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ABSTRACT 

Titre : Effets de la topologie des cellules d'une structure en nid d'abeille 
Mots clés : Propagation des ondes, Structures périodiques, Topologie, Fibres naturelles, 
Matériaux composites, Panneaux sandwich 
Résumé : Les panneaux composites sandwich possédant une âme nid d'abeille 
permettent de disposer à la fois de propriétés statiques hors plan intéressantes (en raison 
de leur rigidité équivalente élevée) et de caractéristiques de masses faibles. Pour cette 
raison, ils sont largement utilisés dans les industries aérospatiale, automobile et navale. 
Les environnements dans lesquels ces matériaux sont utilisés mettent en jeu des efforts 
dans des gammes de fréquences larges. Si un rapport rigidité / masse élevé est profitable 
dans le domaine des basses fréquences, il conduit généralement à des comportements 
vibratoires et acoustiques médiocres lorsque la fréquence d’excitation augmente. La 
question abordée dans ce travail peut être formulée comme : comment les concepts 
périodiques peuvent-ils améliorer les signatures vibroacoustiques large bande et les 
performances de ces structures ? La plupart des solutions vibroacoustiques sont limitées 
en terme de bande de fréquences d’efficacité, et induisent généralement un ajout de 
masse. La prise en compte de règles de conception vibroacoustiques à un stade précoce 
du développement du produit est l'un des principaux objectifs de recherche en vue 
d’améliorer leurs performances et permettrait de concevoir des structures accordées 
sans aucune intervention ultérieure ou augmentation de masse. Ce travail se concentre 
donc sur l'étude des topologies de base de panneaux sandwich existants et a pour objectif 
de créer de nouvelles structures améliorées. La recherche a été menée en essayant de 
maintenir les propriétés structurelles souhaitées, ce qui justifie l'utilisation d'une telle 
solution en premier lieu, mais également en considérant son utilisation potentielle 
comme plate-forme pour la mise en place d’inserts de matériaux périodiques résonants. 
Ces noyaux cellulaires ont été fabriqués en utilisant la technique du Kirigami (qui est une 
variante de l'Origami) : il s’agit d’une ancienne technique japonaise qui consiste à créer 
des structures 3D en pliant et en découpant une feuille de matériau 2D. Cette technique 
de fabrication peut être utilisée comme un moyen systématique de produire des 
configurations générales en nid d'abeilles avec des composites à fibres longues par 
thermoformage et / ou autoclavage. Le principal indicateur utilisé ici afin d’évaluer les 
performances vibroacoustiques des topologies innovantes proposées est le nombre et la 
plage de bandes d'arrêt, également connues sous le nom de bandes interdites, qui 
décrivent les plages de fréquences dans lesquelles les ondes élastiques ne peuvent pas se 
propager dans la structure. Ce manuscrit est organisé en quatre chapitres. Le premier 
consiste en un bref aperçu des structures périodiques dans les différents domaines 
d'ingénierie. L'accent est mis sur les panneaux sandwich et leurs techniques de 
fabrication les plus populaires sera également décrit. Le chapitre présentera au lecteur 
aussi le concept de propagation des ondes élastiques dans les milieux périodiques. De 
plus, des phénomènes comme les interférences de Bragg ou les bandes interdites 
résonantes seront présentés ainsi que la théorie de Floquet-Bloch appliquée aux 
structures à périodiques typiquement utilisées dans l’aéronautique. Cette dernière 
dérivation mathématique sera fusionnée avec l'approche d'analyse par éléments finis et 
mise en œuvre comme base pour les outils de prédiction numérique spécialement 
développés afin de permettre la réalisation d’investigations paramétriques sur des 
panneaux sandwich complets ou des cœurs nus. La théorie de Floquet-Bloch permet de 
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récolter des informations cruciales sur le comportement dynamique de l’ensemble de la 
structure en n’effectuant l’analyse que sur une petite partie de celle-ci (cellule unitaire). 
Dans le deuxième chapitre, une analyse préliminaire sur les bandes interdites sur les 
géométries dérivées du kirigami sera effectuée et les principales limitations de 
fabrication en termes de géométries de cellules possibles seront discutées. Le nombre 
réduit de géométries de cellules pouvant être obtenues avec le kirigami a motivé 
l’introduction du concept d'interverrouillage, qui respecte toujours toutes les règles du 
kirigami et libère les contraintes géométriques de la technique parente. Ce concept ajoute 
également la possibilité d'obtenir des noyaux multi-matériaux composites à fibres 
longues, ce qui introduit un deuxième niveau de périodicité et peut représenter une 
nouvelle plate-forme capable d'accueillir, voire de changer rapidement des mousses, des 
patchs viscoélastiques ou des résonateurs au sein des cellules. Le concept, la technique 
de fabrication et l'étude paramétrique de la bande interdite de certains exemples de 
verrouillage sont largement discutés dans le troisième chapitre. Le quatrième chapitre se 
concentre sur un autre indice de vibration, qui est la transmissibilité hors plan des 
structures cellulaires en nid d'abeilles. Divers nids d'abeilles composites en fibres de lin 
avec thermodurcissable ainsi qu'une matrice thermoplastique ont été fabriqués et testés. 
Enfin, le manuscrit se termine par une section dans laquelle les futurs travaux ainsi que 
des applications seront proposés. Les outils logiciels codés pour la prédiction de 
propagation des ondes élastiques et la caractérisation des matériaux utilisés pour la 
fabrication du kirigami constitueront l'annexe. 

 

Title : Sandwich core periodic cell topology effects 
Keywords : Wave propagation, Periodic structures, Topologies, Natural Fibers, 
Composite materials, Sandwich panels 
Abstract : This research work is part of the VIPER project, a European Joint Doctorate 
network focused on research in vibroacoustics of periodic media. It has received funding 
from the European Union's Horizon 2020 research and innovation programme under 
Marie Curie grant agreement No 675441. The Universities involved are the E.U. academic 
partners Université de Franche-Comté (FR.) and University of Bristol (U.K.). Since VIPER 
is part of an Innovative Training Network (MSCA-ITN) this research work was also 
carried out in collaboration with the non-EU academic partner Georgia Institute of 
Technology (U.S.A.) and the EU industrial partner iChrome, based in Bristol (U.K.). The 
aim of the project is to improve the vibroacoustic properties of periodic structures which 
are widely used in the engineering domain due to their main characteristic, periodicity, 
which makes them a convenient solution for manufacturing guidelines aspects. Real life 
macroscopic examples are railway tracks, bridges, and airplane fuselages, amongst many 
others. Honeycomb sandwich panels are another example and are well known to provide 
interesting static out of plane properties because of their high equivalent stiffness whilst 
containing mass and for this reason, they are widely used as a ‘building brick’ in the 
Aerospace, Automotive and Naval industries. The environment in which these materials 
operate involve external forces which excites them in the mid-low frequency range. 
However, while a high stiffness/mass ratio is a desirable static property, the vibration 
frequency domain is usually in the high range and therefore they become poor 
mechanical and acoustic insulators within the frequency range they are usually subject 
to. The question addressed then is simple: how periodic concepts can improve the 
broadband vibroacoustic signatures and performances of those structures? Most of 
vibroacoustic solutions are frequency band limited, specific, and usually include the 
addition of mass, which for certain engineering segments is disadvantageous. Including 
vibroacoustic design rules at early stage of product development is one of the main 
research targets to improve their performance and would allow to design tuned 
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structures without any later intervention or mass increment. This work focuses on 
investigating existing sandwich panel core topologies and attempt to create novel 
improved structures. The research was carried out trying to maintain the desired 
structural properties which justifies the usage of such solution in the first place but also 
considering its potential use as a platform for Multiphysics resonating periodic material 
inserts. Such cellular cores had to manufactured using Kirigami, which is a variation of 
Origami, an ancient Japanese technique that consists in creating 3D structures by folding 
a 2D sheet of material. This manufacturing technique can be used as a systematic way to 
produce general honeycomb configurations with off-the-shelf long fibre composites by 
thermoforming and/or autoclaving, which by itself, is a novelty in the honeycomb domain 
as they are often produced using metals or plastics. The main indicator on which I will 
focus to evaluate the vibroacoustic performance of the proposed innovative topologies 
will be the number and range of stopbands, also known as a bandgaps, which describe 
the frequency ranges in which elastic waves are not transmitted within the structure,  in 
combination with the constituent material and its damping properties. This manuscript 
is organised in four chapters. The first consists of an overview of periodic structures in 
the various engineering domains followed by an introduction on elastic wave 
propagation in periodic media. Sandwich panels and their most popular manufacturing 
techniques will also be described. Also, phenomena like Bragg or resonant bandgaps will 
be explained as well as the Floquet-Bloch theory applied to macro-scale structures such 
as aeronautical cellular cores. The latter mathematical derivation will be merged with the 
Finite Element Analysis approach and implemented as the basis for the numerical 
prediction tools specially developed to allow parametric investigations on the complete 
sandwich panels or bare cores. The Floquet-Bloch theory allows us to harvest crucial 
information on the dynamic behaviour of the whole structure by performing our analysis 
only on a small portion of it which will be called now on the ‘unit cell’. In the second 
chapter, a preliminary bandgap investigation on a simple beam truss structure, and later, 
on kirigami derived tessellations is carried out. The reduced number of cell geometries 
obtainable with kirigami motivated me to invent Interlocking, which still respects all 
kirigami rules and unleashes the geometrical constraints of the parent technique. It also 
adds the possibility of obtaining long fibre composites multi material cores, which 
introduces a second level of periodicity, and may represent a novel platform able to 
accommodate and quickly interchange foams, viscoelastic patches, or resonators. The 
concept, manufacturing technique and the parametric bandgap investigation of some 
interlocking examples will be widely discussed in this chapter. The fourth chapter will 
focus on another vibration index, which is the out of plane transmissibility of interlocked 
cellular structures. Various Flax fibre composite honeycombs with thermoset as well as 
thermoplastic matrix were manufactured and tested. Finally, the manuscript will end 
with a conclusive paragraph where conclusions are drawn and possible future work as 
well as applications proposed. The coded software tools used for the investigations and 
the material characterisation used for the kirigami manufacturing will constitute the 
appendix. 
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THESIS OBJECTIVES 

Honeycomb sandwich panels are well known to provide interesting static out of plane 

properties (compression) because of their high equivalent stiffness whilst containing mass. 

However, this makes such structures possess a very high stiffness/mass ratio and therefore, 

their vibration frequency domain is usually in the high range. Sandwich panels are widely 

used in the Aerospace, Automotive and Naval industries because they all have the 

preference of obtaining lightweight structures but at the same time, the frequencies to be 

dealt with in their operating environments are in the mid-low range.  

The aim of this PhD work is to obtain sandwich panel cores with improved vibroacoustic 

performances thanks to a honeycomb core topology investigation. This needs to be carried 

out trying to maintain the desired structural properties, which justifies the usage of such 

solution in the first place and considering its potential use as a platform for Multiphysics 

resonating periodic material inserts. Such cellular cores must be manufactured using 

Kirigami, which is a variation of Origami, an ancient Japanese technique that consists in 

creating 3D structures by folding a 2D sheet of material. This manufacturing technique can 

be used as a systematic way to produce general honeycomb configurations with off-the-

shelf composites by thermoforming and/or autoclaving. 

The main indicator chosen to evaluate the vibroacoustic performance was the number and 

range of stopbands that the structure might possess. A stopband, also known as a bandgap, 

describes frequency ranges in which elastic waves are not transmitted within the structure. 

It has been shown, starting from Brillouin[1], how geometrical periodicity or periodic 

changes in constituent material, attenuate the wave propagation (in the direction of the 

periodicity) because of the interaction between incident, reflected and transmitted waves 

at the discontinuity points. Since honeycombs are periodic structures themselves, they will 

act as passive mechanical filters due to their geometry. The investigation will be carried out 

changing, parametrically, the in-plane periodic topology of the sandwich cores and evaluate 

the evolution of the bandgaps, to control unwanted vibrations that could compromise and 

shorten the structures lifespan. 

My research will therefore be organized as follows: 

• Develop Kirigami tessellation patterns based on centre symmetric topology 

configurations and a tool that can create systematic honeycomb topologies easily 

implemented in CAD/CAM tools. The Kirigami patterns will also accommodate topologies 



Thesis objectives 

X   Doctoral Thesis – S. Del Broccolo 

for inserts of different materials and devices, to be also used as potential platform for 

multiphysics resonating periodic materials for vibroacoustics. 

• Perform numerical wave propagation analysis using Bloch wave theory to 

investigate the bandgap behaviour of the Kirigami 3D honeycombs. The numerical 

simulations will be carried out in a parametric form to identify optimized cell configurations 

able to perform bandgaps at specific frequency bandwidths, and compatible with 

mechanical and manufacturing constraints. Numerical models of the honeycombs with face 

skins for sandwich applications will be also developed.  

• Manufacturing samples of the down selected Kirigami topologies using state-of-the-

art production processes for thermoplastics and thermoset composites using a combination 

of CNC cutting/autoclaving/thermoforming with modular molds. The samples will be used 

to produce sandwich panels with skin laminates having aerospace or automotive grade. 

• Perform experimental campaigns including bandgap validation, vibration 

transmissibility tests of the sandwich panels to measure the vibroacoustics behaviour of the 

Kirigami sandwich panels with the new honeycomb topologies and compare the results 

with predicted data from the numerical simulations. Selected mechanical tests will be also 

performed (flatwise compression) to assess the structural integrity of the sandwich 

concept.
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NOMENCLATURE 

𝐴𝑖  - Vibrational input 

𝐴𝑜 - Vibrational output 

𝑇𝑔 - Glass transition temperature 

𝑣𝑔 - Wave group velocity 

𝑣𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 - Longitudinal propagation velocity 

𝑣𝑝 - Wave phase velocity 

𝑣𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 - Transverse propagation velocity 

𝜌𝑐  - Unit cell’s effective density 

𝜔𝑛 - Natural frequency 

ℂ - Complex number 

𝑒 - Child cell side dimension 

𝑓 - Force vector 

f - Frequency 

n - Number of unit cells in the chain 

𝑞 - Displacement vector 

𝑄 - Amplification factor 

Τ - Period 

𝐴1, 𝐴2 - Beam structure sections 1 and 2 

𝑡1, 𝑡2 - Beam structure cross-section’s height and width 

𝐵 - Bulk modulus 

𝐻(𝜔) - Frequency response function (linear domain) 

𝐼𝑚 - Imaginary component of ℂ 

𝑘 - Wavenumber 
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𝐿, 𝐿𝑥, 𝐿𝑦, 𝐿𝑧 - Unit cell’s encumbrance in 𝑥, 𝑦 and 𝑧 directions 

𝑅𝑒 - Real component of ℂ 

𝑆 - Shear modulus 

𝑋(𝜔) - Input signal 

𝑌(𝜔) - Output signal 

𝑗 - √−1 

𝐾 - Angular wavenumber 

𝕋 - Transmissibility 

𝛾 - Shift ratio between interlocked honeycombs 

𝜂 - Loss factor 

𝜆 - Propagation constant and solution of the wave propagation eigenvalue 
problem 

𝜇 - Reduced wavenumber 

𝜉 - Damping 

𝜌 - Density 

𝜑 - Phase lag 

𝜓 - Wavelength 

𝜔 - Angular frequency 

𝜗 - Internal angle referred to the unit cell 

�̃� - Condensed dynamic stiffness matrix 

𝑲𝒓 - Reduced stiffness matrix 

𝑲𝒖𝒄 - Unit cell’s stiffness matrix 

𝑴𝒓 - Reduced mass matrix 

𝑴𝒖𝒄 - Unit cell’s mass matrix 

𝚲𝑹, 𝚲𝑳 - Transformation matrix for a substructure’s displacement and force 
vectors 

𝝓𝒃𝒅 - Static modes matrix 

𝝓𝒄 - Reduced basis of the fixed interface modes matrix 
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CB - Craig Bampton transformation matrix 

𝐓 - Transfer Matrix 

𝑫 - Dynamic stiffness matrix 

𝑰 - Identity matrix 

𝑲 - Stiffness matrix 

𝑲𝟏,𝑲𝟐,𝑲𝟑 - Stiffness matrix components of the quadratic formulation 

𝑴 - Mass matrix 

𝑴𝟏,𝑴𝟐,𝑴𝟑 - Mass matrix components of the quadratic formulation 

P, N - Transfer matrix decomposition matrices 

 

SUBSCRIPTS 

b - Bottom boundary degrees of freedom 

bd - Boundary degrees of freedom 

c - Condensed internal degrees of freedom 

H - Horizontal direction 

i - Internal degrees of freedom 

l - Left boundary degrees of freedom 

lb - left-bottom corner boundary degrees of freedom 

lt - left-top corner boundary degrees of freedom 

r - right degrees of freedom 

rb - right- bottom corner boundary degrees of freedom 

rt - right-top corner boundary degrees of freedom 

t - to-p boundary degrees of freedom 

V - Vertical direction 

𝑥 - x-component 

𝑦 - y-component 
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𝑧 - z-component 

f - Front boundary degrees of freedom 

p - Back boundary degrees of freedom 

flb - Front-left-bottom boundary degrees of freedom 

flt - Front-left-top boundary degrees of freedom 

frb - Front-right-bottom boundary degrees of freedom 

frt - Front-right-top boundary degrees of freedom 

plt - Back-left- top boundary degrees of freedom 

plb - Back-left-bottom boundary degrees of freedom 

prb - Back-right-bottom boundary degrees of freedom 

prt - Back-right-top boundary degrees of freedom 

 

ACRONYMS 

1D - Mono-dimensional 

2D - Bi-dimensional 

3D - Tri-dimensional 

ACCIS - Bristol Composites Institute 

ASCII - American Standard Code for Information Interchange 

ASTM - American Society for Testing and Materials 

BEAM4 - ANSYS APDL beam element type (Timoshenko) 

BEM - Boundary element method 

CAD - Computer-aided design 

CAM - Computer-aided manufacturing 

CFRP - Carbon fibre reinforced plastics 

CNC - Computer numerically controlled 

DOF’s - Degrees of freedom 
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EU - European Union 

FE - Finite elements 

FEM - Finite element method 

FR - France 

GIF - Graphics Interchange Format 

GUI - Graphic user interface 

IBZ - Irreducible Brillouin zone 

ITN - Innovative training network 

MAC - Modal assurance criterion 

MSCA - Marie Skłodowska-Curie Actions 

NI - National Instruments 

PEEK - Poly-ether-ether-ketone 

PFA - Polyfurfuryl Alcohol 

PP - Polypropylene 

RGB - Red, Green, Blue colour space 

RHS - Right-hand side 

SEA - Statistical energy analysis 

SHELL 181 - ANSYS APDL shell element type 

TMM - Transfer matrix method 

U.K. - United Kingdom 

U.S.A. - United States of America 

UBFC - Université Bourgogne Franche-Comté 

VIPER - Vibroacoustics of periodic media (project acronym) 

WFEM - Wave finite element method 
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CHAPTER 1 

PERIODIC STRUCTURES AND WAVE 
PROPAGATION 

The word Periodic finds its root in both the Latin “Periodus” and Greek “Periodos” language 

and it is composed by “Peri”, which means ‘around’ and “odos”, which means ‘path’. This 

word was used to describe anything that would recur in time or space. When we associate 

the word periodic to a structure therefore, we intend to describe matter which exhibits 

some form of spatial periodicity. Such characteristic can be in its constituent material, 

internal geometry, or boundary conditions. We are constantly surrounded by periodic 

structures in every day’s life. Nature has developed and produced during the centuries 

countless types of periodic structures using various materials. One of the first images that 

probably struck the mind of the reader as soon as the association of periodicity and nature 

was made is the insect engineering cellular honeycomb found in bee hives (Figure 1), which 

is a geometrically perfect repetition of hexagonal cells tightly packed and optimized in space 

occupancy used as storage for pollen, honey or larvae growth chambers. The hexagonal 

shape is not causal as it is the polygon with the smallest perimeter that fills a plane without 

leaving any gaps. Scientists and Engineers have always been inspired by nature and 

although mimicking perfection has not been reached, we are slowly and increasingly 

designing structures that resemble it.  

In the civil engineering domain examples of applied structural periodicity are skyscrapers 

and bridges which have now surpassed the kilometre in height and length respectively, all 

assembled with identical components for most of their structure. In the transportation 

industry we have trains and train rails as well as space launchers or airplane fuselages. 

Those examples show macroscopic periodicity but if we look at them more carefully, 

engineered structural components such as classic bricks found in walls or stratified plates 

like composite sandwich structures are also periodic and have an effect in their static and 

dynamic behaviour. One of the main reasons periodic structures became so popular is 

because the chain-line manufacturing brought huge advantages to the industry in terms of 

cost-efficiency,  as it is easier to produce a single item that can be used to create different 

final shapes rather than having to customize the manufacturing process to each application 
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or product. Also, smaller components are easier to handle and transport and can usually be 

stored more efficiently. 

1.1 SANDWICH PANELS 

The Aerospace segment is in favour of using low mass materials since the flying cost of the 

payload, whereas that may be airplane passengers or an interplanetary mission satellite, 

increases with the propellant consumption, as it is closely dependent with the overall mass. 

At the same time, the solicitations they undergo are considerable, and for this reason, 

honeycomb sandwich panels are a widely used solution as they are well known to provide 

good static out of plane properties because of their high equivalent stiffness. A sandwich 

panel is an assembled structure composed by two laminates kept apart by a low-density 

core as shown in Figure 1. The core can be made of a homogeneous porous material such as 

foams or be an assembled cellular structure produced from strips of aluminium, paper, or 

plastic glued or soldered into three-dimensional structures.  

The use of sandwich panels has nowadays become a habit but the first application of those 

materials in this field has been patented by Hugo Junkers in 1915[2]. He described the 

possibility of replacing the fabric that used to cover aircrafts at that time, with metallic 

sheets, adding also that an eventual compression load could have been sustained by 

arranging side by side a series of cellular structures that could have had square, rectangular, 

triangular or hexagonal shape. 

 
Figure 1 -(a) Curved sandwich panel[3] (b); Sandwich panels with various types of cores[4] (c); Sandwich panels adopted on the 

Mercury capsule[5]; (d) Bee honeycomb[6]; (e) Sandwich panel structure[7] 

The production processes of sandwich panels depend upon the core type, geometry, and 

material, with the latter also involving the laminates as the bonding technologies might vary 
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accordingly. Generally, we can divide them in two: continuous and discontinuous processes. 

In discontinuous processes the laminate skins are produced separately from the core and 

then bonded together while in continuous processes, the chain-line produces a continuous 

panel that is cut to the desired length without interruptions. One of the main drawbacks of 

a discontinuous production is the low level of productivity but it is still the most used 

technology when exotic materials are being used or complex geometries desired. Both 

cellular core and laminate skins can be made of metal, plastic, or paper. In case the core is a 

foam, the material palette has fewer choices but includes metals and plastics. 

 
Figure 2 - Expansion and corrugation manufacturing processes for hexagonal cell honeycomb cores[8] 

Cellular cores can be produced with various techniques. For metal cores, the sheet is 

pressed into half-hexagonal profiles which are then soldered or glued together or more 

commonly, glue is applied to metal strips with periodical spacing equal to the length of the 

hexagon side, and once the number of stacked strips, is sufficient to obtain a final core of 

desired dimensions, the stacked sheets are pulled apart (expanded) obtaining the 

honeycomb panel, as shown in Figure 2. Paper-resin honeycombs are also made with this 

technique but contrary to metal which keeps the final shape due to plastic deformation, the  

expanded paper honeycomb needs to be dipped into phenolic resin to stiffen it as well as 

providing protection from humidity which would decrease mechanical performance and 

cause swelling. Honeycombs can also be casted into a mold; silicone, rubber and many other 

materials which can be melted can be shaped into honeycombs thanks to this technique. 

Another way of creating honeycombs, especially made of ceramic material, is by extrusion; 

the ceramic honeycombs used to support exhaust catalysts in automobiles are made this 

way. Most of the honeycombs in available off shelf are created with the above-mentioned 

techniques but none of these allow to produce continuous long fibre honeycombs nor give 

the opportunity to create variable thickness cores without creating scrap material. 
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1.1.1 Art in engineering (Kirigami) 

Kirigami is an ancient Japanese technique which derives from the more popular form of art 

known as Origami, which consists in folding a thin sheet of material which can be described 

as a bidimensional object, into a three-dimensional structure. The term Kirigami derives 

from the Japanese words “Kiru” which means “to cut” and “Kami” which is the word for 

paper. It is natural to think therefore that contrary to Origami, which only allows folding, 

Kirigami includes the possibility to cut the sheet of material, allowing to produce much more 

complex structures, as shown in Figure 3. This technique has received broad attention in 

various fields and if initially it was considered only a form of Art, in the past decade, 

Mathematicians and Engineers focused on it their studies, because of its potential 

applications. 

 
Figure 3 - Origami crane[9] (left) and St. Paul’s Cathedral Kirigami artwork[10] (right) 

Especially in the aerospace sector, the use of cellular cores is maximized because it allows 

to reduce the overall mass. Airplane fuselages or the body of a launcher, as well as antenna 

reflectors are often obtained with curved sandwich panels, which are very complex to 

produce and involve many steps of production as well as increased costs and limited to few 

but crucial applications. While the sandwich panel curved skins can be obtained with high 

accuracy nowadays, the internal core often has a cross section geometry which does not 

optimally match the required curvature. Phenomena like synclastic or anticlastic curvatures 

appear when folding along one axis and therefore the cores in-plane Poisson’s ratio needs 

to be considered at the design stage. If classic hexagonal cores were to be used to produce a 

sandwich walled cylinder for example, it would require a certain degree of plastic 

deformation to force the core to follow the skin curvature. Clearly this would lead to 

prestress conditions as well as mechanical property non-homogeneity. The idea of 
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engineering Kirigami was first explored by Nojima and Saito[11],[12]; since then, the 

technique has been widely applied to both composite and thermoplastic materials to 

convert a 2D sheet material into a 3D structure[13],[14],[15]. In the Aerospace field, Scarpa, 

Saito and Agnese[16] designed and manufactured an autoclave cured woven Kevlar cellular 

wing box using Kirigami and, in 2015, Scarpa and Neville exploited this technique to create 

morphing open cell honeycombs, including embedded actuating cables[17]. Both work 

outcomes are shown in Figure 5. 

 
Figure 4 – Kirigami assembly sequence of an original recyclable thermoplastic PEEK cellular structure - (a) Thermoformed 

sheet; (b) folding; (c) gluing; (d) complete structure; (e) Kirigami full cycle scheme inspired by the one represented in Saito’s 

work[16] 

This technique is of great interest when producing cellular structures like honeycombs 

because of the many different pre-process treatments easily applicable whilst this usually 

is not possible with the classic manufacturing techniques. Kirigami has not been embraced 

by the industrial community as a standard manufacturing technique for cellular structures 

yet, but it is potentially suitable for mass continuous production. The possibility to pre-treat 

the material sheet before creating the 3D structure as well as reducing material scraps is 

very appealing. Traditional aluminium or paper honeycombs, in fact, require a contour 

cutter, 3D tracer and a numerically controlled machine, to obtain such geometries. The 

amount of material wasted during the machining is considerable and the post-process 

structural damage, although this can be reduced by using expensive machines, cannot be 

avoided. Furthermore, the possibility of using recyclable materials like thermoplastics, 

allows to reuse both, eventual scraps, and failed components to create new laminates and 

subsequently, new 3D structures. An example of Poly-ether-ether-ketone (PEEK) 

thermoplastic honeycomb is shown in Figure 4.  

In 2014, Nojima, Saito and Pellegrino[18] developed a mathematical tool that creates 

Kirigami cutting/folding line diagrams, shown in Figure 5 and Figure 6, for honeycombs that 

require complex curvatures, without any machining. Ventilation holes in cellular sandwich 
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cores destined to space purposes could be drilled in advance (Figure 6), when it’s much 

easier to perform, than on ready-made honeycombs. They are required as they allow the 

escape of expanding air “trapped” into the cells during the manufacturing processes. 

Another possible pre-treatment could be spraying hydrophilic nano-coatings onto the 

sheets in order to protect the final artefact from dust and chemical attacks or improve it 

damping properties[19]. 

 
Figure 5 - Kirigami morphing PEEK structure[20]; (b) Aramid paper kirigami Wing-box[16]; (c) Kirigami variable thickness 

honeycomb cutting pattern and paper demonstrator[18]; (d) Aluminium honeycomb machining[21] 

 
Figure 6 - Detail of honeycomb ventilation holes performed as a pre-process thanks to kirigami (left) Variable thickness 

honeycombs and their cutting patterns proposed by Nojima, Saito and Pellegrino[18] (right) 

The tools and materials used so far for engineering applications of Kirigami are very diverse. 

Materials go from paper, thin metallic sheets, graphene, thermoplastics, elastomers, and 

composite materials like carbon fibre reinforced plastics (CFRP) or aramid paper (Kevlar 

fibers) [22]. Those materials can all be cut using the desired cut/fold Kirigami pattern and 

then used to create/thermoform a corrugated sheet with a multi-piece mold, constituted by 

a flat metallic surface where long metallic bars can be fixed on it, and a second plate, which 

closes the mold. The cutting pattern will end up orthogonal to the longitudinal axis of the 

bars used in the mold. The corrugated sheet then is folded back and forwards as shown in 

Figure 7 obtaining our honeycomb. 
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Figure 7 - Natural fibre kirigami corrugated sheet and its folding process[23] 

The Kirigami manufacturing process can be described as four main steps: 

• CUTTING: A pattern of slits is generally produced according to the final cell 

geometry the user wants to obtain. Different tools can be used to produce such slits such as 

numerically controlled blades as well as laser cutters. The technique needs to be chosen 

accordingly to the material the user intends to use. 

• MOLD PREFOLDING: The 2D silted and pierced sheet is then pre-folded according 

to the type of mold the user intends to use. The mold is then carefully closed and is ready to 

undergo the thermal treatment. 

• THERMOFORMING / AUTOCLAVING: According to the material used, different 

thermal treatments can be used. Thermoplastics and composite materials with 

thermoplastic matrix are easier to use compared to thermosets prepregs since no curing 

time is required in the first case. Thermoplastics can also be reshaped as the thermal 

treatment for them is reversible. After this thermal process, a corrugated sheet is obtained, 

and it is ready for the next and final step. 

• FOLDING/ADHESIVE: The corrugated sheet is folded onto itself forward and 

backwards along the slits. Once folded, the slits open into the final cell geometry and the zig-

zag corrugated sheet is then glued into a 3D cellular structure with the desired thickness 

and cell shape. 

Different types of composites which make use of various types of fibers and braiding can be 

used. Depending on the shape and dimension of the bars, experience showed that weaves 

which possess less threads perpendicular to the bar length direction are easier to be placed 

in the mold. In Figure 8, a diagram with different classes of materials, heat treatments and 

assembly technologies is proposed to underline the versatility of kirigami in the production 

of non-conventional cellular structures. A combination of bars with different cross-sections 

is also possible, but they must be compatible (they are so if they are all sliced out from the 

same plate without waste of material). 
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Figure 8 - Kirigami combination outline 

By changing the inclination or height of the bar cross-section we can change the geometry 

of our honeycomb as well as its out of plane thickness to confer different elastic modulus 

and shear strength as suggested by Fadel, Ju and Summers [24]. 

1.1.2 Self-tessellating cores 

A tessellation of a 2D surface consists in occupying the plane with one or more geometric 

shapes. Now this is possible with any type of shape if they can be tightly packed. 

Tessellations therefore can be made using abstract geometries as well as regular polygons. 

The mathematical classification of a two-dimensional periodic pattern is called wallpaper 

group or plane symmetry group[25]. E. Fedorov in 1891 proved that there were only 

seventeen distinct groups of possible patterns which consisted in self tessellating regular 

patterns as well as semi-regular ones[26]. The latter ones are patterns produced through a 

combination of regular polygons while a self-tessellating geometric shape can effectively fill 

the surface through a repetition of itself without leaving any gap nor overlapping in any 

point and therefore, without producing any other polygon as bypass product. A special kind 

of pattern is the regular tiling with regular polygons. These are also known as Euclidean 

tiling’s and the polygons which satisfy the requirements are the triangle, the square and the 

hexagon. Those tessellations, in fact any tessellation, can be used to produce a cellular core 

structure, because the cells are simply extruded from the surface pattern. Not all are 

kirigami friendly because the folding/cutting lines can’t happen in correspondence of the 

cell vertex, but, since they are some of the most common cores and grid structures found in 

engineering, they represented the starting point of  this work. 
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1.1.3 Kirigami manufacturing limitations 

Kirigami allows the creation of honeycombs with cells of different shapes. To obtain a 

regular tessellation kirigami honeycomb, one must guarantee that the cell cross-section has 

two parallel sides, of same dimensions, which face each other once the sheet is folded back. 

This can be obtained if the bars used to form the corrugated sheet have a cross section with 

a side parallel to the base. Bars with Trapezoid cross section (Trapeziums, Rectangles, 

Squares, Parallelograms and Rhombus) are all compatible with Kirigami and shown in 

Figure 9. Some of them though might make the process slightly more difficult, especially if 

the sheet must be folded over acute angles. 

 
Figure 9 – Examples of Kirigami allowed bar cross sections derived from regular and irregular polygons 

Clearly, if the cross section of the bars is compatible, it is possible to mix them to create 

hybrid cores, like the AuxHex configuration[15] which was analysed in section 2.3.4. In 

Figure 10 a diagram of the homogeneous cross section tool bars to produce regular 

hexagonal cores as well as the mixed bars used to produce the AuxHex  core is shown, and 

it is clear how the same tool bars used for the hexagonal core can be used to produce the re-

entrant configuration. In blue, the selected prepreg or thermoplastic is represented in blue.  

The tessellation freedom thought felt quite restrictive and a summary of advantages and 

disadvantages for the kirigami technique applied to the manufacturing and design of 

cellular core structures for sandwich panels is outlined in Table 1. Cross reference with 

some basic kirigami concepts presented in section 1.1.1 should be considered. 
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Figure 10- Examples of kirigami allowed patterns and mold bar cross-sections: Trapezoidal bars in yellow and parallelogram 

bars in red. 

ADVANTAGES DISADVANTAGES 

• Composite materials with 

thermoplastic and thermoset matrix 

can be used to produce cellular 

structures. 

• No post process machining. 

• Hybrid panels (panels contain cells 

with different shapes). 

• Ventilation holes included in the early 

stage of manufacturing. 

• Surface treatment included in the early 

stage of manufacturing. 

• Resonating surfaces cut-out. 

• Cells are geometrically limited by mold 

bar cross section to allow the folding. 

• Sample manufacturing uncertainty. 

• Technique using composite materials 

not industrially ready. 

 

Table 1 - Kirigami advantages and disadvantages summary 

1.1.4 Meta-sandwich panels 

Sandwich panels are widely used for the purposes just mentioned in the above paragraph 

but despite their qualities, they have some drawbacks which raised as they were adopted 

for performing engineering applications. This was the main reason the concept of meta-

sandwich panels started to pick up momentum. In Greek, “Meta” means beyond and there 

is no better way of describing a class of engineered structures manufactured with common 

materials but with such architecture that gives them an overall behaviour which goes 

beyond their original capabilities. It is a concept that is even broader than the ones which 

governs composite materials. In a certain way, Engineers have started to create a new 
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category of materials by assigning them physical properties that are not usually found in 

nature and might not be intuitively related, through the application of architectural design 

rules.  

An example of metamaterial that exploits the Japanese art of Kirigami is electrically 

conductive carbon-nanotube composite metamaterials (Figure 11) with increased 

strain[27]. Electrically conductive materials are often brittle and therefore cannot be 

significantly stretched as microcracks soon appear and the concentrated stress around the 

apexes quickly leads to structural failure. By strategically placing cuts and slits using 

photolithography into the composite sheet the material when stretched behaved like the 

uncut sheets, however, as the stress increased further, the structure began to absorb the 

extra strain energy by opening the slit pattern, deforming the material out of plane. A 

secondary elastic plateau appeared as the cuts gradually rotated with increasing load, to 

align themselves with the applied stress. Eventually, the material finally failed, but not 

before the sheet stretched up to 370%. This phenomenon happens with any elastic kirigami 

cut material, but the crucial factor in this research, was that the electrical conductivity of 

the sheet remained virtually unchanged as they stretched. The idea of having stretchable 

conductive materials is very fascinating and has great potential for biomedical applications 

where a certain amount of elastic deformation might be required. 

A similar application of Kirigami has been studied by McEuen with graphene sheets, which 

are known to have very low strain[28]. His study firstly concentrated on the stiffness 

measurement of a graphene cantilever which he measured to be about 4000 times stiffer 

than theoretical calculation predictions. From these results, graphene did not seem like a 

suitable material for deformable electronics, but by adding Kirigami cuts into the sheet, the 

behaviour of the latter under load changed significantly. 

 
Figure 11 - Kirigami cuts applied to carbon-nanotube composite sheets with polymeric matrix[27]. 
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A pattern of kirigami cuts was applied to a graphene sheet where gold pads were previously 

deposited. The sheet was then used to create electrolyte-gated transistors and found that 

the electrical properties of these transistors were virtually unchanged even after the 

transistors were stretched to 240% of their initial length. Cyclic tension/compression 

(fatigue) tests were also carried out revealing that these components could withstand 1000 

cycles without degrading their electrical properties. The same team produced graphene 

hinges designed to operate either mechanically or magnetically, which survived 10000 

cycles before the gold pads started to wrap.  

They also created a kirigami cut pattern that becomes a pyramid-like structure when its 

golden tip is struck by a laser beam. The pyramid tip, shown in Figure 12,  was measured to 

deploy up to 10μm above the graphene base. 

In 2014, Scarpa presented a work at the International Conference and Exposition on 

Electrical and Power Engineering (EPE 2014), based on the Kirigami technique[29]. 

 
Figure 12 - Kirigami micro-springs in paper (left) and graphene (right)[28] 

Among others, he manufactured PEEK corrugated sheets covered with copper/epoxy redux 

film to increase the conductivity of the substrate. Electro-magnetic and reflectance tests 

were carried out and showed the potential of using these composite materials in structures 

like antennas/reflectors. 

Other examples of metamaterials are those who’s architecture enables them to veer 

electromagnetic waves around them with no reflection and/or scatter occurring, making 

them “invisible”[30],[31],[32],[33]. Those are known as cloaking metamaterials. If we 

consider the visible spectrum, as light travels through empty space, in an isolated system, 

its path remains unchanged as the photon can travel without any energy exchange. If the 

photon hits an object or travels a medium, depending on whether it’s translucent or not, the 

photon will either go through it changing its direction, just like it happens with glass or 
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water, or will be reflected and scattered after collision, creating a shadow. Our visible light 

sensor, the eye, does nothing but capture the resultant photon, detecting a change from 

those who do not come off the object. By manipulating the refractive index, permittivity and 

permeability of the medium, cloaking metamaterials can veer the wave around it and 

therefore sensors will not receive any information deriving from it, as if the object is not 

there at all. Other metamaterials maintain their structural properties while gaining new 

features so the concept of wave veering  also becomes very interesting  in the acoustic 

domain, where the cloaking concept could be exploited for sound-proofing rooms or to 

develop surface treatments to improve sound-stealth tech (based on wave scattering) as 

well creating sonar-invisibility technology. 

 
Figure 13 - (a) Sandwich panel with perforated skin; (b) Honeycomb core with Helmholtz resonator inserts; (c) Electromagnetic 

cloaking device[34]; (d) Acoustic 3D cloak structure [30] (e) and (g) Sandwich panels with embedded mechanical 

resonators[35]; (f) Plate with array of mechanical resonators and polymeric substrate attached[36]. 

The parameters that allow to create such meta-acoustic devices are the material's mass 

density and its elastic constant. Researchers from Duke university [30] have created an 

electromagnetic cloaking device based on split ring resonators as well as the first 3D 

acoustic cloak structure (Figure 13) which is able to hide the structure itself but also 

everything which lies beneath it. 

The same principles used for electromagnetic and sound waves apply to mechanical waves 

where researchers have and are studying ways to amplify or decrease vibrations using 

different techniques and concepts. If the metamaterial concept is merged with sandwich 

panels, the outcome is a meta-sandwich panel which can adopt solutions which confers new 

properties, beyond their being lightweight and stiff. The possibilities and combinations are 

many and some are resumed in Figure 14. Engineers can alter the sandwich laminates 
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and/or the lightweight core surfaces with chemical or laser treatments, apply nano-coatings 

[19], exploit the cellular core cavities including mass-spring type mechanical resonators 

[37]for vibration attenuation/transmission as well as porous material with or without 

inclusions[35] and apply viscoelastic patches. They can also perform perforations (Figure 

13) to create Helmholtz resonators [38] which is a solution adopted in jet-engine’s nacelle 

to increase the acoustic comfort of the airplane’s interior. 

 
Figure 14 - Meta-Sandwich panel outline 

Most of those solutions cause an increase in mass of the overall sandwich panel (resonators, 

coatings, foam inserts) and although they are effective passive solutions, meaning that there 

is no active or real-time manipulation of the material characteristics or structure, the 

investigation of ways to obtain comparable results maintaining mass and structural 

properties unaltered becomes relevant. For this reason, the attenuation of mechanical 

vibrations, adopting new sandwich core topologies manufacturable with the Kirigami 

technique became the core of this thesis and was made possible thanks to wave propagation 

fast prediction tools which were coded by the author. 

1.2 ELASTIC WAVE PROPAGATION IN MEDIUMS 

A mechanical wave is the propagation of a perturbation in matter, whether that may be 

gaseous, liquid, or solid. It is only possible if there is a perturbation source, a medium which 

experiences the effect of it and a connection between the medium directly affected and the 

adjacent one, which makes propagation possible. As the wave travels through the medium, 
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the matter undergoes an elastic deformation, which means that the atoms who constitute 

the medium, will be displaced of a certain quantity and will return to their original position 

once the wave amplitude goes back to zero. Displacement, speed, and mechanical energy of 

a unit mass are transmitted to the adjacent and therefore mechanical waves are the method 

with which we can transport mechanical energy though a medium. An elastic mechanical 

wave is therefore energy exchange which may happen longitudinally or transversally with 

respect to the direction of propagation. 

Different types of waves can travel a medium. There are pressure (longitudinal) and shear 

(transverse) waves as well as a combination of the two (bending or flexural waves) as 

shown in Figure 15. Each one of them can be described by the motion which each particle 

undergoes. A particle subjected to a pressure wave, also known as a primary wave (P-wave), 

will displace along the wave’s axis of motion while a shear wave (secondary S-wave) will 

displace the particle perpendicularly (vertical or horizontal) to the direction of propagation. 

In both cases, the displacement of the particle will be small and with the undisturbed 

position as the centre of oscillation. Bending waves are more complex and depend on both, 

the material and geometrical properties of the medium they are travelling through. The 

classic example of a pressure wave is the unidimensional compression of a gas done by a 

piston/cylinder system. The gas molecules are compressed by the piston (impulse) along 

the cylinders axis and once the piston returns to its starting position, the energy which was 

transferred to the first molecules adjacent to the piston is propagated to the following ones 

and so on until the energy is exchanged with the molecules at the end of the cylinder.   

 
Figure 15 – Graphical representation of pressure, shear, and bending waves 
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Before proceeding with further description about wave mechanics, it is important to 

mention that all distinctions made so far were describing the type of displacements the 

particles would possess, without mentioning the speed at which they displace. Matter is 

solicited by multiple sources and therefore impinging waves of different types with 

different amplitude and or frequency, interact with each other, creating a resultant wave 

which displaces the particles. When the whole pack (waves with different frequency), and 

therefore its resultant, travel with the same speed (their propagative speed does not depend 

upon the wave frequency) is described as a non-dispersive medium. In a dispersive medium 

instead, each frequency travels at a different speed. Now the speed at which each wave 

travels in both mediums (dispersive and non) is called Phase Velocity which depends upon 

the material intrinsic properties and type of wave.  

 

𝑣𝑝 = √
𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑀𝑜𝑑𝑢𝑙𝑢𝑠

𝐷𝑒𝑛𝑠𝑖𝑡𝑦
 (1.2.1) 

More precisely, for Primary and Secondary waves, introducing the Lamé constants, we 

obtain: 

 

𝑣𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙 = √
𝜆𝐿 + 2𝑆

𝜌
=  √

𝐵 + (4 3⁄ )𝑆

𝜌
 (1.2.2) 

 

𝑣𝑡𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒 = √ 
𝑆

𝜌
 (1.2.3) 

where 𝜆𝐿 is Lamé’s first parameter, 𝐵 and  𝑆 are the compression bulk modulus and the 

shear modulus respectively and 𝜌 the density. From the above equations, it is also clear how 

longitudinal waves are faster than transverse waves.  

In a non-dispersive medium, waves of different frequency propagate with the same speed 

and therefore the resultant wave produced as a result of their interaction, travels at that 

same speed. In a dispersive medium instead, waves with different frequencies travel at 

different speed and so, also the resultant wave will propagate at a different speed. The 

velocity of the resultant wave produced by the pack is called Group velocity. 

Summarizing, in a non-dispersive medium, phase and group velocity are equal while in a 

dispersive medium, being propagation in the latter frequency dependant, they differ. The 

idea that the two might be different came from W.R. Hamilton in 1839 but it was Rayleigh 
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in “Theory of Sound” who described the phenomena.  

As an example, let’s consider a metallic rod; depending upon the type of excitation, 

longitudinal (compression), if the rod hits the floor vertically, or bending, if the rod hits a 

table horizontally, the movement conferred to the rod particles by the initial impulse will 

be transferred to the surrounding medium (air) and in each case, this will reach our ear with 

a different pitch. The difference in pitch derives from the rod particles vibrating at a 

different frequency; Being both, the rod and air, dispersive mediums, the particles will 

oscillate and transmit the wave with different speeds (longitudinal waves are faster than 

bending waves). 

A sub-class of waves which will be briefly mentioned is represented by the surface waves 

which are a composition of P and S waves and happen on the surface of the medium. 

Amongst them, Rayleigh and Love waves happen in both dispersive and non-dispersive 

medium, while Lamb waves only happen in frequency dependent medium. Rayleigh waves 

particle motion can be described with an ellipse in the plane parallel to the direction of 

energy propagation and the displacement is larger as we get closer to the surface of the 

medium. Love wave transverse particle motion increases as we are closer to the surface. A 

visual summary of those waves is shown in Figure 16 where the base of the medium is fixed 

and only the particles on the upper layers are displaced.  

 
Figure 16 - Graphical representation of Rayleigh and Love waves [39] 

Another way of describing the relation between frequency and speed of propagation, being 

phase or group velocity, is by reasoning in terms of wavenumber and angular frequency. An 

extended formulation of this form of dispersion relation is covered in section 1.4. 

1.2.1 Numerical methods overview 

The metallic rod is a simple example of wave propagation in a homogeneous medium and 

the transmission of a mechanical wave in complex structures is not as straight forward. 

Structures can be subjected to various external solicitations and the methods to analyse 

their dynamic response strongly depends upon the wave’s wavelength. Those methods can 

be divided into three categories as they are conceived to deal with three bandwidths which 

are defined as low, mid, and high frequency. The need to derive different methods according 
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to the considered frequency range was linked with accuracy and available computational 

power. This means that accurate results may still be achieved using different methods but 

at different speeds, which inevitably create a preference rank amongst them, depending on 

the objective. In the low frequency range, the most popular method is the Finite Element 

Method (FEM) which allows to analyse complex structures. This method can deal with all 

frequency ranges if the structure is discretized in elements whose size is sufficiently small 

to accurately compute the response, since the elements are frequency independent. This 

works well with low frequencies but as we increase the latter, the number of elements 

required rapidly augments, which inevitably leads into tremendous timely consuming 

simulations. For this reason, this method is avoided when considering high frequencies. In 

order to obtain reliable results using this technique and capture all possible destructive 

interference, the element size needs to be calculated considering the maximum frequency 

to be analysed; Perfectly destructive interference occurs when the impinging wave is double 

the length of the unit cell. If we aim for accuracy at sub-wavelengths, the element size must 

be calculated with the highest frequency value (smallest wavelength) considered. 

Furthermore, the minimum number of nodes required to describe a full harmonic period is 

five (zero crossings, positive and negative peaks). Now, if we and decide to concentrate on 

bending waves, the calculation depending upon the element type used for the model, is 

carried out as follows, where 𝜀 is the model’s element size: 

Another method used in low frequency analysis is the Boundary Element Method 

(BEM)[40], where, as the name anticipates, the discretization happens only for the external 

surface (boundary) of the body. Instead of directly solving the set of differential equations 

like in FEM, with BEM an integral equation is defined on the body’s surface and solved for 

nodal displacements. Furthermore, in LF analyses can also be conducted using the Infinite 

method[41],[42] (IEM) and the spectral element method [43](SEM). Just like in FEM, these 

methods are deterministic, computationally demanding as we increase the frequency 

analysed, and appropriate for frequency ranges of low modal density. When the latter 

instead is high (which normally happens when dealing with high frequencies), the most 

diffused method is the statistical energy analysis (SEA)[44],[45],[46]. Here a structure is 

 
BEAM ELEMENT SIZE   → 

𝑓𝑚𝑎𝑥
𝐵 =

𝜋

2𝜀2
√

𝐸𝐼

𝜌𝐴
 (1.2.4) 

 
SHELL ELEMENT SIZE   → 

𝑓𝑚𝑎𝑥
𝑆 =

𝜋

2𝜀2
√

𝑡2𝐸

12(1 − 𝜐2)𝜌
 (1.2.5) 
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divided into subsystems and a set of linear equations links each subsystem in terms of 

energy and or power input, dissipation, transmission, and storage. Statistical assumptions 

are made to simplify models which otherwise would be too complex and consequently large 

and computationally demanding to analyse with the previously mentioned methods. SEA 

reasoning is based on mean quantities possessed by subsystems which have a 

homogeneous response and it is those which become the equivalent “brick” to the elements 

used in a FE/BE approach. Neither of those techniques are optimal to analyse a structures 

response to solicitations within the mid-frequency range and although they can still be used, 

a time demanding calibration period for each case must be considered. Furthermore, the 

lower and upper limits of such range are not always so neat and are mostly defined by 

computational efficiency and appearing/disappearing of local resonances, topic which is 

linked to the modal density. The mid-frequency method “gap” has been, and still is, an area 

of intense research where deterministic methods have been adapted through model order 

reduction techniques and probabilistic ones have been tailored trough relaxation of certain 

stringent assumptions required to fulfil the method demands. It is in this gap that the Wave 

finite element method (WFEM)[47],[48],[49],[50], which is a wave-based method applied 

to periodic structures, finds its placement since it combines a traditional FE approach 

applied on a reduced model (the unit cell) with the periodic boundary conditions (Floquet-

Bloch)[51],[52]. This method will be intensively used throughout this work, as a wave 

propagation prediction tool. 

1.2.2 Numerical methods for periodic structures 

Many efforts have been produced so far to better understand the dynamic behaviour of 

complex periodic structures. The solicitations that an airplane fuselage or a space launcher 

undergoes, derives from various sources, and understanding the consequent perturbation 

propagation, is crucial to avoid catastrophic failures and lengthen its average service 

lifespan. 

The response of periodic structures to external excitation has already been investigated 

starting from the analytical origins, with Floquet[51], to further expansion, carried out by 

Bloch[52] and passing by the excellent work done by Brillouin [1] back in 1946. Mead et al. 

[50] produced a document, summarizing almost thirty years of work carried out at the 

University of Southampton, demonstrating how spatial periodicity in terms of structure, 

material, inserts or boundary conditions, interacts with travelling waves. Those periodic 

variations cause some of the incident waves to be reflected and some to be transmitted. The 
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destructive interaction (partial or full) between incident and reflected waves, causes 

attenuation (bandgaps) within certain frequency ranges, and therefore, periodic structures 

can act as passive filters. This also suggests that there is a relation between the geometrical 

dimensions of the periodic structure and the travelling wave characteristics.  

Periodic structures though, can exhibit two types of stop bands which are created by 

different phenomena: Bragg Scattering and Local Resonance[53]. Bragg scattering stop 

bands are consequence of the spatial periodicity just mentioned and it appears when 

wavelengths are on the same order as the period (unit cell) length. Local resonance stop-

bands instead, do not necessarily require periodicity and only depend on the properties of 

the local resonator and therefore they can lie in the sub-wavelength regime as the 

resonating component can be dimensioned as required and therefore may be more 

susceptible to a type of excitation than to another. 

Many different methods have been developed in the years to examine periodic structures 

which can be found in literature. A good summary of those techniques which mostly are 

FEM based and neglect the structure’s damping, can be found in the paper written by 

Hussein and Ruzzene[54]. Lately, the most commonly used is the Wave Finite Element 

Method (WFEM)[50],[54],[55],[56],[57], where the Mass and Stiffness matrices of the single 

repetitive component of the periodic structure, are calculated with the aid of FEM 

commercial software, extracted, and used to calculate the dynamics of the structure by 

applying the periodicity conditions described by the Floquet-Bloch Theory (explained in 

section 1.4.1). Recently, the WFEM and periodic concept has been extended to composite 

materials[58] where the fibers and matrix constitute periodic material assemblies.  

The following paragraphs will be divided in two fields, which describe the dynamic analysis 

of a finite periodic structure using FEM and the one using the “infinite periodic structure” 

approach. The first part will describe the classic structure’s frequency response to harmonic 

excitations formulation while the second, will concentrate on the WFEM mathematical 

formulation, which will be described and outlined to analyse the dynamic behaviour of 

periodic structures for cases of 1D, 2D and 3D periodicity.  

1.3 PREDICTION METHODS FOR FINITE PERIODIC 
STRUCTURES 

1.3.1 Frequency Response to harmonic excitation 

The Frequency response function is one of the most used quantities in the engineering 

domain and especially in vibration analysis because it provides information about the 
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natural frequencies, damping and mode shapes of the structure. For linear systems, the FRF, 

expressed in the frequency domain and usually indicated with 𝐻(𝜔), relates the input 

excitation 𝑋(𝜔),  with the output signal reading 𝑌(𝜔) and provided that 𝑋(𝜔) ≠ 0, the 

relationship is the following: 

supposing the system is injected with a harmonic excitation 𝑋(𝜔) = 𝑋0𝑒
𝑗𝜔𝑡.  

Since 𝐻(𝜔) ∈ ℂ , we can also express it as the product between the modulus and the phase: 

equation(1.3.1) therefore becomes: 

where the output amplitude is equal to |𝐻(𝜔)|𝑋0(𝜔) and 𝜙 is the phase lag. To provide full 

information, two graphs are normally plotted, one concerning the amplitude of the 

response, 𝑅𝑒[𝐻(𝜔)], and one concerning the phase angle of lag between output and input, 

𝐼𝑚[𝐻(𝜔)]. The type of input and measured output might be different and the FRF’s name 

changes accordingly. In this work the compliance of the structures, which is the 

displacement response to an input harmonic unit-force, will be produced and only the 

amplitude response plotted. This will be performed using commercial FE packages and will 

be used as a bandgap validation tool for the computed dispersion curves. 

1.3.2 Transmissibility 

The dynamic characteristics of structures can also be evaluated by computing the 

transmissibility, which is another well-known transfer function measurement, widely used 

for the evaluation of the vibration isolation performance. A SDOF mechanical system can be 

represented with a single spring-mass system, where a mass is connected to the base 

through a spring and a damper. When a force is applied to the mass and then removed, the 

system will start to oscillate at its natural frequency and the amplitude will decrease with 

time due to energy dissipation. If an external harmonic force is instead applied to the base 

 
𝐻(𝜔) =  

𝑌(𝜔) 

𝑋(𝜔)
 (1.3.1) 

 𝐻(𝜔) =  |𝐻(𝜔)|𝑒−𝑗𝜑 (1.3.2) 

 𝜑 = ∠(𝐻) (1.3.3) 

 𝑌(𝜔) =  |𝐻(𝜔)|𝑋0(𝜔)𝑒𝑗(𝜔𝑡−𝜑) (1.3.4) 
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along its vertical axis, the system will start to oscillate at the frequency of the exciting force, 

and not at its natural frequency. However, the amplitude of the oscillation will vary 

according to the relation between the harmonic excitation and the natural frequency of the 

system. The transmissibility, 𝕋, is the ratio between the harmonic base excitation, and the 

output reading which is usually done at the top of the mass. The transmissibility for a SDOF 

can be expressed as follows: 

where 𝐴𝑖  and 𝐴𝑜 are the amplitude of vibrational input and output response respectively,  𝜉 

the damping ratio and 𝜔𝑛 the natural frequency. 

Let 𝑄 be the amplification or quality factor: 

For a single degree of freedom system subjected to base excitation at its natural frequency, 

Q is equal to the peak magnitude of the transfer function. The damping was calculated as 

follows: 

In the last chapter of this work, a transmissibility investigation is carried out for a sandwich 

panel modelled as a SDOF system. 

 
Figure 17 – Representative transmissibility graph and half power bandwidth method 

 𝕋 = 
𝐴𝑜

𝐴𝑖
= √

1 + (2𝜉
𝜔
𝜔𝑛

)
2

[1 − (
𝜔
𝜔𝑛

)
2
]
2

+ [2𝜉 (
𝜔
𝜔𝑛

)]
2

 (1.3.5) 

 𝑄 = 
1

2𝜉
 (1.3.6) 

 2𝜉 =  (
𝜔2 − 𝜔1

𝜔𝑛
) (1.3.7) 



Periodic structures and wave propagation 

Doctoral Thesis – S. Del Broccolo  23 

1.3.3 Transfer Matrix Method 

To investigate the dynamic behaviour of a periodic structure, a full-scale model can be 

produced, and through heavy calculation and therefore long computational time, the 

response of the structure (FRF) is obtained, just as it is normally done with non-periodic 

structures. This translates in a model with a very large number of nodes and therefore 

degrees of freedom that one needs to consider in the computation. For periodic structures 

instead, periodicity can be exploited, and the size of our model reduced to its fundamental 

repeatable component, the unit cell. By imposing the continuity and equilibrium relations 

at the unit cells interfaces, the numerical dynamic behaviour prediction can be carried out 

on a much less computational demanding model. Those concepts can be applied in the 

direction of the structure’s periodicity through a single matrix T, the transfer matrix, which 

contains the mathematical link between the forces and displacements at the interface of 

each cell. To link displacements (𝑞) and forces (𝑓) at the extremities of the unit cell, the 

starting point is the fundamental equation of motion. Neglecting damping, we obtain: 

where 𝑞𝑙, 𝑞𝑟 and 𝑞𝑖 are the left, right and internal nodal displacements and 𝑓𝑙, 𝑓𝑟 and 𝑓𝑖 are 

the respective nodal forces. 𝑲 𝒖𝒄 and 𝑴 𝒖𝒄 are instead the stiffness and mass matrices of the 

unit cell and 𝜔 the angular frequency. According to the continuity of displacements and 

equilibrium of forces (Figure 18), equations (1.3.9)and (1.3.10)are derived for (𝑛 + 1) unit 

cells, which constitute the dynamic ligaments between the unit cells. 

 
Figure 18 - Chain of unit cells 

For free wave propagation, no external forces act on the structure and the only ones 

considered are the ones at the interface between unit cells. The dynamic relation becomes: 

 (𝑲 𝒖𝒄 −  𝜔2𝑴𝒖𝒄) (

𝑞𝑙

𝑞𝑖

𝑞𝑟

) = (

𝑓𝑙
𝑓𝑖
𝑓𝑟

) (1.3.8) 

 𝑞𝑟
(𝑛)

= 𝑞𝑙
(𝑛+1)

=  𝜆𝑞𝑙
(𝑛)

  (1.3.9) 

 𝑓𝑟
(𝑛)

= −𝑓𝑙
(𝑛+1)

= −𝜆𝑓𝑙
(𝑛)

. (1.3.10) 
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where 𝑫(𝜔) is the Dynamic matrix which contains both, mass, and stiffness matrices of the 

unit cell, and  𝑓𝑖 = 0.  After a condensation procedure, the dynamic equation finally becomes: 

�̃�(𝜔) is the condensed dynamic matrix which possesses the following terms: 

now, by rearranging the items and considering cells (𝑛) and (𝑛 + 1), the Transfer Matrix 

can be expressed as: 

The eigenvalues of [𝑻],  considering only one direction of propagation, correspond to the 

values of the unknown propagation constant 𝜆 = 𝑒−𝑗𝑘𝐿 as mentioned in the work by 

Ruzzene[59] and so, they relate the left and right nodal displacements and forces according 

to the Floquet-Bloch’s theorem. By substituting equations (1.3.9) and (1.3.10)into (1.3.19) the 

 (𝑲 𝒖𝒄 −  𝜔2𝑴𝒖𝒄)(

𝑞𝑙

𝑞𝑖

𝑞𝑟

) = (
𝑓𝑙
0
𝑓𝑟

)  (1.3.11) 

 𝑫(𝜔)(

𝑞𝑙

𝑞𝑖

𝑞𝑟

) = (
𝑓𝑙
0
𝑓𝑟

) (1.3.12) 

 𝑫(𝜔) = 𝑲 𝒖𝒄 −  𝜔2𝑴𝒖𝒄 = [

𝑫𝑙𝑙 𝑫𝑙𝑖 𝑫𝑙𝑟

𝑫𝑖𝑙 𝑫𝑖𝑖 𝑫𝑖𝑟

𝑫𝑟𝑙 𝑫𝑟𝑖 𝑫𝑟𝑟

]  (1.3.13) 

 [
�̃�11 �̃�12

�̃�21 �̃�22

] (
𝑞𝑙

𝑞𝑟
) = �̃�(𝜔) (

𝑞𝑙

𝑞𝑟
) = (

𝑓𝑙
𝑓𝑟

). (1.3.14) 

 �̃�11 = 𝑫𝑙𝑙 − 𝑫𝑙𝑖 × 𝑫𝑖𝑖
−1 × 𝑫𝑖𝑙  (1.3.15) 

 �̃�12 = 𝑫𝑙𝑟 − 𝑫𝑙𝑖 × 𝑫𝑖𝑖
−1 × 𝑫𝑖𝑟 (1.3.16) 

 �̃�21 = 𝑫𝑟𝑙 − 𝑫𝑟𝑖 × 𝑫𝑖𝑖
−1 × 𝑫𝑖𝑙 (1.3.17) 

 �̃�22 = 𝑫𝑟𝑟 − 𝑫𝑟𝑖 × 𝑫𝑖𝑖
−1 × 𝑫𝑖𝑟  (1.3.18) 

 (
𝑞𝑙

(𝑛+1)

𝑓𝑙
(𝑛+1)

) = [
𝑻11 𝑻12

𝑻21 𝑻22
] (

𝑞𝑙
(𝑛)

𝑓𝑙
(𝑛)

) = 𝑻(
𝑞𝑙

(𝑛)

𝑓𝑙
(𝑛)

) (1.3.19) 

where, 𝑻11 = −�̃�12
−1

× �̃�11 (1.3.20) 

 𝑻12 = �̃�12
−1

 (1.3.21) 

 𝑻21 = −�̃�21 + �̃�22 × �̃�12
−1

× �̃�11 (1.3.22) 

 𝑻22 = −�̃�22 × �̃�12
−1

. (1.3.23) 
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following eigenvalue problem is obtained: 

Under the numerical point of view, there are some issues due to the ill-conditioning of the 

matrix [𝑻]. This is because the latter depends on the inversion of 𝑇12 which is likely to 

contain numbers which are very disparate, affecting the eigenvalue sensitivity. This can be 

overcome by applying a decomposition in two matrices [𝑳] and [𝑵] as shown in the work 

by W.X. Zhong [60] and later recalled by E.D. Nobrega[61] where [𝑻] = [𝑳][𝑵]−1 . 

1.4 PREDICTION METHODS FOR INFINITE PERIODIC 
STRUCTURES 

1.4.1 WFEM and the Floquet-Bloch Theory 

Wave propagation in media as mentioned in the introduction to this chapter, is governed by 

partial differential equations. In 1883 Floquet was the first to propose a mathematical 

solution to differential equations with periodic coefficients[51] and for this reason, he is the 

mind who opened a new frontier in this domain [50]. Initially, the attempt to support the 

analytical solutions consisted in discrete systems, mainly sets of masses connected through 

springs, and only later in 1887 Rayleigh proposed the study on a continuous structure by 

periodically varying its density. It was the Swiss physicist Felix Bloch who later in 1928 

extended the work started by Floquet to 3D special periodicity[52]. Therefore, when 

periodic boundary conditions are applied to a structure to exploit its characteristic, the 

community refers to them as Floquet-Bloch conditions. This theory is the core of the WFEM 

method and was firstly introduced for engineering investigations by Brillouin [1]. 

1.4.1.1 WFEM 1D-Periodicity 

When the Floquet-Bloch theory is applied to a structure which exhibits unidimensional 

periodicity, a relation between the displacements and forces of the nodes at the extremities 

of its unit cell is established. Thanks to this relation, it is enough to analyse a small portion 

of the structure, the unit cell, to understand and predict the overall dynamic behaviour of 

an infinitely large periodic structure. The Floquet-Bloch relations for forces (𝑓) and 

displacements (𝑞) for 1D periodicity are shown in equation (1.4.1) and (1.4.2)respectively, 

where, the subscripts 𝑙 and 𝑟 indicate the left or right boundaries of the unit cell, 𝜇 = 𝑘𝐿 is 

the reduced wavenumber, 𝑘 is the wavenumber and 𝐿 the representative length of the unit 

 𝜆 (𝑞𝑙
𝑓𝑙
)
(𝑛)

=  𝑻 (𝑞𝑙
𝑓𝑙
)
(𝑛)

.  (1.3.24) 
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cell along the periodic direction.  

 

𝑞𝑟
(𝑛)

= 𝜆𝑞𝑙
(𝑛)

= 𝑒𝑗𝜇𝑞𝑙
(𝑛)

 (1.4.1) 

−𝑓𝑟
(𝑛)

= 𝜆𝑓𝑙
(𝑛)

= 𝑒𝑗𝜇𝑓𝑙
(𝑛)

 (1.4.2) 

Figure 19 - Periodic structure unit cell and 1D Floquet Bloch periodic relations 

To understand the dynamic behaviour of a periodic structure, a dispersion curve, which 

represents the relation between the reduced wavenumber (𝜇) versus the angular 

frequency (𝜔) or the frequency (f) can be plotted. To produce a dispersion curve therefore, 

a relation between 𝜔 and 𝜆 = 𝑒𝑗𝜇 is required, where 𝜆 are the eigenvalues. The starting 

point is represented by the Fundamental Dynamics Equation of the unit cell. Neglecting 

damping, such equation becomes: 

Let’s consider the internal forces to be zero [50]  (𝑓𝑖 = 0). Now to satisfy the Floquet-Bloch 

conditions, matrix [𝚲𝑹] is created: 

To proceed, some manipulation of 𝑲 𝒖𝒄 and 𝑴 𝒖𝒄 is required. This consists in a pre-

multiplication of by [𝚲𝑹] and a post multiplication of the result by its inverted transposed 

[𝚲𝑳]. For matrix 𝑲 𝒖𝒄 we obtain: 

 [𝑰 𝟎
1

𝜆
𝑰

𝟎 𝑰 𝟎
] [

𝑲𝑙𝑙 𝑲𝑙𝑖 𝑲𝑙𝑟

𝑲𝑖𝑙 𝑲𝑖𝑖 𝑲𝑖𝑟

𝑲𝑟𝑙 𝑲𝑟𝑖 𝑲𝑟𝑟

] [
𝑰 𝟎
𝟎 𝑰
𝜆𝑰 𝟎

] =  

 = [
𝑲𝑙𝑙 + 𝜆𝑲𝑙𝑟 +

1

𝜆
𝑲𝑟𝑙 + 𝑲𝑟𝑟 𝑲𝑙𝑖 + 

1

𝜆
𝑲𝑟𝑖

𝑲𝑖𝑙 + 𝜆𝑲𝑖𝑟 𝑲𝑖𝑖

] =  

 =
1

𝜆
(𝜆2 [

𝑲𝑙𝑟 𝟎
𝑲𝑖𝑟 𝟎

] + 𝜆 [
𝑲𝑙𝑙 + 𝑲𝑟𝑟 𝑲𝑙𝑖

𝑲𝑖𝑙 𝑲𝑖𝑖
] + [

𝑲𝑟𝑙 𝑲𝑟𝑖

𝟎 𝟎
]) =  

 (𝑲 𝒖𝒄 −  𝜔2𝑴𝒖𝒄)(

𝑞𝑙

𝑞𝑖

𝑞𝑟

) = (

𝑓𝑙
𝑓𝑖
𝑓𝑟

) (1.4.3) 

 𝑲 𝒖𝒄 = [

𝑲𝑙𝑙 𝑲𝑙𝑖 𝑲𝑙𝑟

𝑲𝑖𝑙 𝑲𝑖𝑖 𝑲𝑖𝑟

𝑲𝑟𝑙 𝑲𝑟𝑖 𝑲𝑟𝑟

]             𝑴 𝒖𝒄 = [

𝑴𝑙𝑙 𝑴𝑙𝑖 𝑴𝑙𝑟

𝑴𝑖𝑙 𝑴𝑖𝑖 𝑴𝑖𝑟

𝑴𝑟𝑙 𝑴𝑟𝑖 𝑴𝑟𝑟

] . (1.4.4) 

 𝒒 = (

𝑞𝑙

𝑞𝑖

𝑞𝑟

) = 𝚲𝑹 (
𝑞𝑙

𝑞𝑖
) = [

𝑰 𝟎
𝟎 𝑰
𝜆𝑰 𝟎

] (
𝑞𝑙

𝑞𝑖
).  (1.4.5) 
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 =
1

𝜆
(𝜆2[𝑲𝟏] + 𝜆[𝑲𝟐] + [𝑲𝟑]).   (1.4.6) 

Now, by doing the exact same procedure for the mass matrix: 

 [𝑰 𝟎
1

𝜆
𝑰

𝟎 𝑰 𝟎

]𝜔2 [

𝑴𝑙𝑙 𝑴𝑙𝑖 𝑴𝑙𝑟

𝑴𝑖𝑙 𝑴𝑖𝑖 𝑴𝑖𝑟

𝑴𝑟𝑙 𝑴𝑟𝑖 𝑴𝑟𝑟

] [
𝑰 𝟎
𝟎 𝑰
𝜆𝑰 𝟎

] =  

 = 
1

𝜆
𝜔2(𝜆2[𝑴𝟏] + 𝜆[𝑴𝟐] + [𝑴𝟑]). (1.4.7) 

 

Finally, the quadratic eigenvalue problem is obtained where the frequency vector can be 

provided as input to obtain the values of 𝜇. 

Remembering that the angular frequency which is the angular change per unit of time is: 

and that the angular wavenumber is the proportionality between angular frequency and 

phase velocity,  

where 𝜓 is the wavelength, we can express 𝜐𝑝 in terms of 𝜓 and the period (T) as follows: 

We can finally derive the wavenumber as the number of wave cycles per unit length: 

With some manipulation, we can rewrite the relation for the phase velocity as being: 

This allows to link the frequencies in input with the wavenumber and allows to plot the 

solutions. This type of plot is known with the terminology of “Dispersion Curves”. The 

steepness of the dispersion curves (derivative of the phase velocity 𝜐𝑝) represents the group 

 
1

𝜆
(𝜆2[𝑲𝟏 −  𝜔2𝑴𝟏] + 𝜆[𝑲𝟐 −  𝜔2𝑴𝟐] + ⋯+ [𝑲𝟑 −  𝜔2𝑴𝟑])𝑞 = 𝟎 (1.4.8) 

 𝜔 = 2𝜋f (1.4.9) 

 𝐾 =
𝜔

𝜐𝑝
=

2𝜋

𝜓
 (1.4.10) 

 𝜐𝑝 =
𝜓

Τ
.  (1.4.11) 

 𝑘 =
𝐾

2𝜋
=

1

𝜓
. (1.4.12) 

 PHASE VELOCITY:   𝜐𝑝 =
𝜔

𝐾
= 

2𝜋f

𝐾
.     

(1.4.13) 
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velocity associated to that travelling wave.  

It follows that if the curve shows a vertical tangent (
𝑑𝜔

𝑑𝑘
= 0) then there is no propagation, 

and this denotes the presence of a bandgap. 

1.4.1.2 WFEM 1D-Periodicity (Inverse approach) 

The same problem can be formulated imposing in input, real values for the reduced 

wavenumber and calculating the angular frequency vector as the eigenvalue problem 

output. The starting point is also represented by the Fundamental Dynamics Equation of the 

unit cell, shown in equation (1.4.3)and damping is still neglected. The objective is to convert 

this relation into an eigenvalue problem, by cancelling the force vector on the right-hand 

side of equation (1.4.3). This is obtained firstly rewriting the displacement vector as follows: 

where 𝚲𝑹 is the same matrix shown in equation (1.4.5). Now, assuming 𝑓𝑖 = 0, the RHS of 

equation (1.4.3) becomes: 

and by pre-multiplying 𝑓 by 𝚲𝑳 = [
𝟏

𝚲𝑹
]
𝑇

 , the force vector on the RHS of equation (1.4.3) are 

equal to zero and the desired result is obtained in equation (1.4.17), due to the Floquet-Bloch 

theory. 

By applying the latter, the relation which describes the dynamics of the unit cell along the 

considered direction of periodicity is obtained: 

 𝚲𝑳(𝑲 𝒖𝒄 −  𝜔2𝑴𝒖𝒄)𝚲𝑹 (
𝑞𝑙

𝑞𝑖
) = 𝟎 (1.4.18) 

 GROUP VELOCITY:   𝑣𝑔 =
𝑑𝜔

𝑑𝑘
  (1.4.14) 

 𝒒 = (

𝑞𝑙

𝑞𝑖

𝑞𝑟

) = (

𝑞𝑙

𝑞𝑖

𝜆𝑞𝑙

) = 𝚲𝑹 (
𝑞𝑙

𝑞𝑖
)  (1.4.15) 

 𝑓 = (

𝑓𝑙
𝑓𝑖
𝑓𝑟

) = (
𝑓𝑙
0
𝑓𝑟

) (1.4.16) 

 𝚲𝑳 (
𝑓𝑙
0
𝑓𝑟

) = [𝑰 𝟎
1

𝜆
𝑰

𝟎 𝑰 𝟎
] (

𝑓𝑙
0
𝑓𝑟

) = 𝟎 (1.4.17) 
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 (𝚲𝑳𝑲 𝒖𝒄𝚲𝑹 −  𝜔2𝚲𝑳𝑴𝒖𝒄𝚲𝑹) (
𝑞𝑙

𝑞𝑖
) = 𝟎  (1.4.19) 

 (𝑲𝒓(𝜇) − 𝜔2𝑴𝒓(𝜇))𝒒(𝒓) = 𝟎.  (1.4.20) 

 

We finally reached our standard eigenvalue problem. This is only possible though if 𝚲𝑹 and 

𝚲𝑳 are Hermitian. This leads to a condition to be imposed on our reduced wavenumber 𝜇 

which is that it must be a real number. Only if this is respected then 𝚲𝑳 = [
𝟏

𝚲𝑹
]
𝑇

.  

Finally, the standard eigenvalue problem expressed in equation (1.4.20) is derived and by 

solving for 𝜇 ∈ [0; 𝜋], which represents the First Brillouin Zone (defined in section 1.4.1.3), 

the frequency is obtained.  

1.4.1.3 WFEM 2D-Periodicity 

The method just outlined for 1D-periodic structures, can be extended to structures 

possessing periodicity along two dimensions. This simply means that the unit cell is 

repeated in two directions and therefore, the equations change slightly, as they need to 

consider this new factor. The directions are usually orthogonal to each other but not 

necessarily[62],[63]. Wave vectors can be expressed in terms of the reciprocal lattice basis 

which represents the Fourier transform of a periodic spatial function in real space also 

known as the direct lattice. Since the reciprocal lattice is also periodic, one can restrict the 

wave vectors to a certain region called first Brillouin zone. If there is symmetry in the 

reciprocal lattice, the wave vectors may be further restricted to the Irreducible Brillouin 

Zone (IBZ) (OABC), shown in Figure 20 where the wavenumbers are positive. In some 

descriptions of the wave propagation characteristics, only the contour of the IBZ (O-A-B-C-

O) is considered, where the band extrema always occur [11].  

 
Figure 20 - Irreducible Brillouin Zone OABC (left) and representation of a 2D unit cell’s boundary nodes (right) 
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A square 2D unit cell is shown in Figure 20 (right). The reduced wavenumber this time has 

components both in the x- and y-direction, which are also the directions in which we would 

repeat our unit cell to obtain our 2D periodic finite structure.  

Since the 1D analysis (wave propagation considered only in one direction) produced 

dispersion curves (𝜇, f ), an analysis accounting for this second direction of wave 

propagation will produce instead a dispersion surface (𝑅𝑒(𝜇𝑥), 𝑅𝑒(𝜇𝑦), f ) . The Floquet-

Bloch relations are the following: 

where 𝐿𝑥 and 𝐿𝑦 are the unit cell occupancy dimensions in the x- and y-directions 

respectively and 𝑘 the wave number. Just like for the 1DWFEM but considering this time the 

notation used in Figure 20, the Floquet-Bloch theory together with the continuity of 

displacements gives the following relations: 

In the same way, considering the equilibrium forces, we obtain: 

 

𝑓𝑙𝑏 + 𝜆𝑥
−1𝑓𝑟𝑏 + 𝜆𝑦

−1𝑓𝑙𝑡 + 𝜆𝑥
−1𝜆𝑦

−1𝑓𝑟𝑡 = 0 

𝑓𝑙+𝜆𝑥
−1𝑓𝑟 = 0 

𝑓𝑏+𝜆𝑦
−1𝑓𝑡 = 0 

(1.4.23) 

Now the unit cell stiffness matrix this time is as follows: 

Just like for the 1D periodicity case, matrix [𝚲𝑹] and 𝚲𝑳 = [𝟏 𝚲𝑹⁄ ]𝑇which contain the 

𝜆𝑥 = 𝑒𝑗𝜇𝑥  

𝜆𝑦 = 𝑒𝑗𝜇𝑦  

𝜇𝑥 = 𝑘𝑥𝐿𝑥 

𝜇𝑦 = 𝑘𝑦𝐿𝑦 
(1.4.21) 

 

𝑞𝑡 = 𝜆𝑦𝑞𝑏 

𝑞𝑟 = 𝜆𝑥𝑞𝑙 

𝑞𝑙𝑡 = 𝜆𝑦𝑞𝑙𝑏 

𝑞𝑟𝑏 = 𝜆𝑥𝑞𝑙𝑏 

𝑞𝑟𝑡 = 𝜆𝑥𝜆𝑦𝑞𝑙𝑏 . 

(1.4.22) 

𝑲𝒖𝒄 =

[
 
 
 
 
 
 
 
 

 

𝑲𝑙𝑏−𝑙𝑏 𝑲𝑙𝑏−𝑙𝑡 𝑲𝑙𝑏−𝑟𝑏

𝑲𝑙𝑡−𝑙𝑏 𝑲𝑙𝑡−𝑙𝑡 𝑲𝑙𝑡−𝑟𝑏 
𝑲𝑟𝑏−𝑙𝑏 𝑲𝑟𝑏−𝑙𝑡 𝑲𝑟𝑏−𝑟𝑏

 

𝑲𝑙𝑏−𝑟𝑡 𝑲𝑙𝑏−𝑙 𝑲𝑙𝑏−𝑟

𝑲𝑙𝑡−𝑟𝑡 𝑲𝑙𝑡−𝑙 𝑲𝑙𝑡−𝑟

𝑲𝑟𝑏−𝑟𝑡 𝑲𝑟𝑏−𝑙 𝑲𝑟𝑏−𝑟

𝑲𝑙𝑏−𝑏 𝑲𝑙𝑏−𝑡 𝑲𝑙𝑏−𝑖

𝑲𝑙𝑡−𝑏 𝑲𝑙𝑡−𝑡 𝑲𝑙𝑡−𝑖

𝑲𝑟𝑏−𝑏 𝑲𝑟𝑏−𝑡 𝑲𝑟𝑏−𝑖

𝑲𝑟𝑡−𝑙𝑏  𝑲𝑟𝑡−𝑙𝑡 𝑲𝑟𝑡−𝑟𝑏  

𝑲𝑙−𝑙𝑏  𝑲𝑙−𝑙𝑡 𝑲𝑙−𝑟𝑏    
𝑲𝑟−𝑙𝑏   𝑲𝑟−𝑙𝑡   𝑲𝑟−𝑟𝑏    

𝑲𝑟𝑡−𝑟𝑡 𝑲𝑟𝑡−𝑙 𝑲𝑟𝑡−𝑟

𝑲𝑙−𝑟𝑡   𝑲𝑙−𝑙   𝑲𝑙−𝑟     

𝑲𝑟−𝑟𝑡  𝑲𝑟−𝑙  𝑲𝑟−𝑟   

𝑲𝑟𝑡−𝑏 𝑲𝑟𝑡−𝑡 𝑲𝑟𝑡−𝑖

𝑲𝑙−𝑏  𝑲𝑙−𝑡   𝑲𝑙−𝑖  
𝑲𝑟−𝑏 𝑲𝑟−𝑡  𝑲𝑟−𝑖 

  

 

𝑲𝑏−𝑙𝑏   𝑲𝑏−𝑙𝑡 𝑲𝑏−𝑟𝑏 
𝑲𝑡−𝑙𝑏   𝑲𝑡−𝑙𝑡 𝑲𝑡−𝑟𝑏

𝑲𝑖−𝑙𝑏  𝑲𝑖−𝑙𝑡 𝑲𝑖−𝑟𝑏

    

𝑲𝑏−𝑟𝑡  𝑲𝑏−𝑙   𝑲𝑏−𝑟   
𝑲𝑡−𝑟𝑡  𝑲𝑡−𝑙 𝑲𝑡−𝑟 

𝑲𝑖−𝑟𝑡    𝑲𝑖−𝑙 𝑲𝑖−𝑟 

𝑲𝑏−𝑏  𝑲𝑏−𝑡  𝑲𝑏−𝑖     

𝑲𝑡−𝑏  𝑲𝑡−𝑡   𝑲𝑡−𝑖  
 𝑲𝑖−𝑏   𝑲𝑖−𝑡   𝑲𝑖−𝑖    

 

]
 
 
 
 
 
 
 
 

. 
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Floquet-Bloch relations are created, and through pre- and post-multiplication and 

subsequent decomposition, finally the quadratic eigenvalue problem is obtained: 

 𝚲𝑹 =

[
 
 
 
 
 
 
 
 
 

𝐼       0
𝐼𝜆𝑥     0
𝐼𝜆𝑦     0

 
  0     0 
0   0 
0   0 

𝐼𝜆𝑥𝜆𝑦 0

0 𝐼
0 𝐼𝜆𝑥

      
0     0
0     0
0     0

    

  
0      0
0      0
0      0

𝐼   0
𝐼𝜆𝑦  0

  0      𝐼

 
]
 
 
 
 
 
 
 
 
 

 (1.4.24) 

 
1

𝜆
(𝜆𝑥

2[𝑲𝟏(𝜆𝑦) −  𝜔2𝑴𝟏(𝜆𝑦)] + 𝜆𝑥[𝑲𝟐(𝜆𝑦) −  𝜔2𝑴𝟐(𝜆𝑦)])𝒒 + ⋯ 

…+
1

𝜆
(𝑲𝟑(𝜆𝑦) −  𝜔2𝑴𝟑(𝜆𝑦))𝒒 = 𝟎 . 

(1.4.25) 

To obtain the values of 𝜆𝑥 , the angular frequency 𝜔 and 𝜆𝑦𝜖[0 ;  𝜋] must be provided.  

The interval for 𝜆𝑦 depends on the type of unit cell and the values of the propagation 

constants 𝜇𝑥 and 𝜇𝑦 can be calculated from eigenvalues 𝜆𝑥 and 𝜆𝑦 respectively according to 

equation (1.4.21).  

1.4.1.4 WFEM 2D-Periodicity (Inverse approach) 

Once more, matrices [𝚲𝑳] and [𝚲𝑹] can be built and according to the 2D Floquet Bloch 

relations while keeping in mind that 𝑓𝑖 = 0. The following equations are then derived: 

 𝒒 = [𝚲𝑳]𝒒
(𝑟) (1.4.26) 

 [𝚲𝑳]𝑓 = 𝟎 (1.4.27) 

 𝒒 =

(

 
 
 
 
 
 

𝑞𝑙𝑏

𝑞𝑟𝑏

𝑞𝑙𝑡
𝑞𝑟𝑡

𝑞𝑙

𝑞𝑟
𝑞𝑏

𝑞𝑡

𝑞𝑖 )

 
 
 
 
 
 

    ;     𝒇 =

(

 
 
 
 
 
 
 

𝑓𝑙𝑏
𝑓𝑟𝑏
𝑓𝑙𝑡
𝑓𝑟𝑡
𝑓𝑙
𝑓𝑟
𝑓𝑏
𝑓𝑡
𝑓𝑖 )

 
 
 
 
 
 
 

    ;    𝒒(𝑟) = (

𝑞𝑙𝑏

𝑞𝑙
𝑞𝑏

𝑞𝑖

)    (1.4.28) 

 𝚲𝑳 = [
𝟏

𝚲𝑹
]
𝑇

. (1.4.29) 
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Finally, the equation of motion scaled to our unit cell can be formulated, obtaining the 

following eigenvalue problem: 

1.4.1.5 WFEM 3D Periodicity 

For completeness, a very brief explanation of the same method applied to structures which 

show periodicity along three directions is derived. For simplicity, in Figure 21 the 

representative 3D unit cell is shown as a cube, which corresponds to the case where the 

periodicity occurs along three perpendicular directions: 

 
Figure 21 - representation of a 3D unit cell’s boundary nodes 

The Floquet-Bloch conditions are the following, where this time we have 𝜆𝑥 , 𝜆𝑦 and𝜆𝑧: 

The procedure for both, direct and indirect 3D methods is analogous to the previous ones. 

For the direct approach, the eigenvalue problem to be solved is the following: 

 ([𝑲𝒓(𝜇𝑥 , 𝜇𝑦)] − 𝜔2[𝑴𝒓(𝜇𝑥 , 𝜇𝑦)])𝒒(𝑟) = 𝟎 (1.4.30) 

 𝑲𝒓 = 𝚲𝑳𝑲 𝒖𝒄𝚲𝑹 (1.4.31) 

 𝑴𝒓 = 𝚲𝑳𝑴 𝒖𝒄𝚲𝑹. (1.4.32) 

𝑞𝑟 = 𝜆𝑥𝑞𝑙 𝑞𝑓𝑟𝑡 = 𝜆𝑥𝜆𝑦𝑞𝑓𝑙𝑏  

𝑞𝑡 = 𝜆𝑦𝑞𝑏 𝑞𝑝𝑙𝑏 = 𝜆𝑧𝑞𝑓𝑙𝑏  

𝑞𝑝 = 𝜆𝑧𝑞𝑓 𝑞𝑝𝑙𝑡 = 𝜆𝑦𝜆𝑧𝑞𝑓𝑙𝑏 (1.4.33) 

𝑞𝑓𝑟𝑏 = 𝜆𝑥𝑞𝑓𝑙𝑏 𝑞𝑝𝑟𝑏 = 𝜆𝑥𝜆𝑦𝑞𝑓𝑙𝑏  

𝑞𝑓𝑙𝑡 = 𝜆𝑦𝑞𝑓𝑙𝑏 𝑞𝑝𝑟𝑡 = 𝜆𝑥𝜆𝑦𝜆𝑧𝑞𝑓𝑙𝑏  
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Where the values of 𝜆𝑦, 𝜆𝑧 as well as the frequency must be provided in input. For the 

indirect method instead, the values of 𝜆𝑥, 𝜆𝑦 and 𝜆𝑧 are varied one at the time to produce 

the three-dimensional arrays which will produce for each fixed couple of imposed 

wavenumbers a dispersion surface. To do so, the following eigenvalue problem must be 

solved: 

1.4.1.6 Method considerations 

The two approaches saw for both 1D and 2D periodicity differ in terms of the starting point. 

In one case we inject the angular frequency while in the “indirect” approach we inject real 

values of the reduced wavenumber. Both allow us to retrieve information about the 

propagative waves, but the computational load is reduced when using the inverse method 

(linear eigenvalue problem), since in the first case (equation (1.4.8)), a quadratic eigenvalue 

problem is obtained and the imaginary component (evanescent waves) is also computed. In 

case of analysis of structures possessing periodicity along three directions, the 

computational demand increases but not the complexity of the problem. 

1.4.2 Model order reduction 

To model a sandwich panel with skins, unit cell models using shell elements are used. This 

requires high computational time because of the large number of nodes and associated 

degrees of freedom which must be taken into consideration. In this work, a fixed interface 

component synthesis method is selected and used as it well combined with the Floquet-

Bloch theory principles. This method was developed in 1968 by Craig and Bampton 

[64],[65] and in synthesis it condenses the nodal information coming from the internal unit 

cell nodes reducing significantly the number of total degrees of freedom, since the amount 

of boundary nodes of our models are much lower compared to the internal nodes and this 

difference increases as the element size decreases. 

The relation between the condensed DOFs, 𝑞𝑐, and the full model is the following: 

 

1

𝜆
(𝜆𝑥

2[𝑲𝟏(𝜆𝑦, 𝜆𝑧) −  𝜔2𝑴𝟏(𝜆𝑦, 𝜆𝑧)] + 𝜆𝑥[𝑲𝟐(𝜆𝑦, 𝜆𝑧) −  𝜔2𝑴𝟐(𝜆𝑦, 𝜆𝑧)])𝒒 + ⋯ 

…+
1

𝜆
(𝑲𝟑(𝜆𝑦, 𝜆𝑧) −  𝜔2𝑴𝟑(𝜆𝑦, 𝜆𝑧)) 𝒒 = 0 

(1.4.34) 

 ([𝑲𝒓(𝜇𝑥 , 𝜇𝑦, 𝜇𝑧)] − 𝜔2[𝑴𝒓(𝜇𝑥 , 𝜇𝑦, 𝜇𝑧)])𝒒
(𝑟) = 𝟎 (1.4.35) 
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where 𝒒𝑏𝑑 are the unit cell boundary DOF and  𝒒𝑐 are the condensed internal DOF’s. Now 

matrix CB has the following components: 

where 𝑰𝑏𝑑 is an identity matrix of the dimension of the boundary nodes, 𝝓𝑏𝑑 refers to the 

static modes and 𝝓𝑐  is the reduced basis (first modes) of the fixed interface modes 𝝓𝑖. Now 

𝝓𝑐  will have dimensions which depend on the arbitrary number of fixed interface modes 

kept while 𝝓𝑖 is calculated solving the eigenvalue problem below: 

while the boundary nodes are: 

Finally, both the mass and stiffness matrices can be condensed as well by a pre and post 

multiplication of the matrix CB: 

The reduced matrices can be now used to proceed with the WFEM formulations keeping in 

mind that the size of 𝝓𝑐  affects the accuracy of the final solution and therefore a 

convergence study should be performed before further analyses. 

1.5 NUMERICAL PREDICTION TOOLS USING 
MATLAB AND ANSYS 

The numerical tools developed during this work aim to predict and verify the presence of 

partial or full bandgaps as well as to quantify their width. To achieve this, the constituent 

material damping was neglected as shown from the considered equation of dynamics (8), 

where only mass and stiffness matrices appear. Formulations were initially created to 

predict the dynamic behaviour of simple structures and so beam elements were enough to 

completely describe them, but as structures became more complex (honeycombs require 

thin plate theory) the models were made using shell elements. In addition to this, scripts 

 (
𝑞𝑏𝑑

𝑞𝑖
) = 𝑪𝑩(

𝑞𝑏𝑑

𝑞𝑐
)  (1.4.36) 

 𝑪𝑩 = [
𝑰𝑏𝑑 𝟎
𝝓𝑏𝑑 𝝓𝑐

] (1.4.37) 

 [𝑲𝑖𝑖 − 𝜔0
2𝑴𝑖𝑖]𝝓𝑖 = 𝟎 (1.4.38) 

 𝝓𝑏𝑑 = −𝑲𝑖𝑖
−1𝑲𝑖𝑏𝑑. (1.4.39) 

 𝑲 𝐶𝐵 = 𝑪𝑩𝑇 [

𝑲𝑙𝑙 𝑲𝑙𝑖 𝑲𝑙𝑟

𝑲𝑖𝑙 𝑲𝑖𝑖 𝑲𝑖𝑟

𝑲𝑟𝑙 𝑲𝑟𝑖 𝑲𝑟𝑟

] 𝑪𝑩  (1.4.40) 
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were written to perform parametric analyses with the objective of understanding the 

impact of certain variables on the bandgap evolution. Due to the complexity of those 

structures, mass and stiffness matrices were not calculated analytically but instead, 

commercial finite element software was used to recover them when performing WFEM. The 

same software was used to obtain FRF’s. All numerical tools involved at some stage MATLAB 

(pre or post process) and for harmonic, transient or modal simulations, the selected 

software was ANSYS APDL. The following diagram summarizes the different strategies used 

for both, classic methods and WFEM and the outline of the numerical tools as well as a brief 

motivation and description can be found in the APPENDIX. 

1.5.1 Infinite structure 

As described earlier in this chapter, whenever a WFEM analysis is performed, the model 

consists in a unit cell. It is enough to perform a modal analysis of the unit cell to retrieve its 

mass and stiffness matrices and command ANSYS to export them as a txt file. When the 

model contains less than 9999 degrees of freedom, ANSYS can write the txt correctly. With 

complex models and finer meshes, the txt file output request produces an error, due to a 

maximum number of digits per column when writing the file. This was solved adopting 

sparse matrix form output. This produces multiple advantages. The txt file is smaller in size 

which represents an advantage in memory occupancy and the digit problem which rises 

when the number of degrees of freedom increases is solved. Another advantageous fix is the 

gain in computational time as the txt file is composed of less lines to read. The sparse Mass 

and Stiffness matrices are brought back to its original dimensions before injecting them in 

the MATLAB scripts WFEM.  

 
Figure 22 – Algorithm diagram of the main script used perform WFEM of the examined structure. 
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Supplementary increase in computational efficiency can be reached by writing the WFEM 

scripts in sparse form and furthermore, the performance could have been improved by 

writing all the scripts using ASCII notation. But the choice of reconverting the matrices to 

their original dimensions after reading the txt was taken because it eased the debugging 

procedure and assured the import was correct. Depending upon the type of analysis to be 

performed (1DWFEM or 2DWFEM) the number and type of boundaries to be considered 

are multiple. Starting from 1DWFEM, the model nodes to be considered are only the ones at 

the extremities of the direction of wave propagation of interest. These can be the left and 

right boundaries or the top and bottom. If the unit cell is symmetric, the number of boundary 

nodes will be the same on each extremity which is auspicial. The knowledge about which 

nodes are at the boundaries is essential because only in this way it is possible to separate 

them from the internal nodes and consequentially know which portions of the mass and 

stiffness matrices corresponds to what and are required to build the reduced dynamic 

stiffness matrix. Without this information it would not be possible to apply the Floquet-

Bloch conditions. Depending on the geometry of the unit cell as well as the element size, the 

number of nodes may change and therefore the numbers assigned to the boundary nodes 

varies each time. Coding a universal program which could adapt to any unit cell and element 

size became urgent.  

1.5.2 Finite structure 

Here two main scripts were written, one for harmonic analyses and one for transient 

analyses. As mentioned before in this chapter, a harmonic analysis is performed to evaluate 

the behaviour of the real structure and the WFEM method opportunely “calibrated”, acts as 

fast prototyping tool. To validate instead the iso-frequency findings (which are a 

propagation direction design tool covered in section 3.3), a transient simulation with 

opportune boundary conditions and injected harmonic force is performed, and the results 

are stored to produce figures used to create GIF animations, where, thanks to a colour 

scaling, proportional to the out of plane displacements, the direction of the bending wave 

propagation becomes visible. 

 In this case, a transient analysis is performed because it allows to input the nodal 

displacement which would be produced if the structure would be solicited with a pure tone, 

while in a harmonic simulation all frequencies within the range are excited, one at the time, 

and the results show a steady state deformed shape, which due to the border effects, doesn’t 

allow us to visually the propagating fringes at each time-step. Both of those analysis make 
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use of the same Matlab scripts used to create the unit cells for the WFEM analyses, but 

furthermore, it creates an array of unit cells (finite core panels), commands Ansys to run the 

simulation and it collects the nodal results which are then post-processed. 

 
Figure 23 - Self developed numerical prediction tools outline 
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CHAPTER 2 

WFEM APPLICATIONS 

2.1 SIMPLE PERIODIC STRUCTURES 

In this section, the methods explained in chapter 1 are applied to simple structures using 

the coded tools which are outlined in the Appendix. A theoretical analysis on a similar 

structure was conducted by Tian and Tie[66]. The chosen structures are a periodic beam 

(1D) first and a periodic grating (2D) later, both modelled in ANSYS using BEAM4 elements.  

2.1.1 Truss with periodically variable section 

Starting from the periodic truss beam, the analysis will produce an FRF, which will be 

performed on a finite structure, while the WFEM and TMM, which will be performed on the 

unit cell, giving information about the behaviour of an “infinite” structure. As reference, 

both, dispersion curves and FRF for a simple beam with constant cross section in case of a 

longitudinal compression solicitation, neglecting damping, are shown in Figure 25 while the 

periodic beam parameters are shown in Table 2. The structure is modelled in ANSYS using 

the BEAM4 element type and the element size is calculated according to the relation 

provided in equation (1.2.4). 

 
Figure 24 - (a) Homogeneous beam; (b) Periodic beam with asymmetric unit cell; (c) Periodic beam with symmetric unit cell 
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The FRF for undamped structures would have an infinite value when the considered 

frequency is equal to the natural frequency, 𝜔𝑛.  

In Figure 25 the peak has a finite value because the frequency step (discretization) used 

during the analysis produces results which don’t perfectly match the 𝜔𝑛 values. As a result, 

the FRF produces a plot which resembles an amplitude modulation since there is a relation 

between the frequency at which 𝜔𝑛 occurs and the chosen frequency step. Whenever we 

study a periodic structure, the first thing to do is to select the unit cell. This should be done 

to guarantee an equal and minimum number of boundary nodes to reduce the size of 𝑲𝒖𝒄 

and 𝑴𝒖𝒄 which directly translate in reduced computational time. The structure shown in 

Figure 24 can be cut in different ways to produce its unit cell and since the Floquet-Bloch 

periodic conditions can be applied to all possible unit cells, the result should be the same. 

 
Figure 25 - Frequency response plot of a homogeneous undamped beam (left) and its dispersion curves (right) allowing only 

longitudinal axial pressure waves. 

As a starting point, an asymmetric unit cell is chosen (visible in Figure 24 and Table 2), 

where beams of section A1 and A2 are alternated and connected, are used.  

PARAMETER (mm) 
Section 

A1 
Section 

A2 

 

𝐿𝑒𝑛𝑔𝑡ℎ, 𝐿  1 1 

𝑊𝑖𝑑𝑡ℎ,𝑤 = 𝐻𝑒𝑖𝑔ℎ𝑡, ℎ  0.1 – 0.5 0.5 – 0.1 

PARAMETER (mm) 
Section 

A1 
Section 

A2 

 

𝐿𝑒𝑛𝑔𝑡ℎ, 𝐿 0.5 1 

𝑊𝑖𝑑𝑡ℎ,𝑤 = 𝐻𝑒𝑖𝑔ℎ𝑡, ℎ  0.1 – 0.5 0.5 – 0.1 

Table 2 - Periodic beam unit cell parameters 

By shifting the cutting selection of a quantity equal to 𝐿 2⁄ , the symmetric unit cell is 
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obtained, which becomes an asset when analysing complex structures and multi-directional 

periodicity, as symmetry allows to reduce the Brillouin zone. 

2.1.2 Frequency response 

Suppose to have a finite structure made of ten unit cells (an example with 5 unit cells is 

shown in Figure 24) with the intent to measure the response displacement at one extremity 

when a compressive unit harmonic force  is applied at the other end. The plot on the right 

in Figure 26 shows frequency ranges (in grey) where the function reaches very low values. 

Those dips are typical of bandgap frequency ranges where the measured displacement 

amplitude is basically null.  

 
Figure 26 - Periodic beam undamped FRF's for increasing numbers of cells (left), and for 10 unit cell (right) allowing only 

longitudinal axial pressure waves. 

An interesting fact is that by analysing a finite structure, the number of unit cells has an 

impact on the behaviour of the structure. As we increase the number of unit cells between 

the solicitation point and the output point, the amplitude of the displacement becomes 

progressively lower, as shown by the plot on the left in Figure 26. This does not depend on 

the structural damping but rather from the number of impedance mismatches that are 

represented by each unit cell. This can be used as a bandgap identification tool as 

sometimes, for complex structures, the bandgap is not so clear and increasing the number 

of cells, increases the periodic characteristics and makes the dips more evident. Depending 

on the degrees of freedom and type of element chosen for the CAD model, it is possible to 

perform aimed analyses to understand how the structure behaves and responds to selective 

types of solicitations. It is opportune to point out that when performing an FRF, the choice 

of the unit cell does not impact the overall computational time as it happens when using 

WFEM because the analysis is carried out on the full finite structure regardless of the chosen 
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unit cell used to create it.  

Figure 27 and Figure 28 are parametric FRF plots of the finite periodic beam constituted of 

5 unit cells for the asymmetric and symmetric unit cell case respectively. The aspect ratio is 

calculated as 𝑡1 𝑡2 ⁄  where  𝑡1 and 𝑡2 are the value of the side of the cross section for the A1 

and A2 sections when (𝑤 = ℎ). As we vary the aspect ratio while keeping a constant mass, 

the FRF parametric plot underlines the unit cell’s reciprocal configurations. 

 
Figure 27 - Parametric FRF's for a periodic beam with variable aspect ratio (asymmetric cell), allowing only longitudinal axial 

pressure waves. 

The only noticeable and surprising difference between the parametric plots caused by the 

unit cell selection is that when the asymmetric unit cell along the propagation path is 

chosen, something which resembles an internal resonance appears (clearly visible in Figure 

27 and not in Figure 28). This should not be the case because the FRF should be the same, 

no matter the choice of unit cell. This numerical error can probably be brought back to how 

the software deals with connecting beam elements with different cross-sections. 

 
Figure 28 - Parametric FRF's for a periodic beam with variable aspect ratio (symmetric cell), allowing only longitudinal axial 

pressure waves. 
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2.1.3 Dispersion Curves 

The dispersion curves, which are solutions to the eigenvalue problem proposed in section 

1.4, relate the frequency [Hz] to the reduced wavenumber. Remembering that 𝜇 = 𝑘𝐿 and 

that 𝜇 𝜖 ℂ, the real and imaginary components are represented with two different colours: 

the propagating wave which is the real part of the propagation constant (𝑅𝑒(𝜇)) it’s 

displayed in red, while the evanescent waves, which are the imaginary contribution of the 

propagation constant, (𝐼𝑚(𝜇)), are displayed in blue. First studies used to plot both 

contributions in the positive 𝑦-axis quadrant but soon, the community preferred to plot 

them specular, which really helped to distinguish them better visually. In Figure 29 it is 

noticeable that when the 𝑅𝑒(𝜇) = 0 or 𝑅𝑒(𝜇) = 𝜋, then 𝐼𝑚(𝜇) ≠ 0. The vertical tangent of 

the red curve is followed by frequency ranges where the blue curve is different from zero 

and for what was explained in section 1.4.1.1, that represents the beginning or the end of a 

bandgap zone (highlighted in grey). 

The information that this type of plot can deliver though is not exclusive about the presence 

or absence of wave propagation. In this simple case, we only considered one degree of 

freedom including only the beams compression modes and therefore the interpretation is 

trivial. Comparing this dispersion curve with the FRF plot (Figure 26 right) it is immediately 

visible that the bandgaps correspond accurately. Another crucial information provided, is 

that what seemed to be an internal resonance from the FRF plots, is evidently a numerical 

error, since performing WFEM or TMM on the two unit cells (asymmetric and symmetric), 

produces the same dispersion curves. Now for each dispersion curve point solution, we 

would be able to calculate the eigenvectors in addition to the eigenvalues. By summing the 

eigenvectors to the beam nodes initial positions, the deformed shape of the unit cell is 

obtained. In this simple example, we have four curves being four propagating compression 

waves where 𝑅𝑒(𝜇) ≠ 0 or 𝑅𝑒(𝜇) ≠ 𝜋 . As the frequency range increases, the travelling 

waves wavelength decreases. The initial dimension of the unit cell though remains 

unchanged and therefore, it is intuitive that it can “accommodate” more wave cycles. The 

branches in fact represent compression modes of increasing number. 

If we consider all degrees of freedom for this same structure, the dispersion curves become 

more intricate as shown in Figure 31. Each curve will be in fact related to a type of wave and 

depending on the number of degrees of freedom considered, they could be longitudinal, 

transverse, or a combination (torsional). The detection about which wave is associated to 

which branch though is not trivial at all and no available software is able to do this 

distinction. 



Wave finite element method applications 

Doctoral Thesis – S. Del Broccolo  43 

 
Figure 29 - Parametric plot of dispersion curves for variable aspect ratio (left), Dispersion curves for a single configuration with 

bandgaps. Both are performed allowing only longitudinal axial pressure waves. 

The evolution in understanding dispersion curves and the tools developed by the author to 

aid with the wave modes distinction/detection will be discussed later in this chapter. In 

Figure 29 (left) a representation of the parametric analysis carried out using the coded 

Matlab tools and ANSYS is shown. The point solutions for which 𝐼𝑚(𝜇) = 0 or 𝑅𝑒(𝜇) = 0 or 

𝑅𝑒(𝜇) = 𝜋  are neglected and the view is set into the page plane. In this way, it becomes 

intuitive that if for a certain frequency range, the plot shows a blue line, then we have a 

bandgap. This visual method which aids in understanding the evolution of the bandgaps was 

first produced, to the authors knowledge, by D. Chronopoulos [67] and afterwards was 

slightly modified, as initially, only the real part used to be plotted and therefore no blue line 

was included. Each horizontal line, made of red and blue segments, represents the 

dispersion relation for a certain configuration (aspect ratio). 

2.1.4 FRF and dispersion curve interpretation 

This paragraph will outline few advantages/disadvantages as well as differences between 

the information which can extract from an FRF and/or a Dispersion plot. This can be 

explained with the same beam structure discussed earlier. Let us consider the simply 

supported periodic beam allowing only displacements in one direction and let us consider 

a compression type of solicitation along that same longitudinal axis. Both, dispersion curves 

(Figure 29) and FRF (Figure 26 (left)) show the same bandgaps. If we allow instead 

displacements and rotations in-plane where the truss lies, and apply a solicitation within 

that plane, but at an angle to its longitudinal axes(exciting in-plane bending and 

compression modes at the same time), the FRF would display the overall response of the 

structure (Figure 30 (right)). Since the structure possesses full in-plane bandgaps, the plot 

shows deep amplitude drops. If this were not the case, the structure could have still 
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possessed selective bandgaps, but the detection would not be possible using this method. 

 
Figure 30 – FRFs for compression and in-plane bending for a periodic beam considering 3DOF and neglecting damping (left) 

and the FRF for the same structure considering multiple simultaneous excitations and  3 DOF (right) 

By analysing the FRF on the left in Figure 30, it is visible that the bandgaps on the right are 

resultant bandgaps from the sum of the two separate FRF analyses conducted allowing only 

in-plane compression or bending. So, it is possible to encounter cases where FRF’s obtained 

for structures which are excited by multiple wave types seem not to have bandgaps, only to 

discover that they possess selective filtering properties. The dispersion curve (Figure 31) is 

also taking all in-plane solicitations into account, but contrary to the FRF, it allows to 

distinguish full bandgaps as well as selective (partial) bandgaps since each dispersion curve 

relates to a type of wave. Under the computational time point of view, the FRF is clearly 

more dispendious since the number of nodes in the model (full scale), and therefore degrees 

of freedom, is considerably higher compared to the WFEM (unit cell).  

 
Figure 31 - Dispersion curves for a periodic beam with 3DOF and blocked out of plane displacements and rotations 

The best approach, especially in case of complex structure analysis, is to use WFEM to 

produce dispersion diagrams, for design purposes, and then use the FRF to verify the 
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propagation or filtering capabilities of the finite structure. 

2.1.5 Beam vs Solid elements 

This section will focus on the peaks within the bandgap frequency range, appearing in the 

FRF produced by modelling the periodic truss using beam elements and selecting the 

asymmetric unit cell. We already underlined how the dispersion curve does not depict such 

behaviour and therefore, it is unlikely that the peak corresponds to a local resonance of the 

structure. A comparison using different type of elements, mesh, and constrains is carried 

out with the intention to understand if this phenomenon depends on the software (ANSYS) 

and the way it deals with connections between beams of different cross-section. 

An analysis varying the element type for the model was performed. The elements used for 

the comparison were the ANSYS SOLID185 (hexahedral 8-node), and SOLID 187 

(tetrahedral 10-node). Both meshes had an element size of 0.05mm, in agreement with what 

is mentioned in section 1.2.1.  The structure was created repeating the unit cell 5 times in 

its axial direction, as done in section 2.1.1. The FRF plot shown in Figure 32 denotes how 

allowing only the axial displacement, leads to a structural stiffening effect, which shifts and 

widens the bandgap to higher frequencies. The local resonance in the middle of the bandgap 

is still there if we allow only axial displacements, no matter the type of element used. This 

still resembled a numerical error because the deformed shape at the frequency was not 

showing global nor local resonances.  

 
Figure 32 – FRF of the periodic truss structure assembled with 5 asymmetric unit cell subjected to axial pressure wave and 

modelled using various element types. 
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As the constrains were removed, the structure modelled with tetrahedral elements 

(SOLID187), showed multiple local resonant frequencies within the bandgap, all confirmed 

by the deformed structures, as visible in Figure 33. The presence of resonant frequencies 

within bandgaps, has been investigated before by Sorokin[68], who concluded that the 

eigenfrequencies of an asymmetrical periodic cell with constrained and free boundary 

conditions can appear within a bandgap of an infinite periodic structure. Furthermore, the 

eigenfrequencies of a finite structure made of repetition of unit cells may contain 

eigenfrequencies in the bandgaps, besides those located in the pass-bands, which become 

more densely populated. These observations probably explain the results obtained in the 

truss structure analysed. 

 
Figure 33 - FRF of the periodic truss structure assembled with 5 asymmetric unit cell using SOLID187 tetrahedral 10-node 

elements, subjected to axial pressure wave. The deformed shapes refer to the peaks indicated in the graph. More precisely: (A) 

structural second mode, (B) deformed shape within the bandgap, (C) out of plane bending local resonance mode, (D) in plane 

local resonance mode, (E) Combined bending and torsional local resonance mode , (F) torsional local resonance mode. 

2.1.6 Grating with 2D periodically variable section 

Using the 2DWFEM, the results of the analysis performed on a uniform and variable-section 

cross grating are proposed, with the intention to visually introduce dispersion surfaces 

(𝑅𝑒(𝜇𝑥), 𝑅𝑒(𝜇𝑦), f ) and dispersion surface contours (𝑘 − space, f ). The grating’s unit cell 

periodicity is enhanced using the same concept applied to the truss in section 2.1.1 so, one 

of the vertical and one of the horizontal cross-branches are thickened, maintaining fixed the 

out of plane thickness (geometrical parameters are listed in Table 3). The structure is 

modelled in ANSYS using the SHELL181 elements and once more, the element size is 

calculated according to the relations provided in equation (1.2.5). The analysis is carried out 
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considering 6-DOF’s per node. In Figure 34 an array of 3x3 unit cells is shown to give a 

preview of what kind of structure would be created by repeating the unit cell in the 𝑥 and 

𝑦-direction, while the.  

 
Figure 34 - 2D (3x3 array) and its unit cell highlighted in the red box for the uniform grating (left) and the grating with 

periodically variable sections 𝐴1and 𝐴2  

PARAMETER (mm) Section A1 Section A2 Section A3 

𝐿𝑒𝑛𝑔𝑡ℎ, 𝐿  6 6 6 

𝑊𝑖𝑑𝑡ℎ, 𝑡  𝑡1 = 0.3 𝑡2 = 0.1 𝑡3 = 0.5 

𝐻𝑒𝑖𝑔ℎ𝑡, 𝐻 0.3 0.3 0.3 

𝑆𝑘𝑖𝑛 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠, ℎ 0.05 

𝐸𝑙𝑒𝑚𝑒𝑛𝑡 𝑠𝑖𝑧𝑒 0.1 

Table 3 –Cross grating model parameters for the shell elements used in both configurations: bare core and sandwich structure. 

The dispersion surfaces (first 18 modes) for both periodic structures are shown in Figure 

35. Although we notice change, from this angle it is not visible if the structures possess a 

bandgap within this frequency range. A projection on the (𝑅𝑒(𝜇𝑥), f )  or (𝑅𝑒(𝜇𝑦), f )  plane 

helps to locate frequency ranges where there is no surface plot. As it was possible for the 

1D analysis, the study can be reduced to the IBZ exploiting the lattice symmetry and 

therefore, vary the reduced wavenumbers values in the range [0, 𝜋]. The dispersion contour, 

which has on the 𝑥-axis the k-space position (IBZ) also shows that there are no full bandgaps 

since there is no frequency range where we can draw a horizontal line without intersecting 

the eigenvalue branches. The k-space position is created by intercepting the dispersion 

surfaces with an imaginary parallelepiped shell which has a square base equal to the IBZ 

(O-A-B-C), shown in Figure 20, and the height of the frequency range analysed.   
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Figure 35 - Dispersion surfaces for the uniform grating (left) and the grating with periodically variable sections 𝐴1and 𝐴2 

Furthermore, it has been demonstrated that the set of maximal solutions can be obtained 

by taking as input values, the ones that lie along the surface contour[1]. In Figure 37, 

dispersion surfaces projections and contour for the grating with periodically variable 

sections are shown. Quadrant O-A has a direction along the unit cell’s 𝑥-direction while 

quadrant C-O represents propagating waves along the 𝑦-direction. Quadrants A-B and B-C 

are waves travelling in every other direction but 𝑥 and 𝑦. These results are obtained using 

the indirect method and solving the eigenvalue problem varying in magnitude  𝜇𝑥 and 𝜇𝑦 

between [0 − 𝜋]. For contour quadrants O-A and C-O the values of 𝜇𝑦 and 𝜇𝑥 are set to zero 

respectively, while the other is varied between  [0 − 𝜋].  

 
Figure 36 - Dispersion surfaces (XZ view) for the uniform grating (left) and its dispersion curves based on its IBZ surface contour 

(right). No full bandgaps are present as for each frequency range, there is either a curve or surface plotted. 
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Figure 37 - Dispersion surfaces (XZ view) for the grating with periodically variable sections 𝐴1and 𝐴2 (left) and its dispersion 

curves based on its IBZ surface contour. A full bandgap appears before the 2.0e5 Hz highlighted in grey in the surface plot, and 

yellow for the dispersion plot.  

Quadrants A-B and B-C have one of the components of the reduced wave number set equal 

to 𝜋 as the other is varied. Keeping in mind that the dispersion surfaces are created with 

real values of 𝜇 and therefore they represent the propagative waves, Figure 37 shows full 

bandgaps. If a structure has preferential direction filtering properties for a certain 

frequency range, the bandgaps are said to be “partial”. In the same figure, various partial 

bandgaps in the 𝑥 and 𝑦 direction as well as diagonal can be appreciated. The distinction 

between the two is that a full bandgap is a frequency range which is in common with all four 

quadrants, while a partial bandgap denotes absence of propagation across a specific 

direction. In Figure 36 we also notice that there is a symmetry along the B vertex. This is 

because the analysed structure has a centre-symmetric unit cell and so waves impinging 

along the 𝑥-direction will find the same exact periodic structure as if they were travelling 

along the 𝑦-direction. This symmetry is also reflected in the dispersion curves (with respect 

to the boundary “B”). 

2.2 IMPACT OF FACE SKINS 

A pair of face skins is now added to the structure analysed in section 2.1.6, which possessed 

bandgaps in its variable section configuration (within its first 18 eigenvalues) to understand 

what consequence this has on the bandgaps. The structure’s model parameters are shown 

in Table 3 and the unit cell before and after attaching the face skins can be appreciated in 

Figure 38. The skins add mass to the unit cell and increases its out of plane thickness (ℎ +

𝐻). 
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Figure 38 - Cross unit cell with face skins (left) and unit cell without face skins 

At the same time, they have a stiffening effect. Both contributions affect the modes of the 

structure and therefore affect out dispersion surface contours, as visible in Figure 39. 

On the left, the steepest branch, at low frequencies, is an in-plane pressure wave while on 

the right, two steep branches are one, an in plane pressure wave, and the other, an out of 

plane bending mode.  

 
Figure 39 – Dispersion surface contours for the bare core (left) and the sandwich cell (right), this time with the frequency range 

fixed at 60 kHz.  
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The mentioned branches should start from zero, but they do not due to numerical issues. As 

a result of the stiffening, the same mode happens at much higher frequencies, as well as the 

in-plane pressure mode. Furthermore, the skins seem to destroy the partial bandgaps which 

are observable in the bare core for both 𝑥 and 𝑦 direction. Although every periodic structure 

will produce Bragg bandgaps at a certain frequency, we can conclude here that the skins 

modify the modal behaviour of the structure and destroy the full bandgap which the bare 

core produces within the first 18 eigenfrequencies computed. This will be observable in 

most of the geometrical core patterns analysed in this work, which is why, most of the 

analysis will not include the addition of skins, as they are predominant on the dynamic 

behaviour of the core. A full model of a sandwich panel will be analysed in section 4.1, where 

a numerical campaign is carried out with the intent of predicting the out-of-plane plane 

transmissibility characteristics. 

2.3 KIRIGAMI CELLULAR CORES 

2.3.1 Constant relative density cores 

A first comparison between topologies is carried out keeping constant the core relative 

density. In this way, the overall out of plane mechanical static compression properties as 

well as the overall weight of the core per unit area, are kept constant as described by Gibson 

in his book about cellular solids [69]. This seemed a reasonable way of comparing different 

topologies isolating the vibration performance of the latter. The relative density of the 

cellular structure is calculated as being the ratio between the volumes of the actual unit cell 

constituent material over the volume effectively occupied by it. The methods used so far to 

identify Bragg bandgaps worked well in case of simple structures like a beam with periodic 

cross section (1D). In this section, Bragg bandgap evaluation for more complex structures, 

like the kirigami compatible hexagonal, the re-entrant (also known as butterfly 

configuration) and the hybrid AuxHex tessellations were carried out applying the WFEM 1D 

The term hybrid here is used to describe the nature of the cellular core, which instead of 

possessing the same cell throughout the panel, it possesses different types of cells. To be 

precise, the Auxhex core is created with a combination of re-entrant and hexagonal unit 

cells. Before performing parametric analyses though, agreement between the bandgaps 

found using commercial software to produce FRF’s and the ones found using WFEM 

(dispersion curves) was performed. For this purpose, the cores were modelled using 

Timoshenko beam elements. In this way, in-plane and out-of-plane equations are uncoupled 

and the dynamic behaviour in response to the respective solicitations can be analysed 
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separately. The elements selected in ANSYS APDL are called BEAM4, which although they 

do not appear in the software element menu, they still are available for users. The element 

size for all the numerical simulations was set to 0.5mm, in agreement with equation (1.2.5) 

where the highest frequency analysed is considered, and the material properties, which 

come from the datasheet of a flax/PP consolidated prepreg, are listed in Table 4. 

𝑌𝑜𝑢𝑛𝑔′𝑠 𝑀𝑜𝑑𝑢𝑙𝑢𝑠, 𝐸 [𝐺𝑃𝑎] 8.1 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦, 𝜌 [𝑘𝑔 𝑚−3] 1040 

𝑃𝑜𝑖𝑠𝑠𝑜𝑛′𝑠 𝑅𝑎𝑡𝑖𝑜, 𝜐 0.2 

Table 4 - Numerical simulation parametric analysis material properties 

The investigation is carried out only in-plane, by blocking out-of-plane displacements and 

rotations, therefore, only 3 degrees of freedom are considered. In-plane compression and 

in-plane bending were the only responses considered throughout this chapter. The 

harmonic response simulations were carried out without implementing any structural nor 

material damping. The intention here is to use those plots to confirm the frequency range 

of the bandgaps.  

Topology 
𝒍 

[mm] 
𝝑 

[deg] 
Relative 
density 

1st eigenfreq. 
[Hz](𝝎𝒏) 

Max Freq. 
[Hz] (𝟐𝝎𝒏) 

Hexagonal 5.499 30.00 0.042 8373 16746 

Re-entrant 7.331 30.00 0.042 4710 9420 

Auxhex 6.415 30.00 0.042 6152 12304 

Table 5 - Unit cell parameters for the hexagonal, re-entrant and AuxHex configurations 

In Table 5 instead, the geometrical values of the side length 𝑙 and internal angle 𝜗 (visible in 

Figure 40(b)), which were computed to guarantee a constant relative density for each 

configuration are shown, as well as the 1st eigenfrequency of the smallest unit cell’s 

constituent beam, which was used to normalize the plots. 

2.3.2 Hexagonal topology 

The unit cell as well as a representation of the hexagonal topology are shown in Figure 40. 

The FRF plots and the dispersion curves for the hexagonal topology, produced with the 

hexagonal unit cell, are shown instead in Figure 41 and Figure 42 respectively. The graphs 

are normalized according to the 1st eigenfrequency of the beam. The unit cell was modelled 

using ANSYS BEAM4 elements and as mentioned in section 2.3.1 the out of plane 

displacements and rotations were blocked. The FRF analysis was performed on a chain of 

10 unit cells, for reasons explained in section 2.1.2. A unit force was applied at one extremity 



Wave finite element method applications 

Doctoral Thesis – S. Del Broccolo  53 

of the chain, while the output (displacement) was read at the other end of the structure. 

There is very good correspondence between dispersion curves (infinite structure) and the 

computed FRF plots (finite structure). The graphs both show the presence of bandgaps 

around 𝜔 𝜔𝑛⁄  = 0.3, 0.45, 0.85, 1.2 and 1.7. Furthermore, in Figure 42, two peaks within the 

bandgaps, one for the in-plane bending waves (𝜔 𝜔𝑛⁄ = 0.7), and one for compression 

waves (𝜔 𝜔𝑛⁄ = 0.95), can be noticed. This probably is associated to the same numerical 

error discussed in section 2.1.2 . 

 
Figure 40 – (a) Hexagonal pattern, (b) Hexagonal unit cell for WFEM 1D analysis. 

 
Figure 41 - Dispersion curves for the hexagonal pattern allowing only in-plane displacements and rotations. 

 
Figure 42 - In plane FRF for pressure wave (black) and in-plane bending(magenta) for the hexagonal pattern. 
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Before continuing with other topologies, a parametric analysis was carried out to 

understand the effect of selected geometrical variables on the bandgaps. Taking the 

hexagonal configuration as benchmark, parameters like the core wall thickness 𝑡, side 

length 𝑙, and internal angle 𝜗 were varied keeping everything else constant.  

It is interesting to underline that by changing the internal angle of the hexagonal unit cell 

while keeping constant the overall dimensions 𝐿𝑥 and  𝐿𝑦, the geometry firstly transforms 

into a square grid (for 𝜗 = 0°) and finally into the re-entrant (for 𝜗 = −30°). The results of 

such parametric analysis are summarized in Figure 43, Figure 44 and Figure 45. 

2.3.2.1 Variable wall thickness, side length and angle 

Clear trends are visible when changing such variable. As we increase the thickness of the 

unit cell wall from 0.2 to 1.0 mm the bandgaps shift to higher frequencies. This is coherent 

with what was expected, since 𝜔𝑛 = √𝐾 𝑀⁄    and therefore a stiffer structure tends to 

possess natural modes at higher frequencies. 

 
Figure 43- Hexagonal parametric analysis for variable cell wall thickness, t. Dispersion curves (left) and FRF's (right). 

 
Figure 44- Hexagonal parametric analysis for variable side length, l: Dispersion curves (left) and FRF's (right). 

  As we increase 𝑙 instead, since the cross section of the beam remains constant, the outcome 
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is a larger unit cell (for the way the parametric scripts were produced, 𝑙 acts as a scaling 

factor) which translates in reduced stiffness. As consequence, the bandgaps shift to lower 

frequencies. Finally, the internal angle 𝜗 was varied and as a result the main bandgap within 

the frequency range widened. For negative 𝜗 values, the hexagonal configuration becomes 

a re-entrant cell. This causes a change in the overall unit cell occupancy due the way the 

parametric program was written. To compare cores with same relative densities, the code 

used for this investigation could not be used, and therefore a script dedicated to the re-

entrant topology, which guaranteed the relative density as well as occupancy was created. 

 
Figure 45- Hexagonal parametric analysis for variable internal angle,𝜗. Dispersion curves (left) and FRF's (right). 

2.3.3 Re-entrant topology 

The re-entrant configuration could be defined as the Hexagonal geometrical antagonist. As 

discussed in the previous section, this topology is obtainable by decreasing 𝜗 to negative 

values up to -30˚ but a specific script was used to guarantee constant relative density. The 

unit cell dimensions as well as the FRF and dispersion curves are shown from Figure 46 to 

Figure 48). The graphs both show the presence of bandgaps around 𝜔 𝜔𝑛⁄  = 0.22, 0.35, 0.45, 

0.9, 1.4 and above 1.85. Compared to the hexagonal cell core, the re-entrant possesses a 

wider bandgap (∆𝜔 𝜔𝑛⁄ ~0.65) around 𝜔 𝜔𝑛⁄  = 0.9.  

 
Figure 46 – Re-entrant pattern (left), Re-entrant unit cell for WFEM 1D analysis. 
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Within the main bandgap, the FRF computed for the axial pressure wave denotes two peaks, 

at 𝜔 𝜔𝑛⁄ = 0.4 and 1.2 , which also appear in the dispersion curves. Contrary to what has 

been discussed in 2.1.2, where the resonance was not appearing in the dispersion curves, it 

is here confirmed, and its origin is probably intrinsic to the topology. 

 
Figure 47 - Dispersion curves for the re-entrant pattern allowing only in-plane displacements and rotations. 

 
Figure 48 - In plane FRF for pressure wave (black) and in-plane bending(magenta) for the re-entrant pattern. 

2.3.4 AuxHex topology 

In this section, the previous two unit cells are combined to obtain a new configuration. This 

topology is called AuxHex [15] and its pattern is shown in Figure 49(left) as well as its unit 

cell (right). This configuration has the peculiarity of possessing an in-plane zero Poisson’s 

ratio. For this reason, it is a valuable candidate to be considered when designing cylindrical 

sandwich panels. Just like the previous topologies, the analysis is carried out on the unit cell 

which was modelled with BEAM4 elements in ANSYS APDL environment.  
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Figure 49 - AuxHex pattern (left), AuxHex unit cell for WFEM 1D analysis. 

 
Figure 50 - In plane FRF for pressure wave (black) and in-plane bending(magenta) for the AuxHex pattern 

 
Figure 51 - Dispersion curves for the AuxHex pattern allowing only in-plane displacements and rotations. 

Again, only the in-plane displacements and rotations were allowed. Various  adjacent 

bandgaps appear in the range from 𝜔 𝜔𝑛⁄  = 0.3 up to 1.5 as shown in Figure 50 and Figure 

51. Sharp resonant peaks interrupt the continuity of its widest bandgap (within this 

frequency range) which is unfortunate, although high bandgap density within a frequency 

range is still a positive characteristic. The bandgap density owned by this configuration is 

higher compared to both, classic hexagonal and re-entrant grids. 
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2.3.5 Performance comparison 

Figure 52 is a summary plot of the configurations analysed in section 2.3. The relative 

density is kept constant and since the unit cell encumbrance of the AuxHex is larger than 

the hexagonal and the re-entrant, the beam thickness parameter was varied to guarantee 

the feature. In blue, green, and red, the 𝑅𝑒(𝜇), which represents the propagative waves, over 

the audible frequency range that goes from 0 Hz to 20 kHz, which is of great interest for the 

aerospace and automotive industry, is shown. The horizontal coloured lines are the 

frequencies at which 𝑅𝑒(𝜇) ≠ 0 and therefore waves can propagate in that direction. The 

absence of plot denotes therefore the presence of a bandgap. It is again visible how the re-

entrant configuration produces the bandgap with the largest width.   

The FRF peaks at 𝜔 𝜔𝑛⁄ = 0.4 and 1.2 for the re-entrant configuration discussed earlier 

appear also in the AuxHex FRF. The results obtained with this investigation were of 

inspiration for further work as a sort of inherited spectral signature feature became visible. 

The initial parametric investigation instead, gave information about the bandgap’s 

evolution and possible insight about how the variables discussed in section 2.3.2, could be 

used to shift isolation capabilities to desired frequency ranges.  

 
Figure 52 - Dispersion curves summary for constant relative density core comparison. 
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2.4 INHERITANCE 

This section is focused on the results obtained for the AuxHex configuration. The recurrence 

of the re-entrant peaks in the AuxHex topology required further analysis. This was 

attempted by normalising the parametric graphs obtained for all three configurations 

analysed in 2.3. In Figure 53 the assembly of the hybrid core is shown. By repeating in space 

(alternating) the unit cells of the homogeneous cores, the AuxHex configuration is obtained. 

In Figure 54, a representation of the dispersion curves and relative bandgaps produced by 

each homogeneous topology (left) and the hybrid AuxHex (right), are proposed, while 

varying the aspect ratio and therefore the unit cell scaling factor. 

 
Figure 53 - AuxHex unit cell assembly from the hexagonal and the re-entrant WFEM 1D unit cells 

 Each horizontal red line refers to the frequency values at which 𝑅𝑒(𝜇) ≠ 0. The 

normalisation adopted, which is done by dividing the computed frequencies by the 1st 

natural frequency of the smallest beam used to model the unit cell, underlines how the 

bandgap frequency range is dependent from the unit cell scaling factor. In Figure 54 (left) 

the bandgap frequency ranges are highlighted with vertical rectangles in blue, for the 

hexagonal grid, and in green, for the re-entrant grid.  

Figure 54 (right) instead, refers to the hybrid core AuxHex; the blue and green bandgap 

vertical rectangles of the “parent” cells are sub-plotted to the propagative component 

possessed by the AuxHex topology. Comparing the results displayed on the left with the 

ones obtained for the AuxHex, the bandgap capability of the “parent” cells (hexagonal and 

re-entrant), to filter waves of certain frequency ranges, seems to be inherited by the hybrid 

topology. This bandgap inheritance could potentially lead to bandgap-designed hybrid 

panels, provided that the spectral signature of the “parent” unit cells is known. 
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Figure 54 - Inheritance normalised parametric dispersion curves for the hexagonal (top left), the re-entrant (bottom left) and 

the AuxHex (right). 

Furthermore, other simulations using ANSYS software to perform traditional FEM 

(Harmonic analysis) was carried out to produce FRF’s on different truss structures. The 

latter are shown in Figure 55 where (a) is a chain containing 10 hexagonal unit cells, (b) is 

a composite structure made of 10 hexagonal cells followed by 10 re-entrant cells and finally 

(c) shows a structure made with 10 AuxHex cells. All structures were modelled with BEAM4 

elements and keep the same relative density. No effect on the bandgap position and width 

was noticeable, as shown in Figure 56. Consequently to this verification, the output at the 

end of the whole truss (output 3, green arrow) was considered reliable and compared with 

the reading at the end of the AuxHex truss (output 4, black arrow in Figure 55). 

 
Figure 55 – (a) Truss structure composed of 10 hexagonal cells; (b) Truss structure made of 10 hexagonal cells followed by 10 

re-entrant cells; (c) Truss structure made with 10 AuxHex cells. The red arrow is the input force and the grey, blue,  green and 

black are the output readings, colour-matched with the graphs in Figure 56 and Figure 57. 
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The results are plotted in Figure 57 where the FRF’s for the AuxHex and the composite truss 

seem to be quite close to each other  and the bandgap similar in terms of width, other than 

some internal local resonances which unfortunately destroy the desirable wide bandgap. 

Furthermore, on the same graph, circled in blue, perfect matching between some resonant 

modes is visible.  

 
Figure 56 - FRF comparison between a truss structure made of 10 hexagonal unit cells and the output 1 from figure 53 

Applying a compressive solicitation at 13360 Hz, frequency at which waves propagate 

across the hexagonal core but not trough the AuxHex one, waves are unable to propagate 

until the end of the truss, as shown in Figure 58.  

 
Figure 57 - FRF comparison between the composite truss structure (green) and the AuxHex output 2 (black). Localised modes 

are highlighted with dashed blue line 
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2.4.1 Inheritance conclusions 

From the numerical simulations carried out using both, fast design WFEM tools (dispersion 

diagrams) and classic FEM (FRF’s) the inheritance topic for this specific structure and 

solicitation has been confirmed.  

 
Figure 58 - AuxHex and composite truss deformed shapes subjected to harmonic force at 13360 Hz. Both structures clearly show 

filtering effects. 

This means that each unit cell from a homogeneous periodic core is frequency-selective in 

terms of wave propagation and hybrid cores such as the AuxHex, inherit the filtering 

property of the parent-unit cells to a certain extent, since no matter in which way the truss 

is assembled, the resultant FRF maintains the bandgaps width and central frequency. Local 

internal resonant peaks although do appear which is not ideal, but if the aim is to increase 

the bandgap density in certain frequency ranges, this could maybe become a new vibration 

design strategy which also allows to maintain the static out of plane properties. 

2.5 KIRIGAMI-COMPATIBLE ISOVOLUMETRIC 
POLYGONAL CORES 

2.5.1 Motivation 

After examining core topologies which can be classified as “classical tessellations” or at least 

considered more common, the need of exploring new geometries seemed to be the next 
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natural step. This had to be conceived respecting the stringent rules of Kirigami, technique 

which is anyway not usual when manufacturing honeycombs. The attention shifted to 

regular polygons, which were after a preliminary analysis, good kirigami candidates. 

Especially after the investigation of hybrid cores, the self-tessellation condition was not 

essential and neglecting it led to original findings. 

2.5.2 Polygons and Kirigami 

For this kind of investigation, a parametric script to create the unit cell based on regular 

polygons kirigami compatible was written. Parameters like thickness 𝑡, core height ℎ, 

material properties, type of analysis and overall unit-cell occupancy (𝐿𝑥, 𝐿𝑦 and 𝐿𝑧) could 

be edited from Matlab. The type of unit cell chosen to create such tool is not optimal in terms 

of minimization of boundary nodes. This choice was made to avoid creating a separate script 

for each polygon considered, which would have taken considerable amount of time. All 

polygons have therefore a unit cell that can be described as two half-moons with their backs 

connected by a rib. In this way, the unit cells maintain a symmetry, which is an important 

parameter when searching for bandgaps, as mentioned in chapter 2. The kirigami 

compatible core structures must keep two parallel sides, parallel to the folding line that 

closes the semi cell onto itself. For this reason, not all polygons could be analysed, and the 

number of sides considered ranged from 4 to 20 with a sub step of 2. For completeness, a 

configuration with circular cells was analysed as well. Those cellular patterns can all be 

geometrically classified according to what was introduced in section 1.1.2 and covered in 

depth by D. Schattschneider [25] and R. Veysseyre [26].  

 
Figure 59 - Polygonal unit cell automated assembly 

To produce unit cells with same relative density and exact volume occupancy, dimensions 

𝐿𝑥, 𝐿𝑦 and 𝐿𝑧 were kept constant and the thickness of the cellular core unit cell varied to 
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maintain the same mass and therefore same relative core density[70]. Without varying the 

thickness, the relative density of our unit cell would increase and behave asymptotically 

(Figure 60) toward the configuration where two semicircles would be connected by the rib. 

 
Figure 60 - Polygonal cell relative density if the beam section was kept constant 

The relative density is defined as 𝜌𝑐 𝜌⁄   where 𝜌𝑐  is the density of the actual cell calculated 

with the unit cell mass and its volume, while 𝜌 is the density calculated with the unit cell 

mass and the volume encumbrance of the unit cell. This was chosen in order to provide the 

same static out of plane properties[69] as the investigation for bandgaps was performed.  

2.5.3 Polygon numerical model 

To create the variable polygon unit cells, the ANSYS command for regular polygons which 

only needs number of sides and the radius in which inscribe the shape was used. From there, 

the polygon volume was carved to retrieve symmetrical semi-shapes and depending on the 

final structure or type of analysis to be conducted, the unit cell was modelled using BEAM4 

(sufficient if the aim is to analyse the core behaviour) or SHELL 181 elements (if the interest 

is to analyse a sandwich panel structure). Finally, a rib was added to connect the two half-

moons, as shown in Figure 59. This analysis was carried out for 1D periodicity (considering 

only left and right boundaries) and only considering the core, with the purpose of searching 

the skinless configuration which would have produced the widest bandgaps within the 

frequency range up to 30kHz, which was chosen arbitrarily. Since the models were created 

using Timoshenko beam elements (BEAM4), the in-plane and out-of-plane behaviour of the 

core were analysed. 
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Figure 61 - Isovolumetric in plane and out of plane parametric dispersion curves for WFEM 1D 

2.5.4 Results 

The configuration which showed the widest in-plane and out-of-plane bandgap was the 

octagon, with 6324 𝐻𝑧 and 5146 𝐻𝑧 respectively. Also, the bandgaps seemed to follow a 

pattern as the number of sides was increased. Just like the relative density, the dispersion 

curves revealed a sort of bandgap mid-frequency convergence towards the circle 

configuration, as shown in Table 6. This became clearer starting from the configuration with 

10 sides onwards where the middle frequency shifted towards the circular cell, while the 

bandgap width increased and finally stabilised. 

2.6 CONCLUSIONS 

This chapter focussed on the in-plane and out of plane dynamic behaviour of kirigami 

compatible classic cellular structure geometries which recur in sandwich panel cores. The 

numerical simulations were carried out using 1DWFEM as a fast prediction tool for wave 

propagation and further analysis was conducted to verify those findings using ANSYS APDL 

software to produce FRF’s plots, neglecting structural and material damping. A parametric 

analysis, using the hexagonal grid was performed to understand the effect of certain 

parameters and evaluate their effect on existing bandgaps. Such variables were the wall in-

plane thickness (𝑡), the scaling factor which was based on the side length of the regular 

hexagon (𝑙), and finally the internal angle (𝜗). All those parameters are well visible in  Figure 

40. The effect of (𝑡) is to shift the bandgaps to higher frequency as the increase in thickness 

acts as a stiffening parameter while the increase in size of the unit cell, maintaining the 

constituent beam cross section causes the opposite effect and so the bandgaps shift to lower 

frequencies. The variation of the internal angle instead creates new geometries which cause 

a widening effect on the main visible bandgap, as shown in Figure 45. Other than the 
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hexagonal and re-entrant topologies, a non-typical core, defined as hybrid and called 

AuxHex was analysed and compared with the performances of the “parent” self -tessellating 

unit cells. Comparing the results displayed in Figure 54 on the left with the ones obtained 

for the AuxHex, the bandgap capability of the “parent” cells (hexagonal and re-entrant), to 

filter waves of certain frequency ranges, is inherited by the hybrid topology. This concept 

for these unit cells is further investigated and confirmed using FEM tools. Furthermore, this 

gave insight to investigate a new class of kirigami-compatible cores which is based on 

regular polygons and which, to the authors knowledge, is a novelty in the field. The 

configuration which showed the widest in-plane and out-of-plane bandgap within the 30 

kHz range is the octagon. As we increase the number of sides, the dispersion curves revealed 

a sort of bandgap mid-frequency convergence towards the circle configuration, as shown in 

Table 6, which became more evident starting from the configuration with 10 sides onwards. 

 

SIDES 

IN PLANE OUT OF PLANE 

∆f [𝐻𝑧] ∆f f𝑚𝑖𝑑⁄  f𝑚𝑖𝑑 [𝐻𝑧] ∆f [𝐻𝑧] ∆f f𝑚𝑖𝑑⁄  f𝑚𝑖𝑑  [𝐻𝑧] 

4 4705.0 0.291 16150.5 3914.0 0.153 25645.0 
6 5970.0 0.216 27684.0 3553.0 0.123 28791.5 
8 6324.0 0.324 19532.0 5146.0 0.213 24199.0 

10 3189.0 0.108 29393.5 3592.0 0.212 16953.0 
12 3385.0 0.128 26351.5 3119.0 0.126 24658.5 
14 2619.0 0.095 27509.5 3957.0 0.158 25115.5 
16 2611.0 0.097 27019.5 4174.0 0.166 25213.0 
18 3206.0 0.117 27370.0 3772.0 0.149 25318.0 
20 3394.0 0.124 27379.0 4016.0 0.159 25287.0 

circle 3383.0 0.122 27675.5 4195.0 0.165 25496.5 
Table 6- Bandgap width and middle frequency for the polygonal investigation 
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CHAPTER 3 

INTERLOCKED SANDWICH PANEL CORES 

3.1 INTERLOCK TECHNOLOGY 

The main geometrical limitation for the kirigami technique when producing cores which 

must also possess improved vibration filtering properties is that the sheet of material needs 

to be folded over trapezoidal bars. Only in this way, the back and forwards folding process 

of the thermoformed sheet onto itself can be obtained and centrosymmetric or non, cellular 

structures produced. Triangular cells or even a square grating for example (Figure 62), 

cannot be created. As shown in Figure 9 and Figure 10, bars necessarily need to have cross-

sections containing two parallel sides to produce centrosymmetric geometries. 

 
Figure 62 - Self-tessellating patterns not allowed with kirigami 

The lack of geometrical tessellations producible with Kirigami and the will to investigate 

new hybrid cores while introducing also a second degree of periodicity in the structures 

conveyed into what has been called the Kirigami Interlock technique. The interlocking 

pattern technique allows to obtain a completely new family of topologies, by press-locking 

onto each other different cellular structures. This result was obtained thanks to a new slit 

pattern created during the Kirigami manufacturing process (pre-process), in addition to the 

one which would convey the cellular cross section shape. Traditional Hexagonal cell 

honeycomb produced with Kirigami would have the cutting pattern shown in Figure 63 

where are also immediately evident, the additional vertical cuts in the direction of the mold 

bar length. The main difference between the assembled 3D structures lies in the vertical 

cuts which are performed onto what becomes a wall with single thickness. Such cuts face all 

the same side, and this allows the separately manufactured honeycombs to compenetrate 
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each other through all their original out of plane height, since each one of them, has cuts 

that are half their height. This operation creates in the end, a new honeycomb with higher 

relative density and different topology compared to the “parent” pair.  

 
Figure 63 - Kirigami cutting pattern (left), Interlock cutting pattern (right) 

Figure 64 shows a geometry which has regular hexagons and regular rhombus obtained 

when two over extended hexagonal honeycomb cores are interlocked. This pattern was 

previously non-obtainable since the structure should have folded over a corner which 

would end with a point connection between adjacent cells.  

 
Figure 64 - Folding line detail for two hexagonal cores interlocked 

If the distance between the vertical cutting pattern is changed, an in-plane translation is 

obtained, and this allows to create complex hybrid cores as shown in Figure 66. 

Furthermore, the square pattern that was not producible with simple kirigami, which was 

allowing only shifted square or shifted rectangular topologies, is now manufacturable. The 

geometries shown in Figure 66 won’t all be investigated, as combinations are numerous, but 

the configurations obtained by interlocking hexagonal and re-entrant cells  with a vertical 

shift will be analysed in search for bandgaps along 1D and 2D periodicity.  
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Figure 65 - HexHex 3D printed demonstrators 

An innovative aspect brought with this technology is the possibility to assemble panels with 

different wall thickness which translates into periodically variable stiffness. This can be also 

achieved maintaining the same geometrical dimensions, but through the change in one of 

the cores constituent material. Interlocking therefore allows different geometrical and 

material periodicity, alone or simultaneously. The term hybrid therefore here can be 

extended to constituent material as well.  

 
Figure 66 - Vertical and Diagonal interlock shifts between hexagonal and re-entrant configurations 

The two cores can be glued together or can simply maintain their configuration exploiting 

the static friction contact between them. The two cores left unglued could also keep their 

respective spectral signature and once press-locked one onto another, create completely 
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new bandgaps. Amongst the improvements and possibilities that this technological change 

has brought, there is also the creation of gaps which can act as vent holes without having to 

drill them in the 2D sheet of paper. The resultant vent holes are shown in Figure 65, where 

two 3D printed hexagonal honeycombs are interlocked. To obtain this effect, it is enough to 

increase the length of the interlock cuts, beyond the half of the core’s height, during the early 

stages of manufacturing. The demonstrator has been assembled with cores of different 

colour to visually simulate different constituent material or geometrical properties. 

3.2 INTERLOCKED CELLULAR STRUCTURES AND 
THEIR VIBRATION FILTERING EFFECTS 

In this section, hybrid cellular cores obtained with the Kirigami derived technique 

“Interlock” and intended to be used for sandwich panels were analysed using both 1DWFEM 

and 2DWFEM. The numerical investigation was performed parametrically as certain 

geometrical features were varied between each analysis. From the topologies presented in 

Figure 66, only the ones with vertical shift were considered and this choice was made at 

early stages because the eventual manufacturing later on would have been less complicated. 

The vibration filtering characteristic of these innovative cellular cores were also compared 

to more classic configurations. The aim of the investigation was to see whether the new 

cores possessed vibration filtering properties superior to the ones of their parent cores, the 

Hexagonal and Re-entrant tessellations. More precisely, the eventual detection of the Bragg 

bandgaps was followed by the attempt to enlarge existing or “open” new ones, through the 

variation of the geometrical parameters. The models were conceived here as if the structure 

was perfectly bonded using ANSYS APDL BEAM 4 elements and made of homogeneous 

material. This was a first step which allowed us to uncouple in-plane and out of plane 

behaviours. Material properties and involved variables for the parametric analysis are listed 

below, in Table 7. 

MATERIAL PROPERTIES 

𝑌𝑜𝑢𝑛𝑔′𝑠 𝑀𝑜𝑑𝑢𝑙𝑢𝑠, 𝐸 [𝐺𝑃𝑎] 8.1 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦, 𝜌 [𝑘𝑔 𝑚−3] 1040 

𝑃𝑜𝑖𝑠𝑠𝑜𝑛′𝑠 𝑅𝑎𝑡𝑖𝑜, 𝜐 0.2 

𝑆ℎ𝑖𝑓𝑡 𝑅𝑎𝑡𝑖𝑜, 𝛾 [0 - 1] 

𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑎𝑛𝑔𝑙𝑒, 𝜗 [10° - 85°] 

Table 7 -Interlock simulation parameters for WFEM 1D and 2D  
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3.2.1 HexHex WFEM 1D (in-plane) 

The first core considered is the HexHex. This represents one of the many alternatives that 

the interlock concept can produce. The result of such interlocking is shown in Figure 67 

where the side length of the hexagon is 𝑙 = 5 𝑚𝑚 and 𝑡 = 0.2 𝑚𝑚 the thickness of the 

squared cross-section beam. 

 
Figure 67 – HexHex topology and unit cell parameters (left), hexagonal topology and unit cell (right) 

The investigation, both for 1D and 2D periodicity, was performed varying parameters like 

the shift ratio (which happens in the Y direction) between the two hexagonal cores 𝛾 = 𝑎 𝑙⁄  

, where 𝑙 = 𝑎 + 𝑏, and then the hexagonal internal angle 𝜗. As shown in Figure 68, when the 

shift ratio is varied, the unit cell overall dimensions 𝐿𝑥 and 𝐿𝑦 are kept constant. This also 

means, since the core thickness in the Z direction is constant, that the overall relative 

density of the core will be constant and therefore the compression static properties in the Z 

direction will be equal. 

 
Figure 68 – HexHex variable shift ratio unit cells and topologies 

In  Figure 68, two extreme configurations (for 𝛾 = 0 and 𝛾 = 1) representing regular 

hexagonal lattices are shown. To keep static out of plane properties constant, walls for those 

configurations were doubled where appropriate. 



Interlocked sandwich panel cores 

72   Doctoral Thesis – S. Del Broccolo 

 
Figure 69 - 1DWFEM unit cells for HexHex (left) and Hexagonal (right) configurations 

3.2.1.1 Variable shift ratio 

The analysis will be carried out keeping 𝜗 = 30° and 𝑙 = 5𝑚𝑚 constant. As consequence, a 

constant relative density is obtained since 𝐿𝑥 and 𝐿𝑦 do not vary, as shown in Figure 70. The 

shift only happens in the Y direction. In Figure 71 the dispersion plot for all the 

configurations is shown. Apparently, a minimum shift between the two initial hexagonal 

cores produces a bandgap that begins at 7410 Hz and has a bandwidth of 8910 Hz (see shift 

ratio 𝛾 = 0.1). For the latter shift ratio, we also obtain three very narrow bandgaps 

respectively starting at 4120 Hz, 17980 Hz and finally 18370 Hz. 

 
Figure 70 – HexHex unit cells according to the shift ratio variation 

 
Figure 71 - Parametric dispersion curves for HexHex with variable shift ratio (WFEM 1D analysis) 
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It is interesting also to point out how the dispersion curves obtained for the considered shift 

ratios are symmetrical with respect to the 𝛾 = 0.5.  Configurations for 𝛾 = 0 and 𝛾 = 1 

produce therefore the same dispersion curves as their respective unit cells can recreate the 

same structure as one is simply the shifted version of the other. Both unit cells maintain X 

and Y-axis symmetry and are therefore defined as being centrosymmetric. 

3.2.1.2 Variable internal angle 

The variable angle analysis will be carried out keeping 𝛾 and 𝑙 constant and the direct 

consequence is the change of relative density since 𝐿𝑥 and 𝐿𝑦 vary, as shown in Figure 72.  

 
Figure 72 - HEXHEX unit cells according to internal angle variation 

 
Figure 73 - Parametric dispersion curves for HexHex with variable internal angle (WFEM 1D analysis) 

The selected configuration to perform a variable angle analysis was the 𝛾 = 0.1 as it 

possessed the wider bandgap (8910 Hz) at lower frequencies (both aspects are within the 

investigation aim). In Figure 73 the dispersion plots for 𝛾 = 0.1 and variable angle 

configurations is shown. The variation of the internal angle 𝜗 has a minimum effect upon 

the large bandgap which we observed during the shift ratio analysis (its width drops to 8170 

Hz), but it opens two of the minor bandgaps. The one starting at 4120 Hz, enlarges, keeping 
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its left boundary roughly fixed and changing from an initial width of only 345 Hz to a width 

of 2580 Hz. The bandgap appearing at 17980 Hz tends to close as we increase 𝜗, but the 

bandgap starting at 18370 Hz and finishing at 18830 Hz (width of 460 Hz) maintains the 

right boundary fixed and enlarges the left one reaching a width of 950 Hz. 

3.2.2 Interlock WFEM 2D 

The unit cells used for the bidimensional periodicity analysis of the HexHex core as well as 

the ones for the hexagonal and re-entrant cores are shown in Figure 74. The one for the 

hexagonal configuration is different to the one previously considered. The reason behind 

this is that the number of nodes to be computed for the top and bottom boundaries would 

be elevated and would lead to increased simulation time, which is never ideal. As mentioned 

in section 3.2, the interlock unit cells are considered as if the structure was perfectly bonded 

and so, the interlock contact points are not modelled. Both in-plane as well as out-of-plane 

analyses were performed this time, contrary to the 1D periodicity case, and a total of 20 

eigenvalues computed for all configurations. 

 
Figure 74 - 2DWFEM unit cells for HEXHEX (left) and HEXAGONAL (middle) and RE-ENTRANT (right) configurations 

3.2.2.1  HexHex WFEM 2D 

In Figure 75 (top-left and top-right) the 2D dispersion relation (Brillouin’s contour) of a 

regular hexagonal lattice with 𝜗 = 30° and 𝑙 = 5𝑚𝑚. Both in-plane and out-of-plane 

hexagonal configurations do not show presence of full bandgaps for the frequency range 

considered in this analysis. When we vary the internal angle though shifting from a 

hexagonal to a re-entrant lattice, bandgaps in the out-of-plane analysis appear, as shown in 

Figure 75 (bottom-right). The respective bandgap widths starting from lower frequencies 

are: 5464 Hz (∆f f𝑚𝑖𝑑⁄ = 0.653) and 7899 Hz (∆f f𝑚𝑖𝑑⁄ = 0.222). Another visible aspect is 

that the frequency range of the 20 plotted eigenvalues changed between the configurations. 

This is probably linked with the increase in mass of the structure, since to maintain the unit 

cell overall occupancy fixed while keeping the beam element cross section constant, the re-

entrant configuration possesses a higher effective volume. 
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Figure 75 - 2DWFEM dispersion curves for Hexagonal and Re-entrant configuration (In-plane and out-of-plane) 

Figure 76 shows respectively the 2D dispersion relation in-plane and out-of-plane for the 

initial HexHex lattice with 𝜗 = 30° , 𝛾 = 0.5 and 𝑙 = 5𝑚𝑚. The in-plane configuration does 

not show presence of full bandgaps for that frequency range, just like the hexagonal case. 

The out-of-plane configuration instead does, and its bandwidth is 1072 Hz (∆f f𝑚𝑖𝑑⁄ =

0.026). Clearly this is very narrow and cannot be considered relevant, but it is a sign that 

the resultant cells such as the irregular hexagon, rhombus, and parallelogram, introduce a 

level of impedance mismatch which opens the bandgap. 

Keeping in mind the initial objective, parameters 𝜗  and 𝛾  were varied within the range 

listed in Table 7 and the following results were obtained, listed in Figure 77. The variation 

of those parameters affected the dynamic behaviour by producing filtering properties, and 

in some cases enlarged pre-existing bandgaps. 

Figure 77 shows the configurations which exhibited the larger bandgaps. The widest in-

plane full bandgap was obtained for 𝜗 = 35°  and 𝛾 = 0.2 (left) with a value of 2179 Hz 

(∆f f𝑚𝑖𝑑⁄ = 0.063), whilst out of plane, for 𝜗 = 65°  and 𝛾 = 0.5 (Figure 77, right) with a 

value of 2611 Hz (∆f f𝑚𝑖𝑑⁄ = 0.064). 



Interlocked sandwich panel cores 

76   Doctoral Thesis – S. Del Broccolo 

 
Figure 76 - 2DWFEM HEXHEX initial configuration dispersion curves (γ= 0.5; ϑ = 30°) in-plane and out-of-plane 

 

 
Figure 77 - 2DWFEM HEXHEX dispersion curves. In-plane and out-of-plane best performance obtained 

3.2.2.2  MixHex WFEM 2D 

The second interlocked geometry studied was the one where a hexagonal core and a re-

entrant core were pressed locked together. This configuration has been named MIXHEX. As 

done for the previous configuration, the in-plane and out of plane behaviours were explored 

and the results presented and compared with the parent topologies.  

 
Figure 78 - MIXHEX topology (left) and unit cell's parameters (right) 



Interlocked sandwich panel cores 

Doctoral Thesis – S. Del Broccolo  77 

The analysis was only performed for 2D periodicity. Contrary to the HEXHEX topology, here 

the cores cannot be shifted up to 𝛾 = 0.5 because due to the nature of the unit cell, walls 

would overlap, which is not possible. 

 
Figure 79 - MIXHEX in plane and out of plane best configurations varying the shift ratio (left) and internal angle (right) 

Shifting the core vertically and varying the internal angle had an impact in both in plane and 

out of plane wave propagation.  

In Figure 79 (left) for a combination of 𝜗 = 50°  and 𝛾 = 0.22  a full in plane bandgap was 

obtained, although very narrow and equal to 981 Hz (∆f f⁄ = 0.03). The out of plane analysis 

for 𝜗 = 70°  and 𝛾 = 0.28  reviled instead three full out of plane bandgaps within the 30 kHz 

frequency range. The width starting from the lower frequency bandgap were 1458 Hz 

(∆f f⁄ = 0.153), 2690 Hz (∆f f⁄ = 0.179) and 1834 Hz (∆f f⁄ = 0.094). 

3.2.2.3  AuxAux WFEM 2D 

Finally, the configuration where two re-entrant cores are interlocked was studied. The 

configuration was named AuxAux and the 2DWFEM dispersion curves computed. Just like 

the previous MixHex core, the shift ratio cannot reach the value of 0.5 as the walls would 

compenetrate.  

 
Figure 80 – AuxAux topology (left) and unit cell's parameters (right) 
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In Figure 80 an array of 4x4 cells as well as the unit cell is shown. The in-plane analysis 

produced the widest full bandgap of all interlocked configurations, 2149 Hz (∆f f⁄ = 0.068)  

for 𝜗 = 80° and 𝛾 = 0.32 . The out of plane performance of this interlocked configuration 

possesses instead three wide full bandgaps within the 15 kHz range, as shown in Figure 81. 

The width starting from the lower frequency bandgap were 1136 Hz (∆f f⁄ = 0.252), 4124 

Hz (∆f f⁄ = 0.55)  and 4391 Hz (∆f f⁄ = 0.351). 

 
Figure 81 - AuxAux out of plane out of plane best configurations varying the shift ratio (left) and internal angle (right) 

3.2.3 Conclusion on interlock shift impact 

The variation of the shift ratio 𝛾 and the internal angle 𝜗 had a marked impact on the 

dynamical behaviour of the proposed interlocked gratings. The Timoshenko beam used to 

model the structures allowed to decouple the in plane and out of plane behaviours. The 

hexagonal classic core has poor vibration filtering effect compared to the re-entrant 

configuration. This also reflects on the performance of the interlocked cores which embed 

it. The bandgaps produced by the HexHex configuration in fact, both in plane and out of 

plane are narrow and at relatively higher frequencies than the ones produced by the other 

interlock combinations. The MixHex topology has an improved filtering effect compared to 

the HexHex. Finally, the AuxAux configuration seems to be the one which produces at lower 

frequencies, the higher number of bandgaps which are also found in frequency ranges which 

are relatively close to each other. Compared to the re-entrant out of plane performance, that 

the bandgap density of the AuxAux is higher although the re-entrant still has the widest 

bandgap of all.  
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3.3 DIRECTIONALITY AND ISO-FREQUENCIES 

In some applications, the designer might require panels or structures with partially 

vibration isolated or with increased energy flow zones. This might arise for various reasons 

and amongst them, some of the most interesting ones might be the need of isolating delicate 

electrical components or designing energy harvesting devices. The information which can 

be retrieved from the dispersion curves as mentioned before, is not limited to the presence 

of bandgaps. The dispersion surfaces, if we recall that the phase velocity is 𝑣𝑝 = 𝜔 𝑘⁄ , where 

𝑘 is the wavenumber (or propagation constant) and that 𝜇 = 𝑘𝐿 is the reduced 

wavenumber, are basically a plot of phase constants vs frequency. For this reason, they are 

also called phase constant surfaces and can be used to predict the direction of free 

propagation of elastic waves (energy flow vector) within the 

core[71],[72],[73],[74],[75],[76], since the energy flow vector will lie along the line of 

steepest ascent, but it becomes less graphically intuitive to interpret.  

 
Figure 82 - Iso-frequency and 1st Phase constant surface where 𝜀𝑥 and  𝜀𝑦 are the notation for the propagation constants used 

by Ruzzene et al. [73] 

The computation of the dispersion surfaces can be very time demanding because in order 

to obtain detailed images, the discretization of the propagation constants 𝜇𝑥 and 𝜇𝑦 must be 

very fine and therefore, the combinations to be considered are numerous. The matter 

becomes less relevant if the computation is confined to the irreducible Brillion zone which 

depends on the unit cell geometrical symmetries. A centre-symmetric unit cell allows in fact 

to limit the computation for values of 𝜇 ∈ [0; 𝜋], as shown in Figure 82. Instead of computing 

all the values for the dispersion surface, another method to retrieve directional information 

is with the iso frequency plots, which again make use of the2DWFEM technique. They are 

the contours created by slicing the dispersion surfaces at a given frequencies. The direction 

of propagation can be graphically derived because the group velocity 𝑣𝑔 is equal to the 

normal to the tangent of the contour at any point. This is computationally much more 

efficient than computing the dispersion surfaces. The iso-frequency plots for the first phase 
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constant surface of various configurations were produced and can be seen from Figure 83 

to Figure 88. The mode which has the highest amount of energy is the out of plane bending 

mode and for this reason, the investigation was performed focusing the attention on the 1st 

phase constant surface and respective iso-frequency plot. The comparison between the 

different configurations was carried out at an arbitrary frequency of 4000 Hz because from 

the results, some topologies showed clear directional propagation preference for this type 

of wave at the selected frequency (and higher). 

 
Figure 83  - Hexagonal 1st constant phase surface (bending) and iso-frequency contour. 

 
Figure 84 - Re-entrant 1st constant phase surface (bending) and iso-frequency contour. 

 
Figure 85 - AuxHex 1st constant phase surface (bending) and iso-frequency contour. 
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Figure 86 - HexHex 1st constant phase surface (bending) and iso-frequency contour. 

 
Figure 87 - AuxAux 1st constant phase surface (bending) and iso-frequency contour. 

 
Figure 88 - MixHex 1st constant phase surface (bending) and iso-frequency contour 

The ones which show “open” contours at this frequency are the re-entrant and the AuxHex. 

Furthermore, the AuxHex seems to be the one with the most accentuated directionality 

amongst them all as no closed contour is shown already at 2000 Hz, contrary to the 

competitors. 
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3.4 FULL SCALE CELLULAR CORE 

The results obtained through the 2DWFEM, are now compared with a full-scale core grids, 

undergoing an out-of-plane sinusoidal external solicitation. The transient analysis was 

performed on a finite structure made of 12 unit cells in the X direction and 16 in the Y 

direction. This beam grid was modelled with ANSYS BEAM 4 elements neglecting damping 

effects and allowing only out of plane displacements and rotations (3 DOF’s). The excitation 

was set at 4000 Hz in search of correspondence with the iso-frequency predictions. In fact, 

only few configurations did not produce a closed contour at this frequency. For the interlock 

configurations, different shift ratios 𝛾 were also considered to see the effect of such 

parameter on the directional behaviour. As a reminder, the shift ratio does not vary the 

relative density of the panel and therefore it can be considered a geometrical impact 

parameter. Figure 89 to Figure 92 are the visual representation of the propagating waves 

within the core grid. The sinusoidal force was applied at the centre of the structure and the 

grid boundaries were fixed. The plotted results were all taken before the wave fronts 

reached the borders so to avoid reflection and consequent interaction with the propagating 

wave, since the main objective here was to validate the directionality characteristics of each 

configuration shown by the faster propagation prediction tool constituted by the 

isofrequency contours. 

It appears that the AuxHex and the AuxAux (the latter with smallest analysed shift ratio γ =

0.1) inherit the directionality from the re-entrant cell. This is coherent with a visual analysis 

done on the structure since the hybrid pattern AuxHex contains re-entrant cells and the 

AuxAux with γ = 0.1 resembles a double-walled re-entrant configuration. Furthermore, as 

we increase the shift ratio for this configuration, we tend to lose the directional effect while 

the HexHex instead, seems to gain some wave propagation preference path due to the full 

structure internal reflection, which occurs at this frequency. There is good agreement 

between the FEM finite structure transient analysis and the infinite structure approach iso-

frequency plots in terms of degree of directionality and an analytical prediction can be made 

according to the work by F. Scarpa and M. Ruzzene [73]. Since the reasoning here is pursued 

in terms of direction of energy flow, the isofrequency contours could be used as a prediction 

tool, in case of periodic grid or panel design with embedded vibration damping solutions 

like resonators or viscoelastic patches. This would allow the designer to optimise the spatial 

distribution of such add-ons and therefore reduce the number of features to be included, 

saving weight, and reducing costs, as their amount would be minimised. 
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Figure 89 - Directionality out of plane wave propagation for the Hexagonal, AuxHex and Re-entrant configurations 

 

 
Figure 90 - Propagation of a monochromatic wave set at 4000 Hz for the HexHex cellular grid as the shift ratio is varied from 

𝛾 = 0.1 to 𝛾 = 0.5.  
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Figure 91 - Propagation of a monochromatic wave set at 4000 Hz for the MixHex cellular grid as the shift ratio is varied from 

𝛾 = 0.1 to 𝛾 = 0.4. The shift ratio is limited to 0.4 to avoid structures compenetrating. 

 

 
Figure 92 - Propagation of a monochromatic wave set at 4000 Hz for the AuxAux cellular grid as the shift ratio is varied from 

𝛾 = 0.1 to 𝛾 = 0.4. The shift ratio is limited to 0.4 to avoid structures compenetrating. 
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3.5 FINITE PERIODIC STRUCTURE EXAMPLE 

A finite structure example using hexagonal and re-entrant unit cells was performed to see 

whether iso-frequencies could be used as a fast prediction tool to produce tailored hybrid 

cell core assemblies with vibration isolated portions. This was modelled using ANSYS 

BEAM4 elements and allowing only out of plane nodal displacements and rotations (3 

DOF’s). The dimension of the unit cell (refer to Figure 40 and Figure 46 for the hexagonal 

and re-entrant unit cell respectively) were set to 𝑙 = 5𝑚𝑚 and the squared cross section of 

the beam had a side of 0.4 𝑚𝑚 while 𝜗 = 30°. The border of the panel was fixed while the 

element size was dimensioned according to equation (1.2.4). 

 
Figure 93 - Re-entrant WFEM 2D dispersion curves out of plane (left), iso-frequency (middle), analysed structure (right) 

The analysis captured frames of the propagating waves (out of plane solicitation) and the 

results were displayed trough 2D nodal plot of the grid, where nodes were removed if 

displaced by the propagating wave. From the dispersion curves iso-frequency plot of the 

hexagonal configuration it seemed that the wave could propagate in both directions, X and 

Y while the re-entrant tends to block one of them, depending upon the orientation of the 

cell. In Figure 94 the structure excited at different frequencies is proposed. The material 

properties were the same used when performed the extended iso-frequency investigation 

on the various topologies. The new iso-frequency plot and the dispersion curves for the re-

entrant cell are shown in Figure 93 and are to be taken as reference to interpret the resulting 

displaced structure (shown in Figure 94) firstly excited at 2000 Hz (frames (a) to (d)) and 

then at 8000 Hz (frames (e) to (h)). At 2000 Hz, both the hexagonal and re-entrant cells do 

not have full out of plane bandgaps. The absence of full out of plane bandgaps for a 

hexagonal core within this frequency range was discussed in section 3.2.2.1. For this reason, 

although the re-entrant cell possesses a partial bending bandgap in the 𝑥- direction 

(quadrant OA in Figure 93) waves can still propagate in the 𝑦-direction (quadrant CO in 

Figure 93). This is visible in Figure 94 (left) where the wave propagates within the finite 
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structure (FEM) in all directions with almost the same energy. On the right instead, the 

structure excited at a frequency which falls within the re-entrant cell full bandgap, shows a 

directional vibration filtering effect. It is worth to depict the radial propagation behaviour 

that the structure re-obtains as soon as the wave reaches the hexagonal grid (no bandgap). 

 
Figure 94 - Out of plane transverse wave propagation in a hexagonal and re-entrant assembled grid nodal displacement at 2000 

Hz (left) and 8000 Hz (right). Displaced nodes are removed from the undeformed structure, which is shown in Figure 93. 
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3.6 NOVEL RE-ENTRANT CELL 

This cellular core was derived from the classic re-entrant configuration, which exhibited 

directional wave propagation characteristics [54],[71],[72],[73],[75] when exposed to out 

of plane solicitation and was therefore inspired by the work carried out in this chapter. 

Although this is an interesting feature, it is limited to the out of plane bending waves. The 

aim was to use the information gathered so far to produce a cellular core possessing full 

Bragg bandgaps. The Directionality and hierarchy concepts [77] in this case were used as a 

tool to create a full in-plane bandgap by placing “child” re-entrant cells of smaller size and 

different orientation onto the main frame constituted from “parent” re-entrant cells. The 

starting configuration is therefore the classical re-entrant cell and as we increased the size 

of the “child” cell (𝑒), the cell’s wall thickness was reduced to maintain the core’s 

encumbrance and mass constant, as shown in Figure 95. The overall cell encumbrance was 

20mm*12.125mm*15mm. 

 
Figure 95 - Re-entrant unit cell (left), Optimised cell evolution (middle), Optimised unit cell (right) 

The 2D in-plane periodicity dynamic analysis was carried out adopting the inverse WFEM 

formulation and the full set of numerical tools developed and presented in the appendix. 

The model parameters used for the simulation are listed in Table 8. Initially, the dispersion 

curve for the classic re-entrant configuration was produced and then the geometrical 

optimization was carried out. 

MODEL DETAILS MATERIAL PROPERTIES (MDF) 

Element Type SHELL 181 Young’s Modulus 4.20 𝐺𝑃𝑎 

Element Size 1.00 mm Density 818𝑘𝑔 𝑚3⁄  

Element thickness 0.30 - 0.19 mm Poisson’s Ratio 0.33 

Table 8 - Model and material details 

The unit cell for the re-entrant core was modelled using ANSYS SHELL 181 elements, and it 

is shown in Figure 96 as well as the dispersion curves for the frequency range 0-10 kHz. 

SHELL 181 elements are suitable for analysing thin to moderately-thick shell structures. It 
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is a four-node element with six degrees of freedom at each node. This geometry clearly 

shows some partial bandgaps across the XY plane direction for all types of waves traveling 

the media (AB & BC in the k-space). The steepest branch starting from zero in both, 

quadrants O-A and C-O are compression modes in the 𝑥- and 𝑦-in-plane directions which 

translates into no compression full bandgap within this frequency range. Directional (𝑥- 

axis) in-plane and out of plane bending bandgaps are present because if we remove the 

compression branch, we notice two bandgaps: [4743 Hz – 7854 Hz] and [9083 Hz – 9154 

Hz] both highlighted in quadrant O-A.  

 
Figure 96 - Re-entrant unit cell and dispersion curves 

The parametric investigation conducted produced configurations possessing a full Bragg 

bandgap which reached its maximum width when the aspect ratio reached 𝑒 𝑙⁄ = 0.465. 

This is a valid improvement of the dynamic behaviour of the “parent” cellular core.  

 
Figure 97 - Bandgap evolution during geometrical parametric investigation. 

 (fc = central frequency; fi = initial frequency; ff = final frequency) 
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The normalisation is carried out by dividing the bandgaps width by its central (c), initial (i) 

and final frequency (f). The overall full bandgap evolution can be observed in Figure 97 as 

parameter e is increased to its maximum admissible value (𝑙=constant), dictated by 

isovolumetric and mass restrictions. The novel auxetic unit cell is shown in Figure 98 as well 

as the dispersion curves for the frequency range 0-10 kHz.  A full bandgap of noticeable 

width (1.1 kHz) between 4.9 kHz and 6.0 kHz can be seen. 

 
Figure 98 – Re-entrant modified unit cell and dispersion curves 

The geometrical complexity and the thinner walls are probably the cause of the increased  

modal density visible from the dispersion curves in Figure 98. Although the out of plane 

compression buckling load is maintained, the overall bending in-plane and out of plane 

stiffness must be lower. The buckling assumption is made following a similar procedure to 

the one proposed by Gibson and Ashby [69], where all walls constituting the unit cell buckle 

simultaneously. This study is a good example of how the information acquirable using the 

fast wave propagation tools WFEM-derived, can be used to conceive novel structures with 

desirable mechanical vibration isolation properties maintaining the static out of plane 

constraints which might be set up front. 
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CHAPTER 4 

TRANSMISSIBILITY OF INTERLOCKED 
NATURAL FIBRE CORES 

4.1 INTRODUCTION 

For a single degree of freedom system, Transmissibility, 𝕋, is calculated as the ratio between 

the measured output quantity over the input, as introduced in section 1.3.2. The quantities 

that can be used for the calculation, and therefore measured, are force, displacement, 

velocity, or acceleration. A typical transmissibility graph is shown in Figure 17, where two 

sections can be depicted and those refer to amplification and isolation frequency ranges. On 

the graph the frequencies have been normalised with the 1st natural frequency of the system 

𝜔𝑛 and multiple curves for various damping ratios are proposed. Here, the out of plane 

transmissibility of sandwich panels was investigated to show the vibration damping 

potential conferred to these notarial stiff structures by the novel kirigami interlock 

manufacturing technique. The interlocked core configuration chosen was the HexHex as the 

hexagonal kirigami honeycomb was the easiest to assemble. The calculation of the 

mechanical loss factor, 𝜂 and the damping, 𝜉 will be carried out using the well-known half 

power bandwidth method[78],[79]. 

4.2 MANUFACTURING 

The materials chosen for the manufacturing of the samples were both flax fibres-based 

prepregs and they were the Evopreg PFC polyfurfuryl alcohol (PFA) thermoset resin and 

the Biotex Flax polypropylene (PP) thermoplastic 400 g/m2 2x2 Twill. Both prepregs were 

in twill weave but due to the different nature of the matrix, the manufacturing process 

differed under certain aspects. Mostly, the PFA prepreg was new to the community and 

therefore no datasheet with thermal cycles were given by the manufacturer, reason a whole 

characterisation campaign had to be carried out. The ASTM report of the latter is given in 

the Appendix. The characterisation was all carried out at the Advanced Composites Centre 

(ACCIS, University of Bristol) as well as the sample manufacturing. The prepreg was 

subjected to tensile tests following standard ASTM D3039/D3039M which allowed us also 
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to calculate the shear modulus using D3518/D3518M. This was possible because the tensile 

test samples were manufactured with weaves oriented ±45˚ and 0/90˚. The tested material 

properties, which were used for the numerical simulations are shown in Table 9. 

Property Mean value, �̅� [GPa] Standard Deviation, 𝒔 

Elastic modulus ±45˚ 4.771 0.004 [GPa] 

Poisson’s Ratio 0.323 0.020 

Shear Modulus 0.957 0.0656 [GPa] 

Table 9 - Material properties for Flax/PFA natural fibre 

The characterisation followed two consolidation techniques and those were carried out 

using a hot press and the autoclave. Laminates manufactured with the PFA resin were 

particularly challenging since once the resin reached the fluid state, spilling occurred. 

 
Figure 99 – (a) Hot press double cork multilayer frame, (b) resin pushing away lower cork layer, (c) cork deformation at the end 

of the curing process. 

This was happening at the early stages of manufacturing, when a cork frame was applied 

around the preform and onto the tool plate (Figure 99 and Figure 100 (a)). The pressure 

was the main parameter to control to avoid leakages and guarantee laminate density.  

 
Figure 100 – (a) Hot press resin leak with cork frame, (b) custom made aluminium frame, (c) Layup with aluminium frame, (d) 

Hot press outline. 
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For this reason, the cork frame was abandoned, and a custom made aluminium frame 

(Figure 100(b),(c)) with silicon patches, manufactured. 

The use of the autoclave instead presented less problems since during this process, pressure 

is not only applied from the top, as it happened with the hot press, and therefore the cork 

received distributed pressure around the edges as well. This avoided the resin, in liquid 

form, from pushing the cork sideways. Indeed, other problems were arising as anyways a 

datasheet was not provided and processes like these are anyways dependant from the 

hardware quality and layup knowledge as well as experience. In Figure 101 the layup 

procedure carried out in the clean room is shown: 

 
Figure 101 - Autoclave lay-up process for flax/PFA prepreg laminates: (a) Release film and cork frame, (b) prepreg layup, (c) 

caul plate, (d) breather, (e) valve breather, (f) tacky tape frame, (g) valves, (h) vacuum bag, (i) completed layup and vacuum 

pump in action. 

Overall, the two techniques had some advantages and disadvantages, listed in Table 10 but 

the samples produced with the autoclave were generally of better quality in terms of 

performance repeatability and density. The interlock samples were produced using the hot 

press since the process was much faster and the elastic moduli for the ±45˚ laminates were 

comparable and the laminate skins were produced with the autoclave. 

AUTOCLAVE HOT PRESS 
Advantages 

+ Better quality laminates (higher density) + Shorter production cycles 

+ Larger laminates manufacturable + Cheaper than autoclave 

Disadvantages 
- Long production cycles - Low consolidation 

- Expensive - Temperature fluctuations 

Table 10-Advantages and disadvantages of bio-based long fibre composite laminate manufacturing techniques 
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Figure 102 - tensile tests with and without video gauge, sample cross section and samples with dot pattern 

For the core manufacturing, another problem rose which was the slight twist that the single 

layer of prepreg was undergoing once cured or thermoformed. This was probably caused 

by the twill weave and the non-homogeneous distribution of the fibers in the prepreg. 

Natural fibers are known to be complicated to weave and to control in thickness. A remedy 

to this was to cut the prepregs along the ±45˚ optics to obtain a slight bending rather than 

the twist. This was preferred since the bending happens parallel to the kirigami slits and 

therefore the effect compensated once folded. The interlock cutting pattern was performed 

for both after the consolidation process and the samples assembled with epoxy bio-derived 

resin. In Figure 104 different interlock sample configurations assembled with cores of same 

flax fibre composite prepreg as well as “hybrid material” ones  are shown, together with 

some manufacturing/assembly steps. 

 
Figure 103 - Kirigami Flax/PFA manufacturing: (a) prepreg mold fitting, (b) prepreg ready for the hot press cycle, (c) cured 

corrugated sheet, (d) laser cut corrugated sheet, (e) corrugated sheet folding prior to adhesive application, (f) final honeycomb. 
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The assembly can happen in two different ways: the cores can be initially interlocked 

together as a first step and then the skins glued to it, or and the skins can be glued separately, 

one on each sample and then the semi-panels interlocked. In the second case, the sandwich 

panel is only kept together with the aid of friction, while in the second case, friction would 

still happen inside the core interlocked surfaces, but the structure would be connected from 

one side to the other. 

 
Figure 104 - (a) Interlock manufactured samples, (b) Laser cut corrugated sheet, (c) and (d) interlocked cores 

4.3 NUMERICAL SIMULATIONS 

The aim of this numerical simulation is to understand the frequency range which would 

include the first out of pane transmissibility peak of the interlocked sandwich panels and to 

achieve this, the model was created using ANSYS SHELL 181 elements for a total of 29345 

elements. The script, also based on a combination of Matlab and ANSYS commands, just like 

the one written for the directionality simulations in section 3.3, was written so that 

parameters like the wall thickness, height, size and material of each core could be controlled 

as well as the skins. The materials were modelled as isotropic. Furthermore, the unit cell 

was designed to simulate the interlock sample dimensions cutting pattern; at this stage, the 

intersections between the cores was not modelled for friction and the way ANSYS deals with 

this, is assuming perfect gluing, merging nodes and assigning average material properties. 

This was done to recreate the multi-material periodicity. The test procedure is described in 

section 4.4. Thee numerical simulations were performed to understand which one was the 

frequency range where the first peak of transmissibility occurred for each of the 

configurations shown in Figure 106. The constituent material damping was set at a value of 

4% with the assumption that the two cores were perfectly glued. Two added masses of 100g 
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and 222g were available and therefore simulations were performed to see which one was 

more adequate to use for the experimental procedure which was carried out following the 

one suggested by Jones [78]. 

 
Figure 105 – (a)  HexHex (3x4) sandwich panel in hybrid material configuration, (b) HexHex bare core in hybrid configuration, 

(c) detail of a sandwich panel unit cell, (d) aluminium plate modal analysis. 

 
Figure 106 - Transmissibility numerical simulation for variable interlock core material and variable added mass 
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Furthermore, a modal analysis of the selected aluminium plate was performed to be sure 

that the base support would not deform during the test and therefore appear within the test 

results frequency range. The first mode of the base plate, shown in Figure 105 (d), was found 

to be 6975 Hz. From the results shown in Figure 106 the heavier mass was chosen to 

proceed with the experimental campaign since the effect was to shift the transmissibility 

peak to lower frequencies and therefore further away from the first mode frequency of the 

base. 

4.4 TESTING 

The test was performed following [78] and the setup shown in Figure 107. The mass applied 

on the top weighted 222g and the input white noise signal generated with the aid of a 

MATLAB script and fed to the shaker. The unbonded interlocked cores are kept together 

only through the contact friction between them and so the test was performed with 3 

different amplitudes to evaluate if such parameter would have any effect on the results. The 

initiation of a dynamic friction contact would be a supplementary source of energy leakage 

and would increase the damping of the system. The results for the three tested 

configurations which were the PFA/PFA, PFA/PP and PP/PP interlocked cores were 

postprocessed for a frequency range up to 5000 Hz and are shown in Figure 108, Figure 109 

and Figure 110. 

 

• NI cDAQ 9234  

• NI cDAQ 

• Amplifier 

• Accelerometers 

• Shaker  

• Aluminium plate (78 mm x 83.5 mm x 

12.5 mm)  

• Mass (222 g) 

• Notebook 

• Adhesive wax 

• Cyanoacrylate glue 

Figure 107 - Transmissibility test rig 

The first panel to be tested was the one with both cores in flax/polypropylene (PP/PP) 

which had flax/polyfurfuryl laminate skins Figure 104(a). From the graph in Figure 108 we 
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denote that the highest peak was actually obtained with the lowest amplitude of excitation. 

This suggests that there was some interaction between the two interlocked cores which we 

remind to be not glued to each other nor to the opposite panel skin. The peak also shifts 

towards the lower frequencies. The same behaviour appears also in the rest of the samples 

tested which were the hybrid configuration (PFA/PP) and the full PFA/PFA panel, both also 

shown in Figure 104 (a). 

 
Figure 108 - Transmissibility for HexHex homogeneous Polypropylene cores 

 
Figure 109 - Transmissibility for HexHex hybrid core (Polypropylene and Polyfulfurfuryl) 
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Figure 110 - Transmissibility for HexHex homogeneous Polyfurfuryl cores 

The hybrid configuration has for every tested amplitude, a repetition of three lower peaks. 

Another feature that distinguishes the behaviour of this configuration with the others is that 

the peak value difference is higher than the rest. In the full flax/PFA sandwich core test, a 

second mode appeared. Since this behaviour was noticed only with this sample, the first 

thing was to unmount and remount the test rig to see whether the mode was belonging to 

the rig or to the specimen. The results remained unchanged and this was attributed to the 

specimen not being perfectly flat, with consequent excitation of bending or torsional modes. 

The interlocked cores are not glued between them and so there is a high chance of 

misalignment during the test. This could be investigated by positioning multiple 

accelerometers on the top skin at opposite angles, or by using a 3D scan vibrometer, and see 

if those unwanted modes are being solicitated. 

The calculation of the mechanical loss factor and the damping of all specimens and 

amplitudes is shown in Table 11. The configuration which produced the highest value of 

damping was the hybrid material core, highlighted in grey. The damping ratio 𝜉 calculated 

on the collected data (three different input amplitudes) denotes an increase as the 

amplitude is increased. Furthermore, the hybrid material interlocked core showed a higher 

𝜉 at every tested input amplitude. The polypropylene homogeneous interlocked core, while 

it has higher 𝜉 at lower amplitudes, it converges towards the performance of the full PFA 

homogeneous interlocked core, as shown in  
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Sample Ampl. 𝒘𝒏 𝒘𝟏 𝒘𝟐 Damping, 𝝃 Loss factor, 𝜼 

PP 0.1 988.125 960.000 1011.875 0.026 0.052 

PP 0.5 973.750 938.000 1000.000 0.032 0.064 

PP 1 954.375 919.000 990.000 0.037 0.074 

PP/PFA 0.1 1077.500 1047.500 1111.250 0.030 0.059 

PP/PFA 0.5 1051.250 1013.000 1084.000 0.034 0.068 

PP/PFA 1 1013.750 973.125 1062.500 0.044 0.088 

PFA 0.1 698.000 680.000 713.750 0.024 0.048 

PFA 0.5 685.000 655.000 698.125 0.031 0.063 

PFA 1 633.125 635.652 683.125 0.037 0.075 

Table 11 - Damping ratio and loss factor 

 
Figure 111 - Damping value obtained for interlocked PP/PP, PFA/PP and PFA/PFA cores at increasing solicitation amplitudes. 



Conclusions and future perspectives 

100   Doctoral Thesis – S. Del Broccolo 

GENERAL CONCLUSIONS 

The objective of this thesis was to investigate the topology effects of kirigami cellular cores 

and their vibroacoustic performance by exploiting the Floquet-Bloch Theory and the Wave 

finite element methodology. The topic is very broad, and the research had to be pursued 

keeping in mind the manufacturing feasibility of the investigated solutions, which led to 

create a new cellular core manufacturing approach, which still respected the kirigami rules. 

Due to the various geometries explored, a full set of tools needed to be developed to produce 

parametric CAD models and perform investigations following the classical “finite” approach 

and the WFEM “infinite” approach. Finally, the out of plane transmissibility of the 

interlocked selected geometry was investigated. 

The kirigami concept and manufacturing technique represents a very appealing tool to 

produce non-conventional cellular structures. Cores with homogeneous and hybrid cells 

made of thermoplastics or long fibre composite materials can be produced and used for 

morphing applications and sandwich panels. The latter is a well-known building component 

and can be found in many industrial engineering fields where light and stiff structures are 

required. The VIPER project and the author produced an intense effort to improve its 

dynamic behaviour since many of its applications are in fields where multiple external 

excitations are transferred from the surroundings to the structure, causing acoustic 

discomfort and shortening its lifespan. For this reason, novel cellular cores (hybrid cell 

configurations produced with the polygonal tool and AuxHex), were analysed and new 

natural fibre composite materials with thermoplastic and bio-derived thermoset resins 

were explored and characterised. The intended outcome was to build structures which 

would also help the community to face the emerging problem which afflicts the composite 

material world, which is the very low recyclability of failed components and machining 

scraps and bypass products. 

The combination of topology investigation and kirigami technique conveyed into the 

Interlock concept, which is a novelty in the field. Thanks to Interlock, the geometrical 

limiting boundaries imposed by the traditional Kirigami were overcome and this led to 

configurations which increased bandgap density and, in some cases, opened previously 

absent full bandgaps. The interlock concept has great potential in terms of energy 

dissipation caused by internal friction. This could be a great improvement, if the goal is to 

obtain vibration isolation. Furthermore, Interlock gives the possibility to detach the 
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assembled core and combine geometries and materials according to the required level of 

absorption and frequency range target. This is something which the author believes being 

attractive for potential industrial applications. In addition to the broadened spectrum of 

core geometries unleashed with Interlock which converges to Bragg bandgap tailoring, this 

technique also allows to create unconventional sandwich panels which constitute a 

prototyping platform for mechanical resonators or foam inserts embedding as well as 

hybrid material cellular cores.  

The perspective that this ITN Joint Doctorate has conferred me, thanks to the many 

networking opportunities it offered, is a view of collaboration and shared effort aimed to 

push research boundaries a little further.  
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FUTURE PERSPECTIVES 

The natural following step of this work would be to pursue the path of investigating the new 

sandwich panel assemblies. 

• Numerical simulations: 

Most of the numerical analyses carried out at early stages of this PhD work were conducted 

using beam elements to model the structures. This had a clear advantage in terms of 

computational time and in understanding the wave types which were propagating through 

the structures, but the model can be updated to elements which best represent the real 

cores. Especially for the transmissibility parameter, the update to solid elements would 

allow to model the contact forces which happen between the interlocked cores. In this way, 

static and dynamic coefficients could be implemented, producing more accurate results. In 

any case, scripts fully coded in sparse form would allow faster predictions. Ideally, a GUI 

interface including all the tools developed for the WFEM and FEM simulations, for classic 

cellular, and interlock geometries, could be produced. This could also be merged with the 

CNC machine cutting pattern Python script based on the kirigami-compatible polygonal cell 

family. 

The Matlab scripts include the possibility to adding skins to the cores and therefore analyse 

a full sandwich panel. A possible task would be to perform a dedicated WFEM campaign to 

analyse the effects of adding the panel skins to the cores in terms of Bragg bandgaps. 

• Manufacturing technique improvement: 

The manufacturing technique has some crucial points where improvement is required. 

Firstly, the process needs to be tailored based on the materials to be used. Thermoplastic 

solutions are easier than thermoset options, mainly because the latter requires a 

consolidation technique with more sensitive variables. The curing process parameters of 

the resin as well as the optimal tooling to avoid leakage does not make thermoset prepregs 

the best candidates for such technique. Thermosets also tend to break during the folding 

process due to the fragile nature of the resin which cracks under bending forces. This has 

been improved by Ruzzene, as shown in a work where he replaced the resin contained in 

the prepreg in the folding areas, chemically, with silicone, to avoid matrix cracking. This 

could of course be used to produce kirigami cores and would improve the geometrical 

accuracy of the final structures. Thermoplastics build internal stresses as they are bent, but 

those can be relaxed with a thermal post process cycle. For this reason, as well as that they 
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do not require the matrix to reach a fluid state (no leakage problem), are why 

thermoplastics are better candidates for kirigami applications. Thermoplastics have also 

the huge advantage in terms of thermoforming time. As they only require undergoing a 

thermal cycle that reaches the glass transition temperature 𝑇𝑔 and in most cases can quickly 

be cooled down (this may depend upon the type of crystallization desired) , they are good 

candidates to be used in combination with a hot press, which has definitely shorter heating 

and cooling ramps compared to an autoclave. Especially since the cooling may happen 

outside the hot press (kept at temperature), the process can be easily automated making it 

industrially appealing. If thermosets must be used, an improvement, since the cellular core 

manufactured samples were produced with the hot press and not the autoclave, is to use 

the latter for the thermal process since it produced better quality laminates.  

As mentioned in the conclusions, Interlock allows to produce hybrid material cellular cores, 

which are not yet spread on the market, and the idea of having a sandwich panel where one 

of the interlocked cores withstands structural loads while the other increases the overall 

dynamic performance, is an attractive concept. 

Furthermore, natural fibre skins could also be perforated with a tailored pattern or undergo 

a surface treatment increasing the engineered features and therefore the meta-sandwich 

panel intrinsic characteristic. 

• Experimental work: 

 During the secondment at the University of Bristol, various natural fibre cores of different 

sizes were manufactured, and those can be used to produce different specimens like larger 

sandwich panels and sandwich beams for further vibroacoustic investigation tests, focussed 

on parameters like the loss factor and structural damping caused by frictional forces.  

A deeper investigation about the transmissibility rig could also be carried out by using laser 

scan vibrometers to map the sample as it undergoes the out of plane solicitation test, to see 

if other modes are being excited other than the one of interest. 
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APPENDIX 

NUMERICAL TOOLS OUTLINE 

Here, an overview of the role of each script used for all the work performed is presented. 

Some of the challenges found are briefly discussed and solutions outlined, with the hope 

that this will be of help to the reader. In Figure 112, a diagram outlining the sequence with 

which the scripts are run, as an extension to the diagram shown in Figure 22 and Figure 23. 

 
Figure 112 – Flow chart sequence for all the scripts produced. This includes numerical simulations carried out using WFEM and 

the classical FEM approach 

Main 

This script is unique to each geometry considered and it includes variables which allows to 

change certain geometrical features parametrically. In some cases, such variables had an 

impact on the topology itself. This is the case of the classic hexagonal/re-entrant 

configurations where the internal angle can be gradually varied to obtain one or the other 

configuration, or the polygonal investigation, where one of the CAD functions provided by 
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ANSYS was exploited allowing to create a full set of different topologies. A set of possible 

inputs contained in the main script which range from the material properties and unit cell 

variables to the mesh and type of analysis are listed in Table 12: 

UNIT CELL 
GEOMETRY 

MATERIAL 
PROPERTIES 

MESH 
ANALYSIS 

TYPE 

Occupancy (𝐿𝑥, 𝐿𝑦, 𝐿𝑧) Young’s Modulus Element type Modal 

Core wall thickness Poisson’s Ratio Element size Harmonic 

Internal angle Density Boundary conditions Transient 

Core height Hysteretic damping   

Table 12 - Variables considered while writing the scripts and types of possible automated simulations 

𝑴 & 𝑲 Extractor 

The modal analysis in ANSYS is one of the most time-efficient computations offered. To 

perform such analysis, ANSYS needs to calculate Mass and Stiffness matrices of the unit cell. 

This script has the purpose to retrieve from an output txt file these matrices in sparse form 

with the nodes being numbered by the software, which for future reference, will be named 

as “Ansys order”. 

Autonode 

This script has the purpose to relief the user from having to know a priori which node refers 

to which boundary. Before, this was a requirement to be able to apply the Floquet-Bloch 

conditions. It retrieves information like the unit cell occupancy (𝐿𝑥, 𝐿𝑦 and  𝐿𝑧) from the 

MAIN SCRIPT and depending on the type of WFEM analysis to be performed (1D or 2D), it 

commands ANSYS to group the nodes according to which unit cell boundary they belong to 

and it prints separate txt files containing associated node number and cartesian 

coordinates. It then creates a new node list (which will be named “User order”) according 

to the boundaries. The User order is then used to rearrange the extracted mass and stiffness 

matrices, which are in “Ansys order”. The boundary combinations that the script is able to 

identify are, for 1D and 2D (refer to Figure 20): 

WFEM 1D WFEM 2D 

L – R L – R – B – T – LB – LT – RB – RT 

B – T L – R– LB – LT – RB – RT 

 B – T – LB – LT – RB – RT 

 L – R – B – T 

 LB – LT – RB – RT 

Table 13 - Possible boundary node combinations considered 
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The outputs of the script are the reordered 𝑀 and 𝐾 which can be now given in input to the 

Floquet Bloch formulation. 

Model order reduction 

This script is used when performing WFEM and is based on the model order reduction 

method proposed by Craig and Bampton in 1968 [64] which fits perfectly with the Floquet-

Bloch formulation since it maintains the physical information contained in the boundary 

nodes of the unit cell [65], and condenses the nodal information belonging to the internal 

nodes. The eigenvalue problem therefore must deal with matrices of much smaller 

dimensions since the number of internal nodes is much higher than the boundary ones, 

reducing computational time whilst maintaining accuracy. The number of reduced internal 

nodes has an impact on the high frequency branch accuracy just like the model’s mesh 

would have. The inputs here are the Mass and Stiffness matrices in “User order” and the 

number of internal nodes that we wish to keep. 

WFEM 1D 

This script is written for both Direct and Indirect formulations and it computes the 

eigenvalue problem according to the direction of propagation the user chooses to analyse 

the unit cell. The eigenvalues are either the reduced wave numbers or the angular 

frequency, according to the formulation chosen. 

WFEM 2D 

This script is written for both Direct and Indirect formulations and it computes the 

eigenvalue problem for wave propagation prediction for structures possessing periodicity 

in 2D. The eigenvalues are either the reduced wave numbers or the angular frequency, 

according to the formulation chosen. There are cases, especially using shell or beam 

elements, where nodes do not. Depending upon the number of nodes considered for the 

model, the number of degrees of freedom might be very high (large matrices) and this might 

cause, especially if using the 2DWFEM Direct form, ill-conditioning of the eigenvalue 

problem solutions and lead to inaccurate results.  

Dispersion curves plotter 

This script is written to plot dispersion curves for 1DWFEM and 2DWFEM. The user can 

choose to plot only propagative components or include in the plot also the evanescent 
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waves (Direct methods). The program is coded to identify partial or full bandgaps and shade 

accordingly those areas in grey. Sometimes, depending on the results and especially in 

2DWFEM contour plots, bandgaps are not always evident and snap tool is required to 

analyse the maximum frequency of one branch and the minimum frequency of the following 

branch. Most of the works and journal papers seen so far had this done as a manual post-

process leading sometimes to poor visual representations. With this script, the bandgaps 

are immediately visible and are accurate as well as elegantly displayed. The bandgap areas 

are stored in a matrix and can be used for validation in combination to the FRF result plots. 

Dispersion surfaces plotter 

This script computes the dispersion surfaces associated to the 2DWFEM analyses 

performed on the unit cell. In fact, by now, we know that in 2D periodic structures, the 

lambda vector which contains contributions from both 𝜇𝑥 and 𝜇𝑦, scans the unit cell in its 

entirety and so the wave propagation in all the in-plane direction is considered. Values for 

𝜇𝑥 and 𝜇𝑦 are varied between [−𝜋 ;  𝜋] and the eigenvalue problem solved. The visual 

representation of the result is a dispersion surface for each eigenvalue computed. 

Depending upon the symmetry of the unit cell, the values of the reduced wavenumbers van 

be restricted to [0 ;  𝜋] since the dispersion surfaces would also be symmetric. 

Iso-frequency 

This MATLAB script has in input a frequency value or an array, and it creates slices of the 

dispersion surfaces parallel to the 𝑥𝑦 plane. The dispersion surfaces have 𝜇𝑥 and 𝜇𝑦 on the 

𝑥- and 𝑦-axes respectively and the frequency on the 𝑧-axis. The visual outcome are iso-

frequency contours and those can belong to a single dispersion surface of interest to the 

user sliced at different frequencies or several dispersion surfaces at a single frequency. The 

iso-frequency script is therefore based on WFEM Direct methods as frequency is given in 

input. 

Directionality 

This MATLAB script is used to visually represent the information that can be retrieved from 

the iso-frequency prediction. This was coded to see out-of-plane bending wave propagation 

in finite core panels. It writes in ANSYS language a code which creates a finite core panel of 

(𝑛 × 𝑚) unit cells and it commands a transient analysis. The transient analysis allows the 

creation of sinusoidal unit displacement (arbitrarily discretized) which is then applied to 
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the nodes in the centre of the panel for an arbitrarily number of cycles. As this type of 

simulation is time dependent, the temporal interval between one position of the displaced 

node and the next must be programmed according to the frequency we want to apply. The 

output is a visual representation of the propagating wave. 

Branch tracker 

Dispersion curves and contours can be difficult to visually distinguish. When we compute 

the eigenvalues, MATLAB does it according to the values of the reduced wave number which 

the user gives in input. But for each value of 𝜇, a finite number of frequency solutions are 

calculated (according on the number of eigenvalues requested). The calculated array though 

will be ordered always from the lowest frequency to the highest, without any means to re-

establish to which eigenvalue each frequency belongs.  

  
Figure 113 - Dispersion curves colour plot according to MATLAB matrix (left), and Group velocity sorting decision criteria 

Another way of presenting the problem is the following: Let us supposedly compute the 

frequencies for the initial value of  𝜇 . The value of the first frequency calculated will be the 

lowest and the one computed for the second eigenvalue might have a higher value. This is 

not true along all the plot because some branches may cross each other. When this happens, 

the value of the frequency calculated for the first eigenvalue is higher in frequency than the 

value computed for the second eigenvalue, but this information gets lost. 

In order to follow a branch in all the contour and therefore give each branch a different 

colour or symbol, the group velocity 𝑣𝑔 can be used as a sorting parameter, as suggested by 

Billon[77]. As mentioned in section 1.4.1.1, the group velocity is represented by the 

steepness of the dispersion curve which is computed for discretized reduced wave numbers. 
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For each value of 𝜇, several solutions (frequency values) will be available according to the 

number of eigenvalues which were computed. Suppose 𝑗 eigenvalues were requested and 𝑖 

was one of the  discretized values of 𝜇: to accomplish the branch tracking, the script 

compares the steepness of one solution (𝜇i ; f1) with every next value plotted (𝜇i+1 ; f1−j) 

where f1−j is each frequency solution from 1 to j.  

The value for which Δ𝑣𝑔j
i  is minimum is selected as the correct value to follow and which 

becomes the reference for the comparison.  

Figure 113 and Figure 114 show the decision process and the sorted curves while Figure 

115 shows the method applied to a set of dispersion curves. 

    
Figure 114- Branch tracking output 

Although this is already of huge help this type of branch tracking has no physical meaning 

because it is just a mathematical exercise which sorts according to steepness. But the ideal 

branch tracking would be sorting the right curve according to the type of propagating wave 

(compression, bending, torsional). A more physical branch tracking is the one based on a 

MAC-derived indicator proposed by Collet[50], which later was applied to the deformed 

shapes of the unit cell by Laude[81], who suggested to exploit the real orthogonality 

properties of the shape. This script, together with each set of eigenvalues, computes the 

associated eigenvectors, which summed to the original position of each node, produces the 

deformed shape. Through a procedure very similar to the one just presented, eigenvectors 

 𝑣𝑔 = 
𝛿𝜔

𝛿𝑘
 Δ𝑣𝑔j

i = 𝑣𝑔j
𝑖+1 − 𝑣𝑔j

i  (I) 
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of (𝜇𝑖 ; f1) are compared to the ones calculated for (𝜇𝑖+1 ; f1−j), and through a MAC criterion, 

the best fitting match is chosen. Clearly, the comparison done with the group velocity deals 

with arrays much smaller than the one used with the MAC criterion since for the latter the 

array dimensions are related to the number of degrees of freedom, while the group velocity 

method deals with arrays with dimensions according to the discretization of  𝜇 and 

requested  eigenvalues in output. 

  
Figure 115 - Dispersion curves with Branch tracking (left) and without (right) 

Deformed shape 

This script calculates the eigenvectors associated to the requested eigenvalues for each 

value of 𝜇. These are then summed to the original shape nodes cartesian coordinates to 

produce a plot of the deformed shape of the unit cell, as if it were part of an infinite panel 

undergoing that solicitation. The script produces different plots:  

• Multi plot 

This script produces a single figure containing the dispersion curves, the 3D original unit 

cell shape (skeleton in dashed lines) and deformed shape (plotted with a degree of 

transparency to allow the vision of the original shape) and the orthogonal projections. This 

can be performed for each value of 𝜇. Also, the user can select whether to plot the deformed 

shape at all frequencies for a single value of 𝜇 or to plot all the intermediate nodal positions 

of the unit cell between deformed and original shape. The deformed shape is coloured 

according to the modulus of the displacement, for which a custom colour-chart was 

produced in RGB values. 



Appendix 

Doctoral Thesis – S. Del Broccolo  111 

• Gif creator 

The figures produced with the Multi Plot script can be used to produce a GIF image to 

visualize a single mode vibration between its undisturbed and maximum displaced 

structure, or to have a quick identification of the wave type associated to each branch, as 

the GIF will be composed of a collection of images at a selected value of 𝜇 for all branches. 

Those visual tools help the user to identify whether the changes in certain physical or 

geometrical parameters affect a certain type of propagating wave. An example of the output 

figure produced for a simple plate unit-cell is shown from Figure 116 to Figure 119. 

 
Figure 116 - Deformed shape script output (in-plane bending) for a simple plate 

 
Figure 117 - Deformed shape script output (out of plane bending) for a simple plate 
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Figure 118 - Deformed shape script output (in-plane compression) for a simple plate 

 
Figure 119 - Deformed shape script output (torsion) for a simple plate 
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FLAX/PFA EVOPREG CHARACTERISATION  

STANDARD: ASTM D3039/D3039M – 17 

DATES: 08/02/2019 – 12/02/2019  

LOCATION: ACCIS - University of Bristol 

OPERATORS: Simone Del Broccolo 

No equipment problems nor anomalies occurred during the test. 

MANUFACTURER: Composites Evolution 

MATERIAL: Evopreg PFC502 (Fire-retardant prepreg with low environmental impact). 

This is a 100% bio composite made of flax fibers and PFA (Polyfurfuryl Alcohol) thermoset 

bio resin matrix. The manufacturer, Composites Evolution, claims that their product, 

Evopreg PFC, is most well suited to markets and applications that have stringent fire 

requirements including mass transport (aeronautical), maritime, offshore and 

infrastructure. They also claim it possesses the following characteristics other than 

mechanical properties which makes it suitable for secondary structure components: 

• Outstanding fire performance 

• Non-toxic and low emissions for improved operator health and safety 

• Low environmental impact 

• Outstanding FST performance - passes FAR 25.853 & ABD0031 (aero), EN 45545 

HL3 (rail) 

• Low toxicity and low VOC emissions 

• Low environmental impact 

• Flexible cure temperature 120-160°C 

• Suitable for vacuum bag/oven, autoclave, and press molding 

• Suitable for bonding to core materials including Nomex honeycomb 

• 21 days out-life at room temperature 

• 6 months storage life at -18°C 

• Available on a wide range of reinforcement fabrics 

Standard techniques including vacuum bagging, autoclaving, and press molding can be used 

to produce components. The prepreg consists of a TWILL 2x2 weave with tow and yarn 

filaments of equal diameters. The prepreg came in two rolls of 1.25m x 20m. The batch codes 

are written below, and the roll reports are found as attachments. 
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➢ CE50015 FF 22T – 705 -1 

➢ CE50015 FF 22T – 705 -2 

FABRICTION OF THE LAMINATES: 

The initial investigation carried out, having no experimental data nor datasheet from the 

manufacturer regarding the Flax/PFA prepreg combination, is the tensile test following the 

ASTM D3039 standard. To perform such procedure, test samples of accurate dimensions 

(250mm x 25mm x 2.5mm) are required. The thickness of the sample is a recommended 

value and it is possible to manufacture thicker samples. The post cure thickness of this 

laminate was also unknown, so the first step consisted in laying up different laminates and 

measure their thickness after the curing cycle. This allowed us to have a better idea of the 

type of layup necessary to produce our samples. The curing cycle on the datasheet provided 

by the prepreg manufacturer (temperature ramps, cooldown, and pressure), might not be 

suitable to our prepreg, as they refer to a glass-fibre/PFA prepreg. 

A total of 6 laminate plates with 300mm x 300mm dimensions and variable thicknesses 

were produced by laying up on two different tool plates, 3 laminates, each one with 1 to 6 

plies of prepreg. This allows us to see first, the final thickness obtained with the autoclave 

in function of the number of plates, and additionally the number of plies to which this curing 

cycle best adapts. The same curing cycle is often not optimal for different thicknesses and 

different heating rates and dwell times are usually required to avoid conspicuous 

exothermic reaction.  

In parallel to the autoclave process, laminates using a HARE hot-press (up to 50t) were also 

manufactured. 

The AUTOCLAVE lay-up sequence is described in the following steps: 

A. Select amount of composite to manufacture depending on the test samples to be 

obtained. 

B. Select the tool plate which would allow them to be manufacture. 

C. Clean the tool plate with acetone. 

D. Apply releasing agent to the tool plate. 

E. Fix release film N1 to the tool plate. 

F. Lay-up the composites prepreg (balanced and symmetric). 

G. Apply cork strips on the laminates contour to prevent resin overflow. 

H. Fix release film N1 covering all the composite and cork. 

I. Apply cowl plate if required. 

J. Cover with one layer of breather. 
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K. Position the suction valve lower parts in opportune positions. 

L. Apply tacky tape on the tool plate contour. 

M. Cover everything with the vacuum bag. 

N. Screw in the suction valves. 

O. Create void and check with the pressure gauge that no leaks are present. 

P. Place in Autoclave 

After those actions, the lay-up is concluded and the tool plate ready to be put into the 

autoclave for composite curing. The laminates were dimensioned to obtain 10 samples for 

tensile testing. 

The HOT-PRESS lay-up sequence is instead the following: 

A. Select amount of composite to manufacture depending on the test samples to be 

obtained. 

B. Select the tool plate which would allow them to be manufacture. 

C. Clean the tool plate with acetone. 

D. Apply releasing agent to the tool plate. 

E. Fix release film N1 to the tool plate. 

F. Apply a cork or metallic frame on the laminate contour to prevent resin 

overflow. 

G. Fix release film N2 over the frame. 

H. Lay-up the composites prepreg (balanced and symmetric). 

I. Fix release film N3 covering all the composite and cork/frame. 

J. Place in the Hot-press  

Phase I showed that flat laminates were only obtainable with 4plys or multiples. For tensile 

tests, both 4 plies and 8 plies laminates were manufactured using both autoclave and hot-

press techniques. 

FABRICATION DETAILS: 

Start date: 16/01/2019 

End date: 05/02/2019 

Cure temperature Minimum cure time 
130°C 1.5 hours 
140°C 45 minutes 
150°C 25 minutes 

Table 14 - Curing temperatures suggested from Composites Evolutions for glass fibre/PFA prepregs 

• Recommended ramp rate 1-3°C/min 
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• Recommended pressure 3.5bar 

There are two types of cure cycles. One is a single ramp up to 140°C with a 45’ dwell time 

and the second one is a ramp up to 80°C (dwell 30’) and a ramp to 140°C with a 45’ dwell 

time. 

PLY ORIENTATION:  

The prepreg has been cut at 0°/90° and ±45°. Stacking of 4 or 8 plies was performed by 

following the basic lay-up theory; this means that plies were stacked in a balanced and 

symmetrical order. 

 

The average thickness of a single ply was 0.6mm and for the cured laminate we obtained: 

• 4 PLIES:  2.2 ± 0.2 mm 

• 8 PLIES: 4.5 ± 0.4 mm 

SPECIMEN DESCRIPTION: 

The specimens had the following dimensions, as required by the standards: 

• 4 PLIES:  250mm x 25mm x 2.2 ± 0.2 mm 

• 8 PLIES: 250mm x 25mm x 4.5 ± 0.4 mm 

SPECIMEN PREPARATION: 

The laminates produced were 300x300mm of 4 and 8 plies, respectively. This allowed us to 

cut out 10 samples per each laminate. The samples were cut using a diamond blade saw. 

The saw blade had a 2mm thickness. Samples were thoroughly cleansed using acetone 

before testing to avoid poor gripping. Emery paper distributed by the company 3M was used 

instead of end tabs as a dummy sample showed no signs of poor gripping (scratches).  

The cured PFA resin has a dark colour so samples were marked and numbered using a white 

paint pen. 

NUMBER OF SPECIMENS: Batches of 10  

SPEED OF TESTING:  2mm/min 
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MACHINE TYPE & CALIBRATION DATE:  

A Shimadzu electronic tensile test machine with a 10kN load cell was used. 

TESTING LABORATORY ENVIRONMENTAL DETAILS: 

Temperature: 22°C 

VIDEO GAUGE: 

Additionally, to the displacement recorded with the Shimadzu for each sample, a video 

gauge was used to measure vertical and horizontal relative displacement of several targets 

drawn on the sample. This allowed to measure effective strains for both, Young’s modulus 

calculation through stress/strain plots as well as Poisson’s ratio. The targets consisted in 

dost drawn with a white paint marker. 

STRESS / STRAIN DATA: 
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STRENGHT, [MPa] 
N°OF 
PLYS 

ORIENTATION 
N°OF 

SAMPLES 
Max Min �̅� 𝒔 𝑪𝑽 

4 (0/90°) 10 41.781 39.432 40.266 0.264 0.655 
8 (0°/90°) 9 42.474 39.392 40.913 0.531 1.298 
4 (± 45°) 8 32.111 29.022 30.656 0.578 1.885 
8 (± 45°) 9 42.671 39.569 40.569 0.206 0.507 

Table 15 – Ultimate strength calculations for all specimen types 

MODULUS, [GPa] 
N°OF 
PLYS 

ORIENTATION 
N°OF 

SAMPLES 
Max Min �̅� 𝒔 𝑪𝑽 

4 (0°/90°) 10 6.740 6.196 6.466 0.009 0.133 
8 (0°/90°) 9 4.938 4.593 4.741 0.056 1.177 
4 (± 45°) 8 5.019 4.540 4.771 0.004 0.085 
8 (± 45°) 9 4.258 3.871 4.067 0.043 1.069 

Table 16 – Elastic modulus calculation for all specimen types 
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POISSON’S RATIO: 

  

 

 

[1],[2],[11],[12],[13],[14],[15],[16],[17],[18],[19],[22],[23],[24],[25],[26],[27],[28],[30],[35

],[37],[38],[39],[49],[50],[53],[54],[55],[56],[57],[64],[65],[67],[69],[70],[71],[72],[73],[74]

,[75],[76],[77],[78],[80],[81],[82],[83],[84],[85],[86],[87],[88],[89],[90],[91],[92],[93],[94],

[95],[96],[97],[98],[99],[100],[101],[102],[103],[104],[105],[106],[107],[108],[109],[110],[

111],[112]



References 

120   Doctoral Thesis – S. Del Broccolo 

REFERENCES 

[1]  Brillouin, L. Wave propagation in periodic structures; electric filters and crystal 

lattices. 1946. 

[2]  Langley, M. The History of Metal Aircraft Construction. The Aeronautical Journal 

1971, 75, 19–30.  

[3]  PEI curved honeycomb. https://www.euroshop-tradefair.com  

[4]  Carbon fiber sandwich panels. https://www.china-composites.net  

[5]  Scott Carpenter inside Hangar S at the White Room Facility at Cape Canaveral, Florida, 

examines the heat shield honeycomb on his Mercury capsule. 

https://www.space.com  

[6]  CuriOdyssey Bee honeycomb.  

[7]  Wikipedia Sandwich panel with honeycomb core and face sheets.  

[8]  Wadley, H. N. G. Multifunctional periodic cellular metals. Philosophical Transactions of 

the Royal Society A: Mathematical, Physical and Engineering Sciences 2006 

[9]  Origami crane. http://www.1000crane.com  

[10]  Papercraft, T. St. Pauls cathedral kirigami artwork.  

[11]  Nojima, T. Origami Modeling of Functional Structures based on Organic Patterns. 

Presentation Manuscript at VIPSI Tokyo 1996 

[12]  Nojima, T. and Saito, K. Development of newly designed ultra-light core structures. 

JSME International Journal, Series A: Solid Mechanics and Material Engineering 2006 

[13]  Neville, R. M. , Monti, A. , Hazra, K. , Scarpa, F. , Remillat, C. , and Farrow, I. R. Transverse 

stiffness and strength of Kirigami zero-ν PEEK honeycombs. Composite Structures 

2014 

[14]  Lira, C. , Scarpa, F. , Tai, Y. H. , and Yates, J. R. Transverse shear modulus of SILICOMB 

cellular structures. Composites Science and Technology 2011 



References 

Doctoral Thesis – S. Del Broccolo  121 

[15]  Del Broccolo, S. , Laurenzi, S. , and Scarpa, F. AUXHEX – A Kirigami inspired zero 

Poisson’s ratio cellular structure. Composite Structures 2017 

[16]  Saito, K. , Agnese, F. , and Scarpa, F. A cellular kirigami morphing wingbox concept. 

Journal of Intelligent Material Systems and Structures 2011 

[17]  Neville, R. M., Pirrera, A., and Scarpa, F. In Open shape morphing honeycombs through 

kirigami, 2014. 

[18]  Saito, K. , Pellegrino, S. , and Nojima, T. Manufacture of arbitrary cross-section 

composite honeycomb cores based on origami techniques. Journal of Mechanical 

Design, Transactions of the ASME 2014 

[19]  Zhang, X.-C. , Scarpa, F. , McHale, R. , Limmack, A. P. , and Peng, H.-X. Carbon nano-ink 

coated open cell polyurethane foam with micro-architectured multilayer skeleton for 

damping applications. RSC Advances 2016, 6, 80334–80341.  

[20]  Neville, R. M. . and Scarpa, F. In Design of Shape Morphing Cellular Structures and their 

Actuation Methods, Kobe, Japan, 2015. 

[21]  Systems, P. CNC Cutting and trimming.  

[22]  Scarpa, F. , Ouisse, M. , Collet, M. , and Saito, K. Kirigami auxetic pyramidal core: 

Mechanical properties and wave propagation analysis in damped lattice. Journal of 

Vibration and Acoustics, Transactions of the ASME 2013 

[23]  Del Broccolo, S., Palumbo, R., Campana, M.-A., Dobah, Y., Scarpa, F., Ouisse, M., and 

Ichchou, M. Kirigami inspired natural fibre cellular structures for future 

vibroacoustics applications. (2017).  

[24]  Ju, J. , Summers, J. D. , Ziegert, J. , and Fadel, G. Design of honeycombs for modulus and 

yield strain in shear. Journal of Engineering Materials and Technology, Transactions of 

the ASME 2012 

[25]  Schattschneider, D. The Plane Symmetry Groups: Their Recognition and Notation. The 

American Mathematical Monthly 1978, 85, 439–450.  

[26]  Veysseyre, R. , Weigel, D. , Phan, T. , and Veysseyre, H. Crystallography in Spaces 

Isomorphism. Advances in Pure Mathematics 2015, 05, 137–149.  



References 

122   Doctoral Thesis – S. Del Broccolo 

[27]  Shyu, T. C. , Damasceno, P. F. , Dodd, P. M. , Lamoureux, A. , Xu, L. , Shlian, M. , Shtein, 

M. , Glotzer, S. C. , and Kotov, N. A. A kirigami approach to engineering elasticity in 

nanocomposites through patterned defects. Nature Materials 2015 

[28]  Blees, M. K. , Barnard, A. W. , Rose, P. A. , Roberts, S. P. , McGill, K. L. , Huang, P. Y. , 

Ruyack, A. R. , Kevek, J. W. , Kobrin, B. , Muller, D. A. , and McEuen, P. L. Graphene 

kirigami. Nature 2015 

[29]  Scarpa, F. In Auxetic and kirigami systems in multiphysics and EMC applications, IEEE: 

2014. 

[30]  Zigoneanu, L. , Popa, B. I. , and Cummer, S. A. Three-dimensional broadband 

omnidirectional acoustic ground cloak. Nature Materials 2014 

[31]  Cai, W. , Chettiar, U. K. , Kildishev, A. V. , and Shalaev, V. M. Optical cloaking with 

metamaterials. Nature Photonics 2007, 1, 224–227.  

[32]  Ergin, T. , Stenger, N. , Brenner, P. , Pendry, J. B. , and Wegener, M. Three-Dimensional 

Invisibility Cloak at Optical Wavelengths. Science 2010, 328, 337–339.  

[33]  Valentine, J. , Li, J. , Zentgraf, T. , Bartal, G. , and Zhang, X. An optical cloak made of 

dielectrics. Nature Materials 2009, 8, 568–571.  

[34]  Schurig, D. , Mock, J. J. , Justice, B. J. , Cummer, S. A. , Pendry, J. B. , Starr, A. F. , and 

Smith, D. R. Metamaterial electromagnetic cloak at microwave frequencies. Science 

2006 

[35]  Chen, J. S. , Sharma, B. , and Sun, C. T. Dynamic behaviour of sandwich structure 

containing spring-mass resonators. Composite Structures 2011 

[36]  Ouisse, M., Billon, K., Sadoulet-Reboul, E., and Collet, M. In Design of smart 

metamaterials for vibration control: extension of Bloch approach to handle finite system 

boundary conditions, Kundu, T. Eds.; SPIE: 2018. 

[37]  He, Z. C. , Xiao, X. , and Li, E. Design for structural vibration suppression in laminate 

acoustic metamaterials. Composites Part B: Engineering 2017 

[38]  SAS, A.O. Noise reduction sandwich panel, notably for aircraft turbojet engine. 

(2001).  

[39]  Bolt, B. A. Earthquakes and Geological Discovery. Scinetific American Library: 1993. 



References 

Doctoral Thesis – S. Del Broccolo  123 

[40]  Lachat, J. C. and Watson, J. O. Effective numerical treatment of boundary integral 

equations: A formulation for three‐dimensional elastostatics. International Journal for 

Numerical Methods in Engineering 1976 

[41]  Bettess, P. Infinite elements. International Journal for Numerical Methods in 

Engineering 1977 

[42]  Zienkiewicz, O. C. , Bando, K. , Bettess, P. , Emson, C. , and Chiam, T. C. Mapped infinite 

elements for exterior wave problems. International Journal for Numerical Methods in 

Engineering 1985 

[43]  Rizzi, S. A. and Doyle, J. F. A Spectral Element Approach to Wave Motion in Layered 

Solids. Journal of Vibration and Acoustics 1992, 114, 569–577.  

[44]  Lyon, R. H. Statistical Energy Analysis of Dynamical Systems. MIT Press: 1975. 

[45]  Langley, R. S. , Smith, J. R. D. , and Fahy, F. J. Statistical energy analysis of periodically 

stiffened damped plate structures. Journal of Sound and Vibration 1997 

[46]  Langley, R. S. A general derivation of the statistical energy analysis equations for 

coupled dynamic systems. Journal of Sound and Vibration 1989 

[47]  Mencik, J. M. and Ichchou, M. N. Multi-mode propagation and diffusion in structures 

through finite elements. European Journal of Mechanics, A/Solids 2005 

[48]  Mencik, J. M. New advances in the forced response computation of periodic structures 

using the wave finite element (WFE) method. Computational Mechanics 2014 

[49]  Mace, B. R. , Duhamel, D. , Brennan, M. J. , and Hinke, L. Finite element prediction of 

wave motion in structural waveguides. The Journal of the Acoustical Society of America 

2005 

[50]  Mead, D. J. Wave propagation in continuous periodic structures: Research 

contributions from Southampton, 1964-1995. Journal of Sound and Vibration 1996 

[51]  Floquet, G. Sur les équations différentielles linéaires à coefficients périodiques. 

Annales scientifiques de l’École normale supérieure 1883 

[52]  Bloch, F. Über die Quantenmechanik der Elektronen in Kristallgittern. Zeitschrift für 

Physik 1929, 52, 555–600.  



References 

124   Doctoral Thesis – S. Del Broccolo 

[53]  Cremer, L.; Heckl, M.; and Petersson, B. A. T. Structure-borne sound: Structural 

vibrations and sound radiation at audio frequencies. 2005. 

[54]  Hussein, M. I. , Leamy, M. J. , and Ruzzene, M. Dynamics of phononic materials and 

structures: Historical origins, recent progress, and future outlook. Applied Mechanics 

Reviews 2014 

[55]  Mace, B. R. and Manconi, E. Modelling wave propagation in two-dimensional 

structures using finite element analysis. Journal of Sound and Vibration 2008 

[56]  Duhamel, D. , Mace, B. R. , and Brennan, M. J. Finite element analysis of the vibrations 

of waveguides and periodic structures. Journal of Sound and Vibration 2006 

[57]  Hoang, T., Duhamel, D., and Foret, G. Wave finite element method for vibration of 

periodic structures subjected to external loads. (2018).  

[58]  Thierry, V. , Brown, L. , and Chronopoulos, D. Multi-scale wave propagation modelling 

for two-dimensional periodic textile composites. Composites Part B: Engineering 2018 

[59]  Ruzzene, M. and Scarpa, F. In Control of wave propagation in sandwich beams with 

auxetic core, 2003. 

[60]  Zhong, W. X. and Williams, F. W. On the direct solution of wave propagation for 

repetitive structures. Journal of Sound and Vibration 1995 

[61]  Nobrega, E. D. , Gautier, F. , Pelat, A. , and Santos, J. M. C. Dos Vibration band gaps for 

elastic metamaterial rods using wave finite element method. Mechanical Systems and 

Signal Processing 2016 

[62]  Maurin, F., Claeys, C., Deckers, E., and Desmet, W. Corrigendum to “Probability that a 

band-gap extremum is located on the irreducible Brillouin-zone contour for the 17 

different plane crystallographic lattices” [International Journal of Solids and 

Structures, 135 (2018) 26–36] (International Journal of So. International Journal of 

Solids and Structures. . (2020).  

[63]  Maurin, F. , Claeys, C. , Deckers, E. , and Desmet, W. Probability that a band-gap 

extremum is located on the irreducible Brillouin-zone contour for the 17 different 

plane crystallographic lattices. International Journal of Solids and Structures 2018 

[64]  Craig, R. R. and Bampton, M. C. C. Coupling of substructures for dynamic analyses. 

AIAA Journal 1968 



References 

Doctoral Thesis – S. Del Broccolo  125 

[65]  Fan, Y. , Zhou, C. W. , Laine, J. P. , Ichchou, M. , and Li, L. Model reduction schemes for 

the wave and finite element method using the free modes of a unit cell. Computers and 

Structures 2018 

[66]  Tian, B. Y. , Tie, B. , Aubry, D. , and Su, X. Y. Elastic wave propagation in periodic cellular 

structures. CMES - Computer Modeling in Engineering and Sciences 2011 

[67]  Project, V.M. VIPER School slides.  

[68]  Hvatov, A. and Sorokin, S. Free vibrations of finite periodic structures in pass- and 

stop-bands of the counterpart infinite waveguides. Journal of Sound and Vibration 

2015 

[69]  Gibson, L. J. and Ashby, M. F. Cellular solids: Structure and properties, second edition. 

2014. 

[70]  Boldrin, L. , Scarpa, F. , and Rajasekaran, R. Thermal conductivities of iso-volume 

centre-symmetric honeycombs. Composite Structures 2014 

[71]  Langley, R. S. The response of two-dimensional periodic structures to point harmonic 

forcing. Journal of Sound and Vibration 1996 

[72]  Langley, R. S. On the modal density and energy flow characteristics of periodic 

structures. Journal of Sound and Vibration 1994 

[73]  Ruzzene, M., Scarpa, F., and Soranna, F. Wave beaming effects in two-dimensional 

cellular structures. Smart Materials and Structures. . (2003).  

[74]  Ruzzene, M. , Mazzarella, L. , Tsopelas, P. , and Scarpa, F. Wave propagation in 

sandwich plates with periodic auxetic core. Journal of Intelligent Material Systems and 

Structures 2002 

[75]  Ruzzene, M. and Scarpa, F. Directional and band-gap behavior of periodic auxetic 

lattices. Physica Status Solidi (B) Basic Research 2005 

[76]  Jeong, S. M. and Ruzzene, M. In Directional and band-gap behavior of periodic grid-like 

structures, 2004. 

[77]  Billon, K. , Zampetakis, I. , Scarpa, F. , Ouisse, M. , Sadoulet-Reboul, E. , Collet, M. , 

Perriman, A. , and Hetherington, A. Mechanics and band gaps in hierarchical auxetic 

rectangular perforated composite metamaterials. Composite Structures 2017 



References 

126   Doctoral Thesis – S. Del Broccolo 

[78]  Jones, D. I. G. Handbook of Viscoelastic Vibration Damping. Wiley: 2001. 

[79]  Irvine, T. The half power bandwidth method for damping calculation. (2005).  

[80]  Collet, M. , Ouisse, M. , Ruzzene, M. , and Ichchou, M. N. Floquet-Bloch decomposition 

for the computation of dispersion of two-dimensional periodic, damped mechanical 

systems. International Journal of Solids and Structures 2011 

[81]  Laude, V. , Escalante, J. M. , and Martínez, A. Effect of loss on the dispersion relation of 

photonic and phononic crystals. Physical Review B - Condensed Matter and Materials 

Physics 2013 

[82]  Neville, R. M. , Scarpa, F. , and Pirrera, A. Shape morphing Kirigami mechanical 

metamaterials. Scientific Reports 2016, 6, 31067.  

[83]  Evolution, C. Evopref PFC502 Provisional data sheet.  

[84]  ASTM International ASTM 3039/D3039M Standard test method for tensile properties 

of polymer matrix composite materials.  

[85]  Phillips, S. , Baets, J. , Lessard, L. , Hubert, P. , and Verpoest, I. Characterization of 

flax/epoxy prepregs before and after cure. Journal of Reinforced Plastics and 

Composites 2013 

[86]  ASTM International ASTM Standard C365/C365M, 2003, ‘Standard Test Method for 

Flatwise Compressive Properties of Sandwich Cores’. Current. , i, 2–4. (2003).  

[87]  Mahmoudi, S. , Kervoelen, A. , Robin, G. , Duigou, L. , Daya, E. M. , and Cadou, J. M. 

Experimental and numerical investigation of the damping of flax–epoxy composite 

plates. Composite Structures 2019 

[88]  Prabhakaran, S., Krishnaraj, V., Senthil Kumar, M., and Zitoune, R. In Sound and 

vibration damping properties of flax fiber reinforced composites, 2014. 

[89]  Huang, G. and Liu, L. Research on properties of thermoplastic composites reinforced 

by flax fabrics. Materials & Design 2008, 29, 1075–1079.  

[90]  Del Broccolo, S., Ouisse, M., Foltete, E., and Scarpa, F. Bandgap investigation of 

hierarchical isovolumetric periodic cores with negative Poisson’s ratio. (2019).  

[91]  Del Broccolo, S., Ouisse, M., Foltete, E., and Scarpa, F. Interlocked hybrid-cell Kirigami 

inspired cellular structures and their vibroacoustic performance. (2018).  



References 

Doctoral Thesis – S. Del Broccolo  127 

[92]  Del Broccolo, S., Ouisse, M. , Foltete, E. , and Scarpa, F. Bandgap capability of hybrid 

Kirigami inspired cellular structures. Advances in Aircraft and Spacecraft Science 

2019, 6, 481–497.  

[93]  Biotex EC-TDS-Biotex Flax/PP Data sheet.  

[94]  Lamoureux, A. , Lee, K. , Shlian, M. , Forrest, S. R. , and Shtein, M. Dynamic kirigami 

structures for integrated solar tracking. Nature Communications 2015 

[95]  Chronopoulos, D. Wave steering effects in anisotropic composite structures: Direct 

calculation of the energy skew angle through a finite element scheme. Ultrasonics 

2017, 73, 43–48.  

[96]  Gonella, S. and Ruzzene, M. Analysis of in-plane wave propagation in hexagonal and 

re-entrant lattices. Journal of Sound and Vibration 2008 

[97]  Droz, C. , Zergoune, Z. , Boukadia, R. , Bareille, O. , and Ichchou, M. N. Vibro-acoustic 

optimisation of sandwich panels using the wave/finite element method. Composite 

Structures 2016 

[98]  Lorato, A. , Innocenti, P. , Scarpa, F. , Alderson, A. , Alderson, K. L. , Zied, K. M. , Ravirala, 

N. , Miller, W. , Smith, C. W. , and Evans, K. E. The transverse elastic properties of chiral 

honeycombs. Composites Science and Technology 2010 

[99]  Zhu, D. , Huang, X. , Hua, H. , and Zheng, H. Vibration isolation characteristics of finite 

periodic tetra-chiral lattice coating filled with internal resonators. Proceedings of the 

Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 

2016 

[100] Boucher, M. A. , Smith, C. W. , Scarpa, F. , Rajasekaran, R. , and Evans, K. E. Effective 

topologies for vibration damping inserts in honeycomb structures. Composite 

Structures 2013 

[101] Greaves, G.N., Greer, A.L., Lakes, R.S., and Rouxel, T. Poisson’s ratio and modern 

materials. Nature Materials. . (2011).  

[102] Huang, J. , Zhang, Q. , Scarpa, F. , Liu, Y. , and Leng, J. In-plane elasticity of a novel auxetic 

honeycomb design. Composites Part B: Engineering 2017 

[103] Collet, M., Ouisse, M., Scarpa, F., and Ichchou, M. In Kirigami pyramidal auxetic active 

core for wave propagation control, 2014. 



References 

128   Doctoral Thesis – S. Del Broccolo 

[104] Rafsanjani, A. , Derome, D. , Guyer, R. A. , and Carmeliet, J. Swelling of cellular solids: 

From conventional to re-entrant honeycombs. Applied Physics Letters 2013 

[105] Lira, C. and Scarpa, F. Transverse shear stiffness of thickness gradient honeycombs. 

Composites Science and Technology 2010 

[106] Yan, L. , Chouw, N. , and Jayaraman, K. Flax fibre and its composites – A review. 

Composites Part B: Engineering 2014, 56, 296–317.  

[107] Boldrin, L. , Hummel, S. , Scarpa, F. , Maio, D. Di , Lira, C. , Ruzzene, M. , Remillat, C. D. 

L. , Lim, T. C. , Rajasekaran, R. , and Patsias, S. Dynamic behaviour of auxetic gradient 

composite hexagonal honeycombs. Composite Structures 2016 

[108] Zuhri, M. Y. M. , Guan, Z. W. , and Cantwell, W. J. The mechanical properties of natural 

fibre based honeycomb core materials. Composites Part B: Engineering 2014, 58, 1–9.  

[109] Ampatzidis, T. and Chronopoulos, D. Mid-frequency band gap performance of 

sandwich composites with unconventional core geometries. Composite Structures 

2019 

[110] Petrone, G. , Rao, S. , Rosa, S. De , Mace, B. R. , Franco, F. , and Bhattacharyya, D. Initial 

experimental investigations on natural fibre reinforced honeycomb core panels. 

Composites Part B: Engineering 2013 

[111] Yan, L. , Chouw, N. , and Jayaraman, K. Flax fibre and its composites - A review. 

Composites Part B: Engineering 2014 

[112]  Scarpa, F. In Auxetic and kirigami systems in multiphysics and EMC applications, 2014. 



Figure list 

Doctoral Thesis – S. Del Broccolo  129 

FIGURE LIST 

Figure 1 -(a) Curved sandwich panel[3] (b); Sandwich panels with various types of cores[4] 

(c); Sandwich panels adopted on the Mercury capsule[5]; (d) Bee honeycomb[6]; 

(e) Sandwich panel structure[7] _____________________________________________________ 2 

Figure 2 - Expansion and corrugation manufacturing processes for hexagonal cell 

honeycomb cores[8] __________________________________________________________________ 3 

Figure 3 - Origami crane[9] (left) and St. Paul’s Cathedral Kirigami artwork[10] (right) __ 4 

Figure 4 – Kirigami assembly sequence of an original recyclable thermoplastic PEEK cellular 

structure - (a) Thermoformed sheet; (b) folding; (c) gluing; (d) complete 

structure; (e) Kirigami full cycle scheme inspired by the one represented in 

Saito’s work[16] ______________________________________________________________________ 5 

Figure 5 - Kirigami morphing PEEK structure[20]; (b) Aramid paper kirigami Wing-box[16]; 

(c) Kirigami variable thickness honeycomb cutting pattern and paper 

demonstrator[18]; (d) Aluminium honeycomb machining[21] ___________________ 6 

Figure 6 - Detail of honeycomb ventilation holes performed as a pre-process thanks to 

kirigami (left) Variable thickness honeycombs and their cutting patterns 

proposed by Nojima, Saito and Pellegrino[18] (right) _____________________________ 6 

Figure 7 - Natural fibre kirigami corrugated sheet and its folding process[23] _____________ 7 

Figure 8 - Kirigami combination outline ________________________________________________________ 8 

Figure 9 – Examples of Kirigami allowed bar cross sections derived from regular and 

irregular polygons ____________________________________________________________________ 9 

Figure 10- Examples of kirigami allowed patterns and mold bar cross-sections: Trapezoidal 

bars in yellow and parallelogram bars in red. _____________________________________ 10 

Figure 11 - Kirigami cuts applied to carbon-nanotube composite sheets with polymeric 

matrix[27]. ___________________________________________________________________________ 11 

Figure 12 - Kirigami micro-springs in paper (left) and graphene (right)[28] ______________ 12 



Figure list 

130   Doctoral Thesis – S. Del Broccolo 

Figure 13 - (a) Sandwich panel with perforated skin; (b) Honeycomb core with Helmholtz 

resonator inserts; (c) Electromagnetic cloaking device[34]; (d) Acoustic 3D cloak 

structure [30] (e) and (g) Sandwich panels with embedded mechanical 

resonators[35]; (f) Plate with array of mechanical resonators and polymeric 

substrate attached[36]. _____________________________________________________________ 13 

Figure 14 - Meta-Sandwich panel outline______________________________________________________ 14 

Figure 15 – Graphical representation of pressure, shear, and bending waves _____________ 15 

Figure 16 - Graphical representation of Rayleigh and Love waves [39] ____________________ 17 

Figure 17 – Representative transmissibility graph and half power bandwidth method ___ 22 

Figure 18 - Chain of unit cells ___________________________________________________________________ 23 

Figure 19 - Periodic structure unit cell and 1D Floquet Bloch periodic relations __________ 26 

Figure 20 - Irreducible Brillouin Zone OABC (left) and representation of a 2D unit cell’s 

boundary nodes (right) _____________________________________________________________ 29 

Figure 21 - representation of a 3D unit cell’s boundary nodes ______________________________ 32 

Figure 22 – Algorithm diagram of the main script used perform WFEM of the examined 

structure. _____________________________________________________________________________ 35 

Figure 23 - Self developed numerical prediction tools outline ______________________________ 37 

Figure 24 - (a) Homogeneous beam; (b) Periodic beam with asymmetric unit cell; (c) 

Periodic beam with symmetric unit cell ___________________________________________ 38 

Figure 25 - Frequency response plot of a homogeneous undamped beam (left) and its 

dispersion curves (right) allowing only longitudinal axial pressure waves. ____ 39 

Figure 26 - Periodic beam undamped FRF's for increasing numbers of cells (left), and for 10 

unit cell (right) allowing only longitudinal axial pressure waves. _______________ 40 

Figure 27 - Parametric FRF's for a periodic beam with variable aspect ratio (asymmetric 

cell), allowing only longitudinal axial pressure waves. ___________________________ 41 

Figure 28 - Parametric FRF's for a periodic beam with variable aspect ratio (symmetric cell), 

allowing only longitudinal axial pressure waves. _________________________________ 41 



Figure list 

Doctoral Thesis – S. Del Broccolo  131 

Figure 29 - Parametric plot of dispersion curves for variable aspect ratio (left), Dispersion 

curves for a single configuration with bandgaps. Both are performed allowing 

only longitudinal axial pressure waves. ____________________________________________ 43 

Figure 30 – FRFs for compression and in-plane bending for a periodic beam considering 

3DOF and neglecting damping (left) and the FRF for the same structure 

considering multiple simultaneous excitations and  3 DOF (right) ______________ 44 

Figure 31 - Dispersion curves for a periodic beam with 3DOF and blocked out of plane 

displacements and rotations ________________________________________________________ 44 

Figure 32 – FRF of the periodic truss structure assembled with 5 asymmetric unit cell 

subjected to axial pressure wave and modelled using various element types. _ 45 

Figure 33 - FRF of the periodic truss structure assembled with 5 asymmetric unit cell using 

SOLID187 tetrahedral 10-node elements, subjected to axial pressure wave. The 

deformed shapes refer to the peaks indicated in the graph. More precisely: (A) 

structural second mode, (B) deformed shape within the bandgap, (C) out of plane 

bending local resonance mode, (D) in plane local resonance mode, (E) Combined 

bending and torsional local resonance mode , (F) torsional local resonance mode.

 ________________________________________________________________________________________ 46 

Figure 34 - 2D (3x3 array) and its unit cell highlighted in the red box for the uniform grating 

(left) and the grating with periodically variable sections 𝐴1and 𝐴2 ____________ 47 

Figure 35 - Dispersion surfaces for the uniform grating (left) and the grating with 

periodically variable sections 𝐴1and 𝐴2 ___________________________________________ 48 

Figure 36 - Dispersion surfaces (XZ view) for the uniform grating (left) and its dispersion 

curves based on its IBZ surface contour (right). No full bandgaps are present as 

for each frequency range, there is either a curve or surface plotted. ____________ 48 

Figure 37 - Dispersion surfaces (XZ view) for the grating with periodically variable sections 

𝐴1and 𝐴2 (left) and its dispersion curves based on its IBZ surface contour. A full 

bandgap appears before the 2.0e5 Hz highlighted in grey in the surface plot, and 

yellow for the dispersion plot. ______________________________________________________ 49 

Figure 38 - Cross unit cell with face skins (left) and unit cell without face skins ___________ 50 



Figure list 

132   Doctoral Thesis – S. Del Broccolo 

Figure 39 – Dispersion surface contours for the bare core (left) and the sandwich cell (right), 

this time with the frequency range fixed at 60 kHz. ______________________________ 50 

Figure 40 – (a) Hexagonal pattern, (b) Hexagonal unit cell for WFEM 1D analysis. ________ 53 

Figure 41 - Dispersion curves for the hexagonal pattern allowing only in-plane 

displacements and rotations. _______________________________________________________ 53 

Figure 42 - In plane FRF for pressure wave (black) and in-plane bending(magenta) for the 

hexagonal pattern. ___________________________________________________________________ 53 

Figure 43- Hexagonal parametric analysis for variable cell wall thickness, t. Dispersion 

curves (left) and FRF's (right). ______________________________________________________ 54 

Figure 44- Hexagonal parametric analysis for variable side length, l: Dispersion curves (left) 

and FRF's (right). ____________________________________________________________________ 54 

Figure 45- Hexagonal parametric analysis for variable internal angle,𝜗. Dispersion curves 

(left) and FRF's (right). ______________________________________________________________ 55 

Figure 46 – Re-entrant pattern (left), Re-entrant unit cell for WFEM 1D analysis. _________ 55 

Figure 47 - Dispersion curves for the re-entrant pattern allowing only in-plane 

displacements and rotations. _______________________________________________________ 56 

Figure 48 - In plane FRF for pressure wave (black) and in-plane bending(magenta) for the 

re-entrant pattern. ___________________________________________________________________ 56 

Figure 49 - AuxHex pattern (left), AuxHex unit cell for WFEM 1D analysis. ________________ 57 

Figure 50 - In plane FRF for pressure wave (black) and in-plane bending(magenta) for the 

AuxHex pattern ______________________________________________________________________ 57 

Figure 51 - Dispersion curves for the AuxHex pattern allowing only in-plane displacements 

and rotations. ________________________________________________________________________ 57 

Figure 52 - Dispersion curves summary for constant relative density core comparison. _ 58 

Figure 53 - AuxHex unit cell assembly from the hexagonal and the re-entrant WFEM 1D unit 

cells ___________________________________________________________________________________ 59 

Figure 54 - Inheritance normalised parametric dispersion curves for the hexagonal (top 

left), the re-entrant (bottom left) and the AuxHex (right). _______________________ 60 



Figure list 

Doctoral Thesis – S. Del Broccolo  133 

Figure 55 – (a) Truss structure composed of 10 hexagonal cells; (b) Truss structure made 

of 10 hexagonal cells followed by 10 re-entrant cells; (c) Truss structure made 

with 10 AuxHex cells. The red arrow is the input force and the grey, blue,  green 

and black are the output readings, colour-matched with the graphs in Figure 56 

and Figure 57. ________________________________________________________________________ 60 

Figure 56 - FRF comparison between a truss structure made of 10 hexagonal unit cells and 

the output 1 from figure 53 _________________________________________________________ 61 

Figure 57 - FRF comparison between the composite truss structure (green) and the AuxHex 

output 2 (black). Localised modes are highlighted with dashed blue line ______ 61 

Figure 58 - AuxHex and composite truss deformed shapes subjected to harmonic force at 

13360 Hz. Both structures clearly show filtering effects. _________________________ 62 

Figure 59 - Polygonal unit cell automated assembly__________________________________________ 63 

Figure 60 - Polygonal cell relative density if the beam section was kept constant _________ 64 

Figure 61 - Isovolumetric in plane and out of plane parametric dispersion curves for WFEM 

1D _____________________________________________________________________________________ 65 

Figure 62 - Self-tessellating patterns not allowed with kirigami ____________________________ 67 

Figure 63 - Kirigami cutting pattern (left), Interlock cutting pattern (right) _______________ 68 

Figure 64 - Folding line detail for two hexagonal cores interlocked_________________________ 68 

Figure 65 - HexHex 3D printed demonstrators _______________________________________________ 69 

Figure 66 - Vertical and Diagonal interlock shifts between hexagonal and re-entrant 

configurations ________________________________________________________________________ 69 

Figure 67 – HexHex topology and unit cell parameters (left), hexagonal topology and unit 

cell (right) ____________________________________________________________________________ 71 

Figure 68 – HexHex variable shift ratio unit cells and topologies ___________________________ 71 

Figure 69 - 1DWFEM unit cells for HexHex (left) and Hexagonal (right) configurations __ 72 

Figure 70 – HexHex unit cells according to the shift ratio variation _________________________ 72 

Figure 71 - Parametric dispersion curves for HexHex with variable shift ratio (WFEM 1D 

analysis) ______________________________________________________________________________ 72 



Figure list 

134   Doctoral Thesis – S. Del Broccolo 

Figure 72 - HEXHEX unit cells according to internal angle variation ________________________ 73 

Figure 73 - Parametric dispersion curves for HexHex with variable internal angle (WFEM 

1D analysis) __________________________________________________________________________ 73 

Figure 74 - 2DWFEM unit cells for HEXHEX (left) and HEXAGONAL (middle) and RE-

ENTRANT (right) configurations ___________________________________________________ 74 

Figure 75 - 2DWFEM dispersion curves for Hexagonal and Re-entrant configuration (In-

plane and out-of-plane) _____________________________________________________________ 75 

Figure 76 - 2DWFEM HEXHEX initial configuration dispersion curves (γ= 0.5; ϑ = 30°) in-

plane and out-of-plane ______________________________________________________________ 76 

Figure 77 - 2DWFEM HEXHEX dispersion curves. In-plane and out-of-plane best 

performance obtained _______________________________________________________________ 76 

Figure 78 - MIXHEX topology (left) and unit cell's parameters (right) ______________________ 76 

Figure 79 - MIXHEX in plane and out of plane best configurations varying the shift ratio (left) 

and internal angle (right) ___________________________________________________________ 77 

Figure 80 – AuxAux topology (left) and unit cell's parameters (right) ______________________ 77 

Figure 81 - AuxAux out of plane out of plane best configurations varying the shift ratio (left) 

and internal angle (right) ___________________________________________________________ 78 

Figure 82 - Iso-frequency and 1st Phase constant surface where 𝜀𝑥 and  𝜀𝑦 are the notation 

for the propagation constants used by Ruzzene et al. [73] _______________________ 79 

Figure 83  - Hexagonal 1st constant phase surface (bending) and iso-frequency contour. 80 

Figure 84 - Re-entrant 1st constant phase surface (bending) and iso-frequency contour. _ 80 

Figure 85 - AuxHex 1st constant phase surface (bending) and iso-frequency contour. ____ 80 

Figure 86 - HexHex 1st constant phase surface (bending) and iso-frequency contour. ____ 81 

Figure 87 - AuxAux 1st constant phase surface (bending) and iso-frequency contour. ____ 81 

Figure 88 - MixHex 1st constant phase surface (bending) and iso-frequency contour ____ 81 

Figure 89 - Directionality out of plane wave propagation for the Hexagonal, AuxHex and Re-

entrant configurations ______________________________________________________________ 83 



Figure list 

Doctoral Thesis – S. Del Broccolo  135 

Figure 90 - Propagation of a monochromatic wave set at 4000 Hz for the HexHex cellular 

grid as the shift ratio is varied from 𝛾 = 0.1 to 𝛾 = 0.5. __________________________ 83 

Figure 91 - Propagation of a monochromatic wave set at 4000 Hz for the MixHex cellular 

grid as the shift ratio is varied from 𝛾 = 0.1 to 𝛾 = 0.4. The shift ratio is limited to 

0.4 to avoid structures compenetrating. ___________________________________________ 84 

Figure 92 - Propagation of a monochromatic wave set at 4000 Hz for the AuxAux cellular 

grid as the shift ratio is varied from 𝛾 = 0.1 to 𝛾 = 0.4. The shift ratio is limited to 

0.4 to avoid structures compenetrating. ___________________________________________ 84 

Figure 93 - Re-entrant WFEM 2D dispersion curves out of plane (left), iso-frequency 

(middle), analysed structure (right) _______________________________________________ 85 

Figure 94 - Out of plane transverse wave propagation in a hexagonal and re-entrant 

assembled grid nodal displacement at 2000 Hz (left) and 8000 Hz (right). 

Displaced nodes are removed from the undeformed structure, which is shown in 

Figure 93. _____________________________________________________________________________ 86 

Figure 95 - Re-entrant unit cell (left), Optimised cell evolution (middle), Optimised unit cell 

(right) _________________________________________________________________________________ 87 

Figure 96 - Re-entrant unit cell and dispersion curves _______________________________________ 88 

Figure 97 - Bandgap evolution during geometrical parametric investigation. _____________ 88 

Figure 98 – Re-entrant modified unit cell and dispersion curves ____________________________ 89 

Figure 99 – (a) Hot press double cork multilayer frame, (b) resin pushing away lower cork 

layer, (c) cork deformation at the end of the curing process. ____________________ 91 

Figure 100 – (a) Hot press resin leak with cork frame, (b) custom made aluminium frame, 

(c) Layup with aluminium frame, (d) Hot press outline. _________________________ 91 

Figure 101 - Autoclave lay-up process for flax/PFA prepreg laminates: (a) Release film and 

cork frame, (b) prepreg layup, (c) caul plate, (d) breather, (e) valve breather, (f) 

tacky tape frame, (g) valves, (h) vacuum bag, (i) completed layup and vacuum 

pump in action. _______________________________________________________________________ 92 

Figure 102 - tensile tests with and without video gauge, sample cross section and samples 

with dot pattern______________________________________________________________________ 93 



Figure list 

136   Doctoral Thesis – S. Del Broccolo 

Figure 103 - Kirigami Flax/PFA manufacturing: (a) prepreg mold fitting, (b) prepreg ready 

for the hot press cycle, (c) cured corrugated sheet, (d) laser cut corrugated sheet, 

(e) corrugated sheet folding prior to adhesive application, (f) final honeycomb.

 ________________________________________________________________________________________ 93 

Figure 104 - (a) Interlock manufactured samples, (b) Laser cut corrugated sheet, (c) and (d) 

interlocked cores ____________________________________________________________________ 94 

Figure 105 – (a)  HexHex (3x4) sandwich panel in hybrid material configuration, (b) HexHex 

bare core in hybrid configuration, (c) detail of a sandwich panel unit cell, (d) 

aluminium plate modal analysis. ___________________________________________________ 95 

Figure 106 - Transmissibility numerical simulation for variable interlock core material and 

variable added mass _________________________________________________________________ 95 

Figure 107 - Transmissibility test rig __________________________________________________________ 96 

Figure 108 - Transmissibility for HexHex homogeneous Polypropylene cores ____________ 97 

Figure 109 - Transmissibility for HexHex hybrid core (Polypropylene and Polyfulfurfuryl)

 ________________________________________________________________________________________ 97 

Figure 110 - Transmissibility for HexHex homogeneous Polyfurfuryl cores _______________ 98 

Figure 111 - Damping value obtained for interlocked PP/PP, PFA/PP and PFA/PFA cores at 

increasing solicitation amplitudes. _________________________________________________ 99 

Figure 112 – Flow chart sequence for all the scripts produced. This includes numerical 

simulations carried out using WFEM and the classical FEM approach _________104 

Figure 113 - Dispersion curves colour plot according to MATLAB matrix (left), and Group 

velocity sorting decision criteria __________________________________________________108 

Figure 114- Branch tracking output __________________________________________________________109 

Figure 115 - Dispersion curves with Branch tracking (left) and without (right) __________110 

Figure 116 - Deformed shape script output (in-plane bending) for a simple plate _______111 

Figure 117 - Deformed shape script output (out of plane bending) for a simple plate ___111 

Figure 118 - Deformed shape script output (in-plane compression) for a simple plate __112 

Figure 119 - Deformed shape script output (torsion) for a simple plate ___________________112 



Table list 

Doctoral Thesis – S. Del Broccolo  137 

TABLE LIST 

Table 1 - Kirigami advantages and disadvantages summary _________________________________ 10 

Table 2 - Periodic beam unit cell parameters _________________________________________________ 39 

Table 3 –Cross grating model parameters for the shell elements used in both configurations: 

bare core and sandwich structure. _________________________________________________ 47 

Table 4 - Numerical simulation parametric analysis material properties __________________ 52 

Table 5 - Unit cell parameters for the hexagonal, re-entrant and AuxHex configurations _ 52 

Table 6- Bandgap width and middle frequency for the polygonal investigation ___________ 66 

Table 7 -Interlock simulation parameters for WFEM 1D and 2D ____________________________ 70 

Table 8 - Model and material details ___________________________________________________________ 87 

Table 9 - Material properties for Flax/PFA natural fibre _____________________________________ 91 

Table 10-Advantages and disadvantages of bio-based long fibre composite laminate 

manufacturing techniques __________________________________________________________ 92 

Table 11 - Damping ratio and loss factor ______________________________________________________ 99 

Table 12 - Variables considered while writing the scripts and types of possible automated 

simulations _________________________________________________________________________ 105 

Table 13 - Possible boundary node combinations considered _____________________________ 105 

Table 14 - Curing temperatures suggested from Composites Evolutions for glass fibre/PFA 

prepregs ____________________________________________________________________________ 115 

Table 15 – Ultimate strength calculations for all specimen types _________________________ 118 

Table 16 – Elastic modulus calculation for all specimen types ____________________________ 118 



Credits 

138   Doctoral Thesis – S. Del Broccolo 

CREDITS 

 

 

MARIE SKŁODOWSKA-CURIE ACTIONS (ITN) 

Project name 

 

 

Academic Partners 

   

 

Industrial Partners 

   

 

   

 

This project has received funding from the European Union's Horizon 2020 research and 

innovation programme under Marie Curie grant agreement No 675441 


