
HAL Id: tel-03130144
https://theses.hal.science/tel-03130144

Submitted on 3 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

IoT Orchestration in the Fog
Bruno de Moura Donassolo

To cite this version:
Bruno de Moura Donassolo. IoT Orchestration in the Fog. Emerging Technologies [cs.ET]. Université
Grenoble Alpes [2020-..], 2020. English. �NNT : 2020GRALM051�. �tel-03130144�

https://theses.hal.science/tel-03130144
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES
Spécialité : Informatique
Arrêté ministériel : 25 mai 2016

Présentée par

Bruno DE MOURA DONASSOLO

Thèse dirigée par Arnaud LEGRAND, Université Grenoble Alpes
et codirigée par Panayotis MERTIKOPOULOS, CNRS
et Ilhem FAJJARI, Orange Labs

préparée au sein du Laboratoire d'Informatique de Grenoble
dans l'École Doctorale Mathématiques, Sciences et
technologies de l'information, Informatique

L'orchestration des applications IoT dans le
Fog

IoT Orchestration in the Fog

Thèse soutenue publiquement le 4 novembre 2020,
devant le jury composé de :

Monsieur ARNAUD LEGRAND
DIRECTEUR DE RECHERCHE HDR, CNRS DELEGATION ALPES,
Directeur de thèse
Monsieur ADRIEN LEBRE
PROFESSEUR, IMT ATLANTIQUE BRETAGNE-PAYS DE LA LOIRE,
Rapporteur
Madame E. VERONICA BELMEGA
MAITRE DE CONFERENCES HDR, UNIVERSITE DE CERGY-
PONTOISE, Rapporteure
Madame NATHALIE MITTON
DIRECTRICE DE RECHERCHE HDR, INRIA DELEGATION LILLE
NORD EUROPE, Examinatrice
Monsieur FREDERIC DESPREZ
DIRECTEUR DE RECHERCHE HDR, INRIA CENTRE DE GRENOBLE
RHÔNE-ALPES, Président
Monsieur PANAYOTIS MERTIKOPOULOS
CHARGE DE RECHERCHE HDR, INRIA CENTRE DE GRENOBLE
RHÔNE-ALPES, Co-directeur de thèse

Monsieur Ilhem FAJJARI
Ingénieur recherche, Orange Labs, France, Co-encadrant de thèse

Monsieur OLA ANGELSMARK
DOCTEUR-INGENIEUR, ERICSSON A LUND - SUEDE, Examinateur

Abstract

Internet of Things (IoT) continues its evolution, causing a drastically growth of
traffic and processing demands. Consequently, 5G players are urged to rethink their
infrastructures. In this context, Fog computing bridges the gap between Cloud and
edge devices, providing nearby devices with analytics and data storage capabilities,
increasing considerably the capacity of the infrastructure.

However, the Fog raises several challenges which decelerate its adoption. Among
them, the orchestration is crucial, handling the life-cycle management of IoT appli-
cations. In this thesis, we are mainly interested in: i) the provisioning problem, i.e.,
placing multi-component IoT applications on the heterogeneous Fog infrastructure;
and ii) the reconfiguration problem, i.e., how to dynamically adapt the placement
of applications, depending on application needs and evolution of resource usage.

To perform the orchestration studies, we first propose FITOR, an orchestration
system for IoT applications in the Fog environment. This solution addresses the
lack of practical Fog solutions, creating a realistic environment on which we can
evaluate the orchestration proposals.

We study the Fog service provisioning issue in this practical environment. In this
regard, we propose two novel strategies, O-FSP and GO-FSP, which optimize the
placement of IoT application components while coping with their strict performance
requirements. To do so, we first propose an Integer Linear Programming formula-
tion for the IoT application provisioning problem. Based on extensive experiments,
the results obtained show that the proposed strategies are able to decrease the
provisioning cost while meeting the application requirements.

Finally, we tackle the reconfiguration problem, proposing and evaluating a series of
reconfiguration algorithms, based on both online scheduling and online learning
approaches. Through an extensive set of experiments, we demonstrate that the
performance strongly depends on the quality and availability of information from
Fog infrastructure and IoT applications. In addition, we show that a reactive and
greedy strategy can overcome the performance of state-of-the-art online learning
algorithms, as long as the strategy has access to a little extra information.

iii

Contents

1 Introduction 1

I The Orchestration of IoT Application in the Fog: Definition and
Challenges 7

2 Context 9
2.1 Fog Definition and Motivations . 9

2.1.1 Motivations . 11

2.1.2 Initiatives . 13

2.1.3 Use cases . 16

2.2 Fog Architecture Overview . 20

2.3 Challenges in Fog Architectures . 22

2.3.1 Heterogeneity . 23

2.3.2 Mobility and scale . 24

2.3.3 Orchestration . 24

2.3.4 Security and privacy . 25

2.3.5 Application modeling . 26

2.4 Scope of this Thesis . 27

3 Related Work 29
3.1 Overview of Fog Architectures . 29

3.1.1 Classification . 29

3.1.2 Comparison . 30

3.2 Orchestration Approaches . 36

3.2.1 Classification . 36

3.2.2 Comparison . 41

3.3 Conclusion . 46

4 Components and Characteristics of a Fog-IoT Environment 47
4.1 Fog Infrastructure . 47

4.2 IoT Applications . 48

4.2.1 Requirements . 49

4.3 Orchestration . 49

v

II From Theory to Practice: Research Methodology and An Or-
chestrator for IoT Applications in the Fog 53

5 An Architecture for IoT Orchestration in the Fog 55

6 The Calvin Framework 59
6.1 Why Calvin? . 59
6.2 Overview . 60
6.3 The Actor Model . 61
6.4 Architecture . 62
6.5 Describing an Application . 63

6.5.1 Actor development . 63
6.5.2 Building an application . 64
6.5.3 Requirements . 65

6.6 Deploying an application . 67
6.7 Limitations for the Fog . 68

7 FITOR: A Platform for IoT Orchestration in the Fog 69
7.1 Software Components . 70

7.1.1 Calvin . 70
7.1.2 Monitoring . 73
7.1.3 Docker . 74

7.2 Infrastructure . 75
7.2.1 Grid’5000 . 75
7.2.2 FIT/IoT-LAB . 75
7.2.3 Connectivity . 76

7.3 Limitations . 76
7.3.1 Applications . 77
7.3.2 Monitoring . 77
7.3.3 Infrastructure . 78

8 Experimental Methodology 79
8.1 Scenario . 79

8.1.1 Platform . 79
8.1.2 Workload . 79
8.1.3 Orchestrator parameters . 83
8.1.4 Uncontrolled factors . 84

8.2 Setup . 85
8.3 Experiments . 85

8.3.1 Execution . 85
8.3.2 Output . 86
8.3.3 Data analysis . 87

vi

III The Provisioning of IoT Applications in the Fog 89

9 Problem Statement 91
9.1 Introduction . 91
9.2 Related Work . 93

9.2.1 The GRASP method . 93
9.3 Problem Formulation . 95

9.3.1 Fog service provisioning problem 96
9.3.2 Summary of notations . 99

10 Cost-aware Provisioning 101
10.1 Proposed Solution: O-FSP . 101

10.1.1 Fog service decomposition stage 101
10.1.2 Solution component’s provisioning stage 102

10.2 Evaluation . 103
10.2.1 Describing the environment . 103
10.2.2 Baseline strategies . 105
10.2.3 Performance metrics . 106
10.2.4 Evaluation results . 106

10.3 Limitations . 108

11 Load-aware Provisioning 111
11.1 Extension of the Problem Formulation 111
11.2 Proposed Solution: GO-FSP . 112

11.2.1 Fog service decomposition . 112
11.2.2 Generation of initial solutions 113
11.2.3 Local search . 113

11.3 Evaluation . 114
11.3.1 Describing the environment . 114
11.3.2 Baseline strategies . 116
11.3.3 Performance metrics . 116
11.3.4 Evaluation results . 117

11.4 Limitations . 119
11.4.1 Experimental limitations . 119
11.4.2 Model limitations . 120

IV The Reconfiguration of IoT Applications in the Fog 123

12 Problem Statement 125
12.1 Introduction . 125
12.2 Related Work . 127

12.2.1 Online scheduling . 127

vii

12.2.2 Online learning . 129
12.3 Game Overview . 132

12.3.1 Performance metrics . 134

13 Reconfiguration in a Well-informed Environment 135
13.1 Describing the Environment . 135

13.1.1 Platform . 135
13.1.2 Workload . 136
13.1.3 Orchestrator parameters . 138

13.2 Evaluation . 138
13.2.1 Baseline strategies . 139
13.2.2 Online learning strategies . 141
13.2.3 Greedy but informed strategies 152
13.2.4 Summary . 155

13.3 Limitations . 156

14 Reconfiguration in an Ill-informed Environment 159
14.1 Describing the Environment . 159

14.1.1 Platform . 159
14.1.2 Workload . 160
14.1.3 Orchestrator parameters . 161

14.2 Evaluation . 161
14.2.1 Baseline strategies . 161
14.2.2 Online learning strategies . 162
14.2.3 Greedy but informed strategies 166

14.3 Limitations . 167
14.3.1 Experimental limitations . 167
14.3.2 Platform . 168
14.3.3 Workload . 169
14.3.4 Orchestrator . 169

15 Conclusion and Future Work 171
15.1 Conclusion . 171
15.2 Future Work . 172

Bibliography 177

viii

1Introduction

Despite the enormous attention received in recent years, the Internet of Things
(IoT) is not a new concept. One of the first connected devices was a Coke machine
of Carnegie-Mellon Computer Science department in the early 80’s [The98]. By
consulting a minicomputer connected to it, members of the department could avoid
unnecessary travels to an empty Coke machine. Nevertheless, the term IoT was
only coined in 1999 by Kevin Ashton [KKL13], during a presentation in which
he stated how Radio Frequency Identification (RFID) could revolutionize the way
we manage and track products in the inventory control. In the past two decades,
technology has evolved, reducing cost, size and improving performance of IoT
devices.

The IoT promises to revolutionize our daily lives and the way we interact with
our surrounding. It refers to the interconnection of heterogeneous end devices,
especially everyday life objects, that are addressable and controllable via Internet.
The number of such devices is expected to reach 64 billion by 2025 [Pet20]. This
huge number of IoT devices is reshaping peoples’ lives who are expected to use a
myriad of applications with stringent requirements in terms of throughput, latency
and reliability. The market value of IoT is expected to reach a trillion dollars in the
next decade [Dme20]. This revolution has not been limited to the interconnection of
objects themselves but has extended to people, process, data and things, creating
what Cisco called Internet of Everything (IoE) [Eva12]. This holistic integration pro-
vided by IoE may unleash undoubted advances in many fields of science, medicine,
business, among others.

The device-generated data is leveraged to power novel smart applications in var-
ious domains such as smart city, smart transportation, smart healthcare, etc. By
processing the data, IoT applications can provide services which are aware of the
surrounding environment, while considering the peoples’ needs in terms of Quality
of Service (QoS). Nevertheless, with such an exceptional evolution of demands,
the network infrastructure struggles to resist to the overwhelming load and new
innovative techniques are required. Therefore, operators need to make every possi-
ble effort to grow and consolidate their infrastructures making them ready for the
deployment of next-generation network. A primary objective will be to place all

1

user-specific computation and intelligence at the edge while ensuring energy and
natural resource usage efficiency.

Massive
Broadband

Massive
IoT

Critical
IoT

Bandwidth

Coverage Latency

Figure 1.1: 5G and IoT. The three axes of applications and their main characteristics.

In this context, 5G is a key driver of IoT’s proliferation. This fifth generation
technology standard has been designed in such a way that offers a programmable
and flexible infrastructure, allowing different networks (e.g., IoT, cellular, vehicular,
etc.) to share the same access network. In doing so, 5G supports higher bandwidth
speeds, increased reliability and availability, lower latency and better coverage,
while reducing both CAPEX and OPEX. Fig. 1.1 depicts the three main categories of
applications that 5G supports:

• Massive Broadband: refers to the applications requiring important band-
width capabilities. According to [Fre20], mobility traffic is expected to reach
164 EB per month in 2025, 76% of it will be generated by video streaming. In
this regard, 8K virtual reality applications may require up to 2.35 Gbps of
bandwidth [Man+17].

• Critical IoT: this segment includes critical applications where low latency is
vital. For example, augmented reality applications require latency lower than
20 ms to ensure a satisfactory user’s Quality of Experience (QoE) [YLL15].
Moreover, smart grid applications require even lower latency, up to 3 ms
[Sch+17].

• Massive IoT: refers to the applications which are less latency and bandwidth
demanding but require a huge volume of devices with excellent coverage. In
smart city applications for instance, the number of devices can reach 1 million
per km2 in high density areas [ITU17].

2 Chapter 1 Introduction

It is worth noting that these requirements will be even more stringent for the 6th
generation of cellular networks. In [Tal+20], it is claimed that 6G networks can
reach: i) peak data traffic greater than 1 Tb/s; ii) connectivity density in the order
of 10 million devices per km2; and iii) sub-ms latency.

For years, Cloud infrastructures have driven the IoT growth, providing increased
scalability, enhanced performance and cost-effective resources. Nevertheless, the
emergence of the aforementioned new IoT use cases poses several challenges that
today’s Cloud infrastructures, despite their agility, struggle to overcome. With its
data centers, often deployed far away from end users, the Cloud cannot meet the
stringent requirements in terms of network latency and bandwidth. Indeed, the
expected 10 µs of latency for 6G networks [Zha+19], alongside the physical limit
set by the speed of light in vacuum, will necessitate the deployment of application
within a radius of approximately 3 km from end users.

In this context, Fog computing [Bon+12] has emerged as a novel concept to cope
with Cloud’s shortcomings. The idea behind the Fog is to extend the Cloud towards
the end users, relying on geographically distributed and heterogeneous devices,
such as servers, base-stations, routers, switches, etc. This augmented architecture
provides nearby resources, performing analytics tasks and data storage. They are
deployed between end devices and centralized services hosted by the Cloud. In
doing so, a decentralized processing will be supported while taking advantage of
the Cloud utilities and virtualization technology. It is straightforward to see that,
the establishment of such a smart decentralized processing will ensure enhanced
network performance, lower operational costs, alleviated network congestion and
improved survivability.

Despite its multiple advantages, the heterogeneity and the distribution of Fog in-
frastructure raise new challenges in terms of resources and IoT application lifecycle
management. Specifically, how to optimize the provisioning of IoT application
modules on Fog devices to compose an application workflow, while meeting non-
functional requirements in terms of quality of service (QoS), performance and low
latency. Indeed, selecting optimal Fog resources becomes increasingly challeng-
ing when considering the uncertainty of the underlying Fog environment. In this
perspective, orchestration is the cornerstone that will enable the exploitation of
Fog infrastructures and the life-cycle management of multi-component IoT applica-
tions. It is worth noting that an IoT application can be modeled as a collection of
lightweight, inter-dependent application components referred as micro-services.
This building block is responsible for the design, on-boarding and delivering of
application components that, put together, implement an end-to-end IoT service.

3

To achieve the aforementioned objectives, the orchestration in the Fog is responsible
for: i) the provisioning of IoT applications, i.e., deciding where to place each micro-
service in the infrastructure, while considering its requirements and the current state
of the underlying environment; and ii) the reconfiguration of IoT applications, i.e.,
how to adapt the placement of micro-services, when the application requirements
have changed or the infrastructure state has evolved. Note that the orchestration
is a mature subject in Cloud environments, with many proposed systems such as
Kubernetes1 and OpenStack2. However, the dynamicity, diversity and uncertainty
of Fog nodes and IoT applications make these solutions ill-suited for the Fog
environment [JHT18].

Finally, this thesis aims to deal with these orchestration challenges, providing
insights that will allow a better use of Fog infrastructures and, consequently, will
leverage the deployment of innovative IoT applications.

Main contributions

The main contributions of this thesis are summarized as follows:

1. Initially, we conduct a survey of orchestration solutions in the literature. We
provide an in-depth overview of existing Fog architectures, describing their
characteristics and comparing their ability to manage the Fog environment.
Moreover, we study state-of-the-art orchestration approaches, detailing how
they deal with the provisioning and reconfiguration of IoT applications in the
Fog.

2. We implement FITOR, an orchestration system which builds a realistic Fog
environment, while offering efficient orchestration mechanisms. Our frame-
work provides an effective representation of the Fog infrastructure in terms of
topology, resources usage, circulating flows, etc. In this perspective, FITOR
leverages this accurate view to implement powerful Fog service orchestration
strategies. FITOR was rewarded with a "best student paper" at [Don+18] and
presented as a demo in [Don+19a].

3. We study the provisioning of IoT applications in Fog infrastructures. To deal
with the provisioning problem, we propose two novel strategies: O-FSP and
GO-FSP.

1Kubernetes. Available at: https://kubernetes.io/
2OpenStack. Available at: https://www.openstack.org/

4 Chapter 1 Introduction

https://kubernetes.io/
https://www.openstack.org/

• O-FSP is a provisioning solution for IoT applications that optimizes the
placement of the IoT application components while considering their
requirements in terms of resources usage and QoS. O-FSP is a heuris-
tic that iteratively constructs optimized solutions for the provisioning
problem while minimizing the provisioning cost. The obtained results
show that O-FSP enhances the resources usage and the acceptance rate
of IoT applications compared with the related strategies. This work was
published at IEEE CCNC 2019 [Don+19b].

• We extend and put forward GO-FSP, a Greedy Randomized Adaptive
Search Procedure (GRASP)-based approach to the provisioning problem.
GO-FSP bears two optimization objectives to fulfill QoS requirements
of IoT applications. Indeed, it places IoT application components while
jointly minimizing the provisioning cost and ensuring a satisfactory load
share between Fog nodes. GO-FSP was presented at IEEE ICC 2019
[Don+19c].

4. Finally, we address the reconfiguration of IoT applications in the Fog. This
reconfiguration study was submitted as a journal version to IEEE TPDS and
is available at [Don+20].

• We evaluate a total of twelve reconfiguration strategies based on differ-
ent approaches, ranging from simple baseline strategies to sophisticated
online learning and online scheduling strategies. Through an extensive
analysis of the monitoring data, we identify the essential characteris-
tics of each strategy as well as their impact on overall performance,
which allowed us to propose substantial improvements to state-of-the
art strategies.

• Each of these strategies is studied in two distinct scenarios with different
levels of information. In the first scenario, we show how strategies can
take advantage of faithful application information provided by develop-
ers to describe their resource requirements. In the second scenario, on
the other hand, we assess the performance of the strategies when this
information is inaccurate.

• We demonstrate that although off-the-shelf learning strategies are ineffec-
tive, reactive and greedy but informed strategies can achieve very good
performance, even when compared to the situation where one would
have access to a perfect and clairvoyant knowledge on the evolution in
resource usage of each application. Surprisingly, these strategies perform
well even in a scenario with inaccurate information.

5

Thesis outline

This thesis is composed of four main parts:

1. In Part I, we give insights into the orchestration problem studied in this thesis.
Chapter 2 explains the context of this thesis, detailing the Fog environment
and its main challenges. In Chapter 3, we give an overview of the existing
architectures and orchestration approaches proposed in the context of Fog.
Finally, Chapter 4 lays the foundations for the rest of the thesis, presenting the
characteristics of the Fog infrastructure, IoT applications and the orchestration
problem.

2. Part II is dedicated to the construction of the framework needed to effectively
study the orchestration problem. In Chapter 5, we envision an architecture for
the orchestration of IoT applications in the Fog, called FITOR. This architec-
ture is built making use of the Calvin IoT framework, described in Chapter 6.
In Chapter 7, we detail the components used to build FITOR, along with the
modifications made to make Calvin Fog friendly. At the end of this part, our
methodology is presented in Chapter 8.

3. We study the provisioning of IoT applications in the Fog at Part III. Chapter 9
introduces the provisioning problem along with its formulation. In Chapter 10,
we propose O-FSP, an iterative heuristic to solve the provisioning problem
which optimizes the provisioning cost, while considering the application
requirements. In Chapter 11, we extend this work, introducing GO-FSP

that not only minimizes the cost but also improves the load sharing of the
infrastructure nodes.

4. Finally, Part IV is devoted to the reconfiguration problem. Chapter 12 de-
tails the reconfiguration problem addressed in this thesis. This problem is
evaluated using two different scenarios. In Chapter 13, a well-informed envi-
ronment is considered, in which the reconfiguration strategies have access to
accurate information about applications and the environment. On the other
hand, a less informed scenario is studied at in Chapter 14.

Finally, in Chapter 15, we summarize the main contributions and present our
ongoing and future work in the field.

6 Chapter 1 Introduction

Part I

The Orchestration of IoT Application in the
Fog: Definition and Challenges

2Context

2.1 Fog Definition and Motivations

To cope with IoT applications’ evolution, Fog computing has emerged as an alterna-
tive to avoid the burden of data-centers and network in Cloud infrastructures. By
extending the Cloud towards the edge of the network, Fog is capable of supporting
the geographically distributed, latency sensitive or bandwidth intensive IoT appli-
cations. The term Fog was first proposed by Cisco [Bon+12], and its name comes
directly from nature, as the fog can be seen as clouds near the ground. Several
researches have defined Fog computing in similar but complementary ways, such
as:

• "Fog computing is a scenario where a huge number of heterogeneous (wireless and
sometimes autonomous) ubiquitous and decentralised communicate and potentially
cooperate among them and with the network to perform storage and processing
tasks without the intervention of third-parties. These tasks can be for supporting
basic network functions or new services and applications that run in a sandboxed
environment. Users leasing part of their devices to host these services get incentives
for doing so." [VR14]

• "Fog Computing is a highly virtualized platform that provides compute, storage, and
networking services between end devices and traditional Cloud Computing Data
Centers, typically, but not exclusively located at the edge of network." [Bon+12]

• "Fog computing is a layered model for enabling ubiquitous access to a shared con-
tinuum of scalable computing resources. The model the deployment of distributed,
latency-aware applications and services, and consists of fog nodes (physical or virtual),
residing between smart end-devices and centralized (cloud) services." [Ior+18]

Fog computing is mainly a virtualized platform which provides computing, storage
and network services anywhere along the continuum from Cloud to end users.
Fig. 2.1 illustrates a conventional Fog environment, which is divided into three
main layers:

9

Fo
g Enterprise

Services
Caching Content

Delivery NetworkMobile Services

C
lo

ud

Storage Servers
Database

Virtual Machine

Smart Home

En
d

D
ev

ic
es Industry 4.0 Smart Vehicles Smart City

5G5G

Figure 2.1: Illustration of the Fog environment where different domains share resources in
the spectrum between End Devices and the Cloud to implement their business
logic.

• End Devices: responsible for sensing and acting in the surrounding environ-
ment, they may scale to millions of components. Some examples are cited
hereafter: temperature sensors, humidity sensors, smart lamps, locks, GPS,
etc.

• Fog: it is a broad layer, including all the infrastructure nodes between end
devices and the Cloud. Heterogeneity is a key attribute of the Fog which em-
braces a great variety of devices. In fact any equipment with some computing
capability can be used, some examples are cited hereafter:

– Computing devices: servers, PCs, raspberry PIs, etc.

– Networking devices: gateways, routers, switches, SDN controllers, base
stations, etc.

– Mobile devices: vehicles, smartphones, laptops, tablets, etc.

• Cloud: traditional data-centers provide a last layer of processing to applica-
tions which need powerful computing and storage resources.

10 Chapter 2 Context

In Fig. 2.1, we can see some characteristics that emerge from this environment,
making possible the deployment of new types of applications, such as:

• Low latency: many applications, belonging to the Industry 4.0 and smart
vehicle domains, may require very low latency to achieve a satisfactory execu-
tion.

• Location awareness: the geographic location of IoT sensors is important for
applications to understand the outer environment in which they are involved.

• Geographic distribution: is related to the distribution of IoT sensors in the
environment, such as Smart City applications.

• Mobility: should be considered since many sensors and applications may be
linked to a given mobility pattern of human beings.

• Large scale: Fog is known by its scale as it may aggregate a huge amount of
IoT devices, geographically distributed over large areas, such as a city.

• Wireless communications: widely present at the edge of the network to
communicate with IoT devices.

• Heterogeneity: is consequence of the great variety of devices present in the
Fog.

• Virtualization: applications leverage a virtualization layer to deal with the
heterogeneity of the infrastructure.

2.1.1 Motivations

The use of Cloud infrastructures by IoT applications brings several benefits, such
as high amount of computing and storage resources, scalability, flexibility and
availability. However, the Cloud is ill-suited to applications with stringent require-
ments. For instance, in the Internet of Vehicles domain, it is estimated that a single
vehicle can generate approximatively 4000 GB of data every day which needs to
be analyzed. Moreover, Lidar sensors and cameras may require up to 70 Mbps of
bandwidth [Xu+18]. It is clear that uploading this huge amount of data to a central-
ized Cloud for further processing is not possible, due to the network infrastructure
required. This kind of application can take advantage of a distributed environment,
such as Vehicular Fog Computing [Hou+16b], keeping processing close to data
generation and improving hence its performance and reliability.

2.1 Fog Definition and Motivations 11

In the remainder of this section, we discuss how applications can take advantage of
Fog characteristics to provide better quality of service to end users.

Scalability

A major challenge to cope with in the context of IoT is related to the mobility pattern
of people in their daily life. As a consequence of this movement, the use of resources
by applications can vary significantly. However, the large number of nodes spread
out geographically allows both horizontal (through the use of more nodes) and
vertical (using more powerful Fog nodes) scalability, making the Fog capable of
handling this variation in resource usage.

Heterogeneity

Another relevant feature of the Fog is its heterogeneity in terms of nodes. Likewise,
the capabilities of the Fog nodes are different. Therefore, an application with
specific needs, such as storage or graphics processing, can select the best nodes in
the infrastructure that meet its needs.

Interaction cycles

According to [Gia+15], perception-action cycles are important for Fog applications.
These cycles correspond to the information flow in the application, for example, a
sensor sending data to the Cloud. Each cycle has different requirements in terms of
delays. A proper placement of application components is important to meet the
requirements of these interaction cycles.

Mobility

Many IoT applications, such as those involving vehicles or mobile phones, for exam-
ple, are nomadic. A user who is walking around the city won’t accept a degradation
of his quality of experience due to connectivity issues. The geo-distribution of Fog
nodes can overcome this challenge by providing nearby network and computing
resources.

12 Chapter 2 Context

Security and privacy

The pervasive component of IoT devices may lead to the collection of sensitive
and confidential data about users. This data needs to be correctly handled by the
entities, guaranteeing the protection and privacy of data, as stated, for example,
in the European Union’s GDPR (General Data Protection Regulation). Despite
all security challenges that the Fog environment imposes, applications can rely
on nearby Fog nodes to process the data, and thus, avoid privacy issues when
uploading sensible information to third-party Clouds.

Energy

The energy consumption of computing facilities induces a large carbon footprint.
The use of distributed infrastructures, such as the Fog, can consume up to 14%
less energy than fully centralized architectures [AOL19]. In addition, significant
energy savings can be made by running an application locally. In [Jal+16], the
authors identify classes of applications that can benefit, from an energy point of
view, from the Fog computing. Namely, it includes applications which generate
data continuously, such as video surveillance applications.

2.1.2 Initiatives

Fog computing is an active research topic that attracted both academic and indus-
trial attention in recent years, with a corpus of literature consisting of thousands
of papers. Lately, standardization initiatives have emerged aiming at defining a
common language for the field. This section summarizes them.

OpenFog

On February, 2017, the OpenFog Consortium released its first version of reference
architecture for Fog computing [Con17]. In their 162-pages document, they present
a mid-to-high level architecture view for Fog nodes and networks. The document
describes the infrastructure needed to build Fog as a Service (FaaS) platforms. FaaS
includes Infrastructure, Platform and Software as a Service, providing the basic
elements on which applications can be developed. The architecture relies on eight
core pillars driving the implementation:

• Security: handles all security and privacy aspects, such as isolation, access
control, encryption, etc.

2.1 Fog Definition and Motivations 13

• Scalability: addresses the dynamic aspects related to the Fog deployment. It
includes the scalability of Fog nodes, software and network infrastructures
handled in a demand-driven elastic environment.

• Openness: is a crucial property of the Fog. It corresponds to the composability
and interoperability of Fog nodes from different vendors, enabling their
automatic discovery and inclusion in the system.

• Autonomy: refers to the ability to provide the designed functionality at all
levels of the infrastructure hierarchy, from the edge to the Cloud.

• Reliability, Availability and Serviceability: referred to as RAS, this building
block aims to assure a continuous delivery of the designed service in face of
external failures.

• Agility: analyzes data generated by end devices to make correct business and
operational decisions, preferably without human interaction.

• Hierarchy: splits up the system into a logical hierarchy based on functional
requirements. In doing so, each layer is responsible for the control, monitoring
and operation of its nodes.

• Programmability: enables hardware and software programmability, as well
as multi-tenancy and hardware abstraction through virtualization.

Furthermore, the OpenFog architecture description is presented according to three
hierarchical viewpoints: node, system and software:

1. Node view: at the bottom layer, the node view corresponds to all aspects that
must be addressed to bring a node to the system, such as security, manage-
ment, network, access to sensors and actuators, etc.

2. System view: this viewpoint in the middle is responsible for aggregating one
or more node views to create a platform and facilitate the Fog deployment.

3. Software view: at the top layer, this view contains application services, along
with node and system views, used to address a particular customer scenario.

Beyond that, perspectives common to the three viewpoints are presented. These
perspectives include: performance and scale aspects, security, manageability, data
analytics and multi-vendor IT resources management.

14 Chapter 2 Context

IEEE 1934

In August 2018, IEEE COM/EdgeCloud-SC committee published the document
"IEEE 1934-2018" [IEE18] which adopts the OpenFog Reference Architecture as the
official standard for Fog computing. Even though the proposed document is very
close to that issued by OpenFog community, seven changes are given in Annex.
Among them, we highlight the adoption of a new pillar of the architecture:

• Manageability: orchestration and automation are owned by this pillar, which
includes discovering nodes, provisioning services at the optimal place, man-
aging the software life-cycle, and deploying software updates.

This new management pillar reinforces the importance of orchestration and automa-
tion in the Fog architecture, required to: i) optimize the placement of application for
an enhanced resource utilization; ii) reduce traffic in the core of the network; and
iii) enable data analytics for an improved decision making.

NIST - Information Technology Laboratory

A new NIST’s (National Institute of Standards and Technology) standardization
effort saw the light of day by March 2018. As the outcome of this work, a Special
Publication 500-325, named "Fog Computing Conceptual Model" [Ior+18] was
published. The report puts forward a conceptual model of Fog/Mist computing
while detailing its relationship with the Cloud-based model for IoT.

In detail, the document highlights six essential points to distinguish Fog comput-
ing from other paradigms: i) contextual location awareness and low latency; ii)
geographical distribution; iii) heterogeneity; iv) interoperability and federation; v)
real-time interactions and vi) scalability and agility.

Moreover, the Fog’s geo-distribution raises questions related to the ownership of
Fog nodes. To answer these questions, NIST defines different deployment models
for Fog nodes:

• Private Fog node: provisioned for exclusive use by a single organization.

• Community Fog node: provisioned for use by a specific community of con-
sumers with shared interests.

• Public Fog node: provisioned for open use by the general public.

2.1 Fog Definition and Motivations 15

• Hybrid Fog node: it is a composition of two or more deployment models
(private, community or public). They are bounded together to enable data
and application portability.

2.1.3 Use cases

In this section, we describe some of the potential applications that can benefit from
the flexibility offered by the Fog environment.

Smart building

Most cities in the world have a dense concentration of buildings, which gather
a large amount of people in enclosed areas. In such environments, it is essential
to rapidly and effectively address any emergency situation, such as a fire. Smart
buildings can handle these situations by providing contextual data through their
sensors and actuators.

Figure 2.2: Example of a smart building application for fire combat.

To illustrate this scenario, Fig. 2.2 presents the map of an intelligent building, which
contains a set of sensors, such as smart lamps, bells, cameras, screens, etc. The
process of dealing with an emergency can be divided into three stages:

1. Identify the emergency: it is important to identify a potential fire as soon
as possible. To achieve this objective, smoke or temperature sensors can be

16 Chapter 2 Context

used to locate the fire. In the absence of these sensors, cameras can be used to
identify it.

2. Protect people: as soon the fire is detected, the first step is to ensure the safety
of people. To do so, the system uses presence sensors and/or cameras to
identify where people are. After that, it calculates an evacuation plan, finding
the safest route to the available exits. The system then relies on smart lamps
and screens to indicate the path. Additionally, it can use smart locks to avoid
dangerous rooms that people may unconsciously enter. It is important to note
that several requirements in terms of latency, bandwidth and processing are
necessary at this stage.

3. Combat and emergency control: once the building is evacuated, the system
can proceed to fight the fire, isolating it or using the available infrastructure
to indicate the fire location to the firefighters.

Note that the blocks of the system must perform independently of the connection
to the outside world, hence, relying on local components to run. Besides, it is
straightforward to see that such a fire combat application has stringent require-
ments in terms of processing and memory (calculating evacuation plan, processing
video from cameras, etc.), privacy (personal data from cameras), network latency
(acting on sensors and actuators) and bandwidth (collecting data from cameras,
sensors, etc.). In this context, Fog computing can provide the necessary resources to
implement the application, considering all these critical requirements.

Smart cities

Making use of data generated by IoT devices will undeniably improve the quality
of life for citizens around the world [Gha+17; Per+17]. Hereafter, some examples of
applications offering new value-added services for cities.

In [Tan+17], the authors present a smart pipeline monitoring system. The monitor-
ing system is able to detect potential hazardous events that could lead to the failure
of the pipelines. Its implementation is based on a multi-layer monitoring system,
which rests on a Fog environment. Edge devices are responsible for detecting distur-
bances in the pipeline, such as leakage or corrosion, while intermediate computing
nodes can detect higher level events, such as damaged pipeline or approaching
fire.

In [Brz+16] a levee monitoring use case is proposed. The idea behind this work
is to distribute the analysis of the data collected. Initially, the measurement layer

2.1 Fog Definition and Motivations 17

reads information via sensor networks implanted in the levee. Then, the telemetry
stations collect and process this data, generating flood alert warnings if necessary.
By running it in a distributed manner, the system can perform a local threat level
assessment even if Internet connectivity is lost.

The authors in [Per+17] propose a smart waste management system, consisting of
the collection, transportation, processing, disposal and monitoring of waste. Proper
waste management can bring not only financial, but also environmental benefits.
To implement this system, garbage cans must be equipped with low cost passive
sensors. These sensors, unable to send the data directly, will rely on nearby Fog
nodes to collect, process and forward it. Subsequently, the gathered information is
used to optimize the routes of the garbage trucks. Finally, this data can be used by
the recycling companies to track the amount of garbage that reaches their plants.

Industry 4.0

The industry is undergoing its fourth revolution, which focuses on the end-to-
end digitization of the production chain [GVS16]. The so-called Industry 4.0 is
possible thanks to the use of Cyber-Physical System (CPS) and Internet of Things
[Jaz14]. The CPS connects physical machines with computing and communication
infrastructures, enabling hence their monitoring, control and automation. On the
other hand, IoT sensors collect contextual data that can be used by algorithms to
improve productivity.

Many activities belonging to the manufacturing industry can benefit from the
Industry 4.0 paradigm. For example, the monitoring of cooling systems in a plant is
vital to ensure its smooth operation. By using sensors in all its pipes and pumps, we
can identify possible hazards, generate warning alerts and stop the production line.
Yet, preventive maintenance can be performed when the cooling system deviates
from its normal behavior, reducing hence machine downtime.

Nevertheless, several challenges arise in Industry 4.0 [BS15], such as: i) mixed
criticality: the automation system may contain real and non-real time functional-
ity; ii) low latency: short delays are vital for industrial processes. According to
[Pul+19], smart factories may require latency ranging from 250 µs to 10 ms; iii)
ultra reliability: the industrial environment has strict availability and reliability
constraints; iv) high safety: functional safety is essential for many industries, such
as oil and gas, nuclear plants; and v) high security: sensible collected data in
industrial environment must be protected against external access.

18 Chapter 2 Context

In this context, Fog computing is a key enabler of Industry 4.0. Fog’s flexibility,
providing resources from the extreme edge until the Cloud, makes it able to deal
with industrial challenges. For instance, a company can incorporate private re-
sources into the Fog environment to have a low and predictable latency, in a safe
and controllable infrastructure.

Smart transportation

The increase of traffic congestion is probably one of the most important challenges in
large metropolitan areas nowadays. As the population is concentrated in big cities
alongside a slowly evolving infrastructure, traffic congestion worsens, bringing
new problems, such as accidents, air pollution, stress, etc.

In this context, VANET (Vehicular Ad-hoc NETworks) [HL09] offers new opportu-
nities to implement ITS (Intelligent Transportation Systems), connecting vehicles
and infrastructures together through wireless communications. Additionally, Fog
computing can be used to meet the special requirements in terms of application
mobility, location awareness and low latency [KCT16].

Figure 2.3: Smart transportation

Fig. 2.3 illustrates a layered view of the
transportation problem, where differ-
ent amounts of information are avail-
able at each level. In the bottom layer,
for example, a vehicle can use its own
sensors to implement a parking assist
application, without communicating
with external elements. However, in
the street view of the problem, a TLC
(Traffic Light Control) application can
be implemented, as defined by ETSI
[Sys18]. Thanks to this application, ve-
hicles and road side units can collabo-
rate to avoid collisions, by controlling
the traffic lights in the intersection area.
The extreme edge can provide the re-
sources needed to implement this appli-
cation. Considering the neighborhood,
hazardous event notification [Sys09] is
another value-added service for smart
transportation. In this case, the infras-
tructure in the edge is used to: i) identify the pothole; ii) calculate a possible

2.1 Fog Definition and Motivations 19

alternative path; and iii) notify other vehicles about the incident. Finally, in the
top layer, long-term analysis of the traffic pattern can be made to predict possible
problems and thus, implement better public policies.

Smart grid

Electricity generation is responsible for emitting large amounts of CO2 into the
atmosphere. Coal, gas and oil accounted for 64% of the electricity generation mix
in 2018 [IEA20]. Traditionally, energy is generated in central power plants, but
alternative models are possible, such as the use of solar panels in households. In
this context, Smart Grid [Fan+12] is essential, as it allows a better utilization of
renewable energy generated by customers.

A Smart Grid infrastructure contains not only the power generators, but also, energy
transformers, sensors and actuators. The system must support the bidirectional flow
of electricity and adapt it following the usage pattern. For example, a house can
supply power to the grid during work hours, but it must receive extra power during
peak hours. The advantages of Smart Grids go beyond reducing greenhouse gas
emissions, including: i) increase reliability and resilience to disruptions; ii) optimize
the use of power plants and avoid the construction of new facilities; iii) automate
maintenance and operation; and iv) reduce customers’ energy consumption.

Despite its numerous benefits, many challenges arise from using Smart Grids.
Specifically, autonomy and resilience are crucial to avoid power outages in critical
environments, such as hospitals. However, its large scale and geo-distributed
infrastructure makes the problem even harder. In addition, privacy is relevant
in this context, since customer data is collected to optimize energy consumption.
Therefore, the use of a centralized control unity in the Cloud is not convenient, due
to the stringent requirement in terms of latency (3 ms to 20 ms) [Sch+17]. In this
context, Fog computing is a prominent solution which can meet the requirements
necessary for the implementation of Smart Grids, in terms of reduced latency,
increased privacy and locality [OO16; AV16].

2.2 Fog Architecture Overview

As detailed in previous sections, Fog computing offers new opportunities for next
generation networks. However, despite its multiple advantages, it brings new
challenges to deal with. In this section, we give insights into a high level Fog archi-
tecture based on [Bon+14], responsible for managing this complex and distributed
infrastructure.

20 Chapter 2 Context

Infrastructure

Zone	CZone	BZone	A

IoT	Services
Verticals

Cloud

Orchestration
Layer

Smart Building

Smart City

Smart Grid

Industry 4.0
...

Monitor

Analyze Plan

Execute

Knowledge

Orchestration API

Resource Management API

Abstraction	Layer

Figure 2.4: Fog architecture

Fig. 2.4 depicts the main layers of the architecture, together with the interfaces
between them. The upper layer encompasses the different IoT services verticals.
These verticals will potentially share the same underlying infrastructure; for this
reason, it is important to provide efficient resource management, isolating and
preventing applications from interfering in the execution of others. Moreover, the
orchestration layer needs to expose a uniform and generic interface to the verticals,
facilitating the use of the Fog landscape.

The orchestration layer is responsible for providing a dynamic, policy-based life-
cycle management of IoT services. The orchestrator receives incoming IoT services
requests from verticals; each service is characterized by a set of requirements
in terms of resources, location and QoS necessary for its execution. Together
with the information about the infrastructure, the orchestrator must provide the
appropriate resources to comply with the requested policy. Note that, despite being
illustrated as a single entity, the orchestration layer may be as distributed as the Fog
infrastructure.

The complexity induced by the large number of pervasive IoT devices rapidly
surpasses the human capacity to handle it. Therefore, autonomy is an important
characteristic of the orchestration layer. An autonomic system is discerned by its
capacity of self-configuration, self-optimization, self-healing and self-protection
[KC03]. In Fog architecture, the MAPE-K loop concept (Map, Analyze, Plan, Execute
and Knowledge) should be adopted to implement an autonomic orchestrator. The

2.2 Fog Architecture Overview 21

MAPE-K loop is presented in Fig. 2.4, and each phase, adapted to the Fog context,
is detailed hereafter:

• Monitor: collects all information about the Fog infrastructure and the perfor-
mance of applications.

• Analyze: uses the data from the monitor phase to extract relevant statistics
about the state of resources and applications.

• Plan: the output of the analysis phase and the requirements for IoT applica-
tions are used jointly by the planning phase to guarantee the allocation of the
required resources for each vertical.

• Execute: this phase is responsible for reinforcing the implementation of the
plan created in the previous phase.

Finally, the bottom layer in Fig. 2.4 presents the Fog infrastructure, which is dis-
tributed and heterogeneous by nature. The nodes range from simple and low-cost
devices, such as Arduino [Ard] or Raspberry PI [Ras] boards, to set-top boxes,
access points, edge routers, high-end servers, etc. These devices contain a varying
amount of memory and storage, as well as different processors, operational systems
and software stacks. Consequently, the resulting environment is composed of a
vast hardware and software diversity. In this context, an abstraction layer is vital
to make the Fog environment easily exploitable.

This high-level architecture can be translated into several implementations, depend-
ing on the physical constraints, applications and infrastructure. More details can be
found in the related work and FITOR chapters (Chapters 3 and 5, respectively).

2.3 Challenges in Fog Architectures

Several studies highlight the challenges of Fog environments [VR14; Mou+18;
MSW18; Nah+18; Pul+19]. The latter are related to various aspects, such as in-
frastructure, application, algorithms and platforms. In this section, we summarize
the most relevant challenges that need to be addressed to achieve an efficient
exploitation of the Fog.

22 Chapter 2 Context

2.3.1 Heterogeneity

The diversity of components is one of the main characteristics of the Fog infras-
tructure. Heterogeneity is a characteristic of the endpoints and Fog nodes. For the
endpoints, different types of sensors and actuators are available, such as cameras,
smart locks, temperature sensors, humidity meters and motion detectors. Likewise,
Fog nodes may be heterogeneous, including servers, base stations, switches, routers,
smart phones, etc. Consequently, applications running on the infrastructure must
deal with such a diversity.

To deal with the endpoints’ heterogeneity, semantic ontology is an important tool.
Ontology describes the category, property and relationship between endpoints,
facilitating their use by application developers. For example, given a security
application aiming to take photos of a specific room, instead of directly accessing the
camera in the room, the latter may require any recording-capable device (webcam,
smartphones, tablets, etc.) available. This type of request can significantly improve
the robustness of the application, but its implementation can be more complex, due
to the heterogeneity and the different protocols used in the communication between
the end-devices.

Interoperability is another important challenge posed by heterogeneity in the Fog.
The variety of technologies used by the endpoints, such as Bluetooth, Wi-Fi, Zigbee,
etc., makes the communication even more difficult. Therefore, an abstraction layer
is necessary, capable of standardizing the data exchange between applications
and endpoints. Moreover, the hardware and software heterogeneity of Fog nodes
requires an additional virtualization layer to enable the application execution. In
this context, technologies such as virtual machines or containers can encapsulate all
the necessary libraries and dependencies to run applications.

Finally, the limited capacity of the devices in terms of compute, memory and
storage poses challenges. Since resources are shared, often only a partial amount
of the total resources is available to run the applications. Consider the case of
a network switch or router at the edge of the network. Its main function is to
provide connectivity to the rest of the network. Although a percentage of its spare
resources can be used for other purposes, applications running on it should not
impact its main functionality. To avoid such an impact, it is important to implement
an adequate orchestration mechanism, capable of efficiently placing and managing
the application components.

2.3 Challenges in Fog Architectures 23

2.3.2 Mobility and scale

Part of the Fog environment is mobile, as it depends on the movement pattern of
the humans using the devices. Some examples of these Fog nodes include: smart
phones, wearable devices, connected cars or laptops. In addition, these devices
could be unavailable due to power outage or battery depletion. As a result, the
management entity that controls the Fog network must also take into account the
availability, battery and movement patterns of nodes.

Moreover, the mobility, coupled with the scalability of the Fog environment, raises
questions about the discovery of nodes and their federation. The former is related
to the ability to locate and automatically insert new nodes in the environment.
The latter is about the composition of nodes in self-organized communities to
facilitate the management of the platform. In this context, good organization and
discoverability are important to keep the complexity of the system under control.

Some of these challenges have already been addressed in the context of MANET
(Mobile Ad-hoc Networks) and VANET (Vehicular Ad-hoc Networks) networks.
Some authors [ElS+18; Fan+17; KCT16] propose the union of MANET and VANET
with Fog and Edge computing, in order to benefit from Fog and mobile networks.
Despite these works, the mobility and scale remain open challenges in the field.

2.3.3 Orchestration

The orchestration is responsible for the life-cycle management of applications run-
ning on the Fog. The challenge lies in discovering, deploying, configuring and
maintaining the Fog nodes, which are generally managed by different entities.
Furthermore, the orchestration must also consider the application perspective,
meeting both functional and non-functional requirements to provide a good service
experience for end users.

In this direction, the locality of Fog nodes can be explored to implement a more
reliable system, which adapts and eliminates the need for a central management
entity. P2P (peer-to-peer) systems, for example, can provide interesting insights on
how to build, manage and integrate such environments in the Fog.

Another relevant issue that the orchestration must address is fault management. In
this large scale environment, the probability of failure of a single node is quite high.
Various reasons can cause failures, such as hardware problems, software incom-
patibility, user activity, mobility, connectivity, battery, etc. Therefore, monitoring

24 Chapter 2 Context

the Fog nodes is vital, not only to keep track of active nodes, but also to know the
availability of resources (CPU, RAM, etc.) on Fog nodes.

The orchestration is also responsible for ensuring a high quality of service for end
users. To do so, it is mandatory to establish an SLA (Service Level Agreement)
between the infrastructure owner and the application developer. Defining the
parameters to be considered when describing an SLA is yet another issue. Beyond
the definition of a guideline that developers can use to describe the desired QoS for
their applications, the orchestrator must be able to guarantee this SLA through the
multi-layer, multi-owner, distributed and heterogeneous Fog environment.

Finally, we identify two main phases in the application life-cycle management, the
provisioning and the reconfiguration. The provisioning is responsible for select-
ing the best nodes in the Fog infrastructure to run the applications. This procedure
must address the application requirements and the objectives of the infrastructure
owner. Despite the latest research efforts, scenarios that take into account several
objectives (e.g. cost, latency, bandwidth, etc.) are not sufficiently investigated in
the literature. In addition, the reconfiguration problem aims to adapt the initial
placement of applications to changes in infrastructure or application needs. These
changes include, for example, nodes entering/leaving the system or peaks load
caused by more end users using the application. To solve these challenges, the
orchestration system must be able to scale or reconfigure the applications. Although
many studies address these issues in other areas, a comprehensive approach to the
Fog is still needed.

2.3.4 Security and privacy

In [KS18; YQL15], authors point out the security and privacy concerns in IoT envi-
ronments. These challenges are even greater in this multi-ownership environment,
which can include: i) end users who provide their private nodes to reduce cost or
improve privacy; ii) Internet service providers which control home and cellular
bases stations; iii) Cloud providers which supply sufficient and powerful resources
for applications. This joint ownership and flexibility of the Fog complicate the
security and privacy aspects of the system.

Security is required in each component of a Fog infrastructure. For instance, Fog
nodes at the edge of the network usually use wireless communications, which
may be exposed to sniffing or jamming attacks. Applications must use trusted
nodes that do not compromise the implemented functionality. Additionally, users
must be authenticated before accessing the application. All of these problems must

2.3 Challenges in Fog Architectures 25

be addressed considering the heterogeneity, scale and constraints in terms of IT
resources at different Fog nodes.

The widespread presence of sensors that collect user data, potentially sensitive,
raises major privacy concerns: i) Data privacy: applications can offload user data
processing, which must be done at trusted nodes and with appropriate encryption;
and ii) Location privacy: the location is a sensitive information, widely available
on modern devices, such as smartphones and smart-watches. This data must
be protected to avoid putting people in dangerous situations, such as robbery or
kidnapping.

In such scenarios, it is clear that, to ensure user privacy, intelligent privacy mecha-
nisms must be implemented, considering all the characteristics of the IoT and Fog
environments.

2.3.5 Application modeling

IoT and Fog infrastructures offer opportunities for developers to implement new
applications to end users. However, to take full advantage of the environment, new
programming models must be developed to ease the modeling of applications in
the Fog.

In this sense, micro-service architecture is a promising technique for the develop-
ment of IoT applications. By dividing into small, self-contained and independent
modules, applications can be easily scaled to handle a large number of end users.
Moreover, availability can be guaranteed by deploying the same micro-service on
different infrastructure nodes.

Despite the potential benefits of the micro-service architecture, its adoption raises
several challenges. Ideally, micro-services are stateless to facilitate their deployment
and scalability. However, many services require saving the state, whose admin-
istration in a highly unstable and volatile environment, such as the Fog, may be
complicated.

Finally, as the Fog environment is extremely heterogeneous, we need a unified
language to describe the application requirements and SLAs. Developers must
be capable of describing their needs in terms of IT resources (CPU, RAM, storage,
libraries, etc.) and network (latency, bandwidth, error rate, etc.). Furthermore, the
application must be able to provide a feedback on its current performance, and
possibly, require new resources to respond to some peak usage in the application.

26 Chapter 2 Context

2.4 Scope of this Thesis

In Section 2.3, we gave an overview of the main challenges related to the use
of Fog environments. In this thesis, we focus our research on the study of the
orchestration of IoT applications in a Fog environment. Nevertheless, the term
"orchestration" is generic and can include many aspects of the lifecycle management
of IoT applications, such as testing, version or release management. In this work,
we address two aspects of the orchestration: provisioning and reconfiguration of
IoT applications.

The first aspect is the provisioning of applications in the environment. In this
context, we intend to answer the following question: "Where to efficiently place each
component of an IoT application on the available Fog infrastructure, while considering ap-
plication’s requirements and the capacity of the infrastructure?" Answering this question
requires defining which parameters are important to consider when describing IoT
applications, along with characteristics and objectives on the infrastructure side.

The reconfiguration problem arises once applications are provisioned and are
running on the infrastructure. We must adapt the placement to guarantee a good
quality of service, even when the application or infrastructure changes. This leads
to new challenges which we address in this thesis, such as: i) defining the behavior
of applications, i.e., the evolution of application load; ii) defining the satisfaction
(utility) of running applications; and iii) choosing the reconfiguration mechanism
to be adopted (migration, scale in/out, up/down).

2.4 Scope of this Thesis 27

3Related Work

In this chapter, we give an in-depth overview of existing Fog architectures, describ-
ing their characteristics and comparing their ability to manage the Fog environment.
Moreover, we study orchestration approaches proposed in the literature, detailing
how they deal with the provisioning and reconfiguration of IoT applications in the
Fog.

3.1 Overview of Fog Architectures

In this section, we give an overview of the existing Fog architectures and platforms.
Initially, we describe the criteria used to classify the available platforms, while
briefly describing each proposal.

3.1.1 Classification

The following parameters are used to classify and compare the Fog architectures
proposed in the literature, detailed in Table 3.1:

• Architecture: describes the number of tiers into which the Fog environment
is divided. Each layer groups nodes with similar characteristics. Also, this
item details the architecture target: general, for any type of application, or
application specific, if a domain is specified (medical, smart city, etc.).

• Prototype: whether the architecture is implemented, or at least, a prototype
is provided to validate the proposed architecture.

• Heterogeneity: describes whether the proposal is able to handle the infras-
tructure. More precisely, each proposal describes its solution with different
details, e.g. containers, VMs, or simply an abstraction layer.

• Monitoring: defines whether a monitoring solution is supported by the archi-
tecture to give a deep insight into the infrastructure.

29

• QoS: sets out whether the desired QoS is specified, in some level of detail,
for IoT applications. Note that we made no distinction in the level of detail
available to describe the QoS.

• Mobility: describes the capacity of the proposed architecture to handle user
mobility.

• Reconfiguration: describes the system’s ability to evolve over time, either by
scaling resources or migrating applications.

3.1.2 Comparison

In [Yi+15], a 3-layer architecture is presented, composed of user, Fog and Cloud
layers. The characteristics of the main components of the proposed Fog architecture
are discussed, such as System Monitor, Resource/Offloading Management, Authen-
tication and Authorization. However, no details on the actual implementation are
given. Unlike most works in the field [Bri+17; Yan+16; Wan+18; Sau+16; Hon+13;
Ran], the authors claim that VMs are more adapted than containers as virtualiza-
tion technology, because they can host different types of guest operating systems.
A small scale prototype based on OpenStack and Amazon EC2 is implemented.
As an evaluation, the response time of a simple Face Recognition application is
measured, considering the case of the application running on the Fog or the Cloud
environments.

The authors in [SA16] propose a 4-layer Fog architecture composed of: i) end
devices, ii) Cloud, iii) SDN control plane; and iv) SDN data plane. The paper
introduces the concept of proxy VMs, responsible for processing the data received
from a given IoT device. The system is able to reconfigure itself and deal with
the user’s mobility. However, it does not include requirements of applications in
terms of IT or network resources. More specifically, mobility is managed by the
decomposition and/or migration of proxy VMs between different nodes in the SDN
cellular core (data plane). Simulations are performed using mobility traces of real
users, showing that the total traffic on the network core can be reduced through
dynamic VM allocation.

In [TLG16], the authors propose a hierarchical edge-cloud architecture to han-
dle workloads from mobile devices, where each tier aggregates the peak load
from lower layers. The 3-layer architecture contains: i) the mobile devices, ii) a
multi-layer, hierarchical edge; and iii) the Cloud. The proposal handles the users’
workload by: i) deciding the amount of server capacity available for each workload
and ii) selecting on which server each task will run. The results, which are based

30 Chapter 3 Related Work

Table 3.1: Comparison of Fog architectures

Architecture Heterogeneity Proto-
type

Moni-
toring QoS Mobil-

ity

Re-
con-
fig.

[Yi+15] 3-tier,
general •3 VMs •3 •3 •7 •7 •7

[SA16] 4-tier,
general •3 proxy

VMs •7 •3 •7 •3 •3
[TLG16] 3-tier,

general •7 •3 •7 •7 •7 •7

[Den+16;
Den+15]

5-tier,
general •7 •7 •7 •3 •7 •7

[SM16] 3-tier,
general •7 •7 •7 •3 •3 •7

[Tan+15;
Tan+17]

4-tier, smart
city •7 •3 •7 •7 •7 •7

[SCM18] 3-tier,
general •3abstraction

layer

•7 •3 •3 •3 •7

[Mas+16] 4-tier,
general •3 no details •7 •7 •3 •3 •7

[Kap+17] 4-tier,
general •3abstraction

layer

•7 •3 •3 •3 •7

[Yan+17] 3-tier,
general •3abstraction

layer

•7 •3 •3 •3 •3
[Bri+17] 2-tier,

general •3 containers •3 •3 •7 •7 •7

[Yan+16] 3-tier,
general •3 containers •3 •3 •3 •7 •3

[Tom+17] 3-tier,
general •3 VMs or

containers •7 •3 •3 •3 •3
[Wan+18] 3-tier,

general •3 containers •3 •3 •3 •3 •3
[Hou+16a] 3-tier,

vehicular •7 •7 •7 •7 •3 •7

[Wen+17] 3-tier,
general •7 •7 •7 •3 •7 •7

[Sau+16;
Hon+13]

3-tier,
general •3 containers •3 •3 •3 •3 •3

[Rah+18] 3-tier,
e-health •3abstraction

layer

•3 •3 •7 •3 •3
[Ran;

Xio+18]
2-tier,
general •3 containers •3 •3 •7 •7 •3

3.1 Overview of Fog Architectures 31

on a small scale prototype and a trace-based simulation, show that a hierarchical
architecture improves the completion time for tasks on heavy workloads.

In [Den+16; Den+15], the authors study the tradeoff between delay and power
consumption in a Fog environment. The proposed architecture is composed of
end users, Local Area Networks (LAN), Fog nodes, Wide Area Networks (WAN)
and the Cloud. In this system, delays are calculated following a queuing system,
which considers the traffic arrival and the service rate for each node. QoS is defined
as the maximum time allowed running each service. On the other hand, energy
consumption is calculated depending on the device: i) for Fog nodes, by a quadratic
function which takes into account the assigned workload, and ii) for the Cloud, more
energy-efficient, by a linear function which considers the CPU frequency. Finally,
they calculate the optimal allocation of services for the Fog and Cloud, which
minimizes the power consumption while guaranteeing a certain delay constraint.

A mathematical model for a 3-tier Fog architecture is presented in [SM16]. The
model characterizes the main components in a Fog environment, such as terminal
nodes, Fog devices and the Cloud. Also, service metrics are detailed in terms of
latency and energy consumption. At the end, a theoretical performance evaluation
is carried out for latency and energy. The evaluation considers different loads in
the Fog and Cloud. The results highlight the possible gain of using the resources
available in the Fog, in both service latency and energy consumption.

The papers [Tan+15; Tan+17] propose a hierarchical Fog architecture for Smart
Cities, whose focus is on smart pipeline monitoring. In this context, the layers of
Fog nodes are used to monitor different levels of the infrastructure, depending
on the latency requirements. A real prototype of pipeline monitoring system is
implemented to perform studies on response time and data traffic. Nevertheless,
being a specific architecture, the general details are not thoroughly presented.

The suitability of a Fog environment is studied in [SCM18]. In this work, the
environment is divided into three layers: terminal nodes, Fog and Cloud. The
study varies the number of terminal nodes and analyzes different metrics: i) energy
consumption, ii) latency, iii) CO2 emission; and iv) cost. In addition, the authors
discuss some aspects of Fog environments, such as monitoring, hardware abstrac-
tion, QoS and mobility. However, no prototype or details are provided on each of
these topics.

In [Mas+16], the Fog-to-cloud computing paradigm is proposed. The idea is to have
a vertical for each application that uses the Fog environment, such as vehicular,
communities, etc. In this scenario, coordinated management is necessary to organize
the different elements used by a service. This coordinated management must

32 Chapter 3 Related Work

assure the desired QoS while dealing with the heterogeneity and mobility of nodes.
Although no prototype is presented, a medical emergency scenario is analyzed,
showing the potential speedup provided by the Fog-to-cloud paradigm.

[Kap+17] presents a cooperative model for Fog systems, where edge nodes can
register themselves in the Fog platform. The architecture consists in 4-layers: device,
hub, Fog and the Cloud. The communication follows a publish/subscribe model
and a standard format for Fog messages is defined. In this architecture, the hub
layer is responsible for translating and abstracting different device technologies.
Moreover, the message contains headers to describe the desired QoS. For example,
a time sensitivity flag is used for urgent tasks, and a RAM field in the header is
used to describe the amount of memory needed to process the message.

By bringing together the OpenFog and ETSI MANO architectures, the authors in
[Yan+17] propose a theoretical architecture for Fog computing. The ETSI MANO is
extended to manage instances in the Fog domain and not just in the backend/net-
work domain. To clarify the differences between the two environments, the concept
of VF (Virtual Function) is defined. VF extends and replaces VNFs (Virtual Net-
work Functions), by running also user applications. In addition, extensions to the
ETSI MANO data modeling language are proposed, which capture the business
requirements needed in the Fog. The OpenFog architecture, on the other hand, pro-
vides vertical perspectives, such as manageability and performance/scale. These
perspectives provide monitoring, reconfiguration and mobility capabilities to the
system.

Similarly, inspired by ETSI NFV MANO reference architecture, the authors in
[Bri+17] present a 2-layer service orchestration architecture, composed of end
devices and Fog nodes. This architecture contains two main components: i) a
Fog Orchestration Agent (FOA), which runs on Fog nodes and is responsible for
managing the containerized services running locally; and ii) a Fog Orchestrator
(FO) which uses a centralized view of the environment to control IoT services and
Fog nodes. To maintain an updated view of the environment, each FOA monitors
the resources available on its Fog node. This information can be collected by the FO,
if necessary, during the orchestration phase. A prototype based on Docker Swarm
and OpenMTC technologies is implemented as a proof-of-concept.

Based on the Cloud Foundry architecture, the authors in [Yan+16] propose exten-
sions to support the orchestration of IoT applications, forming a 3-tier architecture
composed of IoT, Gateways and the Cloud. These extensions include new modules
to: i) develop and deploy IoT applications; ii) manage and monitor applications and
infrastructure; and iii) ensuring a certain QoS level, by scaling up/down a service

3.1 Overview of Fog Architectures 33

container. A prototype is implemented to analyze the total delay of a fire detection
application running in a distributed environment.

Another architecture based on SDN is presented in [Tom+17]. In this work, the
environment is decomposed into several Fog regions which are managed by an
SDN controller. The latter orchestrates the running IoT applications, keeping an
updated view of the available Fog nodes, their location and their capabilities (IT and
network resources). By having the complete information about the environment,
the SDN controller can handle the user mobility and reconfigure the applications
by replicating and/or migrating them. Although the architecture for the SDN
controller is depicted, detailing its functional blocks, no prototype is implemented
to prove its feasibility.

The Enorm framework [Wan+18] is a 3-tier architecture composed of Cloud, edge
and end devices. The environment is divided into regions and the management is
centralized in the Cloud. End devices offload tasks to edge nodes when necessary,
either due to user mobility or QoS (e.g. violation of latency constraint). Besides
that, scalability is handled by an auto-scaling mechanism which scales up/down
the resources, considering the network latency and task execution time.

The survey in [Hou+16a] puts forward the use of vehicles to improve current
vehicular infrastructures, and thus, envision a VFC (Vehicular Fog Computing) en-
vironment. By performing an extensive study on mobility and connectivity patterns
on vehicular traces from large-scale urban areas, the authors claim that the QoS of
applications can be enhanced by using the available vehicles as support for running
applications. Moreover, the authors discuss the challenges in the VFC environment
without, however, detailing how the architecture could be implemented.

The authors in [Wen+17] present a Fog orchestrator concept based on a Planning-
Execution-Optimization control loop. The orchestrator has a typical 3-tier architec-
ture: sensors, Fog and Cloud. In their prototype, applications are provisioned and
the QoS is enhanced thanks to the use of a genetic algorithm.

In [Sau+16; Hon+13], the authors propound a programming infrastructure for Fog
environments called Foglet. In the Foglet, the environment is divided in geographic
regions, where each Fog node is responsible for a set of end devices. Relying on
the description provided by the developer, such as location, capacity and QoS
requirements (e.g. class of computing such as CPU, storage, etc.), the runtime
system manages the application execution. Furthermore, the applications are
continuously monitored by the Foglet and a migration mechanism is implemented
to handle user mobility and to guarantee a certain QoS level (e.g. communication

34 Chapter 3 Related Work

latency). In regard to the virtualization layer, the authors claim that containers are
well-adapted thanks to their smaller memory footprint compared to VMs.

The suitability of Fog computing for health care systems is studied in [Rah+18].
The authors propose a 3-tier architecture for e-health systems, composed of a
sensors/actuators network, smart e-health gateways and back-end system. The
specific properties needed by the e-health system include: i) interoperability: smart
gateways abstract the communication to heterogeneous sensors; ii) adaptability: a
module in the gateway is responsible for adapting and reconfiguring the Fog layer
when critical events arrive; and iii) mobility: handover and roaming are described
to avoid service interruptions and data loss. An EWS (Early Warning Score) health
application is implemented as a proof-of-concept for the use of Fog computing
in this domain. The application uses a set of smart gateways to monitor patients’
vital signals and warns the medical staff when they deviate from the expected
standard.

In 2019, Rancher1 released a lightweight Kubernetes distribution2, called k3s [Ran],
which focuses on running Kubernetes at the edge of the network. By removing
non vital components and simplifying the installation process, k3s offers a certified
Kubernetes version, capable of running on small ARM devices, with 512MB of
RAM and 200MB of disk space. K3s is based on a server/agent model, where the
server manages a set of agent nodes that run the application containers. In this
way, heterogeneity is treated with the use of containers, while an autoscaler module
guarantees the horizontal scale of the applications. Although k3s is a promising
project that enables the use of a Kubernetes orchestration system at the edge of the
network, some challenges remain open, especially in managing the mobility and
the geo-distribution of Fog nodes.

Similarly to k3s, KubeEdge [Xio+18] aims to provide a Kubernetes-based infrastruc-
ture for the network edge. While k3s enables all components (server and agents)
of the Kubernetes architecture to run on the edge, KubeEdge relies on the Cloud
to run the control plane server which manages the infrastructure. Thanks to two
novel components (EdgeController and MetadataSyncService), KubeEdge is able to
continue operating even when the connectivity between Cloud and edge is lost.

1Rancher. URL: https://rancher.com/.
2Kubernetes. URL: https://kubernetes.io/.

3.1 Overview of Fog Architectures 35

https://rancher.com/
https://kubernetes.io/

3.2 Orchestration Approaches

Several strategies are proposed in literature to deal with the orchestration of IoT
applications in Fog environments. In this section, an overview of these solutions
is presented, describing: i) how the placement problem is modeled, solved and
evaluated; ii) which QoS parameters are considered; and iii) whether the proposed
approach deals with the configuration of the already running applications to cope
with the evolution of the system and the applications.

3.2.1 Classification

The criteria considered to classify the related orchestration strategies are detailed
below:

• Application requirements: what information the developer uses to describe
the application requirements:

– Node: parameters related to the node, typically: CPU, RAM and storage.

– Network: network-related information, such as bandwidth and latency.

– Other: includes everything that is not directly related to the node or the
network. For example, deadline for task execution, SLAs (Service Level
Agreements), etc.

• System modeling and problem formulation: this criterion describes the the-
oretical framework used to model the system and orchestration problem.

• Objective: emphasizes the objective of the solution, e.g. minimize cost, maxi-
mize infrastructure utilization, etc.

• Solution: describes the resolution approach adopted to solve the orchestration
problem. Authors can solve it by using an exact method or proposing some
approximation heuristic.

• Reconfiguration: reflects the capacity of the system to reconfigure itself face
to changes in the infrastructure or applications.

• Evaluation methodology: describes how the proposed solution is evaluated.
Usually, it includes the following options: i) numerically: the evaluation is

36 Chapter 3 Related Work

performed by solving the mathematical model of the problem, ii) simulation:
relies on the use of some simulation to carry out the evaluation; and iii)
testbed: an implementation is done and tested in a real environment.

3.2 Orchestration Approaches 37

Table 3.3: Comparison of orchestration approaches

Application Requirements Model Objective Solution Reconfig. Eval.

Node Network Other

[Ska+17a]
CPU, RAM,
storage

- Deadline ILP
Max. Fog resources
utilization

Exact
Solve problem
periodically

Simulation

[Ska+17b]
CPU, RAM,
storage

- Deadline ILP
Max. Fog resource
utilization

Heuristic
Solve problem
periodically

Simulation

[You+18]
CPU, RAM,
storage

- Deadline, SLA
violation

INLP Min. cost Heuristic
Solve problem
periodically

Simulation

[Xia+18]
CPU, RAM,
storage,
locality

Bandwidth,
latency

- ILP
Min. average
response time

Heuristic - Simulation

[Hon+17]
CPU, RAM,
locality

Bandwidth - ILP
Max. number of
satisfied requests

Heuristic -
Simulation
and testbed

[BG17] Processing - - MILP Min. cost Heuristic Migration Simulation

[Sau+16]
Locality,
type

Latency - - - - Migration Testbed

[Den+16] - Bandwidth Delay, service rate MINLP
Min. power
consumption

Optimal
approxi-
mation

- Numerically

38
C

hapter3
Related

W
ork

Table 3.3: Comparison of orchestration approaches (continued)

Application Requirements Model Objective Solution Reconfig. Eval.

Node Network Other

[AH15a;
AH15b]

CPU, RAM,
storage

Bandwidth - Probabilistic
Resource
estimation

Exact - Simulation

[Gia+15]
Storage,
locality, type

Bandwidth User-defined - - - - Testbed

[Nis+13] Processing Bandwidth - Convex
optimization

Max. utility Exact - Numerically

[Zen+16] Storage - Nº replicas/IO
interrupts, service rate

MINLP
Min. task
completion time

Heuristic - Simulation

[Ott+13] - - Total delay Time-graph
Min. bandwidth
utilization

Exact Migration Simulation

[Gu+17]
Processing,
storage

- Total delay MILP Min. cost Heuristic - Simulation

[OSB15] Processing - Delay Combinato-
rial

Min. power
consumption

Heuristic - Simulation

[BF17]
CPU, RAM,
storage, SW,
locality, type

Bandwidth,
latency

- - - Heuristic - Simulation

3.2
O
rchestration

Approaches
39

Table 3.3: Comparison of orchestration approaches (continued)

Application Requirements Model Objective Solution Reconfig. Eval.

Node Network Other

[TLG16] Processing - - MINLP Min. total delay Heuristic -
Numerically,
simulation,
testbed

[CG19] - - - OCO Min. delay
Gradient
descent

Learning Numerically

[Ait+19]
CPU, RAM,
locality

Bandwidth,
latency

- CSP
Min. weighted
average latency

Exact - Numerically

40
C

hapter3
Related

W
ork

3.2.2 Comparison

In [Ska+17a], the authors study the Fog service placement problem (FSPP). The
concept of Fog colonies is introduced to divide the Fog landscape into smaller,
manageable areas. FSPP models the problem as an Integer Linear Programming
(ILP), whose objective consists in maximizing the Fog utilization while taking into
account all constraints specified by the user. These constraints include: i) CPU,
RAM and storage and ii) deadline for tasks. However, no description of network
requirements is allowed. The problem is then solved using the IBM CPLEX solver.
The reconfiguration problem is handled by solving the ILP problem periodically, but
no further details are given. Finally, an extension for the iFogSim is implemented to
evaluate the proposal in a simulated environment.

Due to the complexity of the service placement problem, [Ska+17b] extends the pre-
vious work [Ska+17a] by implementing a heuristic to solve it. The heuristic is based
on a genetic algorithm that iteratively tries to improve the solution by performing
operations in the placement, such as selection, crossover and mutation.

In [You+18], the provisioning problem is modeled as an INLP (Integer Nonlinear
Programming). In terms of IT resources, the model accepts the description of
CPU, RAM and storage. Once again, no network requirements are considered,
although a maximum delay for each task can be configured. Moreover, users
can describe a percentage of acceptable SLA violation and a penalty cost (if the
SLA violation threshold is reached). Together with other costs related to the use
of the infrastructure, a total cost is calculated. The objective function consists in
minimizing this cost. To solve it, two greedy algorithms are implemented and
evaluated using simulation. Finally, the authors claim that the reconfiguration can
be made by solving the INLP problem periodically.

The model proposed in [Xia+18] considers also the requirements in terms of net-
work resources and node location. The concept of Dedicated Zone is introduced,
i.e., a geographical area where the application component can be placed. Moreover,
it is possible to describe bandwidth and latency requirements for application links.
By minimizing the communication time, the proposed approach aims to decrease
the average response time of applications running on a Fog infrastructure. Sev-
eral solutions are proposed to address the problem. Initially, a backtrack search
procedure generates all possible solutions. Due to its high cost, two heuristics are
proposed, based on the location characteristic of Fog nodes and applications. The
proposed approach is evaluated using a home made simulator on top of SimGrid.
However, the reconfiguration aspect of the orchestration is not considered in this
paper.

3.2 Orchestration Approaches 41

In [Hon+17], the authors propound a heuristic that aims to maximize the number
of satisfied IoT requests, while respecting targeted QoS levels. The proposed ILP
model includes constraints in terms of CPU, RAM and locality for IT resources,
and bandwidth for network links. However, the latency is not considered in this
work. To maximize the number of accepted requests, a greedy algorithm ranks the
demands for the scarcest resources first, as they are likely to be the most common
cause for request rejection. The evaluation comprises an implementation in a real
testbed and an extensive test in a simulator.

The MCAPP (Multi-component Application Placement Problem) is presented in
[BG17] and it is modeled as a MILP (Mixed Integer Linear Program) problem. The
applications describe only their processing requirements and no other criterion is
considered (memory, bandwidth, etc.). Moreover, the applications have associated
costs to run, communicate and relocate their components. Thus, the goal is to
minimize the total execution cost. In the MCAPP, the system is divided into T

time-slots and a heuristic is adopted to calculate the placement for each time-slot.
First, the heuristic places the application’s components without considering the
communication cost using the Hungarian algorithm. Afterwards, a search phase is
used to improve the initial placement considering the communication costs.

A developer-centric approach is presented in [Sau+16], where the Foglet program-
ming interface is proposed. In this work, the authors do not aim to optimize the use
of the environment, but rather to provide an interface that allows the description
of application requirements, including: i) locality: geo-spatial region where the
application may run; ii) type: computational class required for the application, e.g.
processing; and iii) latency: communication delay between each application level.
Although no optimization is performed during the placement of applications, a
migration mechanism is proposed to redeploy the applications when the latency
threshold is reached. A proof-of-concept is implemented using C++, ZeroMQ and
Protobuf.

In [Den+16], the authors study the workload allocation problem in a Cloud-Fog
environment. Their objective is to minimize the power consumption, taking into
account the delay agreed in the SLA. The workload is characterized by a service rate
dispatched to the Fog or Cloud for processing. Computation delays are calculated
according to the queuing theory, while the communication delay is considered
when the requests are dispatched from the Fog to the Cloud. Finally, the power
consumption minimization problem is decomposed into three parts, which are
solved independently: i) energy consumption vs. delay in the Fog; ii) energy
consumption vs. delay in the Cloud; and iii) minimizing the communication delay.
Therefore, an approximate optimal solution for the problem is proposed. Finally,

42 Chapter 3 Related Work

the system is assessed through a numerical evaluation using MATLAB in a small
scale setup with five Fog devices and three Cloud servers.

The authors in [AH15a] propose a method to calculate the amount of resources
(CPU, memory, storage and bandwidth) that a service provider needs to allocate to
satisfy user requests. The model considers the service price agreed in the contract
and the probability that users will relinquish the demanded resources. Users are
classified into two categories: i) high: users who have more than 50% chance of
giving up the resources; and ii) low: when the probability is less than 50%. This
probability is calculated considering the user’s historical information. A simulation,
using CloudSim, shows that the proposal can help the service provider to estimate
the amount of resources. The work in [AH15b] extends [AH15a] by taking into
account the users’ mobility pattern to calculate the amount of resources needed.
Consequently, it gives more resources to highly mobile users to ensure good quality
of service. Nevertheless, both papers estimate only the amount of resources needed
and are not interested in placing the applications in the infrastructure.

A distributed dataflow programming model for the Fog is propounded in [Gia+15],
in which IoT applications are described as directed graphs. The developer can
annotate the nodes in the graph with the characteristics of the application, such as
location, available storage, computation class type, bandwidth and user-defined
properties. These annotations are matched against the physical nodes in the infras-
tructure when the application is deployed. However, no optimization is performed
when provisioning the IoT applications in the environment. A proof-of-concept
is implemented on top of IBM’s Node-Red dataflow programming framework [JS
13].

In [Nis+13], a mathematical framework is used to analyze the service provisioning
problem in a mobile cloud environment. A service is characterized by a set of tasks
that can be offloaded to other nodes to reduce completion times. Furthermore,
the proposed framework is generic, abstracting the different resources (processing,
communication, etc.) in utility functions. Therefore, the objective is to maximize
the sum of utility functions. When the system has good properties, i.e. convex and
continuous functions, the problem is solved through convex optimization. This
is the case of the evaluation scenario, where a small scale set-up, considering two
nodes and two services, is solved numerically.

The authors in [Zen+16] address two related problems that arise when we execute
tasks on a Fog environment: task scheduling and data placement. In their model, a
set of clients can whether run tasks locally or dispatch them to computing servers.
To be executed, each task loads part of the data from the storage servers. The model
includes the service rate, the size of the image to be stored, the average number

3.2 Orchestration Approaches 43

of I/O interrupts and the number of replicas for each data image. These two
problems are modeled as a MINLP (Mixed-Integer Non-Linear Problem) and solved
through a heuristic. The algorithm minimizes the storage and computation times
independently and then, couples the solution considering the transmission time.
The evaluation is carried out through simulation, comparing the proposed heuristic
with two greedy approaches which run tasks only on clients or on servers.

In [Ott+13], the authors propose a placement method to deal with the mobility
of end users in a Fog environment. The applications are composed of operators,
which process data streams from mobile sources. The placement method relies
on a time-graph model, which decides where to place and when to migrate each
application operator. In this time-graph model, the vertex represents the physical
node hosting the operator, while the edge represents the bandwidth used to deploy,
execute and migrate (if necessary) the operator. Finally, the model is solved by
finding the shortest-path in the graph.

[Gu+17] focuses on the placement of Virtual Medical Devices (VMDs) in a Fog-
based medical cyber-physical system. The applications are composed of a set of
VMDs, which must be placed closer to the end users to meet the QoS constraints.
The problem is modeled as a MILP (Mixed Integer Linear problem), whose objective
is to minimize the total cost of communication and VMD deployment. Due to its
intractability, the problem is solved through a 2-phase heuristic: i) initially, the
communication cost is minimized by solving a relaxed version (LP) of the MILP
problem and, subsequently, approximating the solution to valid integer values; and
ii) the deployment cost is minimized by migrating small VMDs to other resources.

In the context of cellular networks, the authors in [OSB15] study offloading of tasks
to Fog nodes. The environment is composed of Small Cells (SCs), each containing
computation and storage capabilities. These SCs are grouped together to form Small
Cell Clouds (SCCs). A model for the generation of SCCs is presented, minimizing
the overall communication power consumption, while respecting the delay of tasks.
This combinatorial optimization problem is solved by a 2-phase algorithm: i) in the
first phase, each SC sorts its tasks according to some metric (latency, energy, etc.);
and ii) each SC informs its capacity and exceeding tasks, i.e. tasks that cannot be
executed by the SC. These tasks are re-sorted and the clusters needed to process
them are formed. In the end, different metrics (latency, power consumption, etc.)
are tested in a simulated urban environment.

Another approach is proposed in [BF17]. Instead of optimizing the application
deployment, a set of possible deployments is generated. For this, the authors
propose a model for describing IoT applications and the Fog infrastructure. The
model specifies the properties of applications and devices in terms of: i) hardware

44 Chapter 3 Related Work

and software, such as RAM, storage, operational system or installed libraries;
ii) location and type; and iii) network bandwidth and latency. Afterwards, the
deployment is defined as a mapping function between application’s components
(alongside their requirements) and the infrastructure. Finally, heuristics generate
eligible deployments, which respect the requirements described by the user, but do
not optimize the infrastructure utilization.

In [TLG16], a hierarchical edge architecture is presented, in which the application
can be run in any level of the infrastructure between the end-user and the Cloud.
The studied placement problem aims to minimize the total delay to execute the
application, while considering individual computation and communication delays.
However, users cannot describe individual requirements in terms of network and
memory capacities. To achieve this objective, a heuristic based on a simulated
annealing algorithm is proposed to solve the problem. Two outputs are generated:
where to place the application and the amount of computation resources provided
to it. The extensive evaluation includes a numerical evaluation of lower bounds
on delays, a small scale testbed and a large scale simulation based on Wikipedia’s
network trace.

A different model for offloading of tasks in a Fog environment is presented in
[CG19]. In this model, users are not able to describe requirements for the IoT
applications. Instead, the model accepts unknown constraint functions which are
revealed after the offloaded is performed. Their objective is to minimize a cost
function (e.g. average delay) while guaranteeing a long-term satisfaction of the
constraint function. At each time step, the feedback of objective and constraint
functions are available. To solve the problem, the authors propose the use of a
gradient descent method with bandit feedback, which learns the best task offloading
and configures the system accordingly. At last, the proposed approach is assessed
numerically in a smart home scenario with 10 Fog nodes and one Cloud center,
evaluating the total cost and the constraint violations.

Finally, the authors in [Ait+19] tackle the problem in a similar but innovative
manner. They model the provisioning problem as a CSP (Constraint Satisfaction
Problem), which considers the main characteristics of the Fog, such as CPU, RAM,
network bandwidth and latency. Instead of proposing a heuristic for solving the
problem, Choco constraint solver [JRL08] is used to obtain an exact solution. To
assess the scalability of the proposal, different scenarios are evaluated, varying
the number of applications, the number of components per application and the
infrastructure size. However, no evaluation is performed to assess the application
performances in the Fog environment.

3.2 Orchestration Approaches 45

3.3 Conclusion

Despite being a relatively new concept, Fog has attracted a lot of attention. As
detailed in the previous sections, several works proposed architectures and or-
chestration systems for the Fog, covering many relevant challenges in the field.
Nevertheless, we could identify some limitations in these works. First, we lack real
implementations of Fog systems, while some papers discuss only the challenges
and possible solutions, some rely on small scale homemade prototypes as proof of
concept for their proposals.

Regarding the orchestration, the provisioning problem is certainly the one which
received the most attention. Several models were proposed, considering different
application requirements and objective functions. Due to the hardness and size
of the problem, most authors propose heuristics to solve it, the exception of few
exact solutions. A common characteristic of these works is that they consider a
single optimization objective (e.g., minimize delay or maximize utility). Therefore,
an interesting research direction is to extend them to account for multiple, and
sometimes, conflicting objectives.

On the other hand, the reconfiguration aspect of the orchestration has not been
sufficiently investigated, with a handful papers studying this problem. Most of
them deal with the reconfiguration by solving the provisioning problem periodically.
In this approach, a snapshot of applications and the infrastructure is taken at the
end of each time step, considering all the changes that occurred in the last period.
With this snapshot, the provisioning model is used to optimize the placement of
applications, assuming that they will not change during the next period. Hence, it
is straightforward to see that comprehensive studies on reconfiguration approaches
are necessary for the Fog.

Finally, the evaluation of proposed approaches is mainly based on simulation.
Despite all advantages of using simulation, such as the adaptability and scalability
of the experiments, the validation of the simulator is delicate. Many simulators are
built specifically for a study and their resource models cannot be validated. In a
highly heterogeneous and scalable environment such as the Fog, this limitation can
lead to misleading conclusions. Consequently, the use of real environments can
mitigate this problem and provide reliable and trustworthy results.

46 Chapter 3 Related Work

4Components and Characteristics
of a Fog-IoT Environment

In this chapter, we lay the foundations for the rest of the thesis, detailing the
components present in our environment. It includes: i) the model and elements
of the Fog infrastructure; ii) IoT applications and their requirements and iii) the
components and characteristics of the orchestration problem.

4.1 Fog Infrastructure

End Devices Fog
Mist

Cloud

CPU: 10000
RAM: 32Gb

CPU: 100
RAM: 1Gb

[1Gb/s, 5ms]
CPU: 200
RAM: 2Gb

[10Gbs, 50ms]

CPU:1000
RAM: 8Gb

[1Gb/s, 100ms]

CPU: 500
RAM: 4Gb

[10Mb/s, 10ms]

[1Mb/s, 15ms]

CPU: 10
RAM: 256Mb

[100Kb/s, 5ms]

[1Mb/s, 10ms]

High Fog Layer

Figure 4.1: Graph model for a Fog infrastructure. This figure illustrates the typical Fog
infrastructure used in this thesis.

Fig. 4.1 depics the adopted Fog infrastructure, from end-devices to the Cloud.
According to [ATT17], millions of devices are present in the edge of the network.
The scale gradually decreases as we reach the Cloud in the top of the infrastructure,
which encompasses only dozens of powerful nodes. We emphasize that the Fog
layer can be divided into two sub-layers:

• Mist: in the extreme edge of the network, this first layer of nodes allows some
processing with a very low latency, typically less than 5ms. In contrast, they
have very limited processing, memory and storage capacities.

47

• High Fog: contains everything else until the Cloud. Their devices have greater
resource capacities and, consequently, can support complex and resource-
intensive applications.

The Fog infrastructure can be modeled as a graph, where the vertices represent the
devices on which applications can run and the edges are the network links. Nodes
and edges are labeled with their characteristics, such as CPU, RAM or location
for nodes, and network latency and bandwidth for edges. Note that the edges
are undirected, which denotes a bi-directional path between infrastructure nodes.
Moreover, Fig. 4.1 presents the typical components and their characteristics which
are considered throughout this thesis.

4.2 IoT Applications

IoT applications (or services)1 are usually long-term processes, which interact
with sensors and actuators in the environment to implement a service to end users.
Applications collect and analyze the data from sensors, working on the environment
through actuators, if necessary. Furthermore, IoT applications running in a Fog
environment face several challenges, such as heterogeneity, geo-distribution and
limited resources.

In this context, micro-services arise as a promising architectural style to cope with
these challenges [BGT16]. An IoT application is composed of a set of these building
blocks, called micro-services, which communicate together. Each micro-service is
responsible for implementing a tiny part of the business logic, and by putting many
micro-services together, a complete end-to-end IoT service can be easily imple-
mented. According to [Fow15], micro-services are small, modular, loosely-coupled,
independent deployable and with diversified technology. Consequently, they are
easily adaptable for the constraint devices present in the Fog environment.

The variety of micro-services and the heterogeneity of the Fog pose new commu-
nication challenges. Application components must be able to communicate with
each other and IoT devices, independently of the infrastructure. Regarding the
access to IoT devices, [Diz+19] highlights two main communication patterns: i)
publish/subscription for sensing the data; and ii) request-response for acting in the
environment. Moreover, Ports and Adapters pattern [Coc05] offers an interesting
concept to deal with the heterogeneity. The principle is simple, the communication
of the components with the external world is performed via well-defined ports,

1Note that we use the terms "IoT applications" and "IoT services" interchangeably throughout the
text.

48 Chapter 4 Components and Characteristics of a Fog-IoT Environment

on which a technology-specific adapter converts the message according to the
underlying hardware.

The use of micro-services, communicating via well-defined interfaces, provides
the adequate abstraction necessary in a Fog environment. Hence, the application
can be seen as a DAG (Directed Acyclic Graph), where the nodes are the micro-
services and the edges are the links connecting two ports. This is enough to describe
the functional behavior of applications; however, we still need to describe their
non-functional requirements.

4.2.1 Requirements

Figure 4.2: List of possi-
ble application
requirements
(non-exhaustive).

The ability to describe non-functional requirements
is vital for IoT application running on a Fog envi-
ronment. Nevertheless, the list of possible param-
eters can be quite long, depending on the charac-
teristics of applications and the Fog. In Fig. 4.2,
we list some of these requirements, which range
from device-oriented requirements, such as CPU
and RAM, through network bandwidth and latency,
to more specific ones, such as task deadline or loca-
tion.

Given this complexity, in our work, we focus on a
subset of these requirements that we believe are rep-
resentative for most applications running on the Fog,
including: CPU power, RAM capacity, location, net-
work bandwidth and latency.

Fig. 4.3 typifies the graph of an IoT application. In
this application, two data sources generate data that
are processed by components in the application logic
layer. Edges in the graph are annotated with the net-
work requirements, while nodes have requirements
in terms of CPU, RAM and location.

4.3 Orchestration

Orchestration is the third pillar of our study, enabling IoT applications to leverage
the Fog infrastructure. As discussed in Section 2.4, we are mainly interested in

4.3 Orchestration 49

[1Gb/s; 1s]
[10Mb/s, 50ms]

[10Mb/s, 50ms]

Data
Source

Application
Logic

Storage

Location:
RoomA

Location:	
RoomB CPU:	100

RAM:	8Gb

CPU:	1000
RAM:	2Gb

[10Kb/s, 1ms]

Figure 4.3: Graph model for a Fog-IoT application. This model represents a typical appli-
cation studied in this work.

two aspects of the orchestration problem: provisioning and reconfiguration of
IoT applications. Nevertheless, the context in which these problems are involved
brings specific characteristics to the orchestration (online, inexact, multi-objective,
distributed and delayed), which we will discuss in this section.

Despite the advantages of the micro-services architecture, it leads to an increased
operational complexity, due to the management of a large number of tiny services
[Fow15]. These services enter and leave the system and their use of resources
changes over time. This evolution leads to our first specific characteristic: the
online aspect of the orchestration problem.

Regarding the IoT applications, we have seen that they may have different demands
in terms of software and hardware capabilities, which are often difficult to be
described accurately. Hence, we have the inexact aspect that the orchestrator must
consider. Moreover, different metrics can be used to evaluate the satisfaction of the
application with the current resources, such as elapsed time or throughput.

On the other hand, infrastructure owners have their objectives which can be con-
flicting with application’s metrics. These objectives may include: minimize in-
frastructure cost, minimize congestion, maximize resource utilization, etc. This
multi-objective scenario brings forward extra challenges to the orchestration sys-
tem.

In addition, the large scale and distribution of the Fog environment make the
use of a centralized orchestrator poorly adapted. Although it is not mandatory, a
distributed orchestration system is therefore appropriate.

50 Chapter 4 Components and Characteristics of a Fog-IoT Environment

Finally, large scale and distribution are also responsible for the delay in obtaining
information about the infrastructure. Despite the effort to keep an updated view of
the available resources, it is impossible to have a real-time information about all
resources available in the infrastructure.

Provisioning Reconfiguration

0

2

4

6

0 2000 4000 6000
Experiment Duration (s)

M
et

ric
(e

.g
. e

la
ps

ed
 ti

m
e)

Figure 4.4: Studying the orchestration phases. Each colored line represents the metric
for one test run. The black line represents the average performance of all
runs. During the provisioning phase, each vertical gray line represents the
deployment of an application.

In Fig. 4.4, we present the appearance of the orchestration experiments that we
performed during this thesis. Each colored line corresponds to the execution of a
single test, measuring and presenting in y-axis some metric (e.g. average elapsed
time, aggregating all applications over a five minutes interval).

During the first phase, the initial deployment of IoT applications is performed. The
provisioning can be seen as a mapping problem, where we map the application
graph over the infrastructure graph, respecting the application requirements and the
infrastructure resources. Each vertical gray line represents an application entering
the system that must be provisioned. In Part III, we study this problem, analyzing
different metrics (e.g. cost, acceptance rate, etc.) until all applications are deployed
(black vertical line in the figure).

Once all applications are deployed and running, we have the reconfiguration phase,
which is studied in Part IV. During this phase, applications are sharing and com-
peting for resources. Despite the requirements provided in the provisioning phase,
applications evolve and, consequently, change their use of resources. Therefore, we
study different manners to reconfigure the placement of applications to keep them
satisfied with the available resources.

Nevertheless, before getting to the heart of this thesis, with the study of the provi-
sioning and reconfiguration, we have to build the foundations of our work. Hence,
the next chapters in Part II are devoted to detail the research methodology and the
orchestration system used during our experiments.

4.3 Orchestration 51

Part II

From Theory to Practice: Research
Methodology and An Orchestrator for IoT

Applications in the Fog

5An Architecture for IoT
Orchestration in the Fog

The first step consists in implementing a framework for the orchestration of IoT
applications in the Fog. To achieve our objective, we analyze what are the funda-
mental components needed to mimic a Fog environment and also, to orchestrate IoT
applications. It includes from infrastructure aspects, such as the characteristics of
nodes, up to the software components to run and analyze the platform. As result of
this reflection, we propose the FITOR (Fog IoT ORchestrator) architecture, which
contains all necessary parts to perform the orchestration of IoT applications in the
Fog. Although it is not a complete architecture for the Fog (many aspects, such
as security and resilience, are not considered), FITOR is able to provide all basic
blocks for the study carried out within the scope of this thesis.

Fig. 5.1 provides an overview of the FITOR architecture. Our proposed solution
is device-aware, and hence, handles the heterogeneity of the Fog environment.
Application components can be easily deployed on end devices and Fog nodes.
Hereinafter, we detail each component of the proposed architecture.

The Service Descriptor

This component aims to describe the IoT application, its building components
and its requirements. As discussed in Section 4.2, an IoT application is usually
composed of a set of micro-services which interact to implement the business logic.
In this context, the actor model [Hew10] emerges naturally as an option to describe
an IoT application which will be later implemented as micro-services. In short, an
actor is a unit logic that performs simple tasks and sends messages to other actors
(more details about the actor model are presented in Section 6.3).

Indeed, the developer needs to describe the actors, their requirements in terms of
both location and computational effort, and how data should circulate between
them. It is worth noting that, in order to ensure a guaranteed QoS, network related
requirements could be specified during the description of links between the actors.
Specifically, CPU/RAM affinity and capacity can be specified for the actors, while
latency and bandwidth can be defined for the links.

55

F
o

g
 N

o
d

e

Host

OS

Virtualization

M
o
n
it
o
r
 A

g
e
n
t

Runtime

Host

OS

Virtualization

M
o
n
it
o
r
 A

g
e
n
t

Runtime

M
is

t
 N

o
d

e

M
o
n
it
o
r
 A

g
e
n
t

Runtime

Hardware

OS

Infrastructure

End Devices/Mist

Fog Layer

Fog IoT

Orchestrator

Service Descriptor

Infrastructure

Monitor
Service

Deployer

Service

Scheduler

actor actor

actor

actor

 Network

F
o

g
 N

o
d

e

Host

OS

Virtualization

M
o
n
it
o
r
 A

g
e
n
t

Runtime

M
is

t
 N

o
d

e

M
o
n
it
o
r
 A

g
e
n
t

Runtime

Hardware

OS

F
o

g
 N

o
d

e

Figure 5.1: FITOR architecture

The Service Deployer

Once the description is submitted, this component handles the mapping between
the application components (i.e., actors, communications) and the nodes hosting
the latter. Its main objective consists in optimizing the placement of actors and their
links while considering their location, computational and network requirements. To
do so, it makes use of the service descriptor and the collected infrastructure related
metrics, to find the best placement of the application components.

The Service Scheduler

A running application is exposed to the uncertainty of the Fog environment. In
addition, its components may change in response to the variation of data sources
or internal transformation. To deal with this dynamicity, the Service Scheduler
uses the monitored key performance indicators from the applications and from
the Infrastructure Monitor to trigger scale out/in actions to allocate or de-allocate
resources. Besides, migration actions could be triggered when necessary.

56 Chapter 5 An Architecture for IoT Orchestration in the Fog

The Infrastructure Monitor

This is responsible for sketching out the telemetry information by extracting several
resource metrics from the Fog nodes and links. To do so, it makes use of various
probes to get real-time information about both physical resources and their running
containers. In our context, we consider two main categories of metrics to observe:

• Host-related metrics: concerning all information about the host and container
in which the application is running. This includes: CPU, RAM, disk, etc.

• Network related metrics: corresponding to the end-to-end latency and band-
width, which are crucial and thus, mandatory to be collected during the
application execution.

It is important to note that two views of resources are provided: i) potentially
available resources, which is a global and static view of the total capacity of nodes
in terms of compute, storage and RAM; ii) the real-time availability of resources,
which considers the current load induced by the applications.

Fog node

Fog nodes are the main workforce in the environment, on which the IoT applications
will run. They can be hosted by servers, network equipment, or even end devices.
Due to its heterogeneity, they have a virtualization layer and are capable of running
containerized (e.g., docker) micro-services. On the top of the virtualization layer,
the so-called runtimes are responsible for the execution of actors. They handle, for
example, the actor scheduling and the data transport message parsing. It is worth
noting that one runtime may concurrently run multiple actor instances belonging
to different applications. A runtime is characterized by a set of capabilities (e.g.,
access to a camera, access to a disk, etc.) and performances metrics (e.g., CPU,
memory) which are monitored by the monitor agent. The latter collects, aggregates,
processes and exports information about all components in the Fog node, including
the physical host, running containers and network bandwidth and latency.

Mist node

On the other hand, mist nodes are the first processing layer, with nodes very close
to the sensors and actuators. They are very similar to regular Fog nodes (precisely,
mist nodes are a subclass of Fog nodes) and are able to execute IoT applications.

57

However, due to their constrained resources, the virtualization layer is removed
and, consequently, the runtime layer runs directly in bare-metal.

58 Chapter 5 An Architecture for IoT Orchestration in the Fog

6The Calvin Framework

In this chapter, we present the Calvin framework, a key element in the implementa-
tion of the architecture proposed in Chapter 5. We describe the reasons why we have
chosen Calvin to be our IoT framework, its architecture and how it describes and
deploys the IoT applications. An in-depth look at Calvin is important to understand
how FITOR is built.

6.1 Why Calvin?

Table 6.1: Comparison of IoT frameworks

Concept Available Language App.
requirements

Calvin [PA15] Actor, flow
based •3 Python •3 json file

D-NR [Gia+15] Distributed
dataflow •3 JavaScript •3 parameters

in GUI tool

Patricia
[Nas+13]

Intent,
IntentScope •7 Java •3 scope

properties

PyoT [Azz+14] T-Res/CoAP,
REST •3 last commit

2015
Python •7

Compose API
[Ord+14]

REST,
event-driven,
stream-
oriented

•3 last commit
2016

JavaScript •7

Simurgh
[KDB15]

REST •7 - •3 json file

Dripcast
[NHE14]

RPC •7 Java •7

IoTSuite
[Cha+16]

MQTT,
Pub/Sub,
dataflow

•3 last commit
2017

Java •3 SDL (srijan
deployment
language)

OpenIoT
[KL14]

REST •3 last commit
2015

Java •7

The reasons behind choosing Calvin as an important part of our architecture come
from 2017, when we gathered the tools to create FITOR. At that time, we did

59

an analysis of the most relevant IoT frameworks, comparing their availability,
extensibility and their capacity to describe the application requirements.

Table 6.1 summarizes our conducted analysis of the frameworks. It is worth noting
that most of them are short term projects, which are not updated frequently. For this
reason, we restricted our candidate list to the two most active frameworks: Calvin
and D-NR. The main motivations behind our selection of Calvin are the following:
i) good documentation and active community, Calvin has a verbose wiki describing
the project and its internals; ii) the description of application requirements in a
programmatically (json vs. GUI); and iii) programming language, as I feel more
comfortable using Python instead of JavaScript.

6.2 Overview

The Calvin framework is the corner stone of FITOR’s architecture, as we will see in
Chapter 7. A customized version of Calvin is responsible for the implementation
of the three main components that allow the execution of IoT applications: Service
Descriptor, Service Deployer and Service Scheduler. Due to its key role in FITOR’s
architecture, we dedicate this chapter to explain it in detail, presenting its strong
aspects and limitations that hinder its use in the Fog environment.

Calvin [PA15] is a community project, started by Ericsson, which proposes a frame-
work for the development of IoT applications. Calvin borrows concepts from actor
and dataflow models to create a high-level abstraction, and consequently, hides the
complexity and heterogeneity of the IoT world. As the authors claim, applications
can then be created by simply putting together small building blocks, like a LEGO
game.

The abstraction layer proposed by Calvin is possible thanks to four separate con-
cepts which are part of an application:

• Describe: these are the building blocks of an application, small and reusable
components, called actors which are responsible for implementing the busi-
ness logic.

• Connect: describes the connections between the components of an application
while indicating how the data circulate among them. The actors alongside
their connections create the application graph.

60 Chapter 6 The Calvin Framework

• Deploy: it is the instantiation of the application in the platform, deciding
where to place each application component in the infrastructure. It is the role
of the Service Deployer in our architecture.

• Manage: once the application is running, it enters in the management phase.
This aspect is responsible for the migration of running applications, scaling
and error recovery. Precisely, thanks to our Service Scheduler, we can handle
the reconfiguration and migration of applications.

6.3 The Actor Model

The actor model [Hew10] is an interesting conceptual model to describe IoT ap-
plications independently of the underlying infrastructure. These actors may be
implemented later using any technology, such as micro-services. Calvin uses the
actor model to describe the functional behavior of applications, which are imple-
mented through Python code.

Hewitt first proposed the actor model back in 1973 [HBS73], as a universal primi-
tive for concurrent computation. In this model, everything is an actor and every
computation happens within the actor. This implies that each actor has a private
and non-shareable state, communicating with each other through asynchronous
messages.

Actor
address

Actor

address

Actor

address

Internal
state

Figure 6.1: The actor model

Fig. 6.1 shows the interaction between three actors in the system. Actors are
independent computing units that send asynchronous messages to other actors
through known addresses. The address may be implemented in several ways, such
as network, e-mail, memory or disk addresses, depending on the context on which
actors are running.

6.3 The Actor Model 61

When receiving a message, an actor may concurrently perform three actions: i)
handle the message and change its internal state; ii) send messages to other actors
and iii) create new actors 1. By decoupling actors from communications, the actor
model allows the construction of concurrent systems in a flexible and extensible
way. Such a design is particularly useful when programming in a large, distributed
and asynchronous Fog environment.

6.4 Architecture

The Calvin’s architecture is shown in Fig. 6.2. In the bottom half of the picture,
we have the platform dependent part, starting with the host’s hardware and op-
erational system (OS). The Calvin process, called runtime, runs directly on top of
the OS. The runtime layer is responsible for providing the abstraction needed for
running applications. The platform dependent part of the runtime will establish the
communication between different runtimes. Note that in our architecture, we add
a virtualization layer between the OS and the runtime to make the environment
uniform and hence, alleviate the process of installing Calvin’s dependencies (e.g.,
libraries).

213 Per Persson and Ola Angelsmark / Procedia Computer Science 52 (2015) 210 – 217

Application

Actor Actor

Runtime

OS

Hardware

Runtime

OS

Hardware

Runtime

IPC

Runtime

P
la
tf
o
rm

in
d
e
p
e
n
d
e
n
t

P
la
tf
o
rm

d
e
p
e
n
d
e
n
t

P
la
tf
o
rm

App1: Temperature logging

App2: Temperature watchdog

A3A2A1

A6A5A4

HW+OS HW+OS HW+OS

Runtime Runtime Runtime

Fig. 1. Left: The distributed execution environment (red) formed by a mesh of runtimes (orange) is seen by the applications (blue) as a single
platform. Applications, themselves transparently distributed across the network, consist of actors (green) representing resources such as devices,
compute nodes, and storage nodes. Right: The Calvin software stack consists of a platform dependent layer handling data transport and presenting
the platform specific features like sensors, actuators, and storage in a uniform manner to the platform independent layer that is responsible for
runtime coordination, migration decisions, and the API exposed to actors. Many aspects of the runtime are extensible through a plug-in mechanism.

3.4. Manage

Once an application is running, it enters the managed phase. The distributed execution environment monitors the ap-
plications, handling e.g. migration of running actors, scaling, updates, and error recovery. Management also includes
keeping track of resource usage, and allows for fine grained accounting, making it possible to, for example, charge
customers for system usage with high resolution based on which actors are used, how frequently their actions fire, or
how much data flows through the ports. Deployment and management are key areas for future research.

3.5. Application examples

In the example in Fig. 1 (left), the temperature of heat sensitive products, say frozen fish, is monitored during transport
by two Calvin applications: A temperature logger and a temperature watchdog. In the first application, a thermometer,
with limited computational and storage capacity, comprises an actor that continuously reports the current temperature
to an actor on a nearby runtime with more resources, e.g. a laptop next to the driver. This actor sends a log of reported
temperatures, either at set intervals or when sufficient bandwidth becomes available, to an actor on a company wide
server that keeps track of the temperature of a whole fleet of vehicles.

In the second application, a different actor residing on the thermometer runtime, one which only sends an output
when the temperature rises above (or falls below) a set value, is acting as a watchdog. This actor is connected to one
on the laptop by the driver, which issues an alert, for example in the form of a beep or a flashing icon on the screen,
and forwards the alarm to an actor on a server which can log the issue, and schedule maintenance of the vehicle.

4. A deep dive into Calvin

4.1. Runtime architecture

The high level architecture of Calvin is shown in Fig. 1 (right). Starting from the bottom, we have the hardware, the
physical device or data center, and the operating system (OS) it exposes. Together, the hardware and OS constitute a
platform for the runtime, and on top of this resides the platform dependent part of Calvin. Here we handle communi-
cation between runtimes, and through a plug-in mechanism we support any kind of transport layer (WiFi, BT, i2c) and
protocol, including efficient implementation of data transport between actors sharing the same runtime. This is also
where inter-runtime communication and coordination takes place. This layer also provides an abstraction of platform
functionality, such as I/O and sensing capabilities, to the higher levels of the runtime in a uniform manner. Again, the
actual algorithms controlling the behavior use a plug-in mechanism for flexibility and extensibility.

Figure 6.2: Calvin’s architecture [[PA15], Figure 1 (right part)].

We focus, in our work, on the top part (and platform independent) of the archi-
tecture. The runtime is responsible for controlling the actors, and consequently,
the applications running on the host. Both provisioning and reconfiguration of the
applications running in the environment are handled by the runtime. Finally, we
have the set of applications and their actors. The actors are shared among the differ-

1Although envisioned in the actor model, our Calvin’s applications do not create new actors when
receiving messages.

62 Chapter 6 The Calvin Framework

ent Calvin’s runtimes available in the environment, according to the provisioning
policy implemented. To enable the targeted orchestration of the IoT applications
addressed within the framework of this thesis, we had to create our IoT applications
using the Calvin model, implement the necessary actors and modify the runtime to
put into action our provisioning and reconfiguration strategies.

6.5 Describing an Application

As previously discussed, Calvin allows the development of IoT application by
bringing together the building blocks, called actors. However, it is necessary
to implement formerly the actors that will compose the application. In general,
describing one application involves three steps: i) the implementation of actors,
ii) building the application and iii) describing its requirements. In the following
sections, we describe each of these steps.

6.5.1 Actor development

An actor is simply a piece of python code which reacts to some event producing
some output. By keeping it simple, we increase its reusability in different applica-
tions. To illustrate the creation process of an actor, we present the snippet of code
used to implement one of the actors that we will use in our applications later: a
Burn actor.

The idea of Burn is simple, as illustrated in Fig. 6.3, it receives one message (or
token), perform some processing over it and forward it to next actor through the
output port.

Figure 6.3: Burn actor. It receives messages through the input token port in the left, process
it, and send it unchanged through the output token port in the right.

This high-level description of the actor is then implemented via python code, as
presented in 6.1. All actors in Calvin inherit from the Actor class which defines
the methods that can be implemented. These methods control the initialization,
migration, replication and finalization of an actor2.

2The reader is invited to access the wiki of Calvin project for a more complete documentation about
actor interface. Available at: https://github.com/EricssonResearch/calvin-base/wiki/Actors.

6.5 Describing an Application 63

https://github.com/EricssonResearch/calvin-base/wiki/Actors

1 from calvin.actor.actor import Actor, condition

3 class Burn(Actor):

def init(self):

5 pass

7 @condition(action_input=['token'], action_output=['token'])

def processMsg(self, input):

9 # Compute something

return (input,)

11

action_priority = (processMsg,)

Listing 6.1: Python code implementing a simplified version of Burn actor.

For our Burn actor, we define only two methods: init and processMsg. As the
name suggests, init is called to perform the initialization of the actor, setting
internal variables if necessary. On the other hand, processMsg is called when
one token needs to be processed. It is the responsibility of Calvin’s runtime to
call the appropriate method when a message is received in the input port (named
token). Calvin relies on decorators on python code to configure this behavior. In our
example, the decorator @condition, at line 7, indicates that the method processMsg

must be called when the input port has received a message and the output port has
space to store the output message.

6.5.2 Building an application

Once all the necessary actors for an application are implemented, we can proceed
with the creation of the application itself. To encourage the sharing of actors between
applications, Calvin has the concept of "Actor store", where actors are stored and
shared. The store categorizes the actors into modules, such as media, math, IO, etc.,
to make easier their retrieval.

Building an application is easy; we just need to connect the output ports to the
input ports of different actors. To do so, Calvin offers two possibilities: graphical or
textual.

Fig. 6.4 presents the graphical interface to create applications. On the left, we have
the Calvin’s actor store, from where we can select and drag-in the actor to the
main screen. In the figure, we have implemented a 3-level application, in which
the Trigger actor periodically sends messages to be processed by the Burn. The
latter, after finished its computation, forwards the message to be stored by the Sink
actor3.

3Note that this same application structure, with some variations, is used throughout the thesis.

64 Chapter 6 The Calvin Framework

Figure 6.4: Snapshot of Calvin’s graphical user interface used to implement an application
example.

The graphical interface is nice for creating and visualizing small applications. How-
ever, as the number of actors and applications increases, we need a more program-
matic manner to describe the applications. In this context, Calvin uses a proprietary
language, called CalvinScript, to describe the applications4.

Sink : test.Sink(active=true, quiet=false, store_tokens=false, threshold=5)

2 Trigger : std.Trigger(data="test", tick=1)

Burn : std.Burn(dump=false, duration=0.1)

4

Trigger.data > Burn.token

6 Burn.token > Sink.token

Listing 6.2: 3-level application using the Calvin’s syntax. It implements the same
application presented in Fig. 6.4

In Listing 6.2, we implement the same 3-level application presented in Fig. 6.4.
The first three lines describe the actors and their parameters (this information is
necessary to correctly initialize the actors). The last two lines use the ">" connector
to link the respective input and output ports of the actors.

6.5.3 Requirements

Finally, the last step, but vital for IoT applications, corresponds to the description of
the requirements for the actors in an application. In [AP17], the authors propose
the mechanisms to describe the requirements for IoT applications, which are im-
plemented in the Calvin framework. The objective is to handle the complexity and
heterogeneity of large IoT systems automatically, delegating to the runtimes the
task of managing and selecting the nodes to run the actors. To do so, applications

4We refer to wiki for a complete description of the CalvinScript’s syntax. Available at: https:
//github.com/EricssonResearch/calvin-base/wiki/Applications.

6.5 Describing an Application 65

https://github.com/EricssonResearch/calvin-base/wiki/Applications
https://github.com/EricssonResearch/calvin-base/wiki/Applications

supply the set of necessary requirements, which are matched against the set of
capabilities the runtimes have.

The requirements described by developers are hard, i.e., applications cannot run if
they cannot be met. These requirements are divided into two main groups: actor and
application related. The former group, actor-related prerequisites, is composed by
the requirements inherent to the actors themselves, such as the access to a camera,
the presence of a timer or the ability to measure the temperature. Without these
minimum capabilities, actors cannot execute and perform their actions. The latter
group, application-related prerequisites, is not directly linked to a single actor and
may vary from one application to another. These requirements include properties
such as geographical location, node name and ownership. Note that we have little
room for improvements with the actor-related requirements, since they depend on
the physical access to sensors and actuators. Therefore, within the framework of
this thesis, we will focus on the application-related requirements, considering the
specific needs of IoT applications running in the Fog environment.

Calvin uses a json-based syntax to describe the requirements, as illustrated in 6.3.
The language, although somewhat verbose, allows the specification of requirements
for each actor. In our example, the Sink may be located on any node in Paris, France.
Note that the attributes that describe the requirements, the address in this case, are
hierarchical, i.e., specifying only the country argument will refer to all nodes within
this country (France in our example), regardless of the city. Moreover, it is possible
to be more specific when describing an address, adding, for example the street,
street number or building 5.

{

2 "requirements": {

"Sink": [{"op": "node_attr_match",

4 "kwargs": {"index": ["address", {"country": "FR",

"locality": "Paris"}]},

6 "type": "+"

}]

8 }

}

Listing 6.3: Describing the requirements for a Calvin application.

5Once again, we refer to wiki for a complete description of the possible requirements and their
sub-levels. Available at: https://github.com/EricssonResearch/calvin-base/wiki/Application-Dep
loyment-Requirement.

66 Chapter 6 The Calvin Framework

https://github.com/EricssonResearch/calvin-base/wiki/Application-Deployment-Requirement
https://github.com/EricssonResearch/calvin-base/wiki/Application-Deployment-Requirement

6.6 Deploying an application

With the description of the application and its requirements available, a user can
request to deploy her application. Fig. 6.5 presents a simplified scenario that
contains two users deploying their applications in an environment composed of
three runtimes. Some points are important to highlight: i) any runtime can deploy
applications in the system: in this case, user 1 deploys her application through
runtime 2, while user 2 uses runtime 3; ii) shared database, containing information
about available runtimes and their capabilities.

deploy deployRuntime	2

Runtime	1 Shared
DB

Runtime	3

User 1 User 2

List of runtimes:
- 1, 2, 3
IPs:
- ...
Capabilities:
- ...

Figure 6.5: Calvin’s deployment ecosystem. Runtimes deploy applications from different
users concurrently. A database is used to share information about runtimes
and their capabilities.

Each runtime deploys applications by itself, regardless of other applications and
runtimes on the system. The deployment algorithm filters the available runtimes
based on the requirements of the application. Calvin’s current deployment algo-
rithm has two main phases:

1. Collecting actor’s placement: by considering the current information in the
shared database, Calvin creates, for each actor, a list of possible runtimes to
host it. The list contains only hosts capable of meeting the actor’s require-
ments.

2. Deciding runtime: one runtime from the list is chosen to host each actor.

Note that Calvin arbitrarily chooses the runtime to host the actor and no optimiza-
tion is performed at step 2. After that, the runtime, responsible for the deployment,
forwards the actor to the appropriate runtime.

6.6 Deploying an application 67

6.7 Limitations for the Fog

We have seen in this chapter how Calvin leverages the development of IoT applica-
tions, using the actor model while creating an abstraction layer on which the actors
execute. Despite its advantages and interesting concepts, some limitations prevent
its direct use in a Fog environment. It is important to remember that Calvin was cre-
ated with a Cloud environment in mind, where, in general, all nodes are powerful,
uniform and connected through a dedicated, high-performance network. In this
context, the capacity of the resources, such as CPU, RAM or network bandwidth, is
not a limiting factor. However, on a Fog platform, the capacity of the infrastructure
nodes greatly varies due to their heterogeneity, and therefore, these characteristics
cannot be ignored when describing and deploying an application.

We summarize hereinafter the three main classes of limitations identified:

• Application description: as we saw above, the requirements available are
related to fixed properties of nodes, such as geographical location. Thus,
a developer is unable to describe the resources that the application needs,
neither in terms of node capacity, such as CPU and RAM, nor network capacity,
such as bandwidth and latency.

• Monitoring: to provide these dynamic requirements, Calvin needs to be
aware of the capacity and availability of the resources on which it is running.
So far, Calvin has no information about the host and its resources. Therefore,
a monitoring mechanism is necessary to know the platform and to deploy the
applications properly.

• Deployment: finally, the deployment algorithm needs to be adjusted to take
into account these dynamic requirements when placing applications. More-
over, due to the constrained resources of the Mist layer, it is important to
have an optimized use of the resources to avoid possible bottlenecks for the
applications.

68 Chapter 6 The Calvin Framework

7FITOR: A Platform for IoT
Orchestration in the Fog

Our main goal behind the implementation of FITOR is to create a proper platform
to run, monitor and collect data about IoT applications executing in a Fog environ-
ment. Three objectives drive the platform we propose: i) perform studies about the
provisioning and the reconfiguration of IoT applications in the Fog; ii) not reinvent-
ing the wheel, since many of the software needed to create the platform already
exist; and iii) similar to real environments, mimicking the main characteristics of
the Fog infrastructure.

Infrastructure

Fog IoT

Orchestrator

Infrastructure

Monitor

Prometheus

Cadvisor

Blackbox

exporter

Netdata +

FireQos

Service Descriptor

{"requirements":{"src":

[{"op":"node_attr_match",

"kwargs":{"index":

["node_name",

{"name":"runtime-

0"}]},"type":"+"}]}}

src : std.Trigger(tick=1,

data="fire")

snk :

io.Log(loglevel="INFO")

src.data > snk.data

Service

Deployer

Service

Scheduler

Prometheus

Grid5000

Fog layer

grenoble.iot-lab

M3 - sensors
IPv6 addresses

M3 - border router

IEEE 802.15.4
SLIP

IPv4/IPv6

FIT/IoT-LAB

IPv4

End Devices/Mist

Cadvisor

F
o

g
 N

o
d

e

Linux

Blackbox

exporter

Netdata+

FireQoS

Docker

Runtime

Actor

Cadvisor

F
o

g
 N

o
d

e

Linux

Blackbox

exporter

Netdata+

FireQoS

Docker

Runtime

Actor

M
is

t
 N

o
d

e

A8

Actor

N
e
t
d
a
t
a
+

F
ir
e
Q

o
S

Linux

Runtime

M
is

t
 N

o
d

e

A8

Actor

N
e
t
d
a
t
a
+

F
ir
e
Q

o
S

Linux

Runtime

Custom
Calvin

Custom
Calvin

Figure 7.1: FITOR platform. This figure depicts the components used to build the architec-
ture proposed in Fig. 5.1.

Fig. 7.1 takes up the architecture proposed in Chapter 5, presenting the components
used to create the platform. In the following sections, we detail each one of these
components, explaining the function they cover in the environment.

69

7.1 Software Components

7.1.1 Calvin

In Chapter 6, we have seen how Calvin can be used to run IoT applications and its
limitations in a Fog environment. To overcome these limitations, we implemented a
set of extensions in the original Calvin framework, creating the fog-friendly version
used in FITOR.

Extensions in application description

Calvin’s language, described in Section 6.5.2, is quite powerful and provides almost
everything needed to describe a Fog application. The exception is a way to identify
application links. The original language proposes the use of the ">" identifier to
link two ports from different actors. However, in order to be able to define network
requirements for application links, we need to give the links a specific name, as it is
done for actors (e.g., Sink is the name of test.Sink actor in 7.1).

To overcome this limitation, we extended the Calvin’s grammar to include the link
name before its definition, as:
link <link name> : <actor1>.<port> > <actor2>.<port>.

The syntax is similar to the old one, we only inserted the keyword link before the
name and the delimiter ":" after it. In 7.1, we show how to give names for the links
in our application example.

1 Sink : test.Sink(active=true, quiet=false, store_tokens=false, threshold=5)

Trigger : std.Trigger(data="test", tick=1)

3 Burn : std.Burn(dump=false, duration=0.1)

5 link linkA : Trigger.data > Burn.token

link linkB : Burn.token > Sink.token

Listing 7.1: Grammar extension to name links in Calvin applications. It implements the
same application presented in Fig. 6.4

Extensions in requirements

Requirements are the Achilles’ heel when using Calvin to describe Fog-enabled
IoT applications. The lack of support for dynamic parameters, such as IT and
network resources, hinders its use in the Fog environment. For this reason, we
have extended the model to consider nodes and links requirements. We recall that,

70 Chapter 7 FITOR: A Platform for IoT Orchestration in the Fog

internally, Calvin uses a hierarchical structure to organize the nodes that meet the
requirement. We will use this organization in some of the requirements below to
sort nodes from most to least restrictive.

{

2 "requirements": {

"Sink": [{"op": "node_attr_match",

4 "kwargs": {"index": {"cpuRaw": 4, "ramRaw": 1000 }},

"type": "+"

6 }],

"linkA": [{"op": "link_attr_match",

8 "kwargs": {"index": {"latency": "100ms", "bandwidth": "10M"}},

"type": "+"

10 }],

12 }

}

Listing 7.2: Adding CPU, RAM and network-related requirements in a Calvin application.

• Node requirements: within the node_attr_match operation, which matches
nodes that respect certain characteristics, we added:

– cpuTotal: filters nodes with at least a certain CPU power, independent of
their current load. The nodes are categorized in groups to facilitate their
retrieval. The acceptable values are: 1 MIPS, 1000 MIPS, 100000 MIPS, 1
GIPS, 10 GIPS.

– cpuRaw: considers the available residual CPU power (in MIPS), i.e.,
node’s total power minus its current load.

– memTotal: similarly to cpuTotal, but regarding the total RAM in node. The
acceptable values are: 1 Kb, 100 KB, 1 MB, 100 MB, 1 GB and 10 GB.

– ramRaw: the minimum residual RAM memory (in bytes) necessary to
run the application.

• Link requirements: a new operator, link_attr_match, was created specifi-
cally to match the links. The following requirements are possible:

– bandwidth: represents the minimum bandwidth acceptable for the link. It
follows the hierarchical organization used for cpuTotal and memTotal, the
acceptable values are: 100 Kb/s, 1 Mb/s, 10 Mb/s, 100 Mb/s, 1 Gb/s.

– latency: as expected, determines the maximum acceptable delay between
two actors. The possible values are: 1 s, 50 ms, 10 ms, 1 ms, 100 us.

7.1 Software Components 71

Monitoring

Unfortunately, the description of applications with dynamic requirements is only
the visible part of the iceberg. To filter out nodes following the residual resources,
Calvin needs to have this information up-to-dated. We opt for separating the
retrieval of the information from its update. The monitoring is handled by external
tools, as explained in Section 7.1.2, while in Calvin, we implemented a REST API
that external tools can use to update Calvin’s internal database.

• Node-related parameters: API used to set CPU and RAM available for the
node hosting the Calvin instance. Both parameters are in percentage (%) of
the total resource.

1 POST http://<IP>:<PORT>/node/resource/cpuAvail

Body: {"value": <CPU available (in %)>}

3

POST http://<IP>:<PORT>/node/resource/memAvail

5 Body: {"value": <RAM available (in %)>}

Listing 7.3: Rest API to set the host’s CPU and RAM availability.

• Link-related parameters: bandwidth and latency of links are related to the
end-to-end measurements between two nodes. So, the API requires the
identifier of the two nodes, as well as the new bandwidth or latency values.

1 POST http://<IP>:<PORT>/link/resource/bandwitdth/{node1}/{node2}

Body: {"value": <bandwidth available>}

3

POST http://<IP>:<PORT>/link/resource/latency/{node1}/{node2}

5 Body: {"value": <latency>}

Listing 7.4: Rest API for setting the bandwidth and latency of a link.

Provisioning and reconfiguration

Finally, the latest improvements brought to Calvin are intrinsic to our target, namely
the provisioning and reconfiguration algorithms for IoT applications. These algo-
rithms take into account the new requirements described in this chapter and will be
detailed in Part III and IV.

72 Chapter 7 FITOR: A Platform for IoT Orchestration in the Fog

7.1.2 Monitoring

As presented in Fig. 7.1, our platform is composed of several components with
specific characteristics and, consequently, different manners to be monitored. To
deal with this heterogeneity, we use different tools to monitor each component of
the platform. Our goal herein is to collect as much information as possible with
the least effort, even though we may not use all the data collected. Note that,
consequently, we have not evaluated the possible impact of these monitoring tools
on the system, which is not negligible, but it is outside the scope of this thesis.

cAdvisor

CAdvisor [Goo14] provides a complete monitoring of performance and resource
usage of containers. Although cAdvisor’s primary goal is the monitoring of con-
tainers, it also collects metrics system-wide. Among all the resources monitored, we
are mostly interested in the CPU and RAM utilized by containers running Calvin
runtimes.

In our platform, cAdvisor runs as a separate container in all Fog nodes. It monitors
and exports the relevant metrics through a REST API interface which are collected
by our Prometheus server.

Blackbox Exporter

Blackbox exporter [Pro15] is a tool developed by the Prometheus team to monitors
different endpoints. In our context, we use it to measure the end-to-end latency
between the nodes in the system. However, its scope is much broader, as it allows
the probing of endpoints via many protocols, such as HTTP, HTTPS, DNS, TCP and
ICMP.

We deploy and configure the Blackbox exporter probes in all Fog and Mist nodes
of our infrastructure. On each node, we set all other nodes as the destination for
ICMP requests, so that we can measure the complete end-to-end delay. The results
are exported via a known address, which are read by Prometheus and forwarded to
Calvin runtimes.

7.1 Software Components 73

Netdata and FireQoS

Netdata [Net13] is a versatile monitoring and visualizing tool for a variety of
systems. It is designed to be a fully integrated tool, including the monitoring,
storage, verification and visualization of the collected metrics. Among its features,
it allows the export of collected metrics to an external server, such as Prometheus.
On the other hand, FireQoS [TW02] is a helper tool to configure traffic shaping
on Linux machines. It provides a user-friendly abstraction for setting the Traffic
Control (TC) module in the Linux kernel.

In our infrastructure, Netdata is responsible for collecting all metrics related to phys-
ical nodes. Tons of metrics are collected, but we are mainly interested on the CPU
and RAM consumption of the nodes. Thanks to its low memory footprint, Netdata
fits into our Mist nodes and can be used to monitor their resource consumption.

Moreover, these tools, Netdata and FireQoS, are used to monitor the bandwidth
utilization without the support of network equipment. In our setup, these tools
measure the bandwidth utilization of each Calvin’s flow. Note that the flow is
characterized by a TCP connection between two nodes. Using FireQoS, we configure
the TC to identify each flow and to keep statistics about them. Then, Netdata collects
the information and sends it to our infrastructure monitor.

Prometheus

Finally, Prometheus [Pro12] is an open-source monitoring and alerting toolkit. How-
ever, the Prometheus server itself does not directly monitor any system, relying on
different exporting modules to generate and export these metrics. Prometheus sub-
sequently collects and processes these metrics, providing a flexible query language
to filter and organize the data.

One node in our infrastructure hosts the Prometheus server, which scraps all
other monitoring tools (Netdata, cAdvisor, blackbox exporter) to retrieve and
store metrics during our experiments. By saving the Prometheus database in the
end of the tests, we are able to perform post-mortem analyzes of the system’s
performance.

7.1.3 Docker

Docker [Doc13] is probably the most adopted product for packing software, using
the OS-level virtualization called containers. The use of containers versus virtual

74 Chapter 7 FITOR: A Platform for IoT Orchestration in the Fog

machines as virtualization technique in the Fog is an open question, which depends
on the environment (size, heterogeneity) and application requirements (security,
scalability). However, we believe that containers, due to their lightweight, are
better adapted to isolate micro-services running in a heterogeneous and sometimes
constrained environment, such as the Fog. Thus, in our platform, the Docker engine
copes with hardware and software heterogeneity. Docker containers are used to
create an image which encapsulates the software necessary in our setup.

7.2 Infrastructure

7.2.1 Grid’5000

Grid’5000 [Bal+13] is an experimentation testbed whose focus is on parallel and
distributed computing, such as Cloud and Big Data. Grid5000 contains a large
amount of powerful resources, 841 nodes grouped in 37 homogeneous clusters
and spread in 8 sites [Gri]. It is a highly controllable and configurable platform,
allowing the installation of a fully customized environment, from the OS to the
applications.

We make use of Grid5000 servers to emulate the Fog nodes and run our Prometheus
server. We can distinguish three types of nodes in Grid’5000:

• 1 node for the Prometheus server: this node is the entry point for our tests
and where we install our monitoring system.

• 1 node for the master Calvin runtime: the master node that contains the
Calvin database.

• N Fog nodes running slave Calvin runtimes: where the IoT applications are
executed.

7.2.2 FIT/IoT-LAB

FIT/IoT-LAB [Adj+15] is a large scale open platform to perform IoT experiments. It
provides more than 1786 heterogeneous sensor nodes spread in 6 different sites in
France [FIT]. IoT-LAB has a set of official boards (WSN430, M3 and A8), specially
designed for the platform, but users can bring new off-the-shelf boards. Although
limited, some robots are available to mimic mobility, by running a closed circuit
route.

7.2 Infrastructure 75

grenoble.iot-labM3 - sensors
IPv6 addresses

M3
border router

IEEE 802.15.4

SLIP IPv4/IPv6

FIT/IoT-LAB

M
is
t	
N
o
d
e

A8

Actor

N
et
da
ta
+

Fi
re
Q
oS

Linux

Runtime

External network

Figure 7.2: Zooming in on the FIT/IoT-LAB part of the FITOR infrastructure.

In our prototype, we use M3 and A8 boards to set up the end device layer and
the Mist sublayer, encompassing the sensors and Mist nodes. Each M3 board is
composed of an ARM micro-controller, 64KB of RAM, various sensors (e.g., ambient
sensor light, atmospheric pressure and temperature, etc.) and an IEEE 802.15.4
radio interface. As we can see in the left part of Fig. 7.2, M3 nodes communicate
via the radio interface and an M3 border router encapsulates and sends the IP
packets to the frontend node over the serial interface, using the SLIP (Serial Line
Internet Protocol) protocol. Regarding the software stack, we use the Contiki-NG
operation system on M3 nodes. A version for M3 is provided by FIT/IoT-LAB
maintainers1 and allows the access to the sensor data using its IPv6 address and the
REST-inspired, CoAP (Constrained Application Protocol) protocol.

On the other hand, A8 nodes are more potent. Thanks to its ARM A8 microprocessor
and 256MB of RAM, it is capable of running user’s applications and hence, can be
considered as a Mist node. It has a wired connection and a wireless via a built-in
M3 board, allowing both IPv4 and IPv6 access to nodes.

7.2.3 Connectivity

Connectivity is the main limitation in the use of Grid’5000 and FIT/IoT-LAB. As
two separate testbeds, the nodes are part of private networks and cannot commu-
nicate directly. Fortunately, Grid’5000 has a VPN solution to connect your PC to
the Grid’5000 network. Thus, we use this feature to overcome this connectivity
limitation by creating L3 VPNs between the A8 and Grid5000 nodes. For this, we
install the OpenVPN [Ope01] client with the appropriate configuration file on each
A8 node on the FIT/IoT-LAB platform.

7.3 Limitations
1More details about Contiki support on IoT-LAB is available at: https://github.com/iot-lab/iot-lab/wik

i/Contiki-support.

76 Chapter 7 FITOR: A Platform for IoT Orchestration in the Fog

https://github.com/iot-lab/iot-lab/wiki/Contiki-support
https://github.com/iot-lab/iot-lab/wiki/Contiki-support

7.3.1 Applications

The improvements we have made to Calvin to describe the application require-
ments serve as a proof of concept of its use in a Fog environment. However, it is
straightforward to see that these requirements (CPU, RAM and network), although
relevant, are not exhaustive for both application actors and links.

For the actors, we can consider other resources in the description, such as storage,
specific hardware (GPU or FPGA for example) or software (e.g., libraries). Addition-
ally, applications may have requirements related to energy, security or performance,
restricting the nodes that could run these components.

Following the same idea, link requirements can be extended to consider jitter or
congestion in a network, for example. Also, monetary aspects can be important to
avoid extra cost incurred by some technologies (e.g., cellular networks).

7.3.2 Monitoring

We use a variety of monitoring tools in our environment. As discussed earlier, these
tools have an impact on system performance, which can be important. Although
we do not take this impact into account, we expect that the latter will the similar for
all the orchestration strategies studied and, hence, our conclusions are still valid.

More relevant, however, are the consequences that these monitoring tools bring
to the system: delayed and imprecise information. The data depends on the
frequency of the monitoring and the updates we receive. These parameters can be
configured but they also consume resources and may further impact application
performance. In addition, precise information depends on the accuracy of the
monitoring tools. This is particularly problematic for the bandwidth on our shared
network, because we monitor the bandwidth used by flows and not the residual
network bandwidth.

We consider these "limitations" as part of the game, since in a real environment it is
impossible to have accurate and up-to-dated monitoring information for a large,
distributed system, such as the Fog.

7.3 Limitations 77

7.3.3 Infrastructure

The platform we propose is composed of Fog, Mist and end-devices layers. How-
ever, it is worth noting that, for sake of simplicity, we don’t emulate the Cloud layer.
However, such a layer could be instantiated using other data centers of Grid’5000.

The Fog infrastructure is also characterized by its heterogeneity and geo-distribution,
using all available resources to run applications. However, our Fog nodes are gener-
ally composed of machines from homogeneous clusters, which reduce heterogeneity
since they are located close to each other. A more diverse set of resources is possible
by creating different profiles and limiting the resources available for applications.
However, the geographic distribution is slightly more complicated, depending on
the use of different sites and/or the fine-tuning the network parameters to emulate
this characteristic.

Finally, it is important to note the limitations in terms of network resources in FITOR,
especially the use of a VPN to connect the FIT/IoT-LAB and Grid’5000 testbeds. In
this regard, the SILECS project [SIL] was created to bring together several testbeds
(including Grid’5000 and FIT/IoT-LAB) and create a whole infrastructure, from
connected objects to large data centers. However, up to this date, the project is
under development and is not yet ready for use.

78 Chapter 7 FITOR: A Platform for IoT Orchestration in the Fog

8Experimental Methodology

In this chapter we detail the experimental methodology used in our tests during this
thesis. A high level overview of all factors, which can affect the results and must
be carefully configured, is provided in Fig. 8.1. These parameters are discussed in
the following sections and their values are defined later, when provisioning and
reconfiguration studies are presented.

8.1 Scenario

8.1.1 Platform

The platform describes the physical infrastructure used in the experiments. It is
characterized by its:

• Size: it is the total number of nodes present in the platform.

• Heterogeneity: represents the diversity (sensors, Mist and Fog nodes) present
in the Fog infrastructure.

In practice, these parameters are translated to a given number of nodes from both
testbeds: Grid’5000 and FIT/IoT-LAB. For example, a typical scenario contains 50
nodes from FIT/IoT-LAB to represent the sensors/Mist layers, and 17 nodes from
Grid’5000, forming the Fog layer.

8.1.2 Workload

The workload describes the applications running in our experimental Fog envi-
ronment, their characteristics and the load they incur in the system. For clarity
purposes, we start by seeing the high level characteristics of the workload which are
enough to understand the behavior and load of the applications. Afterwards, some
specific, low level parameters necessary for a complete application description are
presented.

79

Sc
en
ar
io

O
rc
he
st
ra
to
r

H
et

er
og

en
ei

ty

Pr
ov

is
io

ni
ng

st
ra

te
gy

R
ec

on
fig

ur
at

io
n

st
ra

te
gy

Si
ze

M
ai

nt
en

an
ce

in
te

rv
al

M
on

ito
rin

g
in

te
rv

al

W
or
kl
oa
d

Lo
w

-le
ve

l a
pp

.
de

sc
rip

tio
n

Sy
st

em
lo

ad
Ap

pl
ic

at
io

n
th

re
sh

ol
d

C
on

ne
ct

io
n

ty
pe

R
ou

tin
g

m
et

ho
d

Q
ue

ue
le

ng
th

Ap
p.

ar
riv

al
 in

te
rv

al

1:
1

1:
N

C
PU

R
AM

ba
nd
w
itd
h
la
te
nc
y

Ap
pl

ic
at

io
n

lo
ad Ap

p.
he

te
ro

ge
ne

ity

C
hu

rn

R
eq

ui
re

m
en

ts
ac

to
rs

R
eq

ui
re

m
en

ts
lin

ks

Ex
ec

ut
io

n

M
on

ito
rin

g
to

ol
s

Tr
ac

in
g

&
lo

gs

Id
en

tifi
er

U
nc

on
tro

lle
d

pa
ra

m
et

er
s

Ex
pe
rim

en
t

N
:1

ra
nd
om

ro
un
d-

ro
bi
n

al
l

lo
ca
tio
n

O
ut

pu
t

C
al

vi
n

lo
gs

Pe
rfo

rm
an

ce
m

et
ric

s

Ex
pe

rim
en

t
lo

gs Pr
om

et
he

us
da

ta
ba

se

Figure 8.1: Fishbone diagram showing the factors that can impact our experiments. We
highlight in orange the main parameters that drive the test execution. The gray
parameters may impact, but they are not the focus of our study.

80 Chapter 8 Experimental Methodology

The first step when defining the workload for our experiments is deciding the
application we will use. We opt for a 3-level application, as illustrated in Fig. 8.2. In
the first level, sensors, or Trigger agents, generate the data for the remaining actors of
the application. The data is generated respecting the workload description detailed
below. Second, the Burn is responsible for processing the received data, consuming
a high amount of resources, mainly CPU. In the end, the Sink is responsible for the
long-term data analytics and for measuring the end-to-end delay to process the
messages. This type of model, albeit simplified, reflects the main characteristics
of an IoT application and facilitates the workload customization. We note that
defining a realistic workload is probably the most delicate and debatable part
of such study. With the ongoing evolution of Fog and IoT applications, we are
unaware of a comprehensive use case, containing a well detailed description of the
behavior of IoT applications running on the Fog. Consequently, some parameters
cited hereafter are cautiously configured, considering our infrastructure, to obtain a
heterogeneous, complex but still manageable workload.

Trigger Burn Sink

Figure 8.2: A typical 3-level application used in the experiments. The number of actors in
each level and their characteristics vary according to the test, but the structure
is kept.

Fig. 8.2 illustrates the components of a single application. The workload is com-
posed of a set of application and is characterized by:

• Application load: different profiles are created to describe the application’s
resource consumption. For example, by controlling the message sending rate
of the Trigger and the processing load of the Burn agent for each message, we
can adjust the behavior, in terms of CPU consumption, of the applications in
the workload.

• Application heterogeneity: is the mix of applications present in the workload,
according to the application load defined before.

• System Load: represents the charge induced by applications to the platform.
This parameter is correlated with the platform size, application load and
heterogeneity. In practical terms, it determines the number of applications in
the experiment.

• Application arrival interval: defines how the applications enter in the system
during the provisioning phase.

8.1 Scenario 81

• Application threshold: the acceptable end-to-end delay to process applica-
tion messages, i.e., the time taken by the message to leave the Trigger and
to arrive at Sink component. This parameter is important to determine the
satisfaction of applications with their current placement.

• Churn: defines the evolution over time of applications and consequently their
resource usage. This parameter is important to study the reconfiguration
problem.

Low-level application description

In addition to the high-level parameters described in the previous sections, several
other attributes need to be fixed to have a proper experimental environment. These
parameters do not have a direct impact on the comparison of different provisioning
and reconfiguration strategies but they may impact on the overall performance of
the system.

Burn

Trigger
trigger1.out

burn1.in

AB

Burn
burn2.in

(a) 1-N connection.

Trigger

Burn

Trigger

trigger1.out

trigger2.out

burn1.in

A

C

B

D

(b) N-1 connection.

Figure 8.3: Internal representation of ports in actors. Each port has a queue of limited size
associated. Extra configurations are available to dictate how messages are sent
between source and target actors.

Fig. 8.3 illustrates the parameters related to the actors and their connections:

• Connection type: describes how actors from different layers are physically
connected. In our case Trigger→ Burn and Burn→ Sink.

– 1:1: each actor is connected to one in top layer, as in Fig. 8.2.

– 1:N: one actor is connected to all actors in top layer (Fig. 8.3a).

– N:1: one actor aggregates token from many input actors (Fig. 8.3b).

• Queue length: it is the maximum number of messages that can be stored in
each queue. In all our experiments, the queue has 10 slots available.

82 Chapter 8 Experimental Methodology

• Routing method: defines how messages are forwarded from one actor to
another, such as:

– Round-robin: route tokens in a round-robin schedule. For the case
described in 8.3a, it would result in the token "A" going to burn1.in and
"B" to burn2.in.

– Default/all: sends all tokens to all actors. This is the default parameter
chosen in our experiments. So, both "A" and "B" would be sent to burn1.in
and burn2.in.

– Random: as the name implies, it forwards messages at random to the
actors.

Finally, as we have seen before, IoT applications running in the Fog may have spe-
cific requirements in terms of IT resources and network. The following parameters
can be described:

• Requirements for links: for each link in the application, requirements in terms
of maximum allowed latency and minimum bandwidth can be described.

• Requirements for actors: describes the necessary resources of the host on
which the actor is running, such as CPU and RAM availability, location, etc.

8.1.3 Orchestrator parameters

Besides the description of platform and workload made above, the orchestrator
itself has several parameters that may impact in the experiments:

• Provisioning strategy: corresponds to the algorithm used in the provisioning
phase to decide the initial deployment of applications. Several provisioning
strategies are studied in Chapters 10 and 11.

• Reconfiguration strategy: describes the algorithm used in the reconfiguration
phase to adapt the placement of applications when necessary. This parameter
is analyzed in Chapters 13 and 14.

• Maintenance interval: defines the time frequency at which the orchestrator
will verify the satisfaction of applications and will run the reconfiguration
algorithm. The responsiveness of algorithms depends on this parameter. By
default, we choose a 5 seconds maintenance interval.

8.1 Scenario 83

• Monitoring interval: controls the update of host information about resource
usage, such as CPU utilization. In our experiments, this parameter is config-
ured to 60 seconds interval, which means that load information may be up to 1
minute out-dated. This is left intentionally high to obtain a difficult setup.

• Orchestrator version: represents the Calvin’s version used in the tests.

8.1.4 Uncontrolled factors

For the sake of completeness, we cite some uncontrolled factors which may result
in instabilities during the tests. Since we are using a real platform for our tests, the
list of uncontrolled factors is probably much longer. However, we believe that these
examples can give a good understanding of the different challenges we faced while
running tests in the proposed environment.

The first source of instabilities is the software stack running on machines. In
Grid’5000 nodes, this potential effect is minimized by reinstalling all software, from
the operational system to the tools used during the experiments. In FIT/IoT-LAB,
as the customization is more complicated and time-consuming, we chose to install
only the necessary software on top of the provided operational system. However,
note that the same image is used on all FIT/IoT-LAB nodes.

More specifically, the script responsible for monitoring the node’s resource con-
sumption and updating it in Calvin has an impact in applications performance.
Each time this information is sent to Calvin, applications stop running for a short
amount of time (Calvin is a mono-thread process). The effect can be somehow
controlled through the monitoring interval parameter, but the effect still exists. For
instance, we noticed that a monitoring interval of 5 seconds degrades the applica-
tions performance, mainly because of the weak CPU in Mist nodes (A8 boards in
FIT/IoT-LAB).

The machines themselves can be a source of uncertainty. Both platforms, Grid’5000
and FIT/IoT-LAB, are shared between different users. Consequently, the nodes
used in different test runs are not same. However, we always assured to have
similar machines in order to obtain a fair comparison among the strategies.

Finally, the network behavior is unpredictable and can lead to connectivity issues
and a delayed communication between nodes on the platform. In this context,
the VPN used to communicate FIT/IoT-LAB and Grid’5000 nodes may have a
considerable impact which is very hard to control.

84 Chapter 8 Experimental Methodology

8.2 Setup

The setup of our experimental platform is basically the deployment of all compo-
nents in FITOR (as seen in Chapter 7). For that, we use nodes from Grid’5000 and
FIT/IoT-LAB platforms. The location and number of nodes used differ in each
section and are commented on the respective chapters.

It is evident that a manual installation and configuration of FITOR in all nodes in
the platform is impracticable. Hence, we use a set of automated processes to deploy
the experimental environment. Even with this automated process, the setup of an
environment composed of about 65 nodes can take up to 2 hours.

The test’s control flow is done by python and bash scripts in the front-end of the
Grid’5000 platform. They are responsible for generating the test cases, installing the
nodes in the Grid’5000 and FIT/IoT-LAB platform, running the test and collecting
the results. For Grid’5000 nodes, we use Ansible [Red12] scripts to install and
configure all nodes in parallel. Ansible is an IT automation platform which install
and configures the nodes through ssh connections. On the other hand, due to the
lack of support for Ansible in FIT/IoT-LAB platform, the deployment of nodes is
done using bash scripts along with the specific tools provided by the platform.

8.3 Experiments

Given the specified scenario and after the setup of the platform done, we are able
to execute the experiments, collect and analyze the results.

8.3.1 Execution

All the parameters described in the sections above are then translated to a set of
csv (comma-separated values) files which are read by the script that controls the
test execution. In Listing 8.1, we list the files used in a reconfiguration experiment,
along with an example of a main configuration file and its parameters. Using
this information, the execution script is capable of generating the applications,
deploying them and collecting all the relevant logs. The test run and the collected
data are identified by a unique 32 character hexadecimal string.

8.2 Setup 85

tree exp20_ef/

|-- [95] ew_param.csv

|-- [194] experiments_list.csv

|-- [266] wl_app_char.csv

|-- [118] wl_churn.csv

|-- [99] wl_heter.csv

`-- [50] wl_load.csv

cat exp20_ef/experiments_list.csv

Exp_duration,A8_nodes,G5K_nodes,WL_load,WL_heter,WL_churn,Calvin_version,

Calvin_redeploy,Calvin_deploy,Calvin_maint_interval,Calvin_mig_cooldown

7200,50,17,H,I,S,c1e03e4,app_learn_v2,fixed,10,0

Listing 8.1: Structure of an experiment folder. Each csv file describes some characteristics
of the test. In "experiments_list" file presents the main parameters for the
experiment, such as its duration (2 hours in this example).

8.3.2 Output

In order to have a good understanding of our system’s behavior in each experiment,
a large amount of logs is collected. Listing 8.2 shows the typical output directory
tree generated by an experiment. Between the files, a human-readable output file is
created, centralizing all important logs (output*.org below). Note that, depending
on the setup configuration, these logs can reach 1.5GB in size for each test run.

tree 8c4e57ed-ce23-4a06-9d35-bfadbfc75f6f/

|-- [155K] calvin_files/

|-- [4.8K] original_files/

|-- [142M] snapshot/

|-- [304] generated_experiments_list.csv

|-- [50M] logs.tar.gz

|-- [1.4G] output_exp_8c4e57ed-ce23-4a06-9d35-bfadbfc75f6f.org

|-- [16K] stderr.txt

`-- [252K] stdout.txt

3 directories, 5 files

Listing 8.2: Example of output for an experiment. The output file in bold centralizes all
logs in a single and human-readable file.

These logs include a variety of information, such as: i) original files with the test
description; ii) Calvin’s files describing the applications and their characteristics; iii)
Calvin’s logs (for all nodes in the platform), including information about applications,
actors and nodes; iv) general information, such as stdout and stderr outputs, CPU
and RAM information, Linux version, etc.; and v) Prometheus database with all
metrics collected from the platform.

86 Chapter 8 Experimental Methodology

8.3.3 Data analysis

Finally, the last step is the analysis of obtained results. This step is as important
as any previously done and must be performed meticulously. Many misleading
conclusions in scientific works are consequence of an incorrect analysis of the
available data. In this direction, the reproducible research comes to close this gap,
providing the tools to reproduce the results from the original data.

In my thesis, the data analysis is done in two steps. First, the logs are parsed by a
set of scripts to recover the relevant information. This data is stored in a csv file in
a proper repository. In a second time, we use the org-mode plugin [Sch+12] for
emacs to create a research document describing the steps done to obtain the figures
used in the papers. The analysis is mostly done through excerpts of R scripts in
the org-mode document. With access to the data and the corresponding research
document, other researchers are able to reproduce and verify the results.

8.3 Experiments 87

Part III

The Provisioning of IoT Applications in the
Fog

9Problem Statement

We introduce in this chapter the provisioning problem, first component of the IoT
orchestration in the Fog. A formulation for the problem is described, along with a
presentation of the GRASP method subsequently used to solve it.

9.1 Introduction

The provisioning of IoT Applications in the Fog is an important step to implement
a comprehensive orchestration system. It is responsible for placing the applica-
tion’s components in the infrastructure, with two-fold objective. In one side, the
orchestrator must satisfy the IoT applications, selecting the best possible resources
so applications can offer a good quality of service to the end users. On the other
hand, it needs to optimize the use of the infrastructure, minimizing its cost and
serving as many applications as possible.

The provisioning can be seen as a graph matching problem. The Service Deployer,
which is the component responsible for the provisioning, receives two graphs as
input. The first is the graph representing the IoT application, its components and the
requirements in terms of IT resources and network. The second is the infrastructure
graph, with a description of the nodes, links and their capabilities. Fig. 9.1 illustrates
this process, the Service Deployer receives an application description and has a
current view of the available infrastructure. Thus, the Service Deployer will apply
some algorithm to choose the nodes to host each component of the application,
considering, among others, the access to the different sensors (camera, microphones,
smartphones, etc.) and the resources of each node.

We point out hereafter the characteristics which are important when deploying the
applications in the Fog infrastructure, and which are relevant for the provisioning
problem:

• Heterogeneity: is a key characteristic of the Fog infrastructure. These hetero-
geneous and sometimes constrained resources, leads to a higher complexity
on the placement decision.

91

D

Service
Deployer

Application description Infrastructure

B

B

A C

C

D

A

Provisioning

Custom
Calvin

Figure 9.1: Provisioning as a graph matching problem. The Service Deployer is responsible
for providing resources to IoT applications, considering its requirements and
the infrastructure available.

• Stringent requirements: IoT applications frequently have stringent require-
ments which the Service Deployer must meet. These requirements may
include: i) node’s capacity, such as CPU and RAM; ii) node’s geographical
location and iii) network bandwidth and latency.

• Inaccurate information: Fog’s large scale and heterogeneity make it very
difficult to have an accurate view of the infrastructure status. The accuracy
depends on the monitoring tools used on the platform and the frequency this
information is updated, which may be very frequent in constrained resources.

• Duality in objectives: at first glance, IoT applications and infrastructure have
contrasting goals. Ideally, IoT applications would like to have dedicated re-
sources for execution, while infrastructure owners prefer to share the available
resources among as many applications as possible.

The remaining of the provisioning part is organized as follows. In 9.2 we briefly
explain the concept of grasp algorithms, which is used to implement our heuristic.
A mathematical formulation, which models the problem as an ILP, is presented in

92 Chapter 9 Problem Statement

9.3. Given the mathematical formulation of the problem, we propose a heuristic
which minimizes the provisioning cost in Chapter 10. The model and solution are
extended in Chapter 11 to take into account the load of nodes, and consequently,
improve the number of applications running in the infrastructure.

9.2 Related Work

9.2.1 The GRASP method

GRASP [FR95], which stands for Greedy Randomized Adaptive Search Procedure,
is a meta-heuristic commonly used to solve combinatorial optimization problems.
Many of these problems are sufficiently large to be intractable by exact algorithms.
Hence, heuristics emerge as a reasonable alternative to provide good, but not
necessarily optimal solutions. In this context, the GRASP method is an iterative
meta-heuristic, in which each iteration generates possible solutions for the optimiza-
tion problem, consisting in two main phases: the construction of an initial solution
and its improvement through a local search procedure. In the end, the best solution
found considering all iterations and an evaluation criterion, is selected.

Algorithm 1: GRASP pseudo-algorithm [FR95]

1 Function ConstructGreedyRandomizedSolution():
2 Solution = {}
3 for (Solution construction not done) do
4 MakeRCL (RCL)
5 s = SelectElementAtRandom (RCL)
6 Solution = Solution ∪ {s}
7 AdaptGreedyFunction (s)

8 return (Solution)

9 Input: InputInstance()
10 for (GRASP stopping criterion not satisfied) do
11 ConstructGreedyRandomizedSolution (Solution)
12 LocalSearch (Solution)
13 UpdateSolution (Solution, BestSolutionFound)

An excerpt from the GRASP pseudo-code is presented in Algorithm 1. The core of
the algorithm is the for iteration on line 10, where solutions are generated until a
specific stopping criterion is reached. Obviously, this stopping criterion is specific
of the problem domain, but it can be as simple as a maximum number of iterations
or elapsed time reached. The loop consists of three steps: i) the generation of
an initial, randomized solution in ConstructGreedyRandomizedSolution; ii)
LocalSearch analyzes the solution’s vicinity, looking for possible improvements

9.2 Related Work 93

in the initial solution; and iii) UpdateSolution which updates the final solution
following an evaluation criterion.

The function ConstructGreedyRandomizedSolution is described in lines 1
to 8, where we detail the procedure to build the initial solution for the problem.
The algorithm uses a greedy procedure to iteratively build the solution, adding one
element at each iteration. The key point in this procedure is the MakeRCL function,
which creates the Restricted Candidate List (RCL). The RCL orders all possible
candidates for the solution with respect to a greedy and possible short-sighted
function. This list is then limited to a subset of its possible values, according to
some predetermined criteria. Again, the criteria vary with the problem and can
be, for example: i) Cardinality based: maintains the best k solutions or ii) Value
based: gets all candidates whose performance is better than α ∗ bestCandidate,
for some α ∈ [0, 1]. Afterwards, the solution is updated by adding one element,
not necessary the best, from the RCL, in SelectElementAtRandom. Finally, the
AdaptGreedyFunction can eventually be used to adjust the evaluation function
according to the partial solution generated.

Global optimum

Local optimum

Figure 9.2: Set of solution generated by GRASP for a hypothetical maximization problem
(higher values are better). S∗

1 , S∗
3 and S∗

5 are initial solutions generated by
ConstructGreedyRandomizedSolution.

The initial solution generated by GRASP is not guaranteed to be locally optimal
when considering a simple neighborhood. Fig. 9.2 illustrates a set of solutions
for a given problem. S∗ represents the initial solution created by Algorithm 1.
It is straightforward to see that they are not the best solutions, compared to S6

or S2, for example. The LocalSearch procedure applies a local search to try to
improve these initial solutions, generating small disturbances to improve them
iteratively. For each initial solution S∗, LocalSearch defines the neighborhood
N in which it will seek better solutions (in the example, N(S∗3) = {S2, S6} and

94 Chapter 9 Problem Statement

N(S∗5) = {S4, S6}). Note that the performance of the algorithm depends on both
the initial solution and the neighborhood generation strategy. These are, therefore,
the keys to success of GRASP algorithms. A pertinent initial solution along with
an intelligent neighborhood generation may cover the most appropriate solution
space and lead to optimized solutions.

9.3 Problem Formulation

The Fog landscape P is modeled as an undirected graph denoted byGP = (VP , EP),
as illustrated in Fig. 9.3b, where VP represents the set of Fog nodes belonging to the
different layers and EP represents the direct communications between them. It is
worth noting that VP = (FP ∪ SP), where FP corresponds to the set of Fog/Mist
nodes, and SP includes the sensors and actuators in the end device layer. Each
node v ∈ VP is characterized by its i) available CPU capacity W (v) in MIPS, ii)
available memory M(v) in MB, iii) geographic location G(v) and its iii) category
K(v)1. Specifically, two types of Fog resources are considered: edge sensor/actuator
(end device) and Mist/Fog node. Besides, we introduce two cost parameters for
each Fog node, v: a unit cost of processing CW (v) and a unit cost of memory CM (v).
Similarly, each physical link l ∈ EP is characterized by i) its residual bandwidth
B(l), ii) its communication delay L(l) and iii) its communication cost per unit
bandwidth CB(l).

M(v) = 4GB

W (v) = 10000 MIPS

B(l) = 100Mb/s
L(l) = 10ms

Sensor

Fog Nodes

Mist Nodes
G(v) = RoomA

(a) Infrastructure model

Pr
oc

es
si

ng
Se

ns
or

St
or

ag
e W (a) = 10 MIPS

M(a) = 100Mb

W (a) = 10 MIPS
Trate(a) = 1token/s
Tsize(a) = 1Mb

W (a) = 100 MIPS

L(e) = 20ms

B(e) = 1Mb/s

(b) Application model

Figure 9.3: Components of the provisioning problem

1The category specifies the hardware properties of the Fog resource (e.g. storage node, network
node, sensor, etc.)

9.3 Problem Formulation 95

Similarly, an application A is composed of a set of inter-dependent application
modules (i.e., micro-services). Fig. 9.3b presents an example of an application with
three levels:

1. Sensors that observe the environment and send the collected data to be pro-
cessed.

2. Processing objects which implement the business model of the application
and may have stringent requirements in terms of latency and processing, for
example.

3. Storage objects which stock the sensed data for further analysis.

Formally, it is modeled as a directed acyclic graph (DAG), GA = (VA, EA), where
VA and EA correspond to the services and their logical links, respectively. Specif-
ically, each service a ∈ VA requires an amount of processing power W (a) and a
memory M(a), a geographic location G(a) and a specific category K(a) (e.g. sens-
ing, processing, storage, etc.). Following the dataflow model, Trate(a) is defined as
the number of tokens per second sent by service a and Tsize(a) as the token size.
Likewise, each link e ∈ EA is characterized by a bandwidth demand B(e) and a
tolerable communication delay L(e).

9.3.1 Fog service provisioning problem

The objective of Fog-enabled IoT application provisioning problem consists in opti-
mizing the placement of application components (i.e., micro-services) on distributed
Fog nodes while meeting their non-functional requirements. Mist resources are
constrained because of their inherent physical structure. Hence, we aim at favoring
the usage of higher level Fog nodes since they offer better performance. In doing
so, latency-sensitive applications are not obstructed and can be easily provisioned
on Mist nodes when needed. However, deploying applications’ components far
from their data sources may deteriorate the network performance. Consequently, a
trade-off between the provisioning cost and applications QoS fulfillment should be
assured.

Hereafter, we formulate the provisioning problem of an IoT application A, denoted
by the graph GA, in the Fog infrastructure P , modeled by the graph GP . To do so,
we introduce:

• αav is a binary variable indicating whether the service, a ∈ VA, is assigned to
the physical node, v ∈ VP , or not.

96 Chapter 9 Problem Statement

• Nvx denotes the set of admissible physical paths from v to x, (v, x) ∈ V 2
P .

• N denotes the set of all admissible paths. Formally, N =
⋃
{v,x}∈V 2

P
Nvx.

• βen is a binary variable indicating whether a logical link e ∈ EA is hosted in
the physical path n ∈ N .

• (as(e), ad(e)) ∈ V 2
A denotes the starting (source) and terminating (destination)

component of the logical link e ∈ EA.

• hln is a binary coefficient determining whether the physical link l ∈ EP

belongs to the path n ∈ N or not.

• B(e) = Trate(as(e))× Tsize(as(e)) corresponds to the exchanged data rate in
logical link e, from as(e) to ad(e). We recall that Trate is the number of tokens
sent per second by as(e) and Tsize is the size of each token.

The provisioning of services is constrained so that for each IoT application A, a
service must be hosted in one Fog node. Formally,

∑
v∈VP

αav = 1, ∀a ∈ VA (9.1)

A service a ∈ VA can be hosted in the physical node v ∈ VP , if i) the available resid-
ual resources (i.e. W (v) and M(v)) are at least equal to those required (i.e. W (a),
M(a)) and ii) a has the same category and geographical location as v. Formally,

∀v ∈ VP

{ ∑
a∈VA

W (a)αav ≤W (v)∑
a∈VA

M(a)αav ≤M(v)
(9.2)

(K(v)−K(a))αav = 0,∀v ∈ VP ,∀a ∈ VA (9.3)

(G(v)−G(a))αav = 0,∀v ∈ VP ,∀a ∈ VA (9.4)

We assume that a logical link e ∈ EA between a service as(e) and a service ad(e) is
hosted in a path n ∈ N between v and x. Formally,

9.3 Problem Formulation 97

∑
n∈N

βen = 1, ∀e ∈ EA (9.5)

A logical link e ∈ EA must be instantiated in a single path n ∈ Nvx. Such as
as(e) ∈ VA is hosted in Fog node v ∈ VP and ad(e) ∈ VA is hosted in physical node
x ∈ VP . Formally,

∀e ∈ EA, n ∈ Nvx

{
βen ≤ αas(e)v

βen ≤ αad(e)x
(9.6)

Each physical link l ∈ EP is characterized by the consumed bandwidth Bused(l)
corresponding to the IoT application A. Formally,

Bused(l) =
∑
e∈EA

B(e)
∑
n∈N

hlnβen, ∀l ∈ EP (9.7)

Besides, each physical link l ∈ EP cannot host more than its capacity. Formally,

Bused(l) ≤ B(l), ∀l ∈ EP (9.8)

Each path n ∈ N is characterized by an end-to-end delay, L(n). The latter corre-
sponds to the sum of delays of its forming l ∈ EP . Formally,

L(n) =
∑
l∈EP

hlnL(l),∀n ∈ N (9.9)

Finally, a logical link e ∈ EA must be hosted in a path n, ensuring an end-to-end
delay lower than that required by itself.

∑
n∈N

L(n)βen ≤ L(e), ∀e ∈ EA (9.10)

98 Chapter 9 Problem Statement

Our objective is to generate, for each application A, the best possible provisioning
solution while minimizing the placement cost in terms of allocated resources within
P . For this reason, we define our objective function as follows,

min
∀v∈VP ,∀l∈EP

(CtotW + CtotM + CtotB) (9.11)

The CtotW represents the processing cost of the application’ components in the in-
frastructure. CtotM is related to the cost of the memory required by the components.
Finally, CtotB corresponds the total communication cost for data transfer between
applications components. Also, we define the costs associated to the physical in-
frastructure as i) a cost for processing CW (v), ii) a cost for memory CM (v), and iii)
a cost for data transfer CB(l). Formally,

CtotW =
∑
v∈VP

∑
a∈VA

CW (v)W (a)αav (9.12)

CtotM =
∑
v∈VP

∑
a∈VA

CM (v)M(a)αav (9.13)

CtotB =
∑
l∈EP

CB(l)Bused(l) (9.14)

The Fog-Enabled IoT application provisioning problem corresponds to an advanced
formulation of composable service placement in computer networks problem. As
the latter has been proved NP-complete [HGW09], the proposed model in this
section can only be solved, in an efficient manner, for small size instances. It is
straightforward to see that the Fog service provisioning problem is very hard to
solve, due to scalability constraints. In fact, the dimension of the solution space
would heavily increase following: i) the number of IoT applications and ii) the size
of the Fog infrastructure. In the next chapters, we will see two heuristics to tackle
the provisioning problem in an efficient manner.

9.3.2 Summary of notations

Table 9.1 summarizes the notations used in the problem formulation. In the next
chapters, we will reuse some of these notations to present the results of the two
proposed strategies to solve the provisioning problem.

9.3 Problem Formulation 99

P Fog landscape
VP = (FP ∪ SP) set of infrastructure nodes

FP set of Fog/Mist nodes
SP set of sensors
EP link between nodes

for each v ∈ VP
W (v) available CPU capacity (in MIPS)
M(v) available memory (in MB)
G(v) geographic location
K(v) node’s category
CW (v) unit cost of processing
CM (v) unit cost of memory

for each l ∈ EP
B(l) residual bandwidth
L(l) communication delay
CB(l) communication cost
A IoT application
VA set of application’s services
EA application’s logical links

for each a ∈ VA
W (a) required amount of processing power (in MIPS)
M(a) required amount of memory (in MB)
G(a) required geographic location
K(a) required category
Trate(a) number of tokens per second sent by service
Tsize(a) token size

for each e ∈ EA
B(e) required bandwidth
L(e) tolerable communication delay
Nvx set of physical paths from v to x
N denotes the set of all admissible paths
hln binary coefficient showing if physical link l belongs to the path n
αav binary variable showing if service a is assigned to host v
βen binary variable showing if logical link e is hosted in the path n
CtotW total provisioning cost of processing
CtotM total provisioning cost of memory
CtotB total provisioning cost of bandwidth

Table 9.1: Table of Notations

100 Chapter 9 Problem Statement

10
Cost-aware Provisioning

10.1 Proposed Solution: O-FSP

In this chapter, we will detail our proposal named Optimized Fog Service Provi-
sioning (O-FSP) to resolve the formulated problem in the previous section. Our
strategy is a greedy approach [Cor+09] which aims to incrementally construct an
optimized Fog service provisioning solution. To achieve its objective, O-FSP pro-
ceeds as follows. First, the problem is split into a set of solution components that
are sorted: solving a solution component corresponds to building a small part of the
final solution. Then, each solution component is greedily placed while considering
its requirements. Finally, the process is repeated until all solution components are
provisioned. It is worth noting that O-FSP rejects a Fog service A as soon as it fails
to find a placement to one of its component. O-FSP is summarized in pseudo-code
form in Algorithm 2. In the following, we will detail each stage.

10.1.1 Fog service decomposition stage

The Fog-enabled IoT application (i.e., Fog service) A is subdivided into a set of k
components according to |VA| and |EA|. The aforementioned subsets are called
solution components and are denoted by {Ci}1≤i≤k. In order to do this, O-FSP
selects first the subset of sensor/actuator nodes and their corresponding incom-
ing/outgoing links. The latter are then retrieved from the graph. The remaining
A’s topology, devoid of the aforementioned solution components, is called Ã. It is
straightforward to see that Ãmay hold several nodes lacking their incoming links.
We refer to these links as “orphan links”. Ci encompasses i) a central node vi, and ii)
its orphan incoming/outgoing links. {Ci}1≤i≤k is iteratively built on the basis of
the number of their orphan links. Indeed, the nodes with the highest number of
orphan links are selected first. The process is repeated until Ã becomes empty (i.e.,
Ã = ∅).

101

Algorithm 2: O-FSP pseudo-algorithm

1 Input: GA, GP , Nmax

2 Output: Sbest
3 Function FindProvisioning(Ca):
4 i = 0
5 {Cia}1≤i≤|VP | ← ∅
6 for v ∈ VP do
7 if W (a) <= W (v) and M(a) <= M(v) and K(a) = K(v) and

IsNetworkSufficient (v, Ca) then
8 {Cia} ← v and its set of directed links
9 i += 1

10 {Cia}1≤i≤Nmax ← GenerateSolutions ({Cia}1≤i≤|VP |, Nmax)
11 return ({Cia}1≤i≤Nmax)

12 Sbest ← ∅
13 {Si}1≤i≤Nmax ← ∅
14 {Ci}1≤i≤k ← FogServiceDecomposition (GA)
15 Ã ← A
16 /* Find Nmax placements of end devices */
17 for (a ∈ VA and K(a) = ”end− devices”) do
18 {Cia}1≤i≤Nmax ← FindProvisioning (Ca)
19 for i = 1 to Nmax do
20 Si ← Si ∪ {Cia}
21 Ã ← Ã \ Ca
22 Stop← false

23 while (Ã ! = ∅) and (Stop = false) do
24 Select a ∈ VÃ having the highest number of orphan links
25 Ca ← a and all its in/out orphan links
26 {Cia}1≤i≤Nmax ← FindProvisioning (Ca)
27 if ({Cia} ! = ∅) then
28 for i = 1 to Nmax do
29 Si ← Si ∪ {Cia}
30 Ã ← Ã \ Ca
31 else
32 Sbest ← ∅
33 Stop← true

34 Sbest ← SelectBestSolution ({Si}1≤i≤Nmax)

10.1.2 Solution component’s provisioning stage

During the first iteration, O-FSP finds the Nmax best placements of end device
solution components {Ci}1≤i≤k1 | k1 ≤ k. Then, O-FSP incrementally constructs
the Fog service provisioning solution. Hence, during each iteration, the Nmax best
(partial) placements, {Si}1≤i≤Nmax , maximizing the objective function defined by
Equation 9.11) are generated (GenerateSolutions in Algorithm 2). To do so,

102 Chapter 10 Cost-aware Provisioning

Nmax physical nodes are selected for hosting the considered Ci. The latter has
sufficient resources (i.e. CPU, memory), and it is connected to one {Cj}1≤j≤i−1’s
placement solution through a shortest path ensuring the required bandwidth and
latency (IsNetworkSufficient in Algorithm 2). We recall that Nmax solutions
{Cij}1≤i≤Nmax have already been generated for the placement of Cj during the previ-
ous iterations. In doing so, we generate the best possible solution while avoiding the
exploration of all possible combinations that would make the resolution impractical.
Finally, the best solution Sbest, which corresponds to the placement that maximizes
the objective function, is selected (SelectBestSolution in Algorithm 2).

10.2 Evaluation

In this section, we describe the experimental environment used to evaluate the
performance of O-FSP. The environment relies on the FITOR platform to build the
Fog environment and run the IoT applications. Note that evaluation results are
averaged over 10 executions and presented with 95% confidence interval.

10.2.1 Describing the environment

In this section, we present the experimental setup used during the study of the provi-
sioning of IoT applications in the Fog. We describe the parameters that characterize
platform, workload and orchestrator.

Platform

Our Fog infrastructure P relies on elements from Grid5000 and FIT/IoT-LAB plat-
forms. The Fog layer is composed of 20 servers from Grid5000 which are part of the
genepi cluster. They are characterized by 2 CPUs Intel Xeon E5420, with 4 cores per
CPU and 8 GB of RAM. Their CPU cost CW and memory cost CM are arbitrarily set
to 0.1.

It is worth noting that the runtimes are hosted by containers. Hence, to emulate a
heterogeneous environment, we define four types of containers:

• Controller: runs the FITOR’s node that is responsible for the deployment and
control of IoT applications. This node is characterized by a memory capacity
of 4GB and can use 100% of the host CPU.

10.2 Evaluation 103

• Fog100: is a more powerful Fog node with 2GB of RAM and 100% of available
CPU.

• Fog60: is a middle Fog node with 2GB of RAM. The latter can use only 60%
of the CPU.

• Fog30: is a limited capacity Fog node which can use only 30% CPU but has
the same 2GB RAM size.

The Mist layer is composed of 50 A8 nodes. These nodes run FITOR’s processes
and may execute application components. Besides, CW and CM are set to 0.9. The
cost of links CB is fixed to 0.1. This higher cost compared to the Fog layer, points
out the fact that these resources are less powerful, less available and closer to the
end devices and so, must be used cautiously.

Workload

The IoT applications in our workload follow the 3-level model as described in
Section 8.1.2. At the bottom, 1 Trigger service periodically sends tokens which repre-
sent collected measurements related to the end devices’ surrounding environment.
These tokens are processed by [1, 4] Burn services, which emulate the performed
application treatment and consumes a certain amount of million instructions (MI)
per token. Finally, [1, 2] Sink services store the received tokens in memory for further
processing (if necessary). Hence, our workload is described by:

• Application load: the applications send tokens of a fixed size (Tsize), equals
to 1024 bytes at a given rate (Trate), taking values in [1, 10] tokens per second.
Each token consumes between [100, 1500] MI. Note that each parameter is
uniformly chosen in the configured range.

• Application heterogeneity: the heterogeneity of our workload is charac-
terized by the variability of token rate and processing as described in the
application load profile.

• System Load: is characterized by 50 applications being deployed in the envi-
ronment.

• Application arrival interval: is fixed to 1 application every 2 minutes.

• Application threshold: no applicable in the provisioning setup.

104 Chapter 10 Cost-aware Provisioning

• Churn: applications are always active.

I Low-level application description: the workload characterization comprises these
low-level parameters, described hereafter:

• Requirements for services:

– Trigger: requires a memory M(a) equals to 100 bytes and an amount of
CPU W (a) proportional to its Trate, in the range [300, 1000] MIPS

– Burn: CPU is proportional to the processing effort per token, Wtoken, i.e.,
W (a) = Trate ×Wtoken. On the other hand, M(a) is fixed to 100Kb.

– Sink: requests W (a) equals to 500 MIPS and a M(a) proportional to the
token size and rate, such as M(a) = Trate × Tsize.

• Requirements for links: bandwidth is fixed (100Kb/s) so links have enough
capacity to send the data. Latency is set to 100ms or 1s.

• Connection type: we use the 1:N where one service is connected to all actors
in top layer.

• Routing method: all tokens are sent to all services.

Orchestrator parameters

• Provisioning strategy: O-FSP and the baseline strategies described at Sec-
tion 10.2.2.

• Reconfiguration strategy: not applicable for provisioning.

• Maintenance interval: not applicable for provisioning.

• Monitoring interval: information about resource usage (CPU, RAM) is up-
dated every 60 seconds.

10.2.2 Baseline strategies

In this section, we describe the baseline strategies used to compare the performance
of O-FSP.

10.2 Evaluation 105

• Uniform: distributes each service a ∈ VA uniformly in available v ∈ VP . The
uniform heuristic does not optimize the provisioning cost and only considers
the requirements given by the user.

• Best-fit: places the service a in nodes with the smallest available residual
resources, which meets the requirements of the a. This heuristic favors the
physical nodes and physical links with the smallest residual resources.

max

 ∑
a∈VA

∑
v∈VP

(
W (a)
W (v) + M(a)

M(v)

)
∗ αav +

∑
e∈EA

∑
n∈N

(
B(e)
B(n) + L(n)

L(e)

)
∗ βen

(10.1)

• Min-latency: minimizes the sum of delays between nodes hosting the appli-
cation’s components.

min
∑
e∈EA

∑
n∈N

L(n)βen (10.2)

10.2.3 Performance metrics

To evaluate the performance of O-FSP compared with the classical approaches, we
consider the following metrics:

• A: is the acceptance rate of IoT applications.

• T: is the total number of processed tokens per second within the infrastructure.
This metric represents the applications’ throughput.

• W: is the average CPU utilization (expressed in percentage) of physical nodes
in Grid5000 and FIT/IoT-LAB.

• Ctot: is the total provisioning cost related to the consumed resources, as
measured by the monitoring tools.

10.2.4 Evaluation results

First, we evaluate the proposed strategy O-FSP regarding its acceptance rate
and in comparison with the alternative approaches, Best-fit, Uniform and
Min-latency. Table 10.1 compares the percentage of accepted IoT applications.
We notice that O-FSP achieves 77.8% and hence, outperforms the classical strategies.

106 Chapter 10 Cost-aware Provisioning

Provisioning Approach Acceptance Rate (%)
O-FSP 77.8 ± 5.5
Min-latency 65.6 ± 1.9
Best-fit 69.4 ± 3.4
Uniform 65.2 ± 2.9

Table 10.1: O-FSP performance evaluation. A - Acceptance rate

This is due to the fact that the proposed approach aims to minimize the provisioning
cost. In doing so, higher residual resources, specifically network bandwidth, are
maintained. It is worth noting that Best-fit achieves good results since it favors
the selection of less powerful nodes which will lead to a higher number of available
powerful nodes.

●

● ●
●

●
●

●
●

●

● ●

●

●

●
●

●
●

●

●
●

●

●

●

●
● ●

●
●

● ●

● ● ●

●

●
●

● ●
●

●

●

● ●
●

●

●

●

●

●
●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●
●

● ●
● ●

●

●

● ●
●

● ●

●

● ● ●

●

●

●

●

●

●
●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

● ●
●

● ● ● ●
●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●
●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

● ● ●

●

●
● ●

●

●
●

●

●

● ●

● ●

●

● ● ●
●

●

●

●

●

●
●

Min−latency

O−FSP

Uniform

Best−fit

Higher is better

0

50

100

150

0 10 20 30 40 50
Number of Deployed Applications

A
pp

lic
at

io
ns

 T
hr

ou
gh

pu
t (

to
ke

n/
s)

(a) T - Applications throughput

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

● ●

●

● ●
●

● ●

●

●

●
● ● ●

● ● ● ● ●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●
●

● ●

●
●

●
●

●

●
●

●
●

●

●
●

● ●

●

●

●
● ● ● ● ● ● ● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

● ● ●
●

●

● ●
● ●

● ● ● ● ● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

● ●

● ●

● ●
●

●
●

●

●

● ● ● ● ●
●

● ●
● ●

●

●

●

●

●

●

Min−latency

O−FSP

Uniform

Best−fit

Lower is better

10000

20000

30000

40000

0 10 20 30 40 50
Number of Deployed Applications

P
ro

vi
si

on
in

g
C

os
t

(b) Ctot - Total provisioning cost

Figure 10.1: O-FSP performance evaluation: application and provisioning cost results

Fig. 10.1a depicts the rate of processed tokens when increasing the number of
provisioned applications. It is straightforward to see that our scheme O-FSP out-
performs the classical strategies thanks to its capability to accept IoT applications
while meeting their requirements. It is worth noting that the gap between the
different approaches is insignificant for low number of provisioned applications.
This is due to the fact that initially, all provisioning strategies are capable of placing
the applications. However, the gap gets wider as soon as the number of applica-
tions increases. Such a result proves that O-FSP efficiently places the application
components which corroborates the results related to the acceptance rate.

Fig. 10.1b illustrates the provisioning cost of accepted IoT applications. It notably
shows that O-FSP achieves a lower cost compared with the classical strategies
and does so throughout the experiment. In fact, at the end of the experiment, the
provisioning cost of O-FSP is ≈ 13% lower than the one of the second strategy,

10.2 Evaluation 107

Min-latency (33, 735±1, 490 vs. 37, 998±2, 078). Such results are predictable since
the proposed approach favors high fog physical nodes as long as the application
requirements are satisfied. It worth noting that end devices and mist nodes have
limited capacity. Consequently, they incur a high cost compared with fog nodes
which are characterized by higher capacities.

●

●

●
●

●
●

● ●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●
●

●

● ●

●
● ●

●

●
● ● ●

●
● ●

● ● ●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

● ●

● ●

●

●

● ●
● ●

●
●

●
●

●

●

●

●
● ●

●
● ● ● ● ●

●

●

● ●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●
●

●

●

● ●

● ●
●

●

●

●

●
● ●

●
● ●

●
● ●

●

● ● ● ● ● ●
● ●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●

●

●
●

●
● ●

●

●

●

● ● ●

● ●

● ●

●
● ●

●

● ● ●
● ●

●
●

● ●
●

●

●

●
●

●

●

Min−latency

O−FSP

Uniform
Best−fit

Higher is better

0

25

50

75

100

0 10 20 30 40 50
Number of Deployed Applications

H
ig

h
F

og
 L

ay
er

 −
 C

P
U

 U
sa

ge
 (

%
)

(a) W - High fog layer

●

● ●
● ●

●
●

●
●

●

●

●

●
● ●

●
● ● ●

●
●

●

●

●
● ●

●

●
●

● ● ●

●

●

●
● ● ● ● ● ● ● ● ●

●

●

●

●
●

●

●

●
● ●

● ● ●
● ●

●
●

●

●
● ●

●
● ●

● ●
● ●

●

● ●
●

●
●

●
● ● ●

●

●

● ● ● ● ● ● ● ● ●

●

●

●

●
●

● ●

●

●
●

●
●

●
●

●
●

●

●

●

● ●
● ●

● ● ●
● ●

●

●

● ●
●

●

●
● ● ● ●

●

●

● ●
● ●

● ● ● ● ● ●

●

●

●

●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●
●

●
● ●

●
●

●

●

● ●
● ●

●
● ●

● ● ●

●

● ● ● ● ● ●
● ● ● ●

●

●

●

●
●

●

Min−latency

O−FSP

Uniform
Best−fit

Higher is "better"

0

25

50

75

100

0 10 20 30 40 50
Number of Deployed Applications

M
is

t L
ay

er
 −

 C
P

U
 U

sa
ge

 (
%

)

(b) W - Mist layer

Figure 10.2: O-FSP performance evaluation: infrastructure performance results

In order to gauge the efficiency of O-FSP in terms of resource consumption, we
evaluate the CPU usage of both end device/mist and fog nodes. Fig. 10.2a and
Fig. 10.2b prove that our proposed strategy favors the Fog nodes whenever they
meet the application requirements. In fact, it achieves 90% of CPU usage which is
10% higher than the second method Min-latency. In doing so, end devices and
mist nodes are kept available and used only when it is necessary. We recall that the
latter are less powerful and more expensive than Commercial-Off-The-Shelf (COTS)
servers. It is worth noting that all strategies reach, at the end of the experiment, a
high level of CPU usage on both end device/mist and fog layers. This is due to the
system saturation.

10.3 Limitations

O-FSP is capable of providing a fair solution to the provisioning problem, optimiz-
ing the placement of IoT application components while meeting their non-functional
requirements. Despite the good performance of O-FSP in terms of acceptance rate
and applications throughput, the cost is a metric focused on infrastructure. By
minimizing the provisioning cost, O-FSP tends to concentrate the applications in
the cheaper nodes of the infrastructure. Consequently, bottlenecks can be created in

108 Chapter 10 Cost-aware Provisioning

the infrastructure, which impair not only the performance of applications, but also
the number of applications running in the infrastructure.

In the next chapter, we present an alternative approach to cope with this limitation,
which aims to improve the acceptance rate of IoT applications while maintaining a
minimal infrastructure cost.

10.3 Limitations 109

11Load-aware Provisioning

11.1 Extension of the Problem Formulation

In the last chapter, we have seen how to solve the provisioning problem in an
optimized way, which minimizes the total cost while meeting application require-
ments. However, O-FSP tends to concentrate the applications in a few hosts, which
may lead to sub-optimal infrastructure utilization. In this chapter, we extend the
model proposed in Section 9.3 to consider also the load of nodes. Consequently, our
decision is guided by two main objectives and the solution is found by solving the
problem as a multi-objective problem.

Firstly, we aim to fulfill applications requirements while minimizing the cost of
resources in P , as defined in Section 9.3. So, our first objective function is

min
∀v∈VP ,∀l∈EP

(CtotW + CtotM + CtotB). (9.11)

Remember that CtotW corresponds to the processing cost of the application’ compo-
nents in the infrastructure. CtotM expresses the cost of the memory required by the
components. Finally, CtotB represents the total communication cost for data transfer
between applications components (cf. definitions in Eq. (9.12), (9.13) and (9.14)).

Secondly, we aim to maximize the number of provisioned IoT applications while
meeting 100% of their demand. To do so, it is crucial to perform a load-aware
application provisioning. The latter should balance the load of Fog nodes while
taking into account their properties in terms of processing and memory usage.
In this perspective, we formulate our second optimization objective function as
follows:

max min
v∈VP

(
W (v)

Wmax(v) + M(v)
Mmax(v)

)
, (11.1)

where Wmax and Mmax(v) correspond to the CPU and memory capacity of node
v, respectively. It is straightforward to see that Eq. 11.1 aims at maximizing the

111

minimal residual resources of Fog nodes, while considering their capabilities. In
doing so, an equitable load sharing will be achieved.

11.2 Proposed Solution: GO-FSP

In order to cope with both objective functions, we propose a new strategy which
makes use of Greedy Randomized Adaptive Search Procedures [AR95] to optimize
the Fog service provisioning.

Our GRASP-based Optimized Fog Service Provisioning solution, called GO-FSP,
initially generates N best initial solutions, {Si}1≤i≤N . Then, for each Si, our strat-
egy iteratively constructs new solutions by performing an efficient local search
procedure. The key idea behind our strategy is to generate new solutions which
simultaneously enhance the objective functions proposed in Eq. 11.1 and Eq. 9.11.
The process will be repeated until all Si are explored or no new improving solutions
are found.

GO-FSP has three main stages: i) decomposition of the Fog service; ii) generation
of initial solutions; and iii) local search. Algorithm 3 illustrates the pseudo-code of
our proposal GO-FSP. In the following, we will detail each stage.

11.2.1 Fog service decomposition

The Fog service A, is split up into a set of k components according to |VA| and
|EA|, known as solution components and denoted by {Ci}1≤i≤k. The Fog service
decomposition is performed as follows. First, the sensor/actuator nodes and their
outgoing/ingoing links are selected. Then, these solution components are retrieved
from the graph. It is straightforward to see that the remaining A’s topology, called
Ã, will contain several nodes bereft of their attached links. We refer to these links
as “orphan links”. Ci encompasses i) a central node ai, and ii) its orphan attached
links. The sequence of {Ci}1≤i≤k is iteratively built in decreasing order of orphan
links’ number. To do so, the Fog service with the highest number of orphan links
is selected. Then, Ci is constituted using only the Fog service and all its attached
orphan links. Afterwards, Ci is subtracted from Ã (i.e., Ã ← Ã \ Ci). The process
is recursively repeated to generate the remaining solution components until Ã
becomes empty (i.e., Ã = ∅).

112 Chapter 11 Load-aware Provisioning

Algorithm 3: GO-FSP pseudo-algorithm

1 Input: GA, GP , S1..n, N , K, ε
2 Output: Sbest
3 Function LocalSearch(Ca, S̃):
4 RCL← ∅
5 for v ∈ VP do
6 if C(v, a) ≤ C(v∗, a)× (1 + ε) then
7 RCL← RCL ∪ v

8 r ← FindBetterSolution (Ca, RCL)
9 if r != S̃(a) then

10 S̃(a)← r
11 return (true)

12 return (false)

13 Sbest ← ∅, Optimized← true
14 for (i = 1 to N) and (Optimized = true) do
15 Ã ← A
16 Stop← false, Optimize← false
17 for (j = 1 to K) and (Stop = false) do
18 Stop← true
19 while Ã != ∅ do
20 Select a ∈ VÃ having the highest number of orphan links
21 Ca ← a and all its in/out orphan links
22 if LocalSearch (Ca, Si) then
23 Stop← false

24 Ã ← Ã \ Ca

25 if Improved(Si, Sbest) then
26 Sbest ← Si
27 Optmized = true

11.2.2 Generation of initial solutions

This stage consists in generating N provisioning solutions {Si}1≤i≤N . These Si are
built using our heuristic based provisioning approach, O-FSP. The rationale behind
the aforementioned strategy is to greedily select N best solutions that minimize the
provisioning cost. To do so, O-FSP incrementally constructs N optimized solutions
while generating during each iteration, N best partial solutions within a fixed
neighborhood.

11.2.3 Local search

Starting from an initial Si, GO-FSP, incrementally constructs an improved solution,
S̃i. To do so, it iteratively explores the ordered set of solution components that has

11.2 Proposed Solution: GO-FSP 113

been provided as the outcome of the decomposition stage. During each iteration, a
Restricted Candidate List (RCL) is generated for the ongoing solution component,
Ci. RCL is composed of nodes within ε distance of the best ranked Fog node v∗ in
terms of C(v∗, ai). Note that C(v, a) corresponds to the provisioning cost of v for
hosting a. The aforementioned cost can be formulated as follows:

C(v, a) = (CW (v)×W (a) + CM (v)×M(a)) (11.2)

In this perspective, RCL can be defined as {v ∈ VP | C(v, ai) ≤ C(v∗, ai)× (1 + ε)}.
It is worth noting that the Fog nodes belonging to RCL are potential provision-
ing candidates since they fulfill the requirements of Ci in terms of CPU, memory,
network latency and bandwidth.

Afterwards, thanks to FindBetterSolution, the least loaded node will be se-
lected to host ai. Formally,

max
v∈RCL

(
W (v)

Wmax(v) + M(v)
Mmax(v)

)
. (11.3)

In doing so, we minimize the variance of Fog nodes’ load, to achieve an equitable
load sharing among them, which amounts to optimize the second objective function
formulated in 11.1.

11.3 Evaluation

We detail in this section the experimental environment used to evaluate the per-
formance of GO-FSP. The environment relies on the FITOR platform to build the
Fog environment and run the IoT applications. Note that evaluation results are
averaged over 20 executions and presented with 95% confidence interval.

11.3.1 Describing the environment

The environment used to evaluate the GO-FSP is similar to the one used for O-FSP,
described in last chapter. Hereafter, we recall the most important parameters that
characterize this environment (for the complete setup, see Section 10.2.1).

114 Chapter 11 Load-aware Provisioning

Platform

The Fog layer in our infrastructure is composed of 20 servers from Grid5000 which
are part of the parapide cluster. The latter are characterized by 2 CPUs Intel Xeon
X5570, with 4 cores per CPU and 24 GB of RAM. Their CPU cost, CW , and memory
cost, CM , are arbitrarily fixed to 0.1. Besides, the runtimes are hosted by Docker-
based containers, with different CPU availability (30%, 60% and 100% of the node’s
CPU available for applications).

The Mist layer is composed of 50 A8 nodes. The A8 nodes are characterized by their
ARM A8 microprocessor, 600 MHz, and 256MB of RAM. These nodes run FITOR’s
processes and may execute application components. Besides, CW and CM are set to
0.9. The cost of links CB is fixed to 0.1.

Workload

The IoT applications in our workload follow the 3-level model as described in
Section 8.1.2. At the bottom, 1 Trigger service periodically sends tokens to be
processed by [1, 4] Burn services. Finally, [1, 2] Sink services store the received tokens
in memory for further processing. Hence, our workload is described by:

• Application load: the applications send tokens of a fixed size (Tsize), equals
to 1024 bytes at a given rate (Trate), taking values in [1, 10] tokens per second.
Each token consumes between [100, 1500] MI. Note that each parameter is
uniformly chosen in the configured range.

• Application heterogeneity: the heterogeneity of our workload is charac-
terized by the variability of token rate and processing as described in the
application load profile.

• System Load: is characterized by 50 applications being deployed in the envi-
ronment.

• Application arrival interval: is fixed to 1 application every 2 minutes.

I Low-level application description: the workload characterization comprises these
low-level parameters, described hereafter:

• Requirements for services:

11.3 Evaluation 115

– Trigger: requires a memory M(a) equals to 100 bytes and an amount of
CPU W (a) proportional to its Trate, in the range [300, 1000] MIPS

– Burn: CPU is proportional to the processing effort per token, Wtoken, i.e.,
W (a) = Trate ×Wtoken. On the other hand, M(a) is fixed to 100Kb.

– Sink: requests W (a) equals to 500 MIPS and a M(a) proportional to the
token size and rate, such as M(a) = Trate × Tsize.

Orchestrator parameters

• Provisioning strategy: GO-FSP and the baseline strategies described at Sec-
tion 11.3.2.

11.3.2 Baseline strategies

We consider these three provisioning algorithms as basis of comparison next sec-
tions:

• O-FSP: the algorithm described in Chapter 10, which considers only the
provisioning cost when placing the applications.

• Uniform: distributes each service a ∈ VA uniformly in available v ∈ VP .

• Best-fit: places the service a in nodes with the smallest available residual
resources, which meets the requirements of the a, as described in Eq. 10.1.

11.3.3 Performance metrics

To evaluate the performance of GO-FSP, we consider the following metrics:

• A: is the acceptance rate of IoT applications.

• T: is the total number of processed tokens per second within the infrastructure.
This metric represents the applications’ throughput.

• L: is the average latency (in seconds) for applications. It measures the la-
tency between the end devices (represented by Trigger services) and the top
application layer (represented by Sink services).

116 Chapter 11 Load-aware Provisioning

• W: is the average CPU utilization (expressed in percentage) of physical nodes
in Grid5000 and FIT/IoT-LAB.

• Ctot: is the total provisioning cost related to the consumed resources, as
measured by the monitoring tools.

11.3.4 Evaluation results

We evaluate in Table 11.1, the rate of accepted IoT applications. We notice that
GO-FSP ensures a high acceptance rate compared to Uniform, O-FSP and Best-fit.
Indeed, GO-FSP accepts 10% more of the second strategy, Best-fit. This is due to
the fact that our strategy aims at optimizing the load balancing between Fog nodes.
In doing so, resources bottleneck is considerably relieved and consequently more
applications can be executed on the infrastructure. Note that the results presented in
this section cannot be compared with those in Chapter 10, because the environment
has changed (especially the machines used in Grid’5000 infrastructure).

Provisioning Approach Acceptance Rate (%)
GO-FSP 65.5 ± 0.8
O-FSP 56.8 ± 2.4
Best-fit 58.3 ± 3.7
Uniform 55.1 ± 1.6

Table 11.1: GO-FSP performance evaluation. A - Acceptance rate

●

● ●

●

●

●
●

●

●

●

●

●

●

●
● ●

● ●
● ● ●

●

●

●

●

●

●

●

●
● ● ●

●

●

●
● ●

● ● ● ● ● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

● ● ● ● ●

●

●

● ●
●

●
● ● ● ● ●

●

●

● ● ●

● ● ● ● ● ●
●

●

●

●

●

●

●

●

●

●
●

● ●
● ●

●

●
●

●

●

●
●

●

● ● ● ● ● ●

●

● ● ●
●

● ● ●
● ●

●

●

● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

●
●

●

● ●
● ●

●

●
●

●

●
●

●
●

● ●
●

● ●

●

●

● ● ●

●

● ●
● ● ● ●

●

● ● ● ● ●
●

● ● ● ●

●

●

●

●

●

●

GO−FSP

O−FSP

Uniform

Best−Fit

Higher is better

0

50

100

0 10 20 30 40 50
Number of Deployed Applications

A
pp

lic
at

io
ns

 T
hr

ou
gh

pu
t (

to
ke

n/
s)

(a) T - Applications throughput

● ● ● ● ●
● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ●

●

●

● ● ● ●

● ●
●

●
● ● ● ●

●
●

●

● ● ● ● ● ● ● ●
● ●

●

● ●

●
● ●

● ● ● ●
●

●

● ● ● ● ● ● ● ●
● ●

●

●

● ● ●

●

● ●
● ● ● ● ● ● ●

●

● ●
●

● ●
● ● ●

● ●
●

●
●

● ●

●

● ● ● ●
●

●

● ● ● ● ● ● ● ●
● ●

●

●

●

●
●

●

●
●

● ●
● ●

●
●

●

● ● ● ● ● ● ● ● ● ● ●

●

● ●
● ● ● ●

● ● ●
●

●

● ● ● ● ● ● ● ●
● ●

●

●

●

●

●

●

GO−FSP

O−FSP

Uniform

Best−Fit

Lower is better

0.04

0.06

0.08

0.10

0 10 20 30 40 50
Number of Deployed Applications

A
pp

lic
at

io
ns

 C
um

ul
at

iv
e

A
ve

ra
ge

 L
at

en
cy

 (
s)

(b) L - Applications average latency

Figure 11.1: GO-FSP performance evaluation: application performance results

Fig. 11.1 depicts the performance results in regard to the users’ perspective. Specif-
ically, Fig. 11.1a presents the rate of processed tokens while the number of provi-
sioned applications increases. This metric expresses the applications’ throughput by

11.3 Evaluation 117

counting the number of tokens that are fully processed and delivered to the Sink ser-
vices. We note that GO-FSP achieves 30% higher throughput than other strategies
thanks to its higher acceptance rate while meeting the applications’ requirements.
The performance gap gets wider when the number of applications increases. This is
due to the fact that at the beginning, most resources are available and thus, all provi-
sioning strategies are capable of placing the applications. In Fig. 11.1b, we evaluate
L, the network latency experimented by the applications. It is straightforward to see
that GO-FSP achieves the lowest network delay. Indeed, by the end of experiments,
our proposal decreases the end-to-end latency of applications by respectively 18%,
48%, 59% compared to O-FSP, Uniform and Best-fit. Such an achievement is
ensured thanks to the capability of GO-FSP to aggregate application components
while jointly optimizing the provisioning cost and load balance.

●

●
●

●

●

●
●

●

●

●
●

●

●

● ● ●

● ●
● ● ●

●

●

●

●
●

●
●

●
● ● ●

●

●

●
● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●
● ● ●

● ● ●

●

●

● ●
●

●

● ●
● ● ●

●

●

●

●
● ● ● ● ● ● ● ●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ● ● ● ●

●

●

●
●

●

●

●
●

●
● ●

●

●

●
● ● ● ● ● ● ● ●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

● ● ●
● ● ●

●

● ●
● ●

● ● ●

● ●

●

●

●
● ● ● ● ●

● ● ● ●

●

●

●

●

●

●

GO−FSP
O−FSP

Uniform

Best−Fit

Lower is better10000

20000

30000

40000

0 10 20 30 40 50
Number of Deployed Applications

C
os

t

(a) Ctot - Total provisioning cost

●

● ●
●

●
●

●
●

●

●
●

●

●

● ● ●

● ●
● ● ● ●

●

●

●
● ●

● ● ● ● ●
●

●

●
● ● ● ● ● ● ● ●

●

●

●

● ●

●

●

●

● ●

●

●
● ●

●

●

● ●

●

● ●
●

● ● ●
● ●

●
●

●

●
● ●

●
● ●

●
● ● ●

●

●
●

● ● ● ● ● ● ●
●

●

●

● ●

●

●

●

●

● ●

● ●
●

●

●
●

●

●

●

●
●

●

● ● ● ● ● ●

●

●

●
●

● ●
●

●

● ● ●

●

●
● ●

● ● ● ● ● ●
●

●

●

● ●

●

●

●

●

●
●

●
●

●
●

●
● ●

●

●

● ●

●
● ● ●

●
●

●

●

●
● ●

●
●

● ●
●

● ●

●

●
● ● ● ● ● ●

●
●

●

●

●

●
●

●

●

GO−FSP

O−FSP

Uniform
Best−Fit

Higher is better

0

25

50

75

100

0 10 20 30 40 50
Number of Deployed Applications

H
ig

h
F

og
 L

ay
er

 −
 C

P
U

 U
sa

ge
 (

%
)

(b) W - High fog layer

●

● ●
● ●

● ● ●
●

●
●

●

● ● ● ●
● ● ● ● ● ●

●

●
●

●
● ●

●
● ● ●

●

●

● ● ● ● ● ● ● ● ●
●

●

●

●
●

●
●

●

● ●
● ●

●
●

●
● ●

●

●

●
● ● ● ● ● ● ● ●

●

●

● ●
●

●

● ●
● ● ●

●

●

●
● ● ● ● ● ● ● ●

●

●

●

●
● ●

●

●

● ●

●
●

●
●

● ●
●

●

●

●
● ●

●
● ● ● ● ●

●

●

● ●

●

●

● ●
● ● ●

●

●

● ● ● ● ● ● ● ● ●

●

●

●

●

●

●
●

●

● ●
● ●

●
●

●
●

●

●

●

●
● ●

●
● ● ● ● ●

●

●

● ●
●

●

● ● ●
● ●

●

●

● ● ● ● ● ●
● ● ● ●

●

●

●

●
●

●

GO−FSP

O−FSP

Uniform

Best−Fit

Higher is "better"

0

25

50

75

100

0 10 20 30 40 50
Number of Deployed Applications

M
is

t L
ay

er
 −

 C
P

U
 U

sa
ge

 (
%

)

(c) W - Mist layer

Figure 11.2: GO-FSP performance evaluation: infrastructure performance results

118 Chapter 11 Load-aware Provisioning

In order to gauge the efficiency of GO-FSP in terms of resources usage, we eval-
uate the infrastructure performances in Fig. 11.2. Firstly, Fig. 11.2a depicts the
provisioning cost, Ctot. We note that GO-FSP decreases Ctot by 15% compared to
O-FSP strategy. This can be explained by the fact that our proposal favors cheaper
resources and hence places

application components in the High Fog Layer whenever it is pertinent. Secondly,
the CPU utilization, for both High Fog and Mist layers, is evaluated in Fig. 11.2b
and 11.2c. It is straightforward to see that GO-FSP optimizes the usage of the
resources available in the High Fog Layer. The gap is approximately equal to 12.5%
compared to the second best strategy, O-FSP. Such a result highlights the utility of
the load balance which corroborates the results obtained in Fig. 11.1. Finally, we
notice that the CPU utilization in the High Fog layer remains less than 75% due to
the heterogeneity of applications profiles.

11.4 Limitations

11.4.1 Experimental limitations

The experimental setup is vital for the correct comprehension and evaluation of
provisioning strategies. For this reason, we aggregate resources from Grid’5000
and FIT/IoT-LAB testbeds, along with the FITOR platform, in order to set up our
experimental environment. However, our experiments have some downsides which
are important to keep in mind.

Probably the most obvious drawback is the network resources in our environment.
First, the VPN connection between FIT/IoT-LAB and Grid’5000 creates an artificial
link over which we have no control. Second, the dedicated, high-performance
network on Grid’5000 provides uniform and oversized network resources, with
consistent and reliable performance over time. This is not the expected behavior
in a real Fog environment, and although it is not impossible, its customization
requires extra effort to recreate a highly heterogeneous and variable environment.
In practice, despite our effort to model the network, and its great importance on
a Fog platform, we could verify that the network was not the bottleneck in our
experiences. Thus, we have decided to focus on other resources, such as the CPU
usage, in the next chapters.

Regarding the workload used in our experiments, all applications have the same
basic 3-level structure. Although we vary the load induced by each application,
more complex scenarios with different IoT applications can be studied. Another

11.4 Limitations 119

important characteristic of our workload is that applications are stable, always
running after their initial deployment. In more complex scenarios, resource usage
may evolve over time, leading to different resource availability and consequently
different provisioning results.

Finally, the infrastructure scale has its restrictions. Our experiments have a consid-
erable size, about 70 nodes, but they are far from the expected scale of a real Fog
environment. Moreover, the heterogeneity of our platform is limited to 2 main types
of nodes: A8 nodes from FIT/IoT-LAB and the servers from Grid’5000. Thanks to
Docker’s settings, we were able to simulate a more heterogeneous environment,
but more complex scenarios are possible.

11.4.2 Model limitations

We have proposed two heuristics, O-FSP and GO-FSP, which solve the provisioning
problem in an optimized and effective manner. Throughout extensive experiences
based on the FITOR infrastructure, we demonstrate their good performance for
both applications and infrastructure. Nevertheless, a heuristic has not a guarantee
performance in the worst case and may be far from the optimal. In this context,
a comparison with the exact solution of the proposed model, which is optimal,
could be interesting. The optimal solution is possibly calculable in the relatively
small instance of our problem, at least considering the expected size of thousands
or millions of nodes in a Fog infrastructure. However, the optimal solution quickly
becomes unfeasible in larger instances of the problem.

Furthermore, the optimal solution obtained by solving the mathematical model
is valid for the specific scenario of the model, i.e., giving the set of applications
and the resources available in the infrastructure. Small variations in the values
for applications and resources can invalidate the solution and change the optimal
outcome. In this context, a Fog environment, and consequently our experimental
setup, has some limitations.

First, measuring the availability of resources depends on the accuracy of tools used,
as well as the frequency which we update the information. In a large scale Fog
environment, the cost of having a proper and precise view of the whole infrastruc-
ture is unbearable. Therefore, we opt to update the available resources only once
per minute in our experiments. In addition, the accuracy of retrieved information
is not great, mainly for network resources such as bandwidth. Specifically in our
experimental scenario, we were unable to track properly the amount of bandwidth
available between nodes in our system.

120 Chapter 11 Load-aware Provisioning

Second, it is extremely difficult to obtain an accurate description of the resources
used by the applications. Even if a developer is exceptionally meticulous and
provides an accurate picture of the application, its accuracy will be limited to her
knowledge of the application’s behavior and infrastructure characteristics. In a
heterogeneous environment such as the Fog, some nodes may contain specific
hardware beyond the developer’s knowledge. Moreover, the number of users can
increase and vary over time and thus invalidate the application description.

In conclusion, in these last chapters, we have seen how to solve the provisioning
of IoT applications in the Fog and the importance of doing it properly. By using
the proposed heuristics (O-FSP and especially GO-FSP), we are able to minimize
the provisioning cost and accept more applications on the infrastructure. Also,
the non-functional requirements of applications were respected, providing a good
performance in terms of applications throughput and latency. Despite the promising
results, the provisioning is not sufficient to ensure that applications will be satisfied
over the long term. Consequently, the next chapters of this thesis are dedicated to
study the reconfiguration problem and how to adapt the initial placement of the
applications to keep them satisfied throughout their existence.

11.4 Limitations 121

Part IV

The Reconfiguration of IoT Applications in
the Fog

12Problem Statement

12.1 Introduction

In this part of the thesis, we study the reconfiguration problem, i.e., how to adapt
the placement of IoT applications to keep them satisfied, even when their behavior
evolves over time and they need more (or less) resources. We take an in-depth look
at what happens when IoT applications are running, sharing and competing for
the available resources. In this context, we will see how the environment and the
information about it play an important role in the reconfiguration game, influencing
the performance of the reconfiguration strategies and IoT applications.

●

●

● ●
●+

Provisioning Reconfiguration
Summary

Stats
Area of Interest

0

2

4

6

0 2000 4000 6000 8000 10000
Experiment Duration (s)

A
ve

ra
ge

E
la

ps
ed

 T
im

e
(s

)

Figure 12.1: Performance evolution over time for a reconfiguration strategy. Each colored
line represents the aggregated average elapsed time of all applications in a
single experiment. The black line is the average performance for this strat-
egy. In Summary Stats, we summarize the average performance, for each
experiment (color points) and in general (black), during the area of interest.

Fig. 12.1 presents a typical scenario addressed in this thesis. It depicts the satisfac-
tion metric corresponding to the average end-to-end elapsed time to process the
application messages. The experiment includes two phases: provisioning and on-
line reconfiguration. We assume that all applications arrive during the provisioning
stage and are placed by the provisioning algorithm, as seen in the previous chapters.
During the online reconfiguration stage, the performances of the applications are
optimized considering the resource usage evolution. Note that, even if an applica-
tion enters the system after the provisioning phase, it would be provisioned by the
initial provisioning algorithm and, as typical IoT applications have a long life span,
the system will reach a steady-state at some time in the future. In this part, we focus
on strategies to be applied in the reconfiguration phase. The "Summary Stats" in

125

Fig. 12.1 exemplifies the results presented in the next chapters, summarizing the
average performance in the last hour of the experiment ("Area of Interest").

The reconfiguration adjusts the placement of applications according to both ap-
plications and infrastructure evolution. The reconfiguration process receives as
input the application’s feedback with its current resources and decides whether the
application should be reconfigured or not. Both reconfiguration decision and action
vary according to the implemented strategy. The decision policy may be proactive,
by regularly re-configuring the application to optimize its metric, or reactive, where
we only reconfigure when its performance becomes unacceptable. Despite the
multiple reconfiguration options available, such as horizontal or vertical scaling, in
our work, we focus on the migration of the application’s components.

We highlight hereinbelow some important characteristics of the interaction between
IoT applications and the Fog environment which are relevant for the reconfiguration
problem:

• Distributed: the Fog environment is distributed by nature. In the same
vein, to achieve the scalability, the reconfiguration decision should be as
decentralized as possible.

• Online: the long-running characteristic of IoT applications brings the on-
line component to this problem, where applications change their behavior,
and consequently, their resource usage over time, without any particular
notification to the system.

• Delayed information: the large scale and resource constrained devices of the
Fog environment make it very difficult to have an up-to-date and global view
of resource utilization.

• Inexact information: the inexact information comes in two forms: i) the
application’s description, which may contain imprecise details due to human
errors and/or shortsighted view; and ii) infrastructure measurements, either
by limitation in the tools used to measure or by the delay between the measure
and its utilization.

The remaining of this part is organized as follows. We start by presenting some
possible approaches to cope with the online reconfiguration problem, such as online
scheduling and online learning in 12.2. The details about the game, its components
and how they interact are presented in 12.3. With the game in place, we propose and
evaluate a variety of reconfiguration strategies in Chapters 13 and 14. Each chapter
studies the problem in a different but complementary manner. In Chapter 13, we

126 Chapter 12 Problem Statement

consider a scenario with reliable and accurate information about applications and
the environment, while in Chapter 14, the strategies must face the uncertainty in
this information.

12.2 Related Work

12.2.1 Online scheduling

Online scheduling is a vast research domain which aims to optimize the execution
of jobs on hosts. In this domain, the scheduler receives jobs that arrive over time and
must be executed on a set of hosts. The arrival time of jobs is unknown, but once they
arrive, its size and processing time are generally known. This lack of knowledge
about job arrivals prevents the scheduler from finding optimal solutions. Therefore,
considerable research has focused on finding solutions which are ρ-competitive i.e.,
which are never more than ρ times worse than the optimal offline solution. The
ρ-competitiveness is thus a very strong worst case analysis of these algorithms.

The tuple 〈resources|jobs|objective〉 [Gra+79] is usually used to characterize a
scheduling problem. For example, 〈1|rj |Fmax〉 characterizes an environment with
one host running heterogeneous jobs and whose objective is to minimize the maxi-
mum flow time of jobs, i.e., the time that the job stays in the system. For this problem,
a FCFS (First Come First Served) strategy is known to be optimal [BCM98].

A common HPC exploitation problem for example consists in scheduling parallel
jobs in an environment with P identical hosts (e.g., a cluster) while minimizing the
makespan, i.e., the time to finish executing all jobs. This problem, 〈P |sizej |Cmax〉1,
is NP-hard but when all jobs are available up-front, heuristics with excellent worst-
case guarantees are well-known (2 for list scheduling and even a PTAS for a fixed
number of machines [Dro09]).

Due to NP-hardness of such class of problems, batches are often used to solve
online scheduling problems in a greedy way. In this approach, a good schedule
is computed for available jobs (first batch) using a guaranteed algorithm for the
offline problem. All jobs arriving during the execution of the first batch are queued
and constitute the new batch, which will be processed again using the guaranteed
algorithm. The quality of guaranteed algorithm in the offline setting can thus
often be transferred to the online setting. In [SWW95] for example, the authors
show that given an algorithm A, which is a ρ-approximation for 〈P |sizej |Cmax〉,

1sizej indicates that jobs are parallel and Cmax denotes the makespan of the schedule, i.e., the time
to finish executing all jobs

12.2 Related Work 127

the batch procedure provides a 2ρ-competitive algorithm for the online version
〈R|rj , sizej |Cmax〉.

Different metrics and jobs characteristics are studied in other works. In [LSV08],
the authors are mainly interested in stretch minimization, where the stretch Sj of
a job is the factor by which its response time is slowed down compared to what
it would have been if it was alone in the system. The studied problem is thus
〈1|rj ,pmtn|maxSj ,

∑
Sj〉 (pmtn means job preemption). Bender, Chakrabarti, and

Muthukrishnan [BCM98] proposed heuristics for the online problem which are√
∆-competitive for the max-stretch, where ∆ denotes the ratio between the largest

and smallest job in the system. The idea behind the proposed heuristics is leaving a
slack from optimal max-stretch solution for each new task. This relaxation allows
the heuristic to achieve the

√
∆-competitiveness. Moreover, the authors in [LSV08]

show that we cannot achieve an optimal solution for both metrics (max and sum
stretch) simultaneously. Indeed, optimizing for the worst case and the average is in
general not possible.

Some works apply a similar approach to deal with the reconfiguration in the Fog.
The authors in [Ska+17a], [Ska+17b] and [You+18] study the provisioning problem,
i.e., where to run the applications’ components in the Fog infrastructure. In their
proposals, the provisioning is modeled as an ILP (Integer Linear Programming)
problem, considering the constraints in term of resources (e.g. CPU, RAM) used by
applications in the model. By solving it, either by an exact solution or a heuristic,
they provide satisfactory solutions given a certain objective function. The reconfig-
uration problem is managed by solving the ILP model periodically. This approach
is adequate for applications entering and leaving the system, but it is ill-suited to
treat the evolution in resources usage of already running applications. Further-
more, this approach typically assumes that the available information is accurate
and up-to-date.

In the same spirit, the authors in [Ait+19] propose the use of constraint program-
ming to study the service placement in the Fog. A set of constraints describes the
infrastructure, the applications and their requirements. Applications arrive by batch
according a Poisson law and the constraint solver is called in regular period of times
to solve the model and optimize the service placement. In the evaluation scenario,
the proposal achieves optimal solutions with low solving times compared to a
traditional ILP solver, but it strongly depends on the accuracy of the infrastructure
and application models.

In [Wan+17], the placement of an application is modeled as a time-graph, where
nodes represent possible hosts to run the application and arrows are associated to
some predicted cost. In this context, the off-line version of the problem is solved

128 Chapter 12 Problem Statement

optimally. By building the time-graph associated to the placement in a certain time
window and aggregating new jobs in batches, the authors claims that the online
algorithm is O(1)-competitive for a broad family of cost functions. However, the
effectiveness of this model strongly depends on the quality of the predicted cost for
each node and arrow in the graph.

The available information about jobs is the main challenge when applying online
scheduling strategies to study the reconfiguration in the Fog. Usually, the proposed
approaches in this domain consider a full information scenario, in which the sched-
uler knows, after the arrival of the job in the system, its exact size and amount
of resources needed. Also, this information is stable, allowing the scheduler to
apply the offline algorithms to the set of jobs currently available. The uncertainty is
mostly concentrated in knowing the arrival date of jobs. However, IoT applications
running in the Fog face a much more uncertain environment, having a long lifespan
and unpredictable work size. These factors hinder the use of online scheduling
algorithms.

12.2.2 Online learning

Online scheduling strategies seen in the previous section are studied in worst-
case scenario (they are compared to the best possible offline solution and jobs
may arrive at any time) through adversaries. It is also commonly assumed that
job characteristics are disclosed at arrival by the scheduling algorithms and that
the objective function of each job (stretch, flow, etc.) can be perfectly calculated.
However, all this information is not always available in the Fog environment. In this
context, alternative approaches may be necessary to cope with the reconfiguration
problem.

Some papers propose to solve the reconfiguration problem based on migrations,
which are triggered by some threshold based metric. In [SA16], the authors propose
the migration of proxy VMs, which link IoT devices to the target application, based
on the bandwidth usage by the IoT device and the migration process. The Foglet
programming infrastructure is propounded in [Sau+16]. With it, the authors pro-
pose two migration strategies: i) QoS-driven which monitors the latency between
Foglet agents to initiate the migration process; and ii) Workload-driven which
monitors the utilization of resources (CPU, memory, etc.) to trigger the migration.
In both papers, the threshold metric relies on the monitoring of resource utilization
to react properly to performance degradation.

Moreover, a complementary threshold based strategy is presented in [Ran] and
[Wan+18]. In [Wan+18], the auto-scaling mechanism triggers a vertical scaling

12.2 Related Work 129

by adding more CPU and RAM resources to containers running the application.
While in [Ran], although both vertical and horizontal auto-scaling mechanism are
supported, application developers usually relies on horizontal scaling, increasing
and/or decreasing the number of replicas based on the current resource utiliza-
tion.

The aforementioned reactive approaches do not optimize any well-defined objective.
To close the gap between the exact, but inflexible, objective function from online
scheduling and the lack of objective from reactive strategies, online learning allows
to study a broader scenario where objective functions may vary over time, e.g.,
following a (possibly non-stationary) stochastic process. In this context, the Multi-
Armed Bandit (MAB) problem has received remarkable attention in the last years,
with application in many research fields. MAB inspiration comes from the casinos,
where an agent is facing a set of slot machines with unknown probability rewards,
and she wants to choose a strategy that maximizes his long-term cumulative income.
More precisely, in a MAB problem an agent is offered a set of arms A = {1, ..., A}
and at each time step t = {1, 2, ..., T}, the agent selects an arm at ∈ A and receives
a reward rt = ut(at). The objective in this game is to maximize the cumulative
reward

∑T
t=1 rt. In order to compare the performance of different strategies, the

notion of regret is introduced. Given the best possible arm a∗ in the hindsight of
the horizon T , the regret is defined as

R(T) =
T∑
t=1

(ut(a∗)− ut(at)). (12.1)

If the agent was given access to an oracle that would indicate which machine is
the best, he would only play this machine all time and would have a regret of 0.
This would be a pure exploitation phase, where the agent knows with very high
confidence about his future gains. Unfortunately, most of the time, an oracle isn’t
available and the agent has to try out all possible slot machines (or arms) to discover
which one is the best. This is the exploration phase. By exploring, the agent has
more information to determine the best arm but loses opportunities to obtain the
best reward (i.e., exploiting). The notion of regret is used to compare the proposed
strategy for the MAB problem in different scenarios. If the agent fails to identify the
best arm, his regret will grow linearly with T . However, if he manages to identify
the best arm, his regret will not grow any more. In practice, it is impossible at a
given time for an agent to know with certainty which arm is the best since this
decision can only be based on the outcomes observed so far; hence the need to
find the right trade-off emerges between exploration and exploitation. This is why
only strategies with sublinear regret are of interest and such strategy should never
stop exploring (at least a bit). There are two main classes of MAB problems which

130 Chapter 12 Problem Statement

are differentiated according to the behavior of the reward perceived by agents:
stochastic and adversarial.

In the stochastic setting, the reward of each arm a ∈ A is associated to an unknown
probability distribution. In consequence, the goal of the agent is to discover these
distributions and exploit the arm with highest expected reward. In this context, the
UCB (Upper Confidence Bound) [ACF02] algorithm provides a simple solution for
the MAB problem. As the name suggests, the idea of UCB is to compute an upper
confidence bound on the mean reward of available arms. UCB is a deterministic
strategy which exploits the arm with the highest bound, which will force the
exploration of other arms when the uncertainty is too high. Fig. 12.2 illustrates
the upper confidence bound for each of the two arms (A and B), in different time
steps. UCB will select the arm A in time steps t = 10 and t = 30, so that it can
decrease uncertainty about A’s reward. On the other hand, in time step t = 20, UCB
is selecting the arm B which offers the best reward. It has been proven that UCB
achieves a regret in the order of O(log T), which is optimal [ACF02].

+ + + + + +

t=10 t=20 t=30

A B A B A B
0.00

0.25

0.50

0.75

1.00

R
ew

ar
d

(u
t(a

t))

Figure 12.2: UCB arm selection in different time steps. At each time step t, UCB selects the
arm with highest reward plus uncertainty factor.

Nevertheless, in many real problems the reward does not follow a stationary proba-
bility distribution and instead depends on external exogenous factors. Adversarial
bandits address this situation by studying the case where the agent is facing an ad-
versary who tries to minimize the cumulative agent’s reward. So, the reward ut(a)
at instant t does not follow a statistical distribution, but it is instead determined by
the adversary right before letting the agent decide which arm at she will play. In
this case, there is no single optimal arm anymore and any deterministic strategy,
such as UCB, can be exploited by the adversary to minimize the agent’s gain. The
state of the art algorithm for adversarial bandits is EXP3 [Aue+02], which stands
for Exponential-weight algorithm for Exploration and Exploitation. EXP3 works
by maintaining a probability vector with weights for each arm. At each time step t,
the agents use this vector to decide randomly which arm at she will play next. The
received reward ut(at) is then used to update the relevant weight in the vector. In
this hard scenario, EXP3 obtains a regret of O(

√
AT logA) [Aue+02].

12.2 Related Work 131

In a MAB setting, the agent chooses the next action at from a predefined set of
discrete actions A. On the other hand, in the Bandit Convex Optimization (BCO)
framework, the agent chooses at from a continuous space in Rn and has access only
to the bandit feedback ft(at). In this context, the authors in [CG19] uses the BanSaP
(Bandit Saddle-Point) algorithm with partial feedback to study the offload of tasks
in a Fog environment. BanSaP is also extended to take into account, and minimize,
the number of violations of user’s defined constraints. In a scenario with one point
feedback, BanSaP achieves a regret of O(T 3/4). Unfortunately, the BCO framework
is not suitable for our environment because we have a limited and discrete set of
hosts to which applications may migrate.

12.3 Game Overview

From the viewpoint of online learning, we consider a multi-agent setting (a game)
where J applications share R hosts (R = {r1, r2, .., rR}). In each time step t of
T in the game, each agent (or application) j selects one action (or host) ajt among
Aj ⊂ R possible actions2. Note that each application takes its decision about ajt
independently, in parallel and without knowing the decision of other applications.
The set of all placements at time step t is denoted by πt = {a(1)

t , a
(2)
t , .., ajt}. Given the

current placement πt, the applications will execute and measure their incurred cost
Ct(ajt |πt). This cost not only depends on the current host assigned to the application
but also on other active applications at the same time. With this personal feedback,
agents restart the process by selecting (or not) a new host to execute.

Algorithm 4: The Game
1: for t = 0 to T do
2: for all j = 1 to J do in parallel
3: app j chooses host ajt = ri ∈ Aj
4: app j observes incurred cost Ct(ajt |πt)
5: end for
6: end for

The game is described in Algorithm 4. In this type of game, we are interested in
the long-term cumulative performance of the system. Thus, our objective is to
minimize the overall cost over π:

∑J
j=1

∑T
0 Ct(a

j
t |πt). Different cost functions may be

considered, such as cost, end-to-end delay or application throughput. In 12.3.1, we
present the performance metrics considered to study the reconfiguration problem
in our context.

2Note that we adopt a simplified notation as an application has several actors to place. However, we
believe that this is enough to convey intuitions without burdening the notations. Also, every host
in Aj has enough capacity to run the application if it was dedicated to it.

132 Chapter 12 Problem Statement

Host C

Runtime/Scheduler

Host A

Runtime/Scheduler

Host B

Runtime/Scheduler

Host D

Runtime/Scheduler

Trigger1Burn1

Sink1

Sink2

Trigger2
Burn2

Burn2

Burn1

Figure 12.3: The reconfiguration game in place

In Fig. 12.3 we detail a simplified game with 2 applications sharing 4 hosts. At a
given instant, the host A decides to send the component Burn from application 1
to host C, while the Burn from application 2 is migrated from host C to D. The
scheduler may decide to migrate only one component of the application or all
components, depending on its strategy3. We must highlight two important points
in these interactions:

• Scheduler: for simplification, we describe the interactions between hosts and
applications, but the scheduler (or Calvin’s runtime) is the agent responsible
for managing the applications running on the host. Although done inde-
pendently for each application, it is the scheduler who takes the decision to
migrate the application to another host.

• Non-negotiable migrations: the scheduler decides to send away applications
to other hosts without prior communication. This can be seen in the figure
when host C receives Burn1 even if it is already sending Burn2 to another
host due to its current load.

• Distributed decisions: the host (or scheduler) controls its running appli-
cations independently. The migrations of Burn1 and Burn2 may happens
concurrently.

These asynchronous and non-negotiable migrations may lead to extra migrations
and, consequently, degraded performance. This effect is amplified due to the charac-
teristics of the Fog environment, such as the delayed and inaccurate information.

3In the rest of this part, we use the term application to refer to the migration decision, even if only
one of its components is migrated.

12.3 Game Overview 133

12.3.1 Performance metrics

In the rest of the reconfiguration study, we consider three performance metrics:

1. Average elapsed time: represents the average end-to-end delay of messages
received in last time step.

2. Total time above threshold: describes the total time in seconds where the
performance of applications wasn’t satisfactory and exceeds the threshold.

3. Number of migrations: corresponds to the total number of migrations per-
formed by applications, higher numbers incur in important downtime for
applications.

The primary cost function considered in our paper is the average elapsed time but
the other two metrics are also monitored as they reflect interesting aspects of the
strategy’s performance. In our experiments in the next chapters, we have two
application classes (intensive and calm; more details in Sections 13.1.2 and 13.1.2).
When presenting the results, we split the cost among each class of application (in
the left the intensive applications which consume a high amount of resources, while
in the right, the calm ones which have a small impact over the system load). In the
"Summary Stats" part of Fig. 12.1, we present a typical result, where the "+" signal
is the mean performance across all experiments, aggregated as explained above.
The confidence interval is calculated as mean± 2 ∗ se (standard error). Despite the
uncertainty of some results due to their high variance, we believe they convey us a
good notion of the actual performance of strategies.

134 Chapter 12 Problem Statement

13Reconfiguration in a
Well-informed Environment

In this chapter, we evaluate a scenario where users have a good working knowledge
of application and infrastructure characteristics, providing an accurate estimation
about the resource utilization. In this scenario, resources are shared by applica-
tions whose performance depends mainly on concurrent applications on the same
host. To analyze the evolution of application’s behavior, the experiments last for
1 hour after the initial deployment of all applications (after provisioning phase on
Fig. 12.1).

13.1 Describing the Environment

In this section, we give insights into the experimental setup used during the study
of the reconfiguration problem in this well-informed environment. We describe the
parameters that characterize platform, workload and orchestrator.

13.1.1 Platform

The platform used in our reconfiguration tests is composed of 67 nodes. We use
50 nodes from FIT/IoT-LAB to represent the sensors, and 17 nodes from Grid’5000,
forming the Fog layer. From FIT/IoT-LAB, we select nodes from Grenoble site, each
node contains an ARM A8 microprocessor and 256MB of RAM.

The 17 Grid’5000 nodes are part of the suno cluster in Sophia Antipolis and they are
characterized by 2 CPUs Intel Xeon E5520, with 4 cores per CPU and 32GB of RAM1.
From them, 1 node is reserved to be our Prometheus server, 1 node is the master
for Calvin’s applications and 15 slave nodes are responsible for running the IoT
applications. To obtain an estimation of CPU power in MIPS of our nodes, we run a
matrix multiplication application in each node of the infrastructure. Accordingly to
this, each Grid’5000 node provides about 170 MIPS of CPU power.

1Note that we use Docker runtime options to enforce memory limits to our Fog nodes. In our setup,
the Calvin’s master node has 4GB of RAM and slaves have 2GB.

135

13.1.2 Workload

Our workload starts with the description of the application used in our experiments.
As seen in Section 8.1.2, the application used follows the 3-level model, with 1
Trigger generating messages to be processed by 1 Burn component, and 1 Sink actor
collecting and storing the messages. The characteristics of these actors allow us to
describe the applications running on our platform, their heterogeneity and specially
their evolution in resource utilization over time. To consider all these parameters,
our workload is described by:

• Application load: we distinguish two kinds of applications:
I Intensive: these resource-consuming applications send a large amount of
messages (5 messages per seconds with a payload of 1024 bytes) to be processed,
each incurring 30 MI (millions of instructions). The intensive application load
is calculated so that that each Fog host on our platform can run only one
application satisfactorily at once.
I Calm: these applications send fewer messages (only 1 message/s with the
same payload) which require low processing (10 MI) capacity.

• Application heterogeneity: is the mix of applications present in the workload.
In our experiments, we favor the heterogeneity, opting for a 50%/50% mix
between intensive and calm applications.

• System Load: we calibrate our setup to have a heavy load, where the sys-
tem is almost saturated, as we can see in Fig. 13.1 which shows that almost
all 15 nodes in infrastructure are running intensive applications. In prac-
tice, the heavy load represents 50 applications concurrently running on the
infrastructure.

Provisioning Reconfiguration
0

5

10

15

0 2000 4000 6000
Experiment Duration (s)

N
um

be
r

of
 n

od
es

 r
un

ni
ng

in
te

ns
iv

e
ap

ps

S
ys

te
m

 L
oa

d

Figure 13.1: Workload - System Load (for an experiment). On the y-axis, we present the
number of hosts that are close to saturation and cannot run more intensive
applications. The dotted line marks the number of hosts in the system (15)

136 Chapter 13 Reconfiguration in a Well-informed Environment

• Application arrival interval: although not relevant for reconfiguration experi-
ments, applications arrive in a 60 seconds interval during the provisioning
phase.

• Application threshold: in our setup, the threshold is set to 2 seconds. Above
this threshold, the applications are not satisfied with their current placement
and should be migrated.

Active Sleeping
������

�������

Figure 13.2: Workload - modeling application evolution

• Churn: as illustrated in Fig. 13.2, we modeled the churn as a 2-state Poisson
process, where state changes are exponentially distributed. The parameters
λactive and λsleeping control the rate of state change. The churn is implemented
by activating and disabling the Trigger component in the application. In our
experiments, we considered applications with a mean active/sleeping time
(1/λ) of 300 seconds. Fig. 13.3 illustrates the time spent in each state for an
application in our setup.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●Sleeping

Active

0 2000 4000 6000
Experiment Duration (s)

A
pp

lic
at

io
n

S
ta

te

Figure 13.3: Workload - Churn. Example of state transitions for an application with mean
active/sleeping time (1/λ) of 300s.

We highlight that the parameters chosen for our workload lead to a quite complex
and difficult environment to handle. The elevated number of intensive applications
causes a high charge in the infrastructure, consequently leaving a smaller margin
for improvements. Considering the number total of applications (50), their hetero-
geneity (50% calm/50% intensive) and churn, on average, we have 12.5 intensive
applications running at the same time, which leads to a high system load as illus-
trated in Fig. 13.1. Besides, as we can see in Fig. 13.3, the application’s behavior
is unpredictable and has an important impact on the overall performance of all
applications.

13.1 Describing the Environment 137

I Low-level application description: hereafter we describe the main low-level pa-
rameters in our setup.

• Requirements for actors:

– Trigger: requires an amount of CPU proportional to its token interval, i.e.,
4 MIPS for calm applications and 7 MIPS for intensive.

– Burn: CPU is proportional to the processing effort per token. Calm
applications require 10 MIPS while intensives demand 150 MIPS.

– Sink: requests memory requirement equals to 9 MB for intensive applica-
tions and 1.8 MB for calm ones.

13.1.3 Orchestrator parameters

• Provisioning strategy: corresponds to the algorithm used in the provisioning
phase to decide the initial deployment of applications. In this scenario, we
use the GO-FSP algorithm as proposed in Chapter 11.

• Reconfiguration strategy: this parameter is defined later in this chapter.

• Maintenance interval: remember that this parameter defines the frequency
at which the orchestrator verifies the satisfaction of applications. We chose
the 5 seconds maintenance interval to have a good responsiveness of the
reconfiguration algorithms.

• Monitoring interval: this parameter is kept the same, updating the informa-
tion about resource usage (CPU, RAM) each 60 seconds.

13.2 Evaluation

With the playground set and the game rules defined, we are able to start studying
the possible reconfiguration strategies. In the next sections, we will detail each
strategy, analyze its performance and, if possible, indicate the improvements that
can be made to get better results.

138 Chapter 13 Reconfiguration in a Well-informed Environment

+
+

+ + + +

+

+

+ + + +

Intensive Calm

0.0

0.5

1.0

1.5

2.0

La
zy

An
ar

ch
y

To
ta

lit
ar

ia
n

La
zy

An
ar

ch
y

To
ta

lit
ar

ia
n

0

500

1000

1500

A
ve

ra
ge

E
la

ps
ed

 T
im

e(
s)

N
um

be
r

of
M

ig
ra

tio
ns

Figure 13.4: Performance evaluation for baseline strategies. The 2s horizontal dashed line
represents the threshold above which applications request migration, while
the bottom line represents the minimum response time when operating on
a dedicated server. Both Lazy and Anarchy strategies have a poor overall
performance.

13.2.1 Baseline strategies

The first step to proceed with the evaluation of our case study is the definition of
the baseline strategies. This section details and presents the result of the three such
strategies, which vary in terms of policy and information used, ranging from simply
maintaining the initial placement to having a total knowledge of the environment.

Lazy: no reconfiguration

Our first baseline, called Lazy, is the simplest possible strategy: maintaining the
initial placement. Consequently, the applications remain in the initial host decided
by the provisioning strategy, even if the current performance is degraded and
the application requests its migration. In this case, the performance depends on
the initial provisioning strategy, GO-FSP, and the application’s resource usage
pattern.

As illustrated in Fig. 13.4, the Lazy strategy performs poorly, as shown by the huge
average elapsed time of intensive applications. On the other hand, calm applications
suffer only mildly from this situation because they use very few resources.

13.2 Evaluation 139

Anarchy: total freedom

The second baseline strategy, Anarchy, gives total freedom to applications to decide
when they should migrate. The anarchy is a reactive and greedy strategy, which is
implemented as follows: i) each application monitors its elapsed time and, when
it reaches a predefined threshold, notifies the scheduler of the host on which it
currently runs; ii) the scheduler runs a maintenance procedure in a fixed time
interval, collecting all applications that notified their bad performance; iii) GO-FSP
algorithm is executed for each application to find the best host to run it. GO-FSP
makes its migration decision based on the description of the application provided
by user, as well as its current view of the platform’s status, with the delay and
inaccuracy incurred by the monitoring tools.

We can see in Fig. 13.4 a slight improvement for intensive applications compared to
the Lazy strategy. In this case, a visible drawback is the large number of migrations
done by these applications.

Totalitarian: clairvoyant dictatorship

The third baseline proposed for strategy comparison is called Totalitarian. In this
strategy, an oracle, centralized and fully informed, controls the reconfiguration of
all applications, dictating where they should run at each moment. Although not
implementable in a real Fog scenario, this strategy gives a good target for the best
possible performance for applications.

In particular, the Totalitarian is a proactive strategy which has a perfect knowledge
about both infrastructure (the total of resources of each host is known, as well the
remaining available resources) and applications (the strategy knows exactly when
the application is active and the amount of resources used by it).

As input, the Totalitarian algorithm receives all wake-up/sleeping events of all
applications. Then, just before the application is activated, the orchestrator checks
whether the current host running the application is capable of bearing the additional
load incurred by this application. If not, the GO-FSP algorithm is executed to find a
new host. By acting proactively, the strategy can obtain an excellent performance
and meet the QoS as required by the user. Note that we ensure this algorithm runs
on a sufficiently fast machine.

As expected, Fig. 13.4 shows the excellent performance of the Totalitarian strategy.
With a reduced number of migrations, it is capable of satisfying both intensive and
calm applications, while improving by a factor of at least 2, the elapsed time for

140 Chapter 13 Reconfiguration in a Well-informed Environment

intensive applications. However, Totalitarian is a centralized and fully informed
strategy, which makes it unsuitable for the Fog environment. Therefore, in the next
section, we will study some distributed and less informed learning strategies.

13.2.2 Online learning strategies

In this section, we describe some algorithms based on online learning to solve the
reconfiguration problem. We evaluate the performance of the algorithms in this re-
alistic Fog environment, identifying the main issues that influence the performance
and presenting the improvements we had to make in the algorithms to mitigate
them.

UCB: stochastic

The first learning strategy we explored is UCB (Upper Confidence Bound) which
has excellent regret properties in the stochastic case [Bel+18]. UCB is a proactive
algorithm which works with minimal information, trying to optimize the perfor-
mance of applications by looking only to their feedback. For each application j in
our environment, UCB selects the next host ajt+1 to run j, as follows (with tuning
parameter α = 3) as convergence is guaranteed only when α > 2):

ajt+1 = arg max
a∈Aj

{
µ̂ja,t +

√
α log t
2nja

}
, (13.1)

where nja is the number of times the action was selected, and where the first term
in (13.1), µ̂ja,t, is the empirical mean reward observed by application j for host a,
calculated as

µ̂ja,t = 1
nja

∑
a chosen at time t′<t

µja,t′ .

µ̂ja,t drives the exploit of the host with the highest empirical reward so far. On
the other hand, the second term in (13.1) drives the exploration in the algorithm,
indicating the confidence of the algorithm on the current reward for each host.

Equation (13.1) expects a positive reward which it aims to maximize. However,
we use the average elapsed time to drive the performance of our applications. To
translate the average elapsed time e to a positive reward, we use the following
equation

µja,t = max
(

0, emax − e
emax

)
, (13.2)

where emax = 10 is the highest value for which the host receives a reward for
running the application. We have chosen emax = 10s to have a positive reward

13.2 Evaluation 141

and differentiate nodes whose performance is close to the 2-seconds application
threshold.

Furthermore, our implementation of UCB only has a partial view of the system
since we reduced the number of possible hosts for each application to |Aj | = 5,
randomly chosen to avoid selection bias and to distribute the applications among
available hosts. Such a strategy was adopted to reduce the search space and to
accelerate the learning rate2. Moreover, to mitigate the effect of migrations on
the elapsed time, we increased the maintenance interval from 5 to 10s. Note that
the same transformation (Eq. (13.2)), reduction of search space and maintenance
interval are used in all learning algorithms we present.

Unfortunately, UCB assumes a stochastic setting and may not perform very well in
a game context where each agent has to adapt to the others. In our experiments,
UCB indeed has bad performance for both intensive and calm applications, as seen
in region A of Fig. 13.6. The elapsed time is comparable to Lazy which does nothing,
even for calm applications that are less resource demanding. This effect is explained
by the high number of migrations done by the applications.

Moreover, the performance of applications running on each host is similar, depend-
ing more on the current applications running on the host. So, hosts are indistin-
guishable in terms of performance and UCB tends to alternate uniformly among all
available hosts, unable to learn which are the best.

Intensive Calm

0 100 200 300 400 500 0 100 200 300 400 500
0.00

0.25

0.50

0.75

1.00

Time Steps (t)

E
m

pi
ric

al
 F

re
qu

en
cy

 (
x aj)

Figure 13.5: UCB learning rate for an experiment in a well-informed environment. Each
line represents the frequency an application has selected determined host
(xj

a(t) = nj
a/t). We highlight with a different color, the applications that were

able to identify the best hosts to run (none in this case).

In order to analyze the learning process, we introduce the empirical frequency

xja(t) = nja
t
, (13.3)

2The reduction in the search space (|Aj | = 5) allowed us to evaluate and study the different learning
strategies. A proper study should be carried out to determine possibly better values for |Aj |.

142 Chapter 13 Reconfiguration in a Well-informed Environment

+
+

+

+
+

A

+ + +
++

A

+
+ +

+
+

A

+ + +

+
+

A

Intensive Calm

0.0

0.5

1.0

1.5

2.0

2.5

La
zy

An
ar

ch
y

To
ta

lit
ar

ia
n

U
C

B
EX

P3

La
zy

An
ar

ch
y

To
ta

lit
ar

ia
n

U
C

B
EX

P3

0

2000

4000

6000

A
ve

ra
ge

E
la

ps
ed

 T
im

e(
s)

N
um

be
r

of
M

ig
ra

tio
ns

Figure 13.6: Performance evaluation for UCB and EXP3 strategies. This figure comple-
ments Fig. 13.4 by adding the results for UCB and EXP3. Note that the
y-axis scale has changed and that a horizontal dotted line now indicates the
performance of the Totalitarian strategy and serves as a target lower bound.

which represents the frequency each host was selected by each application. Fig. 13.5
presents the empirical frequency for all applications in a single test execution. We
can see that none of the applications is able to distinguish the best host to run,
selecting each one roughly the same number of times. In conclusion, the results
obtained show the unfitness of UCB in our context.

EXP3: adversarial

In an adversarial context, EXP3 (EXPonential-weight algorithm for EXPloration and
EXPloitation) is known for having good regret properties. In terms of information
used by the algorithm, it is similar to UCB, i.e., a proactive algorithm that uses only
bandit feedback. In an adversarial scenario, EXP3 randomizes its arm selection to
minimize the regret against the adversary. This is done by maintaining a reward
vector y and a probability vector p for each application j, as follows

yjt+1 = yjt + ηv̂jt (13.4a)

pjt+1 = Λ(yjt+1), (13.4b)

where the logit choice map Λ is given by

Λ(v) =
(exp(va))a∈A∑
a∈A exp(va)

In each step t, the application selects a host based on the probability vector p and
will update its reward vector y, taking a step of η = 0.1. However, to update the

13.2 Evaluation 143

reward vector, we need an unbiased estimator for the feedback vector v̂. This is
achieved by the importance sampling technique

v̂ja,t =

µj

a,t

pj
a,t

if a = ajt

0 otherwise
(13.5)

By dividing the observed feedback µ by the probability p, we obtain an unbiased
estimator of the real feedback vector µ, i.e., E[v̂ja,t] = µja,t.

The results for EXP3 are presented in region A of Fig. 13.6 and its performance
is disappointing. In a close analysis, we could observe that the applications keep
moving around the available hosts, degrading and creating instabilities in the per-
formance. Consequently, EXP3 has difficulty to learn and to reach the equilibrium
in this congestion game.

Intensive Calm

0 100 200 300 400 500 0 100 200 300 400 500
0.00

0.25

0.50

0.75

1.00

Time Steps (t)

P
ro

ba
bi

lit
y

V
ec

to
r

(p
tj)

Figure 13.7: EXP3 learning rate for an experiment in a well-informed environment. The
figure shows the probability vector pj

t , each line represents the probability
that an application has to select each host. We highlight with a different color,
the applications that were able to identify the best hosts to run (none in this
case).

In Fig. 13.7, we see for a given experiment, the evolution of the probability vector p,
as defined in Eq. (13.4b). Although the greater variability, EXP3’s learning behavior
is similar to UCB (presented in Fig. 13.5). There is no learning curve, and no host
has a distinguishable better performance or greater probability of being selected.
This leads to the high number of migrations seen in Fig. 13.6.

From the results of UCB and EXP3, we observe that both strategies undergo the
same learning problem. Moreover, we can clearly see the impact of excessive
exploration on the overall performance of these algorithms. Hence, in the following,
we evaluate two adaptations of UCB and EXP3 that try to limit the number of
migrations through a Migration-Control (MC) mechanism.

144 Chapter 13 Reconfiguration in a Well-informed Environment

UCB-MC: migration control

Usually, online learning algorithms, such as UCB and EXP3, consider that the
agent can switch arms for free, i.e., without impact over the perceived reward.
However, it is natural to see that, in many real cases, this assumption does not hold
true and the agent needs to pay a cost γ > 0 when switching arms (ajt+1 6= ajt).
Especially in our case, migrations have a non-negligible cost associated with moving
application components from one host to another. Moreover, it is extremely difficult
to measure this switching cost γ since it depends on the status of both application
and platform.

UCB-MC (UCB with Migration-Control) is the implementation of the state-of-the-
art UCB2 algorithm [ACF02] to deal with the stochastic scenario with switching
costs. UCB2’s main difference with UCB is that the plays are divided into epochs so
that each arm is played during N consecutive time steps, where N is an exponential
function of the number of times the arm was played so far. By doing so, UCB2
reduces the switching cost from O(T) to O(log(T)) [ACF02] while maintaining the
O(log(T)) optimal regret.

UCB-MC is still a proactive algorithm which tries different configurations to find
the best one as follows:

ajt+1 = arg max
a∈Aj

µ̂jt +

√√√√(1 + α)(1 + ln (t/τ(rja)))
2τ(rja)

 , (13.6)

where α = 0.13, rja is the number of epochs played by host a so far and τ is the
following exponential function

τ(r) = d(1 + α)re (13.7)

We can see in region A of Fig. 13.9 that UCB-MC indeed does fewer migrations
compared to UCB and EXP3. However, the elapsed time is not significantly im-
proved. Although the number of migrations is decreased, it reduces slowly in time,
since the hosts are chosen in an almost uniform way. In Fig. 13.8, we can see that
UCB-MC has the same learning issue as UCB). Consequently, the elapsed time is in
the same order of magnitude as for UCB.

3The α in Eq. (13.6) has the same status but not exactly the same semantic as the one in Eq. (13.1),
wherefore they have different values.

13.2 Evaluation 145

Intensive Calm

0 200 400 0 200 400
0.00

0.25

0.50

0.75

1.00

Time Steps (t)

E
m

pi
ric

al
 F

re
qu

en
cy

 (
x aj)

Figure 13.8: UCB-MC learning rate for an experiment in a well-informed environment.
Each line represents the frequency an application has selected determined
host (xj

a(t) = nj
a/t). We highlight with a different color, the applications that

were able to identify the best hosts to run (none in this case).

+
+

+

+

+
+ +

A

B

+ + +
+ ++ +

A

+
+ +

+

+

+

+

A

B

+ + +

+

+

+

+

A

Intensive Calm

0.0

0.5

1.0

1.5

2.0

2.5

La
zy

An
ar

ch
y

To
ta

lit
ar

ia
n

U
C

B
EX

P3
U

C
B−

M
C

EX
P3

−M
C

La
zy

An
ar

ch
y

To
ta

lit
ar

ia
n

U
C

B
EX

P3
U

C
B−

M
C

EX
P3

−M
C

0

2000

4000

6000

A
ve

ra
ge

E
la

ps
ed

 T
im

e(
s)

N
um

be
r

of
M

ig
ra

tio
ns

Figure 13.9: Performance evaluation for UCB-MC and EXP3-MC strategies. This figure
complements Fig. 13.6 by adding the results for these strategies.

EXP3-MC: reactive migration control

Just like for the stochastic case, variants of EXP3 have been proposed [Aue+02] for
the adversarial setup where switching from an arm to another has a cost which
should be minimized as well. Unfortunately, the regret for the adversarial case
with switching costs is O(T 2/3) instead of O(

√
T) [CDS13]. For this reason, we

propose a different approach for EXP3 to handle with the switching cost. EXP3-MC
(EXP3 with Migration Control) follows the same algorithm logic as EXP3, but the
explorations are done only when the application has an unacceptable performance,
i.e., it exceeds the threshold defined by the user. By doing so, EXP3-MC becomes a
reactive algorithm, changing the placement of an application only when it is really
needed.

146 Chapter 13 Reconfiguration in a Well-informed Environment

Fig. 13.9, region B, shows a significant improvement in the elapsed time of intensive
applications, along with a great reduction in the number of migrations done by
applications. This result reinforces our understanding about the cost of explorations
on the overall performance of applications. By being less aggressive in the learning
and doing less migrations, the mean elapsed time for all applications tends to
improve.

Intensive Calm

0 20 40 60 0 20 40 60
0.00

0.25

0.50

0.75

1.00

Time Steps (t)

P
ro

ba
bi

lit
y

V
ec

to
r

(p
tj)

Figure 13.10: EXP3-MC learning rate for an experiment in a well-informed environment.
The figure shows the probability vector pj

t , each line represents the proba-
bility that an application has to select each host. Calm applications rarely
exceed the threshold and so do not migrate. Consequently, the pj

t does not
evolve over time.

One obvious drawback of such solution is the learning rate, as presented in
Fig. 13.10. With the reduced number of explorations applications do, EXP3-MC
is not capable of distinguishing among available hosts, and finishes by choosing
almost uniformly the next host to run the application. This learning effect is am-
plified for calm applications, which use very few resources and do not migrate at
all.

Hedge-MC: trading feedback for estimates

So far, the learning process of all the algorithms relied on partial information, i.e.,
they have access only to the feedback of current host running the application. In
a full information context, where the algorithm has access to all feedback vector
vt, the Hedge [Aue+95] algorithm has improved performance, achieving a regret
of O(

√
T). However, as each application is running on only one host at time, it is

impossible to obtain the exact feedback for other hosts at instant t. To cope with this
limitation, Hedge-MC (Hedge with Migration Control) uses an estimation function
to calculate the expected feedback, using the partial and inaccurate information
about applications and hosts.

13.2 Evaluation 147

The Hedge algorithm is similar to EXP3 as described in Eq. (13.4), the only change
is the feedback vector v̂:

v̂ja,t =

µ
j
a,t if a = ajt

fest(a) otherwise
(13.8)

Eq. (13.8) relies on the estimation function fest to provide a good estimation of
the application feedback. In summary, as illustrated in Fig. 13.11, fest accords a
good feedback (close to 1) if the host has enough resources to run the application,
considering the requirements of the application and the resources available on the
host.

Application requirements:
CPU >= 100 MIPS

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
Available CPU (MIPS)

F
ee

db
ac

k
(v̂

a,
t

 j
)

Figure 13.11: Estimation function (fest). Shape of fest for an application that requests a
CPU with at least 100 MIPS.

Hedge-MC shares the same migration control mechanism as EXP3-MC, i.e., appli-
cations are migrated only when the threshold is exceeded. When the migration
must occur, Hedge-MC will follow the probability distribution which reflects the
feedback obtained by the estimation function.

Note that both application and host information is noisy and imprecise, since
it depends on the accuracy of user description and the update frequency of the
monitoring tool. However, it provides a good estimation to improve the learning
rate of Hedge-MC algorithm. It is staggering the consequences in the learning of
intensive applications, as seen in Fig. 13.12. Many applications, highlighted by
colored lines, are able to select the best hosts to run the application. As a result, we
can see in region A of Fig. 13.13 a slight improvement in terms of elapsed time and
number of migrations.

Furthermore, Fig. 13.13 introduces the results for the "time above threshold" metric
which represents the total time that applications were unable to meet the expected
threshold defined by users. We point out that this metric follows the behavior of
elapsed time in our experimental scenario, and so, Hedge-MC is the one with best

148 Chapter 13 Reconfiguration in a Well-informed Environment

Intensive Calm

0 200 400 600 0 200 400 600
0.00

0.25

0.50

0.75

1.00

Time Steps (t)

P
ro

ba
bi

lit
y

V
ec

to
r

(p
tj)

Figure 13.12: Hedge-MC learning rate for an experiment in a well-informed environment.
The figure shows the probability vector pj

t , each line is the probability that
an application has to select each host. We highlight with a different color, the
applications that were able to identify the best hosts to run (i.e., applications
whose 2 best hosts have at least 75% probability of being chosen). We can
clearly see the improvement in the learning rate for intensive applications,
where hosts are selected more often for some applications.

performance (just after our target Totalitarian). For calm applications, the impact is
less noticeable due to the y-scale of this metric.

Finally, another important characteristic of Hedge-MC is its dependency on the
estimation function. This is more perceptible when we compare between intensive
and calm applications. The estimation function used is more accurate for intensive
applications and so, Hedge-MC is able to distinguish among the available hosts.
On the other hand, for calm applications, it estimates that all hosts have similar
performance and consequently, Hedge-MC is incapable of learning (cf. right part
of Fig. 13.12). This can be seen by the similar performance between EXP3-MC and
Hedge-MC.

Hedge-MC-TE: encouraging migrations

Despite the better performance of Hedge-MC, it is still a pure reactive algorithm
which only migrates when needed. In this context, we may lose optimization op-
portunities because the elapsed time is just good enough, i.e., below the predefined
threshold. On the other hand, we have seen that too many explorations degrade
considerably the performance. For these reasons, we introduce Hedge-MC-TE
which uses a mixed strategy to cautiously select some applications to migrate when
we may improve the elapsed time.

Hedge-MC-TE, where TE stands for Trial and Error, is inspired by the work of
[You09]. The general idea is to monitor the estimated feedback of all hosts, migrating
when the performance of current host is not the optimal for some period of time.

13.2 Evaluation 149

+
+

+

+

+ + +
+ +

A B

+ + +
+ + + ++ +

+
+

+

+

+ + +
+ +

+ + + + + + ++ +

+
+ +

+

+ + +

+

+
A B

+ + +

+

+ + +

+

+

Intensive Calm

0.0

0.5

1.0

1.5

2.0

2.5

0

10000

20000

30000

40000

La
zy

An
ar

ch
y

To
ta

lit
ar

ia
n

U
C

B
EX

P3
U

C
B−

M
C

EX
P3

−M
C

H
ed

ge
−M

C
H

ed
ge

−M
C

−T
E

La
zy

An
ar

ch
y

To
ta

lit
ar

ia
n

U
C

B
EX

P3
U

C
B−

M
C

EX
P3

−M
C

H
ed

ge
−M

C
H

ed
ge

−M
C

−T
E

0

2000

4000

6000

A
ve

ra
ge

E
la

ps
ed

 T
im

e(
s)

T
im

e
A

bo
ve

T
hr

es
ho

ld
(s

)
N

um
be

r
of

M
ig

ra
tio

ns

Figure 13.13: Performance evaluation for Hedge-MC and Hedge-MC-TE strategies. This
figure complements Fig. 13.9 by adding the results for these strategies. A
new metric "Time Above Threshold" is presented.

Fig. 13.14 presents the state machine used to decide when an application should
migrate. In the Content state, the application is in the best possible host. The
transition to Watchful state happens when some other host has better predicted
performance. If this occurs during more than nTE = 10 times, the application is
considered as Discontent and will trigger the migration. Hedge-MC-TE will choose
the next host to receive the application following the vector p, as described in Eq.
(13.4). Note the global transition to Discontent which indicates that whenever the
application is not satisfied with the current placement, it should be migrated.

Content Watchful

((𝑎)) ≠max
𝑎∈𝐴𝑗

𝑓𝑒𝑠𝑡 𝑎
𝑗
𝑡

((𝑎)) =max
𝑎∈𝐴(𝑗)

𝑓𝑒𝑠𝑡 𝑎
𝑗
𝑡

((𝑎)) ∗ ≠max
𝑎∈𝐴𝑗

𝑓𝑒𝑠𝑡 𝑛𝑇𝐸 𝑎
𝑗
𝑡

Discontent

𝑒() > threshold𝑎
𝑗
𝑡

Figure 13.14: Hedge-MC-TE: state machine

Unfortunately, as we can see in Fig. 13.13, region B, the performance is not improved
by this algorithm. Despite of the few additional migrations done by Hedge-MC-TE,
their migration cost mitigates the possible gain induced by these new explorations.
We believe that two main factors lead to this result: i) the estimation function is not

150 Chapter 13 Reconfiguration in a Well-informed Environment

precise enough to correctly identify the performance variation among hosts and
ii) the applications and hosts are homogeneous, and so, the elapsed time tends to
be similar between hosts, with no significant difference that this algorithm could
exploit.

Hedge-MC-TE-DUMP: cordial neighbors

As explained in Section 13.1.2, we ensured that we are in a scenario where the
system is very loaded, with few resources available to run intensive applications.
In such scenario, it is very difficult for applications, with their partial view of the
system, to find the proper placement. To deal with this issue, we propose a strategy
based on the cordiality between applications, i.e., voluntary applications accept a
temporary poor performance in favor of better performance for everyone.

Fig. 13.15 presents the state machine for Hedge-MC-TE-DUMP strategy. It follows
the same general idea as Hedge-MC-TE, where applications try to improve their
performance each time they reach the Discontent state. The difference is the new
GiveUp state, where cordial applications go to leave free resources to their neigh-
bors in the hosts. The transition to GiveUp state happens after the application is
discontent nDUMP = 10 times in the last periodDUMP = {60, 300} seconds. Note
that the applications do not stop executing, but they go to a "dump" host where the
performance will be degraded. They will leave the GiveUp state and restart executing
normally after periodDUMP seconds.

𝑒() > threshold𝑎
𝑗
𝑡

Content Watchful

((𝑎)) ≠max
𝑎∈𝐴𝑗

𝑓𝑒𝑠𝑡 𝑎
𝑗
𝑡

((𝑎)) =max
𝑎∈𝐴(𝑗)

𝑓𝑒𝑠𝑡 𝑎
𝑗
𝑡

((𝑎)) ∗ ≠max
𝑎∈𝐴𝑗

𝑓𝑒𝑠𝑡 𝑛𝑇𝐸 𝑎
𝑗
𝑡

Discontent

GiveUp
if (discontent more than 𝑛𝐷𝑈𝑀𝑃

 times in last 𝑝𝑒𝑟𝑖𝑜 seconds)𝑑𝐷𝑈𝑀𝑃

otherwise

after 𝑝𝑒𝑟𝑖𝑜 seconds𝑑𝐷𝑈𝑀𝑃

Figure 13.15: Hedge-MC-TE-DUMP: state machine

The results for the Hedge-MC-TE-DUMP strategy are presented in Fig. 13.16.
We set the periodDUMP parameter for 60 and 300 seconds. In the region A of
Fig. 13.16, we can see that, despite the lower number of migrations (mainly for
periodDUMP = 300s), the other metrics (elapsed time and time above threshold)
have underperformed compared to Hedge-MC and Hedge-MC-TE. Unfortunately,
the gain obtained for the other applications does not compensate for the perfor-
mance degradation of cordial applications running on the "dump" host. This effect is

13.2 Evaluation 151

+
+

+

+

+ + +
+

++ +
A

B
+ + +

+ + + + +++ +

+
+

+

+

+ + +
+

+
+ +

+ + + + + + + +++ +

+
+ +

+

+ + + ++

+

+
A

+ + +

+

+ + + ++

+

+

Intensive Calm

0.0

0.5

1.0

1.5

2.0

2.5

0

10000

20000

30000

40000

La
zy

An
ar

ch
y

To
ta

lit
ar

ia
n

U
C

B
EX

P3
U

C
B−

M
C

EX
P3

−M
C

H
ed

ge
−M

C
H

ed
ge

−M
C

−T
E

H
*−

D
U

M
P−

30
0

H
*−

D
U

M
P−

60

La
zy

An
ar

ch
y

To
ta

lit
ar

ia
n

U
C

B
EX

P3
U

C
B−

M
C

EX
P3

−M
C

H
ed

ge
−M

C
H

ed
ge

−M
C

−T
E

H
*−

D
U

M
P−

30
0

H
*−

D
U

M
P−

60

0

2000

4000

6000

A
ve

ra
ge

E
la

ps
ed

 T
im

e(
s)

T
im

e
A

bo
ve

T
hr

es
ho

ld
(s

)
N

um
be

r
of

M
ig

ra
tio

ns

Figure 13.16: Performance evaluation for Hedge-MC-TE-DUMP (H*-DUMP-60 and H*-
DUMP-300 in the figure) strategy, varying the amount of time applications
stay in dump runtime (300s and 60s). This figure compares all learning
strategies. The strategies in bold (Anarchy, Totalitarian and Hedge-MC)
have the best performance and will be used as base for comparison in
Section 13.2.3.

clearer when we compare the elapsed time between the two Hedge-MC-TE-DUMP
strategies, in region B, the longer the applications remain in the "dump" host, the
worse the overall performance will be.

In conclusion, the cordiality and benevolence of the applications did not improve
performance, and therefore, Hedge-MC-TE-DUMP does not work in our experi-
mental setup. Furthermore, by comparing all learning strategies in Fig. 13.16, we
see that Hedge-MC has the best performance in terms of elapsed time and time
above threshold. Along with the Anarchy and Totalitarian baseline strategies (all
highlighted in bold), they will be kept as a basis for comparison in the following
section, where we will analyze the performance of greedy strategies.

13.2.3 Greedy but informed strategies

The algorithms presented in Section 13.2.2 attempt to boost the applications’ perfor-
mance by learning the best host for each, based on the feedback the applications
experience and provide. In this section, we propose a different and more reactive
approach, where the algorithms reconfigure the placement of application having

152 Chapter 13 Reconfiguration in a Well-informed Environment

bad performance, but in a controlled and informed manner. All algorithms in this
section take advantage of the GO-FSP algorithm to select the best host to run the
application.

PC: distributed arbitration

PC (Partial Coordination) is motivated by the behavior of applications under Anar-
chy control. In such a case, many applications tend to migrate to the same host at the
same time. Fig. 13.17 illustrates this case in a reduced scenario. Let’s consider two
applications, A and B, running on hosts 1 and 2. At instant t1, application A gets
active and starts running. Its performance is satisfactory until application B gets
active at t2. At t3, both applications have a poor performance and decide to migrate
to the Host 2 which has 100% of CPU available. However, as both applications are
now running at B, in the next step t4, they will both decide to migrate back to host
A. This ping-pong effect happens until t6, where the application A gets inactive
and so, B is capable of running with good performance, making the system stable
again.

Herd	Effect

H
os

t 1

B C
PU

 A
va

il.A

B

A A A A

B B

H
os

t 2

C
PU

 A
va

il.A A

B B

�1 �2 �3 �4 �5 �6 �7 �8

Elapsed time for B applicationElapsed time for A application

Figure 13.17: The Herd Effect

In this context, we propose two mechanisms to mitigate the "herd effect": i) selective
migration: we opt for migrating only 1 application, selected at random among
unsatisfied applications, per host per time frame; and ii) migration cooldown: after
a migration is done, the source host waits for a period of time (10s) to stabilize
performance, so that the remaining applications on the host have sufficient time to
perceive the improvement in their elapsed time.

Fig. 13.18 shows the effectiveness of the proposed solution when comparing to both
Anarchy and the best learning strategy, Hedge-MC. The improvements allow PC
to reduce considerably the amount of migrations and the time above threshold (cf.
region B). The elapsed time is, in consequence, closer to our target, the Totalitarian
approach. Moreover, in region A, we highlight that PC also improves the elapsed

13.2 Evaluation 153

+
+

+
+ + +

A
D

+ + + + + +

A

+

+

+
+ + +

B

DC

+ + + + + +

+

+

+
+ + +

B

DC

+ + + + + +

Intensive Calm

0.0

0.5

1.0

1.5

2.0

0

5000

10000

15000

20000

An
ar

ch
y

To
ta

lit
ar

ia
n

H
ed

ge
−M

C PC

PC
−R

IU

FC
−R

IU

An
ar

ch
y

To
ta

lit
ar

ia
n

H
ed

ge
−M

C PC

PC
−R

IU

FC
−R

IU

0

500

1000

1500

A
ve

ra
ge

E
la

ps
ed

 T
im

e(
s)

T
im

e
A

bo
ve

T
hr

es
ho

ld
(s

)
N

um
be

r
of

M
ig

ra
tio

ns

Figure 13.18: Performance evaluation for greedy strategies. This figure compares the
performance of greedy strategies with those of learning in Fig. 13.16. The
strategies in bold (Anarchy, Totalitarian and Hedge-MC) are kept as a basis
for comparison. Note that the y-axis scale has changed.

.

time for calm applications, whose performance was hindered by the learning
strategies. The improved performance by PC can be explained by two factors: i) the
algorithm is nimble enough to reconfigure the application when needed and ii) the
migration cooldown gives the necessary time to applications settle down in their
current hosts.

PC-RIU: updating resource information

In the previous section, it has been proven that the performance of the applica-
tions can be improved by implementing a control mechanism in each host. This
mechanism avoids the "herd effect" in a single host and its results are promising.
Nevertheless, we noticed many schedulers were still taking their decision indepen-
dently and based on not up-to-date information about hosts’ resource consumption.
This can lead to a distributed "herd effect", where different schedulers send their
applications to the same host.

One way to cope with this problem is doing a partial update of hosts, selectively
updating resource consumption information. PC-RIU (Partial Coordination with
Runtime Information Update) solves this problem by requesting the update of

154 Chapter 13 Reconfiguration in a Well-informed Environment

resources utilization for the hosts being used in the migration process. For example,
if host 1 decides to migrate an application to host 2, it will also request the host 2 to
update its resource utilization. Thus, other hosts may base their migration decision
on the up-to-date data from host 2, perhaps avoiding it and choosing another host
for their applications.

In our case study, the majority of the "herd effect" was due to applications coming
from the same host, as we could see in the previous section. However, despite
the uncertainty of the measures, we can still see in Fig. 13.18, region C, a modest
reduction in the number of migrations and in the time above threshold of PC-RIU
compared to PC and. This is explained by the better decisions taken by hosts
thanks to more up-to-date resource information. However, PC-RIU does not show
a significant improvement in the elapsed time because we are already very close to
the optimal Totalitarian performance (as seen in region A of Fig. 13.18).

FC-RIU: short-sighted dictatorship

Finally, we present the impact of centralizing the reconfiguration decision in a single
host. FC-RIU (Full Coordination with Runtime Information Update) extends the
proposal in PC-RIU by centralizing the reconfiguration decision in a single entity.
In this strategy, the applications request their reconfiguration to a centralized host.
FC-RIU will then put together all requests and apply the same criteria adopted for
PC and PC-RIU, i.e., one migration per time frame, the migration cooldown and
update of resources. It is thus close to the Totalitarian strategy except it cannot
foresee when applications will switch from Sleeping to Active and is thus Reactive.

Fig. 13.18, region D shows that the performance of FC-RIU is quite similar to PC-
RIU, in both elapsed time, time above threshold and number of migrations. We
can conclude that the centralization of the reconfiguration decision offers little
benefit compared to those already obtained with the aforementioned strategies.
Besides, the characteristics of the Fog environment prohibit the use of a single and
centralized entity.

13.2.4 Summary

Table 13.1 summarizes and compares the different strategies presented in this
section. The first column shows the strategy’s class according to its approach, online
learning or scheduling. In the second column, we describe the mode how each
strategy does the reconfiguration, proactively or reactively. We observe that this is
an important factor that reflects in the strategy’s performance. More precisely, by

13.2 Evaluation 155

Class Mode Information Coordination Performance
Lazy NA NA NA NA 1.39

Anarchy Greedy Reactive Inaccurate None 1.02
Totalitarian* Oracle Proactive Accurate Full 0.51

UCB Learning Proactive None None 1.62
EXP3 Learning Proactive None None 1.96

UCB-MC Learning Proactive None None 1.52
EXP3-MC Learning Reactive None None 0.93

Hedge-MC Learning Reactive Inaccurate None 0.78
Hedge-MC-TE Learning Mixed Inaccurate None 0.94

PC Greedy Reactive Inaccurate Partial 0.54
PC-RIU Greedy Reactive Inaccurate Partial 0.51
FC-RIU* Greedy Reactive Inaccurate Full 0.51

* - centralized strategies
Table 13.1: Strategies Classification. The performance column summarizes the average

elapsed time (in seconds) for intensive applications. (≤ 0.75s, 0.75s < ≤ 1s,
> 1s)

passing from a proactive to a reactive approach, EXP3-MC considerably improves
its performance compared to proactive ones, such as UCB, EXP3 and UCB-MC. This
performance gain is also valid for the other reactive approaches. In the information
column, we describe the level of details available about the infrastructure and
applications. Here, we highlight that the use of inaccurate information by Hedge-
MC and greedy strategies gave a step further in the performance improvement.
Although inaccurate and not very up-to-date, the extra information provided by
the developer and the monitoring tools are important, impacting positively in
the elapsed time of applications. Finally, in the last column, the coordination
describes how application migration is organized. In the partial coordination, each
scheduler coordinates the requests from its host, while in the full, all applications
are coordinated by a centralized scheduler. Note that the partial coordination used
by greedy strategies greatly improves performance. This effect is more noticeable
when we compare the performance of Anarchy and PC, since the only difference
between them is the partial coordination done by PC.

13.3 Limitations

One of the main limiting factors in our experiments is the duration. Each exper-
iment in Section 13.2 takes at least two and a half hours, between initialization,
provisioning and reconfiguration phases, test teardown (closing and collecting the
results), etc. Consequently, we had to limit the number of executions and the time
spent in the reconfiguration phase.

156 Chapter 13 Reconfiguration in a Well-informed Environment

Moreover, the reconfiguration strategy has only 1 hour to try to learn and adapt
the placement of applications. This short period (considering the lifespan of an
IoT application), along with the instabilities in the application’s performance due
to the migrations, explain the difficult of EXP3 in reaching the equilibrium in the
proposed congestion game.

Finally, the experimental scenario described in this chapter has the strong assump-
tion that developers are capable of providing a quite accurate estimation of the
resources used by their applications. In a real environment, this information is
sometimes difficult to obtain.

In Chapter 14, we will increase the duration of experiments and then strategies
will have more time to learn the performance of hosts. Also, we will loosen this
information constraint, making application performance less predictable.

13.3 Limitations 157

14Reconfiguration in an Ill-informed
Environment

In Chapter 13, we studied the case where users were able to accurately describe
the resources needed by their applications. In this section, on the other hand, we
present an affinity scenario, where there is a lack of exactness and accuracy in the
description of resource utilization. We will see how incorrect information can affect
the strategy’s performance and compare this affinity scenario with the previous
non-affinity one.

14.1 Describing the Environment

As previously discussed, the Fog environment presents a great heterogeneity in
its infrastructure. Consequently, the performance of an application may vary from
host to host due to the presence of specialized hardware. In this situation, the
requirements described by the application developer may be inaccurate for some
machines. To emulate this behavior in this experimental environment, we create an
affinity between applications and hosts, where each application has three optimized
hosts. When running on these optimized hosts, application performance is greatly
improved and processing time at Burn is reduced. Note that, these optimized hosts
are unknown for all the strategies.

14.1.1 Platform

The platform used in our reconfiguration tests is composed of 67 nodes. We use
50 nodes from FIT/IoT-LAB to represent the sensors, and 17 nodes from Grid’5000,
forming the Fog layer. The 17 nodes from Grid’5000 are part of the uvb cluster in
Sophia Antipolis and they are characterized by 2 CPUs Intel Xeon X5670, with 6
cores per CPU and 96GB of RAM 3. In this setup, each Grid’5000 node provides
about 240 MIPS of CPU power.

159

14.1.2 Workload

The application’s structure follows the same 3-level model as used in previous
chapter and detailed in Section 8.1.2. In summary, our workload is described by:

• Application load: contains the same two kinds of applications as in previous
chapter, but with few modifications1:
I Intensive: these resource-consuming applications send a large amount of
messages (1 message per seconds with a payload of 1024 bytes) to be processed,
each incurring 150 MI per message (or 7.5 MI if running on an optimized
host).
I Calm: 0.5 message/s with the same payload, where each message consumes
20 MI (or 1 MI if running on an optimized host).

• Application heterogeneity: again we opted for an intense profile with a
50%/50% mix between intensive and calm applications.

• System Load: the heavy load, composed of 50 applications concurrently run-
ning on the platform, is kept.

• Application arrival interval: applications arrive in a 60 seconds interval during
the provisioning phase.

• Application threshold: the threshold to determine application’s satisfaction
is set to 2 seconds.

• Churn: similar to the churn detailed in Section 13.1.2, we modeled the churn
as a 2-state (Active and Sleeping) Poisson process, where state changes are
exponentially distributed. In our experiments, we considered relatively slow
applications with a mean active/sleeping time (1/λ) of 300 seconds.

I Low-level application description: hereafter we describe the main low-level pa-
rameters in our setup.

• Requirements for actors:

– Trigger: requires an amount of CPU proportional to its token interval, i.e.,
3 MIPS for calm applications and 4 MIPS for intensive.

1Although the parameters (token rate and processing) in the application load are changed, the
overall load is the same in both scenarios.

160 Chapter 14 Reconfiguration in an Ill-informed Environment

– Burn: CPU is proportional to the processing effort per token. Calm
applications require 20 MIPS while intensives demand 150 MIPS.

– Sink: requests memory requirement equals to 3.7 MB for intensive appli-
cations and 1.8 MB for calm ones.

14.1.3 Orchestrator parameters

• Provisioning strategy: for these experiments, we opted for a fixed initial place-
ment for each application. In the fixed setting, applications are distributed
to hosts in a round-robin manner. Note that we did not see any impact on
results due to the chosen provisioning strategy.

• Reconfiguration strategy: this parameter is defined later in the chapter.

• Maintenance interval: the 5 seconds maintenance interval is used in these
experiments, in order to have a good responsiveness of the reconfiguration
algorithms.

• Monitoring interval: this parameter is kept the same, updating the informa-
tion about resource usage (CPU, RAM) each 60 seconds.

14.2 Evaluation

The presentation of experimental results in this section follows the same structure
as Chapter 13, but in a condensed way to improve readability, since the reader is
used to the already mentioned strategies. The experiments in this section last for 2
hours after the initial provisioning.

14.2.1 Baseline strategies

We start our analysis by inspecting the results for the baseline strategies in Fig. 14.1.
In this section, we chose to remove the results of the Lazy strategy from the baseline,
due to its extremely poor performance.

As expected, the Totalitarian strategy achieves a quite good performance, especially
for the time above threshold metric. By planning ahead, the Totalitarian is able to
find acceptable hosts for applications, although not optimal, as we will see in the
next sections. For the Anarchy strategy, we call attention to the high variability of

14.2 Evaluation 161

+ + +
+

+

+ +
A

B

+ + + +
+

+ +

+
+

+ +

+

+ +

C

+ + + ++
+ +

+ +

+

+

+

+ +

C

+ +

+

+

+

+ +

Intensive Calm

0

1

2

3

4

0

20000

40000

60000

80000

An
ar

ch
y

To
ta

lit
ar

ia
n

U
C

B

EX
P3

U
C

B−
M

C
H

ed
ge

−M
C

H
ed

ge
−M

C
−T

E

An
ar

ch
y

To
ta

lit
ar

ia
n

U
C

B

EX
P3

U
C

B−
M

C
H

ed
ge

−M
C

H
ed

ge
−M

C
−T

E

0

2500

5000

7500

A
ve

ra
ge

E
la

ps
ed

 T
im

e(
s)

T
im

e
A

bo
ve

T
hr

es
ho

ld
(s

)
N

um
be

r
of

M
ig

ra
tio

ns

Figure 14.1: Performance evaluation for learning strategies in the ill-informed scenario.
This figure compares all learning strategies. The strategies in bold (Anarchy,
Totalitarian and Hedge-MC) have the best performance and will be used as
base for comparison in Fig. 14.5.

the results, as we can see in the region A of Fig. 14.1. The Anarchy’s performance
depends on the dynamicity of application migrations. For example, if an applica-
tion migrates to an optimized host alone, without the "herd effect" described in
Section 13.2.3, its performance will be satisfactory and it will stay there. However,
if more applications migrate to the same host, the performance will be degraded
and the application will migrate again.

14.2.2 Online learning strategies

UCB

The performance for learning strategies is presented in Fig. 14.1. Comparing this
result with those obtained in Fig. 13.16, we note the impact of the scenario on the
strategies’ performance.

Unlike the previous scenario, for UCB, the elapsed time is close to the Totalitarian,
despite the large number of migrations carried out by UCB. In fact, in the affinity
scenario, UCB is able to learn the real performance of hosts, distinguishing, for

162 Chapter 14 Reconfiguration in an Ill-informed Environment

each application, the bad hosts from the optimized ones. Moreover, UCB is able to
properly exploit these best hosts, reducing the elapsed time for applications.

Intensive Calm

0 200 400 0 200 400
0.00

0.25

0.50

0.75

1.00

Time Steps (t)

E
m

pi
ric

al
 F

re
qu

en
cy

 (
x aj)

Figure 14.2: UCB learning rate for an experiment in an ill-informed environment. Each
line represents the frequency an application has selected determined host
(xj

a = nj
a/t). We highlight with a different color, the applications that were

able to identify the best hosts to run (none in this case).

In Fig. 14.2, we analyze the learning behavior for every application in an experiment.
For intensive applications, we still cannot highlight applications with 2 hosts that
were selected more than 75% of the time. Although, compared to the performance
of UCB in Fig. 13.5, it is noticeable that some hosts are selected more frequently for
intensive applications (xja ≥ 0.5). For calm applications, as they already use very
few resources, the difference in performance is not so great and so UCB is not able
to distinguish the hosts.

The figure shows a higher number of migrations and time above threshold than the
Totalitarian strategy, but the tendency is their stabilization over time, at least for
those applications that have found optimized hosts to run. This is a consequence of
the learning process, as time goes by, the incertitude over the performance of hosts
decreases and the UCB algorithm starts exploiting more the optimized hosts.

EXP3

Similar to the non-affinity scenario, EXP3 has the worst performance among learn-
ing strategies. In order to be effective against malicious adversaries, EXP3 needs
to be conservative in exploiting the best available hosts, and therefore, the elapsed
time is considerably higher. This also leads to a larger number of migrations which
negatively impact the elapsed time of applications. Finally, we note that stochastic
based strategies, such as UCB, perform better in this affinity scenario as there is a
clear structure to learn and exploit.

14.2 Evaluation 163

UCB-MC

The effectiveness of UCB-MC can be seen in Fig. 14.1. In this scenario, where hosts
have different performances and the strategy has the appropriate migration control
mechanism, UCB-MC excels and even outperforms the Totalitarian strategy. This
effect is explained not only by the better performance of UCB-MC but also by the
fact that the Totalitarian does not know about the optimized hosts and relies only
on the erroneous information provided by the user.

The number of migrations is significantly lower than UCB and it has a direct impact
over the elapsed time of applications, since the best hosts are selected more often.
Therefore, the migration control acts positively and accelerates the stabilization of
the performance. However, these initial explorations still impact considerably the
time above threshold metric when the optimized host is not selected.

Intensive Calm

0 100 200 300 400 500 0 100 200 300 400 500
0.00

0.25

0.50

0.75

1.00

Time Steps (t)

E
m

pi
ric

al
 F

re
qu

en
cy

 (
x aj)

Figure 14.3: UCB-MC learning rate for an experiment in an ill-informed environment.
Each line represents the frequency an application has selected determined
host (xj

a = nj
a/t). We highlight with a different color, the applications that

were able to identify the best hosts to run (i.e., applications whose 2 best hosts
have at least 75% probability of being chosen).

We can how the learning behavior is related with the performance in Fig. 14.3.
The greater number of highlighted applications reinforces the better performance
of UCB-MC. Once again, the migration control mechanism helps the learning
by decreasing the instabilities in the system generated by the migrations. For
calm applications, we cannot see any difference but their performance is already
acceptable.

Hedge-MC

As in the previous scenario, Hedge-MC is also the best learning strategy for the
affinity case, but for different reasons. In the previous scenario, Hedge-MC acceler-
ates the congestion game solution, learning how to dispatch the applications on the
available infrastructure. On the other hand, in the affinity scenario, the good perfor-

164 Chapter 14 Reconfiguration in an Ill-informed Environment

mance is explained by its ability to find the optimized hosts. Although Hedge-MC
uses unreliable user information to estimate the feedback, it eventually selects the
optimized host to run the application. When this happens, the application is no
longer interested in migrating and therefore remains on the current and optimized
host.

We highlight some regions in Fig. 14.1 which show the differences between the
proactive UCB-MC and reactive Hedge-MC strategies. In region B, the similar
elapsed time indicates their capacity to find the optimized hosts, but for different
reasons as explained before. Region C, in turn, shows the strong relation between
migrations and time above threshold. In this case, the reactive approach achieves
better performance because it disturbs less the environment with unnecessary
explorations.

Intensive Calm

0 200 400 600 800 0 200 400 600 800
0.00

0.25

0.50

0.75

1.00

Time Steps (t)

P
ro

ba
bi

lit
y

V
ec

to
r

(p
tj)

Figure 14.4: Hedge-MC learning rate for an experiment in an ill-informed environment.
The figure shows the probability vector pj

t , each line is the probability that an
application has to select each host. We highlight with a different color, the
applications that were able to identify the best hosts to run (i.e., applications
whose 2 best hosts have at least 75% probability of being chosen).

Nevertheless, the learning capacity of Hedge-MC in the affinity is worse than in
the non-affinity scenario, as we can see in Fig. 14.4. This can be explained by
the inadequacy of the estimation function which uses the imprecise information
provided by user. This wrong feedback conflicts with the real feedback provided by
the host when the application is running, disturbing the learning process. However,
it is important to observe that the bad learning does not incur in more migrations
because, as cited above, the applications tend to stay in the good hosts.

Hedge-MC-TE

Finally, the Hedge-MC-TE has a similar (but slightly worse) performance to Hedge-
MC and comparable to that from the non-affinity scenario. In terms of elapsed
time, the good performance is explained in the same way as for Hedge-MC, i.e.,
the inertia of applications once on a good host. As in the non-affinity scenario, the

14.2 Evaluation 165

few more migrations done by Hedge-MC-TE do not lead to better performance.
This is, once again, caused by the inability of the estimate function to give good
approximation for the performance of applications.

Global Analysis

Note that the scenario has an important impact on the performance of the different
strategies. In the affinity case, where strategies have a clear difference in the perfor-
mance of hosts to exploit, UCB-MC has an average elapsed time close to Hedge-MC
and Hedge-MC-TE, but with access to less information. More precisely, in the
learning process, Hedge-MC and Hedge-MC-TE use the user and host information
to estimate the complete feedback vector for all hosts, while UCB-MC relies only on
the bandit feedback of the current host. However, the migrations made by UCB-MC
worsen the performance of the other two metrics: time above threshold and number
of migrations. For this reason, we keep the Hedge-MC when analyzing the greedy
strategies in Section 14.2.3.

In addition, we emphasize that the results obtained in the affinity scenario point
out the dependence of Hedge-MC and Hedge-MC-TE to a good estimation function.
The learning process is linked to the capacity of this function to reflect the reality,
even if there is some uncertainty. On the other hand, we see that the proposed
migration control is able to circumvent this problem if there are efficient hosts to
run the applications smoothly.

14.2.3 Greedy but informed strategies

In Fig. 14.5, we can see the performance for PC and PC-RIU greedy strategies.
Note that we opt to remove from these tests the FC-RIU strategy, since it has the
drawbacks brought by the centralization and its performance results do not pay
off this extra cost. Analyzing the region A of the figure, we see that PC has a good
performance and it is more stable than Hedge-MC in terms of elapsed time. In the
first sight, this result is surprising since the strategies have no information about
the best hosts to run the applications. Although PC and PC-RIU take their decisions
based on the inaccurate application description provided by the user, eventually
the application is placed in an optimized host. Also, these reactive approaches have
the good property of staying in it once this happens.

Moreover, the effect of updating the resource utilization performed by PC-RIU
is clear in the affinity scenario. Region B shows the lower number of migrations
carried out by PC-RIU compared to PC, while region C presents the effect of this

166 Chapter 14 Reconfiguration in an Ill-informed Environment

+

+ +

+
+

A

+ + ++ +

+
+

+
+ +

C

+ + ++ +

+

+ ++

+
B

+
+ ++ +

Intensive Calm

0

1

2

3

0

10000

20000

30000
An

ar
ch

y
To

ta
lit

ar
ia

n
H

ed
ge

−M
C PC

PC
−R

IU

An
ar

ch
y

To
ta

lit
ar

ia
n

H
ed

ge
−M

C PC

PC
−R

IU

0

250

500

750

1000

A
ve

ra
ge

E
la

ps
ed

 T
im

e(
s)

T
im

e
A

bo
ve

T
hr

es
ho

ld
(s

)
N

um
be

r
of

M
ig

ra
tio

ns

Figure 14.5: Performance evaluation for greedy strategies in the ill-informed scenario. This
figure compares the performance of greedy strategies with those of learning
in Fig. 14.1. The strategies in bold (Anarchy, Totalitarian and Hedge-MC) are
kept as a basis for comparison. Note that the y-axis scale has changed.

.

migration reduction in the time above threshold metric. In conclusion, we note
that the policies implemented by PC-RIU (notably the selective migration, the
migration cooldown and partial update of resource information) help the system to
stabilize faster, achieving a very good overall performance for all metrics. Compared
to classical learning strategies, the reactive strategies using informed placement
mechanisms may not identify directly optimal placements but they quickly filter
out bad decisions without resorting to a costly exploration.

14.3 Limitations

14.3.1 Experimental limitations

We start the analysis of the limitations in our experiments with the duration of
the experiments. We have seen an improvement in the learning for the online
learning strategies in this chapter. However, we believe that a longer execution

14.3 Limitations 167

could bring closer the performance of online learning strategies to greedy strategies.
To illustrate this fact, we present the results of a single execution for UCB-MC, in
the same experimental environment described in this chapter, but during 5 hours
instead of 2 hours.

Intensive Calm

0 500 1000 1500 0 500 1000 1500
0.00

0.25

0.50

0.75

1.00

Time Steps (t)

E
m

pi
ric

al
 F

re
qu

en
cy

 (
x aj)

Figure 14.6: UCB-MC learning rate for a long duration (5h) experiment in an ill-informed
environment. Each line represents the frequency an application has selected
determined host (xj

a = nj
a/t). We highlight with a different color, the applica-

tions that were able to identify the best hosts to run (i.e., applications whose 2
best hosts have at least 75% probability of being chosen).

Fig. 14.6 presents the learning behavior for UCB-MC. We can see the stabilization
and improvement for intensive applications which have optimized hosts to run.
Furthermore, the average elapsed time for intensive applications in the last hour
of the experiment is 0.777s, very close to the performance of PC-RIU in Fig. 14.5
(0.726s).

14.3.2 Platform

Despite the efforts to create a realistic environment, relying on FITOR, Grid’5000
and FIT/IoT-LAB to recreate a proper Fog environment, our experimental environ-
ment has some drawbacks. The first is the homogeneity of Fog nodes, since we
use several nodes from the same Grid’5000 cluster with similar performances. It is
possible to increase the heterogeneity of nodes, by choosing nodes from different
clusters or by limiting the resources available for containers in Docker. Second, it
would be interesting to evaluate the performance in larger scenarios, possibly with
hundreds or thousands of machines. Unfortunately, although technically possible,
this type of experiment is extremely time and resource consuming.

Nevertheless, the main limitation in our platform is related to the network con-
nectivity. The network within Grid’5000 can be customized, increasing latency
or reducing the bandwidth available to the nodes. However, the VPN connec-
tion between Grid’5000 and FIT/IoT-LAB creates an artificial tunnel which is not

168 Chapter 14 Reconfiguration in an Ill-informed Environment

present in a real Fog environment. In addition, the VPN makes it very difficult any
customization in network resources.

14.3.3 Workload

Our workload tries to mimic the main characteristics of IoT applications, but we had
to set many of the parameters that characterize our workload. A straightforward
extension to our work is considering variations in the workload, such as rapidly
evolving applications (churn), variety of application heterogeneity with more calm
or intensive applications, or yet, other load profiles that consume different amounts
of resources.

In addition, the workload used in the experiments is mainly CPU-intensive, con-
suming most of CPU resources in the infrastructure. It is possible to extend this
by considering other network or memory intensive profiles. Finally, these profiles
could be mixed to study a more complete and complex scenario.

Finally, we have studied the impact of an imprecise description of application
requirements in our scenario in this chapter. However, it is possible to study the
impact over the performance of other application specific requirements, either in
terms of location or network latency/bandwidth constraints for example.

14.3.4 Orchestrator

The configuration used in orchestrator settings is important and may have an influ-
ence on our experimental results. The monitoring interval, for example, determines
the correctness of information about the use of resources on the platform. All
strategies that rely on this information to take their decision can potentially take
advantage (or be negatively affected) by different update rates.

Furthermore, the maintenance interval, which controls how often hosts check
application satisfaction, plays a key role in the performance of strategies. A short
maintenance interval is advantageous for reactive strategies, but induces a greater
number of migrations. On the other hand, a longer maintenance interval helps the
system stability, generating fewer migrations but affecting the satisfaction of the
applications. Therefore, the fine-tuning of this parameter, studying the trade-off
between short and long intervals, deserves an in-depth and cautious research.

Finally, each strategy has its own parameters that can be fine-tuned for a better
performance. Regarding the online learning strategies, an obvious parameter to

14.3 Limitations 169

configure is the set of hosts available for each application (|Aj |). It defines the search
space for learning algorithms and was set to 5 in our experiments. However, a
proper study should be carried out to determine the optimal value, considering the
trade-off between learning rate and performance. Moreover, each strategy has its
own configuration parameters, such as α for UCB, η for EXP3, etc., whose impact
can be studied and depends on the environment being studied.

170 Chapter 14 Reconfiguration in an Ill-informed Environment

15Conclusion and Future Work

15.1 Conclusion

Fog computing is shaping the future infrastructure for IoT, meeting the strict re-
quirements of new IoT applications. However, several challenges still remain due
to the characteristics of the Fog. In this thesis, we tackled part of these challenges,
namely the orchestration of IoT applications in the Fog environment. More specif-
ically, we have studied two main aspects of orchestration: the provisioning and
reconfiguration of multi-component IoT applications.

In a first step, we proposed FITOR, a new orchestration solution for IoT applications
in the Fog environment. Our goal was to create a realistic Fog-IoT environment,
on which we could run real IoT applications, while monitoring and collecting data
about applications and infrastructure. The collected data were used to analyze
and evaluate the proposed orchestration mechanisms. FITOR puts together several
open source tools and two test platforms: Grid’5000 and FIT/IoT-LAB. Moreover,
we have extended the Calvin IoT framework to remove the limitations that preclude
its use in a Fog environment.

In a second step, we addressed the provisioning problem of IoT applications in a
Fog computing platform. We put forward two novel strategies, O-FSP and GO-FSP,
which optimize the placement of IoT application components while meeting their
non-functional requirements. O-FSP is a greedy algorithm that incrementally builds
a valid solution by placing one component of the application at time. To avoid
sticking with invalid or bad solutions, several solutions are generated and the best
one, considering the provisioning cost, is selected. Extensive experiments show
that the O-FSP strategy makes the provisioning more effective and outperforms
classical strategies in terms of: i) acceptance rate, ii) provisioning cost, and iii)
resource usage.

We also propose a load aware provisioning strategy named GO-FSP. This novel
approach adopts the GRASP methodology to optimize the provisioning of Fog
services. GO-FSP iteratively improves the initial solutions of the problem generated
by O-FSP, considering multi-objective criteria: provisioning cost and infrastructure
load balance. By making use of the experimental environment available in FITOR,

171

we conducted extensive experiments to measure the effectiveness of our proposal.
The obtained results prove that GO-FSP achieves better performances compared
with O-FSP and classical strategies.

Finally, we have studied the reconfiguration of IoT applications in a Fog environ-
ment. To do so, we rely on a unified experimental framework which allowed us to
evaluate different reconfiguration strategies in a fair and realistic manner. We have
modeled our workload to reflect the main characteristics of an IoT application and
application performance was analyzed using three relevant metrics: end-to-end
delay, migrations and time above threshold.

Through an extensive set of experiments in two different scenarios, we have investi-
gated which factors impact the performance of twelve reconfiguration strategies,
based on both online scheduling and online learning paradigms. These two kinds
of strategies differ wildly in how they handle information and uncertainty: the first
ones assume faithful load information about applications and platform is avail-
able to build good placements while the former ones mostly rely on measured
end-to-end application performance.

None of the classical online learning strategies was able to obtain satisfying perfor-
mance, in particular because in our context, the numerous migrations required by
the exploration are prohibitive. Our in-depth analysis of these strategies allowed
us to mitigate this problem by designing a mildly informed and reactive learning
strategy. We have also observed that a greedy strategy, which uses load and applica-
tion information to recalculate a good placement when performance is unsatisfying,
could obtain an overall performance comparable to the one a fully clairvoyant
strategy, provided a minimal coordination between applications was implemented.
Surprisingly, this good performance remains even in a scenario with inaccurate
information. Our analysis shows that the surprising robustness of these informed
strategies stems from the fact that they can quickly filter out bad deployments.

15.2 Future Work

As any research work, this study has its limitations and extensions are possible. In
this section, we identify several important perspectives that could be studied in
future work.

172 Chapter 15 Conclusion and Future Work

Provisioning: metrics and fine-tuning

In the first part of this thesis, we studied the provisioning problem, proposing a
mathematical model and two algorithms to solve it. At first, it would be interesting
to compute the exact solution for the ILP model for small scale problem instances,
using the CPLEX solver for example. The main objective is to compare the results
with the proposed heuristics while emphasizing the decrease of the convergence
time achieved by our proposed approaches, especially for larger scenarios. Despite
the promising results we had in our experiments, this would give us a lower bound
on the performance of our algorithms.

Another interesting metric to be properly evaluated is the time required to place
an application. During our experiments, we did not notice a major performance
impact when placing applications. However, this effect can be relevant when the
algorithm runs on a low power device in the distributed Fog environment.

Finally, some parameters of our model must be fine-tuned to achieve the best
performance with shortest processing times. In particular, two parameters are
important here: N and ε (see Section 11.2). N dictates the number of solutions
generated for the problem. Consequently, higher numbers help to find better
solutions, but lead to high processing times. In its turn, ε controls the size of our
RCL, i.e. the list of possible nodes to place the application component. Again,
higher values increase the search space, and thus, the possibility of finding better
results.

Reconfiguration: metrics and fine-tuning

In the last part of this thesis, we looked at the reconfiguration problem, evaluating
various strategies for migrating applications. We used some evaluation metrics that
are usually relevant in the Fog (elapsed time, time above threshold and number
of migrations). Nevertheless, other metrics are possible, such as number total of
messages processed. In particular, the time needed to decide where to migrate
the application may be relevant in this context. In the same way that an elevated
number of migrations degrade the performance, a high decision time harms the
application’s performance if it is running on a faulty node.

Throughout Chapters 13 and 14, we saw several parameters that can influence the
performance of applications, either by changing the quality of available information
(e.g. monitoring interval), or the performance of a strategy (e.g. α for UCB). All of
these parameters can be adjusted to improve performance, but we would like to
highlight one parameter: Aj . This parameter is responsible for delimiting the nodes

15.2 Future Work 173

to which our learning algorithms have access. The search space can have a major
impact on performance and learning rate. Ideally, we would like to include as many
nodes as possible, within a reasonable learning rate. Although an adequate study is
needed to decide Aj , we believe that, given our initial results, adding more nodes
to Aj can be problematic for the learning rate.

Reconfiguration: horizontal scaling

An open perspective relates to the reconfiguration mechanism. The strategies we
studied so far rely solely on migration, but other alternatives are possible. For
example, in the context of cloud-native applications, horizontal scaling is widely
used, replicating application’s data and services in local data centers to improve
QoS [GBS17]. A study to determine how to scale the number of resources and
what is the optimal number of replicas for each application would thus be quite
instructive.

Reconfiguration: workload and churn

In the reconfiguration study, our applications evolve according to a 2-state Poisson
process, going from sleeping to 100% active immediately and remaining on average
300 seconds in each state. This leads to application behaviors which are quite hard
to predict. In future work, it would be interesting to see the behavior of the system
when mixing applications with different churn profiles, for example, fast vs. slow
state transitions or a smoother transition from sleeping to active states.

In Chapter 13, we saw how knowing these transitions can affect the performance
of a strategy (Totalitarian has this information). Moreover, in many cases, IoT
applications have their load impacted by human interaction. Therefore, an attrac-
tive perspective is to try to estimate the load required by applications, analyzing
historical information and/or user mobility. Similar works have been done in the
context of Cloud computing [LaC+14] and user mobility [CML11].

Scalability

The evaluation methodology is another challenging point that deserves a special
attention. Thanks to FITOR and the two experimental testbeds (Grid’5000 and
FIT/IoT-LAB), we were able to execute synthetic applications in our experiments
but only at a relatively limited scale. The lessons learned when building and
experimenting with this environment could be used to calibrate and design a

174 Chapter 15 Conclusion and Future Work

faithful simulation environment that would allow conducting realistic evaluations
in large-scale scenarios.

Fog environment

Scalability is an important factor for the Fog, but not the only. Other improvements
can be made in the Fog infrastructure. In this context, some of the characteristics of
the Fog environment, such as geographic distribution, mobility and heterogeneity
are underrepresented on our platform. Regarding the geo-distribution, nodes from
different sites in Grid’5000 could be used or different latency could be emulated
via software (e.g. Distem [Mad19]). Likewise, if the information about the Fog
infrastructure is available, heterogeneity can be emulated by restricting resources
on each machine, through Distem or Docker, for instance.

The support of mobility, on the other hand, is quite challenging. Indeed, FIT/IoT-
LAB has a limited mobility support through two robots that can move in a pre-
determined route. However, their restricted number and limited mobility makes
them unrepresentative of a real Fog infrastructure. Due to the complexity of the
subject, the use of simulation, along with real mobility traces from user, appears as
an interesting approach to cope with the mobility problem.

IoT applications

Finally, we also think that, different and more complex applications should be con-
sidered to gain more insights on the efficiency of provisioning and reconfiguration
strategies. In our scenario, we opted for a relatively simple workload, with a 3-tier
application that reflects the main characteristics of an IoT application. However, as
the IoT and the Fog evolve and mature, more complex scenarios, possibly involving
mobility and complex quality of service requirements, should be envisioned.

15.2 Future Work 175

Bibliography

[ACF02] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. “Finite-time Analysis of the
Multiarmed Bandit Problem”. In: Machine Learning 47 (May 2002), pp. 235–256
(cit. on pp. 131, 145).

[Adj+15] C. Adjih, E. Baccelli, E. Fleury, et al. “FIT IoT-LAB: A large scale open exper-
imental IoT testbed”. In: IEEE World Forum on Internet of Things. Dec. 2015,
pp. 459–464 (cit. on p. 75).

[AH15a] M. Aazam and E. Huh. “Dynamic resource provisioning through Fog micro
datacenter”. In: 2015 IEEE International Conference on Pervasive Computing and
Communication Workshops (PerCom Workshops). Mar. 2015, pp. 105–110 (cit. on
pp. 39, 43).

[AH15b] M. Aazam and E. Huh. “Fog Computing Micro Datacenter Based Dynamic
Resource Estimation and Pricing Model for IoT”. In: 2015 IEEE 29th Interna-
tional Conference on Advanced Information Networking and Applications. Mar. 2015,
pp. 687–694 (cit. on pp. 39, 43).

[Ait+19] F. Ait Salaht, F. Desprez, A. Lebre, C. Prud’homme, and M. Abderrahim. “Ser-
vice Placement in Fog Computing Using Constraint Programming”. In: 2019
IEEE International Conference on Services Computing (SCC). 2019, pp. 19–27 (cit. on
pp. 40, 45, 128).

[AOL19] E. Ahvar, A. Orgerie, and A. Lébre. “Estimating Energy Consumption of Cloud,
Fog and Edge Computing Infrastructures”. In: IEEE Transactions on Sustainable
Computing (2019), pp. 1–1 (cit. on p. 13).

[AP17] Ola Angelsmark and Per Persson. “Requirement-Based Deployment of Appli-
cations in Calvin”. In: Interoperability and Open-Source Solutions for the Internet
of Things: Second International Workshop, InterOSS-IoT 2016, Held in Conjunction
with IoT 2016, Stuttgart, Germany, November 7, 2016, Invited Papers. Ed. by Ivana
Podnar Žarko, Arne Broering, Sergios Soursos, and Martin Serrano. Cham:
Springer International Publishing, 2017, pp. 72–87 (cit. on p. 65).

[AR95] Thomas A. Feo and Mauricio Resende. “Greedy Randomized Adaptive Search
Procedures”. In: 6 (Mar. 1995), pp. 109–133 (cit. on p. 112).

[ATT17] AT&TLabs and AT&T Foundry. AT&T Edge Cloud(AEC) - White Paper. Tech. rep.
2017 (cit. on p. 47).

[Aue+02] Peter Auer, Nicolò Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. “The
Nonstochastic Multiarmed Bandit Problem”. In: SIAM Journal on Computing
32.1 (2002), pp. 48–77 (cit. on pp. 131, 146).

177

[Aue+95] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. “Gambling in a rigged
casino: The adversarial multi-armed bandit problem”. In: Proceedings of IEEE
36th Annual Foundations of Computer Science. 1995, pp. 322–331 (cit. on p. 147).

[AV16] M. A. Al Faruque and K. Vatanparvar. “Energy Management-as-a-Service Over
Fog Computing Platform”. In: IEEE Internet of Things Journal 3.2 (Apr. 2016),
pp. 161–169 (cit. on p. 20).

[Azz+14] A. Azzarà, D. Alessandrelli, S. Bocchino, M. Petracca, and P. Pagano. “PyoT, a
macroprogramming framework for the Internet of Things”. In: Proceedings of
the 9th IEEE International Symposium on Industrial Embedded Systems (SIES 2014).
2014, pp. 96–103 (cit. on p. 59).

[Bal+13] Daniel Balouek, Alexandra Carpen Amarie, Ghislain Charrier, et al. “Adding
Virtualization Capabilities to the Grid’5000 Testbed”. In: Cloud Computing and
Services Science. Ed. by Ivan I. Ivanov, Marten van Sinderen, Frank Leymann,
and Tony Shan. Vol. 367. Communications in Computer and Information Sci-
ence. Springer International Publishing, 2013, pp. 3–20 (cit. on p. 75).

[BCM98] Michael A. Bender, Soumen Chakrabarti, and S. Muthukrishnan. “Flow and
stretch metrics for scheduling continuous job streams”. English (US). In: Pro-
ceedings of the 1998 9th Annual ACM SIAM Symposium on Discrete Algo-
rithms ; Conference date: 25-01-1998 Through 27-01-1998. Dec. 1998, pp. 270–
279 (cit. on pp. 127, 128).

[Bel+18] Elena Veronica Belmega, Panayotis Mertikopoulos, Romain Negrel, and Luca
Sanguinetti. “Online convex optimization and no-regret learning: Algorithms,
guarantees and applications”. In: CoRR abs/1804.04529 (2018). arXiv: 1804.
04529 (cit. on p. 141).

[BF17] A. Brogi and S. Forti. “QoS-Aware Deployment of IoT Applications Through
the Fog”. In: IEEE Internet of Things Journal 4.5 (Oct. 2017), pp. 1185–1192 (cit. on
pp. 39, 44).

[BG17] Tayebeh Bahreini and Daniel Grosu. “Efficient Placement of Multi-component
Applications in Edge Computing Systems”. In: Proceedings of the Second ACM/IEEE
Symposium on Edge Computing. SEC ’17. San Jose, California: ACM, 2017, 5:1–
5:11 (cit. on pp. 38, 42).

[BGT16] B. Butzin, F. Golatowski, and D. Timmermann. “Microservices approach for
the internet of things”. In: 2016 IEEE 21st International Conference on Emerging
Technologies and Factory Automation (ETFA). Sept. 2016, pp. 1–6 (cit. on p. 48).

[Bon+12] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. “Fog Com-
puting and Its Role in the Internet of Things”. In: Proceedings of the First Edition
of the MCC Workshop on Mobile Cloud Computing. Helsinki, Finland: ACM, 2012,
pp. 13–16 (cit. on pp. 3, 9).

[Bon+14] Flavio Bonomi, Rodolfo Milito, Preethi Natarajan, and Jiang Zhu. “Fog Comput-
ing: A Platform for Internet of Things and Analytics”. In: Big Data and Internet of
Things: A Roadmap for Smart Environments. Ed. by Nik Bessis and Ciprian Dobre.
Cham: Springer International Publishing, 2014, pp. 169–186 (cit. on p. 20).

178 Appendix Bibliography

http://arxiv.org/abs/1804.04529
http://arxiv.org/abs/1804.04529

[Bri+17] M. S. de Brito, S. Hoque, T. Magedanz, et al. “A service orchestration architec-
ture for Fog-enabled infrastructures”. In: 2017 Second International Conference on
Fog and Mobile Edge Computing (FMEC). May 2017, pp. 127–132 (cit. on pp. 30,
31, 33).

[Brz+16] R. Brzoza-Woch, M. Konieczny, P. Nawrocki, T. Szydlo, and K. Zielinski. “Em-
bedded systems in the application of fog computing — Levee monitoring use
case”. In: 2016 11th IEEE Symposium on Industrial Embedded Systems (SIES). May
2016, pp. 1–6 (cit. on p. 17).

[BS15] H. P. Breivold and K. Sandström. “Internet of Things for Industrial Automation
– Challenges and Technical Solutions”. In: 2015 IEEE International Conference on
Data Science and Data Intensive Systems. Dec. 2015, pp. 532–539 (cit. on p. 18).

[CDS13] Nicolò Cesa-Bianchi, Ofer Dekel, and Ohad Shamir. “Online Learning with
Switching Costs and Other Adaptive Adversaries”. In: Proceedings of the 26th
International Conference on Neural Information Processing Systems - Volume 1.
NIPS’13. Lake Tahoe, Nevada: Curran Associates Inc., 2013, pp. 1160–1168
(cit. on p. 146).

[CG19] T. Chen and G. B. Giannakis. “Bandit Convex Optimization for Scalable and
Dynamic IoT Management”. In: IEEE Internet of Things Journal 6.1 (Feb. 2019),
pp. 1276–1286 (cit. on pp. 40, 45, 132).

[Cha+16] S. Chauhan, P. Patel, A. Sureka, F. C. Delicato, and S. Chaudhary. “Demonstra-
tion Abstract: IoTSuite - A Framework to Design, Implement, and Deploy IoT
Applications”. In: 2016 15th ACM/IEEE International Conference on Information
Processing in Sensor Networks (IPSN). 2016, pp. 1–2 (cit. on p. 59).

[CML11] Eunjoon Cho, Seth A. Myers, and Jure Leskovec. “Friendship and Mobility:
User Movement in Location-Based Social Networks”. In: Proceedings of the 17th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
KDD ’11. San Diego, California, USA: Association for Computing Machinery,
2011, pp. 1082–1090 (cit. on p. 174).

[Con17] OpenFog Consortium. OpenFog Reference Architecture for Fog Computing. eng.
2017 (cit. on p. 13).

[Cor+09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Third Edition. 3rd. The MIT Press, 2009. Chap. 16
(cit. on p. 101).

[Den+15] R. Deng, R. Lu, C. Lai, and T. H. Luan. “Towards power consumption-delay
tradeoff by workload allocation in cloud-fog computing”. In: 2015 IEEE Inter-
national Conference on Communications (ICC). June 2015, pp. 3909–3914 (cit. on
pp. 31, 32).

[Den+16] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang. “Optimal Workload Allocation
in Fog-Cloud Computing Toward Balanced Delay and Power Consumption”.
In: IEEE Internet of Things Journal 3.6 (Dec. 2016), pp. 1171–1181 (cit. on pp. 31,
32, 38, 42).

[Diz+19] Jasenka Dizdareviundefined, Francisco Carpio, Admela Jukan, and Xavi Masip-
Bruin. “A Survey of Communication Protocols for Internet of Things and
Related Challenges of Fog and Cloud Computing Integration”. In: ACM Comput.
Surv. 51.6 (Jan. 2019) (cit. on p. 48).

179

[Dro09] Maciej Drozdowski. “Scheduling for Parallel Processing”. In: 1st. Springer
Publishing Company, 2009. Chap. 5 (cit. on p. 127).

[ElS+18] H. El-Sayed, S. Sankar, M. Prasad, et al. “Edge of Things: The Big Picture
on the Integration of Edge, IoT and the Cloud in a Distributed Computing
Environment”. In: IEEE Access 6 (2018), pp. 1706–1717 (cit. on p. 24).

[Eva12] David Evans. The Internet of Everything: How More Relevant and Valuable Connec-
tions Will Change the World. Cisco Internet Business Solutions Group (IBSG). 2012
(cit. on p. 1).

[Fan+12] X. Fang, S. Misra, G. Xue, and D. Yang. “Smart Grid — The New and Improved
Power Grid: A Survey”. In: IEEE Communications Surveys Tutorials 14.4 (Fourth
2012), pp. 944–980 (cit. on p. 20).

[Fan+17] Weidong Fang, Wuxiong Zhang, Jinchao Xiao, Yang Yang, and Wei Chen. “A
Source Anonymity-Based Lightweight Secure AODV Protocol for Fog-Based
MANET”. In: Sensors 17.6 (2017) (cit. on p. 24).

[FR95] Thomas A. Feo and Mauricio G. C. Resende. “Greedy Randomized Adaptive
Search Procedures”. In: Journal of Global Optimization 6.2 (Mar. 1995), pp. 109–
133 (cit. on p. 93).

[Fre20] Fredrik Jejdling et al. Ericsson Mobility Report. Tech. rep. June 2020 (cit. on p. 2).

[GBS17] D. Gannon, R. Barga, and N. Sundaresan. “Cloud-Native Applications”. In:
IEEE Cloud Computing 4.5 (2017), pp. 16–21 (cit. on p. 174).

[Gha+17] A. Gharaibeh, M. A. Salahuddin, S. J. Hussini, et al. “Smart Cities: A Survey
on Data Management, Security, and Enabling Technologies”. In: IEEE Com-
munications Surveys Tutorials 19.4 (Fourthquarter 2017), pp. 2456–2501 (cit. on
p. 17).

[Gia+15] Nam Ky Giang, Michael Blackstock, Rodger Lea, and Victor C. M. Leung.
“Developing IoT applications in the Fog: A Distributed Dataflow approach”. In:
5th International Conference on the Internet of Things, IOT 2015, Seoul, South Korea,
26-28 October, 2015. 2015, pp. 155–162 (cit. on pp. 12, 39, 43, 59).

[Gra+79] R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G.Rinnooy Kan. “Optimization
and Approximation in Deterministic Sequencing and Scheduling: a Survey”.
In: Discrete Optimization II. Ed. by P.L. Hammer, E.L. Johnson, and B.H. Korte.
Vol. 5. Annals of Discrete Mathematics. Elsevier, 1979, pp. 287–326 (cit. on
p. 127).

[Gu+17] L. Gu, D. Zeng, S. Guo, A. Barnawi, and Y. Xiang. “Cost Efficient Resource
Management in Fog Computing Supported Medical Cyber-Physical System”.
In: IEEE Transactions on Emerging Topics in Computing 5.1 (Jan. 2017), pp. 108–119
(cit. on pp. 39, 44).

[GVS16] R. Geissbauer, J. Vedso, and S. Schrauf. “Industry 4.0: Building the digital
enterprise”. In: PwC 2016 Global Industry 4.0 Survey (2016) (cit. on p. 18).

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger. “Session 8 formalisms for artifi-
cial intelligence a universal modular actor formalism for artificial intelligence”.
In: Advance Papers of the Conference. Vol. 3. Stanford Research Institute. 1973,
p. 235 (cit. on p. 61).

180 Appendix Bibliography

[Hew10] Carl Hewitt. Actor Model of Computation: Scalable Robust Information Systems.
2010. arXiv: 1008.1459 [cs.PL] (cit. on pp. 55, 61).

[HGW09] X. Huang, S. Ganapathy, and T. Wolf. “Evaluating Algorithms for Compos-
able Service Placement in Computer Networks”. In: 2009 IEEE International
Conference on Communications. June 2009, pp. 1–6 (cit. on p. 99).

[HL09] Hannes Hartenstein and Kenneth Laberteaux. VANET: Vehicular Applications
and Inter-Networking Technologies. Jan. 2009, pp. 1–435 (cit. on p. 19).

[Hon+13] Kirak Hong, David J. Lillethun, Umakishore Ramachandran, Beate Ottenwälder,
and Boris Koldehofe. “Mobile fog: a programming model for large-scale appli-
cations on the internet of things”. In: MCC@SIGCOMM. 2013 (cit. on pp. 30, 31,
34).

[Hon+17] H. Hong, P. Tsai, A. Cheng, et al. “Supporting Internet-of-Things Analytics in
a Fog Computing Platform”. In: 2017 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom). Dec. 2017, pp. 138–145 (cit. on
pp. 38, 42).

[Hou+16a] X. Hou, Y. Li, M. Chen, et al. “Vehicular Fog Computing: A Viewpoint of
Vehicles as the Infrastructures”. In: IEEE Transactions on Vehicular Technology
65.6 (June 2016), pp. 3860–3873 (cit. on pp. 31, 34).

[Hou+16b] Xueshi Hou, Yong Li, Min Chen, et al. “Vehicular Fog Computing: A Viewpoint
of Vehicles as the Infrastructures”. In: IEEE Trans. Vehicular Technology 65.6
(2016), pp. 3860–3873 (cit. on p. 11).

[IEE18] IEEE. IEEE Std 1934-2018: IEEE Standard for Adoption of OpenFog Reference Archi-
tecture for Fog Computing. eng. 2018 (cit. on p. 15).

[Ior+18] M. Iorga, L. Feldman, R. Barton, et al. Fog Computing Conceptual Model. Tech. rep.
SP 500-325. Gaithersburg, MD, United States: National Institute of Standards
and Technology (NIST), Mar. 2018 (cit. on pp. 9, 15).

[ITU17] ITU-R Radiocommunication Sector of ITU. Minimum requirements related to
technical performancefor IMT-2020 radiointerface(s). Technical Report. Sophia An-
tipolis - FR: ITU - International Telecomunication Union, Nov. 2017 (cit. on
p. 2).

[Jal+16] F. Jalali, K. Hinton, R. Ayre, T. Alpcan, and R. S. Tucker. “Fog Computing May
Help to Save Energy in Cloud Computing”. In: IEEE Journal on Selected Areas in
Communications 34.5 (May 2016), pp. 1728–1739 (cit. on p. 13).

[Jaz14] N. Jazdi. “Cyber physical systems in the context of Industry 4.0”. In: 2014 IEEE
International Conference on Automation, Quality and Testing, Robotics. May 2014,
pp. 1–4 (cit. on p. 18).

[JHT18] Y. Jiang, Z. Huang, and D. H. K. Tsang. “Challenges and Solutions in Fog
Computing Orchestration”. In: IEEE Network 32.3 (May 2018), pp. 122–129 (cit.
on p. 4).

[JRL08] Narendra Jussien, Guillaume Rochart, and Xavier Lorca. “Choco: an Open
Source Java Constraint Programming Library”. In: CPAIOR’08 Workshop on
Open-Source Software for Integer and Contraint Programming (OSSICP’08). Paris,
France, France, 2008, pp. 1–10 (cit. on p. 45).

181

http://arxiv.org/abs/1008.1459

[Kap+17] A. Kapsalis, P. Kasnesis, I. S. Venieris, D. I. Kaklamani, and C. Z. Patrikakis. “A
Cooperative Fog Approach for Effective Workload Balancing”. In: IEEE Cloud
Computing 4.2 (Mar. 2017), pp. 36–45 (cit. on pp. 31, 33).

[KC03] J. O. Kephart and D. M. Chess. “The vision of autonomic computing”. In:
Computer 36.1 (Jan. 2003), pp. 41–50 (cit. on p. 21).

[KCT16] Kang Kai, Wang Cong, and Luo Tao. “Fog computing for vehicular Ad-hoc
networks: paradigms, scenarios, and issues”. In: The Journal of China Universities
of Posts and Telecommunications 23.2 (2016), pp. 56–96 (cit. on pp. 19, 24).

[KDB15] F. Khodadadi, A. V. Dastjerdi, and R. Buyya. “Simurgh: A framework for effec-
tive discovery, programming, and integration of services exposed in IoT”. In:
2015 International Conference on Recent Advances in Internet of Things (RIoT). 2015,
pp. 1–6 (cit. on p. 59).

[KKL13] Thorsten Kramp, Rob van Kranenburg, and Sebastian Lange. “Introduction
to the Internet of Things”. In: Enabling Things to Talk: Designing IoT solutions
with the IoT Architectural Reference Model. Ed. by Alessandro Bassi, Martin Bauer,
Martin Fiedler, et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 1–
10 (cit. on p. 1).

[KL14] J. Kim and J. Lee. “OpenIoT: An open service framework for the Internet of
Things”. In: 2014 IEEE World Forum on Internet of Things (WF-IoT). 2014, pp. 89–
93 (cit. on p. 59).

[KS18] Minhaj Ahmad Khan and Khaled Salah. “IoT security: Review, blockchain
solutions, and open challenges”. In: Future Generation Computer Systems 82
(2018), pp. 395–411 (cit. on p. 25).

[LaC+14] Katrina LaCurts, Jeffrey C. Mogul, Hari Balakrishnan, and Yoshio Turner. “Ci-
cada: Introducing Predictive Guarantees for Cloud Networks”. In: 6th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 14). Philadelphia, PA:
USENIX Association, June 2014 (cit. on p. 174).

[LSV08] Arnaud Legrand, Alan Su, and Frédéric Vivien. “Minimizing the stretch when
scheduling flows of divisible requests”. In: Journal of Scheduling 11.5 (2008),
pp. 381–404 (cit. on p. 128).

[Man+17] Simone Mangiante, Guenter Klas, Amit Navon, et al. “VR is on the Edge: How
to Deliver 360° Videos in Mobile Networks”. In: Proceedings of the Workshop on
Virtual Reality and Augmented Reality Network. VR/AR Network ’17. Los Angeles,
CA, USA: Association for Computing Machinery, 2017, pp. 30–35 (cit. on p. 2).

[Mas+16] X. Masip-Bruin, E. Marín-Tordera, G. Tashakor, A. Jukan, and G. Ren. “Foggy
clouds and cloudy fogs: a real need for coordinated management of fog-to-
cloud computing systems”. In: IEEE Wireless Communications 23.5 (Oct. 2016),
pp. 120–128 (cit. on pp. 31, 32).

[Mou+18] C. Mouradian, D. Naboulsi, S. Yangui, et al. “A Comprehensive Survey on Fog
Computing: State-of-the-Art and Research Challenges”. In: IEEE Communica-
tions Surveys Tutorials 20.1 (Firstquarter 2018), pp. 416–464 (cit. on p. 22).

[MSW18] M. Mukherjee, L. Shu, and D. Wang. “Survey of Fog Computing: Fundamental,
Network Applications, and Research Challenges”. In: IEEE Communications
Surveys Tutorials 20.3 (thirdquarter 2018), pp. 1826–1857 (cit. on p. 22).

182 Appendix Bibliography

[Nah+18] R. K. Naha, S. Garg, D. Georgakopoulos, et al. “Fog Computing: Survey of
Trends, Architectures, Requirements, and Research Directions”. In: IEEE Access
6 (2018), pp. 47980–48009 (cit. on p. 22).

[Nas+13] S. Nastic, S. Sehic, M. Vögler, H. Truong, and S. Dustdar. “PatRICIA – A Novel
Programming Model for IoT Applications on Cloud Platforms”. In: 2013 IEEE
6th International Conference on Service-Oriented Computing and Applications. 2013,
pp. 53–60 (cit. on p. 59).

[NHE14] I. Nakagawa, M. Hiji, and H. Esaki. “Dripcast – Server-less Java Programming
Framework for Billions of IoT Devices”. In: 2014 IEEE 38th International Com-
puter Software and Applications Conference Workshops. 2014, pp. 186–191 (cit. on
p. 59).

[Nis+13] Takayuki Nishio, Ryoichi Shinkuma, Tatsuro Takahashi, and Narayan B. Man-
dayam. “Service-oriented Heterogeneous Resource Sharing for Optimizing
Service Latency in Mobile Cloud”. In: Proceedings of the First International Work-
shop on Mobile Cloud Computing & Networking. MobileCloud ’13. Bangalore,
India: ACM, 2013, pp. 19–26 (cit. on pp. 39, 43).

[OO16] F. Y. Okay and S. Ozdemir. “A fog computing based smart grid model”. In: 2016
International Symposium on Networks, Computers and Communications (ISNCC).
May 2016, pp. 1–6 (cit. on p. 20).

[Ord+14] Juan Luis Pérez Ordóñez, Álvaro Villalba, David Carrera, Iker Larizgoitia,
and Vlad Trifa. “The COMPOSE API for the internet of things”. In: WWW ’14
Companion. 2014 (cit. on p. 59).

[OSB15] J. Oueis, E. C. Strinati, and S. Barbarossa. “The Fog Balancing: Load Distribu-
tion for Small Cell Cloud Computing”. In: 2015 IEEE 81st Vehicular Technology
Conference (VTC Spring). May 2015, pp. 1–6 (cit. on pp. 39, 44).

[Ott+13] Beate Ottenwälder, Boris Koldehofe, Kurt Rothermel, and Umakishore Ra-
machandran. “MigCEP: Operator Migration for Mobility Driven Distributed
Complex Event Processing”. In: Proceedings of the 7th ACM International Confer-
ence on Distributed Event-based Systems. DEBS ’13. Arlington, Texas, USA: ACM,
2013, pp. 183–194 (cit. on pp. 39, 44).

[PA15] Per Persson and Ola Angelsmark. “Calvin – Merging Cloud and IoT”. In: Proce-
dia Computer Science 52 (2015). The 6th International Conference on Ambient
Systems, Networks and Technologies (ANT-2015), the 5th International Confer-
ence on Sustainable Energy Information Technology (SEIT-2015), pp. 210–217
(cit. on pp. 59, 60, 62).

[Per+17] Charith Perera, Yongrui Qin, Julio C. Estrella, Stephan Reiff-Marganiec, and
Athanasios V. Vasilakos. “Fog Computing for Sustainable Smart Cities: A Sur-
vey”. In: ACM Comput. Surv. 50.3 (June 2017), 32:1–32:43 (cit. on pp. 17, 18).

[Pul+19] Carlo Puliafito, Enzo Mingozzi, Francesco Longo, Antonio Puliafito, and Omer
Rana. “Fog Computing for the Internet of Things: A Survey”. In: ACM Trans.
Internet Technol. 19.2 (Apr. 2019), 18:1–18:41 (cit. on pp. 18, 22).

[Rah+18] Amir M. Rahmani, Tuan Nguyen Gia, Behailu Negash, et al. “Exploiting smart e-
Health gateways at the edge of healthcare Internet-of-Things: A fog computing
approach”. In: Future Generation Computer Systems 78 (2018), pp. 641–658 (cit. on
pp. 31, 35).

183

[SA16] X. Sun and N. Ansari. “EdgeIoT: Mobile Edge Computing for the Internet of
Things”. In: IEEE Communications Magazine 54.12 (Dec. 2016), pp. 22–29 (cit. on
pp. 30, 31, 129).

[Sau+16] Enrique Saurez, Kirak Hong, Dave Lillethun, Umakishore Ramachandran, and
Beate Ottenwälder. “Incremental Deployment and Migration of Geo-distributed
Situation Awareness Applications in the Fog”. In: Proceedings of the 10th ACM
International Conference on Distributed and Event-based Systems. DEBS ’16. Irvine,
California: ACM, 2016, pp. 258–269 (cit. on pp. 30, 31, 34, 38, 42, 129).

[Sch+12] Eric Schulte, Dan Davison, Thomas Dye, and Carsten Dominik. “A Multi-
Language Computing Environment for Literate Programming and Repro-
ducible Research”. In: Journal of Statistical Software, Articles 46.3 (2012), pp. 1–24
(cit. on p. 87).

[Sch+17] P. Schulz, M. Matthe, H. Klessig, et al. “Latency Critical IoT Applications in 5G:
Perspective on the Design of Radio Interface and Network Architecture”. In:
IEEE Communications Magazine 55.2 (Feb. 2017), pp. 70–78 (cit. on pp. 2, 20).

[SCM18] S. Sarkar, S. Chatterjee, and S. Misra. “Assessment of the Suitability of Fog
Computing in the Context of Internet of Things”. In: IEEE Transactions on Cloud
Computing 6.1 (Jan. 2018), pp. 46–59 (cit. on pp. 31, 32).

[Ska+17a] O. Skarlat, M. Nardelli, S. Schulte, and S. Dustdar. “Towards QoS-Aware Fog
Service Placement”. In: 2017 IEEE 1st International Conference on Fog and Edge
Computing (ICFEC). May 2017, pp. 89–96 (cit. on pp. 38, 41, 128).

[Ska+17b] Olena Skarlat, Matteo Nardelli, Stefan Schulte, Michael Borkowski, and Philipp
Leitner. “Optimized IoT service placement in the fog”. In: Service Oriented
Computing and Applications 11.4 (Dec. 2017), pp. 427–443 (cit. on pp. 38, 41, 128).

[SM16] S. Sarkar and S. Misra. “Theoretical modelling of fog computing: a green com-
puting paradigm to support IoT applications”. In: IET Networks 5.2 (2016),
pp. 23–29 (cit. on pp. 31, 32).

[SWW95] David B. Shmoys, Joel Wein, and David P. Williamson. “Scheduling Parallel
Machines On-Line”. In: SIAM Journal of Computing 24.6 (1995), pp. 1313–1331
(cit. on p. 127).

[Sys09] ETSI Technical Committee Intelligent Transport System. Intelligent Transport
Systems (ITS); Vehicular Communications; Basic Set of Applications; Definitions.
Technical Report. Sophia Antipolis - FR: ETSI - European Telecommunications
Standards Institute, June 2009 (cit. on p. 19).

[Sys18] ETSI Technical Committee Intelligent Transport System. Intelligent Transport
Systems (ITS); Vehicular Communications; Basic Set of Applications; Facilities layer
protocols and communication requirements for infrastructure services. Technical
Specification. Sophia Antipolis - FR: ETSI - European Telecommunications
Standards Institute, Aug. 2018 (cit. on p. 19).

[Tal+20] T. Taleb, R.L. Aguiar, I. Grida Ben Yahia, et al. WHITE PAPER ON 6G NET-
WORKING. und. 2020 (cit. on p. 3).

184 Appendix Bibliography

[Tan+15] Bo Tang, Zhen Chen, Gerald Hefferman, et al. “A Hierarchical Distributed Fog
Computing Architecture for Big Data Analysis in Smart Cities”. In: Proceedings
of the ASE BigData & SocialInformatics 2015. ASE BD&SI ’15. Kaohsiung,
Taiwan: ACM, 2015, 28:1–28:6 (cit. on pp. 31, 32).

[Tan+17] B. Tang, Z. Chen, G. Hefferman, et al. “Incorporating Intelligence in Fog Com-
puting for Big Data Analysis in Smart Cities”. In: IEEE Transactions on Industrial
Informatics 13.5 (Oct. 2017), pp. 2140–2150 (cit. on pp. 17, 31, 32).

[TLG16] L. Tong, Y. Li, and W. Gao. “A hierarchical edge cloud architecture for mobile
computing”. In: IEEE INFOCOM 2016 - The 35th Annual IEEE International
Conference on Computer Communications. Apr. 2016, pp. 1–9 (cit. on pp. 30, 31, 40,
45).

[Tom+17] Slavica Tomovic, Kenji Yoshigoe, Ivo Maljevic, and Igor Radusinovic. “Software-
Defined Fog Network Architecture for IoT”. In: Wireless Personal Communications
92.1 (Jan. 2017), pp. 181–196 (cit. on pp. 31, 34).

[VR14] Luis M. Vaquero and Luis Rodero-Merino. “Finding Your Way in the Fog: To-
wards a Comprehensive Definition of Fog Computing”. In: SIGCOMM Comput.
Commun. Rev. 44.5 (Oct. 2014), pp. 27–32 (cit. on pp. 9, 22).

[Wan+17] S. Wang, R. Urgaonkar, T. He, et al. “Dynamic Service Placement for Mobile
Micro-Clouds with Predicted Future Costs”. In: IEEE Transactions on Parallel and
Distributed Systems 28.4 (Apr. 2017), pp. 1002–1016 (cit. on p. 128).

[Wan+18] N. Wang, B. Varghese, M. Matthaiou, and D. S. Nikolopoulos. “ENORM: A
Framework For Edge NOde Resource Management”. In: IEEE Transactions on
Services Computing (2018), pp. 1–1 (cit. on pp. 30, 31, 34, 129).

[Wen+17] Z. Wen, R. Yang, P. Garraghan, et al. “Fog Orchestration for Internet of Things
Services”. In: IEEE Internet Computing 21.2 (Mar. 2017), pp. 16–24 (cit. on pp. 31,
34).

[Xia+18] Ye Xia, Xavier Etchevers, Loïc Letondeur, Thierry Coupaye, and Frédéric De-
sprez. “Combining Hardware Nodes and Software Components Ordering-
based Heuristics for Optimizing the Placement of Distributed IoT Applications
in the Fog”. In: Proceedings of the 33rd Annual ACM Symposium on Applied Com-
puting. SAC ’18. Pau, France: ACM, 2018, pp. 751–760 (cit. on pp. 38, 41).

[Xio+18] Y. Xiong, Y. Sun, L. Xing, and Y. Huang. “Extend Cloud to Edge with KubeEdge”.
In: 2018 IEEE/ACM Symposium on Edge Computing (SEC). 2018, pp. 373–377 (cit.
on pp. 31, 35).

[Xu+18] W. Xu, H. Zhou, N. Cheng, et al. “Internet of vehicles in big data era”. In:
IEEE/CAA Journal of Automatica Sinica 5.1 (Jan. 2018), pp. 19–35 (cit. on p. 11).

[Yan+16] S. Yangui, P. Ravindran, O. Bibani, et al. “A platform as-a-service for hybrid
cloud/fog environments”. In: 2016 IEEE International Symposium on Local and
Metropolitan Area Networks (LANMAN). June 2016, pp. 1–7 (cit. on pp. 30, 31,
33).

[Yan+17] M. Yannuzzi, R. Irons-Mclean, F. van Lingen, et al. “Toward a converged Open-
Fog and ETSI MANO architecture”. In: 2017 IEEE Fog World Congress (FWC).
Oct. 2017, pp. 1–6 (cit. on pp. 31, 33).

185

[Yi+15] S. Yi, Z. Hao, Z. Qin, and Q. Li. “Fog Computing: Platform and Applications”.
In: 2015 Third IEEE Workshop on Hot Topics in Web Systems and Technologies
(HotWeb). Nov. 2015, pp. 73–78 (cit. on pp. 30, 31).

[YLL15] Shanhe Yi, Cheng Li, and Qun Li. “A Survey of Fog Computing: Concepts,
Applications and Issues”. In: Proceedings of the 2015 Workshop on Mobile Big Data.
Mobidata ’15. Hangzhou, China: ACM, 2015, pp. 37–42 (cit. on p. 2).

[You+18] Ashkan Yousefpour, Ashish Patil, Genya Ishigaki, et al. “QoS-aware Dynamic
Fog Service Provisioning”. In: CoRR abs/1802.00800 (2018). arXiv: 1802.00800
(cit. on pp. 38, 41, 128).

[You09] H. Peyton Young. “Learning by trial and error”. In: Games and Economic Behavior
65.2 (2009), pp. 626–643 (cit. on p. 149).

[YQL15] Shanhe Yi, Zhengrui Qin, and Qun Li. “Security and Privacy Issues of Fog
Computing: A Survey”. In: Wireless Algorithms, Systems, and Applications. Ed.
by Kuai Xu and Haojin Zhu. Cham: Springer International Publishing, 2015,
pp. 685–695 (cit. on p. 25).

[Zen+16] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu. “Joint Optimization of Task Schedul-
ing and Image Placement in Fog Computing Supported Software-Defined Em-
bedded System”. In: IEEE Transactions on Computers 65.12 (Dec. 2016), pp. 3702–
3712 (cit. on pp. 39, 43).

[Zha+19] Z. Zhang, Y. Xiao, Z. Ma, et al. “6G Wireless Networks: Vision, Requirements,
Architecture, and Key Technologies”. In: IEEE Vehicular Technology Magazine
14.3 (2019), pp. 28–41 (cit. on p. 3).

Webpages

[Ard] Arduino. Arduino Products. URL: https://www.arduino.cc/en/Main/Products
(visited on July 23, 2020) (cit. on p. 22).

[Coc05] Alistair Cockburn. Hexagonal architecture. Jan. 2005. URL: https://alistair.cockburn.
us/hexagonal-architecture/ (visited on June 14, 2020) (cit. on p. 48).

[Dme20] Anasia D’mello. Global IoT market to grow to $1.5trn annual revenue by 2030. May
2020. URL: https://www.iot-now.com/2020/05/20/102937-global-iot-market-to-
grow-to-1-5trn-annual-revenue-by-2030/ (visited on June 19, 2020) (cit. on p. 1).

[FIT] FIT/IoT-LAB. FIT/IoT-LAB: What is IoT-LAB? URL: https://www.iot-lab.info/what-
is-iot-lab/ (visited on June 2, 2020) (cit. on p. 75).

[Fow15] Martin Fowler. Microservice Trade-Offs. July 2015. URL: https://martinfowler.com/
articles/microservice-trade-offs.html (visited on June 12, 2020) (cit. on pp. 48,
50).

[Gri] Grid’5000. Grid’5000: Hardware. URL: https:/ /www.grid5000.fr /w/Hardware
(visited on June 2, 2020) (cit. on p. 75).

[IEA20] IEA. Global Energy Review 2019. Apr. 2020. URL: https://www.iea.org/reports/
global-energy-review-2019 (visited on June 5, 2020) (cit. on p. 20).

186 Appendix Bibliography

http://arxiv.org/abs/1802.00800
https://www.arduino.cc/en/Main/Products
https://alistair.cockburn.us/hexagonal-architecture/
https://alistair.cockburn.us/hexagonal-architecture/
https://www.iot-now.com/2020/05/20/102937-global-iot-market-to-grow-to-1-5trn-annual-revenue-by-2030/
https://www.iot-now.com/2020/05/20/102937-global-iot-market-to-grow-to-1-5trn-annual-revenue-by-2030/
https://www.iot-lab.info/what-is-iot-lab/
https://www.iot-lab.info/what-is-iot-lab/
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://www.grid5000.fr/w/Hardware
https://www.iea.org/reports/global-energy-review-2019
https://www.iea.org/reports/global-energy-review-2019

[JS 13] JS Foundation. Node-RED - Low-code programming for event-driven applications.
Sept. 2013. URL: https://nodered.org/ (visited on July 25, 2020) (cit. on p. 43).

[Mad19] Madynes team - LORIA. DISTEM - DISTributed systems EMulator. Mar. 2019.
URL: http://distem.gforge.inria.fr/index.html (visited on June 25, 2020) (cit. on
p. 175).

[Pet20] Christo Petrov. 47 Stunning Internet of Things Statistics 2020 [The Rise Of IoT].
June 2020. URL: https://techjury.net/blog/internet-of-things-statistics (visited on
July 7, 2020) (cit. on p. 1).

[Ran] Rancher. K3s: Lightweight Kubernetes. URL: https://k3s.io/ (visited on Feb. 27,
2020) (cit. on pp. 30, 31, 35, 129, 130).

[Ras] Raspberry Pi Foundation. Raspberry Pi Products. URL: https://www.raspberrypi.
org/products/ (visited on July 23, 2020) (cit. on p. 22).

[SIL] SILECS. SILECS: Super Infrastructure for Large-Scale Experimental Computer Sci-
ence. URL: https://www.silecs.net/ (visited on June 4, 2020) (cit. on p. 78).

[The98] The CMU CS Department Coke Machine. CMU SCS Coke Machine. June 1998.
URL: https://www.cs.cmu.edu/~coke/ (visited on June 18, 2020) (cit. on p. 1).

Software

[Doc13] [SW] Docker Inc., Docker, Mar. 20, 2013. URL: https://www.docker.com/.

[Goo14] [SW] Google, cAdvisor (Container Advisor), June 9, 2014. URL: https://github.
com/google/cadvisor.

[Net13] [SW] Netdata Inc., Netdata, June 17, 2013. URL: https://github.com/netdata/
netdata.

[Ope01] [SW] OpenVPN Inc., OpenVPN – A Secure tunneling daemon, May 13, 2001. URL:
https://github.com/OpenVPN/openvpn.

[Pro12] [SW] Prometheus Authors, Prometheus, Nov. 24, 2012. URL: https://prometheus.
io/.

[Pro15] [SW] Prometheus Authors, Blackbox exporter, Sept. 5, 2015. URL: https://github.
com/prometheus/blackbox_exporter.

[Red12] [SW] Red Hat, Ansible, Feb. 20, 2012. URL: https://www.ansible.com/.

[TW02] [SW] Costa Tsaousis and Phil Whineray, FireQoS, Sept. 5, 2002. URL: https:
//firehol.org/.

SOFTWARE 187

https://nodered.org/
http://distem.gforge.inria.fr/index.html
https://techjury.net/blog/internet-of-things-statistics
https://k3s.io/
https://www.raspberrypi.org/products/
https://www.raspberrypi.org/products/
https://www.silecs.net/
https://www.cs.cmu.edu/~coke/
https://www.docker.com/
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://github.com/netdata/netdata
https://github.com/netdata/netdata
https://github.com/OpenVPN/openvpn
https://prometheus.io/
https://prometheus.io/
https://github.com/prometheus/blackbox_exporter
https://github.com/prometheus/blackbox_exporter
https://www.ansible.com/
https://firehol.org/
https://firehol.org/

My Papers

[Don+18] Bruno Donassolo, Ilhem Fajjari, Arnaud Legrand, and Panayotis Mertikopoulos.
FogIoT Orchestrator: an Orchestration System for IoT Applications in Fog Environ-
ment. 1st Grid’5000-FIT school. Apr. 2018 (cit. on p. 4).

[Don+19a] B. Donassolo, I. Fajjari, A. Legrand, and P. Mertikopoulos. “Demo: Fog Based
Framework for IoT Service Orchestration”. In: 2019 16th IEEE Annual Consumer
Communications Networking Conference (CCNC). 2019, pp. 1–2 (cit. on p. 4).

[Don+19b] B. Donassolo, I. Fajjari, A. Legrand, and P. Mertikopoulos. “Fog Based Frame-
work for IoT Service Provisioning”. In: 2019 16th IEEE Annual Consumer Com-
munications Networking Conference (CCNC). 2019, pp. 1–6 (cit. on p. 5).

[Don+19c] B. Donassolo, I. Fajjari, A. Legrand, and P. Mertikopoulos. “Load Aware Provi-
sioning of IoT Services on Fog Computing Platform”. In: ICC 2019 - 2019 IEEE
International Conference on Communications (ICC). 2019, pp. 1–7 (cit. on p. 5).

[Don+20] Bruno Donassolo, Arnaud Legrand, Panayotis Mertikopoulos, and Ilhem Faj-
jari. “Online Reconfiguration of IoT Applications in the Fog: The Information-
Coordination Trade-off”. working paper or preprint. May 2020 (cit. on p. 5).

188 Appendix Bibliography

List of Figures

1.1 5G and IoT. The three axes of applications and their main characteristics. 2

2.1 Illustration of the Fog environment where different domains share
resources in the spectrum between End Devices and the Cloud to
implement their business logic. 10

2.2 Example of a smart building application for fire combat. 16

2.3 Smart transportation . 19

2.4 Fog architecture . 21

4.1 Graph model for a Fog infrastructure. This figure illustrates the typical
Fog infrastructure used in this thesis. 47

4.2 List of possible application requirements (non-exhaustive). 49

4.3 Graph model for a Fog-IoT application. This model represents a typical
application studied in this work. 50

4.4 Studying the orchestration phases. Each colored line represents the
metric for one test run. The black line represents the average perfor-
mance of all runs. During the provisioning phase, each vertical gray
line represents the deployment of an application. 51

5.1 FITOR architecture . 56

6.1 The actor model . 61

6.2 Calvin’s architecture [[PA15], Figure 1 (right part)]. 62

6.3 Burn actor. It receives messages through the input token port in the
left, process it, and send it unchanged through the output token port
in the right. 63

6.4 Snapshot of Calvin’s graphical user interface used to implement an
application example. 65

6.5 Calvin’s deployment ecosystem. Runtimes deploy applications from
different users concurrently. A database is used to share information
about runtimes and their capabilities. 67

7.1 FITOR platform. This figure depicts the components used to build the
architecture proposed in Fig. 5.1 . 69

7.2 Zooming in on the FIT/IoT-LAB part of the FITOR infrastructure. . . . 76

189

8.1 Fishbone diagram showing the factors that can impact our experiments.
We highlight in orange the main parameters that drive the test execu-
tion. The gray parameters may impact, but they are not the focus of
our study. 80

8.2 A typical 3-level application used in the experiments. The number of
actors in each level and their characteristics vary according to the test,
but the structure is kept. 81

8.3 Internal representation of ports in actors. Each port has a queue of
limited size associated. Extra configurations are available to dictate
how messages are sent between source and target actors. 82

9.1 Provisioning as a graph matching problem. The Service Deployer is
responsible for providing resources to IoT applications, considering its
requirements and the infrastructure available. 92

9.2 Set of solution generated by GRASP for a hypothetical maximization
problem (higher values are better). S∗1 , S∗3 and S∗5 are initial solutions
generated by ConstructGreedyRandomizedSolution. 94

9.3 Components of the provisioning problem 95

10.1 O-FSP performance evaluation: application and provisioning cost results107
10.2 O-FSP performance evaluation: infrastructure performance results . . 108

11.1 GO-FSP performance evaluation: application performance results . . . 117
11.2 GO-FSP performance evaluation: infrastructure performance results . 118

12.1 Performance evolution over time for a reconfiguration strategy. Each
colored line represents the aggregated average elapsed time of all
applications in a single experiment. The black line is the average
performance for this strategy. In Summary Stats, we summarize the
average performance, for each experiment (color points) and in general
(black), during the area of interest. 125

12.2 UCB arm selection in different time steps. At each time step t, UCB
selects the arm with highest reward plus uncertainty factor. 131

12.3 The reconfiguration game in place . 133

13.1 Workload - System Load (for an experiment). On the y-axis, we present
the number of hosts that are close to saturation and cannot run more
intensive applications. The dotted line marks the number of hosts in
the system (15) . 136

13.2 Workload - modeling application evolution 137
13.3 Workload - Churn. Example of state transitions for an application with

mean active/sleeping time (1/λ) of 300s. 137
13.4 Performance evaluation for baseline strategies. The 2s horizontal

dashed line represents the threshold above which applications request
migration, while the bottom line represents the minimum response
time when operating on a dedicated server. Both Lazy and Anarchy
strategies have a poor overall performance. 139

190 List of Figures

13.5 UCB learning rate for an experiment in a well-informed environment.
Each line represents the frequency an application has selected deter-
mined host (xja(t) = nja/t). We highlight with a different color, the
applications that were able to identify the best hosts to run (none in
this case). 142

13.6 Performance evaluation for UCB and EXP3 strategies. This figure
complements Fig. 13.4 by adding the results for UCB and EXP3. Note
that the y-axis scale has changed and that a horizontal dotted line now
indicates the performance of the Totalitarian strategy and serves as a
target lower bound. 143

13.7 EXP3 learning rate for an experiment in a well-informed environment.
The figure shows the probability vector pjt , each line represents the
probability that an application has to select each host. We highlight
with a different color, the applications that were able to identify the
best hosts to run (none in this case). 144

13.8 UCB-MC learning rate for an experiment in a well-informed environ-
ment. Each line represents the frequency an application has selected
determined host (xja(t) = nja/t). We highlight with a different color, the
applications that were able to identify the best hosts to run (none in
this case). 146

13.9 Performance evaluation for UCB-MC and EXP3-MC strategies. This
figure complements Fig. 13.6 by adding the results for these strategies.146

13.10 EXP3-MC learning rate for an experiment in a well-informed environ-
ment. The figure shows the probability vector pjt , each line represents
the probability that an application has to select each host. Calm applica-
tions rarely exceed the threshold and so do not migrate. Consequently,
the pjt does not evolve over time. 147

13.11 Estimation function (fest). Shape of fest for an application that requests
a CPU with at least 100 MIPS. 148

13.12 Hedge-MC learning rate for an experiment in a well-informed envi-
ronment. The figure shows the probability vector pjt , each line is the
probability that an application has to select each host. We highlight
with a different color, the applications that were able to identify the
best hosts to run (i.e., applications whose 2 best hosts have at least 75%
probability of being chosen). We can clearly see the improvement in
the learning rate for intensive applications, where hosts are selected
more often for some applications. 149

13.13 Performance evaluation for Hedge-MC and Hedge-MC-TE strategies.
This figure complements Fig. 13.9 by adding the results for these
strategies. A new metric "Time Above Threshold" is presented. 150

13.14 Hedge-MC-TE: state machine . 150

13.15 Hedge-MC-TE-DUMP: state machine . 151

List of Figures 191

13.16 Performance evaluation for Hedge-MC-TE-DUMP (H*-DUMP-60 and
H*-DUMP-300 in the figure) strategy, varying the amount of time
applications stay in dump runtime (300s and 60s). This figure compares
all learning strategies. The strategies in bold (Anarchy, Totalitarian and
Hedge-MC) have the best performance and will be used as base for
comparison in Section 13.2.3 . 152

13.17 The Herd Effect . 153
13.18 Performance evaluation for greedy strategies. This figure compares the

performance of greedy strategies with those of learning in Fig. 13.16 .
The strategies in bold (Anarchy, Totalitarian and Hedge-MC) are kept
as a basis for comparison. Note that the y-axis scale has changed. . . . 154

14.1 Performance evaluation for learning strategies in the ill-informed sce-
nario. This figure compares all learning strategies. The strategies in
bold (Anarchy, Totalitarian and Hedge-MC) have the best performance
and will be used as base for comparison in Fig. 14.5 162

14.2 UCB learning rate for an experiment in an ill-informed environment.
Each line represents the frequency an application has selected de-
termined host (xja = nja/t). We highlight with a different color, the
applications that were able to identify the best hosts to run (none in
this case). 163

14.3 UCB-MC learning rate for an experiment in an ill-informed environ-
ment. Each line represents the frequency an application has selected
determined host (xja = nja/t). We highlight with a different color, the
applications that were able to identify the best hosts to run (i.e., ap-
plications whose 2 best hosts have at least 75% probability of being
chosen). 164

14.4 Hedge-MC learning rate for an experiment in an ill-informed envi-
ronment. The figure shows the probability vector pjt , each line is the
probability that an application has to select each host. We highlight
with a different color, the applications that were able to identify the
best hosts to run (i.e., applications whose 2 best hosts have at least 75%
probability of being chosen). 165

14.5 Performance evaluation for greedy strategies in the ill-informed sce-
nario. This figure compares the performance of greedy strategies with
those of learning in Fig. 14.1 . The strategies in bold (Anarchy, Totali-
tarian and Hedge-MC) are kept as a basis for comparison. Note that
the y-axis scale has changed. 167

14.6 UCB-MC learning rate for a long duration (5h) experiment in an ill-
informed environment. Each line represents the frequency an appli-
cation has selected determined host (xja = nja/t). We highlight with
a different color, the applications that were able to identify the best
hosts to run (i.e., applications whose 2 best hosts have at least 75%
probability of being chosen). 168

192 List of Figures

List of Tables

3.1 Comparison of Fog architectures . 31
3.3 Comparison of orchestration approaches 38
3.3 Comparison of orchestration approaches (continued) 39
3.3 Comparison of orchestration approaches (continued) 40

6.1 Comparison of IoT frameworks . 59

9.1 Table of Notations . 100

10.1 O-FSP performance evaluation. A - Acceptance rate 107

11.1 GO-FSP performance evaluation. A - Acceptance rate 117

13.1 Strategies Classification. The performance column summarizes the
average elapsed time (in seconds) for intensive applications. (≤ 0.75s,
0.75s < ≤ 1s, > 1s) . 156

193

List of Tables 195

	DE_MOURA_DONASSOLO_2020_archivage.pdf
	Cover
	1 Introduction
	I The Orchestration of IoT Application in the Fog: Definition and Challenges
	2 Context
	2.1 Fog Definition and Motivations
	2.1.1 Motivations
	2.1.2 Initiatives
	2.1.3 Use cases

	2.2 Fog Architecture Overview
	2.3 Challenges in Fog Architectures
	2.3.1 Heterogeneity
	2.3.2 Mobility and scale
	2.3.3 Orchestration
	2.3.4 Security and privacy
	2.3.5 Application modeling

	2.4 Scope of this Thesis

	3 Related Work
	3.1 Overview of Fog Architectures
	3.1.1 Classification
	3.1.2 Comparison

	3.2 Orchestration Approaches
	3.2.1 Classification
	3.2.2 Comparison

	3.3 Conclusion

	4 Components and Characteristics of a Fog-IoT Environment
	4.1 Fog Infrastructure
	4.2 IoT Applications
	4.2.1 Requirements

	4.3 Orchestration

	II From Theory to Practice: Research Methodology and An Orchestrator for IoT Applications in the Fog
	5 An Architecture for IoT Orchestration in the Fog
	6 The Calvin Framework
	6.1 Why Calvin?
	6.2 Overview
	6.3 The Actor Model
	6.4 Architecture
	6.5 Describing an Application
	6.5.1 Actor development
	6.5.2 Building an application
	6.5.3 Requirements

	6.6 Deploying an application
	6.7 Limitations for the Fog

	7 FITOR: A Platform for IoT Orchestration in the Fog
	7.1 Software Components
	7.1.1 Calvin
	7.1.2 Monitoring
	7.1.3 Docker

	7.2 Infrastructure
	7.2.1 Grid'5000
	7.2.2 FIT/IoT-LAB
	7.2.3 Connectivity

	7.3 Limitations
	7.3.1 Applications
	7.3.2 Monitoring
	7.3.3 Infrastructure

	8 Experimental Methodology
	8.1 Scenario
	8.1.1 Platform
	8.1.2 Workload
	8.1.3 Orchestrator parameters
	8.1.4 Uncontrolled factors

	8.2 Setup
	8.3 Experiments
	8.3.1 Execution
	8.3.2 Output
	8.3.3 Data analysis

	III The Provisioning of IoT Applications in the Fog
	9 Problem Statement
	9.1 Introduction
	9.2 Related Work
	9.2.1 The GRASP method

	9.3 Problem Formulation
	9.3.1 Fog service provisioning problem
	9.3.2 Summary of notations

	10 Cost-aware Provisioning
	10.1 Proposed Solution: O-FSP
	10.1.1 Fog service decomposition stage
	10.1.2 Solution component's provisioning stage

	10.2 Evaluation
	10.2.1 Describing the environment
	10.2.2 Baseline strategies
	10.2.3 Performance metrics
	10.2.4 Evaluation results

	10.3 Limitations

	11 Load-aware Provisioning
	11.1 Extension of the Problem Formulation
	11.2 Proposed Solution: GO-FSP
	11.2.1 Fog service decomposition
	11.2.2 Generation of initial solutions
	11.2.3 Local search

	11.3 Evaluation
	11.3.1 Describing the environment
	11.3.2 Baseline strategies
	11.3.3 Performance metrics
	11.3.4 Evaluation results

	11.4 Limitations
	11.4.1 Experimental limitations
	11.4.2 Model limitations

	IV The Reconfiguration of IoT Applications in the Fog
	12 Problem Statement
	12.1 Introduction
	12.2 Related Work
	12.2.1 Online scheduling
	12.2.2 Online learning

	12.3 Game Overview
	12.3.1 Performance metrics

	13 Reconfiguration in a Well-informed Environment
	13.1 Describing the Environment
	13.1.1 Platform
	13.1.2 Workload
	13.1.3 Orchestrator parameters

	13.2 Evaluation
	13.2.1 Baseline strategies
	13.2.2 Online learning strategies
	13.2.3 Greedy but informed strategies
	13.2.4 Summary

	13.3 Limitations

	14 Reconfiguration in an Ill-informed Environment
	14.1 Describing the Environment
	14.1.1 Platform
	14.1.2 Workload
	14.1.3 Orchestrator parameters

	14.2 Evaluation
	14.2.1 Baseline strategies
	14.2.2 Online learning strategies
	14.2.3 Greedy but informed strategies

	14.3 Limitations
	14.3.1 Experimental limitations
	14.3.2 Platform
	14.3.3 Workload
	14.3.4 Orchestrator

	15 Conclusion and Future Work
	15.1 Conclusion
	15.2 Future Work

	Bibliography

