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Titre Imagerie plénoptique: de la lumière visible aux rayons X

Résumé

L’imagerie plénoptique est une technique basée sur l’acquisition des infor-
mations spatiales et angulaires des rayons lumineux provenant d’une scène.
A partir d’une seule acquisition, un traitement numérique des données per-
met diverses applications comme la synthèse d’ouverture, le changement de
point de vue, la refocalisation à différentes profondeurs, voire une reconstruc-
tion en 3D de la scène. L’imagerie plénoptique est beaucoup étudiée dans le
visible. La transposition du visible dans le domaine des rayons X est un réel
défi. L’imagerie plénoptique permettrait une imagerie 3D en rayons X à partir
d’une seule acquisition. Cela aiderait à réduire fortement la dose absorbée par
l’échantillon, par rapport à la tomographie qui nécessite une centaine de vues.

Dans cette thèse, nous considérons une caméra plénoptique constituée d’une
lentille principale, d’une matrice de microlentilles et d’un détecteur. Deux con-
figurations optiques distinctes, constituées de ces trois éléments, sont présen-
tées dans la littérature : la caméra plénoptique traditionnelle et celle focalisée.
La seule différence se trouve dans l’ajustement des distances entre les éléments
optiques. L’observation d’une continuité entre ces deux configurations nous
a amené à établir un système unique d’équations permettant leur conception
optique, ainsi que l’expression théorique des résolutions associées. Ces résolu-
tions ont été validées expérimentalement dans le visible. De plus, l’étude de
l’évolution du contraste en fonction de la profondeur a montré que le contraste
diminue quand on s’éloigne d’une position privilégiée intrinsèque à la configu-
ration. C’est un résultat important car il pourrait affecter la qualité de l’image
reconstruite et l’extraction de la profondeur.

Nous avons aussi travaillé sur les algorithmes de refocalisation préexistants,
développés indépendamment pour chaque configuration. Nous avons élaboré
un nouvel algorithme valide pour les deux configurations. Ce dernier est basé
sur les distances physiques entre les éléments optiques, et permet une refocali-
sation à une distance arbitraire de la caméra. Tout d’abord, nous avons défini
une nouvelle paramétrisation entre les espaces objet et capteur, en établissant
la relation matricielle qui régit le trajet d’un rayon lumineux à l’intérieur de la
caméra. Cette relation permet de reprojeter les données acquises par le cap-
teur dans l’espace objet, et ainsi de reconstruire une image pixel par pixel à la
profondeur choisie. En inversant les équations, nous avons montré qu’il était
possible de créer des images plénoptiques synthétiques. La reconstruction de
ces données synthétiques nous a permis de valider la cohérence des résultats
après reconstruction, et de quantifier la précision de ce nouvel algorithme.

Cet algorithme permet de reconstruire séparément chaque plan de pro-
fondeur. Dans chacun d’entre eux, les éléments physiques qui appartiennent
réellement à ce plan sont nets, alors que les objets des plans adjacents sont
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flous. Nous utilisons cette propriété de contraste pour extraire l’information
de profondeur dans les images refocalisées. Nous avons sélectionné plusieurs
méthodes provenant du domaine de « depth from focus » et avons étudié leurs
efficacités sur nos images.

Dans le cadre d’une collaboration européenne, nous avons construit la pre-
mière caméra plénoptique dans les rayons X au synchrotron PETRA III. Grâce
au travail réalisé pendant cette thèse, nous avons choisi les configurations op-
tiques les plus adaptées aux optiques disponibles et aux caractéristiques du
faisceau. Nous avons réalisé le montage de la caméra, acquis des images plénop-
tiques en rayons X, refocalisé ces images avec notre algorithme, et vérifié les
résolutions optiques. Les méthodes de « depth from focus » appliquées sur
les images refocalisées ont permis de retrouver la profondeur attendue. Ce
travail correspond aux premières images acquises avec une caméra plénoptique
en rayons X.

Mots-clés

Plénoptique, Champ lumineux, Rayons X, Imagerie 3D, Refocalisation
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Title Plenoptic imaging: from visible light to X-rays

Abstract

Plenoptic imaging is a technique that acquires spatial and angular informa-
tion of the light rays incoming from a scene. After a single acquisition, nu-
merical data treatment allows various applications such as synthetic aperture,
changing viewpoint, refocusing at different depths, and consequently 3D re-
construction of the scene. Visible plenoptic has been widely studied. However,
transposition from visible to X-rays has never been done and remains chal-
lenging. X-ray plenoptic would be beneficial to the X-ray imaging panorama.
A single acquisition should be sufficient to reconstruct a volume, against hun-
dreds for X-ray tomography that is the today reference in 3D X-ray imaging.

In this thesis, we consider plenoptic camera composed of a main lens, a
microlens array and a detector. So far, two different configurations have been
developed: the traditional and the focused plenoptic setups. Although these
configurations are usually studied separately, they only differ by the distances
between the optical elements. These two configurations were studied in details
to choose the most suitable for X-ray imaging, considering the constraints of
X-ray optics. We observed a full continuity between the two systems. There-
fore, we extended the previous works to more general formulas about optical
configuration and theoretical resolutions. Theory about resolution along the
depth axis was refined, as depth reconstruction and extraction are the main in-
terest of X-ray plenoptic. Specific study was done on the evolution of contrast
along depth as being a key parameter for depth reconstruction. We realized
that contrast decreases when moving away from a privileged depth. This is im-
portant to consider as it can affect image reconstruction and quality of depth
extraction.

We also worked on refocusing algorithms. The refocusing algorithms are
usually developed for each configuration separately. We wanted to go beyond
this separation. We developed a new algorithm valid for all configurations.
Moreover, our algorithm is based on real distances between the optical ele-
ments, allowing image reconstruction at any distance from the plenoptic cam-
era. We defined a new parameterization between object and sensor spaces.
Using geometrical optics, we calculated the matrix transformation between
the two spaces. This allows back-projecting data from the acquired raw image
to the object space, and reconstructing the pixels one by one, until the whole
object. Reversing the process, we were able to simulate the process of im-
age acquisition, and create synthetic plenoptic data. Reconstruction of these
data was used to quantify the accuracy of the novel algorithm and prove its
consistency.

The refocusing algorithm allows reconstructing the depth planes one by
one. Each refocused plane contains information about the whole 3D scene
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vi

that has to be disentangled. In each depth plane, the elements physically
present at this depth are intrinsically sharp, whereas the ones located at other
depths are blurred. We used this contrast property to extract depth from the
refocused stack. We tested several existing methods derived from the field of
depth from focus and studied their efficiency when applied to our images.

In collaboration with European teams, we realized the first X-ray plenoptic
camera that was tested at P05 beamline of PETRA III synchrotron. Based on
the theoretical work developed in this thesis, we defined the best optical con-
figuration, mounted the plenoptic camera, acquired X-ray plenoptic images,
numerically refocused them using our new algorithm and verified the experi-
mental resolutions and contrasts. Depth from focus techniques applied on the
refocused stack allow to retrieve the expected depth plane. These are the first
images acquired with an X-ray plenoptic camera.

Keywords Plenoptic, Light-field, X-rays, 3D imaging, Refocusing
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Résumé long

Un champ lumineux (light-field en anglais) est une fonction représentant la
luminance le long de chaque rayon lumineux dans un espace. Il est définit
pour chaque position 3D et chaque direction 2D, avec parfois des composantes
additionnelles telles que le temps, la longueur d’onde et la polarisation de la
lumière. Dans les techniques d’imagerie classiques, comme la photographie
ou la microscopie, le champ lumineux est projeté sur le plan 2D du capteur.
Au lieu de cela, l’imagerie de champ lumineux cherche à capturer les cinq di-
mensions (ou plus) de la luminance, grâce à un système optique spécifique.
Une fois l’acquisition effectuée, ce champ lumineux peut être manipulé à l’aide
d’algorithmes dédiés. À partir d’une seule image de ce champ, diverses appli-
cations sont possibles. Les plus courantes incluent l’extraction en profondeur,
la refocalisation à différentes profondeurs et la reconstruction 3D de la scène.

L’imagerie de champ lumineux a connu des développements importants au
cours des dernières décennies. Ces avancées ont été réalisées pour un spectre
allant du visible à l’infrarouge. Plusieurs types de caméras ont été dévelop-
pés. La plus courante est la caméra plénoptique, basée sur l’ajout d’une grille
de micro-lentilles entre la lentille principale et le capteur. Cette caméra est
compacte, relativement facile à réaliser, et ce à des coûts raisonnables, ce qui
explique son succès dans la communauté scientifique.

La possibilité d’une reconstruction en 3 dimensions à partir d’une seule
acquisition est d’un grand intérêt, et pourrait être appliquée à d’autres do-
maines spectraux que celui de la lumière visible. Dans le domaine des rayons
X, la technique d’imagerie de référence est la tomographie, qui est utilisée par
exemple dans l’imagerie médicale, le contrôle non destructif en industrie ou
bien l’étude du patrimoine culturel. La tomographie permet de reconstruire
une imagerie volumétrique de l’échantillon, offrant de très bonnes résolutions
et une qualité d’image élevée. Son principe consiste à combiner des images
2D acquises à différents angles de vue, et donc cette technique nécessite un
grand nombre d’acquisitions pour être efficace (généralement plusieurs cen-
taines ou milliers d’acquisitions). Par conséquent, une dose importante de
rayons X est absorbée par l’objet à imager, ce qui est nocif pour le corps hu-
main mais également pour les échantillons biologiques ou les spécimens fragiles.
Les différentes acquisitions nécessitent des rotations du système d’imagerie ou
bien de l’échantillon, et donc un équipement coûteux pour garantir une pré-
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cision angulaire suffisante. De plus, la tomographie suppose que l’échantillon
reste statique pendant tout le processus d’acquisition, ce qui exclut l’imagerie
d’un échantillon en mouvement. L’imagerie plénoptique adaptée aux rayons
X permettraient de réduire la dose absorbée ainsi que le temps d’acquisition,
puisqu’une seule acquisition serait nécessaire au lieu de quelques centaines ou
milliers. L’appareil serait plus compact et la reconstruction 3D plus rapide.

Cette thèse s’est déroulée dans le contexte du projet VOXEL dont le but
est de réaliser de l’imagerie plénoptique en rayons X, en construisant deux
prototypes dans des domaines spectraux différents. Le premier prototype est
prévu dans les rayons X mous (0,44 keV) qui sont habituellement utilisés pour
l’imagerie de petits échantillons biologiques tels que les cellules. Le deuxième
prototype concerne l’imagerie du petit animal dans le domaine des rayons
X durs (environ 10 keV). L’aspect instantané de l’imagerie plénoptique est
intéressant pour étudier des animaux vivants. Les travaux réalisés lors de
cette thèse fournissent les principaux éléments nécessaires pour construire la
première caméra plénoptique en rayons X.

Nous présentons ici les principaux résultats de cette thèse concernant la
transposition de l’imagerie plénoptique du domaine visible aux rayons X.

Le chapitre 1 présente les notions fondamentales concernant le champ lu-
mineux, sa paramétrisation ainsi que l’intérêt de pouvoir le capturer et le
manipuler. Dans cette thèse, nous nous concentrons sur l’imagerie plénop-
tique, dont l’élément principal est une grille de microlentilles, positionnée
entre une lentille principale et un capteur. Deux configurations différentes
sont possibles, la configuration traditionnelle et la configuration focalisée, cha-
cune ayant été présentée avec son algorithme spécifique. Dans ce document,
nous mettons en évidence les points communs et différences entre ces deux
configurations, mais également entre les deux algorithmes de reconstruction.
Nous montrons une continuité entre les deux configurations optiques, et cette
continuité se retrouve sur le plan numérique. Les deux méthodes de recon-
struction se sont révélées être basées sur le même principe d’intégration des
données angulaires, à position spatiale fixée. Cette comparaison permet de
mieux comprendre les rôles distincts de la configuration et de l’algorithme
dans les résolutions de l’image finale. Par conséquent, la configuration optique
et la méthode numérique doivent être optimisées séparément afin d’améliorer
les performances d’un système plénoptique.

Dans le chapitre 2, nous poursuivons la comparaison entre les deux config-
urations optiques. Nous reprenons d’abord les équations générales permettant
la conception d’un système plénoptique, et incluons de nouvelles conditions
garantissant un bon éclairage de l’échantillon. Ces nouvelles équations sont
d’une importance capitale pour l’imagerie par rayons X, où l’éclairage se fait
par transmission à travers l’objet. Puis nous établissons les formules de résolu-
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tions d’une caméra plénoptique, en fonction des distances et des paramètres de
la configuration physique (tels que les ouvertures numériques, les diamètres des
lentilles ...). Ces formules permettent de prévoir la taille maximale de l’objet
qui peut être imagé (champ de vue et profondeur de champ plénoptique), ainsi
que la taille minimale du voxel dans l’image reconstruite (résolutions latérale
et en profondeur). Nous présentons les formules de telle manière que les deux
configurations traditionelles et focalisée puissent être facilement comparées.

Ces équations sont ensuite validées expérimentalement. Nous avons
construit deux caméras plénoptiques dans le visible, qui nous permettent
d’acquérir nos propres données. Les expériences menées ont confirmé que
nos formules de résolution latérale et de champ de vue sont appropriées.
L’estimation des résolutions en profondeur est plus complexe car elle néces-
site l’acquisition, la reconstruction et l’étude de plusieurs images à différentes
profondeurs. Pour trouver un critère expérimental permettant de les quantifier,
nous avons réalisé une étude sur le flou et sur la netteté de l’image en fonction
de la profondeur. Cette validation expérimentale indique que les résolutions
le long de la zone de profondeur sont affectées par des phénomènes inatten-
dus, tels que les variations de contraste et de grandissement. En parallèle des
expériences, nous avons réalisé des simulations d’imagerie plénoptique. Ces
simulations nous ont aidés à comprendre que le grandissement et la diffraction
interfèrent avec le flou de défocalisation. Les effets observés pourraient affecter
les résolutions et le processus d’extraction de profondeur à partir des images
reconstruites.

Après l’étude du design optique, le chapitre 3 s’intéresse maintenant à
l’aspect numérique. Une image brute plénoptique n’est pas lisible telle quelle.
Il est nécessaire d’utiliser un algorithme de refocalisation, qui permet de re-
construire une image 2D à une certaine distance de la caméra, choisie par
l’utilisateur. La comparaison des deux algorithmes préexistants nous a conva-
incus qu’il était possible de les fusionner pour n’en former qu’un seul, valable
pour les deux configurations traditionnelle et focalisée. Nous definissons un
nouvel algorithme basé sur un raisonnement purement physique, permettant
de refocaliser une image à n’importe quelle distance de la caméra, à une réso-
lution choisie par l’utilisateur. Nous démontrons une nouvelle paramétrisation
de la transformation d’un rayon à travers le système, conduisant à une équation
qui fait le lien entre espace objet et espace capteur. Cette équation est ensuite
utilisée pour reconstruire les pixels un par un, en projetant les rayons à travers
les ouvertures de l’objectif principal et des micro-lentilles, et en considérant
l’étendue spatiale des pixels du détecteur et ceux de l’image à reconstruire. Le
processus inverse a également été implémenté, et permet de simuler des images
brutes plénoptiques à partir d’un objet. Ces simulations permettent d’évaluer
l’algorithme de reconstruction, en comparant les images simulées puis refo-
calisées avec l’objet initial. Les résultats prouvent que l’algorithme est plus
précis que l’état de l’art. Il permet de reproduire numériquement l’apparition
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progressive du flou lié à la défocalisation quand l’objet est hors focus. Cet algo-
rithme permet de créer une pile d’images refocalisées à différentes profondeurs
de la scène.

À partir de cette pile d’images, nous cherchons à extraire la profondeur des
objets en utilisant des méthodes de "depth from focus". Dans le chapitre 4,
nous nous intéressons à ce domaine qui exploite les propriétés de flou et de
netteté dans l’image afin de retrouver les profondeurs des objets. Nous avons
implémenté et testé différentes méthodes préexistantes de mesure de flou et
d’extraction de profondeur sur des piles d’images réalisées à partir de un, deux
ou trois plans superposés. Ce travail permet de sélectionner une mesure de flou
efficace afin d’extraire la bonne valeur de profondeur des plans. L’ajout d’une
étape de filtrage gaussien permet de lisser les résultats et de les améliorer dans
le cas d’un seul plan. Lors de plusieurs plans superposés, il faut au contraire
enlever ce filtrage pour détecter le plan situé à l’arrière. Les résultats sont
intéressants et montrent que la capacité d’extraction de profondeur dépend
des objets présents dans les images et de plusieurs paramètres: la méthode
utilisée, la présence du filtrage et la taille de la fenêtre sur laquelle la mesure
de flou est faite.

Enfin, le chapitre 5 présente notre expérience plénoptique par rayons X. Les
travaux théoriques, expérimentaux et numériques réalisés au cours de cette
thèse nous donnent les outils nécessaires pour réaliser la première caméra
plénoptique par rayons X. Nous présentons les spécificités des optiques en
rayons X et leurs conséquences sur la conception d’une caméra plénoptique:
la source, la lentille principale, la grille de micro-lentilles, le détecteur et les
échantillons utilisés. Les formules de résolutions ont été utilisées pour choisir
la meilleure configuration possible, malgré les faibles ouvertures numériques
des optiques. L’éclairage par transmission à travers l’échantillon, spécifique
aux rayons X, a également été pris en compte. Nous avons réalisé des images
de deux mires 1951 USAF positionnées l’une derrière l’autre. A notre con-
naissance, ces images correspondent aux premières images plénoptiques dans
les rayons X réalisées à ce jour. Nous montrons les images plénoptiques ex-
périmentales et expliquons comment les interpréter. Nous utilisons ensuite
notre algorithme de refocalisation pour reconstruire les images à différentes
profondeurs. Ces images reconstruites nous permettent de valider les formules
de résolution latérale et en profondeur, de champ de vue et de profondeur de
champ plénoptique établies au chapitre 2. Nous avons testé les techniques
de "depth from focus", qui nous ont permis d’extraire la bonne profondeur
de la première mire, et de la séparer de la seconde mire et de l’arrière-plan.
Nous prouvons ainsi que la théorie plénoptique, initialement développée dans
le visible, est également valable dans le domaine des rayons X.

Pour conclure, cette thèse a permis de définir un cadre théorique pour la
conception d’une caméra plénoptique, de démontrer une approche plus précise
pour la reconstruction et d’étudier la faisabilité d’une approche "depth-from-
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focus" pour l’extration de la 3D. Tout ceci a permis de transposer l’imagerie
plénoptique du visible vers les rayons X, et de réaliser la première caméra
plénoptique par rayons X. Ce cadre théorique, algorithmique et expérimental
est une base pour des travaux futurs dans l’imagerie plénoptique s’étendant
au-delà du spectre visible.
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Introduction and Motivation

A light-field is a function representing the radiance along each ray that is,
for each 3D position and each 2D direction in space. Sometimes, it may
also include time, light polarization or spectral variations. Classical imag-
ing techniques, such as photography or microscopy, correspond to projection
of a light-field on a 2D sensor plane. Instead, light-field imaging aims at
capturing the whole 5D light-field using an appropriate optical design. Once
acquired, a light-field could be manipulated using dedicated algorithms. From
a single light-field image, a variety of applications could be addressed. The
most popular include depth extraction, refocusing at various depths and 3D
reconstruction of the scene from a single acquisition.

Light-field imaging has undergone important developments over the past
decades. The technical advances have been done in the visible and infrared
ranges. Various designs have been developed to achieve light-field acquisition,
the most common one being plenoptic imaging, based on the addition of an
array of micro-lenses between the main lens and the sensor. This design is
compact and relatively easy to implement at reasonable costs, explaining its
popularity among the scientific community.

The possibility of 3D reconstruction from a single acquisition is of great
interest, and could be applied to other fields than visible light. In the X-
ray range, the gold standard imaging technique is computerized tomography,
whether imaging a human body, a biological or cultural heritage samples. To-
mography allows volumetric imaging of the sample, providing high resolutions
and image quality. However, it consists in combining 2D images acquired at
various viewing angles, and thus requires a high number of acquisitions to be
efficient (usually between hundreds and thousands acquisitions). This induces
a high irradiation dose absorbed by the object being imaged, which could be
harmful for human body and potentially damageable for biological samples
or fragile specimens. This also implies rotations of either the machine or the
sample, which necessitates a large equipment with precise angular accuracy.
Moreover, the long acquisition time requires the sample to stay static dur-
ing the whole imaging process, which excludes following a moving sample.
Transposing light-field imaging techniques in X-rays would help reducing the
irradiation dose and acquisition time, since only one acquisition is needed. The
device would be more compact and the resulting 3D reconstruction would be
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2 Introduction and Motivation

limited by the acquisition time of a single image.
X-ray plenoptic imaging is the objective of the VOXEL project, in which

the current thesis took place. VOXEL is an European project, whose name is
the abbreviation for Volumetric medical X-ray imaging at extremely low dose.
The objective was to build two prototypes at different X-ray energies. The
first setup was in soft X-rays (0.44 keV) which is known as efficient to image
small biological samples such as cells. The second prototype concerns small
animal imaging (around 10 keV). The instantaneous aspect of plenoptic would
be interesting for dynamic studies on living animals. The work presented in
this thesis provides elements that have been studied in order to achieve the
first X-ray plenoptic camera.

The goal of this thesis is to study the feasibility of adapting light-field imag-
ing to the X-ray range. X-ray imaging is a complex field, with the X-ray optics
being highly technical and expensive (see Chapter 1). Adapting plenoptic to
the X-ray range requires a good understanding of plenoptic techniques and be-
ing able to predict their resolutions (see Chapter 2). Refocusing of the images
necessitates an accurate algorithm, based on the parameters and distances of
the physical setup (see Chapter 3). This algorithm allows to generate a re-
focused stack, from which depth could be extracted (see 4). The theoretical
work on the physical and numerical aspects of plenoptic has led to build and
test a X-ray plenoptic setup, which allows to better understand the possibility
of plenoptic for biological imaging (see Chapter 5).

Chapter 1 presents fundamental notions concerning light-field imaging and
its applications. It focuses on plenoptic imaging, based on a microlens array.
Two different designs are possible, the traditional and the focused configura-
tions, each of them being associated with its specific algorithm. We review
them and highlight the common characteristics and differences between the
two. We also present the specificities of X-ray optics and the consequences on
the design of an X-ray plenoptic system.

In Chapter 2, the comparison between the two optical configurations is
deepened. We first review the general equations for establishing a plenoptic
system, and include additional conditions for a good illumination of the sam-
ple, of particular importance for X-ray imaging. Then the resolutions of both
configurations are studied, depending on the distances and parameters of the
physical setup. We establish theoretical formulas by a geometrical reasoning,
and validate them using our own experiments conducted in the visible range.
This experimental validation indicates that the resolutions along depth are
affected by unexpected phenomena, such as contrast and magnification varia-
tions. We present a simulation of these effects in a plenoptic system to better
understand them.

Whereas Chapter 2 provides elements to optimize the optical setup, Chap-
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ter 3 concentrates on the numerical aspect of refocusing. A plenoptic raw
image should be reconstructed with an appropriate algorithm to fully exploit
the acquired information. We here present our work towards a new physically-
based algorithm, that takes into account the spatial extents of the apertures of
both microlenses and sensor pixels. We develop a new parameterization of the
ray transformation through the system, which is the basis of our refocusing
algorithm. The method is evaluated on plenoptic images simulated using the
reverse counterpart of the refocusing process. The results indicate that the
algorithm is accurate.

This refocusing algorithm offers an accurate method to create a refocused
stack of images reconstructed at different depths in the scene. From this stack,
depth could be extracted using depth from focus methods. The purpose of
Chapter 4 is to study the efficiency of depth from focus techniques on nu-
merically refocused images. We implement published several methods of blur
measurement and depth extraction, and conduct a progressive analysis on sim-
ulated images of one, two, then three depth planes.

Finally, Chapter 5 presents our X-ray plenoptic experiment. The lessons
learned from the previous chapters give us the necessary tools to build a plenop-
tic system in the X-ray range. We introduce the physical elements of the setup
and how they might impact the plenoptic system: the source, the main lens,
the array of micro-lenses, the sensor and the samples used. They constraint
us in the choice of a plenoptic configuration. We show experimental plenoptic
images and explain how to interpret them. We refocus the images and present
the consequences of the optical configuration and refocusing algorithm on im-
age resolutions and quality. We verify the coherence of plenoptic theory in the
X-ray range, that was previously established in the visible. We finally gener-
ate the refocused stack and experiment with depth from focus techniques. We
show that a plane could be extracted at its correct depth.

We conclude on the main contributions of this thesis and the feasibility of
X-ray plenoptic imaging.
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Chapter 1

Review and comparison of
previous work

1.1 Light-field imaging

1.1.1 The light-field

The notion of light-field dates back to Faraday’s ideas presented in 1846
in [Far46]. In 1936, Gershun formalized this notion and introduced the term
light-field [Ger39]. The light-field represents the radiance along each ray, i.e.
for each position and direction in space. Depending on the authors, the light-
field is also called plenoptic [AB91] or lumigraph [GGSC96], in the sense that
it contains a complete representation of all the information carried by the light
in a volume. This way, being able to capture the entire light-field coming from
a scene provides the possibility to perfectly describe it and, with an appropri-
ate algorithm, potentially reconstruct it in 3 dimensions (3D). In comparison,
traditional photography captures a 2D image corresponding to a projection of
the light-field on the sensor.

1.1.2 Two-planes parameterization

The positions and directions of the light-field function are described by 5 co-
ordinates, 3 for its location in 3D space and 2 for the angular components
(see Fig. 1.1). The light-field LF is thus defined for each ray(x, y, z, θ, φ). To
simplify, we express it as: LF (ray) = LF (x, y, z, θ, φ) (see Fig. 1.1). This
notion was taken up later by Adelson and Bergen in [AB91], who extended the
light-field to a 7D function, including variables of time and wavelength.

A property of radiance is that it remains constant along a ray when there
is no blocker or absorption [McC14]. This property implies that the choice of
the parameterization of the rays has no impact on the value of the light-field
function. Levoy and Hanrahan [LH96] presented a simpler model of parameter-
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ization than the 5D coordinates. The light rays flowing inside a homogeneous
volume (such as free-space) could be parameterized by their intersections with
two planes located at two different depths in the volume (see Fig. 1.1). The
2D coordinates on both planes is sufficient to describe the geometry of each
ray. When the light is monochromatic and constant over time, the light-field is
reduced to a 4D function : LF (s, t, u, v). This model is called the two-planes
parameterization.

(s,t) (u,v)

(x,y,z)

( , )

LF(s,t,u,v)

LF(x,y,z, , )

z

x

y

Figure 1.1 – Representation of a ray in the two possible parameterizations: its
radiance can be expressed as LF (x, y, z, θ, φ) with 3 spatial and 2 angular coordinates,
or LF (s, t, u, v) in the two-planes parameterization.

In the majority of imaging systems, the two transverse axes (x and y-axes)
could be decoupled. The 4 coordinates of the light-field can be separated into
2 sets of 2 coordinates, each set describing one of the transverse axes. When
considering linear propagation, the behaviour of the light rays along each axis
is independent. Thus the 2 sets of coordinates could be treated separately,
and the 4D light-field function could be factorized as a 2 × 2D function. As a
result, the parameterization and equations could be done in 2D.

1.1.3 The phase-space diagram

This two-planes parameterization could be visualized as a phase-space dia-
gram, whose axes correspond to the coordinates of the two-planes parameter-
ization [Lam15]. In the context of light-field imaging, the parameterization
is usually chosen so that one plane is responsible for the spatial sampling of
the light-field, when the other plane is responsible for the angular sampling.
Consequently, in 2D the phase-space diagram typically displays the spatial
information along the horizontal axis and the angular information along the
vertical axis.

Figure 1.2 presents an example of a two-plane parameterization together
with its associated phase-space diagram. The main idea is that a 2D light
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ray in the physical space of the parameterization becomes a single point in
the phase-space diagram. Thus the phase-space representation reduces the de-
scription of the physical space, providing a synthetic overview of the light-field.
Another interesting property is that the rays converging to the same point in
the physical space happen to be aligned in the phase-space diagram [IRMD16].
This allows to easily represent a bundle of rays focusing on the same point as

(a) Ray bundle focusing on the second plane of parameterization.

(b) Ray bundle focusing after the second plane of parameterization.

(c) Ray bundle focusing before the second plane of parameterization.
Figure 1.2 – Illustration of the phase-space diagram of a ray bundle converging on
a single point, depending on its depth (images from [Lam15]).
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a simple line in the phase-space diagram. The line is rotated depending on the
depth of the point of convergence (see Fig. 1.2). By extension, a surface area in
the phase-space diagram corresponds to the ray bundle between two apertures
on the two-planes parameterization. For a detailed derivation or interpretation
of the phase-space diagram, the reader might refer to [IRMD16; Lam15].

The phase-space diagram is a useful tool to visualize and study how an
imaging system samples the light-field. It could be used to compare different
optical designs and estimate their resolutions [LGC12]. It is important to
notice that the phase-space diagram depends on the positions of the two planes
of parameterization. Moving one of the two planes along the optical axis results
in a shift of the light-field in the phase-space diagram [Lam15]. This impacts
the shape and size of the sampling.

1.1.4 Acquisition of the light-field

Light-field imaging, also called plenoptic [AW92] or integral imaging [Lip08b],
corresponds to the techniques attempting to capture the light-field coming
from a scene. The challenge of light-field imaging is to enable separating the
spatial and angular components of each light ray, as a representation of its
position and direction before the imaging system.

Actually, prior to the theoretical conceptualisation of light-field, there had
already been some experimental attempts of achieving light-field imaging. The
first practical implementations can be dated to 1903 [Ive03] and 1908 [Lip08a].
In [Ive03], two apertures allow to separate the light rays, acting like the left
and right eyes in human vision. In [Lip08a], the author presented a prototype
based on a home-made array of small lenses. But it is only more recently
that light-field imaging techniques have been further developed, thanks to the
technical advances in micro-lenses fabrication and in computation possibili-
ties. In 1992, Adelson and Wang presented a plenoptic camera based on an
array of micro-lenses, together with its corresponding algorithm [AW92]. They
observed similar performances than with stereo imaging in terms of depth ex-
traction, while the setup was more compact and needed less calibration.

Ng was the one that made light-field imaging popular in the more recent
years. In his thesis [Ng06], he provided a complete description of the tra-
ditional plenoptic camera, considering both experimental considerations and
refocusing algorithm. In his camera, an array of micro-lenses plays the role of
separating the angular and spatial components of the incoming light rays.
It has led to an interest of the scientific community in light-field imaging
and since that the research on the topic has considerably increased. In 2008
Lumsdaine and Georgiev presented another plenoptic camera with a differ-
ent design [LG08a; LG09]. They called it focused plenoptic camera in con-
trast to the traditional camera presented by Ng. These two cameras are both
based on micro-lens arrays but vary in terms of distances between the opti-
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cal elements. Other camera designs were also developed, based on different
optical components: the camera array [WJV+05], various systems based on
prisms [CTDL11], pinholes [CCC+16], coded apertures [VRA+07] or even mir-
rors [MRK+13]. For more details on the history of plenoptic cameras, the
reader can refer to [Lam15; IRMD16]. Deeper reviews on the variety of light-
field imaging systems can be found in [WILH11; CDMBV16]. Mignard-Debise
et al [MDRI17] have shown that light-field imaging systems can all be modeled
as camera arrays, making the link between these different systems.

1.1.5 Applications of light-field imaging

The main interest of light-field imaging is certainly the variety of its possible
applications. Due to its comprehensive nature, the information contained in a
single acquisition enables novel applications than in photography. After the ac-
quisition has been made, the light-field can be manipulated using appropriate
algorithms to render different effects. Among the possible applications can be
mentioned synthetic aperture, changing viewpoint of the scene, depth estima-
tion or numerical refocusing at various depths [Ng06; GL10a; FCS14; HSVD17].
In particular, 3D rendering is an interesting application. From a single acquisi-
tion it is possible to reconstruct an object [PW12; HSVD17] or to give a sense
of 3D [LNA+06]. For example, several light-field microscopes have been devel-
oped [LNA+06; BGY+13; MDI15], and present interesting results in terms of
resolutions and depth extraction. This ability could be compared to other tech-
niques such as stereo cameras [FH15] or tomography systems [KSW02], which
require more equipment, calibration and acquisition time. Light-field imaging
represents an alternative in terms of compactness and acquisition time.

1.1.6 Application to 3D reconstruction

In this thesis, light-field imaging is studied as a potential technique to achieve
3D reconstruction from a single acquisition in the X-ray range. In order to ex-
tract depth from the acquired light-field image, several numerical approaches
validated in the visible range can be considered to be transposed in the X-
ray domain. The refocusing algorithms associated with the two configura-
tions [Ng06; GL10a] provide a stack of 2D refocused images containing simul-
taneously the in-focus elements of the refocused depth and the out-of-focus
elements of adjacent depths.

Some methods allows direct depth extraction from the raw light-field image,
without the need for the intermediate step of refocusing. The possibility to
transpose any light-field imaging system to a camera array [MDRI17] justifies
the use of algorithms coming from the field of stereo-imaging. Stereo-imaging
consists in combining two or more 2D images of the same scene but taken from
different angles of view, in order to extract depth of the scene [FH15]. Some of
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the numerical methods have already been adapted to process light-field imag-
ing [GL10b; THMR13; WER15; HSVD17] or X-ray imaging [DCH+19]. These
methods are adapted for surface reconstruction, and might not be appropriate
for 3D volumetric data.

The similarities between light-field imaging and tomography have been
demonstrated by [LNA+06; BGY+13], and experimented by [CZL+19]. In
the context of the VOXEL project, Vigano et al. showed that light-field imag-
ing can be interpreted as limited-angle cone-beam tomography. They adapted
tomography algorithms to reconstruct plenoptic data [VDH+18; VMH+19].
They were tested on numerical and real-world examples, acquired on the vis-
ible setups developed during this thesis (see Chapter 2). These algorithms
allowed to perform depth estimation and volumetric reconstruction.

Another approach is to consider depth from focus techniques. They allow
to estimate depth from a stack of 2D images refocused at regular depths of the
scene [SN17; SJP+17]. Depth from focus methods are classically used in the
field of microscopy imaging [MDP13; BCJ+13]. Using refocusing algorithms
would allow to generate a stack of refocused images, from which depth could be
extracted. This two-steps framework corresponds to the numerical approach
considered in this thesis.

1.2 Traditional and focused plenoptic cameras

This thesis focuses on the feasibility of light-field cameras to X-ray imaging.
We will study the types of light-field cameras that seem transposable to X-rays:
the ones based on arrays of micro-lenses.

1.2.1 Plenoptic cameras

In the literature, the word plenoptic camera has been used specifically for cam-
eras made with micro-lenses [LG08b; Hog18], in contrast to light-field cameras
referring to any of the previously described techniques enabling to acquire the
light-field (based on micro-lens, pinholes, mirrors...). On the other hand, the
word plenoptic can be understood as a broader notion than the light-field, be-
cause its origin comes from assembling the latin word plenus (complete or full)
to the word optic [AB91]. This ambiguity shows that these notions are not
fully standardised, and this explains why plenoptic and light-field are often
considered synonymous. In this thesis we will use preferentially the term of
plenoptic camera to describe the one based on a micro-lens array.

Only three optical elements are needed to build a plenoptic camera: a main
lens, an array of micro-lenses (µLA) and a detector (see Figures 1.3 and 1.7).
With only three optical elements, this type of camera is compact, easy to build
and model. Its simple structure and the possibility to build a plenoptic camera
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either from separated elements [ZLE+18] or from already existing cameras or
microscopes [LNA+06; MDI15] explain its popularity compared to other light-
field systems.

The problematic of plenoptic cameras lies in the placement of the three
components: main lens, µLA and sensor. Two particular configurations are
noticeable: the traditional plenoptic camera also called unfocused or plenop-
tic camera 1.0 [Ng06] and the focused plenoptic camera also called plenoptic
camera 2.0 [LG08a; LG09]. These two configurations contains the same op-
tical elements (main lens, µLA and sensor), they only vary in the distances
between them. In both configurations, the same two equations govern the
placement of the optical elements: the thin-lens equation and the aperture
matching condition.

Figures 1.3 and 1.7 show the two configurations and present the names of
the parameters and distances that will be used throughout the thesis. The
configurations are presented in 2D for greater readability, but the names and
corresponding equations could be extended to include the third dimensions.
The main lens has a diameter d1 and focal length f1. The µLA is composed of
N2 micro-lenses of diameter d2 and focal length f2. For simplicity, the micro-
lenses are supposed to be adjacent, otherwise it is necessary to differentiate
their apertures from their pitches (or periodicity) in some equations. The
sensor is made of Np pixels of size ∆p.

1.2.2 The traditional plenoptic camera

The thin-lens equation determines the placement of the elements to guarantee
that the image on the detector is sharp. In the traditional configuration (see
Figure 1.3), the object and µLA are positioned so that the two planes are

Figure 1.3 – Design of a traditional plenoptic camera, composed of a main lens,
an array of micro-lenses (µLA) and a sensor. The main lens forms the image of
the object directly on the plane of the µLA. The µLA then distributes the different
angular information over the pixels of the sensor.



12 CHAPTER 1. REVIEW AND COMPARISON OF PREVIOUS WORK

optically conjugated according to:

1

z0

+
1

z1

=
1

f1

(1.1)

with z0 the distance between objet and main lens, and z1 the distance between
main lens and µLA. This way, the image of the object is located directly
on the plane of the µLA. The µLA is responsible for separating the spatial
components from the angular ones. Collecting the angular components is then
done by the pixels of the sensor. To ensure correct sampling, the distance b
between the µLA and the detector is imposed to be equal to the focal length
of the micro-lenses:

b = f2 (1.2)

Figure 1.4 shows the travel of light through a plenoptic system, with colors
coding the directional information from the object-plane to the sensor. In the
traditional configuration, the angular range of the data in object-space is split
over the main lens, and the same distribution is observed across the pixels
under each micro-lens on the sensor plane.

Figure 1.4 – Travel of the light from the object-plane (or world focal plane) to the
sensor plane, showing how the angular distribution is transmitted through the optical
system (image from [FT14]).
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In addition to these two Equations 1.1-1.2, a third equation is needed,
called aperture matching condition. The role of this equation is to opti-
mize the use of the pixels on the sensor. Indeed the raw image acquired
by the plenoptic camera is composed of a large number of sub-images corre-
sponding to the micro-lenses of the µLA. The size and periodicity of these
sub-images depend on the parameters of the whole setup. In order to opti-
mize the acquired data, the sub-images should be adjacent on the detector
plane. According to [Ng06; LNA+06], the image-side numerical aperture of
the main lens should match the image-side numerical aperture of the micro-
lenses to ensure adjacent sub-images. Defining the numerical aperture as
NA = aperture/(2.distance) [IO94], the condition can be written:

d1

z1

=
d2

f2

(1.3)

Figure 1.5 shows the impact of the aperture matching condition. Respect-
ing this condition leads to adjacent sub-images on the sensor (Fig. 1.5b). Oth-
erwise, the sub-images might be too small, resulting in a large number of
unused pixels on the sensor (Fig. 1.5c). On the contrary, having too large
sub-images generate overlaps and a loss of information (Fig. 1.5a).

(a) Overlapped sub-images. (b) Adjacent sub-images. (c) Small sub-images.
Figure 1.5 – Illustration of the aperture matching condition (images from [Ng06]).

Figure 1.6 shows an example of a raw image acquired with a traditional
plenoptic camera. In this configuration, the spatial components of the light-
field are sampled by the µLA whereas the angular components are sampled
by the pixels on the detector. Thus the sub-images could be interpreted as
large pixels (spatial components) inside which the small intensity variations
represent the angular components.

1.2.3 The focused plenoptic camera

The second alternative is the focused configuration (see Figure 1.7) [GL10a].
Contrary to the traditional one, the main lens does not project the image of the
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(a) Object. (b) Letter "a" in the raw image.
Figure 1.6 – Example of a raw image acquired with a traditional plenoptic camera.
The letter "a" was placed at depth ztrad0 , resulting in uniform white, gray or black
sub-images in the raw image.

object onto the µLA plane. The plane where the image is formed is called the
intermediate image plane, located at distance z1 from the main lens (following
Eq. 1.1) and at distance a from the µLA. The micro-lenses act as a relay
imaging system, each of them imaging a portion of the intermediate image
plane. To acquire sharp images, the sensor should be optically conjugated
with the intermediate image plane. This is done by applying the thin-lens

Figure 1.7 – Design of a focused plenoptic camera, composed of a main lens,
an array of micro-lenses (µLA) and a detector. The main lens forms the image of
the object on the intermediate image plane. The µLA then acts as a relay imaging
system, with each micro-lens imaging only a part of the object on the sensor. We
introduce distance c = z1 +a as the physical distance between the main lens and µLA.
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equation to the micro-lenses:

1

a
+

1

b
=

1

f2

(1.4)

Similarly to the traditional configuration, Georgiev and Lumsdaine [GL10b]
established the aperture matching condition as the equality between the image-
side numerical apertures of the main lens and µLA:

d1

z1

=
d2

b
(1.5)

Equations 1.1-1.4-1.5 constitute the three necessary equations to build a fo-
cused plenoptic camera.

Two different modes are possible according to the location of the interme-
diate image plane. If the plane is between the main lens and the µLA as in
Figure 1.7, the configuration is called Keplerian [GL09a]. The micro-lenses
"see" the intermediate image plane as a real object because it is located before
the µLA, according to the direction of propagation of light in the system (from
left to right). The optical distance a is positive (a > 0), which implies that
the associated distance b is greater than the focal length (b > f2).

On the contrary, if the main lens projects the image of the object beyond
the plane of the µLA, the configuration is said Galilean [GL09a]. The interme-
diate image plane becomes a virtual object for the micro-lenses. This time, the
distances respect the relationships: a < 0 and b < f2. According to [GL10a],
the mode of a focused camera does not impact the general reasoning on exper-
imental resolutions and data treatment. The Keplerian mode will be used for
conceptual reasoning and illustration in the rest of the thesis.

However, the two different modes produce slightly different raw images.
Figure 1.8 shows the acquired raw images of the same object using the two
modes. In both images, the sub-images represent small parts of the acquired
object. In the Keplerian mode, the sub-images are inverted compared to the
Galilean mode. This is due to the virtual versus real object, from the point of
view of the µLA. In the Keplerian mode, the image of the object undergo two
inversions due to the main lens and the µLA. In the Galilean mode, only the
inversion of the main lens occurs. Because the intermediate image plane is a
virtual object for the micro-lenses, the sub-images keep the same orientation.
This property allows to interpret the raw image as Galilean or Keplerian mode
according to the structure of data inside the image.

In a focused configuration, the properties of the images in the sub-images
vary according to depth in object-space. Magnification of the image depends
on depth of the object. In Figure 1.8, the letter "a" has a larger size than the
letter "f". Moreover, there is a lateral shifts of the letters when going from
one sub-image to its neighbour. The size of this displacement depends on the
depth of the letter in object-space. As the letter "a" is closer to the camera,
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(a) Keplerian mode (a > 0). (b) Galilean mode (a < 0).
Figure 1.8 – Example of two raw images acquired with a focused plenoptic camera,
imaging the object shown in Figure 1.6a. As expected, there is an inversion of the
sub-images between the Keplerian and Galilean modes. Note that the two images
were acquired with slightly different magnifications.

the displacements of its images are slightly larger than the ones of the letter
"f", which is further to the camera and hence closer to the background. The
background represents the optical infinity whose image position should not
vary across the sub-images. These two effects are more visible on Figure 1.8a
than on Figure 1.8b.

These two properties are the signs of depth information included in the raw
image, as an indication of depth variation in object-space. Whereas lateral
shifts according to depth are an interesting aspect that can be exploited for
depth estimation, variations in magnification are an undesirable effect which
might negatively affect the object reconstruction.

1.2.4 Conclusion on optical configurations

Based on their respective schemes (see Figures 1.3 and 1.7), the traditional
and focused configurations appear very similar. They only differ in adapting
the relative positions of the object and the µLA, and adjusting distance b ac-
cordingly. The relationship seems obvious between the two schemes. However,
when it comes to raw images, the link is not as clear, due to the different
spatio-angular samplings in the two cases. This is also the case of the param-
eterizations and the refocusing algorithms, each of them being very specific to
one or the other configuration, as presented in the following section.
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1.3 Refocusing algorithms: traditional vs fo-
cused

Refocusing is the action of numerically reconstruct an image at a chosen depth.
The light-field is extracted from the raw plenoptic image and back-projected in
object-space. The algorithm synthetically mimics the action of optical focusing
on a sensor, as if it has been acquired by a classical photography camera. The
resulting image contains the in-focus elements that correspond to the depth
of refocusing, but also the out-of-focus elements of adjacent depth planes.
With refocusing algorithm, we observe the same properties as with classical
photography: the in-focus elements are sharply reconstructed, whereas the
out-of-focus ones are blurred. This numerical process allows to reconstruct an
image at any chosen depth, and thus provides the possibility to change the
depth of reconstruction.

In the literature, each experimental design is presented with an associ-
ated refocusing algorithm and a general framework to interpret the acquired
data [Ng06; LG08a; GL09a]. We here present the two refocusing algorithms,
for the traditional and focused configurations.

1.3.1 The traditional refocusing algorithm

The refocusing algorithm for traditional plenoptic cameras is based on the two-
planes parameterization (see Section 1.1.2). We present the parameterization
and the associated phase-space diagram before moving to the algorithm.

1.3.1.1 Phase-space diagram

In the traditional configuration, it is common to parameterize the light-field
between the planes of the main lens and the µLA (see Figure 1.9). The main
lens projects the image of the object on the plane of the µLA. Thus, the spatial
information of a ray is coded by the micro-lens (s) and the angular information
is coded by the pixel under this micro-lens (p). The pixel coordinate (p) is
related to the coordinate (u) on the main lens aperture. This parameterization
allows to draw the phase-space diagram of the light-field through the system.

A raw image captured by a traditional camera is illustrated in Figure 1.10a.
From a 1D profile of the raw image, it is possible to extract the 2D light-field,
by separating the different sub-images under the micro-lenses. The light-field
can then be represented in the phase-space diagram, as a function of u and s
(in Figure 1.10b). The dotted rectangles correspond to the sub-images, and
the smaller continuous ones to the pixels inside the sub-image. The color code
makes the link with the raw image in Figure 1.10a. In the phase-space diagram,
the spatial sampling along s is done at a step d2 corresponding to the pitch of
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Figure 1.9 – Schematic 2D representation of a plenoptic system. The spatial
sampling is done by the µLA (l or s-axis) with a step ∆s, whereas the angular
sampling is achieved by the sensor (p or u-axis) with a step ∆p corresponding to ∆u
on the main lens. The refocusing process uses a new parameterization s′ on the plane
at distance z′1 = αz1 from the main lens.

the micro-lenses. The angular sampling along u is ∆p/f2, that corresponds to
the angular extent of one pixel, seen from the µLA-plane.

In the context of this thesis, we introduce another two-planes parameter-
ization. As explained in Section 1.1.2, the representation of the light-field in
the phase-space diagram depends on the position of the two planes. In order
to be independent from the parameterization, we introduce the sensor-µLA di-
agram as a direct representation of the raw data on the sensor. This diagram
represents the light-field as a function of pixels (p) and micro-lenses (l) (see
Figure 1.10c). The l -axis corresponds to the s-axis of the phase-space diagram,
and the p-axis corresponds to the projection of the u-axis on the sensor-plane.
Thus, the phase-space diagram and the sensor-µLA diagram are very close
(Figures 1.10b-1.10c).

This parameterization is independent from the configuration in which the
light-field was acquired, because it does not take into account the position of
the optical elements before the µLA and sensor. We will use later this sensor-
µLA diagram to compare the numerical reconstruction methods from the same
light-field (see Section 1.3.3).
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(a) Raw traditional plenoptic image.

(b) Phase-space diagram. (c) Sensor-µLA diagram.
Figure 1.10 – Schematic representation of the traditional plenoptic camera with
the raw image, the phase-space diagram and the sensor-µLA representation.

1.3.1.2 Refocusing process: shift-and-sum algorithm

The refocusing algorithm for the traditional configuration is based on the in-
tegration of angular data in the phase-space diagram [Ng06; Lam15]. As for
the phase-space diagram, the refocusing process is usually described between
the planes of the main lens and the µLA. The idea is to shift the two-plane
parameterization from the main lens-µLA to a new parameterization between
the main lens and the chosen plane of refocusing.

We define the plane of refocusing located at distance z′1 from the main
lens, optically conjugated with the plane at depth z′0 in object-space. The
refocusing parameter α makes the link between the change of parameterization
(see Fig. 1.9). It can be expressed as:

α =
z′1
z1

= 1− a′

z1

(1.6)

After this change of parameterization, the process of refocusing consists in
focusing the light rays to generate the image imα on this new plane z′1. This
is done by combining together all the angular components passing through
the same spatial coordinate of this new plane of refocusing. Mathematically,
it corresponds to an integration over u at fixed s′. We re-write Equation 2.3
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from [Ng06] using our formalism:

imα(s′, t′) =
1

α2z2
1

∫ ∫
LF (u(1− 1

α
) +

s′

α
, v(1− 1

α
) +

t′

α
, u, v) du dv (1.7)

We re-express Equation 1.7 in 2D as a function of the coordinates of the
sensor-µLA diagram, replacing spatial coordinate (s) with micro-lens (l) and
angular coordinate (u) with pixel (p):

imα(l′) =

∫
LF (l′ + p

(α− 1)

r
, p)dp (1.8)

Compared to the original Equation 1.7, we discarded the normalization
term before the integral symbol. We also multiplied the spatial coordinate
of the light-field by α: l′

α
+ p

(1− 1
α

)

r
becomes l′ + p (α−1)

r
. This allows to avoid

the zooming/dezooming effect in the reconstructed image when performing
refocusing. Finally we introduced the parameter r, to compensate the physical
difference in sampling frequencies between spatial and angular coordinates.
According to Figure 1.9, the spatial sampling is given by the pitch of a micro-
lens: ∆s = d2. The angular sampling step can be quantified on the main
lens plane by: ∆u = ∆p.z1/b. This gives the following expression:

r =
∆s

∆u
=

d2

∆p

b

z1

(1.9)

The representation of the algorithm in the sensor-µLA diagram allows to
better understand how it could be practically implemented (see Figure 1.11).
As shown in Figure 1.2, changing the two-planes parameterization from the
main lens-µLA planes to the new one considering the main lens and the plane
of refocusing corresponds to a rotation of the light-field in the phase-space dia-
gram [Ng06; Lam15]. The algorithm reproduces this rotation of the sub-images
(initially vertical) controlled by the parameter α, followed by an integration
of the light-field along these tilted lines (dashed blue arrow in Figure 1.11).
This process is called the shift-and-sum algorithm because it corresponds to
a rotation (shift) of the light-field in the phase-space diagram, followed by an
integration (sum) along the angular axis (see Figure 1.11).

The parameter α is the refocusing parameter. The case α = 1 corresponds
to a reconstruction at the exact plane where the camera was focused, i.e.
the reconstruction of the object placed at a distance z0 in front of the main
lens. When α 6= 1, the refocusing is done at a different plane. Because
of the magnification of the main lens, the relative positions in object-space
(z′0 compared to z0) are inverted from the relative positions in image-space,
between main lens and µLA (z′1 and z1): for α < 1, the refocusing is done closer
to the main lens in image-space, meaning further from it in object-space; on the
contrary, α > 1 means a refocusing further from the main lens in image-space
and closer in object-space.
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Two characteristics can be noticed from this diagram. First, the lateral
resolution of the reconstructed image, which can be read as the spacing between
the lines of integration, is constant and independent from α. On the plane of
the µLA, the lateral resolution corresponds to the spacing of the micro-lenses,
i.e. the pitch d2 of the micro-lenses. Second, as the lines of integration are
rotated compared to the initial data, we can see that some points are missing
along the lines (points surrounded with yellow in Figure 1.11). These points
were not acquired by the camera, and have to be created by interpolation before
performing the integration. This interpolation across pixels from adjacent sub-
images can be a source of errors in the refocused image.

1.3.1.3 Example of refocused images

Figure 1.12 shows an example of the action of refocusing at various depths
in the scene. A traditional plenoptic camera was used to acquire the raw
plenoptic image of a ruler. The ruler was positioned with an angle of about 21
degrees from the optical axis. This rotation allows a progressive depth increase
along the ruler while still being able to see the numbers.

The same raw image was then refocused using different values of the re-
focusing parameter α. Changing α induces a change in the depth where the
image is reconstructed. The change in depth of reconstruction is visible in the

Figure 1.11 – Traditional plenoptic reconstruction principle in the sensor-µLA di-
agram. Points with a red circle correspond to pixels acquired by the detector while
points circled with yellow represent missing data that has to be created by interpo-
lation. To get the reconstructed image, the integration along the line of equation
l(p) = l′ + p

α(1− 1
a

)

r has to be performed, as illustrated by the arrows. We represent
here the reconstruction with α > 0, which corresponds to a negative slope. The lateral
resolution of the reconstructed image equals the micro-lens size.
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(a) α = 0.94 (b) α = 0.97 (c) α = 1.00

(d) α = 1.03 (e) α = 1.06 (f) α = 1.09

Figure 1.12 – Refocused images from the same raw image of a rotated ruler.
Changing the refocusing parameter α results in a change of the depth plane of recon-
struction, which is visible through the left-to-right displacement of the in-focus areas
across the images.

images through the lateral displacement of the in-focus (sharp) area. At the
extreme location (α = 0.94 and α = 1.09), the images are nearly completely
blurred. The intermediate images present a sharp area whose position depends
on α: between numbers 11 and 12 (α = 0.97), between 10 and 11 (α = 1.00),
around number 9 (α = 1.03), finally around number 8 (α = 1.09). Such a
series of images refocused at various depths will be called a refocused stack.

1.3.2 The refocusing algorithm for the focused configu-
ration

The phase-space diagram and the refocusing algorithm for the focused plenop-
tic camera are less straightforward, because the spatial and angular informa-
tion are not separated as in the traditional case. We here explain how the
phase-space diagram could be built, and then present the basic refocusing
approach.

1.3.2.1 Construction of the phase-space diagram

As in the traditional configuration, the phase-space diagram for the focused
configuration is established considering a two-planes parameterization between
the main lens and µLA. More specifically, the phase-space diagram describes
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how the intermediate image-space is projected onto the sensor and how the
corresponding light-field is sampled. Contrary to the traditional setup, the
spatio-angular data are mixed on both µLA and sensor planes, thus a more
complex approach is necessary to build the phase-space diagram.

Lumsdaine et al. proposed an approach based on the ABCD matrix for-
malism [LGC12]. ABCD matrix is a compact representation of ray tracing
through an optical system, in the context of the geometrical optics and parax-
ial approximation [Gro05]. It allows to easily express the angle and position
of the emerging ray as a function of the angle and position of the entering ray,
using matrix calculus. In their article, Lumsdaine et al. use the ABCD matrix
to make the link between the intermediate image plane and the sensor, as the
input and output planes of an optical system.

In the formalism of ABCD matrix, the angle and position of a ray are

expressed by a 2-coordinates vector. Here we call ray =

(
s
u

)
the input ray

located at the intermediate image plane, and ray′ =
(
s′

u′

)
the output ray at the

Figure 1.13 – Representation of the successive matrices used to establish the phase-
space diagram.
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sensor plane (see Figure 1.13). The expression of the coordinate transformation
for free-space propagation on a distance z can be written as the matrix [Gro05]:

T (z) =

(
1 z
0 1

)
(1.10)

Similarly, the matrix describing the coordinate transformation due to a lens
of focal length f is:

L(f) =

(
1 0
− 1
f

1

)
(1.11)

The matrix describing a complex optical system is given by the multipli-
cation of the matrix of each single element. Between the intermediate image
plane and the sensor, the ray goes through a free-space of length a, then
through a micro-lens, and finally a free-space of distance b (see Figure 1.13).
Consequently, the global matrix can be expressed as:

A = T (b) o L(f2) o T (a) =

(
1− b

f2
(1− b

f2
).a+ b

− 1
f2

1− a
f2

)
(1.12)

In the specific case of the focused plenoptic configuration, we remind that
the intermediate image plane is optically conjugated with the sensor. Thus
the thin lens equation (Equation 1.4) could be used to simplify matrix A as:

A =

(
− b
a

0
− 1
f2
−a
b

)
(1.13)

Using this matrix, the coordinates of an incident ray is transformed into the

output ray by: A
(
s
u

)
=

(
s′

u′

)
. Reciprocally, the coordinates from the incident

ray could be calculated from the ones of the output ray by:
(
s
u

)
= A−1

(
s′

u′

)
,

with the inverse matrix A−1 being:

A−1 =

(
−a
b

0
1
f2
− b
a

)
(1.14)

To create the phase-diagram, the sampling done by the pixels on the sensor
should be expressed back on the intermediate image plane, using the trans-
formation matrix. The underlying assumption is that the radiance of the
light-field remains constant when going through the optical system [McC14].
At this time, Lumsdaine et al. reminded that a 2D image on the sensor is
created from the integration of the 4D light-field along its angular compo-
nents [LGC12]. The light-field integration at a spot s on the sensor can be
written as:
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Isensor(s) =

∫ d2
2.b

− d2
2.b

raysensor

[(
s
u

)]
.du

=

∫ d2
2.b

− d2
2.b

rayintermediate

[
A−1

(
s
u

)]
.du

=

∫ d2
2.b

− d2
2.b

rayintermediate

[(
−a
b
s

1
f2
s− b

a
u

)]
.du

(1.15)

The integration is done on the whole angular range available at the sensor
plane. From the sensor plane, this angular range corresponds to the numerical
aperture of one single micro-lens, NA = d2

2.b
, considered both upward and

downward the optical axis. Equation 1.15 allows to draw the phase-space
diagram of a spot s. When the variable u browses an angular range of d2

b

in the integral, the incident ray browses an angular range of b
a
d2

b
= d2

a
. This

corresponds to the vertical line of length d2

a
in Figure 1.14a.

However, the pixels on the sensor are not punctual. Their size ∆p should
be taken into account. In addition to the previous angular integration, it is
necessary to achieve a spatial integration over the spatial extent ∆p of a pixel.
Equation 1.15 becomes:

Isensor(∆s) =

∫ ∆p
2

−∆p
2

∫ d2
2.b

− d2
2.b

raysensor

[(
s
u

)]
.du.ds

=

∫ ∆p
2

−∆p
2

∫ d2
2.b

− d2
2.b

rayintermediate

[(
−a
b
s

1
f2
s− b

a
u

)]
.du.ds

(1.16)

Using Equation 1.16, the phase-space diagram could be extended from a
line to a surface (see Figure 1.14b). The spatial extent ∆p of the sensor
pixel is responsible for extending the phase-space to a range of a

b
∆p along the

(horizontal) s-axis, and an additional range of ∆p
f2

along the (vertical) u-axis.
This 2D parallelogram represents the whole spatio-angular data acquired by a
pair of micro-lens and pixel. Figure 1.14b is similar to Figure 5b in [LGC12]
excepted the range ∆p

f2
replacing their ∆p

b
.

Similarly, the same reasoning allows to draw the phase-space diagram of
the whole sub-image under one micro-lens, considering all the pixels (see Fig-
ure 1.14c). The adjacent micro-lenses are then added to complete the phase-
space diagram of the focused plenoptic camera (see Figure 1.14d).

Lumsdaine et al. showed that the same approach using ABCD matri-
ces allows to construct the phase-space diagram of the traditional plenoptic
configuration [LGC12]. The general matrix A in Equation 1.12 could be sim-
plified using the condition b = f2 specific to the traditional configuration (see
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(a) Representation of a spot s on the sen-
sor.

(b) Representation of a pixel of size ∆p
on the sensor.

(c) Representation of 4 pixels forming a
sub-image on the sensor.

(d) Representation of 3 sub-images of 4
pixels each.

Figure 1.14 – Step by step construction of the phase-space diagram for the fo-
cused plenoptic camera, showing how the light-field is sampled spatially (s-axis) and
angularly (u-axis).

Equation 1.2). The resulting diagram converges to the one presented in Fig-
ure 1.10b. This allows to specify the vertical extent of each pixel in this
configuration.

1.3.2.2 The different rendering methods

To reconstruct an image at or around the intermediate image plane, Lums-
daine et al. presented a basic rendering algorithm, called the patch-tilling
algorithm [LG08b]. It can be directly expressed from the raw light-field image
and the geometry of the system. In the raw image, we notice that the sub-
images consists in imaging small parts of the object (see Figure 1.8). This is
due to the configuration acting as a relay-imaging system. However, the full
size of the object is spread on several sub-images due to the distribution of the
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ray beams over the micro-lenses. The principle of the patch-tilling method is
to extract a patch of P × P pixels from each sub-image, and combine them
together to form the final image.

The issue is to decide the size of the patches, which depends on the position
of the image plane of refocusing. The parameter P should be chosen such
that the patches form adjacent areas, when projected back on the plane of
refocusing. Based on Figure 1.15, the expression of P is given by the number
of pixels necessary to recover the pitch d2 of the micro-lenses magnified by
m = b/a′, with a′ the distance between the image plane of refocusing and the
µLA. This leads to the following equation, which is the same as the one written
in Figure 9 in [GL10a]:

P (a′) = int(
b

a′
.
d2

∆p
) (1.17)

with int() rounding to the nearest integer, to ensure an integer number of
pixels.

Figure 1.15 – Illustration of the patch size, P, the refocusing parameter in the
refocusing algorithm for the focused configuration.

We notice that the expression of P depends on the distance a′ between
the plane of refocusing and the µLA, itself depending on distance z′1. This
means that the expression of P is directly linked to the chosen depth z′0 in
the object-space. In this rendering method, P is the parameter of refocusing
that allows to select the depth of the refocused image, similarly to the role of
α in the traditional algorithm. Contrary to α which can take any continuous
value, P is expected to be an integer. As a result, the depth range where it is
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possible to reconstruct the scene is a discrete function, while it is a continuous
interval for the shift-and-sum algorithm.

This rendering algorithm could also be expressed in the phase-space di-
agram. Figure 1.16 shows the refocusing process on a few sub-images, with
parameter P = 2. For each micro-lens, only 2 pixels are extracted and as-
sembled together to form the final image. This simple example shows that
the basic refocusing algorithm uses only a part of the acquired data. In each
sub-image, only the central P pixels are used for the refocusing, ignoring the
other acquired data.

Figure 1.16 – Basic rendering algorithm. In each micro-lens, only 2 pixels are
selected to form the reconstructed image (P = 2).

Another method has been presented by Georgiev and Lumsdaine, which
uses all the available data [GL10a]. They called it "rendering with blending".
In this method, the pixels from adjacent sub-images are combined together to
form the reconstructed pixel of the final image. Actually, this is performed by
extracting surrounding patches and averaging them together. In the phase-
space diagram, this corresponds to the integration of data along the vertical
lines (see Figure 1.17). The advantage of this method is that it uses all the
data acquired by the plenoptic system. As a result, the refocused image is
smoother with less noise, due to the averaging process.

A third method has been presented by Georgiev at al. in [GCL11]. This is
the "superresolution" method. Instead of integrating over aligned pixels from
adjacent sub-images as in the "rendering with blending", this method slightly
translates along the s-axis the patterns of the sub-images in the phase-space
diagram. Considering a subpixel shift between the previously aligned pixels,
they could now be combined alternatively in the refocused image. The resulting
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Figure 1.17 – Rendering with blending algorithm. Each pixel of the refocused
image is formed by integrating over several pixels of the raw image. All the pixels of
the raw image are used.

image contains more pixels, thus the term "superresolution".

1.3.2.3 Re-expressing the rendering method

To compare the refocusing algorithms from both the traditional and the fo-
cused configurations, we need to re-express the rendering method "with blend-
ing" in the formalism of the sensor-µLA diagram, that was presented in Sec-
tion 1.3.1.2 for the traditional configuration.

The sensor-µLA diagram is the direct representation of the data as acquired
on the sensor, after each sub-image has been extracted from the raw image.
It does not assume any relationship between the distances, contrary to the
phase-space diagram which was built specifically for each configuration, either
traditional or focused.

Part of a raw image captured by a focused plenoptic camera is illustrated
in Figure 1.18a. From a 1D profile extracted from the raw image, the acquired
data could be represented in two ways: either the phase-space diagram (in
Figure 1.18b) or the sensor-µLA diagram (in Figure 1.18c). When acquired
with a focused camera, the light-field has not the same shape in the phase-
space and sensor-µLA diagrams, contrary to the traditional configuration (see
Figure 1.10). In the phase-space diagram (Figure 1.18b), the patterns of the
sub-images are rotated, whereas they are still vertical in the sensor-µLA dia-
gram.

We now re-express the "rendering with blending" method in the sensor-
µLA diagram. This method is chosen over the three ones because it is the
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(a) Raw focused plenoptic image.

(b) Phase-space diagram. (c) Sensor-µLA diagram.
Figure 1.18 – Schematic representation of the focused plenoptic camera with the
raw image, the phase-space diagram and the sensor-µLA representation.

closest to the shift-and-sum algorithm, due to the integration process. Fig-
ure 1.19 compares the patch extraction on the sub-images with the pixels in
the sensor-µLA diagram. In the sub-images, patches of the same color repre-
sent the same spatial data distributed over several sub-images (see Fig. 1.19a).
In the diagram, the patches are represented as blocks of P adjacent pixels
along the p-axis (see Fig. 1.19b). When integration is performed, patches of
the same color are combined together. The size P of the patches is responsible
for the slopes of the lines of integration.

With this method, one red patch (in Figure 1.19a) is associated with the
other red patches (taken in the neighbor sub-images by shifting the central
patches by an integer number of patches, i.e. a multiple of P pixels) and then
the integration is performed (represented by the blue arrows in Figure 1.19b).
The equation of the line of integration can be expressed in terms of pixels (p)
and micro-lens (l) as:

p(l) = p0 − l.P (1.18)

which is equivalent to

l(p) =
p0 − p
P

(1.19)

Therefore, the reconstructed pixel imP (p0) in the output image of the "ren-
dering with blending" can be calculated by integrating the light-field using the
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Figure 1.19 – a) Illustration of patches composed of 3 × 3 pixels and their cor-
respondence with neighboring sub-images. b) Representation of the "rendering with
blending" method in the sensor-µLA diagram, which consists in an integration along
lines of equation l (p) = (p0− p)/P . We consider a reconstruction in the case a >0,
leading to P >0 and a negative slope.

following equation:

imP (p0) =

∫
LF (

p0

P
− p

P
, p)dp (1.20)

Figure 1.19 allows to notice the characteristics of the rendering with blend-
ing method, in terms of resolution and image quality. All the points used along
the lines of integration are part of the grid defined by the pixels and micro-
lenses, meaning that they were acquired by the sensor. This corresponds to
the pixels of the patches being extracted from the raw image, without the
need of an interpolation as for the shift-and-sum algorithm (see Figure 1.11).
Moreover, the numerous lines of integration result in a small lateral resolution
in the reconstructed image. There are P lines of integration between two adja-
cent vertical lines representing the extracted sub-images, corresponding to the
P pixels in each patch. In the intermediate image plane, the lateral resolution
equals d2/P . This value can then be projected back in the object-space using
the magnification M of the main lens. One can note that this value depends
on P thus on z′0 and z′1, which means that, for the rendering with blending,
the number of pixels in the output image depends on the chosen plane of
refocusing.
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1.3.3 Comparison of the two algorithms

Writing the shift-and-sum algorithm and the rendering with blending in the
same diagram and formalism allows to better compare their mathematical
equations. Both methods could be expressed as an integration over the light-
field, leading to similar Equations 1.8 and 1.20. When reconstructing the same
data with both algorithms independently, the refocusing parameters α and P
should be adapted according to the chosen depth of reconstruction z′0 and z′1
in the object and image spaces. The slope of integration of the rendering
with blending (Eq. 1.20) is given by −1

P
, while the slope for the shift-and-

sum algorithm (Eq. 1.8) equals (α−1)
r

. From the expressions of r, α and P
(Eqs. 1.9 - 1.6 - 1.17), we can establish the equality:

(α− 1)

r
=
−1

P
(1.21)

This equation means that the two slopes are equal, and that the orienta-
tion of the lines is exactly the same for both algorithms when choosing the
same plane of refocusing. Even if these two algorithms were originally built
for different optical systems, either the traditional or the focused configura-
tions, this highlights a major common point between them: they both perform
integration over lines with exactly the same slope.

1.3.4 Application on image reconstruction

Knowing that the principle of reconstruction of the two methods is basically
equivalent, it is interesting to compare their outputs by applying them on
two raw images, one obtained using a traditional setup and the other one
using a focused one. Georgiev and Lumsdaine presented the results of the
focused algorithm on traditional images [LG09], and reciprocally the shift-
and-sum algorithm applied on their focused image [GL09b]. We follow the
same idea and apply both the shift-and-sum algorithm and the rendering with
blending on the raw images presented in Figures 1.6 and 1.8. These raw
images have been acquired using the same optics. This comparison allows to
focus on the differences due to the configuration or the reconstruction method
independently. The results are presented in Table 1.1.

For the raw image acquired in the traditional configuration, there is nearly
no visual difference between the results obtained with the two different recon-
struction algorithms (Table 1.1: top row). For the image acquired with the
focused plenoptic camera (Table 1.1: bottom row), one can notice a differ-
ence in resolution and image quality between the output images from the two
different algorithms. The focused image reconstructed by the shift-and-sum al-
gorithm (Table 1.1: bottom left) is of the same quality than the reconstructed
image from the traditional raw image. On the contrary, the same focused im-
age reconstructed using the rendering with blending presents better resolution
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Reconstruction with the
shift-and-sum algorithm

Reconstruction with ren-
dering with blending

Image acquired
with a tradi-
tional plenop-
tic camera
(M=2.2)

Image acquired
with a focused
plenoptic cam-
era
(M=1.67)

Table 1.1 – Comparison of images acquired in a traditional and focused configura-
tions, and reconstructed using both refocusing algorithms.

and image quality (Table 1.1: bottom right). This Table shows that it is the
combination of a specific configuration and an algorithm that determines the
characteristics of the reconstructed image.

The difference in resolution can be explained mathematically by considering
the representation of the algorithms in the sensor-µLA diagram. With the
shift-and-sum algorithm, the lateral resolution is given by the pitch of a micro-
lens, d2, while for the rendering with blending, the lateral resolution equals
d2/P . The rendering with blending generates more lines of integration hence
more pixels in the reconstructed image. A relationship could be established
between the resolutions of the traditional vs focused refocusing algorithms:

reslat (rendering with blending) =
reslat (shift− and− sum)

P
(1.22)

P being an integer number of pixels, it is larger than 1. Equation 1.22 explains
the finest resolution observed in the output of the rendering with blending
compared to the shift-and-sum algorithm, when applied on the focused raw
image (see Table 1.1: bottom row). The resolution could be even finer using a
superresolution refocusing algorithm [GCL11]. Because of the difference of res-
olution, the impact of the interpolation performed across adjacent sub-images
in the shift-and-sum algorithm (see Section 1.3.1.2) could not be observed on
these images.

On the contrary, the reconstructions from the traditional raw image do not
present many differences according to the refocusing method (see Table 1.1:
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top row). The resolution is not improved by the focused algorithm. This
illustrates that the optical configuration constraints the acquired light-field
data, and limits the resolutions of the reconstructed image.

Refocusing from the traditional raw image also raises the question of refo-
cusing at the specific depth ztrad0 using the rendering with blending method.
The depth ztrad0 corresponds by definition to a distance a = 0, the intermediate
image plane coinciding with the plane of the µLA. According to Equation 1.17,
a → 0 leads to P → ∞, meaning an infinite number of pixels. It is theoreti-
cally impossible to refocus at this specific depth ztrad0 using the rendering with
blending method, which has been developed for the focused configuration. In
practice, all the pixels of each sub-image are integrated together along the ver-
tical lines in the sensor-µLA diagram (patch covering the whole sub-image).
This is the same process as done in the shift-and-sum algorithm, this is why
the two images are very similar (see Table 1.1: top row). The few differences
could be explained by small differences in implementation.

1.3.5 Conclusion on refocusing algorithms

As a conclusion, similarities exist between the shift-and-sum algorithm and the
rendering with blending. It illustrates that all the plenoptic cameras composed
of a main lens, a µLA and a detector are a single optical concept, independent
of the relative position of the optics. Although the two reconstruction methods
associated to the traditional and focused configurations are often presented as
independent, we have shown that their principles are in fact very close. They
consist on an integration along a line, with a slope depending on the position
of the plane of refocusing. The mathematical expressions of the slopes are in
fact exactly the same for both algorithms. This similarity justifies that each
of them can be applied independently on raw images acquired either with a
traditional or focused plenoptic camera. The resulting image resolution and
quality depend on the chosen algorithm.

1.4 Previous studies on resolutions

Up to now, the traditional and focused optical setups were presented, as well as
the refocusing algorithms associated with each of them, allowing to reconstruct
the raw images. In this section, we discuss about the optical resolutions and
image quality of the reconstructed images.

The previous comparisons between traditional and focused plenoptic con-
figurations were done in the visible. In order to compare the choice of one
or the other configuration, the expected resolutions for both designs should
be compared using the same formalism and validated with setups using the
same optical components and parameters. The formalisms introduced by
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Mignard-Debise [MD18] or Hahne [HAV+16] give interesting tools to com-
pare the different setups. Lumsdaine et al. have shown that the phase-
space diagram could also be used in order to predict the lateral resolutions
in both configurations [LGC12]). Other authors gave formula for the tradi-
tional configuration [LNA+06; DZC+16; MCJ18] or for the focused configura-
tion [GL09a; Tur16; ZLE+18].

When it comes to microscopy, the expected resolutions are a crucial issue,
in order to tell which size of the sample could be accurately reconstructed.
Several studies on resolutions were done in the context of visible microscopes,
mainly used in a traditional configuration [LNA+06; MDI15; DZC+16]. Levoy
et al. showed theoretical and experimental results in the case of the traditional
light-field microscope [LNA+06]. They explained how both the lateral and
depth resolutions could be established from the parameters of the experimental
system, considering the effects of diffraction through the main lens.

Zhu et al. derived complete equations and confronted them to experimental
measurements in both traditional and focused configurations [ZLE+18]. How-
ever, their equations correspond to depth estimation of a single point source,
which allows finer precision than for imaging application. Moreover, they
separate the reasoning for the traditional and focused cases, with each config-
uration being reconstructed with a different refocusing algorithm. As shown in
Section 1.3.4, the refocusing method affects the resolution and quality of the
image. Their proposed formulas result from the combination of the limits due
to the optical setup and the ones imposed by the refocusing process, whereas
it would be interesting to separate the optical and the numerical effects.

1.5 Synthesis of the comparison

To choose between the traditional and focused cases, not only the resolutions
but also all the aspects previously presented should be taken into account.
Table 1.2 provides a global overview of the characteristics of both configu-
rations, highlighting their advantages and limitations, according to previous
work achieved in the visible.

The choice of a configuration depends on the optical elements used to build
the experimental setup. When a µLA with a high number of small micro-
lenses is available, a traditional configuration could be implemented. The
separation of the spatio-angular data in this configuration makes it relatively
easy to calibrate and reconstruct the images, while the small micro-lenses
would provide interesting resolutions. On the contrary, an array of a few large
micro-lenses would be more adapted in a focused configuration [GL10b]. The
more complex distribution of spatio-angular data over the micro-lenses and
pixels allows more flexibility in the optical design. The possibility to modify
this distribution by adjusting the magnification of the µLA enables a largest
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Traditional Focused

Optical configurations

Desired optics: µLA with a large num-
ber of small micro-lenses

Desired optics: potentially larger
micro-lenses

Separated spatial and angular data Mixed spatio-angular data

Fixed resolutions Flexibility in the resolutions

imposed by the number and size of
micro-lenses

determined by the magnification
of the µLA

Refocusing algorithms

Same principle of integration along rotated lines, whose slopes depend
on the chosen depth of reconstruction

Continuous refocusing parameter α Integer refocusing parameter P

Limitation: Interpolation to generate
missing data before integration

Limitation: Difficulty to refocus
at depth ztrad0

Table 1.2 – Global overview of the characteristics of the traditional and refocused
cases, considering both optical setups and refocusing algorithms.

choice in the resolutions of the reconstructed image, hence potentially finer
resolutions. As a conclusion, the number and size of the micro-lenses appear
to be the major parameters leading the choice of a plenoptic configuration,
depending on the expected image resolutions and characteristics.

1.6 X-ray plenoptic imaging

In the introduction, we mentioned that the objective of this thesis is to study
how plenoptic imaging could be applied in the X-ray domain. Until now, in
the state of the art, we reviewed only works that have been achieved in visible
light.
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1.6.1 Published work

As far as we know, only one team approached X-ray plenoptic imaging. A team
from the Institute of Physics of Jagiellonian University proposed an imaging
system based on multi X-ray sources, created by multi-capillary focusing op-
tics [DDWK13; SJK18; SKK20]. Although the system does not contain any
main lens nor µLA, it produces an array of sub-images very similar to those
obtained with a conventional plenoptic camera. With a single acquisition, they
performed 3D reconstruction using limited-angle tomography algorithms. The
proposed imaging system intrinsically corresponds to multi-angle radiography,
with the sub-images being formed by an array of low divergence sources. On
the contrary, the word plenoptic is usually understood as an optical system
sampling the light-field coming from a single illuminating source. Thus the
Jagiellonian microscopy device, with several source locations and no optics
between the sample and the sensor, is closer to tomography than to plenoptic.

1.6.2 Challenges of X-ray imaging

An X-ray plenoptic system is expected to offer significant benefits. The well
known advantage of X-rays is to make biological samples transparent, opening
the way to their full 3D reconstruction. The diffraction limit decreases with
the wavelength, leading to expected improvements in resolutions.

However, transposing such a setup in X-rays implies several challenges.
First, ray propagation through biological samples raises the question of the
impact of refraction. In the X-ray domain, refraction is negligible [Att99].
Therefore, the plenoptic theory, which considers straight line propagation be-
tween optics, is still valid. The illumination of the sample is done by trans-
mission through the volume, which implies several conditions on the size and
divergence of the source.

The second challenge lies in the X-ray optics. In the soft X-ray range
(between ∼ 30eV and ∼ 5keV), X-rays are strongly absorbed by any material.
Thus it is better to avoid refractive optics. The optics could be mirrors or
diffractive optics, like a Fresnel Zone Plate. High quality mirrors (for sub-
100nm resolution) are extremely expensive, while diffractive optics can reach
today sub-10nm resolution at reasonable cost.

In the hard X-ray range (between ∼ 5keV and ∼ 100keV), the optics con-
stituents become very transparent. In that case, mirrors are much less efficient,
they can only work under grazing incidence (less than a few degrees). To keep
a high numerical aperture, the mirrors have to be very long, typically a meter
or more. Such kinds of mirrors exist for synchrotrons, but are too expensive
for our experiment. Refractive X-ray lenses have been demonstrated in 1996,
but they have the drawback that the index of refraction is extremely close to
1 [SKSL98]. A single lens has a typical focal length of a few kilometers. Today
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it is common to stack few thousands lenses to achieve a focal length in the
meter range. However such lenses, generally made in beryllium, are also too
expensive. Once again, the only solution is to use diffractive lenses. The nu-
merical aperture of this kind of lenses is proportional to the wavelength [Att99].
As a consequence, it is possible to get relatively high numerical aperture in
the soft X-ray range (10−1− 10−2), while for hard X-rays, numerical apertures
drop to 10−4 or less. This property might have consequences in the design and
resolutions of an X-ray plenoptic setup.

For diffractive optics, both costs and manufacturing difficulties increase
with the surface, thus limiting the number of micro-lenses inside the µLA. We
have seen that the µLA is of crucial importance, as it has a strong impact
on the spatio-angular sampling in a plenoptic setup. This is expected to be a
potential constraint when transposing plenoptic to X-rays.

1.7 Conclusion
The objective of the VOXEL project is to implement in the X-ray range a
plenoptic camera composed of a main lens, a µLA and a sensor, to achieve 3D
X-ray imaging at very low dose. The aim of this thesis is to study the possi-
bility to transpose the above qualities of light-field imaging to X-ray imaging:
compactness, reduction of the absorbed dose and of the acquisition process.

In the literature, two configurations can be built from these three elements:
the traditional and focused plenoptic cameras, presented with their respective
refocusing algorithms. A deep analysis of the resolutions should be conducted,
in order to decide the best configuration to build our X-ray plenoptic camera,
depending on the available optics. It is important to study separately the
experimental and numerical aspects, as it has been shown that they both
contribute to the resolutions and quality of the reconstructed image. We have
seen that the two refocusing algorithms are actually based on the same concept.
To fully exploit the acquired data, we will propose a new refocusing algorithm,
valid for any configuration.

With an X-ray plenoptic setup, we expect to be able to reconstruct and
separate different depth planes in the scene, as a first step to 3D reconstruc-
tion. We have seen that stereo algorithms might not be appropriate, and
adapting tomography techniques is the approach chosen by other members in
the VOXEL project. We will follow a different approach. Using the refocus-
ing algorithm, a stack of refocused 2D images will be generated by scanning
over the whole depth range. From this refocused stack, the in-focus elements
should be extracted at each depth, based on their sharpness. These treated
images could then be combined to reconstruct the 3D scene. We will present
the developments of our proposed approach in the following chapters.



Chapter 2

Optical system: equations and
resolutions

As introduced in Chapter 1, the plenoptic systems studied in this thesis are
composed of a main lens, an array of micro-lenses (µLA) and a sensor. Two
main configurations have been built from these three optical elements: a tra-
ditional plenoptic camera (also called plenoptic 1.0) and a focused plenoptic
camera (or plenoptic 2.0). In previous chapter, we presented the two configu-
rations and a general comparison between them. In this chapter, we present
additional elements of comparison. We provide general equations that guide
the construction of a plenoptic imaging system, including conditions on the
light source in the case of illumination by transmission. These equations meet
the needs of accuracy of X-ray plenoptic imaging.

We define our own theoretical formulas to estimate the expected resolutions
depending on the parameters and distances of the setup. Four resolutions are
studied: the lateral and depth resolutions, that correspond to the finest struc-
tures that could be detected in the reconstructed image, the field of view and
the plenoptic depth of field, that delimit the volume which can be reconstructed
from a single plenoptic acquisition.

These theoretical resolutions are validated with images acquired by two
different visible optical setups. The resolutions were studied through a vi-
sual assessment over the reconstructed images, completed by contrast curves
extracted from these images. Some simulations were performed to better un-
derstand how contrast varies with depth along the whole depth range.

2.1 Optical design
It is first important to define the theoretical framework that leads to the optical
design of a plenoptic camera. The generic equations for building a plenoptic
camera are studied in details, especially the condition of matching between the
numerical apertures. Some underlying approximations are highlighted. We

39
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then focus on illumination conditions in the case of transmitted light. This
results in specific requirements on the shape of the source illuminating the
scene.

2.1.1 Continuity between the optical setups

The two generic configurations, the traditional and focused plenoptic cam-
eras, only differ in the distances between the optical components: main lens,
µLA and sensor. Their designs are both based on the thin lens equation and
on a condition of aperture matching between the main lens and the µLA.

These two configurations are usually presented from the point of view of
a camera or a microscope being modified to build a plenoptic system [Ng06;
LNA+06; Lam15]. In this way, it corresponds to adapting the design of an
already existing imaging system to the structure of plenoptic camera. This
is done by adding a µLA either at the plane where the sensor was originally
located (traditional configuration), or at a shifted location from this plane
(focused configuration).

The µLA-sensor distance determines the configuration. Depending on this
distance being equal, larger or smaller than the focal lens of the micro-lenses,
respectively defines a traditional or focused configuration, either in Keplerian
or Galilean mode (see Chapter 1). In addition, using the thin lens equation
successively on the µLA and on the main lens, the positions of the intermedi-
ate image plane, and then of the object-plane can be calculated. The distance
b between sensor and µLA is therefore responsible for a privileged position
between main lens and µLA (the intermediate image plane). Considering also
the physical distance c between the optics, this plane defines a privileged posi-
tion in object space, which is the only plane whose image is perfectly on focus
with the sensor plane. As a result, the configuration (either traditional or fo-
cused) of the system, and the depth of this privileged plane, are intrinsically
determined by the physical positions of the different elements of the setup.

Theoretically, for each depth z0, the distance b should be adjusted ac-
cordingly so that the image on the sensor is perfectly in-focus. However, we
experimentally notice some flexibility in the positioning of the object. Due to
the depth of focus of the micro-lenses (see Section 2.2.5), the same plenoptic
camera can acquire raw images typical of the three configurations, without
changing the value of b. This phenomena is shown in Figure 2.1. Using one
of our home-made plenoptic cameras, images were acquired for various posi-
tions of the object, without moving the optical elements (c and b fixed). De-
pending on the depth of the object, the image progressively presents features
typical of focused Galilean, traditional and then focused Keplerian configura-
tions (see Section 1.2). This property of acquiring images typical of different
configurations using the same experimental setup illustrates the continuity
between the plenoptic cameras. This has already been observed in the litera-
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Figure 2.1 – Using the same setup and distances, images were acquired at several
depth of the object "ab". We recognize typical raw images of the focused Galilean
(scheme a and image b), traditional (scheme c and image d) and focused Keplerian
case (scheme e and image f).

ture [LG08b; ZJW16].

2.1.2 Aperture matching condition

We now go deeper into the condition of aperture matching. The role of this
condition is to optimize the use of pixels on the sensor, by maximizing the size
of the sub-images until they are adjacent. For both traditional and focused
configurations, previous works have specified that the image-side numerical
aperture of the micro-lenses should match the image-side numerical aperture
of the main lens (sometimes mentioned in terms of F-number matching) [Ng06;
LNA+06; GCL11].

Here we propose a different approach. We calculate the size and period
of the sub-images separately. Having adjacent sub-images corresponds to an
equality between them. Figure 2.2 shows how these two quantities can be
calculated. To estimate the periodicity of the sub-images on the sensor, we
consider the green rays connecting the center of the main lens to the centers
of the micro-lenses until the sensor plane. In the context of geometric optics,
they are not deviated when passing through the centers of the micro-lenses. For
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Figure 2.2 – Calculation of the period and size of the sub-images on the sensor.

both traditional and focused configurations, the shape of the sub-images on the
detector corresponds to the shape of the main lens. Therefore, the periodicity
of the center of the main lens projected on the sensor corresponds to the
periodicity of the whole sub-images. With this scheme can be deduced that the
sub-images are regularly positioned on the sensor, with a constant periodicity.
Using the property of similar triangles, this period can be quantified as:

periodsub−image = d2
z1 + a+ b

z1 + a
(2.1)

We use the red rays of Figure 2.2 to estimate the maximal extent of the
sub-images. This results in the following formula:

sizesub−image = d1
b

z1 + a
(2.2)

Imposing adjacent sub-images on the sensor can be written as an equality
between Equations 2.1 and 2.2, leading to:

d1

z1 + a+ b
=
d2

b
(2.3)

Equation 2.3 is our proposed equation of aperture matching. The equation
is slightly different from previous works. Compared to Equations 1.3 and 1.5
in Chapter 1, the distance z1 between main lens and µLA has increased by the
distance a+ b. This difference can be explained by an underlying assumption
between the focal lengths of both main lens and micro-lenses. In most works,
the authors consider that the focal length of the micro-lenses is smaller than
the one of the main lens (f2 << f1) [GL10b; Ng06]. The consequence of this
assumption is that the distances related to the micro-lenses (distances a and b)
can be neglected compared to the distances related to the main lens (distances
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z0 and z1). When applying a, b << z1 in Equation 2.3, we retrieve the previous
Equations 1.3 and 1.5.

In the cited works, this assumption is justified as f2 << f1. This is not
always the case, for example in our X-ray plenoptic camera (see chapter 5).
During our studies in the visible, we experimentally noticed that our proposed
equation 2.3 was more accurate in order to obtain adjacent sub-images on the
sensor. This shows that this assumption and the resulting difference in the
aperture matching equation can impact the design of the optical setup. In
section 2.2.6, we will show the consequences on the formulas of resolutions.

2.1.3 Conditions on illumination

Finally, we present here additional conditions concerning the illumination of
the plenoptic system. In photography, illumination is done directly on the
scene [Ng06; GL10b]. The scene is enlightened by ambient light, which reflects
over the surfaces of the objects. These surfaces can be considered as sec-
ondary sources, whose extent is the size of the scene and whose angular range
depends on the reflection properties of the objects. In the case of Lambertian
surfaces, the light is considered to be equally reflected in all angular direc-
tions [Kop14]. This illumination by reflection guarantees that the light-field
entering the plenoptic camera contains the needed spatio-angular information
to reconstruct the scene.

In plenoptic microscopy, the illumination is usually done by transmis-
sion through the sample [LNA+06; MDI15]. In visible microscopy, a dif-
fuser [LNA+06] or Köller illumination lens [Tur16] could be added to ensure
a correct illumination of the sample. This guarantees that the sample is well
illuminated, with a sufficient spatial extent and angular range. This way, the
spatio-angular information acquired by the camera is only limited by the ge-
ometry of the plenoptic system, and is not restricted by the illumination.

In our X-ray plenoptic experiment, the illumination is also done by trans-
mitted light through the sample. However, the characteristics of the source
and optics limit the available spatio-angular data that can be acquired by the
system (see Chapter 5). We need to ensure that the main lens and the array of
micro-lenses are fully illuminated by the source. We establish two conditions
on the size and divergence of the source. These conditions guarantee a good
illumination of the plenoptic system.

In practice, it is sufficient to concentrate on the extreme rays between main
lens and µLA. In Figure 2.3, the light rays reaching the bottom of the µLA are
drawn. They correspond to the maximal possible angles and positions inside
the volume between main lens and µLA. According to the thin lens equation,
the three rays intersects on the plane located at ztrad0 , optically conjugated
with the plane of the µLA. The quantity δd1 can be calculated as:
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Figure 2.3 – Conditions on illumination of the system: both size and divergence
of the source should be large enough to illuminate the whole main lens and the array
of N2 micro-lenses of pitch d2.

(d1

2
+ δd1)

ztrad0

=
N2d2

2c
(2.4)

δd1 =
ztrad0

c

N2d2

2
− d1

2
(2.5)

These rays allow to determine the maximum angles in object-space that
could be acquired. It imposes that the numerical aperture of the illuminating
source covers this angular extent. We define NAill, which is the minimal
angular range that the source should have in order to illuminate the whole
main lens and the successive µLA. Its expression is:

NAill =
(d1 + δd1)

ztrad0

(2.6)

NAill =
d1

2ztrad0

+
N2d2

2c
(2.7)

This equation is the angular condition for the source. If the half divergence
of the source is lower than NAill, less data might be acquired by the plenoptic
camera, resulting in lower performance and resolutions. It is interesting to
notice that NAill can be written as the sum of two angular components: the
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object-side numerical apertures of the main lens ( d1

2ztrad0
) and of the µLA (N2d2

2c
).

NAill can be interpreted as a combination of two angular ranges, the first one
imposed by the main lens and the second one by the µLA. This equation can
be considered as an extension of the aperture matching condition, considering
the illuminating source.

Moreover, the spatial extent of the source should be large enough to include
the orange rays in Figure 2.3. The source of minimum size ∆ill is located at
zs0 from the main lens. The condition on the size of the source can be written:

NAill =
(∆ill

2
+ d1

2
)

zs0
(2.8)

∆ill = N2d2
zs0
c

+ d1(
zs0
ztrad0

− 1) (2.9)

We notice that the condition on the size of the source depends on its posi-
tion, which was not the case for NAill (see Eq. 2.7).

To conclude, three sets of equations should be respected when designing a
plenoptic camera: the thin lens equation (Eq. 1.1 and either Eq. 1.2 or 1.4), the
aperture matching condition (Eq. 2.3) and the illumination conditions (Eqs. 2.7
and 2.9). Respecting these equations guarantees that the plenoptic system is
optimally illuminated, with adjacent micro-lenses occupying the whole sensor.
In this context, the resolutions are only limited by the geometry imposed by
the optics and the sensor.

2.2 Theoretical studies on resolutions

In this section, we define the theoretical resolutions of a plenoptic imaging
system.

We wish to warn the reader for potential ambiguity around the different
meanings of the word resolution. The sensor resolution usually corresponds
to the number and size of the pixels on the sensor, describing its spatial preci-
sion. An image resolution corresponds to the size of the smallest details that
are visible in the image. Usually the image resolution relates to the number
of pixels over the whole image (which can be called pixel resolution), but it
is sometimes used to describe how the image has been affected by the acqui-
sition process (sometimes called spatial resolution). The optical resolution is
the ability of an imaging system to acquire the finest possible details of the
scene [Bal08]. It can be defined as the ability to separate two incident rays
(angular resolution) or two points on the object plane (spatial resolution). The
projection of the rays on a plane links the angular and the spatial definitions
together. In the context of plenoptic imaging, we could also mention the nu-
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merical resolutions, which would describe the performance of an algorithm to
render finer details in a refocused image.

In this section we concentrate on optical resolutions, constrained by the
acquisition process and defined as spatial quantities in object-space. We wish
to evaluate the resolution limits due to the optical setup, independently from
the refocusing algorithm used. The proposed formulas aim at describing the
intrinsic resolutions contained in a single plenoptic raw image. They indicate
how the spatio-angular data are distributed during the acquisition process.

Four resolutions will be studied in this section: the lateral (reslat) and
depth (resdepth) resolutions describe the smallest structure that could be re-
constructed from a single plenoptic image. On the other hand, the field of view
(FOV ) and the plenoptic depth of field (DOFpleno) represent the lateral and
depth limits of the volume that could be reconstructed from a single acquisi-
tion (see Fig. 2.4). Spatial (Ns) and angular (Nu) samplings are also defined.
In that way, a volume of size FOV×FOV×DOFpleno could be reconstructed,
containing Ns×Ns×Nu effective voxels of size reslat×reslat×resdepth.

Figure 2.4 – Schematic representation of the four resolutions, with the lateral res-
olution reslat, the field of view FOV , and along the optical axis, the depth resolution
resdepth and the plenoptic depth of field DOFpleno.

Actually, the image quality along this volume is heterogeneous. Because of
the angular variety among the light rays, the spatio-angular sampling varies
through the optical system. This affects the four resolutions across the whole
volume. As a consequence, the real shape of the reconstructed volume, as
well as the effective voxels, are not perfectly rectangular boxes. Their shapes
correspond more to diamonds, with resolutions and magnification decreasing
when depth moves away from z0 (see Figure 4 in [IRMD16] and Figure 5
in [MDRI17]). As a result, the resolutions defined here are valid at depth z0,
where they are assumed to be maximal. Besides this depth, the field of view,
the lateral and depth resolutions are expected to decrease as a function of
depth. The theoretical formulas of each resolution will be established, taking
into account parameters and distances of the setup. The proposed equations
are independent from whether or not the aperture matching condition is re-
spected.
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2.2.1 Field of view (FOV )

The field of view corresponds to the lateral width of the reconstructed volume
at depth z0 (see Fig. 2.4). It is sometimes interchangeably used instead of the
angle of view, which is the angular extent of the scene that is visible by the
camera [Dob12]. Actually, the field of view corresponds to the projection of
the angle of view on a plane in object-space.

In a plenoptic system, the field of view can be limited either by the size of
the µLA or by the size of the sensor, defined by Np.∆p, with Np the number
of pixels of size ∆p. Using the period of the sub-images on the sensor (see
Eq. 2.1), it is possible to determine which of the two is the limiting factor.
The maximal number of sub-images that fits onto the sensor can be calculated
by:

Nperiod =
Np∆p

periodsub−image
(2.10)

The minimum between Nperiod and the number N2 of micro-lenses on the
µLA gives the total number of visible micro-lenses that limits the field of
view. We define N2eff as the effective number of usable micro-lenses:

N2eff = min(N2, Nperiod) (2.11)

In a traditional plenoptic configuration, the image is formed directly on the
µLA. The field of view corresponds to the spatial extent of these N2eff visible
micro-lenses of pitch d2. On the plane of the µLA, it equals:

fovtrad = d2N2eff (2.12)

Going back in object-space, and considering the magnification M = z1/z0 of
the main lens results in :

FOVtrad =
z0d2N2eff

z1

(2.13)

In a focused plenoptic camera, the reasoning is more complex. The field of
view corresponds to the lateral area where a sufficient spatio-angular data has
been acquired. Due to the angular variations of the rays, several definitions
can be considered, as illustrated in Figure 2.5. In the central part (green
rectangle), each spatial position has been acquired by a maximal number of
rays. This relates to the angular sampling Nu that specifies the number of
angles per spatial position (see Section 2.2.3). On the contrary, the outer
parts (dark rectangle) located at the borders of the field of view were acquired
by fewer light rays, and less angular data are available in the raw plenoptic
image.

According to the chosen criterion, three different formulas can be derived.
In a strict definition, each spatial position should be imaged by exactly Nu an-
gles (green rays). On the contrary, the loosest definition defines the field of
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Figure 2.5 – The three possible definitions of the field of view: the strictest (green),
middle (red) and loosest (blue) definitions. The light rays show how the formulas of
the three fov definitions are established (equations 2.14-2.15-2.16), and the recon-
structed image illustrates the different levels of vignetting.

view as the area where each position has been acquired by at least one angle
(blue rays). In between these two definitions, we also define a middle case
where we consider the positions acquired by at least Nu/2 angles (red rays).

In Figure 2.5 are drawn the extreme rays that delimit the spatio-angular
data acquired by the system. With simple geometry, it is possible to derive
the following formulas at the intermediate image plane:

fovstrict =
z1d2N2eff − d1a

c
(2.14)

fovmiddle =
z1d2N2eff

c
(2.15)

fovloose =
z1d2N2eff + d1a

c
(2.16)

The two extreme formulas define a zone where some vignetting occurs in
the reconstructed image. The intermediate formula is the one that we decide
to keep for the experimental configurations. To express it in the object-space,
the magnification M of the main lens should be taken into account.

FOVfocused =
z0d2N2eff

c
(2.17)

In the end, we realize that the two formulas for a traditional (Equation 2.13)
and for a focused configuration (Equation 2.17) converge to a single formula.
This shows the continuity between the two configurations.

This equation is valid provided that the conditions on illumination are
respected. If the size and divergence of the source are large enough (see Equa-
tions 2.7 and 2.9), the plenoptic system allows to study an object of lateral size
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FOV . Otherwise, the observed field of view is restricted by the illumination
itself.

2.2.2 Lateral Resolution (reslat)

Apart from the field of view, the other three resolutions of the system are
established through a geometric reasoning, taking into account diffraction. As
illustrated in Fig. 2.6, the lateral resolution corresponds to the smallest lateral
extent in object-space and can be determined from ∆s, the smallest pixel in
the intermediate image plane.

An optical imaging system is limited by diffraction. Following the work
of [LNA+06], we consider the Sparrow criterion [Spa16; Hec17], that defines the
resolution limit as the smallest distance for which an intensity decrease could
be observed at the midpoint between the images of two point sources. We
define Robj at the intermediate image plane as the minimal distance necessary
to be able to separate the images of these two points. Robj depends on the
object side numerical aperture (NAobj ML = d1/2.z0) and on the wavelength
(λ) of light [IO94; LNA+06]. When expressed in the intermediate image plane,
its formula is:

Robj =
0.47λ

NAobj ML

M (2.18)

The size of the spot due to diffraction needs to be compared to the physical
size of the pixel on the detector. We define the effective pixel size ∆peff as the
smallest distance that can be resolved on the sensor plane, which is limited
either by the sensor pixel or the diffraction spot.

In the case of a traditional plenoptic camera, the image is formed on the
plane of the µLA after going through the main lens. The effective pixel size is
calculated as the maximal between the size of the pixel of the detector (∆p)
and Robj ([LNA+06]):

∆peff−trad = max(∆p, Robj) (2.19)

In a focused camera, the main lens forms an image at the intermediate
image plane, which is then relayed by the µLA on the sensor. Diffraction
occurs at these two stages. The diffraction spot due to the main lens needs
to be projected to the sensor plane to be compared to the pixel size. This
is done by multiplying Robj by the magnification m = b/a of the µLA. The
micro-lenses are also responsible for diffraction. Following the same approach,
we define a limiting distance robj that describes the diffraction spot due to each
micro-lens. This time, the magnification and the numerical aperture used are
the ones of the µLA:

robj =
0.47λ

NAobj µLA
m (2.20)
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Figure 2.6 – Schematic representation of the traditional (top) and the Keplerian
focused (bottom) cameras, showing how the lateral resolutions are calculated from ∆s

in the intermediate object plane.

with NAobj µLA = d2/2a. The effective pixel size corresponds to the maximum
between the sensor pixel and these two diffraction criteria:

∆peff−foc = max(∆p,mRobj, robj) (2.21)

We define the pixel size ∆s on the intermediate image plane in both con-
figurations (see Figure 2.6). The pixel on this plane is used to estimate the
lateral resolutions, as well as the depth resolutions and plenoptic depth of field.

In the traditional camera, the pitch d2 of the micro-lenses is responsible for
the spatial sampling of this image. The pixel size ∆s on this plane is :

∆s−trad = d2 (2.22)

In the focused camera, the image is formed by the main lens on the interme-
diate image plane located at a distance a from the µLA. In this configuration,
the spatial and angular information are mixed together, distributed across the
micro-lenses and the pixels in the sub-images. Expressed on the intermediate
image plane located between the main lens and µLA, ∆s corresponds to the
effective pixel size ∆peff−foc divided by the magnification m = b/a of the µLA:
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∆s−foc = ∆peff−foc/m (2.23)

The lateral resolution of both configurations corresponds to ∆s projected
back in the object-space:

Reslat =
∆s

M
(2.24)

with M = z1/z0, the magnification of the main lens.

2.2.3 Spatio-angular sampling (Nu and Ns)

In a focused plenoptic configuration, we have seen that the field of view defines
a zone where the spatio-angular sampling is maximal and considered homoge-
neous. This spatio-angular sampling can be quantified from the parameters of
the plenoptic system. Ns is the spatial sampling, also called spatial resolution
in [Ng06]. It corresponds to the number of different spatial positions acquired
by the system. On the opposite, Nu is the angular sampling, also called the di-
rectional resolution [Ng06]. Nu corresponds to the number of different angular
components collected for each spatial position.

In the traditional camera (see Fig. 1.4), the spatial sampling is done by the
micro-lenses, with each micro-lens acquiring a different position. Therefore the
spatial sampling Nstrad equals N2eff , the effective number of micro-lenses:

Nstrad = N2eff (2.25)

On the contrary, the angular sampling is done by the sensor. All the light
rays reaching the same sub-image belong to the same spatial position (they
went through the same micro-lens). The angular sampling is done by each
pixel of the sub-image acquiring a different direction, as illustrated by Fig. 1.4.
However, due to the effect of diffraction, we need to consider the effective pixel
∆peff−trad instead of the physical pixel of the sensor [LNA+06]. Nutrad is
therefore given by the total number of effective pixels per sub-image of size
d1b/z1 (see Fig. 2.6):

Nutrad =
d1b

z1∆peff−trad
(2.26)

For the focused plenoptic camera, the spatio-angular sampling is considered
from the point of view of a pixel located on the intermediate image plane. The
spatial sampling corresponds to the maximal number of pixels of size ∆s−foc
that could be acquired by a well illuminated system. In the intermediate image
plane, the field of view (see Eq. 2.15) corresponds to Nsfoc different pixels of
size ∆s−foc that were acquired. We obtain the following formula:

Nsfoc =
z1d2N2eff

c.∆s−foc
(2.27)
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Using the established equations of Ns, reslat and FOV in both configura-
tions, we notice a general relationship:

FOV = Ns.reslat (2.28)

This equation is coherent with the meaning of the spatial sampling Ns. As
introduced at the beginning of this Section 2.2, at depth z0 it is possible to
reconstruct Ns pixels of size reslat, for a total extent of size FOV .

The angular sampling Nu corresponds to the number of angular data ac-
quired for one single spatial position s on the intermediate image plane (see
Fig. 2.6). For a given spatial position, the angular range is spread over several
micro-lenses. To estimate the angular sampling Nu, we need to count the
number of different micro-lenses that acquire part of this angular range. The
spatial position s is illuminated by the aperture of the main lens of size d1,
which then spreads over Nu micro-lenses of pitch d2. Considering the distances
z1 and a, the intercept theorem gives:

Nufoc =
d1|a|
d2z1

(2.29)

2.2.4 Depth resolution (resdepth)

The resolution along the depth axis is now examined. The depth resolution
corresponds to the ability to separate features of different planes along the
depth axis. This resolution is more difficult to establish because it depends on
both the angular and spatial samplings.

Actually, the depth resolution corresponds to the notion of depth of field
in classical imaging. In classical imaging, a single lens (or several succes-
sive lenses) forms an image directly on the detector, as in photography or
microscopy. In this context, the depth of field describes the depth range
where the structures are considered as sharp. The general relationship
DOF = reslat/NA can be established from drawing the rays fitting inside
a maximal acceptable blur limit, generally the size of the pixel on the sen-
sor [Gro05].

In plenoptic imaging, the same reasoning is applied considering ∆s at the
intermediate image plane [LNA+06]. In figure 2.7, the blue and green rays
correspond to the extreme front and back depths, for which the rays still fit
inside the spatial extent ∆s. This reasoning is valid for both traditional and
focused configurations, considering the appropriate formula of ∆s. This results
in the geometrical term of the depth resolution:

resdepth−geom =
∆s

M.NAobj ML

(2.30)

Based on the work of [LNA+06], the depth resolution is defined by the sum
of two terms. The first one is the geometrical depth resolution and the second
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Figure 2.7 – Reasoning for the geometrical term of the depth resolution: it corre-
sponds to the depth of focus of the main lens in the intermediate image plane, i.e.
the depth along which the projected rays stay inside ∆s.

one is a pure wave optics component. It corresponds to the spatial extent of
the diffraction pattern along the depth axis [IO94]. The final equation of depth
resolution combines the geometric and wave terms together:

resdepth =
reslat

NAobj ML

+
λ

NA2
obj ML

(2.31)

2.2.5 Plenoptic depth of field (DOFpleno)

The depth of field of a plenoptic system corresponds to the depth range over
which it is possible to reconstruct a sharp image from a single acquisition.
Similarly to the depth resolution, the plenoptic depth of field is defined as
the sum of two terms, representing the geometric and wave components. As
explained in [LNA+06], the wave term remains the same as for depth resolution,
because it corresponds to the diffraction limit due to the numerical aperture
of the main lens. We here present how to estimate the geometric term in both
configurations.

The case of a traditional plenoptic configuration has already been discussed
in previous works [LNA+06; PW12; DZC+16]. The whole angular range of the
ray bundle coming from the main lens is separated into Nu different ray beams,
each of them being acquired by a different ∆peff (see Figure 2.8). Considering
the same ∆s = d2 and the reduced angular rangeNAobj ML/Nu, Equation 2.30
becomes:

DOFpleno−geom−trad =
Nu∆s

M.NAobj ML

(2.32)
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Figure 2.8 – The geometric term of the plenoptic depth of field in a traditional
configuration: the ray beam coming from the main lens is divided into Nu beams
acquired by different pixels of size ∆peff .

Figure 2.9 – The geometric term of the plenoptic depth of field in a focused con-
figuration: the ray beam coming from the main lens is divided into Nu beams corre-
sponding to the Nu illuminated micro-lenses. It also corresponds to the depth of field
of a single pixel of size ∆peff , projected back in intermediate image plane, and then
in object plane.

We now express the geometric term for the focused system. Similarly to
the traditional configuration, the angular range coming from the main lens is
separated into Nu ray beams, each of them being acquired by a different micro-
lens and then projected on ∆peff (see Figure 2.9). The same reasoning as for
the traditional case could be done, reducing NAobj ML by Nu [Tur16]. This
leads to the same Equation 2.32, adapting the formula of Nu and ∆s to the
focused case (see Sections 2.2.2-2.2.3).

Another demonstration of the above result could be performed by the ex-
plicit calculation of the depth of field in the system. According to [MCJ18],
DOFpleno is the depth of field expressed in the object plane associated to ∆peff .
Based on the same reasoning as for resdepth, we express the depth of field of
∆peff in the intermediate image plane. In Equation 2.30, we replace ∆s by
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∆peff and the main lens by the µLA:

dofintermediate =
∆peff

m.NAobj µLA
(2.33)

Finally, to get the plenoptic depth of field, Equation 2.33 needs to be trans-
posed back in object-space. Contrary to lateral resolutions, where equations
should be divided by the magnification, the square of the magnification M2

should be used in the case of resolutions along depth [Gro05]. We obtain:

DOFpleno−geom−trad =
∆peff

m.M2.NAobj µLA
(2.34)

The numerical aperture used in Equation 2.34 is the object-side numerical
aperture of a single micro-lens of the µLA. Based on Figure 2.9, it is Nu times
smaller than the image-side numerical aperture of the main lens. To switch
from image-side to object-side of the main lens, a division by the magnification
of the main lens should be done. We obtain the following relationship:

NAobj µLA =
NAim ML

Nu

=
NAobj ML

Nu.M
(2.35)

Considering ∆s = ∆peff/m (see Eq. 2.23), the equation could be simplified
and we obtain the same formula as for the traditional case:

DOFpleno−geom−foc =
Nu∆s

M.NAobj ML

(2.36)

Considering the wave component, we deduce the following formula, valid
for both focused and traditional systems:

DOFpleno =
Nureslat
NAobj ML

+
λ

NA2
obj ML

(2.37)

Lastly, we observe an interesting property between the depth resolution
and the plenoptic depth of field. Considering their geometric terms only, we
can write:

DOFpleno−geom = Nu.resdepth−geom (2.38)

This equation is the equivalent of Equation 2.28, but this time along
the depth axis. This means that inside a volume of depth range DOFpleno,
Nu different planes of depth precision resdepth could be reconstructed and
differentiated. However, this relationship may be impacted by diffraction.
In the case of low diffraction, the resolutions follow the following scheme:
from a single plenoptic acquisition, we expect to reconstruct a volume of di-
mensions FOV×FOV×DOFpleno made of Ns×Ns×Nu effective voxels of size
reslat×reslat×resdepth.
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2.2.6 Summary of the formulas

The parameters that characterize a plenoptic camera are assembled together
in Table 2.1. Some formulas are common between the traditional and focused
setups, while others are specific to each geometry. The proposed equations are
valid independently from the aperture matching condition.

Traditional Focused

a = 0, b = f2 m = b/a

NAobj ML
d1

2z0

M
z1

z0

Robj
0.47λ M

NAobj ML

robj
0.47λ 2b

d2

∆peff max(∆p, Robj) max(∆p,mRobj, robj)

∆s d2
∆peff

m

N2eff min(N2,
Np∆p(z1 + a)

d2(z1 + a+ b)
)

reslat
∆s

M

resdepth
reslat

NAobj ML

+
λ

NA2
obj ML

DOFpleno
Nureslat
NAobj ML

+
λ

NA2
obj ML

FOV
z0d2N2eff

z1 + a

Nu
d1b

z1∆peff

d1|a|
z1d2

Ns N2eff
z1d2N2eff

(z1 + a).∆s

Table 2.1 – Overview of the proposed theoretical resolutions.

Some simplifications can be done by assuming that f2 << f1 and a, b <<
z1, as was done in other works (see Section 2.1.2, [GL10b; Ng06]). Considering
these approximations, the aperture matching condition becomes d1b = d2z1,
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which is the aperture condition presented in previous works (see Eq. 1.3
and 1.5).

With the condition d1b = d2z1, the formulas of the spatial and angular sam-
plings can be simplified. In the traditional configuration, the angular sampling
becomes:

Nutrad =
d2

∆peff−trad
(2.39)

In the focused configuration, additionally considering c ∼ z1 leads to the sim-
plifications:

Nufoc =
|a|
b

(2.40)

Nsfoc =
N2effd2

∆s−foc
(2.41)

With Equation 2.40, we retrieve the formula that the angular sampling is
related to the magnification of the micro-lenses: Nu = 1/m [GL10a; Tur16]. In
the case of aperture matching, the combination of expressions for the spatial
and angular samplings, either in the focused case (Equations 2.40 and 2.41) or
in the traditional case (Equation 2.39 and Table 2.1), results in an interesting
property:

Nu.Ns =
N2effd2

∆peff

(2.42)

We remind that N2eff corresponds to the effective number of micro-lenses
imaged on the sensor (see Section 2.2.1), and thus N2effd2 is the effective
area used on the sensor. In other words, N2effd2

∆peff
represents the number of

effective pixels that fit in the effective sensor size. Equation 2.42 means that
the product of the spatial and angular samplings is constrained by the total
number of acquired pixels. This translates the spatio-angular trade-off usually
described for focused configurations [GL10a; Tur16].

To summarize, the equations of resolutions (reslat, resdepth, FOV and
DOFpleno) were established based on geometrical optics while taking into ac-
count the limit due to diffraction. The spatio-angular sampling (Nu, Ns),
together with the numerical aperture NAobj ML and effective pixel size ∆peff

due to diffraction, define the optical performances of a configuration. In Chap-
ter 5, we will see how the low NA impacts the resolutions when designing our
X-ray plenoptic camera.

Table 2.1 is expected to represent a useful toolbox for anyone wishing to
build their own plenoptic camera. In the next section, we will show how these
theoretical equations can be validated experimentally.
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2.3 Experimental validation: methodology

2.3.1 Presentation of the two setups

To validate the theoretical resolutions, two optical setups were built from sepa-
rate optical elements that were assembled in the laboratories of Imagine Optic,
Bordeaux. This leaves an important freedom in the choice of distances between
the different elements, allowing to test different configurations and study the
influence of each distance over the final resolutions.

A first set of images was acquired using a wavefront sensor (WFS) from
Imagine Optic: the HASO3 128 GE2 Shack Hartmann wavefront sensor (see
Fig. 2.12d). The WFS is composed of a µLA attached to a detector, exactly
positioned at the focal plane of the micro-lenses. This corresponds to the
traditional configuration (b = f2) (see Eq. 1.2). Combined with a main lens, the
WFS is adapted to validate the resolutions of a traditional plenoptic camera.
The WFS also has the specificity of providing a µLA composed of a large
number of small micro-lenses. It is made of 128 × 128 micro-lenses of pitch
d2 ∼ 110µm and a camera with large aperture (14.6 × 14.6 mm2). Because of
their confidential aspect, the other technical information of the HASO WFS
are not given in this thesis. An overview of the mounted setup is presented in
Figure 2.10.

Figure 2.10 – The experimental HASO setup composed of an object (left), the
main lens (middle), and the HASO wavefront sensor (right).

The second setup is more flexible. It is composed of independent main
lens, µLA and a Stingray F-145B camera from Allied Vision. It is possible to
change all the distances in the configuration (see Fig. 2.11). With this setup,
three configurations were tested: traditional (or 1.0) and focused (or 2.0) in
both Keplerian (a > 0) and Galilean (a < 0) modes. Contrary to the first
setup, this one is composed of a µLA with fewer micro-lenses that are also
larger. Figure 2.12 shows the separate optical elements used in both setups.
Comparing the two setups will help in choosing the best configuration adapted
to the experimental conditions in X-rays.

Table 2.2 presents the parameters used with the Stingray camera. The
housing cover of the front end of the camera was removed, so that its entrance
pupil could be positioned as close as needed to the µLA (see Fig. 2.12e).
The µLA is composed of square micro-lenses of size 300µm and focal length
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Figure 2.11 – The experimental Stingray setup composed of the illumination system
and an object (left), the main lens with a diaphragm (middle), the µLA and the
Stingray camera (right).

(a) Illumination system. (b) Test target. (c) Main lens+diaphragm.

(d) HASO wavefront sensor. (e) Microlens array and Stingray camera.
Figure 2.12 – The optical elements used in the two setups.

18.6mm. The micro-lenses diameter is nearly 3 times larger compared to the
WFS (d2 = 300µm instead of ∼ 110µm). The number of micro-lenses is also
much less: only 20 × 25 of them were visible on the raw images in the tested
configurations. It means that the size of the camera limits the number of
micro-lenses used to capture the light-field in the Stingray setup. This will be
the limiting factor for the FOV .

For both experimental set-ups, the main lens is a doublet with a 200mm
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Main Lens
focal f1 200mm

Maximal aperture d1 25mm

Microlens Array
focal f2 18.6mm

aperture d2 300µm

# visible micro-lenses 20 × 25

Stingray camera
pixel size ∆p 6.45µm

# pixels 1280 × 960

Monochromatic approximation wavelength used λ 520nm

Table 2.2 – Parameters of the optics, sensor and wavelength used in the Stingray
setup.

focal length. A diaphragm positioned in front of it allows to adjust its aperture
d1, with a maximal value of 25mm (see Fig. 2.12c). The optics were fixed on
a breadboard on an optical table.

The theoretical resolutions were validated by taking images of a 1951 USAF
Resolution Test Target (see Fig. 2.12b). The test target is composed of opaque
elements of various sizes on a transparent substrate (see Fig. 2.13). A screen
was placed behind the test target, illuminated by a white light lamp (see
Fig. 2.12a). The screen plays the role of the illuminating source for the test
target, which is thus illuminated by transmission. This system allows to respect
the illumination conditions presented in Subsection 2.1.3. Its size and NA are
large enough so that they do not limit the resolutions of the acquired images.
The polychromatic white source was approximated by a monochromatic source

gr2-el1

125 m

gr3-el3

49.5 m

gr2-el5

78.7 m

Figure 2.13 – The 1951 USAF resolution test target. The three sets of bars studied
in the experiments are highlighted, with the indication of the width of the bars.
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of wavelength 520nm to calculate the resolutions.

2.3.2 Chosen configurations and expected resolutions

Four different datasets were acquired with these two setups. Thanks to the
flexibility of the Stingray setup, it was possible to test three configurations:
traditional, focused Keplerian (a > 0) and focused Galilean (a < 0). On
the contrary, the HASO setup allows only to test a traditional configuration.
These four datasets give the possibility to experimentally compare two differ-
ent optical setups in the same traditional configuration, and three different
configurations using the same optical setup. The configurations are named as
follows:
• Traditional (or 1.0 [LG09]) plenoptic camera:

– HASO 1.0
– Stingray 1.0

• Focused (or 2.0 [LG09]) plenoptic camera:

– Stingray 2.0, a>0
– Stingray 2.0, a<0

Table 2.3 presents the four configurations. The theoretical resolutions were
determined using equations from Table 2.1. Distances z0, z1, a and b were
adjusted to obtain similar theoretical resolutions for all the configurations. The
reslat and DOFpleno are almost equal among the four cases. The three Stingray
configurations shows similar resdepth and FOV , but they are different from the
ones in the HASO setup, due to the difference in the optics used. This choice
of similar theoretical resolutions allows to verify easily that their experimental
resolutions correspond. Only the distances for the Stingray configuration were
given to protect the confidential data of the HASO WFS.

The optical system was manually aligned and the distances were adjusted
according to the desired configurations. The distances were measured as pre-
cisely as possible. The error margin is estimated to a precision of a few mil-
limeters, even if a low error can easily impact the final resolutions, as will be
explained in Subsection 2.3.3.

After the installation of each configuration, images were acquired for dif-
ferent positions of the test target, moving it forwards or backwards along the
optical axis, with a step of 0.2mm over a range of a few centimeters. The
positions of the optics were not moved during the series of acquisitions. This
results in four datasets containing images with progressive depth locations of
the test target. The dataset was then refocused at various depths. The tradi-
tional (1.0) or focused (2.0) algorithms were used depending on the setup and
the configuration, as will be detailed in Section 2.4.
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HASO Stingray Stingray Stingray
1.0 1.0 2.0, a>0 2.0, a<0

z0(mm) - 233 233 231

c(mm) - 1412 1597 1293

b(mm) - 18.6 20.7 17

reslat (µm) 47.1 49.5 49.2 49.9

resdepth (mm) 1.85 1.10 1.10 0.74

FOV (mm) 6.04 0.99 0.88 1.07

DOFpleno (mm) 9.56 10.21 10.10 10.37

Nu 6.51 10.87 10.81 11.05

Ns 128 20 17.78 21.48
Table 2.3 – Distances and resolutions of the four different configurations. Due to
confidentiality reasons, the distances for the HASO 1.0 configuration are not given.

These refocused images were used to determine the experimental resolu-
tions. They were compared to the expected ones presented in Table 2.3. The
patterns of varying sizes over the test pattern allow to verify the lateral res-
olutions and estimate the field of view. The series of images with different
depths of the test target enable to measure experimental depth resolutions
and plenoptic depth of field for these configurations.

2.3.3 Distance measurement

In the experimental setups, we realized that the question of the distances was
a real issue when building a plenoptic system. When measuring the distances,
some practical problems arise. The theory of the optical design and resolutions
was made considering the optical distances between the elements, in the con-
text of geometrical optics. It means that it is necessary to locate the optical
centers of each lenses, in order to measure the effective distances related to the
ones in the equations. For example, in the case of the doublet used as main
lens, its thickness was around 20mm and it was difficult to locate exactly its
optical center. Moreover, the long distances in the configurations make it even
more difficult to measure them with precision, explaining the remaining error
of few mm in both setups. This will also be the case in the X-ray experiment
that will be presented in Chapter 5.

This imprecision in the distances is problematic in a plenoptic system.
Because of its complex geometry and the two combined magnifications of the
main lens and the µLA in the acquired image, a small error in the distances
may have a huge impact on the resolutions. This is especially the case for such
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small resolutions, compared to the large distances of the setup. This can affect
the optical properties of the setup and the acquired data, such as difficulties to
physical mount the configurations, lower resolutions, or blurred images in the
case of out-of-focus data. This will also have consequences in the refocusing
process and final output, as the distances will be used as input parameters in
our refocusing algorithm (see chapter 3).

2.4 Experimental validation of the resolutions

Figure 2.14 shows an example of a cropped raw image in configuration Stingray
2.0, a>0. In the sub-images we can see the horizontal bars of gr2− el1, which
is the largest element of the test target (see Fig. 2.13).

Figure 2.14 – Example of a raw image acquired in configuration Stingray 2.0, a>0,
where we can see gr2− el1 (bar width = 125µm).

The acquired datasets from the four configurations were reconstructed with
either algorithm 1.0 or 2.0 according to the setup and configuration. The
HASO 1.0 dataset was fully reconstructed with algorithm 1.0. Indeed, the
refocusing parameter α allows fine choice of refocusing depth, contrary to the
integer parameter P in algorithm 2.0. On the contrary, the Stingray 1.0 dataset
was reconstructed using both algorithms depending on depth. For the exact
1.0 depth plane at ztrad0 = 233mm, algorithm 1.0 was used because algorithm
2.0 is not adapted to refocus at this specific depth (see Chapter 1). Except this
depth, algorithm 2.0 was used instead. It produces a larger number of pixels in
the refocused images, allowing more precision when measuring the resolutions.
It is possible to use algorithm 2.0 for the 1.0 dataset from the Stingray setup
because of the larger size of the micro-lenses that creates larger sub-images,
contrary to the HASO setup. The 2.0 datasets from the Stingray setup (both
a>0 and a<0) were also reconstructed with algorithm 2.0. The reconstructed
images were then used to estimate the four experimental resolutions in each
configuration: field of view, lateral resolution, depth resolution and plenoptic
depth of field.
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A criterion is needed to quantify the experimental resolutions and compare
them to the theoretical ones. Contrast has already been used in other works on
plenoptic cameras [BGY+13; LR15; Tur16]. It is a simple measure that could
be implemented even on a few pixels. Indeed, the varying magnifications and
different pattern sizes on the test target may result in bar width covering only
a few pixels (for example in Section 2.4.2), making it difficult to draw profiles
or extract more complex measures of resolution. In our experimental studies,
the contrast used as our criterion is defined by:

contrast =
Imax − Imin
Imax + Imin

(2.43)

where Imax and Imin are the maximal and minimal intensity values over a
chosen area in the reconstructed image.

2.4.1 Field of view

To estimate the FOV , only a single image is needed for each configuration.
The refocused image at depth z0 is taken from the four series of images, with
z0 determined by Table 2.3.

Figure 2.15 shows the refocused images corresponding to the four config-
urations. The whole images are presented allowing to visually evaluate their
full extent. The image for the HASO 1.0 case is clearly larger than the images
from the Stingray setup. In blue is highlighted the part that is visible in the
Stingray setup, which is clearly smaller than the whole HASO image. This
is consistent with the FOV of the HASO configuration being larger than the
other ones (around 6mm compared to 1mm). Between the three configura-
tions from the Stingray setup, the perceived size of the bars is slightly varying,
whereas they were displayed with the same size. This is an indication that
their FOV are slightly different.

To quantify the FOV on these images, we concentrate on the three bars
of the gr2− el1 that is the only group visible in the four configurations. The
width of a single bar is known as 125µm, which is also the width of the spacing
between two bars. By measuring the number of pixels occupied by the three
bars, the FOV of the whole image can be evaluated by interpolation. Using
this approach, the FOV of the four configurations were evaluated as:
• HASO 1.0: FOV= 6.40mm

• Stingray 1.0: FOV= 0.95mm

• Stingray 2.0, a>0: FOV= 1.18mm

• Stingray 2.0, a<0: FOV= 1.47mm
The experimental values roughly correspond to the expected ones from Ta-

ble 2.3. The orders of magnitude match the theory, with the FOV in the
HASO setup around 6mm and the FOV in the Stingray setup around 1mm.
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(a) HASO 1.0.

(b) Stingray 1.0.

(c) Stingray 2.0, a>0.

(d) Stingray 2.0, a<0.
Figure 2.15 – Full reconstructed images used to estimate the experimental field of
view in each configuration. The image from the HASO 1.0 dataset has clearly a larger
FOV than the three other cases. The blue rectangle in 2.15a shows the only bars that
are visible in the images from the Stingray setup because of its reduced FOV .

The relative error is calculated around 5% for the two 1.0 configurations and
around 35% for the two 2.0 configurations. This high difference in the Stingray
2.0 configurations comes from the chosen algorithm 2.0 with integration. This
algorithm allows to enlarge the FOV of the reconstructed image, until the
largest formula of the field of view (see Equation 2.16). It is responsible for
the vignetting effect that is visible in Figures 2.15b and 2.15c. On the con-
trary, the FOV in Table 2.3 were calculated using the medium formula (see
Equation 2.17).

The FOV was recalculated for these two cases, removing these extra vi-
gnetted borders to match this medium formula. The new values are 0.92mm
and 1.14mm for the Stingray 2.0 a>0 and a<0 configurations. The values now
corresponding to errors around 5%, similar to the 1.0 cases. These remaining
errors can be easily explained by the measurement uncertainties described in
Section 2.3.3.

2.4.2 Lateral resolution

To estimate the lateral resolution reslat, it is necessary to see bars of various
sizes on the test target, in order to compare how they are resolved by the
optical system. In the Stingray setup, as the field of view was too small, only
one group of bars was visible for each acquisition. To overcome this issue,
several images were acquired after moving the test target laterally inside the
z0 depth plane. The scan is then used to virtually restore the whole test target.
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(a) HASO 1.0. (b) Stingray 1.0.

(c) Stingray 2.0, a>0. (d) Stingray 2.0, a<0.
Figure 2.16 – Images used to estimate the lateral resolution in each of the four
experimental configurations. The different images from the Stingray setup were as-
sembled to virtually restore the whole test target, compensating for their small FOV .
The hatched area in 2.16a represents the area where the contrast was measured for
this bar width (gr2− el1).

Figure 2.16 presents the assembled images in the three Stingray cases, to be
compared to the image from the HASO 1.0.

Figure 2.17 presents the reconstructed images showing gr3 − el3 in each
configuration. The reconstructed images of the same gr3 − el3 do not pro-
vide the same image quality depending on the configuration. In the two 1.0
images (Figs. 2.17a and 2.17b), the horizontal bars of gr3 − el3 are sharp
and well contrasted. On the contrary, the other bars visible in the same two
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(a) HASO 1.0. (b) Stingray 1.0. (c) Sting. 2.0,a>0. (d) Sting. 2.0,a<0.

(e) Contrast curves as a function of bar width, normalized by the value for gr2−el1.
Figure 2.17 – Curves of the relative contrast along bar width, allowing to quantify
the lateral resolution in each configuration. The theoretical lateral resolution varies
between 47µm and 50µm depending on the configuration. The reconstructed images
show gr3− el3 (bar width = 49.5µm) in the four configurations.

images (either the vertical bars of gr3 − el3, or the bars of gr3 − el2) look
blurred. In a traditional configuration, the spatial positions of the test target
are sampled by the micro-lenses, resulting in large pixels in the reconstructed
image (see Chapter 1). The limit of resolution is determined by the highest
frequency that could be acquired by the spacing of the micro-lenses, follow-
ing the Nyquist–Shannon sampling theorem [Sha49]. The theoretical value of
reslat is close to the Nyquist frequency, mainly limited by the pitch d2 of the
µLA. Thus the correct sampling of the bars of gr3− el3 by the µLA strongly
depends on the spatial positioning of the bars compared to the micro-lenses.
In order to compensate this effect, we carefully aligned the images of the bars
on the µLA when performing the lateral scan of the test target in the Stingray
1.0. This effect is not visible in the images acquired in a focused configuration
(Figs. 2.17c and 2.17d). The different spatio-angular sampling, combined with
the "rendering with blending" algorithm, provide a higher number of pixels in
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the reconstructed images.
The width of the bars in gr3− el3 (49.5µm) corresponds to the theoretical

value of reslat, which is similar for the four cases (see Table 2.3). By definition,
we should be able to see this group sharply. By eyes, gr3− el3 seems resolved
in the four cases (see Figs. 2.17a-2.17b-2.17c-2.17d). In order to quantify the
lateral resolutions for each configuration, we study the decrease of contrast as
a function of the width of the bars (see Fig. 2.17e).

For each group of bars, contrast was measured using equation 2.43, over
a large area, as illustrated by the blue rectangle in Figure 2.16a. This al-
lows to average the measured contrast along the length of the bars, and get
more accurate results. The curves were normalized so that contrast on the
largest bars (gr2 − el1) equals 1, in order to compensate for differences in
illumination and refocusing algorithms. These curves can be compared to
the modulation transfer function (MTF) curve classically measured on optical
systems [BGY+13; Hec17].

The four curves follow the same pattern: a slow decrease as a function of
the width of the bars (see Fig. 2.17e). The two curves for the Stingray 2.0
configurations are very close because they correspond to two similar configu-
rations acquired on the same setup. They are also very regular, due to the
higher number of pixels in the images reconstructed with algorithm 2.0. The
two curves for the 1.0 cases are less regular because of the lower number of pix-
els and the sensitivity to the lateral positioning of the test target, as previously
discussed.

The curves can be used to estimate the experimental values of reslat for
each configuration. A first measure of this limit is done by retrieving the
resolution when the contrast reaches a value of 50%. With this criteria we
obtained experimental values of: 48µm for HASO 1.0, 42µm for Stingray 1.0,
52µm for Stingray 2.0 a>0 and 56µm for a<0. These values are quite close to
the expected values between 47µm and 50µm (see Table 2.3). The extracted
resolutions depend on the normalization of the curves. A normalization by a
different value would have given different results.

2.4.3 Depth resolution

To measure the resolutions along the depth axis, we follow the approach pre-
sented in [LNA+06]. The depth resolution resdepth is the depth range over
which it is not possible to distinguish different depths. To determine resdepth,
it is necessary to refocus the images using the same refocusing parameter, ei-
ther α = 1 in algorithm 1.0, or with the same P in algorithm 2.0. The depth
resolution should be determined from the element gr3−el3 to ensure precision
in the measure, as the width of these bars correspond to the lateral resolution.
resdepth corresponds to the depth range over which the refocused images of
gr3 − el3 are not substantially affected by defocus blur. Inside this interval,
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the images are the sharpest and look identical, so that it is barely possible to
tell that they actually correspond to different depths of the scene.

2.4.3.1 Depth resolution in the HASO 1.0

Figure 2.18 presents the HASO case, in which sufficient data is available,
thanks to the wider FOV in this setup. The light-field was acquired for many
depth positions of the test target. Figure 2.18a-2.18b-2.18c shows the series of
refocused images between −1.2mm and +1.2mm around depth ztrad0 , in steps
of 0.4mm. Three different elements are shown: gr3− el3 (49.5µm) that corre-
sponds to the theoretical lateral resolution, the largest visible element gr2−el1
(125µm), and an intermediate element gr2− el5 (78.7µm) (see Fig. 2.13). All
the images were reconstructed with algorithm 1.0 using the same parameter
α = 1.

The images of gr2−el1 and the ones of gr2−el5 appear very similar along
the depth range. In the displayed images, they are not affected by defocus
blur due to their large sizes. On the contrary, the thinner bars of gr3− el3 are
progressively blurred when moving away from ztrad0 (red square). By eyes, the
refocused images of gr3−el3 seem identical from ztrad0 −0.4mm to ztrad0 +0.4mm,
resulting in a depth resolution of 0.8mm, which is much finer than the 1.8mm
theoretical limit.

To be more quantitative, contrast is extracted along depth for these three
elements. As for the lateral resolutions, the contrasts were extracted from
an area covering each set of bars, allowing to average the contrast measured
along the length of the bars and reduce the measurement error. The resulting
contrast curves for these three elements are plotted in Figure 2.18d. The
curves are centered around depth ztrad0 , and their values are normalized by the
maximal contrast of the curve for gr2− el1.

The curve for gr3− el3 presents a surprising shape with rebounds on both
side of the maximal contrast at ztrad0 . Contrast reaches 0 at ztrad0 + 1.2mm
and symmetrically a dip can be observed around ztrad0 − 1.6mm. This can
be explained by a misalignment between the bars and the micro-lenses, as
discussed in Section 2.4.2. When moving the test target closer or further from
depth ztrad0 , the size of the FOV can change (see Section 2.2.1). This causes a
progressive misalignment of the bars during the defocusing process. The test
target was laterally positioned so that the contrast is maximal at depth ztrad0 ,
and this misalignment is responsible for a progressive decrease in contrast until
the value 0 when the image of the bars is shifted by exactly d2/2 compared to
the micro-lenses frequency.

The envelope of the contrast curve is drawn in dotted black. The envelope
gives an idea of the contrast curve that could be measured if the bars were
aligned with the µLA at each depth. The curves for the bars gr2 − el1 and
gr2− el5 are less affected by this misalignment along depth. A slight dip can
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(a) HASO 1.0: gr2−el1, from z = ztrad0 −1.2mm to ztrad0 +1.2mm, steps of 0.4mm.

(b) HASO 1.0: gr2−el5, from z = ztrad0 −1.2mm to ztrad0 +1.2mm, steps of 0.4mm.

(c) HASO 1.0: gr3−el3, from z = ztrad0 −1.2mm to ztrad0 +1.2mm, steps of 0.4mm.

(d) Contrast curves normalized by the maximal contrast value for gr2− el1.
Figure 2.18 – Depth resolution for the HASO 1.0: series of refocused images at
the same z0 (α = 1) and contrast curves extracted on elements gr2− el1, gr2− el5
and gr3− el3.

still be noticed around ztrad0 − 3mm for gr2− el5.
These three curves together allow to better show the effect of defocus de-

pending on the size of the bars. Their amplitudes (highest values) can be di-
rectly linked to the lateral resolution studied in previous section. Their widths
are related to depth resolution. The finer the bar width on the test target,
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the faster the decrease of the contrast curve. This quantifies what was already
visible in the images, that the smaller elements are more rapidly affected by
defocus blur.

Using these contrast curves, we would like to quantify depth resolution in
the HASO 1.0 configuration. As resdepth is defined as the depth range over
which the reconstructed images look identical (it is not possible to separate
their depths), we expect to find a criterion to measure it on the contrast curves.
According to Table 2.3, the theoretical resdepth equals 1.85mm. This depth
interval can be retrieved from the envelope of the contrast curve of gr3− el3,
which is the limit in lateral resolution. Considering the envelope at 80% of
the maximal value, the width goes from −0.8mm to 1.1mm, corresponding
to a range of 1.9mm. By comparison, the criterion taken at 50% instead
corresponds to the envelope going from −2mm to 2.3mm, hence a range of
4.3mm, which is more than twice the expected value of resdepth. The same
measures taken directly on the contrast curve instead of the envelope give
lower values. Using the criterion of 80%, the measured depth range is 1mm
on the contrast curve (between −0.5mm and 0.5mm). We retrieve a similar
value to the previous resolution of 0.8mm estimated by eyes.

The same measures are done on the other two contrast curves. Concerning
gr2 − el5, the widths at 80% and 50% respectively correspond to 2mm and
3.8mm. They roughly fit with the ones measured for gr3 − el3. The bars of
gr2− el5 have a fine width and are thus rapidly affected by defocus blur. On
the contrary, the contrast curve of gr2− el1 presents a large plateau centered
on z0, where defocus of the test target is not strong enough to impact the larger
bars. The measured widths at 80% and 50% are 3.6mm and 6.5mm, which
are completely different from the previous ones. When it comes to resolution
along depth, the size of the bars considered for the measures highly affects the
experimental results.

We have found the criterion of 80% as an experimental tool allowing to
retrieve resdepth from the gr3 − el3 contrast curve. We will see in the next
sections if this criterion can be applied to the other configurations.

2.4.3.2 Depth resolution in the Stingray 1.0

The same study is done for the Stingray 1.0 configuration. Because of the
small FOV , two different series of images were acquired. The first one shows
the evolution of the gr2−el1 along depth (see Fig. 2.19a), while the second one
presents the gr3−el3 as the limit of lateral resolution (see Fig. 2.19b). The two
series of images were refocused at α = 1 to study depth resolution. The images
at ztrad0 are highlighted by the red squares. Contrast was extracted on these
two series and the corresponding contrast curves are plotted in Figure 2.19c.
The two curves were normalized by the maximal contrast of the gr2 − el1
curve, similarly to what was done in the HASO 1.0 case. They are centered
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around ztrad0 = 233mm to enable comparison with the other cases.

(a) Stingray 1.0: gr2− el1, from z = 230.6mm to z = 235.4mm, steps of 0.8mm.

(b) Stingray 1.0: gr3− el3, from z = 231.8mm to z = 234.2mm, steps of 0.4mm.

(c) Contrast curves normalized by the maximal contrast value for gr2− el1.
Figure 2.19 – Depth resolution for the Stingray 1.0 configuration: series of images
refocused at the same ztrad0 (α = 1) for gr2−el1 (a) and gr3−el3 (b), and the contrast
curves extracted on these elements along depth (c).

The curve for gr2−el1 is smooth and presents a small plateau around ztrad0 .
This plateau can be related to the series of refocused images, where several
images around ztrad0 look sharp and identical. By eyes, we evaluate this depth
range from ztrad0 − 0.8mm to ztrad0 + 0.8mm, which gives an interval of size
1.6mm. In the gr3 − el3, only the two adjacent images seem as sharp as the
one at depth ztrad0 . With a step of 0.4mm, the size of this interval is 0.8mm.

These qualitative results are now quantified using the contrast curves. Con-
cerning the gr3−el3, the width of the curves measured at 80% of its maximum
goes from ztrad0 − 0.7mm to ztrad0 + 0.4mm, for a total extent of 1.1mm. We
here recover the theoretical value of resdepth = 1.10mm. The same process
done at 50% of the maximum gives a depth range of 2.4mm. For comparison,



2.4. EXPERIMENTAL VALIDATION OF THE RESOLUTIONS 73

the same process applied on the gr2 − el1 curve resulted in values of 2.7mm
for the 80% criterion and 3.5mm for the 50% one. As in the previous case, we
notice that the curve for gr3− el3 presents a dip at z0 − 1.4mm, correspond-
ing to misalignment artifacts. The lateral placement during the acquisition
process of gr3 − el3 explains that the artifacts are reduced compared to the
HASO case (see Fig. 2.18).

These experimental values are coherent with the ones measured in the
HASO 1.0. In both cases, the value measured at 80% on gr3 − el3 allows to
recover the theoretical resdepth, whereas the same criterion on gr2− el1 gives
approximately the double. We have found an experimental way of measuring
resdepth based on contrast curves, and we obtained coherent results on two
completely different setups.

2.4.3.3 Depth resolution in the Stingray 2.0

Unfortunately, for the two Stingray 2.0 configurations, only series of images of
the gr2 − el1 have been acquired. Therefore, the criterion of 80% applied on
gr2− el1 will be used to estimate twice the experimental depth resolution.

Figure 2.20 presents the four configurations together, to compare their re-
focused images as well as their contrast curves. The images of the two Stingray
2.0 datasets were reconstructed using P = 5. We remind here the theoretical
resdepth for each of them: 1.85mm for HASO 1.0, 1.10mm for Stingray 1.0
and Stingray 2.0, a>0, and only 0.74mm for Stingray 2.0, a<0 (see Table 2.3).
The contrast curves were normalized. They were shifted so that ztrad0 or zfoc0

corresponds to the relative depth 0 for each configuration on the graph.
The series of images allow the reader to visually appreciate the progressive

defocus blur when moving away from depth z0, depending on the configuration.
By eyes, the bars look in focus over adjacent images on both sides of z0. Again
the depth range runs over ∼ 1.6mm, corresponding to roughly double the value
of resdepth. This is consistent with the results obtained using our criterion of
80%.

In Figure 2.20e, the three contrast curves for the Stingray configurations
overlap very closely. The top of the HASO curve merges with the Stingray
configurations, but the HASO curve is a bit larger at the bottom. This larger
size can be explained by the larger expected value of resdepth for this configura-
tion. According to their theoretical values, the Stingray 2.0, a<0 curve should
be the thinner one, with the two others being very similar. This is not the
case, this curve seems slightly wider than the two other Stingray curves.

The width of the curves was measured using the criterion of 80% of the max-
imum. The results are the following: 3.6mm for HASO, 2.7mm for Stingray
1.0, 3.2mm for Stingray 2.0, a>0, and 3.3mm for the a<0 case. As expected,
we stay in the same order of magnitude of twice the theoretical resdepth. This
allows to approximate the experimental value of resdepth, overcoming the issue
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(a) HASO 1.0: gr2−el1, from z = ztrad0 −2.4mm to ztrad0 +2.4mm, steps of 0.8mm.

(b) Stingray 1.0: gr2− el1, from z = 230.6mm to z = 235.4mm, steps of 0.8mm.

(c) Stingray 2.0, a>0: gr2− el1, from z = 230.6mm to 235.4mm, steps of 0.8mm.

(d) Stingray 2.0, a<0: gr2− el1, from z = 228.6mm to 233.4mm, steps of 0.8mm.

(e) Contrast curves normalized by the maximal contrast value for gr2− el1.
Figure 2.20 – Depth resolutions for the four configurations, with the series of
refocused images of gr2−el1, and the corresponding contrast curves. This comparison
allows to extrapolate the results obtained in the HASO 1.0 and Stingray 1.0 cases to
the Stingray 2.0 a>0 and a<0.

of the missing gr3− el3 contrast curves.
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To conclude, the criterion of 80% on the gr3−el3 curve allowed to precisely
estimate the theoretical values in the HASO 1.0 (Fig. 2.18) and the Stingray
1.0 configurations. In the Stingray 2.0 a>0 and a<0 cases, these curves were
missing. With the same criterion of 80%, the contrast curve for gr2 − el1
enabled to approach twice the depth resolution. We have found a consistent
criterion to evaluate depth resolution from the experimental images.

2.4.4 Plenoptic depth of field

The plenoptic depth of field is the largest depth range over which it is pos-
sible to accurately refocus the test target from a single acquisition (see Sec-
tion 2.2.5). Following the approach of [LNA+06], each image needs to be
reconstructed using the most appropriate refocusing parameter (P or α), so
that the refocused image is as sharp as possible.

2.4.4.1 Methodology for drawing the contrast curve

In the Stingray 1.0 configuration, images of gr2−el1 were acquired at different
depths. Each raw image was reconstructed using different values of P , then
the contrast was measured. In Figure 2.21 are drawn the contrast curves cor-
responding to different values of P , showing how this parameter impacts the
refocusing quality along depth. For example at depth z0 − 5mm, the recon-
struction with P = −4 (orange) has a higher contrast than the reconstruction
with P = −3 (blue) or P = −6 (yellow). Taking the maximal contrast for
each z allows to choose the best refocusing parameter for this depth. This re-
sults in the dotted black curve, that will be used to study the plenoptic depth
of field in this configuration. This curve allows to select the images with the
adapted refocusing parameter that will be put together in the series of images
in Figure 2.23b.

Actually these different P curves can be related to the notion of depth res-
olution studied in previous section. It corresponds to reconstruction of several
depths with the same refocusing parameter, as was done in Figures 2.18-2.19-
2.20. Each P curve corresponds to the study of depth resolution at another
depth than z0. The series of curves shows how the depth resolution varies with
depth, as was mentioned in Section 2.2. When depth is further from z0, the P
curve has a lower height and its shape changes. The lower contrast is the sign
of potential higher difficulties in detecting small structures on the image. This
is related to the decrease in resolutions when moving away from ztrad0 in the 1.0
configuration. Figure 2.21 gives also a visual comparison of depth resolution
versus plenoptic depth of field.

The same process of taking the maximum of the P curves is performed for
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Figure 2.21 – Methodology for building the contrast curve to study the plenoptic
depth of field in the Stingray 1.0 configuration. Each image is reconstructed with
various refocusing parameters then the maximal contrast is selected. The curves for
the different P values can be related to the depth resolution at a depth different from
z0. The decrease in height and width is the sign of lower lateral and depth resolutions
when moving away from z0.

each different configuration, resulting in the curves and series of images used
in the following sections. We obtain a series of refocused images with a depth-
dependant refocusing parameter, over which we expect to recover DOFpleno.
As for depth resolution, a criterion has been defined to correctly measure the
depth range over which the images are considered well refocused.

2.4.4.2 Experimental validation of plenoptic depth of field

The plenoptic depth of field is evaluated on the series of images of gr3−el3, as
their bar width represents the lateral resolution limit. Only images for HASO
1.0 and Stingray 1.0 are available for this bar width. Figure 2.22 presents the
study done on these two cases.

The images for HASO 1.0 were all refocused using algorithm 1.0, while the
images for Stingray 1.0 were refocused with the algorithm 2.0 outside of depth
z0, because of its ability to produce images with a higher number of pixels (see
Section 2.4). The parameter of refocusing (either α or P ) was adjusted for each
image of the two series, to get the best focused images. We observe that the
refocused images look sharp on a few images around depth z0, and then suffer
from defocus blur on both sides of the series (see Fig. 2.22a and 2.22b). We can
also notice a variation in the size of the bars along depth in the images. This
effect comes from a difference in magnification when the test target is moved
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(a) HASO 1.0: gr3− el3, from z = ztrad0 − 6mm to ztrad0 + 6mm, steps of 2mm.

(b) Stingray 1.0: gr3− el3, from z = 227mm to z = 239mm, steps of 2mm.

(c) Normalized contrast curves for gr3− el3.
Figure 2.22 – Plenoptic depth of field based on the gr3 − el3 in the HASO and
Stingray 1.0 configurations.

on a different depth plane. This will be studied in more details in Section 2.5.
We would like to quantify the plenoptic depth of field on these series of

refocused images. By definition, if the plane of the reconstructed image be-
longs to the plenoptic depth of field, the reconstructed image should be well
refocused, in the sense that the bars should be visible with sufficient contrast.
By eyes, the bars of gr3−el3 are visible between ztrad0 −4mm and ztrad0 +4mm
for the HASO 1.0 and between ztrad0 − 6mm and ztrad0 + 6mm in the Stingray
1.0 case. This results in values of DOFpleno = 8mm and DOFpleno = 12mm,
compared to the theoretical value ∼ 10mm according to Table 2.3.

Figure 2.22c presents the contrast curves measured on these series of im-
ages. Each curve was independently normalized by its maximal value located
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at z0. As for the lateral and depth resolutions, some regular dips can be ob-
served on the HASO curve, due to the progressive misalignment between the
bars and the µLA when defocusing the test target (see Section 2.4.2). The
curve for the Stingray case does not present such kind of dips, due to the use
of algorithm 2.0 for the refocusing. What is interesting is that the Stingray
curve seems to be the envelope of the HASO curve. This means that despite
their different setups and algorithms, the ability of refocusing images shows
the same evolution when moving away from z0. This is consistent with their
similar theoretical DOFpleno around ∼ 10mm.

As for the previous resolutions, we found a criterion to read the plenoptic
depth of field on the contrast curves. In the Stingray case, the curve reaches a
width of 10mm for a contrast of 30% of the maximal value at depth z0. This
value of 30% is much lower than the 80% for the depth resolution. This reflects
the different natures of resdepth and DOFpleno. For resdepth the criterion was
chosen in order to quantify the depth range over which the images are the
sharpest, whereas for DOFpleno, the goal is to determine until where it is still
possible to refocus the bars, even with a lower contrast. This value of 30%
defines a threshold that corresponds to the theoretical DOFpleno and also to
the visual assessment based on the refocused images.

2.4.4.3 Study of DOFpleno with a different bar width

The plenoptic depth of field is now studied on the gr2− el1. As for the depth
resolution, the difference in bar width is expected to impact the lateral slopes
of the contrast curves, and affects the depth range over which the bars are
visible. Studying a different bar size is the opportunity to examine the effects
of the size on the experimental DOFpleno.

Figures 2.23a-2.23b-2.23c show the series of refocused images in three con-
figurations: the HASO 1.0, the Stingray 1.0 and the Stingray 2.0, a>0. For
each image, the refocusing parameter was adapted to the depth in order to
generate a sharp reconstruction. Around z0 (in red), the refocused images are
sharp, then blur progressively appears when moving away on both sides of the
series. However, the bars are visible along the whole depth range, because of
the largest width of gr2 − el1 compared to gr3 − el3. Whereas the displayed
depths largely exceed the theoretical value of DOFpleno ∼ 10mm, the bars are
still visible at both ends of the interval, making it impossible to detect a limit
for plenoptic depth of field based on gr2− el1.

As for the series of gr3 − el3 (see Fig. 2.22), we observe variations in the
magnification of the bars according to the depth of the test target. In the
HASO case, these variations are mild. In the Stingray cases, the magnifi-
cation changes more quickly. This is due to a higher magnification in this
setup, related to the lower field of view. Indeed, the axial magnification can
be approximation by M2 [Gro05], and therefore a higher magnification results
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(a) HASO 1.0: gr2− el1, from z = ztrad0 − 6mm to ztrad0 + 6mm, steps of 2mm.

(b) Stingray 1.0: gr2− el1, from z = 227mm to z = 239mm, steps of 2mm.

(c) Stingray 2.0, a>0: gr2− el1, from z = 227mm to z = 239mm, steps of 2mm.

(d) Normalized contrast curves for gr2− el1. The relative depth z = 0 corresponds
to ztrad0 for the HASO 1.0 and Stingray 1.0 and to zfoc0 for the Stingray 2.0, a>0.

Figure 2.23 – Plenoptic depth of field based on the gr2 − el1 in the HASO, the
Stingray 1.0 and 2.0, a>0 configurations.

in higher variations when changing depth z0. In the Stingray 1.0, the mag-
nification is maximal at depth z0 and decreases similarly on both sides. On
the contrary, the series for Stingray 2.0, a>0 shows a maximal magnification
around z0 − 4mm instead of z0. This depth corresponds to ztrad0 , which is the
depth plane optically conjugated with the µLA, as in the 1.0 configuration.
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This higher magnification and the lack of symmetry around z0 will have im-
pact on the measured contrast and estimated plenoptic depth of field. This
will be studied in details in Section 2.5.

This difference in magnification and image quality can be directly related
to the measured contrast curves. For each series, contrast was extracted on the
images and plotted against depth (see Fig. 2.23). The measured contrast was
normalized by the maximal value of the curve, and laterally shifted so that z0

corresponds to a relative depth of 0 for each configuration. The curves of the
HASO and Stingray 1.0 cases are symmetric around their reference depth ztrad0 .
However, this is not the case of Stingray 2.0, a>0, whose curve is completely
decentered a few mm on the left. Its maximal value is located at z0− 4.5mm,
which is the same depth where the magnification is maximal in the refocused
images. This means that in the 2.0 case, the maximal contrast is located at
ztrad0 instead of zfoc0 . This is a problem as there could be a confusion between
ztrad0 and zfoc0 based on this curve. It could also have an impact on the measure
of DOFpleno, as the contrast decreases from its maximal value located at ztrad0

instead of zfoc0 . The highest values are thus centered around ztrad0 . The formula
of DOFpleno does not seem valid for the focused configuration. Simulations are
necessary to understand the reasons, and will be presented in section 2.5.

Except the shift in the Stingray 2.0 case, the three curves present a regular
decrease on both sides, with similar slopes values. This represents the similar
expected value of DOFpleno ∼ 10mm in the three cases. Contrary to gr3−el3,
it is not possible to measure DOFpleno on the contrast curve of gr2 − el1,
due to its larger size. The bars can be visually separated along the whole
series, whereas the depth range of the displayed images largely exceeds the
theoretical value of DOFpleno. The criterion of 30% on the contrast curve of
gr3− el3 confirms that the bars can be considered as visible along the whole
depth range.

As a conclusion, it appears that the theoretical DOFpleno is a good ap-
proximation of the reconstruction distances allowed by a plenoptic camera.
In both 1.0 configurations, DOFpleno gives reliable limits for the depth range
that could be correctly reconstructed. This way the plenoptic depth of field,
together with the field of view, delimits a volume where the lateral and depth
resolutions can be considered as homogeneous.

However, it is not as straightforward in a 2.0 configuration. The maximal
contrast value is shifted from zfoc0 to ztrad0 on the contrast curve. This indicates
that some additional effects, like magnification, should be considered in the
plenoptic depth of field theory. Consequently, even if the width of the 2.0
curve seems identical to 1.0 ones, in agreement with the expected values, the
proposed formula should be used with special care.
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2.5 Simulation of the impact of magnification
and diffraction on depth of field

In order to better understand the impact of magnification on plenoptic depth of
field, a deeper study as been done on the Stingray 2.0, a>0 case. A simulation
framework was implemented to study the combined effects of magnification,
diffraction and defocus. The objective of this simulation is to examine how
the three phenomena impact the contrast variations with depth.

Up to this point, the different resolutions were studied on reconstructed
images. However, the reconstruction algorithm can impact image quality and
contrast. In the simulation, the plenoptic depth of field is studied using con-
trast estimation on a single sub-image, instead of a reconstructed image. The
condition of 3D reconstruction at a chosen depth is that the plane at this
depth has been imaged by sharp sub-images: a depth belongs to DOFpleno if
and only if it is included in the depth of field of a single sub-image [MCJ18].
As explained in Section 2.2.5, the plenoptic depth of field is the depth of field
of a single sub-image. Therefore, DOFpleno can be directly studied on the raw
plenoptic image, without the need for reconstruction.

2.5.1 Simulations

The simulation reproduces the configuration of the Stingray 2.0, a>0 (see
tables 2.2 and 2.3). It models all the transformation that occur between the test
target in the object space until the formation of a sub-image on the detector.

A raw plenoptic sub-image is simulated on the detector’s plane, positioned
at a fixed distance bfoc from the µLA (Fig. 2.24). The simulated object is the
three bars of gr2− el1 of the test target (bar width = 125µm, see Fig. 2.13),
virtually placed at a variable distance z0 from the main lens. The distance be-
tween the main lens and the µLA is kept fixed to cfoc = zfoc1 +afoc = 1597mm.
We remind that zfoc0 is the privileged depth for this focused configuration,
whereas ztrad0 is the depth optically conjugated with the µLA in this context,
(a = 0). We consider three phenomena affecting contrast of the raw plenoptic
sub-image: diffraction, defocus and magnification, introduced by Eq. 2.37.

Diffraction. To simulate diffraction, we performed the convolution of the
object with a cardinal sine function, representing the diffraction pattern of our
square microlenses [Hec17]:

I(r) = I0 sinc2

(
π · r · d2

λ · bfoc

)
(2.44)

with r the position on the detector, sinc(x) = sinx/x and I0 a normalization
constant such that

∫
I(r) dr = 1. Diffraction from the main lens is ignored,
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Figure 2.24 – A focused plenoptic system. Red rays come from the depth plane zfoc0

whereas green rays correspond to another depth to illustrate the Circle of Confusion
(CoC) due to defocus.

because it is reduced by the mignification of the µLA compared to the sub-
image and pixel sizes.

Defocus. The Circle of Confusion corresponds to the region over which a
point is blurred in the case of defocus (Fig. 2.24) [ZLE+18]. Its diameter CoC
is defined as:

CoC = d2

∣∣∣∣1− bfoc

b

∣∣∣∣ (2.45)

The object is in focus and the image is sharp when the image plane is close to
the detector (i.e., |1− bfoc/b| << 1).

Convolutions of the object with I(r) from Eq. (2.44) and a circle of size
CoC from Eq. (2.45) simulate the effects of diffraction and defocus. They
strongly depend on the depth z0.

Magnification. The third phenomenon is the total magnificationMtot of the
system, combining the effects of the main lens and the µLA. It is a hyperbolic
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function of depth z0:

Mtot =
z1

z0

bfoc

a
=

f1b
foc

cfoc − f1

1

z0 − ztrad
0

with ztrad
0 =

f1c
foc

cfoc − f1

(2.46)

Impact of diffraction and defocus. Fig. 2.25 shows the effects of diffrac-
tion and defocus on a plenoptic raw sub-image for an object at z0 = 240mm,
whereas the optical system is optimized for zfoc

0 = 233mm. The black dotted
curve represents the shape of the original signal without the effects of diffrac-
tion or defocus. At z0 = 240mm, the defocus (green curve) only affects the
shape and width of the bars, because the size of CoC is too small compared to
the width of the bars on the screen to affect the amplitude and contrast of the
signal. On the contrary, considering the diffraction alone (red curve) results
in a drop of contrast from 1 to 0.59. With the combination of both diffraction
and defocus (blue curve), the contrast is even lower with a value of 0.52.
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Figure 2.25 – Simulated 1D raw image of the test object versus position r on
the detector with the effect of defocus only ( green; contrast = 1), with diffraction
only ( red; contrast = 0.59) and with both effects combined (blue; contrast = 0.52),
calculated at a depth z0 = 240mm, compared to the image with no effect (dotted
black; contrast = 1).

Impact of diffraction, defocus and magnification. The cumulative ef-
fects of the three factors are illustrated in Fig. 2.26 at four different depths.
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Magnification governs the spatial frequency of the test object. On the detec-
tor, we measure a spatial frequency of 3.20cy/mm, 5.89cy/mm, 8.59cy/mm
and 15.34cy/mm for z0 = 231mm, 233mm, 235mm and 240mm respectively.
In comparison, the physical size of the test target of bar width of 125µm cor-
responds to a frequency of 4.00cy/mm.
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Figure 2.26 – Simulated 1D raw image with the three effects versus position r on
the detector for different depths z0: z

foc
0 = 233mm (blue), 231mm (dotted orange),

235mm (dotted green), and 240mm (purple, same depth as in Fig. 2.25).

The difference in amplitude is mainly due to diffraction and defocus. Mag-
nification plays a role in the amplitude variations, but effects are not sym-
metric: the contrast is higher close to ztrad

0 (0.96 at 231mm), and decreases
as the depth increases (0.89 at 233mm, 0.86 at 235mm and 0.5 at 240mm).
Amplitude at zfoc

0 is 11% lower in respect to the test target at object plane.

Simulated contrast curves as a function of depth. Parameters given
in tables 2.2 and 2.3 were used for the simulations, except that the size of the
sub-image has been artificially enlarged to fully include the magnified image.
Then the contrast in the simulated raw sub-images was extracted at different
depths to study the consequence of the three phenomena (diffraction, defocus
and magnification) on the plenoptic image. Fig. 2.27 shows their impacts on
contrast curves as a function of depth position z0.

In Fig. 2.27, defocus (green curve) does not significantly affect the contrast
as depth varies: a plateau of contrast=1 nearly centered around the zfoc

0 posi-
tion is observed, as already seen in Fig. 2.25. The curve with diffraction and
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Figure 2.27 – Contrast curves versus depth: with defocus and magnification only
( green), with diffraction and magnification only ( orange) and with the three effects
combined (blue). Depths zfoc0 = 233mm and ztrad0 = 228.6mm. Note that the small
oscillations are due to pixel discretization of the signal.

magnification (orange) is maximal at and symmetric around the ztrad
0 position,

and not at the expected zfoc
0 position. When the three effects are combined

(blue curve), the maximum contrast is located around ztrad
0 . Defocus is respon-

sible for an asymmetry, with a slow decrease of contrast from ztrad
0 to a plateau

around zfoc
0 . The fast variations in magnification, combined with diffraction

and defocus, explain the fast decrease in the contrast curve: higher contrast is
measured for larger magnification (around ztrad

0 ), whereas for smaller magnifi-
cation the image is more affected by defocus and mainly by diffraction. These
curves have to be compared to the theoretical value: a region of maximal
contrast over 16.3mm around the reference position zfoc

0 .
The shapes of the curves can be generalized to other sets of parameters.

When considering magnification and defocus only, the contrast curve is cen-
tered around zfoc

0 . On the other hand, the curve combining magnification and
diffraction is centered at ztrad

0 . When the three effects are combined, the shape
of the contrast curve will depend on the respective magnitudes of magnifica-
tion, diffraction and defocus.

2.5.2 Comparison with experimental data

The results from the simulation are now compared to the experimental data
(see Fig. 2.23). Fig. 2.28a shows sub-images extracted from raw plenoptic



86CHAPTER 2. OPTICAL SYSTEM: EQUATIONS AND RESOLUTIONS

220 225 230 235 240 245

Depth z0 (mm)

a )

b )

c )

C
o
n
tr
a
s
t

1

0.8

0.6

0.4

0.2

0
foc

Figure 2.28 – a) Raw sub-images acquired at planes: z0 = 223.5, 228.5, 233,
236, 242mm; b) Corresponding reconstructed images; c) Comparison of the simulated
contrast curve (blue) and experimental contrast curve measured on raw sub-images
(pink) and on reconstructed images ( gray). The gap located around ztrad0 = 228.6mm
is due to the large magnification that makes the bars exceeding the sub-image size.

images acquired at different depths. In this configuration, total magnification
is maximum at the traditional plenoptic plane ztrad

0 = 228.6mm, and decreases
as depth increases (Eq. 2.46). Fig. 2.28a confirms this effect: at 228.5mm, only
a part of one bar appears while as the depth increases, three bars can slowly
be seen on the sub-images.

For each experimental raw plenoptic image we measured the contrast of
one sub-image taken in the middle of the image, and plot it against depth
(pink curve in Fig. 2.28c). It can be compared to the simulated curve (blue,
Fig. 2.28c), obtained using the parameters of the setup (see tables 2.2 and 2.3).

Both curves present the same shape, with maximal values at z0 = 227
and 230mm surrounding a large gap located at ztrad

0 . The gap is due to the
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magnification being so large that the image of the bars does not fit inside
the sub-image (as illustrated by the 2nd figure from the left in Fig. 2.28a).
This leads to unreliable contrast values measured on only a part of the total
magnified pattern, similarly to what happens in the experimental setup.

On both sides of this gap, the two curves slowly decrease following the de-
crease in magnification. Near the position ztrad

0 , magnification is large enough
so that diffraction and defocus have little effect on the measured contrast.
When the bars are smaller on the detector (far from ztrad

0 ), defocus and espe-
cially diffraction reduce the contrast. At zfoc

0 , defocus is minimal. Effect of
defocus increases when z0 moves further from zfoc

0 which explains the asym-
metry of the curves around the zfoc

0 position compared to the left part of the
curve.

Although the simulated (blue) and measured (pink) curves are close, they
do not overlap. It may be explained by a difference of dynamic ranges: the
experimental images are affected by noise and light adjustments that will affect
the intensity distribution and thus the measured contrasts in the image.

The quality of a light-field imaging system depends on the combination of
an optical systems with a reconstruction algorithm to compute the final images.
In our work, we chose to estimate the contrast on raw sub-images instead of
the reconstructed ones. To validate such a choice, we compare the contrast
curve from the simulation with the one measured on the reconstructed, which
was previously presented in Figure 2.23. As expected, the resulting contrast
curve (gray) has a similar shape to the one from raw images (pink) except
around ztrad

0 , where it reaches a local maximum instead of a gap, due to the
refocusing process.

To conclude, the simulation confirms that the plenoptic depth of field is
more complex than expected by theoretical equation 2.37. This equation was
established considering only defocus and diffraction. Without the magnifica-
tion, the resulting contrast curve is expected to present a plateau centered
around zfoc0 . The simulation allows to deeper analyze the combined effects of
diffraction, defocus and magnification on the resulting image. Magnification
together with diffraction is responsible for important unexpected effects. The
contrast curve reaches a maximum at the traditional plenoptic configuration
ztrad

0 instead of the reference depth plane zfoc
0 . Defocus is responsible for an

asymmetry with a slow decrease in-between these two depths and a plateau
around zfoc

0 . Beyond this interval, the contrast decreases quickly due to the
fast variations of magnification.

These results will have consequence when building our X-ray plenoptic
system. The maximal contrast at ztrad

0 instead of the expected zfoc
0 is an ob-

stacle for depth extraction based on contrast measurement. The variations of
magnification over the whole depth range is a potential problem for 3D re-
construction: not only is it responsible for contrast reduction, but it will also
lead to large variations of size of the image depending on its location. As a
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solution to this issue, a telecentric plenoptic system can be built, meaning the
magnification is constant across depth planes [LNA+06; WN96]. Furthermore,
appropriate algorithms should be used in order to correct for potential size
errors [DW88].

2.6 Conclusion
In this chapter, we presented a theoretical and experimental study on the
resolutions of a plenoptic system. First, the equations that govern the design
of a plenoptic camera were revised. A new version of the aperture matching
condition was given. The case of illumination by transmission of light through
the sample was studied in details. Discarding these illumination conditions
involves the risk of restricting the total amount of acquired data, and reducing
the performances of the system.

Four optical resolutions were defined, allowing to evaluate the optical per-
formance of the plenoptic system, prior to any refocusing. The theoretical
resolutions were then checked experimentally in the visible. Three of the four
resolutions (reslat, resdepth and FOV ) were validated by the experiments. Sim-
ulations were necessary to better understand the differences between theoret-
ical and experimental plenoptic depth of field.

From our study, it appears that ∆peff plays an important role in most
of the equations. Its size restricts the amount of acquired data, which con-
cretely shows how diffraction affects the resolutions. The second important
parameter is the numerical aperture of the main lens NAobj ML. A larger nu-
merical aperture means smaller depth resolution and plenoptic depth of field.
The spatio-angular sampling (Nu and Ns) is the third important parameter to
consider in order to optimize the data acquired by a plenoptic system.

The equations presented in table 2.1 should be used when designing a
plenoptic system, as was done to design and optimize the X-ray plenoptic
system in Chapter 5.



Chapter 3

New parameterization and
refocusing algorithm

3.1 Introduction

Plenoptic raw data have to be processed to render 2D images or a 3D volume.
In Chapter 1, we highlighted that the final resolutions of the reconstructed
image depend on both the optical configuration in which data have been ac-
quired, and the algorithm used to refocus them. The present chapter describes
the developments achieved during this thesis, in order to improve the quality of
the rendered images. The refocusing algorithm should be able to well exploit
the information contained in the plenoptic raw image, in the perspective of an
accurate 3D reconstruction.

In Chapter 1, we presented the two refocusing algorithms that are com-
monly used to reconstruct plenoptic data of the traditional or focused config-
urations. We highlighted that they are actually based on the same principle
of integration of lines in the pixel-micro-lens diagram, with exactly the same
slope of integration. The two methods differ in the use of the pixels acquired by
the sensor: the "shift-and-sum" algorithm performs interpolation over pixels of
adjacent sub-images, whereas the "rendering with blending" method extracts
an integer number of pixels, leading to a discrete refocusing parameter P and
a discontinuous range of possible depths of reconstruction. Some raw images
from both traditional and focused configurations were reconstructed using the
two algorithms (see Chapter 1). The results demonstrate that the choice of
the algorithm impacts the resulting resolutions and image quality.

In this chapter, we present a new refocusing algorithm that overcomes the
distinction between traditional and focused algorithms. The idea is to propose
an algorithm usable on any plenoptic data, regardless of the configuration in
which they were acquired. Unifying both approaches allows to remove the
previously mentioned difference in the use of the pixels. Moreover, the link
between the two optical setups have been pointed out, as it was shown that

89
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it is possible to switch from one configuration to another one inside the same
physical setup (see Section 2.1.1). Having a unique method valid for any
configuration allows to homogenize the result of the refocusing process.

We first propose a unique set of equations describing the propagation of
the light rays in a plenoptic setup (Section 3.2). Based on this equation,
we introduce a new refocusing approach valid for any plenoptic configuration
(Section 3.3). With this method, we aim at refocusing images with arbitrary
resolution at any distances from the camera, with good depth accuracy and
without the discontinuity due to change of optical configuration. Our approach
may also be used to generate synthetic data. Based on the first implementa-
tion (see Section 3.4), we demonstrate on synthetic data that our approach
accurately simulate refocusing: the minimal blur is closely located nearby the
expected depth (maximum error of 0.24% in our tests from Section 3.5). We
also demonstrate the ability of our approach to work on real captured data.
Finally, we point some current limitations and possible improvements for the
implementation (Section 3.6).

3.2 Propagation from object-space to sensor-
space

To model the propagation of a ray through the plenoptic system, a parame-
terization is needed in both the object- and sensor-spaces. The link should be
made between these two spaces, as a transformation of the coordinates of a
ray. We review some previously published models before establishing our own
equations. Our approach is physically-based, in the sense that it describes the
ray propagation as a function of the physical distances of the setup, without
assuming a specific configuration or any relationship between the distances
and optical parameters.

3.2.1 Previous parameterizations and models

A light field representation depends on the way the rays are parameterized. In
Chapter 1, we introduced the two-planes parameterization which is the basis
of many works. A property of the light-field is that it remains constant along
a ray in free-space propagation [McC14]. In the context of geometric optics,
the ray rrrsen reaching the sensor can be related to the incident ray rrrrec on the
system (see Fig. 3.1). Due to the conservation of radiance, the same light
field is the same in the different parameterizations: LF (rrrrec) = LF (rrrsen). In
order to be independent from the choice of the parameterization planes (either
object- or sensor-spaces), the transformation between rrrsen and rrrrec has to be
modeled.
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Previous transformations are usually dependent on the experimental con-
figuration and the choice of the planes of parameterization [Ng06; GL10a].
Dansereau et al. [DPW13] have proposed a 5× 5 matrix to simulate the trans-
formation of the rays. However, the µLA is modelled as an array of pinholes, ig-
noring the spatial extent of the apertures of the micro-lenses. Mignard-Debise
et al. [MDRI17] take into account the aperture of the micro-lenses in their
equivalent camera array framework. However, they do not explicitly propose a
mathematical model of transformation in-between the ray parameterizations.
In this chapter, we demonstrate that this transformation is affine and can be
expressed with a 4 × 4 separable matrix, and that it does not introduce any
discontinuity when moving from an optical configuration to another (e.g., from
traditional to focused plenoptic configuration).

3.2.2 2D derivation of the affine transformation of rays

The first step of our approach is to model what happens to a single light
ray when passing through the optical system. As explained in Chapter 1,
the 4D light-field coordinates could be decoupled into 2 × 2D. As illustrated
in Figure 3.1, we express the parameterization change when a 2D ray rrrrec

expressed in the object-space (between the reconstruction plane and the main
lens) is transformed into a 2D ray rrrsen in sensor-space (between the µLA and
the detector planes). In this chapter, we use the term sensor-space instead of
the classical image-space to prevent the reader from being confused with the
multiple use of the word image. The distance between the main lens and the
µLA is written c.

Main Lens
(ML) plane

microLens Array
(�LA) plane

 

 

 

sensor
plane

reconstruction
plane

c

θ

 

prec

(x,-z)T

object-space

ray rrec�
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sensor-space

z b
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ray rsen�
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O

Figure 3.1 – Notations for equation derivation of the ray transformation though
the optical system.

Using the coordinates of rays as defined in Figure 3.1, and assuming a
micro-lens µLk whose optical center is located at (qk), we model the successive
effects of the main lens and the micro-lens µLk using the thin lens equations.
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We consider the successive intersections between the ray and the different
planes in the system. We model these intersections by two coordinates, corre-
sponding to the position of the intersection point on the plane, and the signed
distance between the plane and the main lens. The center of the main lens is
chosen as the origin of the coordinate system.

The incident ray on the system is parameterized by a pair of points: ppprec =
(x,−z)T on the reconstruction plane and, pppML = (u, 0)T on the main lens plane.
We define ppp1 as the image of ppprec on the intermediate image plane after going
through the main lens of focal f1:

ppp1 =
f1

z − f1

[
−x
z

]
. (3.1)

The ray ppprec → pppML is thus transformed into the ray pppML → ppp1 which intersects
the µLA plane located at (0, c)T at the position

pppµLA =

[
q
c

]
with q = u− c (z − f1)

f1z
u− c

z
x. (3.2)

Similarly to ppp1, we define pppk2 as the image of pppML through the micro-lens µLk
of focal f2, centered at the position (qk, c)

T:

pppk2 =
f2

c− f2

[
−u+ qk

c

]
. (3.3)

The ray pppML → pppµLA is thus transformed into the ray pppµLA → pppk2 which intersect
the sensor plane located at (0, c+ b)T at the position

pppsen =

[
s

c+ b

]
with s =

bcx

f2z
− (c+ b)x

z
+ (3.4)

bc(z − f1)u

f2f1z
− bu

f2

− (c+ b)(z − f1)u

f1z
+ u+

bqk
f2

.

These equations make the link between the ray rrrrec = (x, u) between ppprec

and pppML, and the ray rrrsen = (q, s) between pppµLA and pppsen. Considering the
vertical coordinates of these points on the successive planes (Eqs. 3.2 and 3.4),
we establish the relationship:[

q
s

]
=

1

z

[
m11 m12

m21 m22

] [
x
u

]
+

b

f2

[
0
qk

]
(3.5)

or

rrrsen =
1

z

[
m11 m12

m21 m22

]
rrrrec +

b

f2

[
0
qk

]
(3.6)

with
m11 = −c , m12 = z + c− cz

f1

, m21 =
cb

f2

− (b+ c)
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and m22 = b+ z + c− (b+ c)z

f1

− (z + c)b

f2

+
czb

f1f2

.

3.2.3 Matrix equation of the 4D transformation

Having established the 2D transformation of the ray through the optical sys-
tem, the equation can be easily extended to 4D adding the missing 2 coordi-
nates. This leads to the following relation:

rrrsen = MMMrrrrec +
b

f2

(0, qk, 0, rl)
T (3.7)

with MMM =
1

z


m11 m12 0 0
m21 m22 0 0

0 0 m11 m12

0 0 m21 m22


Thus, knowing the 4D coordinates of a ray in object-space, we can calculate

the exact coordinates of the corresponding ray in sensor-space. Since MMM is
invertible, the inverse affine transformation is possible from rrrsen to rrrrec.

This equation depends on the focal lengths of the lenses (f1 and f2) and
on the distances between the optical elements (c and b). There is no imposed
relationship between these distances, contrary to some previous models that
are dependent on the optical configuration [Ng06; GL10a]. Therefore it is
continuous for all z > 0 and valid for any light field camera composed of a
main lens, a µLA and a detector, such as traditional and focused setups. The
formulas in Equation 3.7 allow to calculate the matrix coefficients directly from
the parameters of the physical system.

3.3 Proposed refocusing approach

This matrix transformation makes the link between object- and sensor-space.
Taking its inverse allows to go from sensor- to object-space, according to the
principle of reversibility of light. This is the main idea of our refocusing ap-
proach: rays from sensor-space rrrsen are transformed into object-space rrrrec and
the refocusing is done on this new parameterization.

3.3.1 Principle and comparison with previous methods

The captured raw image corresponds to a discretization of the incident light
field on the plenoptic camera. For each ray rrrrec as in Fig. 3.1, the recon-
structed light field LF (rrrrec) can be written as a combination using basis func-
tions Φijkl (rrr) weighted by pijkl (as introduced by [GGSC96]):
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LF (rrrrec) =
∑
i,j,k,l

pijklΦijkl (rrrrec) (3.8)

Based on the work of Goesele et al. [GGHS03], we express Φijkl (rrr), when
adjusted to the context of light field cameras based on micro-lens arrays, as:

Φijkl (rrrrec) =
z2

cos4 θ (rrrrec)
φML (uuu)φµ L

kl (rrrrec)φ
sen
ij (rrrrec) , (3.9)

where φML (uuu), φµ L
kl (rrrrec) and φsen

ij (rrrrec) are mathematical expressions of re-
spectively the apertures of the main lens, the micro-lens µLkl and the pixel
pij on the sensor (we consider the surface of the pixel as an aperture as in
[MDRI17]). They optically correspond to filters which equal 1 only if rrr is go-
ing through the corresponding aperture in the optical system and 0 elsewhere.
The weights pijkl thus corresponds to the flux going through the apertures of
µLkl and pij. The term z2/ cos4 θ (rrrrec) is a normalization term which expresses
the energy conservation. Such a reconstruction function is based on the fact
that the filtering process due to the different apertures is the optical equivalent
of a numerical orthogonal projection of LF onto the basis functions Φijkl (in
the sense of min-square error).

Our goal is to reconstruct an image located at depth z. We want to calculate
the value of pixel pmn of this new image. Optically, it corresponds to the flux
going though the aperture of the pixel. Using the same parameterization of
the light field as in Fig. 3.1, the reconstruction of pmn corresponds to the
integration on the two parameterization planes of all the rays from the light-
field which go through the new pair of apertures (main lens aperture ψML (uuu)
and equivalent aperture of the pixel in object-space ψpixel

mn (rrrrec)):

pmn =

∫
xxx

∫
uuu

LF (rrrrec)ψ
ML (uuu)ψpixel

mn (rrrrec)
cos4 θ (rrrrec)

z2
(3.10)

Combining Equations 3.8, 3.9 and 3.10 results in the following interpolation
scheme of the recorded values:

pmn =
∑
i,j,k,l

pijkl

∫
xxx

∫
uuu

φMLψMLφµ L
kl φ

sen
ij ψ

pixel
mn (3.11)

Thanks to the definition of the reconstruction function introduced by Goesele
et al. [GGHS03], the term cos4 θ/z2 disappears.

When using the same aperture of main lens for acquisition and refocusing
(φML = ψML), and reminding that φML equals either 1 or 0, we obtain the
relationship φMLψML = φML. Equation 3.11 might be simplified to:

pmn =
∑
i,j,k,l

pijkl

∫
xxx

∫
uuu

φMLφµ L
kl φ

sen
ij ψ

pixel
mn (3.12)
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When the sub-images are not overlapping, each pixel pij is illuminated by
maximum one single micro-lens µLkl. The flux pijkl can be simplified to pij.

Therefore, the new pixel pmn to reconstruct is a function of the pixels pij of
the sensor, each of them being weighted by an integral factor. The key point of
our algorithm consists in being able to precisely estimate this integral factor.

3.3.2 Our approach

We use this principle to reconstruct an image at any chosen distance z from
the main lens. This is schematized in Fig. 3.2. For each pixel pmn of the recon-
structed image located at depth z, we consider the bundle of rays AAAmn defined
by the pixel and the aperture of the main lens (in yellow in object-space).
This corresponds to the set of rays that have been (potentially) acquired by
the plenoptic system. We then transform the bundle of rays in sensor-space
for each micro-lens µLkl using Eq. 3.7: this gives the bundle of rays AAAmnkl

(in yellow in sensor-space). Meanwhile we consider the bundles of rays BBBijkl

(in green) intrinsically defined in sensor-space by each pair of sensor pixel pij
– micro-lens aperture µLkl. The contribution of the sensor pixel pij to the
reconstructed pixel pmn corresponds to the intersection between the bundles
AAAmnkl and BBBijkl (in orange).

 

 

 

 

object-space

 

 pmn

�Lkl

Amn: bundle of rays from 
pmn to ML aperture

ML aperture

Bijkl: bundle of rays
from �Lkl to pij
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of Amn through �Lkl
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Main Lens 
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microLens Array
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Figure 3.2 – Principle of the refocusing approach: (1) Transformation of the
bundle of rays AAAmn from the reconstructed pixel pmn passing by the aperture of the
main lens into the sensor-space bundle of rays AAAmnkl through the micro-lens µLkl.
(2) This bundle of rays is intersected with the bundle of rays BBBijkl between the sensor’s
pixel pij and micro-lens µLkl to compute the contribution of pij on pmn.

Figure 3.3 shows the phase-space diagram of the setup. The light-field is
represented in two different ways, considering a parameterization between the
µLA and the sensor planes (in black). and the parameterization between the
reconstructed pixel and the main lens, projected from object-space to sensor-
space (in blue). The bundle of rays AAAmnkl projected from object-space to
sensor-space corresponds to a distorted parallelogram (in orange). The bundle
BBBijkl is represented by a rectangle (in green). The intersection between them
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Amnkl

Bijkl

intersection of
Amnkl & Bijkl

sensor's pixels reconstructed pixels

reconstructed 
pixels through
each microlens

microlenses' 
apertures

Figure 3.3 – Phase-space diagram of Fig. 3.2.

has a complex shape, whose surface (or volume in 4D) should be evaluated as
the contribution of pij to pmn.

To retrieve the entire value of the reconstructed pixel pmn, the contribution
of each sensor pixel pij should be estimated. The final value of pmn is the sum
of all the values of pij weighted by the volume of the intersection AAAmnkl∩BBBijkl.
The approach is summarized in Algorithm 1. More formally, this corresponds
to the estimation of the integral factor in Eq. 3.12. Our approach differs from
the classical refocusing algorithms [Ng06; GL10a] since we consider sensor’s
pixels and apertures as surfaces and not as points, thus mimicking accurately
the setup.

3.3.3 Simulation of a plenoptic raw image

Eq. 3.7 allows us to build the reconstruction method, and for each pixel on
the reconstruction plane to fetch the useful information from the pixels on
the sensor plane, for a pixel-wise reconstruction of the whole image. Likewise,
the process can be reversed, and for each pixel on the sensor, it is possible
to determine the pixels on the reconstruction plane from which the light is
coming. Following this idea, we implemented a reversed algorithm that, for
an object plane at depth z, projects the corresponding light field from the
object-space onto the detector. This gives us a tool to simulate a light field
image that would have been acquired from a plenoptic camera.
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Algorithm 1 Reconstruction at depth z - principle
1: for each pixel pmn do
2: pmn := 0
3: Consider the bundle of rays AAAmn

4: for each micro-lens µLkl do
5: Project AAAmn through µLkl to obtain AAAmnkl

6: for each sensor’s pixel pij do
7: Consider the bundle of rays BBBijkl

8: Compute the volume V of AAAmnkl ∩BBBijkl

9: Add the contribution of pij to pmn:
10: pmn := pmn + V × value(pij)
11: end for
12: end for
13: end for

3.4 Implementation details

Behind its apparent simplicity, the formula expressed in Eq. 3.12 (simple in-
tegral on apertures) is complex to evaluate. Each single ray goes through a
unique combination of apertures (reconstruction plane, main lens, µLA, and
sensor planes), and the resulting bundle of rays considered in the integral often
results in a complex geometrical shape (such as the orange shape in Fig. 3.3).
It is not possible to simplify the final geometrical shape by separating the
contribution of each optical element, as the integration is done at once in the
space of rays. The algorithm thus necessitates a high number of complex vol-
ume estimations. In order to reduce the complexity of the algorithm, we first
introduce approximations on the apertures and then develop the algorithm in
order to prevent un-needed computation.

3.4.1 Approximations on the apertures

Apertures of lenses could be of various shapes: hexagonal, circular... In our im-
plementation, we approximate the circular apertures of our lenses by squares.
To be conservative and to prevent introducing any use of sensor’s pixel that
does not contribute to the reconstructed pixel, we consider the inscribe square
(and not the outer square). Even if this is a limitation of our current imple-
mentation, this approximation still takes into account the size of the aperture,
which is more precise and realistic than approximating them by their center
position only [DPW13].

Moreover, we assume that the apertures of our lenses are axis-aligned with
the pixels of the sensor. These assumptions (square and axis-aligned) allow
to keep the separability between the two pairs of coordinates (x, u) and (y, v)
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that exists in the Eq. 3.7. Working on separated coordinates allows to pool
some parts of code and to fasten the intersection (cf. Section 3.4.2).

3.4.2 Faster access to contributing pixels

We want to evaluate the computational complexity of our algorithm, defined
by the computation time as a function of input data. The intrinsic complexity
to reconstruct each pixel pmn is O(I × J ×K × L) where I × J is the number
of pixels in each sub-image of the plenoptic image and, K × L is the number
of micro-lenses. This can be optimized taking into account that the useful
information for a single pixel pmn only comes from a small subset of all the
bundles of rays BBBijkl acquired by the system. Therefore, we compute closer
minimal and maximal bounds to more precisely restrict the loops over the
micro-lenses and sensor’s pixels (lines 4 and 6 in Algorithm 1) to effective
ones.

For each pmn, we use Eq. 3.7 to compute the bounding coordinates qqq =
(q, r)T that are common to all the bundles of rays AAAmnkl: they do not depend
on the choice of the microlens. We thus only iterate over the micro-lenses that
intersect the corresponding geometry. This corresponds to projecting AAAmn

through the main lens only, and checking which micro-lenses are illuminated
by the bundle of rays. Depending on the parameters, this can greatly reduce
the number of micro-lenses in the loop.

Similarly, we now compute the coordinates sss = (s, t)T of the remaining
bundle of rays AAAmnkl. This gives us the illuminated sensor’s pixels over which
we need to iterate. This can again highly reduce the number of considered
sensor’s pixels.

Finally, we use the separability property defined in Section 3.4.1 to optimize
the calculation. Thanks to this property, the set of coordinates (x, u, q, s) and
(y, v, r, t) are independent. For the intersection, this means that, instead of
evaluating a volume intersection in 4D (coordinates (q, s, r, t) of AAAmnkl∩BBBijkl),
we can calculate separately the coordinates (q, s) and (r, t). The resulting 2D
intersections are simple and the 4D volume size of the intersection is simply
the product of the 2D volumes.

We present these changes in Algorithm 2, where the orange lines correspond
to the new elements after optimization.

3.4.3 Correction of reconstruction vignetting

The captured light field partially represents the original light field. On the
border of the image, we may lack micro-lens - sensor’s pixels to fully cover the
bundle of rays for the reconstructed pixels through the aperture of the main
lens. This results in some vignetting effects, i.e. the decrease of intensity in
the border as will be shown later in Figures 3.10 and 3.11.
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In order to correct this effect, we simply compute the sum of the intersected
volumes and scale down the pixel value by this sum. This way, we consider
only the effective part of the bundle of rays. We obtain the final algorithm
presented in Algorithm 2, where the blue lines correspond to the new elements
due to this correction.

Algorithm 2 Reconstruction at depth z - optimized version
1: for each pixel pmn do
2: pmn := 0
3: wmn := 0
4: Consider the bundle of rays AAAmn

5: Compute coordinates (q, r) of AAAmnkl

6: Derive bounds for k, l
7: for each micro-lens µLkl do
8: Compute other coordinates (s, t) of AAAmnkl

9: Derive bounds for i, j
10: for each sensor’s pixel pij do
11: Consider the bundle of rays BBBijkl

12: Compute the volume V of AAAmnkl ∩BBBijkl

13: Compute vqs for the (q, s) coordinates
14: Compute vrt for the (r, t) coordinates
15: V := vqs × vqs
16: Add the contribution of pij to pmn:
17: pmn := pmn + V × value(pij)
18: Add the corresponding weight to wmn:
19: wmn := wmn + V
20: end for
21: end for
22: Correct pmn by the total weight:
23: pmn := pmn/wmn
24: end for

3.5 Numerical results

We implemented the Algorithm 2 in Python, version 3.6.8, using the numpy
package for matrix computation. All the computations were done on a 3.4
GHz 64-bits Intel Core i7-6700 CPU workstation with 16 GB of RAM.

To evaluate our reconstruction method, we run our algorithm on different
representative cases: first, a synthetic knife-edge, then synthetic images of let-
ters "a" and "b" at different depths, finally, a real image acquired by Georgiev
et al. [GL10b].
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3.5.1 Reconstruction of a single plane

We first study the ability of the algorithm to compute the refocused images
of a single plane with a good depth accuracy. For this purpose, we choose to
work with a simple pattern, a knife-edge, which is a sharp and straight edge
along one direction. This pattern allows us to study the defocusing effects due
to the reconstruction process of our algorithm along this single direction.

We choose a configuration based on real optics easily found on the market,
while trying to optimize the acquired angular and spatial data. The parameters
and distances of this configuration are displayed in the first column in Table 3.1.

configuration 1 configuration 2

Main Lens
focal f1 100mm 200mm

aperture d1 60mm 12mm

focal f2 4.1mm 18.6mm

Micro-lens Array aperture d2 150µm 600µm

# micro-lenses 40x40 4x4

Sensor
pixel size ∆p 3.225µm 3.548µm

# pixels 2064x2064 707x707

object-ML or z0 105.64mm 490mm

Distances ML-µLA c 2086mm 450mm

µLA-detector b 4.18mm 22.3mm

Table 3.1 – Parameters used for the simulations and the reconstructions of the
knife-edge and the letters examples.

We model a knife-edge by a virtual black and white image (cf. Fig. 3.4-
left), that is located at depth z0 = 105.64mm. As detailed in Section 3.3.3, we
simulate the corresponding plenoptic image that would have been acquired by
a light field camera in configuration 1. This results in the plenoptic raw image
presented in Fig. 3.4-right. Then, we use this synthetic plenoptic image as an
input to reconstruct the knife-edge pattern at different depths. We reconstruct
images regularly spaced from z = 105.2mm to z = 106.5mm, in steps of
0.01mm. In Fig. 3.5-left (top), we show the reconstructed image at depth
z = 106.20mm. This position is far from the original depth z0 = 105.64mm,
hence the blur which occupies nearly the whole width of the image. For each
reconstructed image, we extract the same single row (in red in Fig. 3.5-left
(top)). We present this row according to depth in Fig. 3.5-left (bottom).

In Fig. 3.5-left (bottom), we observe that the sharpest reconstruction cor-
responds to depth z0 = 105.64mm, in the sense that the transition between
white and black is done over the fewest pixels. This depth is the one where
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Figure 3.4 – Original virtual knife-edge (left) and zoom in the plenoptic raw image
simulated by our algorithm in configuration 1 (right). The red squares represent the
micro-images due to the micro-lenses.

Im
ag

e
at

 z
=

1
0
6
.2

0
m

m

Im
ag

e
at

 z
=

1
0
6
.2

0
m

m

0 5 10 15 20 25 30 35 40

105.2

105.4

105.6

105.8

106.0

106.2

106.4

z
 (

m
m

)

pixels

0 5 10 15 20 25 30 35 40

105.2

105.4

105.6

105.8

106.0

106.2

106.4

z
 (

m
m

)

pixels

Figure 3.5 – Reconstructions of the knife-edge in configuration 1 with our algorithm
(left) and using algorithm from [Ng06] (right). The two top figures are crops of the
reconstructed images at z = 106.20mm (size 10 × 40). The bottom figures show the
evolution of a single row extracted from the reconstruction images, with depth from
z = 105.2mm to z = 106.5mm in steps of 0.01mm. The rows extracted from the
images at z = 106.20mm are highlighted in red.

the knife-edge was originally located. For smaller or larger values of z, the
edge is progressively blurred due to the defocus from the original depth z0

of the knife-edge. For smaller z, we can also notice edge effects due to the
lack of information in the virtually acquired light field (top-left black corner in
Fig. 3.5-left). This corresponds to the FOV reduction according to the depth
of the reconstruction (see Equation 2.17 in Section 2.2.1).

As a comparison, we reconstruct the same synthetic plenoptic raw image
(Fig. 3.4) using the shift-and-sum algorithm that was presented for traditional
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plenoptic cameras (see Chapter 1, [Ng06]). In Fig. 3.5-right (top), we show
the reconstructed image at depth z = 106.20mm for comparison with our
reconstruction. We extract the same rows of the reconstructed images and
display them in Fig. 3.5-right (bottom) as a function of depth. The rows
follow the same hourglass shape as in Fig. 3.5-left (bottom), with a minimum
of white-to-black transition located at depth z0 = 105.64mm, and progressive
blur on both sides. However, the stack reconstructed using the shift-and-sum
algorithm exhibits some artifacts at high depths. They are responsible for the
vertical lines of various gray tones in Fig. 3.5-right (top). We also notice a
large shadow on the left of the row evolution, which exceeds the black corner
visible in our reconstructions. This artifact affects the reconstructed images
over nearly the whole depth range. The reconstructions took 2min13s with
our algorithm and 0.06s with [Ng06] on average.

We do not compare with the patch method for focused plenoptic cameras
(see Chapter 1, [GL10a]) due to its lack of ability to continuously reconstruct
an image at any depth, as pointed in Chapter 1.

3.5.2 Performance analysis

To quantify the accuracy of the reconstruction, we use the criteria of the root
mean square error (RMSE) (as in [DPW13; VMH+19]). It quantifies the mean
error between the reconstructed versus original images:

RMSE(z) =

√∑M,N
m,n (pzmn − p

orig
mn )2

M ×N
,

with pzmn the value of the pixel pmn in the image reconstructed at depth z, porig
mn

the value of the pixel pmn in the original image, and M × N the number of
pixels in both images. The depth of the mimimum RMSE corresponds to the
depth of the best reconstructed image (with less error compared to the original
image).

The variations of RMSE against the depth z from the reconstruction (cf.
Fig. 3.5-left) is presented in Fig. 3.6a. We observe a fast decrease of the RMSE
to a minimum located at z = 105.64mm, that corresponds to the depth z0

where the original image was localized. The regular slopes on both sides of
the minimal value show the ability of our approach to reconstruct a sharp and
focused image at its exact original position, here with a precision of 0.01mm.
It also creates the appropriate defocus blur on both sides of this position.

We also compute the RMSE curve for the shift-and-sum algorithm (cf.
Fig. 3.6b). In Fig. 3.6c, we display on the same diagram the two RMSE curves
for our algorithm (blue) and the shift-and-sum refocusing method (orange).
We observe the following:
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Figure 3.6 – Root Mean Square Error (RMSE) between original and reconstructed
images of the knife-edge in configuration 1: using our algorithm (3.6a), using algo-
rithm from [Ng06] (3.6b), and comparison of the two curves (3.6c).

• the orange curve from the shift-and-sum refocusing method has higher
values than the ones from our approach on the whole range of refocusing
depths. This shows that, at each depth, our algorithm provides a better
reconstruction, with less error compared to the original image;

• the orange curve has its minimum value at z = 105.82mm, slightly shifted
from the correct value z0 = 105.64mm that our approach is able to detect;

• on the right side, the rise of the orange curve is slower than the blue one.
This shows the ability of our algorithm to reconstruct a regular defocus
blur on both sides of the correct depth of the object.

3.5.3 Reconstruction for another optical configuration

We also test our simulation and reconstruction approaches with a more ex-
treme optical configuration with only 4×4 micro-lenses (named configuration 2
in Table 3.1) We also use the knife-edge but located at depth z0 = 490mm
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to compute a new simulated raw image, composed of 4 × 4 sub-images (cf.
Fig. 3.7a).
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Figure 3.7 – Reconstruction of the knife-edge in configuration 2 with our algorithm:
the plenoptic image simulated by our algorithm with red squares delimiting the sub-
images (3.7a), evolution of a row extracted at regular steps of 0.1mm between depth
z = 470mm and z = 510mm (3.7b), and the corresponding RMSE curve between
original and reconstructed images (3.7c).

We use the similar methodology to test our approach in this configuration.
As shown in Fig. 3.7b and 3.7c, we obtain similar results with a minimum
RMSE located at z = 488.8mm instead of the original position z0 = 490mm
(error of 0.24%). This shifted depth can be explained by the low number of
micro-lenses.

By definition, the reconstructed image by the shift-and-sum algo-
rithm [Ng06] has a number of pixels that corresponds to the number of micro-
lenses. In this configuration, it would produce an image with only 4×4 pixels.
This demonstrates the flexibility of our approach to deal with a low number
of micro-lenses, as we were able to generate an image with a sufficient number
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of pixels.

3.5.4 Objects at different depths

We now go back to configuration 1 (cf. Table 3.1) to study the behaviour
of the algorithm with two objects placed at different depths (cf. Fig 3.8-
left). We choose as objects the images of a letter "a" and "b" placed at
depths za0 = 105.64mm and zb0 = 105.80mm respectively. We have chosen the
position of the two letters in order to ensure that they are not hiding each
other in any sub-image of the plenoptic image. We thus simulate separately
the corresponding plenoptic images for the two letters and sum them to obtain
the final one (cf. Fig 3.8-right).

Figure 3.8 – Test with two letters a and b. We use the two images on the left
separately, located respectively at za0 = 105.64mm and zb0 = 105.80mm to generate
synthetic plenoptic images that we combine in the final result shown partially on the
right.

Fig. 3.9-top shows reconstructed images at the original depths where the
two letters were placed. The sharpest reconstruction is obtained for each letter
for a refocusing at their respective original depths. When looking at the in-
focus letters, the transition between black and white pixels is done by only
one or two blurred pixels. On the contrary, when looking at the out-of-focus
letters, we observe a large blur over more pixels. Despite the small distance
between the two positions, the defocus blur strongly affects the reconstruction.
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Figure 3.9 – Reconstructed images from the two letters test scene (top) with the
corresponding RMSE curves (bottom) between reconstructed images and original let-
ter a (blue), and between reconstructed images and original letter b (dotted blue).

Again, we display the RMSE curves along the whole depth range (cf.
Fig. 3.9-bottom). We extract the RMSE values between the reconstructed
images and the original images of letter a and b separately, in order to ver-
ify the accuracy of the reconstruction for each position. We notice that each
RMSE curve has its minimum at the exact position where the corresponding
letter was originally put: za0 = 105.64mm for letter a and zb0 = 105.80mm
for letter b, again with a precision of 0.01mm. This shows the possibility to
refocus accurately even when there is multiple objects at different depths.

3.5.5 Reconstruction of a real plenoptic image

We now use our algorithm to reconstruct an image acquired by an experimental
plenoptic setup. We choose an experimental image acquired by Georgiev et



3.5. NUMERICAL RESULTS 107

al. [GL10b] available on-line. This image represents small objects and smooth
variations of distances: a pencil holder with a small chain in the front. A part
of the original plenoptic image is shown in Fig. 3.10-left.

We use the parameters provided in [GL10b] and estimate the missing values
of distances from the given magnifications (see Table 3.2). We reconstruct an
image of size 1000x1000 pixels, and display the result in Fig. 3.10-right. The
computation time is 1h41minutes.

Main Lens
focal f1 80mm

aperture d1 26.7mm

focal f2 1.5mm

micro-lens Array aperture d2 0.5mm

# micro-lenses 22x23

Sensor
pixel size ∆p 6.8µm

# pixels 1629x1713

object-ML or z0 242mm

Distances ML-µLA c 133mm

µLA-detector b 1.7mm

Table 3.2 – Parameters used for the reconstructions of the pencil holder. The
distances, missing in [GL10b], were estimated from the provided magnifications.

Figure 3.10 – Reconstruction of the pencil holder [GL10b] from the unmodified data
available on-line. A partial view of the data is shown on the left. In the middle row,
we show the uncorrected version of the result of our algorithm exhibiting vignetting
effects (top) together with the image of the correction factors (bottom). Once divided
by the correction factor, the final image on the right is obtained.

The reconstructed image exhibits all the expected effects, with the sharpest
edges on the focused part. The chain in the front of the holder is blurred, with
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patterns probably due to the intrinsic sparsity of the acquired light field as
shown in [BGY+13]. The in-focus details are sharp and continuous (see for
example the pink structure on the left, or the upper edge of the pencil holder).
This image shows the ability of our algorithm to reconstruct images from real
captured plenoptic images.

3.6 Analysis of the limitations

In this section, we study the limits of our new algorithm.

3.6.1 On computation time

Despite the approximation we use and the optimization of our first imple-
mentation of our approach, the remaining complexity of the evaluation of the
integral makes the computation very slow. This is the major challenge we have
to address.

In the short term, we may optimize more our reconstruction to take full
advantage of the existing separability. Indeed, thanks to the separability prop-
erty, the 2D intersections for one dimension could be used for the reconstruc-
tion of several AAAmnkl ∩BBBijkl. For example, for the same values of m, k, and i,
the (q, s) coordinates of AAAmnkl ∩ BBBijkl will be identical, no matter the values
of n, l, and j. This remark should allow to pool some calculations and to re-
duce the reconstruction complexity from quadratic O(I×J ×K×L) to linear
O(I ×K + J × L).

The low memory footprint of the algorithm (we only need to store the
raw plenoptic and the resulting images) and the intrinsic parallelism lead to
some potential large gains if we implement it on GPU. This will not change
intrinsically the complexity of the algorithm, but will definitively result in a
very large speed-up.

The cost is mainly due to the complex shape of the bundles of rays when
projected. There is potentially two ways to address this problem. The first
one is to find if it exists a combination of two planes for the parameterization
that exhibits a better suited shape of the bundles to intersect and to compute
the resulting volume.

The second solution is to precompute as much as possible the weight of
each sensor’s pixel, and store their contributions for each reconstructed pixel
for different refocusing distances. This may result in a very large data set.
However, the symmetries that exist in the optical systems together with the
continuity in the variation of the weights lead to potential size reduction using
compression schemes or fitting techniques.
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3.6.2 Limits of plenoptic reconstruction

The quality of our algorithm highlights some intrinsic limitations of plenoptic
imaging. When refocusing at depths outside the plenoptic depth of field (before
z = 105mm and after z = 106.5mm), some oscillations appear. They generate
artifacts in the reconstructed images, visible as vertical lines in Figure 3.11a
and grid patterns in Figure 3.11b).

These artifacts occur when the algorithm reaches a limit due to the spar-
sity of the acquired light-field. The available data correspond to a discrete
spatio-angular sampling of the light-field, made by the µLA and pixels on the
sensor. This spatio-angular sampling is optimal at depth zfoc0 , but for distant
depths, the sampling becomes sparse [BGY+13]. This results in variations in
the number of angular data across spatial positions in the image, hence the
grid artifacts. These artifacts show that the refocusable depth range is limited.
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Figure 3.11 – Illustration of the grid effects on the reconstruction of a point in
configuration 1 : evolution of a row between z = 104mm and z = 108mm (3.11a),
and the refocused image at z = 107mm (3.11b).

3.7 Conclusion

In this chapter, we have introduced a new approach to compute refocused
images from plenoptic data acquired with optical setups based on a micro-
lens array. Our first contribution is a transformation between different two-
planes parameterizations of the rays flowing through the light field imaging
system. Compared to the state of the art, this transformation is continuous
according to the different parameters of the system, because it is independent
from any relationship between the distances in the setup.
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Our second contribution is the refocusing approach itself. Compared to
previous works, it can be used to reconstruct images for an arbitrary number
of pixels at any depth from the main lens of the system. Furthermore, it is fully
generic and can be applied for any plenoptic images acquired with a system
based on a micro-lens array. Finally, it provides accurate simulation of blur
due to defocus with a good depth accuracy. The main limitation of the current
implementation is its large computation time.

Our approach can also be inverted to simulate acquired plenoptic images.
We used this feature to create synthetic data in order to demonstrate the
previously mentioned quality of our approach. We also demonstrated that it
works on real plenoptic images from the literature.

This algorithm will be used to reconstruct images acquired during the X-
rays plenoptic experiment (see Chapter 5). Its accuracy and its ability to
reproduce defocus blur are interesting properties that encourage to apply depth
from focus techniques on the refocused stack (see Chapter 4).



Chapter 4

Experimenting depth extraction
with depth from focus

In this chapter, we study the possibility to extract the depth of an object from
a stack reconstructed by our refocusing algorithm, presented in the previous
Chapter 3. In the context of X-ray plenoptic imaging, the acquired raw im-
ages are expected to present specific features and a low quality differencing
them from visible plenoptic images. In our case, due to the characteristics
of the illuminating source, the sub-images have a low number of pixels and a
low signal-to-noise ratio. This prevents from using multi-view stereo-imaging
techniques to extract depth directly from the sub-images [DCH+19].

Tomography algorithms are an alternative for direct reconstruction from
the raw images. They consist in back-propagating the information from the
images to the object scene and optimizing the reconstruction using an iterative
algorithm [KSW02; Buz11]. These methods have been experimented during
the VOXEL project by Vigano et.al., on experimental images we acquired on
our visible plenoptic setup [VDH+18; VMH+19].

Here we explore another approach. Our refocusing algorithm allows to
accurately refocus the scene at different depths within a chosen interval. In
this chapter, we explore depth from focus techniques to extract depth from
the stack reconstructed with our algorithm.

4.1 Principle of depth from focus
The algorithm proposed in Chapter 3 is a refocusing algorithm. It outputs a
stack of images focused at different depths. In photography or microscopy a
stack can be physically acquired by either changing the distance between the
scene and the camera, or by changing the focal distance of the optics [WH02].
In such a focal stack, each image contains the whole scene, but only the in-
focus parts are sharp whereas the out-of-focus parts are blurred. The in-focus
and out-of-focus parts depend on the depths of the structures in the scene and

111
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the depth at which the image is refocused. Depth from focus techniques aim
to exploit this sharp versus blur property to determine depth for each pixel in
the scene.

Various methods of depth from focus were proposed in the litera-
ture [SDN04; SN17]. Some methods were designed for a single or a few number
of images. In our case, the algorithm is capable of outputting a large number
of images therefore we will focus on techniques designed for several images.
The objective is to assign a single depth value z to each (x,y) pixel of the 2D
images. This process creates a depth map, which is a 2D representation of the
whole scene where depth is coded by colors, giving information on where the
objects are located in the whole 3D scene.

Some commercial softwares for depth extraction are available, including
for example Enfused, Keyence or Phaseview. We tested two free plugins on
Image J: the Stack Focuser and the Extended Depth of Field [AVDVU08;
FVDVB+04]. It was not possible to obtain the expected result as the plugins
do not allow enough degrees of freedom to refine the result. Our numerically
reconstructed stack has specific focused structures and blur, compared to fo-
cal stacks acquired by a microscope. For example the discrete nature of the
acquired data (for both pixels and micro-lenses) is responsible for the grid ar-
tifacts when refocusing out of the plenoptic depth of field (see Section 3.6.2).
Therefore, we studied and implemented a few methods of depth from focus to
apply them on our refocused stack.

To create the depth map of the scene, the pipeline usually consists in
two steps: blur measurement and depth extraction, as shown in Figure 4.1.
Blur measurement consists in quantifying local blur (or sharpness) inside a
2D window around a pixel (blue square on the left of Fig. 4.1). The blur is
extracted on the same window for each 2D plane of the refocused stack. Then
the blur measures of the same pixel in each image of the stack are combined
to form a curve along depth. Depth extraction compares the obtained 2D
measures along the depth axis (middle in Fig. 4.1). The resulting curve allows
to select the depth corresponding to the lowest blur (or highest sharpness).
The output of depth from focus is represented as a depth map, representing
the estimated depth for each pixel in the image by a color (right in Fig. 4.1).
The depth map combined with the refocused stack allows to reassign each
pixel to a depth and reconstruct the volume. Both blur measurement and
depth extraction can be affected by noise or image quality. Consequently
some filtering can be added after each step to smooth the results and avoid
outliers. Otherwise, it is also possible to combine different methods in order
to improve the robustness of the result.
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Figure 4.1 – Principle of depth from focus methods: 1) Blur is measured on each
plane of the stack separately, then 2) using these measurements, depth is extracted
for each (x,y) pixel. This process results in a depth map.

4.2 Chosen methods and implementation

In order to explore the pertinence of depth from focus on a stack of images re-
constructed by our algorithm, we have tested a selection of blur measurements
and depth extraction methods. Between this two steps, we apply a Gaussian
filter to reduce the noise in the blur measurements before extracting depth.

4.2.1 Blur measures

The idea of blur measurement is to highlight contrasted parts of the image.
That is why some blur measures are based on the same principles as edge
detection algorithms [SDN04]. As for edge detection, a large variety of blur
measures are available, based on the idea of either derivative, gradients, Lapla-
cians or wavelets. Some approaches compute local statistics on small regions
in the image, when others are based on calculations of the histogram [SDN04].
Following the work of Cou and Guennebaud [CG19], we implemented five of
these methods to test them on our images.

The first method Square Gradient calculates the first derivatives in the 2D
images to compute the squared norm of the gradient in an image I [SOdSV+97]:

BMSq−Grad = (
∂I

∂x
)2 + (

∂I

∂y
)2 (4.1)

The Tenenbaum Gradient uses the same idea with Sobel filters which oper-
ate on the image like derivatives [YOJS93; Kro88]. This allows to extend the
contrast detection on neighboring pixels:

BMTen−Grad = (Sx ∗ I)2 + (Sy ∗ I)2 (4.2)
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with Sx =

−1 0 1
−2 0 2
−1 0 1

 and Sy =

−1 −2 −1
0 0 0
1 2 1


However, the methods based on the first derivatives might be sensitive

to noise. This is why we also implemented and tested methods based on
second derivatives of the images. For example, the Energy Laplacian consists in
squaring the second derivative components of the Energy Laplacian as defined
in [SCN93]:

BMEn−Lapl = (EL ∗ I)2 (4.3)

with EL =

−1 −4 −1
−4 20 −4
−1 −4 −1


The Ring Difference Filter is an alternative presented in [SJP+17]. It uses

a larger convolution kernel that compares the current pixel to a larger number
of neighbours that are selected two pixels away. Thus we expect it to be less
sensitive to noise:

BMRDF = (RDF ∗ I)2 (4.4)

with RDF =


0 −1 −1 −1 0
−1 0 0 0 −1
−1 0 12 0 −1
−1 0 0 0 −1
0 −1 −1 −1 0


Finally, we also implemented a statistical method. The Variance method

is the variance of the image measured inside a window W of a chosen size.
The difficulty here is to choose the appropriate window size that allows a
representative measure (large enough) at a fine granularity (small enough).
After performing few tests, we empirically chose the value of 5 pixels.

BMV ar =
∑
xi∈W

∑
yj∈W

(I(xi, yj)− IW )2 (4.5)

with IW the average value of I inside W

4.2.2 Depth extraction

The depth extraction methods consist in selecting the best depth based on the
blur measures that were evaluated along the depth axis. The presented blur
measures are supposed to highlight the sharpest structures of the stack. The
different elements of the volume are thus expected to present a maximum in
this blur measures at the depth where they are in focus. Based on [CG19], we
implemented the following three methods: Max, Mean and Symmetry. The
Max method consists in taking the global maximum along the blur measure.
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For each pixel, the curve of blur measure along depth is drawn and its maximal
value is taken as the correct depth:

DEMax = argmax
z

(BM(z)) (4.6)

The Mean and Symmetry methods are based on more local aspects of the
curves. The Mean consists in calculating local mean values over a sliding
window along the depth axis. First, a confidence factor (Conf) allows to
estimate which window contains the higher values of the blur measure. The
highest confidence factor defines which window is likely to contain the correct
depth. The calculated mean allows to refine the estimated depth inside this
window. The used formulas are the followings:

Conf =
∑
w∈W

BM(w)2∑
w∈W BM(w)

(4.7)

Mean =
∑
w∈W

w.BM(w)∑
w∈W BM(w)

(4.8)

DEMean = Mean(argmax
z

Conf(z)) (4.9)

The Symmetry method also uses the principle of sliding window to extract
local property [CG19]. This time, the objective is to quantify the assumed
symmetry of the blur due to the action of refocusing. This method is based
on the assumption of a local symmetry around a focused structure: the sharp
details are surrounded by progressive blur. The blur measure is multiplied by
its symmetry centered in z, and the result is summed inside the window W:

DESymm = argmax
z

(
∑
w∈W

BM(z − w).BM(z + w)) (4.10)

After the blur measure and before depth extraction, the optional filtering
consists in a Gaussian filter along the x and y axis only. The choice of the
standard deviation is difficult. As for the V ariance method, the appropriate
value should be determined. A large value removes the noise efficiently, but
with the drawback of losing the useful contrast of small structures located at
different planes. For our tests we used a standard deviation of 3.

Similarly, it is also possible to add a z filtering after the depth extraction
step. This is a filtering along the depth axis that allows to smoothen the data
in order to have a more continuous result. This filtering is interesting in the
case of surfaces, because they are usually expected to be continuous in the real
world. However, as our aim is to work on volumes, this second filtering is not
interesting in our application.



116CHAPTER 4. EXPERIMENTING DEPTH EXTRACTION WITH DEPTH FROM FOCUS

4.3 Tests on synthetic images

These methods are tested to determine the abilities of existing algorithms
to extract depth from plenoptic refocused stacks. The test case should be a
plenoptic stack representative from a realistic plenoptic configuration. Using
configuration 1 in Table 3.1, synthetic data is created by our simulation algo-
rithm, resulting in a plenoptic raw image. The plenoptic image is then used
as input for our refocusing algorithm to generate a stack of images refocused
at regular depths. With this refocused stack, the blur measures, the influence
of Gaussian filtering and the depth extraction methods can be alternatively
tested.

The synthetic object should be simple, so that the result could be easily
analysed. We thus simulated 2D planes, composed of salt and pepper noise.
This noise creates highly contrasted structures over the planes, that helps
depth extraction methods in finding the correct depths.

In Figure 4.2 are presented the three different planes that will be used in
the following tests. The size of the whole volume is 108× 108× 41 pixels and
voxel size corresponds to 3 × 3 × 10µm3 in object-space. In comparison, the
lateral and depth resolutions equal 9.3× 9.3µm2 and 32.8µm in configuration
1. The Left plane (green) is positioned at depth z = 105.64mm which is the
reference image plane of the chosen configuration. It corresponds to depth
plane number 14 in the volume. The Right plane (blue) is placed at depth
z = 105.80mm or depth plane number 30, far enough so that the two planes
should not interfere in their detections. The Third plane (purple) is placed

z

x

y

35

50

100

50 100

14

30

0

Figure 4.2 – Relative positions of the synthetic depth planes: the Left plane (green)
corresponds to plane number 14 (z = 14), the Right plane to z = 30 and the Third
plane to z = 35. The size of a pixel is 3 × 3µm inside a plane, and the spacing
between two planes is 10µm.
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at depth z = 105.85mm or depth plane number 35. It is placed at the limit
of DOFpleno, which is 0.52mm for this configuration. As it is 0.05mm away
from the Right plane, it is still expected to be detected separately from it, as
resdepthis calculated to be 0.033mm. The working interval is chosen between
depth z = 105.50mm and z = 105.90mm roughly corresponding to DOFpleno.
Beyond these limits the algorithm generates some grid artifacts according to
Section 3.6.2.

In the rest of the chapter, the locations inside this volume will be given
as pixel number instead of real distances in mm. The planes will be studied
either alone (see Subsection 4.3.1) or together (in Subsections 4.3.2, 4.3.3).

4.3.1 Detection of a single plane

First, the pipeline of depth from focus is tested on the simple case of a single
plane simulated and then refocused. This allows to confirm the possibility to
build a depth map from a plenoptic refocused stack and to study its accuracy
depending on the methods used, both in step 1 (blur measure) or step 2 (depth
extraction). Figure 4.3 presents the process of simulation and reconstruction on
the Left plane alone (in green in Fig. 4.2). From the original Left plane placed
at depth z = 105.64mm (or depth plane 14) (see Fig. 4.3a), the plenoptic raw
image is simulated (Fig. 4.3b) and then used to reconstruct the image at the
same depth (see Fig. 4.3c). The image of the original plane 4.3a shows highly
contrasted structures whereas they are blurred in the reconstructed image 4.3c.

For both the original and reconstructed stacks, we extract the same blue
row in each image of the stack and display them as a function of depth
(Figs. 4.3d and 4.3e). In the original volume 4.3d, the plane occupies only
a single depth at z = 14 and there is no signal on the other planes. Notice
that the plane appears as a dotted line, due to the use of the salt and pepper
noise, that generates 0 (black) or 1 (white) values. The refocused stack 4.3e
presents signal over the whole depth interval (z-axis), due to the blur propa-
gating along depth. We observe high variations of colors (i.e. of contrast) at
depth z = 14, which follow the same structures as the dotted line in Fig. 4.3d.
The objective of depth from focus methods is to separate such peaks of contrast
from the blur of adjacent planes.

4.3.1.1 Blur measures

This dataset is used to test the blur measurement methods. The reconstructed
focal of the Left plane alone is taken as input, and the position of the original
Left plane corresponds to the expected output. Fig. 4.4 shows the results of
the five blur measures presented in Section 4.2 applied on the Left plane alone.
The results are presented as in Figs. 4.3d and 4.3e, to allow comparison with
the original and refocused volumes. Blur measurement meets the expectations
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(a) Original Left plane. (b) Plenoptic image.
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(c) Reconstructed plane.
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(e) Section of reconstructed stack.
Figure 4.3 – Original, plenoptic and reconstructed images of the Left plane, due
to the simulation and refocusing algorithms. The blue lines in Figure 4.3a and 4.3c
show the row corresponding to the longitudinal sections in Figure 4.3d and 4.3e. The
green lines in Figure 4.3d represent the positions of the profiles of Fig. 4.5 and 4.6.

of highlighting contrast at depth z = 14, while ignoring blur propagation
to adjacent planes. However, the response is different according to the blur
measure used.

With first order derivative methods (Square Gradient and Tenenbaum Gra-
dient), the detected contrast is positioned on but also around the right plane
location (see Figs. 4.4a and 4.4b). It generates a halo around the structures
of the plane, especially on the extreme left and right borders of the plane. It
means the blur measures detect the border of the image and the border of the
plane. It is the principle of edge detection that inspired these methods but it
is not our goal here.

The second order derivative based methods are more accurate (Energy
Laplacian and Ring Difference Filter). Both detect contrast located on the
good depth plane, without leaking on the neighbour depths (see Figs. 4.4c
and 4.4d). Figure 4.4f shows the action of Gaussian filtering applied after
the Ring Difference Filter. The action of filtering smoothens the data, and
highlights a clear and continuous plane.

Finally, the Variance method is the only statistical method we tested. Its
result is similar to the ones from Square Gradient and Tenenbaum Gradient in
the sense that the heat regions look blured inside the volume. Yet, there are
several differences. In the Variance result the left and right borders of the plane
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Figure 4.4 – Longitudinal sections of blur measures applied on the reconstructed
stack of the Left plane.

are even more highlighted, which is again not a desired effect. They present
large leaks on the neighbouring depths. A positive effect is that the structures
inside the plane are more detected. Indeed, this blur measure is a statistical
measure which has to be defined on a given window. Consequently, the measure
itself already contains a x-y filtering effect, that extends the detected spots to
the whole depth plane. The measure is efficient to detect such a depth plane,
but would not in the case of more diffuse data.

To better study the action of each blur measure, we draw profiles along
depth for different locations (see Fig. 4.5). Profiles at y = 25 and y = 30
correspond to two positions inside the Left plane whereas y = 50 is outside
of the Left plane, as illustrated in Fig. 4.3d. This can be seen in the profiles
from the original stack where a peak is observed at z = 14 for y = 30, whereas
the two other positions correspond to flat curves (Fig. 4.5a). In the case of
the refocused stack, the two profiles for y = 25 and y = 30 present mirror
behaviours, with either a maximum or a minimum at z = 14 (Fig. 4.5b). They
both have a baseline around 150, corresponding to the blur when moving away
from the plane z = 14. The extremum corresponds to a mix between the
reconstructed signal from a specific location and its neighbours, that results
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Figure 4.5 – Comparison of depth profiles from the original and reconstructed
stacks at 3 different locations defined in Figure 4.3d, as well as blur measures with
or without Gaussian filtering for the location y=30. Each curve was independently
normalized to have a maximal value at 1. In Figure 4.5d the scale of depth plane z
has been enlarged to better distinguish the different curves.

either in an upper or a lower value compared to its reconstructed neighbours
values. The important point is that this singularity occurs at the correct depth
z = 14. On the contrary, the behaviour of the profile for y = 50 is smooth.
It corresponds to a location outside of the Left plane in the original image,
and unsurprisingly the reconstructed signal is quite low. It reaches its minimal
value around z = 14, but on both sides the curve increases due to the blur
coming from the reconstructed Left plane. This is an undesirable effect that
could possibly cause detection of ghost structures where there should be none.

Figure 4.5c compares the profiles extracted at y = 30 for each blur measure.
This location was chosen because the resulting curves are representative from
the behaviours of the five methods in the whole volume. The five curves all
show maximal values around z = 14. Note that the curves were all normalized.
The Square Gradient and especially the Tenenbaum Gradient result in noisy
curves. This corresponds to contrast detected in adjacent planes as already
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noticed in Figure 4.4a and 4.4b. The profile due to the Tenenbaum Gradient
is so noisy that a high peak occurs at z = 9 that could be detected as the
maximal contrast instead of the correct z = 14. The three other methods
show clear peaks without noise. The profile of the Variance method is a bit
broader at its base. This corresponds to a blur effect because the Variance is
calculated over a window which makes this measure intrinsically less local and
more extended than the other ones. The Energy Laplacian presents a small
plateau at the top at the curve, which might be a problem for the precision of
depth extraction. Finally, the Ring Difference Filter method presents a thin
peak without any noise or plateau. For this location as for others randomly
chosen across the whole plane, this method seems the most appropriate blur
measure.

Figure 4.5d presents the result of the Gaussian filtering applied on each blur
measure. Again the curves were all normalized. The corresponding curves are
very similar, and the depth z axis has been enlarged to be able to distinguish
the five curves. The action of lateral filtering is very strong because it removes
the noise and plateau. This is because the denoising is done in the x-y plane,
which improves the signal when plotted along z. Moreover, the size of the blur
is important compared to the size of the original noise (standard deviation of
3 compared to fluctuations of 1).

The Ring Difference Filter method seems to be the best blur measure
method. This method will be kept as the best blur measurement method, and
used in the rest of the chapter to test the depth extraction methods.

4.3.1.2 Blur measures - comparison of behaviours inside the volume

A good blur measure should be able to highlight contrast in a volume, while
having a consistent behaviour between different locations. In order to confirm
the precedent conclusion, we compare the three methods Energy Laplacian,
Ring Difference Filter and Variance at different y in the refocused stack, dis-
playing structures with different characteristics. Figure 4.6 presents detailed
profiles comparing blur measures applied on locations used in Figures 4.3d:
y = 25, y = 30 and y = 50. Normalization is done for each blur measures
(with or without filtering). Profiles y = 25 and y = 30 were both taken from
inside the Left plane, so they are expected to detect high contrast at depth
z = 14. This is the case for the three methods, but the profiles for y = 25
presents lower values than for y = 30. The Energy Laplacian method shows
plateaus for several profiles, that might be a problem for precise depth local-
ization. After filtering, the two profiles for the three methods have nearly the
same height, which shows that filtering has an positive action of homogenizing
the measured blur through the plane. However, Energy Laplacian shows some
artifacts around z = 7, which might cause error in depth detection. This is
not the case with the two other methods.
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Figure 4.6 – Comparison of the action of the Energy Laplacian, the Ring Difference
Filter and the Variance on three different profiles: y=25 (dashed), y=30 (solid) and
y=50 (dotted).

The behaviour of the profile at y = 50 is also interesting (in Fig. 4.6). This
location was taken outside of the Left plane, but Figure 4.5b has shown that
blur from the Left plane raises the reconstructed values for depth planes far
from z = 14. The Variance method conserves this trend for z below 10 or over
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20. On the contrary, the Energy Laplacian and Ring Difference Filter result
in very flat curves. After the Gaussian filtering, the three methods present a
light peak due to this blur propagation. The peak is slightly more important in
the Variance + filtering than in the two others, which might causes incorrect
depth detection.

This new comparison confirms the choice of the Ring Difference Filter fol-
lowed by Gaussian filtering as the best blur measure for this plenoptic dataset.
This method will be used as input for testing depth extraction, that is the
second step of the pipeline of depth from focus.

4.3.1.3 Depth extraction

The result of the Ring Difference Filter followed by the Gaussian filtering is
used as input to test the depth extraction methods. Figure 4.7 presents the
depth maps generated by the Max, Mean and Symmetry methods without (top
row) and with (bottom row) the filtering step, compared to the expected depth
map.

The expected depth map (in Fig. 4.7a) is composed of a red rectangle on the
left, corresponding to the plane z = 14, and a black rectangle corresponding to
the background. The depth maps generated by the different methods globally
show the same pattern, with red on the left and black on the right. The
depth value on the left corresponds to the correct depth of the Left plane.
In the middle of the image, the lighter colors correspond to the edge of the
plane that is detected at extreme depths, due to blur propagation of the Left
plane through the volume, as illustrated by the profile measured at y = 50 in
Fig. 4.5c.

Figure 4.7i shows the three profiles of the Max (blue), Mean (purple) and
Symmetry (green) methods taken at the same location (shown in green in
Fig. 4.7a). Figure 4.7j shows the same profiles but with the Gaussian filtering.
In both figures, the three curves globally follow the expected curve (in dotted
black) with the Left plane detected at depth z = 14 and the background at
z = 0. As shown in Fig. 4.7j, filtering clearly denoises the signal.

In the middle of the profiles, the large oscillations correspond to artifacts
between the Left plane and the background. With filtering, the artifacts have
become large plateaus for the Max and Symmetry methods. These plateaus
could be misinterpreted as a third plane present in the scene, which might be
a problem for plane detection. This effect is less important with the Mean
method, for which the artifacts remain two thin peaks when the filtering is
applied. These smaller artifacts could be more easily detected and removed
in a post-processing step. These profiles could be related to the depth maps,
where the lighter colors correspond to the high values of the artifacts.

Notice also that the three curves seem to extend the Left plane, as their
plateaus at z = 14 extend until y = 54 instead of the correct value of y = 48 for
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Figure 4.7 – Depth extraction methods tested on the Left plane alone.

the original Left plane. This can also create an imprecision in the extraction
of the correct depth.

Even if the results are similar, the Mean method with filtering provides
the best results in the case of a single plane. In the next sections will be
presented what happened when several planes are positioned together in the
same volume.

4.3.2 Detection of two separated planes

In this section, the methods are tested when applied in the case of two planes
positioned at two different depths in the volume. The Left plane is still placed
at depth z = 14 (or z = 105.64mm) and the Rigth plane is at depth z = 30
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(or z = 105.80mm) as was shown in Figure 4.2.
Our simulation algorithm allows to generate plenoptic images for planar ob-

jects located at a unique depth. Thus, for this configuration with two planes,
we generate two plenoptic images and combine them afterwards. The combi-
nation is done following the principle of alpha blending [PD84], which consists
in the multiplication of contributing factors to simulate transparency of the
traversed objects.

To combine the two plenoptic images, we multiply the inverse of the indi-
vidual plenoptic image of each plane. This simulates the action of cumulative
absorption when light rays go through several successive planes. We then take
the inverse of the multiplication result and use it as input for the refocusing
algorithm to generate the refocused stack.

4.3.2.1 Blur measures

The blur measures were studied on the corresponding reconstructed stack.
Figure 4.8 shows the positions of the two planes in the original volume and
the refocused stack, and the result after the Ring Difference Filter with and
without Gaussian filtering. Only this blur measure is presented here, as it was
the one selected in section 4.3.1.
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(a) Original Left and Right planes.
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(b) Refocused stack.
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(c) Ring Difference Filter (RDF).
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y

(d) RDF + Gaussian filtering.
Figure 4.8 – Original and reconstructed stack in the case of two separated planes,
and the results of the Ring Difference Filter with and without filtering. The green
lines in Figure 4.8a represent the positions of the profiles of Fig. 4.9.

The refocused stack shows the blurring effect due to the refocusing process,
this time with two planes. As the Left and Right planes were positioned on
two different parts of the volumes, their propagating blurs do not overlap. The
Ring Difference Filter is then applied with (Fig. 4.8c) and without filtering
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(Fig. 4.8d). In both cases, the two planes are well detected, with contrasted
structured detected by the Ring Difference Filter at the correct depths of the
planes with little detection errors on the surrounding depths. In Fig. 4.8d, the
filtering allows to homogenize the two planes, while increasing the response of
the blur measure.

However, we notice a difference of colors between the Left and Right planes,
which represents a difference of blur quantified by the measure. This is not
due to the blur measure itself but to the refocused stack. In the stack we
can see by eyes that the Left plane is refocused with a higher contrast than
the Right plane. This is because the two planes were placed at two different
depths in the volume and can be explained by the evolution of contrast with
depth along the plenoptic Depth of Field, as was explained in Chapter 2. As
a consequence, the two planes are not reconstructed with the same contrast,
as measured by the Ring Difference Filter. Here, the contrast variations have
concrete consequences on depth detection.

In Figure 4.9 the actions of the Ring Difference Filter and the other blur
measures are studied more in details at two different positions in the volume.
This time the positions are selected inside the Right plane, at y = 68 and
y = 73. The Right plane corresponds to the peak at z = 30 in Figure 4.9a,
which is the depth at which the Right plane was virtually placed. In the
reconstructed stack (in Fig. 4.9b) the curves are more difficult to interpret
than in the previous case of the Left plane alone: there is a light peak at
z = 30 but it is not as frank as in Fig. 4.5b. This is due to the low contrasted
signal of the reconstructed Right plane that does not clearly emerge from its
reconstructed blur, due to the varying contrast through the depth planes.

Blur measures applied along y = 68 result in noisy curves (in Fig. 4.9c)
while having a clear peak at z = 30. This noise reflects the lack of contrast
of the reconstructed Right plane. The Square Gradient is particularly noisy,
followed by the Tenenbaum Gradient and Variance, whereas the Energy Lapla-
cian and Ring Difference Filter show very few noise. As for the single Left
plane, the addition of the Gaussian filtering clearly improves the result (in
Fig. 4.9d). The five curves are now overlapping at the peak at z = 30, but
their baseline signals reflect the noise that has been removed by the filtering.

Concerning the profiles at y = 73 (Figs. 4.9e and 4.9f), the five blur mea-
sures exhibit clear peaks at z = 30 with very low noise. However, the peaks
of the methods Energy Laplacian and Ring Difference Filter are centered on
z = 29 and z = 28 instead of the correct value z = 30. The Gaussian filtering
allows to recenter the peaks at the correct location.

One again these examples show the importance of filtering for noise removal
and peak location. The Ring Difference Filter stays an efficient blur measure,
although less obvious in this more complex scene. It will be the one used to
test the depth extraction methods.
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Figure 4.9 – Profiles for the case with both Left and Right planes: comparison of
the same locations y = 68 and y = 73 taken in the original and reconstructed stacks,
and the actions of the five blur measures with and without Gaussian filtering.

4.3.2.2 Depth extraction

The depth extraction methods were tested on this two-planes cases and the
corresponding depth maps are presented in Fig. 4.10. In this case, the expected
depth map consists in a red part on the left (depth z = 14), a yellow part on



128CHAPTER 4. EXPERIMENTING DEPTH EXTRACTION WITH DEPTH FROM FOCUS

the right (depth z = 30), with a small black line in the center, corresponding
to the background (depth z = 0). As for the single plane, the depth extraction
methods are able to detect the presence of the two planes and to retrieve their
correct depths. Without the filtering step, the depth maps are noisy, but able
to detect the gap between the planes, where background is expected. With
filtering, the two planes are more homogeneous but the small gap has com-
pletely disappeared. Note also the artifacts at the borders of the depth maps.
The filtering extends the size of the artifacts created by the blur measures.
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Figure 4.10 – Depth extraction methods texted on the case of the Left and Right
planes together.

Figures 4.10i and 4.10j show profiles extracted from these depth extraction
methods at the same location (in green in Fig. 4.10a). The results without
filtering are noisy but globally follow the expected profile. The Left and Right
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planes are well detected, but the methods fail at detecting the background
between the two: the signal forms a smooth transition between the two planes.
There is a small decrease around y = 50 but it does not reach the value z = 0
of the background. It could be interpreted as noise, preventing the detection
of the gap between the two planes.

After the addition of the Gaussian filtering, the Left and Right planes be-
come completely flat, with a sharp transition between them (Fig. 4.10j). This
is due to the filtering being performed on window, that extends the planes
more than expected, as was already shown in Subsection 4.3.1. The gap be-
tween the two planes has completely disappeared. In the case of two separated
planes, the Gaussian filtering can bring benefits or drawbacks depending on
what effect should be highlighted, either the continuity of the planes or the
small structures at different distant depths. The impact of the Gaussian filter-
ing can be modified through the change of its standard deviation. However,
this effect should be adapted carefully as it depends on the elements in the
volume and the desired result. There is no real difference between the outputs
of the three methods Max, Mean and Symmetry.

4.3.3 Detection of three overlapping planes

4.3.3.1 Blur measures

Finally, the methods are run on a case with three planes located at different
depths. The interest is to have planes overlapping along the x-y axis and to
study whether the methods are still able to detect and locate them. For this
case the Left, Right and Third planes are first used separately to generate
the corresponding plenoptic images. Then they are combined together and
refocused as explained in Section 4.3.2. The planes were placed at depths
z = 14, z = 30 and z = 35 as shown in Figure 4.2. This corresponds to a
variety of depth locations and depth differences, as we know that it impacts
the contrast and quality of the refocused planes.

In Figure 4.11 we show the initial location of the three planes in the original
image. The Right and Third planes are close but still separated by more than
the resdepth(distance of 0.05mm compared to resdepth= 0.033mm). This means
that the corresponding plenoptic image contains barely enough information to
reconstruct them separately. In the refocused stack, these two planes look
mixed together and it is difficult to distinguish one from the other. Even on
the left part of the stack, the blurs due to the refocusing of both Left and
Third planes are added together and decrease the contrast of these two planes.
However, the Ring Difference Filter is still able to detect contrast coming from
the three planes. The method highlight structures inside the Right and Third
planes separately at their correct depths, even if they were placed very close.
The Gaussian filtering step seems to blur the two planes together.
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(a) Original Left, Right and Third planes.
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(d) Ring Diff. Filt. + Gaussian filtering.
Figure 4.11 – Original and reconstructed stack in the case of three overlapping
planes, and the results of the Ring Difference with and without filtering. The green
lines in Figure 4.11a represent the positions of the profiles of Fig. 4.12.

We draw the profiles in Figure 4.12 corresponding to y = 30, y = 68 and
y = 73 (see Fig. 4.11a). With the Third plane, the profile taken at y = 30
goes through both Left and Third planes as shown in Figure 4.12a. Both
profiles for y = 68 and y = 73 go across the Right and the Third planes. The
profiles from the reconstructed stack are chaotic (see Fig. 4.12b) because the
propagated blurs due to refocusing from the three different planes influence
each other. The Left plane at z = 14 can be identified by the downward peak
of the y = 30 curve, but it is not possible to separate the two other planes from
these profiles. Note also the signal value that is different from the reconstructed
signal in the case of the Left plane alone in Fig. 4.5b. The signal is higher but
with a lower SNR (between 127 and 180 instead of between 61 and 154) due
to the reconstructed signal from the different planes adding together.

The blur measures create noisy curves for both positions y = 30 and y = 68.
Depending on the method, the two expected peaks can be correctly detected,
whether Left and Third for y = 30 or Right and Third for y = 68. The Energy
Laplacian and Ring Difference Filter follow the same behaviour: contrary to
other methods, they miss the Third plane for y = 30, but they are able to
detect both Right and Third planes for y = 68. This again shows that these
two methods have close behaviours.

The Gaussian filtering smooths the behaviours of the curves. For y = 30,
the two peaks of the Left and Third planes are detected. Again there is a
difference in the amplitude of the detected contrast because of their depth
positions. Regarding y = 68, the two peaks for the Right and Third planes
are now merged together and it is not possible to distinguish the two planes
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Figure 4.12 – Profiles for the case with three overlapping planes: comparison of
the same locations y=30 and y=68 taken in the original and reconstructed stacks,
and the results of the five blur measures with and without Gaussian filtering.

on this single position.

This case confirms the interest of the Ring Difference Filter, but questions
the use of filtering for detecting planes close to each others.
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4.3.3.2 Depth extraction

As for the previous cases, the depth extraction methods are applied on the
result from the Ring Difference Filter followed or not by a Gaussian filtering
step. In Figure 4.13 we present the result of depth extraction beside the
expected depth map. Contrary to previous cases where we wanted to detect
planes on separated parts of the image, this time the objective is to detect the
presence of overlapping planes, while being able to locate them in depth. The
expected depth map (Fig. 4.13a) was built by reproducing the noise of the
original planes and assigning the correct color depths to each of them. The
Third plane (off-white) is visible through the Left (red) and Right (yellow)

(a) Expected. (b) Max. (c) Mean. (d) Symmetry.
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Figure 4.13 – Depth extraction methods tested on the case of the three overlapping
Left, Right and Third planes together.
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planes.
The same granularity is obtained in the depth maps created by the depth

extraction methods without filtering. Some noise is recreated with the colors
corresponding to the depths of the planes. Contrary to the previous cases, the
noisy areas here represent the overlapping planes that the methods are able to
detect. The presence of the Third plane that occupies the whole surface helps
in obtaining coherent results. It prevents undesired noise as well as artifacts
at the edge of the plane as in the previous cases (Fig. 4.7).

On the contrary, the filtering step results in a blurring where the Left and
Right planes occupies large areas. They are better detected and spread over
the depth map because they are in the front compared to the Third plane. The
Third plane is only visible in the small area between the two Left and Right
planes of the foreground. The gap between the two Left and Right planes is
better detected compared to the previous two-planes case (Fig. 4.10).

In Figures 4.13i and 4.13j, the profiles confirm what was observed on the
depth maps. The methods applied on the Ring Difference Filter without
filtering shows interesting profiles, with curves alternating between two bounds
corresponding to the Left/Right and Third planes. For low y values, the Left
and Third planes can be distinguished because the signal alternates between
two distant depths z. But for high y, the signal stays between the two close
Right and Third planes located at z = 30 and z = 35. Without the expected
signal in dotted black, these quick variations could be interpreted as noise
around a plane located around z = 32/33. This is the consequence of the
choice of two planes very close to the limit of resdepth. The profiles with
filtering show flattered curves with remaining artifacts. This corresponds to
the depth maps composed of large flat areas with irregular contours.

4.4 Conclusion

In this chapter we tested the ability of several depth from focus methods
to extract depth maps from refocused stacks. We used our simulation and
reconstruction algorithms developed in Chapter 3 to generate stacks of one,
two adjacent or three overlapping planes. Depth from focus is a two-steps
technique, blur measurement followed by depth extraction, which outputs a
depth map. The five tested blur measures were able to detect a single plane
at its correct depth and location. A deeper study allowed to select the Ring
Difference Filter as the best measure. Applying depth extraction has shown
similar results for the three tested methods, but with less artifacts with the
Mean. A Gaussian filtering between the two steps helped reducing noise, but
increased the artifacts.

In the two-planes case, we observed a difference of contrast depending on
depth, as previously studied in Chapter 2. This variation of contrast might
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complicate depth extraction. The Ring Difference Filter associated with Gaus-
sian filtering succeeded at extracting the planes at their correct depths.

With the three-planes case, the separation of the two close overlapping
planes was difficult, due to their proximity (inter-plane distance ∼ 1.5 resdepth).
Removing the filtering enabled detection of the third plane located behind the
other ones.

These methods were accurate in this specific case of 2D planes detection.
However, depending on the scene, some methods might be more efficient than
others, especially concerning the use of filtering and the choice of window size.
This is a drawback of depth from focus.

The notion of sharpness and contrast is very relative in the refocused stack.
It depends on many parameters including the composition of the scene, the
chosen depth of reconstruction and defocus blur coming from adjacent struc-
tures. These three different effects compete one against each other and affect
the defocus blur needed for depth from focus methods. In the next chapter,
we will see the application of these methods on experimental X-ray plenoptic
images.



Chapter 5

Demonstration of X-ray plenoptic

In the previous chapters, we studied plenoptic from a theoretical and algorith-
mic point of view. We validated the configuration and resolutions formulas on
experimental images taken in the visible spectral range, and tested the refocus-
ing and Depth From Focus methods on both simulated and visible light data.
However, we oriented our work in the objective of performing X-ray plenoptic
microscopy and took into account the specificities of X-rays: transmission of
light through the sample instead of reflexion on its surface, low number of
micro-lenses.

In this chapter, we present the application of the theoretical and algorithmic
work on an experiment of X-ray plenoptic microscopy. In the context of the
VOXEL project, we accessed a beamline at the synchrotron PETRA III of
DESY, in Hambourg, Germany, and performed several experiments. The aim
was to test the possibility to achieve X-ray plenoptic microscopy, to acquire
images in various configurations, to study their resolutions, refocus them with
our algorithms and finally test some Depth From Focus methods.

5.1 The experiment and optics
The experiments took place in the experimental hutch 1 at the beamline P05
at PETRA III in DESY, which is the beamline dedicated for nanotomogra-
phy and X-ray imaging techniques (see Fig. 5.1). We benefited from material
and technical support from the Helmholtz Centre Geesthacht team working
at DESY. The beamline corresponds to an X-ray microscope, composed of an
illuminating system, a main lens ensuring a high magnification of ∼ 100, and
a pixelated detector. To achieve X-ray plenoptic, we modified the existing
configuration by adding our X-ray micro-lens array in front of the detector.
Figure 5.2 shows a broad view of the mounted experiment with the different
optical components. In the following subsections, we will present in details
the optics used and how they limit the choice of the optical configuration and
impact the procedure of image acquisition.

135
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Figure 5.1 – Aerian view of PETRA III buildings at DESY.

MLA + blocker + camera

~4,2 m

Main Lens sample

Figure 5.2 – Locations of the optical components in the mounted experiment.

5.1.1 The X-ray source

X-rays are electromagnetic wave with photon energy between typically 100eV
to 100keV , which correspond to wavelengths between 3nm to 0.03nm [Att99].
Synchrotron PETRA III generates a white beam with a cut-off around 100keV .
The beam has been monochromatized at an energy of 11keV , which corre-
sponds to a wavelength of 1.127× 10−10m. At this energy, the high penetrat-
ing properties in biological tissues allows to perform biological imaging. The
rays are quasi parallel when entering the experimental hutch. They are then
focused on the sample zone with the use of a beam shaper. This optics was
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specifically designed for the pre-existing X-ray microscope, so that the numer-
ical aperture (NA) of the beam shaper matches the NA of the main lens. The
focal spot has a fixed diameter of 50µm. For more details about the beamline,
the reader might refer to [PI].

5.1.2 The main lens

X-rays optics are difficult and costly to fabricate. As mentioned in Chapter 1,
refractive lenses are not common in hard X-rays. Instead, we use Fresnel
Zone P lates (FZP ) (see Fig. 5.3). FZP are diffractive lenses, which behave
here like focusing lenses [Att99]. They are made of circumscribed circular lines,
also called Fresnel zones, that alternatively dephase the incoming light by 0
or π [MKV+14]. These structures correspond to variable spacing diffraction
gratings that condensate the diffracted light on a focal spot. The circular
symmetry provides a circular spot. With a FZP , it is well known that the
spatial resolution equals the size of the last line. Also, the size of this line and
the X-ray energy determine the focal distance, which can then be used in the
thin lens equation [TV01]. This justifies the use of the plenoptic theory and
algorithm, initially designed for visible light.

In our experiment, the main lens is a FZP with a focal length of 124.21mm
at 11keV and a diameter of 280µm. Figure 5.3 shows the mounted main
lens placed just after the sample location in the experiment. Its characteris-
tics correspond to a numerical aperture of NA = d

2f
= 1.127 × 10−3. This

very low numerical aperture is the main limit in our experiment. This is a
drawback for a plenoptic experiment, as larger sources and larger NA allow
better resolutions (see Chapter 2). The first consequence of this low NA is a
very low depth resolution compared to the lateral resolution (resdepth / reslat=
1/NA = 787), predicting difficulties for 3D reconstruction. This will be dis-
cussed in Section 5.3.2.4. The second consequence of this low NA is large
working distances for the main lens. Combined with high magnification, this

SampleMain Lens

Figure 5.3 – Illustration of a Fresnel Zone P late (left), and the mounted main
lens just after the sample (right).
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implies very long distances for the experiment, inducing additional technical
difficulties (see Section 5.3.2.6).

5.1.3 The Micro-Lens Array

The µLA was specifically fabricated in the context of the VOXEL project (see
Fig. 5.4 left). It is composed of 9 × 9 similar FZP micro-lenses. This very
low number is due to the technical difficulties and cost of fabricating a large
number of very small FZP . Their focal distance is 88.7mm at 11keV and their
diameter is 100µm. Two adjacent micro-lenses are separated by a distance of
10µm, which gives a center-to-center distances of 110µm, also called pitch.

In the case of diffractive lenses, part of the radiation is transmitted through
the FZP s without being diffracted. This is called the zero order. The useful
signal is contained in the first order, which corresponds to the focused signal.
Thus, it is necessary to block the zero order with a central disk of diameter
30µm. This blocker is made of Si3N4 covered with gold on necessary parts.
Indeed, Si3N4 is transparent and gold is opaque to 11keV X-rays. The blocker
was carefully aligned with the µLA. They were mounted on the same structure
so that they can be manipulated together (see Fig. 5.4 bottom).

Figure 5.4 – Image of the µLA (top left) and its blocker (top right) acquired with a
visible microscope, and how they were mounted together for the experiment (bottom).
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5.1.4 The imaging system

The imaging system is composed of a scintillator that transforms X-rays into
visible light, then acquired by a PCO camera (see Fig. 5.5). A relay imaging
system guides the light to the camera which is slightly disaligned from the
X-rays optical axis, in order to prevent potential damage of the camera. The
entire system can be considered as a camera of 2048 × 2048 pixels of size
0.93µm.

Figure 5.5 – The camera and its relay imaging system. We can also notice the
µLA and its blocker before it.

5.1.5 The sample

Finally, the sample used in the experiments are two USAF 1951 test patterns
built for X-rays imaging. They contain lines of various sizes allowing to study
lateral and depth resolutions. Before building the plenoptic setup, the sample
is aligned with the optics and is imaged by the main lens and the camera only
(see Fig. 5.6). The first test pattern is located on the bottom half of the image
and shows lines of width 1µm and 0.5µm; we call it TP1. The second test
pattern shows thinner lines until 250nm; we call it TP2. We acquired a focal
stack that allows to verify that the two test patterns are parallel. We measured
a distance of 1.3mm between the two, with TP1 closer to the main lens than
TP2.

5.1.6 Optical configurations

The characteristics of the experimental components are summarized in Ta-
ble 5.1. All these components (the two test patterns, the main lens, the
µLA and its blocker, and the camera) were carefully aligned with the beam.
Some of them were mounted on micrometric motors so that we could precisely
change the distances and test different configurations.

The equations established in Chapter 2 are used to choose the configuration
for our X-ray plenoptic camera. Unfortunately, after testing different designs,



140 CHAPTER 5. DEMONSTRATION OF X-RAY PLENOPTIC

1.0µm

500nm

TP1

1.0µm

500nm

TP2

250nm

Figure 5.6 – The two USAF 1951 tests patterns used in the experiments, imaged
with the main lens and camera only. TP1 (left) is 1.3mm closer to the main lens than
TP2 (right). Notice the heterogeneous illumination.

Beam shaper
spot size ∆beam 50µm

divergence NAbeam 1.1× 10−3rad

Main lens
focal f1 124.21mm

aperture d1 280µm

Microlens array

focal f2 88.7mm

aperture 100µm

pitch d2 110µm

# micro-lenses N2 9× 9

Sensor
pixel size ∆p 0.93µm

# pixels 2048× 2048

Table 5.1 – Parameters of the X-rays plenoptic experiment at DESY.

we realized that it was not possible to respect the aperture matching condition
(see Eq. 2.3) with the available optics. On the one hand, a high magnification is
needed in order to project the small illumination spot (∆beam = 50µm) on the
large µLA (N2 × d2 = 990µm). This requires a magnification M ≥ 20, which
reduces accordingly the divergence of the beam. Combined with the focal
length of the main lens f1 = 124.21mm, it implies a large distance c between
ML and µLA (more than 2m). On the other hand, the characteristics of the
µLA impose a high divergence of the incoming light, thus a small distance
c (around 150mm). The unique solution was to work without respecting the
aperture matching condition. We introduce a factor k to quantify the deviation
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from Equation 2.3:
d1

z1 + a+ b
= k

d2

b
(5.1)

We wanted to implement both 1.0 and 2.0 types of configurations. The
selected configurations are presented in Table 5.2 with the expected resolutions.
They were optimized to achieve the best possible resolutions in all directions.
The very low factors k indicate that we are far from the aperture matching
condition. This implies that sub-images are expected to be very small on the
sensor. We also consider the illumination conditions imposed by the optical
configuration (see Section 2.1.3). The mimimum necessary source size ∆ill =
33µm is smaller than the physical spot size ∆beam = 50µm due to the beam
shaper, and both NA are equivalent: NAill ∼ NAbeam. This indicates that
illumination will not restrict the resolutions presented in Table 5.2.

configuration 1.0 configuration 2.0

Distances
object-ML or z0 128.4mm 128.9mm

ML-µLA c 3845.8mm 3845.8mm

µLA-detector b 91.8mm 111.8mm

Theoretical resolutions

reslat 3.67µm 0.13µm

FOV 33.05µm 33.18µm

resdepth 3.46mm 219.58µm

DOFpleno 254.71mm 135.27µm

Spatio-angular
Nu 4.59 0.32

samplings and
Ns 9 246.3

magnifications
M 29.95 26.5
m - 0.26

Aperture matching k 0.065 0.079

Illumination
∆ill 33.04µm

NAill 1.2× 10−3rad

Table 5.2 – Configurations used in the experiment, with their distances and their
expected resolutions.

5.2 First results and preprocessing

5.2.1 Analysis of a raw image

Figure 5.7 shows an example of a raw image acquired by the plenoptic camera
in configuration 2.0. The image is composed of 9x9 patterns corresponding to
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the 9x9 FZP of the µLA. Each pattern contains a bright disk inside a gray
ring. The central bright disk is the first order of the FZP and contains the
useful information. It corresponds to the sub-image that will be extracted and
used in the refocusing process. The larger gray ring around it is the zero order
of the FZP . It contains useless information in this context. The important
aspect is that it does not affect the sub-image as the gray ring does not overlap
the bright disk, thanks to the blocker.

zero order

rst order = sub-image

Figure 5.7 – A raw image as acquired by the imaging system, and a zoom showing
the first (blue) and zero (yellow) orders due to the FZP .

On the bottom right of the raw image, one may notice that the two orders
(bright disks and gray rings) of the FZP are slightly shifted. This corresponds
to the divergence of the beam, which projects the zero and first orders with dif-
ferent angles. In the zoomed portion, the sub-image (or first order) corresponds
to a ring with a darker point at the center, creating a donut shape. This is a
characteristic pattern of a zero order blocker (see Fig. 5.4). The main lens was
a diffractive lens provided with an integrated blocker, and this donut shape
probably corresponds to the blocker being imaged on the sensor. In some
configurations, the sub-image is very small and this effect is negligible: the
sub-images can be considered as full disks. Larger sub-images are preferred to
maximize the spatial sampling of the sample, but they create this donut shape.
We tested several configurations leading to different sizes of the sub-images.
We ended with configuration of Table 5.2, which produces the largest possible
sub-images without being too much affected by the donut shape.
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5.2.2 Acquisition procedure and preprocessing

We set the distances to one of the chosen configuration and begun the acquisi-
tion. Because of the strong attenuation of the different elements constituting
the whole system, the acquisition time was set to 5 seconds per image. For each
configuration, ten images were acquired and then averaged to create an image
with better SNR. The beam was also slightly heterogeneous and varying with
time. Therefore, it was necessary to acquire reference (blank-field) images by
removing the sample from the FOV . The average of four reference images
is then used for a normalization step, to correct for beam inconsistencies and
motor errors. This normalization allows to extract the useful signal from the
background (see Fig. 5.8).

x10

images

x4

references

.........

.........

normalization

averaging

averaging

++

++
Figure 5.8 – Schematic representation of the preprocessing, consisting in averaging
followed by normalization.

An image after preprocessing is presented in Figure 5.9. Thanks to the
preprocessing and an adapted contrast display, the two test patterns are now
visible. Similarly to Figure 5.7, we observe the 9x9 sub-images surrounded by
the rings of the zero orders. Around the sub-images we can see the shadow
of the test patterns that is created by transmission of the rays through the
µLA. The signal in the sub-images is more contrasted (inside the blue circles
in the zoomed parts). We can see the lines of the test patterns with various
magnifications. The zoomed part on the right shows lines from TP2, with
original width of 0.5µm in object-space. We can recognize three lines in each
sub-image. The middle zoomed area represents some lines of TP2 but this time
with a larger width of 1.0µm. In these sub-images, two lines are visible each
time. The left zoomed part shows the lines of TP1 with exactly the same line
width of 1.0µm. Only one line is visible in each sub-image. This corresponds
to a difference of magnification of the two test patterns, due to their different
depth locations. This shows that the raw image contains depth information
that could be exploited for reconstruction.
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TP2

line width 1.0 microns

TP1

line width 1.0 microns

TP2

line width 0.5 microns

Figure 5.9 – A raw image after preprocessing. Some sub-images are highlighted in
blue. The zoomed areas show variations of magnification in the images of the lines
with the same line width.

5.2.3 Image stitching

As explained above, the small size of the sub-images is a drawback, but un-
fortunately they cannot be increased due to the donut shape. To compensate
this, we performed a technique of image stitching. We acquired several images
by changing the lateral position of the µLA. Between each set of acquisition
(10 images and 4 references each time), we moved the µLA by a distance of
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d2/4 = 27.5µm, so that the centers of the sub-images are shifted by one fourth
of their center-to-center distance. The number of 4 was chosen experimen-
tally to optimize the space on the detector, so that sub-images acquired with
different shifted positions of the µLA are adjacent without overlapping. We
repeated these shifts in both lateral directions. The process is schematized in
Figure 5.10-left.

Figure 5.10 – Principle of stitching: the µLA is shifted to create new sub-images.
We obtain 36x36 sub-images instead of 9x9 initially.

The right part of this figure shows an image combining all the sub-images
together, to illustrate how the stitching complete the data from a single acquisi-
tion. The number of acquired sub-images is multiplied by 4 in both directions,
thus we now have 36 × 36 sub-images. However this is not equivalent to a sys-
tem with physically 36 × 36 micro-lenses. During the stitching, the light-field
is sampled differently by the different lateral position of the µLA. Thus, stitch-
ing is expected to complete missing data, but will not improve the resolutions
of the reconstructed image, as the optical configuration has not changed (same
distances and optics). In Section 5.3 we will study the effect of stitching on
image quality. This stitching process also increases the acquisition time by a
factor of 4x4. It takes more than one hour to acquire each dataset.

The preprocessing step is executed for each position of the µLA separately.
Finally, the exact center of each sub-image has to be found manually, allowing
to extract all the sub-images from the different raw images. The sub-images are
then combined together to form a dataset with 36×36 sub-images. Figure 5.11
presents the result of this combination in the case of configurations 1.0 and 2.0.
The datasets are now ready to be used as inputs for the different refocusing
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algorithms.

(a) Dataset 1.0. (b) Dataset 2.0.
Figure 5.11 – Datasets 1.0 and 2.0 after preprocessing, extraction of the sub-
images, and combination of the 36× 36 sub-images from the stitching.

5.3 Refocusing of the acquired data

We first present the results from configuration 1.0 before moving to configu-
ration 2.0. We refocused using both 2.0 and our algorithms. When using our
algorithm, an additional calibration step is mandatory. It consists in calcu-
lating the size and period of sub-images from the parameters of the system
(see Eqs. 2.1 and 2.2), and verifying that they match the physical size and
period of the experimental sub-images. This is done by small adjustments of
the distances used as input in the algorithm.

5.3.1 Configuration 1.0

The configuration 1.0 was mounted and the raw and reference images were
acquired, using the two test patterns as samples (see Fig. 5.6). The dataset
then followed the whole preprocessing and sub-images extraction as described
in previous section. The corresponding preprocessed image is shown in Fig-
ure 5.11a.

Refocusing this dataset using algorithm 1.0 provides an image with only
36×36 pixels (not shown), corresponding to the number of sub-images after the
stitching. Figure 5.12 presents the reconstructions using algorithm 2.0 (left)
and our algorithm (right), which allow a larger number of pixels (respectively
189× 189 and 400× 400). In both refocused images, we can recognize the two
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test patterns by their general shapes. On the left of the images, some of the
lines of width 1.0µm are visible. This is below the theoretical value of 3.67µm
(see Table 5.2), which indicates that it might be due to artifacts, similar to
misalignment artifacts in Chapter 2.

The lines of TP1 are more contrasted than TP2, probably due to their
different locations, but the quality of the images prevents from extracting
reliable depth. The reconstruction using our algorithm (see Fig. 5.12b) is less
noisy than with algorithm 2.0 (see Fig. 5.12a), but it does not improve the
visibility of the lines. The square patterns over the image are due to the
spatial sampling done by the micro-lenses in a configuration 1.0. As explained
in Chapter 2, the image quality and resolution are related to the number and
size of the micro-lenses. On this beamline and using the available X-ray optics,
a configuration 1.0 is not suitable for achieving high quality X-ray plenoptic
images.

(a) Reconstruction with algorithm 2.0
(P = 10).

(b) Reconstruction with our algorithm
(z = 128.40mm).

Figure 5.12 – Dataset 1.0 reconstructed using algorithm 2.0 and our algorithm.

5.3.2 Configuration 2.0

We now present the results obtained in configuration 2.0 (see Table 5.2). Fig-
ure 5.11b presents the dataset after the stitching, preprocessing and combina-
tion of the sub-images. Using this dataset, we study in detail the action of
stitching, the lateral and depth resolutions, as well as the plenoptic depth of
field.
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5.3.2.1 Effects of the stitching

Figure 5.13 compares refocusing using the 9x9 sub-images given by a single
position of the µLA to the refocusing using the 36x36 sub-images from the
stitching. We also show the image of the test patterns acquired without the
µLA to compare to a non-plenoptic setup (in Fig. 5.13a). The first important
difference between refocusing with 9x9 and 36x36 sub-images is that the dotted
lines in Figure 5.13b are now continuous. Stitching allows to complete the
missing data and the refocused image is fully reconstructed.

Moreover, stitching reduces the noise in the final image. Figure 5.13b is very
noisy and the lines of TP2 are poorly visible. On the contrary, the SNR of
Figure 5.13c is clearly better with also a higher contrast. As explained in
Section 5.2, the stitching process consists in acquiring 16 times more images
than using a single µLA position, combined together in the refocusing process.
This can be considered as signal averaging of 16 images, which is known to
improve SNR by a factor of

√
16 = 4 [HA10].

By improving image quality and contrast and completing missing data,
stitching improves perceived resolutions of the test patterns. We use the 36x36
sub-images in the rest of this section.

(a) Reference image (see
Fig. 5.6).

(b) Refocused image using
9x9 sub-images.

(c) Refocused image using
36x36 sub-images.

Figure 5.13 – Effects of the stitching process on the refocused images in configu-
ration 2.0.

5.3.2.2 Refocusing with algorithm 2.0

We study the refocusing done with the "rendering with blending" method (as
defined in Section 1.3.2). Figure 5.14 shows refocused images for different patch
sizes P . The depth values corresponding to these P were calculated using to
the formula 1.17. We see the evolution of the refocusing sharpness according
to the value of P , for example looking at the large line of TP1 (circles in red)
or the thin lines of TP2 (circles in green). For low and high values of P, the
test patterns are blurred, whereas for intermediate values, the lines are sharp
enough so that we can separate them. The lines seem to be on focus in the
image with patch size P = 8 (Fig. 5.14c). Both TP1 and TP2 seem on focus in



5.3. REFOCUSING OF THE ACQUIRED DATA 149

(a) P=6; z=134.40mm (b) P=7; z=132.65mm (c) P=8; z=131.68mm

(d) P=9; 131.07mm (e) P=10; z=130.65mm (f) P=11; z=130.34mm

(g) P=12; z=130.11mm (h) P=14; z=129.77mm
Figure 5.14 – Set of refocused images acquired with the configuration 2.0, and
using algorithm 2.0, with various patch sizes P.

this same image. With this refocusing algorithm, it is not possible to separate
the two test patterns distant of 1.3mm from each other.

5.3.2.3 Refocusing with our algorithm

We then refocus the same images of configuration 2.0 with our algorithm (see
Chapter 3). Figure 5.15 shows the refocused image at depth z = 128.77mm,
which was the image with the sharpest reconstruction for TP1. The quality
of the reconstruction is better than with algorithm 2.0, especially for TP1, on
which we can now separate the lines on the bottom left of the image, and read
the number 5 that was unreadable in Figure 5.14. This algorithm allows to
better separate the lines from the two test patterns when they overlap on the
left of the image. Neither the contrast nor the noise are particularly improved
by using our algorithm. On this image, the lines are visible until a thickness
of 0.5µm. The lines of smaller thickness are indistinguishable. This can be
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compared to the theoretical value of reslat = 0.13µm for this configuration
2.0. There is a factor of 4 between the observed and the expected reslat, but
we stay in the same order of magnitude. Using this image, we estimate an
experimental FOV of 33.73µm, consistent with the theoretical value 33.18µm
(see Table 5.2).

TP1 1.0µm

TP2 1.0µm TP2 0.5µm

Figure 5.15 – Refocused image at z = 128.77mm in configuration 2.0 using our
algorithm.

In Figure 5.16 we compare refocused images at various depths. As for
the refocusing with algorithm 2.0, the image of the test patterns is sharp for
intermediate depths (around z = 128.77mm) but is blurred for highest and
lowest depth values. In Figure 5.16d we surrounded areas that the reader can
use to follow the evolution of image blur with depth: the number 5 of TP1
(red), the thin lines (green) and the vertical line (pink) of TP2, and overlapping
lines of the two test patterns (blue). The lines of both test targets are sharp at
the same depth z = 128.77mm (see Figure 5.16e). TP1 is more contrasted and
seems sharper than TP2, which suggests that it is close to perfect focus. TP2
is sharper in this figure compared to the other images, as thin lines (in green in
Fig. 5.16d) can be separated. However, the vertical line (in pink) is duplicated
compared to previous reference image (see Fig. 5.6), which indicates that TP2
is not perfectly in focus. The two test patterns separated by 1.3mm should be
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refocused on two different planes. Next section will explain why they are both
the sharpest at the same depth z = 128.77mm.

(a) z = 128.57mm (b) z = 128.62mm (c) z = 128.67mm

(d) z = 128.72mm (e) z = 128.77mm (f) z = 128.82mm

(g) z = 128.87mm (h) z = 128.92mm (i) z = 128.97mm

Figure 5.16 – Comparison of the same dataset of configuration 2.0 refocused with
our algorithm at different depths.

5.3.2.4 Study of depth resolution and plenoptic depth of field

With both algorithms (2.0 and ours), it is not possible to separate the two test
patterns, despite the distance of 1.3mm between them. This behaviour raises
the question of the cause: is it due to the refocusing process or to the intrinsic
properties of the acquired data ? To better study the impact of the geometry,
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z1+a

Main Lens
MLA

bz0

sensor

TP2

TP1

1.3mm

0.5mm

TP1

2.0

TP1

2.a

TP1

2.b

0.5mm

TP2

2.0

TP2

2.a

TP2

2.b

0.5mm0.5mm

(a) Scheme of the displacement of the test patterns between the datasets in con-
figuration 2.0.

(b) Dataset 2.0. (c) Dataset 2.a. (d) Dataset 2.b.
Figure 5.17 – Comparison of the datasets 2.0, 2.a and 2.b refocused at the same
depth z = 128.77mm.

we acquired new data with different positions of the test patterns. We moved
the plateform that holds the test patterns 0.5mm closer to the main lens for
a second dataset (called 2.a), and again 0.5mm even closer for a third dataset
(called 2.b). This is schematized in Figure 5.17a. As the two test patterns are
attached on the same plateform, the distance between them does not change.
According to Sections 2.4.3 and 2.4.4, using the appropriate refocusing meth-
ods, it would be possible to retrieve both resdepth and DOFpleno from the three
datasets 2.0, 2.a and 2.b.

We refocused the new datasets 2.a and 2.b at different depths, similarly to
dataset 2.0 in Figure 5.16. We observed the same effects for both datasets (not
shown): despite the new positions of the sample, the sharpest (not necessarily
in focus) images of both test patterns are always at depth z = 128.77mm and
blur progressively appears on adjacent depths. As z = 128.77mm is indepen-
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dent from the position of the object or the algorithm used, we concluded that
this privileged depth is imposed by the geometry of the optical configuration.

Figure 5.17 proposes a comparison of the refocused images at the privi-
leged position z = 128.77mm for the three datasets. The sharpness and focus
properties are well visible on the vertical lines (blue arrows). In dataset 2.0
(Fig. 5.17b, same as Fig. 5.16e), TP1 is in focus, whereas TP2 is sharp but not
in focus. In the intermediate dataset 2.a, lines of both test patterns are still
sharp but not in focus. In dataset 2.b (Fig. 5.17d), TP1 is completely blurred,
whereas TP2 approaches its best focus: the vertical line of width 0.5µm is
thin, and the vertical line of width 0.25µm is now visible (orange arrow). Mis-
alignment effects are responsible for contrast reduction in the group of seven
bars (pink). An accurate image inspection allows to distinguish the group of
0.25µm lines (pink). This gives a new estimation for the lateral resolution,
closer to the theoretical value 0.13µm.

As illustrated in Figure 5.17, the three datasets correspond to a series of
six images taken with six different physical depths of test patterns. Following
the method presented in Section 2.4.3, this series can be used to estimate
resdepth. Based on Figure 5.17, two planes seem to be in focus: TP1 in dataset
2.0 and TP2 in dataset 2.b. Their relative distance gives an estimation of
resdepth around 300µm, to be compared to the theoretical value of resdepth=
219.58µm (see Table 5.2). We retrieve the same order of magnitude. However,
the smallest step between two positions was 300µm, preventing to refine the
experimental value.

The same series of images can be used to estimate DOFpleno. As shown in
Figure 2.21, the methodology to experimentally measure DOFpleno consists in
scanning and selecting the best refocusing parameter for each depth of the test
target. In the X-ray case, the same refocusing parameter (z = 128.77mm) is
always selected as the one generating the best image quality, therefore the same
series of refocused images can be used alternatively for resdepth and DOFpleno.
As a result, the experimental value of DOFpleno is also 300µm, to be compared
to the theoretical value of DOFpleno= 135.27µm (see Table 5.2).

5.3.2.5 Refinement of depth resolution

To refine the experimental value of resdepth, we study an alternative method.
Instead of physically moving the test targets and refocusing using the same
parameter, we do the opposite: refocusing the same raw image (i.e. same
depth of the test pattern) using different parameters of the algorithm. This
corresponds to the images previously presented in Figure 5.16. To study the
evolution of contrast with depth, we concentrate on the 1.0µm-lines of TP1,
as framed in orange in Figure 5.16g. This same area is extracted from the
refocused images, and presented in Figure 5.18 at different depths z.

The zoomed images allow to perceive finer details. The sharpest images
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(a) z = 128.57mm (b) z = 128.62mm (c) z = 128.67mm

(d) z = 128.72mm (e) z = 128.77mm (f) z = 128.82mm

(g) z = 128.87mm (h) z = 128.92mm (i) z = 128.97mm

Figure 5.18 – Zooms on the refocused images from Figure 5.16. The size of the
extracted areas is drawn in orange in Figure 5.16g.

are for z = 128.72mm and z = 128.77mm. On both sides of these values the
signal of the bars is degraded asymmetrically.

For lower depth values, the bars are progressively blurred as the distance
from z = 128.72mm increases. The blur is uniform over the image, but some
square artifacts appear, starting from depth z = 128.62mm and increasing at
z = 128.57mm. These square artifacts appear when approaching the tradi-
tional position ztrad0 = 128.36mm, where the spatial sampling is done by the
micro-lenses, resulting in larger pixels of size d2/M .

For higher depth values, the refocused images suffer from a high level of
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noise. From depth z = 128.82mm, several phenomena occur together: the bars
are progressively blurred, the images become darker, and the noise increases.
This can be explained by both the configuration and the refocusing process.
When the depth increases, the amount of angular data for a single spatial
position slowly decreases, resulting in fewer available pixels for the integration
process. In our specific conditions, the experiment imposes a low SNR in the
raw images and the configuration is responsible for a low Nu. When combining
fewer pixels in the refocusing process at higher depths, the resulting images
are more sensitive to noise.

From the images of Figure 5.18, the contrast is extracted over a large
area in order to average the signal, and plotted against depth in Figure 5.19.
The resulting curve presents a smooth profile, with a peak at z = 128.78mm
(the corresponding image was not shown in Fig. 5.18). This is close to depth
z = 128.77mm which is the one that has been presented as the sharpest
image throughout this chapter. Based on our previous studies performed in
the visible (see Section 2.4.3), we extract resdepth considering the criterion of
80% of maximum contrast. The limits of this depth range are at 128.66mm
and 128.88mm, which give an experimental measure of 220µm. It agrees well
with the theoretical value of resdepth= 219.58µm (see Table 5.2).

Figure 5.19 – Contrast curve extracted from the refocused stack of the X-ray
plenoptic experiment.

The curve presents a plateau between z = 128.69mm and z = 128.87mm,
where the contrast value is roughly constant. The dip at z = 128.83mm might
be explained by misalignment effects that were already noticed in the visible
(see Section 2.4.3). On both sides of the plateau, the curve decreases rapidly.
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The two slopes are different, with the left slope being smoother than the right
one. As studied in Section 2.5, the contrast curve is the result of combined
effects of magnification, diffraction and defocus, which imply highest contrasts
around both ztrad0 and zfoc0 . Contrary to previous curves obtained in the visible
which peaked at ztrad0 (in Section 2.5), the maximal contrast in Figure 5.19 is
found at zfoc0 , far from ztrad0 = 128.36mm. In this specific design, this is due
to the effects of defocus being more important than magnification variations.

Finally, one can notice that the absolute values of the contrast are very
low, with a peak at 4.68%. As a comparison, the same contrast measured in
the reference images without µLA gives a peak value of 7.47% (see Figure 5.6).
The addition of the (absorbing) µLA followed by the refocusing process are
responsible for a decrease of only 37.3% of the initial signal. Thus, it is more
the experimental conditions than the plenoptic and refocusing process that are
responsible for the low contrast, especially the source, camera, and absorption
of the main lens. These values of contrast are extremely low compared to the
ones usually encountered in the visible light (around 80%).

5.3.2.6 Note on the distances

In this chapter, we presented all the experimental and refocused images using
distances and configurations from Table 5.2. However, these distances have
to be taken with caution. It was indeed quite difficult to measure distances
during the experiment. On the one hand, the sample has to be placed at
zfoc0 within DOFpleno = 135.27µm. On the other hand, the distances are
very large (more than 4 meters in total) and could not be measured at that
desired precision with the available tools. As explained in Section 5.1.6, the
sample, optics and camera were fixed on micrometric motors, which allow to
change the distances with very fine precision. We were thus able to control
very precisely the distance variations when moving the optics. The distances
can be considered as very precise relative measures, but approximate absolute
measures.

We tried to re-estimate the distances a posteriori. We studied the refocused
stack of the two test patterns without µLA (see Fig. 5.6) and extracted the
magnification and the depths of best focus. This allows to better estimate
the object-to-main lens and the main lens-to-sensor distances. We did the
same with the dataset acquired with the µLA in place, which allows to re-
evaluate the main lens-to-µLA and the µLA-to-sensor distances. The distances
presented in Table 5.2 are the results of this work.

This process allows to improve the accuracy of the measured distances but
some errors remain. However in plenoptic systems, small errors in the distances
can seriously impact the whole configuration, as explained in Section 2.3.3.
This can be noticed by the variability in the object-to-main lens distance in
configuration 2.0 throughout the document. In Table 5.2, z0 = 128.90mm is
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the distance at which we wanted to place the test patterns. In Figure 5.14,
the sharpest image corresponds to depth z = 131.68mm. With our algorithm,
the focus was measured at depth z = 128.77mm in Figure 5.16, much closer to
the expected one. This variability in z0 is the sign of remaining inaccuracies in
the other distances of the setup. This might explain the remaining differences
between experimental and theoretical values.

5.4 Depth extraction

It is now interesting to study whether depth could be extracted from the
refocused stack in configuration 2.0. We apply the techniques of depth
from focus studied in Chapter 4 on this stack. The experimental values of
resdepth= 220µm and DOFpleno= 300µm are very close, so only one depth
plane is expected to be observable along DOFpleno. The images were refocused
along a depth range of 300µm, over which the depth plane of TP1 should be
localized around depth z = 128.77mm.

In Figure 5.20 are presented the results of two blur measures: the Ring
Difference Filter and the Variance. For comparison, Figure 5.20b shows the z-
axis variations in the refocused stack, extracted at the blue line in Figure 5.20a.
In this figure, the different colors corresponds to the intensity in the refocused
images. The large resdepth= 219.58µm and DOFpleno= 135.27µm explain why
the bars seem slowly affected by the defocus blur along this depth range of
300µm.

Figures 5.20c - 5.20e present the results of the Ring Difference Filter with-
out or with applying the Gaussian filtering. The Ring Difference Filter detects
mainly the presence of the noise in the high depth values and fails at high-
lighting the correct depth z = 128.77mm. The Gaussian filtering emphasises
the noise instead of the expected depth. A profile of Figure 5.20e is extracted
at y = 60 and drawn in Figure 5.20g. In this profile one can notice a slight
peak at the expected depth z = 128.78mm, but largely dominated by the rise
at high depths due to the noise. This method does not seem appropriate to
localize TP1.

Figures 5.20d - 5.20f - 5.20h present the same images and profile for the
Variance method. A clear peak is observed at z = 128.73mm in Fig. 5.20h,
which corresponds to the yellow colors in Figs. 5.20d - 5.20f. The Gaussian
filtering between Fig. 5.20d and Fig. 5.20f improves even more the detection of
the peak for each bar, without increasing the noise. Some remaining noise is
observed at high depths, but does not overpass the values at the intermediate
depths. At 80% of the maximal value (as in Section 2.4.3), the curve presents
a width of 80µm, smaller than the expected resdepth= 220µm.

Compared to Chapter 4, the efficiency of the two blur measures is reversed,
with the Variance method providing better results than the Ring Difference
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Figure 5.20 – Illustration of two blur measures applied on the refocused stack. The
blue line in Figure 5.20a shows the row that was extracted in the five other images.
Figure 5.20b corresponds to the z-axis variations in the reconstructed stack. Fig-
ures 5.20c and 5.20e show the results of the Ring Difference Filter with and without
filtering, whereas Figures 5.20d and 5.20f show the results for the Variance method.
Figures 5.20g and 5.20h present the profiles extracted from Figures 5.20e and 5.20f
at y = 60, whose position is shown in green in Figure 5.20b.
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Filter. In Chapter 4, the test case was a synthetic refocused stack, gener-
ated from several depth planes made of highly contrasted patterns, without
considering noise in adjacent planes. The Ring Difference Filter succeeded at
detecting the correct depth planes, due to the local aspect of this method.
On the contrary, the X-ray plenoptic stack presents a high level of noise and
smooth variations with depth, due to the experimental conditions, in particu-
lar the low NA. For this stack, the more global aspect of the Variance is an
advantage, as it provides more reliable results less affected by the noise.

The Variance is applied on the whole image, followed by the depth ex-
traction step. The results are presented in Figure 5.21. The displayed depth
extraction method is the Max, but the Mean and Symmetry methods provided
similar results. The addition of the depth extraction step allows to accurately
extract the features of TP1, while removing the contribution of TP2.

(a) Refocused image at z = 128.77mm. (b) Variance + Max.
z (mm)

128.9

128.8

128.7

128.6

(c) Scale. (d) Variance + Gaussian filt. + Max.
Figure 5.21 – Depth extraction of the refocused stack using the Variance method as
blur measure and Max as depth extraction method: without the Gaussian filtering step
(Fig. 5.21b) and with the filtering step (Fig. 5.21d). TP1 is located at z = 128.77mm
whereas TP2 is around ∼ z = 130mm, outside the refocused depth range.

In Figure 5.21b, the Variance and Max methods detect the contours of the
bars of the test target. It is typical of a contrast detection technique. With
this method, it is still possible to recognize the number 5, and to count the
number of bars on the left of the image. Some noise is still present all over the
image, and especially in the middle area where no features are supposed to be
detected.

Adding the Gaussian filtering helps reducing the noise in Figure 5.21d. The
features of TP1 are even more clearly detected in contrast to the background.
The bars, lines and number of TP1 are highlighted in orange-red, corresponding
to the intermediate depths, whereas the background remains yellow and white,
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which are the colors of the highest depths. However, this framework slightly
decreases the resolutions, as it is not possible to visually separate the different
bars on the left side. Figure 5.21d is a depth map that should be combined
with the refocused stack (Figure 5.21a) to generate a 3D reconstruction with
finer resolutions. These results have shown that it is possible to extract reliable
depths from experimental X-ray plenoptic data. It corresponds to a significant
improvement compared to the theoretical expectations (resdepth > DOFpleno)
and in regards to the low contrasted and noisy data.

5.5 Conclusion

In this chapter was presented the first X-ray plenoptic experiment and the
reconstruction of the corresponding images, which was the final objective of
the thesis. Thanks to the theoretical work presented in Chapter 2, we were able
to define both 1.0 and 2.0 configurations for the plenoptic camera, taking into
account limitations of both optics and X-ray source. The algorithm presented
in Chapter 3 allowed to refocus images. Thanks to reliable preprocessing, the
test patterns were clearly visible in the output images. Being able to see the
test patterns from X-ray plenoptic data is already an important result. It
shows that we overcame the difficulties of alignment and manipulation, and
managed to make the X-rays go through the whole optical system, composed
of a main lens FZP , a µLA FZP and a camera. To our knowledge, such a
plenoptic system with X-ray optics has not been presented in the literature
yet.

We then studied the resolutions of the refocused images. The field of view,
plenoptic depth of field, lateral and depth resolutions were close to the expected
values. This indicates that the theoretical formulas previously validated using
visible data are still relevant in X-ray plenoptic.

In this experiment, the main limiting factor was the numerical aperture
of the main lens affecting the whole construction of the system. This low
NA makes impossible to respect the aperture matching condition. It induces
a low angular sampling Nu and a bad resdepth / DOFpleno ratio, which re-
duces the possibility to reconstruct and separate different depths from only
one acquisition. These optical constraints have consequences in both experi-
mental and refocusing processes, and can impact the optical resolutions and
the quality of the refocused images.

Finally, two depth from focus techniques were applied on the refocused
stack. The significant presence of noise prevented from applying the Ring
Difference Filter. The Variance method allowed to retrieve the correct location
of the first test pattern, thanks to its more global approach. Applying depth
extraction, we succeeded in completely extracting the plane of TP1 from the
background and TP2.
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To summarize, this experiment has shown the possibility to acquire plenop-
tic images with X-ray optics and provided coherent results in this very specific
context. This is a proof a concept that the plenoptic theory as well as the
refocusing algorithm presented in this thesis are consistent for X-ray plenoptic
imaging, even if they were originally developed in the visible. The knowledge
gained during this experiment convinced us that multi-planes X-ray plenoptic
and 3D depth extraction are feasible on short terms. Small modifications of
the experimental setup would allow reaching this new objective in a future
experiments.
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Conclusion

In this thesis were presented the theoretical, numerical and experimental works
that lead up to the achievement of the first X-ray plenoptic camera. More
specifically, the objective of this thesis in the context of the VOXEL project
was to deepen the knowledge on plenoptic imaging, in order to transpose it
to the X-ray range. We here review the main ideas and contributions of this
work to the novel field of X-ray plenoptic imaging.

Plenoptic cameras are composed of three elements: a main lens, an array
of micro-lenses and a sensor. The specificity of plenoptic imaging is the abil-
ity to record the spatio-angular components of the light-field. The acquired
image should be processed using dedicated algorithms to generate a refocused
image at a chosen depth in object-space. Two different plenoptic cameras, the
traditional and the focused ones, have been reported in the literature, each of
them being associated with a specific configuration and refocusing algorithm.

In this thesis we highlighted the links between traditional and focused cam-
eras, regarding both their optical setups and their algorithms (see Chapter 1).
The two numerical methods were shown to be based on the same principle
of integration of angular data, following the continuity of the optical designs.
This comparison provided elements to better understand the role of the con-
figuration and the algorithm in the resolutions of the final image. To improve
the performances of a plenoptic system, we concluded that the physical setup
and the numerical method should be optimized separately.

Studying both traditional and focused configurations resulted in generalized
formulas to quantify the expected resolutions of a plenoptic system, depend-
ing on the distances and parameters of the physical setup (such as numerical
apertures, lens diameters...) (see Chapter 2). They are useful to anticipate
the finest achievable voxel and the largest observable object when building an
X-ray plenoptic camera. Two visible plenoptic cameras were built to validate
our theoretical work. The experiments confirmed that our geometrical rea-
soning was appropriate for lateral resolutions and fields of view. Estimating
resolutions along depth was more complex since it necessitated a study of im-
age blur and sharpness over the depth range. In parallel to the experiments,
we implemented simulations of plenoptic imaging. They helped us understand
that magnification and diffraction interfere with defocus blur. This might af-
fect the resolutions and the process of depth extraction from the reconstructed
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stack.
The previous comparison on refocusing algorithm convinced us to imple-

ment our own method (see Chapter 3). The objective was to overcome the
specificities of the traditional and focused algorithms, especially their different
uses of sensor pixels. We developed a physically-based algorithm that could
be applied indifferently on each configuration, and could render an image of
any chosen size. Our method is based on a full parameterization of a single
ray throughout the whole plenoptic setup, leading to an equation that de-
scribes the transformation from object-space to sensor-space. Our refocused
approach then uses this equation to reconstruct pixels one by one, considering
the apertures of both main lens and micro-lenses, and the spatial extent of
pixels. The reverse framework was also implemented to simulate raw plenop-
tic images. The refocusing algorithm was evaluated on the output of these
simulations. The refocused images indicated that the method was accurate,
producing sharp and blur at the expected depths.

Techniques of depth from focus were tested based on this blur properties
(see Chapter 4). The accuracy of our algorithm was important to generate
refocused stacks with consistent defocused patterns. We implemented and
tested various published methods of blur measurement and depth extraction.
The methods were efficient on a single plane, and give interesting results in
the case of successive depth planes.

The theoretical, experimental and numerical works achieved during this
thesis allowed to reach our objective of adapting plenoptic to X-rays (see
Chapter 5). The formulas for resolutions were used to choose the appropriate
configuration, in order to make the best use of the available X-ray optics, de-
spite their low numerical apertures. The illumination by transmission through
the sample, which is specific to X-ray, was also taken into account. Our X-
ray plenoptic setup allowed to acquire the first raw plenoptic images of two
overlapping test targets. Our algorithm was used to reconstruct the image at
various depths. We validated the formulas of lateral and depth resolutions,
field of view and plenoptic depth of field. Depth from focus techniques ap-
plied on the refocused stack allow to extract the correct depth of the first test
pattern.

This thesis presented the first plenoptic images in the X-ray range, and
validated the transposition of plenoptic imaging from visible to X-rays.
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Future work

The work presented in this thesis could be continued and deepened. We here
present a list of remaining tasks and potential improvements.

Refocusing algorithm

One of the issues raised during this thesis is the measurement errors concern-
ing the distances of the physical setup. Our algorithm necessitates precise
parameters as inputs, including the distances of the setup. In microscopy, be-
cause of the large magnifications, small errors in the distances might result
in inaccuracy in the reconstruction process. This problem could be reduced
by a calibration step before reconstruction. However, the calibration methods
previously proposed are based on calibration grids and could hardly be trans-
posed to X-ray imaging [DPW13; ZJW16]. In our X-ray plenoptic experiment,
we tried to retrospectively refine the distances using focal stacks acquired with
only the main lens and the sensor (see Chapter 5). This calibration step de-
serves to be improved and possibly automated for future experiments.

Another main remaining task consists in reducing the computation time of
our algorithm (see Chapter 3). The current version of the code is a prototype
that has been implemented in order to test the feasibility of our ideas, but is
not intended for direct real-time application. The large computation time is an
important drawback of the method, as it is currently 2000 times slower than
the comparable methods. It is not possible to use the current implementation
for real-time rendering, with several hours needed to reconstruct an image of
1000 × 1000 pixels. The large computation time is due to each pair of pixel-
main lens aperture in object-space been projected onto each pair of pixel-micro-
lens aperture in sensor-space. This results in a high number of ray bundles
that needs to be projected and intersected in 4D.

A first improvement would be parallelization of the code. The algorithm
presents features that justifies code parallelization, such as separability of the
4D into 2×2D, and the independence of ray tracing through adjacent pixels or
micro-lenses. The current implementation has been parallelized on CPU, but a
further parallelization could be achieved using GPU. Moreover, Python was the
programming language used for the implementation, which is an interpreted
language. A compiled programming language such as C or C++ would help
improving the execution time of the algorithm. These technical modifications
are pure implementation aspects but we believe that they would have a huge
impact on the execution time.

Another line of improvement is the pre-computation of the 4D intersections
needed to reconstruct the image. The shapes of the ray bundles in 4D only
depend on the plenoptic camera, i.e. the main lens, µLA and sensor. The
object to be imaged affects the intensity of the ray bundles, but not their 4D
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patterns. When using the same plenoptic configuration for several successive
acquisitions, it would be interesting to store these patterns, or more specifi-
cally the areas of their intersections that are used as weights in the algorithm.
This would prevent from re-computing them several times when successive
acquisitions are made using the same configuration.

Another possibility is to explore a deeper factorization of the computa-
tions. The loops have already been restricted to the absolute minimum by the
calculation of precise bounds. An idea would be to study the redundancy over
the whole 4D space, corresponding to redundancy in the 4D intersections to
be computed. The pixels-lens apertures form a regular grid of parallelograms
over a 2D plane. We thus have two overlapping regular grids, one for the
object-space and one for the sensor-space. For some specific configurations,
it is possible that the two grids form repeated similar intersection patterns,
that could be exploited to fasten the calculation. A deeper study should be
performed to determine how it is possible to detect such a redundancy directly
from the configuration, through a frequency analysis for example. This idea
needs to be experimentally tried to estimate its benefit, as it concerns the
structure of the algorithm instead of its technical implementation.

Depth extraction

The work achieved on depth from focus techniques should be continued. Some
other blur measures and depth extraction methods could be implemented and
tested on our refocused stack, as only a few of them were selected for our study.

Alternatives to depth from focus approaches could be experimented, such
as deconvolution of the refocused stack. Indeed, the shape of the blur in
the stack is very specific because it has been generated by an algorithm with
specific parameters and properties. Deconvolution would exploit the fact that
the underlying algorithm is known, by using a deconvolution kernel specifically
calibrated for each refocused stack. This numerical deconvolution kernel would
intrinsically take into account the discrete aspect of the data, due to the pixels
and the micro-lenses. We expect it to reduce the grid artifacts described in
Chapter 3.

We also had the idea of a stochastic approach: rays would be randomly
chosen through the scene, and then propagated until the sensor plane to re-
trieve the needed information. The scene would be progressively reconstructed
as the number of selected rays increases. This approach would have the advan-
tage of allowing the users to themselves choose their desired trade-off between
computation time and precision of the reconstruction.

In Chapter 1, we mentioned stereo and tomography algorithms which could
be adapted to extract depth directly from the raw plenoptic image. Stereo
algorithms are more adapted to surfaces and require sub-images with a high
number of pixels. Alternatively, tomography algorithms seem worth exploring,
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as they could allow to reconstruct directly in 3D. A promising approach would
be to combine our work to the one performed by Vigano et. al. during the
VOXEL project [VDH+18; VMH+19]. A tomography algorithm was adapted
to the context of plenoptic. It is based on an iterative framework that allows 2D
refocusing at a chosen depth, similarly to our algorithm. A projection operator
is needed to make the link between object- and sensor-spaces, similarly to
matrix M in our algorithm (see Chapter 3). It would be interesting to replace
their projection operator by our matrix M. The result is expected to combine
the accuracy of our parameterization with the efficiency of their framework.

X-ray plenoptic imaging

The most exciting work lies in the advances achieved in the field of X-ray
plenoptic imaging. To pursue exploration of X-ray plenoptic imaging, refocus-
ing and extraction of several depths from one single plenoptic dataset should
be performed. It would be necessary to acquire new experimental data with a
different setup, either with another configuration or with other optics. During
our experiment, we have seen that the low numerical apertures of X-ray optics
largely restrict the possibilities of plenoptic (see Chapter 5). An experimental
work on these optical components would open up possibilities for testing new
configurations.

The flexibility of plenoptic, especially the focused camera (2.0), allows a
variety of possible configurations, even using the same optics. Various designs
could be explored to find the best trade-off between the constraints of illumi-
nation conditions, aperture matching equation, and desired resolutions. In a
future experiment, the depth resolution should be smaller to allow refocusing
at separate depth planes. We believe that implementing a focused Galilean
configuration (a < 0) would help reducing the distances and increasing the
sub-images size on the sensor, to approach the aperture matching condition.
Larger sub-images would allow acquisition of more data, and possibly better
resolutions in the reconstructed images. Noise removal is also an interesting
field that could improve data treatment. It would possibly improve the results
of the depth from focus methods applied on X-ray plenoptic data, as a step
closer to 3D reconstruction.

The formulas of resolutions presented in Chapter 2 were used to build our
X-ray plenoptic camera. However, the large number of physical parameters
and distances make them difficult to manipulate. It would be very useful to
create a tool guiding scientists when designing a plenoptic configuration. This
tool should include both aspects of the expected resolutions and the physical
limitations imposed by the setup.

The interesting results of this thesis demonstrate that X-ray plenoptic is a
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promising field. Lessons learnt during this work will allow to optimize the con-
figuration and processing in a future experiment. We expect to fully demon-
strate refocusing and depth extraction of several planes on X-ray plenoptic
images.
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