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1.3 Inférence des graphes aléatoires géométriques . . ... ...

Cette theése présente une ensemble de contributions au probléme d’inférence
statistique en graphes aléatoires géométriques, ainsi qu’au probléme de concentra-
tion du spectre des matrices a noyau. Cette classe de matrices a des applications
dans I’ensemble des méthodes & noyaux en apprentissage statistique, ainsi que dans
la théorie des grands réseaux dans le régime dense. Elles seront un des objets cen-
traux d’étude dans I’ensemble de ce mémoire.

Le chapitre 2 s’intéresse au probléme de concentration des matrices a noyau,
plus spécifiquement la concentration relative de ses valeurs propres. Les chapitres
3 et 4 portent sur l'inférence de l'information latente dans le modéle de réseaux
géométrique, qui est I'un de plus utilisés parmi les modéles de graphes aléatoires
a espace latent. Dans le cas du chapitre 3 on se concentre en graphes représentés
par la sphére Fuclidienne et au chapitre 4 on se place dans le cas de la boule
Euclidienne. Méme si les deux modéles ont des similarités formelles, ils ont aussi
des différences intéressantes concernant la distribution des degrés des graphes qu’ils
générent. Chaque chapitre correspond & un article soumis ot en cours de soumission
pour publication. L’article associé au chapitre 2 est dans le deuxiéme tours de
révision et ’'article du chapitre 3 est publié¢ dans les proceedings de la conference
NeurIPS 2019, qui a eu lieu en décembre 2019 & Vancouver, Canada.

En grande partie, la recherche présentée ici est motivée par 'omniprésence des
réseaux au niveau de modélisation des systémes complexes et pour les questions
mathématiques qui émergent lorsqu’on essaie d’extraire de I'information sur eux, ou
de comprendre les algorithmes qui fonctionnent sur des réseaux massifs, comme les
réseaux de communication ou les réseaux sociaux. Nous allons étudier des questions
théoriques liées & ces problématiques.

On se concentrera sur un type particulier de réseaux dense: ceux qui sont
représentables par des noyaux qu’on appellera graphons. La représentation d’un
graphe, objet éminemment discret, par une fonction va nous permettre d’utiliser
des outils d’analyse fonctionnelle et harmonique, qui vont nous révéler I'information
essentielle sur le graphe, ou sur la classe a laquelle il appartient.
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Dans le chapitre 2, intitulé “Relative concentration of random kernel matrices”,
nous allons nous concentrer sur le modéle des matrices aléatoires & noyau, qui sont
centrales dans les méthodes & noyaux en apprentissage statistique et qui servent aussi
comme des outils pour I’étude des réseaux denses. Nous montrerons des bornes de
concentration pour le spectre de ces matrices, sous conditions de régularité liés a la
vitesse de convergence de ’expansion spectrale des noyaux respectifs. Notre méth-
ode permet d’obtenir des bornes plus fines pour la fluctuation des valeurs propres
individuels que celles dans la plupart de la littérature et dans un cadre plus général.
En particulier, on évite 'hypothése de positivité du noyaux, ce qui est fondamen-
tal pour I’étude des réseaux, ol les noyaux associés sont souvent non-positifs. Nous
montrerons que ce cadre-ci est bien adapté au cas des noyaux invariants par rotation
définis sur la sphére Euclidienne, qui sont reliés au modéle des graphes géométriques.
Le matériel ici présenté est basé sur [Araya 2020].

Le chapitre 3, qui a pour titre “Latent distances estimation for RRG on the
sphére", est consacré a I’étude du modeéle des graphes aléatoires géométriques sur
la sphére Euclidienne unitaire. Dans ce modéle, chaque noeud d’un graphe est aléa-
toirement place sur la sphére et un arc est formé entre deux noeuds avec une prob-
abilité qui dépend de la distance entre les noeuds (codifiée par son produit scalaire)
et un noyau de connexion. On s’intéresse au probléme d’estimation des distances
latentes entre les noeuds, a partir de la seule observation de la matrice d’adjacence
d’un graphe généré par le modéle des graphes géométriques. On propose un algo-
rithme pour la estimation de la matrice des distances, qui re¢ois comme des entrées
la matrice d’adjacence et la dimension de la sphére latente. On montre des garanties
théoriques pour l'erreur de estimation, de type Frobenius, en grande probabilité. On
assume de conditions sur le trou spectral d’un opérateur intégral associé au noyau de
connexion. La méthode proposée est fondée sur les propriétés de concentration du
spectre du noyaux invariants par rotation sur la sphére. Cet algorithme est utilisé
comme sous-routine pour la estimation de la dimension, lorsque elle est inconnue.
Nous renforcons 'analyse théorique par des expériences numériques et simulations.
Le matériel ici présenté est basé sur [Araya 2019].

Dans le chapitre 4, intitulé “Random geometric graphs on the Euclidean ball”,
nous allons étudier le modéle de graphes aléatoires géométriques avec la boule Eu-
clidienne unitaire comme espace sous-jacent. De fagon similaire au chapitre 3 nous
allons considérer de graphes représentables par des noyaux qui dépendent seulement
du produit scalaire. Le fait que les points dans la boule ont un degré de liberté de
plus par rapport a la sphére (ot la norme est fixé et égal & 1) donne au modéle sur
la boule plus de flexibilité au niveau de modélisation. En particulier, nous mon-
trerons que pour certaines noyaux de connexion la distribution de la séquence de
degrés, dans le graphe généré, est similaire & une loi de puissance, qui est suivant
mentionnée comme une des distributions prépondérantes dans la modélisation des
réseaux réels. D’autre part nous allons étudier deux problémes de estimation sur
ce modeéle: 'estimation de la norme des points latents et I'estimation des distances
latentes. Ceci étendre les idées développées dans le chapitre 3. Nous illustrons les
méthodes développées par des expériences numériques.
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1.0.1 Notation

On utilisera tout au long de cette thése les notations suivantes. Soient f et g deux
fonctions réelles. On dit que f(z) < g(x), si et seulement sl existe C' > 0 réel,
tel que f(z) < Cg(x). De facon similaire, on dit que f(z) S g(z), pour a € R
pour renforcer que C' peut dépendre de a. On utilisera la notation asymptotique
comme de maniére usuelle, ¢’est-a-dire, on dit que f(z) = O(g(x)) si et seulement
s’il existe N € R tel que f(x) < g(x), pour |z| > N. De maniére analogue, on
dit que f(z) = Oq(g(x)) s'il existe N € R tel que f(z) Sa g(x), pour |z| > N.

Tant pour une matrice que pour un opérateur compact dans un espace d’Hilbert on
notera || - [|op la norme d’opérateur, qui correspond a la plus grande valeur singuliére.

1.1 Graphes aléatoires et le modéle du graphon

Dans les chapitres 3 et 4 on étudiera problémes d’inférence sur des réseaux, qui I'on
supposera générés par des modeéles de graphes aléatoires & espace latent. Tous les
modéles qui seront étudiés sont représentables par des noyaux grace au formalisme
du graphon.

Les graphons (contraction de graph et functions) sont des noyaux symétriques
bornés qui jouent un role fondamental dans la définition du modéle W-random graph
et aussi dans la théorie de limites (lorsque sa taille tend vers l'infini) de graphes
denses. Le modéle W-random graph a été introduit par Diaconis and Freedman
[Diaconis 1981] dans les années 80, mais sa popularité a augmenté au cours de
la derniére décennie suite au développement de la théorie des limites des graphes,
avec les travaux fondateurs de Lovasz et collaborateurs [Lovasz 2006b, Lovasz 2006a,
Borgs 2008, Borgs 2012, Borgs 2010]. Comme nous allons le voir, cette théorie donne
un cadre assez général pour la modélisation de graphes aléatoires et permet d’utiliser
des outils puissants provenant de 'analyse fonctionnelle et harmonique pour en
déduire des propriétés combinatoires.

Etant donné un espace mesurable (€, ), un graphon en € est une fonction
W [0,1] x [0,1] — [0,1] symétrique et mesurable. Il est possible d’utiliser
[Lovasz 2012|[Chap.11], sans perte de généralité, I'espace = [0,1] et p la mesure
de Lebesgue, mais dans cette thése nous allons préférer la définition plus générale.

Pour obtenir un graphe simple a partir d'un graphon W en (€2, 1), nous opérons
de la fagon suivante. D’abord on considére I’échantillon des points, qui seront les
noeuds dans le graphe généré, {Xi}z‘e[n} en (2 selon la loi . Ensuite, on construit la
matrice suivante

@z’j = W(XZ', Xj)

qu’on appelle la matrice de probabilités. FEtant donné ©, on définit la matrice
d’adjacence A comme une matrice aléatoire symétrique avec des entrées A;; i.i.d
pour ¢ < j avec une loi Bernoulli qui satisfait

P(A;; =11X1 -+, X)) = W(X;, Xj)
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les entrées de la diagonale sont toutes zéros (restriction de graphe simple). Plusieurs
modéles classiques de graphes aléatoires peuvent étre exprimés, dans le cas dense,
par des graphons. Un des premiers modéles de graphes aléatoires a été introduit
par Erdos et Rényi (et porte ses noms) ot deux noeuds quelconques sont connectés
de fagon indépendante avec la méme probabilité de connexion p € [0,1]. Celui-ci
correspond au modéle W-random graph avec graphon constant égal a p. De la
méme fagon, on peut voir que le modéle stochastique par blocs (SBM) appartient
a la classe des modéles W-random graph en considérant une partition mesurable
de 2, qu'on appelle {€;}icx) (ici on a K communautés), et un graphon défini
par Wspm(z,y) = pij pour (z,y) € Q; x Qj, ot p;j € [0,1] est la probabilité de
connection entre membres de la communauté ¢ avec membres de la communauté j.
Le modéle de graphe aléatoire géométrique classique, introduit en |[Gilbert 1961],
ou les noeuds sont placés dans un espace métrique et il existe un arc entre deux
noeuds s’ils sont assez proches, est aussi représentable par un graphon. Prenons par
exemple ot 'espace ambiant est le cube Q = [0, 1]d avec la mesure uniforme et le
graphon défini par Wy (x,y) = 1,_y|<,. Dans ce cas, le modéle W-random graph
est équivalent au modéle de graphe aléatoire géométrique qui connecte les points
plus proches qu'un seuil 7 > 0.

A part son intérét dans le cadre de la modélisation, les graphons représentent
des limites de séquences des graphes denses. Le sens précis de cette convergence
est donné par la cut distance |Lovasz 2012|, qui est une distance dans l’espace
de graphons qui le rend un espace compact |Lovasz 2012|. Tout graphe fini a
une représentation par un graphon et la convergence d’une séquence des graphes
sera équivalente & la convergence des graphons dans le sens de la cut distance.
La convergence dans le sens de la cut distance est aussi reliée a la convergence
des homéomorphismes ou sous-motifs donnés par des graphes finis fixés. Nous
n’utiliserons pas, de fagon directe, la cut distance dans ce manuscrit. Il impor-
tant de mentionner la notion d’isomorphisme faible: deux graphons W; et Ws sont
faiblement isomorphes s’il existe deux transformations ¥ et 12 en Sq telles que
Wi (¢1(z), ¥1(y)) = Wa(ya(x),12(y)), oit Sq est 'ensemble des transformations qui
préservent la mesure p. Etre faiblement isomorphe est une relation d’équivalence
dans I'espace de graphons. Dans le contexte de problémes statiques sur des graphons,
cette propriété est lice & des problémes d’identifiabilité, car un graphon W quel-
conque définit le méme modéle W-random graph que WY, pour tout ¢ € Sq, ou
W¥(z,y) = W((x),%(y)). Fréquemment en problémes d’inférence on considére
une des classes d’équivalences définies para la notion d’isomorphisme faible.

En dépit de I'importance de la cut distance dans la théorie des graphes, la plu-
part des travaux dans le domaine des statistiques utilisent d’autres normes ('article
[Klopp 2017b] est une des exceptions) sur I'espace de graphons, plus classiques dans
le contexte d’analyse fonctionnelle comme les normes LP. Le fait que les normes LP
majorent la cut norm (utilisé pour définir la cut distance), permet d’en déduire des
propriétés intéressantes. Dans cette thése on s’occupera principalement des normes
du type L?. Dans la section suivante nous allons définir le spectre du graphon qui
sera central pour nos algorithmes d’inférence d’information latente.
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1.2 Concentration du spectre des matrices & noyau

Les matrices a noyau jouent un role fondamental dans une grande variété des méth-
odes en apprentissage statistique, comme 'analyse de composantes principales, la ré-
gression de créte et, surtout dans la derniére décennie, ’analyse des réseaux denses.
Souvent son spectre est utilisé dans des algorithmes d’apprentissage et, par con-
séquent, des bornes pour les valeurs propres sont nécessaires pour avoir des garanties
théoriques sur l'erreur de ces méthodes.

Une matrice de noyau de taille n x n a des entrées de la forme K(X;, X;) ou
K : Q2 x€Q — R est un noyau et {Xi}ie[n] C ) un ensemble de points. On supposera
que {Xi}ie[n] son tirés de fagon i.i.d avec une loi commun p et que K est une fonction
L?(p x pt) symétrique. On voit en particulier que la matrice de probabilités © de la
section précédente est une matrice a noyau.

On considérera plutot la normalisation suivante (7},);; := 2K (X;, X;). A chaque
noyau on associe un opérateur intégral défini par Tk : L%(n) — L?(p)

Ty f() = /Q K (2. 9) f(4)dn(y)

Etant donné que K est de carré intégrable, on sait que Tk est un opérateur
compact, par un résultat classique d’analyse fonctionnelle, et alors son spectre A(Tx)
est un ensemble énumérable qui a 0 comme seul point d’accumulation. On peut
identifier I’ensemble \(Tx) avec une séquence en RY qui & un limite égale a 0.
On considére l'indexation |A1(Tk)| > [Ao(Tk)|--- o les \;(Tk) sont les valeurs
propres de Tx. Le fait que K € L? implique que 'opérateur Ty est dans la classe
des opérateurs d’Hilbert-Schmidt, c’est-a-dire, on a ), )\12 < 00.

Pour deux séquences de carrés sommables a,b € R_N, on définit la distance 9
par

. ) 2
do(a,b) = TlrIEllfI zzzl (ai — bx(1))
ou II est 'ensemble des permutations sur N avec support fini. Pour tout n € N,
on identifiera une suite a € R™ avec son extension @ € RY obtenue en rajoutant
un nombre infini des zéros, ce qui permet de comparer le spectre des objets de
dimension finie (matrices) avec le spectre des opérateurs.
Koltchinskii et Giné [Koltchinskii 2000] ont montré que le spectre de (7},);; =
(1 —6;5)(T5)qj converge vers le spectre de Tk, dans le sens de la distance da(-, -).

Théoréme 1. [Koltchinskii 2000, Thm.3.1] Si [ K*(x,y)du(z)du(y) < oo alors
(L), M(Tw)) — 0
lorsque n — 00.

Celui-ci représente la loi de grands nombres pour le spectre des opérateurs de
carré intégrable. Dans |Koltchinskii 2000], les auteurs prouvent aussi un théoréme
central limite pour cette convergence.
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Le théoréme spectral pour des opérateurs compacts donne I’expansion suivante

pour le noyau
K(z,y) L Z Aigi(x)di(y)
i>1

ot ¢;(+) sont les fonctions propres de 'opérateur intégral (c’est-a-dire T p; = \ii),
qui forment une base Hilbertienne de L?(u). Dans le cadre d’estimation de la fonc-
tion graphon en [De Castro 2020], des inégalités de concentration ont été montrés
pour & (Tw, %@) ol W est un graphon. Dans ce travail, les auteurs se placent
dans le cas des espaces symétriques compacts et, parmi eux, la sphére euclidienne
S¥1 = {z € RY: ||z|| = 1} que l'on étudiera de plus prés pour le modéle de graphes
géométriques dans la section 2.7 et le chapitre 3. Comme exemples des résultats
obtenus en |De Castro 2020] dans le cas sphérique pour des graphons qui satisfassent
des conditions de régularité du type Sobolev! (reli¢ a la vitesse a laquelle les valeurs
propres convergeant vers 0), on compte le théoréme suivant.

Théoréme 2. [De Castro 2020] Soit W un graphon sur S% de la forme W (z,y) =
flx,y)), ou f appartient a un espace de Sobolev avec poids quv((—l, 1)) alors on
a pour n suffisamment grand

S
log n ) Sstd—1
n

B2(M(Tn), ATw)) Za €
avec probabilité plus grande que 1 — a.

Une borne sur la distance d2(-,-) implique de fagon immédiate des
inégalités pour des valeurs propres individuelles, tout simplement car

N(Tn) — N(Tw)| < 62(N(T), \i(Tw)). Pour des noyaux positives, iné-
galités de la forme |\;(T,) — N(Tw)| = O(ﬁ) ont été montres, en utilisant

des techniques des espaces d’Hilbert a noyau reproductif [Rosasco 2010]. Un
chemin différent est adopté en |Belkin 2018|, ou des techniques de théorie de
I’approximation sont utilisés pour montrer une inégalité pour le spectre des
matrices & noyaux radiaux positifs et suffisamment différentiables en R%.  Plus
précisément, ils considérent des noyaux de la forme K(z,y) = f(||lz —yl|), out f est
une fonction réelle, qui satisfait |j—tllf(t)\ < I'M" pour [ suffisamment grand. Ils
obtiennent

Théoréme 3. [Belkin 2018, Thm.2] Pour un noyau K positif suffisamment differ-
entiable on a pour tout 1 <1 <n

INi(Tw) — Xi(Tp)| < exp (—ci'/?)

Un avantage du théoréme 3 par rapport a [A\;(73,) — \i(Tw)| = (’)(ﬁ), c’est la
dépendance en ¢ a droite dans I'inégalité. Cela permettre d’obtenir des résultats plus

précis pour les valeurs propres plus petits, comme a été montré en [Braun 2006].

!La définition formelle sera donnée dans le chapitre 2.
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Une fagon générale d’obtenir des bornes, pour |[A\;(Tw) — A\i(T},)|, avec une
dépendance en i est d’utiliser des théorémes de perturbation relative pour matrices
[Ipsen 1998]. Ceci est un sujet bien connu dans le domaine de l’analyse numérique
dont une grande précision est nécessaire. Si A et B sont deux matrices, qu’on sup-
posera réelles et symétriques, 'idée est de changer la quantité [A;(A) — A\;(B)| pour
une des quantités suivantes

Ni(A) = N(B)[ [l —NB) - [Ai(A) — Ni(B))]
ML VINA(B)] (A (AP + [N(B)P)?

pour p > 1, lorsque A;(A) et \;(B) sont différents de zéro. Bien que les deux

derniers ont des bonnes propriétés (comme la symétrie par rapport a A et B),

on préférera la premiére, c’est-a-dire W. La raison est que dans notre

contexte B sera une matrice aléatoire, la matrice T}, pour étre plus précis, et A
sera une approximation (déterministe) de dimension finie de 'opérateur Tyy. Cela
permettre d’avoir seulement des termes déterministes a droite de I'inégalité. Le but
est d’obtenir inégalités du type

IN(Tn) = Xi(Tw)| < [Xa(Tw)In ™" (1.1)

avec grande probabilité, avec h € (0,1). On appelle les résultats de la forme (1.1),
inégalités de type Weyl.

Des inégalités du type (1.1) ont été montrés en [Braun 2006], ou ils sont aussi
appelés scaling bounds, car le terme |\;(Ty )| permet de “mettre & I'échelle” le coté
droit. Plus spécifiquement, ils montrent le théoréme suivant

Théoréme 4. [Braun 2006, Thm .4 et Sec. 6.1] Supposons que K est un noyau
semi-définie positive, continu et borné avec valeurs propres Ai, Ao, ---. Alors, pour
toute 1l < R <mnetac(0,1), on a avec probabilité plus grande que 1 — «

log R A
N (Th) — Ai| = O(\R, | if + Asp 4 28y (1.2)
R’I’L n

ou Asp =3 4o p M. En outre, si \; = O(i™°) avec § > 1 on a pour tout 1 <i<mn

AilTn) = Al < O(n™25) (13)
Si \i = O(e™%), alors | N(T},) — \i| = (’)a(n_% log?n).

Bien qu’étant une borne relative, I’équation (1.2) a des inconvénients. Pour un
i fixé, le terme a droite ne tends pas vers 0 lorsque n — oo (il le fait si R — o0),
ce qui est donné par la présence du terme de biais Axg. Cela est remédié pour le
cas \; = O(i7%) en (1.3). Aussi, dans (1.2) la présence du terme )\}_%1/2 la rend peu
pratique pour le cas quand Ap es petit. D’autre part, l'inégalité (1.3) implique que la
vitesse de convergence est plus lente que O(ﬁ), qu’on peut obtenir (au moins dans
le cas positive) par une méthode basée sur des espaces d’Hilbert & noyau reproductif

(RKHS) [Rosasco 2010, Blanchard 2007].
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Dans l'esprit d’obtenir une vitesse de convergence comparable au théoréme 3
et dans un cadre plus général, avec des conditions de décroissance pour les valeurs
propres analogues au théoréme 4, on a montré le théoréme suivant.

Théoréme 5. [Araya 2020] Soit W un noyau avec valeurs propres Ay, Ag,--- et
fonctions propres correspondant ¢1, po,- -+ ,. On suppose que i es tel que \; # 0 et
que || SO0, [Nild?]|oo < 00, alors il existe ng(i) € N tel que pour tout n > ng on a

Vi(R(i))
M) = Ail = Oa (g 22) (1.4)
0uV1(i) = | iy G2lloo et R(i) ;= min {R € Nz [N| > Y, g MV /R pa g A2}
En outre, on suppose que \; = O(i7%) et ||pilloo = O(i%). Alors, avec probabilité
plus grand que 1 — a on a, pour s > 1

[ 1 6—1 1
O, (it 16 ) p=3) 5 1<i<n o B
S (saly 1 . s Y
‘)\i(Tn) — >\i‘ = Oa i 6+1+5_1(6+2)n 2) ST mn 0 2s+1 S 2 S n2s

. _1 R T
O, (i 0ty 2) si nz3s<i<n

Si on suppose que A\i = O(e7%) et ||¢illoc = O(e*), alors pour s > 1

O e—§i+(s+%)login—%> si 1<i<ns
[Xi(Th) — Ail =

~ S 1 1
O, 6*5”81‘%%_5) si nzs <i<n

Pour la preuve du théoréme 5, on s’est inspiré des travaux [Koltchinskii 2000,
Braun 2006, De Castro 2020] et on a suivi la stratégie suivante: on introduit une
approximation Wpr de rang R du noyau W, et on considére la matrice & noyau
Tnr = Wg(Xi, X;) avec le méme échantillon X; qui définit 7,,. Ensuite, on
peut voir 7j, comme une perturbation de 7, r et en utilisant des résultats de
perturbation relative on arrive a montrer que |[A\;(73,) — A\i(Tn.r)| < [Aill|Allop et
INi(Tn,r) — Ail < |Aill|Bllop, ot A et B sont deux matrices aléatoires. La matrice
B es de la forme <I>R<I>£ — Idg ot ®r es une matrice de R X n avec colonne 1
égale a (¢1(X;), -+ ,0r(X;)). On obtient des bornes pour || B||o, en utilisant des
théorémes de concentration pour matrices, comme le théoréme de Bernstein ma-
triciel [Tropp 2012, Thm.6.1] (ou alternativement [Vershynin 2012a, Thm.5.1]). Le
terme ||A|op est plus difficile & borner et on utilise une majoration par la norme
de Frobenius, laquelle on borne par & l'aide des inégalités de concentration pour
U-statistiques [Gine 2000].

Pour résumer, nos principales contributions au corpus d’inégalités de concen-
tration du type relatif pour des matrices a noyau sont ’obtention des inégalités du
type Weyl avec des vitesses de convergences égales ou meilleures que celles déja
présentes dans la littérature, et dans un cadre moins restreint( sans la hypothése
contraignante que Ty est positif). De plus, on applique les résultats au cadre de
noyaux qui dépendent seulement du produit scalaire et on montre les liens avec les
graphes géométriques sur la sphére.
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1.3 Inférence des graphes aléatoires géométriques

L’inférence des graphes aléatoires est une famille de problémes liés a la récupération
d’information d’un modéle de graphes (paramétrique ou non-paramétrique) a par-
tir de données (ici, on supposera qu’on dispose d’une et seulement une observation
du graphe). Une sous-classe de problémes est liée a la détection de la présence de
sous-structure dans le graphe et a la décision de quel modeéle parmi deux (voire
plus) est plus vraisemblable compte tenues des données. Ces problémes sont for-
malisés, du point de vue statistique, comme des problémes de test d’hypothése
[Arias-Castro 2014, Arias-Castro 2015]. Un autre groupe de problémes d’inférence
concerne l'estimation d’'un modéle ou des sous-structures cachées. Un des exemples
les plus connus est le probléme de détection communauté, ot il existe une partition
cachée des noeuds qui détermine la connexion entre eux (typiquement la connexion
inter-communauté est plus forte que la connexion intra-communauté¢), comme dans
le modeéle SBM. L’objectif est de récupérer la partition cachée [Abbe 2017|.

Ici, nous abordons le probléme d’estimation d’information latente dans le cadre
de graphes aléatoires géométriques. Nous allons considérer des graphes générés
a partir d'un modéle W-random graph, avec graphon W(z,y) = f((z,y)), ou
f:]=1,1] — [0, 1] est appelée fonction de connection. Dans le chapitre 3, nous pren-
drons Q = S% ! et on supposera que I’échantillon {X;};<;<, suit une loi uniforme sur
la sphére, tandis que dans le chapitre 4 on considére Q = B? := {z ¢ R?: ||z| = 1}
et p appartiendra & une famille de mesures avec symétrie sphérique. Le modéle
ici décrit représente une généralisation du modéle géométrique classique, associé
au graphon Wy(z,y) = Lizy)>r- D’autres noms ont été considérés pour cette
généralisation dans la littérature, comme graphes géométriques non-paramétriques
[De Castro 2020] ou soft random geometric graph [Penrose 2016].

La question de détection de géométrie est abordée dans le cadre du test
d’hypothése dans |Bubeck 2016], ot les auteurs montrent que si d (la dimension
de la sphére) est négligeable devant n?, alors il est possible de distinguer le modéle
W, de 'hypothése nulle qui est le modeéle d’Erdos-Rényi. Plus précisément, ils mon-
trent qu’il est possible d’utiliser une quantité reliée au nombre de triangles comme
statistique pour décider le test. Dans le cas ol la dimension est grande par rapport
a n?, ils montrent que il est impossible de distinguer entre les deux modéles, car
la distance de variation totale entre les deux distributions converge vers 0. Ceci
constitue un exemple du phénomeéne de transition de phase. Plus de précisions sur
cette transition son données dans [Racz 2019].

Ici on étudie un probléme de récupération: a partir de I’observation de la matrice
d’adjacence, 1'objectif est de trouver les distances latentes (pour le cas sphérique il
suffit de trouver (X;, X;)). La récupération des distances latentes a des applications
dans le domaine de localisation des senseurs [Li 2009, Eren 2017] et la prédiction de
liens dans les réseaux sociaux [Sarkar 2010].

On suit une approche spectrale, qui a des similarités avec celui étudié dans
[Sussman 2014], dans le cadre des graphes RDPG (random dot product graphs).
D’autre part, les techniques qu’on utilise sont a la base de certaines méthodes
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d’apprentissage de variétés de faible dimension |Levin 2017].

Dans notre méthode I'idée est d’utiliser des éléments d’analyse harmonique sur
la sphére pour trouver une décomposition convenable de la fonction f. Dans ce
contexte, il est connu qu’il existe {¢; 1 }1>0.1<k<q, une base Hilbertienne? de L2(S%1)
telle que pour tout W de la forme W(z,y) = f((z,y)) on a Twop = Nk, ot
A1 € R. Chaque {¢; x} est un polynome sur la sphére de degré [ que 'on les appelle
les harmoniques de la sphére. L’opérateur projection de LQ(Sd_l) dans l'espace de
polynoémes de degré [ sur la sphére est un opérateur a noyau et son noyau a une
formule explicite en fonction des polynomes de Gegenbauer du degré correspondant.
Dans le cas de polynomes linéaires, cela implique la formule suivante

d
(,9) = 53 15(x)014(0) (15)
j=1

De facon équivalente, on a G* = ®®T ou ® est une matrice de taille n x d qui a
pour lignes (¢1,1(X5),- -+, ¢1,4(X;)) pour 1 <i < n.

On propose un algorithme, qu’on appelle HEiC(Harmonic EigenCluster) qui
recois comme entrée une matrice d’adjacence et la dimension de la sphére d, et sa
sortie est Q, un estimateur de G*. L’algorithme trouve un cluster de taille exactement
d valeurs propres proches entre eux et calcule G = ézgzl @,—@;TF, ou v1,--- ,0q sont
les vecteurs propres associes. On montre que sous une condition de trou spectral
pour le spectre de Ty, ’algorithme a de garanties pour I'erreur en norme Frobenius
avec grande probabilité. Le trou spectral est défini par

A* = Ilclyléfi P\k — )\1‘

Théoréme 6. Supposons que W(x,y) = f((z,y)) et f appartient & un espace
de Sobolev Z*([—1,1]) et qui satisfait la condition de trou spectrale A* > 0, alors
Ualgorithme HELC donne G qui satisfait

IG* = G|lr = O(A* In~z7aT)
avec grand probabilité.

On montre aussi, que l'algorithme HEiC peut étre utilisé comme sous-routine
dans un algorithme qu’estime la dimension de la sphére, lorsque elle n’est pas regue
comme entrée. Plus précisément, on définit un algorithme HEiC-dim qui regois
comme entrée la matrice d’adjacence et D un ensemble de candidats pour la di-
mension et assigne un score a chaque candidat basé sur 'application de HEiC (le
score correspond a la valeur empirique de A*). La sortie est le candidat avec le
plus grand score. On montre que si la condition de trou spectral est satisfaite, alors
I’algorithme HEiC-dim trouve la bonne dimension pourvu que la vraie dimension
est dans I’ensemble des candidats et que n est suffisamment grand. Comme la plu-
part des algorithmes spectraux, HEiC a une complexité en temps de ordre O(n?).

?La séquence {d;};>0 es strictement croissante et satisfait d; = d.
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D’autre part I'algorithme HEiC-dim a une complexité en temps O(n? x |D|), ot |D|
est la cardinalité de I’ensemble des candidats.

Dans le chapitre 4, on étudie le modéle de graphes géométriques dans la boule
Euclidienne, c’est-a-dire on considére I'espace = B¢ et un graphon de la forme
W(z,y) = f({x,y)). On considére une famille de mesures F = {F,},~1/5 avec
symétrie sphérique, ot chaque F), a la densité suivante (par rapport a la mesure de
Lebesgue)

dF,(z) = (1~ ||l=|*)"~"/?

Le choix de cette famille a deux raisons: la premiere est qu’elle est suffisamment
riche pour obtenir une grande variété de profils de degrés (distribution de la séquence
de degré) pour les graphes générés. La deuxiéme raison est technique, l’analyse
harmonique sur la boule donné des résultats analogues au cas sphérique pour la
famille F.

Une des contraintes dans le modéle sphérique est le fait que tous les noeuds
ont en moyenne le méme degré (on peut montrer aussi que pour chaque noeud la
distribution de son degré est trés concentré par rapport a sa moyenne). Le fait que
dans la boule il y a des points avec différente norme (et aussi qu’on a plus de controle
sur la distribution avec la famille F), permettent d’obtenir un profil des degrés avec
un support plus étendu. En particulier, on montre que pour certaines fonctions de
connexion et certaines mesures dans JF, il est possible d’obtenir distributions des
degrés similaires a une lois de puissance décalée. De nombreuses études empiriques
suggérent qu’une bonne partie des réseaux qui apparaissent dans la pratique ont des
lois de puissance pour ces degrés [Clauset 2009, Mitzenmacher 2003|, ce qui rendre
le modéle dans la boule attractif pour des applications.

On étudie des questions d’inférence dans ce modéle. En premier lieu, on prend
le cas Wy(z,y) = L(zyy>7 et on montre que il n’est pas possible d’estimer 7 et le
paramétre v de la mesure, en méme temps, avec la seule information de la matrice
d’ajacence. Ensuite, on montre que si on fixe la mesure et 7, il est possible d’estimer
les normes latentes, c¢’est-a-dire, pour chaque i on définit (;, un estimateur de || X5,
et on montre que ¢; — || X;|| au sens presque sure. On étudie aussi le cas de 7
inconnu.

Pour les distances latentes, on montre qu’il est possible d’étendre la méthode
développée pour le cas sphérique, étant donné les similarités entre les décompositions
spectrales dans le deux cas. En effet, dans la cas de la boule, il existe une base de
L?(B%), constituée de polynoémes qui sont des fonctions propres pour tout opérateur
intégral avec noyau de la forme W(z,y) = f({(z,y)). De maniére analogue au cas
sphérique, le noyau de I'opérateur projection de L? dans l’espace des polynomes de
degré 1 a une formule close similaire & eq.(1.5). On construit un estimateur basé
sur les vecteurs propres de la matrice d’adjacence, comme dans le cas sphérique.

En résume, notre principale contribution au probléme d’estimation des distances
latentes pour un graphe géométrique en S*1, est de proposer un algorithme efficient
avec des garanties théoriques pour ’erreur, sous une supposition de type trou spec-
tral. Utilisé comme sous-routine, 'algorithme permet de déterminer la dimension
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latente entre un ensemble de candidats.

Dans le cas de graphes géométriques en B? nos principales contributions sont:
montrer que le modéle est plus flexible en termes de distribution des degrés, en
comparaison au modéle en S, En particulier, on montre que pour certaines
fonctions de connexion, le modéle présente des distributions des dégrés similaire a
la loi de puissances. On construit des estimateurs pour les normes et les distances
latentes et on montre qu’ils convergent vers la vraie valeur (sous certaines conditions
de régularité).

Pour chaque algorithme et pour chaque estimateur, nous présentons une série
des simulations et des expériences numériques qui permettent de vérifier les résul-
tats empiriquement et qui suggérent, a 'occasion, des extensions possibles de nos
résultats.
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2.1 Introduction

This chapter is devoted to the study of the concentration properties for the spec-
trum of a class of random matrices, known as Kernel matrices. Such matrices play
an important role in the family of kernel methods, which are ubiquitous in ma-
chine learning, theory and applications alike [Hofmann 2008|. Important examples
of the applications of kernel matrices are dimensionality reduction (Kernel PCA,
for instance |Blanchard 2007]), sample covariance estimation [Koltchinskii 2017]
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and more recently in the analysis of dense networks [Klopp 2017a|, data privacy
|Kasiviswanathan 2015] and deep learning [Cao 2019].

It is well known [Koltchinskii 2000, Thm. 3.1| that each eigenvalue of such matri-
ces converge to the eigenvalue of an associated kernel integral operator. The methods
we present in this section, which are developed in detail in the paper [Araya 2020,
offers a finite sample approach that quantify the eigenvalue convergence. Apart from
the typical O(1/y/n) that comes from the use of concentration inequalities, the rates
we present here have a scaling term, which allow us to obtain rates that are better
than parametric and often exponential, which is a phenomenon that has already
been observed, with more restrictive hypothesis and using a different approach, in
[Belkin 2018].

The core of the work [Araya 2020| consists in two theorems, one dealing with
a more general situation and with milder hypothesis and other under regularity
hypothesis related with the decrease rate of the eigenvalues. Those hypothesis,
which are common in the kernel in the literature and satisfied for a large class of
kernel functions, will allow us to obtain more specialized results depending on the
eigenvalue behavior of different kernel families. We apply our results to the case
of dot product kernels defined on the Euclidean sphere S*1, which is a family of
rotation invariant kernels with the remarkable property that the associated integral
operator can be diagonalized in the basis of spherical harmonics. The eigenfunction
basis is fixed in this case (acting as a Fourier basis) and our results simplify, as
the regularity will depend only on the eigenvalue decay rate. We highlight the
connection of this type of kernels and the class of dense random geometric graphs,
via the graphon formalism developed in |Lovasz 2006b, Lovasz 2006a, Borgs 2008,
Borgs 2012, Borgs 2010]. This class of kernels has also been used recently in the
context of neural networks and deep learning [Cao 2019].

2.1.1 Kernels, matrices and integral operators

Through this section, we will consider a probability space (€2, ) and a kernel will
be a bivariate symmetric measurable function K :  x 2 — R. We will assume, here
and thereafter, that all the kernels are square integrable. Otherwise stated, they
belong to L?(22, i x p), where pu x 1 is product measure of p with itself. Given the
kernel K, we construct the integral operator Ty : L2(€2, p) x L?(2, 1) — R, defined
by

Ty f(z) = /Q F ) (2, y)du(y)

where z is in Q and f € L?(, u). As usual, the space L?(€, i) is endowed by the
product (f,g)r2 = [ f(2)g(x)du(zx), which make it a Hilbert space. Given that we
assume the square integrability of K, it is well known that Tk is in fact a compact
self adjoint Hilbert-Schmidt operator [Hirsch 1999, p.216], hence by the spectral
theorem for compact self adjoint operators (see Theorem 1 below) its spectrum is
a real discrete (countable) set whose only accumulation point is 0. In that sense, a
self adjoint compact operator can be regarded as an infinite dimensional analog of a



2.1. Introduction 15

(finite) symmetric matrix: both can be diagonalized and the spectrum is composed
by real eigenvalues only. We recall that an eigenvalue of an operator is defined in
an analogous manner to those of matrices, that is A € R is an eigenvalue of Tk if
and only if there exists ¢ € L?(£2, ) such that the following relation holds

Tk () = Ap(x)

for every z € 2. In this context, the function ¢ is known as an eigenfunction
associated to the eigenvalue A, which we will assume to be normalized by ||¢|l2 =
1, where || - ||2 is the norm induced by the inner product (-,-);2. In general one
eigenvalue might be associated to more than one eigenfunction, defining the linear
space E), which is the subspace of L?(Q, 1) that contains all the eigenfunctions
associated with A. The linear dimension of E) is known as the multiplicity of A.

We recall the spectral theorem for compact self adjoint operators in the Hilbert
space version, which will be used in the sequel

Theorem 1 (Spectral Theorem). Let T be a compact operator from a Hilbert space
H to itself. For every eigenvalue X, let Ey denote the eigenspace associated to \.
Then the following holds

o The set N(T) of the eigenvalues of T is an infinite countable and bounded
subset of R.

o [or all X # 0 we have dim(E)) < oo

o Forall \, N in A\(T) with A # X the spaces E and Ey/ are orthogonal, meaning
that (f,g)r2 =0 for f € E\ and g € Ey.

o We have the following decomposition, in the L*($), 1) sense

T= > AP

AENT)\{0}

where Py is the orthogonal projector onto Ey for A # 0.

The previous theorem is one of the many incarnations of a classic statement. Its
proof can be found, for example in [Hirsch 1999, Chap.6]. The following corollary
will also be useful

Corollary 2. The Hilbert space H has a countable Hilbert basis that consist of
eigenfunctions {¢r}ren of the operator T', where each ¢y, with k € N is associated
with an eigenvalue A\, # 0. In addition, the sequence of eigenvalues satisfy A, — 0
when k — oo and the following decomposition holds in the L? sense

Tf=> Melf, bk)r20%

keN
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As K(z,-) is itself a L2(Q) function, the following expansion holds in the L?
sense

K=Y M\ti ® ¢ (2.1)

keN

where f ® g represents the tensor product between for f,g € L?, which is defined
as f®g(z,y) = f(z)g(y).

From Corollary 2 we deduce that the set of eigenvalues A(Tk) can be identify
with an element of ¢y: the space of real sequences converging to 0. We will use the
same notation A\(Tx) for the abstract set of eigenvalues and for the sequence in ¢
(which definition is in use should be clear from the context). We will consider that
in the sequence \(Tk) every eigenvalue appears as many times as its multiplicity,
unless the contrary is stated. This correspond to the notion of extended enumeration
defined in [Rosasco 2010, Sec. 2.5] (see [Kato 1995] for an earlier reference). Since
every nonnegative sequence converging to zero can be rearranged in decreasing order,
we will consider in the following the indexation for the eigenvalues { A\ }ren:

Aol > | > -0

Given the eigenfunction normalization we have the following

IEEDPPY:

keN

where || K| 2 is the norm in L?(Q2, u?). As we have assumed that ||K|[;2 < oo,
we see that the operator T is in fact a Hilbert-Schmidt operator. Also, its easy
to see that given that we assume that |\;| are ordered decreasingly, we have that
|\x| < C/Vk for some constant C' (which depends on K'). This will not be enough
for our purposes and additional assumptions will be required.

The kernel matrix, which can be thought as a finite dimensional version of the
integral operator T and is defined by sampling in the following manner: we start
with the set of random variables { X;}1<j<n} € €, which are independent and iden-
tically distributed with law p and we construct the matrix of pairwise evaluations

(Kn)ij = K(Xi, X;)

fori,j € [n]. By construction, the kernel matrix is symmetric, so its spectrum A(K,,)
lies in R%. The cardinality of A\(K},) is n, but in order to compare the spectrum of
K, with the spectrum of T we will use the embedding of finite set of real numbers
into the space cg, which is simply defined by completing a sequence of finite lenght
with zeros. We will use this identification in the sequel. Similar to the case of
ATk ), we will choose the indexation in the decreasing order in the absolute value
for A\(Kp,).

Our goal is to prove relative concentration inequalities for eigenvalues of K, with
respect to the eigenvalues Tx. Asymptotic results are well known since the work of

'"We can use here C=||K||.2, but this bound will not be used in the sequel.
2We use the notation A(+) for matrices analogously to the operator case
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Koltchniskii and Giné [Koltchinskii 2000|, where the authors prove the convergence
of A\(£K,) to A(Tk) in a lo-type norm, called d, norm. They also provide a CLT
[Koltchinskii 2000, Cor. 5.9] describing the asymptotic normality of the fluctuations
of )\(%Kn). Their proof includes the use of a truncation technique, common in
functional analysis, which we will also use later. Notice that in the asymptotic results
suggest that the correct normalization in this regime is %, which is a difference with
the high-dimensional regime (see |El Karoui 2010]). In the sequel, we concentrate
in the normalized version, defined by

For any L? kernel K, where the expansion (2.1) holds, we define its truncation
at level R, for any R € N as follows

R
Krp=>_ Mo @ bx

k=1

If for a given kernel K, there exists R € N such that K = Kg, that is K coincides
with its rank R decomposition, we will say that K is of finite rank (or, more specif-
ically, of rank R). Otherwise, we say that K has infinite rank. We can see Ky as a
finite rank approximation of K and the idea is to quantify this approximation under
regularity conditions on K. This idea will be formalized in Section 2.4. Before we
discuss the state of the art in kernel matrix concentration.

2.2 Kernel matrix concentration

The study of concentration inequalities in the context of matrix quantities deals
mostly with the concentration of the their eigenvalues. Most of the inequalities in
the literature deals with quantities of the form ||| Ao, — E||A||op| or [|[A — EA||op,
where in the second case the matrix expectation must be understood entrywise and
the operator norm corresponds to the largest singular value of a matrix or operator.

The results and techniques used to attack this problem vary drastically depend-
ing on the specific distributional assumptions (or lack thereof) for the entries of A.
For instance, in the case of matrices with independent entries the operator norm
concentration is well understood. Indeed in [Bandeira 2016| sharp inequalities are
provided for this case. Following |El Karoui 2010], the kernel matrices concentra-
tion literature can be divided in two regimes: the low and the high dimensional
cases. In the low dimensional case, the space {2 where the X;’s are defined is fixed
(it is not intrinsically “low dimensional”). The high dimensional case deals with the
case where Q changes. Most often, = R?% and, in the high dimensional case, the
most typical assumption is that d/n — 7, where v € (0,1) is fixed. In the latter
case, there are many remarkable asymptotic (the Marchenko-Pastur limit theorem
for the spectral density [Marchenko 1967], for instance) and non-asymptotic results.
We refer to the interested reader to [El Karoui 2010] for an exhaustive study of the
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concentration in the high dimensional case. From now on, we only deal with the
low dimensional case only.

We can further divide the matrix concentration inequalities in two groups: the
absolute concentration inequalities, on one hand, and the relative concentration
inequalities, on the other. This categories derive from the types of measures used
for quantifying matrix perturbations, which can either relative or absolute. This
distinction is most common in the fields of linear algebra and numerical analysis (see
[Ipsen 1998]), but they are becoming increasingly popular in statistics and machine
learning. In the case of individual eigenvalues the most typical absolute measure is
|Ai(A)—A;(B)| where A and B are two matrices (or operators). Some corresponding
relative measures, which are common in the literature, are

MA - NBL A MBI D) = M(B)]
ML VILA)(B)) (M(A)P + [\(B)[P) 7

for p > 1. We call a bound for any of this quantities of the Weyl-type, given the classic
Weyl perturbation theorem [Bathia 1997|[Cor.I11.2.6 |. Inequalities that involve the
sum of eigenvalues are often called of the Hoffman-Weilandt type (also because of
classic eigenvalue inequality with that name). On most occasions, the use relative
eigenvalue inequalities results in better accuracy compared to the corresponding
absolute inequalities.

Some of works that obtain absolute concentration inequalities in the context
of kernel matrices are [Shawe-Taylor 2005],|Blanchard 2007]|,|Kasiviswanathan 2015]
,|[De Castro 2020], [Amini 2020]. The relative approach has been considered in
[Braun 2006| and, most recently, in [Belkin 2018] where an approximation theoretic
method is directly employed (without using concentration). Even if the context
is slightly different, the literature on concentration of sample covariance matrices
(operators) is also relevant, since Gram type matrices are one of the prototypical
examples of kernel matrices. Some examples are the works in [Vershynin 2012a)
|[Koltchinskii 2017], [Lounici 2019], [Ostovskii 2019] and [Jirak 2019]. We explain
some of these works in more detail and establish comparisons, whenever possible, in
Section 2.5.

2.3 Relative concentration inequalities for the spectrum

In this section we present the main results, Theorems 3 and 4, of the article
[Araya 2020|, which deal mainly with concentration inequalities of the Weyl type.
We also present a Hoffman-Weilandt type inequality for the d2(-,-) as a corollary
(Cor. 5).

We present a set of inequalities, one for each eigenvalue, first in a more general
context, under only a summability hypothesis (see (H) below). We later specialize
those inequalities under regularity hypothesis of the Sobolev type, which translate
into convergence rates that put in evidence the increase in accuracy of this method-

ology.
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We introduce the hypothesis H which assures the summability of the spectral
expansion (2.1), that is
2
1D elilloo < 00 (H)

k>1

We have the following result under H. We define V; (i) = || Y24_; #7 0, which works
as variance proxy, in the sense of concentration inequalities [Boucheron 2013], in
what follows.

Theorem 3 (|Araya 2020]). Let W : Q x Q — [0, 1] be a kernel which eigensystem
satisfies H. Fix i € N and define
R(i)==min {ReN:|N|> > [\|V [RY N2}
k>R k>R

Then there exists ng € N such that for n > ng and for a € (0,1) we have

INi(Th) — Ni| < )\l.|\/V1(R(i))1;>g R(i)/a

with probability larger than 1 — «.

The ng that appears in Theorem 3 depends on i in general (we will made this
point more precise in the next section). One of the consequences of Theorem 3 is
that |A\;(T},)—\;| attains a parametric rate in terms of n, when i is fixed and n is large
enough, while maintaining the scaling term |);|. The latter will be fundamental to
obtain sharper inequalities under more precise eigenvalue decay rate assumptions.
Stated this way, this result is formally close to the CLT [Koltchinskii 2000, Cor.
5.8], which says that when the eigenvalues of K are simple (multiplicity one) then
the following convergence in law holds A\;(T},) — Xi(Tk )G (67)n~ /2, where G, is
the generalized Brownian bridge associated with p (a centered Gaussian process
indexed by L? functions whose covariance is same as defined by p). Notice that
Theorem 3 in this respect is close to this asymptotic result, except that the variance
term V(i) involves not only ¢?, but all the functions up to the term R(7). Our V; (i)
is similar to those appearing in the (absolute) bounds in positive kernel literature
[Shawe-Taylor 2005] and [Blanchard 2007|. In the aforementioned results, the vari-
ance term is the radius of smaller ball, in a Hilbert space, that contains the sampled
feature maps. Here is the radius of the smaller ball that contains the evaluation of
the eigenfunctions.

2.3.1 Regularity hypothesis

We now turn to three more specific regularity assumptions, all of which are sufficient
conditions for H. We will assume that |\;| = O(f(7)) and ||¢g||c = O(g(i)), where
f and g are either polynomial or exponential. More precisely, we call hypothesis Hy
when |\;| = i7° for some & > 0 and ||@;[lco = i* for s > 0. We will assume that
d > 2s + 1, which is sufficient to fulfill H. Similarly, we say that the eigensystem
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satisfy Hy if |\;| = e and ||¢s]loc = i°, with § > s. Finally, we call Hz the
following hypothesis |\;| = ™ and [|¢;|loc = €*, with § > 25. We will assume that
d,s € N, which do not seem to be strictly necessary, but makes easier to establish a
connection with the classic formulation of Sobolev regularity hypothesis. In Table
3.7.2 we summarize the assumptions we use in this section. The following theorem
gives specific rates for those assumptions.

Assumption
Al il oo
Hy | OG7°%) | O@F) | 6>25+1
Hy | O(e™) | O(@®) 0>s
Hy | O(e™) | O(e®) 0> 2s

Table 2.1: Hypotheses for the eigenvalue decay and the growth of the eigenvectors

Theorem 4. Let W be a kernel satisfying one of the hypothesis Hi, Ho or Hs. Then
with probability larger than 1 — « we have a bound of the form

IANi(T) — Nil S B(i,n)logl/a

where B(i,n) depends on the respective hypothesis and is given by the following table

Assumption B(i,n) i
;0 (s+g)  —1 1<i< nF mer
Hi(s > 1) | =0t 6+5)-3 || 5 55 < < p3s
=0+t =3 nas <i<n
Hi(s = 0) i~0tin—3 1<i<n
e 0it(s+3)logiy, —5 1<i<ns
Ha(s > 1) _Sitslogi,,—1 L <_~ <
e n 2 n2zs ST N
Hy(s = 0) g0tz logiy—3 1<i<n
Hs(s > 1) e(=0+8)ip—3 1<1<n

Both theorems are derived from the same set of results, but they are better
adapted for different situations. The purpose of Theorem 3 is to give a rate in terms
of the sample size for fixed index 7. In Theorem 4, we assume a fixed sample size and
allow i to vary with n. Observe that the obtained rates change depending on the
value of i (relative to n). This is known phenomena in concentration inequalities,
where often we have a mix between different tail regimes (frequently Gaussian and
Exponential). The fact that this occurs at i = O(n%) for Hy and Hs, when s > 0,

and at ¢ = (9(10%) for Hs is related to the transition between 4/ @ and @,

which appears frequently in concentration inequalities. This will be clear from the
explanation of our approach in Section 2.4. In Theorem 3 this is less important
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as the focus is when n is large, while i is fixed, and the term O(1/y/n) prevails.
Observe that Theorem 4 gives rates that are better than parametric under H; and
exponential in cases Ho and Hs. This in line with some recent results such as
[Belkin 2018, Thm.2|. A more detailed comparison with previous results in the
literature is postponed to Section 2.5. In the next section we explain the ideas
behind the proof of the main results.

We end this section with a corollary that shows that the previous results can be
used to control the deviation of more than one eigenvalue at the time. We prove
the following Hoffman-Weidlandt style bound for the da(-, -) metric

Corollary 5. For a kernel K satisfying Ho or Hs, then we have with probability
larger than 1 — «
1

I (MNTh), NTk)) = (’)a(%)
If K satisfy Hy with the additional assumption that § > 2s+ 2, the same conclusion
holds.

While this result might be deduced from the absolute bounds for positive op-
erators (by a simple decomposition in positive and negative parts?), presented for
example in [Rosasco 2010]. This method still offers advantages. For instance, it
allows for the consideration of portions of the spectrum other than the full spec-
trum or a single eigenvalue. This could be useful for algorithms using a group of
eigenvalues for discovering a low dimensional structure in the data, such as kernel
PCA, or for the algorithm (HEiC) for recover latent distances in graphs that will
be described in Chapter 3.

2.4 Three step method: approximation, perturbation
and concentration.

The purpose of this section is to explain the three step approach used in the proof
of Theorems 3 and 4, as developed in [Araya 2020|. Each step in this approach is
named after the family of techniques in display. In the approximation step we use
Kpg, a rank R approximation of K to find a convenient factorization for 7;,. This
gives a framework where 7, can be seen as a random perturbation of Tk. In the
perturbation step, we use deterministic matrix perturbation inequalities to quantify
the deviation between A\(Tk) and A(T},). At the end of this step we obtain a scaling
bound that depend on random error terms (which are written as the operator norm of
two random matrices that appear in the perturbation). Finally, in the concentration
step we use concentration inequalities for U-statistics to control the error terms. We
now describe each step in more detail.

Approximation step: The approximation step builds upon a truncation ap-
proach, which is also used for example in [Koltchinskii 2000], [De Castro 2020] and
[Braun 2006, where we fix R € N and decompose W into two terms:

3Note that some technical conditions are required for this to work. Under our hypothesis H
they are guaranteed.
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1 1
(Tn)ij = gWR(Xz'ij) + E(W — Wr) (X, Xj)

We call the first term of the right hand side, the R-truncated kernel matriz. Define
the residual matriz (the error from the approximation) as

(ER)ij : (W Wr)(Xi, Xj) = Y M Xi)or(X;)
k>R

where the second equality is justified by the assumption H, which implies the point-
wise equality. The R-truncated kernel matrix can be written as a multiplicative
perturbation of a diagonal matrix. More specifically, we have the following factor-
ization

1
HWR(X,-,X]-) = drARDL

where ®p is the n x R matrix with columns 1/v/n(¢r(X1), or(X2),- -+, dr(Xn))T
and Apg is a diagonal matrix with A, Ao, -+, Ag in the diagonal. Thus, the normal-
ized kernel matrix can be written as an additive perturbation of the R-truncated
matrix by the residual matrix

T, = drARdPL + ER (2.2)

From the previous equality is already possible to obtain scaling bounds, as it is
done in [Braun 2006]. The idea is that the first term has a structure that makes it
compatible with standard tools of matrix concentration (after using a determinis-
tic multiplicative perturbation theorem). The residual term has less structure, but
its operator norm will be small in comparison to the R-truncated matrix, provided
that R is well chosen. In [Braun 2006| and [De Castro 2020| the classic (absolute)
Weyl inequality is used. Intuitively speaking, the problem with that approach is
that in absolute perturbation we consider the effect of the residual term over all
the eigenvalues of the truncated matrix is uniform, which should not be the case,
in light of the asymptotic results in |[Koltchinskii 2000]. To overcome this, we intro-
duce another factorization instead, which allows to better exploit the multiplicative
perturbation framework. The factorization is as follows

T, = (Pp|@x)M(Pp|05)" + A (2.3)

Arp 0
M =

the columns of matrix @ﬁ are an orthonormal basis of the orthogonal complement to

where

the space spanned by the columns of ®i. Assume for the moment that the columns
of @ are linearly independent. On that event, define the projection matrices Pj :=
<I>R(<I>£<I>R)_1<I>£ and P = q)ﬁq)J‘T, the matrices M~ and A are specified by

T
Msp := &5 Epdg
A:= PIERPy + PERP) + PIERP,



2.4. Three step method: approximation, perturbation and
concentration. 23

Notice that the columns of @ﬁ are orthonormal, which is not the case of the columns
of ®r. In words, we decompose the residual matrix according to its projection onto
the space generated by the columns of & and its orthogonal complement.
Perturbation step: Define M := (®|®5)M(®g|®5)T. We first use Weyl's per-
turbation theorem to obtain the following

INi(Tn) = Aa(M)] < [|Allop (2.4)

Now we use a relative multiplicative perturbation theorem known as Ostrowskii’s
inequality, in the non-square version given by Cor. 17 (this inequality is stated in
the case of non decreasing eigenvalues, but it is still valid for the ordering we use
here, see Remark 1) to obtain for all 1 <i <mn

INi(M) = Xi(M)] < [Xi(M)[[[(Pr|PH)T (PrIDPE) —1dn [lop = [N(M)[| @70k —1dR [lop

(2.5)
where the last equality comes from the fact that (IJﬁ has orthonormal columns. Using
(2.5) and (2.4) we obtain for all 1 <i<mn

Xi(Tn) = Ai(M)] < [Xil[@% PR — 1R llop + (| Allop (2.6)

Because of the block structure of M, we have that N(M) = A(Ar) U A(Msg).
The eigenvalues A(Ag) are deterministic, while A(M=p) is a random set. By the
definition of M-~ g, the following trivial bound holds

AN(Map)| < |95 Er®hllop, forall 1 <i<n— R

Concentration step: We use concentration inequalities to control with high
probability the terms in the right hand side of (2.6) and they will also serve us
to characterize the random set A(Mspg). As we already mention, inequalities for
quantities of the form |[®5®xz — Idg ||op are well stablished. For instance, given
that <I>£<I> r can be written as a sum of independent random matrices, we can use
some version of the non-commutative Bernstein inequality. Using, for example, the
matrix Bernstein inequality (see Thm. 19) we obtain

Proposition 6. With probability larger than 1 — a we have

Vi(R)log R/« y Vi(R)log R/«

T
”q)R(I)R —Idr HOP 5 n n

On the other hand, for the terms [(®5®p) 1OLERPR(PLPR) |,y and
H(IJIL%ERQI{ZTHO,,, the standard tools in matrix concentration inequalities, do not
seem to apply as smoothly. For instance, when Fg has infinite rank, it cannot
be expressed as a finite sum of independent matrices. Some concentration inequal-
ities, such a the matrix bounded differences inequality [Mckey 2016, Cor. 6.1] or
others obtained by the matrix Stein method |[Mckey 2014] can be applied in this
case, but they demand strong conditions such as almost sure control of a matrix
variance proxy in the semi-definite order. In addition, in this case they deliver
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suboptimal results. We opt for using a rougher matrix norm inequality, for ex-
ample using the Frobenius norm to control the operator norm, and we then use
concentration inequalities for U-statistics, such as those in [Gine 2000, Thm.3.3] or
[Houdré 2003, Thm.3.4|. This is can be seen as rough application of the comparison
method described in [Van Handel 2017|, which consists in find an easier-to-bound
random process majorizing the operator norm. Finding a tight majorizing random
process is, in general, a challenging task and no canonical way to do this is known,
to the best of our knowledge. The fact that we use a rougher bound for the matrix
norm will be compensated by optimizing the choice of R, which helps reducing the
impact of this inaccuracy.

We have the following proposition which gives a tail bound for the terms

T
“ER(bHOp) for ¢ € {(bla te 7¢R}7 and ||¢)ﬁ ERCDﬁ”op-

Proposition 7. We have with probability larger than 1 — «

R

1
Y B3, Sa b2 rVi(R) =1 71(n, R) (2.7)
=1

VaBbr ,, Va(R)

n n

T
125 Er®gllop Sa br + = 75(n, R) (2.8)

where
R
bro= Y Mkl bar= Y A, VIR) = el Va(R) =D Mtr@klloc
k>R k>R k=1 k>R

For 7 > 0, we define the event
E={we st ||0hdpw) —Idg |0 < 7}

Vi(R)log R/«
n

holds with high probability, is proven using Proposition 6.

Define 7, g = . The following lemma, which proves that the event

&

Tn,R,a

Lemma 8. For R <n we have
]P’(STR’R’CY) >1-«a
Lemma 9. Let Sp(®gr) be the linear span of ¢1,--- ,¢r. It holds

[Allop <

I1ES]|

max
#€Sp(®R),[I¢ll=1
Let & be the event such that (2.7) holds. In the event £, N Er, . we have

1

[Allop Sa m(n, R)

1- Tn,R,a
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For a € (0,1) and R < n we have, using Lemma 9, Lemma 8 and Prop. 7

1

[Allop Sa 71(n, R) (2.9)

1- n,R,a
with probability larger than 1 — 2a. The following two propositions will allow us to
control |A\;(T},) — Ai| for a fixed R € N.

Proposition 10. Assume that R € N is such that 7, p.o < 1. Then with probability
larger than 1 — o we have, for i < R

Vi(R)log R
1(210gJr

Ni(Tn) = Ml Savr ([Ai] V 72(n, R)) m(n, R) (2.10)

Proposition 11. Fiz R € N. We have, with probability larger than 1 — « fori > R
[Ai(Tn) = Ail Sa 72(n, R)

The proof of Theorem 3 uses Proposition 10. Indeed, it is easy to see that
72(n, R) — 0 when R — oo and the same is true for v;(n, R)(actually this terms
also converge to 0 if n — o0). For a fixed ¢ and for n large enough, we can always
choose R to satisfy A\; > 72(n, R) and A; > ~v1(n, R), then the Proposition 10 will
imply the bound in Theorem 3. For Theorem 4, on the other hand, we use either
Prop. 10 or Prop. 11 depending on the relative position of ¢ with respect to n. The
fact that we have explicit assumptions on the eigenvalues and eigenfunctions allow
us to make the relation between \;, v1(n, R) and y2(n, R) more precise. We include
a sketch of the proof in Section 2.11.

Remark 1 (Ostrowski’s for the decreasing in absolute value ordering). As we
mentioned above, the Ostrowski’s inequality is formulated in the case of non-
decreasing(or equivalently non-increasing) ordering. Nonetheless, it is still valid
for the decreasing ordering in the absolute value. Indeed, if {Aa(i)}lgign s an or-
dering of the eigenvalues, that is o : [n] — [n] is bijective, we can reorder them in
the mon increasing order by applying a transformation o' to each o (i), then apply
the Owstroski’s inequality and finally apply ot The key here is that this reorder-
ing process is applied to a finite matrix, because some orderings are not compatible
with the operator Ty full spectrum (the increasing ordering cannot be applied to the
spectrum of an indefinite operator, given that 0 is an accumulation point).

2.5 Asymptotic rate analysis

The rates obtained in Theorem 4 are expressed in terms of ¢ and n, which is
natural when we are interested in a fixed 4, or purely in terms of n (by re-
placing ¢« = nlogi/ log"). Under Hi, we obtained a parametric rate in terms
of n(concentration term) and i~0t(+1/2)90) (scaling and variance term), where
g(i) < 2. This in line with the CLT in [Koltchinskii 2000], where the same scal-
ing and concentration terms appears. In that sense, the concentration and scaling
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terms seems optimal, while there might be room for some improvement in the vari-
ance term. If we allow ¢ to vary with n, we obtain rates that are fully expressed
in terms of n, in which case they are always faster than O(n_l/ 2) for all three hy-
pothesis Hy, Hy and Hs. This implies that our result are more accurate than all
absolute type bounds, as those obtained in [Shawe-Taylor 2005|, [Blanchard 2007],

[Rosasco 2010], for example, which all give O(%) bound.

In [Braun 2006] the authors obtain scaling bounds, in the p.s.d case, which are
slower than those given in Theorem 4 under the three hypothesis H;, Ho and Hs.
They do not assume explicit growth rates, but formulate their result under the
assumption of bounded eigenfunctions (which fall in our framework with s = 0)
and bounded kernel function(which is implied by H). For example, in the case of
polynomial decay of the eigenvalues and bounded kernel, they obtain an error rate
of (’)(n% VIogn), which is slower than O(n~'/2) in terms of n. We observe that
for 7 fixed we obtain a better rate for the error in terms of n. Indeed, the rate in
Theorem 4 under H;j is O(n_%(cs_l)_l/m), which is faster than O(n_%) provided
that § > 1 (which we have to assume in order to satisfy H). Similar comparison
can be stablished in the case of exponentially decay eigenvalues, where they obtain
a parametric rate(except for logarithmic terms) and ours is exponential. Also, in
the case of fixed ¢ as in Theorem 3, we avoid the cumbersome bias terms present for
example in [Braun 2006, Thm. 3.

In [Lounici 2019] and [Ostovskii 2019] similar relative bounds are proven, which
are in line with sample covariance concentration of [Koltchinskii 2017|. Their bounds
for the difference of the empirical eigenvalue A\; and the population eigenvalue \; of

covariance matrices is of the form |A; — A;| < Aiy/ ") where r(S) =Tr(S)/|1S|lop

n
and S is the population covariance matrix. In the case of [Ostovskii 2019, a different

variance term is introduced, which depend on a regularization step based on shifting
up the eigenvalues of S. Those results are formally similar to those in Theorem 3,
but the variance term differ. Observe that, since ||S||,, acts as a normalization
term, their 7(5) is a constant(do not change with 7). While is true that the term
7(S) can be smaller than V;(R(7)), note that the first constitute a uniform control
over all indices. Moreover, their work is devoted to the more particular case of
sample covariance estimation, where one of the main assumptions is that the random
vectors, of which S is the population covariance, have a fixed subgaussian norm
which do not change in terms of the ambient dimension. This is not the case in
our context, as explained in Section 2.4 above, given that we consider and abstract
space €2 and we do not have a fixed Euclidean space where the columns of ®p
belong to, but we rather define R given the truncation parameter, which is later
optimized. To manage the increase in variance carried by the term Vj(-) is one
of the main technical difficulties we tackle in [Araya 2020|. In addition, the works
[Lounici 2019] and |[Ostovskii 2019] are formulated in the positive case approach and
extensions to the indefinite case are not discussed.

A different approach is used in [Belkin 2018|. Using approximation theoretic
methods, they obtain a measure independent result, from which a rate for the em-
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pirical measure can be easily deduced. Indeed, the rate obtained in [Belkin 2018,
Thm.2 | for [\(T},) — Xi(Tw )] is O(e_Cil/d), where c is a positive constant and W is a
positive, radially symmetric, infinitely differentiable kernel defined on R¢. This rep-
resents an intermediate regime between H; and Ho. Their rate do not seem to depend
explicitly on the eigenfunctions growth, however the fact that the kernel is highly
regular and radially symmetric would have an effect (this shares similarities with the
case of dot product kernels presented in Section 2.7 below). At least formally, our
results are aligned with those in [Belkin 2018, in the sense that when an exponential
rate of the eigenvalues of Ty is observed, the deviation |A;(T},) — A;(Tw )| will have
an exponential rate (the scaling term prevails over the concentration term). It is
worth mentioning that the approximation theoretic methods used in [Belkin 2018]
rely heavily on the RKHS technology and do not extend automatically to non pos-
itive case. In addition, their result do not consider lower regularity kernels which
are very common in the network analysis, for instance (see Section 2.7 and Chapter
3). Extension of this approach to the indefinite case, relaxing the symmetric and
high regularity hypothesis, might be possible using for example the Krein spaces
framework. That constitutes a substantially different approach, which we leave for
future work.

Assumption Rate
Tog

Thm 4 Hl(s = 0) fn_ logn(]'_(s)_]'/2
Thm. 4 H e IS -1/
Thm. 3 H | M\/%“”)
[Braun 2006, Thm.3] Hi(s = 0) nw
[Belkin 2018] Hy? e~/

. . S
[Lounici 2019],|Ostovskii 2019] H® |/\Z|\/¥

Table 2.2: Rate comparisons with related relative Weyl-type inequalities in the
literature, we omit logarithmic terms.

2.6 Classical Sobolev regularity conditions

The fact that a given kernel W satisfy any of the hypothesis Hy, Ho and Hs, of
Theorem 4, is not necessarily easy to verify. If an eigenfunctions basis is known,
such as the case of spherically symmetric kernels treated in Section 2.7 below, the
eigenvalues can be obtained by the computing the integral of the product of the
kernel with the eigenfunctions of the basis. There is no guarantee that an analytic
close solution exist in general, but in practice this procedure can be done numerically.
On the other hand, when the eigenfunctions of the kernel are not known, we are left
to solve often complicated differential equations. For that reason is useful to have
an equivalent notion of regularity at hand.

The decrease in the eigenvalues appears naturally as regularity hypothesis of
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the Sobolev-type. Indeed, given a measurable metric space (X, k,v) where & is a
distance and v a probability measure, we suppose that {¢g}res is an orthonormal
basis of L?(X, v), where J is a countable set. We define the weighted Sobolev space
S, with associated positive weights w = {w;}jes as

2 . F(1-)]2
5.0 = {2 Y fwpe sl = Y LU < o)

keJ keJ

Take the measurable metric space (£2, p, i) and consider X = Q? and v = u x p.
If ¢y is a basis of L?(€, ;) then a basis for L?(X, ) is given by {px}r; where
Yk = Or ® ¢p. Observe that here J = {(k,1)}xen. We note that for a kernel W
in S, (X) with eigenvalues A, and eigenvectors ¢, we have f(k,l) = MO If we
want that the series in definition of the Sobolev space to converge, it is sufficient
that )\%w—lk = (ﬁ) where ¢’ > 0. This allow to control the decay behavior of Ay by
direct comparison to wi.  When € is an open subset of R, the classical definition
of weighted Sobolev spaces makes use of the (weak)-derivatives of a function. If
0:Q — [0,00) is a locally integrable function, we define the weighted Sobolev space
WP (€, 0) as the normed space of locally integrable functions f :  — R with p weak
derivatives such as the following norm is finite

1£llp.e = ( /Q £ (@) 2do(2)2 + (Y [D*f(z)Pdo(x))?

la|=p

where « is a multiindex and D are the weak derivatives.

For a symmetric kernel K : R? x R? — R we can define the Sobolev regularity
by the canonical embedding of R? x R? into R?¢, but it seems more natural (see
[Xu 2017, sect. 2.2|) to say that the kernel satisfies the weighted Sobolev condition
if K(-,z) € WE(Q,p) for all x € Q. However, in some cases as in the dot product
kernels, where there exists a real function f : R — [0, 1] such as K(x,y) = f({x,y)),
it is even more natural to say that K that satisfies the Sobolev condition with weight
0:R — Rif f € WI(R, p). Intuitively speaking, given that f is defined on R, it
seems natural to carry out the analysis in one dimension.

In [Nicaise 2000] is proved that in the one dimensional case, both definitions of
weighted Sobolev spaces are coincident. Otherwise stated, the following equality

between metric spaces holds S, ([—1,1]) = W3([-1,1], 0,) where w = {wy}ren =

1
1+l/k ?
the sequence of eigenvalues of the Laplace-Beltrami operator on S%~! and 0~ is the

with v, = k(k+d—1) and o,(z) = (1 — .CC2)%. Here we recognize in vy

weight that defines the orthogonality relations between the Gegenbauer polynomials
G?() with v = %. That means that two Gegenbauer polynomials of different

degrees G}, G] with k # [ are orthogonal in L*([-1,1], 04), which is the space of
square integrable functions defined in [—1, 1] with the weight p,. We denote || - |25

4Here is a result more than an assumption. The actual assumptions are the high regularity of
the kernel and its radial symmetry.
5The hypothesis here are of the type on the subgaussian norm of random vectors.
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the norm in L?([—1,1], o,), that is HfH%,y = [ f2(t)o,(t)dt. In the next section, we
explore this case in more detail and highlight the connection with random geometric
graphs.

2.7 Dot product kernels

In this section we will consider the space Q = S! with d > 3, equipped with p
the geodesic distance and the measure o, which is the surface (or uniform) measure
normalized to be a probability measure. Let f : [—1,1] — [0,1] be a measurable
function of the form K(z,y) = f(cosp(z,y)). Note that the geodesic distance on
the sphere is codified by the inner product, that is p(z,y) = arccos(x,y). Thus we
directly assume, here and thereafter, that W only depends on the inner product,
that is

K(l’,y) = f((a:,y))

This family of kernels are usually known as dot product kernels and they are ro-
tation invariant, that is K(z,y) = K(Az, Ay) for any rotation matrix A, and its
associated integral operator Tk is a convolution operator. Similar to the context of
Fourier analysis of one dimensional periodic functions, in this case we have a fixed
Hilbertian basis of eigenvectors that only depends on the space €2, but not on the
particular choice of kernel K. The aforementioned basis is composed by the well-
known spherical harmonics [Dai 2013, chap. 1|, which play the role of the Fourier
basis in this case. For each | € N we have an associated eigenspace ), known as
the space of spherical harmonics of order [. Let {Y]l};ll: 1 be an orthonormal basis
of ), and define d; = dim()), then by [Dai 2013, cor. 1.1.4]

dy = <Z+C§_ 1) - (ltf;:g) =012 (2.11)

for [ > 2 and dyp = 1,d; = d. The second equality follows easily from the definition.
We define A}, the eigenvalue of T'x associated with the corresponding space );. We
use the * subcript to difference this indexation(who follows the spherical harmonics
order) from the decreasing order indexation {\; };>1. Assets {Af};>0 and {\;};> are
equal (have the same elements), but in {A}} the eigenvalues are counted without
multiplicity (except if A is associated to more than one ) 9). This seems more
natural in this case, but have to keep this in mind when applying Theorems 3 and
4. In this setting, the expansion (2.1) becomes

d
Flay) =D N Yal)Yaly) (2.12)

>0  j=0

5In which case appears repeated a number of times equals to the number of );’s to which is
associated.
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On the other hand, the Addition Theorem for spherical harmonics |Dai 2013,
eq. 1.2.8] gives

d
)= Yi@)Y(y) (2.13)
j=0

and the preceding equality does not depend on the particular choice of basis {Y]l}?l: 1
The Z; are called the zonal harmonics. So based on (2.12) we have the following

) =N Zi(x,y) (2.14)

>0

An important property is that each zonal harmonic Z;(z,y) is a multiple of the
Gegenbauer (ultraspherical) polynomial of level [, hence it only depends on the
inner product of z,y € S¥'. The following classic result in Harmonic Analysis
[Dai 2013, Thm.1.2.6, Cor. 1.2.7] makes the previous statement more precise

Proposition 12. For any x,y € Sl 1eN, d>3 and v = %

Zl(xv y) = CZG7(<x7 y>) = Cl\/d_lé7(<xa y>)

uzhere c = Z+T = %, G? is the l-th Gegenbauer (ultraspherical) polynomial and
G = G//|G]2,y- Furthermore, for any | € N, Z; attains its mazimum in the

diagonal, that is

max |Z)(x,y)| = |Zi(z,z)| = d;

x,yeSd—1
Remark 2 (Eigenvalue computation). From Proposition 12 we derive a simple for-
mula to compute the eigenvalues, using the orthogonality relations between Gegen-
bauer polynomials. We recall that given o, (x) = (1 —x)7 (the Sobolev weight defined
in Section 2.6) we have

GLG] (1) oy (t)dt = i

F(%)
Defining by = EE we have

Clbd L(g)
) [ 10600 = r(LT L [ focioe e
(2.15)

where (a)®) = a-(a+1)---(a+1i—1) is the rising factorial or (rising) Pochammer
symbol.

What precedes means that, in this framework, the growth rate of the eigenvector
is known and fixed, and the fulfillment of the hypotheses of Theorems 3 and 4
depends on the eigenvalue decay rate only, which can be verified using formula
(2.15) above. This is one of the main reasons on why our results are appealing in
this context.
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Given Proposition 12, the hypothesis H is implied by the following

> A ldy < o0

1>0

Because of the explicit value of d; (given in (2.11)), we get that [\j| = O(I17779)

for any € > 0, it is sufficient for H to hold. The following lemma is a consequence
of the Addition Theorem eq.(2.13)

Lemma 13. For any i € N we have that
Vi(i) = O(i)

Consequently, for any W such that A\; = O(i=%) with § > 1 hypothesis Hy is satisfied.
If \i = O(e™%) with § > 0, then hypotheses Hy and Hs are satisfied.

Remark 3. Observe that in the previous lemma, the eigenvectors growth do not de-
pend on d in the indexation induced by {\;}i>1. However, given that the eigenvalues
satisfy 3 1sq |Af|di < oo and that dj = O(1%71Y), the dimension has a direct effect on
hypotheses_Hl and Hy. Indeed, for a kernel on space R® with high d, the hypothesis
I\i| = O@i7%), for any 8, will be more restrictive compared to a kernel defined on a
lower dimensional space, simply because the multiplicity constraint.

The following lemma allow us to relax the hypotheses of Thm.4 and to obtain
sharper results in this case.

Lemma 14. Let W be a kernel such that Vi(i) = O(i) for all i and
Vo(R) = O3 ;g l|Xil), then the results of Theorem 4 are valid with s = 0.

Corollary 15 ([Araya 2020]). Let W(x,y) = f({(z,y)) be a dot product kernel in
S?L. Suppose that f is in the Sobolev space W5 ([—1,1],0') where o'(t) = (1 —
tz)% .Then there exists € > 0 such that for o € (0,1) we have with probability larger

than 1 —a, for1 <i<n

X (Ty) — | Sg 07020 71/2 (2.16)
with § = BX= + 1.
Remark 4. Observe a similar framework to the one presented in this section was

studied in [De Castro 2020] in the context of graphon estimation through the spec-
tra. They bound the d2(-,-) metric, which implies using Weyl’s inequalities a rate

On(n~ 25+6d*1) for | Xi(T) — \i|, which is slower than the rate in Corollary (2.16).

2.7.1 Connection with Random Geometric Graphs

Dot product kernels are related with the model of Random Geometric Graphs
(RGG), in the dense case, via the graphon formalism [Borgs 2012]. The RGG
has found many application in the fields of wireless networks |Franceschetti 2008],
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biology |Higham 2008b| and physics [Cunningham 2017|. Also it has theoretical
importance, since often a graph in this class (proximity graphs for instance) are
constructed in the first steps of clustering or embedding algorithms. A thorough
study from the probabilistic point of view can be found in [Penrose 2003| and
some interesting problems in the field of statistical analysis of networks is described
[Bubeck 2017].

To construct a graph from a kernel, we use the W-random graph model, described
in |Lovasz 2012, Sec.1| and in Chapter 1. This require an additional sampling step,
in comparison with the results presented here. We can think this as having two
sources of randomness. Indeed, we have {X;}1<i<p € €, where  is our “geometric”
space (this will be further developed in the next chapter) and we construct the kernel
matrix. In the context of graphs, the kernel matrix is often called probability matrix
[Klopp 2017a] from which the adjacency matrix A of a graph is obtained by sampling
independent (except for symmetry constraints) Bernoulli’s random variables. More
specifically, the entries {A;;}1<i<j<n are independent and

P(Ai; = 1) = K(X;, Xj)

In the case of dot product kernels on the sphere, the spectral approach has found
applications in testing for geometry [Bubeck 2016], where the authors construct a
test based on a triangle statistic to decide if a graph has geometric structure( the
alternative hypothesis of the test is that it comes from a RGG model). The null
hypothesis is that the graphs comes from a Erdds-Rényi model (geometrically struc-
tureless). Note that the quantity of triangles can expressed in terms of the spectra
of the graph as a constant times > | A3(A), where A is the adjacency matrix. So
essentially, [Bubeck 2016| presents a spectral test. Given that concentration of the
triangle statistics plays a big role in that test, we believe that our results may find
applications in testing problems for geometric graphs and for other models as well.

The spectral point of view for RGG is also adopted in [De Castro 2020], where
the authors study the problem of graphon estimation in the case of angular RGG
model. The authors prove that the graphon function can be reconstructed using
the Gegenbauer basis and an estimation of each eigenvalue. Certainly a better
knowledge of the eigenvalue fluctuation, using Cor. 5 for instance, will improve
upon the results presented there.

Finally, we found applications in the problem of estimating the latent distances
in the RGG model. In [Araya 2019] we propose an spectral algorithm (HEiC) which
can be used for that purpose. The context and details for this algorithm will be the
main focus of the next chapter. There we also show how the results in this chapter
can be used to improve the results in [Araya 2019|.

2.8 Examples

In this section we detail particular cases where the results of this section are useful.
The context we are most interested on is the case of dot product kernels on the
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sphere, which has connections with geometric graphs. We chose, in addition, to
present applications to two widely used kernels: the Gaussian and the polynomial
kernels.

2.8.1 Dot product kernels on the sphere

Likewise Section 2.7 we assume that the kernel on the sphere can be represented by a
one dimensional function f(t). Given Eq.(2.15), we have the following expression for
the eigenvalues of the kernel, which follows from the Rodrigues formula [Szego 1939,

eq. 4.3.1]
!

Al = aiabia / F()Zgoyi(t)dt (2.17)
-1

r'(%) I
VA (5T) G-

( 1)l (2d-2)®
! ((121)(1)

2.8.1.1 Polynomial kernel

where by 4 = and a; g =

We consider a function f of the form f(¢) = 1(1 + ¢)?, which a popular choice as
a kernel function (see for example [Rasmussen 2006, Ch.4|). Using integration by
parts iteratively in (2.17) we obtain

o apabra(q) 1,1+ ) oy (t)dt for 1 < g
: 0 otherwise

Expanding the binomial term we obtain, for [ < ¢
q—l q—1 1
3 =aanan X (") [ oo (218)
3=0 !

For j < ¢ — I we have

L 1
1
_Beta( +1/2,7+1+1/2)

Using this we obtain for [ < ¢

q—1 .
1
)\ aldbld lz<qj )Beta(%+§,'y+l+1/2)
0

Jj=
l .
_ (D'@I@) ><>zr<%>qz<q—z) (3+3)
Pr S\ i TG+ IR+ D
Observe that given that A\ = 0 for [ > ¢ the kernel is finite rank and the
hypothesis of Theorems 3 and 4 are satisfied.
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We can also use Cor.15, but observe that, even if f(-) is finite rank, we still need
an estimation of the decrease rate of A, which is specially important for higher
values of ¢. Given the relation between {\;};>0 and {\;};>1 we can deduce the
decay rate. Using the properties of the gamma function, it can be proved that A}
is decreasing, but to find a tight bound for each A} is more involved. On the other
hand, to have an idea of value of the scaling factor for the bound in Theorem 3, we
can compute the eigenvalues numerically. In Figure 2.1 we show an example of the
decrease of the coefficients A\] polynomial kernel on the sphere S7 for different values
of ¢q. Note that the larger eigenvalue has polynomial growth, which is a consequence
of the fact that max_i1<i<1 f(t) = 20— Given the large difference in the values
between the larger and the smaller eigenvalues, the scaling factor will a play a big
role in the estimation of |[A\;(7},) — A\;| when using any of the main results of this
chapter.

example d=8

400 A g=8
+ gq=10
x g=12

=13
300 a

100 x

X

Figure 2.1: Values of A} for the polynomial kernel in S’.

2.8.1.2 Constant and linear graphons

Since smooth graphons on the sphere can be conveniently approximated by series
of Gegenbauer (ultraspherical) polynomials, we describe here what their spectrum
looks like in the finite rank case.

Likewise to Section 2.7, we consider v = %. We start with the constant
graphon with is the related to the first polynomial in the Gegenbauer basis which
is Gj(t) = 1. More specifically, we consider Wi(z,y) = poG{({z,y)) = po, where
po € [0,1], which is a rank 1 graphon. This coincides with the well-known FErdds-
Rényi graphon. If we generate a graph with this model, following Section 2.7.1, with
{Xi}1<i<n a uniform sample on the sphere, then the probability that X; and X are
connected for any 7,7 € {1,--- ,n} is pp. That is, for any two nodes the probability
that they are connected is the same, regardless of their position on the sphere. For
this reason, this model can be considered as structureless (see [Bubeck 2016]). Its
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eigenvalues are (we use the decreasing indexing)

MY =pg
AN =0 foralli>1

In this case, the eigenvalue A1 which has multiplicity one has a clear interpretation
in the context of graphon theory. Indeed, if we consider the normalized degree we
have

d(x) = / podo(y) = po
gd—1
thus the non-zero eigenvalue )\gl) is just the mean degree of the graphon (which
asymptotically will be the mean degree of the generated graph). We note TT(LI) the
kernel matrix associated with Wjy. Observe that in this case we can apply Theorem
3, for instance, and given the multiplicity of A\; we obtain

M (TO) =\ V) < 2L flogd/a
n

with probability larger than 1 — a. For all ¢ > 1 we have )\i(Tf(Ll)) = 0. We now
consider the graphon Wa(z,y) = poG{((z,y)) + p1G]((z,y)) = po + p12y(x.y),
which has rank 1+ d; , where the d; is the first spherical harmonic space dimension
given in (2.11). It is easy to see that d; = d. This graphon is based on the first two
Gegenbauer (ultraspherical) polynomials G{(¢) = 1 and G (t) = 2yt and we call it
linear graphon. The eigenvalues for this model are given by

AP =pg
A =p 2
N3 =0, forall i > 2

The eigenvalue M@ has multiplicity one and the eigenvalue 2@ has multiplicity
d. At first glance Ao@ s O(1), but since by definition a graphon takes values
0 < Wh(x,y) < 1, the values py and p; must satisfy certain constraints. In this
particular case, we see that pg € [0, 1] and pg +p12y > 0 so |p1| < g—f/. That implies
that Ao is decreasing on d. More specifically, since v = % we have \o(?) = O(é).
As we saw in Section 2.7, here we have V(d + 1) = d + 1. Applying Theorem 3 we
obtain, for @ € (0,1) and with probability bigger than 1 — «.

R T e UCE N

logd/«

Ao (T2 =\, <

For all i > 2 we have Ai(T7(LQ)) =0.
Here we see clearly how the relative concentration inequality improves the accu-
racy with respect to a simple application of absolute Weyl-type inequalities. More
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specifically, for the eigenvalue M@ we get a better dimensional dependence. If
we apply Weyl inequality, we will obtain for A1 @ the same order of concentration
that for \o®, that is (ﬁ\/Z(d—i— 1)logd/a). Using Theorem 3 instead we get

(ﬁwlog d/a), which is much better.

As a side note, we see that as the dimension d increases, the eigenvalue Ao

tends to 0. Using Weyl inequality gives a bound that deteriorates in the dimension,
such as the one for Al(Tr(LQ)) above. On the other hand, the relative concentration
bound perform better having a scaling term that decrease with the dimension (and
in the other term the dimension increase but only logarithmically), giving a much
better picture of what actually happens.

2.8.1.3 Proximity and logistic graphons

We consider the graphon Wy (z,y) = 1(, ,y>0, which in the dense setting is equivalent
to angular version of the classic random geometric graph with threshold parameter
7 = O(see [Penrose 2003] or [Bubeck 2017, Sect.2]). We will use the names prozimity
graphon or threshold graphon indistinctly. If we generate a random graph by the
model described in Section 2.7.1, with { X} };en a uniform sample on the sphere, then
the corresponding nodes X; and X; will be connected if and only if they belong to
the same semi-sphere. Applying (2.15) we get

l

1 1
" d
N = al,d/ G (t)o,(t)dt = al,dbz,d/ @le(t)dt
0 0

(—1)! (2d—2)D
2 a1\

where a; 4 = % and by g = The computations for this case are similar,

2
but more involved than in Sect. 2.8.1.1. Similar to that case, it is easier to describe
the eigenvalues following the spherical harmonics order, using the * notation

% =1
Af =0, for i >0 even
A= EU Beta (4,4, for i odd
where Beta(z,y) = Fr(zggc)i%) is the classic Beta function. Since this function is neither

regular nor finite rank we cannot apply directly Theorems 3 and 4. Indeed, from the
expression for eigenvalues A\j" we deduce that for d fixed, asymptotically as [ tends
to infinity
NI~T(E) - (5)
2 2
using the Stirling asymptotic approximation of the Beta function.
Clearly the eigenvalues do not fulfill hypothesis H. Indeed, by (2.11) the series
with term |A]|d; is not summable. Nevertheless, we can apply the results to the

d
2

m-fold composition of the operator TI?VZL with m € N, which is an integral operator
with kernel:

W;m(x7y) = /(éd—l)m—l Wg($a Zl) ’ Wg('zla 22) T Wg(zm—la y)da(zl) T dU(Zm—l)



2.8. Examples 37

where (Sd_l)m_1 is the m — 1 product space of the d-dimensional unit sphere. In
the context of graphons, the m-fold composition carries important combinatorial
information about the family of graphs its represent. For instance, the 2 fold com-
position gives the number of paths between two nodes and the 3 fold composition
is related with the number of triangles [Lovasz 2012|[Chap.7|.

It is well known that A(T™") = {A{"}i>1 and that the eigenfunctions are the

same as Tyy. In other words, the following L? expansion holds
o0
W@, y) = > A o) dr(y)
k=0

Taking m > 2 and using the previous estimation, we have that

I\ -
This implies that |\;|™ = (i%) by the correspondence between the decreasing and
the * indexations. Thus, W™ satisfies the hypothesis H and H;. In the case m = 2,
the kernel matrix is

o 1
(T7%)ij = — Wy (Xi, 2)Wy (2, Xj)do(2)
n Jsd-1
and we have |\;|? = O(l_%) and V(i) = O(i) by Lemma 13. The previous implies
that Wg02 e WH([-1,1],¢') with p = 1. Using Cor. 15 we obtain, with probability
higher than 1 — a.
2 0212 —ot 52 12
(A7 = M(T7) [ Sad 72070

with 0 = —% — dT12'
We consider the logistic graphon Wi, (x,y) = f({(z,y)), where f(t) := %T;,t =

ﬁ. This model was introduced in [Hoff 2002| and since then many variants have
appeared. The symmetry with respect to % of the logistic function, implies by (2.15)

that the eigenvalues of W, are given by

1 1 1— e—rt dl
N = [ TG @)e 0t = avabna | wys(t)dt
1

o 1+ertdt
The eigenvalues of Tyy,, depend on 7 in such a way that when r = 0 the spectrum of
Ty, coincide with the spectrum of the constant graphon with parameter py = 1 /2
and when r — oo the spectrum of Ty, converge to the spectrum of Tyy,. We can
regard the logistic graphon model as an interpolation between the constant (Erdos-
Rényi) graphon and the proximity (geometric) graphon. It is interesting to note
that when 7 = 0 the rank of W), is one and when r > 0, W, has infinite rank.
It is easy to see that for » > 0 we will have roughly the same problem that in the
previous case, as the eigenvalues will not satisfy the asymptotic decay conditions in
the definition H. This is, again, a manifestation of the fact the operator associated
to Wy, is Hilbert-Schmidt, but not trace-class. Using the square operator Tt?l/%g we
obtain a similar result that in the previous case for » > 0 for the eigenvalues, which
results in a slower rate.
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2.8.2 (Gaussian kernel

First we consider a kernel used in the context of Gaussian regression [Zhu 1998|.
In the one dimensional version, we take 2 = R with a measure p with
density with respect to the Lebesgue measure du(x) = %e_‘”(zdx and

12 leg g2 1,2 . . . .
K(z,y) = e 2" 1(*=¥)°=3%" Its eigenvalues and normalized eigenfunctions are

given in [Zhu 1998|[sec.4| (see also [Fasshauer 2011, sec. 6.2]), which in the unidi-
mensional case are, for k € N

2—2k 2

Ak = T < 1
(3(1+Vv2) + )z~ 53

V2 x?

Pr(r) = —==-exp
=) V2FE] ( V2
where Hy(-) is the k-th order Hermite polynomial (see [Szego 1939, Ch.5]). We note

that the eigenvalues have an exponential decreasing rate. On the other hand, using
the results in [Indritz 2019] we have for all x

) Hi(V2z)

exp (—%)Hk(\%x) < V2kE!

Thus ||¢k|lce < V2. Consequently, the hypothesis Ho for Theorem 4 holds with
s =0 and § = logh. We apply Theorem 4, obtaining with probability larger than
1 -«

‘AZ(TK) - )\z(Tn)| ,Sa e—ilog5n—1/2 < 6—1.61'”—1/2

where T, is the normalized kernel matrix.

Now, we consider the kernel Ks(z,y) = e~ 1(@=%? Wwith the same Q2 and w. It is
well known (see[Zhu 1998|[sec.4]) that the eigenvalues are the same as the case of
K above. The L? normalized eigenfunctions are [Fasshauer 2011, sec. 6.2]

8

V2
T

Notice that also in this case the functions also have a uniform bound (which is

bu() = o exp (— (V2= 1)) HL(VEa)

larger than in the previous case) and the same result applies. That is
Nil(Tiey) = NilTn)| S €™M~ 1/2

with probability larger than 1 — a.

2.9 Mathematical tools

Here we sum up the tools from relative perturbation and the concentration inequal-
ities used in the proofs of Theorems 3 and 4 and the propositions and lemmas in
Section 2.4.
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2.9.1 Perturbation results

The following eigenvalue perturbation theorem is due to Ostrowski [Horn 2012,
Thm.4.5.9] and [Braun 2005, Cor.3.54]

Theorem 16. Let A € R™ ™ be a Hermitian matriz and S € R™ ™ be a nonsingular
matriz. Then for each 1 <1 < n there exists 0; > 0 such that

Ai(SAS™) = 6;M(A)
In addition, it holds
(A (SAST) = Mi(A)| < [(N(A)[[S™S — Idnl|op

Remark 5. The previous theorem is also wvalid for S singular [Horn 2012,
Cor.4.5.11].

The previous theorem can be extended to the case where S is not necessarily a
square matrix [Braun 2005, Cor.3.59]

Corollary 17. Let A € R™*" be a Hermitian matriz and S € R>™ matriz then
[A(SAS™) = Ai(A)| < [Ai(A)[[[S*S — Idullop
From the previous result we deduce the following corollary

Corollary 18. Under the same conditions of Corollary 17 we have

ISAS™ — Allr < [|A[|F[[S™S — Idop

2.9.2 Concentration inequalities

In this chapter we use some classic one dimensional concentration inequalities, such
as Hoeffding and Bernstein inequalities (see [Boucheron 2013, sec.2]) to control the
tail of the random variable majorizing || Eg||op-

We also use the Bernstein’s theorem [Tropp 2012, Thm.6.1] throughout this
chapter.

Theorem 19 (Matrix Bernstein). Let {Sj}1<j<n a sequence of independent, self-
adjoint, random matrices of dimension d. We assume that E(S;) =0 and [|Sj|op <
L a.s. Defining 0 = || do1<j<n E(SJQ-)HOI,, we have

—t2/2

P(| > Sj”opZt)SdeXpm

1<k<n

Furthermore, we have

L
E(l > Sillop) < 20%logd + 7 logd

1<j<n
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Another important tool used is the concentration inequalities for U-statistics
that we used to control quantities related to the residual matrix Er. The specific
result we used was first proven in [Gine 2000], using the Massart’s version of Tala-
grand’s concentraion inequality, and later in [Houdré 2003| using a slightly different
method that provides explicit constants. Here we present the result for canonical
kernels, which are kernels where the expectation with respect to one variable is equal
to the expectation with respect to the other (see [Arcones 1993] or |Gine 2015] for
a formal definition and on how to decompose a kernel in sum of canonical kernels).
The following theorem is formulated in the decoupled version (with two sets of ran-
dom variables, instead of one), but passing to the regular (undecoupled) kernels is
standard, using the results in [De La Pena 1995].

Theorem 20. Let h; j be a bounded canonical kernel and {Xi(l)}lgign, {X](-Q)}lgjgn
two set of independent random variables. Then, there exists a constant L > 0 such
that

1 1.2 T 1.2/3 $1/2
IP)(| z; hi,j(Xz'(l)7Xi(2))| > 95) < Lexp[ mln{cQ’ D’ B2/3’ AI/Q}]
,)sn
where
A= maxHhZ]HOO, C=E) h
ij
_max{||ZEh HWHZEh 2, x?) }

D =sup{ED (X, X[) fi(x V) g, (X7 ,stEZﬂ xM) <1EZgz Py <1}

]

2.10 Extensions and improvements

Here we discuss alternatives to the use of the Matrix Bernstein theorem, which can
result in a better bound. The fact that the matrix ® has independent rows, opens
the possibility to use some tighter results such as [Vershynin 2012a, Prop. 2.1],
[Vershynin 2012b, Thm. 5.39] or [Koltchinskii 2017, Cor. 2|.

It is easy to see that the rows of ®p are sub-Gaussian. Indeed, from the fact
that \;, ¢; are an eigenvalue, eigenfunction couple, we have

sup, yeq | K (7, y)|
Ai

[filloo <

The fact that the functions {¢;}1<i<r are bounded implies that each row &; :=
(01(Xj), -+ ,0r(X;)) is sub-Gaussian, because the L*°-norm dominates the sub-



2.10. Extensions and improvements 41

Gaussian norm || - [|y,. Moreover, we have

1€ill, = Sup, 1€i> w)

lull <

S sup ({6 u) || oo
HUH<1

<|IZ¢kI\1/2 VVi(R) (2.19)

By [Koltchinskii 2017, Cor. 2| we have in this case: with probability larger than

1—et
R t t
H—<I>R<I>T—IdRHO,,N \/ = v-v\/;vg (2.20)

The previous inequality is essentially sharp, as signaled in [Koltchinskii 2017].
A more general result is discussed in [Koltchinskii 2017|, where the dimension R is
replaced by the effective rank r(A) = %, where A is a matrix (or more generally
a self adjoint trace-class operator). Those results can be extended to the more
general context of Hilbert spaces (see [Koltchinskii 2017]). Note however that in
those results, the || - ||,-norm of the random vectors in consideration are treated as
constant in those results and the sub-Gaussian norm is hidden in the notation <.
Those results are better adapted for random vectors where the || - ||4,-norm do not
grow with the dimension. This is not the case for the columns in ®p, in general,
because we can not assert that the eigenfunctions are uniformly bounded, even for
very regular kernels 7. Both theorems are proven using the same principles (mainly a
chaining argument), but the one in [Koltchinskii 2017] uses a more powerful generic
chaining inequality which results in a better dependency in || P g||q,-

On the other hand, the result of Prop. 6 can be rewritten as

log R+t log R+t
|@r0% — 1 llop S V(R) |22 v [ =2 (2.21)

with probability larger than 1 —e~!. As we already mentioned, we can not compare
(2.21) with (2.20) as readily written, because of the constants hidden in (2.20). On
the other hand, results in [Koltchinskii 2017| are derived from more general tail

bounds obtaining by generic chaining technique, which are expressed directly in
terms of the || - ||y,-norm.

Before turning our attention to those results, we need a few definitions. We
will say that a centered square integrable® random vector X in R is pre-Gaussian
if there exists a centered Gaussian random vector Y in R such that Cou(Y) =
Cov(X) . We need to define the so-called 72 functional to state the generic chaining
tails bound Theorem 22 below. The presentation of this material is borrowed from

"There is, in fact, an example credited to Smale, published by Zhou in [Zhou 2002], of a positive
definite C*° kernel whose eigenfunctions exhibit an explosive behavior in L°°-norm.

8in its most general form this definition is formulated for weekly integral random variables in a
Banach space. See || for details.
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[Koltchinskii 2017] and the more classic treatment can be found in [Ledoux 1991].
We consider Ny = 1 and N,, = 22", for n > 1. For a given metric space (T ,d) we
consider A,, a sequence of increasing partitions. We say that A, is admissible if
card(A,) < N,,. Let A, (t) be the only set in A,, that contains ¢ and define

Y (T,d) = inf sup Z 2”/2D (AL(1))

An admissible tET

The following is the celebrated majorizing measures theorem due to M. Talagrand.

Theorem 21 (|Talagrand 1996]). Let Xy, t € T be a centered Gaussian process.
Define

d(s,t) = \/E((Xs — X¢)?), fors,teT
Then dK > 0 and absolute constant such that

v2(T,d) < KEsup X;
teT

The following tail bound was obtained by Dirksen |Dirksen 2015, Cor.5.7| and
independently by Bednorz [Bednorz 2014, Thm.1].

Theorem 22. Let Xi,---, X, be i.i.d random variables on (2, ) and T a class
of measurable functions defined on ). For all t > 1 we have with probability larger
than 1 — et

2
%y—zy2 500 5 90 2T AT oy ([ ) o)

where f/(f) = SUDfet Hf”l/)Q

We will use Theorem 22 on the class of linear functions defined by
T = {ful®) = (z,u): wesS™} (2.23)

that is the projections onto a given direction u € Rf. In the case of the random
vectors &; we have

sup || flly, < VVi(R)
feT

Observe that Theorem 21 offers a bound on 42(7, d), where d depends on the L?(RF)
norm. In this part, we deal with Gaussian processes rather than our original distri-
bution. As we have already discussed, for a Gaussian random vector, we have the
equivalence of L? and 1/, norms, in the sense that if X is a Gaussian random vector
in R® then

el )l 2 < Xl < CIX, )2

for two absolute constants ¢, C > 0. This is turns imply that

Y2 (T, v2) S 7(T,d)
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Now we use Theorem 4, to obtain

v2(T,d) < Esup Xy

feT

=FE sup X,
ueSE-1

=E sup [(X,u)l
ueSE-1

SE|X||=VR

where in the second to last equality we use the fact that we can replace a Gaussian
process indexed in the sphere by the projections of a Gaussian vector on the sphere.
It is easy to see that, in the case of the random vectors &1, - -+ , &, eq. (2.22) yields,
with probability larger that 1 — e~

1 . R R - to 1
|=®r®% —Idg op S V(R)/—V —V V(RY"(\/; V) (2.24)

n

where V(R) = sup et || fllg, = supjy <1 [1{€; w)|ly,. From (2.19) we see that (2.24)
will be an improvement over (2.21) in certain cases. Indeed, take for example the
case Vi(R) > R and notice that in (2.24) there will not appear the log R term under
the square root.

Removing this logarithmic term seems a little improvement, but the approach
we followed in this section, suggest also a different parametrization for the problem,
using the sub-Gaussian norm, instead of the || - ||o, since the latter could be much
larger than the former. Unfortunately, computing the sub-Gaussian norm || - ||,, or
find a tight bound, might not be as straightforward as to estimate the || - ||oc norm.
However, there have been research on that front in the recent years [Arbel 2017,
Arbel 2019] and more is expected to come.

2.11 Some proofs

Here we gather proofs for some selected results. More details can be found in the
appendix of [Araya 2020)].

Proof of Prop. 6. We use the matrix Berstein theorem. We note that

n
1
LR —Idr =Y (2;2] - ~1dg)
j=1
where Z; € R is given by (Z;);, = ﬁqﬁk(Xj) By definition E[ZjZJT] = L1dg. Itis
easy to prove that

1 Vi(R) — 1]
T
12,27 ~ g lop < 2O
and
- 1 Vi(R) — 1]
1> El(Z;2] - EIdR)Q]Hop s

k=1
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Using Theorem 19 with S; = ZjZ]T — %IdR, d=R, L= W and 02 = L we
get

—nt?

P(||®Ldp, — Id >t) < Rexp ———
From this the 1 — & confidence version is direct. O

Proof of Lemma 8. From Prop.6 we have that

Vi(R)log R/«
n

We put 7 =14/ w and solving for 7 gives the result. O

Proof of Prop. 10. The first inequality comes from (??). Indeed, when 7, po < 1

P([|@%0r — 1dn lop S )>1-a

using Prop. 7 we have
[(25PR) T OLERPR(PRPR) ™ [lop Sa 71 (n, R)
with probability larger than 1 —«. Using the previous and Prop. 6 in (??7) we obtain

Vi(R)log R

INi(Th) = Mi(M)| Sa (Il +71(n, R)) .

By the assumption A\; > ~2(n, R) and the block diagonal structure of M we obtain
that )\2(M) = )\z

In the case |\;| < y2(n, R), we cannot assure that \;(M) = \;, but we know
that A\;(M) is at distance at most y2 — [A\i| < 72 from A;. On the other hand, we
use Prop. 7, the submultiplicative property of || - [|o, and the fact that projection
has norm 1 to obtain

[1PrERPlop Sa 72(n, R)
then using (2.6) we obtain the desired result. O

Proof of Prop. 11. From T,, = ®rAr®} + Er we see that |\(T},)| < y2(n, R),
because \;i(®rAr®%L) = 0. On the other hand, by definition of v2(n, R)(because it
contains the tail bg) we have |A\;| < v2(n, R). Then |\(T5,) — A\i| < 72(n, R) with
the required probability. O

Proof skerch of Prop. 7. The idea is to use the Thm. 20 to prove (2.7). In-
deed, ®LER®R is a R x R matrix and the entry (i,j) can be written as

n
B D Sk r Wi (X1 ) (X1, ) bk (Xiy ) (X))
Ii,l2=1
For each entry we apply Thm. 20. We need to check that the kernel is canonic

(which follows from the orthogonality of the functions ¢; and ¢y for i < R and
k > R) and find bound for each of the parameters A, B, C' and D defined in Thm.
20.
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Once we have a bound for each term of @gERtb R, we use the matrix norm bound
|- [lop < VR - |l1 and the result follows.

To prove (2.8) we use that the left hand side is controlled by || ERg||sp. Given that
(ER)ij = Y pon Me0k(Xi)or(X;), we can split Ep in two terms as Ep = Ef; — Ep,
considering the positive in E]J% and negative eigenvalues in F. By the triangle
inequality is sufficient to control both terms, that is [|[Egllop < [|Efllop + |E7 llop-
Given that EE and Fp, are p.s.d matrices, both operator norms are bounded by
their traces. For Tr(EE) we can use the law of large numbers, given that the sum
of the diagonal of E; is a sum of independent random variables, to prove that
Tr(EE) — bE = ZD& A0 |Ail. Then using the Hoeffding inequality, we get the
result for the positive part. The negative part is analogous and the result follows
by adding both the positive and the negative parts.

O

Proof sketch of Thm. 3. We divide in two cases: A; > bjym, and A\; < bjyy,. For
the first, we use Prop. 10, that with confidence at least 1 — «

V1(i +m;) log (i +m;)/a
n

AT = B S i )+ s+ )y

We choose ng to be minimum integer such that vi(n,i + m;) < A; (this condition
generates a non empty set, given that v1(n,i+m;) — 0) and the desired conclusion
follows. The case A\; < bj4m,; is more involved, since includes a refinement of the
bound in Prop. 10 by iterating the same argument. The choose of the value ng
depends on the spectral gap quantity Gap, (j) = mins ;.25 [Aj — M- O

Proof sketch of Thm. 4. The idea is for each index ¢ to use either Prop. 10 or Prop.
11 (the one delivering the tighter bound). We can see the results in this section as
finding a rule that tell us how to select the truncation parameter R best adapted
for each 7. For Hy, for instance, we prove that

Yi(n, R) = O(R**59n71) = O(n Cs+3-0-1)
ya(n, R) = O(nP¥ 1=0)) 4 (P 2s+1-0)=3)

Then we check that for 3 = O(1) choosing §' = % we can use Prop. 10 and get

‘Az(Tn) - )\Z‘ ,Sa i—5+(8+1/2)ﬁ%n—1/2

with probability larger than 1 — . For the rest of 5’s we use Prop.11 and the orders
of 1 and 2 to prove

|)\z(Tn) - /\7,| <a i_6+(25+1)%n_1/2

~

with probability larger than 1 — «. The proves for Hy and Hj3 are in the same
lines. O
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Proof of Lemma 13. We prove it for the case where ¢ can be decomposed exactly as
i =) ey di- In this case, it is direct from (2.13) that the sum >%_, qu]2||oo is equal
to > 171 Zi(x, x)| = i. Given that Vi (i) increasing, this is enough to prove its linear
order. O

Proof of Cor. 5. 1t is clear that we only need to check that the term that depends
on i is summable. For instance, if K satisfy Hy we have (given that n = i'/%) with
probability larger than 1 — «

Z |)\7,(Tn) — )\z‘ Sa Z e—5i+92(8+1/2) log’in—l/Q

i=1 i
<4 €—5i+(23+1) log in—l/Q

< n*l/Q

~Q

where we used that ¢ > log and that the series with exponentially decreasing term
is summable. On the other hand, we have the following convexity inequality

02(MT)s MTw)) < D [Ni(T) = Nil + by
i=1

Given Hy we have b, = O(e'=97), then it holds b, = O(n~Y2) for n larger than

@ > ﬁ. Inserting this into the previous inequality we get

32 (M(T0), NTk)) Son Y2

The cases Hy and Hj(with the additional assumption) are analogous.



CHAPTER 3

Latent distance estimation for

RGG’s on the sphere.
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3.1 Introduction

In this chapter we study the problem of estimating latent distances in the random

geometric graph (RGG) model. The material presented here is based mainly on the

article [Araya 2019|, but we also expand its content by reporting more numerical
experiments and theoretical improvements we discovered after its publication.
The RGG model is a latent space model, based on the existence of latent points

which we assume are randomly placed in a metric space. The connection between
these points is utterly determined by their position. Probably, the most recurrent
example of this graph family is the random 7-proximity graph where two nodes are

connected if their associated latent points are at distance 7 or smaller for a 7 > 0.
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This define a determinstic connection rule and the only source of randomness lies
in the random placement of the latent points (which we typically assume are i.i.d
with a common law ). We often call this model the classical RGG model, because
was probably the first random graph model in this family to be introduced, in
|Gilbert 1961|. A more general model was introduced in [Hoff 2002] for the study
of social networks, where the latent points are sampled similarly as before, but the
connection rule is now non-deterministic: the probability that an arc between two
nodes exists depends on the distance between the corresponding latent points. Since
then many variants and generalizations have been introduced.

The fact that there is an underlying geometry to the RGG model has made
it popular in many application such as wireless networks modeling [Jia 2004|, sen-
sor localization [Li 2009, Eren 2017|, protein interactions [Higham 2008al, link pre-
diction [Sarkar 2010], Physics [Cunningham 2017] and social networks [Hoff 2002].
This underlying geometry confers to these graphs the property of homophily which
is explained as “ the principle that a contact between similar people occurs at a
higher rate than among dissimilar people”|McPherson 2001]. This feature is present
in many real world networks, whereas it is not present in some simpler yet ubiqui-
tous models such as the Erdos-Rényi model. For that reason, the problems dealing
with recovering structures from the observation of this type of networks has become
increasingly relevant in statistics and machine learning. A few examples on this
direction are the problem of detecting the presence of an underlying geometry in
[Bubeck 2016] and community detection on Euclidean random graphs [Abbe 2017].

We focus on the problem of estimating latent distances from a single observation
of a simple graph (without loops and with no weights on the arcs) for angular RGG.
In that model, the underlying space is the Euclidean sphere and points are sampled
according to the uniform (surface) measure. We place ourselves in the dense case,
where the probability of connection between two nodes will be determined by the
inner product between them, that is it will be represented by a dot product kernel
(as in Section 2.7, from the previous chapter). The nice representation of the kernel
spectral expansion coming from harmonic analysis will allow us to construct an
estimator of the Gram matrix (from which the distances can be readily be derived)
based on a set of eigenvectors of the adjacency matrix.

There are two main type of algorithms for the latent distance estimation. On
one hand, spectral methods is one family with contains the works in [Tang 2013] and
ours, for example. Another different line of research considers the estimation given
by the graph theoretic distance (the distance between two nodes is the length of its
shortest path), which is often regularized using a Semi-Definite Programming(SDP)
approach. Examples on this line are [Diaz 2018| and [Arias-Castro 2018].

It is worth mentioning that there are related problems and variants of latent
distance estimation. We briefly mention some of them. One related problem is
the sensor network localization [Oh 2010](which sometimes uses a latent distance
estimation as first step). Noisy versions of the latent distance recovery and the latent
point localization also exists [Javanmard 2013|, where we assume that we observe
a randomly perturbed version of the true graphs (typically due to measurement



3.2. Random geometric graph via graphon model 49

errors).

3.2 Random geometric graph via graphon model

We describe the generative model for dense networks used in this chapter, which
is a generalization of the classical random geometric graph model introduced by
Gilbert in [Gilbert 1961]. We base our definition on the W-random graph model
described in [Lovasz 2012, Sec. 10.1], which uses the graphon formalism. The
central objects will be graphon functions on the sphere, which are kernel functions
of the form W : S%1 x §9=1 — [0,1]. Throughout this Chapter, we consider an
underlying measure space (Sd_l, o), where o is the uniform measure on the sphere.
On S9! x S9! we consider the product measure o X o.

To generate a simple graph from a graphon function, we first sample n points
{X;}, independently on the sphere S%-1 according to the uniform measure o.
These are the so-called latent points. Secondly, we construct the matrix of distances
between these points, called the Gram matriz G* (we will often call it population
Gram matrix) defined by

gz*] = <Xi7Xj>

and the so-called probability matrix
Gij = Wn(Xian) = PnW(Xi,Xj)

which is also a n x n matrix. Given that for x,y € S%~! we have that the spherical
distance between x,y is arccos (z,y) and the Euclidean distance is 2 — 2(x, y), then
estimating the latent distances reduces to estimating the Gram matrix.

The function W gives the precise meaning for the “link” function, because it
determines the connection probability between X; and Xj;. One difference with
the previous chapter is the introduction of the scale parameter 0 < p,, < 1, which
allow us to control the edge density of the sampled graph given a function W, see
|[Klopp 2017a| for instance. The case p, = 1 corresponds to the dense case (the
parameter ©;; do not depend on n) and when p, — 0 the graph will be sparser.
Our main results will hold in the regime p, = Q(lo%), which we call relatively
sparse. As in the previous chapter, we will work with the normalized version of the
probability matrix T}, := 1©. If there exists a function f : [~1,1] — [0, 1] such that
W(z,y) = f((x,)) for all 2,y € S¥! we will say that W is a geometric graphon.

Finally, we define the random adjacency matriz T),, which is a n x n symmetric
random matrix that has independent entries (except for the symmetry constraint
T, = Tg ), conditional on the probability matrix, with laws

n(T)ij ~ B(Oi))

where B(m) is the Bernoulli distribution with mean parameter m. Since the prob-
ability matrix contains the mean parameters for the Bernoulli distributions that
define the random adjacency matrix it has been also called the parameter ma-
triz [Chatterjee 2015]. Observe that the classical RGG model (or proximity graph)
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on the sphere is a particular case of the described W-random graph model when
W(z,y) = Lzy>- In that case, since the entries of the probability matrix only
have values in {0, 1}, the adjacency matrix and the probability matrix are coinci-
dent. Depending on the context, we use T,, for the random matrix as described
above or for an instance of this random matrix, that is for the adjacency matrix of
the observed graph. This will be clear from the context.

It is worth noting that graphons can be, without loss of generality, defined in
[0,1]2. The previous affirmation means that for any graphon there exists a graphon
in [0,1]? that generates the same distribution on graphs for any given number of
nodes. However, in many cases the |0, 1]2 representation can be less revealing than
other representations using a different underlying space. This is illustrated in the
case of the prefiz attachment model in [Lovasz 2012, example 11.41], where the
graphon in ([0, 1] x [0, 1])? is a simple function, but the equivalent graphon in [0, 1]
is a complicated fractal function.

In the sequel we use the notation Ag, A1, -+, A\,—1 for the eigenvalues of the
normalized probability matrix 7. Similarly, we denote by 5\0,5\1, ‘e ,S\n,l the
eigenvalues of the matrix 7,,. We recall that T}, (resp. Tn) and anTn (resp.pinfn )
have the same set of eigenvectors. We will denote by v; for 1 < j < n the eigenvector
of T, associated to Aj, which is also the eigenvector of pinTn associated to pin)\j'

~

Similarly, we denote by ©; to the eigenvector associated to the eigenvalue p,\; of
T,. Given that a geometric graphon is essentially a bounded dot product kernel
defined on S?!, we adopt the notation {A/ }i>0 for the eigenvalues of the integral
operator Ty as in Section 2.7. We recall that in the % notation, the indexation of the
eigenvalues follows the degree of the spherical harmonics and not the non-increasing
order of their absolute values.

3.3 Geometric graphon eigensystem

Here we cover asymptotic and finite sample results for the eigenvalues and eigenfunc-
tions of the three central objects involved: the integral operator Ty, the normalized
probability (kernel) matrix 7}, and the normalized adjacency matrix T,,. There is
some intersection with the material covered in Section 2.7, but with a slight refor-
mulation given the scale parameter p,. The Sobolev regularity parameter § we use
below correspond to the one discussed in the previous chapter, Section 2.6.

The following are the key spectral asymptotic and finite sample results which
are relevant in our approach to Gram matrix reconstruction:

e The spectrum of p%Tn converges a.s. to the spectrum of Ty in the do(-,-)
metric. We saw in Chapter 2 that this is a consequence of [Koltchinskii 2000,
Thm.1].

e The spectral projections of T}, converge to the spectral projections of Ty . In
|[Koltchinskii 1998] We have

sup [(PF(Tn)f.3) 1200y — (Pi(Tw) £, 9) 12(0)] = O
f,9eF
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where P} represents the orthogonal projection of the eigenspace generated by
a set of eigenvalues in e-cluster around );, f is the vector (f(X1), -, f(XR))
and o, is the empirical measure associated to {X;}i<i<n. The class of func-
tions F must satisfy certain technical conditions (of the Glivenko-Cantelli
type), but since we do not use the result directly we do not enter into details
and refer the interested reader to [Koltchinskii 1998]. In our main results,
spectral gap conditions related to the notion of e-cluster (which will be ex-
plain with more detail in the next section) will be used and a finite sample
version of this result will be stated.

e For W with Sobolev regularity J, we have with probability larger than 1 — «a:

5()\(iTn7 )‘(TW))) <, (10g n) %fﬁ

Pn n

(3.1)

This was proved in [De Castro 2020].

e Matrices 1), approach to matrix 7, in operator norm as n gets larger, which is a
consequence of the results in [Bandeira 2016, which describe the concentration
properties of the spectral norm for a matrix with independent entries. More
specifically, we apply |Bandeira 2016|[Cor.3.3] to the centered matrix ¥ =
Tn — T, we get

v Dy n v Dilogn
n n

E(|Tn = Tullop) S (3.2)

where Dy = maxo<i<p Z?:l 0;;(1 —0;;) and D§ = max;; ||Yij||cc. We clearly
have that Dy = O(npy,) and D < 1, which implies that

i Viogn
B|[ T — Tallop S max { 2, X282

N

We see that this inequality do not improve if p,, is smaller than in the relatively
1

ogn
of the results in [Bandeira 2016], we have

sparse case, that is p, = Q( ). We prove in Theorem 32 that, as a corollary

1 \/logn}
vV pult’ pant
An analogous bound can be obtained for the Frobenius norm replacing T,

with 7% the USVT estimator defined in [Chatterjee 2015]. For our main
results, Proposition 25 and Theorem 26 the operator norm bound will suffice.

1 .
p_“Tn - Tn”op Sa/ﬁl Cmax{ (3.3)
n

One of main results is concentration inequality relating the eigenvectors of T,
with the sampled eigenfunctions of Ty, which is a key step in our method, in light
of the material presented below.

Our algorithm for estimating the Gram matrix will make use of a reconstruction
formula, that follows from the harmonic representation of the graphon function. We
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recall from Section 2.7 that in the spherical context the eigenfunctions of Ty are

the spherical harmonics in S, As we saw, the dimension of each eigenspace of Ty

is fixed and corresponds to dj, the dimension of the k-th spherical harmonic space,

which we recall from (2.11) satisfies dy = 1,d; = d and djy = (k+g_1) — (k;gi;?’)
From the addition theorem (see eq. (2.13)) we have that

d
> 6i@)bi(y) = aGl(z,y)

Jj=dk_1

where GZ are the Gegenbauer polynomials of degree k with parameter v = 4=2 and

2
cp = %j#. The Gegenbauer polynomial of degree one (linear) is GJ(t) = 24t
(see [Dai 2013, Appendix B2]|), hence we have G] ((X;, X;)) = 2v(X;, X;) for every
1 < 4,57 < n. In consequence, by the addition theorem we have the following

reproducing formula

S§

1
Gl (X3, X)) = o Z Dr(Xi)dr(X;) (3.4)
k=1
where we recall that d; = d. This implies the following relation for the population
Gram matrix, observing that 2vyc; = d

d
G = (X0, Xj))ig = > vt = vV (3.5)

where v is the R" vector with i-th coordinate ¢;(X;)/\/n and V* is the matrix
with columns v}. In a similar way, we define for any matrix U in R™? with columns
Ui, Ug, - -+, Uq, the matrix Gy := %UUT. As part of our main theorem we prove that
for n large enough there exists a matrix V in R"™*¢ where each column is one of
the eigenvecAtor of Tn, such that é = QV approximates G* well, in the sense that
the norm ||G — G*||r converges to 0 at a rate which is that of the nonparametric
estimation of a function on S~

3.4 Eigenvalue gap assumption

In this section we describe one of our main hypotheses on W, needed to ensure
that the space span{v},v3,---,v)} can be effectively recovered with the vectors
01,02, - , g using the algorithm presented in Section 3.6. Informally, we assume
that the eigenvalue A}, associated to G7(t), is sufficiently isolated from the rest of
the spectrum of Ty (not counting multiplicity). Given a geometric graphon W, we
define the spectral gap of W relative to the eigenvalue A by

= min |A\] — \}
Gap, (W) I]gglll 7

which quantifies the distance between the eigenvalue A7 and the rest of the spectrum.
In particular, we have the following elementary proposition.
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Proposition 23. [t holds that Gap,; (W) = 0 if and only if either exists j # 1 such
that X = Aj, or A7 = 0.

Proof. Observe that the unique accumulation point of the spectrum of Ty is zero.
The proposition follows from this observation. U

To recover the population Gram matrix G* with our Gram matrix estimator
G we require the spectral gap A* := Gap; (W) to be different from 0, which
will ensure the identiafibility of the set of d eigenvectors that reconstruct the
Gram matrix in (3.5). This assumption has been made before in the litera-
ture!, mainly because some version of the Davis-Kahan sin @ theorem (see for in-
stance [Chatterjee 2015], [Levin 2017|, [Tang 2013]) is used. More precisely, our
results will hold on the following event

5:{@Q€fm¢awgvigﬁﬂ—ﬁmms237

for which we prove the following
Lemma 24. Assume that A* > 0, then there exists ng € N such that for n > ng
and for a € (0,1) we have with probability larger than 1 — «

M&Zl—%

Remark 6. The value ng will depend on W and «. This dependence can be made
explicit using (3.10) and (3.7)

[pn V1 A2 1 A* | 254d-1
max { p_n’ ogn}é and Ogng( ) °
n n 215/20/d n 8C
where C,C" > 0. This will be clearer from the proof sketch in Section 3.10.

3.5 Latent distance estimation

The following theorems are the main results of the article |[Araya 2019]. We sketch
their proofs in Section 3.10.

Proposition 25. On the event £, there exists one and only one set Ay, consisting
of d eigenvalues of Tn, whose diameter is smaller than p,A*/2 and whose distance
to the rest of the spectrum of T, is at least pnA* /2. Furthermore, on the event &,
our algorithm (Algorithm 1) returns the matric G = (1/¢1)VVT, where V has by
columns the eigenvectors corresponding to the eigenvalues on Aj.

Theorem 26 ([Araya 2019]). Let W be a regular geometric graphon on S with
reqularity parameter § and such that A* > 0. Then there exists a set of eigenvectors
U1, ,0q of Ty, such that

IG* — Gllr = O(A*_ln‘ﬁf“)

!Mainly in the context of matrix estimation and manifold learning.



54 Chapter 3. Latent distance estimation for RGG’s on the sphere.

where G = Gy and V is the matriz with columns 01, ,0q. Moreover, this rate
is the minimax rate of monparametric estimation of a regression function f with
Sobolev regularity s in dimension d — 1.

The condition A* > 0 allow us to use Davis-Kahan type results for matrix per-
turbation to prove Theorem 26. With this and concentration for the spectrum we are
able to control with high probability the terms |G — G||r and ||G — G*||r. Theorem
26 proves that our proposed estimator is consistent under the spectral gap condi-
tion and, in addition, that it achieves the same rate that non-parametric estimation
(we refer the interested reader to [Emery 1998, Chp.2| and [De Castro 2020]). The
precise rate here is a consequence of the use of Davis-Kahan theorem, where the de-
viation of the eigenvectors is largely determined by the deviation of the eigenvalues.

As we mentioned in the introduction to this chapter, the spectral gap condition
cannot be removed in general, this can be seen from the case of the Erdos-Rényi
random graph, where the graphon has only zero eigenvalues except for \jj, see Section
2.8.1.2. In that case it is easy to see that any sample configuration { X, }1<;<, has the
same probability to generate any graph with n nodes. In other words, the position
of the points {X;}1<i<n does not play a role in the determination of the arcs. This
is also explicit in of our numerical experiments, where the application of our method
to the Erdos-Rényi graph gives poor results.

It is worth noting that in the works [Diaz 2018] and |Arias-Castro 2018|, which
propose an estimator based of the matrix of graph theoretic distances, related con-
ditions appear. In the first case, the authors consider only the proximity graphon,
which has an spectral gap Gap,(-) bounded away from 0 (the precise values are re-
ported in Section 2.8.1.3). In the case of |Arias-Castro 2018] the condition is on the
increase rate of the graphon function, which has similar consequences with respect
to the spectral gap condition.

3.6 Algorithms

We present two algorithms that work under the eigengap assumption: one for the
latent distances estimation and the other for estimating the dimension of the latent
sphere S%1.

3.6.1 Estimation of the distances

The Harmonic EigenCluster algorithm(HEiC) (see Algorithm 1 below) receives the
observed adjacency matrix T,, and the sphere dimension d as its inputs to reconstruct
the eigenspace associated to the eigenvalue A\]. In order to do so, the algorithm
selects d vectors in the set 01, 09, - - - 0, Whose linear span is close to the span of the
vectors v], vy, -+, vy defined in Section 3.3. The main idea is to find a subset of
{5\0, Ao, - 75%_1}, which we call Ay, consisting on d; elements (recall that d; = d)
and where all its elements are close to A]. This can be done assuming that the
event £ defined above holds (which occurs with high probability). Once we have the
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Algorithm 1: Harmonic EigenCluster(HEiC) algorithm

Input: (Tn, d) adjacency matrix and sphere dimension

ATt = [5ert L NSOt Y «—eigenvalues of T), sorted in decreasing order
Ay {A", - ATy} where AP is the i-th element in ASO™

Initialize 7 = 2, gap = Gap1(Tn; 1,2,---,d)

while i <n —d do
if Gapl(Tn;i,i +1,---,i+d) > gap then
Ay = {AF o A
end if
11+ 1
end while

Return: A, gap

set A1, we return the projector onto the span of the eigenvectors associated to the
eigenvalues in Aj.
For a given set of indices i1, - - - ,iq we define

Gapl(Tn;il, cee g n max  |Aj — A

= min_ - _max
1${7/17"' 77fd} ]6{117"' 77/j}

and

Gapl(fn) ‘=  max Gapl(Tn;il, cee L ig)
{1, ,ia}€SY

where S contains all the subsets of {1,--- ,n—1} of size d. This definition parallels
that of Gap; (W) for the graphon. Observe any set of indices in & will not include
0. Otherwise stated, we claim that we can leave 5\80”“ out of this definition and it
will not be candidate to be in Aj. Proposition 36, stated below, will justify this
claim. In words, we prove that the largest eigenvalue of the adjacency matrix will
be close to the eigenvalue A\j and in consequence can not be close enough to A} to
be in the set Aj, given the definition of the event £ and the fact the eigenvalue \j
has multiplicity 1.

To compute Gap, (Tn) we consider the set of eigenvalues j\j ordered in decreasing
order. We use the notation 5\3-0“ to emphasize this fact. We define the right and left
differences on the sorted set by

left(i) = [t — A5y
right(i) = left(i + 1)

where left(-) is defined for 1 < ¢ < n and right(-) is defined for 0 < i <n —1. With
these definition, we have the following lemma,

Lemma 27. On the event £, the following equality holds

Gap,(1},) = max { | max min {left(¢), right(: + d)}, left(n — d + 1)}
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The set A has the form Ay = {5\59“, 5\553’_?1, ‘e ,Xfff:d} for some 1 < ¢* < n—d—1.
We have that either

i* = argmax min {left(i), right(i + d)}
1<i<n—d—1
or
U =n—d

depending whether or not one has maxj<;<p—g—1 min {left(7), right(i + d)} >
left(n — d + 1). The algorithm then constructs the matrix V having columns
{Oix, Vs« 41, -+ , U= 4q} and returns vvT.

It is worth noting that Algorithm 1’s time complexity is n? +n, where n
from the fact that it is a spectral algorithm and computing the eigenvalues and
eigenvectors of the n x n matrix 1), takes roughly n? steps and the linear term is

3 comes

because we explore the whole set of eigenvalues to find the maximum gap for the
size d cluster of eigenvalues. In terms of space complexity the algorithm is roughly
n? because we need to store the matrix 7),.

Remark 7. If we change T), in the input of Algorithm 1 to T,‘;S"L (obtained by the
USVT algorithm [Chatterjee 2015]) we predict that the algorithm will give similar
results. This is because discarding some eigenvalues bellow a prescribed threshold
do not have effect on our method if the threshold is smaller than \}. However, as
preprocessing step the USV'T might help in speeding up the eigenspace detection, but
this step is already linear in time.

3.6.2 Estimation of the dimension d

So far we have focused on the estimation of the population Gram matrix G*. We
now give an algorithm, which we called HEiC-dim, to find the dimension d when
it is not provided as input. This method receives the matrix 7}, as input and uses
Algorithm 1 as a subroutine to compute a score, which is simply the value of the
variable Gapy (T,,) returned by Algorithm 1. We do this for each d in a set of
candidates, which we call D. This set of candidates will be frequently, but not
necessarily, fixed to {1,2,3,- -+, dmas} and the practitioner can choose it differently
if additional information about the dimension is available, for instance. Once we
have computed a score for each candidate, we pick the candidate that have the
maximum score.

Given the guarantees provided by Theorem 26, the previously described proce-
dure will find the correct dimension, with high probability (on the event &) if the
true dimension of the ambient sphere is on the candidate set D. This will happen,
in particular, when the spectral gap assumptions of Theorem 26 are satisfied.

More formally, we have the following

Corollary 28. If W in S ! is a geometric graphon satisfying A* > 0 and D is a
set of integers containing such that d € D, then with high probability (on the event
&) Algorithm 2 returns the correct dimension.
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Algorithm 2: HEiC-dim
Input: (1}, D)
Run Algorithm 1 for d € D, Sc(d) « gap (HEiC(1},,d))
Return: argmax,(Sc(d))

Notice that, in contrast with the setting in Algorithm 1, here we do not have
a measure of error converging to zero and it is less straightforward to quantify the
efficiency. In addition, we have not described how the set D is explored (in the
numerical experiments we do it in increasing order). Indeed, there are many ways
in which this algorithm could be more efficient (it is parallelizable for instance), but
since we are not pursuing optimal efficiency here, we leave those improvement for
future work.

3.7 Numerical experiments and simulations

We generate synthetic data using different geometric graphons. In the first set of
examples, we focus in recovering the Gram matrix when the dimension is provided.
In the second set we tried to recover the dimension as well.

3.7.1 Recovering the Gram matrix

To measure the error of the algorithm HEiC we will compute each time the mean
error(or simply the error in the Frobenius norm), defined by

ME, = |G — G*||lr

which in light of Theorem 26 converges to 0.

We start by considering the graphon Wi (z,y) = 1, ,)>0 which defines, through
the W-random graph sampling scheme given in Section 3.2, the classical RGG model
on S ! with threshold 0 (or random proximity graph). Thus any two sampled points
X;, Xj € S9! will be connected if and only if they lie in the same semisphere.

In our first experiment, we fix the dimension to d = 3 and consider different
values for the sample size n and for each of them we sample 100 Gram matrices
and run the Algorithm 1 for each one. In Figure 3.1(left) we show a boxplot for the
log(M E,,) for the different values of n. Notice that the red line in this case is showing
how M E,, decrease in terms of n and suggest that a bound of the type O(%) is
appropiate for the M E,,. We examine this closer from the theoretical point of view in
Section 3.9. In Figure 3.1(right) we see how our algorithm is affected by the change
of dimension d. We consider values d = 3,5, 7 and 11 for the dimension and for each
n, the M E,, we plot is the mean over the 100 sampled graphs. The results are very
similar albeit the spectral gap being smaller as the dimension increase, in which
case our bounds deteriorate. In the numerical experiments the bounds are slightly
better for larger dimensions. One possible explanation to this fact is that there is
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00 N + d=3
—— logMSE = log1.95 — Hogn X P
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Figure 3.1: In the left we have a boxplot of log(M E,,) for Algorithm 1 for different
values of n for Wi with d = 3. The red line represent a curve fitted for the mean
across all repetitions for each n. In the right, we see the log(M E,,) for Wy on S%~1
with different values of d.

scaling factor, as in Chapter 2, which compensates the decrease in the spectral gap.
The fact that one group of eigenvalues (and eigenvectors) are used in our algorithm
would call for the use of the relative concentration results of the previous chapter.
However, stated as it is, our proof uses the full spectrum to control the eigenvectors
which comes from the form of the Davis-Kahan theorem.

fit) = 1/(1 + ™)

log(Mean error,
|

Figure 3.2: In the left we illustrate the logistic graphon for different parameters. In
the right, we see the log(M E,,) for Wy for different values of r.

Now we consider the logistic graphon Wa(z,y) = which was discussed

1
Trer@o)
in Section 2.8.1.3. This model interpolates between the proximity graphon Wi (zx,y)
defined above and the Erds-Rényi graphon Wy(z,y) = 3. In Figure 3.2(left) we
plot the graphon functions for different values of r. In Figure 3.2(right) we show

the log(M E,,) for W5 in each case. Notice that when r = 0, we have Wy = W). The
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closer to W7y, in this example, is Wy with » = —21. As we expect the error of the
Erdos-Rényi graphon do not decrease with n, since the spectral gap condition is not
satisfied and in this case we cannot guarantee reconstruction. As already discussed,
in this case no algorithm would achieve reconstruction, since any configuration is
equally likely.

== ho_n=1

= tho_n=1/n"0.25

= tho_n=1/n"0.33
tho_n=1/n"0.5

-8

log(Mean error)

10 50 100 200 500 1000 2000 5000

n (sample size)

Figure 3.3: log(M E,,) for Wi and different values of p,,.

We also investigate the effect of the scaling sparsity parameter p,. In Figure 3.3
we plot the log(M E,,) for the function W; for different values of the scale parameter
pn. As we might expect, the smaller the p, the slower the error converges to 0,
which is due to the fact that the spectral gap is smaller and the dimension fixed.
As a general rule, for a fixed d, the smaller the spectral gap the harder the problem
becomes, at least asymptotically.

3.7.2 Recovering the dimension d

We conducted a simulation study using graphon Wy, with a sample size n = 1000
points on the sphere S?~! for different values of d and a dimension candidate set
of the form D = {1, -+ ,dmaz}. We use Algorithm 2 to recover the underlying
dimension d. We repeat this procedure 50 times for each d. In Figure 3.4 we display
a boxplot (over the 50 repetitions) for the score of each candidate in D. In the
first three cases, that is when d = 3,7, 19 the algorithm can each time differentiate
the true dimension from the rest of candidates. In the last case when d = 77,
the algorithm still peaks in score at the correct dimension, but with a much lower
confidence. In our experiments, at d = 81 the algorithm cannot distinguish the
correct dimension. Notice that the score, which corresponds to the value Gap,
decrease with the dimension and in the case d = 77 is close to 0. In this case, a
larger sample size will be needed to recover the dimension. One of the bottlenecks
is the computation speed for large sample sizes, given that the time complexity of
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HEIC is O(n3). Finding ways to speeding up the algorithm will certainly broadens
the instances in which could be successfully applied.
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Figure 3.4: Boxplot of the score Gap, for Algorithm 2 for different values of d for
W1 with n = 1000. In the cases d = 3,7,19 the algorithm will return the correct
dimension.

In Table 3.1 we report running times for Algorithm 1 for reference. Each time
correspond to one pass of the algorithm.

3.8 Mathematical tools

3.8.1 Perturbation results

For n large enough, the eigenspace associated to the eigenvalue A1 is close to the
eigenspace associated to the eigenvalue \;. This is precised by the Davis-Kahan sin
0 theorem. We use the following version which is proved in [Yu 2015]

Theorem 29 (Davis-Kahan). Let ¥ and ¥ be two symmetric R™*" matrices with
etgenvalues Ay > Ag > -+ > Ay and A1 > Ao > --- A\, respectively. For 1 <
r < s < n fized, we assume that min{\,_1 — A\, A\s — As—1} > 0 where Ay := o0
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n | Time(secs)
20 0.0055
50 0.0278
100 0.044

200 0.128

500 0.818
1000 3.68
2000 16.84
5000 152.52
10000 1379.65

Table 3.1: Running times for the Algorithm 1 in a machine with 3,3 GHz, Intel i5,
16 Gb RAM.

and App1 = —00. Letd = s—r+1 and V and V' two matrices in R™ 9 with
columns (Vp,Vpq1,- -+ ,0s) and (Op,Vpq1,- -+ ,0s) respectively, such that Yv; = \jv;
and X0; = \jvj. Then there exists an orthogonal matriz O in R4 such that
232 min {Vd||Z — 5||op, [|E — E 7}

min{A\—1 — Ay As — Asy1}
Also, we need the following perturbation result [Bathia 1997, Thm.VII.2.8|

VO - Vlr <

(3.6)

Theorem 30. Let A and B two the normal matrices and define § =
dist(AN(A),\(B)). If X satisfies the Sylvester equation AX — XB =Y, then

1
1X)r < SV ]e

Another useful perturbation theorem |[Bathia 1997, Thm.VIL.3.1]

Theorem 31. Let A and B be two normal operators and S1 and S two sets sepa-
rated by a strip of size §. Let E be the orthogonal projection matriz of the eigenspaces
of A with eigenvalues inside S1 and F be the orthogonal projection matriz of the
eigenspaces of B with eigenvalues inside Sy. Then

1 1
|EFllr < SIE(A= BYF|lr < 54— Bllr

3.8.2 Concentration inequalities
The following theorem is a slight reformulation of the [Bandeira 2016, Cor.3.12]

Theorem 32 (Bandeira-Van Handel). Let Y be a n x n symmetric random ma-
triz whose entries Y;; are independent centered random variables. There exists a
universal constant Cy such that for a € (0,1)

P(Hyuop > 3v/2Dg + COD(*)\/logn/a> <a

where Dy = maxo<i<n ) j—; E(Y3) and Dy = maxi; [|Yijloo-
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Using the previous theorem with Y = T, — T,,, which is centered and symmetric,
we obtain the tail bound

. 3v2D vd1ogn/a
P(“Tn_TnHopZ n O+CO i / )SQ‘

We use the following result, which can be found in [De Castro 2020]

Theorem 33. Let W be a graphon on the sphere of the form W (x,y) = f({x,y)).
If [ belongs to the weighted Sobolev space Z, ((—1, 1)) then we have

1 I D

B2(M(—T0), NTw)) <o C(=22) 7
Pn n

where <, means that the inequality holds with probability greater than 1 — « for

a € (0,1/3) and n large enough.

While Theorem 32 gives a bound for the difference of the eigenvalues of the ob-
served matrix with respect to the eigenvalues of the probability matrix, Proposition
33 ensures that the eigenvalues of the empirical matrix are close to these of the
integral operator.

Given a set of independent random vectors Xi,---, X, uniformly distributed
on the sphere S“! we are interested in the concentration properties of the quan-
tity 233, X; X[ around its mean, which is E(X;X]) = Idg for 1 < i < n (in
other words, the vectors X; are isotropic). Since the uniform distribution on the
sphere is sub-gaussian |Vershynin 2018, Thm.3.4.6], we can use the following theo-
rem |Vershynin 2012a, Prop.2.1].

Theorem 34. If X1, -, X, are independent random vectors in R* with d < n
which have sub-gaussian distribution. Then for any o € (0,1) it holds

1< T d
1= > XX = 1da,, <o/~
k=1

3.8.3 Other useful results

To avoid border issues in HEIiC algorithm, we use the fact that the eigenvalue Aj
associated to the Gegenbauer polynomial G{(t) = 1 for ¢ € [—1,1] is the largest
one. The following results justify this facts.

Lemma 35. If W : S% 1 x 81 — (0,1] is such that

for f:[=1,1] — [0,1], then

18 constant.
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Proof. The proof follows from a change of variable. ]

The following theorem is an analogous result to a classical theorem of spectral
graph theory

Proposition 36. For a graphon W : S%~1 x §=1 — [0, 1] we have

/ W(z,y)do(z)do(y) < Ay < max d(x)
§d—15gd—1

zeSd-1

Since G} (t) = 1 we have by Lemma 35 and Prop. 36 that the \j = AF™.
We make used of the following results from linear algebra

Lemma 37. Let A, B be two matrices in R"*¢ then

IAAT — BB || < ([|Allop + | Bllop)lA — Bllr
1AAT — BB |lop < ([ Allop + I Bllop) 1A — Bllop -

If it holds that ATA = BTB = I, then
|AAT = BBl <2||A - B|r
Lemma 38. Let B a n x d matriz with full column rank. Then we have

|BBT — B(BTB)'BY || = ||Idg — BT B||r

3.9 Extensions and improvements

In Chapter 2 we saw that under certain regularity conditions, we can assure the

O(\/g) for the 0s(+,-) metric. The previous can be derived from Cor. 5. In the
proof we use that for the regularity conditions Hy, Hy and Hs we can choose R in
such a way that the function v2(n, R) is O(\/g) Here the parameter s is equal to
0 (see Section 2.7). In the proof of Theorem 26 we use triangle inequality to bound
|G — Gl by the terms [|G* — Glp and |G — Gl r.

Thanks to Davis-Kahan theorem the term |G — G| is already O(—=). On the

n
other hand, we used the triangle inequality to express

16" = Gllr <N1G" = Gprojlir + 19pr0; — GrllF + 197 — Glir

%
proj
of a Gram-Schmidt orthonormalization process of the vectors used in G*. Gpg is

where is defined similarly to G*, but the vectors used to define it are the result

defined anologously to G, but with the R-approximation matrix T instead of 7T;,.

3
22 || Th—Tr|lF
A )

Inspecting the proof we see that |G — Ggr||lr < were we recognize

the residual matrix Er from the previous Chapter, Section 2.4. In the proof of

Cor. 5 we saw that choosing R = n we achieve a parametric rate (9(\/%), that

is with probability larger than 1 — a we have |1, — Tr||F Sa.d ﬁ (the constant
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might depend on the dimension d). For the term [|[G* — G, ;[[F we already have a

parametric rate bound. More specifically, we have ||G* — G> . ||F Sa %

For the term ||G;,,; — GrllF, we have the bound (|G, ,; — GrllFr < IIIZIlF, where
the matrix H was defined in eq (3.12) below. It is easy to see that | H||  is bounded
by |ARllF[| 5@k — Idg [lop. From the fact that s = 0 and the regularity parameter
§ > 2 we have that |[®L®r — Idg [op Sa ﬁ and the term ||A%||F is bounded by a

constant, given that Ty is a Hilbert-Schmidt operator.

In resume we have the following corollary

Corollary 39. Let W be a reqular geometric graphon on S*' with reqularity pa-
rameter 6 > 2 and such that A* > 0. Then

IG = G*lr = Oa(A*"'n71/2)
with probability larger than 1 — a.

This represent an improvement over Thm. 4. Still this result might be further
improved by a better estimation of the quantity || Eg/||op. This would impact specially
the value ng in the definition of £. Also, a sharper estimation of this term, could lead
to improved bounds under weaker assumptions, since in the previous chapter this
represented the major bottleneck to remove more regularity hypotheses. We suspect
that to make better use of the orthogonality structure, we could use the relative
concentration for the eigenvalues converging to A]. This could help explaining the
fact that we have observe an “scaling effect” when the dimension changes in the
experiments reported in Fig. 3.1(right).

Another possible strategy is to use the generic chaining results discussed in
Chapter 2, but note that in this case the family of functions is not the linear family
defined in (2.23) and we predict that sharp bounds will be harder to obtain via this
method.

3.10 Some proofs

Proof of Lemma 2. Invoke Theorem 32 with Y = T, — T,, which has independent
centered entries conditional to the latent points, to obtain with probability larger

than 1 — «
- V1
Ty = Tullop S O rmac {22, X282

because Dy = maxo<i<n )1 0ij(1 —©45) is O(np,), by the definition of ©. Thus,
for n large enough we have

1 \/logn} (A*)?
Nz 25 Vd

provided that —V/)l:in = o(1), which holds because we have assume that p, =
Q(logn/n).

1 -
p_“Tn — Tallop Sa OmaX{ < (3.7)
n
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We use Lemma 37 with A = VO and B = V, where O is an orthogonal ma-
trix, and Theorem 29 assuming that the right hand side of (3.6) is smaller than 1,
obtaining

WVVT —vvT||p <2IVO - Vllp
5 . A A
< 22 min {Vd|| T, — Tollops |Tn — TullF}

3.8
X (3.5
where A := dist({\iy, -+, Xig b A(Tn) \ { Ny, -+, A, }). Then we have
5.d -
RN 2222 Tn *Tn 0
R L
o
pn(A*)2
Sa BTN (3.9)

where the last inequality holds under £ and with confidence at least 1 — «. From
Theorem 33 we have that, when n is large enough

1 1 st AF
5 (A(—Tn),A(TW)> <, c( Og”)%*d = (3.10)

Pn n 8
where the last inequality is valid under £. This and (3.7) ensure that exist ng that
depends on A* and « such that P(£) > «/2. O

Proof sketch of Prop.25. When A* > 0, we remark that A] is the only eigenvalue of
Tw with multiplicity di = d, the others eigenvalues (except for A\j) having multiplic-
ity strictly greater than d. Now, using (3.10) we deduce that, under £, there exists a
unique set p%b)‘il’ p%)‘iw ceey p%/\i , of d eigenvalues of T}, that can be separated from
the other eigenvalues by a distance at least 3A* /4, namely the triangular inequality
gives .
4,34 (3.11)
pn A
Furthermore, using (3.9) we get that there exists eigenvalues ;\1-1,5\1-2,...,;\1- 4
and eigenvectors V € R"*? of T}, such that |[VVT — VVT|r < A*/48. We define
Ar = {Aiy, -, Ay }. By Hoffman-Wielandt inequality [Bathia 1997, Thm.VI.4.1],
it holds

d
. 1/2 o
(Do —xem2) < VT — vV T < A8,
k=1
By triangular inequality, we deduce that

~

1 -
A= dz’st(Al, )\(p—Tn) \Al) Z
n

I

A*
2

namely j\il, j\iQ, . ,S\id
other eigenvalues of T,.

This analysis can be also done for the other eigenvalues, which shows that, on
the event &, Algorithm 1 returns G = (1/¢;)VV7” composed by the eigenvectors

corresponding to the eigenvalues of the aforementioned cluster of d eigenvalues. [

is a set of d eigenvalues at distance at least A*/2 from the
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Proof sketch of Thm. 26. We have by (3.8) that

(d—2)
Vidn '

whenever n is large enough and A* > 0, where C' may depend on W. In the last
inequality we used that ¢; = d/(d — 2).
We are left to control ||G* — G||p. We have by triangle inequality

~ 1  ~ ~
Hgwazamnﬁfvvﬂwsac

16" = GllFr <NG" = GprojllF + 19pro; — GrIIF + IGR = GlIF

where g;wj is the projection matrix for the column span of the matrix V* and
Gr is the Gram matrix for the eigenvectors of the approximation matrix T =
(Wr(Xi, X)),

We use Theorem 29 to obtain

3
2T, — T 1 —5/(26+d—1)

where we choose R = O((n/logn) a1 ). We use Lemma 38 with B = V* and
Theorem 34 obtaining

d
T

16" — g;roj”F <|ldg = V" V*F Za %
We have, see [Bathia 1997, p.202|

1
||g;roj - gR”F = 2||g;rong ||F

We use Theorem 31, with £ = G*

proj> F:gfi, B =Tgr and A =T+ H, where

H := OrA[RDE — dpALDL (3.12)
the matrix ® 5 has column ®; obtained from ®;, by a Gram-Schmidt orthonormal-

ization process. By Theorem 31 we have

|A-Blr _ IH]r

* 1
||gprong||F < A* A*

To bound || H | r, we use Ostrowskii’s inequality Cor. 18 and [De Castro 2020,
Lem.12| to obtain
1 /logn\ ma—
* s 2 1d—1
157079 Sa 5= (o)
which implies that

1, n -5
”g;mj - gRHF Sa E( )25+d—1

logn

We conclude by collecting terms.
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Proof of Lemma 27 . The lemma follows from Proposition 25. Indeed, on the event
€ there exists only one set A of eigenvalues of 1), with cardinality d , whose distance
to the rest of the spectrum is larger that A* and its diameter is smaller that A*.
When sorting the eigenvalues of T, in decreasing order, those belonging to Ay will
appear in consecutive order. The lemma follows from this observation and from the
fact Gapl(Tn; In—d—1,""" yin—1) = left(n —d — 1). O

Proof of 32. By |Bandeira 2016, Rmk.3.13] we have the tail concentration bound
(taking their € equal to 1/2)

IP’(HYHOP > 3v/2Dy + max HY}jHOOCm/logn/a) <a

the result follows, because max;; ||Yijloc < 1. O

Proof of Proposition 36 . By Courant-Fisher min-max principle we have

(Twf, f)

Ay = max  ~——~
07 rer2(=11) (. f)

In particular, if we take the function 1(x) := 1 for = € [—1, 1] we have

<TWIL7 ]]->

(1,1)
_ de—l W(z,y)do(z)do(y)
de*da(y)

x>

=dw
the last follows form the definition of dy and the fact that o is a probability measure
on the sphere. On the other hand, if fj is an eigenfunction associated with A\g we
can choose z* such that fo(z*) > fo(x) for z € [—1,1]. Without loss of generality,
assume that fo(xz*) # 0. So

= Ty fo(z*)

fo(z*)

- gd—1 W( 7y)f()(fL’*)

< W(z*, y)do(y)

T Jgd-1

= dW (I*)

do(y)

which finish the proof O
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4.1 Introduction

In this chapter we introduce the model of the random geometric graphs on the
Euclidean ball B¢ = {z € R? : ||z|| < 1}, where we assume d > 3, which can be
considered as an extension of the RGG model on the sphere discussed in Chapter 3,
since it is defined by a dot product kernel and the graphon formalism. Although the
family of RGG graphs on B? we study in this chapter has an intersection with the
family of random dot product graphs (RDPG) [Athreya 2018]|, the model we describe
here has not been previously studied with detail in the literature. Consequently, the
purpose of this chapter is twofold: to show that, similar to the case of RGG model
on S71 it is well suited to latent structure recovery problems and to highlight
some of the properties that make it appealing for the modeling of more complex
real networks.

As in the previous chapter we will consider randomly placed latent points
{Xi}i<i<n, whose connection probability will depend on a one dimensional link
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function evaluated on the inner products of the form (Xj, X;). One key difference
with the RGG model on S?~! is that on the ball the probability of obtaining a graph
with a more heterogenous degree sequence is frequently higher than in the sphere.
This is due to the fact the points {X;}i1<i<, have different norms and their inner
product depend not only on the angles, but also on the norms. Take for instance
the classical RGG model with link function 1(x, x;y>-. A latent point with large
norm will be more likely to be connected than one with smaller norm. This creates a
heterogeneity in the node degree sequence that is not present on the RGG model on
S9=1. The fact that some nodes are more connected than others represent a feature
that many real network share (see [Barrat 2004| for example) and, consequently, the
RGG model on the ball will offer more flexibility in terms of modelling.

Even if the both models (the one on the sphere and the one on the ball) can
generate very different graphs, they do have formal similarities that will allow us to
extend the analysis from the previous chapter. Indeed, in the ball there is also a fixed
basis of orthogonal polynomials that plays the role that the spherical harmonics had
in the previous chapter. The harmonic analysis on B? provides an explicit represen-
tation for the reproducing kernel for the space of polynomials of each degree, which
gives formulas for the spectral expansion which share similarities with the spherical
case. In particular, the linear polynomial contains the inner product information,
which can be recovered from the eigenfunctions. On the other hand, our analysis
will be valid not only for the uniform distribution on B?, but also for a parametric
family of spherically symmetric distributions related to the beta distribution. Even
if this mainly a technical assumption that we inherit from the harmonic analysis on
the ball [Dai 2013, Chap.11], it is also an added feature with respect to the spherical
model that gives more flexibility to the model and makes it capable to express more
complex networks.

We discuss the problem of recovering latent information on this model, mainly
under a spectral gap assumption. We discuss the possibility of estimation of the
latent norm from the observed adjacency matrix, in the threshold graphon model.
We also discuss the estimation of the latent distance, extending the approach de-
veloped for the sphere in Chapter 3. Some related problems, involving the recovery
of latent structures, have recently been studied in [Athreya 2020|, from the spectral
point of view, but on the RDPG model and with distributional assumptions of the
latent points and ambient spaces different from the ones we consider here.

4.2 RGG on the ball

In this section we define the RGG model on the Euclidean ball. We will introduce
a set of measures that will be admissible in our model. Part of the material pre-
sented here is classic in the context of harmonic analysis on B¢ [Dai 2013, Chap.11],
including the geometric formulas on Euclidean spaces with measures using Jacobi
weights.

We define F = {Fl,},,>_1/2 the parametric family of distributions on B¢ with
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densities, with respect to the Lebesgue measure, given by
1
dF, () = Cy(1 — ||z]|*)" "2

where
c, = / (1~ [zl 3 da
Bd

By definition each distribution on the family JF is spherically symmetric
[Kelker 1970] which in the case of distributions which are absolutely continuous
with respect to the Lebesgue measure is given by the fact that for every z € B¢
the density dF), () depends on the norm of z only. Observe that for v = % the dis-
tribution F), is equal to the uniform distribution on B?. If X is B%valued random
variable with law F,, then the following stochastic representation holds

X =RU

where R is a real valued random variable distributed as || X|| and U is and inde-
pendent uniform random direction, that is, its law is given by the uniform measure
on the sphere o, defined in the previous chapter. The variable U has the same
distribution that X/[|X||. The following lemma describe the distribution of || X]|

Lemma 40. If X is a B%-valued random variable distributed according to F,, then
|1 X% follows a distribution Beta(%, v+ 3).

The following procedure characterizes th RGG model on the ball. First, we sam-
ple i.i.d points {X;}1<i<pn according to F, € F, for some v > 0. Then, conditional
to those points we sample the adjacency matrix A;; such that for i < j

]P)(Aij = 1) = f(<Xl7XJ>)

for some function f defined on [—1,1]. The entries A;; for i > j are defined by
symmetry.

Examples of this model are the Erdés-Rényi model, where f(t) = p for p € [0, 1]
and threshold or proximity graphon f(t) = 1;>, for 7 > 0. Notice that in general,
the class of proximity graph is a subclass of the intersection graphs where each node
has associated a set and an arc exist between two nodes whenever the two associated
sets intersect. In the case of proximity graphons on S¢~! the set associated with
each node is the boundary of a spherical cap (a hypersurface in ]Rd) around that
node and with height 1 — 7. In the case of the proximity graphon on the ball the
associated set is a spherical cap, but the heigh is not constant and depend on the
node in consideration and also on 7.

Let W be a graphon defined on B? with measure y, the (normalized) degree
function is defined as follows [Lovasz 2012|[Chap. 7|

@)= [ Wia)duty)



72 Chapter 4. Random Geometric Graphs on the Euclidean Ball

In the case of a geometric graphon W(x,y) = f((x,y)), it is easy to see that the
dw(z) = dw(2’) when ||z|| = ||2/||. Observe that in the case of the Erdos-Rényi
model we have a constant degree function, for any measure . For the threshold
function Wy(z,y) = 1, ,)>,, we consider the measure y1 = F),, for some v L. Then
we have for the degree function

de (SC) = /Bd ]l<x7y>2TdFy($)

:F,,(Sc (:z:,l— ||:E“%))

where Sc(x, h) represents the spherical cap on x/||z|| with heigh A, that is
Sc(,h) :={y € BY: (y,z/||z||) > 1 - h}
Fix X; € B?, then the probability that X is connected to X; for j # i is
P(Ay = 1) = B ( Se (Xi,1 )
T = C ; _———_—
v SR TRV

Note that if || X;|| > 7, then the spherical cap in the previous formula reduce to a
point and, therefore, has measure zero. In other words, the points with || X| < 7
are disconnected from the rest of the graph. For a fixed i the random variables A;;
for 1 < j < n are independent. Denote dg(X;) := Z#i A;; the degree of X; in the
random graph. Observe that the random variable dg(X;), conditional to Xj, follows
a distribution Binomial(n — 1,dw (X;)), thus

E<dG(Xi)

n—1

) = dw, (X)) = F(Se(Xi, 1 = 7/|1Xi])) (4.1)
From the fact that F,, is spherically symmetric, we deduce that
Fy(Se(z, 1 —7/||lzl)) = F,(Se(z, 1 — 7/]|2[])

if z = [|2’||. In other words, the previous quantity depends only on the norm of
x. From standard concentration inequalities, such as the Hoeffding inequality, and
from (4.1) we have the following lemma

Lemma 41. Fiz X; € BY. Given ¢ > 0 we have that

da(X;
P(| - (_ ;) —dw,(Xi)| > €) < 2exp —2¢2n
In words, the random variable dfl(_)ii) is highly concentrated, for n large, around

its mean dyy,(X;). Intuitively speaking, if we fix a node X; in the graph its degree
will reveal information about the latent norm ||X;||. We examine this closer in
Section 4.3.

'With some abuse of notation we use F, for the distribution function and the measure.
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To highlight the differences between the RGG models in the sphere and in the
ball, let consider the function W, with 7 > 0. We have the same connection rule,
but different underlying measures. In the case of the sphere the measure is the
uniform o (the only rotation-invariant Borel measure on S%~!) and in the case of
the ball, let us consider the uniform measure, that is, Fy 5. Let call dgppere and dpau
the degree function for the models in the sphere and in the ball. Using standard
formulas for the area and volume of spherical caps in R?, we see that the function
dsphere(+) is constant and equal to

1 d—11
duphere(®) = 0(Se(N.1 = 7)) = 51y_pa(5=.5) =t d

where I(a,b) = % Jo t 11 = ¢)>~! is the regularized incomplete Gamma
function and N = (1,---,0) € R? is the north pole on S¢~!. On the other hand, we

have

T 1 d+1 1
dpa =F9(Sc(N,1 — ————)=-[1_(_1_y2(—, =
batt (%) = F12(Se( v = 2h (e (3 3)

Notice that, using the properties of the incomplete Beta function, we have for

x e §i1
1

(d—1)B(F, 3)

(1 — 72)%

dball (:U) = dsphere (.’IJ) -

From the previous we see that when 7 = 0 we have dpq () = dsphere(x) for x € Sé-1,
Indeed, in the case of 7 = 0 we have dpq () = dpau(-), because I1(a,b) = 1 for any
0 < a,b < 1. Consequently, the model in the sphere and the model in the ball, for
7 = 0, define the same distribution over graphs.

For the case 7 > 0 we have for ||z| < 7 we have dpq(z) = 0. Thus dpgy(x) €
[0,ds.,] for any = € B, where

- 1 d—1

der = dgr )7(1—72)7

T (d-1)B(%G
Given the concentration result Lemma 41, we expect that for 7 bounded away from

D=

0 to observe a different degree distribution in both models, assuming the same 7 and
the same sample size. On one hand, in the spherical model, we expect the degree of
every node in the graph to be very similar for n large. In the case of the model in
B9, the degree sequence will be more heterogeneous. We discuss this further in the
next section.

Random graph models are typically compared fixing the mean degree of the
resulting graph, that is, fixing dg = % >, dg(X;). This is common in the context
of testing, where we need to decide between two models given a single observation
of the graph. See for example |Arias-Castro 2014, Arias-Castro 2015] for testing for
the SBM and [Bubeck 2016] for the testing problem on angular RGG’s on S,
If we fix 71 > 0, and define Wi(x,y) = 1, yy>r,, in the sphere. We can find 7,
which defines Wa(z,y) = 1, ,y>r,, in the ball, such that both models have the
same mean degree function, that is dw, (z) = [} dw,(x)dF}/5(x). Also note that
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the concentration study for the random variable dg can be carried out in this case
and is equivalent to the the concentration of the matrix norm [[Al[11 = 37, ; [Asj]
for the adjacency matrix. We do not pursue such a study here.

We illustrate the previous point by simulations. We consider W; and W5 as
previously defined with 71 = 1/2 and 7o = 1/4. We sample graphs 25 graphs
from both models, each of size n = 1000 and compute the minimum degree, the
maximum degree and the mean degree. In Figure 4.1 we show an example of one of
the instances obtained for each graph. In Table 4.1 we report the mean over the 25
simulations for the basic statistics regarding the degree sequence.

0025 0010

0.020 0.008

0015 0.006

0010 0.004

0.005 0.002

0.000 0.000
200 220 240 260 280 300 320 0 100 200 300 400
deqree degree

Figure 4.1: Degree histogram for Wi (left) and Wy (right).

‘ Model ‘ Min.deg | Mean deg | Max.deg ‘

Wy 199 250.672 282
Wo 0 249.682 342

Table 4.1: Table with the mean of the min, mazx and mean degree statistics for each
model.
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Figure 4.2: Degree histogram for W, with 7 = 0.1 and v = —0.3(left),r = 3.5,v = 5.5
and v = 15.5(right).

In Figure 4.2 we show the degree histogram for graphs sampled from the graphon
W, with fixed 7 = 0.1 and for v = —0.3,3.5,5.5,15.5. The purpose is to illustrate
the variety of different shapes that the degree distribution can have on this model.
We repeat this exercise, but fixing v = 5.5 this time and changing the value of 7,
which is shown in Figure 4.3. Observe that as 7 grows, not only it changes the shape
of the degree distribution but also the graph become sparser.
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Figure 4.3: Degree histogram for W, with v = 5.5 and 7 = 0(left), = 0.005,7 = 0.05
and 7 = 0.2(right).

4.2.1 The sough after power law distribution

In previous section we saw that, in terms of observed degree distribution, the RGG
model on the ball is more flexible that the one on the sphere. Given that the
heterogeneity in the degree sequence is a characteristic observed in many real world
networks [Barrat 2004|, having a more flexible model at hand would be useful for
modeling purposes. From (4.1) we see that the possible values for dy (x) for a
threshold graphon W are of the form F,(Sc(N,1 — W)) However useful the
previous characterization might be, it has the problem of not being very explicit
and as it is written do not match any of the typical degree distributions that are
frequent in the network literature. In particular, many real networks exhibit a
power law degree distribution [Clauset 2009, Mitzenmacher 2003], meaning that the
number of nodes with (unnormalized) degree k is proportional to k=7 with v > 0.
This opens the question: is the power law included between the possible degree
distributions in the RGG model on the ball? or at least, is it possible to have an
approximative version of it?

We will first explore the degree for the case of the graphon W, whose degree
function is given by (4.1). More specifically, we have

Proposition 42. For the threshold graphon W = Wy for 7 > 0 and {X;}1<i<n ~ F),
forv > —1/2, we have for any 1 <i<n

P(dw (t1N) < dw(X;) < dw (taN)) = Fpeta(t3) — Fpeta(t?)

where 0 < 7 < t; < to and Fpew(:) is the cumulative distribution function of
Beta ( %, v+ 3). In addition, we have that

P(dw(X,) = 0) - FBeta(T)

Notice that Prop. 42 characterizes the distribution of the degree function. How-
ever, its application depend on the computation of dy (tN) for different values of
t € [0,1]. This corresponds to compute the volume against the measure F), for
spherical cap Sc(N,1 — x7=). In that regard, we have the following integration
lemma

Lemma 43. For 7 > 0 we have

dy (tN) = %Il( i )2(1/+ g, =)
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It is clear that the previous lemma and Prop. 42 characterize the distribution
function of the degree function dyy(z). More specifically, the distribution function
Fy,, (+) for dy (X), when X ~ F, is given by

Ie(Sv+d)ift=0
Fdw(t):{T 2d 21 .
Ig(t)(iay+§) lft>0

72

1-1-1(2t;40,2)"
In order to find an analog to the power law distribution we will need to compute

where g(t) =

explicitly the degree function (while finding an explicit bound would suffice) and the
previous expression has the drawback of depending on the complicated regularized
incomplete Beta function and its inverse (which cannot be expressed using standard
functions). We will, nonetheless, use the previous expression in the next section
when we study the latent norm recovery.

To continue the search for a similar distribution to the power law, we study the
degree function of the following RGG on B¢, defined by the connection function:

F) = AL i E#£0
1 ift=0

where a € (0,1) is a “resolution” parameter. For the latter we mean that if z €
B4(0, y/a) then for all y € B? we have f((x,y)) = 1. That is, any point located in
the ball centered in 0 with radius o will connect with every other point in B¢. This
is the inverse of what happens in the threshold graphon. In terms of the degree
function, this means that dy(z) =1 for ||z||* < a. By defintion we have

A = [ = MR

By rotational symmetry (we can think of  being = (x1,0,---,0) = 21 N) we have

dy(x) = dy(z:N)

191

e}
::/ —77A1M$@y+/ dF,(y)
BB (0,/a) T1Y1 B4(0,v/a)

Given that the summand de(O“/a) dF,(y) is common to every x € B? we will
subtract it. Intuitively speaking, there will be nodes that will be connected will
almost every node in the graph, which increase the minimum degree. Since we
already know that the nodes such that |z||*> < a are connected with every other
node, we concentrate in the case ||z||*> > a. This motivates the definition

1) i JE0Vm) FE )
f ) =
de\]Bd(O,\/a) édFl/(y)
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for ||z]|> > a. Let take k,n’ € N such that k < n’ < n. By definition

~ n/()l f]Bd\]Bd(O \/_) ndeF( )
dy(\/ —N) =
Joapeo,ya) 77 2F W)
k
R

Thus, given that X is distributed according to F,

(U0 <dp(x) < 1) = B(X e B0, 20 \ B0,/ )

= R (B0, ) B0 1)

d 1 d 1
= I%(ﬁ#*‘ 5) _I"'Ta(§71/+ 5)
Since I (+,-) is an increasing function we see that
d  na n’a '« d na
—I <I -1 < Ap—I(—
() < <k,_1> <k> ()
Where I(x) = (2, v+ 3) and Ak = =% — 22 Tt follows from the definition that
I,(a,b) = ( x 1(1 z)’~1 and consequently
k—1,-4_ 1 1 ky_d_q
2T (Y _ (2 < VT2
cha( n/ ) —I(k,_l) I(k)—cyva(n/)

where ¢, o,C), o are constants that depend on v and a. Thus picking d = 3, for
example, we have that

. k
<d <X
<ds(X )_.n

) oc (k/n')7%°

which can see as a similar distribution to a power law?. To make this point clearer,
take for example n’ of order O(n).The previous can be interpreted as the propor-
tion of nodes of degree k, for k large, follows a power law function, after shifting.
The exponent —2.5 has been frequently reported in the literature for real networks
[Clauset 2009]. We see that that changing the exponent « in the definition of f(t)

and the changing the dimension of the sphere, we can fine-tune the power law ex-
ponent parameter.

Remark 8. There is no formal definition of a power law or shifted power law dis-
tribution in the context of graphons. However, what we did here is close to what is
described in [Borgs 2019], where the theory of unbounded LP-graphons is developed.
This fact is also present in our definition ofcif( -) which we could be have defined with
the term fIB%d\Bd(O Va) 7 2 A 1dF,(y) in the numerator, but this makes less evident
the analogy with the dzscrete power law.
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/

Figure 4.4: A point z inside the annulus between the circles 1/% and 4/ 4+ will

have degree function satisfying d ¢(x) ~ k/n’. The fraction of points with degree
k/n' is the measure of the annulus.

We end this section by showing simulations for the the model with connection
function f(t), to illustrate empirically the behavior of the degree profile under this
model. In Figure 4.5 we show a single simulation of the graph of size 3000 with
connection function f(-) and parameter a = 1/1000, under the measure F} 5(-). We
observe the presence of nodes with very high degree (or large hubs) which is often
common in real world networks and scale-free networks. We include a log — log
plot for the histogram for the nodes with degrees over 300, to better observe the
exponential decay. The resulting shape, first close to a line and then oscillatory
(Figure 4.5(right)), has been reported in real world networks, where it is suggested
as evidence for a power law distribution of the degrees [Clauset 2009).

00

AN [ . D
Figure 4.5:  From left to right: we plot the function f(-) for « = 1/1000. In the
center, we show the histogram for this f. In the right, we show a log — log plot of
the same histogram, but only for the values with degree larger than 300.

We repeat this exercise in Figure 4.6, for different values of a which produces
changes in the distribution. We opt to include the log —log plot for nodes with
degree larger than 300 for comparison purposes. This shows the shifted power law
shape of the degree distribution. More node connectivity can also be achieved by

2 A random graph model has power law if the number of nodes with (unnormalized) degree k
is proportional to k=7 with v > 0.




4.3. Latent norm recovery 79

changing the measure under which we simulate. We show one example in the image
at the bottom in Figure 4.6, which was generated with F3/,. Indeed, a measure that
allocates more mass at the center, will have larger connectivity with this model.
This serves to illustrate the flexibility and expressiveness of this model.
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Figure 4.6: Analogous to Figure 4.5. In the log — log plot we show the values with
degree larger than 300. The plot at the bottom was done with a different measure

F3/9

4.3 Latent norm recovery

As we saw in previous sections, the norm of a node X; conveys important information
about the connectivity (degree) of X; under the RGG model on B?. We explore here
the inverse of this relation, that is the inference of positional information (the norm)
from the degree. Given that the points locations are typically not known and we
only have access to the adjacency matrix, one can try to use the combinatorial
information to construct an estimator for the norm. We present some results on
this subject in this section.

First of all, we cannot recover the norm from the adjacency information in full
generality, that is when considering the ensemble of all measures F and all the
admissible link functions. To see that, we will consider two threshold graphons
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defining two models under two different measures in F. If {X z“ H<i<n are ii.d points
on B? with law g and similarly {X¥} are i.i.d points under v, then the threshold
graphons Wi ((z,y)) = ]l<x,y>>r1 and W2(<{L',y>) = l(x,y)
W-random graph models (the same probability distribution over finite graphs) if
and only for any 7 # j

>7, Will generate the same

P ((XF, X}) <) =P, (X, X}) < 1)

or, in words, if the 7 quantile of the inner products of points following u is equal
to the 79 quantile of the product under v.

Proposition 44. Let {X!}1<i<n and {X;’/}lggn be two sets of points distributed
under F, and F,, respectively for v, > 1/2. Let T be in (0,1] and assume that
v > v, then we have

Py (XY, X)) < 7) <Pu((XY, XF) < 7)
for i # j. Moreover, there exists 7' € (0,1] such that
P, (X!, X)) <7)=P,((X}, X)) <7

fori#£j.

Remark 9 (Case 7 = 0). As we previously discussed, in the case T = 0 we have
equivalent models for any measure in F. Indeed, for any measure with spherical
symmetry we have the same model. Intuitively speaking, the norm is not used to de-
cide the nodes connection, but only the fact that they belong to the same semisphere.
In consequence, in the case T = 0 we cannot recover the measure (nor distributional
information about the latent points) from the adjacency matriz alone.

The previous proposition proves that when no information about the measure is
provided, we cannot extract information about the norm even if we restrict ourselves
to the case of threshold graphons. Consequently, we cannot infer the latent norms
from the combinatorial information alone. The previous can be seen as a non-linear
analog (as in Prop. 44) of the non-identifiability issue under rescaling in the classic
RGG on R?, which is reported in [Arias-Castro 2018| for instance. This is a common
issue in latent space model and it is also present on the RDPG model.

Let fix v > 1/2 and 7 > 0. Recall that, for any node X;, Lemma 43 relates the
degree function with the norm || X;||, given v and 7. From that lemma, we get that
dy(z) = 0 for any ||z|| < 7. That is, the points inside B%(0,7) are isolated (not
connected with any other node) with probability 1. Notice that we can apply any
function of B%(0,7) to itself to the points in B(0, 7) without changing the random
graph distribution. In other words, we cannot extract interesting information on the
points in B4(0, 7). Observe that it might be isolate nodes outside B¢(0, 1), however
the fraction of such points should go to zero asymptotically. We will return to this
point later.
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Fix a node such that ||.X;|| > 7 and define the random variable

dg(Xi). d 1

Zi=1"1t(2——4 - =
' 1TVt
then Lemma 43 suggests the following estimator for the norm of X;
T
G o=

-7

From Lemma 43 we have that for a fixed a € (0,1) we have

da(X; 2log 2
|2M —2dw (X;)] < ,/M
n—1 n

with probability larger than 1 — «. Otherwise stated, with probability larger than
a we have

st(_Xli)Gpdw(Xi)— /210i2/a,2dW(Xi)+ /210i2/a]

Given that I~!(-) is strictly increasing, we have with probability larger than 1 — a
Zi € (I (2dw (Xi) — o(1)), I (2dw (X3) + o(1))]

Observe that 2dy (X;) is strictly smaller than 1, because ||X;|| > 7. Thus, there
exists ng € N such that 2dw (X;) + o(1) < 1 for n > ng. This proves that the
variable (; is well defined for n large enough, with probability larger than 1 — a. To
ensure that is well defined with probability 1 we take

G=GANA1
From the strong law of large numbers it follows the following

Proposition 45. For a fized i € N, the random variable (; converges almost surely
to || Xq]|-

Even if the previous proves consistency of (;, there is still some caveats to (;
as estimator. First, ¢; is a complicated ? non-linear function of a binomial random
variable, which makes the analysis of its mean (and in consequence of the bias and
variance) very involved. Second, the concentration properties are greatly distorted
by the use of those nonlinear functions which deteriorates the rate of convergence.
However, from our experiments (presented in Section 4.5) it do works reasonable
well. Finding estimator with better properties, by possible considering not only
local information about a node, is a line of research to be pursued in the future.

The convergence of the cumulative distribution of the degrees is proven in
[Delmas 2018] and [Borgs 2018|. In [Borgs 2018|, the authors prove the convergence
of [{i € [n] : dg(X;) > A}| towards u({y : dw(y) > A}), where p is the distributions
of the points X; and A > 0 is a point of continuity of A\ — pu({dw(y) > A}).
In [Delmas 2018|, a graphon W in [0,1] is considered and the convergence of
M(y) := 1 Yoim1 Lag (X <ndw (y) toward y, almost surely, is proved. They also pro-

n
vide a CLT type result for this convergence.

3Since I7*(-) cannot be expressed using standard functions.
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4.4 Latent distances recovery

In this section we study the problem of latent distances estimation for the RGG on
B¢ The objective is to extend the spectral approach developed in Chapter 3 for
the spherical case. One of the key ingredients used in our approach in the previous
chapter was the explicit “reproducing" formula that relates the basis of Gegenbauer
polynomial with the basis of eigenfunction of the integral operator with a dot prod-
uct kernel. Analogous formulas for the case of the ball have been developed in the
context of harmonic analysis on B? [Dai 2013, Chap.11]. We will first introduce the
harmonic analysis elements which are relevant to our method. In this section, we
follow [Dai 2013, Chap.11]| and [Xu 2001].

4.4.1 Harmonic analysis on the ball

Similar to the case of the sphere, we will use an orthogonal polynomials basis of
L?*(B%, F,). Here the inner product, for f,g € L?(B%, F,) is given by

(1.9) =, [ 1@)o(e)dF, @)o

where we recall that dF,(z) = (1 — ||£L‘H2)V_% and a, =1/ [za W, (z)dz.
We denote ), the subspace of orthogonal polynomials (with respect to the inner

product defined above) of degree exactly n. It is implicit that ), depends on v.
+d—1

)

(this actually can be seen by applying a Gram-Schmidt orthonormalization process

From [Dai 2013, p.266|, we know that the space dimension is dim}),, = (

to monomials). This space can be described in terms of the harmonic polynomials
of degree n on SY, identifying x € B? with (z,/1 — [[z|2) € S%, where S¢ is the
intersection of the sphere S with the half-space where the last coordinate is positive,
see [Dai 2013, Lem.11.1.2|. Alternatively, they can be defined as the eigenfunctions
of the differential operator

DZA—<w,V>2—(2V+d+1)<.’L',V>

see [Dai 2013, Theorem 11.1.5|, which is analogous to the case of the Laplace-
Beltrami operator for the spherical harmonics on S~!. However, we are not going
to directly need these characterizations.

There are explicit expressions (closed formulas) for the reproducing kernel
PY(x,y) of each V,, see [Xu 2001]. In our context, the reproducing kernel P (z,y)
is the projector of L?(B?, F,) onto },,. By [Dai 2013, Cor.11.1.8] (see also [Xu 2001,

L d—1 _ T(v+1/2)
Eq.2.2]) we have for v > 0, v, := v + %= and ¢, = AT

v n+ v ! v—
PY(z,y) =cy S X /1GZ"(<w,y> + /1= []2V1 = [yl — )" dt (4.2)

where G (+) is the Gegenbauer polynomial of degree n with weight .
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It is well known, and we used it in the previous chapter, that {G"(-)}n>0 forms
a basis for L?([—1, 1],7,) [Szego 1939]. In addition, each p;, € Y, is an eigenfunction
of the following L?(B?, W,,) integral operator

Trg(x / F({z9)g()Wo (y)dy
and the eigenvalue associated to each px € ), is
G’YV
f T
Gn
and cy, is such that Aj(1) = 1. The previous statement is a consequence of the

Funk-Hecke formula [Dai 2013, Thm.11.1.9]. Notice that for each n € N we have
the following decomposition of the reproducing kernel of ), in terms of the basis

elements pg

PY(x,y) = Y pe()pe(y) (4.3)

pkeyn
and for a given f((z,y)) the following decomposition holds
Flzy) = > A ()P (x,y) (4.4)

neN
Formula (4.3) tell us how to reconstruct the reproducing kernel of each eigenspace
of Ty from the elements of the basis. On the other hand, formula (4.2) give us the

explicit form for each reproducing kernel. For the linear polynomial GY(t) = 2~t,
we have that

1+~ -
Pie) =202 [ (Gag) 4 VT TRV TP 1 - 2

v

=26,(1+%){z,y) (4.5)

where ¢, = ¢, f_ll(l —t2)=1dt. In the last step we used that f_ll t(1—t2)v~tdt =0
given the parity of the function inside the integral. From formula (4.3) we deduce
that

1

26,1+ 7) > pel@)pi(y) = (2,y) (4.6)

PLEYn

The previous relation is the analogous to the Eq.3.4 in the case of the dot product
kernels on S%~!. In order to have similar results we need to study the finite sample
properties of the spectra of the graphon W(z,y) = f({x,y)) and its associated
probability matrix and adjacency matrix.

4.4.2 Graphon eigensystem and estimation result

We recall the notation from Chapters 2 and 3. We consider the integral operator
Ty : L?(BY) — L%(BY)

Tyl / (e 9)9(w)dF (y)
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and the n X n symmetric matrices

1
T, = E(l — 5ij)f(<Xi>Xj>)
. 1
T = — Ay

n J

where A;; is the adjacency matrix defined in Section 4.2. A few known results about
the spectral behavior for this objects

e Koltchinskii-Giné result [Koltchinskii 2000, Thm.1] is formulated in an ab-
stract space and it holds in this case, given that the kernel is square integrable.
Then we have a.s

92 (A1), A(Tw)) — 0

e We can invoke Bandeira-Van Handel result [Bandeira 2016, Cor.3.12| to prove

that A(T},) is close to A(T},) for n large. We recall that using Thm. 32 we
obtain

. 1

I~ Tullop S =
with probability larger than 1 — a.

e In the spherical case developed in the previous chapter we use the result
[De Castro 2020, Thm.2|. In [De Castro 2020] there is a more a general result
which holds in this case. Alternatively, we can use Cor. 5 in Chapter 2 which
we recall gives that, with probability larger than 1 — «

1
52(A(Tn)7 A(TVV)) = Oa(%)
provided that the regularity parameter 0 (using the notation used throughout
Chapters 2 and 3) is larger than 2s + 1. In this case we need to obtain an
estimate of the parameter s as we did for the spherical case in Section 2.7.

Recalling that L? basis of eigenfunctions of Ty is given by Un>0 Uppey, Pk- We
have following estimates for the sup-norm.

Lemma 46. We have for pi € YV,
Ipillse S5 for 1 <k < dim(Y,)

dim(Yn)
2 2v4d—1
| > o], sn
)
k=1

Moreover, we have
2v+4-d

Vi(i) =0, @)

where Vi(+) is the variance prozy parameter defined in Section 2.5.
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Recalling the definition of Sobolev regularity in Section 2.6, we will say that
f :[-1,1] — R is vy,-Sobolev regular of parameter s, or f € SY ([—1,1]), if f
satisfies that

1y = DN+ + 20 +d —1)P) < 00
>0

More on Weighted Sobolev spaces can be found in [Nicaise 2000]. It is direct from
the definition that if f € S% ([—1,1]) then Aj(f) = O(I7P~17¢) for ¢ > 0. The
values [P(l + 2v + d — 1) appearing in the definition of the Sobolev space are the
eigenvalues of the differential operator D.

We recall and update some of the notation of the previous chapter. We call
G* = 1(1-6;;)(X;, X;) the population Gram matrix and Gy := mUUT for
any n X d real matrix U. The reason for dividing by the constant 2¢,(1+ 1, ), comes
from Eq. (4.6).

Theorem 47. Letp > 2v — 1 + %d and W be a graphon defined by a dot product
kernel on B? and measure F,. Assume that W € SE ,([~1,1]) satisfy the spectral
gap condition A* > 0, then there exists a set of d eigenvalues vy, --- , 04 of T, such
that we have with probability larger than 1 — «

* A _ *—IL
197 = Gllr = Oa(A™ )

where G = Gy, and V' is the matriz with columns vy, g, -+ ,Uq.

Remark 10. The reqularity condition p > 2v — 1 + %d is mainly technical. We
imposed it in order to use Cor. 5 and obtain parametric rate. Under the weaker
condition p > v+ % we have uniform convergence of the kernel spectral expansion
and we can use [De Castro 2020, Thm.2[ plugging the estimates from Lemma 46
and optimizing the truncation parameter R we obtain a rate for d2(-,-) given by

—o+1

Sa(M(Tn), M(Tyy)) < n?-1+v0ta)+s

where § = % + ﬁ. In the proof of Thm.47, as in the proof of Thm.26, the main
ingredient to determine the rate for the error |G* — G|\ is the rate for d(-,-).
Observe that when § — oo, and the rest of parameters are fized, the right hand side
converges to n_%.

4.5 Numerical Experiments

We run simulation for different RGG models on B? and compute the different es-
timators analyzed throughout this chapter to see how they perform empirically.
In the case of the latent distances estimation, we run the algorithm HEiC, which
corresponds to Algorithm 1 described in Section 3.6. The only change is that the
constant for which we multiply the sum of the outer product of the d eigenvalues in
the cluster of A, now is m instead of 1.



86 Chapter 4. Random Geometric Graphs on the Euclidean Ball

4.5.1 Latent norm recovery

We study the empirical performance of the estimator (, for which we prove almost
sure converge to the latent norm on the threshold RGG model. We compute the
estimator for each node in the graph, following measure of error for each sample

n

1 1/2
Enorm = mm———( (G = 1)1, )
norm Z?:l ]lHXi”zr ; 2 g 1 Xsl[=7

We discard the points with norm larger than 7, because as we discussed in Section
4.3 the adjacency matrix of the graph carries no information about the norm of those
points, other than being smaller than 7. In Figure 4.7(left) we plot the mean square
error E, o, in logarithmic scale for a threshold 7 = 0.1. For each sample size, we
simulate 25 graphs on the ball with dimension d = 3, and uniform measure F o,
and compute the mean of the errors. The form in which the error decrease suggest
a parametric rate of convergence, which we plot in a red line for reference. However,
note that the fact the estimator is based in a complicated nonlinear function, as it
is

-

t—
V1= E + v, d)

makes that this rate is non-uniform across the nodes. Indeed, given the shape of
the graph of I~1(¢; %l + v, %) it is not hard to see that points in with higher norm
(closer to 1) will converge slower. This indeed what we observe in the experiments
as shown in Figure 4.7(right), where we plot the sequence of ordered norms in red
and the sequence of ordered (/s for different values of the sample size (n = 100,).
Notice that it takes much more samples to see a convergence when the norm of the
node is close to 1.

We observe that for values of 7 closer to 0, the convergence is indeed slower. In
Figure 4.7 we plot the mean of log(FE,,orm) over 25 sampled graphs, for a threshold
7 = 0.01 with dimension parameter d = 3 and the measure Fi /5. We observe that
it takes much more samples to converge. Even if the decay of the errors suggest
a similar parametric rate in the case of the model with smaller 7, the constant
(intercept) is larger, which means that the error is always larger than in the previous
case. This should not be surprising given that we know that in the model with
7 = 0 we cannot infer the norm from the samples (as the mode, is equivalent to the
threshold graphon on the sphere). Approaching to 7 = 0 will render the problem
harder, in the sample complexity sense.

To see empirically the effect of changing the parameter v in the estimation of
the norm, in Figure 4.9 we plot the mean of the error log(E,, o) across 25 samples
for the threshold graphon with 7 = 0.1 and d = 3. We see that a larger v gives
lower error, this is explained by the fact the larger the v, the more concentrated
the sampled nodes are close to the center of the ball. This can be seen by the
distribution of the norm (squared) which is plotted in Figure 4.9 (right).
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4.5.2 Latent distance recovery

We report the empirical performance of the algorithm HEiC, described in Section
3.6 applied in the context of RGG in B?. Similar to the spherical case, we will
mainly measure the mean error

ME, =(G" —GlFr

We first consider the threshold graphon with parameter 7 = 0.1 in dimension
d = 3. We sample 25 graphs using this model and run each time the algorithm
HEiC. In Figure 4.10(left) we show a boxplot for log(M E,,) for different sample
sizes. In Figure 4.10(right) we show the log(M E,,) error for different values of n in
the case of the logistic graphon f(t) = ﬁ for different values of . The curves
in the plot were obtaining by averaging across 25 samples for each value of n. We
observe that for r = —0.1 the error does not decrease with the sample size, which
is to be expected as the logistic function for that value of r is close to a constant
function. In our parametrization of the problem, this translate into a close to 0
spectral gap as the Figure 4.11 illustrates. Indeed, we plot the first 10 eigenvalues,
for this case the cluster of eigenvalues associated to A7 is a subset of the first 10
eigenvalues. We see that as r is closer to zero, the spectral gap decrease, and the

number of samples required to have a decreasing error, increase.
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Figure 4.10: In the left a boxplot for log(M E,,), for different values of the sample
size in threhsold graphon with d = 3, 7 = 0.1 and Fy/5. In the right we plot the
mean error for the logistic graphon with different values of the parameter r.

Note that Theorem 47 do not give information about the diagonal of the Gram
matrix, which corresponds to the square of the norms of the nodes X;. Our measure
of error M FE,, do not take them into consideration. In the case of the threshold
graphon we can use the estimator {; to compute the means. We observe empirically
that the algorithm works better when the rows matrix of eigenvectors V', which
has columns vy, - - - ,v4 which are the output of the algorithm HEiC, are normalized
to match the mean of the true means (;. This is not an ideal situation from the
practical point of view, given that the norms are usually non available. In the case
of the threshold graphon we can use the estimated norms in this extra normalization
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Sorted eigenvalues

0s] + + r=-5.0;gap=0.13335
+ r=-3.0; gap=0.09335
+ r=-1.0; gap=0.01989
+ r=-0.5; gap=0.00166
+ r=-0.1; gap=9e-05

Figure 4.11: We plot the first 10 eigenvalues for the logistic graphon for different
values of the parameter r. We include the spectral gap in each case. In all the
examples we used a parameter n = 1000.

step. While this gives reasonable results in practice, a thorough theoretical study is
lacking at this moment and will be left for future work.

Remark 11. The time complezity(or running time) of the latent distance recovery
algorithm does not increase, in comparison with the spherical case, and it is roughly
O(n3+n). In the case of the computation of the estimators (; we need to compute the
degrees, which corresponds to compute the sum of all rows, which is roughly O(n?).

4.6 Comments and future work

Throughout this chapter we have studied the problem of estimating latent structures
for graphs generated by the RGG model on B?. In practice, some of the estimators
we have presented here, such as (;, suffers problems related to its theoretical guar-
antees and its rate of convergence. The fact that they are defined as a complicated
function of the data makes harder a direct finite sample analysis. We expect that
the use of global information, in conjunction with the degree function, would help
in finding simpler estimators which are more prone to be studied with the standard
concentration tools.

The problem of estimating 7, given the information of pu, is also of interest.
This problem has been studied in the model with @ = [~1,1]? in [Diaz 2018,
with the uniform distribution. They propose an estimator based on the count of
common neighbors for a small set of subsampled nodes (forced to be not so close to
have conditional independency). In the model we presented here, we believe that
simpler estimators are possible, given the fact isolated nodes give information about
F,(B%(0,7)). The main difficulty will be to estimate, with high probability, the
number of isolated nodes whose associated points are outside B4(0, 7). Constructing
such estimators in left for future work.
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4.7 Useful results

We state and prof some of the most relevant results for this section, many of which

deals with geometric formulas

Lemma 48 (Threshold graphon degree density). Let W be the threshold graphon

and f the probability density function of dy (X), where X ~ F,, we have fort >0
74 (1 72 ),,_% 1

(1—I-Y2t)ett  1=I7Y" ponsty(1—1(2t))"3

f(t) = (4.7)

where we use the notation I(t) = (% + v, 3).

Proof. Tt is well known that the function t — I;(a,b) is differentiable and it is
straightforward to check that g¢(t) it is also differentiable for ¢ > 0. Taking the
derivative of Fy,, (t) = Ig(t)(%, v+ 3) the result follows from simple computations

1
Py E———
B(¢,v+13)

rd 72 1 1

(1—I-1(2t))5+! 0= =) I(2t)5H7 (1 — I(2t))2

fq(t) = ()21 (1 - ()" 24 (t)

O

The following result gives a characterization for a basis of V;. The proof can be
found in |[Dai 2013, Thm.11.1.12]

Theorem 49. The space V, has a basis consisting on functions G} ({x,;)) for
some points {T/Ji}lgigdim(vl)} c §é-1,

4.8 Some proofs

Here we gather some proofs or proof sketches for the main results of this section.

Proof of Lemma 40 . Tt is classic (see |Kelker 1970, Sec.5]) that for a spherically
symmetric distribution with density of the form p(y) = g(||y||?) where y € B,

then the norm will have density h(r) = 13(7:;//22) r4=1g(r?). The c.d.f for the radius

of variable distributed following F), is proportional to f(f rd=1(1 — TQ)V_%dr using

the change of variables r — r? we obtain that the square of the norm have density
d—1 1
fng(l — )"~ 2dr where we recognize the density of a Beta(%,v + 3). O

Proof of Prop.42. Notice that in the case of the threshold graphon, the degree func-
tion ¢ — dy (tN) is increasing. Using this we have that

P(dw (t1N)) < dw (Xi) < dw (taN) = P(| Xi]| € [t1, 22])

Using the previous and Lemma 40, the result follows. O
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Proof of Lemma 43. For t < 7 we have that tN € B?(0,7), which implies that
dw(tN) = 0. The result for this case follows by noting that Ip(a,b) = 0 for any
0<a,b<1. Fort>r, call h=(r/t)> we have

1
aw(tN) = [ Towyyr(1 = LIy~
1
x (1 -2 -1 2drdx
h

1 py/1—a?
/ d
r
0
1

1
oc/ (1-— xl)g+”1dx1/ (1- t)”*%t%dt
h 0

where we did a change a change of variables t = 1112 in the third line. The result
1

follows from the fact the both quantities integrate 1. O

Proof sketch Prop.45. Fix i € [n], from the strong law of large numbers we have that
ﬁdg(Xi), which conditionally to X; is a sum of independent random variables,
converges to dy (X;). The continuity of I~1(+; a, b) implies that I‘l(nildg(Xi); a,b)

converges to I~!(dw (X;),a,b). The follows by using Lemma 43 and properties of
I(-;a,b).

O

Proof of Lemma 46 . The first inequality comes from the basis characterization in
Thm. 49. Not considering normalization constants we have for py in V),

IPklloo o< 1G7 ({5 %hi)lloo
S NG Ml

From [Szego 1939, Thm.7.32.1] we deduce that ||G}"[lc = G]*(1) and from |[,
Cor.3.2] we obtain the estimate G} (1) = nv3, Replacing 7, = 42 + v the
result follows.

For the second inequality we use the addition theorem Zpkevl pr(z)pr(y) =
P(xz,y) and Eq.(4.2). We have

Z p%(l‘) = P(z,z)

PLEVL

1
x /1 GP (llll* + (1 = [lel*)t) (1 — ¢2)"~dt

The result follows by using the same estimates used to prove the first inequality. [

Proof sketch Thm. 47. The ideas for the proof of Thm. 47 go in the same line
that Thm. 26, but using the results in Sec. 3.9, instead of the estimates in
[De Castro 2020]. The condition p > 2v+d+ 1 comes from the estimates in Lemma
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46 and the fact that we use Cor. 5. This gives a bound for the rate of convergence
of the eigenvalues. Noting that in the proof of Thm. 26 we only use the specific
form of the graphon in the eigenvalues estimates and in the recovery formula, which
in case has it analog in Eq.(4.2). O



Bibliography

[Abbe 2017] E. Abbe, F. Baccelli et A. Sankararaman. Community Detection on
FEuclidean Random Graphs. arXiv:1706.09942, 2017. (Cité en pages 9 et 48.)

[Amini 2020] A. Amini et Z. Razaee. Concentration of kernel matrices with applica-
tion to kernel spectral clustering. arXiv:1909.03347, 2020. (Cité en page 18.)

[Araya 2019] E. Araya et Y. De Castro. Latent distance estimation for random
geometric graph. Advances in Neural Information Processing Systems, pages
8721-8731, 2019. (Cité en pages 2, 32, 47 et 53.)

[Araya 2020| E. Araya. Relative concentration bound for the spectrum of kernel
matrices. ArXiv, 2020. (Cité en pages 2, 8, 14, 18, 19, 21, 26, 31 et 43.)

[Arbel 2017] J. Arbel et O. Marchal. On the sub-Gaussianity of the Beta and Dirich-
let distributions. Electron. Commun. Probab., vol. 22, no. 54, 2017. (Cité en
page 43.)

[Arbel 2019] J. Arbel, O. Marchal et H. Nguyen. On strict sub-Gaussianity,
optimal proxy wvariance and symmetry for bounded random wvariables.
arXiv:1901.09188, 2019. (Cité en page 43.)

[Arcones 1993] M Arcones et E. Giné. Limit theorems for U-processes. Annals of
Probability., vol. 21, no. 3, pages 1494-1542, 1993. (Cité en page 40.)

[Arias-Castro 2014| E. Arias-Castro et N. Verzelen. Community detection in dense
random networks. Annals of Statistics, vol. 42, no. 3, pages 940-969, 2014.
(Cité en pages 9 et 73.)

|[Arias-Castro 2015| E. Arias-Castro et N. Verzelen. Community detection in sparse
random networks. Annals of Applied Probability, vol. 25, no. 6, pages 3465
3510, 2015. (Cité en pages 9 et 73.)

[Arias-Castro 2018| E. Arias-Castro, A. Channarond, B. Pelletier et N. Verzelen. On
the estimation of latent distances using graph distances. arXiv:1804.10611,
2018. (Cité en pages 48, 54 et 80.)

[Athreya 2018] A. Athreya, D.E. Fishkind, M. Tang, C. Priebe, Y. Park, J. Vogel-
stein, K. Levin, V. Lyzinski, Y. Qin et D. Sussman. Statistical Inference
on Random Dot Product Graphs: a Survey. Journal of Machine Learning
Research, vol. 18, pages 1-92, 2018. (Cité en page 69.)

[Athreya 2020] A. Athreya, M. Tang, Y. Park et C. Pricbe. On estimation and
inference in latent structure random graphs. arXiv:1806.01401, 2020. (Cité
en page 70.)



94 Bibliography

|[Bandeira 2016] A. Bandeira et R. Van Handel. Sharp nonasymptotic bounds on the
norm of random matrices with independent entries. Annals of Probability,
vol. 44, no. 4, pages 2479-2506, 2016. (Cité en pages 17, 51, 61, 67 et 84.)

[Barrat 2004] A. Barrat, R. Barthélemey, R. Pastor-Satorras et A. Vespignani. The
architecture of complex weighted networks. PNAS, vol. 101, no. 11, pages
3747-3752, 2004. (Cité en pages 70 et 75.)

[Bathia 1997] R. Bathia. Matrix analysis. Springer Verlag New York, 1997. (Cité
en pages 18, 61, 65 et 66.)

[Bednorz 2014] W. Bednorz. Concentration via chaining method and its applica-
tions. arXiv:1405.0676, 2014. (Cité en page 42.)

[Belkin 2018] M. Belkin. Approzimation beats concentration? COLT.Proceedings
of Machine Learning Research, vol. 75, pages 1-14, 2018. (Cité en pages 6,
14, 18, 21, 26 et 27.)

[Blanchard 2007] G. Blanchard, O. Bousquets et L. and Zwald. Statistical properties
of Kernel PCA. Machine Learning, vol. 66, pages 259-294, 2007. (Cité en
pages 7, 13, 18, 19 et 26.)

[Borgs 2008] C. Borgs, J.T Chayes, L. Lovasz, V.T. Sos et K. Vesztergombi. Con-
vergent sequences of dense graphs I: subgraph frequencies, metric properties,
and testing. Adv. Math, vol. 219, pages 1802-1852, 2008. (Cité en pages 3
et 14.)

[Borgs 2010] C. Borgs, J.T Chayes et L. Lovasz. Moments of two-variable functions
and the unique-ness of graph limits. Geom.Funct. Anal, vol. 19, pages 1597—
1619, 2010. (Cité en pages 3 et 14.)

[Borgs 2012] C. Borgs, J.T Chayes, L. Lovasz, V.T. Sos et K. Vesztergombi. Con-
vergent sequences of dense graphs II. Multiway cuts and statistical physics.
Annals of Mathematics, vol. 176, no. 1, pages 151-219, 2012. (Cité en pages 3,
14 et 31.)

[Borgs 2018] C. Borgs, J. Chayes, H. Cohn et N. Holden. Sparse Exchangeable
Graphs and Their Limits via Graphon Processes. Journal of Machine Learn-
ing Research, vol. 18, pages 1-71, 2018. (Cité en page 81.)

[Borgs 2019] C. Borgs, J. Chayes, H. Cohn et Y. Zhao. An LP theory of sparse
graph convergence I: Limits, sparse random graph models, and power law
distributions. Trans. Amer. Math. Soc., vol. 372, pages 3019-3062, 2019.
(Cité en page 77.)

[Boucheron 2013| S. Boucheron, G. Lugosi et P. Massart. Concentration inequal-
ities: A non asymptotic theory of independence. Oxford University Press,
first édition, 2013. (Cité en pages 19 et 39.)



Bibliography 95

[Braun 2005| M. Braun. Spectral Properties of the Kernel Matriz and their Relation
to Kernel Methods in Machine Learning. PhD thesis, Rheinische Friedrich-
Wilhelms-Universitét, Bonn, 2005. (Cité en page 39.)

[Braun 2006] M. Braun. Accurate error bounds for the eigenvalues of the kernel
matriz. Journal of Machine Learning Research, vol. 7, pages 2303-2328,
2006. (Cité en pages 6, 7, 8, 18, 21, 22, 26 et 27.)

[Bubeck 2016] S. Bubeck, J. Ding, R. Eldan et M. Racz. Testing for high dimen-
sional geometry in random graphs. Random Structures and Algorithms,
vol. 49, pages 503-532, 2016. (Cité en pages 9, 32, 34, 48 et 73.)

[Bubeck 2017| S. Bubeck et M. Racz. Basic models and questions in statistical
network analysis. Statistics surveys, vol. 11, pages 1-47, 2017. (Cité en
pages 32 et 36.)

[Cao 2019] Y Cao, Z. Fang, Y. Wu, D. Zhou et Q. Gu. Towards Understanding the
Spectral Bias of Deep Learning. arXiv:1912.01198, 2019. (Cité en page 14.)

[Chatterjee 2015] S. Chatterjee. Matriz estimation by Universal Singular Value
Thresholding. Annals of Statistics, vol. 43, no. 1, pages 177214, 2015. (Cité
en pages 49, 51, 53 et 56.)

[Clauset 2009] A. Clauset, C.R Shalizi et M.E.J Newman. Power law distributions
in empirical data. SIAM review, vol. 51, no. 4, pages 661-703, 2009. (Cité
en pages 11, 75, 77 et 78.)

[Cunningham 2017] W. Cunningham, K. Zuev et D. Krioukov. Navigability of Ran-
dom Geometric Graphs in the Universe and Other Spacetime. Scientific re-
ports, vol. 7, page art.num. 8699, 2017. (Cité en pages 32 et 48.)

[Dai 2013] F. Daiet Y. Xu. Approximation theory and harmonic analysis on spheres
and balls. Springer Verlag Monographs in Mathematics, 2013. (Cité en
pages 29, 30, 52, 70, 82, 83 et 90.)

[De Castro 2020| Y. De Castro, C. Lacour et T.M Pham Ngoc. Adaptive estimation
of nonparametric geometric graphs. Mathematical Statistics and Learning,
2020. (Cité en pages 6, 8, 9, 18, 21, 22, 31, 32, 51, 54, 62, 66, 84, 85 et 91.)

[De La Pena 1995] V.H De La Pena et S.J. Montgomery-Smith. Decoupling in-
equalities for the tail probabilities of multivariate U-statistics. Annals of
Probability, vol. 23, no. 2, pages 806-816, 1995. (Cité en page 40.)

[Delmas 2018] J.F. Delmas, J.S. Dhersin et M. Sciauveau. Asymptotic for the cu-
mulative distribution function of the degrees and homomorphism densities for
random graphs sampled from a graphon. arXiv:1807.09989, 2018. (Cité en
page 81.)



96 Bibliography

[Diaconis 1981] P. Diaconis et D. Freedman. The statistics of vision: the Julesz
conjecture. J.Math.Psychology, vol. 2, pages 112-138, 1981. (Cité en page 3.)

[Diaz 2018| J. Diaz, C. McDiarmid et D. Mitsche. Learning random points from
geometric graphs or orderings. arXiv:1804.10611, 2018. (Cité en pages 48,
54 et 89.)

[Dirksen 2015| S. Dirksen. Tail bounds via generic chaining. Electronic Journal of
Probability, vol. 20, no. 53, 2015. (Cité en page 42.)

|[El Karoui 2010] N. El Karoui. The spectrum of kernel random matrices. Ann.
Probab., vol. 38, no. 1, pages 1-50, 2010. (Cité en page 17.)

[Emery 1998] M. Emery, A. Nemirovski et D. Voiculescu. Lectures on probability
theory,. Springer-Verlag Berlin Heidelberg, Ecole d’ete de probabilites de
saint-flour XXVIII édition, 1998. (Cité en page 54.)

[Eren 2017] T. Eren. The effects of random geometric graph structure and clustering
on localizability of semsor metworks. International Journal of Distributed
Sensor Networks, vol. 13, no. 12, 2017. (Cité en pages 9 et 48.)

[Fasshauer 2011| G.E Fasshauer. Positive definite kernels: past, present and future.
Dolomite Research Notes on Approximation, no. 4, pages 21-63, 2011. (Cité
en page 38.)

[Franceschetti 2008] M Franceschetti et R Meester. Random networks for commu-
nication: from statistical physics to information systems. Cambridge Uni-
versity Press, first édition, 2008. (Cité en page 31.)

|Gilbert 1961] E.N. Gilbert. Random plane networks. J.Soc.Industrial Applied
Mathematics, vol. 9, no. 5, pages 533-543, 1961. (Cité en pages 4, 48 et 49.)

[Gine 2000] E. Gine, R. Latala et J. Zinn. Ezponential and Moment Inequalities for
U-Statistics. High Dimensional Probability II, pages 13-38, 2000. (Cité en
pages 8, 24 et 40.)

[Gine 2015| E. Gine et R. Nickl. Mathematical foundation of infinite-dimensional
statistical models. Cambridge University Press, 2015. (Cité en page 40.)

[Higham 2008a| D. Higham, M. Rasajski et N. Przulj. Fitting a geometric graph
to a protein-protein interaction network. Bioinformatics, vol. 24, no. 8, page
109371099, 2008. (Cité en page 48.)

[Higham 2008b| D.J. Higham, M. Rasajski et N. Przulj. Fitting a geometric graph
to a protein-protein interaction network. Bioinformatics, vol. 24, no. 8, pages
1093-1099, 2008. (Cité en page 32.)

[Hirsch 1999] F. Hirsch et G. Lacombe. Elements of functional analysis. Springer-
Verlag New York, 1999. (Cité en pages 14 et 15.)



Bibliography 97

[Hoff 2002 P. Hoff, A. Raftery et M. Handcock. Latent space approaches to social
network analysis. Journal of the American Statistical Association, vol. 97,
no. 460, pages 1090-1098, 2002. (Cité en pages 37 et 48.)

[Hofmann 2008| T. Hofmann, B. Scholkopf et Smola A.J. Kernel methods in ma-
chine learning. Annals of statistics, vol. 36, no. 3, pages 1171-1220, 2008.
(Cité en page 13.)

[Horn 2012] R. Horn et C. Johnson. Matrix analysis. Cambridge University Press,
2012. (Cité en page 39.)

[Houdré 2003] C. Houdré et P. Reynaud-Bouret. Exponential inequalities, with con-
stants, for U-statistics of order 2. Stochastic inequalities and applications,
pages 55-69, 2003. (Cité en pages 24 et 40.)

[Indritz 2019] J. Indritz. An inequality for Hermite polynomials. Proceedings of the
American Mathematical Society, vol. 12, no. 6, page 9817983, 2019. (Cité en
page 38.)

[Ipsen 1998 1. Ipsen. Relative perturbation results for matriz eigenvalues and sin-
gular values. Acta Numerica, vol. 7, pages 151-201, 1998. (Cité en pages 7
et 18.)

[Javanmard 2013] A. Javanmard et A. Montanari. Localization from Incomplete
Noisy Distance Measurements. Foundations of computational mathematics,
vol. 13, page 2977345, 2013. (Cité en page 48.)

[Jia 2004| X. Jia. Wireless networks and random geometric graphs. Proc. Int. Symp.
Parallel Architectures, Algorithms and Networks, pages 575-579, 2004. (Cité
en page 48.)

[Jirak 2019] M. Jirak et M. Wahl. Perturbation bounds for eigenspaces under a
relative gap condition. Proc. Amer. Math. Soc., vol. 448, 2019. (Cité en
page 18.)

|[Kasiviswanathan 2015| S.P. Kasiviswanathan et M. Rudelson. Spectral Norm of
Random Kernel Matrices with Applications to Privacy. arXiv preprint
arXiv:1504.05880, 2015. (Cité en pages 14 et 18.)

|[Kato 1995] T. Kato. Perturbation Theory for Linear Operators. Classics in Math-
ematics (132). Springer, 2nd ed. 1995. (Cité en page 16.)

[Kelker 1970] D. Kelker. Theory of spherical distributions and a location-scale pa-
rameter generalization. The indian journal of statistics, Serie A., vol. 32,
no. 4, pages 419-430, 1970. (Cité en pages 71 et 90.)

[Klopp 2017a] O. Klopp, A. Tsybakov et N. Verzelen. Oracle inequalities for network
models and sparse graphon estimation. Annals of Statistics, vol. 45, no. 1,
pages 316-354, 2017. (Cité en pages 14, 32 et 49.)



98 Bibliography

[Klopp 2017b] O. Klopp et N. Verzelen. Annals of Statistics, vol. 45, no. 1, pages
316-354, 2017. (Cité en page 4.)

[Koltchinskii 1998| V. Koltchinskii. Asymptotics of spectral projections of some
random matrices approrimating integral operators. Progress in Probability,
vol. 43, no. In: Eberlein E., Hahn M., Talagrand M. (eds) High Dimensional
Probability, pages 191-227, 1998. (Cité en pages 50 et 51.)

[Koltchinskii 2000| V. Koltchinskii et E. Giné. Random matriz approximation of
spectra of integral operators. Bernoulli, pages 113-167, 2000. (Cité en pages 5,
8, 14, 17, 19, 21, 22, 25, 50 et 84.)

|[Koltchinskii 2017] V. Koltchinskii et Loucini. Concentration inequalities and mo-
ment bounds for sample covariance operators. Bernoulli, vol. 23, no. 1, pages
110-133, 2017. (Cité en pages 13, 18, 26, 40, 41 et 42.)

[Ledoux 1991] M. Ledoux et M. Talagrand. Probability in banach spaces: isoperime-
try and processes. Berlin:Springer, 1991. (Cité en page 42.)

[Levin 2017] K. Levin et V. Lyzinski. Laplacian eigenmaps from sparse, noisy simi-
larity measurements. IEEE Transactions on Signal Processing, vol. 65, pages
1998-2003, 2017. (Cité en pages 10 et 53.)

[Li 2009] J Li, L. Andrew, C. Heng Foh, M. Zuckerman et H. Chen. Connectivity,
Coverage and Placement in Wireless Sensor Networks. Sensor (Basel), vol. 9,
no. 10, page 766477693, 2009. (Cité en pages 9 et 48.)

|[Lounici 2019] K. Lounici. High-dimensional covariance matriz estimation with
missing observations. Bernoulli, vol. 448, 2019. (Cité en pages 18, 26 et 27.)

|[Lovasz 2006a| L. Lovasz et B. Szegedy. Limit of dense graph sequences. J.Combin.
Theory Ser.B, vol. 98, pages 933-957, 2006. (Cité en pages 3 et 14.)

|Lovasz 2006b] L. Lovasz et B. Szegedy.  Limits of dense graph sequences.
J.Combin.Theory.Ser B, vol. 96, no. 6, pages 197-215, 2006. (Cité en pages 3
et 14.)

[Lovasz 2012| L. Lovasz. Large networks and graph limits. Colloquium Publications
(AMS), 2012. (Cité en pages 3, 4, 32, 37, 49, 50 et 71.)

[Marchenko 1967] V.A Marchenko et L.A Pastur. Distribution of eigenvalues for
some sets of random matrices. Mat. Sb. N.S. (in Russian), vol. 72, no. 114:4,
pages 507536, 1967. (Cité en page 17.)

[Mckey 2014] L. Mckey, M. Jordan, R.Y. Chen, B. Farrell et J. Tropp. Matriz con-
centration inequalities via the method of exchangeable pairs. Ann. Probab.,
vol. 42, no. 3, pages 906-945, 2014. (Cité en page 23.)



Bibliography 99

[Mckey 2016] L. Mckey et J. Tropp. Efron-Stein inequalities for random matrices.
Ann.Probab., vol. 44, no. 5, pages 3431-3473, 2016. (Cité en page 23.)

[McPherson 2001] M. McPherson, L. Smith-Lovin et J.M. Cook. Birds of a Feather:
Homophily in Social Networks. Annual Review of Sociology, vol. 27, pages
415-444, 2001. (Cité en page 48.)

[Mitzenmacher 2003] M. Mitzenmacher. A Brief History of Generative Models for
Power Law and Lognormal Distributions. Internet Math., vol. 1, no. 2, pages
226-251, 2003. (Cité en pages 11 et 75.)

[Nicaise 2000| S. Nicaise. Jacobi polynomials, weighted Sobolev spaces and approxi-
mation results of some singularities. Math. Nachr., vol. 213, pages 117-140,
2000. (Cité en pages 28 et 85.)

[Oh 2010] S. Oh, A. Montanari et Amin Karbasi. Sensor Network Localization from
Local Connectivity : Performance Analysis for the MDS-MAP Algorithm.
IEEE Information Theory Workshop on Information Theory (ITW 2010,
Cairo), 2010. (Cité en page 48.)

[Ostovskii 2019] D. Ostovskii et A. Rudi. Affine Invariant Covariance Estimation
for Heavy-Tailed Distributions. COLT, 2019. (Cité en pages 18, 26 et 27.)

[Penrose 2003] M. Penrose. Random geometric graphs. Oxford University Press,
first édition, 2003. (Cité en pages 32 et 36.)

[Penrose 2016] M. Penrose. Connectivity of soft random geometric graphs. Annals
of Applied Probability, vol. 26, no. 2, pages 986-1028, 2016. (Cité en page 9.)

[Racz 2019] M. Réacz et J. Richey. A Smooth Transition from Wishart to GOE.
Journal of Theoretical Probability, vol. 32, pages 898-906, 2019. (Cité en

page 9.)

[Rasmussen 2006] C.E Rasmussen et C. Williams. Gaussian processes for machine
learning. The MIT Press., 2006. (Cité en page 33.)

[Rosasco 2010] L. Rosasco, M. Belkin et E. De Vito. On learning with integral
operators. Journal of Machine Learning Research, vol. 11, pages 905934,
2010. (Cité en pages 6, 7, 16, 21 et 26.)

[Sarkar 2010| P. Sarkar, D. Chakrabarti et A.W. Moore. Theoretical justification
of popular link prediction heuristics. International Conference on Learning
Theory, 2010. (Cité en pages 9 et 48.)

[Shawe-Taylor 2005] J. Shawe-Taylor, C. Williams, N. Cristiani et J. Kandola. On
the Figenspectrum of the Gram Matriz and the Generalization Error of Ker-
nel PCA. IEEE Transactions on Information Theory, vol. 51, no. 7, pages
2510-2522, 2005. (Cité en pages 18, 19 et 26.)



100 Bibliography

[Sussman 2014] D.L. Sussman, M. Tang et C.E. Priebe. Consistent latent position
estimation and vertex classification for random dot product graphs. TEEE
transactions on Pattern Analysis and Machine Intelligence, vol. 36, pages
48-57, 2014. (Cité en page 9.)

[Szego 1939] G. Szego. Orthogonal polynomials. Colloquium Publications (AMS),
1939. (Cité en pages 33, 38, 83 et 91.)

[Talagrand 1996] M. Talagrand. Majorizing measures: the generic chaining. Annals
of Probability, vol. 24, no. 3, pages 1049-1103, 1996. (Cité en page 42.)

[Tang 2013] M. Tang, D.L Sussman et C.E Priebe. Universally consistent vertex
classification for latent position graphs. Annals of Statistics, vol. 41, pages
14061430, 2013. (Cité en pages 48 et 53.)

[Tropp 2012| J Tropp. User-friendly tail bounds for sums of random matrices. Foun-
dations of Computational Mathematics, vol. 12, no. 4, pages 389-434, 2012.
(Cité en pages 8 et 39.)

[Van Handel 2017| R. Van Handel. Structured random matrices. Convexity and
Concentration (Carlen et al., eds.), IMA., vol. 161, pages 107165, 2017.
(Cité en page 24.)

[Vershynin 2012a| R. Vershynin. How close is the sample covariance matriz to the
actual covariance matriz? Journal of Theoretical Probability, vol. 25, pages
655-686, 2012. (Cité en pages 8, 18, 40 et 62.)

[Vershynin 2012b| R. Vershynin. Introduction to the non-asymptotic analysis of ran-
dom martices. In: Compressed sensing, Theory and Applications. Edited by
Y.Eldar and G. Kurtyniok, Chap. 5, pages 210-268, 2012. (Cité en page 40.)

[Vershynin 2018] R. Vershynin. High-dimensional probability: An introduction with
applications in data science. Cambridge University Press, 2018. (Cité en
page 62.)

[Xu 2001] Y. Xu. Representation of Reproducing Kernels and the Lebesgue Con-
stants on the Ball. Journal of Approximation Theory, vol. 112, pages 295—
310, 2001. (Cité en page 82.)

[Xu 2017] J Xu. Rate of Convergence of Spectral Methods for Graphon Estimation.
arXiv:1709.03183, 2017. (Cité en page 28.)

[Yu 2015] Y. Yu, T. Wang et R.J. Samworth. A useful variant of the Davis-Kahan
theorem for statisticians. Biometrika, vol. 102, no. 2, pages 315-323, 2015.
(Cité en page 60.)

[Zhou 2002] D.X Zhou. The Covering Number in Learning Theory. Journal of
Complexity, vol. 18, pages 739-767, 2002. (Cité en page 41.)



Bibliography 101

[Zhu 1998] H. Zhu, C. Williams, R. Rohwer et M. Morcinie. Gaussian regression and
optimal finite dimensional linear models. in Neural networks and machine
learning, C. Bishop, ed., 1998. (Cité en page 38.)









° . ECOLE DOCTORALE

universite de mathématiques
PARIS-SACLAY : Hadamard (EDMH)

Titre: Apprentissage spectral des noyaux et inférence des graphes aléatoires géométriques

Mots clés: matrices a noyau, graphon, graphes aléatoires géométriques, espace latent

Résumé: Cette thése comporte deux objectifs. Un premier objectif concerne I’étude des propriétés de
concentration des matrices & noyau, qui sont fondamentales dans ’ensemble des méthodes a noyau. Le
deuxiéme objectif repose quant a lui sur I’étude des problémes d’inférence statistique dans le modéle des
graphes aléatoires géométriques. Ces deux objectifs sont liés entre eux par le formalisme du graphon, qui
permet représenter un graphe par un noyau. Nous rappelons les rudiments du modéle du graphon dans le
premier chapitre. Le chapitre 2 présente des bornes précises pour les valeurs propres individuelles d’une
matrice & noyau, ot notre principale contribution est d’obtenir des inégalités & ’échelle de la valeur propre
en considération. Ceci donne des vitesses de convergence qui sont meilleures que la vitesse paramétrique et,
en occasions, exponentielles. Jusqu’ici cela n’avait été établi que avec des hypothéses contraignantes dans
le contexte des graphes. Nous spécialisons les résultats au cas de noyaux de produit scalaire, en soulignant
sa relation avec le modéle des graphes géométriques. Le chapitre 3 étudie le probléme d’estimation des
distances latentes pour le modéle des graphes aléatoires géométriques dans la sphére Euclidienne. Nous
proposons un algorithme spectral efficace qui utilise la matrice d’adjacence pour construire un estimateur
de la matrice des distances latentes, et des garanties théoriques pour 'erreur d’estimation, ainsi que la
vitesse de convergence, sont montrées. Le chapitre 4 étend les méthodes développées dans le chapitre
précédent au cas des graphes aléatoires géométriques dans la boule Euclidienne, un modéle qui, en dépit
des similarités formelles avec le cas sphérique, est plus flexible en termes de modélisation. En particulier,
nous montrons que pour certaines choix des paramétres le profile des dégrées est distribué selon une loi
de puissance, ce qui a été vérifié empiriquement dans plusieurs réseaux réels. Tout les résultats théoriques

des deux dernier chapitres sont confirmés par des expériences numériques.

Title: Kernel spectral learning and inference in random geometric graphs

Keywords: kernel matrices, graphon model, random geometric graph, latent space

Abstract: This thesis has two main objectives. The first is to investigate the concentration properties
of random kernel matrices, which are central in the study of kernel methods. The second objective is to
study statistical inference problems on random geometric graphs. Both objectives are connected by the
graphon formalism, which allows to represent a graph by a kernel function. We briefly recall the basics
of the graphon model in the first chapter. In chapter two, we present a set of accurate concentration
inequalities for individual eigenvalues of the kernel matrix, where our main contribution is to obtain
inequalities that scale with the eigenvalue in consideration, implying convergence rates that are faster
than parametric and often exponential, which hitherto has only been establish under assumptions which
are too restrictive for graph applications. We specialized our results to the case of dot products kernels,
highlighting its relation with the random geometric graph model. In chapter three, we study the problem of
latent distances estimation on random geometric graphs on the Euclidean sphere. We propose an efficient
spectral algorithm that use the adjacency matrix to construct an estimator for the latent distances, and
prove finite sample guaranties for the estimation error, establishing its convergence rate. In chapter four,
we extend the method developed in the previous chapter to the case of random geometric graphs on the
Euclidean ball, a model that despite its formal similarities with the spherical case it is more flexible for
modelling purposes. In particular, we prove that for certain parameter choices its degree profile is power
law distributed, which has been observed in many real life networks. All the theoretical findings of the last
two chapters are verified and complemented by numerical experiments.
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