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Abstract

S
OCIAL interaction implies exchange between two or more persons, where they
adapt their behaviors to each others. With the growing interest in human-agent
interactions, it is desirable to make these interactions natural and human like. In
this context, we aimed at enhancing the quality of the interaction between users

and Embodied Conversational Agents ECAs by (1) endowing the ECA with the capacity to
express social attitudes, such as being friendly or dominant depending its role or relation-
ship with its interaction partners; (2) adapting the agent’s behavior according to the user’s
behavior, hence, the conversation partners influence each others through an interaction
loop, thus, enhancing the interaction quality; (3) predicting the user’s engagement level
and adapting the agent’s behavior accordingly, which helps maintaining the user’s interest
and motivation. We take advantage of the recent advances in machine learning, more
specifically, temporal sequence mining and neural networks to model these capacities in
the ECA. The first model is used to learn relevant patterns (sequences) of non-verbal
signals that best represent attitude variations, and then reproduce them on the agent.
The latter is used to encompass the dynamics of non-verbal signals (temporal change) to
achieve more accurate prediction of behavior. Two use cases have been explored using the
well-known LSTM model: agent’s behavior adaptation based on both agent’s and user’s
behavior history, and user’s engagement prediction based on his/her own behavior his-
tory. The implemented models and algorithms have been validated through a number of
perceptive studies, in particular performed in Musée des Sciences et de l’Industrie in Paris,
as well as through rigorous quantitative analysis of the obtained results. In addition, the
realized models have been integrated into a virtual-agent platform.

Keywords: non-verbal behavior, social attitude, engagement prediction, human-agent
interaction, temporal sequence mining, virtual agents
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Résumé

D
ANS le contexte de l’interaction humain-agent, notre objectif était d’améliorer
la qualité de l’interaction en: (1) dotant l’agent de la capacité d’exprimer des
attitudes sociales telles que la dominance ou l’amicalité ce qui renforcent ses
compétences sociales; (2) adaptant le comportement de l’agent selon le com-

portement de l’utilisateur, par conséquent l’agent et l’utilisateur s’influencent mutuelle-
ment par le biais d’une boucle interactive; (3) prédisant le niveau d’engagement de l’utilis-
ateur et adaptant en conséquence le comportement de l’agent, ce qui contribue à main-
tenir l’intérêt et la motivation de l’utilisateur. Nous nous basons sur les progrès récents
dans le domaine de l’apprentissage automatique, plus particulièrement de l’extraction de
séquences temporelles et des réseaux de neurones. Le premier est utilisé pour apprendre
des séquences pertinentes de signaux non-verbaux qui représentent au mieux les varia-
tions d’attitude, puis les reproduire par l’agent. Le second est utilisé pour englober la
dynamique des signaux non-verbaux. Deux cas d’utilisation ont été explorés à l’aide du
modèle LSTM: l’adaptation du comportement de l’agent en fonction de l’historique de
comportement de l’agent et de l’utilisateur; et la prédiction de l’engagement de l’utilisateur
basée sur son propre historique de comportement. La pertinence des modèles et des algo-
rithmes implémentés a été validée au moyen de nombreuses études approfondies et d’une
évaluation quantitative rigoureuse des résultats obtenus. De plus, les travaux réalisés ont
été intégrés dans une plateforme d’agents virtuels.

Mots-clefs : comportement non-verbal, attitude sociale, prédiction d’engagement,
interaction humain-agent, extraction de séquence temporelle, agents virtuels
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Long Résumé

L
ES agents conversationnels animés (ACAs) sont des personnages virtuels capables
d’interagir de manière autonome avec des humains en imitant leurs comporte-
ments naturels. Yoko de Toshiba et Tim d’Airbus sont des exemples d’agents
virtuels animés qui répondent aux questions techniques et commerciales des

clients. Ces dernières années, les agents virtuels sont devenus de plus en plus présents
dans notre vie quotidienne. Ils peuvent être utilisés pour des applications diverses allant
de l’éducation et la formation à la thérapie [Nojavanasghari et al., 2016, Chollet et al.,
2017, Nojavanasghari and Hughes, 2017]. Par conséquence, de nombreuses recherches
ont été consacrées à l’amélioration de l’interaction humain-agent. Compte tenu de l’intérêt
croissant que suscitent les interactions humain-agent, il est souhaitable de rendre ces
interactions agréables et plus humains. Dans le cadre de cette thèse, nous visons à
améliorer l’expérience d’interaction entre les humains et les agents virtuels. À cette fin,
nous développons des modèles computationnels pour doter un ACA de la capacité: (1)
d’exprimer différentes attitudes sociales en fonction du contexte de l’interaction, (2) d’ada-
pter le comportement de l’ACA en fonction du comportement de l’utilisateur, (3) de prédire
le niveau d’engagement de l’utilisateur durant l’interaction humain-agent. Notre objectif
est d’enrichir l’état de l’art avec des modèles et des algorithmes plus adaptés et plus fins.

Les humains expriment différentes attitudes sociales les uns envers les autres en fonc-
tion du contexte de l’interaction, qui inclut des facteurs tels que l’interlocuteur, le rôle,
la personnalité, etc. Par exemple, une personne peut montrer une sorte de dominance
dans un contexte professionnel alors qu’elle peut être amicale lors de sorties entre amis.
La même personne ne se comportera pas de la même manière dans ces différentes cir-
constances. Elle n’aura pas les mêmes comportements. Elle peut utiliser un langage plus
formel au travail, afficher une posture plus droite, sourire moins, alors qu’elle peut rire et
faire des gestes plus expressifs avec ses amis et sa famille. Dans ce contexte, nous visons à
doter un agent virtuel de la capacité d’exprimer des attitudes sociales en fonction du con-
texte de l’interaction. Par exemple, l’agent devrait être amical avec un client en répondant
à sa question mais plus dominant avec un candidat à une offre d’emploi afin de le former
à passer des entretiens d’embauches.

Pour une compréhension plus profonde de l’expression de l’attitude sociale, nous de-
vons d’abord explorer ce qui fait qu’une personne apparaît plus ou moins dominante ou
encore plus ou moins amicale. Notre question de recherche est : quels sont les comporte-
ments non-verbaux qui déclenchent un changement (variation) dans la perception des
attitudes sociales? Une telle analyse devrait s’appuyer sur la dynamique des comporte-
ments non-verbaux, qui est très informative pour caractériser et interpréter les attitudes.
D’autre part, les humains ont tendance à adapter leur comportement tout au long de
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l’interaction en fonction du comportement de leur interlocuteur [Burgoon et al., 2010].
Par exemple, une personne hoche sa tête pour indiquer son accord avec l’interlocuteur ou
sourit en réponse au sourire de son interlocuteur. Les agents virtuels doivent prendre en
compte le comportement de l’utilisateur afin d’adapter et modifier leur comportement en
réponse aux actions et comportements de l’utilisateur. Une telle interaction dynamique
aide à maintenir l’engagement de l’utilisateur dans l’interaction. Au cours des dernières
années, la modélisation de l’engagement a de plus en plus retenu l’attention de chercheurs
grace à son rôle important dans l’interaction humain-agent. L’agent doit pouvoir détecter,
en temps réel, le niveau d’engagement de l’utilisateur afin de réagir d’une manière ap-
propriée. Dans ce contexte, notre objectif est de développer un modèle computationnel
permettant de prédire le niveau d’engagement de l’utilisateur en temps réel. En nous
basant sur des résultats antérieurs, nous utilisons les expressions faciales comme carac-
téristiques (features) prédictives de l’engagement [Allwood and Cerrato, 2003, Castellano
et al., 2009c]. De plus, l’engagement ne se mesure pas seulement à partir des signaux
simples, mais également à partir de la combinaison de plusieurs signaux apparaissant du-
rant une certaine fenêtre temporelle [Peters et al., 2005, Bickmore et al., 2012]. Ainsi,
pour une meilleure prédiction de l’engagement, nous devrions considérer la variation des
expressions faciales au fil du temps.

Contexte théorique

Le chapitre 2 présente les bases théoriques, les définitions, la représentation et l’expression
des attitudes. Une vue d’ensemble des définitions de l’attitude nous a permis de conclure
que les attitudes sont interpersonnelles, multimodales et dynamiques. Dans notre travail,
nous nous intéressons aux attitudes interpersonnelles, c’est-à-dire les attitudes exprimées
envers une personne, en particulier l’attitude que notre agent virtuel exprimera envers
l’utilisateur. Le terme multimodal signifie que les attitudes sont exprimées verbalement
et non-verbalement. Selon Argyle, les deux modalités contribuent de la même façon à
l’expression des attitudes [Argyle, 1988]. Par conséquent, nous nous sommes intéressés à
l’expression non-verbale de l’attitude. Enfin, les attitudes ne sont pas statiques et varient
dans le temps. Notre objectif est d’englober la dynamique des attitudes en considérant con-
jointement la séquentialité et la temporalité des signaux non-verbaux. En ce qui concerne
la représentation des attitudes, différentes dimensions affectives peuvent être utilisées. Le
circumplex interpersonnel (CIP) est la représentation la plus populaire des attitudes dans
le domaine des agents virtuels. Le CIP est composé de deux dimensions orthogonales
comme illustré sur la Figure 1: amicalité (variant de “hostile” à “amical”) et dominance
(variant de “soumis” à “dominant”). Les deux dimensions de CIP ont été utilisées pour la
première fois par Leary [Leary, 1957] qui souligne que chaque comportement interperson-
nel ou social peut être représenté, sur le circumplex, comme une combinaison pondérée
de dominance et d’amicalité.

Le CIP est récemment devenu un modèle populaire pour évaluer les dispositions inter-
personnelles telles que les problèmes interpersonnels (par exemple, les problèmes liés à
l’agression d’autrui) [Alden et al., 1990], la valeur (en quoi des expériences interperson-
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Figure 1 – The interpersonal circumplex (IPC).

nelles, telles que l’expression ouverte, sont-elles importantes pour une personne?) [Locke,
2000], l’efficacité personnelle (actions interpersonnelles qu’une personne croit pouvoir
exprimer) et les traits de personnalité [Wiggins, 1995]. La plupart des mesures divisent
le CIP en huit octants alphabétiquement libellés dans le sens inverse des aiguilles d’une
montre: PA, BC, DE, FG, HI, JK, LM et NO (voir Figure 1). Chaque octant peut être
représenté par un ensemble d’adjectifs, par exemple, dominant et assertive pour l’octant
PA. Le Interpersonal Check List (ICL), Interpersonal Adjective Scales (IAS) et Inventory
of Interpersonal Problems (IIP) sont des exemples de mesures interpersonnelles. Dans le
chapitre 2, nous avons également présenté deux approches statistiques (profil circulaire et
vector scoring) utilisées pour interpréter les mesures interpersonnelles. Le profil circulaire
affiche les scores interpersonnels sur les huit octants du circumplex. Le vector scoring in-
dique le comportement interpersonnel prédominant [Wiggins et al., 1988, Gurtman and
Balakrishnan, 1998, Gurtman, 2009a, Locke and Adamic, 2012].

D’autre part, les travaux précédents ont souligné que les comportements humains sont
naturellement multimodaux et séquentiels: nous interagissons les uns avec les autres par
le biais de multiples canaux de communication (parole, regard, geste, etc.). De plus, ces
comportements sont coordonnés dans le temps. Notre objectif est de comprendre com-
ment ces comportements sont coordonnés aux moments critiques, les patterns séquentiels
qu’ils présentent et leur association avec différentes attitudes interpersonnelles. Ainsi,
dans notre travail, nous avons choisi de représenter les variations d’attitudes comme des
séquences de signaux non-verbaux multimodaux et temporels.

Etat de l’art sur la modélisation de l’attitude sociale pour les
agents virtuels

Le sujet général de cette thèse est de concevoir un ACA capable d’adapter son attitude
envers l’utilisateur en fonction de son rôle et du contexte de l’interaction. Par exemple,
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il devrait être dominant avec un candidat à une offre d’emploi et amical avec un enfant
autiste. Dans le chapitre 3, nous présentons une vue d’ensemble des travaux les plus per-
tinents qui sont en rapport avec notre sujet: la modélisation d’attitude pour les agents
virtuels. Nous nous concentrons également sur les travaux basés sur la séquentialité et
la temporalité du comportement non-verbal en tant que aspect important de la modéli-
sation du comportement de l’humain ou de l’agent. Les travaux existants qui modélisent
les attitudes des ACAs traitent différentes questions : quels comportements de l’ACA influ-
encent le plus la perception de son attitude? Comment l’attitude d’un ACA change-t-elle
dans le temps? Comment générer automatiquement le comportement d’un ACA en fonc-
tion de son attitude interpersonnelle? A partir de l’aperçu des travaux existants, nous
avons conclu que la combinaison du comportement verbal et non-verbal conduit à une
meilleure reconnaissance des attitudes [Bee et al., , Callejas et al., 2014, Chollet et al.,
2017]. Cependant, seuls quelques travaux ont fait ce choix [Chollet et al., 2014b, Cafaro
et al., 2016b]. La plupart des travaux se basent sur le circumplex interpersonnel pour
représenter les attitudes et considèrent les deux dimensions d’attitude à la fois. Générale-
ment ces modèles reposent sur l’expression non-verbale des attitudes. Cependant, aucun
travail n’exploite les informations temporelles de ces comportements. Notre travail sur-
monte cette limitation en prenant en compte les informations temporelles (moment de
déclenchement et durée) des comportements non-verbaux.

Certains chercheurs ont souligné l’importance de la séquentialité et la temporalité
des comportements non-verbaux pour mieux modéliser les attitudes. Dans le chapitre
3, nous présentons les travaux existants qui englobent la séquentialité du comporte-
ment non-verbal afin de comprendre et de prédire des phénomènes tels que l’émotion
et l’attitude interpersonnelle. La plupart des travaux existants considèrent uniquement
l’ordre des signaux tout en ignorant leurs informations temporelles [Chollet et al., 2014b,
With and Kaiser, 2011]). Certaines travaux considèrent un nombre limité de modal-
ités [Fricker et al., 2011, With and Kaiser, 2011, Yu et al., 2010, Zhang and Boyles,
2013]. Seuls quelques uns de ces travaux ont exploré les séquences extraites de com-
portements humains pour générer les comportements des agents virtuels [Chollet et al.,
2014a]. Notre travail traite toutes ces limitations en prenant en compte les informa-
tions temporelles de comportements humains. Nous proposons un modèle entièrement
automatique, séquentiel, temporel et génératif pour extraire et générer des séquences
non-verbales qui représentent des variations d’attitude.

Sequence Mining: état de l’art et notre algorithme

Dans notre travail, nous représentons une variation d’attitude sous forme de séquences
de signaux non-verbaux. En nous basant sur un algorithme de sequence mining, nous ex-
trayons d’un corpus multimodal les séquences de comportements les plus pertinentes car-
actérisant une variation d’attitude. Sequence mining est une tâche d’exploration de don-
nées qui vise à découvrir les patterns pertinents cachés dans une grande base de séquences.
Un pattern est une sous-séquence qui se produit fréquemment dans l’ensemble de données.
Sequence mining a connu à un large éventail d’applications réelles dans de nombreux do-
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maines, tels que l’analyse des tickets de caisse, NLP, la bioinformatique et l’analyse du
comportement humain [Chollet et al., 2017, Fricker et al., 2011]. Par exemple, dans le
contexte de l’analyse des tickets de caisse, l’exploration de séquence peut être utilisée
pour identifier les séquences d’articles fréquemment achetés par les clients. Cela peut être
utile pour comprendre le comportement d’achat des clients lors de la prise de décisions
marketing. GSP est l’algorithme d’exploration de séquence le plus répandu [Srikant and
Agrawal, 1996]. En prenant en entrée une base de séquences et un seuil de fréquence min-
imum (fmin), GSP découvre des patterns fréquents en se basant sur l’ordre des signaux.
Par exemple, à partir du jeu de données {ABB,ABC,CABA,CABCA} avec fmin=2,
les patterns fréquents de taille trois sont {CAA,ABA,ABC,CAB}. Cependant, le fait
de considérer que l’ordre des événements peut devenir une limitation lorsque des infor-
mations temporelles sont importantes, tels que: quel est le délai entre deux événements
temporels? A quel moment se déclenche un événement temporel? Et quelle est sa durée?
Pour pallier ce problème, des algorithmes de sequence mining temporel sont conçus pour
traiter les informations liés au temps. Dans notre travail, nous nous concentrons sur ces
algorithmes car ils permettent de répondre à nos questions de recherche: étant donné le
contexte actuel (défini par les signaux non-verbaux précédents), (i) à quel moment un
signal non-verbal doit-il se déclencher? Et (ii) quelle est sa durée?

Les algorithmes existants de sequence mining temporal ont été évalués en utilisant
des données synthétiques. Par conséquence, ils ne parviennent généralement pas à gérer
efficacement les données réels. L’algorithme que nous proposons, HCApriori (Hierarchical
Clustering Apriori), surmonte les principales limitations des algorithmes existants: il est
entièrement automatique et il augmente l’homogénéité des clusters en implémentant une
technique de clustering adaptée (hiérarchique). La motivation derrière le développement
de HCApriori est résumée dans les points suivants:

• Meilleure gestion de la parcimonie (sparsity) des données: la parcimonie est un
aspect important à prendre en compte lors du clustering de données. Les travaux
existants ne se sont pas concentrés sur ce phénomène car ils ont été appliqués à des
données synthétiques (artificielles), souvent non exposées à ce problème.

• Meilleure homogénéité des clusters: lors de l’utilisation des algorithmes de parti-
tionnement pour le clustering (comme Kmeans), les événements regroupés peuvent
être très éloignés dans le temps. Pour surmonter cette limitation, notre algorithme
HCApriori s’appuie sur une méthode de classification hiérarchique qui impose un
minimum de similarité aux événements du même groupe;

• Entièrement automatique: les algorithmes existants nécessitent que l’utilisateur
fournisse une estimation a priori du nombre de clusters ou de leur emplacement
approximatif. Grâce à la classification hiérarchique, HCApriori ne nécessite aucune
saisie manuelle. Toutes les étapes de l’algorithme sont entièrement automatiques;

• Seuil de dissimilarité personnalisé et calculé automatiquement: dans les travaux
précédents, le seuil de dissimilarité ε est défini par l’utilisateur et il a la même
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valeur pour tous les types d’événements. Cependant, cette contrainte peut être re-
strictive car la durée des événements peut différer considérablement selon le types
d’événement. Par exemple, la durée d’un sourire sera probablement beaucoup plus
courte que la durée d’une posture. HCApriori offre la possibilité de personnaliser ce
paramètre pour chaque type d’événement. De plus, il peut être difficile de définir
manuellement la valeur ε pour chaque type d’événement en raison du nombre de
types d’événements (27 dans notre corpus) présents dans les données et également
en raison des différences entre les types d’événements. Pour résoudre ce problème,
nous proposons un moyen efficace de configurer ε automatiquement.

HCApriori fonctionne en deux étapes: (1) une classification hiérarchique est d’abord ap-
pliquée pour fusionner des signaux dans le même cluster si et seulement si leur distance
temporelle est inférieure à ε. À la fin de cette étape, le centroïde de chaque cluster
représente un pattern de longueur un. (2) En prenant en entrée les résultats de l’étape
précédente, une procédure semblable à l’algorithme Apriori [Rakesh Agrawal, 1994] est
adaptée pour générer des patterns temporels plus longs. En comparant HCApriori à l’état
de l’art, nous avons constaté que notre algorithme surmonte de manière significative les
algorithmes existants en termes de précision d’extraction. HCApriori est open source et
il disponible sur github1. Nous avons amélioré les métriques standard, support et confi-
dence, qui reflètent la qualité des patterns extraits. Notez que ces métriques sont à l’origine
uniquement basées sur la fréquence d’occurrence des événements. Nous les avons éten-
dues en intégrant le critère de temporalité pour une évaluation plus pertinente.

Modélisation séquentielle de la variation d’attitude

L’objectif de notre travail est de développer un agent virtuel capable d’exprimer des vari-
ations d’attitude en fonction du contexte de l’interaction. Par exemple, il devrait pouvoir
augmenter son niveau de dominance lorsqu’il interroge un candidat à une offre d’emploi.
Les attitudes interpersonnelles sont exprimées par des comportements non-verbaux (par
exemple, regard, expression faciales, mouvements de tête, etc.). En outre, les attitudes ne
sont pas seulement exprimées par des signaux spécifiques, mais aussi par la dynamique
de ceux-ci (ordre et temporalité). Par conséquence, nous représentons une variation
d’attitude comme une séquence temporelle de signaux non-verbaux dans laquelle chaque
signal est défini par un moment de déclanchement et une durée. Pour la modélisation de
la variation des attitudes, nous utilisons un corpus d’entretien d’embauche où un recru-
teur peut exprimer attitudes différentes envers le candidat. Ce corpus a été annoté à deux
niveaux: comportement non-verbal et attitude interpersonnelle des recruteurs [Chollet
et al., 2014b]. Plusieurs modalités de comportement non-verbal ont été annotées telles
que le regard, les mouvements de tête, les expressions faciales, etc. L’annotation de la
dominance et de l’amicalité a été réalisée de manière continue. Chaque annotateur an-
note une seule dimension d’attitude à la fois (dominance ou amicalité) et la valeur de

1https://github.com/dermosamo/HCApriori.git
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Figure 2 – Exemple d’un pattern représentant une augmentation de dominance.

l’annotation varie entre -1 et 1. En utilisant ce corpus, nous avons segmenté le comporte-
ment non-verbal du recruteur en se basant sur les variations d’attitudes. Pour chaque
variation qui se produit lorsque les recruteurs parlent, nous récupérons tous les signaux
non-verbaux apparaissant durant cette variation. Ces signaux composent une séquence de
signaux non-verbaux. Par exemple, une séquence temporelle représentant une augmenta-
tion de dominance est composée d’un hochement vertical de la tête de 4 à 6 secondes suivi
par un croisement des bras de 5 à 9 secondes. Cette segmentation nous permet de constru-
ire quatre bases de séquences de comportements non-verbaux représentant quatre types
de variation d’attitude: augmentation et diminution de dominance ainsi que augmentation
et diminution d’amicalité. Nous extrayons également des séquences de comportements
qui apparaissent durant une attitude “neutre”. Nous définissons par une expression “neu-
tre” d’attitude les segments du corpus annotés avec une valeur d’attitude autour de zéro.
Nous appelons ces séquences extraites “référence”. Ainsi, nous obtenons des séquences
représentant respectivement une “dominance neutre” et une “amicalité neutre”. L’étape
de segmentation donne des bases de séquences temporelles associées aux variations at-
titudes et aux attitudes “neutres”. L’objectif est d’extraire les patterns les plus pertinents
pour chaque variation d’attitude. Nous effectuons cette extraction en utilisant notre algo-
rithme HCApriori. Un patterns représentant une augmentation de dominance est illustré
à la figure 2, il peut être interprété comme suit: 1,5 s. avant que le recruteur augmente sa
dominance, il fronce ses sourcils pendant 2 secondes. Pendant ce temps, il croise ses bras
pendant 4.6 secondes tout en se penchant en arrière.

Afin d’évaluer les patterns non-verbaux extraits avec notre modèle, nous conduisons
une expérience perceptive. Nous évaluons quatre différentes catégories de patterns non-
verbaux dénotant quatre variations d’attitude: augmentation de dominance (DomInc),
diminution de dominance (DomDec), augmentation d’amicalité (FrInc) et diminution d’am-
icalité ( FrDec). Pour chaque condition, nous évaluons quatre patterns non-verbaux. Nous
évaluons également un pattern exprimant une dominance “neutre” et un pattern expri-
mant une amicalité “neutre”. À l’aide de la plate-forme d’agent virtuel appelée GRETA-
VIB [Pecune et al., 2014], nous générons des vidéos montrant un agent simulant certains
patterns, sélectionnés de manière aléatoire à partir du l’ensemble des patterns extraits.
Nous produisons ainsi un total de 18 vidéos: 16 vidéos de comparaison (4 variations
d’attitude × 4 patterns) et deux vidéos de référence: dominance “‘neutre” (notée Dom-
Ref) et amicalité “neutre” (notée FrRef). Nos hypothèses sont:
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• H.Ref: pour DomRef et pour FrRef, l’ACA sera évaluée comme exprimant une attitude
"neutre";

• H.Dom: pour DomInc, l’ACA sera évalué comme plus dominant par rapport à l’ACA
dans DomRef

• H.Sub: pour DomDec, l’ACA sera évalué comme plus soumis par rapport à l’ACA
dans DomRef;

• H.Fr: pour FrInc, l’ACA sera évaluée comme plus amical par rapport à la valeur
l’ACA dans FrRef;

• H.Hos: pour FrDec, l’ACA sera perçue comme plus hostile par rapport à l’ACA dans
FrRef.

Résultats et discussion

Nous analysons les résultats de trois manières différentes: 1) en traçant les résultats sur
le circumplex interpersonnel, 2) en réalisant des tests statistiques et 3) en calculant le
taux de reconnaissance des variations d’attitude. Les vidéos de référence sont générées à
partir des séquences non-verbales annotées avec des valeurs d’attitude proches de zéro.
Nous avons supposé que l’agent dans ces vidéos serait perçu comme exprimant une atti-
tude “neutre”. À notre grande surprise, le résultat de l’étude montre que l’agent est évalué
comme amical ce qui rejette l’hypothèse H.Ref. Nous ne trouvons aucune différence sig-
nificative dans la perception de l’agent dans les vidéos de référence et dans la condition
FrInc. Par conséquence, l’hypothèse H.Fr n’est pas validée. Une explication pourrait être
que, dans la mesure où l’agent dans les vidéos de référence est déjà évalué comme ami-
cal, l’agent dans le FrInc n’est pas perçu comme étant nettement plus amical que dans les
vidéos de comparaison (FrRef). Les trois autres hypothèses, H.Dom, H.Sub et H.Hos, sont
validées.

Selon la représentation des attitudes sur le circumplex interpersonnel, les deux pôles
d’une dimension d’attitude (dominance vs. soumission et amicalité vs. hostilité) sont
symétriques par rapport au centre du circumplex. En conséquence, on s’attendait à ce
que l’augmentation de l’attitude vers un pôle donné se traduise par une diminution de
la perception du pôle opposé. Par exemple, une augmentation de l’amicalité diminuerait
la perception de l’hostilité et inversement. Sur la base du profil circulaire, cette relation
est observée pour les deux pôles de chaque dimension d’attitude, dans les deux sens des
variations d’attitude.

Plusieurs travaux sur la modélisation d’attitude reposent sur l’hypothèse qu’il existe un
effet de compensation entre les deux dimensions d’attitude. Pour calculer quelles attitudes
sociales un agent transmet à son interlocuteur, des traveaux ont défini des règles telles que
les émotions positives ressenties par l’agent, augmentent son amicalité et diminuent sa
dominance envers l’utilisateur. Inversement, les émotions négatives diminuent son amical-
ité et augmentent sa dominance [Kasap et al., 2009, Pecune et al., 2016]. D’autres travaux
s’appuient sur la théorie de complémentarité interpersonnelle dans l’interaction [Ravenet
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et al., 2015]. Selon cette théorie, deux personnes devraient exprimer des attitudes com-
plémentaires ou anti-complémentaires afin de maintenir une interaction: exprimer des
attitudes similaires sur la dimension d’amicalité et des attitudes opposées sur la dimen-
sion de dominance [Leary, 1957, Kiesler, 1996]. Mais, à notre connaissance, il n’existe
aucune étude, en termes de perception, sur l’interrelation des dimensions des attitudes
interpersonnelles. Pour étudier cette interrelation, nous avons évalué les deux dimensions
des attitudes en même temps. Cela permet de souligner un effet de compensation entre la
perception de dominance et d’amicalité tirée des observations suivantes:

• L’augmentation de dominance conduit à une perception de diminution d’amicalité;

• La diminution de dominance conduit à une perception d’augmentation de l’amicalité;

• La diminution d’amicalité conduit à une perception d’augmentation de la domi-
nance.

Nous observons qu’il existe une forte corrélation entre l’augmentation de la dominance
(DomInc) et la diminution d’amicalité (FrDec). Une explication est que certains signaux
non-verbaux ont le même effet sur la perception de domination et d’hostilité [Knutson,
1996, Tiedens et al., 2000, Carney et al., 2005, Ravenet et al., 2013]. Par exemple, la
dominance et l’hostilité sont toutes les deux caractérisées par une expression faciale néga-
tive [Knutson, 1996, Tiedens et al., 2000, Carney et al., 2005, Ravenet et al., 2013]. Trois
de nos 5 hypothèses (H.Dom, H.Sub et H.Hos) ont été validées. Les séquences expri-
mant les variations d’attitude correspondantes sont donc correctement reconnues. Cela
confirme notre hypothèse selon laquelle les variations d’attitude peuvent être représen-
tées par des séquences de signaux non-verbaux ordonnés dans le temps. Notre prochaine
étape consiste à utiliser les séquences extraites pour planifier une variation d’attitude d’un
agent virtuel.

Planification des attitudes pour des agents virtuels

La plate-forme GRETA-VIB a été développée pour soutenir la création d’ACA socio-émotion-
nelles [Pecune et al., 2014]. Sur cette plate-forme, l’agent affiche des énoncés avec des
fonctions de communication et des états émotionnels. L’attitude de l’ACA joue un rôle
essentiel pour la réalisation de l’objectif d’interaction [Kasap et al., 2009, Ochs et al.,
2010, Pecune et al., 2016]. Dans le Chapitre 6, nous décrivons comment nous avons
amélioré la plate-forme GRETA-VIB avec notre modèle d’attitude. À cette fin, nous avons
développé un planificateur d’attitudes qui combine la variation d’attitude de l’ACA avec
ses intentions communicatives. GRETA-VIB est basée sur le framework SAIBA [Vilhjalms-
son et al., 2007] dont l’architecture est illustrée sur la figure 3. Tout d’abord, le intent
planner génère les intentions communicatives de l’ACA (ce que l’agent a l’intention de
communiquer). Les intentions communicatives sont représentées dans le langage FML
(Functional Markup Language) [Heylen et al., 2008]. Ensuite, le behavior planner traduit
ces intentions communicatives en un ensemble de signaux multimodaux ( par exemple
gestes, expressions faciales). Enfin, ces signaux sont transformées en animation finale de
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Figure 3 – L’ architecture SAIBA avec le nouveau module: Sequential Attitude Planner.

l’ACA par le behavior realizer. Pour modéliser l’attitude sociale, nous remplaçons le be-
havior planner par un nouveau appelé Sequential Attitude Planner. Il prend en entrée un
fichier FML (contenant l’énoncé à dire par l’agent), les intentions et la variation d’attitude
que l’ACA exprimera envers l’utilisateur. Le modèle de planification d’attitude est composé
de quatre étapes:

1. Génération d’une séquence d’intention: le planificateur d’intentions communica-
tives génère une séquence de comportements non-verbaux exprimant les intentions
communicatives contenues dans le fichier FML d’entrée. Par exemple, l’intention
communicative saluer peut être exprimée soit par un geste soit par une expression
faciale (sourire ou haussement des sourcils). Une fois que toutes les intentions com-
municatives ont été instanciées, nous obtenons une séquence de comportements
multimodaux que nous appelons séquence d’intention (Sint).

2. Sélection d’une séquence d’attitude: une fois les intentions communicatives in-
stanciées, l’étape suivante consiste à choisir la séquence la plus appropriée traduisant
la variation d’attitude souhaitée. La pertinence est définie ici comme la séquence
la plus représentative pour exprimer la variation d’attitude et comme la plus sim-
ilaire, en termes de présence et temporalité de comportements multimodaux, à la
séquence d’intention (Sint). Pour cela, parmi les patterns extraits avec notre algo-
rithme HCApriori, nous sélectionnons une séquence d’attitude (Satt) qui convient le
mieux à ces deux propriétés. Dans cette étape, nous associons également les com-
portements de Sint aux comportements de Satt.

3. Enrichissement de la séquence d’intention: afin de calculer la séquence finale
de comportements que l’agent affichera pour communiquer ses intentions avec une
variation d’attitude, nous enrichissons la séquence Sint avec l’ensemble de comporte-
ments d’attitude. Cela correspond à la fusion des séquences d’intention et d’attitude:
chaque comportement dans la séquence Satt qui n’apparaît pas dans la séquence
d’intention est ajouté à Sint.

4. Remplacement des signaux: afin de représenter la relation entre les comporte-
ments non-verbaux et les variations d’attitude, nous calculons la fréquence d’occurrence
d’un comportement donné b par rapport à une variation d’attitude donnée V . Nous
considérons qu’un comportement b1 est plus représentatif d’une variation d’attitude
V qu’un comportement b2 si la fréquence d’occurrence de b1 est supérieure à la
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fréquence d’occurrence de b2. Enfin, notre modèle remplacera chaque comporte-
ment bint de Sint par son comportement associé batt dans Satt si la fréquence de batt
est supérieure à la fréquence de bint.

Evaluation et résultats

Nous concevons une expérience empirique dans laquelle les participants comparent un
ensemble de paires de vidéos. Chaque paire est composée d’une vidéo du recruteur virtuel
sans variation d’attitude et d’une vidéo avec une variation d’attitude. Nous choisissons sept
questions qui ont un contenu verbal plutôt «neutre». Voici un exemple de question: si nous
décidons de vous proposer ce travail, quand seriez-vous prêt pour commencer?. Sept vidéos
de référence (ref) sont générées sans notre planificateur d’attitude (c’est-à-dire il n’y a au-
cune variation d’attitude) et 28 avec notre planificateur d’attitude (4 variations d’attitude
× 7 questions). Pour l’évaluation, nous suivons la même procédure que l’évaluation précé-
dente. Nous évaluons cinq conditions expérimentales qui relatives aux quatre variations
d’attitude: augmentation de dominance (DomInc), diminution de dominance (DomDec),
augmentation d’amicalité (FrInc), diminution d’amicalité (FrDec ) ainsi que l’attitude de
référence (Ref). Nous avons les mêmes hypothèses que la première expérience.

Contrairement à notre première étude, notre hypothèse H.DomDec n’a pas été validée.
Chollet et ses collègues [Chollet et al., 2014b] ont obtenu des résultats similaires pour
leur recruteur virtuel simulant une diminution de dominance. Ce résultat peut être lié au
contexte de l’interaction où l’agent joue le rôle de recruteur. Dans un tel contexte, le recru-
teur a tendance à contrôler l’interaction et apparaît donc naturellement dominant et pas
soumis. En outre, l’agent dans DomDec est perçu comme plus hostile et moins amical que
l’agent de la vidéo de référence (DomRef), alors que dans la première étude, il est perçu
comme plus amical et moins hostile. Ce changement de perception confirme l’importance
du contexte d’interaction susceptible de modifier la perception d’une attitude. Un autre
résultat qui peut être lié au rôle de l’agent est la corrélation positive entre les dimensions
d’amicalité et de dominance: une augmentation d’amicalité conduit à une augmentation
de dominance. Cependant, dans la première étude, l’augmentation de l’amicalité était
corrélée avec la diminution de dominance.

Une dimension d’attitude est représentée par deux pôles symétriques (dominance/-
soumission, amicalité/hostilité). Nous nous attendions à une relation négative entre les
deux pôles d’une dimension d’attitude (une augmentation d’un pôle donné entraînerait
une diminution de la perception du pôle opposé). Cette hypothèse est statistiquement
significative pour l’amicalité/ l’hostilité: lorsque l’agent est perçu comme plus hostile,
il est également perçu comme étant moins amical, et inversement. Pour l’autre dimen-
sion, il existe une forte tendance: lorsque l’agent est évalué comme plus dominant, il
est également perçu comme étant moins soumis, et inversement. Nous avons conclu
de cette étude que notre modèle de planification d’attitudes permet à l’ACA d’exprimer
une variation d’attitudes, en particulier une augmentation de dominance et une diminu-
tion d’amicalité. La diminution de dominance n’a pas été reconnue. Ce résultat pour-
rait être provoqué par le contexte d’interaction, ici le rôle de l’agent. La perception de
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l’amicalité de l’agent dans les conditions de référence semble affecter la reconnaissance de
l’augmentation d’amicalité.

Modèle génératif des comportements de l’agent dans l’interaction
humain-agent

Dans l’interaction humain-humain, les humains adaptent leur comportement en fonction
du comportement de leurs interlocuteurs [Burgoon et al., 2010]. Par exemple, un inter-
locuteur hoche la tête pour indiquer qu’il est d’accord avec l’orateur, il regarde le même
objet ou sourit en réponse au sourire de son locuteur. Dans ce contexte, notre objec-
tif est de modéliser un agent capable d’adapter son comportement en fonction du com-
portement de l’utilisateur. Les comportements non-verbaux jouent un rôle important dans
le maintien de l’engagement entre l’utilisateur et l’agent dans les interactions humain-
agent [Fong et al., 2002, Arai and Hasegawa, 2004, Breazeal., 2004, Woolf and Burleson,
2009]. C’est pourquoi nous sommes particulièrement intéressés par une adaptation dy-
namique des comportements non-verbaux de l’agent à ceux de son interlocuteur. Pour
adapter le comportement de l’agent en fonction de celui de l’utilisateur, nous tirons parti
des avancées récentes dans le domaine des réseaux de neurones, en particulier un type de
réseau très répandu appelé LSTM. Cette approche englobe simultanément la séquentialité
et la temporalité du comportement non-verbal au fil du temps. Le modèle conçu adopte
une approche réactive pour prévoir en permanence le comportement de l’agent en réponse
au comportement de l’utilisateur. Il prend en entrée à la fois le comportement passé de
l’utilisateur et de l’agent et prédit le comportement prochain de l’agent. Plus précisément,
il prédit le sourire, les mouvements de tête et le regard de l’agent. Pour intégrer et éval-
uer notre modèle LSTM appelé IL-LSTM (Interaction Loop LSTM), nous créons un système
d’interaction dans lequel l’agent interagit en temps réel avec un utilisateur humain. Le sys-
tème prend en entrée les données de l’utilisateur, calcule ce que l’agent doit dire ainsi que
l’animation correspondante. À notre connaissance, notre modèle est la première tentative
de produire, en temps réel, le sourire, les mouvements de tête et la direction du regard
pour un agent virtuel en considérant le sourire, les mouvements de tête et la direction
du regard à la fois de l’agent et de l’utilisateur, ainsi que les intentions de communication
de l’agent. Notre système d’interaction se décompose en 4 modules illustrés sur Figure 4
décrits dans les sections suivants.

1. EyesWeb: Analyse du comportement de l’utilisateur
EyesWeb XMI est une plate-forme open source permettant d’enregistrer et d’analyser
le comportement humain en temps réel [Volpe et al., 2016]. En utilisant EyesWeb,
nous extrayons les expressions faciales, les mouvements de tête, le regard et l’activité
vocale de l’utilisateur.

2. Flipper: Gestion des dialogues
Au cours d’une interaction humain-agent, l’agent doit choisir le prochain acte de
dialogue en fonction de l’évolution de l’interaction avec l’utilisateur. Par exemple,
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Figure 4 – L’architecture de notre système.

l’agent commence l’interaction en saluant l’utilisateur. Une fois que l’utilisateur a
répondu, l’agent se présente et demande le nom de l’utilisateur, etc. Pour sélection-
ner les actes de dialogue les plus appropriés de l’agent, nous utilisons Flipper [van
Waterschoot et al., 2018]. Flipper permet de spécifier des règles de dialogue pour les
agents virtuels. Dans notre système, Flipper gère le tour de parole de l’agent et en-
voie des messages à EyesWeb pour indiquer le moment où l’agent commence et finit
de parler. Inversement, EyesWeb envoie à Flipper l’activité vocale de l’utilisateur. En
fonction de l’étape de dialogue, Flipper sélectionne le discours suivant de l’agent.

3. GRETA-VIB
GRETA-VIB est utilisée comme plate-forme d’agent virtuel [Pecune et al., 2014].
Dans notre système, Flipper génère les intentions communicatives de l’agent et en-
voie le comportement multimodal correspondant au format FML au behavior plan-
ner.

4. BehaviorPrediction: Prédiction du comportement de l’agent
Nous souhaitons adapter le comportement de l’agent en réponse au comportement
de l’utilisateur. En d’autres termes, l’agent doit non seulement communiquer ses in-
tentions, mais également adapter son comportement en temps réel par rapport au
comportement de l’utilisateur. Pour atteindre cet objectif, nous devons prédire le
comportement de l’agent à chaque instant. Ceci est réalisé en ajoutant un module
spécifique à l’architecture du système. En tant que tel, le module “BehaviorPredic-
tion” est chargé de calculer les comportements adaptatifs.
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A chaque pas de temps t (c’est-à-dire pour chaque image), le module BehaviorPre-
diction calcule les paramètres d’animation faciale et corporelle de l’agent pour le
pas de temps t + 1 (c’est-à-dire, l’image suivante). Ce module prend en entrée les
paramètres d’animation faciale et corporelle de l’utilisateur et de l’agent, ainsi que
l’état de la conversation sur une fenêtre temporelle de 20 image (frame). La pré-
diction de la prochaine image est faite par le modèle IL-LSTM. Ainsi, l’animation
prédite de l’agent est calculée à partir des animations précédentes de l’utilisateur et
de l’agent.

Les comportements de l’utilisateur sont extraits à l’aide de EyesWeb. EyesWeb com-
munique avec le modèle IL-LSTM en envoyant les comportements de l’utilisateur
et l’état de la conversation. Flipper envoie le fichier FML au behavior planner. Ce
dernier calcule le comportement multimodal de l’agent et l’envoie au behavior re-
alizer qui calcule l’animation de l’agent. Ensuite, avant d’envoyer chaque image au
générateur d’animation, nous fusionnons l’animation calculée à partir des intentions
communicatives avec l’animation prédite pour adapter le comportement de l’agent
à celui de l’utilisateur. Nous répétons cette opération à chaque image. Ceci est fait
au niveau du behavior realizer avec l’entrée du module BehaviorPrediction.

Evaluation

Afin d’évaluer notre modèle génératif, nous conduisons une expérience interactive dans
laquelle notre module BehaviorPrediction est utilisé pour générer automatiquement le
comportement de l’agent en tenant compte du comportement de l’utilisateur. L’agent,
nommé Alice, joue le rôle d’un guide virtuel décrivant une exposition sur les jeux vidéo
destinée aux visiteurs de la cité des sciences et de l’industrie à paris. Nous supposons que
l’adaptation le comportement d’Alice à celui de l’utilisateur augmentera l’engagement et
la satisfaction de celui-ci. Notre objectif est de vérifier si notre modèle qui adapte le com-
portement de l’agent améliore l’interaction et l’expérience de l’utilisateur. Pour évaluer
l’engagement de l’utilisateur, Van Vugt et al. ont proposé un questionnaire pour évaluer
le comportement de l’agent en fonction des dimensions du model PEFiC [van Vugt et al.,
2006]. À partir de ce questionnaire, nous adaptons un ensemble d’adjectifs permettant
de mesurer la perception de l’agent en termes de réalisme, de compétence et de perti-
nence. On mesure également l’engagement et la satisfaction de l’utilisateur. De plus, afin
de mesurer l’amicalité perçue de l’agent, nous avons utilisé quatre éléments du question-
naire IAS [Wiggins, 1979]. Enfin, pour mesurer l’attitude a priori des participants à propos
des agents virtuals, nous adoptons huit questions du questionnaire NARS [Nomura et al.,
2006]. 101 participants ont pris part à notre expérience, 50% sont des femmes et 95%
sont français. Les résultats ont montré que les utilisateurs étaient en effet plus satisfaits de
leur interaction avec Alice lorsqu’elle adaptait son comportement. Cependant, ces résul-
tats n’étaient significatifs que lorsqu’Alice adaptait son sourire. Un biais lié à l’utilisateur
aurait pu empêcher d’avoir des résultats significatifs pour les autres expressions (regard
et mouvement de tete).
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Prediction d’engagement

Dans le Chapitre 8, nous nous sommes concentrés sur un aspect important de l’interaction
humain-agent: l’engagement. L’engagement assure que l’interaction se déroule sans perte
d’intérêt ni de motivation de la part de l’utilisateur. Après avoir étudié les comportements
qui contribuent le plus à un changement dans la perception de l’engagement, nous nous
sommes concentrés sur les expressions faciales, les mouvements de tête et la direction du
regard. Ces trois comportements représentent des indicateurs pertinents d’engagement.
Nous avons développé un modèle basé sur LSTM pour prédire le niveau d’engagement de
l’utilisateur. Le model a été entrainé à partir de la base de données NoXi contenant des
conversations entre expert et novice. Nous avons exploré la contribution de différentes
caractéristiques (features) multimodales, à savoir le regard, les mouvements de tête et les
unités d’action (action units), à la prédiction de l’engagement. Les résultats ont révélés
que les unités d’action contribuaient davantage que les mouvements de tête et le regard
à la prédiction de l’engagement. Nous avons également étudié l’importance de prendre
en compte le comportement de l’interlocuteur pour prédire l’engagement de locuteur. Les
résultats ont souligné l’importance de prendre en compte le comportement des deux parte-
naires dans une interaction dyadique pour la prédiction de l’engagement. Notre modèle a
été intégré dans une plate-forme ECA, ce qui permet de prédire, en temps réel, le niveau
d’engagement de l’utilisateur.
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H
UMANS use different modalities while interacting with each other, including
speech, gesture, facial expression, body postures, etc. These modalities pro-
vide cues about emotions, personality, and intention among other functions.
Designed on the human model, Embodied Conversational Agents (ECAs) are

virtual characters that can interact autonomously with human beings by imitating their
natural behaviors. Toshiba’s Yoko and Airbus’s Tim are examples of animated virtual agents
that answer technical and commercial questions of customers. In the recent years, much
research effort has focused on the improvement of human-agent interaction experience,
especially in the last years where virtual agents became more and more present in our
everyday lives. They can be used for a variety of applications ranging from education and
training to therapy [Nojavanasghari et al., 2016, Chollet et al., 2017, Nojavanasghari and
Hughes, 2017]. With the growing interest in human-agent interactions, it is desirable to
make these interactions pleasant and human-like. In the context of this thesis, we aim at
enhancing the interaction experience between humans and ECAs.

1.1 Context and Research Issues

The different components of human behavior have been extensively studied by psychol-
ogists, sociologists, and more generally cognitive scientists, since many decades [Leary,
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1957, Argyle, 1988, Burgoon et al., 2010]. More recently, the works from cognitive sci-
ence brought this domain to the reach of artificial intelligence, with, for example, the
advent of Embodied Conversational Agents (ECAs)1. A large body of research focused on
endowing ECAs with human-like abilities and behaviors, like expressing emotions, social
attitudes, and reacting properly to the user’s actions, for example, to keep her engaged
during the interaction. In the context of this thesis, we aim at improving the interaction
between human users and virtual agents. To this end, we develop computational models
for endowing ECA with the capacity to: (1) express different social attitudes in accordance
with the interaction context, (2) adapt its behavior according to the user’s behavior and
its communicative intentions, (3) predict the user’s engagement level during human-agent
interaction. Our goal is to enrich the state-of-the-art with more adapted and fine-grained
models and algorithms.

Humans continuously express different social attitudes toward each other depending
on the interaction context that includes factors such as the interaction partner, role, per-
sonality, goal, etc. For example, a person may show a kind of dominance in some work
contexts while being warm when going out with friends. The same person will not behave
in the same way in these different circumstances. She will not display the same behaviors.
She may use a more formal language at work, show a more upright posture, smile less,
while she may laugh and gesture expressively with friends and family. In this context,
we aim at endowing a virtual agent with the capacity to express different social attitude
depending on the interaction context. For example, the ECA should be friendly with a
customer when answering her question but more dominant with a job candidate to train
her preparing the job interview.

For a deeper understanding of attitude expression, we first need to explore what makes
a person appear more/less dominant or more/less friendly? That is, finding out what
patterns of non-verbal behaviors trigger a change (variation) in the perception of social
attitudes. Such an analysis should build on the associations and the dynamics (temporal
variation) of non-verbal behavior which is well informative for characterizing and inter-
preting attitudes (see Figure 1.1).

On the other hand, humans tend to adapt their behavior throughout the interaction
in accordance with the behavior of the interaction partners [Burgoon et al., 2010]. For
example, a listener nods to indicate agreement with the speaker, she gazes the same object
or smiles in response to the interlocutor’s smile. In light of this, virtual agents should adopt
a user-in-the-loop approach and change their behavior in response to the user’s actions and
behaviors. Such a dynamic interaction would benefit to maintain user’s engagement in
the interaction. In the recent years, engagement modeling has gained increasing attention
due the important role it plays in human-agent interaction. The agent should be able to
detect, in real time, the engagement level of the user in order to react accordingly. In this
context, our goal is to develop a computational model to predict engagement level of the
user in real time. Relying on previous findings, we use facial expressions as predictive

1The term Embodied Conversational Agent is used, instead of Virtual Agent, when it is capable of engaging
in conversation with one another or with humans. In this document, we use both terms interchangeably.
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Figure 1.1 – An interaction featuring a set of non-verbal signals [Vinciarelli et al., 2009]

features [Allwood and Cerrato, 2003, Castellano et al., 2009c]. Moreover, engagement is
not only measured from single cues, but from the combination of several cues that arise
over a certain time window [Peters et al., 2005, Bickmore et al., 2012]. Thus, for better
engagement prediction, we should consider the variation of facial expressions over time.

1.2 Contributions

In this thesis, we are interested in generating the non-verbal behavior of virtual agents
including the attitude variation it should express, as well as the behavior adaptation in
response to the user’s behavior. We also focus on user’s engagement level prediction during
human-agent interaction. To achieve these goals, we encompass the dynamics of non-
verbal behavior relying on appropriate techniques: temporal sequence mining and recurrent
neural networks (LSTM). Specifically, our main contributions can be summarized in the
following three points:

Attitude variation generation for virtual agents: the novelty of our proposition is to
model attitude variations as sequences of non-verbal signals, while considering the tem-
poral characteristics (starting time and duration) of these signals. Thus, we develop a
fully-automatic, sequential, temporal, and generative model for extracting and generating
non-verbal sequences representing attitude variations. Our practical contributions to the
domain of attitude modeling are:

• Designing a new temporal sequence mining algorithm. As the existing algorithms of
temporal sequence mining have been intrinsically designed for synthetic data, they
generally fail to efficiently deal with real-word data. We propose an algorithm, called
HCApriori, that addresses the main limitations of existing algorithms for modeling
real data. The conducted experiments show a significant improvement of HCApriori
over the state-of-the-art algorithms.
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• Modeling attitude variation: we consider signal’s temporality for attitude modeling.
We rely on HCApriori algorithm to extract, from multimodal corpus, relevant tem-
poral sequences expressing attitude variations. A perceptive study is conducted to
validate the expressivity of extracted sequences.

• Enriching the ECA platform (GRETA-VIB [Pecune et al., 2014]) with an attitude plan-
ner allowing virtual agents to simultaneously express attitude variations and other
communicative intentions (e.g., performative, emphasis). Based on the extracted
sequences (characterizing attitude) as well as the communicative intentions of the
agent, we generate the final non-verbal behaviors that should be displayed by the
agent. A perceptive experiment is conducted to evaluate the perception of an ECA
communicating while displaying the attitudes generated with our attitude planner.

Real-time ECA’s behavior adaptation: the human behavior is naturally dynamic. It is
the result of summing up different factors: communicative intents, interaction context,
responses to the other interaction partner’s behavior... To adapt the agent’s behavior ac-
cording to the user’s one, we take advantage of the recent advances in the domain of
neural networks, specifically a popular type of networks called LSTM. This approach si-
multaneously encompasses the sequentiality and temporality of behavior. The designed
model adopts a user-in-the-loop approach to constantly generate the behavior of the agent
in response to the user’s behavior. To our knowledge, this is the first attempt to produce
real time facial expressions for virtual agents driven from both agent’s and user’s behaviors
as well as agent’s communicative intentions.

User’s engagement prediction: In this part of the thesis, we shed light on an important
aspect of human-agent interaction: engagement. Engagement ensures the interaction to
go on without loss of interest or motivation. The agent should be able to continuously
detect the engagement level of the user in order to react in a proper way. To this end, we
develop a LSTM-based model to predict, in real time, the engagement level of the user.

1.3 Manuscript Organization

Chapter 2 lays the foundations for the works of this thesis. It gives a theoretical back-
ground on attitude definition, its expression, representation, and interpretation. In Chap-
ter 3, we address previous efforts that are related to ours, by discussing attitude mod-
els for ECAs, and existing works that model the sequentiality of multimodal behaviors.
Chapters 3—6 are all related to our first contribution, the modeling of social attitude as
sequences of multimodal behaviors. Sequence mining task and our algorithm (HCApriori)
are presented in Chapter 4. Chapter 5 describes our methodology for attitude variation
modeling as a sequence of non-verbal signals. The sequences are integrated in an ECA
platform to automatically generate the attitude variation of ECAs as presented in Chap-
ter 6.
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Our second contribution (behavior adaptation) is addressed in Chapter 7. After giv-
ing a quick overview on neural networks and LSTM, we describe the architecture of our
behavior adaptation model along with the obtained results.

Our third contribution (engagement prediction) is presented in Chapter 8. After giving
an overview on engagement-related behaviors and existing works for engagement predic-
tion, we describe our model. Finally, in Chapter 9 we conclude this thesis and give some
future perspectives.
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A
TTITUDE is an essential component of human-human interaction. Because it is
complex and subject to different interpretations, attitude has attracted atten-
tion from various research fields. In this Chapter, we focus on the theoretical
bases and definitions to clarify the concept of human attitude and help un-

derstating the underlying models. From a computational perspective, we describe the
existing frameworks for attitude representation and measurement. These frameworks dif-
fer according to the context of study (e.g., interpersonal problems, personal traits, etc.).
Finally, we investigate the relation between non-verbal behavior and the perceived atti-
tude. We show how the key characteristics of non-verbal signals, such as sequentiality ans
temporality, are determinant to correctly perceiving the conveyed attitudes.

2.1 Attitude Definition

Interpersonal, or social attitudes have captured much attention in social psychology [Scherer,
2005], social linguistics [Biber, 2006] and, more recently, in social signal processing [Ballin
et al., 2004, Lee and Marsella, 2011, Ravenet et al., 2015, Chollet et al., 2017, Janssoone,
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2016]. Consequently, different definitions of attitude, also called stance, have been pro-
posed [Scherer, 2005, Du Bois, 2007, Chindamo et al., 2009]. From Linguistics we can
cite the definition of Biber: “personal feelings, attitudes, judgments, or assessments that a
speaker or writer has about the information in a proposition” [Biber, 2006]. Another def-
inition is given by Du Bois: “Stance is a public act by a social actor, achieved dialogically
through covert communicative means, of simultaneously evaluating objects, positioning sub-
jects (self and others), and aligning with other subjects, with respect to any salient dimension
of the socio-cultural field” [Du Bois, 2007]. Thus, expressing attitude consists of evaluating
an object, positioning w.r.t a situation of a person and also aligning with other persons.

Attitudes are defined by Chindamo as: “The expressive side of a stance includes unimodal
as well as multimodal vocal or gestural (in a wide sense including all communicative and in-
formative body movements) verbal or nonverbal contributions” [Chindamo et al., 2009].
According to same source, attitudes are expressed through both verbal and -not less im-
portantly - non-verbal behaviors. Moreover, Argyle reported that “non-verbal signals have
a much greater impact than equivalent verbal signals in communicating interpersonal atti-
tude” [Argyle, 1988] (page 85).

Klaus Scherer defined attitude as “an affective style that spontaneously develops or is
strategically employed in the interaction with a person or a group of persons, coloring the
interpersonal exchange in that situation” [Scherer, 2005]. The important aspect of attitudes
underlined in this definition is that attitudes are dynamic: an attitude is an an affective
style that “colors” an interaction. Then, attitudes are not only expressed by a given signal
at a certain time but rather by the coordination and dynamics of a series of multimodal
signals whose meaning arises from the interrelation of interactants’ behaviors.

From all definitions, we can conclude that attitudes are interpersonal, multimodal and
dynamic. In our work, we focus on interpersonal attitudes, i.e., attitudes that are expressed
toward a person, in particular, the attitude that our virtual agent will express toward the
user. The term multimodal means that attitudes are expressed verbally and non-verbally.
According to Argyle, both modalities contribute equally to attitude expression. Hence,
we are are interested by the non-verbal expression of attitude. Finally, attitudes change
over time. Our goal is to encompass the dynamics of attitudes by jointly considering
sequentiality and temporality of non-verbal signals.

2.2 Attitude Representation

Attitudes can be formally represented in different ways. Burgoon proposes a representa-
tion of social attitudes along twelve dimensions [Burgoon and Hale, 1984]. The first seven
dimensions are independent: dominance (dominance or submission), arousal (degree of
emotional arousal and responsiveness), relaxation (degree of composure and relaxation
exhibited), similarity (resemblance between parties), formality, social orientation, and in-
timacy. The last five are related to the concept of intimacy: trust, superficiality of the
relationship, hostility, involvement, and inclusion. Some other models represent attitudes
in a small number of dimensions. For example, in [Schutz, 1958], the author considers the
dimensions of inclusion, control and affection. Heise characterizes the social attitudes ac-
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Figure 2.1 – The interpersonal circumplex (IPC).

cording to the dimensions of evaluation (positive vs negative), power (powerful vs weak)
and activity (excited vs relaxed) [Heise, 2010]. In [Barbulescu et al., 2015], the authors
rely on Mind Reading taxonomy to represent attitudes [Rajendran, 2004]. This taxon-
omy is composed of 412 emotions grouped into 24 categories such as: seductive, jealous,
surprised, responsible, etc.

Attitudes can be represented from other perspectives. Argyle used a graphical rep-
resentation called Interpersonal Circumplex (IPC), where attitudes are plotted according
two orthogonal axes (see Figure 2.1): a vertical axis for dominance and a horizontal axis
for friendliness. These two dimensions have initially been used in 1957 by Leary [Leary,
1957]: “in surveying the list of more or less generic interpersonal trends, it became clear that
they all had some reference to a power or affiliation factor. When dominance-submission was
taken as the vertical axis and hostility-affection as the horizontal, all of the other generic
interpersonal factors could be expressed as combinations of these four nodal points” (page,
64) [Leary, 1957]. Thus, each interpersonal or social behavior, like “forceful”, can be
represented, within the IPC, as a weighted combination of dominance and friendliness.
Figure 2.2, plots some examples of social behaviors on the IPC.

2.3 Interpersonal Circumplex Measurements and Interpretation

As a reminder, our goal is to develop a generative model of attitude variations for a virtual
agent. We will evaluate our model by the perception of the generated attitudes through
a questionnaire. To find the most relevant adjectives that characterize the perception of
attitude, we perform a literature review on the usage of IPC measurements. This study
will help us fill the evaluation requirements.
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Figure 2.2 – Examples of interpersonal behaviors plotted on the Interpersonal Circum-
plex [Isbister, 2006].
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2.3.1 Measurements

The IPC has recently become a popular model for assessing interpersonal dispositions such
as interpersonal problem (e.g., problems related to assaulting others) [Alden et al., 1990],
value (how interpersonal experiences, such as expressing herself openly, are important to
a person?) [Locke, 2000], self-efficacy (interpersonal actions a person believes she can
express) and traits (e.g., firm) [Wiggins, 1995]. All the IPC measures are based on the
same theory: there is a particular location within the circumplex space for each inter-
personal disposition. Most IPC inventories split the IPC into eight octants or scales that
are alphabetically labeled counterclockwise: PA, BC, DE, FG, HI, JK, LM and NO

(see Figure 2.1). Each octant can be represented by a set of characteristic adjectives, e.g.,
dominant and assertive for PA octant.

To build an IPC inventory, psychologists started by building the questionnaires describ-
ing the measured interpersonal dispositions, for example, by analyzing psychotherapy
interviews. Then, using statistical analyses such as Principal Component Analysis, par-
ticipant answers were clustered and displayed on the IPC. The works of Locke, Adamic,
Acton, and Revelle provided overviews of interpersonal circumplex measures or invento-
ries [Locke and Adamic, 2012, Acton and Revelle, 2014]. As they reported, the Inter-
personal Check List (ICL), proposed by Leary, was the first ICP inventory [Leary, 1957].
Based on Sullivan’s interpersonal theory of personality [Sullivan, 1953] on one hand, and
observing interactions among psychotherapy group members on the other hand, Leary
constructed a circumplex model that represented interpersonal traits (cf. Figure 2.3). As
we can see, Leary classified 16 interpersonal behaviors on the interpersonal circle. Each
of the 16 behaviors is evaluated by multi-level measures: (1) reflexes are illustrated in
internal circle and indicated by alphabetical letters (A to P). (2) The center ring indicates
the behaviors provoked by persons adapting the interpersonal behaviors. For example,
a person who uses the reflex P tends to provoke others to respect. (3) The next circle
illustrates extreme reflexes like compulsive and dominant. Finally, the circle perimeter is
divided into eight interpersonal behaviors (e.g., managerial-autocratic). The ICL model
has been widely used in psychological and socio-psychological research [Clark, T. L., &
Taulbee, 1981]. However, researchers reported that ICL did not adequately fit the circum-
plex model. It presents significant measurement gaps between the four quadrants of the
circumplex [Kiesler, 1996, Wiggins et al., 1988, Locke, 2000]. Wiggins et al. [Wiggins,
1979] proposed the Interpersonal Adjective Scales (IAS) to address these limitations.

An interpersonal adjective is defined as “a pattern of dyadic interactions that has rel-
atively clearcut social (status) and emotional (love) consequences for both participants (self
and other)” [Wiggins, 1979] (p. 398). Based on this definition, 800 terms were identified
as interpersonal. For simplifying the rating and the interpretation, the 800 terms have
been reduced to 128 adjectives and then to 64 in the final version of the IAS (IAS-R). To
validate the IAS model, participants rated how accurately each adjective describes them
on a 8-point scale. The methodology used to build IAS served as a basis for the develop-
ment of other IPC measures like the Inventory of Interpersonal Problems (IIP). Moreover,
IAS is now the standard measure of interpersonal traits [Locke and Adamic, 2012].
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Figure 2.3 – Classification of interpersonal behavior in Leary’s model [Leary, 1957].

Horowitz et al. studied a large sample of psychotherapy interviews for reporting the
most frequent interpersonal problems [Horowitz, 1997]. Based on this study, the Inven-
tory of Interpersonal Problems (IIP) was developed. It consists of 64 items that assess
interpersonal excesses and deficiencies. participants rated how distressed they have been
for each problem on a 5-point scale. The items are divided into two sections: “It is hard
for me...” and “I am too much...”. IIP was used to identify the relationship between inter-
personal problems and psychopathology and psychotherapy [Ruiz et al., 2010]. Locke
reported that the IIP can help guide therapeutic interventions for interpersonal prob-
lems [Locke and Adamic, 2012]. For example, the interpersonal problems assessed by
the IIP are related to the types of interpersonal expectations that are readily targeted
by therapeutic interventions. For example, dominant people expect others to be critical
whereas friendly people expect others to be dismissive.

Self-efficacy is how confident a person is able to perform some action [Rogelberg,
2017]. The Circumplex Scales of Interpersonal Efficacy (CSIE) assess a person’s confi-
dence that she can successfully perform behaviors [Locke and Sadler, 2007]. Answers
range from 0 (not at all confident) to 10 (absolutely confident).

Table 2.1 gives a summary of some IPC measures and table 2.2 indicates some repre-
sentative adjectives for each octant of the IPC. For each measure, we indicate: the number
of items used to measure a specific interpersonal disposition, the question and its answer
scale, as well as the number and kind of participants who answered the questionnaire in
the initial study.

Several other examples of ICP inventories exist, like the Interpersonal circumplex mea-
sures of interpersonal constructs [Gurtman, 2009b], the Support Actions Scale-Circumplex
(SAS-C) [Trobst, 2000]), the Octant Scale Impact Message Inventory (SIMI) [Schmidt, J.
A., Wagner, C. C., & Kiesler, 1999] and the Circumplex Scales of Interpersonal Values
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Inventory Year Dispositions Items Question Scale Participants
ICL 1957 Reflexes 128 Respond if an item apply

to you
5-point (adaptive to ex-
treme)

IAS 1979 Traits 64 Rate how each describe
you

8-point (extremely inaccu-
rate to extremely accurate)

1161 uni-
versity stu-
dents (British
Columbia)

IIP 1997 Problems 64 Rate how distressing each
problem has been

5-point (not at all to ex-
tremely)

200 patients

CSIV 2000 Value 64 When I am with him/her,
it is important that...

5-point (not important to ex-
tremely important)

CSIE 2007 Self-
efficacy

32 Rate how confident you
are

10-point (not at all confident
to absolutely confident)

Table 2.1 – IPC Measures

Measure IMI-C IAS-R IIP-C SAS CSIE
LM Friendly Warm-Agreeable Overly Nurturant Nurturant Dominant
NO Friendly-Dominant Gregarious-Extraverted Intrusive Engaging Dominant-Distant
PA Dominant Assured-Dominant Domineering Directive Distant
BC Hostile-Dominant arrogant-Calculating Vindictive arrogant Yielding-Distant
DE Cold-hearted Cold Critical Yielding
FG Hostile-Submissive Aloof-Introverted Socially Avoidant Distancing Yielding-Friendly
HI Submissive Unassured-Submissive Nonassertive Avoidant Friendly
JK Friendly-Submissive Unassuming-Ingenuous Exploitable Deferentia Dominant-Friendly

Table 2.2 – Representative adjectives of each IPC octant for several inventories.

(CSIV) [Locke, 2000]. Most of existing IPC measures were developed for adults. More re-
cently, specific inventories for children and adolescents have been developed, such as the
Child and Adolescent Interpersonal Survey (CAIS) [Sodano and Tracey, 2007] and the In-
terpersonal Goals Inventory for Children (IGIC) [Ojanen et al., 2005]. Other IPC measures
were developed for specific cultures, like the South African Personality Inventory [Hill
et al., 2013] and the Dutch adjectives scales [Op Den Akker et al., 2013]. Although most
IPC measures are used as self-report measures, they can be and have been used, with
some changes to the instructions or items, to rate the behavior of specific targets (e.g., the
virtual agent’s behavior in a human-agent interaction [Locke, 2000]). For evaluating the
attitude perception, previous works used IAS [Pecune, 2016, Cafaro et al., 2016a, Cafaro
et al., 2016b, Janssoone, 2016] or ICL [Op Den Akker et al., 2013]. Inspired by these
works, we rely on both IPC and IAS for evaluating the perception of an ECA expressing
attitude variations (see. Chapter 5).

2.3.2 Scoring and Interpreting the IPC Measurements

After choosing a suitable IPC inventory depending at the task at hand, the next step is
to score and interpret the answers of participants. One commune approach for analyzing
such data is the circular profile. This profile presents each person’s scores on the eight oc-
tants of the circumplex (cf. Figure 2.4). For computing this profile from any IPC inventory,
Locke follows three steps [Locke, 2012]:

1. Compute the general factor score by averaging the eight octant scores;

2. Ipsatize octant scores by subtracting the general factor score from each octant score;
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Figure 2.4 – Circular profiles of two persons P1 and P2 that participated to the CSIE
inventory [Locke, 2012]. The profile of P1 is represented by a dashed line.

3. Plot the ipsatized scores on the IPC ranging from the lowest value to the highest
value.

To interpret the circular profiles, Gurtman explains: “circular profiles tend to rise to
a peak value and then decline. The peak clearly indicates the predominant trend in the
profile and suggests the individual’s predominant interpersonal style or typology” [Gurtman,
2009b]. Figure 2.4 plots the circular profiles of two persons P1 and P2 who answered the
CSIE inventory. For the profile P1, the peak is in the lower-right region which suggests a
friendly-yielding behavior, whereas for P2 the peak is in the lower-left quadrant suggesting
a hostile-yielding style. Based on the circular profile, we can also compare the behaviors
of both participants P1 and P2: they are similar in efficacy for being dominant (PA) and
yielding (HI). On the opposite, participant P1 is more friendly (LM) than distant (DE),
unlike participant P2.

Leary introduced another approach called vector scoring by summarizing the circular
profiles with a single point on the circumplex [Leary, 1957]: the vertical coordinate gives
the perceived dominance based on Equation 2.1 whereas the horizontal coordinate char-
acterizes the friendliness based on Equation 2.2, by combining the ipsatized octant scores
as indicated in [Wiggins, 1979]. For example, the vertical coordinate (DOM) represents
the weight of the octant scores according to their directions compared to the dimension of
dominance. Thus, we sum the scores of PA, BC and NO (vary in the same direction as
dominance) and we subtract the scores HI, FG and JK (vary in the opposite direction
of dominance). The values of DOM and FR define a vector in the IPC space whose angle
can be calculated by Equation 2.3 and length by Equation 2.5. The angle is adjusted as
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indicated in Equation 2.4. The vector angle indicates the predominant interpersonal be-
havior [Wiggins et al., 1988, Gurtman and Balakrishnan, 1998, Gurtman, 2009a, Locke
and Adamic, 2012].

DOM = 0.03 (PA−HI) + 0.02 (NO +BC − FG− JK) (2.1)

FR = 0.03 (LM −DE) + 0.02 (NO −BC − FG+ JK) (2.2)

Angle = tan−1 DOM

FR
(2.3)

AjustedAngle =


Angle+ 0, if DOM < 0 and FR > 0

Angle+ 180, if FR < 0

Angle+ 360, otherwise

(2.4)

Vector length =
√
DOM2 + FR2 (2.5)

For example, the vector angle of person P2 used above is 216◦ (in the FG octant)
whereas the vector angle of person P1 is in the JK octant (337◦). Gurtman reports that
“a high vector length indicates a well-defined profile, with a clear central tendency; but low
vector length suggests less definition to the profile and hence less confidence in any summary
conclusion about the overall thematic trend in the personality” [Gurtman, 2009a]. The
vector length of P1 in Figure 2.4 is many times greater than P2’s, which suggests that P1

has a clearer interpersonal profile.

2.4 Multimodal Expressions of Social Attitude

Nonverbal behavior is an important component in human interaction. It can participate to
the regulation of interaction (e.g., nodding may indicate an agreement with the speaker),
it can complete and structure the speech (e.g., raising eyebrows can accentuate an ele-
ment of the speech ) [Ekman and Friesen, 1969, Argyle, 1988, Cosnier, 1997]. Non-verbal
behavior also contributes to the expression of emotions and attitudes [Argyle, 1988]. In
our work, we are interested in the expression of interpersonal attitude through non-verbal
behavior. The relationship between non-verbal behaviors and attitudes has been widely
investigated in psychology and sociology [Gifford, 1991, Mehrabian, 1969]. In the fol-
lowing, we summarize the most significant findings on the relation between non-verbal
behaviors and interpersonal attitudes.

• Gestures: McNeill categorized gestures into two main categories: communicative
gestures and adaptor gestures [McNeill, 1992]. Gestures can bear information about
the speaker’s attitude. For example, adaptor gestures that consist in touching oneself
or manipulating objects are mainly related to submissive attitude but can also be as-
sociated with hostility in some cases [Burgoon, J. K. and Le Poire, 1999]. Touching
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her interlocutor can be a sign of friendliness and of dominance depending on the
type of the touch [Carney et al., 2005, Burgoon et al., 1984]. Frequency and expres-
sivity of gestures, like amplitude and intensity, directly influence the perception of
an attitude. Also, performing large gestures may be a sign of dominance. Dominant
people are also generally characterized by gesturing more compared to submissive
people.

• Postures: when two interacting persons adapt unconsciously their postures one to
another, we can predict a change in their interpersonal attitudes [Richmond, V. &
McCroskey, 2000]. Lafrance noted that postural mirroring (adopting the same pos-
ture as one’s interlocutor) can be a sign of friendliness [Lafrance, 1982]. Leaning
towards and taking a closer position to her interlocutor can be perceived as a sign
of submission, whereas reverse behaviors, such as leaning backwards, could express
dominance [Carney et al., 2005, Burgoon et al., 1984, Burgoon, J. K. and Le Poire,
1999]. Adopting a posture by occupying a large space, in the same way as large ges-
tures, are signs of dominance [Carney et al., 2005, Burgoon et al., 1984, Burgoon,
J. K. and Le Poire, 1999, Gifford and Hine, 1994]. For example, dominant people
extend their legs more than submissive people do [Gifford, 1991].

• Head direction and movement: communicative functions of head movements are
also varied. When listening, head movement can be a backchannel indicating an
agreement, disagreement or understanding [Heylen et al., 2008]. Head direction
and movement can also be relevant signals in predicting attitude. A bowed head
can be a sign of submission, a head tilt of friendliness whereas a raised head may
express dominance [Gifford, 1991, Debras and Cienki, 2012, Stivers, 2008]. On the
other hand, a head shake can correlate to different attitudes: dominance [Gifford
and Hine, 1994, Carney et al., 2005, Hall et al., 2005] and friendliness [Burgoon, J.
K. and Le Poire, 1999, Gifford, 1991], depending on the context.

• Gaze: gaze is a crucial element in measuring social dimensions such as engage-
ment [Kendon, 1967, Abele, 1986] and attitude [Argyle, M., Dean, 1965, Duncan,
St. jr., Fiske, 1977, Burgoon et al., 1984, Hall et al., 2005]. Mutual gaze is a sign of
dominance and friendliness whereas gaze shift is perceived as a sign of submission,
while direct gaze is a sign of dominance. Generally, dominant people gaze more at
their interlocutors than submissive ones [Hall et al., 2005].

• Facial expression: the role of facial expression and their impact on the perception
of attitude have also been studied [Knutson, 1996, Tiedens et al., 2000, Carney
et al., 2005]: joyful expressions are associated with friendliness and dominance,
fearful and sadness expressions with submission, while anger and disgust expres-
sions are linked to hostility and dominance. Smile has been reported as the typical
signal of friendliness [Keating and al, 1981] but could also express dominance in
some situations [Hall et al., 2005]. Finally, Keating et al. studied the influence
of eyebrow movements on attitude perception and showed that, generally, a frown
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eyebrow is perceived as expressing dominance while a raised eyebrow expresses
submission [Keating and al, 1981].

Attitude Associated non-verbal behaviors
Dominance large gesture, touching others, leaning towards, raised head, head nod,

head shake, eyebrow frown, smile, joy expression, mutual gaze
Submission self-touch, manipulation of objects, leaning forwards, bowed head, gaze

shift, fear and sadness expression, raised eyebrow
Friendliness head tilt, head nod, smile, joy expressions, mutual gaze
Hostility manipulation of objects, disgust expressions

Table 2.3 – Non-verbal signals involved in the expression of interpersonal attitudes.

In this Section, we focused on the correlation between non-verbal behavior and atti-
tudes. Table 2.3 synthesizes some examples of non-verbal signals characterizing attitudes.
In the next section, we present the different temporal aspects of non-verbal signals (such
as starting time and duration) that could influence their perception, hence they must be
considered when modeling the non-verbal behavior of virtual agents.

2.5 Non-verbal Behavior Interpretation

In the previous Section, we reported the studies describing how specific non-verbal be-
haviors can bear information about attitudes. The interpretation of non-verbal behaviors
depends on the context in which they are produced. For example a smile produced while
our interlocutor is upset will have a very different interpretation than if it is produced in
response to our interlocutor’s smile. The meaning of a behavior clearly depends on the
behavior produced by the other persons involved in the interaction. Similarly, a person’s
smile will be interpreted in a certain way if this person looks straight and smiles than if
this person smiles then shakes her head and looks down. So the fact is that the percep-
tion of non-verbal signals is directly influenced by two key elements: sequentiality (order)
and temporality (starting time and duration) of the surrounding non-verbal behaviors
displayed by the interlocutors.

Sequentiality: Burgoon and Le Poire report that non-verbal signals can not be inter-
preted in an isolated way: “what illuminates the interpretation of a given behavior is its
accompanying composite of nonverbal cues. No nonverbal cue is an island. It is continu-
ally surrounded by a host of nonverbal behaviors which together may delimit and clarify
meaning” [Burgoon, J. K. and Le Poire, 1999]. Thus, in order to correctly interpret a
non-verbal signal we should consider its context defined by its surrounding signals. For
example, Heylen et al. showed that signals tension and frown do not mean “dislike” when
displayed separately, whereas their combination does [Heylen et al., 2007]. In the context
of interpersonal attitude, averted gaze has been reported as a sign of submission [Gifford,
1991, Debras and Cienki, 2012, Stivers, 2008, Bee et al., 2009]. However, this signal
leads to an increase in the perception of dominance when it is followed by an expression
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Figure 2.5 – Representation of a prototypical embarrassment response. The mean duration
of each action is equal to the beginning of the interval with the leftmost edge of the
photography and ending with the end of the arrow [Keltner, 1995].

of anger [Bee et al., 2009]. Based on these observations, sequential models have been
developed to study how combinations or sequences of signals can reveal and influence the
perceived emotions [With and Kaiser, 2011, Niewiadomski et al., 2011, Jack et al., 2014].
Results show that the expression of emotions as sequences of signals is better recognized
than the static expression (one signal). Inspired by this work, Chollet et al. designed a vir-
tual recruiter expressing interpersonal attitudes through sequences of non-verbal signals.
A user study showed promising results of the proposed model. In this thesis, we adopt the
representation of attitudes as multimodal sequences of non-verbal signals.

Temporality: non-verbal behaviors are also characterized by two other factors: start-
ing time and duration. Keltner demonstrated that the starting time and duration of smile,
gaze shift and head away can help differentiating between the possible meanings such as
embarrassment, amusement and shame. Figure 2.5 represents the starting time and dura-
tion of some signals related to the expression of embarrassment [Keltner, 1995]. We can
observe that although smile is usually considered as a cue of friendliness, it reflects more
likely embarrassment if it is followed by a gaze shift. Signal duration is also important
for behavior perception. For example, the duration of a smile could differentiate between
faked and genuine smiles [Ekman and Friesen, 1982, Mcdaniel and Si, 2014, Keltner,
1995]. In the study of Keltner the mean duration of smile is 2.23 seconds whereas the
mean duration of controlled (fake) smile is 0.46 seconds.

To sum up, the interpretation of a non-verbal behavior is influenced by three crucial
factors: order, starting time, and duration. Our goal is to design an attitude model that
encompasses all these three aspects: order, starting time and duration of non-verbal sig-
nals. As it will be detailed in Chapter 4, we rely on temporal sequence mining algorithm
that best fits the modeling requirements.

This chapter laid the theoretical bases for attitude representation, measurement, and
interpretation. The literature overview underlines that attitudes are interpersonal, mul-
timodal and dynamic. Concerning the representation of attitudes, different affective di-
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mensions can be used such as dominance and arousal. The interpersonal circumplex (IPC)
stands out as the most popular representation of attitudes in the field of virtual agents.
In this chapter, we have also described IPC inventories and two statistical approaches
(circular profile and vector scoring) used to interpret these inventories.

On another hand, the previous works underlined that human behaviors are naturally
multimodal and sequential: we interact with each other through multiple communica-
tion channels (speech, gaze, gesture, etc.). Moreover, these behaviors are temporally
coordinated. Our goal is to understand how those behaviors are coordinated at critical
moments, the sequential patterns they exhibit and their association with different inter-
personal attitude variations. Thus, in our work, we choose to represent attitude variations
as multimodal and temporal sequences of non-verbal signals.

Take home

• Interpersonal attitudes are multimodal and dynamic. Attitudes are expressed
through verbal and non-verbal behaviors.

• The interpersonal circumplex (IPC) is the common representation of attitudes.
IPC is composed of two orthogonal dimensions: friendliness (ranging from
hostile to friendly) and dominance (ranging from submissive to dominant).

• Interpersonal attitudes are expressed through sequences of: non-verbal be-
haviors such as head movements, postures and facial expressions.

• The interpretation of non-verbal signal is influenced by its surrounding sig-
nals, their starting times and durations.
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E
MBODIED Conversational Agents (ECAs) are widely used in different fields. They
are increasingly becoming essential elements by playing key roles: tutor, doctor,
recruiter, etc. The general topic of this thesis is to conceive ECAs able to change
their attitude toward the user according to their role as well as the context of

the interaction. For example, it should be dominant with a job applicant and friendly
with an autistic child. In this chapter, we present an overview of the most relevant works
related to our topic: attitude modeling for virtual agents. We also focus on the works
relying on sequentiality and temporality of non-verbal behavior as key components for
human or agent behavior modeling.

3.1 Attitude Modeling for Embodied Conversational Agents

Existing works that model ECA’s attitudes address different questions: which ECA’s behav-
iors are the most influencing on the perception of its attitude? how does ECA’s attitude
change over time? how to automatically generate the ECA’s behavior depending on its
interpersonal attitude?
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Figure 3.1 – Examples of an ECA showing non-verbal behavior (control: no behavior,
dominant: akimbo (hands on the hip), submissive: neck-adaptor, cooperative: head tilt
right and non-cooperative: gaze aversion) [Straßmann et al., 2016].

3.1.1 ECA’s Behavior Expressing Attitude

Several investigations have been conducted to understand the impact of non-verbal be-
havior on attitude perception during human-human interaction (cf. Chapter 3). A lot of
works relied on these studies for the selection of relevant non-verbal signals that poten-
tially express attitudes and simulated them into virtual agents.

To begin with, Bee et al. studied the impact of the facial expression, gaze and head di-
rection on the perception of virtual agent’s dominance [Bee et al., 2009]. Results replicate
some findings concerning the relationship between attitudes and the studied behavior
from human-human interaction. For example, the expression of joy, anger and disgust
have been strongly correlated with dominance perception compared to fear and sadness
expressions [Knutson, 1996, Tiedens et al., 2000, Carney et al., 2005]. Moreover, an
ECA with a bowed head is perceived as submissive while a raised head expresses domi-
nance [Gifford, 1991, Debras and Cienki, 2012, Stivers, 2008]. Unlike what is generally
reported in literature from human-human interaction, averted gaze of the agent did not
influence the perception of submission. Later on, this study has been completed by adding
linguistic behaviors to facial expression, gaze and head direction in order to investigate
which modalities contributes the most to the expression of dominance [Bee et al., ]. The
linguistic behavior integrates personality traits (agreeableness, extraversion and introver-
sion) and the gaze model includes two states: looking at the user and looking away from
the user. The drawn analyses suggests that both verbal and the nonverbal channels par-
ticipate equivalently to the expression of dominance.

Straßmann et al. explored the perception of a virtual agent expressing dominance, sub-
mission, or cooperativity [Straßmann et al., 2016]. Based on the literature, they collected
23 non-verbal signals that are assumed to evoke those three attitudes. These behaviors are
simulated using a virtual agent and evaluated through a perceptive study (see Figure 3.1).
The obtained results reveal that gestures such as crossing the arms and laying the hands
on the hip significantly influence the perception of dominance. However, for cooperativity,
facial expressions have the most pronounced effect.

Other works investigate the interplay between attitudes and others behaviors such as
interruptions and attention guiding. Cafaro et al. investigate how the interpersonal atti-
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Figure 3.2 – Beattie’s taxonomy of interruption types (image from [Cafaro et al., 2016b]).

tude (hostility/friendliness) and the personality (extraversion) of a virtual agent influence
the first impressions of the users about the agent [Cafaro et al., 2012]. Based on liter-
ature, they consider three non-verbal signals: smile, gaze and proximity. For evaluating
user’s impressions about a virtual agent displaying a combination of these behaviors, they
conducted a perceptive study in which users could interact in a virtual scene populated
with virtual agents through their avatar. The authors found that users formed impressions
of the agents after only 12.5 seconds of the beginning interaction. Proximity influenced
the evaluation of extraversion: the agents approaching the subject’s avatar were judged
as more extraverted than those not approaching. However, smile and gaze were linked
to friendliness expression. This work is limited to the context of first impressions and the
expression of friendliness.

Cafaro et al. studied the influence of interruption types (amount of overlap between
speakers and utterance completeness) on the perception of interpersonal attitudes during
an agent-agent interaction [Cafaro et al., 2016a]. They designed three interruption types
following the Beattie’s taxonomy indicated in Figure 3.2: overlap, simple interruption, and
silent interruption [Beattie, 1981]. Results revealed that the interruption types directly
influence the perception of attitudes of both agents (interruptee and interrupter): the
interruptee is perceived more dominant (and less friendly) when the amount of overlap
increases. This work only considers interruption as indicator of attitudes.

Rosenthal et al. studied the effects of dominant and submissive non-verbal behavior
of a virtual agent on the user perception of the agent in term of dominance, likeabil-
ity, competence, autonomy, cooperativity, and communicative abilities [Rosenthal-von der
Pütten et al., 2019]. They also explored attention guiding behavior (e.g., deictic gestures
and gaze) and its impact on the perception of the dominance behavior. Based on previ-
ous works, they assumed that attention guiding behavior, in combination with dominant
behavior, increases the perception of dominance. They categorized behaviors as follows:

• Dominant behaviors: akimbo posture, crossing arms, head up, gesture with large
radius.
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• Submissive behaviors: neck-adapter (self-touch), arms open, head down, gesture
with small radius.

• Attention guiding: looking at the objects, looking and pointing at the object that is
currently described when referring to it and looking back to the user after completing
its utterance.

In order to explore the bias of the age difference, they consider two groups of partici-
pants: young adults and seniors. For both groups, the analysis reports that the virtual
agent showing dominant behavior is perceived as more dominant than a virtual agent
showing submissive behavior. However, there are no effects of nonverbal dominance on
the perception of likeability, competence, and cooperativity. The attention guiding behav-
ior increased the perception of dominance. Regarding age differences, seniors rated the
agent as more likable, more autonomous, and more cooperative.

The works presented in this section focus on the impact of some behaviors on the
perception of ECA’s attitude. They do not extend to the dynamics and evolution of attitudes
over time, which would be of a great importance for a comprehensive understanding of
the topic. The following section will shed light on this aspect.

3.1.2 Attitude Dynamics over Time

Several works focused on the dynamics of attitudes by modeling the evolution of an ECA’s
attitude over time [Kasap et al., 2009, Ochs et al., 2010, Pecune et al., 2016]. Usually,
the attitudes are first initialized w.r.t. the role of the agent and of its interlocutor. For
example, an ECA assuming the role of a policeman will be initialized with a high domi-
nance, respectively low dominance, value when interacting with a gangster, respectively
with his superior. Then, depending on the emotion felt by the agent, its attitude will be
adjusted. The models of this type are based on the Ortony, Clore AND Collin’s (OCC) the-
ory of emotion to formalize the emotion felt according to pre-defined rules [Ortony and
Clore, 1988]. For example a virtual teacher can feel a gloating emotion when his difficult
student got a bad result.

In this vein of works, Kasap and colleagues [Kasap et al., 2009] developed Eva, a
virtual teacher that interacts with its students over several sessions. At the beginning of
each session, the attitude of Eva is initialized according to its social attitudes achieved
at the end of the previous session. Then, Eva’s attitude is updated at the end of each
session according to the emotions it felt during the current session. Positive emotions of
gratitude and joy increase (resp. decrease) Eva’s friendliness (resp. dominance) whereas
the negative emotions of anger and distress decrease (resp. increase) its friendliness (resp.
dominance). Eva has been evaluated in interaction with two students: the first one played
a role of good student, whereas the second played the role of difficult student. During the
first session with the first student, Eva was calm and polite and responded accordingly.
The second student was rude, so Eva was more aloof in its responses. In the next sessions,
Eva remembered each student’s attitude and responded accordingly.
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Figure 3.3 – Screenshot of the online graphical application designed to annotate the be-
havior of the ECA for a given attitude [Ravenet et al., 2013].

3.1.3 Attitude Generation Models

Several models of attitude have been designed in order to generate the behavior of a vir-
tual agents. To learn the mapping between attitudes and non-verbal behavior, a corpus
of ECA’s non-verbal behavior conveying attitudes has been gathered and annotated using
crowdsourcing [Ravenet et al., 2013]. For each attitude, the annotators indicated the fa-
cial expressions, gestures, head movement and gaze of the ECA used to express specific
attitudes (see. Figure 3.3). Then, a Bayesian model has been designed in order to au-
tomatically generate the non-verbal behavior of an ECA given as input its interpersonal
attitude. The Bayesian model has been combined with a dialogue model to integrate the
verbal expression of attitude. A perceptive study was conducted with three conditions:
the agent displayed an attitude through verbal behavior only, non-verbal behavior only,
and both verbal and non-verbal behaviors [Callejas et al., 2014]. Results showed that
only friendliness has been correctly perceived when the agent displayed only its attitude
through the non-verbal behaviors (using the Bayesian model). Regarding the the verbal
condition (dialogue model) no attitude has been recognized. However, the combination
of both models lead to better perception of friendliness and hostility. Finally, both models
have been used for the generation of the agent’s behavior supporting a group interaction
and the expression of friendliness and hostility [Cafaro et al., 2016b]. Despite the signifi-
cance of this work, it only considered the friendliness dimension of attitude. In addition,
it did not consider the behavior of the user when modeling the attitude of the agent.

In [Chollet et al., 2014b], using a corpus of job interviews between human recruiter
and human job seeker, GSP algorithm has been applied to extract non-verbal sequences
of a recruiter when s/he expresses different interpersonal attitudes toward a candidate.
Then, an attitude planner have been developed to generate the behavior of the agent ac-
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cording to its attitude and its communicative intention. This model was evaluated through
perceptive studies, either using third-party protocol (where participants evaluated videos
of an agent) or having participants interact with a virtual character. Most attitudes of the
agent were recognized. They were better recognized in the third-party protocol than in
the interactive study. A possible explanation support that the agent displayed an attitude
only when it talks, not when it listens. The main contribution of this model is to consider
both attitude and communicative intentions of the agent at time. The main limitation of
this works is that the behavior of the candidate was completely ignored when modeling
the attitude of the recruiter. Moreover, this work do not consider the temporal information
(starting time and duration) of non-verbal behavior.

Table 3.1 recapitulates the presented works of attitude modeling. Each one is charac-
terized with its goal that can be either (1) investigation: studying which ECA’s behaviors
are the most influencing on the perception of its attitude, (2) attitude dynamic modeling,
and (3) generation: generating ECA’s attitude. Moreover, for each study, we indicate how
attitudes are represented as well as the considered dimensions of attitudes (dominance,
friendliness, or both). Finally, we indicate how the attitudes are expressed or computed
(based on verbal, non-verbal behaviors, or both).

Ref. Goal Represent. Attitudes Behavior
[Bee et al., 2009] investigation - dominance non-verbal

[Straßmann et al., 2016] investigation - dominance non-verbal
[Cafaro et al., 2012] relationship Argyle both non-verbal
[Cafaro et al., 2016a] relationship Argyle both non-verbal
[Kasap et al., 2009] dynamics Argyle both verbal
[Pecune et al., 2016] dynamics Argyle both verbal

[Chollet et al., 2014b] generation Argyle both verbal, non-verbal
[Cafaro et al., 2016b] generation Argyle friendliness verbal, non-verbal

Table 3.1 – A comparison between attitude models.

As underlined from this overview, attitudes are expressed through verbal and non-
verbal behaviors. Thus, combining both modalities leads to better attitude recognition [Bee
et al., , Callejas et al., 2014, Chollet et al., 2017]. However, only a couple of works did
this combination [Chollet et al., 2014b, Cafaro et al., 2016b]. The rest of works used the
representation of Argyle and considered the two attitude dimensions. Most of the pre-
sented models rely on non-verbal behavior to express a given attitude. However, no one
leverages the temporal information of these behaviors. Our work addresses this limitation
by considering the temporal information of non-verbal behaviors.

3.2 Sequence-Based Multimodal Behavior Modeling

Some researchers pointed out the importance of other characteristics to better model at-
titudes such as the sequentiality and temporality of non-verbal behaviors. As mentioned
in Section 2.5, considering sequentiality and temporality (staring time and duration) of
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non-vernal signals is determinant for interpreting the meaning of these signals. In the
next section, we present existing works that encompass the sequentiality of non-verbal be-
havior in order to understand and predict phenomena such as emotion and interpersonal
attitude.

Niewiadomski et al. [Niewiadomski et al., 2011] proposed a constraint-based approach
to generate expressions of emotions for virtual agents. Their model includes: (i) a multi-
modal set of behaviors, extracted from both literature and annotated corpora; (ii) a set of
spatial and temporal constraints in the form of hand-crafted rules were determined. These
rules describe the temporal (i.e., the order and timing of behaviors) and the spatial (i.e.,
the multimodality) relationships regulating behaviors. However, the approach has some
limitations. The corpora that have been used is small and the need for manual work to
establish the rules makes the task costly and labor intensive.

Lately, sequence-mining algorithms like GSP, have been used to the task of extracting
sequences of behaviors. Chollet et al. used GSP algorithm to extract, from a job interview
corpus, non-verbal sequences representing interpersonal attitudes of a recruiter [Chollet
et al., 2014b]. For example, his model extracted the sequence: head nod followed by
smile for the expression of friendliness.

In [Martínez and Yannakakis, 2011], GSP algorithm has been used to discover which
frequent multimodal sequences predict the best the emotional states of participants. The
algorithm was applied to a game survey dataset and relied on three modalities: physi-
ological signals (e.g. blood volume pulse), context-based game metrics (e.g. keyboard
presses) and affective preferences. The obtained sequences have been transformed into
feature vectors and presented as inputs to an Artificial Neural Network (ANN), specifically
trained to predict affective states of players. A comparison between sequential and sta-
tistical features shows accuracy improvement for predicting players’ affects when using
sequential features. Despite this positive result, this type of modeling is limited by the
intrinsic algorithm (GSP) which is not time-aware; it only considers the order of signals,
but neither their duration nor their time of occurrence.

Other non time-aware algorithms have been used like T-Patterns [Magnusson, 2000].
With et al. automatically extracted sequences of facial expressions characterizing emo-
tions [With and Kaiser, 2011]. T-Patterns algorithm has been used to detect sequences of
facial signals representing five emotions: enjoyment, hostility, embarrassment, surprise,
and sadness. A model of participation styles in collaborative learning interaction has
also been proposed in [Nakano, 2015] using the multidimensional motif discovery algo-
rithm [Vahdatpour et al., 2005]. As such, 122 behavioral patterns of participants have
been extracted. One example pattern indicated that, while the target expert participant
was speaking, the other expert participant and the novice participant gazed both at the
target participant. This model only focuses on gazing and turn-taking of participants.

Zhao et al. used TITARL algorithm [Guillame-Bert and Crowley, 2012] to predict be-
havioral patterns that convey a variation in interpersonal rapport [Zhao et al., 2016].
TITARL allows predicting temporal relation between signals like occurrence interval (e.g.,
if there is an event d at time t, then there is an event c at time t + 5). For interpersonal
rapport modeling, a corpus involving a tutor and tutees has been annotated on several
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levels: gaze, smiles, conversational strategies like social norm violation, and interpersonal
rapport. TITARL algorithm has been applied to extract temporal association rules repre-
senting either an increase or a decrease of rapport between tutor and tutees. For example,
the tutor violates social norms while being gazed at by the tutee, and their speech overlaps
within the next minute. The TITARL algorithm has also been used in [Janssoone, 2016] to
extract temporal association rules related to attitude from the SEMAINE database [McKe-
own et al., 2012]. More precisely, the authors investigated the correlation between non-
verbal behavior (like eyebrow movements and prosody), and two attitudes: friendliness
and hostility. TITARL allows predicting temporal relation between signals. However, it
does not extract exact duration of signals.

The works in [Fricker et al., 2011, Yu et al., 2010, Zhang et al., 2010] have focused
on extracting temporal sequences of non-verbal behaviors from human-robot interactions.
The extracted information has been used to analyze human’s behavior, primarily gaze
behavior, in relation to the robot’s behavior. In addition to explicitly considering timing
of non-verbal behaviors, these works are set in dyadic settings; i.e., they consider both
human’s and robot’s behavior. However, they are not generative; the extracted patterns
are not explored for generating robot’s behavior.

Finally, probabilistic models like Hidden Markov Models (HMMs) and Conditional Ran-
dom Fields (CRFs) have also been used to predict appropriate sequences of multimodal
signals in human interactions. The goal is to predict a given behavior (backchannels,
gestures) for each time window t based on a sequence of multimodal signals (features)
observed over t. Lee and Marsella predicted speaker’s head movements using HMM mod-
els [Lee and Marsella, 2010]. Different feature types have been considered: phrase bound-
aries, part-of-speech tags, dialog act, etc. In [Lee and Marsella, 2012], the authors used
HMM and CRF to estimate head nods and eyebrow movements of the speaker.

The Dynamic Bayesian Networks (DBNs) and Deep Conditional Neural Fields (DCNF)
have also been used for social behavior modeling. For example, a DBN has been designed
to estimate turn taking [Otsuka et al., 2007] or to predict gaze and hand gestures of the
instructor in a collaborative task [Mihoub et al., 2016]. Chiu et al. experimented deep
conditional neural fields to model the generation of gestures by integrating verbal and
acoustic modalities [Chiu et al., 2015]. These kind of methods can not provide the exact
starting time and duration of signals.

As shown above, the integration of sequentiality into behavior modeling has been
approached from various perspectives: sequence mining, probabilistic modeling, etc. Ta-
ble 3.2 gives a comparison of the works presented above. Each one is characterized with
a set of criteria: underlying algorithm used to automatically extract behavioral sequences,
consideration of signal timing (start time and duration), mono or multimodality, and gen-
eration (implementation of the extracted patterns into virtual agents). Also, we indicate
the goal behind each work (e.g., attitude modeling, emotion modeling, etc.)

As one can see, most of works only rely on the order of signals ignoring their tem-
poral information (i.e., their starting time and duration [Chollet et al., 2014b, Lee and
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Ref. Algorithm Signal Modality Gener- Goal
timing -ation

[Niewiadomski et al., 2011] None (manual) � multimodal � emotion modeling
[With and Kaiser, 2011] T-Patterns x facial, head x emotion
[Fricker et al., 2011] ESM � gaze, head x HRI analysis
[Zhang and Boyles, 2013] QTempIntMiner � facial, head x HRI analysis
[Lee and Marsella, 2010] HMM x head nod � head movements
[Lee and Marsella, 2012] LDCRF x face x head movements
[Chollet et al., 2014b] GSP x multimodal � attitude
[Janssoone, 2016] TITARL partially face attitude
[Zhao et al., 2016] TITARL partially multimodal rapport

Table 3.2 – A comparison between sequence-based behavior modeling methods.

Marsella, 2012, Lee and Marsella, 2010, With and Kaiser, 2011, With and Kaiser, 2011]).
Some works consider a limited number of modalities [Fricker et al., 2011, With and Kaiser,
2011, Yu et al., 2010, Zhang and Boyles, 2013], while others rely on hand-crafted con-
straints [Niewiadomski et al., 2011]. Only a couple of these works explored the extracted
sequences of human behaviors for generating virtual character’s behaviors [Chollet et al.,
2014a]. Our work addresses all these limitations by considering the temporal information
in human behaviors. We propose a fully-automatic, sequential, temporal and generative
model for extracting non-verbal sequences representing different attitude variations.

Take home

• Different models of attitudes have been developed for different purposes such
as attitude dynamics modeling and attitude behavior generation. Most of
them rely on the non-verbal behavior for attitude expression and adopt the
Argyle’s model for attitude representation.

• We presented existing works that model the sequentiality of multimodal be-
haviors. Most of previous works only rely on the order of signals ignoring
their temporal information. Moreover, most of them are not generative.
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I
N our work, we represent interpersonal attitudes as sequences of non-verbal signals.
Relying on sequence mining algorithm, we extract, from a multimodal corpus, the
most relevant sequences of behaviors characterizing attitude variation. Sequence
mining is a data mining task that aims at discovering relevant patterns hidden in a

set of sequences. A pattern is a sub-sequence that occurs frequently in the dataset. Se-
quence mining has been applied in a wide range of real-life applications in many domains
such as market basket analysis, text mining, bioinformatics, and human behavior anal-
ysis [Chollet et al., 2017, Fricker et al., 2011]. For example, in the context of market
basket analysis, sequence mining can be used to identify the sequences of items frequently
bought by customers. This can be useful to understand the behavior of customers to take
marketing decisions.
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Figure 4.1 – Temporal data model.

Various sequence mining algorithms have been developed to explore different tempo-
ral information such as order, starting time, duration, etc. Different temporal data models
have been introduced in [Mörchen, 2007] and summarized in Figure 4.1. For example, in
biology, symbolic time series are used to represent DNA fragments. However, non-verbal
signals can only be represented by symbolic intervals sequence since communication is
multimodal (more than one non-verbal signal can occur simultaneously) and temporal (a
signal appears at a given time and for a given duration). Then, order-based algorithms are
adapted for DNA analysis but not for non-verbal behaviors modeling because it requires a
temporal algorithm that takes into account starting time and duration of signals.

In this chapter, we present the different algorithms of sequence mining divided in two
categories: no temporal algorithms (Section 4.1) and temporal algorithms (Section 4.2).
In Section 4.4, we introduce a new temporal sequence mining algorithm HCApriori for
Hierarchical Clustering Apriori to overcome the limitations of existing algorithms. Finally,
in Section 4.5, we present the metrics that are commonly used to assess pattern quality
and that are based on occurrence frequency. We enhance these metrics by considering
signal temporality.

4.1 Non-Temporal Algorithms

Apriori algorithm was designed to discover patterns in transactions made by customers in
stores [Rakesh Agrawal, 1994]. The goal is to better understand the behavior of customers
and to take future marketing decisions. For example, 10% of customers bought butter and
eggs at the same time. Apriori takes as input a minimum frequency threshold (fmin) and
a transaction database containing a set of transactions. A transaction is defined as a set of
distinct items (cf. Table 4.1). Apriori outputs all frequent itemsets, i.e. set of items that
occur in more than fmin transactions in the input database.

The Apriori algorithm is made of two phases: (1) join phase in which frequent itemsets
of size n are extended to generate candidate itemsets of size n+ 1. For example, from the
items {A,B,C}, it generates the following itemsets candidates of size 2: {A,B}, {A,C}
and {B,C}. (2) Prune phase: all the itemsets that occur less than fmin are deleted from
the candidate sets. Join and prune steps are performed repetitively until no more patterns
can be generated. For example, using the transaction database indicated in Table 4.1 and

32



4.2. TEMPORAL ALGORITHMS

Transaction 1 A, B, C
Transaction 2 B, D
Transaction 3 A, E, B
Transaction 4 F, A, E

Table 4.1 – Transaction database.

fmin = 2 transactions, frequent itemsets of size 1 are A, B and E. A and B appear in 75%
of the dataset, whereas E only occurs in 50% of the dataset. We also find two itemsets of
size 2 A,B and A,E. Both items occur in 50% of the dataset.

Apriori was initially designed to better understand customer behavior but it was also
applied in wide range of applications from text analysis to medical data analysis. For ex-
ample, Apriori was used for analyzing university admission data [Mashat et al., 2013].
One extracted information is that 62.7% of the rejected students are females and stud-
ied literature study in high school. Srikant extended Apriori by considering event or-
der which gave rise to the first sequence mining algorithm GSP [Srikant and Agrawal,
1996]. Taking as input a sequence dataset and fmin, GSP discovers frequent patterns
(sub-sequences) based on simple ordering of signals. For example, from the dataset
{ ABB,ABC,CABA,CABCA} with fmin = 2, the frequent patterns of length 3 are
{CAA,ABA,ABC,CAB}. However, relying only on event’s order may become a limita-
tion where timing such as starting time, duration, and delay between events are important
information.

4.2 Temporal Algorithms

Temporal algorithms are designed to address the time-related issues such as: what is
the delay between two temporal events? At what moment a temporal event happens?
And what is its duration? The existing time-aware methods can be regrouped into three
categories:

1. Relation-based models: they are deployed along with Allen’s interval relations (meets,
overlaps, starts, before, during, ...) to detect symbolic temporal relations between
events [Kam and Fu, 2000, Höppner, 2002]. The Allen’s relationships are shown in
Figure 4.2. In addition to order, the events are related to each other with tempo-
ral relations. For example, ((A overlaps B) before C) overlaps D. The extracted
patterns could have several representations because the same Allen’s relation can
represent very different situations. For example, the temporal sequence A(6, 12),
B(9, 14), D(17, 24), C(20, 22) can be represented by two different patterns as indi-
cated in Figure 4.3;

2. Interval-based models: they focus on the interval of occurrence and the delays be-
tween events [Nakagaito et al., 2009, Guillame-Bert and Crowley, 2012, Chen et al.,
2003]. For example, A appears between 5 and 10 sec. These algorithms do not
provide exact starting time and duration of events but attribute them to intervals;
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Figure 4.2 – Allen’s interval relationships [Kam and Fu, 2000].

Figure 4.3 – Different representations of a temporal pattern [Kam and Fu, 2000].

3. Temporal sequence mining algorithms: they extract the exact timing of events [Guyet
and Quiniou, 2008, Ruan et al., 2014]. For example, A from sec. 3 to sec. 5 followed
by B from sec. 6 to sec. 8. This last category leads to more informative patterns
that can be used to represent the whole temporal information given by the two other
categories.

In our work, we focus on temporal sequence mining algorithms as they allow answer-
ing our research questions: given the current context (defined by the previously occurring
non-verbal signals), (i) at what moment a signal must happen? And (ii) what is its du-
ration? For exact timing extraction, these methods combine classical sequence-mining
algorithms, usually Apriori, with a data clustering algorithm as illustrated in Figure 4.4.
For example, events can be projected in 2-D space formed by the axes “starting time" and
“duration" (Figure 4.4.1). Then, a clustering algorithm allows grouping events that mostly
occur at the same time (Figure 4.4.1). The centroid of each cluster will represent one
temporal pattern of size 1 (Figure 4.4.2). Finally, Apriori-like procedure will be applied
repetitively until no more patterns can be generated (Figure 4.4.2). In addition to fmin,
temporal sequence mining algorithms require two parameters to measure the temporal
distance between events: a temporal dissimilarity measure used to evaluate the temporal
distance between events; and a dissimilarity threshold (ε) that is used to decide if two
events are temporally similar or not.
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Figure 4.4 – Process of temporal sequence mining algorithms.

4.3 Temporal Sequence Mining Algorithms

In the following, we present existing temporal sequence algorithms. QTempIntMiner rep-
resents temporal sequences as hyper-cubes, with one dimension for each event type [Guyet
and Quiniou, 2008]. Then, it uses Apriori simultaneously with a Gaussian mixture model
for approximating the time distribution of the frequent patterns given by Apriori. How-
ever, QTempIntMiner has significant time complexity as it applies repeatedly clustering
during the Apriori procedure. QTIPrefixSpan can be viewed as an extension of QTemp-
IntMiner [Guyet and Quiniou, 2011]. It combines PrefixSpan and Kmeans or AP (Affinity
Propagation clustering) [Pei et al., 2001]. Unlike Apriori that scans the entire database
to generate a candidate pattern, PrefixSpan reduces the research space by eliminating the
sequences that are not frequent in the previous iteration. The advantage of QTIPrefixSpan
is to use more efficient algorithm (PrefixSpan), instead of Apriori, which globally reduces
its complexity.

PESMiner follows a user-in-the-loop approach. It first implements the events to the
user in 2-D space formed by the axes “starting time" and “duration" so that a user can
manually choose the cluster centroids for each event type [Ruan et al., 2014]. Then, a
clustering step can be added to smooth the manually-defined centroids that have been
selected. In PESMiner, clustering is performed once for each event type. The duration of
patterns are adjusted based on a Gaussian distribution of the event’s duration. The main
limit of PESMiner lies in its semi-automatic nature (the user must choose the initial can-
didate patterns (the cluster centroids)). The output of such algorithms depends highly on
the initial candidate patterns. Thus, the first selection is a crucial step.

The algorithm that we propose, HCApriori, overcomes the main limitations of the existing
algorithms: it is fully automatic and it increases cluster homogeneity by implementing an
adapted (hierarchical) clustering technique. The motivation behind the development of
HCApriori are summarized in the following points:
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• Better handling of sparsity in data: sparsity is an important aspect to take into
account when clustering data. Existing works did not focus on this phenomenon be-
cause they all have been applied on syntactic data, often not exposed to this problem
(cf. Figure 4.5);
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Figure 4.5 – Synthetic data vs. real data representing gaze signals. Real data is very sparse
while synthetic data can easily be grouped into three clusters.

• Better cluster homogeneity: when using partitioning algorithms for clustering (like
Kmeans), the events clustered together may be very distant in time. To overcome
this limitation, our algorithm HCApriori relies on hierarchical clustering method that
imposes a dissimilarity threshold to the events from the same cluster. This idea is
widely used in data clustering for outlier detection using the so-called density-based
methods [Breunig et al., 2000];

• Fully automatic: the existing algorithms require the user to provide an a priori
estimation of the number of clusters or their approximate location. Thanks to hier-
archical clustering, HCApriori does not require manual input. All the steps in the
algorithm are fully automatic;

• Customized and automatically-computed dissimilarity threshold: in the previ-
ous existing works, the dissimilarity threshold ε is set by the user and it has the same
value for all event types. However, this constraint can be restrictive as the event
duration’s may significantly differ w.r.t. event types. For example, the duration of
a smile is likely to be much shorter than the duration of a posture as shown in Ta-
ble 4.4. For more flexibility, HCApriori offers the ability to customize this parameter
for each event type to the user. Moreover, setting manually the value of ε for each
event type can be challenging because of the number of event types (27 in our cor-
pus) present in the data and also because of the differences between the event types.
To overcome this issue, we propose an efficient way to set up ε automatically.
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Gaze At Gaze Up Eyebrow Up Body Lean Body Recline Arms Crossed Smile
4.46 1.26 2.34 32.34 17.41 11.74 2.01

Table 4.2 – Mean duration of some non-verbal signals in seconds.

Algorithm Seq. Min.
algorithm

Clustering Dissim.
meas. (δ)

Data Dim. Cluster
hom.

Fully
auto-
matic

Cust.
ε

Source
code

QTempIntMiner Apriori EM - S N-
D

x � x Matlab

QPrefixSpan PrefixSpan QFIMiner - S N-
D

x � x Java

QTIPrefixSpan PrefixSpan Kmeans,
AP

Haussdorf,
CityBlock

S N-
D

x � x Matlab

PESMiner Apriori Kmeans Euclidian S 2-D x x x Java
HCApriori Apriori Hierarchical Haussdorf,

CityBlock
R 2-D � � � Java

Table 4.3 – A comparison of temporal sequence mining algorithms.

• Better time efficiency: in [Guyet and Quiniou, 2008, Guyet and Quiniou, 2011,
Nakagaito et al., 2009] the clustering is applied repeatedly in N-D space (one dimen-
sion for each event type to extract temporal patterns of length N) which increases
the time complexity of these algorithms. The works of Ruan et al. [Ruan et al.,
2014] inspired us to reduce the space dimension from N-D to 2-D (“starting time" ×
“duration"), which significantly reduces the time complexity of our algorithm.

Table 4.3 gives a comparison of the four algorithms presented above as well as our
algorithm. Each algorithm is characterized with a set of criteria: underlying sequence-
mining method, clustering technique, implemented dissimilarity measure, data type used
for evaluation in the original paper (synthetic (S) or real (R)), space dimension where the
clustering is applied (N-D vs. 2-D), cluster homogeneity, and customized ε.

AS shown in Table 4.3, HCApriori is fully automatic, Customized and automatically-
computed the dissimilarity threshold ε. Unlike the four other algorithms, HCApriori rely
on hierarchical clustering which allow better cluster homogeneity.

4.4 HCApriori Algorithm

To deal with the challenges of the sequence-mining algorithms highlighted in Section 4.3,
we propose a new temporal sequence mining algorithm that we called HCApriori [Der-
mouche and Pelachaud, 2016b]. We have made our algorithm HCApriori opensource. It
is available on github1.

1https://github.com/dermosamo/HCApriori.git
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4.4.1 Definitions

In this section, we give the formal definitions from the temporal sequence mining domain
that are relevant to our problem (definitions 1–3). Next, we introduce new concepts on
which we build our algorithm (definitions 4–5).

Definition 1 Temporal event
A temporal event e is a triplet (t, s, e), where et is the event type. es and ee are the starting,
respectively the ending, time of the event (with es < ee). Consequently, the event duration
ed = ee − es.

Definition 2 Temporal sequence
A temporal sequence S of length k is a sequence of temporal events (e1, e2, . . . , ek) for which
∀ei for 1 ≤ i < k : esi ≤ esi+1.
An event type can appear more than once at different times. Only events of different types
can overlap. D denotes a set of temporal sequences and T the set of all events types in D. An
event type can appear more than once at different times. Only events of different types can
overlap.

S = ((A, 2, 4.5), (B, 4, 8), (A, 5, 10)) is a valid temporal sequence. All events are ordered
according to their starting time and the two events of type A do not overlap.

Definition 3 Temporal event dissimilarity
Let e1 and e2 be two temporal events. A dissimilarity measure δ is a function that reflects the
time difference between e1 and e2. For example:
CityBlock(e1, e2) = |es1 − es2|+ |ee1 − ee2|
CityBlock represents the sum of the time difference between the starting times and the ending
times of e1 and e2.
Haussdorf(e1, e2) = max{|es1 − es2|, |ee1 − ee2|}
Haussdorf represents the maximum between the time difference of the starting times or of
the ending times. Note that this distance is finite if and only if e1 and e2 have the same type.
Otherwise, δ(e1, e2) =∞.

Definition 4 “matches” relation
Let ε be a given dissimilarity threshold. We define the binary relation “matches" that can
be either between two events e1 and e2, between an event e and a temporal sequence S, or
between two temporal sequences S1 and S2 as follows:

• e1 matches e2 if δ(ei, ej) < ε.

In this case, e1 can not match e2 unless they are of the same type.

• e matches S if minu{δ(e, u) for u ∈ S} < ε.

We consider that the event e matches one event of the sequence S (for sake of simplicity,
we write e matches S).
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• S2 matches S1 if ∀e ∈ S2 : e matches S1.

Note that in this case, the relation is not symmetric.

Example 1: let e1 = (A, 2, 5) and e2 = (A, 3, 7) be two temporal events and ε = 2. Based
on the CityBlock distance, we have:

δ(e1, e2) = |2− 3|+ |5− 7|
= 3.

As it is greater than 2, e1 does not match e2.

Example 2: let e = (A, 2, 5) be a temporal event, S = ((A, 2, 4.5), (B, 4, 18), (A, 5, 10)),
and ε = 2.
In this example, ematches S because themin{δ((A, 2, 5), (A, 2, 4.5)), δ((A, 2, ), (A, 5, 10))} =

0.5 < 2.

Definition 5 Frequent temporal pattern
Let D be a temporal sequence dataset, fmin ∈ [0, 1] is a fixed minimum support. We define
a frequent temporal pattern P over D as being a temporal sequence that matches at least
fmin × |D| sequences of D, that is:

|{S ∈ D : P matches S}| ≥ fmin × |D|.

This definition will be used to check if a candidate pattern P is a frequent temporal pattern
over D.

4.4.2 Algorithm

The novelty of our algorithm HCApriori is to customize the dissimilarity threshold (ε) for
each event type (posture, gesture, gaze, etc.) and to propose an automatic computation of
ε alternatively to manual setting. For outliers detection, HCApriori relies on hierarchical
clustering that imposes a distance less than ε to the event from the same cluster. HCApriori
operates in three steps: (1)first, the algorithm computes a dissimilarity threshold ε for each
event type based on the duration of all events of same type. (2) Hierarchical clustering
is applied to merge events into the same cluster if and only if their temporal distance is
less than ε. At the end of this step, the cluster centroid represents a pattern of length one.
(3) Taking as input the results of step (2), Apriori-like procedure is adapted to generate
temporal patterns of length more than one. We now present each step in more details.

Step 1: dissimilarity threshold computation. The dissimilarity threshold ε represents
the temporal distance between two temporal events e1 and e2 that is used to decide if
they match or not (cf. Definition 4). As can be seen on the examples given in Table 4.4,
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the event’s duration may change w.r.t to the event’s type. The novelty of HCApriori is to
customize ε for each event type. The user has the possibility to give manually the value
of ε for each event type. Otherwise, ε can be computed automatically as a function of the
duration of all the events of the same type. E.g., the functions mean, quartile, percentile,
can be applied. For example, based on the mean duration, ε for a given event type t is
calculated as follows: εt = mean (ed) for all et = t

Step 2: hierarchical clustering. Once the dissimilarity threshold ε is set for each event
type t, we perform hierarchical agglomerative clustering on each event type separately.
Initially, each event is considered as a single cluster on its own (cf. Algorithm 1, line 3).
At each iteration, the clusters c1 and c2 with the minimum distance are merged (lines 6).
The centroid of a cluster c is represented by the mean of all events in c.

Algorithm 1: HierarchicalClustering
Input : D, a temporal sequence database

nmin, the minimum number of events in a cluster
ε, dissimilarity threshold

Output: C, a set of centroids
1 C ← {};
2 foreach event type t in T do
3 clusters← {e ∈ D where et = t} ;
4 {c1, c2} ← arg minci,cj δ(ci, cj) for ci, cj ∈ clusters and i 6= j;
5 while δ(c1, c2) ≤ ε and |clusters| > 1 do
6 Merge the clusters c1, c2 into one;
7 {c1, c2} ← arg minci,cj δ(ci, cj) for ci, cj ∈ clusters and i 6= j;
8 end
9 foreach cluster c in clusters do

10 if |c| > nmin then
11 C ← C ∪ {c.centroid};
12 end
13 end
14 end
15 return C

In addition to this, our clustering algorithm implements a cluster homogeneity crite-
rion: c1 and c2 can not be merged unless δ(c1, c2) ≤ ε. Otherwise, the clustering procedure
converges and stops. We have added this criterion in order to isolate and ignore outlier
events. Also, we choose to discard the clusters with less than a minimum number of events
nmin (lines 9–13). By default, this parameter is set to 2.

Step 3: Apriori procedure. Based on Apriori algorithm [Rakesh Agrawal, 1994], our
algorithm generates the frequent temporal patterns in two steps: a set of candidate tem-
poral patterns of length n+1 is generated from all the temporal patterns of length n. Also,
like the Apriori algorithm suggests, the infrequent patterns are pruned (cf. Definition 5).
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Candidate generation and pruning are performed repetitively until no more patterns can
be generated.

For candidate pattern generation, we adapt Apriori algorithm to take into account the
temporal dimension of our data. Thus, to generate a new candidate pattern, a frequent
temporal pattern of size 1, e, (e ∈ L1, cf. Algorithm 2, lines 1–2) is appended at the end
of a temporal pattern p if and only if the following two conditions are satisfied:

1. The starting time of e is greater than the starting time of the last event in p.

2. The starting time of e is greater than the ending time of the last event of type et from
p;

The pseudo-code of HCApriori algorithm is given in Algorithm 2. Th code is imple-
mented in JAVA and available on github2 under GNU licence version 3.

Algorithm 2: HCApriori
Input : D, a temporal sequence database

fmin, minimum support
nmin, minimum number of events in a cluster
ε, dissimilarity threshold

Output: P , set of frequent temporal patterns
1 C1 ← HierarchicalClustering(D,nmin);
2 L1 ← PruneInfrequentPatterns(D, fmin, C1);
3 n← 1; P ← {};
4 while |Ln| > 0 do
5 P ← P ∪ Ln;
6 n← n+ 1;
7 Cn ← CandidateGeneration(Ln−1, L1);
8 Ln ← PruneInfrequentPatterns(D, fmin, Cn);
9 end

10 return P

4.4.3 Evaluation and Results

We evaluate our algorithm on a corpus of dyadic interactions where nonverbal behaviors
and attitude variations of the dyadic interactions are annotated (cf. Section 5.1.1). We
apply HCApriori to extract sequences of multimodal behaviors along with social attitude
variations. We compare the results of our HCAapriori algorithm against the results ob-
tained by the four state-of-the-art algorithms: QTIPrefixSpan-Kmeans, QTIPrefixSpan-AP,
QTIApriori-Kmeans, and PESMiner. The comparison is based on pattern extraction accu-
racy criteria. The accuracy is defined as the percentage of sequences from the original data
that are similar to at least one pattern from the set of extracted patterns. Two temporal
sequences S1 and S2 are similar if the temporal distance between S1 and S2 is less than

2https://github.com/dermosamo/HCApriori.git
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Gaze At Gaze Up Eyebrow Up Body Lean Body Recline Arms Crossed Smile
2 0.28 0.5 10.55 5.45 2.69 1.55

Table 4.4 – Example value of ε customized by event’s type (non-verbal signals).

the dissimilarity threshold (ε).

Accuracy =
|{S ∈ D : ∃ p ∈ P, p matches S}|

|D|
(4.1)

For the evaluation purpose, we rely on CityBlock as a distance measure (see Definition
3) and we automatically set the threshold ε for each type t to 40% of the mean duration:
εt = mean (e.d)× 0.4 for et = t. As such, we obtain values of ε that are different for every
event type. Table 4.4 gives example values for some events types (non-verbal signals).
This parameter is set to 1 sec. in the other four algorithms.
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Figure 4.6 – Accuracies of the compared algorithms for different values of fmin. Here, ε is
used for evaluation and its value is less than the one used for pattern extraction.

Figure 4.6, Figure 4.7 and Figure 4.8 plot the accuracy of the experimented algorithms
as a function of fmin (minimum frequency threshold) for three different values of ε. As can
be seen, the accuracy notably increases when ε increases: our algorithm achieves accuracy
of 0.58, 0.82 and 0.92 for the three values of ε (10%, 20%, and 30% of the mean duration)
respectively. Increasing accuracy is expected as ε directly controls the quantity of patterns
that pass the minimum similarity filter. However, the accuracy notably decreases when
fmin increases and becomes almost zero for fmin ≥ 0.2. This is expected because the
number of extracted patterns decreases when fmin increases. Concerning the comparison
between the algorithms, we observe that our algorithm HCApriori outperforms the other
algorithms and is able to achieve over 0.92 accuracy (Figure 4.8) whereas the runner-up
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achieves 0.70. We believe the homogeneity criterion implemented by HCApriori is behind
its good performance.

Moreover, in order to assess the efficiency of the customized setting of ε, we also mea-
sure the accuracy of HCApriori with a fixed value of ε (set to 1 sec. for all event types). The
results of this experiment are represented in dashed lines in Figure 4.8. HCApriori algo-
rithm generally achieves better performance (about 0.4 better) when using the customized
setting of ε (customized by event’s type). This observation validates the assumption that
differences among events duration should be taken into account.

Figure 4.9 shows the running times of the five algorithms for different sizes of the
dataset (fmin set to 0.05). We can observe that HCApriori and PESMiner run much faster
than the other algorithms. While with the other algorithms, the running time rises linearly
with the dataset size, HCApriori and PESMiner are hardly affected by the dataset size. This
comes from the fact that both HCApriori and PESMiner applies clustering in 2-D space
which greatly reduces its complexity.

In addition to this quantitative evaluation, we also perform some qualitative checks of
the extracted patterns based on user study. The results of this study will be presented in
Chapter 5.

4.5 Pattern Quality Assessment

Based on the occurrence frequency, the quality of an extracted pattern p is assessed using
two quality measures: (1) support(p) that indicates the frequency of the pattern p in the
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Figure 4.8 – Accuracies of the compared algorithms for different values of fmin. Here, ε is
used for evaluation and its value is less than the one used for pattern extraction.

dataset D (eq. 4.2). (ii) confidence(p, v), which reflects the proportion of D containing p
and expressing the attitude variation v (eq. 4.3).

Support (p) =
|{S ∈ D : S contains p}|

|D| (4.2)

Confidence (p, v) =
|{S ∈ D : S contains p and S expresses v}|

|{S ∈ D : S contains p}| (4.3)

Despite their popularity, these measures present a major shortcoming regarding our do-
main: they did not consider the temporal relations between events. In order to provide
a temporal similarity between the extracted patterns and the input dataset, we extend
the classical measures support(p) and confidence(p, v) by considering the time overlap of
signals. We define the overlap between two temporal events e1 and e2 in the equation 4.4.
The overlap represents the duration d (d = min(ee1, e

e
2) −max(ee1, e

e
2)) where two events

e1 and e2 appear in the same time windows (in Figure 4.10, e1 and e2 overlap between
2sec and 4sec, so d = 2). To normalize the overlap between zero and one, we divide d by
the time interval td (td = max(ee1, e

e
2)−min(es1, e

s
2)) corresponding to the union of e1 and

e2 (in Figure 4.10, td = 5).

Overlap (e1, e2) =

0, if d < 0

d
td , otherwise

(4.4)

The overlap between a pattern p and a sequence S is the sum of the overlap between
the events of p and of S. To normalize (between 0 and 1), we divide this sum by the
minimum length between p and S.
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Figure 4.9 – Running time evolution with respect to the dataset size.

Figure 4.10 – Representation of overlap between two temporal events.

The two new measures SupOverlap and ConfOverlap indicating the support and
confidence overlap between a pattern p and a dataset D are given in equation 4.5 and 4.6
respectively.

SupportOverlap (p) =

∑
S∈D overlap (p,S)

|D| (4.5)

ConfidenceOverlap (p, v) =

∑
S∈D,S expressing v overlap (p,S)

|{S ∈ D : S contains p}| (4.6)

4.6 Conclusion

In this chapter, we present an overview of temporal sequence mining. Then, we introduce
our algorithm HCApriori that overcomes the limitation of existing algorithms. Because
the existing algorithms have been evaluated using synthetic data, they generally fail to
efficiently deal with real-word data. First, they do not consider differences of duration of
events. In addition, relying on partitioning clustering algorithms (like, Kmeans), distant
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events can be merged into a same cluster. Results show that HCApriori allows a better
extraction of sequences of non-verbal signals with a significant improvement over the
other four state-of-the-art algorithms.

In the next chapter, we conduct a user study to assess if the extracted patterns with
our algorithm will be perceived as expressing attitude variations.

Key points:

• Temporal sequence mining algorithms allow extracting exact timing and du-
ration of events.

• We introduce our algorithm HCApriori that overcomes the limitation of exist-
ing algorithms by considering differences between event types and increasing
cluster homogeneity. HCApriori outperforms the existing algorithms.

• We extend the existing metrics for pattern quality assessment by considering
temporality between events.
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O
UR goal is to develop a virtual agent able to display different attitude varia-
tions depending on the interaction context. For example, it should be able to
increase its dominance level when interviewing a candidate for a job opening.
As presented in Chapter 2.4, interpersonal attitudes are conveyed through

non-verbal behaviors (e.g., gaze, facial expression, head movements, etc.). Furthermore,
attitudes are not only expressed by specific signals but also by their sequentiality and tem-
porality (occurrence time and duration). Our approach is strongly built on the assumption
that temporality is determinant for characterizing attitude variations. To this end, we rep-
resent an attitude variation as temporal sequences of non-verbal signals (see Definition 2
in Chapter 4).

Our approach can be summarized as follow: first, we segment a multimodal corpus
into four datasets containing sequences related to attitude variations (friendliness increase
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or decrease, dominance increase or decrease). Secondly, we apply a temporal sequence
mining algorithm to extract, for each attitude variation, the most relevant patterns (sub-
sequences) characterizing this attitude variation. Then, the extracted patterns are sim-
ulated within an ECA and evaluated through a perceptive study. Results validate that
the extracted patterns express the intended attitude variations. Based on this study, we
develop an attitude planner that enables an ECA to communicate with attitude variations.

In this Chapter we describe the different steps we follow to model attitude variation.
The attitude planner and its evaluation will be presented in the next Chapter.

5.1 Extraction of Relevant Patterns Expressing Attitude Varia-
tions

In this Section, we present our methodology for extracting relevant patterns of non-verbal
signals related to attitude variations. First, using a corpus of dyadic interactions, we map
the attitude variations to sequences of non-verbal signals. Then, we apply HCApriori to
extract the most relevant patterns related to attitude variation.

5.1.1 Building Sequence Databases Representing Attitude Variations

For attitude variation modeling, we use a corpus of job interviews where a recruiter can
express different attitudes toward a candidate. Different corpora of job interviews have
been collected like TARDIS [Chollet et al., 2014b], HuComTech [Szekrényes, 2014], and
the corpus from [Nguyen et al., 2014]. In our work, we use the TARDIS corpus be-
cause both interpersonal attitudes and non-verbal behaviors of the recruiter have been
annotated. This corpus is composed of three videos showing three couples of candidate-
recruiter. The total duration of this corpus is 57 minutes and 32 seconds. This corpus is
annotated on two levels: non-verbal behavior and attitude perception of related to the
recruiter [Chollet et al., 2014b]. Several modalities of non-verbal behavior have been
annotated using the annotation tool Elan [Wittenburg et al., 2006] such as gaze, head di-
rections, head movements, etc. The non-verbal signals that have been annotated for each
modality are given in Table 5.1. Using the annotation tool Gtrace developed by Cowie
and colleagues [Cowie et al., 2012], the annotation of dominance and friendliness is done
continuously. Each annotator annotates only one job interview and one dimension of at-
titude at a time (dominance or friendliness). The value of annotation ranges from -1 to 1
as indicated in Figure 5.1.

Having these annotations, we segment the non-verbal behaviors based on attitude
variations as indicated in Figure 5.3. The attitude variation is defined in Definition 6 and
is illustrated in Figure 5.2.

Definition 6 Attitude variation. An attitude variation v is a tuple (s, e, vs, ve, value, duration),
where vs, resp. ve, is the starting, resp. the ending, time of the variation. vvs , resp. vve, is
the starting, resp. the ending, attitude value, and vvalue is the value of variation. Notice that
vvalue = vve − vvs and vduration = ve − vs.
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Figure 5.1 – Annotation scale of interpersonal attitude (dominance dimension) [Chollet,
2015].

Figure 5.2 – Attitude variation illustration.

Figure 5.3 – Non-verbal behavior segmentation based on attitude variations.
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Modality Annotated signals
Posture sitting straight, leaning towards the table, reclining back
Gesture communicative gestures, object manipulation, adaptor gestures

Hand position hands on table, hands under table, arms crossed, hands together

Gaze
looking at candidate, looking at object (e.g. table), looking
upwards, looking downwards, looking sideways

Head direction
head directed at candidate, head directed upwards, head directed
downwards, head directed sideways, head tilted to the side

Head movement nod, shake
Face eyebrow raised, eyebrow frowned, smile

Table 5.1 – Annotated non-verbal behaviors in Tardis corpus.

For better annotation quality, we need to consider the reaction lag that specifically
occurs in the continuous annotation, as recommended in [Mariooryad and Busso, 2013].
Mariooryad and colleagues demonstrated that the accuracy of emotion recognition im-
proves by more than 7% percent when considering the reaction lag of annotators. Later on,
they reported that in the SEMAINE corpus the delay varies from one to six seconds [Mar-
iooryad and Busso, 2015]. These different values of the delay may come from different
factors such as the displayed multimodal behaviors, the phenomenon being continuously
evaluated or even the annotator’s sensitivity. In our study, to choose a value for the reac-
tion lag, we vary its value, lag, from 0 to 6 seconds with a step of 1 sec. For each lag value
we compute the accuracy of extracted patterns. The best accuracy results are achieved for
lag = 2 sec. Thus, we choose this value for the reaction lag.

In table 5.2, we report, for each attitude variation, the mean and standard deviation
of vvs, vve, vvalue and vduration. Figure 5.4 and 5.5 show , respectively, the box plots of
the starting value, respectively, the ending value of each attitude variation. Significant
differences between the variations can be observed: the variations of friendliness have
a larger order of magnitude than the variations of dominance. This can be explained
by the fact that the variations of friendliness last generally longer than the variations of
dominance (see Figures 5.6 and 5.7).

vvs vve vvalue vduration

M SD M SD M SD M SD
DomInc 0.26 0.22 0.38 0.21 0.12 0.07 5.4 3.5
DomDec 0.34 0.23 0.22 0.22 0.12 0.10 5.9 3.8

FrInc 0.02 0.22 0.22 0.23 0.20 0.15 11.3 8.4
FrDec 0.18 0.22 0.006 0.19 0.17 0.12 12.3 10.9

Table 5.2 – Mean and standard deviations of attitude variation attributes.

For each variation v occurring when the recruiters are speaking, we collect all non-
verbal signals that appear during this variation (that is, between vs − lag and ve − lag).
These signals compose a sequence S in which the starting time of each non-verbal signal
s is the time difference between the starting time of s and vs minus lag. For example,
in Figure 5.3, the second variation of dominance increase starts at time 9. Then, the
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Figure 5.4 – Boxplots of starting value (vvs) for each attitude variation.
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Figure 5.5 – Boxplots of ending value (vve) for each attitude variation.
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Figure 5.6 – Boxplots of vvalue for each attitude variation.
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Figure 5.7 – Boxplots of vduration for each attitude variation.
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Figure 5.8 – Distribution of non-verbal signals w.r.t. attitude variation.

temporal sequence representing this variation is “head shake (1, 2)” followed by “arms
crossed (4, 5)”. This segmentation allows us to build four sets of non-verbal behavior
sequences representing four types of attitude variation: dominance increase, dominance
decrease, friendliness increase and friendliness decrease. Table 5.3 reports the number
of sequences and their average length for each attitude variation when the recruiters are
speaking. The sequences occurring during friendliness variations are longer than those
occurring during dominance variations. This can be dued as the variations of dominance
are shorter than the variations of friendliness (see Figure 5.7).

Friendliness Dominance
Increase Decrease Increase Decrease

Number of sequences 80 94 143 110
Mean length of sequence (sec.) 10.7 9.4 8 7.8

Table 5.3 – Size of sequences for each attitude variation occurring when the recruiters are
speaking.

We also extract sequences of behaviors occurring when “no” attitude is expressed. We
define by “no” attitude expression, the segments of the corpus that are marked with an at-
titude value around zero (for commodity, we take all values between -0.05 and 0.05). We
refer to these extracted sequences as “reference” as they express no attitude. Then, since
annotators consider one dimension at a time, we obtain 36 and 40 sequences representing
respectively “reference dominance” and “reference friendliness”.

Figure 5.8 gives the frequencies of nonverbal signals observed during each attitude
variation, these results are consistent with the literature (see Chapter 2.4). The following
signals are more frequent for dominance increase: raise head up, gesture, gaze candidate
and shake. Smile occurs primarily during a friendliness increase while adaptor gesture is
more present during dominance decrease.
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Figure 5.9 – Pattern representing dominance increase.

5.1.2 Pattern Extraction

The previous representation step yields a dataset of temporal sequences. The goal is to
extract relevant patterns from each dataset. We perform this extraction based on our
algorithm HCApriori. The parameters fmin and ε are fixed empirically based on prior
experiments that gave accuracy value above 70% (see Section 2). This could be reached
by fixing fmin to 10% of the dataset size and ε to 40% of the mean duration of each signal
type. The size of extracted patterns for each attitude variation is given in Table 5.4.

FrInc FrDec DomInc DomDec RefFr RefDom
210 203 187 156 44 50

Table 5.4 – Size of extracted patterns for each attitude variation as well as the two “refer-
ence” attitudes.

Table 5.5 shows an example pattern for each attitude variation as well as the two “ref-
erence” attitude. The starting and ending time in seconds of each signal are respectively
given between parentheses. The pattern representing dominance increase is illustrated
in Figure 5.9, it can be interpreted as follows: 1.5 sec. before recruiter’s dominance in-
creases, he frowns his eyebrows for 2 sec. Meanwhile he crosses his arms for 4.6 sec.
while leaning backward.

Attitude Pattern
Dominance increase EyebrowsFrown (0.5, 2.5), BodyRecline (1, 20), ArmsCrossed (2, 5.6)
Dominance decrease BodyLean (0, 10.75), GestureAdaptor (6.15, 7.95)
“No” Dominance EyebrowsRaise (1.6, 2.9), Gesture (2.4, 4.5) HeadsTogether (3.7, 5.6)
Friendliness increase Smile (1, 3.3), Gesture (2, 4.4), HeadNod (8.1, 10.4)
Friendliness decrease GaseSide (1.2, 3.2), ArmsCrossed (1, 7.6)
“No” Friendliness Gesture (0.9, 2.8), EyebrowsUp (3, 5.9), HeadsUnderTable (1.1, 8)

Table 5.5 – Example of patterns obtained with HCApriori.

5.2 Evaluation of the Extracted Patterns

In order to evaluate the non-verbal patterns extracted with our model, we design a per-
ceptive experiment. We hypothesize that an ECA displaying a pattern that represents
increase/decrease of an attitude will be evaluated as more/less expressing of this attitude
compared to the ECA conveying “no” attitude. First, we describe the experimental pro-
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tocol. Then, we analyze the results based on different approaches to assess if attitude
variations were correctly recognized.

5.2.1 Experimental Design

We evaluate four different categories of non-verbal patterns denoting four attitude varia-
tions: dominance increase (DomInc), dominance decrease (DomDec), friendliness increase
(FrInc), and friendliness decrease (FrDec). For each of them, we evaluate four non-verbal
patterns related to this variation. We also rate two patterns expressing either “no” domi-
nance or “no” friendliness.

Using the virtual agent platform called GRETA-VIB [Pecune et al., 2014], we generate
videos showing an agent displaying some patterns, randomly selected from the extracted
pattern. We produce a total number of 18 videos: 16 comparison videos (4 attitude vari-
ations × 4 patterns) and two reference videos: “reference dominance” (denoted DomRef)
and “reference friendliness” (denoted FrRef).

The evaluation follows a two-step process: first participants are asked to view and rate
the ECA in the reference video. Then, participants view four pairs of videos where each
pair is made of the reference video and a comparison video; they are asked to rate the
behavior of the ECA in the comparison video. Participants are randomly assigned to one
condition in which the ECA displayed patterns expressing one given attitude variation.
Videos appeared automatically once participants view the whole video and answer all
questions. The order of videos is shown according to a latin square design to control
first-order carryover effects [Bradley, 1958].

5.2.2 Measures

Participants evaluate their perception of agent’s attitude along several adjectives. To find
the most relevant adjectives that characterize the perception of an attitude, we conduct
a detailed literature review of different use cases of the interpersonal circumplex (IPC)
measurements. The Interpersonal Check List (ICL) [Leary, 1957] and the Interpersonal
Adjective Scales (IAS) [Wiggins, 1979] are two measures for representing interpersonal
traits. To measure the perception of attitude, previous researches relied on either IAS [Ca-
faro et al., 2016a, Janssoone, 2016, Pecune, 2016] or ICL [Op Den Akker et al., 2013].
However, only a limited number of adjectives have been used. For example, Chollet et
al. used only two variables friendly and dominant [Chollet et al., 2014b]. In [Cafaro
et al., 2016a], three items have been adopted to assess dominance. In our work, we use a
combination of both IAS and ICL.

For sake of simplicity, two adjectives with the highest factors in IPC and in IAS, are
selected from the analysis done respectively in [Leary, 1957] for ICL and in [Wiggins
et al., 1988] for IAS. Thus, we select two adjectives representing high dominance (forceful
(ICL), assertive (IAS)), high friendliness (helpful (ICL), tender (IAS)), and so on for the
remaining octants (cf. Table 5.6). In total, we use 16 adjectives: 8 adjectives from IAS
and 8 from ICL as listed in table 5.6.

55



CHAPTER 5 – ATTITUDE MODELING

ICL IAS
PA forceful assertive
BC compete aggressive
DE defiant arrogant
FG withdrawn distant
HI unauthoritative timid
JK depend cooperative
LM helpful tender
NO leader-like cheerful

Table 5.6 – Selected adjectives from ICL and IAS.

Unlike the previous studies where participants only rated the perception of one attitude
dimension at a time [Chollet et al., 2014b, Ravenet et al., 2015, Cafaro et al., 2016a,
Janssoone, 2016, Pecune, 2016], we asked the participants to rate the perception of the
two dimensions simultaneously to discover the relationship that may exist between the
two dimensions such as halo and compensation effect. Compensation effect is a negative
relationship between two dimensions of social judgment [Yzerbyt et al., 2008]. A halo
effect is a positive relationship between two dimensions, i.e., changing one dimension
involves the change of the other dimension in the same direction [Yzerbyt et al., 2008].
For this purpose, participants rated the behavior of the agent by answering 16 questions
related to the 16 selected adjectives (cf. table 5.6): in your opinion, is the behavior of the
virtual character assertive?. All answers are on a 5-point labeled Likert scale as indicated in
Figure 5.10 (1 =“strongly disagree”, 2 = “partially disagree”, 3 = “neutral”, 4 = “partially
agree”, and 5 = “strongly agree”). In order to detect and filter out the participants who
randomly responded to questions, we also ask a trap question about the color of the agent’s
hair (the ECA used in this experiment is blond).

5.2.3 Hypotheses

Our hypotheses are:

• H.Ref: for DomRef and for FrRef, the ECA will be evaluated as expressing “no” atti-
tude;

• H.Dom: for DomInc, the ECA will be evaluated as more dominant compared to the
ECA in DomRef;

• H.Sub: for DomDec, the ECA will be evaluated as more submissive compared to the
ECA in DomRef;

• H.Fr: for FrInc, the ECA will be evaluated as more friendly compared to the ECA in
FrRef;

• H.Hos: for FrDec, the ECA will be perceived as more hostile compared to the ECA
in FrRef.
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Figure 5.10 – A screenshot from CrowdFlower evaluation platform.

ICL IAS ICL-IAS

Figure 5.11 – Interpersonal adjectives from ICL and IAS used in our experiment and their
placement in the interpersonal circumplex.

5.2.4 Results

We recruit a total of 64 participants via Crowdflower, 42% of them are between 21 and
30 years old, 85% are male, 53% have a master level and 57% are Spanish. We analyze
the results in three different ways by: (1) plotting the results on the IPC, (2) investigating
significance of the results, and (3) computing the recognition rate of attitude variations.

5.2.4.1 Circular Profile and Vector Scoring

To plot the results on the IPC, we follow the procedure described in [Locke, 2012] (See
Section 2.3.2). It consists on averaging the eight octant scores to obtain the general factor
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Figure 5.12 – Plotting the ipsatized scores for DomInc, DomDec and Ref.

score. Then, each octant score is ipsatized by subtracting the general factor. Finally, the
ipsatized scores are plotted on the IPC.

Figures 5.12 and 5.13 plot the ipsatized scores for each condition. We can observe
that:

• For DomInc and FrDec, the ECA is perceived as: more dominant (PA), more hostile
(DE) and less friendly (LM) compared to the ECA in Ref;

• For DomDec, the agent is evaluated as more submissive (HI) compared to the refer-
ence video;

• The ECA’s friendliness in FrInc is perceived as equivalent to ECA’s friendliness in
reference video.

We also summarize the circular profile of the agent by a vector in the IPC space fol-
lowing the steps described in Section 2.3.2. In our study, the vector angle indicates the
predominant attitude of the agent and the vector length shows how intensely the agent
expresses this attitude.

Table 5.7 gives the angle and vector length for all conditions. For Ref and FrInc, the
vector angles of the agent are in the LM octant (friendliness region). For DomInc, the
angle of the ECA is 177.05◦ and 122.64◦ for FrDec. This means that the ECA in DomInc is
perceived as more hostile than dominant and conversely the agent in FrDec is perceived
as more dominant than hostile. For DomDec, the agent gets an angle in the submission
region (296.51◦). Finally, since the vectors length is close to 1 for DomInc, FrInc and FrRef,
it means participants perceive the attitude in the agent very clearly [Locke, 2012, Wiggins
et al., 1988].
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Figure 5.13 – Circular profile of the agent for FrInc, FrDec and Ref.

FrInc FrDec FrRef DomRef DomDec DomInc
Vector angle 344.2◦ 122.64◦ 325.68◦ 177.05◦ 296.51◦ 316.58◦

Vector length 0.93 0.74 0.92 0.96 0.82 0.83

Table 5.7 – Angle and vector length of the agent for all conditions.

5.2.4.2 Result Significance

By plotting the agent profile on the IPC, we can visually interpret how the agent is per-
ceived by participants. We also perform statistical tests to investigate if these results are
significant or not. In appendix A, we report, for each condition, the mean, standard devia-
tion of independent variables, and distribution of participants’ answers over these variable.
To check how participants rate the agent in the reference video and in the comparison
videos, we conduct a paired Wilcoxon test. The revealed differences are summarized as
follows:

1. ECA in DomInc is evaluated as more dominant (aggressive (p = .002) and forceful
(p = .01)) compared to the agent in Ref, therefore H.Dom is supported. The agent
is also perceived as more hostile (compete (p = .006), arrogant (p = .002), defiant
(p = .002), and distant (p = .006)) and less friendly (cheerful (p = .01), helpful
(p = .002), cooperative (p = .001), and tender (p = .005)) compared to the reference
video. We observe that increasing dominance influences not only the perception of
dominance but also the perception of friendliness. These results highlight a compen-
sation effect between the perception of dominance and of friendliness: increasing
dominance leads to a perception of friendliness decrease and hostility decrease.

2. For DomDec, the ECA is evaluated as more submissive (timid (p = .01) and unau-
thorative (p = .04)) compared to the agent in Ref, thus the hypothesis H.Sub is
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accepted. The agent is also perceived as more friendly (cheerful (p = .01)) com-
pared to the reference video. These results underline another compensation effect
between the two attitude dimensions: decreasing dominance leads to friendliness
increase.

3. For FrDec, the ECA is perceived as more hostile (arrogant (p = .01s)) compared to
the agent in Ref, therefore H.Hos is validated. In addition, the agent is evaluated
as more dominant (aggressive (p = .001) and forceful (p = .001)) compared to the
reference video. Then, we find another compensation effect: decreasing friendliness
leads to dominance increase.

4. For FrInc, participants rate the ECA’s friendliness as equivalent to the ECA’s friendli-
ness in Ref, therefore H.FR is rejected.

Dominance increase (a) Dominance decrease (b) Friendliness decrease (c)

Figure 5.14 – Differences in the ECA perception between the comparison video and the
reference video. The blue color indicates that the variable is evaluated as being more
expressed in the reference video; the green indicates that the variable is evaluated as being
more expressed in the comparison video; and the black denotes no difference between the
reference video and the comparison video.

5.2.4.3 Comparison of Patterns Within the Conditions

Pattern Non-verbal signals
P1 Body Recline (1, 20), Eyebrow down (2, 4), Arms Crossed (10, 20), Beat (9.25,10.45)
P2 Beat (0.65, 2.65), Head shake (2.15, 4.26) Beat (5.5, 7.5), Eyebrow up (6.1,8.2)
P3 Beat (1.1, 3.2), Beat (5, 6.8), Arms crossed (7, 20), Eyebrow down (9.6, 10.9)
P4 Arms crossed (0.65, 20.85), Beat (0.65, 2.8), Head shake (2.15, 4.15), Head side (5.45, 9.4)

Table 5.8 – The four evaluated patterns for DomInc.

We want to understand if a given pattern, from the different patterns we use to evalu-
ate the attitude variations, has an impact in the perception of an attitude change. So for
each attitude variation, we evaluate four patterns (p1, p2, p3, p4). To explore the effects of
the four patterns within their respective four attitude variations, we conduct a Friedman
test (non-parametric test alternative to the one-way ANOVA with repeated measures). No
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(c) Unauthorative

Figure 5.15 – Boxplots of some variables of the four patterns expressing dominance in-
crease . (1) “strongly disagree”, (2) “partially disagree”, (3) “neutral”, (4) “partially
agree”, (5) “strongly agree”.

significant differences between the four patterns have been detected for friendliness in-
crease and friendliness decrease.

For dominance increase, results revealed a significant difference between the four pat-
terns that characterized this attitude change. This difference concerns the evaluation of
three variables: compete (p = 0.003), timid (p = 0.0003), and unauthorative (p = 0.002).
Figure 5.15 presents boxplots of these three variables and table 5.8 shows the four patterns
representing dominance increase used in the experiment. To understand this difference
in perception, we conduct further analysis. Results of the two tests (Friedman and Bon-
ferroni post-hoc) are reported in table 5.9. Bonferroni post-hoc test indicates the pairs of
patterns that have been perceived differently and their p − value. We observe that the
ECA displaying pattern P3 has been evaluated significantly more timid and unauthorative
than the ECA displaying P2 and P4 (see Figure 5.15). We also observe that P4 has been
evaluated as the most expressive for dominance (in term of compete) compared to the
three other patterns. These differences could be caused by any parameters defining the
sequences of behaviors such as the order of signals in the pattern, the signals type, their
starting time, or even their duration. For P4, it could be the presence of the non-verbal
signal head side or arms crossing at the beginning of speech. This hypothesis needs fur-
ther investigation. To check if the pattern P4 contributes the most in the recognition of
dominance increase, we compare (through a Wilcoxon test) DomRef with P1, P2, and P3.
The same result has been obtained as when considering all patterns (see Section 5.2.4.3).
Thus, all four patterns convey a dominance increase.
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Variable Chi-squared Df P Bonferroni test
Compete 13.9 3 0.003 (P3, P4, p = 0.03)

Timid 18.21 3 0.0003 (P1, P3, P = 0.02), (P3, P4, p = 0.03)
Unauthoritative 14.78 3 0.002 (p3, p2, P = 0.04), (P3, p4, p = 0.02)

Table 5.9 – Friedman test and Bonferroni post-hoc test exploring the effects of the different
patterns on DomInc.

5.2.4.4 Recognition Accuracy of Attitude Variations

In order to assess how accurate is the recognition of the attitude variations, we cast the
problem as multi-label classification task, where the predicted class (label) can be one or
more among the four attitude variations (DomInc, DomDec, FrInc, and FrDec). Thus, we
use classical measures from Information Retrieval: recall, precision and F-measure. The
recall of a given variable V represents the number of videos expressing V and evaluated
as expressing V relative to the total number of videos expressing V (64 videos result-
ing from 16 participants × 4 videos). The precision of a given variable V is defined as
the number of videos expressing V and evaluated as expressing V relative to the total
number of videos evaluated as expressing V . We consider that a given video is evaluated
as expressing V if the participant’s response for V is either “partially agree” or “totally
agree”. For example, 31 videos representing dominance increase are assigned to “forceful”
then the recall of “forceful” is 48.43% (31/64). Also, 6 videos representing dominance
decrease, 7 videos representing friendliness increase, and 48 representing friendliness de-
crease are rated as expressing the variable “forceful”. Consequently, its precision is 33.69%
(31/(31+6+7+48)). F-measure is finally computed as the harmonic mean of recall and
precision.

Each measure is calculated for each attitude variation (condition) by averaging the re-
sults obtained from its representative variables (given between parenthesis in Table 5.10).

DomInc (PA) DomDec (HI) FrInc (LM) FrDec (DE)
Recall 39% 40% 35% 35%

Precision 34% 43% 36% 31%
F-measure 36% 41% 35% 33%

Table 5.10 – Recall, precision, and F-measure for each attitude variations.

As we can see on Table 5.10, the best results are achieved for DomDec. The recall
for the four conditions is less than 50% which means that only less than half of videos
expressing a given attitude variation are recognized by participants as expressing this at-
titude variation. The precision is less than 50% for all attitude variations, which means
that, for each attitude variation, more than half of the videos annotated as expressing this
variation are actually assigned to another attitude variation. In Table 5.11, we report the
distribution of the predictions over the actual conditions of the predictions. A cell in this
Table (where actual=A and predicted =B) gives the number of videos actually express-
ing A and evaluated as expressing B. From these results, we validate the compensation
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effects given in Section 5.2.4.3. In addition, we observe that for both reference videos,
participants perceive the agent to be friendly but not hostile, nor submissive.

Predicted
DomInc DomDec FrInc FrDec

A
ct

ua
l

DomInc 39% 22% 20% 36%
DomDec 25% 40% 40% 15%

FrInc 13% 22% 35% 26%
FrDec 51% 18% 7% 35%

DomRef 34% 18% 52% 4%
FrRef 20% 12% 43% 10%

Table 5.11 – Distribution of the predictions over the actual conditions. The predictions
highlighting the compensation effects given in Section 5.2.4.3 and the friendliness per-
ception of the agent in DomRef and FrRef.

5.2.5 Discussion

The reference videos are generated from the non-verbal sequences that were perceived
with attitude values close to zero. We assume that the agent in these videos would be
perceived as expressing “no” attitude. To our surprise, the result of the study shows that
the agent is evaluated as friendly which invalidates the hypothesis H.Ref. We find no
significant differences in the perception of the agent in the reference videos and in the
FrInc condition. The hypothesis H.Fr is not validated. An explanation could be that,
since the agent in the reference videos is already evaluated as friendly, the agent in the
FrInc is not perceived as being significantly more friendly than in the comparison videos
(FrRef). The three other hypotheses, H.Dom, H.Sub and H.Hos, are validated as there
are significant differences in the perception of the agent in the DomInc, the DomDec and
in the FrDec conditions.

For DomInc, we find a main effect of the four evaluated patterns on the perception of
the ECA’s attitude. The revealed differences concern 3 out of the 16 adjectives. These
differences can be caused by any parameters defining the pattern of behaviors. Further
study needs to be conducted to understand this. However, we look at understanding the
impact on each stimuli the perception of the attitude variation. Thus we check if the
difference in perception come from the perception of the agent in one of the four videos
used as stimuli; that is, if a particular pattern of behavior can cause these differences
in perception. To test this, we redo the statistical test four times on 4 videos, each time
ignoring one of the four videos. In each case, we do not find any changes in the perception
of the agent. We conclude that all four patterns are perceived as conveying a dominance
increase.

According to the representation of the attitudes on the interpersonal circumplex, the
two poles of an attitude dimension (dominance/submission, Friendliness/hostility) are
symmetrical with respect to the center of the circumplex. As a result, it is expected that the
increase of an attitude toward a given pole would result in a decrease in the perception of
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the opposite pole. For example, an increase of friendliness would decrease the perception
of hostility and vice versa. Based on the circular profile (see Figures 5.12 and 5.13), for
both poles of each attitude dimension, this relationship is observed in both directions of
the attitude variations. However, it is not statistically significant.

Several works on attitude modeling rely on the assumption that there is a compen-
sation effect between the two attitude dimensions. To compute which social attitudes
an agent conveys to its interlocutor [Kasap et al., 2009, Pecune et al., 2016] defined
rules such as positive emotions felt and conveyed by the agent increase its friendliness
and decrease its dominance toward the user. Vice versa, negative emotions decrease its
friendliness and increase its dominance [Kasap et al., 2009, Pecune et al., 2016]. Others
works rely on the interpersonal complementary to model the attitude of agents [Ravenet
et al., 2015]. According to this theory, two persons should express complementary or anti-
complementary attitudes in order to maintain an interaction: expressing similar attitudes
on the friendliness dimension and opposite attitudes on the dominance dimension [Leary,
1957, Kiesler, 1996]. But, to the best of our knowledge, there is no studies, in term of
perception, on the interrelation of the interpersonal attitudes dimensions. To study this
interrelation, we evaluate both dimensions of attitudes at the same time. Doing so al-
lows us to underline a compensation effect between the perception of dominance and of
friendliness drawn from the following observations:

• dominance increase leads to a perception of friendliness decrease;

• dominance decrease leads to a perception of friendliness increase;

• friendliness decrease leads to a perception of dominance increase.

In table 6.4 we summarize the relationships revealed in our study between attitude
variations and attitude perception. For each relationship, we indicate if it is statistically
significant (Stat.), if it is validated based on the circular profile of the agent (IPC); we
also report the direction (Direct.) of the relationship (increase or decrease). For instance,
increasing dominance raises the perception of dominance and hostility and reduces the
perception of friendliness and submission. However, the underlining interrelation between
dominance and submission is not statistically significant.

Dominance Submission Friendliness Hostility
IPC Stat. Direct. IPC Stat. Direct. IPC Stat. Direct. IPC Stat. Direct.

DomInc � � ↗ � x ↘ � � ↘ � � ↗
DomDec � x ↘ � � ↗ � � ↗ - - -

FrInc - - - - - - � x ↗ � x ↘
FrDec � � ↗ � x ↘ � x ↘ � � ↗

Table 5.12 – Relationships between attitude variations and attitude perception.

We observe that there is high correlation between the perception of dominance in-
crease (DomInc) and the perception of friendliness decrease (FrDec). An explanation is
that some non-verbal signals have the same effect on the perception of dominance and
of hostility [Knutson, 1996, Tiedens et al., 2000, Carney et al., 2005, Ravenet et al.,
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2013]. For example, both dominance and hostility are characterized by a negative facial
expression and no gaze avoidance [Knutson, 1996, Tiedens et al., 2000, Carney et al.,
2005, Ravenet et al., 2013].

3 out of our 5 hypotheses (H.Dom, H.Sub and H.Hos) have been validated. So the
sequences expressing the corresponding attitude variations are properly recognized. This
supports our assumption that attitude variations can be represented as sequences of tem-
porally ordered non-verbal signals. Our next step is to use the extracted sequences to
build an attitude planner for virtual agents.

5.3 Conclusion

In this Chapter, we present our methodology to model attitude variations as sequences of
non-verbal signals. First, we build a database of sequences representing different attitude
variations. Then, we apply HCApriori to extract frequent patterns related to each attitude
variation. We also conduct a user study to evaluate the perception of the extracted patters.
Results have been plotted on the ICP and analyzed with statistical tests. Furthermore, we
compute recall, precision and F-measure to better understand the qualitative results. Using
these three methods to analyze the results allows us to better understand them through
qualitative and quantitative measures.

Take home

• We presented our methodology to extract relevant patterns related to different
attitude variations.

• Extracted patterns are evaluated through a perceptive study.

• Results are plotted on IPC, analyzed based on statistical tests and Information
Retrieval metrics.

• All extracted patterns (attitude variation) are correctly perceived.

• To our surprise, the patterns representing “no" attitude are perceived as con-
veying friendliness.

• We found a compensation effect between the two attitude dimensions.

• We found high correlation between dominance increase and friendliness de-
crease.
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G
RETA-VIB, platform has been developed to support the creation of socio-

emotional ECAs [Pecune et al., 2014]. In this platform the agent displays an
utterances augmented with communicative functions and emotional states.
The ECA’s attitude plays a key role in order to successful the interaction

goal [Kasap et al., 2009, Ochs et al., 2010, Pecune et al., 2016]. In this chapter, we
describe how we enhanced GRETA-VIB platform with our attitude model described in
Chapter 5. To this end, we develop an attitude planner that combines the attitude varia-
tion of the ECA along with its communicative intentions and emotions. We first present
GRETA-VIB platform. Then, we describe the process behind our attitude planner. Finally,
we evaluate the attitude planner and we discuss the results.
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Figure 6.1 – SAIBA architecture enhanced with the new integrated module: Sequential
Attitude Planner.

Figure 6.2 – Example of a FML file.

6.1 GRETA-VIB

GRETA-VIB is built based on the SAIBA framework [Vilhjalmsson et al., 2007] whose archi-
tecture is illustrated in figure 6.1. First, the “intent planner” generates the communicative
intentions of the ECA (what the agent intends to communicate such as its speech and
emotion). Communicative intentions are represented in the Functional Markup Language
(FML) [Heylen et al., 2008]. Figure 6.2 gives an example of an FML file that contains the
sentence: “To begin, can you present yourself please?”. In this example, we have three com-
municative intentions: two that are linked to prosody, emphasis (pitchaccent) and question
marker (Boundary tone), and ask a question (performative). For each intention we indicate
its starting and ending time.

Secondly, the “behavior planner” translates these communicative intentions into a set
of multimodal signals (e.g., gesture, facial expressions). This planner is based on the
framework described in [Mancini and Pelachaud, 2007] and instantiates an intention into
a set of non-verbal behaviors called “behavior set”. For example, the communicative in-
tention greet can be expressed by either a hand gesture, a facial expression (smile), or raise
eyebrows. Figure 6.3 represents the “behavior” set to indicate the behaviors that convey
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Figure 6.3 – “Behavior set” for question mark boundary-HH.

Figure 6.4 – Example of a BML file.

a question mark boundary-HH. As we can see, this function can be translated using two
combinations of gaze and face: GazeAt and NeutralFace, or GazeAt and EyebrowRaise. The
planner selects one combination considering the behavior preferences of the agent and
the compatibility with surrounding communicative intentions [Mancini and Pelachaud,
2007]. The selected behaviors are represented in the Behavior Markup Language (BML)
format [Vilhjalmsson et al., 2007]. Figure 6.4 shows the BML file corresponding to the
FML file given in Figure 6.2.

Finally, the BML tags are transformed into the final animation of the ECA by the “be-
havior realizer”. The “behavior realizer” is connected to several modules for computing
the different animations of the agent’s face, lips, body, and audio (cf. Figure 6.5).

To model social attitude within the agent platform, we replace the “behavior plan-
ner" with a new one called “Sequential Attitude Planner". It takes as input an FML file
(containing the utterance to be said by the agent) as well as the intentions and the atti-
tude variation that the ECA should express toward the user. “Sequential Attitude Planner"
generates the agent’s behavior according to its intentions and attitudes. We update FML
format by adding a new tag that represents the attitude variation of the agent (see Fig-
ure 6.2).
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Figure 6.5 – GRETA-VIB platform.

The “Sequential Attitude Planner" is a four step process ranging from sequence gen-
eration, selection and enrichment, to the signal replacement. The following Section goes
through each of these steps.

6.2 Sequential Attitude Planner Model

To enrich the communication skills of an ECA, we need to combine the sequences of non-
verbal signals expressing an attitude variation with those communicating its other com-
municative intentions. For that, the “Sequential Attitude Planner” follows four steps as
indicated in figure 6.6. First, it translates the communicative intentions into a sequence
of non-verbal behaviors called intention sequence. Then, it selects, from the extracted
sequences linked to attitude variations, the most relevant one (attitude sequence) repre-
senting the given attitude variation of the agent. Then, the intention sequence is enhanced
with new signals from the attitude sequence. Finally, the attitude planner merges the sig-
nals from both sequences, the intention sequence and the attitude sequence, in order to
obtain the final signals to be displayed by the agent. Figure 6.7 illustrates the four steps
of the “Sequential Attitude Planner".

6.2.1 Intention Sequence Generation

The communicative intent planner generates a sequence of non-verbal behaviors express-
ing the communicative intentions specified in the input FML file. Once all communicative
intentions are instantiated, we obtain a sequence of multimodal behaviors that we call in-
tention sequence (Sint). In the example described in Figure 6.7.1, the FML contains three
intentions: Emphasis, Performative (ask question), and Question marker (Boundary tone)
associated to the sequence Sint: head, gesture, and face and gaze.
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Figure 6.6 – Outline of the sequential attitude planning model.

6.2.2 Attitude Sequence Selection

Once the communicative intentions are instantiated, the next step is to choose, from the
extracted patterns (cf. Section 5.1.2), the most appropriate sequence attitude sequence
(Satt) conveying the desired attitude variation (V ). Appropriateness of Satt is defined
here as the most representative sequence for conveying the attitude variation V and as
the most similar to Sint. The representativity of Satt for expressing the attitude variation
V is evaluated in term of support ( Eq. 4.2 and Eq. 4.5) and confidence (Eq. 4.3 and
Eq. 4.6) as indicated in Eq. 6.1.

AttitudeRep(Satt, V ) = Conf(Satt, V )× Sup(Satt)
×ConfOverlap(Satt, V )× SupOverlap(Satt)

(6.1)

The similarity between Sint and Satt is evaluated in terms of the presence of multi-
modal behaviors and of their temporality (overlap) as defined in Equation 6.2. SimType
returns the number of behaviors from sequences Sint and Satt that are of the same modal-
ity and Overlap(Sint, Satt) represents the time overlap between Sint and Satt. We consider
several non-verbal modalities: gesture, gaze, head, postures. Within each modality, we
have several signal types. For example, for head modality we have: head up, head down,
head tilt and head side, etc. In the example (Figure 6.7.2), SimilarityType = 3, we have
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Example of an input FML message containing 3 communicative intentions and dominance
increase as attitude variation.

(1) Generation of intention sequence, using the behavior sets of the input communicative
intentions.

(2) Attitude sequence selection from the extracted frequent patterns representing dominance
increase.

(3) Intention sequence enrichment.

(4) Signal replacement.

Figure 6.7 – An illustrative example for the sequential attitude planning model.

three non-verbal modalities (head, gesture, and facial expression) that are present in both
Sint and Satt.

Similarity(Sint, Satt) = SimType(Sint, Satt)×Overlap(Sint, Satt) (6.2)

In this step, we also associate behavior from intention sequence to their mapping behav-
iors in attitude sequence: headint → headatt, gestureint → gestureatt, and faceint → faceatt.

6.2.3 Intention Sequence Enrichment

In the next step, we enrich the set of communicative behaviors with the set of attitude
behaviors. It is obtained by merging both Sint and Satt: each behavior batt in the Satt that
does not appear in the Sint is added to the Sint. Using the same example (Figure 6.7.3),
we add the behaviors body posture and arms rest position to the Sint. The timing of batt
is still the same if it does not overlap with another signal bint in the intention sequence
from the same modality of batt. Otherwise, we adjust the timing of batt to allow the agent
to display the behavior bint as indicated in Equation 6.3 and illustrated in Figure 6.8 and
6.9. For example, if the agent has the intention to ask a question instantiated by a gesture
(bint) from 0 to 1.5 sec. and, in the attitude sequence, we have another gesture (batt) from
1 to 4 sec. then, the agent will play the gesture batt when it finishes doing bint (at 1.5 sec.
instead of 1 sec.).
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Figure 6.8 – Time adjustment of batt when beatt > bsint

Figure 6.9 – Time adjustment of batt when beatt < bsint

beatt =


bsint if overlap (batt, bint) > 0 and beatt > bsint

beint if overlap (batt, bint) > 0 and beatt < bsint

beatt, otherwise

(6.3)

6.2.4 Signal Replacement

In order to represent the relationship between non-verbal behaviors and attitude varia-
tions, we compute the frequency of occurrence of a given behavior b with respect to a
given attitude variation V . We consider that a behavior b1 is more representative of an
attitude variation V than a behavior b2 if the frequency of occurrence of b1 is higher than
the frequency of occurrence of b2.

Finally, our model will replace each behavior bint of the intention sequence with its
mapped behavior batt in the attitude sequence if the frequency of batt is higher than the
frequency of bint (Figure 6.7.4). In the example described in Figure 6.7.4, the attitude
planner will choose batt (Eyebrows-Frown) as final signal because the frequency of this
signal for dominance increase is higher than the frequency of faceint.

6.3 Evaluation

The Sequential Attitude Planner generates the behavior of a virtual agent according to its
intentions and the attitude variation it should express. In this section, we report on the
perceptive study we conducted to evaluate the behaviors of an ECA generated with our
Attitude Planner. Since we have used a job interview corpus to extract the most relevant
non-verbal sequences related to different variations of the recruiter’s social attitudes, we
keep a similar scenario for this evaluation study. Thus, the ECA plays the role of recruiter
interviewing for a job opening.
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6.3.1 Experimental Design

We design an empirical experiment in which participants compare a set of video pairs.
Each pair is made of a video of the virtual recruiter with no attitude variation and a
second video with an attitude variation. We choose seven sentences (questions) that have
a rather “neutral” verbal content. An example of sentence is: if we decided to offer you this
job, when would you be ready to start?. Seven reference videos (Ref) are generated without
our sequential attitude planner (i.e. displaying no attitude change), and 28 others with our
sequential attitude planner (4 attitude variations × 7 sentences).

We follow the same structure for the evaluation study as the previous one (see Sec-
tion 5.2). We evaluate five experimental conditions corresponding to the four attitude
variations: dominance increase (DomInc), dominance decrease (DomDec), friendliness in-
crease (FrInc), friendliness decrease (FrDec), as well as the reference attitude (Ref). The
five conditions were tested in a between-subjects design.

Participants are assigned to one condition. If the condition is Ref then participants were
asked to view seven reference videos and rate each of them by answering 20 questions
such as “in your opinion, the behavior of the virtual character is assertive?. For the other
conditions (DomInc, DomDec, FrInc, FrDec), participants view and compare seven pairs of
videos: reference video vs. comparison video, then they rate the behavior of ECA in the
comparison video. An example of comparison question is: “compared to the reference video
(left), the behavior of the virtual character in the comparison video (right) is assertive?.
In addition to the 16 dependent variables used in the first experiment, we added four
new variables: dominant, submissive, friendly, and hostile. All answers were on a 5-point
labeled Likert scale (1 =“strongly disagree”, 2 = “partially disagree”, 3 = “neutral”, 4
= “partially agree”, and 5 = “strongly agree”). The synthesized speech was identical for
each pair of videos.

We are aware the voice shows also attitude change [Janssoone, 2015]. But, since,
on the one hand, we have not focused our work on acoustic feature of attitude changes,
and on the other hand, most voice synthesizers do not model attitude changes, we decide
to use neutral voice for each video of each condition. We conduct comparison studies
where all the videos use the same voice synthesizer. After viewing the current pair of
videos and answering the questions related to the agent’s behavior, the next pair of videos
is automatically displayed. We show questions and videos according to a latin square
design. We build on the same hypotheses as in the first experiment (cf. Section 7.6.3).

6.3.2 Results

A total of 90 participants have been recruited from the Crowdflower platform (18 for
each condition); only 20% were female, 50% had a master level and all participants were
Europeans or Americans (34% Spanish, 20% German, and 18% French). We present the
results in the same way as for the first experiment: we start by plotting the circular profile
of the agent as well as its vector length. Then, we investigate the differences in the ECA
perception between the comparison video and the reference video. Finally, we compute
performance scores (recall, precision and F-measure) for attitude recognition.

74



6.3. EVALUATION

PA

BC

DE

FG

HI

JK

LM

NO

−0.8−0.6−0.4−0.2 0 0.2 0.4 0.6

DomInc 

DomDec

Ref

Figure 6.10 – Plotting octant scores on the IPC for dominance increase and decrease.

Circular Profiles
Figure 6.10 and 6.11 show the octant scores respectively for dominance and friendliness
variations. From these graphs, we can draw the following conclusions:

• For DomInc, the ECA is perceived as more dominant, more hostile, less friendly,
and less submissive compared to the agent in Ref;

• For DomDec, the profile of the ECA is circular: participant gives the same value for
all octants;

• For FrDec, the agent is evaluated as more hostile and more dominant compared to
the agent in Ref;

• For FrInc, the ECA is perceived as less friendly, and less dominant compared to the
agent in Ref.

• ECA in the reference video is perceived as friendly, dominant, not hostile and not
submissive.

Vector Scoring
Table 6.1 gives the angle and vector length for all conditions. For FrInc and Ref, the vector
angles of both agents are situated in the NO octant (friendliness-dominance region). For
DomInc, the vector angle of the agent is in the BC octant (dominance-hostility region)
with an intense attitude amplitude (vector length = 0.078) compared to the other condi-
tions. For both DomDec and FrDec, the vector angles of agents are in the dominance region
(PA). However, the agent communicating a dominance decrease has a small vector length
compared to the other conditions.

Result significance
To assess whether a significant difference exists between the perception of the reference
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Figure 6.11 – Octant scores for friendliness increase and decrease.

DomInc DomDec Ref FrInc FrDec
Vector angle 144.08 83.81 67.56 58.62 80.01
Vector length 0.12 0.64 0.86 0.87 0.88

Table 6.1 – Angle and vector length of each condition.

and of the comparison videos, we conducted a Wilcoxon test. In appendix B, we report, for
each condition, the mean, standard deviation of independent variables, and distribution
of participants’ answers over these variable. The revealed differences are illustrated in
Figure 6.12. For FrInc and DomDec no significant differences have been detected. For
DomInc, the agent is perceived as:

• More dominant: aggressive (p < .001), forceful (p = .001) and dominant (p = .002)
compared to the agent in the reference video, therefore H.Dom is supported;

• More hostile: arrogant (p < .001), defiant (p < .001), distant (p = .005) hostile
(p < .001) compared to the agent in the reference video;

• Less friendly: helpful (p < .001), cheerful (p = .004), tender (p = .01), and friendly
(p < .001) compared to the agent in the reference video.

Finally, for FrDec, the ECA is evaluated as:

• More dominant: aggressive (p = .003);

• More hostile: arrogant (p = .01), hostile (p = .01), thus H.Hos is accepted;

• Less friendly: cooperative (p = .003), helpful (p < .001), and friendly (p = .001).

Information Retrieval Metrics
The problem of evaluating the attitude of an ECA expressing a given attitude variation can
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Dominance increase (a) Friendliness decrease (b)

Figure 6.12 – Differences in the ECA perception between the comparison video and the
reference video. The blue color indicates that the variable is evaluated as being more
expressed in the reference video; the green indicates that the variable is evaluated as being
more expressed in the comparison video; and the black denotes no difference between the
reference video and the comparison video.

be viewed as multi label classification, where the predicted class (label) can be one or more
among the four attitude variations (DomInc, DomDec, FrInc, and FrDec). As such, the four
tested conditions can be evaluated based on the classical measures: recall, precision and F-
measure. Table 6.2 gives recall, precision, and F-score for the four attitude variations. The
best results are achieved for DomInc. Table 6.3 reports the distribution of the predictions
over the actual conditions. A cell where actual=A and predicted =B gives the number
of videos actually expressing A and evaluated as expressing B. Based on Table 6.3, we
observe that the ECA in Ref is evaluated as friendly, dominant, not hostile and not
submissive.

Dominance Friendliness
Increase Decrease Increase Decrease

Recall 63% 18% 39% 26%
Precision 37% 44% 31% 20%
F-measure 47% 26% 35% 22%

Table 6.2 – Recall, precision, and F-measure for the multimodal model.

6.4 Discussion

The experiment conducted to evaluate the Sequential Attitude Planner has led to some
interesting findings. Table 6.4 recapitulates the most significant conclusions. We specifi-
cally focus on the correlation between attitude variation and attitude perception. For each
combination, we report whether it is statistically significant (column Sign.), if it coincides
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Predicted
DomInc DomDec FrInc FrDec

A
ct

ua
l

DomInc 62% 31% 38% 41%
DomDec 13% 18% 18% 6%

FrInc 35% 14% 39% 15%
FrDec 59% 25% 16% 25%
Ref 43% 12% 39% 14%

Table 6.3 – Distribution of the predictions over the actual conditions.

with the circular profile of the agent (column IPC) and we also indicate the direction of
the relationship (column Direct.).

Dominance Submission Friendliness Hostility
IPC Stat. Direct. IPC Stat. Direct. IPC Stat. Direct. IPC Stat. Direct.

DomInc � � ↗ � x ↘ � � ↘ � � ↗
DomDec � x ↘ � x ↗ � x ↘ � x ↗

FrInc � x ↗ � x ↘ � x ↗ � x ↘
FrDec � � ↗ � x ↘ � � ↘ � � ↗

Table 6.4 – Relationships between attitude variations and attitude perception.

The two hypotheses DomInc and FrDec are supported. As in the first evaluation study,
the agent in the reference condition is perceived as friendly. The hypothesis H.Ref is
rejected. The agent expressing friendliness increase is evaluated as equivalent to the agent
in the reference video, that is friendly, therefore, H.FrInc is rejected. But we can notice
that, since by default (FrRef) the virtual agent appears friendly, it appears also friendly in
FrInc.

Unlike our first study, our H.sub hypothesis is not validated. Chollet and colleagues
[Chollet et al., 2014b] found similar result with their virtual recruiter displaying dom-
inance decrease. This result can be related to the context of the interaction where the
agent plays the role of a job recruiter. In such a context, the recruiter tends to controls the
interaction and therefore appears naturally dominant and not submissive. Furthermore,
the agent in DomDec is perceived as more hostile and less friendly compared to the agent
in the reference video (DomRef) while in the first study it is perceived as more friendly and
less hostile. This change in perception confirms the importance of the interaction context
that can alter the perception of an attitude.

Another results that may be related to the role of the agent is the halo effect be-
tween the dimensions of friendliness and of dominance: increasing friendliness leads to
the perception of dominance increase. However, in the first study friendliness increase
was correlated with dominance decrease. There is a compensation effect.

An attitude dimension is represented by two symmetrical poles (dominance/submis-
sion, friendliness/hostility). We were expecting a negative relationship between the two
poles of an attitude dimension (an increase of a given pole would result in a decrease in
the perception of the opposite pole). This assumption is statistically significant for friend-
liness/hostility: when the agent is evaluated as more hostile it is also perceived as less
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friendly, and vice-versa. For the other dimension, there is a strong trend: when the agent
is evaluated as more dominant it is also perceived as less submissive, and vice-versa.

6.5 Conclusion

In this chapter, we presented the “Sequential Attitude Planner" that generates the behavior
of the agent according to its communicative intentions as well as the attitude variation it
should express. First, the planner converts the communicative intentions into a sequence
of non-verbal signals. Then, from the database of sequences expressing the input attitude
variation, the planner chooses the most representative sequence of the input attitude vari-
ation that is also the most similar to the communicative sequence (in term of non-verbal
behaviors). Both sequences are then combined to compute the final sequence conveying
both intentions and attitude variation.

We conduct an evaluation study where we compare videos of the agent communicating
with and without an attitude. We can conclude from this study that our attitude planner
allows the ECA to express a variation of attitudes, in particular dominance increase and
friendliness decrease. The non recognition of the variation dominance decrease could be
caused by the interaction context, here the role of the agent. The friendliness perception
of the agent in the reference conditions seems to affect the recognition of the variation
friendliness increase.

Take home

• Attitude planner allows the ECA to express both attitude variation and com-
municative intentions.

• Attitude planner allows the ECA to express: dominance increase and friendli-
ness decrease.

• High correlation between dominance increase and friendliness decrease.

• The role of the agent could influence the perception of its attitude.
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I
N human interaction, humans adapt and adjust their behavior according to the be-
havior of their interlocutors [Burgoon et al., 2010]. For example, a listener nods for
indicating his agreement with the speaker, he gazes at the same object or smiles in
response to the interlocutor’s smile. In light of this, we aim to model an Embodied

Conversational Agent (ECA) able to adapt its behavior according to the user’s behavior.
Nonverbal behaviors play an important role for maintaining engagement between hu-
mans and agent [Fong et al., 2002, Arai and Hasegawa, 2004, Breazeal., 2004, Woolf and
Burleson, 2009]. This is why we are particularly interested in adapting dynamically the
agent’s nonverbal behaviors to those of its interlocutor.

To adapt the agent’s behavior according to the user’s one, we take advantage of the
recent advances in the domain of neural networks, specifically a popular type of networks
called LSTM. This approach simultaneously encompasses the sequentiality and tempo-
rality of non-verbal behavior over time. The designed model adopts a user-in-the-loop
approach to constantly predict the behavior of the agent in response to the user’s behav-
ior. It takes as input both, the user’s and the agent’s past behavior and predicts the next
agent’s behavior. More precisely it predicts agent’s smile, head movements, and gaze.

To integrate and evaluate our LSTM model called IL-LSTM (Interaction Loop LSTM),
we create an interaction system where the agent interacts in real-time with a human user.
The system takes as input data from the user, computes what the agent has to say as well as
the corresponding animation. It is built upon four modules: (1) User’s behavior detection
and analysis based on multimodal analysis software EyesWeb [Volpe et al., 2016]. (2)
Dialogue management: we have used the dialog manager Flipper to define the dialogue
rules (turn taking and verbal content) for the virtual agent [van Waterschoot et al., 2018].
(3) Agent’s behavior prediction based on our IL-LSTM (Interaction Loop LSTM) model
to predict the behavior of the agent for the next frame taking as input the behavior of
both agent and user, during the past frames. (4) Behaviour generation from the predicted
agent’s behavior using the GRETA-VIB platform [Pecune et al., 2014]. To our knowledge,
our model is the first attempt to produce, in real time, smile, head movements and gaze
direction for virtual agent driven from both agent and user’s smile, head movements,
and gaze direction as well as agent communicative intentions. The results showed that
users were indeed more satisfied by their interaction with the agent when it adapted its
behavior.

In this Chapter, we present an IL-LSTM model that continuously generates the agent’s
behavior that is both responsive to the user’s behaviors and is consistent with the agent’s
intentions. First, we present an overview of related works 7.1. Then, in Section 7.2
we describe the database we used to train our model. In Section 7.3, we present an
overview of the neural networks. Our IL-LSTM model is described in Section 7.4. Then,
we present, in Section 7.5, the architecture of the interactive system implementing the
IL-LSTM model. The experimental protocol used to evaluate our interactive system as well
as the obtained results are presented in Section 7.6.
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7.1 Related works

In this work, we focus on adapting the agent’s nonverbal behavior according to user’s
behavior. In this Section, we present the related works to our problematic.

In [Woolf and Burleson, 2009], authors used a rule-based approach to adapt the facial
expression of a virtual tutor according to the student’s affective state (e.g., frustrated,
bored, or confused). For example, if the student is sad, respectively delighted, the tutor
might look sad, respectively pleased. Results showed that when the virtual tutor adapts
its facial expression in response to the student’s one, the latter maintained higher levels of
interest and reduced boredom when interacting with the tutor. However, in this work the
agent does not react Instantaneously to the student’s affective state but it responds only
when the student has finished his speaking turn.

In [Gordon et al., 2016], authors rely on reinforcement learning algorithms to learn
how to properly respond to child’s affect (valence). Results showed a significant increase
in child’s valence when the robot adapted its facial expression to the child’s one, compared
to a non-adaptive robot.

Other works focus on modeling the agent’s facial expression in dyadic interaction. In
[Huang and Khan, 2017], authors used Generative Adversarial Networks (GANs) [Good-
fellow et al., 2014] to model the facial expressions of interviewer within interviewer-
interviewee interactions. This model is decomposed into two steps: (1) generating face
sketches of the interviewer taking as input facial expressions of the interviewee; (2) syn-
thesizing complete face images conditioned on the face sketches generated in the first
step. Results showed that the facial expressions in the generated interviewer face images
reproduce appropriate emotional reactions to the interviewee behavior. A very similar
work has been presented in [Nojavanasghari et al., 2018].

Feng and his colleagues relied on Neural Networks to continuously predict facial ex-
pressions during human-human interaction [Feng et al., 2017]. They used LSTM to predict
the facial expression from Skype conversations involving pairs of persons engaged in con-
versations. The goal is to predict the next facial keypoints (i.e., landmarks) of one person
taking as input the previous facial keypoints of both partners, unlike other works that infer
the facial expression of one partner only from the facial expression of the other partner.

Table 8.1 gives a comparison of the works presented above as well as our model. Each
entry is characterized with a set of criteria: the algorithm used to predict the nonver-
bal behavior, the considered features, instantaneous (Inst.) prediction and generation,
the consideration of interaction loop (whether the model takes into account both part-
ners’ behavior in a dyadic interaction), and generation (whether the model has been inte-
grated into a virtual agent to predict the agent’s behavior in real time). Also, we indicate
the contribution of each model to the human-agent interaction. Traditionally the rule-
based approach has been popular [Arai and Hasegawa, 2004, Breazeal., 2004, Woolf and
Burleson, 2009]. Very recently the trend turns to using neural networks, such as LSTM
and GANs that have been particularly efficient for modeling and generating nonverbal be-
haviors in dyadic interaction. These kind of models naturally encompass the dynamics of
the behaviors. This allows for predicting continuously (i.e. on a frame by frame basis) the
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Ref Algorithm Feature types Inst. Int.
loop

gen. Results

[Woolf and
Burleson,
2009]

heuristic
strategies

facial expression x x � decrease
student’s
boredom

[Gordon et al.,
2016]

reinforcement
learning

facial expression x x � increase in
child’s valence

[Huang and
Khan, 2017]

GAN facial expression � x x

[Feng et al.,
2017]

LSTM facial expression, head
pose

� � x

[Nojavanasghari
et al., 2018]

GAN facial expression, head
pose

� x x

Our model LSTM Smile, head movements,
gaze direction

� � � increase user
satisfaction

Table 7.1 – An overview of works related to adaptation model.

behaviors, unlike the rule-based approach that generate the agent’s behaviors for a certain
time windows. As we can observe from Table 8.1, in most works the agent’s facial expres-
sion exclusively depends on the user’s facial expression and ignores the interaction loop
between the agent and the user. Feng’s work is the first attempt to take into account this
interaction loop, i.e., predicting the behavior of one interaction partner taking as input
the behavior of both interaction partners.

Despite being a significant contribution, the works of Feng and those based on neural
models alike, have not been explored for real-time generation of the agent’s facial expres-
sion. They settled for learning the models from human interactions. To continue these
efforts, we design a model that goes beyond learning the facial expressions to their gen-
eration into an ECA platform. Thus, we would be able to predict, in real time, the agent’s
smile, head movements, and gaze direction that are responsive to the user’s behavior, al-
lowing their behaviors to appear as a dynamic process in an interactive loop. The other
novelty of our model is to include the agent’s communicative intention (e.g., emotion)
along with the other behaviors related to the agent’s adaptation.

7.2 Corpus

In the context of the ARIA-VALUSPA project, a corpus called NoXi (NOvice eXpert Inter-
action database) [Cafaro et al., 2017] has been collected. NoXi focuses on knowledge
sharing between an expert and a novice discussing about a given topic (e.g., sports, pol-
itics, videogames, travels, music, etc.). The recording was conducted in three different
countries: France, Germany and UK. In the context of this thesis, we participated to the
creation of this corpus by collecting and annotating the French part of NoXi. Figure 7.1
reports the most recurrent topics discussed in each of the three countries.

NoXi is a corpus of spontaneous and screen-mediated face-to-face interactions. Expert
and novice were in two different rooms and interacted through a large screen as illustrated
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Figure 7.1 – The most frequently-discussed topics in NoXi corpus.

Figure 7.2 – Expert-novice interaction.

in Figure 7.2. NoXi is publicly available through a web interface1. The dataset contains
over 25 hours of dyadic interactions spoken in multiple languages (mainly English, French,
and German).

For training our model, we use the French part of NoXi database which is composed
of 20 sessions. The total duration of all these sessions is 6 hours and 52 minutes (618000
frames). We automatically extracted the facial expressions and semi-automatically de-
tected the conversation states of interactions:

• Conversation state (semi-automatic):
The conversation state corresponds to which interlocutor is speaking. We have de-
fined four states: both interlocutors speak (both), expert speaks (expert), novice
speaks (novice), or no one speaks (none). Based on both expert and novice’s voice
activity detection, the conversation states of the interaction has been automatically
annotated (see Figure 7.3). As the voice activity presents some noise, we manually
adjust the automatic annotation.

1https://noxi.aria-agent.eu/

85

https://noxi.aria-agent.eu/


CHAPTER 7 – GENERATIVE MODEL

Figure 7.3 – Example of annotations of the conversation states detected from Expert and
Novice’s voice activity.

Figure 7.4 – Action Units corresponding to the activation of different facial muscles.

Table 7.2 gives the percentage of each conversation state. We observe that the expert
speaks more (57%) than the novice (24%). This was expected as the expert controls
the discussion topic and speaks more to explain his topic.

None Novice Expert Both
14.05% 24.48% 57.51% 3.96%

Table 7.2 – Percentage of each conversation state in NoXi database.

• Facial expression extraction (automatic)
Several works focus on facial expression extraction [Mackenzie et al., 1985, Sariyanidi
et al., 2015, Wang et al., 2018, Murphy-chutorian et al., 2009]. We use the open-
source tool OpenFace [Baltrusaitis et al., 2016] to extract facial expressions of both
expert and novice2. OpenFace allows the extraction of head pose and rotation, gaze,
and facial Action Units. Action Units (AUs) represent the movements of facial mus-
cles classified according to the FACS (Facial Action Coding System) taxonomy [Ek-
man and Friesen, 1976]. Figure 7.4 shows examples of AUs3. For example, AU12 is
estimated based on the activation of the zygomaticus major muscle.

We are interested by predicting agent’s facial expression, in particular, gaze, smile
and head movement. We use OpenFace to extract the information related to these
behaviors; i.e., AU12 (smile), head rotation as well as the gaze:

2https://github.com/TadasBaltrusaitis/OpenFace
3https://www.ecse.rpi.edu/~cvrl/tongy/aurecognition.html
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– The AU12 intensity (varies from 0 to 5)

– The AU12 activation (0 absent, 1 present)

– Head rotation: rotation is in radians around X,Y,Z axes

– Gaze direction: gaze direction of both eyes in radians.

More details about these features are given in https://github.com/TadasBaltrusaitis/
OpenFace/wiki/Output-Format

In the next section, we present an overview of the neural networks.

7.3 Neural Networks and LSTM

Since the beginning of this decade, a hype has occurred around the domains of Deep
Learning and Neural Networks. Mainly motivated by the dramatic increase in computing
power capacities (parallel computing, GPUs), Neural Networks have gained back attention
among academics and technology giants, like Google and Facebook.

Neural Networks have re-established themselves as a must in many domains, especially
when it comes to machine learning tasks involving either complex or unstructured data,
like image recognition, text/speech processing and translation, etc. A wide variety of
networks exist, differing from each other by their structure and the learning task they
have been designed for. Network structure can be as simple as a perceptron or a Feed-
forward Network, generally used for simple classification tasks. Other structures have
been designed, and are used as basic units to build customized networks for specific tasks,
such as Convolutional Networks for image processing, Recurrent Networks for time-aware
tasks, Autoencoders specifically relevant for text and speech processing, etc.

The next Section is intended to shed light on Recurrent Neural Networks (RNNs) with
a focus on a major RNN variation called LSTM. For the sake of brevity, and to avoid too
much dilution, this overview is intentionally limited to the essentials, despite its obvious
relevance to our topic.

7.3.1 Neural Networks: Overview

To better explain and understand RNNs, one should first understand the logic behind
Neural Networks, and especially, the simplest type of them: Feed-forward Neural Networks
(FNNs). Inspired by the biological brain, an FNN is composed of a set of processing units
(nodes), in addition to communication (input/output) nodes. FNNs are named after the
way these nodes are interconnected: information are fed straight through, neither loops
nor backtracking are allowed in this type of architecture (Figure 7.5).

Input examples are fed to the network then transformed gradually until reaching the
final (output) stage. At each intermediary layer, an operation is performed on the input
values and fed to the next layer. Usually, this operation is a linear combination of inputs
to which is added some post processing (e.g. activation functions). FNNs are generally
trained on large amounts of data. They have demonstrated very satisfying results for
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Figure 7.5 – A simple neural neural network architecture.

many supervised and unsupervised classification problems. In supervised learning, the
model parameters are adjusted iteratively to minimize an objective function, called Loss.
Loss can be measured by a distance value or an error rate empirically calculated on the
learning examples.

7.3.2 Recurrent Neural Networks: LSTM

RNNs are family of Neural Networks, specifically designed to deal with sequential and/or
temporal data. In the diversity of real-life data, sequentiality is a frequent pattern; e.g.,
written text, speech, and even images can all be considered as sequences of small amounts
of data (words, pixels, etc.). Unlike FNNs, an RNN takes as input not only the current
input example but also what it has perceived in the past time (a sort of “memory”). Since
RNNs rely on the concept of memory, the analogy, one more time, can be made with the
biological brain. Concerning the network structure, RNNS are distinguished from FNNs by
their feedback loop connected to their past decisions. This is why it is often said the RNNs
have memory. This kind of networks is mainly used when “context” is important, i.e.,
decisions from the past can influence the current ones. A common example is text where
words should be analyzed within their context and with knowledge of the preceding ones.

Hochreiter and Schmidhuber introduced a particular recurrent network called Long
Short-Term Memory (LSTM) Hochreiter1997 [Hochreiter and Urgen Schmidhuber, 1997].
While an RNN makes use of the near-past events (context), an LSTM has been designed
to deal with frequent events occurring in either near or far-away past. In theory, RNNs are
absolutely able to handle long-term memory but in practice, they do not seem to succeed
in learning the parameters to solve the problem [Bengio et al., 1994].
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Figure 7.6 – LSTM cells.

The basic element of LSTM is the so-called memory cells, along with a couple of ele-
ments, called gates, that are recurrent and that control how information is being remem-
bered and forgotten (Figure 7.6). In the world of machine/deep learning, LSTMs have a
massive commercial success, especially in the domains of speech recognition and machine
translation[Tian et al., 2017].

LSTM are achieving remarkable results across various domains, where sequentiality
and temporality are important factors. Encouraged by these achievements, we choose to
apply LSTM for behavior modeling, and specifically, for predicting the next ECA’s behavior
based on the 20 past facial expressions of ECA’s and of user’s. The next Sections give more
details on the methodology we followed and the achieved results.

7.4 LSTM Model

In this section, we present our LSTM model that we call IL-LSTM for Interaction Loop
LSTM.

7.4.1 Prediction Model

We aim to continuously update the agent’s expression that is both responsive to the user
and is consistent with the agent’s communicative intentions. Thus, the agent’s behavior
is computed to convey its communicative intentions and to adapt to user’s nonverbal be-
havior. That is, the computational model that controls the behaviors of the agent takes
as input the multimodal behaviors that convey the different communicative intentions of
the agent as well as the user’s nonverbal behaviors displayed simultaneously. For this,
our model was designed to use the multimodal behavior of both, the agent and the user
(head rotation, gaze, smile) as well as the conversation state (Who is speaking?) of the
interaction as input to predict head rotation, gaze and smile of the agent.

Our model will be tested with a virtual agent playing the role of an expert of video
games that describes a video game exhibit to a user that is going to visit it. We train and
evaluate our model using the NoXi database where we choose the novice to play the role
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of the user (i.e. he has to learn about the exhibit), and we choose the expert to play the
role of the agent (i.e. it has knowledge about the exhibit).

Our data includes two types of features: numerical (smile intensity, head rotations,
and gaze directions) and categorical (conversation state with labels like “none”, “expert”,
etc.). Before presenting our model, we prepare the input data for neural networks. Neural
networks work internally with numerical data which requires the conversion of categori-
cal data into numerical form. One-hot encoding or categorical encoding is a widely used
transformation technique for categorical data. One-hot encoding represents each category
as an all-zero vector with a 1 in the place of the category index [Bengio, 2012, Chollet,
2017]. We use One-hot encoding to encode conversation state. Thus, the four conversa-
tion states are encoded by the list: [1, 0, 0, 0, 0] (none), [0, 1, 0, 0, 0] (expert), [0, 0, 1, 0, 0]

(novice), [0, 0, 0, 1, 0] (both).

Our data is heterogeneous: different features take different ranges. For example, AU
intensities vary between 0 and 5, whereas head rotation ranges from 0 to 2π. Such data
must be normalized before feeding it into a neural network relying on feature-wise nor-
malization [Bengio, 2012, Chollet, 2017]. Thus, all numerical features vary within the
range of 0 and 1.

The LSLM model allows us to model both sequentiality and temporality of non-verbal
behavior. It takes as input a sequence of features observed during a sliding window of n
seconds (equivalent to m frames) and give the prediction for the next frame. Our model
IL-LSTM has a single LSTM hidden layer to extract features from the input sequence,
followed by a fully connected layer to interpret the LSTM output, followed by four output
layers used for predicting the four output variables (see Figure 7.7).

The IL-LSTM includes a regression task for smile intensity, gaze, and head rotation
prediction and binary classification task for smile activation prediction. We used cross
entropy as loss function for the classification task and mean squared error (MSE) loss for
the regression task. As activation function, we used sigmoid for making binary prediction
and relu (rectified linear activation unit) for regression prediction. When it comes to the
training, we used mean absolute error (MAE) for evaluating the regression scores and
accuracy for the classification predictions. MAE represents the absolute value of the
difference between the predicted scores and the targets, whereas accuracy indicates the
fraction of the correct smile predictions. For evaluation purpose, 80% of data were used
for training the model, 10% for validation, and 10% for testing.

The prediction model takes as input a sequence composed of the last n frames (one
frame is equal to 0.04 second) of agent’s and user’s features and predicts the agent’s
behavior for the next frame. To help fixing the sequence length of the input, we vary n
from 0 to 50; that is we vary the number of past frames we consider to predict the agent’s
behavior at the next frame. We choose 20 frames (for a total duration of 0.8 seconds)
since the model loss stops decreasing after this value.

90



7.4. LSTM MODEL

Figure 7.7 – Our neural network graph with multiple outputs.

7.4.2 Evaluation

We measured the performance of our regression models using the root-mean-square error
(RMSE) and the coefficient of determination (R2). These are widely used measures for
regression problems. The RMSE is defined in Equation 7.1, where ygt are the ground-
truth observed variables, ypred are the predicted values, and N is the number of data
samples:

RMSE =

√
1

N
Σn
i=1(ygt − ypred)2 (7.1)

The coefficient of determination R2 is defined in Equation 7.2, where ygt, respectively
y, are the observed target variables, respectively their mean values, and ypred are the
predicted values. It is based on the ratio between the mean squared errors (MSE) and
the variance in y values (denominator). This measure reflects the improvement over the
average-baseline predictor (ypred = y). When an average-baseline is used, the value of R2

is close to zero. Thus, an under-performing model may yield negative values.

R2 = 1−
Σn
i=1(ygt − ypred)2

Σn
i=1(ygt − y)2

(7.2)

For comparison purpose, we use a baseline predictor that returns the average of each
agent’s behaviors calculated on the past 20 frames. Table 7.3 reports the performance of
our model in comparison to the baseline. We observe that our model significantly outper-
forms the baseline model. When it comes to the performance of predicting each modality,
we observe that our model achieves better performance for the prediction of smile inten-
sity (R2=0.809) than head rotation (R2=0.481), and gaze direction (R2=0.552).

Figure 7.8 shows ground truth and predicted agent’s smile and head rotations. We
observe that predicted smiles appear approximately at same time as the ground truth and
with the same intensity. Regarding head rotations, our model is able to predict head
rotation similar to the ground truth in term of both head rotation direction and value.
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Smile intensity Head rotation gaze

Baseline
R2 -62.985 -1.047 -0.015

RMSE 0.886 0.566 0.784

Our model
R2 0.809 0.481 0.552

RMSE 0.275 0.082 0.068

Table 7.3 – Performance of our model in comparison to the baseline.

Smile Head rotation (x) Head rotation (y)

Figure 7.8 – Plots of ground truth and predicted agent’s smile and head rotations (x and
y) through time.

In this section, we present our IL-LSTM model that takes as input the behavior of the
agent and of the user to predict the agent’s facial expression for the next frame. In the
next Section, we present an interactive system in which our IL-LSTM model is used to
predict in real time the behavior of the agent.

7.5 Architecture

We have created a system where the agent interacts in real-time with a human user. It
takes as input the user’s behavior and computes the agent’s behavior (speech and non-
verbal behavior). It is built upon four modules as illustrated in Figure 7.9:

• User’s behavior analysis: we rely on EyesWeb to detect the user’s behavior.

• dialog management: we use Flipper to define the dialog rules (turn taking and verbal
content) for the virtual agent.

• Agent’s behavior prediction (IL-LSTM): this module uses our LSTM model to predict
the behavior of the agent for the next frame taking as input the behavior of both,
the agent and the user, during the last 20 frames.

• Behaviour generation (GRETA-VIB): the predicted agent’s behavior is fed to the
agent using the GRETA-VIB framework.

In the following, we describe each of these modules.
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Figure 7.9 – Architecture of our system.

7.5.1 EyesWeb: User’s Behavior Analysis

EyesWeb XMI is an open source platform for recording and analyzing human behavior
in real-time [Volpe et al., 2016]. EyesWeb can be connected to different input devices
like camera, Kinect, microphones, etc. It supports real-time synchronized recording of
multimodal channels. It also includes several libraries like OpenFace. Using EyesWeb,
we extract the user’s facial expressions, head movements, and voice activity. Figure 7.10
shows the EyesWeb interface.

7.5.2 Flipper: Dialog Management

During human-agent interaction, the agent must choose the next dialog act depending on
the evolution of the interaction with the user. For example, the agent starts the interaction
by greeting the user, after the user responds, the agent will introduce itself and asks the
user about his name and so on. To select the most appropriate dialog acts (including how
it is instantiated in terms of speech and communicative intentions) of the agent, we use
Flipper [van Waterschoot et al., 2018]. Flipper is an open-source library developed to
specify dialog rules for virtual agents.

In our system, Flipper manages the agent’s speaking turn and sends messages (Agent’s
turn) to EyesWeb to indicate when the agent starts and finishes speaking. For that, Eye-
sWeb sends to Flipper the voice activity of the user (when the user starts and finishes
speaking). Based on the dialog step, Flipper selects the next agent’s speech (augmented
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Figure 7.10 – EyesWeb interface. Relying on OpenFace, EyesWeb extracts the user’s facial
expressions.

Figure 7.11 – Information state of our system.

with communicative intentions and defined in a file following the Functional Markup Lan-
guage FML format [Heylen et al., 2008]).

Flipper defines two concepts, namely the information state and templates to manage
the dialog of a virtual agent. The information state stores the agent’s knowledge of the
interaction (e.g., conversation state). The templates describe the preconditions and ef-
fects of the dialog rules. Preconditions indicate the conditions that should be checked for
triggering a given dialog act (e.g., greeting, asking user’s age, describing a video game).
Effects are the associated updates to the information state. In our system the information
state contains information about the agent, user, and dialog state as shown in Figure 7.11.

We rely on the “current” dialog act of the agent to launch the “next” one. For exam-
ple, after asking the user’s age, the next dialog act asks for user’s country. The template
corresponding to this example is shown in Figure 7.12. This template triggers two events:

• sending the FML file (dialog act: ask user’s age) to the “behavior planner”;

• changing the information state: the “next” step in dialog will be “ask country".
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Figure 7.12 – Example of Flipper template.

Figure 7.13 – SAIBA architecture.

The state of a next dialog (in the example “asking country”) is changed from “next” to
“current” when the user finishes answering the current dialog (in the example “asking the
age”).

7.5.3 GRETA-VIB

GRETA-VIB is used as a virtual agent platform [Pecune et al., 2014]. GRETA-VIB fol-
lows the SAIBA framework illustrated in Figure 7.13 [Vilhjalmsson et al., 2007]. First,
the “intent planner” generates the communicative intentions of the agent (performative,
emotion, backchannel, etc.) and represents them in the Functional Markup Language
(FML) [Heylen et al., 2008].

The “behavior planner” transforms the communicative intentions of the agent into a
set of synchronized multimodal behaviors (e.g., head movements, facial expressions, ges-
ture). The selected behaviors are represented in the Behavior Markup Language (BML)
format [Vilhjalmsson et al., 2007]. Finally, the “behavior realizer” generates the anima-
tions (computed frame by frame) corresponding to the multimodal behaviors described
in the BML file. For example, the “behavior realizer” computes FAPs (Facial Animation
Parameters) frames to animate agent’s facial expression and BAPs (Body Animation Pa-
rameters) frame for agent’s body movement like head and torso movements. See [Pandzic
and Forchheimer, ] for more detail about FAPs and BAPs.

In our system, Flipper replaces the “intent planner” in the GRETA-VIB platform: Flip-
per generates the communicative intentions of the agent and sends the corresponding
multimodal behavior in FML format to the “behavior planner”.
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7.5.4 BehaviorPrediction: Agent’s Behavior Prediction

We are interested in adapting agent’s behavior to the user’s behavior. That is, the agent
not only communicates its intentions but also adapts its behavior in real time to user’s
behavior. Doing so the agent communicates its engagement as well. To reach this aim,
we need to predict which behavior should be displayed by the agent at each moment.
This is realized by adding a specific module to the system architecture. As such, the
“BehaviorPrediction” module is responsible to compute the adaptive behaviors. It operates
at the animation frame level, namely FAPs and BAPs.

Every time step t (i.e., every frame), “BehaviorPrediction” module computes which
facial and body animation parameters (FAPs and BAPs) the agent should display at time
t+1 (i.e., next frame). This module takes as input the user’s and the agent’s facial and body
animation parameters as well as the conversation state over a time window ([t − 20, t[).
The learning time window is fixed to 20 frames. Prediction of the next frame is made
by the underlining LSTM model. Thus, the predicted animation of the agent is computed
from the user’s and the agent’s previous animations.

To start the prediction System, we let pass the 20 first frames of an interaction (we
choose 20 frames based on the model loss as indicated in section 7.4). Then, a sliding
Window determines which frames are used to predict the next frame. The first 20 frames
(f0, ..., f20) of agent and of user are used to predict the agent’s animation for the frame
21 (f21). Then, the frames (f1, ..., f21) of the agent and of the user are used to predict the
agent’s animation for the frame 22 (f22) and so on.

The user’s behaviors are extracted using EyesWeb. EyesWeb communicates with the
LSTM model by sending user’s behaviors and the conversation state. To compute the
conversation state (who is speaking? the agent or the user), EyesWeb relies on user’s
voice activity (detected with the microphone) and agent’s turn (AgentTurn) received from
Flipper.

Flipper sends the FML file to the behavior planner. The behavior planner computes the
multimodal behavior of the agent and sends it to the behavior realizer that computes the
animation of the agent in terms of FAPs and BAPs. Then, before sending each frame to the
animation player, we merge the animation computed from the communicative intentions
with the animation predicted to adapt the agent’s behavior to user’s behavior. We repeat
this operation at every frame. This is done at the behavior realizer level with input from
the “BehaviorPrediction” module. More precisely, at every time step, the “BehaviorPre-
diction” module receives the last 20 frames of data from EyesWeb (user’s behavior and
conversation state) and from the “behavior realizer”. Using this data the “BehaviorPre-
diction” module predicts the agent’s animation using our IL-LSTM model and sends the
predicted values of FAPs and BAPs of the next frame to the “behavior realizer”. This pre-
dicted animation is merged with the animation computed from the BML outputted by the
Behavior Planner. At the moment, we consider only animation parameters linked to head
movement (BAPs), gaze (FAPs: AU63 and AU64) and smile (FAPs: AU12) of the user and
of the agent in the “IL-LSTM” module.
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As indicated in Figure 7.9, the “behavior realizer” receives the agent’s animation (that
we call animationIntentions) from the “behavior planner” (indicating the agent’s inten-
tions) and from the “IL-LSTM” (animationAdaptation) (representing the adaptation of the
agent’s behavior to the user’s behavior). Finally, the “behavior realizer” merges both an-
imation flows (animationIntentions) and (animationAdaptation) in order to allow the
agent to express its communicative intention and to adapt its behavior according to user’s
behavior.

7.6 Evaluation

In order to evaluate our generative model, we design an interactive experiment where our
“BehaviorPrediction” module is used to automatically generate the agent’s behavior taking
into account the user’s behavior. The agent, named Alice, plays the role of a virtual guide
that describes an exhibition about video games to the visitors of a Sciences museums.
We assume that adapting Alice’s behavior according user’s behavior will increase user’s
engagement and satisfaction. That is, our aim is to test if our model that drives the agent’s
behavior would enhance the interaction and user’s experience.

7.6.1 Independent Variables

We test five conditions:

• REF: when the agent does not adapt its behavior.

• HEAD: when the agent adapts its head rotation according to the user’s behavior.

• SMILE: when the agent adapts its smile according to the user’s behavior.

• GAZE: when the agent adapts its gaze according to the user’s behavior.

• ALL: when the agent adapts its head rotation, smile, and gaze according to the user’s
behavior.

The five conditions are tested in a between-subjects design.

7.6.2 Measures

Several studies focus on measuring user’s engagement during human-agent interaction [van
Vugt et al., 2006, Konijn and Hoorn, 2005, H. L. O’Brien and Toms, 2010, Bickmore
et al., 2012]. To evaluate the engagement of the user, we rely on the I-PEFiC frame-
work [van Vugt et al., 2006] illustrated in Figure 7.14. The I-PEFiC model initially in-
troduced in [Konijn and Hoorn, 2005] defines three phases in the establishment of user’s
engagement and satisfaction during human-agent interaction: encoding, comparison, and
response. In the encoding step, a virtual agent is perceived along the dimensions of ethics
(good vs. bad), aesthetics (beautiful vs. ugly), epistemics (realistic vs. unrealistic) and
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Figure 7.14 – PEFiC model [van Vugt et al., 2006]

competence (affordance). During the comparison step, user evaluates the relevance (use-
ful vs. useless) of the agent and attributes a valence (positive vs. negative) toward the
agent. Finally, during the response phase, user’s engagement (i.e., involvement and dis-
tance) predicts the user’s satisfaction: involvement increases the satisfaction whereas dis-
tance decreases the satisfaction (see Figure 7.14). Konijn defined involvement as felt ten-
dency to approach the virtual agent and distance as the opposite feeling of liking [Konijn
and Hoorn, 2005].

Van Vugt et al. proposed a questionnaire to rate the behavior of the agent according
to PEFiC dimensions [van Vugt et al., 2006]. From this questionnaire, we adapt a set of
items to measure the perception of the agent in term of realism (epistemics), competence
and relevance (cf. table 7.4). Moreover, in order to measure the perceived friendliness of
the agent, we used four items from the IAS questionnaire [Wiggins, 1979]: kind, warm,
agreeable, and sympathetic. To evaluate the engagement (involvement and distance) and
satisfaction of the user we rely on items described in Table 7.5). Finally, to measure the
apriori attitude of participants towards the agent, we adopt eight items from the NARS
questionnaire[Nomura et al., 2006]. For all items, answers are on a 5-point labeled Likert
scale (1 =“strongly disagree” ... 5 = “strongly agree”).

7.6.3 Hypotheses

Previous works report that, when a robot adapts its behavior according to the user’s
behavior, users were more satisfied about their interaction with the robot [Fong et al.,
2002, Breazeal., 2004, Woolf and Burleson, 2009]. Thus, we assume that when Alice
adapts its behaviors according to the user’s behavior, the user will be more satisfied about
it in the interaction. Moreover as smiling is a strong cue of friendliness, we expect that
the agent adapting its smile will be perceived as more friendly. Thus, our hypotheses are:

• H.HEAD: when Alice adapts its head rotations, the users will be more satisfied
with the interaction compared to the users interacting with Alice in the reference
condition REF.
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Dimension Item
Realism Alice resembles to a real life person

Competence

Alice is effective
Alice is qualified
Alice is competent
Alice is intelligent

Relevance
Alice motivated me to go and see the exhibit on video game
Alice taught me something

Friendliness

Alice is kind
Alice is warm
Alice is agreeable
Alice is sympathetic

Table 7.4 – Items used to evaluate the perception of the agent.

Dimension Item
Involvement Alice gives me a good feeling
Distance I dislike Alice

Satisfaction
I am satisfied about my interaction with Alice
I appreciated Alice
I would like to talk again with Alice

Attitude

I would feel uneasy if virtual characters had emotions
I would feel relaxed talking with virtual characters
I feel comforted being with virtual characters that have emotions
The word “virtual character” means nothing to me
I would hate the idea that virtual characters were making judgements about things
I would feel very nervous just standing in front of a virtual character
I would feel paranoid talking with a virtual character
I am concerned that virtual characters would be a bad influence on children

Table 7.5 – Items used for measuring user’s engagement and satisfaction as well as user’s
apriori attitude toward virtual agent.

• H.SMILE1: when Alice adapts its smile, the users will be more satisfied with the
interaction compared to the users interacting with Alice in REF.

• H.SMILE2: when Alice adapts its smile, it will be evaluated as more friendly com-
pared to Alice in REF.

• H.GAZE: when Alice adapts its gaze, the users will be more satisfied with the inter-
action compared to the users interacting with Alice in REF.

• H.ALL1: when Alice adapts its head rotations, smile and gaze, the users will be
more satisfied with the interaction compared to the users interacting with Alice in
REF.

• H.ALL2: when Alice adapts its head rotations, smile and gaze, it will be evaluated
as more friendly compared to Alice in REF.
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Figure 7.15 – Our system for human-agent interaction

7.6.4 Protocol

After receiving one participant in the experiment room, we first obtain his consent for
using the participant’s data.

Secondly, participants were asked to fill in a questionnaire about their attitudes to-
wards virtual agents using the NARS questionnaire [Nomura et al., 2006]. Then, we gave
instructions to the participant about the interaction and prepared him to interact with
Alice by setting up the microphone and showing the position where to sit down.

Once the participant was ready, we started our system. At the end of the interaction,
participant filled in a questionnaire to evaluate Alice as well as his satisfaction about the
interaction. We also collected demographic information of the participant such as his
gender, cultural identity, age and education level.

We used a Microsoft’s Kinect 2 for detecting the facial expression and head movements
of the user. The audio of the user is detected using a dynamic headset microphone con-
nected through a TASCAM US-322. To increase the user’s immersion, we used a large
screen allowing displaying the virtual agent at a life-size scale.

7.7 Results

101 participants took part of our experiment; they are almost equally distributed among
the 5 conditions. 50% are female and 95% are native French speakers. The age of partici-
pants is given in Table 7.6.

In Table 7.7, we give Cronbach’s α, mean and standard deviation of each measured
dimension for the five conditions.
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Age group 18-25 26-35 36-45 46-55 55+
Percentage 33% 18.6% 22.7% 18.6% 7.2%

Table 7.6 – Distribution of participants w.r.t their age.

Dimension α REF HEAD SMILE GAZE ALL
M SD M SD M SD M SD M SD

Realism - 1.7 0.92 1.95 0.82 2.10 0.92 2.08 0.90 1.73 0.86
Competence0.88 2.98 1.02 3.45 0.81 3.6 0.73 3.65 1.06 3.18 1.19
Relevance 0.82 2.95 1.83 3.69 0.76 3.97 0.97 3.5 1.24 3.43 1.07
Friendliness 0.89 2.98 1.13 3.01 0.86 3.80 0.83 2.90 0.86 3.86 0.81
Involvement- 2.65 1.22 2.65 1.15 3.52 1.00 2.83 1.33 3.60 1.07
Distance - 2.5 1.12 2.11 1.01 1.76 0.97 1.7 1.09 2.05 0.9
Satisfaction 0.81 2.95 1.38 3.75 0.76 4.1 0.79 3.5 1.1 3.82 0.91

Table 7.7 – Cronbach’s α, mean and standard deviation of each measured dimension for
the five conditions.

To investigate how participants rated Alice in the condition REF and in the other con-
ditions, we conducted unpaired t-tests. The revealed differences are summarized in the
following:

• Alice in SMILE condition is evaluated as more friendly (p = .01) than Alice in REF
condition. Moreover, users in SMILE condition are more involved (p < .01), less
distant (p < .01) and more satisfied about the interaction (p = .01) than users
in REF condition, thus the hypotheses H.SMILE1 and H.SMILE2 are validated. In
addition, Alice is evaluated as more positive on the relevance dimension (p < .01).

• Alice in ALL condition is evaluated as more friendly (p < .01) than Alice in REF. Also
in ALL condition, users are more involved (p = .01), and less distant (p < .01) than
users interacting with Alice in REF. Moreover participants in ALL were more satisfied
with their interaction with Alice compared to the users interacting with Alice in REF
condition, therefore H.ALL1 and H.ALL2 are supported.

• Alice in HEAD condition is evaluated as being significantly more positive on the rel-
evance dimension (p < .01) compared to Alice in REF. No difference could be con-
firmed for the other dimensions including the user’s satisfaction, thus the hypothesis
H.HEAD is not accepted.

• No difference between the evaluation of Alice in REF and GAZE could be found in
term of user’s satisfaction. Thus, the hypothesis H.GAZE is rejected.

Based on the NARS questionnaire, we find that 40%, respectively 30% and 30%, of
participants have a positive, respectively neutral and negative, attitude toward virtual
agents. In order to investigate the effect of participant’s prior attitude on agent percep-
tion, and the bias this can introduce on participant’s engagement, we rely on ANOVA
test. The results reveal a main effect of the participant attitude on the user’s distance
(F (1, 93) = 5.13, p = .02)). Bonferroni test shows that participants with negative atti-
tude are less engaged (more distant (p = .01) and less involved (p = .02)) than those
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with positive attitude. The negative attitude of participants is equally distributed between
the five conditions. Consequently, the effect of attitude of participants on user’s distance
evaluation does not affect our results.

We designed a face-to-face interaction where the agent is displayed on large screen
at a life-size scale. The user may have felt uncomfortable because of the large display of
the agent. This could explain why most users stared at the agent and did not move their
head and gaze. As such, the adaptive behaviors, head movement and gaze, of the agent
were constant throughout the interaction. This could explain the reason our hypotheses
H.HEAD and H.GAZE have been rejected.

7.8 Conclusion

When interacting with each other, we continuously analyze the behavior of our interaction
partners and adapt ours accordingly. We have designed a LSTM model to adapt the agent’s
behavior according to the user’s behavior. To integrate and evaluate our works, we have
created an interaction system where the agent interacts in real-time with a human user.
The system takes as input data from the user, computes what the agent has to say as well
as the corresponding smile, head movements and gaze direction.

The implemented system has been evaluated using a scenario where an agent named
Alice played the role of a virtual guide, presenting an exhibit about video games to mu-
seum visitors. We relied on the assumption that human users would be more satisfied by
the interaction with Alice when its adapts its behavior (gaze, smile and head movement)
depending on the user’s behavior. The results showed that users were indeed more satis-
fied by their interaction with Alice when it adapted its behavior. However, these results
were significant only when Alice adapted its smile to user’s behavior (mainly his smile).
A user-related bias could have prevented from having significant results for the other sig-
nals. During the interaction, most of the users gazed at Alice without doing any postural
shift or even changing gaze and head direction. Therefore, the adaptive behaviors head
movement and gaze of the agent were constant throughout the interaction. They reflected
the behaviors of the user (that was not moving much).
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Take home

• We developed a LSTM-based model to predict the agent’s behavior in response
to the user’s behavior.

• We conceive a study aimed to investigate the effect of adapting agent’s behav-
ior to the user’s behavior on user engagement and satisfaction.

• Participants were more satisfied about their interaction with Alice and rated
Alice more positively when it adapts its behavior according to the user’s be-
havior. However, these results are significant only when Alice smiles in re-
sponse to the user.

103





Chapter 8
Engagement Modeling in Dyadic
Interactions

Contents

8.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

8.1.1 Engagement-Related Behaviors . . . . . . . . . . . . . . . . . . 106

8.1.2 Engagement Prediction . . . . . . . . . . . . . . . . . . . . . . . 106

8.2 LSTM Model for Engagement Prediction . . . . . . . . . . . . . . . . . . 108

8.2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

D
URING the last years, engagement modeling has gained increasing attention
due to the growing number of conversational agents and the important role
that engagement plays in human-agent interaction. The agent should be able
to continuously detect the engagement level of the user in order to react ac-

cordingly. Our aim is to predict the engagement level of the human user during human
agent interaction. Many definitions of engagement have been provided. A survey of en-
gagement definitions in human-agent interaction is given in [Glas and Pelachaud, 2015].
Among the existing definitions, two are commonly used in human-agent interaction. One
of the first definitions that was proposed is by Sidner and colleagues that define the en-
gagement process as “the process by which participants involved in an interaction start,
maintain and terminate an interaction” [Sidner et al., 2005]. Later on Poggi defined en-
gagement as: “the value that a participant in an interaction attributes to the goal of being
together with the other participant(s) and of continuing the interaction” [Poggi, 2007]. En-
gagement is manifested multimodally. In particular, several works studied the role of
upper face expressions such as gaze and smiling in conveying different levels of engage-
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ment [Allwood and Cerrato, 2003, Castellano et al., 2009a]. But, engagement is not
measured from single cues, but from the association of several cues that arise over a cer-
tain time window [Peters et al., 2005, Sidner et al., 2005, Bickmore et al., 2012]. Thus,
for more accurate engagement prediction, we should take into account the sequentiality
and dynamics of engagement-related signals (gaze, smile, etc.). For this we experiment
LSTM networks. The LSTM takes as input a sequence of features occurring within the
last n frames and predict the engagement for the next frame. The potential of LSTM is
important since it can jointly model the temporality and the sequentiality.

In this Chapter, we describe our LSTM-based model for predicting user’s engagement
level during human agent interaction. We first present the most significant works related
to engagement prediction. Then we describe the model architecture and its evaluation.

8.1 Related Works

During human-agent interaction, the user’s engagement is an important aspect to be con-
sidered by the agent. For example, if the agent detects a decrease in the engagement level
of the user, it should adapt its behavior in order to reengage the user in the interaction.
In this section, we first, investigate what are the multimodal behaviors that participate to
a change of perception of the engagement level in a human-agent interaction. Then, we
present an overview of existing models of engagement prediction.

8.1.1 Engagement-Related Behaviors

Engagement can be expressed by both verbal and non-verbal behaviors. It can also be di-
rectly linked to prosodic features [Yu et al., 2004a] and verbal alignment behaviors [Pick-
ering and Garrod, 2004]. Facial expressions are crucial indicators of engagement, for
example, several studies have reported that smiling and head nod can provide informa-
tion about the user’s engagement level [Allwood and Cerrato, 2003, Castellano et al.,
2009a, Yu et al., 2016]. Gaze is also an important cue of engagement level [Sidner et al.,
2003, Peters et al., 2005, Nakano, Yukiko I. and Ishii, 2010], for example, looking at the
speaking partner can be interpreted as a cue of engagement, while looking around the
room may indicate the intention to disengage. Moreover, a correlation has been found
between engagement and several body postures [Mota and Picard, 2003, Sanghvi et al.,
2011]. Turn-taking behavior is also related to engagement as reported in [Sidner et al.,
2003, Cafaro et al., 2016b].

Based on these studies, we decide to predict user’s engagement based on the most
popular features, namely, head movements, gaze, facial expressions (AUs). We also choose
to include turn-taking (conversation state) as recommended in [Sidner et al., 2003].

8.1.2 Engagement Prediction

Over the past decade, user’s engagement has been widely studied in human-agent interac-
tions. Table 8.1 reports an overview of some works related to engagement prediction. For
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each work, we indicate the technique and the features used for engagement prediction as
well as the obtained results.

Reference Goal Feature
types

Corpus Algorithm Class
modal-
ity

Accuracy

[Forbes-Riley
et al., 2012]

disengagement
detection

acoustic, lex-
ical

7K spoken
dialogue
turns

J48 de-
cision
trees

4 68% F-
measure on
disengaged
class

[Castellano
et al., 2009b]

engagement
recognition
with a robot
companion

smile and
gaze

96 samples Bayes
net.

2 94% recall
on engaged
class

[Ishii, 2010] engagement
prediction

gaze 16 min-
utes of
human-agent
interaction

3- gram
patterns

2 71% F-
measure

[Bohus and
Horvitz,
2014]

disengagement
detection

linguistic
hesitation

126K frames Logistic
regres-
sion

2 89% recall
on disen-
gaged class

[Yu et al.,
2004b]

engagement
detection

7K data
records

SVM,
HMM

2 72% recall
on engaged
class, 71% on
disengaged
class

[Dhamija
and Boult,
2017]

contextual en-
gagement pre-
diction

mood and ac-
tion units

8M video
frames

LSTM 5 en-
gag.
levels

55% ± 18%
recall

Table 8.1 – An overview of works related to engagement prediction.

As can be seen from the table, all the works are not interested in the same goal. If
they all focus on engagement modeling as a general purpose, they implement it differ-
ently depending on the task at hand, for example, an important part focus on specifically
detecting disengagement. To do so, most works consider two levels of engagement (binary
classification) and rely on facial expressions as predictive features. The models have been
tested on different datasets and achieved very sparse results. In the binary-class case, the
detection rates of engagement were 71%–95%. The heterogeneous nature of the reported
experiments and results makes it hard to draw any conclusions.

Some of the reported works make use of sequential models to capture the associations
among signals that may arise over a certain time window. HMMs, T-Patterns, and more
recently LSTM, are examples of models that have been used for this purpose. The works
of [Dhamija and Boult, 2017] remain the most similar to ours, since they use LSTM models
and action units as predictive features. They also measure engagement with 5 different
levels, as we do. However, they consider the detection of “contextual” and “self-reported”
engagement, i.e., engagement that is constant and globally characterizes the interaction.
In contrast to that, our model builds on the evolving nature of engagement during the
interaction for a more fine-grained and accurate modeling. Thus, we model engagement
as dynamic variable that change during an interaction as interactants became more or less
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engaged with each other. Such model allows as to adapt the agent’s behavior according to
the predicted engagement level of the user during human-agent interaction.

8.2 LSTM Model for Engagement Prediction

In this section, we describe the developed LSTM model for engagement prediction. We
detail the model architecture and evaluation. But, we first start by presenting the data
and explain how it has been annotated.

8.2.1 Data

Our model has been tested on the NoXi dataset, a corpus of expert-novice interaction [Ca-
faro et al., 2017] (see chapter 7). We have manually annotated the engagement levels of
both expert and novice, but we have semi-automatically annotated the conversation state
of the interaction (who is speaking?) as detailed in Chapter 7. We relied on OpenFace
framework for extracting facial expressions of both expert and novice.

Engagement annotation (manual)
We have annotated each video of the corpus with the perceived level of engagement. We
have followed the recommendations described in [Yannakakis et al., 2017] to reduce and
facilitate the complexity of the annotation task. Thus, five levels have been define to
characterize the changes in the perception of engagement:

• Level1: strongly disengaged;

• Level2: partially disengaged;

• Level3: neutral;

• Level4: partially engaged;

• Level5: strongly engaged.

In order to avoid content biases from the verbal behavior when annotating engagement,
we have filtered it out, for both expert and novice, by applying a Pass Hann Band Filter.
In this way, the speech kept the prosodic information without intelligibility of its verbal
content.

All 20 sessions were annotated by the same annotator except one session that has
been annotated by another annotator. The agreement between the two annotators in
term of Cohen’s Kappa was 0.81. Table 8.2 gives the percentage of occurrence for each
engagement level. As we can observe, both expert and novice are predominantly perceived
by the annotators as partially engaged (level4).

Facial expression extraction
We have used OpenFace to extract Action units (Aus) that represent facial expression
classified based on the FACS (Facial Action Coding System) taxonomy [Ekman and Friesen,
1976] (See Chapter 7 for more details about action units). We also extracted head rotation
as well as the gaze of both expert and novice:
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Level1 Level2 Level3 Level4 Level5
Expert 1.25% 6.33% 14.32% 71.56% 6.51%
Novice 2.34% 10.12% 24.78% 58.05% 4.68%

Table 8.2 – Percentage of each engagement level in NoXi database for expert and novice.

• The intensity (from 0 to 5) of 17 AUs: AU01, AU02, AU04, AU05, AU06, AU07,
AU09, AU10, AU12, AU14, AU15, AU17, AU20, AU23, AU25, AU26, AU45.

• The activation (0 absent, 1 present) of 18 AUs: AU01, AU02, AU04, AU05, AU06,
AU07, AU09, AU10, AU12, AU14, AU15, AU17, AU20, AU23, AU25, AU26, AU28,
AU45.

• Head rotation: rotation is in radians around X,Y,Z axes.

• Gaze direction: gaze direction in radians (gaze_angle_x, gaze_angle_y).

8.2.2 Model

We design a neural network for the purpose of predicting the engagement level of expert
in NoXi database. In order to predict the engagement level, the input of our model is
linked to a set of non-verbal signals: actions units, head rotation, gaze, along with the
conversational state of the interaction. The model has three layers: a LSTM hidden layer
to extract features from the input layer, followed by an output layer (dense) for predict-
ing the engagement level. The Softmax function is used as activation function which is
usually used for multiclass classification. For each input, softmax outputs the probability
distribution of this input over the five engagement levels. For evaluation purpose, 80% of
data were used for training the model, 10% for validation, and 10% for testing. A cate-
gorical cross-entropy was used to compute the loss of the model throughout the iterations.
Finally, a dropout mechanism is implemented in order to prevent over-fitting. Dropout is a
regularization technique for neural network models proposed in [Srivastava et al., 2014].
Dropout consists of randomly removing neurons from the neural network during training.
The dropout probability was fixed to 20%.

To measure the engagement of the expert in the NoXi database we developed three
LSTM models as indicated in Figure 8.1:

• Expert LSTM: this model takes as input the data originating from the expert, namely
her facial expression, gaze direction, head movement and conversational state, to
predict her engagement level.

• Novice LSTM: this model takes as input the data produced by the novice to predict
the engagement level of the expert. The motivation behind this architecture is to
explore assumptions like “whether looking at one interlocutor can be used to predict
the level of engagement of the other interlocutor”.
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Figure 8.1 – Three LSTM models for predicting expert’s engagement level.
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Figure 8.2 – Training and validation loss (top) and accuracy (bottom) w.r.t. the number of
epochs.

• Dyadic LSTM: in this model, we merge data coming from both interaction partners,
the expert and the novice, to predict the engagement level of the expert. By develop-
ing this model, we aim to validate assumptions like “whether looking at both inter-
action partners enhances the engagement prediction of one interlocutor”. Hence, we
better understand the impact of including the behaviors and the reactive behaviors
of the interlocutors on the final predictions.

As can be seen from Table 8.2, our data is highly imbalanced and is mainly distributed
on one major class (Level4). One popular solution to deal with this issue is either over-
sampling the minority class, or under-sampling the majority class [Nitesh V. Chawla et al.,
2002]. Another solution is to parameterize the LSTM (class_weight) with the prior distri-
bution of classes in order to equally penalize the over and under-represented classes in
the training set. We have tested these three solutions to mitigate the effect of imbalanced
data. Results showed that weighting the LSTM model with prior distribution performs
better than the over-sampling and under-sampling strategies.
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Figure 8.3 – F-measure w.r.t the sequence length given as input.

Concerning the other parameters of the model, we vary the number of epochs from
0 to 100. Figure 8.2 shows the training and validation loss for each of these values, and
Figure 8.2 indicates the training and validation accuracy. Both loss and accuracy become
steady after 30 epochs. Based on this observation, we train our network for 30 epochs and
then evaluate it on the test set. Obtained results are given in the next section.

In LSTM model, the prediction model takes as input the last n frames of features and
predicts the engagement level of the expert for the next frame. One frame corresponds to
0.04 second. To help fixing the sequence length of the input, we vary n from 0 to 50; that
is we vary the number of past frames we consider to compute the engagement level at
the next frame. Figure 8.3 shows the F-measure for each of these values. Based on these
results, we choose 30 frames (for a total duration of 1.2 seconds) since the F-measure
stops improving after this value.

8.2.3 Results

In this section, we evaluate the above-described model in terms of prediction accuracy as
well as other criteria to assess the quality and relevance of the used features. Specifically,
we are interested in:

• Evaluating the prediction accuracy of our model and comparing it to baseline pre-
dictors.

• Exploring the effect of dyadic features (relative to the other interaction partner) and
their contribution to the global performance of engagement level prediction.

• Ranking the input features based on their relevance to the engagement prediction
problem.

For the evaluation and comparison of the model, we rely on quantitative measures
from Information Retrieval: recall, precision, and F-measure. For more details on calcu-
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lating these measures, please refer to Chapter 5. The overall F-measure is equal to the
weighted mean of each of the predicted classes.

First, we start by giving the overall accuracy values for the expert’s engagement predic-
tion using several baselines as well as our model, hence we use the Expert LSTM model.
Results are given in Table 8.3. The non-mentioned parameters are left to their default
values as defined in Sickit-Learn package1.

Model Parameters Recall Precision F-measure
Random uniform probability over classes 19% 18% 19%
Naive Bayes - 39% 39% 37%
Random Forest 10 trees, max. tree depth=5 49% 50% 48%
AdaBoost - 50% 51% 50%
Decision Tree max. tree depth=5 50% 48% 47%
Neural Net multilayer perceptron, alpha=1 68% 68% 68%
Our model - 97% 97% 97%

Table 8.3 – Prediction of expert engagement based on different models.

From Table 8.3, we can see that our model (expert LSTM), significantly outperforms
all other predictors in terms of recall, precision, and F-measure. The multilayer perceptron
comes second with a difference of 30 percentage points in terms of accuracy measures. We
believe that the ability of LSTM to capture the dynamic features of non-verbal behavior
(namely sequentiality and temporality) is behind these good results.

To assess the contribution of each feature when taken separately (gaze, head rotation,
AU activation, AU intensity, AU), where AU is the union of actions units related to either
activation or intensity. We train our models by considering one feature at a time. The
F-measure values obtained for each model are reported in Table 8.4. To avoid reporting
too much data here, the precision and recall values are given in Appendix C.

The upper part of Table 8.4 recapitulates the obtained relevance for each feature type.
We observe that the feature AU (i.e. AU activation and intensity) is the most informative
for this task. It achieves single-handedly 91%, whereas head rotation and gaze achieve only
63% and 62%, respectively. Moreover, relying on Action Units the model is able to predict
all engagement levels with very high accuracy. The features head rotation or gaze, when
considered alone, predict very poorly 4 engagement levels out of 5. They often predict the
engagement level 4 that represents the majority class. The features AU intensity and AU
activation are approximately equally discriminant for engagement prediction when taken
separately. Their combination improves the overall accuracy by 15 percentage points.

On the other hand, by considering only the novice’s behavior (while ignoring the ex-
pert’s behavior, as shown in the middle pat of Table 8.4), the model achieves a fairly
good result, almost equivalent to the configuration considering only the expert’s behavior.
This result is consistent with other findings from [Nguyen et al., 2014] where the best
predictors of job interview success for an applicant were those related to the other part-
ner’s (recruiter’s) behavior. Finally, considering the behaviors of both, novice and expert,

1https://scikit-learn.org/
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Features Weighted F-measure specific to each engagement level
F-measure Level1 Level2 Level3 Level4 Level5

Expert LSTM
Gaze 62% 0% 31% 7% 83% 0%
Head 63% 0% 35% 10% 84% 0%
AU intensity 76% 42% 48% 49% 88% 41%
AU activation 73% 45% 46% 48% 86% 22%
AU 91% 86% 86% 84% 95% 75%
All features 97% 96% 95% 94% 98% 93%

Novice LSTM
Gaze 60% 0% 11% 9% 83% 0%
Head 61% 0 0.17 0.08 83% 0%
AU intensity 77% 7% 57% 53% 89% 45%
AU activation 71% 1% 49% 38% 86% 29%
AU 92% 79% 85% 84% 95% 79%
All features 96% 93% 94% 94% 98% 91%

Dyadic LSTM
Gaze 72% 6% 46% 38% 86% 40%
Head 72% 2% 47% 44% 87% 15%
AU intensity 94% 88% 85% 87% 97% 88%
AU activation 92% 86% 87% 85% 95% 80%
AU 98% 96% 95% 95% 98% 96%
All features 99% 95% 96% 96% 99% 97%

Table 8.4 – Prediction of expert’s engagement level using each feature separately (in ad-
dition to their union) for the three different configurations.

simultaneously (see Table 8.4, bottom part) significantly improves the recognition rates.
We can note that the prediction based solely on the feature AU gives an equivalent result
compared to the configuration involving all features.

In this chapter, we focused on an important aspect of human-agent interaction: the
engagement that ensures the interaction to go on. After investigating which behaviors
participate to a change in engagement perception, we focused on facial expressions, head
movements, and turn taking that represent a relevant set of indicators to engagement
prediction. We developed an LSTM model to predict the engagement level of the user. We
trained our model using the NoXi database involving an expert and a novice engaged in a
conversation. The engagement levels of both have been manually annotated. We explored
the contribution of several multimodal features of the expert, namely expert’s gaze, head
and action units, and their discriminating power for the task of engagement prediction.
We also investigated the importance of considering the novice’s behavior for predicting the
engagement of the expert. The obtained results revealed that Action Units contribute more
than gaze and head movement to the prediction of engagement. Moreover, the results
confirmed the importance of considering both partners’ behavior in a dyadic interaction
for engagement prediction. Our model (Expert LSTM) is used in an ECA platform to
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continuously feed the ECA with the predicted levels of engagement of the user[Mancini
et al., 2019].

Take home

• Action Units contribute more than gaze and head movement to the prediction
of engagement.

• Considering only novice’s behavior, while ignoring expert’s behavior gives a
fairly good result to predict engagement, almost equivalent to the configura-
tion of considering only the expert’s behavior.

• Considering both novice’s and expert’s behaviors significantly improves the
recognition rate.

• These results confirm the importance of considering both partners’ behaviors
in a dyadic interaction for engagement prediction.

• Our prediction model is integrated in human-agent interaction in order to
predict, in real time, the engagement level of the user.
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A
social interaction implies a social exchange between two or more persons,

where they adapt and adjust their behaviors in response to their interaction
partners. With the growing interest in human-agent interactions, it is desir-
able to make these interactions natural and human like. In this context, we

aimed at enhancing the quality of the interaction between users and ECAs by endowing
an ECA with the capacity to (1) express different social attitudes, (2) adapt in real time its
behavior according the user’s behavior and its communicative intentions, and (3) predict,
in real time, the engagement level of the user. To achieve all these goals we have lever-
aged the sequentiality and temporality of non-verbal behaviors and relied on appropriate
techniques: temporal sequence mining and recurrent neural networks.

9.1 Summary

9.1.1 Attitude Variation Modeling

Within a human-agent interaction, the agent should be able to adapt and vary its attitude
toward the user according to its role, the behavior of the user, etc. Number of attempts
have been made to model the attitude of a virtual agent based on its non-verbal behavior.
However, these models ignore the temporal information, e.g., starting time and duration
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of non-verbal signals, which could influence and change the perception of these behaviors
as discussed in Chapter 2.5. The novelty of our work was to consider temporality of non-
verbal signals for attitude modeling. It is recalled that our aim was to extract the most
relevant sequences of non-verbal behaviors that trigger a variation in attitude perception
(e.g., what makes the agent appear more friendly?). Thus, we have represented an atti-
tude variation as a temporal sequence of non-verbal signals. We have naturally opted for
sequence mining to extract the most relevant temporal sequences representing attitude
variations.

Temporal sequence mining algorithms build on a predefined temporal distance be-
tween events then group similar events in the same cluster accordingly. The decision to
group similar events is made when the distance comes in under a certain threshold. Exist-
ing temporal sequence mining algorithms have made the choice to fix this threshold once
and for all. Such a choice may turn inefficient, for example, when dealing with real data.
In the case of non-verbal behavior, they do not consider the intrinsic differences between
non-verbal signals that are of the same type. For example, the duration of head move-
ments are typically much shorter than the duration of postures. We have addressed this
limitation by introducing a new temporal sequence mining algorithm, named HCApriori,
specifically designed to overcome the shortcomings of existing algorithms.

HCApriori considers the differences between event types and consequently increases
cluster homogeneity. By comparing HCApriori to the state-of-the-art, we found that our
algorithm significantly overcomes the existing algorithms in terms of extraction accuracy,
defined as the percentage of sequences from the original data that are similar to at least
one pattern from the set of extracted patterns. At the same time, we have improved the
standard metrics, support and confidence, that reflect the quality of the extracted patterns.
Note that these metrics are originally only based on the occurrence frequency of events.
We have extended them by incorporating the temporality criterion for a more relevant and
fairer evaluation.

Building on HCApriori, we have designed a model to extract the temporal sequences of
non-verbal signals conveying four attitude variations in human data: dominance decrease,
dominance increase, friendliness decrease, and friendliness increase. The extracted tem-
poral sequences have been simulated in a virtual agent and evaluated through a perceptive
study. In contrast to previous works, we have evaluated both dimensions of attitudes at
the same time (dominance and friendliness), which allowed studying the interrelation
between the perception of attitudes. By doing that, we have discovered a compensa-
tion effect between the perception of dominance and of friendliness in a virtual agent.
We have also found a high correlation between dominance increase and friendliness de-
crease, which could be explained by the fact that both variation types result from the same
non-verbal behaviors. On the other hand, we were surprised to find out that the patterns
conveying “no attitude” when played by the virtual agent were perceived as expressing
friendliness. The main take-home message from this study was that the extracted patterns
for the different attitude variations from human data, when applied to virtual agents, were
mostly perceived as such by humans.
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The integration of this attitude behavior model has been realized through an attitude
planner to allow virtual agents expressing different attitude variations. This planner takes
as input the attitude variation the agent should express as well as its communicative in-
tentions. First it converts the communicative intentions into a sequence of non-verbal
behaviors, then selects the most relevant patterns that represent the desired attitude vari-
ation. Then, the two sequences are merged into one final sequence conveying both the
communicative intentions and the attitude variation of the agent.

We have used the developed attitude planner to generate the behavior of an ECA taking
as input different attitude variations. Then, a perceptive study was conducted to assess
whether the generated behavior is appropriately recognized as truly expressing an attitude
variation. The results showed that thanks to our attitude planner, the ECA became able
to appropriately express a number of attitude variations, in particular dominance increase
and friendliness decrease. The recognition fails when it comes to the friendliness increase
variation. The high correlation between friendliness perception versus “no attitude” seems
to affect the recognition of this variation. The non recognition of the variation dominance
decrease could be caused by the role played by the agent (here a job recruiter). Acting as
a virtual recruiter could have inferred to the agent a prevalent dominant attitude.

9.1.2 Adapting Agent’s Behavior According to the User’s Behavior

When interacting with each other, we continuously analyze the behavior of our interaction
partners and adapt ours accordingly. In the context of human-agent interaction, most
existing works infer the affective state of the user (e.g., joy, anger, surprise, fear, disgust,
sadness) and adjust the facial expression of the agent appropriately. Feng et al. proposed
another approach to directly predict the facial expressions of one partner in response to
the facial expression of the other partner in dyadic interaction [Feng et al., 2017]. Thus,
the facial expression of one partner is predicted from both partners’ facial expression. This
model was not used to predict the behavior of virtual agent in real time.

We have designed a LSTM model that we called IL-LSTM (Interaction Loop LSTM) to
adapt the agent’s facial expression according to the user’s facial expression. The novelty
of our model was the prediction of agent’s facial expression as a function of both agent’s
and user’s facial expression. To integrate and evaluate our works, we have created an
interaction system where the agent interacts in real-time with a human user. The system
takes as input data from the user, computes what the agent has to say as well as the
corresponding animation. It is built upon four modules:

• User’s behavior detection and analysis based on the multimodal analysis software
EyesWeb.

• Dialogue management: we have used the dialog manager Flipper to define the dia-
logue rules (turn taking and verbal content) for the virtual agent.

• Agent’s behavior prediction based on IL-LSTM to predict the behavior of the agent
for the next frame taking as input the behavior of both agent and user, during the
past frames.
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• Behaviour generation from the predicted agent’s behavior using the GRETA-VIB plat-
form.

The implemented system has been evaluated using a scenario where an agent named
Alice played the role of a virtual guide, and presented an exhibit about video games to mu-
seum visitors. We relied on the assumption that human users would be more satisfied by
the interaction with Alice when its adapts its behavior (gaze, smile and head movement)
depending on the user’s behavior. The results showed that users were indeed more satis-
fied by their interaction with Alice when it adapted its behavior. However, these results
were significant only when Alice adapted its smile to user’s behavior. A user-related bias
could have prevented from having significant results for the other expressions. During
the interaction, most of the users gazed at Alice without doing any postural shift or even
changing gaze and head direction. Therefore, the adaptive behaviors head movement and
gaze of the agent were relatively constant throughout the interaction. They reflected the
behaviors of the user.

9.1.3 Engagement Prediction

In this part of the thesis, we have shed light on an important aspect of human-agent
interaction: engagement. Engagement ensures the interaction to go on without loss of
interest or motivation. After investigating which behaviors contribute the most to a change
of engagement perception, we have focused on facial expressions, head movements, and
turn taking. Those three features represent relevant indicators of engagement. We have
developed a specific LSTM-based model to predict the engagement level of the user, and
trained it on the NoXi database containing expert-novice conversations. We have explored
the contribution of different multimodal features, namely gaze, head and action units,
to the engagement prediction. Results revealed that action units contribute more than
gaze and head movement to the prediction of engagement. We have also investigated the
importance of considering one interlocutor’s behavior for predicting the engagement of the
interlocutor. The results underlined the importance of considering both partners’ behavior
in a dyadic interaction for engagement prediction. Our model has been integrated in an
ECA platform, which allowed us to continuously feed the ECA with real-time predictions
of the user engagement level.

9.2 Limits and Perspectives

In the first part of this work, we have modeled attitude variations of ECA while holding
the speaking turn, but not when being the listener. The same methodology can be used
to design an agent conveying attitude variations when listening to the other interaction
partner. After building the sequences representing attitude variations when a person is the
addressee, we could use HCApriori to extract the most relevant patterns expressing these
attitude variations. Regarding the attitude planner, we need to add a new input to indicate
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the turn of the agent (speaking or listening) in order to select the pattern the agent will
display according to both its attitude variation and its role in the turn taking.

Attitudes are expressed both through verbal and non-verbal behaviors. Several works
showed that combining both non-verbal and verbal modalities led to better attitude recog-
nition of ECAs [Bee et al., , Chollet et al., 2017]. Our model has only focused on the non-
verbal behavior for attitude expression. In [Callejas et al., 2014], the authors proposed a
model to express attitudes verbally. Aspects such as the length of sentences, the variety of
vocabulary or the quantity of pronouns can be taken into account in order to characterize
the perceived attitude of a sentence. For example, a sentence expressed with a hostile
attitude may be longer, may provide more details, and emphasize negative content (e.g.,
using negative expression such as “not earlier than”). One can extend this type of verbal
models, such as [Callejas et al., 2014], and combine it with ours in order to allow ECA to
express attitude variations through both verbal and non verbal behaviors.

In our work, we have focused on attitude variation modeling, i.e., an increase or a
decrease of an attitude. These variations have a given intensity (small, large, etc.). Thus,
the perception of attitude variations could be influenced by its intensity. In our work, we
did not consider the intensity of variation. In the future, we intend to investigate how
the perception of an attitude variation is influenced by the intensity of this variation, then
extend our attitude planner to allow the agent to express attitude variations with different
intensity levels.

We found a high correlation between dominance increase and friendliness decrease.
Both attitude variations were perceived as conveying dominance and hostility. An explana-
tion is that some non-verbal signals have the same effect on the perception of dominance
and of hostility [Knutson, 1996, Tiedens et al., 2000, Carney et al., 2005, Ravenet et al.,
2013]. This assumption needs to be more thoroughly analyzed and validated.

To our surprise, the extracted patterns expressing “no attitude” (attitude value around
zero) were evaluated as conveying friendliness. This could be caused by the annotation
scheme that has been used to annotate the perception of attitudes. Annotators have con-
tinuously indicated the values (between 0 and 1) of the perceived attitudes. As reported
by Yannakakis [Yannakakis, 2018], a drawback with continuous annotation is to provide
low degree of reliability between annotators. To address this issue, the same authors pro-
posed AffectRank: a rank-based annotation tool. This annotation approach should yield
significantly less noise and higher inter-annotator agreement [Yannakakis and Martinez,
2015, Yannakakis et al., 2017]. We plan to use AffectRank to better annotate the perceived
attitudes on the circumplex as indicated in Figure 9.1. For example, the LM (friendliness)
octant could be annotated with “no” friendliness, small friendliness, and large friendliness.

The new annotation scheme, combined with our attitude modeling methodology, would
improve our model by:

• Annotating both attitude dimensions at once when selecting the perceived attitude
on the circumplex.

• Extracting more accurate sequences representing each attitude octant (PA, BC, etc.).
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Figure 9.1 – An example of discrete annotation of attitude using the IPC with three levels
for each octant.

• Better modeling of attitude intensity: for the moment, we do not consider the inten-
sity (large, small, etc.) of attitude variations. Using the new annotation scheme, we
can extract sequences relative to the different intensities of attitude variations.

Concerning behavior adaptation from the gaze and head movement, a bias has been
observed. When the agent adapted its gaze or its head movements, it was perceived in the
same way as if it did not. This result could be caused by the adopted evaluation scenario
where agent and user gazed at each other during the whole interaction. In the future, we
plan to change and enrich the interaction scenarios (e.g., collaborative task) where both
agent and user will gaze at different objects. In such a setting, we expect the participants
will also perform much more head movements.

We designed a model to generate the agent’s facial expressions according to the user’s
facial expressions. Our model consider only smile, gaze and head movement. In the next
future, we plan to consider more facial expressions such as eyebrow movements.

Our model allows the agent to adapt its facial expression but not its speech. We plan
to enhance our interactive system by adapting the agent’s speech according to the user’s
speech. We also plan to enhance our interactive system by adapting the agent’s speech
according to the user’s speech using alignment model such as those proposed in [Campano
et al., 2015].

Our engagement model is integrated in human-agent interaction in order to predict,
in real time, the engagement level of the user. This model relies solely on the user’s be-
havior for predicting her engagement level. However, the results obtained from another
experiment confirmed the importance of considering both partners’ behaviors in a dyadic
interaction (user and agent) for engagement prediction. Hence the importance of consid-
ering both user’s and agent’s behaviors for user’s engagement prediction.

Engagement can be predicted from other behaviors like prosody [Yu et al., 2004a] as
well as gestures [Sidner et al., 2003]. We only investigated the relevance of gaze, action
units and head movement features for engagement level prediction. As future work, we
plan to extend this investigation by considering others features like gesture and prosody.
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Appendix A
Results of the First Study

(1) “strongly disagree”, (2) “partially disagree”, (3) “neutral”, (4) “partially agree”, (5)
“strongly agree”.

Variable M SD (1) (2) (3) (4) (5)
Aggressive 1.93 1.12 46% 28% 18% 3% 3%
arrogant 1.93 0.85 34% 43% 15% 6% 0%
Assertive 2.93 0.92 6% 15% 46% 31% 0%
Compete 2.18 1.04 25% 31% 31% 12% 0%

Cooperative 3 0.89 3% 15% 34% 43% 3%
Depend 2.43 0.96 16% 25% 50% 9% 0%
Defiant 2.18 0.91 34% 31% 31% 3% 0%
Distant 3.25 0.85 6% 28% 37% 28% 0%
Forceful 2.12 0.95 25% 18% 18% 37% 0%
Helpful 2.93 1.18 9% 21% 18% 43% 6%
Cheerful 2.31 0.79 9% 34% 31% 25% 0%
Timid 2.25 1.18 28% 25% 34% 9% 3%

Unauthorative 2.68 1.07 9% 31% 34% 18% 6%
tender 2.56 0.96 6% 12% 43 % 31% 6%

Withdrawn 2.56 1.09 12% 18% 46% 21% 0%
Leader-like 2.50 0.96 9% 34% 28% 28% 0%

Table A.1 – Mean, standard deviation of variables, and distribution of participants’ answers
for DomRef.
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Variable M SD (1) (2) (3) (4) (5)
Aggressive 1.56 0.91 62% 25% 9% 0% 2%
arrogant 2.15 0.98 31% 31% 28% 9% 0%
Assertive 3.03 0.99 6% 21% 40% 25% 6%
Compete 2.43 1.07 15% 46% 21% 9% 6%

Cooperative 3.34 0.82 3% 6% 50% 34% 6%
Depend 2.59 0.91 15% 21% 50% 12% 0%
Defiant 2.76 0.88 25% 25% 37% 6% 6%
Distant 2.81 1.06 12% 21% 43% 15% 6%
Forceful 2.28 0.99 21% 40% 28% 6% 3%
Helpful 3.37 1.15 9% 12% 21% 43% 12%
Cheerful 2.62 1% 12% 34% 34% 15% 3%
Timid 2.73 0.73 18% 31% 43% 6% 0%

Unauthorative 2.59 0.97 15% 37% 28% 18% 0%
tender 2.68 1.09 18% 18% 40% 18% 3%

Withdrawn 2.65 0.78 9% 25% 56% 9% 0%
Leader-like 2.56 1.29 28% 21% 21% 21% 6%

Table A.2 – Mean, standard deviation of variables, and distribution of participants’ answers
for FrRef.

Variable M SD (1) (2) (3) (4) (5)
Aggressive 2.20 0.74 12% 15% 21% 39% 10%
arrogant 3.42 0.79 9% 12% 18% 45% 14%
Assertive 3 0.79 4% 28% 35% 25% 6%
Compete 3.32 0.77 7% 20% 21% 31% 18%

Cooperative 2.29 0.78 21% 37% 31% 7% 1%
Depend 2.68 0.69 9% 26% 51% 10% 1%
Defiant 3.26 0.81 9% 10% 35% 31% 12%
Distant 3.46 0.8 7% 7% 32% 32% 18%
Forceful 3.32 0.83 7% 17% 26% 31% 17%
Helpful 2.52 0.73 10% 39% 32% 17% 0%
Cheerful 2.18 0.65 26% 39% 23% 10% 0%
Timid 2.64 0.77 21% 25% 29% 14% 9%

Unauthorative 2.76 0.81 15% 29% 25% 21% 7%
tender 2.12 0.8 29% 40% 20% 6% 3%

Withdrawn 2.65 0.74 12% 25% 46% 15% 0%
Leader-like 3.1 0.66 12% 12% 32% 35% 6%

Table A.3 – Mean, standard deviation and frequency of participants’ answers for DomInc.
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Variable M SD (1) (2) (3) (4) (5)
Aggressive 2.14 0.74 40% 17% 31% 9% 1%
arrogant 2.29 0.72 35% 20% 25% 15% 3%
Assertive 3.03 0.50 9% 20% 34% 29% 6%
Compete 2.48 0.82 29% 20% 25% 21% 3%

Cooperative 3.03 0.59 3% 28% 39% 21% 7%
Depend 2.76 0.60 10% 21% 48% 17% 1%
Defiant 2.92 0.87 32% 28% 20% 14% 4%
Distant 3.06 0.73 10% 18% 29% 34% 6%
Forceful 2.28 0.71 28% 25% 37% 9% 0%
Helpful 2.90 0.67 1% 37% 34% 21% 4%
Cheerful 2.82 0.80 10% 31% 25% 29 3%
Timid 2.95 0.71 17% 14% 29% 34% 4%

Unauthorative 3.18 0.58 6% 18% 31% 37% 6%
tender 2.76 0.71 7% 32% 39% 15% 4%

Withdrawn 2.81 0.62 10% 29% 31% 23% 4%
Leader-like 2.62 0.62 14% 35% 26% 20% 3%

Table A.4 – Mean, standard deviation and frequency of participants’ answers for DomDec
in the first experiment.

Variable M SD (1) (2) (3) (4) (5)
Aggressive 2.01 0.59 34% 34% 26% 4% 0%
arrogant 2.21 0.55 25% 35% 31% 7% 0%
Assertive 3.04 0.57 3% 21% 43% 29% 1%
Compete 2.56 0.64 10% 42% 28% 17% 1%

Cooperative 3.34 0.67 1% 17% 34% 39% 7%
Depend 2.76 0.59 12% 14% 67% 6% 0%
Defiant 2.31 0.71 26% 25% 40% 6 1%
Distant 2.82 0.48 9% 28% 39% 17% 6%
Forceful 2.60 0.57 12% 28% 46% 10% 1%
Helpful 3.26 0.76 0% 26% 31% 31% 10%
Cheerful 2.78 0.49 4% 35% 37% 20% 1%
Timid 2.51 0.71 20% 26% 35% 15% 1%

Unauthoritative 2.73 0.39 4% 29% 54% 9% 1%
tender 3.1 0.49 1% 15% 53% 29% 0%

Withdrawn 2.82 0.48 4% 21% 59% 14% 0%
Leader-like 2.7 0.49 9% 29% 42% 18% 0%

Table A.5 – Mean, standard deviation and frequency of participants’ answers of variables
for FrInc.
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Variable M SD (1) (2) (3) (4) (5)
Aggressive 2.95 0.65 17% 12% 34% 29% 6%
arrogant 2.92 0.53 10% 20% 39% 25% 4%
Assertive 2.98 0.43 4% 26% 35% 31% 1%
Compete 2.92 0.48 4% 29% 37% 25% 3%

Cooperative 2.85 0.65 10% 20% 45% 18% 4%
Depend 2.79 0.67 12% 15% 53% 17% 1%
Defiant 3.17 0.60 9% 14% 34% 34% 7%
Distant 3.18 0.68 9% 14% 29% 42% 4%
Forceful 3.18 0.47 3% 18% 35% 40% 1%
Helpful 2.87 0.80 10% 23% 34% 29% 1%
Cheerful 2.53 0.64 20% 21% 42% 15% 0%
Timid 2.35 0.82 29% 23% 31% 12% 3%

Unauthoritative 2.53 0.81 21% 21% 40% 12% 3%
Tender 2.54 0.67 20% 20% 43% 15% 0%

Withdrawn 2.43 0.60 21% 17% 54% 6% 0%
Leader-like 3.01 0.52 7% 15% 45% 29% 1%

Table A.6 – Mean, standard deviation and frequency of participants’ answers of variables
for FrDec in the first experiment.
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Results of the Second Study

Variable M SD (1) (2) (3) (4) (5)
Aggressive 2.48 0.639 22% 27% 31% 15% 3%
arrogant 2.54 0.72 18% 31% 31% 14% 4%
Assertive 3.31 0.35 5% 0% 30% 61% 3%
Compete 3.16 0.72 7% 22% 28% 30% 11%

Cooperative 3.30 0.47 0% 16% 43% 32% 7%
Depend 2.85 0.54 3% 21% 65% 7% 3%
Defiant 2.68 0.75 11% 26% 48% 9% 4%
Distant 2.86 0.51 4% 33% 37% 20% 4%
Forceful 3 0.59 3% 29% 37% 23% 6%
Helpful 3.40 0.30 0% 6% 51% 38% 4 %
Cheerful 3.03 0.47 2% 26% 42% 23% 5 %
Timid 2.08 1.02 38% 33% 13% 9% 5%

Unauthorit. 2.7 0.49 2% 38% 47% 9% 2%
Tender 2.91 0.54 5% 31% 31% 29% 2%

Withdrawn 2.82 0.64 7% 16% 65% 9% 2%
Leader-like 3.13 0.54 2% 5% 30% 46% 15%
Dominant 3.68 0.60 4% 25% 33% 26% 10%
Submissive 2.71 0.60 4% 36% 45% 10% 3%

Hostile 2.47 0.75 14% 39% 33% 8% 4%
Friendly 3.31 0.37 1% 24% 28% 33% 12%

Table B.1 – Mean, standard deviation and frequency of participants’ answers for the seven
reference videos.
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CHAPTER B – RESULTS OF THE SECOND STUDY

Variable M SD (1) (2) (3) (4) (5)
Aggressive 3.69 0.40 1% 7% 26% 52% 13%
arrogant 3.66 0.41 0% 7% 33% 44% 14%
Assertive 3.52 0.67 0% 16% 29% 39% 14%
Compete 3.74 0.50 0% 6% 27% 51% 14%

Cooperative 2.54 0.36 5% 45% 39% 8% 1%
Depend 2.9 0.37 0% 20% 69% 9% 1%
Defiant 3.63 0.34 0% 8% 29% 53% 9%
Distant 3.47 0.54 0% 11% 41% 34% 12%
Forceful 3.72 0.44 0% 10% 22% 52% 15%
Helpful 2.67 0.46 5% 42% 34% 14% 3%
Cheerful 2.47 0.46 10% 44% 32% 11% 1%
Timid 2.46 0.45 7% 45% 40% 5% 1%

Unauthoritative 2.76 0.72 8% 32% 35% 21% 2%
Tender 2.38 0.47 14% 48% 23% 10% 3%

Withdrawn 3.19 0.52 1% 16% 52% 23% 7%
Leader-like 3.43 0.58 2% 16% 26% 45% 9%
Dominant 3.79 0.42 0% 6% 25% 51% 17%
Submissive 2.53 0.60 8% 42% 36% 12% 0%

Hostile 3.6 0.42 2% 7% 32% 44% 13%
Friendly 2.43 0.45 12% 45% 28% 12% 1%

Table B.2 – Mean, standard deviation and frequency of participants’ answers of variables
for DomInc.

Variable M SD (1) (2) (3) (4) (5)
Aggressive 2.90 0.89 13% 17% 42% 18% 8%
arrogant 2.88 0.89 13% 16% 46% 15% 8%
Assertive 2.96 0.95 15% 9% 44% 24% 6%
Compete 3.16 1.03 14% 3% 40% 35% 6%

Cooperative 2.95 0.85 15% 12% 40% 24% 7%
Depend 2.72 0.92 13% 23% 48% 6% 8%
Defiant 2.93 0.8 14% 14% 41% 22% 7%
Distant 2.9 0.92 14% 23% 27% 26% 8%
Forceful 2.96 0.90 13% 14% 42% 21% 8%
Helpful 3.07 0.74 14% 11% 35% 30% 8%
Cheerful 2.94 0.90 17% 31% 15% 28% 7%
Timid 2.62 0.97 15% 33% 35% 4% 11%

Unauthoritative 2.75 0.85 15% 21% 40% 17% 5%
Tender 2.85 0.82 14% 25% 27% 25% 7%

Withdrawn 2.88 0.88 13% 8% 63% 7% 8%
Leader-like 3.11 1.01 17% 4% 35% 35% 7%
Dominant 3.06 0.84 14% 10% 40% 24% 10%
Submissive 2.90 0.88 13% 10% 57% 11% 8%

Hostile 2.8 0.88 13% 25% 36% 16% 8%
Friendly 2.97 0.93 13% 22% 27% 26% 10%

Table B.3 – Mean, standard deviation and frequency of participants’ answers of variables
for DomDec
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Variable M SD (1) (2) (3) (4) (5)
Aggressive 2.97 0.29 1% 21% 57% 20% 0%
arrogant 2.95 0.23 0% 20% 64% 14% 1%
Assertive 3.5 0.34 0% 7% 37% 52% 3%
Compete 3.42 0.30 1% 5% 44% 47% 1%

Cooperative 3.21 0.34 1% 5% 61% 32% 0%
Depend 2.7 0.21 0% 31% 68% 0% 0%
Defiant 2.9 0.15 0% 18% 70% 11% 0%
Distant 2.82 0.25 1% 28% 58% 11% 1%
Forceful 3.04 0.35 1% 20% 52% 26% 0%
Helpful 3.36 0.33 0% 4% 52% 42% 1%
Cheerful 3.09 0.22 0% 14% 62% 22% 1%
Timid 2.54 0.29 0% 52% 44% 3% 0%

Unauthoritative 2.63 0.41 2% 46% 41% 9% 0%
Tender 3.16 0.23 0% 17% 47% 33% 1%

Withdrawn 2.95 0.15 0% 6% 91% 2% 0%
Leader-like 3.60 0.30 0% 0% 35% 63% 1%
Dominant 3.35 0.32 0% 7% 48% 42% 1%
Submissive 2.75 0.21 0% 30% 67% 2% 0%

Hostile 2.94 0.26 1% 28% 47% 21% 1%
Friendly 3.17 0.26 1% 17% 40% 40% 0%

Table B.4 – Mean, standard deviation and frequency of participants’ answers of variables
for FrInc.

Variable M SD (1) (2) (3) (4) (5)
Aggressive 3.19 0.45 0% 17% 47% 32% 2%
arrogant 3.14 0.39 0% 15% 55% 29% 0%
Assertive 3.19 0.42 0% 13% 56% 28% 2%
Compete 3.12 0.54 2% 15% 51% 31% 0%

Cooperative 2.98 0.16 0% 11% 78% 10% 0%
Depend 2.86 0.23 0% 18% 76% 5% 0%
Defiant 3.11 0.32 1% 13% 59% 26% 0%
Distant 3.01 0.34 0% 18% 62% 19% 0%
Forceful 3.30 0.33 0% 11% 47% 39% 1%
Helpful 2.95 0.32 0% 19% 65% 15% 0%
Cheerful 3.05 0.32 1% 18% 55% 25% 0%
Timid 2.64 0.45 1% 40% 51% 7% 0%

Unauthoritative 2.67 0.37 0% 40% 51% 8% 0%
Tender 2.86 0.32 0% 29% 54% 16% 0%

Withdrawn 2.90 0.19 1% 15% 75% 8% 0%
Leader-like 3.54 0.37 0% 10% 27% 60% 2%
Dominant 3.38 0.44 1% 6% 47% 42% 2%
Submissive 3.72 0.32 0% 33% 61% 4% 1%

Hostile 3.03 0.32 0% 19% 58% 22% 0%
Friendly 2.80 0.39 0% 35% 47% 16% 0%

Table B.5 – Mean, standard deviation and frequency of participants’ answers of variables
for FrDec
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Appendix C
Engagement Prediction

Mean Level1 Level2 Level3 Level4 Level5

Gaze
Rappel 71% 0% 23% 03% 98% 0%

Precision 62% 0% 47% 53% 72% 0%
F-measure 62% 0% 31% 07% 83% 0%

Head rotation
Rappel 72% 0% 28% 6% 98% 0%

Precision 61% 0% 45% 46% 73% 0%
F-measure 63% 0% 35% 10% 84% 0%

Au intensities
Rappel 77% 32% 44% 45% 93% 29%

Precision 76% 61% 54% 54% 83% 68%
F-measure 76% 42% 48% 49% 88% 41%

Au activation
Rappel 76% 33% 39% 44% 93% 13%

Precision 74% 69% 55% 53% 81% 61%
F-measure 73% 45% 46% 48% 86% 22%

Aus
Rappel 92% 78% 90% 82% 96% 69%

Precision 91% 95% 82% 86% 94% 83%
F-measure 91% 86% 86% 84% 95% 75%

Smile (AU12)
Rappel 28% 30% 0% 25% 41% 74%

Precision 45% 75% 0% 23% 73% 10%
F-measure 30% 43% 0% 24% 53% 17%

All features
Rappel 97% 94% 97% 94% 98% 92%

Precision 97% 99% 94% 94% 94% 98%
F-measure 97% 96% 95% 94% 98% 93%

Table C.1 – Prediction of engagement level using several features and expert LSTM.
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CHAPTER C – ENGAGEMENT PREDICTION

Mean Level1 Level2 Level3 Level4 Level5

Gaze
Rappel 71% 0% 6% 5% 98% 0%

Precision 60% 0% 34% 50% 71% 0%
F-measure 60% 0% 11% 09% 83% 0%

Head rotation
Rappel 71% 0 11% 4% 99% 0%

Precision 61% 0% 4% 54% 72% 0%
F-measure 61% 0% 17% 8% 83% 0%

Au intensities
Rappel 79% 4% 55% 48% 94% 32%

Precision 78% 87% 60% 60% 84% 72%
F-measure 77% 7% 57% 53% 89% 45%

Au activation
Rappel 74% 0% 52% 34% 91% 18%

Precision 72% 1% 47% 44% 81% 65%
F-measure 71% 1% 49% 38% 86% 29%

Aus
Rappel 92% 69% 85% 83% 96% 73%

Precision 92% 93% 85% 86% 94% 86%
F-measure 92% 79% 85% 84% 95% 79%

All features
Rappel 96% 90% 93% 94% 98% 87%

Precision 96% 96% 95% 94% 97% 95%
F-measure 96% 93% 94% 94% 98% 91%

Table C.2 – Prediction of engagement using several novice LSTM.

Mean Level1 Level2 Level3 Level4 Level5

Gaze
Rappel 75% 3% 43% 29% 94% 28%

Precision 73% 66% 50% 54% 80% 66%
F-measure 72% 6% 46% 38% 86% 40%

Head rotation
Rappel 76% 1% 44% 38% 94% 8%

Precision 73% 4% 5% 53% 80% 75%
F-measure 72% 2% 47% 44% 87% 15%

Au intensities
Rappel 94% 84% 79% 89% 97% 83%

Precision 94% 93% 93% 85% 96% 92%
F-measure 94% 88% 85% 87% 97% 88%

Au activation
Rappel 92% 82% 84% 92% 94% 80%

Precision 93% 90% 91% 78% 97% 80%
F-measure 92% 86% 87% 85% 95% 80%

Aus
Rappel 98% 97% 95% 96% 98% 96%

Precision 98% 94% 95% 94% 99% 96%
F-measure 98 96 95 95 98 96

All features
Rappel 99% 93% 97% 95% 99% 97%

Precision 99% 97% 95% 97% 99% 96%
F-measure 99% 95% 96% 96% 99% 97%

Table C.3 – Prediction of engagement using dyadic LSTM.
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