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December 8th, 2020



2



Contents

1 Introduction 7

1 Diffusion Approximations . . . . . . . . . . . . . . . . . . . . . . 7

2 Fields of Application . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Queueing theory . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Epidemiology . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Genetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 Our contribution: a general approach to the rate of convergence
in law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Roadmap 19

1 The goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Overview of the Stein Method . . . . . . . . . . . . . . . . . . . . 20

3 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Choice of a functional space 25

1 Fractional Sobolev spaces . . . . . . . . . . . . . . . . . . . . . . 25

2 Wiener structure on a fractional Sobolev space . . . . . . . . . . 27

4 Stein Method in Wiener fractional Sobolev Spaces 37

1 Malliavin calculus for Poisson processes . . . . . . . . . . . . . . 37

2 Stein Operator and linear interpolation . . . . . . . . . . . . . . 41

5 Application to a class of Markov Processes 49

1 A class of Markov processes . . . . . . . . . . . . . . . . . . . . . 49

2 The scaling of the processes . . . . . . . . . . . . . . . . . . . . . 50

3 Interpolation of these processes . . . . . . . . . . . . . . . . . . . 53

3.1 Distance between the process and its interpolation . . . . 53

3.2 Distance between two affine interpolations . . . . . . . . . 54

4 A central limit theorem . . . . . . . . . . . . . . . . . . . . . . . 56

6 Application to Queueing Models 61

1 The M/M/∞ queue . . . . . . . . . . . . . . . . . . . . . . . . . 61

1.1 Short introduction to the M/M/∞ model . . . . . . . . . 61

1.2 Straight application of our model . . . . . . . . . . . . . . 63

2 The M/M/1 model . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.1 Short introduction to the M/M/1 model . . . . . . . . . . 64

2.2 Higher rate of convergence for a smaller class of functions 66

3



7 Other Applications 69

1 The ON/OFF model . . . . . . . . . . . . . . . . . . . . . . . . . 69

2 The SIR model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3 The Moran model with selection . . . . . . . . . . . . . . . . . . 73

8 Appendix 75

1 Besov-Liouville Spaces . . . . . . . . . . . . . . . . . . . . . . . . 75

2 Moment bound for Poisson variables . . . . . . . . . . . . . . . . 79

Aknowledgement

All my thanks go to professors Laurent Decreusefond and Pascal Moyal, who
were kind enough to accept to de supervise my doctoral thesis, and had the
intelligence to invent a fascinating subjectas well as the patience to guide me
in my research work. Without them this work would not have been possible.
I thank Kavita Ramanan and Ivan Nourdin who have accepted to review my
work and act as referees. I thank also professors Laure Coutin and Philippe
Robert, who have accepted to be part of the jury and last but not least, pro-
fessor François Roueff who greeted me in the laboratory, and guided me in the
administrative arcanes of the school. I finally thank for their patience my wife
Olga and my daughters Juliette and Enora whom I did not attend as much as
expected while I was writing this thesis.

Résumé

Dans de nombreux champs d’applications (files d’attentes, épidémiologie, génétique,
finance), les processus de Markov sont un outil privilégié de modélisation de
processus aléatoires. Malheureusement, il est souvent nécessaire d’avoir re-
cours à des espaces d’états très grands voire infinis, rendant l’analyse exacte
des différentes caractéristiques (stabilité, loi stationnaire, temps d’atteinte de
certains domaines, etc.) du processus délicate ou impossible. Depuis longtemps,
grâce notamment à la théorie des martingales, on procède à des approximations
par des diffusions browniennes. Celles-ci permettent souvent une analyse ap-
prochée du modèle d’origine.
Le principal défaut de cette approche est que l’on ne connâıt pas l’erreur com-
mise dans cette approximation. Il s’agit donc ici de développer une théorie
du calcul d’erreur dans les approximations diffusion. Depuis quelques temps, le
développement de la méthode de Stein-Malliavin a permis de préciser les vitesses
de convergence dans les théorèmes classiques comme le théorème de Donsker
(convergence fonctionnelle d’une marche aléatoire vers un mouvement brown-
ien) ou la généralisation trajectorielle de l’approximation binomiale-Poisson.
Il s’agit dans ce travail de poursuivre le développement de cette théorie pour
des processus de Markov comme ceux que l’on rencontre en théorie des files
d’attente ou en épidémiologie et dans bien d’autres domaines appliqués. Or
tous les travaux précédents utilisant la méthode de Stein en dimension infinie
ont étudié la convergence de processus vers des mouvements Browniens stan-
dards ou vers des processus de Poisson alors que les limites fluides des approxi-
mations diffusions peuvent prendre des formes variées. Il s’agit donc d’inventer
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une manière d’appliquer la méthode de Stein à un ensemble plus large de situ-
ations.
On se situe d’emblée dans un espace de dimension infinie : les espaces de Sobolev
fractionnaires, qui sont suffisamment larges pour comprendre les fonctions con-
tinues Hölderiennes que sont les mouvements Browniens et les fonctions con-
stantes par morceaux que sont les processus de Poisson, et qui présentent des car-
actéristiques fort commodes facilitant les calculs (espaces de Banach séparables
, existence d’une injection canonique dans un espace de Hilbert permettant
d’utiliser un produit scalaire notamment). Partant de la représentation des pro-
cessus de Markov comme mesures de Poisson, on étend la méthode développée
par Laurent Decreusefond et Laure Coutin pour estimer la vitesse de conver-
gence dans les approximations diffusion. On munit ces espaces de Sobolev d’une
mesure de Wiener abstraite et l’on construit un processus d’Ornstein Uhlenbeck
en dimension infinie, ayant pour mesure invariante la mesure de Wiener. On est
alors en mesure d’exprimer l’équation de Stein caractérisant la convergence vers
le mouvement Brownien en utilisant les travaux de Shih. Cette équation reste
valide pour toute fonctionnelle Lipschitzienne. Afin d’exploiter cette équation,
il faut utiliser le calcul de Malliavin sur les processus de Poisson, et notamment
la formule d’intégration par parties.
On étend la méthode de Stein-Malliavin à des vecteurs de processus dépendants
plutôt qu’à un seul processus. Si la suite de processus converge vers une limite
pouvant être exprimée comme limite d’une équation différentielle à paramètres
déterministes, la limite est un processus Gaussien changé de temps. La méthode
de Stein Malliavin étant développée surtout pour montrer la convergence vers
le mouvement Brownien standard, on l’adapte à la convergence vers un pro-
cessus changé de temps à travers des méthodes d’approximations linéaires, le
processus changé de temps étant approximativement un mouvement Brownien
standard sur un petit espace de temps. On utilise deux échelles de temps afin
d’approcher au mieux le processus discret de départ et le mouvement continu
à la limite. Un calcul d’optimisation permet enfin d’obtenir l’échelle de temps
la plus appropriée pour évaluer la vitesse de convergence au plus juste. Celle
s’avère être en définitive de n−1/6 lnn.
Cette méthodologie est alors appliquée à quatre exemples d’approximations
diffusion : en théorie des file d’attentes, les files M/M/∞ et M/M/1. En
épidémiologie le modèle SIR de catégorisation des populations entre suscepti-
bles, infectés et remis. En génétique le modèle On/Off. Dans tous ces cas, la
vitesse de convergence peut être bornée par la quantité n−1/6 lnn. à un facteur
multiplicatif constant près. Cette méthode n’est toutefois pas universelle, et le
modèle de Moran, utilisé en génétique des populations, ne se prête pas à son
utilisation, car il ne converge pas vers une équation différentielle à paramètres
déterministes. D’autres méthodes restent à découvrir pour déterminer sa vitesse
de convergence.
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Chapter 1

Introduction

1 Diffusion Approximations

In the present manuscript we shall be interested in particular classes of stochastic
models and their asymptotic behaviour. A stochastic process is just a model
for a random quantity that evolves through time. Such a mathematical object
is a collection of random variables {Xt : t ∈ T} indexed by a set T which we
can interpret as a set of times. It will often be denoted simply by X in the
sequel. In order to denote the value of the process X at time t, we shall use
either X(t) or Xt, depending on whether adding an index or parenthesis to the
notation makes it easier to read, and these two notations should be considered as
equivalent. For us T will always be a compact interval [0, T ] in R+ (continuous
time setting). For all t ∈ [0, T ], we shall use the notation Ft to mean the history
of the process up until time t, that is to say the information available to us if
we watched the process up to time t. A stochastic process will be said to have
the Markov property if its future evolution conditional on knowing all of Ft is
the same as its evolution conditional on knowing just Xt. In other words, where
it goes next may depend on its current value, but not on how it evolved before
getting to that value.

A stochastic process X is said to be discrete if the random variables Xt

are themselves discrete random variables, that is take their values in a finite
or countable state space. There are said to be continuous if they can take any
value in R. In many fields of interest, for instance in queueing theory, in biology,
information theory, finance or graph theory, one can find quite involved discrete
stochastic processes which can be approximated by diffusions, i.e. continuous
markovian processes obtained as solutions of a stochastic differential equation
(i.e a differential equation whose unknown or whose variables are themselves
random variables). Such processes are called ”diffusion approximations”. Most
often, starting from a discrete process, a discrete parameter is introduced in
order to change the scale of the sample size, of the population of interest or
of time. When this parameter increases to infinity one obtains a limit which
follows the same law as a continuous process.

In practical applications, this enables to replace the discrete process when
observed over a sufficiently large population or when repeating observations
at a high enough frequency, by a continuous approximation, supposed to be
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easier to manipulate. The notion of approximation diffusion is built on that
of weak convergence as the limit diffusion process is deemed to be a suitable
approximation if the parameterized discrete process sequence converges in law
towards the diffusion. Weak convergence towards stochastic processes was first
correctly described by Prokhorov who uncovered the concept of tightness of
measures ([98]) and devised the Prokhorov distance, and by Skorokhod, who
proposed the Skorokhod topology ([110]) where tightness could be reduced to a
form of the Arzela Ascoli theorem.

The most basic and easy to understand result in the diffusion approxima-
tion literature is Donsker’s theorem which states that a sum of random variables,
when viewed as a stochastic process, can be approximated by a Brownian mo-
tion. Donsker proved in [35] that if the Zn, n ∈ N variables were independent
and identically distributed, denoting Sn = Z1 + ...Zn and for all t ≥ 0,

Xn(t) = n1/2(n−1Sbntc −E [Zn] t),

the sequence (Xn) of processes defined by Xn(t) converges weakly towards a
standard Brownian motion when n increases to infinity. A number of important
extensions to this Donsker theorem have been made over the years in order to
lift the i.i.d condition and to allow some kind of dependence or some form of
non stationarity. For instance if Zn is a stationary mixing process ([43]), or if
Zn is a real valued functional of a time homogeneous positive recurrent markov
chain ([92]).

Most of the mathematical work made on approximation diffusions has been
motivated by practical applications.

2 Fields of Application

2.1 Queueing theory

In 1909, Agner Krarup Erlang, a Danish engineer employed by the Copenhagen
Telephone Exchange, published [42] where he modeled the number of telephone
calls arriving at an exchange by a Poisson process. If there were more jobs at
a node than there were servers, then jobs would queue and wait for service. In
the 1950s queueing theory became an area of research interest to mathemati-
cians. Queueing theory was systematized in 1953 by Kendall, who proposed
describing queueing models using three factors written A/S/c ([67]) where A
denotes the arrival rate of clients in the queue, S the service time distribution
and c the number of service channels open at the node. The arrival process
can be denoted (among others) by the symbol M for a Markovian (Poisson)
process or G for a General, independent, distribution; the service time distri-
bution can be denoted by the symbol M for exponential distribution, D for a
deterministic service time, or G for a General, independent distribution. Er-
lang had solved the M/D/1 queue in 1917 and M/D/k queueing model in 1920
(see [72]). The M/G/1 queue was solved by Felix Pollaczek in 1930, ([95]) a
solution later recast in probabilistic terms by Khinchin and now known as the
Pollaczek–Khinchin formula ([69]). In 1953 David George Kendall solved the
G/M/k queue ([67]). In 1957 Pollaczek studied the G/G/1 using an integral
equation([96]). John Kingman gave a formula for the mean waiting time in a
G/G/1 queue: Kingman’s formula ([70]).
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Leonard Kleinrock worked on the application of queueing theory to message
switching in the early 1960s and packet switching in the early 1970s. His initial
contribution to this field was his doctoral thesis at the Massachusetts Institute
of Technology in 1961([73]) . His theoretical work published in the early 1970s
underpinned the use of packet switching in the ARPANET, a forerunner to
the Internet. The matrix geometric method, developed by Neuts and his stu-
dents starting around 1975, and the more complicated matrix analytic method
have allowed queues with phase-type distributed inter-arrival and service time
distributions to be considered ([100]).

With time, more complex models have been studied. Networks of queues
are systems in which a number of queues are connected, and a protocol called
customer routing decides how customers go from one node to another once they
are serviced. When a customer is serviced at one node it can join another node
and queue for service, or leave the network. For networks of n nodes, the state
of the system can be described by an n–dimensional vector (x1, x2, ..., xn) where
xi denotes the number of customers queueing at each node.

The simplest non-trivial network of queues is called tandem queues: two
queues with one server each, having independent service times where customers
joining the first queue immediately enter the second queue on completing service.
The theory of weak convergence for queueing networks has been largely based
on the development of convenient representations for the corresponding queue
length processes. By applying the continuous mapping principle, random time
change theory and pairing techniques to the representation, diffusion limits for
the network were successfully obtained. The first significant results in this area
were obtained by Jackson ([61], [62]). He proved that an efficient product-form
stationary distribution existed. A probability distribution π on Rd is said to be
of product form if

π( dx1 × ...× dxd) =

d∏
i=1

pi(xi) dxi

In the case where the total number of customers in the network remains constant
the network is called a closed network and it has also been shown to have a
product–form stationary distribution by Gordon and Newell ([49]). This result
was extended to networks with very general service time, regimes and customer
routing schemes ([6]). So called Kelly networks, where customers of different
classes experience different priority levels at different service nodes, have also
been investigated ([66]). Another type of network are G-networks first proposed
by Gelenbe in 1993 ([48]). These networks do not assume exponential time
distributions like the classic Jackson Network.

In those networks of queues, the complex behaviour of the queueing model
is replaced by a more tractable Brownian network which is a diffusion process
obtained by subjecting a Brownian motion to reflection at the boundaries of
an appropriately defined region which spans at the limiting state space of the
queueing network. In the case of a single server queue, this Brownian motion
is unidimensional. If there are d servers, the reflected Brownian motion is a
multidimensional object whose domain is an orthant. Skorokhod had ([111])
derived an equation for diffusion processes with a reflecting boundary and proved
existence and uniqueness of the solution in the unidimensional case: specifically,
if Y is a càdlàg function on R+ taking values in a domain R and such that
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Y (0) ≥ 0, Skorokhod built a function X such that X was constrained to remain
within the closure of domainD, equal to Y inside this domain and being reflected
at the border of that domain: He proved that in the case D = R+ there was a
unique couple (X,R) in D which was a solution to what became known as the
Sokhorod problem, i.e. such that for all t ≥ 0,

1. X(t) = Y (t) +R(t);

2. X(t) ≥ 0, the map t→ R(t) is non decreasing and R(0) = 0;

3.

∫ ∞
0

X(s) dR(s) = 0

In this case the solution (X,R) satisfies X(t) = Y (t) ∨ sup0≥s≥t(Y (t) − Y (s))
and R(t) = 0 ∨ sup0≥s≥t(−Y (s)) for all t ≥ 0. Assuming that the domain D
was convex, Tanaka extended this result to the multidimensional case ([114]).

Harrison and Reiman ([54]) managed to develop a complete analytical theory
for a multidimensional diffusion process whose state space lied in a non negative
orthant. Reiman ([101]) applied the multidimensional reflection map to establish
heavy traffic limits with multidimensional reflected Brownian motion limit for
single class open queuing networks. Peterson ([93]) provided limit theorems for
feedforward multiclass networks. A more difficult problem is to prove such a
limit theorem for multiclass networks with feedback because the conditions for
stability of a multiclass network are not well understood (see for instance [79]
or [108]). Despite the lack of a limit theorem in the multiclass case, the research
focused on developing a theory for the diffusions. In particular a large body of
research aimed at lifting the conditions put on the domain and proving existence
and uniqueness of the Skohorod problem solution with an approach based on
stochastic differential equations with reflection. For instance Dupuis and Ishii
([39]) focused on the case when the domain was a convex polyhedron and showed
that the solution mapping was Lipschitz continuous when a certain convex set,
defined in terms of the normal directions to the faces of the polyhedron and the
directions of the constraint mechanism, could be shown to exist. In a subsequent
paper ([40]), they were able to show the strong existence and uniqueness of a
solution to the Skorokhod problem for domains that might have corners and
for which the allowed directions of reflection at a point on the boundary of the
domain could possibly be oblique. Dupuis and Ramanan improved this result
in [37] and [38]. Other contributions include [18],[115], or [14].

In the meantime, Stroock and Varadhan ([113]) studied multidimensional
diffusions with reflecting boundaries by introducing the generator of the diffusion
and formulating the problem in a submartingale setting. They adapted their
well known approach amounting to describe a diffusion by its initial condition
and the condition that the process M , defined for all t ≥ 0 by

Mt = f(Xt)− f(X0) +

∫ t

0

Lf(Xs) ds,

be a martingale, to the study of diffusions with boundary conditions, requir-
ring that the latter expression be a submartingale. Using this line of reasoning,
Varadhan and Williams proved in [116] that if the state space was an infinite
two dimensional wedge with an angle of ξ, there existed a unique strong Markov
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process behaving as a Brownian motion inside the wedge and reflecting instanta-
neously on the two borders with angles of θ1 and θ2 if and only if (θ1+θ2)/ξ < 2.
Williams later showed in [119] that under the assumption that the directions of
reflection satisfied a skew symmetry condition, a d dimensional reflected brow-
nian motion with constant drift contained in the interior of a polyhedron could
be characterized in terms of a family of submartingales. Other examples of this
stream of literature include [76], [77], or [24].

Kang and Ramanan managed in [63] to obtain a full characterization of
reflected diffusions in those domains leading to explicit formulas for stationary
reflected Brownian motions with state dependent drifts. They proved in [64] the
equivalence between the submartingale and the stochastic differential equations
approaches in piecewise smooth domains in a multidimensional setting.

Another stream of recent research has focused on modeling queueing systems
as point measure valued processes, in order to provide an exhaustive information
on the state of the system and the residual processing times of the customers
present in the queue at a given time for the renormalized process representing
the average behaviour of the queue. A Dirac measure is therefore put at all
processing times. Such a framework is particularly adequate to describe particles
or branching systems (see [23], [80], [17]), or queueing systems whose dynamics
are too complex to be carried on with simple finite-dimensional processes: the
processor sharing queue (see [52], [103]), queues with deadlines (see [36] for
a queue under the earliest deadline first service discipline without reneging,
[[27], [28]] for the same system with reneging and [51] for a processor sharing
queue with reneging), or the Shortest Remaining Processing time queue ([2],
[86]).In [32] Decreusefond and Moyal derived a functional fluid limit theorem
and a functional central limit theorem for a queue with an infinity of servers
M/GI/∞. In contrast, in [99] Kaspi and Ramanan introduce for the study of the
more complicated M/GI/N queue, a different measure-valued representation
keeping track of the ages of customers in service, this representation offering the
advantage of yielding semimartingale representations that are more amenable
to computation.

2.2 Epidemiology

In 1927 Kermack and Mc Kendrick [68] proposed a model for the dynamics of
epidemics. The population was assigned to three mutually exclusive compart-
ments Susceptible, Infectious, or Recovered. The model is dynamic in that the
numbers in each compartment may fluctuate over time and are therefore a func-
tion of time. Each member of the population typically progresses from Suscep-
tible to Infectious to Recovered. We are interested in the number of individuals
in each of these categories, and this number is denoted S, I and R respectively.
Between S and I, the transition rate is assumed to be d(S/N)/dt = −βSI/N2,
where N is the total population, β is the average number of contacts per per-
son per time, multiplied by the probability of disease transmission in a contact
between a susceptible and an infectious subject, and SI/N2 is the fraction of
those contacts between an infectious and susceptible individual. This is a con-
sequence of the Law of mass action : if the individuals in a population mix
homogeneously, the rate of interaction between two different subsets of the pop-
ulation is proportional to the product of the numbers in each of the subsets
concerned. Between I and R, the transition rate is assumed to be proportional
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to the number of infectious individuals which is γI. β is the infection param-
eter and γ the removal parameter giving the rate at which infectives become
immune.

Kermack and McKendrick obtained two basic results, referred to as their
Threshold Theorem. Solving for the system of differential equations they ob-
tained first that

dI

dt
= βI(S − γ

β
)

In order for the epidemic to grow, we must have dI/ dt ≥ 0 and therefore S
must be greater than γ/β so that the initial number of susceptibles must exceed
a threshold value. Second,

S∞
N

= −R−1
0 W (−S0R0 exp(−R0(1−R0/N))

N
)

where W is the Lambert function defined for x ∈ [−1/e,∞] by the equation

W (x)eW (x) = x.

This shows that at the end of an epidemic, unless S0 = 0, not all individuals
of the population have been removed, so some must remain susceptible. This
means that the end of an epidemic is caused by the decline in the number of
infectious individuals rather than an absolute lack of susceptible subjects.

Epidemic modelling has three aims. The first is to understand better the
mechanisms by which diseases spread; for this, a mathematical structure is
important. For example, the simple insight provided by Kermack and McK-
endrick’s model that the initial proportion of susceptibles must exceed the crit-
ical value β/γ for an epidemic to grow, could not have been reached without
their mathematical equations. The second aim is to predict the future course of
the epidemic. Again using Kermack and McKendrick’s general epidemic model
as an example, we can try to estimate the number of infected people at the end,
in order to estimate the medical costs of the epidemic, or to assess the possible
impact of any outbreak of the disease, or to schedule hospital capacity. The
third aim is to understand how we may control the spread of the epidemic by
education, vaccination or isolation. In order to make reasonable predictions and
develop methods of control, we must be confident that the model captures the
essential features of the course of an epidemic. Thus, it becomes important to
validate models by checking whether they fit the observed data.

The model proposed by Kermack and Mc Kendrick was deterministic and
assumed that the sizes of the compartments were large enough that the mixing
of members be homogeneous. However, at the beginning of a disease outbreak,
there is a very small number of infective individuals and the transmission of in-
fection is a stochastic event depending on the pattern of contacts between mem-
bers of the population. A deterministic formulation is therefore not suitable.
Fortunately, the parameters of the model can be interpreted in a probabilistic
way. For instance, the probability of an infectious individual recovering in any
time interval dt is γdt. If an individual is infectious for an average time period
T , then γ = 1/T . This is also equivalent to the assumption that the length of
time spent by an individual in the infectious state is a random variable with an
exponential distribution.
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In the later 1940s, Bartlett ([5]) formulated a stochastic epidemic model
by analogy with the Kermack-McKendrick deterministic model and stochastic
models for epidemic processes started to proliferate.

The ”classical” SIR model may be modified by using more complex and
realistic distributions for the transition rates between the compartiments or
by adding new compartiments to represent for instance vaccinated individu-
als, individuals that have been exposed to the disease but are not yet conta-
gious, or individuals who are infected but asymptomatic, with lower infectivity
than symptomatic individuals. It can also be modified to deal with diseases
where people who have recovered lose their immunity and become suscepti-
ble again. The development and analysis of compartmental models has grown
rapidly since the early models. Many of these developments are due to Hethcote
([55],[56],[59],[57],[58]). Age is one of the most important characteristics in the
modeling of populations and infectious diseases. Individuals with different ages
may have different reproduction and survival capacities. Diseases may have dif-
ferent infection rates and mortality rates for different age groups. Individuals
of different ages may also have different behaviors, and behavioral changes are
crucial in control and prevention of many infectious diseases. Young individu-
als tend to be more active in interactions with or between populations, and in
disease transmissions. These issues are addressed by increasing the number of
compartments in the model and by introducing a contact matrix which relates
each compartment with the others taking into account an intercompartment
mixing parameter.

A stochastic branching process description of the beginning of a disease
outbreak begins with the assumption that there is a network of contacts of
individuals, which may be described by a graph with members of the population
represented by vertices and with contacts between individuals represented by
edges. The study of graphs originated with the abstract theory of Erdös and
Rényi of the 1950’s and 1960’s ([102], [41]), and has become important more
recently in many areas. An edge is a contact between vertices that can transmit
infection. The number of edges of a graph at a vertex is called the degree of
the vertex. The degree distribution of a graph is pk, where pk is the fraction
of vertices having degree k. The degree distribution is fundamental in the
description of the spread of disease. Of course, for the modelling of infectious
diseases, networks are bi-directional, with disease transmission possible in either
direction along an edge.

We can define the generating function for all z ∈ [0, 1] by

F0(z) =

∞∑
k=0

pkz
k.

Since
∑∞
k=0 pk = 1, this power series converges for 0 ≤ z ≤ 1, and may be

differentiated term by term. Thus

pk =
F

(k)
0 (0)

k!
, k = 0, 1, 2, ...

It is easy to verify that the generating function has the properties

F0(0) = p0, F0(1) = 1, F ′0(z) > 0, F ′′0 (z) > 0.

13



The mean number of secondary infections, often called R0, is F ′0(1).
These types of models have been studied by Diekmann and Heesterbeek

([33]), or by Callaway ([15]) and Newman ([88], [87]). One possible approach
to a realistic description of an epidemic would be to use a branching process
model initially and then make a transition to a compartmental model when the
epidemic has become established and there are enough infectives that mass ac-
tion mixing in the population is a reasonable approximation. Another approach
would be to continue to use a network model throughout the course of the epi-
demic ([84],[83]). It is possible to formulate this model dynamically, and the
limiting case of this dynamic model as the population size becomes very large is
the same as the compartmental model. The theoretical analysis of network mod-
els is a very active and rapidly developing field ([82],[81]). In more recent models
the connectivity graph is heterogeneous (see for instance [31], where Decreuse-
fond, Dhersin, Moyal and Tran provide a rigorous individual-based description
of the epidemic on a random graph. They show that three degree distributions
are sufficient to describe the epidemic dynamics and describe these distributions
by equations in the space of measures on the set of nonnegative integers)

2.3 Genetics

Pioneering work in the modelization of population genetics dates back to the
1940’s, before the discovery of DNA by Crick and Watson in 1950 which pro-
vided the molecular basis of evolution. The Wright-Fisher-model ([46],[120]) is
used to describe the evolution of a population of individuals (or genes) of two
different types (alleles), called A and a. These types are neutral, meaning their
reproductive success does not depend on the type, and their reproduction is
random. Consider N individuals, each carrying one copy of a specific genetic
locus (a location of interest in the genome). Suppose that at each time unit
each individual randomly chooses another individual (possibly itself) from the
population and adopts its type (“parallel updating”). This is called resampling,
and is a form of random reproduction. Suppose that all individuals update
independently from each other and independently of how they updated at pre-
vious times. Each time unit represents one generation. We are interested in the
evolution of the number of A’s at time n which we denote XN

n (N denotes the
population size and n the generation) The assumption behind the Wright Fisher
model is the gene pool approach. Every individual produces a large number of
gametes of the same type as the individual itself. (A gamete is a cell that fuses
with another cell during fertilisation in organisms that reproduce sexually.) The
offspring generation is then formed by sampling N times without replacement
from this gene pool. This is basically the same as sampling with replacement
from the parent population, so that effectively the offspring individuals choose
their parents from the parent population with replacement and inherit their
type.

The sequence (Xn)n∈N is the discrete-time Markov chain on the state space
Ω = {0, 1, ..., N} with transition kernel

p(i, j) =

(
N

j

)(
i

N

)j (
N − i
N

)N−j
for all (i, j) ∈ Ω2

The states 0 and N are absorbing.
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It is of interest to consider the following space-time rescaling of our process:

Y nt =
1

n
Xn
dnte for allt ∈ [0, T ]n,∈ N

Here, d.e denotes the upper integer part. Y n(t) represents the fraction of
individuals of type A in the population at time t on time scale n. We expect
that, in the limit as n→∞, if the initial condition scales properly, i.e.,

lim
n→∞

Y n0 = Y0

then the rescaled process converges in law to a limiting process, living on state
space [0, 1] and evolving in continuous time. This limiting process, which must
also be a Markov process, turns out to be a diffusion given by the stochastic
differential equation (SDE)

dYt =
√
Yt(1− Yt) dWt

where (Wt)t≥0 is a standard Brownian motion. This SDE has a unique strong
solution for a given Y0. Indeed, the process Y n can be approximated by a
continuous-time analogue: instead of waiting a deterministic time 1/n before
making a transition, wait an exponential time of rate n. This gives a Markov
process with state space {0, 1/n, ...1−1/n, 1} and infinitesimal generator (Lnf)
given by

Lnf

(
i

n

)
= n

n∑
j=0

pn(i, j)

[
f

(
j

n

)
− f

(
i

n

)]
The limiting process Y is the diffusion with state space [0, 1] and infinitesimal
generator L given by

Lf(y) =
1

2
y(1− y)f ′′(y).

Limiting ourselves to functions in C0([0, 1]) we can use the Taylor expansion
of f around i/2N up to second order to prove the convergence of generators.
There is a continuous-time version of the Wright Fisher model, called the Moran
model (see [85]), in which each individual chooses a random ancestor at rate 1
and adopts its type. In other words, the resampling is done sequentially rather
than in parallel. The resulting process X = (Xt)t≥0 is the birth-death process
on the state space Ω with transition rates

i→ i+ 1 at rate bi = (N − i)i/N

i→ i− 1 at rate di = (N − i)i/N

Note that bi = di, i ∈ Ω, and b0 = d0 = bN = dN = 0. The limit of the scaled
Moran Model is also a Wright Fisher diffusion.

A third model is of interest. The coalescent is a model of how gene variants
sampled from a population may have originated from a common ancestor. In
the simplest case, each variant is equally likely to have been passed from one
generation to the next. The model looks backward in time, merging alleles into
a single ancestral copy according to a random process in coalescence events. It
was developped by John Kingman ([71]) and Donnelly and Kurtz ([34]) found
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a way to extend the study of such genealogical trees to infinite populations in a
rigorous manner.

We can modify the basic Wright Fisher model in the following manner. At
each time unit each individual, immediately after it has chosen its ancestor and
adopted its type (resampling), suffers a type mutation: type a spontaneously
mutates into type A with probability u, and type A spontaneously mutates into
type a with probability v. Here, 0 < u, v < 1, and mutations occur indepen-
dently for different individuals. X = (Xn)n∈N is a Markov chain on the state
space Ω = {0, 1, ..., N} with transition kernel

p(i, j) =

(
N

j

)
(pi)

j(1− pi)N−jfor all (i, j) ∈ Ω2

with

pi =
i

N
(1− v) +

N − i
N

u

Indeed, either an A is drawn (probability i/N) and it does not mutate into an a
(probability 1−v), or an a is drawn (probability (N − i)/N) and it does mutate
into an A (probability u). A first consequence of the presence of mutation
is that the states 0 and N are no longer absorbing: p(i; j) > 0 for all (i, j).
Griffths ([50]) uses diffusion methods to study lines of descent in the Wright-
Fisher process with mutation. Recent research has studied much more complex
models where Darwinistic selection, mutations or population growth are allowed
to play a role.

3 Our contribution: a general approach to the
rate of convergence in law

In all the above examples, the focus has been on convergence and identifica-
tion of the limit. However, although the literature on speed of convergence of
moments is already wide (see for instance [104],[103]), work on the rate of con-
vergence in law is much more scarce. The basic idea at the root of the study
of convergence in law is that the sequence of random variables being studied
becomes better and better modeled by a given probability distribution as n in-
creases. For instance, the central limit theorem states that as n increases the
average of n independent variables identically distributed becomes closer to a
Gaussian distribution. The Berry Esseen theorem goes a step further and gives
a bound on the maximal error of approximation between the normal distribu-
tion and the true distribution of the sample average: for independent variables
the convergence rate is n−1/2. If our variables are not single point variables
but functions of time chosen randomly in a space of functions, i.e. stochastic
processes, an equivalent of the central limit theorem is the Donsker theorem,
which states that under certain circumstances, a random walk will converge to
a Brownian motion. We have concentrated our work on finding equivalents to
the Berry Esseen theorem for a class of stochastic processes, that is to say to
assess the speed of convergence of a sequence of stochastic processes to a limit.

Several works from Dai and Braverman ([12],[11]) have focused on a some-
what related subject, which is the rate of convergence of the steady state diffu-
sion for Erlang-C, Erlang-A, and M/Ph/n+M queueing systems. They prove,
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using Stein’s method, that the distance between the stationary distribution of
the normalized process and that of an Ornstein–Uhlenbeck process is bounded.
Our work is not centered on the steady state process but focuses on the process
itself, when properly renormalized. We therefore need by contrast to use the
Stein method in an infinite dimensional setting as our state space of study is a
set of functions.

We started our work with the study, published in Queueing Systems: Theory
and Applications (see [7]), of the M/M/1 and M/M/∞ queueing systems for
which we have obtained relatively high speeds of convergence, of the order of
log(n)/

√
n. In both cases we made full use of an adequate representation of the

underlying process. The speed of convergence was then derived with the help of
the Stein method, which is thouroughly explained in the present document, and
of linear interpolation of each process in the sequence and its supposed limit.
The drawback of our method was its dependency on the exact representation of
the sequence of processes. We have therefore managed to generalize our work
to a wider class of Markovian processes, at the cost of a loss in accuracy of
estimate. In the course of this work, we have been led to make explicit, for this
class of processes, how to define scale parameters in space and time in order to
obtain a diffusion approximation. As a matter of fact the available literature,
which covers wide fields of application seems to propose at each occurence ad
hoc parameters in order to obtain convergence: in the M/M/1 queue the arrival
intensity is rescaled as well as the service time, in the M/M/∞ system only the
arrival intensity is rescaled, in the On/Off model and in the SIR model it is
the size of the population which is rescaled. In the Moran model, population
in rescaled linearly but the intensity of mutations gets a quadratic rescaling
(see for instance [65]). We have been therefore led to propose a unified method
to determine scale parameters for the class of Markovian models we consider.
Using the properties of the class of Markovian processes which we identified, and
continuing to exploit the Stein method and linear interpolations, we assessed
the speed of convergence to be of the order of n−1/6. This loss in the accuracy of
speed of convergence is fully attributable to the representation of the processes
under study as belonging to the identified class of processes. This work is the
subject of an article which is going to be submitted for publication soon.
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Chapter 2

Roadmap

1 The goal

Our aim being to establish the speed of convergence in law, we were compelled
to adopt a definition for the distance between probability laws. Such a notion
of distance between probability measures appears naturally not only in the
study of convergence in law but also in the calculation of errors in Bayesian
statistics and in fields beyond probability and statistics, such as information
theory, machine learning or cryptology. The variety of applications and the
necessity to handle diverse mathematical objects has led mathematicians to
propose a wide multiplicity of definitions for distances between measures, and
various methods to bound them. For the study of convergence in law, we can
mention for instance the Prokhorov distance valid in any Polish space (see [8]).
For all measures ν and µ on this Polish space:

d(µ, ν) = inf{ε : µ(A) ≤ ν(Bε(A))+ε, ν(A) ≤ µ(Bε(A))+ε for every Borel set A},

where Bε(A) denotes the open ball of radius ε around A:

Bε(A) = {y : ∃x ∈ A, d(x, y) < ε}

This distance is theoretically attractive because its convergence to zero is equiv-
alent to convergence in law but its computation is not easy. One may therefore
prefer to introduce the Wasserstein distance, also called Kantorovich Rubinstein
distance (see [117],[118]):

W (µ, ν) = sup

{∫
E

fdµ−
∫
E

fdν, f ∈ Lip1(E)

}
where Lip1(E) stands for the set of Lipschitz functions with a coefficient lower
than 1. The convergence under the Wasserstein distance implies convergence
in law and is easier to compute, all the more as the Kantorovich Rubinstein
theorem gives a second equivalent definition for the Wasserstein distance as it
states that

W (µ, ν) = inf
π

∫
E×E

d(x, y) dπ(x, y)

where π is taken in the set of all laws on E × E with marginals µ and ν.
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2 Overview of the Stein Method

The Stein method, invented by Charles Stein in 1972 (see [112]), enables to
bound any distance d between two probabilistic measures ν and µ which can be
written as

d(µ, ν) = sup

{∫
E

fdµ−
∫
E

fdν, f ∈ K
}
,

where K denotes a sufficiently large class of functions. Consider for instance a
random variable X with a probability distribution absolutely continuous with
respect to the Lebesgue measure and a density denoted f(x). If we assume that

lim
x→−∞

f(x) = lim
x→+∞

f(x) = 0,

for all absolutely continuous function g (and hence differentiable almost every-
where), growing at a reasonable pace at infinity (i.e. such that lim|x|→∞ f(x)g(x) =
0) we see that

E

[
g′(X) + g(X)

f ′(X)

f(X)

]
=

∫ ∞
−∞

(g′(x)f(x)+g(x)f ′(x)) dx =

[
f(x)g(x)

]∞
−∞

= 0.

This class of absolutely continuous functions such that lim|x|→∞ f(x)g(x) = 0
being sufficiently large, we can hope that the equation

∀g, E

[
g′(X) + g(X)

f ′(X)

f(X)

]
= 0 (2.1)

characterises density f and it is indeed the case: let A be a Borel set and hA
the function defined by

hA(y) = 1A(y)−P(X ∈ A).

Let gA(y) = 0 if y /∈ Supp(X) and

gA(y) =
1

f(y)

∫ y

−∞
hA(u)f(u) du

=
1

f(y)
(P(X < y,X ∈ A)−P(X < y)P(X ∈ A))

otherwise. It is then clear that lim|y|→∞ f(y)gA(y) = 0 and that gA is absolutely
continuous; furthermore, since

(gA(y)f(y))′ = hA(y)f(y),

we get

g′A(y) + gA(y)
f ′(y)

f(y)
= hA(y) = 1A(y)−P(X ∈ A).

Taking the expected value

E

[
g′A(Y ) + gA(Y )

f ′(Y )

f(Y )
)

]
= P(Y ∈ A)−P(X ∈ A),

and if equation (2.1) is verified for all functions gA associated to a Borel set
A, it is obvious that Y and X have same law. The operator which maps g to
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E
[
g′(x) + g(x) f

′(x)
f(x)

]
is called the Stein operator.

The intuition in the Stein method is therefore as follows. Suppose that µ
follows a known law with density f and that we aim at computing its distance
with another law ν. Suppose that variables X and Z are distributed according
to ν and µ respectively. We can write Stein’s equation

g′(x) + g(x)
f ′(x)

f(x)
= h(x)−Eµ [h(Z)] for all x,

and try to find a solution gh for a sufficiently large class of h functions. The
idea is to bound

Eν

[
g′h(x) + gh(x)

f ′(x)

f(x)

]
,

which is equal by definition to Eν [h(X)]− Eµ [h(Z)]. In the case where µ is a
standard Gaussian distribution, the Stein equation is:

g′(x)− xg(x) = h(x)−E [h(Z)] .

This equation is by no way unique as it is possible to find other Stein operators
vanishing over a sufficiently large class of functions (see [90]). In 1988 Barbour
([3]) proposed to use the generator of a Markovian semi group making the µ
probability stationary. Indeed, if µ is a stationary probability for X with a gen-
erator denoted A, it is well known that there is an equivalence (see proposition
9.2 in [43]) between:

1. X
d
= µ, and

2. Eµ [Af(X)] = 0 for all f in D(A).

For instance, staying with the Gaussian distribution, if B is a standard Brownian
motion, it is a fact that the Ornstein Uhlenbeck process (Xt)t≥0 defined by

dXt = −Xt dt+
√

2 dBt

is stationary for the Gaussian distribution. Indeed, by the Ito formula,

X(t) = e−tx+
√

2

∫ t

0

e−(t−s) dBs,

so that X(t) ∼ N (e−tx +
√

1− e−2t) which implies the Mehler representation
formula:

PtF (x) =

∫
R
F (e−tx+

√
1− e−2ty)µ( dy),

where µ is the Gaussian standard measure on R. Then∫
R
PtF (x)µ( dx) =

∫
R

∫
R
F (e−tx+

√
1− e−2ty)µ( dy)µ( dx) =

∫
R
F (x)µ( dx),

i.e. for all t, if X0 has a Gaussian distribution,

E [PtF (X0)] = E [F (X0)]
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The generator A of the Ornstein Uhlenbeck being given by the equation Af(x) =
f ′′(x) − xf ′(x), Barbour proposes to use the following expression as a Stein
equation:

g′′h(x)− xg′h(x) = h(x)−E [h(Z)] ,

and we observe that we get a characterisation close to that obtained with the
original Stein equation by differentiation.
In a nutshell, the Stein method enables to bound the distance between measures
ν and µ by setting, if ν is the stationary law of X and A its generator,

d(µ, ν) = sup

{∫
E

hdµ−
∫
E

hdν, h ∈ C
}

= sup
h∈C

(Eν [Agh(X)]) ,

where gh is the solution to the Stein equation

Agh(x) = h(x)−Eµ[h(Z)] for all x.

The general outline of the Stein method to put a bound on the distance
between a probability P that we try to approximate and a known probability
measure denoted Q is therefore the following:
1. Choice of a space and of a metric which can be expressed as the superior
bound of a difference between two expectations ;
2. Choice of a Stein operator which vanishes for all functions of a variable dis-
tributed according to Q for a sufficiently large class of functions;
3. Computation of a solution to the corresponding Stein equation ;
4. Computation of a higher (upper) bound to the expected value of the gener-
ator of the solution (i.e. Eν [Agh(X)]) in order to get a bound for the distance.
This last step is the trickiest and many methods have been proposed based on
coupling techniques or on concentration inequalities. These methods depend on
the law of P but also on the class of functions on which a bound is sought, and
ultimately on the definition chosen for the distance.
Since 2005 the Stein method has enjoyed a new interest and a significant de-
velopment thanks to the introduction of the Malliavin calculus suggested by
Nourdin and Peccati (see [91],[89]). Indeed, Malliavin calculus supplies integra-
tion by parts tools enabling simultaneously to make explicit the generator to
use in the Stein equation, and to find more systematically a higher bound to the
solution of such equation. It has become possible to extend this method to the
case of abstract Wiener spaces ([74]) and to infinite-dimensional problems ([4],
[109], [19])). The purpose of our work is to study how and to what extent the
Stein method can be put to use to quantify, with the support of the tools offered
by the Malliavin calculus, the speed of convergence of diffusion approximation
processes towards their limit.

Note:
The Stein method can be extended to discrete probability laws. In 1974 Chen
(see [16]) showed it was perfectly adapted to the approximation of a Poisson law.
In fact, if X is a random variable having N or Z as support set, and denoting
p(i) = P (Y = i), we get the telescopic sum

E

[
g(Y + 1)− p(Y − 1)

p(Y )
g(Y )

]
=

∞∑
i=0

p(i)(g(i+ 1)− p(i− 1)

p(i)
g(i)) = 0
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for all function g such that limn→∞ g(n)p(n−1) = 0 if and only if Y is distributed
according to the same law as X. This equation characterises the law of X since

if A ⊂ N by defining g inductively by g(i+ 1)− p(i−1)
p(i) g(i) = 1A(i)−P(X ∈ A)

we can show as above that E
[
g(Y + 1)− p(Y−1)

p(Y ) g(Y )
]

= P(Y ∈ A)−P(X ∈ A)

Therefore we can use as Stein equation

g(i+ 1)− p(i− 1)

p(i)
g(i) = h(i)−E [h(X)] for all i ≥ 0

for instance, for a Poisson law of intensity λ, for all i ≥ 0,

g(i+ 1)− i

λ
g(i) = h(i)−E [h(X)] ,

but the approach relying on the generator works as well.

3 Roadmap

Our goal is to use the Stein method to bound the rate of convergence of an ap-
proximation diffusion towards a diffusion depending on Poisson processes. This
raises various difficulties: choice of a common functional space where to com-
pare continuous diffusions and discrete processes, definition of a Stein operator
for such infinite dimensional objects as stochastic processes with the aim to
characterize convergence to Brownian motion, definition of a gradient and of an
integration by parts for Poisson processes. Once all these building blocks will be
gathered, we shall be able to calculate rates of convergence towards Brownian
motions and we will need to use linear interpolation to make calculations in
infinite dimensions tractable. So the roadmap of chapters 2 to 4 is as follows:

1. choice of a common functional space where we can define a distance be-
tween step function discrete processes and Hölder continuous Brownian
motions

2. review of abstract Wiener space and identification of a generator for ab-
stract Wiener processes

3. presentation of Malliavin calculus for Poisson processes and determination
of an integration by parts formula

4. adaptation, through linear interpolation, of our theoretical apparatus, to
reduce the infinite dimensional calculations to finite dimension

We shall then give some applications in the subsequent chapters, and illustrate
the limitations of our model in the last chapter.
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Chapter 3

Choice of a functional space

In order to compare the distribution of a Poisson process, having piecewise differ-
entiable paths, with that of a Brownian motion, having continuous but nowhere
differentiable paths, one needs to find a functional space which includes all pos-
sible trajectories for both processes. We are therefore going to select a space
smaller than D but large enough to contain the linear interpolations of the step
function trajectories of Poisson processes as well as the η-Hölderian trajecto-
ries (with η < 1/2) of the Brownian motion. Mathematical literature provides
functional spaces which meet these constraints, and this section is devoted to a
short introduction to those. We position ourselves from the start on a compact
time interval, for instance [0, T ] where T ∈ R.

1 Fractional Sobolev spaces

The Fractional Sobolev space (also called Slobodeckij space) Wη,p for η ∈ (0, 1]
and p ≥ 1 is defined as the closure of the set of C1 functions with respect to the
norm

‖f‖pη,p =

∫ T

0

|f(t)|p dt+

∫∫
[0,T ]2

|f(t)− f(s)|p

|t− s|1+pη
dt ds. (3.1)

For η = 1, W1,p is the completion of C1 for the norm:

‖f‖p1,p =

∫ T

0

|f(t)|p dt+

∫ T

0

|f ′(t)|p dt.

It is a Banach space which verifies the Sobolev inclusions ([1, 45]):

Wη,p ⊂Wα,q for 1 ≥ η ≥ α and η − 1/p ≥ α− 1/q.

and

Wη,p ⊂ Hol(η − 1/p) for η − 1/p > 0,

where Hol(η− 1/p) denotes the space of Holder continuous functions of param-
eter η − 1/p. Therefore, since W1,p is separable (see [13]), so is Wη,p. Let us
compute the norm of the indefinite integral of a step functions in Wη,p.
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Lemma 3.1. Let 0 ≤ s1 < s2 ≤ T and hs1,s2 the function defined for all t ≥ 0
by

hs1,s2(t) =

∫ t

0

1[s1,s2](r) dr.

There exists c > 0 such that for all s1, s2,

‖hs1,s2‖Wη,p ≤ c |s2 − s1|1−η.

Proof. Observe that for all s, t ∈ [0, T ],

|hs1,s2(t)− hs1,s2(s)| ≤ |t− s| ∧ (s2 − s1).

The result follows from the definition of the norm Wη,p.

This framework is necessary to prove the following result.

Corollary 3.2. There exists c > 0 such that for any m ∈ N, for any i ∈
{0, · · · ,m− 1}, we have

‖
√
m

∫ .

0

1[i/m, (i+1)/m)(s) ds‖Wη,p
≤ c

m1/2−η ,

In the Appendix, we describe spaces of functions called Besov Liouville
Spaces and denoted I+

β,p where 0 < α < 1 and p ≥ 1. It is a fact, proven
in [44] (Theorem 27) that for 1 ≥ α > β > γ > δ > 0, the following embeddings
are continuous and even compact:

Wα,p ⊂ I+
β,p ⊂Wγ,p ⊂ I+

δ,p.

We can therefore use indistinctively Besov Liouville and Sobolev-Slobodeckij
spaces. It is a simple matter to show that for α < 1/2 and p = 2, I+

α,p (and
therefore Wα,p) contains both Brownian motion and step functions representa-
tive of random Poisson process trajectories.

In what follows, we shall denote, as it is customary in the study of Besov
Liouville spaces,

(Iα0+f)(x) =
1

Γ(α)

∫ x

0

f(t)(x− t)α−1dt, x ≥ 0,

(IαT−f)(x) =
1

Γ(α)

∫ T

x

f(t)(t− x)α−1dt, x ≤ T,

where α ≥ 0, and Γ is the Euler function.

It is useful to keep in mind the following chart where arrows represent con-
tinuous embeddings. For all ε < 1/4 and η ∈ (1− ε, 1),

(I+
1/2−2ε,p)

∗ (I+
1,2)∗

L2 I+
1,2 I+

η, 1
η−1/2+ε

Hol0(1/2− ε) I+
1/2−2ε,p

i∗η,p

'

I1
0+

26



The pivot space, i.e. the Hilbert space being identified to its dual, is, in that
context, the space I+

1,2, and not L2 as is usually the case. This implies that i∗η,p
is the adjoint of iη,p in this identification, where iη,p is the embedding of I+

1,2

into I+
η,p.

2 Wiener structure on a fractional Sobolev space

In order to use the Stein method, it is necessary to bestow a Gaussian structure
on the space. Any diffusion being a semi martingale, our purpose to study
convergence towards a diffusion approximation would imply at least the ability
to demonstrate the convergence of the process towards a continuous martingale,
i.e. a Brownian motion changed in time in the case of one-dimensional processes,
even if it will be made clear later on that this can also be extended to multi-
dimensional problems (see remark 4 after lemma 5.2 ). It is therefore in order
to find a Stein operator, a generator, for a time changed Brownian motion.
Remark first that if the change in time denoted γ, which is a positive, increasing
and deterministic function is also Hölderian of exponent α, the time changed
Brownian motion exhibits Hölderian trajectories of any exponent strictly lower
than α/2, so that its trajectories belong to Iβ,∞ ⊂ Iβ,2 for all β < α/2. In
order to build a suitable Stein operator we therefore need:

• to bestow a Gaussian structure on the space

• to define a differential calculus in order to describe a generator

• to identify the said generator

Abstract Gaussian Structure

The simplest way to construct the Wiener measure on Iβ,2, is to start with the
Ito-Nisio theorem (see [60]). Let (Xn, n ≥ 1) be a sequence of random standard
and independent Gaussian variables, defined over the same probabilistic space
(Ω, A, P) . Let (en, n ≥ 1) be an orthonormal, complete basis of L2([0, 1]n).
Then the process defined by∑

n≥1

XnI
1
0+(en)(t), for all t ∈ [0, 1],

converges almost surely towards a process which is a standard Brownian motion
B. Ito and Nisio have shown that such convergence is uniform with respect to
t, which ensures the continuity of B. In order to show the convergence in
L2(Ω; Iβ,2) , it is enough to show that∑

n≥1

‖I1
0+en‖2Iβ,2 =

∑
n≥1

‖I1−β
0+ en‖2L2 = ‖I1−β

0+ ‖2HS <∞. (3.2)

According to theorem 8.4, I1−β is a Hilbert-Schmidt operator from L2 into
itself if and only if 1 − β > 1/2, i.e. β < 1/2. Hence, for β < 1/2, the
distribution of B defines the Wiener measure on Iβ,2 which we shall denote µ.
Notice that (3.2) implies that the canonical embedding from I1−β,2 into L2 is

also Hilbert-Schmidt and that its Hilbert-Schmidt norm is ‖I1−β
0+ ‖HS. We equip
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therefore E = I+
α,p (resp. E = Wα,p) with a probability measure µ such that

for all functions η in E∗,

E
[
ei〈ω,η〉E,E∗

]
= e

−1
2 ‖i

∗(η)‖2H ,

where H is the Hilbert space I+
α,2 (resp.Wα,2) and i∗ the embedding of E∗ in

H∗ = H. A result from Leonard Gross ([53]) asserts that µ exists and is unique
as long as i is a Hilbert Schmidt operator (see [53], [106], or [107], theorem 7.1):
there exists a random variable X in I+

α,p such that

〈i∗(η), ω〉H = 〈η,X〉I+∗α,p,I+α,p

for all η ∈ I+∗
α,p.

Remark 1. We can show that i∗ is injective and that its image is dense in
H∗. Moreover we can show that every linear function f from E∗ into R is also
square integrable and that in addition, ‖f‖L2(E∗,R) = ‖i∗(f)‖H . This injective
isometry is continuous, from i∗(E∗) into L2 and can be extended in a unique
way into a linear mapping from H to L2 denoted δ and called Wiener integral.
For all η ∈ E∗, δ(i∗(η)) = 〈i(η), ω〉E∗,E. We can show that when their definition
domain coincide, the Wiener integral is equal to the Ito integral∫ T

0

η̇(s) dBs.

Gross-Sobolev derivative

Let us introduce now the notion of Gross-Sobolev derivative. Denote Pη,p the
measure of B in I+

η,p. The I+
η,p are Banach spaces, for which we can define a

Fréchet derivative. A function F : I+
η,p → R, is differentiable when

lim
ε→0

ε−1
(
F (x+ εh)− F (x)

)
(3.3)

exists for all h ∈ I+
η,p and this defines a member of (I+

η,p)
∗,

lim
ε→0

ε−1
(
F (x+ εh)− F (x)

)
= 〈DF (x), h〉(I+η,p)∗,I+η,p .

In particular, as in finite dimension, the Fréchet differentiability implies con-
tinuity. But the functions we consider are random variables, defined up to
a negligible set, so that no continuity assumption can be satisfied. Moreover
as expression (3.3) suggests, if F = G almost surely, we need to ensure that
F (. + h) = G(. + h) almost surely for all h ∈ Wη,p, which implies that for
A = {F = G},

P(A) = 0⇒ E [1A] = 0⇒ E [1A ◦ τh] = 0⇒ P(τ−1
h (A)) = 0;

i.e. the image measure of Pη,p by the mapping τh : x 7→ x + h is absolutely
continuous with respect to Pη,p. In order for this property to be verified, the
Cameron-Martin theorem imposes to restrain the perturbation domain of h to
I+

1,2.
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Theorem 3.3 (Cameron-Martin). for all h ∈ I+
1,2, and all bounded functional

F : Wη,p → R

E [F (B + h)] = E

[
F (B) exp

(∫ T

0

ḣ(s) dB(s)− 1

2
‖h‖2I+1,2

)]
, (3.4)

where ḣ is the derivative of h ∈ I+
1,2, so that ḣ belongs to L2([0, T ]) the stochastic

integral being understood as an Ito integral. In other words equation (3.4) means
that the distribution of B + h is absolutely continuous with respect to Pη,p and
that the Radon-Nykodim derivative is given by the exponential factor in the
right-hand part of equation (3.4).

Because of this theorem, I+
1,2 plays a crucial role in Malliavin calculus. We

have the following structure:

W ∗η,p (I+
1,2)∗

L2 I+
1,2 Wη,p

i∗η,p

'
I1
0+ iη,p

I1,2, is called the Cameron-Martin space and is equipped with scalar product

〈f, g〉I1,2 =

∫ T

0

ḟ(s)ġ(s) ds.

and with the corresponding seminorm

‖f‖I1,2 = ‖ḟ‖L2 .

We would like to extend the notion of Fréchet derivative to larger sets than
I+

1,2. With this purpose in mind we introduce the following definition.

Definition 3.4. Let X be a Banach space. A function F : Wη,p → X is said
to be cylindrical if it can take the following form:

F (ω) =

k∑
j=1

fj(δh1, · · · , δhk)xj , (3.5)

Where for all j ∈ {1, · · · , k}, fj belongs to the Schwartz space over Rk, (h1, · · · , hk)
are members of I1,2, (x1, · · · , xk) belongs to X and δhk) is the Wiener integral

of ḣk:

δhk =

∫ T

0

ḣk(s) dB(s).

The set of such functions is denoted X.

We can now introduce the Gross Sobolev derivative

Definition 3.5. For h ∈ I1,2,

〈∇F, h〉I1,2 =

k∑
j=1

k∑
l=1

∂lf(δh1, · · · , δhk) 〈hl, h〉I1,2 xj ,
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Which amounts to write

∇F =

k∑
j,l=1

∂jf(δh1, · · · , δhk)hl ⊗ xj .

Space D1,2(X) is the closure of cylindrical functions with respect to the norm of
L2(Wη,p; I1,2 ⊗X). A member of D1,2(X) is said to be Gross-Sobolev differen-
tiable and ∇F belongs to I1,2 ⊗X with probability 1.

We can iterate the construction to higher level gradients, thus defining∇(k)F
for all k ≥ 1, if F is regular enough. For all p ≥ 1, the set of cylindrical functions
is dense in Lp, which motivates the following definition

Definition 3.6. Let ∇(2)F be the member of L2(Wη,p; I+
1,2 ⊗ I

+
1,2) defined by

∇(2)F =

k∑
j,l=1

∂
(2)
jl f

(
δh1, · · · , δhk

)
hj ⊗ hl.

Consider the norm

‖F‖22,2 = ‖F‖2L2 + E
[
‖∇F‖2I+1,2

]
+ E

[
‖∇(2)F‖2I+1,2⊗I+1,2

]
,

where

‖∇F‖2I+1,2 =

∫ T

0

 k∑
j=1

∂jf
(
δh1, · · · , δhk

)
ḣj(s)

2

ds,

and

‖∇(2)F‖2
(I+1,2)⊗2 =

∫ T

0

∫ T

0

 k∑
j,l=1

∂
(2)
jl f

(
δh1, · · · , δhk

)
ḣj(s)ḣk(r)

2

ds dr.

The set D2,2 is the completion of the set of cylindrical functions with respect to
norm ‖ ‖2,2.

From the definition of I+
1,2, it is clear that for h ∈ I+

1,2, ḣ belongs to L2, and
since

δh(ω + ξ) = 〈h, ω + ξ〉E∗,E = 〈h, ω〉E∗,E + 〈h, ξ〉E∗,E = δh(ω) + 〈i∗(h), ξ〉I+1,2 ,

we get:∫ t

0

ḣ(s) d(B + k)(s) =

∫ t

0

ḣ(s) dB(s) +

∫ t

0

ḣ(s)k̇(s) ds

=

∫ t

0

ḣ(s) dB(s) +
〈
ḣ, k̇
〉
L2

=

∫ t

0

ḣ(s) dB(s) + 〈h, k〉I+1,2 .

so that
〈∇F, k〉 = lim

ε→0
ε−1
(
F (h+ εk)− F (h)

)
.

Hence, if F is cylindrical,

d

dε
F (B + εk)

∣∣∣∣
ε=0

=

k∑
j=1

∂jf
(
δh1, · · · , δhk

)
〈hj , k〉I+1,2 .
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Remark 2. If h belongs to I±2,2 = (I1
0+ ◦ I1

T−)(L2) ⊂ I+
1,2 then

∇f(δh) = f ′(δh) h

belongs to L2(Wη,p; I±2,2). This amounts to say that for such functional, its
gradient is more regular, meaning that it belongs to a smaller space than other
members of D2,2. Since we have identified I+

1,2 with its dual, space I±2,2 is dual

to L2: for h ∈ I±2,2, there exists ḧ ∈ L2 such that h = I1
0+(I1

T−(ḧ)). Then for

k ∈ I+
1,2,

∣∣∣〈h, k〉I+1,2∣∣∣ =

∣∣∣∣∣
∫ T

0

I1
T−(ḧ)(s)k̇(s) ds

∣∣∣∣∣ =

∣∣∣∣∣
∫ T

0

ḧ(s)I1
0+(k̇)(s) ds

∣∣∣∣∣
=

∣∣∣∣∣
∫ T

0

ḧ(s)k(s) ds

∣∣∣∣∣ ≤ ‖ḧ‖L2‖k‖L2 .

Since I+
1,2 is dense within L2, we can extend the duality relationship to h ∈ I±2,2

and k ∈ L2.

Generator of Brownian motion

We are now in a position to describe the generator of Brownian motion which
we are looking for. Consider the Ornstein-Uhlenbeck process on R solution to
the following stochastic differential equation

dX(t) = −Xt dt+
√

2 dB(t), X(0) = x.

We can deduce from the Ito formula that

f(Xt)− f(X0) = −
∫ t

0

Xsf
′(Xs)ds+

√
2

∫ t

0

f ′(Xs)dBs +

∫ t

0

f ′′(Xs)ds.

If we set
Ptf(x) = Ex[f(X)] and Lf(x) = −xf ′(x) + f ′′(x),

then, since the expectation of a stochastic integral is zero,

Ptf(x) = f(x) +

∫ t

0

Ex[Lf ]ds = f(x) +

∫ t

0

Ps[Lf ]ds. (3.6)

So that by differentiation

d

dt
Ptf(x) = PtLf(x).

In particular, for t = 0, L is the generator of the Pt semi group and we have the
classical equality

PtLf(x) = LPtf(x). (3.7)

Moreover the distribution of X knowing that X(0) = x is Gaussian with an
expectation of e−tx and a variance of (1− e−2t) hence if µ ∼ N (0, 1),

Ptf(x) =

∫
R

f(e−tx+
√

1− e−2ty) dµ(y).
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We can deduce easily that if X(0) follows a standard normal distribution, X(t)
is Gaussian with zero expectation and unit variance: N (0, 1) is the invariant
law of X. We can check easily that

Ptf(x)
t→∞−−−→

∫
R

f dµ.

By combining this last equality with (3.6) with (3.7) we get∫
R

f dµ− f(x) =

∫ ∞
0

LPtf(x) dt.

Which gives us effectively the following Stein equation :∫
R

f dµ−E [f(X)] = E

[∫ ∞
0

LPtf(X) dt

]
.

We now transfer this construction to infinite dimension in an abstract Wiener
space. Following Barbour ([4]) we define an Ornstein Uhlenbeck process W on
an abstract space by taking a collection (Xk) of independent Ornstein Uhlen-
beck processes identically distributed on [0,∞[as in the unidimensional case by
setting

W (t, u, ω) =
∑
k≥0

Xk(u, ω)Sk(t),

where Sk is the k-th Schauder function defined for all t ∈ R+ by S0(t) = t, and
for 2n ≤ k < 2n+1,

Sk(t) =

∫ t

0

Hk(s) ds,

where Hk is the Haar function

Hk(s) = 2n/2(1[2−nk−1;2−n(k+1/2)−1](s)− 1[2−n(k+1/2)−1;2−n(k+1)−1](s)).

Graph of Sk

x

Sk(x)

2−n/2−1

2−nk − 1 2−n(k + 1)− 1

The series used to define W is uniformly convergent since (see [78]), the Sk
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functions are positive and bounded by 2−n/2−1 where n is the integer such that
2n ≤ k < 2n+1. There support set are disjoint and if we set

bn(ω) = max
2n≤k≤2n+1

|Xk(u, ω)|, (3.8)

we can easily see by the Cauchy criterion that the series is uniformly converging
and even absolutely as long as∑

n

bn2−n/2 <∞, (3.9)

which is almost surely the case for the Ornstein Uhlenbeck processes which are
Gaussian, so that

P
(
|Xk(u, ω)| = O(kε)

)
= 1 for all ε > 0 (3.10)

(A classical argument makes use of Tchebichev inequality to show that, because
X is Gaussian with even order moments E

[
X2N
k

]
equal to 1.3.5...N , for all N

P
(
|Xk(u, ω)| ≥ kε

)
≤

E
[
X2N
k

]
k2εN

=
1.3.5...N

k2εN
,

and by summation over k, this converges if we choose a sufficiently large N (i.e
N > 1/(2ε)), so that thanks to the Borel Cantelli lemma, with probability 1,
there is only a finite number of events {|Xk(u, ω)| ≥ kε}). This proves (3.10)
and according to the definition of bn given in (3.8), bn(ω) < C2nε so that for
ε < 1/2 (3.9) is verified. (Note: such convergence can also be proved through
the Ito Nisio theorem [60])
Remark at last that functions (Hk)k∈N form a complete orthonormal basis and
therefore,

Cov [W (t, u),W (s, u)] = E

[∑
k

Xk(u)Sk(t)
∑
l

Xl(u)Sl(s)

]
=
∑
k,l

E [Xk(u)Xl(u)]Sk(t)Sl(s)

=
∑
k

Sk(t)Sk(s)

=
∑
k

∫ t

0

Hk(v) dv

∫ s

0

Hl(v) dv

=
∑
k

〈1[0,t], Hk〉〈1[0,s], Hk〉

= 〈1[0,t],1[0,s]〉
= s ∧ t.

Thus, W is almost surely a continuous, Gaussian function of (t, u) and for
all u, W (., u) is distributed according to the Wiener measure. Moreover, if we
set Fu = σ(W (., v)v ≤ u), W has the characteristic Ornstein Uhlenbeck process
property:

W (., u+ v) = e−vW (., u) + (
√

1− e−2v)Z(.),
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where Z is a standard Brownian motion independent from Fu. If u = 0 the
initial measure is the Wiener measure, W (., v) is also distributed according
to a Wiener process which shows that this measure is invariant. Let f be a
continuous function from E to R. The operator Pu is defined such that for all
ω ∈ E

(Puf)(ω) = E[f(W (., u))|W (., 0) = ω] = E
[
f(ωe−u +

√
1− e−2uZ)

]
.

Here again, thanks to the dominated convergence theorem,

PuF (x)
u→∞−→

∫
E

F dµZ .

The generator of this Ornstein Uhlenbeck process in infinite dimension has been
computed by Piech in L2 (see [94]). Barbour proves in [4]

Theorem 3.7. For F ∈ C(E), twice Fréchet differentiable and such that

E
[
‖∇(2)F (Z)‖trH

]
<∞, for all x ∈ E,

the generator of W denoted L is

LF (x) = −〈x,∇F (x)〉E,E∗ +

∞∑
i=1

〈∇(2)F (x), hi ⊗ hi〉H ,

where (hn, n ≥ 1) is a complete orthonormal basis of H so that the Stein equation
is

−〈x,∇F (x)〉E,E∗ +

∞∑
i=1

〈∇(2)F (x), hi ⊗ hi〉H = h(x)−E [h(Z)] ,

and its solution is

Fh(x) = −
∫ ∞

0

(Pth(x)−E [h(Z)]) dt

= −
∫ ∞

0

∫
B

(h(xe−t +
√

1− e−2ty)−E [h(Z)])µZ(dy) dt,

so that we get the identity

d

dt
Pth(x) = LPth(x)

= −〈x,∇(Pth)(x)〉E,E∗ +

∞∑
i=1

〈∇(2)Pth(x), hi ⊗ hi〉H .
(3.11)

Shih [109] (Theorems 4.8 and 4.10) shows that this Theorem remains true
for the larger class of Lipschitz functions F ∈ Lip1(E). In particular, for F
Lipschitz, ∇PtF takes its values in E∗ ⊂ H and ∇(2)PtF (x) is trace class. In
addition we get the two following semigroup properties ([109], equations (4.5)
and (4.7)):

〈∇PtF (x), z〉 =
e−t√

1− e−2t

∫
B

〈y, z〉∇F (e−tx+
√

1− e−2ty) dµB(y) (3.12)
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and

〈∇(2)PtF (x), z1 ⊗ z2〉

=
e−t√

1− e−t

∫
B

〈y, z1〉〈∇Pt/2F (e−t/2x+
√

1− e−ty), z2〉 dµB(y)
(3.13)

In order to bound the distance between the diffusion approximation and its
limit, we can make use of the identity:

Eν [h(x)]−EmBh(Z) = −Eν

[∫ ∞
0

〈x,∇Fh(x)〉E,E∗ dt

]
+

∞∑
i=1

Eν

[∫ ∞
0

〈∇(2)Fh(x), hi ⊗ hi〉H dt

]
,

(3.14)

where ν is the law of the diffusion approximation whose limit is being sought
and mB is the law of a standard Brownian motion.
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Chapter 4

Stein Method in Wiener
fractional Sobolev Spaces

1 Malliavin calculus for Poisson processes

Finding a solution to the Stein equation presumes therefore the computation of
(3.14) whereas our initial variable follows a Poisson process. We introduce now
the elementary requirements to have an integration by parts for point Poisson
processes which will enable us to compute the first term on the left hand side
of (3.14) . Malliavin calculus for Poisson processes is for instance made fully
explicit in [29, 97]. Let X be a metric space, separable and complete equipped
with a measure σ-finite ν and E = R+ × X. Let NE be the space of locally
finite configurations in E, i.e. the collection of at most countable subsets of E
without limit points. Such a set φ can be described as a set or as a sum of
atomic measures:

φ '
∑
x∈φ

εx,

where εx is the Dirac measure on x, so that for all ψ : E → R,∫
E

ψ dφ =
∑
x∈φ

ψ(x).

For a σ-finite measure ν on E, a Poisson point process with control measure ν
is a random variable taking values in NE , denoted for instance Nν , such that
for all ψ : E → R, with a compact suport,

E

[
exp
(
−
∑
x∈Nν

ψ(x)
)]

= exp
(
−
∫
E

1− e−ψ(x) dν(x)
)
.

Then for all functions u = (u(s, z), s ∈ [0, T ], z ∈ R+) in L2(ν),∫ T

0

∫
R+

u(s, z)2 dν(s, z) <∞, i.e. u ∈ L2(ν),

37



the process

t 7−→ (δνu)(t) =
∑
Tn≤t

u(Tn, Zn)−
∫ t

0

∫
R+

u(s, z) dν(s, z)

=

∫
E

u dNν −
∫ t

0

∫
R+

u(s, z) dν(s, z)

is a square integrable martingale.

A Poisson measure is simple, meaning its control measure does not have
atoms, i.e. for all x ∈ E, ν({x}) = 0. The set of simple measures Ns is a
measurable subset of NE and the implied sigma algebra Ns is generated by the
family of sets taking the form

NC,0 = {η ∈ NE , η(C) = 0} where C runs through B.

This family is stable by intersection.
Let f be a function defined on NE . We are interested in the so-called discrete
gradient [29, 97]:

Ds,zf(Nν) = f(Nν + εs,z)− f(Nν), s ∈ [0, T ], z ∈ E,

where Nν + εs,z represents the configuration Nν to which an atom is added at
time s with mark z. Since ν is diffuse, there is a zero probability that an atom
at time s already exists in Nν . Similarly we denote Nν − εs,z the configuration
Nν from which an εs,z atom is removed provided it is present in Nν , otherwise
Nν remains unchanged.

The Campbell-Mecke formula asserts that if X is a Poisson point process
whose control measure is non atomic,

E

[ ∑
x∈Nν

F (x,Nν)

]
=

∫
E

E
[
F
(
x,Nν + εx

)]
dν(x),

for all positive functions F in E ×NE .
Proof: Since X is simple and since the sets NC,0, C ∈ B, generate the sigma
algebra Ns, it is enough to consider the case F = 1B×NC,0 , where B,C ∈ B are
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Borel sets and ν(B) <∞. Then, because of the independence of measures∫
E

E
[
F
(
x,Nν + εx

)]
dν(x) =

∫
B

E
[
1{(Nν+εx)(C)=0

]
dν(x)

=

∫
B∩C

P[Nν(C) + 1 = 0] dν(x)

+

∫
B\C

P[Nν(C) = 0] dν(x)

= P[Nν(C) = 0]ν(B\C)

= E
[
1{Nν(C)=0}

]
E [Nν(B\C)]

= E
[
1{Nν(C)=0}Nν(B)

]
= E

[ ∑
x∈Nν

1B×NC,0(x,Nν)

]

= E

[ ∑
x∈Nν

F (x,Nν)

]
.

The multivariate Campbell-Mecke formula asserts that for all natural num-
ber k ≥ 1, for all positive F : Ek ×NE ,

E

 ∑
x1,··· ,xk∈N 6=ν

F (x1, · · · , xk,Nν)


=

∫
Ek

E

F(x1, · · · , xk,Nν +

k∑
j=1

εxj

)⊗kj=1 dν(xj),

where the left hand side sum is extended to all k-uples of distinct points in
configuration Nν .
The proof is achieved by setting∑

x1,··· ,xk∈N 6=ν

F (x1, · · · , xk,Nν) =
∑
x∈Nν

g(x,Nν),

with

g(x,Nν) =
∑

(x2...xk)∈N6=ν
x2,...,xk 6=x

F (x, x2, · · · , xk,Nν),

and by induction through the Fubini Theorem.

F : E → R is said to belong to domD if

E

[∫
E

(
F (Nν + εx)− F (Nν)

)2

dν(x)

]
<∞,

and we set, for all x ∈ E,

DxF (Nν) = F (Nν + εx)− F (Nν − εx),
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where Nν + εx must be identified to Nν each time x ∈ Nν , and Nν − εx must
be identified to Nν each time x /∈ Nν . Let

dom δν =
{
u : NE × E → R, E

[∫
E

∣∣u(Nν , x)
∣∣2 dν(x)

]
<∞

}
.

We set, for u ∈ dom δν ,

δνu =

∫
E

u(Nν − εx, x) dNν(x)−
∫
E

u(Nν , x) dν(x).

Then, for F ∈ domD and u ∈ dom δν , the integration by parts formula asserts
that

E [F (Nν) δνu] = E

[∫
E

DxF (Nν)u(Nν , x) dν(x)

]
, (4.1)

Indeed by definition of gradient D

E

[∫
E

Ds,zf(Nν)u(s, z) dν(s, z)

]
= E

[∫
E

f(Nν + εs,z)u(s, z) dν(s, z)

]
−E

[∫
E

f(Nν)u(s, z) dν(s, z)

]
. (4.2)

But the Campbell-Mecke formula for Poisson process applied to function F (s, z,N ) =
f(Nν).u(s, z) enables to write

E

[∫
E

f(Nν + εs,z)u(s, z) dν(s, z)

]
= E

[
f(Nν)

∑
n

u(Tn, Zn)

]

= E

[
f(Nν)

∫
E

u dNν
]
.

By making use of this equality in the right-hand side of (4.2)

E

[∫
E

Ds,zf(Nν)u(s, z) dν(s, z)

]
= E

[
f(Nν)

∫
E

u dNν
]
−E

[∫
E

f(Nν)u(s, z) dν(s, z)

]
.

Recall that since ν is diffuse, for all (s, z) ∈ E, P(Nν({(s, z)}) ≥ 1) = 0 and

u(Nν , (s, z)) = u(Nν − εs,z, (s, z)) P⊗ ν-a.s.

Which enables to obtain (4.1) (see [97] for a proof by another method). More-
over,

E [δνu] = 0 et E
[(
δνu
)2]

=

∫
E

|u(x)|2 dν(x).

In addition, if u is deterministic,

δνu =

∫
E

u(x)( dNν(x)− dν(x)) and Dxδνu = u(x) (4.3)

The integration by parts formula (4.1) enables to compute the first term on the
left of (3.14) :

E [〈δνu,∇Fh(Nν)〉] = E

[∫
E

∇(2)Fh(Nν)u(Nν , x) dν(x)

]
,

and to prove the convergence towards a standard Brownian motion.
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2 Stein Operator and linear interpolation

We have all the necessary components and need now to reduce to a finite di-
mensional setting to make the calculations. Hence the idea to cut time in small
periods of time, to approximate the process of interest by linear interpolation
over each small period, and to compare such interpolated process during each
period with a process taking the form of the increment of a Brownian motion,
possibly multiplied by a coefficient, which follows the same law as the increment
of a time changed Brownian motion.
For fixed T > 0 and n ∈ N∗, we consider the discretization of [0, T ] of constant
mesh T/n. For a function F ∈ D, the space of functions being right continuous
with left limits, denote by πnF its affine interpolation on the latter grid, that

is, for all t ∈ [0, T ], for 1 ≤ k ≤ n such that t ∈
[

(k−1)T
n , kTn

]
,

πnF (t)=
n

T

(
F

(
kT

n

)
−F
(

(k−1)T

n

))(
t− (k−1)T

n

)
+F

(
(k−1)T

n

)
.

As will be made clear later on, considering a mesh of T/ϕ(n) instead of T/n
will enable to group increments of πϕ(n)F into packets of size ϕ(n)/n and to
make use of a local central limit theorem inside each packet. An immediate
computation shows that for all t ≤ T and for k as above, we have that

πϕ(n)F (t) =
ϕ(n)

T

((
F

(
kT

ϕ(n)

)
− F

(
(k − 1)T

ϕ(n)

))(
t− (k − 1)T

ϕ(n)

)

+

k−1∑
i=1

(
F

(
iT

ϕ(n)

)
− F

(
(i− 1)T

ϕ(n)

))
T

ϕ(n)

)
+F (0)

So that omitting the term F (0),

πϕ(n)F (t)=

ϕ(n)−1∑
i=0

ϕ(n)

T

(
F

(
(i+1)T

ϕ(n)

)
−F
(

iT

ϕ(n)

))
Ini (t). (4.4)

where

Ini (t) = I1
0+

(
1[ iT

ϕ(n)
,
(i+1)T
ϕ(n) )

)
: t 7−→

∫ t

0

1[ (i−1)T
ϕ(n)

,
(i)T
ϕ(n) )

(s) ds, i = 1, ..., n.

Notice that a stochastic process and its linear interpolation exhibit similar dy-
namics since they coincide on each point of the subdivision whose step size
decreases to 0. Denoting the initial process Ln, our plan consists in computing

1. the distance d(Ln, πnLn) between the distribution of Ln and that of its
linear interpolation πnLn,

2. the distance between the distribution of the linear interpolation of the
initial stochastic process πnLn and its coarse linear interpolation πϕ(n)Ln
where ϕ(n) < n

3. the distance d(πϕ(n)Ln, πϕ(n)B) between πϕ(n)Ln and πϕ(n)B where B is
a standard Brownian motion, and then
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4. the distance d(πϕ(n)B,B) between πϕ(n)B and B.

Taking into account the preceding discussion, these distances are computed in
the topology of fractional Sobolev space Wη,p. At the end, by triangular inequal-
ity we shall get the distance between the distribution of Ln and the Gaussian
measure. For all n ∈ N,

d(Ln,B)

≤ d(Ln, πnLn) + d(πnLn, πϕ(n)Ln) + d(πϕ(n)Ln, πϕ(n)B) + d(πϕ(n)B,B),
(4.5)

In the course of this study we may hope to get an intuition on the various
factors which explain such distance: that between Ln and πϕ(n)Ln and that
between πϕ(n)B and B are due to the difference in regularity of the trajectories,
whereas the distance between the laws of πϕ(n)Ln and πϕ(n)B is owed to their
distinct stochastic behaviour.

Leaving aside for the time being distances 1.,2. and 4., we focus here on
bounding d(πϕ(n)Ln, πϕ(n)B) as this is where the interest in the Stein method
lies. Let us first fix some notations.
Let ϕ be a function of N into N such that

lim
n→∞

ϕ(n) =∞ and ϕ(n) ≤ n for any n ∈ N. (4.6)

for all n ≥ 0, let Dϕn = {i/ϕ(n), i = 0, · · · , ϕ(n)− 1} the subdivision of [0, T ] of
step size T/ϕ(n), and Dn = {i/n, i = 0, · · · , n− 1} be the natural subdivision.
For all m ∈ N and s ∈ [0, T ], we define the function

hmi : s 7−→
√
m

T
I1
(
1[ imT,

i+1
m T)

)
(s) =

√
m

T

(
(s− i

m
T )+ ∧ T

m

)
.

Simple calculations show that for all n, and all a ∈ Dn, b ∈ Dn, ‖hna‖I1,2 =

‖hϕ(n)
b ‖I1,2 = 1 and

〈hna , h
ϕ(n)
b 〉I1,2

≤
√

ϕ(n)
n if a ∈

[
b, b+ 1

ϕ(n)

)
;

= 0 otherwise.
(4.7)

Remark 3. In the remainder of this document, as we are studying speed of
convergence, we shall often use the notation Yn ≤ cf(n) as a shortcut for the
sentence ”there exists c > 0 such that for n sufficiently large, Yn ≤ cf(n).”
c should not be understood as denoting the same quantity each time it is used
and the statement should not be deemed true for all n ∈ N, but only if it is
sufficiently large.

As a direct consequence of corollary 3.2,

‖hϕ(n)
j ‖Wη,p

≤ c ϕ(n)
η− 1

2 .

Thus, keeping in mind the above remark,

‖πϕ(n)(h
n
i )‖Wη,p

≤ c
√
ϕ(n)

n
ϕ(n)

η− 1
2 . (4.8)
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Set
Vn = vect{hna , a ∈ Dn},

equipped with the trace topology of Wη,p for a certain (η, p) ∈ (0, 1] × [1,∞)
such that 0 < η − 1/p < 1/2. If B is a standard standard Brownian motion on
[0, T ],

πnB = ProjVn(B)
law
=

∑
a∈Dn

Ya h
n
a ,

where (Ya, a ∈ Dn) is a sequence of Gaussian independent random variables.
Let µVn be the distribution of πnB on Vn. It is characterized by the identity(∫

Vn
LnF (x) dµ(x) = 0, ∀F ∈ F

)
⇐⇒ µ = µVn ,

where F is the set of twice Fréchet differentiable functions from Vn into R and
for all x ∈ I1,2, as a direct application of equation (3.11),

LnF (x) = −
∑
a∈Dn

〈hna , x〉I1,2 〈hna ,∇F (x)〉I1,2

+
∑
a∈Dn

〈hna ⊗ hna , ∇(2)F (x)〉I1,2⊗I1,2 . (4.9)

For all t > 0, let Pnt be the Ornstein-Uhlenbeck operator defined for all x ∈ I1,2
by

Pnt F (x) =

∫
Vn
F (e−tx+ βty) dµVn(y),

where βt =
√

1− e−2t. Using the Stein-Dirichlet representation formula (see
[19, 30]), we know that∫

Vn
F dµVn − F (x) =

∫ T

0

LnPnt F (x) dt, (4.10)

for all continuous F : Wη,p → R such that Pnt F belongs to F .
We have the following higher bound:

Theorem 4.1. There exists cη,p > 0 such that for all x ∈ Wη,p, m < n, t > 0
and a ∈ Dn,∣∣∣∣〈hna ⊗ hna ,∇(2)Pnt (F ◦ πϕ(n))(x+ rhϕ(n)

a )−∇(2)Pnt (F ◦ πϕ(n))(x)
〉
I1,2

∣∣∣∣
≤ cη,p

e−5t/2

β2
t/2

ϕ(n)1+η

n3/2
|r|.

Remember that in [109] (Theorems 4.8 and 4.10) Shih proved that Theorem
3.7 remained true for Lipschitz functions F ∈ Lip1(E). Therefore for F ∈
Lip1(Wη,p), for any t > 0, PtF is twice Fréchet differentiable, and for any
x ∈Wη,p, for any h, k ∈ I1,2 and n, according to equation (3.13),

〈∇(2)PtF (x), h⊗ k〉

=
e−t√

1− e−t

∫
B

〈y, h〉〈∇Pt/2F (e−t/2x+
√

1− e−ty), k〉 dµB(y)
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Now using the representation for 〈∇Pt/2F (.), k〉 given by equation (3.12) we end
up with

〈h⊗ k, ∇(2)PtF ◦ πϕ(n)(x)〉
I
⊗(2)
1,2

=

e−
3t
2

β2
t
2

E
[
∇P t

2
F ◦ πϕ(n)

(
e−tx+ e−

t
2 β t

2
B + β t

2
B̃
)
〈h,B〉I1,2〈k, B̃〉I1,2

]
, (4.11)

where B̃ is an independent copy of B.
We are now in position to prove Theorem 4.1:

Proof of Theorem 4.1. For further use we set

wt(x, ζ, ξ) = e−tx+ e−t/2βt/2ζ + βt/2ξ.

First remark that hni belongs to Vn hence according to the very definition of the
divergence as an extension of the scalar product on I1,2, we have

δBh
n
i (B) = δBh

n
i (πnB).

Furthermore,

F ◦ πϕ(n)
(
e−tx+ e−t/2βt/2B + βt/2B̃

)
= F

(
wt(πϕ(n)(x), πϕ(n)(B), πϕ(n)(B̃))

)
.

This means that we have(
e−3t/2

β2
t/2

)−1 〈
∇(2)PtF ◦ πϕ(n)(x), hni ⊗ hni

〉
I
⊗(2)
1,2

= E
[
F
(
wt(πϕ(n)(x), πϕ(n)(B), πϕ(n)(B̃))

)
×E

[
δBh

n
i (πnB) |πϕ(n)(B)

]
E
[
δBh

n
i (πn(B̃)) |πϕ(n)(B̃)

]]
. (4.12)

According to lemma 4.7 in [21]

var
(
E
[
δBh

n
i (πnB) |πϕ(n)(B)

])
≤ ϕ(n)

n
· (4.13)

Now remark that since F is Lipschitz continuous from Wη,p into R, we have∣∣∣F (wt(πϕ(n)(x+rhni ), πϕ(n)(B), πϕ(n)(B̃)))−F (wt(πϕ(n)(x), πϕ(n)(B), πϕ(n)(B̃)))
∣∣∣

≤ e−t‖F‖Lip1‖πϕ(n)h
n
i ‖Wη,p |r|

≤ e−t‖F‖Lip1 |r|
√
ϕ(n)

n
ϕ(n)η−1/2.

(4.14)

Consequently, plug (4.14) into (4.12) and use Cauchy-Schwarz inequality in
conjunction with (4.13) to get∣∣∣∣〈∇(2)Ptfϕ(x+ rhni ))−∇(2)Ptfϕ(x), hni ⊗ hni

〉
I
⊗(2)
1,2

∣∣∣∣
≤ c e

−5t/2

β2
t/2

|r|ϕ(n)1+η

n3/2
·
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The proof is thus complete.

In order to control the variations of LnPnt F for small values of t, we need
the following result:

Lemma 4.2. There exists c > 0 such that for any F ∈ Lip1(Wη,p), t > 0,
n ∈ N and any x ∈Wη,p,∣∣Pnt (F ◦ πϕ(n))(x)− (F ◦ πϕ(n))(x)

∣∣ ≤ cβt (1 + ‖x‖Wη,p).

Proof. According to the Mehler formula,∣∣Pnt (F ◦ πϕ(n))(x)− (F ◦ πϕ(n))(x)
∣∣

=
∣∣E [F (e−tπϕ(n)(x) + βtπϕ(n)B)− F (πϕn(x))

]∣∣
≤ (1− e−t) ‖πϕ(n)(x)‖Wη,p + βt E

[
‖πϕnB‖Wη,p

]
.

Since πϕnB converges to B in Wη,p in Lp hence in L1, the sequence of norms is
bounded, hence the result.

Assumption 1 (Assumption Orthp ). A family (ua, a ∈ Dn) of elements of
Lp([0, T ] × X, ds ⊗ dν) satisfies Assumption Orthp whenever for any a 6= b ∈
Dn,

ua(s, z)ub(s, z) = 0, ds⊗ dν(z) a.s.

and ∫
ua(s, z)ua(s, z) ds⊗ dν(z) = 1.

It is well known (see [97]) that under hypothesis Orthp , the random variables
(δνua, a ∈ Dn) are independent hence we have the following result which is
proved in [20].

Theorem 4.3. Assume that (ua, a ∈ Dn) satisfies Orthp for some p ≥ 2. Then
for any η < 1/2,

sup
n≥1

E
[
‖
∑

δua h
n
a‖
p
Wη,p

]
<∞.

We need the following result:

Lemma 4.4. Let (ua, a ∈ Dn) be a family of functions satisfying Assumption
Orthp . Then, denoting

πnX =
∑
a∈Dn

δνua h
n
a ,

there exists c > 0 such that for all n,

E[LnPnt Fn(πnX)]

≤ c
∑
a∈Dn

∫ 1

0

∣∣∣〈hna ⊗ hna ,∇(2)Pnt (F ◦ πϕ(n))(X + rhϕ(n)
a )

−∇(2)Pnt (F ◦ πϕ(n))(X)
〉
I1,2

∣∣∣∣ dr (4.15)
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Proof. Fix n ∈ N. In what follows we denote Fn = F ◦ πϕ(n). According to
(4.9), we have for all t that

E [LnPnt Fn(πnX)] = −
∑
a∈Dn

E
[
δνua 〈hna , ∇Pnt Fn(πnX)〉I1,2

]
+
∑
a∈Dn

E
[
〈hna ⊗ hna , ∇(2)Pnt Fn(πnX))〉I1,2⊗I1,2

]
. (4.16)

The first term on the right-hand side of (4.16) can be calculated with the inte-
gration by parts formula for Poisson measures (4.1) which entails

E
[
δνua 〈hna , ∇Pnt Fn(πnX)〉I1,2

]
= E

[∫
E

ua(s, x)〈hna , Ds,x∇Pnt Fn(πnX)〉I1,2 ds dν(x)

]
(4.17)

Remembering that if u is deterministic, Ds,xδνu = u(s, x) (see equation (4.3))
so that

Ds,xπnX =
∑
a∈Dn

ua(s, x)hna

and the right-hand side of equation (4.17) is equal to

E

[ ∑
a∈Dn

∫
E

ua(s, x)

〈hna , ∇Pnt Fn(πnX + ua(s, x)hna)−∇Pnt Fn(πnX)〉I1,2 ds dν(x)

]

=

∫ 1

0

E

[ ∑
a∈Dn

∫
E

ua(s, x)2 〈hna ⊗ hna ,

∇(2)Pnt Fn(πnX + rhna)
〉
I⊗2
1,2

ds dν(x)

]
dr, (4.18)

according to the fundamental theorem of calculus. Now the second term on the
right-hand side of (4.16), because of Assumption Orthp is equal to

∑
a∈Dn

∫ 1

0

E

[∫
E

ua(s, x)2
〈
hna ⊗ hna , ∇(2)Pnt Fn(πnX)

〉
I⊗2
1,2

ds dν(x)

]
dr
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Hence, gathering the two terms of (4.16) we have for all t,

E [LnPnt Fn(πnX)]

=
∑
a∈Dn

∫ 1

0

E

[∫
E

ua(s, x)2
〈
hna ⊗ hna , ∇(2)Pnt Fn(πnX)

−∇(2)Pnt Fn(πnX + rhna)
〉
I⊗2
1,2

ds dν(x)

]
dr,

=
∑
a∈Dn

∫ 1

0

∣∣∣〈hna ⊗ hna ,∇(2)Pnt (F ◦ πϕ(n))(X + rhϕ(n)
a )

−∇(2)Pnt (F ◦ πϕ(n))(X)
〉
I1,2

∣∣∣∣ dr

which yields the desired result

We can then state:

Theorem 4.5. Let (ua, a ∈ Dn) be a family of functions satisfying Assumption
Orthp . Then, there exists c > 0 such that for all n,

distWη,p

(
πϕ(n)(πnX), πϕ(n)(πnB)

)
≤ c ϕ(n)1+η

n1/2
log

(
ϕ(n)1+η

n1/2

)
.

Proof. By the very definition of the Kantorovitch-Rubinstein distance, we have

distWη,p

(
πϕ(n)(πnX), πϕ(n)(πnB)

)
= sup
F∈Lip1(Wη,p)

(E [Fn(πnX)]−E [Fn(πnB)]) ,

which, applying 4.10 to Fn is equal to

sup
F∈Lip1(Wη,p)

E

[∫ T

0

LnPnt Fn(πnX) dt

]
;

Or in other words, using Dynkin’s lemma

sup
F∈Lip1(Wη,p)

E [Pnτ Fn(πnX)− Fn(πnX)] + E

[∫ T

τ

LnPnt Fn(πnX) dt

]
= sup
F∈Lip1(Wη,p)

[|A1(Fn)|+ |A2(Fn)|],

for all τ > 0. First, it follows from lemma (4.2) that

|A1(Fn)| ≤ cβτ

(
1 + E

[
‖
∑
a∈Dn

δνua h
n
a‖Wη,p

])
≤ c βτ , (4.19)

in view of Theorem 4.3.
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And combining Theorem 4.1 together with Lemma 4.4 entails that

E [LnPnt Fn(πnX)] ≤ cη,p
e−5t/2

β2
t/2

ϕ(n)1+η

n1/2
.

and in turn

|A2(Fm)| ≤ c ϕ(n)1+η

n1/2
| log(1− e−τ )|. (4.20)

Combine (4.19) and (4.20) to obtain that there exists a universal constant c
such that for any τ > 0,

distWη,p

(
πϕ(n)(πnX), πϕ(n)(πnB)

)
≤ c

(√
1− e−2τ − ϕ(n)1+η

n1/2
log(1− e−τ )

)
= c

(√
1− e−τ

√
1 + e−τ − ϕ(n)1+η

n1/2
log(1− e−τ )

)
≤ c

(√
1− e−τ

√
2− ϕ(n)1+η

n1/2
log(1− e−τ )

)
≤ (c ∨

√
2)

(√
1− e−τ − ϕ(n)1+η

n1/2
log(1− e−τ )

)
.

The optimal value of τ is such that
√

1− e−τ = ϕ(n)1+η

n1/2 , hence there exists
a universal constant c such that

distWη,p

(
πϕ(n)(πnX), πϕ(n)(πnB)

)
≤ c ϕ(n)1+η

n1/2
log

(
ϕ(n)1+η

n1/2

)
.

The proof is thus complete.
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Chapter 5

Application to a class of
Markov Processes

1 A class of Markov processes

We are now equipped with a Stein method to prove the convergence of interpo-
lated Poisson process to interpolated Brownian processes. How can this be used
to assess the convergence speed of Markov processes ? The present section is
devoted to describing a class of Markov processes denoted X for which we are
able to answer two questions:

1. How to rescale process X so that the rescaled process X converges to a
limit Λ ?

2. How to rescale the difference X − Λ to make sure that Un = nκ‖X − Λ‖
converges towards a non degenerate limit at a speed that can be bounded
?

We are going to show that for a wide class of Markov models we shall have

‖Un −Υ‖ = o(n−ε)

where Υ = Θ(B ◦γ), Θ is a linear, on one mapping of D, B a standard brownian
motion and γ a time change and where ε can be calculated as a function of the
scaling parameters of X identified in (1) and (2).
The d-dimensional Markov processes investigated in this paper can be repre-
sented as a linear combination of stochastic integrals with respect to a number
of independent Poisson measures. Fix a time horizon T > 0 throughout. For
any m ∈ N∗, any family (ζ1, ..., ζm)1≤ k≤m of elements of Rd and any array

(ρk)1≤ k≤m of mappings from R+×Rd to R, consider the Rd-valued process X
defined as the solution of the SDE

X(t) = X(0) +

m∑
k=1

(∫ t

0

∫
R

1{z≤ρk(s,X(s−))} dNk(s, z)

)
. ζk, t ≤ T,

where X(0) ∈ Rd is fixed, and
(
N k
)

1≤k≤m denote m independent Poisson

measures of unit intensity ds⊗ dz.
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2 The scaling of the processes

Fix n ∈ N∗, and an array α := (α1, ..., αm) ∈ (R+)m. We scale the process X
by replacing for all k, the measure Nk by a Poisson measure Nnαk

k of intensity
(nαk ds)⊗ dz, and normalizing in space by n so as to define the process Xn as
the solution of the SDE

Xn(t) =
X(0)

n
+

m∑
k=1

(
1

n

∫ t

0

∫
R

1{
z≤ρk

(
s,
Xn(s−)

n

)} dNnαk
k (s, z)

)
. ζk. (5.1)

The key assumption on our scaling (i.e. the choice of the αk’s ) is the following,

Assumption 2 (LLN Assumption ). For any k = 1, ...,m, there exists a map-
ping ρk : [0, T ]×Rd → R such that for all n ∈ N∗, any x ∈ Rd and t ≤ T ,

nαk−1ρk(t,
x

n
) = ρk(t, x).

We furthermore assume that the mapping ρk is uniformly Lipschitz continuous
in its second variable, i.s. for some a > 0, for all x, y ∈ Rd and all t ≤ T ,

|ρk(t, x)− ρk(t, y)| ≤ a ‖ x− y ‖ . (5.2)

Some examples will be provided further on.
Observe that crucially, under the LLN Assumption the ρk’s do not depend on
n. We denote for any k, by Ñnαk

k , the compensated Poisson measures of Nnαk
k ,

that is, we let dÑnαk
k (s, z) = dNnαk

k (s, z) − nαk( ds ⊗ dz). Then, for all n,
the Rd-valued processes (Mn,k,Xn

)k=1,...,m, defined for all t ≤ T by

Mn,k,Xn
(t) =

(∫ t

0

∫
R

1{z≤n1−αkρk(s,Xn(s−))} dÑnαk
k (s, z)

)
. ζk (5.3)

are martingales with respect to the natural filtration of the Poisson measures.
It follows from (5.1) that for all n and t, for all t,

Xn(t) = Xn(0) +

m∑
k=1

(∫ t

0

ρk(s,Xn(s−)) ds

)
. ζk +

m∑
k=1

n−1.Mn,k,Xn
(t). (5.4)

Now, denote by Λ the solution in C ([0, T ]) of the integral equation

Λ(t) = Λ(0) +

m∑
k=1

(∫ t

0

ρk(s,Λ(s)) ds

)
. ζk, t ≥ 0. (5.5)

(The existence and uniqueness of such Λ readily follow from the Cauchy-Lipschitz
Theorem in view of (5.2).)

Lemma 5.1. Let Λ be the unique solution of (5.5) on [0, T ]. Suppose that the
LLN Assumption holds, and that

lim
n→∞

E
[∥∥Xn(0)− Λ(0)

∥∥] = 0. (5.6)

Then, (Xn) converges in L1 and uniformly on [0, T ] to Λ, that is,

lim
n→∞

E
[∥∥Xn − Λ

∥∥
T

]
= 0.

where ‖.‖T denotes the uniform convergence norm on [0, T ].
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Proof. Fix t ≤ T . It follows from (5.4), the triangular inequality and the Lips-
chitz continuity assumption (5.2) that

sup
s≤t

∥∥Xn(s−)− Λ(s)
∥∥

≤
∥∥Xn(0)− Λ(0)

∥∥+mmax
k≤m
‖ζk‖a

∫ t

0

sup
s≤u

∥∥Xn(s−)− Λ(s)
∥∥ du

+
1

n

m∑
k=1

‖ ζk ‖
(∫ t

0

∫
R

1{z≤n1−αkρk(u,Xn(u−))} dÑnαk
k (u, z)

)
Thus, from the Burkholder Davis Gundy inequality, there exists C such that

E

[
sup
s≤t

∥∥Xn(s−)− Λ(s)
∥∥]

≤ E
[∥∥Xn(0)− Λ(0)

∥∥]+mmax
k≤m
‖ζk‖a

∫ t

0

E

[
sup
s≤u

∥∥Xn(s−)− Λ(s)
∥∥] du

+
C

n

m∑
k=1

‖ζk‖E

√αk ∫ t

0

∫
R

1{z≤n1−αkρk(u,Xn(u−))} du dz

 ,
so in view of the Gromwall lemma, for some positive constants K and C ′ we
have that

E

[
sup
s≤t

∥∥Xn(s−)− Λ(s)
∥∥]

≤

E
[∥∥Xn(0)− Λ(0)

∥∥]+
C ′√
n

m∑
k=1

E

√∫ t

0

ρk
(
u,Xn(u−)

)
du

 eKt,

(5.7)

whence the result.

This lemma provides a systematic method to rescale a Markov process so
that it gets a fluid limit: one simply has to find the sequence of αk’s (scaling of
intensities) that make the ρk independent of n (see the examples in chapters 6
and 7 below).

We now turn to the so-called diffusion scaling of the process X. We study
the sequence of processes {Un} defined for all n by

Un = Uαn =
√
n(Xn − Λ).

To obtain a formal functional central limit Theorem for the sequence {Un}, we
make the following additional assumptions,

Assumption 3 (FCLT). (i) For all n, all k = 1, ...,m and all t ∈ [0, T ],

ρk(t,Xn(t))− ρk(t,Λ(t)) =
1√
n
Lk(t, Un(t)) + En,k(t), (5.8)

where L is linear with respect to its second variable and
√
n lim
n→∞

E
[
‖En,k‖T

]
= 0; (5.9)
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(ii) The initial conditions are such that

lim
n→∞

√
nE
[∥∥Xn(0)− Λ(0)

∥∥] = 0. (5.10)

Recall (5.3), and let us introduce for all n, the Rd-valued martingales (Mn,k,Xn
)k=1,...,m,

X̄n,Xn
, (Mn,k,Λ)k=1,...,m and M̄n,Λ, defined respectively for all t ≤ T by

M̄n,Xn
(t) =

1√
n

m∑
k=1

Mn,k,Xn
(t) ; (5.11)

Mn,k,Λ(t) =

(∫ t

0

∫
R

1{z≤n1−αkρk(s,Λ(s))} dÑnαk
k (s, z)

)
. ζk ; (5.12)

M̄n,Λ(t) =
1√
n

m∑
k=1

Mn,k,Λ(t) . (5.13)

From (5.4) and (5.5), for all n and all t ≤ T we have that

Un(t) =
√
n
(
Xn(0)− Λ(0)

)
+

m∑
k=1

(√
n

∫ t

0

(
ρk(s,Xn)− ρk(s,Λ(s))

)
ds

)
. ζk + M̄n,Xn

(t).
(5.14)

Under the FCLT Assumption, for any f ∈ D([0, T ],Rd), there exists a unique
solution in f ∈ D([0, T ],Rd) to the equation

g(t) =

m∑
k=1

(∫ t

0

Lk(s, g(s)) ds

)
. ζk + f(t), t ≤ T. (5.15)

So we can define the bijective mapping

Θ :

{
D([0, T ],Rd) −→ D([0, T ],Rd),
f 7−→ g solution to (5.15).

(5.16)

We have the following result:

Lemma 5.2. Suppose that the LLN and FCLT Assumptions hold. Suppose also
that for some process W ∈ D

(
[0, T ],Rd

)
,

E
[
‖M̄n,Λ −W‖T

]
≤ n−3/4, (5.17)

where M̄n,Λ is defined by (5.13). Then,

E [‖Un −Θ(W )‖T ] ≤ n−3/4,

for Θ defined in (5.16).

Proof. For all n, let Wn = Θ−1(Un). Then it follows from (5.14) and (5.8) that
for all n and all t ≤ T ,

Un(t) =

m∑
k=1

(∫ t

0

Lk(s, Un(s)) ds

)
. ζk +

√
n

(
Xn(0)− Λ(0) +

m∑
k=1

En,k(t). ζk

)

+
1√
n

m∑
k=1

Mn,k,Xn
(t).
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and by definition of Θ

Wn(t) =
√
n

(
Xn(0)− Λ(0) +

m∑
k=1

En,k(t). ζk

)
+

1√
n

m∑
k=1

Mn,k,Xn
(t). (5.18)

But from the Burkholder Davis Gundy inequality, for any k there exists a
constant Ck such that

E
[∥∥∥Mn,k,Xn

−Mn,k,Λ

∥∥∥
T

]
≤ Ck‖ζk‖E

(αk ∫ T

0

∫
R

(
1{z≤n1−αkρk(t,Xn(t−))} − 1{z≤n1−αkρk(t,Λ(t))}

)2

dt dz

)1/2


= Ck
√
nαk‖ζk‖E

(∫ T

0

∣∣ρk(t,Xn(t−))− ρk(t,Λ(t))
∣∣ dt

)1/2
 .

Hence, in view of (5.2) there exists a constant Dk such that this last term is less
than

Dk

√
nE

(∫ T

0

‖Xn(t−)− Λ(t)‖ dt

)1/2


≤ D
√
n

(∫ t

0

E
[
‖Xn(t−)− Λ(t)‖

]
dt

)1/2

,

in view of Jensen’s inequality and Fubini’s Theorem. In view of (5.7), the above
term is thus at most of order n−3/4, which, using assumptions (5.9) and (5.10),
entails that

E
[ ∥∥Wn − M̄n,Λ

∥∥
T

]
≤ n−3/4. (5.19)

To conclude, observe that, as it is linear, the mapping Θ is Lipschitz continuous.
Thus there exists a constant a such that ‖Un−Θ(W )‖T ≤ a‖Wn−W‖T for all
n. This, together with (5.19) and Assumption (5.17), yields the result.

In other words, this lemma enables to bound the speed of convergence of Un
towards Θ( lim

n→∞
M̄n,Λ) by that of Wn towards lim

n→∞
M̄n,Λ.

Remark 4. Thanks to lemma 5.2 we can focus on the study of the convergence
of the family of martingales M̄n,Λ defined by (5.13) where the indicator function

is indeed deterministic and the family of Poisson measures Ñnαk being consid-
ered are independent of each other. We will therefore be able to use the Dubins
Schwarz theorem for each k and to assess the speed of convergence by retaining
the slowest rate of convergence among the members of the family of processes
indexed by k.

3 Interpolation of these processes

3.1 Distance between the process and its interpolation

We prove the following theorem:
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Theorem 5.3. Let N be a Poisson process of intensity λ and consider for some
κ > 0,

X(t) = κ(N(t)− λt).
Then, for all q ∈ R+

E
[
‖X − πqX‖T

]
≤ 2κ

∣∣∣∣∣∣ log(qe−λT/q)

log
(
q log(qe−λT/q)

λTe

)
∣∣∣∣∣∣ ·

where ‖.‖T denotes the norm of L∞([0, T ]).

Proof. For any t ∈ [0, T ] there exists i ≤ q − 1 such that t ∈ [ iTq ; (i+1)T
q ) and

‖X(t)− πqX(t)‖

=

∥∥∥∥X(t)−X
(
iT

q

)
− q

T

(
t− iT

q

)(
X

(
(i+ 1)T

q

)
−X

(
iT

q

))∥∥∥∥
≤ 2 sup

t∈[ iTq ;
(i+1)T
q ]

∥∥∥∥X(t)−X
(
iT

q

)∥∥∥∥ , (5.20)

so that

E [‖ X − πqX ‖T ] ≤ 2 E

[
max

i∈[0,q−1]

∥∥∥∥X ( (i+ 1)T

q

)
−X

(
iT

q

)∥∥∥∥] . (5.21)

The increments of X are independent and distributed as κ times a Poisson
random variable of parameter λT/q. The result follows from Proposition 8.6 in
section 2 of the Appendix.

3.2 Distance between two affine interpolations

Let (λn) be a sequence of numbers in R+ and let us consider a sequence Sn of
processes such that

Sn(t) =
√
λn(Nn(t)− λnt).

Where Nn is a Poisson process of intensity λn According to the definition of
the interpolated process,

πnSn(t) =
1√
T

n−1∑
i=0

√
n

(
Sn(

(i+ 1)T

n
)− Sn(

iT

n
)

)
hni (t)

=
1√
T

n−1∑
i=0

δn(1[iT/n, (i+1)T/n]) h
n
i (t) (5.22)

Note that the random variables δn(1[iT/n, (i+1)T/n]) are independent and have
the distribution of a centered Poisson random variable of parameter T . When
divided by

√
T , it has a unit variance.

In what follows, for the sake of simplicity, we assume T = 1 without loss of
generality. Let (ϕ(n))n≥1 be a sequence of numbers which tends to infinity and
such that n/ϕ(n) is an integer greater than 1. Fix n ≥ 0, and let

Dϕn =
{
i/ϕ(n), i = 0, · · · , ϕ(n)− 1

}
be the subdivision of [0, 1] of mesh 1/ϕ(n). We have the following theorem
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Theorem 5.4. For any integer n,

E
[
‖πnSn − πϕ(n)Sn‖pWη,p

]1/p
≤ c ϕ(n)η√

ϕ(n)
·

Before proving this theorem we need the following result

Lemma 5.5. For all p ≥ 2, there exists a constant cp such that for any se-
quence of independent, centered, identically distributed, R-valued random vari-
ables (Xi; i ∈ N) with X ∈ Lp and any sequence (αi; i ∈ N)

E

[
|
n∑
i=1

αiXi|p
]
≤ cp|{i ≤ n, αi 6= 0}|p/2

(
n∑
i=1

|αi|p
)

E [|X|p]

where |A| is the cardinality of the set A.

Proof. The Marcinkiewicz–Zygmund inequality yields

E

[
|
n∑
i=1

αiXi|p
]
≤ cpE

[
|
n∑
i=1

α2
iX

2
i |p/2

]
.

Using Jensen’s inequality ψ (
∑
pixi/

∑
pi) ≤

∑
piψ(xi)/

∑
pi , applied to the

convex function ψ : x → xp/2, weights pi = 1|αi|>0 and variables xi = α2
iX

2
i ,

we obtain

E

[
|
n∑
i=1

αiXi|p
]
≤ cp|{i ≤ n, αi 6= 0}|p/2−1E

[
n∑
i=1

|αi|p|Xi|p
]
.

We then use the fact that

E

[
n∑
i=1

|αi|p|Xi|p
]
≤ |{i ≤ n, αi 6= 0}|

(
n∑
i=1

|αi|p
)

E [|X|p] ,

which completes the proof.

Proof of Theorem 5.4. Actually, it is already proved in [22] that for all m ≥ 1,

E [‖Sm(s)− Sm(t)‖] ≤ c‖X‖Lp(
√
t− s ∧m−1/2), (5.23)

where X = δn(1[iT/n, (i+1)T/n]) is a random centered Poisson variable. Assume
that s and t belong to the same sub-interval: There exists l ∈ {1, ..., n} such
that

l − 1

n
≤ s < t ≤ l

n
.

Then we have

πnSm(t)− πnSm(s) =
√
n

(
m∑
k=1

Xk〈hmk , hnl 〉H

)
(t− s)

. Using lemma 5.5, there exists a constant c such that

‖πnSm(t)− πnSm(s)‖Lp√
n|t− s|

≤ c‖X‖Lp |{k, 〈hmk , hnl 〉H 6= 0}|1/2 sup
k
|〈hmk , hnl 〉H |.
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Note that |〈hmk , hnl 〉H | ≤
√

n
m and there are at most m/n + 2 terms such that

〈hmk , hnl 〉H is non zero. Thus,

‖πnSm(t)− πnSm(s)‖Lp√
n|t− s|

≤ c‖X‖Lp(
m

n
+ 2)1/2

√
n

m
≤ c‖X‖Lp ,

as m/n tends to infinity. Since |t− s| ≤ 1/n,

‖Sm(s)− Sm(t)‖ ≤ c‖X‖Lp
√
|t− s|. (5.24)

For 0 ≤ s < t ≤ 1 let sn+ := min{l, s ≤ l
n} and tn− := sup{l, t ≥ l

n}. We have,
denoting fs,t = f(t)− f(s),

πn(Sm)s,t−Ss,tm = (πn(Sm)s,s
n
+−Ss,s

n
+

m )+(πn(Sm)s
n
+,t

n
−−Ss

n
+,t

n
−

m )+(πn(Sm)t
n
−,t−St

n
−,t
m )

Note that for all f ∈ W,πn(f) is the linear interpolation of f along the
subdivision Dn; hence, for s, t ∈ Dn, πn(Sm)s,t = Ss,tm . Thus the median term
vanishes and we obtain

E
[
‖πn(Sm)s,t − Ss,tm ‖p

]
≤ c

(
E
[
‖πn(Sm)s,s

n
+‖p
]

+E
[
‖Ss,s

n
+

m ‖p
]

+ E
[
‖πn(Sm)t

n
−,t‖p

]
+ E

[
‖St

n
−,t
m ‖p

])
(5.25)

From (5.24), we deduce that

E
[
‖πn(Sm)s,s

n
+‖p
]1/p

≤ c‖X‖Lp
√
|sn+ − s| ≤ c‖X‖Lpn−1/2, (5.26)

and the same holds for the t and tn−, but also for E
[
‖Ss,s

n
+

m ‖p
]

and E
[
‖St

n
−,t
m ‖p

]
.

We infer from (5.23), (5.24) and (5.26) that

E
[
‖πn(Sm)s,t − Ss,tm ‖p

]1/p ≤ c‖X‖Lp (√t− s ∧ n−1/2
)
. (5.27)

Remembering equation 3.1, a straightforward computation shows that∫ ∫
[0,1]2

[|t− s| ∧ n−1]p/2

|t− s|1+ηp
ds dt ≤ cn−p(1/2−η). (5.28)

The result follows from (5.27) and (5.28).

4 A central limit theorem

We are going to show in what follows that

lim
n→∞

M̄n,Λ
d
=

m∑
k=0

ζk

∫ t

0

ρk(s,Λ(s)) dBk(s).

and assess its speed of convergence. In order to do so, notice that

M̄n,Λ =
1√
n

m∑
k=0

ζk

∫ t

0

∫
R

1{z≤nβ−αkρk(s,Λ(s))} dÑnαk
k (s, z)

56



We know that

Rkn =
1√
n

∫ t

0

∫
R

1{z≤nβ−αkρk(s,Λ(s))} dÑnαk
k (s, z)

converges in distribution, to a Gaussian martingale of square bracket

γk(t) =

∫ t

0

ρk(s,Λ(s)) ds,

which according to the Dubins-Schwarz theorem can be represented as B ◦
γk where B is a one dimensional standard Brownian motion. Our goal now
is to precise the rate of this convergence in Wη,p. In order to use the Stein
method presented in the previous section, we need to reduce the problem to a
convergence to Brownian motion. As a consequence, we must first analyze the
rate of convergence of Rkn ◦ γ−1

k to B.

Lemma 5.6. The process Rkn◦γ−1
k has the distribution of n−1/2 times a Poisson

process of intensity n.

Proof. Let Fkt the σ-field generated by Ñαk :

Fkt = σ{Ñαk([0, s]×A), s ≤ t, A ∈ B(R+)}

and Gkt = Fkγ−1(t). Consider T kn = n1/2Rkn. According to the Watanabe charac-
terization of Poisson point processes, it is sufficient to prove that

t 7−→ (T kn ◦ γ−1
k )(t)− nt

is a Gkt -martingale. Let 0 ≤ s < t and A ∈ Gks ,

E
[
1A
(
T kn ◦ γ−1

k (t)− T kn ◦ γ−1
k (s)

)]
= E

[
1A

∫ γ−1
k (t)

γ−1
k (s)

nρk(v,Λ(v)) dv

]
= nE

[
1A

(
γ
(
γ−1
k (t)

)
− γ
(
γ−1
k (s)

))]
= nE [1A(t− s)] .

The proof is thus complete.

In the sequel we denote Skn = Rkn ◦ γ−1
k

d
= n−1/2(Nn(t) − nt) where Nn is

a Poisson process on the half-line of intensity n. We show it converges to a
Brownian motion and provide a bound on the convergence rate.

Theorem 5.7. Using the notations defined above, for η < 1/2, we have

d(Skn, B) ≤ cnη/3−1/6 log(n).

Proof. We make use of an interpolation of process Skn with step size ϕ(n) and
use triangular inequality (4.5) to show that for all k,

d(πnS
k
n,B)≤ d(Skn,πnS

k
n)+ d(πnS

k
n,πϕ(n)S

k
n)+ d(πϕ(n)S

k
n,πϕ(n)B)+ d(πϕ(n)B,B),
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Bound on d(πϕ(n)S
k
n, πϕ(n)B): Since πnSn belongs to I1,2, its affine interpo-

lation on Dϕn is nothing but the orthogonal projection on span{hϕ(n)
j , j ∈ Dϕn}.

This means that

πϕ(n)Sn = πϕ(n)(ΠnSn)

=
∑
j∈Dϕn

n−1∑
i=0

δn(1[ in ,
i+1
n ))〈h

n
i , h

ϕ(n)
j 〉I1,2 h

ϕ(n)
j .

In view of (4.7), we have

πϕ(n)Sn =

√
ϕ(n)

n

∑
j∈Dϕn

 ∑
i: iϕ=j

δn(1[ in ,
i+1
n ))

 h
ϕ(n)
j

=

√
ϕ(n)

n

∑
j∈Dϕn

δn(1[ j
ϕ(n)

, j+1
ϕ(n)

)) h
ϕ(n)
j ,

since ∪i,iϕ=j [
i
n ,

i+1
n ) = [ j

ϕ(n) ,
j+1
ϕ(n) ). Therefore, for any ϕ(n) < n, we have

πϕ(n)Sn =

√
ϕ(n)

n

∑
j∈Dϕn

δn(1[ j
ϕ(n)

, j+1
ϕ(n)

)) h
ϕ(n)
j . (5.29)

Clearly the random variables
√

ϕ(n)
n δn(1[ j

ϕ(n)
, j+1
ϕ(n)

)) are orthogonal because

of the 1[i/n,(i+1)/n term and of unit variance. We can apply Theorem 4.5 and
thus

distKR

(
πϕ(n)Sn, πϕ(n)B

)
≤ c ϕ(n)1+η

n1/2
log

(
ϕ(n)1+η

n1/2

)
. (5.30)

Bound on d(πϕ(n)B,B): Since πnB and B are defined on the same proba-
bility space, we can make use of the result in Proposition 13.20 of [47], which
shows the existence of a constant c such that, for all η < 1/2,

distWη,p
(πϕ(n)B, B) ≤ c ϕ(n)η√

ϕ(n)
, n ∈ N. (5.31)

Bound on d(πnS
k
n, πϕ(n)S

k
n): according to theorem 5.4,

d(πnS
k
n, πϕ(n)S

k
n) ≤ c ϕ(n)η√

ϕ(n)
· (5.32)

Bound on d(Skn, πnS
k
n) : According to Theorem 5.3, for our particular values

of λ = n,κ = n−1/2, and q = n we get

d(Skn, πnS
k
n) ≤ c√

n

log(n)− T
log (log(n)− T )− T − 1

(5.33)

Combining equations (5.30), (5.31), (5.33) and (5.32), we get that

d(Skn, B) ≤ c

(
ϕ(n)1+η

n1/2
log

(
ϕ(n)1+η

n1/2

)
+

ϕ(n)η√
ϕ(n)

+
log(n)√

n log(log n)

)
(5.34)
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The later expression is minimized for ϕ(n) ∼ n1/3: after factorizing ϕ(n)η, it is
a matter of optimizing

x→ x

n1/2
log
( x

n1/2

)
+

1√
x

where we can neglect the terms in log.
As n must be an integer multiple of ϕ(n) we can choose ϕ(n) = n/[n2/3].

This leads to

d(Skn, B) ≤ c
(
nη/3

n1/6
log

(
nη/3

n1/6

)
+
nη/3

n1/6
+

log(n)√
n log(log n)

)
∼ cnη/3−1/6 log(n)

If we want to compare the distributions of Rn and B, we must evaluate the
effect of the time change γ(t) =

∫ t
0
r(s) ds where r is upper and lower bounded.

We have the following corollary:

Corollary 5.8. For an initial process belonging to the class of Markov processes
we consider, rescaled according to the LLN and FCLT Assumptions, and for all
test functions f : D → R which are Lipschitz on D and whose restriction to
Wη,p belongs to Lip1(Wη,p) there exists c > 0 such that

|E [f(Rn)]−E [f(B ◦ γ)]| ≤ c n− 1
6 + η

3 log(n)

Proof of Corollary 5.8. We have to estimate∫∫
[0,T ]2

|ψ ◦ γ(t)− ψ ◦ γ(s)|p

|t− s|1+ηp
ds dt

=

∫∫
[0,T ]2

|ψ ◦ γ(t)− ψ ◦ γ(s)|p

|γ(t)− γ(s)|1+ηp

|γ(t)− γ(s)|1+ηp

|t− s|1+ηp
ds dt

≤ r1+ηp
max

∫∫
[0,T ]2

|ψ ◦ γ(t)− ψ ◦ γ(s)|p

|γ(t)− γ(s)|1+ηp
ds dt

= r1+ηp
max

∫∫
[0,γ(T )]2

|ψ(v)− ψ(u)|p

|u− v|1+ηp

1

r(γ−1(v))

1

r(γ−1(u))
du dv

≤ r1+ηp
max

r2
min

‖ψ‖Wη,p([0,γ(T )]),

thanks to the change of variables formula.

This implies that there exists c > 0 such that

|E [f(ΠnRn)]−E [f(B ◦ γ)]| ≤ c n− 1
6 + η

3 log n.

If we want to compare the distributions of Rn and B ◦ γ, we must use test
functions f : D → R which are Lipschitz on D and whose restriction to Wη,p

belongs to Lip1(Wη,p). In view of Theorem 5.3, the slower rate of convergence is
induced by the comparison between ΠnRn and B ◦ γ, thus for such functionals,
there exists c > 0 such that

|E [f(Rn)]−E [f(B ◦ γ)]| ≤ c n− 1
6 + η

3 log n if β 6= 1.

Keeping in mind Lemma 5.2 we can state
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Corollary 5.9. For all test functions f : D→ R which are Lipschitz on D and
whose restriction to Wη,p belongs to Lip1(Wη,p) there exists c > 0 such that

E [‖f(Un)− f(Θ(W ))‖T ] ≤ cn− 1
6 + η

3 log(n).
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Chapter 6

Application to Queueing
Models

We show in this chapter how our model can be applied to bound the speed of
convergence of the simplest queueing models.

1 The M/M/∞ queue

1.1 Short introduction to the M/M/∞ model

We consider an M/M/∞ queue: a potentially unlimited number of servers at-
tend customers that enter the system following a Poisson process of intensity
λ, requesting service times that are exponentially distributed with intensity µ
(where λ, µ > 0).

If L#(t) denotes the number of customers in the system at time t, L# is an
ergodic Markov process which can be represented as

L#(t) = L#(0) +

∫ t

0

∫
R

1{z≤λ} dN 1
s,z −

∫ t

0

∫
R

1{z≤µL#(s−)} dN−1
s,z , t ≥ 0,

where N 1
s,z and N−1

s,z denote two independent marked Poisson measures of R×
[0, n] with intensities of ds⊗ dz, and x0 is the initial number of customers at
time 0.

This process is rescaled by accelerating the time scale of the arrival process
while increasing by the same factor n, the number of customers in the initial
state and dividing both by n, The new process can be represented as

L#
n (t) =

L#(0)

n
+

1

n

∫ t

0

∫
R

1{z≤nλ} dN 1
s,z−

1

n

∫ t

0

∫
R

1{z≤µnL#
n (s−)} dN−1

s,z , t ≥ 0,

Based on the latest representation

L#
n − L#

n (0) =
1

n

∫ t

0

∫
R

1{z≤nλ} dÑ 1
s,z −

1

n

∫ t

0

∫
R

1{z≤µnL#
n (s−)} dÑ−1

s,z

+ λt− µ
∫ t

0

L#
n (s−) ds
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where Ñ 1
s,z and Ñ−1

s,z denote the compensated marked Poisson measures.

It is a well known fact (see for instance [9] or [104]) that the sequence of

processes
{
L̄#
N

}
converges to the deterministic process

t 7→ L̄#(t) = ρ+ (x0 − ρ)e−µt, (6.1)

where ρ = λ/µ. Moreover, if we define for all N ,

t 7→ Un(t) =
√
n(L̄#

n (t)− L̄#(t)), (6.2)

and Un(0) tends to 0 in a suitable sense, the sequence {Un} converges in distri-
bution to the process X defined by

t 7→ X(t) = X(0)e−µt +

∫ t

0

e−µ(t−s)
√
h(s) dB(s), (6.3)

where h(t) = 2λ + µ(x − ρ)e−µt for all t ≥ 0 and B is the standard Brownian
motion. As shown in [104] (eq. (6.28) in Chapter 6), X is an Ornstein-Uhlenbeck
process and

X(t) = X(0)e−µt +
√

2λ

∫ t

0

e−µ(t−s) dB(s), t ≥ 0.

A planar representation of theM/M/∞ queue can be given: assume through-
out that the initial number of customers L#(0) in the queue is zero. A point
(x, z) represents a customer arriving at time x and requiring a service of dura-
tion z. Let Nλ,µ be a Poisson process on R+×R+ of intensity λ⊗µ. The number
of busy servers at time t then corresponds to the number of points located in a
trapeze bounded by the axes of equation x = 0 and x = t, and above the line
z = t− x.

x

z

x+ z

•

•

•

•

Figure 6.1: Representation of the M/M/∞ queue
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Thus for all t ≥ 0,

L#(t) =

∫ ∫
Ct

dNλ,µ(x, z),

where
Ct = {(x, z), 0 ≤ x ≤ t, z ≥ t− x}.

Hence after scaling, for any positive integer n,

L̄#
n (t) =

1

n
Nλn,µ(Ct).

As readily follows from (6.1, the fluid limit L̄# can be written for all t ≥ 0 as

L̄#(t) =

∫
1Ct(x, z)λxe

−µzµ dx dz,

so that for all n and t,

Un(t) =
1√
n

∫ ∫
1Ct(x, z) dNλn,µ(x, z)− 1Ct(x, z)λxe

−µzµ dx dz, (6.4)

where Un is defined by (6.2).

1.2 Straight application of our model

Denote Λ the solution of the following differential equation

Λ(t) = λt− µ
∫ t

0

Λ(s) ds+ Λ(0)

with initial condition Λ(0) = limn→∞ L#
n (0). It can be shown that

Λ(t) =
λ

µ
−
(

Λ(0)− λ

µ

)
exp(−µt)

Defining Un as Un =
√
n(L#

n − Λ) and U as

U(t) =
√
λB1(t)− µ

∫ t

0

Λ(s) dB2(s),

B1 and B2 being two independent Brownian motions.
We have

Theorem 6.1. If condition (ii) of the FCLT Assumption is satisfied, for all
n ∈ N∗ and all Lipschitz function F on D whose restriction to Wη,p belongs to
Lip1(Wη,p), we have, defining Θ as in (5.16), there exists C > 0 such that

|E [F (Θ(U))]−E [F (Un)]| ≤ C

n1/6
log(n).

Proof. Using α1 = 1 and α−1 = 0, it is clear that all conditions of Lemma 5.1
are met: first

ρ1(s, f) = λ and ρ−1(s, f) = µf
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do not depend on n and ρ1 and ρ−1 are obviously Lipschitz continuous with
respect to their second variable. In addition, condition (i) of the FCLT As-
sumption is obviously met with L1 = 0, L2 = µ,En,1 = En,2 = 0 so that if
condition (ii) is also met, Denoting

M̃n =
1√
n

∫ t

0

∫
R

1{z≤nλ} dÑ 1
s,z −

1√
n

∫ t

0

∫
R

1{z≤µnΨ(s)} dÑ−1
s,z ,

we know from Lemma 5.2 that we have

E
[
‖Un −Θ(M̃n)‖T

]
≤ cn−3/4,

and we can deduce from Corollary 5.9 that

E [‖Un −Θ(U)‖T ] ≤ cn−1/6 log(n).

Remark 5. Using the planar representation of the M/M∞ queue, it is possible,
using similar calculations, to compute a more precise speed for the convergence,
and to replace the 1/6 factor in the equation above by a 1/2 as we showed in
[7].

2 The M/M/1 model

2.1 Short introduction to the M/M/1 model

The M/M/1 queue consists in a single server with infinite queue, where the
service times are independently and identically distributed, according to an
exponential distribution of parameter µ. The customers arrive at the time
epochs of a Poisson process of intensity λ > 0. Let L†(t) denote the number of
customers in the system (including the one in service, if any) at time t ≥ 0. The
process

(
L†(t), t ≥ 0

)
counting the number of customers in the system is clearly

a birth and death process, that is ergodic if and only if λ/µ < 1. This model can
be represented as the Skorokhod reflection (see [103] ) of the following process:

L†(t) = R(X) where X(t) = x0 +

∫ t

0

∫
R

1{z≤λ} dN 1
s,z −

∫ t

0

∫
R

1{z≤µ} dN−1
s,z .

These processes are rescaled by accelerating the time scale by an arbitrarily
large factor n, while increasing the number of clients in the initial state by the
same multiplicative factor and dividing the number of clients by n: For all t ≥ 0,

Xn(t) =
x0

n
+

1

n

∫ t

0

∫
R

1{z≤nλ} dN 1
s,z −

1

n

∫ t

0

∫
R

1{z≤nµ} dN−1
s,z

and L†n(t) = R(Xn).
Denote Λ the solution of the following differential equation

Λ(t) = x0 + λt− µ
∫ t

0

1{Λ(s−)>0} ds
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with initial condition Λ(0) = limn→∞ L†n(0). It can be shown that

Λ(t) = x0 + (λ− µ)t

Defining Un as Un =
√
n(Xn − Λ) and U as

U(t) =
√
λB1(t)− µ

∫ t

0

Λ(s) dB2(s),

B1 and B2 being two independent Brownian motions.
We have

Theorem 6.2. If condition (ii) of the FCLT Assumption is satisfied, for all
n ∈ N∗ and all Lipschitz funcltion F on D whose restriction to Wη,p belongs to
Lip1(Wη,p), we have

|E [F (U)]−E [F (Un)]| ≤ C

n1/6
log(n).

As a corollary,

|E [F (R(U))]−E [F (R(Un))]| ≤ C

n1/6
log(n).

Proof. Using α1 = α−1 = 1, it is clear that all conditions of lemma 5.1 are met:

ρ1(s, f) = λ and ρ−1(s, f) = µ

do not depend on n. ρ1 and ρ−1 are obviously Lipschitz continuous with respect
to their second variable As L1 = L−1 = 0, Θ defined as in (5.16) is the identity.

Therefore using lemma 5.1, for some C > 0 Xn converges to Λ and L†n converges
in L2 to

R(Λ)(t) = (x0 + (λ− µ)t)+

Denoting

M†n =
1√
n

∫ t

0

(∫ t

0

∫
R

1{z≤nλ} dÑ 1
s,z −

∫ t

0

∫
R

1{z≤nµ} dÑ−1
s,z

)
Lemma 5.2 ensures that∥∥√n(Xn − Λ)−M†n

∥∥ ≤ ( c

n3/4

)
Then denoting

W =
1√
λ+ µ

(λB1 + µB2)

where B1 and B2 are Brownian motions, (W is itself a standard Brownian
motion), we can deduce from Corollary 5.9 that∥∥√n(Xn − Λ)−W

∥∥ ≤ c

n1/6
log(n)

The Skorokhod reflection being Lipschitz continuous (see proposition D4 in
[103]) we get the corollary.
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2.2 Higher rate of convergence for a smaller class of func-
tions

In [7] we obtained a higher convergence speed for the rescaled M/M/∞ and
M/M/1 queues by restraining ourselves to a smaller class of functions in the
definition of the Wasserstein distance.

The Σ class of functions

Definition 6.3. A function f : Wn → R is said to belong to the class Σn when-
ever it is 1-Lipschitz continuous, twice differentiable in the sense of definition
3.6, and we have

sup
w∈Wn

∣∣∣∣〈D(2)
n fn(w)−D(2)

n fn(w + g), h⊗ k
〉
H
⊗(2)
n

∣∣∣∣ ≤ ‖g‖W ‖h‖L2‖k‖L2 , (6.5)

for any g ∈Wn, h, k ∈ Hn.

Actually, in the definition of the distance between distributions of processes,
the test functions are defined on the whole space W . Hence, we must find a
class of functions whose restriction to Wn belong to Σn for any n ≥ 1. This
involves the notion of H-differential on W . Let

H =

{
h, ∃!h′ ∈ L2([0, T ]) such that h(t) =

∫ t

0

h′(s) ds

}
. (6.6)

It is an Hilbert space when equipped with the scalar product

〈h, g〉H =

∫ T

0

h′(s)g′(s) ds.

A function f : W → R is said to be twice H-differentiable whenever for any
w ∈W , for any h ∈ H, the function{

R −→ R
ε 7−→ f(w + εh)

is twice differentiable in a neighbor of 0. We denote by Df and D(2)f its first
and second order gradient, defined by

〈Df(x), h〉H =
d

dε
f(x+ εh)

∣∣∣∣
ε=0

,〈
D(2)f(x), h1 ⊗ h2

〉
H⊗(2)

=
∂2

∂ε1∂ε2
f(w + ε1h1 + ε2h2)

∣∣∣∣
ε1=ε2=0

.

Definition 6.4. The class Σ is the set of 1-Lipschitz continuous, twice H-
differentiable functions such that

sup
w∈W

∣∣∣〈D(2)f(w)−D(2)f(w + g), h⊗ k
〉
H⊗(2)

∣∣∣ ≤ ‖g‖W ‖h‖L2‖k‖L2 ,

for any g ∈W, h, k ∈ H.
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For f : W → R, let fn = f|Wn
. If f is once H-differentiable, then, we have

that for any wn ∈Wn, any j ∈ {0, · · · , n− 1},

〈
Df(e(wn)), hjn

〉
H

=
d

dt
f(e(wn + εhjn))

∣∣∣∣
ε=0

=
d

dt
fn(wn + εhjn)

∣∣∣∣
ε=0

=
〈
Dnfn(wn), hjn

〉
Hn

. (6.7)

Thus, it is straightforward that if f belongs to Σ then fn belongs to Σn for any
n ≥ 1.

Remark 6. Let us provide a few instances of functionals which are often en-
countered in queueing analysis, and which are regular enough to be elements
of Σ. This is the case, first, for the function Ff , that is defined for any mild
enough function f and T > 0, by

Ff :

D −→ R

x =
(
xt, t ∈ [0, T ]

)
7−→ 1

T

∫ T

0

f(xs) ds,

observing that Ff (X) goes to Eπ [f ] for large T whenever the Markov process
X is ergodic of invariant probability π. Then, for any x, y ∈W ,

|Ff (x)− Ff (y)| ≤ ‖x− y‖W

provided that f is Lipschitz continuous. Moreover, a classical computation shows
that〈

D(2)Ff (x+ g)−D(2)f(x), h⊗ k
〉
H⊗(2)

=
1

T

∫ T

0

(
f ′′(xs + g(s))− f ′′(xs)

)
hsks ds.

Hence Ff belongs to Σ as long as f ′′ does exist and is Lipschitz continuous.
Similarly, for M ≥ 0 and p ≥ 2,

FM,p :


D −→ R

x 7−→

(∫ T

0

|xs ∧M |p ds

)1/p

.

also belongs to the set of admissible test functions. Observe that for M and p
large enough, FM,p(x) can be considered as an ersatz to sups≤T |xs|.

For any of these functionals F , if dist(PXn,PX) tends to 0 as n−α, then
the distribution of the random variables (F (Xn), n ≥ 1) converges in the sense
of a damped Kantorovith-Rubinstein distance at a rate n−α:

sup
ϕ∈C3b

∣∣∣E [ϕ(F (Xn)
)]
−E

[
ϕ
(
F (X)

)]∣∣∣ ≤ c n−α,
where C3

b is the set of three times differentiable functions from R to R with
bounded derivatives of any order. Note that this kind of result is inaccessible
via the standard Stein method in dimension 1, since we usually cannot achieve
the first step of the Stein Method, which consists in devising a functional char-
acterization of the distribution of F (X).
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Theorem 5.7 revisited

Using the Σ class of functions we can slightly amend the definition of the Wasser-
stein distance to

distWη,p

(
πϕ(n)(πnX), πϕ(n)(πnB)

)
= sup
F∈Σ(Wη,p)

(E [Fn(πnX)]−E [Fn(πnB)]) ,

We can then restate theorem 4.5 and get

Theorem 6.5. Let (ua, a ∈ Dn) be a family of functions satisfying Assumption
Orthp . Then, there exists c > 0 such that for all n,

distWη,p

(
πϕ(n)(πnX), πϕ(n)(πnB)

)
≤ c 1

n1/2
.

Proof. The newly defined Wasserstein distance, applying 4.10 to Fn is equal to

sup
F∈Σ(Wη,p)

E

[∫ T

0

LnPnt Fn(πnX) dt

]
;

which can be directly bounded, thanks to lemma 4.4 by

c

∫ T

0

∫ 1

0

∑
a∈Dn

∣∣∣〈hna ⊗ hna ,∇(2)Pnt (F ◦ πϕ(n))(x+ rhϕ(n)
a )

−∇(2)Pnt (F ◦ πϕ(n))(x)
〉
I1,2

∣∣∣∣ dr dt

Using the Mehler formula and definition 6.4, this can be bounded, for ϕ(n) = n
by

c

∫ T

0

∫ 1

0

ne−2t|r|‖hϕ(n)
a ‖3 dr dt

and remembering that ‖hϕ(n)
a ‖ ≤ 1/

√
n we finally get a bound proportional to

1/
√
n. The proof is thus complete.

It is then a simple matter to recalculate the bound in theorem 5.7. If η is
small, the dominating term in the triangular inequality becomes d(Skn, πnS

k
n),

equal to log(n)√
n

(see equation (5.33)) and we get

d(Skn, B) ≤ log(n)√
n

.
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Chapter 7

Other Applications

We illustrate in this model other uses for our model in the fields of gentics and
epidemics.

1 The ON/OFF model

Let (Yi)i∈N be a sequence of independent and identically distributed pure jump
Markov processes taking values in {0, 1}. For any i, we denote respectively by
σ0 and σ1, the transition intensities of Yi from 0 to 1, and from 1 to 0. We
also let π0 and π1 be the stationary probability of Yi being in states 0 and 1
respectively, that is,

π0 =
σ1

σ0 + σ1
and π1 =

σ0

σ0 + σ1
.

We are interested in the asymptotic behavior, as n goes large, of the process Sn
defined by

Xn(t) =

n∑
i=0

Yi(t), t ≥ 0.

In a networking context, the above can be seen as the process counting the
number of ’ON’ sources, in a communication system in which there are n sources
independently alternating between ’ON’ and ’OFF’ states.

It is immediate to observe that for any n, the limiting distribution X∗n(∞)
of the process (Xn(t))t≥0 is binomial of parameters n, π1, and that

√
n

(
Xn(∞)

n
− π1

)
=⇒ N (0, π0π1).

At the process level, it is shown in [25] that under suitable assumptions on the
initial conditions, for all T > 0,

Un =
√
n

(
Xn

n
− Λ

)
=⇒ Θ(U) in D([0, T ],R),

where
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• For a fixed Λ(0) ∈ R+,

Λ(t) = π1 + (Λ(0)− π1) exp(−(σ1 + σ0)t), t ≥ 0; (7.1)

• Θ is defined by (5.16);

• The process U is defined by

U(t) = σ0

∫ t

0

(1− Λ(s)) dB1(s)− σ1

∫ t

0

Λ(s) dB2(s), t ≥ 0,

for B1 and B2, two independent standard Brownian motions.

Hereafter we provide a bound on the speed of the latter convergence,

Theorem 7.1. Suppose that condition (i) of the FCLT Assumption is satisfied.
Then for all n ∈ N∗ and all F which are Lipschitz on D and whose restriction
to Wη,p belongs to Lip1(Wη,p), we have that

|E [F (Θ(U))]−E [F (Un)]| ≤ C

n1/6
log(n).

Proof. Let for all n ≥ 1, X̄n(t) = Xn(t)/n, t ≥ 0. The sequence (X̄n)n≥1

naturally takes places in the settings of Section 1 for d = 1, k = 2, α1 = α2 = 0
and ζ1 = 1 and ζ2 = −1. Indeed, it is easily seen that for any n ∈ N and t ≥ 0
we have the equality in distribution

X̄n(t)
(d)
= X̄n(0) +

∫ t

0

∫
R+

1{z≤nσ0(1−X̄n(s−))} dN1(s, z)

−
∫ t

0

∫
R+

1{z≤nσ1X̄n(s−)} dN2(s, z),

where N1 and N2 denote two independent marked Poisson measures of common
intensity ds⊗ dz, representing the overall “up” and “down” jumps, respectively.
It is then clear that all conditions of the LLN Assumption are met, for

ρ̄1 : (s, x) 7−→ σ0(1− x) and ρ̄2 : (s, x) 7−→ σ1x,

which are obviously Lipschitz continuous with respect to their second variable.
Plainly, Λ defined by (7.1) is the unique solution of (5.5) in the present case.
As ρ1 and ρ2 are linear in their second variable, condition (ii) in the FCLT
Assumption is clearly satisfied for L1 = L2 ≡ 1 and En,1 ≡ En,2 = 0 for all n,
and so the corresponding operator Θ defined by (5.16) is linear, continuous and
therefore Lipschitz continuous. Thus recalling (5.12), from Theorem 5.2 we get
that

E [|Un −Θ (Mn,1,Λ +Mn,2,Λ)|] ≤ cn−3/4,

where in the present case, for any n and t we have that

Mn,1,Λ(t) =
1√
n

∫ t

0

∫
R+

1{ zn≤σ0(1−Λ(s))} dÑ 1(s, z);

Mn,2,Λ(t) = − 1√
n

∫ t

0

∫
R+

1{ zn≤σ1Λ(s)} dÑ 2(s, z),

Both Mn,1,Λ and Mn,2,Λ clearly respect all the conditions of Theorem 5.7,
therefore applying Corollary 5.9 the result follows.
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2 The SIR model

We consider a population of size n in which an epidemics propagates. Individuals
can go through three states: susceptible (S), infected (I) and recovered (R). Let
for any t, S(t), I(t) and R(t) denote respectively the number of susceptibles,
infected and recovered individuals at time t. Each infected individual that
is in contact with a susceptible one transmits the disease to the latter after
a time that is exponentially distributed of parameter λ/n, independently of
everything else. We make the classical mixing assumption of Kermack and
Mc Kendrick [68], i.e., the connectivity graph between individuals is complete,
i.e., any individual is connected to any other one (contrary to recent models in
which the connectivity graph is heterogeneous - see e.g. [31]). For any infectious
individual, the duration of the infection is independent of the rest of the model
and exponentially distributed with parameter γ. Since R(t) = n − S(t) − I(t)
for all t, a Markov description of this system is given by the bivariate process
Xn(t), defined by

Xn(t) =

(
Sn(t)

In(t)

)
, t ≥ 0.

We perform the classical large graph scaling of Xn, to obtain the scaled process
X̄n, defined by

X̄n(t) =
1

n
Xn(t) =

(
Sn(t)/n

In(t)/n

)
=:

(
S̄n(t)

Īn(t)

)
, t ≥ 0.

Let Λ :=

(
s
i

)
be the unique solution of the ODE

{
s′ = −λsi
i′ = λsi− γi, (7.2)

and for all n,

Un =
√
n
(
X̄n − Λ

)
.

If we denote

U(t) = λ

∫ t

0

s(u)i(u) dB1
u

(
−1

1

)
+ γ

∫ t

0

i(u) dB2
u

(
0

−1

)
where B1 and B2 are two independent Brownian motions, we have the following
result

Theorem 7.2. Suppose that condition (i) of the FCLT Assumption holds. Then
for all n ∈ N∗ and all F which are Lipschitz on D and whose restriction to Wη,p

belongs to Lip1(Wη,p), we have that

|E [F (Θ(U))]−E [F (Un)]| ≤ C

n1/6
log(n),

for Θ defined by (5.16).
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Proof. Fix n ≥ 1. We can use the following representation for the Xn process:
for all t ≥ 0,

Xn(t) =

(
S(0)

I(0)

)
+

(∫ t

0

∫
R+

1{z≤ λnSn(u−)In(u−)} dN 1(s, z)

)
.

(
−1

1

)
+

(∫ t

0

∫
R+

1{z≤γIn(u−)} dN 2(u, z)

)
.

(
0

−1

)
,

for two independent Poisson measures N 1 and N 2 of common intensity ds⊗ dz,
and thus

Xn(t) =

(
S̄n(0)

Īn(0)

)
+

1

n

(∫ t

0

∫
R+

1{z≤λnS̄n(u−)Īn(u−)} dN 1(u, z)

)
.

(
−1

1

)
+

1

n

(∫ t

0

∫
R+

1{z≤γnĪn(u−)} dN 2(u, z)

)
.

(
0

−1

)
.

Consequently, the LLN Assumption is clearly satisfied in dimension d = 2, for
α1 = α2 = 0, and for all s and f ,

ρ1(s, f) = λf1f2, and ρ2(s, f) = γf2.

The ODE (5.5) thus becomes

Λ(t) :=

(
s(t)

i(t)

)
=

(
s(0)

i(0)

)
+

(∫ t

0

λs(u−)i(u−) du

)
.

(
−1

1

)
+

(∫ t

0

γi(u−) du

)
.

(
0

−1

)
, t ≥ 0,

or in other words, (7.2).
The functions ρ1 and ρ2 are obviously Lipschitz continuous with respect

to their second variable. Therefore using lemma 5.1,
(
sn(t)
in(t)

)
converges in L2 to

Λ(t) =
(
s(t)
i(t)

)
where s and i are the solutions of the system of ordinary differential

equations: ρ2(s, .) is linear and ρ1(s, .) is such that

ρ1(s,Xn)− ρ1(s,Λ(s)) = λ
[
(sn − s)i+ (in − i)s+ (in − i)(sn − s)

]
=

λ√
n

(
i

s

)
.Un + (in − i)(sn − s)

= L1(s, Un) + (in − i)(sn − s)

where Un =
√
n
(
sn−s
in−i

)
.

Condition (ii) in the FCLT Assumption is therefore clearly satisfied for all n,
and so the corresponding operator Θ defined by (5.16) is linear, continuous and
therefore Lipschitz continuous. Thus recalling (5.12), from Theorem 5.2 we get
that

E [|Un −Θ (M1,n −M2,n)|] ≤ cn3/4,

where

M1,n =
1√
n

(
−1

1

)∫ t

0

∫
R+

1{z≤nλ} dÑ 1
u,z and
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M2,n =
1√
n

(
0

−1

)∫ t

0

∫
R+

1{z≤nγ} dÑ 2
u,z.

Both M1,n and M2,n clearly respect all the conditions of Theorem 5.7, there-
fore applying Corollary 5.9 the result follows.

3 The Moran model with selection

We consider in this section the Moran model described in [65]: in a population
of size n, each individual bears a gene liable to take two forms : A and B.
Each individual has one single parent and its child inherits the genetic form of
its parent. At exponential rate a pair of individuals is sampled uniformly at
random within the population. One of them dies and the other splits in two.
One out of the two forms bears a selection advantage over the other one so that
the probability of an increase in the population taking the A form is rAn(1 −
An)/n(n − 1) whereas the probability of a decrease is RAn(1 − An)/n(n − 1).
In addition, every individual of type A changes its type independently at rate
ν1 and each individual of type B changes its type independently at rate ν2.
In [65], Kasprzak uses the ideas of Kurtz ([75]) to write Xn, the proportion of
individuals carrying the gene of type A as

Xn(t) =
1

n
P1(n2Rn1 )− 1

n
P−1(n2Rn−1)

where Rn1 and Rn−1 are time changes given by the equations

Rn1 =

∫ t

0

(
1

2
Xn(s) +

ν2

n
)(1−Xn(s)) ds

Rn−1 =

∫ t

0

(
1

2
(1−Xn(s)) +

ν1

n
)Xn(s) ds

and P1 and P−1 are two independent Poisson processes of intensity 1, which are
not independent of Rn1 and Rn−1. He then applies the Stein Method directly,
but in order to make his calculations tractable he is forced to consider a similar
process instead, where P1 and P−1 are also independent of Rn1 and Rn−1.
Our representation of the same Moran Model is different: if An(t) denotes the
number of individuals of type A, we can write it as:

An(t) = An(0) +

∫ t

0

∫
R

1{z≤ rAn(n−An)
n(n−1)

} dN 1
s,z −

∫ t

0

∫
R

1{z≤RAn(n−An)
n(n−1)

} dN−1
s,z

+

∫ t

0

∫
R

1{z≤ν2(n−An)} dN 1′

s,z −
∫ t

0

∫
R

1{z≤ν1An} dN−1′

s,z

This process is rescaled by accelerating the time scale of splits and deaths by
a factor of n − 1 and that of mutations by n while dividing the number of
individuals by n so that Xn = An/n represents the proportion of individuals
carrying the gene of type A: For all t ≥ 0,

Xn(t) = Xn(0) +

∫ t

0

∫
R

1{z≤rnXn(1−Xn)
n−1 } dN 1

s,z −
∫ t

0

∫
R

1{z≤RnXn(1−Xn)
n−1 } dN−1

s,z

+

∫ t

0

∫
R

1{z≤ν2(1−Xn)} dN 1′

s,z −
∫ t

0

∫
R

1{z≤ν1Xn} dN−1′

s,z
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Using α1 = α−1 = α1′ = α−1′ = 1, we cannot meet all conditions of Lemma
5.1 because the terms in the integrals cannot be made independent of n: the
double independence on n and n−1 makes this impossible and the Moran model
does not fall in the class of Markov models considered in the present study. In
order to extend our method to the Moran model, we would need to make the
fluid limit Λ appear in the equation and to make the rest negligible.
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Chapter 8

Appendix

1 Besov-Liouville Spaces

. Let f be in Lp([0, T ]; dt) , (denoted Lp in a compact way) the fractional left
and right integrals of f are defined respectively by :

(Iα0+f)(x) =
1

Γ(α)

∫ x

0

f(t)(x− t)α−1dt, x ≥ 0,

(IαT−f)(x) =
1

Γ(α)

∫ T

x

f(t)(t− x)α−1dt, x ≤ T,

where α ≥ 0, and Γ is the Euler function. Moreover, I0
0+ = I0

T− = Id. For all
α ≥ 0, p, q ≥ 1, f ∈ Lp and g ∈ Lq such that p−1 + q−1 ≤ α + 1, the following
equality, a direct consequence of the Fubini theorem, is verified:∫ T

0

f(s)(Iα0+g)(s)ds =

∫ T

0

(IαT−f)(s)g(s)ds. (8.1)

For all p ∈ [1, +∞], the Besov-Liouville space Iα0+(Lp) := I+
α,p is usually

equipped with the following norm :

‖Iα0+f‖I+α,p = ‖f‖Lp . (8.2)

Similarly, the Besov-Liouville space Iα1−(Lp) := I−α,p is usually equipped with
the norm :

‖IαT−f‖I−α,p = ‖f‖Lp .

The next theorem enables to compare Besov-Liouville spaces with the spaces of
Hölderian continuous functions, and to formulate some continuity implications
(see [45],[105]) :

Theorem 8.1. i. If 0 < α < 1, and 1 < p < 1/α, Iα0+ is a bounded operator of
Lp on Lq where q = p(1− αp)−1. (see [105], Theorem 3.5)

ii. For all 0 < α < 1 and p ≥ 1, I+
α,p is continuously embedded in Hol0(α−

1/p) if α − 1/p > 0. Hol0(ν) denotes the space of α-Hölderian functions, van-
ishing in t= 0, equipped with the usual norm. (see [105], Theorem 3.8)
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iii. For all 0 < α < β < 1, Hol0(β) is compactly embedded in Iα,∞ (see [45],
Proposition 2)

iv. I−α0+ , and I−αT− , denote the inverse mappings of Iα0+ , and IαT− respec-

tively. Equations Iα0+I
β
0+f = Iα+β

0+ f , and IαT−I
β
T−f = Iα+β

T− f , are verified if
β > 0, α+ β > 0 and f ∈ L1. (see [105], Theorem 2.5)
v. For αp < 1, the I+

α,p and I−α,p spaces are canonically isomorphic, which en-
ables to write in an abusive way Iα,p to denote those spaces.(see [105], Corrolary
1 of Theorem 11.5)

We now recall the definitions and properties of Besov-Liouville spaces of
negative order, which are dual to the positive order spaces (see [26]). Let D+

be the space of C∞ functions defined over [0, 1]n and such that φ(k)(0) = 0,
for all k ∈ N. Similarly let D− be the space of C∞ functions defined over and
such that φ(k)(1) = 0, for all k ∈ N. Those two spaces are equipped with the
projective topology induced by the semi norms

pk(φ) =
∑
j≤k

‖φ(j)‖∞,∀k ∈ N.

Denote D′+, resp. D′− their strong topological dual. It is clear that D+ is stable

under Iβ0+ as well as D− under Iβ1− , for all β ∈ R+. Therefore thanks to equality
(8.1), we can define a fractional integral for all distributions (ie. for all members
of D′− ou D′+) :

For θ ∈ D′−, I
β
0+θ : φ ∈ D− 7→< θ, IβT−φ >D′−,D− ,

For θ ∈ D′+; IβT−θ : φ ∈ D+ 7→< θ, Iβ0+φ >D′+,D+

The Besov-Liouville space of negative order is therefore defined in the following
way:

Definition 8.2. Let β > 0 and r > 1, I+
−β,r (resp. I−−β,r) is the space of those

distributions θ ∈ D′− ( resp. θ ∈ D′+) such that Iβ0+θ (resp. IβT−θ) belongs to

Lr. The norm of a θ element in this space is the norm of Iβ0+θ in Lr (resp. that

of IβT−θ).

Theorem 8.3. For β > 0 and r > 1, the dual space of I+
β,r ( resp. I−β,r)

is canonically isometric and isomorphic to I−βT− (Lr∗) (resp. I−β0+ (Lr∗)) where

r∗ = r(r − 1)−1. In addition for all β ≥ α ≥ 0 and r > 1, IβT− is continuous

from I−−α,r to I−β−α,r.

Proof. Lr and Lr∗ are clearly dual. For (f, g) ∈ Lr × Lr∗ ,

〈
Iβ0+(f), I−βT− (g)

〉
I+β,r,I

−β
T−

(Lr∗ )
=

∫
[0;T ]

[Iβ0+(f)](s)[I−βT− (g)](s)ds

=

∫
[0;T ]

[I−β0+ ◦ Iβ0+(f)](s)g(s)ds because of (8.1)

=

∫
[0;T ]

f(s)g(s)ds by the semi group property

= 〈f, g〉Lr,Lr∗ .
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According to theorem 8.1 i) all functions in I−α,2 belong to ⊂ L2, and we
even have

Theorem 8.4. The canonical embedding κα from I−α,2 to L2 is Hilbert-Schmidt

if and only if α > 1/2 (i.e. ∀i, αi > 1
2 ). In addition,

cα := ‖κα‖HS = ‖Iα0+‖HS = ‖IαT−‖HS =
1√
2

Γ(α)

(
T 2α

α(α− 1/2)

)1/2

.

Proof. Recall that in a Hilbert space, a trace operator is a compact operator
for which we can define a trace in the sense of linear algebra, which is finite and
independent of the choice for the basis. In other words, an operator A is a trace
operator if there exists a complete orthonormal basis (ek, k ≥ 1) such that the
following series is converging:

Tr(|A|) =
∑
k

|〈Aek, ek〉|.

An operator A between two Hilbert spaces H1 and H2 equipped with the com-
plete orthonormal bases (e1

k)k≥1 and (e2
k)k≥1 respectively is said to be Hilbert

Schmidt if

‖A‖2HS :=
∑
k

‖Ae1
k‖2H2

=
∑
k

∑
n

〈Ae1
k, e

2
n〉2H2

<∞.

Let (ek, k ≥ 1) be an complete orthonormal basis of L2([0;T ]n) then (hαk =
IαT−(ek), k ∈ N) is a complete orthonormal basis I−α,2 and

‖κα‖2HS =
∑
k≥1

‖hαk‖2L2 =
∑
k

‖IαT−(ek)‖2L2 = ‖IαT−‖
2
HS.
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‖κα‖2HS =
∑
k

‖IαT−(ek)‖2L2

=
∑
k

∫ T

0

|IαT−(ek)(s)|2 ds

=
1

Γ(α)2

∑
k

∫ T

0

|〈ek, (.− s)α−11]s,T ](.)〉|2 ds

=
1

Γ(α)2

∫ T

0

∑
k

(
|〈ek, (.− s)α−11]s,T ](.)〉|2

)
ds

=
1

Γ(α)2

∫ T

0

‖(.− s)α−11]s,T ](.)‖2L2 ds

=
1

Γ(α)2

∫ T

0

∫ T

0

‖(t− s)2(α−1)1]s,T ](t)‖2L2 dt ds

=
2

Γ(α)2

∫
[0,T ]

∫ T

s

(t− s)2α−2dtds

=
2

Γ(α)2

∫
[0,T ]

[
(t− s)2α−1

2α− 1

]T
s

ds

=
2

Γ(α)2

∫
[0,T ]

(T − s)2α−1

2α− 1
ds =

2

Γ(α)2

[
−(T − s)2α

2α(2α− 1)

]T
0

=
1

Γ(α)2

T 2α

2α(α− 1/2)
<∞.

By the same line of reasoning, cα = ‖Iα0+‖HS .

Let τ ∈ [0, T ], and ετ the Dirac measure at point τ . According to theorem
(8.1), i, ετ elongs to (I−α,2)′ for all α > 1/2. Let us estimate the norm of ετ on
this space.

Lemma 8.5. For all α > 1/2, τ ∈ [0, T ], the image of ετ by jα, the canonical
isometry between (I−α,2)′ and I−α,2, is the function

jα(ετ ) : s 7→ IαT−((. − τ)α−1
+ )(s),

and

‖jα(ετ )‖2I−α,2 =
∑
k∈N

|hαk (τ)|2 =
(T − τ)2α−1

(2α− 1)Γ(α)2
. (8.3)

Proof. By definition of the dual product, for all h = IαT−(ḣ) where ḣ ∈ L2,

〈ετ , h〉(I−α,2)′,I−α,2
= h(τ) =

1

Γ(α)

∫ T

τ

(s− τ)α−1ḣ(s)ds

=

〈
1

Γ(α)
(. − τ)α−1

+ , ḣ

〉
L2

= 〈IαT−((. − τ)α−1
+ ), h〉I−α,2,I−α,2 ,
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hence the first claim. Moreover, thanks to the Parseval identity in L2,

∑
k∈N

‖hαk (τ)|2 =
∑
k∈N

〈ετ , hαk 〉2(I−α,2)′,I−α2
,

=
∑
k∈N

〈jα(ετ ), hαk 〉2I−α,2,I−α2
,

=
1

Γ(α)2

∑
k∈N

〈(. − τ)α−1
+ , ek〉2L2

=
1

Γ(α)2
‖(. − τ)α−1

+ ‖2L2

= ‖jα(ετ )‖2I−α2
·

So that (8.3) follows by quadrature.

Since standard Brownian motion exhibits Hölderian trajectories of any order
strictly smaller than 1/2, Theorem (8.1) ensures that such trajectories belong
to Iβ,∞ ⊂ Iβ,2 for all β < 1/2. In addition, a simple calculation shows that for
all α ∈ (0, 1) ,

1[a,+∞) = Γ(α)Iα0+((. − a)−α+ ) .

where (. − a)+ is the function from Rn into R which maps x = (x1, ..., xn)
to (x1 − a)+. Hence 1[a,+∞) belongs to I1/2−ε,2 for all ε > 0. Notice that
piecewise linear functions also belong to Iβ,2 for all β < 1/2. We can there-
fore chose to do all the calculations in a Iβ,2 space with β < 1/2. The closer
β is to 1/2, the more meaningful is the distance, but the higher the error bound.

2 Moment bound for Poisson variables

By following closely Chapter 2 in [10], we show hereafter a moment bound for
the maximum of n Poisson variables. (Notice that, contrary to Exercise 2.18 in
[10] we do not assume here that the Poisson variables are independent.)

Proposition 8.6. Let (Xi, i = 1...n) be Poisson random variables of param-
eter ν. The Lambert W function is defined over [−1/e,∞] by the equation
W (x)eW (x) = x. Then

E

[
max
i=1,...n

Xi

]
≤ log n/eν

W (log(n/eν)/νe)
= νe exp (W (log(n/eν)/νe))

Proof. Let’s consider (Zi, i = 1...n) the centered Poisson variables (i.e., for all
i, Zi = Xi − ν). By a straightforward calculation, for all u ∈ R and all i,

E
[
euZi

]
= e−uν

∞∑
k=0

euke−ν
νk

k!
= e−uν−νeνe

u

Therefore the logarithm of the moment generating function of Zi is ΨZi(u) =
ν (eu − u− 1)
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By Jensen,’s inequality, and because exp(.) is an increasing function,

exp

(
uE

[
max
i=1,...n

Zi

])
≤ E

[
exp

(
u max
i=1,...n

Zi

)]
= E

[
max
i=1,...n

exp(uZi)

]
Because the maximum of a sequence of positive numbers is lower than its sum,

the right-hand side of the last equation is lower than E

[
n∑
i=0

exp(uZi)

]
.

Hence, because of the definition of ΨZi ,

exp

(
uE

[
max
i=1,...n

Zi

])
≤

n∑
i=1

E [exp(uZ1)] ≤ n exp (ΨZi(u)) = n exp(ν (eu − u− 1))

Taking the log, for any u in R,

uE

[
max
i=1,...n

Zi

]
− ν (eu − u− 1) ≤ log(n)

so that

E

[
max
i=1,...n

Zi

]
≤ inf
u∈R

(
log(n) + ν (eu − u− 1)

u

)
Taking the derivative on the right-hand side, it is easy to check that the infini-
mum is reached when

νueu − νeu + ν = log(n) (8.4)

which means that it is reached when (u− 1)eu−1 = log(n/eν)
eν i.e. u = 1 +W (a)

where a = log(n/eν)
eν Then the infinimum is equal to

log n+ ν
(
e1+W (a) − 1−W (a)− 1

)
1 +W (a)

(8.5)

But we know from (8.4) that ν(1 + W (a))e1+W (a) − log(n) = νe1+W (a) − ν so
that (8.5) is equal to

νe1+W (a) − ν = νeeW (a)− ν = νe
a

W (a)
− ν

Remembering that the Zi are the centered Xi we thus obtain that

E

[
max
i=1,...n

Xi

]
≤ νe a

W (a)
− ν + ν =

log (n/eν)

W (log(n/eν)/νe)

which completes the proof.

Remark 7. We conclude by observing that W (z) ≥ log(z) − log log(z) for all
z > e. Therefore for n ≥ exp

(
eν+1 + ν

)
,

So that if ν is small relative to n, using the second expression for the bound
of the expectation of the maximum in Proposition 8.6,

E

[
max
i=1,...n

Xi

]
≤ log(n/eν)

log
(

log(n/eν)
νe

)
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Titre : Vitesse de convergence des approximations diffusions 
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Résumé Dans de nombreux champs d'applications, les 
processus de Markov sont un outil privilégié de modélisa-
tion de processus aléatoires. Malheureusement, il est sou-
vent nécessaire d'avoir recours à des espaces d'états très 
grands voire infinis, rendant l'analyse exacte des diffé-
rentes caractéristiques (stabilité, loi stationnaire, temps 
d'atteinte de certains domaines, etc.) du processus délicate 
ou impossible. Depuis longtemps, grâce notamment à la 
théorie des martingales, on procède à des approximations 
par des diffusions browniennes. Celles-ci permettent sou-
vent une analyse approchée du modèle d'origine. 
Le principal défaut de cette approche est que l'on ne con-
naît pas l'erreur commise dans cette approximation. Il 
s'agit donc ici de développer une théorie du calcul d'erreur 
dans les approximations diffusion. Depuis quelques temps, 
le développement de la méthode de Stein-Malliavin a per-
mis de préciser les vitesses de convergence dans les théo-
rèmes classiques comme le théorème de Donsker (conver-
gence fonctionnelle d'une marche aléatoire  vers un mou-
vement brownien)  ou la généralisation trajectorielle de 
l'approximation binomiale-Poisson.  
 

Il s'agit dans ce travail de poursuivre le développement de 
cette théorie pour des processus de Markov comme ceux 
que l'on rencontre en théorie des files d'attente ou en épidé-
miologie et dans bien d'autres domaines appliqués.  
Partant de la représentation des processus de Markov 
comme mesures de Poisson, on étend la méthode 
développée par Laurent Decreusefond et Laure Coutin pour 
estimer la vitesse de convergence dans les approximations 
diffusion. Pour ce faire, on étend la méthode de Stein-
Malliavin à des vecteurs de processus dépendants plutôt 
qu'à un seul processus. La limite est un processus gaussien 
changé de temps. La méthode de Stein Malliavin étant 
développée surtout pour montrer la convergence vers le 
mouvement Brownien standard, on l’adapte à la 
convergence vers un processus changé de temps à travers 
des méthodes d’approximations linéaires. On fait donc 
appel à l'analyse gaussienne pour caractériser les 
dépendances entre intervalles de temps et à l'analyse 
fonctionnelle pour déterminer les bons espaces probabilisés.  

 

 

Title : Speed of Convergence of Diffusion Approximations 

Keywords : Malliavin Calculus, Stein Method, Diffusion Approximations 

Abstract : In many fields of interest, Markov processes 
are a primary modelisation tool for random processes. Un-
fortunately it is often necessary to use very large or even 
infinite dimension state spaces, making the exact analysis 
of the various characteristics of interest (stability, statio-
nary law, hitting times of certain domains, etc.) of the pro-
cess difficult or even impossible . For quite a time, thanks 
in particular to martingale theory, it has been possible to 
make use of approximations by brownian diffusions. This 
enables an approximate analysis of the initial problem. 
  
The main drawback of this approach is that it does not 
measure the error made in this approximation. The pur-
pose is to dévelop a theory of error calculation for diffu-
sion approximations . 
For some time, the developement of the Stein-Malliavin 
method has enabled to get some precision over speed of 
convergence in classical theorems such as the Donsker 
theorem (functionnal convergence  of a random walk to-
wards the Brownian motion)  or in the generalisation of 
the Binomial Poisson approximation path by path.  
 
 

In this work we intend to extend the development of this 
theory for Markovian processes such as those than can be 
found in queueing theory, in epidemiology or in other 
fields of application.  
Starting from the representation of Markov processes as 
Poisson measures, we extend the method developped by 
Laurent Decreusefond and Laure Coutin to assess the speed 
of convergence in diffusion approximations . To do so, we 
extend the Stein-Malliavin method to vectors of  processes 
rather than a single process. The limit is a gaussian process 
changed in time. The Stein Malliavin method being mainly 
developped to calculate  convergence towards the standard 
Brownian motion, it is adapted to the problem of 
convergence towards a time changed process using linear 
approximation methods. We therefore make use of 
Gaussian analysis to assess the dependency between the 
various time periods and to functionnal analysis to elect the 
right probabilistic spaces.  
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