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MODELISATION ET CONTROLE OPTIMAL DE
MICRO-NAGEURS MAGNETIQUES

Résumé:

Les micro-nageurs robotiques permettent d’effectuer des opérations & petite échelle
telles que I’administration ciblée de médicaments et la chirurgie peu invasive. En
raison de la difficulté de miniaturiser des sources d’énergie internes, les méthodes

d’actionnement externes sont préférables aux sources intégrées, une stratégie
populaire étant I’aimantation du nageur ou d’une de ses parties et son
actionnement avec des champs magnétiques externes. L’étude qui suit se concentre
sur les micro-nageurs magnétiques flexibles qui imitent les cellules flagellées comme
les spermatozoides dans leur conception et leur mode de locomotion. Le but de
cette these est d’appliquer des outils numériques de modélisation et de controle
optimal aux nageurs expérimentaux de I'Institut des Systémes Intelligents et de
Robotique (ISIR) afin d’ameliorer leur contrdle et de fournir une méthode
numérique pour la conception de commandes pour les micro-nageurs flexibles. La
premiére étape de cette thése a été le développement d’un modeéle dynamique
simplifié d’un nageur magnétique flexible en trois dimensions, basé sur une
approximation des forces hydrodynamiques et sur la discrétisation de la courbure
et de I'élasticité du flagelle. Une identification des parameétres hydrodynamiques et
élastiques du modeéle permet d’avoir un nageur simulé qui présente les mémes
caractéristiques de propulsion (notamment la réponse fréquentielle du nageur) que
celles mesurées expérimentalement. La seconde étape a été d’utiliser le modéle
développé pour la résolution numérique du probléme de contréle optimal
consistant & de trouver le champ magnétique qui maximise la vitesse de propulsion
du nageur sous des contraintes sur la commande reflétant les contraintes
physiquement imposées au champ magnétique. La derniére étape a été
I'implémentation des champ magnétiques calculés dans le dispositif expérimental
de I'ISIR et ’étude de leur performances expérimentales ainsi que de la capacité
du modele & prédire la trajectoire du nageur.

Mots-clés: Micro-nageurs magnétiques, Natation a faible nombre de Reynolds,
Interactions Fluide-Structure, Controle Optimal.




MODELING AND OPTIMAL CONTROL OF
MAGNETIC MICRO-SWIMMERS

Abstract:

Robotic micro-swimmers are able to perform small-scale operations such as
targeted drug delivery, and minimally invasive medical diagnosis and surgery.
However, efficient actuation of these robots becomes more challenging as their size
decreases. Hence, wireless actuation is preferable over built-in actuation sources,
one of the most popular strategies being the magnetization of parts of the
swimmer and its actuation with an external magnetic field. In this thesis, we focus
on flexible magnetic micro-swimmers that are similar to flagellated cells in their
design and flagellar propulsion. Our goal is to use numerical modeling and optimal
control tools to improve the performance of existing swimmers made at the ISIR
laboratory (Institut des Systémes Intelligents et de Robotique) and to propose a
numerical control design method for experimental flexible micro-swimmers.
Firstly, a simplified 3D dynamic model of a flexible swimmer has been developed,
based on the approximation of hydrodynamic forces and the discretization of the
curvature and elasticity of the tail of the swimmer. By fitting the hydrodynamic
and elastic parameters of our model accordingly, we are able to obtain propulsion
characteristics (mainly the frequency response of the swimmer) close to those
experimentally measured. Secondly, we numerically solve the optimal control
problem of finding the actuating magnetic fields that maximize the propulsion
speed of the experimental swimmer under constraints on the control that reflect
the constraints physically imposed on the magnetic field. The optimal magnetic
fields found via numerical optimization are then implemented in the ISIR
experimental setup in order to benchmark the experimental performance of the

computed controls and the ability of the model to predict the trajectories of the
experimental swimmer.

Keywords: Magnetic micro-swimmers, Low Reynolds number locomotion,
Fluid-structure interactions, Optimal Control.
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Microrobotics is a rapidly growing discipline that has a wide array of poten-
tial application areas such as environmental monitoring and remediation, minimally
invasive medicine, and micro-assembly. These applications often require that micro-
robots swim in a fluid. This is no easy task, as the physics governing swimming at
the micro-scale significantly differs from the physics of swimming at the macroscopic
scale. At very small scales, swimming occurs at low Reynolds number, which means
that viscosity prevails over inertia. This entails that swimming at the microscale
is remote from common intuition because of the absence of inertia. In order to
design microrobots that could efficiently swim at the micro-scale, researchers took
inspiration from biological microorganisms that have evolved various mechanisms
to efficiently swim at the microscale such as bacteria and sperm cells.

Given that built-in energy sources are too difficult to implement at the micro-scale,
most swimming micro-robots are actuated through remote power sources. Arguably,
the most popular remote actuation strategy is the magnetization of parts of the
swimmer and its actuation with external magnetic fields. In the last decade, nu-
merous studies were devoted to the design, manufacturing, and motion control of
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magnetic micro-swimmers, however, most if not all of these studies used empirically
chosen time-varying fields to induce propulsion. For instance, nearly all magnetic
helical swimmers are actuated by rotating magnetic field to induce their corkscrew-
like propulsion, and most flexible magnetic swimmers are actuated by some sort
of sinusoidal magnetic field to induce the deformations necessary for propulsion.
Naturally, these commonly used magnetic actuation patterns are simple, effective,
and popular methods to actuate magnetic swimmers, but this begs the question of
whether they are optimal, and whether better performing time-varying magnetic
fields could be found. This thesis aims at answering this question for flexible mag-
netic micro-swimmers by providing a computational framework for their optimal
control and applying this control design method to an experimental swimmer.

The remainder of this introduction is organized as follows: Firstly, we give a general
presentation of the physical context of the locomotion at the micro-scale. Secondly,
we review the experimental design, actuation, and motion control of magnetic mi-
croswimmers as well as past theoretical and numerical studies that focused on swim-
ming opimization at low Reynolds number. Lastly, we describe the objectives of this
thesis and give its outline.

1.1 Swimming at the micro-scale

1.1.1 The Navier-Stokes Equations

The general governing equations in fluid dynamics are the Navier-Stokes equations,
which, in the case of incompressible Newtonian fluids, take the form :

ou
P ot
V.u =0,

+ p(u.V)u = —=Vp + uV?u + pg, (1)

where v is the flow speed, p is the fluid-pressure field, g is the external force on
the fluid per unit of mass, p is the fluid density and g is the fluid viscosity. The
Navier-Stokes equations can be non-dimensionalized in order to reduce the number
of parameters and to gain insight into the relative magnitude of the terms present
in the equation. Let us consider a characteristic velocity U, a characteristic length
L, and a characteristic time 7" and introduce the following dimensionless variables :

t «_pL

x
- tt=— . 1.2
7 A (1.2)
Scaling the terms in the Navier-Stokes equations using these characteristic scales

leads to the dimensionless form [Pozrikidis & Jankowski 1997] :

ou*
ot*

+ Re w*.Vu* = —Vp* + V?u* + Ri;f,
Fr?|g| (1.3)

B
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2
where g = % is a frequency parameter that expresses the relative magnitudes of

the inertial acceleration force and the viscous force, Re = % is the ratio of inertial
forces to viscous forces, known as the Reynolds number of the fluid, and Fr = %

is the ratio of the flow inertia to the external field, known as the Froude number.
The derivation of the Navier-Stokes equations and their non-dimensionalized form
can be found in fluid mechanic texts such as [Pozrikidis & Jankowski 1997]. In the
absence of external forcing, the time scale T is equal to % and thus (3 reduces to
Re. The Reynolds number describes the transport properties of a fluid or a particle
moving in a fluid. At the macroscopic scale, the Reynolds number is high, which
means that inertial forces are dominant over viscous forces. For example, larger
organisms such as fish or humans swimming in water experience a Reynolds number
in the range of 10* [Muller et al. 2000]. On the other hand, for micro-organisms, the
Reynolds number is between 10~* (for bacteria such as E.coli) and 10~2 (for sperm
cells) [Brennen & Winet 1977|. In this case, the inertial terms in the Navier-Stokes
equations can be omitted, leading to the Stokes equations :

V?u — Vp = —pyg,
{u u—Vp=—pg 14

V. =0,

which provide a good approximation for the flow up to Re = 0.1 [Proudman &
Pearson 1957]. When the force field g is conservative, such as gravity, it can be ex-
pressed as a gradient, which means that it can be lumped together with the pressure
p, hence, the above equations are often written without the force term.

In addition to the Stokes equations, boundary conditions that depends on the phys-
ical setting must be met in order to solve the flow field. In particular, let us consider
a body swimming at low Reynolds number in a fluid. In this context, swimming
is broadly defined as the generation of a net displacement through periodic shape
changes. In this case, the necessary boundary conditions stem from the coupling of
the so-called no-slip condition, which states that the fluid has zero velocity relative
to the surface of the swimmer at the interface, and Newton’s law, i.e. the balance
of forces and torques on the swimmer [Lauga & Powers 2009]. The full derivation
of the equations of swimming at low Reynolds number is not in the scope of this
thesis, and it can be found in [Lohéac & Munnier 2014].

1.1.2 General properties of Stokes flow

One important property of the Stokes flow is that it is instantaneous, meaning
that it has no dependence on time other than through time-dependent boundary
conditions, which entails that the response of the fluid to the motion of boundaries
is instantaneous. As a consequence, in the limit of low Reynolds number, the rate
at which the momentum of a swimmer is changing can be neglected in favor of the
forces from the surrounding viscous fluid, and Newton’s law applied to the swimmer
simplify to a balance of forces and torques.

Another consequence of the time-independence of Stokes flow is that it is reversible
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in time. This entails that a non-zero propulsion can be only achieved if the series
of shape changes undergone by a deformable swimmer are non-reciprocal in time.
This time-irreversibility condition is famously known as Purcell’s "Scallop Theorem"
[Purcell 1977], named after the fact that a scallop cannot generate a non zero net
displacement at low Reynolds number by periodically opening up and closing its
shell.

In [Purcell 1977], Purcell proposed a simple example of non-reciprocal motion by a
theoretical two-hinged swimmer composed of three rigid links rotating out of phase
with each other, which is depicted in Figure 1.1. The two hinges offer two degrees
of freedom and the swimmer can go through a series of angle configurations. The
reciprocal series of configurations ABCBA leads to a zero net displacement of the
swimmer, whereas the non-reciprocal series of configurations ABCDA induces a net
displacement after a cycle.

\
A

7 N
N/ N/ N
B C B A
(a)

L W \//\/ \
B C D A

A

(b)

Figure 1.1: Reciprocal and non-reciprocal configurations of the Purcell swimmer.

In nature, this time-irreversibility condition is met by swimming micro-organisms
in various ways : for example, bacteria such as FEscherichia coli and Salmonella
typhimurimum propel themselves by rotating bundle of flagella that, which cre-
ates travelling helical waves [Powers 2002], single flagellated eukaryotic cells such
as spermatozoa swim by propagating a bending wave in their flagellum [Friedrich
et al. 2010], and ciliates such as Opalina swim by non-reciprocal shape deformations
resulting from the asymmetrical beating of their cilia [Mitchison & Mitchison 2010].
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1 wer stroke
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(a) (b) (c)

Figure 1.2: locomotion methods at the micro-scale [Abbott et al. 2009]: (a) : propul-
sion by cilliary beating,(b):propulsion by flagellar beating, (¢) : corkscrew-type
rotating propulsion

Given the linearity of the Stokes’ equations, the solutions to many complex flows
can be constructed by the superposition of fundamental solutions of the Stoke’s
equations [Chwang & Wu 1975]. The most basic solution is the stokeslet, which is
the solution of the Stokes’ equations generated by a single point forcing F' acting at
the origin in an unbounded fluid. Hence, the stokeslet is the solution of :

uV2u —Vp=—F.5(r),
V. =0, (1.5)

lu|,p — 0 as r — co.

The solutions for the pressure p and the velocity u for u and p vanishing at infinity
are [Chwang & Wu 1975, Hancock 1953]:

1 I rr
—F— =+
ur) =Fem <|r * r3|> ’

F.r
p(T) - 47I'|7"|3 .

(1.6)

Due to the linearity of the Stokes flow, it follows that a derivative on any order of the
fundamental solution above is a solution of the Stokes equations. For example, one
derivative leads to force dipoles, with flow fields decaying as %2 and two derivatives
lead to a source dipole (also known as a Stokes doublet), etc. Another application
for these singularities is the construction of asymptotically accurate solutions of
the Stokes flow using the matched asymptotic expansion method. In particular,
this method was widely used in the early studies of slender filaments deforming at
low Reynolds number, and lead to the development of the Slender Body Theory

framework, which will be detailed in the next chapter.

1.1.3 Numerical methods for the resolution of the Stokes equations

Several theoretical and numerical frameworks of varying accuracy were developed
for the resolution of the Stokes equations in the context of micro-swimmers. The
most sophisticated models use PDE-based methods such as the regularized Stokeslet
method [Rodenborn et al. 2013], which is a method based on the superposition of ex-
acts solutions of the Stokes equations with forces given by regularized delta functions
(hence the name "regularized Stokeslet", as these solutions can be seen as a modified
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expression of the Stokeslet where the singularity has been removed). Another meth-
ods for the resolution of Stokes Flow are the Boundary Element Method |[Ramia
et al. 1993, Pozrikidis et al. 1992], which is a numerical approach for the resolution
of linear partial differential equations that can be formulated as integral equations
(i.e. when the governing equations have an associated Green function), and finite
element methods [Tabak & Yesilyurt 2014]. These methods are too computationally
expensive to be used in the context of our study, given the fact that the elasticity
of the tail of the swimmer and the magnetic effect must be included along with
the hydrodynamic effects, and given our goal to use a dynamical model to compute
optimal magnetic fields. Therefore, in this thesis, we choose to use the Resistive
Force Theory framework [Gray & Hancock 1955], detailed in chapter 2, which is
an approximate method applicable to the motion of slender bodies at low-Reynolds
number. The advantage of using this approximation is that it leads to an compu-
tationally cheap ODE-based model and that it lends itself well to the inclusion of
elastic and magnetic effects.

1.2 Bioinspired Magnetic Microswimmers

The various locomotion methods that have been evolved by micro-organisms to
swim at low Reynolds number inspired the design of biomimetic, micro-scale swim-
ming robots that have the potential to perform a variety of small-scale operations
such as the manipulation and assembly of microscopic components ,targeted drug
delivery [Qiu et al. 2015, Patra et al. 2013], and minimally invasive medical diagno-
sis and surgery [Mack 2001, Fusco et al. 2014]. Given that powering these devices
through built-in energy sources is a challenging task at their scale, most actuation
methods for robotic micro-swimmers rely on wireless remote power sources, such as
light-powered actuation [Dai et al. 2016] , acoustic actuation [Ahmed et al. 2016], or
magnetic actuation [Dreyfus et al. 2005]. Of all wireless actuation methods, mag-
netic actuation is one of the most popular choices. This method of actuation has
been prevalent in the literature for various types of micro-swimming robots, firstly
because of its cost-effectiveness, given that relatively weak time-varying magnetic ( 1
mT) fields are sufficient to induce propulsion at Low Reynolds [Khalil et al. 2014],
and secondly, because of its relative harmlessness to the human body which makes
it suited for potential medical applications, and its capacity to control the direction
of swimming direction by aligning the ferromagnetic parts of the swimmer to the
external field. Most magnetic micro-swimmers are designed using either bacteria
such as E.coli or flagellated cells such as sperm cells as a template. In the first
case, the propulsion at the micro-scale is obtained by rotating an helical propeller
in a corkscrew motion. In the second one, the propulsion is induced by propagating
a traveling wave through the tail of the swimmer. In this thesis, we restrict our
attention to this second type of micro-robots.
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1.2.1 Flexible micro-swimmers

One of the simplest designs for swimming micro-swimmer is based on flagellated
cells like spermatozoa. For this class of robots, locomotion is obtained by magne-
tizing parts of the micro-swimmer and inducing a non-reciprocal deformation of the
tail by actuating the magnetized parts with an oscillating magnetic field. In this
thesis, we will focus on the optimal control of these kind of magnetic swimmers. The
study of flexible magnetic micro-swimmers was pioneered by the experimental work
of [Dreyfus et al. 2005], where the first artificial micrometer-long magnetic swimmer
was constructed. In this work, the swimmer, shown in Figure 1.3(a), was made of
a tail consisting of a flexible chain of magnetized beads connected by DNA links
which are attached to a red blood cell and actuated by an oscillating magnetic field.
This attached red-blood cell is necessary for the locomotion of Dreyfus’ swimmer
because it breaks the symmetry of the travelling wave along the bead chain, which
results in a non-reciprocal deformation. Another way of breaking this symmetry is
to design an asymmetric or imperfect chain of magnetized beads like the nano-bead
chain swimmer of [Benkoski et al. 2010]. Another approach is to design swimmers
with a magnetized head attached to a flexible tail. For example, Khalil et al. [Khalil
et al. 2014] presented a magnetic micro-swimmer which imitates the shape of a
sperm-cell (Figure 1.3,(a)). It was composed of an ellipsoid head and a trapezoidal
tail made of a polymer and a 200nm thick cobalt—nickel magnetic layer that was
patterned on the head, with whole dimension of 5.2um in thickness and 322um in
length, and head dimension of 42um in length and 27 in width. When an alternating
uniform magnetic field is applied, the head part will respond to the applied field to
oscillate and then the tail part will generate propulsion. This swimmers attained a
propulsion speed of 158432um.s~! in water at a weak oscillating magnetic field (less
than 5mT) at a 45H z frequency. An alternative design for flexible micro-swimmers
was proposed in [Pak et al. 2011], were the swimmer was a flexible nanowire com-
prised of a 1.5um long nickel head and a 4um long flexible silver tail bended into
an unsymmetrical shape. It was manufactured using a common template directed
electro-deposition protocol. When a weak rotating magnetic field is applied, the
nickel head will start to rotate and then drive the tail to rotate at different am-
plitude, breaking the system symmetry and inducing propulsion at the speed of
21ums~! (about 4 body lengths per second). Multi-link nanowire-based swimmers
were presented in [Jang et al. 2015] (1.3,(c)). These structures consisted of an elas-
tic and rigid magnetic links joined by flexible polymer hinges. Nanoswimmers with
one, two, and three links were magnetically propelled by oscillating magnetic fields
and exhibited a non-reciprocating motion. While 1- and 2-link swimmers operated
as flexible oars, the 3-link Purcell-like swimmer displayed an S-like motion with the
occurrence of a propagating wave.
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Figure 1.3: Some flexible micro-swimmers in the literature (a) : Design of the
magnetic swimmer presented in [Dreyfus et al. 2005], consisting of magnetic nano-
beads joined by DNA strands. (b): Sperm-like magnetic micro-swimmer [Khalil
et al. 2014] , (¢) : Flexible 2-linked magnetic nano-wire [Jang et al. 2015], (d) :
millimeter-scale low Reynolds swimmer with a magnetic head and a flexible tail
[Khalil et al. 2016].

1.2.2 Helical micro-swimmers

These types of microswimmers imitate the motion of several microorganisms such as
bacteria by rotating a helical flagella to generate a corkscrew-like translational move-
ment. The propulsion of these devices is obtained by applying a rotating magnetic
field to a helical magnetic swimmer with a magnetized head [Zhang et al. 2009, Ma-
honey et al. 2011a,Hwang et al. 2010] or tail [Ghosh & Fischer 2009]. The fabrication
of helical micro/nanostructures is more challenging that flexible tails, because of the
complex three-dimensional geometry of the swimmer, which entails that traditional
microfabrication techniques based on the deposition or removal of thin layers of
material are not adapted. Helical structures have been manufactured by several
methods. For instance self-scrolling [Zhang et al. 2009] consists in creating a pla-
nar bilayer pattern and removing layers while simultaneously applying an internal
stress that makes the layers assemble in an helical structure. This method was
used in [Zhang et al. 2009] to construct the first helical swimmers of a size compa-
rable to E. coli, called "Artificial Bacterial Flagella (ABF)" seen in Figure 1.4 (b),
with a length of approximately 38m and a maximum swimming speed of 18um.s™!
(equivalent to 0.5 body-length per second) under a rotating magnetic field at a 2m7T
frequency. Another method is direct laser writing (DLW), which is a 3D lithography
method that can write polymer structures of arbitrary shapes. This method was
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used in [Tottori et al. 2012] to design claw-shaped helical microswimmers (Figure
1.4,(a)) used to transport objects, with lengths varying from 4um to 65um. Other
fabrication methods include glancing angle deposition [Schamel et al. 2014], which
uses spherical seeds on which helical pillars are grown through the rotation of a
tilted stage during evaporation , template-assisted electrodeposition (TAE) [Zee-
shan et al. 2014], which is a technique for synthesizing metallic nanomaterials with
controlled shape and size, and biotemplating synthesis (BTS) [Schuerle et al. 2012],
which relies on using large biomolecules as a sort of mold for the synthesis of metallic

and inorganic compound nanostructures.

(c)

(b)
(d)

Figure 1.4: Some helical micro-swimmers in the literature (a) : Polymer helical
swimmer with a claw shaped holder head [Tottori et al. 2012] ,(b): Artificial bacterial
flagella [Zhang et al. 2009] , (¢) : Artificial magnetic glass nano-structured propellers
[Ghosh & Fischer 2009], (d) : Helical nanobelt [Hwang et al. 2010].

1.2.2.1 Other designs

Other forms of microswimmers have been presented in the literature. For instance,
the resonant magnetic micro-swimmer of [Frutiger et al. 2010] (seen in Figure 1.5(c))
consists of a spring-mass system of two soft-magnetic bodies joined by a spring and
is actuated by magnetic fields and propelled by the impact between the two parts.
Jellyfish-like micro-swimmers were constructed in [Ko et al. 2012] (Figure 1.5,(a)),
consisting of a central body with four magnetic fins, actuated by time-varying pe-
riodic magnetic fields. Inspired by bacteria such as paramecia, cilliary microswim-
mers were constructed in [Kim et al. 2016](Figure 1.5,(b)) with a non-reciprocal
movement induced by on-off magnetic fields. Achiral microswimmers consisting of
a non-symmetric system of three balls actuated by rotating fields were presented
in [Cheang et al. 2017] (Figure 1.5,(d)). In [Ye et al. 2014|, flexible microswim-
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mers with multiple flagella, actuated by rotating magnetic fields were constructed.
Interestingly enough, it was also shown that a specific shape design might not be
necessary for magnetic propellers, as the works of [Vach et al. 2013, Vach et al. 2015]
demonstrated that structures with random shapes can also be propelled by rotating
magnetic fields. The dimensionless speeds of these randomly shaped propellers were
comparable to those of nanofabricated helical propellers. These results suggested
that randomly shaped propellers may be a suitable choice for applications in which
precise positioning and motion are not needed, and also the existence of alternative
designs to helical swimmers.

(a)

(c)

Figure 1.5: (a) : Jellyfish-like swimmer of [Ko et al. 2012] ,(b): Cilliary micro-
swimmers [Kim et al. 2016] , (c) : Wireless resonant magnetic micro-swimmers
[Frutiger et al. 2010], (d) : Achiral robotic micro-swimmer formed by an asymmet-
rical system of three-balls [Cheang et al. 2017].

1.3 Actuation and Control of magnetic micro-swimmers

1.3.1 Magnetic actuation methods

Several magnetic actuation systems were used in the literature. These systems differ
by the size of the workspace and the degrees of freedom (DoF) that they provide.
Let us consider an actuating magnetic field B, and a magnetic swimmer with a total
dipole moment M. The magnetic force and torque on the swimmer are :

{Fm = M.(VB), an

Tm =M x B.
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The magnetic forces are proportional to the gradient of the magnetic field, and
the magnetic torque is proportional to the magnetic field and acts to align the
magnetization of an object with the direction of the magnetic field.

The simplest designs for the actuation systems of magnetic micro-swimmers rely on
using Helmholtz coils pairs, which generate a homogeneous magnetic field, Maxwell
coils pairs, which generate a magnetic field with a constant gradient or a combination
of both types.

A Helmholtz coil pair consists of two identical circular coils aligned on the same axis
and separated by a distance equal to the radius of the coils with the currents flowing
through the coils that are equal and in the same direction. A Maxwell coil pair is
similar to a Helmholtz coil with the coil distance increased from the coil radius R
to v/3R and the currents are flowing in opposite directions through each coil. Given
that one Helmholtz coil pair can generate a uniform magnetic field in one direction,
three orthogonally arranged Helmholtz coil pairs can generate a uniform magnetic
field in any direction of the space at the center of the setup (see Figure 1.6,(a)).
This is arguably the most popular method to actuate magnetic swimmers with three
degrees of freedom [Mahoney et al. 2011b, Zhang et al. 2009, Ko et al. 2012, Huang
et al. 2014, Frutiger et al. 2010, Xu 2014]. It is difficult to produce "meaningful"
forces with Maxwell coils alone, given that they require higher current intensities
to have a force that’s comparable with the torques generated by the Helmholtz
coils. Accordingly, they are often used in setups that combine both types of coil
pairs. For instance, in [Yesin et al. 2006], coaxial Helmholtz and Maxwell coils are
mounted on a rotating platform to have a three degrees-of-freedom planar motion
control of the microswimmer, whereas in [Jeong et al. 2011|, a pair of Maxwell
coils is added to a 3D Helmholtz coil system to add an uniform gradient to supply
propulsion force for a screw-like microrobot to increase its velocity and give it the
possibility to drill through soft tissue. In [Choi et al. 2009], the combination of two
pairs of Maxwell coils and two pairs of Helmholtz coils (see Figure 1.6,(d)) enabled
the planar motion control of micro-robots in three degrees of freedom. Stronger
gradients can also be generated (at a bigger cost) by using gradient saddle coils,
typically found in MRI systems, like [Mathieu et al. 2006] (Figure 1.6, (c¢)). More
elaborate magnetic actuation systems rely on independently controlling the intensity
flowing through individual coils instead of having the same current per coil, which
allows for more liberty in the shape magnetic field generated, like the 8-Coil systems
in [Kummer et al. 2010a] (Figure 1.6 (b)) and [Diller et al. 2013]. During this
thesis, the experimental magnetic generation setup used consists of three orthogonal
Helmholtz coil pairs and was designed and implemented in [Xu 2014].
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Figure 1.6: (a) : 3D orthogonal Helmholtz coil system used in this thesis [Xu 2014]
,(b): 8-coil magnetic generation system [Kummer et al. 2010a] , (¢) : Gradient
saddle coils [Mathieu et al. 2006], (d) : Electromagnetic actuation system consisting
of two pairs of Maxwell coils and two pairs of Helmholtz coils [Choi et al. 2009]

1.3.2 Localization methods for swimming micro-robots

An important challenge for the control of swimming micro-robots is their localiza-
tion. There are several methods that have been proposed to track these devices.
The choice and effectiveness of the localization methods depend on several factors,
like the spatial resolution that is provided, the frequency at which the position of
the robot is updated (which is important for real-time control), the energetic ef-
ficiency, and the ability to locate the robot inside the body for potential in vivo
applications. For instance, electromagnetic tracking can be used for micro-robots
that are partly or entirely magnetic. This methods relies on a generator that emits
a low frequency electromagnetic field that induces a voltage on the magnetic part of
the swimmer which is picked up by a sensor [Hu et al. 2006]. Magnetic Resonance
Imaging (MRI) systems can also be used for the localisation of micro-robots [Kosa
et al. 2012, Pouponneau et al. 2014]. This method presents the advantage of serving
the dual purpose of actuating magnetic swimmers with field gradients and tracking
them but present some limitations as MRI systems provide images with a low spa-
tial resolution, and are costly and not energy effective. A promising method for the
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localization in soft tissues is the use of ultrasounds, which have the advantage to
provide a good resolution, non invasiveness, and a high framerate (up to 100 frames
per second) [Xu et al. 2005]. Ultrasounds are relatively low-cost but they are limited
by their sensitivity to noise. Lastly, vision-based tracking relies on tracking micro-
robots using cameras in combination with optical lenses. This method cannot be
used for in vivo tracking but presents has several advantages compared with other
imaging methods, as vision-based tracking can provide high spatial resolutions (up
to 200nm) using microscopic lenses at a low energetic cost. Another advantage of
vision-based tracking is that it does not interfere with magnetic actuation, unlike
MRI and electromagnetic tracking systems. The experimental setup used in this
thesis, detailed in Chapter 4, relies on vision-based localization.

1.3.3 Motion Control methods for micro-robots
1.3.3.1 Open loop control

Magnetic actuation has the advantage of allowing the steering of magnetic swimmers
by applying an uniform field to the desired swimming direction. Hence, the magnetic
control can be separated into two component, a static orientating field to steer the
swimmer, and an actuating component that induces propulsion. The form of the
actuating component of the magnetic control depends on the design of the swimmer
and on the magnetic actuation system. For instance, as shown in the previous
sections, rotating fields are used to generate a corkscrew-like propulsion for helical
swimmers [Zhang et al. 2009, Mahoney et al. 2011a|, and sinusoidal fields are used to
induce propulsion for flexible swimmers [Gao et al. 2010a,Khalil et al. 2014, Dreyfus
et al. 2005]. In these two cases, the velocity of the swimmer can be controlled
by acting on the frequency of the actuating rotating or sinusoidal field. Magnetic
field gradients can also be used to pull the swimmer along a given direction as done
in [Yesin et al. 2006]. By controlling the steering magnetic field, it is possible to make
micro-swimmers follow a predefined trajectory. For instance, helical micro-swimmers
were navigated along arbitrary curved trajectories (for example in the shape of
the characters "R" "@Q" or "H" [Ghosh & Fischer 2009] or a U-turn in [Mahoney
et al. 2011b]) using a pre-programmed controller to actuate the magnetic field.
Open-loop teleoperation, where the control is based on visual feedback, and where
the offtrack is corrected manually, can also be used to control micro-robots. For
example, in [Tottori et al. 2012] and [Qiu et al. 2015], targeted cargo transport was
demonstrated by using helical micro-swimmers using open-loop teleoperation, and
in [Khalil et al. 2016] (Figure 1.3,(d)), a sperm-like magnetic swimmer was steered
towards a target while navigating obstacles using teleoperation.

The drawback of open-loop control is that the movement of a swimmer is sensible
to many external factors that can make it stray off-path (thermal effects, non-
uniformity of the magnetic field, boundary effects...), and especially its weight, given
that man-made swimmers are usually heavier than their neutrally buoyant biological
counterparts. Thus, gravity compensation is important for heavier swimmers, either
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by taking the apparent weight of the robot into consideration when calculating the
command [Mahoney et al. 2011b] or by generating external forces to counter the
weight, as done in [Jeong et al. 2011] where an upward vertical magnetic force is
generated by Maxwell coils to compensate the gravity.

1.3.3.2 Closed loop control

Closed-loop control of microrobots is a way to overcome the drawbacks of open-
loop control, mainly their sensitivity to perturbations generated by thermal noise,
boundary effects, or non-buoyancy. For holonomic microrobots driven by magnetic
fields, which are generally designed to be pulled by magnetic gradients, a simple
proportional-derivative (PD) or proportional-integral controller can be for the point-
to-point control of their position [Kummer et al. 2010b, Pawashe et al. 2011]. How-
ever, most bimomimetic micro-swimmers are nonholonomic, which means that they
are a mechanical system with constraints on the velocity that are not derivable for
position constraints. This entails that simple controllers on the position of the mi-
crorobot such as a proportional-integral-derivative (PID) controller on their position
cannot be used, thus, velocity-independent control is needed. For helical and flex-
ible swimmers, a closed loop planar path-following algorithm, was introduced and
implemented in the experimental setup used in the present work during the thesis
of [Xu 2014] and was later generalized for 3D trajectories in [Oulmas et al. 2016].

1.4 Optimal swimming at Low Reynolds Number

A large part of the literature has been devoted to the swimming optimization at low
Reynolds number. These works were in part motivated by the recent development
of swimming micro-robots and the desire to optimize their design and actuation.
Another motivation for the study of swimming optimality at low Reynolds is to pro-
vide insight into the evolutionary processes of biological micro-swimmers by showing
that the locomotion strategies at low Reynolds observed in nature are optimal in the
sense that they evolved in order to maximize a given energetic or efficiency-based
cost.

1.4.1 Optimization of self-propelled micro-swimmers

As a consequence of the instantaneity of Stokes flow, the net distance traveled by
a deforming swimmer does not depend on the rate at which it is being deformed,
but only on the geometry of the shape change sequence undergone during its de-
formations. Hence, optimizing locomotion of swimmer at low Reynolds amounts to
finding the optimal shape changes that it must undergo in order to propel.

The cost function traditionally used for characterizing and optimizing micro-
swimmers is the Lighthill efficiency [Lighthill 1975], which is the ratio of the power
required to drag the swimmer in its straightened configuration to the average power
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exerted mechanically against viscosity. This is a quantitative measure of the "ef-
ficiency" at which the swimmer overcomes the drag of the surrounding fluid. In
[Lighthill 1975], Lighthill characterized the optimal waveform of an infinitely long
one-dimensional flagellum assuming that deformations were in the shape of a planar
traveling wave using the resistive force theory framework. This work showed that the
optimal flagellar wave form has a constant tangent angle to the swimming direction,
which leads to a helical shaped wave in three dimensions and a smoothed saw-tooth
traveling wave in two dimensions. Numerical experiments showed that the planar
waves prescribed by Lighthill remained optimal in the case of finite flagella [Piron-
neau & Katz 1974, Tam 2008]. In [Spagnolie & Lauga 2010], The internal elacticity
of flagella was taken into account in the energetic cost in order to similarly compute
energy-optimal waveforms, which are found to be smooth regularizations of the clas-
sical sawtooth solutions of Lighthill. Another area of study is the optimization of the
geometry of swimming flagellated micro-organisms, in particular the length of the
flagellum and the dimensions of the head (often represented by a sphere or an oblate
spheroid). In the case of a flagellated swimmer with a spherical head, assuming a
planar sinusoidal deformation, the optimal ratio was between the length L of the
flagellum and the ratio a of the body was determined to be L/a &~ 25 using slender-
body theory [Higdon 1979b]. For helical waveforms, this ratio is closer to 10..12 [Hig-
don 1979¢c|. Other works devoted to the optimization of biological micro-swimmers
include the optimization of feeding current for tethered cells [Higdon 1979a], and
the influence of cell geometry on the optimal flagellar waveform [Tam 2008, Fujita
& Kawai 2001]. Following these initial works, where the swimming optimization
was mostly made under the assumption that the deformations were in the form of a
travelling wave, the development of simple swimmer models lead to theoretical and
numerical studies of the optimal deformation patterns without any presuppositions
on the shape of the optimal deformations. For swimmers with a discrete shape (i.e.
a shape that is described by a finite number of variable), a notable example is the
numerical optimization of the actuation and design of the Purcell swimmer [Becker
et al. 2003, Tam & Hosoi 2007], which is a simple, three-linked swimmer capable of
motion by non-reciprocal motion introduced by Purcell in [Purcell 1977]. A general
control-theoretical framework for the stroke optimization of axisymmetric swimmers
with a discrete shape was introduced in [Alouges et al. 2009], with application to the
optimization of the three-spheres swimmer model of [Najafi & Golestanian 2004].
For swimmers with continuous degrees of freedom, a geometrical approach was used
to derive optimal swimming of deforming spheres and cylinders at low Reynolds
number in [Shapere & Wilczek 1989] under the assumption of low-amplitude defor-
mations, and [Avron et al. 2004] for large deformations.

1.4.2 Optimization of magnetic micro-swimmers

The initial experimental study of [Dreyfus et al. 2005] motivated a series of exper-
imental and theoretical studies on the optimization of magnetic micro-robots but
most of this body of work focused on the optimal design of these devices under a
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presupposed magnetic actuation. For example, in [Walker & Keaveny 2013], the
shape of the propeller of a rigid swimmer was optimized for energetic and velocity
costs assuming a rotating magnetic field. In this work, a boundary integral for-
mulation [Pozrikidis et al. 1992] was used for the modelisation of the Stokes flow
around the swimmer. The infinite dimensional optimization problem was then dis-
cretized using a collocation method [Keaveny & Shelley 2011] and then solved using
a variational gradient descent method. Similarly, in [Roper et al. 2008, the geomet-
ric parameters of a flexible magnetic filament based on the experimental swimmer
of [Dreyfus et al. 2005] was optimized under a sinusoidal magnetic field, along with
the actuating frequency and field strength. In [Gadélha 2013|, a simple model of
a sperm-like swimmer consisting of an magnetized head attached to a flexible tail
was used in order to study the influence of the geometry of the head and the com-
pliance of the tail on the optimal amplitude and angular orientation of the applied
oscillating field.

1.5 Thesis Objectives and Outline

In summary, there has been a substantial body of work on the design, fabrica-
tion,shape optimization, and motion control of magnetic micro-swimmers. How-
ever, most of the experimental studies on micro-swimmers still rely on on empirical
choices of the magnetic actuation, using empirically chosen time-varying fields to
induce propulsion. On the other hand, due to the fact that the locomotion at
low-Reynolds number is inherently geometrical, there has been numerous control-
theoretical studies on the optimal locomotion of self-propelled swimmers. Although
these optimization studies are interesting in their own right, these results cannot be
exploited in most experimental settings because the shape of magnetic swimmers
cannot be controlled under the sole action of the actuating magnetic field.

This thesis aims to bridge the gap between the experimental studies on magnetic
micro-swimmers and the optimal control studies that were focused on self-propelled
swimmers by providing a framework for the numerical computation of optimal actu-
ation for flexible magnetic micro-swimmers and experimentally validating the com-
puted optimal fields on a flexible low Reynolds number swimmer. Our approach is
based on the numerical resolution of optimal control problems under the constraints
of an approximate dynamic model of the swimmer’s displacement.

The first contribution of this work, detailed in Chapter 2, and a key part of our
optimal control design method, was the development of an approximate 3D dynamic
model that predicts the trajectory of a magnetic micro-swimmer under a given mag-
netic field. The model is based on the simplification of the low Reynolds number
hydrodynamics using the Resistive Force Theory framework [Gray & Hancock 1955]
and on the discretization of the shape of the swimmer. With this model, we aimed to
achieve a trade-off between the accuracy of the simulated trajectories in predicting
the horizontal displacement of an experimental swimmer and the numerical com-
plexity of the model, as it needs to be computationally inexpensive enough to be
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used to numerically solve optimal control problems. Due to the simplification of the
hydrodynamic and elastic effects, and the discretization of the shape of the swim-
mer, the dynamics of the swimmer are a ODE controlled system that is affine in the
components of the actuating magnetic field, and thus the optimization of the dis-
placements of a flexible magnetic swimmer amounts to solving a finite-dimensional
optimal control problem. By fitting the hydrodynamic and elastic parameters of
our model accordingly, we are able to obtain propulsion characteristics (mainly the
frequency response of the swimmer) close to those experimentally measured.

In Chapter 3, we address the optimal control problem of finding the actuating
magnetic fields that maximize the propulsion speed of the experimental swimmer
and solve it numerically, using the model developed in chapter 2 as a dynamic con-
straint. The goal of this chapter is to present better performing alternatives to the
sinusoidal actuation that is prevalent in the literature. In particular, we solve the
optimal control problem of maximizing the horizontal displacement of the swimmer
under various constraints on the actuating magnetic field that mimic the degrees of
freedoms provided by experimental magnetic field generation setups. Two classes
of optimal control problem are solved. The first one consists in maximizing the
displacement of the swimmer over a fixed time frame and their solutions gives a
physical limit of the swimming speed that can be achieved with a magnetic field.
The second class of optimal control problems is more application-orientated, and
consists in maximizing the displacement of the swimmer under the constraint of a
periodic deformation. The aim of this latter formulation is to obtain an optimal
actuation pattern that can be indefinitely repeated over time in order to drive the
swimmer in experiments. One of the main findings of this numerical study is the
computation of non-planar actuation patterns that leads to novel 3D trajectories
for flexible low-Reynolds swimmers.

Lastly, Chapter 4 is devoted to the experimental implementation of the computed
optimal actuation using the setup developed in the previous PHD theses of [Xu 2014]
and [Oulmas 2018|, showing that the dynamic model developed in chapter 2 can be
used to design optimal controls that are usable in experiment, and that it can accu-
rately predict the horizontal displacement of an experimental low-Reynolds swim-
mer.
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2.1 Introduction

To reiterate the goal of this thesis, we aim to develop a computational framework for
the optimal control of experimental flexible magnetic low-Reynolds swimmers. To
achieve this, the first step in this study is to develop a computationally inexpensive
dynamic model that is able to predict the displacements of the experimental ISIR
swimmer in 3D under a given actuating magnetic field. Simulating the displace-
ments of flexible magnetically driven low-Reynolds swimmers is a complex problem
because of the coupling between the hydrodynamic effects, the elasticity of the tail,
and the magnetic action, and thus a full description of the dynamics of the swimmer
would require the resolution of a system of coupled partial differential equations that
is too costly to be used in an optimization process. Hence, the main difficulty of
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developing the model was the necessary trade-off between its accuracy, as it needs
to reliably predict the displacements of the experimental swimmer, and its numer-
ical complexity, as it needs to be computationally inexpensive enough to be used
to numerically solve optimal control problems. To tackle this trade-off, a simplified
approach to modeling the swimmer in 3D was used where the hydrodynamic effects
are simplified by using a local drag approximation (Resistive Force Theory [Gray
& Hancock 1955]) and where the shape of the tail is discretized into an articu-
lated chain of N slender rods, generalizing the planar swimmer models of [Moreau
et al. 2018, Alouges et al. 2013]. Using these simplifications, the dynamics of the
swimming robot are written as a ODE control system that is affine in the compo-
nents of the actuating magnetic field.

The dynamic modeling of a slender-self propelled swimmer, were it is assumed that
there is no external forces and torques acting on the swimmer and that it propels by
controlling its shape deformations, will also be presented in this chapter. Although
this latter formulation is not the main object of study in this work, it shows that
the model developed here is a useful and computationally inexpensive tool for the
modelisation of biological flagellated micro-swimmers, and it will be used to bench-
mark the hydrodynamics of the model by simulating the 3D sperm cell trajectories
of [Jikeli et al. 2015].

This chapter is organized as follows: First, we describe the Resitive Force The-
ory (RFT) framework, and its origins stemming from the study of biological mi-
croswimmers. Next, we give an overview of the RFT-based modelisations of flexible
filaments at low Reynolds number. Following this,we present the dynamic model de-
veloped during this thesis and derive the equations of motion for a self-propelled low-
Reynolds swimmer and for a magnetically actuated swimmer with a passive elastic
tail. The self-propelled swimmer model is used to qualitatively validate the hydro-
dynamics of the model by reproducing the sperm cell trajectories observed in [Jikeli
et al. 2015]. After this validation, we show that our magnetic micro-swimmer model
can predict the horizontal displacements of experimental low Reynolds swimmers
after fitting the elastic and hydrodynamic parameters to experimental data.

2.2 Resistive Force Theory approximation

2.2.1 Overview

Resistive force theory (RFT) was introduced by Gray and Hancock in [Gray &
Hancock 1955], based on prior work by Hancock in [Hancock 1953] to approximate
the hydrodynamic forces on a slender filament deforming at low Reynolds number
by neglecting the interactions on the global scale in favor of the local anisotropic
friction of the surface of the slender body with the nearby fluid. The gist of this
theory is that, at low Reynolds number and for a very slender filament, one can
establish a linear relationship between the viscous drag density on an infinitesimal
section of the filament and its velocity relative to the surrounding fluid.From this,
one is able to compute the viscous forces and torques on a moving and deforming
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slender filament by summing the density over the filament. Neglecting the inertial
effects due to the low Reynolds approximation, the equations of motion for the
filament stems from the balance of the hydrodynamic forces and torques.

Let us consider a thin filament with a circular cross section immersed in a fluid,
assuming Stokes flow and a point x(s) of arclength s, on the filament. We decom-
pose its velocity &(s) into tangential, normal, and binormal components :

#(s) = 2(s).T + x(s).N + 2(s).B. (2.1)

The RFT states that the hydrodynamic force density f(s) can be approximated as

f(8) =kx(s). T + ki z(s).N +k 2(s).B, (2.2)

Where k|| and £, are the RFT coefficients and depend only on the geometry of the
swimmer. From this, the net hydrodynamic forces and torques (around an arbitrary
point xg on the filament are computed in this form :

L
F_/o f(s)ds, (2.3)

and

L (2.4)
7= [ (wits) = w0) x f)is

In addition to the temporal symmetry breaking condition arising from the time
reversibility of the Stokes equations, a non zero net displacement of the filament can
only be attained if spatial symmetry is broken as well by having the tangential drag
on the moving filament swimmer lower than the normal drag, or, in another words,
by having the propelling tail present friction anisotropy with the surrounding fluid,
[Gray & Hancock 1955, Alvarez et al. 2014], which entails k; > k| as a condition for
propulsion. In the limit of an infinitely slender filament, the anisotropy ratio between
the perpendicular and parallel drag coefficients for biological flagellated swimmer
is equal to 2, as shown in [Gray & Hancock 1955]. In nature, this anisotropy ratio
is closer to 1.7-1.8, as measured experimentally in studies such as [Brokaw 1965,
Friedrich et al. 2010] .

The difficulty in using RFT lies in determining the values of the drag coefficients.
Most theoretical studies derive these values from an approximate analysis of the
flow around the slender body using slender-body theory, which consists in taking
into account the slenderness of a body immersed in a low Reynolds number fluid in
order to approximate the flow around it. The method to construct such approximate
solutions of the Stokes flow is by distributing fundamental singularities of the Stokes
flow along an axis of the body in order to satisfy the no-slip boundary condition. For
example, in the work [Hancock 1953], which served as a basis for the development of
Resistive Force Theory in [Gray & Hancock 1955], the asymptotic solution of the flow
around an infinitely slender filament deformed by a travelling wave was constructed
by placing two types of singularities of the Stokes equations along the line of the
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centres of the cross-sections of the filament. The first singularity is the fundamental
solution generated by a single point force, known as a Stokeslet. The second one
is the fundamental solution generated by a point source dipole, also known as a
"Stokes doublet". The asymptotic solution is then constructed by placing these two
singularities along the centerline of the filament, choosing the weightings in order to
satisfy the no-slip boundary condition. From this approximate solution, as shown
in [Gray & Hancock 1955], a linear relationship between the drag forces and the
velocities can be established by discarding the terms where the slenderness ratio
appears. From this, Gray and Hancock proposed values for these coefficients under
the assumptions that the filament is infinitely slender and that it is deformed by a
sinusoidal wave :

by 2mp
I log(2) — 17 (2.5)

where p is the viscosity of the fluid, r is the cross-sectional radius of the filament
and A is the wavelength of the flagellar beat pattern. Here, the anisotropy ratio
% = 2 is a consequence of considering an infinitely slender filament. In nature,
most flagellated swimmers have an anisotropy ratio closer to 1.6 — 1.8 (as measured
in experimental studies such as [Brokaw 1965, Friedrich et al. 2010]. These initial
values have been improved upon in a variety of subsequent works. For example
in [Lighthill 1976], the proposed values for the coefficients take the following form
for a filament deforming by travelling helical wave or a planar bending wave of small
amplitude are :

dmp
I = Togto1sn)
a
o (2.6)
L= Tog(0.18))

a + %

These "classical" analytical values for the drag coefficients allowed for an ac-
curate analysis of the movement of some flagellated micro-swimmers, but were of
limited use for other cases due to the underlying simplifying assumptions that they
were derived from, mostly the flagellar waveform and its amplitude. Another point
of inaccuracy is the fact that these coefficients stem from a first-order approxima-
tions where the errors terms are logarithmic with respect to the slenderness ratio
( [Lighthill 1976, Cox 1970]), which are non negligible even in the case of flagella
where the slenderness ratio is around 1073, However, with the advent of new tech-
nologies that allowed high-precision measurements of the kinematic data and/or the
viscous forces of slender micro-swimming organisms, it is now possible to character-
ize the values of the RFT coefficients from experimental data. For example, they
have been experiments where the RFT coefficients have been evaluated using kine-
matic data from high-speed imaging [Schulman et al. 2014, Friedrich et al. 2010].
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Another method is to perform average force measurements in optical trap, as done
in [McCord et al. 2005, Chattopadhyay et al. 2006].

2.2.2 Limitations of Resistive Force Theory

The main limitation of Resistive Force Theory based modelisations is that it neglects
long-range hydrodynamic interactions. Hence, the RFT is inaccurate for geome-
tries where these interactions are important, for example in the case of swimmers
that propel by rotating an helical flagella, and for configurations where the flexible
filament is curled up or where the filament must provide a substantial thrust to
overcome the drag on an attached cell body, as with bacteria for instance [Rorai
et al. 2019, Giuliani et al. 2018, Spagnolie & Lauga 2011].

2.2.3 Elastohydrodynamic Formulations and numerical methods

The usefulness of Resistive Force Theory resides in the fact that it’s simple enough
to be included in more complex models. In particular, it can be used in frameworks
that take into account elastic deformation in order to model the fluid-structure
interactions of inextensible elastic filaments at low Reynolds number. One of the
main biological applications for these models is the study of the internal mechanics
of flagellar bending in biological micro-swimmers, as it is done in [Fu et al. 2008,
Spagnolie & Lauga 2010, Gadélha et al. 2010]. The other application for these
simplified elastohydrodynamic models is the modelisation of the passive tails of
driven filaments and in particular, magnetic micro-swimmers [Wiggins et al. 1998,
Lauga 2007, Roper et al. 2008, Gadélha 2013].

Continuous, PDE-based models were used in numerous studies to describe the
fluid structure interaction [Tornberg & Shelley 2004, Lowe 2003|. In these mod-
els, the force balance between the elastic force and the hydrodynamic drag leads
to a hyperdiffusive fourth-order PDE subject to boundary conditions that ensure
the inextensibility constraint. These models are more often than not numerically
expensive and thus generally reduced to the planar case. A popular way to cir-
cumvent the numerical drawbacks of these continuum mechanics-based models is to
use methods based on the shape discretization of the filament into a sequence of
rigid parts. In these methods, the elasticity of the filament is approximated using
various methods such as discrete Cosserat rod models [Gazzola et al. 2018], discrete
bead models [Plouraboué et al. 2017], or simply by using elastic connectors at each
junction between the rigid parts [Alouges et al. 2013,Moreau et al. 2018].

Let us consider a passive elastic filament of length L and bending stiffness A
in a low Reynolds number flow and assume that it is deformed by a waveform of
frequency f. The dynamics of the filaments can be shown to be fully characterized

by the dimensionless number S, = ﬁ , called the Sperm Number. S, encodes
ku_2ﬂ'f 41
the relative importance of the elastic forces compared to the viscous drag. In nature,

spermatozoa operate roughly at S, = 7, as measured in [Lowe 2003]. For driven
flexible micro-swimmer, adimensional studies using the sperm number can be made
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in order to optimize propulsion speed by finding its optimal value for an oscillating
actuating, effectively finding the optimal balance between the bending and viscous
forces in order to maximize propulsion speed [Lowe 2003, Dreyfus et al. 2005].

2.3 3D magnetic micro-swimmer model

2.3.1 Overview

The model swimmer, represented in figure 2.1, is comprised of a spherical head of
radius r and a slender flexible tail of length L approximated by an articulated chain
formed of N rigid slender rods of length . Each link can freely rotate with respect
to its neighboring links. The orientation of each link in the space relative to the
head represents a discrete approximation of the shape of the flexible tail, as done in
the planar swimmer models of [Moreau et al. 2018, Alouges et al. 2013].

Head's Frame

Rn= (Oh~32-e'y" e})

-

i-th link

e;

o) Y

Fixed frame :
Re=(0,eyey.€,)

Figure 2.1: 3D swimmer model with N-linked discretization of the tail.The swim-
mer’s head frame is oriented relative to fixed and galilean the reference frame. For
each link 7, the corresponding local frame R; is oriented relative to Ryp,.

2.3.2 Parametrization and Kinematics of the swimmer
2.3.2.1 Parametrization of the swimmer

We define Oy, as the center of the head and O; as the point where the first link

is attached to the head. We consider a moving frame Rpeqq = (Oh,eg,eg,e’z‘)

associated to the head of the swimmer, where e is the unit vector verifying

O, =0, —rel, (2.7)
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and ez, e’; are arbitrarily chosen to form an orthonormal basis. To this moving frame

we associate the matrix Rpeqq € SO(3) defined by

h h h
Rheqd €x = € Rhead €y =€ Rhewaez = €,- (28)

Yy )

This rotation matrix is parametrized by three angles (0,,60,,6.) resulting from a
Z —Y — X rotation sequence (Tait—Bryan angles) :

Rhead = Rx(ez)Ry(gy)Rz(gz)v (29)

where R;, Ry, and R, are the elementary rotation matrices around the z,y, and z
axes, defined for all angle W as :

1 0 0
R,(¥)= 10 cos(¥) —sin(¥) |,
0 sin(¥) cos(¥)
cos(¥) 0 sin(P)
R, (¥) = o 1 o0 |,
—sin(¥) 0 cos(¥)
cos(¥) —sin(¥) 0
R,(¥) = [ sin(¥) cos(¥)
0 0 1

This parameterization presents a singularity when 6, = 7/2, but in the move-
ments we examine the head does not rotate by more than /2.
The orientation of the " link (1 < i < N) is represented by a unit vector e,

so that the #*! link is slender segment [O;, O;11], where the points O1,...,On11,
represented on figure 2.1 are defined by 2.7 and
j—1
j=1,...,N. (2.10)

szOh—reZ—EZe’;,
k=1

In order to parameterize these unit vectors by angles that will be “shape vari-
ables” (i.e. they are constant in a movement where the swimmer does not deform
its tail, we need to choose coordinates with respect to the frame attached to the
head. Our choice is as follows: e!, = R;el with R; a rotation matrix defined by

R; = RieaaRiRE. .4, (2.11)
with Rpeqa(0z,0y,0.) defined above and
R; = Ry(¢})R.(41). (2.12)

This defines two angles d)Z, #° such that (¢!, T

v g — #!) are the classical angles of

spherical coordinates (longitude and co-latitude) with respect to the frame (eft, —e®, el):
el = Rpcad(0z,0y,0-) Ry(4)) R.(4.) €x . (2.13)
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This parameterization is singular for qﬁzy = +7/2.
With these notations, the swimmer is described by two sets of variables : The 6
Position variables: (X, ) where

X = (xp,yn, zn) € R3%and
(Ths Yns 2n) . (2.14)
© = (0;,0,,0.) € [0, 27]°,
and the 2N Shape variables, denoted by
2.3.2.2 Angular velocity vectors
For all skew-symmetric matrix A € R3*3, we can define a vector Q verifying :
YVWERI AV =Q x V. (2.16)

Using this property, we define the following angular velocity vectors :

® Q.48 the vector defining the cross product associated with the skew-symmetric
matrix RheadRi}Cead- Qpeqq depends linearly on (0, 6,,6.) as follows:

0,
Qhead:Lhead e:y 5 (2-17)
0
where
1 0 sin(6,) 0,
Lpeaa = [0 cos(6;) — cos(fy)sin(6,) by | - (2.18)

0 sin(6;) cos(6;)cos(fy) 0,

e (2; is the vector defining the cross product associated with the skew-symmetric
. A ~T . . S
matrix R;R; fori € (1---N) . §; depends linearly on (¢}, ¢7) as follows :

dot ¢t
Q; = ( ¢> , (2.19)
where

0\ /.
Li = | cos(¢}) 0 <y> (2.20)
1



2.3. 3D magnetic micro-swimmer model 27

2.3.3 External Forces
2.3.3.1 Hydrodynamic force and torque on the head of the swimmer

We consider a drag force acting on the head of the swimmer that is proportional
to its velocity in each direction of the head frame’s Ryeaq and a resistive torque
proportional to the angular velocity of the head :

kH,H 0 0 _
Fﬁead = —Rpead 0 kH,J— 0 RfeadX )
0 0 k/‘H’J_

Tﬁead = _kRQhead = _kRLheade’

(2.21)

where kp || and kp, | are the parallel and perpendicular hydrodynamic coefficients
of the head and kg is a rotational drag coefficient.

2.3.3.2 Expression of the hydrodynamic force density on a point of the
tail of the swimmer

Fori = (1,---,N), we consider a point @;(s) on the i-th link of the tail parametrized
by its arclength s such as
:L’z(s) = O,; — 86;. (2.22)
Using the rotation matrices defined in the previous paragraph, x;(s) is written as :
i-1
xi(s) = Og — rRheqdes — 1 Z RpeadRiee — sRpeaaRi€q (2.23)
k=1
where r is the distance between Og and O;. We differentiate the previous equation
to obtain the expression of the velocity of x;(s):

i1
&i(s) =X — rRhcadez — 1Y Rhcaa e
- =t (2.24)
- lz Rheadeea: - SRheadéiem - SRheadRiea:-
k=1

Following Resistive Force Theory, the density of hydrodynamic force f; is linear
with respect to the components of &;(s):

Fi(s) = — ky(@i(s)-el)el, — ki (@i(s)-€} el
ey (di(s)€l)el (2.25)
=S;x;(s),

where k| and k) are respectively the parallel and perpendicular drag coefficients of
the swimmer’s tail and, for each link 7 :

Si - (RheadRi)D(RheadRi)Ta (226)
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k” 0 0
D=—-10 %k, O (2.27)
0 0 &k

Using the expression of &;(s) ( equation (2.24)) in equation (2.25), the hydrodynamic
force density reads:

fi(s) =8iX — r(RheaaRiDRT)RY, oq Rhcades
i—1
— I(RheaaRiDR]) Y " RI.qRhcaa ke
k=1

i1
o o (2.28)
— I(RpeaaRiDRY) Z Ri.RYRyeq

k=1
— 8(Rneaa RiDRI)RE oy Rhcad Riea

- S(RheadRiDRiT)Riem~

Using the definition of the angular velocity vectors (equations 2.17 and 2.19 ),
we rewrite the expression above as :

fi(s) =SiX — (RheaaRiDRT)Qpeqd X €z
i1
— I(RpeaaiDRY) Z Qhead x (Riez)
k=1

Uk g (2.29)
- l(RheadRiDRlT) ZRka X €x
=1
— 8(RpeadRi DR} )Qheaa % (Rieg)

— $(RheadRiD)Q X €4

In order to write cross products in matrix form, we introduce the following
notation :

. 0 -V W
W= V» VB) eRP VI*=[1V; 0 -W]. (2.30)
~Va Vi 0

Using this notation and the linear dependency of Qpeqq and €2; on the angular
velocities (equations 2.17 and 2.19), the hydrodynamic drag force density on link 4
is written as a linear function of X, 2, and ® :

X
fils) = 4is) (& ] (2.31)
P



2.3. 3D magnetic micro-swimmer model 29

where A’(s) € R32N+6 is defined block-wise as :

Al € R
Al € R3%3
Ai(s) = | AT e RS [ (2.32)
Al el R2x3
where ]
X (s) =Si,
' o i-1
AZQ(S) :(RheadRiDR;r)[’f'ez +1 Z Rkem] XLhead
k=1
+ (RpeaaRi DR )[sRiex] ™ Lnead
A{(s) =l(RneaaRi DR)) R1[ea)* Ly , (2.33)

¢ 1(8) =U(RheaaRiDRY)R;_1]ex]*Li—1,
Az(S) ZS(RheadRiD)[ew]xLi y
Af =03 Vj>i .

2.3.3.3 Hydrodynamic forces and torques on each link

We define the two 3 x (2N + 6) matrices B* and C* as follows :

l
Bi= [ Al(s)ds,
/0 (2.34)

!
C’i:/ sA'(s)ds.
0

Using this notation, the hydrodynamic force on link ¢ depends linearly on the
position and shape velocities as follows :

X
Fh=pB"|06]. (2.35)
P
The hydrodynamic torque on link ¢ calculated about the point Og is computed
from the hydrodynamic force density as follows :

l
Ti’}H = /0 (xi(s) — Om) x fi(s)ds. (2.36)

We rewrite (z;(s) — Og) as :

i-1
(@i(8) — On) = — rRiycade — Y I RhcadRiea

] (2.37)

- SRheadRiea: .
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Ti”‘H is then expressed as :

i—1 I
TZ}H = [TRheade:c + Z theadeew]X / er(S)dS
k=1 0 (2.38)
l
— [RheadRi]™ / sfi(s)ds.
0
Thus, the matricial form of Tz”‘H is :
i—1 X
,I'z’,lH - - ([TRheadez + Z theadeez]XBl) ('E)
k=1 d
. 2.39
4 (2:39)
- ([RheadRi]XCZ) (")
)]

Similarly, for k = (¢, -+ , N), the hydrodynamic torque on link i about Oy, reads:

i—1 X
T = =) _[IRheadRrea]* B' = [RheaaRi]“C') [ © | . (2.40)
k=j L

2.3.4 Equations of motion
2.3.4.1 Self-propelled filament

We first consider that there are no external effects on the swimmer. The balance of
forces and torques applied on the swimmer gives the following system of 6 equations:

N
h h
Fhead+ZFi =0,
=1 (2.41)

N
h h
Thead + Z T’i,H =0.
i=1

Using equations 2.21,2.35, and 2.39, the previous system can be rewritten ma-
tricially as :

M [®&] =0, (2.42)

where M} € R®*?V 16 is defined as :
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N
M(1-+3,1---2N +6) = — (RpeaaDp Rl pog O3 Os2xn) + > B,
i=1

N 1—1
M{(4--6,1-+-2N +6) = —kg (O3 Lncad O33xn) — O _([rRhcadez + Y IRhcadRrea]* BY)
i=1 k=1
N ~ .
- Z[RheadRi] XCZ‘
i=1

(2.43)
. The resolution of equation 2.42 is sufficient to describe the dynamics of a self-
propelled swimmer when the deformations of its tail are prescribed as a function
of the time. As a consequence, the swimmer’s displacements are characterized by
the deformations undergone by its tail. The matrix M} (@, ®) € R6*2N+6 can be
subdivided into two sub-matrices Mx o(©,®) € R®*¢ and Mg (©,P) € ROV
such as
M}©,®) = (Mx,0(0,®)Ms (0, ®)). (2.44)

Using these sub-matrices in equation 2.42, and assuming that the values of ®(t) are
prescribed, the position and orientation of a self-propelled swimmer can be obtained
from the deformations of its tails by solving the following differential system:

(g) = Mx'e(0,2)Ms(0, ®)d. (2.45)

2.3.4.2 Magnetic swimmer

Denoting by M the magnetization vector of the head and considering an external
homogeneous actuating field B(t), the following torque is applied to the swimmer:

T™a9 = M x B(t). (2.46)

The elasticity of the tail is discretized by considering a restoring elastic moment
TE at each joint O; that tends to align each pair (i,i + 1) of adjacent links with

1
each other:

T = keel x el ™t (2.47)

K3

In the case of the swimmer actuated by a magnetic field, the flexible tail is
passive, which entails that the 2NV shape variables are unknowns. Hence, in addition
to the force and torque balance on the swimmer, the internal contributions of the
tail are taken into account by adding, for ¢ = (1,---, N), the balance of torque on
each subsystem consisting of the chain formed by the links ¢ to IV projected onto a
perpendicular plane to e!, which leads to 2N non-trivial equations.

Let us denote, by II; for i = (1,---, N) the projection onto the plane generated by
the second and third column of (RheadRi)T.
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The dynamics of the magnetic swimmer are described by the following system
of 2N + 6 equations :

N
h h
Fhead+ZFi =0,
=1

N
h h
Thena + ZTi,H =-T™,
=1
(2.48)

N (T n) = TN (=T,

Using the expressions of the hydrodynamic forces and torques in the previous
section (equations 2.21,2.35,2.39, and 2.40), the left-hand side of the previous dy-
namic system is written as a linear function of the state derivatives :

N
szzlead + Z]\if:l F,j:'h )
Theau]lvJr Y1 Tiler s X
S (T, | =MrO,®) (0], 2.49
, 2 ;
: b
HN (T]’:},N) ’
where M§ € R2NH6x2N46 ig defined by blocks as :
MX c R3><2N+6
MG) c ]R3><2N+6
Mgh _ Ml c R2><2N+6 7 (250)

MN c R2><2N+6
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where

N
MX = — (RpeadDuRL, 5 03 O32xn) + ZBi

=1
M® =~ kg (03 Lead O3,3xn)
N i-1 4
— Y [Rhcad(rex + > _ 1Rrez)]* B’
i—1 k=1
N ~ .
- Z[RheadRi] e
i=1
N i—1
- ) 2.51
M'= =R > (O [IRncaaRies)* BY) (251
=1 k=1

- Ry Z[RheadRi] ales

i=1

N—1
MY =— R?V Z ([theadeew]XBN)
k=1
— Ry[RheaaRN]*CY

where R} is the 2x 3 matrix consisting of the second and third line of (Rhead]%i)T.

Thus, the dynamics of the flexible low Reynolds swimmer actuated by an external
magnetic field are described by the following dynamic system :

X
MM ©,®) @ = E(X,0,®,B(t)), (2.52)
o

where E is the right hand side of the system 2.48 :

E=| Rj(—kael x et (2.53)
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2.3.5 Summary of The Modelisation

The swimmer is described by 2N + 6 position variables, 6 position variables,
and 2N shape variables.

The position variables are X, the cartesian coordinates of the head of swim-

mer, and © = (67, %, 6%), its orientation.

The shape variables are : ® = ( 31/’ L. ,d)év,qﬁiv)

In the absence of external forces and torques, the dynamics of the swimmer
are a linear control system with the position and orientation variables as state
variables and the shape derivatives ® acting as a control :

<f§) = Mx'e(0,2)Ms(©,®)d, (2.54)
where Mx @ and Mg are computed according to equations (2.41) and (2.43).
For the magnetically actuated swimmer, the dynamics are of the form :
X
MMNO,®) @ = E(X,0,®,B(t)), (2.55)
P

Where M}(©, ®) is a (2N +6) x (2N +6) matrix encoding the hydrodynamic
effects on the swimmer. This equation can be rewritten as an affine control
system with the components of the actuating magnetic field acting as controls

X F(0,®)
& F3(©, ®)
where the vector fields Fy,---, F3 are functions of the columns of (M")~!

and of the magnetic and elastic constants that can be explicitly derived from
equations (2.50),(2.51),(2.64) and (2.53).

2.3.6 Implementation

The model is implemented in MATLAB using the stiff solver odel5s [Shampine &
Reichelt 1997] for the resolution of the differential system (2.64). This solver is a
variable-step, variable-order (VSVO) solver based on the numerical differentiation
formulas (NDFs) of orders 1 to 5. There is a large difference in computation time
between the "default" MATLAB solver ode45, which takes and odelbs even for a
small number of links which implies that the dynamic model is stiff. For a number of
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links NV < 30, the computation time for the numerical integration of the model takes
less than a minute on a laptop with an i5 processor. There are some numerical issues
with the model when the deformations of the tail are too large (around 7/2), which is
likely due to the singularities of the chosen parameterization of the rotation matrices.
When the amplitude of the deformations is around 7/2, we observe a (numerical)
loss of rank of the matrix M", which causes the numerical inversion of the matrix
to return a NaN value, which causes the numerical integration to fail sometimes
(often the solver is able to recover from this error and converge anyways). This ill-
conditioning of the matrix for large deformations implies that, in hindsight, another
method for the parameterization of the shape of the swimmer should have been
used, for example quaternions. Nevertheless, in our application, the deformations of
the tail induced by the magnetic field are small enough for the numerical integration
to be stable.

2.4 Qualitative Validation of the hydrodynamics

In this section, we qualitatively validate the dynamic model by showing that it can
be used to accurately reproduce sperm cells trajectories, so as to benchmark the
hydrodynamics of our model and the discretization of the tail. In this light, we
compare our simulation results to those of [Jikeli et al. 2015].

We consider a sperm cell swimming freely in the 3D space, and we assume that there
are no external forces and torques and that the sperm cell self-propels by control-
ling the curvature and torsion of its flagellum. We consider that the flagellum of the
sperm cell undergoes a deformation in the form of a travelling bending wave with
a constant torsion. Considering the flagellum as a time-varying parametric curve,
this deformation is described by its curvature x(s,t) = Ko + B cos(wt — \s) where
s € [0 L] is the arclength and a constant torsion 7 > 0.

The goal here is to compute the value of the relative angles q&é, ¢% and their time
derivative at each joint O; corresponding to the prescribed curvature and torsion.
In our discrete tail model, the curvature of the tail of the micro-swimmer is approx-
imated by a piecewise-constant function, as it can be only evaluated the curvature
of the swimmer at the joints O;, hence, a high number of links is needed to be
able to accurately approximate the prescribed curvatures. In the simulations, we
take N = 40. We consider at each point of the tail parametrised by its arclength
s a Frenet frame (T'(s), N(s),B(s)) and denote in particular by (T;, N;, B;) the
Serret-Frenet frame at the joints O;. To compute the shape of the swimmer, We
consider that the head of the swimmer is at the origin of the reference frame (i.e.
Rhpead = I3). (T;, N;, B;) are computed as follows :

T, = ei = R;e,,
aT;

N; = &, (2.57)

el

S

Bi :Ti X Bi.
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where

R; = Ry(¢,)R-(6%), (2.58)
and

' cos(%) 0 sin((b;)
—sin(¢y) 0 cos(¢y)

) ) (2.59)
 feos(gl) —sin(6i) 0
R.(¢,) = | sin(¢) cos(¢l)
0 0 1
The Frenet formulas read as follow :
dT;
dsz = Vi,
N
i _ —kT; + 7B;, (2.60)
ds
dB;
dsz = —TN,L'.

From the two previous equations, we derive the differential algebraic equation re-
lating the curvature and torsion of the tail to the first and second derivatives of
relative angles with respect to the arclength :

de;

12 40
HQ = COS(¢Z)2( dsy)Z + ( ds )2’
s . — 2.61)
iy 4oy d2el _ dgl Ao iy (0 2 ded i (
cos(ol) (GG — GRS +sin(6l) (TG | dd)
T = 2 + sin(¢?) Ts

We solve the previous equation using the MATLAB implicit differential equation
solver odel5i to compute the values of gbé and ¢ and their derivatives fori € 1--- N
for the shape variables corresponding to the prescribed curvatures and torsion.

The trajectories of the head of the swimmer are then simulated by solving the
differential equation 2.45.

Figure 2.2 shows the three types of sperm cell trajectories obtained from the
solution : For an asymmetric (Kp > 0) and non twisted (7 = 0) waveform, the
trajectory of the micro-swimmer is circular and planar (a). For twisted waveforms
(7 > 0) the non-planar flagellar beating patterns results in trajectories in the 3D
space: a symmetric and twisted beat produces a trajectory in the shape of a twisted
ribbon (b), an asymmetric and twisted beat produces a helical trajectory (c). These
trajectories are in good agreement with the results presented in Fig 2 of [Jikeli
et al. 2015].
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Figure 2.2: Simulated trajectories of the head of our model sperm cell using the
parameters and prototypical waveforms of [Jikeli et al. 2015], using N = 40 links for
the tail. (a) is the planar circular path generated by the asymmetrical bending wave
without torsion (b) the twisted ribbon generated by an asymmetrical bending wave
with flagellar torsion, and (c) the helical path generated by a symmetrical bending

wave with flagellar torsion.

t=T

- t=T2

t=0

(a) (b) (c)

Figure 2.3: (a) : planar and asymmetric beating pattern corresponding to the cir-
cular trajectory. (b): symmetric and twisted beating pattern corresponding to the
twisted ribbon trajectory. (¢) : asymmetric and twisted beating pattern correspond-

ing to the helical trajectory

2.5 Validation of the magnetic micro-swimmer model

and parameter fitting

The main goal of this model is to be able to predict the displacement of experimental
flexible swimmer under a prescribed magnetic actuation pattern. This section shows
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that by fitting the RFT and elastic coefficients of the model in order to match the
propulsion characteristics of a given swimmer, mainly its velocity-frequency response
curve under sinusoidal actuation, we are able to predict it’s horizontal trajectory.
Assuming that the swimming direction is along the x axis, we consider that the
actuating magnetic field that takes the following form in the reference frame:

B(t) = (B: Bycos(2rft) 0)" (2.62)

Typically, flexible micro-swimmers actuated by a magnetic fields of this form

have a characteristic velocity-frequency curve where the horizontal swimming speed
increases with the actuating frequency until reaching a maximum and slowly de-
creasing. Example of these velocity-frequency curves can be found in numerous
studies such as [Espinosa-Garcia et al. 2013,Khalil et al. 2014, Yu et al. 2006].
The choice for using the velocity-frequency response curve to fit the parameters of
the model, as opposed to, say, fitting trajectories is that it is a relatively simple way
to guarantee that the elasto-hydrodynamics of the simulated swimmer are close to
the experimental one given that the optimal swimming frequency is characterized by
the sperm number of the swimmer, which in turn encodes the relative importance
of the elastic forces compared to the viscous drag.

The value of dimensions and magnetization of the model swimmers were taken as
the same as for the experimental swimmer. Hence, the parameters that need to be
identified are the resistive coefficients (kj, k1, kg, ku,1,kr) and the elasticity co-
efficient k.;. The fitting consists in minimizing the least-squares errors between the
experimental and simulated velocity-frequency response curve. Using these parame-
ters as optimization variables without scaling leads to a ill-conditioned optimization
problem due to the difference in magnitude between the RFT coefficients and the
elasticity constant. Hence, the model is normalized in time, using a time scale equal

1

to 37, where f is the frequency of the actuating magnetic field, and a length scale

equal to L, the length of the tail of the swimmer.

Thus, the state derivatives of the adimensional system are (X, o, i>) defined
as :

z 1<
QW{L‘X
770 (2.63)

1
77 P

B D
I

This leads to an adimensionalized model that takes the form :

X
sivh e | =E(X,0,9), (2.64)
&
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where S}, is the sperm number of the swimmer:

L327Tfku_
p= ()" (2.65)
el
E = k%lE7 and the scaled hydrodynamic matrix MQ}L is equal to :
Mp =1 (2.66)
27 3o fk, 2

Using this formulation, the adimensional parameters that need to be identified
ky k) kg, k
are : (S;7 kMela %7 ]CHT”7 ]?LL ) ﬁ)
Where Sj is the sperm number of the swimmer at the optimal frequency for the

experimental curve. The parameter fitting was made using a least-squares method
implemented in MATLAB, using the built-in solver fmincon for the minimization
of the error between the simulated velocity-frequency response curve (using the
adimensionalized model) and the experimental curve.

We present the fitting of our model for three different flexible low Reynolds
swimmers : the one used in [Oulmas et al. 2017] where the same experimental
setup was used, using the published velocity-frequency response curve, and two
experimental flexible swimmers of different geometries and magnetization strength,
where the velocity-frequency response curves were measured experimentally during
this thesis. More information on the swimmers and the experimental setup can be
found in chapter 4. Figure 2.4 shows the velocity-frequency response curve resulting
from the parameter fitting for the swimmer of [Oulmas et al. 2017]. Figure 4.4, shows
the results for two ISIR flexible swimmers , and a comparison between the observed
and simulated horizontal displacements of the swimmer at the optimal frequency.
For the three swimmers, the actuating magnetic field used when measuring the
velocity-frequency response curves was of the form :

B(t) = (B, Bycos(2nft) 0)", (2.67)
, where B, = 2.5mT" and By = 10mT. The numerical values used for the magnetic
field intensities are the same values used in [Oulmas et al. 2017] and were chosen
in order to have a maximum swimming speed under a sinusoidal field while staying
under the limitations of the experimental magnetic generation setup.

For all three swimmers, there is a good agreement between the simulated and
observed swimming speed, in particular, we obtain the same value for maximal
swimming speed and the corresponding frequency as the ones experimentally mea-
sured.

Three links were used for the approximation of the tail. This choice is motivated
by the observation that using a finer discretization (more than 3) of the tail only
marginally improves the fitting error while adding to the computational cost of
the model, as it is shown in figure 2.6, which shows the final least-squares cost
(relative I2-norm) between the experimental velocity-frequency response curve and
the simulated velocity-frequency response curve after fitting using an increasing
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number of links for the model. As seen in the figure, the model fails to accurately
match the experimental velocity-frequency curve with N =1 and N = 2 link and
results in a small error for N > 3.

2 T T
18 | —Simulated Mean Speeds -
16l Experimental Mean Speeds| |
+(Oulmaus et al. 2017)
141

0.8 -

0.6 -

Mean speed (mm.s™!)
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3
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Figure 2.4: Simulated swimming speeds in function of the actuating field frequency
compared with the swimming speeds experimentally observed with the swimmer
of [Oulmas et al. 2017], with the actuating frequency f € (0,---,5.5). In particular,
both the simulated and experimental swimmers attain the same peak propulsion
speed of 1.6mm.s~! at a frequency of 1.5 Hz.
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Figure 2.5: Results of the parameter fitting (Right) and comparison between the

simulated and observed horizontal trajectories for two ISIR low Reynolds Magnetic
swimmer.
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Figure 2.6: Fitting error in function of the number of links of the model.

2.6 Conclusion

We have developed an accurate and computationally inexpensive dynamic model
that describes the movement of a flagellar micro-swimmer in 3D and demonstrated
that it can be used to predict of the displacements of experimental magnetic low-
Reynolds swimmers. Although our main focus in this chapter was the modeling
of magnetic micro-swimmers, the model can also be used as a basis for the study
of the locomotion of biological flagellated micro-swimmers. The Resistive Force
Theory based approximation of the hydrodynamics and the discrete shape approx-
imation used for the geometry of the tail of the swimmer leads to an ODE model
that circumvents the numerical drawbacks of continuum mechanics-based models.
Moreover, with this formulation, the dynamics of the swimmer can be seen as an
ODE control system that is affine in the components of the actuating magnetic field,
which makes it suitable to be used as a dynamic constraint for an optimal control
problem. The next chapter will be devoted to the optimization of the actuation of
the magnetic swimmer using the fitted dynamic model.






CHAPTER 3

Magnetic Field Optimization

Contents

3.1 Imntroduction . . . .. ... ...ttt 43
3.2 Optimal control of finite dimensional systems . . ... ... 45
3.2.1 General formulation of an optimal control problem . . . . . . 45
3.2.2 Pontryagin’s Maximum Principle . . . . . .. ... ... ... 47

3.2.3 A review on the numerical methods used for the resolution of
optimal control problems . . . . .. ... ... ... 49

3.2.4 Numerical method chosen for the resolution of the magnetic
field optimization problem . . . . . . .. ... ... ... ... 53
3.3 Magnetic Field Optimization .. ................ 53
3.4 Optimal control problems formulation . . . .. ... ..... 53
3.4.1 Swimming speed optimization during a fixed time frame. .. 54

3.4.2 Swimming speed optimization under the constraint of a peri-
odic deformations . . . . ... ... oL 55
3.5 Numerical Resolution Method . . . . . .. ... ... ..... 55
3.6 Numerical Results . . . . . . ... i v it v vt v v e, 55
3.6.1 First Class of Optimal Control Problems . . . . . . .. .. .. 56
3.6.2 Periodicity of the solutions . . . . .. ... ... ....... 61
3.6.3 Optimization under a periodic constraints . . . . . . ... .. 61
3.6.4 Influence of the number of links on the solutions . . ... .. 65
3.7 Conclusion . . . ... .. ittt e e 68

3.1 Introduction

The goal of this chapter is to show that the dynamical model developed in the pre-
vious chapter can be used for the optimal control of flexible magnetic low-Reynolds
swimmers, and to compute magnetic controls that maximize the horizontal swim-
ming speed of the swimmer.

The study of flexible magnetic micro-swimmers was pioneered by the experimental
work of [Dreyfus et al. 2005], where the first artificial micrometer-long magnetic
swimmer was constructed. In this work, the swimmer was made of a tail consisting
of a flexible chain of magnetized beads connected by DNA links which are attached
to a red blood cell and actuated by an oscillating magnetic field. This initial work
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motivated a series of experimental and theoretical studies on a class of flexible mag-
netic micro-robots that propel using planar deformations of their shape induced by
an oscillating magnetic field [Khalil et al. 2014, Jang et al. 2015, Gao et al. 2010b].
The actuation method that is prevalent for this type of swimmers consists in ap-
plying the superposition of a static orientating magnetic field parallel to the desired
swimming direction and a perpendicular sinusoidal field that induces a planar sym-
metric beating of the tail, allowing a displacement along the swimming direction
( [Abbott et al. 2009]).

The goal of this numerical study is to design actuation schemes that are more ef-
ficient than the commonly used sinusoidal actuation. Using optimal control, we
maximize locomotion efficiency under constraints on the control that reflect the
constraints physically imposed on the magnetic field. We may keep or not the con-
straint of a fixed component of the magnetic field along the desired displacement
direction (static orientating magnetic field), which yields different profiles for the
optimal time-varying magnetic field in each case. Both solutions lead (except if pla-
nar movement is imposed in the maximization) to non-planar magnetic fields and
3D optimal trajectories. As expected, this optimization process leads to actuating
magnetic fields that are more efficient than the currently used sinusoidal one.

As said in section 1.4 of the introduction, most of the optimal control studies on
micro-swimmers in the literature were restricted to the self-propelled case, and the
optimization studies of magnetically driven micro-swimmers were mostly done under
the assumption of a sinusoidal or circular magnetic actuation. Thus, the approach
of this work differs from these previous optimization studies of magnetic micro-
swimmers as it does not rely on an a priori prescribed magnetic actuation but is
based on the resolution of an optimal control problem using the model developed
in the previous chapter as a dynamical constraint, which means that the method
used in this thesis can be used to provide swimmer-specific optimal actuation for
any flexible magnetic swimmer after fitting the dynamical model.

Due to the simplification of the low-Reynolds hydrodynamics and the discrete ap-
proximation of the shape of the tail, the dynamics of the swimmer are in ODE form.
Hence, the problem of finding the magnetic field that maximizes the horizontal dis-
placement of the swimmer is a finite-dimensional optimal control problem.

Let us recall the expression of the dynamics of the magnetic swimmer from the
previous chapter (equation (2.64)) :

X
MO, ®) @ = E(X,0,®, B(t)), (3.1)
L

where M"(®,®) is a 2N + 6 x 2N + 6 matrix. The left-hand side of this equa-
tion represents the hydrodynamic effects on the swimmer and the right-hand side
E(X,0,®,B(t)) is the magnetic and elastic contributions on the swimmer. The
previous equation can be rewritten as a control system where the dynamics of the
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swimmer are affine with respect to the components of the actuating magnetic field
viewed as a control:

X F(©,®)
O | =F(0,9)+ (B.t) B,(t) B.(v) [R(0,9)]. (32
P F3(0,P)

where the vector fields Fp,--- , F3 are functions of the columns of (M")~! and of

the magnetic and elastic constants. Finding the magnetic field that maximizes the
horizontal propulsion of the swimmer over a time interval [0, ¢f] amounts to solving
the following optimal control problem:

max z(tf),

Z(t) = [(Z(t), B(t)).

Z(0)=0, (3:3)
B(t) € C.,

9(Z(tf)) =0,

where Z = (X,@,{))T, f(Z(t), B(t)) is the right-hand side of equation (3.2), C,,
is the set of constraints on the control, and g(Z(¢f)) = 0 is the terminal constraints
of the state variables. Both constraints will be specified in the latter sections.

This chapter is organized as follow: The first section contains a general presen-
tation of finite-dimensional optimal control problems followed by a review of the
numerical methods used in the literature to solving such problems.Following that,
we formulate the optimal control problems for the magnetic swimmer. Lastly, we
present the numerical optimization results.

3.2 Optimal control of finite dimensional systems

In this section, we present the general formulation for a finite-dimensional optimal
control problem and the Pontryagin maximum principle, which gives a first-order
local optimality condition. Then we review the common numerical methods used
to solve such problems. The first part of this review is based on the reference
[Schittler & Ledzewicz 2012]. The numerical part is based on the two review papers
[Betts 1998] and [Rao 2009].

3.2.1 General formulation of an optimal control problem

Formally, a control system is defined as a 4-tuple ¥ = (M, U, f,U) consisting of
a state space M, a control set U, the dynamical constraints f, and a class U of
admissible controls. The following assumptions on M,U,f and U are taken:

1. M is an open and connected subset of R™.
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2. U is a subset of R"

3. The dynamics & = f(t,x,u) is defined by a family of time-varying vector
fields f parameterized by the control values u € U :

fRxMxU~— R"™

(3.4)
(t7 m7u) _> f(t7 :B, u)'
4. The class U of admissible controls is piecewise continuous functions u defined
on a compact interval I C R with values in the control set U.

Under these conditions, given a piecewise continuous control u € U defined over
an open interval J, it follows from local existence and uniqueness results for ordinary
differential equations that for any initial condition x(¢g) = xq for ¢ty € J, there exists
a unique solution x to the initial value problem :

T = f(t7 Z, u(t)) 7$(t0) =20, (35)

defined over some maximal interval I = (7_,74) C J) that contains ¢y. The solution
x to this initial value problem over [ is called the trajectory corresponding to the
control u, and the pair (@, u) is called an admissible controlled trajectory over the
interval I.

An optimal control problem consists in finding the admissible controlled trajec-
tory (z,u) that minimizes a functional cost J. In the following formulation of an
optimal control problem, we also consider a set of boundary constraints N of the
form :

N = {(to,z(to), t,2(ty)) €ER x M x R x M : c(to, z(to), Ly, 2(ty)) =0}, (3.6)

where

c: RxMxRxM—RP

(t(]a (t(to), tf, l’(tf)) - (cl(t()a l‘(to), Ly, {Ii(tf)), B cp(t()a l’(to), Ly, .’L'(tf))) )
(3.7)
where p < 2(n+1) and c is a continuously differentiable mapping and the gradients
of (c1(to, x(to),ty, x(ty)), - ,cp(to, x(to), ty,x(ty))) are linearly independent on N.
Under these assumptions, the optimal control problem is written as follows:

min 7 = g(ty.a(ty) + [ 1Ot x(t) u(t))dt,

&= f(t,z(t), ult)),

uwel, (3.8)
t € [to, ty],

z(to) = wo,

c(to, z(to), ty,x(ty)) =0,
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The initial and terminal times #o,%; can be fixed or free. The cost function [J
is given in the so-called Bolza form as the sum of the integral of a langrangian f°,
which is the running cost of the problem, and a penalty term g, which is the terminal
cost of the problem.

The lagrangian
fORxMxU—=R

(t,z,u) = f(t,z,u). (3.9)

is continuous in ¢,x,u and differentiable in z for fixed (t,u) € R x U, and the
derivative %—Jf(t,x, u) is continuous as a function of all variables.

The terminal cost g is given by a continuously differentiable function,

g:RxM >R

(t,x) = g(t, x). (3.10)

3.2.2 Pontryagin’s Maximum Principle

Pontryagin’s maximum principle gives the fundamental necessary conditions for a
controlled trajectory (x,u) to be optimal.
The pseudo-hamiltonian function H of the optimal control problem (3.9) is de-
fined as :
H:RxRx ((R")"xR"xR™ =R

(3.11)
H(t,p° p,x,u) = pf(t,z,u) + p°f°
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Theorem 1 (Pontryagin’s maximum principle) Let (., u.) be a controlled
trajectory defined over the interval [to,ts] with the control u, piecewise contin-
wous. If (x4, u*) is optimal, then there ewist a constant p° < 0, an adjoint
vector (also called costate vector) p : [to,ty] — (R™)*, and A € (RP)* such as
the following conditions are satisfied :

1. Nontriviality of the multipliers : (p°, p(t)) # 0 for all t € [to,t¢].

2. Adjoint equation : the adjoint variable p is a solution to the time-varying
linear differential equation:

0H

(t) = ———(t,p" 12
p(t) 5p (PP ), (3.12)

where H is the pseudo-hamiltonian associated to the optimal control prob-
lem 3.9.

3. Mazimum condition: everywhere in [to,ts] we have :
H(t,p° p(t), 2.(t), us(1)) = mazyer H(t, 0%, p(t), (1), 0).  (3.13)

4. Transversality conditions on the adjoint vector

9 0
plto) =~ + "),
6x0 6x0 (3 14)
(1) = O 4 122 |
PR = dxy P Oduy’

5. Transversality conditions on the pseudo-hamiltonian: If the initial time tg
is free, there exists an absolutely continuous function M : [ty, tf] — R

such as
M(t) = H(t,p", p(to), z«(to), ux(t0)), (3.15)
and 5 5
c g
M(tg) = A\=— + p°=2). 1
(t0) = (g +8'50) (3.16)

Similarly, if the final time ty is free, there exists an absolutely continuous
function M : [tg, tf] = R such as

M) = H(t, 0%, p(to), 2= (to), us o)), (3.17)
and
M) = -0 150, (3.18)

The controlled trajectories (z«,u.) for which there exists multiplier p° and p
such as the conditions of the maximum principle are satisfied are called extremals,
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and the tuple (z,us,p’, p) is called extremal lifts. The extremal lift is normal is
p? < 0 and abnormal if p® > 0. In the normal case, the value of p° can be fixed to
—1 without loss of generality.

From Pontryagin’s maximum principle, the coupled system consisting of the
dynamics and the adjoint equation can be written as a Hamiltonian system :

. OH
.’L’*(t) = aip(tpovpv L U,*),

L OH .
p(t) - 7%(15717 ,p,x*,u*).

(3.19)

Thus, an extremal lift of an optimal control problem is the solution of a two-
point boundary value problem consisting in solving this Hamiltonian system along
with the boundary conditions c(to, z«(t0), tf, z«(tf)) = 0 and with the transversality
conditions. In summary, solving an optimal control problem requires, in theory, to
find all solutions to a boundary value problem on state and the adjoint vector,
which is coupled with a maximization condition, and then compare the costs of
each extremal. This is very difficult in general for all but the simplest problems.
In what follows, we will review the numerical methods commonly used to solve
optimal control problems, or at least to compute extremals of an optimal control
problem.

3.2.3 A review on the numerical methods used for the resolution
of optimal control problems

Numerical methods for solving optimal control problems are divided into two major
classes: indirect methods and direct methods. Indirect methods rely on the numeri-
cal resolution of the boundary-value problem resulting from the first-order optimality
conditions in order to determine extremals of the problem. Then, the extremal with
the lowest cost is chosen from each of the the locally optimizing solutions. On the
other hand, direct methods consist in discretizing the optimal control problem into a
finite-dimensional nonlinear optimization problem, also called a nonlinear program
(NLP) [Kraft 1985], then solving it using well known optimization techniques such
as interior-point methods or sequential quadratic programming methods.

3.2.3.1 Indirect Methods

The most basic indirect method is the shooting method [Keller 1976]. Starting with
an initial guess of the unknown initial boundary conditions at tg, the Hamiltonian
system (3.19) is integrated and the terminal conditions obtained from the numerical
integration are compared to the known terminal conditions (the boundary condi-
tions of the problem and the transversality conditions). If the integrated terminal
conditions differ from the known terminal conditions by more than a specified toler-
ance €, the unknown initial conditions are adjusted and the process is iterated upon
until the difference between the integrated terminal conditions and the required ter-
minal conditions is less than .
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Shooting methods presents significant numerical difficulties due to ill-conditioning
of the Hamiltonian dynamics, which leads to the amplification of the errors made in
the unknown boundary conditions as the dynamics are integrated over time. This
is particularly true when the optimal control is hyper-sensitive, i.e. when the time
interval of interest is long in comparison with the time-scales of the Hamiltonian
system in a neighborhood of the optimal solution. In order to overcome the draw-
backs of simple shooting methods, the multiple-shooting method was developed. The
multiple shooting method consists in dividing the time interval [to,t¢] into M + 1
sub intervals and then applying the single shooting method over each sub-interval
[ti,ti+1] in order to determine the unknown initial values of the state and adjoint
vectors at each end, while enforcing their continuity at the boundary of each sub-
interval. Thus, multiple-shooting methods are more numerically stable because the
integration is performed over smaller time intervals. Multiple shooting methods are
also used in the case where the optimal control is non-smooth, for example where
the control is a concatenation of bang arcs and/or singular arcs. In that case, it
is worth noting that it is necessary to know the structure of the optimal control in
advance in order to apply the multiple-shooting method.

The biggest drawback of indirect simple shooting and multiple shooting methods is
their sensitivity to the initial guess of the unknown values of the state and costate.
Hence, in most practical cases, it is important to provide an initial estimate that is
close enough to the unknown state and co-state values in order to ensure the con-
vergence of the shooting method to the solution of the boundary value problems,
for example, by using the approximate values obtained by the resolution of an op-
timal control problem using a direct method to initialize the shooting [Bonnard &
Cots 2014] (direct methods are usually less sensitive to initial guesses than indirect
methods), or by using continuation methods [Caillau et al. 2012]. The basic idea
of continuation methods, also called homotopy methods, is to iteratively solve a
sequence of perturbed versions of the original problem that are more numerically
tractable (for example by regularizing the control), using the solution of one prob-
lem as the initial guess for the following one. Supposing that the original problem
requires finding the zero of a shooting function a:

a(x) =0, (3.20)

Continuation methods embed this problem into a family of related problems that
depends on a parameter 0 < 7 < 1:

a(z,7) = 0. (3.21)

The family of problems a(x, 7) is chosen such as a(x, 1) is easily solvable and a(x, 0)
is equivalent to the original problem, and it is also generally assumed that the solu-
tion x(7) varies smoothly in function of 7.

Indirect shooting methods have been implemented in the software Hampath [Caillau
et al. 2010], which also implements homotopy methods.

Another class of algorithms that can be used in order to solve the boundary value
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problem is indirect collocation methods, where the state and adjoints are parametrized
using piecewise polynomials. The collocation procedure leads to a set of nonlin-
ear equations where the coefficients of the piecewise polynomial are the unknown.
The MATLAB-based solver bvp4c [Shampine et al. 2000] implements a collocation
method for the resolution of boundary value problems and has been used for the
resolution of optimal control problems [Wang 2009].

Another drawback of indirect methods is the necessity to have the expressions of
the necessary conditions, which implies having the analytical formulations of the
derivatives of the dynamics f and of the boundary conditions ¢. This is obviously a
cumbersome task for large, complicated problems. Recently, the approach taken in
order to compute these derivatives is based on the use of automatic differentiation
tools, such as Tapenade [Hascoet & Pascual 2013] or by using the symbolic package
CasADi [Andersson et al. 2012]. Still, even with these tools, there is a limitation
of the scope of problems that can be solved with indirect method, as there are
many cases where the dynamics of the studied system are not explicit enough to be
differentiated automatically.

3.2.3.2 Direct Methods

Direct methods rely on the discretization of the state and/or the control of the
original optimal control problem. In either case, the optimal control problem is
transcribed into a finite dimensional nonlinear programming problem (NLP).

The main advantage of direct methods over indirect method is that they can
be applied without explicitly deriving the necessary conditions, and that they do
not require a prior knowledge of the structure of the control. One of the simplest
direct method for solving optimal control problems is the direct shooting method,
where the control is parameterized using a specific functional form, for example in
the form:

ult) = Sy anii(h), (3.22)

where v;, (i =1,--- ,m), are known functions and a;, (i = 1,--- ,m) are unknown
parameters. The direct shooting method consists then in optimizing the function :

R™ - R

3.23
a=(ar, am) = Ta, (3.23)

where J, is the value of the cost function of the optimal control problem evaluated
by taking a as a parameter for the control and numerically integrating the dynamics
of the system. Direct multiple shooting methods are an improvement of this method,
where, similarly to the indirect multiple shooting methods, the time interval is di-
vided into several sub-intervals in order to reduce the sensitivity to the initial guess
of the unknown parameters by integrating over smaller time intervals. The initial
values of the state at the beginning of each sub-interval are taken as unknowns in
addition to the control’s parameterization. Direct collocation methods, as opposed
to direct shooting methods, rely on the approximation of both the state and con-
trol using piecewise continuous polynomials. The dynamic and state constraints
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are imposed only on intermediate points, called collocation points. There are two
main types of collocation, local collocation, where the time interval is divided into a
sequence of sub-intervals and the state and controls are approximated on each sub-
interval by a polynomial of fixed degree, and global collocation, where the state and
controls are approximated by global polynomial over the whole time interval. The
resolution of an optimal control problem using a direct collocation method requires
solving a very large but sparse nonlinear programming problem. Because of the spar-
sity of the resulting NLP, many of the derivatives of the constraint Jacobian are zero,
and thus it is possible to solve such problems efficiently using optimization solvers
based on an interior-point algorithm (such as IPOPT [Wichter & Biegler 2006]), or
a sequential quadratic programming (SQP) algorithm (such as Worhp [Biiskens &
Wassel 2013]).

It is worth noting that, informally, the Karush-Kuhn-Tucker (KKT) conditions
for the NLP program (first order necessary conditions for optimality) resulting from
a direct collocation method can be seen as a "discrete" version of the maximum
principle. In some specific cases, it has been shown that the KKT multipliers of
the NLP converges to the costate vector of the original optimal control problem
[Ross 2005], and that this property can be used to prove the convergence of the
direct solutions to an extremal [Ross & Fahroo 2001|. Efficient direct solvers are the
open source solvers Bocop [Bonnans et al. 2011] and ICLOCS [Falugi et al. 2010]
and the commercial solver Gpops |[Rao et al. 2010].

3.2.3.3 Other methods

Most applications use variations of indirect or direct methods for the resolution of
optimal control problem. However, there are a few other methods worth citing. For
example, there is a class of global methods based on the resolution of the Hamilton-
Jacobi-Bellman (HJB) equations [Bellman 1957|, which are PDE’s that describe
the optimal control functions wu.(z,¢) as well as the optimal value of the objective
for all possible initial conditions. Although these equations are of theoretical im-
portance as one can derive necessary and sufficient optimality conditions from the
HJB equations, it is not generally numerically tractable to solve them for all but
the simplest optimal control problems. Another class of methods for the resolution
of optimal control problem are those based on metaheuristics such as genetic al-
gorithms [Michalewicz et al. 1990]. Interest in these methods is motivated by the
fact that they can be applied without a detailed understanding of the system being
optimized, and using a genetic algorithm can be a solution in the case the function
to be optimized is not completely known or given in "black box" form. However,
because of the fact that they do not exploit gradient information during the opti-
mization process, they are not computationally competitive with direct and indirect
methods.
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3.2.4 Numerical method chosen for the resolution of the magnetic
field optimization problem

Let us go back to the problem of interest in this chapter, i.e. finding the magnetic
field that maximizes the horizontal displacement of the magnetic swimmer, which
amounts to solving a finite dimensional optimal control problem with the model de-
veloped in the previous chapter as a dynamic constraint. The main drawback of this
modelisation is the fact that the dynamics of the swimmer requires the inversion of
the hydrodynamic matrix (M"(®, ®) in equation (3.1)), which makes the dynam-
ics of the swimmer not explicit enough for an analytical study of the problem using
Pontryagin’s maximum principle or for a resolution based on indirect methods. This
is due to the fact that the analytical computation of the state dynamics of the model
requires the symbolic inversion of M h(@, ®) which is computationally prohibitive
even for the 1-linked case, where M"(®,®) € R®*8). The numerical inversion of
the dynamic system is not a good workaround as most indirect solvers require an
expression for the hamiltonian system that can be handled by an automatic differen-
tiation routine, which means that a built-in or library routine or an implementation
of an algorithm for the system inversion cannot be used. The latter part is due to
the fact that implementing a linear system resolution algorithm requires the use of
conditional statements (for the pivoting) and loops that depend on the variables
which leads to code that cannot be automatically differentiated. For these reasons,
we chose to use a direct method for the resolution of the optimal control problems,
using the open-source direct optimal control solver ICLOCS ( [Falugi et al. 2010]),
which has the advantage of giving the possibility to estimate the derivatives of the
dynamics, cost and constraint functions numerically. The optimal control problems
are solved with ICLOCS using a Hermite-Simpson collocation method. The result-
ing NLP is solved by the interior-point solver IPOPT ( [Wachter & Biegler 2006]).
It is worth noting that during the optimization, the hessian of the NLP has been
approximated using the limited-memory version of the BFGS quasi-Newton updates
provided by IPOPT, which speeds up convergence in our case despite needing more
iterations to terminate.

3.3 Magnetic Field Optimization

3.4 Optimal control problems formulation

In this chapter, we numerically solve two classes of optimal control problems. The
first class of optimal control problems study consist in maximizing the horizontal dis-
placement of the swimmer over a fixed time frame. The solutions of these problems
gives a physical limit of the swimming speed that can be achieved with a magnetic
field, however, they lead to solutions in 3D that are not periodic and in which there
is a small drift of the swimmer from the horizontal path. Therefore, we solve a
second class of optimal control problem that is more suitable for experiments with
additional periodicity constraints on the shape and orientation of the swimmer. The
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aim of this latter formulation is to obtain an optimal actuation pattern that can be
indefinitely repeated over time in order to drive the swimmer in experiments.

Four different types of constraints on the actuating magnetic field are considered
. firstly, the feasible controls are assumed to be the superposition of static orien-
tating field along the prescribed swimming direction and an orthogonal magnetic
field, which leads to a single-input optimal control problem. Secondly, the control is
considered to be a two-dimensional magnetic field where both components are time-
varying. Lastly, two three-dimensional magnetic fields that leads to out-of-plane
optimal trajectories are considered : one with a static orientating component and
two orthogonal actuating fields, and one where all three components are free to be
optimized.

The aim here is to present different types of optimal actuation patterns that can be
adapted to a particular experimental setups. For example, the planar solutions can
be used in experimental setups where the degrees of freedom of the magnetic field
are limited such as a setup consisting of only two Helmholtz coils. Additionally,
orientating fields are important in non-ideal experimental conditions, for instance,
when the swimmer is not neutrally buoyant, or in the presence of thermic noise, as
they can be used to keep the swimmer from drifting and to compensate its weight.

3.4.1 Swimming speed optimization during a fixed time frame.

By(t)
Firstly, we focus on finding the actuating magnetic field B = | B,(t) | that max-
B.(t)
imizes the horizontal displacement of the swimmer at a fixed time ;. Denot-
X(t)
ing by Z(t) the state vector | ©(t) | and rewriting equation (3.1) as Z(t) =
®(t)
f(Z(t), B(t)), this optimal control problem is written as :
max z(ty)
Z(t) = f(Z(t), B(t
() = 1z®.B@) a0
Z(0)=0
B(t) < CZ'

where C is the set of constraints on the magnetic field and ¢f is the final time. We
investigate four optimal control problems depending on the types of constraints on
the actuating magnetic field, taking in each case the same bounds on the magnetic
field intensities.

1. In the first optimal control problem (OCP-1), we consider the admissible con-
trols as the superposition of a static orientating field along the = axis and a
time-varying field along the y axis :

C) = {B(t)u B:r(t> = Bma |By| < BOsz(t) = O}
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2. In the second optimal control problem (OCP-2), both the z and y components
of the magnetic field are time-varying.

Cy = {B(t), B:(t) = 0,[|(Bz(t), By(t))l| < Bo}

3. In the third problem (OCP-3), we consider the admissible controls to be the
superposition of a static orientating field along the = axis and a time-varying
actuating field in the y — z plane.

C3 = {B(t)a By = By ||(BZ(t)vBy(t))|| < BO}

4. In the last optimal control problem (OCP-4), we consider the general case
where all components of the magnetic field are time-varying.

Ca={B(t), [[(Bx(t), B:(t), By(t))|| < 10mT}

3.4.2 Swimming speed optimization under the constraint of a pe-
riodic deformations

We also address the previous optimal control problems with additional periodicity
constraints on the shape of the tail of the swimmer, its orientation, and its position
in the y and z axes. The aim here is to obtain a magnetic field pattern that can be
indefinitely repeated over time in order to induce a net horizontal displacement of
the swimmer, which makes this formulation more suited for experimental settings.

This optimal control problem is formulated by adding periodicity constraints on
the orientation and shape variables of the swimmer ® and ® and on the position
of the swimmer on the y and z axis. Thus, the period swimming optimal control
problems (POCP — i) are written as :

max z(7T)

Z(t) = f(Z(t), B(t)),

Z(0) =0,

B(t) € C;, (3.25)
(y(T),2(T)) = (0,0),

o(T) =0,

®(T) = 0.

We keep the same set of constraints on the magnetic field amplitudes C; as the
previous section.

3.5 Numerical Resolution Method

3.6 Numerical Results

In this section, the results of the numerical solutions of the optimal control problems
are presented. The bounds on the magnetic field are fixed as : B, = 2.5mT and
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By = 10mT, same as the values for the magnetic field that were used for the fitting
of the model in the previous chapter in order to have a "fair" comparison with the
sinusoidal field.

For the first class of optimal control problems, the final time is fixed at tf = 3.
For the optimal control problems with a periodicity constraint, the final time is
chosen is chosen to be the same as the observed optimal period for a sinusoidal
actuation (1.5H z frequency).

3.6.1 First Class of Optimal Control Problems

Fig. 3.1 shows the displacement of the swimmer under each optimal solution, and
under the sinusoidal field at the optimal frequency (1.5 Hz). From this, we can
see that non-planar solutions largely out-performs planar solutions, and that the
solutions where all components are free to be optimized are significantly more effi-
cient than the solutions where the z-component is fixed. This also indicates that,
in order to maximize swimming speed, two common experimental practices must
be avoided : Firstly, the common sinusoidal actuation method is sub-optimal and
is largely out-performed by the solutions. Secondly, the use of a static orientating
field in the swimming direction limits the speed of the swimmer, and that allow-
ing the x-component of the magnetic field to be varying leads to a more efficient
actuation pattern. In the second case, steering the swimmer along a new direction
can be achieved by rotating the actuating magnetic field. However, in non-ideal
experimental conditions, for instance, when the swimmer is not neutrally buoyant,
or in the presence of thermic noise, using a static field to keep the swimmer on track
and/or to compensate the weight of the swimmer may be more robust.

—Solution - OCP4
10+ |—Solution - OCP3 -
Solution - OCP2
8¢ |—Solution - OCP1 1
g —Sinusoidal Field
g/ 61 i
e
4 = .|
2r- _
0 .|
-2 L L L L L L
0 0.5 1 15 2 25 3 3.5

t(s)

Figure 3.1: Comparison of z-displacements associated with the solutions of OCP1-4
and with the sinusoidal actuation
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3.6.1.1 Planar Solutions

For OCP-1 and OCP-2, the dimension of the dynamic system reduces to N+3 be-
cause of the fact that the constraints on the controls leads to a planar trajectory
in the z — y plane. The numerical solution for OCP-1 takes the form of a sequence
of Bang arcs, as seen in Fig. (3.2, (a) ) whereas the solution of OCP2 is contin-
uous ((b), (€)). In both cases, the optimal actuation patterns lead to a trajectory
where swimmer oscillates around the z axis while moving in the z-direction (see
Fig. 3.3). The shape of both optimal trajectories is similar to the trajectory of
the swimmer under the sinusoidal field. Interestingly enough, the optimal magnetic
fields are periodic in both cases, and induce a periodic deformation of the swimmer,
as seen in Fig. 3.4. Both solutions out-perform the reference sinusoidal actuation in
terms of horizontal speed. In practice, the solution of OCP-1 shows that having an
orthogonal actuating field (in addition to the static orientating field) in the form of
a square signal is more efficient than an actuating sinusoidal field. The solution of
the second planar problem (OCP-2) shows that orientating fields are not necessary
for straight swimming and that actuating a flagellar magnetic swimmer with two
time-varying components leads to a substantial increase in swimming speed.
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Figure 3.2: Solution of the planar optimal control problems. (a) : y-component
of the solution of OCP-1 compared with the sinusoidal field at optimal frequency
(1.5Hz). (b): x-component of the solution of OCP-2. (¢) : y-component of the
solution of OCP-3.
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Figure 3.3: Optimal planar trajectories associated with OCP-1 and OCP-2 com-
pared with the trajectory of the swimmer actuated by the sinusoidal field.
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Figure 3.4: Shape angles of the swimmer for the solutions of both planar problems
OCP-1 and OCP-2.

3.6.1.2 Non-planar solutions

The non-planar optimal magnetic fields solutions of OCP3 and OCP4 leads to tra-
jectories, shown in Fig. 3.6, where the swimmer revolves around the horizontal axis

in an helical trajectory. As seen in Fig. 3.1, the non-planar actuation patterns

largely out-performs the planar ones, which shows the necessity of allowing flagellar
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swimmers to go out-of-plane in order to swim at a maximal propulsion speed. Simi-
larly to the planar case, the optimal solution is periodic apart from transient states
near the initial and final times (see Fig. 3.5) and induce a periodic 3D deformation
of the tail of the swimmers, as shown in the phase planes of Fig. 3.7. Although being
the best performing magnetic fields overall, the solutions of OCP-3 and OCP-4 have
the drawback to lead to trajectories with a non-zero net displacement on the y and
z, axis, i.e. the helical trajectory of the swimmer generated by these fields drifts
from the horizontal direction, which is inconvenient for experimental purposes. This
problem can be overcome by using stronger orientating fields ( although at a loss
of speed) in the case of OCP3,by adding path constraints in the optimal control
problem, or by using periodicity constraints as it is done in the next section.
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Figure 3.5: Solution of the non-planar optimal control problems. (a) : y-component
of the solution of OCP-3. (b): z-component of the solution of OCP-2. (¢) : x-
component of the solution of OCP-4. (d) : y-component of the solution of OCP-4.
(e) : z-component of the solution of OCP-4.
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Figure 3.6: Trajectories of the swimmer associated with the solutions of OCP-3 and

OCP-4.
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Figure 3.7: Shape variables of the swimmer when actuated by the non-planar op-
timal magnetic fields (OCP3 and OCP4) (after the initial transient state). Phase
portrait of the relative angles in the (qﬁz — ¢) for each link i of the tail.

These results shows the importance of non-planar actuation for maximizing the
swimming speed, as the non-planar optimal magnetic fields out-perform the planar
optimal actuations. However, the non periodic 3D solutions have the drawback that
they lead to trajectories that drift away from the horizontal axis over time. The
2D optimal fields can still be useful in experimental settings where the degrees of
freedom of the swimmer are limited or when limited to a planar actuating field (for
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example, two orthogonal Helmholtz coils). The effectiveness of non-planar actuation
has been corroborated in the literature by studies where non-planar helical waves
have been shown to induce a faster propulsion speed for flagellar swimmers. For ex-
ample, in [Khalil et al. 2018], the sperm-like microrobot’s swimming speed increases
between 1.2 and 2 times (depending on the viscosity of the fluid) when switching
between a planar swimming induced by sinusoidal actuation and helical swimming
induced by a conical magnetic field. This characteristic is also shown in [Chwang
& Wu 1971] for self propelled swimmers. However, our work differs from these ap-
proaches as it does not rely on an a priori prescribed actuation pattern or shape
deformation but optimizes the 3D driving magnetic field of the swimmer which al-
lows the generation of swimmer-specific optimal actuation.

3.6.2 Periodicity of the solutions

Another difference between the planar and non-planar solutions is the periodicity
of the optimal fields solutions of OCP-1 and OCP-2, which naturally leads to a
periodic deformation of the tail of the swimmer, as seen in 3.4. Solving the planar
optimal control problems for a longer final times results in solutions that have the
same period, hence, it is possible to isolate a magnetic field pattern to actuate the
swimmer experimentally. However, this is not possible in the case of the 3D optimal
fields, as there are transient states at the beginning of the actuation before a peri-
odic regime. The existence of these transient states in the non planar optimal fields
suggest that the initial straight configuration of the swimmer is not optimal and
also that strategies based on the stroke optimization of a flexible micro-swimmer in
3D are sub-optimal, which contrasts with the studies of the problem in 2D.

3.6.3 Optimization under a periodic constraints

The numerical solutions of the optimal control problems with a periodicity constraint
are presented in this section. Here, the displacement of the swimmer is maximized
with an additional periodicity constraint on the shape, orientation, and position on
the y and z axis. This latter condition ensures that the swimmer doesn’t drift from
the horizontal axis when applying the periodic solutions repetitively over time.In
addition to keeping the trajectory of the swimmer around the z-axis, the solutions of
the optimal control problem with periodicity constraints, the solutions of the optimal
control problem with periodicity constraints are particularly suited for experimental
purposes, given that they provide simple 3D magnetic field pattern that can be
repeated over time in order to drive the micro-swimmer.

Figure 3.8 shows the simulated horizontal displacement actuated by the repeti-
tion of the magnetic field patterns obtained through the resolution of the periodic
optimal control problems for 3 seconds of straight swimming. The main difference
with the solution of the problems without periodic constraints is the absence of



62 Chapter 3. Magnetic Field Optimization

a significant gap between the non-planar and planar solutions, as the solution of
POCP — 2 results in a performance similar to POCP — 3.
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Figure 3.8: Comparison of xz-displacements associated with the solutions of POCP1-
4 and with the sinusoidal actuation

The planar periodic solutions (Figure 3.9) display similar control structures and
trajectory shapes (Figure 3.10) than the non-periodic solutions.
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Figure 3.9: Solution of the planar periodic optimal control problems. (a) : y-
component of the solution of POCP-1 compared with the sinusoidal field at optimal
frequency (1.5Hz). (b): x-component of the solution of POCP-2. (¢) : y-component
of the solution of POCP-3.
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Figure 3.10: Optimal planar trajectories associated with POCP-1 and POCP-2
compared with the trajectory of the swimmer actuated by the sinusoidal field.

Figure 3.11 shows the optimal 3D magnetic field patterns (solutions POCP-3
and POCP-4). Repeating these magnetic field patterns over time make the swimmer
revolve around the z-axis, drawing a "figure-eight" pattern in the y — z plane (see
Figure 3.12).
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Figure 3.11: Solution of the non-planar periodic optimal control problems. (a) : y-
component of the solution of POCP-3. (b): z-component of the solution of POCP-2.
(€) : x-component of the solution of POCP-4. (d) : y-component of the solution of
POCP-4. (e) : z-component of the solution of POCP-4.
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Figure 3.12: Trajectories of the swimmer associated with the solutions of POCP-3
and POCP-4.

3.6.3.1 Approximation of the periodic solutions

The solutions of the optimal control problems with a periodicity constraint are
approximated by their trucated Fourier series in order to compare between the
trajectories of the swimmer under the optimal actuation and under approximations
of the numerical solution. The goal here is to see the number of Fourier modes that
characterizes the solutions of the optimal control problems (POCP-1..4).

Denoting by X, the simulated (discrete) trajectory from the optimal solutions
and by X; j € N the simulated trajectory of the swimmer when actuated by the j
first Fourier modes of the solution, the relative trajectory error is defined as :

e

ET ’
1 XslP

(3.26)

where ||.||r is the Frobenius norm.

Figure 3.13 shows a rapid decrease in the relative trajectory error as the number
of coefficients of the Fourier series of the solution of the periodic optimal control
problems POCP — i increases. From this, we can see that the trajectory of the
swimmer using the approximation of the optimal controls by their first 5 Fourier
coefficients is close to the optimal trajectory. This entails that one could devise an
computationally cheap optimization process where only these modes are computed,
for example by adapting the method used in ( [Tam & Hosoi 2007]) for the Purcell
swimmer.
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Figure 3.13: Error between the trajectory under the optimal solution of POCP-i for
1 € 1---4 and the trajectories when the swimmer is actuated by a truncated Fourier
series of the solution.

3.6.4 Influence of the number of links on the solutions

An analysis of the influence of the number of links of the model on the optimal
trajectories and magnetic fields is made in order to compare the solution of the
optimal control problem for a varying degree of shape discretization. This is done
by solving the optimal control problems OCP1 —4 for an increasing number of links
(from the simplest case of a single-linked swimmer to N = 7). In order to compare
between the solutions, we use the mean absolute error (MAE) between the solutions
of the optimal control problems with IV links for the tail and the solution with N +1
links. The choice of using the MAE has been made in order to compute a distance
between the curves that is less sensible to small differences that are due to the time
discretization of the direct solver. In particular, for the planar solutions where the
magnetic field is discontinuous, there is a slight difference between the switching
times of the solutions which can lead to an artificially high error when using the
lo-norm for example.

The mean absolute trajectory error FEy, is defined as :

moxN_ xN-1
g, = 2= X X (3.27)

where m is the number of timesteps of the numerical solution, and XN, i = (1--- N)
is the i*" component of the optimal trajectory using N links for the tail. Similarly,
the solution error F,, is defined as :

m BN _—BN-1
Esol - ZZ:1| zm ¢ | ) (328)
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where BN i = (1--- N) is the i*! component of the optimal solution using N links
for the tail.

Figure 3.14 shows the change of the optimal magnetic field shape as N increases.
From this, we can see that for OCP-1,0CP-2, and OCP-3, the solutions depend
weakly on the number of links, as the small error ~ 0.05m71 can be attributed to
the time discretization during the resolution. For OCP-4, the solutions strongly
depend on the number of links for N < 3 before converging to a magnetic field that
does not change when N increases. In particular, the planar solutions (OCP 1 - 2)
do not depend on the number of links of the tail. This entails that the simplest case
of a 1-linked swimmer model (which leads to a dynamic system of dimension 4 in the
planar case) can be used for the optimal control design of magnetic micro-swimmers,
which opens the door to the possibility of the online resolution of the optimal control
problems in 2D and the design of Model Predictive Control frameworks based on
this model. The optimization is less computationally cheap when optimizing for the
non-planar magnetic fields, where the optimal fields only "converge" starting from
N = 3, which leads to a dimension 12 dynamic system. These results show that the
displacements of a flexible low-Reynolds magnetic swimmer can be captured and
optimized using a very coarse discretization of the tail.
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of the tail of the swimmer.
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3.7 Conclusion

In this chapter, the simplified, Resistive Force Theory-based 3D dynamical model for
flagellar micro-swimmers was used to investigate different planar and non-planar op-
timal actuation strategies for magnetic micro-swimmers that out-perform the com-
monly used sinusoidal actuation. In particular, the non-planar actuation strategies
lead to a novel 3D trajectory and are significantly more efficient than the planar
ones. Another result stemming from the numerical simulations is the investigation
of optimal actuation strategies that do not rely on a static orientating magnetic
field, as allowing all the components of the magnetic field to be optimized leads to
an increase in swimming speed. The solutions of the optimal control problem with
periodicity constraints provide simple magnetic field patterns that can be repeated
over time to drive flexible magnetic-swimmers, with a propulsion speed significantly
greater than the commonly used sinusoidal actuation. The focus of the next chap-
ter will be the implementation of the optimal magnetic fields on the experimental
validation of the model and these solutions. Although the main focus of this section
was to optimize the speed of the flexible robot for swimming along a straight line,
these swimming strategies are easily implementable for open loop or closed loop
path following (see [Oulmas et al. 2017] for an example) by applying the static com-
ponent of the magnetic field in the direction tangent to the curve, and the actuating
components in the normal and binormal directions.
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4.1 Introduction

In the previous chapters, we developed a simplified dynamical model of a flexible
magnetic low Reynolds number swimmer and computed optimal magnetic actua-
tion patterns that maximize the swimmer’s propulsion speed. The main goal of this
chapter is to show that the model developed in Chapter 2 can be used to design
optimal controls that are usable in experiment, and that it can accurately predict
the horizontal displacement of an experimental low-Reynolds swimmer.

The recent advances in the last decades moved the field of micro-robotics from
proof-of concept studies of the locomotion of micro-robots [Dreyfus et al. 2005], to
the fabrication of micro-swimmers that are functionalized to achieve specific tasks
for various potential biomedical and environmental applications such as cargo deliv-
ery [Zhang et al. 2012], sensing [Zarei & Zarei 2018], and removal operations [Guix
et al. 2013]. The efficient motion control and planning of these devices is of utmost
importance in order to achieve these tasks. However, model-based control of flexible
magnetic micro-swimmers using computational fluid dynamics (CFD) models is a
computationally prohibitive task due to the complex fluid-structure interaction cou-
pled with the magnetic effect. Thus, we aim to show that a simplified, RFT-based
model, is sufficient for the control design of experimental flexible magnetic micro-
swimmers. Moreover, due to its simplicity and its ODE form, the dynamic model
developed during this thesis is modular enough to be adapted for the optimization
of the actuation of the swimmer for specific tasks such as cargo delivery, as well as
for different designs of flexible swimmers such as the multi-link nanowires of [Jang
et al. 2015].
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The manufacturing and localization of microscopic flexible swimmers is a complex
task due to their scale. The fabrication of these devices requires the use of advanced
and expensive 3D printing methods [Stanton et al. 2015]. Localization methods for
micro-scale swimmers are equally costly, requiring high-precision optical devices in
order to track the swimmers. Hence, since the fluid motion around a micro-scale
swimmer is only characterized by the dimensionless Reynolds number, it is more
cost-effective to use scaled-up, centimeter-scale flexible swimmers that are put in
a highly viscous liquid in order to emulate the same conditions as the micro-scale.
This is the approach used in the following experiments, where a centimeter-scale
flexible swimmer is used and immersed in pure glycerol in order to have a Reynolds
number of around 1072, which is in the same range as a micrometer-scale swimmer
immersed in water at a comparable speed with respect to body length.

The proposed method used to generate optimal controls for the experimental
swimmer using the modelisation and optimization tools presented in the previous
chapters can be summarized as :

1. Characterization of the experimental swimmer by measuring its velocity-frequency
response curve.

2. Parameter fitting of the model to match the observed velocity-frequency re-
sponse curve.

3. Numerical resolution of the periodic optimal control problem choosing the
same frequency as the observed optimal frequency for sinusoidal actuation.

4. Approximation of the optimal actuation pattern by a truncated Fourier series
and implementation in the experimental setup.

The chapter is organized as follow : First, the experimental setup is described.
This is followed by an overview of the fitting of the model to the experimental data,
the optimal control computation, and the implementation of the optimal control in
the experimental setup. The experimental results are then presented and discussed.

4.2 Experimental setup

The experimental setup used in this thesis was designed by Tiantian Xu during her
PhD thesis [Xu 2014]. This work focused on the design, fabrication and characteri-
zation of centimeter-scale helical swimmers swimming in a viscous fluid (in order to
emulate conditions at the micro-scale), as well as realize a visual servo control of the
orientation of the swimmers in the 3D space, and a path following on the horizon-
tal plane. In a subsequent thesis [Oulmas 2018], the fabrication of centimeter-scale
flexible swimmers, which were used in the present work, was realized as well as a
generalization of the path following algorithm to 3D curves. The swimmer, which
can be seen in figure 4.1, consists of a magnetic disk (Neodyminum-Iron-Boron
permanent magnet) with 0.3mm in height and 0.77mm in diameter attached to a
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silicone tail with 7mm in length and 1mm in diameter. The swimmer’s tail was
made using RTV silicone (Room-Temperature-Vulcanizing silicone), which is com-
posed of a base and a catalyzer which solidify at room temperature when mixed
together. The tail was shaped using a 3D printed mold and painted black in order
for the swimmer to contrast with the surrounding liquid, which is backlit, so as to
facilitate the motion tracking. The swimmer is immersed in pure glycerol to ensure
low-Reynolds number conditions (=~ 1072),

[ ~-———

Figure 4.1: Flexible magnetic swimmer used in the experiments

The actuating magnetic field is generated by a system of three orthogonally
arranged Helmholtz coil pairs, depicted in figure 4.2. As said in section 1.3.1 of
the introduction, this is arguably the most popular magnetic generation method for
magnetic micro-swimmers, and it allows the generation of a homogeneous magnetic
field at the center of the coils with three degrees of freedom. Details about the
fabrication and calibration of the magnetic field generation system can be found
in [Xu 2014]. Each pair of coils is driven by a servoamplifier (Maxon Motor) which
outputs a constant current that depends only on the input voltage outputted by an
I/0 card (Sensoray 626) controlled by a computer running the real-time operating
system RTLinux.

As seen in figure 4.2, two cameras provide a side view and a top view of swim-
mer. The movements of the swimmer are tracked in real-time using the Visual
Servoing Platform (ViSP) library, [Marchand et al. 2005], which is a C++ API for
visual tracking and visual servoing. The tracking method used is the so-called 'Blob
detection method’ [Kaspers 2011], which relies on detecting the swimmer using the
contrast between its dark colour and the light, backlit surroundings. From this, the
orientation and the position of the barycentre of the swimmer on both the side and
top planes are obtained using the image moments provided by ViSP, which are then
used to reconstruct the orientation and position of the swimmer in 3D (see [Xu 2014]
for the calculations). Figure 4.3 shows the image of the swimmer provided by the
side camera and the tracking of the overall shape of the swimmer (in green), its
barycenter (red cross), and its estimated orientation (blue arrow).

The visual tracking method allowed the open and closed loop control of the
orientation of the swimmer, and the path following of a planar curve, which were
implemented by Tian Tian Xu in [Xu 2014]. The path following algorithm was then
generalized to 3D curves in [Oulmas et al. 2017]. The aim of the algorithm is to
minimize the distance and orientation errors between the swimmer and the reference
path by computing the required steering angular velocities, making it reach to the
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Figure 4.2: Experimental setup ( [Oulmas et al. 2017]). The three orthogonal
Helmholtz coils generate a homogeneous magnetic field in the center, where the
swimmer has been placed and immersed in pure glycerol. The swimmer is tracked
using two perpendicular cameras.

path then going along it by following the path’s tangential vector. The closed loop
control algorithm computes at each iteration the required steering angular velocity
for the minimization of the orientation and distance errors between the swimmer
and the curve by applying a state-feedback control after linearizing the kinematic
of the swimmer into a multi-input generalization of the "chained-form" introduced
in [Samson 1995] which is used to model the kinematics of nonholonomic mechanical
systems.

4.3 Parameter fitting

The first step for the optimal control design method is the fitting of the RFT coeffi-
cients and the elasticity coefficient of the model in order to match the displacements
of the experimental swimmer (see section 2.5 in chapter 2). As said in 2.5, the pa-
rameters are determined by a non-linear fitting method in order match the velocity-
frequency response curve of the experimental swimmer. Matching this curve with
the model guaranties that the elasto-hydrodynamics of the simulated swimmer are
close to the experimental one given that the optimal swimming frequency is char-
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y

Figure 4.3: Real-time tracking of the position of the barycenter of the swimmer (red
cross) and it’s orientation (blue arrow)

acterized by the sperm number of the swimmer, which in turn encodes the relative
importance of the elastic forces compared to the viscous drag. We consistently use
a fixed frame (x,y, z) where the z-axis is the desired swimming direction (given as
an input in ViSP) | the z-axis is vertical and the y-axis is along the axis of the side
camera. Due to the fact that the experimental swimmer is not completely neutrally
buoyant, a static magnetic field at an angle of approximately 15° — 20° elevation
with respect to the swimming direction is applied to compensate the gravity.

The experimental velocity-frequency response curve of the swimmer is measured
with an actuating field of the form :

B(t) = (B. Bycos(2nft) 0)", (4.1)

where the frequency range is f = (0---3Hz), and B, = 2.5mT and B, = 10mT.
The measured frequency-response curve of the swimmer has the typical shape for
magnetically driven flexible swimmers at low Reynolds number [Espinosa-Garcia
et al. 2013, Khalil et al. 2014, Yu et al. 2006], as it increases with the actuating fre-
quency until an optimum point (f = 1.5H z) then slowly decreases. Figure 4.4 shows
the agreement between the experimental (N = 6 trials) and simulated frequency
responses after fitting. The mean relative error (co-norm) between the simulated
horizontal displacement using the fitted model and the observed horizontal displace-
ment of the swimmer (for N = 6 trials) when actuated by the sinusoidal field at
optimal frequency (1.5Hz) is 0.18(£0.015). Figure 4.5 shows the experimental and
simulated horizontal displacements of the swimmer for one trial.
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Figure 4.4: Experimental (N = 6) and simulated horizontal swimming velocities for
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Figure 4.5: Experimental and simulated horizontal displacement of the swimmer at
the optimal actuating frequency (1.5H z)

4.4 Optimal Control computation

After fitting the dynamic model to the experimental swimmer, the optimal control
for the swimmer is computed. We choose to solve the POCP-3 optimal control
problem, (see section 3.3 in chapter 3 )), which consists of maximizing the mean
horizontal propulsion speed of the swimmer under the constraint of a periodic de-
formation :
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max z(T),

Z{t) = f(2(t), B¥)).

Z(0)=0,

Z(T)=0, (4.2)
By (t) = By,

1(By(t), B=(1))I| < Bo,

B.(t) =0,

where the bounds on the orientating field and the time-varying fields are taken
to be the same as the sinusoidal field used in the experiments (B, = 2.5mT and
||(By(t), B:(t))|| < 10mT). The deformation period is chosen to be the same as the
observed optimal period for a sinusoidal actuation (7 = %55) and it is imposed that
the swimmer returns in its initial orientation and position on the y and z-axis at
the end of the period.

Although the optimal control formulation where all the components of the mag-
netic fields are free to be optimized (POCP-4 in Chapter 3) has a better performance
in simulations, it fails to drive the swimmer in a straight trajectory because of the
non-perfect experimental conditions (non-buoyancy of the swimmer) and because
of the low sampling frequency (10 Hz) of the magnetic generation system, which
applies to the swimmer a discrete approximation of the prescribed magnetic field.
The planar solutions presented in the previous chapter (POCP-1 and 2) , where
one of the components of the magnetic field present discontinuities have the same
drawback given that the switching times could not be captured during the sampling
of the magnetic field.

Figure 4.6 shows the result of the numerical optimization, where we can see the
y (a) and z (b) components of the optimal magnetic field. This results in a simple
magnetic field shape, shown in (¢), where the actuating strategy over one defor-
mation period is a partial rotation (about two thirds of a circle) of the magnetic
field followed by a full rotation in the opposite direction. Repeating this pattern
over time makes the swimmer revolve around the z axis, drawing a "figure-8" in
the y — z plane. Figure 4.7 shows the simulated optimal trajectory of the swim-
mer compared to the trajectory under the sinusoidal field. The simulated fields
perform better (mean propulsion speed of 1.451073 ms~!) than the sinusoidal actu-
ation (mean propulsion speed of 1.210 3 ms™1).

The numerical solution of the optimal control problem (Figure 4.6) is approx-
imated by its truncated Fourier expansion (first 10 modes) and then implemented
in the ViSP interface. It is worth noting that in simulation, the first 5 coefficients
of the series characterizes the optimal magnetic fields and the trajectory (see figure
3.13 in 3), which means that there is no significant loss of speed or drifting from the
horizontal swimming direction when using this approximation of the optimal field.
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Figure 4.6: Actuating magnetic field that maximizes the horizontal speed of the
swimmer. (a) and (b) are respectively the y and z components of the magnetic field.
(¢) : Shape of the actuating optimal magnetic field deriving from the optimization

process during one period.
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Figure 4.7: Simulated trajectory of the head of the swimmer under both the opti-
mal and sinusoidal field for 3 seconds of straight swimming under both actuation
patterns. In the corner, the trajectory in the y — z plane is depicted.

4.5 Experimental Results

After the implementation, the swimming performances of both the optimal field
and the sinusoidal field were compared, keeping the same experimental conditions
for each run (fixed gravity compensation angle, same viscosity and temperature ...).



4.5. Experimental Results 7

As predicted by the simulations, the optimal field out-performs the sinusoidal field
in terms of horizontal propulsion speed, as shown in Figure 4.8. From this figure,
we see that the dynamic model accurately predicts the horizontal displacements of
the swimmer under both magnetic fields. It is less accurate in predicting the value
of the amplitudes of the oscillations of the swimmer along the y and z axis as can
be seen from comparing figures 4.9 and 4.7. However, the shapes of the predicted
and experimental trajectories match qualitatively.

Figure 4.9 shows the 3D trajectory of the experimental swimmer during 3 sec-
onds of horizontal swimming. This observed trajectory qualitatively matches the
‘figure-eight’ simulated trajectory seen 4.7, however the dynamical model fails to
accurately predict the y and z-displacements of the swimmer. Figure 4.10 shows
the deformation pattern undergone by the experimental swimmer in the two perpen-
dicular planes. The swimmer’s displacements are characterized by the deformations
of its tail, as a consequence of the forces and torques balances in equation 2.41.
The experimental deformation patterns of the tail under both magnetic fields are
shown in Figure 4.10, which illustrates how the swimmer breaks the time-reversible
symmetry of the Stokes flow to propel in both cases. In particular, the deforma-
tion pattern under the optimal field shows a torsion of the tail of the swimmer in
addition to a beating pattern. This torsion of the tail causes the swimmer to go
out-of-plane. This same effect of the torsion on the trajectory has been shown in
the case of flagellated cells that self propel along a 3D chiral path when the torsion
of the flagellum is coupled with an oscillating waveform [Jikeli et al. 2015].

Under optimal actuation, the swimmer reaches a mean horizontal propulsion speed
of 1.54 +0.31073ms™! (N = 6). The mean relative error (co-norm) between the
simulated and observed z-displacement is 0.16(£0.02). We refer the reader to this
video for a side-by-side comparison of the displacements of the swimmer actuated by
the optimal and sinusoidal field. Figures 4.11 and 4.12 shows snapshots of the video
from the side and top cameras, comparing the trajectory of the swimmer under both
actuations.
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Figure 4.8: Simulated and experimental horizontal displacements of the swimmer
actuated by the optimal magnetic field and the sinusoidal magnetic field for 3 seconds
of straight swimming under both actuation patterns.
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Figure 4.9: Trajectory of the experimental swimmer actuated by the optimal mag-
netic field given in Figure 4.6 during three periods of the magnetic field.
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Figure 4.10: Deformation pattern of the experimental swimmer actuated by the
optimal magnetic field and the sinusoidal magnetic field over one period in two
planes. ( (a) : Optimal field, top view, (b) : Sinusoidal field, top view, (c):
Optimal field, side view, (d) : Sinusoidal field, side view.). The snapshots of the
experimental swimmer are taken at equal time steps over a period of the actuating
fields. We observe (as expected) no deformation in the side plane for the sinusoidal
field.
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Figure 4.11: Comparison between the displacements of the swimmer actuated by
the optimal field and by the sinusoidal field at the optimal frequency. Snapshots
taken from the top camera at a 0.8 seconds interval.
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Figure 4.12: Comparison between the displacements of the swimmer actuated by
the optimal field and by the sinusoidal field at the optimal frequency. Snapshots
taken from the side camera at a 0.8 seconds interval.

To illustrate this new actuation method for eventual applications, the optimal

field was also implemented in the path following algorithm of [Oulmas et al. 2017]
and compared to the sinusoidal actuation. This has been made by applying at each
iteration of the path-following algorithm the static component of the magnetic field
in the direction tangent to the curve to be followed, and the time-varying compo-
nents in the normal and binormal directions. This can be interpreted as a greedy
optimization method for the maximization of the speed at which the swimmer fol-
lows the curve given that the forward propulsion of the swimmer along the direction
prescribed by the closed-loop algorithm is optimized at each step.
Using the optimal actuation pattern instead of a sinusoidal field in the path follow-
ing algorithms improves the speed of the swimmer, without impairing the trajectory
and angular errors between the swimmer and the prescribed path, as seen in figure
4.13,which shows snapshots of the path following of an incline sinusoidal curve, com-
paring between both actuation patterns, and figure 4.14, which shows the trajectory
of the swimmer during the path following when using the optimal actuation.

Figure 4.13: Comparison between the path following of an incline sinusoid for the
swimmer actuated by the optimal field and by the sinusoidal field at the optimal
frequency. Snapshots taken from the top camera at a 0.8 seconds interval.
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Figure 4.14: trajectory of the swimmer during the path following.

4.6 Discussion

Using the approximate RFT model developed in chapter 2 as a dynamic constraint
for an optimal control problem, we computed a novel 3D actuation strategy for an
experimental flexible magnetic low-Reynolds swimmer that out-performs the classi-
cal sinusoidal actuation in terms of propulsion speed. Moreover, the dynamic model
accurately predicts the horizontal displacement of the swimmer under both the op-
timal and sinusoidal actuation patterns. However it is less accurate in predicting
the amplitudes of the oscillations of the swimmer around the x and y axes. The
dynamic model could be improved in order to better capture the oscillations of the
experimental swimmer by including the additional constraint that the observed am-
plitudes match the experimental one during the parameter fitting optimization.
The optimal control design method used in this thesis has the advantage of pro-
viding swimmer-specific optimal actuation, as it is based on a dynamic model that
is able to be fitted on the measured velocity-frequency response of experimental
swimmers. For this reason, the model can easily be adapted to optimize the dis-
placement of different flexible swimmers than the one used in the present work, such
as the multi-link nanowires of [Jang et al. 2015], or the sperm-templated swimmer
of [Khalil et al. 2014].

The experimental setup used has several limiting factors as it suffers from the usual
drawbacks of open-loop control of microswimmers as external perturbations affect
the path of the swimmer and hinders the reproducibility of experiments, mainly
thermal effects (which changes the viscosity of the fluid between experiments), par-
asitic magnetic forces arising from the non-uniformity of the magnetic field, and the
weight of the swimmer given its non buoyancy. This explains the relatively high
errors margins for the measurements of the speed of the swimmer (for example in
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the velocity-frequency response curve 4.4).

Another limiting factor is the low sampling frequency (10H z) the provided by the
system, which entails that the effective magnetic fields applied to the experimental
swimmer are only a coarse discrete approximation of the prescribed controls. For
this reason, the optimal control formulations where all the components of the mag-
netic fields are optimized (POCP-4) are not adapted for these conditions, despite
the theoretical performance of these solutions over those using a static orientating
field. The planar solutions presented in the previous chapter (POCP-1 and POCP-
2), where one of the components of the magnetic field present discontinuities have
the same drawback given that the switching times could not be captured during the
sampling of the magnetic field.

Current research is focused on finding a solution to allow propulsion of flagel-
lated swimmers in confined environments ( [Ishimoto & Gaffney 2014, Shum &
Gaffney 2015]) or in the presence of obstacles, such as the human vasculature ( [Jang
et al. 2018]). Hence, the next step of this study should be the optimization of the
actuation of the swimmer in the presence of boundaries, using boundary-corrected
Resistive Force Theory [Katz 1974]. The experimental setup should be adapted for
this purpose by confining the swimmer in a narrow channel or near a planar bound-
ary. This requires a substantial improvement on the tracking of the swimmer as the
distances between the swimmer and the boundaries need to be accurately evaluated
in real time in order to fit the model.

4.7 Conclusion

In this chapter, a joint experimental-computational approach was adopted to study
the swimming performance of magnetically actuated low-Reynolds swimmer, using
the modeling and optimization tools presented in the previous chapters. The goal
of this study was to present and a procedure for the design of optimal actuation for
experimental flagellar magnetic microswimmers based on numerical optimization us-
ing using a simple, computationally inexpensive model that predicts the horizontal
displacement of the swimmer. Using this approach, we simulate magnetic fields that
maximize the horizontal propulsion speed of the swimmer.

From this, we are able to propose a novel magnetic actuation pattern that allows
the swimmer to swim significantly faster compared to the usual sinusoidal actua-
tion. This actuation pattern is experimentally tested on a scaled-up, macroscopic
low Reynolds number swimmer. The dynamic model used accurately predicts the
horizontal displacement of the experimental swimmer under both the optimal and
sinusoidal actuation.

Although the dynamic model used is limited in its accuracy, since it is based on an
approximation of the fluid-structure interaction of the swimmer, this study show-
cases the usefulness of such a simplified model for the control design for the actuation
of flagellar magnetic swimmers. This is further emphasized by implementing the op-
timal actuation in an existing path following algorithm with a stabilizing feedback
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loop and observing an improvement in performance compared to the classic sinu-
soidal actuation.






CHAPTER 5

Conclusions and Perspectives

5.1 Conclusions

This thesis presents a joint computational and experimental study on the optimal
control of flexible magnetic low-Reynolds swimmers. The first contribution of this
thesis, described in chapter 2, was the development of a computationally inexpen-
sive dynamic model that describes the movement of a flagellar micro-swimmer in
3D. The Resistive Force Theory based approximation of the hydrodynamics and the
discrete shape approximation used for the geometry of the tail of the swimmer led to
an ODE model that circumvents the numerical drawbacks of continuum mechanics-
based models. Using these approximations led to a model where the dynamics of the
swimmer can be seen as an ODE control system that is affine in the components of
the actuating magnetic field. Moreover, we showed in chapter 4 that the model can
be used to accurately predict the horizontal displacement of an experimental mag-
netic low-Reynolds swimmer. The model developed in chapter 2 can also be used as
a basis for the study of the locomotion of biological flagellated micro-swimmers. In
this light, an interesting question that was not addressed in the present work could
be the comparison between the optimal deformations of the swimmer, that can be
obtained when taking the shape derivatives of the swimmer as a control variable,
and the deformations undergone by the swimmer under an optimal magnetic field.
The simplified, Resistive Force Theory-based 3D dynamical model was then used
in chapter 3 to numerically solve the optimal control problem of maximizing the
horizontal displacement of the swimmer in order to investigate different planar and
non-planar optimal actuation strategies for magnetic micro-swimmers. The nu-
merical optimal solutions out-perform the commonly used sinusoidal actuation. In
particular, the non-planar actuation strategies led to a novel 3D trajectory and are
significantly more efficient than the planar ones. Another result stemming from the
numerical simulations is the investigation of optimal actuation strategies that do
not rely on a static orientating magnetic field, as allowing all the components of
the magnetic field to be optimized leads to an increase in swimming speed. The
solutions of the optimal control problem with periodicity constraints provide simple
magnetic field patterns that can be repeated over time to drive flexible magnetic
micro-swimmers, with a propulsion speed significantly greater than the commonly
used sinusoidal actuation. One interesting result stemming from these numerical
simulations is that the optimal controls are periodic in the planar case, and non-
periodic in the 3D case. This raises the question as to whether initial configurations
of the swimmer (for example, the initial shape or the initial magnetization angle of
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the swimmer) could be found where the 3D optimal solutions are periodic. Answer-
ing this question could lead to new designs for flexible micro-swimmers as well as a
new 3D optimal magnetic field that is usable in experiments.

Lastly, in chapter 4, the optimal non-planar actuation pattern was tested on an
experimental flexible low-Reynolds magnetic swimmer using the ISIR experimental
setup. The dynamic model accurately predicts the horizontal displacement of the
experimental swimmer under both the optimal and sinusoidal actuation. The simu-
lation and experimental results show that it is necessary to go out of plane in order
to maximize the propulsion speed of flexible magnetic low-Reynolds swimmers. We
also observed that the solutions that does not rely on an orientating magnetic field
(POCP-4)) cannot achieve a straight horizontal propulsion, which is probably due to
non-ideal experimental conditions (in particular, the non buoyancy of the swimmer
and the low sampling frequency of the magnetic generation system). Future work
on this project should include manufacturing of flexible swimmers that are more
neutrally buoyant in order to test these solutions experimentally, given that they
are the most performant ones in simulation.

The experimental results showcase the usefulness of such a simplified model for
computationally inexpensive optimal control design for the actuation of flagellar
magnetic swimmers. This is further emphasized by implementing the optimal ac-
tuation in an existing path following algorithm and observing an improvement in
performance compared to the classic sinusoidal actuation.

In summary, we provided in this thesis a computational framework for the optimal
control of flexible magnetic micro-swimmers and showed that it can be used to com-
pute novel magnetic actuations that out-perform the classical actuation method used
in the literature for this kind of swimmers in simulations as well as in experiments.
By showing that a simplified, RFT-based dynamic model can be used to design
optimal controls for magnetic micro-swimmers that are usable in experiments, the
present work can be seen as a first step towards efficient model-based motion control
and planning for flexible micro-swimmers.

5.2 Perspectives

The work done during this thesis opens up a variety of perspectives on the actuation
of magnetic micro-swimmers. Firstly, we present some preliminary numerical results
on the optimization of the displacement of a flexible magnetic micro-swimmer near
a planar boundary, then we present more general perspectives.

5.2.1 Preliminary simulations on swimming near a planar wall

A crucial challenge for the potential medical applications of micro-robots is their
control in the presence of boundaries or in confined environments such as the human
vasculature [Ishimoto & Gaffney 2014,Shum & Gaffney 2015,Jang et al. 2018]. Con-
trolling micro-swimmers in a confined environment or near a wall is a complex task
due to the hydrodynamic attractive effect that boundaries have on micro-swimmers.
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In this context, our dynamical model can be adapted in order to model the swimmer
in the presence of boundaries, using Boundary-corrected resistive force theory, which
is a correction of the RFT coefficients introduced in [Katz 1974], where expressions
of the drag coefficients that depend on the distance between the swimmer and the
boundaries are proposed in asymptotic regimes far from or near to an infinite no-slip
boundary.

A full numerical and experimental study of this problem was not conducted. How-
ever, in this section, we present some preliminary simulations where the optimal
control problem of maximizing the horizontal displacement of the swimmer in 2D
near a planar boundary (assumed to be at y = 0) was solved using our model with
the corrected drag coefficients of [Katz 1974], which take the following form when
assuming that the swimmer is close to a parallel boundary:

2T
' log(Zy’
_ 4
N log(%) -1’

where k) is the parallel drag coefficient of the tail, £, is the perpendicular drag
coefficient of the tail, p is the viscosity of the fluid, & is the distance of the swimmer
to the parallel boundary, and e is the cross-sectional diameter of the tail of the
swimmer. The value of p was taken equal to the viscosity of pure glycerol : u =
1.524Pa.s and the value of ¢ is equal to the diameter of the experimental swimmer
: ¢ = 0.5mm. There is no significant additional numerical complexity of the ODE
system or the numerical resolution of the optimal control problem when the starting
position of the swimmer is at a large enough distance from the wall, however, the
direct solver fails to converge to a solution when the initial distance of the swimmer is
smaller than 1.5mm. Figure 5.1 shows the solutions of the optimal control problem
(with admissible controls consisting of a fixed static orientating component in the
z direction and an actuating component along the y direction) and figure 5.2 shows
the associated optimal trajectories.
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Figure 5.1: Solutions of the optimal control of a magnetic micro-swimmer near
a planar boundary (at y = 0) for different starting distances from the boundary
(yo = 4mm, yo = 2mm, and yo = 1.5mm).
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Figure 5.2: Optimal trajectories of magnetic micro-swimmer near a planar boundary
(at y = 0) for different starting distances from the boundary (yo = 4mm, yo =
2mm, and yg = 1.5mm) .

These results are preliminary as the model was not fitted on experimental data
for these simulations, and due to the fact it isn’t clear whether the wall-corrected
magnetic swimmer model describes reality, although recent studies, such as [Walker
et al. 2019], found, for self-propelled filaments, that simulations using wall-corrected
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Resistive Force Theory are in agreement with simulations using the more accurate,
PDE-based Boundary Element Method. However, these simulation results show that
it is possible to generate controls to actuate the swimmer near a planar boundary,
even if further work is warranted in order to investigate the validity of the model.
For this purpose, the experimental setup should be adapted in future work by con-
fining the swimmer in a narrow channel or near a planar boundary and the visual
tracking of the swimmer should be improved in order to accurately evaluate the
distances between the swimmer and the boundaries in real time to provide sufficient
experimental data for the fitting of the model. Studying the problem of optimizing
the swimming near a boundary is an important problem due to the potential medi-
cal applications for micro-robots, hence, further investigation is warranted based on
the model developed during this thesis.

5.2.2 Other Perspectives

Optimal control of flexible swimmers with different elasticities and mag-
netization profiles

A more controlled manufacturing process of the flexible swimmers should be imple-
mented in order to study the influence of various design parameters on the shape
and performance of the optimal actuation. In particular, the elasticity of the tail
of swimming micro-robots and the viscosity of the surrounding fluid play a role
in the characterization of their optimal deformation patterns and trajectories, as
found in the experimental studies of [Huang et al. 2019, Spagnolie & Lauga 2010].
This warrants further optimization studies using our framework by constructing
swimmers with tails that are of various degrees of compliance to study the effect
of the elasticity of the tail on their optimal trajectories and gaits and by optimiz-
ing the swimming in different mediums. Another interesting perspective on the
design of flexible magnetic swimmers is the optimization of actuation patterns for
low-Reynolds swimmers with different magnetization profiles, for example, flexible
low Reynolds number swimmers with asymmetric magnetic heads similar to the
triangular swimmer of [Manamanchaiyaporn et al. 2020], where the non-uniform
magnetization of the head changes the way deformations propagate along the tail
of the swimmer under an actuating magnetic field.

Optimal actuation of the swimmer using non-homogeneous magnetic fields

Another potential generalization of this work in future studies is the optimal control
of magnetic micro-swimmers using non-homogeneous magnetic fields. In this thesis,
the focus was on actuation with homogeneous fields, given the 3D Helmholtz coil
configuration of the experimental setup. It could be worth looking into optimal
actuation patterns beyond this restriction to homogeneous fields, by independently
controlling the current passing through each electromagnet, similar to the experi-
mental setups of [Pawashe et al. 2009, Khalil et al. 2013]. This would significantly
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expand the set of admissible controls for the magnetic swimmer, and could lead to
novel optimal actuation patterns and trajectories for flexible micro-swimmers that
rely on non-trivial magnetic fields instead of homogeneous fields or gradient pulling.

Model-Predictive Control

In section 3.6.4 of Chapter 3, we observed numerically that the planar optimal mag-
netic fields do not depend on the number of links used in the model. Based on
this observation, in practice, a dynamical model of dimension 4 only can be used
for the computation of the optimal planar actuation of the swimmer. Similarly, we
showed that it is not necessary to go further than a coarse, three-linked approxima-
tion of the tail to obtain 3D optimal actuation patterns. This leads to a dimension
8 dynamic system. Given this ability to produce optimal solutions with a numer-
ically cheap approximate dynamical model, an interesting perspective of this work
is the development of nonlinear Model Predictive Control algorithms [Cannon 2004]
based on the iterative resolution of the maximum speed optimization problem over
small horizons in order to optimize the swimming of the flexible robot in real-time.
This can be implemented in the ISIR system using the currently implemented visual
tracking framework , provided that the sampling frequency of the system is improved
as well as the tracking, and that the code for the computations of the dynamics is
sufficiently optimized (for example by using optimized BLAS and LAPACK linear al-
gebra libraries for the construction and inversion of the hydrodynamic mass matrix).

Control of multiple micro-swimmers

An important challenge in micro-robotics is the ability to control a "swarm" of
multiple micro-robots at once [Chowdhury et al. 2015]. There are two main prob-
lems that are considered in the literature in this context. The first one is the
independent control of multiple swimmers, which is usually achieved by using ge-
ometrically or magnetically different swimmers and triggering different swimming
behaviours by controlling the frequency and strength of the global actuating mag-
netic field [Kei Cheang et al. 2014]. The second problem is the ability to achieve a
collective behaviour of a homogeneous "swarm" of micro-swimmers, which could be
an interesting generalization of this present work, as optimal controls to achieve a
given formation for a swarm of micro-swimmers could be studied by using our model
and adapting previous distributed optimal control studies where multi-agent trajec-
tory optimizations problems were solved numerically such as [Foderaro et al. 2014].
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