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Introduction générale version française

0.1 Contexte général

La modélisation consiste à donner un cadre et un ensemble d’outils permettant de décrire une
partie de la réalité. Ce cadre est formé à partir d’un ensemble d’hypothèses réfutables, au sens
de Karl Popper, et se traduisent souvent sous forme d’équations dont la solution fournit une
description approchée de phénomènes observés. L’expérimentation permet ensuite de tester ces
hypothèses en comparant les résultats de manipulations ou d’observations aux solutions des équa-
tions du modèle. Avec un point de vue tourné vers les applications industrielles, la connaissance
des solutions d’un modèle, alors supposé pertinent, permet de faciliter le dimensionnement de
nombreux systèmes.

Parmi les différents modèles utilisés en astrophysique et dans le domaine des écoulements
diphasiques se trouvent des modèles décrivant la dynamique d’un ou plusieurs fluides qui ap-
partiennent à la catégorie des modèles de milieux continus. Ces modèles prennent la forme
d’équations aux dérivées partielles et s’appuient souvent sur des principes communs sous-jacent
comme l’expression de lois de conservation, par exemple la conservation de la masse, de la
quantité de mouvement ou encore de l’énergie auxquelles peuvent s’ajouter d’autres équations.
Hormis quelques cas simples (exploitant de nombreuses symétries du problème) les solutions de
ces équations ne peuvent pas être obtenues analytiquement.

On a alors recours aux simulations numériques qui consistent à utiliser les capacités de cal-
cul d’un ordinateur pour calculer une approximation de cette solution. Afin de pouvoir réaliser
ces simulations numériques, une étape supplémentaire est nécessaire: la discrétisation. La dis-
crétisation consiste à traduire le modèle mathématique en un algorithme composé d’un nombre
fini d’opérations élémentaires et réalisables par un ordinateur par exemple: les additions, et les
multiplications. L’algorithme obtenu est un nouveau modèle, discret également appelé schéma
numérique, qui en un certain sens est une approximation du modèle d’origine qualifié, par op-
position, de modèle continu. L’étude du lien entre le modèle continu et un schéma numérique
est le domaine de l’analyse numérique au sein des mathématiques appliquées. Plusieurs schémas
numériques pouvant approcher un même modèle continu, des critères d’évaluation des schémas
numériques sont donc nécessaires. Ces critères peuvent prendre différentes formes par exemple:
le temps de restitution de la solution numérique ou encore la précision de la solution.

Dans le cas de l’astrophysique, parmi les différents mécanismes de transfert de chaleur, l’étude
de la convection naturelle est un phénomène important, au coeur de la dynamique interne des
étoiles (Spruit et al. 1990; Pinsonneault 1997) et des exoplanètes gazeuses (Tremblin et al. 2016),
comme illustré Figure 1. Pour des raisons de temps de restitution raisonnable, l’étude par simu-
lation numérique de la convection est souvent réalisée à partir d’approximations supplémentaires
connues sous le nom d’approximation de Boussinesq ou anélastique. Ces différentes approxima-
tions permettent de filtrer les ondes sonores en supposant un écoulement convectif à faible vitesse
devant la vitesse du son (régime bas Mach) et sur de petites échelles de hauteur. Cependant
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Figure 1: Représentation graphique des différents régimes de transfert de chaleur depuis le coeur
d’une étoile vers sa surface. La chaleur émise depuis le coeur de l’étoile par les réactions nucléaires
est dans un premier temps diffusé par radiation, sans mouvement du gaz. Le transfert de chaleur
est ensuite effectué à partir de mouvements macroscopiques du gaz vers la surface de l’étoile.
Source https://solarscience.msfc.nasa.gov/interior.shtml

l’étude de régimes intermédiaires où la compressibilité du fluide joue un rôle sort du cadre de
ces modèles et ne peut donc pas être capturé numériquement. L’utilisation du modèle hydrody-
namique compressible est alors nécessaire mais pose également des difficultés numériques lorsque
l’écoulement est proche de l’équilibre hydrostatique.

En ce qui concerne le domaine des écoulements diphasiques, dans de nombreuses situations
(souvent d’origines industrielles) le liquide se trouve être en régime bas Mach. Une approximation
proche du modèle incompressible est alors utilisée, présentant des similarités avec l’approximation
de Boussinesq. Cependant dans des régimes intermédiaires, notamment dans les circuits hy-
drauliques de réacteurs nucléaires, les variations de pression au sein de gouttes d’eau liquide
peuvent être importantes et sortent du cadre de ce modèle. On est alors amené à utiliser des
modèles tenant compte des phénomènes compressibles. A terme, ces pics de pression peuvent en-
dommager la paroi du circuit, comme illustré sur la Figure 2. L’étude par simulation numérique
des pics de pression au niveau de la paroi fournit une approche complémentaire aux expériences.

La réalisation de ces simulations peut demander de nombreuses heures de calcul (jusqu’à
plusieurs dizaines de millions d’heures de calcul). Afin de pouvoir réaliser ces simulations en des
temps raisonnables l’utilisation de supercalculateurs, des ordinateurs dédiés à ce type de calcul,
est nécessaire. A partir de 2021, les nouveaux supercalculateurs atteindront la puissance de calcul
permettant de réaliser jusqu’à 1018 opérations à la seconde, ce que l’on appelle couramment
l’ère du calcul exaflopique (“exascale” en anglais). Afin d’obtenir cette puissance de calcul,
les constructeurs s’appuient sur des architectures matérielles variées et ce qui par conséquent
cela requiert l’utilisation de modèles de programmation adaptés à chacune d’entre elles pour
un même schéma numérique. Cette duplication de code peut, à terme, poser des problèmes de
maintenance. C’est pourquoi différentes initiatives ont donné lieu à des bibliothèques telles que
Kokkos, à travers une abstraction des architectures matérielles, permettant de retrouver une

https://solarscience.msfc.nasa.gov/interior.shtml
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Figure 2: Formation de microstructures après 5 (gauche) et 10 (droite) millions d’impacts de
gouttes d’eau à haute vitesse (Luiset et al. 2013).

portabilité de performance tout en écrivant une seule version de l’algorithme.

0.2 Objectifs de la thèse

Cette thèse s’inscrit à l’interface entre les aspects de modélisation astrophysique et diphasique,
de développements de schémas numériques ainsi que de leur implémentation parallèle. Elle s’est
déroulée au sein du laboratoire Maison de la Simulation, laboratoire multidisciplinaire dont les
activités concernent des aspects de modélisation et de calcul haute performance.

Dans cette thèse nous nous intéressons au développement de schémas numériques dits “tout
régime”, à partir de modèles hydrodynamiques, ainsi qu’à leur implémentation dans un objectif
de calcul haute performance. Ces schémas s’appuient sur un découplage des phénomènes acous-
tiques, a priori rapides, et des phénomènes de transport, a priori lents. Ce découplage permet
entre autre de développer des schémas numériques avec diverses propriétés en facilitant leur
analyse.

En ce qui concerne l’application astrophysique, nous nous intéressons à des instabilités de
convection. Ces instabilités ont lieu autour de l’équilibre hydrostatique et généralement à bas
nombre de Mach. Nous cherchons alors à obtenir un schéma numérique capable de simuler des
écoulements convectifs à tout nombre de Mach. Nous cherchons donc à maintenir exactement,
ou à précision machine près, l’équivalent discret des équilibres hydrostatiques. Les caractères
bas nombre de Mach et proche équilibre hydrostatique des écoulements convectifs nécessitent
un traitement particulier de la discrétisation des gradients de pression liés aux phénomènes
acoustiques. Le caractère haut Mach est garanti par l’utilisation d’un modèle compressible et
d’un schéma conservatif.

L’application diphasique de la thèse concerne l’impact d’une goutte d’eau sur une paroi au
sein du circuit hydraulique d’un réacteur nucléaire. Les liquides et les gaz ont des propriétés ther-
modynamiques très différentes. La localisation précise de ces deux fluides au sein du domaine
de simulation est donc importante afin de pouvoir calculer correctement les quantités thermody-
namiques. De part la raideur de l’équation d’état du liquide, de fortes tensions peuvent conduire
le liquide à caviter. Nous nous intéressons alors au Modèle Homogène à l’Equilibre (HEM pour
Homogeneous Equilibrium Model) qui suppose, à chaque instant, l’équilibre thermodynamique
entre les phases.

En lien avec ces applications nous nous intéressons également à la problématique de perfor-
mance des schémas numériques et de leur implémentation. L’accélération du calcul peut être
envisagée à la fois de manière algorithmique et de manière informatique. Du point de vue algo-
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rithmique nous nous intéressons à un schéma d’ordre élevé afin de tirer parti d’une représentation
plus compacte et donc a priori moins coûteuse de la solution numérique. Du point de vue informa-
tique, nous abordons l’aspect portabilité de performance à travers l’utilisation des bibliothèques
Kokkos et Trilinos. Ces deux bibliothèques fournissent des algorithmes élémentaires, parallèles
et portables, qu’il s’agit d’exploiter dans l’implémentation de nos schémas.

0.3 Description des travaux

0.3.1 Chapitre 1

Dans ce chapitre nous nous inscrivons dans la continuité des travaux de Chalons et al. 2016
et de Chalons et al. 2017 pour le développement d’un schéma “tout-régime” et équilibre des
équations d’Euler avec terme source de gravité statique. Nous cherchons à capturer les états
d’équilibre hydrostatique de ces équations. La séparation des phénomènes acoustiques et de
transport en deux sous-systèmes d’équations nous a conduit à placer le terme source de gravité
dans le système acoustique. Le système acoustique est discrétisé à partir d’un schéma de type
Godunov (Godunov 1959). Le solveur de Riemann approché associé à ce schéma est obtenu à
partir d’une méthode de relaxation (Suliciu 1998; Chalons and Coulombel 2008; Chalons and
Coquel 2014) des équations permettant une linéarisation des termes associés à l’équation d’état.
Le système de transport est quant à lui discrétisé à partir d’un schéma décentré amont tout
en garantissant une mise à jour globale conservative. L’observation qu’en gravité statique, par
opposition à l’auto-gravité, l’énergie tenant compte du potentiel gravitationnel est également une
quantité conservée, nous proposons également un schéma numérique permettant la conservation
de cette quantité. De manière similaire au travail de Chalons et al. 2016 et faisant suite des
analyses bas Mach des schémas colocalisés (Guillard and Viozat 1999; Dellacherie 2010), une
correction de flux est apportée au gradient de pression afin d’améliorer la précision du schéma
dans un régime bas Mach.

Ces schémas numériques ont ensuite été utilisés pour des applications d’instabilité de convec-
tion dans différents régimes d’écoulement. Il a été montré l’importance de la correction de flux
dans des régimes bas Mach. Ils ont notamment été utilisés afin de proposer une théorie visant à
unifier différents types de phénomènes convectifs.

0.3.2 Chapitre 2

Ce chapitre porte sur l’application diphasique de la thèse. Nous nous intéressons à la simula-
tion d’impacts d’une goutte d’eau contre une paroi. Lorsque la goutte d’eau impacte la paroi,
un important saut de pression se développe connu sous le nom de coup de bélier (Ghidaoui et
al. 2005) égal au produit de l’impédance acoustique de l’eau liquide par le saut de vitesse. Afin
de capturer ces sauts de pression nous utilisons un modèle compressible: un Modèle Homogène
à l’Equilibre (Helluy and Seguin 2006) qui suppose qu’à chaque instant l’équilibre thermody-
namique est atteint. Ce modèle est approché par une relaxation instantanée et à partir d’un
modèle dit “modèle à 5 équations” (Allaire et al. 2002). Ce dernier est alors discrétisé en séparant
également les phénomènes acoustiques et les phénomènes de transport. Le système acoustique
est discrétisé à partir d’une méthode de relaxation (Suliciu 1998; Chalons and Coulombel 2008;
Chalons and Coquel 2014) adaptée au vide (Bouchut 2004). Le système de transport utilise
un schéma anti-diffusif (Kokh and Lagoutière 2010; Lagoutière 2000) afin de préserver du mieux
possible les interfaces présentes dans la situation initiale. Des simulations d’impact de goutte ont
été menées sur différents types de paroi avec une étude de convergence. Une simulation Grand
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Challenge a été menée sur la moitié du supercalculateur Joliot-Curie au Très Grand Centre de
Calcul (TGCC), Saclay.

0.3.3 Chapitre 3
Dans ce chapitre nous explorons la possibilité de diminuer le temps de restitution des simulations
numériques en adaptant la représentation numérique et le schéma numérique aux propriétés
locales de la solution (Schaal et al. 2015; Sonntag and Munz 2017). Dans une région où la
solution est discontinue nous souhaitons utiliser les méthodes traditionnelles Volumes Finis par
exemple à partir de schémas de type Godunov (Godunov 1959). A l’inverse, dans une région
où la solution est régulière nous souhaitons compresser sa représentation numérique à l’aide
de polynômes et de schémas spectraux. Nous avons donc développer une méthode hybride à
partir d’un schéma MUSCL-Hancock (Toro 2009) et d’un schéma Volume Spectral (Wang 2002;
Wang and Liu 2002; Wang and Liu 2004; Wang et al. 2004; Liu et al. 2006). Ce dernier utilise
une formulation intégrale des équations afin de fournir une évolution temporelle des coefficients
du polynôme. Cette mise à jour est effectuée par l’intermédiaire des valeurs moyennes dans des
volumes de contrôle. Cela permet une écriture très proche des schémas standards, non spectraux,
et par conséquent facilite le passage d’une représentation à l’autre. Enfin des tests d’ordre de
convergence et de performance ont été menés dans le cas des équations d’Euler et une extension
au terme source de gravité est proposée.

0.3.4 Chapitre 4
Dans ce chapitre nous abordons différents outils numériques utilisés au cours de la thèse perme-
ttant de réaliser des simulations haute performance. Dans un premier temps nous présentons la
problématique de portabilité de performance qui se pose avec l’arrivée des calculateurs exaflop-
iques. Nous présentons ensuite brièvement la bibliothèque Kokkos (Carter Edwards et al. 2014)
ainsi que les stratégies de parallélisation des codes s’appuyant sur ARK implémentant les sché-
mas numériques des Chapitres 1 et 2. Nous proposons une adaptation du schéma convectif
“tout-régime” aux maillages adaptatifs dans un code 2D. Enfin nous présentons les efforts de
portage GPU d’un schéma implicite résolvant une équation de diffusion modélisant le transfert
radiatif (Commerçon et al. 2014) dans le code RAMSES (Teyssier 2002), code utilisé parmi la
communauté astrophysique.

0.4 Publications et communications
Les travaux effectués durant cette thèse ont fait l’objet de publications et ont été présentés à
plusieurs conférences internationales, à savoir

• mini-symposium, CANUM, Cap d’Agde, France, Juin 2018, A well-balanced scheme for
compressible flows with gravity at all Mach number,

• Thomas Padioleau et al. 2019. “A High-performance and Portable All-Mach Regime Flow
Solver Code with Well-balanced Gravity. Application to Compressible Convection.” The
Astrophysical Journal 875, no. 2 (April): 128

• mini-symposium, ICIAM, Valencia, Espagne, Juillet 2019, Compressible two-phase flow
simulations of liquid droplet impacts,

• webinar invité, EUROfusion, Juillet 2020, Introduction to Kokkos.

De plus, les travaux du Chapitre 2 et du Chapitre 3 sont l’objet d’articles en cours de préparation.
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General introduction english version

Modelling consists in giving a framework and a set of tools allowing to describe part of the reality.
This framework is made from a set of falsifiable assumptions, in the sense of Karl Popper, and
are often represented as equations providing an approximation of observed phenomena. Then
experimentation allows to test these assumptions by comparing the results of manipulations or
observations to the solutions of the equations of the model. From the point of view of industrial
applications, the knowledge of the solutions of a model, then assumed to be relevant, makes it
possible to dimension many systems.

Among the different models used in astrophysics and in the field of two-phase flows, there are
models describing the dynamics of one or more fluids that belong to the category of continuous
media models. These models take the form of partial differential equations and are often based
on common underlying principles such as the expression of conservation laws, for instance con-
servation of mass, conservation of momentum or energy to which can be added other equations.
Apart from a few simple cases (that use multiple symmetries of the considered problem) the
solutions of these equations cannot be obtained analytically.

Therefore we resort to use numerical simulations that consist in using the computation ca-
pabilities of a computer to calculate an approximation of this solution. In order to run these
numerical simulations, a additional step is required: the discretization. This step consists in
translating the equations of the model into an algorithm made of a finite number of elementary
operations that a computer can realize such as additions and multiplications. The obtained
algorithm is a new, discrete model also called numerical scheme, that in a sense to be defined
is an approximation the first model. The study of the link between the continuous model and
a numerical scheme is the field of numerical analysis within applied mathematics. Multiple nu-
merical schemes can approximate the same continuous model, therefore criteria of evaluation are
necessary. These criteria can take different forms for example: the time to numerical solution or
the precision of the solution.

In the case of astrophysics, among the different heat transfer mecanisms, natural convection
is an important phenomenon, at the basis of the dynamics of stars (Spruit et al. 1990; Pin-
sonneault 1997) and gaseous giant exoplanets (Tremblin et al. 2016), see Figure 3. In order to
have a reasonable time to solution, the numerical study of convection is often carried out from
additional approximations known as the Boussinesq approximation or the anelastic approxima-
tion. These different approximations filter the sound waves assuming that the convective flow is
slow compared to the speed of sound (low Mach regime) and on small scale heights. However
the study of intermediate regimes where the compressibility of the fluid plays a role cannot be
performed using this type of model and thus cannot be captured numerically. The use of the
compressible hydrodynamics model is then required although numerical difficulties arise near the
hydrostatic balance.

Regarding the field of two-phase flows, in many situations (often of industrial origin) the
liquid is found to be in a low Mach regime. An approximation close to the incompressible model
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Figure 3: Graphical representation of different heat transfer mecanisms from the core of a star
to its surface. At first, the heat generated by nuclear reactions from the core is diffused by
radiation. Then the heat transfer is achieved by the advection of the gas up to the surface of the
star. Source https://solarscience.msfc.nasa.gov/interior.shtml

Figure 4: Formation of microstructures after 5 (left) and 10 (right) millions of liquid droplets
impacts at high velocity (Luiset et al. 2013).

https://solarscience.msfc.nasa.gov/interior.shtml
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is then used, showing similarities with the Boussinesq approximation. However in intermediate
regimes, particularly in the hydraulic circuits of nuclear reactors, pressure variations within water
liquid droplets can be significant and fall out of the scope of this model. We are then brought to
use models taking into account compressible phenomena. Ultimately, these pressure peaks can
damage the circuit wall, see Figure 4. The study by numerical simulations of pressure peaks at
the wall provides a complementary approach to real experiments.

Performing these simulations can take many hours of calculation (up to tens of millions of
hours of calculation). In order to be able to carry out these simulations in a reasonable amount
of time the use of supercomputers, computers dedicated to this type of calculation, is necessary.
Starting from 2021, the new supercomputers will reach a computing power allowing to perform
up to 1018 operations per second, what is commonly called the exascale computing. In order
to obtain this computing power, manufacturers rely on various hardware architectures and thus
it requires the use of programming models adapted to each of them for the same numerical
scheme. This duplication of code may ultimately become problematic in terms of maintenance.
This is why different initiatives have led to the development of libraries such as Kokkos, through
an abstraction of material architectures, allowing to achieve the performance portability while
writing a single version of the algorithm.

0.5 Aim of the thesis

This thesis is at the interface between the aspects of modeling astrophysics and two-phase flow,
development of numerical schemes as well as their parallel implementation. It took place at
the Maison de la Simulation laboratory, a multidisciplinary laboratory whose activities concern
aspects of modeling and high performance computing.

In this thesis we are interested in the development of numerical schemes so-called “all regime”,
from hydrodynamic models, as well as their implementation for the purpose of high computing
performance. These numerical schemes are based on a decoupling of the acoustic phenomena, a
priori fast, and transport phenomena, a priori slow. This decoupling allows, among other things,
to develop numerical schemes with various properties facilitating their analysis.

Regarding the astrophysics application, we are interested in convection instabilities. These
instabilities take place near the hydrostatic equilibrium and generally at low Mach number.
We then seek to obtain a numerical scheme able of simulating convective flows at any Mach
number. We therefore seek to maintain exactly, or up to the machine precision, the discrete
equivalent of hydrostatic equilibrium. Both the low Mach and near hydrostatic equilibrium
regimes require a particular treatment of the discretization of pressure gradients associated with
acoustic phenomena. The high Mach regime is guaranteed by the use of a compressible model
and of a conservative scheme.

The two-phase flow application of the thesis concerns the impact of a water droplet on a
wall within the hydraulic circuit of a nuclear reactor. Liquids and gases have very different
thermodynamic properties. The precise location of these two fluids within the simulation domain
is therefore important in order to be able to calculate correctly thermodynamic quantities. Due
to the stiffness of the liquid equation of state, strong tensions can lead to cavitation within the
liquid phase. We are then interested in the Homogeneous Equilibrium Model (HEM) which
assumes, at each instant, the thermodynamic equilibrium between the phases.

Along with these applications we are also interested in the performance issue of numerical
schemes and their implementation. The acceleration of computation can be considered in two
manners. From the algorithmic point of view we are interested in a high-order scheme in order to
take advantage of a more compact representation and therefore a priori less expensive numerical
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solution. From a computer science point of view, we address the aspect of performance portability
by using the Kokkos and Trilinos libraries. These two libraries provide elementary algorithms,
parallel and portable, that shall be used in the implementation of our numerical schemes.

0.6 Description of the work

0.6.1 Chapter 1

In this chapter we are in the continuity of the works initiated by Chalons et al. 2016 and Chalons
et al. 2017 for the development of an “all-regime” and well-balanced scheme of Euler equations
with the static gravity source term. We seek to capture the hydrostatic equilibrium states of
these equations. The splitting between acoustic and transport phenomena in two subsystems of
equations led us to put the gravity source term in the acoustic system. The acoustic system is
discretized from a Godunov-type scheme (Godunov 1959). The approximate Riemann solver as-
sociated with this numerical scheme is obtained from a relaxation method (Suliciu 1998; Chalons
and Coulombel 2008; Chalons and Coquel 2014) of the equations allowing the linearization of
terms associated with the equation of state. The transport system is discretized using an upwind
numerical scheme while ensuring an overall conservative update. Noticing that in the static
gravity case, by opposition to the self-gravity, an energy taking into account the gravitational
potential is satisfying a conservation law, we also propose a numerical scheme allowing its conser-
vation. Similar to the work of Chalons et al. 2016 and following low Mach analyses of co-located
schemes (Guillard and Viozat 1999; Dellacherie 2010), a flux correction is made to the pressure
gradient in order to improve the precision of the numerical scheme in a low Mach regime.

These numerical schemes were then used for convection instability applications in different
regimes of the flow. It has been shown the importance of the flux correction in low Mach
regimes. They were also used to propose a theory aiming at unifying different types of convective
phenomena.

0.6.2 Chapter 2

This chapter deals with the two-phase application of the thesis. We are interested in the simula-
tion of a liquid water drop on a wall. When the water droplet hits the wall, a large jump pressure
develops known as the water hammer (Ghidaoui et al. 2005) that is equal to the product of the
acoustic impedance of the liquid water by the velocity jump. In order to capture these pressure
jumps we use a compressible model: a Homogeneous Equilibrium Model (Helluy and Seguin
2006) that assumes at each instant an thermodynamic equilibrium. This model is approached by
an instantaneous relaxation from a five-equation model (Allaire et al. 2002). The latter is then
also discretized by separating the acoustic phenomena and transport phenomena. The acous-
tic system is discretized from a relaxation method (Suliciu 1998; Chalons and Coulombel 2008;
Chalons and Coquel 2014) adapted to the vacuum (Bouchut 2004). The transport system uses
an anti-diffusive scheme (Kokh and Lagoutière 2010; Lagoutière 2000) in order to preserve as
much as possible the interfaces present in the initial situation. Simulations of droplet impact
were carried out on different types of wall along with a convergence study. A Grand Challenge
simulation was carried out on half of the Joliot-Curie supercomputer at the Très Grand Centre
de Calcul (TGCC), Saclay.
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0.6.3 Chapter 3
In this chapter we explore the possibility of reducing the time to solution of numerical simulations
by adapting the numerical representation and the numerical scheme to local properties of the
solution (Schaal et al. 2015; Sonntag and Munz 2017). In a region where the solution is discontin-
uous we want to use standard Finite Volume methods such as Godunov-type methods (Godunov
1959). Conversely, in a region where the solution is regular we want to compress its numerical
representation using polynomials and spectral schemes. We have therefore developed a hybrid
method using a MUSCL-Hancock scheme (Toro 2009) and a Spectral Volume Method (Wang
2002; Wang and Liu 2002; Wang and Liu 2004; Wang et al. 2004; Liu et al. 2006). The latter uses
an integral formulation of the equations in order to provide a time evolution of the polynomial
coefficients. This update is carried out through the mean value associated with Control Volumes.
This allows a formulation close to standard, non-spectral diagrams, and therefore facilitates the
change of one representation to the other. Finally tests of order of convergence and of perfor-
mance were carried out in the case of the Euler equations and an extension to the source term
of gravity is proposed.

0.6.4 Chapter 4
In this chapter we discuss different numerical tools used during the thesis allowing to carry
out high performance simulations. First, we present the problem of performance portability
that arises with the arrival of exaflop supercomputers. We then briefly present the Kokkos
library (Carter Edwards et al. 2014) as well as the parallelization strategies of codes based
on ARK that implement the numerical schemes presented in chapters 1 and 2. We propose
an extension of the convective “all-regime” scheme to the Adaptive Mesh Refinement (AMR)
technique in a 2D code. Finally we present the GPU porting efforts of a implicit numerical
scheme solving a diffusion equation that models the radiative transfer (Commerçon et al. 2014)
in the code RAMSES (Teyssier 2002), code used among the astrophysical community.

0.7 Publications et communications
The work carried out during the thesis made the object of publications and have been presented
in international conferences, namely

• mini-symposium, CANUM, Cap d’Agde, France, June 2018, A well-balanced scheme for
compressible flows with gravity at all Mach number,

• Thomas Padioleau et al. 2019. “A High-performance and Portable All-Mach Regime Flow
Solver Code with Well-balanced Gravity. Application to Compressible Convection.” The
Astrophysical Journal 875, no. 2 (April): 128

• mini-symposium, ICIAM, Valencia, Spain, July 2019, Compressible two-phase flow simu-
lations of liquid droplet impacts,

• invited webinar, EUROfusion, July 2020, Introduction to Kokkos.

In addition, the work of Chapter 2 and of Chapter 3 are the subject of articles in preparation.
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Chapter 1

An all-regime hydrodynamic solver
for stratified flows

This chapter is the adaptation of an article published in APJ, see Padioleau et al. 2019. The
Appendix 1.C has been added to this article. In this appendix we derive the Boussinesq system
which is used to study convection instabilities with general heat and composition source terms.

Introduction

The study of convection is an active topic of research in the astrophysics community because of
its major role in different mechanisms such as heat transport in solar and stellar interiors (Spruit
et al. 1990), mixing of elements (Pinsonneault 1997) and dynamo (Charbonneau 2014). As these
mechanisms play a role in the estimation of the lifetime of these objects it is of great importance
for stellar evolution theory.

Different approximations have been developed to ease the study of convection. The Boussinesq
and the anelastic approximations simplify the Navier-Stokes system by getting rid of acoustic
waves and keeping buoyancy effects. In practice these approximations are derived by looking
at the equations satisfied by small perturbations near a reference state (Spiegel and Veronis
1960). The Boussinesq approximation is quite restrictive as it is valid for a small layer of the
reference state, such that the flow can be considered incompressible. On the other hand the
anelastic approach allows to have a larger scale height by keeping the density stratification of the
reference state (Gilman and Glatzmaier 1981). Another way to understand these approximations
is to consider the flow regime in terms of the Mach number Ma. As it is shown in Mentrelli
2018, these approximations can be recovered by considering low-Mach asymptotic limits of the
Navier-Stokes system. The Froude number, defined as the non-dimensional ratio of kinetic
energy to gravitational energy, characterizes the influence of gravity in the flow. By taking
into account different Froude regimes, they recover the incompressible, the Boussinesq and the
anelastic models. From a numerical point of view the removal of the acoustics waves in these
models is quite attractive because it allows to have larger time steps. The anelastic model has
been successfully implemented in different codes like Rayleigh (Featherstone and Hindman 2016)
or Magic (Gastine and Wicht 2012) and it is widely used in the community (see Glatzmaier 2017).
We can also mention the MAESTRO code (see Nonaka et al. 2010) which uses an extended version
of the anelastic model. The velocity constraint takes into account the time variation of pressure.
However these approaches present some drawbacks. The addition of new physics and source terms
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to the model is difficult, one has to derive another asymptotic model to take the new physics
into account in the anelastic regime (see Mentrelli 2018). Furthermore one has to be careful
that the simulation stays in the regime of validity of the model (especially in the Boussinesq
regime). Finally a numerical difficulty is the parallelization of those codes. They usually use
pseudo-spectral methods for which it is more difficult to achieve a good scalability (e.g. need to
use pencil-type domain decomposition Featherstone and Hindman 2016).

We chose to take a more flexible approach by solving the full compressible Navier-Stokes
system, as in the MUSIC code (Viallet et al. 2011; Goffrey et al. 2017) but with a collocated finite
volume solver instead of using a staggered grid. Different discretization techniques of the Euler
system are used in the astrophysics community. We can classify them in various ways. One way
is to separate SPH techniques from grid-based techniques. Furthermore grid-based approaches
can be divided in different families, finite difference, finite element and finite volume. The finite
volume method is of particular interest because of its natural property of being conservative and
to capture shocks and discontinuities. Designing a finite volume scheme essentially resides in the
definition of a numerical flux, numerical counterpart of the physical flux. A widely used family
of fluxes is the Godunov (see Godunov 1959) flux which is the flux of the — usually approximate
— Riemann problem between two neighbour cells.

However we have to face multiple numerical difficulties with this approach. Compressible
solvers and mainly Godunov-type solvers are known to have an excessive amount of numerical
diffusion in the low-Mach regime which make them unusable in this regime (see Guillard and
Viozat 1999; Dellacherie 2010; Miczek et al. 2015; Chalons et al. 2016; Barsukow et al. 2017).
In this regime, in which flows are smoother, considering Riemann problems at interfaces is not
adapted. Indeed in the work of Miczek et al. 2015 they show that part of the kinetic energy is
dissipated into internal energy whereas it should be conserved. To tackle this issue they propose
a preconditionned Roe scheme to remove the numerical diffusion. Secondly, hydrodynamics and
gravity are usually discretized independently from each other. In the case of highly stratified
medium, the numerical scheme does not maintain the hydrostatic equilibrium and produces
spurious flows that pollutes the simulation. Different approaches have been investigated to
solve this issue both for the Euler and the shallow water equations. In Leroux and Cargo
1994, they rewrite the Euler system as a fully conservative system by defining an hydrostatic
pressure satisfying a conservation law. In Chandrashekar and Klingenberg 2015 they use a
variable reconstruction by taking advantage of the equilibrium profile. In Chalons et al. 2010;
Vides et al. 2014; Chalons et al. 2017 they incorporate the source term in the Riemann problem
itself allowing to compensate pressure gradients at the interface. As in Leroux and Cargo 1994,
authors from Chertock et al. 2018 also propose to discretize the Euler system with gravity as a
fully conservative system but using global fluxes and a reconstruction on equilibrium variables.
Finally the last numerical difficulty is the time step in the low-Mach regime. Because of the
stability condition involving the fast acoustic waves, the time step becomes very small compared
to the material transport timescale. It can either be resolved using a full implicit approach as
in the MUSIC code Viallet et al. 2011; Goffrey et al. 2017, or by using an implicit-explicit (IM-
EX) approach in which only the system with fast acoustic waves is solved implicitly (Chalons
et al. 2016; Chalons et al. 2017).

Following the original work of Chalons et al. 2016 and Chalons et al. 2017 we use an acoustic-
transport splitting. In Chalons et al. 2016 they derive a finite volume scheme of the Euler system
on unstructured mesh. This scheme uses an acoustic splitting to separate acoustic waves from
material ones. In the low Mach regime, this translates to a splitting between fast waves and
slow waves. In the low Mach regime, the fast waves can be treated with an implicit solver to
get rid of the restrictive stability condition. Then in the work of Chalons et al. 2017, the scheme
has been adapted to shallow water equations with a source term which is the topography. This
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source term is added in the equivalent acoustic subsystem to obtain a well-balanced scheme. In
this paper we adapt their approach for the Euler system by taking care of the discretization of
the energy equation.

The paper is organized as follows. In Section 1.1 we briefly recall the compressible model we
use to study convection, i.e. the Navier-Stokes equations with gravity. In Section 1.2 we present
the derivation of the well-balanced and all-regime numerical scheme using a splitting approach
between an acoustic step and a transport step both solved explicitly in this work. In Section 1.3
we present some implementation features about the “ARK” 1 code in particular the Kokkos library
used for the shared memory parallelization. We also give some performance results. Finally in
Section 1.4 we present different numerical test cases illustrating the importance of the low-Mach
correction and the well-balanced discretization of gravity.

1.1 Navier-Stokes equations
We want to solve Navier-Stokes equations expressing conservation of mass, balance of momentum
and balance of energy, respectively written as follows

∂tρ + div (ρu) = 0,

∂t (ρu) + div (ρu⊗ u+ pI− τvisc) = ρg,

∂t (ρE) + div ((ρE + p)u− τviscu+ qheat) = ρg · u,
(1.1)

where ρ is the density, u the material velocity, p the pressure, g the external gravitational field,
ρE = ρe + 1

2ρu
2 the density of total energy with e the specific internal energy, qheat the heat

flux and τvisc the viscous tensor satisfying

τvisc = µ
(
∇u+ ∇uT

)
+ η (divu) I, (1.2)

where µ is the dynamic viscosity and η the bulk viscosity. We use · as a scalar product and
thus div represents the divergence operator. In order to close Navier-Stokes system (1.1) we add
constitutive equations namely a pressure law pEOS (1.3a), the Fourier’s law (1.3b) and the Stokes
hypothesis (1.3c)

p = pEOS (ρ, e) , (1.3a)
qheat = −κ∇T, (1.3b)

η = −2

3
µ (1.3c)

We recall that the gravitational field is derived from a gravitational potential Φ for which g =
−∇Φ. Dealing with a constant in time external gravity field, ∂tΦ = 0 and using the conservation
of mass we get (1.4)

∂t (ρΦ) + div (ρΦu) = ρu ·∇Φ. (1.4)

Let us emphasize that in this equation, the gravitational energy ρ(x, t)Φ(x) is time dependent
only through the density ρ(x, t). Hence the energy equation (1.4) can be rewritten in the following
conservative form

∂t (ρE) + div (ρEu− σstressu+ qheat) = 0 (1.5)

where we define ρE = ρe + 1
2ρu

2 + ρΦ. Equation (1.5) expresses the local conversion between
three different energy reservoirs, as depicted in figure 1.1: internal, kinetic and gravitational.
There can be a direct transfer between gravitational energy and kinetic energy through the

1. https://gitlab.erc-atmo.eu/erc-atmo/ark, version v1.0.0

https://gitlab.erc-atmo.eu/erc-atmo/ark
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Work of gravitational
forces Dissipation

Figure 1.1: Diagram representing energy transfers between energy reservoirs.

work of gravitational forces, from kinetic energy to internal energy because of the second law
of thermodynamics but no direct transfer between gravitational energy and internal energy, see
also Section 5 of Springel 2010 and Section 2.2 of Marcello and Tohline 2012 for a discussion on
energy conservation for both external and self-gravity cases.

Because of this conservation of energy including gravitational energy we will use the formula-
tion (1.5) of the energy equation and we will use the gravitational potential instead of the usual
gravitational field g. To our knowledge this approach is quite rare, see Graham 1975 or Chertock
et al. 2018 where they use global fluxes to have a well-balanced and conservative scheme.

An important steady state solution of this system for stratified objects is the hydrostatic
balance. The flow is static and the gravitational force is balanced by the pressure forces, i.e.
following equation (1.6)

∇p = −ρ∇Φ, u = 0, (1.6)

As we mentioned in the introduction, convective flows can be considered as a perturbation flow
of the hydrostatic equilibrium. Thus this steady state is particularly important in order to study
convection problems in stratified flows.

1.2 Numerical scheme

1.2.1 Euler system — Hyperbolic system
Before going into the derivation of the scheme we introduce the notations. We define by ∆x (resp.
∆y and ∆z) the step along the x-direction (resp. the y and z-direction). We note by ∆t the time
interval between current time tn and tn+1. We use the notation qni (resp. qni,j,k) to represent the
averaged quantity associated to the field q at time tn and in the cell i (resp. i, j, k) in the one-
dimensional case (resp. the three-dimensional case). We use the notation qni+1/2 (resp. qni+1/2,j,k)
to represent the quantity associated to the field q at time tn and at the interface between cells
i and i + 1 (resp. i, j, k and i + 1, j, k) in the one-dimensional case (resp. the three-dimensional
case). Finally we define the notation [q]i = qi+1/2 − qi−1/2 in the one-dimensional case.

Acoustic-Transport splitting approach

Following Chalons et al. 2017 we use a splitting strategy that separates acoustic terms and
transport terms and we choose to add the gravitational source terms to the acoustic part. This
way, pressure gradient can be balanced by the gravity source term.

However we have another equation compared to the shallow water system that is the energy
equation. As in Chalons et al. 2017, we want an isentropic acoustic step for smooth solutions.
Thereby we choose to solve the equation on the gravitational energy,

∂tρ + div (ρu) = 0,

∂t (ρu) + div (ρu⊗ u+ pI) = −ρ∇Φ,

∂t (ρE) + div ((ρE + p)u) = 0,

∂t (ρΦ) + div (ρΦu) = ρu ·∇Φ,

(1.7)
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ρE = ρe+
1

2
ρu2 + ρΦ.

However, this leads to a non constant gravitational potential in the acoustic step whose time
variations are compensated in the transport step in order to have a constant potential in the full
step. The potential is constant in the full step at the continuous level, but discretization errors
with the splitting can lead to a non-constant discretized potential. Thus we choose to introduce
an approximation of the gravitational called Ψ ≈ Φ and a relaxation parameter λ

∂tρ + div (ρu) = 0,

∂t (ρu) + div (ρu⊗ u+ pI) = −ρ∇Φ,

∂t (ρE) + div ((ρE + p)u) = 0,

∂t (ρΨ) + div (ρΨu) = ρu ·∇Φ +
ρ

λ
(Φ−Ψ) ,

(1.8)

ρE = ρe+
1

2
ρu2 + ρΨ.

We consider the relaxation system (1.8) to be an approximation of the original system (1.7) that
we formally recover in the limit λ→ 0. System (1.8) is solved by first solving the system in the
limit λ → ∞ and then in the limit λ → 0 in which Ψ is projected onto Φ, the initial condition.
This way, the evolution of the gravitational potential Ψ, consistent with zero, is forced to be
constant. The relaxation technic used here for the gravitational potential is similar to what is
done for pressure relaxation in many approximate Riemann solvers and we emphasize that Ψ
is just an intermediate used to design the scheme and can be removed when writing the final
scheme (see 1.2.1).

We now turn to the discretization of the system (1.8) in the limit λ → ∞. Transport
phenomena of the form u ·∇ are separated from the other terms to give two subsystems, first
the acoustic subsystem (1.9)

∂tρ + ρdivu = 0,

∂t (ρu)+ρudivu+ ∇p = −ρ∇Φ,

∂t (ρE) + ρEdivu+ div (pu) = 0,

∂t (ρΨ)+ρΨdivu = ρu ·∇Φ,

(1.9)

then the transport subsystem (1.10)

∂tρ + u ·∇ρ = 0,

∂t (ρu) + u ·∇ (ρu) = 0,

∂t (ρE) + u ·∇ (ρE) = 0,

∂t (ρΨ) + u ·∇ (ρΨ) = 0.

(1.10)

We now briefly study the eigenstructure of systems (1.9)-(1.10). Let n be any unit normal
vector, the acoustic system (1.9) involves seven eigenvalues: −c, 0, c. The fields associated with
0 (resp. ±c) are linearly degenerate (resp. genuinely nonlinear), see Appendix 1.A for more
details. The eigenvalues for transport system (1.10) are given by u · n. Both systems (1.9)-
(1.10) are hyperbolic. We emphasize here that the choice of using a relaxation procedure for the
gravitational potential by introducing the equation on the gravitational potential energy ρΨ has
been made to obtain this simple wave pattern for the splitted Euler system with gravity. (i.e.
the same pattern as without gravity). Other choices for the relaxation procedure (e.g. ∂tΨ = 0
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in both steps) would either lead to the introduction of u · n in the eigenvalues of the acoustic
subsystem or would significantly complexify the relaxation procedure for the pressure.

To summarize our numerical procedure, we propose to define a flux interface by approximating
system (1.7) with a three-step procedure that involves solving the acoustic system (1.9) (acoustic
step), the transport system (1.10) (acoustic step) and finally project Ψ onto Φ (relaxation step).
We detail each step in the next sections using the one-dimensional equations.

Acoustic step

We follow the idea of Chalons et al. 2016 to discretize the acoustic subsystem. They introduce
a pressure relaxation Π ≈ p, an acoustic impedance a ≈ ρc and a relaxation parameter ν to get
a fully linearly degenerated system. It is then written using Lagrangian variables (τ, u, v, E ,Ψ)
where u represents the normal velocity component at an interface and v a transverse component.
We also use a mass variable dm = ρ(tn, x)dx where time is frozen at instant tn

∂tτ − ∂mu = 0,

∂tu + ∂mΠ = −1

τ
∂mΦ,

∂tv = 0,

∂tE + ∂m (Πu) = 0,

∂tΠ + a2∂mu =
1

ν
(Π− p) ,

∂tΨ =
u

τ
∂mΦ,

where

E = e+
1

2
(u2 + v2) + Ψ.

The discretization of this system is realized with an approximate Riemann solver that accounts
for the source term by means of integral consistency and composed by three waves −a, 0, a,
see Gallice 2002; Chalons et al. 2013; Chalons et al. 2017. After the relaxation, in which ν → 0,
it gives

τ̃i = τni +
∆t

∆mi
[u∗]i,

ũi = uni −
∆t

∆mi
[Π∗]i +

∆t

∆mi
Sni ,

ṽi = vni ,

Ẽi = Eni −
∆t

∆mi
[Π∗u∗]i,

Π̃i = pEOS
(

1

τ̃i
, ẽi

)
,

Ψ̃i = Ψn
i −

∆t

∆mi
(uS)

n
i ,
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where

u∗i+1/2 =
1

2
(uni+1 + uni )− 1

2a

(
Πn
i+1 −Πn

i − Sni+1/2

)
,

Π∗i+1/2 =
1

2

(
Πn
i+1 + Πn

i

)
−
ani+1/2

2

(
uni+1 − uni

)
,

ani+1/2 ≥ max
(
ρni c

n
i , ρ

n
i+1c

n
i+1

)
,

Sni =
1

2

(
Sni+1/2 + Sni−1/2

)
,

(uS)
n
i =

1

2
(u∗i+1/2S

n
i+1/2 + u∗i−1/2S

n
i−1/2),

Sni+1/2 = −1

2

(
1

τni
+

1

τni+1

)(
Φni+1 − Φni

)
.

and ani+1/2 ≥ max
(
ρni c

n
i , ρ

n
i+1c

n
i+1

)
which is the so-called sub-characteristic condition (see Chalons

et al. 2013).
The update of the conservative variables is then

L̃iρ̃i = ρni ,

L̃i(̃ρu)i = (ρu)
n
i −

∆t

∆x
[Π∗]i +

∆t

∆x
Sni ,

L̃i(̃ρv)i = (ρv)
n
i ,

L̃i(̃ρE)i = (ρE)
n
i −

∆t

∆x
[Π∗u∗]i,

L̃i(̃ρΨ)i = (ρΨ)
n
i −

∆t

∆x
(uS)

n
i

where L̃i = 1 + ∆t
∆x [u∗]i.

Transport step

The transport subsystem can be written in the following form, for b ∈ {ρ, ρu, ρv, ρE , ρΨ}

∂tb+ ∂x (bu)− b∂xu = 0,

that is discretized as follows

bn+1
i = b̃i −

∆t

∆x

[
b̃u∗
]
i
+ b̃i

∆t

∆x
[u∗]i.

The interface term b̃i+1/2 is defined by the upwind choice with respect to the velocity u∗i+1/2

b̃i+1/2 =

{
b̃i if u∗i+1/2 ≥ 0

b̃i+1 if u∗i+1/2 ≤ 0

Relaxation step

At this stage, the relaxed gravitational potential Ψ still evolves in time. So we perform the
relaxation λ→ 0 that boils down to set Ψn+1

i = Φi.
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Overall algorithm

Gathering the previous steps and intermediate variables, the overall scheme reads

ρn+1
i = ρni −

∆t

∆x
[ρ̃u∗]i,

(ρu)
n+1
i = (ρu)

n
i −

∆t

∆x

[
(̃ρu)u∗ + Π∗

]
i
+

∆t

∆x
Sni ,

(ρv)
n+1
i = (ρv)

n
i −

∆t

∆x

[
(̃ρv)u∗

]
i
,

(ρE)
n+1
i = (ρE)

n
i −

∆t

∆x

[(
(̃ρE) + Π∗

)
u∗
]
i

(1.11)

It may also be expressed as a first-order classic finite-volume scheme involving flux terms for the
conservative part for energy ρE = ρe+ 1

2ρu
2 and source terms for gravity

ρn+1
i = ρni −

∆t

∆x
[ρ̃u∗]i,

(ρu)
n+1
i = (ρu)

n
i −

∆t

∆x

[
(̃ρu)u∗ + Π∗

]
i
−∆t{ρ∂xΦ}i,

(ρv)
n+1
i = (ρv)

n
i −

∆t

∆x

[
(̃ρv)u∗

]
i
,

(ρE)
n+1
i = (ρE)

n
i −

∆t

∆x

[(
(̃ρE)

NG
+ Π∗

)
u∗
]
i

−∆t{ρu∂xΦ}i,

(1.12)

where

∆x{ρu∂xΦ}i = [ρ̃u∗Φ]i − [ρ̃u∗]iΦi,

∆x{ρ∂xΦ}i = −Sni ,

(̃ρE)
NG

i = (ρE)
n
i −

∆t

∆x
[Π∗u∗]i.

We emphasize that both formulations are equivalent and conservative for the energy ρE . A
non-conservative energy approach is also detailed in Appendix 1.B.

We can notice that in the case of a constant gravitational potential, we recover the original
scheme derived in Chalons et al. 2016.

On the low-Mach correction

As for the scheme of Chalons et al. 2016 and as explained in Dellacherie 2010, the numerical
scheme defined by (1.11) poorly performs in the low Mach regime due to truncature error of
magnitude ∆x

Ma that comes from the term Π∗i+1/2. To tackle this issue, following Chalons et
al. 2016 we modify the upwinding part of Π∗i+1/2 thanks to an extra parameter θi+1/2 by setting

Π∗i+1/2 =
1

2

(
Πn
i+1 + Πn

i

)
−
ani+1/2θi+1/2

2

(
uni+1 − uni

)
,

θi+1/2 = min
(
Mai+1/2, 1

)
,

Mai+1/2 =
|u∗i+1/2|

max
(
cni , c

n
i+1

) . (1.13)
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Using a truncation analysis in dimensionless form it can be shown that this correction acts
like a rescaling of the numerical diffusion induced by the pressure discretization (see Chalons
et al. 2016).

As we can see, the low-Mach correction does not directly come from the derivation of the
numerical scheme 1.11. Some ongoing works are trying to derive directly all-Mach schemes using
more sophisticated relaxation schemes (see Bouchut et al. 2017).

On the well-balanced property

A numerical scheme is said to be well-balanced for equilibrium states satisfying equation (1.6), if
it exists a discrete counterpart of equation (1.6) in which solutions are preserved by the numerical
scheme.

The discrete counterpart of equation (1.6) for scheme (1.11) is given by

uni = 0, vni = 0,

Πn
i+1 −Πn

i = −1

2

(
ρni + ρni+1

)
(Φi+1 − Φi) ,

(1.14)

Let us now verify that we have obtained a well-balanced scheme. If at time tn, for some density
profile the initial state reads as in (1.14) then fluxes from the acoustic step reduce to

u∗i−1/2 = u∗i+1/2 = 0

[Π∗]i =
1

2

(
Πn
i+1 −Πn

i

)
+

1

2

(
Πn
i −Πn

j−1

)
+ Sni .

Then we have for the acoustic step

ũi = uni , ṽi = vni ,

ρ̃i = ρni , Ẽi = Eni .

Finally, because u∗i+1/2 vanishes, transport step is trivial and the initial state remains unchanged.
Once we have made the appropriate choice for the discretization of the gravitational source term
in the acoustic step, the well-balanced property is automatically verified without the need to
introduce an other algorithmic correction.

1.2.2 Dissipative fluxes — Parabolic system

We now turn to the discretization of dissipative fluxes (1.2)-(1.3b). They are discretized using
second order discrete fluxes

[
divfdissipative

]
i,j,k

=
(fx,i+1/2,j,k − fx,i−1/2,j,k)

∆x

+
(fy,i,j+1/2,k − fy,i,j−1/2,k)

∆y

+
(fz,i,j,k+1/2 − fz,i,j,k−1/2)

∆z
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Figure 1.2: Comparison of performance on different architectures: Intel KNL, Intel Skylake
(one socket), NVIDIA K80, NVIDIA P100 and NVIDIA V100. Measures on Intel KNL and
Intel Skylake were performed on Joliot-Curie’s supercomputer at TGCC using the same code.
In our case we obtain better results with the Intel Skylake than the Intel KNL due to a lack
of vectorization. Going to a GP-GPU we have a speed-up around five with a NVIDIA K80
compared to multi-core architecture and seven between NVIDIA K80 and V100.

where fdissipative is either the heat flux qheat or the viscous flux τvisc. In the case of the heat
flux we have

qx,i+1/2,j,k = −κ (Ti+1,j,k − Ti,j,k)

∆x

qy,i,j+1/2,k = −κ (Ti,j+1,k − Ti,j,k)

∆y

qz,i,j,k+1/2 = −κ (Ti,j,k+1 − Ti,j,k)

∆z

With the addition of the viscous terms and the heat flux, this all-regime well-balanced scheme is
now well-suited for the study of convection problems in highly stratified flows in both low Mach
and high Mach regimes. Before showing validating numerical tests, we present some specificities
about the numerical implementation and parallelization used in this work.

1.3 Implementation and parallelization
In this section we describe the implementation of the scheme using Kokkos library. We begin by
giving a brief overview of the Kokkos library.

1.3.1 Exascale computing
To reach the exascale, the distributed memory model is not sufficient to take advantage of all
the computing power of new architectures. There are mainly two reasons for this. First, nodes
of supercomputers tend to grow more and more and hence are more suited to a shared memory
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model (Sunderland et al. 2016). Secondly, nodes tend be more and more heterogeneous by
using multi-core, many-core and/or accelerators like GP-GPUs. So it means that even if shared
memory is exposed, it needs to be handled differently from one architecture to another. For
example we can think of OpenMP or C++11 threads for multi-core and many-core processors,
and CUDA or OpenACC for GP-GPUs.

Moreover this architecture heterogeneity raises a performance portability issue. Currently,
many HPC codes are optimized for some specific architectures to get the maximum computing
power. However this optimization process couples the numerical scheme to its implementation
details like the memory management, the loop ordering, cache blocking and so on. Hence running
a code on a different architecture results in bad performance.

We propose to use the recent C++ library Kokkos (see Carter Edwards et al. 2014) that
implements a new shared memory model. Using abstract concepts such as execution spaces
(where a function is executed), data spaces (where data resides) and execution policies (how the
function is executed) the library is able to efficiently take advantage of multi-core many-core
processors and GP-GPUs. This way the portability relies on the library and no more on the
numerical code.

1.3.2 Implementation

Following the work of Kestener 2017, the code is then organized with computation kernels:

• Acoustic and transport kernels,

• Viscous and heat diffusion operator kernels,

• Conservative variables to primitive variables kernel,

• Time step kernel.

Each kernel is a C++ functor. They are given to Kokkos through the function Kokkos::parallel_for.
Internally, depending on the device chosen at compile-time, it hides a parallelized one-dimensional
loop where the current index is given as an argument to the functor. This index is then inter-
preted as a cell index in the domain.

Kokkos only deals with shared memory systems. We use the Message Passing Interface
(MPI) programming model with a regular domain decomposition to take advantage of distributed
memory machines across multiples computing nodes. Kokkos is then used as a shared memory
programming model inside each node. These domains are endowed with ghost zones which are
used to both implement physical boundary conditions and to contain values from neighbour
domains. Communications are handled through the ghost cell pattern (see Kjolstad and Snir
2010). Thus for a given direction X, Y (or Z) and a given side, left or right, one MPI process
sends data from its domain to its neighbour’s ghost zone and receives data into its own ghost
zone.

1.3.3 Performance results

Thanks to Kokkos, we were able to use the same code on different architectures like Intel
Skylake, Intel Knights Landing (KNL) and NVIDIA GP-GPUs (K80, P100, V100). We measured
performance on the Intel Skylake and the Intel KNL partition of the Joliot Curie machine at
TGCC. Figure 1.2 shows the results. We see that the Kokkos library is able to provide good
performance on the different tested architectures. Nevertheless, even if the peak performance of
the Intel KNL architecture is higher than the Intel Skylake one we have better performance on
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Figure 1.3: Weak scaling results obtained on Joliot Curie’s Intel Skylake partition at TGCC.
We use a hybrid MPI-OpenMP configuration in which one MPI task is bound to a socket.
Simulations run for 1000 time steps and each MPI process treats 1283 cells. We see that the
efficiency reaches a plateau of 85%.

the Intel Skylake architecture. We also notice the important speed-up (around five) between the
Intel Skylake architecture and the NVIDIA V100 GP-GPU.

Figure 1.3 shows a weak scaling test performed with a hybrid configuration OpenMP/MPI.
We went up to 512 MPI processes, one MPI process per Intel Skylake socket to avoid NUMA
effects. It results in a total of 12288 cores at 512 MPI processes. Each MPI process is getting
a piece of the whole domain of 1283, so a domain of 443 per core. We can see that we obtain a
plateau of 85% of maximum performance from 128 MPI processes.

The performances obtained with the use of the Kokkos library are encouraging for the study
of convection problems with the ARK code on massively parallel present and future architectures.
In the next section, we use several numerical tests to show that the numerical scheme used in
the ARK code is indeed very well suited for the study of convection.

1.4 Numerical results
In this section we specialize the equation of state 1.3a. We will use an ideal gas satisfying

pEOS (ρ, e) = (γ − 1) ρe

where γ is the adiabatic index of the gas. The speed of sound satifies the following simple relation

c2 = γ
p

ρ
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Figure 1.4: Sod’s test case simulations. Figure shows a snapshot of the density profile ρ for
the All-Regime scheme, with and without the low-Mach correction, a first order Godunov-type
scheme (HLLC) and the exact solution. Spatial resolution is nx = 100. We see that the All-
Regime scheme gives results close to the Godunov-type scheme around discontinuities but is
more diffusive in the rarefaction wave.

We emphasize that it is possible to use a different equation of state with the all-regime well-
balanced numerical scheme. Moreover we consider two versions of the all-regime scheme depend-
ing on the low-Mach correction. We will refer to the disabled low-Mach correction scheme when
θ = 1 and to the enabled one when θ follows equation 1.13.

We will test different properties of the scheme with different test cases: wave speeds with the
Sod test (no gravity), low-Mach accuracy with the Gresho vortex test (no gravity), hydrostatic
balance with the test of an atmosphere at rest and out of equilibrium behavior with the Rayleigh-
Taylor test. We then use the ARK code for the study of Rayleigh-Bénard convection.

1.4.1 Shock tube test

The Sod shock tube (Sod 1978) is a classical test for compressible solvers. It tests the ability of
the solver to have correct wave speeds and its numerical diffusion near discontinuities.

The computational domain is the interval [0,1], the initial condition is defined by

(ρ, p, u) =

{
(1, 1, 0) if x < 0.5,

(0.125, 0.1, 0) if x ≥ 0.5.

Results are shown in figure 1.4 for simulations with nx = 100. First we can observe that the
solver is as good as a first order Godunov-type scheme with a HLLC approximate Riemann
solver around the contact discontinuity and the shock. However the rarefaction wave is a bit
more diffused. We also notice that the low-Mach correction does not influence the behavior of
the scheme for this test case. However we want to stress out some instability near discontinuities,
as shown in Chalons et al. 2016. This can also be seen in a double shock waves test case.
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Figure 1.5: Gresho vortex simulations. Snapshots of the magnitude of the velocity field at time
tf = 10−3, for a resolution of 5122 and for different Mach numbers. First line shows results where
the low-Mach correction is disabled and second line where it is enabled. We see that without the
low-Mach correction the scheme fails at simulating low-Mach flows.

1.4.2 Gresho vortex test case

The Gresho vortex (Gresho and Chan 1990; Miczek et al. 2015) is a test case that has already
been used to test numerical schemes in the low Mach regime. It is a two dimensional stationary
test case that can be parameterized by the maximum value of the Mach number. It is thus
well-suited to study the behavior of the scheme in the low Mach regime. We recall that the test
case is defined using polar coordinates (r, θ) defined with respect to the center of the vortex as
follows

ρ = ρ0,

(ur, uθ) =


(0, 5r) 0 ≤ r < 0.2,

(0, 2− 5r) , 0.2 ≤ r < 0.4,

(0, 0) , 0.4 ≤ r

p =


p0 + 12.5r2, 0 ≤ r < 0.2,

p0 + 12.5r2 + 4− 20r + 4 ln(5r), 0.2 ≤ r < 0.4,

p0 − 2 + 4 ln 2, 0.4 ≤ r.

where p0 satisfies p0 = 1
γMa2 . In this case Ma is a parameter and γ is the adiabatic index of
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the ideal gas. The velocity is normalized so a particle placed at the peak of velocity (u = 1.0 at
location r = 0.2) make a full rotation in ∆t = 2

5π ≈ 1.26.
We ran a serie of simulations with different solvers where we explored parameter space nx and

Ma from 32 to 2048 and from 1.0 to 1.0× 10−5 respectively. Final time is set to tf = 1.0× 10−3,
which has been chosen sufficiently small such that the error doesn’t saturate.

Figure 1.5 shows snapshots of the the magnitude of the velocity field at the final time and
at resolution 5122. We see that when the Mach number decreases the velocity field becomes
more and more degraded when the low-Mach correction is disabled. At Ma = 10−5, the vortex
has completely disappeared. Figures 1.6 and 1.7 show more quantitative results where we show
absolute L1 error on velocity in function of the Mach number Ma and the spatial resolution dx
respectively. Figure 1.6 shows that L1 error on velocity depends on the Mach number. More
precisely we measure a slope of -1 on schemes or order 1 and a slope of -0.5 on scheme of order
2. On the other hand the low Mach correction of the all-regime scheme gives a uniform error
with respect to the Mach number. Figure 1.7 shows convergence curves at Ma = 1.0× 10−3. We
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Figure 1.6: Gresho vortex simulations. L1 error on the velocity in function of the Mach number
at a fixed number of points of nx = 2048

see that both Godunov-type and all-regime without the low Mach correction converge at order 1
as expected. Nevertheless Godunov-type with Muscl-Hancock reconstruction converges only at
order 1.5. It may be due to the lack of regularity of the velocity field as it can be observed in
the case of a contact discontinuity (see Springel 2010). All-Regime scheme shows two different
behaviors, at first it converges at order 1.5 then around nx = 1024 the slope changes and it
converges at order 1.2. We assume that at higher resolution we would recover order 1. We see
that at low Mach number the precision, independently of the order, is better than the one of a
Godunov-type scheme.

1.4.3 Well-balanced test case

The well-balanced test case is a simple isothermal column of atmosphere at equilibrium. This
column of atmosphere is in a stable equilibrium state. The test allows us to measure the ability
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Figure 1.7: Gresho vortex simulations. L1 error on the velocity in function of the spatial
resolution, at a fixed Mach number of Ma = 10−5.

of the scheme to preserve this equilibrium. After normalization, it is given by

p(z) = ρ(z) = e−z

T = 1

which is the solution of the following system

dp

dz
= −ρdΦ

dz
T = 1

p = ρT

We take advantage of the formula (1.14) and we initialize the test case with the following formula

pi+1 − pi
∆z

= −ρi + ρi+1

2

Φi+1 − Φi
∆z

Ti = 1

pi = ρiTi

The computational domain used is the interval [0, 3]. Results are displayed in table 1.1 at time
t = 10, more than three times the sound crossing time in the box. We see that we stay near
machine precision at the end of the simulation. We see a shift of two orders of magnitude in
the error when using the low-Mach correction. The reason of this shift is not entirely clear and
is difficult to interpret as it involves truncature errors. Looking at the spatial pattern of the
error in the simulation, it does seem to come from the boundary conditions (extrapolation of
the hydrostatic balance for pressure and density and reflexive conditions for the velocity) with
the use of the low-Mach correction. A more appropriate boundary condition might remove this
shift in the error (which is in any case sufficiently small and stable to allow the use of controlled
seeded perturbations).
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Table 1.1: Isothermal atmospheres at rest. Table shows for different spatial resolutions the
maximum velocity in the domain. We see that the velocity is maintained around zero up to the
machine precision, thus illustrating the well-balanced property.

Number of cells velocity (θ = 1) velocity (θ = Ma)
128 2.910−15 1.410−13

256 8.110−15 5.710−13

512 1.510−14 1.110−12

1024 2.210−14 2.210−12

2048 4.710−14 1.610−12

4096 1.110−13 4.010−12

1.4.4 Rayleigh-Taylor instability test case

The Rayleigh-Taylor test case is a two dimensional test case where two fluids of different densities
are superposed and are at equilibrium. The denser one is on top. A small perturbation is
introduced to break equilibrium.

The full setup is as follow, for a domain [−0.25, 0.25]× [−0.75, 0.75]:

ρ (x, y) =

{
1 for y < 0

2 for y >= 0

p (x, y) = ρgy

u (x, y) = 0

v (x, y) =
C

4

(
1 + cos

(
2πx

Lx

))(
1 + cos

(
2πy

Ly

))
Where C = 0.01 is the magnitude of the velocity perturbation, Lx = 0.5 and Ly = 1.5 are the
size of the domain in each direction. We do not need to use the well-balanced formula (1.14),
the equilibrium is preserved in the case A = 0.

Figure 1.8 shows two simulations of the Rayleigh-Taylor test case, one with the low Mach
correction and the other without it (θni+1/2 = 1). Both simulations are at the same time t = 12.4
and the same resolution 200× 600. The yellow part is at density 2 and the purple is at density
1. We see that we recover the classical linear growing mode. Moreover the simulation with the
low Mach correction is able to capture secondary instabilities in the non linear regime. They are
closer to the second order Godunov-type simulation than the order one. However the low Mach
correction does not help on the interface diffusion between the two mediums. It also shows a
peak that is not present without the correction at the same resolution. This spurious behavior
is therefore caused by the low Mach correction that removes some numerical diffusion in the
scheme. By looking at higher resolutions, we identify that this peak is a grid-seeded secondary
RT unstable mode that appears at the top of the large scale seeded mode. This type of secondary
modes are not unexpected and can be seen for example in Fig. 9 of Almgren et al. 2010. This
peak disappears with the addition of some physical viscosity in the simulation.

1.4.5 Rayleigh-Bénard instability test case

This last test case is about compressible convection simulations both in 2D and 3D. In this
test case there are different important parameters. First, from stability analysis we know that
the Rayleigh number Ra is an important non-dimensional number. Beyond a threshold, called
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Figure 1.8: Rayleigh-Taylor simulations. Figure shows snapshots of density, one in purple and
two in yellow at time t = 12.4 and for a resolution of 200× 600. First line show results with the
the all-regime scheme, where on the left the low-Mach correction is disabled and is enabled on
the right. Second line shows results with a Godunov-type scheme, on the left it is first order,
on the right it is second order using a Muscl-Hancock scheme. We see that with the low-Mach
correction we recover features only present at second order for a standard Godunov-type scheme.

the critical Rayleigh Rac, the convection process starts and efficiently transports the heat (see
Figures 1 and 3 in Hurlburt et al. 1984). Below this threshold, diffusion processes are sufficient to
transport heat and no material displacement is necessary. Then another important parameter is
the density stratification χ which the ratio between the density at the bottom of the domain and
the density at the top. In the highly stratified case, study of convection becomes more difficult
as there is not a unique Rayleigh number but more a whole range of values extending on the
scale height. Notice that when χ → 1 we recover the Boussinesq-like situation. Finally the last
parameter is the polytropic index m which is a measure of how close is the initial temperature
gradient from the adiabatic gradient. One can show that the Schwarzschild criterion writes

m+ 1 <
γ

γ − 1
= 2.5, γ =

5

3

The initial setup is inspired from Hurlburt et al. 1984; Toomre et al. 1990. Following their
notation, the initial state is given by a polytropic profile of polytropic index m

T = z, ρ = zm, p = zm+1

where z is the vertical variable. It is initialized using to the recursive formula (1.14). So we begin
with a hydrostatic equilibrium that we destabilize whether with a velocity mode perturbation or
with a temperature random perturbation.

2D case

We begin with 2D simulations in a weak stratification setup where χ = 1.1 and m = 1.3 in
order to be close to the adiabatic gradient. The initial perturbation is close to the fundamental
velocity mode. The spatial resolution is set to 1282, and we impose the temperature flux on the
bottom boundary. We then obtain stationary symmetric convective rolls. We study the effect of
the low-Mach correction on the onset of the Rayleigh-Bénard instability by varying the initial
Rayleigh number. Figure 1.9 shows the evolution of the mean absolute velocity. The linear
phase, in logarithmic scale, corresponds to the exponential growth of modes. We can see that
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Figure 1.9: Rayleigh-Bénard instability simulations in 2D. Figure shows the time evolution of
the mean absolute velocity for different ratios of Rayleigh number over critical Rayleigh number
(see legend). Blue points show the case where the low-Mach correction is enabled and orange
ones where it is disabled. We observe that when the low-Mach correction is enabled the onset of
convection is closer to the expected critical Rayleigh number.

without the low-Mach correction we have an effective critical Rayleigh number between 10 and
15. Whereas with the low-Mach correction we recover an effective critical Rayleigh number close
to the theoretical critical one.

If we now turn to a stronger stratification, the convective rolls pattern change. We increase
the density ratio to χ = 21. Figure 1.10 shows a snapshot of the local Mach number field with
the velocity field, low-Mach correction enabled. As observed in Hurlburt et al. 1984 we see a
downward shift of the center of mass of convective rolls compared to the weak stratification
case. By conservation of mass, the upper part of the convective roll has to be larger. The
strong stratification case also exhibits higher Mach flows, around Ma ≈ 0.5 at the top of the box
due to the low density. The all-regime well balanced scheme is indeed able to capture properly
convection in highly stratified and high Mach flows.

3D case

We now turn to 3D simulations in a weak stratification situation. In this setup we want to look
at the effect of the low-Mach correction on the kinetic energy spectrum in a more turbulent
situation. So we change the polytropic index to m = 0.1 and increase the initial Rayleigh
number to Ra ≈ 650000. We also change the boundary condition to a fixed temperature for both
boundaries in order to continuously force a large Rayleigh number in the simulation. By using
different upscaling, from 1283 to 5123 we reach a stationary state 2. Figure 1.12 shows a snapshot
of the velocity in the box. We see large and structured vertical flows whereas in horizontal plans
the flow is more turbulent. In order to study the different scales and the energy in this turbulent
state we compute power spectrum of the kinetic energy of the horizontal middle plane. Figure 1.11
shows the results, the orange curve corresponds to the simulation performed with the low-Mach

2. The simulation outputs are available at http://opendata.erc-atmo.eu

http://opendata.erc-atmo.eu
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Figure 1.10: Rayleigh-Bénard instability simulations. Snapshot of the local Mach number field
and the velocity field. We see that in the strong stratification case, there is a large range of
Mach, near zero at the center of rolls up to half at the upper boundary.
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Figure 1.11: Rayleigh-Bénard instability simulations in 3D. Figure shows the kinetic energy
spectrum of the horizontal middle plane. The blue line corresponds to the scheme with low-
Mach correction and the orange one without the low-Mach correction. We see more kinetic
energy at all scales in the case of the low-Mach correction.

correction and the blue one without it. We see a net difference in the overall kinetic energy due
to a lower dissipation into the internal energy. We notice that we recover higher kinetic energies
at all scales showing that the low Mach correction is important to properly capture the power
spectrum of turbulent convection.
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Figure 1.12: Rayleigh-Bénard instability simulations in 3D. Figure shows the velocity field in
the box. The length of an arrow is scaled using the magnitude of the local velocity. The colorbar
represents the vertical component of the velocity showing the direction of the flow.
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Conclusion
We have presented a new numerical code that is able to perform simulations of convection
without any approximation of Boussinesq nor anelastic type. To do so we have adapted an all-
Mach number scheme into a well-balanced scheme for gravity. We have been able to show that
it preserves arbitrary discrete equilibrium states up to the machine precision. Moreover the low-
Mach correction in the numerical flux allows to be more precised in the low-Mach regime. This
new scheme is well suited to properly study highly stratified and high Mach convective flows.
The low Mach correction is important to properly capture convection modes in the laminar low
Mach regime and the kinetic energy power spectrum in the turbulent regime. This code has been
parallelized using a hybrid approach MPI+Kokkos in order to be well prepared for running on
forthcoming exascale machines.

Further work will consist in using the implicit-explicit approach to reach very low Mach
number simulations, see Chalons et al. 2016, and still keeping the well-balanced property for the
gravity source term. Indeed by solving the acoustic part implicitly we avoid the restrictive CFL
condition due to the fast acoustic waves. With both the explicit-explicit and implicit-explicit
approach, this numerical scheme will be able to efficiently study convection problems in all
regimes, low Mach and high Mach on the largest next generation massively parallel architectures.
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Appendix

1.A Eigenstructure of the acoustic system

For the sake of simplicity, the eigenstructure analysis of the acoustic system (1.9) is made in the
one-dimensional case. We use the following change of variables, valid for smooth flows

(ρ, ρu, ρE , ρΨ,Φ)→ (ρ, u, s,Ψ,Φ),

where s is the specific entropy. By using equation of mass, one obtains

∂tρ+ ρ∂xu = 0,

∂tu+
1

ρ
∂xp

EOS + ∂xΦ = 0,

∂te−
p

ρ
∂xu = 0,

∂tΨ− u∂xΦ = 0,

∂tΦ = 0.

By using the second law of Thermodynamics and the equation on the specific internal energy,
one can show that ∂ts = 0 (see Godlewski and Raviart 1996). Thus the acoustic system (1.9)
writes equivalently

∂tρ+ ρ∂xu = 0,

∂tu+
1

ρ
∂xp

EOS + ∂xΦ = 0,

∂ts = 0,

∂tΨ− u∂xΦ = 0,

∂tΦ = 0.

(1.15)

The Jacobian matrix associated to the quasi-linear system 1.15 involves five eigenvalues: −c <
0 < c where 0 is degenerated three times and c satifies c2 = ∂ρp

EOS (ρ, s). It is then hyperbolic.
The four eigenvectors are given by

r0
0 =

(
∂sp, 0,−c2, 0, 0

)T
, r1

0 = (0, 0, 0, 1, 0)
T
, r±c = (ρ,±c, 0, 0, 0)

T
.

Clearly the field associated to the stationary wave is linearly degenerated. The fields associated
to ±c are genuinely non-linear under the condition that the following quantity does not vanish

±∇c (ρ, s) · r±c = ±ρ∂ρc = ± ρ

2c
∂2
ρρp

EOS.
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1.B Non-conservative energy scheme
To obtain the non-conservative scheme, we do not need anymore the relaxation on the gravita-
tional potential. This scheme is then obtained through the following splitting, for the acoustic
subsystem

∂tρ + ρdivu = 0,

∂t (ρu)+ρudivu+ ∇p = −ρ∇Φ,

∂t (ρE)+ρEdivu+ div (pu) = −ρu ·∇Φ,

followed by the transport subsystem

∂tρ + u ·∇ρ = 0,

∂t (ρu) + u ·∇ (ρu) = 0,

∂t (ρE) + u ·∇ (ρE) = 0,

then we use the same techniques for the acoustic system as in 1.2.1, in other words the use of
the mass variable and the Lagrangian variables. The acoustic system in these variables writes

∂tτ − ∂mu = 0,

∂tu + ∂mp = −1

τ
∂mΦ,

∂tv = 0,

∂tE + ∂m(pu) = −u
τ
∂mΦ,

E = e+
1

2
(u2 + v2).

Using a pressure relaxation, an approximate Riemann solver with source term, see Gallice 2002,
and the same upwind scheme for the transport system as in 1.2.1 we obtain the following non-
conservative counterpart scheme

ρn+1
i = ρni −

∆t

∆x
[ρ̃u∗]i,

(ρu)
n+1
i = (ρu)

n
i −

∆t

∆x

[
(̃ρu)u∗ + Π∗

]
i
+

∆t

∆x
Sni ,

(ρv)
n+1
i = (ρv)

n
i −

∆t

∆x

[
(̃ρv)u∗

]
i
,

(ρE)
n+1
i = (ρE)

n
i −

∆t

∆x

[(
(̃ρE) + Π∗

)
u∗
]
i
+

∆t

∆x
(uS)

n
i ,

where

u∗i+1/2 =
1

2
(uni+1 + uni )− 1

2a

(
Πn
i+1 −Πn

i − Sni+1/2

)
,

Π∗i+1/2 =
1

2

(
Πn
i+1 + Πn

i

)
− a

2

(
uni+1 − uni

)
,

ani+1/2 ≥ max
(
ρni c

n
i , ρ

n
i+1c

n
i+1

)
,

Sni =
1

2

(
Sni+1/2 + Sni−1/2

)
,

(uS)
n
i =

1

2
(u∗i+1/2S

n
i+1/2 + u∗i−1/2S

n
i−1/2),

Sni+1/2 = −1

2

(
1

τni
+

1

τi+1

)
(Φi+1 − Φi) .
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This scheme is not conservative for the whole energy but is closer to the scheme proposed for
the shallow water equations in Chalons et al. 2017, for which the authors have obtained a
discrete entropy inequality. It seems therefore possible to obtain a similar inequality for this
non-conservative scheme, but this demonstration is beyond the scope of this paper.

1.C Generalized convection, diabatic convection

Convective instabilities such as standard adiabatic convection, moist convection or even double-
diffusive convection are usually studied independently. In this section we present a unified deriva-
tion of the instability criteria by introducing a general source term on the energy equation of
Navier-Stokes equations and a fraction that parameterizes the equation of state. As it has been
presented in Tremblin et al. 2019, this allows to consider other convective instabilities such as the
radiative convective instability in the CO/CH4 transition in the atmosphere of brown dwarfs and
exoplanets. Even though all these convective instabilities involve different mechanisms they have
in common to either influence local density or temperature which are the key ingredients to con-
vection movements. By opposition to adiabatic convection, we qualify the convection involving
such mechanisms as diabatic convection. Omitting the momentum viscosity, the Navier-Stokes
system writes

∂tρ + div (ρu) = 0,

∂t (ρu) + div (ρu⊗ u+ pI) = ρg,

∂t (ρE) + div ((ρE + p)u) = ρcpH (C, p, T ) ,

∂t (ρC) + div (ρCu) = ρR (C, p, T ) ,

(1.16)

p = peos (ρ, e, C) . (1.17)

in which H is a heat source and R is a composition source. Both source terms and the equation
of state depend on a fraction C.

In Sections 1.C.1 and 1.C.2, we derive the Boussinesq system from a rescaled Navier-Stokes
system, omitting the source terms H and R. This system consists in studying Navier-Stokes
equations on a small length scale in which pressure variations are considered to be small thus
removing pressure dependence on density variations. Then in Section 1.C.3 we derive the insta-
bility criteria which are obtained by studying stability of eigen modes after linearization of the
Boussinesq model.

1.C.1 Non-dimensional form

Before deriving the Boussinesq system, we write the Euler equations in a non-dimensional form.
We choose l0, u0, ρ0, p0, g0 to be some reference quantities. For the reference speed of sound we
choose c20 = p0

ρ0
. We also choose the internal energy as total energy reference ρ0E0 = ρ0e0 = p0.

By rescaling variables as f = f0f̄ , the Euler system writes

ρ0

t0
∂t̄ρ̄+

ρ0u0

l0
div (ρ̄ū) = 0

ρ0u0

t0
∂t̄ (ρ̄ū) +

1

l0
div
(
ρ0u

2
0ρ̄ū⊗ ū+ p0p̄I

)
= ρ0g0ρ̄ḡ

ρ0E0

t0
∂t̄
(
ρ̄Ē
)

+
1

l0
div
((
ρ0E0ρ̄Ē + p0p̄

)
u0ū

)
= ρ0g0u0ρ̄ḡ · ū
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This system can be rewritten as follows:

Sr∂t̄ρ̄+ div (ρ̄ū) = 0

Sr∂t̄ (ρ̄ū) + div

(
ρ̄ū⊗ ū+

1

Ma2 p̄I
)

=
1

Fr2 ρ̄ḡ

Sr∂t̄
(
ρ̄Ē
)

+ div
((
ρ̄Ē + p̄

)
ū
)

=
Ma2

Fr2 ρ̄ū · ḡ

ρ̄Ē = ρ̄ē+ Ma2 ρ̄

2
‖ū‖2

where we introduced the Strouhal number, the Mach number and the Froude number:

Sr =
l0
u0t0

Fr2 =
u2

0

g0l0
=

ρ0u
2
0

ρ0g0l0
= 2

Ekinetic

Egravitational

Ma2 =
u2

0

c20
=

u2
0

p0/ρ0
=
ρ0u

2
0

ρ0e0
= 2

Ekinetic

Einternal

that are respectively the ratio of kinetic energy over gravitational energy and the ratio of kinetic
energy over internal energy. In the following we consider that Sr = 1 and we omit the bar to
simplify notations.

1.C.2 Boussinesq regime
In this section we derive the Boussinesq system from Euler system with gravity. We follow the
approach in Mentrelli 2018; Feireisl and Novotný 2017 using an Hilbert expansion in terms of a
non-dimensional small parameter ε. However we choose a different set of variables for the Hilbert
expansion. Moreover we set H = 0 and R = 0.

We start the analysis from the rescaled Euler system

∂tρ+ div (ρu) = 0

∂t (ρu) + div

(
ρu⊗ u+

1

Ma2
pI
)

=
1

Fr2
ρg

∂t (ρE) + div (u (ρE + p)) =
Ma2

Fr2
ρg · u

p = peos (ρ, e)

ρE = ρe+ Ma2 ρ

2
‖u‖2, ρE = ρE +

Ma2

Fr2
ρφ

(1.18)

We are interested in the Boussinesq regime, which we define to be the limit of the latter system
when Ma = ε, Fr =

√
ε and Bo = Ma

Fr =
√
ε for ε → 0. We refer the reader to Feireisl and

Novotný 2017 for the scaling leading to the anelastic system. In order to derive the limit we use
an Hilbert expansion, variables are then written as f =

∑
n ε

nfn. Because we are interested in
smooth solutions, System 1.18 can be written in non-conservative variables u, p and T

ρ (∂tu+ u ·∇u) +
1

ε2
∇p =

1

ε
ρg

∂tp+ u ·∇p+ ρc2divu = 0

ρcp (∂tT + u ·∇T ) = αT (∂tp+ u ·∇p)

ρ = ρeos (p, T )

(1.19)
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in which α (p, T ) = − 1
ρ∂T ρ

eos (p, T ) is the isobaric thermal expansion coefficient. We also intro-
duce the isothermal compressibility coefficient χ (p, T ) = 1

ρ∂pρ
eos (p, T ). Temperature equation

is obtained from entropy equation and using Maxwell relations. Hilbert expansion for orders
O
(
ε−2
)
, O
(
ε−1
)
and O

(
ε0
)
reads

∇p0 = 0

∇p1 = ρ0g

∂tp0 + u0 ·∇p0 + ρ0c
2
0divu0 = 0

ρ0 (∂tu0 + u0 ·∇u0) + ∇p2 = ρ1g

ρ0cp0 (∂tT0 + u0 ·∇T0) = α0T0 (∂tp0 + u0 ·∇p0)

ρ0 = ρeos (p0, T0)

(1.20)

First equation imposes uniform pressure p0 (t,x) = p0 (t), using compatible boundary condi-
tions we also have a constant pressure p0 (t) = p0 (0). From pressure equation, this imposes a
divergence-free velocity field divu0 = 0. Hence, temperature equation reduces to a transport
equation. Assuming uniform initial temperature profile and compatible boundary conditions we
deduce that temperature is uniform in space and constant in time, T0 (t,x) = T0 (t) = T0 (0).
Using equation of state, ρeos we also deduce that density is uniform and constant. Density ρ1 is
unknown, we need to go one order further, it writes

ρ0cp0 (∂tT1 + u0 ·∇T1) = α0T0 (∂tp1 + u0 ·∇p1)

ρ1 = ∂pρ (p0, T0) p1 + ∂T ρ (p0, T0)T1

(1.21)

Akin to p0, assuming that p1 is constant in time we obtain

ρ0cp0 (∂tT1 + u0 ·∇T1) = α0T0u0 ·∇p1

ρ1 = −ρ0α0T1 + ρ0χ0p1

(1.22)

We introduce the so-called adiabatic temperature gradient, in hydrostatic equilibrium

∇Tad =
α0T0

ρ0cp0

∇p1 =
α0T0

cp0

g (1.23)

Boussinesq system then writes

divu0 = 0

∂tu0 + u0 ·∇u0 +
1

ρ0
∇p2 =

ρ1

ρ0
g

∂tT1 + (∇T1 −∇Tad) · u0 = 0

ρ1 = −ρ0α0T1 + ρ0χ0p1

(1.24)

It is standard to write the system in variables relative to the hydrostatic equilibrium, we empha-
size that this is no more an approximation. Hydrostatic solution follows

uh0 = 0

∇ph2 = ρh1g

ρh1 = −ρ0α0T
h
1 + ρ0χ0p1

(1.25)
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Noting f̃ = f − fh variables relative to the hydrostatic equilibrium, Boussinesq system 1.24 also
write

divu0 = 0

∂tu0 + u0 ·∇u0 +
1

ρ0
∇p̃2 = ρ̃1g

∂tT̃1 + u0 ·∇T̃1 +
(
∇Th1 −∇Tad

)
· u0 = 0

ρ̃1 = −ρ0α0T̃1

(1.26)

To summarize the expansion of variables we have

T = T0 + ε
(
Th1 + T̃1

)
+ ε2T2 + . . . , T1 = Th1 + T̃1

ρ = ρ0 + ε
(
ρh1 + ρ̃1

)
+ ε2ρ2 + . . . , ρ1 = ρh1 + ρ̃1

p = p0 + ε
(
ph1 + 0

)
+ ε2

(
ph2 + p̃2

)
+ . . . , ph1 = p1, p2 = ph2 + p̃2

(1.27)

1.C.3 Diabatic convection instability analysis
To fix ideas the equation of state is chosen to be an ideal gas for which mean molecular weight
m depends on a fraction / concentration C

p = ρ
kB

m (C)
T (1.28)

As an example of source term in this section we consider thermal conduction given by Fourier’s
law H (C, p, T ) = H (T ) = σT∆T and molecular diffusion given by Fick’s law R (C, p, T ) =
R (C) = σC∆C. Both source terms have the same structure with σT being the thermal diffusion
coefficient and σC the molecular diffusion coefficient. These source terms correspond to the
double diffusive convection. Other source terms are developed in Tremblin et al. 2019.

Following notations introduced in Section 1.C.2, the Boussinesq system writes

divu0 = 0

∂tu0 + u0 ·∇u0 +
1

ρ0
∇p̃2 = ρ̃1g

∂tT̃1 + u0 ·∇T̃1 +
(
∇Th1 −∇Tad

)
· u0 = H

(
Ch1 + C̃1, p0, T

h
1 + T̃1

)
−H

(
Ch1 , p0, T

h
1

)
∂tC̃1 + u0 ·∇C̃1 + ∇Ch1 · u0 = R

(
Ch1 + C̃1, p0, T

h
1 + T̃1

)
−R

(
Ch1 , p0, T

h
1

)
ρ̃1 = −ρ0α0T̃1 + ρ0β0C̃1

(1.29)

with β0 = 1
ρ0
∂Cρ

eos (C0, p0, T0) and in which we neglect pressure variations of source terms H
and R. By linearizing the system near equilibrium we have

divu0 = 0,

∂tu0 +
1

ρ0
∇p̃2 = ρ̃1g,

∂tT̃1 − w0

(
∇Th1 −∇Tad

)
= HCC̃1 +HT T̃1,

∂tC̃1 − w0∇Ch1 = RCC̃1 +RT T̃1,

ρ̃1 = −ρ0α0T̃1 + ρ0β0C̃1.

(1.30)

in which ∇Th1 = −∇Th1 · ez, ∇Thad = −∇Thad · ez and ∇Ch1 = −∇Ch1 · ez.
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In order to study stability of perturbations, a standard method is to first derive dispersion
relation by seeking for non-vanishing modes of the form f (t,x) = f̂ eωt+ik·x in a periodic box.
Solutions of this form are said to be unstable if the real part of the dispersion relation is positive,
i.e. <(ω) = <(ω (k)) > 0, the case <(ω) = 0 defines the marginal stability (which defines the
critical Rayleigh number in the adiabatic situation). It can be noticed that other boundary
conditions in the z-direction generally lead to a differential system in variable z resulting in a
shift of the marginal stability. Even though this analysis needs to be adapted to each situation,
it gives qualitative results regarding physical mechanisms. It results in a linear system given by

k · û0 = 0,

ρ0ωû0 + ikp̂2 = ρ̂1g,

ωT̂1 − ŵ0

(
∇Th1 −∇Thad

)
− ĤCĈ1 − ĤT T̂1 = 0,

ωĈ1 − ŵ0∇Ch1 − R̂CĈ1 − R̂T T̂1 = 0,

ρ̃1 = −ρ0α0T̃1 + ρ0β0C̃1.

(1.31)

In the particular case of thermal conduction we have ĤT T̂1 = −σTk2T̂1 and for molecular
diffusion R̂CĈ1 = −σCk2Ĉ1.

For a given wave-number k, we look for non-zero solutions of the linear system 1.31 which
are then characterized by a non-zero determinant of the associated matrix. The problem now
reduces to find values for ω which both cancel out the determinant and have negative real part.
It can be shown that the problem reduces to solving a third degree polynomial. Finally unstable
solutions follow one of the two inequalities(

∇Th1 −∇Thad

)
α0 −∇Ch1 β0 > 0, (1.32)(

∇Th1 −∇Thad

) (
α0R̂C + β0R̂T

)
−∇Ch1

(
β0ĤT + α0ĤC

)
< 0. (1.33)

The first inequality 1.32 corresponds to the known Ledoux criterion for the convective region of
stars. The second criterion involves the coupling of source terms and is referred as diabatic crite-
rion. Again in the particular case of thermal conduction and molecular diffusion, inequality 1.33
reduces to the standard double-diffusive criterion 1.34(

∇Th1 −∇Thad

) α0

σT
−∇Ch1

β0

σC
> 0. (1.34)

In addition to double diffusion convection Equation 1.33 can also describe the moist convective
instability in earth atmospheres when source terms are replaced by condensation/evaporation
of liquid water. Note that this general theory has been derived thanks to the simulations that
were performed with code ARK. Other applications such as the CO/CO2 radiative convection
in the atmosphere of hot rocky exoplanets are under development (Daley-yates et al in prep.,
see Figure 1.13). We also point out that the diabatic theory with condensation/evaporation of
steam/liquid water could also be of interest for two-phase flow applications in nuclear engineering,
the subject of the next chapter.
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Figure 1.13: Simulation box of an atmosphere, composed of CO/CO2 molecules, which is un-
stable to convection. The heating source term depends both on radiative energy and molecular
composition; driving the convective instability. The colorbar represents the density.
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Chapter 2

Droplet impact

Introduction

In the context of a nuclear reactor, the increase of the power leads to the decrease of the pressure
in the secondary circuit and to a decrease of the vapor mass fraction down to 97 %. Liquid
droplets can form from the steam matrix. The velocity of the droplets is estimated between
30 m s−1 and 100 m s−1. When impacting the pipes, for example during a change of direction,
liquid droplets can damage them. An estimation of the pressure developed at the moment of the
impact can help in the design of the circuitry to better cope with potential high local pressure
values.

A few liquid droplet impact experiments have been realized, as for example in the work
of Field et al. 1989. They could record snapshots of the density gradient during the impact of a
high velocity two-dimensional droplet, see snapshots below 2.2. From the numerical point of view,
some simulations investigated the liquid impacts. In the work of Wu et al. 2018, authors explore
cylindrical droplets impacts at very high velocities, up to 200 m s−1. Three phases are involved,
liquid water, steam water and air. They use a pressure threshold to trigger cavitation along
with an instantaneous relaxation. They find good agreement in comparing Schlieren images.
In Kyriazis et al. 2018, authors model the phases as a mixture at mechanical and thermal
equilibrium. They have found a large cavitation area at the back of the droplet.

In this work we investigate droplet impacts by means of a Homogeneous Equilibrium Model.
We begin by introducing this model and how we relate it to the five-equation model using a
relaxation. The second section presents numerical discretization of these models. The third
section presents the numerical validation of the model and numerical simulations of droplet
impacts at high resolution.

2.1 Model

Before discussing models and discretization we first introduce necessary notations used in the
following. Vectors are noted v and matrices T, in particular identity matrix is noted I.

We study a particular case of two-phase flows that involves water in two phases: liquid and
gas. In the following we use as synonyms the terms gas, vapor and steam. We use the index α
to generically refer to the phases: α = 0 (resp. α = 1) will refer to the gas (resp. liquid). Phasic
quantities are indexed by α, for example ρα. We call pure state a state which is only composed
of either gas or liquid and a mixture state otherwise.
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Following notations from Chapter 1, each phase is characterized by a density ρα = 1
τα
, a

specific internal energy eα and a velocity uα. Moreover we note sα and Tα, respectively, the
specific phasic entropy and the phasic temperature. We assume that both phases, gas and
liquid, are described with given equations of state (ρα, sα) 7→ peos

α (ρα, sα). These equations of
state are such that we can define a real valued speed of sound

cα
2 =

∂peos
α

∂ρα
(ρα, sα) > 0. (2.1)

We also recall the definition of the phasic specific chemical potential

gα = eα +
pα
ρα
− Tαsα. (2.2)

2.1.1 Description of the mixture
As in the mono-fluid case, the mixture is characterized by a density ρ, a specific internal energy
e, a velocity u and fractions that link the phasic quantities to the mixture quantities.

The volume fraction zα is the volume occupied by one phase in a given volume. It is used to
link the mixture densities and the specific energies to their phasic equivalents

ρ =
∑
α

ραzα,

ρe =
∑
α

ραzαeα.
(2.3)

These two equations come from the extensivity properties of mass and energy. Furthermore we
consider that the two phases are immiscible. This directly translates to∑

α

zα = 1. (2.4)

This allows us to note z = z1 = 1− z0.
The mass fraction, yα is the fraction of mass of one phase in a given volume, i.e.

yα =
ρα
ρ
zα. (2.5)

By definition it satisfies
∑
α yα = 1, thus we also note y = y1 = 1− y0.

We choose a mixture equation of state of the form p = peos (ρ, e, z, y) which depends on the
two fractions z and y. In the following we consider the thermodynamics equilibrium equation of
state and the isobaric equation of state.

Different definitions can be chosen for p that will characterize the mixture. There exists other
closure models related to mixtures such as isothermal and isochoric, see Lagoutière 2000; Allaire
et al. 2002; Barberon and Helluy 2005; Helluy and Seguin 2006.

2.1.2 Isobaric mixture, peosisob

We consider an isobaric closure that simply writes

peos
isob(ρ, e, z, y) = peos

1 (ρ1, e1) = peos
0 (ρ0, e0) . (2.6)

For a given tuple (ρ, e, z, y) and together with the specific internal energy relation e =
∑
α eα,

the pressure equality allows to give a value to phasic specific internal energies eα, i.e. to the
phasic temperatures Tα.
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Remark 1 (Domain of validity) It follows that the liquid pressure must remain positive be-
cause of the gas phase. Then this doesn’t allow to take into account meta-stable states of liquid
like stretching that can lead to negative pressures. However, depending on phasic equations of
state, this formula may allow to derive an effective equation of state with a larger domain of
validity as it is the case with stiffened gases.

2.1.3 Thermodynamics equilibrium mixture, peoseq

Following the lines from Helluy and Seguin 2006; Barberon and Helluy 2005; Faccanoni et
al. 2008, we distinguish two cases

• the equilibrium that corresponds to a pure state,

• the equilibrium that corresponds to a mixture state.

Pure states

In the first case, the equilibrium equation of state reduces to the phasic equation of state, that
is to say

peos
isob (ρ, e, z, y) =

{
peos

1 (ρ, e) , if z1 = y1 = 1,

peos
0 (ρ, e) , if z0 = y0 = 1.

(2.7)

Mixture states

In the second case, we consider that the two phases have the same pressure, temperature and
chemical potential that is to say

τ = (1− y) τ0 + yτ1,

e = (1− y) e0 + ye1,

peos
0 (ρ0, e0) = peos

1 (ρ1, e1),

T eos
0 (ρ0, e0) = T eos

1 (ρ1, e1),

geos
0 (p0, T0) = geos

1 (p1, T1).

(2.8)

The equality of chemical potentials allows to define a saturation curve Tsat (p). By inverting
the system of Equations 2.8 both in τ and e, it writes

y =
τ − τ0
τ1 − τ0

=
e− e0

e1 − e0
. (2.9)

Along with the saturation curve, the pressure satisfies the non-linear equation

τ − τ eos
0 (p, T )

τ eos
1 (p, T )− τ eos

0 (p, T )
− e− eeos

0 (p, T )

eeos
1 (p, T )− eeos

0 (p, T )
= 0,

T = Tsat (p) .

(2.10)

Knowing the equilibrium pressure p we can then recover all necessary thermodynamics quantities
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at equilibrium
Teq = Tsat (p) ,

(τα)eq = τ eos
α (p, T ) ,

(eα)eq = τ eos
α (p, T ) ,

yeq =
τ − τ0
τ1 − τ0

,

zeq =
τ1
τ
y.

(2.11)

Finally, we notice that the equation of state at thermodynamics equilibrium is only deter-
mined by the mixture density ρ and the specific mixture energy e. Fractions y = yeq(ρ, e) and
z = zeq(ρ, e) can be deduced from the equilibrium. This is similar to having only one equation
of state used for both phases, as in IAPWS (Wagner and Pruß 2002) equation of state, see De
Lorenzo et al. 2017 for this equation of state formulated in the (ρ, e) plane.

Remark 2 IAPWS-95, which stands for International Association for the Properties of Water
and Steam, is a standard that formulates properties of water using a serie expansion of the
Helmholtz free energy in terms of variables (ρ, T ). This serie involves up to 64 terms which are
obtained from experimental measures. Other thermodynamics quantities can be recovered from
the Helmholtz free energy.

2.1.4 The Homogeneous Equations Model
The velocity of the water liquid droplet in the pipe is estimated between 30 and 100 m/s. Because
of this high velocity, we have to take into account the compressibility of liquid water. We choose
an Homogeneous Equations Model, also shortly referred as HEM, that assumes that both phases
are at mechanical and thermodynamics equilibrium at each time t. This translates to a velocity
equilibrium and to the usage of the thermodynamics equilibrium equation of state

u = u1 = u0, p = peos
eq (ρ, e). (2.12)

This model simply takes the form of a single fluid Euler equations

∂tρ+ div (ρu) = 0,

∂t (ρu) + div
(
ρuu+ peos

eq I
)

= 0,

∂t (ρE) + div
(
ρE + peos

eq

)
u = 0,

ρE = ρe+
1

2
ρu2, y = yeq (ρ, e) , z = zeq (ρ, e) ,

(2.13)

that expresses the conservation of mixture quantities: the mixture mass ρ, the mixture momen-
tum ρu and the mixture total energy ρE. The pressure peos

eq = peos
eq (ρ, e) is the thermodynamics

equilibrium pressure between liquid and gas. We can distinguish two cases in this model, pure
phase regions (for which mass fraction is exclusively 0 or 1) and mixture regions.

First in the pure phase case, then Equations 2.13 locally degenerate to the Euler system with
p = peos

α (ρ, e), in which mixture variables degenerate to phasic variables. The speed of sound also
reduces to the phasic speed of sound cα. On the other hand, in the mixture case, mass transfer
between the two phases occurs as mass fraction instantaneously adapts to local variations in
density and internal energy. As already mentioned time evolution of the mass fraction solely
depends on the time evolution of mass and internal energy equations, formally

∂tyeq (ρ, e) = ∂ρyeq (ρ, e) ∂tρ+ ∂eyeq (ρ, e) ∂te. (2.14)
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This allows to potentially create new phase inside region of pure phase, in case of strong pressure
drop for instance.

Remark 3 The kinematic properties of a mixture lead to different physics. For example the
Baer and Nunziato model (for example see Baer and Nunziato 1986) allows to model a sub-scale
velocity drift between the two phases.

Remark 4 In terms of mass transfer we can distinguish models in which it occurs at the in-
terface between two fluids or using a local relaxation, possibly instantaneous, to thermodynamics
equilibrium.

In the first case, mass transfer takes the form of a source term at the interface. Velocity
and pressure at interface are not anymore continuous, see Fechter et al. 2017. The interface is
moving at its own velocity that is determined by jump relations. The difficulty related to such
models is the generation of new interfaces.

In the second case, mass transfer takes the form of a local source term. One assumes that
out of equilibrium, the evolution is relaxing towards thermodynamics equilibrium at some rate
λ, which may be instantaneous. The difficulty with such model is the choice of the relaxation
parameter. The particular choice of λ = ∞ falls back to using models known as Homogeneous
Equations Models, HEM.

2.1.5 The relaxed five-equation model
In order to solve the system of Equations 2.13 we notice that we can formally rewrite the system
of Equations 2.13, in the limit of λ→∞, with the following system

∂tz + u ·∇z = λ (zeq − z) ,
∂t (ρy) + div (ρyu) = λρ (yeq − y) ,

∂tρ+ div (ρu) = 0,

∂t (ρu) + div (ρuu+ peos
isobI) = 0,

∂t (ρE) + div (ρE + peos
isob)u = 0,

ρE = ρe+
1

2
ρu2,

(2.15)

in which we introduce two new equations on the volume fraction z and the mass fraction y and
the isobaric mixture equation of state peos

isob.
On the one hand, when λ→∞, we formally recover the former HEM system with peos

isob → peos
eq

along with the following compatibility relation

peos
isob(ρ, e, zeq(ρ, e), yeq(ρ, e)) = peos

eq (ρ, e) . (2.16)

On the other hand, when λ = 0, the model reduces to the following five-equation model

∂tz + u ·∇z = 0,

∂t (ρy) + div (ρyu) = 0,

∂tρ+ div (ρu) = 0,

∂t (ρu) + div (ρuu+ peos
isobI) = 0,

∂t (ρE) + div (ρE + peos
isob)u = 0,

ρE = ρe+
1

2
ρu2.

(2.17)
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It is an hyperbolic system with five wavespeeds given by, in the direction n,

{u · n− ceos
isob, c

eos
isob, c

eos
isob, c

eos
isob,u · n+ ceos

isob} , (2.18)

with ceos
isob satisfying

ξα = ρα(∂pαe
eos
α )ρα , ξ =

∑
α

zαξα, ρξ(ceos
isob)

2
=
∑
α

ραzαξα(ceos
α )

2
. (2.19)

The relaxation 2.15 is motivated by numerical reasons. Indeed as it is presented in Kokh and
Lagoutière 2010, along with an anti-diffusive numerical scheme and an isobaric equation of state,
the five-equation model is able to transport interfaces with low numerical diffusion without
generating spurious pressure oscillations. This property is important to avoid smearing of the
initial interface between the liquid droplet and the steam matrix, see also Section 2.A for a
connection between interface models and mixture models.

Other relaxations can be considered as in the work of Barberon and Helluy 2005; Helluy
and Seguin 2006 in which they derive relaxation models based on entropy considerations. These
models allow to consider non-instantaneous relaxation.

2.2 Discretization

We start this section by introducing some notations required for the discretization. Let Ω ⊂ R3

be a Cartesian domain

Ω = [xmin, xmax]× [ymin, ymax]× [zmin, zmax].

It is discretized using a Cartesian regular mesh. We define by ∆x (resp. ∆y and ∆z) the step
along the X-direction (resp. the Y and Z-direction). In the X-direction (resp. Y, Z-direction)
interfaces are located at xi+1/2 = (i + 1)∆x (resp. yj+1/2 = (j + 1)∆y, zk+1/2 = (k + 1)∆z).
Time is discretized into ordered instants tn, separated by intervals ∆t and we identify tn and n.

Let φ : (x, t) 7→ φ(x, t) be some scalar field, we note φni,j,k the Finite Volume approximation
of φ in a given cell (i, j, k) at instant tn. Finally we note φni+1/2,j,k (resp. φni,j+1/2,k, φ

n
i,j,k+1/2)

the quantity associated to the field φ at the time tn and at the interface between cells (i, j, k)
and (i+ 1, j, k) (resp. (i, j, k) and (i, j + 1, k), (i, j, k) and (i, j, k + 1)).

As presented above we use a two-step procedure to discretize 2.15

• Step 1 discretizes hydrodynamic evolution. The fluid parameter φ will update from φni,j,k
to φ̄i,j,k. Anticipating further notations we introduce sub-steps.

– Sub-step a, an acoustic sub-step that will update quantities from φni,j,k to φ̃i,j,k.

– Sub-step b, a transport sub-step that will update quantities from φ̃i,j,k to φ̄i,j,k.

• Step 2 deals with phase change using instantaneous relaxation. The fluid parameter φ will
evolve from φ̄i,j,k to φn+1

i,j,k.
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2.2.1 Step 1, hydrodynamic evolution
We begin by recalling the system that is discretized

∂tz + u ·∇z = 0,

∂t (ρy) + div (ρyu) = 0,

∂tρ+ div (ρu) = 0,

∂t (ρu) + div (ρuu+ peos
isobI) = 0,

∂t (ρE) + div ((ρE + peos
isob)u) = 0.

(2.20)

The discretization of this system is also handled using a two-step procedure by splitting acoustic
and transport phenomena leading to two systems.

Remark 5 This operator splitting procedure is similar to the discretization used in Chapter 1.
It involves separation of acoustic and transport waves. In Chapter 1 special treatment in the
acoustic step was needed to have a well-balanced numerical for hydrostatic equilibrium. Here we
need to pay attention to the transport equation which can lead to numerical, undesired, mixture
of the two phases.

We first consider an acoustic system that reads

∂tz = 0,

∂ty = 0,

∂tρ+ ρdivu = 0,

∂t (ρu) + ρudivu+ ∇peos
isob = 0,

∂t (ρE) + ρEdivu+ div (peos
isobu) = 0,

(2.21)

and the transport system writes

∂tz + u ·∇z = 0,

∂t (ρy) + u ·∇ (ρy) = 0,

∂tρ+ u ·∇ρ = 0,

∂t (ρu) + u ·∇ (ρu) = 0,

∂t (ρE) + u ·∇ (ρE) = 0.

(2.22)

In the transport system we can see that each conservative variable is advected at material velocity
u. This operator splitting procedure allows to treat independently each system.

Sub-step a, acoustic

In order to discretize the system of Equations 2.21 we propose to use a relaxation for the acoustic
system that is reminiscent of the Lagrangian Gas dynamics equations (see Després 2010). To
do so, we first rewrite the system using the variables τ = 1

ρ , u and E. Then we proceed to a
linearization of the equations and then discretize them.

It then writes
∂tV + τdiv (F (V )) = 0,

V = (z, y, τ,u, E)
T
, F (V ) =


0T

0T

−uT
peos

isobI
peos

isobu
T

 . (2.23)
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We use a relaxation based on ideas introduced by Bouchut 2004 for the Euler system that extends
the Suliciu-based relaxation (see Chalons and Coulombel 2008; Chalons and Coquel 2014; Suliciu
1998). This relaxation allows to remove some non-linearities due to the equation of state. The
relaxation introduces two variables Π and a which are approximations of the pressure peos

isob and
the Lagrangian speed of sound ρceos

isob, respectively. The augmented acoustic system writes

∂tW + τdiv (F (W )) = 0,

W =

(
z, y, τ,u, E, a,

Π

a2

)T
, F (W ) =



0T

0T

−uT
ΠI

ΠuT

0T

uT


.

(2.24)

The connection with respect to the equation of state is restored at each time step by initializing
Π = peos

isob (ρ, e, z, y) and a = ρceos
isob (ρ, e, z, y). We recover the initial variable V by a projection

P from the relaxation variables

P : W → V = (z, y, τ,u, E)
T
. (2.25)

This system is close to have a conservative form, up to the variable τ in front of the divergence.
Then we freeze this variable at discrete time tn, which can also be interpreted as a relaxation
procedure, it then becomes

∂tW + τn (x) div (F (W )) = 0. (2.26)

This system is then discretized using a Finite Volume method

W̃i,j,k = W n
i,j,k − τni,j,k

∆t

∆x

(
F i+1/2,j,k −F i−1/2,j,k

)
− τni,j,k

∆t

∆y

(
F i,j+1/2,k −F i,j−1/2,k

)
− τni,j,k

∆t

∆z

(
F i,j,k+1/2 −F i,j,k−1/2

)
,

(2.27)

in which we have F i+1/2,j,k = F∆

(
W n

i,j,k,W
n
i+1,j,k; ex

)
and for e ∈ {ex, ey, ez},

F∆ (WL,WR; e) = (0, 0,−u∗,Π∗e,Π∗u∗, 0, u∗)T ,

u∗ =
aLuL · e+ aRuR · e

aL + aR
− ΠR −ΠL

aL + aR
,

Π∗ =
aRΠL + aLΠR

aL + aR
− aLaR (uR · e− uL · e)

aL + aR
,

(2.28)

where the velocity waves aL, aR are given by

aL = ρL

(
cL + 1

2 (1 + max (γ0, γ1))
(

ΠR−ΠL
ρRcR

+ uL · e− uR · e
)+
)

aR = ρR

(
cR + 1

2 (1 + max (γ0, γ1))
(

ΠL−ΠR
aL

+ uL · e− uR · e
)+
)
 if ΠR > ΠL, (2.29)



2.2. DISCRETIZATION 51

and

aR = ρR

(
cR + 1

2 (1 + max (γ0, γ1))
(

ΠL−ΠR
ρLcL

+ uL · e− uR · e
)+
)

aL = ρL

(
cL + 1

2 (1 + max (γ0, γ1))
(

ΠL−ΠR
aR

+ uL · e− uR · e
)+
)
 if ΠR ≤ ΠL. (2.30)

Remark 6 This scheme falls back to a regular Suliciu-type relaxation when aL = aR = a, indeed
we get

u∗ =
1

2
(uL · e+ uR · e)− 1

2a
(ΠR −ΠL) ,

Π∗ =
1

2
(ΠL + ΠR)− a

2
(uR · e− uL · e) .

(2.31)

Thus a low-Mach correction can also be used to reduce numerical diffusion in the pressure Π∗,
see Chapter 1. We have noticed that using both a low-Mach correction and a directional splitting
leads to an unstable numerical scheme.

After relaxation towards equilibrium, it simply results in

Ṽi,j,k = P
(
W̃i,j,k

)
. (2.32)

It can be noticed that the numerical scheme also writes

Li,j,kρ̃i,j,kṼi,j,k = ρni,j,kV
n
i,j,k −

∆t

∆x

(
P
(
F i+1/2,j,k

)
−P

(
F i−1/2,j,k

))
− ∆t

∆y

(
P
(
F i,j+1/2,k

)
−P

(
F i,j−1/2,k

))
− ∆t

∆z

(
P
(
F i,j,k+1/2

)
−P

(
F i,j,k−1/2

))
,

(2.33)

with
Li,j,k = 1 +

∆t

∆x

(
u∗i+1/2,j,k − u

∗
i−1/2,j,k

)
+

∆t

∆y

(
u∗i,j+1/2,k − u

∗
i,j−1/2,k

)
+

∆t

∆z

(
u∗i,j,k+1/2 − u

∗
i,j,k−1/2

)
.

(2.34)

Up to the compression factor Li,j,k, the variable ρ̃i,j,kṼi,j,k admits a quasi-conservative update
that will be used in the next section.

Sub-step b, transport

We first recall the equation we want to discretize, for φ ∈ {z, ρy, ρ, ρu, ρE}

∂tφ+ u ·∇φ = 0. (2.35)

To take advantage of the first acoustic step, this equation is simply rewritten as

∂tφ+ div (φu)− φdivu = 0, (2.36)
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and is partially discretized as follows

φ̄i,j,k = φ̃i,j,k −
∆t

∆x

(
φ∗i+1/2,j,ku

∗
i+1/2,j,k − φ

∗
i−1/2,j,ku

∗
i−1/2,j,k

)
− ∆t

∆y

(
φ∗i,j+1/2,ku

∗
i,j+1/2,k − φ

∗
i,j−1/2,ku

∗
i,j−1/2,k

)
− ∆t

∆z

(
φ∗i,j,k+1/2u

∗
i,j,k+1/2 − φ

∗
i,j,k−1/2u

∗
i,j,k−1/2

)
+

∆t

∆x
φ̃i,j,k

(
u∗i+1/2,j,k − u

∗
i−1/2,j,k

)
+

∆t

∆y
φ̃i,j,k

(
u∗i,j+1/2,k − u

∗
i,j−1/2,k

)
+

∆t

∆z
φ̃i,j,k

(
u∗i,j,k+1/2 − u

∗
i,j,k−1/2

)
,

(2.37)

for which u∗ has been defined in Equations 2.24. Using the factor Li,j,k, it equivalently writes

φ̄i,j,k = Li,j,kφ̃i,j,k −
∆t

∆x

(
φ∗i+1/2,j,ku

∗
i+1/2,j,k − φ

∗
i−1/2,j,ku

∗
i−1/2,j,k

)
− ∆t

∆y

(
φ∗i,j+1/2,ku

∗
i,j+1/2,k − φ

∗
i,j−1/2,ku

∗
i,j−1/2,k

)
− ∆t

∆z

(
φ∗i,j,k+1/2u

∗
i,j,k+1/2 − φ

∗
i,j,k−1/2u

∗
i,j,k−1/2

) (2.38)

In this way, the discretization is conservative with respect to variables ρy, ρ, ρu, ρE. It remains
to define the flux φ∗ to have a well-defined numerical scheme.

We want to minimize numerical diffusion in the case of an interface. Different numerical
techniques can be used to define the flux φ∗. A first approach would be to use a standard
upwind scheme. It is able to transport accurately interfaces when time step is adapted to the
transport velocity and with a CFL condition exactly to 1. This constraint is too strong as we
wish to treat shocks, it is thus not possible to use such a scheme. Hence we choose to use an
anti-diffusive approach, originally developed in Després and Lagoutière 2001 and adapted to the
five-equation model in Kokh and Lagoutière 2010. The main idea of the latter scheme is to be
the most downwind possible but while ensuring stability. We start by defining fluxes relative to
the volume fraction z∗ using standard upwind scheme relative to u∗ from the acoustic step

u∗i+1/2,j,k =

{
ũi,j,k if u∗i+1/2,j,k > 0,

ũi+1,j,k otherwise.

(ρα)
∗
i+1/2,j,k =

{
(ρ̃α)i,j,k if u∗i+1/2,j,k > 0,

(ρ̃α)i+1,j,k otherwise.

(eα)
∗
i+1/2,j,k =

{
(ẽα)i,j,k if u∗i+1/2,j,k > 0,

(ẽα)i+1,j,k otherwise.

(ρy)
∗
i+1/2,j,k = (ρ1)

∗
i+1/2,j,kz

∗
i+1/2,j,k,

ρ∗i+1/2,j,k = z∗i+1/2,j,k(ρ1)
∗
i+1/2,j,k + (1− z∗i+1/2,j,k)(ρ0)

∗
i+1/2,j,k.

(2.39)

Thus, these fluxes are consistent regarded that the flux z∗i+1/2,j,k is consistent. Then it suffices to
give z∗i+1/2,j,k a definition. As it is detailed in Appendix 2.B and in Kokh and Lagoutière 2010,
we express both consistency and stability in one direction to define this latter flux. To treat the
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multi-dimensional case we can either apply a directional splitting or use a mean decomposition
as in Peluchon 2017. Multi-dimensional update can be rewritten as

z̄i,j,k =
1

3

(
z̄xi,j,k + z̄yi,j,k + z̄zi,j,k

)
, (2.40)

in which z̄xi,j,k, z̄
y
i,j,k, z̄

z
i,j,k are one dimensional updates along the X, Y and Z directions, respec-

tively. As an example, developing z̄xi,j,k gives

z̄xi,j,k = z̃xi,j,k − 3
∆t

∆x

(
zxi+1/2,j,ku

∗
i+1/2,j,k − z

x
i−1/2,j,ku

∗
i−1/2,j,k

)
+ 3

∆t

∆x
z̃xi,j,k

(
u∗i+1/2,j,k − u

∗
i−1/2,j,k

)
.

(2.41)

Hence a sufficient condition for stability and consistency for update 2.40 is that each individual
update is stable and consistent. It results that, using similar stability and consistency devel-
opments as in Appendix 2.B, we adapt the trust intervals such that, along the X-direction it
gives

z∗i+1/2,j,k = PĨi,j,k
(
z̃i⇒,j,k

)
Ĩi,j,k =

[
m̃i+1/2,j,k, M̃i+1/2,j,k

]
∩
[
ãi+1/2,j,k, Ãi+1/2,j,k

]
,

ãi+1/2,j,k = z̃i�,j,k +
(
M̃(i+1/2)�,j,k − z̃i�,j,k

)(u∗(i+1/2)�,j,k

u∗i+1/2,j,k

− ∆x

3∆t

1

u∗i+1/2,j,k

)
,

Ãi+1/2,j,k = z̃i�,j,k +
(
m̃(i+1/2)�,j,k − z̃i�,j,k

)(u∗(i+1/2)�,j,k

u∗i+1/2,j,k

− ∆x

3∆t

1

u∗i+1/2,j,k

)
.

(2.42)

This final volume fraction flux is used in fluxes for other variables.

2.2.2 Step 2, thermodynamics relaxation
Finally the last step concerns relaxation to thermodynamics equilibrium. We recall that the
equations formally write, in the limit λ→ +∞,

∂tz = λ (zeq − z) ,
∂ty = λ (yeq − y) ,

∂tρ = 0,

∂t (ρu) = 0,

∂t (ρE) = 0.

(2.43)

Numerical discretization is straightforward and only consists in setting

zn+1
i,j,k = (zeq)i,j,k,

yn+1
i,j,k = (yeq)i,j,k,

ρn+1
i,j,k = ρ̃i,j,k,

(ρu)
n+1
i,j,k = (ρ̃u)i,j,k,

(ρE)
n+1
i,j,k =

(
ρ̃E
)
i,j,k

.

(2.44)
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We need to find (zeq)i,j,k and (yeq)i,j,k knowing ρ̄i,j,k and ēi,j,k. As the process is local to each
cell (i, j, k), in the following we omit indices to simplify notations. We solve the non-linear
Equations 2.10 in pressure. Knowing peq we can then recover all necessary thermodynamics
quantities at equilibrium

Teq = Tsat (peq) ,

(τα)eq = τα (peq, Teq) ,

(eα)eq = τα (peq, Teq) ,

yeq =
τ̄ − (τ0)eq

(τ1)eq − (τ0)eq
,

zeq =
(τ1)eqyeq

τ̄
.

(2.45)

For a given couple (τ̄ , ē), if Equations 2.10 have a solution then it is a mixture state, otherwise
it is a pure state. As there is no analytical expression for the function Tsat, it needs to be
discretized.

Saturation curve Tsat (p)

Both phases have their own equation of state. At thermodynamics equilibrium they obey to

g0 (peq, Teq) = g1 (peq, Teq) , (2.46)

By enforcing equality between the two fluids, one is able to invert the relation

∀p ∈ [pmin , pmax ] , find Tsat such that g0 (p, Tsat) = g1 (p, Tsat) , (2.47)

We use this non-linear equation to build a polynomial interpolation curve

Tsat (p) =

n∑
i

ai(log (p))
i
. (2.48)

Coefficients are computed using the numpy.polyfit function.

2.2.3 Overall scheme

We summarize the numerical scheme in this section

zn+1
i,j,k = (zeq)i,j,k,

yn+1
i,j,k = (yeq)i,j,k,

ρn+1
i,j,k = ρni,j,k −

∆t

∆x

(
ρ∗i+1/2,j,ku

∗
i+1/2,j,k − ρ

∗
i−1/2,j,ku

∗
i−1/2,j,k

)
− ∆t

∆y

(
ρ∗i,j+1/2,ku

∗
i,j+1/2,k − ρ

∗
i,j−1/2,ku

∗
i,j−1/2,k

)
− ∆t

∆z

(
ρ∗i,j,k+1/2u

∗
i,j,k+1/2 − ρ

∗
i,j,k−1/2u

∗
i,j,k−1/2

)
,
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(ρu)
n+1
i,j,k = (ρu)

n
i,j,k −

∆t

∆x

(
ρ∗i+1/2,j,ku

∗
i+1/2,j,ku

∗
i+1/2,j,k − ρ

∗
i−1/2,j,ku

∗
i−1/2,j,ku

∗
i−1/2,j,k

)
− ∆t

∆y

(
ρ∗i,j+1/2,ku

∗
i,j+1/2,ku

∗
i,j+1/2,k − ρ

∗
i,j−1/2,ku

∗
i,j−1/2,ku

∗
i,j−1/2,k

)
− ∆t

∆z

(
ρ∗i,j,k+1/2u

∗
i,j,k+1/2u

∗
i,j,k+1/2 − ρ

∗
i,j,k−1/2u

∗
i,j,k−1/2u

∗
i,j,k−1/2

)
− ∆t

∆x

(
Π∗i+1/2,j,k −Π∗i−1/2,j,k

)
− ∆t

∆y

(
Π∗i,j+1/2,k −Π∗i,j−1/2,k

)
− ∆t

∆z

(
Π∗i,j,k+1/2 −Π∗i,j,k−1/2

)
,

(ρE)
n+1
i,j,k = (ρE)

n
i,j,k −

∆t

∆x

(
ρ∗i+1/2,j,kE

∗
i+1/2,j,ku

∗
i+1/2,j,k − ρ

∗
i−1/2,j,kE

∗
i−1/2,j,ku

∗
i−1/2,j,k

)
− ∆t

∆y

(
ρ∗i,j+1/2,kE

∗
i,j+1/2,ku

∗
i,j+1/2,k − ρ

∗
i,j−1/2,kE

∗
i,j−1/2,ku

∗
i,j−1/2,k

)
− ∆t

∆z

(
ρ∗i,j,k+1/2E

∗
i,j,k+1/2u

∗
i,j,k+1/2 − ρ

∗
i,j,k−1/2E

∗
i,j,k−1/2u

∗
i,j,k−1/2

)
− ∆t

∆x

(
Π∗i+1/2,j,ku

∗
i+1/2,j,k −Π∗i−1/2,j,ku

∗
i−1/2,j,k

)
− ∆t

∆y

(
Π∗i,j+1/2,ku

∗
i,j+1/2,k −Π∗i,j−1/2,ku

∗
i,j−1/2,k

)
− ∆t

∆z

(
Π∗i,j,k+1/2u

∗
i,j,k+1/2 −Π∗i,j,k−1/2u

∗
i,j,k−1/2

)
,

in which star quantities are defined in Sections 2.2.1 and 2.2.1. We notice that, as expected, the
final form of the scheme is conservative for mixture density, momentum and total energy. Volume
and mass fractions are at equilibrium even though they temporary evolved out of equilibrium
during acoustic and transport steps.

In the case where the thermodynamics relaxation is omitted, the numerical scheme simply
falls back to the discretization of the five-equation model using anti-diffusive scheme.

2.3 Numerical experiments

2.3.1 Global setup
We use stiffened gases as equations of state for both phases. These equations of state write

peos
α (ρα, eα) = (γα − 1) ρα (eα − e0α)− γαΠα,

T eos
α (ρα, pα) =

pα + Πα

ραcvα (γα − 1)
,

seos
α (ρα, eα) = cvα log

(
eα − e0α −

Πα

ρα

)
− cvα (γα − 1) log (ρα) + s0α,

c2α (ρα, pα) = γα
pα + Πα

ρα
.

(2.49)

The pressure shift Πα of the stiffened gas can be interpreted as the macroscopic manifestation
of attractive interactions between water molecules (see Le Métayer and Saurel 2016). This term
is responsible for negative pressures, even though the speed of sound remains positive.
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Coefficient Value
a0 −3.504 131 855 669 312 8× 101

a1 3.148 542 674 925 358 8× 102

a2 −1.441 955 094 577 394 3× 102

a3 3.537 935 461 268 914 8× 101

a4 −4.215 560 359 123 924 3
a5 2.064 843 331 029 337 4× 10−1

Table 2.1: Parameters used for droplet simulations. These are interpolation coefficients for the
saturation curve.

Phase Gas (α = 0) Liquid (α = 1)

γα 1.135020250284312 1.549523809523810
cvα

(
J K−1 kg−1

)
2.803× 103 3.15× 103

p0α (Pa) 0 7.18× 108

e0α

(
J kg−1

)
9.991 579 270 858 164× 105 −1.4665× 106

s0α

(
J K−1 kg−1

)
−2.104 807 279 208 952× 103 0

Table 2.2: Parameters used for droplet simulations, taken from Hurisse 2017.

This setup uses the values in Table 2.2 for the thermodynamics, which are taken from Hurisse
2017 (Table B.3), along with values from Table 2.1 for the interpolation of the saturation curve.

In order to avoid spurious phase transition in the bulk of the liquid droplet after the first time
step we need to pay attention to initialize it under the saturation curve. The liquid droplet size
is 1 mm, the density is initialized at 828.34 kg/m3 and the pressure at 30 bar. Steam is initialized
at 15.76 kg/m3. Both phases are initialized at 50 m s−1.

2.4 Droplet test case, 2D

We start with 2D simulations to provide qualitative comparison with similar experiments from Field
et al. 1989. In this experiment, the droplet size is 10 mm, the initial velocity is at 110 m s−1 and
at ambient pressure, see Figure 2.2 for the snapshots from this experiment. We realized a two-
dimensional simulation, see 2.1.

Even though the experiment is led in different conditions from the nuclear reactor conditions,
we recover the main stages. A shock wave propagates from the point of impact towards the
back of the droplet. It reflects on the interface, inside the droplet, and gets focused, we refer the
reader to Wu et al. 2018 for a detailed analysis on the wave propagation inside the droplet.

In our simulation the liquid jets at the wall are less developed because the droplet velocity
is lower. Starting from time t = 3× 10−6 s we notice the development of cavitation regions
(z 6= 0, 1), which do not seem to be present on the experiment 2.2, at least on such long time
scale. The cavitation region is in agreement with results from Kyriazis et al. 2018.
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Figure 2.1: Time sequence of numerical Schlieren images from a 2562 simulation droplet impact
onto a plane wall. Time is in s.
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Figure 2.2: Time sequence of density contrast from Field et al. 1989. The liquid droplet size is
10 mm at ambient pressure. At point F, cavitation occurs.
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Figure 2.3: The figure represents the time evolution of the maximum pressure at the wall for a
simulation at coarse resolution 643. The black vertical line indicates the impact of the droplet
whereas the horizontal line indicates the water hammer pressure.

2.5 Droplet test case, 3D

2.5.1 Ideal wall

We begin with a slippery plane wall, we consider it ideal. Figure 2.3 represents the time evolution
of the maximum pressure at the position of the wall. We observe a peak pressure that develops
when the droplet impacts the wall. The maximum pressure is pmax ≈ 586 bar. This pressure can
be compared to the analytical water hammer pressure (see Ghidaoui et al. 2005, for a review)

∆p = ρ1c1∆u. (2.50)

In our configuration we have ρ1 = 828.34 kg/m3, c1 ≈ 1161 m s−1 and ∆u = u1 = 50 m s−1. It
results in a water hammer pressure phammer ≈ 30 + 481 = 511 bar. Thus the numerical measured
value presents a pressure excess of 15% compared to the water hammer pressure. After the
impact, the pressure globally decreases with time. However we notice oscillations right after the
initial peak, they seem to be related to cells undergoing phase transition at the interface between
liquid and vapor and in contact with the wall. Thus, these local peaks may not be physically
relevant as such, and a mean profile should be considered.
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Figure 2.4: Droplet impact at resolution 20483. It is represented contour surfaces of the pressure
field inside the liquid droplet. We see a peak pressure localized on a Gaussian perturbation.

2.5.2 Perturbation of the wall
In this section we explore the impact of a droplet on a perturbed wall. This non-ideal wall
represents a damaged wall because of, for instance, previous droplet impacts that have formed
cavities. We choose to perturbe the wall using 2D Gaussian obstacles, the wall position then
writes

xwall (y, z) = x0 +

i=N∑
i=1

aie
− 1

2σ2
i
((y−yi)2+(z−zi)2)

. (2.51)

Coefficients ai, σi, yi and zi are randomly chosen and represent respectively the amplitude, the
width and the position each Gaussian perturbation. Figure 2.5 represents the wall used for the
following simulations.

2.5.3 Numerical results
As part of a Grand Challenge on the AMD partition of the Joliot-Curie supercomputer at TGCC,
Saclay, we have realized two simulations at resolutions 10243 and 20483, for a total of 13 million
CPU hours. Figure 2.4 shows isopressure surfaces after the droplet has impacted the wall. We
can see pressure waves in the liquid droplet propagating from the wall towards the droplet’s end.
Moreover we see a peak pressure which is developed inside a local cavity.

Interested in the pressure developed near the wall, we have extracted the pressure field on
the first cell layer after the wall. Thus the maximum pressure evolution at the wall is shown in
Figure 2.6 for the two simulations. Both time series exhibit high frequencies in pressure. They
can be related to a threshold effect due to the phase transition and the first order discretization
of the wall. Indeed, there is no hysteresis in the phase transition, thus if a fluid particle is in a
state close to saturation it can oscillate between the two phases and produce pressure oscillations.
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Figure 2.5: This represents the perturbed wall. Color shows the height of Gaussian perturbations.
Perturbations are removed near borders of the box.

Thus we remove high frequencies by computing the moving average over time steps of previous
pressure evolution, results are shown on Figure 2.7.

As we can see on Figure 2.6, the simulation at resolution 20483 does not have higher pressures
than simulation at lower resolution. In term of peak pressure we can assume that convergence
is achieved.

On both figures, we distinguish two stages. In a first stage we see an increase in pressure up
until the droplet impacts the wall, represented by the black vertical line. After the impact we
see a global decrease of the maximum pressure to which is superposed rapid peaks. These peaks
are due to the inhomogeneities in the wall. Early peaks even surpass the initial impact pressure.
This may be due to small but rapid jets that impact the wall on the perturbations.

2.5.4 Cavitation

Figure 2.8 shows the liquid droplet after the impact onto the wall. We can see in the white area
inside the droplet, vapor formation, void fraction near 0.01, due to cavitation, that is to say a
pressure drop which leads to formation of vapor. This cavitation zone appears after the reflection
of the shock on the back of the droplet.

Cavitation refers to the creation of vapor bubbles inside liquids. This phase transition occurs
due to a pressure drop in the liquid, a pressure lower than the saturation pressure psat (T ).
The standard picture follows with a vapor bubble which collapses usually in an asymmetric way
resulting in high velocity and localized liquid jets. As a result strong pressure can develop.

Following the work of Hantke and Thein 2019, the previous description of cavitation can
be referred as strong cavitation because it produces pure vapor phase. It is opposed to weak
cavitation which produces wet steam. As it is explained in Hantke and Thein 2019, an adiabatic
expansion in equilibrium models can only produce wet steam. For that reason equilibrium models
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Figure 2.6: The figure represents the time evolution of the maximum pressure at the wall for
simulations at high resolution 10243 and 20483. The black vertical line indicates the impact of
the droplet whereas the horizontal line indicates the water hammer pressure.
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Figure 2.7: The figure represents the time evolution of the moving average maximum pressure at
the wall for simulations at high resolution 10243 and 20483. We add the ideal wall as a reference.
The black vertical line indicates the impact of the droplet whereas the horizontal line indicates
the water hammer pressure.
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Figure 2.8: Droplet impact at resolution 10243. The liquid density is represented in red. The
white zone at the back of the droplet represents the vapor volume fraction. Velocity field lines
are displayed near the droplet.

cannot capture correctly cavitation effects from nucleation to the bubble collapse. Only the final
phase of collapsing can be captured.

2.6 Discussion and interpretation of models

Even though the driving physical test formulation is simple, a liquid droplet impacting a wall, we
have experienced multiple modeling and interpretation difficulties. The two-phase flow literature
is rich of many models. Many of them consider different types of fractions, either volume, mass,
energy. However their interpretation is rather difficult as they seem to introduce cut-off length
scale or time scale. This avoids to capture phenomena such as nucleation.

We also chose to represent vapor-liquid as two phases with two different equations of state. In
the initial situation this makes sense as both phases are under the critical point. However when
the liquid droplet impacts the wall, pressure rises sufficiently high to reach the critical region, i.e.
above the critical pressure. In this region the fluid is neither steam neither liquid and is usually
referred as critical fluid. This leads to an interpretation difficulty using a color function as it
either represents a liquid or vapor.

As the droplet impact leads to high pressure, mainly following the water hammer pressure,
the liquid phase cannot be considered anymore as incompressible. In the compressible model,
pressure is then evaluated using the couple density and internal energy. This results in a stiff
formulation of thermodynamics compared to the formulation couple pressure-temperature.

The modeling of phase change, in particular driven by pressure changes, is still a challenging
question. Contrary to temperature driven phase transition which can be treated in a sharp
interface method as a source term at the interface, cavitation may appear in the bulk of the
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liquid leading to out of equilibrium liquid which may translate to temporary negative pressures.
Finally negative pressures, also called tension, is the ability of liquids to support stretch-

ing. Contrary to gases, in the liquid phase inter-molecular interactions are important. From
statistical mechanics it can be shown that liquid pressure is composed of two terms: a thermal
pressure due to shock interactions, as in gases, and a term representing short range attractive
interactions which is negative. Experiments, see Caupin and Herbert 2006 for a review, and
molecular dynamics simulations, for example see Tan and Woodcock 2007, show that in well-
prepared conditions a liquid may resist to stretching instead of undergoing phase transition. In
a sufficiently strong stretching, water liquid “breaks” and steam is formed: this is called homo-
geneous cavitation. In the case of stiffened gases they are known to lead to negative pressures
while keeping a positive speed of sound. The interpretation of negative pressures appearing in
such a dynamical context is not clear as it is rather different from experiments. Further modeling
along with numerical simulations is thus needed to properly establish if negative pressures arise
for physical or numerical reasons.

2.7 Conclusion
As a conclusion we have used an Homogeneous Equilibrium Model to explore liquid droplet im-
pacts onto a wall. We have used successive operator splittings to discretize the equations. A first
splitting decouples the flow dynamic from phase transition. As a result, the flow dynamic can
be temporarily out of thermodynamics equilibrium. Then a second splitting allows to decouple
acoustic waves from transport waves. Each splitting stage allows to use specific numerical al-
gorithms. In particular, the acoustic step is solved using a solver allowing large density ratios
to avoid strong stability constraints on the time step. The transport system is solved using an
anti-diffusive solver in order to keep a sharp interface.

As a result we have performed high resolution three-dimensional simulations as part of a
Grand Challenge. We have been able to reproduce in a full 3D simulation the peak pressure at
the impact onto the wall, compatible with the water hammer pressure. Adding roughness to the
wall exhibits secondary peak pressures even higher than the initial peak.

Considering this model, a parametric study, for different initial speed, droplet radius would
be easier using AMR. Indeed AMR would be of great value to help in reducing computation in
the gas phase and in sharpening pressure gradients in the liquid droplet. However as it has been
emphasized, AMR would not help in capturing cavitation zones in the strong sense as nucleation
does not seem to be part of the model, even though they may also lead to strong pressure peaks.
It can be argued that even though the cavitation mechanism is not well captured, the region
where it appears is far from the wall. However we have assumed homogeneous liquid droplet at
initial time, if the droplet presents initial steam cavities, this could also lead to high pressures
when they collapse.
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Appendix

2.A Interface models and mixture models

In this section we make a connection between interface models and mixture models.
We define Ω ⊂ R3 a domain which contains two fluids that are separated by an interface.

We note Ω0(t) ⊂ R3 the domain occupied by the gas and Ω1(t) ⊂ R3 the domain occupied by
the liquid. As the two phases are separated by an interface we have Ω0(t) ∩ Ω1(t) = ∅. We note
Γ(t) = Ω0(t) ∩ Ω1(t) the location of the interface at a time t and for x ∈ Γ(t) we note n(t,x)
the normal to the interface, directed towards the liquid phase. We also assume that they fill the
whole domain i.e. Ω0(t) ∪ Ω1(t) = Ω. In the bulk of the phases, i.e. in Ω0(t)∪Ω1(t), the interface
model writes

∂tρ+ div (ρu) = 0,

∂t (ρu) + div (ρuu+ peosI) = 0,

∂t (ρE) + div ((ρE + peos)u) = 0,

ρE = ρe+
1

2
ρu2,

(2.52)

in which

peos (ρ, e) =

{
peos

1 (ρ, e) if x ∈ Ω1(t),

peos
0 (ρ, e) if x ∈ Ω0(t).

(2.53)

Neglecting the surface tension and any other source term at the location of the interface, the two
phases are connected with jump relations of Rankine-Hugoniot type at the interface velocity σn

σ [ρ] = [ρu · n] ,

σ [ρu · n] =
[
ρ(u · n)

2
]

+ (peos
1 − peos

0 ) ,

σ [ρE] = [(ρE + peos)u · n] .

(2.54)

The pressure jump involves the two equations of state. Neglecting the mass transfer, noted
j = ρ1 (σ − u1 · n) = ρ0 (σ − u0 · n), between the two phases we have j = 0. Thus both the
normal component of the velocity and the pressure fields are continuous across the interface.
The interface velocity σ reduces to the normal component of the material velocity u · n. The
interface behaves as a contact wave in a single phase Euler system, there is no constraint on the
density jump and the tangential component of the velocity field.

Let us introduce a color function z defined by

z (t,x) =

{
0 if x ∈ Ω0(t),

1 if x ∈ Ω1(t).
(2.55)
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Because the interface is only advected with the flow velocity u, the interface model 2.52 equiva-
lently reads in Ω

∂tz + u ·∇z = 0,

∂tρ+ div (ρu) = 0,

∂t (ρu) + div (ρuu+ peosI) = 0,

∂t (ρE) + div ((ρE + peos)u) = 0,

ρE = ρe+
1

2
ρu2,

(2.56)

in which the pressure takes the form

peos (ρ, e, z) = (1− z)peos
0 (ρ, e) + zpeos

1 (ρ, e) . (2.57)

Let us emphasize that there is no new assumption in Equation 2.57, only one equation of state
is used at a time, either peos

0 or peos
1 . Indeed if the initialization of the color function z lies in the

ensemble {0, 1}, then we have z (t,x) ∈ {0, 1} due to the properties of the advection equation.
From a numerical point of view, it is standard and straightforward to use a grid-based method
to discretize the interface model 2.56. As a drawback, such a discretization does not respect
the condition z ∈ {0, 1} near the interface due to the numerical diffusion. Even though this
numerical diffusion can be made small using adapted techniques such as an anti-diffusive scheme
it cannot be entirely removed. As a consequence a region in which z /∈ {0, 1} needs a proper
definition for the quantities required by the numerical scheme such as the pressure and the speed
of sound. We then choose to model these regions using a mixture.

Let us now outline some reasonable properties that a candidate mixture model should fulfill
for approximating a sharp interface flow. Let ω be a small volume which contains a portion of
the interface, then both phases are present in this volume. For a sufficiently small volume ω
and based on the advection properties of the interface, the mixture should satisfy the following
properties

• the components of the mixture are immiscible in the sense of the Section 2.1.1,

• the components of the mixture have the same pressure.

These properties motivate the usage of the five-equation model along with the isobaric equa-
tion of state in the modelling of such two-phase flows, see Section 2.1.5. Indeed for a sufficiently
thin isobaric mixture zone it can be interpreted as an interface, with the volume fraction tend-
ing to the color function. The isobaric closure allows any temperature jump as in the interface
model. However the five-equation model imposes that the mixture components are in mechanical
equilibrium. The thin mixture zone then locally enforces adherence of the two phases.

2.B Anti-diffusive flux

In this appendix we recall derivation of the anti-diffusive flux in the 1D context, see Després and
Lagoutière 2001; Kokh and Lagoutière 2010 for more details. We follow notations previously
introduced. The equation to be solved writes

∂tz + u∂xz = 0, (2.58)

in which u = u (t, x) is a given function. We assume to be known a set of discrete values u∗i+1/2

consistent with u associated with the position xi+1/2 as defined in the Section 2.2. We further



2.B. ANTI-DIFFUSIVE FLUX 69

introduce min and max values of z at interfaces

mn
i+1/2 = min

(
zni , z

n
i+1

)
,

Mn
i+1/2 = max

(
zni , z

n
i+1

)
.

(2.59)

Discretization is carried out in the equivalent semi-conservative following form

∂tz + ∂x (zu)− z∂xu = 0. (2.60)

We choose a first order discretization of the form

zn+1
i = zni −

∆t

∆x

(
z∗i+1/2u

∗
i+1/2 − z

∗
i−1/2u

∗
i−1/2

)
+ zni

∆t

∆x

(
u∗i+1/2 − u

∗
i−1/2

)
. (2.61)

This discretization is consistent as long as z∗i+1/2 is a consistent flux. The main idea of the
derivation is to have the most downwind flux with a stability constraint. This is achieved in two
steps using stability and consistency criteria.

2.B.1 Flux consistency

A sufficient condition for the flux consistency is given by

z∗i+1/2 ∈
[
mn
i+1/2,M

n
i+1/2

]
. (2.62)

Indeed if (zni , u
n
i ) =

(
zni+1, u

n
i+1

)
= (z, u) then z∗i+1/2 = z and the flux satisfies z∗i+1/2u

∗
i+1/2 = zu

which is the definition of the flux consistency.

2.B.2 Stability

Stability is analyzed depending on local velocities. We distinguish four cases to analyze the
stability depending on the sign of u∗k+1/2 for k = i− 1, i, i+ 1

1. u∗i+1/2 > 0 and u∗i−1/2 > 0

2. u∗i+1/2 > 0 and u∗i−1/2 < 0

3. u∗i+1/2 < 0 and u∗i+3/2 > 0

4. u∗i+1/2 < 0 and u∗i+3/2 < 0

In the following we develop only the two first cases.

Case u∗i+1/2 > 0, u∗i−1/2 > 0

In the case of u∗i+1/2 > 0 and u∗i−1/2 > 0, a sufficient condition for obtaining local stability within
cell i is given by, see Després and Lagoutière 2001,

zn+1
i ∈

[
mi−1/2,Mi−1/2

]
. (2.63)

Thus developing update zn+1
i from Equation 2.61, Equation 2.63 writes

mi−1/2 ≤ zni −
∆t

∆x

(
z∗i+1/2u

∗
i+1/2 − z

∗
i−1/2u

∗
i−1/2

)
+ zni

∆t

∆x

(
u∗i+1/2 − u

∗
i−1/2

)
≤Mi−1/2. (2.64)
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It equivalently writes

−zni u∗i+1/2 + zni

(
u∗i−1/2 −

∆x

∆t

)
+

∆x

∆t
mi−1/2 − z∗i−1/2u

∗
i−1/2 ≤ −z

∗
i+1/2u

∗
i+1/2

−z∗i+1/2u
∗
i+1/2 ≤ −z

n
i u
∗
i+1/2 + zni

(
u∗i−1/2 −

∆x

∆t

)
+

∆x

∆t
Mi−1/2 − z∗i−1/2u

∗
i−1/2

(2.65)

By consistency of fluxes, see 2.62 and hypothesis u∗i−1/2 > 0, we have a sufficient condition for
stability

−zni +
(
zni −mi−1/2

)(u∗i−1/2

u∗i+1/2

− ∆x

∆t

1

u∗i+1/2

)
≤ −z∗i+1/2

−z∗i+1/2 ≤ −z
n
i +

(
zni −Mi−1/2

)(u∗i−1/2

u∗i+1/2

− ∆x

∆t

1

u∗i+1/2

) (2.66)

Using hypothesis u∗i+1/2 > 0, we obtain the following result

z∗i+1/2 ∈
[
ani+1/2, A

n
i+1/2

]
ani+1/2 = zni +

(
Mi−1/2 − zni

)(u∗i−1/2

u∗i+1/2

− ∆x

∆t

1

u∗i+1/2

)

Ani+1/2 = zni +
(
mi−1/2 − zni

)(u∗i−1/2

u∗i+1/2

− ∆x

∆t

1

u∗i+1/2

) (2.67)

Case u∗i+1/2 > 0, u∗i−1/2 < 0

In the case of u∗i+1/2 > 0 and u∗i−1/2 < 0 we use a standard upwind flux given by

z∗i+1/2 = zni (2.68)

Case u∗i+1/2 < 0, u∗i+3/2 < 0

In the case of u∗i+1/2 < 0 and u∗i−1/2 < 0 we have a similar result as for the case u∗i+1/2 > 0,
u∗i−1/2 > 0 

z∗i+1/2 ∈
[
ani+1/2, A

n
i+1/2

]
ani+1/2 = zni+1 +

(
Mi+3/2 − zni+1

)(u∗i+3/2

u∗i+1/2

− ∆x

∆t

1

u∗i+1/2

)

Ani+1/2 = zni+1 +
(
mi+3/2 − zni+1

)(u∗i+3/2

u∗i+1/2

− ∆x

∆t

1

u∗i+1/2

) (2.69)

Case u∗i+1/2 < 0, u∗i+3/2 > 0

In the case of u∗i+1/2 > 0 and u∗i+3/2 < 0 we use a standard upwind flux given by

z∗i+1/2 = zni+1 (2.70)
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2.B.3 Overall algorithm
Thus in order to have both consistency and stability, we can choose the flux in the interval Ini+1/2

defined by
Ini+1/2 =

[
ωni+1/2,Ω

n
i+1/2

]
=
[
ani+1/2, A

n
i+1/2

]
∩
[
mn
i+1/2,M

n
i+1/2

]
. (2.71)

One can show that Ini+1/2 6= ∅ as zni ∈ Ini+1/2 (resp. zni+1 ∈ Ini+1/2) when ui+1/2 > 0 (resp.
ui−1/2). The flux value is then chosen to be the most downwind possible value that lies within
Ini+1/2. This can be formulated as the projection of the downwind value onto the trust interval
Ini+1/2, noted PIn

i+1/2
, defined by

PIn
i+1/2

(x) =


ωni+1/2 if x < ωni+1/2,

x if ωni+1/2 ≤ x ≤ Ωni+1/2,

Ωni+1/2 if Ωni+1/2 < x.

(2.72)

We define the downwind and upwind indices relative to the velocity on the right face u∗i+1/2. We
define the downwind indices as

i⇒ =

{
i+ 1 if u∗i+1/2 > 0

i else
(i+ 1/2)⇒ =

{
i+ 3/2 if u∗i+1/2 > 0

i− 1/2 else
(2.73)

and the upwind index as

i� =

{
i if u∗i+1/2 > 0

i+ 1 else
(i+ 1/2)� =

{
i− 1/2 if u∗i+1/2 > 0

i+ 3/2 else
(2.74)

Thus, when u∗i+1/2u
∗
(i+1/2)�

> 0 the anti-diffusive flux writes

z∗i+1/2 = PIn
i+1/2

(
zni⇒

)
,

mn
i+1/2 = min

(
zni , z

n
i+1

)
,

Mn
i+1/2 = max

(
zni , z

n
i+1

)
,

ani+1/2 = zni� +
(
Mn

(i+1/2)�
− zni�

)(u∗(i+1/2)�

u∗i+1/2

− ∆x

∆t

1

u∗i+1/2

)
,

Ani+1/2 = zni� +
(
mn

(i+1/2)�
− zni�

)(u∗(i+1/2)�

u∗i+1/2

− ∆x

∆t

1

u∗i+1/2

)
,

(2.75)

otherwise we set
z∗i+1/2 = zni� . (2.76)
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Chapter 3

Spectral Volume method

Introduction
In the field of hyperbolic conservation laws, a lot of work has been dedicated to improve precision
of simulations since the developments of the first order Godunov method (Godunov 1959) and
subsequent Godunov-like methods. This method has provided a general framework in which to
derive upwind numerical schemes i.e. taking into account the direction of the flow. However this
stability can be interpreted into larger numerical diffusion not only near discontinuities but also
in smooth regions. This can lead to precision difficulties when dealing with smooth solutions.
When the solution is smooth enough, the truncation error of a numerical scheme can formally
be estimated at

Chp

These three letters offer three options to improve precision

• decreasing grid spacing with parameter h also referred as h-convergence

• increasing order of convergence of the numerical method with parameter p also referred as
p-convergence

• lowering the value of the coefficient C: this can happen by adapting the numerical scheme
to better fit specific simulation cases.

When a numerical scheme has a convergence order p ≥ 2, it is qualified as high-order. A first
category of robust and high-order methods is based on the reconstruction of the solution using
neighbours of Finite Volume Cells. The general idea is to follow Godunov’s method but using
reconstructed states at faces of cells instead of cell centered values. Such a well-known method
is called MUSCL-Hancock scheme which stands for “Monotonic Upstream-centered Scheme for
Conservation Laws” along with a predictor-corrector for time integration, see Toro 2009.

A second category is called Spectral Methods, inspired by Finite Elements, in which one
adds degrees of freedom inside cells in order to reconstruct a polynomial, such cells are then
called Spectral Cells. Because of the polynomial reconstruction, the solution is smooth inside a
Spectral Cell and this can be exploited to derive a numerical scheme. Again at interfaces between
Spectral Cells, the solution is discontinuous and a Riemann Solver is used as in the original
Godunov’s method. There are essentially three families of Spectral Methods: Discontinuous
Galerkin method, Spectral Difference method and Spectral Volume method. We can distinguish
them based on the equation formulation used to derive the numerical scheme; strong, integral
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and weak formulation. In the case of the Discontinuous Galerkin method is based on a weak
formulation of the conservation laws and leads to different numerical schemes depending on the
definition of the test function space, for example see Cockburn et al. 2000. It has recently gained
popularity because of its ease to adapt to different types of equations and meshes. Spectral
Difference method relies on the reconstruction of both smooth solutions and flux functions.
Evolution of degrees of freedom is then based on a strong formulation of the equations and finite
differences (Liang et al. 2009). Its strength is an easy formulation. Finally Spectral Volume
method has been introduced in a serie of papers (Wang 2002; Wang and Liu 2002; Wang and
Liu 2004; Wang et al. 2004; Liu et al. 2006) and is close to the original Finite Volume method.
Indeed it is based on the reconstruction of smooth solutions but degrees of freedom are evolved
using the integral formulation of the equations. In the latter, the conservation property is not
only expressed at the Spectral Cell level but also for degrees of freedom. All of them are here
presented as spatial reconstructions and can be used along with a Runge-Kutta time integrator.

Because of the presence of discontinuities in conservation laws, a limitation process has to
be used on the reconstructed solution. They play an important role in high-order schemes in
order to avoid spurious oscillations near discontinuities by removing artificial extrema generated
by the reconstruction step. Limiters force the numerical scheme to locally fall back to first order
in accordance with the local regularity of the solution. As a consequence a too sensitive limiter
forces the numerical scheme to behave like a first order scheme. Examples of well-known limiters
are minmod, gminmod, superbee, TVD, . . . . This limiting process can be referred as a priori in
comparison to an a posteriori method like MOOD which stands for “Multi-dimensional Optimal
Order Detection”, see Clain et al. 2011. In such approach, different numerical schemes, which
may be of different order of convergence are tried for a given cell update and the best solution
is selected based on predefined criteria.

Another aspect is the computational cost of a numerical scheme. High-order methods usu-
ally become more expensive for a given mesh because they involve more computation per cell.
However an other point of view consists in evaluating efficiency by comparing computational
costs at a given error. In that sense it has been successfully shown that high-order methods are
more efficient than a second order MUSCL-Hancock method on smooth examples (see Schaal
et al. 2015). Different arguments have been invoked

• more efficient p-convergence over h-convergence on smooth test cases leading to coarser
grid hence less time iterations,

• less expensive non-linear computation such as Riemann problems and limiters,

• easier data locality coming from Spectral Cells making them good candidates to target new
supercomputers in which cache plays an important role.

In the case of discontinuous solutions, p-convergence is however not suitable. Indeed discontin-
uous solutions benefit from h-convergence rather than p-convergence. Moreover as it has been
said, computation cost per cell is more expensive when using a high-order scheme. This usually
results in using an expensive high-order numerical scheme in discontinuous regions. Hence we
propose to solve this problem by using cheaper standard Finite Volume scheme near discon-
tinuities and accelerate computation in smooth regions by taking advantage of p-convergence.
Acceleration can be achieved by building Spectral Cells from Finite Volume Cells resulting in
less cells to update in smooth regions. The Spectral Volume method is used as it provides an
easy transition between Finite Volume Cells and its degrees of freedom.

The chapter is organized as follows, we start by defining some notation in Section 3.1. Sec-
tion 3.2 recalls the main idea of the Spectral Volume Method using a polynomial flux reconstruc-
tion for Cartesian meshes to improve efficiency. Then in Section 3.3 we present our numerical
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method. In Section 3.4 we give a matrix formulation of the Spectral Volume Method. In Sec-
tion 3.5 we present numerical experiments for common test cases found in the literature.

3.1 Notations
We begin by defining some notations. Let

Ω = [xmin, xmax]× [ymin, ymax]× [zmin, zmax]

be a Cartesian subdomain of R3. We want to solve an Initial-Boundary Value Problem (IBVP)
in the case of a hyperbolic scalar conservation law (Godlewski and Raviart 1991; Bouchut 2004;
Dafermos 2010), that takes the form

u(0, x) = u0(x),

∀t > 0,∀x ∈ Ω
∂

∂t
u(t,x) + div (f(u(t,x))) = 0,

B.C. on ∂Ω,

(3.1)

in which div (.) is the 3D spatial divergence operator and f = (fx, fy, fz) is called the flux
function.

Equation 3.1 also admits an integral formulation. Let u be a solution of Equation 3.1. By
integrating the Equation 3.1 over a given volume ω ⊂ Ω and by applying the flux-divergence
theorem the solution u satisfies

ū(t) =
1

|ω|

∫∫∫
ω

u(t,x)dx,

d

dt
ū(t) +

1

|ω|

∫∫
∂ω

f(u (t,x)) · n (x) dσ(x) = 0.

(3.2)

This integral formulation will be used to derive a conservative numerical scheme. Conservative
numerical schemes are known to be able to capture weak solutions, see Lax and Wendroff 1960.

As it will be developed in following sections, we will define two meshes M and MS over Ω
in order to use two different representations of the numerical solution, see Figure 3.1.

First we define a Cartesian mesh, referred to as Finite Volume mesh notedM: it is composed
of Nx, Ny and Nz cells in each dimension and ∆x, ∆y, ∆z are the corresponding mesh space
steps. In the X-direction (resp. Y and Z-direction) interfaces are located at xi+1/2 = (i+ 1)∆x,
(resp. yj+1/2 = (j + 1)∆y, zk+1/2 = (k + 1)∆z) with (xmin, xmax) = (x−1/2, xNx+1/2) (resp.
(ymin, ymax) = (y−1/2, yNy+1/2) and (zmin, zmax) = (z−1/2, zNz+1/2)). Hence the domain Ω is
partitioned into non-overlapping regular cells noted ωi,j,k with

ωi,j,k =
[
xi−1/2, xi+1/2

]
×
[
yj−1/2, yj+1/2

]
×
[
zk−1/2, zk+1/2

]
,

Ω =
⋃
i,j,k

ωi,j,k,
(3.3)

and |ωi,j,k| = ∆x∆y∆z. We define xi, yj and zk by setting

xi =
1

2

(
xi−1/2 + xi+1/2

)
, yj =

1

2

(
yj−1/2 + yj+1/2

)
, zk =

1

2

(
zk−1/2 + zk+1/2

)
. (3.4)

A second Cartesian mesh, referred to as the Spectral Mesh noted MS , is built by aggre-
gating Finite Volume Cells within a set of Spectral Cells ωSis,js,ks that also forms a new Carte-
sian grid over Ω, see Figure 3.1. More precisely: a Spectral Cell ωSis,js,ks is an aggregate of
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Figure 3.1: Example of two 2D-grids used to represent the numerical solution. The mesh on
the left is a standard Finite Volume mesh, each cell approximating the mean value of the exact
solution. The mesh on the right is the corresponding spectral mesh with spectral cells highlighted
by a blue border. Inside each Spectral Cell are represented Control Volumes, also called degrees
of freedom, colored alternatively in grey and white. Both Spectral Cells and Control Volumes
exactly match a set of Finite Volume Cells for a given pattern; (1, 3, 1) in each direction in this
example. If Finite Volume Cells are interpreted as degrees of freedom, we see that the spectral
scheme can be interpreted as a compression of information when a spectral representation is
adapted to the solution.
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NS,loc
x NS,loc

y NS,loc
z Finite Volume Cells i.e.

ωSis,js,ks =

NS,loc
x (is+1)⋃
i=NS,loc

x is

NS,loc
y (js+1)⋃
j=NS,loc

y js

NS,loc
z (ks+1)⋃
k=NS,loc

z ks

ωi,j,k

=
[
xSis−1/2, x

S
is+1/2

]
×
[
ySjs−1/2, y

S
js+1/2

]
×
[
zSks−1/2, z

S
ks+1/2

]
.

(3.5)

Thus, for a Spectral Cell ωSis,js,ks ∈M
S we introduce the following set of indices

FVis,js,ks = {(i, j, k) such that ωi,j,k ⊂ ωSis,js,ks}.

This way a Spectral Cell ωSis,js,ks ∈M
S can be written as

ωSis,js,ks =
⋃

(i,j,k)∈FVis,js,ks

ωi,j,k.

The number of Finite Volume Cells inside each Spectral Cell is a free parameter and is discussed
in Section 3.3.
Finally each Spectral Cell is composed of degrees of freedom, also called Control Volumes in the
case of the Spectral Volume Method, noted ωCVl,m,n. Let us consider three sets of p ≥ 1 integers
nxr , nyr and nzr following

p−1∑
r=0

nr = NS,loc
x ,

p−1∑
r=0

nyr = NS,loc
y ,

p−1∑
r=0

nzr = NS,loc
z . (3.6)

We consider the sets of positions defined by{
xSis−1/2 + nxr∆x, 0 ≤ r ≤ p− 1

}
,{

ySjs−1/2 + nyr∆x, 0 ≤ r ≤ p− 1
}
,{

zSks−1/2 + nzr∆x, 0 ≤ r ≤ p− 1
}
,

(3.7)

that are respectively spanned by the strictly increasing sequences
(
xCVl+1/2

)
,
(
yCVm+1/2

)
and(

zCVn+1/2

)
. The Control Volumes are then defined by

ωCVl,m,n =
[
xCVl−1/2, x

CV
l+1/2

]
×
[
yCVm−1/2, y

CV
m+1/2

]
×
[
zCVn−1/2, z

CV
n+1/2

]
. (3.8)

We also define xCVl , yCVm and zCVn by setting

xCVl =
1

2

(
xCVl−1/2 + xCVl+1/2

)
, yCVm =

1

2

(
yCVm−1/2 + yCVm+1/2

)
, zCVn =

1

2

(
zCVn−1/2 + zCVn+1/2

)
. (3.9)

We also introduce two new sets of indices

CVis,js,ks = {(l,m, n) such that ωCVl,m,n ⊂ ωSis,js,ks},
FVl,m,n = {(i, j, k) such that ωi,j,k ⊂ ωCVl,m,n}.

In the following we identify the triplet of indices (i, j, k) (resp. (is, js, ks), (l,m, n)) to the
corresponding cell ωi,j,k (resp. ωSis,js,ks , ω

CV
l,m,n). We define ui,j,k (resp. uis,js,ks , ul,m,n) to be
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a value associated with a Finite Volume Cell (i, j, k) (resp. Spectral Cell (is, js, ks), Control
Volume (l,m, n)).

Let us note the difference of construction of the two meshes compared to classical high-order
numerical methods. In a classical high-order method one defines a unique spectral grid first and
then defines degrees of freedom inside each Spectral Cell. This difference is related to the point
of view of accelerating computation using a spectral method rather than increasing precision.

For the sake of clarity we will first present our discretization strategy in the case of a scalar
conservation law 3.1. Then we will present the extension to the full Euler system in Section 3.5.1
consisting in applying the same procedure to each equation.

3.2 Spectral Volume method

3.2.1 Semi-discrete scheme
In this section we only deal with the spectral meshMS and forget about the initial Finite Volume
meshM. The main idea of the Spectral Volume Method is to enforce Spectral Cell’s polynomial
to follow a conservation principle for each Control Volume. As it has already been mentioned, in
the Spectral Volume Method, degrees of freedom can be interpreted as a Finite Volume sub-grid
within the Spectral Cell. This method only deals with spatial discretization and does not provide
any insight into the time integration, we are free to choose one’s preferred method. Therefore
we shall present the method as a semi-discrete numerical scheme.

Let uSis,js,ks be a polynomial associated with the Spectral Cell ωSis,js,ks of the form

uSis,js,ks (t, x, y, z) =
∑

0≤q,r,s≤p−1

(
uSis,js,ks(t)

)
q,r,s

xqyrzs. (3.10)

The number of coefficients of this polynomial matches the number of Control Volumes per Spec-
tral Cell and is of degree p − 1 per direction. At each time t, uSis,js,ks represents a polynomial
approximation of the exact solution u within the Spectral Cell ωSis,js,ks . In order to derive a
numerical scheme we take advantage of the following property: the polynomial uSis,js,ks is char-
acterized by its mean values in each Control Volume ωCVl,m,n of the Spectral Cell ωSis,js,ks . This
allows us to seek for a numerical scheme evolving the polynomial uSis,js,ks based on the discretiza-
tion of the Equation 3.2

ul,m,n(t) =
1

|ωCVl,m,n|

∫∫∫
ωCVl,m,n

uSis,js,ks(t,x)dx

d

dt
ul,m,n(t) +

1

|ωCVl,m,n|

∫∫
∂ωCVl,m,n

F(t,x) · n (x) dσ(x) = 0

(3.11)

where F = (Fx,Fy,Fz) is a polynomial numerical flux that will be defined in the next section
(for the X-direction).

3.2.2 Polynomial flux reconstruction Fx

We need a high-order estimation of the numerical flux Fx in the Equation 3.11. To this point
there are two types of faces for the Control Volumes: internal faces (black lines in Figure 3.2)
and external faces (blue lines in Figure 3.2) relative to the Spectral Cell ωSis,js,ks . Even though
for internal faces, the numerical flux

fx
(
uSis,js,ks(t,x)

)
(3.12)
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can be analytically computed for some simple flux functions, in the general case the flux function
fx is highly non-linear so that the computation of the flux integral can be difficult. The standard
choice for Spectral Methods is to use quadrature formulas for both internal and external faces.
These quadrature rules are chosen with a sufficient order of accuracy preserve the order of
accuracy of the Spectral Method. So for both external and internal faces, the evaluation of the
flux integral falls back to provide an approximation of the flux function fx at quadrature points.

In the original work of Wang 2002, they used a quadrature formula per Control Volume. This
choice had the advantage to work for any unstructured meshes in which distribution of Control
Volumes is more complex. The inconvenient is that it is more expensive than other spectral
methods such as Discontinuous Galerkin or Spectral Difference methods.

In our case we aim at taking advantage of the Cartesian structure of the meshMS to reduce
the number of quadrature points per Spectral Cell. To do so we consider a layered polynomial
flux reconstruction using a Lagrange interpolation inside a Spectral Cell at centers of the Control
Volumes, the points of coordinates

((
yCVj , zCVk

))
1≤j≤p,1≤k≤p, it writes

Fx(t, x, y, z) =
∑
m,n

Fxm,n(t, x)Lm,n(y, z), (3.13)

in which Lm,n is a normalized Lagrange interpolation polynomial

Lm,n(y, z) =
∏

(j,k)6=(m,n)

y − yCVj
yCVm − yCVj

z − zCVk
zCVn − zCVk

, (3.14)

and interpolating the flux values
(
Fxm,n(t, x)

)
1≤j≤p,1≤k≤p defined as in Equation 3.15 and Equa-

tion 3.16. Figure 3.2 shows an example of such a distribution of point interpolations in the case
of a third order method.

For internal faces, we take advantage of the polynomial representation uSis,js,ks to directly
evaluate the flux function, we set

Fxm,n
(
t, xCVl+1/2

)
= fx

(
uSis,js,ks(t, x

CV
l+1/2, y

CV
m , zCVn )

)
. (3.15)

In the case of external faces, such that xCVl+1/2 = xSis+1/2, the polynomials of the two adjacent
Spectral Cells are a priori discontinuous. We then use a Riemann Solver FRS to have a unique
flux at the face

Fxm,n(t, xCVl+1/2) = FRS(uL, uR),

uL = uSis,js,ks(t, x
CV
l+1/2, y

CV
m , zCVn ), uR = uSis+1,js,ks(t, x

CV
l+1/2, y

CV
m , zCVn ).

(3.16)

The numerical flux FRS can be an Exact Riemann Solver (Godunov 1959) or any Approximate
Riemann Solver, we refer the reader to the large literature for this topic, local Lax-Friedrichs Lax
1954, HLL Harten et al. 1983, HLLC Toro and Chakraborty 1994, relaxation, Roe Roe 1981
solvers. . .

From the semi-discrete numerical scheme 3.11, the interpolated flux functions (Fx,Fy,Fz)
are then integrated over the faces of Control Volumes. These integrals can be exactly computed
and reformulated using a matrix-vector product, see Section 3.4.

If this method is used as such, one needs to add a limitation procedure. In our case, no
limiter is used at this stage as it will be coupled to a Finite Volume scheme using the MOOD
procedure.
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Figure 3.2: Example of a 2D Spectral Cell ωSis,js for a third order Spectral volume method, i.e.
it has 3 Control Volumes in each direction. On the right figure the vertical green lines (resp. red
lines) represent the external faces (resp. internal faces) in the X-direction where the polynomial
flux Fx is reconstructed. The Lagrange interpolation is realized at the center of Control Volumes
represented by the black points.

3.3 Presentation of an hybrid FV-SV method

In this section we present an hybrid FV-SV scheme. We begin by defining two kinds of represen-
tation of the solution according to the local regularity of the solution. Then we define numerical
schemes adapted to each representation. Finally we define how to select the representation and
how to switch from one to the other.

3.3.1 Discussion on the solution representation

In a classical Finite Volume method, being first order or second order like in a MUSCL-Hancock
reconstruction, cell values represent an integral approximation of the exact solution u

ui,j,k(t) ≈ 1

|ωi,j,k|

∫∫∫
ωi,j,k

u(t,x)dx. (3.17)

Increasing the order of accuracy of the scheme is synonym to increasing the precision for this
unique value.
On the other hand, in the case of spectral schemes, cells hold high-order representation of the
solution. A cell does not hold anymore only a single value but degrees of freedom akin to the
Finite Element method. These degrees of freedom are used to represent solution which becomes
then a point-wise approximation of the solution.
As far as we are concern, we keep the grid M defined earlier as in the Finite Volume method.
Each value in the cell is an approximation of the mean value of the exact solution. We then use
the second meshMS when solution is considered smooth enough.Thus with these two grids we
are able to have two types of representation for the solution. First, we have a piecewise constant
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representation as in a standard Finite Volume scheme which formally writes

uis,js,ks(t,x) =
∑

i,j,k∈FVis,js,ks

φi,j,k(t)1ωi,j,k(x), (3.18)

1ωi,j,k being the characteristic function of cell ωi,j,k and φi,j,k(t) being coefficients at time t. This
representation is composed of mean values in FVC. It is a priori discontinuous and is well suited
when the solution is presenting discontinuities such as contacts or shocks.
When the solution is smooth enough a spectral representation is used with a basis of functions
which again formally writes on a smooth function basis (fα)α to be specified

uis,js,ks(t,x) =
∑
α

φαis,js,ks(t)fα(x) (3.19)

φαis,js,ks are again coefficients at time t. To be as close as possible to the Finite Volume represen-
tation we choose to use the Spectral Volume Method as a high-order method in a Spectral Cell.
As it has been recalled in Section 3.2, degrees of freedom are averaged values in sub-volumes of
the Spectral Cell called Control Volumes, and these Control Volumes are cells of different sizes
which also have a time evolution made with fluxes. In the case of the Spectral Volume Method re-
construction, the definition of (fα)α falls back to the definition of a partition of Control Volumes
inside a Spectral Cell. Once again, Control Volumes are chosen to follow the original Cartesian
structure of the Finite Volume Grid of Ω. Such an example is given in Figure 3.1 in a 2D mesh.
Comparing both Equations 3.18 and 3.19, we see that if there are less Control Volumes than
Finite Volume Cells we have a compression of information in regions where the solution is smooth
enough. This leads to less computational needs in smooth regions.

3.3.2 Choice of Control Volumes
It remains to define distribution of Control Volumes. The number of Control Volumes is deter-
mined by the order of accuracy we wish to achieve. On the one hand, sizes of Control Volumes
determines the stability of the method. As it has already been explored in Wang and Liu 2004,
some distributions are invalid for a stable numerical scheme. This has to be related to the so-
called Runge phenomenon, see Boyd and Ong 2009. It refers to the oscillations of polynomials
near the end of the interpolation intervals in the case of an equidistant point distribution. A
simple way to avoid these spurious oscillations is to use closer points near end of interpolation
interval. On the other hand, it also determines the precision of the numerical scheme. Larger
Control Volumes will lead to a coarser spectral mesh thus less computations. We see that a trade
off has to be found between the precision and the cost of the computation.
In practice we use a distribution close to Gauss-Lobatto points. Table 3.1 gives 1D distribution
of Control Volumes in terms of Finite Volume Cells up to fourth order.

3.3.3 Time integration
In the case of Finite Volume Cells we wish to use the cheapest robust scheme able to deal correctly
with discontinuities either shocks or contacts. A first order scheme is cheap and able to deal
with shocks. However contact discontinuities are rapidly regularized. We have chosen a second
order MUSCL-Hancock which is still able to deal with shocks using a slope limiter and contact
discontinuities. Again a minmod slope limiter tend to be too much diffusive and we have chosen
the generalized minmod limiter, see Equation 3.20

minmodθ(a, b) = minmod

(
1

2
(a+ b), θa, θb

)
, θ ∈ [1, 2] (3.20)
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order distribution NS,loc
x = NS,loc

y = NS,loc
z

1 (1) 1

2 (1, 1) 2

3 (1, 6, 1) 8

4 (1, 4, 4, 1) 10

Table 3.1: This table gives the distribution of Control Volumes in terms of Finite Volume Cells.

which reduces to minmod when θ = 1. It has been used with θ = 2 to keep contact discontinuities
as sharp as possible.
In the case of Spectral Volume Method, we have a semi-discrete scheme which writes

d

dt
uS = LSV

∆

(
uS
)

operator LSV∆ being our Spectral Volume semi-discrete scheme. We then use a classical Runge-
Kutta time integration of the same order of accuracy. A Strong Stability Preserving Runge-
Kutta see Gottlieb et al. 2001, referred as SSP-RK, is usually preferred in the literature for
conservation laws to avoid non-admissible states. It has been tested but did not show any major
difference for our test cases.

3.3.4 Limitation procedure

As presented above we have two types of solution representation but only one of them can be
used at a time. We need to define when to use them. Moreover we need a mapping to go
from one representation to the other. We choose to use the Multi-dimensional Optimal Order
Detection method, referred as MOOD see Clain et al. 2011. The general philosophy of this
method could be summarized as a “try-catch” algorithm. It means that a high-order update
candidate is realized, if it doesn’t satisfy some predefined criteria it is discarded and a fallback
scheme is used. Criteria used are observations of NaN, negative pressure or density and a relaxed
discrete maximum principle. The result may fail to satisfy these criteria because of trying to
construct a polynomial when the solution is locally discontinuous. The polynomial then presents
overshoots that may go into negative densities or pressures, or violates the stability condition.
In our case, the fallback scheme is already determined by the numerical scheme on the Finite
Volume meshM. When the Spectral Volume scheme fails to update a Spectral Cell, the solution
on the Finite Volume mesh is updated using MUSCL-Hancock scheme.
The idea of using sub-grids inside a Spectral Cell is not new and has already been explored
in different ways Dumbser et al. 2014; Sonntag and Munz 2017. To our understanding they
both have drawbacks regarding discontinuities. In the work of Dumbser et al. 2014, using a DG
scheme at order n, a uniform Finite Volume sub-grid of 2n+1 cells is used along with operators
of projection P and reconstruction R. This choice of sub-grid is made to match the time step in
the DG scheme. The major inconvenient is the need for a reconstruction operator to compute
the solution on a Spectral Cell. This means that if a Spectral Cell is detected two times in a
row, because P ◦R 6= I even though they follow R ◦ P = I, there is a loss of information at the
sub-grid level. In the paper of Sonntag and Munz 2017 they use a nodal DG scheme at order
n. This scheme is closer to what we propose. A non-uniform sub-grid with n + 1 Finite Volume
Cells, centered on Gauss points, is used to apply a standard Finite Volume scheme. There is no
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more loss of information between two time steps. However non-uniform sub-grid does not make
it adapted to shocks. Indeed, at a fixed number of degrees of freedom, when the order increases
the size ratio between the smallest and largest cell also increases. In the scheme we propose, we
try to solve both problems by using uniform Finite Volume grid as a basis. If the fallback scheme
is used on Finite Volume Cells, it is applied to solution at time n from the Finite Volume mesh
without modification. This means that up to the quality of the detection criteria, shocks should
be as precise as a fallback scheme simulation on this regular grid.

3.3.5 Time step computation
We suppose that both Finite Volume and Spectral Volume methods are constrained by a CFL
time relation of the form

∆t = CCFLh. (3.21)

where h is the space step involved with the grid of each discretization. Because both schemes can
be used to advance cells between time n and n+1, both schemes have to use the same time step.
In our case to have compatibility between spectral and Finite Volume representations, we choose
to have at least one Control Volume to match exactly a Finite Volume Cell, see Section 3.3.2.
This enforces that both schemes have a time step computed with the same, minimal space step.
Then the CFL factor CCFL has to be chosen so that both schemes are stable.

3.3.6 Algorithm summary
We finally give a summary of the different identified steps in our algorithm:

1. Initialization on the Finite Volume meshM.

2. Time loop, while t < tmax, n < nmax do:

(a) Construction of the Spectral representation on the Spectral meshMS .
(b) Apply the MOOD procedure:

i. Try a high-order time evolution of the Spectral representation.
ii. Projection of the Spectral representation onto the Finite Volume meshM.
iii. Catch bad evolution of Spectral Cells.
iv. Apply the MUSCL-Hancock scheme on Finite Volume Cells of detected Spectral

Cells and change fluxes between detected and non-detected Spectral Cells.

3.4 Implementation details and matrix formulation
Implementation is realized using two global grids. A grid is dedicated to hold Finite Volume
representation and the other grid to hold Control Volume values. We emphasize that latter grid
is small compared to the Finite Volume grid. When high-order time evolution is realized, these
fluxes are also stored in a global array. This way, fluxes can be further modified if a Spectral Cell
is detected. If a Spectral Cell is not detected but one neighbour is, it also needs to be projected
on the Finite Volume grid again because of corrected fluxes at edges.

In the following we omit the time dependency in the Spectral representation and for the
corresponding discrete values. By a translation, the following calculations can always be done
from the Spectral Cell (is, js, ks) = (0, 0, 0). Thus we write CV = CVis,js,ks and FV = FVis,js,ks .
This allows to interpret triplets of indices (l,m, n) and (i, j, k) as local indices relative to this
Spectral Cell.
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Let us also note US =
(
uSq,r,s

)
0≤q,r,s≤p−1

(resp. UCV = (ul,m,n)(l,m,n)∈CV and UFV =

(ui,j,k)(i,j,k)∈FV ) the vector of coefficients of this polynomial (resp. the vector of values associated
to Control Volume and the vector of values associated to the Finite Volume Cells).

Regarding the flux, we only consider a face in the X-direction, located at xCVl+1/2, as an

example. We note F xl+1/2 the vector of flux integrals and F x,ptl+1/2 =
(
Fxm,n

(
xCVl+1/2

))
0≤m,n≤p−1

the vector of flux points associated with the Lagrange interpolation 3.13.

3.4.1 Finite Volume Cells to Control Volumes

This step is a simple projection onto a coarser grid. Finite Volume Cells that belong to the same
Control Volume simply add their content

∀(l,m, n) ∈ CV, ul,m,n
def
=

1

|ωCVl,m,n|
∑

(i,j,k)∈FVl,m,n
|ωi,j,k|ui,j,k. (3.22)

3.4.2 Control Volumes to Finite Volume Cells

This step is the counterpart of Finite Volume Cells to Control Volumes. For a valid Spectral
Cell it consists in projecting the polynomial uS representation onto the Finite Volume Cells.

∀ (i, j, k) ∈ FV, ui,j,k
def
=

1

|ωi,j,k|

∫∫∫
ωi,j,k

uS(x, y, z)dxdydz. (3.23)

This integral can be explicitly computed and only consists in a matrix-vector product, more
details in the following.

From polynomial coefficients

We want to give a matrix formulation of Equation 3.23, i.e. to compute from the values as-
sociated with the Control Volumes to the values associated with the Finite Volume Cells,
UFV = (ui,j,k)(i,j,k)∈FV . We have∫∫∫

ωi,j,k

uS(x, y, z)dxdydz =
∑
q,r,s

uSq,r,s

∫∫∫
ωi,j,k

xqyrzsdxdydz (3.24)

= |ωi,j,k|
∑
q,r,s

M((i,j,k),(q,r,s))U
S
(q,r,s) (3.25)

in which we define the matrix M by

M((i,j,k),(q,r,s)) =
1

|ωi,j,k|

∫∫∫
ωi,j,k

xqyrzsdxdydz (3.26)

The integral in the Equation 3.26 is only geometrical and thus only depends on the mesh. It is
then straightforward that we have a matrix formulation

UFV = MUS (3.27)
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From Control Volumes

We need to define how to obtain the polynomial coefficients from the Control Volumes data. We
start by computing the vector of coefficients US from the vector of Control Volumes UCV

1

|ωCVl,m,n|

∫∫∫
ωCVl,m,n

uS(x, y, z)dxdydz = ul,m,n (3.28)

Developing the polynomial uS we obtain∫∫∫
ωCVl,m,n

uS(x, y, z)dxdydz =
∑
q,r,s

uSq,r,s

∫∫∫
ωCVl,m,n

xqyrzsdxdydz (3.29)

= |ωCVl,m,n|
∑
q,r,s

N((l,m,n),(q,r,s))U
S
(q,r,s), (3.30)

with
N((l,m,n),(q,r,s)) =

1

|ωCVl,m,n|

∫∫∫
ωCVl,m,n

xqyrzsdxdydz. (3.31)

Because there are as much coefficients as Control Volumes we can invert this system and obtain
the polynomial coefficients with

US = N−1UCV (3.32)

If we combine both results we are able to compute the values of the Finite Volume Cells from
the values of Control Volumes without having to compute the polynomial coefficients

UFV = MN−1UCV . (3.33)

This formulation has the main advantage to be independent of the location of Spectral Cell
(is, js, ks) in the meshMS . This implies that matrix MN−1 can be computed before the time
loop on a Spectral Cell of reference.

3.4.3 Flux integral
In this section we aim at formulating flux integrals as a matrix-vector product using the flux
points F x,ptl+1/2 computed at the center of Control Volumes. As it has been presented in Sec-
tion 3.2.2 the integral of the polynomial flux reconstruction 3.13 writes

F xl+1/2,m,n =
1

|Γl+1/2,m,n|

∫∫
Γl+1/2,m,n

Fx(xCVl+1/2, y, z)dydz,

Γl+1/2,m,n = ωCVl,m,n ∩ ωCVl+1,m,n,

Fx(x, y, z) =
∑
m,n

Fxm,n(x)Lm,n(y, z),

Lm,n(y, z) =
∏

(j,k)6=(m,n)

y − yCVj
yCVm − yCVj

z − zCVk
zCVn − zCVk

.

(3.34)

To have a matrix-vector product we first find the polynomial coefficients of Fx
(
xCVl+1/2, y, z

)
=∑

0≤r,s≤p−1 cr,sy
rzs by solving the following linear system

NfC = F x,ptl+1/2, (3.35)
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in which Nf
((m,n),(r,s)) =

(
yCVm

)r(
zCVn

)s and Cr,s = cr,s. As in the previous section it results that

F xl+1/2 = MfNf−1
F x,ptl+1/2,

Mf
((m,n)(r,s)) =

1

|Γl+1/2,m,n|

∫∫
Γl+1/2,m,n

yrzsdydz.
(3.36)

3.5 Numerical experiments

In this section we present numerical experiments both in term of precision and efficiency. The
tests are done with order ranging from 1 to 4. For a given variable φ, the L1 error on φ is
measured as

‖φnum − φsol‖L1 =
1

NxNy

∑
i,j

|φnumi,j − φ̄soli,j |

in which

φ̄soli,j =
1

|Ci,j |

∫
Ci,j

φ(x, y)dxdy

In the following we refer to “CV perf” as the number of Control Volumes updated per second
whereas “FV perf” refers to the number of Finite Volume Cells updated per second which are
standard metrics in grid based algorithms. Of course one has to be careful when comparing such
numbers as they depend on the algorithm, their implementation and the hardware architecture.
In our case all performance numbers are presented on a single Intel Sandy-Bridge E5–2670
processor. The first order simulation is implemented with the SVM algorithm which may lower
performances due to unnecessary computations.
We chose to test our numerical method on the well-known adiabatic Euler system and selected
test cases showing different aspects of numerical schemes such as transport, acoustic, smooth,
discontinuous or high Mach flows.

3.5.1 Adiabatic Euler system

The adiabatic Euler system is used to model dynamics of inviscid fluids, see Godlewski and
Raviart 1991; Toro 2009 for basic properties on this system. It is a system of conservation laws
for the mass density ρ, the momentum density m = ρu and the energy density ρE

∂

∂t
ρ+ div (ρu) = 0

∂

∂t
(ρu) + div (ρu⊗ u+ pI) = 0

∂

∂t
(ρE) + div ((ρE + p)u) = 0

ρE = ρe+
1

2
ρu2, p = pEOS (ρ, e)

(3.37)

where u is the material velocity, pEOS is a given pressure law and e is the specific internal energy
of the fluid. Bold expressions represent vectors in 2 or 3D, product u⊗u denotes tensor product,
i.e. (u⊗ u)i,j = uiuj and I is the identity matrix in 3D. The pressure law in the following is
chosen to be a perfect gas

pEOS (ρ, e) = (γ − 1) ρe (3.38)
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spectral Nx L1 error on ρ effective order CV perf FV perf

40 40 2.2213× 10−1 — 3.7 3.7

80 80 1.3576× 10−1 0.7104 4.2 4.2

160 160 7.5613× 10−2 0.8444 4.2 4.2

320 320 3.9979× 10−2 0.9194 4.1 4.1

640 640 2.0566× 10−2 0.9590 3.9 3.9

1280 1280 1.0432× 10−2 0.9793 3.9 3.9

Table 3.2: Summary of L1 errors using SVM (1) on the density variable and corresponding
effective orders obtained on the advection of sinusoide.

where γ > 1 is the adiabatic index of the gas.
Even though the numerical scheme in Section 3.3 is presented for a scalar conservation law it can
be directly applied to a system of conservation by using the same procedure for each equation in
the system.

3.5.2 Smooth transport test case

This test consists in the advection of a sinusoide density profile at constant velocity. Initial
conditions are given at t = 0 by, ∀x, y ∈ [0, 1]

ρ(x, y) = 2 + sin(2πx) sin(2πy)

u(x, y) = 10, v(x, y) = 10

p(x, y) = 1

This test is used for measuring the effective order of the spectral volume method of order p
when there is no limitation procedure. Indeed this test case is smooth which makes it well-suited
for a convergence study. We report L1 errors on density variable in tables 3.3, 3.4 and 3.5
for orders between 2 and 4 and for the same number of Finite Volume Cells. Effective order
tends to match formal accuracy by lower values when the number of Spectral Cells increases.
Figures 3.3a and 3.3b summarize the results from the tables. We notice that the plots of orders
2 and 3 cross at 160 fine cells. This can be understood by the way the numerical scheme is
constructed. Assuming that the error decreases as C∆xp for a smooth solution, the number of
Control Volumes specifies the order p of convergence but the number of fine cells inside a Control
Volumes specifies the constant C. The more fine cells are aggregated to form a Control Volume
the bigger C is.
We also show performance results in the tables 3.2, 3.3, 3.4 and 3.5. In a smooth test case,
with MOOD disabled, we only measure performance relative to the Spectral Volume method
stage. We first notice a decrease in performance when going to higher orders. This is expected
as more computation is done per Control Volume. However for a given error we can see that
a high-order scheme helps in allowing to use coarser grids hence less time iterations. We also
give FV performances as an indicator to the maximal performance that can be achieved when
when the fallback scheme is enabled. Of course for first and second order, there is no benefit as
Control Volumes exactly map Finite Volume Cells. However we see a boost of performances in
the third and fourth orders.
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spectral Nx L1 error on ρ effective order CV perf FV perf

20 40 1.3380× 10−2 — 2.7 2.7

40 80 3.3680× 10−3 1.9902 3 3

80 160 8.4528× 10−4 1.9944 3.1 3.1

160 320 2.1179× 10−4 1.9968 3 3

320 640 5.3012× 10−5 1.9983 2.8 2.8

640 1280 1.3262× 10−5 1.9991 2.5 2.5

Table 3.3: Summary of L1 errors using SVM (2) on the density variable and corresponding
effective orders obtained on the advection of sinusoide.

spectral Nx L1 error on ρ effective order CV perf FV perf

5 40 4.3987× 10−2 — 1.0 7.2

10 80 5.9800× 10−3 2.8789 1.3 9.0

20 160 7.5716× 10−4 2.9815 1.3 9.1

40 320 9.5360× 10−5 2.9891 1.3 9.1

80 640 1.1926× 10−5 2.9993 1.2 8.8

160 1280 1.4913× 10−6 2.9994 1.2 8.5

Table 3.4: Summary of L1 errors using SVM (3) on the density variable and corresponding
effective orders obtained on the advection of sinusoide.

spectral Nx L1 error on ρ effective order CV perf FV perf

4 40 2.0912× 10−3 — 0.67 4.2

8 80 1.0682× 10−4 4.2910 0.85 5.3

16 160 6.2350× 10−6 4.0987 0.94 5.9

32 320 3.8533× 10−7 4.0162 0.92 5.8

64 640 2.3968× 10−8 4.0069 0.9 5.6

128 1280 1.4963× 10−9 4.0017 0.87 5.5

Table 3.5: Summary of L1 errors using SVM (4) on the density variable and corresponding
effective orders obtained on the advection of sinusoide.
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Figure 3.3: The convergence rates of the Spectral Volume Method for the advection of a sinusoide
test case.



90 CHAPTER 3. SPECTRAL VOLUME METHOD

3.5.3 Discontinuous transport test case

This test case is a transport test with a contact discontinuity. This test is meant to measure
the smearing of the discontinuity in time and to detect spurious oscillations. Even in the case
of the Godunov scheme that involves the exact solution of the Riemann problem, the contact
discontinuity will be smeared by the averaging steps. We consider the initial conditions

ρ(x, y) =

{
1 if 0.1 < x < 0.3, 0.1 < y < 0.3,

0.1 otherwise,

p(x, y) = 1,

u(x, y) = 1, v(x, y) = 1.

The initialization is performed on the fine grid in order to avoid early smearing of the interface.
We use periodic boundary conditions.
Results are shown in Figure 3.4. All four simulations involve the same number of fine cells 320,
which implies that there are 320, 160, 80, 40 Spectral Cells for orders 1, 2, 3 and 4 respectively.
Results are plotted after one advection tour. Top left quadrant of Figure 3.4a shows the result
of the standard finite volume scheme at order 1. The contact discontinuity is highly smeared up
to the point of loosing track of the initial shape. Other quadrants of Figures 3.4a show results
at orders 2, 3 and 4 respectively. We notice that at order 3, there is a larger smearing of the
interface compared to the second order case. This can be related to the convergence study in
the sinusoide test case 3.5.2 and the observation of a larger error at order 3 compared to order
2 when the mesh is coarse. The more the discontinuity is smeared in time, the less cells are
detected.
Figure 3.4b shows the profile of density along the first diagonal at the final time for all orders.
The exact solution is also represented in dash grey line. First we notice no spurious oscillations
due to the use of the fallback scheme that also involves a slope limiter. Even though SVM (2)
to SVM (4) use the same fallback scheme in the discontinuous region we notice a slightly less
smearing of the discontinuity.

3.5.4 Sod shock tube test case

The Sod test case is a Riemann problem where initial conditions are given by following two states

ρL = 1, pL = 1, uL = 0

ρR = 0.125, pR = 0.1, uR = 0
(3.39)

The exact solution is composed of three elementary waves, an expansion wave, a contact wave and
a shock wave. As the Spectral Volume scheme is only used in smooth regions, we cannot expect
much improvement issued from high order method in this test that involves two discontinuities.
Figure 3.5 shows result at time t = 0.2 for a fixed Finite Volume mesh of Nx = 320 and different
orders. On the left panel we display density profiles and on the right panel detected bad cells. We
see that detection mainly happens near discontinuities, or at a loss of regularity near the ending
of the expansion wave. At order 3 and 4 we notice that a lot of Spectral Cells are detected. It
is expected because we are at low resolution.
We do not observe a major improvement with methods of order higher than 2. However for the
shock wave, we notice that it can be localized up to the size of a Finite Volume Cell and not to
the size of a Spectral Cell. Small oscillations near the contact discontinuity are related to the
slope limiter 3.20.
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(a) Density color maps for different orders: 1, 2, 3 and 4 correspond respectively to the top left, top
right, bottom left and bottom right quadrants. We can see a major improvement between the orders
1 and 2, however from the order 2 the smearing is not reduced. This is due to the common fallback
MUSCL-Hancock scheme, that controls the smearing.
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Figure 3.4: Advection of a square simulations, at constant velocity.
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Figure 3.5: Sod shock tube simulations at time t = 0.2 and for a fixed Finite Volume grid of
Nx = 320 cells. We show density profiles for different orders. The detected cells are colored in
red whereas the valid, spectral, cells are colored in blue.



3.5. NUMERICAL EXPERIMENTS 93

spectral Nx L1 error on ρ effective order

40 40 2.3678× 10−2 —

80 80 1.9570× 10−2 0.2981

160 160 1.4387× 10−2 0.4522

320 320 9.2509× 10−3 0.6422

640 640 5.3656× 10−3 0.7887

1280 1280 2.9139× 10−3 0.8823

Table 3.6: Summary of L1 errors using SVM (1) on the density variable and corresponding
effective orders obtained for the advection of the isentropic vortex.

3.5.5 Isentropic vortex test case

The isentropic vortex test involves the transport of a vortex by the velocity field (u0, v0) = (1, 1).
The vortex center is located at (xc, yc) = (5, 5) in the Cartesian domain [0, 10]

2. The solution is
given by

ρ(x, y) =

(
1− (γ − 1)β2

8γπ2
exp

(
1

2
(1− r2)

)) 1
γ−1

u(x, y) = u0 −
β

2π
exp

(
1

2

(
1− r2

))
(y − yc)

v(x, y) = v0 +
β

2π
exp

(
1

2

(
1− r2

))
(x− xc)

p(x, y) = ρ(x, y)
γ

(3.40)

We use periodic boundary conditions.
The initialization of the Finite Volume Cells is achieved through the initialization of the spectral
grid using conservative variables. It has been noticed that the initialization of the Finite Volume
grid with high order quadrature can produce errors of the order of 10−8. This has resulted in
a failure of the measurement of the order of convergence at time t = 10. However the order of
convergence can be shown to be recovered on a longer time scale. In consequence, it has been
decided to initialize conservative variables on the spectral grid in order to avoid this spurious
error.
Tables 3.6, 3.7, 3.8 and 3.9 give results for different meshes. For orders up to 3, we obtain a
convergence rate close to the formal order. However in the case of SVM (4) we see a higher
convergence rate when increasing number of cells that has also been observed in the case of
discontinuous Galerkin method see Schaal et al. 2015.

3.5.6 Kelvin-Helmholtz instability test case

The Kelving-Helmholtz instability test simulates the development of an instability at the in-
terface between two layers of different densities that undergoes a velocity shear. This density
contrast can have different origins such as a gradient of temperature, a gradient of mean molec-
ular weight, a phase difference between gas and liquid. Because this flow is unstable, a small
perturbation can break the stationary fluid layering state and develop vortices. In the context of
the Euler equations, the density ratio is due to a temperature gradient. Moreover because there
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spectral Nx L1 error on ρ effective order

20 40 6.7078× 10−3 —

40 80 2.0151× 10−3 1.7350

80 160 5.2340× 10−4 1.9432

160 320 1.3050× 10−4 2.0055

320 640 3.2454× 10−5 2.0076

640 1280 8.0906× 10−6 2.0041

Table 3.7: Summary of L1 errors using SVM (2) on the density variable and corresponding
effective orders obtained for the advection of the isentropic vortex.

spectral Nx L1 error on ρ effective order

5 40 1.7665× 10−2 —

10 80 5.5822× 10−3 1.6620

20 160 1.1825× 10−3 2.2390

40 320 1.8721× 10−4 2.6592

80 640 2.4543× 10−5 2.9313

160 1280 3.0931× 10−6 2.9882

Table 3.8: Summary of L1 errors using SVM (3) on the density variable and corresponding
effective orders obtained for the advection of the isentropic vortex.

spectral Nx L1 error on ρ effective order

4 40 6.9975× 10−3 —

8 80 1.3714× 10−3 2.3512

16 160 1.2167× 10−4 3.4945

32 320 4.4428× 10−6 4.7754

64 640 1.8553× 10−7 4.5817

128 1280 9.1754× 10−9 4.3377

Table 3.9: Summary of L1 errors using SVM (4) on the density variable and corresponding
effective orders obtained for the advection of the isentropic vortex.
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Figure 3.6: Convergence rates of the Spectral Volume Method for the isentropic vortex test case.
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parameters values

δ 0.02

(y1, y2) (0.25, 0.75)

(ρ1, ρ2) (2, 1)

(u1
x, u

2
x) (-0.5, 0.5)

u0
y 0.1

Table 3.10: Parameter values for the Kelvin-Helmholtz instability.

is no temperature diffusion in the Euler equations, a temperature jump should be indefinitely
maintained. The interface between the two layers keeps growing in time within the computa-
tional domain.
The initial situation is given by a small regularization version defined as follows, for x, y ∈ [0, 1]

ρ(x, y) = ρ1 + (ρ2 − ρ1)Θ(y; y1, y2)

ux(x, y) = u1
x + (u2

x − u1
x)Θ(y; y1, y2)

uy(x, y) = u0
y sin(2πx)

Θ(y; y1, y2) =

(
1 + exp

(
2
y − y1

δ

))−1(
1 + exp

(
2
y2 − y
δ

))−1

(3.41)

with parameter values displayed in Table 3.10 and periodic boundary conditions.
A simulation at resolution 12802 was performed and the result is shown in Figure 3.7 for different
times. We can see a well-defined interface in the first two snapshots that develops two spirals. In
the last two snapshots, other Kelvin-Helmholtz instability modes have developed at the interface
leading to the mixing of the two layers. Figure 3.8 shows the time evolution of valid Spectral
Cells. As we can see, from time t = 1.2, the number of valid Spectral Cells keeps decreasing.
This time corresponds to the development of new Kelvin-Helmholtz instability modes as shown
in figure 3.8. It should be emphasized that no diffusion process is at stake, hence there is no
limitation in the development of new Kelvin-Helmholtz modes. Such a process would define a
length scale which, if resolved, could limit the use of the fallback scheme.

3.5.7 Mach 80 jet test case
We now turn to a more demanding test coming from the astrophysics field Ha et al. 2005; Gardner
and Dwyer 2009. It consists in a high mach jet flow entering into a lower density material at rest.
High mach flows are demanding for numerical schemes when solving the Euler system because
of the total energy conservation. In these flows, the total energy is dominated by kinetic energy
which make it difficult to be accurate for internal energy and thus may lead to negative energies.
The jet enters with the following characteristics

ρ = 5, p = 0.4127, u = 30, (3.42)

into a hotter material at rest where

ρ = 0.5, p = 0.4127, u = 0. (3.43)

Both materials have the same adiabatic index γ = 1.666. It is straightforward to compute the
Mach number 80 for the jet. Domain of study is set to [0, 2]× [−0.5, 0.5]. Jet enters at (0, 0) and
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Figure 3.7: Kelvin-Helmholtz instability test case. We show four snapshots at different times
t = 1.2, t = 1.8, t = 2.4 and tf = 3.
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Figure 3.8: Time evolution of the fraction of valid Spectral Cells. We can see that due to
interfaces instabilities, the number of valid Spectral Cells keeps decreasing.
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has a width of 0.1. In order to avoid to rely on a boundary related problem, we set only the first
layer of Finite Volume Cells to jet values and we set Neumann boundary conditions for all faces.
We observed that using only negative energy and density as MOOD detection criteria is not
enough. Indeed it may lead to cells in a admissible but still non-physical state and thus to a
near zero time step. We show results on Figures 3.9 and 3.10 at time t = 0.7. Figure 3.9 is
a low-resolution simulation on a Finite Volume mesh 500 × 250 similar to results given in Ha
et al. 2005. We notice a numerical shock instability at the head of the jet. It recalls a carbuncle
instability, see Quirk 1994 which is usually observed for stationary shocks aligned to the grid.
Moreover we can see that because of the low resolution and large Spectral Cells (fourth order),
there is a large ratio of cells using the fallback scheme.
We increased the resolution up to 3200 × 1600, see Figure 3.10 where we can see a Kelvin-
Helmholtz instability developing near the head of the jet. This simulation with a grid spacing
of ∆x = 6.2510−4 was performed at a mean speed of 3.7M Finite Volume Cells update per
second.The performance is no longer constant but depends on the number of detected cells —
reaching 12% of total Spectral Cells at the end of the simulation, less than in the low resolution
simulation. This number is similar to a sequential second order MUSCL-Hancock scheme on a
regular grid.

Conclusions
In this chapter we have presented a new hybrid Spectral Volume and Finite Volume method.
It aims at accelerating computation using high-order schemes in smooth regions to benefit from
efficient p-convergence and standard Finite Volume schemes in discontinuous regions to benefit
from standard h-convergence. We have shown results validating the order of convergence and a
good behavior in presence of discontinuities. We have obtained good performance results near the
performances of the second order MUSCL-Hancock scheme for third and fourth orders numerical
schemes. Future works on the optimization of the scheme might lead to better performances.
We also point out that a factor 2 can be easily obtained by simply switching from RK4 to RK2
without much impact on the simulation results for the KH and jet tests.

To fully take advantage of new supercomputers, numerical schemes have to present high
degree of parallelism. Spectral schemes are known to ease data locality thanks to Spectral Cells.
In the case of regular meshes numerical schemes usually have data parallelism. Thus domain
decomposition is simple and there is no load-balancing issue. In our case the use of two schemes
may break this load-balancing. Indeed if only one domain presents discontinuities, only this
domain needs to use a fallback scheme, thus extra computation is needed only for some domains.
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Figure 3.9: Snapshot of a jet simulation at Mach 80 with SVM (4) at a Finite Volume resolution
500 × 250. The top panel shows the density in a log scale. The bottom panel shows valid cells
when the value is 1, i.e. when the update is done with the spectral scheme. We see that the
fallback scheme is essentially enabled near discontinuities.
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Figure 3.10: Snapshot of a jet simulation at Mach 80 with SVM (4) at a Finite Volume resolution
3200× 1600. The top panel shows the density in a log scale. The bottom panel shows valid cells
when the value is 1, i.e. when the update is done with the spectral scheme. We see that the
fallback scheme is essentially enabled near discontinuities.
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Appendix

3.A Extension to source term
One can be interested to study hyperbolic conservation laws involving source terms, also referred
to as balance laws, Equation 3.1 now takes the following form

∂

∂t
u+ div (f(u)) = s(u) (3.44)

In integral form over a Spectral Cell, keeping the notations of Section 3.2, we have

ul,m,n(t) =
1

|ωCVl,m,n|

∫∫∫
ωCVl,m,n

uSis,js,ks(t,x)dx,

sl,m,n(t) =
1

|ωCVl,m,n|

∫∫∫
ωCVl,m,n

s(uSis,js,ks(t,x))dx,

d

dt
ul,m,n(t) +

1

|ωCVl,m,n|

∫∫
∂ωCVl,m,n

F(t,x) · n (x) dσ(x) = sl,m,n.

(3.45)

The source term sl,m,n is simply approximated by

sl,m,n(t) ≈ s (ul,m,n(t)) (3.46)

We use a Runge-Kutta time integrator as in the conservative case. In the MOOD strategy, if the
Spectral Cell is detected, we use the MUSCL-Hancock numerical scheme on the Finite Volume
Cells with a source term that is evaluated by the unique value in the cell.

3.A.1 Rayleigh-Taylor instability
We now consider the Euler system, see Section 3.5.1, with gravity

∂

∂t
ρ+ div (ρu) = 0

∂

∂t
(ρu) + div (ρu⊗ u+ pI) = ρg

∂

∂t
(ρE) + div ((ρE + p)u) = ρu · g

ρE = ρe+
1

2
ρu2, p = pEOS (ρ, e)

(3.47)

The gravity source term has the particularity of being linear in conservative variables so that the
approximation in the previous section is exact.
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A standard test case is the Rayleigh-Taylor interface instability. It is defined as a dense layer
over a light layer at equilibrium. The initial state is given in a box [−0.25, 0.25] × [−0.75, 0.75]
by

ρ(x, y) =

{
2 if y > 0,

1 else,

p(x, y) = p0 + ρgyy,

uy(x, y) =
A

4

(
1 + cos

(
2π

x

Lx

))(
1 + cos

(
2π

y

Ly

))
,

ux(x, y) = 0,

(3.48)

with values p0 = 2.5, gy = −0.1 and A = 0.01. A velocity perturbation is added so that initial
equilibrium cannot be sustained.
Results of simulation are given in Figure 3.11 at resolution 500 × 1500. We can see dense layer
going down and light layer going up. As in the test case 3.5.6, a Kelvin-Helmholtz instability is
developing at the interface between both layers leading to a numerical mixture at time t = 12.4.
The behavior of the numerical scheme is really close to the Kelvin-Helmholtz simulation. The
dynamics is focused near the interface between two large and smooth layers. The effect of the
Spectral scheme is not really important in terms of accuracy gain, however it is significant in
terms of computational cost as it allows to decrease the number of Riemann problems to be
computed.
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Figure 3.11: Two snapshots of a Rayleigh-Taylor simulation at resolution 500× 1500 and times
t = 8.1 and t = 12.4. We observe dense material going down due to instability.
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Chapter 4

High Performance Computing tools

In the previous chapter, we have explored acceleration by using high order methods in order to
adapt the representation of the solution depending on the local smoothness of the solution. In
this chapter we continue by exploring other ways of accelerating the time to solution. We mainly
explore two approaches: software and hardware acceleration by exploiting parallelism, implicit
algorithms, Adaptive Mesh Refinements and a mix of them.

We begin by presenting the performance portability problematic, the Kokkos and Trilinos
libraries. Then we present the different parallelism strategies explored in the codes ARK and
ARK 2 used in previous chapters using Kokkos and MPI. Then we explore acceleration by using
the acoustic implicit solver in low-Mach regimes and by using the Trilinos library. We explore
AMR which allows to have a sparse representation of the numerical solution on the splitted
numerical scheme. Finally we explore the porting to GPU of an implicit solver for radiative
transfer from RAMSES using Trilinos.

4.1 The performance portability problematic
When going to large simulations one needs to use dedicated computers called supercomputers.
By definition a supercomputer is a computer with high-end performance capabilities at a given
time. To reach best performances, these computers use the state of the art technologies in terms
of processors, networks, storage system, cooling system and software stack. Supercomputers are
also called clusters because they are built upon aggregating nodes, connected together by a fast
network. An example of such a supercomputer is shown on Figure 4.1 which is the Joliot-Curie
machine hold at TGCC, Saclay, France.

In order to run on such clusters, a popular and standardized way is to use the Message
Passing Interface, MPI. This programming model, qualified as distributed memory model, allows
a process to access data from an other process’ memory by explicitly engaging a communication.
Hence the programmer has to explicitly split the work and distribute it between processes. MPI
provides essential and basic communication patterns such as one-to-one, gather, scatter, all-to-
all. . . Then the main difficulty is to have correct load balancing between processes. Nowadays
this model is mainly used to communicate between nodes or inside a node between Non-Uniform
Memory Access regions, also called NUMA regions. At the NUMA level, the shared memory
model is better suited even though MPI can still be used.

Technologies evolve rapidly and more specifically processors. Moore observed this evolution
for the density of transistors which has become a law named after him. To be more precise
Moore’s law is an economic law predicting the doubling of the density of transistors on a CPU
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Figure 4.1: Example of a supercomputer, here Joliot-Curie at TGCC, Bruyères-le-Châtel, France

chip every 18 months. Figure 4.2 shows the Moore’s law in orange dots. It also shows other
characteristics of processors such as frequency and the number of logical cores. We can see
that up until the beginning of the years 2000, computation power was increased by the increase
of frequency. The same software could then run faster on the next generation of processors,
this is usually referred as “free lunch”, see Sutter 2013. After reaching the “heat wall”, CPU
manufacturers changed strategy and started to develop multi-core CPUs. Such processors are
able to run at the same time two or more threads.

With the advent of multi-core processors, the Open Multi-Processing programming model
has been used to exploit shared memory parallelism. In this model, work is again splitted among
threads which are mapped to physical cores. However all threads share the same memory address
space and thus can access any allocated data in the memory at any time without a request to an
other thread. It is of the responsibility of the programmer to avoid conflicting accesses between
threads. This type of conflict is called a race condition. In a multi-core processor, threads are
independent and can execute different instructions on different data. The computation power
of cores comes from both the usage of hierarchical memory, called caches, and complex control
units able to do pipelining of instructions, executing instructions out-of-order. . . In addition to
the core complexity, vector instructions allow to reduce the number of cycles necessary to realize
a computation. For example some architectures are able to realize vector additions on 8 double
precision floating point in the same number of cycles as the scalar equivalent operation.

Originally used for graphics computation GPUs, Graphics Processing Units, are architec-
tures dedicated to massive parallelism. Thus, near 2010, with the release of the programming
model CUDA from NVIDIA, which stands for Compute Unified Devices Architectures, GP-
GPU started to be used as accelerators for scientific applications. Contrary to a processor, a
GP-GPU is composed of thousands of simple cores, called CUDA cores, grouped into Streaming
Multiprocessors. From the programming point of view threads are logically grouped into CUDA
blocks. Each block is assigned to a Streaming Multiprocessor. The Streaming Multiprocessor is
then responsible to schedule groups of 32 threads, called warps, onto the CUDA cores. Warps
have the particularity to execute the same instruction on different data. If a branch divergence
occurs, the warp executes both branches resulting in a loss of performance. As we can see
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Figure 4.2: The figure represents the evolution over time of different characteristics for chips.

Rank Supercomputer Country Main architecture

1 Fugaku Japan ARM
2 Summit USA NVIDIA V100
3 Sierra USA NVIDIA V100
4 Sunway TaihuLight China Sunway SW26010
5 Tienha-2A China Intel Xeon E5–2692v2

Table 4.1: TOP500 of June 2020

maximum performance is reached when threads within a warp agree on the flow of instructions.
As a result, the diversity in the main architectures of supercomputers increased as we can

see from Table 4.1 which shows the first positions from the TOP500 ranking of the most pow-
erful supercomputers in the world in June 2020. This diversity raises two related difficulties,
portability and performance portability. Portability relates to the ability to run on different
computers. The difficulty is due to differences in build systems, software dependencies, operat-
ing systems. . .Whereas performance portability is the ability to use efficiently different hardware
architectures. The latter implies portability. As presented above, architectures are different and
thus need different programming models to achieve good performances. This may lead to im-
plement the same algorithm multiple times. In addition to the diversity of architectures, node
size tends to increase. Multiple architectures can be on the same node thus requiring memory
management and thus a flexible programming model to use all computation resources.

To address the aforementioned problems, a typical solution is to use OpenACC or OpenMP
which avoids to refactor an existing code. The advantage is to add instructions to the compiler
to generate parallel loops and kernels for GPUs. However memory management is difficult and
can be a bottleneck on some applications as we will see further. We choose an other path which
is to use a dedicated C++ library called Kokkos. We emphasize that it exists alternatives to
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Figure 4.3: Figure represents an asbtract machine model of an exascale node.

Kokkos such as RAJA, Alpaka or the SYCL standard.

4.2 The Kokkos library

4.2.1 The Kokkos abstract machine model
The Kokkos programming model, as of version 2.9, is based on an abstract machine model
representing an exascale node, see Figure 4.3. Resources from this machine can be classified
into two categories: execution spaces and memory spaces. First an execution space represents
resources able to do computation. From Figure 4.3 this corresponds to CPU cores (multi-core and
many-core) to which are added accelerators (GPUs). Then a memory space represents resources
able to store data. From Figure 4.3 different memories are available such as on-chip memory,
central memory and memory on accelerators.

The Kokkos programming model allows the user to manage which execution space to use,
when computation takes place and to control data transfer between memory spaces which may
be costly. Kokkos is built upon existing programming models such as OpenMP or CUDA. We
refer to these internal programming models as backends.

The model is based on different key concepts

• memory space: specifies where data are stored.

• memory layout: specifies the multidimensional data layout.

• execution pattern: basic parallel algorithm to execute.
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• execution space: specifies where computation takes place.

• execution policy: specifies how computation is executed.

Similar to the CUDA programming model, it defines host to be the CPU which dispatches
work on devices. In the CUDA programming model, the device corresponds to the GPU, in the
Kokkos context it corresponds to any backend, which can be the CPU itself.

4.2.2 The Kokkos execution patterns
Execution patterns are the building blocks for more complex parallel algorithms. Kokkos pro-
vides three of them

• Kokkos::parallel_for,

• Kokkos::parallel_reduce,

• Kokkos::parallel_scan,

First the Kokkos::parallel_for is a basic loop pattern. Each loop iteration calls the functor
passed as an argument. The Kokkos::parallel_reduce pattern realizes a reduction such as a
summation. It allows to do some computation before the reduction. The Kokkos::parallel_scan
pattern is also called a cumulative reduction such as a cumulative summation.

Similarly to CUDA, the code executed in an execution space is called a Kokkos kernel. The
Kokkos kernel is a C++ functor. A functor is an object that can be called like a function thanks
to the function call class operator, operator (). This operator takes usually one argument that
is the index, see example 4.1. Contrary to a function, the advantage of a functor is that it can
store data.

Listing 4.1: Example of a functor
struct Functor
{

KOKKOS_INLINE_FUNCTION
void operator ()( int index ) const
{

// unit of work
}

};

An execution pattern is called from the host and executed on the device. As in the CUDA
programming model, when such a pattern is called we say that a kernel is launched.

Kokkos does not guarantee any order of execution but only that the amount of work, specified
by the execution policy, will be executed.

4.2.3 The Kokkos execution space
The Kokkos execution space directly maps to the machine execution space defined earlier. It
specifies where the code will be executed. There are four possibilities:

• Kokkos::Serial represents the host and code is executed sequentially,

• Kokkos::Threads represents the host and uses POSIX threads,

• Kokkos::OpenMP represents the host and uses OpenMP,
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• Kokkos::Cuda represents the device GPU and uses CUDA library.

At compile time, one matches the execution spaces to the architectures available on the target
node. If multiple devices are enabled at compile time, one can choose at run time the execution
space to use when launching a kernel. If no execution space is provided to the execution pattern,
Kokkos relies on a default ranking of available execution spaces.

For a given execution space, kernels are executed sequentially. Between execution spaces
Kokkos does not guarantee any order. To enforce an explicit barrier, Kokkos::fence waits until
all kernels are finished to continue.

4.2.4 The Kokkos memory space and memory layout

The Kokkos memory space is also close to the memory space defined in the abstract machine
model. It defines where the data will be stored. There are two main possibilities:

• Kokkos::HostSpace represents the memory on the host

• Kokkos::CudaSpace, Kokkos::CudaHostPinnedSpace,Kokkos::CudaUVMSpace represent different
memory spaces on the GPU.

To remedy the lack of native multi-dimensional data container in C++, Kokkos provides
its own called Kokkos::View. It is a multi-dimensional container for which the memory layout
can be specified at compile-time. This feature is fundamental for both vectorization on CPU and
coalescent memory access on GPUs.

4.2.5 The Kokkos execution policies

An execution policy specify how to execute an algorithm. Kokkos provides four of them

• Kokkos::RangePolicy

• Kokkos::MDRangePolicy

• Kokkos::TeamPolicy

• Kokkos::TaskPolicy

The Range policy is the simplest policy that Kokkos provides. It gives to the user an integer
work index. This work index spans a range given by the user.

The MDRange policy is the multi-dimensional equivalent of the Range policy. Kokkos
provides a tuple of integers which spans a Cartesian range.

In the Team policy, one exposes different levels of parallelism in an algorithm. In this policy,
one does not deal with an integer as work index but with a team of Kokkos threads, which are
mapped to backend OpenMP and CUDA threads. Further details are given in the next section.

Finally the Task policy provides a way to express dependencies between unit of works.

4.3 Parallelism in ARK and ARK 2

ARK, which stands for All-Regime Kokkos, is a fork from an existing code originally developed
by P. Kestener at Maison de la Simulation. It is a C++ code using both MPI and Kokkos for
respectively distributed and shared memory parallelism.
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4.3.1 Shared memory parallelism using Kokkos
We begin with the shared memory parallelism and the usage of the Kokkos library. In the
first version of the code ARK, we use the flat parallelism from the Range policy. The index
range used corresponds to the local mesh size, including boundary layers. The parallel index
is then unlinearized to test if it corresponds to an internal cell. Because it is close to a raw
CUDA implementation this makes it efficient on GPUs. On CPUs it works well for distribution
of work among threads. However the unlinearization along with the test usually prevents desired
auto-vectorization from the compiler. As mentioned in the introduction CPU vectorization is the
ability of a CPU to use particular instructions which are able to realize operations on multiple
floating points in the same number of cycles that the scalar version. When relying on auto-
vectorization, the usage of vector instructions is a shared responsibility between the compiler
and the programmer. Depending on annotations from the programmer and loop complexity, the
compiler determines if vector instructions can be used and if it provides a performance gain.

As Kokkos 2.9 relies on auto-vectorization in all execution policies, we follow general guide-
lines from Intel to achieve vectorization, see Programming Guidelines for Vectorization 2020,
namely

• avoid branches,

• functions called should be inline,

• favor unit stride memory accesses.

To avoid branches, we remove the unlinearization at the inner loop level by using a two-level
parallelism strategy from the three-level hierarchical parallelism from the Team policy.

Our parallelism strategy, implemented in ARK 2 is then as follows

• work assignment, see also Figure 4.4:

– a Kokkos team maps to a line of cells along the X direction,

– a Kokkos thread maps to a chunk of cells,

– a Kokkos lane maps to a cell update,

• functions called inside the inner loops are either marked KOKKOS_INLINE_FUNCTION or
KOKKOS_FORCE_INLINE_FUNCTION,

• replace small loops by multiple function calls,

• the layout is fixed to the left layout.

An example of such kernel is given by listing 4.3.1.

template < int dim >
KOKKOS_INLINE_FUNCTION
void Kernel <dim >:: operator ()( const Team& team) const
{

// From given team compute coordinates of cell (0, j, k).
const IntVector cell_coord0;
// Get linear index from cell_coord0.
const int cell0_index;

Int i_start;
Int i_end;
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Figure 4.4: Graphical representation of the work assignment using hierarchical parallelism on a
2D mesh. A line of cells is assigned to a team of threads. Within the team, threads 0 to 3 split
total work into contiguous chunks. Each lane in a thread is responsible of a cell.
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Kokkos :: parallel_for(ArkTeamVectorRange(team , i_start , i_end),
[&] (const Int i)
{

const Int cell_index = cell0_index + i;
auto density = view_in( cell_index , 0 );

// computation on density

view_out( cell_index , 0 ) = density;
});

}

template < class iType , class Team >
KOKKOS_INLINE_FUNCTION
static auto ArkTeamVectorRange(const Team& team ,

const iType start ,
const iType end) noexcept

-> decltype(Kokkos :: ThreadVectorRange(team , start , end))
{

const iType chunk = (end - start) / team.team_size ();
const iType start_vector = start + team.team_rank () * chunk;
const iType end_vector = (team.team_rank () == team.team_size () - 1)

? end
: start_vector + chunk;

return Kokkos :: ThreadVectorRange(team , start_vector , end_vector );
}

This strategy mainly follows the aforementioned guidelines. Although explicit loop unrolling
is not advised, we noticed better results in term of desired vectorization. The small loops
are mainly coming from the way of writing kernels for multiple dimensions at a time through
template parameter. The chosen alternative has been to develop a small template library for
basic linear algebra operations and to manually unroll these loops. In order to check status of
auto-vectorization we had to relied on vectorization reports from Intel compiler, see 4.A

Results of this strategy is shown on Figure 4.5. We compare the initial strategy using range
policy in ARK and the second strategy in ARK 2 for two architectures. The first architecture
Intel KNL heavily relies on vectorization. We see that in the range policy case, whether
vectorization is enabled or not does not impact performance. Whereas with the team policy we
see a gain between 3 and 4. The second architecture is a NVIDIA V100 GPU. We don’t notice
loss in performance. Indeed a Kokkos thread corresponds to the first dimension of a CUDA
block, this also ensures coalescent memory access on GPUs.

4.3.2 Distributed memory parallelism using MPI
In the distributed memory model, we use an explicit domain decomposition also referred as MPI
domain decomposition. We recall that we work on a regular domain hence, we use a Cartesian
decomposition. We use a one-to-one mapping between MPI processes and domains.

We then use a ghost cell pattern. Each MPI process has extra layer of cells, called ghost
cells, which are used to implement physical boundary conditions or exchange data with MPI
neighbours. All MPI processes advance in a synchronized way due to the computation of the time
step through a reduction and data exchange with neighbours. Then processes are independent
and apply the different stages of the numerical scheme.
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Figure 4.5: This figure shows difference of performance between initial range policy in ARK and
team policy in ARK2 for different architectures.

Figures 4.6 and 4.7 show strong and weak scaling tests respectively. The weak scaling test
was realized on a GPU partition of the Jean-Zay supercomputer, without the MPI CUDA-aware
feature.

4.3.3 Hybrid parallelism using MPI and Kokkos

In the MPI standard, one has to pass raw pointers to communicate data with the corresponding
data type description. We use the fact that Kokkos exposes internal raw pointers to the user.
However depending on the Kokkos backend used, the raw pointer may not be handled by MPI
and extra copy to the host is needed. In order to avoid unnecessary copies between the host
and the device we use the decision diagram represented in Figure 4.8. This diagram helps to
determine if one can pass the raw pointer from the Kokkos::View or if copy to the host is needed.
We use Kokkos utilities to determine if the device space is accessible from the host. If it is not
we need to copy data to the host. One exception corresponds to the case in which the device is
CUDA and the MPI implementation, for example Open MPI, has the non-standard ability to
handle CUDA pointers, usually referred as the CUDA-aware feature.

4.4 Parallelism using Trilinos

As it has been presented in Chapter 1, we can use implicit solvers in a low-Mach regime. As a
portable implementation of linear system solvers is a work beyond this thesis we use the Trilinos
library to solve the acoustic system. The advantage of using Trilinos, over other widely used
libraries such as PETSc, is that it uses Kokkos at its core to achieve performance portability.
Hence this minimizes changes in terms of data structures in ARK. However a major difference
with Kokkos is that Trilinos also handles the distributed memory parallelism using MPI.

As it has been presented in Section 4.3.2 we use a ghost cell pattern to deal with the MPI
domain decomposition. Hence one does not need an explicit global numbering of cells because
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Figure 4.6: Strong scaling test on the Intel Skylake partition of the Joliot-Curie supercomputer,
TGCC. The time measured is the global execution time without IO operations.
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Figure 4.7: Weak scaling test on the NVIDIA V100 GPU partition of the Jean-Zay supercom-
puter, IDRIS. The time measured is the global execution time without IO operations
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Figure 4.8: Decision diagram to determine whether MPI is device-aware. This decision can be
made at compile time.
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Mach number implicit time (s) iterations explicit time (s) acceleration
10−3 19 14 0.74
10−4 17 197 11
10−5 17 1970 (estimated) 115

Table 4.2: MPI processes = 1, Threads=8, Nx ×Ny = 1282

Mach number implicit no correction with correction
time (s) iterations time (s) iterations

10−3 19 39 200
10−4 17 74 200
10−5 17 74 200

Table 4.3: MPI processes = 1, Threads=8, Nx ×Ny = 1282

stencils from explicit numerical schemes connect only a few cells between two time steps. In
the case of an implicit numerical scheme, all cells are in interaction in one time step. Moreover
Trilinos vector and matrix data structures are distributed and thus require a global numbering.
We take advantage of the Cartesian structure and use the canonical global coordinates of cells
within the mesh. These coordinates are then linearized to have a global index.

Even though matrix values evolve at each time step, the matrix keeps a static symmetric
profile due to the uniform mesh. The matrix has a maximum of 1 + 5d non-zero entries per line,
d corresponding to the spatial dimension because of the pressure equation. The assembling of
the matrix is distributed however there is no shared memory parallelism: the assembling of the
matrix is realized sequentially from the host.

4.4.1 Numerical experiments

We use a GMRES iterative solver along with a Schwarz preconditioner to take into account MPI
domain decomposition. Each MPI process also uses an inner preconditioner that we choose to
be an incomplete factorization, ILUT. We use the Gresho vortex as a test case to control the
flow regime.

Table 4.2 compares the time to solution between the explicit and implicit solvers for different
Mach regimes. We see that from Mach 10−3 and lower Mach regimes there is a great benefit in
using an implicit solver which is near 10−3Ma−1. We emphasize that, even though the solution
is captured faster, the solver presents the same drawbacks as in the explicit case. The solution
diffuses and the vortex is lost.

As we can see from table 4.3 the solver shows a different behavior in time to solution when
enabling the low-Mach correction. Indeed we notice difficulties in the convergence of the linear
system. The solution exhibits checkerboard modes in density which are not damped due to the
removal of numerical viscosity. Thus the linear solver error reaches a plateau higher than the
threshold and stops on the maximal number of iterations. However, as in the explicit case, the
vortex is preserved.

In table 4.4 we vary the size of the problem to be solved and compare it to the explicit case.
We see a scaling as in the explicit numerical scheme. Indeed the numerical scheme is IM-EX,
hence in a problem in dimension d, if the size is multiplied by 2 the cost is multiplied by 2d+1,
which includes the CFL condition.
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Nx ×Ny implicit time (s) explicit time (s) acceleration
642 2.5 28 11
1282 17 197 11
2562 124 1500 (estimated) 12

Table 4.4: MPI processes = 1, Threads=8, Mach = 10−4

Figure 4.9: Different AMR types.

4.5 Towards an Adaptive Mesh Refinement All-Regime

The motivation of using AMR algorithms is to have a dynamic sparse representation of the
numerical solution. This sparse representation can be used to focus computational efforts only
in some parts of the domain like discontinuities and to capture strong gradients that would be
too costly on a uniform mesh.

AMR algorithms usually fall into two opposite categories: cell based and patch based, see
Figure 4.9. In the former approach, cells can be refined independently from each other. This
is a flexible approach which allows to have very localized and deep refinement. The mesh is
represented using a tree, an octree in 3D, in which AMR leaves represent one cell of the mesh.
As a drawback of this data structure the looping pattern is complex. Moreover this approach
tends to couple the numerical scheme to the AMR algorithm when looping over neighbours.

In the latter approach refinement occurs by patch of cells, potentially including cells that do
not need refinement. This allows to have regular patches thus simplifying the looping pattern
inside a patch. Patches are then nested to allow deeper refinement.

In our case we are interested in an intermediate approach, called the block based AMR,
which allows to keep the flexibility of the cell based AMR and the regularity from the patch
based AMR. In this method an octree is again used to represent the mesh. However, the major
change is that leaves are not mesh cells anymore but regular block of cells. This work has been
done in collaboration with O. Abramkina1.

4.5.1 PABLO and Kokkos

As it has been presented in the sections above, the regularity of the computation is necessary to
efficiently exploit new architectures through data parallelism. The introduction of block of cells
inside leaves in the block based AMR reduces the problem of parallelization to the uniform mesh
case.

1.
Université Paris-Saclay, UVSQ, CNRS, CEA, Maison de la Simulation, 91191, Gif-sur-Yvette, France.
Université Paris-Saclay, CNRS, Institut du développement et des ressources en informatique scien-
tifique, 91403, Orsay, France.
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So far three aspects have been mentioned

• the AMR algorithm,

• the numerical scheme,

• the performance portability.

In order to decouple them, the strategy adopted is to use a dedicated library PABLO to handle
AMR and the Kokkos library for performance portability. In order to avoid to manage the
combination of neighbours when implementing a numerical solver, a ghost layer is added to each
AMR leaf. The costly combination of possibilities is then factorized and executed once per time
step. Numerical solvers can then be implemented as in the uniform mesh case. However one
needs to be careful about fluxes at jumps of levels. Because of the non-linearity of fluxes, two
neighbours do not compute the same flux. This problem is addressed in the next section.

Because ghost layers are added to each AMR leaf, this increases memory footprint. Thus to
reduce it, it has been chosen to have two types of data structures. A first data structure contains
all leaves without ghost layers and a second data structure (called group) contains only a part
of leaves along with ghost layer.

4.5.2 All-Regime numerical scheme adaptation

As presented in Chapter 1, the numerical scheme uses an operator splitting. This extends the
stencil compared to a regular first order numerical scheme. There are two alternatives of the
algorithm adaptation. Either we apply the numerical scheme for one group of leaves at once,
thus requiring two ghost layers, either we apply the acoustic step for all groups and then apply
the transport step, thus requiring only one ghost layer. Constraints with the PABLO library
lead us to choose the second option.

In order to deal with the conservation issue, we use averaging. If l and l+ 1 denote the levels
between the two leaves, we average cells from leaves from fine level l + 1, see Figure 4.10. This
enforces ghost cells from level l to match values of cells from level l + 1. The averaging is done
before and after the acoustic step. The drawback is to increase numerical dissipation but as a
consequence it provides smooth transition between levels. Figure 4.11 shows the result of a Blast
wave simulation generated by a high energy deposit at the center of the box, see Sedov 1959.
We compare an AMR simulation using the previous strategy (left hand panel) with a MOOD
simulation as in Chapter 3 (right panel). On the bottom panel we show AMR levels and valid
cells for the AMR and the SVM simulations respectively. We can see that the regions where
cells are detected as invalid in the MOOD procedure corresponds to the regions where the mesh
is refined.

4.6 Adaptive Mesh Refinement and implicit

4.6.1 Presentation of the RAMSES code

RAMSES is a widely used simulation code in the astrophysics community. It has been originally
developed by R. Teyssier in the context of cosmological simulations at CEA/Irfu. For this purpose
they use particles representing matter. Since then new physics modules have been added, a non-
exhaustive list

• hydrodynamics or magneto-hydrodynamics equations,
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Figure 4.10: Figure shows the averaging procedure to recover conservation between two levels l
and l + 1. Both panels represent the same leaves, on the right panel ghost layer is added. In
grey backgrounds, cells are averaged.

Figure 4.11: Blast wave simulation results. The left hand side shows an AMR simulation, with
AMR levels between 5 and 8 along with 42 patches inside an AMR leaf. The right hand side
shows a Spectral Volume simulation at order 4 with 642 spectral cells. The limitation is realized
with MOOD using a second order MUSCL-Hancock scheme.
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• radiative transfer equations,

• Poisson equation for self-gravity,

• particles of matter, sinks.

RAMSES uses Adaptive Mesh Refinement. AMR implementation is based on a tree also
called octree to emphasize the number of potential sub-nodes within a node. As memory is
organized as a one-dimensional array, a mapping is necessary between the three-dimensional
mesh and the one-dimensional array. The Peano-Hilbert space filling curve is then used to
realize this mapping.

In terms of parallelization, RAMSES uses MPI. The parallelization consists in chunking
the space filling curve and assigning each chunk to a MPI process. Each MPI process is then
responsible to apply the different numerical schemes. As the mesh refinement occurs at runtime,
the initial work distribution may become unbalanced between MPI processes. Hence a load
balancing procedure is applied consisting in a new chunking of the space filling curve.

4.6.2 Radiative transfer module

The radiative transfer module is used to model the propagation of radiative energy and its
interaction with matter. It exists different moment models for the radiative transfer depending
on different approximations. In this work we are interested in the so-called grey Flux Limited
Diffusion, also known as FLD model. As the name suggests, the equation on the radiative energy
Er is similar to a diffusion equation with source terms, it writes

∂tEr − div

(
cλ

κRρ
∇Er

)
= κP ρc

(
aT 4 − Er

)
(4.1)

in which a is the Stefan-Boltzmann constant, c is the light speed, κR and κP are given opacity
functions that solely depend on matter temperature T , ρ the density of matter and finally λ a flux
limiter. The model is qualified as grey because the energy Er takes into account all frequencies
at once.

An implicit time discretization is used in order to avoid severe stability condition restriction
when coupled to hydrodynamics due to the parabolic nature of Equation 4.1. The numerical
scheme has the particularity to solve the radiative transfer equations per level of the AMR tree:
one level uses other levels as boundary conditions, see Commerçon et al. 2014. Hence, at a given
AMR level, the numerical discretization of Equation 4.1 writes as in the uniform mesh case
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along with boundary conditions, either physical or virtual between two AMR levels. Dirichlet
virtual boundary conditions are used at interface between two levels. Moreover the radiative
energy gradient is modified to account for the level difference, see Commerçon et al. 2014.

We note that this numerical scheme can have a different interpretation, it can be seen as the
first iteration in a Schwarz domain decomposition. We recall that the non-overlapping Schwarz
method consists in solving a global boundary value problem by solving smaller boundary value
problems iteratively using appropriate virtual boundary conditions. If we consider AMR levels
as the subdomains, we recover the above numerical scheme at first iteration.

RAMSES uses its own implementation of a BiCGSTAB solver along with a diagonal Jacobi
preconditioner. A standard approach in such a code is to use a matrix-free implementation of
the BiCGSTAB. However in the case of the radiative transfer module, the matrix is stored to
avoid to compute too many times the costly coefficients.

4.6.3 Porting to GPU

Given the current state of the RAMSES code, it is not possible to run on GPUs. There exists
different approaches to port existing Fortran codes to GPUs such OpenMP or OpenACC.
However these approaches would require modifications of the code and possible loop reordering.
As it has been presented in Section 4.4, Trilinos implements linear solvers and preconditioners
which can run on different architectures. Hence the objective of this work is to port the radia-
tive transfer solver module to GPUs using Trilinos capabilities. This work has been done in
collaboration with H. Bloch2 and S. Donfack3.

We try to minimize modifications on the Fortran code by taking advantage of the assembling
of the matrix. Matrix elements are computed per matrix line on the Fortran side and sent to
the Trilinos data structure on the C++ side. To ease the assembling we use our own global
numbering of AMR leaves.

Once the matrix is assembled for one AMR level, the Trilinos linear problem is prepared
and solved. The solution is then copied back to RAMSES data structures.

In order to manage the interoperability between the Trilinos solver, which is C++, and the
RAMSES code, which is Fortran code, we call C functions from the Fortran code, mainly
from the diffusion_cg routine.

4.6.4 Results and discussion

Validation is realized using the “Dirac test case” from the RAMSES test suite. This test case
consists in having an energy impulse at the center of the box and let it diffuse.

Figure 4.12 shows strong scaling results in a three-dimensional Dirac simulation with AMR
fixed at level 8. Simulations have run on the Jean-Zay cluster at IDRIS, France. Nodes are
made of Intel Skylake with 40 cores accelerated with 4 NVIDIA V100 GPUs. We compare
the GPU version, using Trilinos, and the original version, using only MPI. We see that 8 MPI
processes are equivalent to 1 GPU. This result is due to the time spent in assembling the matrix
which encompasses memory transfer between host and device. For instance in the case of using
4 GPUs, the total time spent to solve the linear systems is only of 4s which is only 12% of the
total time.

2. Université Paris-Saclay, UVSQ, CNRS, CEA, Maison de la Simulation, 91191, Gif-sur-Yvette, France.

3.
Université Paris-Saclay, UVSQ, CNRS, CEA, Maison de la Simulation, 91191, Gif-sur-Yvette, France.
Université Paris-Saclay, CNRS, Institut du développement et des ressources en informatique scien-
tifique, 91403, Orsay, France.
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Figure 4.12: Strong scaling test. The time is measured inside the Fortran diffusion_cg routine.
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4.7 Conclusion
Even though vectorization on Intel CPUs has been achieved using Kokkos hierarchical paral-
lelism, auto-vectorization is not satisfactory as it relies both on the compiler and the respect of
some vectorization rules. This approach makes it difficult to anticipate successful vectorization
as it can only be checked after compilation. For instance in our case the GNU 8 compiler is not
able to vectorize ARK 2.

This is a known problem and the alternative to auto-vectorization is explicit vectorization
by using architecture intrinsics. By definition intrinsics are language-bindings to architecture
specific assembler instructions. By using them we enforce vectorization but we loose portability.
As a remedy to this problem C++ wrappers have been developed relying on C++ features.
The wrapper consists in defining a class which stores an intrinsic object. Operations on these
objects are then vectorized thanks to internal calls to intrinsics operations. Portability between
CPUs is recovered by choosing at compile time the correct architecture to use. This solution has
been adopted in different libraries such as Boost.SIMD, xsimd and will be part of C++23 with
std::simd. A future version of Kokkos (>3.1) should include such a solution. As of today, the
Kokkos wrapper of intrinsics is also able to deal with GPUs, contrary to other known wrappers.
Indeed, based on the hierarchical parallelism model the wrapper maps work to the first dimension
of a CUDA block. Hence, by choosing at compile-time a vector length to be the size of warp,
that is 32, this enforces a warp to execute the same instruction and to have coalescent memory
access. As a drawback this implies some refactoring of the code. Scalar functions that are called
in vectorized loops need to be redefined using the wrapper type.

Algorithmic acceleration using an implicit acoustic solver is promising. It revealed conver-
gence difficulties when modifying the fluxes with the low Mach correction. The convergence is
slow and shows that further work on the preconditioner is needed to be used in production.

AMR is a powerful tool to avoid a waste of computation resources in non-essential regions.
We explored a simple extension to the uniform mesh formulation of the all-regime numerical
scheme. There is still work to provide a well-balanced formulation on an AMR mesh. The
difficulty may reside in the dynamic refinement. The initial one-dimensional profile can still be
used to initialize the simulation. However the behavior of refinement on the profile may not be
able to keep both equilibrium and conservation property.

Finally we explored the usage of Trilinos, an external library, to provide linear solvers
in the AMR code RAMSES. Even though it successfully allowed the usage of GPU using the
portability of Trilinos, at this stage the benefit is not clear. A lot of time is spent in the
assembling phase mixing both computation of matrix coefficients and data transfer to the GPU.
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Appendix

4.A Compilation time considerations

This section deals with different strategies of compilation when using Kokkos, however it may
also apply to other header oriented libraries.

The C++ language is a strongly typed language meaning that the type of a variable is fixed
at compile time. The language also offers generic programming, also referred as template meta-
programming, meaning that one can write at once multiple functions, for different types. The
snippet 4.2 gives an example of a generic function returning the addition of objects of the same
type class T. Of course this function can only be called if the body makes sense for the given
type.

Listing 4.2: Template example
template < class T >
T plus( T&& t1, T&& t2 )
{

return t1 + t2;
}

The template parameter types of such generic function are then fixed when the function is
called, either explicitly or implicitly by following deduction rules. Template code is automatically
considered inline to avoid a violation of the one definition rule, keyword inline can be omitted.

From the compilation point of view this implies that binary code is generated only when
these generic functions are called in a translation unit. This also means that if a generic function
is called in multiple translation units, the compiler has to generate multiple times binary code
related to this function. Because a generic function is inline, the compiler may choose to replace
the function call by its body where it is called.

Listing 4.3: Kokkos example
// main.cpp
#include "KernelA.hpp"
#include "KernelB.hpp"

int main( int argc , char** argv )
{

// ...
Kokkos :: parallel_for( n, KernelA( view1 , view2 ) );
Kokkos :: parallel_for( n, KernelB( view1 , view2 ) );
Kokkos :: deep_copy( view1 , view2 );
// ...
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}

We consider a first example with the snippet 4.3. In this example two kernels are executed in a
parallel_for evolving view2 from view1 and then copy view2 back to view1. Three computation
kernels are called, two from the user’s code and one from Kokkos. To avoid a loss of performance
kernel’s function call operator void operator () (/*...*/) const is inline and thus defined in a
header file. From this example, we notice some drawbacks of generic code about compilation

• any modification to KernelA body has the side effect to trigger recompilation of unchanged
KernelB body,

• if the KernelA is called in an other source file, with the same call to parallel_for its body
is recompiled,

• increases size of a translation thus exposing less parallelism,

• chaining kernels may reach rapidly inline limits of compilers, for example Intel compiler,

• analysis of inlining and vectorization of functors KernelA, KernelB and deep_copy are all
placed in the same report. Hence it results in long and obscure optimization reports when
they are generated on a per translation unit basis.

Hence we have tried to reduce these side effects in ARK. We consider then two types of inline
code

• critical inline functions for optimization from the compiler such as auto-vectorization,

• kernel inline functions that should not be optimized in the context where they are called
such as Kokkos kernels.

Thus we consider that optimization from the compiler should be dedicated to a given kernel.
This prevents for example the compiler to do optimizations such as loop fusion between kernels
that may benefit from cache reuse on CPU.

4.A.1 Solution 1

Listing 4.4: Solution 1
// Kernel.hpp
#pragma once

class Kernel
{
public:

Kernel( Kokkos ::View& view1 , Kokkos ::View& view2 );

static void apply( int n, Kokkos ::View& view1 , Kokkos ::View& view2 );

KOKKOS_FUNCTION
void operator ()( int i ) const;

Kokkos ::View m_view1;
Kokkos ::View m_view2;

};
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// Kernel.cpp
#include "Kernel.hpp"

Kernel :: Kernel( Kokkos ::View& view1 , Kokkos ::View& view2 )
: m_view1 ( view1 ), m_view2 ( view2 )

{
}

void Kernel :: apply( int n, Kokkos ::View& view1 , Kokkos ::View& view2 )
{

Kokkos :: parallel_for( n, Kernel( view1 , view2 ) );
}

KOKKOS_FUNCTION
void Kernel :: operator ()( int i ) const
{

//...
}

// main.cpp
#include "Kernel.hpp"

int main( int argc , char** argv )
{

Kernel ::apply( 10 );
return 0;

}

In snippet 4.4 we introduce a static method apply which is responsible to create the functor and
launch the parallel execution. This answers all aforementioned issues. In the case of a template
functor, one also uses explicit template instantiation for a set of template parameters commonly
used.

Listing 4.5: Solution 1
// main.cpp
#include "Kernel.hpp"

int main( int argc , char** argv )
{

// ...
Kokkos :: parallel_for( n, Kernel( view1 , view2 ) );
// ...
return 0;

}

However this introduces a minor issue. As we can see in snippet 4.5, it is a valid code but
compiler is not able to inline function call as the definition is not visible in this translation
unit. Hence inter-procedural optimization (IPO) can be used to trigger inlining. A related issue
happens if the declaration of the function call operator is marked to be forced to be inlined.
Hence snippet 4.5 will not even compile.
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4.A.2 Solution 2
A more flexible approach would involve a third file.

Listing 4.6: Solution 2
// Kernel.hpp
#pragma once

class Kernel
{
public:

Kernel( Kokkos ::View& view1 , Kokkos ::View& view2 );
: m_view1 ( view1 ), m_view2 ( view2 )

{
}

KOKKOS_INLINE_FUNCTION
void operator ()( int i ) const;
{

//...
}

Kokkos ::View m_view1;
Kokkos ::View m_view2;

};

// KernelApply.hpp
#pragma once

void apply_kernel( int n, Kokkos ::View& view1 , Kokkos ::View& view2 );

// KernelApply.cpp
#include "KernelApply.hpp"
#include "Kernel.hpp"

void apply_kernel( int n, Kokkos ::View& view1 , Kokkos ::View& view2 )
{

Kokkos :: parallel_for( n, Kernel( view1 , view2 ) );
}

// main.cpp
#include "KernelApply.hpp"

int main( int argc , char** argv )
{

// ...
apply_kernel( 10, view1 , view2 );
// ...
return 0;

}
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Conclusion and perspectives

The aim of the thesis is to provide “all-regime” numerical schemes for convection simulations and
liquid droplet impacts. We used schemes based on a splitting of operator between acoustic and
transport phenomena.

In the Chapter 1, we have been able to adapt this splitting of operator with a gravity source
term. Accouting for the source term in the acoustic system this allowed to derive two well-
balanced numerical schemes. A first version of the scheme is a sequel to the work of Chalons
et al. 2017. A second version (more complex) allows to comply with the conservation of a new
energy that includes the gravitational energy. Moreover it has been shown that the flux correction
based on the Mach number, referred as low-Mach correction, allows to remove unnecessary
diffusion in the low Mach regime. In order to test a generalized theory of convection a Grand
Challenge simulation on the Jean-Zay supercomputer has been performed using the code ARK
that implements this numerical scheme.

In the Chapter 2 we have applied this splitting of operator to a Homogeneous Equilibrium
Model for simulating liquid droplet impacts. In order to keep a sharp interface between the liquid
droplet and the gas, we have used an instantaneous relaxation from a five-equation model. The
splitting of operator was then applied to the five-equation model allowing to use an anti-diffusive
scheme for the transport step. We have performed different simulations of liquid droplet impacts
including a Grand Challenge simulation on the Joliot-Curie supercomputer using a fork of ARK.

In the Chapter 3 we have explored the possibility of reducing the time to simulation using
high-order numerical schemes on regular grids. By adapting the solution representation to the
regularity of the solution we sought to reduce the number of expensive, non-linear computations.
It has shown promising results using a sequential implementation.

Finally in the Chapter 4 we explored different strategies of accelerating the time to solution
using different parallel programming models. In particular we have been able to obtain a single
source code able to run efficiently on both GPUs and CPUs (with vectorization) by using the
Kokkos library.

Different perspectives arise from the present work. Even though the numerical scheme for
convective flows enables the use of time implicit numerical methods, performance and scalability
also require an appropriate preconditioner for solving the linear systems involved in the simulation
in order to obtain an efficient discretization that can be used in production, see Chapter 4.

We have worked on the building blocks of an AMR implementation of this numerical scheme
without the gravity source term. It is not clear that the refinement (and derefinement) process
is compatible with the well-balanced property. Future works could consist in studying if the
well-balanced feature of the numerical scheme is impacted by the AMR context.

The hybrid high-order numerical scheme has shown promising results and suggests different
further developments. A first strategy could be to use this numerical scheme for each sub-
system of the splitting of operator. A second strategy could be to replace the MUSCL-Hancock
fallback scheme by a numerical scheme focusing on contact discontinuities such as an anti-diffusive
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solver (Després and Lagoutière 2001) or the THINC method (a similar strategy is developed by
M. Kucharik, R. Loubère). A last strategy would be to couple the hybrid method with AMR.
The result would benefit from both the p-convergence in smooth regions and h-convergence from
AMR in discontinuous regions.

Finally, a Kokkos SIMD wrapper is in development as an alternative to the auto-vectorization
strategy used inside Kokkos. The usage of such a wrapper would enforce to think in terms of
a chunk of cells. The vectorization would no longer rely on the ability of the compiler to find
vectorizable loops, without loosing performance with GPUs.
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Titre: Développement de méthodes de simulation AMR “tout régime” pour la dynamique des fluides,
applications en astrophysique et aux écoulements diphasiques
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Résumé: Bien que performantes pour la capture
des chocs, la plupart des méthodes de simulation
standards ne sont pas adaptées à des régimes de
Mach variés. Des méthodes numériques innovantes,
utilisant des schémas de type Volumes Finis, ro-
bustes et précises uniformément selon le nombre
de Mach (dites “tout régime”) ont été récemment
élaborées au CEA. Ces méthodes permettent de ré-
soudre les équations de la mécanique des fluides com-
pressibles pour capturer des chocs, mais aussi pour
simuler des écoulements à très faible vitesse. Fort de
ces résultats prometteurs, nous proposons dans cette

thèse de mettre à l’épreuve ces nouvelles méthodes
dans deux domaines applicatifs différents: les écoule-
ments diphasiques à petit échelle et les écoulements
compressibles en astrophysique. Pour ces deux do-
maines la simulation multi-régime est un point diffi-
cile. En effet, ces deux contextes d’applications ont
pour cœur une modélisation d’écoulement compress-
ible mais mettent en jeu des phénomènes de convec-
tion et de compressibilité à des régimes de Mach très
variés. L’approche “tout régime” permettra de cap-
turer des phénomènes très compressibles tout en gar-
dant la précision sur les écoulements basse vitesse.

Title: Development of “all-regime” AMR simulation methods for fluid dynamics, application in astro-
physics and two-phase flows

Keywords: compressible hydrodynamics, compressible two-phase flow, high performance computing,
Mach number, high order scheme, convection

Abstract: Although classic simulation methods
for compressible flow are efficient for shock captur-
ing, they are not adapted to variable Mach regimes.
Innovative methods using Finite Volume numerical
schemes, robust and uniformly accurate with respect
to the Mach number (so-called “all-regime”), were re-
cently developed at CEA. These methods allow to
solve the equations of compressible flows for both
shocks capturing and flows involving very low ma-
terial speed. Using the ground of these promising

results, we propose within this thesis to challenge
these new methods in two different application ar-
eas: small scale two-phase flows and compressible
flows in astrophysics. For both contexts the multi-
regime simulation is a key issue: they both rely on
a compressible flow modeling but involve convection
and compressibility in highly-variable Mach regimes.
The “all-regime” approach is a good candidate for
capturing highly compressible phenomena while pre-
serving the accuracy in the low speed flows.
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