evaluating the satisfaction level of the desired temporal
property.

In this work, to specify the behaviors that a dynamical system must satisfy, we will
use a recent temporal logic, called Signal Temporal Logic (STL [143, 144]). Its peculiarity
is that it allows one to formalize properties on dense-time real-valued signals, that are
functions defined on dense intervals. In our context, a trajectory of a dynamical system
and a requirement can act as a signal and an STL formula.

In Chapter 5 we will define in detail STL and its semantics on signals and flowpipes.
However, we informally introduce its syntax with the purpose of giving the intuition of
what can be expressed by this logic. A Signal Temporal Logic [143] formula is generated
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by the following grammar:

ϕ := s(x1,x2, . . . ,xn) ∼ 0 | ¬ϕ | ϕ ∧ ϕ | ϕUIϕ (2.9)

where s : Rn → R, ∼∈ {<,≤}, and I is a closed non-singular interval of R≥0. There
are two elements that distinguish STL from other logics:

• the predicates s(x1,x2, . . . ,xn) ∼ 0 are evaluated on real-values, that in our case
are the states of the dynamical system;

• the temporal operators ϕUIϕ are decorated with intervals that determine the tem-
poral windows on which the operators are defined.

From these basic operators, other classical temporal operators can be defined in the
usual way, such as true >, false ⊥, eventually/future FIϕ ≡ >UIϕ, or always/globally
GIϕ ≡ ¬FI¬ϕ.

With these elements, we can formalize our requirement expressed in human language
“Always between time 0 and 30, the number of infected individuals i is below 0.70” using
the STL formula G[0,30](i < 0.70).

2.2.1 The Parameter Synthesis Problem

Now that we have defined Signal Temporal Logic formulas, we are ready to formalize
the parameter synthesis problem for a generic dynamical system.

Definition 5 (Parameter Synthesis Problem). Let S = (X ,P, f) be a dynamical system,
X0 ⊆ X be a set of initial conditions, P ⊆ P be a set of parameters, and ϕ be an STL
specification. Find the largest subset P ∗ϕ ⊆ P such that:

∀x0 ∈ X0,∀p ∈ P ∗ϕ, ξpx0
satisfies ϕ (2.10)

where ξpx0
is a trajectory of S.

The notion of formula satisfaction and the parameter synthesis problem will be
formalized in Section 5.1.

2.3 Two Important Questions

An intuitive way to generate a valid parameter set is to check the parameters one by one
and populate the set Pϕ. In general, this naive algorithm is incomplete and incorrect.

Incomplete, because the parameter set might be infinite and uncountable, hence we
will never be able to consider all the possible parameter values.

Incorrect, because when we have established the validity of a parameter value, we
have done it considering a finite number of initial conditions and trajectories. If the set
of initial conditions is infinite, there might be a point that we have missed such that the
correspondent trajectory does not satisfy the specification.

These two observations suggest us that in order to solve the parameter synthesis
problem, in the worst case we would need to compute all the trajectories starting from
all the initial conditions with all the parameters. Moreover, even once we have all the
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trajectories, we would need to produce a set that contains an infinite number of valid
parameters. Then, the crucial questions are:

1. How to compute all the parametric trajectories generated from infinite sets of
initial conditions and parameters?

2. How to compute and represent a valid refinement of the parameter set dealing
with infinite sets?

The objective of this work is to give a possible solution to these questions. In
Chapter 3 we will clarify the problem of computing all the trajectories generated from
an infinite set of initial conditions, while in Chapter 4 we will define some techniques
to over-approximate such computation. Later, in Chapter 5, we will define a method to
synthesize valid parameter sets.



3
Parametric Reachability

In this chapter we define and discuss the parametric reachability problem for parametric
dynamical systems, i.e., the problem of computing all the states visited by the trajec-
tories of a dynamical system starting from a set of initial conditions and being biased
by a set of parameters. This problem plays a central role in the parameter synthesis
problem, since we will be able to determine valid parameter sets only once we are able
to compute the evolution of the system under the influence of the treated parameter
set.

The chapter begins with the definition of the reachability problem (Section 3.1), then
it presents the technique of the numerical integration (Section 3.2) and two different
approaches for the computation of reachable sets (Section 3.3). Finally, there will be
some considerations on the decidability of the reachability problem (Section 3.4).

3.1 Parametric Reachability Problem

The problem of computing the states visited by the trajectories of a dynamical system
starting from an initial set and having a particular parameter set is called the parametric
reachability problem.

Let S = (X ,P, f) be a dynamical system. Given two states x,x′ ∈ X , we say that x′

is reachable from x in time 0 ≤ t < +∞ if there are a parameter p ∈ P and a trajectory
ξpx of S starting in x such that x′ = ξpx (t). The set of all the states reached by the
system from x0 ∈ X with parameter p ∈ P is defined as:

Reachp(x0) = {x′ | x′ = ξpx0
(t), t ∈ T} (3.1)

where ξpx0
is a trajectory of S and T is the set of non-negative reals R≥0 or the set of

naturals N, depending on whether S is a continuous-time or discrete-time dynamical
system, respectively.

We can extend the notion of reachability to sets, that is, given a set of initial condi-
tions X0 ⊆ X and a parameter set P ⊆ P, the reachable set is the set of all the states
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reachable by the system:

ReachP (X0) =
⋃

x0∈X

⋃
p∈P

Reachp(x0). (3.2)

The definition of reachable set reflects the behavior of the dynamical system for an
infinite amount of time. However, we might be interested in studying a model for a
bounded time horizon. Thus, the set of states reachable in a bounded amount of time
T ∈ T is defined as:

ReachpT (x0) = {x′ | x′ = ξpx0
(t), 0 ≤ t ≤ T} (3.3)

ReachPT (X0) =
⋃

x0∈X0

⋃
p∈P

ReachpT (x0). (3.4)

Reachable Set Computation

The computation of the reachable set of a dynamical system, in both its bounded or
unbounded time versions, might be problematic. The first issue concerns the numerical
computation of the states visited by a trajectory. With the exception of the cases
where the trajectories can be characterized by explicit solutions (e.g., {x0e

At | t ∈
R≥0} for linear systems ẋ = Ax), the usual way to compute the reachable states is
to use numerical integration. The second issue interests the possible infinite number
of trajectories we have to deal with, since we might consider infinite sets of initial
conditions and parameters. There are several techniques that try to cope with these
problems. They can be grouped in two classes:

• Trajectory-Based Reachability : a finite number of initial conditions and parame-
ters, called nominal values, are chosen. Usually, the nominal values are the result
of a discretization or some statistical assumptions on the state-parameter space.
In general, the number of nominal values necessary to reach a certain level of
coverage of the state-parameter space grows drastically in the dimension of the
system.

• Set-Based Reachability : considering all the given initial conditions and parame-
ters at once, an exhaustive set of trajectories, called flowpipe, is generated. This
approach is strongly related to formal verification and set-based computation. In
this case it is necessary to deal with image computation and manipulation of sets,
problems that are mathematically and computationally nontrivial.

In this work we focus exclusively on set-based reachability and on the computation
of valid flowpipes for dynamical systems. Before going into the details of our techniques,
we become familiar with the notions of numerical integration, trajectory-based and set-
based reachability techniques, providing an overview on the existing methods for the
reachability problem.
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3.2 Numerical Integration

Numerical integration is a common technique used to compute the set of states reachable
by a dynamical system. The computation of the reachable states (or an approximation
of them) is done by simulating1 incrementally the system using discrete-time steps.

The aim of the numerical simulation is to obtain a simulation trace, that is sequence
of states xt0 ,xt1 , . . . , where t0, t1, . . . is a monotonic sequence of time steps and xti ∈ X ,
for every ti ∈ N. In order to produce a simulation trace, an integrator needs [110]:

1. an initial value for xt0 ;

2. a procedure to compute xti+1
from xti .

A precise integrator will produce a simulation trace xt0 ,xt1 , . . . that is close to the
original trajectory generated by the dynamical systems.

Numerical Integration of Continuous-Time Systems

Numerical integration of continuous-time dynamical systems is a well-known and widely
studied mathematical problem for which large collections of techniques have been pro-
posed (see, e.g., [61, 130, 110] for surveys on numerical integration or [105, 112] for
integration of ordinary differential equations). The common element among these tech-
niques is the discretization scheme that we briefly recall.

Let C = (X ,P, f) be a parametric continuous-time dynamical system. We recall that
a valid trajectory ξpx0

of C staring in x0 ∈ X with p ∈ P is such that:

dξpx0
(t)

dt
= f(ξpx0

(t),p) (3.5)

condition that can be equivalently rewritten as:

ξpx0
(t) = x0 +

∫ t

0

f(ξpx0
(τ),p)dτ. (3.6)

This suggests us that an approximation xti+1
of the state traversed by the trajectory

ξpx0
at time ti+1 can be obtained by applying the iterative scheme:

xti+1
= xti + gp(xti) (3.7)

where gp is approximation of the integral appearing in Equation 3.6.
Some well known examples of numerical integrations are the Euler’s method where:

gp(x) = ∆f(x,p) (3.8)

or the Runge-Kutta’s method :

gp(x) = ∆f(x +
∆

2
f(x,p),p) (3.9)

1In this work the term simulation is used in the numerical/analytical sense [84] rather than in the
algebraic one [147, 148, 155].
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where ∆ ∈ R is a fixed discretization step. The problem of finding good discretization
functions has been widely studied in mathematics and it goes outside the scope of this
work. For more discretization techniques the reader may refer, e.g., to [61, 130, 110,
105, 112].

Numerical Integration of Discrete-Time Systems

The computation of the trajectories of discrete-time systems requires less mechanisms
than the continuous-time case. In fact, here, to obtain a simulation trace xt0 ,xt1 , . . . ,
it is sufficient to apply iteratively the system dynamics to an initial condition and a
parameter.

Given a parametric discrete-time dynamical systems D = (X ,P, f), the state xti+1

traversed by the trajectory ξpx0
at time ti+1 can be obtained by the iterative scheme

dictated by the system dynamics:

xti+1 = f(xti ,p). (3.10)

At the ti-th iteration, the integrator generates a state xti that corresponds exactly to
the state traversed by the trajectory ξpx0

at time ti. Note that here the simulation trace
matches exactly the states of the discrete-time trajectory ξpx0

, hence no approximation
is introduced by the numerical integration.

In the next sections we will see how numerical integration can be used in different
ways to compute the reachable set of a dynamical system. We begin with trajectory-
based analysis, where the reachable set is computed in a depth-first fashion. Then, we
introduce set-based analysis, where the reachable set is determined in a breath-first way.
We will discuss the benefits and the complications of both the methods, and later we
will focus exclusively on set-based analysis, proposing new techniques to approximate
the reachable set of dynamical systems.

3.3 Reachability Methods

The existing techniques to compute or estimate the reachable sets of dynamical systems
can be grouped in two main categories: trajectory-based and set-based methods.

3.3.1 Trajectory-Based Reachability

Trajectory-based reachability methods are characterized by the depth-first computation
of the reachable set (see Figure 3.1). The key steps of these methods are:

1. Selection of an initial condition and parameter;

2. Simulation of the dynamical system up to a maximum time instant (e.g., with
some integration technique like those exposed in Section 3.2);

3. Repetition of Step 1 and 2 until a condition is met.

The halting condition of Step 3 can involve different criteria such as the achieving of
a fix-point in the reachable set computation, the coverage level of the state-parameter
space, or the satisfaction or violation of a specification.
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Xt0 Xt1 Xt2 Xt3

Figure 3.1: Trajectory-based (black lines) and set-based (gray sets) reachability.

The challenge of this kind of approach resides in the ability of finding conditions
under which a finite number of simulation is sufficient to deduce all the possible tra-
jectories and establish the validity of the system. Such conditions are usually inferred
from continuity [67, 72] or statistical assumptions of the system under study [190, 26].

The selection of proper initial conditions is usually driven by an abstraction process
(often coinciding with partitioning or discretization of the state-parameter space) that
produces a finite number of quotients of the state-parameter space where each quotient
is equivalent with respect to some property. The finite partition is then used to select
some representative initial conditions and parameters, and construct a flowpipe that
contains the reachable set [120, 67, 72, 117].

Unluckily there are many cases in which it is not possible to construct a finite
abstraction and it is necessary to recur to approximation techniques. One way is to
halt the abstraction process once it has been reached the level of tolerance expressed
by the user. The precision of the result depends on the refinement of the partitions:
the finer the partitions, the more accurate the over-approximation of the reachable set.
A different approach consists in the relaxation of the definition of equivalence between
states [98, 99].

Trajectory-based simulations have found application also outside the scope of reacha-
bility analysis. Some examples are the stability analysis of dynamical systems [119, 182],
invariant set computation [104, 183] inspired by program analysis [49, 48], i.e., sets from
which the system will not escape, and the validation ot falsification of systems against
specifications [81, 184, 5, 74].

Some tools that exploit trajectory-based methods are Breach [69], S-Taliro [5], and
RRT-Rex [74].

3.3.2 Set-Based Reachability

Differently from trajectory-based analysis, set-based reachability methods are character-
ized by the incremental computation of the reachable set. The goal here is to compute
a sequence of sets Xt0 , Xt1 , Xt2 , . . . that constitutes a flowpipe containing all the tra-
jectories starting from Xt0 . These methods can be seen as a breath-first computation of
the reachable set (see Figure 3.1).

The usual way to compute the reachable set of dynamical systems is to use numerical
set-integration. Similarly to single trace integrators (see Section 3.2), the key steps a of
a set-based integrator are:

1. Fix a set of initial conditions Xt0 ;
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2. Compute Xti+1 using the set Xti and the parameter set P ;

3. Repeat Step 2 until a condition is met.

Usually the halting condition is defined on a maximum number of steps of the algo-
rithm or the achieving of a fix-point in the reachable set computation, checkable by the
inclusion Xti+1 ⊆ Xti .

The key element of a set-based method is the computation of the image of a set (see
Step 2). This task is at the core of the exhaustive computation of the transit behavior
of a dynamical system. Nevertheless, the computation of the image of a set can be
problematic and its difficulty depends on the system dynamics and the considered sets.
For a survey on the existing reachability techniques see Sections 1.2.1.

3.4 (Un)Decidability

To conclude this overview on the reachability problem, we pose ourselves a fundamental
question: Is the reachable set computable? The answer in general is no, since it has been
proved [108] that the reachability problem can be reduced to the halting problem of a
2-counter machine (that is undecidable [149]). However, the question as posed, is in its
most general form. Indeed, there are many variants depending on the considered system
dynamics (linear, nonlinear), sets (polyhedra, ellipsoid, etc.), and time (continuous,
discrete, bounded, unbounded).

In this work we focus on polynomial parametric discrete-time dynamical systems, i.e.,
parametric discrete-time dynamical systems whose dynamics are polynomials. These
systems, in combination with semialgebraic sets (i.e., subsets of Rn defined by a finite
sequence of polynomial equations and inequalities, or any finite union of such sets) show
interesting properties. In the next section we will encode the bounded time reachability
problem for polynomial discrete-time dynamical systems into the satisfiability of a first-
order formula whose decidability is known.

Semialgebraic Reachability

Let D = (X ,P, f) be a polynomial discrete-time dynamical system and X0 ⊆ X , P ⊆ P
be two semialgebraic sets (note that polytopes fall in this class). We can write two
formulas X0[x] and P [p] that characterize X0 and P , respectively, whose conjunction
XP0[x,p] ≡ X0[x] ∧ P [p] represents the state-parameter space at time zero.

The formula that describes a single step of the system is:

XPi+1[xi+1,p] ≡ ∃xi(XPi[xi,p] ∧ xi+1 = f(xi,p)) (3.11)

that in words means: take xi and p from the state-parameter set XPi[xi,p] , compute
xi+1 = f(xi,p), and return xi+1 with its correspondent parameter p. Hence, the set
reachable in T ∈ N>0 steps can be captured with the formula:

XPT [xT ,p] ≡
T∧
i=0

∃xi(XPi[xi,p] ∧ xi+1 = f(xi,p)). (3.12)
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The set reachable at time T is the set of points that substituted to xT and p make the
formula XPT [xT ,p] true. Finding this set is decidable [179] and it can be done by any
quantifier elimination technique [47] (some quantifier elimination tools are QEPCAD
B [33], Redlog [64], or Z3 [63]).

Example 7. Consider a simple nonlinear dynamical system whose dynamics are xk+1 =
f(xk,p) = px2

k, with set of initial conditions X0 = [0.1, 0.2] and parameter set P =
[−1.0, 1.0]. The state-parameter set at time zero can be described by the formula:

XP0[x0,p] ≡ 0.1 ≤ x0 ≤ 0.2 ∧ −1.0 ≤ p ≤ 1.0. (3.13)

The set reachable a time 1 can be described by the formula:

XP1[x1,p] ≡ ∃x0(XP0[x0,p] ∧ x1 = f(x0,p))

≡ ∃x0(0.1 ≤ x0 ≤ 0.2 ∧ −1.0 ≤ p ≤ 1.0 ∧ x1 = px2
0)

(3.14)

whose equivalent version produced by the quantifier eliminator is:

XP1[x1,p] ≡ (−1.0 ≤ p ≤ 1.0 ∧ p + 25x1 = −1)∨
(p 6= 0 ∧ px1 ≤ 0 ∧ ((p ≤ 0 ∧ p ≥ −1 ∧ p2 + 25px1 ≥ 0∧
p2 + 100px1 ≤ 0) ∨ (p ≥ 0 ∧ p ≤ 1 ∧ p2 + 25px1 ≥ 0∧
p2 + 100px1 ≤ 0))).

(3.15)

The drawback of this approach is its computational complexity that is doubly expo-
nential in the degree of the formula [102] (or in the number of quantifier alternations,
depending on the algorithm). Notice from Example 7 how the degree of the formula
duplicates in a single step. It is not hard to imagine that this approach tends to blowup
in time. However, this semialgebraic approach establishes that the exact bounded-time
reachability computation for polynomial discrete-time dynamical systems with semial-
gebraic sets is decidable.

The next chapter is dedicated to the research of a trade-off between precision and
efficiency in the set-image computation problem.
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Set Image Computation

The operation at the core of the reachable set computation is the set image calculation,
that is the transformation of a set. This task can be nontrivial, especially when the
transforming function is nonlinear. In this chapter we focus on the problem of computing
the image of sets with respect to polynomial functions. In Section 4.1.2 we will see how
the image set computation can be connected to the problem of optimizing polynomials,
issue that will be faced in Section 4.2 through Bernstein coefficients, i.e., coefficients used
to express a polynomial with the Bernstein basis. Bernstein coefficients will be involved
in techniques for over-approximating the transformation of sets using boxes (Section
4.3), parallelotopes (Section 4.4), and parallelotope bundles (i.e, sets of parallelotopes)
(Section 4.5). At the end of the chapter (Section 4.6), we will focus on the precision
and efficiency of the proposed methods, providing some techniques to obtain tighter
over-approximation and faster algorithms.

4.1 Single Step Reachable Set Approximation

The construction of a flowpipe containing the reachable set of a dynamical system is
based on the computation of the image of a set. As previously mentioned, this task can
be difficult, especially when considering nonlinear systems. For instance, such kind of
systems do not preserve convexity and the generated sets can be hard to handle. It is
common practice to deal with this issue by over-approximating reachable sets through
convex sets. The idea is to construct a series of convex sets X0, X1, X2, . . . whose union
leads to a flowpipe that includes all the behaviors of the threated system. The challenge
is to efficiently compute an over-approximation that is as tight as possible.

Since we approximate non-convex sets with convex ones, it is very unlikely that we
will obtain the exact reachable set. However, we can try our best, choosing appropriate
approximation sets and squeezing them around the reachable set.

The goal of the next sections is to focus on the computation of a single step reach-
ability trying to determine tight sets that over-approximate the states reached by a
system. Formally, given the discrete-time dynamical D = (X ,P, f) and the sets X ⊆ X



32 4. Set Image Computation

and P ⊆ P, we want to find a manipulable tight set X ′ ⊆ X such that:

X ′ ⊇ f(X,P ), (4.1)

where f(X,P ) denotes the set {x′ | x′ = f(x,p),x ∈ X,p ∈ P}. Note that we do not
have an explicit representation of the set f(x,p) which means that we have to deduce
the approximation set X ′ from the previously reached set X, the parameter set P (that
we assume to be both in an explicit form), and the system dynamics f .

4.1.1 Polytopes

In this section we introduce polytopes, a class of convex sets commonly used in the
reachability problem.

Polytopes are the n-dimensional generalization of convex polygons and polyhedra.
They are a natural tool to represent sets of states since their facets can be arbitrarily
chosen so that precise over-approximations can be obtained.

The term “polytope” is often confusing. Originally, it was introduced by the twelve
years old Alicia Boole Stott (daughter of the logician George Boole) to denote a four-
dimensional convex solid [50]. During the years the term has evolved and has been used
to mean related but different mathematical objects.

In geometry a polytope is a geometric object with flat sides definable in any di-
mension while the terms polygon and polyhedron denote a two-dimensional and three-
dimensional polytope, respectively. However, the terms convex polytope and convex
polyhedra are often used interchangeably. In addition, sometimes polytopes are re-
quired to be bounded while others they are allowed to be unbounded.

In this work we use the definition of polytope adopted by the hybrid system com-
munity, that is a convex, bounded, with flat sides set of n-dimensional points.

Definition 6 (Polytope). A polytope Q ⊂ Rn is a bounded subset of Rn such that there
is a finite set H = {h1, h2, . . . , hm} of half-spaces whose intersection is Q, i.e.:

Q =

m⋂
i=1

hi, (4.2)

where an half-space h = {x | dx ≤ c} is a set characterized by a non-null normal vector
d ∈ Rn and an offset c ∈ R.

The linear constraints that generate the half-spaces can be organized in a matrix
D ∈ Rm×n, called direction matrix (or template) and a vector c ∈ Rk, called offset
vector. The i-th row Di of D together with the i-th component ci of c defines the
half-space hi ∈ H, being its normal vector and offset, respectively. With a slight abuse
of notation, we denote with Q = 〈D, c〉 the polytope generated by the direction matrix
D and the offset vector c. Notice that polytopes are bounded subsets of Rn, hence not
all the pairs 〈D, c〉 define a polytope.

A polytope Q can be represented as the intersection of different sets of half-spaces.
For instance, adding to Q new half-spaces that do not affect the intersection, we get a
new representation of Q. Moreover, even without adding new half-spaces we can get a
new representation by multiplying the i-th row of D and the i-th component of c by
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a constant ki > 0. However, if needed, one can refer to the canonical representation
in which all the half-spaces are necessary and the direction vectors are versors (vectors
of norm 1). Since we use 〈D, c〉 to denote a polytope, we may write 〈D, c〉 = 〈D′, c′〉
meaning that the generated polytopes are the same.

In literature, a polytope is often said a H-polytope if it is represented as a set of
half-spaces. However, a polytope Q can also be seen as the convex hull of a finite set of
points V = {v1,v2, . . . ,vp, }, with vi ∈ Rn for i ∈ {1, . . . , p}, that is:

Q = {α1v1 + α2v2 + · · ·+ αpvp | αi ≥ 0,

p∑
i=1

αi = 1}. (4.3)

A polytope represented by its vertices is called a V-polytope.
These two representations are equivalent, in the sense that they can denote the same

object, but their strengths and weaknesses depend on the operations that one wants to
apply to the polytope. For instance, H-polytopes are suitable for intersections, while
V-polytopes are convenient for convex hull of unions of polytopes. However, many
algorithms that manipulate polytopes have a worst-case exponential complexity since
a n-dimensional polytope with m constraints has a worst-case exponential number of
Θ(mbn/2c) vertices. For our purposes, we will deal exclusively with H-polytopes that,
for brevity, we will call polytopes.

At last, it is important to mention template polyhedra1 [170, 169], that are a subclass
of polytopes where the directions of the constrains are fixed (or assumed as input) and
the offsets can vary. In doing so, it is possible to symbolically denote an infinity of
polytopes and balance efficiency with precision.

4.1.2 Polytope-Based Set Image

Polytopes can be used to over-approximate compact sets. In particular, given a compact
set S ⊂ Rn we want to find a polytope Q ⊂ Rn that over-approximates S. In order to
obtain a precise approximation, it is reasonable to push the constraints that define Q
as close as possible to S. A polytope Q whose constraints are tangent to a set S is said
to be an enclosing polytope of S (see Figure 4.1).

Definition 7 (Set Enclosure). Let S ⊂ Rn be a compact set and Q = 〈D, c〉 ⊂ Rn be
a polytope. The enclosure of S with respect to Q is defined as the polytope �(S,Q) =
〈D, c′〉, where:

c′i = max
x∈S

Dix, for i ∈ {1, . . . ,m}. (4.4)

The enclosure of S with respect to Q can be seen as a tight over-approximation of
S obtained using the template of Q.

In our specific flow-pipe construction problem, we can think of over-approximating
a reached set Xi+1 = f(Xi, P ) with an enclosing polytope Xi+1. By definition, in order
for Xi+1 = 〈D, c〉 to be an enclosing polytope of Xi+1 it must hold that:

cj = max
x∈Xi+1

Djx, for all j ∈ {1, 2, . . . ,m}. (4.5)

1In this section polyhedra are polytopes.
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x2

x1

S
D1x ≤ c1

D2x ≤ c2

D3x ≤ c3

D5x ≤ c5
D4x ≤ c4

Figure 4.1: A compact set S (in gray) and an enclosing polytope Q = 〈D, c〉 (in white).

Xi f(Xi, P )
Xi+1

Xi+1

Djx ≤ cj

Figure 4.2: Over-approximation of a single step reachability with polytopes.

Since we might not have an explicit representation of Xi+1, we can think of symbolically
replacing Xi+1 with f(Xi, P ). Thus, the enclosing condition of Equation 4.5 becomes:

cj = max
x∈f(Xi,P )

Djx, for all j ∈ {1, 2, . . . ,m}, (4.6)

or equivalently:

cj = max
x∈Xi,p∈P

Djf(x,p), for all j ∈ {1, 2, . . . ,m}. (4.7)

This condition tells us that we can compute the offsets c1, . . . , cm of the polytope Xi+1

by maximizing the product of its directions with the system dynamics over the sets Xi

and P (see Figure 4.2).

If the template of Xi+1 is known, as in the case of template polyhedra, finding the
offsets c1, . . . , cm corresponds to solve m optimization problems. If Xi and P are poly-
topes and f(x,p) is a linear system, then the optimizations can be efficiently solved
using linear programming (LP) [44, 111]. Nevertheless, we are considering nonlinear
dynamical systems, hence the problem requires nonlinear/nonconvex optimization tech-
niques.

Solving a nonlinear optimization problem is computationally expensive. Some meth-
ods to solve or approximate nonlinear optimization problems are gradient descent [8],
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interior point method [60, 121], or sum of squares techniques [158, 157]. Unluckily, their
scalability in the number of variables, degree of the function to optimize, and number
of constraints, is not sufficiently efficient for our verification purposes.

A way to face the non linearity issue is to relax the enclosing constraints of the facets
of Xi+1, namely, instead or requiring the facets to be tangent to reached set, we try to
push them as close as possible without falling in the complexity trap. Mathematically
speaking, instead of finding the optimum cj of Equation 4.7, we try to efficiently look
for upper bounds cj ≥ cj such that:

cj ≥ cj = max
x∈Xi,p∈P

Djf(x,p), for all j ∈ {1, 2, . . . ,m}. (4.8)

The result will be a polytope Xi+1 = 〈D, c〉 which might not be an enclosing for Xi+1,
but will over-approximate the reached set. The quality of the approximation depends
on how close the upper bounds cj are to the optimums cj .

4.2 Bounding Polynomials

In the previous section we have seen how the optimization of a function can be used
to over-approximate the image of a set and thus compute the flowpipe of a dynamical
system. In this section we focus on the problem of optimizing a polynomial over some
subclasses of polytopes. The presented technique is based on the Bernstein expansion
of polynomials and their properties, a mathematical tool that we will often use in this
work.

A Bernstein polynomial is a polynomial expressed in the Bernstein form, that is a
linear combination of the Bernstein basis polynomials. As we will see in the following, the
coefficients associated with these basis own interesting properties that can be exploited
to bound the image of a polynomial over a unit box domain.

This section is organized in two parts. First, we introduce Bernstein basis and their
properties in their original form considering polynomials of the form π(x) : Rn → R.
Second, we extend the definition of Bernstein expansion to parametric polynomials of
the kind π(x,p) : Rn × Rm → R. We will demonstrate that important properties
of standard Bernstein basis also hold in the parametric case. These proofs will be the
key element for bounding parametric polynomials, computing parametric flowpipes, and
later, synthesizing valid parameter sets.

4.2.1 Bernstein Basis and Coefficients

Before defining the Bernstein basis, we introduce some notations useful to work with
polynomials.

A multi-index is a vector i = (i1, i2, . . . , in) where each ij ∈ N. Given two multi-
indices i and d of the same dimension, we write i ≤ d (d dominates i) if for all j ∈
{1, 2, . . . , n}, ij ≤ dj . Also, we write i/d for the multi-index (i1/d1, i2/d2, . . . , in/dn)

and

(
d

i

)
for the product of the binomial coefficients

(
d1

i1

)(
d2

i2

)
. . .

(
dn
in

)
.
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A polynomial π(x) : Rn → R can be represented using the power basis as follows:

π(x) =
∑
i∈Iπ

aix
i (4.9)

where i = (i1, i2, . . . , in) is a multi-index of size n ∈ N and xi denotes the monomial
xi1
1 xi2

2 . . .x
in
n . The set Iπ is called the multi-index set of π. The degree d of π is the

smallest multi-index that dominates all the multi-indices of Iπ, i.e., for all i ∈ Iπ, i ≤ d.
The coefficients ai ∈ R assume real values.

Example 8. Consider the polynomial π(x1,x2) = 1/3x2
1−1/2x2 + 1/4x1x2 + 1/2. The

multi-index set of π is Iπ = {(2, 0), (0, 1), (1, 1), (0, 0)} and the associated coefficients
are a(2,0) = 1/3,a(0,1) = −1/2,a(1,1) = 1/4, and a(0,0) = 1/2.

Bernstein basis polynomials of degree d are basis for the space of polynomials of
degree at most d over Rn. For x = (x1,x2, . . . ,xn) ∈ Rn, the i-th Bernstein polynomial
of degree d is defined as:

B(d,i)(x) = βd1,i1(x1)βd2,i2(x2) . . . βdn,in(xn) (4.10)

where, for a real number x ∈ R,

βdj ,ij (x) =

(
dj
ij

)
xij (1− x)dj−ij . (4.11)

A polynomial π(x) : Rn → R can be represented using Bernstein basis as:

π(x) =
∑
i∈Iπ

biB(d,i)(x) (4.12)

where, for each i ∈ Iπ, the Bernstein coefficient, is defined as:

bi =
∑
j≤i

(
i
j

)(
d
j

)aj. (4.13)

Notice how Bernstein coefficients can be calculated from the coefficients of the mono-
mials of the threated polynomial in power basis. The (n + 1)-dimensional points
(i/d,bi) ∈ Rn+1 are called Bernstein control points.

Example 9. Consider the polynomial π(x1,x2) = 1/3x2
1− 1/2x2 + 1/4x1x2 + 1/2 from

Example 8. For illustrative purposes, we examine only the multi-indices (1, 1) whose
correspondent Bernstein coefficient is:

b(1,1) =

(
(1,1)
(1,1)

)(
(2,1)
(1,1)

)1/4−

(
(1,1)
(0,1)

)(
(2,1)
(0,1)

)1/2 +

(
(1,1)
(1,0)

)(
(2,1)
(1,0)

)0 +

(
(1,1)
(0,0)

)(
(2,1)
(0,0)

)1/2 = 0.125. (4.14)

Applying the same scheme to the other multi-indices, we obtain the Bernstein coefficients
b(0,0) = 0.5, b(0,1) = 0.0, b(1,0) = 0.5, b(1,1) = 0.125, b(2,0) = 0.834, and b(2,1) = 0.584.
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Properties of Bernstein Coefficients

Bernstein coefficients present several interesting properties. Here we expose two prop-
erties that will be exploited in our techniques of set image computation and parameter
synthesis. For further properties see, for instance, [174, 83].

The properties of Bernstein coefficients we are interested are following.

Lemma 1 (Range Enclosing).

min
i∈Iπ

bi ≤ π(x) ≤ max
i∈Iπ

bi, (4.15)

for all x ∈ [0, 1]n, where bi, for i ∈ Iπ, are the Bernstein coefficients of π.

Lemma 2 (Sharpness).
for all i ∈ Vd,bi = π(i/d), (4.16)

where bi, for i ∈ Iπ, are the Bernstein coefficients of π and Vd is the set of vertices of
the box [0,d1]× [0,d2]× . . . [0,dn].

These two properties provide us some useful informations about the image of the
polynomial π over the unit box:

1. The range enclosing property states that the minimum and maximum Bernstein
coefficients are a lower bound and an upper bound of the image of π over the unit
box domain, respectively;

2. The sharpness property implies that the Bernstein coefficients at the vertices of
the box domain, match exactly the values of the polynomial at some points.

Example 10. Consider the polynomial π(x1,x2) = 1/3x2
1−1/2x2 +1/4x1x2 +1/2 and

its Bernstein coefficients (from Example 9). Figure 4.3 shows the image of π over the
unit box (gray area) and its control points (black dots).

The coefficients b(1,1) = 0.125 and b(2,0) = 0.834 are a lower bound and upper bound

of π([0, 1]2) (range enclosing property) and the control points that fall on the vertices of
the unit box match exactly the values of π([0, 1]2) (sharpness property).

Concerning the precision of the bounds provided by Bernstein coefficients, the fol-
lowing lemma [57] bounds the distance between a polynomial and its Bernstein control
points, or in other words, the error between the maximum and minimum of a polynomial
and the bounds provided by its Bernstein coefficients.

Lemma 3. Let Cπ : Rn → R be the piecewise linear function defined by the Bernstein
control points of the polynomial π : Rn → R, with respect to the box [0, 1]n. For all
x ∈ [0, 1]n

| π(x)− Cπ(x) |≤ max
x∈[0,1]n;i,j∈{1,...,n}

| ∂i∂jπ(x) | (4.17)

where | · | is the infinity norm on Rn.

Several convergent subdivision procedures for reducing the gap between bounds and
optimums have been proposed [90, 152, 151]. In Section 4.6.3 we will also define a
method to improve the precision of the bounds provided by Bernstein coefficients.
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Figure 4.3: The polynomial π(x1,x2) = 1/3x2
1 − 1/2x2 + 1/4x1x2 + 1/2 over the unit

box (in gray) and its control points (in black).
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4.2.2 Parametric Bernstein Basis and Coefficients

Bernstein coefficients and their properties are useful tools for bounding polynomials.
However, since we work with parametric dynamical systems, we want to bound para-
metric polynomials of the kind π(x,p) : Rn × Rm → R. Thus, we have to extend the
definition of Bernstein basis to the parametric case. We will see that all the presented
properties related to the Bernstein coefficients also hold when parameters are involved.

A parametric polynomial π(x,p) : Rn × Rm → R can be represented in the power
basis as:

π(x,p) =
∑
i∈Iπ

ai(p)xi, (4.18)

where the coefficients ai(p) : Rm → R, for i ∈ Iπ, are functions defined over the
parameters p ∈ Rm.

Example 11. Consider the parametric polynomial π(x1,x2,p1) = 1/3p1x
2
1−1/2p1x2+

1/4x1x2+1/2. The parametric coefficients are a(2,0)(p1) = 1/3p1, a(0,1)(p1) = −1/2p1,
a(1,1)(p1) = 1/4, and a(0,0)(p1) = 1/2.

A parametric polynomial π(x,p) : Rn×Rm → R can be represented using Bernstein
basis as:

π(x,p) =
∑
i∈Iπ

bi(p)B(d,i)(x) (4.19)

where, for each i ∈ Iπ, the parametric Bernstein coefficient, is defined as:

bi(p) =
∑
j≤i

(
i
j

)(
d
j

)aj(p). (4.20)

Differently from the nonparametric case, the parametric Bernstein coefficients are func-
tions of the form bi(p) : Rm → R.

Example 12. Consider the polynomial π(x1,x2,p1) = 1/3p1x
2
1−1/2p1x2 +1/4x1x2 +

1/2 from Example 11. For illustrative purposes, we study only the multi-index (1, 1)
whose parametric Bernstein coefficient is:

b(1,1)(p1) =

(
(1,1)
(1,1)

)(
(2,1)
(1,1)

)1/4−

(
(1,1)
(0,1)

)(
(2,1)
(0,1)

)1/2p1 +

(
(1,1)
(1,0)

)(
(2,1)
(1,0)

)0 +

(
(1,1)
(0,0)

)(
(2,1)
(0,0)

)1/2 = 0.625− 0.5p1. (4.21)

Applying the same scheme to the other multi-indices, we obtain the parametric Bernstein
coefficients b(0,0)(p1) = 0.5, b(0,1)(p1) = 0.5 − 0.5p1, b(1,0)(p1) = 0.5, b(1,1)(p1) =
0.625− 0.5p1, b(2,0)(p1) = 0.334p1 + 0.5, and b(2,1)(p1) = 0.75− 0.1667p1.

Properties of Parametric Bernstein Coefficients

We now extend range enclosing and sharpness properties defined on polynomials (see
Section 4.2.1) to the parametric case. Let P ⊂ Rm be a polytope.
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Lemma 4 (Parametric Range Enclosing).

min
i∈Iπ

min
p∈P

bi(p) ≤ π(x,p) ≤ max
i∈Iπ

max
p∈P

bi(p), (4.22)

for all x ∈ [0, 1]n and p ∈ P , where bi(p), for i ∈ Iπ, are the parametric Bernstein
coefficients of π.

Lemma 5 (Parametric Sharpness).

for all i ∈ Vd and p ∈ P,bi(p) = π(i/d,p), (4.23)

where bi(p), for i ∈ Iπ, are the parametric Bernstein coefficients of π and Vd is the set
of vertices of the box [0,d1]× [0,d2]× . . . [0,dn].

Proof. Both Lemma 4 and Lemma 5 directly follow from Lemma 1 and 2, respectively.
In fact any instantiation of the parametric case holds by the standard properties of
Bernstein coefficients (see Lemmas 1 and 2). This is true for every parameter value
p ∈ P , which implies the validity of Lemma 4 and Lemma 5.

Similarly to the standard Bernstein coefficients properties, the parametric coefficients
can be used to get information about the evaluation of a parametric polynomial π(x,p)
over the unit box under the influence of the parameters p ∈ P . Precisely:

1. The parametric range enclosing property can be used to find lower bound and
upper bound;

2. The parametric sharpness property tells us where a parametric control point
matches exactly the value of the parametric polynomial π(x,p).

Example 13. Consider the polynomial π(x1,x2,p1) = 1/3p1x
2
1−1/2p1x2 +1/4x1x2 +

1/2, its Bernstein coefficients (from Example 12), and the parameter set P = [−0.1, 0.1].
Figure 4.4 shows two images of π over the unit box and parameter p1 with values −0.1
and 0.1 (gray areas), and the parametric control points ranging over the parameter set
P = [−0.1, 0.1] (in black). Also in this case, it is possible to see how the parametric
range enclosing and sharpness properties hold.

4.2.3 Computation of upper bound and lower bound

The parametric range enclosing property can be used to determine an upper and lower
bound of a parametric polynomial π(x,p) : Rn×Rm → R with x ∈ [0, 1]n and p ∈ P ⊂
Rm polytope. We now define the algorithm maxBernCoeff (see Algorithm 1) that,
exploiting Bernstein coefficients, determines an upper bound of a polynomial over the
unit box and a polytopic parameter set.

maxBernCoeff begins by computing the set Bπ of all the parametric Bernstein
coefficients of the polynomial π(x,p). This can be done using Equation 4.20. Thus, for
each coefficient bi(p) ∈ Bπ, the algorithm maximizes bi(p) over the parameter set P
and updates the current maximum b. Note that if bi(p) is linear in p, the optimization
over P can be carried out using linear programming. At the end of the loop, b will be
an upper bound on the polynomial π(x,p) over the unit box and parameter set P .
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Figure 4.4: The polynomial π(x1,x2,p1) = 1/3x2
1p1 − 1/2p1x2 + 1/4x1x2 + 1/2 over

the unit box with parameter values −0.1 and 0.1 (in gray), and its parametric control
points control points with p1 ∈ [−0.1, 0.1] (in black).
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Algorithm 1 Compute maximum parametric Bernstein Coefficient

1: function maxBernCoeff(π, P ) . π(x,p) : Rn × Rm → R, P ⊂ Rm polytope
2: Bπ ←BernCoeffs(π) . Compute Bernstein coefficients
3: b← −∞ . Initialize current maximum
4: for bi(p) ∈ Bπ do
5: b← max

p∈P
bi(p) . Maximize current coefficient

6: b← max{b, b} . Update maximum
7: end for
8: return b
9: end function

Similarly, we can define the algorithm minBernCoeff that computes a lower bound
of π(x,p). minBernCoeff can be easily obtained from maxBernCoeff by initializing
the bound b with +∞ (Line 3) and replacing maximum operators with minimums.

4.2.4 Summary

Bernstein coefficients can be used to bound the image of a polynomial, eventually para-
metric, over the unit box. However, it is very unlikely that the trajectories generated by
a dynamical system will only span over unit boxes. The question is then how to exploit
Bernstein coefficients outside unit boxes and perhaps outside box domains.

In the next chapters, we will define some techniques of set image approximation that
involve generic boxes, parallelotopes, and sets generated by the intersection of several
parallelotopes. These techniques will be used to compute over-approximations of sets of
states reached by polynomial dynamical systems and will allow us to synthesize sets of
parameters so that all the trajectories of the treated dynamical system satisfy a given
STL property.

Moreover, at the end of the chapter, we will present some techniques to improve the
efficiency with which Bernstein coefficients are computed and to obtain tighter bounds.
These improvements will lead to faster and preciser reachability and parameter synthesis
algorithms.

4.3 Boxes

We now go into the problem of the image computation. We begin by considering one of
simplest class of sets called boxes, also known as hyper-rectangles.

Definition 8 (Box). A set B ⊂ Rn is a box if and only if it can be expressed as the
product of n intervals, that is:

B = [x1, x1]× . . . [xn, xn] =

n∏
i=1

[xi, xi], (4.24)

where xi, xi ∈ R, for i ∈ {1, . . . , n}.
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Figure 4.5: A set S and its enclosing box B.

It is easy to see that a box is a polytope. In fact, a box B = [x1, x1] × . . . [xn, xn]
can be represented as a polytope 〈D, c〉 where:

D =


1 0 . . . 0
−1 0 . . . 0
...

...
0 . . . 0 1
0 . . . 0 −1

 c =


x1
−x1

...
xn
−xn

 (4.25)

Since a box is a polytope, it can be also represented by its vertices (see Section 4.1.1).
However, the interval and constraint representations require only 2n elements against
2n vertices.

4.3.1 Box-Based Set Image

We now restrict the set image problem to boxes. Indeed, we define a method to de-
termine a box X ′ ⊂ Rn such that X ′ ⊇ f(X,P ) with f : Rn × Rm → Rn polynomial,
X ⊂ Rn box, and P ⊂ Rm polytope. The final target is to define the algorithm Reach-
Step that realizes a single reachability step of a polynomial dynamical system using
boxes to represent the sets of states reached by the system. The technique we present is
an extension of the approach developed in [57, 181] (were boxes and standard Bernstein
coefficients are also used) to parametric dynamical systems.

We recall that the properties of Bernstein coefficients are valid only for the unit
box domain. However, we can try to exploit Bernstein coefficients on a generic box
X = 〈D, c〉 = [x1, x1] × · · · × [xn, xn] defining a linear transformation v(x) : Rn → Rn
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that maps the unit box to X. The map v(x) is defined as follows:

v(x) =


x1 − x1 0 . . . 0

0 x2 − x2 . . . 0
...

...
0 . . . 0 xn − xn




x1

x2

...
xn

+


x1
x2
...
xn

 . (4.26)

Now, suppose we want to bound a parametric polynomial π : Rn×Rm → R over a box
X ⊂ Rn and a polytopic parameter set P ⊂ Rm. We can compute the map v(x) for X
and then consider the composition π(v(x),p). It holds that π(X,P ) = π(v([0, 1]n), P ).
Note that the domain of π(v(x),p) in x is the unit box. This means that we can use the
Bernstein coefficients of π(v(x),p), and in particular the algorithm maxBernCoeff
(see Algorithm 1), to indirectly bound π(x,p) over X and P .

We can define the function bound (Algorithm 2) that receives in input a parametric
polynomial π : Rn × Rm → R, a box X ⊂ Rn, and a polytopic parameter set P ⊂ Rm.
Exploiting the map v(x) and Bernstein coefficients, it returns an upper bound b ∈ R of
π(X,P ) such that:

b ≥ max
x∈[0,1]n,p∈P

π(v(x),p) = max
x∈X,p∈P

π(x,p). (4.27)

Algorithm 2 Bound polynomial over box and polytopic parameter set

1: function bound(π,X, P ) . X ⊂ Rn box, P ⊂ Rm polytope
2: v(x)←mapUnitBoxTo(X) . Map [0, 1]n to X
3: b←maxBernCoeff(π(v(x)), P ) . Compute maximum coefficient
4: return b
5: end function

The function bound, using the function mapUnitBoxTo based on Equation 4.26,
computes the transformation v(x) (Line 2) that maps the unit box to the given box X.
Then, through the function maxBernCoeff, it computes the Bernstein coefficients of
π(v(x),p) and returns their maximum over the parameter set P (Line 3).

Now that we know how to bound a polynomial over a generic box, we can focus on the
image set computation. Let f : Rn×Rm → Rn be a parametric polynomial, X,X ′ ⊂ Rn
be boxes, and P ⊂ Rm be a polytopic parameter set. In order for X ′ = 〈D, c′〉 to be an
over-approximation box of the set f(X,P ) it must hold that:

c′j ≥ max
x∈X,p∈P

Djf(x,p) for all j ∈ {1, . . . , 2n}. (4.28)

Since the functions Djf(x,p) are polynomials and X ⊂ Rn and P ⊂ Rm are a box
and a polytope, respectively, the upper bounds c′j , for j ∈ {1, . . . , 2n}, can obtained
exploiting the algorithm bound. The optimizations of the functions Djf(x,p) lead to
the offsets c′j that associated with the template D generate the over-approximation box
X ′ = 〈D, c′〉 ⊇ f(X,P ).

We collect these operations in the algorithm reachStep (Algorithm 3) that receives
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in input a box X ⊂ Rn and a polytope P ⊂ Rm, and, exploiting the algorithm bound,
computes a box X ′ that over-approximates the image f(X,P ).

Algorithm 3 Box-based reachability step

1: function reachStep(X,P ) . X = 〈D, c〉 ⊂ Rn box, P ⊂ Rm polytope
2: for i ∈ {1, . . . , 2n} do
3: c′i ←bound(Dif(x,p), X, P ) . Bound box directions
4: end for
5: return X ′ = 〈D, c′〉 . Construct and return the new box
6: end function

Example 14. Consider the dynamics of the discrete-time SIR epidemic system of Ex-
ample 6 with state variables and parameters grouped in the vectors x = (s, i, r) and
p = (β, γ):

f(x,p) =

fs(x,p) = s− βsi
fi(x,p) = i+ βsi− γi
fr(x,p) = r + γi

 (4.29)

Let s ∈ [0.80, 0.85], i ∈ [0.15, 0.20], r ∈ [0, 0], and β ∈ [0.35, 0.36], γ ∈ [0.05, 0.06]
whose box-set representations are X = 〈D, c〉 = [0.80, 0.85] × [0.15, 0.20] × [0, 0] and
P = [0.35, 0.36]× [0.05, 0.06].

The map v that transforms the unit box to X is:

v(x) =

0.85− 0.80 0 0
0 0.20− 0.15 0
0 0 0− 0

si
r

+

0.80
0.15

0

 (4.30)

whose composition with the system dynamics leads to the function:

h(x,p) =

fs(v(x),p) = (0.05s+ 0.80)− β(0.05s+ 0.80)(0.05i+ 0.15)
fi(v(x),p) = (1− γ)(0.05i+ 0.15) + β(0.05s+ 0.80)(0.05i+ 0.15)
fr(v(x),p) = γ(0.05i+ 0.15)


(4.31)

Composing the function h(x,p) with the box template D, we obtain the functions:

D1h(x,p) = (0.05s+ 0.80)− β(0.05s+ 0.80)(0.05i+ 0.15)

D2h(x,p) = − (0.05s+ 0.80) + β(0.05s+ 0.80)(0.05i+ 0.15)

D3h(x,p) = (1− γ)(0.05i+ 0.15) + β(0.05s+ 0.80)(0.05i+ 0.15)

D4h(x,p) = − (1− γ)(0.05i+ 0.15)− β(0.05s+ 0.80)(0.05i+ 0.15)

D5h(x,p) = γ(0.05i+ 0.15)

D6h(x,p) = − γ(0.05i+ 0.15)

(4.32)
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whose Bernstein coefficients are:

BD1h(p) = {0.80− 0.12β, 0.80− 0.16β, 0.85− 0.13β, 0.85− 0.17β}
BD2h(p) = {0.12β − 0.80, 0.16β − 0.80, 0.13β − 0.85, 0.17β − 0.85}
BD3h(p) = {0.12β − 0.15γ + 0.15, 0.16β − 0.20γ + 0.20,

0.13β − 0.15γ + 0.15, 0.17β − 0.20γ + 0.20}
BD4h(p) = {0.15γ − 0.12β − 0.15, 0.20γ − 0.16β − 0.20,

0.15γ − 0.13β − 0.15, 0.20γ − 0.17β − 0.20}
BD5h(p) = {0.15γ, 0.2γ}
BD6h(p) = {−0.15γ,−0.2γ}

(4.33)

that optimized on the parameter set P lead to the upper bounds:

0.8054 = max
p∈P
{bi(p) ∈ BD1h(p)} − 0.7424 = max

p∈P
{bi(p) ∈ BD2h(p)}

0.2512 = max
p∈P
{bi(p) ∈ BD3h(p)} − 0.1830 = max

p∈P
{bi(p) ∈ BD4h(p)}

0.0120 = max
p∈P
{bi(p) ∈ BD5h(p)} − 0.0075 = max

p∈P
{bi(p) ∈ BD6h(p)}

(4.34)

Note that the signs of the coefficients for the directions D2, D4, and D6 are swapped
in the interval representation of X ′. The over-approximation of the reachable set is
X ′ = [0.7424, 0.8054]× [0.1830, 0.2512]× [0.0075, 0.0120]. Box X ′ is shown in Figure 4.6
(in white) together with some reachable points (in black) computed with a sampling-based
method (see Section 3.3.1). Note how X ′ includes all the computed reachable points.

We have developed a method based on boxes for over-approximating the image of
parametric polynomials. However, the approximation introduced by a box can be quite
rough due to the differences between the approximated set and the enclosing box. In the
next section we will introduce a new technique based on parallelotopes, a more flexible
class of sets that represents a good trade-off between computational complexity and
approximation accuracy.

4.4 Parallelotopes

In this section we define a set image approximation method based on parallelotopes, i.e.,
the n-dimensional generalization of parallelepipeds. The use of parallelotopes makes the
method more flexible as far as the choice of the initial set is concerned and it allows one
to obtain better approximations.

A parallelotope is a centrally symmetric convex polytope whose opposite facets are
parallel. Hence, it can be represented as a collection of linear constraints.

Definition 9 (Parallelotope Constraint Representation). Let Λ ∈ R2n×n be a tem-
plate matrix such that, for each i ∈ {1, 2, . . . , n}, Λi = −Λi+n, and let c ∈ R2n. The
parallelotope P generated by Λ and c is:

P = Pcon(Λ, c) = 〈Λ, c〉 = {x | Λx ≤ c}. (4.35)
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Figure 4.6: Box-based set image computation of SIR dynamical system. The figure
shows the constructed box (in white) and some reachable points computed with a
sampling-based method (in black).

The above representation is called constraint representation (see Figure 4.7a). An-
other way to characterize parallelotopes, similar to the one adopted for zonotopes [50],
is to fix a point of origin and use vectors to define the parallelotope.

Definition 10 (Parallelotope Generator Representation). Let G = {g1,g2, . . . ,gn} be
a set of n linearly independent vectors in Rn and q be a point in Rn. The parallelotope
P generated by G and q is:

P = Pgen(G,q) = {q +

n∑
j=1

xjg
j | (x1, . . . ,xn) ∈ [0, 1]n}. (4.36)

This representation is said generator representation (see Figure 4.7b). The vectors
g1,g2, . . . ,gn are called generators of the parallelotope and q is called base vertex.
Given a set of generators G = {g1,g2, . . . ,gn} and a base vertex q, we also represent
the parallelotope generated by G and q with the notation:

P = Pgen(G,q) = {γ(q,G)(x) | x ∈ [0, 1]n}, (4.37)

where x = (x1,x2, . . . ,xn) and γ(q,G)(x) is the linear function defined as:

γ(q,G)(x) = q +

n∑
j=1

xjg
j . (4.38)
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x2

x1

S
Λ1x ≤ c1

Λ2x ≤ c2

Λ3x ≤ c3

Λ4x ≤ c4

(a) Constraint representation.

x2

x1

S

q

g1

g2

(b) Generator representation.

Figure 4.7: A set S and two enclosing parallelotopes.

This notation emphasizes the aspect that a parallelotope can be seen as the affine
transformation of the unit box. This suggests us that there might be a way to combine
Bernstein properties and parallelotopes.

4.4.1 Representation Conversion

A parallelotope X can be equivalently represented using constraints and generators.
The choice of the representation depends on the operation that we want to apply to X.
Later, in our image approximation algorithm, we will need a representation conversion,
that is, given X = Pcon(Λ, c), we want to compute Pgen(G,q) = X, and vice versa.

From Constraints to Generators

Given the constrain representation Pcon(Λ, c) we want to find a generator set G and a
base vertex q such that Pgen(G,q) = Pcon(Λ, c). First, we rewrite the inequalities given
by the template Λ and offsets c in form:

−cn+i ≤ Λix ≤ ci, (4.39)

for all i ∈ {1, . . . , n}. The based vertex q and the coordinates of the vertex ii that lies
on the straight line passing through the i-th generator vector applied to the vertex q,
are the solutions of the linear systems:

Λ1

...
Λn

x =

−cn+1

...
−c2n




Λ1

...
Λi
...

Λn

x =



−cn+1

...
ci
...
−c2n

 . (4.40)
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Hence, the i-th generator gi is the difference between the vertex vi and the base vertex
q, i.e., gi = vi−q. Finally, the versor ui and the generator norm βi such that gi = βiui

are given by βi = ‖gi‖ and ui =
gi

‖gi‖
.

From Generators to Constraints

We now consider the inverse conversion: given a generator representation Pgen(G,q)
we want to find a template Λ and a vector c such that Pcon(Λ, c) = Pgen(G,q). Let
G = {g1, . . . ,gn} be the generator set and q be the base vertex.

As first step we calculate the points p1, . . . ,pn that are traversed by the hyper-
planes correspondent to the constrains. Each pi is obtained by adding the generator
gi to the base vertex q, i.e., pi = q + gi. The i-th constraint of the parallelotope
lies on the hyperplane (whose equation is πi = aix + ci) passing through the points
q,p1, . . . ,pi−1,pi+1, . . . ,pn. The equation πi+n = ai+nx + ci+n of the hyperplane par-
allel to πi can be found by translating the vertices used to compute πi by the vector gi,
i.e., πi+n is the hyperplane passing through the points q+gi,p1+gi, . . . ,pi−1+gi,pi+1+
gi, . . . ,pn + gi. Let ci and ci be defined as ci = min{di, di+n} and ci = max{di, di+n}.

Since πi and πi+n are parallel it must hold ai = ai+n. Hence, the portion of the
parallelotope included between πi and πi+n is the solution of the inequalities ci ≤ aix ≤
ci, which means that the i-th and (i+n)-th rows of the template matrix are Λi = ai and
Λi+n = −ai, while the i-th and (i+ n)-th offset elements are ci = ci and ci+n = −ci.

4.4.2 Parallelotope-Based Set Image

We now focus on the set image computation problem. Let X ⊂ Rn be a parallelo-
tope whose constraint representation is X = Pcon(Λ, c) and generator representation
is X = Pgen(G,q) (recall that γ(q,G)(x) is the linear function that defines the genera-
tor representation, see Equation 4.38). We are interested in computing a parallelotope
X ′ ⊂ Rn such that f(X,P ) ⊆ X ′. Adopting the template Λ of X, we can obtain X ′ by
determining the offsets c′ ∈ R2n such that f(X,P ) ⊆ Pcon(Λ, c′) = X ′.

In order for a parallelotope X ′ = 〈Λ, c′〉 in constraint representation to be an over-
approximation of the set f(X,P ) it must hold that:

c′j ≥ max
x∈X,p∈P

Λjf(x,p) for all j ∈ {1, . . . , 2n}. (4.41)

Then the inclusion f(X,P ) ⊆ Pcon(Λ, c) is guaranteed.

This condition can be rewritten using the generator representation as:

c′j ≥ max
x∈[0,1]n,p∈P

hj(x,p) for all j ∈ {1, . . . , 2n}, (4.42)

where hj(x,p) = Λjf(γ(q,G)(x),p). Note that hj(x,p) is a polynomial function of x
whose domain is the unit box. Therefore, we can use Bernstein coefficients to compute
an upper bound c′j ∈ R of the function hj(x,p).

Let Bhj (p) = {bi(p) | i ∈ Ihj} be the set of Bernstein coefficients of the function
hj(x,p).
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Theorem 1. Let c′ = (c′1, . . . , c
′
2n) be such that for each j ∈ {1, . . . , 2n} the component

c′j is defined as:

c′j = max{bi(p) | i ∈ Ihj ,p ∈ P}. (4.43)

The vector c′ satisfies the inclusion f(X,P ) ⊆ Pcon(Λ, c′).

Proof. It follows directly from Lemma 4 (range enclosing property of parametric Bern-
stein coefficients) and Equation 4.42.

Before defining the algorithm for bounding the reachable set, we rewrite the generator
representation explicitly distinguishing between the directions of the generators and their
lengths.

Let G = {g1, . . . ,gn} be a set of generators. Let βi ∈ R be the Euclidean norm
of gi and ui be the versor of gi, i.e., gi = βiu

i. Let β = (β1, . . . ,βn) and U =
{u1, . . . ,un}. With a slight abuse of notation, we rewrite the generator representation
of a parallelotope X as:

X = Pgen(q,β, U) = {γU (q,β,x) | x ∈ [0, 1]n} (4.44)

where γU (q,β,x) is the linear function of x defined as:

γU (q,β,x) = q +

n∑
j=1

xjβju
j . (4.45)

When working on parallelotopes using the constraint representation, we can fix a
template Λ and let the offset c free. In this way we symbolically denote an infinite set
of parallelotopes. On the generator representation, this corresponds to fixing a set U of
n versors and letting the base vertex q and vector lengths β free.

Let us now focus on a single reachability step: given a parallelotopeX = Pcon(Λ, c) ⊂
Rn and a polytopic parameter set P ⊂ Rm, we want to compute c′ ∈ R2n such that
Pcon(Λ, c′) ⊂ Rn over-approximates the set f(X,P ). The set f(X,P ) can be character-
ized as:

f(X,P ) = f(γU (q,β, [0, 1]n), P ) = {f(γU (q,β,x),p) | x ∈ [0, 1]n,p ∈ P}, (4.46)

where γU (q,β,x) is the generator function of X. Finding the base vertex q′ and the
vector lengths β′ such that f(γU (q,β, [0, 1]n), P )) ⊆ γU (q′,β′, [0, 1]n) means obtaining
an over-approximation in generator representation of f(X,P ). These q′ and β′ can be
found thanks to the constraint representation.

Let Λ be the template matrix associated with the generator versors U . The offset
c′ such that f(γU (q,β, [0, 1]n), P ) ⊆ Pcon(Λ, c′) can be calculated using Theorem 1.
That is, an upper bound of Λjf(γU (q,β, [0, 1]n), P ) can be found using the algorithm
maxBernCoeff (see Algorithm 1) based on Bernstein coefficients.

Let us algorithmically formalize these ideas. First, we define the algorithm bound
(Algorithm 4) that receives in input a parametric polynomial π : Rn × Rm → R, a
parallelotope X = 〈Λ, c〉 in constraint representation, and a polytopic parameter set
P ⊂ Rm, and returns an upper bound b ∈ R of π(X,P ).
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Algorithm 4 Bound polynomial over parallelotope and polytopic parameter set

1: function bound(π,X, P ) . X = 〈Λ, c〉 ⊂ Rn parallelotope, P ⊂ Rm polytope
2: γU (q,β,x)←con2gen(X) . Compute generator function
3: b←maxBernCoeff(π(γU (q,β,x), P ) . Compute maximum coefficient
4: return b
5: end function

The algorithm bound, using the function con2gen, converts the parallelotope X
from the constraint to the generator representation (Line 2), obtaining the generator
function γU (q,β,x). Then, it composes the polynomial π(x,p) with the generator
function γU (q,β,x) and, using the function maxBernCoeff, it determines an upper
bound b of π(X,P ).

Thanks to the algorithm bound, we can now develop the parallelotope-based set
image algorithm reachStep (Algorithm 5) that, given a parametric polynomial func-
tion f : Rn ×Rm → Rn, receives in input a parallelotope X = 〈Λ, c〉 ⊂ Rn in constraint
representation and a polytope P ⊂ Rm, and returns a parallelotope X = 〈Λ, c′〉 ⊂ Rn
that over-approximates the set f(X,P ).

Algorithm 5 Parallelotope-based reachability step

1: function reachStep(X,P ) . X = 〈Λ, c〉 ⊆ Rn parallelotope, P ⊆ Rm polytope
2: for i ∈ {1, . . . , 2n} do
3: c′i ←bound(Λif(x,p), X, P )
4: end for
5: return X ′ = 〈Λ, c′〉
6: end function

For each constraint of the parallelotope, the bounding functions Λif(x,p) are com-
puted by composing the template directions Λi with the polynomial f(x,p). The upper
bounds c′i are determined with the function bound, where Bernstein coefficients are
computed and the values c′i are obtained by maximizing the parametric coefficients over
the parameter set P . The vector c′ is the offset that associated with the template Λ
constitutes the searched approximation set X ′ = 〈Λ, c′〉 of f(X,P ).

Example 15. Consider the dynamics of the discrete-time SIR epidemic model of Ex-
ample 6 with state variables and parameters grouped in the vectors x = (s, i, r) and
p = (β, γ):

f(x,p) =

fs(x,p) = s− βsi
fi(x,p) = i+ βsi− γi
fr(x,p) = r + γi

 (4.47)
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Let X = Pcon(Λ, c) be the parallelotope in constraint representation defined as:

X = Λx ≤ c =


−1 0 0
−1 −1 0
0 0 −1
1 0 0
1 1 0
0 0 1

x ≤


−0.80
−0.95
0.00
0.85
1.00
0.00

 (4.48)

and P = [0.35, 0.36] × [0.05, 0.06] be the parameter set with β ∈ [0.35, 0.36] and γ ∈
[0.05, 0.06].

The equivalent generator representation of X is X = Pgen(q,β, U), with q =
(0.80, 0.15, 0), β = (0.0707, 0.0500, 0.0000), and U = {(0.7071,−0.7071, 0), (0, 1, 0),
(0, 0, 1)}, whose generator function is:

γU (q,β,x) =

q1 + 0.7070β1s
q2 − 0.7070β1s+ β2i
q3 + rβ3

 (4.49)

We now show how to bound the direction Λ1 = (−1, 0, 0). The composition h(x,p) =
Λ1f(γU (q,β,x),p) is:

h(x,p) = (−1, 0, 0)

fs(γU (q,β,x),p)
fi(γU (q,β,x),p)
fr(γU (q,β,x),p)

 = −fs(γU (q,β,x),p)

= −((q1 + 0.7070β1s)− β(q1 + 0.7070β1s)(q2 − 0.7070β1s+ β2i))

(4.50)

Instantiating the base vertex q and lengths β, we obtain the set of coefficients:

Bh = {−0.8000 + 0.1200β,−0.8000 + 0.1600β,−0.8250 + 0.1038β,
−0.8250 + 0.1450β,−0.8500 + 0.0850β,−0.8500 + 0.1275β}},

(4.51)
whose maximum over the parameter set P = [0.35, 0.36]×[0.05, 0.06], obtained by solving
six linear programs, is c′1 = −0.7942.

Repeating the procedure for all the directions of the template Λ we obtain the vector of
offsets c′ = (−0.7440,−0.9425,−0.0050, 0.8203, 0.9925, 0.0100) that, associated with the
template Λ, can be used to construct the over-approximating parallelotope X ′ = 〈Λ, c′〉 =
Pcon(Λ, c′).

Figure 4.8 shows the constructed parallelotope X ′ (in white) with some reachable
points (in black) computed with a sampling-based method. Note how X ′ contains all the
computed points.

In this section we developed some methods to bound parametric polynomials over
parallelotopes and compute parallelotopic over-approximations of set images. Parallelo-
topes allow us to obtain approximations that are finer than the ones provided by boxes.
However, in the next section, we will further improve in precision, exploiting sets of
parallelotopes and their intersections for the representation of sets of states reached by
a dynamical system.
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Figure 4.8: Parallelotope-based set image of SIR dynamical system. The constructed
parallelotope X ′ (in white) and some reachable points computed with a sampling-based
method (in black).

4.5 Parallelotope Bundles

In this section we introduce parallelotope bundles, i.e., sets of parallelotopes whose in-
tersections symbolically represents polytopes. Our definition and notation are inspired
by [2].

Definition 11 (Parallelotope Bundle). A parallelotope bundle is a finite set of paral-
lelotopes {P1, . . . ,Pb} whose intersection, denoted by:

{P1, . . . ,Pb}∩ =

b⋂
i=1

Pi, (4.52)

is the polytope generated by 〈D, c〉, where D and c are the union of the templates and
offsets of Pi, for i ∈ {1, . . . , b}.

Two parallelotope bundles {P1, . . . ,Pb} and {P′1, . . . ,P′b′} are equivalent if they de-
note the same polytope. A bundle {P1, . . . ,Pb} allows us to symbolically represent a
polytope {P1, . . . ,Pb}∩ without requiring the explicit computation of the intersection of
the parallelotopes Pi. Since, we are interested in bundles as symbolical representations
of polytopes, we can always replace a bundle with an equivalent one, whenever this is
convenient.

Lemma 6 (Polytope Decomposition). Let Q be a polytope. There exists a finite set of
parallelotopes {P1, . . . ,Pb} such that Q = {P1, . . . ,Pb}∩.

Proof. Any set of parallelotopes P1, . . . ,Pb whose facets union is a cover of the facets of
Q, generates a decomposing bundle such that {P1, . . . ,Pb}∩ = Q. Let {h1, . . . , hk} be
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Figure 4.9: A polytope Q and a decomposing bundle {P1,P2}, i.e., {P1,P2}∩ = Q.

the set of hyperplanes defining Q and {h′1, . . . , h′k′} = ∪bi=1{hi1, . . . , hi2n} be the union
of all the constraints appearing in the bundle, for some k′ ∈ N, k ≤ k′ ≤ b2n. The
polytope generated by the bundle is then ∩k

′

i=1h
′
i. Since H is a cover of the constraints

of Q, it holds that {h′1, . . . , h′k′} = {h1, . . . , hk} and then ∩k
′

i=1h
′
i = ∩ki=1hi = Q.

Lemma 7 (Decomposition Cardinality). dm/ne parallelotopes are sufficient to decom-
pose a polytope Q defined by m constraints into a bundle.

Proof. A single parallelotope can match at least m constraints of Q. Then, the total
number of sufficient parallelotopes to decompose Q is the number of facets of Q divided
by the worst case maximum number of constrains matchable by a single parallelotope,
i.e., dm/ne.

Example 16. Figure 4.9 shows a polytope Q together with a possible decomposition,
i.e., a bundle {P1,P2} such that {P1,P2}∩ = Q. Here m = 3 and n = 2, so d3/2e = 2
parallelotopes are sufficient to decompose Q (in our case P1 and P2).

In Section 4.5.2 we will describe an algorithm for decomposing a polytope into a
bundle in view of accurate image approximation.

In Section 4.1.2 we defined the enclosure of a compact set S ⊂ Rn with respect to
a polytope Q = 〈D, c〉 ⊂ Rn, that is the determination of a polytope Q′ = 〈Λ, c′〉 =
�(S,Q) such that the constraints of the polytope Q′ are tangent to the set S. We now
establish some properties of set enclosure that can be easily proved.

Lemma 8. Let S, S′ ⊂ Rn be compact sets with S ⊆ S′and Q = 〈D, c〉, Q′ = 〈D′, c′〉
be two polytopes such that D′ ⊆ D. It holds that:

(1) S ⊆ �(S,Q);

(2) �(S,Q) = �(S,�(S,Q)) = �(�(S,Q), Q);

(3) �(S,Q) ⊆ �(S′, Q);

(4) �(S,Q) ⊆ �(S,Q′).

Proof. We now demonstrate each item of the Lemma.

(1) It follows directly from the definition of set enclosure (Definition 7);
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(2) Let Q1 = �(S,Q), Q2 = �(S,�(S,Q)), and Q3 = �(�(S,Q), Q). By defi-
nition, Q1 = 〈D, c1〉 is an enclosing polytope such that c1i = max

x∈S
Dix, for

i ∈ {1, . . . , k}. Q2 = �(S,�(S,Q)) = �(S,Q1), hence Q2 has the same tem-
plate D of Q1. Moreover, Q2 = 〈D, c2〉 is such that c2i = max

x∈S
Dix = c11, for

all i ∈ {1, . . . , k}. Thus, c2 = c1 and then Q2 = 〈D, c2〉 = 〈D, c1〉 = Q1. Fi-
nally, Q3 = �(�(S,Q), Q) = �(Q1, Q) has the same template D of Q. Moreover,
Q3 = 〈D, c3〉 is such that c3i = max

x∈Q1=〈D,c1〉
Dix, for all i ∈ {1, . . . , k} that implies

that c3i = c1i and then Q3 = 〈D, c3〉 = 〈D, c1〉 = Q1.

(3) Let D ∈ Rk×n be a template. Since by hypothesis S ⊆ S′, it holds that ci =
max
x∈S

Dix ≤ max
x∈S′

Dix = c′i, for all i ∈ {1, . . . , k}. Thus, �(S,Q) = 〈D, c〉 ⊆
〈D, c′〉 = �(S′, Q).

(4) Let 〈D′, c′〉 = �(S,Q′). By hypothesis D′ ⊆ D hence each directions D′i that
appears also in D as Dj leads to an offsets c′i = max

x∈S
D′ix = cj . This means that

a point p ∈ �(S,Q) = 〈D, c〉 that satisfies the constraints Dp ≤ c, satisfies also
the constraints D′p ≤ c′ and then �(S,Q) ⊆ �(S,Q′).

Note that S ⊆ �(S,Q). Moreover, if Q = 〈D, c〉 and Q′ = 〈D′, c′〉, and each row of
D′ appears in D, then �(S,Q) ⊂ �(S,Q′), i.e., Q provides a better over-approximation
of S then Q′.

The notion of set enclosure can be extended to bundles.

Definition 12 (Set Bundle Enclosure). Let S ⊂ Rn be a compact set and {P1, . . . ,Pb}
be a bundle. The enclosure of S with respect to the bundle {P1, . . . ,Pb} is defined as
�(S, {P1, . . . ,Pb}) = {P′1, . . . ,P′b}, where P′i = �(S,Pi), for i = 1, . . . , b.

The set bundle enclosure shrinks the parallelotopes Pi around S, producing a bundle
whose parallelotopes P′i surround S. The two operators are related by the following
equality.

Lemma 9. �(S, {P1, . . . ,Pb})∩ = �(S, {P1, . . . ,Pb}∩).

Proof.

�(S, {P1, . . . , Pb})∩ = ∩bi=1 � (S, Pi) = �(S,∩bi=1Pi) = �(S, {P1, . . . , Pb}∩) (4.53)

The set bundle enclosure of S with respect to a polytope Q coincides with the decom-
position of the polytope given by the enclosure �(S,Q). As a consequence, we get that
�(·, ·) and �(·, ·) are equivalent, with the difference that �(·, ·) returns a parallelotope
P′, while �(·, ·) returns the bundle {P′}.

Example 17. Figure 4.10 shows the set bundle enclosure of the polytope Q with respect
to the bundle {P1,P2} of Figure 4.9. The result of �(S, {P1,P2}) is the new bundle
{P′1,P′2}.
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h1
h2

h3

Q
P′1

P′2

Figure 4.10: A polytope Q and a its set bundle enclosure with respect to {P1,P2} of
Figure 4.9: �(Q, {P1,P2}) = {P′1,P′2}.

We say that {P′1, . . . ,P′b′} is a sub-bundle of the bundle {P1, . . . ,Pb} if {P′1, . . . ,P′b′} ⊆
{P1, . . . ,Pb} and that two bundles are strongly similar if the set of normal vectors defin-
ing a parallelotope in one bundle is equal to the set of normal vectors defining a paral-
lelotope in the other bundle. The following properties of the bundle enclosure operator
immediately follow by definitions, Lemma 8, and Lemma 9.

Lemma 10. Let S, S′ ⊂ Rn be compact sets with S ⊆ S′, {P1, . . . ,Pb} be a bundle,
{P′1, . . . ,P′b′} be one of its sub-bundles, and {P′′1 , . . . ,P′′b } be a bundle strongly similar to
{P1, . . . ,Pb}. It holds that:

(1) S ⊆ �(S, {P1, . . . ,Pb})∩;

(2) �(S, {P1, . . . ,Pb}) = �(S,�(S, {P1, . . . ,Pb})) =
� (�(S, {P1, . . . ,Pb}), {P1, . . . ,Pb});

(3) �(S, {P1, . . . ,Pb})∩ ⊆ �(S′, {P1, . . . ,Pb})∩;

(4) �(S, {P′1, . . . ,P′b′}) ⊆ �(S, {P1, . . . ,Pb}) and
�(S, {P1, . . . ,Pb})∩ ⊆ �(S, {P′1, . . . ,P′b′})∩;

(5) �(S, {P1, . . . ,Pb}) is strongly similar to {P1, . . . ,Pb};

(6) �(S, {P1, . . . ,Pb}) = �(S, {P′′1 , . . . ,P′′b }).

Proof. We now demonstrate each item of the Lemma.

(1) By Lemma 8 item (1) it holds that S ⊆ �(S, Pi) ⊆ ∩bi=1�(S, Pi) = �(S, {P1, . . . , Pb})∩.

(2) By Lemma 8 item (2) we know that for each Pi, with i ∈ {1, . . . , b} it holds that
�(S, P1) = �(S,�(S, P1)) = �(�(S, P1), P1), from which it follows the thesis.

(3) It follows directly from Lemma 8 item (3).

(4) Similar to the previous cases but following from the item (4) of Lemma 8.

(5) By definition of set enclosure each parallelotope �(S, Pi) of �(S, {P1, . . . , Pb}) has
the same template of Pi, for i ∈ {1, . . . , b}.

(6) By hypothesis Pi and P ′′i have the same templates, for i ∈ {1, . . . , b}. Thus
�(S, Pi) = �(S, P ′′i ) from which it follows the thesis.
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A bundle representing a polytope may not be “minimal” in the sense that one or
more paralleloptopes can be shrunk while the resulting bundle still represents the same
polytope. The shrinking process removes subsets of parallelotopes that are not in the
polytope. Such shrinking is thus useful for many operations, in particular image over-
approximation. As we will see later, the shrinking reduces the error when the image
over-approximation is performed on shrunk parallelotopes. We thus introduce the notion
of canonical form for a bundle as follows.

Definition 13 (Bundle Canonical Form). A bundle {P1, . . . ,Pb} is in canonical form
if and only if:

�({P1, . . . ,Pb}∩, {P1, . . . ,Pb}) = {P1, . . . ,Pb}.

Intuitively, a bundle {P1, . . . ,Pb} is in canonical form if the enclosure of its symbolic
polytope P∩ = {P1, . . . ,Pb}∩ with respect to {P1, . . . ,Pb} does not affect the paral-
lelotopes Pi, for i ∈ {1, . . . , b}. The canonical form of a bundle {P1, . . . ,Pb} can be
obtained by enclosing its polytope P∩ with respect to its parallelotopes Pi. The bundle
{P′1,P′2} of Figure 4.10 is in canonical form, since it is the result of the bundle enclosure
�(Q, {P1,P2}) = {P′1,P′2} where Q = {P1,P2}∩. In virtue of Lemma 10 item (2), the
result of a bundle enclosure is always in canonical form. In other terms, the operator
�(·, ·) can be exploited for canonizing bundles, as stated by the following result.

Lemma 11 (Canonization). Let {P1, . . . ,Pb} be a bundle. The bundle:

�({P1, . . . ,Pb}∩, {P1, . . . ,Pb})

is in canonical form and it is equivalent to {P1, . . . ,Pb}.

Proof. It follows directly by the definitions of set bundle enclosure and bundle in canon-
ical form.

Intuitively, a bundle in canonical form is a “minimal” representation of the polytope,
with respect to a given set of parallelotope directions, since all the offsets are shifted
towards the constraints of the polytope. The advantage of dealing with bundles in
canonical form will become clearer on images approximation.

In the following we show the advantage of bundles in image approximation. We
start by proving some inclusions that hold on the images of bundles by a continuous
function. Note that these properties hold for all continuous functions, and in the case of
polynomials, they are particularly useful for our image approximation problem, because
we can indeed effectively enclose the image of a parallelotope.

Lemma 12 (Bundle Image). Let {P1, . . . ,Pb} be a bundle with P∩ = {P1, . . . ,Pb}∩,
P ⊂ Rm be a compact parameter set, and f : Rn × Rm → Rn be a continuous function.
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f(P1, P )

f(P2, P )
f(Q,P )

(a) ∩2
i=1 � (f(Pi, P ), {P1,P2})∩.

f(P1, P )

f(P2, P )
f(Q,P )

(b) �(f(P1, P ),P1) ∩ �(f(P2, P ),P2).

Figure 4.11: Different bundle image techniques.

The following inclusions hold:

f(P∩, P ) ⊆ �(f(P∩, P ), {P1, . . . ,Pb})∩ ⊆ (12.1)

⊆
b⋂
i=1

�(f(Pi, P ), {P1, . . . ,Pb})∩ ⊆ (12.2)

⊆
b⋂
i=1

�(f(Pi, P ), {Pi})∩ (12.3)

Proof. Since f is continuous and P∩ and P are compact, we have that f(P∩, P ) is
compact.

f(P∩, P ) ⊆ By Lemma 10 item (1)
�(f(P∩, P ), {P1, . . . ,Pb})∩ ⊆ By Lemma 10 item (3)

�(

b⋂
i=1

f(Pi, P ), {P1, . . . ,Pb})∩ ⊆ By Lemma 10 item (3)

b⋂
i=1

�(f(Pi, P ), {P1, . . . ,Pb})∩ ⊆ By Lemma 10 item (4)

b⋂
i=1

�(f(Pi, P ), {Pi})∩

Example 18. Figures 4.11 shows two bundle images. Figure 4.11a shows the intersec-
tion of the enclosures of f(P1, P ) and f(P2, P ) with respect to {P1,P2}; Figure 4.11b
shows the enclosure of f(P1, P ) with respect to P1 intersected with the enclosure of
f(P2, P ) with respect to P2. Note how the over-approximation of the first method is
tighter than the second one.

We observe that the polytope defined by item (7.3) coincides with the polytope
symbolically represented by the bundle {�(f(P1, P ), {P1})∩, . . . ,�(f(Pb, P ), {Pb})∩}.
Intuitively Lemma 12 suggests us two possible ways of approximating the image of a
polytope. In both cases we first have to symbolically represent the polytope thought a
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bundle, then either we consider the images of all the parallelotopes and we enclose each
image in a new bundle or we consider the bundle obtained by enclosing each parallelotope
image with respect to its original directions. In both cases it is only necessary to be
able to compute images of parallelotopes.

Notice that the bundle {P1, . . . ,Pb} could be not in canonical form, while the bun-
dle �({P1, . . . ,Pb}∩, {P1, . . . ,Pb}) is. The following result shows that if we approxi-
mate the image of {P1, . . . ,Pb}∩ exploiting the above lemma on the canonical bundle
�({P1, . . . ,Pb}∩, {P1, . . . ,Pb}) we get tighter approximations with respect to that ob-
tained using the initial bundle.

Theorem 2 (Canonical Bundle Image). Let us consider a bundle {P1, . . . , Pb}, with
P∩ = {P1, . . . ,Pb}∩, a compact parameter set P ⊂ Rm, and a function f : Rn × Rm →
Rn. Let also:

{P′1, . . . ,P′b} = �({P1, . . . ,Pb}∩, {P1, . . . ,Pb}).

The following relations hold among the over-approximations of f(P∩, P ):

�(f(P∩, P ), {P′1, . . . ,P′b})∩ = �(f(P∩, P ), {P1, . . . ,Pb})∩ ⊆
b⋂
i=1

�(f(P′i, P ), {P′1, . . . ,P′b})∩ ⊆
b⋂
i=1

�(f(Pi, P ), {P1, . . . ,Pb})∩
⊆ ⊆

b⋂
i=1

�(f(P′i, P ), {P′i})∩ ⊆
b⋂
i=1

�(f(Pi, P ), {Pi})∩

Proof. The thesis is a consequence of Lemma 9 together with Lemma 12 and Lemma
10.

As a consequence, having to compute the image of a generic compact set S, one can
first over approximate S through the bundle enclosure operator, which returns a bundle
in canonical form, and then exploit the above results to over-approximate the image of
S.

4.5.1 Bundle Data Structure

In this section we will provide more details on compact representation and basic trans-
formations of canonical bundles.

A parallelotope bundle in canonical form can be compactly represented through the
tuple 〈L,d,d, T 〉 where:

• L ∈ Rk×n is the directions matrix that contains the directions used to build the
parallelotopes. The i-th row Li of L represents a direction;

• d ∈ Rk is the upper offsets vector. The i-th element of d, associated with the i-th
direction Li, constitutes the half-space Lix ≤ di;

• d ∈ Rk is the lower offsets vector. The i-th element of d, associated with the i-th
direction Li, constitutes the half-space −Lix ≤ di;
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• T ∈ {1, . . . , k}b×n is the templates matrix that represents the set of the parallelo-
tope templates. Each element in T is a reference to a direction in L and offsets in d
and d. A row in T constitutes a set of half-spaces that generates a parallelotopes.

Example 19. Consider for instance the bundle {P′1,P′2} in canonical form of Fig-
ure 4.10 where P′1 = 〈Λ′1, c′1〉 and P′2 = 〈Λ′2, c′2〉 with:

Λ′1 =


1.6 1
0 1
−1.6 −1

0 −1

 c′1 =


10
3.1
−1
−1

Λ′2 =


1.6 1
−0.5 1
−1.6 −1
0.5 −1

 c′2 =


10
1
−1
1.7


This bundle can be represented by the tuple 〈L,d,d, T 〉 where:

L =

 1.6 1
0 1
−0.5 1

d =

10
3.1
1

d =

−1
−1
1.7

T =

(
1 2
1 3

)
.

With this representation we avoid the storage of redundant directions shared by
different parallelotopes. Doing so, a single operation on an entry in the tuple, indirectly
affects several parallelotopes in the bundle. Moreover, for each parallelotope we store
only n directions against 2n constraints, since we know that parallel constraints can
be obtained by reversing the signs of the normal vectors. Note that each direction Li
is associated with a unique upper and lower offset di and di. This means that if two
parallelotopes share a direction, the constraints defined by such direction coincide in
the two parallelotopes. Hence, this data structure does not allow us to represent all the
possible bundles (for instance the one shown in Figure 4.9), but it is expressive enough
to capture all the canonical bundles (like the one of Figure 4.10).

We now show how the operations presented in Section 4.5 can be defined on our data
structure 〈L,d,d, T 〉. We begin with the decomposition of a polytope (see Definition 11).

Method 1 (Polytope Decomposition). Let Q ⊂ Rn be a polytope defined by m con-
straints. Let L ∈ Rk×n be a matrix containing all the normal versors of Q without
repetitions, i.e., the elements of L are pairwise linearly independent. To generate the
i-th decomposing parallelotope, it is sufficient to pick n directions Lj1 , . . . , Ljn from L
and store their indices in the template matrix Ti = (j1, . . . , jn). By Lemmas 6 and 7,
we have to generate at most dm/ne parallelotopes such that the union of the picked di-
rections is a cover of the constraints of Q. Finally, the offset vectors d,d ∈ Rk can
be obtained by enclosing Q with respect to the constructed parallelotopes as described in
Method 2.

We now show how to compute the set bundle enclosure.

Method 2 (Set Bundle Enclosure �(·, ·)). The enclosure of a bounded set S ⊂ Rn
with respect to a canonical bundle {P1, . . . ,Pb} stored as 〈L,d,d, T 〉 can be obtained by
updating the upper and lower offset vector as di = max

x∈S
Lix and di = max

x∈S
−Lix, for

i = 1, . . . , k.

The described methods work only on canonical bundles and return a compact rep-
resentation of a canonical bundle. The enclosure of a polytope with respect to a bundle
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requires the resolution of 2k linear programs. Thus, the canonization of a bundle can
be done by solving a series of linear programs where only the offsets of the constraints
that do not participate to the intersection are modified.

The transformation of a bundle through a continuous function can be rather diffi-
cult, depending on the transforming function. If the function is linear, it is possible to
exactly compute the image of each parallelotope and then obtain the exact bundle trans-
formation. Things are more complex when the function is nonlinear and the geometric
properties of the parallelotopes are not preserved. We will now describe two methods,
based on Theorem 2, that only require to be able to compute the image of a parallelo-
tope, besides being able to implement Method 2. As stated by Lemma 12 item (3), an
over-approximation of a bundle transformation f(P∩, P ), with P∩ = {P1, . . . ,Pb}, can
be obtained by enclosing each image f(Pi, P ) with P′i = �(f(Pi, P ), {Pi})∩ and then
considering the intersection ∩bi=1P

′
i (see (12.3)). We call such approximation one-for-one

(OFO), since each parallelotope in the bundle is independently approximated.

Method 3 (One-for-One Image (OFO)). The one-for-one approximation of the bundle
〈L,d,d, T 〉 can be obtained by retrieving each parallelotope Pi, computing the enclosures
P′i = �(f(Pi, P ),Pi), and then computing the canonization of {P′1, . . . ,P′b}∩ = P′∩, that
is �(P′∩, {P′1, . . . ,P′b}).

The polytope provided by the OFO method corresponds to the set ∩bi=1�(f(Pi, P ), {Pi})∩
of Theorem 2.

In order to obtain a finer over-approximation, it is possible to change the template
in the approximation process, i.e., we can fix a new template to enclose f(Pi, P ). As
suggested by Lemma 12 item (2), we can exploit all the directions of the bundle, i.e.,
instead of looking for a new template for each parallelotope, we can bound each set
f(Pi, P ) with all the directions of the starting bundle. We call such approximation all-
for-one (AFO) since all the directions of the bundle are used to approximate the image
of a single parallelotope.

Method 4 (All-for-One Image (AFO)). The all-for-one approximation of the bundle
〈L,d,d, T 〉 can be obtained by retrieving each parallelotope Pi, computing the set bundle
enclosure {P′i1, . . . ,P

′
ib} = �(f(Pi, P ), {P1, . . . ,Pb}), and then decomposing the polytope

∩bi=1{P′i1, . . . ,P
′
ib}
∩, i.e., computing �(∩bi=1{P′i1, . . . ,P

′
ib}
∩, {P1, . . . ,Pb}).

The AFO transformation produces a bundle whose symbolic polytope corresponds
to the polytope of the left-hand side term of the last line in Theorem 2. By Theorem 2,
the AFO approximation is finer than the one produced by the OFO method. Obviously
the precision has a cost: the OFO method requires b(2n) + k optimizations against the
b(2k) + k optimizations of the AFO approach (recall that k ≥ n).

Both the approximation methods are based on a series of enclosures. The offsets
of the constraints necessary to obtain the enclosures, can be attained by solving opti-
mization problems of the form dj = max

x∈f(Pi,P )
Ljx. If the transformation function f is

nonlinear, these optimization problems might be computationally expensive. However,
in the next section we expose a method, based on the Bernstein coefficients, to efficiently
deal with images of polynomial functions.
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4.5.2 Bundle-Based Set Image

In this section we define the image computation of a parallelotope bundle with respect
to a parametric polynomial.

We define an algorithm (Algorithm 6) based on parallelotope bundles and their
operations that computes the states reached by a single step of a dynamical system. For
brevity, the bundle {P1, . . . ,Pb} is abbreviated by X.

Algorithm 6 Bundle-based reachable set integration

1: function reachStep(X,P ) . X bundle, P ⊆ Rm polytope
2: X ′ ←Transform(f , X, P )
3: X ′ ←Decompose(X ′) . Optional
4: return X ′

5: end function

The algorithm receives in input a bundle X and a parameter set P and over-
approximates the set of states reachable through the transformation of the bundle X
with respect to the dynamics f and parameter set P . The transformation performed by
the function Transform (Line 2) can be either the OFO (see Method 3) or the AFO (see
Method 4). In both cases, the transformation produces a bundle X ′ in canonical form
that over-approximates the states reachable by the dynamical system from X. Finally,
the symbolic polytope of the computed bundle X ′ can be decomposed (Line 3), obtain-
ing a new bundle whose parallelotopes combine the directions differently from X. The
decomposition is optional, but it might improve the precision in the over-approximation
of the future transformations, since the over-approximating parallelotopes might be
smaller than the ones produced by the transformation. In the following we will discuss
in detail the functions Transform and Decompose. For polynomial dynamical sys-
tems we begin with the transformation, since the decomposition is strictly related to
the way we transform the bundles.

Transformation

The transformation of a bundle is strictly related to the transformation of a single
parallelotope X = 〈Λ, c〉 and in particular to the resolution of optimization problems of
the form:

c′i = max
x∈X,p∈P

Λif(x,p).

In Section 4.2.3 we defined the function bound (Algorithm 4) that can be used to find
an upper bound b ∈ R of the polynomial Λif(x,p) over the parallelotope X and the
polytopic parameter set P such that:

b ≥ max
x∈X,p∈P

π(x,p).

We briefly recall the procedure: given a parallelotope X = 〈Λ, c〉 and a parameter
set P , the function bound calls the procedure c′i = maxBernCoeff(h(x,p), P ), where
h(x,p) = Λif(γ(q,β)(x),p) and γ(q,β)(x) is the generator function of the parallelotope
X = 〈Λ, c〉 computed by the procedure con2gen(X).
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We now see how the function Bound can be used to define our bundle transformation
methods.

The OFO transformation of a bundle 〈L,d,d, T 〉 with parameter set P ⊂ Rn, as
exposed in Method 3, can be obtained by retrieving each parallelotope Pi = 〈Λ, c〉, for
i = 1, . . . , b, computing the new offsets c′j = Bound(Λjf(x,p),Pi, P ), for j = 1, . . . , 2n,
and defining the over-approximating parallelotope P′i = 〈Λ, c′〉 ⊇ f(Pi, P ). Finally,
the canonization of the transformed bundle {P′1, . . . ,P′b} can be obtained by solving
a family of linear programs of the form max

x∈P′∩
Λix, where Λi belongs to the template

matrices of P′j and P′∩ = {P′1, . . . ,P′b}∩ is the polytope of the computed bundle.

The AFO transformation of a bundle 〈L,d,d, T 〉 with parameter set P , as defined
in Method 4, can be done as follows. For each parallelotope of the bundle Pi, for i =
1, . . . , b, we have to compute the enclosure {P′i1, . . . ,P

′
ib} = �(f(Pi, P ), {P1, . . . ,Pb}).

An over-approximation of P′im is the parallelotope 〈Λ, c′〉 where Λ is the template of
Pim and c′j = Bound(Λjf(x,p),Pim , P ), for all j = 1, . . . , 2n. Finally, the canonization

enclosure �(∩bi=1{P′i1, . . . ,P
′
ib}
∩, {P1, . . . ,Pb}) can be computed by solving a group of

linear programs of the form max
x∈P′∩

Λjx, where Λj belongs to the template matrices of

P′im and P′∩ = ∩bi=1{P′i1, . . . ,P
′
ib}
∩ is the polytope obtained by the intersection of the

polytopes of the computed bundles.

Decomposition

Since in our reachability algorithm (see Algorithm 6) we are interested in decomposing a
polytope described by a bundle, we define a function Decompose that receives in input
a bundle in canonical form 〈L,d,d, T 〉 (whose polytope P∩ has to be decomposed) and
reorganizes the templates matrix T creating a new collection of parallelotopes around
the polytope P∩. The goal of the decomposition is to create a set of small parallelotopes
whose intersection is P∩. There are two reasons why we want small parallelotopes:

1. Smaller parallelotopes Pi lead to a smaller bundle image {f(P1, P ), . . . , f(Pd, P )}
and then to a more accurate over-approximation f(P∩, P ) (see, e.g., Theorem 2);

2. The shorter the largest side length of Pi, the more accurate the over-approximation
introduced by the Bernstein coefficients (see Lemma 3).

The aspects to take into account in the construction of the parallelotopes are: the
volume and the maximum side length. Moreover, we do not have to forget that the set
of the parallelotope directions must cover the directions of the decomposed symbolic
polytope (see Definition 11). Finding the best decomposition in terms of volume and
maximum length minimization is computationally expensive and might not be possible
(recall that the set cover problem is NP-hard).

In order to efficiently find a good decomposition, we propose a heuristic technique
that constructs the parallelotopes while trying to minimize the volumes and maximum
side lengths. The proposed heuristic starts from a decomposition, applies a series of
random changes to the templates matrix, and keeps only the best one accordingly to
an evaluation function that we will soon define. The procedure is repeated until a fixed
number of iterations is reached.
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Given a bundle P∩ = {P1, . . . ,Pb}, the evaluation function should take into account
the volumes and side lengths of the parallelotopes Pi, for i ∈ {1, . . . , b}. The exact
computation of the volume of a parallelotope is rather expensive, since it is equal to the
determinant of a n×n matrix. To lighten the computation, we approximate the volume
of P = 〈Λ, c〉 with the product of the distances of its constraints:

ṽ(P) =
n∏
i=1

δ(Λix ≤ di,Λi+nx ≤ di+n) (4.54)

where δ(Λix ≤ di,Λi+nx ≤ di+n) = |di − di+n|/‖Λi‖ and ‖·‖ is the Euclidean norm.

The computation of the side lengths of a parallelotope passes inevitably through
the determination of its vertices, an operation that can be computationally expensive.
Instead of calculating the exact lengths, we opt for a faster heuristic that guesses the
lengths of a parallelotope from the angles of the directions of its constraints. Intuitively,
in the two-dimensional case, having fixed two parallel lines, the lengths of the edges not
lying on the two fixed lines are minimal when the added directions and the fixed ones

are orthogonal. Thus, we define the notion of orthogonal proximity θ(Λi,Λj) = Λ̂i,Λj

(mod π/2), where Λ̂i,Λj is the angle between Λi and Λj , i.e., Λ̂i,Λj = arccos
ΛiΛj

‖Λi‖‖Λj‖
.

The orthogonal proximity of a parallelotope P = 〈Λ, c〉 is defined as

Θ(P) = max
i,j∈{1,...,2n}

θ(Λi,Λj). (4.55)

Exploiting the notions of approximated volume ṽ and orthogonal proximity Θ, we
define the evaluation function w for a bundle as:

w({P1, . . . ,Pb}) = max
i∈{1,...,b}

αṽ(Pi) + (1− α)Θ(Pi) (4.56)

with α ∈ [0, 1] tunable parameter.

Example 20. Let us consider the dynamics of the discrete-time SIR epidemic model of
Example 6 with state variables and parameters grouped in the vectors x = (s, i, r) and
p = (β, γ):

f(x,p) =

fs(x,p) = s− βsi
fi(x,p) = i+ βsi− γi
fr(x,p) = r + γi

 . (4.57)

We also consider the box and parallelotope of Examples 14 and 15, that here we
denote with P1 and P2, respectively. Grouping P1 and P2, we define the bundle {P1,P2},
whose intersection {P1,P2}∩ leads to the polytope depicted in Figure 4.12 (in gray). It
is not difficult to see that {P1,P2}∩ is already in canonical form, hence we can exploit
our data structure to represent it.

The bundle {P1,P2}∩ can be compactly represented with the tuple 〈L,d,d, T 〉,
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Figure 4.12: Parallelotope bundle {P1,P2}. Parallelotopes P1 and P2 (in white) and
polytope {P1,P2}∩ (in gray).

where:

L =


1 0 0
0 1 0
0 0 1
1 1 0

 d =


0.85
0.20
0.00
1.00

 d =


−0.80
−0.15
−0.00
−0.95

 T =

(
1 2 3
1 3 4

)
. (4.58)

Let us now analyze the transformation of the bundle with respect to the dynamics
of the discrete-time SIR epidemic model under the influence of the parameter set P =
[0.35, 0.36]× [0.05, 0.06] where β ∈ [0.35, 0.36] and γ ∈ [0.05, 0.06].

We begin with the independent transformation of parallelotopes that compose the
bundle. The images of the parallelotopes can be over-approximated by the enclosures
P′1 = �(f(P1, P ),P1) and P′2 = �(f(P2, P ),P2), that we already encountered in Exam-
ples 14 and 15. The enclosing parallelotopes P′1 and P′2 can be used to define the bundle
{P′1,P′2} represented in Figure 4.13. The gray area represents the polytope {P′1,P′2}∩
that over-approximates the image f({P1,P2}∩, P ). In black there are some reachable
points compute with a sampling-based technique. Note how the gray area contains all
the computed reachable points. From the figure we can also note that the bundle is not
in canonical form, since, for instance, the rightmost facets on the s-axis are not aligned.

To canonize the computed bundle and obtain its OFO transformation, we can push
the directions of L towards the polytope {P′1,P′2}∩ solving a family of linear programs.
The canonization leads to the bundle that symbolically represents the polytope (depicted
in Figure 4.14a) having offsets:

d =


0.8054
0.2501
0.0120
0.9925

 d =


−0.7424
−0.1830
−0.0075
−0.9410

 (4.59)
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Figure 4.13: Parallelotope bundle {P′1,P′2} (not in canonical form) obtained by the en-
closures P′i = �(f(Pi, P ),Pi), with i ∈ {1, 2}. The constructed parallelotopes P′1,P

′
2 (in

white), the symbolic polytope {P′1,P′2}∩ (in gray), and some reachable points computed
with a sampling-based method (in black).

The AFO transformation can be obtained by maximizing each direction of L over the
images f(P1, P ) and f(P2, P ) and then keeping the tightest bounds. These maximums
can be over-approximated using the Bernstein technique. The offsets computed on the
image f(P1, P ) are:

d =


0.8250
0.2527
0.0120
1.0601

 d =


−0.7424
−0.1830
−0.0075
−0.9410

 (4.60)

while the offsets obtained on the image f(P2, P ) are:

d =


0.8202
0.2476
0.0120
0.9925

 d =


−0.7424
−0.1238
−0.0050
−0.9410

 . (4.61)

Taking the minimums between the computed bounds we obtain the offsets:

d =


0.8202
0.2476
0.0120
0.9925

 d =


−0.7424
−0.1238
−0.0050
−0.9410

 (4.62)

that lead to the AFO transformation of the bundle {P1,P2} whose symbolic polytope
is represented in Figure 4.14b.

The AFO transformation generates an over-approximation that is finer than the
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(a) OFO transformation. (b) AFO transformation.

Figure 4.14: Parallelotope bundle transformations. The symbolic polytopes generated
by the transformations (in gray) and some reachable points computed with a sampling-
based method (in black).

OFO one (the offsets coefficients d1 and d1 are tighter in the AFO case).

4.6 Bernstein Coefficients Computation

All the algorithms exposed in the previous sections share at their cores Bernstein co-
efficients. The computational complexity and precision of our algorithms are strictly
related to the computation and bound precision of the coefficients. In the spirit of
improving both performance and accuracy, we ask ourselves two questions:

1. Can we speed-up the computation of the coefficients?

2. Can we improve the precision of the bounds provided by the coefficients?

In the next sections we will try to answer to these questions defining a method to
accelerate the computation of Bernstein coefficients (Section 4.6.1), a technique that
symbolically manipulates them and avoids redundant computations (Section 4.6.2), and
a method to improve the provided bounds (Section 4.6.3).

4.6.1 Improving Efficiency

The direct computation of Bernstein coefficients from the power base representation is
exponential in the number of variables, precisely, the computational complexity of the
standard iterative method (see Equation 4.20) is O(d2n) with d maximum degree of the
polynomial and n number of variables.
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The Matrix method [168] is a technique based on operations on matrices that avoids
redundant computations and reduces the computational complexity by a multiplica-
tive factor to O(dn+1). In [176] an efficient symbolic method for restricting the set of
coefficients that contains the upper bound is proposed. Unluckily, this technique can
not be applied to parametric polynomials since it requires the numerical knowledge of
the coefficients of the treated polynomial in power base. However, we now propose an
improvement of the matrix method that can reduce further the complexity of this tech-
nique. The gain in efficiency relies in a fast transposition of multidimensional matrices.

The Matrix Method

The main idea of the Matrix method is to express Bernstein coefficients as a series of
matrix products. For instance, the univariate polynomial2 π(x,p) : R× Rm → R, that
can be expressed in both power and Bernstein basis as (see Section 4.2):

π(x,p) =

d∑
i=1

ai(p)xi =

d∑
i=1

bi(p)B(d,i)(x), (4.63)

can also be rewritten as:

π(x,p) = (1, x, x2, . . . , xd)

a0(p)
...

ad(p)

 = Xa(p), (4.64)

or as:

π(x,p) = (B(d,0)(x),B(d,1)(x), . . . ,B(d,d)(x))

b0(p)
...

bd(p)

 = Bb(p), (4.65)

where B(d,i)(x) is the i-th Bernstein polynomial of degree d and bi(p) is a parametric
Bernstein coefficient, with i ∈ Iπ.

Defining the matrix:

Ux =



1 0 0 . . . 0

1

(
1

0

)(
d

1

)−1
0 . . . 0

1

(
2

1

)(
d

1

)−1 (
2

0

)(
d

2

)−1
. . . 0

...
...

...
. . .

...
1 1 1 1 1


(4.66)

for the unit box domain, it holds that π(x,p) = Bb(p) = XU−1x b(p) from which
follows b(p) = Uxa(p) [168]. Thus, to obtain the vector of Bernstein coefficients b(p)

2We use the notation π(x,p) instead of π(x,p) to stress the fact that the vector x has only one
element and the indices i and d are scalars.
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it is sufficient to multiply the lower triangular matrix Ux by the polynomial coefficient
vector a(p).

For multivariate polynomials, things are slightly more complicated, since the coef-
ficients of the considered polynomial must be collected in a multidimensional matrix.
Given a multivariate polynomial π(x,p) : Rn × Rm → R of degree d = (d1, . . . ,dn) ∈
Nn, each coefficient ai(p), with i ∈ Iπ, is placed at the i-coordinates position in the
matrix of functions A(p) ∈ (Rm → R)d1×···×dn . Then, Bernstein coefficients can be
computed using the formula:

b(p) = (Uxn(. . . (Ux2(Ux1A(p))T )T . . . )T )T (4.67)

where the multidimensional transposition consists in a left-shift rotation of the dimen-
sions of the matrix. For instance, if M ∈ Rd1×···×dn , then MT ∈ Rd2×d3×···×dn×d1 .

The question is now how to compute multidimensional products and transpositions.
In general, operations on multidimensional matrices can be reduced to bi-dimensional
cases. In fact, a matrix A ∈ Rd1×···×dn can be represented as a matrix C ∈ Rd1×

∏n
i=2 di .

In particular, we can define the functions
⇀
η : Nn → N2 and

↼
η : N2 → Nn that map an

n-dimensional index vector (a1,a2, . . . ,an) (specifying a position in a n-dimensional ma-
trix) to a bi-dimensional index vector (c1, c2) (specifying a position in a bi-dimensional
matrix), and vice versa (see Figure 4.15), as:

⇀
η (a1,a2, . . . ,an) = (a1,

n∑
i=2

(ai

i−1∏
j=2

dj)) (4.68)

and
↼
η (c1, c2) = (a1,a2, . . . ,an) where:

ai =



c1 if i = 1;

b(c2 mod ai+1)/
i−1∏
j=2

djc if i ∈ {2, n− 1};

bc2/
n−1∏
i=2

dic if i = n.

(4.69)

Hence, the product of two multidimensional matrices can be reduced to the prod-
uct of their bi-dimensional versions. However, the transposition of the bi-dimensional
representation of a multidimensional matrix remains to be defined.

Starting from an index vector c, the transposition can be done in three steps:

1. Applying
↼
η (c) = (a1,a2, . . . ,an);

2. Performing the shift/transposition of the multidimensional coordinate (a2, a3, . . . ,
an,a1);

3. Going back to
⇀
η (a2,a3, . . . ,an,a1) = c′ = cT .

The map
⇀
η requires n sums and n(n+ 1)/2 multiplications, thus the computation of

⇀
η

is in O(n2). The whole procedures requires

n∏
i=1

di(O(n2) +O(n2)) = O(n2
n∏
i=1

di) steps.
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T T

↼
η

⇀
η

x1

x2

x3

x1

x3

x2 x2

x2

x3

x1

x2

x1

x3 x3

Figure 4.15: n-dimensional and bi-dimension transposition.

Fast Multidimensional Transposition

To improve the efficiency of the coordinate dimension change, we propose a new method
for computing the multidimensional matrix transposition operation.

Unfolding a bidimensional coordinate c = (c1, c2) we observe that:

c = (c1, c2)

= (a1,a2 + a3d2 + a4d3d2 + · · ·+ andn−1 . . .d2)
(4.70)

and if
↼
η (c1, c2) = (a1,a2, . . . ,an), (a1,a2, . . . ,an)T = (a2,a3, . . . ,an,a1). Let us denote

cT = (c′1, c
′
2), then (c′1, c

′
2) = (a2,a3 + a4d3 + a5d4d3 + · · · + andn−1 . . .d3). From

Equation 4.70 it follows that:

c′1 = a2

c′2 =
(c2 − a2)

d2
+ a1

n∏
i=3

di.
(4.71)

This means that retrieving efficiently a1 and a2 from c, we can quickly obtain (c′1, c
′
2) =

cT . By Equation 4.70, the first element a1 is c1, hence a1 = c1. Rearranging Equa-
tion 4.70 we observe that:

c = (c1, c2)

= (a1,a2 + a3d2 + a4d3d2 + · · ·+ andn−1 . . .d2)

= (a1,a2 + d2(a3 + d3(a4 + d4 . . . (an) . . . )))

= (a1,a2 + d2q)

(4.72)

from which we deduce that a2 = (c2 mod d2).
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2 3 5 7 10
0.00 0.00 0.00 0.02 0.69

1 0.00 0.00 0.00 0.01 0.12
0.00 0.00 0.00 0.00 0.05
0.00 0.01 0.81 166.35 to

3 0.00 0.00 0.05 1.36 to
0.00 0.00 0.04 0.74 76.52
0.00 0.06 42.84 to to

5 0.00 0.00 0.48 28.46 to
0.00 0.00 0.32 17.77 to
0.02 1.88 to to to

10 0.00 0.06 13.87 to to
0.00 0.05 10.54 to to

Table 4.1: Computation of Bernstein coefficients (x-axis: number of variables, y-axis:
maximum degree). Each line reports the computation times (in seconds) of standard
method, matrix method, and improved matrix method (to: time-out 180.00s).

By substitution, from Equation 4.71, we finally obtain:

c′1 = (c2 mod d2)

c′2 =
(c2 − (c2 mod d2))

d2
+ c1

n∏
i=3

di.
(4.73)

With this final equation we can directly compute cT = (c′1, c
′
2) without passing through

the functions
↼
η and

⇀
η .

With this method, the transposition of a single element requires n multiplications,

hence, the whole procedure involves O(n

n∏
i=1

di) steps, which decreases the complexity

of the standard multidimensional transposition method.

We implemented the standard iterative method, the matrix method, and our im-
proved matrix method in a C++ tool (that will be presented in Section 6.1). Table 4.1
shows a comparison between the exposed methods. As a benchmark we generated poly-
nomials of increasing number of variables (x-axis) and degree (y-axis). The polynomials
are generated in such a way that each multi-index i ∈ Iπ is associated with non-null
coefficient ai 6= 0. In doing so, for a fixed number of variables n and degrees d, we create
an extreme case where a polynomial is composed by all the possible terms from degree
(0, . . . , 0) up to (d1,d2, . . . ,dn). For the evaluations we impose a time-out threshold
to = 180.00 seconds.

From the collected data we can see how matrix methods outperform the standard
approach, especially from n ≥ 5 and di ≥ 5. Our improved matrix method is always
the fastest one and in the case n = 10,di = 3 it is the only one that provides a result
before the time-out.
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4.6.2 Symbolic Coefficients

Bernstein coefficients have been used in all the presented set image algorithms. In
particular, they have been exploited to bound the maximum of polynomials describing
the directions of approximating sets.

To recall their role, in the following we discuss the parallelotope-based set image
algorithm; however, the discussion is also valid for the box-based algorithm, since boxes
are also parallelotopes.

Let us consider as reference algorithm the parallelotope-based set image algorithm
reachStep (Algorithm 5). For a given parallelotope 〈Λ, c〉, the algorithm, passing
through the intermediate calls to bound (Algorithm 4) and maxBernCoeff (Algo-
rithm 1), performs the following main steps:

1. For all the 2n direction Λi, the composition Λif(x,p) is computed;

2. The parallelotope in constraint representation 〈Λ, c〉 is converted to the generator
representation consisting in the linear transformation γU (q,β,x);

3. With the function maxBernCoeff, Bernstein control points of the polynomial
Λif(γU (q,β,x),p) are computed and maximized over the parameter space.

Suppose that reachStep is used to compute the reachability set up to k ∈ N steps.
With this structure, Bernstein control points are computed k · 2n times.

However, observing the reachStep algorithm, we notice three important aspects:

1. By definition of generator representation, once that the base vertex q, generator
lengths β, and parameters p have been chosen, the domain of Λif(γU (q,β,x),p)
is the unit box, that is exactly the domain on which the range enclosing property
of Bernstein coefficients holds (see Lemma 4);

2. Bernstein coefficients of the functions Λif(γU (q,β,x),p), with q,β, and p seen
as symbolic constants, are functions of the form bi(q,β,p);

3. Both the template matrix Λ and generator set U are fixed, i.e., at each reachability
step the directions of the facets of the parallelotope are the same.

This means that, since the template matrix Λ and the generator set U are fixed, we do
not need to recompute Bernstein coefficients of Λif(γU (q,β,x),p) at each reachStep
call but, keeping symbolically the variables and parameters q,β, and p, we can compute
them only once obtaining a template of symbolic Bernstein coefficients that can be
numerically instantiated at each reachability step. In the following we formalize this
idea.

Given a template matrix Λ ∈ R2n×n and the correspondent set of generator ver-
sors U = {u1,u2, . . . ,un} ⊂ Rn (obtainable with a representation conversion, see Sec-
tion 4.4), we can produce a collection of symbolic Bernstein coefficients Υ, that is a
2n-dimensional vector of vectors of parametrizes coefficients of the form bi(q,β,p) :
Rn × Rn × Rm → R, with i ∈ Ihj and hj = Λif(γU (q,β,x),p).

getSymbolicCofficients (Algorithm 7) implements the realization of a collection
of symbolic coefficients building each function hj and considering q,β, and p as symbolic
constants. For each direction Λi of the given template Λ a set of symbolic Bernstein
coefficients of the form bi(q,β,p) is computed and stored in the collection Υ.
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Algorithm 7 Build collection of symbolic Bernstein coefficients

function getSymbolicCofficients(Λ)
for j = 1, . . . , 2n do

hj = Λif(γU (q,β,x),p) . Symbolic composition
Υj ←BernCoeffs(hj) . Compute Bernstein coefficients

end for
return Υ

end function

Example 21. Recall the dynamics of the SIR epidemic system, template matrix Λ, and
liner transformation γU (q,β,x) from Example 15:

f(x,p) =

fs(x,p) = s− βsi
fi(x,p) = i+ βsi− γi
fr(x,p) = r + γi

 (4.74)

Λ =


−1 0 0
−1 −1 0
0 0 −1
1 0 0
1 1 0
0 0 1

 (4.75)

γU (q,β,x) =

q1 + 0.7070β1s
q2 − 0.7070β1s+ β2i
q3 + β3r

 . (4.76)

From these elements, we build the compositions hj for j ∈ {1, . . . , 6}, where, for in-
stance, h1(q,β,x,p) = Λ1f(γU (q,β,x),p) is:

h1(q,β,x,p) = (−1, 0, 0)

fs(γU (q,β,x),p)
fi(γU (q,β,x),p)
fr(γU (q,β,x),p)

 = −fs(γU (q,β,x),p)

= −((q1 + 0.7070β1s)− β(q1 + 0.7070β1s)(q2 − 0.7070β1s+ β2i))

(4.77)

The collection Υ is populated computing the Bernstein coefficients of the various hj
keeping q,β, and p as symbolic constants. For brevity we report some examples:

Υ1,1 = − q1 + q1q2β

Υ1,2 = − q1q1β2β + q1q2β

Υ1,3 = − 0.3535β1 − q1 + q1q2β − 0.3535β1q1β + 0.3535β1q2β

(4.78)

Note how the base vertex q and generator lengths β symbolically appear together with
the system parameter β in the symbolic coefficients.

Suppose we computed a collection Υ of coefficients for a template Λ and a parallelo-



74 4. Set Image Computation

tope X = 〈Λ, c〉 whose generator function is f(γU (q,β,x) is given. In order to compute
an over-approximation X ′ ⊇ f(X,P ) = f(γU (q,β, [0, 1]n), P ), it is sufficient to:

1. Numerically instantiate q and β in the symbolic coefficient collection Υ;

2. Find the maximum coefficient c′j of each row Υj , for j ∈ {1, . . . , 2n} over the
parameter set P ;

3. Return the parallelotope 〈Λ, c′〉.

Note that without recomputing the Bernstein coefficients for X we are able to determine
X ′. This means that, with this technique, it is sufficient to compute the coefficients once
to obtain a series of parallelotope-base image over-approximations.

The function maxBernCoeff (Algorithm 8) is a variation of Algorithm 1 where,
instead of a polynomial, a collection B of Bernstein coefficients of the form b : Rn×Rn×
Rm → R is given, together with a base vertex q ∈ Rn, a vector of lengths β ∈ Rn, and
a polytopic parameter set P ⊂ Rm. The algorithm considers each coefficient b(q,β,p)
from the collection B, instantiates the symbolic coefficient b(q,β,p) with q and β,
maximizes the coefficient over P , and updates the current maximum b. At the end, it
returns the computed maximum b.

Algorithm 8 Compute maximum from collection of symbolic Bernstein coefficients

1: function maxBernCoeff(B,q,β, P ) . B set of sym. coeff.,q,β ∈ Rn, P ⊂ Rm
2: b← −∞ . Initialize current maximum
3: for b(q,β,p) ∈ B do
4: b← max

p∈P
b(q,β,p) . Maximize current coefficient

5: b← max{b, b} . Update maximum
6: end for
7: return b
8: end function

Now, let us assume that a collection Υ of symbolic Bernstein coefficients for a tem-
plate Λ ∈ R2n×n has been computed using getSymbolicCoefficients (Algorithm 7).
Such a collection can be exploited in a parallelotope-based set image algorithm. The al-
gorithm reachStep based on parametric symbolic coefficients is shown in Algorithm 9.
It receives in input a parallelotope X = 〈Λ, c〉 ⊂ Rn in template representation, a pa-
rameter set P ⊂ Rm, and a precomputed collection of symbolic Bernstein coefficients Υ.
The algorithm begins by converting the parallelotope from constraints to generators, ex-
tracting the current numerical base vertex q and generator lengths β. Then, each offset
c′j with j ∈ {1, . . . , n} is obtained with the call to the function maxCoeff(Υj ,q,β, P )
that numerically instantiates each element of Υ with q and β, maximizes each coefficient
over the parameter set P , and finally returns the maximum numerical offset c′j . Finally,
the algorithm combines the computed offsets c′ with the template Λ and returns the
over-approximating parallelotope 〈Λ, c′〉.

The benefit of this approach is that Bernstein coefficients are precomputed only once
and evaluated on the fly at each set image step. When calculating the reachable set up
to k ∈ N steps, we compute Bernstein coefficients only 2n times at the very beginning of
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Algorithm 9 Parallelotope-based reachable set integration with symbolic coefficients

function ReachStep(X,P,Υ) . X = 〈Λ, c〉 parallelotope, Υ symbolic collection
γU (q,β,x)←con2gen(X) . Get numerical q and β
for j = 1, . . . , 2n do

c′j ←maxCoeff(Υj ,q,β, P ) . Determine maximum coefficient
end for
return 〈Λ, c′〉

end function

the reachability algorithm, against the k2n times of the standard approach. Thanks to
this precomputation, the reduction of the computational load and time is remarkable.
A similar technique will be later exploited in the refinement of parameter sets.

4.6.3 Improving Precision

We conclude the chapter providing a method to obtain from Bernstein coefficients tighter
bounds and consequently generate finer over-approximations of reachable sets.

Subdivision Procedure

The subdivision procedure is a technique that improves the bounds provided by Bernstein
coefficients. A subdivision of a box X ⊂ Rn in the r-th direction, with 1 ≤ r ≤ n, is
a bisection perpendicular to this direction. Let X = [x1, x1] × . . . [xn, xn] ⊆ [0, 1]n.
If X is subdivided along the r-th component direction at some point λr ∈ [0, 1], the
resulting two sub-boxes XA and XB are XA = [x1, x1] × · · · × [xr, x̂r] × · · · × [xn, xn]
and XB = [x1, x1]× · · · × [x̂r, xr]× · · · × [xn, xn] where x̂r = xr + λr(xr − xr).

A trivial way to improve bounds is to directly recompute the coefficients for XA

and XB , mapping the unit box to XA and XB , and then using the standard procedure
(see Equation 4.20). However, there exists a more efficient method that allows one to
obtain the coefficients for XA and XB exploiting the already computed coefficients of
X [82, 89, 175].

Let π : Rn × Rm → R be a parametric polynomial, 1 ≤ ir ≤ n be a subdivision
direction, and λ ∈ [0, 1] be a subdivision point. The subdivision procedure begins with

the computation of B(0)
π = Bπ = {b(0)

i (p) | i ∈ Iπ} that is the standard set of Bernstein

coefficients for π. We then update b
(k)
(i1,...,ir,...,in)

(p) as follows:

• If ir < k, b
(k)
(i1,...,ir,...,in)

(p) = b
(k−1)
(i1,...,ir,...,in)

(p);

• If ir ≥ k, b
(k)
(i1,...,ir,...,in)

(p) = (1− λr)b(k−1)
(i1,...,ir−1,...,in)(p) + λrb

(k−1)
(i1,...,ir,...,in)

(p).

To obtain the new coefficients of XA after the subdivision of X, we apply the above
update rules for ij = 0, . . . ,dj , j = 1, . . . , r−1, r+1, . . . , n. Then, Bπ(XA) = B(dr)

π (X).
Finally, we obtain directly the coefficients Bπ(XB) since, for k = 0, 1, . . . ,dr, it holds
that:

b(i1,...,dr−k,...,in)(p)(X2) = b
(n)
(i1,...,dr,...,in)

(p)(X1). (4.79)
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The complexity of the subdivision is O(dn+1
r ).

The main property of the subdivision is that the minimum (maximum) coefficient of
the union Bπ(XA)∪Bπ(XB) is not smaller (greater) than the minimum one of Bπ(X).
This means that the subdivision can improve and always preserves the accuracy of the
range enclosure property.

Selection of Subdivision Direction

The subdivision method requires the identification of a direction ir and a subdivision
point λ through which perform the splitting. In this section we consider the problem
of finding an appropriate component direction for the subdivision to achieve better
approximations of the polynomial values by Bernstein coefficients. Heuristics for the
selection of a subdivision direction have been considered in [166, 189, 91, 152, 167].

Here we present a technique based on the largest first derivative of the studied
polynomial [91, 167]. We use the following notation to express neighboring of multi-
indices. Let i = (i1, . . . , in) be a multi-index, then i(r,k) = (i1, . . . , ir + k, . . . , in) with
0 ≤ ir + k ≤ dr.

The selection is preformed by exploiting again Bernstein expansion. More concretely,
we estimate:

max
x∈X,p∈P

| ∂π
∂xr

(x,p)| (4.80)

for each variable. Then, we select r ∈ {1, . . . , n} with the largest derivative value of X
and P . Exploiting Bernstein properties, the first partial derivative of the polynomial
with respect to xr is given by:

∂π

∂xr
(x,p) = dr

∑
i≤d(r,−1)

(bi(r,1)(p)− bi(p))B(d(r,−1),i)(x) (4.81)

where B(d(r,−1),i)(x) is the i-th Bernstein basis of degree d(r,−1) (see Section 4.2), that
implies that we do not need to explicitly compute the various derivatives, but we can
rely on Bernstein coefficients.

Finding a Subdivision Point

Once the subdivision direction r ∈ {1, . . . , n} has been chosen accordingly with the
first derivative, the second task is to find a subdivision point λr ∈ [0, 1] such that the
subdivision improves as much as possible the bounds. Since we are interest in decreasing
the upper bound, we should subdivide the domain in order to retain as much as possible
the coefficient:

bi(p) = max
i∈Iπ,p∈P

bi(p) (4.82)

that determines the bound. We chose as division point λr ∈ [0, 1] the projection of bi(p)
with the xr plane, since a good subdivision has to separate this critical intersection point
from the rest.

Note that Bernstein coefficients bi(p) are function of the parameters p; to compute
this projection, we can determine around each control point a box that accounts the
uncertainty in p, and then project the vertices of the resulting boxes (see Figure 4.16).
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xr

π(x,p)

b1(p)

b2(p)

b3(p)

b4(p)
b5(p)

λr

Figure 4.16: Finding a division point λr as the intersection of the maximum control
point with the xr-axis.

The whole subdivision procedure can be repeated until the real maximum is deter-
mined, condition that can be verified by using the sharpness property (see Lemma 5),
or until the sizes of the sub-boxes reach a given threshold.





5
Parameter Synthesis

In this chapter we focus on the parameter synthesis problem, that is, given a dynamical
system S = (X ,P, f), a set of initial conditions X0 ⊆ X , a parameter set P ⊆ P, and
a specification ϕ, find the largest subset Pϕ ⊆ P such that for all x0 ∈ X0 and p ∈ P ,
the trajectories ξpx0

of S satisfy the specification ϕ. In this work we assume that the
specifications are given as formulas of the Signal Temporal Logic (STL), a logic that
allows one to specify properties on dense-time real-valued functions.

STL and its standard semantics will be presented in Section 5.1. In order to adapt
STL to our parameter synthesis context, in Section 5.2 we will define a new semantics,
called synthesis semantics, to reason on flowpipes and sets of parameters rather than on
single trajectories. In Section 5.3 we will present a synthesis algorithm that can be used
to solve the parameter synthesis problem for discrete-time dynamical systems and STL
specifications. Its correctness and complexity will be discussed in Section 5.3.4. Finally,
in Section 5.4, also exploiting the reachability techniques developed in Chapter 4, we
will focus on the implementation of our synthesis algorithm in the case of discrete-time
polynomial dynamical systems.

5.1 Signal Temporal Logic

Temporal logic [163] is a formalism used to specify and reason on properties that involve
time. It is typically adopted in the context of formal verification, where a temporal logic
formula specifies the acceptable behaviors of a system and an algorithm is used to check
whether all the behaviors of the system satisfy the formula. This procedure is commonly
known as model checking [46]. Recently, temporal logic has found applications outside
formal verification, for instance in monitoring. In this case, a formal model is not
necessary, since the system can be treated as a black box whose observable behaviors
can be monitored by evaluating the satisfaction level of the desired temporal property.

Signal Temporal Logic (STL [143, 144]) is a recent logic that allows one to specify
properties of dense-time real-valued signals. It is particularly suitable for monitoring
blackbox systems, such as industrial models (see, e.g., [116, 115]) and biological systems
(see, e.g., [68, 177]). It has also been used in the study of parametric systems, (see,
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t

s1(t)

s2(t)

Figure 5.1: Trace w = {s1, s2} and its signals s1 and s2. Time horizon h(w) = 5.

e.g., [7]) where parametric disturbance rejection properties are formalized in STL and
then verified. An interesting aspect of STL is its semantics. In addition to the classical
semantics, where the result of the evaluation of a formula is a truth value, STL offers
a quantitative semantics that gives the idea of “how robustly” a property is satisfied or
violated [79, 11].

We now take advantage of STL in the context of the parameter synthesis problem
for dynamical systems. More concretely, we exploit its ability to reason over signals to
specify desirable executions of the dynamical system under study. Our final goal will be
the determination of sets of parameter values such that a dynamical system, under the
computed parameter set, satisfies the given STL specification.

Syntax

Let us begin with the definition of STL introducing some basic concepts. A signal is
a function s : D → S, with D ⊆ R≥0 an interval of R≥0 and S ⊆ R ∪ B, where R
and B are the set of reals and booleans, respectively. Signals defined on S = B are
called boolean signals, while those with S = R are called real-valued signals. A trace
w = {s1, s2, . . . , sn} is a set of real-valued signals of the form si : Di → S with Di ⊂ R≥0
an interval of R≥0, for i ∈ {1, . . . , n}. We denote with h(w) the time horizon of w that
is the smallest last instant on which the signals si of w are defined, i.e.:

h(w) = min
i∈{1,...,n}

supDi. (5.1)

Example 22. Figure 5.1 shows a trace w = {s1, s2} composed by two signals s1 and s2.
The time horizon of w is the smallest last time instant on which s1 and s2 are defined,
that is h(w) = 5.

Let Σ = {σ1, σ2, . . . , σk} be a finite set of predicates mapping Rn to B. For a given
j ∈ {1, 2, . . . , k}, the predicate σj is of the form σj = pj(x1, x2, . . . , xn) ∼ 0 where
∼∈ {<,≤} and pj : Rn → R is a function over the variables x1, x2, . . . , xn.

A Signal Temporal Logic [143, 71] formula is generated by the following grammar:

ϕ := σ | ¬ϕ | ϕ ∧ ϕ | ϕUIϕ (5.2)

where σ ∈ Σ is a predicate and I is a closed non-singular interval of R≥0, which includes
bounded [a, b] and unbounded [a,+∞) intervals for any 0 ≤ a < b. For t ∈ R, the
shifted interval t+ I is the set {t+ t′ | t′ ∈ I}. The time horizon h(ϕ) of a formula ϕ is



5.1. Signal Temporal Logic 81

the last time instant to which ϕ refers, i.e.:

h(σ) = 0

h(¬ϕ) = h(ϕ)

h(ϕ1 ∧ ϕ2) = max{h(ϕ1), h(ϕ2)}
h(ϕ1U[a,b]ϕ2) = max{h(ϕ1) + b, h(ϕ2) + b}

(5.3)

In the following, given a trace w and a formula ϕ, we assume that the time horizon of
w is greater than the time horizon of ϕ, i.e., h(w) > h(ϕ). This ensures that the trace
w is long enough to evaluate the formula ϕ.

Qualitative Semantics

An interesting aspect of STL is its semantics. We define two semantics for STL formulas:
a qualitative semantics, also known as Boolean semantics, and a quantitative semantics.
Intuitively, the first establishes the truth value of a formula over a trace, telling us
whether a formula holds or not; the second provides additional information on how
robustly a trace satisfies (or not) a formula. As we will see later, there is a strong
relationship between these two semantics. Later, for the synthesis of parameters, we
will take advantage only of the qualitative one. However, for completeness and future
insights, we present both of them.

Definition 14 (Qualitative Semantics). Let w be a trace, t ∈ R≥0 be a time instant,
and ϕ be an STL formula. The qualitative semantics of ϕ at time t over the trace w is
given by the following inductive definition:

w, t |= σ iff σ(w(t)) is true

w, t |= ¬ϕ iff w, t 6|= ϕ

w, t |= ϕ1 ∧ ϕ2 iff w, t |= ϕ1 and w, t |= ϕ2

w, t |= ϕ1UIϕ2 iff ∃t′ ∈ t+ I s.t. w, t′ |= ϕ2 and for all t′′ ∈ [t, t′], w, t′′ |= ϕ1

(5.4)

We say that a trace w satisfies ϕ if and only if w, 0 |= ϕ. For brevity, we write
w |= ϕ meaning w, 0 |= ϕ.

For a given formula ϕ, a trace w, and a time instant t ∈ R≥0, the satisfaction signal
X (ϕ,w, t) is defined as:

X (ϕ,w, t) =

{
> if w, t |= ϕ,

⊥ otherwise.
(5.5)

The satisfaction signal X (ϕ,w, t) tells us whether at the time t the monitored trace
w satisfies or not the STL formula ϕ. The construction of the satisfaction signal can
be recursively done on the structure of the formula, starting from the predicates and
proceeding bottom-up [143].

Example 23. Figure 5.2 shows a trace w = {s1, s2}, composed by two signals s1 and s2
(solid), and the satisfaction signals of some STL formulas (dashed). Figure 5.2a depicts
the signal s1 and the satisfaction signal of the formula ϕ1 = x1 > −0.3. Note how the
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signal jumps to true at the moment in which s1 becomes larger than −0.3. Figure 5.2b
shows the satisfaction signal of the formula ¬ϕ1 = ¬(x1 > −0.3) evaluated on the same
signal s1. Note how, due to the negation, the satisfaction signal is symmetric (with
respect to the t-axis) to the previous case. Figure 5.2c shows a different STL atomic
formula ϕ2 = x2 > 0.5 evaluated on a different signal s2. In this case, the satisfaction
signal, starting from the true value, switches to false in the moment in which s2 becomes
smaller than 0.5. Figure 5.2d considers both the signals s1 and s2 and the formula
¬ϕ1 ∧ ϕ2 = ¬(x1 > −0.3) ∧ (x2 > 0.5). Here the satisfaction signal of ¬ϕ1 ∧ ϕ2 starts
from the true value, since both s1 and s2 satisfies both the conjuncts ¬ϕ1 = ¬(x1 > −0.3)
and ϕ2 = (x2 > 0.5), but jumps to false in the moment in which the signal s1 is no longer
smaller than −0.3 and consequently the conjunct ¬ϕ1 = ¬(x1 > −0.3) is not satisfied.
Finally, Figure 5.2e shows both the signals s1 and s2 and the formula ¬ϕ1U[1,2]ϕ2 =
¬(x1 > −0.3)U[1,2](x2 > 0.5). The satisfaction signal of ¬(x1 > −0.3)U[1,2](x2 > 0.5)
starts from the true value, since there exists a time instant between 1 and 2 (like for
instance 1.1) where ϕ2 holds and in the intermediate interval (like [0, 1.1]) ¬ϕ1 always
holds. The signal jumps to false in t = 1.35 since in 1.35 + [1, 2] = [2.35, 3.35] there is
not an instant t′ in which ϕ2 holds and ¬ϕ1 holds in [1.35, t′].

Quantitative Semantics

We now define an alternative semantics for STL formulas called quantitative semantics.
The particularity of the quantitative semantics is that, in addition of knowing whether a
signal satisfies or not a formula, it establishes how robustly the formula is satisfied or not.
Intuitively, the quantitative evaluation of a formula provides a real value representing
the distance to satisfaction or violation.

Definition 15 (Quantitative Semantics). Let w be a trace, t ∈ R≥0 be a time instant,
and ϕ be an STL formula. The quantitative semantics ρ(ϕ,w, t) of ϕ at time t over the
trace w is given by the following inductive definition:

ρ(p(x1, . . . , xn) ∼ 0, w, t) = p(w(t)) with ∼ ∈ {<,≤}
ρ(¬ϕ,w, t) = − ρ(ϕ,w, t)

ρ(ϕ1 ∧ ϕ2, w, t) = min(ρ(ϕ1, w, t), ρ(ϕ2, w, t))

ρ(ϕ1UIϕ2, w, t) = sup
t′∈t+I

min(ρ(ϕ2, w, t
′), inf

t′′∈[t,t′]
ρ(ϕ1, w, t

′′))

(5.6)

The robustness signal of a formula ϕ over a trace w is the signal ρ(ϕ,w, ·).

Example 24. In this example we consider the same trace w = {s1, s2} and formulas
of Example 23, but we evaluate them using the qualitative semantics. We begin with
the predicate ϕ1 = x1 > −0.3 and the signal s1 depicted in Figure 5.3a. Applying the
function p that defines the predicate ϕ1 to the signal s1, we obtain the robustness signal
p(s1(t)) = s1(t) + 0.3 of ϕ1 with respect to w, that in this case consists in a shift of
the signal s1. Note how, in the moment in which s1 becomes larger than −0.3, the
robustness signal of ϕ1 becomes positive. Figure 5.3b shows the same signal s1 and the
robustness signal of the formula ¬ϕ = ¬(s1(t) > −0.3) obtained by changing the sign
of the robustness signal of ϕ1. Figure 5.3c shows the robustness signal of a different
predicate ϕ2 = x2 > 0.5 and signal s2. Figure 5.3d shows the qualitative semantics of the
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t

s1(t)

0.5

−0.3

>

⊥

(a) s1(t) and X (ϕ1, w, t)

t

s1(t)

0.5

−0.3

>

⊥

(b) s1(t) and X (¬ϕ1, w, t)

t

s2(t)

0.5

−0.3

>

⊥

(c) s2(t) and X (ϕ2, w, t)

t

s1(t)

s2(t)

0.5

−0.3

>

⊥

(d) w(t) and X (¬ϕ1 ∧ ϕ2, w, t).

t

s1(t)

s2(t)

0.5

−0.3

>

⊥

(e) w(t) and X (¬ϕ1U[1,2]ϕ2, w, t).

Figure 5.2: Trace w = {s1, s2} (solid) and the satisfaction signals of formulas obtained
from the atomic predicates ϕ1 = x1 > −0.3 and ϕ2 = x2 > 0.5 (dashed).
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t

s1(t)

0.5

−0.3

(a) s1(t) and ρ(ϕ1, w, t)

t

s1(t)

0.5

−0.3

(b) s1(t) and ρ(¬ϕ1, w, t)

t

s2(t)

0.5

−0.3

(c) s2(t) and ρ(ϕ2, w, t)

t

s1(t)

s2(t)

0.5

−0.3

(d) w(t) and ρ(¬ϕ1 ∧ ϕ2, w, t)

t

s1(t)

s2(t)

0.5

−0.3

(e) w(t) and ρ(¬ϕ1U[1,2]ϕ2, w, t)

Figure 5.3: Trace w = {s1, s2} (solid) and quantitative semantics of formulas built from
the atomic predicates ϕ1 = x1 > −0.3 and ϕ2 = x2 > 0.5 (dashed).

conjunction ¬ϕ1∧ϕ2 = ¬(s1(t) > −0.3)∧ (s2(t) > 0.5) obtained by taking the minimum
between the robustness signals of ¬ϕ1 and ϕ2. Finally, Figure 5.3e shows both the signals
s1 and s2 and the robustness signal of ¬ϕ1U[1,2]ϕ2 = ¬(x1 > −0.3)U[1,2](x2 > 0.5). The
robustness at time t is obtained as the maximum of the minimums of ρ((x2 > 0.5), w, t′)
and the inferiors of ρ(¬(x1 > −0.3), w, t′′) with t′′ ∈ [t, t′] and t′ ∈ t+ [1, 2].

The quantitative and qualitative semantics are connected by two central proper-
ties [71]. The first concerns the sign of a qualitative evaluation, specifically, if ρ(ϕ,w, t) 6=
0, then its signs indicates the satisfaction status.

Theorem 3. Let ϕ be an STL formula, w be a trace, and t be a time instant.

ρ(ϕ,w, t) > 0 =⇒ w, t |= ϕ

ρ(ϕ,w, t) < 0 =⇒ w, t 6|= ϕ
(5.7)

The second property concerns the proximity of traces, the respective robustness
signals, and their satisfaction status.
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Theorem 4. Let ϕ be an STL formula, w and w′ traces, and t a time instant.

w, t |= ϕ and ‖w − w′‖∞ < ρ(ϕ,w, t) =⇒ w′, t |= ϕ (5.8)

where ‖·‖∞ is the infinity norm.

This means that if w satisfies ϕ at time t, then any trace w′ whose distance form w
is smaller then ρ(ϕ,w, t) also satisfies ϕ at time t.

As previously mentioned, STL is the logic that we will use to specify the admissible
behaviors of our dynamical systems. The reason why we opt for STL is that the tra-
jectories generated by a dynamical system can be interpreted as traces on which STL
formulas can be evaluated. Therefore, STL is a natural tool to reason on trajectories.
However, we aim to study sets of trajectories generated from a dynamical system un-
der different initial conditions and parameters. It is therefore necessary to adapt the
semantics of STL in order to be able to work with flows of signals (flowpipes), rather
than with single trajectories. For this reason, in the next section we will introduce a
new semantics, called synthesis semantics, that allows us to reason with formulas over
flows of traces and sets of parameters.

5.2 STL Synthesis Semantics

In Section 5.1 we have seen how STL can be used to express properties of traces whose
components are signals of the form s : D → S with D ⊆ R≥0 interval and S ⊆ R∪B. In
Section 2.1 we defined trajectories of dynamical systems S = (X ,P, f) that are functions
of the form ξpx0

: T → X with T = R≥0 ∪ N, x0 ∈ X , and p ∈ P. It is not hard to see
that if the state space of the dynamical system X is Rn (that is often the case), then the
trajectories of the dynamical system can be interpreted as traces, and then they can be
used to instantiate STL formulas. The correspondence between traces and trajectories
makes STL a suitable logic for reasoning on dynamical systems.

Let S = (X ,P, f) be a generic dynamical system and ξpx0
be a trajectory of S with

x0 ∈ X and p ∈ P. Let ϕ be an STL formula. With a slight abuse of notation we write:

ξpx0
|= ϕ (5.9)

to indicate the qualitative semantics of ϕ at time 0 over the trace correspondent to the
trajectory ξpx0

.

Since we aim to reason on sets of trajectories and parameters, we extend the notion
of formula satisfaction to flows of trajectories. Let X0 ⊆ X and P ⊆ P. We recall
that Ξ(X0, P ) is the set of all the trajectories ξpx0

with initial conditions x0 ∈ X0 and
parameters p ∈ P (see Section 2.1). We say that a set of trajectories Ξ(X0, P ) satisfies
a formula ϕ at time 0, denoted with Ξ(X0, P ) |= ϕ if and only if:

∀ξpx0
∈ Ξ(X0, P ), ξpx0

|= ϕ. (5.10)

At this point, we have of all the elements to formalize our parameter synthesis problem
(already anticipated in Section 2.2.1) over dynamical systems and STL specifications.
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Definition 16 (Parameter Synthesis Problem). Let S = (X ,P, f) be a dynamical sys-
tem, X0 ⊆ X be an initial set, P ⊆ P be a parameter set, and ϕ be an STL formula.
Find the largest subset P ∗ϕ ⊆ P such that starting from X0, all the trajectories of the
system satisfy ϕ at time 0, that is:

Ξ(X0, P
∗
ϕ) |= ϕ. (5.11)

Note that if we consider discrete-time dynamical systems and formulas with bounded
time horizon, we can recast the parameter synthesis problem in LTL formulas involving
Boolean and next operators interpreted over finite traces [62]. However, STL offers some
advantages. First, an LTL formula expressing the bounded temporal operators (like the
until) may be long and difficult to treat. Furthermore, STL is adapt for both continuous-
time and discrete-time traces, aspect that makes it suitable for both continuous-time and
discrete-time dynamical systems. Moreover, for some classes of systems, the quantitative
analysis on a time-discretized system gives complete information also on its continuous-
time version [80].

The parameter synthesis problem requires handling of flows of parametric traces,
that can be hard, especially when the solution of the dynamical system can be only
approximated, as in our discrete-time polynomial case (see Chapter 3). Therefore we
need to find a compromise between precision and tractability of the problem. For this
reason we introduce a relaxation of the synthesis problem for approximated sets of
trajectories.

Let D = (X ,P, f) be a discrete-time dynamical system, X0 ⊆ X , and P ⊆ P, the
set of trajectories Ξ(X0, P ) of D can be over-approximated by a flowpipe W(X0,P ), such
that, for a given t ∈ N, W(X0,P )(t) = Xt, where Xt is obtained with the following
recursive scheme:

Xj+1 = {f(x,p) | x ∈ Xj ,p ∈ P}. (5.12)

The over-approximating flowpipe W(X0,P ) can be computed with the set-integration
algorithms presented in Chapter 3. However it is important to note that this is an over-
approximation of Ξ(X0, P ) since the relation between a single trace and its corresponding
parameter is not kept.

Let us now start combining flowpipes with STL formulas. In the following, we
consider STL formulas in positive normal form with bounded time horizon, i.e., formulas
generated by the following grammar:

ϕ := σ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕUIϕ (5.13)

with σ = p(x1, . . . , xn) ≤ 0, where p : Rn → R, and I = [a, b] ⊂ N. Note that in this
grammar, differently from the standard syntax (see Section 5.1), the negation operator
in not included and the disjunction is explicitly defined.

We can define a semantics on flowpipes that reflects the parameter synthesis problem
we are interested in. In particular, we define the following synthesis semantics.

Definition 17 (Synthesis Semantics). Let D = (X ,P, f) be a discrete-time dynamical
system, W(X0,P ) be a flowpipe with X0 ⊆ X and P ⊆ P, t ∈ N be a time instant, and ϕ
be an STL formula in positive normal form. The synthesis semantics Φ(ϕ,W(X0,P ), t)
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of ϕ at time t over the flowpipe W(X0,P ) is given by the following inductive definition:

Φ(σ,W(X0,P ), t) = Pσ, where Pσ ⊆ P is the largest subset such that

∀x0 ∈ W(X0,P )(t),∀p ∈ Pσ, σ(f(x0,p)) is true

Φ(ϕ1 ∧ ϕ2,W(X0,P ), t) = Φ(ϕ1,W(X0,P ), t) ∩ Φ(ϕ2,W(X0,P ), t)

Φ(ϕ1 ∨ ϕ2,W(X0,P ), t) = Φ(ϕ1,W(X0,P ), t) ∪ Φ(ϕ2,W(X0,P ), t)

Φ(ϕ1UIϕ2,W(X0,P ), t) =
⋃

t′∈t+I
(Φ(ϕ2,W(X0,P ), t

′) ∩
⋂

t′′∈[t,t′]

Φ(ϕ1,W(X0,P ), t
′′))

(5.14)

Intuitively, Φ(ϕ,W(X0,P ), t) returns a subset Pϕ ⊆ P of parameters that ensures that
ϕ is satisfied at time t starting from any point in X0 and assigning to the parameters
any value in Pϕ. Note that the synthesis semantics at time t returns a set Pϕ that
steers the system from time t+ 1 on. This is slightly counterintuitive since usually the
semantics return evaluations referring to the time instant in which they are applied.

We say that a flowpipe W(X0,P ) satisfies a formula ϕ, denoted with W(X0,P ) |= ϕ
if and only if Φ(ϕ,W(X0,P ), t) = P , i.e., the synthesis semantics does not affect the
parameter set P . It is easy to see that Φ(ϕ,W(X0,P ), t) is idempotent. This implies that
the synthesis semantics provides a refined set of parameters that satisfies the formula
ϕ. This statement is proved in the following theorem.

Theorem 5. If Φ(ϕ,W(X0,P ), 0) = Pϕ, then W(X0,Pϕ) |= ϕ.

Proof. By definition of synthesis semantics, Pϕ ⊆ P and by its idempotence property
Φ(ϕ,W(X0,Pϕ), 0) = Pϕ. Thus, by definition of flowpipe satisfaction we immediately get
that W(X0,Pϕ) |= ϕ.

SinceW(X0,P ) over-approximates Ξ(X0, Pϕ) with Pϕ ⊆ P , where Φ(ϕ,W(X0,P ), 0) =
Pϕ, if a formula ϕ is satisfied by W(X0,P ), then it is satisfied also by Ξ(X0, Pϕ). In the
following theorem we show that the parameters generated by the synthesis semantics
are also valid for the exact trajectories of a dynamical system.

Lemma 13. If Φ(ϕ,W(X,P ), t) = Pϕ, then for each x ∈ X and for each p ∈ Pϕ it holds
that ξpx , t |= ϕ.

Proof. By structural induction on ϕ.

• (σ) Let p ∈ Pσ,x ∈ X, xt−1 = ξpx (t−1), and Xt−1 =W(X,P )(t−1). Since Pσ ⊆ P
we have that xt−1 ∈ Xt−1 and xt = f(xt−1,p) ∈ f(Xt−1, Pσ). Hence, by definition
of Pσ we have that σ(xt) is true, i.e., the thesis.

• (ϕ1 ∧ϕ2) Let Φ(ϕ1,W(X0,P ), t) = Pϕ1 and Φ(ϕ2,W(X0,P ), t) = Pϕ2 . We have that
Pϕ = Pϕ1 ∩Pϕ2 . Let p ∈ Pϕ and x ∈ X, since p belongs to both Pϕ1 and Pϕ2 , by
inductive hypothesis we have that ξpx (t) |= ϕ1 and ξpx (t) |= ϕ2. Hence, we get the
thesis.

• (ϕ1 ∨ ϕ2) Similar to the conjunction.
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• (ϕ1UIϕ2) By definition, if p ∈ Pϕ, there exists t′ ∈ t + I such that p ∈ P t
′

ϕ2
∩⋂

t′′∈[t,t′]

P t
′′

ϕ1
, where P t

′

ϕ2
= Φ(ϕ2,W(X0,P ), t

′) and P t
′′

ϕ1
= Φ(ϕ1,W(X0,P ), t

′′). Hence,

by inductive hypothesis on ϕ1 and ϕ2, we attain the thesis.

Finally, we demonstrate that the results of Theorem 13, i.e., the validity of the
parameters generated by the synthesis semantics with respect to single trajectories, can
be extend to flows of trajectories.

Theorem 6. If Φ(ϕ,W(X0,P ), 0) = Pϕ, then Ξ(X0, Pϕ) |= ϕ.

Proof. This is an immediate consequence of Lemma 13.

In summary, we proved that all the trajectories starting in X0 and having parameters
in Pϕ, where Pϕ is the result of the synthesis semantics of ϕ on the flowpipe W(X0,P ),
satisfy the formula ϕ. This means that the synthesis semantics can be used to produce
under-approximations of the parameter synthesis problem (see Definition 16). In the
following section we will determine where the under-approximations are introduced.

A Conservative Solution

Computing Φ(ϕ,W(X0,P ), 0) = Pϕ we obtain a conservative under-approximation of the
solution P ∗ϕ of the original parameter synthesis problem (see Definition 16), meaning
that every parameter from the synthesized set is valid for the given dynamical system.
There are three main sources of approximations introduced by our flow-based approach.

First, in the semantics of disjunctions over flows we impose that for a parameter p
either all the states x satisfy a disjunct or they all satisfy the other one. In a more general
setting, this would correspond to approximating a property of the form ∀y(p(y) ∨ q(y))
with ∀y(p(y)) ∨ ∀y(q(y)).

Second,W(X0,P ) is an over-approximation of Ξ(X0, P ), since each state inW(X0,P )(t)
can reach any other state in W(X0,P )(t + 1). This affects the semantics of the until
operator. In fact, we need to require that there exists a time instant t′ at which ϕ2 is
satisfied by all the states.

Third, W(X0,P ) is incrementally computed using the parameter set P , so we prop-
agate points of W(X0,P )(t) that are not necessarily reachable if we replace P with a
proper subset.

In the next section we present an algorithm that computes an under-approximation
of the solution of the original parameter synthesis problem. Our algorithm is inspired
by the synthesis semantics Φ(ϕ,W(X0,P ), 0), but it produces a better approximation
since the parameter set is dynamically refined and the above-mentioned third source
of approximation is avoided as at each step only the refined parameter set is used to
determine the next set of states.
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5.2.1 (Un)Decidability

Before proceeding with the synthesis algorithm, we briefly study the decidability of the
parameter synthesis problem. In general the parameter synthesis problem (as formulated
in this work) is undecidable. This is a direct consequence of the undecidability of the
reachability problem (see Section 3.4). If we are not able to compute all the trajectories
of a dynamical system, then we are not even able to distinguish the ones that satisfy
a specification from the ones that do not, and hence we can not separate valid from
invalid parameter values.

However we can restrict the problem to some decidable classes of dynamical systems.
Similarly to reachability case (see Section 3.4), we can consider polynomial discrete-time
dynamical systems and semialgebraic sets, and show that we can write a first-order
formula that encodes the solution of a parameter synthesis problem.

Semialgebraic Parameter Synthesis

Let D = (X ,P, f) be a discrete-time parametric polynomial dynamical system, X0 ⊆ X
be the set of initial conditions, and P ⊆ P be the parameter set. Let us assume that
for each time instant i ∈ N the reached set Xi and the synthesized parameter set Pi are
semialgebraic sets, i.e., we can define two first-order formulas over the reals Xi[x] and
Pi[p] whose solutions represent Xi and Pi, respectively.

The state-parameter space at time zero can be described by the formula XP0[x,p] =
X0[x] ∧ P0[p], where the semantics of P0[p] corresponds to the initial parameter set P .
Suppose that at time i ∈ N we are interested in refining the parameter set with respect
to a predicate of the from pi(x) ≤ 0 whit pi : Rn → R polynomial. This constraint can
be described by the formula Ci[x] = pi(x) ≤ 0.

The synthesis of a parameter set at time i ∈ N with respect to the predicate pi+1(x) ≤
0 can be characterized by the following first-order formula:

Pi+1[p] = Pi[p] ∧ ∀x(XPi[x,p] =⇒ (Ci+1[f(x,p)])) (5.15)

A parameter satisfies the formula Pi+1[p] if it belongs to the previous set Pi[p] and
it is such that, together with its correspondent state x retrieved from the subformula
XPi[x,p], under the system dynamics f(x,p), it leads to a point that satisfies the
constraint Ci+1[x].

Once that the refined parameter set Pi+1[p] has been established, we can compute
the next reachable set with the formula:

XPi+1[x′,p′] = ∃x(XPi[x,p
′] ∧ Pi+1[p′] ∧ x′ = f(x,p′)). (5.16)

Note that with this formula we couple each synthesized parameter p′ from Pi+1 with its
correspondent state x and we compute the next reachable state x′ keeping the relation
with p′.

Example 25. Consider the dynamical system of Example 7 whose dynamics are xk+1 =
f(xk,p) = px2

k, with set of initial conditions X0 = [0.1, 0.2], parameter set P =
[−1.0, 1.0], and constraint p1(x) = x− 0.03 ≤ 0.
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The parameter and state-parameter sets at time zero can be described by the formulas:

P0[x0,p] ≡− 1.0 ≤ p ≤ 1.0

XP0[x0,p] ≡ 0.1 ≤ x0 ≤ 0.2 ∧ −1.0 ≤ p ≤ 1.0
(5.17)

and the constraint by the formula:

C1[x] ≡ x− 0.03 ≤ 0. (5.18)

With this setting, the valid parameter set within a single step can be characterized
by the formula:

P1[p] ≡ P0[p] ∧ ∀x(XP0[x,p] =⇒ C1[f(x,p)])

≡ (−p− 1 ≤ 0 ∧ p− 1 ≤ 0) ∧ ∀x(((−10x + 1 ≤ 0 ∧ 5x− 1 ≤ 0)∧
(−p− 1 ≤ 0 ∧ p− 1 ≤ 0)) =⇒ 100px2 − 3 ≤ 0)

(5.19)

whose equivalent version produced by the quantifier eliminator is:

P1[p] ≡ p + 1 ≥ 0 ∧ 4p− 3 ≤ 0. (5.20)

Thus, the refined parameter set is the set of points satisfying P1[p], i.e, Ps = [−1, 3/4].

Looking at the big picture, we can decompose an STL formula with bounded time
horizon in a finite series of checks on basic predicates (see the discussion between the
correspondence of bounded discrete-time STL and LTL in Section 5.2). This means
that the parameter synthesis, in this specific case, can be reduced to the satisfiability of
first-order formulas, a problem which is well known for being decidable [179, 47].

Unluckily, decidability does not imply feasibility. The quantifier elimination proce-
dure, needed to establish the truth value of a first-oder formula over the reals, is doubly
exponential in the degree of the functions appearing in the formula [102] (or in the
number of quantifier alternations, depending on the algorithm). Thus, this approach
shows that the problem is decidable and exactly solvable but it also points out that it
is computationally costly. Hence, if we want to find valid parameter sets for nontrivial
systems, we need to develop an alternative technique.

5.3 Synthesis Algorithm

An intuitive way to solve our synthesis problem is to compute the reachable sets Xj

at each time instant j, up to a fixed time instant k ∈ N. Then, by examining the
sets from time k back to time 0, we can derive the conditions on the parameters for
the satisfaction of the temporal property, as in the standard bottom-up monitoring
approaches [143]. In other terms, we could backwardly compute the synthesis semantics
of a formula with respect to a precomputed flowpipe. However, while in monitoring only
a single trace at a time is considered and that trace is already given, in our parameter
synthesis problem the reachable set needs to be approximated (since exact reachability
computation is often impossible). When approximations are used, a major drawback of
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such a backward procedure is that the error depends on the size of the parameter set
and it is accumulated step after step. The more spurious behaviors are included in the
computed set, the more restricted the parameter set is. In order to gain accuracy, it is
important to be able to remove, as early as possible, the parameter values that make
the system violate the property. This is the reason why we opt for a forward procedure.

5.3.1 Overall Structure

We describe our top-down forward algorithm ParaSynth(X,P, ϕ) (Algorithm 10),
that, for a given discrete-time dynamical system D = (X ,P, f), takes in input a set
of states X ⊆ X , a set of parameters P ⊆ P, and an STL formula ϕ in positive nor-
mal form, and produces a refinement Pϕ ⊆ P through a series of recursions driven by
the structure of ϕ. At each step, we let the system evolve under the parameter set
synthesized up to that step.

Algorithm 10 Parameter synthesis.

1: function ParaSynth(X,P, ϕ)
2: if ϕ = σ then . Predicate
3: return RefPredicate(X,P, σ)
4: end if
5: if ϕ = ϕ1 ∧ ϕ2 then . Conjunction
6: return ParaSynth(X,P, ϕ1) ∩ ParaSynth(X,P, ϕ2)
7: end if
8: if ϕ = ϕ1 ∨ ϕ2 then . Disjunction
9: return ParaSynth(X,P, ϕ1) ∪ ParaSynth(X,P, ϕ2)

10: end if
11: if ϕ = ϕ1UIϕ2 then . Until
12: return UntilSynth(X,P, ϕ1UIϕ2)
13: end if
14: end function

The algorithm is structured in four main blocks, one for each type of STL subformula:
predicate, conjunction, disjunction, and until. It uses two basic functions ReachStep
and RefPredicate:

• ReachStep(X,P ) receives in input a set of states X ⊆ X and a parameter set
P ⊆ P, and computes the image f(X,P );

• RefPredicate(X,P, σ) receives in input a set of states X ⊆ X , a parameter
set P ⊆ P, and an STL predicate σ, and computes the largest subset Pσ ⊆ P
such that all the states in f(X,Pσ) (computable by ReachStep) satisfy σ, that
is Pσ = {p | p ∈ P ∧ ∀x ∈ X,σ(f(x,p)) is true}. We call the computation of
RefPredicate a basic refinement.

The concretization of these two functions depends on the considered dynamical system
and set representation. In Section 5.4 we will discuss a possible implementation in the
case of polynomial dynamical systems and polytopes.
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Figure 5.4: Until interval cases.

The overall structure of the algorithm is the following. The base case of ParaSynth
is when the formula ϕ is a predicate σ (Line 2). In this case, the algorithm calls the
function RefPredicate(X,P, σ) that refines the parameter set P with respect to the
predicate σ and returns the result.

If ϕ is the conjunction of two formulas ϕ1 ∧ ϕ2 (Line 5), the algorithm, with two
recursive calls, produces two refined parameter sets Pϕ1

and Pϕ2
, with respect to the

subformulas ϕ1 and ϕ2, and returns the intersection Pϕ1
∩ Pϕ2

. Similarly, if ϕ is a
disjunction ϕ1 ∨ ϕ2 (Line 8), the algorithm returns the union Pϕ1 ∪ Pϕ2 .

The until case ϕ1UIϕ2 (Line 11) is slightly more complex and requires a specific
procedure.

5.3.2 Until Synthesis

The function UntilSynth(X,P, ϕ1U[a,b]ϕ2) (Algorithm 11) refines the set P with re-
spect to an until formula ϕ1U[a,b]ϕ2. It is structured in three main blocks, depending on
the values a, b that define the interval of the until formula. The cases are the following:

1. a > 0 and b > 0: the interval is far from time 0 (see Figure 5.4a);

2. a = 0 and b > 0: the interval starts at time 0 and ends somewhere else (see
Figure 5.4b);

3. a = 0 and b = 0: the interval coincides with the single time instant 0 (see Fig-
ure 5.4c).

Intuitively, the function UntilSynth recursively transforms the cases 1 and 2 into the
base case 3.

Before defining the algorithm, it is important to point out that a single until formula
ϕ1U[a,b]ϕ2 may require several basic refinements. Consider for instance the case where
ϕ1 always holds and ϕ2 holds at several time instants inside [a, b]. Here the number of
basic refinements that ϕ1U[a,b]ϕ2 requires is exactly equal to the number of time instants
in which ϕ2 holds. This means that an until can admit several valid refinements. Some
of the refined parameter sets might be included in others, but since we do not know it
in advance, we need to compute and accumulate all the possible solutions.

Let us now analyze the three cases constituting the structure of UntilSynth (Al-
gorithm 11):

1. a > 0 and b > 0: the until formula is satisfied if ϕ1 holds until ϕ2 is true inside
the interval [a, b]. We first refine the parameters at time 0 over ϕ1, obtaining
the subset Pϕ1 (Line 3). If Pϕ1 is empty, the until formula cannot be satisfied,
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Algorithm 11 Until synthesis.

1: function UntilSynth(X,P, ϕ1U[a,b]ϕ2)
2: if a > 0 and b > 0 then . Outside interval
3: Pϕ1 ← ParaSynth(X,P, ϕ1) . Check ϕ1

4: if Pϕ1 = ∅ then
5: return ∅
6: else
7: X ′ ← ReachStep(X,Pϕ1

)
8: return UntilSynth(X ′, Pϕ1 , ϕ1U[a−1,b−1]ϕ2)
9: end if

10: end if
11: if a = 0 and b > 0 then . In interval
12: Pϕ1

← ParaSynth(X,P, ϕ1) . Check ϕ1

13: Pϕ2
← ParaSynth(X,P, ϕ2) . Check ϕ2

14: if Pϕ1 = ∅ then
15: return Pϕ2 . Until unsatisfied
16: else
17: X ′ ← ReachStep(X,Pϕ1

)
18: return Pϕ2

∪ UntilSynth(X ′, Pϕ1
, ϕ1U[a,b−1]ϕ2)

19: end if
20: end if
21: if a = 0 and b = 0 then . Base
22: return ParaSynth(X,P, ϕ2)
23: end if
24: end function

and the algorithm returns the empty set. If Pϕ1 is not empty, the algorithm
performs a reachability step using the valid parameter set Pϕ1 to produce the
new set X ′ (Line 7). Now the algorithm proceeds with the recursive call Until-
Synth(X ′, Pϕ1

, ϕ1U[a,b]−1ϕ2) (Line 8). This can be seen as a step towards the
interval [a, b], except that instead of restoring the synthesis from time 1, we shift
the interval backwards by 1. Hence, the next refinement will be computed always
at time 0 (see Figures 5.5a and 5.5b). Roughly speaking, instead of proceeding
towards the interval, we pull the interval to us;

2. a = 0 and b > 0: there are two ways to satisfy the until formula:

(a) ϕ2 is satisfied right now at time 0;

(b) ϕ1 holds until ϕ2 is satisfied before the time instant b.

In the first case, we need to refine the parameter set with respect to ϕ2. If the
resulting Pϕ2

is not empty, it is a valid parameter set that satisfies the until
formula. In the second case, the algorithm refines with respect to ϕ1 and checks
whether the result Pϕ1

is empty (Line 12). If so, the until formula cannot be
satisfied in the future. Hence the algorithm returns the refined set Pϕ2 previously
computed. If Pϕ1 is not empty, the procedure performs a reachability step under
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Figure 5.5: Refinement for the case a > 0 and b > 0.
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Figure 5.6: Refinement for the case a = 0 and b > 0.

the refined parameter set Pϕ1
, obtaining the new set X ′. Similarly to the previous

case, we execute a step forward by shortening the interval by one (Line 18) (see
Figures 5.6a and 5.6b). The procedure then returns the union of Pϕ2

and the
result provided by the recursive call;

3. a = 0 and b = 0: this is the base case of the recursive calls. It suffices to refine P
with respect to ϕ2 and return Pϕ2

.

Example 26. We illustrate a schematic execution of ParaSynth for the formula
ϕ = (ϕ1 ∨ ϕ2)U[1,2](ϕ3 ∧ ϕ4).

With the initial call ParaSynth(X,P, (ϕ1∨ϕ2)U[1,2](ϕ3∧ϕ4)) the algorithm enters
in the until section and calls UntilSynth. The first synthesis is performed inside the
(a > 0 and b > 0) case with respect to the subformula ϕ1 ∨ ϕ2. ParaSynth computes
the refined sets Pϕ1

0 and Pϕ2

0 with respect to ϕ1 and ϕ2, and returns the union Pϕ1∨ϕ2

0 =
Pϕ1

0 ∪P
ϕ2

0 . Back to the until synthesis, supposing that Pϕ1∨ϕ2

0 is not empty, the algorithm
computes X0 through a reachability step from X under the parameter set Pϕ1∨ϕ2

0 , and
calling itself with the updated reachability set, the refined parameter set, and the shifted
until interval, i.e., UntilSynth(X0, P

ϕ1∨ϕ2

0 , (ϕ1 ∨ ϕ2)U[0,1](ϕ3 ∧ ϕ4)).

At this point UntilSynth enters the (a = 0 and b > 0) section. It first refines
with respect to (ϕ3 ∧ ϕ4), trying to find the first final solution. To do so, it calls
ParaSynth(X0, P

ϕ1∨ϕ2

0 , ϕ3∧ϕ4) that produces the parameter set Pϕ3∧ϕ4

1 = Pϕ3

1 ∩P
ϕ4

1 ,
result of the intersection of the two refinements of Pϕ1∨ϕ2

0 with respect to ϕ3 and ϕ4.
This set Pϕ3∧ϕ4

1 , if not empty, represents the first valid parameter set.

Trying to find other possible solutions, the algorithm proceeds by computing the pa-
rameter set Pϕ1∨ϕ2

1 through the refinement of Pϕ1∨ϕ2

0 with respect to ϕ1 ∨ ϕ2 and per-

forming a reachability step to the new set X
′′

1 . It then calls itself reducing the until
interval to [0, 0]. This is the base case (a = 0 and b = 0): the algorithm refines with
respect to ϕ3 ∧ ϕ4 and returns the refined parameter set Pϕ3∧ϕ4

2 .
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Figure 5.7: ParaSynth execution on (ϕ1 ∨ ϕ2)U[1,2](ϕ3 ∧ ϕ4).

The synthesis process is shown in Figure 5.7. The figure depicts the series of refine-
ments and reachable sets that lead to the final result Pϕ3∧ϕ4

2 ∪ Pϕ3∧ϕ4

1 .

5.3.3 Shortcuts

The parameter synthesis algorithm that we defined is structured on the subformulas
belonging to the syntax of STL in positive normal form, that are predicate, conjunction,
disjunction, and until. These subformulas can be used to define other common operators,
such as true >, false ⊥, release ϕ1RIϕ2, eventually FIϕ, and always GIϕ. The latter
can be seen as shortcuts for:

> := pm(x) ≤ 0

⊥ := pp(x) ≤ 0

ϕ1R[a,b]ϕ2 := (ϕ2U[a,b](ϕ1 ∧ ϕ2)) ∨ (ϕ2U[b+1,b+1]>)

F[a,b]ϕ := >U[a,b]ϕ

G[a,b]ϕ := >U[a,a](⊥R[0,b−a]ϕ)

(5.21)

where pm(x) and pp(x) are a negative and positive constant function, respectively (e.g.,
pm(x) = −1, pp(x) = 1), ϕ,ϕ1, and ϕ2 are STL formulas in positive normal form, and
[a, b] ⊂ N.

Intuitively, > is the logical operator satisfied by any trace, while ⊥ is the logical
operator that cannot be satisfied by any trace. The release ϕ1R[a,b]ϕ2 is satisfied if
and only if ϕ2 remains true until ϕ1 once becomes true in the interval [a, b]. If ϕ1

never becomes true, ϕ2 must hold until the end of the interval [a, b]. F[a,b]ϕ says that ϕ
eventually becomes true in [a, b], while G[a,b] requires ϕ to be always true in [a, b].

Note that the definition of the derived operators is possible only if the intervals
appearing in the temporal operators are bounded, condition satisfied by STL formulas
in positive normal form. Moreover, our syntax conversion is slightly more complicated
than the usual one since we want to avoid the negation.

The fact that we can express the presented derived operators as combinations of the
basic ones implies that our synthesis algorithm can already deal with >, ⊥, ϕ1RIϕ2,
FIϕ, and GIϕ.

However, it is worth to point out that a syntactic translation, even if correct, might
be computationally inefficient. For instance, the execution of ParaSynth on the simple
false ⊥ operator, translated into pp(x) ≤ 0, requires the execution of RefPredicate



96 5. Parameter Synthesis

and returns the empty set. This machinery can be avoided by just enriching the main
algorithm with the false case ⊥ and returning directly the empty set. Similarly, the true
case > can return the parameter set P given in input without doing any modification.

More interesting are the cases of the release, eventually, and always, that can be
treated similarly to the until (see Section 5.3.2). We now show how to compute the
refinement with respect to the always temporal operator. The release and eventually
operators can be obtained with the same scheme and small changes.

Always Synthesis

Let G[a,b]ϕ be the formula that we want to treat. As for the until case, we define a
special routine AlwaysSynth (see Algorithm 12) structured in three cases, depending
on the values of the interval [a, b] that defines G[a,b]. We recall that in order for G[a,b]ϕ
to hold, ϕ must hold in each time instant between a and b. The three cases are the
following:

1. a > 0 and b > 0: no refinement is required, hence the algorithm makes a step
towards [a, b] without affecting the current parameter set P (Line 3);

2. a = 0 and b > 0: ϕ must hold. The algorithm, through a recursive call, refines P
with respect to ϕ obtaining the refined parameter set Pϕ ⊆ P . Then, it proceeds
making a step towards b and continuing the synthesis from the reached set with
the obtained parameter set Pϕ (Lines 7-9);

3. a = 0 and b = 0: this is the base case of the recursive calls. It suffices to refine P
with respect to ϕ and return Pϕ (Line 12).

Algorithm 12 Always synthesis.

1: function AlwaysSynth(X,P,G[a,b]ϕ)
2: if a > 0 and b > 0 then . Outside interval
3: X ′ ← ReachStep(X,P )
4: return AlwaysSynth(X ′, P,G[a−1,b−1]ϕ)
5: end if
6: if a = 0 and b > 0 then . In interval
7: Pϕ ← ParaSynth(X,P, ϕ) . Check ϕ
8: X ′ ← ReachStep(X,Pϕ)
9: return AlwaysSynth(X ′, Pϕ, G[a,b−1]ϕ)

10: end if
11: if a = 0 and b = 0 then . Base
12: return ParaSynth(X,P, ϕ)
13: end if
14: end function

The definition of a dedicated procedure (as done for the always formulas) instead
of relying exclusively on syntactic translations, improves the efficiency of the whole
synthesis process, since it avoids several calls to subroutines required by the subformulas
introduced by the syntactic translation. Notice that the synthesis results provided by
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the dedicated procedures and the shortcut translations are exactly the same (assuming
that the shortcuts are correctly implemented).

5.3.4 Correctness and Complexity

In the following, we prove the correctness of the synthesis algorithm ParaSynth (Al-
gorithm 10) and determine its computational complexity.

Correctness

The following theorem establishes the correctness of ParaSynth (Algorithm 10) with
respect to the synthesis semantics and the definition of formula satisfaction under the
assumption that the function ReachStep(X,P ) exactly computes the image f(X,P )
and the function RefPredicate(X,P, σ) provides the largest valid parameter set for
the predicate σ. However, it is not hard to see that, for Theorem 7 to hold, it suffices
to provide an over-approximation of the image f(X,P ) and an under-approximation of
the valid parameter set.

Theorem 7. If ParaSynth(X,P, ϕ) returns Pϕ, then Φ(ϕ,W(X,P ), 0) ⊆ Pϕ and
Ξ(X,Pϕ) |= ϕ.

Proof. We proceed by structural induction on ϕ.

• (σ) The function ParaSynth(X,P, σ) returns the result provided by RefPred-
icate(X,P, σ). This last, by assumption of correctness of RefPredicate, re-
turns the set Pσ = {p | p ∈ P and ∀x ∈ X σ(f(x,p)) is true}. Hence, Pσ =
Φ(σ,W(X,Pσ), 0) and by Theorem 6 we get the thesis.

• (ϕ1 ∧ ϕ2) By definition ParaSynth(X,P, ϕ1 ∧ ϕ2) = Pϕ1
∩ Pϕ2

with Pϕ1
=

ParaSynth(X,P, ϕ1) and Pϕ2
= ParaSynth(X,P, ϕ2). By inductive hypothe-

sis it holds that Φ(ϕ1,W(X,P ), 0) ⊆ Pϕ1
and Φ(ϕ2,W(X,P ), 0) ⊆ Pϕ2

, that implies
Pϕ1 ∩ Pϕ2 ⊇ Φ(ϕ1,W(X,P ), 0) ∩ Φ(ϕ2,W(X,P ), 0) = Φ(ϕ1 ∧ ϕ2,W(X,P ), 0).

Moreover, since for all p ∈ Pϕ1
∩ Pϕ2

and x ∈ X, it holds that ξpx |= ϕ1 and
ξpx |= ϕ2, we have that ξpx |= ϕ1∧ϕ2, and then the thesis Ξ(X,Pϕ1

∩Pϕ2
) |= ϕ1∧ϕ2.

• (ϕ1 ∨ ϕ2) Similar to the conjunction case.

• (ϕ1U[a,b]ϕ2) We proceed by induction on the length of the interval [a, b].

– (a = 0 and b = 0) In this case Pϕ = Pϕ2
, where Pϕ2

= ParaSynth(X,P, ϕ2).
Hence, by inductive hypothesis on ϕ2, we have Φ(ϕ2,W(X,P ), 0) ⊆ Pϕ2

. More-
over, it is easy to see that Φ(ϕ1U[0,0]ϕ2,W(X,P ), 0) = Φ(ϕ2,W(X,P ), 0). So
Φ(ϕ1U[0,0]ϕ2,W(X,P ), 0) ⊆ Pϕ.

Let p ∈ Pϕ and x ∈ X. Since p ∈ Pϕ2 by inductive hypothesis we have
ξpx |= ϕ2. Hence, ξpx |= ϕ1U[0,0]ϕ2 and Ξ(X,Pϕ) |= ϕ1U[0,0]ϕ2.

– (a = 0 and b > 0) By inductive hypothesis the thesis holds for any b′ < b.
By definition of ParaSynth we have that Pϕ = Pϕ2 ∪ P ′, where Pϕ2 =
ParaSynth(X,P, ϕ2) and P ′ = ParaSynth(X ′, Pϕ1 , ϕ1U[0,b−1]ϕ2) with
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Pϕ1 = ParaSynth(X,P, ϕ1) and X ′ = ReachStep(X,Pϕ1). By inductive
hypothesis we have that both the following inclusions hold:

Φ(ϕ2,W(X,P ), 0) ⊆ Pϕ2

Φ(ϕ1U[0,b−1]ϕ2,W(X′,Pϕ1 )
, 0) ⊆ P ′.

To show the inclusion of the thesis, we now show that if a parameter p
belongs to Φ(ϕ1U[0,b]ϕ2,W(X,P ), 0), then it belongs also to Pϕ2 ∪ P ′. Since
p ∈ Φ(ϕ1U[0,b]ϕ2,W(X,P ), 0), by definition of synthesis semantics, it must
hold that either p ∈ Φ(ϕ2,W(X,P ), 0), or there exists t′ ∈ [0, b] such that
p ∈ Φ(ϕ2,W(X,P ), t

′) and for all t′′ ∈ [0, t′], p ∈ Φ(ϕ1,W(X,P ), t
′′). In the

first case, since p ∈ Φ(ϕ2,W(X,P ), 0), by inductive hypothesis we have that
p ∈ Pϕ2

. In the second case, we have that:

p ∈
t′′⋂
t′=0

Φ(ϕ1,W(X,P ), t
′) ∩ Φ(ϕ2,W(X,P ), t

′′)

p ∈ Φ(ϕ1,W(X,P ), 0) ∩
t′′⋂
t′=1

Φ(ϕ1,W(X,P ), t
′) ∩ Φ(ϕ2,W(X,P ), t

′′)

p ∈ Φ(ϕ1,W(X,P ), 0) ∩ Φ(ϕ1U[1,b]ϕ2,W(X,P ), 1)

p ∈ Φ(ϕ1,W(X,P ), 0) ∩ Φ(ϕ1U[0,b−1]ϕ2,W(f(X,P ),P ), 0)

Since X ′ = f(X,Pϕ1
) ⊆ f(X,P ), it holds the inclusion:

Φ(ϕ1U[0,b−1]ϕ2,W(f(X,P ),P ), 0) ⊆ Φ(ϕ1U[0,b−1]ϕ2,W(X′,Pϕ1 )
, 0) ⊆ P ′

from which, by inductive hypothesis, we deduce that p ∈ P ′.
Let p ∈ Pϕ and x ∈ X. If p ∈ Pϕ2

, then we immediately get the thesis by
inductive hypothesis. If p ∈ P ′, then p ∈ Pϕ1

and ξpx |= ϕ1. Hence, since P ′

is returned by ParaSynth(X ′, Pϕ1 , ϕ1U[0,b−1]ϕ2), by inductive hypothesis
we have that ξp

ξpx (1)
|= ϕ1U[0,b−1]ϕ2. Hence, ξpx |= ϕ1U[0,b]ϕ2.

– (a > 0 and b > 0) Identical to the second part of the previous case.

Computational Complexity

Let us now determine the computational complexity of ParaSynth (Algorithm 10).
As far as the computational complexity of our algorithm is concerned, let us refer to
RefPredicate, ReachStep, ∪, and ∩ as symbolic operations. If we have a formula
without until operators our procedure performs a number of symbolic operations that
is linear in the length of the formula. In the case of formulas with possibly nested
until operators, in the worst case, we could perform an exponential number of symbolic
operations with respect to the minimum between the length of the formula and its time
horizon.
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Let us consider the case of formulas using only predicates and U[0,1] operators. Let
the length of a formulas ϕ be defined as the maximum number of nested until operators.
For a formula ϕ1U[0,1]ϕ2 having length m and horizon k our recursive procedure has a
recursive complexity equation in term of symbolic operations of the form:

T (m, k) =

{
Θ(1) if m = 1 or k = 0

T (m2, k2) + T (m1, k1) + T (m, k − 1) + Θ(1) otherwise
(5.22)

where mi and ki are the length and horizon of ϕi.

In the worst case we could have m2 = m− 2 and k2 = k − 1. In this case we obtain
T (m, k) ≥ 2T (m − 2, k − 1) + Θ(1), which tells us that in the worst case T (m, k) =
Ω(2min(m,k)) (number of symbolic operations). If we were interested in monitoring a
formula over a finite set of traces, we could have reduced such complexity to a polynomial
one (see, e.g., [143, 71]). As we already pointed out, since we are interested in refining
sets of parameters and to avoid rough approximations we do not use a precomputed set
of traces, we do not see an easy way to reduce this complexity. However, it is important
to notice that the worst case complexity occurs only in very pathological cases, which
are not typical in real case studies.

5.4 The Polynomial Case

In the previous section we presented ParaSynth (Algorithm 10), an abstract algorithm
that synthesizes a parameter set under which the behaviors of a dynamical system satisfy
a given specification. A concrete application of ParaSynth depends on the ability of
representing parameter sets and implementing the function ReachStep for computing
the system evolution, and the function RefPredicate for refining the parameter set.

We now propose a concretization of the algorithm for polynomial discrete-time dy-
namical systems with polytopic parameter sets. However, notice that the abstract algo-
rithm exposed in Section 5.3 can be used for more general systems as long as an imple-
mentation of the required procedures are provided. An example might be continuous-
time piecewise-linear dynamical systems, for which reachability techniques and tools
have been developed [6, 87].

From now on, we work with polynomial discrete-time dynamical systems of the form
D = (X ,P, f), where X = Rn, P = Rm, and f : Rn×Rm → Rn is a polynomial. We also
assume that the threated sets of parameters P ⊂ P are polytopes (see Section 4.1.1).
For this class of dynamical systems and set representation we will show how to:

1. Manipulate parameter sets, namely, computing their intersections and symboli-
cally representing their unions;

2. Implement the RechStep procedure, that over-approximates the single step evo-
lution of the dynamical system;

3. Implement the RefPredicate procedure, that refines a parameter set so that the
evolution of the system satisfies a given predicate within a single step.
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5.4.1 Parameter Set Representation and Manipulation

The first implementation aspect we consider is the representation and manipulation of
sets of parameters. A polytope (see Section 4.1.1) is the simplest form that we use to
represent a parameter set. With the notation P = Ap ≤ b we mean that the parameter
set P corresponds to the solution of the linear system Ap ≤ b. More complex parameter
sets can be obtained by the intersection and the union of several basic convex polytopes.

Let P1 = A1p ≤ b1 and P2 = A2p ≤ b2 be two convex polytopes. It is not
difficult to see that the intersection P1 ∩ P2 is the convex polytope that corresponds to
P1 ∩ P2 = Ap ≤ b, where:

A =

(
A1

A2

)
and b =

(
b1
b2

)
. (5.23)

Less trivial is the union of two polytopes that might lead to a nonconvex set and
consequently the representation through a linear system may not be possible. For this
reason we symbolically represent the union of two polytopes P1 and P2 by simply keeping
the list of the corresponding linear systems. Formally, with a slight abuse of notation,
P1 ∪ P2 is represented as P1 ∪ P2 = {A1p ≤ b1, A2p ≤ b2}.

It is now important to note that, thanks to the distributivity property, every param-
eter set can be represented as the union of intersections. If a parameter set P is in the
form:

P =

n⋃
i=1

mi⋂
j=1

Pi,j = (P1,1 ∩ . . . ∩ P1,m1
) ∪ . . . ∪ (Pn,1 ∩ . . . ∩ Pn,mn) (5.24)

then it is said to be in union normal form. This form is suitable for our set representation
since the intersections of sets can be collapsed in a unique linear system while the unions
can be stored in single list.

Example 27. Let Pi = Aip ≤ bi for i = 1, . . . , 4 be parameter sets and P = P1 ∩ (P2 ∩
(P3 ∪ P4)) whose union normal form is:

P1∩
(
P2∩(P3∪P4)

)
= P1∩

(
(P2∩P3)∪

(
P2∩P4)

)
= (P1∩P2∩P3)∪(P1∩P2∩P4). (5.25)

Thus P = {A′p ≤ b′, A′′p ≤ b′′} where:

A′ =

A1

A2

A3

 ;

b1b2
b3

 = b′ A′′ =

A1

A2

A4

 ;

b1b2
b4

 = b′′. (5.26)

5.4.2 Single Step Evolution

The second important element of an implementation of ParaSynth is the realization of
the procedure ReachStep able to compute the single reachability step of the threated
dynamical system.

Chapter 4 has been entirely dedicated to the realization of the set image algorithm
ReachStep. We have defined several techniques that depend on the representation of
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the reachable set. In particular, given a parametric polynomial f : Rn × Rm → Rn and
a polytope P ⊂ Rm, we have seen how to over-approximate the set f(X,P ) with:

• X ⊂ Rn begin a box (see Section 4.3);

• X ⊂ Rn begin a parallelotope (see Section 4.4);

• X ⊂ Rn begin a symbolic polytope represented by a parallelotope bundle, i.e.,
a collection of parallelotopes whose intersection generates a polytope (see Sec-
tion 4.5).

We briefly recall that all the developed methods for determining an over-approximation
set X ′ ⊇ f(X,P ) share similar key steps:

1. Define a transformation v(x) : Rn → Rn that maps the unit box to the set X;

2. Consider the composition f(v(x),p) and exploit Bernstein coefficients and their
properties to bound the directions of X ′ over f(X,P ) (see Section 4.2);

3. Use the obtained bounds to construct a set X ′ ⊇ f(X,P ) that over-approximates
the image of f(X,P ).

For the detailed descriptions of the mentioned methods, the reader can refer to Chap-
ter 4.

5.4.3 Basic Refinement

Finally, we focus on the third and last basic element of ParaSynth, that is the im-
plementation of the function RefPredicate that refines a parameter set so that the
given dynamical system satisfies within a single step a given predicate.

We assume that the considered predicates σ = p(x) ≤ 0 are linear in x and that
all the coefficients ai(p) of the system dynamics f(x,p) are linear in the parameters p.
These assumptions will allow us to recast the refinement problem in terms of a linear
program.

Let D = (X ,P, f) be a discrete-time dynamical system and X ⊆ X be a set. The
technique we are going to expose can be applied in both the cases when X is a box or
a parallelotope. Let v(x) : Rn → Rn be the map that transforms the unit box [0, 1]n

to the set X. In the case where X is a box, v(x) can be obtained with the function
mapUnitBoxTo (see Section 4.3). Otherwise, in the case where X is a parallelotope,
v(x) corresponds to the generator function γU (q,β,x) obtainable with the function
con2gen (see Section 4.4).

To check whether the system satisfies the predicate σ = p(x) ≤ 0 we consider the
function g(x,p) = p(f(v(x),p)) and its Bernstein coefficients Bg = {bi(p) | i ∈ Ig}.
Since the maximum Bernstein coefficients is an upper bound of the maximum of g(x,p),
if we ensure that all the coefficients are smaller-equal than zero, then we are sure that
g(x,p) is smaller-equal than zero too, that corresponds saying that f(v(x),p) satisfies
the predicate σ.

Formally, the following is a sufficient condition for the system to satisfy the predicate
σ after one discrete step starting from the set X with parameter set P :

∀bi(p) ∈ Bg∀p ∈ P,bi(p) ≤ 0. (5.27)
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Note that since p(x) is by assumption a linear function and the parameters p appear
linearly in the dynamics f(x,p), the coefficients in the monomial of g(x,p) remain linear
in p. This means that the constraints of Equation 5.27 are linear inequalities over p.
This observation allows us to translate the basic refinement problem in the resolution
of a system of linear inequalities.

Suppose that the current states of the system are represented by the set X ⊆ X .
The refinement of the parameter set P , represented by the linear system P = Ap ≤ b,
with respect to the predicate σ = p(x) ≤ 0 can be obtained by the following steps:

1. Build the composition g(x,p) = p(f(v(x),p)) and compute the set of Bernstein
coefficients Bg = {bi(p) | i ∈ Ig};

2. Build a new linear system appending all the new constraints bi(p) ≤ 0 to P , for
bi(p) ∈ Bg. We will refer with Pσ to the new linear system;

3. Check whether Pσ has solutions, i.e., it is not empty.

By adding new constraints to the parameter set P we eliminate the values of P such
that the system does not satisfy the predicate σ. This is de facto the point in which the
parameters refinement happens.

When we construct the refined set Pσ by adding the constraints bi(p) ≤ 0 to the
set P , in order to control the growth of Pσ in terms of constraints, it is a good idea
to check the eventual redundancy of the new constraints bi(p) ≤ 0 with respect to
the set P . A trivial way to implement this check, is to verify whether bi(p) ≤ 0 is
already present in P or if there are constraints with the same direction of bi(p) ≤ 0 but
dominating offsets. More sophisticated and complete (but more expensive) approaches
consist in the resolution of families of liner programs [122, 136, 180] or ad-hoc symbolical
methods [185, 114].

Once that Pσ has been constructed, we check if it has solutions. The emptiness test
can be efficiently carried out by a single linear program. If the refined parameter set is
not empty, then the set X ′ = f(X,Pσ) satisfies the predicate σ.

If Pσ has no solutions, then either there are no parameter values in Pσ such that the
system can satisfy the predicate σ, or the over-approximation of the set X introduced
by Bernstein coefficients is not enough accurate to produce a valid parameter set.

Example 28. Let us consider the dynamics of the discrete-time SIR epidemic system
of Example 6 with state variables and parameters grouped in the vectors x = (s, i, r) and
p = (β, γ):

f(x,p) =

fs(x,p) = s− βsi
fi(x,p) = i+ βsi− γi
fr(x,p) = r + γi

 . (5.28)

Let X = 〈D, c〉 = [0.80, 0.85]× [0.15, 0.20]× [0, 0] and P = [0.35, 0.36]× [0.05, 0.06]. Let
us consider the predicate σ = p(x) ≤ 0 = i − 0.248 ≤ 0, i.e., we want to synthesize the
parameters of P so that the number of infected individuals from X is below 0.248 within
a single reachability step.
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From Example 14, we know that the map v that transforms the unit box to X is:

v(x) =

0.85− 0.80 0 0
0 0.20− 0.15 0
0 0 0− 0

si
r

+

0.80
0.15

0

 (5.29)

whose composition with the system dynamics leads to the function:

h(x,p) =

fs(v(x),p) = (0.05s+ 0.80)− β(0.05s+ 0.80)(0.05i+ 0.15)
fi(v(x),p) = (1− γ)(0.05i+ 0.15) + β(0.05s+ 0.80)(0.05i+ 0.15)
fr(v(x),p) = γ(0.05i+ 0.15)


(5.30)

The composition g(x,p) = p(h(x,p)) of the constraint function p(x) with h(x,p) is:

g(x,p) = (1− γ)(0.05i+ 0.15) + β(0.05s+ 0.80)(0.05i+ 0.15)− 0.248 (5.31)

whose Bernstein coefficients are:

Bg = { 3

25
β− 3

20
γ− 49

500
,

4

25
β− 1

5
γ− 6

125
,

51

400
β− 3

20
γ− 49

500
,

17

100
β− 1

5
γ− 6

125
}. (5.32)

Constructing and appending the constraints bi(p) ≤ 0, for bi(p) ∈ Bg, to the linear
system of P we obtain the new linear system:

1 0
−1 0
0 1
0 −1

3/25 −3/20
4/25 −1/5

51/400 −3/20
17/100 −1/5


(
β
γ

)
≤



0.36
−0.35
0.06
−0.05
49/500
6/125
49/500
6/125


(5.33)

whose solution constitutes the refined valid set Pσ ⊆ P . The graphical representations
of the original parameter set P (in white) and the refined one Pσ (in gray) are shown
in Figure 5.8.

Example 29. We now show a schematic execution of ParaSynth on the base of the
implementation choices discussed in this section. Let us consider the formula (φ1 ∨
φ2)U[1,2](φ3 ∧ φ4) of Example 26.The algorithm starts with ParaSynth (X,P, (φ1 ∨
φ2)U[1,2](φ3 ∧ φ4)) that invokes UntilSynth that enters in the case (a > 0 and b > 0)
and performs the first refinement of P with respect to the subformula φ1 ∨ φ2 by calling
ParaSynth. This function synthesizes P by refining with respect to both the predicates
φ1 and φ2 and merging the partial results. The result is the set P 0

φ1∨φ2
= {P 0

φ1
, P 0

φ2
}.

At this point, UntilSynth opens a branch from X for each computed refinement. We
denote by X0

1 the set reached from X under P 0
φ1

and by X0
2 the set reached from X

under P 0
φ2

. UntilSynth proceeds with two recursive calls, UntilSynth(X0
1 , P

0
φ1
, (φ1∨
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Figure 5.8: Result of a basic refinements. Original (in white) and refined (in gray)
parameter sets.

φ2)U[0,1](φ3∧φ4)) and UntilSynth(X0
2 , P

0
φ2
, (φ1∨φ2)U[0,1](φ3∧φ4)). We now consider

the first recursive call. In this phase, UntilSynth is in the case (a = 0 and b > 0).
First, trying to satisfy the whole until, the algorithm refines the set P 0

φ1
with respect

to φ3 and φ4. This is done by calling ParaSynth (X0, P 0
φ1
, φ3 ∧ φ4). We denote the

result with P 1,1
φ3∧φ4

= P 1
φ3
∩ P 1

φ4
. If not empty, P 1,1

φ3∧φ4
is the first valid parameter set.

Trying to find other solutions, UntilSynth refines also with respect to φ1 ∨φ2 opening
two new branches, one for each disjunct. Each branch corresponds to a recursive call
of the form ParaSynth (X1

2 , P
1,1
φ1
, (φ1 ∨ φ2)U[0,0](φ3 ∧ φ4)). The synthesis process is

shown in Figure 5.9.

A More Sophisticated Basic Refinement

At the moment the refinement algorithm halts whenever the parameter set becomes
empty or it has analyzed the whole specification. If we are able to distinguish whether
the parameter set is truly empty (i.e., there are no valid parameter values) or there
is an accumulation of error introduced by Bernstein coefficients, then we can either
definitely halt the synthesis, or we can try to improve the precision of the refinement,
providing more accurate results. This section is dedicated to the detection of false empty
parameter sets.

The idea is to exploit the sharpness property (see Lemma 2) that states that the
values of a polynomial π(x,p) are exactly matched by the Bernstein coefficients bi(p)
when i is a vertex of the box [0,d1] × · · · × [0,dn], with dj degree of the j-th variable
of π(x,p), for j ∈ {1, . . . , n}.

Let us consider the refined parameter set Pσ, that is the intersection of the previous
parameter set P with the constraints bi(p) ≤ 0, where bi(p) ∈ Bg are the Bernstein
coefficients of the function g(x,p) = p(f(v(x),p)). If Pσ is empty and the multi-index i
of maximum coefficients bi(p) lies on one of the vertices of the box [0,d1]×· · ·×[0,dn], by
the sharpness property we deduce that the exact maximum of g(x,p) is equal to bi(p),
and thus there are no parameter values such that the predicate σ can be satisfied. This
implies that at this point the parameter set is truly empty, and thus we can halt the
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X

X0
1

X0
2

X1
1

X1
2

X1
3

X1
4

X1
5

X1
6

X2
2

X2
3

X2
5

X2
6

P 0
φ1

P 0
φ2

P 1,1
φ3∧φ4

P 1,1
φ1

P 1,1
φ2

P 1,2
φ3∧φ4

P 1,2
φ1

P 1,2
φ2

P 2,2
φ3∧φ4

P 2,3
φ3∧φ4

P 2,5
φ3∧φ4

P 2,6
φ3∧φ4

Figure 5.9: ParaSynth execution on (φ1 ∨ φ2)U[1,2](φ3 ∧ φ4) with polynomials and
polytopes.

synthesis procedure.

On the other hand, if the sharpness property does not hold, i.e., the multi-index i
lies on a non-vertex point of the box [0,d1]× · · · × [0,dn], the parameter set Pσ might
be empty because of the over-approximation introduced by Bernstein coefficients, and
not because of the unfeasibility of the predicate. Thus, we can subdivide the computed
Bernstein coefficients (using the subdivision methods exposed in Section 4.6.3) in the
hope of improving the upper bound of g(x,p) provided by its Bernstein coefficients
and obtaining a nonempty parameter set Pσ. The subdivision can be repeated until a
nonempty set is found or a tolerance precision threshold is reached.

We now define a more sophisticated version of the RefPredicate algorithm that
takes into account these observations. RefPredicate (Algorithm 13) implements the
refinement of a parameter set P with respect to a predicate σ = p(x) ≤ 0 involving the
sharpness property and the subdivision of Bernstein coefficients. It receives in input a
box or parallelotope set X ⊂ Rn, a polytopic parameter set P ⊂ Rm, an STL predicate
σ = p(x) ≤ 0, and produces in output a polytopic set Pσ ⊆ P such that for all p ∈ Pσ
and x ∈ X, f(x,p) satisfies σ.

The algorithm begins by computing the map v(x) that transforms the unit box
to the current set X (Line 2). The map v(x) can be computed with the function
mapUnitBoxTo in the case where X is a box (see Section 4.3) or with con2gen
when X is a parallelotope (see Section 4.4). Then it defines the composition g(x,p) =
p(f(v(x),p)) (Line 3) and computes the set of Bernstein coefficients Bg (Line 4). The
first attempt of refinement is done by the function BuildLS that merges the current
parameter set P with the collection of constraints bi(p) ≤ 0, where bi(p) ∈ Bg, and
generates the set Pσ (Line 5). BuildLS can also contain some subroutines to detect and
eliminate redundant constraints from the refined parameter set Pσ (see the discussion
in Section 5.4.3).

If Pσ is nonempty, it means that a valid refinement has been found, and the algo-
rithm returns it. Otherwise the algorithm checks whether the sharpness property holds.
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If not, there is no valid refinement, hence the empty set is returned. Otherwise, the algo-
rithm tries to refine the constraints bi(p) ≤ 0 by subdividing the Bernstein coefficients
(Line 9). This is realized with a while loop that iterates until a precision threshold on
the coefficients is reached (Line 8) or a nonempty parameter set is found (Line 12).

Algorithm 13 Parameter set refinement with respect to a predicate with subdivision.

1: function RefPredicate(X,P, σ) . X box or parallelotope, σ = p(x) ≤ 0
2: v(x)←mapUnitBoxTo(X) . or con2gen(X) for X parallelotope
3: g(x,p)← p(f(v(x),p))
4: Bg ←BernCoeffs(g)
5: Pσ ←BuildLS(P,Bg) . First refinement
6: if Pσ = ∅ then
7: if ¬Sharpness(Bg) then . Check whether sharpness holds
8: while LargeEnough(Bg) do
9: Bg ←Subdivide(Bg) . Increase coefficients precision

10: Pσ ←BuildLS(P,Bg) . Preciser refinement
11: if Pσ 6= ∅ then
12: return Pσ
13: end if
14: end while
15: end if
16: end if
17: return Pσ
18: end function

This procedure allows one to attain preciser parameter sets and establish when there
are no valid refinements. The precision of the refinements, checked by the function
LargeEnough, is left as a parameter tunable by the user.

Symbolic Refinement

In conclusion, we discuss a further improvement in the basic refinement that concerns
the computation of the Bernstein coefficients of the composition g(x,p) = p(f(v(x),p)).
Similarly to the set image case (see Section 4.6.2), also here we can think of symbolically
precomputing the Bernstein coefficients for all the predicates of a specification rather
than computing them all the times in which the synthesis algorithm needs a basic
refinement.

With the purpose of speeding up the parameter synthesis, we define the procedure
InitPredCoefficients (Algorithm 14) that receives in input an STL formula ϕ in
positive normal form, that is the specification imposed on our system, and initializes
a data structure Σ that contains the Bernstein coefficients related to each predicate σ
appearing in ϕ. If p distinct predicates appear in the formula ϕ, then Σ will contain p
sets of Bernstein coefficients.

The algorithm recursively works on the specification ϕ. If ϕ is already a predicate
σ = p(x) ≤ 0, the algorithm builds the composition g(x,p) = p(f(v(x),p)), computes
its Bernstein coefficients, and stores them in the data structure Σ at the correspondent
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entry Σσ (Line 4). If ϕ is not a predicate, the algorithm extracts the two subformulas
ϕ1 and ϕ2 that compose ϕ and recursively calls itself on ϕ1 and ϕ2. Note that since ϕ
is assumed to be in positive normal form, it will always have two subformulas (since it
can be a conjunction, a disjunction, or an until).

Algorithm 14 Symbolic precomputation of predicates coefficients.

1: function InitPredCoefficients(ϕ) . ϕ STL formula
2: if ϕ = σ then . Predicate σ = p(x) ≤ 0
3: g(x,p)← p(f(v(x),p))
4: Σσ ←BernCoeffs(g) . Compute Bernstein coefficients
5: else
6: [ϕ1, ϕ2]←SubFormulas(ϕ) . Fetch subformulas
7: InitPredCoefficients(ϕ1) . and recursively initialize their predicates
8: InitPredCoefficients(ϕ2)
9: end if

10: return Pσ
11: end function

This precomputation can be invoked before the execution of the synthesis algorithm
ParaSynth and the data structure Σ can be exploited by the basic refinement Ref-
Predicate. Let t, p ∈ N be the time horizon and the number of predicates appearing
in ϕ, respectively. With this astuteness, Bernstein coefficients are computed Θ(p) times
against the Θ(p · t) times of the nonsymbolic approach.





6
Tool and Experimental Results

This chapter is devoted to the description and evaluation of the tool Sapo that imple-
ments the reachability and parameter synthesis techniques previously described. The
developed techniques and tool are assessed on some polynomial dynamical systems for
both reachability analysis and parameter synthesis. We will analyze artificial, biological,
and mechanical models.

The chapter is organized in two main sections. In the first (Section 6.1), we will
describe our tool, focusing on its structure, highlighting its main features, and our
implementation choices. In the second (Section 6.2), we will exercise and evaluate Sapo
on some polynomial parametric discrete-time dynamical systems.

6.1 Architecture

We begin with the description of the tool Sapo that gathers the implementations of
the reachability and parameter synthesis techniques previously described. The overall
architecture of Sapo is summarized in Figure 6.1.

The main module of the tool is Sapo (Section 6.1.1), that handles the computation of
reachable sets and the synthesis of parameters. Another important module is the Base

Converter (Section 6.1.4) that allows us to compute the Bernstein coefficients of a given
polynomial. The Bundle and Parallelotope modules (Sections 6.1.5 and 6.1.6) are
used to represent sets of states of dynamical systems, while Linear System and Linear

System Set (Sections 6.1.8 and 6.1.9) are used for representing sets of parameters. With
STL and Model (Sections 6.1.2 and 6.1.3) the user can formalize a specification and
instantiate a polynomial dynamical system. Finally, Vars Generator (Section 6.1.7) is
a utility module that can be used to automatize the declaration of the variables necessary
to instantiate a parallelotope.

Our tool is entirely implemented in C++. It relies on the libraries GiNaC (GiNaC
is not a CAS) [19] and GLPK (GNU Linear Programming Kit).1 GiNaC is used for the
symbolic representation of polynomials. In the following, by “symbolic expression” we

1http://www.gnu.org/software/glpk/glpk.html

http://www.gnu.org/software/glpk/glpk.html
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Figure 6.1: Tool architecture.

mean a formula declared using the data-type provided by GiNaC. We will also use GiNaC
to extract coefficients from polynomials, perform symbolic operations on formulas, and
substitute variables with expressions in our symbolic formulas. The library GLPK is
used to solve linear programs, i.e., to optimize linear functions over a system of linear
inequalities. It will be useful to bound directions of parallelotopes, canonize bundles,
but also for establishing the emptiness of polytopic sets of parameters.

The source code of our tool can be freely downloaded from https://github.com/

tommasodreossi/parasynth.

6.1.1 Sapo

Sapo is the main class responsible for the computation of the reachable sets and the
synthesis of parameters of polynomial dynamical systems. The class constructor receives
in input an object of the class Model that describes the dynamical system under study
together with a collection of options. The options are represented by a structure named
sapo opt through which it is possible to specify:

• trans (Integer in {0, 1}): the kind of transformation to be applied to the bundle
(0 for OFO, 1 for AFO; see Section 4.5.1);

• decomp (Integer): number of decompositions to be applied to the bundle after the
transformation (see Section 4.5.1);

• alpha (Double in [0, 1]): (optional) weight in the decomposition of the bundle (see
Section 4.5.1);

https://github.com/tommasodreossi/parasynth
https://github.com/tommasodreossi/parasynth
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• plot (String): (optional) name of the file where to print the reachability set;

• verbose (Boolean): (optional) display all the information.

Sapo contains two important functions reach and synthesize that allow the user to
analyze the reachable set or synthesize the parameters of the given model. In both cases
the set of initial conditions has to be specified as a Bundle. Note that this choice allows
the user to work also with single boxes or parallelotopes, since it is possible to declare
a bundle composed by a single set. We recall that the reachability feature supports
arbitrary bundles, while the parameter synthesis can be performed only on single boxes
or parallelotopes, i.e., bundles of cardinality one.

The function reach receives in input an initial set described by a Bundle and a max-
imum number of steps k, and returns a vector of Bundles that represents the computed
flowpipe. The flowpipe is calculated iterating a series of bundle transformations. reach
supports also parametric reachability. In this case, it is necessary to provide to reach

also the polytopic parameter set as an object of the class Linear System.
The function synthesize is responsible for the synthesis of the parameters. It

receives in input an initial set described by a Bundle, a set of parameters in form
of Linear System Set, and an STL formula. It produces in output a refined set of
parameters described by the class Linear System Set. This function is implemented
following the structure of ParaSynth (Algorithm 10) described in Section 5.3.1.

It is worth to mention that Sapo is equipped with the two private data structures
reachControlPts and synthControlPts that store the symbolic control points neces-
sary to compute the reachable sets and to synthesize valid parameter sets, respectively.
reachControlPts and synthControlPts are containers that store elements formed by a
combination of a key and a mapped value. The key is a vector of integers with the indices
of the directions used to build a parallelotope X. The mapped value is a pair containing
the generator function of X and the symbolic Bernstein coefficients either computed
in combination with the systems dynamics in the reachControlPts case, or with the
system dynamics and the constraint of an STL predicate in the synthControlPts case.
Whenever Sapo needs to compute the Bernstein coefficients for a specific parallelotope,
it first looks for them in reachControlPts or synthControlPts. If the coefficients are
not present, Sapo computes them using the class BaseConverter and stores them in the
relative data structure. Otherwise, it just retrieves the coefficients and uses them for
computing a reachable set or synthesizing a parameter set. This machinery, explained
in detail in Section 5.4.3, allows the tool to compute the Bernstein coefficients only once
for a specific combination of parallelotope, direction to bound, or constraint to impose,
instead of computing the coefficients at each reachability or synthesis step. This choice
sensibly improves the performances of our tool

6.1.2 STL

STL is the class used to instantiate an STL formula and formalize the specification
that the user wants to impose on the dynamical system. STL is the base class for
the derived classes Atom, Conjunction, Disjunction, Until, Eventually, and Always

(not reported in Figure 6.1 for space reasons). All these classes have functions to extract
subformulas and temporal interval information. The constraints appearing in Atom are
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symbolic expressions and are associated with a key specified by the user. The role of the
key is to uniquely identify an atomic formula and associate it to the relative collection
of Bernstein coefficients (for more details, see Section 6.1.1).

6.1.3 Model

This class is used to describe a dynamical system. Its constructor receives in input the
lists of symbolic expressions describing the dynamics of the dynamical system under
study, the variables appearing in the dynamics, and any of its parameters.

6.1.4 Base Converter

Base Converter is an important class that converts the power basis of a given poly-
nomial into another basis. In our case, we are interested in the Bernstein basis and in
particular in the Bernstein coefficients. The class constructor receives in input a poly-
nomial and a list of variables. The variables are necessary to differentiate the system
state variables from the parameters appearing in the polynomial.

The two most important functions are getBernCoeffs and getBernCoeffsMatrix.
The first computes the Bernstein coefficients using the classical iterative method, as
described in Equations 4.13 and 4.20 in Section 4.2. The second implements our im-
proved matrix method defined in Section 4.6.1. By default, the tool is configured to
use the matrix method. The function getBernCoeffsMatrix uses the functions n2t,
t2n, and transp (described in Section 4.6.1) to compute the fast transposition of a
multi-dimensional matrix.

6.1.5 Bundle

This class is used to represent and handle bundles of parallelotopes. Bundles are stored
using the data structure defined in Section 4.5.1. The most important functions belong-
ing to this class are getPolytope, transform, decompose, and canonize.

getPolytope returns a Linear System that describes the symbolic polytope repre-
sented by the bundle. The system of inequalities is built by collecting all the directions
and offsets that compose the parallelotopes stored in the bundle.

The function transform receives in input a collection of transforming functions (in
our case, the dynamics of the dynamical system), a map of Bernstein control points,
and an option that specifies the kind of transformation to apply (OFO or AFO, see
Section 4.5.1). The transformation is done going through all the parallelotopes of the
bundle and bounding them either with their own directions (in the OFO case), or with
all the directions of the bundle (in the AFO case). Whenever a direction has to be
bounded over the image of a parallelotope, the function verifies whether the correspon-
dent Bernstein coefficients are already present in the collection given in input. If this
is not the case, transform calls the Base Converter, computes the Bernstein coeffi-
cients, and updates the collection. Once that all the bounding offsets of the directions
involved in the transformation have been determined, the function transform returns
a new bundle that over-approximates the image of the symbolic polytope described by
the current bundle with respect to the polynomials given in input.
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The decomposition of the bundle realized by the function decompose, that gets in
input a weigh α that regulates the orthogonal proximity and the constraint distances
(for details, see Section 4.5.2 ), and a maximum number of iterations. It returns a
new bundle were the parallelotope directions are differently organized from the current
one. The decomposition is done by generating template matrices and weighting them
using the evaluation function defined in Section 4.5.2. At each iteration, decompose

checks whether the generated template is valid and, if this is the case, it keeps the best
templates matrix accordingly with the evaluation function. The evaluation is performed
exploiting the functions maxOffsetDist and maxOrthProx that compute the maximum
constraint distance and orthogonal proximity, respectively, of the generated template.

Finally, the function canonize returns a canonical bundle (see Section 4.5) with
the same directions and templates matrix of the current one, but with the constraints
tangent to the polytope described by the threated bundle. The canonization is done
by maximizing the directions of the bundle over the Linear System that describes the
polytope represented by the bundle.

6.1.6 Parallelotope

This class, mainly used by the class Bundle, represents and handles a single par-
allelotope. The instantiated parallelotope can be described in both constraint and
generator representations (see Section 4.4), depending on whether the constructor of
Parallelotope is invoked passing as arguments a Linear System (in the constraint
case) or a vector of versors (in the generator case). In any case, it possible to convert
one representation into the other one. The conversion from generators to constraints
is done by the function gen2con, while the conversion from constraints to generators is
carried out by const2gen.

6.1.7 Variables Generator

Variables Generator is a utility class that can be used to generate the variables to
build the generator functions of parallelotopes. In high dimensions, the declaration of
the variables for base vertices, generators lengths, and versors can be tedious. Hence, this
class automates this process generating the necessary variables. The variables for base
vertices are declared with names q followed by an integer; those for the the generators
lengths with b followed by an integer; those for the the versors with u followed by an
integer. Names that belong to this group of variables are reserved for the tool.

6.1.8 Linear System Set

This class is used to store and handle sets of Linear Systems. It is used by Sapo to
deal with several parameter sets represented as linear systems. Linear System Set

supports the intersection and the union of two sets of linear systems.

The intersection, implemented in the function intersectWith, intersects each linear
system of the current set with each linear system of the set given in input.

The union, implemented in the function unionWith, appends the list of linear systems
constituting the set given in input, to the list of linear systems of the current set.
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6.1.9 Linear System

The class Linear System allows the tool to store and work with systems of linear in-
equalities. A linear system Ax ≤ b can be instantiated invoking the class constructor
either passing the matrix A and the vector b as arguments, or a list of symbolic ex-
pressions that are the constraints representing the inequalities of the system and the
variables that appear in them.

The functions maxLinearSystem and minLinearSystem offer the possibility of max-
imizing or minimizing, respectively, an objective linear function over the current linear
system. The optimization of the linear function is performed relying on the library
GLPK (GNU Linear Programming Kit). Finally, the function appendLinearSystem

appends a linear system to the current one. This function can be used to intersect two
polytopes represented through linear systems.

6.2 Case Studies

After describing the overall structure of our tool, we now focus on the application of it
to various polynomial dynamical systems. The goal is to evaluate our methods and test
the precision and scalability of our implementation. We present six case studies exposed
in order of increasing complexity.

We will begin with a two-dimensional test model; then we will analyze three epidemic
models (i.e., models that describe the evolution of diseases in populations) composed
by three, four, and five variables, respectively; we will also consider a five-dimensional
model that characterizes the decision-making process mechanism adopted by a swarm of
honeybees; finally, we will focus on a seventeen-dimensional model of a quadcopter drone.
We either compute the reachable sets of these models or synthesize their parameters,
or, in some cases, we will do both the studies. We will also focus on the scalability
of the tool with respect to the complexity of the specifications used to synthesize the
parameters. Finally, we mention that some of the following models were born as discrete-
time systems, others have been discretized from their original continuous-time versions
using the Euler’s method.

6.2.1 Test System

Our first experiment is meant to show the differences between the various bundle trans-
formation methods in the reachability analysis of a dynamical system. We consider an
illustrative 2-dimensional system whose dynamics are the following:

xk+1 = xk + (0.5x2k − 0.5y2k)∆

yk+1 = yk + (2xkyk)∆
(6.1)

The chosen directions constituting the bundles are L0 = (1, 0), L1 = (0, 1), L2 = (−1, 1),
L3 = (1, 1), the initial set is a box with x ∈ [0.05, 0.1] and y ∈ [0.99, 1.00], and ∆ = 0.01.

Figure 6.2 shows the reachable sets computed with the different techniques plotted
over time up to 25 steps. Figure 6.2a shows the sets computed using the OFO and AFO
transformations (in white and gray, respectively), without the bundle decomposition.
In both cases the bundle is composed by two parallelotopes obtained by coupling L0
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(a) OFO (white, 0.13s) and
AFO (gray, 0.24s) transfor-
mations.

(b) AFO transformation
without (gray, 0.24s)
and with (black, 0.97s)
decomposition (α = 0.5).

(c) AFO transformation
with decomposition. α = 0
(gray, 0.95s) and α = 1
(white, 0.98s).

Figure 6.2: Reachable set of 2-dimensional test system.

with L1 and L2 with L3, respectively. The picture shows that the AFO transformation
is finer than the OFO one. The OFO computation took 0.14s, the AFO 0.21s.

Figure 6.2b compares the sets computed using the AFO transformation with (in
black) and without (in gray) the bundle decomposition. In the decomposition function,
the parameter α is equal to 0.5 and the number of decompositions randomly generated
at each step is 500. The computation without decomposition took 0.22s against 1.94s
of the one with decomposition. Note how the black flow is always included in the gray
one, meaning that decomposition, applied with the AFO transformation, is finer than
non-decomposed AFO and OFO transformations.

Finally, Figure 6.2c depicts the AFO transformation with decomposition for α = 0 (in
gray) and α = 1 (in white), computed in 1.92s and 1.95s (also here 500 decompositions
are generated at each step). This experimental evaluation shows how the parameter α
affects the reachable set computation. In this case, it is difficult to establish which is
the best technique, since there is not a strict inclusion. However, the areas of the sets
computed with α = 0 are smaller than the ones with α = 1.

6.2.2 SIR Epidemic Model

As the second case study we consider the classic 3-dimensional SIR epidemic model [123],
whose aim is to describe the evolution of a disease in a population. In this model a
population of individuals is divided in three compartments: s, the healthy individuals
susceptible to the disease; i, the infected individuals; r the individuals removed from
the system (e.g., recovered). Two parameters regulate the evolution of the system
variables: β, the contraction rate and γ, where 1/γ is the mean infective period. ∆ is
the discretization step. The dynamics of the SIR model are the following:

sk+1 = sk − (βskik)∆

ik+1 = ik + (βskik − γik)∆

rk+1 = rk + (γik)∆

(6.2)
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Figure 6.3: Reachable set of 3-dimensional SIR model. Sets have been computed with 1
template/3 directions (in white, 0.12s), and 4 templates/6 directions (in black, 2.83s).

Reachability

In this study we applied the AFO transformation without bundle decomposition. First,
we computed the reachable set using a single axis-aligned template (i.e., a single box).
Then, we added 5 directions not aligned with the axis and grouped them in 4 different
templates. In both cases we computed the reachable sets up to 60 steps.

Figure 6.3 shows the computed results, i.e., the single template computation (in
white) and the four templates one (in black). In both cases the population is normalized
and the initial set is the box with s ∈ [0.79, 0.80], i ∈ [0.19, 0.20], and r = 0.00. The
chosen parameter values are β = 0.34, γ = 0.05, and ∆ = 0.5. The single parallelotope
computation required 0.05s against the 1.04s of the 4 parallelotopes one. From the figure
we can observe that multiple templates lead to a much finer result: the black flow is
always included in the white one.

Parameter Synthesis

For our first experiment of parameter synthesis we fix an axis-aligned template with
initial conditions s0 ∈ [0.79, 0.80], i0 ∈ [0.19, 0.20], and r = 0.00. The initial parameter
set is the box with β ∈ [0.35, 0.36] and γ ∈ [0.05, 0.06], while the constraint to be satisfied
is G[10,30](i ≤ 0.682), i.e., between time 10 and 30 we want the infected individuals i to
be always less than 0.682.

Figure 6.4 shows the results computed by our tool in 0.10s. Figure 6.4a depicts the
reachable sets of the system without and with the imposition of constraint (in white and
black, respectively), while Figure 6.4b shows the original and synthesized parameter sets
(in white and black, respectively). From the figures it is possible to see how the tool
produces a subset of the original parameter set that leads to a flowpipe included in the
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(a) Reachable sets with (in black,
0.10s) and without (white, 0.08s) con-
straint.

(b) Original (in white) and synthe-
sized (in black) parameter sets.

Figure 6.4: Reachable and parameter sets of 3-dimensional SIR model with 2 parameters.
Specification: G[10,30](i ≤ 0.682).

unconstrained evolution of the system.

For experimental purposes, we now consider the same configurations of the model
and tool, but we tighten the specification to G[10,30](i ≤ 0.681). Figure 6.5 depicts the
original and synthesized parameter sets (in white and black, respectively) obtained in
0.10s. Comparing this result with the parameter set obtained in the previous case (see
Figure 6.4b), it is possible to see how a tighter constraint leads to a smaller parameter
set.

Finally, we synthesize the parameters of the SIR model fixing a parallelotopic tem-
plate with constraints not aligned with the axis. The set of initial conditions is X0 =
〈Λ, c〉 where:

Λ =


0.7071 0.7071 0
−0.7071 0.7071 0

0 0 1
−0.7071 −0.7071 0
0.7071 −0.7071 0

0 0 −1

 c =


0.7071
−0.4172

0.00
−0.6930
0.4313

0

 . (6.3)

The initial parameter set is the box with β ∈ [0.18, 0.20] and γ ∈ [0.05, 0.06], and the
considered specification is G[20,50](i ≤ 0.50). Figure 6.6 shows the results computed
by our tool in 0.65s. Note from Figure 6.6a that in this case the computed sets are
parallelotopes whose constraints are not aligned with the axis, and that the constrained
evolution of the system (in black) is included in the unconstrained one (in white).
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Figure 6.5: Original (in white) and synthesized (in gray) parameter sets of 3-dimensional
SIR model with 2 parameters. Specification: G[10,30](i ≤ 0.681).

(a) Reachable sets with (in black,
0.65s) and without (white, 0.53s) con-
straint.

(b) Original (in white) and synthe-
sized (in black) parameter sets.

Figure 6.6: Reachable and parameter sets of 3-dimensional SIR model with 2 parameters.
Specification: G[20,50](i ≤ 0.50).
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6.2.3 Influenza

We now consider a simplification of the influenza model described in [156]. This model
is a 4-dimensional variation of the standard SIR model with two additional controllable
parameters: the antiviral treatment τ and the social distancing d, i.e., the infected
individuals who receive the antiviral treatment and the number of contacts per unit
time between individuals, respectively. Another difference from the SIR model is that
in this case the population, composed by N individuals, is grouped in four classes: s
is the number of individuals susceptible to the influenza and not infected; i are the
individuals infected by the disease; t are those who are under treatment ; r are the
removed patients. The dynamics of the model are defined by the following system of
difference equations:

sk+1 = sk(1− gk)

ik+1 = (1− τ)(1− σ1)(1− δ)ik + skgk

tk+1 = (1− σ2)tk + τ(1− σ1)(1− δ)ik
rk+1 = rk + σ1(1− δ)ik + σ2tk

where gk = ρ(1 − d)(ik + εtk)/(Nk). Variable gk represents the number of susceptible
people that at time k remains so also at time k+ 1. The dynamics of the model involve
seven parameters: τ characterizes the fraction of individuals who gets the treatment; σ1
and σ2 are the probabilities of recovering individuals due to natural causes and treat-
ment, respectively; δ is the ratio of induced deaths while β is the disease transmission
rate; d is the social distancing, that is the number of contacts between individuals by
unit time, and ρ is the reduction in transmissibility for the treated compartment. The
controllable parameters are the antiviral treatment τ and the social distancing d.

We now simulate and study the model trying to synthesize the two controllable
parameters. The recovering probabilities without and with treatment are σ1 = 1/7 and
σ2 = 1/5; the transmissibility coefficient of the treated class is ε = 0.7; the mortality and
susceptibility rates are fixed to δ = 8× 10−5 and ρ = 0.5. The controllable parameters,
that are the antiviral treatment τ and the social distancing d, can vary inside the
initial sets τ ∈ [0.001, 0.002] and d ∈ [0.005, 0.010]. The imposed safety constraint is
G[0,50]i ≤ 0.4235, while the set of normalized initial conditions is X0 = 〈Λ, c〉, where:

Λ =



0.7053 0.7053 0.7053 0.0
0.0 0.9806 0.1961 0.0
0.0 0.0 1.0 0.0
0.0 0.7071 0.0 0.7071

−0.7053 −0.7053 −0.7053 0.0
0.0 −0.9806 −0.1961 0.0
0.0 0.0 −1.0 0.0
0.0 −0.7071 0.0 −0.7071


c =



0.7053
0.0981
0.00

0.0707
−0.6912
−0.0883

0.00
−0.0636


. (6.4)

The offsets of the vector c were chosen in such a way that the parallelotope of initial
conditions encloses the box with s ∈ [0.89, 0.90], i ∈ [0.09, 0.10], t = 0.00, and r = 0.00.
From the initial parameter set with τ ∈ [0.001, 0.002] and d ∈ [0.005, 0.010], our tool
found the safe parameter subset depicted in Figure 6.7d in 6.27s. It is interesting to see
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(a) Susceptible (s). (b) Infected (i).

(c) Under treatment (t).
(d) Original (in white) and synthesize
(in black) parameter sets.

Figure 6.7: Projections of reachable set and parameter sets of 4-dimensional in-
fluenza model with 2 controllable parameters. Sets have been computed with 1 tem-
plate, unconstrained (in white, 0.51s) and constrained (in black, 6.27s). Specification:
G[0,50]i ≤ 0.4235.

how the tool synthesized a tiny valid parameter set (upper-right corner of the original
set). Figure 6.7 also shows the projections of unconstrained and constrained evolutions
(in white and black, respectively) of the variables s, i, and t.

6.2.4 Ebola

We now focus on the third and last epidemic model. This model is a variation of the
system that describes the Ebola outbreak in Congo 1995 and Uganda 2000 presented
in [40]. A population composed of N individuals, is classified in five compartments
s, e, q, i, and r. Each individual, at a certain time, belongs to a specific compartment
depending on the disease status. All the individual displacements between compart-
ments are regulated by the parameters β, κ1, κ2, γ1, γ2, and σ.

Similarly to the previous epidemic models, s contains the healthy individuals that are
susceptible to the disease. A member of s who enters in contact with a sick person, moves
to e, that is the class of individuals who have been exposed to the disease. The ratio i/N
is the probability that a susceptible individual enters in contact with an infected one,
while β is the transmission rate. An exposed individual is either moved in quarantine
in q, or directly in the infected compartment i, depending on whether the malady was



6.2. Case Studies 121

diagnosed. The controllable quarantine rate is κ1, while 1/κ2 is the mean incubation
period. A person in quarantine, if considered healthy after the isolation period, is moved
back to the susceptible group. The unfortunate case is when the individual manifests
symptoms and moves from the quarantine to the infected group. The reintegration
with the susceptible people happens after a period of 1/γ1, while the incubation period
is 1/γ2. Finally, an individual is removed from the system by migrating in r at a
recovering or death rate σ. ∆ is the discretization step. The dynamics of the Ebola
epidemic model are defined by the following system of difference equations (on the right
there is schematic representation of the individuals migration between compartments):

sk+1 = sk − (skβik/N + γ1qk)∆
ek+1 = ek + (skβik/N − (κ1 + κ2)ek)∆
qk+1 = qk + (κ1ek − (γ1 + γ2)qk)∆
ik+1 = ik + (γ2qk + κ2ek − σik)∆
rk+1 = rk + (σik)∆

s e

q

i r

βI/N

κ1

κ2

γ1

γ2

σ

The difference between our model and the one presented in [40] is that we introduce
the quarantine compartment and consider the reintegration of individual in the suscep-
tible population. In doing so, we enrich the original model by making it more realistic
and interesting. Also, our model is defined on discrete time. Note that in the literature
there are various works presenting epidemic models directly with discrete-time dynamics
or difference equations (see, e.g., [1, 191]).

We first considered the normalized population with s = 0.80 and i = 0.20. We fixed
the parameters values as specified in [40] in the case of the Ebola outbreak in Uganda
during 2000. The uncontrollable parameter values are β = 0.35, κ2 = 0.3, γ2 = 0.6,
and σ = 0.28, and the controllable parameters are κ1 ∈ [0.2, 0.3] and γ1 ∈ [0.2, 0.5] that
represent the quarantine rate and mean isolation period, respectively. The discretization
step is ∆ = 1.

We considered the specification φ1 ≡ (i ≤ 0.2)U[7,10](q ≤ 0.01394) whose meaning is
to avoid the saturation of the quarantine compartment especially in the time interval
between 7 and 10 when a number of infected individuals higher than 0.01394 is expected.
Our tool found two feasible parameters sets in 0.06 seconds, one of which is shown in
Figure 6.8.

In a second experiment, we changed the uncontrollable parameter values to β = 0.9,
κ2 = 0.5, γ2 = 0.5, and σ = 0.28, while the controllable parameters to κ1 ∈ [0.2, 0.3] and
γ1 ∈ [0.2, 0.5]. Instead of imposing directly a constraint on the system, we could imagine
a scenario where we have a maximum number of 0.045 patients in quarantine unless the
number of infected patients is below 0.230. This means that if there are less than 0.230
infected individuals, then we have free resources that can be devoted to the quarantine.
This property can be formalized with the formula φ2 ≡ (q ≤ 0.045)U[10,15](i ≤ 0.230).
Our tool found six valid parameter sets in 0.15 seconds.

Finally, on the same system configuration, we test a more complex until formula
that imposes upper and lower bounds on the compartments, i.e, (q > 0.01 ∧ q ≤
0.05)U[10,15](i > 0.13 ∧ i ≤ 0.29). Our tool found five parameter refinements in 0.50s.
Figures 6.9a and 6.9b depict the projections of the variables q and i evolving in time
with respect to one of the synthesized parameter sets.
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Figure 6.8: Original (in white) and synthesized (in gray) parameter sets of 5-dimensional
Ebola model with 2 parameters. Specification: (i ≤ 0.2)U[7,10](q ≤ 0.01394).

(a) Quarantine (q) (b) Infected (i)

Figure 6.9: Projections of reachable set of 5-dimensional Ebola model. Sets have been
computed with original (in white) and synthesized parameters (in gray, 0.50s).
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Scalability Evaluation

In order to evaluate the scalability of our method in terms of specification complexity,
we now consider non-trivial formulas that we artificially created.

First, we consider the three until formulas φ1, φ2, and φ3 previously studied on the
Ebola model (see Section 6.2.4), i.e.:

φ1 ≡ (i ≤ 0.23)U[a,b](q ≤ 0.045)

φ2 ≡ (q ≤ 0.045)U[a,b](i ≤ 0.23)

φ3 ≡ (q ≤ 0.045)U[a,b](e > 0.10 ∨ q > 0.025)

(6.5)

and we stretch their temporal intervals [a, b]. In the worst case, such growth exponen-
tially increases the number of branches that our algorithm must open. Table 6.1 reports
the running times for this test. For φ1 and φ2 we stretched the interval up to [100, 200],
that deals to parameter sets composed by 101 convex polytopes. As concerns φ3, we
notice that enlargement of the until window does not affect the parameter refinement,
that is valid refinements are found only for the initial part of the interval. Not growing
in the size of the results, the algorithm needs linear time in the until time horizon.

As second evaluation, we nest several until formulas on the (most critical) right hand
side. For instance, the double nesting of φ1 with N = 2 is:

φN1 ≡ (i ≤ 0.23)U[6,10](i ≤ 0.23)U[6,10](q ≤ 0.045)).

Table 6.2 reports the running times for this evaluation. We computed refinements of φ1
and φ2 nested 20 times, finding 81 and 84 convex parameter sets. As in the previous
case, nesting φ3 does not increase the size of the result. It is interesting to notice that
even if φ1 and φ2 are composed by less atomic formulas than φ3, their running times
and sizes of results, are often larger than the latter. This suggests that it might be hard
to estimate a priori the algorithm performance just by looking at the specification, since
its execution time “numerically” depends on the system behavior and mostly on the
computed partial refinements.

Finally, the experiments show that our tool tends to generate a large number of
polytopes. So far, parameter set are represented as lists of linear systems composed
by collections of inequalities. To reduce memory consumption it might be interesting
to introduce mechanisms to avoid the insertion of redundant constraints and polytopes
included in larger ones.

6.2.5 Honeybees Site Choice

We now abandon epidemics and move to macrobiology. We examine a model that
describes the decision-making process mechanism adopted by a swarm of honeybees to
choose one among two different nest-sites.

In this model [32], a population of honeybees is divided in five groups: x, the neutral
bees that have not chosen a site; y1 and y2, evangelic bees dancing for the first and
second site, respectively; z1 and z2, non-evangelic bees that have been converted to the
first or second site, respectively, but who do not dance. The dynamics of the system are



124 6. Tool and Experimental Results

a b φ1 φ2 φ3
5 15 0.12 (11) 0.16 (11) 0.13 (9)
5 20 0.15 (16) 0.26 (16) 0.18 (9)
5 30 0.25 (26) 0.50 (26) 0.26 (9)
5 50 0.44 (46) 1.43 (46) 0.45 (9)
5 100 1.06 (96) 7.84 (96) 0.90 (9)
5 125 1.45 (121) 13.55 (121) 1.11 (9)
15 20 0.14 (6) 0.22 (6) 0.14 (0)
20 30 0.20 (11) 0.42 (11) 0.23 (0)
30 50 0.35 (21) 1.10 (21) 0.35 (0)
50 100 0.81 (51) 5.70 (51) 0.73 (0)
100 200 2.00 (101) 23.84 (101) 1.43 (0)

Table 6.1: Increasing until interval. Times are expressed in seconds. Values in paren-
thesis are the computed polytopes per refinement. φ1 ≡ (i ≤ 0.23)U[a,b](q ≤ 0.045),
φ2 ≡ (q ≤ 0.045)U[a,b](i ≤ 0.23), φ3 ≡ (q ≤ 0.045)U[a,b](e > 0.10 ∨ q > 0.025).

N φN1 φN2 φN3
1 0.07 (5) 0.09 (5) 0.10 (5)
2 0.14 (9) 0.19 (12) 0.22 (3)
3 0.21 (13) 0.28 (16) 0.37 (3)
4 0.27 (17) 0.37 (20) 0.52 (3)
5 0.33 (21) 0.46 (24) 0.69 (3)
10 0.69 (41) 0.93 (44) 1.97 (3)
15 1.03 (61) 1.45 (64) 3.39 (3)
20 1.44 (81) 1.97 (84) 6.53 (3)

Table 6.2: Nested until. Times are expressed in seconds. Values in parenthesis are
the computed polytopes per refinement. φ1 ≡ (i ≤ 0.23)U[a,b](q ≤ 0.045), φ2 ≡ (q ≤
0.045)U[a,b](i ≤ 0.23), φ3 ≡ (q ≤ 0.045)U[a,b](e > 0.10 ∨ q > 0.025).
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the following:

xk+1 = xk + (−β1xky1k − β2xky2k)∆

y1k+1
= y1k + (β1xky1k − γy1k + δβ1y1kz1k + αβ1y1kz2k)∆

y2k+1
= y2k + (β2xky2k − γy2k + δβ2y2kz2k + αβ2y2kz1k)∆

z1k+1
= z1k + (γy1k − δβ1y1kz1k − αβ2y2kz1k)∆

z2k+1
= z2k + (γy2k − δβ2y2kz2k − αβ1y1kz2k)∆

(6.6)

The parameters β1 and β2 are the persuasion parameters, i.e., how vigorously the evan-
gelic bees y1 and y2 dance; δ is the per capita rate at which the bees spontaneously leave
the neutral and non-dancing groups x, z1, z2 for the dancing classes y1, y2; γ is the per
capita rate of ceasing to dance from the dancing classes y1, y2 to the non-dancing ones
x1, x2; α is the proportionality of switching back spontaneously to the neutral state x;
∆ is the discretization step.

The goal of this test is to study the scalability of our reachability method in terms of
number of directions and templates, and verify eventual improvements in the precision
of the computed reachable set.

For the simulation of the model we choose as initial set the box with x0 = 500, y1 ∈
[390, 400], y2 ∈ [90, 100], z1 = z2 = 0. The parameter values are β1 = β2 = 0.001, γ =
0.3, δ = 0.5, α = 0.7, and ∆ = 0.01. Figure 6.10 shows the projections of the dancing
bees y1 and y2 computed with three different configurations up to 1500 steps. The
bundles have been transformed with the AFO method and no decomposition. In the first
configuration (in white), the computation has been carried out with a single template
composed by 5 axis-aligned directions (6.57s); the second (in gray) involved 2 templates
composed by 6 directions, some of which were not aligned with the x and y1 axis (26.90s).
In the third configuration we defined 3 templates composed by 7 directions, some of
which not aligned with x, y1, and y2 axis (81.27s). Adding directions and templates
prolongs the execution times, but increases the precision of the computed flowpipwes
leading to finer reachability sets. As a matter of fact, from Figure 6.10 we can see how
the precision of the computed reachable set increases with the addition of directions
and templates. The flowpipe computed with 3 templates and 7 directions (in black in
Figure 6.10) is always included in the other flowpipes and its computation required the
reasonable amount of time 81.27s for 1500 discrete steps.

6.2.6 Quadcopter

In our last study we focus again on the scalability of our reachability method in terms of
system dimension. For this study, we consider the model of a quadrotor drone composed
by 17 variables regulated by quadratic dynamics. The model consists of 13 dynamics
that drive the drone itself, plus 4 dynamics modeling its controller. The state variables
of the drone include the inertial position (pn, pe, h), linear velocity (u, v, w), Euler angles
expressed using quaternions2 (q0, q1, q2, q3), and angular velocity (p, q, r), while the con-
troller variables involve some parameters of position, speed, and angle (hI , uI , vI , ψI).

2 Quaternions are a number system extending complex numbers useful for calculations involving
3-dimensional rotations. In our case, quaternions increase the original model size, but allow us to work
with polynomials instead of trigonometric functions.
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(a) Dancing bees y1. (b) Dancing bees y2.

Figure 6.10: Projections of reachable set of 5-dimensional honeybees decision-making
model. Sets have been computed with 1 template/5 directions (in white, 6.57s), 2
templates/6 directions (in gray, 26.90s), and 3 templates/7 directions (in black, 81.27s).

Parameter Value
M 0.0015
mr 0.001
R 0.020
l 0.045
g 9.81
m M + 4mr

Jx (2MR2)/5 + 2l2mr

Jy (2MR2)/5 + 2l2mr

Jz (2MR2)/5 + 4l2mr

Table 6.3: Parameter values used in the quadcopter model (see Equation 6.7).
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Given a reference height hr, horizontal speeds ur, vr, and nose angle ψr, the goal
of the controller is to bring the drone from its actual configuration to the one specified
by the reference values. The detailed description of the model and its dynamics can be
found in [51].

The difference equations that regulate the behavior of the quadcopter are the fol-
lowing:

pnk+1
= pnk + (uk(2q20k + 2q21k − 1)− vk(2q0kq3k − 2q1kq2k) + wk(2q0kq2k + 2q1kq3k))∆

pek+1
= pek + (vk(2q20k + 2q22k − 1) + uk(2q0kq3k + 2q1kq2k)− wk(2q0kq1k − 2q2kq3k))∆

hk+1 = hk + (wk(2q20k + 2q23k − 1)− uk(2q0kq2k − 2q1kq3k) + vk(2q0kq1k + 2q2kq3k))∆

uk+1 = uk + (rkvk − qkwk − g(2q0kq2k − 2q1kq3k))∆

vk+1 = vk + (pkwk − rkuk + g(2q0kq1k + 2q2kq3k))∆

wk+1 = wk + (qkuk − pkvk − F/m+ g(2q20k + 2q23k − 1))∆

q0k+1
= q0k + (−(q1k/2)pk − (q2k/2)qk − (q3k/2)rk)∆

q1k+1
= q1k + ((q0k/2)pk − (q3k/2)qk + (q2k/2)rk)∆

q2k+1
= q2k + ((q3k/2)pk + (q0k/2)qk − (q1k/2)rk)∆

q3k+1
= q3k + ((q1k/2)qk − (q2k/2)pk + (q0k/2)rk)∆

pk+1 = pk + ((1/Jx)τφ + ((Jy − Jz)/Jx)qkrk)∆

qk+1 = qk + ((1/Jy)τθ − ((Jx − Jz)/Jy)pkrk)∆

rk+1 = rk + ((1/Jz)τψ + ((Jx − Jy)/Jz)pkqk)∆

hIk+1
= hIk + (hk − hr)∆

uIk+1
= uIk + (uk − ur)∆

vIk+1
= vIk + (vk − vr)∆

ψIk+1
= ψIk + (ψk − ψr)∆

(6.7)

All the parameters (such as mass, axis moment of inertia, propeller masses, etc.)
have been set accordingly to the real quadcopter CrazyFlie Nano by Bitcraze3 and are
shown in Table 6.3. The discretization step is ∆ = 0.01.

The chosen initial conditions are h0 ∈ [0.20, 0.21], q0 = 1, and all the other variables
are set to zero. The reference height is hr = 1, while speeds and angle are ur = vr =
ψr = 0. We computed the reachable set up to 300 steps, corresponding to 3s of flight.

We adopted 2 configurations, both based on AFO transformation without the bundle
decomposition: the first consists in a single box template with axis-aligned constraints,
the second has an additional parallelotope involving the dimensions that more vary
during the flight (height, vertical speed, angle quaternions, and controller height). Fig-
ure 6.11 shows the projections of the computed reachable sets. The figure reports the
evolutions over time of height h (Figure 6.11a), vertical speed w (Figure 6.11b), and the
height computed by the controller hI (Figure 6.11c), obtained with a single (in white)
and two templates (in gray). The first technique took 9.40s of computations, the second
20.32s. Note how a single additional template sensibly improves the precision of the

3https://www.bitcraze.io/

https://www.bitcraze.io/


128 6. Tool and Experimental Results

(a) Height (h). (b) Vertical speed (w). (c) Controller height (hI).

Figure 6.11: Projections of reachable set of 17-dimensional quadcopter model. Sets
have been computed with 1 template/17 directions (in white, 17.74s), 2 templates/18
directions (in gray, 39.07s).

computed reachable set and avoid the wrapping effect. In this case, a single additional
direction and template generates a sensibly finer flowpipe maintaining the computation
in a reasonable amount of time (20.32s for 300 discrete steps).

6.3 Related Tools

In Sections 1.2.1 and 1.2.2 we presented some of the existing techniques for the reach-
able set computation and the parameter synthesis of dynamical and hybrid systems.
As pointed out, efficient methods and tools for the verification of linear dynamical sys-
tems have been developed. Some examples are CheckMate [43], HyTech [107], d/dt [6],
MPT [134], PHAVer [85], SpaceEx [87], and Ellipsoidal Toolbox (ET) [133].

Nevertheless, the analysis of nonlinear dynamical systems remains a problem that
has not yet found a definitive solution. Some remarkable attempts to reduce the gap
between linear and nonlinear verification have been done, for instance, by the authors
of the tools d/dt [6], Ariadne [9], Coho [101], dReach [126], and Flow* [39].

The parameter synthesis and estimation problems have been considered by different
communities and analyzed from perspectives. As stated in Section 1.2.2, often the
definition of the parameter synthesis problem differs from the context in which it is
considered. Consequently, it is rather difficult to put under one roof different tools for
the synthesis of parameters. Despite this discrepancy, it is worth mentioning the tools
HyTech [109], RoVerGeNe [15], Breach [69], dReach [126], and SpaceRover [25].

In this thesis we presented original theoretical results for the reachability compu-
tation and the synthesis of parameters for nonlinear dynamical systems. We validated
our methods showing applications of our image computation and parameter synthesis
techniques based on the Bernstein technique. The 17-dimensional case study of Sec-
tion 6.2.6 shows potential applications of our methods. Due to the differences between
the problem formulations and the purposes for which the existing tools have been devel-
oped, a fair and informative tool comparison should be based on examples and settings
carefully defined. Since this is not the main goal of this work, we preferred to focus on
our tool showing its features rather than directly compare it with the other tools.
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Conclusion

7.1 Thesis Overview

With this thesis we contributed to the development of theoretical and practical tech-
niques for the analysis of discrete-time dynamical systems.

Our theoretical results involve the reachable set computation and the synthesis
of parameters. Concerning reachability computation, we developed methods to over-
approximate the images of sets with respects to polynomial functions (Chapter 4). Sets
to be transformed can be over-approximated using boxes (Section 4.3), parallelotopes
(Section 4.4), and our new data structure called parallelotope bundles (Section 4.5), that
can be used to represent polytopes as intersections of parallelotopes. All these methods
are based on the representation of polynomials in Bernstein basis, and in particular on
Bernstein coefficients and their properties. We introduced new methods to efficiently
compute Bernstein coefficients and improve the bounds that they provide (Section 4.6).

Regarding parameter synthesis, we formalized the problem from a formal verification
perspective involving the Signal Temporal Logic (STL) for the characterization of the
specifications that the system must meet. We developed a new semantics for STL,
called synthesis semantics, suitable for working with flowpipes and sets of parameters
(Section 5.2). We defined an algorithm to compute the synthesis semantics of STL
specifications and obtain valid sets of parameters for discrete-time dynamical systems
(Section 5.3). We also provided an instantiation of our synthesis algorithm for dynamical
systems with polynomial dynamics, in which the reachable set can be approximated with
boxes or parallelotopes, while parameter sets are represent by polytopes (Section 5.4).
The synthesis technique broadly consists in the resolution of linear programs involving,
also in this case, Bernstein coefficients.

From the practical point of view, we implemented a tool called Sapo that integrates
all the techniques developed in work (Section 6.1). Sapo can be either used to com-
pute flowpipes that over-approximate the reachable sets of dynamical systems, or to
synthesize sets of parameters with respect to STL specifications. We shown the effec-
tiveness of our tool and analyzed its performances on several case studies coming from
epidemiology, macrobiology, and embedded systems (Section 6.2).
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7.2 Further Developments

There are several aspects of this work that can be further investigated.

Parallelization There are several stages of our methods that can be easily paral-
lelized. For instance, the computation of Bernstein coefficients of the functions that
encode the lifting of a direction over a reached set, can be independently performed for
each direction of a box or parallelotope. Or else, when working with bundles, every
parallelotope can be independently treated, meaning that the bundle-based reachability
method can be straightforwardly parallelized. Also, in a hypothetical error containment
approach where the reachability computation or parameter synthesis problems are split
in several subproblems, each instance can be separately treated in parallel.

It might be interesting to investigate the parallelization of our methods exploiting
some environment for parallel computations (such as MPI [103] or CUDA [153]).

Error Approximation In Section 4.2.1 we have seen how the error between the
maximum of a polynomial and its maximum Bernstein coefficient can be bound. In
the bundle transformation we provided a heuristic to minimize this error. Moreover,
in Section 4.5.2, we provided a subdivision method to obtain tight bounds. However,
it remains the question of how automatically control the error introduced by Bernstein
coefficients in the image of sets and in the synthesis of parameters. One can imagine
a procedure that automatically splits the Bernstein coefficients so that to maintain the
errors below a given threshold.

Since Bernstein coefficients are sensitive to the size of the set on which they are
exploited, an additional technique to produce finer results, could consist in splitting the
reachability and parameter sets. This approach could be integrated in a backtracking
algorithm that, once it determines that the results are not enough precise, jumps back
in the constructed flowpipe, splits the sets, solves the subproblems for the split sets, and
finally combines the results.

Input Synthesis The parameter synthesis methods developed in this work can be
adapted to synthesize valid inputs for open dynamical systems.

A discrete-time dynamical system with inputs can be described by difference equa-
tions of the form:

xk+1 = f(xk,uk)

with f : Rn × Rm → Rn. Differently from parameters, inputs uk can change in a given
input space U ⊆ Rm at every time step. The evolution x0,x1,x2, . . . of a dynamical
system with inputs starts from an initial condition x0 and it is driven by a sequence of
inputs u0,u1,u2, . . . .

The input synthesis problem asks to determine a sequence of input sets U0, U1, U2, . . . ,
with Ui ⊆ U , that leads to a flowpipe of inputs, such that all the trajectories starting
in a given set of initial conditions X0 with input sequence u0,u1,u2, . . . , with ui ∈ Ui,
satisfy a given specification.

Our parameter refinements can be used for input synthesis. Instead of accumulating
a sequence of restrictions on the initial set to refine (in the case of parameter synthesis,
the set P ), at each step we can independently compute a refined set of inputs Ui ⊆
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U , producing a flowpipe of inputs U0, U1, U2, . . . so that the system satisfies a given
specification.

Hybrid Automata Verification In this thesis we considered the computation of
the reachable set of dynamical systems. A natural extension of this work could involve
hybrid automata, that are mathematical models particularly suitable for the description
of systems that exhibit discrete and continuous behaviors.

Intuitively, hybrid automata are directed graphs with decorated nodes and edges.
Each node of the graph, often called mode or location, is equipped with a dynamical
system (usually a set of difference or differential equations) that drives the system within
a mode. Edges are decorated with activation and reset constraints that tell the system
when a discrete transition between modes can occur, and with which values the system
is reset once it jumps from a mode to another one.

The verification of hybrid automata with nonlinear dynamics is a difficult problem
for which not many efficient methods have been developed (in comparison with those for
the linear case; see Section 1.2.1 for an overview on the existing nonlinear reachability
methods). The set image computation techniques developed in this work could be
used to compute the reachable set of hybrid automata with polynomial dynamics: the
evolutions within modes could be directly carried out applying our reachability methods;
the activations would require the intersection between sets (here some attention should
be placed on the sets described by the activations); the reset would consist in a single
set image computable with one of our techniques (assuming that the reset function is
polynomial).
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Kharkov 2, 1(4/5):1–2, 1912.

[22] Martin Berz and Kyoko Makino. Verified integration of odes and flows using
differential algebraic methods on high-order taylor models. Reliable Computing,
4(4):361–369, 1998.



Bibliography 135

[23] Sergiy Bogomolov, Thomas A. Henzinger, Andreas Podelski, Jakob Ruess, and
Christian Schilling. Adaptive moment closure for parameter inference of biochem-
ical reaction networks. In Computational Methods in Systems Biology, CMSB,
pages 77–89, 2015.

[24] Sergiy Bogomolov, Christian Schilling, Ezio Bartocci, Grégory Batt, Hui Kong,
and Radu Grosu. Abstraction-based parameter synthesis for multiaffine systems.
In Hardware and Software: Verification and Testing, Haifa Verification Confer-
ence, HVC, pages 19–35, 2015.

[25] Sergiy Bogomolov, Christian Schilling, Ezio Bartocci, Gregory Batt, Andreas
Podelski, and Radu Grosu. Spacerover: Parameter synthesis for multiaffine sys-
tems beyond RoVerGeNe. To appear, 2015.

[26] Luca Bortolussi and Guido Sanguinetti. A statistical approach for computing
reachability of non-linear and stochastic dynamical systems. In Quantitative Eval-
uation of Systems, QEST, pages 41–56, 2014.

[27] Oleg Botchkarev and Stavros Tripakis. Verification of hybrid systems with lin-
ear differential inclusions using ellipsoidal approximations. In Hybrid Systems:
Computation and Control, HSCC, pages 73–88. Springer, 2000.

[28] Olivier Bournez, Oded Maler, and Amir Pnueli. Orthogonal polyhedra: Represen-
tation and computation. In Hybrid Systems: Computation and Control, HSCC,
pages 46–60. Springer, 1999.

[29] Lubos Brim, Milan Ceska, Martin Demko, Samuel Pastva, and David Safránek.
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