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Introduction

Context of the study

This thesis deals with SAR (Synthetic Aperture Radar) change detection in noisy environments,

such as forests, cities, or harbors, with multiple interactions. We want to detect the changes asso-

ciated with small and potentially mobile objects such as vehicles or boats. In these configurations,

targets’ detection is challenging due to the strong backscattering signal of surrounding natural or

man-made structures. Besides, multiple interactions between the targets and their surrounding

environment may lead to multiple signatures - even for a single target - and then to a confusing

position of these signatures within the SAR images. For instance, in urban areas, these signatures

may be associated with target-wall or target-ground scattering mechanisms. Also, when the target

is quite large compared to the wavelength and the resolution, different parts may be involved: the

roof, the side, the front, or the back of this target. It typically occurs when the target is in NLOS

(Non-Line Of Sight) for the antenna, as illustrated in [1]. In this previous study, simple change

detection techniques have been first applied on simulated radar data, then on anechoic chamber

measurements mocking a vehicle parked between two buildings. Without prior knowledge, it was

not possible to retrieve nor the number of targets nor their locations. These configurations were

relatively simple and, above all, without any additional contributions, not even noise. However, all

the structures and the target were simulated or built as metallic objects, reinforcing the intensity

of the multiple interactions. Our question was then to determine what we would obtain in real

conditions.

To investigate this question, we have to find data set combining high-resolution SAR data with

a detailed description of the scene. Also, to enable the phenomenology study, we looked for po-

larimetric SAR images.

These conditions were fulfilled in [2] or [3] for instance. The objects to be detected inside forests
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(vehicles and corner reflectors) were assumed to be composed of metallic plates with various ori-

entations. A subspace characterizing the radar signatures of these metallic plates with diverse

orientations was then built. Another one was elaborated corresponding to the contributions of

the double-bounce scattering mechanism associated with the trunks. The received signal was first

projected on the target subspace and then cleared of its component belonging to the trunk sub-

space. This technique was developed specifically for FoPen (Foliage Penetration) applications in an

environment with a low density of targets, where the difficulty was to separate two contributions

that could be easily modeled. However, this method required prior knowledge of the targets and

their environment. Besides, it has not been tested with a high density of scatterers, as in cities.

The work developed in [2] or [3] illustrates what can be done in target detection with a single

image when a criterion exists to differentiate the targets from their surrounding environments.

Another strategy may be used for target detection, based on change detection between two or

more SAR images. In this case, supposing that an image without any target is available, the change

detection between this SAR image (reference image) and another SAR image (mission image) with

possible targets enables the cancellation of the background and highlights the targets of interest.

We illustrate in Figure 1 some scenarios where targets are present in SAR images. In Figure

1a, we can observe a ship circled in green that represents a simple case of detection since this

target is surrounded by sea. In that case, the usual CFAR detector [4] using a single SAR image

would detect it. On the contrary, the ship circled in blue is more challenging to detect because it

is adjacent to a strong scatterer (metallic mooring quay). Change detection would offer a better

detection in that case because the mooring quay contribution would be canceled. These aspects

will be investigated and introduced in Chapter 7 for maritime surveillance applications.

We illustrate in Figure 1b another case where targets are hidden under the canopy. This case

represents a critical situation where CD techniques showed to be a good candidate to detect

such targets. These aspects will be investigated and introduced in Chapter 8 for FoPen (Foliage

Penetration) applications.

Change Detection is appropriate to highlight targets within an observed scene containing strong

scatterers because the background environment is canceled. However, the choice of CD strategies

implies to have ideal access to a target-free scene. Specific campaigns for target detection can pro-

vide such scenes and a detailed ground truth that enables to evaluate the detection [5, 6]. However,

in practice, the contents of a scene at a specific date are unknown in open-access SAR images (e.g.,

Sentinel 1, UAVSAR). In that case, the change detection results between two or more scenes may

be ambiguous if a target is present several days or when targets of different natures are occupy-
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(a) Radiometric SAR image acquired with Sentinel-1
at VV polarization on the 22nd of August 2020.

(b) Radiometric SAR image acquired at HH po-
larization during the TROPISAR mission.

Figure 1: SAR images with targets: (a) ships visible on a radiometric SAR image collected with
Sentinel-1 at VV polarization, on the 22nd of August 2020; (b) Vehicles hidden under foliage in
TROPISAR mission SAR image 402 at HH polarization.

ing the same geographic position during several acquisitions (partial or total temporal overlapping).

In this Ph.D. thesis, we assume that any SAR image consists of immobile ob-

jects (e.g., buildings and trees) that are permanently present in the SAR images and

ephemeral objects (targets) that can appear and disappear from one acquisition to

another (e.g., cars and ships). We propose to exploit open-access SAR time-series to

define and compute a reference SAR image only containing what is temporally stable

or permanent within the scene at the pixel level. We will then perform CD with this

FBR (Frozen Background Reference) image to highlight the targets present at a given

mission image. With this technique, we expect to be able to isolate and analyze the

targets’ signature.

Organisation of the manuscript

The first part comprises three chapters that introduce the key elements for the understanding

and the analysis of SAR images, present the main datasets used during the study and finally

illustrate the different strategies of change detection in SAR time-series. The second part presents

the FBR image concept, its computation, representation, and the associated change detection

strategy adopted. Finally, the last part, composed of two chapters, presents the applications of our

method on two constraining environments for target detection: maritime surveillance in harbor

environments and detection of targets in FoPen contexts.
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Part I

Generalities on SAR imaging and

change detection in SAR

time-series

1
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In this part is presented in a first chapter an overview of SAR principles and applications

to ease the understanding of the thesis. The main parameters of SAR imaging systems will be

presented in the geometrical, physical and statistical aspects. In a second chapter, we present

the datasets collected and processed to conduct temporal analysis. In the third chapter, change

detection strategies in SAR time-series are presented and the problematic of target detection in

SAR images is considered.

Content of the part I :

• Chapter 1 : Synthetic Aperture Radar Overview

• Chapter 2 : Preparation and presentation of datasets used for the thesis

• Chapter 3: Introduction to change detection in SAR time-series: applications to target

detection
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Chapter 1

Synthetic Aperture Radar

Overview

Objectives:

In this chapter, we present the key elements for the understanding and the analysis of

SAR images. We will introduce first the potential of SAR imaging in different domains of

application. Afterward, technical aspects and most significant parameters of SAR sensors

will be presented such as operating frequency, spatial resolution and polarisation. Finally

the associated statistical consideration of SAR images will be approached.

Synthetic aperture radar (SAR) is a high-resolution airborne or spaceborne remote sensing

technique that produces an image illustrating the capability of a scene to reflect toward the radar

the emitted EM (Electromagnetic) waves. Carl Wiley discovered in 1950’s the principle of SAR

imaging by investigating the Doppler spectrum of the received echos when using a moving radar

along a straight direction. This movement during the acquisition enables indeed the synthesis of a

long aperture antenna. This patent was issued in 1954 and became the starting point of research

and development on SAR remote sensing imaging techniques [18]. After, the first airborne SAR

image has been acquired in Florida using a C-46 aircraft [19] and the first on-board satellite

SAR system, Seasat, was launched in 1978 by the National Aeronautics and Space Administration

(NASA) with a mission duration of 105 days. Since then, several countries and consortium of

countries launched their own SAR satellites.

Figure 1.1a presents the diversity of previous, current, and expected SAR satellite missions for

different frequency bands of acquisition and operating time. We can notice from Figure 1.1a that

5
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we are currently experiencing an explosion of SAR sensors commissioning in all frequency bands.

(a) Satellite sensors overview : past, current and future SAR missions

(b) Typical Radar frequencies and applications

Figure 1.1: Satellite sensors overview and typical usage for different SAR frequencies :

Soon, the first P-band spaceborne measurements will be achieved with the Biomass satellite

[20] (theoretically to be launched in 2022) and other satellites will be commissioned within already

exploited bands. Regarding L-band satellite missions, NISAR (NASA), ROSE-L (ESA: European

Space Agency) and TerraSAR-L (DLR: Deutsches Zentrum für Luft- und Raumfahrt or German

Aeropsace Center) will be likely commissioned in the next years (2021-2022). Constellation of SAR

satellites are being launched in C and S-band: Radarsat Constellation mission (CSA: Canadian

Space Agency) and NovaSAR (UK Space Agency) that are mainly considered for maritime surveil-

lance and operate with a small revisit time (expected daily monitoring). Finally, several X-band
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micro-satellites constellations are emerging, such as Capella X-SAR (Capella) and ICEYE (ICEYE

Oy), with an unprecedented expected revisit time of one hour when the full constellation is used.

This expected revisit time has to be compared with 12 or 6 days revisit time of classical sensors

such as Sentinel 1-A and 1-B that represents already an excellent opportunity to monitor earth

continuously in different domains. The field of applications are numerous and evolving extremely

fast :

• Agriculture (e.g: Crop monitoring)

• Disaster and hazards (e.g :flooding, volcano eruption, landslides, earthquakes, oil spill inci-

dent)

• Defense (e.g: Surveillance),

• Geology (e.g: topographic changes, desert subsurface investigation and soil moisture),

• Urban development,

• Ecology (e.g: Biomass measurements and land cover classification)

• Environmental Science (e.g: Glacier evolution studies)

• Oceanography (e.g: current, winds, ocean surface features studies)

From Figure 1.1a, we can observe that the C-band was extensively used before 2010 for satellite

SAR missions. One reason might be because it represents an average radar frequency that is a

good trade-off between weather robustness and relative penetration within canopy. This enables

a plurality of applications in crop monitoring, for example, that would be more challenging using

L-band or P-band. Urban or maritime surveillance are also possible applications where C-band is

a good candidate. However, the demand increasing in different domains shows an overall coverage

of the radar spectrum in the last few years to fulfill the requirements of specific applications more

accurately.

1.1 Why using SAR imaging?

The main advantage of SAR remote sensing technologies compared to optical technologies relies in

their ability to penetrate through clouds, smoke, heavy rain, and provide images during the night.

However, it is known that ionospheric phenomenons affect the collected signals at low frequencies

(under L-band) [21, 22]. On the contrary, for high frequencies (above X-band), some heavy rain

can impact the measurements since those frequencies are also used to detect precipitations [22].

Figure 1.2 presents the estimated cloud coverage over different regions of the world using the

cloud products of MODIS optical sensors and Google Earth Engine. Using cloud flag pixels 1,
1a binary mask corresponding to the presence of cloud a this pixel
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it is possible to estimate (according to a revisit time of 2 days) the temporal cloud coverage for

a given pixel at a given geographic position by calculating the ratio between the times where it

was detected as cloud divided by the number of available optical images. The observations being

collected over three years, we can consider that the representation in terms of cloud coverage is

reasonably reliable. It is then not surprising to observe in Figure 1.2d that in the region of Gobabeb

(Namib desert) the cloud coverage tends to 0%. In contrast, the cloud coverage in the region of

Singapore is in average close to 90% as presented in Figure 1.2a. The region near Kourou in French

Guiana is also an area subject to intensive cloud coverage as we can see in Figure 1.2b where we

can estimate around 70 to 80% of cloud coverage in the region. Finally, San Francisco represents

a middle case of cloud coverage, where 50% of the acquisitions have been detected as clouds.

(a) Singapore region (b) Kourou region (French Guiana)

(c) San Francisco region (d) Gobabeb region (Namibia)

Figure 1.2: Cloud Coverage representation : calculated for each pixels as a percentage of pixels
detected as cloud compared to the number of available temporal pixels from MODIS satellite
(optical sensor) acquisitions in the period 2017-2019 processed with Google Earth Engine. (a)
Kourou region (French Guiana), (b) Gobabeb region (Namibia), (c) Singapore region and (d) San
Francisco region

The prominent presence of clouds is giving credit to the use of SAR sensors especially in tropical

region where the percentage of usable images is around 10%. On the contrary, in arid areas such
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as Namib desert, if the study rely on line of sight detection (not ground penetration required),

the use of optical sensors only or combined with SAR sensors can be an asset since almost all

data are usable. SAR sensors represent a rich source of physical information, however, the radar

measuring by definition a distance, we will see that several drawbacks and artefacts can lead to

misinterpretations. Depending on applications, we can understand that optical technologies or

SAR technologies, or both combined can be used to obtain as much information as possible on

the physical properties of the observed scene. In this thesis, only SAR images will be exploited,

however, fusing technologies for earth observation is an interesting approach that is already being

studied especially in land mapping applications [23, 24].

1.2 Acquisition Parameters and SAR image formation

Classical SAR systems are generally constituted of an antenna or a set of two close antennas per-

forming the transmission and reception. It is therefore admitted that SAR sensors are monostatic

measurement systems. As we can see on Figure 1.3, the sensor illuminate the scene and move at

the same time with a constant speed Vs. The scene is illuminated with linear frequency modulated

pulses called chirp during a pulse time Tc, creating a frequency diversity of bandwidth B under

which the scene is observed. The pulses are emitted according to a given PRF (pulse repetition

frequency) as shown in Figure 1.4a. The representation of such signal in temporal domain can be

found in Figure 1.4b and in time-frequency domain in Figure 1.4c.

Figure 1.3: Classical Side looking SAR Geometry acquisition adapted from [7]
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(a) Transmission and reception of SAR signals

(b) Temporal visualisation of chirp signal
(c) Time/frequency representation of chirp
signal

Figure 1.4: Transmission of SAR signals and representation of the chirp pulse : (a) Transmission
and reception representation, (b) Chirp pulse representation in time domain and (c) Chirp pulse
representation in time/frequency domain

Without going into the details of image reconstruction theory that is beyond the scope of this

thesis. We can synthesize the reconstruction of a SAR image by exploiting two diversities during

the acquisition: a frequency diversity brought by the chirp signal of bandwidth B and an angle

diversity (squint angle) brought by the radial movement of the antenna beam along the observed

scene. The acquisition of the same scene using these two diversities enables to generate a two-

dimensional map representative of the backscattering capabilities of the illuminated scene. Several

works thoroughly explains this principle as in [22, 25, 26, 27, 28].
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1.2.1 Radar Cross Section and SAR imaging

The reflectivity of an object illuminated by a monochromatic wave is defined by σpq its RCS (Radar

Cross Section) in far field with p and q the polarisations:

σqp = lim
R→+∞

4πR2 |
−−→
Esqp|2

|
−→
Eiq|2

(1.1)

Where −−→Esqp and
−→
Eiq are the backscattered and incident electric field and R the distance between

the radar and the target. The RCS is a function on the one hand of the shape, the orientation

and the dielectric properties of the observed target and on the other hand of the frequency and

the polarization of the emitted wave.

The aim of SAR systems is to obtain an image of the objects RCS within the observed scene.

This can be theoretically achievable if the object is a white and isotrop scatterer (σqp stationnary

behavior in frequency and angle of observation) and in free space. The radiometric information

of a pixel in SAR image cannot be strictly interpreted as the RCS of the object but as the result

of the combination between the RCS of this object, other objects in the resolution cell and their

interaction with their surroundings (environment for instance). The idea of extended target is then

considered over an illuminated area A0 and the averaged coherent contribution of all the scatterers

is expressed with the dimensioneless scattering coefficient σ0 [29]:

σ0
qp = lim

R→+∞

4πR2

A0

< |
−−→
Esqp|2 >

|
−→
Eiq|2

(1.2)

with ”<>” the spatial averaging over the illuminated area.

1.2.2 SAR spatial resolution

Spatial resolution is one of the main parameters of interest when designing an application implying

SAR images. This quantity represents the capability of the sensor to separate two closely spaced

scatterers [29]. In classical SAR systems, a diversity in frequency (chirp signal) and in observation

angle (synthetized array of antenna) is achieved giving the possibility to compute an image of the

observed scene along two dimensions. The first dimension is called slant range or more usually

range corresponds to LOS (line of sight) direction (perpendicular to the flight direction) and the

second dimension is the cross range (or azimuth, along track) corresponds to the direction parallel

to the flight direction. The slant range resolution ∆r (physical range resolution) and the ground
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range resolution ∆rx (slant range projected on the ground) are defined as following:

∆r = c

2B and ∆rx = ∆r
sinθ

(1.3)

B representing the bandwidth of the acquisition (variation of frequency during the chirp), c the

light speed and θ the incidence angle (angle between the middle of the swath and Nadir angle or z

axis in the Figure 1.3). As we can see, the slant range resolution depends only on the bandwidth of

the signal emitted during the pulse. This is a really interesting property and advantage to achieve

high resolution imaging (sub-metric). The azimuthal resolution ∆ry is defined as following :

∆ry = Rλ

2LS
(1.4)

with R the distance between the radar and the target, λ the operating wavelength, Ls the

length of the synthetic antenna. These two parameters are essential when designing SAR applica-

tions and may be critical for target detection. As an example, the resolution of Sentinel 1 GRD

images is approximately 20x20m which is in practice not possible to use in urban areas to detect

vehicles. However, it is enough for maritime surveillance and ship detection as we will see in the

thesis.

1.2.3 Operating frequency

As presented in Figure 1.1, several operating frequencies are used in SAR imaging. This is also a

key parameter that enables to see different features of the observed scene leading to a variety of

applications as shown in table 1.1b. The backscattering signal from objects within an illuminated

scene is highly dependent on their shape and electromagnetic properties. Low frequencies will be

preferred to penetrate through media, for desert subsurfaces studies [30] or biomass estimation

[31], whereas higher frequencies will penetrate less and therefore can enable to monitor crops or

ground surfaces. For biomass estimation, two opposite strategies can be however adopted. Using

high frequencies (above C-band) would give the profile of the canopy and a possibility to link this

height of vegetation with a biomass quantity [32]. It required however to have an accurate DEM

(Digital Elevation Model) to obtain the actual height of the forest. On the contrary, using low

frequencies would give more information about the interactions near the ground and under foliage

structures. It is admitted that most of the biomass information is contained within the trunks and

big branches of vegetation, so characterizing these contributions might link to a biomass informa-
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tion [31]. This penetration property at low frequency is used for target detection in FoPen (Foliage

Penetration) applications where the SAR operates at low frequencies (under L-band) to penetrate

the foliage and reach the ground to detect concealed vehicles [33, 34].

1.2.4 NESZ (Noise Equivalent Sigma Zero)

Another important parameter in SAR imaging is the minimum backscattering signal that can

be monitored by the sensor so that it will appear against the inherent noise. The parameter to

measure the sensitivity of a SAR platform is called NESZ [22]:

NESZ = 2(4πR)3VskBT0B

PtG2λ3∆rxPRF
(1.5)

R is the distance between the radar and the target, kB the Boltzmann’s constant, T0 the noise

temperature, Pt the transmitted power, G the gain of the antenna, λ the operating wavelength

and PRF the pulse repetition frequency. This quantity is a function of the range (function of

the incidence angle) and vary depending on the senors but is typically between -25 and 30dB for

satellite platforms. This quantity can be seen as the backscattered power of an observed plane

surface without roughness.

1.2.5 Drawbacks of SAR imaging systems

We previously discussed on the benefits of SAR imaging systems that enable valuable robustness

against weather and light conditions. However, there are artifacts that significantly affect the

readability of SAR images. The artifacts in SAR images can be classified into two groups:

• Geometrical distortion

• Signal processing artefacts

The first group of artifacts is due to the geometry of the radar acquisition (side looking) and the

scene. Those effects occur typically in mountainous regions or in urban areas with tall structures.

The second group of artifacts is a consequence of the range and doppler spectrum signal processing

while creating the SAR image as described in [35] and [36]. Some strong scatterers may be aliased

in the azimuth spectrum generating ghost artifacts visible in low backscattering areas such as sea

surface. This scenario is usually observed near harbor areas implying ghost signatures coming from

high backscattering man-made infrastructures.
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This section presented some key parameters and features of SAR data acquisition and image

formation parameters. We introduced the advantages of SAR remote sensing systems compared

to optical systems regarding the weather and light conditions. However, SAR systems suffer from

physical and signal processing artifacts that are intrinsic to radar systems, sometimes rendering the

interpretation of SAR images counter-intuitive. In the next section, we will present one specificity

of SAR sensors that relies on polarimetric measurements of the observed scene.

1.3 Polarimetry

In this section, we introduce some elements of polarimetry that are frequently used in SAR ap-

plications. The scattering matrix will be presented as well as basic polarimetric decompositions

that aim to decompose the polarimetric SAR signal into a basis that represent canonical physical

mechanisms. Since the dielectric properties and the shapes of the scatterers describing the scene

are diverse, the use of polarimetry is essential to highlight some canonical behaviors.

1.3.1 Scattering matrix

To simply understand how the scattering matrix is built, we consider a radar system that can emit

and receive horizontally and vertically polarized waves. The polarized incident and received EM

fields can be expressed using the Jones vectors Ei and Es of respectively the incident and scattered

EM fields [29]:

Ei =

EiH
EiV

 and Es =

EsH
EsV

 (1.6)

EiH , EiV , EsH and EsV are the complex components of the incident and scattered fields, i stands

for incident and s for scattered, H for horizontal and V for vertical component . The incident and

baskcattered EM fields can be related in far field with the usual scattering Sinclair matrix S [29]:

EsH
EsV

 = e−jkR

R
S

EiH
EiV

 with S =

sHH sHV

sV H sV V

 (1.7)

R is the distance between the receiving antenna and the target pixel, k the wavelength of the

emitted wave, sHH , sHV , sV H , and sV V the complex components of the scattering matrix that

characterize the target under observation.
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1.3.2 Polarimetric analysis

The purpose of polarimetric decomposition is to express the scattering matrix S into a combination

of K matrices Sk that represent canonical scattering mechanisms so that :

S =
K∑
k=1

βkSk (1.8)

βk represents the weight associated to each elementary matrix Sk. This formalism enables to

represent the elements of the scattering matrix S into different decomposition basis. In particular,

for the purpose of the thesis, we will introduce two basis representation of the SAR signals: the

lexicographic basis and the Pauli basis. Let consider the lexicographic basis, and define the vector

x as:

x =
[
sHH sHV sV H sV V

]T
(1.9)

T is defined as the transpose operator of a vector. In the Pauli basis, we will arrange the system

of scattering matrix as following denoting y [37]:

y = 1√
2

[
sHH + sV V sHH − sV V sHV + sV H j(sHV − sV H)

]T
(1.10)

We can assume in remote sensing that sHV = sV H because of the reciprocity. This lead to:

x =
[
sHH

√
2sHV sV V

]T
(1.11)

In the Pauli basis y becomes:

y = 1√
2

[
sHH + sV V sHH − sV V 2sHV

]T
(1.12)

The covariance matrix C and the coherency matrix T are generally used to represent polari-

metric SAR data. The matrix C is associated to the measurement vector in lexicographic basis

x, whereas the matrix T is associated with the measurement vector in Pauli basis y. C and T

are estimated in practice using temporal or spatial average samples of the measurement vectors in

lexicographic or Pauli basis. These estimates are called sample covariances matrices (SCM) and

expressed as follow:

C = 〈xxH〉N = 1
N

N∑
n=1

xnxHn and T = 〈yyH〉N = 1
N

N∑
n=1

ynyHn (1.13)

C and T are of size p × p with p the number of polarisation acquistions.
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The use of the Pauli basis aims to link the measured signal with the following canonical contri-

butions: the double bounce from a perfectly electrical conducting dihedral orientated toward the

sensor (related to |sHH − sV V |), a direct scattering by a metallic trihedral (|sHH + sV V |) and the

pure contribution from a rotated metallic dihedral ( related to |sHV | or |sV H |. This contribution is

often associated to volume scattering. With these assumptions, a color composition is performed

to obtain polarimetric images that aim to highlight the properties of objects within the scene

as shown in Figure 1.5. Therefore the red channel is usually associated with the double bounce

mechanism, the blue channel with single bounce and the green channel with the cross polarisation

channel. Using this color composition, it gives a ”comprehensive” image that shows the vegetation

in green (volume scattering), the buildings and infrastructures usually in purple (mix of blue and

red) and the surface area like sea in dark blue color as shown in Figure 1.5. Framed in red, we

can also observe an interesting phenomenon due to the orientation of buildings that reflect a more

complex reality. The green areas are actually orientated buildings (tilted according to the radar

path) that shows a behaviour similar to vegetation.

Figure 1.5: Example of a SAR image represented in the Pauli basis (double bounce in red, single
scattering in blue and cross-polarisation in green) from [8]. Acquired by UAVSAR over New
Orleans, Louisiana, US. The trajectory of the sensor is parallel to the top of the figure.

This is a recurrent problem in SAR polarimetric decomposition that produces wrong interpre-

tation on the polarimetric SAR images. It is still one field of research where solutions are developed

to describe in a more representative way the observed scene using electromagnetical properties of

the object within the scene. In [8, 38] is presented studies highlighting this effect and recalling

the importance of dielectric properties when signals from dihedral structures are collected by the

sensor.

Several polarimetric decomposition has been developed such as Krogager decomposition using dif-
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ferent canonical scattering mechanisms basis : a sphere, a dihedral and an helix [39]. Cameron

decomposition exploits the symmetry and reciprocity of the scattering matrix S [40]. Finally,

eigenvector-based decomposition have been introduced firstly in [41] and lead to the well known

H/A/ᾱ decomposition [29] that evaluate the dominance of mechanisms by using entropy informa-

tion of coherence matrix eigenvalues. In [29] and [42] is presented thorough studies and develop-

ments on polarimetric decomposition for SAR acquisitions.

1.4 Statistical aspects

An intrinsic phenomenon resulting from all coherent measurement systems is called speckle noise.

SAR imaging systems, being coherent measurement devices, are subject to this phenomenon ren-

dering more challenging the processing and the interpretation of SAR images. Each pixel’s value

corresponds to the coherent combination of N elementary scatterers within the resolution cell. The

resulting signal s within a pixel can then be expressed in a complex form as follows:

s =
N∑
n=1

ane
jφn = αejΦ (1.14)

an corresponds to the elementary amplitude of objects present within the resolution cell, and

φn their phases. The resulting complex measurable information of the pixel is an amplitude α and

a phase Φ. The consequence of coherent combinations of scatterers of different amplitudes and

phases leads to a random behavior of both amplitude α and phase Φ of the pixel values. The use

of statistics is then required to describe the pixels’ behavior by their probability density function.

1.4.1 Intensity, amplitude and phase distributions of SAR images

The statistical distributions presented in this section for SAR pixel values from equation 1.14 are

considered true under the following conditions recalled in [29] which are:

1. the number of scatterers is large, and the medium in the resolution cell is homogeneous;

2. the range distance is much larger than the radar wavelength;

3. the surface is much rougher compared to the scale of the wavelength.

The condition (2) is, in practice, always satisfied with SAR systems. In contrast, the conditions

(1) and (3) are not always satisfied considering, on the one hand, the diversity of configurations,

sizes, electromagnetic properties, and shapes of scatterers within the observed scene and on the

other hand, the SAR parameters such as operating frequency, polarisation, and spatial resolution.
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Considering these assumptions and invoking the Central Limit theorem, the coherent sum of the

real and imaginary parts of the monitored signal for each resolution cell (pixel) follows a zero-mean

Gaussian complex distribution2. The following statistical considerations on the amplitudes, inten-

sities, and phases of SAR monitored signals result from this Gaussian assumption.

The amplitude In general, we represent SAR images by their intensity denoted σ that are

related to the amplitude of the SAR signal as follows:

σ = |s|2 = α2 (1.15)

An incoherent mean of amplitudes α or intensities σ can be performed spatially or temporally in

order to decrease the effect of the speckle noise. By denoting E[σ] = µσ and E[α] = µα respectively

the esperance of σ and α, it is usually admitted that the amplitude of the speckle without texture

in SAR images follows a Rayleigh-Nagakami law RN [µα, L](α) [43]:

RN [µα, L](α) = 2
√
L

µαΓ(L)

(√
Lα

µα

)2L−1

e
−
(√

L
µα

α
)2

(1.16)

with L the number of looks (samples taken into account to calculate the incoherent mean) and

Γ the Gamma distribution. If L=1 ( we call it Single Look Complex: SLC), the distribution of

amplitude becomes a Rayleigh law R [44, 43]:

R[µα](α) = 2α
µ2
α

e−( α
µα

)2

(1.17)

The intensity For the intensity of SAR images, the texture-free speckle noise can be expressed

with a generalized Gamma distribution G [43]:

G[µσ, L](σ) = L

µσΓ(L)

(
Lσ

µσ

)L−1
e−

Lσ
µσ (1.18)

Following the same principle, when L=1, the distribution of L looked intensity images becomes an

exponential distribution E :

E [µσ](σ) = 1
µσ
e−( σ

µσ
) (1.19)

2the real and imaginary parts are two zero-mean independently and identically distributed Gaussian distributions
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The phase Regarding the phase distribution, the derivation from the Gaussian assumption of

the SAR signals results in a uniform distribution Π of support [−π, π]:

Π(Φ) = 1
2π with Φ ∈ [−π, π] (1.20)

The phase distribution of multilooked SAR images is not studied because the multilook is

an incoherent process where each sampled phase does not intervene. Besides, the distribution

of the phase of SAR signals under the precedent assumption shows that the phase cannot be

interpreted with only one image. This result is one characteristic of SAR images. For smaller

resolution systems, the assumptions (1) and (3) may fail when heterogeneous media occurred

within the resolution cell and their surroundings. A parameter of texture can be taken into account,

and the families of distribution to represent the pixels values are then extended to non-Gaussian

distributions such as K-distribution, log-normal distribution, or, for example, Weibull distributions.

As presented in [43], the consequence of non-Gaussian distribution assumptions implies using

distributions with at least three parameters. As a result, the estimation of parameters to describe

SAR images’ pixel values becomes more challenging.

1.4.2 Polarimetric case

In the case of a polarimetric acquisition, we wrote the measurement vector in lexicographic basis

x = [sHH sHV sV H sV V ]T . In that case, the signal x is said to follow a zero mean multivariate

complex Gaussian distribution with p ≤ 4 dimension CN [0,C] with C its covariance matrix. Its

probability density function is expressed as:

CN [0,C](x) = 1
πp|C|e

−xHC−1x = 1
πp|C|e

−tr[C−1xxH] (1.21)

Since the measurement vector in Pauli basis y is a linear combination of the element of x, the

same statistical properties stand for T.

For multilooked polarimetric SAR signals, we denote the covariance matrix by W = LC, with

L the number of looks. The p × p matrix W is Hermitian, positive semi-definite; it follows a

complex Wishart distribution W(p, L,C) [45]:

W[p, L,C](W) = 1
Γp(L)|C|L |W|

L−pe−tr[C
−1W] (1.22)

where Γp(L) = π
L(L−1)

2
∏p
k=1 Γ(L− k + 1).

The remarks done for monopolarized signals stand regarding the validity of the Gaussian model
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in coarse resolution polarimetric SAR images. Several works tackled this question [11, 46] and

investigated possible satistical representations of polarimetric SAR images by enlarging the clas-

sical case of Gaussian assumption. For representing statistical heterogeneity, the texture of the

speckle is usually represented as an independent multiplicative random variable, and the monitored

polarimetric signal is modeled as xtex [47]:

xtex =
√
τx (1.23)

τ represents a positive random variable for the texture and x is a usual Gaussian multivariate

complex vector. Then, several assumptions can be made on the statistical distribution that follows

the texture parameter τ leading to different distributions to represent the PolSAR data, that may

vary depending on the applications (complex multivariate K-distribution, complex t-distribution,

Generalized Gaussian distribution, or deterministic compound-Gaussian model) [43, 47, 11]. How-

ever, the choice of more complex distributions brings as well the problem of additional parameters

determination that sometimes requires complex optimization problems.

Overview of the chapter: This chapter aimed to present some basic knowledge and

understanding of SAR images required for our study. The diversity in terms of sensors

and applications has been introduced, and the main advantages and drawbacks of SAR

compared to optical imaging systems have been briefly discussed. The acquisition param-

eters have been presented to understand and analyze SAR images. Finally, the statistical

representation of SAR images has been introduced for monopolarisation and polarimetric

acquisitions. As presented in the chapter, the exploitation of SAR images represents a chal-

lenging problem that relies on both physical and statistical modelization of the observed

environment.



Chapter 2

Preparation and presentation of

the dataset used for the thesis

Objectives: This chapter introduces datasets used on several occasions during the thesis

for simple illustration or SAR time-series analysis. To do so, we will present the general

preprocessing steps necessary to consider the use of several SAR images. In a second time,

these will be presented with their specificities.

The studies of SAR time-series imply that the images have to be preprocessed to exploit their

values consistently. In some cases, the images are ready to use and in the form of coregistered

products, as we will see from the UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar)

dataset analyzed in this study. On the contrary, for continuous monitoring SAR systems such as

Sentinel 1, the data are available singularly with a given level of preprocessing. Different softwares

have been developed to guide SAR images users for the preprocessing of the data. We will first

present the main ideas briefly behind a preprocessing framework for SAR time-series exploitation.

In a second time, datasets will be presented above Singapore from Sentinel 1 and San Francisco

for UAVSAR.

2.1 Preprocessing steps for a stack of SAR images

We introduce the preliminary steps to be considered when analyzing and performing operations on

a stack of SAR images. Some processes must be performed even when using only one SAR image.

However, we aim to present a general preprocessing workflow when dealing with a stack of SAR

images for which the content of the blocks will mainly depend on the application. SAR images

21
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are generally presented as «products» with a given pre-processing level that may vary from a SAR

sensor to another. It is not the purpose of giving a detailed description of all possible SAR formats

and products available but presenting the main ideas that enable the constructing an exploitable

stack of SAR images. Whatever the SAR sensor, the initial product from which the others will

derive is called SLC (Single Look Complex), the pixels values are represented in the geometry of

the radar (left column of images in Figure 2.1).

Figure 2.1: General workflow for the processing of N SAR images to generate an exploitable stack.

”Preprocessing” is a generic term defining prior actions performed to the data; therefore, we

specify in the Figure 2.1 a preprocessing P1 that can be performed individually per images and a

preprocessing P2 that needs all the images. These preprocessing steps can be performed with the

platforms SNAP (Sentinel Application Software) or PolSARPro that provide essential functions

also adapted for specific sensors [48, 49]. When long SAR time-series have to be pre-processed,

python API such as snappy1 or pyroSAR2 enables to interact easily with SNAP features and

functions to process data automatically 3.

We can define two main parts of the workflow:

1. A preprocessing block P1 that can be performed independently for each image. Then two
1https://senbox.atlassian.net/wiki/spaces/SNAP/pages/8847381/Developer+Guide
2https://pypi.org/project/pyroSAR/
3A simple and complete tutorial to approach the SNAP Graph Processing Tool (gpt) that applies operations

automatically on a stack of images from a terminal is available in the RUS Copernicus tutorial N◦10

https://senbox.atlassian.net/wiki/spaces/SNAP/pages/8847381/Developer+Guide
https://pypi.org/project/pyroSAR/
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possibilities are met:

(a) Amplitude only: in that case, the usual procedure is to convert the image from the

radar geometry to a ground geometry (usually called Ground Range Detected (GRD)

product: projection to ground range using an Earth ellipsoid model and multilooking

to obtain square pixels).

(b) The phase is required4: it is recommended to keep the data as raw as possible (calibra-

tion and orbit file for geolocalisation may be sufficient); multilooking can be performed

for polarimetric processing but is not preferred for interferometry and permanent scat-

terer analysis since it implies resolution loss [50]).

These steps aim to calibrate the data radiometrically and perhaps use a precise orbit file to

improve geo-localization of the images 5. This step converts the input data into measurable

information that depends on the desired application.

2. A preprocessing block P2 that will superpose (or align) the images of the time-series. The

goal is then that for each image of the stack, the range and azimuth pixels represent the same

geographic point so that a comparison between images is possible. It is a critical step in the

process that can impact the results for posterior operations. This step can be done with a

coarse coregistration based on each image’s geographic coordinates and a fine coregistration

based on the correlation between strong scatterers. We can then estimate a shift in pixels

in range or azimuth and correct it. Other methods based on 2D-FFT of the image enable

us to perform sub-pixel coregistration by estimated the shift between the two images in the

frequency domain [51]. In general, when the resolution of the SAR images is high, it is

becoming more challenging to obtain a satisfactory coregistration.

The framework that we presented consists of two main processing steps, one that can involve

the images independently, and the second one that performs the coregistration between each of

the images. For the rest of the thesis, we will introduce another framework that will include the

steps we already presented. Therefore, these two pre-processing blocks will be defined as a general

pre-processing named P .

4as for interferometry or polarimetric processing
5This step also includes possible burst processing if the images have particular acquisition modes such as Sentinel

1
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2.2 Datasets exploited during the thesis

We present here some datasets exploited during the thesis that will be used in different chapters

for illustrations or SAR time-series study. Other datasets may be used in the thesis for specific

applications; their presentation and introduction will be done before their exploitation, in dedicated

chapters.

2.2.1 Sentinel 1 (GRD) dataset above Singapore

Sentinel 1 is a constellation of two C-band satellites (Sentinel 1A and Sentinel 1B) developed by

the European Space Agency and funded by the European Commission.

Figure 2.2: Sentinel Acquisition modes (from left to right): IW (Interferometric Wide Swath
Mode), Wave Mode, Strip Map Mode and Extra Wide Swath Mode from [9].

It is for now, and since 2014, the only constellation of SAR satellites that guarantee continuously

free data. This constellation of satellites enables us to obtain a 12 days revisit time or less if

satellites and orbits are combined. Several acquisition modes can be used, as presented in Figure
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2.2. Interferometric Wide Swath Mode (IW) is the mode of acquisition that is the most present

within the Copernicus Access Hub data [52]. More information about the revisit time and the

available acquisition mode depending on Earth’s position is shown in Appendix A.

(a) Footprint of Sentinel 1A acquisition dataset above Singapore: relative orbit 171 (Ascending).

(b) Batch used to process each image of the stack in ESA SNAP (Sentinel Application Software).

Figure 2.3: Sentinel 1 GRD dataset presentation for the study of maritime surveillance in the
region of Singapore.

The characteristics of the products used for our study are presented in the table 2.1. The

footprint of the images monitored by the sensor is shown in Figure 2.3a. The orbit being ascending

and antennas pointing to the right, we represented the satellite path with a black arrow in the

Figure 2.3a. In that case, the data will be investigated in amplitude only, so we downloaded the

GRD products, and we applied the associated pre-processing P1 graph, presented in Figure 2.3b.

We briefly define the purpose of each block between Read and Write:

• Apply orbit File: allow to get precise orbit information to improve geo-localization of the

image;
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• Thermal Noise Removal: suppress the thermal noise using a noise look-up table that depends

on the acquisition;

• Calibration: convert the digital pixel values into radiometric information using as well a

look-up table; calculate σ0 for each pixel;

• Terrain Correction: correct the distortions introduced by the topography, as presented in

Chapter 1 using a DEM (Digital Elevation Model). The image can be superposed on a map,

as provided by Google Earth, for instance;

• Subset: perform a subset to obtain the area of interest.

Afterward, the images are coregistered between each other using the function «Coregistration»

from SNAP software.

Table 2.1: Sentinel 1 data acquisition characteristics used for the study above Singapore

Technical Characteristics of the Sentinel Images

Acquisition mode Interferometric Wide (IW) swath
Processing level Level-1 Ground Range Detected
Polarisation VV+VH
Pixel spacing 10×10 m
Resolution range and azimuth 20×20 m
Swath width 250 km
Frequency band C-Band
Relative orbit number 171
Near incidence angle 30◦
Far incidence angle 46◦
Acquisition dates From 3 Feb.2017 to 26 Dec. 2019 (83 images)
Location http://maps.google.com/maps?q=1.294152,103.733984

Figure 2.4: Sentinel 1 GRD VV product above Singapore acquired on the 11th of February 2018.

http://maps.google.com/maps?q=1.294152,103.733984
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This dataset will be mainly exploited for maritime surveillance applications since Singapore

has one of the world’s biggest port (by cargo volume).

(a) Radiometric image acquired on the 11th February 2018 at VV polarization.

(b) Optical image acquired on the 10th February 2018.

Figure 2.5: Radiometric and optical images of the studied area: (a) Radiometric image acquired
on the 11th February 2018 at VV polarization, (b) Optical image collected on the 10th February
2018.

This area provides a challenging configuration for the specific application of ship detection inside

harbors. In Figure 2.4 is presented a radiometric image of the region of Singapore. The study

area is framed in red and consists of an industrial harbor between central Singapore island and

Jurong island, as presented in the optical image acquired on the 10th February 2018 by LANDSAT
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in Figure 2.5. A radiometric image, monitored one day after the optical one, is represented for

the polarisation VV. In industrial harbors, the configuration evolves fast regarding the number

and position of the ships. As a consequence, the comparison with optical data cannot be used for

validation. Therefore, we propose to use the AIS signals (Automatic Identification Systems) of

the ships to obtain real-time information. This aspect will be discussed in chapter 7, dedicated to

maritime surveillance.

2.2.2 UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar)

The UAVSAR instrument [53] has been developed by the NASA JPL (Jet Propulsion Laboratory)

to acquire remotely airborne repeat-track SAR data. This SAR platform is an airborne sensor,

whereas Sentinel 1 is a spaceborne sensor. It implies several consequences on the image that can

be taken into consideration, depending on the situation. Indeed, with spaceborne sensors, the

incidence angle variation depending on the range is less broad than in the airborne sensor’s case

due to the distance between the plane and the illuminated area.

Figure 2.6: UAVSAR Airborne sensor developed by NASA JPL (Jet Propulsion Laboratory).

The side-looking UAVSAR instrument’s main objective is to accurately map crustal deforma-

tions associated with natural hazards, such as volcanoes and earthquakes. This sensor operates

at P-, L- and K-bands and can collect the radar signal in four polarisations (HH, HV, VH, and

VV). Several calibrated and coregistered stacks of SLC images are available in open access from

the data search website dedicated to UAVSAR [54].

San Francisco region

The characteristics of the SAR images collected above the San Francisco region can be found in

table 2.2. The footprint of the monitored area is presented in Figure 2.7. This stack of SLC images

can be processed directly for time-series analysis since it is calibrated and coregistered.
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Table 2.2: UAVSAR data acquisition characteristics used for the study.

Technical characteristics of the UAVSAR images above San Francisco region

Acquisition Mode PolSAR
Processing level Single Look Complex (SLC)
Polarisation (HH+HV+VH+VV)
Resolution 1.8x0.8m
Frequency band L-Band
Stack Name SDelta 23518 01
Acquisition dates July 2009 to November 2017 (68 Images)
Location https://www.google.com/maps/search/?api=1&query=38.052500001,-121.83250000

Figure 2.7: The footprint of the UAVSAR sensor above the San Francisco region: product
SDelta 23518. The area squared in red is the region of interest in Pittsburg’s industrial area
(California, USA).

The sensor’s path is represented by a black arrow in Figure 2.7, and the region of interest used

for the study of SAR time-series is framed in red. This dataset is interesting because it contains

68 SAR images in full polarisation. We chose an area of interest with a small industrial harbor; we

show a radiometric SAR image in figure 2.8a acquired the 18th July 2009, and an optical image

acquired the 23rd July 2009 from LANDSAT optical sensor in Figure 2.8b. This harbor is part of

Pittsburg’s industrial area (California, USA), which is in the region of the Sacramento-San Joaquin

River Delta (San Francisco Bay). This dataset will be exploited for SAR time-series with interest

in harbor monitoring.

https://www.google.com/maps/search/?api=1&query=38.052500001,-121.83250000
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(a) Radiometric image acquired on the 18th of July 2009 at HH polarization (UAVSAR).

(b) Optical image acquired on the 23rd of July 2009 (LANDSAT).

Figure 2.8: Radiometric (a) and optical (b) images of the studied area (Pittsburg, California,
USA).
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2.3 Discussion

The preprocessing of SAR images is a crucial step when the goal is to perform time-series analysis.

Knowing the preprocessing operations performed on SAR time-series is essential because it im-

proves our understanding and interpretation of the time-series’ content. The data sets that we will

analyze in this manuscript are then constituted of a first set of 83 C-band SAR images above the

region of Singapore acquired by Sentinel 1 (VV and VH) and a set of 68 L-band full polarimetric

SAR images acquired by UAVSAR above the city of Pittsburgh in the region of the Sacramento-

San Joaquin River Delta. As expressed before, the strength of Sentinel 1 relies on the capacity

to continuously monitor the Earth, making possible quasi fully automatic framework. Thanks to

this satellite constellation, the effort made to develop different platforms (SNAP, PolSARpro), and

users’ contributions via forums or python programs, it is possible to obtain free information on

most of the globe’s surface with a good revisit time. While the resolution of Sentinel 1 is not suit-

able for some applications (e.g., detection of vehicles in cities), we will see that it gives interesting

results when time-series are exploited for ship detection in harbor environments.

Summary :

This chapter introduced data sets that will be used on several occasions during the thesis for

simple illustration or more in-depth SAR time-series analysis. The preprocessing of data

is mandatory to ensure accurate exploitation and avoid misinterpretations due to wrong

calibration or coregistration. A general but not an exhaustive framework of preprocessing

has been introduced, as it is highly dependent on the sensor’s acquisition modes and the

domain of applications.
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Chapter 3

Introduction to change detection

in SAR time-series: applications

to target detection

Objectives :

This chapter presents an overview of change detection techniques applied to SAR time-

series. Depending on the application, the available data, and the purposes, different strate-

gies can be carried out. The classification of change detection methods can be done through

different criteria: applications, types of data, or algorithm nature. We propose to classify the

current methods in two fundamental methodologies. The first one is driven by bi-date (or

bi-temporal) similarity testing. It represents a classical way to carry out change detection

in SAR time-series. A second approach considers the homogeneity of the whole time-series

to look eventually for ruptures. In this chapter, The first part consists of presenting the

key aspects when designing a change detection framework applied to SAR time-series. The

second part investigates and describes different change detection approaches according to

the two methodologies mentioned above. Finally, ephemeral target detection is introduced

in the context of SAR time-series, and the main challenges are presented.

Remote sensing became more and more attractive for the scientific community and governmen-

tal institutions in different domains. Several SAR times series are currently available, and even

33
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more will be in open access in the future [55, 56, 20]. Therefore, it is essential to develop method-

ologies and concepts to deal with this critical amount of data and extract the information in our

interest. For a few years, the access to SAR open data acquired periodically has been made easier.

SAR time-series exploitation has been thoroughly studied, and statistical tests have been derived

in different forms to obtain the information of change within the time-series and the change points.

Figure 3.1 presents a historical tree of change detection methods applied to remote sensing data.

As we can see, three important families are shown: Classification, Transformation, and Algebra.

According to this classification tree, the change detection methods we will investigate and present

in this manuscript are mostly part of the Algebra family.

Figure 3.1: Historical tree of change detection methods for remote sensing.
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3.1 Design a change detection framework in the context of

SAR time-series

Without considering the remote sensing technology, the purpose of change detection is to quantify

and decide whether the attributes (measurable information) of a particular area have changed

between two or more acquisitions. One variable of interest in SAR images is the backscattering

signal used in its complex or magnitude form, monovariate (one polarisation), or multivariate

(polarimetric acquisitions or multi-scale coming from subspectral exploitation). Change detection

strategies are numerous, and extensive literature is available in the Earth observation community.

Since the diversity of changes is broad, it is essential to design a framework that will maximize

the opportunity to observe the changes that characterize the application of interest. Designing

change detection algorithms requires to define the problem as precisely as possible to use prior

knowledge and improve the outcome of the detection. These different aspects can drive change

detection strategies and frameworks. Firstly the application domains will fix constraints

on the choice of data (polarimetric data, spatial resolution, revisit time). The type of data will

then impact detection strategies and require specific processes or assumptions about the temporal

behavior of the objects seen under a given operating frequency. This temporal behavior will impact

the underlying hypotheses and strategies for change detection. Secondly, the way to represent

changes will impact the type of information we will have to measure: binary change

maps, multiclass change maps, continuous change maps, maximum change dates, or classification of

change types. Thirdly, we have to consider the computation time and the preprocessing

complexity associated with SAR time-series exploitation. For instance, the accuracy required for

SAR data’s coregistration may be critical or not depending on the type of changes.

3.1.1 A general framework of change detection for SAR time-series

In this part, we present in figure 3.2 a general framework of change detection for SAR time-series

and briefly introduce the specificity and the role of each block.

1) Data Collection:

This step represents data collection considered in a problem of change detection, taking into account

the possible geometries of acquisition (satellite orbit, incidence angle), temporal resolutions, type

of sensors (multi-sensors, or only one sensor). In general, the input data consists of a set of images

acquired at a different time (with possible diversity for each image, such as polarimetric, angle, or

frequency of acquisitions).
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Figure 3.2: A general framework of change detection for SAR time-series, adapted from [10] and
[11]

2) Preprocessing:

The preprocessing step is essential and significantly influences the quality of change detection

results. It includes the preprocessing P1 and P2 introduced in chapter 2 to obtain a stack of

images for which the measurable information is comparable between images. Addionnaly, if the

change detection considers changes in features space, it can also be gathered in a preprocessing

step. For instance, if a prior polarimetric classification is performed or sub-bands of the images

in spatial Fourier space are exploited, the change detection algorithm will be carried out on those

features and not anymore on the backscattering signal itself.

3) Data analysis:

Data analysis or data comparison is the heart of the change detection framework. The measurable

quantities of the preprocessed input data are computed into a measure of similarity that aims

to represent whether it is likely that a change occurred. Different approaches and structures of

algorithms will be described and developed in the following sections of this chapter.

4) Postprocessing:

Postprocessing includes thresholding or classification of changes. In general cases, the similarity

measure will be thresholded to obtain a change map or a set of change maps that can be combined

to generate change detection products.

5) Change detection products:

Change detection products represent the final visualization format of the change detection pro-

cesses. The results can be presented differently depending on the application and the user purpose:

• Binary change map

• Frequency of changes
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• Most significant change

• First change or last change

• Classification in the type of changes

• Raw output (no thresholding)

3.1.2 SAR time-series analysis: different types of changes

The observation of Earth from space leads to the study of complex temporal phenomenons. It is

then essential to define the information of interest to optimize the framework of change detection.

We can divide the changes into natural changes and man-made changes. For these two categories,

the following temporal features can be considered:

• Periodic changes: when a seasonal variation is observed (tidal effect, vegetation changes

through seasons, rise and recede of water in river and lake, agricultural activity).

• Ephemeral changes: flooding, vehicles or ships appearance/disappearance.

• Permanent change: an event established in time, such as building construction. In this

case, the temporal signal corresponds to a rising or falling edge.

• Continuous change: as for ice melting in polar regions or building construction.

• Chaotic evolution: as for crop fields sensitive to meteorological variation condition.

3.2 Change detection techniques overview

This section does not give an exhaustive presentation of all techniques, but we propose to present

several SAR time-series change detection approaches that have inspired the present study. The

first one is based on bi-temporal approaches. A sequential or exhaustive (all possible combinations)

testing between bi-temporal combinations of the time-series is performed. In a second time, we

present other strategies that aim to investigate the overall homogeneity of the time-series to decide

either a change occurred or not. If the purpose is to date the ruptures, different strategies are

carried out to extract them.

3.2.1 Bi-date approaches (Similarity)

The most natural change detection frameworks for remote sensing consider binary tests between

image pairs sequentially or in an exhaustive way (all possible combinations). The terms bi-date

or bi-temporal may be employed in the literature when considering such frameworks. Different

measures of change (or similarity) can be employed. We will describe here the most significant and
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relevant for our research in SAR imaging applications. Performing bi-date-based change detection

implies using a spatial window to obtain local statistics for each pair’s images. Therefore, the

similarity is evaluated (generally complex value, amplitude, intensity, or covariance matrix) 1

between a pixel and its neighborhood at a date m and at a date k. A threshold is used to decide

between one of these two hypotheses:


H0 : No change between date m and date k

H1 : A change occurred between date m and date k
(3.1)

Coherence as a measure of change

Considering a complex measurements pixel sm at a date m and sk at a date k, it is possible to

express their interferometric coherence by the following function:

γI = < sms
∗
k >√

< sms∗m >< sks∗k >
= ρej∆φ (3.2)

”<>” denoting a spatial averaging operator of N spatial samples, ρ is the interferometric co-

herence or more generally coherence and the interferometric phase ∆φ = Φm − Φk with Φm and

Φk the measured phases at dates m and k. The phase difference is exploited in SAR interferometry

to highlight subtle changes that may have occurred, for instance, subsidence or earthquake mon-

itoring [57]. The use of coherence may lead to misinterpretation because of the Clutter-to-Noise

ratio (CNR)2:

ρ = CNR

1 + CNR
(3.3)

This expression shows that if the signal amplitude is low (signal amplitude near the NESZ), the

expected coherence tends to 0 even though no significant change occurs. It is one of the main

drawbacks of coherent change detection.

Generalized Likelihood Ratio Test (GLRT) for covariance matrices equality

The GLRT for covariance matrices equality has been introduced by [45], [58] and [59]. It is the

most popular form of change detection based on whether the intensity σ (that follows a Gamma

law) of a monopolarised signal or the covariance matrix C (that follows a Wishart distribution) of

a polarimetric signal. The GLRT is an LRT (Likelihood Ratio Test) that replaces the unknown

parameters in the likelihood functions (for H0 and H1) by their maximum likelihood estimator
1It can also be classes from a decomposition; however, we will not consider this case in the manuscript
2Clutter is defined as a signal that does not correspond to a target nor pure noise. It will be discussed more in

detail afterward
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(MLE). When dealing with covariance matrices, the test γG can be therefore expressed by denoting

Cm and Ck of size p × p with p the number of polarisations, the sample covariance matrices for

a given pixel at a date m and date k estimated using a spatial window containing N elements:

γG = |Cm|N |Ck|N

| 12 (Cm + Ck)|2N
(3.4)

When p = 1, for the monopolarisation case, the test becomes:

γG = σ̄Nmσ̄
N
k( 1

2 (σ̄m + σ̄k)
)2N (3.5)

where σ̄k =< σk > and σ̄m =< σm > are the intensity averaged over N spatial pixels of a

monopolarized acquisition respectively for a given pixel at date m and date k. It is shown in [59]

that the test 3.5 can be rewritten as the usual ratio test between averaged intensities of images.

It has to be noted that the statistics underlying these tests in monopolarisation and polarimetric

derives from a Gaussian assumption of the monitored signal’s real and imaginary part.

Other similarity measures

Other similarity measures can be exploited for SAR images such as Kullback-Leiber (KL) distance

[60] that is regarded as an information theory measure between the modeled distribution of the

local data at two different dates. As discussed in section 3.1.1, the backscattering coefficient can

be expressed through a wavelet transformation giving multi-scale information of the pixel that can

be exploited as multivariate information. This strategy has been exploited in [61, 62, 11].

Finally, a pre-classification, such as H/A/α, Van-Zyl, Yamaguchi, or any polarimetric existent

classification, can be performed, and the change information will therefore rely on a change of

class as in [63].

Time-series analyses with frameworks using bi-date approach

Bi-date frameworks have been considered in several studies to describe the behavior of changes in

SAR time-series. In [64, 62], the CDM (Change Detection Matrix) has been introduced to represent

the exhaustive bi-temporal behavior of the time-series for each spatial position. Similarity cross

tests are performed and the outcome is gathered in the CDM containing all the information of

changed and unchanged pixels. This method has interesting insight and enables to obtain some

temporal patterns since it is scanning each combination of dates extensively. If we consider a

similarity measure D(ϑm, ϑk) between two measurables ϑm and ϑk at date m and k. The binary

outcome bm→k of the test after thresholding is expressed for each spatial position in the Change
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Detection Matrix as follows:

CDM =



b1→2 b1→3 · · · b1→D

b1→3 b2→3 · · · b2→D
...

...
. . .

...

b1→D b2→D · · · bD−1→D


Most of the bi-temporal frameworks can be derived from this CDM; for example, taking the

CDM matrix’s diagonal would give a sequential (chronological) bi-temporal test. It is classical in

change detection to consider sequential frameworks. For instance, it has been exploited in [65]

for oil spill detection and used more recently with only coherent change detection as a similarity

measure to monitor building constructions in Iran [66]. Besides, the complete information of the

CDM may be exploited, as in [64] using matrix clustering to derive temporal patterns such as

periodic, step changes, or chaotic changes. However, the use of the Change Detection Matrix is

computationally heavy as it requires calculating a D × D matrix for each spatial position for a

temporal stack of D images.

Another method [67, 68] recently developed initially for image denoising purpose and called

RABASAR (RAtio-Based multitemporal SAR despeckling), is based on a temporal multi-looking

of time-series; it is also used for CD applications in time-series from these denoised SAR images.

Bi-temporal strategies have been historically introduced when few temporal images where avail-

able. Since the launch of Sentinel 1 in 2014, access to long time-series became widespread. Exten-

sive testing in bi-temporal frameworks becomes challenging to put into practice due to the high

computational cost that it may generate. Alternatively, using only sequential consideration leads

to different problems that we will introduce at the end of this chapter.

3.2.2 Overall temporal statistics (Homogeneity)

More recently, several approaches consider studying the overall behavior of time-series, without

dating the change as a first goal. Therefore, we will first introduce some homogeneity measures

that consider the whole time-series and not bi-temporal testings. In that case, the homogeneity

test’s binary outcome is expressed only temporally or taking into account a neighbouring window

as done precedently for bi-date testings. A threshold is used to decide between one of these two

hypotheses:
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
H0 : No Change in whole time-series

H1 : At least one change occurred
(3.6)

Different strategies are carried out afterward to find the ruptures in the time-series, it can also

involve some methods from bi-temporal schemes.

GLRT for the equality of several covariance matrices (or Intensities)

The term «Omnibus» in statistical analyses refers to an overall test that aims to decide if at

least one of the population’s estimated statistical parameters is different from the others. This

test compares within the whole time-series intensities values in the case of monopolarisation data

or covariances matrices in the case of polarimetric data. In particular, in [45, 69, 58] the binary

outcome of such test provides the information of a change within the time-series without considering

firstly when the change occurred. The GLRT test in Gaussian context γGM for an overall test on

the time-series can be expressed as follows for D covariance matrices Cd (d = 1, .., D) and given

N spatial samples pixels for the estimation of the covariance matrix:

γGM =
∏D
d=1 |Cd|N

| 1
D

∑D
d=1 Cd|DN

(3.7)

In the case of monopolarisation data, the test become :

γGM =
∏D
d=1 σ̄

N
d

( 1
D

∑D
d=1 σ̄d)DN

(3.8)

where σ̄d =< σd > is the intensity averaged over N spatial pixels of a monopolarized acquisition

at date d. We can notice that setting D=2 brings back the tests introduced before for a bi-

temporal approach in section 3.2.1 for the polarimetric case and for the monopolarized case. For

non-Gaussian assumptions, GLRT statistics have been derived in [11, 70].

Temporal Variation coefficient

The variation coefficient (CV), also known as relative standard deviation, is mathematically defined

in probability theory and statistics by std(α)/µα, where std(α) is the standard deviation of the

variable α and µα its mean value. It can be considered as a normalized measurement of the

dispersion of a probability distribution. It has been introduced firstly for application in SAR

imaging for spatial detection of abrupt changes in [71, 72]. The most general way to represent the

variation coefficient derives from the first two statistical moments m1 (mean) and m2 (variance)
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of any distribution :

CV =
√
m2 −m2

1
m1

(3.9)

A thorough study can be found in [73] for temporal CV analysis and related statistical proper-

ties. As presented in chapter 1, it is commonly accepted that the amplitude of a speckle without

texture follows a Rayleigh Nagakami distribution:

RN [µα, L](α) = 2
√
L

µαΓ(L)

(√
Lα

µα

)2L−1

e
−
(√

L
µα

α
)2

(3.10)

where α is the amplitude, µα = E[α] is the esperance of α, Γ is the gamma function and L is

called looks number of the product. In this approach, the temporal statistics only is exploited,

so no spatial neighborhood window is used. According to [73], the theoretical variation coefficient

can be derived then as follows:

CVtheo =

√
Γ(L)Γ(L+ 1)

Γ(L+ 1
2 )2 − 1 (3.11)

This expression shows that the variation coefficient has the same value for all stable speckle

zones, whatever the average amplitude of this speckle. It is also shown in [73, 43] that the stan-

dard deviation of the variation coefficient decreases in
√
D, D being the number of dates of the

time-series. Interestingly, in [74], the variation coefficient is used as a preliminary test to select can-

didate permanent scatterers in a series of interferometric SAR images. Indeed, in the article, the

theoretical link between the variation coefficient, the SNR, and the phase deviation is established3.

The results of this study show that, when the SNR is sufficiently high, so when a deterministic

scatterer with a high contribution is temporally stable, the phase deviation of the interferometric

signal is equal to the variation coefficient itself [74]. In practice, a value inferior to 0.25 is chosen

for the selection of permanent scatterers4 (considering that for interferometry, the products used

are SLC so L=1). For distributions that would model deterministic structures, whatever the value

of this permanent scatterer, the variation coefficient’s theoretical value decreases and tends to zero

when the permanent scatterer’s contributions tend to infinity (for a given number of looks). This

variation coefficient has interesting properties and will be studied more deeply in chapters 4 and

5.

3For permanent scatterers, a Rice law is more appropriate to model the signal. Actually, the SNR can be used
as a parameter of the Rice Law. For L=1, when the SNR is low, the distribution of the amplitude becomes simply
a Rayleigh distribution (normal speckle), whereas, for high SNR (Permanent Scatterer), a Rice distribution seems
to be a better model according to [74, 73]

4StaMPS (Stanford Method for Permanent Scatterers) uses the coefficient variation as prior permanent scatterers
selection
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Time-series analyses with frameworks using overall temporal (or spatio-temporal)

statistics

In recent years, the bi-temporal approaches have been replaced gradually by overall statistics. Two

possibilities are met with these approaches: first, the information that at least one change occurred

within the time-series might be enough, and no interest is brought to the rupture date. Alterna-

tively, some approaches will investigate when the ruptures occurred. In [75], the overall statistics

in MIMOSA (Method for generalIzed Means Ordered Series Analysis) gives the information that

a change occurred in the time-series. In that case, the position (range-azimuth) of the change is

known, but when the rupture occurred remain unknown. In [76] REACTIV (Rapid and EAsy

Change detection in radar TIme-series by Variation coefficient), the overall test is performed using

the variation coefficient described in this section by displaying the date of the most significant

change in the time-series (maximum of the amplitude if a change occurred). In [73], the variation

coefficient is used to find profiles of changes such as Dirac form or step forms. Finally, in [58],

step-change is investigated using GLRT time-series of SAR images. More recently, one change

detection framework proposed by [77] is based first on the GLRT (omnibus test) on the covariance

matrices estimated along the time-series (or Intensities) and second estimates change points by

scanning the time-series sequentially using marginal tests.

Exploiting time-series’ overall temporal statistics decreases the computational cost since we

do not scan all the time-series’ bi-temporal combinations exhaustively. If no change has been

detected within the time-series, there is no need to look for a change point for this geographic

position. However, currently, the frameworks seeking for change points consider ”steps” changes or

”Dirac” changes in the series so that sequential (chronological) tests are in general enough. From

the literature, we can notice that the characterization of the type of changes seemed to have been

successfully performed only using exhaustive bi-temporal frameworks.

3.2.3 Threshold determination

For each similarity or homogeneity measure presented before, one has to use a threshold to decide

between one of the two hypotheses H0 unchanged or H1 changed. For some similarity measures

presented before, a threshold can be directly related analytically to a given false alarm probability.

It is the case for the GLRTs presented for a bi-temporal case or overall case where a threshold

can be chosen according to a given significance level using an asymptotic expansion of the test

distribution [45]). It is challenging to obtain a decision threshold automatically because it might
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depend on the data collected and the type of changes. A global threshold can be applied to

the whole image to choose between changed and unchanged areas using the Otsu method [78] or

Kittler-Illingworth (KI) threshold [79].

3.2.4 Performance metrics for change detection

In the thesis, we will use a common approach for change detection performance evaluation. We

consider a ground truth obtained with a dataset or manually constructed that corresponds to a

pixel map where known changed and unchanged areas are represented. We will then compute a

ROC (Receiver Operating Characteristics) curve that represents the PD (probability of detection)

versus the PFA (probability of false alarm).

Figure 3.3: representation of a ROC (Receiver Operating Characteristics) adapted from [12]

In practice, a set of thresholds is used to generate binary change maps from a similarity test.

Comparing each of the binary change maps with the ground truth, it is possible to calculate the

PD and PFA empirically for each threshold as follows to construct the ROC curve:

PD = TP

NT
(3.12)

TP corresponds to the number of true positive detection and NT the number of pixels defined as
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target pixels (changed pixels).

PFA = FP

NB
(3.13)

FP corresponds to the number of false positive detection (false alarm), and NB the number of

pixels defined as background pixels (unchanged pixels).

As presented in figure 3.3, a straight line with PD=PFA is the characteristic of a random

detector (worst possible). On the contrary, for a given probability of false alarm, if the probability

of detection is higher, we can consider that this algorithm’s detection performance is better. For

instance, the blue curve represents better detection than the orange and green curves. The main

advantage of this representation is that it is possible to compare different algorithms, even though

their statistics and computation are different.

3.3 Challenges to highlight ephemeral targets with Change

Detection

We introduce first some vocabulary frequently used for target detection:

• Noise: random signal inherent to the measurement

• Target: object of interest

• Clutter: signal part of the background that is not target and not noise

Target, in the thesis, refers to an ephemeral object that possesses the ability to move (be present

or be absent) in acquisitions of SAR images. More specifically, our interest is focused on vehicles

or vessels. Therefore, these objects can remain for several acquisitions at the same position, leave,

come back or another object can take its place. It has not to be mistaken with GMTI (Ground

moving target indication) applications, where the goal is to detect objects that possess the ability

to move during the acquisition of SAR images. The targets in our interest can be moving during

the acquisition or can be stationary during the acquisition. In this section, we present the concept

of target detection using change detection. First, we recall some challenges related to target

detection using only one SAR image. In the second part, we present the difficulties encountered

when considering change detection for target detection using two or more SAR images.

3.3.1 Challenges of target detection with one SAR image

ATR (Automatic Target Recognition) aims to gather information with a sensor (usually radar)

and decide whether the signal contains a target part of a dictionary. The detection (usually
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called prescreening) is a preliminary step to extract possible target candidates according to their

statistical and/or physical attributes. For SAR imaging, when the target can be defined only

as a bright point in a homogeneous lower amplitude background (ships in the open sea), CFAR

(Constant false alarm rate) 5 detectors are usually considered.

Figure 3.4: Classical spatial CFAR detectors representation

[4] presents a review of CFAR filters based detection method for SAR images. In a few words,

the statistical characteristics of the background frame (or ring) are compared with the one from

the target box using a sliding window, as presented in figure 3.4. A guard area is used to ensure

that the background doesn’t contain possible pixels from the target itself and from other targets.

The detection threshold is computed according to a given model of the background statistics and

satisfies a theoretical constant probability of false alarm; this is why it is called a CFAR detector.

When the background is made of bright pixels (urban areas, a forest at low frequency, rough sea),

the CFAR filters become more complicated to use. According to the environment, some methods

are generally defined where physical and statistical models of both targets and clutter are necessary.

In chapters 7 and 8, several considerations will be presented for target detection. In particular,

we will focus in this thesis on two difficult environments for target detection: the first one is the

detection of ships in the harbor environment; the second is the detection of vehicles concealed

under foliage. When the target is not known a priori, it is difficult to evaluate with only one

image if the object of interest belongs to the environment or if it is supposed to be present a the

moment of the SAR acquisition. When two or more SAR images of the same scene are available,

5The name CFAR has been given because they possess the CFAR property, meaning that the choice of an
adaptative threshold that depends on the background satisfy a constant false alarm rate
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it is possible to introduce temporal information to decide whether an object seems to be part of

the static background or not.

3.3.2 Target Detection with two or more SAR images

When two or more images of the same scene are available, change detection (CD) is a good

candidate to detect a target in a high clutter environment. Indeed, if the clutter remain temporally

stable (between acquisitions), the change information will consist only of ephemeral events. They

include the targets of interest that were present at a given day. Suppose a scene is without

ephemeral targets, for instance acquired during dedicated measurement campaigns. In that case,

this SAR image can be used as a reference to produce a change map when compared with a

mission image containing possibly targets. In the context of open data (Sentinel 1, UAVSAR or

any continuous monitoring system), the image content is unknown and the precedent strategy

becomes more ambiguous because the result is a relative change between unknown scenes.

(a) Acquisition 1 (b) Acquisition 2

(c) Acquisition 3 (d) Acquisition 4

Figure 3.5: Illustration of temporally overlapping targets situation
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Notably, we call ”temporal target overlapping” a phenomenon when a target is present at the

two dates of change detection. It can typically happen in dense areas such as industrial harbors

near mooring quays or parking areas. The result is a relative change between two targets, which

may or not have different sizes, shapes, and orientations. It generates some misinterpretations on

the change map; the outcome cannot be interpreted as a target’s presence or absence. We use a

simplified illustration in figure 3.5 to highlight this phenomenon. We consider a background scene

of temporally stable structures at acquisition 1 (a building and trees). A car appears at acquisition

2, and another one takes its place at acquisition 3, acquisition 4 is again the background scene.

In the context of a chronological bi-temporal framework, acquisition 2 and acquisition 3 would

produce a change detection result shown in figure 3.6. The result is the relative signatures between

the two cars. It can produce therefore parasitic signatures if the targets are of different shapes,

or no change if the same target remains at the same position. The best reference image that we

would take if we wanted to obtain the signature of the targets present in acquisition 2 and 3 is

obviously acquisition 1 or acquisition 4. However, in practice, SAR images’ content is unknown,

and it is not possible to define a reference scene without ephemeral targets.

Figure 3.6: Outcome of a change detection between acquisition 2 and acquisition 3: the spatio-
temporal overlapping of target generates a undeterminated outcome that depends on the relative
signature of each target

This simplified configuration raises the concept of a temporally stable background scene and

ephemeral object detection that we aim to investigate during the thesis. Firstly, we aim to generate

a background reference image representative of the stable structures within the time-series called

FBR (Frozen Background Reference) image. Secondly, a change detection between this FBR image

and another image would finally lead to detecting the ephemeral objects at each acquisition.
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3.4 Discussion

Target detection in SAR time-series seems at first sight trivial to solve because we can associate

their temporal behavior with step changes or impulsive changes. However, the detection of vehicles

or vessels becomes more ambiguous because, in high attendance areas, their space-time overlap-

ping implies relative comparison, leading to misinterpretation of detection. It seems, therefore,

more comfortable to have a target-free scene with only an immobile background that can be used

for comparison and thus improve the visualization, the interpretation and detection of a possible

ephemeral objects for a given acquisition.

On the one hand, we can encounter some difficulties detecting target using only one SAR image

because this target might have the same or close properties to the surrounding objects in the

background. On the other hand, using time-series of SAR images might lead to misinterpretation

due to temporally overlapping ephemeral objects.

We propose to benefit from pixels’ intrinsic temporal characteristics to build a reference image

called Frozen Background Reference (FBR) image that will consist only in temporally stable struc-

tures in the time-series. From this FBR image, change detection can be performed with any other

SAR images to highlight ephemeral targets at a specific date.

Conclusion :

In this chapter, we presented an overview of change detection techniques for SAR time-

series. We highlighted two main philosophies: the first one relies on bi-temporal frame-

works that perform cross-tests exhaustively or sequentially between SAR time-series im-

ages, whereas the second one considers overall temporal homogeneity test and looks for

ruptures within the time-series. In this context, we presented the benefit of change detec-

tion methods in the case of target detection in a high clutter environment compared to a

target detection method based on a single SAR image. As a drawback, when SAR time-

series are considered, targets might overlap in time and generate misinterpretation issues in

high attendance environment. The target-free scene concept has to be introduced to solve

those issues and enable proper target detection.
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As presented in the previous chapters, the CD is an interesting strategy for the detection

and study of targets within a high clutter scene. In multitemporal SAR images, the detection of

ephemeral objects becomes challenging because targets-free scenes are in practice not available. In

SAR time-series analyses, most of the developed algorithms are designed to detect relative changes.

They can lead to misinterpretation when the purpose is to detect the amount of ephemeral (non

stationnary) scatterers at a given date in high attendance areas where the overlapping temporal

probability of target is high. The main advantage of current and future continuous SAR remote

sensing platforms (Sentinel 1 for instance) is the short revisit time between acquisitions (12 days

or 6 days with a combination of platforms acquisitions). We can notice that, in the optical remote

sensing community, continuous monitoring is common, whereas it is less present in SAR remote

sensing. Considering SAR systems that are constantly and repetitively monitoring the earth, we

aim to introduce a concept of temporally stable background image that we will call Frozen Back-

ground Reference (FBR) image.

The application of this FBR image is mostly dedicated to CD in this thesis. Considering in the

future that revisits time for SAR sensors will be smaller, it might be interesting to adapt the

strategies of detection. We aim to consider the problem of ephemeral object detection more as

a background removal/foreground detection problem as it would be done in surveillance camera

applications. For CD applications and especially target detection, the ground truth of an observed

scene is usually unknown, and reference target-free SAR image is not available. In this part, the

chapter 4 will introduce the concept of FBR image from a stack of SAR time-series. Its concept

and computation through a selection of temporally stable pixel strategy will be presented. In the

Chapter 5, we present illustrations of FBR images with simulations and real SAR images cases at

C-Band (spaceborne) and L-Band (airborne). Finally in the Chapter 6, we introduce the strategies

of change detection in the frame of FBR images.

Content of the part II :

• Chapter 4 : Frozen Background Reference Image from SAR time-series

• Chapter 5 : Simulation and illustrations of FBR images

• Chapter 6: Change Detection strategies in the context of FBR images
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Chapter 4

Frozen Background Reference

Image from SAR time-series

Objectives : This chapter aims to introduce the concept of Frozen Background Reference

(FBR) image in SAR time-series. With this FBR image, we seek to illustrate a temporally

stable behavior of an observed scene representing the permanent scatterer and the tempo-

rally stable clutter noise within a series of SAR images. The concept of SAR time-series

homogeneity will be approached and the process developed to compute this FBR image.

Its computation will be performed with simulated SAR data, real spaceborne and airborne

datasets at C-Band and L-Band.

We propose introducing a new concept called Frozen Background Reference (FBR) image

that aims to compute a radiometric image consisting only of the contribution of the temporal

pixels that are electromagnetically or statistically stable within SAR time series. It corresponds to

the signature of immobile objects and clutter noise that remain without temporal ruptures. The

resulting image is said to be a ”reference” image because it aims to represent an ephemeral target-

free scene in our context of target detection, whereas a ”mission” image is defined as an image where

possibly ephemeral targets are present. In this chapter, we investigate and illustrate the feasibility

of such a method by addressing the following aspects. First, the FBR concept and the possible

approaches to generate a scene representative of a temporally static background are described. To

do so, we will exploit the temporal variation coefficient introduced in chapter 3. We will illustrate

its behavior in time-series of SAR images with three specific points like PS (Permanent Scatterer),

unchanged low backscattering areas, and high attendance areas to illustrate experimentally its

55
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properties. Finally, the stable pixels selection strategy and the computation of FBR image will be

described.

4.1 Introduction to FBR concept

The concept of such a method can be seen as an analog version of background removal/foreground

detection in video surveillance applications with different physical and statistical considerations

due to the evident different acquisition principles. In the SAR community, few studies tackled the

problem of stable background representation and computation. We found one research study that

considers this problem [80] in the frame of CD where the amplitude time-series of SAR images

are represented as AR (autoregressive) models that aims to predict the most probable state of the

pixels for each range and azimuth. Afterward, the difference is performed between the estimated

image and the mission SAR images.

4.1.1 FBR concept and link with other fields

The background removal in video surveillance is a wide field of research where different strategies

have been developed through the last 30 years [81, 82, 83].

Figure 4.1: Background removal and Foreground detection in video-surveillance applications from
[13]. (a.1) Man walking, (a.2) Car passing, (b.1) Background image, (b.2) Background image, (c.1)
Change detection between images a.1 and b.1 and (c.2) Change detection between images a.2 and
b.2
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Usually, for video-surveillance applications, the background image can be set by recording

images without foreground object (ephemeral object), and then a change detection can be per-

formed with an incoming image with the background image to obtain the foreground objects in

the scene. As we can see in figure 4.1, the images denoted a.1 and a.2 contains a foreground objects

that appeared (respectively a man and a car). The images b.1 and b.2 are the same background

image that correspond to a usual state of the scene. The change detection from the background im-

age of the images a.1 and a.2 therefore produces the images c.1 and c.2. In that case, if we consider

that the background image has been set manually when no object where present, the detection

of foreground objects is directly possible. In the Chapter 1 of the survey on video-surveillance

applications proposed in [13], the problem under background removal and foreground detection in

video-surveillance applications appear to be similar with the purpose of our study. Indeed, it is

sometimes impossible in practice to obtain such background image so that strategies have to be

implemented to generate a scene without ephemeral objects. However, we can only observe that

the problematics are similar. As the sensor and the data collection are significantly different, we

have to propose a methodology that is adapted to SAR time-series to solve this problem.

4.1.2 FBR framework for SAR time-series

We introduce here the concept of FBR framework and its possible applications for SAR time-series.

The purpose of the FBR image processing is to generate an image that represents a temporally

stable behaviour of a scene for a given period of acquisition. We will then select in the time-series

at each range and azimuth, a set of pixels that represent a temporally stable behavior of the scene

and gather them into an image called FBR image. We want to compute an ephemeral target-

free image representing an electromagnetically (permanent scatterers) and statistically (clutter

noise and speckle) stable state of the scene. The general framework is presented in figure 4.2.

The framework takes as input a temporal serie of SAR images, select pixel that are temporally

homogeneous and compute the FBR image. Then for any SAR image, we can perform a change

detection to obtain the ephemeral objects at a given date. Other strategies may be based on

the change detection between FBR images computed over different seasons to obtain an overall

change at a different time scale (that would be related more to changes established in time). We

can consider as well to update the FBR image taking into account the outcome of the change

detection.
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Figure 4.2: Illustration of FBR framework and example of objects detected the 02 March 2019
in the region of Singapore projected on Google Earth optical image in background: black points
represents where the most significant changes occurred compared to the FBR image

In this thesis, change detection with another FBR image and the update of the FBR image has

not been studied but can be investigated for future works.
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For this study, we focused on the detection of ephemeral objects. The illustration in figure 4.2

corresponds to a example of a change detection between a FBR image computed over three years

(2017 to 2019) and a Sentinel 1 acquisition from the 2 March 2019. The most significant ephemeral

events detected at this date are indeed the ships due to their metallic structures and sizes compared

to the 20 by 20 m resolution of Sentinel 1 GRD images. This image serve as a visual illustration

of the results, the specific aspect of maritime surveillance applications using FBR framework will

be presented in the chapter 7.

In the following section we will approach the temporal behavior of pixels using the time-series

presented in chapter 2: a set of 83 GRD images acquired in Singapore by Sentinel 1 above the

industrial harbor of Jurong Island and the UAVSAR dataset of 68 acquisitions acquired above the

industrial area of Pittsburgh in the region of San Francisco.

4.2 Pixels temporal behavior study using CV

In SAR time-series analyses, the radiometric temporal stability is usually addressed through

permanent scatterer study using interferometric coherence. However, as we discussed in the chapter

3, the use of interferometric coherence is not suitable in our case because the information of change

is lost in low backscattering areas.

In the specific application of ephemeral objects detection such as vehicles or vessels, a pragmatic

point of view is to consider that if an object can appear in the scene at a given pixel, this pixel

should represent a physical structure that allows it to be present: the surface of a road, the sea, a

parking area or a place adjacent to mooring quays. We notice that these locations are in general

low backscattering areas because only a small part of the signal is backscattered toward the radar.

In addition, for the selection of the pixels, we do not want to mix spatially possible targets with

the background by using spatial estimation windows. We will then use the variation coefficient

(CV) introduced in chapter 3 that possesses interesting properties.

We recall here the theoretical variation coefficient for a Rayleigh-Nagakami law, representing

the statistical amplitude behavior of an untextured speckle area image with L number of looks:

CVtheo =

√
Γ(L)Γ(L+ 1)

Γ(L+ 1
2 )2 − 1 (4.1)

In addition, we illustrate in the figure 4.3 the expected CVs from specific temporal behaviors in

SAR time-series. Permanent scatterer and pure speckle are supposed without temporal ruptures

and the inhomogeneous temporal behavior symbolizes possible ruptures in the time-series.

CV 1
theo and CV 4.9

theo represent respectively the theoretical CV for a SLC SAR products (L=1)
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Figure 4.3: Theoretical schematic representation of temporal specific points CV

and a Sentinel 1 GRD products (L=4.9). We will then illustrate the behaviour of the CVs with

examples of specific points from SAR time-series (permanent scatterer, sea surface not affected by

the presence of ships and high attendance area near a mooring quay) in comparable environments

at C-Band and L-Band.

4.2.1 Harbor environment Singapore (C-Band)

For this study, we choose three specific points of the image figure 4.4a : a permanent scatterer

(green), a pixel subject to the appearance of ships (blue) and a sea pixel non affected temporally

by the presence of a ship (red). We will denote therefore CV V VPS , CV V HPS , CV V VQuay, CV V HQuay, CV V VSea

and CV V HSea the associated CV for a permanent scatterer, the pixel adjacent to the quay and the

unchanged sea pixel for VV and VH. The temporal behavior of these pixels is plotted 4.4b over

the 83 dates with the corresponding colors defined above; the plain line is for VV polarisation and

plain line with stars for VH polarisation. The CV results, gathered in the table 4.1, shows that

CV V VPS = 0.046 and CV V HPS = 0.048 are low compared to the two other pixel configurations CVs due

to the large mean value and low variance of PS. From the theoretical value calculated from equation

4.1 with L=4.9 (in this case for the Sentinel GRD dataset) we obtain CV 4.9
theo=0.2286. The sea pixel

statistical behavior can be considered as a stable speckle for calm sea and the results are consistent

with the theoretical calculation of CV 4.9
theo comparing CV V VSea = 0.1807 and CV V HSea =0.2281.

Temporal CV computed for PS, Quay and Sea pixels

Polarisation PS Quay Sea

VV 0.046 1.096 0.190

VH 0.048 0.893 0.228

Table 4.1: CV (Variation coefficient) calculated for 3 specific points Singapore

Finally, for the pixel near the quay, CV V VQuay = 1.096 and CV V HQuay = 0.8932 showing a high CV
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(a)

(b)

Figure 4.4: (a) Radiometric Image Singapore 5 Feb 2017 Sentinel 1 GRD VH and associated
specific study points : Permanent scatterer (green), mooring quay (blue) and sea surface (red).
(b) Temporal VV and VH Intensities for Singapore Sentinel 1 GRD: permanent scatterer in green,
sea surface in red and changed area near mooring quay in blue
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compared to the other specific pixels. As we can observe from these results, the variation coefficient

of the permanent scatterer seems independent of the polarisation and inferior to CV 4.9
theo=0.2286.

The polarisation plays a slight role for the temporal CVs of the sea pixel and its contribution is more

important for the configuration where ships were present during the acquisitions (several ruptures

during the time-series). For the sea pixel and the PS pixel (red and green curve in figure 4.4b), we

can observe that the temporal behavior between the two polarisations can be seen as a shift in dB

whereas for the pixels near the quay where ships where present at several acquisitions, it seems

more complex. An explanation might be due to the asymmetric shape of ships that generates

possible strong variations between VV and VH for a given acquisition, therefore the variation

coefficient is high however they do not systematically produce the same patterns of rupture in time.

Experimentally we can observe for these specific points that CVPS < CVSea ≈ CV 4.9
theo < CVquay

which corroborate relatively well the theoretical expectations.

4.2.2 Harbour environment San Franscisco Region UAVSAR (L-Band)

We conducted the same study on the 68 UAVSAR images above the San Francisco region, this

time using L-band to evaluate if the behavior and properties of CV can be verified experimentally

on equivalent specific points. Specific points are chosen and presented in figure 4.5a. This is an

SLC product so we consider that L=1 in this case and CV 1
theo = 0.5227. We can notice that CVsea

is above the theoretical variation coefficient for the three polarisations, especially for VV and HV

according to the table 4.2. It is not an expected result however we noticed that this SAR time-series

suffers from strong interferences within five acquisitions that may perturbs the expected statistical

behavior1. Computing the statistics without the images containing strong interferences lead to the

results in the table 4.3. In that case, CVsea is still higher than the theoretical value for VV but is

close to the theoretical values for HH and HV.

As it seems, the variation coefficient is extremely sensitive to outliers in pure speckle noise,

we can observe more consistent results with the theory after removal of the images containing

interferences. CVquay is high as expected for the three polarisations and the removal of the 5

images with interferences has a small effect since it has already a strong temporal inhomogeneous

behavior.

The same remark can be made for CVPS for each polarisation regarding the impact on the

removal of the 5 images with interferences. Indeed, the PS having already a strong backscattering

signal, the interferences are relatively smaller and therefore impact very few the behavior of the

1images 44,45,55, 62 and 64, resp. 25 November 2013, 16 January 2015, 27 April 2015, 04 February 2017 and 1
April 2017
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(a)

(b)

Figure 4.5: (a) UAVSAR Radometric image HH: permanent scatterer in green, sea surface in red
and changed area near mooring quay in blue. (b) Time-series San Fransisco Region with 3 specific
points: Permanent scatterers (green), mooring quay (blue) and surface of the sea (red)

.
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Temporal CV computed for PS, Quay and Sea pixels

Polarisation PS Quay Sea

VV 0.310 1.564 0.825

HV 0.231 1.451 0.708

HH 0.214 1.671 0.610

Table 4.2: CV calculated for 3 specific configuratiosn San Francisco

CV computed for PS, Quay and Sea pixels (5 Images with interferences taken away)

Polarisation PS Quay Sea

VV 0.335 1.551 0.652

HV 0.240 1.425 0.516

HH 0.215 1.609 0.521

Table 4.3: CV calculated for 3 characteristics configuration San Francisco without the images
containing interferences

PS.

The overall behavior seems to follow the underlying assumptions made for the CV, however some

variations can be observed depending on the polarisation, especially for VV. As it is theoretically

defined, the variation coefficient for SLC products (L=1) is higher than the variation coefficients

for Sentinel 1 products (L=4.9). The behavior of CV depending on the specific points follows

relatively well the theory that CVPS < CVSea ≈ CV 1
theo < CVquay for each polarisation.

4.2.3 Discussion

Through this experimental study, we could illustrates the properties of CV for specific pixels and

note that the CV of PS is in general low, the temporally homogeneous speckle pixels give a higher

CV relatively close to the theoretical value and finally the temporally inhomogeneous pixels give

a much higher CV so that it will be possible to distinguish them by temporal analysis. The main

advantage of the temporal CV is that pixels are kept spatially unmixed at this stage and only the

intrinsic temporal behavior is taken into account. The theoretical standard deviation of the CV

decreases by
√

(D), D being the number of acquisition dates, as shown in equation 4.2 [73]:

std(CVtheo) =

√
1

4D
LΓ(L)4[4LΓ(L)2 − 4LΓ(L+ 1

2 )2 − Γ(L+ 1
2 )2]

Γ(L+ 1
2 )4[LΓ(L)2 − Γ(L+ 1

2 )2]
= f( 1√

D
) (4.2)

This simply highlights that, benefiting from longer time-series, enables to obtain a better es-
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timation of the variation coefficient. In addition, since the CV depends theoretically only on L

(number of looks) and is independent on the mean value of the speckle noise, we can consider the

CV as a good tool to describe the homogeneity of time-series. From a theoretical point of view,

the CV does not depend on the polarisation or the frequency which is a strong hypothesis and

may have to be considered in future studies. Here, we want to benefit from the temporal variation

coefficient to detect, for each range and azimuth, the pixels for which the temporal homogeneity

is not respected. The first challenge of our process is to select for each range and azimuth, a set of

pixels that form a temporally homogeneous group so that their coefficient variation satisfy a given

theoretical threshold.

4.3 Pixels selection for the FBR image

In this section, we present the method of pixel selection developed for the computation of

the FBR image in the monopolarisation case and the polarimetric case. We note s = [s1..sD],

the temporal complex valued signal collected by the sensor for a given range and azimuth, we

denote α = [|s1|..|sD|] = [α1..αD] the amplitude (magnitude) corresponding time-series vector at

a given range and azimuth where |sd| is the module of the complex value sd at a date d. Since we

will consider only the pixel in the temporal domain and for any polarisation for the selection, the

notation has to be understood as a simplified notation of spqi,j and αpqi,j where i and j represent the

range and azimuth and p and q the polarisation. Then our goal is to find a set of pixels gathered

in a new vector α̃ containing D′ ≤ D so that CV (α̃) < ψ with ψ a given threshold and CV(•) the

temporal variation coefficient of an amplitude time-series samples.

4.3.1 Monopolarisation acquisition

The idea under this process is to extract elements in the time-series that engender a temporal

inhomogeneity, or reversely we want to keep a group of pixels that conserves a temporal homo-

geneity according to their variation coefficient. The variation coefficient CV(α) is then computed

iteratively and compared with a threshold ψ. At each iteration, we obtain a new output vector α̃

of length D′ ≤ D where the the pixel presenting the most distant value relative from the mean

have been extracted. The algorithm is repeated until the set of temporal remaining pixels satisfy

the criterion. Figure 4.6a presents the diagram used to perform such a process.

Computing this selection for every range and the azimuth, we obtain a cube with different

dimension in the time direction containing only the selected stable candidate pixels. It is important

to note that the selection is performed on the amplitude of the pixels but they are also kept as
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(a)

(b)

Figure 4.6: (a) Candidate pixels selection of an amplitude temporal vector α for a given range and
azimuth, (b) Cube containing the remanining pixels after selection

well in their complex form. We illustrate such results in figure 4.6b. Therefore we obtain for each

range and azimuth a temporal vector s̃ = [s1..sD′ ] and its corresponding amplitude (magnitude)

vector α̃ = [α1..αD′ ].
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4.3.2 Polarimetric acquisitions

We consider the selection for a polarimetric acquisition as an extension of the previous form with

each polarimetric channel processed separately. As a result, only pixels that are remaining for each

polarisation are considered . If at least one pixel have been removed in one of the polarisations, the

whole polarimetric vector is removed. We obtain therefore a cube for each polarisation as shown

in figure 4.7.

(a) HH (b) HV (c) VV

Figure 4.7: Visual representation of remaining pixels for each polarisation

This procedure can be questioned regarding the physical meaning of the candidate pixels. It

has been performed only by the amplitudes and not taking into consideration the phase of the

pixels. It is known that the phase itself on one acquisition does not carry useful information but

relative phases between polarisation or acquisition does. This solution is a first implementation

that have to be improved in the future.

4.3.3 CV Threshold

As presented in 3.11, the theoretical variation coefficient depends only on L (Number equivalent

of looks) that can be estimated as proposed in [84]. It also has the interesting property to not to

depend on the average amplitude of the speckle. Depending on the sensor and products available,

L can be a parameter given in the characteristic of an image product. For classical SLC images

we consider L=1 and for example for Sentinel 1 GRD product L=4.9. As discussed, the variance

of the CV is a function of 1√
(D)

D being the number of dates in the time series, the threshold is

then defined using the theoretical variation coefficient in equation 3.11 :

ψ(i, j) = CVtheo + η√
D′(i, j)

(4.3)

ψ(i, j) =

√
Γ(L)Γ(L+ 1)

Γ(L+ 1
2 )2 − 1 + η√

D′(i, j)
(4.4)
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η is a parameter to control the selectivity of the candidate pixels and D
′(i, j) the remaining

number of stable date for each range i and azimuth j. The threshold can be set independent of the

amount of the remaining images by choosing η = 0, in that case, we will use the term ”natural”

thresholding. In contrast, if we set a value of η > 0 we will use the term relaxed thresholding

because we will enable the set of selected pixels to have a CV higher than the theoretical value.

We will use in general a natural threshold unless it is mentioned specifically.

4.4 Representation of the FBR Image

Once the stable pixels have been determined in the SAR time-series, different solutions can be

considered to represent the FBR image. We chose two different approaches: either to randomly

choose a temporal pixel for each range and azimuth or to use the contribution of all remaining

pixels for each range and azimuth. Each representation can have advantages and drawbacks that

will be discussed in the following chapters depending on the purpose.

4.4.1 The random choice of the pixels (RP)

We can consider that, since the remaining candidate pixels are statistically representative of a

temporally stable behavior, the random selection of one pixel within the list of pixels is reasonable

to represent the background. In that case, the visual quality of the SAR image is not expected to

change. The resulting SAR image does not correspond to an actual acquisition and might not be

physically interpretable but it represents a stable state of the scene for each range and azimuth.

The main advantage of this representation is that the statistical properties of the image are sup-

posed to be conserved according to the images of the SAR time-series.

Figure 4.8: Random selection for each range and azimuth from the cube of remaining pixels
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4.4.2 The use of multitemporal pixels (MP)

We can choose alternatively to represent the FBR image in terms of temporal incoherent mean of

the remaining pixels for each range and azimuth. In that case, the visual quality of the image is

supposed to be improved since the variance of the speckle noise will be decreased with a factor D’

that represent the number of temporal remaining dates in the time-series.

Figure 4.9: Incoherent mean for each range and azimuth from the cube of remaining pixels

4.5 Discussion

The main advantage of this selection method relies in the fact that the pixels are considered only

temporally so that no spatial mixing is performed between heterogeneous scatterers.

With such pixel selection, we can already highlight some limitations that may be disadvantageous

when using time-series over a long period (several years over urban areas for example) because a

permanent change such as building construction/deconstruction will not be well interpreted de-

pending on the time when the event occurred. Such event can be however considered as a long

term change and a solutions may be addressed by updating the FBR image. The assumption of

an underlying background is indeed more relevant considering forthcoming constellation missions

with a temporal revisit time of several hours or days for urban monitoring. This remark may be

also considered regarding different environments of the observed scene. In the case of forest or nat-

ural environments, the acquisition time span to compute the FBR image may also be considered

differently depending on the operating frequency. At low frequencies, below L-band, we can intu-

itively make the hypothesis that an underlying stable background may exist over a longer period

compared to acquisitions at higher frequencies. These considerations will have to be thoroughly

investigated over future studies.
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Summary : We presented in this chapter the concept of FBR image and proposed a

procedure to obtain within SAR time-series the pixels that are representative of a tem-

porally stable behavior of the scene. We considered for the design of the procedure that

the background is only affected by ephemeral objects that sporadically appears in the SAR

time-series. Through this procedure, we presented two possible representation of the FBR

image : one considering a random pixel (or polarimetric vector) selected from the remaining

temporally stable pixels for each range and azimuth and another taking into consideration

the whole remaining pixels (or polarimetric vectors) for each range and azimuth.



Chapter 5

Illustrations of FBR images

computation

Objectives : This chapter presents the computation of the FBR image firstly with a set of

simulated images and afterward using real SAR images from the same sets presented before

(L-Band UAVSAR and Sentinel 1 GRD). With these examples, we investigate the question

of number of required acquisitions to generate a representative FBR image.

In this chapter, we investigate the behavior of the FBR image with different configurations of

acquisitions. The datasets of real SAR acquisitions used in the precedent chapter to illustrate the

behavior of the CV will be exploited this time to present the computation of a FBR image. In

a second section we will analyze the impact of the number of acquisitions to generate the FBR

image. Finally some illustrations and results will be presented in different configurations.

5.1 Simulations

A simulated time series of SAR images is computed with a static object corresponding to a building

on the whole time series (big red square in Figure 5.1). The settings for this simulation are

presented in Table 5.1. At a given date, five targets appear, as shown in Figure 5.1b with a target

Signal-to-Noise ratio SNR = 6 dB.
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Table 5.1: Simulation settings

Simulation Parameters FBR simulation

Number of images 10

Images size 200 × 200 pixels

Building size 20 × 20 pixels

Targets size 10 × 10 pixels

SNR building 13 dB

SNR targets 6 dB

(a) Building only (b) Building and five targets

(c) FBR Scene (RP) (d) FBR Scene (MP)

Figure 5.1: Simulated scenes and associated reference images : (a) Building Only, (b) Building
and five targets, (c) FBR scene computed with RP method, (d) FBR scene generated using the
MP algorithm.

Several target-free scenes with only the static object were generated. An example is shown

in Figure 5.1a. The noise is generated as a zero-mean complex Gaussian distribution. From this

time series of 10 simulated images, FBR scenes are computed both in RP (Random pixel) and MP

(Multi-temporal pixels) modes. Figures 5.1c and 5.1d present the two resulting FBR images.

To estimate the impact of the process on the histogram of FBR images, we computed the
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histograms of both FBR images and a target-free image. As we can see in Figure 5.2, histograms

of the FBR-RP images and one random target-free scene of the stack have comparable behavior. On

the contrary, as expected, the histogram of the FBR-MP image is squeezed because the standard

deviation of the noise decreases with a factor
√
D′, with D′ being the number of remaining dates.

This difference of statistics will have to be taken into account while designing the change detection

strategy. Since the FBR-RP and a given radiometric image of the time-series follows the same a

priori statistic, a change detection can be applicable directly. Considering the change detection

between a radiometric image and the FBR-MP image, it is less intuitive at first sight so some

solutions will have to be implemented.

Figure 5.2: Histogram of the intensity for a single image (red), FBR-MP image (yellow) and
FBR-RP images (blue).

5.2 Illustration of the algorithm

In this section, we illustrate in high attendance areas such as mooring quays in industrial harbors

the outcome of the algorithm of stable pixels selection using the same specific pixel as in the

previous study. We will use the examples presented in section 4.2.1 with first the study of the

Sentinel 1 GRD dataset above Singapore and secondly the UAVSAR dataset above San Francisco

region.
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5.2.1 Singapore Sentinel 1 GRD acquisitions

As we can observe figure 5.3, for the static scatterer and the sea surface, the whole time-series

has been kept, whereas for the pixel adjacent to the mooring quay 40 iterations were necessary

to reach the criterion due to the high number of ships appearance. The selection is performed as

presented only in the temporal domain for a given range and azimuth.

(a) iteration 1 (b) iteration 5

(c) iteration 10 (d) iteration 20

(e) iteration 30 (f) iteration 40

Figure 5.3: Illustration of the selection of candidate pixels for the situation presented in 4.2.1
(Singapore Industrial Harbour with Sentinel 1 GRD data) for iteration 1, 5, 10, 20, 30 and 40
(respectively a, b, c, d, e and f)
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5.2.2 San Francisco Region UAVSAR

Following the same principle, we show the iterative process to select the candidate pixels for

the San Francisco case. Results are presented in figure 5.4 For the static scatterer, the whole

time-series have been kept, but for the see surface, some pixels have been extracted as we could

see from the CV experimental study, indeed the calculated CV for the sea pixels were above the

theoretical threshold.

(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Illustration of the selection of the candidate pixels for the situation presented in 4.2.2
(San Francisco region Industrial Harbour with UAVSAR data) for iteration 1, 5, 10, 20, 30, 35
(respectively a,b,c,d,e and f)
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5.2.3 Discussion

This experimental study on the outcome of the algorithm for different specific points shows some

interesting insight on the properties of the CV. It enables to generate a set of pixels corresponding

to an homogeneous background both for high backscattering signals as well as region with week

backscattering signal. The contributions from the ships have been successfully removed and a tem-

poral homogeneous behavior is obtained for each specific pixel of interests in the two configurations

of acquisition. We will then investigate the behavior of the FBR image computed using all the

remaining pixels (MP) by considering different number of acquisitionss to compute it.

5.3 How many acquisitions are required to produce an ”ac-

ceptable” FBR image ?

It is theoretically challenging to give a formal answer to this question because it depends mainly

on the activity of the area and the SAR acquisition parameters such as revisit time and frequency.

Experimentally, we propose to study the same scenes that have been presented in the previous

section to evaluate after how many acquisitions the outcome of the FBR image remains unchanged.

We will then focus on the activity zones near moorings quays and evaluate the impact of the number

of acquisitions considered to compute the FBR image.

5.3.1 Singapore Sentinel C-Band

We propose here to understand in the specific case of Singapore dataset study how many dates

would be required to obtain a stable FBR scene.

Figure 5.5: Mean error ε̄ depending on the number of images used to compute the FBR image.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.6: Temporal mean Sentinel 1 GRD VH for 5, 20, 30 and 75 images (left column respectively
a, c, e, g) and corresponding FBR scene computed with 5, 20, 30 and 75 images (right column
respectively b, d, f, h). The representation is for all images the Intensity in dB.
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To study the number of images needed in this particular case to consider a stable background,

we proposed the generation of 79 FBR images by successively incrementing the number of images

on which the FBR image was calculated from 4 to 83. We then proposed to calculate γFBR for

the CD (log ratio) between each successive generated FBR image and defined the mean error as

ε̄ = 1
NrangeNaz

∑Nrange
i=1

∑Naz
j=1 γFBR(i, j) with ε̄ as the mean error, Nrange and Naz as the number

of pixels in range and azimuth, respectively. As we can see from Figure 5.5, after 30 dates used to

generate the FBR image, any new image added to compute the FBR image only slightly impacted

the resulting FBR image. We compare a temporal mean with the FBR images previously computed

considering different numbers of images to illustrate that the activity in the harbor as been well

cancelled in high attendance areas such as mooring quays. The figure 5.6 shows on the left column

the temporal mean of the SAR images in VH polarisation for 5, 20, 30 and 75 dates of the time series

and the right column shows the FBR images computed with the corresponding number of images.

As we can observe in figure 5.6a, 5.6c, 5.6e and 5.6g, the temporal mean gives a mixed answer

between situation where boat were presents and vacant near mooring quays. On the contrary and

as expected from the previous results shown 5.5, with five images, residual signals from boats are

still present but vanish after 20 images and become stable and unchanged after 30 acquisitions.

5.3.2 San Francisco UAVSAR

We conducted the same study for the UAVSAR dataset presented earlier, in that case, we look as

well at the outcome of the FBR images from 5 to 68 computed images. As we can observe the

activity near the harbour has been well suppressed for the representation of the FBR image with

HH channel as we can see figure 5.4 and remain unchanged after 20 acquisitions.

Figure 5.7: Mean error ε̄ depending on the number of images used to compute the FBR image.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.8: Temporal mean HH for 5, 20, 30 and 68 images UAVSAR (left column respectively
a,c,e,g) and corresponding FBR scene HH computed with 5, 20, 30 and 68 images (right column
respectively b,d,f,h). Zoom on the harbor activity.
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The outcome seems similar for each polarisation as shown in figure 5.7 and reach a stable state

of the FBR image with a bit less acquisitions (20 acquisitions) than for the case of Singapore

Harbor with Sentinel 1 GRD data. We can notice the same trend in this configuration for each

polarisation, the result is interesting, however it is not possible to conclude on a specific number

of acquisitions required to perform such FBR image in the general case or for a specific environment.

In practice, as shown here, we might need a lot of acquisitions in regions were the attendance

is high such as harbours in industrial environment. In the present case for Sentinel 1 GRD data, it

represents around 30 dates so one year of acquisitions. For UAVSAR, the data are not monitored

in a periodical way but sporadically over 8 years and represent around 20 acquisitions (2 years).

In general, a trade-off has to be chosen between the number of acquisitions (depending on the

revisit time of the sensor) and the type of activity we want to observe, indeed the longer the

acquisitions time, the higher the probability that a permanent change occurs. In addition, the

time at which the satellite is passing is also an important factor that might be taken into account

(night, day) because the activity might be also completely different. In this preliminary study, we

assumed a stable background and therefore we did not implement an update in case of building

construction/destruction. This limit has to be taken into account for the next studies.

5.4 Illustration and example of Polarimetric FBR image

The selection process has been presented and illustrated with a few experimental examples to

approach the behaviour of the FBR images depending on the number of acquisitions and polari-

sation in industrial harbour environment. Considering a polarimetric acquisition, we can compute

for each range and azimuth a temporal covariance matrix. Denoting y and ỹMP a polarimetric

vector at a given range and azimuth in the pauli basis respectively from the initial SAR time-series

containing D acquisitions and from the cube of remaining pixels containing D’ acquisitions, their

temporal samples covariance matrices can be estimated over D and D’ samples by computing:

Ttemp = 1
D

D∑
d=1

ydyd
H (5.1)

TMP
FBR = 1

D′

D′∑
d′=1

ỹMP
d′ ỹMPH

d′ (5.2)

To generate the corresponding Pauli images, we take the 3 diagonal terms of Ttemp and TMP
FBR

that are associated to single bounce, double bounce and volume scattering. We illustrates a result
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of polarimetric FBR image computed on the UAVSAR dataset. In this example, the figure 5.9

presents different optical images of the scene from 2011 to 2015 showing the activity in the harbour

with different kind of vessels and floating platforms. In comparison we plot the polarimetric

temporal image and the FBR image in Pauli representation with R=double bounce, G=Cross

polarisation contribution and B=single scattering mechanisms. As we can see and we observed in

the previous part, the activity near the harbour has been canceled in the Pauli FBR image whereas

for the temporal Pauli representation we obtain naturally the mean behaviour of all activities.

(a) (b)

(c) (d)

(e) (f)

Figure 5.9: Example of Google Earth Images from the scene (a) 08 November 2011, (b) 05 Novem-
ber 2012, (c) 01 January 2013, (d) 10 November 2015, (e) UAVSAR Temporal Pauli 68 Dates and
(f) UAVSAR FBR Pauli 68 dates (R:Double Bounce, G:Cross Polarisation, B: Single Bounce, scale
of the image for each polarisation [-35 -5 dB])
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We can as well observe that the interferences present in the temporal representation in Pauli

basis are suppressed in the FBR polarimetric image. However, further studies need to be conducted

to verify for instance the validity of the polarimetric phases, as the copolarisation phase difference

and crosspol phase difference. This assumption has to be verified in the future to understand

better the behaviour of the CV in a polarimetric dataset computed in parallel.

5.5 Discussion

According to these experimental studies, it seems possible to obtain a background image of the scene

and discard ephemeral objects or events using SAR time-series. The chosen regions represent two

industrial areas where we focused mainly on the harbor activity since it is much easier to monitor

and verify the activity visually. However, it is not straightforward to measure the degree of validity

of each computed FBR images since we cannot compare it with any real image. A dedicated long

SAR time-series with a precise ground truth may be essential to consider to evaluate more properly

the behavior of the proposed framework for the computation of a background scene.

Summary : In this chapter we have presented the concept of FBR image and its computa-

tion using an iterative temporal variation coefficient process. We aimed with this pragmatic

approach to select within the time-series a set of pixels that are temporally homogeneous

taking into account the intrinsic statistical characteristics of SAR images. Simulations and

experimental results have been presented to illustrate our method. An experimental study

has been performed on the impact of the number of acquisitions needed to obtain a FBR im-

age so that additionnal images do not affect anymore the results in the context of industrial

harbor areas.



Chapter 6

Change Detection Strategies

Objectives : In this chapter we propose to analyse and adapt the statistical tests under

Gaussian assumption taking into account that a set of stable pixels has been collected for

each range and azimuth from a monopolarisation or polarimetric SAR time-series. We con-

sider that this set of stable pixels has been selected either using our method based on the

variation coefficient or from any other method. We will therefore present the associated

tests for the possible representations of the FBR image discussed in the previous chapter:

a temporal random selection of the remaning pixels or the consideration of the whole re-

maining candidate pixels. We will consider the general case of polarimetric data that can

be always brought back to the form of mono polarised data.

We have presented different representations of the FBR image, therefore different strategies

of change detection are presented and the statistical tests adapted. For both strategies, RP and

MP selection, we can consider that the interpretation will be improved because we will compare a

scene a priori without ephemeral targets with an acquisition with possibly ephemeral targets. We

can expect intuitively that the FBR image selected with the RP method will not affect the targets

probability of detection compared to a usual case of bi-date change detection when one image is

without target and another is with target. On the contrary, using several acquisitions improves

the knowledge on the background so that we might expect better detection considering the whole

set of temporally homogeneous pixels for the detection.
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6.1 Random Pixels

We focus first on the case where we choose to select a random pixel from the list of temporal stable

candidate pixels for each azimuth and range of the image. We obtained, therefore, one polarimetric

FBR measurement vector x̃RP of dimension p at a given range and azimuth. Assuming that the

statistics of speckle remained unchanged, in the space domain (range, azimuth) as well as in the time

domain, we can adapt the different tests introduced in [59]. For bi-temporal change detection, we

assume that a polarimetric pixels vector x̃RP of the FBR Image and a polarimetric pixels vector

y from the Mission Image follow a multivariate zero-mean complex Gaussian distribution with

CRP
F BR and Cmi as the sample covariance matrices associated to vectors x̃RP and y [59]. The test

to be computed and compared with a threshold and can be written using the following equation:

γRP =
|CRP

F BR|N |Cmi|N

| 12 (CRP
F BR + Cmi)|2N

(6.1)

where N = NFBR = Nmi is the number of samples within the spatial averaging box to compute

the covariance matrix, and || represents the determinant of the matrix.

6.2 Multi-temporal pixels

If we consider a pixel at a given range and azimuth, we can gather NFBR homogeneous observations

of the vector x̃MP with NFBR the number of spatio-temporal pixels within the cube of remaining

pixels as presented in Figure 6.1. For the mission image, we suppose N spatial observations of the

vector y within a spatial box of N elements. We suppose that the samples of these two vectors

of dimension p follow a complex Gaussian distribution and are IID (idenpendant and identically

distributed).

Testing the equality of their respective covariance matrices CMP
F BR and Cmi corresponds to the

test derived in [45] by testing the equality of two p × p Wishart matrices XFBR = NFBRC
MP
F BR

and Xmi = NCmi.

γMP = (NFBR +N)p(NFBR+N)

NpNFBR
FBR NpN

|XF BR|NFBR |Xmi|N

|XF BR +Xmi)|(NFBR+N) . (6.2)

This test can be rearanged to make appear the sample covariance matrices :

γMP =
|CMP

F BR|NFBR |Cmi|N∣∣∣ NFBR
NFBR+NC

MP
F BR + N

NFBR+NCmi)
∣∣∣(NFBR+N) . (6.3)
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(a) (b)

Figure 6.1: Pixel representation for CD between FBR image (a) and Mission Image (b)

Taking advantage of several homogeneous acquisitions to perform change detection improves

the probability of detection as it has been shown by simulation in [59]. In practice, it is difficult

to know the optimum number of acquisitions and spatial averaging window necessary to achieve a

good detection because it depends mainly on the context. Indeed, increasing spatially the averaging

window of N elements would increase the possibility to mix pixels from heterogeneous areas and

decrease as well the resolution of the detection. Using temporally stable pixels over a long period

may have a different impact depending on the frequency of acquisition and the observed scene and

may require a dedicated study.

6.3 Simulations

We will now present the behavior of the change detection in different mode of the FBR images

compared with usual bi-date change detection as γG from equation 3.5. The Table 6.1 presents

the different settings used to evaluate the CD results in paragraph Sections 6.3.1 and 6.3.2.

6.3.1 Impact of target SNR

First, a set of 10 images was created. We aimed to evaluate the behavior of the detection approaches

for different target SNRs. The raw output of change detection for the worst case of target SNR

is presented in Figure 6.2, and the associated ROC (Receiver operating characteristic) curves for

different configurations of the target SNR are plotted in Figure 6.3. The PD (detection probability)

and PFA (probability of false alarm) are defined as follows: PD = TP
NT and PFA = FP

NB with TP as

the number of pixels truly detected as a target, NT as the number of ground truth pixels defined
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Table 6.1: Simulation settings : with SNR (Signal-to-Noise ratio), RP (Random pixel), MP (Multi-
temporal pxiels).

Simulation Parameters Section 6.3.1 Section 6.3.2

Image Number 10 1, 3, 6, 9, 15, 20

Images size 200 × 200 pixels 200 × 200 pixels

Building size 20 × 20 pixels 20 × 20 pixels

Targets size 10 × 10 pixels 10 × 10 pixels

SNR building 13 dB 13 dB

SNR targets 3, 6, 13 dB 6 dB

Algorithms Bi-date, RP, MP Bi-date, RP, MP

as a target, FP as the number of pixels falsely detected as a target, and NB as the number of

pixels defined as background pixels.

(a) Ground Truth (b) CD bi-date γG

(c) CD RP γRP (d) CD MP γMP

Figure 6.2: Example of the CD ground truth and change map for SNR = 3 dB.

As we can see in figure 6.3, the CD from RP computation of the FBR image gives a similar
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detection capability than the classical bi-date detection.

(a) Scene with SNR = 13 dB (b) ROC SNR = 13 dB

(c) Scene SNR = 6 dB (d) ROC SNR = 6 dB

(e) Scene SNR = 3 dB (f) ROC SNR = 3 dB

Figure 6.3: ROC (Receiver Operating Characteristic) curves representing PD (probality of detec-
tion) and PFA (probabiblity of false alarm) for different targets SNR (Singal to Noise Ratio)

Using the MP computation for the reference gives much more improvement on change detection,

especially when target SNR is low, as we can see on graphics 6.3f and 6.3d. At a fixed PFA =

10−3, we can observe the associated probability of detection in different cases. When the SNR

is sufficiently high (13 dB), results are in the same range of PD for the three different detectors:

0.75 for Bidate CD and γRP and slightly higher for γMP with 0.85. In the case of a lower SNR
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of 6 dB, the detection performances of CD-bidate and γRP decreased drastically to 0.3, on the

contrary, γMP still gave a good PD of 0.7. Finally, in the case of a low SNR = 3 dB, The PD of

the CD-bidate and γRP decreased to 0.15. The probability of detection of γMP was still higher

but remained a poor detection probability of 0.4. The result is particularly of interest for targets

hidden in high clutter, for example, in FoPen applications or urban areas. In the following part,

we simulated targets with a fixed SNR. The CD output will be investigated for different numbers

of images within the time series using the MP method.

6.3.2 Impact of number of available dates

In order to evaluate the benefit of using several pixels to construct the FBR scenes and the impact

on the change detection, several change maps have been produced using the simulated ground truth

with different amounts of images randomly chosen from the simulated SAR stack. The results are

shown in Figures 6.4a and 6.4b. We can observe that the detection is improved when increasing

the number of dates taken as a reference.

(a) ROC curve linear PFA (b) ROC curve (semilog)

Figure 6.4: ROC (Receiver Operating Characteristic) curves representing PD (probality of detec-
tion) and PFA (probabiblity of false alarm) for different amounts of images used to create the FBR
scene (SNR=6dB).
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6.4 Discussion

From this simulation study, we can conclude on different aspects of the method. First, the choice

of a random pixel RP within the candidate pixels from simulation gave comparable results to a

typical bi-date detection. Considering the use of all remaining candidate pixels through the MP

method, we can see that the detection capability is drastically better when the target SNR was

decreasing. This property is a promising result for the detection of targets hidden in a high clutter

environment.

In this example, we focused on the interest of using homogeneous temporal pixels to improve the

change detection capabilities. However, in practice, it is difficult to know how much acquisitions are

necessary to achieve a good detection since it depends both on the environment and the properties

of the object to detect.

Summary :

In this chapter, we investigated some strategies of change detection, given the two possible

configurations of selection: random selection of pixels within the list or the contribution

of all remaining pixels. We could observe that using a random selection of the remaining

pixels gives the same detection capabilities than with a usual bi-date case when a target-free

scene is available, and one mission image is tested to highlight possible targets. With these

simulations, we could observe the interesting detection capabilities improvement when using

several acquisitions to compute the change detection test with the mission image containing

targets.
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Summary of part II :

In this part, we first investigated the possibility of computing a scene free of ephemeral

objects using several acquisitions. We introduced its computation and some illustrations on

harbor environments where it was easier to verify the result visually. We could see that it

was possible to compute target-free scenes using several acquisitions in harbors environment

at C-band with Sentinel 1 GRD dataset and L-band with UAVSAR sensor. This framework

of FBR procedure can be used in different scenarios when the aim is to detect ephemeral

objects in SAR time series. For the change detection, we showed using simulation that we

can improve the capabilities of detection by using all the remaining selected pixels. However,

this method supposes that it exists a stable behavior of the background (modulated with

the noise) and ephemeral objects sporadically appear and disappear within the time. With

the periodicity of sensors such as Sentinel (12 days for a single Satellite), it is an opportunity

to have an estimation of the stable background of a scene and follow the possible variations

according to this stable behavior. For this study, we considered a scene without a permanent

change in the structural background (demolition of a building or construction of a building).



Part III

APPLICATION OF FBR

CHANGE DETECTION IN SAR

TIME-SERIES
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Chapter 7

Maritime Surveillance

Objectives : In this chapter, we illustrate a possible application of the FBR procedure in

maritime surveillance, particularly in harbor areas. The detection of ships in the open sea is

usually performed with single SAR images because the contrast between the sea background

and a possible vessel is quite strong in practice. In harbor areas, several scatterers such

as mooring quays, permanent platforms, or more generally harbor infrastructures, might

produce strong backscattering signals. It renders the detection of vessels with only one

image more challenging and produces false alarms. The FBR framework might be an

interesting alternative in harbor environments to detect moored ships in high attendance

areas. First, we illustrate the FBR CD for maritime platforms with UAVSAR L-band

dataset in a calm, open sea area. In a second time, we present the results of the FBR CD

in harbor environment with Sentinel 1 GRD dataset previously introduced.

Maritime surveillance is a topic of interest for governments and institutions for safety and

security concerns. Remote sensing is an asset to monitor and understand ship behaviors, potential

illegal border crossing and illegal fishing activities. It is also an opportunity to optimize the use of

the maritime space [14]. Traffic monitoring can besides offer indications on the activity in harbor

areas and therefore clues about the economic health of a region.

Industrial harbors are a challenging environment for ship detection using SAR monitoring. Firstly

because of the possibly high number of ships within the same area and secondly because of the

harbor infrastructures that might generate several false alarms since they are, in general, strong

scatterers (metallic structures or mooring quays). To avoid this issue, usual algorithms of ship

detection consider a land masking with a buffer of several hundred of meters [85, 14]. Change
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Detection is an interesting alternative to overcome this issue by canceling the contributions of

infrastructures and highlighting the presence/departure of ships within harbor areas.

As discussed in chapter 3, the usual change detection framework in SAR time-series is designed to

detect relative changes. The consecutive temporal occurrence of different ships within the same

spatial pixel might cause detection misinterpretations when a sequential detection approach is

carried out. It seems then more comfortable to compare an acquisition with an image without

non-stationary targets (only immobile objects). Considering the proposed FBR framework, we

aim to compute first the stable background of the harbor (infrastructures and sea clutter) and

afterward perform change detection from this FBR image to highlight the presence of ships. This

chapter will first introduce the maritime surveillance specificity and the challenging aspect of the

harbor environment using SAR imaging systems. Afterward, a simple scene with boats (floating

platforms) only on the open sea will be studied to illustrate the FBR CD. Finally, a more complex

scenario will be investigated in high attendance harbor environment in Singapore using Sentinel 1

GRD dataset presented earlier.

7.1 Specificity of maritime surveillance using SAR imaging

SAR sensors showed great potential for maritime surveillance applications due to their capability to

obtain images in any weather conditions (depending however on the frequency) and independently

of the light condition (day or night). This consideration brings SAR sensors as the most used

remote sensing technology to monitor maritime activity. A general framework for ship detection

can be synthesized in three main blocks as presented in Figure 7.1.

Land masking Prescreening Discrimination

Figure 7.1: Framework for maritime surveillance using SAR imaging

Land masking consists of excluding the pixels that belong to the land. Prescreening is consid-

ered as a first detection step to select potential vessels within the scene. Finally, discrimination

is the last decision rebutting or confirming if this potential target is indeed a ship. Therefore, a

potential alternative is to use the FBR method in the prescreening step with a specific interest

in the harbor environment. This section will introduce land masking and prescreening, and only

briefly discussed discrimination.
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• Land Masking :

According to the literature on maritime surveillance, land masking is a critical step that is

still thoroughly studied due to the inherent geolocalization uncertainties, shoreline database

uncertainties, and need to be sometimes readjusted manually [85, 86, 87, 14]. In Figure 7.2, we

can see a land mask generated on a Sentinel 1A image with two different methods, on the left

using a geolocation grid and on the right with restituted orbit data.

Figure 7.2: Example of land masking from [14], (left) using geolocation and (right) restituted orbit
data

One drawback of geographic information based land masking is that small islands or rocks are

not always registered so that these pixels will not be excluded from the studied SAR images.

More recent approaches propose automatic segmentation based methods [88] to extract land

masks. Therefore, land masking is essential to assess a low probability of false alarm coming

from lands independently to the type of method for ship detection. From the literature, the

buffer zone is usually chosen from 250m to several kilometers, considering the possible geoloca-

tion uncertainties. In [89], is presented a method of land masking considering a DEM (Digital

Elevation Model) using SRTM (Shuttle Radar Topography Mission, resolution around 90m).

The land masking step is, as we can understand, essential to exclude a priori all pixels that

might represent non-maritime pixels. In most cases, harbors are excluded from the detection

since they can be considered a mix between sea and land environments.
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• Prescreening and discrimination (detection):

Prescreening can be seen as a coarse detection and discrimination as a fine detection that will

rebut or confirm the coarse detection. In general, CFAR detectors will be used by statistically

modeling the background, and pixels with a low probability of belonging to the background will

be detected as target pixels.

Different statistical models of background (Gaussian, Gamma, exponential or K distributions)

can be chosen depending on the frequency, resolution, and the zone of observations. Other

detectors based on GLRT define a model both for background and the ships (mostly modelling

the double bounce between a metallic parallelepiped structure and the sea) such as in [89].

Detection based on spectral analysis of SAR images sublooks has been derived in [90, 91] using

interferometry and cross-correlation, in [92] using entropy, and finally in [93] using GLRT for

coherent targets. However, sub-look spectral analysis requires to have an initial SAR image

with a sufficient spatial resolution to enable sub-looking without any resolution loss that would

prevent to detect small ships.

The discrimination step comes afterward with more contextual information to exclude possible

false alarms coming from side-lobes of strong scatterers, sea wakes, or other perturbations present

in a maritime environment. Geometrical information (for example, fractal dimension [94]) is at

this stage extracted from the targets to decide whether or not it is indeed a target of interest.

Several phenomenons render the detection with usual methods complicated or not applicable in

harbor environments. The role of harbor infrastructures has been discussed briefly as a substantial

limitation of typical ship detectors. With harbor infrastructures come the phenomenon of azimuth

ambiguities that present problems for maritime surveillance near coastal areas. It generates ghosts

signature over the sea that can be as well interpreted as a ship. This phenomenon is an artifact

due to the aliasing of the Doppler phase history, as described in [95]. These artifacts are more

visible in low backscattering areas such as sea surface.

Using a FBR image would eliminate this problem since azimuth ambiguities are constant signature

because coming from a permanent scatterer. The pragmatic approach that we propose could be a

good alternative to overcome several issues encountered in harbor environments for ship detection

using SAR images.
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7.2 FBR procedure for maritime surveillance

In this section, we present two applications of FBR-CD on SAR time-series. First we illustrate the

results on a calm lake in the area of San Francisco where floating platforms are present without

any infrastructures. In a second time, we illustrate different aspects of FBR-CD in a complex

environment such as harbour area in the region of Singapore.

7.2.1 Floating Platforms over a lake in the area of San Francisco

This example focuses on floating platforms over sea surfaces that can have different configurations,

as shown in Figure 7.3. The characteristics of the images used for the study are presented in Table

2.2.

(a) Configuration 1
(b) Configuration 2

Figure 7.3: Example of floating platforms over this lake, seen on Google Earth images.

The scene under study comprises the 12 firsts L-band fully polarimetric UAVSAR (Uninhabited

Aerial Vehicle Synthetic Aperture Radar) from the dataset presented in chapter 2 in the region of

San Francisco. Figure 7.4a is the first radiometric HH image of the temporal stack, and Figures 7.7b

and c are the FBR images obtained from our method using the RP and MP methods. The images

are represented in gray levels from −30 to 0 dB.

(a) Radiometric 1 HH (b) FBR-RP (c) FBR-MP

Figure 7.4: Radiometric UAVSAR image and MP and RP reference images.
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As we can observe in the FBR images in Figure 7.4b and 7.4c, the targets were successfully

removed. Figure 7.5a presents the results of the usual change detection between two dates of the

stack. Red values on the image indicate that a significant amplitude change occurred, whereas

blue areas reflect areas with no changes.

Floating platforms were present at both dates, but not precisely at the same position; thus,

the resulting image was difficult to interpret. In Figure 7.5b–e, we plotted the results of change

detection from the FBR images in RP and MP modes and the two dates that were used previously

for the classical bi-date change detection. In both results, we can directly see a better quality

for the image, and it is possible to identify the targets present at each date more accurately . In

that case, the SNR (more precisely Target to clutter ratio) of the boat was high; therefore, the

results in RP and MP modes were similar as they are presented in a high SNR target simulation.

This example shows that it is possible to use this method in target detection, especially when it

is necessary to know the number of targets present on one image without prior knowledge of the

scene.

(a) CD Bi-date 1 and 2 (b) CD RP date 1 (c) CD RP date 2

(d) CD MP date 1 (e) CD MP date 2

Figure 7.5: CD results for RP and MP modes: (a) classical bi-date with overlapping target, (b)
FBR-RP (random pixel selection) CD with date 1, (c) FBR-RP (random pixel selection) CD
with date 2, (d) FBR-MP (multitemporal selection) CD with date 1, (e) FBR-MP (multitemporal
selection) CD with date 2
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7.2.2 Study case in Singapore Region

We chose then a more complex example in Singapore in the industrial harbor of Jurong Island.

Figure 7.6a shows the FBR image computed using 83 Sentinel GRD (Ground Range Detected)

images of Singapore projected on Google Earth (area of interest in the yellow rectangle).

(a) FBR scene computed from Sentinel 1 GRD dataset (2017-2019) projected on
Google Earth

(b) REACTIV (from November 2018 to June 2019)

Figure 7.6: (a) FBR scene of Sentinel 1 GRD dataset above Singapore projected on Google Earth
(years 2017 to 2019), (b) Illustration of maritime activity with REACTIV (November 2018 to June
2019)



Maritime Surveillance page 100 Applications

(a) Google Map 8 March 2017

(b) FBR (50% transparency) and Google Map (50% trans-
parency)

(c) FBR image VH

Figure 7.7: Area of interest: Jurong Island industrial harbor (a) Google Map image, (b) 50%
transparency Google Earth and 50% transparency FBR VH and (c) FBR VH only
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We present a result of REACTIV software in figure 7.6b to have an overview of the dense

maritime traffic in this area. REACTIV software represents only the biggest changes in the time-

series; however, it gives an excellent idea of the maritime activity over a long time-series. As we

can observe from Figure 7.6, the FBR scene represents visually only stable structures and discards

the ephemeral objects such as ships. The characteristics of the Sentinel data used in this study can

be found in Table 2.1 of Chapter 2. In addition, Figure 2.3b represents the operations performed

for each GRD image of the stack. The images of the stack were afterward coregistrated according

to the first image of the stack using the function « Coregistration » of SNAP (Sentinel Application

Platform) software [48].

Since the environment is constituted of man-made structures, we chose to use SAR images with al-

ways the same observation configuration, and thus the same orbit number. Indeed, most man-made

structures cannot be considered to possess an azimuthal symmetry, and a subtle change in the ob-

servation angle can drastically affect their backscattered signals. Using different orbits to compute

the FBR image might corrupt the estimation of a stable background. The study of harbors is a

challenge in target detection; indeed, metallic structures are associated with high scattering con-

tributions. For instance, it is challenging to discriminate mooring quays and actual ships. Besides,

the number of ships evolves from a date to another. Some ships can remain in the same position

during several acquisitions, but also different ships can occupy the same pixels on consecutive ac-

quisitions. This partial or full overlapping in time can produce misinterpretation in the CD results

with classical methods. This example is a direct application of the FBR procedure to estimate a

stable background within the observed scene and detect only ephemeral objects at each acquisition.

Figure 7.7 presents the zoom of the FBR Scene in the area of interest. From top to bottom

are shown the Google Map Image from 8 March 2017, then the FBR image with Google Map

in 50 % transparency, and finally, on the bottom, the FBR image only in VH polarisation. As

we can observe, the FBR image matches well with the optical image; the metallic moorings give

strong radiometric signals and are well visible on the FBR image. The harbor structures are well

preserved, and all ephemeral objects have been removed.
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Bi-date Change Detection analysis

We study a configuration of temporally superimposed targets adjacent to a permanent scatterer

(mooring quays). In Figure 7.8, we can observe ships circled in red for two dates. They share

the same position during the two acquisitions and are adjacent to mooring quays. We can notice

from these images that most of the ships present in the scene are moored to the quays. In this

configuration, the detection of boats is rendered difficult, contrary to the open sea case. The change

detection was computed, for both VH and VV, as previously described in Section 7.2.1 with the

two consecutive dates of Figure 7.8 for classical bi-date change detection and then separately with

the computed FBR image.

(a) Radimetric VH 13/10/2017

(b) Radiometric VH 25/10/2017

Figure 7.8: Consecutive radiometric images for VH polarisation: (a) Radiometric VH 13 October
2017, (b) Radiometric VH 25 October 2017 (Sentinel 1 GRD data).

From the classical bi-date change detection shown in figures 7.9a and 7.9b, the moored boats

do not appear in the detection map since there is time overlapping. Within the FBR CD maps in

Figure 7.9c, 7.9d, 7.9e, and 7.9f, where the FBR change detection is illustrated, it is possible to

identify them more efficiently since the CD is operated from the FBR image, which is a target free

scene. This is valid for both polarizations. Therefore, the interpretation is improved and the CD

map from a FBR method gives more consistent results when the user is interested in evaluating

the content of ephemeral targets at a specific date.
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(a) Classical Bi-date VH (b) Classical Bi-date VV

(c) FBR and 13/10/2017 VH (d) FBR and 13/10/2017 VV

(e) FBR and 25/10/2017 VH (f) FBR and 25/10/2017 VV

Figure 7.9: Raw output CD comparison for the dates 13/10/2017 and 25/10/2017 : (a) Classical
Bi-date VH, (b) Classical Bi-date VV, (c) CD FBR for date 13/10/2017 VH, (d) CD FBR for date
13/10/2017 VV, (e) FBR-CD for date 25/10/2017 VH, (f) FBR-CD for date 25/10/2017 VH.

Multitemporal Change Detection analysis

A classical strategy for change detection in time-series is to perform a bi-date change detection

sequentially to obtain binary words relative to a specific sequence of changes. Similarly, we can

obtain binary words comparing each image of the time series with the FBR image. For the sake

of simplicity and ease of the interpretations, we presented the result for the HV channel on the

first four images of the stack. These four images can be found in Appendix B.2. The results

are presented in Figure 7.10a for the classical sequential bi-date procedure and in Figure 7.10b

for the FBR change detection framework we proposed. For the result shown in Figure 7.10a, the

obtained binary corresponds to the transition between sequential bi-dates. Since four dates were

chosen, three tests were performed sequentially to create the binary words A1→2A2→3A3→4 where
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An→n+1 corresponds to the binary outcome of the test between date n and n+1. If a change

occurred between date n and n+1, the outcome is 1; if no change occurred, the outcome is 0.

(a) Sequential bi-date VH

(b) FBR VH

Figure 7.10: (a) Four dates sequential bi-date change detection analysis, (b) CD FBR computation
on the four first dates.

For the result shown in Figure 7.10b, the obtained binary word corresponds to the outcome of

the test between our FBR image and the current scene. Since four dates were chosen, four tests

were performed sequentially to create the binary word BFBR→1BFBR→2BFBR→3BFBR→4 where

BFBR→n corresponds to the binary outcome of the test between the FBR image and the date n.

This outcome can then be interpreted as 0 if no target is present and 1 if a target is present.

We focused on the three different scenarios circled within Figure 7.10. The area circled in

light green gave a binary word “011” for the sequential bi-date test in Figure 7.10a since a boat

appeared at date 3 and disappeared at date 4. The results of the FBR procedure in Figure 7.10b

gave “0010” since the target was only present on date 3.
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The area circled in blue gave a binary word “001” for the Omnibus test in Figure 7.10a since

the boat appeared on date 4 and was not present on date 3. The results of the FBR procedure in

Figure 7.10b gave “0001” since the target was only present on date 4.

The area circled in orange was a high attendance zone where ships were present for each

acquisition from date 1 to date 4. The result with the sequential bi-date test is more difficult to

interpret due to the partial and total target overlapping between each acquisition. With the FBR

procedure, the outcome is “1111” near the mooring quay since targets have been detected at each

date. However, the size of targets may vary from acquisition to another, so different binary words

are found around the center of detection. In general, the interpretation of such a map is not

convenient due to the high number of possible combinations (maximum 2(D−1) with D dates), and

this remains a problem. The type of representation typically depends on the application (Number

of changes, first change, last change, change combination).

As explained before, the main advantage of the proposed method is that it is possible to

retrieve the information relative to ephemeral targets at a specific date. It can be a great interest

for operators to obtain a detection output at a specific date corresponding to what specifically

happened at this day. For instance, if the amount of changes has been judged unusual, a change

map corresponding to the ephemeral objects present in the scene is available.

Ship number estimation within the scene using FBR procedure

We focus now on the estimation of the number of ships for each acquisition. First, a mask was

defined to exclude possible changes coming from the land areas, as shown in annex Figure B.1 in

light blue. It is now possible to estimate the number of ships for each acquisition by using the FBR

procedure and setting a threshold on the raw output CD for each acquisition. The change detection

map can be superimposed with the reference image when the user is interested in a specific date

to improve the interpretation, as shown in Figure 7.11b,d, and can evaluate the ship traffic for a

given date.

The Matlab function bwconncomp is used to determine the number of binary objects forming

a group of pixels detected within the scene. The estimated ship number for each acquisition date

is presented in figure 7.11e for VH channel. To validate the results, it is important to have AIS

(Automatic Identification System) signals to obtain information about ships present in the scene

at the time of the acquisition. Unfortunately, we did not have historical AIS signals to verify the

accuracy of the detection. In order to verify the consistency of the results in some way, we propose

to consider the dates where we detect the lowest and the highest number of ships. For these dates,

we display in Figure 7.11 the radiometric images and the CD maps obtained from our FBR method.



Maritime Surveillance page 106 Applications

(a) Radiometric 4 August 2019 (b) CD FBR 4 August 2019

(c) Radiometric 13 November 2018 (d) CD FBR 13 November 2018

(e) Estimated number of ships per acquisitions (VH)

Figure 7.11: Images of highest and lowest attendance detected with the FBR method: (a) Radio-
metric 4 August 2019, (b) CD FBR 4 August 2019, (c) Radiometric 13 November 2018, (d) CD
FBR 13 November 2018 and (e) Estimated number of ships per acquisition in the area of interest.

These acquisitions corresponded to the 13 November 2018 as shown in Figure 7.11c for the highest

attendance of 36 ships and to the 4 August 2019 for the lowest attendance in Figure 7.11a with

17 ships. As we can observe from the radiometric images visually, most of the quays were free of

ships, and few ships were visible in the middle of the harbor for the image acquired on 4 August

2019. On the contrary, for the 13 November 2018, the number of ships moored to the quays and

in the middle of the harbor appears to be significantly higher. The results seem to be reasonably

coherent with what we can observe on the radiometric images. However, it is not possible to verify
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on each image the number of boats with only SAR images. It would be interesting to evaluate the

procedure on a dataset with ground truth (optical images, for example, or AIS dataset) to fully

characterize the method.

Verification with AIS signals: Sentinel 1 image acquired on 22 August 2020

In this example, we propose to compute the FBR image from 2017 to 2019 as done previously and

evaluate the results of change detection using live AIS signals captured from marinetraffic.com.

Figure 7.12: Sentinel 1 GRD VV acquired the 22 August 2020 at 11h25min30s (scaled [-20 5dB])

The SAR image of interest has been acquired the 22 August 2020 at 11h25min30s UTC; the

detection results on VV channel are presented in Figure 7.12. The acquisition of Sentinel 1 is

around 30s for a given footprint. Figure 7.13a presents the capture of live AIS signal collected at

the time of the Sentinel acquisition, and figure 7.13b presents the detection map projected on the

FBR image. For AIS, the color code gives the type of ships. When there an arrow shape, it means

the ship is moving. When there is a dot or a ship shape, it means that the ship is not moving.

When the color is plain, the AIS signal is recent (but recent may mean some minutes ago), whereas

a transparent color means an old AIS information (some hours ago). The ships circled in red on

both AIS and detection maps represent big vessels with a size superior to 30m that are all well

detected. The ships circled in green are smaller ships or groups of smaller ships that are also well
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detected. In Figure 7.13b, we circled in blue the detection of objects without AIS.Finally, in Figure

7.13a, we circled in blue every ship with AIS signal that is not detected and is not visible as well

on the SAR image.

(a) AIS signal

(b) FBR-CD VV

Figure 7.13: (a) AIS signal captured from marinetraffic.com the 22 August 2020 at 11h25min30s
UTC, (b) Associated FBR-CD projected on the FBR image in background
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For blue circle 2 and 4, all AIS signals are transparent, corresponding to old signals. When the

satellite passes over, there may be no targets there. For blue circle 3, 5 AIS signals are present

and recent. They correspond to tugs. They are typically 30m*10m, so about two pixels in size.

None is detected. For blue circle 5, we can notice that most AIS signals are transparent, so old, or

with an arrow, so moving. There is only one AIS signal meaningful, corresponding to a tug. For

blue circle 1, disregarding the old signals, there are some AIS signals not detected. Looking at the

SAR image, it seems there are some ships not detected.

Considering the resolution of Sentinel 1 (20x20m), the result is encouraging. Some ships may

not have a signature on the SAR image due to their shape, material, or simply because they are

too small. However, our method gives a fair estimation of ephemeral objects that are physically

detectable by Sentinel 1 SAR images. We can notice that most of the ships present are moored or

near the harbor infrastructures, which encourages the benefit of our method in such environments.

7.3 Discussion on FBR procedure for maritime surveillance

application

As presented, the proposed method is interesting to obtain a change map of objects that are not

part of each date’s background. In particular, its interest has been demonstrated in the challenging

environment of a harbor.

Outside of the harbors, two important phenomenons for maritime surveillance may affect our

method: the state of the sea surface and the tidal effect. Indeed, Singapore is in a zone with a

low tidal effect, and inside harbors, we can consider that the sea state remains unchanged because

protected by the surrounding lands and infrastructures.

The sea state’s effect has to be checked in different situations (sea state, resolution, sensor frequency

of operations etc.). The coastal tidal effect is one phenomenon that also causes several issues

(appearance of rocks for example) and may corrupt the background estimation of the scene since

the background would evolve periodically. Since the tidal effect is a predictable phenomenon, we

could map the available acquisitions with a given tidal state when the study area is subject to a

strong tidal effect. The tidal effect could then be avoided by computing one FBR image per tidal

state that would hopefully give more accuracy on the background estimation of the image at a

given time and then a better detection result.
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Summary: This chapter illustrated the use of FBR CD for maritime surveillance with an

application using a UAVSAR dataset and a Sentinel 1 GRD dataset. The second example

showed the great interest of this method in harbor environments where it is usually chal-

lenging to obtain accurate results due to strong backscattering signals coming from harbor

infrastructures.

In terms of interpretation, the FBR offers the remarkable ability to estimate the change for

each date (with respect to an estimated stable scene), instead of sequential bidate changes.

This is one significant advantage compared to sequential method of change detection. As

shown through the different results, the FBR procedure is interesting when the purpose is

to determine the number of ephemeral objects at a specific date. The computation of the

FBR image can become a difficult task with a background subject to temporal periodical

variation (tidal effect), or with an important background change (demolition of a quarter).

These configurations have to be taken into account to improve the proposed method and

implement it in a wider range of applications. The proposed framework is also designed

to consider future satellite missions that can offer a much higher temporal resolution and

therefore a possibility to better estimate the background of the scene implying more accurate

detection results.



Chapter 8

Foliage Penetration (FoPen)

applications

Objectives : In this chapter, we address the problem of FoPen (Foliage Penetration) mis-

sions. This SAR application is performed at low radar frequencies (L-band or lower) to

penetrate the foliage and let the wave reach the ground. Two missions will be investigated

to benefit from multitemporal acquisitions and therefore evaluate the gain in the detection

of target concealed below the canopy. The TROPISAR mission, a polarimetric dataset

acquired at P-band by SETHI radar (developed by ONERA) and CARABAS II challenge

data acquired with CARABAS II airbone radar developed by FOI (Swedish Defense Re-

search Agency). We will, at this occasion, evaluate the detection using polarimetric FBR

images for TROPISAR mission. In a second time we will exploit the different flight head-

ings acquired for CARABAS II challenge dataset to generate a FBR scene. Afterward

we will compare the performance of detection either using a single flight heading for the

computation of the FBR scene or various flight headings.

We chose two missions to evaluate the performances of the FBR procedure for FoPen change de-

tection applications quantitatively. The TROPISAR mission has been acquired in French Guyana

by ONERA at different frequencies (P and L bands) for several applications (FoPen detection,

tomography and biomass estimation)[17]. The second mission of interest, CARABAS II, has been

acquired by the FOI (Swedish Defense Research Agency) in Sweden at 70MHz with several target

111
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deployment and flight headings. More specific information about the mission can be found in

[16]. In this chapter, we will first briefly introduce the specificities of FoPen SAR detection. In a

second time, we will compare the performances of CD methods in bi-date, overall omnibus, and

FBR-based cases for the TROPISAR mission. Afterward, we will evaluate the performances of

FBR-CD method for the mission CARABAS-II where targets are present in different acquisitions

and target positions.

8.1 Specificity of FoPen detection

The detection of man-made structures in SAR FoPen applications has been studied for instance

in [96, 97] by projecting the radar signal in target and clutter (interference) subspaces using a

single acquisition. This method is interesting because only one acquisition is necessary. For this

approach, the model of interferences is based on a canonical representation of trunks [15].Indeed,

at low frequencies, backscattered signal can be modeled as a coherent combination of four possible

contributions trunk/ground as we can see in Figure 8.1. Interactions 2 and 3 constitute the

strongest mechanisms. The trunks are, in that case, considered as dielectric cylinders.

Figure 8.1: Contributions involved at low frequency for the backscattered signal of a trunk (con-
sidered as a dielectric cylinder) from [15]

However, it is challenging to create a model that can be efficiently applicable everywhere con-

sidering the variety of forest. Indeed, the terrain, the forest (density of trees, geometry, dieletric

properties) and topography need to be accurately known as they significantly impact the nature

of the backscattered signal. Depending on the type of forest (and on the radar frequency), the

branches interactions might also be considered, which brings additional difficulty for modeling the

scene interferences. This detection method relies on the differences between the scattering pattern

of the target on the one hand and the trees on the other hand.
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Using time-series could enable us to benefit from additional differences: the target that we look for

can be considered as an ephemeral object, while trees remain at the same position, whatever the

date of acquisition. Therefore, the use of change detection in multitemporal SAR images is an in-

teresting solution to overcome these issues. We can suppose that the trunks/branches constitute a

stable deterministic signal in time during a reasonable acquisition span. We aim to compute a FBR

image of a forest at low frequencies and in a second time to detect ephemeral man-made targets in

FoPen environment using CD between two or more SAR images as in [98, 33]. This framework may

be interesting at low frequencies since most of the backscattered contribution is coming from the

trunks and big branches as well as interactions between the ground and trunks [34]. Two dataset

will be investigated for FoPen detection, TROPISAR (P-band in tropical forest with 8 acquisitions)

and CARABAS II (VHF 70 MHz with 3 set of 8 acquisitions monitored at different flight headings).

8.2 TROPISAR mission

We propose first to investigate a polarimetric dataset. This mission has been acquired above the

French Guyana by an airbone radar (SETHI) developed by ONERA. The selected set of SAR

images consists of 8 P-Band coregistered images of tropical forest where cars have been parked

under foliage at a specific date.

8.2.1 Data Presentation

During this experiment, some vehicles and a trihedral have been placed along a small dirt road

under foliage on the 24 August 2009 (image tropi402) as we can observe in Figure 8.2.

Table 8.1: SETHI charactecteristics and dataset information for temporal P-band TROPISAR
products used for the analysis

Technical Characteristics of Sethi SLC products for TROPISAR Mission
Polarisation HH+HV+VH+VV
Range resolution 1.2 m
Azimuth resolution 1.5 m
Centrale Frequency 400 MHz
wavelength 0.75m
Incidence Angle 30◦
Acquisition dates From 10 August to 1 September

2009
Location http://maps.google.com/

maps?q=5.275216,-52.923660

The tables 8.1 and 8.2 presents the parameters of SETHI radar and the acquisition dates of

http://maps.google.com/maps?q=5.275216, -52.923660
http://maps.google.com/maps?q=5.275216, -52.923660
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Table 8.2: Acquisition dates for the P-band temporal stack and corresponding images according
to [17]

Acquisition dates and corresponding image name
10 August 2009 tropi007
12 August 2009 tropi104
14 August 2009 tropi208
17 August 2009 tropi305
24 August 2009 tropi402
30 August 2009 tropi506
30 August 2009 tropi507
1 September 2009 tropi603

the image used for this study.

(a)

(b)

Figure 8.2: (a) Test site and targets disposition of targets for TROPISAR mission over the field
station of Paracou, adapted from [6], (b) Drawing of the configuration (side view), green blocks
represent the forest, blue box being the Isuzu and red box the laguna from [6]

The results for change detection between two dates at L-band and P-band are presented in [6],
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and the following conclusions can be drawn: the detection is more efficient at P-band compared to

L-band. It is a well-expected result considering the extremely dense nature of the tropical forest

in French Guyana. Besides, this study showed that 3 targets out of 4 could be detected using this

method, the Laguna being undetectable in any configuration. As we can observe in the diagram

taken from the same article, if a car is parked on the left side of the road (radar wave coming from

the right side), the radar wave travels through less vegetation compared to a car parked on the

right side. In conclusion, the laguna cannot be detected because of the strong two ways attenuation

estimated of 14dB in HH and 17.6 dB in VV. Since a set of 8-band images is available for this

mission, we want to investigate the gain of using several acquisitions to detect those targets. We

will study the possibility to generate a FBR scene of the acquisition and afterwards perform change

detection to evaluate its benefits.

8.2.2 Change Detection analysis

The exact position of the Laguna being unknown, we will not consider it in the detection problem.

We will, therefore, consider the 3 targets for which we can create a ground truth. In Figure 8.3b

are shown the Isuzu (target 1 red rectangle), the Master (target 2 on the left side in the white

rectangle) and the trihedral (target 3 on the right side in the white rectangle)

As we can observe in Figure 8.3a it is not possible to distinguish visually the targets that have

been placed in the observed scene due to the high clutter of the tropical forest. Different CD

statistics to highlight the targets will be presented first qualitatively by showing the raw output of

the test. Afterward, the detection will be evaluated quantitatively by calculating experimentally

the probability of detection (PD) and probability of false alarm (PFA) according to the available

ground truth.

Different Pauli representation are presented in Figure 8.4. In Figure 8.4a is shown the Pauli

representation of the first date of acquisition tropi402 calculated with an average box of 3x3 pixels,

it is still not possible to distinguish the targets easily from this simple polarimetric representation.

In Figure 8.4b is presented the temporal Pauli representation and in Figure 8.4c the associated

FBR scene in Pauli representation.

In this study we are interested in the clutter cancellation of the surrounding background that

is mainly constituted of trunks. We compare three statistical tests for this study: the GLRT

(omnibus) calculated on the 8 acquisitions, a bi-date change detection with the closest acquisition to

tropi402 (which is tropi506) and finally, the change detection with the FBR procedure considering

the whole candidate pixels and the image tropi402.

First the raw outputs of the algorithm in bi-date case γG, omnibus case γGM and from the FBR
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(a) HH Image with targets

(b) Ground Truth

Figure 8.3: (a) radiometric HH image tropi402 containing targets monitored at P-band the 24
August 2009. (b) Associated ground truth : target 1 (Isuzu), target 2 (Master on left side) and
target 3 (P-band trihedral on right side)
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(a) Pauli spatial tropi402

(b) Pauli temporal

(c) Pauli FBR

Figure 8.4: (a) Spatial Pauli representation of image tropi007 (3x3 spatial average box), (b) tem-
poral Pauli representation, (c) FBR Pauli representation, R=|HH − V V |(representing Double
Bounce), G= 2|HV |(Volume), B=|HH + V V | (Single Bounce), scaled [-20 5] dB
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(a) (b)

(c) (d)

(e) (f)

Figure 8.5: CD Full Polarimetric: (a) Bi-date detection of target 1 (tropi402 vs tropi 506), (b)
Bi-date detection target 2 and 3 (tropi402 vs tropi 506), (c) Omnibus detection of target 1 (whole
time-series), (d) Omnibus detection of targets 2 and 3 (whole time-series), (e) FBR detection of
target 1 (FBR image vs tropi 402) and (f) FBR detection of target 2 and 3 (FBR image vs tropi
402). Average spatial window = 3x3 (N=9)

procedure γMP are present in Figure 8.5. In addition, the corresponding ROC curves computed

from the ground truth are presented Figure 8.6, for each polarisation and for the full polarimetric

case. For the bi-date case and omnibus case, in Figure 8.5a,8.5b,8.5c and 8.5d we can observe that
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the clutter of the forest remain high and visually the possibility of false alarm seems high. On the

contrary Figure 8.5e and 8.5f the clutter has been successfully cleared using the FBR procedure.

In order to evaluate the performance quantitatively, we use the ground truth Figure 8.3b and

compute the Probability of detection PD = TP
NT and the probability of false alarm as PFA = FP

NB

with TP the number of pixels truly detected as target (True Positive), NT the number of pixels

defined as target in the scene (3 targets of 5x5 pixels), FP the number of background pixels

detected as target (False Positive) and NB the number of pixels defined as background.

The figure 8.6a, 8.6b and 8.6c represent the PD-PFA curves in the monopolarisation case and

show that the performance are better in HH, HV and VV for lower PFA (below 0.1). The figure

8.6d represents the performence using the full polarimetric vector. The same general comment can

be done regarding the computed PD and PFA.

(a) CD HH (b) CD HV

(c) CD VV (d) CD Polarimetric

Figure 8.6: CD ROC, blue curve FBR change detection, red curve Bi-date, yellow curve omnibus
detection: (a) HH, (b) HV and (c) VV, (d) FullPol

In general, the main advantage of the CD based procedure for target detection is that no a

priori information on the target or the background are required. Increasing the knowledge on the

background by using several measurements of temporally stable pixels provides better detection
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capabilities of targets. With this study, we have shown that the FBR based change detection

enables a good clutter noise cancellation to decrease the probability of false alarm significantly and

increase the probability of detection with a small spatial averaging window.

8.2.3 Discussion

For this example, we have evaluated the detection of vehicles (and corner reflector) hidden under

the canopy of a tropical forest. This detection has been made possible through the use of low radar

frequencies that enable to penetrate through the foliage and reach the ground. We have compared

three statistics to evaluate quantitatively the gain of using several acquisitions to build a FBR

scene that can be used afterwards for change detection and detect objects at a given acquisition.

However, in this specific case, we have to note that there is a short time between acquisitions (2 to

7 days) and between the first and last acquisition (22 days). In addition, acquisitions at P-band

probably favors a stable temporal background of the scene and therefore appear robust to intrinsic

temporal variations of the vegetation such as growth of vegetation and seasonal effects. It would

be then interesting to study such strategy with a longer time span over tropical forest to highlight

possible limitations introduced by the seasonal variations of the environment.
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8.3 The CARABAS II challenge

We now investigate the second dataset, CARABAS II challenge, for FoPen application. This

campaign has been acquired in monopolarisation case (HH) with several flight headings for the

same scene and with different target deployments. We want to evaluate the possibility of using

several flight headings to compute a FBR image. Computing a FBR image with different flight

headings seems at a first sight not rigorous since the backscattered signal is a priori different from

an observation angle to another. However, we can reasonnaly assume that the trees possess an

azimuthal symmetry property. Especially at low frequencies where the main contributing structures

are trunks, generally modeled as vertical dielectric cylinders. Here, two sets of SAR images have

been acquired with close flight headings (FH=225◦and FH=230◦) and the other one with an

orthogonal direction (FH=135◦).

8.3.1 CARABAS characteristics and data presentation

CARABAS II is a VHF SAR imaging system developed by FOI (Swedish Defense Research

Agency), the main characteristics of this campaign are presented in Table 8.3. The campaign

itself consists of the observation of 4 groups of targets, called missions or target deployments,

shown in Figure 8.7. A color is attributed for each target deployment in Figure 8.7 and the asso-

ciated characteristics are described in Figure 8.8a. For each target deployment, two passes have

been acquired with 3 flight headings: 225, 230 and 135◦ (0◦would be a flight heading towards the

north, the flight heading is to be considered as a clockwise direction according to the north) as

presented in the Figure 8.8a.

Table 8.3: CARABAS II charactecteristics and dataset information for the challenge dataset

Technical Characteristics of CARABAS II challenge dataset
Mode Strip map
Polarisation HH
Range pixel spacing 1 m
Azimuth pixel spacing 1 m
Range resolution 2.5 m [5]
Azimuth resolution 2.5 m [5]
Centrale Frequency 63 MHz
Bandwidth 65 MHz
wavelength VHF
Incidence Angle 58◦
Acquisition dates 2002 (summer)
Location http://maps.google.com/

maps?q=66.385712,19.242308

We can notice with Figure 8.8a that for targets deployments 2, 3 and 4, there is always a config-

http://maps.google.com/maps?q=66.385712, 19.242308
http://maps.google.com/maps?q=66.385712, 19.242308
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uration where the vehicles are parked parallel to one of the flight path and therefore perpendicular

to the other flight path. For target deployment 5, the vehicles are organized in a way that for all

flight headings the vehicles will be tilted of around 45◦ so that no specular reflection will be seen by

the radar. In addition, we can observe from Figure 8.8 that the targets are organized in a gradient

of sizes, with 3 possible sizes of vehicles : TGB11 (4.4x1.9x2.2 m), TGB30 (6.8x2.5x3.0 m) and

TGB40 (7.8x2.5x3 m) presented in Figure 8.8b, 8.8c and 8.8d. The environment is a sparse forest

with long and thin trunks with relatively smooth ground surface.

Figure 8.7: Representation of the scene with positions of target deployment (called missions in the
challenge)
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(a) Target deployment presentation and relative orientation compared to
the flight headings adapted from [16]

(b) TGB11 (c) TGB30 (d) TGB40

Figure 8.8: (a) Target deployments and representation of flight headings for each target deploy-
ment. (b) TGB11 vehicle, (c) TGB30 vehicle and (d) TGB40 vehicle from [16]

First, we create 3 sets of 8 images (each set corresponds to a flight heading), each of them

containing the different target deployments. Therefore, for each target deployment, we will gen-

erate 3 FBR images corresponding to each flight heading and evaluate the gain of using several

acquisitions compared to a bi-date based framework for each flight heading. Then, we will consider

an azimuthal symmetry of the environment and gather the data from flight heading 225 and 230◦

to generate a set of 16 images. One FBR image will be computed and used for change detection

with the images acquired with flight heading 225 and 230 ◦. In that way, we want to evaluate the

gain in detection compared to a framework with the same flight heading. Finally, we will exploit

the whole set of 24 images to generate an FBR image and evaluate the impact on the detection.

The table that summarizes images name for each configuration is presented in Appendix C.1.
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8.3.2 Detection using same flight heading

First, three FBR images are computed for each flight heading. We present in Figure 8.9 , one

image of the stack acquired with FH=135◦ and the associated FBR image for FH=135◦. We recall

that targets are present for each of the 8 SAR images for each flight heading. As we can observe

in Figure 8.10, the scene is indeed free of targets within the target deployment areas framed in red

(for target deployment 2 and 3) and white (for target deployment 4 and 5).

Figure 8.9: HH Image with vehicles v02 2 2 1.a.Fbp.RFcorr.Geo.Magn

We present some examples of detection for target deployment 2 (framed in green in Figure

8.8a) for bi-date case and the FBR detection case. The results are presented for 2 orthogonal flight

headings to observe the impact of the orientation of targets compared to the radar flight heading.

The raw output of the detectors are shown in Figure 8.11 for FH = 135◦ and FH = 230◦. We

can see the impact of the orientation of targets compared the flight heading. Indeed, the targets
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Figure 8.10: FBR Image for FH=135◦FBR135 (computed with 8 images)

are parked in parallel to the flight heading FH = 230, so a bigger metallic area is subject to the

emitted waves. In contrast, for FH = 135◦, the targets are parked in the orthogonal direction

compared to the flight path, so the radar sees potentially a smaller surface.

Indeed, we can see a smaller RCS change monitored for targets in the top part of Figures 8.11a

and 8.11b compared to Figures 8.11c and 8.11d. Regarding the clutter cancellation, we can see

the benefit of FBR CD compared to the bi-date case where bright points can be observed around

the targets that may lead to false alarms.

In the proposed challenge paper, the output of the detector is processed afterward with a CFAR

filter to decrease the number of false alarms. Besides, for the probability of detection, the rule is to

validate the detection if at least one pixel is detected as target in a radius of 10m according to the

ground truth. For this study, we will directly consider the raw output of the detection to evaluate
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(a) Bi-date CD FH = 135◦ (b) FBR CD FH = 135◦

(c) Bi-date CD FH = 230◦ (d) FBR CD FH = 230◦

Figure 8.11: Change detection raw output for target deployment 2: bi-date CD and
FBR CD for two different flight headings FH = 135◦ and FH = 230◦. (a) Bi-date
CD v02 2 2 1.a.Fbp.RFcorr.Geo.Magn vs v02 4 2 1.a.Fbp.RFcorr.Geo.Magn , (b) FBR CD
with v02 2 2 1.a.Fbp.RFcorr.Geo.Magn (c) Bi-date CD v02 2 5 1.a.Fbp.RFcorr.Geo.Magn vs
v02 4 5 1.a.Fbp.RFcorr.Geo.Magn (d) FBR CD with v02 2 5 1.a.Fbp.RFcorr.Geo.Magn. Aver-
aging window (N=3x3)

the comparison between a bi-date framework and the FBR proposed framework. In addition we use

the ground truth provided by the dataset with a radius of 5 meters around the center of the targets.

The procedure for the detection evaluation will be the same as in the TROPISAR mission study, a

pixel-based detection evaluation. In the Figure 8.12 we can observe the overall detection result for

each flight heading between the FBR framework and a bi-date framework. Each curve represents

the detection performance for 200 vehicles (8x25 vehicles per flight heading). At PFA = 10−3 the

curves shows that PD=0.6 to 0.7 for the bi-temporal tests depending on the flight heading and

reaching in all cases PD=0.9 for the FBR detection of each flight headings. It is an interesting

improvement on the detection that have been observed earlier in the case of TROPISAR mission.

For a next step, we want to build an FBR image using two flight headings dataset FH = 225◦ and

FH = 230◦ and evaluate visualy and quantitatively the gain in detection and impact on the false
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(a) ROC FH = 135◦

(b) ROC FH = 225◦

(c) ROC FH = 230◦

Figure 8.12: Overall ROC (Receiver Operating Characteristic) curves per flight heading for a bi-
date framework CD and FBR CD : (a) ROC for FH=135◦, (b) ROC for FH=225◦and (c) ROC
for FH=230◦
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alarms.

8.3.3 Considering two datasets with close FH

We present in this part the results obtained by computing a FBR image from different flight

headings. The FBR image is computed only with two close flight heading (225◦ and 230◦).

(a) Bi-date CD FH = 225◦

(b) FBR(computed with FH = 225◦) CD

(c) FBR(computed with FH = 225◦ and FH =
230◦) CD

Figure 8.13: Change detection raw output for target deployment 5: bi-date CD
and FBR CD for FH = 225◦. (a) Bi-date CD v02 5 3 1.a.Fbp.RFcorr.Geo.Magn
vs v02 3 3 1.a.Fbp.RFcorr.Geo.Magn, (b) FBR (FH = 225) CD with
v02 5 3 1.a.Fbp.RFcorr.Geo.Magn, (c) FBR (FH = 225 and FH = 230 ) CD with
v02 5 3 1.a.Fbp.RFcorr.Geo.Magn
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We present some examples of raw output detection for the target deployment 5 (framed in

grey in the Figure 8.8). In this example, we show the raw output detection in a bi-date case

using FH = 225◦, a FBR detection using the FBR image computed only for FH = 225◦ and the

detection using the FBR image computed with FH = 225◦ and FH = 230◦. As we can see in

Figure 8.13, both FBR detection visually highlights the targets even though they are mixed with

the clutter in bi-date case in Figure 8.13a. This configuration of target is, as presented earlier, tilted

compared to the flight headings (vehicles not parked in parallel or perpendicular with respect to the

flight paths) so the detection is naturally less efficient because the double bounces are theoretically

not coming back to the radar. Indeed, the targets are, in average, more challenging to see in this

configuration as we can observe in Figure 8.13. We present the overall ROC curve for the four target

deployments in a bi-date CD framework monitored at FH = 225◦, a FBR framework computed

with only FH = 225◦ and a FBR framework computed with FH = 225◦ and FH = 230◦. The

detection evaluation is performed with the 8 images of the stack monitored at FH = 225◦.

(a) ROC FH = 225◦

Figure 8.14: Overall ROC (Receiver Operating Characteristic) curves for FH = 225◦. For a bi-
date framework CD in red, FBR CD (FBR image computed with FH = 225◦) in blue and FBR
CD (FBR image computed with FH = 225◦ and FH = 230◦ in yellow

As we can observe from the ROC curves in figure 8.14, the overall detection on the 200 vehicles

using FH = 225◦ and FH = 230◦ is not better than the FBR framework using only FH =
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225◦. We can observe a slight degradation of detection from PFA= 10−3 and PFA= 10−1. In

general the detection stay better than a bi-temporal consideration however, in that case, bringing

more information from another close flight heading does not improve the detection compared to a

detection using the same flight heading.

8.3.4 Considering heterogeneous flight headings

In this example, we propose to generate FBR images considering the possible flight headings

combinations and evaluate the impact on the overall detection. The detection evaluation is again

performed with the set of 200 vehicles monitored for FH=225◦. In Figure 8.15 is represented the

results considering this time two addiotionnal cases: a FBR image computed with FH=225◦ and

FH=135◦ and the FBR image considering the three flight headings. From the ROC curves in

Figure 8.15, we can observe, for the curve in green, a degradation of the detection when only two

orthogonal flight headings are considered to generate the FBR image (16 images). Conversely,

when the whole flight headings are considered (purple curve) the detection results are equivalent

to the one obtained for the two close flight headings.

(a) ROC for dataset with FH = 225◦

Figure 8.15: Overall ROC (Receiver Operating Characteristic) curves for FH = 225◦. For a bi-date
framework CD in red, FBR CD (FBR image computed with FH = 225◦) in blue, FBR CD (FBR
image computed with FH = 225◦ and FH = 230◦) in yellow, FBR CD (FBR image computed
with all FH) in purple and FBR CD (FBR image computed with FH = 225◦ and FH = 135◦)
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8.3.5 Example of detection with azimuthal symmetry /asymmetry

Finally, we present a change map obtained between the FBR image computed with the three flight

headings and an image from the set FH=135◦(mission 3). As we can observe here, where the

environment is mostly composed of forest, the hypothesis of azimuthal symmetry is well respected.

Indeed, we do not observe changes in forest areas except where the targets are present circled

in orange. However, the hypothesis of symmetry is transgressed as we can see along the forest

borders and roads producing a change pattern circled in green. It is a well-expected result that

can be a problem in case of automatic change detection because false alarms are increased due to

the azimuthal asymmetry property of structures.

(a) Change map for FH = 135◦

Figure 8.16: Change detection output between a FBR image computed with the whole dataset (24
image containing 3 flight headings) and an image of target deployment 3 from the set acquired
at FH = 135◦. Problems of detection where azimuthal symetry is not respected : example of a
detection between the FBR image computed combining the 3 flight headings and one image with
FH=135◦
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8.3.6 Discussion

For this challenge dataset, we were interested in benefiting from the different configurations of

acquisition to evaluate if a gain of detection was noticed compared to a change detection involving

a single reference image and a mission image. Considering flight headings separately, the gain in

the detection of vehicles is well improved when using FBR frameworks thanks to an efficient clutter

cancellation. Visually, the targets are well highlighted and the computed ROC curves showed an

improvement compared to a bi-date framework for each flight heading. Afterward, we built the

FBR image from the set of two close flight heading acquisitions and evaluated the detection gain.

According to the results, the use of more images computed with a close flight heading still improves

the detection compared to a bi-date detection. However, it does not improve the overall detection

compared to a FBR framework considering a single flight heading at 225◦. Considering strongly

heterogeneous flight headings still enables better detection compared to a bi-date case, but it

decreases overall performance. It seems experimentally possible for this type of forest (long thin

trunk) to consider an azimuthal symmetry of the environment and use different flight heading to

compute change detection to highlight vehicles under foliage. However, this assumption is naturally

true in forest environment. It generates false alarms where the azimutal symmetry is not respected

near roads or forest borders.

Summary : In this chapter, we approached the problem of FoPen applications. P-band

measurements above tropical forest and VHF measurements above a sparse Scandinavian

forest have been studied to evaluate the benefit of FBR framework. The clutter cancel-

lation has been successful in TROPISAR mission, giving better detection and decreasing

the number of false alarm compared to a bi-date detection framework. We also observed

the same improvement in a sparse Scandinavian forest. In this work, we tried to combine

different flight heading to highlight the possible improvement in the detection. In areas

where the azimuthal symmetry is respected, we can see for this example that we can com-

bine different images to generate a FBR image without significant risks on the detection

(but without important improvement also). However combining flight headings produces

detection problems in areas where the azimuthal symmetry is not respected for example

near the borders of forests or along roads.
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Conclusion

The first objective of this thesis has been to develop a methodology producing a change map

that highlights possible targets present within a given SAR acquisition by benefiting from SAR

time-series. As illustrated, change detection techniques represent a good opportunity to highlight

targets in environment such as harbor areas or forests observed at low frequencies thanks to the

cancellation of the strong backscattering signals of the surrounding background.

Considering that target-free SAR images are not available in practice in open-access data, our idea

was to benefit from available time-series to generate a scene that consists only of the static back-

ground. We denoted this image the Frozen Background Reference image that aimed to represent

the temporally homogeneous background in the scene such as buildings, trees, infrastructures, and

the clutter noise. This image does not correspond to an actual SAR acquisition but represents an

acquisition that would have been acquired without ephemeral targets.

We use afterward this image to visualize the signature of possible targets at a given acquisition.

Summary of the chapters

The first part constituted of three chapters, presented the key aspects of SAR images, the presen-

tation and the preparation of data used for multi-temporal analysis as well as the main challenges

encountered in SAR time-series change detection techniques in the frame of target detection.

In the second part, we introduced the methodology used to generate the FBR image. Chapter 4

focused on the temporal behavior analyses of pixels in SAR time-series and pixels’ selection strat-

egy representing a homogeneous temporal behavior to build our FBR image. Chapter 5 illustrated

the pixel selection method with different examples and investigated the impact of the number of

images used to generate the FBR image. Chapter 6 presented possible change detection strategies

from this FBR image, depending on the introduced pixel selection methods. Considering a random

selection of remaining pixels does not influence the detection capabilities. We could observe that

133
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the contribution of all remaining candidate pixels improves the detection significantly in the case

of low SNR.

Performing a change detection from this FBR image provides different advantages. First, the

possible misinterpretations when ephemeral targets overlap in time are avoided, and the resulting

change map corresponds to the actual content of ephemeral objects present at a given acquisition.

This aspect has been illustrated in chapter 7 for the detection of vessels and ships in the indus-

trial harbor between Jurong Island and Singapore. The second advantage is the promising clutter

cancellation obtained by benefiting from the contribution of all remaining homogeneous candidate

pixels. It has been illustrated in chapter 8 for the detection of targets concealed under the canopy.

The change detection accuracy depends on the computed FBR image. Considering time-series with

a long time span increases the possibility that a permanent change occurred, especially in urban

areas, such as infrastructure or building construction/deconstruction. For forest environments,

the impact of temporal decorrelation and growth of the vegetation has to be taken into account

when computing the FBR image for future studies. We saw indeed at low frequencies over a short

acquisition period that the method was successful in highlighting targets.

Perspectives

Technical perspectives

This thesis has developed a new approach for change detection based on a fictive SAR image, empty

of mobile targets. To do so, we have defined three main steps: the selection of the temporally stable

pixels, the formation of the fictive SAR image, and the detection of changes between this image

and any other collected SAR image. Each of these steps can be further investigated, improved, or

at least modified.

Selection of stable pixels

The pixels we want to select have to be temporally stable. In this study, we have chosen to use

the variation coefficient for a Rayleigh-Nagakami law to select these pixels, meaning that we rely

on the amplitude of these latter.

We have seen that a theoretical value for this variation coefficient CVtheo can be derived for

stable zones to define a threshold to select the stable pixels. The standard deviation of this value

decreases with
√
D, D being the number of dates in the SAR time-series. Ideally, the larger is the

number of dates, the better is the estimation of CVtheo. This quantity is theoretically independent
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of the frequency and the polarization.

Practically, how many dates do we need at a minimum? Is there a maximum? We have slightly

investigated this question in this Ph.D. study, partly because of the reduced number of time-series

at our disposal.

We have seen that 30 images were necessary for the Singapore region observed with Sentinel-1

(C-band), while 20 images were sufficient for the area of San Francisco seen with UAVSAR at L-

band. Besides, to establish these results, we have studied the error between different FBR images.

But this detection test expression varies depending on how to select the pixels to form the final

image. In the example quoted just above, the candidate pixels have been averaged. Would it have

an impact on the number of required dates if we choose the random selection?

* * *

As far as the polarization is concerned, the selection is made in parallel for each channel. We

could develop a way to perform this selection by considering these channels simultaneously. We

could, for instance, investigate the temporal stability of the polarimetric signatures.

* * *

Finally, we have illustrated a single way to define these stable pixels. Our initial goal was to

remove mobile objects, such as vehicles, in urban areas. Construction or destruction of buildings

may induce variations that may spoil our detection. In other environments like forests, we could

observe seasonal effects if the time-series are long. We studied short time-series over forests, and

we did not face these kinds of variations. It would be essential to study these configurations, as

they would undoubtedly impact the selection process. For instance, we could define consecutive

sets of temporally stable pixels, each set corresponding to a particular temporal sequence. For

this purpose, it is crucial to build data sets, including a detailed ground truth of the scene over

observation.

The formation of the fictive SAR image

Once the candidate pixels have been selected, we have to form the SAR image representing the

stable background for each azimuth and range. This study illustrated this step with two different

methods: the averaging of the candidate pixels or the random selection among these candidate

pixels. The first impact can be directly seen in the distribution of the intensity of these two images.

In the so-called ”random” case, we preserve the statistic distribution, while in the averaging case,

this distribution is squeezed. Intuitively, we expect that the ”random” case leads to a fictive SAR
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image that can be directly exploited, as any other regular SAR image. We have tested its use

in change detection, but this assumption must be checked for other applications. For instance, it

would be interesting to extend our study to polarimetry or interferometry, if possible, to analyze

the physical consistency of this fictive image. In the case that we consider all the remaining pixels,

the advantage is obvious. Visually, the resulting SAR image has been strongly denoised, and it

is then possible to better detect smaller features. However, the use of the detection test is more

tricky because the number of pixels involved for the detection is varying from a pixel to another.

Concerning the physical meaning of the resulting image, the question holds; again, it would be

important to analyze, for instance, the polarimetric signature of stable scatterers to check for their

physical consistency.

These two ways of producing the fictive image are two examples that can be replaced by other

methods. We can change the process to select the pixels or to perform the average, for instance.

The detection of changes

In this study, our goal was to detect changes in noisy environments using SAR images. We have

shown that it was possible to improve detection performances compared with classical bidate solu-

tions significantly. As discussed above, future studies may be conducted to adapt these strategies,

either to a varying background or to detect variations that cover a more extended time. It will

have a direct consequence on the strategy to select the candidate pixels.

In the case of varying backgrounds, two types of variations can be considered. First, this

variation is predictable as it is for seasonal changes. In that case, a background image may be

constructed ”per season.” As an example, for maritime environments, we could study how to

deal with strong tidal effects. In the second case, the background change is not predictable. A

possible objective would be to integrate these changes in a continuous mode to update the reference

image regularly. The literature in video surveillance applications might be an interesting source of

methodologies to consider due to the forthcoming short revisit time expected for SAR monitoring

systems.

Extension to other applications or to other environments

Application to other environments

In this thesis, we focused on the detection of mobile targets, whatever the environment. In practice,

with our data sets, we studied two harbor areas and a forest. For the latter, the short period

between the first and the last acquisition did not permit us to investigate the effect of additional
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changes - with different temporalities - on target detection.

Forest would be an interesting area to further investigate, but this time over a long period

to test the robustness of our method. For instance, is it still possible to detect vehicles through

foliage, whatever the seasonal changes? To do so, we would have to work with L-band data, like

ALOS, to manage to deal with quite long time-series. We can also expect that higher frequencies

(X-band with TerraSAR-X) could be exploited with our method for target detection. Indeed, if a

vehicle may be placed within a forest, it means that the tree density may be locally sparse. Also,

relying on the changes in tree crowns, we could expect to remove their signature.

* * *

In other areas, like deserts, we can expect to see no changes, whatever the length of the time-

series. However, because of the high penetration capabilities through sand, we can expect to

detect subsurfaces changes reflecting the presence of potential water ressources as in [99]. The use

of different frequencies may be introduced to generate different reference images. For instance, we

expect that high frequencies (Sentinel-1 at C-band for instance) would give an information related

to the surface or upper subsurfaces of the ground whereas lower frequencies would characterize

sub-surfaces since it can penetrate deeper through dry sand. The detection of changes at different

frequencies may give information on the possible subsurface activity such as water channel acti-

vation. However, this will imply some technical issues linked to the differences in the acquisition

geometry.

Other applications

In this thesis, we focused on small and ephemeral targets. We could adapt our method either

to larger but still ephemeral targets (like flooding), to small but longer changes (like the survey

of illegal constructions or the progressive deterioration of protected buildings), and to larger and

longer changes (like fires or earthquakes) to provide change maps.

* * *

Another group of applications is linked to the use of the FBR image only. Indeed our method

provides a SAR image with a clutter potentially significantly lowered while keeping the resolution.

Also, all the permanent structures are highlighted, leading to a tool that could be used to provide

a cartography of the roads and the buildings of a given area.

With Sentinel-1 archives, we can also imagine a tool to image very slow changes comparing
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FBR images computed each year, over all the SAR images available in this time slot. It can be

the progression of desert areas or changes along the coasts due to increased water level.
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Appendix A: Sentinel 1 revisit time around the

world

Figure A.1: Revisit time and acquisition mode of Sentinel 1 constellation (2019)
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Appendix B: Industrial Harbor monitoring

Figure B.1: Mask used to exclude change from the land.

(a) Date 1 : 3 February 2017 (b) Date 2 : 27 February 2017

(c) Date 3 : 11 Mars 2017 (d) Date 4 : 23 Mars 2017

Figure B.2: 4 first Images HV of the stack (15 February 2017 missing): (a) 3 February 2017,
(b) 27 February 2017, (c) 11 Mars 2017, (d) 23 Mars 2017 (Sentinel 1 GRD images)
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Appendix C: CARABAS II Challenge table

Figure C.1: Summary table of CARABAS II challenge
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Appendix D: Résumé étendu en Français

D.1 Cadre de l’étude

Cette thèse porte sur la détection de changements dans les images SAR (Synthetic Aperture Radar)

pour la détection de cibles, principalement dans des environnements à forte réflectivité tels que

les forêts observées à basses fréquences radar, les villes ou les zones portuaires. Nous souhaitons

détecter les changements associés aux objets potentiellement mobiles tels que les véhicules ou les

bateaux. Dans ces configurations, la détection des cibles est difficile en raison du fort signal de

rétrodiffusion des structures naturelles ou artificielles environnantes.

Une première option pour la détection repose sur l’utilisation d’une seule image SAR. Dans

ce cas, différentes approches permettent de mettre en évidence la cible si elle possède des car-

actéristiques différentes de son environnement [3, 2, 4, 92, 100].

Une autre stratégie peut être utilisée pour la détection de cible, basée sur la détection de

changement entre deux images SAR ou plus. Dans ce cas, à supposer qu’une image sans cible soit

disponible, la détection de changement entre cette image SAR (image de référence) et une autre

image SAR (image ”mission”) avec d’éventuelles cibles permet de supprimer la contribution de

l’environnement et met en évidence les cibles d’intérêt [6, 33, 1].

La détection de changement est appropriée pour mettre en évidence les cibles dans une scène ob-

servée contenant des forts diffuseurs car la contribution de l’environnement est supprimée. Cepen-

dant, le choix des stratégies de CD implique d’avoir idéalement accès à une scène sans cible. Des

campagnes spécifiques pour la détection de cibles peuvent fournir de telles scènes et une vérité

terrain détaillée qui permet d’évaluer la détection. Cependant, dans la pratique, le contenu d’une

scène est inconnu pour les images SAR de satellites dont les images sont en libre accès (par ex-

emple, Sentinel 1, UAVSAR). Dans ce cas, les résultats de détection de changement entre deux

ou plusieurs scènes peuvent être ambigus si une cible est présente plusieurs jours ou lorsque des

cibles de natures différentes occupent la même position géographique lors de plusieurs acquisitions

(chevauchement temporel partiel ou total).

Dans cette thèse, nous supposons donc que toute image SAR est constituée d’objets immo-

biles (ex: bâtiments ou arbres) qui sont présents de manière permanente dans les images SAR et

d’objets éphémères (cibles) qui peuvent apparaitre et disparaitre d’une acquisition à l’autre (ex:

voitures ou bateaux). Nous proposons d’exploiter des séries temporelles d’image SAR en libre
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accès pour générer une image SAR de référence contenant uniquement ce qui est temporellement

stable ou permanent. Nous réaliserons ensuite une détection de changement avec cette image FBR

pour mettre en évidence les cibles présentes à une acquisition donnée. Avec cette technique, nous

espérons pouvoir isoler et analyser la signature des cibles.

D.2 Organisation du manuscrit

La première partie comprend trois chapitres introduisant les éléments clés pour la compréhension

et l’analyse des images SAR, présente les principaux jeux de données utilisés lors de l’étude et enfin

illustre les différentes stratégies de détection de changements dans les séries temporelles d’images

SAR. La deuxième partie présente le concept d’image FBR, sa construction, sa représentation et

les stratégies de détection de changement associée. Enfin, la dernière partie, composée de deux

chapitres, présente les applications de notre méthode sur deux environnements contraignants pour

la détection de cibles: la surveillance maritime en milieu portuaire et la détection de cibles dans

des contextes FoPen.

D.3 L’imagerie SAR et les enjeux futurs

L’imagerie SAR (Synthétique Aperture Radar) ou RSO (Radar à Synhtèse d’Ouverture) est une

technique d’imagerie radar permettant de génrerer une image caractéristique de la rétrodiffusion

élétromagnétique des diffuseurs dans une scène observée. Un porteur muni d’un radar (spatio ou

aéro-porté) émet des impulsions en se déplaçant et récupère les signaux rétrodiffusés par la scène

observée. La diversité fréquentielle apportée par le chirp émit et la diversité angulaire apportée

par le mouvement relatif du porteur par rapport à la scène observée permet de reconstruire une

image représentant les contributeurs élétromagnétiques de la scène.

Cette technique d’imagerie permet, contrairement à l’imagerie optique, d’obtenir une image qui est

indépendante des conditions météorologiques, des conditions de visibilité lié à de possibles nuages

de fumée ou encore des conditions de luminosité. C’est une des raisons majeures pour lesquels ce

type d’imagerie est très prisé de nos jours. Un autre avantage notable de la technologie SAR est

la pénétration dans des milieux tels que la forêt, la neige sèche ainsi que le sable sec. De manière

générale, l’utilisation de basses fréquences radar (en dessous de la bande L donc pour des longeurs

d’onde supérieur à 30cm) favorise d’autant plus la pénétration en fonction des conditions et des

propriétés du milieu observé.

En contrepartie, les image SAR ne peuvent pas être interprétées aussi simplement que les images
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optique du fait, d’une part, des considérations physiques intrinsèques à l’environnement et d’autre

part à la géométrie d’acquisition. De ce fait, des artefacts peuvent être observés sur les images

SAR comme des distorsions ainsi que des signatures multiples d’objets correspondant en réalité a

des multiples trajets de l’onde effectués entre différents contributeurs de la scène.

Au cours des dernières années et dans les années à venir, un grand nombre de satellites SAR on

été lancés et vont être mis en service à différentes fréquences d’utilisations permettant une cou-

verture quasi ”temps réel” de la surface de la terre. Ces images offrent la possibilité d’étudier

des phénomènes dans des domaines très variés allant de l’océanographie, l’étude des terres agri-

coles, l’étude de la biomasse à la surveillance des territoire. Depuis quelques années, l’accessibilité

au séries temporelles d’images SAR a été rendu plus facile et permet désormais d’étudier les

phénomènes sous un nouveau prisme. A cet effet, les solutions apportées par les contributions liées

à l’étude des séries temporelles d’image SAR constituent un enjeu majeure pour les années futures.

D.4 Détection de changements pour la détection de cibles

dans les images SAR

D.4.1 Les approches pour la détection de changement dans les séries

temporelles d’images SAR

A l’heure actuelle, plusieurs approches de détection de changement dans les séries temporelles

d’images SAR ont été développées. Nous proposons d’approfondir et étudier deux stratégies fonda-

mentalement différentes. La première est basé sur des approches bi-temporelles. Un test séquentiel

ou exhaustif (toutes les combinaisons possibles) entre les combinaisons bi-temporelles de la série

est effectué [59, 45, 62]. La seconde stratégie vise à étudier l’homogénéité globale de la série pour

décider si un changement s’est produit ou non [76, 77]. Si le but est de dater les ruptures, différentes

stratégies sont mises en œuvre pour les extraire.

D.4.2 Détection de changement pour la détection de cibles

La détection de cibles dans les séries temporelles d’images SAR semble à première vue triviale

car nous pouvons associer leur comportement temporel à des changements de type ”step” ou des

changements impulsifs. Cependant, la détection des véhicules ou des navires devient plus ambiguë

dans les zones à forte fréquentation du fait de leur chevauchement spatio-temporel impliquant une

comparaison relative et conduisant à une mauvaise interprétation de la détection. Il semble donc

plus confortable d’avoir accès à une scène sans cible avec uniquement l’environnement statique pou-
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vant être utilisé pour la détection de changement et ainsi améliorer la visualisation, l’interprétation

et la détection d’un éventuel objet éphémère pour une acquisition donnée.

D’une part, nous pouvons rencontrer des difficultés à détecter la cible en utilisant une seule image

SAR car cette cible peut avoir les mêmes propriétés ou des propriétés proches des objets environ-

nants en arrière-plan. D’autre part, l’utilisation de séries temporelles d’images SAR peut conduire

à une mauvaise interprétation due à des cibles éphémères qui se chevauchent dans le temps.

Nous proposons donc de bénéficier des caractéristiques temporelles intrinsèques des pixels pour

construire une image de référence appelée image Frozen Background Reference (FBR) qui consis-

tera uniquement en des structures temporellement stables dans la série temporelle. À partir de

cette image FBR, la détection de changement peut être effectuée avec n’importe quelle autre image

SAR de la scène pour mettre en évidence des cibles éphémères à une date spécifique.

D.5 L’image FBR: concept et stratégies pour la détection

d’objets éphémères

Le but d’une image FBR est de représenter un comportement temporellement stable d’une scène

pour une période d’acquisition donnée. Une analogie peut être faite avec les applications de

vidéo-surveillance visant à séparer ce qui appartient au fond et les objets apparaissant de manière

éphémère. Nous sélectionnons dans la série temporelle à chaque case distance et azimut, un ensem-

ble de pixels qui représentent un comportement temporellement stable de la scène et rassemblons

leur contribution dans une image appelée image FBR. Nous souhaitons obtenir une image sans

cible éphémères représentant un état stable électromagnétiquement (diffuseurs permanents) et

statistiquement (bruit de fond) de la scène. Le schéma général est présenté dans la figure D.1.

Le framework prend en entrée une série temporelle d’images SAR, sélectionne les pixels qui sont

temporellement homogènes pour chaque case distance et azimuth et calcule l’image FBR. Par la

suite, pour toute image SAR, une détection de changement est effectuée pour mettre en évidence

les objets éphémères à une date donnée. D’autres stratégies peuvent être basées sur la détection

de changement entre des images FBR calculées sur différentes saisons pour obtenir un changement

global à une échelle de temps différente (qui serait davantage liée à des changements établis dans le

temps). On peut également envisager de mettre à jour l’image FBR en tenant compte du résultat

de la détection de changement.
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Figure D.1: Illustration du concept de l’image FBR et exemple d’objets détectés le 02 mars 2019
dans la région de Singapour projetés sur Google Earth en arrière-plan: les points noirs représentent
les endroit où les changements les plus significatifs se sont produits par rapport à l’image FBR
(apparition de bateaux)
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D.5.1 Sélection des pixels temporellement stable et représentation de

l’image FBR

L’idée générale de ce procédé est d’extraire des éléments de la série temporelle qui engendrent

une inhomogénéité temporelle, ou inversement, nous souhaitons conserver un groupe de pixels

qui conserve une homogénéité temporelle à partir du calcul de leur coefficient de variation. Le

coefficient de variation CV est ensuite calculé de manière itérative et comparé à un seuil. A chaque

itération, nous obtenons un nouveau vecteur de sortie où le pixel présentant la valeur la plus

éloignée de la moyenne a été extraite. L’algorithme est répété jusqu’à ce que l’ensemble des pixels

restants temporels satisfasse le critère d’homogénéité. La liste de pixels candidats peut être donc

utilisée pour former une image représentative d’une scène figée. Deux approches on étés étudiées

dans cette thèse pour former l’image FBR:

• La sélection aléatoire d’un pixel parmis la liste des pixels candidats (random pixels: RP)

• L’utilisation de tous les pixels candidats sous forme d’une moyenne incohérente (moyenne

des amplitudes ou intensités) (multitemporal pixels: MP)

Ce procédé étant exécuté pour chaque case distance et azimuth dans la direction temporelle

permet de garder la résolution et ainsi évite de mélanger spatialement des pixels pouvant représenter

différents phénomènes physiques. La méthode a été développée initialement pour des signaux

monopolarisés mais a été étendu a des signaux radar pouvant comporter plusieurs polarisations

par une procédure effectuée en parrallèle pour chaque polarisation.

D.5.2 Détection de changement à partir de l’image FBR

La sélection des pixels candidats pour représenter l’image FBR de la scène figée pouvant être

exécutée de manière différentes, la détection de changement a été adaptée en conséquence. De

manière classique, le GLRT (Generalized likelihood ratio test ou rapport de vraisemblance généralisé)

est utilisé pour la détection de changement.

Dans le cas où la sélection des pixels est faite de manière aléatoire (RP), le test peut être effectué

de manière classique car la statistique entre l’image FBR générée et l’image mission est supposée

conservée.

Dans le cas où plusieurs pixels sont utilisés pour former l’image FBR (MP), le test statistique a été

adapaté pour prendre en compte la différence entre le nombre d’échantillons en jeu entre l’image

FBR et l’image mission.

D’un point de vue général, l’utilisation de la méthode RP améliore l’interprétation des résultats
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de détection de changement car seulement les objets éphémères présents dans l’image mission sont

supposés être détectés, cependant, les performences de détection restent équivalentes comparées a

une détection bi-temporelle classique. La méthode MP montre qu’il est possible d’améliorer les

performences de détection. Par simulation, il est possible d’observer une amélioration des perfor-

mances de détection d’autant plus que le nombre de pixels stables en jeu dans la construction de

l’image de fond est grand.

D.6 Principaux résultats pour des applications concrètes de

détection de cibles

Dans le but d’illustrer et d’évaluer les avantages de la méthode développée, nous proposons d’étudier

différents scénario concret ou la détection de cibles est compromise: les zones portuaire où de forts

rétrodiffuseurs sont présents (quais d’amarrage, infrastructures) et les zones forestières observées

à basses fréquences où la contribution des troncs génère des forts signaux de rétrodiffusions.

D.6.1 La surveillance maritime

La détection des navires en pleine mer est généralement effectuée avec une seule image SAR car

le contraste entre le niveau de rétrodiffusion de la mer et celle d’un éventuel navire est assez

fort. Dans les zones portuaires, plusieurs diffuseurs tels que les quais d’amarrage, les plates-formes

industrielles, ou plus généralement les infrastructures portuaires, peuvent produire de forts signaux

de rétrodiffusion. Cela rend plus difficile la détection des navires avec une seule image et génére

des fausses alarmes. L’emploi d’une image FBR peut être une alternative intéressante dans les

environnements portuaires pour détecter les navires amarrés dans les zones à forte fréquentation.

D’après les résultats obtenues, la méthode proposée est intéressante pour obtenir une carte de

changement des objets éphémères, qui, dans le cas présent sont des bateaux. En particulier, son

intérêt a été démontré pour la détection de cible dans un port industriel entre l’ile de Jurong Island

et la principale ile de Singapour grâce à l’utilisation de signaux AIS .

Dans le cadre de l’étude sur la surveillance maritime, deux phénomènes majeures peuvent

affecter notre méthode et doivent être étudiés dans le futur: l’état de la surface de la mer et l’effet

de marée. En effet, Singapour se trouve dans une zone à faible effet de marée, et à l’intérieur des

ports, on peut considérer que l’état de la mer reste relativement calme car protégé par les terres

et infrastructures environnantes.

L’effet de l’état de la mer doit être vérifié dans différentes situations (état de la mer, résolution,
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fréquence d’utilisation du capteur, etc.). L’effet de marée côtière est un phénomène qui cause

également plusieurs problèmes (apparition de rochers par exemple) et peut corrompre l’estimation

FBR de la scène puisque le fond évoluerait périodiquement. L’effet de marée étant un phénomène

prévisible, nous pourrions joindre les acquisitions disponibles avec un état de marée donné lorsque

la zone d’étude est soumise à un fort effet de marée. L’effet de marée pourrait alors être évité

en calculant une image FBR par état de marée qui donnerait plus de précision sur l’estimation

de fond de l’image sur une période donnée d’une part et un meilleur résultat de détection d’autre

part.

D.6.2 Les applications FoPen

Ce qui fait la spécificité et la difficulté de la détection de cibles sous couvert forestier est la forte

rétrodiffusion issue de l’intéraction entre les troncs et le sol. La détection de changement est donc

une méthode simple et efficace pour éliminer les contributions des troncs et ne garder que les con-

tributions des objets éphémères présents dans la scène. Nous avons utilisés deux jeux de données

issues de capteurs différents pour évaluer le comportement de la méthode développée.

Pour la première étude, nous avons évalué les performances pour la détection de véhicules (et

réflecteur) cachés sous la canopée d’une forêt tropicale avec les données de la mission TROPISAR

mesurées par le radar SETHI développé par l’ONERA (Office National d’Etudes et de Recherches

Aérospatiales). Cette détection a été rendue possible grâce à l’utilisation de basses fréquences

radar qui permettent de pénétrer à travers le feuillage et d’atteindre le sol. Nous avons comparé

trois statistiques pour évaluer quantitativement le gain de l’utilisation de plusieurs acquisitions

pour construire une scène FBR. Cependant, dans ce cas précis, il faut noter qu’il y a un court

délai entre les acquisitions (2 à 7 jours) et entre la première et la dernière acquisition (22 jours).

De plus, les acquisitions en bande P favorisent probablement une stabilité temporelle de la scène

et semblent donc robustes aux variations temporelles intrinsèques de la végétation telles que la

croissance de la végétation et les effets saisonniers. Il serait alors intéressant d’étudier une telle

stratégie avec une durée d’acquisition plus longue sur la forêt tropicale pour mettre en évidence

les éventuelles limitations introduites par les variations saisonnières de l’environnement.

Dans la seconde étude, nous nous sommes intéressés à l’utilisation de différentes configurations

de vols (caps) présentent dans le jeu de donnée issue du challenge CARABAS-II mesuré par le

FOI (Swedish Defense Research Agency) pour évaluer si la détection pouvait être améliorée par

rapport à une détection de changement impliquant une seule image de référence et une image de

mission. En considérant des caps d’acquisitions séparément, la détection des véhicules est bien
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amélioré lors de l’utilisation de l’image FBR grâce à une suppression efficace de la contribution des

troncs. Visuellement, les cibles sont bien mises en évidence et les courbes ROC calculées montrent

une amélioration par rapport à une détection de type bi-date pour chaque cap. Par la suite, nous

avons construit l’image FBR à partir de deux sets d’acquisitions avec des cap de vol rapprochés et

évalué le gain sur la détection. Au vu des résultats, l’utilisation de plus d’images calculées avec un

cap de vol proches améliore encore la détection par rapport à une détection bi-date. Cependant, il

n’améliore pas la détection globale par rapport à un cadre FBR considérant un seul cap de vol à 225

degrés. La prise en compte de caps de vol fortement hétérogènes permet toujours une meilleure

détection par rapport à un cas bi-date, mais cela diminue les performances globales. Il semble

expérimentalement possible pour ce type de forêt (tronc long et fin) de considérer une symétrie

azimutale de l’environnement et d’utiliser un cap de vol différent pour effectuer la détection de

changement afin de mettre en évidence les véhicules sous le feuillage. Cependant, cette hypothèse

est naturellement vraie en milieu forestier, cela génère de fausses alarmes là où la symétrie azimutale

n’est pas respectée à proximité des routes ou des bordures de forêt.

D.7 Conclusion

Le premier objectif de cette thèse a été de développer une méthodologie produisant une carte de

changement qui met en évidence les cibles éphémères présentes dans une acquisition SAR donnée

en bénéficiant de séries temporelles d’images SAR. Comme illustré, les techniques de détection de

changement représentent une bonne solution pour mettre en évidence des cibles présentes dans des

milieux comme les zones portuaires ou les forêts observées à basse fréquence grâce à la suppression

des signaux de rétrodiffusion de l’environnement temporellement stable.

Étant donné que les images SAR sans cible ne sont pas disponibles en pratique dans les données en

libre accès, notre démarche a été de bénéficier des séries temporelles disponibles pour générer une

scène constituée uniquement d’un fond statique. Nous avons désigné cette image, l’image FBR,

qui vise a représenter l’arrière-plan temporellement homogène de la scène, comme les bâtiments,

les arbres, les infrastructures et le bruit de fond. Cette image ne correspond pas à une acquisition

SAR réelle mais représente une acquisition qui aurait été acquise sans cibles éphémères.

Nous utilisons ensuite cette image pour visualiser la signature de cibles présente à une acquisition

donnée.
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D.7.1 Principaux avantages de la méthode

La méthode proposée permet de mettre en évidence le contenu temporellement non-stationnaire

présent dans une acquisition SAR donnée et donc la présence de cible éphémères commes les

véhicules ou les bateaux. Elle rempli donc son premier objectif qui est de supprimer les effets non

désirable des méthodes classiques bi-temporelles lorsque plusieurs cible se chevauchent temporelle-

ment.

D’un point de vue général, les choix de sélection aléatoires (RP) et multitemporels (MP) permet-

tent de mettre en évidence les cibles éphémères et sont satisfaisante pour les applications étudiées.

Une amélioration de la détection des cibles est constatée dans le cas MP d’autant plus que le

nombre de pixels stable pour générer l’image FBR est grand.

D.7.2 Principaux inconvénients

Les événements durable dans le temps comme la construction ou la destruction de bâtiments peu-

vent induire des variations susceptibles de mener à de mauvaises interprétations sur la détection.

Considérant les futures missions avec un temps de revisite faible (quelques heures), nous pouvons

considérer ces événements comme long et durables et peuvent être solutionnés par une mise à jour

de l’image FBR au vu des résultats de détection de changement.

Dans d’autres environnements comme les forêts, nous pourrions observer des effets saisonniers si

l’acquisition est faite sur une longue période. Nous n’avons pas été confrontés à ce genre de varia-

tions dans nos études mais elles sont a considérer pour les travaux futurs.

D.8 Perspectives

Dans cette thèse, nous nous sommes intéréssés à une nouvelle approche de détection de changement

basée sur la construction d’une image SAR fictive, dénuée de cibles mobiles. Pour ce faire, nous

avons défini trois étapes: la sélection des pixels stables temporellement, la formation de l’image

SAR fictive et la détection des changements entre cette image et toute autre image SAR collectée.

Chacune de ces étapes peut être étudiée, améliorée ou au moins modifiée.
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D.8.1 Perspectives techniques

Nous avons vu que le coefficient de variation CVtheo permet de sélectionner des pixels stables.

L’écart type de cette valeur diminue avec
√
D, D étant le nombre de dates dans la série temporelle.

Idéalement, plus le nombre de dates est grand, meilleure est l’estimation de CVtheo. Cette grandeur

théorique est cependant indépendante de la fréquence et de la polarisation et peut être limitante

dans les cas où l’environnement peut être plus sensible à certaines polarisation. L’utilisation seule-

ment de l’amplitude pour la sélection des pixels stable peut poser question et peut être complétée

par une stabilité de phase entre canaux polarimétriques pour chaque acquisition.

La notion de qualité de l’image FBR est a étudier plus profondément, voir même à définir. Dans

cette thèse, nous avons étudiés l’impact du nombre de dates utilisées pour générer cette image et

avons vu qu’il était possible d’utiliser 20 dates dans le cas du dataset UAVSAR et un trentaine de

dates dans le cas de Singapour. En pratique, de combien de dates avons-nous besoin au minimum?

Y a-t-il un maximum? Ceci peut être lié directement à différent facteurs comme l’activité de la

zone considérée et l’heure à laquelle le capteur passe sur la scène. Il est essentiel par la suite de

construire un jeu de donné avec une vérité terrain afin d’étudier plus profondément cette question.

En effet, les jeux de données que nous avons utilisé avec vérité terrain étaient constitués d’un faible

nombre de date rendant cette expérience difficile à mener.

Finalement, dans le cadre de détection automatique de cibles, cette méthode peut être utilisée

comme ”prescreening” pour mettre en évidence la présence de potentiels cibles, qui par la suite

peut être combinée à des étapes post-traitement réfutant ou affirmant la présence d’une cible par

analyse morphologique (forme et taille de l’objet détecté).

D.8.2 Extension vers d’autres applications

Dans d’autres domaines, comme l’étude des déserts, on peut s’attendre à ne voir aucun changement,

quelle que soit la durée de la série chronologique. Cependant, en raison des capacités de pénétration

élevées des basses fréquences à travers le sable sec, nous pouvons nous attendre à détecter des

changements sous la surface reflétant la présence de chenaux potentillement actifs comme dans

[99]. L’utilisation de fréquences différentes peut être introduite pour générer différentes images de

référence. Par exemple, nous nous attendons à ce que les hautes fréquences (Sentinel-1 en bande

C par exemple) donnent une information liée à la surface ou aux sous-surfaces supérieures du sol

alors que les fréquences plus basses caractériseraient les sous-surfaces puisqu’elles peuvent pénétrer

plus profondément à travers le sable sec. Cependant, cela impliquera des problèmes techniques liés
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aux différences de géométrie d’acquisition et doit être ainsi considéré dans les études.

Nous nous sommes intéréssés dans cette étude à de petites cibles mobiles mais les changements

peuvent être considérés bien évidemment pour des phénomènes étendu comme les innondations ou

les activités illégales dans les forêts (orpaillage par example).

Finalement, l’utilisation seule de l’image FBR peut être envisagée car elle représente les éléments

stable dans la série temporelles et peut permettre de mettre en évidence des rétrodiffuseurs perma-

nent même de faible amplitude dans des environnement où il n’était pas forcément attendu d’en

voir grâce à la diminution du bruit de châtoiment.
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