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Title

Fine-Grained Action Detection and Classification from Videos with Spatio-Temporal
Convolutional Neural Networks. Application to Table Tennis.

Abstract

Action recognition in videos is one of the key problems in visual data interpretation.
Despite intensive research, differencing and recognizing similar actions remains a
challenge. This thesis deals with fine-grained classification of sport gestures from
videos, with an application to table tennis. In this manuscript, we propose a method
based on deep learning for automatically segmenting and classifying table tennis
strokes in videos. Our aim is to design a smart system for students and teachers
for analyzing their performances. By profiling the players, a teacher can therefore
tailor the training sessions more efficiently in order to improve their skills. Players
can also have an instant feedback on their performances.

For developing such a system with fine-grained classification, a very specific
dataset is needed to supervise the learning process. To that aim, we built the
“TTStroke-21” dataset, which is composed of 20 stroke classes plus a rejection class.
The TTStroke-21 dataset comprises video clips of recorded table tennis exercises
performed by students at the sport faculty of the University of Bordeaux - STAPS.
These recorded sessions were annotated by professional players or teachers using
a crowdsourced annotation platform. The annotations consist in a description of
the handedness of the player and information for each stroke performed (starting
and ending frames, class of the stroke). Fine-grained action recognition has some
notable differences with coarse-grained action recognition. In general, datasets
used for coarse-grained action recognition, the background context often provides
discriminative information that methods can use to classify the action, rather than
focusing on the action itself. In fine-grained classification, where the inter-class
similarity is high, discriminative visual features are harder to extract and the motion
plays a key role for characterizing an action.

In this thesis, we introduce a Twin Spatio-Temporal Convolutional Neural
Network. This deep learning network takes as inputs an RGB image sequence
and its computed Optical Flow. The RGB image sequence allows our model to
capture appearance features while the optical flow captures motion features. Those
two streams are processed in parallel using 3D convolutions, and fused at the last
stage of the network. Spatio-temporal features extracted in the network allow
efficient classification of video clips from TTStroke-21. Our method gets an average
classification performance of 87.3% with a best run of 93.2% accuracy on the test
set. When applied on joint detection and classification task, the proposed method
reaches an accuracy of 82.6%.

A systematic study of the influence of each stream and fusion types on
classification accuracy has been performed, giving clues on how to obtain the best
performances. A comparison of different optical flow methods and the role of their
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normalization on the classification score is also done. The extracted features are
also analyzed by back-tracing strong features from the last convolutional layer
to understand the decision path of the trained model. Finally, we introduce
an attention mechanism to help the model focusing on particular characteristic
features and also to speed up the training process. For comparison purposes, we
provide performances of other methods on TTStroke-21 and test our model on other
datasets. We notice that models performing well on coarse-grained action datasets
do not always perform well on our fine-grained action dataset.

The research presented in this manuscript was validated with publications in
one international journal, five international conference papers, two international
workshop papers and a reconductible task in MediaEval workshop in which
participants can apply their action recognition methods to TTStroke-21. Two
additional international workshop papers are in process along with one book chapter.

Keywords

Deep Learning, Action classification, Spatio-temporal convolution, Table tennis,
Optical Flow, Computer Vision, Video indexing

Location

University of Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400,
Talence, France
University of La Rochelle, Mathématiques, Image et Applications - MIA, La
Rochelle, France
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Titre

Détection et classification fines d’actions à partir de vidéos par réseaux de neurones
à convolutions spatio-temporelles. Application au tennis de table.

Résumé

La reconnaissance des actions à partir de vidéos est l’un des principaux problèmes
de vision par ordinateur. Malgré des recherches intensives, la différenciation et
la reconnaissance d’actions similaires restent un défi. Cette thèse porte sur la
classification des gestes sportifs à partir de vidéos, avec comme cadre applicatif
le tennis de table.

Nous proposons une méthode d’apprentissage profond pour segmenter et
classifier automatiquement les différents coup de Tennis de Table. Notre objectif
est de concevoir un système intelligent permettant d’analyser les performances des
élèves pongistes, et de donner la possibilité à l’entraîneur d’adapter ses séances
d’entraînement pour améliorer leurs performances.

Dans ce but, nous avons élaboré la base de données “TTStroke-21”, constituée de
clips vidéo d’exercices de tennis de table, enregistrés par les étudiants de la faculté
de sport de l’Université de Bordeaux – STAPS. Cette base de données a ensuite été
annotée par des professionnels du domaine à l’aide d’une plateforme crowdsourcing.
Les annotations consistent en une description des coups effectués (début, fin et type
de coup). Au total, 20 différents coups de tennis de table sont considérés plus une
classe de rejet.

La reconnaissance des actions similaires présente des différences avec la
reconnaissance d’actions classique. En effet, dans les bases de données classiques,
le contexte de l’arrière plan fournit souvent des informations discriminantes que
les méthodes peuvent utiliser pour classer l’action plutôt que de se concentrer
sur l’action elle-même. Dans notre cas, la similarité entre classes est élevée, les
caractéristiques visuelles discriminantes sont donc plus difficiles à extraire et le
mouvement joue un rôle clef dans la caractérisation de l’action.

Dans cette thèse, nous introduisons un réseau de neurones spatio-temporel
convolutif avec une architecture Jumelle. Ce réseau d’apprentissage profond prend
comme entrées une séquence d’images RVB et son flot optique estimé. Les données
RVB permettent à notre modèle de capturer les caractéristiques d’apparence tandis
que le flot optique capture les caractéristiques de mouvement. Ces deux flux sont
traités en parallèle à l’aide de convolutions 3D, et sont fusionnés à la dernière
étape du réseau. Les caractéristiques spatio-temporelles extraites dans le réseau
permettent une classification efficace des clips vidéo de TTStroke-21. Notre
méthode obtient une performance de classification de 93.2% sur l’ensemble des
données tests. Appliquée à la tâche jointe de détection et de classification, notre
méthode atteint une précision de 82.6%.

Nous étudions les performances en fonction des types de données utilisés en entrée
et la manière de les fusionner. Différents estimateurs de flot optique ainsi que leur
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normalisation sont testés afin d’améliorer la précision. Les caractéristiques de chaque
branche de notre architecture sont également analysées afin de comprendre le chemin
de décision de notre modèle. Enfin, nous introduisons un mécanisme d’attention
pour aider le modèle à se concentrer sur des caractéristiques discriminantes et aussi
pour accélérer le processus d’entraînement. Nous comparons notre modèle avec
d’autres méthodes sur TTStroke-21 et le testons sur d’autres ensembles de données.
Nous constatons que les modèles fonctionnant bien sur des bases de données d’actions
classiques ne fonctionnent pas toujours aussi bien sur notre base de données d’actions
similaires.

Les travaux présentés dans cette thèse ont été validés par des publications
dans une revue internationale, cinq papiers de conférences internationales, deux
papiers d’un workshop international et une tâche reconductible dans le workshop
MediaEval où les participants peuvent appliquer leurs méthodes de reconnaissance
d’actions à notre base de données TTStroke-21. Deux autres papiers de workshop
internationaux sont en cours de préparation, ainsi qu’un chapitre de livre.

Mots-clés

Apprentissage profond, Classification d’actions, Tennis de table, Convolutions
Spatio-temporelles, Indexation vidéo, Flot optique, Vision par ordinateur

Adresse

Université de Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, F-33400,
Talence, France
Université de La Rochelle, MIA, La Rochelle, France
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Synthèse des travaux en français

Résumé

Ces travaux de thèse portent sur la reconnaissance des gestes sportifs à partir de
vidéos et sont appliqués au cas du tennis de table. Le but est de concevoir un
environnement informatique intelligent sur lequel étudiants et enseignants peuvent
analyser la façon de jouer des sportifs. Le méthode développée permet de segmenter
et de classifier automatiquement les coups de tennis de table effectués par les joueurs
à partir de vidéos. Ainsi le profil des joueurs peut être renseigné et l’enseignant peut
adapter son cours pour améliorer au mieux leurs performances.

Pour ce faire, nous avons enregistré des jeux de tennis de table avec des étudiants
en STAPS. Ces enregistrements ont ensuite été annotés temporellement par des
professionnels sur une plate-forme participative d’annotation. Cette nouvelle base
de données, nommée “TTStroke-21”, nous a permis d’entraîner et de tester notre
méthode de classification.

Nous avons introduit un réseau de neurones jumeau à convolutions spatio-
temporelles prenant en entrée le flux vidéo et le flot optique estimé sur la séquence.
Traitées parallèlement, ces données permettent une classification efficace des seg-
ments vidéo. À partir de ces classifications, les frontières temporelles des coups
effectués et leur classe peuvent être estimées.

1 Introduction

L’objectif de ces travaux est la reconnaissance d’actions sportives à partir de vidéos
dans le but d’améliorer les performances des athlètes. Notre cadre applicatif est
le tennis de table. Nous présentons une nouvelle base de données, “TTStroke-21”,
qui comporte vingt classes de coups de tennis de table et une classe de rejet sup-
plémentaire. Cette taxonomie a été conçue avec des professionnels du domaine afin
de recouvrir toutes les variations des actions de ce sport. Nous travaillons sur des
vidéos enregistrées à la Faculté des Sports de l’Université de Bordeaux - STAPS.
Les étudiants sont les athlètes filmés et les professeurs supervisent les exercices ef-
fectués lors des séances d’enregistrement. Les enregistrements sont sans capteurs,
ce qui permet aux joueurs de jouer dans des conditions naturelles. L’objectif est
de développer un outil d’analyse automatique que les enseignants et les étudiants
pourraient utiliser pour analyser les matchs des joueurs de tennis de table. Ainsi,
avec un retour automatisé de leur performance, les séances d’entraînement peuvent
être adaptées plus facilement en fonction de leurs besoins. Cet ensemble de données
constitue la première contribution de cette thèse.

La deuxième contribution est la méthode de classification. Un réseau Jumeau
de neurones à Convolutions Spatio-Temporelles (T-STCNN), est introduit à cette
fin. Nous comparons les performances en utilisant notre ensemble de données avec
la méthode Two-Stream I3D proposée par Carreira and Zisserman (2017). Nous
identifions deux types de tâches : la classification des actions avec les frontières
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2. TTStroke-21

temporelles connues, et la classification des vidéos sans frontières temporelles.
Nous présentons en Section 2 la base de données sur laquelle les travaux sont

menés. Section 3 expose notre méthode de classification et ses résultats sont reportés
en Section 4. Enfin la conclusion et les ouvertures pour de futurs travaux sont
exposées en Section 5.

2 TTStroke-21

TTStroke-21 est constituée de vidéos centrées sur le joueur de tennis de table. Ces
vidéos sont enregistrées avec des caméras GoPro utilisant plusieurs angles de vue.
Cependant, afin d’avoir des résultats cohérents et comparables, nous considérons
seulement les vidéos enregistrées à 120 images par seconde avec vue aérienne. Les
séquences sont enregistrées en intérieur avec lumière artificielle. Des experts en
tennis de table annotent les vidéos par le biais de la plateforme d’annotation en
utilisant vingt classes de coups conformément aux règles du tennis de table :

• 8 services : Service coup droit coupé, Service Coup droit lifté, Service Coup
droit latéral, Service Coup droit rapide, Service revers coupé, Service revers
lifté, Service revers latéral, Service revers rapide.

• 6 coups d’attaque : Att. coup droit frappe, Att. coup droit lifté, Att. coup
droit flip, Att. revers frappe, Att. revers lifté, Att. revers flip.

• 6 coups de défense : Def. coup droit poussette, Def. coup droit bloc, Def. coup
droit coupé, Def. revers poussette, Def. revers bloc, Def. revers coupé.

Ces coups peuvent également être catégorisés en fonction de s’ils sont des coups
“droits” ou des “revers”.

Pour obtenir un ensemble de données exploitables, les annotations sont filtrées et
fusionnées lorsque celles-ci se superposent. En effet, une labellisation des données par
deux annotateurs est préférable afin d’éviter les erreurs d’inattention et de valider
une première annotation. Cependant, ce critère n’est pas toujours vérifié car ce
travail est basé sur le volontariat et qu’un nombre important de vidéos restent à
annoter. Le processus d’acquisition et la plateforme d’annotation sont représentés
sur la Figure 1.

Sur notre sélection de vidéos, un total de 1387 annotations sont considérées,
1074 sont conservées après filtrage, menant à la segmentation de 1048 coups de
tennis de table. Une classe de rejet est construite à partir de cette segmentation
en considérant les portions de vidéos entre chaque coup. Un extrait de la base de
données est représentée en Figure 2.
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a. Acquisition vidéo b. Plateforme d’annotation.
avec vue aérienne.

Figure 1 – Préparation de la base de données TTStroke-21.

Figure 2 – Image de présentation de la base de données TTStroke-21.

Fine-Grained Action Detection and Classification from Videos with STCNNs.
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3. Méthode développée

3 Méthode développée

Les frames de la vidéo sont redimensionnées à 320 × 180 pixels et leur flot optique
(FO) V = (vx; vy) est calculé. Le FO encode le mouvement horizontal vx et vertical
vy entre deux images. L’image couleur avec trois composantes : Rouge, Vert, Bleu
(RVB) et le FO sont considérés pour la classification des segments vidéo.

3.1 Flot optique et extraction de la région d’intérêt

Différentes méthodes de calcul du flot optique ont été étudiées. Après comparaison
des différentes méthodes, il a été décidé d’utiliser la méthode “Beyond Pixel” (BP)
(Liu, 2009) pour calculer le FO. Cette méthode permet de capturer des éléments
en mouvement qui ne sont pas forcément bien détectés avec les autres méthodes
considérées. La Figure 3 représente le filtrage du flot optique qui utilise l’estimation
de l’avant plan (Zivkovic and van der Heijden, 2006).

a. Image RVB b. Magnitude du FO

c. Avant-plan d. Magnitude du FO après filtrage

Figure 3 – Filtrage du flot optique.

Une région d’intérêt (RI) de taille (W , H) est ensuite déduite. Le centre de la
RI est noté : Xri = (xri, yri) et est calculé à partir du centre de masse de la carte
d’amplitude de mouvement du premier plan et des coordonnées du point maximum
de l’amplitude. Cette opération est formalisée par équation 1 :
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Xmax = (xmax, ymax) = argmax
x,y

(||V||1)

Xg = (xg, yg) =
1∑
δ(X)

X∈Ω

∑
Xδ(X)
X∈Ω

with δ(X) =

{
1 si ||V(X)||1 6= 0
0 sinon.

xri = α fωx(xmax, W ) + (1− α) fωx(xg, W )

yri = α fωy(ymax, H) + (1− α) fωy(xg, H)

(1)

avec α = 0.6, Ω = (ωx, ωy) = (320, 180) la taille des images. La fonction
fω(u, V ) = max(min(u, V − ω

2
), ω

2
) permet d’avoir des régions qui sont dans la

limite des dimensions de l’image. De façon à éviter une instabilité des RI au cours
du temps, un filtre temporel Gaussien est appliqué sur le centre de la RI pour
stabiliser son évolution dans le temps.

Les données RVB sont normalisées en les divisant par leur maximum théorique
255 tandis que les données du FO sont normalisées en utilisant une normalisation
statistique, nommée “Normale”, basée sur la distribution des valeurs maximales du
FO telle que :

v′ =
v

µ+ 3× σ
vN(i, j) =

{
v′(i, j) si |v′(i, j)| < 1
SIGN(v′(i, j)) sinon.

(2)

avec v et vN représentant respectivement une composante du FO V et sa nor-
malisation. µ et σ sont la moyenne et l’écart-type de la distribution de la valeur
absolue d’une composante du FO estimée sur toute la base de données. A noter que
différentes techniques de normalisation ont été testées et cette dernière a obtenu les
meilleures performances.

3.2 Classification des données avec un réseau de neurones
Jumeau - T-STCNN

Notre modèle T-STCNN, qui signifie en anglais Twin Spatio-Temporal Convolutional
Neural Network, est constitué de deux branches individuelles avec pour chacune trois
couches convolutionnelles 3D utilisant chacune 30, 60 et 80 filtres de taille 3× 3× 3,
avec comme fonction d’activation ReLU. Chaque couche convolutionnelle est suivie
d’une couche maxpooling permettant de diviser par deux la dimension de nos don-
nées. Chaque branche se termine par une couche entièrement connectée de taille
500. Les deux branches sont ensuite fusionnées grâce à une fonction bilinéaire du
type y = xT1Ax2 + b avec x1 et x2 les données de chaque branche, A et b respec-
tivement les poids et biais entraînables, et avec en sortie un vecteur y de la taille
du nombre de classes considérées, c’est à dire 21. La sortie est ensuite suivie d’une

Fine-Grained Action Detection and Classification from Videos with STCNNs.
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3. Méthode développée

fonction Softmax pour obtenir une probabilité de classification. L’architecture du
T-STCNN est représentée en Figure 4. Cette architecture est dite Jumelle par son
organisation identique des deux branches.
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Figure 4 – Réseau Jumeau de neurones à Convolutions Spatio-Temporelles.

Ce réseau prend en entrée les données RVB et leur FO correspondant sous forme
de cuboïdes de taille (W × H × T ) = (120 × 120 × 100) avec W la largeur, H la
hauteur et T la durée. Ce modèle est comparé avec les modèles I3D (Carreira and
Zisserman, 2017) : RVB-I3D, FO-I3D et Two-Stream I3D.

Les résultats sont également comparés avec nos modèles une branche qui pren-
nent en entrée les données RVB et FO séparément : RVB-STCNN et FO-STCNN. Le
modèle une branche est inspiré de la même architecture, mais à la place d’une couche
bilinéaire, une couche entièrement connectée est utilisée. Deux autres méthodes de
fusion sont également considérées :

• une méthode de fusion précoce : RVB et FO sont concaténés en données
d’entrées à cinq composantes (R,G,B, vx, vy) que l’on notera FP-STCNN pour
Fusion Précoce.

• une méthode de fusion tardive : la moyenne des sorties des modèles une
branche FO et RVB est considérée pour la classification que l’on notera FT-
STCNN pour Fusion Tardive. Cette méthode est similaire à celle utilisée par
le modèle Two-Stream-I3D, notre modèle de référence.

De plus, les mécanismes d’attention sont aussi étudiés. Un bloc d’attention 3D
est construit en s’inspirant des travaux menés en 2D par Wang et al. (2017a). Ce

xvi Pierre-Etienne Martin



Synthèse des travaux en français

Figure 5 – Bloc d’attention 3D.

Figure 6 – Bloc résiduel 3D.

bloc est présenté en Figure 5. Ce dernier utilise des blocs résiduels 3D qui sont
représentés en Figure 6.

Les blocs d’attention sont insérés à la sortie des couches convolutionnelles et les
performances sont comparées avec les méthodes sans mécanisme d’attention. Les
blocs d’attention utilisent une normalisation par lot. Le lot étant le nombre de
données fournies en entrée du modèle en même temps. Cette normalisation peut
s’effectuer statistiquement avec des variables entraînées ou par lot durant l’inférence
(pendant l’étape test) en considérant seulement les données en entrée. Les résultats
des deux manières sont reportés dans la Section 4.

3.3 Entraînement des réseaux

L’estimation des paramètres de nos réseaux se fait par descente de gradient stochas-
tique (SGD) avec un momentum de Nesterov (Sutskever et al., 2013) de 0.5. Notre
fonction objective est la fonction de perte entropie-croisée. Le nombre de segments
négatifs (sans coup de tennis de table) extraits de TTStroke-21 est choisi deux
fois plus grand que la moyenne du nombre de coups par classe. TTStroke-21 est
divisée en plusieurs ensembles afin d’entraîner nos réseaux : Entraînement (Ent),
Validation (Val) et Test, avec comme proportions respectives : 70%, 20% et 10%
comme représenté sur le Tableau 1. Le nombre total d’extraits est reporté dans la
colonne “Tot”. La durée des coups en nombre d’images est aussi précisée afin de
mieux appréhender leur particularité.

Comme observable dans le Tableau 1, les services ont en moyenne une durée

Fine-Grained Action Detection and Classification from Videos with STCNNs.
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Table 1 – Distribution des données sur chaque set et durée des coups.

# échantillons # frames

Coups de tennis de table Ent Val Test Tot Min Max Moy*

Service coup droit coupé 58 17 8 83 125 269 182± 35
Service Coup droit lifté 56 16 8 80 100 273 171± 51

Service Coup droit latéral 57 16 9 82 101 273 192± 39
Service Coup droit rapide 67 19 9 95 100 273 184± 52

Service revers coupé 56 16 8 80 133 261 188± 31
Service revers lifté 43 12 6 61 100 265 186± 42

Service revers latéral 60 17 9 86 129 269 193± 33
Service revers rapide 57 16 8 81 100 273 175± 48
Att. coup droit frappe 28 8 4 40 100 173 134± 21
Att. coup droit lifté 21 6 3 30 100 229 155± 32
Att. coup droit flip 25 7 3 35 100 265 195± 49
Att. revers frappe 45 13 6 64 100 233 158± 34
Att. revers lifté 23 7 3 33 101 277 177± 43
Att. revers flip 31 9 5 45 113 269 186± 44

Def. coup droit poussette 6 2 1 9 121 229 155± 31
Def. coup droit bloc 19 5 3 27 100 261 131± 37
Def. coup droit coupé 22 6 3 31 121 233 189± 25

Def. revers bloc 8 2 2 12 100 137 115± 14
Def. revers poussette 23 7 3 33 105 177 143± 19
Def. revers coupé 29 8 4 41 129 229 177± 25

Extrait négatif (non coup) 74 21 11 106 100 1255 246± 154

Total 808 230 116 1154 100 1255 182± 65

* sous la forme : valeur moyenne ± déviation standard.
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plus grande que les coups en milieu de jeu. Cette particularité nous a encouragé à
développer des méthodes de classification prenant en compte l’intégralité des coups
effectués et non pas seulement les T = 100 images considérées dans nos cuboïdes
vidéos en entrée des réseaux. Ces méthodes d’évaluation sont décrites en Section 3.5.

3.4 Augmentation des données

L’augmentation des données est effectuée pendant l’entraînement pour économiser
de l’espace de stockage et pour obtenir des données continuellement nouvelles durant
la phase d’apprentissage. Nous effectuons d’une part une augmentation spatiale :
une rotation aléatoire, une translation aléatoire et une homothétie aléatoire sont
appliquées à la fois sur les images RVB et le flot optique. Les transformations
sont centrées sur nos régions d’intérêt. Enfin, nous effectuons un retournement
horizontal de la frame avec une probabilité de 0.5. D’autre part, nous effectuons
une augmentation temporelle : T images successives sont extraites du segment vidéo
considéré. L’image centrale est déterminée en suivant une distribution normale de
probabilité autour du centre temporel de l’extrait considéré. Cette augmentation
temporelle est schématisée sur la Figure 7.

Figure 7 – Représentation de 7 extractions de données à partir d’un même coup en utilisant
une augmentation temporelle.

L’augmentation des données se fait seulement sur l’ensemble d’entraînement.
Les données non augmentées en entrée du réseau sont centrées temporellement sur
le coup : tmilieu = tdebut +

tfin − tdebut
2

.

3.5 Évaluation des performances

Les performances des modèles sont évaluées sur deux tâches distinctes : i) classifi-
cation des données segmentées et ii) détection et classification des données à partir
des vidéos non segmentées. Pour cette deuxième tâche, l’ensemble des vidéos sélec-
tionnées pour nos expériences est utilisé. L’évaluation pour les deux tâches se fait
en terme de précision : c’est à dire nombre de segments bien classifiés divisé par le
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nombre total de segments. Concernant la décision pour la tâche de classification, en
plus d’utiliser la décision centrée temporellement, trois décisions temporelles sont
effectuées sur le test set :

• “TVote” prend en compte la décision de chaque fenêtre et attribue la classe à
celle obtenant le plus de votes.

• “TMoy” prend la moyenne des probabilités des fenêtres et attribue la classe à
celle qui obtient la probabilité maximale.

• “TGauss” pondère la probabilité obtenue par chaque fenêtre en utilisant une
pondération Gaussienne. Les fenêtres centrées sur les données auront donc
plus d’influence sur la décision que celles aux extrémités.

Ces décisions temporelles utilisent une fenêtre glissante temporelle de taille dix.
Pareillement, pour la tâche conjointe de détection et classification, une fenêtre

temporelle glissante avec un pas de un est utilisée pour la classification. Les sorties
sont ensuite lissées en utilisant les trois mêmes principes avec une fenêtre de taille
150 pour les méthodes “Vote” et “Moyenne”, et un filtre de taille 201 pour la méthode
“Gaussienne”.

4 Résultats

Les résultats sont présentés en deux temps. Dans un premier temps pour la tâche de
classification pure et dans un deuxième temps pour la tâche conjointe de détection
et classification.

4.1 Performances pour la tâche de classification pure

Le Tableau 2 décrit les performances obtenues pour chaque modèle entraîné. Ce
dernier précise aussi le nombre d’épochs1 nécessaire pour obtenir ces résultats.

Comme nous pouvons le remarquer sur ce tableau, les modèles aux meilleures
performances sont ceux utilisant les mécanismes d’attention. De plus, en comparant
le nombre d’épochs, les mécanismes d’attention permettent une convergence plus
rapide des modèles. RVB-STCNN avec attention obtient le meilleur taux de classi-
fication. Le flot optique quant à lui a certes une efficacité correcte pour la classifica-
tion sur les données centrées temporellement, mais a plus de difficultés en utilisant
les méthodes d’évaluation temporelles TVote, TMoy et TGauss. C’est certainement
pourquoi le réseau Jumeau n’obtient pas de meilleures performances malgré un plus
grand nombre de modalités en entrées : la modalité FO l’induit probablement en
erreur. Notre deuxième hypothèse provient du fait que le modèle Jumeau, par sa
plus grande taille, est plus gourmand en ressources GPUs que les autres. La taille

1itérations sur le set d’entraînement en entier
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Table 2 – Comparaison des performances de classification des modèles en terme de préci-
sion.

Précision en %

Modèles Epochs Ent Val Test TVote TMoy TGauss

RVB-I3D 778 98.3 72.6 69.8 84.5 84.5 84.5
RVB-STCNN 1665 96.7 88.7 89.8 67.6 74.6 70.3

RVB-STCNN
524 96.5 88.3

92.4 93.2 94.1 92.4
avec attention 93.2* 94.9* 95.8* 96.6*

FO-I3D 1112 98.8 74.8 73.3 82.8 82.8 82.8
FO-STCNN 1449 97.5 79.6 75.9 80.2 80.2 78.5

FO-STCNN
732 96.4 83.5

85.6 66.1 71.2 66.1
avec attention 90.7* 71.2* 69.5* 70.3*

Two-Stream I3D - 99.2 76.2 75.9 84.5 87.1 86.2

FP-STCNN 1450 90.8 84.8 82.2 81.4 83.9 83.9

FT-STCNN - 97 88.7 89.8 87.3 87.3 87.3

FT-STCNN - 97 88.7
90.7 90.7 92.4 92.4

avec attention 94.9* 93.2* 94.1* 94.1*
T-STCNN 1784 95.8 87.8 93.2 91.5 90.7 91.5

T-STCNN
591 97.3 87.8

92.4 71.2 72 72
avec attention 95.8* 77.1* 78* 77.1*

* normalisation sur le lot

Fine-Grained Action Detection and Classification from Videos with STCNNs.
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du lot a donc du être diminuée, par rapport aux autres modèles, pour l’entraîner.
De ce fait, l’entraînement du modèle est moins efficace, ce qui pourrait expliquer ses
performances limitées. Cependant, sans mécanisme d’attention, les meilleurs résul-
tats sont obtenus avec le T-STCNN. Les autres méthodes de fusion obtiennent des
performances moindres. Une fusion précoce des modalités n’a en effet pas grande
signification, car chaque modalité représente des entités différentes (apparence ou
mouvement). Une fusion tardive est correcte, mais il n’y a pas de pondération des
caractéristiques extraites de chaque modalité comme on peut l’avoir avec une fusion
intermédiaire. C’est donc sans surprise que le T-STCNN obtient les meilleurs scores.

Nos méthodes de référence I3D (Carreira and Zisserman, 2017) obtiennent des
performances correctes mais en deçà de nos modèles (sauf pour le FO-STCNN sans
mécanisme d’attention). Ceci peut s’expliquer par la profondeur de leur modèle. Ce
dernier est nettement plus profond que notre architecture proposée. Ainsi, celui-ci
aura plus tendance à se focaliser sur des caractéristiques qui ne sont propres qu’à
l’ensemble d’entraînement. Ce sur-apprentissage des données se caractérise par un
fossé entre la précision de l’ensemble de validation et celui d’entraînement, ce qui
est en effet observable dans le tableau.

4.2 Performances pour la tâche conjointe de détection et clas-
sification

Le Tableau 3 reporte les résultats de nos modèles pour la tâche conjointe de détec-
tion et classification. Cette dernière s’effectue sur l’ensemble des vidéos considérées
comportant un nombre minimum de dix actions pour éviter les vidéos non complète-
ment annotées. Ce tableau est divisé en deux : la première partie considère toutes
les classes de notre tâche, la deuxième ne considère pas les classes négatives (absence
de coup). Ceci est motivé par la présence accrue de segments vidéos de la classe
négative. En effet, un modèle classifiant toute la vidéo en “négatif”, pourrait obtenir
de meilleures performances qu’un modèle classifiant correctement certains coups,
ceci étant dû au déséquilibre des classes. Cette présence accrue de données néga-
tives est due aux temps morts entre deux jeux ou aux balles perdues qui nécessitent
d’être récupérées. Aussi, chaque début et fin de vidéo sont souvent accompagnés
d’un temps sans aucune activité.

Comme on peut le voir à partir du Tableau 3, les meilleures performances
pour cette tâche sont obtenues avec le modèle RVB-STCNN utilisant le mécanisme
d’attention. Néanmoins, on peut remarquer l’instabilité des résultats obtenus en
fonction de la partie du tableau et du mode de normalisation utilisé dans les blocs
d’attention. Des performances un peu moindre mais nettement plus stables sont
obtenues avec le modèle T-STCNN sans bloc d’attention. Ces résultats soulignent
l’importance de la normalisation des données, mais aussi de la fusion des modalités.
Le modèle T-STCNN avec le mécanisme d’attention est trop lourd à entraîner. Un
compromis entre blocs d’attention et modalités sur lesquelles l’appliquer reste donc
à être déterminé.
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Table 3 – Performances des modèles implémentés pour la tâche conjointe de détection et
classification.

Précision en %

Modèles Brut Vote Moyenne Gaussienne

RVB-STCNN 57 80.1 80.8 80.2

RVB-STCNN avec attention 43.8 63.3 64.7 63.6
70.1* 85.9* 86.4* 86.1*

FO-STCNN 70.3 80.5 80.9 81

FO-STCNN avec attention 10.7 20.1 21.5 21.1
69.3* 78.4* 79.2* 79.8*

T-STCNN 60.8 79.8 80.2 79.7

T-STCNN avec attention 31 46.8 47.7 47.3
72.9* 82.1* 82.3* 83*

sans prendre en compte les segments négatifs

RVB-STCNN 41.5 44.8 46.2 49.1

RVB-STCNN avec attention 65.4 80.4 81.9 84.6
66.9* 74.3* 74.8* 77.6*

FO-STCNN 50.4 55.4 59.2 62.4

FO-STCNN avec attention 40 52.9 55.8 58.6
33.8* 20.9* 22.9* 26.5*

T-STCNN 60.5 76.8 76.9 78.4

T-STCNN avec attention 45.2 63.8 65.6 67.9
45.6* 35.1* 35* 39.4*

* normalisation sur le lot

Fine-Grained Action Detection and Classification from Videos with STCNNs.
Application to Table Tennis.
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5 Conclusion et perspectives

Ces travaux de thèse visent à améliorer les performances des athlètes en développant
de nouvelles méthodes et de nouveaux outils pour les entraîneurs et les étudiants. Il
a été montré que nos modèles peuvent obtenir des résultats convaincants en compa-
raison avec les modèles I3D de référence. Les résultats ont été comparés suivant une
méthode d’ablation, c’est à dire en isolant les contributions de chaque étapes de la
méthode dans la performance globale. Au final, les meilleurs résultats sont obtenus
avec le modèle RVB-STCNN utilisant les blocs d’attention. La limitation de nos
équipements ne nous permet pas d’entraîner de la même manière le modèle Jumeau
et le modèle RVB utilisant les mécanismes d’attention, ce qui malheureusement
ajoute un biais dans les performances réduites du modèle Jumeau. Cependant une
meilleure stabilité des performances est observée avec le modèle Jumeau T-STCNN.
Il a aussi été montré l’importance de la normalisation des données et de l’apport des
mécanismes d’attention en terme de convergence des modèles.

Les méthodes présentées pour la classification fine des coups de tennis de table
peuvent être améliorées. Même si nous avons fait de nombreux tests sur les types
d’architecture, la position des blocs d’attention ou le nombre de filtres à utiliser,
ces variables peuvent toujours être améliorées. Le grand nombre de combinaisons
possibles fait que nous nous sommes focalisés sur des aspects qui nous semblaient
les plus importants. De plus, les méthodes de l’état de l’art sont aussi en con-
stante évolution. De nouvelles méthodes ont vu le jour depuis le commencement de
cette thèse et pourraient être appliquées à la base de données TTStroke-21. Les
méthodes d’estimation de flot optique ont elles aussi évolué. Prendre en compte
d’autres méthodes d’estimation de mouvement et les comparer en terme de clas-
sification fine est aussi une des voies de développement possible. Enfin, la base
de données TTStroke-21 est continuellement enrichie. Des tests sur les nouvelles
vidéos annotées avec des cadences d’enregistrement plus grandes et des points de
vue différents sont aussi une piste d’investigation.

La caractérisation de la qualité d’un coup effectué est l’une des pistes principales
pour compléter notre objectif d’amélioration des performances des sportifs. Des
méthodes reposant sur l’estimation de la pose ont déjà vu le jour afin de donner
un aspect qualitatif aux mouvements effectués par le sportif (Morel et al., 2017;
Einfalt et al., 2018). La Figure 8 propose un début de piste combinant : i) un
calcul de profondeur à partir d’une image (Ramamonjisoa and Lepetit, 2019) et ii)
l’estimation de la pose du joueur (Newell et al., 2016).

Cette modélisation 3D pourrait être comparée avec un modèle de référence, en
utilisant une métrique adaptée. Il serait, de cette manière, possible d’obtenir une
évaluation qualitative des coups de tennis de table.

Enfin, même si notre cadre applicatif est le tennis de table, le protocole de
notre méthode peut être étendu à d’autres sports. Il conviendrait de construire
une base de données pour le sport d’intérêt et de l’annoter en utilisant la même
plateforme d’annotation développée. Le modèle de reconnaissance lui peut être
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a. Pose du joueur sur image RVB b. Profondeur estimée

c. Vue 3D face d. Vue 3D coté e. Vue 3D arrière f. Vue 3D dessous

Figure 8 – Estimation de la pose et de la profondeur à partir d’une image combinées pour
donner un modèle 3D.

Fine-Grained Action Detection and Classification from Videos with STCNNs.
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adapté en changeant la taille de la dernière couche (donnant la probabilité de sortie)
afin qu’elle soit de la taille du nombre de classes du sport considéré.

Les travaux présentés dans cette thèse ont été validés par des publications dans
une revue internationale, cinq papiers de conférences internationales, deux papiers
d’un workshop international et une tâche reconductible dans le workshop MediaEval
où les participants peuvent appliquer leurs méthodes de reconnaissance d’actions à
notre base de données TTStroke-21. Le workshop est décrit en anglais en appen-
dice B. Deux autres papiers de workshop internationaux sont en cours de prépa-
ration, ainsi qu’un chapitre de livre. La liste de ces publications est disponible en
appendice A. Le code permettant de construire les différents réseaux développés,
ainsi que la façon de les entraîner, sont disponibles publiquement comme décrit en
appendice C. Différentes vulgarisations scientifiques furent aussi menées en lien avec
cette thèse; ces dernières sont listées en appendice D.
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General Introduction

1 Introduction

The importance of computer vision in our society has grown over the last decades,
and is now present in many aspects of everyone’s life. The access to a large part
of the population to new technologies has widen the challenges, topics of interest
and applications of computer vision. High performances reached by recent Artificial
Intelligence (AI) technologies are bound to have a considerable impact on the society
in the near future, for the worst or hopefully for the best. A brief overview of
computer vision contributions in the society is presented, as research conducted in
this thesis fits into this context.

The recent technological breakthrough in Machine Learning, in particular in
Deep Learning, has raised a strong interest among the population, leading to the
development of many user-oriented applications. One can mention the work of
Feng et al. (2019); Jiang et al. (2018) who apply deep learning tools to fashion
in order to advise potential customers on how to dress. Tools to beautify images
(Chen et al., 2018a) are widely used on social media. As people are taking a huge
amount of pictures with mobile devices, methods for indexing and retrieving them
automatically are being developed (Kuzovkin et al., 2018).

Applications for monitoring the natural environment are also possible through
computer vision. The analysis of plant growth is for example performed in the work
of Wang et al. (2019c); Yasrab et al. (2019, 2020); Smith et al. (2019). Applications
available to the public are also investigated, with for instance Krause et al. (2018)
who propose “What The Plant” system, based on Convolutional Neural Network
(CNN) in order to identify plants from images. In the topic, we can also mention
the Pl@ntNet project2.

The democratization of technological tools has also increased the access to infor-
mation and news. Methods are investigated to rank the quality of media (Marcelino
et al., 2018) or to connect the images of an article to its text content (Oostdijk et al.,
2020). However, on the other side, the amount of fake news has exploded, and im-
ages from unrelated contents can be used to spread false information. To overcome
such nuisance, methods have been developed, for example to retrieve images from
database to find their source using image matching techniques (Vo et al., 2019).

Closely related, a very active area of applications is video retrieval from large
databases (Schoeffmann, 2019). The best performances are obtained using deep
learning approaches (Rossetto et al., 2019). With the huge increase of online videos
and expansion of Video On Demand (VOD) platforms, methods are being developed
to automatically describe video contents (Alayrac et al., 2018) or provide video
summarization (Bost et al., 2019). Conversely, Li et al. (2019a) try to localize
specific temporal segments fitting a text description. Also in the field of multimedia,
Cohendet et al. (2018) investigate the video memorability with the aim to develop
contents that can be better memorized.

2https://plantnet.org/
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2. The CRISP Project

Computer vision can also benefit to culture. One can mention the work carried
out by Koch et al. (2018) which assess building conditions in cities from images.
Coupled with a cultural heritage database (Obeso et al., 2016), this can help to
map city historical buildings and prevent their deterioration. In addition, with the
advent of Unmanned Aerial Vehicles (UAV) utilization, it becomes easier to rapidly
and automatically map entire cities (PAN et al., 2019).

Recently autonomous vehicles have also raised many challenges, and such system
driven by AI should be totally reliable. Even if some studies show that they already
outperform human driving abilities, legal responsibility of AI system is still in debate.
With respect to Computer Vision tasks, autonomous vehicles implies image semantic
segmentation (Durand et al., 2017), which evolved to video segmentation (Galasso
et al., 2013; Sundberg et al., 2011). Best methods are based on 3D-CNN with end-
to-end encoder-decoder approaches (Hou et al., 2019; Saffar et al., 2018). They are
trained using a big amount of data (Yu et al., 2020) and incorporating different
modalities such as the optical flow. With the progress of such technologies, Billy et
al. (2019) are able to propose 3D scene reconstruction in real time for autonomous
driving; which can be coupled with anomaly detection on highways (Singh et al.,
2020). With the increasing performance of real-time computer vision, autonomous
driving becomes more and more reliable, opening the way for implementation at
larger scale in the society.

Another aspect of the increasing responsibility of AI methods is their role in
medicine. Computer vision methods are being developed with the aim to assist in
clinical procedures (Leibetseder and Schoeffmann, 2018; Sokolova et al., 2020) or
provide accurate imaging for better diagnosis of the patient (Emilien et al., 2013;
Çiçek et al., 2016). Deep learning methods can also be applied for emergency needs
in the society such as the COVID-19 pandemic. One can refer to the promising work
of Chatterjee et al. (2020) using chest X-Ray images which classifies patients with
COVID-19 or pneumonia from healthy ones.

This research thesis was funded by the New Aquitania region. It is part of the
regional project CRISP about computer vision for sport performance, which long
term ambitions are to promote Sport and Health in the society.

2 The CRISP Project

The ComputeR vIsion for Sport Performance (CRISP) project is a multidisciplinary
and regional project. Despite intensive research, recognition of actions with low
inter-class variability remains a challenge. The target application of our research
is fine grained action recognition in sports with the aim of improving athletes per-
formance. Without loss of generality, we are interested in recognition of strokes in
table tennis. The purpose is to make cameras “smart” to analyse sport practices.
Collecting individual data on physical activity (connected watches, smart clothes,
exoskeleton) might be a potential source of information for innovative research in
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the field of sport and well-being. However, the analysis of sport gesture is often
confined to laboratory studies as represented in Figure 9, and limit the applications.

a. Interface for recording exoskeleton b. Man on conveyor belt with sensors
with sensors. to analyze his way of walking.

Figure 9 – Representation of experiments in laboratories to model human actions.

Analysis of physical practices in ecological context, meaning without sensors
or markers, is primordial to avoid induced stress and/or discomfort which could
hinder the athlete in its performance and its practice. CRISP aims at developing
digital tools in computer vision allowing acquisition, recognition and analysis of
sport gestures in an ecological context. The objective is to help students learning
in training centres or sport faculties through those tools. Our case study is table
tennis.

CRISP project, in addition to the financial support of the New Aquitania region,
has also the support from the Table Tennis League of New Aquitania. The financial
support allowed to finance

• a full PhD grant (2017-2020) which led to the fruit of this work.

• the acquisition of high speed cameras used in another strongly related project
(Calandre et al., 2021)

The collaboration of two scientific communities, Sport and Computer Science,
led to:

• TTStroke-21: a new dataset annotated through a crowdsourcing platform
designed for this purpose.

• AI methods for fine-grained recognition of sportive gestures using machine
learning and video processing methods

• an ongoing work conducted at the University of La Rochelle devoted to fine
analysis of sport gestures using computer vision.

Fine-Grained Action Detection and Classification from Videos with STCNNs.
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5



2. The CRISP Project

2.1 TTStroke-21

In TTStroke-21, twenty stroke classes and an additional rejection class are con-
sidered according to the rules of table tennis. This taxonomy was designed with
professional table tennis teachers. Videos are recorded at the Faculty of Sports
of the University of Bordeaux - STAPS. Students are the athletes filmed and the
teachers supervise exercises conducted during the recording sessions. The record-
ings are markerless and allow players to perform in natural conditions. This dataset,
Figure 10, is the first step of the project.

Figure 10 – Teaser image of the TTStroke-21 dataset.

The dataset TTStroke-21 focuses on the different moves of a particular sport,
which are the different strokes in table tennis. In our case, the considered video
dataset is complex for classification task, as some stroke classes have only weak
differences with respect to their visual appearance. This low inter-class variabil-
ity makes the classification task much more challenging than in the classical sport
datasets.

2.2 AI for Sport Performances

The second step of the CRISP project is the classification process. A Twin Spatio-
Temporal Convolutional Neural Network (TSTCNN) is introduced for this purpose.
The model similarly processes RGB images and Optical Flow through a succession of
spatio-temporal convolutions. An intermediate fusion is done before the calculation
of the class scores. We use spatial and temporal data augmentation during the train-
ing phase. Performances are compared for models using only RGB images or Optical
Flow data, and also with early and late fusion approaches. Moreover, normalization
of the optical flow and incorporation of attention mechanism are investigated. Ad-
ditionally, we compare our approach with our baseline being the Two-Stream I3D
model proposed by Carreira and Zisserman (2017). For evaluation, two different
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tasks can be considered: the classification task which is performed with trimmed
videos (strokes segmented in time) and joint action detection and classification from
untrimmed videos.

3 Conclusion and Thesis Outline

The role of computer vision in society and its use have expanded exponentially
these last years. The aim of this thesis is to use the recent approaches of computer
vision in the domain of sport. Our objective is to improve athletes performances by
developing new methods and tools for coaches and students. Our case study is table
tennis but the same protocol could be extended to different sports.

The layout of this manuscript comprises three parts and annexes.

• In Part I, we examine the state-of-the-art methods in computer vision related
to action classification. This part is divided into three chapters. Chapter 1
presents a brief overview of the first action classification methods using hand-
crafted features and their evolution over time.
In Chapter 2, deep learning methods, which have greatly evolved in the recent
years, are exposed and compared.
The various datasets for action recognition along with TTStroke-21 dataset
are presented in Chapter 3.

• In the second part of the manuscript, we present the different methods inves-
tigated to perform stroke classification on TTStroke-21.
Chapters 4, 5 and 6 focus on stroke classification respectively using RGB data,
Optical Flow data and both modalities.
Features of our best model are analyzed in Chapter 7.

• In a last and third part (Chapter 8), we incorporate an attention mechanism
in our method in order to increase the classification performances. Our results
are highlighted at the end of each chapter for a better understanding of the
course of this thesis.
Finally, the conclusion and the prospects for future works are drawn in the
General Conclusion.

Research presented in this manuscript was validated with publications in one
international journal, five international conference papers, two international work-
shop papers and a task in MediaEval evaluation campaign where participants can
apply their action recognition methods to TTStroke-21. The workshop description
is available in appendix B. Two additional international workshop papers are in
process along with one book chapter. The list of the publications is reported in
appendix A. The code allowing to build and train the presented models are publicly
available online as described in appendix C. This thesis has also given birth to many
scientific popularisation events which are listed in appendix D.

Fine-Grained Action Detection and Classification from Videos with STCNNs.
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Abstract

This first part focuses on the existing work conducted on action classification. The
performances and the techniques have evolved years after years, at the same time
that the computation capacity were increasing. The engineered features have incor-
porated more and more deep learning tools in order improve the classification scores.
Then classical classification methods using handcrafted features have given way to
the fully deep learning methods. The deep learning methods have thus expanded
in number and complexity until becoming the state-of-the-art for action classifica-
tion. The datasets dedicated to action recognition, in order to always offer new
challenges to the methods reaching maximum scores on the previous datasets, have
grown in term of classes, complexity, tasks and number of videos. TTStroke-21
dataset, dedicated to fine-grained action recognition in table tennis, is introduced
in this context.

Keywords

Action classification, Handcrafted features, Deep neural networks, Action recogni-
tion datasets, Table Tennis
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Chapter 1

Action Recognition Using Hand-
crafted Features

1 Introduction

Recognition of actions in videos is one of the key problems in computer vision.
Despite intensive research, recognition and discrimination of visually very similar
actions remain a challenge. The current trend nowadays is to use deep learn-
ing methods for classification tasks. Before the advent of Deep Neural Networks
(DNNs), methods were focusing on building handcrafted features that are discrim-
inant enough to classify actions. Many of the early methods for video recognition
were more or less a direct extend of techniques developed for images.

The method of Ji et al. (2013), was one of the first to use Deep Learning via
a 3D CNN for action recognition, and they did not obtain better results than the
state-of-the-art methods on the KTH dataset. It is only from 2014 and the innova-
tive two-stream network approach of Simonyan and Zisserman (2014) that temporal
coherence will be exploited in CNN and that Deep Learning approaches will begin
to supplant other methods.

Better performances using Deep Neural Network (DNN) does not mean that
engineered features have to disappear. On the contrary, human understanding of
visual scenes influences the choice of the designed features such as e.g. Optical Flow
(OF). Still recent work may use handcrafted features as a baseline or fuse them with
the deep features extracted by a DNN. Budnik et al. (2017) confirm that Support
Vector Machine (SVM) does not perform better than a partially retrained Deep
Convolutional Neural Network (DCNN) and that the learned features lead to better
results than engineered ones; however the fusion outperforms the single modalities.
The same conclusion is drawn by Ceroni et al. (2019) who use images to measure
their degree of exoticism. These works confirm the findings of the community which
are that the fusion of multiple features allows to improve recognition scores for
complex visual or multi-modal content understanding (Ionescu et al., 2014).

Both engineered and deep features may also be fused at different steps of an end-
to-end method. For example, Truong et al. (2018) focus on retrieving events from
lifelogging data. Their method has several steps using different types of features.
Grouping of images is done using motion vector from FlowNet (Dosovitskiy et al.,
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2. Handcrafted Features in Videos

2015) and linking of the different groups with Bag-of-Visual Words (BoVW) Nguyen
et al. (2015) and Scale-Invariant Feature Transform (SIFT) descriptor (Lowe, 2004).
Ultimately they use deep features (Zhou et al., 2014) for scene classification. Con-
versely, combination of handcrafted features might feed a DNN in order to perform
classification (Sivaprasad et al., 2018; Rahmani et al., 2018).

As the number of potential features were increasing over time, Tang et al. (2013)
presented AND/OR graphs in order to combine best features. The context was event
detection from videos, another challenge in video understanding and indexing (Over
et al., 2011b), which also led to the well known Bag Of Fragments video encoding
method (Mettes et al., 2015).

In this short chapter, we present in Section 1 a quick chronological overview of
the handcrafted feature methods developed for action recognition. The overview
comprises three subsections which focus on action recognition in general (2.1), scene
classification (2.2) and video understanding in racket sports (2.3). We discuss their
impact on the classification of actions challenges in Section 3. The datasets on which
such methods have been applied will be described in Chapter 3.

2 Handcrafted Features in Videos

Handcrafted features extracted from videos started to our best knowledge from
feature extraction from images. Efforts were afterwards made for extracting infor-
mation from the temporal domain. Such features were mainly used in the action
recognition task, but also for other tasks such as scene and event recognition from
videos. Most of the approaches using handcrafted features seek for their compact
representation. The model of Bag of Words (BoW) or BoVW. BoW convert vector
representations to “words” and, using a clustering method, such as k-means, lead to
a “dictionary” which will represent a class.

In order to have a well rounded overview, we treat action recognition and scene
classification in two different subsections. We also treat in a third subsection, video
recognition in the domain of racket sports, which is our target domain of interest.

2.1 Action Classification From Videos

Laptev (2005) introduced in 2003 Spatio-Temporal Interest Points (STIP) features,
which is an extension to the temporal dimension for videos of the 2D corner detector
(Harris and Stephens, 1988; Förstner and Gülch, 1987). The equivalent to image
corner in video are points which change direction over space and time, as depicted
with synthetic examples in Figure 1.1.

They show that their descriptor matches with the action performed, meaning
that their points will be located where and when the action happens. As presented
in Figure 1.2, the knee is well detected and the leg pattern is extracted.

In a following work, Schüldt et al. (2004) apply their method on their newly
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a. Moving corner b. Ball hitting a wall c. Two balls colliding

Figure 1.1 – Synthetic examples of STIP (Laptev, 2005).

Figure 1.2 – Examples of STIP for walking action with resulting leg pattern (Laptev, 2005).

created KTH dataset, which became one of the first widely used action dataset.
Comparison is done using SVM classifier (Boser et al., 1992) and Nearest Neighbor
Classification (NNC) on histogram (Bag-of-Words) of their spatio-temporal local
features. It results in a good classification score for actions which are not similar;
but scores on similar actions such as “Walking”, “Jogging” and “Running” remained
low. The motion of those actions are very close and the STIP are concentrated on
the same body parts. Dollar et al. (2005) use the similar principle for extracting
spatio-temporal interest points with the aim to increase the number of extracted
points to help in the classification process.

Laptev and Pérez (2007) present the Coffee and Cigarettes dataset dedicated
to action detection and classification in movies. This dataset comprises only two
actions: drinking and smoking. In their paper, they use jointly the Histogram of
Oriented Gradients (HOG) descriptor (Dalal and Triggs, 2005) and Motion Bound-
ary Histogram (MBH) descriptors (Dalal et al., 2006), using AdaBoost algorithm
(Collins et al., 2002). Histogram of Oriented Optical Flow (HOF) features, similar
to HOG, are presented in Figure 1.3.

At the same time, Gorelick et al. (2007) introduce Space-Time Shapes (STS)
features for action classification, represented in Figure 1.4, along with the new Weiz-
mann action dataset.

Classification of STS is based on the same ideas as image shapes classification
introduced a year earlier by Gorelick et al. (2006) using Poisson equation. The
authors classify the computed shape with NNC procedure using euclidean distance.

Fine-Grained Action Detection and Classification from Videos with STCNNs.
Application to Table Tennis.

17



2. Handcrafted Features in Videos

Figure 1.3 – Motion Boundary Histogram (MBH) computation process with from left to
right the image, its OF amplitude, its horizontal and verticals gradients and their average
over the training set (Dalal et al., 2006).

Figure 1.4 – Space-Time Shapes (STS) of “jumping-jack”, “walking” and “running” actions
(Gorelick et al., 2007).
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They reach an accuracy of 97.8% on their dataset with however a low confidence on
similar actions. It is important to stress that their dataset is acquired in a controlled
environment and has the same complexity as the KTH dataset.

Schindler and Gool (2008) concatenate Gabor filters features (Daugman, 1988)
and OF features in order to perform action classification with a SVM approach on
KTH and Weizmann datasets. They show the superiority of their model on both
datasets, compared to other methods, and come to the conclusion that one frame is
enough to get a satisfying classification score. Indeed, using only one frame and the
posture of the person, actions in both datasets are easily distinguishable. The same
year, Liu and Shah (2008) introduce the “video words” features. The histogram
of the video words for each type of action is different enough to allow an efficient
classification. With SVM classifier, the authors obtain an accuracy of 94.15% on
KTH dataset.

In 2009, action recognition methods were already reaching very high accuracies
on both KTH and Weizmann datasets and the introduction of UCF11 dataset by
Liu et al. (2009) gave more space for improvements. Indeed, this dataset is more
challenging since it is recorded “in the wild”, meaning in natural conditions, under
the constraints of camera motion and flickering for example. The UCF101 samples
are extracted from the YouTube platform. Along with their dataset, they propose
a method for classification based on motion features and static features. They use
AdaBoost learning method on the histogram-based representation and compare it
with k-means clustering method. AdaBoost leads to better results and the hybrid
combination resulted in 93.8% of accuracy on KTH dataset against 71.2% on UCF11
showing the higher complexity of the task for such dataset with the same number
of classes.

Chaudhry et al. (2009) introduce at the same moment Histogram of Oriented
optical Flow (HOF) features and reach 94.4% of accuracy on Weizmann actions
dataset. HOF computation is represented in Figure 1.5. The method is simple and
easy to reproduce and will be used later on in by Wang et al. (2011), and then
extended in (Wang et al., 2013), along with MBH, HOG features to compute dense
trajectory features. Dense trajectory features are computed using dense optical flow
field (Farnebäck, 2003). The overview of the method is presented in Figure 1.6.

It is similar to the work carried by Sun et al. (2010) but differs from the trajectory
which are computed using KLT tracker (Lucas and Kanade, 1981) and SIFT points
trajectories.

Next breakthrough in action classification was obtained with Fisher Vectors in-
troduced by Csurka and Perronnin (2010). First used for image classification (Kra-
pac et al., 2011), the method is based on Fisher Kernel principle (Jaakkola and
Haussler, 1998). By combining the MBH and SIFT features, they reach 90% of ac-
curacy on UCF50 dataset (Reddy and Shah, 2013) which is an extension of UCF11
(Liu et al., 2009). They also add Mel-Frequency Cepstral Coefficient (MFCC) audio
features (Rabiner and Schafer, 2007), for the event recognition challenge proposed
by TRECVID (Over et al., 2011b).

Fine-Grained Action Detection and Classification from Videos with STCNNs.
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a. Image b. OF

c. HOF construction d. Histogram

Figure 1.5 – Histogram of Oriented Optical Flow (HOF) computation process (Chaudhry
et al., 2009).

Figure 1.6 – Dense trajectory features computation process (Wang et al., 2011) and results.
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Wang and Schmid (2013) improve dense trajectory features by considering cam-
era motion. Camera motion is estimated using dense optical flow and Speeded Up
Robust Features (SURF) descriptors Bay et al. (2008). A homography is estimated
using Random Sample Consensus (RANSAC) Fischler and Bolles (1981). The Im-
proved Dense Trajectories (IDT) perform 91.2% of accuracy against 88.6% with
regard to the original dense trajectory features. This work is used later on many
applications such as action localization Yuan et al. (2016).

Gaidon et al. (2013) redefine actions as “actoms”. Actom is a short atomic action
with discriminative visual information, such as opening a door. It is therefore useful
for action localization but can also be applied to classification-by-localization. The
definition of actoms is important in the field of action recognition to decompose an
action in individual parts. Actoms thus can be present across different actions such
as entering or leaving a room with “opening door” as an actom. Their understand-
ing can lead to better video representation and accordingly to better classification.
However, a too great number might lead to representation of features from the train-
ing set, but not present in the test set and unrelated to the action performed. The
number of actoms to consider becomes then a variable to control according to the
complexity of the actions to classify.

The optical flow data can also be analysed to detect critical points as done by
Beaudry et al. (2014). Sequences are then characterized by the trajectory of the
critical points in the frequency domain using Fourier coefficients. Trajectory of such
critical points are illustrated in Figure 1.7.

Figure 1.7 – Trajectory of critical points for action classification (Beaudry et al., 2014).

Then, associated which classic HOG and HOF descriptors through concatenation
of Fisher vectors on each modality, their method leads to accurate classification on
classical benchmark datasets such as KTH, UCF11 and UCF50.

Another way to perform action recognition is developed by Jain et al. (2014)
who introduce the concept of Tubelets. It is a sampling method to produce 2D+T
sequences of bounding boxes where the action is localized. This method, which
tackles the localization and classification problem of actions at the same time, is
based on super voxel generation through an iterative process using color, texture
and motion to finally create tubelets as represented in Figure 1.8. Those tubelets
are then described by MBH features, and one BoW per class method is used for

Fine-Grained Action Detection and Classification from Videos with STCNNs.
Application to Table Tennis.

21



2. Handcrafted Features in Videos

classification. The classifier with the maximum score assigns the class to the tubelet.
This method was motivated by the challenging MSR dataset (Cao et al., 2010)
which contains videos where different actions can happen at the same moment but
at different localization.

Figure 1.8 – Tubelets generation representation (Jain et al., 2014).

More recently, Mi et al. (2018) base their method on improved dense trajectory
(IDT) features. Their field of application is action recognition from wearable-camera
videos characterized by strong camera motion. IDT are therefore extremely appre-
ciated in such context since the calculated homograhy should filter out the non
desirable motion. To assess the efficiency of their method, they train their model
on fixed cameras and apply it to wearable cameras. The used dataset is similar to
EDUB1 (Bolaños et al., 2015) which is also egocentric but with images more or less
temporally correlated. On this particular dataset, the scope of the research is more
lifelog related and aims at summarizing and tracking the actions performed during
the day. In the same application field, Asnaoui and Radeva (2020) cluster the im-
ages using histobins in Hue, Saturation, Lightness (HSL) color space and dynamic
time wrapping features (Bellman and Kalaba, 1959).

1http://www.ub.edu/cvub/dataset/
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2.2 Scene Classification

Scene classification might not be directly link to action recognition, but temporal
features to extract might be useful for both scenarios.

Shroff et al. (2010) use the degree of busyness, degree of flow granularity and de-
gree of regularity as motion attributes to categorize the different scenes. They model
the dynamic data using the theory of chaotic systems based on the evolution of
GIST descriptors (Oliva and Torralba, 2001) expressing scales and orientations, over
time. By doing so, they can compute the chaotic invariants which will serve as dis-
criminant dynamic features. Their dataset called Maryland “in the wild” consists of
13 different scenes with only ten videos per class: Avalanche, Iceberg Collapse,
Landslide, Volcano eruption, Chaotic traffic, Smooth traffic, Forest
fire, Waterfall, Boiling water, Fountain, Waves and Whirlpool. Best
performances are obtained by merging computed dynamic features with spatial
GIST features using their mean values for the whole video. The same conclusions
are drawn later by Derpanis et al. (2012). They report a gain in classification of
scenes using the temporal information of the video. Hence, they also introduce the
Yupenn dataset for scene classification. Both datasets have now been widely used
later on by the scientific community for the scene classification task.

Theriault et al. (2013a) (extended in Theriault et al. (2014)) apply Slow Feature
Analysis (SFA) (Wiskott and Sejnowski, 2002) on V1 features (Theriault et al.,
2013b) on both datasets a year later, as presented in Figure 1.9.

V1 features are based on convolution and maxpooling using Gabor filter and
trained using HMAX framework (Serre et al., 2007) (those methods are borderline
between DNN and handcrafted features). The SFA is based on computation of
temporal derivatives and assumes a smooth motion pattern which allows stable
dynamic feature extraction. They claim that such a method could also be beneficial
in the action recognition domain. SFA was actually used for action classification
by Zhang and Tao (2012) with the Principal Component Analysis (PCA) (Jolliffe,
1986) features of the foreground mask, without achieving state of the art results.

2.3 Video Understanding for Racket Sports

Our interest is fine-grained action recognition in table tennis. We therefore present
methods focusing on video classification and/or segmentation in the domain of racket
sports with also some interest for end-users.

Efros et al. (2003) propose a motion descriptor based on optical flow in order to
classify actions in sports. For this purpose they consider three different datasets:
Ballet, Football and Tennis datasets which are presented in Chapter 3. They track
the player (or the person performing the action) and build a 3D volume based on
their motion. Their motion descriptor has four channels: the positive and negative
values for horizontal and vertical motions.

Then classification is performed following a nearest neighbourhood approach
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Figure 1.9 – Comparison of V1 and Slowest Features of V1 (SF1) on Yupenn and Maryland
datasets with SF1 localisation and value represented on input (Wiskott and Sejnowski,
2002).
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using similarity metric:

S =
∑
k

C1(k)C2(k) (1.1)

with C1 and C2 being two cuboids samples based on the motion descriptors at
coordinate k. Their performances for each dataset is discussed through the confusion
matrices obtained, which are reported in Figure 1.10.

a. Ballet dataset b. Football dataset c. Tennis dataset

Figure 1.10 – The different confusion matrices for each dataset using 3D volume of OF
(Efros et al., 2003).

Even if Ballet dataset and Tennis dataset are acquired in a controlled environ-
ment, performances for the Tennis dataset are more limited. Football dataset comes
from broadcast source which explains the limited performances. Moreover, the num-
ber of classes for the Tennis dataset is lesser than the two others, however, it is where
their method is the less efficient. This underlines the greater complexity of racket
sport and their fine-grained aspect.

Another research field in video classification aims at identifying the different
parts of tennis broadcasting. To do so Hidden Markov Models (HMMs) are applied
to tennis action recognition by Kijak et al. (2006). Their model is statistic and
integrate the structure of tennis match. They combine audio and key frame features
to be able to segment, with a good accuracy, the different parts of the tennis broad-
casting such as the first serves, rallies, replays and breaks. The sound of the crowd
such as applause, the sound of the ball or the commentator speech combined with
key frames which capture visual information lead to 86% of segmentation accuracy
compared to 65% and 77% with only respectively visual features and audio features.
HMMs are also adapted and modified later on to be applied to other classification
problems (Pentland et al., 2005; Yu, 2010; Morency et al., 2010). Such applications
are interesting for sport coaches who wish to comment and examine only sequences
of sports.

de Campos et al. (2011) present a new dataset for tennis actions. This one con-
tains only three types of classes: “hit”, “serve” and “non-hit-class”. The dataset is

Fine-Grained Action Detection and Classification from Videos with STCNNs.
Application to Table Tennis.

25



2. Handcrafted Features in Videos

build from TV broadcasts of tennis games (matches of females in the Australian
Open championships). They are interested in action localization and their classi-
fication. To do so, they introduce a local BoW method on the Spatio-Temporal
gradients HOG3D features (Kläser et al., 2008) which are an extension of the classi-
cal 2D HOG features in three dimensions. They also use STS features. Both features
are from the located actor and classification is performed using Fisher discriminant
analysis. They obtain an accuracy of 77.6% using STS model based. Their confusion
matrix is represented in Figure 1.11.

Global accuracy of 77.6%

Figure 1.11 – Confusion matrix of tennis game from TV brodcast (de Campos et al., 2011).
Left with number of samples and right normalized.

One can see that “serve” samples are easier to classify than “hit” or “non-hit”
samples. This is certainly due to the time that a service takes and its decomposition
in time, which starts by large movement of the player when launching the ball.
Hit and non-hit classes are then harder to distinguish because the hit class is very
limited in time. Looking only at the player shape, the ball might not be visible, and
feature might look the same as when the player is simply moving in the field.

Recently, deeply related to our domain, Calandre et al. (2019) use the OF Sin-
gularities with BoW and SVM in order to classify very similar actions. This task
is also called fine-grained action classification. They apply their method on the
TTStroke-21 dataset which contains 20 different strokes and a negative class. Their
method is inspired from Beaudry et al. (2014) which uses the trajectory of critical
points for classification. In this case, the actions to recognize are the different types
of strokes preformed during table tennis training session. However, the scores re-
main low due to the high similarity of the different strokes and the limited amount
of video samples. It makes generalization of extracted features harder.

Table Tennis stroke recognition is also performed by Liu et al. (2019b). It is
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based on their Body Sensor Network (BSN). Their sensors collect acceleration and
angular velocity information from the upper arm, lower arm and the back of the
player. From the recorded signals, they extract PCA features (Jolliffe, 1986) which
are then fed to a SVM. They reach an accuracy of 97.4%, however they use only
five classes: “forehand drive, “block shot”, “forehand chop”, “backhand chop” and
“smash”. Similarly, Xia et al. (2020) recently propose classification from integrated
wearable sensors using K-means and DBScan clustering (Ester et al., 1996; Schubert
et al., 2017). Their taxonomy is more limited than in TTStroke-21 since they use
only nine classes across badminton and table tennis sports. They reach an accuracy
of 86.3% when considering all the classes. This score reaches 92.5% when considering
only table tennis but this classification is limited to four classes: “Service”, “Stroke”,
“Spin” and “Picking up”. The extent of their taxonomy is thus limited and does
not contribute much to the player experience. Furthermore, using such sensors,
strongly limits the application possibilities and has a greater cost regarding training
equipment adaptation. Also their system does not offer visualisation of the stroke
performed since it is based on sensors, and it limits the feedback for the player.

Recently, a method is introduced by Wang et al. (2020) to get the tactics of the
players based on their performance in past matches. Their model is based on Hidden
Markov Model (HMM) and aims at characterizing and simulating the competition
process in table tennis. They use richer taxonomy and terms of stroke techniques
than the previously presented methods : 13 different classes and four player positions
which can be combined. Compared to TTStroke-21, we consider ten classes with
two player positions: “Forehand” and “Backhand”. Their goal is therefore, not to
classify an input, but to simulate matches between two different players. It is not
directly linked to action recognition methods, but it does give a tool for players
to simulate sport encounters and give credits to the TTStroke-21 dataset which
propose much richer taxonomy than previous datasets.

3 Conclusion and Discussion

In this chapter we went through the main achievements in terms of action classifi-
cation using engineered/handcrafted features. The scientific teams working on this
task tried to extend our knowledge in image classification by using the temporal
domain in different manners, either considering a 2D object as 3D, or extracting
2D features along the temporal axis and fuse the image features with different tech-
niques.

Such handcrafted features allow a good classification on datasets that remain
simple: either with a low number of classes or with classes that are easily separable.
It does become more complicated when the task focuses on one particular sport
with different actions within. In our field, non experts would have difficulties to
classify different actions performed in TTStroke-21. Even trained players do not
agree on which task a stroke fall by simply looking at the recordings. Thereby,
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models that can reach better performances than humans are described in the next
chapter dedicated to the DNN features.
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Chapter 2

Deep Neural Networks for Action
Recognition

1 Introduction

Most recent action recognition methods developed in the literature have been us-
ing deep learning approaches and high-dimensional spaces. In the domain of image
classification, a specific kind of Neural Networks first introduced by LeCun et al.
(1989) has become very popular: the Convolutional Neural Networks (CNN). CNN,
since the breakthrough at the 2012 ImageNet Challenge, have demonstrated a great
improvement for image classification (Krizhevsky et al., 2012). They are also known
as shift invariant or space invariant neural networks, based on their shared-weights
architecture and translation invariance characteristics. Convolutional Neural Net-
works (CNNs) are regularized versions of multilayer perceptrons. Classic multilayer
perceptrons, also called Fully Connected (FC) networks, means that each neuron in
one layer is connected to all neurons in the next layer (refer to equation 2.1). CNN
principle is to perform convolution operations using trainable filters, usually of size
3, at different level from input to output. The convolutions result in feature maps
which are, in most cases, reduced in size using max-pooling layers. Those layers
keep the maximum value of the feature map using, most of the time, 2 × 2 filters
with stride two in both directions. After a certain deepness, the resulting feature
map is flatten and feed to a FC layer, equation 2.1:

y = xAT + b (2.1)

with y being the output of the dense layer of length N , N being in our case the
number of class considered, x the features flattened, A the matrix of size length(x)×
N with trainable weights and b the trainable bias of length N . In order to obtain
a probabilistic output (summing to one), in most of the cases y is processed by
Softmax function as described in equation 2.2:

y′i =
exp(yi)∑N
j exp(yj)

(2.2)

Thenceforth, the output is fed to a loss function. The loss function measures
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how much training penalizes the deviation between the prediction y and the desired
output (true labels or ground truth). Various loss functions may be used, depending
on the task of interest. Euclidean loss is often used for real-value regression, e.g image
reconstruction (Nogas et al., 2020). In the case of classification task it is often the
Cross Entropy Loss (L), which is being used as described in equation 2.3:

L(y, class) = −log(
exp(y′class)∑N
i exp(yi)

) (2.3)

Finally all the weights are being updated by back propagating the loss into the
network using an optimizer and a learning rate. A classical iterative optimizer is
the Stochastic Gradient Descent (SGD) as presented in equation 2.4:

θ = θ − lrOL(θ) (2.4)

With θ being the trainable weights, lr the learning rate, L the objective func-
tion (loss) and OL(θ) the gradient of the weights according to the loss. Through
iterations, the network parameters are tuned in order to decrease the loss function
and therefore, lead to features meant to perform the classification task.

The first deep learning breakthrough in natural image classification with a rel-
atively shallow CNN architecture, AlexNet (Krizhevsky et al., 2012, 2017), has in-
spired new deep learning methods, relatively different in terms of both deepness and
architecture, such as GoogLeNet (Szegedy et al., 2015), VGG-Net (Simonyan and
Zisserman, 2015) and Residual Network (ResNet) (He et al., 2016).

A CNN can be considered as a two step end-to-end classifier, in which first layers
(convolutional layers) serve for feature extraction and the last layers (fully connected
layers), as Neural Network (NN) classifier such as Multi-Layer Perceptron (MLP)
(Minsky and Papert, 1987) with one or more hidden layers. An example of such a
network is the AlexNet Architecture illustrated in Figure 2.1.

Figure 2.1 – AlexNet Archiecture (Krizhevsky et al., 2012).

Convolutional layers perform convolution operation with multiple trainable fil-
ters. Results of convolution are submitted to the neurons with non-linear activation,
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such as ReLu function (eq. 2.5), and then pooled in order to reduce the input di-
mension.

ReLu(x) = max(0, x) (2.5)

With Zemmari and Benois-Pineau (2020), this process of convolution/pooling
is explained from the signal processing point-of-view, as building a pyramidal rep-
resentation of the input 2D signal. The difference here is the fact that the filters
are trainable and non-linearity functional layers are introduced at each level of the
pyramid.

A Deep CNN is a supervised classifier, its parameters which are filter coefficients
have to be trained in the global optimization process of supervised learning. Train-
ing methods starting from plane Gradient Descent method, as used by LeCun et al.
(1989), have incorporated modifications such as momentum and Nesterov momen-
tum (Dahl et al., 2013; Gillot et al., 2018), elements of adaptation to the data such
as AdaGrad (Duchi et al., 2011). Furthermore, various regularisation techniques
have been proposed such as adding regularisation terms in the global loss function
to minimize, as described in equation 2.6.

Lreg(θ) = L+
λ′

2
‖θ‖2

2 (2.6)

with λ′ the L2 regularizer which is similar to a weight decay λ when λ′ = λ
lr

(Hanson and Pratt, 1988).
Drop out layers were also introduced in the networks (Hinton et al., 2012), and

have the effect that some neuronal connections are randomly cut, as depicted in
Figure 2.2.

a. MLP without drop out b. MLP with drop out on second layer

Figure 2.2 – Drop out representation on Multi-Layer Perceptron (MLP) (Hinton et al.,
2012).

Then, an initial MLP is being transformed by stacking into the union of different
“local networks”, some of them sometimes sharing data.

In the field of speech recognition, CNN (Sainath and Parada, 2015) and latter
Convolutional Recurrent Neural Network (CRNN) (Arik et al., 2017) also greatly
improve the performances. Convolution layers also have been modified to be adapted
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to certain tasks. As well, receptive fields (Luo et al., 2016), sparse convolutions either
in 2D or 3D (Li and Yu, 2018; Wang et al., 2019a), or time asymmetric convolutions
(Wu et al., 2019) have been investigated.

For video applications in general and action recognition in particular, first models
proposed were more or less direct extension of image classification methods. Many
questions were raised, such as how to consider the temporal dimension, how to train
the models, which architecture to use for spatio-temporal data. As presented in
previous chapter for handcrafted features, we can consider videos as 3D data and
process them similarly to 2D images; or treat the temporal dimension differently; or
extract temporal information such as dynamic data that can fed a DNN.

However, most methods need to consider extra information, which obviously
leads to larger networks, greater number of parameters and the need of a greater
number of Graphics Processing Units (GPUs) with bigger capacities. This might
not be possible for every research team, and brought some of them to try attaining
accurate results with restrictions on the model size or computation time. This
aspect thus brings many shades in the performances, and have brought to light
many different methods which shall not be compared only in terms of performances,
but also by their means to achieve them. In addition to such limitations, the choice
of the architecture for a specific task remained open, which Peng et al. (2019) tried
to solve by creating an algorithm to automatically design neural networks for action
recognition.

Numerous works use models based on temporal networks such as Recurrent Neu-
ral Network (RNN) and Long Short-Term Memory (LSTM) (Ullah et al., 2018),
represented in Figure 2.3.

a. RNN b. LSTM

Figure 2.3 – Representation of a simple RNN and its LSTM sub-category which overcomes
the issue of the vanishing gradients by using memory gates (Baccouche et al., 2011). Images
from MathWorks.

However, RNN may be harder to train depending on the application context.
Besides, LSTM are more efficient when they are coupled to the output of a CNN
(Ng et al., 2015).

3D convolutional neural networks are a good alternative as well for capturing
long-term dependencies (Carreira and Zisserman, 2017), and involve 3D convolu-
tions in space and time. This type of approach translates in a powerful way, through
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the prism of deep learning, what we knew beforehand: extract features from time
windows and use them for classification (Stoian et al., 2016). Recent methods also
improve performances of 3D CNNs by either capturing simultaneously features at
different video frame rates Feichtenhofer et al. (2019) or by adding non local opera-
tions in the network (Wang et al., 2018a) (inspired by the classical non-local means
method (Buades et al., 2005)).

The use of different modalities as inputs to a DNN boosts generally performances.
In video, the use of optical flow together with Red, Green, Blue (RGB) images is
common practise. Presented briefly in the last chapter, this modality is presented
and discussed in details in Chapter 5. To deal with multiple modalities at several
spatial and temporal scales, Neverova et al. (2016) present their “ModDrop” method
in order to drop certain modalities to perform classification. This method was
inspired from classical dropout. It was recently use by Jing et al. (2019) to perform
WiFi-based indoor localization.

In this chapter, we will cover chronologically the different DNNs developed to
perform action classification. As their number exploded in recent years, we focus
on the most important ones and the ones which offer interesting alternatives to
take into account the temporal dimension. We compare performances on one of the
most used datasets for action classification, namely: UCF101 (Soomro et al., 2012),
which contains 101 different classes. Performances, when available, are reported
in Table 2.1. The different datasets for action classification are presented in next
chapter.

2 2D Convolutional Neural Networks for Action
Classification

2D convolution refers to the fact that convolutions are perform on a 2D spatial
support of the image. For RGB data, 2D convolution actually uses 3D kernels to
weight each color channel differently. Similarly, 2D convolution can be applied on
3D data by considering the third dimension as the channels. It is for example the
approach of Debard et al. (2018) for touch gesture recognition, where the finger
position is encoded at different time as the channels. 2D and 3D convolutions are
really close one to another. And the presence of channels in the input make their
differentiation even more tricky. Indeed, what we call 2D convolution on RGB data,
actually uses 3D kernels to weight each channel differently. However the way that
the kernel will move in the image will only be in 2 dimensions. 2D filters are thus
usually of size (Nchannels × 3 × 3) (capture of spatial information) while 3D filters
are of size (Nchannels × 3× 3× 3) (capture of spatial and temporal).

In the scope of action recognition, it is also what Simonyan and Zisserman (2014)
perform. They introduce a Two-Stream Convolutional Network which takes one
single RGB frame for one stream, and for the other stream, several frames of the
computed OF. Each stream is respectively called “Spatial stream ConvNet” and
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“Temporal stream ConvNet” and is represented in Figure 2.4.
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Figure 2.4 – Two-Stream 2D CNN (Simonyan and Zisserman, 2014).

They notice that “Temporal stream ConvNet” reaches much better performances
compared to “Spatial stream ConvNet”. This could easily be explained, as in addi-
tion to the dynamic genre of the input data, the temporal stream uses up to ten
frames against only one for the spatial stream branch. Performances are much more
alike when the temporal branch uses only one frame. Of course, the fusion of the
two streams using a SVM method performs the best. Performances for each modal-
ity on UCF101 dataset are depicted in Table 2.1. Their work is later adapted with
the aim to perform real-time action classification (Zhang et al., 2016) by replac-
ing optical flow with motion vectors obtained directly from the compressed videos;
and also recently by Zhao et al. (2020) for performing joint action localization and
recognition.

Singh et al. (2016) proceed in a similar way to take into account the temporal
dimension. They train different VGG networks (Simonyan and Zisserman, 2015),
with different inputs. The inputs are six consecutive frames from the RGB chan-
nels, computed OF, and both of their Region-of-Interest (ROI) (around the person
performing the action). This Multi-Stream Network (MSN) feeds then a FC layer
which feeds itself a Bi-directional LSTM network (Graves et al., 2013). The LSTM
network is fed by the consecutive outputs of the MSN.

Sun et al. (2015) present their Factorized Spatio-Temporal Convolutional Net-
works (FSTCN) which performs 2D convolutions and temporal convolution on the
features transmitted into the network. By using pre-training on ImageNet and fusing
the output probabilities obtained for each video segment using Sparse Concentra-
tion Index (SCI) method (Wright et al., 2009) that takes into account sparsity and
correlation of the data, they achieve 88.1% of accuracy on UCF101 dataset.

Li et al. (2016) present their Tube Convolutional Neural Network (T-CNN) which
can be decomposed into two distinct networks. They first create motion segmented
tubes using Residual Convolutional Neural Network (R-CNN) (Ren et al., 2017).
Then those tubes feed a VGG-like network using 20 motion amplitude frames dis-
tributed along the channel dimension. A similar method is also proposed but using
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3D convolutions and is presented thereafter.
Long-term Recurrent Convolutional Network (LRCN) models are introduced by

Donahue et al. (2017) for action recognition. They extract features using 2D CNN
for each image which feed a LSTM from start to end. The decision is based on
the average score. This simple model is tested with OF and a single RGB image.
The fusion of the two modalities perform obviously the best. Similarly, a Temporal
Segment Network (TSN) (Wang et al., 2016, 2019b) extracts features from RGB
frames, OF and the RGB difference between two consecutive frames, through the
same 2D CNN and their features are aggregated for decision. Their method is
applied also for classification of untrimmed video (Wang et al., 2017b).

Xu et al. (2018) introduce densely-connected dilated convolutions layers inspired
by Huang et al. (2017) in 2D for action classification. To do so, they use as backbone
the TSN network to extract spatio-temporal features of every snippet (Wang et al.,
2019b) and feed them to their network. They reach an accuracy of 96.2% which is
1.2% more than the TSN model.

Another method (Bilen et al., 2018) uses dynamic images as input of an ag-
gregated ResNet: ResNeXt (Xie et al., 2017). Examples of dynamic images are
presented in Figure 2.5.

Figure 2.5 – Examples of dynamic images used as input of the ResNeXt model (Bilen et
al., 2018). From left to right, they represent the actions: “blowing hair dry”, “fencing” and
“balancing on beam”.

Dynamic images computed from stacked RGB images are a way to encode the
temporal information and therefore to provide video representation in one image.
They use also RGB images, OF and dynamic OF (same as dynamic images but with
OF), which feed different CNN. By averaging their scores, they reach an accuracy
of 95% on the UCF-101 dataset. Models are pre-trained before on the ImageNet
dataset Russakovsky et al. (2015). Similarly, Safaei et al. (2018) develop a CNN to
predict dynamic images from RGB and the skeleton image (estimated pose (Newell
et al., 2016) projected to an image), which feed another CNN to predict the action
performed.

Lin et al. (2019) presented recently the Temporal Shift Module (TSM). Those
modules use past and future features within the network and add them to the current
extracted features to perform classification. They manage to keep 2D convolution
complexity while performing like state-of-the-art 3D convolution methods. The
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method is used on pre-existing CNN such as ResNet-50 He et al. (2016). Similarly,
Luo and Yuille (2019) use spatio-temporal aggregation by decomposing the feature
channels into spatial and temporal groups in parallel. Recently, Sudhakaran et al.
(2020) developed Gate-Shift Module (GSM) in order to turn a 2D-CNN into a spatio-
temporal feature extractor. To that aim, they use a spatio temporal convolution
with tanh activation and temporal shift on the 2D-extracted features for feeding the
GSM, as presented in Figure 2.6.

shift_fw
shift_bw tanh

Figure 2.6 – Gate-Shift Module (GSM) architecture with forward and backward temporal
shift.

They improve the performances of most of the 2D-backbones used (models for
feature extractor) by using 3D convolutions on the extracted features. This proves
that 3D convolutions better extract temporal information. This leads to now focus
on 3D CNN based method for action recognition.

3 3D Convolutional Neural Networks for Action
Classification

The first dedicated 3D CNN applied to action recognition has been proposed, as far
as we now, by Kim et al. (2007). They consider actions as 3D volumes on which
they apply CNN techniques. Their work then is extended by Ji et al. (2010, 2013).
The method is applied to the KTH dataset and TRECVID data (Over et al., 2008).
They were using 3D convolution filters but 2D subsampling on the obtained feature
maps to keep the same temporal dimension. Their performances on KTH dataset
did not, at that time, outperform yet handcrafted features methods.

In Baccouche et al. (2011), a 3D CNN, depicted in Figure 2.7, coupled with
an RNN using one LSTM cell is used for classifying actions from the KTH dataset.
Reported performances still do not outperform engineered features (Gao et al., 2010).

The Convolutional 3D (C3D) model is presented by Tran et al. (2015), which
consists of 8 consecutive convolutional layers using 3 × 3 × 3 kernel and five max-
pooling layers. Three models are pretrained on different datasets: Sports-1M dataset
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Figure 2.7 – Comparison of V1 and Slowest Features of V1 (SF1) on Yupenn and Maryland
datasets with SF1 localisation and value represented on input (Wiskott and Sejnowski,
2002).

(Karpathy et al., 2014), I380K dataset (intern dataset) and I380K fine-tuned on
Sports-1M (Karpathy et al., 2014). From those features and the IDT feature from
UCF101 dataset classified using SVM, they reach 90.4% of accuracy. Lima et al.
(2017) apply similar architecture but more shallow, and obtain an accuracy of 97.6%
on UCF50 dataset. A similar architecture was also used for infrared images and OF
data for action classification (Jiang et al., 2017).

C3D is also used by Hou et al. (2017) for their T-CNN. As in previous section, it
computes action tubes but using 3D convolutions. Videos are first divided into equal
length clips and are segmented using 3D R-CNN to create tube proposals. Tubes
are then linked together. The pipeline of this method is presented in Figure 2.8.

By using the features extracted from the segmented video tubes with C3D model,
they increase the performance compared to a direct application of the C3D model.

Feichtenhofer et al. (2017) update what was done in 2D by Simonyan and Zis-
serman (2014), in 3D to introduce their Spatio-Temporal Residual Network (ST-
ResNet). They replace simple CNN branches by R-CNN with one connection be-
tween the two branches. Their results prove that RGB stream processed alone gets
better performances than the OF stream. By processing them together, they reach
an accuracy of 93.4% on UCF101 dataset.

A major breakthrough was proposed by the method of Carreira and Zisserman
(2017), with much higher scores obtained on action classification. They present
their Two-Sream I3D model as the combination of RGB-I3D and Flow-I3D models
trained separately. The architecture of the model is presented in Figure 2.9.

Each of their models uses inflated inception modules, inspired from the 2D in-
ception modules Szegedy et al. (2015). The major strength of their model is the
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Figure 2.8 – T-CNN pipeline (Hou et al., 2017).
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a. The Two-Stream I3D architecture b. The inception module

c. The Inflated Inception-V1 architecture

Figure 2.9 – The I3D models (Carreira and Zisserman, 2017).
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pretraining on ImageNet first (Deng et al., 2009) and then on Kinetics-400 dataset
(Kay et al., 2017), more complex than UCF101 with 400 classes. By using Kinetics,
they boost performances from 93.4% to 98% on UCF101. They reach also 74.2%
of accuracy on Kinetics-400 dataset. Inception modules have already proven their
efficiency for image classification on ImageNet dataset (Russakovsky et al., 2015),
and have evolved through time. The first version inception_v1 presented along with
GoogLeNet by Szegedy et al. (2015) have evolved to inception_v2 and inception_v3
(Szegedy et al., 2016). Inception_v1 has been used for the I3D models. The incep-
tion_v2 module was used by Jiang et al. (2018) for extracting features, along with
directional LSTM (Graves et al., 2013). The goal was to create an intelligent fashion
consultant system able to generate stylish outfits for given items. After reaching the
limit of the UCF101 dataset, the scientific community started using Kinetics-400
to benchmark action recognition methods. Fan et al. (2019) propose an architec-
ture which processes in parallel low and high resolution videos and reaches 73.5%
of accuracy on Kinetics-400.

Long-term Temporal Convolutions (LTC)-CNN were introduced by Varol et al.
(2018). They experiment different temporal size for input video clips, in order to
improve classification (Figure 2.10).

Figure 2.10 – LTC-CNN architecture (Varol et al., 2018).

Better accuracies are obtained when considering a greater number of frames as
input, especially on long lasting actions which have a longer temporal support. On
the other hand, Tran et al. (2018) present their R(2+1)D model, which decompose
3D convolution by tensorial product of 2D spatial convolution and 1D temporal
convolution. They reach 97.3% on UCF101 using a Two-Stream configuration fed
by RGB and OF streams.

Ng et al. (2018) present ActionFlownet in order to predict jointly the OF and ac-
tion class from RGB images. They use transfer learning to predict OF and fine-tune
the models according to the considered action datasets. Even if the method does
not reach state-of-the-art results, it achieves a reasonable score of 83.9% of accuracy
compared to other methods which do not use pre-training. Same motivation has also
driven Crasto et al. (2019) who train a 3D ResNet (Xie et al., 2017) from the RGB
stream in order to mimic OF features. This model, so called Motion-Augmented
RGB Stream (MARS), outperforms classical independent approaches and reaches
97.1% of accuracy using a temporal window of 64 frames. Liu and Hu (2019) try
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also to mimic the motion information using Spatio-Temporal Relation Networks
(STRN) from only RGB data. RGB features are extracted using 2D CNNs repre-
senting the appearance stream and a motion stream is built using a 3D CNN from
the RGB stream. Connections between feature are made through “relation block”
going from appearance stream to motion stream. Features are fused before decision
and the streams are trained together. This method reaches an accuracy of 91.8%
on UCF101.

Wang et al. (2018b) introduce Spatial Temporal Pyramid Pooling Layer (STPP)
layer using 3D convolutions in a two-stream like network fed by RGB and OF
streams. The output becomes the input of a LSTM network. The use of LSTM
allows classification of videos of arbitrary size and length. Each modality performs
similarly: 85% and 83.8% of accuracy for RGB and OF stream respectively. When
fused together, the method reaches 92.6% of accuracy.

Recently, Nogas et al. (2020) propose a fall detection method using spatio-
temporal convolutional auto-encoders. The principle of auto-encoder is to recon-
struct the given input after reducing its dimension through convolution and pooling
layers. The reconstruction from inner features are done using interpolation methods
such as 3D convolutions coupled with 3D up-samplings. In order to perform fall
detection, the authors train their model on Activities of Daily Living (ADL), which
does not contain any falls. At test time, the falls are detected when the reconstruc-
tion error is high. The method is tested on several dedicated datasets such as SDU
dataset (Ma et al., 2014), UR dataset (Kwolek and Kepski, 2014) and Thermal Fall
Dataset (Vadivelu et al., 2016).

Kalfaoglu et al. (2020) introduce the Bidirectional Encoder Representations from
Transformers (BERT) layer to better make use of the temporal information of
BERT’s attention mechanism firstly used for language understanding (Devlin et al.,
2019; Vaswani et al., 2017). The BERT layer is based on the use of the Multi-Head
Attention layer (Figure 2.11.c), which uses Scaled Dot Product layer (Figure 2.11.b).
The Multi-Head attention layer is part of a bigger network, the Transformer model
(Figure 2.11.a) which is dedicated to translation tasks.

The incorporation of the BERT layer in the REsNeXT, R(2+1)D and I3D mod-
els, previously described, improve their performances. They reach the state-of-the-
art results on both HMDB51 and UCF101 datasets with respectively 85.1% and
98.7% of accuracy using the R(2+1)D architecture (Tran et al., 2018). It is a
ResNet-type architecture with separable temporal and spatial convolutions and a
final BERT layer in order to better use the obtained features. One important point
to stress is also the use of IG65M dataset (Ghadiyaram et al., 2019a) for pre-training
their model. IG65M dataset is build from the Kinetics-400 (Kay et al., 2017) class
names. Those class names are then used as hashtags on Instagram and lead to 65M
clips from 400 classes. Their dataset is however not publicly available.

Very recently an article was submitted to ICLR 2021 OpenReview.net (2021):
“An Image Is Worth 16×16 Words: Transformers for Image Recognition at Scale”.
The paper is currently under double-blind review process and available on OpenRe-
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a. Transformer model

b. Scaled Dot Product layer

c. Multi Head attention layer

Figure 2.11 – Transformer architecture and its layers (Vaswani et al., 2017).
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view1. Their work has been noticed because they use image attention for classifi-
cation task without using any convolutional layers, by using “only” standard trans-
former encoder. Their Transformer encoder is inspired by Vaswani et al. (2017)
whose model is presented in Figure 2.11. Developed by Google, they apply their
method on the WMT 2014 English-to-German and English-to-French translation
tasks (Association for Computer Linguistics, 2014) 2. The method is based on blocks
of parallel linear layers using dot product between their output, concatenation of
the parallel branches followed by a final FC layer. Between these blocks, residual
connection are used. Comparable approaches are used for similar tasks (He et al.,
2020b). In “An Image Is Worth 16×16 Words: Transformers for Image Recognition
at Scale”, the presented transformer is adapted for image classification task. Images
are divided into patches and fed to a similar network, which also embeds the patch
position. No convolution layers are implied. The authors notice that the use of the
feature maps from pretrained model (He et al., 2016) instead of the image is also
possible and increases performances. Classification scores match or exceed the state
of the art methods on image classification task for several datasets. Moreover, the
authors stress the fact that such model is cheap to pre-train and that their scalable
design does not introduce image-specific inductive biases for decision. Their results
let us question on the future use of CNNs for image or video classification.

4 Conclusion and Discussion

This chapter was focused on the overview of NN classifiers for the problem of action
recognition in videos. Having reviewed a large variety of the numerous published
work so far, we come to the conclusion that 3D CNNs outperform 2D frame-based
CNNs yielding better classification scores.

The second statement we can do is that the two stream model based on color
and motion information is the way to go for classification of actions. Indeed, in
Table 2.1, we can notice the best performances are obtained when both modalities
are considered. This is why in the present work we choose to focus on 3D spatio-
temporal CNN. Chapter 4 presents our work using 3D based CNN with an RGB
stream while Chapter 5 presents the one using OF stream. Also, from this overview,
we noticed how important it was to consider both modalities at the same time during
the training process. It motivates the design of a Two-Stream based architecture
that we call Twin due to the same architecture of each branch. This is the subject
of Chapter 6. We analyse the obtained features in Chapter 7 with a method we are
proposing. State of the art methods also motivate our work on attention mechanism
which is the subject of Chapter 8.

We have also seen that pre-training could lead to different performances ac-
cording to the dataset used for this process. The same drawback is noticed by

1https://openreview.net
2http://www.statmt.org/wmt14/translation-task.html
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Table 2.1 – Performances of the different reviewed model on UCF101 (Soomro et al., 2012).

Models Input PreTrain Acc in %
Spatial stream ConvNet 2014 RGB No 52.3
Spatial stream ConvNet 2014 RGB Yes 72.8
Temp. stream ConvNet 2014 OF No 73.9
Temp. stream ConvNet 2014 10 stacked OF No 83.7

Two-Stream 2D 2014 RGB + 10 stacked OF Yes 88
FSTCN 2015 RGB stream Yes 88.1

C3D + SVM 2015 RGB stream Yes 85.2
C3D + IDT + SVM 2015 RGB stream Yes 90.4

T-CNN 2D 2016 20 stacked OF Yes 92.3
T-CNN 3D 2017 RGB stream Yes 87.5

LRCN 2017 RGB Yes 68.2
LRCN 2017 OF Yes 77.3
LRCN 2017 RGB + OF Yes 82.3

ST-ResNet 2017 RGB stream Yes 82.3
ST-ResNet 2017 OF stream Yes 79.1
ST-ResNet 2017 RGB stream + OF stream Yes 93.4
RGB-I3D 2017 RGB stream + OF stream Yes 95.6
Flow-I3D 2017 RGB stream + OF stream Yes 96.7

Two-Stream-I3D 2017 RGB stream + OF stream Yes 98
RGB-Stream-Hakan 2017 RGB Yes 87.6
Flow-Stream-Hakan 2017 OF Yes 84.9
Four-Stram-Hakan 2017 RGB+OF+D-RGB+ D-OF Yes 95.4
ActionFlowNet 2018 RGB stream No 83.9

TSN 2019b RGB + OF Yes 95
TSM 2019 RGB Yes 95.9
MARS 2019 RGB stream Yes 97.1

R(2+1)D 2018 RGB stream + OF stream Yes 97.3
STRN 2019 RGB stream Yes 91.8

R(2+1)D + BERT 2020 RGB stream Yes 98.7
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Ghadiyaram et al. (2019b). The authors stress that pre-training method leads to
very strong feature representations for action recognition. The models can there-
upon be fine-tuned for the dedicated task (Donahue et al., 2014). Since we designed
our model ourselves and that pre-training would require high capacity in terms of
GPUs and disk usage, all presented models are trained from scratch. It also makes
the comparison between methods easier, since no dataset biases are added (Khosla
et al., 2012). We will be using as our baseline the Two-Stream I3D method (Carreira
and Zisserman, 2017), which was the state-of-art method when this thesis started
and is still a reference method, and whose codes is publicly available.

Next chapter describes the most used video datasets for action recognition and
presents the TTStroke-21 dataset developed during the project for classification of
table tennis strokes.
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Chapter 3

Datasets for Action Classification

1 Introduction

The need of datasets for action recognition has grown those last years, especially
because methods are performing better year after year. These datasets can change
in terms of number of videos starting from a few videos up to millions of videos.
In addition to their size, the number of categories and their complexity also vary
from few classes up to few hundreds, or even thousands in some cases. Each dataset
can be labelled with annotations either by enriching the terminology, localising the
action in space and time or by adding modalities information such as joint skeleton.

In addition, the action classification task can be split in several categories ac-
cording to the targeted application. In videos, one might want to focus on action
localization (Weinzaepfel et al., 2015; Qiu et al., 2018; Jain et al., 2017), in space
and/or in time, with the aim to spatially track different individuals and also their
actions over time. Another aspect of action classification is prediction of future
events (Guen and Thome, 2020; Lu et al., 2019; Akbarian et al., 2017). Finally,
fine-grained action classification focuses on recognition of different actions that are
very similar, which is not the case, for example, of UCF101 dataset. In our case,
we focus on sport and the objective is to be able to segment in time and classify
the different strokes performed in table tennis videos recorded during matches or
training sessions. The final goal is to offer a platform open to players and coaches to
analyse player performances, with indexed profile and statistical performances. It
could be improved later by trajectory modeling of the ball (Calandre et al., 2020; Wu
and Koike, 2020), skeleton modeling (Morel et al., 2017) or segmentation (Voeikov
et al., 2020), in order to adapt training sessions and give an automatic feedback to
the players.

Section 2 presents the different annotation approaches to build a dataset. Some
are based on voluntary work (most of the time carried out by the students or the
research team), or by hired people, which implies funds from an organization. There-
fore one will notice disparity between the presented datasets and the precision in
their annotation. In Section 3, different datasets are presented. An overall table
presents their specificity such as the number of classes, acquisition process and num-
ber of videos (Table 3.1). Then, Section 4 introduces the dataset developed for our
field of interest, i.e. stroke classification in table tennis from videos: TTStroke-21.
Conclusions are drawn in Section 5.
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2 Annotation Processes

One can distinguish two ways to annotate a dataset: automatic or by hand. Each
modality can be split or merged. It is usual to have first an automatic tool to have
candidates and then hand-label them. Also, it is common to have a dataset split
in “auto” and “clean” sets. The “auto” being the one annotated using automatic
methods and “clean” the one automatically labeled, verified and adjusted by hand.
The two annotation processes are first described before presentation of the datasets.

2.1 Automatic Annotation

Tags from social network platforms can be used to build a rich dataset. It is the
case, for example, with the IG65M dataset (Ghadiyaram et al., 2019a), used for
pre-training the R(2+1)D (Tran et al., 2018) combined with BERT layer (Kalfaoglu
et al., 2020). As presented in last chapter, IG65M dataset is built from the Kinetics-
400 class names. The class names are then used as hashtags on Instagram and led to
65M clips from 400 classes. Such methods are powerful since they reach the state-
of-the-art performances for action classification using this dataset to pre-train their
model. However their dataset is not publicly available. Such annotation process
requires filtering in order to refine the annotations. Seymour and Zhang (2018)
focus on such filtering process in order to build a dataset of images.

In movies, the script can also help to automatically label the sequence. It is for
example what Marszalek et al. (2009) have done for the Hollywood2 dataset. They
generate the samples this way and clean them manually for the test set.

Similarly, datasets can be constructed from the description of the videos from
online platforms hosting them (Chesneau et al., 2018). Such a method is presented
in Figure 3.1.

Figure 3.1 – Overview of an automatic annotation method for online videos (Chesneau et
al., 2018).

Then, according to a description, datasets can be generated in an automatic
way. This method was initially designed in order to expand training data for event
detection task in TRECVID (Over et al., 2011a).
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2.2 Manual Annotation

The most common way to annotate a dataset, especially when this one is not large, is
to label all the samples by hand . This is done often through an annotation platform
with the help of students or people working on the project. Some tools might be
used to help in the process such as a pre-classification if a model already exists, or
localization segment candidates of the actions when the video is untrimmed. One
can distinguish two ways in the hand-labelling process: if the annotation is done
by one person or several. By one person, the risk is that an inattention might lead
to errors in the dataset or make it biased according to the point of view of the
annotator. To overcome this issue, a crowdsourcing method can be used.

Crowdsourcing is based on the annotation of the same segments by different
persons. It relies on the collective intelligence and should give better results than
with only one person annotating. Outliers annotations are not considered in the
final decision. Different rules might apply, e.g take the mean of the annotators
when possible or consider only the annotator that performed the best today; in
order to take an annotation decision. There are also datasets which provide gross
crouwdsourced annotations and it is the team working on the dataset that decides
which decision to make.

A new trend appeared recently: the use of Amazon Mechanical Turk (AMT)1.
AMT, also called “MTurk”, is a crowdsourcing marketplace for individuals and busi-
nesses to outsource their processes and jobs to a distributed workforce who can
perform these micro-tasks virtually. Here it is applied to annotation and AMT are
paid according to the number of annotations performed. It started to be used with
ImageNet dataset (Deng et al., 2009) dedicated to image classification with 3.2 mil-
lions of images over 5 247 classes. The annotation process is the same method than
in ImageNet. It then spread for image and video annotations (Heilbron and Niebles,
2014; Vondrick et al., 2010). The strategy is in two folds:

• search the web for video candidates related to the dataset taxonomy

• AMT workers refine the candidates

AMT workers verify the presence of the action in the video candidates and they
can also temporally annotate them. An AMT platform is represented in Figure 3.2.

It is often coupled with a crowdsourced method meaning that each video will be
annotated by several AMT workers. This allows the construction of a large dataset
in a short amount of time. However this can be done only with the appropriate
funding.

1https://www.mturk.com/
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Figure 3.2 – AMT platform used for Kitenics datasets (Kay et al., 2017).

3 The Datasets for Action Classification

Datasets of actions can be categorized in many ways. In this section, the datasets are
clustered according to the acquisition process: acquired in a controlled environment,
film based or “in the wild”. Of course, this clustering method is not perfect since
some datasets mix different types of videos.

3.1 The Acquisition-Controlled Datasets

These datasets are often self made by the authors and they decided in what type
of environment the actions will be performed. It does not always mean that the
dataset is easier than “in the wild” since difficulties can be added on purpose. The
databases from broadcasts or recordings not meant for action recognition task are
too considered in this subsection because the acquisition environment can be taken
into account in the classification process.

CMU-Pittsburgh AU-Coded Face Expression Image Database

Kanade et al. (2000) introduce the “CMU-Pittsburgh AU-Coded Face Expression
Image Database”2, so called here “Coded-Faces”. Coded-Faces is based on the Facial
Action Coding System (FACS) (Stöckli et al., 2018) which is a human-observer based
system designed to detect subtle changes in facial features. It consists of 44 action

2https://www.cs.cmu.edu/~face/database.htm
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units which can be described by muscle movements. The database is constituted of
1 917 video clips from 182 men and women recorded in a control environment. They
made an extended version with 210 subjects. It may not be used a lot recently, but it
gave first clues on how to perform classification. Indeed, as presented in Figure 3.3,
the tracking and segmentation of some face parts or muscles might help to solve this
classification problem.

Figure 3.3 – Mouth segmentation from a sample of AU-Coded Facial Expression Image
Database (Kanade et al., 2000).

Ballet, Football and Tennis Datasets

Efros et al. (2003) introduce several datasets in order to evaluate action classification
methods3. The different datasets, labeled by hand by the authors, are represented
in Figure 3.4

a. Ballet dataset b. Football dataset c. Tennis dataset

Figure 3.4 – Different datasets introduced by Efros et al. (2003).

Ballet dataset consists of choreographed actions recorded using stationary cam-
era in a controlled environment. Videos are from two men and two women perform-
ing mostly standard ballet moves. The database comprises 24 800 frames with 16

3http://graphics.cs.cmu.edu/people/efros/research/action/
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classes. The authors stress that the controlled environment and the choreographed
nature of the actions make this classification task easier.

Football dataset is built from the extracted tracked players of the World Cup
football games from an National Television System Committee (NTSC) video tape.
Therefore it is not acquired in a fully controlled setting but rules can be defined from
the broadcast acquisition conditions and might help in the classification process. As
one can see in Figure 3.4, the images are blurred and pixelated. This is due to the
recordings made with a moving camera in order to follow the game and the players.
The dataset is composed of 4 500 frames from 72 tracked sequences. The taxonomy
has eight classes and remains very simple: “run left 45°”, “run left”, “walk left”, “walk
in/out”, “run in/out”, “walk right”, “run right” and “run right 45°”.

Tennis dataset is composed of 6 415 frames from videos of two tennis players. It
has six easily recognisable classes: “swing”, “move left”, “move right”, “move left and
swing”, “move right and swing” and “stand”. It has been recorded with two amateur
players playing on a tennis field. The scene is visible in Figure 3.4.

KTH

As presented in the first chapter, KTH dataset was introduced by Schüldt et al.
(2004)4. KTH stands for “Kungliga Tekniska Högskolan” in Swedish which is the
Royal Institute of Technology (Stockholm, Sweden), institution of the authors. The
dataset, depicted in Figure 3.5, is composed of six classes: “Walking”, “Jogging”,
“Running”, “Boxing”, “Handwaving” and “Hand clapping”.

The acquisition was done in a controlled environment, homogeneous background,
static camera at 25 frames per second (fps), with 25 actors and has 2 391 video clips
across 600 videos. Videos are recorded outdoors and indoors.

Weizmann

Gorelick et al. (2007) present the Weizmann action dataset5. It is constituted of
81 video sequences recorded at 25 fps at low resolution (180 × 144). Each video
contains a different person performing one of the nine following actions (used as
the class): “running”, “walking”, “jumping- jack”, “jumping-forward-on-two-legs”,
“jumping-in-place- on-two-legs”, “galloping-sideways”, “waving-two-hands”, “waving-
one-hand” and “bending”.

The KTH and Weizmann datasets were the most popular at the early ages of
action recognition research. Despite their simplicity, some amount of researchers
continued using them as a benchmark. However, these datasets are largely outdated
with regard to the necessity of action recognition in “in-the-wild”.

4https://www.csc.kth.se/cvap/actions/
5http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html
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a. Walking b. Jogging c. Running

d. Boxing e. Hand clapping f. Hand Waving

Figure 3.5 – KTH dataset samples (Schüldt et al., 2004).

MSR

Cao et al. (2010) presented the MSR dataset6 which includes three classes: “hand
waving”, “clapping” and “boxing”. It contains 54 sequences acquired in different noisy
scenes such as parties, outdoor traffic and walking people. The challenging aspect
of this dataset is the activities in the background which might make the spatial and
temporal segmentation and action recognition harder.

ACASVA

de Campos et al. (2011) from “Adaptive Cognition for Automated Sports Video An-
notation” introduce a tennis action dataset so called “ACASVA”7. Their objectives
is to evaluate classical action recognition approaches to player action recognition
in tennis games. To serve their purposes, they collected data from TV broadcasts
tennis. The videos are then spatially segmented on the players and temporally an-
notated using three classes: “hit”, “serve” and “non-hit”. The complexity of the the
dataset remains simple. Their results are detailed in Chapter 1.

The Fall Datasets

Several datasets were created in order to perform fall detection task as referenced in
Chapter 2. The SDU dataset (Ma et al., 2014) and UR dataset (Kwolek and Kepski,
2014) use Microsoft Kinect depth camera to record the videos. They both made
acquisitions with different subjects performing different actions: “falling forward”,

6www.microsoft.com/en-us/download/details.aspx?id=52315
7https://www.cvssp.org/acasva/Downloads.html
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“falling backward”, “bending”, “squatting, “sitting”, “lying” and “walking” for SDU;
and “walking”, “sitting down”, “crouching down”, “lying down in bed”, “fall standing”
and “fall sitting” for UR. Thermal Fall dataset (Vadivelu et al., 2016) is dedicated
to pure fall action detection and was recorded using thermal camera and contains
44 videos out of which 35 have the falling action.

MERL Shopping

Singh et al. (2016) present the MERL Shopping Dataset which they have used
in their experiments and shared to the scientific community. It is only 96 videos
two minutes long recorded with a fixed camera in a grocery shop. Their field of
interest is fine-grained action recognition and for this purpose they consider five
classes: “Reach to Shelf”, “Retract from Shelf”, “Hand in Shelf”, “Inspect Product”
and “Inspect Shelf”. All videos are annotated in time. Even if the authors stress the
fine-grained aspect of their dataset, the actions are fairly easy to differentiate.

Datasets for Surgery

In term of action recognition in the medical field, surgery actions are also considered.
Those have many applications: e.g assist surgeon, education in medicine university
or follow the patient for better diagnostic after surgery. Petscharnig and Schöffmann
(2017) built a dataset of nine hours containing 111 medical interventions such as:
“Suction & Irrigation”, “Suture”, “Dissection”, “Cutting”, “Cutting (cold)”, “Sling”,
“Coagulation” and “Injection”. They also provide the “scene” which is, in this case,
the body parts where the surgery takes place. Later, the Robust Medical Instrument
Segmentation (ROBUST-MIS) challenge Roß et al. (2020) propose a new dataset
for instrument tracking and segmentation for operation based on images extracted
from 30 different surgical procedure videos.

Diving48

Diving48 dataset8 presented by Li et al. (2018) is a fine-grained video dataset of
competitive diving. It includes 18 000 video clips of major diving competitions
retrieved online. The actions consist in dive sequences which can be decomposed in
three parts: i) takeoff type, ii) movements performed in flight and iii) the entry in
water. The combination of those three components lead to a total of 48 dive classes.
Such organisation of a dive can be exploited to perform the classification.

Toyota Smarthome

Das et al. (2019) focus on the recognition of activities at home. The goal of the
research is to assist, as fast as, possible if an accident happens. Toyota Smarthhome
dataset is built from recordings of 18 senior subjects, filmed eight hours in one day

8http://www.svcl.ucsd.edu/projects/resound/dataset.html
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with seven Kinect cameras located in different parts of the house. The face of the
subjects has been blurred to preserved anonymity. The videos are then clipped into
16 115 activity segments across 31 classes. Their camera can also provide the depth
along with the videos.

FineGym

FineGym dataset9, introduced recently by Shao et al. (2020), is a fine-grained action
dataset with a special focus on gym sport. The authors use a rich taxonomy to
decompose each actom of a structured figure. They use three levels semantic and
analyse four different gymnastic routines: balance-beam, uneven-bars, vault and
floor exercise. They have a total of 530 element categories but only 354 have at
least one instance. This rich amount of categories is due to all the combination of
possible actoms. Such combination is represented through an overview of FineGym,
Figure 3.6.

… … … … …
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Figure 3.6 – FineGym dataset (Shao et al., 2020).

To alleviate this issue, the authors offer two settings: Gym288 with 288 classes
but very unbalanced distribution and Gym99, more balanced but with “only” 99
classes. The total number of samples considering all classes reaches 32 697. The 708
hours of videos are hosted on YouTube with most of them in high resolution.

TUHAD

Lee and Jung (2020) too introduce a dataset dedicated to fine-grained action recog-
nition but on Taekwondo sport: TUHAD. They recorded their own dataset with
the help of ten Taekwondo experts and the use of two Kinect cameras with front
and side view. They use a low number of classes with only eight Taekwondo moves.
Those unit techniques are represented in Figure 3.7.

1 936 actions samples are obtained with depth and IR images along with the
RGB data. The difficulty of the dataset seems questionable since the actions seem

9https://sdolivia.github.io/FineGym/
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Figure 3.7 – The eight Taekwondo actions in Human Motion Taekwondo Unit Technique
Human Action Dataset (TUHAD).

easy to be classified using only one image. Two classes are very similar in many
ways but a foot position, which might be overcome with proper features.

3.2 Movie Based Datasets

Movie based datasets are from movies, trailers, often open-source so it can be redis-
tributed. It can rely on the script to help in the annotation process.

Drinking and Smoking

Introduced by Laptev and Pérez (2007), the sequences are from the movie “Coffee
and Cigarettes” from Jim Jarmusch, 2003. The movie itself is composed of 11 short
stories across three short films where the actors share coffee and cigarettes. This
dataset was designed for the joint action detection and classification for the two
classes: “smooking” and “drinking” with respectively 141 and 105 samples.

DLSBP

DLSBP name comes from the first letter of authors last name who introduced the
dataset: Duchenne et al. (2009). It contains three actions: “Stand up”, “Sit down”
and “Open door” extracted from 15 different movies, automatically annotated using
script based method. They manually annotated 93 open door and 86 sit down
actions in three movies: Living in oblivion, The crying game and The graduate.

Hollywood2

Marszalek et al. (2009) introduce the Hollywood2 dataset10. This dataset was de-
signed for action and scene classification. It contains ten scene classes and 12 actions:

10https://www.di.ens.fr/~laptev/actions/hollywood2/

58 Pierre-Etienne Martin

https://www.di.ens.fr/~laptev/actions/hollywood2/


3. Datasets for Action Classification

“Answer phone”, “Drive car”, “Eat”, “Fight person”, “Get out car”, “Hand shake”, “Hug
person”, “Kiss”, “Run”, “Sit down”, “Sit up” and “Stand up”; over seven hours of video
from 69 movies. Action samples of Hollywood2 datasets are presented in Figure 3.8.

a. Drive car b. Eat c. Run d. Hand shake

Figure 3.8 – Hollywood2 dataset samples (Marszalek et al., 2009).

They have a total of 1 694 actions samples. The difficulty lies in the fact that
different actions can happen in the same sequence.

Charade

Sigurdsson et al. (2016) present a “Hollywood in Homes” to build their Charade
dataset11 and deserve to be in this section. The dataset is not really from movies
but from 267 participants who agreed to make their own movie following a given
script. It might imply bias according to how the participants understood the script.
The dataset itself focuses on household activities with 157 action classes, 15 different
scenes and also 46 object classes. It leads to a total of 9 848 annotated videos with
an average length of 30 seconds (55GB). More recently, a similar approach has also
given birth to the Charades-Ego dataset (Sigurdsson et al., 2018).

3.3 Egocentric Datasets

Egocentric datasets are recorded from the first person point of view. Such record-
ings often imply strong camera motion and a different perspective of action than a
classic third person recorded dataset. Their applications are many but it tends to be
healthcare applied (González-Díaz et al., 2018). It could allow to identify dangerous
actions or situations for persons with a condition in order to prevent an accident
or act faster if there is. These types of data are often used for LifeLog challenges
(Dang-Nguyen et al., 2018; Münzer et al., 2018) too.

ADL

Cartas et al. (2017) build a new dataset for Dailylife activity recognition based on
NTCIR-12 dataset Gurrin et al. (2016). This last one represents 89 593 egocentric
pictures belonging to three persons over 79 days. In ADL dataset, they focus on a
specific sample of 18 674 frames which they annotate using 21 activity categories.

11https://prior.allenai.org/projects/charades
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Something-Something

Goyal et al. (2017) present the biggest egocentric dataset: Something-Something12.
With 108 499 videos across 174 classes with objects interactions. Videos last ap-
proximately four seconds (mean value) with 620 videos per class. As presented in
Figure 3.9, the goal is to classify the action performed but can also be to identify
the objects on which it is performed.

a. Picking something.

a. Moving something closer to something.

Figure 3.9 – Something-Something samples, where something is also annotated and can be
used to train joint caption and action recognition model (Goyal et al., 2017).

The difficulty of a such dataset lies in the intra-dissimilarity of the actions per-
formed. Indeed, the use of different objects for the same action can have a completely
different appearance, bringing much dissimilarity within the class. Hence, classifi-
cation methods need to take this factor into account. Mahdisoltani et al. (2018)
recently extended the dataset to 220 847 videos13 with the same number of actions.

IXMAS

Mi et al. (2018) present the IXMAS dataset in order to train their model. Their
work is also commented in previous chapter. Their dataset is based on 12 common
human actions: “check watch”, “cross arms”, “scratch head”, “sit down”, “getup”,
“turn around”, “walf”, “wave”, “punch”, “kick”, “pickup” and “point”. The authors
asked 11 actors to perform the actions three times while recording on four different
sides plus a top view. The interest of their dataset lies in the different views which
can be either treated separately or could be processed in parallel to perform action
classification.

12https://20bn.com/datasets/something-something
13https://20bn.com/datasets/something-something/v2
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Epic-Kitchens

Epic-Kitchens14 was introduced by Damen et al. (2018) for the purpose of object
detection, action classification and action anticipation. The specificity of this dataset
is its egocentricity and its focus on activities in the kitchen. A timeline with action
examples and objects segmentation is presented in Figure 3.10.

Figure 3.10 – Timeline of a video from Epic-Kitchens dataset (Damen et al., 2018).

The dataset was recorded by 32 persons in four cities of different countries.
It counts 55 hours of videos: 39 594 action segments over 125 classes of average
length 3.7 seconds. The videos were annotated using post recorded narration from
the participants, YouTube automatic tool to match action and script and AMT
services. The high number of classes, their similarity and their variation in length
make this dataset utterly challenging.

ADLEgo

ADLEgo Dataset, introduced by Cartas et al. (2020), is based on egocentric activity
recognition for health monitoring. The acquisition is done with a wearable camera
on the chest. However the data acquired are not videos but images. Still, activity
recognition is possible and authors annotated the acquired images with 35 different
activity classes.

3.4 In the Wild Datasets

“In the wild” means that the videos are from different sources and can be recorded
by professional or amateurs. It thus may contain camera motion, strong blur, oc-

14https://epic-kitchens.github.io/2018
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clusions... everything that can make the action recognition task harder. However,
videos can also contain much background information, which might be an exploitable
source for the model trained to classify.

The UCF Datasets

The first UCF dataset was UCF-Sports15 (Rodriguez et al., 2008; Soomro and Zamir,
2014). UCF letters comes from the name of the university in which the datasets
have been developed: University of Central Florida.

UCF-Sports dataset contains various sequences from broadcast television chan-
nels across nine different sports: “diving”, “golf swinging”, “kicking”, “lifting”, “horse-
back riding”, “running”, “skating”, “swinging a baseball bat”, and “pole vaulting”. Pole
vaulting is split in two classes: “Swing-Bench” and “Swing-Side” totaling ten classes.
It first contained 200 sequences (reduced to 150 later) with an image resolution of
740× 480 at 10 fps.

Later, Liu et al. (2009) introduce the UCF YouTube Action also called UCF11
dataset16. It consists of 11 classes from 1 160 videos from the online video platform
YouTube17.

Published in 2013 but work carried out in 2011, Reddy and Shah (2013) present
the UCF50 dataset18. It is an extension of UCF11 with a total of 50 action classes.
Soomro et al. (2012) extend this last version to make UCF101 dataset19. An overview
of the UCF101 dataset is presented in Figure 3.11.

UCF101 includes a total number of 101 action classes which can be divided into
five domains: “Human-Object Interaction”, “Body-Motion Only”, “Human-Human
Interaction”, “Playing Musical Instruments” and “Sports”. Constructed from 2500
videos “in the wild”, they extract a total of 13 320 clips in order to have at least
101 clips per class. The dataset is widely used by the scientific community and led
to the THUMOS challenge20 weld in 2013, 2014 and 2015. The dataset is cleaned
and enriched with temporal annotations in 2015 in order to provide qualitative
benchmark for different methods and be used also for spatio-temporal localization
and temporal detection only.

Olympic

Olympic dataset21 was introduced by Niebles et al. (2010). It is composed of Olympic
sports from the online video platform YouTube. It contains 16 different sports with
50 sequences per class.

15https://www.crcv.ucf.edu/data/UCF_Sports_Action.php
16www.crcv.ucf.edu/data/UCF_YouTube_Action.php
17www.youtube.com
18www.crcv.ucf.edu/data/UCF50.php
19www.crcv.ucf.edu/data/UCF101.php
20www.thumos.info
21vision.stanford.edu/Datasets/OlympicSports/
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Figure 3.11 – Overview of the UCF101 dataset (Soomro et al., 2012).
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HMDB51

Kuehne et al. (2011) present the Human Motion DataBase (HMDB)22. The dataset
comes from different sources of videos: movies, public databases such as the Prelinger
archive 23 (collection of films relating to U.S. cultural history, evolution of the Amer-
ican landscape, everyday life and social history) and from other videos available on
online platform e.g YouTube or Google videos. Samples are represented in Fig-
ure 3.12.

a. Diving b. Drinking c. Hand waving d. Sword fighting

Figure 3.12 – HMDB dataset samples (Kuehne et al., 2011).

There is one action per clip which have been annotated by students using 51
classes. Videos are required to have a minimum height of 60 pixels. All videos are
re-scaled to a height of 240 with 30 fps for consistency. With at least 101 clips per
action, the dataset contains 6 766 clips from 3 312 different videos. The fact that
the clips are from so many different videos increase the intra-class dissimilarity and
might make the action recognition task harder. The dataset can be split in five
main categories: “General facial actions”, “Facial actions with object manipulation”,
“General body movements”, “Body movements with object interaction” and “Body
movements for human interaction”.

This dataset is extended later by Jhuang et al. (2013) to create the JHMDB
dataset24 which provides, in addition, human joint information.

Sports-1M

Sports-1M (Karpathy et al., 2014) is the first widely used dataset to reach the
Million of videos (1 133 158). The teaser frame is visible in Figure 3.13 and shows
the richness of their dataset.

It contains 487 classes of sports with top categories such as “Aquatic Sports”,
“Team Sports”, “Winter Sports”, “Ball Sports”, “Combat Sports” and “Sports with
Animals”. The granularity of the classes is organized as a tree and becomes fine-
grained at the leaves. There are for example 23 types of billiards. The annotations
were created in a automatic way using video description and may contain mistakes.
They also stress the fact that the action might not happen during the whole video

22serre-lab.clps.brown.edu/resource/hmdb-a-large-human-motion-database/
23https://archive.org/details/prelinger
24http://jhmdb.is.tue.mpg.de/
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Figure 3.13 – Teaser frame of the Sports-1M dataset Karpathy et al. (2014).

(which can last several minutes), and might be temporally wrongly located, which
makes the classification task even harder.

ActivityNet

Heilbron et al. (2015) introduce a large dataset based on activities: ActivityNet25.
Their taxonomy, partially represented in Figure 3.14, has a stronger granularity than
the previous datasets at their time.

Indeed, they offer different categories of action at different levels - 4 levels of
granularity. This organization can be used to train cascade models for classification.
The seven top categories are: “Household”, “Caring and helping”, “Personal care”,
“Work-related”, “Eating and drinking”, “Socializing and leisure” and “Sports and
exercises”.

They consider a total of 203 activity classes with an average of 193 sample
videos per class (or 137 untrimmed videos with some videos containing more than
one activity). It represents 19 994 clips totaling 849 hours of videos.

YouTube-8M

2 years after Sports-1M, YouTube-8M26 is introduced by Abu-El-Haija et al. (2016).
It holds 4 800 classes, a total of 8 264 650 videos meaning 1.9 billion frames and
1.53 Terabytes frame-level features. Videos can also have more than one annotation.
In this dataset the classes are not actions but entities spread in 28 top categories
such as “Health”, “Science”, “Games” and “Arts & Entertainment”. The entities are

25http://activity-net.org/
26https://research.google.com/youtube8m/
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Figure 3.14 – Sub-tree of the top level category “Household activities” Heilbron et al. (2015).
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thus more context based, as for example: “Truck”, “University”, “News broadcasting”
or “Trailer”. The annotation system is based on Freebase Open Knowledge Graph
(Bollacker et al., 2008).

The Kinetics Datasets

The kinetics datasets27 started with Kinetics-400 introduced by Kay et al. (2017).
Kinetics-400, Kinetics-600 (Carreira et al., 2018) and Kinetics-700 (Carreira et al.,
2019) consider respectively 400, 600 and 700 action classes. They are all financed
by DeepMind company, specialized in AI which, from 2014, belongs to Google.

The videos are collected from YouTube video platform, automatically annotated
and candidates are refined using AMT. An overview of Kinetics-400 is presented in
Figure 3.15.

Figure 3.15 – Overview of the Kinetics dataset (Kay et al., 2017).

The difference between the versions of the datasets lies in:

• the number of classes: the number of classes has increased over time. New
classes were added and pre-existing classes were refined. Some were merged.

27https://deepmind.com/research/open-source/kinetics
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• the amount of videos: the number of videos started with 306 245 clips and
more than doubled in the last version

• the splits between the different sets: training, validation and test sets have
been modified over time. For example, samples belonging to the training set
in the first version might belong to the test set in the last version. A new split
for Kinetics-700 has recently been proposed by the same team, which increases
their classification performances (Smaira et al., 2020).

AVA

Gu et al. (2018) introduced the Atomic Visual Actions (AVA) dataset28 in order
to perform joint localization and classification of actions. It contains 437 videos
recovered from YouTube, 15 minutes are extracted from them and annotated every
second. They use a vocabulary of 80 atomic actions. The difficulty in this dataset
is the overlapping actions in time and their localization, as described in Figure 3.16.

Figure 3.16 – Samples of the AVA dataset (Gu et al., 2018).

They offer a split of the dataset by extracting 900 video segments of three seconds
from all the 15 minutes videos. By doing so, the 55 hours of video are split in 392 000
overlapping segments.

28https://research.google.com/ava/
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Moments In Time

Moments In Time Dataset was first introduced in 2018 by (Monfort et al., 2020). It
contains 1 Million videos classified using a taxonomy of 339 different classes. Those
classes come from the 4 500 most commonly used verbs from the lexical resource
VerbNet Schuler (2006) according to their frequency in the Corpus of Contemporary
American English (COCA) Davies (2010). Those verbs are then clustered to end
up with a selection of 339 verbs. The main difference with a verb compared to an
human based action, is that it can be applied to anything. As it can be seen in
Figure 3.17, the videos can have a very strong intra-class variation, i.e falling verb
class can be applied to water, person, animal or object.

Figure 3.17 – Samples of Moments in Time dataset (Monfort et al., 2020).

The samples are three seconds long and extracted from videos available online.
AMT were commissioned for the annotation process. They also extended the dataset
to a Multi-Moments version where a video can contain several classes (Monfort et
al., 2019).

SAR4

Fani et al. (2019) present the SAR4 dataset which focuses on action in football sport
(or soccer). They track and label the players from available videos on YouTube. The
actions performed by the tracked players are then annotated using a taxonomy of
four classes: “dive”, “shoot”, “pass received” and “pass given”. The total number of
sequences is 1 292 with actions lasting from five up to 59 frames.

HACS

Zhao et al. (2019) present the Human Action Clips and Segments (HACS) dataset29.
The dataset is designed to refine the temporal localization of actions in video. The

29http://hacs.csail.mit.edu/
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dataset is annotated accordingly to 200 action classes. From the 504 000 YouTube
videos, 1.5M clips of two seconds are extracted. The authors provide different types
of annotations, sparse and dense, according to the classification task covered. This
dataset has been recently used in CVPR’20 International Challenge on Activity
Recognition Workshop: HACS Temporal Action Localization Challenge.

AVA-Kintetics

Li et al. (2020) presented recently the AVA-Kinetics datasets30. The dataset is the
merger of the two Kinetics-700 and AVA datasets. Kinetics videos were annotated
using AVA protocol. The dataset thus contains over 230 000 video clips spatially
and temporally annotated using the 80 AVA action classes.

4 The TTStroke-21 Dataset

The creation of the TT-Stroke21 dataset was initiated at the beginning of the CRISP
project. The target application of this research project is fine-grained recognition of
sport actions, in the context of the improvement of sport performance for amateurs
or professional athletes. Our case study is table tennis, and our goal is the temporal
segmentation and classification of strokes performed. The low inter-class variability
makes the task more difficult for this content than for more general action databases
such as UCF or Kinetics.

Twenty stroke classes and an additional rejection class have been established
based on the rules of table tennis. This taxonomy has been discussed and designed
with table tennis professionals. Videos recorded at the Faculty of Sports of the
University of Bordeaux (STAPS) are considered in our work. The filmed athletes are
students, and their teachers supervise the exercises performed during the recorded
sessions. These recordings are done without markers, which allows the players to
play in natural conditions. The objective of table tennis stroke recognition is to help
the teachers to focus on some of these strokes to help the students in their practice.

One can mention that action recognition in table tennis videos is recently getting
interest in the research community. Wang et al. (2020) try to visualize and character-
ize tactics in table tennis competitions using a Markov chain model for comparing
the profile of different players. Similarly, Tsai (2018) presents a basketball tactic
training framework based on motion capture devices for coaching basketball play-
ers. Other works only focus on the ball tracking and trajectory estimation (Lin et
al., 2020; Calandre et al., 2021). Voeikov et al. (2020) propose an advanced real-time
solution for scene segmentation, ball trajectory estimation and event detection but
are not considering stroke classification. Ebner and Findling (2019) also focus on
performances stroke recognition but in tennis. Their target application is also im-
provement of players performance. However they use sensors and only eight strokes

30https://deepmind.com/research/open-source/kinetics
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Table 3.1 – Presentation of the different datasets in terms of number of classes, acquisition
process, the amount of videos and the number of extracted clips.

Datasets # classes Acquisition # videos # clips
Coded-Faces 2000 44 Controlled - 1 917

KTH 2004 6 Controlled 600 2 391
Weizmann 2007 9 Controlled - 81

Coffee and Cigarettes 2007 2 Film 1 246
UCFSports 2008 10 Broadcast - 150
UCF11 2009 11 In the wild - 1 160

Hollywood 2009 12 Films 69 1 694
MSR 2010 3 Controlled - 54

Olympic Dataset 2010 16 In the wild - 800
UCF50 2011 50 In the wild - 6 676

HMDB51 2011 51 In the wild 3 312 6 766
UCF101 2012 101 In the wild 2 500 13 320
Sports-1M 2014 487 In the wild 1.13M -
ActivityNet 2015 203 In the wild - 19 994

MERL Shopping 2016 5 Controlled 96 -
Charade 2016 157 Film at home 9 848 -

YouTube-8M 2016 4 800 In the wild 8.27M -
Something-Something 2017 174 Egocentric - 108 499

Kinetics-400 2017 400 In the wild 306 245
Diving48 2018 48 Broadcast - 18 000
AVA 2018 80 In the wild 437 392 000

Epic-Kitchens 2018 125 Egocentric - 39 594
Something-Something v2 2018 125 Egocentric - 220 847

Moments In Time 2018 339 In the wild - 1M
Kinetics-600 2018 600 In the wild - 495 547

SAR4 2019 4 Broadcast - 1 292
Toyota Smarthome 2019 31 Controlled 126 16 115

HACS 2019 200 In the wild 504 000 1.5M
Kinetics-700 2019 700 In the wild - 650 317
FineGym 2020 354 Broadcast - 32 697

AVA-Kinetics 2020 80 In the wild - 230 000
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types which limit the applications.
Table tennis strokes are most of the time visually similar. Action recognition

in this case requires not only a tailored solution, but also a specific expertise to
build the ground truth. This is the reason why annotations were carried out by
professional athletes. They use a rather rich terminology that allows the fine-grained
stroke definition. Moreover, the analysis of the annotations shows that, for the same
video and the same stroke, professionals do not always agree. The same holds for
defining temporal boundaries of a stroke, which may differ for each annotator. This
variability cannot be considered as noise, but shows the ambiguity and complexity of
the data and has to be taken into account. This new database is called TTStroke-21,
TT standing for Table Tennis and 21 for the number of classes.

4.1 TTStroke-21 Acquisition

TTStroke-21 is composed of videos of table tennis games with 17 different players.
This data set is continuously enriched with videos of different players at differ-
ent frame rates, spatial resolutions and camera viewpoints. These sequences are
recorded indoors without markers using artificial light and GoPro cameras. The
cameras can be mounted on tripods on the grounds or on tables to have a higher
point of view, or directly on the ceiling as presented in Figure 3.18.b.

The player is filmed in three situations:

• performing repetition of the same stroke: such repetition are meant for the
player to train on specific techniques. However those repetitions might fail
once or several times in the video and the player might do another stroke than
the one expected.

• simple exchanges between two players: those exchanges are meant to practise
the different techniques. The players are not meant to mark points. The flow
of the strokes is at normal pace.

• in match conditions: the players are meant to mark points. The game speed
is much faster and strokes are shorter in time. The strokes are also harder
to annotate in such context because of the speed and improvised strokes to
answer to a difficult pass of the ball.

4.2 TTStroke-21 Annotation

The annotation process was designed as a crowdsourcing method. The annota-
tion sessions are supervised by professional table tennis players and teachers. A
user-friendly web platform has been developed by our team for this purpose (Fig-
ure 3.18.b), where the annotator spots and labels strokes in videos: starting frame,
end frame and the stroke class. The annotator also indicates if the player is right-
handed or left-handed. The taxonomy is built upon a shake-hand grip of the racket
as pictured in Figure 3.19.
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a. Dataset teaser image

b. Video acquisition with c. Annotation platform
aerial view from the ceiling

Figure 3.18 – Overview of the TTStroke-21 dataset.
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a. Forehand b. Bachhand

Figure 3.19 – Shake-hand grip of table tennis racket.

The taxonomy comprises 20 table tennis stroke classes, i.e.

• 8 services: Serve Forehand Backspin, Serve Forehand Loop, Serve Forehand
Sidespin, Serve Forehand Topspin, Serve Backhand Backspin, Serve Backhand
Loop, Serve Backhand Sidespin, Serve Backhand Topspin;

• 6 offensive strokes: Offensive Forehand Hit, Offensive Forehand Loop, Of-
fensive Forehand Flip, Offensive Backhand Hit, Offensive Backhand Loop, Of-
fensive Backhand Flip;

• 6 defensive strokes: Defensive Forehand Push, Defensive Forehand Block,
Defensive Forehand Backspin, Defensive Backhand Push, Defensive Backhand
Block, Defensive Backhand Backspin.

All the strokes can, as well, be divided in two super-classes: Forehand and
Backhand. This taxonomy was designed with professional table tennis teachers
and should cover all possible strokes. This taxonomy could be refined to take into
account more ball effects but would have been harder for professionals to annotate
the video. Moreover, annotations are fulfilled by professional athletes, who are
using quite a rich terminology. The linguistic analysis of annotations shows that for
the same video and the same stroke, professionals do not employ the same degree of
details in their annotations: an Offensive Forehand Hit can be similar to an Offensive
Forehand Loop according to the effect given to the ball. The same problem occurs
with temporal analysis: for instance, a service (first stroke when the player releases
the ball) might be considered to start i) when the player is in position, ii) when the
ball is released or iii) when the racket is moving. This cannot be considered as a
noise, but it shows the ambiguity and complexity of real-life data.

In order to avoid annotation errors as much as possible, one recorded video was
supposed to be annotated by at least 2 annotators. Unfortunately, this condition
was hard to meet for all videos, and despite efforts for cleaning the data sets build
from crowdsourced annotations, errors might still remain.
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4.3 Crowdsourcing Filtering

We had a team of 15 annotators, professionals in the field of table tennis. In all
crowdsourced applications, possible errors of the annotators should be taken into
account. As the annotators were not familiar with the annotation platform at the
beginning of the annotation sessions, there were some mislabelled portions of the
videos. These mislabels have been filtered out automatically by not considering:
annotations starting at first frame (default parameter), annotations ending after
the end of the video and annotations out of the time range which was set between
0.6 and 2.3 seconds. The length of the time range was set up accordingly to the
domain knowledge of professional table tennis players of the Faculty of Sports. This
allowed the extraction of strokes ranging from a fast hit (sometimes less than one
second) to a long serve (which can take more than two seconds).

Since a video can be annotated by several annotators, stroke detection accord-
ing to the annotations was necessary. Our data set is player-centered, with only
one player in each video. An overlap between each annotation of 25% of the anno-
tated stroke duration is allowed. Indeed, during matches with fast exchanges, the
boundaries between strokes are hard to determine and annotators would sometimes
overlap the annotations between two successive strokes. Above this percentage, the
annotations are considered to be part of the same stroke and are temporally fused.

Another filter is applied by checking if labels of the same stroke are consistent. If
not, this portion of video is not considered in our classification task. This filtering,
based on multiple annotations for the same recorded video, can still leave some
labeling errors since multiple labeling of the same clip by different annotators was
not always easy to meet in practice.

4.4 Negative Samples Extraction

Negative samples are created from videos with more than ten detected strokes. This
was decided after noticing how some videos were poorly annotated. Indeed, videos
are not fully annotated most of the time for different reasons. We suspect that
it comes from the annotators’ fatigue: they missed some strokes; or stopped the
annotation process and did not finish the video annotation later. This would lead
to include actual strokes as negative samples.

The negative samples are video sub-sequences between each detected stroke. We
allow the overlap with the previous and the subsequent stroke of 10% of our target
time window length: 0.83 seconds, which allows to capture short strokes without con-
sidering another one. This represents 100 frames at 120 fps. However, this approach
was still selecting wrong negative samples because of videos that were only partially
annotated. This has been manually cleared to avoid the incorporation of strokes in
negative samples. Samples from TTStroke-21 are represented in Figure 3.20.

Fine-Grained Action Detection and Classification from Videos with STCNNs.
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Serve Forehand Sidespin (1.2s)

Offensive Backhand Hit (1.2s)

Defensive Forehand Backspin (1.7s)

Negative (1.3s)

Figure 3.20 – Samples of TTStroke-21 after annotation filtering. In respective order the
first frame, frames at 1/3 and 2/3 of the sample duration, and the last frame of the sample.
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4.5 Data Distribution

TTStroke-21 contains in total 241 videos recorded at different frame rates. The
number of the videos, annotations and strokes extracted over the frame rates are
reported in Table 3.2.

Table 3.2 – TTStroke-21 database description.

fps # videos # frames # minutes # annotations # strokes

25 46 60 087 40 437 145

30 12 65 523 38 302 280

120 183 2 091 615 291 3470 3003

We report also the distribution of the strokes across the dedicated taxonomy
according to the frame rates of the videos in Table 3.3.

Table 3.3 – Stroke distribution Taxonomy

Table tennis strokes 25 fps 30 fps 120 fps All

Serve Forehand Backspin 22 3 145 170
Serve Forehand Loop 3 4 100 107

Serve Forehand Sidespin 0 44 123 167
Serve Forehand Topspin 6 25 257 288
Serve Backhand Backspin 36 3 144 183
Serve Backhand Loop 1 2 63 66

Serve Backhand Sidespin 3 9 91 103
Serve Backhand Topspin 19 2 174 195

Off. Forehand Hit 22 12 231 265
Off. Forehand Flip 0 9 62 71
Off. Forehand Loop 3 18 255 276
Off. Backhand Hit 17 23 326 366
Off. Backhand Flip 12 18 40 70
Off. Backhand Loop 0 10 85 95

Def. Forehand Backspin 1 15 117 133
Def. Forehand Block 0 6 123 129
Def. Forehand Push 0 18 135 153

Def. Backhand Backspin 0 29 179 208
Def. Backhand Block 0 14 255 269
Def. Backhand Push 0 16 98 114

All strokes 145 280 3003 3428

Focus was on recordings using a frame rate of 120 fps in order to better visualize
the strokes performed.

Fine-Grained Action Detection and Classification from Videos with STCNNs.
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4.6 Data for Evaluation

Since the dataset was in constant evolution during the CRISP project, 129 videos
at 120 fps have been considered using the aerial view from the ceiling. It represents
94 minutes of table tennis games, totalling 675 000 video frames and 1 387 annota-
tions. After filtering, 1 074 annotations were retained. The peak statistics of stroke
duration are min = 0.64 second, max = 2.27 seconds and the average duration is
1.46 seconds with standard deviation of 0.36. Accordingly, a total of 1 048 strokes
were extracted with a min duration of 0.83 second, a max duration of 2.31 seconds
and an average duration of 1.47 seconds with standard deviation of 0.36. Some
annotations were merged making the statistical duration a bit longer. After these
steps, 681 negative (non-stroke) samples were extracted. They have a mean dura-
tion of 2.34 seconds and standard deviation of 2.66 seconds. This high standard
deviation comes from the non game activity of long period between strokes, which
can be due to a ball lost or talks of players between games. However, as described in
next chapter, not all negative samples are considered to avoid biases in the training
and evaluation processes.

5 Conclusion

This chapter presented the different datasets for action recognition in a large sense
used by the scientific community. From a chronological point of view, one can notice
the evolution of the datasets from year 2000 up to now. The number of classes have
increased, the complexity and acquisition methods have varied and the number
of data has exploded. It can become complicated to test methods on a dataset
containing millions of videos. Furthermore, since most of the actual datasets are
from online platforms such as YouTube, most of them provide only links to the
videos and their annotations. It is for example the case with the FineGym dataset
presented earlier. However some videos might no longer be available because of
their owner who deleted them. The disk usage is problematic as well . The frame
extraction and flow computation from a large number of videos require servers with
high storage capacity and an adequate number of Central Processing Units (CPUs).
Finally, training a DNN model on such datasets with a correct batch size necessitates
GPUs of large size.

Also, with the improvement of the classification methods, the tasks to perform
on action classification datasets have evolved. Most of the datasets provide now
joint segmentation (spatial and/or temporal) and classification task from videos.
Something-something also offers to classify the action and the object(s) of interac-
tion. It is interesting to see how some datasets focus on classifying actions with
very low intra-class similarity, such as Something-Something or Moments In Time,
while others focus on classifying actions with high inter-class similarity. It is often
the case for datasets focusing on fine-grained classification, which offer many user
oriented applications, as TTStroke-21.
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TTStroke-21 is used in the next chapters for the fine-grained action recognition
task. In order to validate our results, we prefer to use I3D methods on our dataset
rather than applying our method on other datasets. An attempt was actually made
to run tests on the FineGym dataset but after starting downloading the videos, some
were missing and the large size required in order to have the full dataset exceeded
our capacities. We thus invited the scientific community to try their method on
TTStroke-21. However, for privacy reasons concerning the players, this dataset
cannot be publicly available. We are still working on it by blurring the players face,
but the process is not perfect. A portion of TTStroke-21 dataset is nevertheless
available through the specific task Sports Video of MediaEval31 after agreeing to
particular conditions to respect the General Data Protection Regulation (GDPR).
The MediaEval task is presented in appendix B.

31http://www.multimediaeval.org/mediaeval2020/
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Abstract

Part II focuses on the methods we have developed in order to perform fine-grained
action classification. The methods were motivated by the state-of-the-art methods at
the beginning of the thesis which were the I3D models. The I3D models are applied
to TTStroke-21 and compared with the implemented methods. The models use
the same modalities for consistency. The different modalities RGB and optical flow
are investigated through two different chapters. Different optical flow normalization
are tested and the obtained results stress its importance. The fusion of the two
modalities through a Twin architecture is the object of the third chapter. Last
chapter of Part II is dedicated to the features analysis of the best classification
model.

Keywords

Action classification, Deep Learning, Optical Flow, Spatio-temporal convolution,
Data Normalization, Feature understanding
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Chapter 4

RGB Spatio-Temporal Convolutional
Neural Network for Action Recogni-
tion

1 Introduction

The first deep learning breakthrough in image classification with AlexNet Krizhevsky
et al. (2012) has led to many improvements such as GoogLeNet Szegedy et al. (2015),
VGG-Net Simonyan and Zisserman (2015) and ResNet He et al. (2016) using RGB
images. The next step was to extend these methods to the spatio-temporal domain
for video classification. The main challenge in this task is to adapt existing works by
taking into account temporal features. However, a direct extension of these methods
to 2D+T presents some difficulties. The required memory space for training these
models is indeed far greater, necessitating a reduction of the batch size for training
neural networks. This leads to a greater computational time, especially if models
are trained from scratch. Therefore, the temporal dimension must be taken into
account carefully.

The state of the art method in action recognition from videos at the time when
this research started was the Two-Stream I3D method (Carreira and Zisserman,
2017), which reaches 98% and 93.5% of accuracy on UCF-101 dataset, respectively
with and without pretraining on the miniKinetics dataset (Kay et al., 2017). They
follow the architecture of the two stream networks (Simonyan and Zisserman, 2014)
but modify some of the convolutional layers with Inception modules along with
transfer learning. They proceed by classifying temporal sliding windows, which is a
common approach for action classification (Stoian et al., 2016). In their work, the
temporal window size is 64 frames which may not be long enough to classify long-
term actions. To overcome this limitation, Varol et al. (2018) use LTC considering
as input video clips of 100 frames which improves the recognition of long-lasting
actions. Temporal windows of 100 frames are used, at the expense of a less effective
recognition of short term actions. As pointed out in Varol et al. (2018), this might
be due to the repetition of the last frame to fill the required time window length.

Our proposed model was inspired by the method Varol et al. (2018), as we also
use a temporal window of T = 100 frames, but with a frame rate of 120 fps against
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2. Proposed Method

25 fps in UCF-101 dataset Soomro et al. (2012). The choice of this window length
is suitable, since actions in table tennis are fast executed and, by doing so, temporal
aliasing should be avoided.

Note that video-based monitoring of athletes’ performance is quite different from
measuring fine movement of sportsmen or sportswomen. For example, Ahmadi et al.
(2015) and Noiumkar and Tirakoat (2013) use body-worn inertial sensors. However,
the use of invasive tools for monitoring might influence the performances of athletes.
We recall that our goal is to develop a monitoring system based on vision only. This
is why in this chapter we present our work for stroke recognition on TTStroke-21
dataset using RGB data only. These results were partially published in our following
publications: Martin et al. (2018, 2019c, 2021b, 2020c). Our RGB Spatio Temporal
Convolutional Neural Network (RGB-STCNN) model reaches an accuracy of 89.8%
against 84.5% for the I3D-RGB model.

2 Proposed Method

To be able to classify highly similar actions, table tennis strokes in our case, a 3D
convolutional neural network model has been used to incorporate temporal features
along with spatial ones. In this chapter, the stroke is predicted from RGB video
frames only. The model is depicted in Figure 4.1 and is called RGB-STCNN.

Video Stream
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Figure 4.1 – RGB Spatio-Temporal Convolutional Neural Network - RGB-STCNN - archi-
tecture.

We address two problems: i) classification of actions, ii) detection by classifi-
cation. The classification problem (i) consists in assigning a label to a temporal
segment corresponding to a stroke with known temporal borders in a given video
recording. The detection by classification problem (ii) consists in labelling strokes
in the given video recording without knowing their temporal borders. In this case,
simultaneous partitioning of the recorded video into strokes is fulfilled. In both
tasks, temporal windows of several frames have to be classified. In one case, the
classification is done inside temporal borders. In the other case, a sliding temporal
window is classified at each given time. In both cases, a deep convolutional neural
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network classifier has been designed and its architecture is described in the following
sections.

2.1 Architecture of the RGB Spatio-Temporal Convolutional
Neural Network

Our proposed network architecture RGB-STCNN is constituted of three 3D convo-
lutional layers with 30, 60, 80 filter response maps, followed by two fully connected
layers of size 500 and 21 respectively. All 3D convolutional layers use (3 × 3 × 3)
space-time filters with stride and padding of one in all directions, “ReLU” activation
function and are followed by 3D Max Pooling layers using kernels of size (2× 2× 2)
and floor function. A Softmax layer is finally added at the end of our network to
obtain a classification score vector of size 21 which corresponds to the number of
considered classes. All layers are depicted in Figure 4.1.

2.2 Input Data

The RGB-STCNN takes as input RGB images (W ×H × T ). The extracted frames
from the video of size (1920 × 1080), are resized to (320 × 180) before feeding
them to the network. Optical flow is then computed from the resized frames using
“BeyondPixel” method (Liu, 2009), based on iterative re-weighted least square solver.
The flow is then filtered and used here only for computing the Region-of-Interest.
The detailed process for the flow computation is described in Chapter 5 where
different motion estimators are tested. Before feeding the network and after ROI
extraction and possible data augmentation, RGB channels are normalized by their
theoretical maximum value (i.e. 255 for 8-bit channel coding) to map them into
[0,1] interval.

Region-of-Interest Extraction

The ROI center Xroi = (xroi, yroi) is estimated from the maximum of the optical
flow V norm and the center of gravity of all pixels with non-null optical flow norm
as follows:

Xmax = (xmax, ymax) = argmax
x,y

(||V||1)

Xg = (xg, yg) =
1∑
δ(X)

X∈Ω

∑
Xδ(X)
X∈Ω

with δ(X) =

{
1 if ||V(X)||1 6= 0
0 otherwise

xroi = α fωx(xmax, W ) + (1− α) fωx(xg, W )

yroi = α fωy(ymax, H) + (1− α) fωy(xg, H)

(4.1)

Fine-Grained Action Detection and Classification from Videos with STCNNs.
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with parameters α = 0.6, set empirically, Ω = (ωx, ωy) = (320, 180) the size
of video frames. Function fω(u, S) = max(min(u, ω − S

2
), S

2
) allows to have data

inputted to our network within the boundaries of the region of interest. To avoid
jittering within our cuboids of size (W ×H × T ), we then applied a Gaussian filter
using a kernel of size ksize with scale parameter σblur = 0.3∗((ksize−1)∗0.5−1)+0.8
along the temporal dimension to average the center position. In our experiments the
optimal kernel size was established to 1

3
second which represents ksize= 41 frames at

120 fps.

2.3 Data Augmentation

For each stroke, we extract one video sample of size (W × H × T ). Without data
augmentation, the T frames from the video stream are centrally extracted in the
temporal and spatial dimensions according respectively to the duration of the stroke
∆t and our ROI extraction.

For spatial augmentation, we apply random rotation in the range ±10◦, a random
translation in x and y direction respectively in range ±0.1 ∗W and ±0.1 ∗H, and a
random homothety in the range 1± 0.1. Transformations are applied and centered
on the ROI.

To perform temporal augmentation, a clip of T successive frames is extracted,
whose center is drawn from a Gaussian distribution centered on the stroke. The
Gaussian distribution uses a standard deviation σ = ∆t−T

L
, with L = 6, which

represents more than 99% of chance to be in the temporal boundaries of the stroke.
This process is presented in Figure 4.2. However, if the frames are not in the
temporal boundaries, another random draw is done until the condition is satisfied.

Figure 4.2 – Representation of 7 draws of the same stroke using temporal augmentation.
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2.4 Training Step

Estimation of network parameters is fulfilled using Stochastic Gradient Descent
with Nesterov Momentum Sutskever et al. (2013). It is computed according to
equation 4.2:

vt+1 = µvt − lr
δL
δθt

θt+1 = θt − vt+1

(4.2)

with v0 initialized at zero, θ being parameters to be estimated, µ being the
momentum coefficient, lr the learning rate, and L the objective function commonly
called loss.

We use a momentum coefficient value of 0.5 and decrease it to 0.1 and 0.05 at
epoch 1000 and 1500 respectively, as the momentum methods are known to oscillate
at the beginning of the iterative process. We use a weight decay of 0.005. The
maximum number of epochs is set to 2000. Cross-entropy loss is used as objective
function. The batch size is relatively low for memory matter and is set to ten. The
number of negative samples is chosen twice bigger than the mean of the number of
strokes per class. The dataset is split into training, validation and testing sets with
the respective proportions: 70%, 20% and 10% as represented in Table 4.1, with
Train set denoted as “Tr” and Validation set denoted as “Val”.

We use data augmentation on our training set for all models and evaluate them
at each epoch with the accuracy on the validation dataset without augmentation.
Models with the best accuracy are saved for the next evaluations on the test set.

2.5 Evaluation Methods

Classification Task:

To compare the performances of our model in the classification task, we use
the RGB-I3D CNN introduced by Carreira and Zisserman (2017), which uses
inception_v1 architecture Szegedy et al. (2015), as our baseline and apply it to our
dataset following their instructions for training. Their model needs to be trained
with 115 000 iterations which represents 851 epochs in our case. In addition, the
learning rate is decreased, changing from 0.1 to 0.01 and 0.001 respectively at iter-
ations 97 000 and 108 000. Also, since our input data are twice smaller than theirs,
the first max pooling layer of the RGB-I3D model has been discarded.

For this task, the goal is to recognize the class of an already localized stroke.
To evaluate our models on the test set, four different methods have been used.
The first one, simply referred as “Test”, used also for the validation set, consists in
classifying strokes by considering only T frames temporally centered on each sample.
This method does not take into account the whole video segment duration and is
based on the hypothesis that the main features are centered in time. The three
other methods consider all frames of the given sample. For the those methods, we
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Table 4.1 – Datasets distribution over the different splits and strokes duration.

# Samples # Frames

Table tennis strokes Tr Val Test Sum Min Max Mean*

Serve Forehand Backspin 58 17 8 83 125 269 182± 35
Serve Forehand Loop 56 16 8 80 100 273 171± 51

Serve Forehand Sidespin 57 16 9 82 101 273 192± 39
Serve Forehand Topspin 67 19 9 95 100 273 184± 52
Serve Backhand Backspin 56 16 8 80 133 261 188± 31
Serve Backhand Loop 43 12 6 61 100 265 186± 42

Serve Backhand Sidespin 60 17 9 86 129 269 193± 33
Serve Backhand Topspin 57 16 8 81 100 273 175± 48

Off. Forehand Flip 31 9 5 45 113 269 186± 44
Off. Forehand Hit 45 13 6 64 100 233 158± 34
Off. Forehand Loop 23 7 3 33 101 277 177± 43
Off. Backhand Flip 25 7 3 35 100 265 195± 49
Off. Backhand Hit 28 8 4 40 100 173 134± 21
Off. Backhand Loop 21 6 3 30 100 229 155± 32

Def. Forehand Backspin 29 8 4 41 129 229 177± 25
Def. Forehand Block 8 2 2 12 100 137 115± 14
Def. Forehand Push 23 7 3 33 105 177 143± 19

Def. Backhand Backspin 22 6 3 31 121 233 189± 25
Def. Backhand Block 19 5 3 27 100 261 131± 37
Def. Backhand Push 6 2 1 9 121 229 155± 31
Non strokes samples 74 21 11 106 100 1255 246± 154

Total 808 230 116 1154 100 1255 182± 65

* in the form: mean value ± standard deviation
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classify a stroke using a temporal sliding window with a time step of δt = 0.1T
frames. Class scores for each window are then obtained. Our first method then
uses majority vote from the window decision to classify the whole segment and is
referred as “TVote”. Our second method uses the average score of the class scores
among all the windows scores and is referred as “TAvg”. Finally the last method
weights the class scores using a temporal Gaussian and is referred as “TGauss”. This
method uses a kernel size “ksize” of the number of windows with scale parameter
σ = 0.3 ∗ ((ksize− 1) ∗ 0.5− 1) + 0.8 which is the default parameter of the OpenCv
function used1. Performances for each method are shown in Table 4.2.

Detection by Classification:

The joint detection and classification in videos is done through the classification of
video segments using a sliding window of size T with step one. This process is long
and is performed only on our models. Hence we obtain a vector of probability scores
P of size Tvideo−T with Tvideo being the length of the video. To avoid border effects
when classifying the whole video, we extrapolate P by simple copy of the first and
last probability score respectively at the beginning and at the end of our probability
vector. Different decisions have been experimented to integrate classification results
along the time for smoothing the classification decision. The decision without tem-
poral smoothing is denoted as “Gross”. The majority vote and max average decision
- which average the probabilities over the classes - use a window decision of size
1.5T and are denoted as “Vote” and “Average”. Another decision is experimented
which weights the classification probabilities over time using a Gaussian kernel of
size 2T + 1 with scale parameter σ = 0.5T allowing greater consideration of close
window classification probabilities while smoothing the decision. This last decision
rule is denoted as “Gaussian”. Because the detection may not be exact in time ac-
cording to the crowdsourced annotations, the prediction is considered correct at the
boundaries of strokes if it is classified as negative stroke or as one of the stroke that
are overlapping. This overlap of label is set to 20% of the stroke duration. The
performances are shown in Table 4.3.

To evaluate the performances of our method for detection and classifications in
videos, we compare our predictions with the ground truth built from the crowd-
sourced annotations of TTStroke-21 dataset. Since the videos are limited in the
diversity of strokes, experiments for this task have been conducted with the whole
dataset which incorporates strokes and negative samples that were in the training,
validation and test sets.

1https://opencv.org/
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3. Experiments and Results

3 Experiments and Results

The deep learning models have been trained using PyTorch framework on Graphics
Processing Unit (GPU) NVIDIA Tesla P100. The size of the input data have been
set to (W×H×T ) = (120×120×100) which results after the three convolutions and
flattening process in a feature vector of size 216 000. T has been chosen with respect
to the rapidity of strokes and represents the minimum stroke duration: 0.83 second
as described in Chapter 3, section 4. We also made experiments by setting T = 64 to
keep the same temporal parameters used in Carreira and Zisserman (2017) for better
comparison with the baseline. W and H have been set according to the distance of
the players to the camera, and thus to their visual appearance size in the frames.

3.1 Pure Classification Task

Table 4.2 – Performance comparison between RGB-I3D (Carreira and Zisserman, 2017)
and RGB-STCNN (Ours).

Accuracies in %

Models T Train Val Test TVote TAvg TGauss

RGB-I3D 64 86 40 40.5 9.5 9.5 10.3
RGB-I3D 100 98.3 72.6 69.8 84.5 84.5 84.5

RGB-STCNN 64 68 64.8 66.1 62.7 61.9 65.3
Gray-STCNN 100 97.7 75.7 26.1 25.4 24.6 24.6
RGB-STCNN* 100 97.7 75.7 70.7 68.1 69.8 68.1
RGB-STCNN 100 96.7 88.7 89.8 67.6 74.6 70.3

* trained without data augmentation

It can be observed in Table 4.2 that our RGB-STCNN model outperforms the
RGB-I3D model Carreira and Zisserman (2017), both trained from scratch on
our dataset, using T = 64 and T = 100. The maximum accuracy obtained on
TTStroke-21 test set using RGB modalities is 89.8% with RGB-STCNN model us-
ing the “Test” evaluation method and 100 frames, against 84.5% with RGB-I3D
model Carreira and Zisserman (2017). The RGB-I3D model scores drops to 70.7%
when the same model is trained without data augmentation. The models using
only 64 frames fail to obtain good classification scores and in Varol et al. (2018) it
is proven that greater number of frames can improve classification scores for long
and similar actions referring to UCF101 dataset. However, in TTStroke-21 actions
are similar and temporally short but are recorded at 120 fps, leading to similar
challenges.

Figures 4.3 and 4.4 show the accuracy and loss curves of the RGB-I3D models
respectively with T = 64 and T = 100. The gap between the training and validation

94 Pierre-Etienne Martin
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Figure 4.3 – Training process of the RGB-I3D model with T = 64.

Figure 4.4 – Training process of the RGB-I3D model with T = 100.
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accuracy for the I3D model, especially visible when T = 64, starts since the begin-
ning of the training. A reason may be that this model is not meant to be trained
on datasets with low number of samples, leading then to overfit the training set and
fails to generalize the features extracted from the training set. The RGB-I3D model
is much deeper than our model and has been evaluated on bigger datasets such as
UCF101 and HMDB-51. Our dataset which focuses on low inter-classes classifica-
tion, is also in general more challenging than the datasets used in their experiments
and makes the task more difficult.

However the use of the temporal extension greatly increased the accuracy of the
RGB-I3D model, trained with 100 frames, from 69.8% to 84.5% but failed for the
model trained with T = 64 as reported in Table 4.2. The failure with the lower input
size can be explained by the non-relevant features extracted at the beginning and
the end of the stroke using a shorter temporal window. The temporal smoothing
will thus have the tendency to classify stroke samples as Negative samples. This
aspect is not observed on I3D-models certainly because of the greater receptive field
of their model coming from their deepness, allowing to better combine temporal
information.

Figure 4.5 – Training process of the RGB-STCNN model with T = 100.

In contrary, the RGB-STCNN validation and training curves stay quite close to
each other as presented in Figure 4.5. Surprisingly the prediction methods that took
into account the temporal classification of the samples did not improve the scores
and did even confuse the model (see Table 4.2). The discriminant features seem to
be well centered on the stroke and other features, on the temporal borders, are not
efficient.

Experiments using only gray scale images were also conducted to see how much
color contributes to the classification. The model is denoted as “Gray-STCNN” in
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the table. Hamel et al. (2016) present how much color is important to get the
saliency of an image. In our case, it seems similar since one can observe much lower
performances and difficulty for the model to converge. The parameters for training
the model might not be adapted for this modality, but it can also be explained by
the acquisition environment of our task. The table on which strokes are performed
is blue, the racket is sided with two distinguishable colors: black and red, and the
ball is either orange or white. By taking out the color information, those distin-
guishable colors will be similar to the background or the surroundings, and thus the
discriminating features extraction harder to perform, leading to slower convergence
and lower performance.

3.2 Analysis of Classification Results

To better understand the classification results of our RGB-STCNN model, we
present in Figure 4.6 the confusion matrix obtained with our model trained us-
ing T = 100 and evaluated with the “Test” method. As it can be seen, some classes
are entirely wrongly predicted. This is due to the lack of data in those classes in both
training and test set. As indicated in Table 4.1, the “Defensive Backhand Push”
class is poorly represented within the dataset. Moreover, since the annotations are
crowdsourced, some strokes might be wrongly labeled, leading to mislearned classes.
However the TTStroke-21 dataset has been cleaned and reviewed many times to
correct those mistakes.

We can also notice the limit of our RGB-STCNN model to predict the “Negative”,
non-stroke, classes. By visualizing the negative samples we actually notice that the
player often misses the ball or is in position to perform the stroke but cannot finish
it because the ball rebounds out of the table. The annotation is indeed correct since
no actual stroke is performed but may lead the model to misunderstand the player
intention. It does also explain the limits of the prediction methods to take into
account the whole temporal information of the sample: features extracted at the
border of the stroke are similar to the features of negative samples described earlier
and lead the model to classify actual stroke as “Negative”. This point is illustrated
in Figure 4.7 showing the confusion matrix using the “TAvg” method for the same
RGB-STCNN model.

3.3 Joint Stroke Detection and Classification Task

Joint stroke detection has been carried out with the RGB-STCNN model trained
with and without data augmentation. When taking into account all labels (includ-
ing negative ones), a maximum of 80.9% of accuracy is reached for detection and
classification task using the average smoothing method and data augmentation (Ta-
ble 4.3). We can notice how the temporal smoothing methods improves greatly the
results. This underlines the instability of the scores obtained along the temporal
dimension for this particular model.
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Figure 4.6 – Confusion Matrix of the RGB-STCNN model using “Test” method with T =
100.
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Figure 4.7 – Confusion Matrix of the RGB-STCNN model using “Avg” method with T =
100.
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Table 4.3 – Performance of stroke detection and classification.

Accuracies in %

Models Gross Vote Average Gaussian

RGB-STCNN* 57.2 80 80.9 80.7

RGB-STCNN 57 80.1 80.8 80.2

without taking into account negative labels
RGB-STCNN* 52.3 64.3 64.7 67.9

RGB-STCNN 41.5 44.8 46.2 49.1

* trained without data augmentation

A video can be mostly constituted of negative samples, which can make our per-
formance evaluation biased. In Table 4.3 we also report results obtained without
counting the “Negative” labels. Their overlaps with other strokes is also not consid-
ered which makes the evaluation method much more discriminant. Therefore we get
much lower scores with a maximum accuracy of 67.9% using the Gaussian filtering
method for the model trained without data augmentation. In this case, the data
augmentation does not seem to be useful. Indeed, by taking out the negative por-
tions and their overlaps with the strokes, it results in classification of well centered
strokes. It thus makes sense that the RGB-STCNN trained without augmentation,
which has been trained without temporal augmentation with RGB data centered on
the strokes, obtains better results.

4 Conclusion

The goal of the presented of work is the challenging task of recognition of sport
actions with weak inter-class variability in videos. To that aim, we have proposed
an approach based on RGB data extracted from the video stream fed to a 3D Spatio-
temporal Convolutional neural network - RGB-STCNN. The results are compared
with a deeper neural network RGB-I3D (Carreira and Zisserman, 2017).

The superiority of our model on the classification task could be explained by the
architecture of the I3D model which is too deep to be trained on our dataset, leading
therefore to overfitting. Our model reaches the best accuracy with 89.8% on the test
set and shows limits when using the negative labels. Despite its efficiency on the
classification task, results are more questionable on the detection and classification
task. Indeed the accuracy on this task reaches a maximum accuracy of 80.9% on
the whole dataset which might look like a good performance. However when we
do not consider non stroke parts of the videos, which are numerous, we reach only
67.9% of accuracy which enlightens the limits of our model. Better handling motion
information using the optical flow is the core of the following chapter.
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Chapter 5

Efficient Use of Optical Flow for Ac-
tion Recognition

1 Introduction

Detecting and classifying human actions in videos is one of the current challenges
in visual content analysis and mining. As drawn in the previous chapter, the use
of RGB data only may not be enough to allow efficient detection and classifica-
tion of actions in videos. In this chapter, we present a method for performing a
fine-grained classification of sport actions with a Spatio-Temporal Convolutional
Neural Network using optical flow data: Flow-STCNN. We compare different Optical
flow methods and study their influence on the classification score. We also present
different normalization methods of the optical flow that drastically impact results,
boosting accuracy from 44% to 74.1% using the same number of iterations.

Motion information is obviously a crucial clue for recognizing actions in general
and especially fine-grained ones (Shao et al., 2020). Table tennis strokes fall in this
category and motivated our research using only motion information. Review of the
state-of-the art shows that spatial features from RGB images are also needed to
attain a reasonable accuracy for action classification, be it in sport (Varol et al.,
2018) or in specific cultural content (Stoian et al., 2016). Static information mostly
captures background characteristics of the action. Hence, it seems necessary to use
both static data and temporal information. To efficiently fuse data of limited spatial
extend with variable motion magnitude, an adequate normalization of motion has
to be done. Accordingly, we compare different OF estimation methods and their
normalization, and how they influence the training of our Flow Spatio Temporal
Convolutional Neural Network (Flow-STCNN). Similarly to Chapter 4, we perform
two tasks: classification only, and joint detection and classification. This chapter is
related to some extent to our following publications: Martin et al. (2019d, 2021b,
2020c, 2019b).

The remainder of this chapter is organized as follows: Section 2 focuses on the
comparison of different normalization of OF methods on the Sintel benchmark (But-
ler et al., 2012), and how they can be useful in our fine-grained classification con-
text. Section 3 presents our Flow-STCNN model, the processing of the OF data
before feeding the model and the classification methods. Results and performance
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assessment for classification and joint classification and detection are presented in
Section 4. Conclusion and prospects are drawn in Section 5.

2 Choice of the Optical Flow Estimator and Nor-
malization

Optical flow estimation is of primarily importance in the analysis of spatio-temporal
actions (Efros et al., 2003; Ng et al., 2018) and is often refereed as the dynamic
or temporal stream in action recognition (Feichtenhofer et al., 2016; Simonyan and
Zisserman, 2014). Indeed it encodes the temporal information of images based on
the derivation of the intensity. Optical Flow is based on the constant brightness
hypothesis of the images in video for each pixel over time (Horn and Schunck, 1981)
and can be expressed such as:

I(x, y, t) = I(x+ dx, y + dy, t+ dt) (5.1)

with I the image, x and y the horizontal and vertical position of the pixel, t
it position in time and dx, dy, and dt its displacement respectively in horizontal,
vertical and temporal plan. High frame rate of videos allow us to consider that the
displacements are small and by using Taylor series expansion to the first order we
obtain:

I(x+ dx, y + dy, t+ dt) = I(x, y, t) +
δI

δx
dx+

δI

δy
dy +

δI

δt
dt (5.2)

And by joining equations 5.1 and 5.2 we can simplify the expression as following:

δI

δx
dx+

δI

δy
dy +

δI

δt
dt = 0 (5.3)

Then, by dividing the equation 5.3 by dt, we can rewrite the expression and
obtain velocities in x and y direction such as:

δI

δx

dx

dt
+
δI

δy

dy

dt
+
δI

δt
= 0

Ixvx + Iyδyvy + It = 0

(5.4)

with vx =
dx

dt
and vy =

dy

dt
being respectively the velocity in x and y direction

and are the components of the OF vector, and Ix =
δI

δx
, Iy =

δI

δy
and

δI

δt
being the

derivative components of the intensity. Finally we have:

Ixvx + Iyvy = −It
OI · V = −It

(5.5)
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with OI = (Ix, Iy) the spatial gradient of the intensity and V = (vx, vy)
T the

optical flow vector.

2.1 Selection of the Optical Flow Estimator

We consider thereafter the following OF methods : Farneback (Farnebäck, 2003),
Beyond Pixel (BP) (Liu, 2009), Dense Inverse Search (DIS) (Kroeger et al., 2016),
TVL1 (Zach et al., 2007) and DeepFlow (Weinzaepfel et al., 2013). The quality of
each method is evaluated with usual metrics such as Mean Squared Error (MSE)
after motion compensation, also called interpolation error (Baker et al., 2011). This
metric is based on the equation 5.1, stating that the image at t + 1 can be re-
constructed using image at t. This reconstructed image is called the compensated
image and is a registration of the image at t using the motion vectors between the
two images at t and t+1. Therefore, the MSE of motion compensation computation
follows the equation:

MSE =

WI−kW−1∑
x=kW

HI−kH−1∑
y=kH

(I(x, y, t+ 1)− I(x+ vxx,y , y + vyx,y , t))
2

(WI − 2kW ) ∗ (HI − 2kH)

=

∑
p∈Ω

(I(p)− IC(p))2

NΩ

(5.6)

with I and IC the image and its compensated image of size (WI×HI), p the pixel
defined in space Ω: [kW ,W−kW−1]×[kH , H−kH−1] with kW and kH are arbitrary
set to 20 pixels to avoid borders effects when doing the warping. kW and kH could
also be set according to the size of the image and/or the motion amplitude but the
results order of magnitude and ranking of the estimators were not impacted when
we tested them with different values. V = (vx, vy)

T being the computed optical flow,
which has the same size of the image.

The popular Sintel benchmark introduced by Butler et al. (2012) is used. This
dataset of synthetic videos has available reference optical flows, with some sequences
containing strong aliasing effects and random texture. Bigger datasets exist in order
to train models to predict OF (Mayer et al., 2016) such as FlowNet2 (Ilg et al., 2017).
Since we are only interested in selecting the OF method, the Sintel benchmark is
sufficient. The availability of the optical flow ground truth allows us to measure
the efficiency of motion estimation methods in terms of angular error (AE) (Barron
et al., 1994) and end-point error (EPE) (Otte and Nagel, 1994). These measures
can be written in matrix form in equations 5.7 and 5.8 along with their respective
average value average AE (aAE) and average EPE (aEPE):
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AE = cos−1(
ε+ v∗x � vx + v∗y � vy√

ε+ v∗2x + v∗2y +
√
ε+ v2

x + v2
y

)

aAE =

WI−1∑
x=0

HI−1∑
y=0

AEx,y√
WI ∗HI

(5.7)

with � being the Hadamard product or element-wise product.

EPE = ‖V ∗ − V ‖2

=
√

(v∗x − vx)2 + (v∗y − vy)2

aEPE =

WI−1∑
x=0

HI−1∑
y=0

EPEx,y

WI ∗HI

(5.8)

The metrics: aAE and aEPE are averaged for each frame, like the MSE metric,
and are computed for the whole Sintel Benchmark dataset. To assess the quality of
motion estimation in our context, we compute the MSE on a “difficult” sequence from
TTStroke-21, which is a strong-motion sequence: an Offensive Forehand Hit stroke
lasting 240 frames, and is incorporated in Table 5.1. Computation time, denoted
as “Time”, is measured on the Offensive Forehand Hit video segment, meaning 240
frames of size (320× 180), using one thread on Intel(R) Xeon(R) Gold 5118 Central
Processing Unit (CPU) @ 2.30GHz. All the metrics introduced are presented as their
average over the whole dataset that we therefore denote average MSE (aMSE), av-
erage aAE (aaAE) and average aEPE (aaEPE), in Table 5.1 for each OF estimation
method.

It is well-known that OF methods may have difficulties on flat areas (aperture
problem) and can give noisy results on highly contrasted borders due to aliasing
effects. A smaller MSE thus does not automatically yield better optical flow estima-
tion. As several kinds of assessment are necessary, different normalization methods
are considered for different computed OF to be used for classification.

Performances of the OF estimator with respect to different metrics are shown in
Table 5.1. It can be observed that the BP method (Liu, 2009) does not perform well
on Sintel Benchmark as it is very sensitive to random textures. When considering
the Offensive Forehand Hit stroke sequence and the aMSE metrics, the best method
is DIS estimator with spatial propagation and preset parameters (denoted “Medium”
in OpenCV). DIS method aimed at reducing time complexity but still yields compet-
itive accuracy. However, aMSE is not a good metric for evaluating an OF estimator
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Table 5.1 – Optical Flow methods comparison.

Sintel Benchmark Offensive Forehand Hit
aaEPE aaAE aMSE aMSE Time in s

Frame Diff - - 872.2± 1017.3 33.2± 12.1 -
Ground Truth - - 407.7± 778.4 - -
Farneback 10.76± 18.15 .694± .328 364.9± 771.6 20.9± 7.83 26.63

BP 6.44± 13.39 .42± .27 316.5± 628.2 20.3± 3.91 617.09
DeepFlow 6.81± 15.27 .374± .259 384± 807.6 24.1± 5.78 262.74
DeepFlow

with matches 2.64±5.65 .299±.183 347.9± 711.2 24.9± 5.18 494.84

TVL1 9.26± 17.03 .535± .317 423.3± 752.6 20.4± 4.08 617.9
DIS Medium 5.46± 10.88 .461± .287 289.7±539.6 20.1± 3.92 22.72
DIS Medium† 4.82± 11.39 .438± .261 318.1± 670.2 19.8±4.61 22.69
DIS Medium* 4.83± 9.80 .429± .265 296.9± 559.2 20± 3.89 22.41
DIS Medium†* 4.83± 9.80 .429± 2.65 296.9± 559.2 20± 3.89 22.19

DIS Fast 6± 11.5 .515± .307 298.6± 526.1 24.2± 5.72 10.33
DIS Fast† 5.29± 11.13 .492± .279 312.2± 605.5 23.8± 5.57 10.29
DIS Fast* 5.15± 9.84 .482± .281 295.5± 523 24± 5.63 10.55
DIS Fast†* 4.94± 11.93 .481± .273 320.9± 655 23.8± 5.57 10.70

DIS Ultrafast 7.08± 13.05 .574± .315 307.8± 536 23.4± 5.58 1.45
DIS Ultrafast† 5.59± 10.91 .528± .28 314.3± 601 22.9± 5.31 1.58
DIS Ultrafast* 5.91± 10.95 .529± .287 296.7± 513.1 23± 5.37 1.72
DIS Ultrafast†* 5.16± 11.23 .513± .27 323.3± 653.5 22.8± 5.21 1.87

* : with Temporal propagation † : with Spatial propagation
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due to aliasing and texture effects, occlusions and illumination variations. Indeed,
if the texture changes suddenly, or an occlusion appears, even with an accurate
motion, the compensated image will be still much different from the image desired.
Hence aMSE value on Sintel Benchmark computed with available ground truth OF
is higher than that one supplied by the most of OF estimators. Its standard devia-
tion is also very high showing the complexity of the Sintel dataset and limitation of
aMSE metric. According to average angular and average end-point errors, the best
estimator is DeepFlow, a variational approach for optical flow estimation, combined
with matching algorithm (Weinzaepfel et al., 2013). As illustrated in Figure 5.1,
DeepFlow method does not generate false movements on flat regions contrary to
DIS Medium estimator with spatial propagation which performs the best with re-
spect to MSE. Computation time is hundred times faster with DIS estimator than
with DeepFLow or BP estimators. However, computation time is not here a crucial
issue, because we are not interested in online predictions but in obtaining a good
OF for fine-grained classification. Hence, we will focus in this chapter on DeepFlow
OF estimator, which seems to predict accurate motion, and BP OF estimator as BP
method was the reference used within our research team.

a. RGB b. DIS

c. DeepFlow d. BP

Figure 5.1 – Optical Flow estimators comparison. The OF values are visualized by con-
verting V = (vx, vy)

T into an image in the color domain HSL where the Hue represents the
polar angle of V, the Saturation is set to one and the Lightness represents the amplitude
of the motion.

108 Pierre-Etienne Martin



5. Efficient Use of Optical Flow for Action Recognition

Table 5.2 – Execution time when loading 1000 optical flow frames using several formats.

Extension Files Precision size in MB load time in s.
.png Boutell (1997) 2000 int16 93.5 3.22

.flo Baker et al. (2011) 1000 float32 461 .422

.npy Kern (2007) 1000 int16 231 .655

.npy Kern (2007) 1000 float32 461 .317
.npz SciPy community (2008) 1 float32 159 2.71

2.2 Storing the Computed Optical Flow

We also compared different methods for storing the optical flow in order to limit
the disk usage and to have fast load of the data when we perform online data
augmentation. In Table 5.2, we compare different formats according to different
criteria (number of files, precision, size and loading time). The experiment was
done with an Intel(R) Core(TM) i7-3630QM CPU @ 2.40GHz using one thread,
and for 1000 optical flow frames. Once load, optical flow data are reshaped to get
an array with direction components as channels.

The png format (Portable Network Graphics) (Boutell, 1997), allows to save gray
scale images at 16 bits. We use this method to save each direction component of
the optical flow V = (vx, vy)

T with vx the horizontal movement and vy the vertical
movement. The values are shift and scaled before saving and need to be retrans-
formed when loaded. Therefore we have two png files with very low usage disk space
for each frame.

The flo format (Baker et al., 2011) stores 2-band float image for horizontal
and vertical flow components for each frame and is commonly used for optical flow
dataset. (Butler et al., 2012).

The npy format (Kern, 2007) is the standard binary file format in NumPy. It
stores the shape of the array and the type of data. We tried using 16 bits integer
and 32 bits float. In the 16 bits, values, similarly to png, are shift and scaled when
saved - and are retransformed when loaded. This format type is similar toflo and
is designed to be simple and portable.

The npz format is the standard format for multiple NumPy arrays. It is a zip
file containing multiple .npy files. The gain in memory is interesting but loading
time is increased.

The trade-off between disk space usage and loading time is different according
to the type of applications. In our case, we are interested in training models with
online data augmentation, which means data needs to be loaded several times. We
thus decided to use the npy format which is the fastest but also the simplest method.
As most of our codes use the NumPy library, NumPy arrays can be easily handled
when doing online data augmentation.

Fine-Grained Action Detection and Classification from Videos with STCNNs.
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3 Proposed Method for Action Classification

Our goal is to classify actions of a single table tennis player performing a series of
strokes in training and match context. To limit computation cost, full HD video
frames are resized to 320 × 180 pixels and OF is computed offline. A spatial ROI
of size (W × H) is then extracted based on the foreground (Zivkovic and van der
Heijden, 2006) OF values but using dilation of a mask and smoothed OF values.
Our model is feed with 3D tensors of the same size (W × H × T ) than the OF.
The model is tested for classification and joint detection and classification on the
TTStroke-21 dataset.

Optical Flow Filtering

Due to flickering caused by artificial light during recording sessions in sport halls,
some artifacts appear on the computed OF. Those artefacts are visible in Figure 5.1,
especially with the DIS and BP estimators, and on the OF magnitude in Figure 5.2.
We tried to normalize the histogram but results were not relevant. We believed
flickering could also be learned by the model but early results on non filtered OF
were unsatisfying. To cope with that, only Regions-of-Interest (ROIs) were kept,
using the Hadamard product between the foreground extracted with the method of
Zivkovic and van der Heijden (2006) and the computed optical flow. After this step,
parts of the OF which are not considered as background are kept. They mainly
correspond to the rackets and body parts of the player which are in motion. Such
method has also been applied by Chen et al. (2018b) but on RGB data for person
search. The estimated foreground and the filtered OF magnitude are presented in
Figure 5.2.

The foreground is not perfectly estimated still since the arm, even in motion, as
color values similar to the floor, and is considered as shadows. Attempt to consider
person segmentation with pretrained model on images (He et al., 2020a) were done
but results were not very robust, since the temporal information was not used. New
models trained on videos and more efficient were introduced very recently, but have
not been tested yet to filter foreground motion.

Region-of-Interest Extraction

The ROI is estimated using the optical flow values as presented in Chapter 4, Sec-
tion 2.2. The ROI center Xroi = (xroi, yroi) is estimated from the maximum of the
optical flow norm and the center of gravity of all pixels with non-null optical flow
norm as follows:
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a. RGB image b. OF magnitude

c. Estimated foreground d. OF magnitude after filtering

Figure 5.2 – Optical Flow filtering.

Xmax = (xmax, ymax) = argmax
x,y

(||V||1)

Xg = (xg, yg) = 1∑
δ(X)

X∈Ω

∑
Xδ(X)
X∈Ω

with δ(X) =

{
1 if ||V(X)||1 6= 0
0 otherwise

xroi = α fωx(xmax, W ) + (1− α) fωx(xg, W )

yroi = α fωy(ymax, H) + (1− α) fωy(xg, H)

(5.9)

with parameters α = 0.6, Ω = (ωx, ωy) = (320, 180) being the size of video
frames. Function fω(u, S) = max(min(u, ω − S

2
), S

2
) allows to have data inputted

to our network within the boundaries of the region of interest. To avoid jittering
within our cuboids of size (W × H × T ), we also apply a Gaussian filter using a
kernel of size ksize with scale parameter σblur = 0.3∗ ((ksize−1)∗0.5−1) + 0.8 along
the temporal dimension to average the center position.

3.1 Normalization

For normalizing the estimated motion V = (vx, vy)
T , different approaches are possi-

ble. Four methods have been tested: the first one is to normalize each component of
V by its maximum absolute value over the whole dataset. We reference this method
as “MAX”. The second method is to normalize each component of V by the mean µ
and the standard deviation σ of the distribution over the whole dataset of frame
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maximum absolute values. We reference this method as “NORMAL” and the operation
is described in equation 5.10. In the two following equations v and vN represent
respectively one component of the OF V and its normalization.

v′ =
v

µ+ 3× σ

vN(i, j) =

{
v′(i, j) if |v′(i, j)| < 1

SIGN(v′(i, j)) otherwise.

(5.10)

The third method, denoted “LOGMAX”, is similar to the MAX normalization method.
We use the same concept but using the absolutes log values of the OF shifted to
one. The log values are then remapped according to their initial sign.

The fourth and last method that we reference as “LOGNORMAL”, is similar to
the NORMAL normalization. But as the previous method, we use the logarithm of
the distribution over the whole dataset of frame maximum absolute values of a
component on the log values shifted and resigned. The normalization is detailed in
equation 5.11.

vlog = log(|v|+ 1)

v′ =
vlog − (µlog − 3× σlog)

6× σlog

vn(i, j) =


0 if v′(i, j) ≤ 0

SIGN(v(i, j))× v′(i, j) if 0 < v′(i, j) < 1

SIGN(v(i, j)) otherwise.

(5.11)

Obviously, the MAX method strongly reduces the magnitude of most motion vec-
tors. However the NORMAL normalization method increases the magnitude of most
vectors, while LOGMAX and LOGNORMAL should flatten the values distribution. The
distribution of the maximum absolute motion values in each direction of BP and
DeepFlow estimators, which are going to be used for classification in this chapter,
and their logarithmic shifted to one are presented in Figure 5.3. We can notice how
the shapes of the distributions are different depending on the two estimators.

A polar representation of the OF is also possible. The motion is then encoded
through the amplitude of the motion and its direction (angle according to the vertical
axis). Such representation may lead to interesting statistical structures as presented
by Adato et al. (2011). However, after having performed tests using such represen-
tation by normalizing the amplitude with similar method than MAX and NORMAL, it
led to lower classification scores and no further investigation was conducted.

3.2 Architecture of the Flow Spatio-Temporal Convolutional
Neural Network

The Flow-STCNN architecture presented in Figure 5.4 is very similar to the RGB-
STCNN presented previously. It is constituted of an individual branch of three
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a. BP estimator values b. BP estimator logarithmic scalees

c. DeepFlow estimator values d. DeepFlow estimator logarithmic scales

Figure 5.3 – Optical Flow maximum absolute values distribution.
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Figure 5.4 – The Flow-STCNN architecture.
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3D convolutional layers with 30, 60, 80 filter response maps, followed by a fully
connected layer of size 500. The branch takes the preliminary estimated OF as
3D tensor of size (W ×H × T ) with two channels encoding horizontal and vertical
motion vx, vy. The 3D convolutional layers use 3 × 3 × 3 space-time filters with
a dense stride and padding set to one in each direction. The extracted features of
size 500 are processed through a last fully connected layer of size 21 followed by a
Softmax function for computing a classification score.

3.3 Model Training

The Flow-STCNN model is trained the same way than the RGB-STCNN . It uses the
popular stochastic gradient descent optimization method with Nesterov momentum
(Nesterov, 2004). We chose a constant learning rate of 0.01 for training the model.
The other parameters are momentum of 0.5 which is decrease to 0.1 at epoch 1000,
weight decays of 0.005, and a batch size of ten. Since we had to test different
flow estimation methods and different normalization methods, we set the number of
epochs to 500 when comparing the different methods and increased this number to
1500 for the best combination.

3.4 Performance Evaluation

Classification Task

To compare the performances of our model in the classification task, we use the
Flow-I3D CNN introduced by Carreira and Zisserman (2017) as baseline. It is the
same baseline than used in Chapter 4 with the RGB-STCNN model but using the
Optical Flow data. It also uses inception_v1 architecture (Szegedy et al., 2015),
which is applied to our dataset following their instructions for training. Their model
needs to be trained with more iterations than the RGB-I3D: 155 000 iterations are
needed (against 115 000) which represents 1148 epochs with our training set from
TTStroke-21. In addition, the learning rate is scheduled, changing from 0.1 to 0.01
and 0.001 respectively at iterations 97 000 and 108 000, and again to 0.01 and 0.001
respectively at iterations 140 000 and 150 000. The authors noticed that their Flow
models required more training after an initial run of 115k iterations. Since our input
data are twice smaller than theirs, the first max-pooling layer of the Flow-I3D model
is discarded.

For this task, the goal is to recognize the class of an already localized stroke. To
evaluate our models on the test set we use the same four different rules presented
in Chapter 4, Section 2.5: “Test”, ‘TVote”, “TAvg” and “TGauss”.

Detection by Classification

The joint detection and classification in videos is done through the classification
of segments of video using a sliding window of size T with step one. This process
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is long and is performed only on our models performing well on the classification
only task. The same method and rules as in Chapter 4, Section 2.5 are used for
evaluating the performances: “Gross”, “Vote”, “Average” and “Gaussian”.

To evaluate the performances of our method for detection and classifications in
videos, we compare our predictions with the ground truth built from the crowd-
sourced annotations of TTStroke-21 dataset. Since the videos are limited in the
diversity of strokes, experiments for this task have been conducted with the whole
dataset which incorporates strokes and negative samples that were in the training,
validation and test sets.

3.5 Data Augmentation

Data augmentation is a necessary step for training DNNs, particularly for fine-
grained classification where data are more difficult to get. As for the RGB-STCNN,
it is performed on the fly to save storage space. For spatial augmentation we apply
random rotation with angle θ in the range ±10◦, a random translation (tx, ty) in
the range ±0.1 in x and y directions, and a random homothety k in range 1 ± 0.1
on OF data V . For the latter, rotation needs special care for Flow data and is
performed such as V = R(θ) ∗ V with R(θ) being the rotation matrix of angle
θ. Transformations are applied with respect to the center of the ROI. Finally we
perform horizontal flip with probability of 0.5. Note that the flip on optical flow
means also changing the sign of vx.

4 Experiments and Results

Experiments are performed on the same splits of TTStroke-21 (Chapter 4, Sec-
tion 4.1). T is set to 100 frames, which represents 0.83 seconds at 120 fps. Our
model is then fed with cuboids OF data of size (W ×H × T ) = (120× 120× 100).
Different normalization methods are tested and models are trained longer for the
classification and joint classification and detection tasks.

4.1 Influence of Normalization Method on Classification

Table 5.3 shows the performances of the Flow-STCNN classifier trained with 500
epochs using BP and DeepFlow OF estimators with the four normalization methods
presented earlier. It is a pure classification task, as temporal borders of each action
are known.

From the table, we can observe that the best performances are obtained using
the NORMAL method with BP flow estimator. As explained in Section 3.1, the NORMAL
method spreads the low values but does not concentrated them as the logarithmic
scaling does. It is also a way to get rid of the noise from the OF computation which
leads to very high values and makes the MAX method less efficient. Corresponding
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Table 5.3 – Performances of the Optical Flow normalization methods.

Accuracies in %
Normalization Train Val Test TVote TAvg TGauss

BP
MAX 53.5 44.4 43.1 44 44 44.7

NORMAL 88.5 73.5 69.8 72.4 74.1 73.3

LOGMAX 50.3 50 50 50 51.7 46.6

LOGNORMAL 97.8 75.7 65.5 66.4 68.1 68.1
DeepFlow

MAX 38.5 36.5 25 28.5 27.6 28.5

NORMAL 34 35.7 25.9 25.9 26.7 26.7

LOGMAX 49.5 48.3 43.1 37.9 39.7 40.5

LOGNORMAL 45.3 37 35.3 40.5 41.4 41.4

histograms of initial vx, vy values computed using BP method after filtering are
presented in Figure 5.5 with NORMAL normalization (b) and LOGMAX normalization
(c). As we can see, the flow values distribution with the LOGMAX normalization
method is much more distributed than with the NORMAL normalization method. We
might think it thus should lead to better performances but it actually gives more
weight to regions that are not needed for classification. Experiments without filtering
process were also conducted but led to lower performances.

However our model trained with OF from DeepFlow estimator did not perform
well. This actually can be explained by looking at the maximum value distribution of
the method, Figure 5.3. We can notice how much the maximum values are more con-
centrated on the lowest range, even using logarithmic transformation. Furthermore,
by looking back at the Figure 5.1, we can notice how DeepFlow is much smoother
compared to BP. The visual result may seem correct, and the evaluation metrics
too, but it actually leads to misdetect movements on little objects moving fast such
as the ball while BP captures it. We thought that DeepFlow would have been a good
estimator for classification according to the evaluation metrics presented in Section 2
but fast movement on little objects, such as the ball or racket, did not increase much
the evaluation metrics but are fundamental for our fine-grained classification task.

The gap between the classification score across normalization method and flow
estimator underlines the importance of the choices made when deciding which modal-
ity to use and how to process it. Even when training with a greater number of epochs,
we observed that NORMAL normalization performs the best. According to these re-
sults we decided to use the NORMAL normalization method with BP OF estimator for
the next trainings.
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a. RGB image

b. BP OF with NORMAL method c. BP OF with LOGMAX method

Figure 5.5 – Different OF normalization and their histogram.
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4.2 Pure Classification Task

The results for the pure classification task are depicted in Table 5.4. The models
were trained using T = 100 as we have done previously. Models using only 64 frames
were not convincing.

Table 5.4 – Performance comparison between Flow-I3D (Carreira and Zisserman, 2017)
and Flow-STCNN (Ours) on pure classification task.

Accuracies in %

Models Train Val Test TVote TAvg TGauss

Flow-I3D 98.8 74.8 73.3 82.8 82.8 82.8

Flow-STCNN* 91 78.7 67.2 71.6 70.7 70.7
Flow-STCNN 97.5 79.6 75.9 80.2 80.2 78.5

* trained without data augmentation

The use of data augmentation improves the accuracy of our Flow-STCNN model
from 71.6% to 80.2% with “TVote” and “TAvg” evaluation methods. Convergence of
our model is presented in Figure 5.6. Best model is saved at epoch 1 449 when its
validation is the best. No strong overfitting is observed compared to our baselines
convergences which is presented in Figure 5.7.

Figure 5.6 – Training process of the Flow-STCNN model with T = 100.

The different normalization methods did not have any impact on our baseline
and here we show performances using the MAX normalization for the Flow-I3D model.
This behavior can be explained by the use of batch normalization in their network
after each inception_v1 modules (Szegedy et al., 2015) and the deepness of their
network. Indeed it uses nine inception modules and four additional convolutional
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Figure 5.7 – Training process of the Flow-I3D model with T = 100.

layers against three convolutional layers for us. Their network, because of its com-
plexity, might not need to pre-process the OF data before extracting features. In
addition, their model beats ours to 2.6% in term of classification accuracy when
using the temporal methods for classifying the video samples (“TVote”, “TAvg” and
“TGauss” method). However if we consider only center features (“Test” method) our
model outperform theirs by also 2.6%.

As seen in Chapter 4 with the RGB-I3D model, the convergence is similar. Note
that the training is longer when using the OF modalities as described in Section 3.3.

In Figure 5.7 we can observe a gap between the curves of the validation and train
sets which let suggest an overfitting from the I3D model. Despite its better perfor-
mances on the classification task, the curves of the Flow-STCNN model, Figure 5.6,
shows a tinier gap between the validation and training curves.

4.3 Joint Stroke Detection and Classification Task

Same method is used that in Chapter 4 for evaluating the detection and classification
task. Experiments have been conducted with the whole dataset which incorporates
strokes and negative samples in the training, validation and test sets. Each model
classifies the entire video with a temporal sliding window T = 100 frames with step
one. Majority vote and average probability method use a sliding decision window
WD = 1.5T = 150 also with step one. For the decision rule based on a Gaussian
filter, a kernel of size 2T + 1 = 201 and a scale parameter σ = 0.5T = 50 were
used. As the detection may not be always precise in time because of errors in the
crowdsourced annotations, a prediction is considered correct at the boundaries of
actions (between two classes) if one of these classes is found. The maximum possible
class overlap is set to 20% of the current stroke duration. Results are shown in
Table 5.5 for our Flow-STCNN.
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Table 5.5 – Performance of stroke detection and classification.

Accuracies in %

Models Gross Vote Average Gaussian

Flow-STCNN* 68.3 77.4 78.1 77.9

Flow-STCNN 70.3 80.5 80.9 81

without taking into account negative labels
Flow-STCNN* 44.9 48.3 49.2 52.8

Flow-STCNN 50.4 55.4 59.2 62.4

* trained without data augmentation

The table shows the performance with and without using the data augmentation
with and without considering the negative samples. As specified in the last chapter,
the video may be mainly composed of negative samples, when players take a break
or when they miss a ball, which motivates this analyse separation. Unlike the RGB-
STCNN, the Flow-STCNN with data augmentation obtains better performances in
both cases using the “Average” and “Gaussian” methods. Difference comes certainly
from the type of data modality we are working with. Indeed the ball on RGB data
might be not be totally visible since its color can be similar to the background.
Hence, features coming from this source are less considered, especially when using
data augmentation since the ball will even be less present. While when using optical
flow with BP estimator, the ball is well detected and is characterized by higher
values spatially and temporally in the tensor. Therefore strokes should be well
detected with or without data augmentation. Hence, better classification of the
stroke will then depend on features extracted before and after impact on the racket.
Such features are more processed with the Flow-STCNN when trained using data
augmentation explaining this behaviour. Also, this ability to capture better the
features coming from the ball, and thus better classify the non-stroke segment,
explains the slightly better performance of the Flow-STCNN (81%) compared with
RGB-STCNN (80.9%) when negative samples are considered.

Also the drop of performance when not considering the negative labels is higher
than with the RGB-STCNN model. It can be easily explained by the ability of
the Flow-STCNN to well classify negative samples using the OF data, since motion
is less prominent in this class compared to strokes samples. Which leads us to
the conclusion that RGB and OF modalities should be used together to improve
performances.
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5 Conclusion

This chapter deals with fine-grained action recognition applied to table tennis. We
apply our method on the TTStroke-21 dataset using only estimated motion from
the video stream. We have compared several optical flow methods in terms of aMSE,
aAE and aEPE metrics for selecting the optimal one as input data of our Spatio-
Temporal CNN - Flow-STCNN. We have proposed four normalization schemes and
studied their influence with respect to the classification accuracy. Our choices led
to an accuracy of 80.2% with models trained in a reasonable number of epochs.
However our baseline, Carreira and Zisserman (2017), reaches a better accuracy:
82.8%. Nonetheless, our model performs the best when we consider only centered
features. We also showed that for both pure classification, and classification and
detection tasks, proposed data augmentation led to better scores. In addition, we
believe that results can be improved by fusing the methods developed in Chapter 4.
In the next chapter, we present our work on how to fuse RGB and OF modalities, and
the work carried out in those two last chapters, for fine-grained action classification.
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Chapter 6

Twin 3D Spatial-Temporal Convo-
lutional Neural Network for Fine-
Grained Action Recognition

1 Introduction

The two previous chapters were dedicated to fine-grained action classification using
only one modality, either RGB data or OF data computed from the RGB images.
Those modalities require only the acquisition of images using cameras and do not
affect the performances of the players. Our work is focused on detection and recog-
nition of strokes in table tennis using Computer Vision only. It is a first step in
a wide research program which goal is to give tools for sport coaches to improve
performances of young athletes using recorded videos of training and playing ses-
sions. In order to reach the largest audience, recordings have to be performed by
widespread and cheap video cameras, e.g. GoPro. We use a dataset specifically
recorded in a sport faculty facility and continuously completed by students and
teachers: TTStroke-21, to train and test our method. The TTStroke-21 dataset is
described in Chapter 3, Section 4.

This dataset is constituted of player-centred videos recorded in natural conditions
without markers or sensors. It comprises 20 table tennis strokes and a rejection class.
The problem is hence a typical research topic in the field of video indexing: for a
given recording, we need to label the video by recognizing and temporally segmenting
each stroke appearing in the whole video. As we have seen in Chapter 5, motion
information is a crucial clue for recognizing table tennis strokes. A review of the
state-of-the art in Chapters 1 and 2, shows that spatial features from RGB images
are also needed to attain reasonable accuracies for action classification, be it in
sport (Varol et al., 2018) or in specific cultural content (Stoian et al., 2016). Hence,
it is necessary to use both multi-modal data and temporal information. Contrary
to Safaei et al. (2018); Bilen et al. (2018) who use one channel of a 3D tensor
for encoding temporal information, we are using 3D convolutions of video frames,
similarly to the promising results obtained in by (Tran et al., 2015; Feichtenhofer et
al., 2016; Carreira and Zisserman, 2017).

However, to efficiently fuse data of limited spatial localization of moving sports-
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men with variable motion magnitude for each stroke, an adequate normalization
has to be done (see Chapter 5). After this step, extracted features from the RGB
and OF data need to be fused efficiently to obtain relevant output probabilities for
class decision. In this chapter, we use the work presented in the two last chapters
for fusing efficiently both modalities. We introduce a Twin 3D convolutional neu-
ral network model, so called Twin Spatio-Temporal Convolutional Neural Network
(T-STCNN), to incorporate temporal features along with spatial ones. The stroke
is predicted from RGB video frames and their estimated motion vector fields. This
chapter is related to some extent to our following publications: Martin et al. (2019c,
2021b, 2020c, 2019b, 2018, 2019d).

The remainder of this chapter is organized as follows: Section 2 presents the
T-STCNN model, data preparation and processing, and training and evaluation
methods. Results are presented in Section 3 and compared with our baseline, the
Two-Stream-I3D model (Carreira and Zisserman, 2017). Conclusion and perspec-
tives are drawn in Section 4.

2 The Twin Spatio-Temporal Convolutional Neural
Network Model

For efficiently fusing RGB and OF data, this Twin Convolutional Neural Network
architecture is introduced in Section 2.1. Input data are filtered before feeding them
to the model for training and testing. Data augmentation is also used in order
decrease intra-class similarity and help the model to better generalize extracted
features. Other fusion methods are tested and presented along with the evaluation
methods in Section 2.6.

2.1 Architecture of the Twin Spatio-Temporal Convolutional
Neural Network

The Twin Spatio-Temporal Convolutional Neural Network, denoted as “T-STCNN”
is presented in Figure 6.1. It is a two stream network constituted of two branches.
Each branch follows the same structure: three blocks constituted of a 3D convo-
lutional layer using kernels of size (3 × 3 × 3), with stride and padding one in all
directions and “ReLU” as activation function, feeding a 3D Max-Pooling layer using
kernels of size (2 × 2 × 2) and floor function. From input to output, the convo-
lutional layers use 30, 60 and 80 filters. Each branch ends with a fully connected
layer of size 500. The two branches are combined using a bilinear transformation
(y = xT1Ax2 + b) with Softmax function to output a classification score of size 21
corresponding to the number of classes considered in our task. The “Twin” appel-
lation comes from the fact that the same configuration is used on both branches.
Unlike the Two-Stream I3D model Carreira and Zisserman (2017), our network is
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Figure 6.1 – Twin Spatio-Temporal Convolutional Neural Network - T-STCNN - architec-
ture.

much shallower and do not simply add each streams predictions for classification; we
fuse the features extracted from each stream before our last fully connected layer.

2.2 Input Data

Branches of the network take RGB images and optical flow field of size (W×H×T ) as
inputs. The optical flow is computed using method BP estimator Liu (2009), based
on iterative re-weighted least square solver. In the last chapter we have indeed shown
its efficiency for classification purpose: even if the method of Liu (2009) is sensitive
to flickering and not smooth on flat regions, it is able to capture fine details, such as
the motion of the ball, in contrary to DeepFlow method Weinzaepfel et al. (2013).
The extracted frames from the video size (1920× 1080), are resized to (320× 180)
before computing the optical flow field.

Optical Flow Filtering and Region-of-Interests Extraction

The same filtering method presented in Chapter 5 is applied in this chapter. The
flickering caused by artificial light during recording sessions and leading to artefacts
are partially filtered using the Hadamard product between the foreground extracted
with the method of Zivkovic and van der Heijden (2006) and the computed optical
flow. Since RGB and Optical Flow modalities are processed together, we believe
flickering could be learned and processed more easily by the model.

The ROI is estimated from the maximum of the optical flow norm and the center
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of gravity of all pixels with non-null optical flow norm as described in previous
chapter.

2.3 Data Normalization

Before feeding the data to the network, RGB values are mapped between [0,1] and
Optical flow is mapped between [−1,1]. In the last chapter, different normalization
methods were tested : MAX, NORMAL, LOGMAX and LOGNORMAL. One possible method
is normalizing OF values by the MAX method which consists in dividing each OF
channel, vx and vy by the absolute maximum of the OF for each direction on the
whole dataset. Another consider normalisation method is the NORMAL normalization
which normalizes each component of V by the mean µ and the standard deviation σ
of the distribution over the whole dataset of frame maximum absolute values. The
normalisation is presented in Section 6.1 with v and vN referring respectively to one
component of the OF V and its normalization.

v′ = v
µ+3×σ

vN(i, j) =

{
v′(i, j) if |v′(i, j)| < 1
SIGN(v′(i, j)) otherwise.

(6.1)

Results are provided in the following for both normalization methods with the
T-STCNN model as they are representative of the span of performances of other
methods.

2.4 Data Augmentation

Data augmentation is performed similarly than in Chapters 4 and 5. For each stroke,
we extract one video sample of size (W×H×T ). Without data augmentation, the T
frames from the RGB and Optical Flow are extracted at the centre of the temporal
and spatial extends, according respectively to the duration of the stroke ∆t and our
ROI extraction.

Spatial augmentation is performed by applying random rotation in the range
±10◦, random translation in x and y direction respectively in range ±0.1 ∗W and
±0.1 ∗ H, and random homothety in the range 1 ± 0.1. All transformations are
applied and centered on the ROI center.

Temporal augmentation is performed extracting T successive frames following
a normal distribution around the center of our stroke with standard deviation of
σ = ∆t−T

L
, with L = 6, as presented in Figure 4.2. If the frames are not in the

temporal boundaries of the annotated sample, another random draw is done until
the condition is satisfied.

126 Pierre-Etienne Martin



6. Twin 3D Spatial-Temporal Convolutional Neural Network for Fine-Grained
Action Recognition

2.5 Training Step

The training process is similar to the one used for the RGB-STCNN and Flow-
STCNN models previously presented. Estimation of network parameters is done
using Stochastic Gradient Descent with Nesterov Momentum Sutskever et al. (2013).
We use a momentum coefficient value of 0.5 and decrease it to 0.1 and 0.05 at epoch
1000 and 1500 respectively, as the momentum methods are known to oscillate at the
beginning of the iterative process. We use a weight decay of 0.005. The maximum
number of epochs is set to 2000. Cross-entropy loss is used as objective function and
the batch size is set to ten. The number of negative samples is chosen twice bigger
than the mean of the number of strokes per class. The TTStroke-21 dataset is split
into training, validation and testing sets with the respective proportions: 70%, 20%
and 10% (Chapter 4, Table 4.1).

We use two different architectures: i) the Twin architecture introduced in Sec-
tion 2.1 (referred as T-STCNN), and ii) a simple branch architecture similar to
RGB-STCNN or Flow-STCNN using RGB images and OF concatenated together
resulting in an input of a five channel tensor). Since the fusion of both modalities
are performed before training, we refer to this last model as Early Fusion Spatio-
Temporal Convolutional Neural Network (EF-STCNN). The Twin model uses a
learning rate of 0.001 and the EF-STCNN a learning rate of 0.01.

We use data augmentation on our training set for all models and evaluate them
at each epoch with the accuracy on the validation set without augmentation. Models
with the best accuracy are saved for the next evaluations on the test set.

2.6 Evaluation Methods

To compare performances of our models, we use the Two-Stream I3D model Carreira
and Zisserman (2017) as our baseline and apply it to our dataset following their
instructions for training. The first max pooling layer has been discarded because of
the size of our input data which are twice smaller than theirs. The RGB and Optical
Flow models of I3D, RGB-I3D and Flow-I3D, are trained separately as presented
in Chapter 4 and 5. RGB-I3D and Flow-I3D model are trained respectively with
115 000 and 155 000 iterations which represents 851 and 1148 epochs with our
training set from TTStroke-21. The learning rate is scheduled, decreasing from 0.1
to 0.01 and 0.001 respectively at iterations 97 000 and 108 000 For the Flow-U3D
model, the learning rate increases to 0.01 at iterations 140 000 and decreases to
0.001 at iteration 150 000. The reason is that the model using OF modality needs
to be trained for a longer time, as precised in (Carreira and Zisserman, 2017).

The Two-Stream I3D model consists in performing a late fusion using both mod-
els to classify the stroke by summing up their obtained class scores. Finally, we
also apply a late fusion operator such as summing scores of one-branch models
RGB-STCNN and Flow-STCNN. We refer to it as Late Fusion Spatio-Temporal
Convolutional Neural Network (LF-STCNN).
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Same evaluation methods are used than in Chapter 4, Section 2.5 and are called
“Test”, “TVote”, “TAvg” and “TGauss” for the classification task and performances
are shown in Table 6.1. Evaluation of the performances for detection and classifica-
tions task in videos is done with “Gross”, “Vote”, “Average” and “Gaussian” methods
and results are presented in Table 6.2.

3 Experiments and Results

Our deep learning models have been trained using PyTorch framework on GPU
NVIDIA Tesla P100. The size of the input data have been set to (W ×H × T ) =
(120× 120× 100) which makes out the first fully connected layer of each branch to
take as input a vector of size 216 000. Experiments are also conducted using a time
window of 64 frames to keep default setting of our baseline Carreira and Zisserman
(2017), which then lowers the size of the input vector of our first connected layer
on each branch down to 144 000. We provide results according to the model type
and by default the OF normalization method is NORMAL. We present some model
performances which use the MAX normalization in Table 6.1.

3.1 Pure Classification Task

Performances of all the models presented are in Table 6.1.

Table 6.1 – Performance comparison between Two Stream-I3D, EF-STCNN, LF-STCNN
and T-STCNN on classification.

Accuracies in %

Models T Train Val Test TVote TAvg TGauss

Two-Stream I3D† 64 87.8 41.7 43.1 11.2 11.2 10.3
Two-Stream I3D† 100 99.2 76.2 75.9 84.5 87.1 86.2

T-STCNN 64 79.1 76.5 72 72 74.6 80.2
EF-STCNN† 100 88.4 84.4 73.3 74.1 75 75
EF-STCNN 100 90.8 84.8 82.2 81.4 83.9 83.9
LF-STCNN† 100 82.3 62.2 57.7 59.5 70.7 69.8
LF-STCNN 100 97 88.7 89.8 87.3 87.3 87.3
T-STCNN† 100 99.5 90.4 89 72 74.6 71.2
T-STCNN* 100 99.5 90.4 90.7 75.4 73.7 72.9
T-STCNN 100 95.8 87.8 93.2 91.5 90.7 91.5

* trained without data augmentation † : with MAX OF normalization

Best performance obtained for the classification task reaches 93.2% of accuracy
on the train set using the T-STCNN model, trained with data augmentation, us-
ing NORMAL method for flow normalization and evaluated decision based on “Test”
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method. Its convergence is show in Figure 6.2 and weights are saved at epoch 1784
when the model reaches its best performance on the validation set. Our model does
not overfit the training dataset in contrast to the Two-Stream I3D model where the
gap between validation and training performances is important.

Figure 6.2 – Training process of the T-STCNN model with T = 100 and NORMAL OF
normalization method.

In Figure 6.3, we can see that strokes “Defensive Forehand Block” and “Defensive
Backhand Push” are misclassified. This is certainly due to their low representation
in the dataset, keeping the model from learning their distinctive features. The use
of the whole stroke segment for decision does not improve the results, but do not
worsen them neither, in contrary to T-STCNN trained without data augmentation
which drops from 90.7% down to 72.9% using ”Test” and ”TGauss” rule decision
methods. Moreover, T-STCNN models using 100 frames are more efficient than
the one using 64 frames only, which can be also noticed for I3D models (Carreira
and Zisserman, 2017). It has been demonstrated that the use of longer temporal
windows improves classification performances for long and similar actions Varol et
al. (2018), which is our case when considering fast table tennis stokes at a frame
rate of 120 per second.

The T-STCNN model with MAX flow normalization method gets also lower scores.
Our late fusion approach, which considers the sum of the probabilistic output of the
two best models RGB-STCNN and Flow-STCNN presented earlier, obtains the third
best performance with an accuracy of 89.8% using “Test” decision. It also gets much
better performance than the same model but using MAX flow normalization. Indeed
the Flow-STCNN with MAX normalization misleads the RGB-STCNN which gets
better performances than the fused model.

Early fusion using “MAX” method for flow normalization gets similar results
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Figure 6.3 – Confusion Matrix of the T-STCNN model using “Test” method decision with
T = 100.
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than the RGB-STCNN, certainly because the flow values are not used since they
are too small compared with normalized RGB values. However EF-STCNN with
“NORMAL” flow normalization get much better performances with stable results
when considering the temporal dimension with “TVote”, “TAvg” and “TGauss” eval-
uation methods. Nevertheless, it seems that to get the best of the two modalities,
they need to be processed in parallel. Indeed, concatening two modalities encoding
different types of information, without pre-processing, may not be relevant which
explains the better performances of the T-STCNN model. We could also consider
different convolution approaches to allow a smoother fusion through the
model.

Our baseline, the Two-Stream I3D model trained from scratch on TTStroke-21
dataset, ranks fourth in the presented results. They reach an accuracy of 87.1 with
the “TAvg” decision rule which is an improvement of more than 10% in accuracy
compared to the “Test” rule which does not consider the whole video segment for
decision making. They also get far better performances when considering 100 frames
as input compared to 64 which fails to obtain accurate classification. One can notice
that our T-STCNN with T = 64 gets much better performances than their model
considering the same number of frames. The over fitting of their method on the
train set is visible on the convergence of their single modality models, especially
with T = 64, (Figure 4.3 from Chapter 4). To give a potential explanation of such
overfitting, the Two-Stream I3D model being deeper than ours, it may over-fit our
dataset which is more limited than UCF101 or HMDB51 datasets on which they
report their results on. We also train their model from scratch with a different
image resolution than for what their model was built for. This may have led to
inconsistent tuning of the training parameters using the recommended learning rate
and number of iterations. By looking at the confusion matrix of the Two-Stream
I3D model using 100 frames in Figure 6.4, we can see that it fails to recognise well
the “Defensive Forehand Block” strokes, as our T-STCNN model. This is certainly
due by the low concentration of this particular stroke in the training set.

However, it classifies to much as “Defensive Backhand Push” while not classifying
correctly its true label sample. This class is also not well represented in the dataset
neither, and is similar to other “Backhand” strokes, explaining such behaviour. The
low inter-class variability of TTStroke-21 increases the difficulty of the task.

Two-Stream I3D network is composed of nine inception modules and four ad-
ditional convolutional layers against two times three convolutional layers processed
in parallel for our T-STCNN. Other experiments were conducted using deeper and
shallower architecture by adding and removing 3D convolution layers in our T-
STCNN. However the results were not convincing which corroborates the fact that
I3D-models are too deep networks for our application and therefore comforted us
to work with such network depth. In addition, our T-STCNN models, being much
shallower than the I3D models, can be trained jointly with RGB and Optical flow
streams; which certainly improves the following fusion step. Conversely, the Two
Stream I3D model simply adds the predictions of each stream, which may explain
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Figure 6.4 – Confusion Matrix of the Two-Stream I3D model using “TAvg” method decision
with T = 100.
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lower performances.

3.2 Joint Stroke Detection and Classification Task

Table 6.2, shows the accuracies obtained for our T-STCNN model with and without
data augmentation. The table reports results with all labels, and also when not
considering the negative labels. This second evaluation is motivated by the fact
that most parts of a video are constituted of negative labels. Indeed, is considered
as negative, all the portions between stokes: i.e when the player is getting ready,
when the match or training session ends and when the player is resting. It makes
the evaluation method much more discriminant since even the overlaps between
annotation, which were considered correct when classified as either the previous or
either the next label, are not considered.

Table 6.2 – Performance of stroke detection and classification.

Accuracies in %

Models Gross Vote Average Gaussian

T-STCNN* 62.8 81.8 82.3 82.6
T-STCNN 60.8 79.8 80.2 79.7

without taking into account negative labels
T-STCNN* 45.4 50.2 50.8 54.8

T-STCNN 60.5 76.8 76.9 78.4

* trained without data augmentation

When considering all the classes, we reach a 82.6% of accuracy with the Twin
model trained without data augmentation using the “Gaussian” filtering method for
decision making. It is the best accuracy obtained for this task when comparing with
RGB-STCNN and Flow-STCNN models. The other T-STCNN model using data
augmentation is a bit behind with only 80.2% of accuracy with “Average” rule. We
believe this gap can be explained by the training method used. Indeed, by looking
at Table 6.1, we can notice that the accuracy on the training set for the model
trained with data augmentation is lower than the one without, leaving more room
for improvements. Better performance could certainly be obtained by training the
T-STCNN model using data augmentation with more epochs.

We can notice, also in Table 6.2, that the performances of the T-STCNN model
trained without data augmentation drops while the T-STCNN model with data aug-
mentation stays stable (maximum accuracy of 78.4% using the “Gaussian” evaluation
method). Such behaviour can be explained by the data augmentation process which
robustifies the output probabilities and gives more clues to the model for distin-
guishing intra-stroke-similarity and inter-stroke-similarity . The T-STCNN model
trained without data augmentation gets the worst score on this task compared to
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the RGB-STCNN and Flow-STCNN (max scores of respectively 67.9% and 62.4% of
accuracy). As seen in the previous chapter, the optical flow model, trained without
augmentation, led to worse scores. In this case, the OF branch might influence the
T-STCNN decision too much. On the other hand, the T-STCNN trained with data
augmentation highly outperforms both the RGB-STCNN and Flow-STCNN models.

4 Conclusion and Perspectives

This chapter leverages the work of the last two chapters dedicated to fine-grained
stroke action recognition in table tennis. We have proposed an approach based on
a Twin spatio-temporal convolutional neural network architecture taking as input
the RGB data and their estimated optical flow. The method has been evaluated
on the TTStroke-21 dataset, recorded in real-world conditions and annotated using
a crowdsourced method with professionals of the table tennis field. Our method is
compared with the I3D baseline, which was the the state of the art method during
this work. Our T-STCNN model reaches a maximum accuracy of 93.2% on the test
set against 87.1% for to the Two-Stream I3D model on the pure classification task.
For the detection and classification task, our model performs best when considering
all classes if it is not trained using data augmentation and reaches 82.6% of accuracy.
However this evaluation is biased due to the high presence of negative segments. By
discarding them, we notice a net superiority of our T-STCNN when trained with
data augmentation which is able to reach 78.4% of accuracy against 67.9% and
62.4% respectively for RGB-STCNN and Flow-STCNN models. This leads us to
the conclusion that RGB and OF data should be merged using a middle fusion
approach when training the neural networks, and that the Twin model is a proper
approach to do so.

Next chapter is dedicated to the analysis of the features extracted from the
T-STCNN in order to better understand their contribution in the classification de-
cision.
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Chapter 7

Features Understanding in 3D Convo-
lutional Neural Networks for Action
Recognition in Videos

1 Introduction

Deep Convolutional Neural Networks are often used for action recognition in videos.
It is our case in the present research. Predicting an action is similar to image clas-
sification for consecutive frames and makes final decision over that time frame. It
becomes a challenging task when actions have low inter-class variability. Although
Convolutional Neural Networks are performing impressively in different action recog-
nition datasets such as DeepMind Kinetics Kay et al. (2017), UCF-101 Soomro et
al. (2012) or AVA Gu et al. (2018), it is not quite understandable why they make the
correct or incorrect classification decisions. It is often observed that these models
make correct decision based on wrong reasons, such as focusing on scene background
information rather than the actual actions of a subject. Our main objective is to
perform fine-grained action recognition in table tennis with the aim of improving
athletes’ performances. From raw video of table tennis exercises, it is necessary to
recognize actions properly before motion, posture and other performance indicators
could be analyzed. The difficulties in indexing of such video content resides in the
low inter-class variability of actions.

Our solution is in designing and deploying 3D CNNs such as presented in Varol
et al. (2018); Carreira and Zisserman (2017); Wang et al. (2018b) and we show that
they classify actions quite efficiently, but the interpretation of their decision making
still remains open. The explanation of decisions is specifically important for the
target users of Multimedia content, sport coaches in our case. Hence, this will help
table tennis teachers to focus on particular strokes performed by students for post
exercise analysis. It is needed to explain the decision making of the CNN, at the
generalization step, as the user is interested why a particular image or video segment
is assigned to a particular class by the model.

In this chapter we present a novel visual CNN features understanding technique.
Its objective is to find salient features that play a key role in the decision making of
the network. The technique uses only the features from the last convolutional layer
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before the fully connected layers of a trained model and generates a binary feature
importance map per channel. To reduce the contribution of relatively low magnitude
features channels, the final importance map is generated as a weighted sum of all
binary channel maps. The resulting map is propagated to the original frame thus
highlighting the regions in them that contribute to the final decision. The method
is fast and does not require gradient computation as many state-of-the-art methods
do.

The attempts to explain the decision making by CNNs are numerous and this
area of research is very active as it serves for increasing trust of the users into Deep
Learning and AI in general. Hence the method Hassan et al. (2019) already fo-
cuses on explaining the decision by getting the images from the training set which
contributed the most to the decision by comparing feature distances. Also, ROAR
method Hooker et al. (2019) was recently introduced to measure the interpretability
of the networks for image classification. The method is based on gradient compu-
tation: it actually modifies the training and test sets by removing the important
features used for classification, retrain the network and analyses its performances.
However such method is very expensive especially when it comes to videos. In this
chapter we therefore focus on the visualization of the features and analyse their
localisation when seeking for computational efficiency.

The proposed technique is applied to the T-STCNN designed for table tennis
action recognition presented in the previous chapters and trained on TTStroke-21
dataset. Features visualization is performed to the RGB and OF branches of the
T-STCNN architecture to highlight contributions of pixels both in video frames
and motion vectors into the final decision. Contrary to the popular visualization
methods which are based on back-propagation with gradient computation, the pro-
posed method uses only features value and global importance of features chan-
nels. The method is compared with the state-of-the-art gradient-based techniques
such as Vanilla Gradient-based Back-propagation Simonyan et al. (2014), Guided
Back-propagation Springenberg et al. (2015) and Grad-CAM Selvaraju et al. (2020).
The method gives a better understanding of the decision and is similar to Vanilla
gradient-based propagation which is the reference method in the field. The metrics
show that generated maps are similar to those obtained with known Grad-CAM
method and the method is faster than all our baselines.

This chapter is related to some extent to our following publications: Martin et
al. (2020c, 2018); Fuad et al. (2020) and is the result of the collaboration with Kazi
Ahmed Asif Fuad who did his internship in the scope of the Eramus Mundus master
Image Processing and Computer Vision (IPCV) within our team. Kazi Ahmed Asif
Fuad is the main author of the paper on which this chapter is built on (Fuad et
al., 2020) and it gave a great extension and deeper insight to the project, which we
believe deserves its place in this thesis.

The rest of the chapter is organized as follows. Section 2 discusses related works
on Convolutional Neural Network features understanding techniques. In Section 3,
the proposed algorithm is explained. In Section 4, results of different test cases
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are compared between the proposed algorithm and existing algorithms. Finally,
conclusion and discussions are drawn in Section 5.

2 Related Work

DNNs are commonly considered as black-boxes. Indeed they are composed of stacked
layers of individually very simple functions whose parameters correspond to weights
that are mainly depending on the training data. However, the global function
that represents such a network is hardly understandable. Several works have been
done to mitigate this issue by visually providing hints on the decision taken by the
DNN Hohman et al. (2019).

Such visual applications often rely on a view that provides features importance
in the input space (i.e which features positively voted for the final classification). In
the variety of approaches to generate such views, we can distinguish two trends: i)
methods on the basis of back-propagation and gradient computation and ii) meth-
ods based on back-tracing feature values. Another family of the methods is based
on perturbations added to the input and measuring the deviations of the output
thus explaining the contributions of pixels/regions in the input content (Fong and
Vedaldi, 2017). In the follow-up we focus on methods by back-propagation and gra-
dient computation as they have inspired our contribution and served as a benchmark
for it.

2.1 Methods Based on Back-Propagation and Gradient Com-
putation

In the pioneering work Simonyan et al. (2014), the authors are interested in the
so-called “class-saliency”: what are the pixels which contribute the most into the
decision of assigning an image to a particular class. A class score function Sc(I)
of a CNN is considered as a linear operation of convolution of an input image and
a weight vector w. In reality the decision function of a CNN is highly non-linear.
Hence the Taylor expansion is used and the derivatives, or gradient, of the weights
with regard to the argument image I are computed. Strong derivatives of weights
indicate pixels which contribute to the decision the most. This allows to build the
so-called “class-saliency maps”.

The Grad-Cam method Selvaraju et al. (2020) is based on the same principle.
It generates a heatmap that highlights features of interest by back-propagating the
gradient of the last layer until it reaches a convolution to compute the influence of
the neurons on the prediction. The importance map is then upscaled to the initial
image size in order to produce the heatmap.

The work carried out in Zintgraf et al. (2017) generates a heatmap that indicates
in blue the input pixels that voted against the predicted class and in red those that
voted for, as depicted in Figure 7.1. The method relies on difference analysis that

Fine-Grained Action Detection and Classification from Videos with STCNNs.
Application to Table Tennis.

139



2. Related Work

modifies the input space in order to detect how the prediction changes if the feature
is unknown. Despite the gradient is not computed as in Simonyan et al. (2014), this
is also a kind of “differential” approach.

a. Input image b. Output heatmap

Figure 7.1 – Example of decision visualization using prediction difference analysis (Zintgraf
et al., 2017).

2.2 Methods Based on Back-Tracing Feature Values

The Guided Backpropagation uses the neuronal responses in high-level feature maps
and propagates them back to the image thus finding pixels which contributed the
most into the response of a single neuron Springenberg et al. (2015). Given high-level
feature map, the “deconvnet” inverts the data flow of a CNN, going from neuron
activation in the given layer down to an image. Typically, a single neuron is left
non-zero in the high level feature map. Then the resulting reconstructed image
shows the part of the input image that is most strongly activating this neuron, and
hence the part that is most discriminative to it. The authors of Springenberg et al.
(2015) work with fully CNNs which does not contain max pooling layers and thus
the “tractability” of a neural response to the original pixel is possible.

Fully Layer-Wise Relevance Propagation (LRP) Montavon et al. (2019) also gen-
erates a heatmap of input features that supports the decision. The method relies
on the concept of a relevance score per activation; the sum of all relevance scores of
each layer is equal.

Li et al. Li et al. (2019b) generate salience relevant maps thanks to firstly LRP
generated maps. This additional step allows to highlight parts of the image following
human attention mechanisms by removing irrelevant parts highlighted by LRP.

VisualBackProp Bojarski et al. (2018) aims at visualizing the pixels at the origin
of the decision in order to help to debug CNN in real time. The method can be
used both during training and inference. The method is quite simple: the output of
each ReLU layer is averaged, up-scaled to the resolution of the previous layer and
multiplied by the previous layer. The operation identically repeated until the input
layer.
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Our proposed approach is in line of this group of methods: it relies only on the
feature maps of the last convolutional layer following the philosophy that in Deep
CNNs all feature layers except the FC layers are “feature extractors”. Hence we only
use the last one. Its features are the most relevant for the final decision. Thereon,
by back-propagating the strong features, identification of the salient regions in the
video frame is deduced. The method is presented in the next section.

3 Proposed Features Understanding Method

The method we propose is generic and can be applied to features understanding in
networks for image classification such as 2D CNN, or as in our case to chunks of
video frames in a 3D spatio-temporal convolutional neural network.

The core of the method we propose relies in the back-tracing of “strong” features
from the last feature-layer, meaning the convolutional layer. From our perspective
it “explains” the Network decisions at the generalization step.

At the generalization step, the chunk of input video frames to classify is forward-
propagated through the trained network. Following the general philosophy of CNNs
be they 2D or 3D, the convolutional layers act as features extractors and the last FC
layers as classifiers. The upper convolutional layers are supposed to extract low level
features Luo et al. (2016) from input data, while deeper we go into convolutional
layers, higher level semantic features become prominent. Hence, we extract features
from the last convolutional layer. The features are taken just before feeding the fully
connected layers. The overview of our proposed algorithm is given in Figure 7.2.
Here we show an illustration of the method for one video frame in RGB data without
loss of generality.

The extraction of features from the last convolutional layer is realized after the
activation function and max-pooling layers, as presented on the upper part of the
figure. Binary feature maps are generated and importance weights are calculated.
Importance map is then computed as a normalized linear combination with channel
weights and visualized as a heat-map on the original image.

When our data that are chunks of video frames of size (W ×H × T ) = (120 ×
120 × 100), are pushed through the convolution and polling layers of the network,
the input video frames become “feature frames”. Their number is reduced by pooling
in temporal dimension compared to the number of original video frames in the input
chunk. By applying one filter we obtain its corresponding map. Finally, before fully
connected layers we have F = 80 feature maps containing each N = 12 feature
frames of size 15 × 15 in our case, with N being the temporal dimension. This
size results from the three successive convolutional layers, using stride one, padding
one in all directions with output dimension same as input dimension; which are
connected to a max pooling layer using a stride of two in all directions and using
floor function. A feature map can be considered as a "channel" of the feature maps.
The total feature maps size is therefore (80× 15). The proposed method is applied
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Figure 7.2 – Overview of the proposed visualization method.

to each feature frame and the resulting N importance mapsM ′
n with n ranging from

one to N are back-projected on all input frames by tri-linear interpolation in space
and time Kenwright (2015).

The second step generates a binary map for each channel of this features map in
order to give an importance value for each features channel-by-channel. To detect
the strongest features, we suppose that the features values in features maps follow
Gaussian distributions. Obviously, the mean is positive as we take the features after
a commonly used ReLu non-linearity that transforms negative values to zero, as
depicted in equation 7.1.

ReLu(x) = max(0, x) (7.1)

In the last convolutional layers features are “expressive” and only few of them
are important. Following the Gaussian distribution hypothesis we are interested
in the right queue of the distribution corresponding to “rare” and strong features.
Hence we threshold the features maps accordingly to the K-sigma rule with different
K values tested. For each channel c, the mean µc and standard deviation σc are
calculated. Then a binary map per channel Bc is built which marks the strong
features as described in equation 7.2:

Bc(xi,c) =

{
1 if xi,c ≥ µc +K ∗ σc
0 otherwise. (7.2)

with xi,c the ith feature value from the cth feature map from last convolutional layer
of the model. In our case i varies in the coordinate space 12×15×15 which represents
the feature map size and c in the interval [1, F ] representing one feature map.
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During our experiments, we have verified that the histogram of each channel c
shows that features distribution is similar to normal distribution although negative
values are removed by the ReLU activation. Hence after thresholding, in each chan-
nel we have marked the strongest features through binary features maps as described
in the bottom part of the Figure 7.2.

Next, not all features channels are globally significant for decision making. The
number of convolutional filters in each layer is often chosen on the basis of pre-
liminary experiments, full optimization of the network hyper parameters being too
heavy. We propose to weight each temporal frame of each feature map using their
mean value. The importance weight W of size F represented in Figure 7.2 , is it self
composed of weight vectors wc = [µc1, ..., µ

c
N ] of size N , µci being the mean value of

the temporal frame of the feature map. In our case, this importance weight vector
is composed a F = 80 vectors of size N = 12.

Then, we compute the importance map M as a linear combination of all channel
binary maps Bc using the channel weights µc and normalize it to [0; 1] by using
“Min-Max” feature scaling described in equation 7.3.

M ′ =
M −min(M)

max(M)−min(M)
(7.3)

with, in our case, min(M) > 0 due to ReLU function and binarization using
K-sigma rule. However this might change accordingly to the non-linear activation
function chosen for the neural responses in the network.

Finally, the normalized importance map M ′ is up-scaled to the original im-
age/video frame dimension (W × H × T ) by a linear interpolation. Furthermore,
the importance map M ′ is superimposed on the original image/video as a heat-map
to visualize the spatial and temporal information which has contributed the most
to the decision making.

4 Experiments and Results

All experiments have been conducted using the T-STCNN model trained on
TTStroke-21 presented in Chapter 6. Our visualization results are visually com-
pared with common methods in Section 4.1. Then comparison with our baselines
is done with different metrics in Section 4.2. Finally computation times of all the
methods are compared in Section 4.3.

4.1 Visual Analysis

Visualization was initiated with PyTorch Code from Ozbulak (2019). The authors
of the codes for different visualization algorithms considered only Single Branch
Convolutional Neural Networks in 2D. We extended it for Multi Branches Neural
Networks and for application to 3D-CNN.
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Figures 7.3 and 7.4 show visual results of our algorithm on the two branches
of the T-STCNN and compare them with classical methods: Vanilla Grad-based
BP Simonyan et al. (2014), Guided BP Springenberg et al. (2015), Grad-CAM and
Guided Grad-CAM Selvaraju et al. (2020). Even if the data processed are in 3D, we
only show one frame from the 100 frames of the video input for better visualization.
The video results are available online1.

a. RGB Input b. Vanilla Grad-based BP c. Guided BP

d. Grad-CAM e. Guided Grad-CAM f. Our Method

g. Flow Input h. Vanilla Grad-based BP i. Guided BP

j. Grad-CAM k. Guided Grad-CAM l. Our Method

Figure 7.3 – Different visualization algorithm outputs of the T-STCNN model for the class:
“Defensive Backhand block”. First two rows show the visualization for RGB input data
and third and last row for Flow input data.

To keep the comparison uniform in the Figures 7.3, 7.4 and 7.5, all the impor-
1https://youtu.be/2yrG4vKxRTA
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tance maps are scaled between zero and one using “Min-Max” feature scaling, see
equation 7.3, and are visualized as heatmap over the input frame using “jet” color
scale represented on the right of the figures. In Figures 7.3 and 7.4 the OF values
are visualized by converting V = (vx, vy)

T into an image in the color domain HSL
where the Hue represents the angle created by vx and vy, the Saturation is set to
one and the Lightness represents the amplitude of the motion.

The Figure 7.3 shows the table tennis stroke “Defensive Backhand block” with
different visualization algorithms for both RGB and OF data input. From visual ob-
servation, we can see that Vanilla Gradient-Based Back-propagation Simonyan et al.
(2014), Guided Back-propagation Springenberg et al. (2015) and Guided Grad-CAM
Selvaraju et al. (2020) visualizations suffer from “discretization effect”. On the other
hand, continuous and smooth visualization has been obtained in Grad-CAM Sel-
varaju et al. (2020) and our method. From the RGB data and its visualizations
in Figure 7.3, subfigures a to f, we can notice that Vanilla Gradient-Based Back-
propagation focuses on all over the body and the table, but Guided approaches
focus mostly on the upper body and the table tennis ball. In contrast, Grad-CAM
and our method focus on the left leg and the hands which is coherent with human
interpretation: they are the most important regions to classify a table tennis stroke.
Regarding OF data, subfigures 7.3.g to l, our algorithm highlights the ball mainly.
It makes sense since its OF values are very high and are characteristic to stroke
presence. Also we select only the most prominent and “rare” features in the last
convolutional layer, see Section 3, which do not leave much room for other features.
The other methods behave similarly but Vanilla Gradient-Based and Guided BP
give quite a noisy picture of “important” motion vectors on the body.

Figure 7.4 illustrates the features of a miss-classified sample. In this sample,
for RGB data, Vanilla Gradient-Based Back-propagation Simonyan et al. (2014),
Guided Back-propagation Springenberg et al. (2015) and Grad-CAM Selvaraju et
al. (2020) algorithms highlight both the body and the table. But our algorithm
emphasizes the body and the moving hand while Guided Grad-CAM Selvaraju et
al. (2020) focuses on the side of the body. For OF data, all the algorithms focus on
the moving parts mostly but Vanilla Gradient-Based Back-propagation Simonyan
et al. (2014), Guided Back-propagation Springenberg et al. (2015) take the whole
body into consideration. Also, all models are focusing in general on foreground
rather than background, except for the little piece of wall in the upper right corner
of the RGB image. Our method based on features computation from the model is
focusing still on the player, even when no stroke is performed, therefore the model
keeps focusing on the hand, which is a good sign for stroke recognition. However,
we can suppose that, because the hand is moving to reach the ball on the table, the
model falsely recognizes the sample to contain a stroke. This could be avoided by
considering more such negative samples in the training process of the T-STCNN.
Still, this negative sample is challenging because in most table tennis context, no
box, containing the table tennis ball, should be on the table and in such view of the
camera.
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a. RGB Input b. Vanilla Grad-based BP c. Guided BP

d. Grad-CAM e. Guided Grad-CAM f. Our Method

g. Flow Input h. Vanilla Grad-based BP i. Guided BP

j. Grad-CAM k. Guided Grad-CAM l. Our Method

Figure 7.4 – Different visualization algorithm outputs of the T-STCNN model for the
“Negative’ class. First two rows show the visualization for RGB input data and third and
last row for Flow input data.
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We also conduct experiments to check if the choice of the features from the last
convolutional layer is justified as we discussed in Section 3. The Figure 7.5 illustrates
a typical visualization of the features extracted from the different convolutional lay-
ers output of our T-STCNN from the RGB branch, on the same “Offensive Backhand
block” that in Figure 7.3, and using our method with different K values. Here We
also use the popular 2-sigma and 3-sigma rules supposing Gaussian distribution of
features, i.e. K = 2 and K = 3. The choice of k-value influences the binary mask
that we computed before weighting as described in equation7.2.

a. Conv1 features b. with K = 2 c. with K = 3

d. Conv2 features e. K = 2 f. K = 3

g. Conv3 features h. K = 2 i. K = 3

Figure 7.5 – Features visualization from different convolutional layers with different K
values.

From Figure 7.5, we notice that the features from the third convolutional layer,
third row, are the most coherent with the motion of the person and the ball position;
and that the 3-sigma rule is more interesting as it allows to filter-out contrasted
features on static objects and concentrates on changing details captured thanks
to the 3D convolutions. The objective is visual evaluation of explanations which
requires a large user study and discussion with professionals of the field which is in
the perspective of our work. Nevertheless, we can quantify the similarity of resulting
visualization maps obtained by our method with our baseline methods.
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4.2 Metric-Based Comparison of the Methods

To compare our method with the baselines, we use bench-marking strategy using
metrics for visual attention prediction. Several comparison metrics for normalized
predicted heat-maps are used to compare with the reference map. Here we will
compute the so-called “Similarity” and the “Pearson correlation coefficient” metrics
Bylinskii et al. (2019). We perform the comparison on the normalized importance
map M ′ re-scaled to the resolution of input frames as described in Section 3.

Similarity Metric

The similarity Bylinskii et al. (2019), is a popular metric to perform a simple com-
parison between importance maps. The importance maps are considered as distri-
butions and the metric measures the intersection between two distributions. Given
two importance mapsM1 andM2 where independently the sum of their values equal
to one, similarity metric is:

Similarity(M1,M2) =
∑
i

min(M1i,M2i) (7.4)

where, if iterating over the discrete pixel i, we have
∑

iM1i =
∑

iM2i = 1. Two
completely overlapping importance maps will result in maximal similarity of one
and the similarity will be zero when there is no overlapping at all. As different visu-
alization techniques are being compared, a metric was required for partial matches
and similarity metric is adapted for their assessment Bylinskii et al. (2019).

Pearson’s Correlation Coefficient Metric Pearson Correlation Coefficient
(PCC) Bylinskii et al. (2019); Judd et al. (2009) measures how two maps are cor-
related or depend on each other: it is close to one when two variables are perfectly
correlated and zero when they are not at all. For two importance maps M1 and M2,
PCC is:

PCC(M1,M2) =
Cov(M1,M2)

σM1σM2

(7.5)

where Cov(M1,M2) is the covariance of M1 and M2.
There has been many sanity checks done on visualization algorithms. In Ade-

bayo et al. (2018), they suggest Vanilla Gradient-Based Back-propagation is more
effective than other visualization algorithms. Hence we take the importance maps
obtained with Vanilla Gradient-Based Back-propagation as reference for compari-
son. In Table 7.1, complete metric evaluation on the test set of TTStroke-21 dataset
is provided. The test set is composed of 116 instances over 21 classes. We calculated
both mean and standard deviation to observe the deviation for different instances.
In our observation on the test cases, similarity and PCC metrics are coherent for all
the samples and algorithms for both RGB and OF data.
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Table 7.1 – Comparison of Vanilla Gradient-based Back-propagation (VaGrBp) and of our
method (Ours) with Guided Back-propagation (GuBp), Grad-CAM (GrC) and Guided
Grad-CAM (GuGrC).

RGB Flow
Methods Similarity PCC Similarity PCC

GuBp vs VaGrBp .77±.01 .75±.02 .99±.01 .99±.01
GrC vs VaGrBp .69± .04 .61± .08 .66± .02 .54± .06

GuGrC vs VaGrBp .73± .02 .70± .03 .79± .02 .80± .03

Ours vs VaGrBp .70± .03 .63± .05 .70± .01 .61± .02

Ours vs GuBp .70± .03 .64± .05 .70± .01 .61± .02
Ours vs GrC .70± .05 .63± .10 .72± .06 .69± .12

Ours vs GuGrC .68± .03 .63± .05 .77± .02 .71± .02

Comparing all the state-of-the-art methods between them, we notice that Vanilla
Gradient-based Back-propagation and Guided Back-propagation have highest simi-
larity and PCC. These results are obvious as both algorithms rely on almost the same
principle of using first convolutional layer gradients except on how they treat the
gradients. Vanilla plots both positive and negative gradients whereas Guided Back-
propagation plots only positive gradients. For Guided Grad-CAM, Grad-CAM out-
put is multiplied with Guided Back-propagation output. Hence, Vanilla Gradient-
based Back-propagation has higher Similarity and PCC with Guided Grad-CAM.
In contrast to Vanilla Gradient-based Back-propagation Simonyan et al. (2014) and
Guided Back-propagation, Grad-CAM uses last convolutional or deep convolutional
layer gradients. Grad-CAM has similarity and PCC 69% and 61% respectively for
RGB data but for OF data, it has similarity 66% and CC 54% which is nearly 30%
and 40% less than compared to Guided Back Propagation.

Comparing our algorithm with state-of-the-art methods, we get 70% of similar-
ity and 63% of PCC with Vanilla Gradient-Based propagation and Guided Back-
propagation for RGB data. Compared to Grad-CAM, our algorithm has 5% of
similarity and 15% of PCC more with respect to Vanilla Gradient-Based Visualiza-
tion for OF data. With Grad-CAM, our algorithm yields the most similar balanced
results: 70% similarity for RGB and and 72% for Optical Flow data. Finally, with
Guided Grad-Cam, our algorithm attains slightly higher metric values: 77% of sim-
ilarity and 71% of PCC on OF data. This can be explained by the use of the same
features which come from the last convolutional layer.

4.3 Computational Analysis

All the algorithms have been developed using Python based PyTorch and Numpy
libraries. Similar functions were used for calculating closely related functionality of
different algorithms to make computational analysis uniform. Average time for each
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instance visualization of different algorithms is given in Table 7.2.

Table 7.2 – Computation time for the different visualization techniques.

Visualization techniques Time in second
Vanilla Back-propagation Simonyan et al. (2014) 5.12± .23

Guided Back-propagation Springenberg et al. (2015) 7.75± .43

Grad-CAM Selvaraju et al. (2020) 4.9± .21

Guided Grad-CAM Selvaraju et al. (2020) 11.37± .62

Proposed method* 2.91 ± .13

Training of model was performed on GPU but visualization was performed on
CPU only. Computation time was measured in Intel(R) Xeon(R) Gold 5118 CPU
@2.3GHz and Intel(R) Core(TM) i9 9900 CPU @3.1GHz. In both cases, similar
results and ranking were obtained. In Table 7.2, computation time is provided only
for Intel(R) Xeon(R) Gold 5118 CPU @2.3GHz. Average computation time was
calculated on the 118 samples of the test set, each one having 100 frames. The OF
data were computed beforehand. From Table 7.2, it is clear that our algorithm is
the fastest among all the visualizations method since it does not contain a time-
consuming gradient back-propagation. Our algorithm is almost two times faster
than Vanilla Gradient-Based visualization and Grad-CAM.

5 Conclusion

In this chapter we have proposed a new method for explanation of CNN decisions
by interpretation of visual features of CNNs in classification tasks. The method
is generic and applicable both to 2D CNNs, typically used for image classification,
and 3D CNNs for video action recognition. The method is based on selection of
important features from last convolutional layer, the use of channels importance
and back-projection of the feature importance maps to the original input.

We have shown that the method gives comprehensive results both on RGB input
and on optical flow in our T-STCNN dedicated to table tennis stroke classification
using TTStroke-21 dataset. We have analyzed the extracted features using this
method. It gave us some insights about the decision making. Our model manages
to focus on the proper part of the video frames as experts in the field are analysing
in the stroke classification: ball, player position, body parts and racket. Our T-
STCNN however fails when it comes to situations that the model is not used to
such as the box containing the ball on the table.

We also compared our method to the known features visualization methods with
the help of classical similarity metrics used for saliency/importance maps. The
method gives very much similar results in terms of Similarity and Pearson Cor-
relation coefficient with regard to the Vanilla Gradient Back-propagation, is the
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most similar to Grad-CAM remaining faster than all considered base-line methods.
Evaluation of the methods would be more accurate if gaze fixation density maps
of observers performing video action recognition tasks were available. Also, recent
work Tomsett et al. (2020) developed metrics for saliency images and it would be of
great interest to apply it to videos.

This work motivated us to go deeper into the attention mechanism to help the
model focusing on the meaningful part of our inputs. Next chapter is dedicated
to such work, in which we introduce 3D attention blocks within the T-STCNN
architecture in order to increase its performances.
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Abstract

In this third and last part, the previous models are modified in order to improve
the classification performances. These modifications are performed by incorporat-
ing attention mechanisms in the models architecture. The attention mechanism
is achieved through attention layers. The attention blocks are inspired from the
2D existing attention blocks and are extrapolated to the temporal dimension. The
features of the attention blocks are analyzed to assess their efficiency. The conver-
gence of the models using attention mechanism are discussed. Obtained results are
compared with the I3D baseline and previous performances.

Keywords

Action classification, Attention mechanism, Residual block, Deep learning, Batch
normalization
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Chapter 8

3D Attention Mechanism for Fine-
Grained Action Classification

1 Introduction

In this chapter we introduce 3D attention modules in the T-STCNN architecture
and examine their impact on classification efficiency. The use of attention blocks
in the network speeds up the training step and improves the classification scores
of considered models. We visualize the impact on the attention-based features and
notice correlation with player movements and spatial position. Score comparison
between state-of-the-art action classification methods and proposed approach using
attentional blocks is performed on the T-STCNN corpus. Proposed model with
attention blocks outperforms our baseline and most of the previous model described
in the last chapters.

Recognition of similar actions belongs to the fine-grained classification problem,
and is a current issue. In sport for instance, such as table tennis or gymnastics (Shao
et al., 2020), exercises are filmed in the same environment and movements can be
quite similar. Hence the recognition problem becomes harder: the classifier cannot
be helped by background information where the action is performed. To be efficient,
a classifier has to focus on meaningful regions and changes in the video. This is a
subject of a recent trend in Deep Learning, which is the introduction of “attention
mechanisms”, coming originally from Natural Language Processing (NLP) (Vaswani
et al., 2017). The latter are designed to reinforce the contribution of meaningful
features and channels into the decision and thus to increase the target accuracy.
Recently, we proposed a comparative study of these attention mechanisms inher-
ent to convolutional networks, as described by Obeso et al. (2019). The selection
of the most relevant characteristics in different layers is very similar to the hu-
man attention mechanisms measured in psycho-visual experiments as explained in
Chapter 7. While these attention mechanisms in 2D networks have been intensively
studied (Wang et al., 2017a), this question remains to be further explored for a
spatio-temporal content analysis using 3D CNNs.

Attention mechanisms for action recognition have been recently introduced in
LSTM Liu et al. (2017) in an approach based on the analysis of joints of a human
skeleton. In 3D CNNs, both global channel attention and spatial attention maps for
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different feature layers have been proposed Cai and Hu (2020). We also follow this
trend and design attentional blocks for our T-STCNN model. In this chapter, we
propose spatio-temporal attention mechanisms in 3D convolution networks. They
are applied for the recognition of challenging similar actions that are table tennis
strokes. This chapter is related to some extent to our following publications: Martin
et al. (2021b, 2020c, 2021a, 2020b).

The rest of the chapter is organized as follows: in Section 2, works using atten-
tion mechanisms are presented. The Section 3 presents the proposed method with
attentional mechanisms and details the attention block. The results are drawn in
Section 4 through feature analysis and classification performances. The conclusion
and perspectives are given in Section 5.

2 State of the Art on Attention Mechanisms

Attention mechanism can be assimilated to saliency: the region where a person focus
to perform a certain task. This saliency can be used for complementary information
for classification methods. For example, Wang et al. (2017c) use attention from gaze
fixation as spatial segmentation for food classification from images on the UPMC
Food dataset (Wang et al., 2015) (based itself on ETHZFood101 dataset (Bossard
et al., 2014)). Similarly, González-Díaz et al. (2019) use the same modality for
grasping and object recognition. Tang et al. (2018) too focus on saliency prediction
from images using U-net architecture. Moreover, the importance of color information
is proven by Hamel et al. (2016) when it comes to saliency, suggesting that attention
should be fed with color channels for improving efficiency. Note that perception of
color can also differ from people to people for various reason (Iriguchi et al., 2018),
which can bring inconsistency in ground truth saliency.

In this section, we present a brief state of the art on attention mechanisms
introduced in convolutional neural networks for the classification of images and
videos. One can distinguish two classes: 2D attention models, which concern images,
and 3D models (2D +T) concerning videos. Although such a separation may seem
artificial as the same principles govern the design of the models in both cases, we
prefer to treat the spatio-temporal content separately.

2.1 2D Attention Models

One of the pioneering works introducing the use of an attention model in neural
networks for image classification is presented in Hu et al. (2020). The authors are
interested in the contribution of feature channels along convolutional layers into
decision making. The attention model here is “global”: a channel weighting mech-
anism is introduced by “attention blocks”. The processing consists of three steps:
i) synthesis (squeeze), ii) excitation (excitation) and iii) feature scaling (scale). A
block thus is, for each channel, a small network of neurons that learns a weighting
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coefficient. The next layers of the network ingest the characteristic channels thus
weighted. This global weighting has been used as a basis for the authors of Chen et
al. (2018d) who propose “double attention” blocks, i.e. ensuring a global and spatial
weighting of the characteristics in convolution network layers.

The authors of Wang et al. (2017a); Dhingra and Kunz (2019) use the principles
of residual neural networks to propose “residual” learning of the attention masks
incorporated in the convolution layers. Their experiments on CIFAR data bases
Krizhevsky (2009) show that on CIFAR-10 the residual attention network with depth
of 452 has the best error rate compared to all the basic residual networks (3.90%).
The authors propose the incorporation of attention mechanisms in both forward
(forward) and backward (backward) runs. This is also the approach we had in Obeso
et al. (2019), but by selecting important characteristics and not by weighting features
and channels. Note that when minimizing the objective function by gradient descent,
the attention mechanisms are implicitly introduced via the derivative calculation
where the weighted characteristics are used. The authors of Wang et al. (2017a)
report that this use in back propagation makes the training data robust to noise.
This is also our approach in this chapter.

Other works such as Zagoruyko and Komodakis (2017) propose “Teacher-student”
networks where the “Teacher” network is the one that learns attention and guides
the student network for the image classification task. In our approach we also use
a kind of attention transfer as in our architecture the attention branch and trunck
branch will join together for selection of important features. In Huang et al. (2018),
attention mechanism is coupled with LSTM to learn the correlation between different
data modalities such as text and image and therefore leads to better embedding.

2.2 3D Attention Models

We focus here on the contribution of “3D” (2D+T) spatio-temporal attention models
in deep networks for the action recognition problem.

Attention mechanism is used in Liu et al. (2017) on joint skeleton and coupled
with LSTM for 3D action recognition task. They report better accuracy with atten-
tion mechanism than without. They also propose a recurrent attention mechanism
on their model which strengthens the attention effect but might not lead to better
performances if iterated too many times. Lei et al. (2019) consider attention on the
channels of aggregated temporal features extracted from videos on appearance and
motion streams. Similarly, Du et al. (2018) construct a spatial attention model for
each image by introducing feature pyramids. The temporal extension is obtained
by a simple aggregation of the attention maps estimated for each of the K images
of the pyramid extended to the spatio-temporal domain. Motion information is not
taken into account. We differ from this approach by introducing attention blocks in
our twin network at the level of the two branches: RGB and the OF.

In Zhao and Snoek (2019), motion information, via the optical flow, acts as the
attention map for locating actions in the video. The authors introduce the “motion
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condition” layer to train the network on RGB appearance components conditional
to this optical flow based map. The motion weighting layer allows to modify the
spatial characteristics in the convolution layers. We find here the philosophy of
using motion as an indicator of areas of interest Manerba et al. (2008). Once more,
the difference of our approach consists in introducing attention blocks in the two
branches (RGB and OF) of the T-STCNN.

In Long et al. (2018), attention clusters over the temporal dimension are used on
image features extracted using Inception-ResNet-v2 Szegedy et al. (2016) for RGB
and Flow modalities. The Inception-ResNet-v2 models are pretrained on ImagetNet
Russakovsky et al. (2015) and are fine-tuned for the optical flow model. A third
branch processes the audio signal using VGG-16 Simonyan and Zisserman (2015) on
extracted spectrogram samples and is processed similarly to an image Cheng et al.
(2016).

3D attention blocks have also recently been introduced in 3D ResNet type net-
works for the recognition of 3D hand gestures from videos Dhingra and Kunz (2019)
or from action recognition dataset Cai and Hu (2020) such as HMDB-51 Kuehne
et al. (2011), UCF-101 Soomro et al. (2012) and Kinetics Kay et al. (2017). The
authors of Dhingra and Kunz (2019) build on the work of Wang et al. (2017a),
and propose a convolution network using the RGB image for feature extraction,
and another coupled network to determine a soft attention mask with the derivable
Sigmoid function. The values of the extracted mask are then combined with the
characteristics extracted from the RGB array. As in Du et al. (2018), the authors
do not use the motion information explicitly.

Also Temporary-linked Multi-input Attention model (TMA) is introduced in
Bolaños et al. (2018). The method is based on feature extractor using CNN with a
BLSTM Graves et al. (2013) to capture the temporal relationships. Their method
is applied to egocentric video description and outperformed the classical encoder-
decoder methods.

Very recently, in Kalfaoglu et al. (2020) BERT are introduced. The use of this
new type of layer in the popular 3D CNNs as I3D Carreira and Zisserman (2017),
RentNeXt Xie et al. (2017), SlowFast Feichtenhofer et al. (2019) and R(2+1)D
Tran et al. (2018) improve their performances. They reach the state of the art for
HMDB51 and UCF101 dataset using R(2+1)D architecture with BERT layers after
the 3D convolutions layers using pretraining on IG65M Ghadiyaram et al. (2019a).

Hence, our approach differs from current methods in the literature in the follow-
ing:

• we introduce the 3D attention blocks into the two video streams: the branch
containing the spatial information (RGB) and the branch containing the tem-
poral information (OF).

• movement (OF) plays the discriminating role in our fine-grained classification
context, our problem being to recognize actions and not only to locate them.
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3 3D Attention Mechanism in Twin Space-Time
Networks

We first present our Twin Spatio-Temporal Convolutional Neural Network used for
classification, introduced in Chapter 6, using attention mechanism, and then detail
the 3D attention and residual blocks and tests performed.

3.1 The Twin Spatio-Temporal Convolutional Neural Net-
work

In order to perform action classification in videos, we use a two stream convolutional
neural network (twin) with attention mechanism. Its architecture without attention
blocks and results on TTStroke-21 are described in Chapter 6. Its architecture
with attention mechanism is presented in Figure 8.1. The difference from other
Two stream networks Simonyan and Zisserman (2014); Feichtenhofer et al. (2016);
Chen et al. (2018c) lies in: i) the symmetries of our network, ii) the input 4D data
type (horizontal, vertical, temporal and channel) and iii) the final fusion step with
a bilinear layer at the end of our two branches.
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Figure 8.1 – Twin Spatio-Temporal Convolutional Neural Network with attention mecha-
nism. The number of filters for each convolution are indicated above them.

Our T-STCNN with attention mechanism consists of two individual branches:
one branch takes as input the values of the RGB images of the sequence, the other
branch uses the optical flow estimated by the method of Liu (2009). It thus allows to
incorporate both spatial and temporal features. The played stroke is predicted from
the RGB images of the sequence and the estimated motion vectors v = (vx, vy)

T .
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3. 3D Attention Mechanism in Twin Space-Time Networks

Each branch consists of three convolutional layers comprising successively 30, 60
and 80 3D filters, followed by a fully connected layer of size 500. The 3D convolu-
tional layers use space-time filters of size 3 × 3 × 3. The two branches are merged
through a final bilinear fully connected layer of size 21, followed by a Softmax func-
tion to obtain an output class membership probability.

Learning Phase

Learning of our T-STCNN network is done by SGD with Nesterov momen-
tum Sutskever et al. (2013). In order to avoid overfitting, data augmentation
is performed in the spatial domain using rotations, homotheties and scale trans-
formations. Data augmentation is also performed in the time domain in order to
add variability around the temporal boundaries of the played stroke. RGB data are
normalized by 255 while the OF are computed using BP estimator and normalized
using the “NORMAL” normalization. Transformations are discussed in details for
each modality in Chapters 4 and 5.

T-STCNN with Residual and Attention Mechanisms

To test the efficiency of residual and attention blocks, an ablation study was per-
formed: we first added residual block after the max pooling layers starting from the
first max pooling layer until reaching all the max pooling layers. We did the same
with attention blocks so to see the impact of each type of blocks and the impact of
their number in the network. To analyse the contribution on each stream, we also
experimented using separated branches of the network and with separate training,
RGB branch denoted as RGB-STCNN and Flow branch denoted as Flow-STCNN.
The T-STCNN with 3 attention blocks is presented in Figure 8.1.

3.2 3D Attention Block

3D attention block, inspired by the work carried out in 2D Wang et al. (2017a),
takes as input a 4D data block of size (N ×W ×H×T ) as illustrated in Figure 8.2.

Figure 8.2 – 3D attention block architecture.
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In this block, all convolution presented uses the same number of filters, N , to
maintain the dimension of the processed data. Our input data are processed by a
first 3D residual block, denoted as “res”, presented in Section 3.3. Our network then
splits in two branches: the trunk branch consisting of 2 successive 3D residual blocks
(equation 8.1) and the soft floating mask branch (lowest position in Figure 8.2),
described in equations 8.2, 8.3, 8.5. Its role is to accentuate the features generated
by the trunk branch. Those two branches are merged as described in equation 8.6.

branchtrunk(.) = res(res(.)) (8.1)

The soft mask branch is constituted of several 3D residual blocks followed by Max
Pooling layers, denoted as “MaxP ”. It increases the reception field of convolutions
using a bottom-up architecture, denoted as fbu(.) = res(MaxP (.)). The lowest
resolution is obtained after three Max Pooling steps.

x1 = fbu(res(Input))
x2 = fbu(x1))
x3 = fbu(x2))

(8.2)

The information is then extended by a symmetrical top-down architecture,
ftd(.) = Inter(res(.)), to project the input features of each resolution level. “Inter ”
denotes the trilinear interpolations Kenwright (2015) used for up-sampling. Two
skipped connections are used for collecting information at different scales.

y1 = ftd(x3) + res(x2)
y2 = ftd(y1) + res(x1)
y3 = ftd(y2)

(8.3)

The soft mask branch is then composed of 2 successive layers. Each includes a
3D batch normalization, denoted as Fn(.) as described by equation 8.8, followed by
a ReLU activation function and a convolution layer with kernel sizes (1 × 1 × 1).
This is expressed by equation 8.4:

fconv(.) = conv(ReLU(Fn(.))) (8.4)

It ends with a sigmoid function, denoted as “Sig”, to scale values between zero
and one. These two layers are depicted on the right of the lowest branch in Figure 8.2
and are expressed by equation 8.5.

branchfmask(Input) = Sig(fconv(fconv(y3))) (8.5)

The output of our trunk branch is then multiplied term by term by (1 ⊕
branchfmask(Input)) where branchfmask(Input) is the output of the mask branch.
The result is then processed by the last 3D residual block res(.) which ends the
attention block, see equation 8.6.

y = res(branchtrunk(Input)� (1 + branchfmask(Input))) (8.6)
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3. 3D Attention Mechanism in Twin Space-Time Networks

Here the � is an element-wise multiplication and + is a classic addition of a scalar
to each vector component.

3.3 3D Residual Block

Implemented 3D residual block inspired by the work carried out in 2D in He et
al. (2016), takes as input a 4D data block of size (N ×W × H × T ) representing
respectively the number of channels, the two spatial dimensions and the temporal
dimension. The architecture of the block is represented in Figure 8.3.

Figure 8.3 – 3D residual block architecture.

Input data are then processed by 3 successive layers fconvi , i = 1, ..., 3 (eq. 8.5).
The result of residual block is the sum of the output of these three successive layers
and our input data:

res(x) = fconv3(fconv2(fconv1(x))) + x (8.7)

Here, the first layer fconv1 uses N
4
convolution filters of size (1×1×1), the second

layer fconv2 uses N
4

convolution filters of size (3 × 3 × 3). Finally, the third layer
fconv3 employs N convolution filters of size (1× 1× 1).

The 3D batch normalization, described in Ioffe and Szegedy (2015), is performed
channel by channel over the batch of data. If we have x = (x1, x2, ..., xNchannels

),
then the normalization is Fn(x) = (fn(x1), fn(x2), ..., fn(xNchannels

)) with:

fn(xi) =
xi − µi√
σ2
i + ε

∗ γi + βi (8.8)

with i = 1, ...Nchannels, µi and σi the mean and standard deviation vectors of
xi computed over the batch, γi and βi learnable parameters per channel and the
division by

√
σ2
i + ε is element-wise. Here, Nchannels = N or N

4
, depending on the

normalization position in the residual block.
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4 Experiments and Results

To assess the efficiency of the attention block for capturing qualitative features, we
compare the classification results of the model with and without attention blocks
on the TTStroke-21 dataset. We also compare our model with the Two-Stream I3D
model as done in the previous chapters.

4.1 Visualizing the Impact of the Attention Mechanism on
Features

The attention block highlights features that contribute the most to the classification.
In this way, the model can learn faster meaningful features in the classification task.
Figure 8.4 shows outputs of floating mask branch of each attention block for a RGB
image input to the T-STCNN model. Feature values range from zero to one, but
are normalized using min-max normalization and resized for better visualization.

RGB input is of size (100× 120× 120), each dimension representing respectively
time, width and height. These parameters were fixed experimentally as a function
of video resolution, frame-rate and stroke speed. The output size of the soft mask
branch of attention blocks decreases by a factor two. Figure 8.4b, c and d represents
3 channels at a specific time. It can be noticed how the network focuses on the table’s
edges, on the player and even on the ball (more visible in Figure 8.4c). To classify a
stroke, it is important to observe the posture of the player but also his/her position
with respect to the table. The ball position and trajectory can also be of high
importance to classify the stroke. On the whole training set, output values of the
soft mask branch range between 0.35 and 0.65, meaning no features are totally left
out or overrated, on the contrary.

4.2 Convergence of the Models

Conducted experiments required to change the values of the hyperparameters used
in the previous chapters. Indeed, the number of parameters to train, which depends
on the number of attention or residual blocks, greatly increased compared to our
first experiments without attention mechanisms (see Table 8.1).

We compared our results with the I3D models which contains around 25 times
more parameters to train compared to our models with attention blocks. Their
model uses inception modules introduced in Szegedy et al. (2015) which are combi-
nation of different 3D convolutional layers using different filter sizes and concatenat-
ing their output. We trained their model according to their instructions with RGB
data and optical flow trained separately. The training process differs according to
the type of data: a larger number of iterations is required for optical flow, with
a specific scheduled learning rate. The output of the two models on the test set
can be combined together to improve the performances as shown in Table 8.3. We
train their model using a time window of T = 100 frames which we have selected
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a. RGB

b. Att1 c. Att2 d. Att3

Figure 8.4 – Visualisation of soft mask branch output from each attention block of the
RGB branch of the T-STCNN model. The RGB input segmented from the original frame
and its class is represented in light blue on a.

Table 8.1 – Number of parameters∗ to learn according to the architecture of the model.

Models without attention blocks with 3 attention blocks
RGB-STCNN 180 800 498 420

Flow-STCNN 179 990 497 610

T-STCNN 360 790 996 030

Carreira and Zisserman (2017) models
RGB-I3D ∼ 12.5M
Flow-I3D ∼ 12.5M

Two-Stream I3D ∼ 25M
∗ parameters of the fully connected layers are not considered.
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after several experiments. Comparisons with T = 64 is also conducted in previous
chapters.

Furthermore, the type of model trained (RGB-STCNN, Flow-STCNN, or T-
STCNN) also influences the training process. Since different combinations and
number of blocks were tested, the learning rate during training had to be adapted.
A learning rate scheduler wasused, which reduced and increased the learning rate
when the observed metric reached a plateau. Weights and state of the model were
saved when it was performing the best and we re-loaded when the learning rate was
changed. This allowed to re-start the optimization process from the past state with
a new step-size in the gradient descent optimizer.

We started training with a learning rate of 0.01. A number of epochs: patience,
set to 50, was considered before updating the learning rate, unless the performance
drastically dropped (in our case: 0.7 of the best validation accuracy obtained).

The metric of interest was the training loss: if its average on the last 25 epochs
was greater than its average on the 35 epochs before, the process was re-started from
the past state and the learning rate divided by ten until reaching 10−5. After this
step, the learning rate was set back to 0.01 and process continued. These numbers
of epochs were set empirically after preliminary experiments. This techniques differs
from decreasing only by step (Zagoruyko and Komodakis, 2016) since we might re-
increase the learning rate no amelioration is observed, similarly to work of Loshchilov
and Hutter (2017) with warm restart technique.

It is worth mentioning that convergence is slower when using this method of
learning rate re-scheduler with our past architectures introduced in Chapters 4, 5
and 6. Here, this strategy is however efficient to adapt and find adequate learning
rates during training for different architecture configurations.

When comparing models with and without attention blocks as illustrated in 8.5,
it can be noticed that our training process requires less epochs to adapt to our
models with attention blocks. The convergence is faster and after the same number
of epochs (500) models with attention blocks outperform models without attention.

Figure 8.5 – Evolution of the validation accuracy for the different models with and without
attention blocks.
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Table 8.2, depicts these performances of our different models compared with I3D
ones.

Table 8.2 – Comparison of the classification performances after 500 epochs for each model.

Accuracies in %
Models Train Validation Gap

I3D-RGB 95.1 59.6 35.5
RGB-STCNN 83.9 78.7 5.2

RGB-STCNN with attention 96.3 87.8 8.5

I3D-Flow 97.7 55.7 42
Flow-STCNN 93 71.8 21.2

Flow-STCNN with attention 87.4 72.6 14.8

T-STCNN 88.9 82.6 6.3
T-STCNN with attention 92.7 83.5 9.2

The gap between validation accuracy and train accuracy is also reported in Ta-
ble 8.2. At 500 epochs, the I3D models already overfit the training data. We can
also notice that this gap increases for the RGB-STCNN and T-STCNN models when
using attention mechanism, which might lead to limitation with greater number of
epochs. However the Flow-STCNN model does ameliorate validation accuracy, and
reduces the gap performances between Validation and Train sets . We think the OF
data benefits a lot from the batch normalization in the attention mechanism, which
corroborates our hypothesis in Chapter 5 when comparing with Flow-I3D model.

Analysing results further in Table 8.2, the T-STCNN model performs worse than
the RGB-STCNN model and still needs training as presented Section 4.3. Its slower
convergence can be due to the increased number of parameters to train. It also
certainly comes from the batch size used during training, which had to be decreased
from ten to five because of resource limitations.

4.3 Performances on Pure Classification Task

Our implemented attention blocks have shown to lead to faster convergence. In
Table 8.3, we compare the models in term of accuracy for the pure classification
task. In order to have an overall view, comparison is done with the models using
three attention blocks (one after each max pooling layer) with the models presented
in previous chapters.

The first classification scores obtained with the models using attention mecha-
nism were surprisingly rather low, especially for the joint detection and classification
task. The reason of such limited performances may be the use of the batch normal-
ization in the attention blocks. It might benefit the convergence process, which are
shown for each model in Figure 8.6; but it can also limit the generalization of the
extracted features.
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Table 8.3 – Comparison of the classification performances for models using attention mech-
anism after convergence in terms of accuracy.

Accuracies in %

Models Epochs Train Val Test TVote TAvg TGauss

RGB-I3D 778 98.3 72.6 69.8 84.5 84.5 84.5
RGB-STCNN 1665 96.7 88.7 89.8 67.6 74.6 70.3

RGB-STCNN
524 96.5 88.3

92.4 93.2 94.1 92.4
with Attention 93.2* 94.9* 95.8* 96.6*

Flow-I3D 1112 98.8 74.8 73.3 82.8 82.8 82.8
Flow-STCNN 1449 97.5 79.6 75.9 80.2 80.2 78.5

Flow-STCNN
732 96.4 83.5

85.6 66.1 71.2 66.1
with Attention 90.7* 71.2* 69.5* 70.3*
Two-Stream I3D - 99.2 76.2 75.9 84.5 87.1 86.2

LF-STCNN - 97 88.7 89.8 87.3 87.3 87.3

LF-STCNN - 97 88.7
90.7 90.7 92.4 92.4

with attention 94.9* 93.2* 94.1* 94.1*
T-STCNN 1784 95.8 87.8 93.2 91.5 90.7 91.5

T-STCNN
591 97.3 87.8

92.4 71.2 72 72
with Attention 95.8* 77.1* 78* 77.1*

* with classical batch normalization
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a. RGB-STCNN

b. Flow-STCNN

c. T-STCNN

Figure 8.6 – Training process of the different models using attention mechanism.
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Batch normalization indeed computes statistics over input data of the model. By
doing so, the model learns the value distribution at each layer during the training
step. Estimated mean and standard deviation are then used during inference. It
results that if the model encounters the same stroke but with slower motion, nor-
malized motion vectors values will be too low to be classified as a stroke. However,
if the motion is well distributed over the strokes, the statistic method should wield
good performances. By not normalising by statistics mean and sigma during in-
ference, classical mean and standard deviation are computed over the batch. We
decided to perform tests using the two options: with statistics normalization and
with classical batch normalization. The results classical batch normalization are
shown in the second line of the models using attention mechanism. The results are
therefore depending also on the batch-size used and the order of the test samples
during inference. We keep the same order of the data for each model, and use a
batch size of 5 for the classification and the joint detection and classification tasks,
which results are described in Section 4.4.

The best results are obtained with the RGB-STCNN model using “TGauss” rule
decision during inference. The Twin model comes only second using the classi-
cal “Test” decision. This is certainly due to the OF which do not adapt well to
the temporal rule decision as it can be noticed when analysing the Flow-STCNN
scores. Also, the T-STCNN model, due to its greater number of parameters, had
to be trained with a lower batch size (five) compared to the single branch models
(ten). This factor can also lead to lower performances since the model learns from
a lower number of different samples at each iteration. From the visualization anal-
ysis, Figure 8.4, and results in Table 8.3, it can be argued that since the attention
mechanism learns to focus on areas where RGB data are changing with respect to
time, its contribution is lesser for models fed with temporal information such as the
optical flow.

Overall, we can notice better performances with the models using attention
blocks with using classical batch normalization. However the models using OF
modality for classification are less stable when considering the whole stroke for clas-
sification. Indeed the scores drop of 20% of accuracy for the Flow-STCNN and
T-STCNN models. On the other hand, the deterioration of performance with tem-
poral smoothing is no longer observed on the RGB-STCNN model, certainly due
to the increased receptive field generated by the incorporation of attention blocks.
The fusion of the RGB-STCNN and Flow-STCNN, both with attention blocks, do
not perform as good as the RGB-STCNN model alone. It may be because the
Flow-STCNN misleads the decision. When considering the whole stroke duration,
the performances remains nevertheless the same, proving a better stability of the
model.

Furthermore, by analyzing the two best performances in the confusion matrix,
Figure 8.7 for the RGB-STCNN model and Figure 8.8 for the T-STCNN model,
we can notice the difficulty to classify under represented classes that are “Defensive
Forehand Block” and “Defensive Backhand Push”. Same behaviour was observed in
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previous chapters. This may be solved by adding video samples to under represented
stroke classes in the TTStroke-21 dataset.

Figure 8.7 – Confusion Matrix of the RGB-STCNN model with attention mechanism with
classical batch normalization using “Gauss” method decision.

Finally, by using the attention mechanism, we observe faster convergence in
term of epoch (or iterations), and an improvement in performances compared to the
previous models and our baseline RGB-I3D, Flow-I3D and Two-Stream I3D.
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Figure 8.8 – Confusion Matrix of the T-STCNN model with attention mechanism with
classical batch normalization using classic “Test” method decision.
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4.4 Performances on Joint Stroke Detection and Classifica-
tion Task

In Table 8.4, we show the accuracies obtained for each model with the attention
mechanism on the joint stroke detection and classification task. We also performed
extra tests with the LF-STCNN to see if the models using only one modality could
benefit from each others. As previous chapters, results are reported when all labels
are considered, and also when negative labels are left aside. With our choice to
be flexible at the temporal border of the stroke, the decision is considered correct
when classified as either the previous or either the next label. By not taking into
account negative labels, overlaps are not considered and the evaluation may be more
discriminant.

To have an overall view of the performances for each model, results from previous
chapters are also reported.

Results for this task are mitigated. Best performance are obtained with the RGB-
STCNN model with classical batch normalization, using the “Average” decision and
reach 86.4% of accuracy. However this score drop to 74.8% when not considering the
negative labels. On the other hand, best performance when not considering negative
labels are obtained with the RGB-STCNN model but when running the statistics
normalization, using the “Gaussian” decision and reaches 84.6% of accuracy. This
score drops to 63.6% when considering negative samples.

Furthermore, the models using OF data are strongly affected by the attention
mechanism and their performances are unstable. It affects too the fusion step, either
late fusion or middle fusion (T-STCNN). However the T-STCNN seems to suffer less
from this behaviour than the LF-STCNN.

Additionally, the Twin model with attention mechanism during inference is the
slowest to perform classification. Still it can process 100 frames (830 ms), using one
GPU in 82 ms (against 52 ms without attention). Therefore, real-time processing
would be possible with the proper equipment, by classifying incoming stream every
10 frames. However, it would imply to have instant optical flow data. The RGB-
STCNN, which takes 48 ms with attention blocks and 39 ms without to classify one
sample is thus more fitted for such application.

Finally, the most stable results are obtained using the T-STCNN without at-
tention mechanism, which obtains 79.7% and 78.4% accuracy respectively with and
without considering the negative class using the “Gaussian” decision rule. Moreover,
the mean average precision, widely used in segmentation problem (Everingham et
al., 2010), also highlights the superiority of this model: 0.574 for this model against
0.564 for the RGB-STCNN model running the statistics normalization using the
“Gaussian” decision.
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Table 8.4 – Performance of stroke detection and classification.

Accuracies in %

Models Gross Vote Average Gaussian

RGB-STCNN 57 80.1 80.8 80.2

RGB-STCNN with Attention 43.8 63.3 64.7 63.6
70.1* 85.9* 86.4* 86.1*

Flow-STCNN 70.3 80.5 80.9 81

Flow-STCNN with Attention 10.7 20.1 21.5 21.1
69.3* 78.4* 79.2* 79.8*

LF-STCNN with Attention 15.2 26.9 28.5 28
69.2* 78.5* 79.2* 79.8*

T-STCNN 60.8 79.8 80.2 79.7

T-STCNN with Attention 31 46.8 47.7 47.3
72.9* 82.1* 82.3* 83*

without taking into account negative labels

RGB-STCNN 41.5 44.8 46.2 49.1

RGB-STCNN with Attention 65.4 80.4 81.9 84.6
66.9* 74.3* 74.8* 77.6*

Flow-STCNN 50.4 55.4 59.2 62.4

Flow-STCNN with Attention 40 52.9 55.8 58.6
33.8* 20.9* 22.9* 26.5*

LF-STCNN with Attention 32.6 61.2 64.5 67.2
33.8* 21.9* 23.5* 27.1*

T-STCNN 60.5 76.8 76.9 78.4

T-STCNN with Attention 45.2 63.8 65.6 67.9
45.6* 35.1* 35* 39.4*

* with classical batch normalization
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5 Conclusion

In this chapter, we have extended the work carried out in 2D He et al. (2016);
Wang et al. (2017a) to implement 3D residual blocks and 3D attention blocks. We
have incorporated them in our Spatio-Temporal Convolutional Neural Networks for
fine-grained action recognition in video on TTStroke-21.

According to the visualization of the soft mask branch, it is safe to say that the
attention blocks focus on meaningful features such as motion, body parts, position
of the player with respect to the table, rackets and ball. We also noticed a greater
efficiency of the attention mechanism on RGB data.

We have shown that 3D attention blocks enable faster convergence of the models
in terms of epochs and lead to better performances too. Liu et al. (2019a) draw
similar conclusions when using recurrent 3D attention for object recognition using
3D shape. In our case, model with attention mechanism outperform the models
introduced in Part II. However the amount of parameters to learn and the size of
the network increase, which force us to decrease the batch size for training the T-
STCNN model. Even if the convergence is faster in term of epochs, each epoch takes
more time: from 85 to 200 seconds with T-STCNN respectively without and with
attention blocks.

However, as presented in Chapter 2, “An Image Is Worth 16×16 Words: Trans-
formers for Image Recognition at Scale” propose a transformer for image classifica-
tion based on attention mechanism. The latter does not use any convolution and is
fast to train. Their results let us question on the use of CNNs and of attention mech-
anisms which increase exponentially the number of weights to train, thus requiring
bigger computing resources for training. Those limitations narrow the applications
and reduces their performances for video classification.

This Part III was dedicated to the modifications we could bring to the already
introduced networks, in order to increase their performance. We choose to take
the path of attention mechanism. The performances increased for the classification
task, but at the cost of the stability of the performances on the joint detection and
classification task. Other ways could be considered for improving the already good
performances of our models. They are not yet implemented, but are presented in
the conclusion of this manuscript.

178 Pierre-Etienne Martin



179



5. Conclusion

180 Pierre-Etienne Martin



General Conclusion and Perspectives

181





General Conclusion and Perspectives

Conclusion

In this thesis manuscript, we have presented our contributions for fine-grained ac-
tion recognition with the case study of stroke classification in table tennis. Our
motivation is to develop tools for athletes in order to improve their performance.

In the first part of this work, Chapters 1 and 2 presented the state-of-the-art
methods for action classification and the best performances were obtained using 3D
Convolutional Neural Networks. Furthermore, methods considering both modali-
ties, RGB and Optical Flow, proved their superiority, especially when models were
trained from scratch. Chapter 3 described the many datasets used by the scientific
community to benchmark the action classification methods. Their evolution in terms
of classes, acquisition process and number of videos were highlighted. The same
chapter introduced the TTStroke-21 dataset, a dataset dedicated to the recognition
of table tennis strokes. With regards to the state-of-the-art methods, we proposed a
method based on Spatio-temporal Convolutional neural Networks, in order to cap-
ture efficiently the temporal evolution of the different strokes. We also chose to use
the seminal work of Carreira and Zisserman (2017), as our baseline, and trained
their model on our dataset.

Part II introduced our Spatio-Temporal Convolutional Neural Network models.
Chapter 4 and Chapter 5 introduced the use of a single modality in the proposed
model, respectively RGB stream and optical flow stream. Chapter 6 presented a
Twin architecture to fuse both modalities in the network. An ablation study was
preformed to analyse the contribution of the different normalization methods, the
data augmentation process, colour information, the different modalities and the dif-
ferent fusion methods. Performances were analysed in terms of accuracy for two
distinct tasks: pure classification, and joint detection and classification. The best
performances were obtained with the Twin Spatio-Temporal Convolutional Neural
Network (T-STCNN). The features obtained with this last model were analysed
using a new feature understanding method based on back propagation of strong fea-
tures. The observation of these features showed correlation between learned charac-
teristics and image regions where a trained eye, such as a table tennis professional,
would focus on to classify a stroke.

Part III focused on improvements of the presented models for increasing their
classification performances. This is investigated through the incorporation of atten-
tion mechanisms in their architecture. The attention mechanism proved its efficiency
by stressing meaningful characteristics for classification, boosting the convergence
process and increasing classification performances. However, a lack of stability can
appear, depending on the normalization method used in the attention blocs.

Without attention mechanism, the best performances were obtained with the T-
STCNN. When considering attention mechanism, best performances were obtained
with the RGB-STCNN using attention blocks. Despite improved results, incon-
stancy in performances was noticed. This instability was important on the OF
modality, thus impacting the whole Twin model. Ultimately, the most stable model
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performing well on both classification and detection+classification tasks, remains
the T-STCNN without attention mechanism.

Perspectives

The presented work, despite an ablation study and comparison with another method,
can still be conducted deeper by analysing further possible combinations of the net-
work architectures. For instance, the attention mechanism may be better incorpo-
rated in the network to avoid instability issues. This work can also be extended
in different ways. The use of another dataset to pre-train our model could be per-
formed, or comparisons of performances using other datasets too. Furthermore, the
state-of-the-art has evolved and new methods could be applied to TTStroke-21,
such as optical flow methods for the characterisation of the data (Ilg et al., 2017),
or the type of architecture for classification, such as a transformer model (Vaswani
et al., 2017) or an architecture using Multi-Head Attention layers (Kalfaoglu et al.,
2020). In addition, TTStroke-21 has been continuously enriched, with new videos
at different frame rates and viewpoint:further experiments could be conducted to
test the robustness of the proposed model on such augmented dataset. This task will
be performed through the Sport Task of MediaEval workshop which is conducted
every year.

The aim of this thesis work is to develop a method to help students or athletes
in their training. Fine-grained stroke classification is one step towards the under-
standing of player performance. In the scope of the CRISP project, Calandre et
al. (2021) focus on modelling the ball kinematic parameters, such as speed, rota-
tion and trajectory. This could lead to better understanding and evaluation of the
strokes performed. New methods are also interested in semantic segmentations in
table tennis games (Voeikov et al. (2020)1). This segmentation might also help the
classification process and the performance evaluation. To give an insight, a semantic
segmentation using the open source model of He et al. (2020a) is shown in Figure 8.9.
Even if globally efficient, the method is not specifically designed for table tennis and
one can observe wrongly annotated parts in the images. Furthermore, as no tempo-
ral information is used, results are inconsistent over time, which leaves a big room
for improvement.

Moreover, we have been confronted, during the classification process, with the
reliability of the ground truth that we have collected. Thus, the building by crowd-
sourcing of the TTStroke-21 dataset induced a variability in the expertise of the
annotators, as they could be students but also teachers or high level players. This
process generates annotation noise on the labels (type of stroke played), but also on
the temporal boundaries (location of the stroke). So far, we have manually filtered
out cases of mismatched annotations. However, this issue is part of the domain of
weak supervision, which is currently a very active topic (Chesneau, 2018; Ratner et

1https://lab.osai.ai/datasets/openttgames/
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Figure 8.9 – Semantic segmentation of two successive frames of a TTStore-21 sample (He
et al., 2020a).

al., 2019). This is a perspective that we would like to develop, especially since the
dataset is continuously enriched.

Another perspective for fine-grained sport gesture analysis is the use of human
joints, also called “pose”. On the one hand, pose can be used for action classification
(Luvizon et al., 2018; Choutas et al., 2018; Zheng et al., 2020); but it can also be
used to give qualitative measures for performance analysis of a sport (Morel et al.,
2017; Einfalt et al., 2018). However, in our case, qualitative measures extracted from
2D joint skeletons might lead to limited results because of the fine-grained aspect of
table tennis strokes. A more promising approach would be to leverage a 3D model
of the human joints. For that reason, another interesting perspective would be to
combine depth and pose, both computed from the RGB stream, here again to avoid
wearable sensors in the acquisition process. Figure 8.10 presents preliminary results
of such possible combination.

This model is still temporally unstable, because both, the depth and pose, are
not perfectly estimated. Consideration of the temporal information in order to refine
the results might lead to a more robust pose estimation. With such a model, one
could extract qualitative measures of a gesture performed by a player, by comparing
it with a reference stroke for instance.

To conclude, this work had a special focus on table tennis but presented methods
are generic. The same protocol could be extended to other sports. Although, it
requires to have a dedicated dataset for proper training of the algorithm. The
proposed annotation platform can be extended to different sport activities. Likewise,
the presented Spatio-Temporal Convolutional Neural Network can be adapted to
match the number of classes of the considered sport.

This manuscript and its related publications are contributions to fine-grained
action classification, and we hope that other artificial intelligence methods can be
built from this work. If there are still steps to take, we are optimistic about the fact
that the expansion of computer vision will transform, in a near future, key areas of
performance analysis in sport to improve the experience of sportsmen and women
in their practice.

Fine-Grained Action Detection and Classification from Videos with STCNNs.
Application to Table Tennis.

185



a. Estimated pose from RGB image b. Estimated depth from RGB image
(Newell et al., 2016) (Ramamonjisoa and Lepetit, 2019)

c. Front 3D d. Side 3D e. Back sided 3D f. Underneath 3D
view view view view

Figure 8.10 – 3D skeleton visualization from the combination of the pose and the depth
estimated from a single RGB image.
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Appendix B

Sports Video Classification:
Classification of Strokes in Table
Tennis for MediaEval 2019 and 2020

Abstract

Fine-grained action classification has raised new challenges compared to classical
action classification problem. In contrast with classical action recognition datasets
which comprise a wide variety of diverse actions, we focus on one sport which is table
tennis. Sport video analysis is a very popular research topic, due to the variety of
application areas, ranging from multimedia intelligent devices with user-tailored
digests, up to analysis of athletes’ performances. Running since 2019 as a part of
MediaEval, we offer a task which consists in classifying table tennis strokes from
videos recorded in natural conditions at the University of Bordeaux. The aim is to
build tools for teachers, coaches and players to analyse table tennis games. Such tools
could lead to an automatic profiling of the player and the training session could then
be adapted for improving more efficiently the sportsmen and sportswomen skills.

1 Introduction

Action detection and classification is one of the main challenges in visual content
analysis and mining (Stoian et al., 2016). Over the last few years, the number of
datasets for action classification has drastically increased in terms of video content,
resolution, localization and number of classes. However the latest research shows
that classification performed using deep neural networks often focuses on the whole
scene and the background and not on the action itself.

Sport video analysis has been a very popular research topic, due to the variety
of application areas, ranging from multimedia intelligent devices with user-tailored
digests, up to analysis of athletes’ performance (Einfalt et al., 2018). The Sport
Video Classification project was initiated between the Faculty of Sports STAPS of
the University of Bordeaux and the computer science laboratories LaBRI of the
University of Bordeaux and MIA of La Rochelle University. This work is supported
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by the New Aquitania Region through CRISP project - ComputeR vIsion for Sport
Performance and the MIRES federation. The goal of this project is to develop
artificial intelligence and multimedia indexing methods for the recognition of table
tennis sport activities. The ultimate goal is to evaluate the performance of athletes,
with a particular focus on students, in order to develop optimal training strategies.
To that aim, a video corpus named TTStroke-21 was recorded with volunteered
players. These data represent are of great scientific interest for the Multimedia
community participating in the MediaEval campaign.

Several datasets such as UCF101 (Soomro et al., 2012), HMDB51 (Kuehne et
al., 2011) and AVA (Gu et al., 2018) have been used for many years as benchmarks
for action classification methods. In the work of Liu and Hu (2019), spatio-temporal
dependencies are learned from the video using only RGB images for classification.
This method is promising but scores are still below the multi-modal methods of
I3D (Carreira and Zisserman, 2017). More recently, datasets have been enriched,
like JHMDB (Jhuang et al., 2013) and Kinetics (Smaira et al., 2020) or fused like
AVA_Kinetics (Li et al., 2020). Some also focus on the intra-class dissimilarity
such as the Something-Something dataset. Others, such as the Olympic Sports
dataset (Niebles et al., 2010), focus on sport actions only. However those datasets
are not dedicated to a specific sport and its associated rules. Few datasets focus
on fine-grained classification. We can cite FineGym recently introduced by Shao et
al. (2020), which focuses on gymnastic videos. Similarly, our dataset TTStroke-21
(Martin et al., 2020c) focuses on table tennis strokes.

TTStroke-21 is manually annotated by professional players or teachers of table
tennis, making the annotation process longer, but more temporally and qualitatively
accurate. Classification methods such as I3D models or LTC model (Varol et al.,
2018) performing well on UCF101 dataset inspired the work done by Martin et al.
(2018, 2020c) which introduces a T-STCNN - Twin Spatio Temporal Convolutional
Neural Network. Here, the video stream and derived computed optical flow are
passed through the branches of the T-STCNN. Martin et al. (2019d) also inves-
tigated the normalization of the flow in order to improve the classification score.
They also introduce an attention block to improve the performances and speed of
convergence (Martin et al., 2021a). The inter-similarity of actions - strokes - in
TTStroke-21 makes the classification task challenging and the multi-modal method
seemed to improve performances. To better understand learned features and classi-
fication process taking place in the T-STCNN, we also developed a new visualization
technique (Fuad et al., 2020).

Recent work focusing on Table Tennis Wang et al. (2020) tries to get the tactics
of the players based on their performances during matches using a Markov chain
model. Liu et al. (2019b); Xia et al. (2020); Tabrizi et al. (2020) are interested on
stroke recognition using sensors. Voeikov et al. (2020) focus on segmentation of the
player, ball coordinates and event detection while Wu and Koike (2020); Lin et al.
(2020) focus solely on the trajectory of the ball.

In Section 2, we first introduce the specific conditions of usage of this data then
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describe TTStroke-21 and the task respectively in Sections 3 and 4. The evaluation
method is explained in Section 5. Supplementary notes are shared in Section 6.
More information may be found on the dedicated GitHub web page1.

2 Specific Conditions of Usage

TTStroke-21 is constituted of videos with players playing table tennis in natural
conditions. Even if we are using an automatic tool for blurring players’ faces, some
faces are misdetected on few frames and thus some players remain identifiable. In
order to respect the personal data and privacy of the players, this dataset is subject
to an usage agreement, referred to as Special Conditions. These Special Conditions
apply to the use of videos, referred to as Images, generated in the framework of the
program Sports video classification: classification of strokes in table tennis, for the
implementation of the MediaEval program. They correspond to the specific usage
agreement referred to in the Usage agreement for the MediaEval 2020 Research Col-
lections, signed between the User and the University of Delft. The full and complete
acceptance, without any reservation, of these Special Conditions is a mandatory pre-
requisite for the provision of the Images as part of the MediaEval 2020 evaluation
campaign. A complete reading of these conditions is necessary and requires the user,
for example, to obscure the faces (blurring, black banner, etc.) in the video before
use in any publication and to destroy the data by October 1st, 2021.

3 Dataset Description

In the MediaEval 2019 and 2020 campaign, we released a subset of the TTStroke-21
dataset which has been specifically recorded in a sport faculty facility using a light-
weight equipment, such as GoPro cameras. It is constituted of player-centred videos
recorded in natural conditions without markers or sensors, see Figure B.1.

It comprises 20 table tennis stroke classes, i.e. 8 services: Serve
Forehand Backspin, Serve Forehand Loop, Serve Forehand Sidespin,
Serve Forehand Topspin, Serve Backhand Backspin, Serve Backhand Loop,
Serve Backhand Sidespin, Serve Backhand Topspin; 6 offensive strokes:
Offensive Forehand Hit, Offensive Forehand Loop, Offensive Forehand
Flip, Offensive Backhand Hit, Offensive Backhand Loop, Offensive
Backhand Flip; and 6 defensive strokes: Defensive Forehand Push, Defensive
Forehand Block, Defensive Forehand Backspin, Defensive Backhand Push,
Defensive Backhand Block, Defensive Backhand Backspin. Also all the
strokes can be divided in two super-classes: Forehand and Backhand. This
taxonomy was designed with professional table tennis teachers.

1https://multimediaeval.github.io/2020-Sports-Video-Classification-Task/
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4. Task Description

a. Video acquisition b. Annotation platform

Figure B.1 – TTStroke-21 acquisition process.

All videos are recorded in MPEG-4 format. Unlike the task at MediaEval
2019 Martin et al. (2019a), most of the faces have been blurred for MediaEval
2020 Martin et al. (2020a). To do so, faces are detected with OpenCV deep learning
face detector, based on the Single Shot Detector (SSD) framework with a ResNet
base network, for each frame of the original video. The detected face is blurred and
frames are re-encoded in a video.

The organisation of the delivered data is as follows:

• The provided dataset is split into two subsets: i) training set and ii) test set;

• In each directory, there are several videos (in MPEG-4 format) and each video
may contain several actions;

• Each video file is provided with a XML file describing the actions present in
the video and if the player is right-handed or left-handed;

• Each action has 3 attributes: the starting frame, the ending frame, and the
stroke class;

• In the train set XML files, all the attributes are specified. In the test set
XML files, only the starting and ending frames are specified. The stroke class
attribute is purposely set to value: “Unknown”, and should be updated by the
participants to one of the 20 valid classes.

.

4 Task Description

The Sport Video Annotation task consists, for each action of each test video, in
assigning a label using a given taxonomy of 20 classes of Table Tennis strokes.
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Participants may submit up to five runs. For each run, they must provide one
XML file per video file containing, with the actions associated with the recognised
stroke class. Runs may be submitted as an archive (zip or tar.gz file) with each run
in a different directory. Participants should also indicate if any external data, such
as other dataset or pretrained networks, was used to compute their runs. The task
is considered fully automatic. Once the video are provided to the system, results
should be produced without any human intervention.

5 Evaluation

For MediaEval 2019 and MediaEval 2020, we proposed a light-weight classification
task. It consists in classification of table tennis strokes which temporal borders are
supplied in the XML files accompanying each video file. Hence for each test video
the participants are invited to produce an XML file in which each stroke is labelled
accordingly to the given taxonomy. This means that the default label “unknown”
has to be replaced by the label of the stroke class that the participant’s system has
assigned. All submissions will be evaluated in terms of per-class accuracy (Ai) and
of global accuracy (GA). The Ai is computed for each i-th class as:

Ai = TPi/(Ngti) (B.1)

Here TPi is the number of True Positives, i.e. correctly labelled, by the participant’s
system, strokes for the given i-th class,Ngti is the number of recorded strokes of the
i-th class in the test dataset.

GA = TP/(Ngt) (B.2)

Here TP =
∑
TPi is the number of correctly labelled strokes for the whole dataset,

and Ngt is the number of strokes in the ground truth - the whole test set.
The organizers will also provide to the participants different confusion matrices:

one considering all the classes, and others considering the type of the stroke such as:
offensive, defensive and defensive and/or using forehand and backhand superclasses
of the strokes.

6 Discussion

In 2019 (Martin et al., 2019a) we had six fully registered participants to our task and
three submitted their runs. They had reached a maximum accuracy of 22.9% (Mar-
tin et al., 2019b), 14.1%(Calandre et al., 2019) and 11.3% (Sriraman et al., 2019)
leaving room for improvement. Results were presented the 27th until the 30th of
October 2019 in Sophia Antipolis, France.

In 2020 we have ten fully registered participants. Results will be presented online
due to the Covid19 pandemic the 11th until 15th of December 2020.
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Appendix C

Source Code Available on GitHub

In order to give access to the implementation details of this thesis work, the code has
been shared on the online platform GitHub1. The dedicated web page is represented
in Figure C.1.

Figure C.1 – GitHub web page dedicated to CRISP project and its classification models
implementation.

It has been similarly done for the MediaEval 2020 Sports Video
Classification task2.

1https://p-emartin.github.io/CRISP/
2https://multimediaeval.github.io/2020-Sports-Video-Classification-Task/
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Appendix D

Scientific Popularisation

This thesis was also the object of various popularisation events. We report some of
them in this appendix.

1 MT180s

MT180s is a popularisation challenge dedicated to PhD thesis in which the candi-
dates must, with simple words, explain is PhD topic in 180 seconds. This contest is
in french but its equivalent exists in English: 3MT (3 minutes My Thesis). MT180s
has been performed at different occasions1 as depicted in Figures D.1 and D.2. 3MT
has also been performed at ICIP conference in 2019 (Martin et al., 2019c).

Figure D.1 – MT180s competition as representative of the University of Bordeaux.

1https://www.youtube.com/watch?v=5aBVSrVLrks
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Figure D.2 – MT180s for animating the 80th anniversary of The French National Centre
for Scientific Research (CNRS): “Villages des 80ans du CNRS”. Credits to Gautier DUFAU
for the photography.
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2 Ma Thèse en 1024 Charactères

The Société Informatique de France (SIF) or the Computer Science Society in En-
glish, offers a newsletter dedicated to computer science. This newsletter appears
three times a year. A section is dedicated to the ongoing thesis and have to be
presented in exactly 1024 characters. This thesis led to one contribution in this
section2:

“Ma thèse porte sur la reconnaissance des gestes sportifs à partir de vidéos et
j’applique mes travaux au tennis de table.
Le but est de programmer un environnement informatique intelligent sur lequel étu-
diants et enseignants peuvent analyser la façon de jouer des sportifs. Le logiciel
permet de segmenter et de classifier automatiquement les coups de tennis de table
effectués par les joueurs à partir de vidéos. Ainsi le profil des joueurs peut être
renseigné et l’enseignant peut adapter son cours pour améliorer au mieux leurs per-
formances.
Pour ce faire, nous avons enregistré des jeux de tennis de table avec des étudiants.
Ces enregistrements ont ensuite été annotés temporellement par des professionnels
sur une plateforme participative d’annotation.
Cette nouvelle base de données, surnommée TTStroke21, nous permet d’entraîner
et de tester notre modèle.
On introduit un réseau de neurones jumeau à convolutions spatio-temporelles prenant
en entrée le flux vidéo et le flot optique. Traitées parallèlement, ces données permet-
tent une classification efficace des segments de vidéos. A partir de ces classifications
les frontières temporelles des coups effectués et leur classe sont renseignées.”

2https://www.labri.fr/projet/AIV/pemartin/1024-numero-15_Article28.pdf
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3 La Nuit des Chercheurs

The European Researchers’ Night is an event that each year, for one evening, allows
the public and researchers to meet in a festive and friendly atmosphere. This event
(Figure D.3), which mobilizes more than 100 cities throughout Europe and 12 in
France, is organized in Bordeaux by Cap Sciences, the University of Bordeaux and
the University Bordeaux Montaigne. This thesis has been the object to several form
of popularisation during this event in 2018 and 2019:

• MT180s as described above.

• speed searching: speed dating principle, meeting of the public that changes
every 8 minutes.

• meeting in the dark: meeting of the audience in a dark space, interactions on
the thesis topic for 15 minutes.

• The story desk: 3 objects are presented to the public who must guess your
research.

Figure D.3 – Teaser frame of The European Researchers’ Night 2018.
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4 Jamming Assembly

The Jamming Assembly is a digital creation contest by team and on a common
theme. Once the themes have been announced, the teams have 48 hours to complete
their production. This thesis work was one the theme. Figure D.4 is an extracted
frame of one of the projects which led to a short movie3.

Figure D.4 – Snapshot from short film made during Jamming Assembly.

3https://vimeo.com/454459965 with password crisp
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