
HAL Id: tel-03128768
https://theses.hal.science/tel-03128768

Submitted on 2 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modèles de Néron en dimension supérieure : courbes
nodales et leurs Jacobiennes, changement de base

modérément ramifié.
Thibault Poiret

To cite this version:
Thibault Poiret. Modèles de Néron en dimension supérieure : courbes nodales et leurs Jacobiennes,
changement de base modérément ramifié.. Géométrie algébrique [math.AG]. Université de Bordeaux;
Universiteit Leiden (Leyde, Pays-Bas), 2020. Français. �NNT : 2020BORD0137�. �tel-03128768�

https://theses.hal.science/tel-03128768
https://hal.archives-ouvertes.fr


Néron models in high dimension: nodal curves,
Jacobians and tame base change

Proefschrift

ter verkrijging van

de graad van Doctor aan de Universiteit Leiden

op gezag van Rector Magni�cus prof. mr. C.J.J.M. Stolker,

volgens besluit van het College voor Promoties

te verdedigen op dinsdag 20 oktober 2020

klokke 10:00 uur

door

Thibault Poiret
geboren te Ermont, Frankrijk,

in 1993



Promotor: Prof. dr. Sebastiaan J. Edixhoven

Promotor: Prof. dr. Qing Liu (Université de Bordeaux)

Samenstelling van de promotiecommissie:

Prof. dr. ir. Michiel T. Kreutzer

Prof. dr. Matthieu Romagny (Université de Rennes 1)

Prof. dr. Jilong Tong (Capital Normal University)

Prof. dr. Irene I. Bouw (Universität Ulm)

Prof. dr. Ronald M. van Luijk

Dr. David S.T. Holmes

This work was funded jointly by a Contrat Doctoral Spéci�que pour
Normaliens and by Universiteit Leiden. It was carried out at Université de

Bordeaux and Universiteit Leiden.

ii



THÈSE EN COTUTELLE PRÉSENTÉE

POUR OBTENIR LE GRADE DE

DOCTEUR

DE L'UNIVERSITÉ DE BORDEAUX

ET DE L'UNIVERSITÉ DE LEYDE

ÉCOLE DOCTORALE DE MATHÉMATIQUES ET INFORMATIQUE

INSTITUT DES MATHÉMATIQUES DE L'UNIVERSITÉ DE LEYDE

SPÉCIALITÉ Mathématiques Pures

Par Thibault POIRET

Modèles de Néron en dimension supérieure: courbes
nodales et leurs Jacobiennes, changement de base

modérément rami�é

Sous la direction de Bas Edixhoven et Qing LIU

Soutenue le 20 octobre 2020

Membres du jury :

Ronald VAN LUJK Professeur, Universiteit Leiden Président
Qing LIU Professeur, Université de Bordeaux Directeur
Jilong TONG Professeur, Capital Normal University Rapporteur
Matthieu ROMAGNY Professeur, Université de Rennes 1 Rapporteur
Irene BOUW Professeur, Universität Ulm Examinateur
David HOLMES Professeur assistant, Universiteit Leiden Examinateur

iii



iv



General introduction

Néron models

Given an integral scheme S with generic point η, a lot of proper and smooth
schemes over k(η) have no proper and smooth model over S. However, they
can sometimes still have a canonical smooth S-model, the Néron model. Néron
models were �rst introduced in 1964 by André Néron in his article [25] for
abelian varieties over a Dedekind base scheme. The Néron model of Xη/η is
de�ned as a smooth, separated scheme N/S restricting to Xη over η, satisfying
the following universal property, called the Néron mapping property : for every
smooth scheme T → S and morphism φK : Tη → Xη, there exists a unique
morphism φ : T → N extending φK .

The mapping property has a lot of nice consequences, making the Néron model
the "best possible smooth model": among other things, it ensures that Néron
models are unique up to a unique isomorphism, and inherit a group structure
from Xη when the latter has one.

Néron models are always unique, but their existence is not trivially guaranteed.
Néron proved in the original article [25] that abelian varieties over the fraction
�eld of an integral Dedekind scheme always have Néron models. Recently, peo-
ple have taken interest in constructing Néron models in di�erent settings. For
example, it was proved in 2013 by Qing Liu and Jilong Tong in [23] that smooth
and proper curves of positive genus over a Dedekind scheme always have Néron
models. This does not apply to genus 0: Proposition 4.12 of [23] shows that if
S is the spectrum of a discrete valuation ring with �eld of fractions K, then P1

K

does not have a Néron model over S.

In the cases mentioned above, the Néron model is of �nite type. This condition
is even often included in the de�nition of Néron models, in which case authors
refer to smooth, separated schemes satisfying the mapping property as Néron-lft
models (where "lft" stands for "locally of �nite type"), to emphasize the absence
of quasi-compactness hypothesis. The use of this terminology is not systematic
anymore in the litterature, so we will use a more �exible de�nition, essentially
equivalent to the one given in the �rst paragraph. If R is an excellent and
strictly henselian discrete valuation ring with �eld of fractions K, the simplest
example of a K-group scheme with a R-Néron(-lft) model that is not of �nite
type is the multiplicative group Gm over K. In fact, it is shown in [1] (Theorem
10.2.1 and Theorem 10.2.2) that a smooth commutative K-group GK has a
Néron model if and only if it has no subgroup isomorphic to the additive group
Ga, in which case the Néron model is of �nite type if and only if GK has no
subgroup isomorphic to the multiplicative group Gm.

Among the concrete applications of the theory of Néron models, we can cite
the semi-stable reduction theorem (an abelian variety over the fraction �eld of
a discrete valuation ring acquires semi-abelian reduction after a �nite extension
of the base �eld); the Néron-Ogg-Shafarevich criterion for good reduction of
abelian varieties; the computation of canonical heights on Jacobians; as well
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as the linear and quadratic Chabauty methods to determine whether or not a
list of rational points on a curve is exhaustive. For a geometric description of
the quadratic Chabauty method, see [5]. Parallels can also be drawn to some
problems in which Néron models do not explicitly intervene, such as extending
the double rami�cation cycle on the moduli stack of smooth curves to the whole
moduli stack of stable curves as in [20]. Here, one is interested in models in
which one given section extends, instead of all sections simultaneously, but the
two problems are closely related.

Existence in higher dimension

As we can see from the synthesis above, we understand reasonably well when
Néron models exist over regular one-dimensional bases, especially for group
schemes. Finding criteria for existence of Néron models over higher-dimensional
bases and constructing them explicitly when they exist is a more recent and open
area of research. In [21], David Holmes exhibits a necessary condition, called
alignment, for the existence of the Néron model of the generic Jacobian of a
nodal curve X over any regular base scheme S. He also proves that alignment
is su�cient under additional assumptions of semifactoriality on X. Alignment
is a rather strong condition that relates the local structure of X around all
singularities appearing in the same cycle of a dual graph of X.

In [27], Giulio Orecchia introduces the toric-additivity criterion. Consider an
abelian scheme A/U with semi-abelian reduction A/S, where S is a regular base
and U the complement in S of a strict normal crossings divisor. Toric-additivity
is a condition on the Tate module of A. When A is the generic Jacobian of an
S-curve with a nodal model, toric-additivity is su�cient for a Néron model of A
to exist. It is also necessary up to some restrictions on the base characteristic.
For general abelian varieties, it is proven in [28] that toric-additivity is still
su�cient when S is of equicharacteristic zero, and a partial converse holds, i.e.
existence of a Néron model implies a weaker version of toric-additivity.

To the author's knowledge, little has been said about Néron models of schemes
with no group structure (e.g. relative curves) over bases of higher dimension.
The construction of [23] for curves over Dedekind schemes consists in embedding
a curve XK into its Jacobian JK , resolving the singularities of the scheme-
theoretical closure of XK into the Néron model of JK , and taking the smooth
locus. This does not generalize well to relative curves over bigger base schemes:
in this setting, resolution of singularities is not known and regular models are
not even known to exist.

Nodal curves, stable curves and log smoothness

Nodal curves can be thought of as curves that are not necessarily smooth, but
only allow the simplest type of singularities: the completed localization at a
singularity of a nodal curve Xk over an algebraically closed �eld k is a union of
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two lines meeting transversally. This simple description of nodal singularities
in their �bers permits to de�ne an important combinatorial invariant, the dual
graph: its vertices are the irreducible components of Xk, and its edges are
the nodal singularities, which are attached to the irreducible components they
belong to. A great deal of information on a nodal curve can be recovered from
just this graph (or these graphs, in the relative case) and the genera of the
vertices.

In the relative case, one can nicely describe the local structure of the whole
relative curve around a singularity in terms of a certain ideal of an étale local
ring of the base, the singular ideal. Adjoining to the dual graphs the data of
these singular ideals makes them an even better tool to summarize the properties
of a nodal curve in a simple combinatorial object.

Nodal curves also arise naturally in the context of logarithmic geometry, i.e.
algebraic geometry on the category of log schemes. A log scheme is the data
of a scheme X and a map of sheaves of monoids M → OX inducing an iso-
morphism M× → O×X , where we give OX its multiplicative monoid structure.
The logarithmic version of smoothness is less restrictive than scheme-theoretic
smoothness, and only forces log-smooth curves to have a nodal curve as an
underlying scheme.

Working with the whole category of nodal curves can be tricky, as they do not
possess a well-behaved moduli stack: for example, if k is an algebraically closed
�eld, the automorphism group of the nodal curve P1

k is in�nite. Its action on
P1
k is even 3-transitive, which implies that any nodal k-curve with a component

isomorphic to P1, meeting the rest in only one or two points, also has in�nite
automorphism group. This forbids the existence of a Deligne-Mumford stack
for nodal curves, even of �xed genus. Likewise, a relative nodal curve X/S
smooth over a scheme-theoretically dense open subscheme U ⊂ S can admit
non-trivial blowups supported outside of XU that are still nodal curves (see [2],
Proposition 3.6, or the �rst part of this thesis), which forbids the existence of a
separated algebraic stack for nodal curves. To obtain a Deligne-Mumford stack,
smooth and proper over SpecZ, one should work instead with n-pointed stable
curves, which are the data of a nodal curve X/S and n marked sections on it
guaranteeing that the automorphism groups of the geometric �bers are �nite
étale.

The thesis

This thesis is divided in three parts:

• Part I: Nodal curves, dual graphs and resolutions;

• Part II: Néron models of nodal curves and their Jacobians;

• Part III: Base change of Néron models along �nite tamely rami�ed maps.

Part II heavily relies on part I, while part III only depends on the �rst section
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of part II (namely, it only makes use of the de�nition of Néron models and of
their elementary base change properties).

Part I

In part I, we will discuss a high-dimensional variant of the classic smoothening
process. Typically, when S is the spectrum of a discrete valuation ring, a key
step in constructing the Néron model of the generic �ber of a proper S-scheme
X/S consists in blowing-up repeatedly in subschemes supported outside of the
generic �ber XK , so that the smooth locus "gets bigger". For example, if S is
strictly local, eventually, we want to obtain a new model X ′ → X of XK so that
the map from the smooth locus of X ′ to X is surjective on S-points.

For higher-dimensional S, we can do something similar, but arbitrary choices
have to be made in the process: we end up with several "partial smoothen-
ings", whose smooth loci jointly satisfy the surjectivity property we expect. A
construction is made by A.J. De Jong in [2], Proposition 3.6, for split curves
over a regular base, smooth over the complement of a strict normal crossings
divisor. De Jong repeatedly blows up the split curve in irreducible components
of its non-smooth locus. We will construct the "partial smoothenings", that we
will call resolutions, without hypotheses of splitness and without asking for the
discriminant locus to be a normal crossings divisor.

The approach of De Jong is not convenient when one wishes to work with non-
split curves. It appeared from a discussion with G. Orecchia that this problem
could be solved by blowing-up in ideal sheaves of sections through singular
points instead of irreducible components of the non-smooth locus. This forces
us to work étale-locally on the base, which poses no problem when dealing with
Néron models, as they descend even along smooth covers.

Part II

In part II, we consider a regular base scheme S and a nodal curve X/S, smooth
over a dense open U ⊂ S, and we exhibit criteria for the existence of Néron
models for XU and for its Jacobian, both times in terms of the (labelled) dual
graphs of X.

For Jacobians, we try to investigate the situations that are not covered by
the main theorem of [21], i.e. what happens when X satis�es the alignment
condition of [21], but is not semifactorial after every smooth base change. We
introduce a new condition on the dual graphs of X, strict alignment, and we
show it is equivalent to alignment of all resolutions of smooth base changes
of X. In particular, strict alignment is necessary for a Néron model of the
generic Jacobian to exist. We will show it is also su�cient, and we will describe
explicitly the Néron model of generic Jacobians of strictly aligned nodal curves.

This thesis is not written in the language of log geometry, but the reader fa-
miliar with it can establish a parallel between strict alignment and �niteness
of the tropical Jacobian as described in [24], as well as between our blowups
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and logarithmic modi�cations of a log curve inducing a given subdivision of
the tropicalization. In a future work with David Holmes, Giulio Orecchia and
Samouil Molcho, we intend to develop further these correspondences and show
that Néron models of Jacobians can be better understood in terms of the loga-
rithmic Picard functor.

Regarding nodal curves themselves, we will make use of a result from [8] about
extending rational points of a curve into sections, when the curve has no rational
components in any geometric �ber. This naturally leads us to consider the two
following questions:

• When does a curve admit a nodal model with no such rational compo-
nents?

• Can we use the resolutions of such a model to construct a Néron model,
following the usual smoothening principles?

After base change to an étale cover, we provide an exhaustive answer to the
�rst question. In [7], it is shown that, under certain restrictions on the genera
of the curves considered, there are canonical contraction morphisms from the
stack of n + 1-pointed stable curves to that of n-pointed stable curves. A nice
consequence is that if a geometric �ber of a nodal curve X has in�nitely many
automorphisms, after an étale extension of the base, one can always blow down
X so that certain rational components of the geometric �bers are contracted.
Repeating the process, we can �nd a unique stable curve (without markings)
birational to X. Among all nodal models, this is the one with the least rational
components in its geometric �bers, and we provide criteria for it to have none.

As for the second question, we will see that the answer is almost always negative:
most nodal curves admit several non-isomorphic resolutions, and the smooth loci
of them all cannot �t in a Néron model without creating separatedness issues.
We will show, however, that a "not-necessarily-separated Néron model", i.e. a
smooth object with the Néron mapping property (uniqueness included) always
exists, and we will give an explicit construction. A Néron model exists if and
only if this object is separated, and we will show this is equivalent to the singular
locus of the stable model Xstable being irreducible, étale-locally on Xstable.

Part III

In part III, we study the base change behavior of Néron models under �nite,
locally free morphisms between regular schemes. We are mostly interested in
descent: for example, given a regular base S, a dense open U ⊂ S, and a smooth
proper curve XU over U , if one uses some version of the semistable reduction
theorem to �nd a nodal model of XU over a �nite extension S′/S, can we use
the results of part II to recover information about the Néron model of XU?

In [4], Bas Edixhoven investigates the base change morphism between Néron
models of an abelian variety under a �nite, tamely rami�ed extension of discrete
valuation rings R′/R. More precisely, if N,N ′ are the Néron models over R and
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R′ respectively, he exhibits a �ltration of N indexed by integers up to the
rami�cation index of R′/R, and describes explicitly the successive quotients in
terms of N ′. Several aspects of this �ltration (interpretations, applications) are
developed in the papers [16] and [6] and in the book [17].

Consider a regular scheme S, a dense open U ⊂ S and a smooth U -algebraic
space XU . The �rst obstruction to generalize Edixhoven's results is the fol-
lowing: if S′ → S is a �nite, locally free, tamely rami�ed cover and if the base
change of XU has a Néron model N ′/S′, it is not obvious a priori that XU/U has
a Néron model N/S. We will prove that this is actually the case and, following
the ideas of [4], we will de�ne a �nite �ltration of N and describe explicitly its
successive quotients in terms of twisted Lie algebras of N ′.

Notations

Throughout this thesis, we will adopt the following conventions:

• If f : X → S is a morphism of algebraic spaces locally of �nite type, we call
smooth locus of f , and write (X/S)sm (or Xsm if there is no ambiguity)
the open subspace of X at which f is smooth.

• If f : X → S is a morphism of schemes, locally of �nite presentation,
with �bers of pure dimension 1, we call singular locus of f , and write
Sing(X/S), the closed subscheme of X cut out by the �rst Fitting ideal
of the sheaf of relative 1-forms of X/S. The complement of Sing(X/S) in
X is precisely (X/S)sm.

• Unless speci�ed otherwise, if A is a local ring, we write mA for its maximal
ideal, kA for the its residue �eld and Â for its mA-adic completion.
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Part I

Nodal curves, dual graphs and

resolutions

1 Local structure of nodal curves and their dual

graphs

1.1 First de�nitions

The results of this subsection are mostly either well-known facts about nodal
curves, or come from [21]. When the proofs are short enough, we reproduce
them for convenience.

De�nition 1.1. A graph G is a pair of �nite sets (V,E), together with a map
f : E → (V × V )/S2. We call V the set of vertices of G and E its set of edges.
We think of f as the map sending an edge to its endpoints. We call loop any
edge in the preimage of the diagonal of (V × V )/S2. We will often omit f in
the notations and write G = (V,E).

Let v, v′ be two vertices of G. A path between v and v′ in G is a �nite sequence
(e1, ..., en) of edges, such that there are vertices v0 = v, v1, ..., vn = v′ satisfying
f(ei) = (vi−1, vi) for all 1 ≤ i ≤ n. We call n the length of the path. A chain
is a path as above, with positive n, where the only repetition allowed in the
vertices (vi)0≤i≤n is v0 = vn. A cycle is a chain from a vertex to itself. The
cycles of length 1 of G are its loops.

Let M be a semigroup. A labelled graph over M (or labelled graph if there is
no ambiguity) is the data of a graph G = (V,E) and a map l : E → M , called
edge-labelling. The image of an edge by this map is called the label of that edge.

De�nition 1.2. Let X be an algebraic space. We call geometric point of X a
morphism Spec k̄ → X where the image of Spec k̄ is a point with residue �eld k,
and k̄ is a separable closure of k (notice the "separable" instead of "algebraic").
Given a geometric point x′ over a point x of X, we will call étale local ring of
X at x′, and note OX,x′ , the strict henselization of OX,x determined by the
residue extension k(x′)/k(x). Given two geometric points s, t of X, we say that
t is an étale generization of s (or that s is an étale specialization of t) when
the morphism t → X factors through SpecOX,s. We will often omit the word
"étale" and just call them specializations and generizations.

De�nition 1.3. A curve over a separably closed �eld k is a proper morphism
X → Spec k with X of pure dimension 1. It is called nodal if it is connected,
and for every point x of X, either X/k is smooth at x, or x is an ordinary double
point (i.e. the completed local ring of X at x is isomorphic to k[[u, v]]/(uv)).

A curve (resp. a nodal curve) over a scheme S is a proper, �at, �nitely presented
morphism X → S such that all its geometric �bers are curves (resp. nodal
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curves).

Remark 1.3.1. By [22], Proposition 10.3.7, our de�nition of nodal curves is
unchanged if one de�nes geometric points with the standard algebraic closures
instead of separable closures.

De�nition 1.4. Let S be a scheme, s a point of S, and s̄ a geometric point
mapping to s. We will call étale neighbourhood of s̄ in S the data of an étale
morphism of schemes V → S, a point v of V , and a factorization s̄→ v → s of
s̄ → s. Etale neighbourhoods naturally form a codirected system, and we call
étale stalk of S at s the limit of this system. The étale stalk of S at s is an
a�ne scheme, and we call étale local ring at s, and note OetS,s, its ring of global
sections. We will sometimes keep the choice of geometric point s̄ implicit and
abusively call (V, v), or even V , an étale neighbourhood of s in S.

Remark 1.4.1. The étale local ring of S at s is a strict henselization of the
Zariski local ring OS,s. The étale local ring of S at s̄ is the strict henselization
determined by the separable closure k(s)→ k(s̄).

1.2 The local structure

Proposition 1.5. Let S be a locally noetherian scheme and X/S be a nodal
curve. Let s be a geometric point of S and x be a non-smooth point of Xs.
There exists a unique principal ideal (∆) of the étale local ring OetS,s, called the
singular ideal of x, such that

ÔetX,x ' ÔetS,s[[u, v]]/(uv −∆)

Proof. This is [21], Proposition 2.5.

Remark 1.5.1. The singular ideal of x is generated by a nonzerodivisor if and
only if X/S is generically smooth in a neighbourhood of x.

1.3 The dual graph at a geometric point

De�nition 1.6. Let X, S be as above and s be a geometric point of S. We
de�ne the dual graph of X at s to be the graph whose vertices are the irre-
ducible components of Xs, and whose edges are the singular points of Xs: the
two vertices an edge connects are the two (not necessarily distinct) irreducible
components the singular point belongs to. We also make it a labelled graph
over the commutative semigroup of nontrivial principal ideals of OetS,s: the label
of an edge is the singular ideal of the corresponding singular point.

When S is strictly local, we will sometimes refer to the dual graph of X at the
closed point as simply "the dual graph of X".

De�nition 1.7. A nodal curve X over a �eld k is said to be split if its sin-
gular points are rational, and all its irreducible components are geometrically
irreducible and smooth. A nodal curve is split when all its �bers are split. This
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implies that there is no geometric point of the base over which the dual graph
of the curve has loops.

Proposition 1.8. Let S′ → S be a morphism of locally noetherian schemes,
X/S a nodal curve, s a geometric point of S, and s′ a geometric point of S′

such that s′ → S is a generization of s→ S. Let X ′ be the base change of X to
S′, Γ and Γ′ be the dual graphs, respectively of X at s and of X ′ at s′.

Let R := OetS,s; R′ := OetS′,s′ , and φ be the natural map SpecR′ → SpecR. Then
Γ′ is obtained from Γ by contracting all edges whose label becomes invertible in
R′, and pulling back the labels of the other edges by φ.

In particular, if s′ has image s, Γ and Γ′ are isomorphic as non-labelled graphs,
and the labels of Γ′ are obtained by pulling back those of Γ.

Proof. This is [21], Remark 2.12. We reprove it here.

We can reduce to S = SpecR and S′ = SpecR′ a�ne and strictly local (i.e.
isomorphic to spectra of strictly henselian local rings), of respective closed points
s and s′.

Let x be a singular point of X of image s, and ∆ be a generator of its (principal)
singular ideal. Then we can choose an isomorphism ÔX,x = R̂[[u, v]]/(uv −∆).

This yields ÔX,x⊗RR′ = R̂⊗RR′[[u, v]]/(uv−∆). The ring R̂⊗RR′ is local, with
completion R̂′ with respect to the maximal ideal: as desired, if ∆ is invertible
in R′, then X ′ is smooth above a neighbourhood of x, and otherwise, X ′ has
exactly one singular closed point of image x, with singular ideal ∆R′ .

Example 1.9. With notations as above, in the case S = S′, we have de�ned
the specialization maps of dual graphs: take s, ξ geometric points of S with s
specializing ξ, we have a canonical map from the dual graph at s to the dual
graph at ξ, contracting an edge if and only if its label becomes the trivial ideal
in OetS,ξ.

It can be somewhat inconvenient to always have to look at geometric points.
We can often avoid it as in [18], by reducing to a case in which the dual graphs
already make sense without working étale-locally on the base.

1.4 Quasisplitness, dual graphs at non-geometric points

De�nition 1.10 (see [18], De�nition 4.1). We say a nodal curve X → S is
quasisplit if the two following conditions are met:

1. for any point s ∈ S and any irreducible component E of Xs, there is a
smooth section S → (X/S)sm intersecting E;

2. the singular locus Sing(X/S)→ S is of the form∐
i∈I

Fi → S,
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where the Fi → S are closed immersions.

Example 1.11. Consider the real conic

X = Proj(R[x, y, z]/(x2 + y2)).

It is an irreducible nodal curve over SpecR, but the base change XC has two
irreducible components: X is not quasisplit over SpecR.

On the other hand, consider the real projective curve

Y = Proj(R[x, y, z]/(x3 + xy2 + xz2)).

It has two irreducible components (respectively cut out by x and by x2+y2+z2),
both geometrically irreducible. The singular locus of Y/R consists of two C-
rational points, with projective coordinates (0 : i : 1) and (0 : −i : 1), at which
YC is nodal. Since Sing(Y/R) is not a disjoint union of R-rational points, Y
is not quasisplit over SpecR. However, both X and Y become quasisplit after
base change to SpecC.
Remark 1.11.1. Our de�nition of quasisplitness is similar to that of [18], but
more restrictive.

Remark 1.11.2. For a quasisplit nodal curve X/S and a point s ∈ S, for any
geometric point s′ of S of image s, the irreducible components of Xs′ are in
canonical bijection with those ofXs by the �rst condition de�ning quasisplitness,
and the singular ideals of X at s′ come from principal ideals of the Zariski local
ring OS,s by the second condition. Thus we can de�ne without ambiguity the
dual graph of X at s: its vertices are the irreducible components of Xs, and
it has an edge for every non-smooth point x ∈ Xs, with endpoints the two
components x meets, labelled by the principal ideal of OS,s that gives rise to
the singular ideal when we base change to a strict henselization.

From now on, we will call the latter the singular ideal of X at x, and talk
freely about the dual graphs of quasisplit curves at (not necessarily geometric)
�eld-valued points of S. This can clash with De�nition 1.6 when x is a singular
point of a geometric �ber of X/S. Unless speci�ed otherwise, when there is an
ambiguity, we always privilege De�nition 1.6.

Lemma 1.12. Quasisplit curves are stable under arbitrary base change.

Proof. Both conditions forming the de�nition of quasisplitness are stable under
base change.

Lemma 1.13. Let S be a strictly local scheme and X/S a nodal curve. Then
X/S is quasisplit.

Proof. There is a section through every closed point in the smooth locus of X/S,
so in particular there is a smooth section through every irreducible component
of every �ber. Proposition 1.5 implies the map Sing(X/S) → S is a disjoint
union of closed immersions.

Lemma 1.14. Let S be a locally noetherian scheme and X/S a nodal curve.
Then every point s ∈ S has an étale neighbourhood (V, v) such that XV /V is
quasisplit.
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Proof. By Lemma 1.13, and using the fact X/S is of �nite presentation, there
are étale neighbourhoods V1 and V2 of s such that the singular locus ofXV1

/V1 is
a disjoint union of closed immersions and there are smooth sections through all
irreducible components of all �bers of XV2/V2. Both conditions are stable under
further étale localization, so the base change ofX/S to V1×SV2 is quasisplit.

Corollary 1.15. Let S be a locally noetherian scheme and X/S a nodal curve.
There is an étale covering morphism V → S such that XV /V is quasisplit.

Proof. By the preceding lemma, every point s ∈ S admits an étale neighbour-
hood Vs such that XVs

/Vs is quasisplit, and we can pick V =
∐
s∈X

Vs.

Lemma 1.16. Let S be a locally noetherian scheme, X/S a quasisplit nodal
curve, s a point of S and x a singular point of Xs. Quasisplitness of X/S gives
a factorization

x→ F → Sing(X/S)→ X → S,

where F → S is a closed immersion and F → Sing(X/S) is the connected
component containing x. Then, there is an étale neighbourhood (V, y) of x in X;
two e�ective Cartier divisors C,D on V ; and an isomorphism V ×XF = C×V D
such that V ×S F is the union of C and D.

Proof. Let s̄ be a geometric point of S mapping to s, and x̄ = x ×s s̄. By

Proposition 1.5, we have an isomorphism ÔetX,x̄ = ÔetS,s[[u, v]]/(uv −∆), where
∆ is a generator of the singular ideal of x in OetS,s̄. The base change of F/S to
SpecOetS,s̄ is cut out by ∆, and the zero loci Cu of u and Cv of v are e�ective

Cartier divisors on ÔetX,x̄, intersecting in ÔetX,x̄/(u, v) = F ×X Spec ÔetX,x̄. The

union of Cu and Cv is ÔetS,s̄[[u, v]]/(∆, uv), so the proposition follows by a limit
argument.

2 Primality and base change

In this section, we will discuss questions of permanence of primality (of an
element of an integral regular ring) under étale maps, smooth maps and com-
pletions. One of the reasons these considerations are important to talk about
Néron models of nodal curves is that a nodal curve over an excellent and regular
base admits local sections through a singular point if and only if the label of
this singular point is reducible (Lemma 4.3).

An element ∆ of a regular local ring R is prime in Rsh when the quotient
R/(∆) is unibranch (i.e. has integral strict henselization), so we are interested
in questions of permanence of unibranch rings under tensor product. For a
more detailed discussion on unibranch rings or counting geometric branches in
general, see [29], chapitre IX. We also refer to [12], 23.2.

In [31], Sweedler gives a necessary and su�cient condition for the tensor product
of two local algebras over a �eld to be local. Since we are interested in how étale
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stalks behave under base-change, what we would like is a suitable su�cient
condition for algebras over a strictly local ring. Sweedler's proof adapts well to
this situation: this is the object of the following lemma.

Lemma 2.1. Let R be a strictly henselian local ring, R → A an integral mor-
phism of local rings with purely inseparable residue extension, and R → B any
morphism of local rings. Then A ⊗R B is local, and its residue �eld is purely
inseparable over that of B.

Proof. Let m be a maximal ideal of A⊗RB. The map B → A⊗RB is integral
so it has the going-up property ([30, Tag 00GU]), therefore the inverse image of
m in B is a maximal ideal: it must be mB . Thus m contains A⊗R mB .

In particular, m also contains the image of mR in A ⊗R B: it corresponds to
a maximal ideal of A ⊗R B/(mRA ⊗R B), that we will still call m. We have a
commutative diagram

kR //

��

B/mRB

��
A/mRA // A⊗R B/(mRA⊗R B).

Since A/mRA is local and integral over the �eld kR, its maximal ideal mA is
nilpotent and is its only prime. The inverse image of m in A/mRA is a prime
ideal, so it can only be mA. This shows that, as an ideal of A ⊗R B, m also
contains mA ⊗R B.

Every maximal ideal of A ⊗R B contains both mA ⊗R B and A ⊗R mB , so
the maximal ideals of A ⊗R B are in bijective correspondence with those of
kA ⊗kR kB = A ⊗R B/(mA ⊗R B + A ⊗R mB). We will now show the latter is
local, with purely inseparable residue extension over kB .

By hypothesis, the extension kA/kR is purely inseparable. If kR has character-
istic 0, then kA = kR and we are done. Suppose kR has characteristic p > 0.
For any x ∈ kA⊗kR kB , we can write x as a �nite sum

∑
i∈I

λi⊗µi with the λi, µi

in kA, kB respectively. There is an integer N > 0 such that for all i, λp
N

i is in

kR. Therefore xp
N

=
∑
i∈I

λp
N

i µp
N

i is in kB , and x is either nilpotent or invertible.

It follows that kA ⊗kR kB is local, with maximal ideal its nilradical, and that
its residue �eld is purely inseparable over kB as claimed.

Lemma 2.2. Let (R,m) be an integral and strictly local noetherian ring, and
R→ R′ a smooth ring map. Let p be a prime ideal of R′ containing mR′. Call
R̃′ a strict henselization of R′p. Then R′p is geometrically unibranch, i.e. R̃′ is
an integral domain.

Proof. We know R̃′ is reduced since it is a �ltered colimit of smooth R-algebras.
Let B,B′ be the integral closures of R,R′p in their respective fraction �elds.

The ring R′p is integral so by [29], chapitre IX, corollaire 1, R̃′ is an integral
domain if and only if B′ is local and the extension of residue �elds of R′p → B′

6

https://stacks.math.columbia.edu/tag/00GU


is purely inseparable. But any smooth base change of B/R remains normal (see
[22], Corollary 8.2.25), so B ⊗R R′p is normal as a �ltered colimit of normal B-
algebras. Moreover, any normal algebra over R′p must factor through B ⊗R R′p,
so we have B′ = B ⊗R R′p. Applying Lemma 2.1, we �nd that B′ is local and
the extension of residue �elds of R′p → B′ is purely inseparable, which concludes
the proof.

Corollary 2.3. Let S be a regular scheme, Y → S a smooth morphism and
y → Y a geometric point. Then for any prime element ∆ of OetS,y, the image of
∆ in OetY,y is prime.

Proof. Base change to SpecOetS,y/(∆), replace Y by an a�ne neighbourhood of
y in Y , and apply Lemma 2.2.

Lemma 2.4. Let R be a strictly henselian excellent local ring and R̂ its com-
pletion with respect to the maximal ideal. Then an element ∆ of R is prime in
R if and only if it is in R̂.

Proof. The nontrivial implication is the direct sense. Suppose ∆ is prime in
R. Since R is excellent, the morphism R → R̂ is regular. Then by Popescu's
thorem ([30, Tag 07GB]), R̂ is a directed colimit of smooth R-algebras. We
conclude by writing R/(∆) → R̂/(∆) as a colimit of smooth R/(∆)-algebras
and applying Lemma 2.2.

Lemma 2.5. Let S be an excellent and regular scheme, X/S an S-scheme of
�nite presentation, s̄ a geometric point of S, and x a closed point of Xs̄ with an

isomorphism ÔetX,x = ÔetS,s̄[[u, v]]/(uv −∆) for some ∆ ∈ ms̄ ⊂ OetS,s̄. For every
t1, t2 ∈ ms̄ such that t1t2 = ∆, there exists an étale neighbourhood S′ → S of s̄

and a section S′ → X through x such that the induced map ÔetX,x → ÔetS′,s̄ sends
u, v respectively to a generator of (t1) and a generator of (t2).

Proof. Put R = OetS,s̄ and consider the map ÔetX,x → R̂ that sends u, v to t1, t2

respectively. Compose it with OetX,x → ÔetX,x to get a map f0 : OetX,x → R̂.

For noetherian local rings, quotients commute with completion with respect to
the maximal ideal, so two distinct ideals are already distinct modulo some power

of the maximal ideal. Let
n∏
i=1

∆νi
i be the prime factor decomposition of ∆ in R.

Principal ideals of R of the form (∆µi

i ) with 0 ≤ µi ≤ νi are pairwise distinct
and in �nite number, so there exists some N ∈ N such that their images in
R/mNR are pairwise distinct. Since R is henselian and excellent, it has the Artin
approximation property ([30, Tag 07QY]), so there exists a map f : OetX,x → R

that coincides with f0 modulo mN
R . This f induces a map f̂ : ÔetX,x → R̂. Call

a, b the respective images of u, v by f̂ , we have a = t1 and b = t2 in R/mNR . But
ab = ∆ in R̂ and, by Lemma 2.4, ∆ has the same prime factor decomposition in
R and R̂, so the only principal ideals of R̂ containing ∆ are of the form (∆µi

i )

with 0 ≤ µi ≤ νi. By de�nition of N we get aR̂ = t1R̂ and bR̂ = t2R̂. Since
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X/S is of �nite presentation, f comes from an S-morphism S′ → X where S′

is an étale neighbourhood of s̄ in S.

3 Sections of nodal curves

We present a few technicalities regarding sections of a quasisplit nodal curve
X/S. There is a double interest in this. First, blow-ups of nodal curves in the
ideal sheaves of sections will be an important tool to construct ns-Néron models
of smooth curves with nodal reduction. Second, we can view the Néron mapping
property as a condition of extension of rational points into sections after smooth
base change. Thus, we will be interested in conditions under which a section
of a nodal curve factors through the blowing-up in the ideal sheaf of another
section.

The basis for this formalism was thought of together with Giulio Orecchia, and
these notions should appear again in a future joint work describing the sheaf
of regular models of a nodal curve, smooth over the complement of a normal
crossings divisor.

3.1 Type of a section

We will de�ne a combinatorial invariant, the type of a section, summarizing
information about the behavior of said section around the singular locus of a
nodal curve X/S. Later on, we will show that sections of all types exist étale-
locally on the base (Proposition 3.9) and that the type of a section locally
characterizes the blowing-up of X in the ideal sheaf of that section (Corollary
4.7).

De�nition 3.1. Let S be a regular scheme and s→ S a geometric point. Let
X/S be a nodal curve, smooth over a dense open subscheme U of S. Let x be a
singular point of Xs, we call thickness of x (in X/S) the image of the singular
ideal of x in the monoid OetS,s/(OetS,s)∗ of principal ideals of OetS,s.

De�nition 3.2. Let S be a locally noetherian scheme, X/S a quasisplit nodal
curve, s a point of S and x a singular point of Xs. Let F be the connected
component of Sing(X/S) containing x. Then the set of connected components
of (X\F ) ×X SpecOetX,x ×S F is a pair {C,D} (see Proposition 1.5 or Lemma
1.16), on which the Galois group AutOS

(OetS,s) = Gal(k(s)sep/k(s)) acts. If this
action is trivial, we say X/S is orientable at x, and we call orientations of X/S
at x the ordered pairs (C,D) and (D,C). The scheme-theoretical closures of
C and D in SpecOetX,x are e�ective Cartier divisors, and we will often also call
them C and D.

Remark 3.2.1. The curve X/S is orientable at x if and only if the preimage of
x in the normalization of Xs consists of two k(s)-rational points, in which case
an orientation is the choice of one of these points. Roughly speaking, this also
corresponds to picking an orientation of the edge corresponding to x in the dual
graph of X at s. The "roughly speaking" is due to the case of loops: there is an
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ambiguity on how to orient them. We could get rid of this ambiguity by using
a heavier notion of dual graphs (such as the tropical curves often used in log
geometry), but this work does not require it.

Remark 3.2.2. Since the base change of X/S to SpecOetS,s is orientable at x,
there is an étale neighbourhood (V, v) of s in S such that XV /V is orientable
at x×s v.

Lemma 3.3. Let S be a locally noetherian scheme, X/S a quasisplit nodal
curve, s a point of S and x a singular point of Xs. Let x′ be a singular point of
X/S specializing to x and s′ the image of x′ in S. Suppose X/S is orientable
at x, then it is orientable at x′. Moreover, in that case, there is a canonical
bijection between orientations at x and orientations at x′.

Proof. Suppose X/S is orientable at x and let (C1, C2) be an orientation at x.
Let F be the connected component of Sing(X/S) containing x and x′. Pick a
(non-canonical) isomorphism

OetX,x = OetS,s[[u, v]]/(uv −∆). (1)

Permuting u and v if necessary, we can assume C1 and C2 come from the zero
loci of u and v respectively. Pick a (canonical up to the residue extension
k(s)sep → k(s′)sep) factorization

SpecOetS,s′ → SpecOetS,s → S.

Then, tensoring by OetS,s′ in equation (1), we get an isomorphism

OetX,x′ = OetS,s′ [[u, v]]/(uv −∆),

and the two connected components C ′1 and C ′2 of (X\F ) ×X SpecOetX,x′ ×S F
come from the zero loci of u and v. Therefore, in order to prove that X/S
is orientable at x′ and that the order (C ′1, C

′
2) is canonically induced by the

order (C1, C2), we only need to know that the action of G = AutOet
S,s

(OetS,s′) on
{C ′1, C ′2} is trivial, which is true since the action of G on OetS,s′ [[u, v]]/(uv −∆)
preserves the zero loci of u and v.

From now on, given an orientation (C1, C2) at a singular point x, we will also
write (C1, C2) for the induced orientation at a singular generization of x.

De�nition 3.4 (type of a section). Let X/S be a quasisplit nodal curve with
S regular. Suppose X is smooth over a dense open subscheme U of S. Let s be
a point of S and x a singular point of Xs at which X/S is orientable. Pick an
orientation (C1, C2) at x and an isomorphism

ÔetX,x = ÔetS,s[[u, v]]/(uv −∆x),

where C1 corresponds to u = 0 and ∆x is a generator of the singular ideal of x
in OetS,s. We call type at x any element of the monoid OetS,s/(OetS,s)∗ strictly com-
prised between 1 and the thickness of x (for the order induced by divisibility).
There are only �nitely many types at x, given by the association classes of the
strict factors of ∆x in OetS,s (which is a unique factorization domain).
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Let σ be a section of X/S through x. It induces a morphism

σ̂# : ÔetS,s[[u, v]]/(uv −∆x)→ ÔetS,s

By Lemma 2.4, ∆x has the same prime factor decomposition in OetS,s and in ÔetS,s,
so there is a canonical embedding of the submonoid of ÔetS,s/(ÔetS,s)∗ generated by
the factors of ∆x into OetS,s/(OetS,s)∗. We call type of σ at x relatively to (C1, C2)

the image of u in inOetS,s/(OetS,s)∗. It is a type at x, and sinceX/S is orientable at

x, it does not depend on our choice of isomorphism ÔetX,x = ÔetS,s[[u, v]]/(uv−∆x)
as long as C1 is given by u = 0. When they are clear from context, we will omit
x and (C1, C2) from the notation and just call it the type of σ. In general, given
a type T at x, there need not exist a section of type T .

If the type of a section σ at x relatively to (C1, C2) is equal to the type of a
section σ′ at x relatively to (C2, C1), we say σ and σ′ are of opposite type at x.

Lemma 3.5. Let X/S, s, x, (C1, C2) and U be as in De�nition 3.4, and σ be
a section S → X of type T at x. Let s′ be a generization of s. Then there is
a singular point of Xs′ specializing to x if and only if the thickness of x does
not map to 1 in OetS,s′/(OetS,s′)∗. Suppose it is the case and write x′ this singular
point, then

• if the image of T in OetS,s′/(OetS,s′)∗ is either 1 or the thickness of x′, then
σ(s′) is a smooth point of Xs′ ;

• otherwise, the image of T is a type at s′, that we still write T , and σ is of
type T at x′ relatively to (C1, C2).

Proof. By Proposition 1.5, if the thickness of x maps to 1 in OetS,s′/(OetS,s′)∗, then
all points of X mapping to s′ and specializing to x are S-smooth, and otherwise
there is a unique singular point x′ of Xs′ specializing to s. Suppose the latter
holds, then by Lemma 3.3, (C1, C2) induces an orientation of X/S at x′, and
the lemma follows from the de�nition of types.

Remark 3.5.1. One can think of the thickness of x as the relative version of a
length, and of the type of a section σ relatively to an orientation (C1, C2) as
a measure of the intersection of σ with C1, seen as an e�ective Cartier divisor
locally around x as in Lemma 1.16. In other words, the type is a measure of
"how close to C1" the section is.

Proposition 3.6. Let S be a regular scheme and X/S a quasisplit nodal curve,
smooth over some dense open subscheme U of S. Let σ and σ′ be two S-sections
of X. Then the union of (X/S)sm with the set of singular points x of X/S at
which σ and σ′ have the same type (resp. opposite types) is an open subscheme
of X.

Proof. Since the singular locus Sing(X/S) is �nite over S, every singular point
x of X/S has a Zariski-open neighbourhood V ⊂ X containing only S-smooth
points and singular generizations of x. Thus, since the smooth locus of X/S is
open in X, the proposition reduces to the following claim: if σ and σ′ have the
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same type (resp. opposite types) at a singular geometric point x → X, then
they have the same type (resp. opposite types) at every singular generization
of x. This claim is true by Lemma 3.5.

De�nition 3.7. The open subschemes of X described in Proposition 3.6 above
are called respectively the same type locus and the opposite type locus of σ
and σ′.

3.2 Admissible neighbourhoods

Here we will show that, when one works étale-locally on the base (in a sense
that we will make precise), one can always assume sections of all types exist.

De�nition 3.8. Let S be a regular scheme and X/S a nodal curve, smooth over
a dense open U of S. Let s be a point of S and (V, v) an étale neighbourhood
of s in S. We say (V, v) is an admissible neighbourhood of s (relatively to X/S)
when the following conditions are met:

1. XV /V is quasisplit;

2. XV /V is orientable at all singular points of Xv;

3. for any singular point x of Xv with singular ideal (∆x) ⊂ OetS,s, all prime
factors of ∆x in OetS,s come from global sections of OV ;

4. for every singular point x of Xv (however oriented), there are sections
V → XV of all types at x.

When s̄→ S is a geometric point with image s and (V, v) an admissible neigh-
bourhood of s with a factorization s̄ → v, we will also sometimes call V an
admissible neighbourhood of s̄.

Remark 3.8.1. In the situation of De�nition 3.8, if S is strictly local, then it is
an admissible neighbourhood of its closed point.

Proposition 3.9. Let X/S be a nodal curve, where S is a regular and excellent
scheme. Then any point s ∈ S has an admissible neighbourhood.

Proof. Replacing S by an étale neighbourhood, we can assume X/S is quasisplit
(for example using Lemma 1.13 and the fact X/S is of �nite presentation).
By Remark 3.2.2 and since Xs has �nitely many singular points x1, ..., xn, we
can assume X/S is orientable at all the xi. Each xi has only �nitely many
prime factors in its singular ideal in OetS,s, so we can shrink S again into a
neighbourhood satisfying condition 3. of the de�nition of admissibility. The
fact this V can be shrinked again until it meets all four conditions follows from
Lemma 2.5.

Remark 3.9.1. If (V, v) is an admissible neighbourhood of a point s of S, then V
need not be an admissible neighbourhood of all of its points (even if V is strictly
local with closed point v, condition 3. of the de�nition may fail, see Example
6.10). Thus, it is not easy a priori to �nd a good global notion of admissible
cover.
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The next proposition states that admissible neighbourhoods are compatible with
smooth (and not just étale) morphisms.

Proposition 3.10. Let S be a regular scheme and X/S a quasisplit nodal curve,
smooth over some dense open subscheme U of S. Let Y → S be a smooth
morphism and y → Y a geometric point. Let V be an admissible neighbourhood
of y in S, then V ×S Y is an admissible neighbourhood of y in Y .

Proof. This follows from Corollary 2.3 and the de�nition of admissible neigh-
bourhoods.

4 Re�nements and resolutions

This section is dedicated to techniques aiming at constructing inductively nodal
models of a smooth curve with prime singular ideals, starting from an arbitrary
nodal model. When Néron models are concerned, the interest of nodal models
with prime labels lies in two facts: they are locally factorial, which is a crucial
hypothesis in the existence result of [21] for Néron models of Jacobians, and all
their sections factor through their smooth locus, which will allow us to construct
Néron models of curves as gluings of smooth loci of nodal models. We will now
make these two statements precise and prove them, and the consequences will
be developped in part II.

4.1 Arithmetic complexity and motivation for re�nements

We start by de�ning what will be our recursion parameter, the arithmetic com-
plexity of a nodal curve.

4.1.1 Arithmetic complexity

De�nition 4.1. Let M be the free commutative semigroup over a set of gener-
ators G. We call word length of m ∈ M , and note wl(m), the (unique) n ∈ N∗

such that we can write m =
n∏
i=1

gi with all the gi in G.

Given a labelled graph Γ = (V,E, l) over M and an edge e ∈ E, we call arith-
metic complexity of e and note ne the natural integer wl(l(e)) − 1. We call
arithmetic complexity of Γ and note nΓ the sum of the arithmetic complexities
of all its edges.

Given a nodal curve X/S where S = SpecR is a local unique factorization
domain, the semigroup of nontrivial principal ideals of R is the free commutative
semigroup over the set of primes of height 1. From now on, we will talk freely
about arithmetic complexities of edges of dual graphs, always implicitly referring
to this set of generators.

12



Thus, when X/S is quasisplit, we de�ne the arithmetic complexity of a closed
singular point x, noted nx, as the arithmetic complexity of the corresponding
edge of the dual graph: If S is local, we de�ne the arithmetic complexity of X,
noted nX , to be that of its dual graph.

Note that X is of arithmetic complexity 0 if and only if every singular ideal is
prime: it is an integer measuring "how far away from being prime" the singular
ideals are. Arithmetic complexity is not stable even under étale base change.

4.1.2 Factoriality of completed étale local rings

Lemma 4.2. Let R be a regular complete local ring, and ∆ be an element of
mR. Let Â = R[[u, v]]/ (uv −∆), then Â is a unique factorization domain if
and only if ∆ is prime in R.

Proof. Suppose that Â is a unique factorization domain, and let d be a prime
factor of ∆ in R. Call S the complement of the prime ideal (u, d) in Â. Let p be a
nonzero prime ideal of S−1Â. Then, p contains a nonzero element x = uxu+xv,
with xu and xv in R[[u]] and R[[v]] respectively. Since p 6= S−1Â, we have d|xv.
Call n and m respectively the maximal elements of N∗∪{+∞} such that un|uxu
and dn|xv. Since x is nonzero, we know either n or m is �nite. If n ≤ m, then
vnx = ∆n xu

un−1 + dn v
nxv

dn is in p, and is associated to dn in S−1Â, so we obtain
d ∈ p, from which it follows that p = (u, d). If m < n, a similar argument shows
that p contains um and thus equals (u, d). Therefore, S−1Â has Krull dimension
one, i.e. (u, d) has height 1 in Â. Since Â is a unique factorization domain, it
follows that (u, d) is principal in it, from which we deduce that ∆ and d are
associated in Â. In particular, ∆ is prime in R.

The interesting part is the converse: let us assume that ∆ is prime in R. We
want to show that Â is a unique factorization domain. We �rst prove that
A := R[u, v]/(uv −∆) is a unique factorization domain: let p be a prime ideal
of A of height 1, we have to show p is principal in A. We observe that u
is a prime element of A, since the quotient A/(u) = R/(∆)[v] is an integral
domain. Therefore, if p contains u, then p = (u) is principal. Otherwise, p
gives rise to a prime ideal of height 1 in Au := A[u−1], which is principal
since A[u−1] = R[u, u−1] is a unique factorization domain. In that case, write
pAu = fAu for some f ∈ Au. Multiplying by a power of the invertible u of Au,
we can choose the generator f to be in A\uA. Since p is a prime ideal of A not
containing u, we know p contains f and thus fA. We will now prove the reverse
inclusion. Let x be an element of p. The localization pAu = fAu contains x,
so x satis�es a relation of the form unx = fy for some n ∈ N and some y ∈ A.
But since u is prime in A, we know un divides y and x is in fA.

Now, we will deduce the factoriality of Â from that of A. The author would like
to thank Ofer Gabber for providing the following proof. Let q be a prime ideal
of Â of height 1, we will show q is principal. We put S = SpecR, X = SpecA,
X̂ = Spec Â, and Z = Spec(Â/q), so that Z is a prime Weil divisor on X̂. Let
η, η′ be the generic points of the respective zero loci of u, v in the closed �ber
Spec kR[[u, v]]/(uv) of X̂ → S. Since u and v are prime elements of Â, we can
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once again assume Z contains neither η nor η′. It follows that the closed �ber
of Z → S is of dimension 0: the morphism Z → S is quasi-�nite, hence �nite by
[10], chapter 0, 7.4. A fortiori, Â/q is �nite over A, so by Nakayama's lemma,
the morphism A → Â/q is surjective. Call p its kernel. Then A/p = Â/q is
mA-adically complete and separated, so it maps isomorphically to its completion
Â/pÂ. The prime ideal p of A is of height 1 since X̂ → X is a �at map of normal
noetherian schemes. Therefore, p is principal in A, and q = pÂ is principal in
Â.

4.1.3 Factoring sections through the smooth locus

Lemma 4.3. Let X/S be a quasisplit nodal curve, where S = SpecR is a
regular, strictly local and excellent scheme. Let σ be a section of X/S. Let
s ∈ S be the closed point and x = σ(s), then x is either smooth over S, or
singular of arithmetic complexity ≥ 1.

Proof. Suppose by contradiction that x is singular of arithmetic complexity 0.
The section σ factors through SpecOX,x, and gives rise to a Spec R̂-section of

Spec ÔX,x. As ÔX,x is of the form R̂[[u, v]]/(uv−∆) for some prime ∆ ∈ R, this
section is given by a morphism R̂[[u, v]]/(uv−∆)→ R̂, which is fully described
by the images of u and v. But ∆ is prime in R̂ by Lemma 2.4, so either u or v
has invertible image in R̂. Thus the image of s factors through the complement
of one of the two irreducible components of Spec X̂s,x, a contradiction.

4.2 Re�nements of graphs

Now, to reap the bene�ts of the properties of nodal curves with prime labels, all
we need is an algorithm that takes a generically smooth nodal curve as an input,
and returns a nodal curve, birational to the �rst, with strictly lower arithmetic
complexity.

De�nition 4.4. As in [21], De�nition 3.2, for a graph Γ = (V,E, l) with edges
labelled by elements of a semigroup M , we call re�nement of Γ the data of
another labelled graph Γ′ = (V ′, E′, l′) labelled by M and two maps

E′ → E

V ′ → E
∐

V

such that:

• every vertex v in V has a unique preimage v′ in V ′;

• for every edge e ∈ E with endpoints v1, v2 ∈ V , there is a chain C(e) from
v′1, v

′
2 in Γ′ such that the preimage of {e} in V ′

∐
E′ consists of all edges

and intermediate vertices of C(e);

• for all e ∈ E, the length of e is the sum of the lengths of all edges of C(e).
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We will often keep the maps implicit in the notation, in which case we call Γ′

a re�nement of Γ and write Γ′ � Γ. We say Γ′ is a strict re�nement of Γ and
note Γ′ ≺ Γ, if in addition the map E′ → E is not bijective.

Remark 4.4.1. Informally, a re�nement of a graph is obtained by "replacing
every edge by a chain of edges of the same total length". Suppose Γ′ � Γ, then
Γ′ ≺ Γ if and only if at least one of the chains C(e) is of length ≥ 2, i.e. if and
only if Γ′ has strictly more edges than Γ.

Now we want to blow up X in a way that does not a�ect XU , but re�nes the
dual graph. We will de�ne re�nements of curves (De�nition 4.5). We can obtain
any re�nement of a dual graph of X by iterating these re�nements of curves,
but they exist only étale-locally on the base.

4.3 Re�nements of curves

De�nition 4.5. Let S be a regular scheme and X/S a quasisplit nodal curve,
smooth over a dense open subscheme U of S. Let s be a point of S and x a
singular point of Xs at which X/S is orientable, and (C,D) an orientation of
X/S at x. Let T be a type at x. We will call T -re�nement of X (at x, relatively
to (C,D)) the blowing-up of X in the sheaf of ideals of a section S → X through
x, of type T . We will often omit x and (C,D) in the notation and just call these
T -re�nements of X.

A map X ′ → X is called a re�nement if it is a T -re�nement for some such
X,x, (C,D), T .

Remark 4.5.1. • If S is excellent, then any geometric point s ∈ S has an ad-
missible neighbourhood V by Proposition 3.9, soXV /V has a T -re�nement
for any type T at any singular point of Xs.

• Consider any morphism S′ → S where S′ is still regular (e.g. any smooth
map S′ → S). Let x be a singular point of X and x′ a singular point of X ′

of image x. Then any orientation of X/S at x pulls back to an orientation
of XS′/S

′ at x′; any type T at x pulls back to a type T ′ at x′; and any
T -re�nement pulls back to a T ′-re�nement.

• Let x ∈ X be a singular point at which X/S is orientable, and y a gener-
ization of x. By Lemma 3.5, for any type T at x and any T -re�nement
X ′ → X, either T corresponds to a type (still noted T ) at y, in which case
X ′ → X is a T -re�nement at y, or T becomes trivial at y, in which case
X ′ → X restricts to an isomorphism above a Zariski neighbourhood of y.

Lemma 4.6. Let f : X → S be a quasisplit nodal curve with S regular and
excellent. Suppose X is smooth over some dense open U ⊂ S. Let σ : S → X
be a section and φ : X ′ → X the blow-up in the ideal sheaf of σ.

Then φ is an isomorphism above the complement in X of the intersection of
Sing(X/S) with the image of σ. In particular, it is an isomorphism above the
smooth locus of X/S, which contains XU , so X ′ is a model of XU .
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Moreover, X ′ is a nodal curve, and its dual graphs are re�nements of those of
X. More precisely, let s be a point of S and suppose σ(s) is a singular point x
of Xs. Choose an orientation (C,D) of XOet

S,s
at x, and call T the type of σ at

x relatively to (C,D). Then, the singular ideal of x in OetS,s is generated by

∆x = ∆∆′,

where ∆ and ∆′ are lifts to OetS,s of T and of the opposite type of T respectively.
Let Γ,Γ′ be the respective dual graphs of X and X ′ at s, and let e be the edge
of Γ corresponding to x. Then e has label generated by ∆x = ∆∆′, and one
obtains Γ′ from Γ as follows:

• if e is not a loop, then C and D come from two distinct irreducible com-
ponents of Xs (that we still call C and D). In that case, Γ′ is obtained
from Γ by replacing e by a chain

EC D

(∆′) (∆)

where the strict transforms of C and D are still called C and D, and E is
the inverse image of x.

• if e is a loop, i.e. x belongs to only one component L of Xs, then Γ′ is
obtained from Γ by replacing e by a cycle

L E

(∆′)

(∆)

where the strict transform of L is still called L and E is the inverse image
of x.

Proof. The ideal sheaf of σ is already Cartier above the smooth locus of X/S
and outside the image of σ, so by the universal property of blow-ups ([30, Tag
0806]), we only need to describe φ above the étale localizations SpecOetX,x, where
x, s, (C,D) are as in the statement of the lemma. We can assume S = SpecR
is strictly local, with closed point s. Pick an isomorphism

ÔetX,x = R̂[[u, v]]/(uv −∆∆′)

such that C is locally given by u = 0. The map

σ̂ : ÔetX,x → R̂

yielded by σ sends u to a generator of ∆R̂ and v to a generator of ∆′R̂. Scaling
u and v by a unit of R̂ if necessary, we can assume σ̂(u) = ∆ and σ̂(v) = ∆′.
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The completed local rings of SpecOetX,x ×X X ′ can be computed using the
blowing-up of the algebra B := R[u, v]/(uv −∆∆′) in the ideal (u−∆, v −∆′)

(since the completion of B at (u, v,mR) is ÔX,x).

The latter is covered by two a�ne patches:

• the patch where u−∆ is a generator, given by the spectrum of

R[u, v, α]/((v −∆′)− α(u−∆), uα+ ∆′) ' R[u, α]/(uα+ ∆′)

since, in the ring R[u, v, α]/((v −∆′)− α(u−∆)), the element uv −∆∆′

is equal to (u−∆)(uα+ ∆′)

• and the patch where v−∆′ is a generator, where we obtain symmetrically
the spectrum of

R[v, β]/(vβ + ∆)

with the obvious gluing maps. Thus we see that X ′ remains nodal, and that
the edge e of Γ (of label (∆∆′)) is replaced in Γ′ by a chain of two edges, one
labelled (∆) and one labelled (∆′). It also follows from this description that the

strict transform of C (resp. D) in X ′ ×X Spec ÔetX,x contains the singularity of
label (∆′) (resp. (∆)).

Corollary 4.7. With the same hypotheses and notations as in Lemma 4.6,
for any two sections σ, σ′ of X/S, the blow-ups Y → X and Y ′ → X in the
respective ideal sheaves of σ and σ′ are canonically isomorphic above the same
type locus of σ and σ′ in X.

Proof. It su�ces to exhibit, for any point s → S and any singular point x of
Xs such that σ(s) = σ′(s) = x and σ, σ′ have the same type T at x, a Zariski
neighbourhood V of x in X and an isomorphism Y ×X V → Y ′×X V compatible
with the canonical identi�cations Y ×X Xsm = Xsm = Y ′ ×X Xsm. Since
X,Y, Y ′ are of �nite presentation over S, this can be done assuming S = SpecR
is strictly local, with closed point s. Using the universal property of blow-ups
([30, Tag 0806]), we reduce to proving that the pull-back of the ideal sheaf of σ′

(resp. σ) to Y (resp. Y ′) is Cartier. The proofs are symmetric, so we will only
show that the pull-back to Y of the ideal sheaf of σ′ is Cartier. This, in turn,

reduces to proving that the ideal sheaf of σ′ in Spec ÔetX,x becomes Cartier in

Y ×X Spec ÔetX,x. Pick an isomorphism

Â := R̂[[u, v]]/(uv −∆x) = ÔetX,x,

where ∆x ∈ R is a generator of the singular ideal of x. The map

Â→ R̂

corresponding to σ sends u, v to elements ∆,∆′ of R̂ with ∆∆′ = ∆x. Since σ
and σ′ have the same type at x, there is a unit λ ∈ R̂× such that the map

Â→ R̂
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corresponding to σ′ sends u and v to λ∆ and λ−1∆′ respectively. We have
reduced to proving that the sheaf given by the ideal (u− λ∆, v − λ−1∆′) of Â
becomes Cartier in the blow-up of Â in (u−∆, v −∆′). Put

A = R̂[u, v]/(uv −∆∆′),

then it is enough to prove that the ideal I = (u− λ∆, v− λ−1∆′) of A becomes
invertible in the two a�ne patches (as described in the proof of Lemma 4.6)
forming the blowing-up of A in (u−∆, v−∆′). By symmetry, we only check it
in the patch generated by u−∆, which is the spectrum of

A1 = R̂[u, α]/(uα+ ∆′),

where v maps to ∆′ + α(u−∆). We have I = (u− λ∆, λv−∆′), and in A1 we
can write

λv −∆′ = λ(∆′ + α(u−∆)) + uα

= −λα∆ + uα

= α(u− λ∆).

Thus, the preimage of I in A1 is the invertible ideal (u − λ∆), and we are
done.

4.4 Resolutions of nodal curves

Lemma 4.8. Let Γ,Γ′ be two labelled graphs over a free commutative semigroup.
If Γ′ � Γ (De�nition 4.4), then nΓ′ ≤ nΓ. If Γ′ ≺ Γ, then nΓ′ < nΓ.

Proof. Suppose Γ′ � Γ. Then, by de�nition, the sum of lengths of edges of Γ is
equal to the sum of lengths of edges of Γ′ and Γ′ has at least as many edges as
Γ, so nΓ′ ≤ nΓ.

If equality holds in the latter, then Γ′ and Γ have the same number of edges,
which, combined with the fact Γ′ � Γ, implies they are isomorphic.

Now we want, starting from X, to �nd a model of XU "re�ning Γs as much as
possible", in the sense that it will be of arithmetic complexity 0 and its dual
graph will be a re�nement of Γs. This model's alignment will then determine
the existence of a Néron model for the Jacobian of XU . We do it following the
ideas of [2], proposition 3.6, as follows:

De�nition 4.9. Let X be a nodal curve over a regular and strictly local scheme
S with closed point s, smooth over a dense open subscheme U ⊂ S. We call
resolution of X any nodal S-model X ′ of XU , obtained by a �nite sequence of
re�nements, and of arithmetic complexity 0.

Proposition 4.10. With notations and hypotheses as above, X admits a reso-
lution.
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Proof. The base S is strictly local so it is an admissible neighbourhood of s.
Take X ′ → X a �nite sequence of re�nements minimizing nX′ , then X ′ → X is
a resolution. Indeed, suppose it was not, then there would be a closed singular
point x of X ′ of arithmetic complexity ≥ 1. There would exist a type T at x,
and a T -re�nement X ′′ → X. We would have nX′′ < nX′ , a contradiction.

Remark 4.10.1. Resolutions are not unique in general. For example, consider
S = SpecC[[u, v]], and suppose X is a nodal curve over S with dual graph

C2C1

(uv)

There are two types at the closed singular point x of X/S with respect to
(C1, C2), namely the class T of u and the class T ′ of v. The T -re�nement and
the T ′-re�nement of X are both resolutions, but they are not isomorphic as
models of XU (they are not even isomorphic as schemes as soon as C1, C2 are
not isomorphic, e.g. of distinct genera).

De�nition 4.11. Let X be a quasisplit nodal curve over a regular scheme S,
smooth over a dense open subscheme U ⊂ S. Let s be a point of S. We say
X/S is square-free at s when all labels of edges of the dual graph of X ′ at s are
square-free. We say X is square-free if it is square-free at every point of S.

Remark 4.11.1. In the de�nition above, we consider the dual graphs at points
of S labelled by ideals of the Zariski local rings, see Remark 1.11.2. However, if
R→ Rsh is a strict henselization of a regular local ring, any square-free element
∆ ∈ R has square-free image in Rsh, so the de�nition would be unchanged if we
asked for the labels of the dual graphs at geometric points (which are ideals of
the étale local rings of S) to be square-free.

De�nition 4.12. Let X be a quasisplit nodal curve over a regular scheme S,
smooth over a dense open subscheme U ⊂ S. Let s be a point of S. We call
partial resolution of X at s any map X ′ → X, composition of a �nite number of
re�nements, such that X ′ is square-free at s. We will call partial resolution of X
over S, or just partial resolution of X if there is no ambiguity, a map X ′ → X
that is a partial resolution at every point of S.

Remark 4.12.1. The property "being a square-free principal ideal of the regu-
lar local ring R" is preserved by tensor product with R′ for any morphism of
local rings R → R′ that is a directed colimit of étale morphisms. Therefore, a
square-free quasisplit nodal curve remains square-free after base change to any
codirected limit of étale maps, e.g. a localization or a strict localization. In
particular, for any point s ∈ S and any geometric point s̄ above s, X ′ → X is
a partial resolution at s if and only if X ′ ×S SpecOetS,s̄ → X ×S SpecOetS,s̄ is a
partial resolution at the closed point.

Lemma 4.13. Let X/S be a quasisplit nodal curve, smooth over a dense open
U ⊂ S, with S regular. Then, the set of points s ∈ S at which X/S is square-free
is open in S.
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Proof. By quasisplitness, the singular locus of X/S is a disjoint union of closed
immersions cut out by locally principal ideals I1, ..., In of OS . Thus, X is square-
free at a point t if and only if the quotient OS/Ii is reduced at t for every i,
which is an open condition on S.

Proposition 4.14. Let X/S be a nodal curve, smooth over a dense open U ⊂
S, with S excellent and regular. Then, every point s ∈ S admits an étale
neighbourhood V ⊂ S such that XV /V has a partial resolution.

Proof. Let s be a point of S, we will show it has such a neighbourhood. Shrink-
ing S if necessary, we assume S is an admissible neighbourhood of s. If the
arithmetic complexity of X at s is not 0, then there is always a re�nement
X ′ → X such that the arithmetic complexity of X ′ at s is strictly lower than
that of X, so by induction we may assume all labels appearing in the dual graph
of X at s are prime. In particular, X is square-free at s. The proposition now
follows immediately from Lemma 4.13.

Part II

Néron models of nodal curves and

their Jacobians

5 Generalities about Néron models

5.1 De�nitions

De�nition 5.1. Let S be a scheme and U a scheme-theoretically dense open
subscheme of S. Let Z/U be a U -algebraic space. An S-model of Z (or just
model if there is no ambiguity) is an S-algebraic space X together with an
isomorphismXU = Z. Amorphism of S-models between two modelsX and Y of
Z is an S-morphism X → Y that commutes over U with the given isomorphisms
XU = Z and YU = Z.

De�nition 5.2. Let S be a scheme and U a scheme-theoretically dense open
subscheme of S. Let Z/U be a smooth separated U -scheme. An ns-S-Néron
model of Z (or just ns-Néron model if there is no ambiguity) is a smooth S-
model N satisfying the following universal property, called the Néron mapping
property :

For each smooth S-algebraic space Y , the restriction map

HomS(Y,N)→ HomU (YU , Z)

is bijective.

If N is separated, we call it a S-Néron model, or just Néron model, of XU .
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Remark 5.2.1. In the litterature, Néron models are often required to be of �nite
type over the base, and what we called Néron model here is referred to as a
Néron-lft model, where "lft" stands for "locally of �nite type". The use of this
terminology is not systematical anymore, so we prefer the more �exible de�nition
above. To the author's knowledge, however, the separatedness hypothesis is
usually never omitted, so we use the pre�x "ns" (not necessarily separated) to
avoid generating unnecessary confusion.

Remark 5.2.2. As an immediate consequence of the universal property, a ns-
Néron model, when it exists, is unique up to a unique isomorphism. A fortiori,
the same holds for Néron models.

Remark 5.2.3. Let S, U , Z be as above, and N be a smooth, separated S-
model of Z. Consider a smooth S-algebraic space Y/S and two morphisms
f1, f2 : Y → N that coincide over U . The separatedness of N/S implies that the
equalizer of f1 and f2 is a closed subspace of Y containing YU , and �atness of
Y/S implies that the open subscheme YU of Y is scheme-theoretically dense (see
[13], théorème 11.10.5). Thus, we automatically have uniqueness in the Néron
mapping property, i.e. injectivity of the restriction map

HomS(Y,N)→ HomU (YU , Z).

Therefore, we can try to construct Néron models as separated S-spaces satisfying
existence in the Néron mapping property (i.e. surjectivity of the restriction
map).

5.2 Base change and descent properties

Proposition 5.3. The formation of ns-Néron models (resp. Néron models) is
compatible with smooth base change, i.e. given a smooth morphism S′ → S, a
scheme-theoretically dense open U ⊂ S and an S-algebraic space X which is a
ns-Néron model (resp. Néron model) of XU , the base change XS′ is a ns-Néron
model (resp. Néron model) of XU ′ .

Proof. First, note that XS′/S
′ is smooth since X/S is, separated if X/S is, and

that U ′ is scheme-theoretically dense in S′ by [13], théorème 11.10.5. Thus, we
only need to check that X ′/S′ has the Néron mapping property.

Let Y ′ be a smooth S′-scheme and u′ : Y ′U ′ → XU ′ a U ′-morphism. Composing
with the projection: XU ′ → XU , we get a U -morphism Y ′U ′ → XU , which
extends to a unique S-morphism Y ′ → X by the Néron mapping property since
Y ′/S is smooth. Then the induced morphism Y ′ → X ′ extends u′, and this
extension is unique since a morphism Y ′ → X ′ is uniquely determined by the
two composites Y ′ → X and Y ′ → S′.

Corollary 5.4. If S′/S is a co�ltered limit of smooth S-schemes (indexed by
a co�ltered partially ordered set, e.g. a localization, a henselization when S is
local...), and X is the (ns-)S-Néron model of XU , then XS′ is the (ns-)S′-Néron
model of XU ′ .

Lemma 5.5 (Néron models are compatible with disjoint unions on the base).
Let I be a set, (Si)i∈I a family of schemes, and (Ni → Si)i∈I a family of
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morphisms of algebraic spaces. Write S =
∐
i∈I

Si and N =
∐
i∈I

Ni. Let U be a

scheme-theoretically dense open of S, and write Ui = U ×S Si for every i. Then
N is the S-ns-Néron model of NU (resp. the S-Néron model of NU ) if and only
if for all i in I, Ni is the Si-ns-Néron model of Ni ×Si Ui (resp. the Si-Néron
model of Ni ×Si

Ui).

Proof. Suppose N is the ns-Néron model of NU . Then, by Proposition 5.3, for
all i in I, Ni is the ns-Néron model of Ni ×Si

Ui. Conversely, suppose that for
every i in I, Ni/Si is the ns-Néron model of its restriction to U , and consider
a smooth S-algebraic space Y with a morphism fu : YU → NU . For each i, we
write Yi = Y ×S Si. We have

HomS(Y,N) =
∏
i∈I

HomSi
(Yi, Ni)

=
∏
i∈I

HomUi
(Yi ×Si

Ui, Ni ×Si
Ui)

= HomU (YU , NU ),

where the �rst and third equalities hold since Y is the disjoint union of the Yi,
and the second one because each Yi/Si is smooth. Since N/S is smooth (resp.
smooth and separated) if and only if all Ni/Si are smooth (resp. smooth and
separated), we are done.

Proposition 5.6 (Néron models descend along smooth covers). Let S be a
scheme and U a scheme-theoretically dense open of S. Let S′ → S be a smooth
surjective morphism and U ′ = U ×S S′. Let XU be a smooth U -algebraic space,
and suppose XU ′ has a (ns-)S′-Néron model X ′. Then XU has a (ns-)S-Néron
model X satisfying X ′ = X ×S S′.

Proof. We �rst show X ′ comes via base change from an S-algebraic space X.
Call p1, p2 the two projections S′′ := S′ ×S S′ → S′. They are smooth mor-
phisms, so by Proposition 5.3 and uniqueness of the Néron model, we know
p∗1X

′ = p∗2X
′ is the S′′-Néron model of XU ′′ with U ′′ = U ×S S′′. It follows

from e�ectiveness of fppf descent for algebraic spaces ([30, Tag 0ADV]) that X ′

comes from an S-algebraic space X/S.

The morphism X → S is smooth since X ′/S′ is, and separated if X ′/S′ is (both
properties are even fpqc local on the base, see [30, Tag 02KU] and [30, Tag
02VL]). Therefore, we only need to show X/S has the Néron mapping property.
Take Y a smooth S-algebraic space with a generic morphism fU : YU → XU ,
and write Y ′ (resp. f ′U ) for the pullbacks of Y (resp. fU ) under S′ → S. Then
Y ′/S′ is smooth so f ′U extends to a unique f ′ : Y ′ → X ′. We have a cartesian
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diagram

Y ′′

�� ��

//// Y ′

��

// Y

��

X ′′

��

//// X ′

��

// X

��
S′′ //// S′ // S

where S′′ := S′×S S′ and the arrows S′′ → S′ are the two projections p1, p2, so
that all horizontal rows are equalizers. We only need to show that p∗1f

′ = p∗2f
′,

which follows from uniqueness in the Néron mapping property of X ′′/S′′ since
they coincide over U ′′.

Proposition 5.7. Let S be a scheme, U a scheme-theoretically dense open
subscheme of S, XU/U a smooth U -scheme and N/S a model of XU of �nite
type. Then N is the (ns-)Néron model of XU if and only if for all s ∈ S,
N ×S SpecOetS,s is a (ns-)SpecOetS,s-Néron model of its restriction to U .

Proof. If all the N ×S SpecOetS,s/SpecOetS,s are separated, then N/S is also
separated, and the "only if" part is a special case of Corollary 5.4. All that
remains to do is prove N/S is the ns-Néron model of NU/U , assuming that for
all s ∈ S, N is the ns-Néron model over SpecOetS,s of its restriction to U . Let Y/S
be a smooth S-algebraic space and fu : YU → XU a U -morphism. Since Y/S
is locally of �nite presentation, by [13], théorème 8.8.2, every point s ∈ S has
an étale neighbourhood Vs → S such that fu extends uniquely to a morphism
Y ×S Vs → X×S Vs. By [13], théorème 11.10.5, U remains scheme-theoretically
dense in every Vs, so these maps glue as in the proof of Proposition 5.6 and fU
extends to a morphism Y → X.

5.3 Schemes vs algebraic spaces

Here we introduce the (perhaps more standard) de�nition of a Néron model as
a scheme and not an algebraic space, and go for a little sanity check by showing
both notions coincide under conditions of existence.

De�nition 5.8. Let S be a scheme and U a dense open subscheme of S. Let
Z/U be a smooth separated U -scheme. A ns-S-Sch-Néron model of Z is a
smooth S-scheme N , with an identi�cation NU = Z, satisfying the Sch-Néron
mapping property :

For each scheme Y with a smooth morphism Y → S, the restriction map

HomS(Y,N)→ HomU (YU , Z)

is bijective.

Remark 5.8.1. • The ns-Sch-Néron model, if it exists, is unique up to a
unique isomorphism.
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• Again, when U is scheme-theoretically dense, given a smooth separated
S-scheme N with NU = Z, it is the ns-Sch-Néron model if and only if it
satis�es existence in the mapping property.

• When a ns-Néron model is a scheme, it is automatically the ns-Sch-Néron
model since it satis�es the Sch-Néron mapping property.

Proposition 5.9. Let S be a scheme and U a scheme-theoretically dense open
subscheme of S. Let Z/U be a smooth U -scheme. Suppose Z admits a ns-Sch-
Néron model N . Then N is also a ns-Néron model of Z.

Proof. We show that N has the Néron mapping property. Let Y be a smooth
S-algebraic space, together with a morphism YU → Z of algebraic spaces. We
can choose a presentation of Y as a quotient of a scheme by an étale equivalence
relation ([30, Tag 0262]), i.e. S-schemes R and V with an étale covering map
V → Y and an equivalence relation R → V ×S V such that the two induced
maps R→ V are étale, and such that the diagram

R⇒ V → Y

is a coequalizer of sheaves of sets on (Sch/S)fppf . This presentation is compat-
ible with the base change U → S ([30, Tag 03I4]), so we get a coequalizer

RU ⇒ VU → YU

in the category of sheaves of sets on (Sch/U)fppf . Thus YU → Z can be seen as
a map VU → Z such that both composites RU → Z coincide. Then, since V and
R are smooth over S by composition, applying the Sch-Néron mapping property,
we can extend uniquely VU → Z to an S-map V → N . The two composites
R → N both extend the same RU → Z, so they are equal by uniqueness in
the Sch-Néron mapping property. So we have a unique morphism Y → N of
algebraic spaces extending YU → Z, as required.

Corollary 5.10. If Z admits a ns-Néron model N and a ns-Sch-Néron model
N ′, then N = N ′ is a scheme.

6 Néron models of Jacobians

6.1 Alignment and its relation to the Picard space

This subsection summarizes the main results of [21] and introduces a few def-
initions to adapt them to our context. From now on, given a local ring R, we
will note Rsh for a strict henselization of R.

6.1.1 De�nition and examples

De�nition 6.1. Suppose S is a regular scheme. Let s be a geometric point of
S and R = OetS,s. Following [21], De�nition 2.11, we say that a labelled graph Γ
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is aligned when for every cycle Γ0 in Γ, all the labels �guring in Γ0 are positive
powers of the same principal ideal; and that a nodal curve X/S is aligned at s
when its dual graph Γs at s is aligned. We say X/S is aligned if it is aligned at
every geometric point of S.

We de�ne Γs to be strictly aligned, or X to be strictly aligned at s, when it
satis�es the following condition: for any cycle Γ0 ⊂ Γs, there exists a prime
element ∆ ∈ R such that all the labels of Γ0 are powers of the principal ideal
(∆) of R. We say that X is strictly aligned if it is strictly aligned at every
geometric point of S.

Example 6.2. Over S = SpecC[[u, v]], at the closed point, among the 4 following
dual graphs, the �rst is non-aligned; the second and the third are aligned but
not strictly, and the last one is strictly aligned.

BA

(uv2)

(u2v2)

BA

(uv2)

(u2v4)

A

(uv)

BA

(u2)

(u3)

(v3)

Remark 6.2.1. Strict alignment implies alignment, and is equivalent to strict
alignment in the sense of [21], De�nition 3.4. In particular, when S is regular,
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excellent and separated, and X is split and smooth over the complement of a
strict normal crossings divisor (i.e. the singular ideals are generated by products
of the elements of some regular system of parameters), using [21], Proposition
3.6, we see strict alignment is equivalent to the existence of a Néron model
for the Jacobian. We want to investigate what happens when X is a generi-
cally smooth nodal curve, but not necessarily smooth over the complement of a
normal crossings divisor.

We have to be a little careful about the fact that alignment and strict alignment
both deal with étale neighbourhoods. Let us consider two examples.

Example 6.3. The curve over R = C[s, t](s,t), given in the weighted projective
space PS(1, 2, 1) (in a�ne coordinates (x, y)) by

y2 =
(
(x− 1)2 − (1 + t)t2 + s2

) (
(x+ 1)2 + (1 + t)t2 − s2

)
is quasisplit, and its dual graph at the closed point is the following 2-gon:

BA

((1 + t)t2 − s2)

((1 + t)t2 − s2)

but it is not strictly aligned, even though (1 + t)t2 − s2 is a prime element of
R. Indeed, (1 + t)t2 − s2 is prime in R but has two distinct prime factors in a
strict henselization, since (1 + t) becomes a square, and it is the prime factor
decomposition in the étale local rings that counts in the de�nition of strict
alignment.

Example 6.4. On the other hand, the equation

y2 =
(
(x− 1)2 − t2 + s3

) (
(x+ 1)2 + t2 − s3

)
de�nes a nodal curve over SpecR with dual graph

BA

(t2 − s3)

(t2 − s3)

which is strictly aligned at the closed point, because t2 − s3 remains prime in
Rsh.

6.1.2 Alignment and Néron models

A classical way of obtaining a Néron model for the Jacobian of a proper smooth
curve XU/U with a nodal model X/S, when X is "nice enough", is to consider
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the biggest separated quotient of the subspace Pic
[0]
X/S of PicX/S consisting of

line bundles of total degree 0 (see for example [1]). In other words, a good
"candidate Néron model" is the quotient of Pic

[0]
X/S by the closure of its unit

section. This works well when three conditions are met: Pic
[0]
X/S is representable

by an S-algebraic space; the closure of its unit section is �at over S (so that
the quotient is also representable); and Pic

[0]
X/S satis�es existence in the Néron

mapping property (i.e. X is semifactorial after every smooth base change).
These are the ideas behind the main result of [21], that we will recall here, and
behind the notion of alignment.

Proposition 6.5. Let S be a regular scheme, U ⊂ S a dense open, and X/S
a nodal curve, smooth over U . Let P = Pic

[0]
X/S be the subsheaf of PicX/S

consisting of line bundles of total degree 0. It is representable by a smooth
quasi-separated algebraic space, that we call P again ([1], 8.3.1 and 9.4.1). Let
E be the scheme-theoretical closure in P of its unit section. Then the following
conditions are equivalent:

1. E/S is �at.

2. E/S is étale.

3. X/S is aligned.

Proof. This is [21], Theorem 5.17.

Proposition 6.6. With the same hypotheses and notations as in Proposition
6.5 above, let J be the Jacobian of XU . If a Néron model N for J exists, then
E/S is �at. Conversely, if X ×S S′ is locally factorial for every smooth base
change S′ → S and E/S is �at, then P/E is an S-Néron model for J .

Proof. This is [21], Theorem 6.2 and Remark 6.3. The idea is that, when the
regularity condition we give on X is satis�ed, we can use the correspondence
between Weil divisors and Cartier divisors to show that line bundles over U
extend to the whole base, so P satis�es existence in the Néron mapping property.
It follows that its biggest separated quotient P/E (which exists as an algebraic
space if and only if E/S is �at) also does.

We want to investigate the in-between zone, i.e. what happens if we are given
an aligned nodal curve that is not locally factorial.

A consequence of Proposition 6.6 is that if J has a Néron model, then every
nodal model of XU must be aligned. This is stronger than just alignment of
X since alignment is not stable under modi�cations of nodal curves (see the
example below).

Example 6.7. Consider a nodal curve X over S = SpecC[[u, v]] having the
following dual graph at the closed point:
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BA

(uv2)

(u2v4)

This graph is aligned, and X is smooth over the complement U in S of Div(uv),
but X is not locally factorial (see 4.2), so Proposition 6.5 and Proposition 6.6
do not allow us to immediately conclude to either existence or nonexistence of
a Néron model.

The zero locus of u in X has two irreducible components, one containing A and
one containing B, and explicit computation shows that if we blow up X in the
one containing A, the result is still a nodal curve, with dual graph

F

A E

B

(u)

(u) (v2)

(uv4)

This new curve coincides with X over U , and it is not aligned: the Jacobian of
XU cannot have a Néron model. Similarly, if S = SpecR with R = C[[u, v, w]]
and X has dual graph

BA

((u+ v)u2 + (v + w)w2)

((u+ v)u2 + (v + w)w2)

then, again, we cannot immediately apply 6.5 and 6.6: the curve X is aligned,
but its (smooth) base change to R′ = C[[u, v, w]][v−1,

√
u+ v,

√
v + w] fails to

be locally factorial, since in R′ the labels become sums of two squares and factor
into a product of two primes.

However, we can observe that if the Jacobian of XU/U had a Néron model, it
would still be a Néron model over R′, and after that base change, we are now in
a case similar to that of the previous example! The curve X×RR′ can be blown
up into a non-aligned nodal curve over R′, which means its Jacobian does not
have a Néron model.
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In conclusion, asking for X to remain aligned after smooth base changes and
birational morphisms of nodal curves is a strictly stronger condition than just
asking for X to be aligned, yet it remains necessary for a Néron model of the
Jacobian to exist. We will see that strict alignment is precisely the closure of
alignment under those operations, and that it is the right notion to talk about
Néron models of Jacobians in terms of dual graphs.

6.2 Étale-universally prime elements

Here, we will elaborate on a phenomenon illustrated in Example 6.7, namely
the fact that some prime elements of a regular, strictly henselian local ring can
have several prime factors in a further étale localization. If such an element
labels a cycle of an aligned nodal curve, then there is an étale base change after
which this curve has a non-aligned re�nement (which forbids the existence of a
Néron model for the generic Jacobian). We will also show this is actually the
only possible reason for the smooth base change of an aligned curve to have
non-aligned re�nements.

De�nition 6.8. Let R be a regular local ring and ∆ be a non-invertible element
of R. We say ∆ is étale-universally prime when, for all prime ideals p ⊂ R
containing ∆, the image of ∆ in a strict henselization of Rp is prime.

Example 6.9. Take R = C[s, t](s,t) and ∆ = (t2−s3). Then ∆ is étale-universally
prime, since ∆ remains prime in both Rsh and (R(∆))

sh, and the maximal ideal
and (∆) are the only primes of R containing ∆.

Example 6.10. On the other hand, some prime elements are not étale-universally
prime even if R is strictly henselian: let R = (C[u, v, w](u,v,w))

sh and ∆ =
u2(v + w)− v2(v − w). Then ∆ is prime in R (it is even prime in C[[u, v, w]]),
but if we consider the prime ideal p = (u, v) of R, which contains ∆, we see that
∆ has a nontrivial factorization in Rshp since the units v + w and v − w of Rp

become squares in Rshp .

Remark 6.10.1. An element ∆ ∈ R is étale-universally prime if and only if all
localizations of R/(∆) are geometrically unibranch in the sense of [12], 23.2.1
or [29], IX, Dé�nition 2.

We are interested in those étale-universal primes to study Néron models because
they behave well with respect to the smooth topology. Their key property is
Lemma 6.11.

Lemma 6.11. Let S = SpecR be an a�ne regular scheme and ∆ be an element
of R. Then ∆ is étale-universally prime in R if and only if for every smooth
morphism Y → SpecR and every geometric point y ∈ Y , the image of ∆ in
OetY,y is either invertible or prime.

Proof. The "if" sense is immediate since the identity SpecR → SpecR is
smooth. For the converse, suppose ∆ is étale-universally prime. Since smooth-
ness is a Zariski-local property, it is enough to prove that for each smooth map
of a�nes SpecA → SpecR, ∆ is étale-universally prime in A. Let p ⊂ A be a
prime ideal containing ∆ and m the preimage of p in R, the map R → (Ap)sh
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factors as R → (Rm)sh → A ⊗R (Rm)sh → (Ap)sh. Since the middle arrow
(Rm)sh → A⊗R (Rm)sh is smooth, and since A⊗R (Rm)sh → (Ap)sh is a strict
localization at a prime containing the image of m, we can conclude by quotient-
ing by (∆) and applying Lemma 2.2.

Proposition 6.12. Take X/S a generically smooth nodal curve with S regular.
Take s a geometric point of S such that X is strictly aligned at s. Then X is
strictly aligned at every étale generization t of s if and only if for every cycle
Γ0 of Γs, the only prime of OetS,s appearing as a factor of the labels of Γ0 is
étale-universally prime.

Proof. It follows from Proposition 1.8 applied to the specialization morphism:
SpecOetS,t → SpecOetS,s and the de�nitions.

This allows us to detect strict alignment, only looking at the dual graph of the
closed �ber:

De�nition 6.13. Let X/S be a generically smooth nodal curve with S regular.

We say that Γs is étale-strictly aligned, or that X is étale-strictly aligned at s,
when it satis�es the following condition: for any cycle Γ0 ⊂ Γs, including loops,
there exists an étale-universally prime element ∆ ∈ R such that all the labels
of Γ0 are powers of the principal ideal (∆) of R. We say that X is étale-strictly
aligned if it is étale-strictly aligned at every geometric point of S.

Proposition 6.14. If X/S is a nodal curve with S regular, the following con-
ditions are equivalent:

1. X is strictly aligned.

2. X is étale-strictly aligned at the closed geometric points of S.

3. X is étale-strictly aligned.

Proof. (3) =⇒ (2) and (2) =⇒ (1) are clear. (2) =⇒ (3) follows from
observing that in a locally noetherian scheme, every point specializes to a closed
point, and if R is a local ring, ∆ an étale-universally prime element of R, and p
a prime ideal of R containing ∆, then ∆ is also étale-universally prime in Rp.
We will show (1) =⇒ (2).

Take X/S a strictly aligned generically smooth nodal curve with S regular. We
will show it is étale-strictly aligned at the closed geometric points of S. We can
assume S = SpecR is local and strictly henselian, with closed point s. Let Γ be
the dual graph of X at s, and Γ0 be a cycle of Γ. There is a prime ∆ ∈ R such
that all labels of Γ0 are powers of ∆, and we have to show ∆ is étale-universally
prime in R.

Let p be a prime ideal of R containing ∆, and choose a strict henselization Rshp
of Rp. It gives an étale generization t of s, at which X is strictly aligned, so the
cycle pulled back from Γ0 in the dual graph of X at t has all its labels generated
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by powers of some prime of Rshp . Thus, the image of ∆ in Rshp is a power of a
prime. Therefore it is enough to show Rshp /(∆) is reduced.

But Rshp /(∆) is a strict henselization of Rp/(∆) since the quotient of a henselian
ring is henselian, so it is reduced as a directed colimit of reduced Rp/(∆)-
algebras.

6.3 Strict alignment is necessary and su�cient for Néron
models to exist

The goal of this subsection is to prove Theorem 6.20. It is to be noted that a
variant of the theorem probably holds under a weaker assumption than regular-
ity of S: what we care about is extending generic line bundles on X after étale
base change, so having S parafactorial along the complement of the discrimi-
nant locus after every smooth base change, plus some other minor assumptions,
should su�ce. Of course, strict alignment would then have to be de�ned in that
context, since the étale local rings of S would not be unique factorization do-
mains anymore. In addition, if one were in need of such generality, they would
need to verify that the material we use (e.g. in [21]) also works after weakening
the hypotheses.

6.3.1 The necessity of strict alignment

We start with the easy implication: we will show that if a nodal curve is not
strictly aligned, then over some étale local ring of the base, we can �nd a non-
aligned re�nement of it (which means there can be no Néron model for the
generic Jacobian).

Proposition 6.15. Let S be a regular scheme and X/S a nodal curve, smooth
over a dense open U ⊂ S. If the Jacobian of XU/U has a Néron model over S,
then X/S is strictly aligned.

Proof. We will work by contradiction, assuming there is a geometric point s ∈ S
at which X is not strictly aligned. Using Corollary 5.4, we can assume S is a
strictly local scheme SpecR, with closed point s. Remember that R is regular,
thus a unique factorization domain. Note Γ the dual graph of X at s and l
the edge-labelling of Γ. By assumption, there is a cycle Γ0 in Γ and two (not
necessarily distinct) edges e and e′ of Γ0 such that l(e)l(e′) has at least two
distinct prime factors.

We know X is aligned by Proposition 6.5 and Proposition 6.6: there is an
element ∆ ∈ R such that all edges of Γ0 are labelled by positive powers of ∆R.
This applies in particular to e and e′, so we can write ∆ as a product (∆1∆2),
where ∆1,∆2 are non-invertible elements of R with no common factor.

Let x be the singular point of X corresponding to e. Since S is strictly local with
closed point s, we can pick an orientation (C,D) of X/S at x. Call X ′ → X the
(∆1)-re�nement of X at x relatively to (C,D). By Lemma 4.6, the dual graph
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of X ′ at s contains a cycle, re�ning Γ0, such that the edge corresponding to x
has been replaced by a chain of two edges, one of label (∆1) and one of label
(∆2). In particular, X ′ is not aligned at s. However, X ′U = XU , so the jacobian
of X ′U has a Néron model: we get a contradiction by virtue of Proposition 6.5
and Proposition 6.6.

6.3.2 Fiberwise-disconnecting locus of nodal curves and closure of

the unit section of the Picard scheme

As strict alignment is only a condition on the cycles of the dual graphs, we have
to show that "labels of disconnecting points do not matter", in a sense that will
made precise by Proposition 6.19. The idea is that when one blows up a nodal
curve over a strictly local base in a section through a disconnecting singular
point, all "new" line bundles are killed by the growth of the closure of the unit
section, and the quotient P/E does not change. We start with a few technical
lemmas.

Lemma 6.16. Let S = SpecR be a trait (i.e. the spectrum of a discrete val-
uation ring) and f : X → S a generically smooth quasisplit nodal curve. Let
π : X ′ → X be the blowing-up in a closed non-smooth point x of X/S. Let L be
a line bundle on X ′, trivial over the exceptional �ber of π. Then π∗L is a line
bundle on X.

Proof. This is [26], Proposition 4.2.

Lemma 6.17. Let S = SpecR be a regular and strictly local scheme. Let
f : X → S be a quasisplit nodal curve, smooth over some dense open U ⊂ S.
Let π : X ′ → X be a re�nement and L be a line bundle on X ′. Let Y ⊂ X ′ be
the exceptional locus of π and suppose L|Y ' OY . Then π∗L is a line bundle
on X.

Proof. π∗L is a coherent OX -module and X is reduced, so it is enough to check
that, for all y ∈ X, we have dimk(y) π∗L ⊗OX

k(y) = 1. It is obvious for all y
such that π is a local isomorphism at y, so we only need to check it when y is
in the image of the exceptional locus of π.

Take a section σ : S → X such that π is the blowing-up in the sheaf of ideals of
σ. Let x be in the image of the exceptional locus of π and s its image in S: we
have x = σ(s). The base change of π to SpecOshS,s is still the blowing-up in the
sheaf of ideals of σ, and the condition dimk(x) π∗L ⊗OX

k(x) = 1 can also be
checked after base change to SpecOshS,s, so we can assume s is the closed point of
S. Iterating the prime avoidance lemma, we see that OS(S) admits a quotient
D, that is a discrete valuation ring, such that the generic point of T = SpecD
lands in U . Pick a uniformizer t of D. We have ∆xD = tnD for some n ≥ 1,
where ∆x is a generator of the singular ideal of x.

The base change XT /T is a nodal curve. The point corresponding to x, that we
still call x, has singular ideal tnD. The sheaf of ideals I of σ inXT is trivial away

from x, and given at the completed étale local ring ÔetXT ,x
= D̂sh[[u, v]]/(uv−tn)
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by the ideal (u− tk, v − tl) with k + l = n for a good choice of isomorphism. If
n = 1, then I is trivial (and a fortiori Cartier) so X ′T = XT .

Suppose n ≥ 2 and pick d = bn2 c. There is a sequence

X ′′ = Xd → Xd−1 → ...→ X0 = XT

where each Xi+1 → Xi is a blowing-up in a closed point of image x, namely the
only closed non-T -smooth point of Xi of image x and of singular ideal 6= tD,
and the preimage of x in Xd is a chain of n − 1 copies of P1

k(x), intersecting in
n − 2 non-smooth points of ideal tD. The sheaf of ideals I on XT is Cartier
in X ′′, which, by the universal property of blowing-ups, implies that X ′′ → XT

factors through X ′T → XT .

Now, the restriction L|X′′ is a line bundle on X ′′, trivial on the exceptional
locus of X ′′ → XT . Thus, using the preceding lemma, we see inductively that
its pushforward to every Xi, and in particular to X0 = XT , is a line bundle.
This, in turn, gives us dimk(x) π∗L⊗OX

k(x) = 1: π∗L is a line bundle on X.

Lemma 6.18. Let S = SpecR be a regular and strictly local scheme with closed
point s. Let f : X → S be a nodal curve, smooth over some dense open U ⊂
S. Let π : X ′ → X be a re�nement such that the exceptional locus of π is
disconnecting in the closed �ber. Let L be a line bundle of total degree 0 on X ′.
There exists a line bundle L′ on X ′, trivial over U , such that (L⊗L′)|Z ' OZ ,
where Z is the exceptional locus of X ′ → X.

Proof. The morphism X ′ → X is the blowup in a section σ : S → X. Set
x = σ(s), and call Γ,Γ′ the respective dual graphs of X and X ′ at s. By
hypothesis, x is a singular point of X, disconnecting in its �ber.

We only look at the local picture at x, since π is an isomorphism away from x.
Pick an isomorphism ÔX,x ' R̂[[u, v]]/uv −∆x where ∆x is a generator of the

singular ideal of x. The map ÔX,x → R̂ given by σ sends u, v to elements ∆,∆′

of R with ∆∆′ = ∆x. Lemma 4.6 shows that the edge

DC

(∆∆′)

corresponding to x in Γ (where C,D are necessarily distinct since x is discon-
necting) is replaced in Γ′ by a chain

EC

(∆′)

D

(∆)

Where we still write C,D for the respective strict transforms of C and D in X ′.
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The new nodal curve f ′ : X ′ → S is quasisplit since S is strictly local. Call z
the singular point E ∩D of X ′ (of ideal (∆)) and Y the connected component
of the non-smooth locus of X ′/S containing z. The map Y → S is a closed
immersion, cut out by ∆.

Now, since Y ×S Y is disconnecting in X ×S Y , we know (X\Y )×S Y has two
distinct connected components Y 0

1 and Y 0
2 , respectively containing the images

of C and D in (X ′\Y ) ×S Y . Call Y2 the scheme-theoretical closure of Y 0
2 in

X ′. We will show it is a Cartier divisor on X ′.

The sheaf of ideals J de�ning Y2 in X ′ is locally principal away from Y , cut
out by ∆ in Y 0

2 and by 1 in X\(Y ∪ Y 0
2 ): we only need to check it is invertible

on OX′,z, which is a consequence of Lemma 1.16 (or can be seen explicitly in

Spec ÔetX′,z). Thus J is Cartier, and L′′ := O(Y2) is a line bundle on X ′, trivial
over U .

Let V be the closed subscheme of S cut out by the ideal (∆,∆′) ⊂ R. The
exceptional locus Z of π is a P1-bundle on V . But Z and Y2 intersect transver-
sally at one double point in each �ber over V , so degL′′|Z = 1. Let d be the
degree of L on Z and L′ = L′′⊗−d, then L⊗OX′ L

′ has degree zero on Z, hence
is trivial on Z since Z ' P1

V .

Proposition 6.19. Let f : X → S be a nodal curve with S = SpecR regular
and strictly local. Let π : X ′ → X be a re�nement, such that its exceptional
locus is disconnecting in the closed �ber. Set P = Pic

[0]
X/S and P ′ = Pic

[0]
X′/S and

call E and E′ the scheme-theoretical closures of the unit sections of P and P ′

respectively. Then the canonical morphism of algebraic spaces P → P ′ induces
an isomorphism P/E → P ′/E′.

Proof. First, we show P → P ′ is an open immersion.

The �berwise-connected component of unity Pic0
X/S is an open neighbourhood of

the unit section in P , and same goes for Pic0
X′/S → P ′. We have a commutative

diagram of S-spaces

Pic0
X/S

��

� � // P

��

// // ΦX/S

��
Pic0

X′/S
� � // P ′ // // ΦX′/S

where both horizontal rows are exact, and Pic0
X/S → Pic0

X′/S is an isomorphism
by Lemma 6.17, so P → P ′ is locally on the source an open immersion: to
deduce it is an actual open immersion, we only need to show it is set-theoretically
injective, which can be checked on its �bers over S. Let s be a point of S and
k its residue �eld. The smooth locus of Xsm

s has a k-rational point in every
irreducible component by quasisplitness of X (which follows from the fact S
is strictly local), and π is an isomorphism above Xsm

s , so Φs → Φ′s is set-
theoretically injective. It follows P → P ′ is set-theoretically injective, so it is
an open immersion.
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Now this implies the scheme-theoretical closure in P ′ of the unit section of P
is E′, so E = E′ ×P ′ P . Thus P/E = P ′/E′ ×P ′ P , and P/E → P ′/E′ is an
open immersion as a base change of the open immersion P ↪→ P ′. Moreover,
the formation of P and P ′ commutes with base change, so P/E → P ′/E′ will
be surjective (thus an isomorphism) if it is surjective on S-points: take a section
σ : S → P ′/E′, Lemma 6.18 shows that σ can be represented by a line bundle
L on X ′, trivial over the exceptional locus of π. But then by Lemma 6.17,
π∗L is a line bundle on X, so it gives a section S → P/E. Composing with
P/E → P ′/E′, we obtain the S-point of P ′/E′ corresponding to the line bundle
π∗π∗L, which is none other than σ since π∗π∗L ⊗OX′ L

⊗−1 is trivial over U .
Thus σ comes from an S-point of P/E and we are done.

6.3.3 The main theorem

Theorem 6.20. Let S be an excellent regular scheme, U ⊂ S a dense open
subscheme, and X a nodal S-curve, smooth over U . The following conditions
are equivalent:

(i) The Jacobian J of XU admits a Néron model over S.

(ii) X is strictly aligned.

(iii) X is étale-strictly aligned.

(iv) X is étale-strictly aligned at all closed points of S.

If these conditions are met, the Néron model is of �nite type. If in addition
X/S has a partial resolution X ′ → X, the Néron model of J is P/E, where
P = Pic

[0]
X′/S and E is the scheme-theoretical closure of the unit section in P .

Proof. The Néron model is of �nite type if it exists by [19], Theorem 2.1.

Conditions (ii), (iii) and (iv) are equivalent by Proposition 6.14, and (i)→ (ii)
is Proposition 6.15.

We will show (iii)→ (i). As both (iii) and (i) can be checked after base change
to an étale neighbourhood of an arbitrary point s of S, we can assume X/S is
quasisplit (using Lemma 1.14). Base-changing to a further étale cover, we can
assume X/S has a partial resolution (see Proposition 4.14). Replacing X by
this partial resolution, we can assume X is square-free and étale-strictly aligned.
Thus, every non-smooth point of X/S that is not disconnecting in its �ber has
étale-universally prime label. Take P = Pic

[0]
X/S , we will show P/E is a Néron

model for J .

The base change of X to any étale local ring of S still has étale-universally prime
labels in all cycles of all dual graphs, so our claim that P/E is a Néron model
for J can be checked over the étale local rings of S using 5.7 and the fact that
the formation of P and E commutes with base change to the étale local rings
of S. Thus we also assume S is strictly local, with closed point s.
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The quotient P/E is a smooth and separated model of J (since J = Pic0
XU/U ) so

we only have to show it satis�es existence in the Néron mapping property. Let Y
be a smooth S-algebraic space, together with a generic morphism fu : YU → J .
We want to show fu extends to a morphism Y → P/E. Using the uniqueness in
the Néron mapping property and the e�ectiveness of fppf descent for algebraic
spaces ([30, Tag 0ADV]), we can work étale-locally on Y : it is enough to extend
fu to OY,y for every geometric point y of Y . Thus we can and will work assuming
Y = SpecA is a strictly local scheme, and replacing the hypothesis that Y/S is
smooth by the hypothesis that A is a �ltered colimit of smooth R-algebras.

The map YU → J corresponds to a line bundle LU on (X×S Y )U . We only have
to show LU comes from a line bundle on X ×S Y : indeed, such a line bundle
would have total degree zero and give a morphism Y → P . Composing with
P → P/E, we would get a map extending fU as desired.

The base change X×S Y is still a nodal curve whose non-disconnecting singular
points have étale-universally prime label by Lemma 6.11. Take a Y -resolution
X0 → X×S Y . There is a Cartier divisor DU on (X×S Y )U = (X0)U such that

LU = O(DU ). Write it as a �nite sum DU =
k∑
i=1

niDi where the ni are integers

and the Di are primitive Weil divisors on (X0)U , and take D =
k∑
i=1

niDi, where

Di is the scheme-theoretical closure of Di in X0. By de�nition D is only a Weil
divisor on X0, but, by Lemma 4.2, X0 is locally factorial, so D is automatically
Cartier and the line bundle L = O(D) on X0 restricts to LU . Moreover, E×S Y
is still the closure of the unit section in P ×S Y , so the quotient of Pic

[0]
X0/Y

by
the closure of its unit section is equal to P/E×S Y by Proposition 6.19, and we
get the desired line bundle on X ×S Y extending LU .

7 Néron models of curves with nodal models

Let S be a regular base scheme, U a dense open subscheme of S, and X/S a
nodal relative curve, smooth over U . In what follows, we are interested in the
existence of a Néron model over S for the curve XU/U .

We will end up getting a very restrictive condition on the local structure of sin-
gularities for an actual Néron model to exist. When X/S is quasisplit, almost
all connected components of its singular locus need to be irreducible. However,
we will also see one can often exhibit a smooth (bot not necessarily separated)
S-algebraic space with the Néron mapping property. Our condition of local irre-
ducibility of the singular locus of X/S then becomes a condition for separability
of this object, i.e. a condition for it to be a true Néron model. More precisely,
the main results of this section are:

Theorem 7.1 (Theorem 7.40). Let S be a regular excellent scheme, U ⊂ S a
dense open subscheme and X/S a nodal curve, smooth over U , of genus g ≥ 2.
Suppose X has no rational loops, and suppose no geometric �ber of X contains
a rational component meeting the non-exceptional other irreducible components
in three points or more. Then XU/U has a ns-Néron model N/S. If in addition
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X/S is quasisplit, then N is the smooth aggregate (Construction 7.5) of the
stable model Xstable of XU (De�nition 7.26).

Theorem 7.2 (Theorem 7.48). Let X/S be a nodal curve of genus ≥ 1, smooth
over some dense open U ⊂ S, with S regular and excellent. If XU has a Néron
model over S, then the two following conditions are met:

• The singular locus Sing(X/S) is irreducible around every non-exceptional
singular geometric point of X/S.

• For any geometric point s → S, if a rational component E of Xs meets
the non-exceptional other components of Xs in exactly two points x and
y, then the singular ideals of x and y in OetS,s have the same radical.

Conversely, suppose these conditions are met. Suppose in addition that no ge-
ometric �ber of X/S contains either a rational cycle or a rational component
meeting the non-exceptional other components in at least three points. Then
XU/U has a Néron model, i.e. the ns-Néron model of XU/U exhibited in The-
orem 7.40 is separated over S.

7.1 Factoring sections through re�nements

A �rst question, easier to tackle than existence of a Néron model, is "given a
U -point of XU , can we extend it to a section of a smooth S-model of XU".

We answer with a two-step strategy: �rst, when X has no rational component
in its geometric �bers, all U -points of X extend to sections by the following
result from [8]:

Proposition 7.3 ([8], Proposition 6.2). Let X/S be a proper morphism of
schemes, where S is noetherian, regular and integral. Let K be the function
�eld of S, and suppose that no geometric �ber of X/S contains a rational curve.
Then every K-rational point of XK extends to a section S → X.

The S-section of X we obtain might meet the singular locus. Our second step
consists in �nding a re�nement of X such that the section comes (at least locally
on S) from a smooth section of this re�nement.

Lemma 7.4. Let X be a quasisplit nodal curve over a regular scheme S. Sup-
pose X is smooth over a scheme-theoretically dense open subscheme U ⊂ S. Let
σ, τ be sections of X/S, and φ : X ′ → X the blowing-up in the ideal sheaf of τ .
Let s be a point of S and suppose τ(s) is a singular point x of Xs at which X/S
is orientable. Then the three following conditions are equivalent:

1. The restriction of σ to the étale local ring SpecOetS,s factors through a
smooth section of X ′ ×S SpecOetS,s/ SpecOetS,s.

2. There exists an étale neighbourhood V of s such that the restriction of σ
to V factors through a smooth section of X ′ ×S V/V .

37



3. Either σ(s) is a smooth point of Xs, or σ(s) = x and σ and τ are of
opposite types at x.

Proof. Conditions (1) and (2) are equivalent since nodal curves are of �nite
presentation. We will now prove that (1) and (3) are equivalent. This can be
done assuming S = SpecR is strictly local, with closed point s. We can also
assume σ(s) = x since otherwise, the equivalence of (1) and (3) follows from the
fact φ is an isomorphism away from x.

Under these additional hypotheses, let us assume (3) and prove (1). We know
σ factors uniquely through SpecOetX,x.

Let us note Ŝ = Spec R̂. We have the following commutative diagram:

W //

��

Spec ÔX,x

��
Ŝ

��

W0
//

��

SpecOetX,x ×S Ŝ

��

// Ŝ

��
S

σ′//
σ 22φ∗ SpecOetX,x

φ // SpecOetX,x // S

where W0 = φ∗ SpecOetX,x ×S Ŝ and W = W0 ×X×S Ŝ
Spec ÔX,x, so that all

squares are pullbacks, and σ′ is the strict transform of σ in X ′. Then σ′ is a
rational map (de�ned at least over U) and our goal is to prove that it is de�ned
everywhere.

There are sections σ̂ and τ̂ of Spec ÔX,x/Ŝ induced by σ and τ respectively.
Pick an isomorphism

Spec ÔX,x ' R̂[[u, v]]/(uv −∆∆′),

where the comorphism of τ̂ sends u, v to ∆,∆′ respectively. The section σ̂ is
fully described by the images t1 of u and t2 of v in R̂ by its comorphism. Since
σ and τ have opposite types at x, there is a unit λ such that t1 = λ∆′ and
t2 = λ−1∆.

We claim that σ̂ factors through W → Spec ÔX,x. Since W → Spec ÔX,x is the
blow-up in the ideal Iτ̂ = (u−∆, v −∆′) de�ning τ̂ , by the universal property
of blow-ups ([30, Tag 085U]), it su�ces to show that the pull-back of Iτ̂ to Ŝ
by σ̂ is Cartier. Blow-ups commute with completions, so our claim reduces to
proving that the ideal (u−∆, v −∆) of

A := R̂[u, v]/(uv −∆∆′)
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becomes invertible in R̂ when we map A to R̂ via

A→ R̂

u 7→ λ∆′

v 7→ λ−1∆.

The image of Iτ̂ under this map is the ideal I = (λ∆′−∆). If λ∆′ 6= ∆, then I
is invertible and the claim holds. Otherwise, we reduce to this case by observing
that the blow-up of A in (u−∆, v−∆′) is canonically isomorphic to the blow-up
of A in (u− µ∆, v − µ−1∆′) for any unit µ of R̂, as can be seen in the proof of
Corollary 4.7.

Now, let us check that σ factors through X ′ if and only if σ̂ factors through
W . Looking at the diagram above, we see that a factorization of σ̂ through W
yields a factorization of σ ×S Ŝ through W0, which means the (faithfully �at)
base change to Ŝ of the rational map σ′ is de�ned everywhere, so σ′ itself is
de�ned everywhere. Conversely, if σ′ is an actual S-section, it yields a section
from Ŝ to a completed local ring of X ′, and all completed local rings of X ′ at
points above x factor through W .

We have proven σ factors through a section σ′ : S → X ′. We need to show this
section is smooth. It su�ces to show σ′(s) is a smooth point of X ′/S. Call E
the preimage of x in X ′s. The point σ

′(s) must be in E since σ(s) = x. Looking
at the local description of X ′ in the proof of Lemma 4.6, we see E contains
exactly two non-smooth points y and y′ of Xs, and there is an isomorphism
ÔX′,y = R̂[[β, v]]/(βv+ ∆) such that the natural map ÔX,x → ÔX′,y sends u, v
to β(v − ∆′) + ∆ and v respectively. It follows that σ′(s) = y if and only if
t2 strictly divides ∆, i.e. if and only if ∆′ strictly divides t1. Symmetrically,
σ′(s) = y′ if and only if ∆ strictly divides t2. Thus, σ′(x) is in the smooth locus
of X ′/S as claimed, and we have proven (3) implies (1).

For the converse, suppose σ comes from a section σ′ : (X ′/S)sm. By our addi-
tional hypothesis that σ(s) = x, we know σ′(s) is a point of E that is neither y
nor y′, and it follows from the discussion in the paragraph above that σ and τ
are of opposite types at x.

7.2 First construction of the ns-Néron model

In the previous subsection, we have seen how to factor (at least locally) one
section of X to the smooth locus of some re�nement of X. If we want to
approach the Néron mapping property, we would rather have a smooth model
of XU , mapping to X, through which all sections will simultaneously factor.
Intuitively speaking, we need this model to contain the smooth loci of all possible
re�nements of X, at all singular points and of all types, after any smooth base
change. We will now present the formal construction.

Construction 7.5. Let S be a regular and excellent scheme and X/S a quasis-
plit nodal curve, smooth over a dense open U of S. For each point s of S, pick
an admissible neighbourhood V (s) of s in S as in De�nition 3.8. We will write
V (s,s′) the �ber product V (s) ×S V (s′). For each s and each singular point x of
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Xs, pick an orientation of XV (s) at x. For each type T at x, pick a V (s)-section
τ (x,T ) of XV (s) of type T at x, and write X(x,T ) → XV (s) the blowing-up in that
section. Write

Xtot =
∐

(s,x,T )

(X(x,T )/V (s))sm.

Then Xtot is a X-scheme, smooth over S. Consider two index triples (s, x, T )
and (s′, x′, T ′) and call R′ the same type locus of τ (x,T )|V (s,s′) and τ (x′,T ′)|V (s,s′) .
Then R′ is an open subscheme of XV (s,s′) by Proposition 3.6, and the pull-back

R(x,T,x′,T ′) of R′ to (X
(x,T )

V (s,s′)/V
(s,s′))sm is canonically isomorphic to the pull-

back of R′ to (X
(x′,T ′)

V (s,s′) /V
(s,s′))sm by Corollary 4.7. Therefore, we have étale

maps

R(x,T,x′,T ′) → (X(x,T )/V (s))sm

R(x,T,x′,T ′) → (X(x′,T ′)/V (s′))sm.

These maps de�ne an étale equivalence relation on Xtot. We write N the quo-
tient algebraic space (see [30, Tag 02WW]), and call it the smooth aggregate of
X.

Proposition 7.6. With the same hypotheses and notations as in Construction
7.5, N is well-de�ned, smooth over S, and depends only on X (i.e. if one
makes di�erent choices of admissible neighbourhoods V (s) and of sections τ (x,T ),
the resulting smooth aggregate N ′ is canonically isomorphic to N). The map
N → X is an isomorphism above the smooth locus of X/S.

Proof. First, let us prove that N is well-de�ned, i.e. that we have indeed given
an étale equivalence relation on Xtot. For any pair of index triples (s, x, T ) and
(s′, x′, T ′), the maps

R(x,T,x′,T ′) → (X(x,T )/V (s))sm,

R(x,T,x′,T ′) → (X(x′,T ′)/V (s′))sm

are étale since V (s) → S and V (s′) → S are. These maps jointly form an étale
equivalence relation since for any quasisplit nodal curve Y/R with R regular,
and any singular point y at which Y/R is orientable, "having the same type
at y" is an equivalence relation on the set of sections R → Y . Since Xtot is
S-smooth, N is also S-smooth. The fact that N → X is an isomorphism above
the smooth locus of X/S follows from observing that all X(x,T ) → XV (s) are
isomorphisms above said smooth locus, and that the V (s) form an étale cover
of S.

Now, we have to show N only depends on X. For every (s, x, T ), consider
another admissible neighbourhood W (s) of s and a section σ(x,T ) of XW (s) of
type T at x. This gives rise to another smooth aggregate N ′, and we will
prove N and N ′ are canonically isomorphic. We can assume V (s) and W (s) are
admissible neighbourhoods of the same geometric point s̄→ S mapping to s.

First, we will do so assuming that the W (s) are smaller than the V (s) and that
the σ(x,T ) are obtained from the τ (x,T ) via pullback. In that case, there is a
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canonical map from X ′tot :=
∐

(s,x,T )

(X(x,T )/V (s))sm to Xtot, compatible with

the étale equivalence relations de�ning N and N ′, so we get a canonical map
N ′ → N of S-algebraic spaces. This map restricts to an isomorphism over the
étale stalks of all geometric points s̄→ S, so it is an isomorphism.

Now, let us drop the assumption that the σ(x,T ) are obtained from the τ (x,T )

via pullback. For all (s, x, T ), by the special case proven above, we can assume
V (s) = W (s). Using Proposition 3.6 and the special case proven above, we can
assume (shrinking V (s) if necessary) that σ(x,T ) and τ (x,T ) have the same type
everywhere. It follows from Corollary 4.7 that the blowing-ups in the sheaves
of ideals of σ(x,T ) and τ (x,T ) are canonically isomorphic, and this holds for all
(s, x, T ), so N = N ′ by construction.

Finally, we also drop the assumption that there exist maps of étale neighbour-
hoods W (s) → V (s). Then, N and N ′ are still canonically isomorphic by the
special cases above since W (s)×S V (s) is an admissible neighbourhood of s that
factors through both V (s) and W (s).

Proposition 7.7. The formation of smooth aggregates commutes with smooth
base change, i.e. if S is a regular and excellent scheme, X/S a nodal curve,
smooth over a dense open U ⊂ S, N the smooth aggregate of X/S, and Y/S a
smooth morphism of schemes, then N ×S Y is the smooth aggregate of XY /Y .

Proof. Immediate from Proposition 3.10 and Proposition 7.6.

Corollary 7.8. If S is a regular and excellent scheme, X/S a nodal curve,
smooth over a dense open U ⊂ S, N the smooth aggregate of X/S, and Y/S a
co�ltered limit of smooth morphisms, then N ×S Y is the smooth aggregate of
XY /Y .

Proposition 7.9. Let S be a regular and excellent scheme, X/S a nodal curve,
smooth over a dense open U ⊂ S, and N the smooth aggregate of X/S. Then
every S-section of X/S factors uniquely through N .

Proof. First, we prove uniqueness: suppose σ comes from two sections σ0, σ1

of N/S an let us show σ0 = σ1. Since σ0 and σ1 coincide on NU = XU , it is
enough to show that for any t ∈ S we have σ0(t) = σ1(t). This can be done
assuming S is strictly local with closed point t. Describe N as in Construction
7.5 using admissible neighbourhoods V (s) of every point s of S and sections
τ (x,T ) of XV (s) of type T at x for every singular point x of Xs and every type
T at x. By Proposition 7.6, we can assume none of the V (s) contains t except
V (t) and V (t) = S. Put y = σ(t). If y is a smooth point of X/S, then σ factors
through the smooth locus of X/S, above which N → X is an isomorphism, so
we are done. Otherwise, by Lemma 7.4, we see that σ0 and σ1 must both factor
through the Zariski-open subscheme X(t,y,T ) of N , where T is the type at y
opposite to that of σ. Since X(t,y,T ) is a nodal curve over S, it is S-separated,
and we conclude using the fact σ0 and σ1 coincide over U .

Next, we have to show existence. We recycle the notations of Construction 7.5.
By descent, using the uniqueness part we have already proven, it is enough to
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show that for all s ∈ S, the section σ(s) := (σ, Id) of XV (s)/V (s) comes from
a map V (s) → N . Put y = σ(s). By Lemma 7.4 and Proposition 7.6, we can
assume (shrinking V (s) if necessary) that σ(s) factors through X(y,T ), where T
is the type at y opposite to that of σ, so we are done.

The properties of smooth aggregates proven above allow us to see them as the
solutions of a universal problem:

Proposition 7.10. Let S be a regular, excellent scheme and X/S a quasisplit
nodal curve. Then for any smooth S-algebraic space Y together with a morphism
f : Y → X, f factors uniquely through the canonical map N → X.

Proof. The section (f, Id) of XY /Y factors uniquely through NY by Proposi-
tion 7.9 since the latter is the smooth aggregate of XY /Y by Proposition 7.7.
Projecting onto N , we get the unique map Y → N through which f factors.

Corollary 7.11. Let S be a regular and excellent scheme and X ′ → X a mor-
phism between two quasisplit nodal curves over S. Let N be the smooth aggregate
of X, then N ×X X ′ is the smooth aggregate of X ′.

Now, we are equipped to prove the following result, which is a weak version of
our main theorem of existence for ns-Néron models of nodal curves:

Proposition 7.12. Let S be a regular and excellent scheme and X/S a nodal
curve, smooth over a dense open subscheme U of S, with no rational component
in any geometric �ber. Then XU has a ns-Néron model N/S, and there is a
canonical morphism N → X of models of XU . When X/S is quasisplit, N is
the smooth aggregate of X.

Proof. By Lemma 1.14, Proposition 5.6 and Lemma 5.5, we can assume X/S is
quasisplit and S is integral. Let N be the smooth aggregate of X/S. Then N is
a smooth S-model of XU with a canonical S-map N → X. Consider a smooth
S-scheme Y , then we have

HomU (YU , XU ) = HomS(Y,X)

= HomS(Y,N),

where the �rst equality holds by Proposition 7.3 applied to the connected com-
ponents of XY /Y , and the second by Proposition 7.7. Thus, N/S has the Néron
mapping property.

The remainder of this section will be dedicated to improving Proposition 7.12
by weakening the hypothesis that the geometric �bers of X/S have no rational
components, and determining conditions under which N/S is separated, i.e. a
Néron(-lft) model in the classical sense.

42



7.3 Exceptional components and minimal proper regular
models

It is known that an elliptic curve over the fraction �eld of discrete valuation
ring has a Néron model, given by the smooth locus of its minimal proper reg-
ular model. It is proven in [23] that the same holds for any smooth curve of
positive genus. In particular, rational components of the special �ber that can
be contracted to smooth points have a "special status": they must map to a
mere point of the Néron model. Therefore, if one wants to weaken the hy-
potheses of Proposition 7.12 to allow for rational components, one must take
this phenomenon into account. Over a discrete valuation ring, these compo-
nents of the special �ber that can be contracted to smooth points, the so-called
exceptional components, are characterized by Castelnuovo's criterion ([22], The-
orem 9.3.8). This criterion uses intersection theory on �bered surfaces, so is not
easy to generalize to higher-dimensional bases for arbitrary relative curves, but
the nodal case is much simpler. We will discuss the analogue of the notion of
exceptional components for nodal curves over arbitrary regular base schemes.

7.3.1 De�nition

De�nition 7.13. Let k be a separably closed �eld and Xk/k a nodal curve.
De�ne a sequence of subsets of the (�nite) set I of irreducible components of Xk

by J0 = ∅, and for all n ∈ N, Jn+1 is the subset of I consisting of components
C meeting one of the following conditions:

• C is in Jn;

• C is rational and k-smooth, and intersects

( ⋃
D∈I−Jn−{C}

D

)
in exactly

one point.

The sequence (Jn)n∈N is increasing, so it is stationary at some subset J of I,
which we call the set of exceptional components of X.

We call exceptional trees the connected components of
⋃
C∈J

C.

A non-smooth point of X/k is called exceptional if it belongs to at least one
exceptional component.

WhenX/S is a nodal relative curve, smooth over a schematic dense open U ⊂ S,
we call exceptional point of X a singular point, exceptional in a �ber of X over
a separably closed �eld-valued point of S.

If X/S is quasisplit, for any s ∈ S, we de�ne the exceptional components (resp.
exceptional points, resp. exceptional trees) of Xs as those giving rise to the
exceptional components (resp. points, resp. trees) of Xs̄ for some geometric
point s̄→ s.

Remark 7.13.1. Neither the components of X lying in a cycle of the dual graph,
nor its components of genus ≥ 1 are exceptional. In particular, the exceptional
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trees correspond to actual trees of the dual graph, and they are not covering as
soon as X is of genus ≥ 1.

7.3.2 The minimal proper regular model

Here, we discuss brie�y the case of one-dimensional bases, where there is a
canonical minimal proper regular model of which the Néron model is the smooth
locus.

Proposition 7.14. Let R be a discrete valuation ring, with �eld of fractions K
and residue �eld k, and XK a smooth K-curve of genus ≥ 1. Then XK admits
a unique minimal proper regular model Xmin over S (i.e. Xmin is a terminal
object in the category of proper regular S-models of XK).

Moreover, if XK has a regular nodal model X, then Xmin is nodal and the map
X → Xmin is just a contraction of every exceptional tree of the special �ber of
X into a smooth point (i.e. the image of an exceptional tree of the special �ber
of X is a smooth point of Xmin/S, and X → Xmin restricts to an isomorphism
over the rest of Xmin).

Proof. The existence of the minimal proper regular model is [22], Theorem
9.3.21.

For the second part of the proposition, suppose XK has a nodal regular model
X/S. It follows from [22], De�nition 3.1 and Theorem 3.8, that there exists a
regular proper model X ′/S of XK and a map X → X ′ that is just a contraction
of every exceptional tree into a smooth point. In particular, X ′/S is nodal. But
then X ′ is relatively minimal in the sense of [22], De�nition 3.12, so it is Xmin

and we are done.

Theorem 7.15 ([23], Theorem 4.1.). Let S be a connected Dedekind scheme
(i.e. a regular scheme of dimension 1) with �eld of functions K. Let XK/K be
a proper regular connected curve of genus ≥ 1. Suppose either S is excellent, or
XK/K is smooth, and let Xmin be the minimal proper regular S-model of XK .
Then (Xmin/S)sm is the Néron model of (XK/K)sm.

7.3.3 Van der Waerden's purity theorem

We will de�ne the exceptional locus of a birational morphism, and cite a result
of purity of this exceptional locus when the target is factorial. This will allow us
to describe explicitly some open subsets of the ns-Néron model (when it exists)
of a curve with a nodal model.

De�nition 7.16. Let f : X → Y be a morphism locally of �nite type between
two locally noetherian algebraic spaces. We say f is a local isomorphism at some
x ∈ X when f induces an isomorphism OY,f(x) = OX,x (or, equivalently, if x has
a Zariski open neighbourhood V ⊂ X such that f induces an isomorphism from
V onto its image in Y ). The set of all points at which f is a local isomorphism
is an open subscheme W of X, and we call its complement the exceptional locus
of f . If W = X, we say f is a local isomorphism.
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Example 7.17. Let Y be a noetherian integral scheme and X → Y be the
blowing-up along a closed subscheme Z → Y of codimension ≥ 1. Then the
exceptional locus of X → Y is the preimage of the set of all z ∈ Z around which
Z is not a Cartier divisor.

Example 7.18. Let k be a �eld, and glue two copies of the identity A1
k → A1

k

along the complement of the origin. The resulting map A→ A1
k, where A is the

a�ne line with double origin, is a local isomorphism.

In Example 7.18, the birational map f : A → A1
k has empty exceptional locus,

but it is not separated, so in particular not an open immersion. In the follow-
ing lemma, we will see that non-separatedness is essentially the only possible
obstruction preventing such maps from being open immersions.

Lemma 7.19. Let f : X → Y be a separated local isomorphism between two
locally noetherian integral algebraic spaces. Then f is an open immersion.

Proof. We need to show f is injective. Call η the generic point of X. Since f
is a local isomorphism at η, we know f(η) is the generic point of Y . Consider
two points x, x′ of X with the same image y in Y . There are Zariski-open
neighbourhoods U,U ′ of x and x′ respectively, such that U → Y and U ′ → Y are
open immersions. By separatedness of f , the canonical map U×XU ′ → U×Y U ′
is a closed immersion. But it follows from the fact f is a local isomorphism that
U ×Y U ′ is integral, with generic point (η, η). Since this point is in the image
of U ×X U ′, the map U ×X U ′ → U ×Y U ′ is an isomorphism, so the point
(x, x′)→ X ×Y X ′ factors through U ×X U ′, i.e. x = x′.

Theorem 7.20 (Van Der Waerden). Let X,Y be locally noetherian integral
schemes with Y locally factorial and f : X → Y a birational morphism of �nite
type. Then the exceptional locus of f is of pure codimension one in X.

Proof. This is [14], Theorem 21.12.12.

Lemma 7.21. Let S be a regular scheme, U a dense open subscheme of S, and
X/S a quasisplit nodal curve, smooth over U . Let E be the union in X of the ex-
ceptional components of all �bers Xs (which are well-de�ned by quasisplitness).
Suppose that XU admits a ns-Néron model N/S, then the map (X\E)sm → N
extending the identity over U is an open immersion.

Proof. The scheme (X\E)sm is separated over S, hence separated over N .
Therefore, using Lemma 7.19, we only need to prove the exceptional locus of
(X\E)sm → N is empty. The subset E is Zariski-closed in X by 1.8. The
unique morphism of algebraic spaces g : Xsm → N extending the identity over
U is birational and of �nite type, and the domain and codomain are S-smooth,
hence regular. We only have to show that its exceptional locus E0 is contained
in E. Take an étale cover V0 → N where V0 is a scheme, it is enough to show
E0 ×N V0 ⊂ E ×N V0. Therefore, it is enough to prove that for any integral
scheme V and any étale map V → N , we have E0×N V ⊂ E×N V . The scheme
V is smooth over S so it is regular, and gV : Xsm ×N V → V is birational
and of �nite type since g is. Furthermore, since the property "being an isomor-
phism" is local on the target for the fpqc topology, the exceptional locus of gV
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is precisely E0×N V . Thus E0×N V is either empty or pure of codimension one
in Xsm ×N V by Theorem 7.20. If it is empty, we are done. Otherwise, since
E×XXsm×N V is closed in Xsm×N V , it is enough to prove that every point of
E0×N V of codimension 1 in Xsm×N V is contained in E×N V . Since V → N
is an étale cover, this is true if and only if every point of E0 of codimension 1
in Xsm is contained in E.

Let x be a point of E0 of codimension 1. Let ξ be the image of x in S, we
have codim(x,X) = codim(x,Xξ) + codim(ξ, S), so ξ has codimension ≤ 1 in
S. Since X/S is smooth over U , ξ cannot be of codimension 0 in S, so it must
be of codimension 1: OS , ξ is a discrete valuation ring.

But then N ×S SpecOS,ξ is the SpecOS,ξ-Néron model of its generic �ber by
Proposition 5.4, so it is the smooth locus of the minimal proper regular model of
X×SSpecOS,ξ by Theorem 7.15. Now, by Proposition 7.14, the minimal proper
regular model of X×S SpecOS,ξ is the contraction of the exceptional trees of its
special �ber into smooth points, and in particular contains (X\E)×S SpecOS,ξ
as an open subscheme. This implies g is an isomorphism at every point of
(X\E)sm ×S SpecOS,ξ, so x must be in E.

Remark 7.21.1. With hypotheses and notations as in Lemma 7.21, if E is empty,
it follows that the canonical morphism N0 → N , where N0 is the smooth aggre-
gate of X, is an open immersion. We will see in the next subsection that one
can always reduce to this situation: if E is not empty, one can always contract
X into a new nodal model of XU with no exceptional components. However,
we will also see that nodal models with no rational components at all do not
always exist, so ns-Néron models cannot always be easily described in terms of
smooth aggregates.

7.4 Contractions and stable models

So far, we have met two features of a nodal curve X/S, smooth over a dense
open U ⊂ S, that can cause problems for us: one is the complexity of its
singularities (for example because there can be sections through a singular point
of positive arithmetic complexity, meaning we lose relevant information if we
take the smooth locus and forget this point), and the other one is the presence of
rational components in its geometric �bers (in the absence of such components,
we can construct explicitly a ns-Néron model, see 7.2). Re�nements allow us to
"turn the �rst problem into the second": we get a new model of XU with less
complex singularities, but more rational components. Looking at Proposition
7.12, it is clear that we also have an interest in the inverse problem: if X/S has
rational components, is it possible to blow them down and obtain a new nodal
model with more complex singularities, but less rational components?

This question �nds its answer in [7], in which the author introduces and studies
contraction morphisms for the moduli stacks of n-pointed stable curves. In this
subsection, we will see how this translates into the algorithm we need.
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7.4.1 The stack of n-pointed stable curves and the contraction mor-

phism

De�nition 7.22 ([7], De�nition 1.1.). Let n, g be natural integers such that
2g−2+n > 0. A n-pointed stable curve of genus g over S is a nodal relative curve
X/S of genus g, together with n pairwise disjoint sections σ1, ..., σn : S → Xsm,
such that for every geometric �berXs and every nonsingular rational component
C of Xs, the sum of the number of intersection points between C and the union
of all other irreducible components of Xs, and of the number of σi passing
through C, is at least 3. When the sections are clear from context, we will
sometimes omit them in the notation.

We de�ne a morphism between two n-pointed stable curves (X ′/S′, σ′1, ..., σ
′
n)

and (X/S, σ1, ..., σn) as a cartesian diagram

X ′
f //

π′

��

X

π

��
S′

g // S

such that fσ′i = σig for all i.

Remark 7.22.1. The condition on the number of special points appearing on a
rational component aims to guarantee that the S-automorphism group of X is
�nite.

Theorem 7.23. Call Mg,n the category of stable n-pointed curves of genus
g. As a category �bered in groupoids over schemes, it is a separated Deligne-
Mumford stack, smooth and proper over SpecZ.

Proof. This is [7], Theorem 2.7.

De�nition 7.24 ([7], De�nition 1.3.). Let S be a scheme, g a natural integer,
and f : X → X ′ a morphism of S-schemes between stable pointed S-curves of
genus g. It is called a contraction, or contraction of X, if:

• X is n + 1-pointed and X ′ is n-pointed, with 2g − 2 + n > 0, and their
respective sections (σi)1≤i≤n+1, (σ

′
i)1≤i≤n satisfy f ◦ σ(i) = σ′(i) for all

0 ≤ i ≤ n.

• For any geometric point s ∈ S, either Xs → X ′s is an isomorphism, or
σn+1(s) is in a rational component C of Xs such that f(C) is a point
x ∈ X ′s, and Xs\C → X ′s\{x} is an isomorphism.

Remark 7.24.1. We do not use the same notion of geometric point as [7], but
the two subsequent de�nitions of contractions are equivalent by [22], Proposition
10.3.7.

Theorem 7.25. Let S be a scheme and X/S a n + 1-pointed stable curve of
genus g with 2g − 2 + n > 0. Then X admits a contraction, unique up to a
canonical isomorphism.

Proof. This is [7], Proposition 2.1.
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7.4.2 The stable model

De�nition 7.26. Let S be a scheme and U ⊂ S a scheme-theoretically dense
open. Let XU/U be a smooth curve of genus g ≥ 2. We call stable S-model of
XU a 0-pointed stable curve X of genus g with an isomorphism X ×S U = XU .

Lemma 7.27. Let S be a normal, noetherian and strictly local scheme, U ⊂ S
a scheme-theoretically dense open subscheme and X/S a nodal curve, smooth
over U , of genus g ≥ 2. Then XU has a unique stable model Xstable, and there
is a unique morphism of models X → Xstable.

Proof. Let s ∈ S be the closed point. The �ber Xs has �nitely many ratio-
nal components, and there are in�nitely many disjoint smooth sections of X/S
through each of those. If a rational component E of Xs contains only one sin-
gular point, consider two disjoint smooth sections through E, and if it contains
two singular points, consider one smooth section through E. This gives a �nite
number σ1, ..., σn of sections through Xsm. Applying Proposition 1.8, and us-
ing the fact that the irreducible components of X are geometrically irreducible
by quasisplitness, we see that for any geometric �ber Xt of X/S, any rational
component of Xt intersecting the other components in two points contains σi(t)
for some i, and any rational component of Xt intersecting the other components
in one point contains σi(t) and σj(t) for some i 6= j.

Thus X/S endowed with the (σi)0≤i≤n becomes a n-pointed stable curve of
genus g, restricting over U to the data of XU and the n U -sections σi|U : U →
XU , and we can apply repeatedly Theorem 7.25 to get a stable 0-pointed curve
X ′ → S with a map X → X ′. Since XU/U is smooth, the restriction of X → X ′

to U just forgets the sections (and induces an isomorphism on the curves), so
Xstable := X ′ is a stable model of XU .

Consider two stable models of XU , corresponding to two maps a, b : S ⇒Mg,0

extending U → Mg,0. Call Z the equalizer of f and g, we have a cartesian
diagram

Z //

��

S

(a,b)

��
Mg,0

//Mg,0 ×Mg,0

where the bottom arrow is the diagonal. Since Mg,0 is Deligne-Mumford and
separated, its diagonal is �nite. Thus, Z → S is a �nite and birational morphism
of algebraic spaces, hence an isomorphism by Zariski's main theorem: the stable
model Xstable is unique up to a unique isomorphism. As for uniqueness of the
morphism X → Xstable of models of XU , let f, g be two such morphisms, then
their equalizer is a closed subscheme of X (by separatedness of Xstable/S),
which contains XU . But XU is scheme-theoretically dense in X since U is
scheme-theoretically dense in S and X/S is �at, so f and g must be equal.

Proposition 7.28. Let S be a normal and locally noetherian scheme and U ⊂ S
a scheme-theoretically dense open. Let X/S be a quasisplit nodal curve, smooth
over U , of genus g ≥ 2. Then
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1. XU has a stable S-model Xstable, unique up to a unique isomorphism, and
there is a canonical map X → Xstable.

2. The formation of Xstable commutes with any base change S′ → S such that
S′ is normal and locally noetherian and U ×S S′ is scheme-theoretically
dense in S′.

Proof. (2) is a consequence of Proposition 1.8. In (1), uniqueness of Xstable

and of the map X → Xstable holds by the same argument as in the proof of
Lemma 7.27 above. We will now prove their existence. Let s be a point of S.
By Lemma 7.27, XU ×S SpecOetS,s admits a stable model X0,s over SpecOetS,s.
But then X0,s/ SpecOetS,s is of �nite presentation, thus comes via base change
from a morphism Xs → V s, where V s is an étale neighbourhood of s in S.
Moreover, by [13], Proposition 8.14.2, restricting V s if necessary, the map X×S
SpecOetS,s → X0,s extends to a V s-map X ×S V s → Xs. Restricting V s once
again if necessary, we take this map to be an isomorphism over U . Now, the
locus on Xs where Xs/V s is at-worst nodal is open in Xs and contains Xs so,
restricting Vs again if necessary, we can assume Xs/V s is a nodal curve. Finally,
the union of all nonsingular rational components of �bers of Xs/V s meeting the
other components of their �ber in at most two points is closed in Xs, and does
not meet Xs, so, restricting Vs one last time, we can assume Xs/V s is stable.
In particular, it corresponds to a morphism V s →Mg,0.

For any s, s′ ∈ S, the diagram of stacks

V s ×S V s
′ //

��

V s

��
V s
′ //Mg,0

commutes by uniqueness of the stable model of XU×SV s×SV s′ .

Applying a similar argument to the triple �bered products, we see the maps
V s → Mg,0 and their gluing isomorphisms satisfy the cocycle condition with
respect to the (étale) covering of S by the V s. Therefore, they come via base
change from a map S →Mg,0 i.e. the Xs are obtained via base change from a
stable curve Xstable/S (which is a model of XU as desired). Likewise, the local
maps X ×S V s → Xs glue to a morphism X → Xstable.

7.4.3 Rational components of the stable model

We will now determine conditions onX guaranteeing thatXstable has no rational
components in any geometric �ber. When said conditions are met, this allows
us to use Proposition 7.12 to describe explicitly the ns-Néron model of XU .

De�nition 7.29. Let k be a separably closed �eld and X/k a nodal curve. We
say X has rational cycles if there is a union of rational components of X that
is 2-connected, and no rational cycles otherwise. If S is a scheme and X/S a
nodal curve, we say X/S has rational cycles if a �ber over some geometric point
of S does.
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Remark 7.29.1. The curve X/ Spec k has rational cycles if and only if there is a
cycle of its dual graph in which each vertex corresponds to a rational component.
We call such cycles the rational cycles of the dual graph.

Remark 7.29.2. If X/ Spec k is of genus g ≥ 2 and has rational cycles, then every
rational cycle of the dual graph either is a loop, or contains a rational component
meeting the non-exceptional other components in at least three points.

De�nition 7.30. Let k be a separably closed �eld and X/k a nodal curve. We
call rational loop of X any singular rational irreducible component of X. If S is
a scheme and X/S a nodal curve, we say X/S has rational loops if a �ber over
some geometric point of S does.

Lemma 7.31. Let k be a separably closed �eld, (Y/k, y1, ..., yn+1) a stable n+1-
pointed curve of genus g over k with 2g−2+n > 0, and Y → Z the contraction.
Then Z has rational cycles if and only if Y does.

Proof. If Y → Z is an isomorphism of schemes, it is obvious. Otherwise, there is
a rational component C of Y whose image is a point z ∈ Z, and Y \C → Z\{z}
is an isomorphism. If C does not belong to a 2-connected union of rational
components of Y , we are done. Otherwise, let Γ be said union, the image of Γ
in Z is still 2-connected and still contains only rational components.

Corollary 7.32. Let S be a normal and locally noetherian scheme and U ⊂ S
a scheme-theoretically dense open. Let X/S be a quasisplit nodal curve, smooth
over U , of genus g ≥ 2. Then Xstable has rational cycles if and only if X does.

Rational cycles are an example of rational components we cannot get rid of by
contracting. There is another family of such "problematic components": sup-
pose for example that a rational component intersects three other non-rational
components, then no contraction will get rid of it. The ones we can get rid of
are described in the two following lemmas:

Lemma 7.33. Let k be a separably closed �eld and (Y/k, y1, ..., yn+1) a stable
(n + 1)-pointed curve of genus g with 2g − 2 + n > 0. Suppose Y/k has no
rational cycles, and Y → Z is the contraction. Let FY , FZ denote the union
of all rational components meeting the non-exceptional other components in at
most two points, in Y and Z respectively. Then Y \FY is isomorphic to its image
in Z, and the image of FY in Z is either FZ or the union of FZ and a point.

Proof. If Y → Z is an isomorphism of schemes, this is obvious. Otherwise, there
is a rational component C of Y whose image is a point z ∈ Z, and Y \C → Z\{z}
is an isomorphism. We will prove that the image of FY in Z is FZ ∪ {x}.

The contracted component C meets the other irreducible components of Y in at
most two points so C is in FY . There is a canonical bijection between irreducible
components of Y that are not C and irreducible components of Z (namely, it
sends a component of Y to its image in Z), so we just need to prove that a
component D 6= C of Y is in FY if and only if it is sent to a component of FZ .

If D is not rational or does not meet C, this is true. Suppose D is rational
and meets C. Then D ∩ C is exactly one point c1 (otherwise D ∪ C would be
2-connected and Y would have rational cycles).

50



It is enough to show thatD has as many intersection points with non-exceptional
other irreducible components of Y than its image D′ has in Z. Since the map
Y \C → Z\{z} is an isomorphism, it comes down to saying that if C is not
exceptional, then the other irreducible component of Y that C meets is not
exceptional either, which follows from the de�nition of exceptional components.

Lemma 7.34. Let S be a normal and locally noetherian scheme and U ⊂ S a
scheme-theoretically dense open. Let X/S be a quasisplit nodal curve, smooth
over U , of genus g ≥ 2, with no rational cycles. Let s be a �eld-valued point of
S, F the union of all rational components of Xs intersecting the non-exceptional
other components in at most two points, and F ′ its image in Xstable. Then

1. X → Xstable induces an isomorphism between Xs\F and Xstable
s \F ′.

2. F ′ is a disjoint union of points, one for each connected component of F .

Proof. By quasisplitness we can assume k(s) is separably closed, and base-
changing to SpecOetS,s (which preserves Xstable by Proposition 7.28), we can
assume S is strictly local, with closed point s. Then there are S-sections
σ1, ..., σn of X making it a n-pointed stable curve. Consider the sequence
X = Xn → Xn−1 → ... → X0 = Xstable, where Xi → Xi−1 is the contrac-
tion of σi. Call Fi the image of F in (Xi)s for all i, and call Gi the union of
all rational components of (Xi)s meeting the non-exceptional other ones in at
most two points. It follows from the preceding lemma that Fi is the union of
Gi and a �nite number of points. In particular, since (Xi)s → (Xi−1)s induces
an isomorphism from (Xi)s\Gi to its image, we have (Xi)s\Fi = (Xi−1)s\Fi−1,
and (1) follows inductively. Then, (2) follows from observing that G0 is empty:
indeed, Xstable

s is a stable 0-pointed curve over k(s), so it has no exceptional
components, thus a component in G0 would be rational, unmarked, and meet
the other irreducible components in at most two points, which is forbidden by
the de�nition of stable curves.

Proposition 7.35. Let S be a normal and locally noetherian scheme and X/S a
quasisplit nodal curve of genus g ≥ 2, smooth over a scheme-theoretically dense
open U ⊂ S. Let Xstable be the stable model of XU . Then the two following
conditions are equivalent:

1. There is a geometric point s→ S such that Xstable
s has a rational compo-

nent.

2. One of the �bers of X over S contains either a rational loop, or a rational
component meeting the non-exceptional other irreducible components in at
least three points.

Proof. If X has rational loops, then Xstable has a geometric �ber with a rational
component by Corollary 7.32. If a �ber Xs has a rational component E meeting
the other non-exceptional other components in at least three points, then any
contraction of Xs is an isomorphism over the open subscheme E ∩ (X/S)sm of
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Xs, so Xstable
s has a rational component (thus some geometric �ber of Xstable

also does).

Conversely, suppose X has no rational loops, and every rational component of
a �ber Xs meets the other non-exceptional irreducible components of Xs in at
most two points. By Remark 7.29.2, X has no rational cycles, so we conclude
with Lemma 7.34.

7.4.4 Singular ideals of the stable model

Now we want to understand precisely what the stable model looks like as a
nodal curve, i.e. we want to compute its singular ideals. This will be made
clear by Lemma 7.39. We build up to it with a few technicalities.

Lemma 7.36. Let S = SpecR be a trait with generic point η. Let X be a
nodal S-model of a smooth η-curve Xη. Then the sum of thicknesses of non-
exceptional singular points of X is the number of singular points of the special
�ber of Xmin, where Xmin is the minimal proper regular model of Xη.

Proof. The sum of thicknesses of non-exceptional singular points does not change
when one blows up in a singular point of the closed �ber, and after a �nite
sequence of such blow-ups, we obtain a regular model Xreg → X of Xη. There-
fore, we can assume X is regular. But then, Proposition 7.14 allows us to
conclude.

Corollary 7.37. The sum of thicknesses of non-exceptional singular points is a
birational invariant for generically smooth nodal curves over a discrete valuation
ring.

Proposition 7.38. Let S = SpecR be a regular local scheme with closed point s,
U a dense open subscheme of S and X/S, Y/S two quasisplit nodal curves, with
XU = YU smooth over U . Then the product of singular ideals of non-exceptional
points of Xs is equal to that of Ys.

Remark 7.38.1. If we call thickness of a singular point its singular ideal, and
note additively the monoid of principal prime ideals of R, we can rephrase
this "the sum of thicknesses of non-exceptional points in the closed �ber is a
birational invariant for generically smooth quasisplit nodal curves over a regular
local ring".

Proof. Since R is regular, it is a unique factorization domain. Let ∆1, ...,∆k

be the prime elements of R such that the generic point of {∆i = 0} is not

in U . Every singular point of Xs has singular ideal of the form

(
k∏
i=1

∆νi
i

)
for some integers νi, not all zero, and the same goes for Y . Therefore, if we
call λ, µ the products of all singular ideals of non-exceptional points of Xs and

Ys respectively, we have integers n1, .., nk,m1, ...,mk with λ =

(
k∏
i=1

∆ni
i

)
and

µ =

(
k∏
i=1

∆mi
i

)
, and we only need to show ni = mi for all i.
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Pick some 1 ≤ i ≤ k, let t be the generic point of the zero locus of ∆i in S and
set T = SpecOS,t. Base-changing to T , we get nodal curves XT , YT , with the
same smooth generic �ber. Proposition 1.8 implies that the sum of thicknesses
of their non-exceptional singular points are respectively ni and mi, but they
must be equal by Corollary 7.37, so ni = mi for all i and we are done.

The next lemma describes how to compute the singular ideals of Xstable from
the singular ideals of X.

Lemma 7.39. Let X/S be a quasisplit nodal curve with no rational cycles, of
genus ≥ 2, with S regular. Suppose X is smooth over a dense open U ⊂ S.
Let s be a point of S and F ⊂ Xs be the union of all rational components of
Xs intersecting the non-exceptional other irreducible components in at most two
points. Call Z the set of non-exceptional singular points of Xs. The image in
Xstable of a connected component G of F is a smooth point if all singular points
in G are exceptional, and a singular point of label

∏
y∈Z∩G

l(y) otherwise, where

we note l(y) the label of y.

Remark 7.39.1. To put this in simpler words, in the formalism of Remark 7.38.1,
with the additional convention that the points of thickness 0 are the S-smooth
points, Lemma 7.39 says that the thickness of a point of Xstable is the sum of
thicknesses of all non-exceptional singular points of X above it.

Proof. We can assume S is local, with closed point s. Let σ1, ..., σn be such that
X/S endowed with the σi is inMg,n (they exist by quasisplitness). Permuting
the σi if necessary, we assume there is an index 0 ≤ m ≤ n such that for all
1 ≤ i ≤ m, σi(s) is in G, and for all m < i ≤ n, σi(s) is not in G. Consider
the sequence Xn → ... → X0, where Xn is X endowed with the σi, and each
Xi+1 → Xi is the contraction of σi+1: we have X0 = Xstable. Call Fi, Zi the
images of F,Z in (Xi)s. For all y ∈ Zi, we call li(y) the singular ideal of y in
Xi.

Call Gi the image of G in Xi for every i. Since none of the σi(s) with 1 ≤ i ≤ m
are in Gi, we know that Gm → G0 is an isomorphism. But G0 is a point, since
it is connected, X0 is stable, and all components of G are rational and meet the
others in at most two points. Thus, Gm is a k(s)-point x of Xm.

Now, observe that for all m < i ≤ n, σi(s) is in Gi. Therefore, X → Xm induces
an isomorphism X\G → Xm\Gm. In particular, the product of all singular
ideals of non-exceptional points of X outside of G is equal to the product of all
singular ideals of non-exceptional points of Xm distinct from x. But we also
know by Proposition 7.38 that the product of singular ideals of non-exceptional
singular points of X and Xm are the same: it follows that if G consists only of
exceptional components, then x is smooth over S, and otherwise, x is singular
of label

∏
y∈Z∩G

l(y).
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7.4.5 The main theorem

We can now generalize Proposition 7.12 by applying it to the stable model:
since the latter is less likely to have rational components than the original nodal
model, it is more likely to fall under the hypotheses of the proposition.

Theorem 7.40. Let S be a regular excellent scheme, U ⊂ S a dense open
subscheme and X/S a nodal curve, smooth over U , of genus g ≥ 2. Suppose X
has no rational loops, and suppose no geometric �ber of X contains a rational
component meeting the non-exceptional other irreducible components in three
points or more. Then XU/U has a ns-Néron model N/S. If in addition X/S is
quasisplit, then N is the smooth aggregate of the stable model Xstable of XU .

Proof. We can assume X/S is quasisplit by Lemma 1.14, Proposition 5.6 and
Lemma 5.5. Then X/S has a stable model Xstable, which has no rational com-
ponents in any geometric �ber by Proposition 7.35. We conclude by applying
Proposition 7.12 to Xstable/S.

Remark 7.40.1. Our hypotheses on the rational components of the geometric
�bers of X/S are quite unnatural, and merely come from the fact the rational
components we allow are the only ones that can be contracted while staying in
the realm of nodal curves. One could maybe get rid of these hypotheses in the
following way:

1. Locally on the base if necessary, obtain a (not necessarily nodal) model of
XU with no rational components in any geometric �ber.

2. Try to see if the models obtained this way always �t into a category in
which we can solve the universal problem 7.10.

Over one-dimensional bases, the standard way to contract a set E of rational
components is to consider the projectivisation of the symmetric graded algebra
of a very ample divisor that does not meet E. In higher dimension, however, it
is not obvious that the resulting scheme would even remain �at over the base.
In the case of nodal curves, this was proven for us in [7], so these subtleties
are hidden behind Theorem 7.25, but in order to go beyond nodal curves, one
would have to be careful about such matters.

7.5 Separatedness of the ns-Néron model

Ns-Néron models of nodal curves are often non-separated, which can make them
a little di�cult to work with. Here, we discuss (quite restrictive) criteria under
which they are separated, i.e. under which a Néron model exists. Roughly
speaking, the defect of separatedness of the ns-Néron model comes from the ex-
istence of non-isomorphic locally factorial models. In fact, we will show that a
Néron model can only exist when there is a canonical "minimal étale-locally fac-
torial model": this is quite similar to the case of one-dimensional bases studied
in [23].
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De�nition 7.41. Let S be a regular scheme and X → S a nodal curve, smooth
over a dense open U ⊂ S. Let s be a geometric point of S and x a singular point
ofXs. We say Sing(X/S) is irreducible around x when the connected component
of the singular locus of X ×S SpecOetS,s/ SpecOetS,s containing x is irreducible.
We say Sing(X/S) is étale-locally irreducible if it is irreducible around every
singular geometric point of X. We will sometimes omit the "étale" and just say
Sing(X/S) is locally irreducible.

Lemma 7.42. With hypotheses and notations as in De�nition 7.41, Sing(X/S)
is irreducible around x if and only if the singular ideal of x is of the form (∆)n,
where n is a positive integer and ∆ a prime element of SpecOetS,s.

Proof. The base change of X/S to SpecOetS,s is quasisplit, so if we write Y the
connected component of the singular locus of X ×S SpecOetS,s/ SpecOetS,s con-
taining x, then the structural morphism Y → SpecOetS,s is a closed immersion.
Therefore, the irreducible components of Y are in bijection with the distinct
irreducible factors of the singular ideal of x.

Corollary 7.43. Keeping the same hypotheses and notations, Sing(X/S) is
irreducible around every étale generization of x if and only if the singular ideal of
x is generated by an étale-universally prime element of SpecOS,s. In particular,
X/S has étale-locally irreducible singular locus if and only if all of its singular
geometric points have a power of an étale-universally prime element as a label.

Remark 7.43.1. With notations as above, Sing(X/S) is irreducible around x if
and only if the radical of the singular ideal of x is generated by a prime element
of OetS,s: if the singular ideal of x is of the form (∆n) with ∆ prime in OetS,s and
n > 0, its radical is precisely (∆).

Proposition 7.44. Let S = SpecR be a strictly local unique factorization do-
main, U ⊂ S a dense open subscheme, and take two non-units ∆1,∆2 of R with
no common prime factor. There exists a trait T = SpecA→ S such that

• The generic point of T is sent to a point of U .

• The special point of T is sent to the closed point of S

• The images in A of ∆1 and ∆2 are equal, nonzero, and not units.

Proof. Take π : S′ → S the blowing-up in the (non-invertible) ideal (∆1,∆2) of
R. Call D1 and D2 the strict transforms of the divisors cut out in S by ∆1 and
∆2 respectively, and E the exceptional divisor. Let s be a closed point of S′ in
the zero locus of ∆1

∆2
−1 (which is contained in E\(D1∪D2). By [11], Proposition

7.1.9, there exists a trait T → S′ such that the closed point is mapped to s and
the generic point to a point of U . The map T → S′ factors through OS′,s and
∆1 = ∆2 in OS′,s, so T → S satis�es all the desired properties.

Remark 7.44.1. Though over one-dimensional bases, uniqueness in the Néron
mapping property is already a weaker condition than separatedness, Proposition
7.44 illustrates the fact that the gap between these two conditions becomes
much greater in higher base dimension. Indeed, as the base gets bigger, smooth
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morphisms of base change remain pretty rare and tame, while the quantity (and
array of potentially wild behavior) of traits on the base gets much bigger. This is
why non-separated ns-Néron models are so prevalent in higher dimension, even
though, to the author's knowledge, no examples are known over a Dedekind
scheme.

Lemma 7.45. Let X/S be a nodal curve of genus ≥ 1, smooth over some dense
open U ⊂ S, with S regular and excellent. Suppose XU has a Néron model
over S. Then Sing(X/S) is irreducible around every non-exceptional (De�nition
7.13) singular geometric point x of X/S.

Proof. We will work by contradiction: suppose there is some geometric point
s ∈ S and a singular point x ∈ Xs around which Sing(X/S) is not irreducible.
Since XU ×S SpecOetS,s has a Néron model by 5.4, we can assume x is a closed
point of X and S = SpecR is strictly local with closed point s. In particular,

S is an admissible neighbourhood of s relatively to X/S. Let
r∏
i=1

∆νi
i be the

decomposition in prime factors of a generator ∆x of the singular ideal of x in
R. By hypothesis, we have r ≥ 2.

Let (C1, C2) be an orientation of X/S at x. De�ne T1 and T2 to be the images

in the (multiplicative) monoid R/R× of
r−1∏
i=1

∆νi
i and ∆νr

r respectively. They are

opposite types at x. For j ∈ {1, 2}, consider a section σj : S → X of type Tj at
x relatively to (C1, C2). We de�ne Xj as the blowing-up of X in the ideal sheaf
of σ1−j (note the index). The Xj are re�nements of X, in particular models
of XU , so by hypothesis there is a Néron model N for (X1)U = (X2)U = XU .
Call F the union of all exceptional components of X, and F1, F2 the preimages
of F in X1 and X2 respectively. Since S is strictly local, X/S is quasisplit so
F, F1, F2 are well-de�ned closed subsets of X,X1, X2 respectively. Using Lemma
4.6, we know Fi is the union of all exceptional components of Xi for i = 1, 2.
By Lemma 7.21, the canonical maps

(Xi\Fi)sm → N

are open immersions. Thus, they induce isomorphisms on open subspaces V1, V2

of N . Call V the open subspace V1 ∪ V2 of N . Then V is isomorphic to the
gluing of (X1\F1)sm and (X2\F2)sm along the preimages of V1 ∩ V2 in each of
them. We will conclude by proving V is not separated, which is absurd since it
is an open subspace of N .

Using Lemma 7.4, we see that σ1 factors through Xsm
1 . Since x is not in F ,

σ1 even factors through a section σ′1 : S → (X1\F1)sm. However, X2 → X is
precisely the blowing-up in the ideal sheaf of σ1, so σ1 does not factor through
X2. Symmetrically, σ2 factors through a section σ′2 : Xsm

2 \F2, but not through
X1. Let xj be the image of σ′j(s) in N , the fact σj does not factor through X1−j
implies xj is not in V1 ∩ V2, so x1 6= x2.

Proposition 7.44 gives a trait T = SpecA→ S, with generic point η and closed
point t, such that η is sent to a point of U and t to s, and such that the images

in A of

(
r−1∏
i=1

∆νi
i

)
and ∆νr

r are equal, nonzero, and not units.
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In particular, the T -sections (σ1)T and (σ2)T of XT induced by σ1 and σ2 are

equal (because

(
r−1∏
i=1

∆νi
i

)
and ∆νr

r are equal in A). Since η is sent to a point

of U , it follows that (σ′1)T (η) = (σ′2)T (η) in VT . However, (σ′1)T (t) = σ′1(s) =
x1 6= x2 = σ′2(s) = (σ′2)T (t) since x1 is in V1\V2 and x2 in V2\V1: V does not
satisfy the valuative criterion for separatedness, a contradiction.

Example 7.46. • Local irreducibility of the singular locus is only necessary
around non-exceptional points: for example, consider S = SpecC[[a, b]]
and U = D(ab), and take the elliptic (so a fortiori nodal) curve X/S cut
out in the weighted projective space P2(2, 3, 2) by y2 = x(x2−z2), so that
X is the S-Néron model of XU . Consider the blowing-up X ′ → X of X
in the sheaf of ideals I given by (y, abz). Since I is Cartier outside of
the zero locus of ab, we have X ′U = XU : in particular, X ′U has a Néron
model over S (namely X). However, computing the blowup explicitly, we
�nd that X ′ is nodal and that its closed �ber consists of two irreducible
components, intersecting in a point p of label (ab): the singular locus is
not irreducible around p, but p is exceptional.

• Local irreducibility of the singular locus around non-exceptional points is
not su�cient either: take X to be a nodal curve over S = SpecC[[a, b]],
whose closed �ber has two irreducible components C1 and C2 of genus 1,
intersecting in a singular point of label (ab). In this case, X is smooth over
the dense open U = D(ab) of S and the singular point is not exceptional,
so by (2), XU has no Néron model over S. Take X ′ → X to be the
(C1, a)-re�nement, this meansX ′U has no Néron model over S, even though
X ′ has étale-locally irreducible singular locus. However, we will see in
Theorem 7.48 that if X has no rational components in any geometric �ber,
the condition (which then just becomes "X has étale-locally irreducible
singular locus") is necessary and su�cient.

As seen in Example 7.46, there are situations in which we cannot conclude to
nonexistence of a Néron model by applying directly Lemma 7.45, but we can if
we apply it to a di�erent nodal model. This argument can be made systematic,
and gives the following (more restrictive) necessary condition:

Lemma 7.47. Let X/S be a nodal curve of genus ≥ 1, smooth over some dense
open U ⊂ S, with S regular and excellent. Suppose XU has a Néron model over
S. Then the following two conditions are met:

• The singular locus Sing(X/S) is irreducible around every non-exceptional
singular geometric point of X/S.

• For any geometric point s → S, if a rational component E of Xs meets
the non-exceptional other components of Xs in exactly two points x and
y, then the singular ideals of x and y in OetS,s have the same radical.

Proof. By Corollary 5.4, we can assume S is strictly local. In particular, X/S
is quasisplit. If X/S is of genus 1, this is a special case of Proposition 6.15.
Otherwise, we can apply Lemma 7.45 to the stable model Xstable and conclude
using Lemma 7.39.
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Remark 7.47.1. In the genus 1 case, there is no 0-pointed stable model, but we
could use a 1-pointed stable model instead of referring to our work on Jacobians.

One could wonder if the necessary conditions of Lemma 7.47 are still too weak.
We will now show that, when we know the ns-Néron model exists, its separat-
edness (and therefore the existence of a Néron model) is equivalent to these
conditions.

Theorem 7.48. Let X/S be a nodal curve of genus ≥ 1, smooth over some
dense open U ⊂ S, with S regular and excellent. If XU has a Néron model over
S, then the two following conditions are met:

• The singular locus Sing(X/S) is irreducible around every non-exceptional
singular geometric point of X/S.

• For any geometric point s → S, if a rational component E of Xs meets
the non-exceptional other components of Xs in exactly two points x and
y, then the singular ideals of x and y in OetS,s have the same radical.

Conversely, suppose these conditions are met. Suppose in addition that no ge-
ometric �ber of X/S contains either a rational cycle or a rational component
meeting the non-exceptional other components in at least three points. Then
XU/U has a Néron model, i.e. the ns-Néron model of XU/U exhibited in The-
orem 7.40 is separated over S.

Proof. The �rst part of the theorem is Lemma 7.47. We will now prove the
"conversely" part. Let N/S be the ns-Néron model of XU exhibited in Theorem
7.40. Separatedness of N/S can be checked over the étale stalks of S: we can
and will assume S = SpecR is strictly local, and we call s its closed point.
In particular, X/S is quasisplit. By Proposition 7.35, we know Xstable has no
rational components in any geometric �ber, and by Lemma 7.39, we can assume
X = Xstable while preserving all hypotheses made on X. Then, N is the smooth
aggregate of X/S. By Corollary 7.43, all prime factors of all singular ideals of
X/S are étale-universally prime, so S is an admissible neighbourhood of all its
geometric points (and not just of s). Therefore, if for every pair (x, T ) where x
is a singular point of Xs and T a type at x, we write X(x,T ) the blowing-up of
X in a section of type T at x, N is the gluing of the (X(x,T )/S)sm along the
strict transforms of (X/S)sm in each of them.

Now, for any singular point y of Xs, the singular ideal of y in R is of the form
(∆

νy
y ), where ∆y is an étale-universally prime element of R and νy a positive

integer. Consider the morphism X ′ → X obtained as a composition of νy − 1
blowing-ups in sections through points of positive arithmetic complexity above
y, it follows that all the Xy,T factor uniquely through X ′. Repeating the process
for every x, we �nd a nodal model Xmin of XU of arithmetic complexity 0, with
a map Xmin → X, such that N is the smooth locus of Xmin. In particular, N
is separated.

Remark 7.48.1. Here, we only constructed Xmin locally, but when X/S is qua-
sisplit and the hypotheses of the "conversely" part of Theorem 7.48 are met,
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these local models always �ue into a canonical "minimal étale-locally factorial
model" of XU , of which the Néron model is the smooth locus.

Part III

Base change of Néron models along

�nite tamely rami�ed maps

8 Motivation

Given an open immersion U ⊂ S and a smooth algebraic space over U , we
can sometimes get informations about the Néron model of this space (existence,
nonexistence, explicit construction if it exists) only after base change to some
�nite, locally free extension S′/S. Examples include smooth curves acquiring
nodal reduction over S′, Jacobians of smooth curves acquiring nodal reduction,
and to some extent abelian varieties acquiring semi-abelian reduction (see The-
orem 6.20, Theorem 7.40 and Theorem 7.48, as well as [28]). Therefore, it is
interesting to have tools to turn this into information on the Néron model over
S. In [4], one studies the base change behaviour of Néron models of abelian
varieties over discrete valuation rings along �nite tamely rami�ed extensions.
We are interested in what happens when the base is higher-dimensional. The
�rst complication appearing in this setting is that the existence of Néron models
is no longer guaranteed. We address this problem by proving

Theorem 8.1 (Theorem 10.5). Let S′ → S be a �nite, locally free, tamely
rami�ed map between regular schemes and U the complement of a strict normal
crossings divisor D → S. Suppose U ′ := U ×S S′ is étale over U .

Let XU be a smooth U -algebraic space, such that XU ×U U ′ has a Néron model
X ′ over S′. Then the scheme-theoretical closure of XU in

∏
S′/S

X ′ is the Néron

model of XU over S (where XU maps to
∏
S′/S

X ′ as in Example 9.3).

Moreover, if S′ → S is a quotient for the right-action of a �nite group G, then
G acts on X ′ via its action on S′: it follows that G acts on

∏
S′/S

X ′ as in Remark

9.4.1. In that case, the Néron model of XU is (
∏
S′/S

X ′)G.

Then, when the Néron models N and N ′ exist, we introduce �ltrations of certain
strata of N (quite similar to the �ltration of the closed �ber described in [4]),
and describe explicitly the successive quotients of these �ltrations in terms of
N ′. Namely, after reducing to its hypotheses by working étale-locally on the
base (see Lemma 10.12), we prove the following result:

Theorem 8.2 (Theorem 10.13). Let S = SpecR be a regular a�ne scheme,
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f1, ..., fr regular parameters of R, R′ = R[T1, ..., Tr]/(T
nj

j −fj), where the nj are
invertible on S, and let S′ = SpecR′. Suppose R contains the group µnj

of nj-th
roots of unity for all j. Let U be the locus in S where all fj are invertible, and
Z the locus where all fj vanish. Let XU be a proper smooth U -group algebraic
space with a Néron model N ′ over S′. Then XU has a Néron model N over
S, and we have sub-Z-group spaces (F dNZ)d∈N of NZ (see De�nition 10.7 and
De�nition 10.10) such that:

• For all d ∈ N, F d+1NZ ⊂ F dNZ .

• F 0NZ = NZ .

• If d >
r∏
j=1

(nj − 1) then F dNZ = 0.

• F 0NZ/F
1NZ is the subspace of N ′Z invariant under the action of G =

r∏
j=1

µnj , where (ξj)1≤j≤r acts by multiplying Tj by ξj.

• If d > 0, F dNZ/F d+1NZ is isomorphic to the �ber product over Z of
the LieN ′Z/Z [k] where k ranges through all r-uples of integers (k1, ..., kr)

with
r∑
j=1

kj = d and kj < nj for all j; LieN ′Z/Z [k] is the subspace of

LieN ′Z/Z where all (ξj)1≤j≤r in G act by multiplication by
r∏
j=1

ξ
kj
j ; and the

map LieN ′Z/Z [k]→ Z is given by identifying LieN ′Z/Z with LieN ′Z/Z(P.R),

where P =
r∏
i=1

T kii .

9 Prerequisites

9.1 Weil restrictions

As in [4], we introduce the Weil restriction functor and give some well-known
representability properties.

De�nition 9.1. Let S′/S be a morphism of schemes, and X ′ a contravariant
functor from (Sch /S′) to (Set). We call Weil restriction of X ′/S′ to S, and we
note

∏
S′/S

X ′, the contravariant functor from (Sch /S) to (Set) sending T → S

to X ′(T ×S S′). If S = SpecR and S′ = SpecR′ are a�ne, we will sometimes
write

∏
R′/R

X ′.

Remark 9.1.1. The Weil restriction of a presheaf X ′ : (Sch /S′)op → Set to S is
its pushforward to Hom((Sch /S)op,Set).

Proposition 9.2. If S′ → S is a �at and proper morphism between locally
noetherian schemes, and X ′ is a quasi-projective S-algebraic space with X ′/S
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factoring through S′, then
∏
S′/S

X ′ is (representable by) an algebraic space. If in

addition X ′ is a scheme, then
∏
S′/S

X ′ is a scheme.

Proof. The general statement follows from the case where X ′ is a scheme, which
is treated in [9], 4.c.

Example 9.3. Let S′ → S be a morphism of schemes and Y/S be an S-
algebraic space. Let Y ′ be the S′-space Y ×S S′. Then for all T/S we have
HomS(T,

∏
S′/S

Y ′) = HomS′(T ×S S′, Y ′) = HomS(T ×S S′, Y ). In particular,

there is a natural map Y →
∏
S′/S

Y ′.

Proposition 9.4. If S′ → S is a �at and �nite morphism of schemes, and X ′

is a smooth quasi-projective S′-algebraic space, then
∏
S′/S

X ′ is smooth over S.

Proof. The formation of
∏
S′/S

X ′ is étale-local on both X ′ and S, so we can

assume X ′ = SpecA′ and S = SpecR are a�ne schemes. Then S′ is a disjoint
union of a�ne schemes of the form SpecR′, with R′/R �nite and �at, and∏
S′/S

X ′ is a scheme by Proposition 9.2. By hypothesis, each R′ → A′ is formally

smooth and locally of �nite presentation. But then
∏
S′/S

X ′/S is also formally

smooth, and it follows from [13], Proposition 8.14.2, that it is locally of �nite
presentation as well.

Remark 9.4.1. Suppose given equivariant right-actions of a group G on a mor-
phism of schemes S′ → S and on a morphism from an algebraic space X ′ to S′.
Suppose moreover that G acts trivially on S. Then

∏
S′/S

X ′ → S carries a natu-

ral G-action, de�ned as follows: for any S-scheme T , de�ne T ′ := T ×S S′, every
g ∈ G induces an automorphism ρX′(g) of X ′ and an automorphism ρT ′(g) of
T ′ (obtained by extending the automorphism on S′ by the identity on T ). The
action takes f ∈ Hom(T,

∏
S′/S

X ′) = Hom(T ′, X ′) to

f.g = ρX′(g) ◦ f ◦ ρT (g)−1.

When
∏
S′/S

X ′ is representable, this action is equivariant.

9.2 Fixed points

We will show later that under certain hypotheses, we can construct a Néron
model by considering the Weil restriction of a Néron model over a bigger base,
and looking at its subspace of �xed points under a Galois action: here we
de�ne the functor of �xed points and talk about its representability and possible
smoothness. This is all contained in [4], to which we refer for the proofs unless
they are short enough.
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De�nition 9.5. Let π : S′ → S be a morphism of schemes and G a �nite group,
acting on the right on S′. We say that π is a quotient for this action if it is
a�ne, and for every a�ne open subscheme SpecA ⊂ S of pullback SpecA′ ⊂ S′
by π, A is the subring A′G of G-invariants of A′.

De�nition 9.6. Let S be a scheme and X an algebraic space. Suppose a group
G acts equivariantly on X → S with the trivial action on S. We de�ne the
subfunctor of �xed points XG : (Sch /S)op → Set by XG(T ) = (X(T ))G.

Proposition 9.7. With notations as above, XG is an algebraic space, and its
formation commutes with base change. If X → S is locally separated (resp.
separated), then XG is a subspace (resp. a closed subspace) of X.

Proof. Compatibility with base change is immediate. Each g ∈ G gives an
automorphism ρX(g) of X, thus a graph Γg : X → X ×S X. We can write Γg
as the composition

X
∆−→ X ×S X

(p1,ρX(g)◦p2)−−−−−−−−−→ X ×S X

where ∆ is the diagonal map, and p1, p2 are the two projections from X ×S X
onto X. Since ρX(g) is an automorphism of X, (p1, ρX(g) ◦ p2) is an automor-
phism of X×SX. Write Z → X×SX for the �ber product of all Γg. Then Z is
an algebraic space, which represents XG. Suppose X is locally separated (resp.
separated) over S. Then, ∆ = Γ0 is an immersion (resp. a closed immersion),
so Z is a subspace (resp. closed subspace) of X.

Proposition 9.8. With the same hypotheses and notations as in De�nition
9.6, if f : X → S is smooth and n := #G is invertible on X, then XG → S is
smooth.

Proof. This follows from [4], Proposition 3.4 and Proposition 3.5.

Corollary 9.9. Let G be a �nite group acting equivariantly on a smooth mor-
phism of algebraic spaces X → S. If #G is invertible on X, then XG → SG is
smooth.

9.3 Twisted Lie algebras

We will make use of a slightly broader than usual notion of tangent space and
Lie algebra of a group algebraic space over a base scheme, so we present the
de�nition and a few properties here. These objects are studied in much more
detail in [3].

De�nition 9.10. Let S be a scheme and X an S-group algebraic space. Let
M be a free OS-module of �nite type. We write TX/S(M) for the functor
(Sch /S)op → Set taking T/S to HomS(Spec(OT ⊕MT ), X), where the OT -
module OT ⊕ MT is endowed with the OT -algebra structure making MT a
square-zero ideal. The morphism of OS-modulesM→ 0 induces a morphism

TX/S(M)→ X = TX/S(0),
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and we write LieX/S(M) for the pullback of TX/S(M) by the unit section
S → X. In particular, when M = OS , they are the usual tangent bundle and
Lie algebra of X over S, that we write TX/S and LieX/S .

Proposition 9.11. With hypotheses and notations as above, TX/S(M) and
LieX/S(M) are representable by group S-algebraic spaces, and the canonical
morphisms

LieX/S(M)→ TX/S(M)→ X

are morphisms of S-groups.

Proof. Representability when X is a scheme is [3], exposé 2, Proposition 3.3.
The case of algebraic spaces is similar. Existence of the group structure, and
the fact the canonical maps respect them, is [3], exposé 2, Corollaire 3.8.1.

Proposition 9.12. Let (e1, ..., en) be a basis for the free OS-moduleM. Then,
we have a natural isomorphism between TX/S(M) and the �ber product over
X of the TX/S(OS .ei), which we write

∏
1≤i≤n,X

TX/S(OS .ei); as well as between

LieX/S(M) and the �ber product
∏

1≤i≤n,S
LieX/S(OS .ei).

Proof. When X is a scheme, this is [3], exposé 2, Proposition 2.2. The case of
algebraic spaces is similar.

10 The morphism of base change for tame exten-

sions

10.1 Compatibility with Weil restrictions

In this section, S′ → S will be a �nite locally free morphism between regular
schemes, X ′/S′ an algebraic space, U a scheme-theoretically dense open sub-
scheme of S, and U ′ = U ×S S′. Note that U ′ is scheme-theoretically dense in
S′ by [13], théorème 11.10.5.

De�nition 10.1. Let t be a point of S\U of codimension 1 in S, so that OS,t
is a discrete valuation ring. We call rami�cation index of S′/S at t the lcm
of rami�cation indexes of all valuation ring maps OS,t → OS′,t′ with t′ ∈ S′

of image t. Let t = (t1, ..., tr) be a r-uple of generic points of S\U , we call
rami�cation index of S′/S at t the r-uple (n1, ..., nr), where ni is the rami�cation
index of S′/S at ti for all i.

Proposition 10.2 (see [4], Proposition 4.1). Let X ′ be a smooth quasi-projective
S′-algebraic space. Suppose X ′ is the S′-Néron model of X ′U ′ . Then

∏
S′/S

(X ′) is

the S-Néron model of
∏
U ′/U

(X ′U ′).
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Proof. The restriction
∏
S′/S

(X ′) is smooth and separated over S by Proposition

9.4 and, if Y is a smooth S-algebraic space, then

Hom

Y, ∏
S′/S

(X ′)

 = Hom(Y ′, X ′)

= Hom(Y ′U ′ , X
′
U ′)

= Hom

YU , ∏
U ′/U

(X ′U ′)


where Y ′ denotes the base change Y ×S S′.

Proposition 10.3 (Abhyankar's lemma). Let S = SpecR be a regular local
scheme and S′ → S a �nite locally free tamely rami�ed morphism of schemes,
étale over the complement U of a strict normal crossings divisor D of S. Let
(f1, ..., fr) be part of a regular system of parameters of R such that D = Div(f1...fr).
Then there are integers n1, ..., nr, prime to the residue characteristic p of R, such
that if S̃ = SpecR[T1, ..., Tr]/(T

ni
i −fi)1≤i≤r, the normalization of S̃ in the total

ring of fractions of S′ ×S S̃ is étale over S̃.

Proof. This is [15], exposé XIII, Proposition 5.2.

Proposition 10.4. Under the hypotheses of Proposition 10.3, suppose that S
is strictly local, and that S′ is connected and regular. Then there are integers
n1, ..., nr, prime to p, such that S′ = SpecR[T1..., Tr]/(T

ni
i − fi).

Proof. By Proposition 10.3, there are integers m1, ...,mr prime to p such that
if we call S̃ the spectrum of

R̃ = R[T1, ..., Tr]/(T
mi
i − fi)1≤i≤r,

then the normalization Y of S̃ in the fraction �eld of S′×S S̃ is �nite étale over
S̃. Since S̃ is strictly local and S′ is connected, Y → S̃ must be an isomorphism.
Since S′ → S is integral, we get a factorization S̃ → S′ → S. Let G be the group
of S′-automorphisms of S̃. As both S′ and S̃ are spectra of free R-algebras, the
map S̃ → S′ is a quotient for the G-action. We can see G as a subgoup of the

group of S-automorphisms of S̃, which is the product
r∏
i=1

µmi
of the groups µmi

of mi-th roots of unity of R (where ξ ∈ µmi acts by sending Ti to ξTi). We know
that R′ = R̃G is generated as a R-module by all of the G-invariant monomials in
(T1, ..., Tr). Let ni be the minimal integer such that Ti is G-invariant. The T

ni
i

are irreducible - hence prime - elements of the regular local ring R′ = R̃G, and
we have ni|mi for each i. We claim that G is of the form < ξ1, ξ2, ..., ξr >, where
ξi ∈ µmi

is a primitive di := mi

ni
-th root of unity. We will now prove the claim.

LetM =
r∏
i=1

T kii be a G-invariant unitary monomial. It su�ces to show that for

all i, we have ni|ki. But M divides some positive power of
r∏
i=1

fi =
r∏
i=1

Tmi
i in
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R′ = R̃G, and by uniqueness of the prime factor decomposition in R′ it follows
that ni|ki for all i. This concludes the proof of the claim.

Therefore,
r∏
i=1

µmi/G is a product of quotients of the µmi , i.e. there are in-

tegers n1, ..., nr such that ni divides mi for all i and S′ itself is of the form
SpecR[T1, ..., Tr]/(T

ni
i − fi)1≤i≤r.

Remark 10.4.1. The integer ni is the rami�cation index of S′/S at the generic
point of {fi = 0} in S.
Remark 10.4.2. This proof means that, étale-locally on any regular base, a
�nite tamely rami�ed morphism either does nothing more than adding roots
of regular parameters, or must have a scheme that is not locally factorial as a
source. Since in many practical situations, the behaviour of Néron models is
only well-known over (at least) locally factorial bases, we will only be considering
the "adding roots" case. For the same reason, we always take D to be strict:
indeed, suppose D is a (non-strict) normal crossings divisor, and suppose there
is an étale morphism S̃ → S and an irreducible component D0 of D which
breaks into multiple irreducible components in S̃, then no extension S′/S with
rami�cation index > 1 over the generic point of D0 can have factorial étale local
rings.

Theorem 10.5 (see [4], Theorem 4.2. for the case dimS = 1). Let S′ → S
be a �nite, locally free, tamely rami�ed map between regular schemes and U the
complement of a strict normal crossings divisor D → S. Suppose U ′ := U ×S S′
is étale over U .

Let XU be a smooth U -algebraic space, such that XU ×U U ′ has a S′-Néron
model X ′. Then the scheme-theoretical closure of XU in

∏
S′/S

X ′ is the S-Néron

model of XU (where XU maps to
∏
S′/S

X ′ as in Example 9.3).

Moreover, if S′ → S is a quotient for the right-action of a �nite group G, then
G acts on X ′ via its action on S′: it follows that G acts on

∏
S′/S

X ′ as in Remark

9.4.1. In that case, the Néron model of XU is (
∏
S′/S

X ′)G.

Proof. By Corollary 5.4 and Proposition 5.7, we can assume S = SpecR is
strictly local. We can also assume S′ is connected, in which case Proposition
10.4 shows that S′ → S is a quotient for the action of a �nite group G. Call
Z the restriction

∏
S′/S

(X ′) and N the scheme-theoretical closure of XU in Z.

The theorem now reduces to the �oowing claims: ZG is a smooth S-model of
XU ; there is a canonical isomorphism N = ZG; and N is a separated S-space
satisfying existence in the Néron mapping property. We will now prove these
claims in order.

The group G acts on Z =
∏
S′/S

XS′ via its right-action on S′, and S′ → S is a

quotient for the latter. As seen in Proposition 10.4, #G is prime to the residue
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characteristic of R, so by Proposition 9.8, ZG is S-smooth. We have a pullback
diagram of algebraic spaces

X ′U ′
//

��

XU

��
U ′ // U

where both horizontal arrows are quotients for the action of G. We will show
XU = ZGU , which can be checked Zariski-locally: let V be an a�ne open sub-
scheme of U , V ′ = SpecA its pullback to U ′, X0 an a�ne open ofXU with image
contained in V and X ′0 = SpecB its pullback to X ′U ′ . We have V = Spec(AG)
and X0 = Spec(BG), and there is a pushout diagram of rings

B BGoo

A

OO

AG

OO

oo

Let W be the Weil restriction of X ′0 to V . Then we see that W = SpecR is
a�ne, and for any AG-algebra C, we have HomAG(R,C) = HomA(B,C⊗AGA).
But the G-invariant A-maps from B to C⊗AG A are precisely those lying in the
image of HomAG(BG, C). Therefore WG = Spec(BG), and it follows from the
sheaf property that (ZU )G = XU : ZG is a smooth S-model of XU as claimed.

Now, observe that ZG → Z is a closed immersion through which XU factors,
so N → Z factors through a closed immersion N → ZG. But ZG is S-smooth,
hence S-�at, so ZGU = XU is scheme-theoretically dense in ZG by [13], théorème
11.10.5, which means N is scheme-theoretically dense in ZG: the closed immer-
sion N → ZG is an isomorphism.

The map N → S is separated since Z → S is. Let Y be a smooth S-algebraic
space with a map fU : YU → XU . Call Y ′ the base change Y ×S S′. The map
Y ′U ′ → X ′U ′ obtained by base change extends uniquely to a map Y ′ → X ′, which
induces a map Y → Z extending fU . By de�nition of the scheme-theoretical
closure, Y → Z factors through a map f : Y → N extending fU . We have
shown HomS(Y,N) → HomU (YU , XU ) is surjective, so N/S = ZG/S is the
Néron model of XU .

10.2 A �ltration of the Néron model over the canonical
strati�cation

By Proposition 5.3 and Proposition 5.6, Néron models can always be described
over an étale covering of the base. Therefore, in this section, unless mentioned
otherwise, we will work assuming that S = SpecR is an a�ne regular connected
scheme, that R contains all roots of unity of order invertible on S, that D is a
strict normal crossings divisor on S cut out by regular parameters f1, ..., fr of
R, and that S′ = SpecR′ with R′ = R[T1, ..., Tr]/(T

nj

j − fj)1≤j≤r. Note that in
our previous setting (where S′ → S was a �nite, locally free and tamely rami�ed
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morphism between regular schemes, étale over the complement of a strict normal
crossings divisor), all these assumptions hold in an étale neighbourhood of any
given point of S.

We put A = R/(fj)1≤j≤r and A′ = A ⊗R R′ = A[T1, ..., Tr]/(T
nj

j )1≤j≤r. The
closed subscheme Z = SpecA of S is the closed stratum of D. We let XU

be a proper and smooth U -group space with a Néron model N ′ over S′. It
follows from Theorem 10.5 that XU has a Néron model N/S, and that N is the
subspace of G-invariants of the Weil restriction of N ′ to S, where the action

of G =
r∏
j=1

µnj on S′ is given by multiplying Tj by the j-th coordinate of an

element of G.

In [4], section 5, when S is a discrete valuation ring, one computes the successive
quotients of a �ltration of the closed �ber of N . We adapt this construction
to our context to get a �ltration of NZ and express its successive quotients in
terms of N ′.

For all d ∈ N∗, we write Λd the set of monomials of the form
r∏
j=1

T
kj
j with

r∑
j=1

kj = d and kj < nj for all j. The set A′d ⊂ A′ of homogenous polynomials

of degree d in the Tj is a �nite free A-module with basis Λd.

De�nition 10.6. For d ∈ N∗, we de�ne a sheaf

ResdN ′Z : (Sch /Z)op → Set

as follows: for any A-algebra C, we put ResdN ′Z(C) = N ′(C ⊗A A′/(Λd)).

Remark 10.6.1. The functor ResdN ′Z is (representable by) the Z-algebraic space∏
(A′/(Λd))/A

N ′A′/(Λd). We have Res1N ′Z = N ′Z , and for any d >
r∏
j=1

(nj − 1), we

have ResdN ′Z =

( ∏
S′/S

N ′

)
×S Z since Λd is empty. There are natural maps

Resd+1N ′Z → ResdN ′Z .

De�nition 10.7. For d ∈ N∗, we de�ne F dN ′Z as the kernel of the canonical

morphism

( ∏
S′/S

N ′

)
×SZ → ResdN ′Z of Z-group spaces. We also put F 0N ′Z =( ∏

S′/S

N ′

)
×S Z. The F dN ′Z form a descending �ltration of

( ∏
S′/S

N ′

)
×S Z

by Z-subgroup spaces, stationary at 0 starting from d = 1 +
r∏
j=1

(nj − 1). We

call GrdN ′Z the quotient F dN ′Z/F
d+1N ′Z .

Proposition 10.8. We have Gr0N ′Z = N ′Z , and for any d ≥ 1, GrdN ′Z is
canonically isomorphic to LieN ′Z/Z(A′d) =

∏
P∈Λd,Z

LieN ′Z/Z(PA).

Proof. The proof of [4], 5.1. carries over without much change: let d ≥ 1, and
let C be an A-algebra. Let λ1, ..., λk be parameters for the formal group of N ′
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over R′. An element a ∈ F dN ′Z(C) corresponds to a ring map

φ : R′[[λ1, ..., λk]]→ C[T1, ..., Tr]/(T
nj

j )1≤j≤n

such that for all 1 ≤ i ≤ k, φ(λi) is in the ideal generated by Λd, i.e. is of the form∑
P

ai,PP where the ai,P are in C and P runs over all nonzero monomials
r∏
j=1

T kj

with
∑
j

kj ≥ d. Thus, we can associate to a an element of LieN ′Z/Z(Ad)(C)

by truncature, sending λi to
∑

P∈Λd

ai,PP . This gives a surjective morphism

of Z-groups F dN ′Z → LieN ′Z/Z(Ad), with kernel F d+1N ′Z . The identi�cation
LieN ′Z/Z(A′d) =

∏
P∈Λd,Z

LieN ′Z/Z(PA) is Proposition 9.12.

Proposition 10.9. With the same hypotheses and notations as in Proposition
10.8, the action of G on LieN ′Z/Z(Ad) is obtained from equivariant actions of
G on each factor LieN ′Z/Z(PA) → Z, where P ranges through Λd. Moreover,

for any P =
r∏
j=1

T
kj
j in Λd, the bijection LieN ′Z/Z(PA) = LieN ′Z/Z induced

by P 7→ 1 identi�es the subspace LieN ′Z/Z(PA)G with the subspace of LieN ′Z/Z

where all ξ = (ξj)1≤j≤r in G act by multiplication by
r∏
j=1

ξ
kj
j . We will write this

subspace LieN ′Z/Z [k1, ..., kr] or LieN ′Z/Z [P ].

Proof. For any A-algebra C, the action of ξ on Hom(R′[[λ1, ..., λk]], C ⊗A A′)
makes the following diagram commute:

R′[[λ1, ..., λk]]

ξ

��

ξ.ψ // C ⊗A A′

R′[[λ1, ..., λk]]
ψ // C ⊗A A′

Tj 7→ξ−1
j Tj

OO

where the map R′[[λ1, ..., λk]]
ξ−→ R′[[λ1, ..., λk]] is given by the G-action on N ′.

Therefore, the G-action on LieN ′Z/Z(Ad) comes from G-actions on the factors

LieN ′Z/Z(PA), given for P =
r∏
j=1

T
kj
j by

R′[[t1, ..., td]]

ξ

��

ξ.ψ // C ⊕ PC

R′[[t1, ..., td]]
ψ // C ⊕ PC

P 7→
∏
j
ξ
−kj
j P

OO

from which the proposition follows.

De�nition 10.10. For any integer d ∈ N, we de�ne

F dNZ := (F dN ′Z)G

and
GdNZ := F dNZ/F

d+1NZ .
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Remark 10.10.1. The F dNZ form a descending �ltration of sub-Z-group spaces

of NZ , with F 0NZ = NZ and F dNZ = 0 when d >
r∏
j=1

(nj − 1).

Proposition 10.11. Keeping the notations of Proposition 10.9, for all d ∈ N,
we have GdNZ = (GdN ′Z)G. In particular, G0NZ = (N ′Z)G, and for all d ≥ 1,
GdNZ =

∏
P∈Λd,Z

LieN ′Z/Z [P ].

Proof. (see [4], 5.2.) The Z-group spaces F dN ′Z are unipotent for d ≥ 1 and the
order of G is invertible on Z, so the exact sequence

0→ F dN ′Z → F d+1N ′Z → GdN ′Z → 0

remains exact after taking the G-invariants.

We summarize all this into Theorem 10.13 below, and justify its hypotheses by
Lemma 10.12 and Proposition 5.6.

Lemma 10.12. Let S′ → S be a �nite, locally free, morphism between regular
connected schemes. Let D be a strict normal crossings divisor of S and put
U = S\D. Suppose S′ → S is étale over U . Let s be a point of S, and
D1, ..., Dr the irreducible components of D containing s. Then there is an a�ne
étale neighbourhood V = SpecR→ S of s in S such that:

• For all 1 ≤ j ≤ r, Dj |V is cut out by a regular parameter fj of R.

• There is an isomorphism V ×S S′ = SpecR[T1, ..., Tr]/(T
nj

j − fj), where
nj is the rami�cation index of S′ → S at the generic point of Dj (in
particular, if S′ → S is tamely rami�ed, then nj is invertible on R).

• R contains all nj-th roots of unity for all j.

Proof. Immediate from Proposition 10.4.

Theorem 10.13. Let S = SpecR be a regular a�ne scheme, f1, ..., fr regular
parameters of R, R′ = R[T1, ..., Tr]/(T

nj

j − fj), where the nj are invertible on
S, and let S′ = SpecR′. Suppose R contains the group µnj

of nj-th roots of
unity for all j. Let U be the locus in S where all fj are invertible, and Z the
locus where all fj vanish. Let XU be a proper smooth U -group algebraic space
with a Néron model N ′ over S′. Then XU has a Néron model N over S, and we
have sub-Z-group spaces (F dNZ)d∈N of NZ (see De�nition 10.7 and De�nition
10.10) such that:

• For all d ∈ N, F d+1NZ ⊂ F dNZ .

• F 0NZ = NZ .

• If d >
r∏
j=1

(nj − 1) then F dNZ = 0.

69



• F 0NZ/F
1NZ is the subspace of N ′Z invariant under the action of G =

r∏
j=1

µnj
, where (ξj)1≤j≤r acts by multiplying Tj by ξj.

• If d > 0, F dNZ/F d+1NZ is isomorphic to the �ber product over Z of
the LieN ′Z/Z [k] where k ranges through all r-uples of integers (k1, ..., kr)

with
r∑
j=1

kj = d and kj < nj for all j; LieN ′Z/Z [k] is the subspace of

LieN ′Z/Z where all (ξj)1≤j≤r in G act by multiplication by
r∏
j=1

ξ
kj
j ; and the

map LieN ′Z/Z [k]→ Z is given by identifying LieN ′Z/Z with LieN ′Z/Z(P.R),

where P =
r∏
i=1

T kii .

Remark 10.13.1. Our choice of quotienting by all monomials of the same degree
in De�nition 10.6 is somewhat arbitrary, other choices could perhaps lead to
interesting things as well.
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Abstract

In several areas of mathematics, one encounters families of objects (groups,
varieties, schemes, graphs...) parametrized by one or several unknowns, that
are well-behaved and easy to de�ne except for a few speci�c values of these
unknowns. Think, for example, of an elliptic curve over the �eld of rational
numbers: starting with an equation with rational coe�cients, one can clear
denominators and get an equation with integer coe�cients, and this equation
reduces to the equation of an elliptic curve modulo p for all but a �nite number
of primes p. Even then, it is often convenient to be able to extend our family
into a global, compact one, or at least satisfying some good continuity properties
with respect to the parameters. A model of a family of objects de�ned for all
but certain values of the parameters is a way of extending it to all possible
values. Incomplete smooth families of schemes (or, more generally, of stacks)
sometimes admit a "best possible smooth model", the Néron model. This thesis
deals with questions of existence and explicit construction of Néron models. It
is divided in three parts.

In the �rst part, we study generically smooth families of nodal curves (i.e. curves
with at worst ordinary double points) over a regular base scheme. We de�ne
certain birational modi�cations of such nodal (relative) curves, which we call
re�nements. We prove that re�nements always exist étale-locally on the base.
We de�ne invariants measuring the complexity of the singularities of a nodal
curve, and explain how re�nements can be used to �nd the nodal models of a
generic smooth curve with the simplest singularities.

In the second part, we are interested in the existence of Néron models for (fam-
ilies of) Jacobians and curves, over a regular base with no restriction of dimen-
sion. First, we introduce a condition on nodal curves called strict alignment.
Strict alignment can be read on the dual graph, a simple combinatorial invariant
summarizing information about the global structure of the curve and how its
singularities vary in families. We show that the generic Jacobian of a generi-
cally smooth nodal curve has a Néron model if and only if the curve is strictly
aligned. Then, we prove that for a smooth curve to have a Néron model, it
is necessary that the singular locus of any nodal model be locally irreducible
for the étale topology. Using the contraction morphisms of Mg,n stacks, we
deduce an even stronger necessary condition in terms of dual graphs (equivalent
to the closure of this local irreducibility of the singular locus under étale base
change and contraction), and we show that this new necessary condition is also
su�cient under some technical hypotheses.

In the third part, we study the base change behavior of Néron models under
�nite, tamely rami�ed morphisms S′ → S between regular schemes. We show
that if an abelian variety de�ned generically over S has a Néron model N ′/S′

after such a base change, then it admits a Néron model N/S, and we make
explicit the successive quotients of a certain �ltration of N in terms of N ′.

Keywords: Nodal curves, Néron models, Jacobians, high dimension.
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Samenvatting

In verscheidene gebieden van de wiskunde treft men families van objecten (var-
iëteiten, groepen, schemas, grafen...), geparametriseerd door een of meerdere
variabelen, die zich goed gedragen en eenvoudig te de�niëren zijn, afgezien voor
een paar speci�eke waarden van deze variabelen. Denk bijvoorbeeld aan een
elliptische kromme over het lichaam van rationale getallen: beginnend met een
vergelijking met rationale coë�ciënten kun je de noemers wegwerken en een
vergelijking met gehele coë�ciënten krijgen, en deze vergelijking reduceert naar
de vergelijking van een elliptische kromme modulo p voor alle p, op eindig veel
p na. Zelfs dan is het vaak handig om de familie uit te breiden naar een globale,
compacte familie, of op zijn minst een familie die goede continuïteitseigenschap-
pen heeft met betrekking tot de variabelen. Een model van een familie van ob-
jecten die gede�nieerd is voor alle waarden van de variabelen, op een aantal na,
is een manier om deze familie uit te breiden naar alle waarden van de variabelen.
Onvolledige gladde families van schemas hebben soms een "best mogelijk glad
model", het zogeheten Néron model. Dit proefschrift gaat over de existentie en
expliciete constructie van Néron modellen. Het bestaat uit drie delen.

In het eerste deel bestuderen we generiek gladde families van nodale krommen
(d.w.z. krommen met op zijn slechtst gewone dubbelpunten) over een regulier
basisschema. We de�niëren zekere birationale modi�caties van zulke nodale (re-
latieve) krommen, welke we ver�jningen noemen. We bewijzen dat ver�jningen
étale-lokaal op de basis bestaan. We de�niëren invarianten die de complexiteit
van de singulariteiten van een nodale kromme meten, en leggen uit hoe ver�jnin-
gen gebruikt kunnen worden om de nodale modellen van een generieke gladde
kromme te vinden die de eenvoudigste singulariteiten hebben.

In het tweede deel zijn we geïnteresseerd in het bestaan van Néron modellen voor
(families van) Jacobianen en krommen, over een reguliere basis, zonder beperk-
ing op de dimensie. Als eerst introduceren we een conditie op nodale krommen,
genaamd stricte uitlijning. Stricte uitlijning kan afgelezen worden van de duale
graaf, een eenvoudige combinatorische invariant die informatie samenvat over
de globale structuur van de kromme, en over hoe zijn singulariteiten veranderen
in families. We tonen aan dat de generieke Jacobiaan van een generiek gladde
nodale kromme een Néron model heeft dan en slechts dan als de kromme strict
uitgelijnd is. Dan bewijzen we dat als een gladde kromme een Néron model
heeft, dan is de singuliere locus van elk nodale model lokaal irreducibel voor
de étale topologie. Door gebruik te maken van de contractiemor�smen van de
Mg,n schelven, leiden we een sterkere nodige conditie in termen van duale grafen
af, en we tonen aan dat deze nieuwe nodige conditie ook voldoende is.

In het derde deel bestuderen we het gedrag van Néron modellen onder ba-
sisverandering langs eindige, tam vertakte mor�smen S′ → S tussen reguliere
schemas. We tonen aan dat als een abelse variëteit, generiek over S gede�nieerd,
een Néron model N ′/S′ heeft, na zo'n basisverandering, dan heeft hij een Néron
model N/S, en we maken de achtereenvolgende quotienten van een zekere �l-
tratie op N expliciet in termen van N ′.

Trefwoorden: Nodale krommen, Néron modellen, Jacobianen, hoge dimensie.
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Résumé

Dans de nombreux domaines des mathématiques, il arrive de rencontrer des
familles d'objets (groupes, graphes, variétés, schémas, champs algébriques...)
paramétrisées par une ou plusieurs variables, qui admettent une dé�nition simple
et se comportent bien seulement en dehors de certaines valeurs exceptionnelles
de ces variables. Par exemple, étant donné une courbe elliptique sur Q, on
peut en trouver une équation à coe�cients entiers, dont la réduction modulo
p sera une courbe elliptique pour tout nombre premier p à l'exception d'un
nombre �ni d'entre eux. On a alors une "famille continue" de courbes elliptiques
paramétrée par l'ensemble des nombres premiers, privé d'un sous-ensemble �ni.
Il est naturel de souhaiter construire des modèles de ces familles incomplètes, i.e.
de les étendre en familles dé�nies sur toutes les valeurs possibles des paramètres.
Les familles incomplètes de schémas (ou même champs algébriques) ont parfois
un "meilleur modèle lisse", le modèle de Néron. Cette thèse traite de questions
d'existence et de construction explicite de modèles de Néron. Elle comporte
trois parties.

Dans la première partie, nous nous intéressons à des familles de courbes nodales
génériquement lisses paramétrisées par un schéma régulier. Nous introduisons
certains éclatements birationnels de telles familles, les ra�nements. Nous mon-
trons que, localement sur la base dans la topologie étale, les ra�nements existent
toujours. Nous dé�nissons certains invariants mesurant la complexité des sin-
gularités d'une courbe nodale relative, et nous montrons que les ra�nements
permettent, partant d'une courbe lisse avec un modèle nodal, d'en trouver les
modèles nodaux avec les singularités les plus simples.

Dans la deuxième partie, nous nous intéressons à l'existence de modèles de
Néron pour des familles de Jacobiennes, puis pour des familles de courbes, sur
une base régulière sans restriction de dimension. D'abord, nous introduisons
une condition appelée alignement strict sur la structure locale d'une courbe
nodale génériquement lisse X/S autour de ses singularités. Nous montrons que
la Jacobienne générique de X/S a un modèle de Néron si et seulement si X/S
est strictement alignée. Ensuite, nous prouvons que si une courbe lisse a un
modèle de Néron, alors le lieu singulier de tout modèle nodal de cette courbe est
localement irréductible pour la topologie étale. Nous utilisons les morphismes
de contraction des champsMg,n pour en déduire une condition nécessaire plus
forte (équivalente à la clôture de cette irréductibilité locale du lieu singulier
sous les morphismes de contraction et les changements de base lisses), et nous
montrons que cette nouvelle condition est également su�sante sous quelques
hypothèses techniques.

Dans la troisième partie, nous étudions le comportement des modèles de Néron
sous des changements de base S′ → S �nis et modérément rami�és entre sché-
mas réguliers. Nous verrons qu'une variété abélienne dé�nie génériquement
au-dessus de S, et admettant un modèle de Néron N ′/S′ après un tel change-
ment de base, doit aussi avoir un modèle de Néron N/S. Dans ce cas, nous
expliciterons les quotients successifs d'une �ltration de N en termes de N ′.

Mots-clés: Courbes nodales, modèles de Néron, Jacobiennes, dimension supérieure.
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Résumé substantiel

Étant donné un schéma S et un ouvert schématiquement dense U ⊂ S, de
nombreux U -schémas propres et lisses Z/U n'admettent pas de modèle propre
et lisse sur S. Par exemple, toute courbe elliptique sur Q s'étend en courbe
elliptique sur un ouvert dense de SpecZ, mais aucune ne s'étend en courbe
elliptique sur tout SpecZ. A�n de trouver le "meilleur modèle lisse possible" en
l'absence de modèle propre et lisse, il peut alors être intéressant de remplacer
la condition de propreté par une autre. Soit X/S un modèle de Z/U , on dit
que X/S a la propriété de Néron (relativement à U → S) lorsque pour tout
S-schéma lisse Y/S, tout morphisme YU → Z s'étend de manière unique en un
morphisme Y → X. Un modèle de Néron est un modèle lisse et séparé ayant la
propriété de Néron.

La propriété de Néron est universelle, et garantit donc l'unicité des modéles de
Néron, à unique isomorphisme près. Cependant, le modèle de Néron n'existe
pas toujours: par exemple, si S est le spectre d'un anneau de valuation discrète
et U → S l'inclusion du point générique, alors P1

U n'a pas de modèle de Néron
sur S.

Néron a prouvé que toute variété abélienne au-dessus d'un ouvert dense d'un
schéma de Dedekind S admet un modèle de Néron sur S. Plus récemment, la
question s'est posée de construire des modèles de Néron dans des cadres plus
généraux. Qing Liu et Jilong Tong ont montré que toute courbe de genre ≥ 1
dé�nie sur un ouvert dense d'un schéma de Dedekind connexe a un modèle de
Néron, qui est le lieu lisse de son modèle propre régulier minimal. Lorsque S
est un schéma régulier, U ⊂ S un ouvert dense et X/S est une courbe nodale1

lisse au-dessus de U , David Holmes a décrit une condition nécessaire pour que la
Jacobienne de XU ait un modéle de Néron sur S, en termes de la structure locale
de X autour de ses singularités. Cette thèse traite de questions d'existence et de
comportement des modèles de Néron sur une base régulière sans restriction de
dimension, avec une emphase particulière sur les modèles de Néron de courbes
nodales et de leurs Jacobiennes. Elle comporte trois parties.

Partie I: Courbes nodales, graphes duaux et résolutions

Dans cette partie, nous partons d'un schéma régulier S, un ouvert dense U ⊂ S,
et une courbe nodaleX/S, lisse au-dessus de U . Lorsque S est un trait2 et U son
point générique, une étape clé dans la construction du modèle de Néron de XU

consiste typiquement à "lissi�er" X, i.e. à éclater X en des sous-schémas dont
le support est disjoint de U , pour rendre le lieu lisse "plus gros". Par exemple,
lorsque S est un trait strictement local, après un nombre �ni d'éclatements
successifs en des points singuliers de la �bre spéciale de X/S, on obtient un
nouveau modèle nodal X ′ → X de XU , tel que toute section de X/S provient
d'une unique section lisse de X ′/S. Nous présentons un analogue de ce procédé
de lissi�cation lorsque S est un schéma régulier sans restriction de dimension.

1Une courbe propre et de présentation �nie, dont les �bres géométriques ont au pire des

points doubles ordinaires
2Le spectre d'un anneau de valuation discrète
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D'abord, nous dé�nissons le graphe dual deX/S en un point géométrique s de S.
Les sommets de ce graphe (respectivement, ses arêtes) sont les composantes ir-
réductibles (respectivement, les points singuliers) de Xs. À une arête du graphe
dual, correspondant à un point singulier x de Xs, nous associons un idéal de
l'anneau local étale OetS,s, l'idéal singulier de x, représentatif de la complexité
globale du lieu singulier de X/S autour de x. L'idéal singulier généralise la
notion d'épaisseur d'un point singulier de la �bre spéciale de X/S, lorsque S
est un trait strictement local. Par exemple, lorsque l'idéal singulier de x est
premier, aucune section de X/S ne peut passer par x.

Nous appelons ra�nement de X/S l'éclatement de X en le faisceau d'idéaux
d'une S-section. Nous montrons que tout ra�nement de X/S est un modèle
nodal de XU . Nous montrons que, lorsque S est excellent, pour tout point
géométrique s de S et toute section σ : S → X, il existe un voisinage étale
V de s dans S et un ra�nement X ′ de XV /V tels que σ|V provient d'une
section lisse de XV /V . Nous prouvons également que, étale localement sur
S, par composition d'un nombre �ni de ra�nements, il est toujours possible
d'obtenir une résolution de X/S en s, i.e. un modèle nodal X ′ de XU tel que
tous les idéaux singuliers des points de X ′s sont premiers. Il s'ensuit que si S
est strictement local et excellent, toute section σ de X/S provient d'une section
du lieu lisse d'une certaine résolution de X/S. Cependant, contrairement au
cas où S est de dimension 1, il peut exister plusieurs classes d'isomorphisme de
résolutions de X/S, et σ ne se factorise pas nécessairement par toute résolution
de X/S.

Partie II: Modèles de Néron de courbes nodales et de leurs
Jacobiennes

Dans cette partie, nous conservons les notations X, S, U de la partie précédente,
et supposons aussi que S est excellent. Nous décrivons alors des critères pour
que XU et sa Jacobienne aient des modèles de Néron au-dessus de S.

D'abord, nous cherchons à construire un modèle de Néron pour la Jacobienne J
de XU/U . Nous nous appuyons fortement sur le travail de David Holmes, qui a
prouvé que si J admet un modèle de Néron, alors les graphes duaux de X/S en
tout point géométrique doivent satisfaire une condition appelée alignement : un
graphe dual est aligné lorsque tous les labels des arêtes d'un même cycle (i.e. les
idéaux singuliers des points doubles correspondants) sont des puissances d'un
même idéal. Une conséquence immédiate est que si J admet un modèle de
Néron, alors tout modèle nodal de XU doit être aligné. Nous montrons que les
deux conditions suivantes sont équivalentes:

• Tout ra�nement de tout changement de base lisse de X/S est aligné.

• X/S est strictement alignée, i.e. les labels d'un même cycle d'un même
graphe dual de X/S sont toujours puissances d'un même idéal premier.

Puisque les modèles de Néron sont compatibles avec les changements de base
lisses, il s'ensuit que si J a un modèle de Néron, alors X/S est strictement
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alignée. Nous montrons que cette condition est également su�sante: J a un
modèle de Néron si et seulement si X/S est strictement alignée. Localement
sur S, nous décrivons explicitement ce modèle de Néron N de J lorsqu'il existe:
tout point géométrique s de S a un voisinage étale V tel que XV /V ait une
résolution X ′, et NV est canoniquement isomorphe au quotient P/E, où P est
l'espace de Picard Pic

[0]
X′/V paramétrisant les faisceaux inversibles de degré total

0; et E la clôture schématique de la section unité dans P .

En ce qui concerne la construction d'un modèle de Néron pour la courbe XU/U
elle-même, on s'intéresse d'abord à un problème étroitement lié, mais un peu
di�érent: existe-t-il un morphisme de S-espaces algébriques N → X, avec N/S
lisse, tel que tout autre tel morphisme Y → X avec Y/S lisse se factorise par
N ? Nous répondons par l'a�rmative, et construisons un tel N en recollant
dans la topologie étale une famille bien choisie de lieux lisses de ra�nements de
changements de base étales de X/S. Cet espace N , que l'on appelle agrégat lisse
de X/S, possède des propriétés analogues à la propriété de Néron, mais il n'est
en général pas séparé. En conséquence, plutôt qu'un modèle de Néron, nous
allons chercher à construire un ns-modèle de Néron de XU/U , i.e. un modèle
lisse (mais pas nécessairement séparé) avec la propriété de Néron.

Par un résultat de Gabber, Liu et Lorenzini, on sait que si X/S n'a pas de
courbe rationnelle dans ses �bres géométriques, alors tout morphisme U → X
s'étend uniquement en une S-section. Il s'ensuit que, sous cette hypothèse ad-
ditionnelle, l'agrégat lisse de X est un ns-modèle de Néron de XU/U . Dans
le cas général, cela soulève la question de construire un modèle nodal de XU

sans composante rationnelle dans ses �bres géométriques. Nous utilisons les
morphismes de contraction des champs Mg,n décrits par Knudsen pour mon-
trer que X/S peut toujours être contractée en un modèle nodal stable Xstable

de XU . Nous donnons une caractérisation explicite en termes de X pour que
les �bres géométriques de Xstable n'aient pas de composantes rationnelles (i.e.
pour que XU ait un modèle nodal sans composante rationnelle dans ses �bres
géométriques). Lorsque cette condition est remplie, l'agrégat lisse de Xstable est
donc le ns-modèle de Néron de XU/U .

Ensuite, nous cherchons des conditions sous lesquelles XU a un modèle de Néron
proprement dit, i.e. un ns-modèle de Néron séparé. Nous montrons que si
XU a un modèle de Néron, alors le lieu singulier de X/S doit être localement
irréductible pour la topologie étale. En termes de graphes duaux, cela revient à
demander que tous les idéaux singuliers de X/S (en tout point géométrique de
S) soient des puissances d'idéaux premiers.

Une fois encore, cette condition nécessaire s'applique à tout modèle nodal de
XU , et pas seulement à X: il est possible d'obtenir une condition nécessaire
plus restrictive (en termes de X) en appliquant la précédente à Xstable. Nous
expliquons donc comment les idéaux singuliers de Xstable peuvent être calculés
à partir de ceux de X, et nous en déduisons que si XU a un modéle de Néron,
alors X satisfait les deux conditions suivantes:

1. Tous les idéaux singuliers de X/S sont des puissances d'idéaux premiers.

2. Pour tout point géométrique s de S, et toute composante rationnelle E de
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Xs rencontrant les autres composantes irréductibles de Xs en exactement
deux points x et y, les idéaux singuliers de x et y sont des puissances du
même idéal premier de OetS,s.

En�n, nous montrons que si X satisfait ces deux conditions et si Xstable n'a
pas de composantes rationnelles dans ses �bres géométriques, alors XU a bien
un modèle de Néron, i.e. le ns-modèle de Néron construit précédemment est
séparé.

Partie III: Changement de base modérément rami�é de
modèles de Néron

Les modèles de Néron passent aux changements de base lisses, et descendent sous
les recouvrements lisses. Cela est propre aux morphismes lisses. Soit f : S′ → S
un morphisme plat, U ⊂ S un ouvert schématiquement dense et XU/U un
U -schéma propre et lisse. On pose U ′ = U ×S S′ et XU ′ = X ×S S′. En
général, lorsque XU et XU ′ ont des modèles de Néron N et N ′, on a seulement
un morphisme de changement de base N ×S S′ → N ′. Dans cette partie, nous
étudions ce morphisme de changement de base lorsque S et S′ sont des schémas
réguliers; U est le complément d'un diviseur de S à croisements strictement
normaux; f est un morphisme �ni et localement libre, lisse sur U et modérément
rami�é sur S; et XU est une variété abélienne. Il s'agit d'une généralisation
en dimension arbitraire d'un travail similaire réalisé par Bas Edixhoven sur
la descente des modèles de Néron de variétés abéliennes le long d'extensions
modérément rami�ées d'anneaux de valuation discrète.

Nous nous intèressons principalement à des questions de descente: supposons
que XU ′ ait un modèle de Néron N ′/S′, XU a-t-il un modèle de Néron N ? Et
si oui, que peut-on dire de N ?

Nous répondons par l'a�rmative à la première de ces questions. Nous rappelons
que le foncteur T/S 7→ N ′(T×SS′), appelé restriction de Weil de N ′ à S et noté∏
S′/S

N ′, est représentable, et qu'il existe un morphisme naturel XU →
∏
S′/S

N ′.

Nous montrons que la clôture schématique de XU dans
∏
S′/S

N ′ est le modèle de

Néron de XU .

Ensuite, nous tentons de rendre explicite N en termes de N ′. Tout point
géométrique s de S a un voisinage étale a�ne V = SpecR, tel que V ×S S′
soit de la forme SpecR′ avec

R′ = R[T1, ..., Tr]/(T
nj

j − fj)1≤j≤r

pour un système régulier de paramètres (f1, ..., fr) de R; et tel que tous les
fi s'annulent en s. En conséquence, par la suite, nous allons supposer que
S = SpecR et S′ = SpecR′ sont tels que ci-dessus, et nous allons nous intéresser
à NZ , où Z est le sous-schéma de S où tous les fi s'annulent. Remarquons que
Z est aussi le sous-schéma fermé de S′ où tous les Ti s'annulent. Nous allons
décrire une certaine �ltration de NZ .
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Soit µnj
le groupe des racines nj-èmes de l'unité dans R. Quitte à remplacer R

par une extension étale, on suppose que µnj
est d'ordre nj . Le groupeG =

r∏
i=1

µj

agit à droite sur S′ via (ξi)1≤i≤r.Tj = ξjTj . Cette action induit naturellement
une action de G sur

∏
S′/S

N ′, et nous montrons que N représente le foncteur( ∏
S′/S

N ′

)G
des invariants sous cette action.

Appelons A′d le sous-A-module de A′ composé des polynômes homogènes de
degré d en les Tj ; et Λd la A-base de A′d constituée de ses monômes uni-
taires. Nous exhibons une �ltration descendante (F dN ′Z)d∈N de sous-Z-espaces

algébriques en groupes de

( ∏
S′/S

N ′

)
×S Z. Cette �ltration est stationnaire

et triviale à partir de d = 1 +
r∏
j=1

(nj − 1). Nous montrons que le quotient

Gr0N ′Z := F 0N ′Z/F
1N ′Z est canoniquement isomorphe à N ′Z ; et pour d ≥ 1,

nous exhibons un isomorphisme canonique entre GrdN ′Z := F dN ′Z/F
d+1N ′Z

et l'algèbre de Lie LieN ′Z/Z(A′d). Cette dernière est elle-même canoniquement
isomorphe au produit �bré

∏
P∈Λd,Z

LieN ′Z/Z(PA), où chaque LieN ′Z/Z(PA) est

(non-canoniquement) isomorphe à l'algèbre de Lie "classique" LieN ′Z/Z puisque
PA est un A-module libre de rang 1.

L'action naturelle de G sur N ′ induit des actions équivariantes sur les F dN ′Z ,
donc sur les GrdN ′Z . Nous montrons que cette action naturelle Gy GrdN ′Z est
obtenue à partir d'actions de G sur chaque facteur LieN ′Z/Z(PA), et que si P est

le monôme
r∏
i=1

T kii , alors l'espace des invariants LieN ′Z/Z(PA)G s'identi�e via le

morphisme P 7→ 1 au sous-espace de LieN ′Z/Z où chaque (ξi)1≤i≤r dans G agit

par multiplication par
∏
i

ξkii . En conséquence, les espaces F dNZ := (F dN ′Z)G

forment une �ltration descendante de sous-Z-espaces algébriques en groupes de

NZ = (F 0N ′Z)G, stationnaire et triviale à partir de d = 1 +
r∏
j=1

(nj − 1), dont

nous avons explicité les quotients successifs.
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