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Résumé

Cette thèse porte sur l'étude de la réponse harmonique macroscopique de matériaux composites viscoélastiques à base polymère. Nous nous intéressons tout d'abord à l'étude de matériaux composites à renforts particulaires dont la matrice est modélisée à partir de modèles de Zener fractionnaires et contient des particules sphériques élastiques. Le comportement asymptotique du module complexe macroscopique est étudié à l'aide de principes de stationnarité appliqués à la viscoélasticité complexe. Il est à noter que quatre conditions exactes sont obtenues sur les modules de stockage et de perte. Les deux premières correspondent aux réponses élastiques découplées à haute et basse fréquences, tandis que les deux autres résultent du couplage viscoélastique caractérisant la phase de transition vitreuse. A partir de celles-ci, nous développons des modèles micromécaniques viscoélastiques approchés sur toute la gamme de fréquences. Les modèles approchés font intervenir des développements en séries de Dirichlet-Prony afin d'estimer le comportement viscoélastique macroscopique. Ces derniers sont présentés à l'aide du schéma GSC dans le cas de constituants isotropes et comparés à des simulations FFT réalisées sur des microstructures périodiques pour différentes fractions volumiques de particules. Nous nous attachons ensuite à modéliser la réponse d'explosifs composés de poudres de TATB avec adjonction d'une phase polymère par une approche micromécanique en deux étapes. Nous commençons par étudier l'élasticité effective de polycristaux de TATB sans liant en fonction de nombreux paramètres morphologiques. Le comportement viscoélastique macroscopique est ensuite approché par des modèles micromécaniques et comparé à des simulations FFT et des données expérimentales.

Mots-clés : Viscoélasticité fractionnaire ; Homogénéisation ; Chargements harmoniques ; Matériaux composites à renforts particulaires ; Calculs FFT en champs complets.

General overview

Be it of growing scientific interests or economic needs, the scale transition from microscopic to macroscopic scale in view of predicting the macroscopic mechanical constitutive laws has been widely investigated over the past decades [START_REF] Milton | The theory of composites. The Theory of Composites[END_REF]. Such transition is usually assessed by means of micromechanical-based models taking into account various features at the microscale such as the size, the spatial distribution or the orientation of phases. In addition to offering an insight into phenomena occuring at the microscopic scale, these models do not require multiple parameters by contrast with phenomenological methods. Micromechanical-based models only use the information related to the microstructure. Even though preliminary results were derived over 100 years ago through the well-known Voigt and Reuss bounds, the actual foundations of homogenization methods have been established by means of the solution of the basic inclusion problem of Eshelby [START_REF] Jeffery | The motion of ellipsoidal particles immersed in a viscous fluid[END_REF][START_REF] Eshelby | The determination of the elastic field of an ellipsoidal inclusion, and related problems[END_REF]. On the basis on such problem where the strain field located in the constrained inclusion is homogeneous, numerous micromechanical-based (or mean-field) models were established such as the self-consistent [START_REF] Hershey | The elasticity of an isotropic aggregate of anisotropic cubic crystals[END_REF][START_REF] Kröner | Berechnung der elastischen konstanten des vielkristalls aus den konstanten des einkristalls[END_REF] and the Mori-Tanaka models [START_REF] Mori | Average stress in matrix and average elastic energy of materials with misfitting inclusions[END_REF][START_REF] Benveniste | A new approach to the application of mori-tanaka's theory in composite materials[END_REF]. Assuming the spatial distribution of the local phases to be isotropic, the classical Voigt and Reuss bounds have been improved with the results of Hashin and Shtrikman [START_REF] Hashin | A variational approach to the theory of the elastic behaviour of multiphase materials[END_REF]. The bounds of Hashin-Shtrikman rely on the solution of the general equation for inhomogeneous elasticity with Green operators and the use of two-point correlation functions to describe the spatial distribution of local phases. Further extended to anisotropic composite materials by Willis [START_REF] Willis | Bounds and self-consistent estimates for the overall properties of anisotropic composites[END_REF] and ellipsoidal spatial distributions by Ponte-Castañeda and Willis [START_REF] Ponte-Castañeda | The effect of spatial distribution on the effective behavior of composite materials and cracked media[END_REF], these bounds definitely enhanced the understanding of the elasticity of random heterogeneous materials with random microstructures. Alternatively of such methods, other models relying on the geometry of particular kinds of microstructures have been developed in the meantime. Following the assemblage of composite spheres of Hashin [START_REF] Hashin | On some variational principles in anisotropic and nonhomogeneous elasticity[END_REF] which consists in decomposing the microstructure into various subdomains all composed by inclusions enclosed by matrix shells with different sizes but same volume fraction of constituents, Christensen and Lo [START_REF] Christensen | Solutions for effective shear properties in three phase sphere and cylinder models[END_REF] introduced the generalized self-consistent (or three-phase) estimate. Later extended by Hervé and Zaoui [START_REF] Herve | N-layered inclusion-based micromechanical modelling[END_REF], it is devoted to the study of the single composite sphere whose matrix phase is defined by the unknown overall behaviour and consists in deriving the behaviour of the matrix phase by means of self-consistent energy conditions [START_REF] Bornert | Morphologie microstructurale et comportement mécanique; caractérisations expérimentales, approches par bornes et estimations autocohérentes généralisées[END_REF][START_REF] Zaoui | Continuum micromechanics: survey[END_REF]. Generalizing the basic idea of finite composite constituents, Stoltz and Zaoui [START_REF] Stolz | Analyse morphologique et approches variationnelles du comportement d'un milieu élastique hétérogène[END_REF] proposed to decompose the microstructure of heterogeneous materials with subdomains of finite sizes and group them into families of identical domains known as morphologically representative patterns.

With help of the Hashin-Shtrikman variational principle with non-uniform polarization fields, they derived rigorous bounds corresponding to new Hashin-Shtrikman-type bounds on the overall behaviour when the distribution of the pattern centers is spherical or ellipsoidal significantly improving the classical Hashin-Shtrikman bounds. It should be mentioned that Bornert [START_REF] Bornert | A generalized pattern-based self-consistent scheme[END_REF] analogously derived new generalized pattern-based self-consistent models.

Contrary to purely elastic constituents, the class of partial differential equations associated to elementary viscoelastic constituents is not closed by homogenization [START_REF] Tartar | H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations[END_REF]. In practice, the coupling of conservative and dissipative deformation mechanisms in viscoelastic composite materials leads to the establishment of particular features which are not present at the scale of local constituents. Even for mixtures of short-memory constituents, it is well-known that the resulting overall behaviour exhibits the additional fading memory called long-memory effect arising from the change of scales which manifests itself through the overall integral kernel (or spectrum) [START_REF] Sanchez-Hubert | Sur certains problemes physiques d'homogénéisation donnant lieua des phénomenes de relaxation[END_REF][START_REF] Francfort | Homogénéisation de milieux viscoélastiques linéaires de kelvin-voigt[END_REF][START_REF] Suquet | Elements of homogenization for inelastic solid mechanics, homogenization techniques for composite media[END_REF]. Such effect is usually highlighted by making use of the correspondence principle [START_REF] Hashin | Viscoelastic behavior of heterogeneous media[END_REF][START_REF] Mandel | Cours de mécanique des milieux continus[END_REF] which consists in substituting time-dependent viscoelastic problems by symbolic elastic ones in the Laplace domain. The overall viscoelastic response in time domain is thus retrieved by applying the inverse Laplace transform. It should be mentioned that the overall integral kernel can be derived in closed-form in rare cases but with no real purpose. The implementation of overall constitutive laws including long-memory effects (either known in tabulated or closed-forms) in structural computations requiring to store the whole time history of the overall stress (or strain) at each Gauss point of the structure, the computational cost is obviously too high. The common approach to tackle the problem consists in approximating the overall integral kernel by the finite sum of decaying exponentials (so-called Dirichlet-Prony series) [START_REF] Schapery | Viscoelastic behavior and analysis of composite materials[END_REF][START_REF] Laws | Self-consistent estimates for the viscoelastic creep compliances of composite materials[END_REF]. This approximation turns out to be exact only if the overall integral kernel corresponds to the finite sum of Dirac delta functions as illustrated by isotropic two-phase materials verifying the Voigt, Reuss and Hashin-Shtrikman bounds [START_REF] Brenner | Improved affine estimates for nonlinear viscoelastic composites[END_REF][START_REF] Ricaud | Effective properties of linear viscoelastic heterogeneous media: Internal variables formulation and extension to ageing behaviours[END_REF]. Even though the overall integral kernel is usually continuous, the use of Dirichlet-Prony series can deliver convenient estimates. New results have recently been obtained on the overall viscoelastic behaviour of linear viscoelastic composite materials made of classical Maxwell constituents by investigating the asymptotic behaviour in time [START_REF] Suquet | Four exact relations for the effective relaxation function of linear viscoelastic composites[END_REF]. These exact results actually imply restrictions on the overall relaxation function by involving local fields solutions of uncoupled asymptotic heterogeneous problems. Valid for any kind of microstructures, they can be use to develop approximate viscoelastic homogenization models over the whole frequency range through Dirichlet-Prony series. Even though the scale transition effect is well-known for short-memory viscoelastic constituents, the use of such models does not necessarily cover all types of viscoelastic materials such as polymers which are generally characterized by two elastic asymptotic states. Accordingly, it is not possible to model them accurately by making use of classical Maxwell or Kelvin-Voigt constituents. The present Ph.D. thesis aims at describing the overall behaviour of polymer-based viscoelastic composite materials by making use of micromechanical models.

To begin with, the key features of linear viscoelastic laws are presented (Chapter 1). After introducing the basic aspects of classical linear viscoelasticity through the description of standard mechanical measurements and the establishment of usual constitutive laws, we focus on more complex models and fitting methods in the case of actual viscoelastic materials. Note that the framework of fractional viscoelasticity generalizing classical linear viscoelastic behaviours is introduced. Once the behaviour of local viscoelastic phases is identified, the homogenization of heterogeneous viscoelastic materials is discussed in regards to linear and fractional viscoelasticity (Chapter 2). The basic steps of linear elastic homogenization are recalled and the fundamentals of viscoelastic homogenization are thoroughly described. Following the works of Suquet [START_REF] Suquet | Four exact relations for the effective relaxation function of linear viscoelastic composites[END_REF] and Brenner and Suquet [START_REF] Brenner | Overall response of viscoelastic composites and polycrystals: exact asymptotic relations and approximate estimates[END_REF], new results on the overall response of viscoelastic composite materials made of fractional viscoelastic phases allowing to derive innovative approximate viscoelastic homogenization models are highlighted. The accuracy of such models is assessed by making use of fast Fourier transform-based calculations (Chapter 3). The framework of FFT-based methods is thus detailed in the context of linear elasticity and then extended to complex viscoelasticity. The principle of approximate models is described with the micromechanical modeling of the time harmonic response of viscoelastic composite materials made of fractional Zener constituents (Chapter 4). Based on asymptotic exact relations in the frequency domain, the overall relaxation spectrum of the mixture of fractional Zener phases is approximated by the sum of Dirac delta functions. A new model to estimate the response of viscoelastic polymer-based two-phase media is proposed and its accuracy is assessed by means of FFT full-field computations. As an illustrative application of the mechanical tools developed, the viscoelastic response of pressed energetic polycrystals is addressed (Chapter 5). Resulting from the combination of 95% of explosive molecules known as 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) and small amounts of polymer acting as binder, TATB-based pressed explosives can be seen as highly filled polymers or jointed polycrystals. After describing the characteristics of TATB single crystals, the overall response of the viscoelastic composite materials is assessed through two main steps. On the one hand, the effective elasticity of binder-free TATB-based polycrystals is investigated depending on various morphological parameters. On the other hand, the behaviour of TATB-based pressed explosives is evaluated with mean-field estimates using the binder characterization and the results from the first step. The accuracy of the approach is compared to FFT full-field computations and experimental results.

Introduction

The advancement of the linear theory of viscoelasticity was primarily due to the large scale development of polymeric materials [START_REF] Christensen | Theory of Viscoelasticity[END_REF]. The need to characterize the response of materials outside the scope of classical mechanical behaviours such as elasticity and viscosity was therefore straightforward. The nature of the viscoelastic response had been investigating through mechanical tests allowing to obtain data at different time scales [START_REF] Salençon | Viscoélasticité pour le calcul des structures[END_REF]. Regarding the sudden imposition of mechanical loadings at arbitrarily small interval of time, the viscoelastic response actually exhibits continuous time-dependent features usually referred as memory effects. Note that the material response is not only defined by the current state of loadings but also all the past states of loadings [START_REF] Tschoegl | The phenomenological theory of linear viscoelastic behavior: an introduction[END_REF]. More generally, the linear viscoelastic theory is the study of homogeneous additive shift invariant causal systems. The stress and strain fields can actually be related to each other through functional correspondences [START_REF] Mandel | Cours de mécanique des milieux continus[END_REF][START_REF] Salençon | Viscoélasticité pour le calcul des structures[END_REF] due to the fact that viscoelastic materials are characterized by time-dependent material functions. By assuming sufficiently small perturbations, the functionals can be expressed in equivalent terms with convolution integrals with difference kernels or linear differential equations with constant material parameters [START_REF] Christensen | Viscoelastic properties of heterogeneous media[END_REF][START_REF] Tschoegl | The phenomenological theory of linear viscoelastic behavior: an introduction[END_REF]. Directly related to the assemblage of elementary mechanical constituents such as springs and dashpots, the differential formulation enables to describe the behaviour of viscoelastic materials. Even though relevant, it usually requires large numbers of elementary mechanical constituents to achieve satisfactory results because the behaviour of monophase viscoelastic materials does not reduce to one of the four elementary classical viscoelastic models [START_REF] Caputo | Linear models of dissipation in anelastic solids[END_REF]. One may resort to generalized Maxwell and Kelvin-Voigt models with finite number of characteristic times to represent the behaviour of single viscoelastic constituents [START_REF] Tschoegl | The phenomenological theory of linear viscoelastic behavior: an introduction[END_REF]. Such method actually consists in approximating the local integral kernel by making use of Dirichlet-Prony series (i.e. the sum of decaying exponentials). Alternatively, it is possible to use fractional viscoelasticity [START_REF] Mainardi | Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models[END_REF][START_REF] Oldham | The fractional calculus theory and applications of differentiation and integration to arbitrary order[END_REF]. Based on homogeneous linear differential equations involving non-integer derivatives of the stress and strain fields, some fractional calculus models have been used as empirical methods to describe linear viscoelastic materials due to the ability to model long-memory effects. The non-integer derivative of time functions at time t depends on the history of functions on the range ] -∞, t], the use of non-integer derivatives naturally fits to linear viscoelasticity. Following experimental results covering numerous materials [START_REF] Gemant | A method of analyzing experimental results obtained from elasto-viscous bodies[END_REF][START_REF] Gemant | Xlv. on fractional differentials[END_REF][START_REF] Nutting | A new general law of deformation[END_REF], Scott-Blair [START_REF] Blair | The classification of the rheological properties of industrial materials in the light of power-law relations between stress, strain and time[END_REF] initially proposed fractional derivative models to improve the description of the time-dependent response of materials. It should be also mentioned that Bagley and Torvik [START_REF] Bagley | A theoretical basis for the application of fractional calculus to viscoelasticity[END_REF] proposed physical interpretations of fractional viscoelasticity for polymer materials by establishing links with the Rouse model [START_REF] Rouse | A theory of the linear viscoelastic properties of dilute solutions of coiling polymers[END_REF]. The distinction between fractional and classical linear viscoelasticity is the substitution of the dashpot by the fractional dashpot even though it has been shown that the fractional dashpot can be derived from hierarchical assemblages of elementary mechanical elements [START_REF] Schiessel | Mesoscopic pictures of the sol-gel transition: Ladder models and fractal networks[END_REF][START_REF] Heymans | Fractal rheological models and fractional differential equations for viscoelastic behavior[END_REF]. Halfway between the spring and the dashpot, the fractional dashpot is actually equivalent to generalized Kelvin-Voigt models with infinite Kelvin-Voigt units [START_REF] Adolfsson | On the fractional order model of viscoelasticity[END_REF][START_REF] Lion | On the thermodynamics of fractional damping elements[END_REF][START_REF] Papoulia | Rheological representation of fractional order viscoelastic material models[END_REF]. Note that the local integral kernel of these models is defined by the Mittag-Leffler function which corresponds to the generalization of the exponential function [START_REF] Dubois | Introduction à la dérivation fractionnaire-théorie et applications[END_REF][START_REF] Mainardi | Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models[END_REF]. This chapter deals with the main features of the theory of linear viscoelasticity. The establishment of the viscoelastic mechanical constitutive laws are emphasized by means of mechanical measurements and the different types of elementary linear viscoelastic constituents are covered in detail. Rarely delivering relevant estimates, these elements fail at describing the actual behaviour of viscoelastic materials. More complex models known as the generalized Maxwell and Kelvin-Voigt models are therefore presented. It should be seen that such models correspond to the assemblage of springs with classical Maxwell and Kelvin-Voigt units in parallel and series respectively. The parameters of such models are assessed by making use of collocation methods. Alternatively, it is possible to make use of fractional calculus models. The framework of fractional viscoelasticity is thus highlighted through the description of elementary fractional viscoelastic constituents.

Linear viscoelasticity 1.Phenomenological aspects

Regarding phenomenological aspects, the characterization of materials is usually carried out by means of relatively simple mechanical tests allowing to collect relevant information under actual operating conditions. In the case of viscoelastic materials, the phenomenological approach consists in conducting transient or dynamic mechanical tests in order to study the mechanical response at different time scales.

Transient mechanical measurements

For long time scales, the delayed response of viscoelastic materials can be investigated by making use of two well-known experiments involving quasi-static loadings characterized by the sudden imposition of strain or stress fields at time t = t 0 which is then held constant.

Relaxation test

The relaxation test consists in measuring the time-dependent stress response of viscoelastic materials resulting from the application of constant uniaxial strains. At zero time, the test sample is not subjected to any loading. At t = t 0 , the test sample is instantaneously subjected to the constant uniaxial strain ε 0 = ε 0 n ⊗ n which is kept constant over time.

Until the time t = t 0 , the stress response σ(t) is null. An initial stress σ(t 0 ) is then instantaneously induced at t = t 0 . This phenomenon refers to the instantaneous response of the material. As soon as t > t 0 , the stress response decreases with t continuously and monotonically as shown in Figure (1.1). The strain loading ε(t) is given by definition :

t t 0 - ε(t) ε 0 t t 0 σ(t)
ε(t) = ε 0 H(t -t 0 ) with ε 0 = ε 0 n ⊗ n (1.1) 
where H corresponds to the Heaviside function.

The corresponding stress response σ(t) is thus defined by the following expression :

σ(t) = R t 0 (t) : ε 0 with      R t 0 (t) = 0 ∀t < t 0 R t 0 (t) decreasing ∀t t 0 (1.2)
where R t 0 (t) = R(t 0 , t). When no physical/chemical transformation alters the mechanical features of the test sample, the fourth-order tensor R t 0 (t) is continuous with respect to t 0 . This tensor corresponds to the relaxation function associated to the relaxation test carried out at time t = t 0 .

Creep test

The creep (or retardation) test relies on the assessment of the time-dependent strain response of viscoelastic materials resulting from the application of constant uniaxial stresses as highlighted in Figure (1.2). Initially not subjected to any loading, the test sample is instantaneously subjected to the following uniaxial stress at time t = t 0 :

σ(t) = σ 0 H(t -t 0 ) with σ 0 = σ 0 n ⊗ n (1.3)
Based on Eq.(1.3), the resulting strain tensor ε(t) thus reads :

ε(t) = C t 0 (t) : σ 0 with     
C t 0 (t) = 0 ∀t < t 0 C t 0 (t) increasing ∀t t 0 (1.4) where C t 0 (t) = C(t 0 , t). Similarly to the relaxation test, the fourth-order tensor C(t 0 , t) is continuous with respect to the time t 0 if the mechanical features of the test sample are not altered by physical/chemical transformations. This tensor corresponds to the creep function associated to the creep test carried out at time t = t 0 . Despite exhibiting similar characteristics, the creep and relaxation tests are actually quite different regarding the possibility to conduct them. The creep experiment can always be fulfilled independently of the material nature. By contrast, the relaxation experiment can only be achieved if it is possible to impose instantaneous strain loadings to the test sample (i.e. if the instantaneous response is not null). It is also worth noting that the characteristic times associated to the creep and relaxation tests are significantly distinct. The relaxation phenomenon is actually faster than the creep one [START_REF] Salençon | Viscoélasticité pour le calcul des structures[END_REF].

t t 0 - σ(t) σ 0 t t 0 ε(t)

Dynamic mechanical measurements

Dynamic mechanical analysis (DMA) is the most commonly used approach in order to characterize frequency-dependent behaviours. When subjected to harmonic varying strain fields, viscoelastic materials reach steady state in which stress fields are also harmonic. The strain and stress fields actually exhibit the same angular frequency but retarded in phase by the angle δ. Measurements of the peak magnitude and the phase shift δ provide useful data on such media. Depending on the experimental devices, various mechanical loadings can be conducted (tensile, shear or bending tests) either in terms of strain or stress.

Let us consider the test sample to be subjected to the following shear sinusoidal strain :

ε(t) = ε 0 sin(ωt) with ε 0 = 1 2 ε 0 (n ⊗ m + m ⊗ n) such as n • m = 0 (1.5)
where ε 0 is the magnitude of oscillations while ω is the angular frequency (units rad/s).

As shown in Figure (1.3), the stress output is characterized by the phase shift of angle δ : It is clearly seen that the stress field σ(t) is characterized by two distinct terms (namely in-phase and in-quadrature components). It is therefore possible to reformulate Eq.(1.7) in the following form :

σ(t) = σ 0 sin(ωt + δ) with σ 0 = 1 2 σ 0 (n ⊗ m + m ⊗ n) (1.6) t ε(t) t ε(t), σ(t) δ
σ(t) = L sin(ωt) + L cos(ωt) : ε 0 with      L = σ 0 : ε -1 0 cos δ L = σ 0 : ε -1 0 sin δ (1.8)
where L and L are dynamic moduli. Such moduli refer to the elastic (stored energy) and viscous (dissipated energy) parts of the viscoelastic response respectively. The real component is therefore known as the storage modulus while the imaginary one is known as the loss modulus. Note that the moduli define the loss factor tensor which corresponds to the dissipated energy over a period of oscillation such as :

η = L : L -1
(1.9)

The use of complex notation being suggested by Eq.(1.8), the strain and stress fields can be rewritten in terms of : ε(t) = ε 0 e iωt and σ(t) = σ 0 e i(ωt+δ) where i 2 = -1 (1.10)

It is then possible to define the following shear complex modulus :

L * (ω) = σ : ε -1 = σ 0 : ε -1 0 e iδ = σ 0 : ε -1 0 cos δ + i sin δ = L (ω) + i L (ω) (1.11)

Linear time-dependent behaviours

In the context of linear viscoelastic materials, the time necessary for the material rearrangements to take place is comparable with the time scale of the experiment. Unlike purely elastic or viscous materials, the relations between stress and strain (or strain rate) is therefore not described by classical material parameters. Viscoelastic materials are characterized by time-dependent material functions, the stress and strain fields are thus related each other through functional correspondences [START_REF] Mandel | Cours de mécanique des milieux continus[END_REF]. The stress field σ(t) depends on the strain history ε(t) in terms of : [START_REF] Bergman | Analytical properties of the complex effective dielectric constant of a composite medium with applications to the derivation of rigorous bounds and to percolation problems[END_REF] where t is the current time (or time of derivation) and u is the past (or historic) time. Note that such notation emphasizes that the stress field at the current time t depends on the strain field at all past times u. Similarly to Eq.(1.12), the strain field can be regarded as the functional of the stress field such as :

σ(t) = R t ε t (u) -∞ (1.
ε(t) = C t σ t (u) -∞ (1.13)
For sufficiently small perturbations, the functionals can be expressed by linear differential equations with constant coefficients (i.e. differential representation) or convolution integrals with difference kernels (i.e. hereditary integral representation). Directly associated to mechanical models, the differential representation consists in modeling the viscoelastic response of materials by means of homogeneous linear differential equations. Resulting from the assemblage of various elementary constituents (i.e. springs and dashpots), the mechanical models enable to describe the behaviour of viscoelastic materials exhibiting multiple relaxation or retardation times [START_REF] Salençon | Viscoélasticité pour le calcul des structures[END_REF]. Despite providing relevant results, the approach generally requires large numbers of elements to achieve satisfactory results. In such circumstances, the relaxation or retardation times become so closely spaced that the sum of the discrete contribution of the individual terms in the linear differential equations can be substituted by the integral over relevant continuous functions [START_REF] Tschoegl | The phenomenological theory of linear viscoelastic behavior: an introduction[END_REF].

Naturally emphasizing that the stress (or strain) field at current time t depends on the strain (or stress) field at all past times, the method actually corresponds to the hereditary integral representation.

Boltzmann superposition principle

By contrast with the transient mechanical measurements where the relaxation and creep functions were defined as the stress and strain outputs for constant strain and stress inputs respectively, the assessment of the functional correspondences (1.12) and (1.13) needs more general loadings corresponding to history loadings.

According to the Boltzmann superposition principle, the stress response to strain history loadings is classically expressed as the sum of stress outputs for each individual strain input. Initially proposed by Boltzmann [START_REF] Boltzmann | On the theory of the elastic aftereffect[END_REF], it highlights the principle of superposition (or additivity) of the response to arbitrary trains of loadings.

Let us consider the derivable strain loading path ε(u) with u ∈ [0; t] such as ε(u) = 0 for u < t 0 with additional discontinuities (i.e. strain jumps) [ε] i at times t i ≤ t :

ε(t) = t t 0 H(t -t u ) dε(u) + i H t i (t) [ε] i (1.14)
Based on Eq. (1.14), it is clearly seen that ε(t) can be interpreted as the infinite sum of infinitesimal relaxation tests of magnitude dε(u) at times u with the relaxation tests of finite magnitude [ε] i at times t i . Following the Boltzmann superposition principle, the stress response σ(t) to the strain history (1.14) can be expressed in terms of :

σ(t) = t t 0 R(u, t) dε(u) + i R(t i , t) : [ε] i (1.15)
It can be remarked that the stress field σ(t) is defined by the time derivative of the convolution product of two functions. It is usually termed Stieltjes convolution product (cf. Appendix A) and noted in the sequel by reference to the Stieltjes integral which generalizes the classical Riemann one [START_REF] Weisstein | CRC concise encyclopedia of mathematics[END_REF]. The constitutive relation (1.15) can thus be written in concise form as :

σ(t) = t -∞ R(u, t) : ε(u) du = d dt (R * ε) (t) = (R ε) (t) (1.16)
Taking into account the nullity of the stress field σ(t) at negative infinite times and the discontinuities [ε] i at times t i ≤ t, the integration by parts of Eq.(1.16) implies :

σ(t) = R(t, t) : ε(t) - t t 0 ∂R ∂u (u, t) : ε(u) du (1.17)
It is worth noting that Eq.(1.17) allows to describe the stress response σ(t) as the sum of two distinct physical terms. The first term R(t, t) : ε(t) clearly refers to the instantaneous response to the input ε(t) at the current time t while the other onet t 0 ∂R ∂u (u, t) : ε(u) du corresponds to the integral kernel of history foregoing t and reflects the delayed behaviour of the material 1 . Similarly to Eq.(1.17), the strain response to the derivable stress loading path with u ∈ [0; t] such as σ(u) = 0 for u < t 0 with additional discontinuities [σ] i at times t i ≤ t is expressed such as :

ε(t) = C(t, t) : σ(t) - t t 0 ∂C ∂u (u, t) : σ(u) du (1.18)

Non-ageing linear viscoelasticity

Mechanical features of viscoelastic materials may change independently of external loadings over time. This phenomenon which may be cause by various parameters (temperature, crystallization, ionizing radiation) is referred to ageing. Usually associated to negative connotations implying the degradation of structures as with polymeric materials, it is far from being always damaging as emphasized by concrete [START_REF] Salençon | Viscoélasticité pour le calcul des structures[END_REF]. Even if ageing impacts all kinds of materials, it exhibits more or less significant effects depending on the age of materials. The mechanical features are relatively constant (i.e. do not vary over time) in periods of stability for which viscoelastic materials can be seen as non-ageing.

The non-ageing hypothesis implies for two strain loading paths, denoted by ε and ε u , shifted from each other of time u such as :

∀u and ∀t, ε u (t) = ε(t -u) (1.19)
that the associated stress fields are also shifted from each other of time u as highlighted in Figure (1.4). In other words, it thus follows :

∀σ and ∀u, σ Rt -→ ε ⇔ σ u Rt -→ ε u with σ u (t) = σ(t -u) (1.20)
Based on Eq.(1.20), the functional correspondences (1.12) and (1.13) must satisfy :

                 ∀σ and ∀u, R t-u ε t-u (τ ) -∞ = R t ε t (τ -u) -∞ ∀ε and ∀u, C t-u σ t-u (τ ) -∞ = C t σ t (τ -u) -∞ (1.21)
1 Note that this term does not exhibit any singularity [START_REF] Salençon | Viscoélasticité pour le calcul des structures[END_REF]. 

     R t 0 (t) = L(t -t 0 ) with L(t) = 0 if t < 0 (1.22)
and

     C t 0 (t) = M(t -t 0 ) with M(t) = 0 if t < 0 (1.23)
The collection of relaxation R t 0 (t) and creep C t 0 (t) functions are thus reduced to L(t) and M(t) respectively. The tensor L(t) commonly refers to the relaxation function while the tensor M(t) corresponds to the creep one.

By substituting Eqs. (1.22) and (1.23) into the Boltzmann expressions (1.17) and (1.18), we obtain the following viscoelastic constitutive laws :

             σ(t) = L(0) : σ(t) + t t 0 L(t -u) : σ(u) du = (L ε) (t) ε(t) = M(0) : ε(t) + t t 0 M(t -u) : ε(u) du = (M σ) (t) (1.24)
It should be mentioned that the derivatives of the relaxation and creep functions are inverse to each other in regards to the convolution product [START_REF] Salençon | Viscoélasticité pour le calcul des structures[END_REF].

Laplace-Carson transform and correspondence principle

As previously seen with Eqs. (1.24), the constitutive laws of non-ageing linear viscoelastic materials are expressed in terms of time convolution products. It should be noted that the Laplace transform allows to substitute some time-dependent equations by ordinary algebraic calculations.

The Laplace transform (L) of the function f (t) is defined in terms of :

L (f (t)) = f (p) = +∞ 0 f (t) e -pt dt (1.25)
where p is the (complex) Laplace variable corresponding to the inverse of time.

It is worth noting that the Laplace-Carson transform (LC) of the function f (t) is expressed in the form :

LC (f (t)) = f * (p) = pL (f (t)) (1.26) 
Following Eq.(1.26), the LC transform is linear and allows to substitute time convolution products by algebraic products in the Laplace domain. In the case of non-ageing linear viscoelastic materials subjected to the strain loading history ε(t) from t = 0 to t = T and classical boundary conditions (i.e. uniform or periodic), the local problem to be solved in the volume element Ω reads :

       σ(x, t) = d dt (L * ε) (x, t), ∀(x, t) ∈ Ω × [0; T ] div σ = 0, curl( t curl ε) = 0, ∀(x, t) ∈ Ω × [0; T ] (1.27)
Based on the LC transform described in Eq.(1.26), the local problem (1.27) can be rewritten :

             σ * (x, p) = L * (x, p) : ε * (x, p), ∀x ∈ Ω L * (x, p) = LC (L(x, t)) , ∀x ∈ Ω div σ * = 0, curl( t curl ε * ) = 0, ∀x ∈ Ω (1.28)
Accordingly, the viscoelastic problem of stiffness L(x, t) in time domain is substituted by the symbolic elastic one of stiffness L * (x, p) in the Laplace domain. Originally proposed by Hashin [START_REF] Hashin | Viscoelastic behavior of heterogeneous media[END_REF] and Mandel [START_REF] Mandel | Cours de mécanique des milieux continus[END_REF], the result actually corresponds to the well-known correspondence principle.

The response of viscoelastic materials to harmonic loadings is classically studied by means of the LC transform of Eq.(1.27) for the purely imaginary transform variable p = iω [START_REF] Hashin | Viscoelastic behavior of heterogeneous media[END_REF].

In regards to the harmonic strain loading ε(t) = ε * e iωt with i 2 = -1, the local problem corresponding to the steady-state regime at angular frequency ω reads :

             σ * (x, iω) = L * (x, iω) : ε * (x, iω), ∀x ∈ Ω L * (x, iω) = LC (L(x, t)) p=iω , ∀x ∈ Ω div σ * = 0, curl( t curl ε * ) = 0, ∀x ∈ Ω (1.29)
where the complex tensor L * (x, iω) can be decomposed into :

L * (x, iω) = L (x, ω) + i L (x, ω) (1.30)
with L (x, iω) and L (x, iω) the storage and loss moduli respectively. Based on the system of equations (1.29), the local problem to be solved thus corresponds to the symbolic elastic problem with the complex fields (ε * , σ * , L * ) at the given angular frequency ω.

It should be mentioned that the asymptotic local fields are solutions of purely elastic or viscous heterogeneous problems corresponding to the glassy and relaxed regimes as ω → +∞ or ω → 0 respectively. Referring to polymers, the features at short and long times are respectively termed "glassy" (subindex g) and "relaxed" (subindex r). The nature of the asymptotic regimes actually depends on the type of viscoelastic behaviours. Consequently, the local (complex) stress field must satisfies : .31) with σ g (x) and σ r (x) the (real) stress fields solutions of the heterogeneous glassy and relaxed problems respectively. Similar features hold for the strain (or strain rate) field.

lim ω→+∞ σ * (x, iω) = σ g (x) and lim ω→0 σ * (x, iω) = σ r (x). ( 1 

Elementary linear viscoelastic constituents

According to the linear theory of viscoelasticity [START_REF] Biot | Theory of stress-strain relations in anisotropic viscoelasticity and relaxation phenomena[END_REF][START_REF] Mandel | Cours de mécanique des milieux continus[END_REF][START_REF] Christensen | Theory of Viscoelasticity[END_REF], the stress response σ(t) to the derivable strain loading path ε(u) such as u ∈ [0; t] with additional discontinuities (i.e. strain jumps) [ε] i at times t i ≤ t and the initial condition σ(t = 0) = 0 reads :

σ(t) = t 0 L(t -u) : ε(u) du + i L(t -t i ) : [ε] i (1.32)
L(t) is the viscoelastic stiffness tensor (i.e. relaxation function) whose general form is :

L(t) = L er + L vg δ(t) + +∞ 0 G(τ σ ) e -t/τσ dτ σ (1.33)
where δ(t) is the Dirac delta function while G(τ σ ) refers to the relaxation spectrum with τ σ the associated relaxation times. Note that L er denotes the relaxed elastic stiffness tensor while L vg corresponds to the glassy viscous one. As mentioned in section (1.1.2), the constitutive law (1.32) can be written in terms of :

σ(t) = d dt (L * ε) (t) = (L ε) (t) (1.34)
Similarly to Eq.(1.32), the strain response ε(t) to the derivable stress loading path σ(u) such as u ∈ [0; t] with additional discontinuities (i.e. stress jumps) [σ] i at times t i ≤ t and the initial condition ε(t = 0) = 0 reads :

ε(t) = t 0 M(t -u) : σ(u) du + i M(t -t i ) : [σ] i = (M σ) (t) (1.35)
M(t) is the viscoelastic compliance tensor (i.e. creep function) whose general form is :

M(t) = M eg + t M vr + +∞ 0 J(τ ε ) 1 -e -t/τε dτ ε (1.36)
with M eg the glassy elastic compliance, M vr the relaxed viscous compliance and J(τ ε ) the retardation spectrum 2 with τ ε the associated retardation times. By considering each combination of elastic or viscous asymptotic states, the linear viscoelastic behaviours can be classified into four types [START_REF] Caputo | Linear models of dissipation in anelastic solids[END_REF][START_REF] Mainardi | Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models[END_REF] summarized in Table (1.1).

It should be noted that the Maxwell and Kelvin-Voigt models are characterized by two constitutive tensors (i.e. elastic and viscous stiffness tensors) whereas the Zener and anti-Zener models are described by three constitutive tensors (i.e. two elastic/viscous and one viscous/elastic stiffness tensors).

Constituent The relaxation G(τσ) and retardation J(τε) spectra present several ranges of characteristic times depending on the associated class of symmetry [START_REF] Vu | A self-consistent estimate for linear viscoelastic polycrystals with internal variables inferred from the collocation method[END_REF].

M eg M vr L er L vg Short time response Long time response Zener > 0 0 > 0 0 Elastic Elastic Maxwell > 0 > 0 0 0 Elastic Viscous Kelvin-Voigt 0 0 > 0 > 0 Viscous Elastic anti-Zener 0 > 0 0 > 0 Viscous Viscous

Classical Zener constituent

The classical Zener (or standard linear solid) model is characterized by the following homogeneous linear differential equation :

σ(t) + L v : L eg -L er -1 : σ(t) = L er : ε(t) + L eg : L v : L eg -L er -1 : ε(t) (1.37)
The model is defined by asymptotic elastic behaviours with the glassy L eg and relaxed L er moduli at short (t → 0) and long (t → +∞) times respectively as illustrated in Figure (1.5).

It should be noted that such model exhibits the unique "transient" viscous stiffness tensor L v .

Based on the previous equation, the viscoelastic relaxation and creep functions of the classical Zener phase (s) are expressed in terms of :

         L (s) (t) = L (s) er + G (s) e -t/τ (s) σ M (s) (t) = M (s) eg + J (s) 1 -e -t/τε (s) (1.38) with τ (s) 
σ and τ (s) ε the relaxation and retardation times respectively. It can be remarked that the eigenvalues of

L (s) v : (L (s) eg -L (s)
er ) -1 are the relaxation times of the phase (s) and the asymptotic elastic tensors must satisfy : The complex relaxation function3 characterizing the steady-state harmonic regime at angular frequency ω is therefore given by :

           L (s) er = M (s) eg + J (s) -1 M (s) eg = L (s) er + G (s) -1 (1.39) t L (s) (t) L (s) e r L (s) e g G (s) t M (s) (t) M (s) e g M (s) e r J (s)
L * (iω) = LC L (s) (t) p=iω = L (s) er + iωτ σ 1 + iωτ σ G (s) (1.40)
By decomposing the complex viscoelastic tensor (1.40) into the following form :

L * (iω) = L (ω) + i L (ω) (1.41)
one may observe that the storage L (ω) and loss L (ω) moduli are defined such as :

             L (ω) = L (s) er + (ωτ σ ) 2 1 + (ωτ σ ) 2 G (s) L (ω) = ωτ σ 1 + (ωτ σ ) 2 G (s) (1.42)
For harmonic loadings, the storage modulus of the classical Zener constituent (s) is obviously confined between the asymptotic elastic states at low (ω → 0) and high (ω → +∞) frequencies. The viscoelastic transient response is characterized by conservative and dissipative deformation mechanisms, the loss factor thus naturally reaches its peak during the glass transition as shown in Figure (1.6). storage modulus (left) and loss factor (right).

Classical Maxwell constituent

The response of the classical Maxwell constituent is characterized by the elastic regime M eg at short (t → 0) times and the viscous regime M vr at long (t → +∞) times.

Its constitutive relation is solution of the following homogeneous linear differential equation :

M vr : σ(t) + M eg : σ(t) = ε(t) (1.43)
The viscoelastic stiffness and compliance tensors of the classical Maxwell phase (s) read :

         L (s) (t) = L (s) eg e -t/τσ (s) M (s) (t) = M (s) eg + M (s) vr t (1.44)
It can be remarked that the inverse of the relaxation times τ The complex relaxation function at angular frequency ω is given in terms of :

L * (iω) = LC L (s) (t) p=iω = iωτ σ 1 + iωτ σ G (s) (1.45)
Based on the equation (1.45), the storage and loss moduli are expressed in the form :

             L (ω) = (ωτ σ ) 2 1 + (ωτ σ ) 2 G (s) L (ω) = ωτ σ 1 + (ωτ σ ) 2 G (s) (1.46)
The storage modulus of the classical Maxwell constituent (s) is defined by asymptotic viscous and elastic behaviours at low (ω → 0) and high (ω → +∞) frequencies respectively. It goes from zero to the elastic glassy modulus over the frequency range while the loss factor decreases exponentially until reaching the constant level associated to the elastic asymptotic state as shown in Figure (1.8). storage modulus (left) and loss factor (right).

Classical Kelvin-Voigt constituent

The classical Kelvin-Voigt constituent is defined by the following homogeneous linear differential equation :

σ(t) = L er : ε(t) + L vg : ε(t) (1.47)
It is characterized by the viscous regime L vg at short (t → 0) times and the elastic regime L er at long (t → +∞) times. Based on the previous equation, the relaxation and creep functions of the Kelvin-Voigt phase (s) are expressed in terms of :

L (s) (t) = L (s) er + L (s) vg δ(t) and M (s) (t) = M (s) er 1 -e -t/τε (s) (1.48)
Note that the retardation times τ The complex viscoelastic stiffness tensor at angular frequency ω is given in terms of :

L * (iω) = LC L (s) (t) p=iω = L (s) er + iω L (s) vg (1.49)
while the storage and loss modulus are expressed in the form : 

L (ω) = L (s) er and L (ω) = ω L (s) vg (1.50) t M (s) (t) M ( 

Classical anti-Zener constituent

The response of the anti-Zener model is defined by asymptotic viscous behaviours L vg , M vr and presents M e the unique "transient" elastic compliance tensor. It is described by the following homogeneous linear differential equation :

σ(t) + L vr -L vg : M e : σ(t) = L vr : ε(t) + L vr -L vg : M e : L vg : ε(t) (1.51)
Based on the previous equation, the viscoelastic stiffness and compliance tensors of the anti-Zener phase (s) are expressed in terms of :

       L (s) (t) = L (s) vg δ(t) + G (s) e -t/τ (s) σ M (s) (t) = M (s) vr t + J (s) 1 -e -t/τε (s) (1.52)
where the relaxation times τ

(s)
σ are the eigenvalues of (L

(s) vr -L (s) vg ) : M (s)
e . In the same way of the classical Kelvin-Voigt model, the Dirac delta function involved in the relaxation function of the classical anti-Zener constituent (s) is not reported in Figure (1.11).

Based on Eqs. (1.52), the asymptotic viscous tensors must satisfy : The complex viscoelastic relaxation tensor at angular frequency ω is given by :

       L (s) vr = L (s) vg + τ (s) σ G (s) M (s) vg = M (s) vr + τ (s) ε -1 J (s) (1.53) t L (s) (t) 0 t M (s) (t) 0 M (s) v r
L * (iω) = LC L (s) (t) p=iω = iω L (s) vg + iωτ σ 1 + iωτ σ G (s) (1.54)
Based on Eq.(1.54), the storage and loss moduli are therefore expressed in the form :

             L (ω) = (ωτ σ ) 2 1 + (ωτ σ ) 2 G (s) L (ω) = ω L (s) vg + ωτ σ 1 + (ωτ σ ) 2 G (s) (1.55)
By contrast with the classical Zener model, the classical anti-Zener one is characterized by asymptotic viscous regimes at low (ω → 0) and high (ω → +∞) frequencies respectively. The storage modulus goes from zero until reaching the value of the relaxation spectrum G (s) over the frequency range while the loss factor exhibits the constant level associated to the transient elastic response between infinite values denoting purely viscous states as reported in Figure (1.12). It is clearly seen that only the loss factor highlights the two asymptotic viscous states of the classical anti-Zener model. Elementary linear viscoelastic constituents give an insight into the physical meaning of various viscoelastic phenomena such as the stress relaxation and strain creep (or retardation).

Occasionally delivering good results, the elementary linear viscoelastic constituents are irrelevant to model the behaviour of actual viscoelastic materials. The description of actual viscoelastic materials requires the use of models with high or even infinite numbers of mechanical elements. Note that such models can easily be derived by generalizing parallel-series models as emphasized by the generalized Maxwell and Kelvin-Voigt models.

Spectral modeling of viscoelastic materials

Elementary linear viscoelastic constituents are usually not relevant enough to model the actual stress-strain response of viscoelastic materials. More complex mechanical models have been proposed by making use of the assemblage of classical Maxwell and Kelvin-Voigt elements in order to describe the behaviour of viscoelastic materials with multiple relaxation or retardation times [START_REF] Tschoegl | The phenomenological theory of linear viscoelastic behavior: an introduction[END_REF].

Generalized Maxwell and Kelvin-Voigt models

The generalized Maxwell and Kelvin-Voigt models are defined by the assemblage of springs with classical Maxwell constituents in parallel and classical Kelvin-Voigt constituents in series respectively. Such models are generally characterized by the following homogeneous linear differential equation :

N k=0 p k d k dt k σ(t) = M k=0 q k d k dt k ε(t) (1.56)
where p k and q k are constant material parameters. In the case of the generalized Maxwell model (N = M and q 0 = 0), the stress output for the given strain input ε(t) can be easily obtained by superpostion of the N first order linear differential equation solutions. By reformulating Eq.(1.43), the N first order equations are expressed in terms of :

σ j (t) + τ j σ σj (t) = εj (t) with j ∈ [1, N ] (1.57)
As pointed out by Tschoegl [START_REF] Tschoegl | The phenomenological theory of linear viscoelastic behavior: an introduction[END_REF], the solution of Eqs.(1.57) is achieved by means of the superposition principle. By considering the condition of stress relaxation ε(t) = ε 0 H(t) and the spring defined by the elastic stiffness tensor L er , it thus follows :

σ(t) =   L er + N j=1 L j e -t/τ j σ   : ε 0 (1.58)
Based on Eq.(1.58), the relaxation function of the generalized Maxwell phase (s) is expressed in the form :

L (s) (t) = L (s) er + N j=1
L j e -t/τ j σ (1.59) while the complex viscoelastic stiffness tensor at angular frequency ω is given by :

L * (iω) = LC L (s) (t) p=iω = L (s) er + N j=1 iωτ j σ 1 + iωτ j σ L j (1.60)
Note that the sum of decaying exponentials described in Eq.(1.59) corresponds to the Dirichlet-Prony series. Assuming that L (s) eg corresponds to the glassy elastic stiffness tensor of the given generalized Maxwell phase (s), the N tensorial coefficients L j of the previous expansion must satisfy :

N j=1 L j = L (s) eg -L (s) er (1.61)
Regarding the generalized Kelvin-Voigt model (N = M -1 and p 0 = 1), the strain output for the given stress input σ(t) is also found by superposition of the N first order homogeneous linear differential equation solutions. By reformulating Eq.(1.47), the N first order equations are defined in terms of :

M j er : σ j (t) = ε j (t) + τ j ε εj (t) (1.62)
For the condition of strain retardation σ = σ 0 H(t) and the spring defined by the elastic compliance tensor M eg , the strain response thus reads :

ε(t) =   M eg + N j=1 M j 1 -e -t/τ j ε   : σ 0 (1.63)
Based on Eq.(1.63), the creep function of the generalized Kelvin-Voigt constituent (s) is defined by :

M (s) (t) = M (s) eg + N j=1 M j 1 -e -t/τ j ε (1.64)
while the complex viscoelastic compliance tensor at angular frequency ω reads :

M * (iω) = LC M (s) (t) p=iω = M (s) eg + N j=1 1 1 + iωτ j ε M j (1.65) Yielding that M (s)
er refers to the relaxed elastic compliance tensor of the given generalized Kelvin-Voigt phase (s), the N tensorial coefficients M j must verify :

N j=1 M j = M (s) er -M (s) eg (1.66)
It should be remarked that the relaxation (1.59) and creep (1.64) functions have been derived in the case of transient mechanical loadings by means of the superposition of solutions of first order differential equations. In the case of more complex loadings, the assessment of the relaxation and creep functions may change depending on the nature of the problem to be solved [START_REF] Tschoegl | The phenomenological theory of linear viscoelastic behavior: an introduction[END_REF].

As with the generalized Maxwell model, the creep function of the generalized Kelvin-Voigt model can be used to characterize viscoelastic materials. Note that the use of such functions through hereditary integral constitutive laws allows to determine the response of viscoelastic materials to any type of loadings instead of solving differential equations. For that purpose, it is therefore necessary to identify the magnitudes and the corresponding characteristic times of the generalized Maxwell and Kelvin-Voigt models.

Collocation methods

Originally proposed by Schapery [START_REF] Schapery | A simple collocation method for fitting viscoelastic models to experimental data[END_REF] for approximating inverse Laplace transforms, the collocation method relies on the development in series of the required time functions. In the context of non-ageing linear viscoelasticity, the actual relaxation function L(t) is approximated by the following Dirichlet-Prony series expansion :

Λ(t) = L er + L vg δ(t) + N r=1 G r e -t/τ r σ (1.67)
where G r and τ r σ denote the magnitudes and the relaxation times respectively. It should be remarked that the transient response of Eq.(1.67) presents the same form as the generalized Maxwell model. Finding the magnitudes and the associated relaxation times is based on the minimization of the quadratic error E 2 evaluated between the exact and approximate relaxation functions. The quadratic error reads by definition : 

E 2 = +∞ 0 [L(t) -Λ(t)]
Ľ(p r ) = N i=1 1 p i + p r G i and d Ľ dp (p)| pr = - N i=1 1 (p i + p r ) 2 G i ∀r ∈ [1, N ] (1.70)
Minimizing Eq.(1.68) with respect to the parameters (G r , τ r σ ) directly implies that the Laplace transform of the approximate relaxation function and its derivative must equal the Laplace transform of the exact relaxation function and its derivative at least at the r points p r = 1/τ r σ . More specifically, it is thus necessary to know the Laplace transform as well as the derivative of this transform of the actual time-dependant relaxation function at various collocation points (i.e. relaxation times).

It is worth noting that the collocation method which preliminary selects p r collocation points corresponds to Eq.(1.70) 1 which defines the linear system of equations allowing to assess the magnitudes of the approximate relaxation function (1.67). Later extended by Cost and Becker [START_REF] Cost | A multidata method of approximate laplace transform inversion[END_REF], the approach does not impose any constraint on the magnitudes in Eq.(1.67) although the physical description of the viscoelastic stiffness tensor requires definite positive ones. Various methods [START_REF] Bradshaw | A sign control method for fitting and interconverting material functions for linearly viscoelastic solids[END_REF][START_REF] Emri | Determination of mechanical spectra from experimental responses[END_REF] have been developed to tackle the problem but all of them rely on the preliminary selection of various relaxation times. Relying on the nonlinear system of 2N equations and 2N unknown parameters of Eq.(1.70), Rekik and Brenner [START_REF] Rekik | Optimization of the collocation inversion method for the linear viscoelastic homogenization[END_REF] proposed to assess the magnitudes and the associated relaxation times of the approximate relaxation function by considering the following constraints :

-The magnitudes G r must be definite positive.

-The collocation times τ r σ must lie in the interval [τ r σ min , τ r σmax ].

-The viscoelastic stiffness tensor must be equal to the glassy elastic stiffness one at zero time.

The nonlinear system to be solved can therefore be written as the following minimization problem under constraints : Even though describing accurately the behaviour of viscoelastic materials, the generalized Maxwell and Kelvin-Voigt models generally lead to optimize numerous parameters by means of collocation methods. The assemblage of infinite classical Maxwell (in parallel) and Kelvin-Voigt (in series) models are actually equivalent to single fractional constituents known as fractional dashpots. Halfway between the classical spring and dashpot models, these constituents are only defined by a few parameters. Depending on the nature of viscoelastic materials, the use of fractional calculus models can be much more appropriate to characterize the viscoelastic behaviour.

                

Fractional viscoelasticity

Fractional calculus [START_REF] Oldham | The fractional calculus theory and applications of differentiation and integration to arbitrary order[END_REF][START_REF] Podlubny | Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications[END_REF][START_REF] Dubois | Introduction à la dérivation fractionnaire-théorie et applications[END_REF] through linear differential constitutive laws with noninteger derivatives has been proposed to describe the viscoelastic response of various materials such as polymers [START_REF] Bagley | A theoretical basis for the application of fractional calculus to viscoelasticity[END_REF], polycrystalline ice [START_REF] Schapery | Linear elastic and viscoelastic deformation behavior of ice[END_REF] and rocks [START_REF] Yin | Fractional order constitutive model of geomaterials under the condition of triaxial test[END_REF]. By contrast with the usual derivative, the non-integer derivative of time functions at time t depends on the history of functions over the range ] -∞, t] (cf. Appendix B). The non-integer derivative order α is thus sometimes called memory parameter. Such constitutive laws are needful to describe creep compliances with nonlinear time dependence [START_REF] Caputo | Linear models of dissipation in anelastic solids[END_REF]. Note that they are also useful to describe viscoelastic transient regimes between two asymptotic elastic states with very few parameters in contrast to generalized Maxwell and Kelvin-Voigt models.

Fractional dashpot constitutive laws

The constitutive law of fractional constituents [START_REF] Koeller | Applications of fractional calculus to the theory of viscoelasticity[END_REF] (or fractional dashpots) links linearly the stress σ(t) and the fractional derivative of the strain D α ε(t) such as D α ≡ d α / dt α with 0 < α < 1. Following Caputo and Mainardi [START_REF] Caputo | Linear models of dissipation in anelastic solids[END_REF], the constitutive law of the fractional element is classically expressed in the form :

σ(t) = L f : τ α D α ε(t) (1.72)
where L f refers to the viscoelastic stiffness tensor while τ α σ corresponds to the fractional relaxation time (units s α ). Note that α = 1 refers to purely viscous behaviours while α = 0 corresponds to purely elastic behaviours. From the definition (B.7), the hereditary integral form of Eq.(1.72) is classically expressed :

σ(t) = t 0 L α (t -u) : ε(u) du (1.73)
where the fractional relaxation function reads :

L α (t) = L f Y 1-α t τ σ = L f 1 Γ(1 -α) τ σ t α (1.74)
The inversion of the constitutive law (B.17) simply yields :

ε(t) = M f : τ -α σ I α σ(t) = M f : τ -α σ I α+1 σ(t) (1.75)
From Eq.(B.6), it may be written as :

ε(t) = t 0 M α (t -u) : σ(u) du (1.76)
where the creep (or retardation) function is defined as :

M α (t) = M f Y 1+α t τ ε = M f 1 Γ(1 + α) t τ ε α (1.77)
As pointed out in [START_REF] Tschoegl | The phenomenological theory of linear viscoelastic behavior: an introduction[END_REF][START_REF] Lion | On the thermodynamics of fractional damping elements[END_REF][START_REF] Papoulia | Rheological representation of fractional order viscoelastic material models[END_REF] , the fractional relaxation function L α (t) can be described as the sum of exponentials weighted with power-law relaxation spectrum. In terms of rheological elements, the fractional dashpot can be described by the assemblage of springs with classical Maxwell models in parallel and Kelvin-Voigt models in series respectively. Conversely, it can be noted that hierarchical assemblages of elementary mechanical elements (i.e. springs and dashpots) exhibit fractional constitutive behaviours [START_REF] Schiessel | Hierarchical analogues to fractional relaxation equations[END_REF][START_REF] Heymans | Fractal rheological models and fractional differential equations for viscoelastic behavior[END_REF]. By extending generalized Maxwell and Kelvin-Voigt models to the fractional case, Koeller [START_REF] Koeller | Applications of fractional calculus to the theory of viscoelasticity[END_REF][START_REF] Koeller | Polynomial operators, stieltjes convolution, and fractional calculus in hereditary mechanics[END_REF] has shown that the constitutive law is still of the form of Eq. (1.34) where the fractional relaxation function L α (t) reads :

L α (t) = L er + +∞ 0 G(τ σ ) E α [-(t/τ σ ) α ] dτ σ (1.78)
where E α (t) is the Mittag-Leffler function (cf. Appendix B). For α = 1, the fractional relaxation function L α (t) obviously corresponds to the classical relaxation function L(t). If the relaxation spectra G(τ σ ) consists of single Dirac delta functions, Eq.(1.78) is reduced to the relaxation function of fractional Zener models (i.e. fractional standard solid) [START_REF] Mainardi | Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models[END_REF].

Regarding thermodynamic aspects, Lion [START_REF] Lion | On the thermodynamics of fractional damping elements[END_REF] proved that the model fulfils Clausius-Duhem inequality. It led him to the conjecture that any fractional constitutive model exhibiting the form of Eq.(1.78) is thermodynamically admissible.

From the integral representation of the fractional viscoelastic constitutive law, the correspondence principle allows to transform fractional viscoelastic problems into symbolic elastic ones [START_REF] Hashin | Viscoelastic behavior of heterogeneous media[END_REF][START_REF] Mandel | Cours de mécanique des milieux continus[END_REF]. With regards to harmonic loadings, the problem is brought from time to spectral domain and enables the determination of storage and loss moduli characterizing the dynamic response of materials. The response of fractional viscoelastic materials to harmonic loadings is classically studied in the spectral domain by considering the Laplace-Carson transform of the constitutive equation for the purely imaginary transform variable p = iω [START_REF] Hashin | Complex moduli of viscoelastic composites-i. general theory and application to particulate composites[END_REF]. By assuming the harmonic strain loading ε(t) = ε * e iωt , the local problem corresponding to the steady-state regime at angular frequency ω reads :

             σ * (x, iω) = L * α (x, iω) : ε * (x, iω), ∀(x, ω) ∈ Ω × [0; +∞[ L * α (x, iω) = LC (L α (x, t)) p=iω , ∀(x, ω) ∈ Ω × [0; +∞[ div σ * = 0, curl( t curl ε * ) = 0, ∀(x, ω) ∈ Ω × [0; +∞[ (1.79)
with prescribed boundary conditions. The complex fields (σ * , ε * , L * α ) are the time LC transforms of the real fields (σ, ε, L α ).

The complex fractional viscoelastic tensor can be written as :

L * α (x, iω) = L α (ω) + i L α (ω) (1.80)
where L α (ω) and L α (ω) are the fractional storage and loss moduli respectively. Contrary to classical linear viscoelasticity where the asymptotic local fields are solutions of purely elastic or purely viscous problems as ω → +∞ or ω → 0, the (complex) local stress and strain (or strain rate) fields are not decoupled anymore in regards to fractional viscoelasticity. Accordingly, the asymptotic conditions established with Eq. (1.31) are not valid anymore for fractional viscoelastic constituents.

Elementary fractional viscoelastic constituents

Following Mainardi [START_REF] Mainardi | Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models[END_REF][START_REF] Mainardi | Creep, relaxation and viscosity properties for basic fractional models in rheology[END_REF], the stress response σ(t) to the derivable strain loading path ε(u) such as u ∈ [0; t] with additional discontinuities [ε] i at times t i ≤ t and the initial condition σ(t = 0) = 0 is expressed in the form :

σ(t) = t 0 L α (t -u) : ε(u) du + i L α (t -t i ) : [ε] i (1.81)
where L α (t) refers to the fractional relaxation function whose general form reads :

L α (t) = L er + L fg t -α Γ(1 -α) + +∞ 0 G(τ σ ) E α [-(t/τ σ ) α ] dτ σ (1.82)
Note that L fg corresponds to the glassy fractional viscous stiffness tensor. In the same way of classical linear viscoelasticity, the constitutive law (1.81) can be rewritten as :

σ(t) = d dt (L α * ε) (t) = (L α ε) (t) (1.83)
Similarly to Eq.(1.81), the strain response ε(t) to the derivable stress loading path σ(u) such as u ∈ [0; t] with additional discontinuities [σ] i at times t i ≤ t and the initial condition ε(t = 0) = 0 classically reads :

ε(t) = t 0 M α (t -u) : σ(u) du + i M α (t -t i ) : [σ] i = (M α σ) (t) (1.84)
where M α (t) denotes the fractional creep (or retardation) function whose general form is :

M α (t) = M eg + M fr t α Γ(1 + α) + +∞ 0 J(τ ε ) (1 -E α [-(t/τ ε ) α ]) dτ ε (1.85)
with M fr the relaxed fractional viscous compliance tensor. Taking into account each combination of asymptotic elastic or fractional viscous states, the fractional viscoelastic behaviours can be classified into four types [START_REF] Mainardi | Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models[END_REF][START_REF] Mainardi | Creep, relaxation and viscosity properties for basic fractional models in rheology[END_REF] summarized in 

Fractional Zener constituent

The behaviour of the fractional Zener constituent is characterized by asymptotic elastic states at short (t → 0) and long (t → +∞) times with the glassy L eg and relaxed L er elastic moduli respectively. The tensor L f denotes the fractional viscous stiffness tensor. It is defined by the following homogeneous fractional differential equation with 0 < α < 1 :

σ(t) + L f : (L eg -L er ) -1 : D α σ(t) = L er : ε(t) + L eg : L f : (L eg -L er ) -1 : D α ε(t) (1.86)
Based on the previous equation, the fractional relaxation and creep functions of the fractional Zener phase (s) are expressed in terms of : It should be mentioned that the eigenvalues of L (s)

         L (s) α (t) = L (s) er + G (s) E α -(t/τ (s) σ ) α M (s) α (t) = M (s) eg + J (s) 1 -E α -(t/τ (s) ε ) α (1.87) t L (s) α (t) L (s) e r L (s) e g G (s) α = 0.25 α = 0.5 α = 0.75 α = 1 t M (s) α (t) M (s) e g M (s) e r J (s) α = 0.25 α = 0.5 α = 0.75 α = 1
f : [G (s) ] -1 correspond to the fractional relaxation times τ α (s) σ .

The fractional complex relaxation function characterizing the steady-state harmonic regime at angular frequency ω reads :

L * α (iω) = LC L (s) α (t) p=iω = L (s) er + (iωτ σ ) α 1 + (iωτ σ ) α G (s) (1.88)
By noting that i α = e iπα/2 , the fractional storage and loss moduli are given by :

             L α (ω) = L (s) er + 1 q (ωτ σ ) α cos πα 2 + (ωτ σ ) 2α G (s) L α (ω) = 1 q (ωτ σ ) α sin πα 2 G (s)
(1.89)

with q = 1 + 2 (ωτ σ ) α cos πα 2 + (ωτ σ ) 2α .
It is clearly seen that the non-integer parameter α strongly impacts the slope of the storage modulus and the peak value of the loss factor while maintaining two asymptotic elastic states as illustrated in Figure (1.14). Such feature is obviously the major advantage of the fractional Zener model for the modeling of polymeric materials. Assuming the glassy and relaxed moduli and the peak value of the loss factor to be known, Dubois et al. [START_REF] Dubois | Introduction à la dérivation fractionnaire-théorie et applications[END_REF] have shown in 1D that the non-integer parameter α can be assessed analytically such as : It should be remarked that Eq.(1.90) is independent of τ σ the relaxation time. Consequently, the optimization of the fractional Zener model only needs the assessment of the optimal value of one parameter.

α = 2 π arcsin   η max α (d -1) 2 √ d + (d + 1) 1 + η max 2 α (d -1) 2 + η max 2 α (d + 1) 2   (1.

Fractional Maxwell constituent

The fractional Maxwell constituent is defined by the following homogeneous fractional differential equation with 0 < α < 1 :

M fr : σ(t) + M eg : D α σ(t) = D α ε(t) (1.91)
It exhibits fractional viscous M fr behaviours at short (t → 0) and long (t → +∞) times respectively. The fractional viscoelastic stiffness and compliance tensors of the fractional Maxwell phase (s) are obtained with Eq.(1.91) such as :

           L (s) α (t) = L (s) eg E α -(t/τ (s) σ ) α M (s) α (t) = M (s) eg + M (s) fr t α Γ(α + 1) (1.92)
It is worth noting that the eigenvalues of L The fractional complex relaxation function characterizing the steady-state harmonic regime at angular frequency ω is expressed in the form :

L * α (iω) = LC L (s) α (t) p=iω = (iωτ σ ) α 1 + (iωτ σ ) α L (s) eg (1.93)
Note that the fractional storage and loss moduli are given by : 

             L α (ω) = 1 q (ωτ σ ) α cos πα 2 + (ωτ σ ) 2α L (s) eg L α (ω) = 1 q (ωτ σ ) α sin πα 2 L (s) eg (1.94) with q = 1 + 2 (ωτ σ ) α cos πα 2 + (ωτ σ ) 2α . ω (rad/s) L α ( 

Fractional Kelvin-Voigt constituent

The response of the fractional Kelvin-Voigt constituent is characterized by asymptotic fractional viscous L fg and elastic L er behaviours at short (t → 0) and long (t → +∞) times respectively. It is defined by the following homogeneous fractional differential equation with the non-integer parameter 0 < α < 1 :

σ(t) = L er : ε(t) + L fg : D α ε(t) (1.95)
The fractional relaxation and creep functions of the fractional Kelvin-Voigt phase (s) are obtained with Eq.(1.95) such as :

           L (s) α (t) = L (s) er + L (s) fg t -α Γ(1 -α) M (s) α (t) = M (s) er 1 -E α -(t/τ (s) ε ) α (1.96)
Note that the eigenvalues of L The fractional complex relaxation function at angular frequency ω is given by :

L * α (iω) = LC L (s) α (t) p=iω = L (s) er + (iω) α L (s) fg (1.97)
while the fractional storage and loss moduli are expressed in the form : 

L α (ω) = L (s) er + cos πα 2 ω α L (s)

Fractional anti-Zener constituent

The fractional anti-Zener constituent is defined by the following homogeneous fractional differential equation with the non-integer parameter 0 < α < 1 :

σ(t) + ∆L f : M e : D α σ(t) = L fr : D α ε(t) + ∆L f : M e : L fg : D 2α ε(t) (1.99)
where ∆L f = (L fr -L fg ). The model is characterized by asymptotic fractional viscous behaviours (L fg , L fr ) at short (t → 0) and long (t → +∞) times respectively. It should be mentioned that the tensor M e refers to the "transient" elastic stiffness tensor.

According to Eq.(1.99), the fractional viscoelastic stiffness and compliance tensors of the fractional anti-Zener phase (s) are expressed : It should be remarked that the relaxation spectrum G (s) = L (s) e while the fractional relaxation times τ α (s) σ correspond to the eigenvalues of (L

             L (s) α (t) = L (s) fg t -α Γ(α -1) + G (s) E α -(t/τ (s) σ ) α M (s) α (t) = M (s) fr t α Γ(α + 1) + J (s) 1 -E α -(t/τ (s) ε ) α (1.100) t L (s) α (t) 0 α = 0.25 α = 0.5 α = 0.75 α = 1 t M (s) α (t) 
(s) fr -L (s) fg ) : M (s)
e . The fractional complex relaxation function at angular frequency ω is given by :

L * α (iω) = LC L (s) α (t) p=iω = (iω) α L (s) fg + (iωτ σ ) α 1 + (iωτ σ ) α G (s) (1.101)
while the fractional storage and loss moduli are expressed in the form : 

             L α (ω) = cos πα 2 ω α L (s) fg + 1 q (ωτ σ ) α cos πα 2 + (ωτ σ ) 2α G (s) L α (ω) = sin πα 2 ω α L (s) fg + 1 q (ωτ σ ) α sin πα 2 G (s) (1.102) with q = 1 + 2 (ωτ σ ) α cos πα 2 + (ωτ σ ) 2α . ω (rad/s) L α ( 

Conclusion

After emphasizing the instantaneous and delayed parts of the viscoelastic response by means of transient mechanical measurements (i.e. relaxation and creep tests), the Boltzmann superposition principle pointed out that the stress response to strain history loadings is expressed as the sum of the stress outputs of each individual strain input. In the context of non-ageing materials, we stressed out that the viscoelastic response is actually time shift invariant reducing the time dependence of the viscoelastic material functions to only one variable. Noting that the stress and strain fields are related to each other through time convolution products, the substitution of time-dependent viscoelastic constitutive equations by ordinary algebraic calculations is achieved by making use of the Laplace-Carson transform. Afterwards, the study of all the combinations of asymptotic viscoelastic states distinguishes four distinct elementary viscoelastic constituents. Resulting from the difficulty to match the behaviour of actual viscoelastic materials, more complex models known as the generalized Maxwell and Kelvin-Voigt models have been introduced. Such models are defined by integral kernels containing various parameters which are usually assessed by making use of collocation methods (i.e. fitting procedures). Alternatively of such methods, the theory of fractional viscoelasticity through linear differential constitutive laws with non-integer derivative orders significantly reduces the number of parameters while providing accurate results. Despite the theoretical interest of all types of viscoelastic behaviours, most polymers do not exhibit inelastic behaviours at short (t → 0) times as the Kelvin-Voigt and anti-Zener models or the unrestricted flow of the Maxwell model. Further focusing on polymer-based materials characterizing by two asymptotic elastic states at short (t → 0) and long (t → +∞) times respectively, the emphasis is therefore put on the classical and fractional Zener models thereafter.

Introduction

By contrast with elastic or viscous heterogeneous media, the coupling between conservative and dissipative deformation mechanisms in viscoelastic composite materials generally leads to emerging overall features which are not present at the scale of individual constituents. More specifically, the mixture of elementary viscoelastic constituents with single relaxation times exhibits at the macroscopic scale long-memory effects manifesting themselves in the overall constitutive relation through an integral kernel [START_REF] Sanchez-Hubert | Sur certains problemes physiques d'homogénéisation donnant lieua des phénomenes de relaxation[END_REF][START_REF] Francfort | Homogénéisation de milieux viscoélastiques linéaires de kelvin-voigt[END_REF][START_REF] Suquet | Elements of homogenization for inelastic solid mechanics, homogenization techniques for composite media[END_REF]. They can be evidenced by making use of the correspondence principle [START_REF] Mandel | Cours de mécanique des milieux continus[END_REF][START_REF] Hashin | Viscoelastic behavior of heterogeneous media[END_REF] which allows to transform viscoelastic problems into symbolic elastic ones in the Laplace domain. The time-dependent overall viscoelastic behaviour is thus assessed by means of the inverse Laplace transform. Except in few cases where the overall integral kernel can be derived in closed-form [START_REF] Rougier | Self consistent modelling of elastic-viscoplastic polycrystals[END_REF][START_REF] Masson | Incremental homogenization approach for ageing viscoelastic polycrystals[END_REF], the inversion needs to be performed numerically and the resulting overall behaviour is therefore approximated. Such approach has been widely used to operate with standard homogenization methods for viscoelastic composites [START_REF] Laws | Self-consistent estimates for the viscoelastic creep compliances of composite materials[END_REF][START_REF] Rougier | Self consistent modelling of elastic-viscoplastic polycrystals[END_REF][START_REF] Ricaud | Effective properties of linear viscoelastic heterogeneous media: Internal variables formulation and extension to ageing behaviours[END_REF]. Even though the overall integral kernel expression is known, the integration of viscoelastic constitutive laws expressed by integral kernels with long-memory effects in structural computations still requires to store the whole time history of the overall stress (or strain) field at each Gauss point of the structure. Various approximate methods have been proposed to overcome the difficulty emerging from prohibitive computation costs.

Unlike classical methods based on the LC transform, Lahellec and Suquet [START_REF] Lahellec | Effective behavior of linear viscoelastic composites: a timeintegration approach[END_REF] proposed to assess the overall behaviour of linear viscoelastic composites through a time-integration approach based on the variational method of Ponte-Castañeda [START_REF] Ponte-Castañeda | New variational principles in plasticity and their application to composite materials[END_REF]. Offering the ability to take into account non-linear behaviours and integrate the resulting overall constitutive laws to structural finite element codes in order to compute the behaviour of viscoelastic composite structures under macroscopic loadings, the method paved the way to numerous works [START_REF] Lahellec | Effective response and field statistics in elasto-plastic and elasto-viscoplastic composites under radial and non-radial loadings[END_REF][START_REF] Badulescu | Field statistics in linear viscoelastic composites and polycrystals[END_REF][START_REF] Lucchetta | A double incremental variational procedure for elastoplastic composites with combined isotropic and linear kinematic hardening[END_REF]. On another level, some methods consist in approximating the overall integral kernel of composite materials. Following the lead of Schapery [START_REF] Schapery | Viscoelastic behavior and analysis of composite materials[END_REF] and Laws and Mc Laughlin [START_REF] Laws | Self-consistent estimates for the viscoelastic creep compliances of composite materials[END_REF], the overall integral kernel can be approximated by the finite sum of decaying exponentials (so-called Dirichlet-Prony series). It turns out to be exact only if the effective spectrum corresponds to the sum of weighted Dirac delta functions. For instance, the overall integral kernel resulting from the homogenization process can be derived in closed-form in the case of isotropic two-phase media verifying the Voigt, Reuss and Hashin-Shtrikman bounds [START_REF] Brenner | Improved affine estimates for nonlinear viscoelastic composites[END_REF][START_REF] Ricaud | Effective properties of linear viscoelastic heterogeneous media: Internal variables formulation and extension to ageing behaviours[END_REF] or isotropic composite materials made of the assemblage of coated inclusions verifying the generalized self-consistent model [START_REF] Beurthey | Structural morphology and relaxation spectra of viscoelastic heterogeneous materials[END_REF]. Even though the effective spectrum is usually continuous, the use of Dirichlet-Prony series can deliver convenient results. Note that the well-known collocation method relies on the series development of the effective spectrum [START_REF] Cost | A multidata method of approximate laplace transform inversion[END_REF][START_REF] Turner | Self-consistent modeling of visco-elastic polycrystals: application to irradiation creep and growth[END_REF][START_REF] Masson | Self-consistent estimates for the rate-dependentelastoplastic behaviour of polycrystalline materials[END_REF][START_REF] Rekik | Optimization of the collocation inversion method for the linear viscoelastic homogenization[END_REF]. Based on the works of Bergman [START_REF] Bergman | Analytical properties of the complex effective dielectric constant of a composite medium with applications to the derivation of rigorous bounds and to percolation problems[END_REF][START_REF] Bergman | The dielectric constant of a composite material-a problem in classical physics[END_REF] and Milton [START_REF] Milton | The theory of composites. The Theory of Composites[END_REF] on the analyticity of heterogeneous media, Suquet [START_REF] Suquet | From linear elasticity to linear viscoelasticity of composites: a walk in the complex plane[END_REF] emphasized that the form (discrete or continuous) of the effective spectrum is directly linked to the microstructure for the mixture of monophase viscoelastic materials. New results have recently been obtained on the effective spectrum of viscoelastic composite materials defined as the mixture of elementary viscoelastic constituents [START_REF] Suquet | Four exact relations for the effective relaxation function of linear viscoelastic composites[END_REF][START_REF] Brenner | Overall response of viscoelastic composites and polycrystals: exact asymptotic relations and approximate estimates[END_REF][START_REF] Gallican | Exact asymptotic relations for the effective response of linear viscoelastic heterogeneous media[END_REF]. In line with Cherkaev and Gibiansky [START_REF] Cherkaev | Variational principles for complex conductivity, viscoelasticity, and similar problems in media with complex moduli[END_REF], four exact relations on the overall storage and loss moduli tensors implying restrictions on time integrals of the overall integral kernel have been derived by resorting to stationary principles. These exact relations on the overall transient response are characterized by the coupling between the local viscoelastic properties of phases and the local fields solutions of uncoupled asymptotic heterogeneous problems. Based on the works of Suquet [START_REF] Suquet | Four exact relations for the effective relaxation function of linear viscoelastic composites[END_REF] and Brenner and Suquet [START_REF] Brenner | Overall response of viscoelastic composites and polycrystals: exact asymptotic relations and approximate estimates[END_REF] on the mixture of classical Maxwell constituents, we derived similar results for any type of elementary viscoelastic constituent [START_REF] Gallican | Exact asymptotic relations for the effective response of linear viscoelastic heterogeneous media[END_REF]. Later extended to some fractional viscoelastic constituents [START_REF] Gallican | Homogenization estimates for the effective response of fractional viscoelastic particulate composites[END_REF], the results can be used to develop "minimal" approximate homogenization viscoelastic models based on uncoupled asymptotic elastic or viscous homogenization problems [START_REF] Suquet | Four exact relations for the effective relaxation function of linear viscoelastic composites[END_REF][START_REF] Brenner | Overall response of viscoelastic composites and polycrystals: exact asymptotic relations and approximate estimates[END_REF][START_REF] Gallican | Homogenization estimates for the effective response of fractional viscoelastic particulate composites[END_REF].

This chapter aims at describing the features of viscoelastic homogenization. After recalling the basic steps of the homogenization process for linear elastic media, the methodology of viscoelastic homogenization is covered in detail. It should be noted that the benefits and limits of the correspondence principle are highlighted. Focusing on the modeling of polymeric materials, the scale transition is investigated through the identification of longmemory effects arising from the homogenization of classical Zener constituents. Afterwards, we derived four exact asymptotic relations on the overall storage and loss moduli in the case of fractional Zener constituents by making use of stationary principles for complex viscoelasticity [START_REF] Cherkaev | Variational principles for complex conductivity, viscoelasticity, and similar problems in media with complex moduli[END_REF]. They are related to non-integer derivative and integral of the overall complex viscoelastic moduli. Valid for any kind of microstructures, they can be used to build approximate viscoelastic homogenization models over the whole frequency range by making use of Dirichlet-Prony series.

Basics of homogenization

A three-step approach

The issue of modeling materials is usually adressed by means of two major methods : an inductive approach known as the phenomenological approach and a deductive one known as the micromechanical approach [START_REF] Zaoui | Changement d'échelle: motivation et méthodologie[END_REF]. Based on laboratory experiments at the macroscopic scale, the phenomenological approach relies on the existence on thermodynamic potentials allowing to describe the macroscopic behaviour of heterogeneous materials. Very efficient in forecasting the macroscopic response of structures under loading, it is also useful to optimize various parameters (geometry, weight). Although being widespread, the phenomenological method also suffers drawbacks. It is carried out on well-defined materials whose mechanical parameters are identified and slight modifications at the microscale (chemical composition, forming process) require the full new identification of these parameters. Accordingly, the data already acquired cannot be used for adapting the measures. Besides, it does not provide any connection between the microscopic and macroscopic scales of materials.

Alternatively to the phenomenological approach, the micromechanical method aims at predicting the macroscopic or average properties of heterogeneous materials by using information at the microscale. In regards to homogenization methods introducing homogeneous equivalent media (HEM) to estimate the macroscopic behaviour of heterogeneous materials, the method relies on the statistical representation of the microstructure. Taking into account microstructural parameters of the heterogeneous material, the HEM behaviour is estimated by averaging the response of all local constituents. These relations are in practice established on the representative volume element (RVE) statistically representative of the heterogeneous material. As detailed by Zaoui [START_REF] Zaoui | Changement d'échelle: motivation et méthodologie[END_REF], the RVE of size l has to be sufficiently large compared to the characteristic size d of heterogeneities and sufficiently small compared to the characteristic size L of the structure as described in Figure (2.1). To ensure the RVE to be both a material point of the structure and statistically representative of the heterogeneous material, the dimensions must satisfy the following separation of scales :

d l L (2.1)
The framework of multiscale modeling is classically decomposed into three main steps :

-The description of the heterogeneous medium (behaviours, sizes and spatial distribution of constituents) which corresponds to the Representation step.

-The mechanical study of the medium allowing to link the mechanical fields at microscopic and macroscopic scales. This point refers to the Localization step.

-The determination of the HEM properties by averaging the response of all microscopic constituents which denotes the Homogenization step.

Representation

The representation step consists in describing the RVE by means of mathematical tools. Except in few cases, the approach is obviously not deterministic. Let us consider the heterogeneous material Ω composed by N phases (s) of domain Ω (s) . Each phase is defined by its mechanical behaviour and characteristic function χ (s) . The functions χ (s) describe the distribution of phases within the material. Allowing to determine the microstructure, they satisfy the following equality :

∀x ∈ Ω, χ (s) (x) =    1 if x ∈ Ω (s) 0 if not (2.2)
The characteristic functions of heterogeneous media exhibiting random microstructures are unfortunately unknown. It is thus necessary to propose the statistical description of the microstructure appreciating the probability to find at different random points mechanical or geometrical characteristics. Such task is achieved by making use of correlation functions. The first-order correlation function of phase (s) is well-known and corresponds to the volume fraction c s of the phase :

∀s ∈ [1; N ] and ∀x ∈ Ω, c s = χ (s) (x) (2.3) 
The second-order correlation function is the covariance C rs (h) which delivers the probability that two points x and x + h containing in Ω belong to the phases (r) and (s) respectively. It reads by definition :

∀r, s ∈ [1; N ] 2 , ∀h and ∀x ∈ Ω, C rs (h) = χ (r) (x) χ (s) (x + h) (2.4)
Even though the correlation functions can be extended to higher orders, we focus on first and second-order statistical information in the following. Note that the correlation functions are assumed to be independent of x (statistically homogeneous materials). The probability to find the phase (s) at point x + h taking into consideration that the point x belongs to the phase (r) only depends on h . The covariance functions thus reads :

∀r, s ∈ [1; N ] 2 and ∀h, C rs (h) = φ rs (h) (2.5)
where φ rs are scalar functions. It is clearly seen that the two-point correlation functions C rs (h) are purely spherical. The geometrical tools to describe the distribution of phases being settled, it is then necessary to study the mechanical behaviour of each constituent.

Localization

After substituting the RVE by the approximation of the heterogeneous material defined by mechanical and geometrical characteristics, it is necessary to associate the homogeneous macroscopic stress σ or strain ε fields applied on the medium contour ∂Ω to the local stress σ or strain ε fields at each point x ∈ Ω. In regards to linear elasticity, the localization equations are classically expressed by :

ε(x) = A(x) : ε and σ(x) = B(x) : σ (2.6)
where A(x) and B(x) refer to the strain and stress localization tensors at point x ∈ Ω respectively. Note that it is usually not possible to tackle the problem due to the partial description of the microstructure. Accordingly, the common approach consists in considering the average local fields per phase. For the given phase (r), the mechanical fields are expressed in terms of :

     ε r = ε(x) r = A(x) r : ε = A r : ε σ r = σ(x) r = B(x) r : σ = B r : σ (2.7)
where • r corresponds to the volume average on phase (r). Various homogenization models basically stand from each other through the assessment of the tensors A r and B r which highlights the nature of the scale transition. It should be remarked that σ r and ε r are related analytically by the local constitutive law in the case of linear elastic behaviours.

Homogenization

The homogenization step consists in assessing the HEM behaviour. The step requires to combine the scale transition relations (i.e. localization laws), the local constitutive laws and the averages of mechanical fields. Note that the macroscopic mechanical fields are related to the local ones such as :

ε(x) = 1 Ω Ω ε(x) dx = ε and σ(x) = 1 Ω Ω σ(x) dx = σ (2.8)
where • represents the volume average on the RVE. From Eqs.(2.6) and (2.8), it is clearly seen that the localization tensors must verify :

A(x) = I and B(x) = I (2.9)
By considering boundary conditions conformed to the Hill condition [START_REF] Hill | The mechanics of machining: a new approach[END_REF], the overall behaviour of the HEM is obtained from Eq.(2.8) with the localization tensors : 

L = L : A = r L (r) A (r) and M = M : B = r M (r) B (r) (2.

Eshelby inclusion problem

The explicit closed-form solutions of Jeffery [START_REF] Jeffery | The motion of ellipsoidal particles immersed in a viscous fluid[END_REF] and Eshelby [START_REF] Eshelby | The determination of the elastic field of an ellipsoidal inclusion, and related problems[END_REF] for ellipsoidal inclusions are extremely useful in the modeling of heterogeneous materials.

Homogeneous Eshelby inclusion problem

Consider the ellipsoidal inclusion I embedded in the infinite medium Ω of local stiffness L where the mechanical fields (internal or residual) are initially null at each point x ∈ I ∪ Ω. The ellipsoidal inclusion is then subjected to the homogeneous stress-free strain ε T I . It becomes constrained by the surrounding medium and the local problem to solve reads :

                   σ(x) = L : ε(x), ∀x ∈ Ω \ I and σ(x) = L : ε(x) -ε T I , ∀x ∈ I div σ(x) = 0, curl( t curl ε(x)) = 0, ∀x ∈ I ∪ Ω \ I ε(x) = 1 2 ∇u(x) + t ∇u(x) , ∀x ∈ I ∪ Ω \ I (2.11)
Following Eshelby [START_REF] Eshelby | The determination of the elastic field of an ellipsoidal inclusion, and related problems[END_REF], the strain field located in the constrained inclusion is homogeneous and linearly depends on the uniform stress-free strain ε T I such as :

ε I = S E : ε T I with S E the Eshelby tensor. (2.12)
Depending on the infinite medium and the geometry of the inclusion, the Eshelby tensor satisfies minor symmetries (S E ijkl = S E jikl = S E ijlk ) but it is not symmetric (S E ijkl = S E klij ). Initially derived by Mura [START_REF] Mura | Micromechanics of defects in solids[END_REF], the general expression of S E is known analytically only for particular cases [START_REF] Gavazzi | On the numerical evaluation of eshelby's tensor and its application to elastoplastic fibrous composites[END_REF]. Note that the constitutive law of the inclusion σ = L : (εε T I ) can be rewritten in the form :

σ = L : ε + τ with τ = -L : ε T I (2.13)
with τ the polarization tensor. This tensor is symmetric and corresponds to the stress emerging in the inclusion after it is subjected to the homogeneous stress-free strain ε T I . From Eq.(2.13), the solution of Eshelby problem can be expressed according to the polarization field τ rather than the stress-free strain ε T I such as :

ε I = -P : τ with P = S E : L -1 = S E : S (2.14)
where P refers to the Hill tensor. Unlike the Eshelby tensor, the tensor P is symmetric and positive definite [START_REF] Walpole | Elastic behavior of composite materials: theoretical foundations[END_REF][START_REF] Bornert | Morphologie microstructurale et comportement mécanique; caractérisations expérimentales, approches par bornes et estimations autocohérentes généralisées[END_REF]. The expression of the Hill tensor classically reads :

P = 1 4π|Z| |ξ|=1 Γ(ξ)|Z -1 • ξ| -3 dS with Γ(ξ) = ξ ⊗ κ -1 ⊗ ξ (s) (2.15) 
with Z the second-order tensor characterizing the assumed ellipsoidal shape of the two-point correlation function of each phase (s) and [•] (s) denoting the (double) minor symmetrization.

Generally assessed numerically, the computation of the Hill tensor can be faster in case of axial symmetry (inclusion, behaviour or both) by reducing the double integrals around the unit sphere into a simple one. It is worth noting that the Hill tensor can be obtained analytically for isotropic infinite media. 

Infinite medium loaded at infinity

The local problem (2.11) is solved by assuming the fields to be null far from I. In the case where the infinite medium Ω is subjected to the homogeneous strain ε on its contour ∂Ω, the boundary conditions are currently assumed to tend to it when moving towards I while the stress field tends to σ = L : ε. Despite the addition of the homogeneous loading at infinity, the classical Eshelby problem can easily be tackled. It only requires to superpose the solution of Eq.(2.13) to the homogeneous strain field ε to obtain the solution of the problem. Accordingly, the strain field located in the inclusion ε I is still homogeneous :

ε I = -P : τ + ε (2.16)

Extension to the inhomogeneous problem

The solution of the basic inclusion problem of Eshelby is particularly useful to tackle the inhomogeneous one. Considering the ellipsoidal inclusion I of local stiffness L I embedded in the infinite medium Ω of local stiffness L, the mechanical fields are initially null at each point x ∈ I ∪ Ω. The homogeneous stress-free strain ε T I is then applied to the inclusion becoming constrained by the surrounding medium. The local problem to solve reads :

                 σ(x) = L : ε(x), ∀x ∈ Ω \ I and σ(x) = L I : ε(x) + τ , ∀x ∈ I div σ(x) = 0, curl( t curl ε(x)) = 0, ∀x ∈ I ∪ Ω \ I ε(x) = 1 2 ∇u(x) + t ∇u(x) , ∀x ∈ I ∪ Ω \ I (2.17)
It can be remarked that Eq.(2.17) can actually be reduced to the classical Eshelby problem by rewriting the constitutive law of the inclusion in the form :

σ = L : ε + τ with τ = τ + (L I -L) : ε (2.18)
Note that Eq.(2.17) is reduced to the classical Eshelby problem in terms of polarization rather than stress-free strain. Assuming that the auxiliary polarization field τ is homogeneous, the strain field located in the inclusion is therefore homogeneous. The Eshelby solution associated to τ is solution of Eq.(2.17) and the strain field in the inclusion verifies :

ε I = -P : τ = -P : (τ + (L I -L) : ε) (2.19)
Taking into account that the Hill tensor is invertible, it thus follows :

L = P -1 -L = L : S E -1 -I (2.20)
Originally introduced by Hill [START_REF] Hill | The mechanics of machining: a new approach[END_REF], the constraint tensor L denotes how the infinite medium constrains the inclusion when it is subjected to homogeneous loadings. This tensor is symmetric (L ijkl = L jikl = L ijlk = L klij ), positive definite and only depends on the behaviour of the infinite medium and the geometry of the inclusion.

Following Eq.(2.20), the strain field located in the inclusion can be expressed :

ε I = -(L + L I ) -1 : τ (2.21)

Infinite medium loaded at infinity

Note that the classical Eshelby problem is equivalent to the stress-free inhomogeneous problem when both problems are subjected to homogeneous loadings at infinity. Considering the inhomogeneous inclusion I embedded in the infinite medium Ω subjected to the homogeneous strain ε, the stress field verifies the system of equations :

             σ I -σ = -L : (ε I -ε) σ I = L I : ε I σ = L : ε (2.22)
From Eq.(2.22), the strain field located in the inclusion is thus expressed :

ε I = (L + L I ) -1 : P -1 : ε (2.23)
Considering homogeneous loadings at infinity, the inhomogeneous problem is equivalent to the classical Eshelby problem for the polarization field τ = (L I -L) : ε I as shown in Figure (2.4). It should be remarked that the polarization field can be related to the homogeneous strain such as :

       τ = T : ε T = P -1 : P -(L + L I ) -1 : P -1 (2.24)
The tensor T is symmetric but not necessarily positive definite [START_REF] Bornert | Homogénéisation en mécanique des matériaux, Tome 1: Matériaux aléatoires élastiques et milieux périodiques[END_REF]. It should be noted that all the problems dealt with (classical Eshelby and inhomogeneous problems with or without homogeneous loadings at infinity) rely on the homogeneity property of the mechanical fields located in the inclusion resulting from the linearity of the infinite medium and the ellipsoidal geometry of the inclusion. 

Dilute estimate (or Eshelby model)

In the case of particulate composite materials with low volume fractions of inclusions subjected to homogeneous loadings at infinity, the localization problem can reasonably be approximated by Eq.(2.23). The inclusions are mutually distant and each one of them is directly subjected to the homogeneous strain field ε applied on the infinite medium contour ∂Ω. By associating the infinite medium of the inhomogeneous problem to the RVE of materials made of sparsed inclusions of stiffness L i embedded in the matrix of stiffness L m , the strain field located in the inclusion i is homogeneous such as :

ε i = A i : ε with A i = (L m + L i ) -1 : (L m + L m ) (2.25)
where L m is the constraint tensor which depends on the behaviour of the matrix and the ellipsoidal geometry of the inclusion i. Regarding identical inclusions of volume fraction c i , the dilute estimate predicts the overall stiffness tensor by :

L D = L m + c i T m i with T m i = (L i -L m ) : (L m + L i ) -1 : (L m + L m ) (2.26)
where T m i only depends on the matrix and the geometry of the inclusion i. It is clearly seen that L D is symmetric from Eq.(2.26). Note that L D is different from M D except when c i → 0. In the context of isotropic spherical phases, it follows :

κ D = κ m + c i (κ i -κ m ) κ m + κ m κ m + κ i and µ D = µ m + c i (µ i -µ m ) µ m + µ m µ m + µ i (2.27)
Relying on the assumption of the lack of interaction between inclusions, the estimate is relevant only for low volume fractions of inclusions which cannot exceed a few percents.

Bounds and estimates for linear elastic behaviours

Variational principles can be used to bound the effective energy of heterogeneous media in order to ensure restricted values on the associated overall moduli . Let us consider the elastic medium Ω subjected to the condition u = ε • x on the contour ∂Ω.

Based on the minimization of the effective energy with respect to the constitutive law error of the trial fields (ε , σ ), the following inequalities can be derived ∀u ∈ U(ε) :

     (ε (u ) -M : σ ) : L : (ε (u ) : L : ε (u )) ≥ 0 2 σ : ε -σ : M : σ ≤ ε (u ) : L : ε (u ) (2.28)
where U(ε) corresponds to the set of kinematically admissible (KA) displacement fields leading to the uniform strain field ε on ∂Ω. Note that the trial field σ must exhibit null divergence. It is clearly seen from Eq.(2.28) that the bounds are mutually equal when the trial fields are reduced to the solution fields (ε , σ ) = (ε, σ).

By considering the medium to be governed by the pair of dual convex potentials ω(ε (u )) and υ(σ ) associated to the elastic strain and stress energies respectively, it follows :

sup σ ,divσ =0 υ(σ ) ≤ ε : L : ε ≤ inf u ∈U (ε) ω(ε (u )) (2.29)
where the two convex potentials are expressed in the form :

     ω(ε (u )) = ε (u ) : L : ε (u ) υ(σ ) = (2 σ : ε -σ : M : σ ) (2.30)
It is worth noting that Eq.(2.29) highlights that any couple (u , σ ) = (u, σ) actually leads to an upper bound of the macroscopic behaviour. The solution fields (u, σ) being too complex to be assessed analytically, the challenge of the homogenization process relies on the choice of trial fields (u , σ ) minimizing the effective potentials as much as possible.

Voigt and Reuss bounds

The Voigt estimate [START_REF] Voigt | Lehrbuch der kristallphysik[END_REF] consists in assuming the strain field to be homogeneous in the material. The local strain field is therefore reduced to the macroscopic strain as ε(x) = ε. By means of Eq.(2.10), the overall stiffness tensor is obtained by averaging the local stiffness tensors over the domain Ω :

L V = L(x) (2.31)
Following Eq.(2.29), the choice of the displacement field u ∈ U(ε) such as u (x) = ε • x at each point x ∈ Ω implies the following inequality :

ε : L : ε ≤ ε : L V : ε (2.32)
It should be remarked from Eq.(2.32) that the Voigt estimate overestimates the actual overall stiffness tensor. By duality, the Reuss estimate [START_REF] Reuss | A calculation of the bulk modulus of polycrystalline materials[END_REF] consists in assuming the stress field to be homogeneous in the material. The optimal local stress field thus corresponds to σ (x) = M -1 : ε and the Reuss estimate is approximated by the inverse of the average compliance tensor over the domain Ω :

L R = M(x) -1 (2.33)
By means of Eq.(2.29), it is clearly seen that the Reuss estimate underestimates the actual overall stiffness tensor :

ε : L R : ε ≤ ε : L : ε (2.34)
The Voigt and Reuss models corresponding to the upper and lower bounds of the effective potential energy of the material respectively are finally expressed by :

M -1 ≤ L ≤ L (2.35)
It is worth noting that Eq.(2.35) has been derived using only the volume fraction and the local characteristics of each constituent. Following the same basic idea, it is possible to resort to other variational principles taking into account more refined microstructural information to reach tighter bounds.

Higher-order microstructural information

Valid in all contexts, the previous results are not related to the microstructure. Any parameter of such bounds can be optimized except the volume fraction of phases. The Voigt and Reuss bounds are generally too wide and cannot be relevant enough to characterize the overall behaviour of heterogeneous materials with random microstructures. Note that more sophisticated micromechanical-based models [START_REF] Zaoui | Changement d'échelle: motivation et méthodologie[END_REF][START_REF] Milton | The theory of composites. The Theory of Composites[END_REF] taking into account finer microstructural information have been introduced to tackle the problem. These models classically fall into two distinct groups. Some models rely on the initial definition of the RVE (i.e. all the microstructural information is preserved) and make particular assumptions regarding the distribution of the phases in order to derive more rigorous bounds or exact results of the overall behaviour of heterogeneous materials. Alternatively, other models consist in approximating the RVE by finite composite elements with particular morphological patterns to determine the overall elastic moduli.

Hashin and Shtrikman bounds

By contrast with the homogeneous strain field used in the derivation of the Voigt and Reuss bounds, the assessment of the solution fields (u, σ) by generating admissible trial fields is too complex. The difficulty is partly solved by resorting to the variationl principle of Hashin and Shtrikman [START_REF] Hashin | On some variational principles in anisotropic and nonhomogeneous elasticity[END_REF] based on heterogeneous admissible trial fields. The method consists in replacing the initial localization problem by the thermoelastic problem involving the homogeneous reference medium of stiffness L 0 subjected to the same boundary conditions as the initial problem and the polarization field τ such as :

σ = L 0 : ε + τ (2.36)
where σ and ε correspond to the admissible trial fields of the initial problem. Based on the fact that polarization fields are easier to generate than kinematically admissible (KA) fields due to the absence of compatitbility conditions, the optimization of such fields is feasible. As detailed by Zaoui [START_REF] Zaoui | Changement d'échelle: motivation et méthodologie[END_REF], the rewriting of Eq.(2.28) allows to derive the following inequality with τ = L -L 0 : η :

-∆Ψ(η ) + H 0 (η ) 1 2 ε : L : ε H 0 (η ) + ∆Φ(η ) ∀η (2.37) 
where H 0 denotes the Hashin and Shtrikman functional while ∆Ψ and ∆Φ refer to quadratic forms defined in terms of :

                     2 H 0 (η ) = ε : L 0 : ε + η : L -L 0 : [ε + ε (η ) -η ] 2 ∆Φ(η ) = [ε (η ) -η ] : L -L 0 : [ε (η ) -η ] 2 ∆Ψ(η ) = [ε (η ) -η ] : L 0 : M -M 0 : L 0 : [ε (η ) -η ] (2.38)
All these terms depend on the polarization field τ , the homogeneous reference medium L 0 and the microstructure through the solution ε of the thermoelastic problem.

The Hashin-Shtrikman method relies on the idea of considering H 0 as an upper or lower bound of the effective elastic energy by emancipating from the quadratic forms ∆Ψ and ∆Φ with particular assumptions on the homogeneous reference medium. The sign of ∆Ψ and ∆Φ being induced by L 0 , it is clearly seen that the polarization functional would bound the effective elastic energy by means of a sufficiently stiff medium for the upper bound and a sufficiently soft medium for the lower bound. It thus follows :

     ∀x ∈ Ω | L 0 L(x), ε : L : ε H 0 (η ) ∀x ∈ Ω | L 0 L(x), ε : L : ε H 0 (η ) (2.39)
Note that the complementary forms ∆Ψ and ∆Φ are null for choosing τ to be the real polarization field (i.e. η = ε ) and the Hashin-Shtrikman functional is reduced to the potential energy of the medium. Depending on the behaviour of the homogeneous reference medium, the following variational principles are derived :

     ∀x ∈ Ω | L 0 L(x), ε : L : ε = min η H 0 (η ) ∀x ∈ Ω | L 0 L(x), ε : L : ε = max η H 0 (η ) (2.40)
or more generally :

∀L 0 , 1 2 ε : L : ε = Stat η H 0 (η ) (2.41)
As pointed out by Bornert [START_REF] Bornert | Homogénéisation en mécanique des matériaux, Tome 1: Matériaux aléatoires élastiques et milieux périodiques[END_REF], the Hashin-Shtrikman functional can be assessed in the case of two-phase materials by assuming the polarization field to be constant (τ = τ 0 ). The Hashin-Shtrikman functional can thus be rewritten :

H 0 (η 0 ) = 1 2 ε : L HS : ε (2.42)
where L HS denotes the Hashin-Shtrikman tensor. In the case of isotropic distributions of phases, the tensor depends on L 0 and the microstructure only through L such as :

L HS = 2 s=1 c s L + L (s) -1 -1 -L (2.43)
If the phases and the homogeneous reference medium are isotropic, Eq.(2.43) can be expressed in terms of the effective bulk and shear moduli :

                   κ HS = κ 1 + c 2 κ 2 -κ 1 1 + c 1 κ 2 -κ 1 κ + κ 1 µ HS = µ 1 + c 2 µ 2 -µ 1 1 + c 1 µ 2 -µ 1 µ + µ 1 (2.44) where κ = 4 3 µ 0 and µ = µ 0 6 9κ 0 + 8µ 0 κ 0 + 2µ 0 .
The upper and lower bounds of Hashin-Strikman are finally reached for particular values of the homogeneous reference medium L 0 . It turns out that the fluctuations of L HS are monotonous with respect to the effective bulk and shear moduli from Eq.(2.44). Following Hashin and Sthrikman [START_REF] Hashin | A variational approach to the theory of the elastic behaviour of multiphase materials[END_REF], the bounds are achieved by choosing the tensor L 0 alternatively as the supremum and the infimum of the local phases. It is clearly seen that the condition amounts to choose the softer phase for lower bound and the stiffer one for the upper bound respectively in Eq.(2.44).

It should be mentioned that various extensions of the Hashin-Shtrikman bounds have been proposed over the years. It was extended to isotropic polycrystalline materials made of phases with cubic crystallographic symmetry [START_REF] Hashin | On some variational principles in anisotropic and nonhomogeneous elasticity[END_REF] and further generalized for purely anisotropic constituents [START_REF] Walpole | On bounds for the overall elastic moduli of inhomogeneous systems-i[END_REF]. Afterwards, Walpole [START_REF] Walpole | On the overall elastic moduli of composite materials[END_REF] investigated transverse isotropic distributions of transverse isotropic phases with same axis to study fiber composite materials. Note that Willis [START_REF] Willis | Bounds and self-consistent estimates for the overall properties of anisotropic composites[END_REF] introduced the framework of ellipsoidal distributions of phases.

Mori-Tanaka estimate

Originally proposed by Mori and Tanaka [START_REF] Mori | Average stress in matrix and average elastic energy of materials with misfitting inclusions[END_REF] to assess the elastic energy stored in homogeneous elastic materials exhitibing initial deformation inhomogeneities, the Mori-Tanaka estimate consists in simplifying the localization problem by reducing identical inclusions (behaviour, geometry and spatial orientation) to the unique equivalent ellipsoidal inclusion embedded in the infinite medium of stiffness L m subjected at infinity to the matrix average strain field ε m [START_REF] Bornert | Morphologie microstructurale et comportement mécanique; caractérisations expérimentales, approches par bornes et estimations autocohérentes généralisées[END_REF].

Similarly to Eq.(2.24), the strain field located in the given inclusion i is related to the matrix average strain field by the localization-like tensor T i :

ε i = T i : ε m with T i = P -1 m : P m -(L m + L i ) -1 : P -1 m (2.45)
Based on Eq.(2.45), the Mori-Tanaka (MT) model predicts the overall stiffness tensor of heterogeneous materials such as :

L MT = L m + c i T -1 i -c i P m -1
(2.46)

By choosing the matrix to be softer or harder than the other constituents in the case of spherical inclusions, the Mori-Tanaka estimate actually leads to the lower or upper bound of Hashin-Shtrikman respectively. As pointed out by Bornert [START_REF] Bornert | Morphologie microstructurale et comportement mécanique; caractérisations expérimentales, approches par bornes et estimations autocohérentes généralisées[END_REF], the model is not specific to the matrix/inclusion morphology. Providing satisfying results as long as the strain field is homogeneous and constant in all the inclusions, the Mori-Tanaka estimate has been widely used [START_REF] Benveniste | A new approach to the application of mori-tanaka's theory in composite materials[END_REF][START_REF] Brinson | Comparison of micromechanics methods for effective properties of multiphase viscoelastic composites[END_REF][START_REF] Tan | The mori-tanaka method for composite materials with nonlinear interface debonding[END_REF]. The latter corresponds to an explicit function depending on the characteristics (behaviour and volume fraction) of local phases and the Hill tensor P whose analytical expression is known for different types of behaviours [START_REF] Mura | Micromechanics of defects in solids[END_REF]. Unfortunately, the Mori-Tanaka estimate does not account for the matrix/inclusion morphology and the assumptions on the distribution of local constituents are not well-defined [START_REF] Bornert | Morphologie microstructurale et comportement mécanique; caractérisations expérimentales, approches par bornes et estimations autocohérentes généralisées[END_REF]. It should be noted that the model provides accurate results until c i 10 to 20% depending on the contrast between constituents.

Self-consistent estimate

Rather than bounding the overall behaviour of heterogeneous materials, it is possible to estimate the latter as accurately as possible by minimizing the gap between the quadratic forms ∆Ψ and ∆Φ previously spotted in Eq. (2.37). Note that the Hashin-Shtrikman approximate is reduced to the overall behaviour of heterogeneous materials if the complementary terms ∆Ψ and ∆Φ are null. Unfortunately, the nullity of these terms needs to solve analytically the localization problem which is too complex. One may get closer to the overall behaviour of heterogeneous materials by choosing the reference medium such as the complementary terms offset each other [START_REF] Bornert | Homogénéisation en mécanique des matériaux, Tome 1: Matériaux aléatoires élastiques et milieux périodiques[END_REF]. The self-consistent (SC) estimate suggests to choose the homogeneous reference medium such as the Hashin-Shtrikman estimate built on it be the homogeneous reference medium itself. In other words, the self-consistent estimate is taken as solution of the following implicit equation :

L SC = L HS L SC (2.47)
Initially proposed by Hershey [START_REF] Hershey | The elasticity of an isotropic aggregate of anisotropic cubic crystals[END_REF] and Krõner [START_REF] Kröner | Berechnung der elastischen konstanten des vielkristalls aus den konstanten des einkristalls[END_REF] to describe the elastic behaviour of polycrystals, the model relies on the assumption of perfectly disordered microstructures where all the phases are equally handled as seen in Figure (2.5). Note that the SC estimate has also been used to assess the behaviour of particulate composite materials made of spherical [START_REF] Budiansky | On the elastic moduli of some heterogeneous materials[END_REF] or ellipsoidal [START_REF] Hill | A self-consistent mechanics of composite materials[END_REF][START_REF] Willis | Bounds and self-consistent estimates for the overall properties of anisotropic composites[END_REF][START_REF] Willis | Variational and related methods for the overall properties of composites[END_REF] constituents. In the case of polycrystalline materials, the model consists in substituting the localization problem associated to a set of grains i of same texture and characterized by the stiffness L i to an Eshelby-like problem.

The average strain field in the set of grains is assumed to be equal to the homogeneous strain field in the inclusion i of stiffness L i embedded in the infinite medium characterizing by the HEM behaviour and subjected to the homogeneous strain field ε 0 at infinity. In other words, it follows :

ε i = T i : ε 0 with T i = P -1 m : P m -(L + L i ) -1 : P -1 m (2.48)
where the homogeneous strain field at infinity ε 0 is assessed by the relation ε = ε. Based on Eq.(2.10), the implicit equation (2.47) is expressed with respect to the features (behaviour, volume fraction, geometry) of the phases such as :

(L + L) -1 = L + L SC -1 (2.49)
The characterization of the overall stiffness tensor needs to solve Eq.(2.49) and the use of iterative algorithms as the fixed-point method is therefore necessary in most cases. In addition, the self-consistent estimate tends to overestimate the hardening effect of hard phases or the softening effect of soft phases in heterogeneous materials. 

Morphological pattern-based models

Originally introduced by Kerner [START_REF] Kerner | The elastic and thermo-elastic properties of composite media[END_REF], the following models are making use of composite spheres made of a spherical inclusion enclosed by a spherical matrix shell. The associated volume fraction of inclusions c is defined by the following expression :

R i R m 3 = c (2.50)
where R i and R m denote the inclusion and matrix radii respectively.

Hashin's assemblage and bounds

Hashin [START_REF] Hashin | On some variational principles in anisotropic and nonhomogeneous elasticity[END_REF] proposed in the early 1960's to model particulate composite materials by decomposing the RVE into various subdomains all composed of inclusions enclosed by matrix shells of various sizes but with same volume fraction. Note that the microstructure approximation is exact for the specific class of materials known as Hashin composite sphere assemblage which corresponds to the non-overlapping superposition of composite spheres as illustrated in Figure ( Such microstructure allows the build of non-uniform KA strain fields ensuring to derive more relevant estimates on the overall behaviour of particulate composite materials than the Voigt and Reuss bounds [START_REF] Bornert | Homogénéisation en mécanique des matériaux, Tome 1: Matériaux aléatoires élastiques et milieux périodiques[END_REF]. Each composite sphere (CS) actually needs to use the solution fields corresponding to homogeneous boundary conditions at the inclusion contour whose intensity is equal to the macroscopic field. In the case of isotropic constituents, the solution fields exhibit relatively simple analytical expressions for spherical and pure shear loadings. Based on that outcome, Hashin derived upper and lower bounds for the effective bulk and shear moduli of heterogeneous materials. It turns out that the upper and lower bounds of the bulk modulus match. The exact solution of the effective bulk modulus reads :

κ CS = κ m + c (κ i -κ m ) 1 + (1 -c) κ i -κ m κ m + (4/3) µ m (2.51)
It should be mentioned that the macroscopic behaviour of Hashin composite sphere collection is not necessarily isotropic. Despite always being tighter than the Voigt and Reuss bounds, the approximation may violate one of the Hashin and Shtrikman bounds for particular cases. However, that is not contradictory because the model does not involve assumptions on the isotropic distribution of phases [START_REF] Bornert | Morphologie microstructurale et comportement mécanique; caractérisations expérimentales, approches par bornes et estimations autocohérentes généralisées[END_REF]. The Hashin composite sphere collection gives relevant estimates for particulate composite materials exhibiting nearly spherical inclusions homogeneously distributed.

Generalized self-consistent estimate

Initially developed by Christensen and Lo [START_REF] Christensen | Solutions for effective shear properties in three phase sphere and cylinder models[END_REF], the generalized self-consistent (GSC) estimate approaches the overall response of isotropic composite materials made of nearly spherical inclusions. Based on the analytical solution of the composite sphere with isotropic phases embedded in the homogeneous and isotropic infinite medium subjected to homogeneous loadings on its contour, the homogeneous reference medium of the model exhibits the behaviour of the HEM. As detailed in [START_REF] Christensen | Solutions for effective shear properties in three phase sphere and cylinder models[END_REF][START_REF] Bornert | Morphologie microstructurale et comportement mécanique; caractérisations expérimentales, approches par bornes et estimations autocohérentes généralisées[END_REF], the overall response of the heterogeneous material is characterized by the energy principle stating that the energy U of the latter (i.e. the composite sphere embedded in an infinite medium subjected to homogeneous loadings) is equal to the energy U 0 of the infinite medium subjected to the same loadings but without any heterogeneity as seen in Figure (2.8). These energies are infinite by definition but their difference is finite such as :

U = U 0 ± 1 2 S T 0 • u -T • u 0 ds (2.52)
where (T, u) correspond to the constraint and displacement vectors respectively for the heterogeneity problem while (T 0 , u 0 ) are the same quantities for the other situation. The cancellation of the integral term of Eq.(2.52) allows to determine the effective properties of the material. It is worth noting that the effective bulk modulus is actually the same as the assemblage of composite spheres of Hashin in Eq.(2.51) while the effective shear modulus is solution of the following polynomial equation :

A µ GSC µ m 2 + B µ GSC µ m + C = 0 (2.53)
where A, B and C are coefficients depending on the characteristics of the composite sphere. Later extended by Hervé and Zaoui [START_REF] Herve | N-layered inclusion-based micromechanical modelling[END_REF] to n-layers composite spheres, the GSC estimate delivers good approximations of the overall behaviour of particulate composite materials with relatively high volume fractions of inclusions [START_REF] Gusev | Time domain finite element estimates of dynamic stiffness of viscoelastic composites with stiff spherical inclusions[END_REF][START_REF] Gallican | Homogenization estimates for the effective response of fractional viscoelastic particulate composites[END_REF]. Stolz and Zaoui [START_REF] Stolz | Analyse morphologique et approches variationnelles du comportement d'un milieu élastique hétérogène[END_REF] generalized the idea of Hashin by decomposing the RVE of heterogeneous materials into subdomains of finite sizes to group them into families of identical domains known as morphologically representative patterns. As pointed out by Bornert [START_REF] Bornert | Morphologie microstructurale et comportement mécanique; caractérisations expérimentales, approches par bornes et estimations autocohérentes généralisées[END_REF], the model allows to describe particular types of microstructures such as the assemblage of Hashin composite spheres by reducing the patterns to composite spheres. More generally, the patterns are not necessarily spherical. The use of the Hashin-Shtrikman variational principle with non-uniform polarization fields allows to derive rigorous bounds on the overall behaviour of such materials. Not specific to the matrix/inclusion morphology, the pattern-based approach offers more freedom than the assemblage of Hashin composite spheres. Further investigating by Bornert et al. [START_REF] Bornert | Morphologically representative pattern-based bounding in elasticity[END_REF], the approach was extended to patterns without spherical or cylindrical symmetries.

In contrast to purely elastic constituents, the class of partial differential equations associated to elementary viscoelastic constituents is not stable by homogenization [START_REF] Tartar | H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations[END_REF]. The coupling between conservative and dissipative deformation mechanisms in viscoelastic composite materials actually leads to emerging overall features which are not present at the microscale. More specifically, the mixture of elementary viscoelastic constituents with single relaxation times exhibits at the macroscale long-memory effects characterizing in the overall constitutive law through an overall integral kernel (or spectrum) defined by the time convolution product operator [START_REF] Sanchez-Hubert | Sur certains problemes physiques d'homogénéisation donnant lieua des phénomenes de relaxation[END_REF][START_REF] Francfort | Homogénéisation de milieux viscoélastiques linéaires de kelvin-voigt[END_REF][START_REF] Suquet | Elements of homogenization for inelastic solid mechanics, homogenization techniques for composite media[END_REF]. Accordingly, the use of classical micromechanical-based models is not possible anymore. The overall viscoelastic behaviour of such materials is thus assessed by means of viscoelastic homogenization techniques.

Homogenization of viscoelastic materials 2.2.1 Methodology of viscoelastic homogenization

Let us consider the heterogeneous medium occupying the volume Ω composed by N homogeneous phases with characteristic function χ (s) (x) and volume Ω (s) where s ∈ [0; N ]. It is assumed that Ω (s) Ω and the phases are perfectly bonded. The fractional viscoelastic relaxation function of phase (s) is denoted L (s) α (t), the pointwise viscoelastic relaxation tensor L α (x, t) thus reads :

L α (x, t) = N s=1 L (s) α (t) χ (s) (x) with χ (s) (x) =    1 if x ∈ Ω (s) 0 if not (2.54)
By considering the volume Ω to be subjected to the strain loading history ε(t) from t = 0 to t = T under classical boundary conditions (i.e. uniform or periodic), the local problem is expressed in terms of :

               σ(x, t) = d dt (L α * ε) (x, t), ∀(x, t) ∈ Ω × [0; T ] div σ = 0, curl( t curl ε) = 0, ∀(x, t) ∈ Ω × [0; T ] ε(t) = ε(t), ∀t ∈ [0; T ] (2.55)
As shown by Hashin [START_REF] Hashin | Viscoelastic behavior of heterogeneous media[END_REF], the overall constitutive law links the overall strain ε(t) at time t to the history of macroscopic stress prior to t, σ(s) with 0 s t, through the following integral form :

σ(t) = d dt L α * ε (t) with L α (t) = d dt L α * A (t) (2.56)
It is worth noting from Eq.(2.56) that the overall relaxation function is obtained by derivating the average of the local relaxation functions convoluted with the local strain localization tensors. Consequently, the classical homogenization methods cannot be used to estimate the overall response of viscoelastic heterogeneous materials. One can make use of the correspondence principle to transform time-dependent viscoelastic problems into symbolic elastic ones in the Laplace domain [START_REF] Hashin | Viscoelastic behavior of heterogeneous media[END_REF][START_REF] Mandel | Cours de mécanique des milieux continus[END_REF] to overcome the difficulty. By making use of the Laplace-Carson transform, the local problem (2.55) can be written as :

             σ * (x, p) = L * α (x, p) : ε * (x, p), ∀x ∈ Ω div σ * = 0, curl( t curl ε * ) = 0, ∀x ∈ Ω ε * (p) = ε * (p) (2.57) 
where (σ * , ε * , L * α ) are the time LC transforms of the fields (σ, ε, L α ).

For each Laplace variable p, the solution of Eq.(2.57) linearly depends on the macroscopic strain field ε * (p). Accordingly, the overall relaxation function L * α reads :

σ * (p) = L * α (p) : ε * (p) with L * α (p) = L * α (p) : A * (p) (2.58)
The time-dependant viscoelastic problem is therefore equivalent to p symbolic linear elastic problems in the Laplace domain. At fixed values of p, the classical homogenization methods can be used to solve the associated localization problem. After estimating the overall viscoelastic response in the Laplace domain, the time-dependent solution is obtained by applying the inverse Laplace transform. It should be noted that such task usually raises issues due to the complexity of the general expression of the inverse Laplace transform.

The linear homogenization approximation applied to the symbolic elastic problem at p fixed must provide an analytical expression of the overall viscoelastic features to carry out analytically the inversion. Except in few cases for which it is possible to carry out analytically the inverse Laplace transform by calculating the integral of Bromwich defined in the complex plane [START_REF] Beurthey | Structural morphology and relaxation spectra of viscoelastic heterogeneous materials[END_REF], the inversion is usually approximated numerically.

It should be recalled that the inverse Laplace transform can be estimated by means of collocation methods through the well-known Dirichlet-Prony series which consist in approximating the function to inverse in the Laplace domain by the sum of weighted exponentials in order to ease the inversion. The different steps of the viscoelastic homogenization can be resumed by Figure (2.9).

Figure 2.9 : Homogenization procedure for viscoelastic behaviours.

Note that the assessment of the overall behaviour of heterogeneous media does not necessarily needs the inversion of the Laplace transform. In the case of harmonic loadings, the problem is brought from time to spectral domain and enables the assessment of the storage and loss moduli characterizing the dynamic response of materials [START_REF] Hashin | Viscoelastic behavior of heterogeneous media[END_REF].

In regards to harmonic loadings, the overall response of heterogeneous viscoelastic materials is classically studied by making use of the Laplace-Carson transform of the constitutive laws for the purely imaginary transform variable p = iω [START_REF] Hashin | Complex moduli of viscoelastic composites-i. general theory and application to particulate composites[END_REF]. By considering the overall harmonic strain loading ε(t) = ε * e iωt , the local problem corresponding to the steady-state regime at angular frequency ω reads :

             σ * (x, iω) = L * α (x, iω) : ε * (x, iω), ∀(x, ω) ∈ Ω × [0; +∞[ div σ * = 0, curl( t curl ε * ) = 0, ∀(x, ω) ∈ Ω × [0; +∞[ ε * = ε * (2.59)
with prescribed boundary conditions. The complex fields (σ * , ε * , L * α ) are the time LC transforms of the fields (σ, ε, L α ).

It is worth noting that L * α (x, iω) can be splitted into real and imaginary parts :

L * α (x, iω) = L α (x, ω) + i L α (x, ω) (2.60)
where L α (x, ω) and L α (x, ω) refer to the fractional storage and loss moduli which are proportional to the stored and dissipated parts of energy respectively. The overall complex constitutive law is thus expressed in terms of :

σ * (iω) = L * α (iω) : ε * (iω) with L * α (iω) = L α (ω) + i L α (ω) (2.61)

Scale transition phenomena

Unlike purely elastic phases, the class of partial differential equations associated to elementary viscoelastic phases is not stable by homogenization [START_REF] Tartar | H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations[END_REF]. Even for mixtures of short-memory constituents such as classical Maxwell or Kelvin-Voigt phases, it is well-known that the overall response exhibits additional fading memory terms called long-memory effects arising from the change of scales [START_REF] Sanchez-Hubert | Sur certains problemes physiques d'homogénéisation donnant lieua des phénomenes de relaxation[END_REF][START_REF] Francfort | Homogénéisation de milieux viscoélastiques linéaires de kelvin-voigt[END_REF]. Regarding the mixture of classical Kelvin-Voigt constituents, the local relaxation function of the phase (s) reads :

L (s) (t) = L (s) er + L (s) vg δ(t) (2.62)
while the overall relaxation function L(t) is expressed in the form :

L(t) = L er + L vg δ(t) + +∞ 0 G(τ σ ) e -t/τσ dτ σ (2.63)
The term L er + L vg δ(t) can be interpreted as the classical Kelvin-Voigt component of the overall viscoelastic behaviour corresponding to short-memory effects contrary to the effective relaxation spectrum G(τ σ ) which is associated with long-memory effects. Generally emphasized by means of the correspondence principle, the long-memory effects have mainly been investigated for mixtures of classical Maxwell and Kelvin-Voigt constituents [START_REF] Suquet | Elements of homogenization for inelastic solid mechanics, homogenization techniques for composite media[END_REF][START_REF] Cherraf-Schweyer | Periodic homogenization in viscoelasticity. influence of micro mechanical parameters on the homogenized memory law: numerical tests[END_REF]. Following Suquet [START_REF] Suquet | Elements of homogenization for inelastic solid mechanics, homogenization techniques for composite media[END_REF], we emphasized the existing long-memory effects arising from the mixture of classical Zener constituents.

Homogenization of classical Zener constituents

Consider the heterogeneous medium Ω composed by periodic elementary cells of viscoelastic constituents described by the classical Zener constitutive law :

σ(t) + τ σ σ(t) = L er : ε(t) + L eg τ σ : ε(t) (2.64)
where L eg and L er denote the glassy and relaxed elastic stiffness tensors respectively.

Localization step

As well as the elastic case, the main issue of the viscoelastic homogenization process is the localization problem. Assuming that the macroscopic strain tensor ε(t) follows one given path from t = 0 to t = T , the induced local stress σ(x, t) and strain ε(x, t) fields are thus investigated. Note that the associated localization problem amounts to :

             σ(x, t) + τ σ σ(x, t) = L er : ε(x, t) + L eg τ σ : ε(x, t), ∀(x, t) ∈ Ω × [0; T ] div σ(x, t) = 0, ∀(x, t) ∈ Ω × [0; T ] ε(x, t) = ε(t) + ε(u ) with ε (u ) = 0 such as ε(x, t) # and σ(x, t) # (2.65)
where ε(u ) refers to the fluctuating part of ε(u) and # designates the periodicity of fields.

Note that Eq.(2.65) can be brought from time to spectral domain by means of the LC transform in order to obtain the following symbolic elastic problem :

                 σ * (x, p) = L er + pτ σ L eg 1 + pτ σ ε * (x, p), ∀x ∈ Ω div σ * (x, p) = 0, ∀x ∈ Ω ε * (p) = ε * (p) + ε * (u ) with ε (u ) = 0 such as ε * (x, p) # and σ * (x, p) # (2.66)
where σ(t) is taken as vanishing in t = 0. As pointed out by Suquet [START_REF] Suquet | Elements of homogenization for inelastic solid mechanics, homogenization techniques for composite media[END_REF], one may take advantage of the fact that σ : (v) vanishes for every v ∈ U ND . Accordingly, the local problem described in Eq.(2.66) is equivalent to the following variational formulation1 :

       L * (p) : A * (p) : (v) = 0, ∀v ∈ U ND with U ND = {u regular | ε(x) = 0} L * (p) = L er + pτ σ L eg 1 + pτ σ and A * (p) = I (2.67)
with A * (p) the strain localization tensor of the problem. Let us denote by A eg and A er the elastic strain localization tensors associated with L eg and L er respectively. The variational principles at short (t → 0) and long (t → +∞) times are therefore expressed as :

     L eg : A eg : (v) = 0, ∀v ∈ U ND with A eg = I L er : A er : (v) = 0, ∀v ∈ U ND with A er = I (2.68)
By reformulating the variational principles of Eqs.(2.67 -2.68) :

(1/τ σ ) L er :

A * -A er p + L eg : p A * -A er p -∆A + F * p 1/τ σ + p : (v) = 0
where ∆A = (A eg -A er ) and

F * (p) = -L er A er + (1/pτ σ ) L eg A eg .
After making use of Ψ * (p) = (1/p) (A * (p) -A er ), the previous variational principle reads :

(1/τ σ ) L er :

Ψ * + L eg : (pΨ * -∆A) + F * p 1/τ σ + p : (v) = 0 (2.69)
Note that Ψ * (p) can be seen as the Laplace-Carson transform of the tensor A(t) solution of the following convolution equation :

         (1/τ σ ) L er : A(t) + L eg : Ȧ(t) + F(t) * e -t/τσ : (v) = 0 with A(0) = ∆A and F(t) = -L er : A er + (t/τ σ ) L eg : A eg (2.70)
It should be remarked that the uniqueness of the tensor A(t) must be emphasized to complete the localization step. Accordingly, we consider A 1 (t) and A 2 (t) solutions of Eq.(2.70) and substitute H(t) = A 1 (t) -A 2 (t) such as :

(1/τ σ ) L er : H(t) + L eg : Ḣ(t) * e -t/τσ : (v)) = 0 (2.71)

By fixing Θ(t) = H(t) : (v), we obtain :

(1/τ σ ) L er : Θ(t) + L eg : Θ(t) * e -t/τσ = 0 (2.72)
It is clearly seen that Eq.(2.72) is equivalent to :

t 0 (1/τ σ ) L er : Θ(t -u) + L eg : Θ(t -u) e -u/τσ du = 0 (2.73)
The integrand of Eq.(2.73) can be reformulating in term of energy and the quantity is thus positive definite such as :

(1/τ σ ) L er : Θ(t -u) + L eg : Θ(t -u) e -u/τσ 0, ∀u ∈ [0, t] (2.74)
By considering u = 0, we derive the following evolution equation :

(1/τ σ ) L er : Θ(t) + L eg : Θ(t) 0 (2.75)
which ensures the uniqueness of Θ(t) and therefore the one of A(t).

Coming back to the spectral domain, the LC transform of the local strain field ε * (p) reads :

ε * (p) = A * (p) : ε * = pΨ * (p) : ε * + A er : ε * (2.76)
and the inverse LC transform yields2 :

           ε(t) = t 0 Ψ(t -u) : ε(u) du + A er : ε(t) ε(t) = t 0 Ψ(t -u) : ε(u) du + A eg : ε(t) (2.77)

Homogenization step

Based on Eq.(2.64), it follows :

σ(t) + τ σ σ(t) = L er : A er : ε(t) + L eg τ σ : A eg : ε(t) + t 0 L er : Ψ(t -u) + L eg τ σ : Ψ(t -u) : ε(u) du (2.78)
The overall constitutive law is finally achieved by spatially averaging Eq.(2.78) :

σ(t) + τ σ σ(t) = L er : A er : ε(t) + L eg τ σ : A eg : ε(t) + t 0 G(t -u) : ε(u) du with G(ξ) = L er : Ψ(ξ) + L eg τ σ : Ψ(ξ) (2.79)
Similarly to Suquet [START_REF] Suquet | Elements of homogenization for inelastic solid mechanics, homogenization techniques for composite media[END_REF] in the case of the mixture of classical Maxwell constituents, the previous equation exhibits two distinct memory terms. It should be noted that L er : A er and L eg τ σ : A eg can be interpreted as the classical Zener components of the overall viscoelastic law corresponding to short-memory effects while the term G(ξ) is directly associated to long-memory effects.

Microstructures and overall integral kernels

Analytic features of the overall behaviour

As seen in section (2.2.2), the homogenization process associated to the mixture of elementary viscoelastic constituents is not linear. The overall viscoelastic behaviour of the mixture of classical Zener constituents is actually characterized by long-memory effects arising from the change of scales. Based on the LC transform of Eq.(2.79), the overall relaxation function of the mixture of classical Zener constituents reads :

σ * (p) = L * (p) : ε * (p) with L * (p) = L er + +∞ 0 p 1/τ σ + p G(τ σ ) dτ σ (2.80)
where L er is the overall relaxed elasticity while G(τ σ ) corresponds to the overall integral kernel whose expression can be derived in closed-form for particular cases [START_REF] Beurthey | Structural morphology and relaxation spectra of viscoelastic heterogeneous materials[END_REF][START_REF] Brenner | Improved affine estimates for nonlinear viscoelastic composites[END_REF][START_REF] Masson | Incremental homogenization approach for ageing viscoelastic polycrystals[END_REF].

Generally assessed by making use of Dirichlet-Prony series, the approximation turns out to be exact only if the overall integral kernel consists of discrete Dirac functions [START_REF] Beurthey | Structural morphology and relaxation spectra of viscoelastic heterogeneous materials[END_REF][START_REF] Brenner | Improved affine estimates for nonlinear viscoelastic composites[END_REF]. Accordingly, the form of the overall integral kernel seems to be directly related to the microstructure but no consistent links have been emphasized so far. Following the works of Bergman [START_REF] Bergman | Analytical properties of the complex effective dielectric constant of a composite medium with applications to the derivation of rigorous bounds and to percolation problems[END_REF][START_REF] Bergman | The dielectric constant of a composite material-a problem in classical physics[END_REF] in the context of conductivity, Milton [START_REF] Milton | Theoretical studies of the transport properties of inhomogeneous media[END_REF] suggested the analycity of the overall response of periodic heterogeneous materials in particular cuts of the complex plane. Later confirmed by Golden and Papanicolaou [START_REF] Golden | Bounds for effective parameters of heterogeneous media by analytic continuation[END_REF], such property allowed various authors [START_REF] Bergman | Bulk physical properties of composite media[END_REF][START_REF] Hetherington | The conductivity of a sheet containing inclusions with sharp corners[END_REF] to investigate the analytic characteristics of the overall response of isotropic two-phase media. They particularly established direct links between singularities and microstructures. Regarding viscoelastic composite materials, Suquet [START_REF] Suquet | From linear elasticity to linear viscoelasticity of composites: a walk in the complex plane[END_REF] recently pointed out that the different singularities of the overall relaxation function arise from individual phases but also the microstructure. Note that the main results are recalled hereafter.

It should be mentioned that the singularities arising from individual phases can easily be highlighted. In the case of isotropic incompressible classical Zener phases, the shear relaxation modulus classically reads :

µ * (p) = µ er + pτ σ µ eg 1 + pτ σ (2.81)
where µ eg and µ er are the elastic glassy and relaxed shear moduli respectively while τ σ is the relaxation time. Even though the singularity p = -1/τ σ is clearly noted from Eq.(2.81), the singularities emerging from the microstructure request to study the overall behaviour in particular cuts of the complex plane [START_REF] Milton | Theoretical studies of the transport properties of inhomogeneous media[END_REF].

Let us consider 2D isotropic two-phase materials made of elastic inclusions embedded in the viscoelastic matrix described by the classical Zener model. The local shear relaxation modulus is expressed in the form :

µ(x) =        µ er + pτ σ µ eg 1 + pτ σ in phase 1 with p ∈ C µ e in phase 2
(2.82)

By normalizing Eq.(2.82) with the elastic shear modulus of the inclusions µ e , the local shear relaxation modulus can be rewritten in terms of the complex variable z as :

µ(x) =    z in phase 1 with z ∈ C 1 in phase 2 (2.83)
Taking into account the singularity from Eq.(2.82), the study of the overall shear relaxation modulus µ(z) seen as an analytic function of z defined on C -R -allows to identify the singularities arising from the homogenization process. Depending on the microstructure, the singularities can take various forms but all of them are located on the negative real axis as shown in Figures (2. To illustrate the link between singularity and microstructure, the identification of singularity with respect to three different microstructures is described in Figure (2.11). We can observe that the first microstructure corresponding to well-separated inclusions with smooth boundaries (i.e. Hashin-Shtrikman-type microstructure) only exhibits the isolated pole for z = -(1 + c)/(1c). By contrast, the second microstructure composed of wellseparated inclusions with sharp corners admits the branch cut for z ∈ [-3, -1/3]. The last microstructure made of inclusions separated by cusp (i.e. checkerboard-type microstructure) exhibits the branch cut representing all the negative real axis. Note that the form of the overall integral kernel can therefore be deduced in advance from the study of singularities.

Following the works of Keller [START_REF] Keller | A theorem on the conductivity of a composite medium[END_REF] and Dykhne [START_REF] Dykhne | Conductivity of a two-dimensional two-phase system[END_REF], Obnosov investigated the overall integral characteristics of periodic two-phase media. By considering the microstructure to be defined by the square array of square isotropic inclusions (also known as Obnosov microstructure) with volume fraction c = 0.25 as described in Figure (2.12), Obnosov demonstrated that the overall shear relaxation modulus reads :

µ(z) = µ (2) 1 + 3z 3 + z with z = µ (1)
µ (2) (2.84)

Figure 2.11 : Singularities arising from the homogenization process.

The following singularities can be noticed from Eq.(2.84) :

-Branch cut for z ∈ [-3, 1/3] in the z-plane.

-Isolated pole at p = -1/τ

(2)

σ and branch cut for p ∈ [-1/τ (2) σ , -1/τ (1)
σ ] in the p-plane.

As detailed in [START_REF] Obnosov | Periodic heterogeneous structures: new explicit solutions and effective characteristics of refraction of an imposed field[END_REF][START_REF] Suquet | From linear elasticity to linear viscoelasticity of composites: a walk in the complex plane[END_REF], the overall integral kernel resulting from the homogenization process is characterized by the Dirac delta function at τ 

Exact results for Voigt, Reuss and Hashin-Shtrikman bounds

It is well-established with Rougier et al. [START_REF] Rougier | Self consistent modelling of elastic-viscoplastic polycrystals[END_REF] and Ricaud and Masson [START_REF] Ricaud | Effective properties of linear viscoelastic heterogeneous media: Internal variables formulation and extension to ageing behaviours[END_REF] that the approximation by Dirichlet-Prony series of the overall integral kernel of the mixture of classical Maxwell constituents turns out to be exact for some microstructures. Focusing on isotropic two-phase materials, they emphasized that the overall integral kernel of viscoelastic composite materials verifying the Voigt, Reuss and Hashin-Shtrikman bounds consists of discrete Dirac delta functions. Following the same idea, the overall shear response of isotropic two-phase media made of incompressible classical Zener constituents is investigated with respect to the microstructure.

Based on section (1.2.2), the overall shear relaxation modulus expands as :

µ(t) µ er + N i=1 µ i e -t/τ σ i (2.85)
with the following constraint :

N i=1 µ i = μeg -μer (2.86)
By making use of Eq.(2.81), the LC transforms of the Voigt and Reuss estimates of the overall shear relaxation modulus are expressed in the form :

µ * V (p) = µ * and µ * R (p) = 1 µ * -1
(2.87)

while the Hashin-Shtrikman estimate (where i = 1 denotes the matrix) reads :

µ * HS (p) = µ * 1 + c 2 µ * 2 -µ * 1 1 + c 1 µ * 2 -µ * 1 LC(µ ) + µ * 1 with LC(µ ) = µ * 1 6 9κ * 1 + 8µ * 1 κ * 1 + 2µ * 1 (2.88)
Similarly to Ricaud and Masson [START_REF] Ricaud | Effective properties of linear viscoelastic heterogeneous media: Internal variables formulation and extension to ageing behaviours[END_REF] and Brenner and Suquet [START_REF] Brenner | Overall response of viscoelastic composites and polycrystals: exact asymptotic relations and approximate estimates[END_REF], it can be shown that the LC transforms of the overall shear relaxation modulus (2.87 -2.88) are rational functions of the Laplace variable p leading to the following exact expansions :

µ * γ (p) = µ γ er + pQ(p) Nγ i=1 p + 1 τ γ σ i = µ γ er + Nγ i=1 p p + 1 τ γ σ i µ γ i with γ = (R, V, HS) (2.89) with Q(p) polynom of degree N γ -1 in p.
The numbers N γ , the magnitudes µ γ i and the associated relaxation times τ γ σ i are reported in Table (2.1). The Voigt estimate is directly related to the volume fraction, the glassy and relaxed moduli and the relaxation time of each constituent while the Reuss and Hashin-Shtrikman estimates are defined with more complex parameters (cf. Appendix C).

Voigt

Reuss Hashin-Shtrikman As already stated in [START_REF] Ricaud | Effective properties of linear viscoelastic heterogeneous media: Internal variables formulation and extension to ageing behaviours[END_REF], the number of parameters involved in the Dirichlet-Prony series (i.e. the magnitudes and the associated relaxation times) obviously depends on the microstructure. The overall integral kernel derived with the Voigt and Reuss estimates is characterized by two sets of parameters while the one obtained with the Hashin-Shtrikman estimate is composed of three sets of parameters (including the one of the matrix). Consequently, none of these estimates exhibits the response of the classical Zener constituent (only one relaxation time). Regarding the Reuss and Hashin-Shtrikman estimates, the magnitudes and the associated relaxation times with respect to the volume fraction c 2 are reported in Figure (2.13) for the following sets of parameters :

N V = 2 N R = 2 N HS = 3 τ V σ1 = τ (1) σ τ R σ1 = 2(ξ 3 /ξ 4 ) 1 -1 -4 ξ 3 ξ 5 /ξ 2 4 -1 τ HS σ1 = τ (1) σ τ V σ2 = τ (2) σ τ R σ2 = 2 (ξ 3 /ξ 4 ) 1 + 1 -4 ξ 3 ξ 5 /ξ 2 4 -1 τ HS σ2 = 2 (ζ 3 /ζ 4 ) 1 -1 -4 ζ 3 ζ 5 /ζ -1 τ HS σ3 = 2 (ζ 3 /ζ 4 ) 1 + 1 -4 ζ 3 ζ 5 /ζ -1 µ V 1 = c 1 µ (1) eg -µ (1) er µ R 1 = τ R σ2 ξ 0 ξ 3 ξ 1 τ R σ1 + ξ 2 τ R σ2 -τ R σ1 -1 µ HS 1 = ζ 6 µ (1) eg -µ (1) er µ V 2 = c 2 µ (2) eg -µ (2) er µ R 2 = µ R 1 + ξ 2 ξ 0 ξ 3 µ HS 2 = τ HS σ3 ζ 0 ζ 3 ζ 1 τ HS σ2 + ζ 2 τ HS σ3 -τ HS σ2 -1 µ V er = µ eg -µ V 1 -µ V 2 µ R er = ξ 6 -µ R 1 -µ R 2 µ HS 3 = µ HS 2 + ζ 2 ζ 0 ζ 3 µ HS er = ζ 7 -µ HS 1 -µ HS 2 -µ HS 3
µ (2)
eg /µ (1) eg = 5, µ (2) er /µ (1) er = 10 and τ (2) σ /τ (1) σ = 5 (with β = 2/5) (2.90)

In the case of the Reuss estimate, the magnitudes (µ R 2 , µ R er ) converge towards the same value while the magnitude µ R 1 quickly decreases until vanishing at low volume fraction of inclusions. It is worth noting that the magnitudes (µ R 1 , µ R 2 ) increase with the volume fraction of inclusions in agreement with the associated relaxation times until reaching their maximum values while the magnitude associated to the relaxed elastic state µ R er increases exponentially with the volume fraction of inclusions. Note that it reaches its peak around c 2 0.95 before lightly decreasing.

For the Hashin-Shtrikman estimate, the overall response tends to the matrix one at low volume fraction of inclusions. In this limiting case, the magnitudes (µ HS 2 , µ HS 3 ) progressively decrease until vanishing while the magnitudes (µ HS 1 , µ HS er ) are converging to the same point. By contrast, it can be remarked that the magnitudes (µ HS 2 , µ HS 3 , µ HS er ) increase with the volume fraction of inclusions while the magnitude µ HS 1 decreases until being null at c 2 = 1. It should be noted that the difference between the magnitudes (µ HS 2 , µ HS 3 ) is easily related to the relaxation times. 

Bounds for viscoelastic behaviours

Until the early 1990's, the search of bounds on the overall response of heterogeneous materials has been mainly focused on linear elastic behaviours [START_REF] Hashin | Viscoelastic behavior of heterogeneous media[END_REF][START_REF] Christensen | Viscoelastic properties of heterogeneous media[END_REF][START_REF] Roscoe | Bounds for the real and imaginary parts of the dynamic moduli of composite viscoelastic systems[END_REF]. In contrast with the elastic case where restrictive bounds on the overall behaviour of heterogeneous materials were known [START_REF] Hashin | A variational approach to the theory of the elastic behaviour of multiphase materials[END_REF][START_REF] Walpole | On bounds for the overall elastic moduli of inhomogeneous systems-i[END_REF], the existing viscoelastic bounds were not structured due to the lack of suitable variational formulations of the viscoelastic problem. Note that Cherkaev and Gibiansky [START_REF] Cherkaev | Variational principles for complex conductivity, viscoelasticity, and similar problems in media with complex moduli[END_REF] tackled the problem by formulating rigorous variational principles for the viscoelastic problem in the spectral domain.

Based on the new variational principles, Gibiansky and Milton [START_REF] Gibiansky | On the effective viscoelastic moduli of two-phase media. i. rigorous bounds on the complex bulk modulus[END_REF] extended the Hashin-Shtrikman method to homogeneous reference media that do not have positive definite tensors. The constraint was actually replaced by the weaker condition imposing the quadratic form associated with the homogeneous reference tensor to be quasi-convex. Following the generalization of the Hashin-Shtrikman method, various restrictive bounds on the effective bulk and shear moduli of isotropic two-phase materials have been derived for various situations [START_REF] Gibiansky | Bounds on the complex bulk modulus of a two-phase viscoelastic composite with arbitrary volume fractions of the components[END_REF][START_REF] Milton | On the effective viscoelastic moduli of two-phase media. ii. rigorous bounds on the complex shear modulus in three dimensions[END_REF][START_REF] Gibiansky | On the effective viscoelastic moduli of two-phase media. iii. rigorous bounds on the complex shear modulus in two dimensions[END_REF][START_REF] Brinson | Comparison of micromechanics methods for effective properties of multiphase viscoelastic composites[END_REF]. Focusing on isotropic two-phase media, the Hashin-Shtrikman estimate of the overall complex shear modulus in the spectral domain is classically expressed by means of the correspondence principle with p = iω [START_REF] Hashin | Complex moduli of viscoelastic composites-i. general theory and application to particulate composites[END_REF] :

µ * (iω) = µ * 1 + c 2 µ * 2 -µ * 1 1 + c 1 µ * 2 -µ * 1 LC(µ ) + µ * 1 with LC(µ ) = µ * 1 6 9κ * 1 + 8µ * 1 κ * 1 + 2µ * 1 (2.91)
where (κ 1 , µ 1 ) and (κ 2 , µ 2 ) denote the bulk and shear moduli of viscoelastic local phases respectively. In contrast to the elastic case in Eq.(2.44), the present moduli have complex values and the Hashin-Shtrikman estimate does not provide any bound. It only consists of two isolated points in the complex plane for the given frequency ω as seen in Figure (2.14).

The overall complex moduli are actually defined by real and imaginary parts. Accordingly, the set of possible values should fill one given domain in the complex plane and any bound should provide the limit on the maximal extent of the domain [START_REF] Gibiansky | On the effective viscoelastic moduli of two-phase media. i. rigorous bounds on the complex bulk modulus[END_REF].

Re(μ ⇤ )

Im(μ ⇤ )
HS lower bound HS upper bound Note that Eq.(2.91) can be reformulated in the form :

µ * = 2 s=1 c s µ s + y μ -1 -y μ (2.92)
where y μ is the Y -transform [START_REF] Berryman | Bounds on decay constants for diffusion through inhomogeneous media[END_REF][START_REF] Milton | On characterizing the set of possible effective tensors of composites: the variational method and the translation method[END_REF] of the overall complex shear modulus µ * .

The general approach consists in finding bounds on y μ [START_REF] Gibiansky | On the effective viscoelastic moduli of two-phase media. i. rigorous bounds on the complex bulk modulus[END_REF][START_REF] Milton | On the effective viscoelastic moduli of two-phase media. ii. rigorous bounds on the complex shear modulus in three dimensions[END_REF][START_REF] Gibiansky | On the effective viscoelastic moduli of two-phase media. iii. rigorous bounds on the complex shear modulus in two dimensions[END_REF] with respect to particular constraints. The point y μ lies inside any circle in the complex Y μ-plane that excludes the origin while containing the following points :

γ(c)µ i and γ(c)κ i /c for i = 1, 2 with γ(c) ≡ 8 + 9c 6(2 + c) (2.93)
where the real number c is in the range 0 ≤ c ≤ +∞.

Note that the bounds on y μ are obtained by varying the value of the parameter c and taking into account the intersection set of all the constraining circles. Afterwards, the bounds on µ * are finally obtained by coming back to the complex μ * -plane by means of Eq.(2.92). Note that Figure (2.15) highlights one single step in the process for c fixed.

Figure 2.15 : Arcs of two circular bounding regions in the complex y μ * -plane containing the desired y μ * points for c fixed. The final bounding set for y μ * is obtained with the intersection set of all domains varying with the parameter c in its range 0 ≤ c ≤ +∞.

Variational principles in complex viscoelasticity

Following the lead of Milton's work [START_REF] Milton | On characterizing the set of possible effective tensors of composites: the variational method and the translation method[END_REF], Cherkaev and Gibiansky [START_REF] Cherkaev | Variational principles for complex conductivity, viscoelasticity, and similar problems in media with complex moduli[END_REF] investigated linear processes in materials described by linear elliptic equations with complex coefficients and complex solutions. They derived four equivalent variational principles for both complex conductivity and viscoelasticity consisting in two minimax and two minimal ones. It has been shown in the context of harmonic loadings that the complex constitutive law (2.59) of viscoelastic materials can be rewritten as the following system of real equations :

σ -σ = -L α L α L α L α : ε ε (2.94)
with the real fields (σ , ε , L α ) and (σ , ε , L α ) defined such as :

             σ * (iω) = σ (ω) + i σ (ω) ε * (iω) = ε (ω) + i ε (ω) L * α (iω) = L α (ω) + i L α (ω) (2.95)
As pointed out by Gibiansky and Milton [START_REF] Gibiansky | On the effective viscoelastic moduli of two-phase media. i. rigorous bounds on the complex bulk modulus[END_REF], the quadratic form associated to Eq.(2.94) is not positive definite and it corresponds to a saddle-shaped function. The latter can be converted into a convex function by means of partial Legendre transforms [START_REF] Cherkaev | Variational principles for complex conductivity, viscoelasticity, and similar problems in media with complex moduli[END_REF] allowing to reformulate Eq.(2.94) in terms of :

s = D : e with s = ε σ and e = -σ ε (2.96)
where the tensor D reads :

D = (L α ) -1 (L α ) -1 L α L α (L α ) -1 L α + L α (L α ) -1 L α (2.97)
and the components of (s, e) satisfy the following equations :

     div σ = 0, curl( t curl ε ) = 0, ∀x ∈ Ω div σ = 0, curl( t curl ε ) = 0, ∀x ∈ Ω (2.98)
The new formulation of the viscoelastic problem is quite similar to the elastic case but adds complexity due to the constitutive law (2.94) involving stiffness tensors which have twice the size of usual ones. One appealing feature of the formulation is the quadratic form :

W = e : D : e = σ : ε -σ : ε = ε : L α : ε + ε : L α : ε (2.99)
It should be mentioned that Eq.(2.99) is related to the average dissipated energy over one period of oscillation such as :

φ d = (ω/2) σ : ε -σ : ε = 1 2 ωW (2.100)
Based on physical aspects, the averaged energy of dissipation must necessarily be positive.

It is therefore clearly seen from Eq.(2.99) that L α must be positive definite which implies the positive definiteness of the matrix D.

The viscoelastic problem described in Eq.(2.96) exhibiting the same features that classical elastic problems, one may derive variational principles corresponding to minimal ones. Accordingly, it thus follows by analogy with the elastic case : where minimum is taken over all trial fields (s, e) verifying the conditions (2.96) and (2.98).

Note that the substitution of the constant trial fields s and e in Eq.(2.101) allows to derive the Voigt and Reuss bounds associated to the viscoelastic problem :

D -1 (x) -1 ≤ D ≤ D(x) (2.102)
Similarly to Eq.(2.37), the use of Hashin-Shtrikman-type variational principles [START_REF] Willis | Variational and related methods for the overall properties of composites[END_REF] shows that the following inequality holds :

e : D 0 -D : e -2 e : p(x) ≤ -p(x) : ∆D -1 : p(x) + p(x) : e 0 (x) (2.103) 
where ∆D = D 0 -D while D 0 corresponds to the reference tensor while p(x) denotes the arbitrary polarization field and e 0 (x) comes from the auxiliary problem :

p(x)-D 0 : e 0 (x) = s 0 (x) with s 0 (x) = -σ 0 ε 0 , e 0 (x) = ε 0 σ 0 as e 0 (x) = 0 (2.104)

Bounds on the overall complex response

Originally introduced by Gibiansky et al. [START_REF] Gibiansky | On the effective viscoelastic moduli of two-phase media. i. rigorous bounds on the complex bulk modulus[END_REF], the Hashin-Shtrikman variational principle method allowing to derive complex bounds for viscoelastic materials is briefly described hereafter. More specifically, we are seeking to bound the overall shear modulus of isotropic two-phase materials. The resulting bounds take the form of circles in either the complex Y μ * -plane or µ * -plane. The tensor D 0 emerging from Eq.(2.103) is not necessarily of the same form as D. Note that the reference tensor D 0 is taken constant such as :

D 0 = A(γ 11 /3, 1/2β 11 ) A(γ 12 , β 12 ) A(γ 12 , β 12 ) A(3γ 22 , 2β 22 ) (2.105)
where γ and β are constants and A denotes an isotropic tensor.

As stated by Gibiansky and Milton [START_REF] Gibiansky | On the effective viscoelastic moduli of two-phase media. i. rigorous bounds on the complex bulk modulus[END_REF], the reference tensor is not required positive definite but it must be quasi-convex such as : e(x) : D 0 : e(x) ≥ e(x) : D 0 : e(x) (2.106) where e(x) refers to any periodic field satisfying the constraints on e 0 (x) introduced previously. In the case of two-phase viscoelastic materials, the tensor D 0 also has to satisfy the following conditions :

D (1) -D 0 ≥ 0 and D (2) -D 0 ≥ 0 (2.107)
As well as the elastic case, the variational principle (2.103) is applied in order to derive bounds on the overall tensor D by choosing one given trial polarization field for the given applied field e. However, it is also possible to choose equally the optimal value of e for any given polarization field to maximize the left-hand side of Eq.(2.103). Following Milton and Kohn [START_REF] Milton | Variational bounds on the effective moduli of anisotropic composites[END_REF], the optimal value of the field e is expressed in the form : Considering the polarization field to be piecewise constant as :

e = D 0 -D -1 : p (2.
p(x) = p + χ (1) (x) -c 1 q (2.110)
with the constant vector q and after maximizing the left-hand side of Eq.(2.109) with respect to the volume averaged polarization field, the following inequality holds :

χ (1) (x) q : e 0 (x) ≥ c 1 c 2 q : Y + D 0 -1 : q (2.111)
where Y is the overall Y-tensor defined by : Y( D, D (1) ,

D (2) ) = (Y ) -1 -(Y ) -1 Y -Y (Y ) -1 Y + Y (Y ) -1 Y (2.112)
with Y and Y the real and imaginary parts of the Y-tensor respectively.

Initially proposed by Berryman [START_REF] Berryman | Bounds on decay constants for diffusion through inhomogeneous media[END_REF], the set of Y-parameters corresponds to fractional linear transformations of the overall relaxation function of isotropic two-phase materials.

The correspondence between L * α , Y implies that the derivation of bounds on the overall relaxation function L * α is equivalent to the derivation of bounds on the overall tensor Y. As described by Milton [START_REF] Milton | The theory of composites. The Theory of Composites[END_REF], the problem of finding bounds on the tensor Y can be easier than finding the associated bounds on the overall relaxation function L * α . Regarding two-phase viscoelastic media, the tensor Y is given by : Y( L * α , L (1) , L (2) 

) = -c 2 L (1) -c 1 L (2) + c 1 c 2 ∆L : c 1 L (1) + c 2 L (2) -L * α -1 : ∆L (2.113)
where ∆L = L (1) -L (2) . It should be noted that multiple steps of calculation are still required (see more details with Milton and Berryman [START_REF] Milton | On the effective viscoelastic moduli of two-phase media. ii. rigorous bounds on the complex shear modulus in three dimensions[END_REF]) to obtain definite bounds on the effective shear modulus. The bounds being established as circles in the complex plane, it is necessary to impose restrictions in order to derive expressions relatively easy to compute. Several assumptions are thus made on the components of the reference tensor D 0 to reformulate the constraints (2.107) in terms of the following four matrix inequalities :

c/κ i -β 11 κ i /κ i -β 12 κ i /κ i -β 12 κ i + (κ i ) 2 /κ i -β 22 ≥ 0 ∀i = 1, 2 (2.114) 
and

1/µ i -β 11 µ i /µ i -β 12 µ i /µ i -β 12 µ i + (µ i ) 2 /µ i /c -β 22 ≥ 0 ∀i = 1, 2 (2.115) 
Taking into account Eqs.(2.114) and (2.115), the bounds on the overall tensor Y read :

     (8 + 9c) 6(2 + c)y μ -β 11 y μ y μ -β 12 y μ y μ -β 12 6(2 + c) (8 + 9c) y μ + (y μ) 2 y μ -β 22      ≥ 0 (2.116)
The bounds on y μ * are finally obtained for each value of the parameter c by taking the intersection set of the most constraining circles containing the four points of Eq.(2.93) while excluding the origin. Coming back to the complex μ * -plane, it can easily be shown that such bounds are exactly reduced to the classical Hashin-Shtrikman bounds for purely elastic local constituents [START_REF] Gibiansky | Bounds on the complex bulk and shear moduli of a twodimensional two-phase viscoelastic composite[END_REF]. Aside from the use of the variational principles of Cherkaev and Gibiansky [START_REF] Cherkaev | Variational principles for complex conductivity, viscoelasticity, and similar problems in media with complex moduli[END_REF] to derive bounds on the overall complex response, it is also possible to make use of them to reach exact information on the overall integral kernels of viscoelastic heterogeneous materials.

New results on the overall viscoelatic response

Exact relations have recently been reached on the overall integral kernels of viscoelastic heterogeneous materials made of classical Maxwell constituents completing the usual ones derived on the uncoupled asymptotic states [START_REF] Suquet | Four exact relations for the effective relaxation function of linear viscoelastic composites[END_REF][START_REF] Brenner | Overall response of viscoelastic composites and polycrystals: exact asymptotic relations and approximate estimates[END_REF]. Such findings on the overall transient response highlighted the coupling between the local viscoelastic behaviour of phases and the local fields solutions of asymptotic heterogeneous problems. Rather focusing on the modeling of polymer-based materials, the approach is extended to viscoelastic composite materials made of fractional Zener constituents characterizing by uncoupled asymptotic states. Note that the asymptotic states of other fractional viscoelastic constituents are actually not uncoupled. It is thus not possible to derive similar results for such viscoelastic constituents. However, they can be derived for any kind of linear viscoelastic constituents (cf. Appendix D). As with the classical Maxwell constituents, the results can be used to derive approximate viscoelastic homogenization models.

Saddle-point variational principles in complex viscoelasticity

Following Cherkaev and Gibiansky [START_REF] Cherkaev | Variational principles for complex conductivity, viscoelasticity, and similar problems in media with complex moduli[END_REF], two saddle-point (or minimax) variational principles have been derived by reformulating the complex viscoelastic problem [START_REF] Gallican | Exact asymptotic relations for the effective response of linear viscoelastic heterogeneous media[END_REF][START_REF] Gallican | Homogenization estimates for the effective response of fractional viscoelastic particulate composites[END_REF]. Note that the saddle-point variational principles are applied to the overall "complex" energy of viscoelastic heterogeneous materials. The saddle-point variational principle on the imaginary part of the overall complex "energy" corresponds to the one derived by Cherkaev and Gibiansky [START_REF] Cherkaev | Variational principles for complex conductivity, viscoelasticity, and similar problems in media with complex moduli[END_REF] while the one dealing with the real part of the overall complex "energy" is a new result. By taking advantage of the two variational principles, we established direct links between the local and overall behaviours of viscoelastic composite materials.

The complex constitutive law (2.59) can be rewritten as systems of real equations such as :

σ -σ = L R : ε ε , L R = L α -L α -L α -L α and σ σ = L I : ε ε , L I = -L α L α L α L α
where (σ , ε , L α ) and (σ , ε , L α ) are real fields.

As in section (2.2.4), it can be remarked that the new formulation of the viscoelastic problem has the same basic structure as the elastic problem but involves stiffness tensors which have twice the size of the usual ones.

By considering the frequency-dependent complex "energy" φ * :

φ * (ω α ) = σ * : ε * = σ : ε -σ : ε + i σ : ε + σ : ε (2.117)
two saddle-point (or minimax) variational principles on the effective complex "energy" φ * can be established [START_REF] Cherkaev | Variational principles for complex conductivity, viscoelasticity, and similar problems in media with complex moduli[END_REF][START_REF] Gallican | Exact asymptotic relations for the effective response of linear viscoelastic heterogeneous media[END_REF] in terms of :

Re φ * (ω α , ε , ε ) = min ε , ε =ε max ε , ε =ε σ : ε -σ : ε = min ε , ε =ε max ε , ε =ε ε ε : L R : ε ε (2.118)
and

Im φ * (ω α , ε , ε ) = min ε , ε =ε max ε , ε =ε σ : ε + σ : ε = min ε , ε =ε max ε , ε =ε ε ε : L I : ε ε (2.119)
where the solution fields are functions of ω α .

It is stressed out that the functionals (2.118 -2.119) do not have physical meanings by contrast with the minimal variational principle seen in section (2.2.4) which considers the average dissipated energy over a period of oscillation [START_REF] Cherkaev | Variational principles for complex conductivity, viscoelasticity, and similar problems in media with complex moduli[END_REF][START_REF] Gibiansky | On the effective viscoelastic moduli of two-phase media. i. rigorous bounds on the complex bulk modulus[END_REF][START_REF] Milton | On the effective viscoelastic moduli of two-phase media. ii. rigorous bounds on the complex shear modulus in three dimensions[END_REF] :

φ d = (ω/2) σ : ε -σ : ε (2.120)
Note that Re( φ * ) and Im( φ * ) are stationary with respect to the strain fields ε and ε . The lemma on the derivative of the stationary value of functions with respect to a given parameter can thus be used [START_REF] Ponte-Castaneda | Nonlinear composites[END_REF]. The derivatives of Eqs.(2.118 -2.119) with respect to the parameter h are expressed in terms of :

                 ∂ ∂h Re( φ * ) = ε ε : ∂ L R ∂h : ε ε ∂ ∂h Im( φ * ) = ε ε : ∂ L I ∂h : ε ε (2.

121)

When h = ω α , the two stationary principles (2.118 -2.119) and their derivatives (2.121) with respect to the fractional angular frequency ω α can be used to derive exact asymptotic relations on the overall complex moduli of viscoelastic heterogeneous media at low and high frequencies. These exact results are investigated for the mixture of fractional Zener constituents hereafter.

Exact relations on the overall integral kernels

Mixture of fractional Zener constituents

Local and effective viscoelastic properties

The fractional standard linear solid (or fractional Zener) model [START_REF] Caputo | A new dissipation model based on memory mechanism[END_REF] is defined by the following homogeneous fractional differential equation with 0 < α < 1 :

σ(t)+L f : (L eg -L er ) -1 : D α σ(t) = L er : ε(t)+L eg : L f : (L eg -L er ) -1 : D α ε(t) (2.122)
The behaviour of the fractional Zener constituent exhibits asymptotic elastic behaviours with the glassy and relaxed moduli at short (t → 0) and long (t → +∞) times respectively. The tensor L f represents the constitutive fractional viscous modulus. Based on Eq.(2.122), the viscoelastic stiffness tensor of the fractional Zener phase (s) reads :

L (s) α (t) = L (s) er + G (s) E α -(t/τ (s) σ ) α with G (s) = L (s) eg -L (s) er (2.123)
It should be noted that the eigenvalues of L

f : [G (s) ] -1 correspond to the fractional relaxation times τ α (s) σ (units s α ). Empirically validated by Mainardi [START_REF] Mainardi | Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models[END_REF], it is assumed that the overall relaxation tensor L α (t) can be expressed in the form :

L α (t) = L er + +∞ 0 G(τ σ ) E α [-(t/τ σ ) α ] dτ σ (2.124)
The complex viscoelastic relaxation tensor L * α (iω) characterizing the steady-state harmonic regime at angular frequency ω is therefore given by :

L * α (iω) = LC L α (t) p=iω = L er + +∞ 0 (iωτ σ ) α 1 + (iωτ σ ) α G(τ σ ) dτ σ (2.125)
The overall complex constitutive law is expressed in terms of :

σ * (iω) = L * α (iω) : ε * (iω), ∀ω ∈ [0; +∞[ (2.126)
and the complex relaxation function admits the following decomposition :

L * α (iω) = L α (ω) + i L α (ω) (2.127)
with ( L α , L α ) the overall storage and loss moduli which are respectively proportional to the stored and dissipated parts of energy [START_REF] Tschoegl | The phenomenological theory of linear viscoelastic behavior: an introduction[END_REF]. Noting that i α = e iπα/2 , it follows :

             L α (ω) = L er + +∞ 0 1 q (ωτ σ ) α cos πα 2 + (ωτ σ ) 2α G(τ σ ) dτ σ L α (ω) = +∞ 0 1 q (ωτ σ ) α sin πα 2 G(τ σ ) dτ σ (2.128) with q = 1 + 2 (ωτ σ ) α cos πα 2 + (ωτ σ ) 2α .
The overall loss tensor η(ω) which characterizes the damping is classically defined by :

η(ω) = L α (ω) : L α (ω) -1 (2.129)
It should be remarked that the local fields are asymptotically solutions of purely elastic heterogeneous problems as ω → +∞ or ω → 0. The pointwise complex strain field ε * (x, iω) thus exhibits the following features :

lim ω→+∞ ε * (x, iω) = ε g (x) and lim ω→0 ε * (x, iω) = ε r (x) (2.130) 
where ε g (x) and ε r (x) are the real strain fields solutions of the heterogeneous glassy and relaxed elastic problems. The same asymptotic features hold for the pointwise complex stress field σ * (x, iω) with the asymptotic fields σ g (x) and σ r (x) respectively.

Exact relations on the overall complex storage and loss moduli

We can take advantage of the saddle-point variational principles (2.118 -2.119) and the derivatives (2.121) with respect to the fractional frequency to obtain asymptotic properties on the overall storage and loss moduli at low and high frequencies. By considering the overall strain field verifying ε = ε and ε = 0, the stationary principle on the real part of the effective complex "energy" φ * leads to :

             lim ω→0 ε : L α (ω) : ε = lim ω→0 ε : L er : ε = s c s L (s) er :: ε r ⊗ ε r (s) lim ω→+∞ ε : L α (ω) : ε = lim ω→+∞ ε : L eg : ε = s c s L (s) eg :: ε g ⊗ ε g (s)
(2.131)

On the other hand, the stationary principle on the imaginary part of φ * implies that :

lim ω→0 L α (ω) = lim ω→+∞ L α (ω) = 0 (2.132)
Note that Eqs.(2.131 -2.132) correspond to well-known results for the mixture of classical Zener constituents stating that the asymptotic overall behaviours at low and high frequencies are purely elastic. The property still holds in the fractional case since the fractional feature of the constitutive law only affects the transient regime. The assessment of the asymptotic behaviours L er , L eg only needs to solve the elastic heterogeneous problems in the relaxed and glassy regimes respectively.

By choosing h = ω α , the derivatives of the stationary principles (2.121) give the results :

                                           lim ω→0 ε : ∂ L α ∂ω α (ω) : ε = tan πα 2 lim ω→0 ε : ∂ L α ∂ω α (ω α ) : ε = sin πα 2 s c s L (s) f :: ε r ⊗ ε r (s) lim ω→+∞ (iω) 2α ε : ∂ L α ∂ω α (ω) : ε = tan πα 2 lim ω→+∞ (iω) 2α ε : ∂ L α ∂ω α (ω α ) : ε = sin πα 2 s c s G (s) : L (s) f -1 : G (s) :: ε g ⊗ ε g (s)
(2.133)

Unlike classical linear viscoelasticity, the asymptotic values of the derivative of the overall storage modulus L α do not vanish since 0 < α < 1 [START_REF] Gallican | Exact asymptotic relations for the effective response of linear viscoelastic heterogeneous media[END_REF]. Note that the asymptotic values of the derivative of the real and imaginary parts of the overall complex "energy" φ * are exactly assessed by the local behaviour of the constituents and the intraphase second moment of the strain fields solutions of purely elastic heterogeneous problems at low (ω → 0) and high (ω → +∞) frequencies.

Independently from the type of fractional viscoelastic constituents, it is easily shown that higher order derivatives of the stationary principles (2.118 -2.119) do not provide any useful result. The expression of the second-order derivative of φ * with respect to the angular frequency ω α is given by ::

ε : ∂ 2 L * α ∂ω α2 (ω) : ε = 2 ∂ε * ∂ω α (ω) : ∂L * α ∂ω α (ω) : ε * (ω) + ε * (ω) : ∂ 2 L * α ∂ω α2 (ω) : ε * (ω) (2.134)
The derivative of the strain field with respect to the angular frequency ∂ε * /∂ω α could not be obtained analytically. No more asymptotic relation can therefore be reached with higher-order derivatives of the saddle-point variational principles (2.118 -2.119).

Consequences on the overall relaxation spectrum and physical meaning

With the overall complex relaxation function in Eq.(2.125), the asymptotic relations (2.131-2.133) have implications on time integrals of the overall relaxation spectrum G(τ σ ) :

                           +∞ 0 G(τ σ ) dτ σ = L eg -L er ε : +∞ 0 τ α σ G(τ σ ) dτ σ : ε = s c s L (s) f :: ε r ⊗ ε r (s) ε : +∞ 0 τ -α σ G(τ σ ) dτ σ : ε = s c s G (s) : L (s) f -1 : G (s) :: ε g ⊗ ε g (s)
(2.135) Note that Eq.(2.135) 1 is easily interpreted in the case of the relaxation loading test with the macroscopic strain loading ε(t) = ε such as :

lim t→0 σ(t) = L er + +∞ 0 G(τ σ ) dτ σ : ε (2.136)
The integral of the relaxation spectrum is thus directly related to the overall stress gap between short (t → 0) and long (t → +∞) times [START_REF] Ferry | Viscoelastic properties of polymers[END_REF]. The asymptotic states at short (t → 0) and long (t → +∞) times corresponding to purely elastic behaviours, it obviously does not depend on the fractional order α. For the integrals involving time power functions of order ±α, it is necessary to distinguish between classical (α = 1) and fractional (0 < α < 1) viscoelasticity. In the fractional case, the time integrals are related to the asymptotic values of the fractional derivative or integrals of the overall relaxation function L α (t) which have no geometric interpretation.

On the one hand, the fractional derivative of the macroscopic relaxation function reads :

D α L α (t) = - +∞ 0 τ -α σ G(τ σ ) E α [(-t/τ σ ) α ] dτ σ (2.137)
where use has been made of the derivation on Mittag-Leffler functions (cf. Appendix B).

At short (t → 0) times, Eq.(2.137) can be expressed such as :

lim t→0 D α L α (t) = - +∞ 0 τ -α σ G(τ σ ) dτ σ (2.138)
In the case of the relaxation loading test with the constant strain field ε, it implies in regards to classical (α = 1) viscoelasticity :

lim t→0 σ(t) = - +∞ 0 τ -1 σ G(τ σ ) dτ σ : ε (2.139)
On the other hand, the fractional integral of the overall relaxation function reads :

I α L α (t) = L er t α Γ(α + 1) + +∞ 0 τ α σ G(τ σ ) 1 -E α [(-t/τ σ ) α ] dτ σ (2.140)
Eq.(2.140) thus reads at long (t → +∞) times :

lim t→+∞ I α L α (t) = L er t α Γ(α + 1) + +∞ 0 τ α σ G(τ σ ) dτ σ (2.141)
By considering the loading test with the constant macroscopic strain rate field ε, it follows in the case of linear (α = 1) viscoelasticity :

lim t→+∞ σ(t) = L er t + +∞ 0 τ σ G(τ σ ) dτ σ : ε (2.142)
It should be noted that Eqs. for the constant macroscopic strain ε. Stress response (c) for the constant macroscopic strain rate ε.

Toward approximate models based on Dirichlet-Prony series

Four exact asymptotic relations have been obtained on the overall storage and loss moduli of mixtures of linear and fractional viscoelastic constituents by means of two saddle-point variational principles. Note that such results delivering valuable information on the overall integral kernel can be combined with Dirichlet-Prony series in order to approximate the overall behaviour of viscoelastic composite materials.

As mentioned in section (1.2.2), the overall weights L i and the associated relaxation times τ σ i involved in collocation methods have to be selected or even optimized to fulfill particular conditions [START_REF] Turner | Self-consistent modeling of visco-elastic polycrystals: application to irradiation creep and growth[END_REF][START_REF] Lévesque | Numerical inversion of the laplace-carson transform applied to homogenization of randomly reinforced linear viscoelastic media[END_REF][START_REF] Rekik | Optimization of the collocation inversion method for the linear viscoelastic homogenization[END_REF]. Note that the asymptotic relations derived for any kind of viscoelastic behaviours could be imposed as constraints in optimization schemes. Alternatively, the results can be used to derive approximate viscoelastic homogenization models. In regards to the mixture of classical Maxwell phases, the overall behaviour L α (t) is approximated by the finite sum of decaying exponentials corresponding to the generalized Maxwell model such as :

L(t) N i=1
L i e -t/τ σ i with the constraint

N i=1 L i = L eg (2.143)
The LC transform of Eq.(2.143) is expressed in terms of :

L * (p) N i=1 p p + 1 τ σ i L i (2.144)
The overall relaxation function L * (p) can be approximated by means of the four exact asymptotic relations associated to the mixture of classical Maxwell constituents [START_REF] Suquet | Four exact relations for the effective relaxation function of linear viscoelastic composites[END_REF][START_REF] Brenner | Overall response of viscoelastic composites and polycrystals: exact asymptotic relations and approximate estimates[END_REF]. According to Eqs.(D.5), the overall weights L i and the associated relaxation times τ σ i must satisfy the following relations :

                               N i=1 τ σ i L i = L vr with N i=1 L i = L eg ε : N i=1 τ 2 σ i L i : ε = s c s L (s) vr : M (s) eg : L (s) vr :: εr ⊗ εr (s) ε : N i=1 τ -1 σ i L i : ε = s c s L (s) eg : M (s) vr : L (s) eg :: ε g ⊗ ε g (s)
(2.145)

Following the works of Brenner and Suquet [START_REF] Brenner | Overall response of viscoelastic composites and polycrystals: exact asymptotic relations and approximate estimates[END_REF] 

Conclusion

The homogenization of viscoelastic composite materials is usually carried out by means of the correspondence principle [START_REF] Hashin | Viscoelastic behavior of heterogeneous media[END_REF][START_REF] Mandel | Cours de mécanique des milieux continus[END_REF] which allows to substitute time-dependent viscoelastic problems into symbolic elastic ones. In contrast to purely elastic constituents, the class of partial differential equations associated to elementary viscoelastic constituents is not stable by homogenization [START_REF] Tartar | H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations[END_REF]. The overall behaviour of viscoelastic composite media actually exhibits additional fading memory terms known as long-memory effects arising from the transition of scales [START_REF] Sanchez-Hubert | Sur certains problemes physiques d'homogénéisation donnant lieua des phénomenes de relaxation[END_REF][START_REF] Francfort | Homogénéisation de milieux viscoélastiques linéaires de kelvin-voigt[END_REF][START_REF] Suquet | Elements of homogenization for inelastic solid mechanics, homogenization techniques for composite media[END_REF]. The emphasis was put on the long-memory effects arising from the homogenization of the mixture of classical Zener constituents. In regards to particular kinds of microstructures, Suquet [START_REF] Suquet | From linear elasticity to linear viscoelasticity of composites: a walk in the complex plane[END_REF] has shown that the form of the overall integral kernel of viscoelatic composite materials is directly related to the microstucture. Following Ricaud and Masson [START_REF] Ricaud | Effective properties of linear viscoelastic heterogeneous media: Internal variables formulation and extension to ageing behaviours[END_REF], the effective shear response of isotropic two-phase media made of incompressible classical Zener phases verifying the Voigt, Reuss and Hashin-Shtrikman bounds has been assessed analytically. Based on the works on Cherkaev and Gibiansky [START_REF] Cherkaev | Variational principles for complex conductivity, viscoelasticity, and similar problems in media with complex moduli[END_REF], we derived four exact asymptotic relations the overall integral kernel characterizing the viscoelastic transient response of linear and fractional viscoelastic constituents [START_REF] Gallican | Exact asymptotic relations for the effective response of linear viscoelastic heterogeneous media[END_REF][START_REF] Gallican | Homogenization estimates for the effective response of fractional viscoelastic particulate composites[END_REF]. Based on such findings, the framework of approximate viscoelastic homogenization models has been proposed in order to approach the overall relaxation function of the mixture of linear viscoelastic constituents. Initially investigated by Suquet [START_REF] Suquet | Four exact relations for the effective relaxation function of linear viscoelastic composites[END_REF] and Brenner and Suquet [START_REF] Brenner | Overall response of viscoelastic composites and polycrystals: exact asymptotic relations and approximate estimates[END_REF] for the mixture of classical Maxwell constituents, the use of such models can be extended to fractional Zener phases in order to approximate the overall behaviour of polymer-based viscoelastic composite materials. Consistent with the purpose to assess the accuracy of approximate homogenization models, the development of fast Fourier transform-based calculation tools is highlighted thereafter.

Numerical homogenization by fast Fourier transform

This chapter deals with the numerical estimate of the overall behaviour of viscoelastic composite materials by making use of fast Fourier transforms (FFT). The framework of FFT-based methods is described in the context of linear elasticity and viscoelasticity. The accuracy of FFT full-field computations is assessed through the analytical solution for 2D checkerboard polycrystals. A numerical convergence analysis of the approach is performed for particulate composite materials. 

Extension

Introduction

The accuracy of mean-field methods to assess the overall response of heterogeneous media is usually evaluated by means of full-field computations such as finite element (FEM) or boundary element (BEM) methods. Despite being widely used in various linear problems, the finite element methods can involve high computational costs because of the generation of meshings or the inversion of massive matrices in the case of highly heterogeneous materials. Note that fast Fourier transform (FFT) methods have been developed alternatively to predict the overall behaviour of such materials [START_REF] Moulinec | A fast numerical method for computing the linear and nonlinear mechanical properties of composites[END_REF]. The latter operate on regular grids of voxels allowing the use of digital images of microstructures. Avoiding the formation of the stiffness matrix, they do not exhibit high computational costs and they can easily be parallelized in the case of heavy simulations due to the evaluation of the discrete Fourier transform on regular grids. Extended to nonlinear elasticity by Moulinec and Suquet [START_REF] Moulinec | A numerical method for computing the overall response of nonlinear composites with complex microstructure[END_REF], the approach relies on the iterative integration of the Lippmann-Schwinger equation by means of the fixed-point method. Following Moulinec and Suquet [START_REF] Moulinec | A fast numerical method for computing the linear and nonlinear mechanical properties of composites[END_REF][START_REF] Moulinec | A numerical method for computing the overall response of nonlinear composites with complex microstructure[END_REF], the FFT-based methods have been widely used in various applications such as the homogenization of cortical bones [START_REF] Cai | Homogenization of cortical bone reveals that the organization and shape of pores marginally affect elasticity[END_REF], paint deposit models [START_REF] Azzimonti | Optical properties of deposit models for paints: full-fields fft computations and representative volume element[END_REF], porous rock structures [START_REF] Andrä | Digital rock physics benchmarks-part ii: Computing effective properties[END_REF] or polycrystals undergoing small deformations [START_REF] Lebensohn | N-site modeling of a 3d viscoplastic polycrystal using fast fourier transform[END_REF] and many improvements have been carried out over the years. The accelerated scheme was proposed by Eyre and Milton [START_REF] Eyre | A fast numerical scheme for computing the response of composites using grid refinement[END_REF] in order to improve the relatively slow convergence rate of the basic scheme in the case of high contrast materials. Based on the reconditioning of the operator involved in the iterative relation of the basic scheme, the accelerated scheme significantly improves the convergence rate of the fixed-point algorithm but still diverges for infinite contrast materials (rigid phases/voids). Accordingly, Michel et al. [START_REF] Michel | A computational method based on augmented Lagrangians and fast Fourier transforms for composites with high contrast[END_REF] introduced an alternative method making use of an equivalent saddle-point formulation solved by augmented Lagrangians to tackle the problem. As proved by Moulinec and Silva [START_REF] Moulinec | Comparison of three accelerated fft-based schemes for computing the mechanical response of composite materials[END_REF], all these algorithms belong to the class of general polarization schemes derived by Monchiet and Bonnet [START_REF] Monchiet | A polarization-based fft iterative scheme for computing the effective properties of elastic composites with arbitrary contrast[END_REF] in the case of heterogeneous materials containing both rigid phases and voids. Note that the approach was extended to inelastic problems at finite strain by Shantraj et al. [START_REF] Shanthraj | Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials[END_REF]. Other methods have been proposed to overcome the limitations of the basic scheme by means of discretization developments such as the method of Willot and Pelligrini [START_REF] Willot | Fast fourier transform computations and build-up of plastic deformation in 2d, elastic-perfectly plastic, pixelwise disordered porous media[END_REF] modifying the classical Green operator involved in FFT-based schemes to avoid spurious oscillations sometimes observed in the local fields. Based on the discretization of the local constitutive laws by finite difference, they derived discrete Green operators allowing to improve the rate of convergence and the accuracy of the computed solution fields. It should be mentioned that Zeman et al. [START_REF] Zeman | Accelerating a fft-based solver for numerical homogenization of periodic media by conjugate gradients[END_REF] developed a modified FFT-based scheme by making use of the trigonometric collocation method in order to improve the rate of convergence of the basic scheme. Allowing to reduce the problem to a linear system of equations, the fixed-point iterative procedure is thus replaced by standard iterative solvers such as conjugate gradient-based solvers (CG/BiCG). Further extended to nonlinear problems by Gélébart et al. [START_REF] Gélébart | Non-linear extension of fft-based methods accelerated by conjugate gradients to evaluate the mechanical behavior of composite materials[END_REF] through the Newton-Raphson (NR) algorithm, such methods exhibit fast convergence rates by evaluating the behaviour only at the NR iterations. Unfortunately, the NR/CG solvers involve high memory requirements in return.

Brisard and Dormieux [START_REF] Brisard | Fft-based methods for the mechanics of composites: A general variational framework[END_REF][START_REF] Brisard | Combining galerkin approximation techniques with the principle of hashin and shtrikman to derive a new fft-based numerical method for the homogenization of composites[END_REF] proposed another scheme based on the Galerkin approximation of the energy principle of Hashin-Shtrikman and derived modified Green operators consistent with the new formulation. Providing rigorous bounds for the elastic energy and well-defined averaging rules to compute the equivalent characteristics of heterogeneous voxels, the method cannot deal with materials containing both rigid phases and voids because of the limitations of the reference material introduced in the formulation.

The present chapter intents to describe FFT-based numerical homogenization methods. After recalling the basic features of FFT full-field computations in the context of linear elasticity, the extension to heterogeneous viscoelastic materials is presented. Based on the correspondence principle [START_REF] Hashin | Viscoelastic behavior of heterogeneous media[END_REF][START_REF] Mandel | Cours de mécanique des milieux continus[END_REF] which allows the substitution of time-dependent viscoelastic problems by symbolic elastic ones in the Laplace domain, the classical FFTbased methods can be used to tackle heterogeneous viscoelastic problems in the spectral domain. Note that the SC estimate of the overall behaviour of 2D checkerboard polycrystals exhibiting identical compliance tensors can be computed exactly. The accuracy of the calculations is therefore assessed in the case of 2D checkerboard polycrystals made of fractional Zener constituents. It is well-established that theoretical convergence conditions on classical FFT-based methods can be derived by minimizing the bounds of the associated spectral radii. Unfortunately, such results can only be obtained in the case of materials composed by isotropic elastic constituents. A numerical convergence analysis is thus carried out for particulate composite materials composed of either isotropic or anisotropic elastic phases for which the theoretical convergence conditions are irrelevant.

Basics of FFT-based methods in linear elasticity

Cell problem and boundary conditions

Let us consider the unit-cell of rectangular basis Ω denoting the periodic heterogeneous linear material of local stiffness L(x). Note that the local behaviour at each point x ∈ Ω is defined by the potential ω in terms of :

σ(x) = ∂ω ∂ε (x, ε) = L(x) : ε(x) (3.1)
with ω(x, ε) a given convex function of ε(x). It is assumed that the periodic heterogeneous material is subjected to the constant macroscopic strain ε for sufficiently small perturbations. The assessment of the overall response needs to solve the following local problem :

                     σ(x) = L(x) : ε(x), ∀x ∈ Ω div σ(x) = 0, curl( t curl ε(x)) = 0, ∀x ∈ Ω ε(x) = 1 2 ∇u(x) + t ∇u(x) , ∀x ∈ Ω ε(x) = ε with ε(x) # and σ(x) # (3.2)
The overall response is classically defined by the overall stiffness tensor such as :

σ = σ(x) = L : ε (3.3)

The periodic Lippmann-Schwinger equation

Following the idea of Eshelby [START_REF] Eshelby | The determination of the elastic field of an ellipsoidal inclusion, and related problems[END_REF], Moulinec and Suquet [START_REF] Moulinec | A fast numerical method for computing the linear and nonlinear mechanical properties of composites[END_REF][START_REF] Moulinec | A numerical method for computing the overall response of nonlinear composites with complex microstructure[END_REF] defined the preliminary problem of the linear elastic reference medium L 0 subjected to the polarization field τ (x) assumed to be known. The preliminary problem is expressed in terms of :

                     σ(x) = L 0 : ε(x) + τ (x), ∀x ∈ Ω div σ(x) = 0, curl( t curl ε(x)) = 0, ∀x ∈ Ω ε(x) = 1 2 ∇u(x) + t ∇u(x) , ∀x ∈ Ω ε(x) = ε with ε(x) # and σ(x) # (3.4)
By means of the periodic Green operator Γ 0 associated with the reference medium L 0 , the solution of Eq.(3.4) can be expressed in the real and spectral domains respectively :

ε(x) = -Γ 0 * τ (x), ∀x ∈ Ω ε(ξ) = - Γ0 (ξ) : τ (ξ), ∀ξ = 0, ε(0) = 0 (3.5)
where the complex fields (ε, τ , Γ0 ) correspond to the spatial Fourier transforms of (ε, τ , Γ 0 ). It should be mentioned that the Green operator Γ 0 only depends on the behaviour of the reference medium L 0 . Explicitly known in the Fourier domain for isotropic reference media, it is classically expressed in the form :

Γ 0 ijkl (ξ) = 1 4µ 0 |ξ| 2 (δ ki ξ l ξ j + δ li ξ k ξ j + δ kj ξ l ξ i + δ lj ξ k ξ i ) - λ 0 + µ 0 µ 0 (λ 0 + 2µ 0 ) ξ i ξ j ξ k ξ l |ξ| 4 (3.6)
where (λ 0 , µ 0 ) refer to the well-known Lamé coefficients. Similarly to Eq.(3.4), the local problem (3.2) can be rewritten by means of the homogeneous reference material L 0 and the polarization tensor τ (x) in terms of :

τ (x) = L(x) -L 0 : ε(x) (3.7)
It is worth noting that Eq.(3.7) allows to reduce the problem to the periodic Lippmann-Schwinger equation defined in the real and spectral domains respectively such as :

     ε(x) = -Γ 0 * τ (x) + ε, ∀x ∈ Ω ε(ξ) = - Γ0 (ξ) : τ (ξ), ∀ξ = 0, ε(0) = ε (3.8)
Note that the polarization tensor τ (x) is expressed as the function of the strain field ε(x), the Lippmann-Schwinger equation thus corresponds to an implicit integral equation.

Classical iterative methods

Basic iterative scheme

Based on previous works dealing with conductivity problems, Moulinec and Suquet [START_REF] Moulinec | A numerical method for computing the overall response of nonlinear composites with complex microstructure[END_REF] proposed an iterative scheme for computing the solution of the heterogeneous linear elastic problem described in Eq.(3.2). The approach relies on the iterative integration of the Lippmann-Schwinger equation by means of Neumann series in which each term of the series is obtained with recurrence relations.

At iterate i + 1, the strain field ε i+1 (x) is updated from the previous iterate i as :

ε i+1 (x) = -Γ 0 * L(x) -L 0 : ε i (x) + ε, ∀x ∈ Ω (3.9)
The convolution operator in real domain corresponding to the simple pointwise product in Fourier domain, it thus follows :

εi+1 (ξ) = - Γ0 (ξ) : τ i (ξ), ∀ξ = 0, εi+1 (0) = ε (3.10)
In the case of isotropic reference media, Moulinec and Suquet [START_REF] Moulinec | A numerical method for computing the overall response of nonlinear composites with complex microstructure[END_REF] have shown that the rate of convergence of the algorithm strongly depends on the bulk κ 0 and shear µ 0 moduli of the homogeneous reference medium. As proved by Michel et al. [START_REF] Michel | A computational scheme for linear and nonlinear composites with arbitrary phase contrast[END_REF], a sufficient condition of convergence for the basic scheme is expressed in the form :

-1 < 1 - κ(x) κ 0 < 1 and -1 < 1 - µ(x) µ 0 < 1, ∀x ∈ Ω (3.11)
where κ(x) and µ(x) denote the bulk and shear moduli of L(x) respectively. Minimizing the bounds of the spectral radius allows to derive the optimal expression of the homogeneous reference medium L 0 in order to achieve the best rate of convergence. The upper bound of the spectral radius of the operator ε(x) → -Γ 0 * L(x) -L 0 : ε(x) is minimized for :

κ 0 = 1 2 min x∈Ω κ(x) + max x∈Ω κ(x) and µ 0 = 1 2 min x∈Ω µ(x) + max x∈Ω µ(x) (3.12)
It should be noted that the optimal expression of L 0 is derived for isotropic elastic constituents. As illustrated by Paux [START_REF] Paux | Contribution à la modélisation micromécanique de la plasticité de matériaux cristallins poreux[END_REF], the proof can easily be extended to anisotropic ones. Let us consider λ i (x), λ i 0 the eigenvalues associated to a given orthogonal decomposition of the tensors L(x), L 0 respectively. A sufficient condition of convergence is defined by :

-1 < 1 - λ i (x) λ i 0 < 1, ∀x ∈ Ω (3.13)
Regarding local behaviours with cubic symmetry and isotropic homogeneous reference media, it can be deduced ∀x ∈ Ω from Eq.(3.13) :

-

1 < 1 - κ(x) κ 0 < 1 , -1 < 1 - µ a (x) µ 0 < 1 and -1 < 1 - µ b (x) µ 0 < 1 (3.14) with L(x) = 3 κ(x) J + 2 µ a (x) K a + 2 µ b (x) K b and K = K a + K b .
It should be remarked that such conditions are not verified for infinite contrast materials made of rigid phases (λ i (x) = +∞) or voids (λ i (x) = 0). The minimization of the spectral radius does not take into account any geometric details of the microstructure. Accordingly, it does not guarentee the optimal convergence rate for the scheme. It has recently been shown by Suquet et al. [START_REF] Moulinec | Convergence of iterative methods based on neumann series for composite materials: theory and practice[END_REF] for two-phase composite materials made of isotropic phases that it was possible to account explicitly for the microstructure with the following decomposition of the operator Γ 0 δL :

Γ 0 δL = N s=1 Γ (1) χ (s) Z (s) with      Γ (1) = Γ 0 L 0 Z (s) = L 0 -1 δL (s) (3.15)
where the contribution of the behaviour of each phase is expressed by the operator Z (s) while the operator Γ (1) χ (s) depends on the microstructure of the medium through the function χ (s) . Although theoretically appealing, the benefits of Eq.(3.15) are not always confirmed numerically and its extension to any kind of microstructures seems rather difficult.

Despite its ease of implementation, the method proposed by Moulinec and Suquet [START_REF] Moulinec | A fast numerical method for computing the linear and nonlinear mechanical properties of composites[END_REF][START_REF] Moulinec | A numerical method for computing the overall response of nonlinear composites with complex microstructure[END_REF] suffers drawbacks. It exhibits relatively slow rates of convergence and does not converge for high contrast materials containing rigid phases or voids. It has also been pointed out by Brisard and Dormieux [START_REF] Brisard | Fft-based methods for the mechanics of composites: A general variational framework[END_REF] that the basic scheme does not properly define voxels for highly heterogeneous media in which heterogeneous voxels are assigned homogeneous features without applying any systematic averaging rule.

Polarization-based scheme

To address the problem of high contrast multiphase materials, Monchiet and Bonnet [START_REF] Monchiet | A polarization-based fft iterative scheme for computing the effective properties of elastic composites with arbitrary contrast[END_REF] developed an iterative method based on the polarization where the uniform macroscopic polarization field is prescribed over the unit-cell instead of the uniform macroscopic strain or stress field. Let us consider the polarization τ (x) and the auxiliary e(x) fields converging to the strain field ε(x) in terms of :

τ (x) = L(x) -L 0 : e(x) (3.16) 
For heterogeneous linear elastic media subjected to the prescribed macroscopic polarization field T, the iterative law allowing to solve the problem in the real domain reads :

τ i+1 = τ i -α L 0 : Γ 0 * L : e i -β ∆ 0 * e i -τ i + T (3.17)
with ∆ 0 the stress Green tensor associated to the operator Γ0 (ξ) in the Fourier domain :

       ∆0 (ξ) = L 0 -L 0 : Γ0 (ξ) : L 0 ∀ξ = 0 ∆0 (ξ) = 0 for ξ = 0 (3.18)
Note that Eq.(3.17) can be rewritten to deal with the prescribed macroscopic strain ε :

e i+1 = e i -α Π : L 0 : Γ 0 * L : e i -β Π : ∆ 0 * e i -β Π : υ i (3.19)
with the tensors Π = L + L 0 -1 and υ i = L 0 : e iε .

As pointed out by Moulinec and Silva [START_REF] Moulinec | Comparison of three accelerated fft-based schemes for computing the mechanical response of composite materials[END_REF], specific sets of parameters (α, β) allow to recover well-established results. The accelerated scheme is thus obtained for α = β = 2 while the augmented Lagrangian scheme appears for α = β = 1. In the same way of Eq.(3.14), Monchiet and Bonnet [START_REF] Monchiet | A polarization-based fft iterative scheme for computing the effective properties of elastic composites with arbitrary contrast[END_REF] proposed the following inequalities as sufficient conditions to ensure the convergence of the polarization-based scheme :

0 α < 2, 0 β < 2, κ 0 > 0, µ 0 > 0 (3.20)
Contrary to the convergence conditions of the basic scheme (3.14) which depend on the elastic moduli of heterogeneous media, Eq.(3.20) is independent of such features. It is worth noting that Monchiet and Bonnet [START_REF] Monchiet | A polarization-based fft iterative scheme for computing the effective properties of elastic composites with arbitrary contrast[END_REF] have shown that the convergence conditions work numerically for various problems and provide good convergence rates for composite materials containing both voids and rigid inclusions. However, they do not exhibit the best convergence rate in the case of media made of isotropic elastic constituents. The minimization of the upper bound of the spectral radius provides the following conditions :

α = β = 2, κ 0 = min x∈Ω κ(x) max x∈Ω κ(x), µ 0 = min x∈Ω µ(x) max x∈Ω µ(x) (3.21)
which correspond to the accelerated scheme of Eyre and Milton [START_REF] Eyre | A fast numerical scheme for computing the response of composites using grid refinement[END_REF].

Extension to viscoelastic constitutive laws

Local problem for harmonic loadings

The response of fractional viscoelastic heterogeneous media to harmonic loadings is classically studied in the spectral domain by means of the LC transform for the purely imaginary transform variable p = iω [START_REF] Hashin | Complex moduli of viscoelastic composites-i. general theory and application to particulate composites[END_REF]. Assuming the domain Ω to be subjected to the overall strain loading ε(t) = ε * e iωt , the local problem corresponding to the steady-state regime at angular frequency ω classically reads :

                     σ * (x, iω) = L * α (x, iω) : ε * (x, iω), ∀(x, ω) ∈ Ω × [0; +∞[ div σ * = 0, curl( t curl ε * ) = 0, ∀(x, ω) ∈ Ω × [0; +∞[ ε * = 1 2 ∇u * + t ∇u * , ∀(x, ω) ∈ Ω × [0; +∞[ ε * = ε * with ε * # and σ * # (3.22)
where the complex fields (σ * , ε * , L * α ) are the time LC transforms of (σ, ε, L α ).

The overall behaviour is given by the overall relaxation function L * α such as :

σ * (iω) = L * α (iω) : ε * (iω) with σ * (iω) = σ (ω) + i σ (ω) (3.23)

FFT framework in complex viscoelasticity

Similarly to the elastic case, the convergence rate of FFT-based methods strongly depends on the homogeneous reference medium L 0 arbitrarily set as complex in the context of complex viscoelasticity. Based on Eqs. (3.22), the complex stress σ * and strain ε * fields must satisfy the following transpose property :

σ * ij (x, iω) = σ * ji (x, iω) and ε * ij (x, iω) = ε * ji (x, iω) (3.24)
It should be remarked that the Lippmann-Schwinger equation in the Fourier domain is expressed with the indicial notation in terms of :

ε * ij (ξ, iω) = ε * ij -Γ 0 ijkl (ξ)σ * lk (ξ, iω) + Γ 0 ijkl (ξ)L 0 lkmn ε * nm (ξ, iω) (3.25)
Accordingly, it can be seen with Eqs.(3.24 -3.25) that the macroscopic strain field ε * , the Green operator Γ 0 and the homogeneous reference medium L 0 must satisfy :

             ε * ij = ε * ji Γ 0 ijkl (ξ) = Γ 0 jikl (ξ) = Γ 0 ijlk (ξ) L 0 ijkl = L 0 jikl = L 0 ijlk (3.26)
As pointed out by Figliuzzi et al. [START_REF] Figliuzzi | Modelling the microstructure and the viscoelastic behaviour of carbon black filled rubber materials from 3d simulations[END_REF], Eq.(3.26) naturally implies :

ε * ij = ε * ij † , Γ 0 ijkl (ξ) = Γ 0 ijkl (ξ) † , L 0 ijkl = L 0 ijkl † (3.27)
where [•] † indicates the complex conjugate. Note that the macroscopic strain field ε * , the Green operator Γ0 and the homogeneous reference medium L 0 must be real in complex viscoelasticity. In the same way of linear elasticity, the reference medium needs to be optimized to achieve the best convergence rate. Unfortunately, the use of classical convergence conditions is not possible regarding complex viscoelasticity because of the non-Hermitian overall complex relaxation function. Accordingly, the homogeneous reference medium needs to be optimized empirically with respect to FFT-based methods.

Application to checkerboard polycrystals

Antiplane deformation of isotropic 2D viscoelastic polycrystals

Let us consider 2D viscoelastic polycrystals made of columnar orthorhombic grains with symmetry axes aligned with the macroscopic direction e M 3 . Each grain exhibits two slip systems (a) and (b) with common slip direction e 3 and orthogonal slip planes of normal e 1 and e 2 in the crystalline reference basis. Only two slip systems can be activated for antiplane shear loading for such polycrystals, namely those characterized by the corresponding Schmid tensors : By considering the slip systems to be described by fractional Zener models, the LC transform of the viscoelastic compliance of phase (r) reads :

m a = 1 
M * r (p) = k 1 µ * k (p) m k ⊗ m k with k = a, b (3.29)
where µ * k corresponds to the symbolic shear relaxation modulus of slip system (k) :

µ * k (p) = µ k er + (pτ σ k ) α k µ k eg 1 + (pτ σ k ) α k (3.30)
The terms µ k eg and µ k er denote the glassy and relaxed elastic shear moduli while τ α k σ k is the fractional relaxation time. In the case of checkerboard polycrystals made of the repetition of two crystals whose crystalline orientations are characterized by the angle ϕ between the crystalline reference basis (e 1 , e 2 ) and the macroscopic reference basis (e M 1 , e M 2 ) as ϕ = 0 • for phase [START_REF] Adolfsson | On the fractional order model of viscoelasticity[END_REF] and ϕ = 90 • for phase [START_REF] Agoras | Incremental variational procedure for elasto-viscoplastic composites and application to polymer-and metalmatrix composites reinforced by spheroidal elastic particles[END_REF] as shown in Figure (3.1), the overall response is defined to be isotropic.

The symbolic local shear relaxation tensor of the two crystalline phases in the macroscopic reference basis (e 1 , e 2 ) is expressed :

L * (p) = 2 µ * a (p) e 1 ⊗ e 1 + 2 µ * b (p) e 2 ⊗ e 2 (3.31)
Following previous works in conductivity [START_REF] Keller | A theorem on the conductivity of a composite medium[END_REF][START_REF] Dykhne | Conductivity of a two-dimensional two-phase system[END_REF], Ponte-Castañeda and Nebozhyn [START_REF] Ponte-Castañeda | Variational estimates of the self-consistent type for the effective behaviour of some model nonlinear polycrystals[END_REF] demonstrated that the self-consistent (SC) estimate of the overall shear relaxation modulus of 2D polycrystals can be computed exactly when the compliance tensors M * r are purely identical (except for a rotation). The SC estimate of the LC transform of the overall shear relaxation modulus reads :

µ * (p) = µ * a (p)µ * b (p) = µ eg p αa + θ a -1 p αa + τ -αa σa p α b + θ b -1 p α b + τ -α b σ b (3.32)
where µ eg and θ k are expressed in terms of :

µ eg = µ a eg µ b eg and θ k = τ α k σ k µ k eg µ k er with k = a, b (3.33)
It should be noted that the exact response of such polycrystals to the macroscopic strain loading ε(t) = ε * e iωt is easily assessed by fixing p = iω :

µ * (iω) = µ (ω) + i µ (ω) (3.34)
where the overall shear storage and loss moduli are expressed in terms of :

                                           µ (ω) = µ eg k ω 2α k + 2 cos( πα k 2 )ω α k θ k -1 + θ k -2 ω 2α k + 2 cos( πα k 2 )ω α k τ -α k σ k + τ -2α k σ k 1/4 cos 1 2 arctan ϑ a + ϑ b 1 -ϑ a ϑ b µ (ω) = µ eg k ω 2α k + 2 cos( πα k 2 )ω α k θ k -1 + θ k -2 ω 2α k + 2 cos( πα k 2 )ω α k τ -α k σ k + τ -2α k σ k 1/4 sin 1 2 arctan - ϑ a + ϑ b 1 -ϑ a ϑ b ϑ k = sin( πα k 2 ) µ k er -µ k eg ω α k τ α k σ k µ k eg (ω α k τ α k σ k ) 2 + cos( πα k 2 )ω α k τ α k σ k µ k er + µ k eg + µ k er for k = a, b

Numerical modeling by fast Fourier transforms

The analytical expression derived for 2D viscoelastic polycrystals is used to validate the complex FFT-based formulation. By considering the two-phase isotropic unit-cell made of four square grains illustrated in Figure (3.1) undergoing antiplane deformation for the macroscopic strain ε = ε 13 (e 1 ⊗ e 3 + e 3 ⊗ e 1 ), the exact overall response of the polycrystal is compared with FFT simulations using the accelerated scheme for different grid refinement : 255 2 , 515 2 , 1025 2 and 2045 2 . All the computations are carried out with the precision 10 -6 for the equilibrium, compatibility and loading conditions.

Local behaviour of crystalline phases

Two sets of data have been considered to characterize the local behaviour of crystalline phases. The first one corresponds to moderate contrast between the elastic shear moduli at relaxed state µ b er /µ a er = 10 while the second one represents high contrast µ b er /µ a er = 100. Both slip systems are described by fractional Zener behaviours with identical non-integer derivative order α and the elastic shear moduli contrast at glassy and relaxed states is constant in Eqs. (3.35 -3.36).

Moderate contrast :

µ a er = 0.01 MPa, µ a eg = 1 MPa, τ σa = 0.025 s, α a = 0.7 

µ b er = 0.

Numerical results

It should be noted that the exact results and FFT full-field computations of the overall shear storage modulus and loss factor are compared over the frequency range ω ∈ [10 -4 ; 10 4 ] in Figures (3.2 -3.3) for moderate and high contrasts on the relaxed shear elastic moduli of phases. On the same figure are described the relative deviations from the exact results of the overall shear storage modulus and loss factor assessed with FFT full-field computations for different grid refinements at glassy state. It is clearly seen that the numerical computations perfectly match the exact results over all the frequency range for moderate contrast. Similarly to Lebensohn et al. [START_REF] Lebensohn | Study of the antiplane deformation of linear 2-d polycrystals with different microstructures[END_REF] in the case of purely viscous checkerboard polycrystals, the FFT full-field computations of the overall viscoelastic properties quickly converge to the theoretical solutions although they saturate at distinct levels.

Depending on the grid refinement of the microstructure, the levels arise for different number of iterations. Slight deviations between exact and numerical results can be remarked in the case of high contrast. Note that the FFT full-field computations of the overall shear modulus and loss factor converge slower to the exact results and the levels reached for different grid refinements are closer to each other. It is worth noting that the convergence of the numerical simulations to the exact results strongly depends on the mechanical contrast between constituents. Getting closer to the exact results would therefore require finer grid refinements for high contrast materials. 

Numerical convergence for composite materials

Theoretical convergence requirements and optimal expressions of the homogeneous reference medium have been derived for different FFT-based schemes in the case of composite media made of isotropic elastic constituents [START_REF] Moulinec | A numerical method for computing the overall response of nonlinear composites with complex microstructure[END_REF][START_REF] Eyre | A fast numerical scheme for computing the response of composites using grid refinement[END_REF][START_REF] Michel | A computational method based on augmented Lagrangians and fast Fourier transforms for composites with high contrast[END_REF].

Regarding particle-reinforced composite materials, the theoretical results have been investigated [START_REF] Moulinec | Comparison of three accelerated fft-based schemes for computing the mechanical response of composite materials[END_REF] by studying the convergence rate of three well-known FFT-based methods (augmented Lagrangian, polarization-based and accelerated schemes) for various mechanical contrasts between the constituents. Although delivering useful information, the latter only apply to composite media made of isotropic elastic phases. Following the works of Moulinec and Silva [START_REF] Moulinec | Comparison of three accelerated fft-based schemes for computing the mechanical response of composite materials[END_REF], we carry out numerical simulations on particulate composite materials for which no theoretical convergence conditions are valid.

Computational framework

Numerical simulations are performed on microstructures generated by random sequential adsorption (RSA) [START_REF] Widom | Random Sequential Addition of Hard Spheres to a Volume[END_REF][START_REF] Torquato | Random heterogeneous materials: microstructure and macroscopic properties[END_REF] algorithm which consists in placing randomly, irreversibly and sequentially nonoverlapping objects into a given volume (cf. Appendix E). The resulting microstructures are characterized by the same volume fraction of inclusions but different microstructural characteristics :

-The microstructure discretized with a regular grid of 55 3 voxels consisting of a matrix reinforced by 1 spherical inclusion in a cubic array with a volume fraction of 30%.

-The microstructure discretized with a regular grid of 85 3 voxels consisting of a matrix reinforced by 10 spherical inclusions with a volume fraction of 30%.

-The microstructure discretized with a regular grid of 105 3 voxels consisting of a matrix reinforced by 100 spherical inclusions with a volume fraction of 30%.

The microstructures shown in Figure (3.4) are composed of an isotropic elastic matrix reinforced by either isotropic or anisotropic elastic inclusions of TATB polycrystals and single crystals respectively1 . It should be mentioned that the behaviour of TATB polycrystals is macroscopically isotropic for high numbers of crystalline orientations while TATB single crystals are characterized by highly anisotropic mechanical features [START_REF] Bedrov | A molecular dynamics simulation study of crystalline 1, 3, 5-triamino-2, 4, 6trinitrobenzene as a function of pressure and temperature[END_REF][START_REF] Mathew | Generalized stacking fault energies in the basal plane of triclinic molecular crystal 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (tatb)[END_REF].

The elastic stiffness tensor of TATB polycrystals reads :

L TATB iso = κ TATB iso J + µ TATB iso K with κ TATB iso = 16
.92 GPa and µ TATB iso = 6.72 GPa (3.37) while the elastic stiffness tensor of TATB single crystals is expressed in the form2 : 

L T =            65 
           (3.38)
The triclinic elastic stiffness tensor L T is expressed in the direct orthogonal spatial system (e 1 ,e 2 ,e 3 ) where e 1 coincides with the axis a of the crystallographic orientation and e 2 is coplanar to a and b axes.

Note that the mechanical contrast between two constituents is described as follows :

C = L (1) :: J L (2) :: J -1 = L (1) :: K L (2) ::

K -1 (3.39) 
For each configuration, the unit-cell is subjected to uniaxial traction with the following macroscopic strain ε = ε 11 e 1 ⊗ e 1 . As pointed out in [START_REF] Moulinec | Comparison of three accelerated fft-based schemes for computing the mechanical response of composite materials[END_REF], the comparison between different FFT-based methods and values of the homogeneous reference medium is only relevant for small tolerance criteria. All the computations are therefore performed with the precision 10 -10 for the equilibrium, compatibility and loading conditions. Considering one given computation on each microstructure, either composed by isotropic or anisotropic elastic inclusions, the error on equilibrium at each iteration is highlighted in Figure (3.5). The three curves are characterized by two distinct regimes regardless of the inclusion behaviour. After exhibiting a few oscillations at small number of iterations, the curves become linear and parallel until achieving convergence. In the same way to Moulinec and Silva [START_REF] Moulinec | Comparison of three accelerated fft-based schemes for computing the mechanical response of composite materials[END_REF], the convergence rate does not seem to depend on the microstructure. Despite similar trends, it should be noted that the convergence rate for anisotropic constituents is approximately three times higher than the one of isotropic constituents.

The error on equilibrium at each iteration for well-known FFT-based schemes with optimal parameters for the homogeneous reference medium is reported in Figure (3.6). Characterized by similar transient regimes at small numbers of iterations, it is clearly seen that the accelerated scheme exhibits the fastest convergence rate. By contrast with the accelerated scheme, note that the polarization-based scheme requires a few more dozen iterations to achieve the same error on equilibrium while the augmented Lagrangian needs a few hundreds more iterations. Optimal homogeneous reference medium L 0 for each scheme.

From isotropic to anisotropic constituents

The deviation from theoretical convergence conditions is investigated by comparing optimal parameters of the homogeneous reference medium for particulate microstructures composed of either isotropic or anisotropic elastic inclusions. The number of iterations required to achieve convergence (for a prescribed tolerance criterion) for different values of the homogeneous reference medium with C = 10, 100 and 1000 are described in Figure (3.7). As mentioned in section (3.4.1), the convergence rate does not depend on the microstructure and the accelerated scheme exhibits the fastest convergence rate. The numerical simulations are thus performed on the microstructure (a) by means of the accelerated scheme.

With respect to the local behaviour of inclusions and the mechanical contrast C, the three curves emphasize relatively constant levels corresponding to optimal convergence conditions in regards to the homogeneous reference medium. It can be remarked for small (C = 10) and moderate (C = 100) contrasts that the number of iterations necessary to achieve convergence is lower in the case of isotropic elastic inclusions. In both cases, the curves exhibit larger constant levels at moderate contrast. For high (C = 1000) contrast, the isotropic and anisotropic cases exhibit similar convergence rates but the anisotropic one converges a bit faster. Microstructure (a). FFT-based method : accelerated scheme.

Incompressibility impact on the convergence rate

The limiting case of incompressible matrix (ν matrix → 0.5) containing anisotropic elastic inclusions is studied. At high contrast C = 1000, the number of iterations required to achieve convergence3 and the optimal bulk κ 0 and shear µ 0 moduli characterizing the homogeneous reference medium for different values of ν matrix are reported in Figure (3.8). The number of iterations at convergence seems characterized by three different regimes. As long as the matrix Poisson ratio ν matrix is comprised between 0 and 0.1, the number of iterations at convergence is constant while it varies linearly between 0.1 and 0.4. When the matrix Poisson ratio exceeds the value 0.4, it can be seen that the number of iterations at convergence increases exponentially. It is worth noting that the number of iterations to reach convergence goes from 2000 for ν matrix = 0.4 to more than 20000 for ν matrix = 0.5. At fixed homogeneous reference medium moduli, the incompressibility of the matrix greatly increases the number of iterations necessary to converge. Furthermore, it is clearly seen that the increase of the matrix Poisson ratio significantly boosts the values of the optimal bulk and shear moduli of the reference medium. When the matrix Poisson ratio is comprised between 0.3 and 0.5, the ratio between the moduli of the homogeneous reference medium and the matrix goes from 55 to more than 300. 

Conclusion

Initially introduced by Moulinec and Suquet [START_REF] Moulinec | A fast numerical method for computing the linear and nonlinear mechanical properties of composites[END_REF][START_REF] Moulinec | A numerical method for computing the overall response of nonlinear composites with complex microstructure[END_REF], the use of FFT-based numerical homogenization methods is generally more efficient than finite element (FEM) or boundary element (BEM) methods to determine the overall behaviour of highly heterogeneous materials. After describing the basic features of FFT-based methods in the context of linear elasticity, we extended these methods to time-dependent viscoelastic behaviours by means of the correspondence principle [START_REF] Hashin | Viscoelastic behavior of heterogeneous media[END_REF][START_REF] Mandel | Cours de mécanique des milieux continus[END_REF]. The accuracy of the calculations has been assessed through the analytical solution for 2D checkerboard polycrystals undergoing antiplane deformation. Note that the accuracy and the convergence rate of such methods strongly depend on the mechanical contrast between the local constituents. Afterwards, we investigated empirical convergence conditions regarding particulate composite materials composed of either isotropic or anisotropic elastic inclusions embedded in an elastic matrix. Different optimal configurations of the homogeneous reference media have been noted depending on the mechanical contrast between constituents. Finally, it has been shown that the Poisson ratio of the matrix significantly impacts the convergence rate of FFT-based methods in the limiting case of incompressibility.

Homogenization estimates for particulate-reinforced composites

The micromechanical modeling of the time harmonic response of viscoelastic composite materials made of fractional Zener constituents is presented. Based on exact results involving the intraphase second moments of the strain field at asymptotic elastic states, the effective relaxation spectrum of the mixture of fractional Zener phases is approximated by the sum of two Dirac delta functions. A new model to estimate the response of viscoelastic two-phase media is proposed and its accuracy is assessed by means of FFT full-field computations. 

Application to particle

Introduction

Taking advantage of the time dependence of polymers, the overall behaviour of polymerbased composite materials is usually described in the viscoelastic framework. The mixture of local viscous phases generating macroscopic dissipative effects [START_REF] Papanicolaou | Prediction of the non-linear viscoelastic response of unidirectional fiber composites[END_REF][START_REF] Houshyar | Tensile creep behaviour of polypropylene fibre reinforced polypropylene composites[END_REF][START_REF] Chabert | Filler-filler interactions and viscoelastic behavior of polymer nanocomposites[END_REF], the study of reinforced polymers has been flourishing in order to tackle vibration damping and noise problems [START_REF] Jones | Handbook of viscoelastic vibration damping[END_REF][START_REF] Ward | Mechanical properties of solid polymers[END_REF]. Mostly based on the correspondence principle [START_REF] Hashin | Viscoelastic behavior of heterogeneous media[END_REF][START_REF] Mandel | Cours de mécanique des milieux continus[END_REF] which consists in substituting linear viscoelastic problems by symbolic elastic ones in the spectral domain, various micromechanical-based models have been extended to predict the overall response of viscoelastic composite materials [START_REF] Laws | Self-consistent estimates for the viscoelastic creep compliances of composite materials[END_REF][START_REF] Brinson | Comparison of micromechanics methods for effective properties of multiphase viscoelastic composites[END_REF][START_REF] Debotton | The response of a fiber-reinforced composite with a viscoelastic matrix phase[END_REF]. It should be mentioned that variational principles were derived in the context of complex viscoelasticity for particulate composite materials by Christensen [START_REF] Christensen | Viscoelastic properties of heterogeneous media[END_REF] and wide heterogeneous media by Cherkaev and Gibiansky [START_REF] Cherkaev | Variational principles for complex conductivity, viscoelasticity, and similar problems in media with complex moduli[END_REF] resulting in the establishment of explicit complex bounds on the effective bulk and shear moduli [START_REF] Gibiansky | On the effective viscoelastic moduli of two-phase media. i. rigorous bounds on the complex bulk modulus[END_REF][START_REF] Milton | On the effective viscoelastic moduli of two-phase media. ii. rigorous bounds on the complex shear modulus in three dimensions[END_REF][START_REF] Gibiansky | On the effective viscoelastic moduli of two-phase media. iii. rigorous bounds on the complex shear modulus in two dimensions[END_REF]. New exact relations have recently been obtained on the asymptotic behaviour of viscoelastic composite materials made of classical linear viscoelastic constituents [START_REF] Suquet | Four exact relations for the effective relaxation function of linear viscoelastic composites[END_REF][START_REF] Brenner | Overall response of viscoelastic composites and polycrystals: exact asymptotic relations and approximate estimates[END_REF][START_REF] Gallican | Exact asymptotic relations for the effective response of linear viscoelastic heterogeneous media[END_REF]. They imply conditions which have to be fulfilled by particular time integrals of the effective relaxation spectrum. Besides, they have been used to propose "minimal" approximate viscoelastic models based on uncoupled asymptotic elastic or viscous homogenization problems [START_REF] Suquet | Four exact relations for the effective relaxation function of linear viscoelastic composites[END_REF][START_REF] Brenner | Overall response of viscoelastic composites and polycrystals: exact asymptotic relations and approximate estimates[END_REF]. As compared with classical linear viscoelasticity, the investigation of the overall response of fractional viscoelastic composite materials based on the correspondence principle received much less attention. It is worth noting that Remillat [START_REF] Remillat | Damping mechanism of polymers filled with elastic particles[END_REF] investigated the overall damping features of reinforced polymers with the GSC estimate while Dinzart and Lipiński [START_REF] Dinzart | Self-consistent approach of the constitutive law of a two-phase visco-elastic material described by fractional derivative models[END_REF] characterized the constitutive law of polymer blend exhibiting fractional Zener behaviours by making use of the SC estimate. In the case of viscoelastic microcracked media, Sevostianov et al. [START_REF] Sevostianov | Effective properties of linear viscoelastic microcracked materials: Application of maxwell homogenization scheme[END_REF] reflected the effect of microcracks on the overall response in terms of fraction-exponential operators.

The time harmonic response of viscoelastic polymer-based composite materials made of fractional Zener phases is thus investigated hereafter. It should be noted that new asymptotic relations on the overall storage modulus and loss factor have been derived in the context of fractional viscoelasticity by means of stationary principles for complex viscoelasticity [START_REF] Cherkaev | Variational principles for complex conductivity, viscoelasticity, and similar problems in media with complex moduli[END_REF]. They lead to exact conditions on time integrals of the effective relaxation spectrum which are related to non-integer derivative and integral of the overall complex viscoelastic moduli. By making use of these exact results, one may build approximate homogenization models over the whole frequency range. In contrast to the common use of the correspondence principle [START_REF] Hashin | Viscoelastic behavior of heterogeneous media[END_REF][START_REF] Mandel | Cours de mécanique des milieux continus[END_REF], we developed an approximate viscoelastic homogenization model which only requires to solve the glassy and relaxed elastic heterogeneous problems. An application to high contrast reinforced viscoelastic materials is proposed and the relevance of the model is assessed by making use of FFT full-field computations.

Approximate viscoelastic homogenization model

Evaluation of the overall relaxation spectrum

The assessment of the overall relaxation function needs to approximate the unknown overall relaxation spectrum G(τ σ ). The most common methods usually use box functions, wedge functions or the sum of Dirac delta functions [START_REF] Tschoegl | The phenomenological theory of linear viscoelastic behavior: an introduction[END_REF][START_REF] Eyre | Bounds for interpolating complex effective moduli of viscoelastic materials from measured data[END_REF]. The latter case consists in relying on the line spectrum :

G(τ σ ) = K k=1 G k δ(τ σ -τ σ k ) (4.1)
which results in the following overall relaxation function :

L α (t) = L er + K k=1 G k E α [-(t/τ σ k ) α ] (4.2)
Note that Eq.( 4.2) actually corresponds to the fractional generalized Maxwell model [START_REF] Koeller | Applications of fractional calculus to the theory of viscoelasticity[END_REF].

Based on the definition of the Mittag-Leffler functions stating that E 1 (t) = e t , the previous equation is reduced to the usual Dirichlet-Prony series in the case of classical (α = 1) viscoelasticity. The overall storage and loss moduli tensors of Eq.( 4.2) are given by :

                 L α (ω) = L er + K k=1 1 q k (ωτ σ k ) α cos πα 2 + (ωτ σ k ) 2α G k L α (ω) = K k=1 1 q k (ωτ σ k ) α sin πα 2 G k , (4.3) with q k = 1 + 2 (ωτ σ k ) α cos (πα/2) + (ωτ σ k ) 2α .
Based on the development of Eq.(4.1) and the restrictions on the time integrals of the overall relaxation spectrum for the mixture of fractional Zener constituents discussed in section (2.3.2), it follows that :

                           K k=1 G k = L eg -L er ε : K k=1 τ α σ k G k : ε = s c s L (s) f :: ε r ⊗ ε r (s) ε : K k=1 τ -α σ k G k : ε = s c s G (s) : L (s) f -1 : G (s) :: ε g ⊗ ε g (s) (4.4)
Depending on the class of isotropy of the phases, the results can be scalar or tensorial. Note that they can be used to construct minimal approximations of the overall relaxation spectrum G(τ σ ) for the mixture of fractional Zener constituents without any assumption on the microstructure.

New model for isotropic composite materials

The previous tensorial conditions are now specified for viscoelastic composite materials with overall and local isotropy. In such circumstances, the overall relaxation spectrum can be expressed in terms of :

G(τ σ ) = K k=1 3 κ k δ(τ -τ κ σ k ) J + 2 µ k δ(τ -τ µ σ k ) K (4.5)
where J and K correspond to the isotropic projectors on hydrostatic and deviatoric symmetric second-order tensors respectively. Based on Eq.(4.5), the approximate form of the overall relaxation function reads :

L α (t) L (h) α (t) J + L (d) α (t) K (4.6) with L (h) α and L (d)
α are the hydrostatic and deviatoric parts of the overall relaxation function respectively. The latter are expressed in the form :

                 L (h) α (t) = 3 κ er + K k=1 κ k E α -(t/τ κ σ k ) α L (d) α (t) = 2 µ er + K k=1 µ k E α -(t/τ µ σ k ) α (4.7)
In the case of elastic composite materials, the second moment per phase of the strain field is classically obtained from the partial derivatives of the overall energy with respect to the phase elastic moduli [START_REF] Bobeth | Field fluctuations in multicomponent mixtures[END_REF][START_REF] Kreher | Residual stresses and stored elastic energy of composites and polycrystals[END_REF][START_REF] Ponte-Castaneda | Nonlinear composites[END_REF]. By considering local and overall isotropy, the deviatoric and hydrostatic parts of the second moment of the strain field of phase (s) are given by :

             ε 2 eq (s) = 1 c s 1 3 ∂ κ ∂µ (s) tr(ε) 2 + ∂ µ ∂µ (s) ε 2 eq with ε 2 eq = 2 3 K :: (ε ⊗ ε) tr(ε) 2 (s) = 1 c s ∂ κ ∂κ (s) tr(ε) 2 + 3 ∂ µ ∂κ (s) ε 2 eq with tr(ε) 2 = 3 J :: (ε ⊗ ε) (4.8)
From Eqs.(4.5) and (4.8), the tensorial relations (4.4) can be written in terms of :

                           K k=1 κ k = κ eg -κ er K k=1 κ k τ κ σ k α = N s=1 κ (s) eg -κ (s) er τ κ (s) σ α tr(ε) 2 (s) er K k=1 κ k τ κ σ k -α = N s=1 κ (s) eg -κ (s) er τ κ (s) σ -α tr(ε 2 ) (s) eg (4.9) 
and

                           K k=1 µ k = µ eg -µ er K k=1 µ k τ µ σ k α = N s=1 µ (s) eg -µ (s) er τ µ (s) σ α ε 2 eq (s) er K k=1 µ k τ µ σ k -α = N s=1 µ (s) eg -µ (s) er τ µ (s) σ -α ε 2 eq (s) eg (4.10)
For composite materials whose local bulk relaxation is negligible, it is assumed that the viscoelastic constituents are purely elastic in dilatation and viscoelastic in shear. The fractional relaxation function the phase (s) thus reads :

L (s) α (t) = 3 κ (s) e J + 2 µ (s) er + (µ (s) eg -µ (s) er )E α -(t/τ µ (s) σ ) α K (4.11)
It is well-known that the overall response is viscoelastic both in dilatation and shear [START_REF] Hashin | Viscoelastic behavior of heterogeneous media[END_REF].

The overall viscoelastic bulk response actually arises because of the contrast between the elastic bulk moduli of the phases which implies the deviation of the local fields from the purely hydrostatic state. Nonetheless, the bulk viscoelasticity of the composite remains rather small and will be neglected in the sequel (i.e. κ k = 0). The approximate form of the overall relaxation function is therefore given by :

L α (t) 3 κ e J + 2 µ er + K k=1 µ k E α -t/τ µ σ k α K. (4.12) 
Since only fractional shear relaxation times are now involved, we will skip the upper index µ and use the notation τ α σ k hereafter. Given the assumptions made on the local and overall viscoelastic moduli, only the phase average of the square of the equivalent strain (4.8) 1 is useful for the present study. Following Eq.(4.10), we obtain :

                             K k=1 µ k = µ eg -µ er K k=1 µ k τ α σ k = N s=1 µ (s) eg -µ (s) er τ (s) α σ ∂ µ er ∂µ (s) er K k=1 µ k τ -α σ k = N s=1 µ (s) eg -µ (s) er τ (s) -α σ ∂ µ eg ∂µ (s) eg (4.13)
The minimal number of terms required in the generalized Dirichlet-Prony series to fulfill the three relations of Eq.(4.13) is thus K = 2. It is worth noting that the assessment the four parameters (µ 1 , µ 2 , τ α σ 1 , τ α σ 2 ) needs an additional relation.

That is not the case for the mixture of classical Maxwell and Kelvin-Voigt constituents for which the number of terms in the series can be chosen so that the number of unknown parameters perfectly matches the number of equations [START_REF] Suquet | Four exact relations for the effective relaxation function of linear viscoelastic composites[END_REF][START_REF] Brenner | Overall response of viscoelastic composites and polycrystals: exact asymptotic relations and approximate estimates[END_REF]. The minimal approximation is assessed in the sequel for particulate two-phase composite materials.

Application to particle-reinforced composite materials 4.2.1 Approximate viscoelastic model parameters

By considering composite media made of the viscoelastic matrix (phase 1) either reinforced by spherical elastic inclusions (phase 2) or weakened by spherical voids (phase 3) randomly distributed, the system of Eq.(4.13) can be reduced to :

µ 1 + µ 2 = A, µ 1 τ α σ 1 + µ 2 τ α σ 2 = B and µ 1 τ α σ 1 + µ 2 τ α σ 2 = C (4.14)
where A, B and C are parameters whose expressions read :

A = µ eg -µ er , B = µ (1)
egµ (1) er τ (1) σ α ∂ µ er ∂µ

(1) er and C = µ (1) egµ (1) er τ (1) σ

-α ∂ µ eg ∂µ (1) eg (4.15) 
Based on the least-square optimization of the fractional relaxation time τ α σ 1 with respect to the MT and GSC models as shown in Figure (4.1) for the mixture of classical Zener constituents, we set the latter to be equal to the fractional relaxation time of the matrix phase i.e. τ α σ 1 = τ

(1) σ α . The three other parameters are defined in terms of : Zener constituents 1 with respect to the MT and GSC estimates. 1 The relaxation time of the matrix phase is defined as τ

τ α σ 2 = Aτ α σ 1 -B Cτ α σ 1 -A , µ 2 = B -Aτ α σ 1 τ α σ 2 -τ α σ 1 and µ 1 = A -µ 2 (4.16) 
(1) σ = 0.0265 s.

Mean-field homogenization estimates

The approximate viscoelastic homogenization model only needs to determine the asymptotic overall elastic moduli and their derivatives with respect to the phase moduli at glassy and relaxed regimes. Such task is achieved in the following by resorting to mean-field homogenization methods whose relevance is assessed with FFT full-field computations. It should be mentioned that the Hashin-Shtrikman bounds for isotropic distributions of the phases [START_REF] Willis | Variational and related methods for the overall properties of composites[END_REF] are classically expressed as :

                 κ = κ 1 + c 2 κ 2 -κ 1 1 + c 1 κ 2 -κ 1 κ + κ 1 µ = µ 1 + c 2 µ 2 -µ 1 1 + c 1 µ 2 -µ 1 µ + µ 1 (4.17) 
with κ and µ the bulk and shear moduli of the Hill constraint tensor :

κ = 4 3 µ 0 and µ = µ 0 9κ 0 + 8µ 0 6 (κ 0 + 2µ 0 ) (4.18) 
Note that the choice (κ 0 = κ 1 , µ 0 = µ 1 ) corresponds to the lower Hashin-Shtrikman bound which coincides with the Mori-Tanaka (MT) model [START_REF] Mori | Average stress in matrix and average elastic energy of materials with misfitting inclusions[END_REF] while the choice (κ 0 = κ, µ 0 = µ) defines the self-consistent (SC) estimate [START_REF] Hill | A self-consistent mechanics of composite materials[END_REF]. Another widely used model to assess the overall response of particulate composite materials is the generalized self-consistent (GSC) model [START_REF] Christensen | Solutions for effective shear properties in three phase sphere and cylinder models[END_REF][START_REF] Hervé | Modelling the effective behavior of nonlinear matrix-inclusion composites[END_REF] which takes into account coated spherical particles. The effective bulk modulus is actually the one of the Hashin composite sphere assemblage which attains the lower Hashin-Shtrikman bound while the effective shear modulus is solution of a quadratic equation. It has been shown that the model correctly matches experimental results on the effective (shear) viscosity of polydisperse suspensions with rigid particles [START_REF] Christensen | A critical evaluation for a class of micro-mechanics models[END_REF]. It is noteworthy that comparisons have been reported between classical mean-field estimates and unit-cell computations for composite media with monodisperse spherical particles in the elastic case by Ghossein et al. [START_REF] Ghossein | A comprehensive validation of analytical homogenization models: The case of ellipsoidal particles reinforced composites[END_REF].

Fourier transform-based numerical homogenization

The accuracy of viscoelastic mean-field estimates in the case of particulate composite materials is assessed by means of microstructural-level computations carried out on unit-cells containing random distributions of polydisperse particles. Following the correspondence principle [START_REF] Hashin | Viscoelastic behavior of heterogeneous media[END_REF][START_REF] Mandel | Cours de mécanique des milieux continus[END_REF], the overall complex viscoelastic behaviour can be obtained by making use of the fast Fourier transform (FFT) numerical scheme [START_REF] Moulinec | A numerical method for computing the overall response of nonlinear composites with complex microstructure[END_REF][START_REF] Moulinec | Comparison of three accelerated fft-based schemes for computing the mechanical response of composite materials[END_REF][START_REF] Figliuzzi | Modelling the microstructure and the viscoelastic behaviour of carbon black filled rubber materials from 3d simulations[END_REF].

Consider the symbolic elastic heterogeneous problem with periodic boundary conditions corresponding to the stationary harmonic regime at angular frequency ω :

                     σ * (x, iω) = L * α (x, iω) : ε * (x, iω), ∀(x, ω) ∈ Ω × [0; +∞[ div σ * = 0, curl( t curl ε * ) = 0, ∀(x, ω) ∈ Ω × [0; +∞[ ε * = 1 2 ∇u * + t ∇u * , ∀(x, ω) ∈ Ω × [0; +∞[ ε * = ε * with ε * # and σ * # (4.19)
where the complex fields (σ * , ε * , L * α ) are the time LC transforms of (σ, ε, L α ).

By introducing the homogeneous reference medium tensor L 0 , the local constitutive law can be rewritten in terms of :

     σ * (x, iω) = L 0 : ε * (x, iω) + τ * (x, iω) τ * (x, iω) = L * α (x, iω) -L 0 : ε(x, iω) (4.20) 
with τ * (x, iω) the polarization field. Accordingly, the complex strain field solution is expressed in the real and Fourier domains respectively as :

     ε * (x, iω) = ε * -Γ 0 * τ * (x, iω) ε * (ξ, iω) = -Γ 0 : τ * (ξ, iω), ∀ξ = 0, ε * (0, iω) = ε * (4.21)
with ξ the wave vector while Γ 0 is the Fourier transform of the strain Green operator associated with the reference medium tensor L 0 :

Γ 0 = ξ ⊗ κ -1 ⊗ ξ (s) (4.22) 
where κ = ξ • L 0 • ξ refers to the acoustic tensor while the notation [•] (s) indicates the (double) minor symmetrization. To solve the Lippmann-Schwinger equation of Eq.(4.21) 1 in term of the complex strain field ε * (x, iω), we resort to the iterative numerical scheme of Eyre and Milton which is well-suited for high contrast materials [START_REF] Eyre | A fast numerical scheme for computing the response of composites using grid refinement[END_REF][START_REF] Moulinec | Comparison of three accelerated fft-based schemes for computing the mechanical response of composite materials[END_REF]. As pointed out by Figliuzzi et al. [START_REF] Figliuzzi | Modelling the microstructure and the viscoelastic behaviour of carbon black filled rubber materials from 3d simulations[END_REF], it should be mentioned that the homogeneous reference medium tensor L 0 must be real to ensure the symmetry of the physical strain and stress fields (i.e. real parts of the corresponding complex fields). In the case of two-phase composite materials, the optimal choice for the shear and bulk moduli of the isotropic homogeneous reference medium is defined by : κ 0 = Re (κ 1 ) Re (κ 2 ) and µ 0 = Re (µ 1 ) Re (µ 2 ) (4.23)

Overall behaviour of viscoelastic composite materials

Assessment of mean-field models with FFT reference results

We consider two-phase particulate composite materials with a size polydisperse distribution of elastic spherical inclusions embedded in a fractional Zener viscoelastic matrix. The material parameters are given in Table (4 Bulk and shear elastic moduli (κ, µ) are expressed in GPa.

Following the works of Gusev [START_REF] Gusev | Time domain finite element estimates of dynamic stiffness of viscoelastic composites with stiff spherical inclusions[END_REF], the elastic moduli actually correspond to silica particles and typical epoxy resin matrix. It should be noted that the elastic shear moduli contrast vary from 30 in the glassy (ω → +∞) state to 3000 in the relaxed (ω → 0) state. Different distributions of particles in cubic unit-cells with geometric periodic conditions are obtained by using the RSA algorithm [START_REF] Widom | Random Sequential Addition of Hard Spheres to a Volume[END_REF][START_REF] Torquato | Random heterogeneous materials: microstructure and macroscopic properties[END_REF] For the prescribed angular frequency ω, we carry out FFT full-field computations on discretized unit-cells with regular grids of 255 3 and 205 3 voxels for the reinforced particulate composite materials and porous viscoelastic matrix respectively. In the case of the reinforced particulate composite materials, the overall response is averaged over 10 different microstructural realizations for each volume fraction (c = 0.1, 0.3 and 0.5). Note that since the bulk viscoelasticity is neglected, only shear loadings are considered. The overall isotropic complex shear modulus µ * α (iω) = µ α (ω) + i µ α (ω) is defined by averaging the response of the medium subjected to three independent shear loadings. Comparisons between MT, SC, GSC schemes and FFT full-field computations of the overall shear storage modulus and loss factor in the range ω ∈ [10 -2 ; 10 4 ] and ω ∈ [10 -4 ; 10 4 ] are reported in Figures (4.3 -4.4) for classical (α = 1) and fractional (α = 0.7) viscoelasticity respectively. At low volume fraction of particles, the three mean-field schemes almost overlap and fairly match the numerical results for both cases. With increasing the volume fraction of particles, it is clearly seen that only the GSC scheme gives accurate results. It should be noted that such results are consistent with the ones obtained by Gusev [START_REF] Gusev | Time domain finite element estimates of dynamic stiffness of viscoelastic composites with stiff spherical inclusions[END_REF] by using finite element computations. Besides, it is worth noting that the SC scheme presents a percolation threshold and therefore leads to unrealistic quasi-elastic overall response for 50% of particles because of the high contrast (i.e. almost rigid particles).

Approximate viscoelastic GSC models

Based on the previous results, the GSC estimate is thus selected to build the approximate viscoelastic homogenization model which only makes use of the linear elastic homogenization problems at low and high frequencies. The approximation of the real and imaginary parts of the overall complex shear modulus µ * α (iω) reads :

                 Re( µ * α (iω)) = µ α (ω) = µ er + 2 k=1 1 q k (ωτ σ k ) α cos πα 2 + (ωτ σ k ) 2α µ k Im( µ * α (iω)) = µ α (ω) = 2 k=1 1 q k (ωτ σ k ) α sin πα 2 µ k (4.24) with q k = 1 + 2 (ωτ σ k ) α cos πα 2 + (ωτ σ k ) 2α .
The unknown parameters of the expansions in series are obtained by means of Eq.(4.16) where the closed-form GSC estimate [START_REF] Christensen | Solutions for effective shear properties in three phase sphere and cylinder models[END_REF][START_REF] Hervé | Modelling the effective behavior of nonlinear matrix-inclusion composites[END_REF] is used to assess the overall glassy µ eg and relaxed µ er elastic shear moduli. The prediction of the model is compared with full-field FFT computations in the case of particle-reinforced composite and porous materials whose matrix is described successively by classical (α = 1) and fractional (α = 0.7) Zener model. Note that the elastic moduli of the void phase are not strictly set to zero. A scaling factor of 10 -4 has been chosen with respect to the matrix moduli in order to maintain the efficiency of the iterative numerical scheme of Eyre and Milton [START_REF] Eyre | A fast numerical scheme for computing the response of composites using grid refinement[END_REF].

Regarding particle-reinforced composite materials, it can be easily seen that the GSC-based approximate viscoelastic homogenization model delivers fairly good results. At low volume fraction of particles, the model perfectly coincides with the numerical results over all the frequency range while we can observe slight discrepancies in the glass transition for the overall loss factor with the increase of the volume fraction of particles as highlighted by Figures (4.5 -4.6). In the case of porous viscoelastic media, the model perfectly fits with the FFT full-field computations independently of the volume fraction of particles over all the frequency range.

Approximating the overall relaxation spectrum by two Dirac delta functions, the accuracy of the method is easily interpreted by the fact that the effective relaxation spectrum of porous viscoelastic materials is only composed by the matrix relaxation time [START_REF] Hashin | Complex moduli of viscoelastic composites-i. general theory and application to particulate composites[END_REF]. This feature has already been seen in section (2.2.3) in which exact expressions of the overall relaxation spectrum were derived for particular microstructures. Although only depicting the accuracy of the GSC-based approximate viscoelastic homogenization model with respect to FFT simulations, the GSC and GSC-based approximations are actually quite close. It is worth mentioning that the shear relaxation spectrum of the GSC estimate is continuous [START_REF] Beurthey | Structural morphology and relaxation spectra of viscoelastic heterogeneous materials[END_REF] while the one of the GSC-based model is discrete and only characterized by the sum of two Dirac functions. 

Disparity with the GSC estimate

Despite being composed by only two Dirac delta functions, the overall relaxation spectrum of the GSC-based approximate viscoelastic homogenization model is particularly in good agreement with the one of the GSC estimate. The relative deviations from the GSC estimate of the overall shear modulus and loss factor of reinforced particulate composite materials with various volume fractions of particles are shown in Figure (4.7). The discrepancy between GSC and GSC-based models is rather low at low volume fraction of particles. With increasing the volume fraction of particles, the relative deviation obviously increases and it is almost equal to 25% during the glass transition at c = 0.7 for both cases.

Note that the GSC-based model is only characterized by the solution of two elastic asymptotic heterogeneous problems, the existence of such significant deviations may be correlated to numerical errors occurring within the calculation of the intraphase second moments of the strain fields solutions. 

Conclusion

This study contributes to the description of the overall properties of composite materials made of fractional viscoelastic constituents. By making use of exact results on the effective relaxation spectrum which are related to non-integer derivative and integral of the complex viscoelastic moduli, an approximate model has been proposed for the overall complex moduli by describing the relaxation spectrum of the medium with only two Dirac delta functions. Note that the parameters of such approximation depend on the local features of the constituents and the intraphase second moments of the strain fields solutions of purely elastic heterogeneous problems at low and high frequencies. In the case of particulate composite materials with polydisperse spherical elastic particles or voids, the comparison of the approximate model with FFT reference results shows that it delivers accurate estimations in the whole frequency range.

Modeling the time harmonic response of TATB-based explosives

This chapter aims at describing the time harmonic response of TATB-based pressed polymer-bonded explosives by means of multiscale modeling. After introducing the different features of TATB single crystals, the overall response of the viscoelastic composite materials is assessed through two main steps On the one hand, the effective elasticity of binder-free TATB polycrystals is investigated depending on various morphological parameters. On the other hand, the behaviour of TATB-based pressed explosives is evaluated with mean-field estimates using the binder characterization and the results from the first step. The accuracy of the approach is compared to FFT full-field computations and experimental results. The resulting materials made of TATB and less than 5% of binder can be seen as highly filled polymers or jointed polycrystals. It should be mentioned that after the pressing step, TATB-based pressed explosives exhibit less than 5% of residual porosity as pointed out by white circles on Figure (5.2). Defined as quasi-brittle, the mechanical response of TATB-based pressed explosives is similar to that of rocks or concrete [START_REF] Gasnier | Etude du comportement thermo-mécanique et de l'endommagement d'un matériau énergétique granulaire par méthodes de Fourier[END_REF]. Regarding thermal aspects, the thermal expansion of such materials may be irreversible and results in dilatancy (i.e. porosity increase). The safety of TATB-based pressed explosives depending on porosity, this phenomenon known as "ratchet growth" has been widely investigated [START_REF] Dallman | Temperature-dependent shock initiation of tatb-based high explosives[END_REF]. Based on cyclic thermal expansion experiments on TATB-based pressed explosives made of various kinds of binder and binder-free, Rizzo et al. [START_REF] Rizzo | Growth of 1, 3, 5-triamino-2, 4, 6,-trinitrobenzene (tatb). ii. control of growth by use of high tg polymeric binders[END_REF] highlighted that the thermal expansion of TATB-based pressed explosives is irreversible while the thermal expansion of local TATB single crystals is purely reversible [START_REF] Kolb | Growth of 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (tatb) i. anisotropic thermal expansion[END_REF]. Due to the strong anisotropy of the thermal expansion of TATB single crystals, the finding was attributed to the growth of internal stresses with temperature change within the randomly oriented polycrystals. Following these microstructural interpretations, microstructure-level simulations [START_REF] Gee | Molecular dynamics investigation of adhesion between tatb surfaces and amorphous fluoropolymers[END_REF][START_REF] Maiti | Irreversible volume growth in polymerbonded powder systems: Effects of crystalline anisotropy, particle size distribution, and binder strength[END_REF] have been carried out at the grain scale. Further investigating the ratchet growth, Maiti et al. [START_REF] Maiti | Irreversible volume growth in polymerbonded powder systems: Effects of crystalline anisotropy, particle size distribution, and binder strength[END_REF] directly related the dilatancy of TATB-based polycrystals to the thermal expansion anisotropy of TATB single crystals. Note that Luscher et al. [START_REF] Luscher | Self-consistent modeling of the influence of texture on thermal expansion in polycrystalline tatb[END_REF] stressed the effect of porosity on the overall thermal expansion coefficients of binder-free TATB-based explosives by means of the SC estimate. Primarily concerned by the ratchet growth, the mechanical response of such materials has been left behind for years. Recent works [START_REF] Ambos | Numerical modeling of the thermal expansion of an energetic material[END_REF][START_REF] Gasnier | A fourier-based numerical homogenization tool for an explosive material[END_REF] investigated the overall thermoelastic behaviour of TATB-based materials made of anisotropic crystalline orientations through FFT full-field computations. Based on virtual microstructure models reproducing quantitatively morphological parameters such as the grain size and shape distributions, they have shown that the simulations clearly overestimated the experimental data. Accordingly, Gasnier et al. [START_REF] Gasnier | Etude du comportement thermo-mécanique et de l'endommagement d'un matériau énergétique granulaire par méthodes de Fourier[END_REF][START_REF] Gasnier | Thermoelastic properties of microcracked polycrystals. part i: Adequacy of fourier-based methods for cracked elastic bodies[END_REF][START_REF] Gasnier | Thermoelastic properties of microcracked polycrystals. part ii: The case of jointed polycrystalline tatb[END_REF] interpreted the discrepancy by the existence of microcracks. Following this assumption, they studied the effect of different types of microcracks until achieving the overall elastic moduli and thermal coefficients of TATB-based pressed materials at low temperature. For higher temperature, the polymer phase jointing TATB single crystals is actually linear viscoelastic. The study of TATB-based pressed explosives for broader ranges of temperature must be performed by making use of viscoelastic homogenization process.

The present chapter intents to determine the overall viscoelastic behaviour of TATBbased pressed explosives by making use of two-step multiscale modeling. By contrast with the works of Gasnier et al. [START_REF] Gasnier | Etude du comportement thermo-mécanique et de l'endommagement d'un matériau énergétique granulaire par méthodes de Fourier[END_REF][START_REF] Gasnier | Thermoelastic properties of microcracked polycrystals. part i: Adequacy of fourier-based methods for cracked elastic bodies[END_REF][START_REF] Gasnier | Thermoelastic properties of microcracked polycrystals. part ii: The case of jointed polycrystalline tatb[END_REF], the effective elasticity of TATB-based polycrystals with and without binder is investigated with respect to various morphological parameters such as the grain aspect ratio, crystallographic texture and spatial orientation. Afterwards, the overall viscoelastic behaviour of TATB-based materials is assessed using mean-field estimates. Following the correspondence principle [START_REF] Hashin | Viscoelastic behavior of heterogeneous media[END_REF][START_REF] Mandel | Cours de mécanique des milieux continus[END_REF] and the results from the previous step, the modeling of TATB-based pressed explosives is carried out through the characterization of the binder with the GSC estimate. The accuracy of the approach is compared to FFT full-field computations and experimental data. Originally determined by Cady and Larson [START_REF] Cady | The crystal structure of 1, 3, 5-triamino-2, 4, 6trinitrobenzene[END_REF] through X-ray diffraction experiments, the structural nature of the TATB single crystal has been extensively investigated [START_REF] Kolb | Growth of 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (tatb) i. anisotropic thermal expansion[END_REF][START_REF] Filippini | The crystal structure of 1, 3, 5-triammo-2, 4, 6trimtrobenzene: Centrosymmetric or non-centrosymmetric?[END_REF][START_REF] Davidson | stubborn" triaminotrinitrobenzene: Unusually high chemical stability of a molecular solid to 150 gpa[END_REF] but no other forms than the triclinic form has been identified ever since. It should be mentioned that Stevens et al. [START_REF] Stevens | Hydrostatic compression curve for triamino-trinitrobenzene determined to 13.0 gpa with powder x-ray diffraction[END_REF] obtained the hydrostatic compression behaviour of the TATB single crystal up to 13 GPa while Plisson et al. [START_REF] Plisson | Equation of state of 1, 3, 5-triamino-2, 4, 6-trinitrobenzene up to 66 gpa[END_REF] identified its constitutive law for pressures between 0 and 66 GPa by means of X-ray diffraction experiments with diamond anvil cells. Some experimental unit-cell parameters are reported in Table ( 

Some features of TATB single crystals

Mechanical characteristics

Despite assuming the anisotropic graphitic-like molecular stacking of TATB monocrystals to be responsible for its highly anisotropic structure, very few experiments at the singlecrystal scale have been carried out due to the difficulty to achieve high-quality samples allowing to perform standard mechanical characterization experiments. The mechanical properties of TATB single crystals are therefore obtained by means of numerical modeling tools such as Monte-Carlo (MC) or molecular dynamics (MD) simulations. No relevant experimental results have been obtained so far.

Following hybrid MC/MD simulations, Bedrov et al. [START_REF] Bedrov | A molecular dynamics simulation study of crystalline 1, 3, 5-triamino-2, 4, 6trinitrobenzene as a function of pressure and temperature[END_REF] computed all the elastic components characterizing the TATB single crystal behaviour by making use of the Parrinello-Rahman fluctuation formula [START_REF] Parrinello | Strain fluctuations and elastic constants[END_REF] as shown in Table (5.2). With the help of MD simulations, Valenzano et al. [START_REF] Valenzano | Accurate prediction of second-order elastic constants from first principles: Petn and tatb[END_REF] proposed to take into account long-range interactions for the assessment of particular components of the elastic stiffness tensor. The resulting data overestimated the previous results up to [START_REF] Bobeth | Field fluctuations in multicomponent mixtures[END_REF] [START_REF] Lafourcade | Dislocation core structure at finite temperature inferred by molecular dynamics simulations for 1, 3, 5-triamino-2, 4, 6-trinitrobenzene single crystal[END_REF].

Note that Mathew et al. [START_REF] Mathew | Generalized stacking fault energies in the basal plane of triclinic molecular crystal 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (tatb)[END_REF] computed it by including covalent bond stretching in the potential described in [START_REF] Bedrov | A molecular dynamics simulation study of crystalline 1, 3, 5-triamino-2, 4, 6trinitrobenzene as a function of pressure and temperature[END_REF] while Rykounov [START_REF] Rykounov | Investigation of the pressure dependent thermodynamic and elastic properties of 1, 3, 5-triamino-2, 4, 6-trinitrobenzene using dispersion corrected density functional theory[END_REF] used DFT-D2 dispersion corrections [START_REF] Grimme | Semiempirical gga-type density functional constructed with a long-range dispersion correction[END_REF].

Both methods overestimated the data of Bedrov et al. [START_REF] Bedrov | A molecular dynamics simulation study of crystalline 1, 3, 5-triamino-2, 4, 6trinitrobenzene as a function of pressure and temperature[END_REF]. New results have been obtained by Lafourcade et al. [START_REF] Lafourcade | Dislocation core structure at finite temperature inferred by molecular dynamics simulations for 1, 3, 5-triamino-2, 4, 6-trinitrobenzene single crystal[END_REF] with the Parrinello-Rahman method reducing the values of the components L 11 and L 22 by 24 and 19% respectively. It should be remarked that all cases clearly reflect the anisotropic behaviour of TATB single crystals although the elastic behaviour is relatively close to the transverse isotropic symmetry.

Modeling the elasticity of TATB-based explosives

TATB-based pressed explosives are manufactured by coating TATB powder with small amounts of polymer and isostatically pressing the coated powder at high pressures. The resulting slightly porous materials correspond to TATB polycrystals jointed by the polymer phase that acts as binder between TATB grains. Recently investigated [START_REF] Ambos | Numerical modeling of the thermal expansion of an energetic material[END_REF][START_REF] Gasnier | A fourier-based numerical homogenization tool for an explosive material[END_REF] as perfectly bonded TATB polycrystals (i.e. by neglecting porosity) through FFT full-field computations, it has been shown that the numerical results significantly overestimated the experimental data. Noting the existence of porosity, Gasnier et al. [START_REF] Gasnier | Thermoelastic properties of microcracked polycrystals. part ii: The case of jointed polycrystalline tatb[END_REF] interpreted the discrepancy by the presence of intragranular microcracks with random orientations in the pristine materials. The effect of populations of microcracks in binder-free TATB polycrystals has been assessed by making use of self-consistent schemes combining both crystal anisotropy and cracks [START_REF] Berryman | Bounds and self-consistent estimates for elastic constants of random polycrystals with hexagonal, trigonal, and tetragonal symmetries[END_REF][START_REF] Gasnier | Thermoelastic properties of microcracked polycrystals. part ii: The case of jointed polycrystalline tatb[END_REF][START_REF] Willot | The thermoelastic response of cracked polycrystals with hexagonal symmetry[END_REF]. Mostly focusing on the damaging effect of microcracks, these models are actually limited regarding other microstructural parameters. We thus propose to study the impact of the grain aspect ratio, crystallographic texture and spatial orientation on the overall response of TATB-based polycrystals by extending the classical SC estimate.

Behaviour of polycrystals with spherical grains

Local fields in linear elastic composite materials

By contrast with full-field numerical methods, the statistical description of the microstructure with mean-field estimates is incomplete. In regards to polycrystalline materials, the heterogeneity is related to the existence of different crystalline orientations (or mechanical phases). Each mechanical phase (r) is defined by the volume Ω (r) and its spatial distribution is defined by the characteristic function χ (r) (x). It is thus possible to characterize elastic polycrystals as composite materials made of N crystalline orientations such as :

L(x) = N r=1 L (r) χ (r) (x) (5.1)
where L (r) refers to the elastic stiffness tensor of the mechanical phase (r). The microstructure of polycrystalline materials is statistically described by n-point correlation functions of the characteristic functions. Note that all the crystalline orientations are on the same footing, the SC estimate [START_REF] Hershey | The elasticity of an isotropic aggregate of anisotropic cubic crystals[END_REF] is therefore well-suited for that type of microstructures.

As mentioned in section (2.1.1), the localization problem linking the local strain field ε(x) to the overall strain field ε cannot be solved. However, the use of the statistical description of the microstructure and the uniformity per phase of the local behaviour allows to tackle the problem by only considering the average localization for each crystalline orientation [START_REF] Brenner | Elastic anisotropy and yield surface estimates of polycrystals[END_REF].

Taking into account the ellipsoidal two-point correlation function [START_REF] Willis | Bounds and self-consistent estimates for the overall properties of anisotropic composites[END_REF], the overall stiffness tensor can be derived using the classical Eshelby solution [START_REF] Eshelby | The determination of the elastic field of an ellipsoidal inclusion, and related problems[END_REF] for an ellipsoidal inclusion embedded in an infinite homogeneous linear medium subjected to homogeneous loadings.

The SC estimate of the overall behaviour thus reads :

L + L -1 = (L + L ) -1 with L = P -1 -L (5.2)
At the local scale, Eq.( 5.2) delivers information about the average fields per crystalline orientation. The local average strain tensor is expressed in terms of :

ε (r) = L (r) + L -1 : L + L : ε (5.3)
while the local average stress tensor can be obtained using the constitutive law :

σ (r) = L (r) : ε (r) (5.4) 
It should be remarked that the statistical description of the local mechanical fields is not only limited to first-order information in the mean-field framework. Fields fluctuations can also be obtained by making use of the homogenization process by considering partial derivatives of the effective elastic energy with respect to the local elastic behaviour [START_REF] Bobeth | Static elastic and thermoelastic field fluctuations in multiphase composites[END_REF][START_REF] Kreher | Residual stresses and stored elastic energy of composites and polycrystals[END_REF][START_REF] Ponte-Castaneda | Nonlinear composites[END_REF]. It results from the quadratic dependence of the elastic energy on the stress and strain fields. It is noteworthy that the intraphase second moment of the strain field for the crystalline orientation (r) is given by :

ε ⊗ ε (r) ijkl = 1 c r ε : ∂ L ∂L (r) ijkl : ε (5.5)
As described by Brenner et al. [START_REF] Brenner | Elastic anisotropy and yield surface estimates of polycrystals[END_REF], the evaluation of the intraphase second moment of the strain field requires two steps. On the one hand, it is necessary to solve the homogenization problem described in Eq.(5.2). On the other hand, the derivatives of Eq.(5.5) have to be assessed. The partial derivatives of Eq.(5. Note that Eq.(5.6) corresponds to a linear system of equations allowing to obtain ∂ L/∂L (r)

ijkl . Using Kelvin notation to represent symmetric fourth-order tensors in 3D by symmetric second-order tensors in six dimensions [START_REF] Mehrabadi | Eigentensors of linear anisotropic elastic materials[END_REF], the previous equation can be rewritten as :

∆ IJKL ∂ LKL ∂ L(r) P Q = Φ (r),P Q IJ (5.7)
with the following terms :

                       ∆ IJKL = FIK F LJ + F IM Q MNKL F NJ - N s=1 c s F (s) IM Q MNKL F (s) NJ Q MNKL = -P -1 MS ∂P ST ∂ L KL P -1 TN -δ MK δ NL Φ (r),PQ IJ = 1 2 F (r) IP F (r) QJ + F (r) IQ F (r)
PJ (5.8) where uppercase indices vary between 1 and 6. It is worth noting that the matrix ∆ does not depend on the given phase (r) or the PQ component. Accordingly, it has to be evaluated only once. Nonetheless, they are as many linear systems (5.7) to solve as combinations of the (P, Q, r) indices. Following Eq.(5.8), the assessment of the intraphase second moment of the strain field ε(x) requires to evaluate the Hill tensor P and its derivatives ∂P/∂ L ijkl . These quantities have to be computed numerically in the general context of anisotropy. For that purpose, we recall that the Hill tensor P is defined by the following integral on the unit sphere :

P = 1 4π|Z| |ξ|=1 Γ(ξ)|Z -1 • ξ| -3 dS (5.9)
where Z refers to the second-order tensor defining the assumed ellipsoidal shape of the two-point correlation function of each phase while the Green operator Γ(ξ) is classically expressed in terms of :

Γ = ξ ⊗ κ -1 ⊗ ξ (s)
(5.10)

Brenner et al. [START_REF] Brenner | Elastic anisotropy and yield surface estimates of polycrystals[END_REF] emphasized that the computation of the partial derivatives of the Hill tensor therefore needs the assessment of the quantities :

               ∂Γ ∂ L ijkl = ξ ⊗ ∂κ -1 ∂ L ijkl ⊗ ξ (s) ∂κ -1 ∂ L ijkl = -κ -1 • ∂κ ∂ L ijkl • κ -1 = κ -1 • ξ • ∂ L ∂ L ijkl • ξ κ -1
(5.11)

Note that the Hill tensor and its partial derivatives have been calculated by means of the Gaussian quadrature method.

Overall behaviour in the case of triclinic grains

The elasticity of binder-free TATB polycrystals is assessed by making use of the classical SC estimate desribed in Eq.(5.2). It is assumed that binder-free TATB polycrystals are made of spherical homogeneous TATB grains, the local stiffness tensor L(x) is thus piecewise constant. Similarly to Gasnier et al. [START_REF] Gasnier | Thermoelastic properties of microcracked polycrystals. part ii: The case of jointed polycrystalline tatb[END_REF], the following rotation tensors are used to determine the local elastic stiffness tensor for each grain : (5.12) where L T refers to the elastic moduli expressed in the system of coordinates of the laboratory while R is the constant-per-grain rotation tensor whose rotation angle is uniformly distributed in the interval [0, π]. The behaviour of TATB single crystals corresponds to the one derived by Bedrov et al. [START_REF] Bedrov | A molecular dynamics simulation study of crystalline 1, 3, 5-triamino-2, 4, 6trinitrobenzene as a function of pressure and temperature[END_REF]. By considering approximately 3000 crystallographic orientations, the overall stiffness tensor (in GPa) is thus given by :

L ijkl (x) = R im (x)R jn (x)R ko (x)R lp (x)L T mnop
L SC =           
25. [START_REF] Hashin | On some variational principles in anisotropic and nonhomogeneous elasticity[END_REF] [START_REF] Gasnier | Etude du comportement thermo-mécanique et de l'endommagement d'un matériau énergétique granulaire par méthodes de Fourier[END_REF] with experimental data [START_REF] Ambos | Numerical modeling of the thermal expansion of an energetic material[END_REF] on actual TATB-based pressed explosives.

Porosity effect

Following Lebensohn et al. [START_REF] Lebensohn | A selfconsistent formulation for the prediction of the anisotropic behavior of viscoplastic polycrystals with voids[END_REF], the effect of porosity is investigated by treating voids as spherical inclusions embedded within the overall homogenized media. As illustrated in Figure (5.4), the overall bulk and shear moduli classically decrease with porosity. It can be remarked that the moduli have been halved for approximately 12% of porosity. Even though porosity strongly decreases the elasticity of binder-free TATB polycrystals, it also affects the elastic isotropy at the macroscopic scale [START_REF] Ghossein | A comprehensive validation of analytical homogenization models: The case of ellipsoidal particles reinforced composites[END_REF][START_REF] Lopez-Pamies | The nonlinear elastic response of suspensions of rigid inclusions in rubber: Ii-a simple explicit approximation for finite-concentration suspensions[END_REF][START_REF] Vincent | Effective flow surface of porous materials with two populations of voids under internal pressure: Ii. full-field simulations[END_REF]. Theoretically speaking, the random distribution and orientation of spheroid grains lead to isotropic overall behaviours. However, the resulting estimate of the overall response in practice is not exactly isotropic because of the finite number of grains. To assess the deviation from isotropy of the overall stiffness tensor L, it is possible to make use of its isotropic projection L iso on the fourth-order hydrostatic and deviatoric isotropic tensors :

L iso = 3 κ J + 2 µ K (5.15)
As pointed out by Anoukou et al. [START_REF] Anoukou | Random distribution of polydisperse ellipsoidal inclusions and homogenization estimates for porous elastic materials[END_REF], the deviation from isotropy can be quantified either geometrically or mechanically. The geometrical approach makes use of morphological descriptors such as statistical correlation functions to characterize statistically the microstructure while the mechanical approach consists in evaluating the deviation from elastic isotropy by choosing an appropriate measure of the elasticity tensor. In this work, we focus on studying the isotropy of the overall elastic response with respect to the number of crystalline orientations for various volume fractions of porosity. The deviation from isotropy δ iso of the overall behaviour is evaluated with the normalized Euclidean distance :

δ iso = L -L iso F L F (5.16)
with A F = Tr(A : A t ) the Frobenius norm of the fourth-order tensor A.

Independently of the volume fraction of porosity, the isotropic deviation is not affected for high numbers (≥ 1500) of crystalline orientations as shown in Figure (5.5). It should be mentioned that TATB-based pressed explosives are usually defined by high numbers of crystalline orientations (∼ 3000) and less than 5% of residual porosity. It is therefore not relevant to take into account more than 10% of porosity in binder-free TATB polycrystals to get closer to the experimental data. 

Binder influence

Following Gasnier [START_REF] Gasnier | Etude du comportement thermo-mécanique et de l'endommagement d'un matériau énergétique granulaire par méthodes de Fourier[END_REF], the combined effect of porosity and binder 1 on the effective elasticity is highlighted in Table (5.4). The addition of such effects distinctly decreases the overall bulk and shear moduli but the results are still unrealistic. The combined effect of the porosity and binder only leads the overall bulk and shear moduli to respectively go down by approximately 7% and 18% with respect to binder-free TATB polycrystals. Resulting from the minor influence of the polymer phase, Gasnier [START_REF] Gasnier | Etude du comportement thermo-mécanique et de l'endommagement d'un matériau énergétique granulaire par méthodes de Fourier[END_REF] supposed the existence of microcracks to interpret the discrepancy with the experimental results. Note that the manufacturing process of TATB-based pressed explosives induces the development of elongated grains. The effect of the grain aspect ratio, crystallographic texture and spatial orientation on the effective elasticity of binder-free TATB polycrystals is therefore studied in the sequel.

SC

Extension of the SC estimate for spheroids

In the context of disorded media homogenization, Sanahuja et al. [START_REF] Sanahuja | Modelling elasticity of a hydrating cement paste[END_REF] investigated the overall elasticity of hydrating cement pastes seen as polycrystalline porous random media by taking into account the spatial orientation of isotropic local constituents. The modeling of such materials has been carried out by means of the SC estimate for spheroids with random spatial orientations as illustrated in Figure (5.6). The shaping process of TATB-based explosives inducing TATB crystals with plate-like morphology, the overall elasticity of binder-free TATB polycrystals is therefore studied depending on the grain aspect ratio, crystallographic texture and spatial orientation. The previous morphological model is thus extended to anisotropic crystallographic textures.

Framework of the SC scheme with spheroids

Hereafter, the solid phase is represented by the set of spheroids with random spatial orientations characterized by the aspect ratio r as shown in Figure (5.7). The spherical coordinates (r, θ, φ) and the spherical basis (e r , e θ , e φ ) are used here. The uniform strain field in the crystalline orientation (r) whose axis of revolution is parallel to e r is obtained with the solution of the Eshelby inhomogeneity problem [START_REF] Eshelby | The determination of the elastic field of an ellipsoidal inclusion, and related problems[END_REF] such as : where P(θ, φ) refers to the Hill tensor of a given spheroid whose axis of revolution is parallel to e r . As well as for the solid sphere case, the Hill tensor depends on the behaviour of the overall homogenized medium but also on the aspect ratio r of the spheroid and its spatial orientation associated to the angles (θ, φ). By considering uniform orientation distributions, the average strain over the whole solid is given in terms of :

ε (r) (θ, φ) = I + P(θ, φ) : L (r) -L -1 : ε 0 (5.
ε (r) = 2π φ=0 π θ=0 ε (r) (θ, φ) sin θ 4π dθ dφ (5.18)
For uniform orientation distributions, the average strain field over the phase (r) can be expressed by means of the average localization tensor A (r) : Note that the average localization tensor involved in Eq.(5. [START_REF] Blair | The classification of the rheological properties of industrial materials in the light of power-law relations between stress, strain and time[END_REF]) is not isotropic. Contrary to Sanahuja et al. [START_REF] Sanahuja | Modelling elasticity of a hydrating cement paste[END_REF], the integration process only cancels the morphological anisotropy related to the shape of grains but not the material one induced by the crystalline orientations.

         ε (r) = A (r) : ε 0 A (r) =
The effect of grain aspect ratio, crystallographic texture and spatial orientation on the overall stiffness tensor is thus investigated by integrating Eq.( 5.2) with respect to the spherical coordinates (θ, φ). All the spheroids (solid phases and voids) present in polycrystalline porous random media exhibit the same aspect ratio in the following. Note that the semi-analytical approach is carried out by means of the Gaussian quadrature.

Influence of the grain aspect ratio

The overall elastic moduli for various grain aspect ratios are shown in Figure (5.8). For both prolate (r > 1) and oblate (r < 1) spheroids, it is easily seen that the effective elasticity is not affected by the grain geometry. Such morphological parameter actually impacts the macroscopic isotropy. Depending on the number of crystalline orientations, the deviation from isotropy of the overall stiffness tensor for different grain aspect ratios is depicted in Figure (5.9). In the case of prolate (r > 1) spheroids, the increase of the grain aspect ratio equally affects the deviation from isotropy. It is approximately equal to 8% for binder-free TATB polycrystals made of 2500 crystalline orientations. In contrast, the isotropic deviation seems highly sensitive to the grain aspect ratio for oblate (r < 1) spheroids. Although near to the spherical case for r = 0.5, it reaches nearly 9% and 14% for r = 0.1 and r = 0.01 respectively. For both configurations, the change of the grain aspect ratio globally increases the deviation from isotropy. Regardless of the number of crystalline orientations, it seems constant for sufficiently small oblate spheroids. Such findings reflect the ones made by Fritsch et al. [START_REF] Fritsch | Porous polycrystals built up by uniformly and axisymmetrically oriented needles: homogenization of elastic properties[END_REF] in the case of porous polycrystals built up by uniformly oriented needles. 

Porosity effect

Despite the fact that the overall behaviour of binder-free TATB polycrystals is not affected by the grain aspect ratio, such parameter significantly strengthens the effect of porosity. The critical porosity leading to null overall elastic properties strongly depends on the grain aspect ratio [START_REF] Garboczi | Geometrical percolation threshold of overlapping ellipsoids[END_REF][START_REF] Sanahuja | Modelling elasticity of a hydrating cement paste[END_REF], the effect of porosity on the overall bulk and shear moduli is therefore studied for relatively low porosity levels as shown in Figure (5.10). At fixed porosity levels, the grain aspect ratio slightly increases the effective elasticity for prolate (r > 1) spheroids while it strongly diminishes the effective elasticity for oblate (r < 1) spheroids. For instance, the overall bulk modulus shrinks by nearly 25% for r = 0.01 at 1% of porosity. It should be remarked that the effect of grain aspect ratio is quite similar for prolate spheroids for which all the curves almost overlap. 

Field fluctuations

In addition to study the effect of the grain aspect ratio of the overall behaviour of binderfree TATB polycrystals, we also investigate the inter and intraphase strain heterogeneities arising for purely deviatoric loadings.

In the context of polycrystals made of spherical (r = 1) grains, the equivalent strain field and the associated standard deviation are reported in Table (5.5). Hereafter, the per-phase average over grains with orientation (r) of the strain field is defined via ε (r) = ε (r) such that ε = N r=1 c r ε (r) while the Von Mises equivalent measure associated to ε (r) is classically expressed as :

ε (r) eq = 2 3 ε (r) d : ε (r) d (5.20)
where ε (r) d refers to the average strain deviator in phase (r). Concerning the phase scale which is the constitutive heterogeneity level in the material, the following isotropic measure is introduced to quantify the field fluctuations :

SD(ε (r) eq ) = ε 2 eq (r)
-

ε (r) 2 eq with ε 2 eq (r) = 2 3 ε ⊗ ε (r) :: K (5.21)
Even though the quantity does not correspond to the usual standard deviation, it is obviously positive and null for homogeneous fields [START_REF] Brenner | Mechanical field fluctuations in polycrystals estimated by homogenization techniques[END_REF]. Resulting from the strong material anisotropy of TATB single crystals, it is shown that the scatter of the equivalent per-phase average and fluctuation of the strain field assessed by the self-consistent (SC) estimate is high (more than 50%) in the case of spherical (r = 1) grains.

SC estimate Minimum Average Maximum

ε (r)
eq /ε eq 0.419 0.987 1.568 SD(ε (r) eq )/ε eq 0.826 1.203 1.686 Table 5.5 : SC estimate of the per-phase average and fluctuation of the equivalent strain field in the case of spherical (r = 1) grains for binder-free TATB polycrystals composed by approximately 3000 grains.

The equivalent per-phase average and standard deviation of the strain field of prolate (r > 1) and oblate (r < 1) spheroids are reported in Figure (5.11) as functions of the spherical (r = 1) case. The equivalent per-phase strain field exhibits relatively small deviations from the spherical case in regards to prolate spheroids while it widely expands in the case of oblate spheroids. Within the phase, the tendency of the standard deviation for prolate and oblate spheroids is quite similar. Although more emphasized in the case of oblate spheroids, it is shown that the fluctuation strongly depends on the grain aspect ratio.

It is worth noting that the fluctuation of the phases is relatively low for very elongated or flattened grains. Similarly to the spherical case, the equivalent per-phase average and standard deviation of the strain field of prolate and oblate spheroids are thus significantly affected by the phase. Even though the effect of morphological parameters such as the grain aspect ratio, crystallographic texture and spatial orientation on the overall stiffness tensor of TATB-based polycrystals is weak, these parameters actually strongly influence the macroscopic isotropy and the fluctuations of mechanical fields. Note that the aspect ratio of oblate spheroids clearly impacts the overall elastic moduli of TATB-based pressed explosives in the case of residual porosity. Unfortunately, the geometry of actual TATB single crystals is much more related to elongated grains. Such results are therefore irrelevant. Independently of the parameters, the resulting behaviour of TATB-based polycrystals is unrealistic with respect to experimental data. It thus comforts the existence of populations of microcracks within the pristine materials.

Micromechanical modeling of viscoelastic polycrystals

Up to now, the emphasis has been put on the assessment of the effective elasticity of TATB-based pressed explosives in the glassy state by neglecting the binder and porosity. Such assumption recognizes the anisotropy of TATB single crystals as the essential physical mechanism. Unfortunately, the use of SC estimates and FFT-based simulations [START_REF] Ambos | Numerical modeling of the thermal expansion of an energetic material[END_REF][START_REF] Gasnier | Etude du comportement thermo-mécanique et de l'endommagement d'un matériau énergétique granulaire par méthodes de Fourier[END_REF] has shown that the response strongly overestimates the experimental data. Despite investigating the combined effects of binder, porosity and finer morphological parameters (i.e. grain aspect ratio and spatial orientation) on these materials, the overall elastic bulk and shear moduli were unrealistic. The discrepancy with the actual materials actually results from the existence of microcracks. By including population of intragranular microcracks within TATB-based polycrystals, Gasnier et al. [START_REF] Gasnier | Thermoelastic properties of microcracked polycrystals. part i: Adequacy of fourier-based methods for cracked elastic bodies[END_REF][START_REF] Gasnier | Thermoelastic properties of microcracked polycrystals. part ii: The case of jointed polycrystalline tatb[END_REF] achieved to retrieve the experimental results at low temperature (or glassy state). In what follows, the multiscale modeling is extended to wider temperature ranges for which the binder is not linear elastic anymore. At high temperature, the behaviour of the polymer phase is linear viscoelastic at low strain levels. The overall response of such materials thus requires to use viscoelastic homogenization methods.

Binder characterization

As mentioned in section (1.1.1), the relaxation spectra of viscoelastic materials are composed of frequency-dependent real and imaginary moduli also known as storage and loss moduli respectively. The loss modulus generally exhibits peaks corresponding to viscosity local maxima. Far from the peaks, the viscosity vanishes and the local behaviour becomes asymptotically elastic. Note that the loss modulus of most polymeric materials exhibits multiple peaks. Such materials are usually characterized by means of dynamic mechanical analysis (or DMA) and the time-temperature superposition principle [START_REF] Christensen | Theory of Viscoelasticity[END_REF] which allows to retrieve viscoelastic effects at fixed frequency-temperature parameters at other temperatures for other frequencies. Experimentally speaking, the time-temperature superposition principle consists in producing master curves by performing short-term tests at different temperatures and shifting the measured curves on the time-scale to produce long-time master curves for any temperature.

The binder characterization has been carried out by means of DMA measurements2 in tension-compression cycling in order to obtain real and imaginary spectra on the polymer Young modulus. It should be noted that the Poisson ratio goes from 0.3 in the glassy state to 0.5 in the relaxed state. The binder is thus assumed incompressible hereafter. These measurements suggest that the resulting relaxation spectra are composed by three peaks defining distinct viscoelastic mechanisms.

The peaks are defined as follows :

-The main peak refers to the well-known glass transition.

-The small peak at high frequency reflects the secondary transition.

-Another small peak at low frequency is related to the viscous flow.

It is worth noting that the measurement of the peak corresponding to the secondary transition is difficult to characterize due to the inaccuracy of the experimental data in this frequency range. Besides, the other small peak also brings up analysis issues because of the material state at such frequency range (not purely solid anymore). Initially performed to include the glassy and secondary transitions, the results taking into account the frequency and temperature dependency of the viscoelastic moduli are unfortunately not relevant. Accordingly, the frequency range has been limited to the glassy transition and only frequency-dependent results are used in the binder modeling. The shear storage modulus and loss factor depicted in Figure (5.12) depend on the frequency parameter and both the frequency and temperature parameters respectively. The form of the shear storage and loss moduli seems to be fairly close to fractional Zener models at first sight. Unfortunately, the relaxation spectrum associated to the loss modulus is not symmetric in frequency. In this case, the frequency dependency expands over wider ranges at glassy than relaxed state. The characterization of the binder behaviour over all the frequency range is therefore not possible with fractional Zener models. At this point, three modeling options can be investigated.

The first approach consists in neglecting the non-symmetry of the relaxation spectra by describing the experimental results with fractional Zener constituents but it cannot fit the data over all the frequency range. On the contrary, the second method accurately describes the relaxation spectrum dissymmetry by taking advantage of higher-order fractional models.

According to Dinzart and Lipiński [START_REF] Dinzart | Improved five-parameter fractional derivative model for elastomers[END_REF], the following constitutive differential equation with the inequality 0 < β < α < 1 allows to capture such asymmetry :

σ(t) + τ α σ D α σ(t) + τ β σ D β σ(t) = µ eg ε(t) + µ eg τ β σ D β ε(t) + µ er τ α σ D α ε(t) (5.22)
The complex shear modulus associated to Eq.(5.22) is given by :

µ * αβ (iω) = µ eg + µ eg (iωτ σ ) β + µ er (iωτ σ ) α 1 + (iωτ σ ) α + (iωτ σ ) β (5.23)
where the parameter β controls the loss peak non-symmetry. Due to the two fractional parameters (α, β), it can be remarked that the approximate viscoelastic homogenization model developed in section (4.1.2) does not apply in such case. The third approach relies on the use of fractional Maxwell models including two branches to retrieve the non-symmetry of the experimental relaxation spectrum. However, these models are characterized by elastic and fractional viscous asymptotic behaviours. Similarly to higher-order fractional models, the previous approximate viscoelastic homogenization model cannot be used.

The modeling of the experimental storage modulus and loss factor with classical and fractional Zener models is depicted in Figure (5.13). Not surprisingly, the classical Zener model is clearly not relevant to describe the glassy transtion. It is worth noting that the four-parameter fractional Zener model qualitatively reflects the relaxation spectra. However, it does not match accurately the loss factor in frequency and magnitude. By contrast with the previous models, the five-parameter fractional Zener model fairly matches the storage modulus and loss factor. Despite the small discrepancy with the experimental data, we study the overall behaviour of TATB-based pressed explosives by modeling the polymer phase with the four-parameter fractional Zener model. It should be noted that the loss factor peak and the two elastic asymptotic states are known. Accordingly, the fractional parameter α can be assessed analytically [START_REF] Dubois | Introduction à la dérivation fractionnaire-théorie et applications[END_REF]. Note that the fractional parameter3 is equal to α = 0.77 based on the experimental data. ω (rad/s) 

Overall viscoelastic response

The characterization of TATB-based pressed explosives has been extracted from DMA measurements4 by taking into account the frequency and temperature dependence of the viscoelastic moduli. By contrast with the binder, the measurements are rather complex to conduct at low temperature because the test sample stiffness actually gets comparable to the DMA machine stiffness. Accordingly, the experimental dispersion is far more important in that case as illustrated by Figure (5.14). The response of TATB-based pressed explosives is approached by making use of classical homogenization methods. Identified as highly filled polymers with more than 90% of reinforcements, the evaluation of the overall behaviour of such materials is challenging. At relatively high volume fraction of constituents, it has been shown in section (4.3.1) that the SC scheme significantly overestimates the overall behaviour while the MT scheme is less accurate than the GSC estimate. The GSC estimate is therefore selected to study the viscoelastic response of TATB-based pressed explosives. Focusing on TATB-based polycrystals composed by isotropic grains, the GSC estimate is compared to the previous FFT full-field computations in Figure (5.17). Although exhibiting significant deviations in the vicinity of the relaxed state, the GSC estimate actually makes good approximations of the overall relaxation spectrum from the second half of the glass transition to the glassy state. It should be mentioned that the GSC-based model was not used in the modeling due to the deviation from the GSC estimate reflected with particle-reinforced composite materials in section (4.3.3). On the one hand, the use of the GSC estimate tends to clearly overestimate the overall shear storage modulus and loss factor by neglecting the local anisotropy of TATB single crystals. On the other hand, the approximation gives relatively good results at high frequency. Given the ability of the GSC model to handle high volume fraction of constituents, the approach is adopted to characterize the behaviour of the actual material. The overall shear storage and loss factor of the GSC model and the actual material are reported in Figure (5.18). It is worth noting that the overall relaxation spectrum derived with the GSC model significantly differs from the experimental data. From the glassy transition to the glassy elastic asymptotic state, the overall shear modulus of the actual material is strongly overestimated. The discrepancy at glass transition is also highlighted by the shift and gap between the GSC model and experimental data. Assuming that the gap at glass transition between GSC and experimental results may arise from the binder modeling, the polymer phase is thus described with the five-parameter fractional Zener model. It is worth noting that the use of higher-order fractional Zener models to characterize the binder does not really affect the overall shear moduli obtained with the GSC model as shown in Figure (5.19). Such findings at glassy state are obviously due to the modeling of TATBbased polycrystals with isotropic undamaged grains. Following Gasnier et al. [START_REF] Gasnier | Thermoelastic properties of microcracked polycrystals. part i: Adequacy of fourier-based methods for cracked elastic bodies[END_REF][START_REF] Gasnier | Thermoelastic properties of microcracked polycrystals. part ii: The case of jointed polycrystalline tatb[END_REF] while characterizing the effective elasticity at glassy state, the overall shear storage modulus and loss factor should be damaged by populations of microcracks. Even though the microcracks can be represented through FFT full-field computations, the GSC estimate cannot explicitly account for such damage factors. The damaging effect of microcracks is thus modeled by considering damaged grains. The associated homogenization process consists of two steps. First of all, the overall behaviour of TATB-based polycrystals containing microcracks and porosity is assessed in the glassy state. Afterwards, the resulting overall behaviour of damaged TATB-based polycrystals is associated to isotropic grains in order carry out the viscoelastic homogenization process. Accordingly, the local bulk6 and shear moduli of damaged grains are given by : κ dg = 7.1 GPa and µ dg = 3.1 GPa (5.24)

Note that the terms of Eq.(5.24) refer to the homogenized bulk and shear moduli of TATBbased pressed polycrystals made of nearly 3000 crystalline orientations including more than 15% of porosity. Such porosity levels are obviously unrealistic for TATB-based polycrystals. Analogously to Gasnier et al. [START_REF] Gasnier | Thermoelastic properties of microcracked polycrystals. part ii: The case of jointed polycrystalline tatb[END_REF], the results from Eq.(5.24) can be associated with the presence of weak-plane cracks at the grain scale. The moduli of transversely isotropic TATB single crystals damaged by microcracks are thus computed with the SC estimate. According to Sevostianov et al. [START_REF] Sevostianov | Effective elastic properties of matrix composites with transversely-isotropic phases[END_REF], we replace the component L T ijkl described in Eq.(5.12) by the component of the following tensor :

L TW = M H + ρH -1 (5.25)
where the tensor M H is the hexagonal estimate of the compliance tensor of TATB single crystals while the tensor H7 is defined by : Taking into account transversely isotropic damaged grains, the GSC estimate properly fits the glassy elastic asymptotic behaviour while the glass transition is still poorly depicted. Despite providing relatively good approximations of the overall shear modulus in the vicinity of the glassy state, the method does not describe accurately the dissipation of the actual material. The use of fractional Zener models to characterize the binder probably makes the overall loss factor vanishing too early. The modeling of TATB-based pressed explosives with the GSC estimate is thus only restricted to high frequencies. Note that the accuracy of the GSC estimate in the glass transition could be improved by considering higher-order fractional Zener models [START_REF] Schiessel | Hierarchical analogues to fractional relaxation equations[END_REF] to describe the binder behaviour. Although exhibiting similar non-symmetric loss peaks, the loss peak magnitude of the five-parameter fractional Zener model (5.23) is unfortunately too small.

                               H 33 = 8 
However, the accuracy of the GSC estimate does not seem significantly affected by the binder behaviour. The improvement of the model by modifying the binder modeling is thus not clear. It should be remarked that the modeling TATB-based pressed explosives through mean-field models also delivers valuable information on the binder morphology. Mean-field models are directly related to microstructures as illustrated in section (4.3.1).

Concerning TATB-based polycrystals, the SC estimate regards the binder as local clusters poorly affecting the overall behaviour, the MT estimate discerns sparse grains in the continuous binder matrix whose function is clearly overestimated while the GSC estimate beholds the binder as the interphase jointing various grains. Despite the lack of experimental data, the binder is usually seen as the interphase between grains and the use of the GSC estimate seems to comfort this assumption notwithstanding the deviation in the glassy transition.

Similarly to the assumption of microcracks at glassy state, the discrepancy between the GSC estimate and experimental results might arise from too significant volume fraction of binder. The present results suggest that the binder may not be fully reduced to the interphase. It should be remarked that the polymer phase could be also found as clusters. Accordingly, the actual volume fraction of binder in TATB-based pressed explosives could be smaller than expected. Furthermore, the imperfect contact between the constituents may be considered in the case of particularly thin interphase. It would be interesting to resort to the works of Benveniste [START_REF] Benveniste | The effective mechanical behaviour of composite materials with imperfect contact between the constituents[END_REF] and Hashin [START_REF] Hashin | Thermoelastic properties of particulate composites with imperfect interface[END_REF] to study the impact of such parameters.

Conclusion

The time harmonic response of TATB-based pressed explosives has been investigated by two-step multiscale modeling. By neglecting the existence of microcracks, the effective elasticity of TATB-based polycrystals with or without binder was studied depending on various morphological parameters. Despite achieving the response of the actual materials at low temperature, our results were unrealistic with respect to experimental data. Note that our findings comforted the existence of microcracks formulated through the works of Gasnier et al. [START_REF] Gasnier | Etude du comportement thermo-mécanique et de l'endommagement d'un matériau énergétique granulaire par méthodes de Fourier[END_REF][START_REF] Gasnier | Thermoelastic properties of microcracked polycrystals. part i: Adequacy of fourier-based methods for cracked elastic bodies[END_REF][START_REF] Gasnier | Thermoelastic properties of microcracked polycrystals. part ii: The case of jointed polycrystalline tatb[END_REF]. Looking for modeling the overall behaviour of TATB-based pressed explosives at high temperature, we resort to classical mean-field models. Based on the binder modeling through fractional Zener models, the GSC estimate has been used at the expense of the strong anisotropy of TATB single crystals. Clearly overestimating the response of the actual materials, the discrepancy was reduced by considering damaged crystalline orientations. Although achieving better results, the accuracy of the GSC estimate seems restricted to high frequencies. It is noteworthy that the modeling of TATB-based polycrystals could be improved by considering smaller amounts of binder. Following the strong deviation of the loss factor peak assessed by the GSC estimate, the polymer phase may not be fully reduced to the interphase. It would be relevant to study the influence of smaller amounts of binder on the overall viscoelastic behaviour. The use of FFT-based numerical homogenization methods finally seems necessary to study the behaviour of such complex materials. Even though numerically much more costly, only the use of FFT full-field computations taking into account microcracks can accurately describe the response of TATB-based pressed polymer-bonded explosives.

Overall conclusion

This Ph.D. thesis mainly focused on the establishment of approximate viscoelastic homogenization models to describe the overall behaviour of polymer-based composite materials. In the context of complex viscoelasticity, we derived four exact relations on the asymptotic behaviour of viscoelastic composite materials made of elementary viscoelastic constituents by extending the works of Cherkaev and Gibiansky [START_REF] Cherkaev | Variational principles for complex conductivity, viscoelasticity, and similar problems in media with complex moduli[END_REF]. These relations implying conditions on time integrals of the viscoelastic transient response, they were used to build approximate viscoelastic homogenization models by means of Dirichlet-Prony series. Regarding isotropic two-phase materials made of classical Maxwell constituents, Brenner and Suquet [START_REF] Brenner | Overall response of viscoelastic composites and polycrystals: exact asymptotic relations and approximate estimates[END_REF] approximated the overall viscoelastic response by making use of the sum of two Dirac delta functions which turns out to be exact for microstructures satisfying the Hashin-Shtrikman bounds. Rather focusing on polymeric materials, the emphasis was put on the mixture of viscoelastic constituents exhibiting asymptotic elastic behaviours at glassy and relaxed states. Accordingly, the time harmonic response of viscoelastic reinforced polymer-based materials whose local constitutive law can be characterized by fractional Zener models was investigated. Only requiring the evaluation of the asymptotic overall behaviours and the associated derivatives with respect to the phase moduli at glassy and relaxed states, the accuracy of the approximate viscoelastic homogenization model has been compared with three different mean-field models. Although quite close to each other at low volume fraction of inclusions, the GSC estimate was the only one to match the reference calculations with the increase of the volume fraction of inclusions. On the basis of such results, the GSC estimate was selected to build the approximate viscoelastic homogenization model. In the case of particle-reinforced composite materials, the GSC-based model only composed by the sum of two Dirac delta functions delivered fairly good results. The model perfectly matched FFT full-field computations at low volume fraction of inclusions over all the frequency range. Slight deviations have been identified in the glass transition at high volume fraction of particles. By investigating the relative deviation of the GSC-based model from the GSC estimate, we found out that the GSC-based model was improper to characterize the overall behaviour of viscoelastic composite materials with more than 50% of inclusions. In addition, the use of such models also imposed strong restrictions on the nature of phases. It should mentioned that the phases must be defined by non-ageing viscoelastic constitutive laws to comply with the correspondence principle [START_REF] Hashin | Viscoelastic behavior of heterogeneous media[END_REF][START_REF] Mandel | Cours de mécanique des milieux continus[END_REF].

Expending the scope of polymer-based composite materials, we further focused on TATB-based pressed explosives. Mostly based on highly stable explosive TATB molecules and small amounts of polymer that acts as binder between constituents, such materials can be seen as highly filled polymers or jointed polycrystals. Recently investigated by Ambos et al. [START_REF] Ambos | Numerical modeling of the thermal expansion of an energetic material[END_REF] through FFT full-field computations, it turns out that the effective elasticity of the actual material was significantly overestimated by the numerical calculations. Based on these findings, Gasnier et al. [START_REF] Gasnier | Thermoelastic properties of microcracked polycrystals. part i: Adequacy of fourier-based methods for cracked elastic bodies[END_REF][START_REF] Gasnier | Thermoelastic properties of microcracked polycrystals. part ii: The case of jointed polycrystalline tatb[END_REF] interpreted the discrepancy between numerical and experimental results by the existence of populations of microcracks. Following this assumption, the authors retrieved the experimental data of TATB-based pressed explosives at low temperature. With increasing the temperature, the polymer phase jointing TATB single crystals is actually linear viscoelastic and the study of TATB-based polycrystals must be carried out in the framework of viscoelastic homogenization. Before characterizing the overall viscoelastic behaviour of TATB-based pressed explosives, we scouted the effect of microstructural parameters such as the grain aspect ratio, crystallographic texture and spatial orientation on the overall response of binder-free TATB polycrystals by extending the classical SC estimate to spheroids [START_REF] Sanahuja | Modelling elasticity of a hydrating cement paste[END_REF]. Unfortunately, the influence of spheroidal grains even combined with residual porosity did not allow to retrieve the behaviour of the actual material. Note that these findings comforted the hypothesis of populations of microcracks. Coming back to TATB-based pressed explosives, the viscoelastic homogenization process was conducted through two main steps. On the one hand, we assessed the glassy effective elasticity of TATB-based polycrystals by means of the SC estimate. On the other hand, the overall viscoelastic response was approximated by the GSC estimate by combining the binder modeling with the results of the first step. Although not perfectly matching with the non-symmetric loss peak of the actual material, the polymer phase has been described by means of fractional Zener models. Not surprisingly, the resulting overall storage modulus and loss factor strongly overestimated the actual material at glassy state. Noting that the use of higher-order fractional Zener models in the modeling of the binder did not really improve the results, we thus considered damaged materials. Even though microcracks can be described in FFT full-field computations, the GSC estimate cannot explicitly account for such damage factors. Accordingly, we assumed that each transversely isotropic crystalline orientation of TATB-based polycrystals was containing weak-plane microcracks. Despite providing relatively good approximations of the overall storage modulus in the vicinity of the glassy state, the two-step viscoelastic homogenization process was not accurate enough with respect to the dissipation of experimental data. It should be mentioned that this work delivered valuable information on the morphology on the binder. Note that the binder may not be fully reduced to the interphase due to the existence of clusters made of the same polymer phase. Accordingly, it would be relevant to study the effect of smaller amounts of binder on the overall viscoelastic behaviour of TATB-based materials. Nevertheless, the use of mean-field methods neglecting the local anisotropy of TATB single crystals may not be the best solution to study the viscoelastic response of the actual material. Even though numerically much more costly, we may need FFT full-field computations in order to properly investigate the behaviour of TATB-based pressed polymer-bonded explosives.

Remarks on viscoelastic homogenization

Whether they are linear or not, the handling of viscoelastic phases highlights the difficulty of the coupling between elasticity and viscosity giving rise to long-memory effects. Manifesting themselves in the overall constitutive laws through integral kernels, the long-memory effects are usually evidenced by means of the correspondence principle [START_REF] Hashin | Viscoelastic behavior of heterogeneous media[END_REF][START_REF] Mandel | Cours de mécanique des milieux continus[END_REF] which allows to substitute time-dependent viscoelastic problems by symbolic elastic ones in the Laplace domain. Such trick has been widely used over the past decades [START_REF] Laws | Self-consistent estimates for the viscoelastic creep compliances of composite materials[END_REF][START_REF] Brinson | Comparison of micromechanics methods for effective properties of multiphase viscoelastic composites[END_REF] to estimate the effective elasticity of fictitious elastic composite materials. Although limited to the framework of non-ageing linear viscoelasticity8 , the approximate viscoelastic homogenization models delivered fairly good results in regards to viscoelastic polymer-based composite materials. Note that the exact results on the overall integral kernels of mixtures of elementary viscoelastic constituents have been fully investigated. Prospects for improvement are thus difficult to suggest except the use of these results as constraints in optimization methods. The use of such models to describe challenging viscoelastic materials is not recommended due to the various drawbacks of the correspondence principle. Numerically speaking, the functional theory of viscoelasticity seems limited for computational purposes. The implementation of overall viscoelastic constitutive laws defined by integral kernels requires to store the whole time history of the overall stress (or strain) field at each Gauss point of composite materials. Such requirements generated high computational costs. Furthermore, the overall viscoelastic behaviour of composite materials is also not available in closed-form and cannot easily be inverted. In the case of complex microstructures or anisotropic local phases, the inversion of the Laplace transform is usually carried out numerically with potential computational costs. It should be mentioned that approximate inversion methods have been developed [START_REF] Brenner | A "quasi-elastic" affine formulation for the homogenised behaviour of nonlinear viscoelastic polycrystals and composites[END_REF]. Nevertheless, the accuracy of these methods significantly depends on loading conditions. Finally, the use of the correspondence principle is restricted to non-ageing linear viscoelastic composite materials. Note that the correspondence principle can indirectly be used in the case of nonlinear viscoelasticity [START_REF] Brenner | Improved affine estimates for nonlinear viscoelastic composites[END_REF] by linearizing the constitutive relations at each time step but it requires to store the whole history of the mechanical fields at each time step. To overcome the limitations related to the correspondence principle, Lahellec and Suquet [START_REF] Lahellec | Effective behavior of linear viscoelastic composites: a timeintegration approach[END_REF][START_REF] Lahellec | Effective response and field statistics in elasto-plastic and elasto-viscoplastic composites under radial and non-radial loadings[END_REF] introduced approximate schemes relying on the step-by-step time integration of the overall viscoelastic constitutive laws. Based on the variational approach of Ponte-Castañeda [START_REF] Ponte-Castañeda | New variational principles in plasticity and their application to composite materials[END_REF], they are directly operating in the time domain and may account for nonlinear phases. Further extended to various behaviours [START_REF] Brassart | A variational formulation for the incremental homogenization of elasto-plastic composites[END_REF][START_REF] Agoras | Incremental variational procedure for elasto-viscoplastic composites and application to polymer-and metalmatrix composites reinforced by spheroidal elastic particles[END_REF][START_REF] Lucchetta | A double incremental variational procedure for elastoplastic composites with combined isotropic and linear kinematic hardening[END_REF], the use of such methods is becoming increasingly popular. In view of the results of such methods, they seem particularly appropriate to tackle challenging viscoelastic problems.

The non-integer derivative operator D α is defined by successive derivation (of order 1) and integration of order 1α as : which extends the classical result to the case of derivatives with non-integer order.

D α f (t) = (Y 1-α * ḟ )(t) = (Y 1-α f )(t) (B.

B.3 Mittag-Leffler function

The Mittag-Leffler function (or exponential) E α is defined by the following power series :

E α (z) = +∞ n=0 z n Γ(1 + αn)
, ∀z ∈ C with 0 < α ≤ 1 (B.10)

Alternatively, it admits the following integral representation [START_REF] Gorenflo | Fractional calculus. In Fractals and fractional calculus in continuum mechanics[END_REF] : The Mittag-Leffler function corresponds to the generalization of the exponential function since E 1 (z) = e z and its fractional derivative satisfies :

E α (-t α ) =
D α E α (t α ) = E α (t α ). (B.13)
The function E α naturally appears in fractional calculus since it is solution of the following fractional differential equation : 

D α f (t) + λ α f (t) = 0, ∀t > 0 with f (0) = 1 (B.

B.4 Fractional dashpot constitutive relations

The constitutive relation of the 1D fractional element reads [START_REF] Caputo | Linear models of dissipation in anelastic solids[END_REF] : where the relaxation function R(t) reads :

σ(t) = Eτ α σ D α ε(t) (B.
R(t) = E Y 1-α t τ σ = E Γ(1 -α) τ σ t α (B.19)
The inversion of the constitutive law (B.17) simply yields :

ε(t) = 1 Eτ α σ I α σ(t) = 1 Eτ α σ I α+1 σ(t) (B.20)
From relation (B.6), it may be written as :

ε(t) = t 0 F (t -u) σ(u) du (B.21)
where the creep (or retardation) function F (t) reads :

F (t) = 1 E Y 1+α t τ ε = 1 E Γ(1 + α) t τ ε α (B.22)

C Results for particular microstuctures

It is well-established that the use of Dirichlet-Prony series to describe the overall integral kernel of the mixture of linear viscoelastic constituents leads to exact results for some particular microstructures [START_REF] Rougier | Self consistent modelling of elastic-viscoplastic polycrystals[END_REF][START_REF] Ricaud | Effective properties of linear viscoelastic heterogeneous media: Internal variables formulation and extension to ageing behaviours[END_REF]. In the case of isotropic two-phase composite materials made of incompressible classical Zener constituents verifying the Voigt, Reuss and Hashin-Shtrikman bounds, we pointed out that the associated integral kernels are reduced to the sum of Dirac delta functions. Note that the LC transforms of the overall shear relaxation moduli associated to such microstructures are rational functions of the Laplace variable p leading to the following exact expressions : (2) eg + c 2 µ (1) eg ξ 1 = c 1 µ (2) eg + c 2 µ (1) eg µ (1) er µ (2) erc 1 µ (2) er + c 2 µ (1) er µ (1) eg µ (2) eg

C.1 Reuss-type microstructure
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ξ 2 = c 1 µ (2)
eg 2 (µ (1) egµ (1) er ) τ (2) σ + c 2 µ (1) eg 2 (µ (2) egµ (2) er ) τ (1) σ ξ 3 = ξ 0 τ (1) σ τ (2) σ ξ 4 = c 1 µ (2) eg τ (2) σ + µ (2) er τ (1) σ + c 2 µ (1) eg τ (1) σ + µ (1) er τ (2) σ ξ 5 = c 1 µ (2) er + c 2 µ (1) er ξ 6 = µ (1) eg µ (2) eg c 1 µ (2) eg + c 2 µ (1) eg -1

with c 2 the volume fraction of particles.

C.2 Hashin-Shtrikman-type microstructure
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eg µ (2) er (µ (1) erµ (1) eg ) + (1βc 1 )µ (1) eg µ (1) er (µ (2) erµ (2) eg )

ζ 2 = c 2 βc 1 µ (2)
eg 2 (µ (1) egµ (1) er ) τ (2) σ + (1βc 1 ) µ (1) eg 2 (µ (2) egµ (2) er ) τ (1) σ ζ 3 = βc 1 µ (2) eg + (1βc 1 )µ (1) eg τ (1) σ τ (2) σ ζ 4 = βc 1 µ (2) er τ (1) σ + µ (2) eg τ (2) σ + (1βc 1 ) µ (1) er τ (2) σ + µ (1) eg τ (1) σ ζ 5 = βc 1 µ (2) er + (1βc 1 )µ (1) er

ζ 6 = c 1 (1 -β)(1 -βc 1 ) -1 ζ 7 = c 1 (1 -β) µ (1)
eg 2 + (βc 1 + c 2 )µ (1) eg µ (2) eg βc 1 µ (2) eg + (1βc 1 )µ (1) eg -1

with the parameter β = 2 5 .

D Overall constitutive laws of heterogeneous viscoelastic media

D.1 Mixture of classical Maxwell constituents D.1.1 Local and effective viscoelastic properties

The behaviour of the classical Maxwell model is defined by the elastic regime M eg at short (t → 0) times and the viscous one M vr at long (t → +∞) times. Its constitutive behaviour is solution of the following homogeneous linear differential equation : with ε g (x) and ε r (x) the real fields solutions of the glassy elastic and relaxed viscous heterogeneous problems respectively.

D.1.2 Exact relations on the overall storage and loss moduli

From the stationary principles on the overall complex "energy" φ * and the asymptotic features on the mechanical fields, we obtain : It is noteworthy that the local fields are asymptotically solutions of purely viscous and elastic heterogeneous problems as ω → +∞ and ω → 0 respectively. Accordingly, the complex strain field ε * (x, ω) field must satisfy : with ε g (x) and ε g (x) the real fields solutions of the glassy viscous and relaxed elastic heterogeneous problems respectively.
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D.2.2 Exact relations on the overall storage and loss moduli

From the stationary principles on the overall complex "energy" φ * and the asymptotic features on the mechanical fields, we obtain : It should be remarked that Eq.(D.17 It should be mentioned that the local fields are asymptotically solutions of purely viscous heterogeneous problems as ω → +∞ and ω → 0 respectively. Accordingly, the complex strain field ε * (x, ω) must satisfy : with ε g (x) and ε r (x) the real fields solutions of the glassy and relaxed viscous heterogeneous problems respectively.
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D.3.2 Exact relations on the overall storage and loss moduli

From the stationary principles on the overall complex "energy" φ * and the asymptotic features on the mechanical fields, we obtain : From the form of the complex moduli tensor (D.28), it is also noted that : The located area over the macroscopic stress response is given by : lim 
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E Random distribution of size polydisperse particles

Random polydisperse microstructures have been built using the RSA algorithm which consists in placing randomly, irreversibly and sequentially nonoverlapping geometric objects into a given fixed volume. The size distribution of the spherical particles follows the lognormal density function φ(r) with r the radius of the particles :

φ(r) = 1 r σ √ 2π
e -(ln(r)-µ) 2 /2σ 2 with σ > 0 (E.1)

where the parameters µ and σ refer to the mean and standard deviation of the variable natural logarithm respectively.

Note that the generation of microstructures composed of P spherical particles requires to define particle size families characterized by a fixed radius and a number of particles. The determination of the particle size families and the associated radii, supposed to be evenly spaced hereafter, is assessed from the integral of the lognormal density function A(+∞) = +∞ 0 φ(r; µ, σ) dr = 1. In practice, it is thus necessary to choose a maximal radius r max corresponding to a given value A(r max ). The maximal radius adopted corresponds to A(r max ) = 0.99. It is given by : r max = e σψ+µ with ψ = √ 2π erf -1 22 25 (E.2)
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 11 Figure 1.1 : Description of the relaxation test. Constant strain field application at t = t 0 (left) and the resulting stress response (right) in the n direction.
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 12 Figure 1.2 : Description of the creep test. Constant stress field application at t = t 0 (left) and the associated strain response (right) in the n direction.
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 13 Figure 1.3 : Dynamic mechanical analysis. Shear harmonic strain loading (left) and the resulting stress response (right) in the plane (n, m).
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 15 Figure 1.5 : Representation of the viscoelastic material functions for the classical Zener phase (s) : relaxation (left) and creep (right) functions.
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 16 Figure 1.6 : Description of the dynamic moduli for the classical Zener phase (s) : storage modulus (left) and loss factor (right).
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 17 Figure 1.7 : Representation of the viscoelastic material functions for the classical Maxwell phase (s) : relaxation (left) and creep (right) functions.
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 18 Figure 1.8 : Description of the dynamic moduli for the classical Maxwell phase (s) : storage modulus (left) and loss factor (right).

  er while the relaxation times are null. Even though the relaxation function of the classical Kelvin-Voigt model is defined by the Dirac delta function, it is depicted as constant to emphasize the elastic asymptotic state at long (t → +∞) times as shown in Figure(1.9).
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 019110 Figure 1.9 : Representation of the viscoelastic material functions for the classical Kelvin-Voigt phase (s) : relaxation (left) and creep (right) functions.
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 111 Figure 1.11 : Representation of the viscoelastic material functions for the classical anti-Zener phase (s) : relaxation (left) and creep (right) functions.

Figure 1 . 12 :

 112 Figure 1.12 : Description of the dynamic moduli for the classical anti-Zener phase (s) : storage modulus (left) and loss factor (right).

G

  r = L eg -L er(1.71) Similarly to Eq.(1.71), it is possible to formulate the minimization problem associated to the transient response of the actual creep function M(t). The combined optimization of the magnitudes and the associated relaxation times of the Dirichlet-Prony series approximating the actual relaxation function significantly improved the results of classical collocation methods by making use of less collocation points[START_REF] Rekik | Optimization of the collocation inversion method for the linear viscoelastic homogenization[END_REF].
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 113 Figure 1.13 : Representation of the viscoelastic material functions for the fractional Zener phase (s) : relaxation (left) and creep (right) functions.
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 1114 Figure 1.14 : Description of the dynamic moduli for the fractional Zener phase (s) : storage modulus (left) and loss factor (right).

  er with E (s) the Young modulus of the fractional Zener constituent (s).

  fr actually correspond to the inverse of the fractional relaxation times τ α (s) σ while the fractional retardation times τ α(s) 
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 115 Figure 1.15 : Representation of the viscoelastic material functions for the fractional Maxwell phase (s) : relaxation (left) and creep (right) functions.
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 1116 Figure 1.16 : Description of the dynamic moduli for the fractional Maxwell phase (s) : storage modulus (left) and loss factor (right).
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 1117 Figure 1.17 : Representation of the viscoelastic material functions for the fractional Kelvin-Voigt phase (s) : relaxation (left) and creep (right) functions.
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 1118 Figure 1.18 : Description of the dynamic moduli for the fractional Kelvin-Voigt phase (s) : storage modulus (left) and loss factor (right).
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 1119 Figure 1.19 : Representation of the viscoelastic material functions for the fractional anti-Zener phase (s) : relaxation (left) and creep (right) functions.
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 1120 Figure 1.20 : Description of the dynamic moduli for the fractional anti-Zener phase (s) : storage modulus (left) and loss factor (right).
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 21 Figure 2.1 : Description of the multiscale modeling.

  [START_REF] Benveniste | The effective mechanical behaviour of composite materials with imperfect contact between the constituents[END_REF] with the overall stiffness L and compliance M = L -1 tensors. It should be mentioned that the homogenization step depends on the boundary conditions and there is no guarantee that L and M are inverse to each other. Only the scale separation condition d l allows to get closer to such idealized situation[START_REF] Zaoui | Changement d'échelle: motivation et méthodologie[END_REF]. The main steps of multiscale modeling are summarized in Figure(2.2).
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 22 Figure 2.2 : Homogenization process with respect to boundary conditions.
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 23 Figure 2.3 : The Eshelby problem : (a) free-stress natural state, (b) strain field incompatibility and (c) equilibrium state with ε I = S E : ε T I and σ I = L : (ε Iε T I ).

Figure 2 . 4 :

 24 Figure 2.4 : Illustration of the equivalency between the classical Eshelby problem and the stress-free heterogeneity problem with ε I = S E : ε T I and σ I = L : (ε Iε T I ).
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 25 Figure 2.5 : Description of the self-consistent (SC) estimate.All the previous methods consists in solving thermoelastic problems by means of homogeneous local fields per phases. Strongly depending on the value of the homogeneous reference material L 0 , they can actually provide bounds or estimates of the overall behaviour of heterogeneous media. In the case of two-phase materials with isotropic distributions of phases, the existing configurations depending on the value of the homogeneous reference material are reported in Figure(2.6).
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 26 Figure 2.6 : Models and classical bounds for two-phase materials with isotropic distributions of phases (fictive inclusion problem). R : Reuss, HS : Hashin-Shtrikman, MT : Mori-Tanaka, SC : Self-consistent and V : Voigt.

  2.7).
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 27 Figure 2.7 : (a) Composite sphere and (b) Hashin's composite sphere collection.
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 2 Figure 2.8 : (a) GSC model and (b) Energetic interpretation.
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 210 Figure 2.10 : Different types of singularities.

  σ ]. It is therefore obvious that the overall integral kernel is directly related to the microstructure through the existing singularities reported in the p-plane.
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 2 Figure 2.12 : Obnosov microstructure.
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 213 Figure 2.13 : Magnitudes and associated relaxation times with respect to the volume fraction of inclusions for Reuss (a,b) and Hashin-Shtrikman (c,d) estimates.
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 214 Figure 2.14 : Distinction between Hashin-Shtrikman and Gibiansky-Milton bounds in the complex plane at the given frequency ω.
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  108) with p = p(x) the volume averaged polarization. Substituting Eq.(2.108) into the variational principle (2.103) allows to derive the equivalent form of the Hashin-Shtrikman variational inequality : p : D 0 -D : p ≤ p(x) : ∆D -1 : p(x) + p(x) : e 0 (x) (2.109)

( 2 .

 2 139) and (2.142) provide the physical meaning of the two time integrals of the relaxation spectrum +∞ 0 τ -1 σ G(τ σ ) dτ σ and +∞ 0 τ σ G(τ σ ) dτ σ as shown in Figure (2.16).
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 216 Figure 2.16 : Physical interpretation on the overall relaxation spectrum G(τ σ ) for the mixture of classical Zener constituents. Relaxation stress (a) and stress rate (b) for the constant macroscopic strain ε. Stress response (c) for the constant macroscopic strain rate ε.
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 231 Figure 3.1 : Two-phase isotropic unit-cell of the checkerboard undergoing antiplane deformation.
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 7335 1MPa, µ b eg = 10 MPa, τ σ b = 0.05 s, α b = 0.High contrast : µ a er = 0.01 MPa, µ a eg = 1 MPa, τ σa = 0.025 s, α a = 0.7 µ b er = 1 MPa, µ b eg = 100 MPa, τ σ b = 0.05 s, α b = 0.7 (3.36)
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 2222222232 Figure 3.2 : Overall shear storage modulus and loss factor (a,b) with the associated relative deviations (c,d) from the exact results with moderate contrast on the elastic shear moduli at glassy and relaxed states with FFT full-field computations for different grid refinements at glassy state (ω = 10 -4 ).
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 2222222233 Figure 3.3 : Overall shear storage modulus and loss factor (a,b) with the associated relative deviations (c,d) from the exact results with high contrast on the elastic shear moduli at glassy and relaxed states with FFT full-field computations for different grid refinements at glassy state (ω = 10 -4 ).

Figure 3 . 4 :

 34 Figure 3.4 : Periodic monodisperse microstructure made of 1 spherical inclusion (a), 10 spherical inclusions (b) and 100 spherical inclusions (c).

Figure 3 . 5 :

 35 Figure 3.5 : Error on equilibrium at each iteration for one given computation on three different microstructures composed of either isotropic (left) or anisotropic (right) elastic inclusions. Contrast C = 10 3 and FFT-based method : accelerated scheme. Homogeneous reference medium : κ 0 /κ matrix = µ 0 /µ matrix = 10.

Figure 3 . 6 :

 36 Figure 3.6 : Error on equilibrium at each iteration for three different FFT-based methods with C = 10 3 . Microstructure (a) composed of anisotropic elastic inclusions.Optimal homogeneous reference medium L 0 for each scheme.

Figure 3 . 7 :

 37 Figure 3.7 : Number of iterations at convergence for different values of the homogeneous reference medium L 0 with the contrast C = 10 (a), 100 (b) and 1000 (c). Microstructure (a). FFT-based method : accelerated scheme.

Figure 3 . 8 :

 38 Figure 3.8 : Number of iterations at convergence depending on the matrix Poisson ratio (left). Optimal bulk and shear moduli of the reference medium L 0 depending on the matrix Poisson ratio (right). Microstructure (a) with anisotropic elastic inclusions. Contrast C = 1000. FFT-based method : accelerated scheme.
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Figure 4 . 1 :

 41 Figure 4.1 : Least-square optimization of the relaxation time τ α σ 1 depending on the volume fraction c 2 of particles for the mixtures of classical (left) and fractional (right)Zener constituents 1 with respect to the MT and GSC estimates.

  as illustrated in Figure (4.2).

Figure 4 . 2 :

 42 Figure 4.2 : Polydisperse microstructure composed of spherical inclusions with volume fraction c = 0.1 (a), c = 0.3 (b) and c = 0.5 (c). Parameters µ = 0.1, σ = 1 and P = 100.

Figure 4 . 3 :

 43 Figure 4.3 : Mean-field estimates and FFT simulations of the overall shear storage modulus µ (ω) and loss factor η(ω) of particulate composite materials whose matrix is described by the classical Zener (α = 1) model for different volume fractions of inclusions c (a,b) : 0.1 -(c,d) : 0.3 -(e,f) : 0.5.

Figure 4 . 4 :

 44 Figure 4.4 : Mean-field estimates and FFT simulations of the overall shear storage modulus µ α (ω) and loss factor η α (ω) of particulate composite materials whose matrix is described by the fractional Zener (α = 0.7) model for different volume fractions of inclusions c (a,b) : 0.1 -(c,d) : 0.3 -(e,f) : 0.5.

Figure 4 . 5 :

 45 Figure 4.5 : Comparison between FFT full-field computations and GSC-based approximate viscoelastic homogenization model. Overall shear storage modulus µ (ω) and loss factor η(ω) of particle-reinforced composite (a,b) and porous (c,d) viscoelastic materials for various volume fractions of particles. Matrix described by the classical Zener (α = 1) model.

Figure 4 . 6 :

 46 Figure 4.6 : Comparison between FFT full-field computations and GSC-based approximate viscoelastic homogenization model. Overall shear storage modulus µ α (ω) and loss factor η α (ω) of particle-reinforced composite (a,b) and porous (c,d) viscoelastic materials for various volume fractions of particles. Matrix described by the fractional Zener (α = 0.7) model.

Figure 4 . 7 :

 47 Figure 4.7 : Relative deviations from the GSC estimate of the overall shear storage modulus and loss factor of the GSC-based model in the case of particle-reinforced composite materials for various volume fractions of particles. Matrix described by the classical (a,b) and fractional (c,d) Zener model.

Introduction

  TATB-based pressed explosives stand out from classical civil or military energetic materials due to particular aspects. Mostly based on the highly stable explosive molecule 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) and small amounts of polymer that acts as binder between constituents, TATB-based pressed explosives are exceptionally safe and characterized by good mechanical features. Such materials are manufactured by coating TATB powders by small percentages of polymer and isostatically pressing the coated powders at high pressure and moderate temperature. Generally synthesized by nitration of 1,3,5-trichlorobenzene (C 6 H 3 Cl 3 ) and dissolution of the resulting trichloro-trinitrobenzene (C 6 H 6 N 6 O 6 ) in toluene, TATB powders are obtained after heat and acid treatments as depicted in Figure (5.1).

Figure 5 . 1 :

 51 Figure 5.1 : Typical SEM images of TATB samples with ×100 (left) and ×500 (right) magnifications [86].

Figure 5 . 2 :

 52 Figure 5.2 : Microstructure of TATB-based polymer-bonded pressed explosives obtained by optical microscopy [69]. White circles : void clusters.

5. 1 . 1

 11 Crystal structure 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) is an insensitive energetic molecular crystal used in high-performance military applications. Note that the TATB single crystal is centrosymmetric and crystallizes in the triclinic unit-cell of space group P1 with two molecules. It exhibits highly anisotropic thermo-mechanical properties due to the arrangement in layers of the two C 6 H 6 N 6 O 6 molecules as shown in Figure(5.3). The layered structure and the sharp contrast between the interplanar interactions (governed by van der Waals interactions) and the hydrogen bonding between molecules within the basal plane layers actually imply the crystal anisotropy[START_REF] Bedrov | A molecular dynamics simulation study of crystalline 1, 3, 5-triamino-2, 4, 6trinitrobenzene as a function of pressure and temperature[END_REF][START_REF] Mathew | Generalized stacking fault energies in the basal plane of triclinic molecular crystal 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (tatb)[END_REF].

Figure 5 . 3 :

 53 Figure 5.3 : TATB single-crystal structure with lattice vectors (a,b,c) and cell angles (α, β, γ) [110]. (a) : 3D model. (b) : x+ view. (c) : y+ view. (d) : z+ view.

2 )

 2 with respect to local elastic moduli read : where F = L + L -1 and F = (L + L ) -1 .

Figure 5 . 4 :

 54 Figure 5.4 : Description of the effective bulk and shear moduli with the increase of the volume fraction of porosity for binder-free TATB polycrystals.

Figure 5 . 5 :

 55 Figure 5.5 : Isotropic deviation of the overall behaviour of binder-free TATB polycrystals depending on the number of grains for different volume fractions of porosity.

Figure 5 . 6 :

 56 Figure 5.6 : Description of the self-consistent (SC) scheme with spheroids.
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Figure 5 . 7 :

 57 Figure 5.7 : Reference spheroid geometry characterized by the aspect ratio r = b/a and the orientation vectors n i (with i = 1, 2, 3).

Figure 5 . 8 :

 58 Figure 5.8 : Evolution of the effective bulk and shear moduli for binder-free TATB polycrystals made of prolate (left) and oblate (right) spheroids.

1 Figure 5 . 9 :

 159 Figure 5.9 : Isotropic deviation of the overall stiffness tensor of binder-free TATB polycrystals made of prolate (left) and oblate (right) spheroids.

Figure 5 . 10 :

 510 Figure 5.10 : Overall bulk and shear moduli of binder-free TATB polycrystals made of prolate (a,b) and oblate (c,d) spheroids at various porosity levels.

Figure 5 . 11 :

 511 Figure 5.11 : Mean values of the equivalent strain fields and the associated standard deviations for prolate (a,c) and oblate (b,d) spheroids versus the spherical case for deviatoric loadings.

Figure 5 . 12 :

 512 Figure 5.12 : Shear storage modulus and loss factor of the binder resulting from the frequency analysis (a,b) and coupled analysis (b,d).

Figure 5 . 13 :

 513 Figure 5.13 : Shear storage modulus (a,c) and loss factor (b,d) of the binder for three different kinds of fractional Zener models.

Figure 5 . 14 :

 514 Figure 5.14 : Shear storage modulus (left) and loss factor (right) of TATB-based pressed polymer-bonded explosives from the frequency analysis. The GSC estimate for two-phase isotropic composite materials is evaluated by comparison with numerical homogenization. FFT full-field computations are thus carried out for TATB-based polycrystals made of isotropic, transverse isotropic or anisotropic crystalline orientations. It is noteworthy that the isotropic behaviour actually corresponds to the effective elasticity of binder-free TATB-based polycrystals while the other behaviours are derived from the data of Ambos et al. [3]. The generated Johnson-Mehl microstructure 5 including 50 grains is approximately composed of 91% of TATB monocrystals and 9% of binder as shown in Figure (5.15). Numerical simulations are carried out on the discretized unit-cell containing 201 3 voxels by means of the Eyre-Milton scheme.

Figure 5 . 15 :

 515 Figure 5.15 : Johnson-Mehl microstructure with 50 grains composed by 91% of TATB single crystals and 9% of binder.The overall shear storage modulus and loss factor of TATB-based polycrystals made of three different kinds of crystalline orientations are reported in Figure(5.16). By contrast with the transverse isotropic case, the overall viscoelastic moduli of TATB-based polycrystals made of isotropic grains overestimates the reference results by nearly 25%. It should be remarked that such discrepancy seems to decrease over the frequency range.

Figure 5 . 16 :

 516 Figure 5.16 : Overall shear storage modulus (left) and loss factor (right) of TATB-based pressed polycrystals made of isotropic, transversely isotropic and anisotropic crystalline orientations assessed by FFT full-field computations.

Figure 5 . 17 :

 517 Figure 5.17 : Comparison between the GSC estimate and FFT full-field computations of the overall shear storage modulus (left) and loss factor (right) of TATB-based pressed polycrystals made of isotropic grains.

Figure 5 . 18 :

 518 Figure 5.18 : Overall shear storage modulus (left) and loss factor (right) of TATB-based pressed polycrystals whose binder is described by the four-parameter fractional Zener (α = 0.77) model assessed with the GSC estimate with respect to experimental data.

  Frac. Zener α GSC -Frac. Zener (α, β) Exp. data

Figure 5 . 19 :

 519 Figure 5.19 : Overall shear storage modulus (left) and loss factor (right) of TATB-based pressed explosives whose binder is described by the five-parameter fractional Zener (α = 0.79 and β = 0.56) model assessed by the GSC estimate with respect to experimental data.

Figure 5 . 20 :

 520 Figure 5.20 : General and close-up views of the overall shear storage modulus (a,b) and loss factor (c,d) of TATB-based pressed explosives assessed by the GSC estimate with respect to the experimental results.

7 )From (A. 4 )

 74 , the LC transform of the fractional derivative thus simply reads :LC(D α f (t)) = (D α f ) * (p) = Y * 1-α (p) f * (p) (B.8)By noting that LC(t -α ) = Γ(1α) p α , it gives :(D α f ) * (p) = p α f * (p), α > 0 (B.9)

+∞ 0 H

 0 α (θ) e -t/θ dθ, t > 0 with 0 < α < 1 (B.11) withH α (θ) = 1 π θ α-1 sin(απ) 1 + 2θ α cos(απ) + θ 2α (B.12)It can be also noted that+∞ 0 H α (θ) dθ = 1 since E α (0 + ) = 1.
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  ) with elastic modulus E and fractional relaxation time τ α σ . From the definition (B.7), it follows that :σ(t) = t 0 R(tu) ε(u) du (B.18)

  with γ = (R, V, HS) (C.1) with Q(p) polynom of degree N γ -1 in p. The numbers N γ , the magnitudes µ γ i and the associated relaxation times τ γ σ i are reported in Table(2.1) while the parameters of the Reuss and Hashin-Shtrikman models are defined hereafter.

M

  vr : σ(t) + M eg : σ(t) = ε(t) (D.1)The relaxation and creep functions of the classical Maxwell phase (s) reads :L (s) (t) = L (s) eg e -t/τ (s) σ and M (s) (t) = M (s) eg + M (s) vr t (D.2)It should be remarked that the inverse of the relaxation times τ (s)σ are the eigenvalues of L (s) eg : M (s)vr while the retardation times are null. Following the works of Suquet[START_REF] Suquet | Elements of homogenization for inelastic solid mechanics, homogenization techniques for composite media[END_REF], the overall relaxation and creep functions are expressed in terms of : σ ) e -t/τσ dτ σ and M(t) = M eg + M vr t + +∞ 0 J(τ ε ) 1e -t/τε dτ ε while the complex viscoelastic stiffness tensor L * (iω) reads :L * (iω) = LC( L(t)) p=iω = +∞ 0 iωτ σ 1 + iωτ σ G(τ σ ) dτ σ (D.3)It is noteworthy that the local fields are asymptotically solutions of purely elastic and viscous heterogeneous problems as ω → +∞ and ω → 0 respectively. The pointwise complex strain field ε * (x, ω) therefore satisfies : lim ω→+∞ ε * (x, ω) = ε g (x) and lim ω→0 ε * (x, ω) = ε r (x) (D.4)

1 ω 6 )τ 1

 161 lim ω→+∞ ε : L (ω) : ε = lim ω→+∞ ε : L eg : ε = s c s L(s) eg :: ε g ⊗ ε g : ε = s c s L(s) eg : M(s) vr : L(s) eg ::ε g ⊗ ε g L (ω) : ε = s c s L (s) vr : M (s) eg : L (s) vr :: εr ⊗ εr (s) (D.5)It is worth noting that Eq.(D.3) directly implies that :With the general expression of the overall relaxation function described in Eq.(D.3), the four asymptotic relations of Eq.(D.5) impose restrictions on time integrals of the overall relaxation spectrum G(τ σ ) :                                     ε : σ ) dτ σ : ε = s c s L (s) eg :: ε g ⊗ ε g σ G(τ σ ) dτ σ : ε = s c s L (s) vr :: εr ⊗ εr τ σ ) dτ σ : ε = s c s L (s) eg : M (s) vr : L (s) eg :: ε g ⊗ ε g is easily interpreted in the case of the relaxation loading test with ε(t) = ε : σ ) dτ σ : ε (D.8)The physical interpretation of the other time integrals involved in Eq.(D.7) are actually related to the asymptotic values of the derivative or integral of the overall relaxation function L(t).On the one hand, the derivative of the overall relaxation function reads : τ σ ) e -t/τσ dτ σ (D.9)In the case of the relaxation loading test with constant strain ε, it follows that : τ σ ) dτ σ : ε (D.10)On the other hand, the integral of the overall relaxation function is given by :I L(t) = +∞ 0 τ σ G(τ σ ) 1e -t/τσ dτ σ (D.11)We thus obtain in the context of the loading relaxation test with the constant macroscopic strain rate ε :τ σ ) dτ σ : ε = σ ∞ (D.12)It should be remarked that the area located over the macroscopic stress response with the constant macroscopic strain rate ε is defined by : τ σ ) dτ σ : ε (D.13)The physical meaning of the three time integrals of the relaxation spectrum +∞ 0 τ -1 σ G(τ σ ) dτ σ , +∞ 0 τ σ G(τ σ ) dτ σ and +∞ 0 τ 2 σ G(τ σ ) dτ σ is thus given by Eqs.(D.10), (D.12) and (D.13).

Figure D. 1 :D. 2 D. 2 . 1 M

 1221 Figure D.1 : Physical interpretation on the overall relaxation spectrum G(τ σ ) for the mixture of classical Maxwell constituents. Relaxation stress (a) and stress-rate (b) for the prescribed macroscopic strain ε and stress response (c) for the constant applied macroscopic strain rate ε.

  lim ω→+∞ ε * (x, ω) = ε g (x) and lim ω→0 ε * (x, ω) = ε r (x) (D.18)

ε 1 ω

 1 : L (ω) : ε = lim ω→0 ε : L er : ε = s c s L (s) er :: ε r ⊗ ε r L (ω) : ε = s c s L (s) er :: εg ⊗ εg (s) (D.19)

τFigure D. 2 :D. 3 D. 3 . 1 1 τ 26 )J(τ ε ) 1

 23311261 Figure D.2 : Physical interpretation on the overall relaxation spectrum G(τ σ ) for the mixture of classical Kelvin-Voigt constituents. Stress (a) and stress rate (b)for the constant macroscopic strain rate ε.

  lim ω→+∞ ε * (x, ω) = ε g (x) and lim ω→0 ε * (x, ω) = ε r (x) (D.29)

  ) : ε = lim ω→0 ε : L vr : ε = s c s L(s) vr :: εr ⊗ εr

1 ωFigure D. 3 :

 13 Figure D.3 : Physical interpretation on the overall relaxation spectrum G(τ σ ) for the mixture of classical anti-Zener constituents. Stress response (a) for the constant macroscopic strain rate ε and relaxation stress (b) for the constant macroscopic strain ε.

  τ σ ) dτ σ : ε (D.36) Note that Eqs.(D.33), (D.35) and (D.36) hold the physical meaning of the three integrals of the overall relaxation spectrum +∞ 0 G(τ σ ) dτ σ , +∞ 0 τ σ G(τ σ ) dτ σ and +∞ 0 τ 2 σ G(τ σ ) dτ σ as described in Figure (D.3).

Figure E. 1 :

 1 Figure E.1 : Polydisperse microstructure composed of spherical particles with volume fraction c = 0.1 (a), c = 0.3 (b) and c = 0.5 (c). Parameters µ = 0.1, σ = 1 and P = 100.

  

Table 1 .

 1 

1 : Elementary linear viscoelastic constituents.

Table (

 ( 

	Constituent Frac. Zener	M eg M fr L er L fg Short time response Long time response > 0 0 > 0 0 Elastic Elastic
	Frac. Maxwell	> 0 > 0	0	0	Elastic	Frac. viscous
	Frac. Kelvin-Voigt	0	0	> 0 > 0	Frac. viscous	Elastic
	Frac. anti-Zener	0	> 0	0	> 0	Frac. viscous	Frac. viscous
	Table 1.2 : Elementary fractional viscoelastic constituents.
							1.2).

Table 2 .

 2 

1 : Exact expressions of the overall shear relaxation modulus as predicted by the Voigt, Reuss and Hashin-Shtrikman estimates.

  , the set of four equations dealing with the overall behaviour of the mixture of classical Maxwell constituents can be used to determine the minimal approximation with four parameters (scalar or tensorial) improving the Maxwellian estimate which only makes use of Eqs.(2.145) 1 . Based on the system of Eqs.(2.145), the approximate viscoelastic homogenization model involves only two Dirac delta functions. Depending on the microstructure, the approximate model can actually be exact. As pointed out by Ricaud and Masson[START_REF] Ricaud | Effective properties of linear viscoelastic heterogeneous media: Internal variables formulation and extension to ageing behaviours[END_REF], the overall relaxation function of particle-reinforced two-phase media made of classical Maxwell phases verifying the Hashin-Shtrikman bounds actually corresponds to the same sum of two decaying exponentials. It should be mentioned that similar results can be assessed on the overall creep function of the mixture of classical Kelvin-Voigt constituents.

	Approximate homogenization models can be obtained for any kind of classical viscoelastic behaviours by taking advantage of asymptotic uncoupled elastic or viscous homogenization problems. Regarding fractional viscoelasticity, most fractional viscoelastic constituents exhibit asymptotic fractional viscous behaviours. Accordingly, it is no longer possible to build-up approximate viscoelastic homogenization models. It is well-established that only the fractional Zener constituent is characterized by uncoupled asymptotic behaviours among the fractional viscoelastic models. The proposal of approximate homogenization models describing the overall behaviour of isotropic particle-reinforced materials made of fractional Zener phases is therefore discussed later.
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	This chapter is greatly inspired from the following published article :

-reinforced composite materials . . . . . . . . . . . . . 4.2.1 Approximate viscoelastic model parameters . . . . . . . . . . . . . . . . . 4.2.2 Mean-field homogenization estimates . . . . . . . . . . . . . . . . . . . . . 4.2.3 Fourier transform-based numerical homogenization . . . . . . . . . . . . . 4.3 Overall behaviour of viscoelastic composite materials . . . . . . . . . . . . . 4.3.1 • V. Gallican and R. Brenner. Homogenization estimates for the effective response of fractional viscoelastic particulate composites. Continuum Mechanics and Thermodynamics, 31(3), 823-840, 2019.

Table 4 .

 4 .1). 1 : Constitutive parameters of particulate composite materials whose viscoelastic matrix is described by the fractional Zener model(4.11).

		κ er κ eg µ er µ eg	τ σ
	Viscoelastic matrix (1)	4	4	0.01	1	0.0265 s
	Elastic inclusions (2)	40 40	30	30	-

Table 5 .

 5 5.1). 1 : TATB lattice parameters at room temperature (300K). Parameters (a, b, c) and (α, β, γ) are expressed in Å and degrees respectively.

	References	a	b	c	α	β	γ
	Cady and Larson [38] 9.010 9.028 6.812 108.59 91.82 119.97 Kolb and Rizzo [107] 4.599 6.541 7.983 103.81 92.87 106.95 Stevens et al. [177] 8.967 9.082 6.624 110.54 93.00 118.90 Plisson et al. [151] 9.040 9.030 6.810 108.50 91.70 120.00

Table 5 .

 5 and 37% for the components L 11 and L 66 respectively. 2 : TATB monocrystal constitutive parameters expressed in GPa (Voigt notation). Bed. : Bedrov et al. [9] -Val. : Valenzano et al. [187] -Mat. : Mathew and Sewell [128] Ryk. : Rykounov et al. [165] -Laf. : Lafourcade et al.

	Component Bed. Val. Mat. Ryk.	Laf.
	L 11 L 22 L 33 L 44 L 55 L 66 L 12 L 13 L 14 L 15 L 16 L 23 L 24 L 25 L 26 L 34 L 35 L 36 L 45 L 46 L 56	65.7 78.4 52.09 83.2 49.88 62.0 -50.18 78.3 50.07 18.3 19.7 15.75 18.9 24.66 1.4 0.9 1.2 1.7 2.32 0.68 -0.73 1.5 1.92 21.6 29.7 17.58 30.0 25.22 18.5 16.8 14.24 21.9 11.41 4.0 0.8 2.05 -2.4 2.39 5.0 --0.14 -0.3 -0.24 -0.2 --0.61 -0.8 -1.52 -1.0 -0.3 -0.6 2.47 1.0 -3.55 2.9 4.30 0.6 -0.53 0.1 -0.75 -0.5 --0.15 -0.4 0.29 1.0 -0.91 2.5 3.75 0.2 -0.05 -0.6 -1.37 -0.4 --0.28 -0.5 -0.80 -0.4 --0.14 0.1 -0.79 0.1 -0.07 0.0 -0.07 0.3 --0.16 -0.3 0.29 0.4 -0.2 0.6 -0.14

Table 5 .

 5 12.26 12.49 -0.09 0.15 -0.17 12.26 25.83 12.32 -0.32 0.06 -0.02 12.50 12.32 26.29 -0.11 0.17As described in Table(5.3), the resulting overall moduli are close to FFT full-field computations but the sharp contrast with experimental data still remains. The gap may arise from damage factors at the grain-scale such as microcracks or residual voids[START_REF] Ambos | Numerical modeling of the thermal expansion of an energetic material[END_REF][START_REF] Gasnier | Thermoelastic properties of microcracked polycrystals. part i: Adequacy of fourier-based methods for cracked elastic bodies[END_REF][START_REF] Gasnier | Thermoelastic properties of microcracked polycrystals. part ii: The case of jointed polycrystalline tatb[END_REF]. 3 : Comparison of the overall moduli of binder-free TATB polycrystals obtained analytically through SC estimate and numerically by FFT simulations

	0.03

Table 5 .

 5 4 : SC estimate results on the combined effect of porosity and binder. Experimental data characterizing the binder behaviour have been obtained by making use of DMA measurements in tension-compression cycling by H. Trumel from CEA DAM le Ripault.

	estimate	κ (GPa) µ (GPa)
	Binder-free polycrystal	16.91	6.71
	Binder	30.83	0.62
	Porosity only (2.5%)	15.50	6.19
	Binder (5%) + Porosity (2.5%)	15.75	5.52
	Experimental data	7.10	2.70

1 

  Each crystalline orientation of TATB-based polycrystals is now containing weak-plane microcracks whose density is directly associated to the parameter ρ. The damaged moduli described in Eq.(5.24) are thus obtained with ρ = 1.8. It should be noted that such density of microcracks is rather high and difficult to compute numerically[START_REF] Gasnier | Thermoelastic properties of microcracked polycrystals. part ii: The case of jointed polycrystalline tatb[END_REF]. The overall shear storage modulus and loss factor of the GSC estimate including damaged grains are compared to experimental data on Figure(5.20).
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	H 44 = H 55 =	  3 16	L H 66 L H 44 +	L H 11 /L H 2H 33 33	  -1	(5.26)

H 11 = H 22 = H 12 = H 13 = 0 and H 66 = 2 (H 11 -H 22 )

  [START_REF] Bergman | Bulk physical properties of composite media[END_REF] Following Dubois et al.[START_REF] Dubois | Introduction à la dérivation fractionnaire-théorie et applications[END_REF], the solution reads f (t) = E α (-(λt) α ). The asymptotic expansion of the function E α (-t α ) at short (t → 0) and long (t → +∞) times reads :It should be mentioned that the Laplace-Carson transform of the Mittag-Leffler function satisfies the following relation :LC E α [-(t/τ σ ) α ] = (pτ σ ) α 1 + (pτ σ ) α (B.16)

	lim t→0	E α (-t α ) = 1 -	t α Γ(1 + α)	and	lim t→+∞	E α (-t α ) =	t -α Γ(1 -α)	(α = 1)	(B.15)

From linear to fractional viscoelastic constitutive behaviours

The relaxation times τ (s) σ of the classical Zener phase (s) are expressed τσ for the sake of clarity.

It must be stressed that the strain field (v) does not depend on time.

It should be mentioned that ε(t = 0) = 0 since σ(t = 0) = 0.

More details about TATB-based materials are given in chapter[START_REF] Anoukou | Random distribution of polydisperse ellipsoidal inclusions and homogenization estimates for porous elastic materials[END_REF].

The elastic stiffness tensor of TATB single crystals is written according to the Voigt notation (in GPa).

The bulk κ 0 and shear µ 0 moduli characterizing L 0 are fixed for all the computations in Figure(3.8).

Micromechanical modeling of TATB-based pressed explosives

The measurements have been conducted by C. Delhomme and H. Trumel from CEA DAM Le Ripault.

The fractional parameter α is assessed through Eq.(1.90) in term of shear.

The tests have been conducted by D. Picart and tabulated by H. Trumel from CEA DAM Le Ripault.

The microstructure was provided by F. Willot from the Mines ParisTech.

Note that the effect of the binder bulk modulus of TATB-based pressed explosives is very weak.

The tensor H is expressed in Voigt notation with e3 normal to the crack.

The models can only be extended to fractional viscoelasticity for fractional Zener constituents.
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Appendix

A

Stieltjes convolution and Laplace-Carson transform

The Stieltjes convolution product of two functions f and g is the derivative of their usual convolution product by definition. If the time function g is differentiable, it reads :

When the function g is only piecewise continuous and differentiable, it should be remarked that the time derivative in Eq.(A.1) contains Dirac delta functions at discontinuity points t n and the Stieltjes convolution product must be understood in terms of :

where [g] n is the discontinuity of g at time t n and ġ(u) is the usual derivative of g.

The Laplace-Carson (LC) transform of the function f (t) is defined by :

From (A.1) and (A.3), it follows that :

B Basics of fractional calculus

B.1 Gamma function

The Gamma function Γ corresponds to the continuation of the factorial function to complex numbers. It is defined by :

Note that the integration by parts of Eq.(B.1) leads to the following property :

It is also noted that Γ(1) = 1 and Γ(n) = (n -1)!, ∀n ∈ N.

B.2 Fractional integral and derivative operators

The Cauchy formula for successive integrations of the causal function f with null initial conditions classically reads :

Namely :

By using the function Γ, the integral operator I can be extended straightforwardly to non-integer order α > 0 such as :

It can be also noted that :

Random distribution of size polydisperse particles

By considering evenly spaced radii, the knowledge of the limit radius allows to determine each radius associated to a given particle size family. The number of particles per particle size family is then deduced by the calculation of the area sections. For n particle size families, the radius r i and the number of particles P i associated to a given particle size family i are expressed in terms of :

, n > 2,