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Introduction

Internet users represent so far 57%? of the global population. Our society has been

evolving to this digital trend thanks to the wide range of services e.g education,

recreational, administrative purposes, etc., delivered to end-users through different
communicating devices such as desktops, laptops, smart phones or tablets. These devices
have gained over time increased computing power and battery lifetime coupled to higher
bandwidths with the emergence of new network access technologies such as cable or
dedicated Fiber. Consequently, the Web traffic has been increasing where end-users can
browse more than 1.7 Billion different websites offering content of different flavors.

Accessing the Web is mainly performed through Web browsers, e.g Google Chrome,
Firefox, Opera, etc., to display web pages of different websites and the process as a whole is
commonly defined as Web browsing. The latter is a fast-paced and changing domain where a
plethora of applications and services are nowadays accessed through them. The Web was
originally designed to deliver static contents but has evolved towards dynamic web pages
offering to end-users a built-in environment for education, gaming, video streaming or social
networking. Web browsing has been driving the digital transformation of our society where
people prefer to remain in touch globally and have access to their favorite services either at
home, office, or even when travelling.

Web browsing has a complex eco-system since a wide set of actors are involved, from
the end-user device, type of web browser, network access, the Internet protocol through
which content is delivered, the different remote web servers delivering content and finally the
websites themselves [1]. End-user devices evolve constantly, embarked with new
functionalities and network operators have been offering network access with higher
throughputs. Large service companies, e.g Google, Mozilla, Apple, etc., have been following
the trend by enabling Virtual Reality, Virtual Machines or IoT (Internet of Things)
applications embedded in their web browsers . Privacy is also promoted through private web
browsing [2] or secured connections [3] [4].

Content needed to render web pages is downloaded through the HTTP (HyperText
Transfer Protocol) protocol. The content was originally delivered over the HTTP/1.1
(Version 1.1 of the HyperText Transfer Protocol) protocol [5], but can nowadays be
downloaded through new transport protocols such as HTTP/2 (Version 2 of the HyperText
Transfer Protocol) [6], standardized in 2015, or QUIC (Quick UDP Internet Connections) [7],
which is paving its way to standardization as HTTP /3. Service providers have also increased
their fingerprint in the whole process by deploying different cache servers [8], CDNs (Content
Delivery Networks) [9] and proxy-based architectures [10] in order to deliver content closest
to end-users.

Websites are all different [11] and can be regrouped upon the type of content intended
to end-users through categories. These different categories, e.g News, FEntertainment,
Education, etc., are put forth by different organizations such as Alexa®, QuantCast’ or Web

OVER the last decade, global Internet traffic has increased by more than 40%' and

"http://hostingfacts.com /internet-facts-stats

? https:/ /wearesocial.com/global-digital-report-2019

*https:/ /www.alexa.com /topsites/category

*https:/ /help.quantcast.com /hc/en-us/articles /115014006128-Interest-Category-Definitions
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Filter’. Once regrouped by categories, these web pages are on average composed of the same
types of objects, e.g scripts, images, videos, etc. [12].

The number of actors involved into the Web browsing eco-system is diverse and they
have all evolved over the past years with the sole aim to enhance web browsing quality
following different studies regarding end-users’ web browsing patterns [13| [14] [15] [16] [17].
To meet this goal new Internet protocols embarked with new mechanisms, namely HTTP /2
[18] [19] or QUIC [20] [21] were introduced to deliver contents faster and promote end-users’
privacy. New caching mechanisms [22] [23] and networking mechanisms [24] have also been
enhanced to reduce the download times of content. New Web technologies [25] [26] promote
delivery. New types of content, e.g WebP or WebM sponsored by Google, promoting quality
and at the same time reducing the size of transferred bytes have also emerged. Although all
these actors have evolved over time, Web browsing still suffers from performance issues [27]
[28] since new Internet protocols are being slowly adopted, caching and networking
mechanisms are not scaling to increased demand in real-time or new Web technologies not
available through different web browsers.

Problem Statement

Web browsing perceived quality [29] [30] [31] is most of the time correlated to the
time needed to load a web page (or parts of it). An increase in web page load timings can
impact end-users’ behavior which can lead to web page abandonment and thus a potential
decrease in a website revenue (e.g for an e-commerce website, a delay of 1 second in web
page loading can lead up to 2.5 Million dollars of revenue loss® per year). When the observed
loading times are degraded, i.e a specific web page loading time is higher compared to past
web browsing activity, there is a need to identify which web browsing factor contributes the
most to this degradation.

Identifying the parameters contributing the most to web browsing quality is two-fold.
Firstly it can help web developers to optimize web pages’ loading times and strengthen
customer experience which is the key to retention and loyalty or encourage service companies
to adopt new Web technologies. Secondly, these parameters can be used as benchmarking
indicators to identify on-the-fly degradations during the web pages’ loading process. As an
example, if the degradations are linked to the network (in particular internal network of an
operator), network operators can anticipate and put forth different mechanisms, e.g modify
traffic routing policies, deploy caches in their network, etc., to ensure optimal Quality of
Service (QoS).

Regarding the study of web browsing, current approaches in the literature pay
particular attention to the following questions:

- To what extent can end-users’ devices, e.g computing power, impact web browsing
perceived quality?

- Which web browsers with different embarked functionalities can improve web page
loading times?

- To what extent new Internet protocols can enhance web browsing quality?

- How can new Internet protocols enhance web browsing experience when watching
videos (mainly on mobile applications)?

- What is the impact of degraded web browsing quality on real end-users’ behavior?

’https:/ /fortiguard.com/webfilter/categories
Neil Patel Digital Report on negative effects of web page loading times
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All these research works have contributed in having an overview of the complexity of

web browsing and underlying impact on perceived quality but do face certain limits:

1.

Web browsers are upgraded on a regular basis to offer enhanced security features to
promote privacy or have their processing engines improved. Furthermore, end-users
may upgrade their device to gain in computational power. Actual research studies can
be biased since most of the time only a limited type of web browsers with a time-
frozen version, are considered. Perceived web pages’ loading times should be measured
following different web browsers and their different versions over long periods of time
to better understand web browsing quality changes.

When browsing a specific website, the content is downloaded from different web
servers and even when requesting the contents to be delivered via the latest Internet
protocol (which are sometimes not implemented in all web browsers), some web
servers might not implement it. More focus should be made on the demand and
supply rate of Internet protocols (e.g when using a Firefox web browser, what is the
distribution rate of content in HTTP/2 and HTTP/1.1) and hence the underlying
impact on web browsing quality.

Web servers have different policies and web developers might favor the delivery of
content to end-users via caches or CDNs whose main purpose is to deliver content
closest to end-users. More emphasis on the type of web servers delivering contents and
underlying policies should be taken into account to bhetter understand perceived
quality.

Web browsers, pages and technologies evolve on a regular basis, i.e on average every
20 days for web browsers, every 10 mins for web pages and every day for web
technologies. The different web metrics, put forth by standardization bodies, meant to
measure web pages’ loading times are updated on average every 3 years and might
not be implemented by all web browsers. Furthermore, these web metrics might not
measure finely loading times with the introduction of new web technologies, e.g
Progressive Web Applications (PWA). In order not to rely on the type or version of
web browsers, new web metrics making use of web browsers’ networking logs should
be privileged.

In order to better study the impact of web browsing on end-users’ behavior, but also
its evolutions over time, measurements should be performed on long time periods
since research works are often conducted over an average period of 3 months. The use
of different web browsers and versions over long periods of time can help to better
identify when and which web browser impacts the most web browsing quality.

Web servers are located all over the globe and might belong to different Autonomous
Systems, and the network path (ascending and descending) to access them might
change on an hourly or daily basis. The network path taken by packets to reach web
servers (requests) and reach end-users (responses) must also be studied.

Different tools are used in the literature to measure web browsing quality but do not
reproduce most of the time an end-user environment, i.e real desktops or laptops, real
web browsers embarked with different ad blockers or probes connected to residential
network access. New tools being end-user representative are needed to finely qualify
and quantify web browsing quality.

Understanding the web browsing eco-system is important but degraded quality must
be identified in real time (its precise cause among the different web browsing actors)
so that web developers can enhance their web pages, service providers can deliver
content from different web servers or network operators being proactive by re-routing
their internal traffic.

In light of these limits, the web eco-system must be studied as a whole and not unit-

wise, e.g the impact of Internet protocols, web browsers or service providers disjointedly. New
meagurement tools being end-user representative should be used to better quality QoE. New
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web metrics making abstraction of web browsers’ types and versions should be privileged
when measuring web browsing quality by making full use of networking information. With
the wide set of factors such as Internet protocols, service providers and companies, network
state, etc., involved in the web browsing process, it is important to identify when and how
each actor can enhance or decrease perceived quality. With more than 1.7 Billion websites
which can be visited by end-users, predicting the underlying web browsing quality from the
profiled content can help service providers to offer better QoS. Web browsing quality may
also fluctuate at different times of the day for different websites and new solutions being able
to cope with these fluctuations and provide efficient quality predictions are needed.

Thesis Contribution

In order to address the above-mentioned problems we tackled the study of web
browsing quality as per its whole eco-system where we focus on homepages of websites in 4
ways. Firstly we have developed a new automated user-representative web browsing
measurement tool where measurements of specific mostly visited websites are represented in
real-time on a public monitoring website. Secondly we have defined a new web metric making
abstraction of web browsers’ types and versions in order to cope with web metrics which
have not evolved accordingly to newly introduced Web technologies. Thirdly, from our tool
measurements, we have identified through statistical techniques the parameters which can
enhance or decrease web browsing quality. Last but not the least; we have applied machine
learning techniques on measurements performed over large time spans to identify the sets of
rules (parameters’ thresholds) quantifying web browsing quality. These identified sets of rules
have been applied on never assessed websites to predict the perceived QoE upon the
rendering of the visible portion of a web page where the error prediction rate is mean, i.e
9.6%. When focusing on quality prediction for an entire web page, a larger number of factors
are implicated and the construction of our rules-based model has been tuned for websites
where fluctuations happen regularly. For some websites the prediction correctness for the
entire web page perceived quality can be increased up to 25%.

A wide set of tools have been put forth by different research studies or service
companies over the past years to measure web browsing quality of a fixed number of
websites. While these tools instrument web browsers which may have time-frozen versions,
different modules of these web browsers might purposely be de-activated which do not reflect
end-users’ environment. Furthermore, these tools offer limited functionalities and do not
allow the thorough study of the Web browsing eco-system. We have thus designed, developed
and deployed at different geographic locations a new tool, Web View. The latter makes use of
real web browsers (and corresponding versions since more than 2.5 years) connected to
residential access networks and measures a wide set of websites (Top 10,000 Alexa websites)
24/7/365. The main aim of our tool is to perform measurements in a user-representative
manner and consider the Web browsing eco-system as a whole. Our tool is upgraded on a
regular basis and we have conducted more than 18 Trillion distinct measurements over 2.5
years where each measurement offers 84 different quality indicators (loading times,
identification of web servers delivering content, Internet protocol through which content is
downloaded, upstream path taken by network packets, etc.). In order to keep track of web
pages loading times through time, we have also introduced a public visualization website
(https://webview.orange.com).

Web technologies and web browsers evolve on a regular basis and actual web metrics
deliver loading times being different since large service companies integrate them in their web
browsers differently. From our tool Web View, we have identified during the first 6 months
of its deployment that available web metrics had several inefficiencies. In order to have
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uniform and fine-grained loading times, we have defined a new web metric, the Time for Full
Visual Rendering (TFVR) which makes use of web browsers’ networking information to
calculate the time to load the visible portion of a web page. Our web metric is independent of
the type and version of web browsers and helps to identify which contents (types and sizes)
are downloaded over different Internet protocols.

From collected web browsing measurements, we have used statistical techniques to
identify the parameters which are involved in the Web browsing delivery, as well as their
impact on Web browsing quality. We have been able to identify that new Internet protocols
are being deployed at a low pace and thus contribute in the decrease of perceived QoE. Other
parameters such as the usage of Content Delivery Networks can also leverage web browsing
quality.

We have then focused our study on the parameters which can contribute to different
web browsing quality ranges, commonly called satisfaction degrees, i.e good, fair, moderate,
worse and poor. Our former statistical analysis has been confirmed by decision trees which
have enriched these parameters with sets of rules, along with their thresholds, to qualify a
particular satisfaction degree, e.g a poor perceived quality for a European end-user can
represented by a website where more than 300 objects are downloaded over an ADSL
(Asymmetric Digital Subscriber Line) network access through HTTP/1.1.

From the different identified rules for different satisfaction degrees, we have
introduced a model which can predict web browsing quality for the visible portion of websites
at first glance (without scrolling). The quality correctness prediction rate is 94.17% for the
Top 10,000 Alexa websites measured on a regular basis. The accuracy of our model has been
validated on the Top 10,000-15,000 Alexa websites never assessed before with a quality
prediction error rate of 9.6%. Web browsing quality is usually qualified in literature upon the
entire web page loading time where a larger number of factors are implicated (compared to
the visible portion loading process). When the former identified rules-based model is applied
for web pages having an important number of fluctuations in the entire web page loading
times, the web browsing quality correctness prediction is low, e.g 74.92% for the web page
baidu.com. To increase the accuracy of our model oriented towards the entire web page
quality prediction, we have used a Hierarchical Dirichlet Process Hidden Markov Models
(HDP-HMM) with Gaussian Mixture Model (GMM) emissions distributions which helps to
finely identify these fluctuations and enrich our rules-based model. The application of this
enriched rules-based model has helped in increasing entire web pages’ quality prediction
correctness up to 25%. This model thanks to the use of HDP-HMM with GMM emissions
distributions has proven to be more versatile, i.e providing good quality predictions for the
overall web page, over any website even if fluctuations in loading times are known to happen
regularly.

When focusing on the quality prediction of the visible surface area of Web pages, our
rules-based model can be applied on any website and underlying correctness in quality
prediction is good. When focusing on the quality prediction for the entire Web page, our
rules-based model can be applied on any web page if and only if fluctuations in loading times
are mean. But if important fluctuations happen, a specific set of rules for every web page is
needed.

Document Structure

The structure of the remainder of this document is organized as follows. In the first
part in Chapter I, we present extensive literature reviews on the wide set of actors involved
in the web browsing process, i.e their evolutions and promised outcomes. We discuss the

16



different types of application layer protocols, web servers’ (origin web servers, caches and
CDNs) policies and the different tools used to better understand web browsing quality. We
then go through the different available web metrics put forth by standardization bodies and
service companies to measure web pages’ loading times.

In the second part, we go through our contributions. Chapter II presents our
automated web browsing user-representative tool, Web View; its overall architecture together
with the measurement parameters (inputs and outputs). We then discuss how we circumvent
the limitations of actual web browsing tools through its evaluation and how our
measurements are automatically represented on a public visualization website, which helps in
assessing the evolution of the Web eco-system. Chapter III presents our web metric, the
TFVR, its design and offered capabilities. Chapter IV presents the analysis of measurements
performed by our tool upon specific conditions in order to identify which parameters are
involved into the Web browsing delivery process. We also assess how these factors can
increase or impact Web browsing quality. Chapter V presents how we constructed our rules-
based model to predict perceived QoE regarding the visible portion of web pages. We also
highlight how we used new segmentation solutions to take into account quality fluctuations
to finely predict entire web pages’ perceived quality. At the end, through Chapter VI, we
give a general conclusion and future research directions.

17



Part 1

Literature Review

18



19



Chapter 1

An Overview of Web Browsing Eco-system
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1.6 Network path of web traffic............ccocociiiiin 35
1.7 COnCIUSION. .. ceei it 37

In this chapter, we review the different actors of the Web eco-system involved into
the web browsing process. We go through an introduction of these different actors’
specifications, together with their different evolutions in order to enhance web browsing
quality, followed by research studies meant to quantify how they contribute to web browsing.

1.1 Application layer protocols

The Internet protocol is meant for addressing host interfaces; through datagrams
encapsulate data and are routed from a source host interface to a destination source interface
across different IP networks. Each datagram has two distinct components: a header (source
IP address, destination IP address and metadata to route and deliver the datagram) and a
payload which is the data to be transported. In order to provide connection-oriented links
and datagram services between hosts, two modular architectures consisting of the
Transmission Control Protocol (TCP) and User Datagram Protocol (UDP) at the Transport
layer and the Internet protocol at the Internet layer.

To allow different end-users to access different web servers all over the globe, a
stateless protocol, HTTP (Hypertext Transfer Protocol) was introduced in 1991. The protocol
has gone through major evolutions over the last decade.
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Fig. 1: HTTP/1.0 and HTTP/1.1 request-response mechanism
HTTP/1

Despite the popularity of HI'TP, HTTP /1.0 [32] over TCP was introduced in 1996.
This first version of HT'TP suffered from several inefficiencies. When a client contacted a
remote web server, the connection was automatically closed after a single request/response
pair. The response following a specific request had to be explicitly received before sending
another one as shown in Fig. 1(a); the request req,., could not be sent before receiving the
response resp, which leads to an accumulation of Round-Trip-Times (RTTs) and increased
the end-to-end delay.

As a remedy, HTTP/1.1 [5] over TCP was standardized in 1999. The main goal of
this new version of HT'TP was to provide a keep-alive-mechanism where a connection could
be re-used for more than one request. Twenty years after its introduction, HT'TP /1.1 is still
widely used where it allows a client to send a new request (two parallel connections following
[5] in real-life scenarios but could also be up to six) before receiving the response of the
previous one which reduces end-to-end delay considerably. However, a remote web server
must respond to a request, req,, before processing the request regq, , as shown in Fig. 1(b).
Furthermore, if the response of a request is blocked, e.g req,, all following requests are also
blocked, i.e req,,; and req, ,. Thus no response, i.e resp,, resp, ,and resp,,, is made to the
client, which is commonly known as head-of-line (HOL) blocking.

HTTP/1.1 as a whole generates more latency, i.e higher RTT values in web pages’
loading times and creates head-of-line blocking, which prevents following requests to be
received by the web server and reply accordingly to the client. Furthermore a HTTP/1.1-
enabled web server only replies to user requests and is not able to push content.

HTTP/2

The version 2 of the HTTP protocol [6], usually denoted by HTTP /2 over TLS/TCP,
was standardized in 2015. HTTP /2 was derived from the earlier experimental SPDY protocol
promoted by Google. The main objective of HTTP /2 is to reduce web pages loading times by
breaking down the HTTP protocol communication into an exchange of binary-encoded
frames. These frames enable full request and response multiplexing, by allowing the client
and server to break down an HTTP message into several independent frames, interleave
them and then reassemble them on the other end. This particularity is commonly known as
multiplexing multiple requests over a single TCP connection.
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HTTP/2 also allows stream prioritizing by indicating the importance of a stream, s,
compared to a stream s,,, on the same connection. In addition to the traditional numerical
priority of the weight of the stream, an HTTP/2 stream can also indicate the notion of
dependencies. As illustrated in Fig. 2, the different frames, f, with j ¢ {1..5} following their
stream s, with n € {1..4} are rearranged following their dependencies and weight when the
priority feature is activated. An additional particularity of HTTP/2 is the flow control
mechanism, being directional (each receiver may choose to set its window size that it desires
for each stream and entire connection), credit-based (each receiver advertises its initial
connection and stream flow control window) and hop-by-hop (an intermediary can use it to
control resource use). The flow control mechanism main goal is to prevent the sender from
overwhelming the receiver with data it may not want or be able to process.

Another powerful feature of HI'TP /2 is the ability of a web server to push additional
resources to the client. Thus the client, i.e the web browser, does not have to request each
one explicitly. In order to reduce overhead and improve performance, HTTP /2 compresses
request and response header metadata.

Several studies [19] [33] [34] [35] [36] have been conducted in order to assess if the
HTTP/2 protocol can enhance web browsing quality, thanks to its offered mechanisms. The
studies clearly show that if the responses are delivered in HTTP/2 (not all web servers
implement HTTP/2), in overall the download time of content is reduced, compared to
HTTP/1.1. HTTP/2 as a whole allows a more efficient use of network resources and reduces
perceived latency through header compression, multiplexing of requests over a single TCP
connection and server push abilities. HT'TP /2 delivering contents over TCP still contributes
to higher RTT and creates head-of-line blocking.

QUIC (HTTP/3)

QUIC (Quick UDP Internet Connections) [7] protocol is a transport protocol being
promoted by Google since 2016 and usually denoted by HTTP/2 over QUIC/UDP. From
2016 until now (2019), its corresponding version has moved from version 1 to 46 along with
23 different drafts. Since May 2019, the QUIC protocol is being discussed at the IETF
(Internet Engineering Task Force) to be standardized as HTTP/3 (HTTP protocol over
QUIC). The QUIC protocol is available in all chromium-based web browsers, e.g Google-
Chrome, Brave or Microsoft Edge 2019. The version 46 is delivered into 2 flavors: GQUIC
(Google QUIC) and IQUIC (IETF QUIC).

The QUIC protocol solves a quite number of transport-layer and application-layer
problems where little or no change from web developers is needed. QUIC, being a self-
contained protocol helps in reducing the RTT (min. 0-RTT, maz. 1-RTT) thanks to UDP,
compared to TCP (min. 1-RTT, maz. 3-RTT). With QUIC, the 1-RTT is achieved when a
client connects to a web server the first time and 0-RTT by using the cached credentials from
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the previous connection. As depicted in Fig. 3(a), the QUIC protocol helps in pushing
network functions to the application layer. This favors connection migration when a client
changes its IP address or port (for TCP all connections become automatically invalid) and
thus prevents any in-flight requests to a web server. As identified previously in Fig. 2, if the
HTPP/2 frame s,f, was lost, the next frames (and streams) were not transmitted to the client
until the web server re-emitted the packet. The QUIC protocol palliates to HOL blocking
effects, as shown in Fig. 3(b) by:
1. For a QUIC stream s, who loses an HTTP/2 frame s,f,, only this QUIC stream will
be impacted, the other streams (Qs,, ..., @s,) will be delivered to the client.
2. When packet s,f, is lost, QUIC is embarked with a Forward Error Correction (FEC)
which is meant to recover from lost packets without waiting for a re-transmission.

Several studies have been conducted to better understand how QUIC can enhance
web browsing [37] [38] but also [20] [21] [39] [40] in order to assess if the QUIC protocol
outperforms the HTTP /2 protocol. The advantages of the QUIC protocol are in general hard
to assess since the protocol is in a development phase and mainly Google servers implement
it. When content can be downloaded through QUIC, a small enhancement of the delivery
time is noticeable in environments of low bandwidth, e.g ADSL networks, thanks to its
packet recovery mechanism. The QUIC protocol was mainly designed to favor content
delivery time but recent studies [41] go even further by showing that with the very slow
adoption of the protocol, QUIC’s promised quality enhancement is hard to quantify.

The QUIC protocol embarks its own transport security to connections, the QUIC-Crypto
protocol until version 44 (The Transport Layer Security version 1.3 is being discussed at the
IETF to be used as the transport security mechanism in the future).

QUIC-Crypto
The QUIC-Crypto’ protocol is part of QUIC that provides transport security [42] to a
connection [43|, where two session keys are used. To meet the 1-RTT, the parties first agree
on an initial session key during the Initial Key Agreement phase, which can be used to
exchange data until the final exchange key is set, detailed as follows:
v Initial Key Agreement. Each party sets its initial key material, i,, which is used for
encryption and decryption,
v Initial Data Ezchange: Client C and Server S exchange their initial data, encrypted
and authenticated,
» Key Agreement: Consists of one message. S generates a new Diffie-Hellman (DH) [44]
value and sends its public DH value to C. The latter verifies authenticity of the

Thttps://docs.google.com/document/d /1g5nIXATKN  Y-7XJW5K45IbIHd L2f5LTaDUDwvZ5L6g/edit
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server’s new DH public value and both parties at this point derive the session key
material, s,

» Data Ezchange: Consists of two packets. C and S use the session key material, s;, to
encrypt and authenticate their remaining data.

Transport Layer Security

Transport layer Security (TLS) is a cryptographic protocol designed to provide
communications’ security. The main goal of the TLS protocol is to provide privacy and data
integrity between different computer applications.

Transport Layer Security version 1.2

TLS version 1.2 [45] was introduced in 2008 which allows the client or server to
specify which hashes and signature algorithms they accept. It provides cryptographic
security, interoperability, extensibility and relative efficiency on two different levels:

1. TLS Record protocol: This protocol negotiates a private, reliable connection between
the client and the server, where symmetric cryptography keys are used to ensure a
private connection. The connection is secured through the use of hash functions
generated by using a Message Authentication Code (MAC).

2. TLS negotiation protocol: The protocol allows authenticated communication to start
between the client and the server. The handshake uses asymmetric encryption, where
two separate keys are used; a public key used for encryption and a private key for
decryption, to produce a newly-created shared key. The session then uses this freshly
produced shared-key to perform a symmetric encryption, which yields to a feasible
secure connection.

Transport Laver Security version 1.3

TLS version 1.3 [46] was standardized in 2018 and in contrast to TLS 1.2, it provides
additional privacy for data exchange by encrypting more of the negotiation handshake [47] to
protect it from eavesdroppers. The enhancement is two-fold: protect the identities of the
participants (source and destination end points) and impede traffic analysis.

TLS 1.3 also enables forward secrecy by default, thus the compromise of long-term
secrets used in the protocol does not allow the decryption of data communicated when those
long term secrets were in use. This allows improving security of current communications even
if the future ones are compromised. TLS 1.3 also reduces latency by reducing the
corresponding RTT during its handshake exchange process. Although TLS 1.3 is not widely
deployed on web servers [48], research works [49] prove that TLS 1.3 protects better the
privacy of its end-users.

Client Server Client Server Client Server

[1™ ==~ _ S¥A M === e S¥N Tt Sk
0 I e £ SO = i D >0 | R
o e =g e = ZI=+
= T =5 o K ooms=="" i , K omm="
L s\_]\_'_\—(—[\'" — i\_.ﬂ_' _9\_(—13' — Sy I)';\(—\’

- g y == (Clie '\\_\—IC//U//

Clie 1t e 5 ok He
‘ent Hejy, ello, ey ‘M’“U /,//r[,//){]/(’ \;/\7\/‘;{/";‘&”\(

£ ) H ] P-GET) ——
= ~ate e oy Shaté .
& {ello, Certiics = Xa o, K SBCCER)
i .wrt'ﬂf : L“““/Iwﬁ p-AN:

- (Clien Key p, il i l‘}ull!ll)“m'

M Changec v /'«./«-/m;,y,: 2 Application data a
: : /]J/I(rglj,"_/ <€ =
|_ -
~ ~inhersPed
= Change ipht

€ Application data >
(a) TLS 1.2 (b) TLS 1.3 (¢) TLS1.3
(new session) (new session) (resumed session)

Fig. 4: TLS 1.2 versus TLS 1.3 over TCP
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HTTP protocol New session Resumed session
HTTP /2 HTTP/2 over TLS 1.2 / TCP 3-RTT 2-RTT
HTTP/2 over TLS 1.3 / TCP 2-RTT 1-RTT
UIC HTTP/2 over QUIC / UDP 1-RTT 0-RTT
Q HTTP/2 over TLS 1.3 / UDP 1-RTT 0-RTT

Table 1. Latency following different Internet protocols

The Fig. 4 shows the different handshake messages and corresponding RTT of TLS
1.2 versus TLS 1.3 over TCP. The usage of TCP always includes the SYN-SYN/ACK and a
1-RTT. The TLS 1.2, depicted by Fig. 4(a), adds 2-RTT for a new connection (additional 1-
RTT for a resumed session), which sums up to a minimum of 2-RTT and maximum of 3-
RTT. TLS 1.3 on the other hand reduces the overall RTT by 1. For a new connection, shown
in Fig. 4(b), the latency sums up to 2-RTT and for a resumed session, through Fig. 4(c), we
have a latency of 1-RTT.

As identified in Table 1, HTTP/2 over TCP contributes the most to the latency
mainly due to the SYN-SYN/ACK, which UDP reduces. QUIC relies on TLS 1.3 for
authentication and negotiation of parameters critical to security and performance. TLS
Handshake and Alert messages are carried directly over the QUIC transport where instead of
having a strict layering, these two protocols are co-dependent. QUIC makes use of the TLS
handshake and TLS uses the reliability, ordered delivery and record layer provided by QUIC.

Protocols Study Literature Takeaways
Pros Cons
- Allows communication - High RTT
Mechanism and | [32] [50] [51] | between a client and web - Connection closed
HTTP/1.0 efficiency server after single request /
response
- Impacts delivery time
- Send new request before - High RTT
Mechanism and | [5] [51] [52] | receiving response of the - Impacts delivery time
HTTP/1.1 efficiency previous one which - Unsecured
considerably
- Six parallel connections
- Reduces content delivery | - Not widely deployed
Mechanism, [6] [19] 152] | time (versus HTTP/1) - TCP contributes to
HTTP/2 adoption  and [33] [35] [34] | Stream prioritization higher RTT
efficiency 35] [36] [53] | - Flow control mechanism
[54] [20] - Header compression
- Server push capabilities
- End-to-end secured data
exchange
Mechanism, 71 137 38| Reduced latency thanks - Mainly dep‘lomyed ‘on
UIC . to UDP Google web servers
Q adoption  and | [20] [21] [39) | "o b anhanced i Hard t onin 3
(HTTP/3) efficiency 0] [53] [37] | eb QoE enhanced in - Hard to assess gain in
[41] low throughput delivery time due to
environments deployment rate
Application - TLS 1.3 reduces overall - TLS 1.3 not widely
layer protocols | TLS 1.2 / 1.3 [45] [46] [47] RTT deployed
security [48] [49] - End-to-end data integrity

Table 2. Application layer protocols overview
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Takeaways: Application layer protocols have been evolving relentlessly over the past years
where the main goal has been to deliver content faster to end-users. Table 2 presents the
Internet protocols architectures as well as research works performed to verify how these new
Internet protocols can enhance web browsing quality. While HTTP /1.1 has brought keep-
alive mechanisms and thus help in reducing end-to-end delay, HTTP /2 allows multiplexing of
multiple requests over single TCP connections, stream prioritizing or server push. Although
standardized in 2015, the HTTP /2 protocol is not implemented by all web servers, but when
available helps in reducing the time to download content compared to HTTP/1.1. The QUIC
protocol is in its standardization phase towards HTTP/3 with the use of TLS 1.3 and its
main goal is to deliver content over UDP and thus reduce latency. Since the protocol is still
into a development phase, its outcomes are hard to assess as the protocol is mainly
implemented on Google web servers. Through time, the QUIC protocol main goal has moved
from “being able to deliver content faster” to “promote end-users’ privacy”. We have also
identified that the HTTP /2 over QUIC/UDP provides greater security compared to HTTP /2
over TLS/TCP [56]. Although TLS 1.3 has been standardized in 2018, it has proven its
robustness but its adoption rate is still very low.

1.2 Web servers

When visiting a website, a main HTML (HyperText Markup Language) file is
downloaded and firstly processed by the web browser. Following the tag <a href>, additional
resources such as images, style sheets, JavaScript, etc., are downloaded from different web
servers. While the HTML file is always downloaded from the origin server, the other contents
might be downloaded from Non-Origin web servers. A Non-Origin web server is denoted as a
web server having its authoritative DNS (Domain Name System) different from the one of
the origin web server (and conversely Same-Origin web servers).

When a European end-user visits the website https://www.bbc.com, a main web page
is downloaded from the origin web server bbc.com which is hosted by Amazon Cloudfront.
When the HTML is processed, additional content is downloaded from Non-Origin web
servers such as bid.g.doubleclick.net (Google) or t.effectivemeasure.net (Fastly). These Non-
Origin web servers are located all over the globe e.g Amazon Cloudfront in Germany or
United States. Following the geographic location of an end-user, content might be delivered
by web servers being closest to her. These web servers are commonly named caches or
Content Delivery networks (CDNs).

Content Delivery Networks

A CDN is a globally distributed network of web servers whose main purpose is to
provide content faster. The content is replicated and stored throughout the CDN so that an
end-user can access the data being stored geographically close to him.

As depicted in Fig. 5, we have two origin web servers (O, domainl.com and O,:
domain2.com). The different CDNs (C,, C,, C-I,, C, and C;) will retrieve or receive data
from the origin server, O,, and end-users (U, U, U, U, U, wil download the
corresponding data from these CDNs.

CDNs are deployed by a wide number of service providers, e.g Akamai, Fastly,
Amazon Cloudfront, etc., from all around the globe and have different architectures:

1. Push CDNs: The data is automatically pushed by the origin web server to the
corresponding CDN. As illustrated in Fig. 5, the origin web server, O,, pushes the
content to the CDN, C, and the end-user, U,, can retrieve the latest updated content.

2. Pull CDNs: Content stored into a CDN infrastructure has a corresponding Time-To-
Live (TTL). Upon expiration, the content may either be automatically pulled from
the origin web server or the CDN will wait for a first request from an end-user to
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retrieve the content in order to save bandwidth. As shown in Fig. 5, CDNs {C,, C,,
C;} pull the content from the origin web server O,.

3. CDN Infrastructures: CDNs may also be composed of different nodes (storage, pull or
push) and a main control node. As shown in Fig. 5, C-I, is a CDN infrastructure.

Fig. 6 depicts the CDN infrastructure, C-I,, When an end-user requests content, the
entry point is the control node. The control node relays the request to the set of delivery
nodes, Sp,; with a load balancing feature. One of the delivery nodes, for example Sp, verifies
if the content is available in the storage nodes, Sy, ;. If a storage node has the content, for
example Sy, the content is handed to 5, relayed to the control node which delivers the
content to the end-user. If the content is not available in storage nodes, the pull/push nodes,
for example S,, which is a pull CDN makes a request to the origin web server. The content
received by S,, is replicated on the different storage nodes, handed to the delivery nodes,
control node and finally to the end-user’s web browser.

End-user

()
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EES coN |
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Fig. 5: Content Delivery Networks and Caches

Pull/Push Nodes Storage Nodes Delivery Nodes

Origin server

Fig. 6: CDN Infrastructure mechanism
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Web Caches

Web caches follow the root functionalities of CDNs, where content is delivered close
to end-users, reducing latency and optimizing content delivery. Web caches differ from CDNs
by delivering most of the time static contents and their main aim is to optimize the data flow
between the client and server, i.e a cache is a replica of the origin web server. Web caches are
primarily used by Internet Service Providers, e.g China Telecom, backbone providers, e.g
Chinal69-backbone, large Intranets and enterprises, e.g Microsoft-corp-msn-as-block. Web
caches are also used in different systems such as search-engines, web proxies and forward
caches. Among the mostly used web cache software are Nginx, Varnish Cache, Squid, Polipo,
ete.

As shown in Fig. 5, the web cache, Cache,, located in Africa will store the contents of
the origin server, O, which is located in Asia. The end-users are mainly redirected to web
caches thanks to their DNS records. While the end-users U; and U, will retrieve content from
Cache,, the end-user, U, when requesting an object from domain2.com, will be automatically
redirected to the origin web server, O,, instead of Cache,, due to its geographic position.

Takeaways: When delivering large scale websites to global audience, CDNs can reduce
latency, accelerate websites loadings and reduce bandwidth consumption [9] [23] [57] [58] [59]
[60]. In other research works [61] [62], authors assess the potential cache performance for
CDNs and traditional web delivery. CDNs have been largely used in the past to deliver static
contents but with the constant evolution of the Web to deliver dynamic contents, a wide
range of content is nowadays delivered by CDNs [63]. Web caches [64] on the other hand
deliver most of the time static contents and are primarily used by Internet Service Providers,
backbone providers, large Intranets and enterprises.

1.3 Web Pages

Access to the Web is mainly done through web browsers where a main web page is
firstly downloaded from the origin web server. Depending on the content needed to fully
render the web page, additional content from other web servers is downloaded. During this
process, this main web page is downloaded in bytes, converted to characters, tokens, nodes
and finally object models. These object models are commonly named Document Object Model
(DOM) and Cascading Style Sheet Object Model (CSSOM) which are both independent data
structures.

Document Object Model

When accessing a website, a plain HT'ML file is firstly downloaded. These raw bytes,
Fig. 7 — Step 1 of HTML are translated following specific encodings to individual characters,
Fig. 7 — Step 2. Following the different strings of characters, they are converted into distinct
tokens as per the W3C HTML5 standard®, identified in Fig. 7 — Step 3. These tokens are
then converted into nodes (objects) as shown in Fig. 7 — Step 4, which define their distinct
set of properties and rules. Finally, the DOM is constructed, Fig. 7 — Step 5. Since the
HTML markup defines relationships between different tags, the different created objects are
linked in a tree data structure which helps to identify precisely the parent-child relationships.
Web pages may sometimes be incorrectly written and are defined as not wvalid HTML
document. The web browser will in this case automatically correct any missing element e.g
missing the <head> and <body> element. When JavaScript is used, additional content
might be downloaded and the DOM tree will be rebuilt accordingly.

*https://html.spec.whatwg.org/multipage/
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CSS Object Model

The CSSOM on the other hand is meant to build a corresponding tree but focused on
the different tags’ styles e.g the font type and color. The CSSOM is built whenever a CSS
style sheet is met in the HTML file. Building the CSSOM follows the same principle as the
DOM, i.e convert the raw bytes to characters, tokens, nodes and finally the CSSOM depicted
in Fig. 8. When JavaScript is used to download additional CSS style sheets, the CSSOM
automatically rebuilds itself.

” 3C 21 44 AF 13 54 50 50 45 20 68 74 6D 6C 3E 0A 3C 68 74 6D 6C 35 0A 20 20
W Bytes 3C 68 65 61 64 3E DA 20 ........ 3C 2F 62 6F 64 79 3E 0A 3C 2F 68 74 6D 6C 3E

1

(2) Characters html > < head ~...< /head > < body ~ < p>Web < span - performance< /span

|

(3) Tokens [ Start Tag: html ][ StartTag: head ][ EndTag: head ][ StartTag: body ]

(4) odes

(5) | DOM l

i
U U

font-size: 14px
float: right

font-size: 14px
font-weight: bold

font-size: 14px
color: blue

font-size: 14px
font-weight: bold
display: none

Fig. 8: Building the CSSOM of a web page

Takeaways: The DOM and CSSOM are both built separately; the web browser will
combine both trees and render the output in the web browser window. Web browsers are
developed by different service companies and have different policies and processing
algorithms. As an example, the number of events triggered when rendering a web page during
web browsing sessions can range from 10 to 1000 even if only 7 objects are downloaded and
rendered in the web browser, e.g wikipedia.org. DOM and CSSOM processing is mandatory
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in order to graphically render web pages. While JavaScript is greatly used by web developers,
the DOM tree can be rebuilt several times until providing the final visual representation of a
web page.

dominteractive

domContentLoadedEventStart
domContentLoadedEventEnd
startTime domComplete
v

Prompt

for Redirect AppCache DNS ‘TEP Request Response Processing Load
unload

(unloadEventEnd) T loadEventEnd

(unloadEventStart) loadEventStart

Fig. 9: Navigation Timing API

1.4 Web performance metrics

In order to bring uniform benchmarking indicators, standardization bodies such as the
W3C (World Wide Web Consortium), in collaboration with a wide set of large service
companies have defined a set of web metrics to measure web pages’ loading time.

Navigation Timing API

The Navigation Timing API’ [65] exposes the Page Load Time (PLT) which is the
time between the start of a web page request and the moment it is entirely loaded. The
Navigation Timing API is put forth by the W3C and offers different timings which outline
the loading process of a web page. As identified by Fig. 9, the PLT-W3C is calculated by
summing up different loading phases for every downloaded object (regrouped by
connections). The Table 3 illustrates the different timings offered by the Navigation Timing.

Attribute Definition
Prompt for unload Discharge any timing calculations and get ready for a web
navigation start
Redirect The time to redirect end-user’s request following his geographic

position e.g An end-user in France will be redirected to
https://www.google. fr when requesting hitps: //www.google.com

AppCache The time to retrieve contents from the end-user’s web browser
cache (if any)
DNS The time to obtain DNS records
TCP The time needed to negotiate for the first time with remote web
servers (TLS negotiation or security keys exchange)
Request The time to send requests to remote web servers
Response The time needed to download content from web servers
Processing The time needed by the web browser to build the DOM and
CSSOM
onLoad The time to load the DOM and CSSOM visually in the web

browser window

Table 3: Navigation Timing API quality indicators

https://www.w3.org/ TR/navigation-timing-2/
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> window.performance.timing
PerformanceTiming {navigationStart:
v 794, unloadEventStart:
redirecténd: 8, ..}
1568365993897
1568365993806
domComplete: 1568365995310

68
domContentloadedEventEnd:

at

1

edirectStart: 8,
connectEnd:

connectStanrt:

1568365994582
domContentloadedEventStart:
domInteractive: 1568365994506
domLoading: 1568365994004
1568365993798
1568365993798

domainlookupEnd:

domainlookupStart:

1
responseind: 156

responseStart: 1

EventEnd: @

4
d
loadEventStart: @

1568365993

€, unlogdtventénd: @, r

1568365994566

Fig. 10: Performance Timing

The PLT is implemented by default by
the different on-market web browsers.
Its corresponding value and is exposed
through the console via the
window.performance.timing function
as shown in Fig. 10. Following the Fig.
9, the different loading times can be
calculated. When browsing the
homepage of  https://www.google.com
the exposed PLT-W3C is 1525 ms
(loadEventEnd - navigationStart)
where an overall number of 19 objects
are requested in 83 ms and downloaded
in 120ms (regrouped by {IP address,
port}). The web browser’s processing
time is 744 ms (domComplete -
domInteractive), which contributes to
49% of the PLT-W3C value. The
Navigation Timing through its design
provides information on overall timings
needed in order to request or download
content i.e 19 different objects are
processed by the web browser in 744 ms.

The PLT-W3C obtained through the Navigation Timing API although being in a “draft
version” since several years is nowadays the de-facto web metric used to measure web pages’

loading times.
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Fig. 11: Resource Timing API indicators
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Resource Timing API

The Resource Timing" [66] is meant to provide information upon the downloaded
resources unit-wise by exposing the different loading times such as the transport protocol
used to request and receive a particular object, the size or type of downloaded object and
some low level networking information.

The Resource Timing values are exposed in the web browser’s console via the function
window.performance.getEntriesByType (‘resource’) as shown in Fig. 11 when web
browsing the website hitps://www.google.com. For every downloaded object needed for the
web page to be entirely rendered to the end-user, timings are offered. The 8" downloaded
object (indicated by 8: PerformanceResourceTiming) is an image of size 4396 bytes and is
downloaded in 1.61 ms in HTTP/2. The total time to obtain this object is 23.9 ms
(connection establishment, request and response). The Resource Timing API does provide
additional information on every downloaded object but is subject to how the distant web
server is configured. If a web server has its Time-Allow-Origin'' set to False mainly due to
security policies, only the type, size of the object and the Internet protocol through which it
is delivered will be available. We will discuss in detail this inefficiency in section 3.1.1.

Paint Timing API

The Paint Timing API" [67] exposes four loading times prior to the web navigation
start, namely the First Paint (FP), First Contentful Paint (FCP), First Meaningful Paint
(FMP) and Time To Interactive (TTT), all meant to measure web pages’ loading progression
through time.

These four loading times indicators are meant to:
. The FP exposes the time when a first pixel is rendered in the web browser’s
window by excluding the default background paint.

. The FCP exposes the time when the web browser first renders any text, image, or
non-white canvas which is the time when an end-user can start consuming web
content.

° The FMP exposes the time after which the visible portion of the web browser
window (without scrolling) has rendered all text and image backgrounds.

° The TTI exposes the time when the visible portion of the web page without
scrolling is fully loaded (not taking into account advertisements) and when the
end-user can start interacting with the web page.

SpeedIndex

The SpeedIndex [68] provides a score to measure the visual progression of a web page
rendering process. As an example, the SpeedIndex (SI) of the Google homepage depicted in
Fig. 12(a), https://www.google.com, is 560 which reflect the visible portion of the homepage
with minimal content. On the other hand, the SI of the homepage of Youtube depicted in Fig
12(b), hitps://www.youtube.com, is 5600 which indicates a visible portion of the homepage
with a larger amount of content. Its calculation by default is performed by firstly making a
video of the loading process. The video is then subdivided into several chunks, {Cy, ...,Cy}
and every chunk is compared to the previous one (Cy versus C,,) where the appearance of
new pixels is assessed. The chunk C,; defines the moment where no new change of pixels will
happen. Nevertheless this technique bears two main inefficiencies, namely the use of video
recording via external tools which can increase the device processing power and impact

Yhttps:/ /www.w3.org/ TR /resource-timing-2/

"' The Time-Allow-Origin response header specifies origins that are allowed to see values of attributes
retrieved via features of the Resource Timing API, which would otherwise be reported as zero due to
cross-origin restrictions.

2 https://www.w3.org/TR/paint-timing/
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Web metric Research studies
PLT 169] [70] [71] [72] [73] [27] [28] [11] [22] [74] [75] [54] [76] [52]
[77] [78] [79] [80] [81] [82] [55] [20] [21] [35] [36] [83] [84] [85]
Resource 69] [70] [71] |27] [76] [83] |84] [83]
Timing

Paint Timing | [69] [27] [76] [81] [83] [34] [85] [75)]
Speedlndex | [69] [76] [81] [83] [85] [75]

RUM [69] [83] [84]
SpeedIndex
ATF [27] [81] [83] [84] [86] [85]

Table 4. Web metrics’ usage by the research community

loading times and with dynamic advertisements, defining the last chunk C, is not an easy
task. These two inefficiencies can lead to wrong SpeedIndex values. We will later dive into
the detail of these inefficiencies in section 3.1.

In order to make abstraction of the video recording phase, the RUM-SI (Real User
Monitoring SpeedIndex) has been introduced in 2012 where DOM information exposed by
web browsers is used to identify these different images chunks.

Above-The-Fold

The Above-The-Fold (ATF) [86] is meant to measure the time to fully load the visible
portion of a web page without scrolling. The ATF calculation can make use of video
recording to identify the chunks Cy; but can also be calculated via the RUM-SI (only the time
needed to render the visible portion of the web page is exposed). Current implementations of
the ATF make use of web metrics such as the FP and the PLT-W3C which can sometimes
be biased due to advertisements and Progressive Web Applications (PWA) which offer a
mobile environment when using a desktop version of any web browser.

Takeaways: With the increasing usage of the Web [87] [88] to access a wide range of
services, measuring web pages loading times (entire or certain parts of it) is a means to
qualify web browsing quality. To measure these loading times, research works have been
using different web metrics exposed via different APIs, namely the PLT, Resource Timing,
Paint Timing, SpeedIndex, RUM SpeedIndex and ATF as shown through Table 4. Among
the different available web metrics, the de-facto used web metric to measure web browsing is
the PLT-W3C. Based on Table 4, only 2 research studies take into account all available web
metrics which is mainly due to the appearance of new web metrics over time. The PLT as
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defined by the W3C and how different service companies, e.g Google, Mozilla, Opera, etc.
implement it in their web browsers do not take into consideration content delivered after the
onLoad event as shown in Fig. 9. Additional events may happen, being triggered by
JavaScript, which available web metrics do not take into account. Over the last years, with
the introduction of new web technologies, the objectiveness of the PLT is questioned |[27]
showing that the HAR (Http ARchive) networking logs offered by web browsers help in
better detecting downloaded content. Calculating the PLT from the HAR, which we denote
by PLT-HAR in this document, is more precise than the exposed PLT-W3C. Upon different
research studies focused on web browsing patterns of end-users [89] [14] [90] [15] [91] [92] [93]
or end-users’ behaviors [94] [16] [95] [96] [97] during web browsing sessions, the visible portion
of the web page at first glance without scrolling the web page should be measured [75].

1.5 Web browsing measurement tools

In order to measure web browsing, in particular the different actors implicated in the
whole process, automated tools are needed due to the high number of websites offering
different types of content.

Since the introduction of the Web in 1996, in particular the HTTP protocol, a wide
set of tools have been developed as commercial means or for research studies. The Web offers
a wide set of services and the different tools introduced pay interest to fingerprinting (assess
configuration parameters employed by web services or types of content offered by web pages)
[63] [98] [70] [99] [100] [101], web browsing quality [54] [75] [102] [103] [104] [105], web privacy
[99] [106] [100] [107], web browsing systems [108] or web browsing behaviors [75] [80] [15].
The Table 5 provides an overview of these different tools.
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AdFisher [107] v v v
Chameleon Crawler [101] | v/ v v
CoLab [108] v v
FourthParty [99] v v v
FPDetective [98] v v v v
Gaze [75] v v v v
InspectorGadget [63] v v v
OpenWPM [70] v v v v
PageSpeed Insights [102] | v v v v
SiteSpeed.io [104] v v v v v
WebPageTest [103] v v v v
WebXRay [106] v v v
WProf [54] v v v
XRay [100] v v v
YSlow [105] v v v

Table 5: Available web browsing measurement tools
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When paying particular attention to tools meant to assess web browsing quality, only
2 distinct tools ( WebPageTest and SiteSpeed.io) are used in order to assess the loading times
and corresponding content downloaded since:
= YSlow, WProf and PageSpeed Insights provide information on contents which should
be delivered with reduced priority, in order to enhance the overall web page loading
time.
=  (aze provides information on portions of websites where end-users focus, and hence
these portions of the corresponding web page should be primarily downloaded

The tools WebPageTest and SiteSpeed.io provide loading times of web pages by
making use of all web metrics identified in Table 4, and make use of real web browsers to
perform automated web browsing sessions. WebPageTest also allows performing
measurements from different end-points, e.g Asia, Europe or America. Nevertheless a specific
network operator offering a corresponding network bandwidth cannot be selected and the
available web browsers versions to perform measurements are not regularly updated.

Takeaways: Different web browsing tools have been introduced in order to better qualify
web browsing. When focusing on web browsing quality, a limited amount of tools exist which
are upgraded on a regular basis, making use of real updated web browsers embarked with
commonly used ad blockers. Furthermore, with the constant evolution of the Web, so far in
the literature, there is no tool to the best of our knowledge being representative of an end-
user’s environment, i.e real web browsers, measurements performed over residential access
networks or identify the different types of web servers delivering content.

1.6 Networking path of web traffic

When performing web browsing sessions, a wide range of objects are downloaded from
different domains and hence different web servers. An end-user might visit a website, e.g
https://www.bbe.com, from a specific geographic location, e.g France in Europe and although
the website bbc.com puts forth English news, content will be downloaded from different web
servers from all around the globe e.g London, Germany, France and from the United States.

When a web browser parses a web page, requests will be sent to different web servers
and these network packets will be following different paths depending on the end-user’s
geographic location and Internet Service Provider (ISP). The responses (content) might also
follow different network paths to reach an end-user’s web browser. When network packets are
sent to web servers (or received), following a route taken at a specific time of the day, its
transfer rate might be decreased and thus increase the overall web page loading time.

Measuring networking path between routers
In order to measure the networking path taken by network packets, different tools have
been introduced over the past years.

Traceroute

Traceroute [109] was introduced in 1993 to learn the path between two machines (e.g
an end-user device and a web server) which allows performing diagnosis of network problems.
Unfortunately through time, with the introduction of load balancers, traceroute
measurements can be inaccurate and incomplete when the measured route goes through a
load balancer. While per-flow balancers ascribe each packet to a flow defined by the header
five-tuple (and each flow to an outgoing interface), per-packet load balancers assign packets
regardless of the flow. Since traceroute varies some of the packet header fields that are used
to define a flow, an incorrect path can be diagnosed.

35


http://bbc.com/

Paris-Traceroute

Paris-Traceroute [110] was introduced in 2006 to counter load balancing routers by
controlling the probe packet header fields and allow all probes to reach their destination in
the presence or per-flow load balancing. But following the nature of per-packet flow
balancers, this first version of Paris-Traceroute could not enumerate all possible paths. A
stochastic probing algorithm (Multipath Detection Algorithm - MDA) was proposed in 2007
which gave birth to a new version of Paris-Traceroute [111], adapting the number of probes
to send on a hop by hop basis, and thus enumerate all interfaces and links at each hop. In
2018 a new version of Paris-Traceroute [112] has been introduced with a Multilevel MDA-
Lite to integrate router-level view of multipath routes.

Identifying Autonomous Systems along the network path

Autonomous systems (AS), were introduced in order to regulate organizations such as
ISPs, educational institutions and government bodies. An AS has many different sub-
networks with combined logic and common routing policies and every sub-network is assigned
a globally unique 16 digit identification number by the Internet Assigned Numbers Authority
(TANA). Network packets among these different autonomous systems are routed via the
Border Gateway Protocol (BGP) [113].

In order to obtain an AS number from an IP address, different tools exist to obtain
information from different Regional Internet Registry (e.g AfriNICY™, ARIN" APNIC",
LACNICY and RIPE NCC").

= The Internet service Whois will look up online data across multiple RIRs (from an IP
address or domain name) and provide the name of the registrar, creation date but also
technical contacts of the registrant (a record may also be private).

. The RIPE Stat” tool was introduced in 2010 and allows obtaining a wide set of
information e.g AS number, AS holder, geographic location from the RIPE NCC
online database.

= The PyASN tool provides on the other hand offline and historical lookups where a
fresh database can be regularly retrieved from Route Views™. The University of
Oregon Route Views Project was originally conceived for Internet operators to obtain
real-time BGP information about the global routing system from the perspectives of
several different backbones and locations from the Internet. The main advantage of
the PyASN tool is to perform offline requests to a local database and hence reduce
network traffic.

Takeaways: During web browsing sessions, several web servers deliver a wide range of
content which are then rendered by web browsers. These web servers are located all around
the globe and the corresponding networks packets might follow different paths and suffer
from network degradations, e.g re-routing of traffic by load balancers, network state at
different locations, etc. It is thus important to profile the upstream and downstream path
taken by networks packets and corresponding RTT. When transfer rates are higher than past
measurements, we can thus estimate in which AS we have network degradations. Several
studies [114] [115] [116] [117] [118] [119] [120] have been conducted over the past years and
have been able to identify where and when network degradations occur, e.g BGP routes
between AS change and corresponding RTT increase, specific routers in different AS create
congestion, etc.

3 African Network Information Centre

" American Registry for Internet Numbers

5 Asia-Pacific Network Information Centre

16 Tatin America and Caribbean Network Information Centre
7 RIPE Network Coordination Centre

' https://stat.ripe.net/

' http://www.routeviews.org/routeviews/
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1.7 Conclusion

The HTTP Internet protocol has been evolving relentlessly the past years in order to
cope with the increased Quality of Service (QoS) demanded by end-users. QUIC which is
undergoing a standardization process at the IETF and will be next-called HTTP/3 was
mainly supported by two web browsers, namely Google-Chrome and Brave but as from
October 2019, Firefox has started supporting it. In order to promote privacy, the different
Internet protocols are coupled with new cryptographic protocols in order to secure all
communications. The TLS 1.2 was mainly coupled to HITTP/2 and QUIC had its own
cryptographic protocol, the QUIC-CRYPTO. With the introduction of TLS 1.3, both
HTTP/2 and QUIC (HTTP/3) will be using it. Through the design of TLS 1.3 the
corresponding RTTs are reduced during the security negotiations.

When browsing websites, content is downloaded from different web servers from all
over the globe. In order to enhance the QoS, Content Deliver Networks have been introduced
in the whole process, which are intermediate web servers located close to different end-users.
CDNs have become a key factor involved in content delivery over the last decade. Web pages
are all different among them but go through two main processes once needed content is
downloaded: building the DOM and CSSOM. These two phases are compulsory for a web
page to be rendered in a corresponding web browser. Web browsers being embarked with
different processing engines, these two phases are done following different policies which can
impact the web pages’ loading process.

In order to measure the web pages loading process through time, a wide set of web
metrics have been put forth by the W3C or industry. These web metrics, for some being
draft versions since several years due to constant web browsing technologies’ evolution, help
to provide benchmarking parameters to qualify web browsing QoE. Through time,
advertisements are strongly embedded in web pages and the need to measure the time to load
the visible portion of a web page without scrolling is more and more needed. Nevertheless the
web metrics put forth to measure primarily the visible portion of web pages make use of
other web metrics evolving at a slow pace and do not provide fine-grained loading times.

During web browsing sessions, several web servers deliver a wide range of content and
the corresponding networks packets might follow different routes and suffer from network
degradations. It is thus important to profile the upstream and downstream path taken by
networks packets and corresponding RTT. When transfer rates are higher than past
measurements, we can thus estimate in which AS we have network degradations to better
justify web browsing quality degradation.

The Web eco-system is complex where a large number of actors are implicated and to
better understand web browsing quality, all these actors’ implication should be assessed.
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Chapter 2

A New Web Browsing Measuring Tool:
Web View
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In order to better understand the Web browsing eco-system, a wide set of automated
tools exist. As discussed in section 1.5, these tools are either meant to assess the browser
fingerprinting which fully or partially identifies end-users’ activity, Internet privacy, end-
users’ behavior or quality. Among all these tools, a limited amount focuses on Web browsing
quality. These web browsing tools have proven to be useful to qualify web browsing quality
but the measurements are not performed upon an end-users’ representative environment.
Furthermore new Web technologies have been introduced and their offered functionalities do
not take into account these technologies. We have thus designed, developed and deployed a
new automated tool, Web View, with probes connected to residential access network and use
a wide range of real updated web browsers. The measurements performed by our probes are
automatically represented on a public visualization website®.

2.1 Available web browsing quality tools and efficiency

When assessing web browsing quality, measurements must be performed into the
most end-user representative manner. The tool PhantomJS makes use of different web
browsers’ engines where web page loading times can be measured. Although the tool is easy
to install on desktop devices and uses minimal computational power, the real graphical
version of web browsers is not used and several real-life functionalities are disabled.
Furthermore, this tool allows retrieving only the PLT-W3C (Page Load Time defined by the

* https:/ /webview.orange.com
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World Wide Web Consortium) and as we will discuss in section 3.1.1, the way the PLT-W3C
is implemented in web browsers can lead to inaccurate loading times. New Internet protocols
such as HTTP/2 or QUIC have been introduced since 2015 and PhantomJS performs
measurements by requesting strictly the HTTP /1.1 Internet protocol. Web servers are all
designed to respond in HTTP/1.1 and when performing measurements with Phantom.JS, all
requests and responses are made into HTTP/1.1 which is not representative of the Web
browsing eco-system. Last but not the least, the tool PhantomJS has stopped being
maintained since May 2018.

WebPageTest offers a more realistic end-user environment when performing
measurements. The tool is accessed from a public website’ where the measurement
parameters can be set, i.e we can choose a web browser type along with the website to be
measured and the geographic location of the probe. The advantage compared to the
PhantomJS is the use of real web browsers but the corresponding web browsers’ versions are
not exposed although being updated every 20 days on average. The offered web metrics
values are W3C metrics, such as the PLT-W3C or the browser-based ATF (Above-The-
Fold). If the Google-Chrome web browser is selected, the First Paint value can also be
collected. These web metrics do provide indications on a web page loading time but can
provide incorrect loading times (see section 3.1). The First Paint Timing API can only be
triggered when using the Chrome web browser since it is not implemented® into the Firefor
web browser. WebPageTest bears another advantage where custom JavaScript can be loaded
into the web browser when performming measurements. When performing web browsing
measurements from WebPageTest, there is no control on the network access, i.e we cannot
choose among ADSL, Wi-Fi or Fiber and since the devices running the measurements are
Virtual Machines (VMs), the computing environment is not end-user representative.

SiteSpeed.io has been introduced in the last quarter of 2018 to offer web page loading
times calculated from HAR (Http ARchive) information or from W3C metrics. The tool is
downloaded and installed on either desktop devices or virtual machines, where different web
browsers (types and limited versions) can be used to perform web browsing measurements.
Apart from the limitations of offered web browsers’ versions, SiteSpeed.io is the most end-
user representative tool available, if used on desktop machines and connected to
representative end-user network access. This tool offers some basic loading times, e.g PLT-
W3C, PLT-HAR, browser-based ATF. The HAR raw file can also be collected and re-
processed to retrieve additional information such as the Internet protocol distribution or
MIME (Multipurpose Internet Mail Extension) types of downloaded objects. This has to be
performed through other tools.

When performing web browsing measurements, tools must be the most end-user
representative through the use of real web browsers, residential network access and must
correlate the obtained loading times obtained from HAR files to the different factors
contributing to the Web eco-system, i.e Internet protocols, types and location of web servers
delivering content or upstream and downstream path of network packets. The obtained
information from the measurements must also be graphically represented in real time to
follow up the perceived web browsing quality over time. To meet all these needs, we have
designed and deployed in 2017 a new web browsing measurement tool, Web View.

Takeaways: PhantomJS makes use of web browsers’ engines and not the regular graphical
web browser used by end-users. This tool performs automated web browsing by requesting
strictly the HTTP/1.1 protocol, which prevents objects to be downloaded in HTTP/2 or
QUIC. Furthermore PhantomJS is not maintained anymore. WebPageTest offers a limited
selection of web browsers and corresponding versions and offers W3C web metrics.
Measurements can be performed on probes located at different geographic locations but these

' https:/ /www.webpagetest.org/
22 accessible by triggering the development mode of the web browser which Web View does
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probes are not connected to residential access networks. The offered metrics when performing
web browsing measurements are limited. SiteSpeed.io has been introduced in the last quarter
of 2018 and makes use of web browsers’ networking logs to calculate different web metrics.
For the measurements to be the most end-user representative, the tool needs to be installed
on laptops and desktops connected to residential access networks. The HAR file representing
the web browsing measurement needs to be further processed to extract protocol distribution
and types or location of web servers.

2.2 Our proposed tool: Web View

Web View is a web browsing measuring tool deployed in desktop devices and laptops
meant to be the most end-user representative by making use of different web browsers being
regularly updated and connected to residential network access networks. Our tool allows
measuring a unique website, a list of websites or the top N Alexa® websites. Web View
makes use of web browsers’ networking logs to calculate different loading times but also
retrieves W3C metrics loading times to compare offered timings. Web View offers fine-
grained information on the Internet protocol distribution, location and types of web servers
delivering contents, downloaded objects MIME-type and estimated network path taken by
packets to reach web servers. All measurements are visually represented in real-time on a
public visualization website, https://webview.orange.com.

2.2.1 Web View architecture

Web View is composed of six independent modules represented through Fig. 13. While
some modules are meant to configure measurement parameters, others drive real web
browsers, perform calculations to offer additional information from HAR files and represent
the collected measurements visually.

off

€)Alexa

Data
Collection

5 6
Results Data Storage
Visualizgtion ¢

A
Fig. 13: Web View architecture

Behind the curtain: A bit apart from our tool, but useful as input for the configuration, a
Python script in the Alexa Plug-in module collects on a daily basis the Top Ranked 1Million
Alexa websites. This process is performed by a single probe and the list dispatched to all
measurement probes. The collected data is automatically analyzed and the websites

* https://www.alexa.com/siteinfo
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referenced with a unique identifier in a separate database, to further indicate the websites’
rankings evolution through time.

Test Configuration module: This module is written in Python and verifies if input
configuration parameters are known to Web View, i.e the requested functionality of the tool,
Internet protocol and if the chosen web browser and version is installed.

Test Engine module: This module interacts with Selenium? which is the main automator.
Upon input parameters, Selenium will drive a web browser thanks to its corresponding web
driver, e.g Selenium will drive the Google-Chrome v.78 web browser through the web
driver chromeDriver78. The Test Initialization sub-module is meant to add needed options
to the web browser, e.g auto-open the devtools console or --private option added if the
measurement is meant to be performed in incognito mode.

Test Execution & Display module: This module launches the web browser with needed
options and browses the designated homepage. A HAR file representing the web browser’s
networking logs is retrieved through a plug-in we have developed and will be discussed in
section 3.2.1. All outputs from the console, e.g visible portion loading progression, W3C
metrics, etc., are collected and handed to the Data Collection sub-module.

Data Computation & Interpretation module: From the collected HAR file, is calculated
additional information, e.g downloaded objects’ MIME-type along with the Internet protocol
distribution, identification of web servers’ type along with their estimated geographic
location.

Results Visualization module: This module automatically parses obtained measurements
which are then displayed on a public visualization website.

Data Storage module: This module is meant to send all measurements to a distant machine
to be stored over time.

The different modules are all independent from each other which eases the addition of
new functionalities. The different modules are written into the Python programming
language.

2.2.2 Web View infrastructure

Web View [69] [121] is a measurement platform and its infrastructure is depicted in
Fig. 14. Web View is composed of 3 main components: the probes, a mutualized database
and a public visualization website showing the obtained measurement results. Although we
perform measurements on the Top 10,000 Alexa websites, a limited number of homepages are
represented on our visualization website.

Each probe is a user-oriented measurement tool whose main objective is to perform
automated web browsing sessions, to measure representative information of web pages in
order to better qualify and understand web browsing, both in terms of performance and
delivery. The probes emulate end-users’ web browsing within a real end-user environment:
real web browsers, residential access network, etc. Actually, 17 probes are currently deployed
at b different geographic locations: 10 in Lannion (France), 4 in Paris (France), 1 in Vannes
(France), 1 in Curepipe (Mauritius) and 1 in Tokyo (Japan), represented in Table 6. Each
Web View probe measures the Top 10,000 Alexa websites 24/7/365 by using different web

* https://www.seleniumhq.org/

43



browsers, namely Google-Chrome (versions 63, 68, 71, 73, 75, 76, 77, 78, 79) and Mozilla-
Firefor (versions 63, 64, 66, 68, 69, 70, 71, 72).

= gl
Web View =N ~
Database Web View §

Visualisation

Web View
Probes
Fig. 14: Web View infrastructure
Type Location CPU RAM | Network Downlink Uplink
operator
Desktop Lannion i5- 8Go Orange ADSL 10Mbps ADSL 1Mbps
& (France) 2.5Ghz Wi-Fi 200Mbps Wi-Fi 200Mbps
Laptop FIBER | 800Mbps | FIBER | 300Mbps
Desktop Lannion Xeon- 12Go Orange ADSL 10Mbps ADSL 1Mbps
(France) 2.8Ghz FIBER | 800Mbps | FIBER | 300Mbps
Desktop Vannes i5- 8Go Free FIBER | 800Mbps | FIBER | 300Mbps
(France) 2.5Ghz
Desktop Paris i5- 8Go Orange FIBER 1Gbps FIBER | 300Mbps
(France) 2.5Ghz
Desktop Paris i5- 8Go Free FIBER 1Gbps FIBER | 570Mbps
(France) 2.5Ghz
Desktop Paris i5- 8Go Bouygues | FIBER 1Gbps FIBER | 510Mbps
(France) 2.5Ghz
Desktop Paris i5- 8Go SFR FIBER 1Gbps FIBER | 470Mbps
(France) 2.5Ghz
Desktop Curepipe i5- 8Go Mauritius | FIBER 10Mbps FIBER 2Mbps
(Mauritius) | 2.5Ghz Telecom
Cloud Tokyo Xeon- 8Go Amazon 10Gbps 4Gbps
EC2-M5 (Japan) 2.5Ghz

Table 6: Web View probes

The different measurements performed are pushed to a mutualized database and
represented on a public visualization website representing the corresponding loading times
and estimated geographic location of web servers delivering contents.

Takeaways: Web View is a web browsing measuring tool deployed in desktop devices and
laptops meant to be the most end-user representative by making use of different web
browsers being regularly updated and connected to residential network access networks. Our
tool is composed of independent modules written in Python and JavaScript. Probes are
actually deployed in France and Mauritius to study the Web browsing eco-system.
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2.3 Web View measurement functionalities

Web View is meant to perform automated Web browsing sessions upon different
conditions such as assessing web pages’ loading times, identifying the different web servers
delivering content and the networking path (upstream and downstream) taken by network
packets.

Web View offers 4 main functionalities during web browsing sessions:

e lightDomains: perform web browsing measurements upon desired parameters and
provide information on loading times, estimated geographic location of web servers,
Internet protocol distribution and objects MIME-type.

o detailedDomains: complementary to the lightDomains functionality, provide
additional information on the types of web servers delivering content, i.e regular web
server, web cache or CDN (Content Delivery Networks).

e networkPath: complementary to the detailedDomains functionality, paris-
traceroutes are performed by our tool from the end-user device to the remote web
server’s IP address where the latter is exposed in the collected HAR file. Through the
RIPE Stat API of RIPE NCC, paris-traceroutes can also be made from the remote
AS (Autonomous Syste) to the end-user’s public IP address.

e dohMode: complementary to the light Domains functionality, we assess the perceived
loading times when making use of public DNS resolvers such as Google (8.8.8.8) or
Cloudflare (1.1.1.1) when using the Firefox v.70+ web browser.

Web View configuration parameters

For each measurement test, we have to specify different configuration parameters: the
web browser we want to use, the access network of the probe since one probe is connected to
only one access network which can be Fiber, ADSL or home Wi-Fi of different network
operators, the transport protocol we want to evaluate to get the contents, the window size of
the web browser we want to emulate, the use of an ad blocker or not and the list of websites
to measure. It can be a list of pre-defined website(s) or the Top N Alexa websites.
Measurements are launched through the command:

/usr/bin/initiator [requestedProtocol] [webBrower ] [mode] [netwIface]
[adblockOption] [graphicsMode] [browserWidth] [browserHeight]
[functionality] [ipMode] [dohMode] [websites]

where

[requestedProtocol]: HTTP/1.1, HTTP/2, HTTP2 CACHE, HTTP2 REPEAT, QUIC,

QUIC CACHE, QUIC REPEAT

[webBrower] : chrome-63/68/71/73/75/76/77/78/79 or firefox-63/64/66/68/69/70/71/72

[mode] : classic (regular usage of web browsers) or private

[netwIface]: corresponding network interface (ADSL, Wi-Fi or FIBER)

[adblockOption]: with or without ad blocker (adBlockPlus v.3-7-0)

[graphicsMode] : visible (graphical representation of web browser) or non-visible

[browserWidth]: 1920 / 1440 / 768

[browserHeight]:1080 / 900 / 1024

[functionality] :lightDomains / detailedDomains | networkPath

[ipMode] :strict IPv4 or dual IPv4-IPv6

[dohMode] : withoutDOH (regular operator’s DNS) / GoogleDOH / CloudflareDOH

Since content servers might not implement all transport protocols, we allow fallback
to protocols used by content servers. Typically, when performing measurements and
requesting HTTP /1.1, we deactivate the HTTP/2 and QUIC protocol; requesting HTTP /2
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implies deactivating QUIC but fallback to HTTP /1.1 is allowed; when requesting QUIC, we
allow fallback to HTTP /1.1 and HTTP/2 for non-QUIC web servers; when requesting the
Repeat mode (HTTP2 REPEAT or QUIC REPEAT), we favor O-RTT UDP and 1-RTT
TCP connections by firstly navigating to the website, closing the web browser, clearing the
resources’ local cache but keeping the DNS (Domain Name System) cache. We then navigate
once more to the website where measurements are collected. For every measurement, the
resources’ cache is always emptied except for the ~CACHE (HTTP2 CACHE or
QUIC CACHE) mode and a timeout of 18 seconds is set to limit the impact of possible
downtimes of content servers. This value has been derived from all our measurements.

Web View measurement results

For every visited website, Web View probes offer 84 parameters®. For the
computation and collection of these parameters, we rely on the HT'TP Archive (HAR) file
which is the web browser’s exposed networking logs. The use of networking information is
privileged in order to be more accurate when calculating loading times of dynamic and
progressive content, i.e Progressive Web Applications. From the obtained HAR, further
calculations are performed in order to assess the protocol distribution through which
responses are delivered to end-users and the location of web servers. Amongst the measured
and computed 84 parameters by the Web View probes, we can mention 4 different loading
times, namely the First Paint (FP), the Page Load Time (PLT from HAR and W3C), the
Time for Full Visual Rendering (TFVR) which is a web metric that we have defined and will
be discussed in section 3.2 and the processing time, all obtained from HAR files. The probe
also provides information about resources®™ composing the web page, i.e the number of
resources, their origin, type, size and transfer rate. Since content can be delivered using a
different transport protocol than the one we requested, we compute the distribution of
received protocols for the given webpage.

{"name": "X-Cache",

"value": "MISS, HIT"},

{"name": "X-App-Cache",

"value": "HIT"},

{"name": "X-Served-By",

"value": "cache-iad2132-IAD,
cache-cdg20761-CDG"},
"serverIPAddress": "151.101.120.175"

Fig. 15: Part of HAR file related to CDN delivery

When requesting the detailedDomains functionality, information about the content
server is deeply processed in order to identify if a resource was provided by the origin web
server or a CDN provider. For this, we use a part of the HAR file which indicates if the
resource is retrieved from a cache (HIT) or not (MISS). For example, in Fig. 15, the first
server replies with a MISS (cache-miss), meaning that the resource is not in its cache and the
second server replies with a HIT (cache-hit) meaning that the needed resource is present in
its cache. The corresponding content is thus delivered by the second CDN. From the exposed
IP address, we perform a WHOIS to query the registered assignees, which results into the
CDN Fastly. Relying on the MaxMind GeolP2 database’, we then identify the geographic
location of the web server (town, country and continent). From the exposed value cache-
cdg20761-CDG, we can also identify on the fly that this cache is in Paris (CDG is the
international airport code of Paris). As an example, when web browsing the website
tumblr.com from a Web View probe in Europe, requesting the QUIC protocol with Chrome

» https://webview.orange.com /public/img/monit Param.png
% https:/ /webview.orange.com/public/img/domainDetails.png
" https:/ /www.maxmind.com/
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web browser v.75, the domain assets.tumblr.com will be delivering 65 different objects
through the QUIC protocol by using the CDN Verizon located into the United States:

{"wwwName" :"tumblr.com", "requestedProtocol":"QUIC", "machine":"1i1i25",
"adBlocker":"Yes", "networkIface":"FIBER", "browserUsed":"chrome v75”,
"hostName":"assets.tumblr.com", "country":"United States", cdn":"Verizon" ,
"geohash":[-97.822, 37.751], "nbResH1":0, "nbResH2":0, "nbResQ":65,

"nbResP":0, "nbRes":65}

When requesting the networkPath functionality, for every distinct web server IP
address delivering content, a paris-traceroute is carried out. From the obtained information,
the corresponding IP addresses of routers on the path are correlated to the PyASN and RIPE
Stat database to identify the corresponding network path taken by packets between different
AS. As an example, when web browsing the homepage of yahoo.com, objects are downloaded
from the domain s.yimg.com and corresponding upstream path for a Web View probe
connected to the Orange operator is

AS3215 - AS5511 - AS1299 - AS10310 - AS203070
with identified AS holders being
Orange - OpenTransit - TeliaNet - Yahoo Oath Holdings - Yahoo France
And corresponding Round-Trip-Times towards each AS from the probe being
9.08 ms - 9.12 ms - 10.78 ms - 42.12 ms - 10.71 ms

where we can identify if a corresponding increase in RTT can impact loading times. The
downstream path can also be measured thanks to the RIPE NCC probes through their
exposed APl where a RIPE probe in AS203070 can be selected and paris-traceroutes
performed until reaching our public IP address. Although having assessed if the uplink and
downlink path of network packets are the same, choosing a probe in AS203070 from RIPE
NCC is a difficult task since the probes might be connected to different network operators
which might not be the same used by Yahoo France.

Takeaways: Web View is meant to perform automated web browsing measurements and
being the most end-user representative. OQur tool offers several functionalities in order to
obtain fine-grained information on the Web browsing eco-system. Web View provides as
output 84 monitoring parameters such as the time to load web pages (or parts of them), the
Internet protocol distribution, types of downloaded objects, location and types of web servers
delivering content, the uplink network path of network packets from the client to the remote
web server and finally the use of public DNS infrastructures.

2.4 Web View visualization tool

The Web View visualization tool is a public website, based on Grafana, and allows a
straightforward visual analysis of our collected measurements. Grafana is connected to an
FElasticsearch database, which stores all measurement results performed and sent by our Web
View probes. The website offers several tabs illustrating how our platform works and has 2
main pages: one showing different panels related to the analysis of the web page browsing
(loading times, resources, protocol distribution, etc.) and the second one representing content
servers (CDNs or origin servers) on a world map, with information about resources and
protocols. For the web page offering websites’ analysis, a menu allows a user to filter out
several parameters: select a specific website, transport protocol, access networks, location of
probes, web browser’s window size, used web browser and use of an ad blocker or not. For
the web page representing servers delivering contents, the menu offers an additional filter to
select a specific CDN provider.
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Web pages’ analysis

The first web page (htips://webview.orange.com) of our visualization tool depicts
information to better understand the implications of the Web eco-system during web
browsing sessions. While some panels show the time needed to load a web page as a whole or
through its progression by comparing different browsers (Chrome and Firefox), others
compare the obtained timings when requesting specific transport protocols (HTTP/1.1,
HTTP/2, QUIC). To better follow up with the deployment of the newest transport protocols,
namely HTTP/2 and more recently QUIC, additional panels show the distribution of
Internet protocols (how many resources are retrieved from web servers through HTTP/1.1,
HTTP/2 or QUIC) as per a requested transport protocol. Additional information is also
provided regarding the geographic location of web servers continent-wise. Following a set of
filters selected by a user, all the panels are automatically updated.
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Fig. 16: Protocol distribution for the homepage youtube.com

For instance, Fig. 16 shows the protocol distribution when requesting QUIC and
browsing the homepage of youtube.com. The web browser used is Google Chrome and we can
see that even if Google promotes the QUIC protocol, on average 55% of contents are still
distributed through HTTP /2 over TLS/TCP. When using an ad blocker, a mean number of
56 resources are downloaded from 8 different domains. These domains deliver all contents in
a secured manner (HTTPS) and only 5 domains are QUIC-enabled.
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Fig. 17: Location of origin web servers and CDN delivering content
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Content Servers Analysis

The CDN web page (https://webview.orange.com/d/UyllcrUmz/) allows laying out
figures on the delivery of contents, and mainly which web server provides a corresponding
resource, the type of service delivered and their geographic location. An end-user located in
Europe expects to firstly download objects from the same homepage domain and secondly
from web servers located in Europe. Our visualization website allows detecting that content
might be fetched from different web servers at different geographic locations mainly due to
Content Delivery Networks edge servers. Domains delivering contents and having an
authoritative DNS name server different from the one of the homepage are entitled Non-
Origin domains and conversely Same-Origin domains.

For instance, we can see through Fig. 17 that when an end-user is located in France
and performs web browsing on the Top 50 Alexa websites, contents are mainly retrieved from
France and Europe. Nevertheless, a non-negligible amount of content is also downloaded from
North America and Asia. The different circles represent the distribution of content following
the geographic location of web servers. Any user can hover the different circles and obtain
fine-grained details about the web servers and the amount of content served. The Fig. 17
popup window illustrates the web servers delivering contents from a datacenter located in the
Kansas County, United States.

Additional panels represent the Internet protocol distribution (HTTP/1.1, HTTP/2
and QUIC) from servers located all around the globe when performing web browsing
measurements. Content servers referenced as “No CDN” or “No CACHE” implies that they
are regular origin web servers. From all our measurements performed on a set of websites, the
list of CDN providers is automatically updated.

The Web View visualization website shows measurements performed since February
2018 where different web browsers have been used. Since web browsers are often updated on
average every 20 days, the platform is also regularly updated. Measuring websites’ loading
times on large time-spans helps to identify the impact of actors of the Web ecosystem which
can increase or decrease loading times. The Web View website being public, everyone can
access it and analyze different behaviors.

Takeaways: Web View is a tool meant to perform automated web browsing measurements
and also offers a public visualization website representing all performed measurements in real-
time. Any end-user can visit the website and select on the fly different measurements
parameters, e.g location of the probe, used web browser, residential network access type, etc.
Upon this selection, the different loading times are put forth, as well as the content
distribution such as location and type of web servers delivering content.

2.5 Conclusion

The Web browsing ecosystem is complex since it involves several actors and when
visiting a website, content is delivered by web servers located all around the world. Several
web servers are implicated in the delivery of content due to a large amount of services
embedded in web pages. With the aim to better understand the Web ecosystem in order
provide better QoS, several tools have been introduced over the last years by corporate
companies or researchers.

When focusing on Web browsing quality, three main tools are actually used, namely
PhantomJS, WebPageTest the last new comer SiteSpeed.io. These tools may not be always
end-user representative as the tools are not deployed on end-user representative devices, do
not embark the graphical version of web browsers or request the latest Internet protocols. In
order to be the most end-user representative and provide information on the different factors
contributing to web pages’ graphical representation, we have introduced a new web browsing
tool, Web View. The latter although being able to be deployed in VMs (Virtual Machines),
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we have chosen for our study to deploy our tool into end-user representative devices, i.e
laptops and desktops. Web View is composed of different independent modules written in
Python and JavaScript which eases the continuous upgrade of the tool, as web browsers are
usually upgraded every 20 days.

Compared to other existing tools, Web View can be deployed rapidly to assess Web
browsing quality by offering 84 monitoring parameters. Web View embarks to the best of our
knowledge in 2019, all available web metrics, such as the First Paint (FP), Above-The-Fold
(ATF) and the Page Load Time (PLT). In addition to web pages’ loading times, Web View
also sheds light on the different actors implicated in content delivery, i.e location and types
of web servers, Internet protocol distribution, types of downloaded objects, etc. All
measurements are represented in real-time on a public visualization website
(https://webview.orange.com) where end-users, service companies or researchers can better
understand the Web browsing eco-system.

The latest web browsing tool introduced is SiteSpeed.io and like Web View, it makes
use of real graphical web browsers during web browsing measurements and loading times are
derived from web browsers’ exposed networking logs. The Table 7 shows the different offered
capabilities of the tool Web View versus the mostly used web browsing tools. When making
use of other tools, specifying a wide range of web browsers is not possible and although web
browsers’ networking logs are retrieved and stored on the device, further calculations have to
be performed to have a precise and objective view of the web browsing ecosystem.
Furthermore, no web browsing tool estimates the uplink and downlink path of network
packets in real-time.

Last but not the least, DoH (DNS over HTTPS) has been lately introduced to put
forth privacy of end-users. When favorising the DoH, public DNS, e.g Google, Cloudflare,
OpenDNS, Quad9, etc., will perform DNS resolution over HI'TPS rather than the network
operator to which a device is connected. It is important to compare the pros and cons of
public DNS usage. As an example, for an end-user located in France, the network operator
will resolve the different domain names to web servers located the closest to an end-user, i.e
in Kurope. When making use of public DNS, the different domain names are resolved to web
servers located in North America which can increase the average download time of resources.

Over the last 2 years, thanks to measurements performed by Web View and
represented in real-time on a public monitoring website, we have been able to detect root
causes of degraded Quality of Experience, e.g From the 4™ to 7" November 2017, Google web
servers delivered content in HTTP /1.1 and HTTP/2, where QUIC protocol was deactivated
on all their web servers. Web View visualization platform also allows to follow in real-time
the evolution of the Web ecosystem, i.e adoption of Internet protocols by large service
companies, use of new Web technologies or routing strategies adopted by service providers.
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Metrics / Functionality

WebPageTest

SiteSpeed.io

Web View

End-user representative device

4

Residential network access

Disk usage of local machine

4

RAM usage of local machine

Measurement in strict IPv4

Measurement in dual IPv4/IPv6

DNS caching

DNS over HTTPS (DoH)

Resources caching (local machine)

Web browser classic mode

Web browser private mode

(\

Web browsers versions

Web browser window size

Requested protocol

Ad block use

Use of web browser’s networking logs

Number of downloaded objects

Types of downloaded objects

AIRNANEN

Location of web servers (continent)

Location of web servers (town or country)

Web servers’ IP address

Origin or Non-Origin web servers

Type of web server (origin or CDN)

Visible portion of web page without scrolling

RTT of origin web server

Protocol distribution of downloaded objects

Secured download of objects (HTTP/HTTPS)

First Paint (FP)

Protocol distribution before First Paint

Types of downloaded objects before FP

Above-The-Fold (ATF) through videos

ATF browser-based

Protocol distribution before ATF

Types of downloaded objects before ATF

RUM-SpeedIndex

Time for Full Visual Rendering (TFVR)

Protocol distribution before TEFVR

Types of downloaded objects before TEFVR

PLT W3C

PLT HAR

DNS time

Networking time

Total web page size

ANERNERNERNERN

Visible web page size
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Estimated network uplink path between client
and web servers

Real-time visualization of measurements

\

Table 7: Comparison of web browsing tools offered metrics
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Chapter 3

A new Web metric:
Time for Full Visual Rendering
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In this chapter we firstly go through commonly used web metrics to measure web
pages’ loading times and assess their objectiveness as per newly introduced Web technologies.
We have studied the objectiveness of these web metrics as they are embarked in our tool,
Web View. Following different studies on web browsing behaviors or web browsing patterns,
end-users generally wait for the visible portion of web pages to be fully loaded before scrolling
them down or navigating through websites. Although new measurement techniques have been
introduced to measure this visible portion loading time, they bear several inefficiencies with
regard to dynamic web pages embarked with new Web technologies. Secondly, to circumvent
those inefficiencies, we have designed and developed the Time for Full Visual Rendering
(TFVR) which is a new web metric providing fine-grained loading times being independent of
web pages’ structure and embedded Web technologies. Compared to commonly used web
metrics, the TFVR provides more accurate loading times by taking into account all objects
rendered into the visible portion of the web browser with a mean extra computational time of
0.156 seconds.

3.1 Actual web metrics qualifying web browsing quality

Web pages go through different phases, as discussed in section 1.3, until being fully
rendered where certain parts can be visible only by scrolling a web page. The de-facto used
web metric over the last years to qualify web browsing quality has been the Page Load Time
standardized by the W3C (PLT-W3C), which measures the time to load an entire web page.
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With the introduction of smart phones and tablets, together with end-users making use of
desktop screens of different sizes, the visible portion of a web page at first glance without
scrolling differs from one end-user to another. To be able to measure this visible portion
loading time, web metrics such as the Above-The-Fold (ATF) and Time To Interactive
(T'TI) have been introduced.

The PLT-W3C, as discussed in section 1.4, is naturally exposed by all web browsers.
The ATF web metric can be calculated in two different ways: the use of video recording and
web browser’s exposed W3C* information. The TTI introduced in 2018 is exposed by the
Paint Timing API, discussed in section 1.4, and only available in Chromium-based web
browsers, e.g Google-Chrome or Brave (so far in November 2019).

3.1.1 Inefficiencies of the PLT-W3C

The PLT is the time needed to load an entire web page. The exposed loading time
takes into account the network time to request and download every needed object from a
remote web server and also the needed time by the web browser to process and render these
downloaded objects. The PLT can be calculated in two different ways: by extracting
information directly from the web browser implemented W3C information, which is
commonly known as the PLT-W3C or calculated from the networking logs exposed by the
web browser, which we denote, the PLT-HAR.

In order to calculate the PLT-W3C, the Resource Timing API exposed in section 1.4
is used. Fig. 18 shows the output from the Resource Timing API when web browsing the
homepage of wikipedia.org, where a total number of 5 objects (highlighted in yellow length:
5) are downloaded. To calculate the PLT-W3C, every downloaded object’s duration time
(highlighted in green for the 4™ downloaded object) is summed up to their corresponding
processing time by the web browser. The PLT-W3C value through this example is 315ms.

The different needed objects to render a web page are downloaded from several web
servers which may have their time-allow-origin® unexposed. When the Resource Timing API
wants to obtain the different timings regarding the request and download of an object, the
returned values can be zero; which is the case for the 4™ downloaded object in Fig. 18 where
the duration is Oms (highlighted in green). Although the processing time for this object is
exposed by the web browser, the time to request and download this object is not taken into
account. This leads to an incorrect PLT-W3C value, which is the first inefficiency. In our
example for wikipedia.org, the duration is not exposed for only 1 object and this duration’s
time contribution to the PLT-W3C is negligible. But from measurements performed over the
Top 1 Million Alexa websites, for some homepages more than 200 different objects can be
downloaded and up to 52% of objects’ duration time can be 0 ms, and hence offering a PLT-
W3C value being 48% short.

A second inefficiency of the PLT-W3C is with regards to the introduction of
Progressive Web Applications (PWAs) which aim to offer a mobile visual environment
through a desktop web browser. PWAs make use of several service workers” which are
reactive upon an end-user action when browsing the corresponding web page e.g re-size
images and web page layout automatically. The needed objects to render the web page are
already downloaded and the PLT-W3C is exposed. But a simple movement of the mouse in
the web browser window can lead these workers to re-build the Document Object Model
(DOM) and Cascading Style Sheet Object Model (CSSOM) tree. Re-building the DOM and
CSSOM modifies the display of the web page and sometimes additional objects are
downloaded. Since the PLT-W3C is already exposed, these additional actions are not taken

“World Wide Web Consortium

®The Time-Allow-Origin response header specifies origins that are allowed to see values of attributes
retrieved via features of the Resource Timing API, which would otherwise be reported as zero due to
cross-origin restrictions.

9Scripts that run in the background in the end-user's web browser
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Fig. 18: Loading times exposed by the Resource Timing API
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A third inefficiency of the PLT-W3C, as per end-users’” web browsing behaviors, is that
it exposes the time to load the entire web page. End-users make use of different devices’
window sizes and primarily concentrate on the visible portion at first glance [75] before
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scrolling down or navigating into the website. Taking into account the PLT-W3C to qualify
end-users’ Quality of Experience (QoE) is inappropriate since depending on the homepage
visited, the visible portion at first glance may range from 1% to 100%. Fig. 19 shows the
loading time and visible portion at first glance of 9 different homepages when using a web
browser with different window sizes. As shown in Fig. 19(a), the PLT stays the same, except
some minor changes in timings due to the network state, although the web browser window
sizes increase. Through Fig. 19(b) following a web browser window size increase, the visible
portion at first glance without scrolling also increases. Although the visible portion of web
pages increases as per an increased web browser window, the PLT stays merely the same and
it is hard to qualify the web browsing experience of end-users.

Takeaways: The PLT-W3C as implemented into web browsers does not offer accurate
timings since it uses the Resource Timing API which cannot retrieve the corresponding
request and download time of objects if a distant web server does not allow it. With the
introduction of PWAs, scripts run permanently in the end-user’s web browser to change the
display or download additional objects upon end-users action. The download of these
additional objects is not captured by the PLT-W3C. End-users generally concentrate on the
visible portion of websites at first glance and devices’ screens come in different sizes. The
PLT measures the time to load the entire web page, visible or not and is not adapted to
measure finely end-users’ perceived QoE.

3.1.2 Inefficiencies of the ATF

The Above-The-Fold (ATF) metric is meant to measure the time to load the visible
portion of a web page at first glance without scrolling. The ATF web metric can be
calculated in two different ways: the use of video recording and web browser’s exposed W3C
information.

Calculating the ATF through video recordings
When calculating the ATF through video recordings 3 main steps are involved:
1. Perform a video recording of the visible portion of web page loading progression until
fully rendered,
2. From the video recording, extract k-images snapshots,
3. Compare the different images among them to define at what moment pixels between
two images do not change anymore, which indicates the moment the visible portion of
the web page fully rendered.
During the video recording phase, the web browser is firstly opened and the recording started
by selecting manually the region inside the end-user’s screen to be recorded. The website wurl
is then added into the web browser address bar and the web page requested. When the
visible portion of the web page is visually estimated to be fully rendered, the video recording
is stopped. At this very stage, we can identify 3 inefficiencies which are selecting manually
the region to be recorded, estimating visually when the visible portion is loaded to stop the
video recording and lastly the use of tools being external to the web browser which can
impact web browsing measurements. Human interaction in the video recording process is
compulsory.

From the recording is then extracted k-images snapshots represented by Snq, ..., Sny.
As an example, if the recorded video is 30 frames per second, a recording ratio of 150 will
create an image snapshot every 5 seconds. The value of k cannot be pre-defined on the fly
since it depends on the frame rate of the video and its total duration. From the obtained
images snapshots, the pixels are then compared between them, i.e between Sn; and Sn, until
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(¢) Difference between Snqy, and Snqz
Fig. 20: Identifying missing pixels between snapshots for youtube.com

Sny_q1 and Sn,. The python library ImageMagick offers a method compare to find the
amount of different pixels between two images:

compare -metric AE snapshotl2.jpg snapshotl3.jpg null: 2>¢&1

where zero difference in pixels’ amount means that two snapshots are identical. If there is no
pixel change between Sn; and Sn, but a pixel change between Sn; and Snsz, the image
snapshot Sn, is discarded. This process is performed until reaching the image snapshot which
does not change anymore. Fig. 20 illustrates how missing pixels can be identified for the
visible portion of the homepage of youtube.com when using an ad blocker. While Fig. 20(a)
shows the 12" snapshot Sn;, extracted from the video recording, Fig. 20(b) shows the 13™
snapshot Snq3. These two snapshots are compared and the underlying difference is illustrated
by Fig. 20(c) where 3412 pixels are missing between these two snapshots.

Calculating the ATF from browser-exposed web metrics

To lift the burden of making video recordings and pixels comparison, a browser-based
ATF loading time can be obtained from the Real User Monitoring SpeedIndex (RUM-
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SpeedIndex), discussed in section 1.4. This browser-based ATF technique makes use of the
web browser’s DOM information to identify when the rendering of objects have finished.

This technique follows the assumption that the ATF < PLT where the ATF should be
equal to the PLT if the visible portion of a web page is 100%. This ATF browser-based web
metric makes use of the Resource Timing API and every downloaded object is assessed if it is
rendered into the visible portion of the web page through DOM information. If this is the
case, for every object the networking time is retrieved from the Resource Timing API and
processing time from the web browser’s DOM information. The processing and networking
time for all objects rendered into the visible portion is then summed up to provide the ATF
time. The way the browser-based ATF is designed faces issues in its calculation:

1. The time to request and download objects is based on the Resource Timing API and
as discussed in section 3.1.1, this duration value is not always exposed.

2. Accessing the DOM information is costly and an event happens every time a node of
the DOM or CSSOM tree is re-built. As an example, to render the web page of
youtube.com, 73 objects are downloaded among which 42 objects are rendered into the
visible portion of the web browser window size 1920x1080. The DOM and CSSOM
trees are modified 3168 times to render the entire web page. The way the browser-
based ATF algorithm is designed makes that these 3168 events will be assessed 73
times to identify which objects are rendered into the visible portion and corresponding
time.

3. To identify if an object is rendered into the visible portion of the web page,
JavaScript code has to be injected into the command line of the web browser and only
images are assessed if rendered into the visible portion.

Takeaways: The process of calculating the ATF from videos is time-consuming where
human interaction in the whole process is compulsory. High definition videos increase the
accuracy of the pixels comparison but reduce the end-user’s device processing and storage
capacity. Furthermore determining the needed k snapshots from the video is not an easy
process. The pixels comparison task is also time-consuming as it depends on the number of
snapshots. With the proliferation of advertisements in the visible portion of the web page,
another question arises from this measurement technique since advertisements change
regularly. It is thus hard to define when the video recording should be stopped and if pixels
from advertisings should be taken into account. The browser-based ATF technique can
expose incorrect timings since it uses the Resource Timing API information where networking
information is not always exposed. The RUM-SI algorithm only takes into account images
rendered into the visible portion of the web page.

3.1.3 Inefficiencies of the TTI

The Time To Interactive (TTI) is the moment when the visible portion of a web page
is estimated to be fully rendered by the web browser and when an end-user can start
interacting with the web page. The TTI as exposed in section 1.4 is not a standardized web
metric and only available in the Google-Chrome web browser. The TTI calculation is
performed as:

1. The started time is at the First Contentful Paint (FCP) moment.

2. As from the FCP moment, the web browser looks for a moment when the
network is stable during 5 seconds.

3. When this no-network transaction is identified, the algorithm assesses
backwards the different DOM and CSSOM events to identify the latest longest
task performed. The TTI is then exposed.

The first inefficiency of the TTI is that it can be calculated only when the entire web

page is fully rendered to identify among all events the latest longest task. The second
inefficiency of the TTI is that it cannot be detected until no requests are made or responses
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received by the web browser during 5 seconds. Web pages are nowadays most of the time
dynamic where a simple movement of the mouse can trigger tens of objects to be
downloaded, the network is thus rarely idle more than 5 seconds. As an example, for the
homepage of chinatimes.com, the PLT-HAR is 5.07 seconds when using Google-Chrome
version 68 for a European end-user. The exposed TTI is 2.89 seconds for a web browser size
1920x1080 but calculated 17.89 seconds prior to navigation-start; i.e the network is stable
during 5 seconds, 12.89 seconds prior to navigation-start. Based on our measurements
performed for the Top 10,000 Alexa websites, an average time of 9.71 seconds is needed to

calculate an average TTI of 1.98 seconds.

Takeaways: The TTI is only implemented in the Google-Chrome web browser and can be
calculated if and only if the network state is idle during 5 seconds. Web pages are mostly
dynamic nowadays and network states are rarely idle, which leads the TTI not to be easily
exposed.

3.14 Accuracy of actual web metrics

Putting apart the techniques to calculate the ATF time, we now go through different
scenarios where new Web technologies strongly impact the exposed ATF timings. When
measuring the ATF for web pages not being 100% visible at first glance, i.e the web page
needs to be scrolled to reach the end of the web page, the ATF should logically follow the
rule ATF < PLT. Fig. 21 depicts the loading times of two different homepages,
wdschools.com being a static web page and youtube.com being a dynamic web page. As
shown through Fig. 21(a), for a static web page, the corresponding loading times with and
without the use of an ad blocker follows the rule:

ATFWit h_adblock < ATFwit hout _adblock < PLTwith_adblock < PLTwithout_adblock

The use of an ad blocker helps in reducing the ATF by 190 ms and 1 more object is
downloaded and rendered when not using an ad blocker. The PLT-W3C is increased by
960ms when not using an ad blocker. On the other hand, when measuring the dynamic
homepage of youtube.com as shown in Fig. 21(b), the visible portion of the web page
fluctuates when not using an ad blocker since advertisements change regularly, and thus the
pixels change more often. The use of video recording identifies that the ATF,inout adblock 18
smaller than the ATF,;p qapiock since the advertising panel occupies a bigger part of the
visible portion and thus less images are rendered.
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Fig. 21: Loading times of static versus dynamic web pages
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Without the use of an ad blocker, 39 objects are rendered into the visible portion but
with an ad blocker, the advertisement panels disappears and the dynamic web page renders
43 objects into the visible portion. The networking and processing of these 4 additional
objects increase the ATF by 189 ms. The PLT-W3C value on the other hand when using an
ad blocker is 215 ms lower than when an ad blocker is not used since the download and
processing of the advertising panel does not happen.

Another scenario is represented through Fig. 22 where the web page of
forgeofempires.com is composed of a large number of Flash® objects. The PLT-W3C is 1350
ms less than the observed ATF and thus ATF > PLT. A JavaScript is fired 450 ms after web
navigation starts which triggers the download of 2 additional objects, namely an image and
an asynchronous JavaScript. The image is processed and rendered into the web browser but
the asynchronous JavaScript processing is delayed. Fig. 23 shows the visual progression to
fully load this web page. At that very moment, the PLT-W3C is 700ms, i.e Fig. 23(a),
meaning that the web browser detects that the web page is entirely loaded. The
asynchronous JavaScript is processed 100 ms after the exposed PLT-W3C to download 297
additional objects where Fig. 23(b) shows the loading progression bar at 35%, Fig. 23(c) with
a progression bar at 80% and Fig. 23(d) when the visible portion is entirely loaded. In this
example, due to 1 asynchronous JavaScript, the PLT-W3C offered by web browsers is biased.
The ATF helps in identifying the corresponding visible loading times, but for the web page of
forgeofempires.com, a video of 45 seconds had to be made to identify the ATF of 1815.7 ms.

On the other hand, when using the browser-based ATF technique, the exposed timing
was 496 ms since it relies on the PLT-W3C time-frame to identify downloaded objects.
Following this real-life scenario, the PLT-W3C and browser-based ATF is biased since the
download and rendering of nearly 300 objects is not captured. Although the default ATF
technique using video recordings works fine, the ATF timing was exposed after more than 4
minutes of calculations (45sec for the video recording, 1 minute to create images snapshots
and 3 minutes to compare pixels).
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Fig. 22: Side effects of asynchronous JavaScript on loading times

3 Flash objects will not be supported anymore by 2020 by the Google-Chrome web browser but is still
used in web pages
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(a) PLT-W3C exposed (b) 35% progression (c) 80% progression
Fig. 23: Loading progression of forgeofempires.com web page

Takeaways: Actual web metrics are not efficient to offer fine-grained loading times since
they are differently implemented in different web browsers by large service companies and
have not evolved to cope with new Web technologies. The use of external tools to identify
corresponding web pages’ loading times can be impacted since more computing power will be
used by the device during the measurement. A new web metric is needed to measure finely
the loading time of the visible portion of web pages, without using external tools to capture
loading progression or actual web metrics like the Resource Timing APIL.

3.2 Our proposed web metric : The TEFVR

The Time for Full Visual Rendering [83] is a browser-based measurement technique
which is browser-type and browser-version independent. Our web metric makes use of web
browsers’ networking logs to offer fine-grained loading times regarding the visible portion of a
web page at first glance without scrolling. The TFVR also offers detailed information on the
different objects downloaded and rendered into this time frame, i.e step by step processing
phases for every object and identify through which Internet protocol objects are downloaded
as well as the geographic location of the corresponding web servers.

3.2.1 The TFVR design and mechanics

The TFVR is entirely written in JavaScript and interacts with the web browser
engine through the devtools™ console. The devtools is accessed through the FI12 keyboard
button for any recent web browser where an end-user can interact with the engine of the web
browser, as shown in Fig. 24. For the TFVR calculation, no external tools are needed and
calculations are performed in real-time. Being written in JavaScript, the TFVR web metric
can also be added as a plug-in in different web browsers.
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Fig. 25: TFVR design and mechanics

The overall design and mechanics of the TFVR is shown in Fig. 25. In order to obtain
the TFVR timing and detailed information on objects rendered into the visible portion of the
web page, the TFVR JavaScript code is injected into the web browser’s devtools console and
the calculations go through 3 main steps:

1. The web browser’s networking logs are collected into the form of a JSON
(JavaScript Object Notation). To be able to perform additional calculations, these
networking logs are stored on the end-user device into a compressed HAR (Http
ARchive) file. From these networking logs is extracted the name of downloaded
objects, e.g https://www.website.com/object.txt and the corresponding durations
since navigation-start. Using the web browser’s network logs palliates to the
inefficiency of the Resource Timing API; durations for downloading objects are
never null values.

2. The web browser’s DOM logs is collected, which expose all events occurred into
the web browser’s engine since navigation-start.

3. From the identified objects being downloaded
{objectName, durationSinceNavigationStart} in step 1, a comparison is made
with the DOM logs to identify which object is rendered into the visible portion of
the web page without scrolling. The TFVR timing is then exposed.

Collecting web browsers’ networking logs

All modern web browsers, since 2015, offer their networking logs through HAR files via
the devtools console. To obtain these networking logs, built-in functionalities in respective
web browsers are triggered via a plug-in we have developed which is independent of the used
web browser. When using a Chrome web browser, the corresponding HAR is collected
through the command and through
extensions.netmonitor.har option for the Firefor web browser. These commands trigger
built-in functionalities of the web browsers and our plug-in measures the moment when the
DOM and CSSOM are entirely unloaded, i.e the corresponding DOM tree is fully built and
not triggered anymore, which means that the web page is entirely loaded.

Web browsers continue downloading different objects, even if a web page is entirely
loaded in order to reduce loading times when performing further web navigation across the
same website. In order to capture all objects downloaded and rendered by the web browser,
we poll every 30 ms the DOM and CSSOM information offered by the web browser during a
maximum time of 2000 ms to identify if the DOM is rebuilt. We use this mechanism in order
to detect finely the execution of asynchronous JavaScript which are sometimes not captured
through traditional web metrics as discussed in sections 3.1.1 and 3.1.2. Retrieving and going

chrome.devtools.network.getHAR()
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through the entire logs of the DOM can be costly, this is why we only poll if the number of
events in the array has increased or not via
window.document.getElementsByTagName (‘*’) .length. To identify the maximum
polling time of 2000 ms, we have measured the Top 1 Million Alexa websites and a statistical
analysis has shown that the DOM tree can be rebuilt in this 2000 ms lapse of time. The
average number of polls has shown to be 12, i.e the DOM tree can be rebuilt on average 360
ms after the PLT-W3C value is exposed. In order to be precise in our offered timings, if after
15 consecutive polls (450 ms) in the 2000 ms time frame, the DOM is never rebuilt, we
collect the networking logs. This helps in identifying if an asynchronous JavaScript is fired
after the onLoad event, e.g an asynchronous JavaScript is fired 100 ms after the onLoad
event for the website forgeofempires.com and this event is captured by our plug-in and thus
the additional download of 297 objects.

Identifying objects downloaded and rendered into the visible portion

From the obtained HAR, we identify all objects downloaded since navigation-start by
the web browser. As an example, Table 8 shows the different objects downloaded and the
moment they are rendered in the web browser for the entire web page of wikipedia.org. While
the PLT-W3C is exposed as being 315 ms for this web page, additional objects are
downloaded and rendered 602 ms after navigation-start. Compared to Fig. 18 in section 3.1.1,
2 additional objects are downloaded, so that the entire web page is correctly displayed. These
2 additional objects are not captured by the PLT-W3C web metric and the exposed loading
time is incorrect. Furthermore through the analysis of web browser networking logs, we
retrieve detailed download timings for the object sprite-81a290a5.svg, which the Resource
Timing API exposed as being 0 ms (highlighted in green) through Fig. 18.

Downloaded objects Time after navigation-start
(ms)

1. | https://www.wikipedia.org/portal/wikipedia.org/ 177.53
assets/img/sprite-81a290a5.svg

2. | https://www.wikipedia.org/portal /wikipedia.org/ 169.95
assets/js/gt-1€9-a2995951ca.js

3. | https://www.wikipedia.org/ 112.15

4. | https://www.wikipedia.org/portal /wikipedia.org/ 168.97
assets/js/index-cl1cb7f1287.js

5. | https://www.wikipedia.org/portal/wikipedia.org/ 558.51
assets/img/Wikipedia-logo-v2.png

6. | https://www.wikipedia.org/portal /wikipedia.org/ 601.19
assets/img/Wikinews-logo sister.png

Table 8: Downloaded objects for wikipedia.org from HAR

The object gt-ie9-a2995951ca.js is an asynchronous JavaScript whose request and
download is captured by the PLT-W3C metric, but not its processing which downloads
additional contents. Thanks to our plug-in mechanism to retrieve the HAR, at the 13" poll,
the download and rendering of 2 additional objects needed by this asynchronous JavaScript is
detected. The side effects of asynchronous JavaScript has been studied in [54] and through
this example, we can identify that actual web metrics do not cope with new Web
technologies since the exposed PLT-W3C is 315 ms but the real PLT, which we denote by
PLT-HAR, to load the entire web page is 652 ms.
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Once we have obtained the precise list inner width
of downloaded objects for the entire web page,
we assess if they are rendered in the visible
portion of the web browser window. To obtain
the visible portion of the web page, we identify
the visible surface area without scrolling in the
web browser. All downloaded and processed
objects are placed at specific positions when
rendered; positions are defined by (x,y)
coordinates through an offsetTop and
offsetWidth value exposed by the DOM =
logs. If the object is rendered into the visible
surface (innerHeight X innerWidth) area as
shown in Fig. 26, the object is considered to be
visible. Depending on the web browser’s visible
window size, an object might also appear in-
between the visible and non-visible surface
area but since a downloaded object is fully
rendered by a web browser, it is considered as
being visible. As exposed in [83] texts and
scripts do not have an (x,y) coordinate™ when
processed and rendered into the visible portion Fig. 26: Visible surface area of web pages
of the web page. We thus retrieve their duration time since navigation-start and assess if
they are processed before another image found into the visible surface area. When all objects
to be rendered into the visible portion of the web page are identified, the highest time value
represents the TFVR, i.e the moment when the last object is rendered. The TFVR
calculation process represents a mean extra computational time of 0.156 seconds for the Top
10,000 Alexa websites where on average the processing power of the end-user device
increases by 0.014%.

inner height

scroll height

Takeaways: The Time for Full Visual Rendering is a browser-based measurement
technique which is browser-type and browser-version independent. The TFVR is calculated
in real-time with a mean extra computational time of 0.156 seconds by making use of the
web browser’s offered networking logs. The TFVR takes into account new Web technologies
and captures events triggered by JavaScript or Progressive Web Applications.

3.2.2 Additional functionalities of the TFVR

The TFVR is meant to calculate the time to fully load the visible portion of a web
page but also offers means to identify through time the rendering phases of objects as well as
the Internet protocol used for delivery, the MIME-type (Multipurpose Internet Mail
Extensions) of downloaded content and estimated geographic location of web servers.

Objects’ rendering phases through time

To render the entire webpage wikipedia.org, a total number of 936 DOM events
happen to process the downloaded 6 objects. Let’s consider the object sprite-
81a290a5.svg represented through Table 8 which is rendered 177.53 ms after navigation-
start. Table 9 illustrates the 9 different steps through which the corresponding DOM and
CSSOM tree is rebuilt in order to render that object.

¥As from Chrome v.68 (July 2018) and Firefox v.61 (June 2018), these two web browsers expose the
offsetTop and offsetWidth for all objects; we have updated our web metric algorithm.
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The object sprite-81a290a5.svg is downloaded and rendered in 45.41 ms (Step 1 to
9). A sprite is a collection of images packed together, being small in size and its processing
starts the first time at step 4 and lasts 14.93 ms (to reach step 5). As illustrated in Table 8, a
JavaScript index-clcb7f1287.5s is downloaded and processed 168.97 ms after navigation-
start. This JavaScript processes the object sprite-81a290a5.svg at 169.23 ms (step 6). The
object sprite-81a290a5.svg is cut into different images in 5.89 ms (to reach step 7) and
finally rendered (all images extracted from this sprite) 177.53 ms after navigation-start.

Steps | Event Object name Time after navigation- Event
1d start (ms)

1 96 sprite-81a290ab.svg 132.12 Requesting object
2 99 sprite-81a290ab.svg 141.09 Download started
3 122 sprite-81a290a5.svg 143.20 Download ended
4 184 sprite-81a290a5.svg 144.01 Processing started
5 315 sprite-81a290a5.svg 158.94 Processing ended
6 384 sprite-81a290a5.svg 169.23 Re-processed
7 392 sprite-81a290ab.svg 175.12 Processing ended
8 451 sprite-81a290a5.svg 176.04 Rendering started
9 484 sprite-81a290ab.svg 177.53 Rendering ended

Table 9: Rendering phases of each object
This exposed information helps in troubleshooting why the object number 5
(Wikipedia-logo-v2.png) illustrated in Table 8 is rendered 558.51 ms after navigation-
start. The delay in triggering the download and rendering of the object Wikipedia-logo-
v2.png is due to the object number 2 (gt-ie9-22995951ca.js) which is an asynchronous
JavaScript.

Object name Object Object Duration Delivery Web Location
Type Size (KB) (ms) Protocol server
index.html | text/html 58.5 112.15 HTTP/2 Web | United States
server
index- JavaScript 8.2 168.97 | HTTP/1.1 | Cache | Netherlands
clcb7f1287.js
gt-ie9- JavaScript 3.2 169.95 HTTP/2 Cache | Netherlands
22995951ca.js
sprite- image/svg 18.2 177.53 HTTP/2 Cache Netherlands
81a290ab.svg

Table 10: Downloaded objects for wikipedia.org with window size 768x1024

Offering detailed information on objects rendered into the visible portion

An additional step which is optional, illustrated through Fig. 25 in section 3.2.1 with
a grey background allows to obtain further information on content rendered into the visible
portion, i.e their MIME-type, the Internet protocol through which they have been
downloaded (obtained from the HAR through the httpversion HAR header) or the
estimated geographic location of the remote web server (correlation between HAR header
serverTPAddress and Maxmind GeolP2 database™).

From Table 8, only four downloaded and processed objects are needed to fully render
the visible portion of the homepage wikipedia.org when having a web browser window size of
768x1024, where 81% of the entire web page is visible at first glance to the end-user. The
TFVR is 178.12 ms. In order to have a more precise overview of the different objects
downloaded and rendered in 178.12 ms, the TFVR also exposes their MIME-type, Internet

* http://www.maxmind.com
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protocol through which they have been requested and downloaded and the location of web
servers delivering content. Table 10 shows the downloaded objects for wikipedia.org during
the TFVR time lapse for a European end-user using a Firefox web browser with window size
768x1024 and requesting HTTP /2.

The type of web server delivering content, as discussed in section 1.2, can be an origin
web server, cache or CDN. To identify if a particular content is downloaded from a cache or
CDN, we analyze its x-Cache header in the HAR file. If this header is not present in the
HAR file for this object, this means that the content is not served by a CDN or cache.
Following the presence of this header, its value can be:

- M1ss: The content is cachable but was not present into the cache edge web server
and retrieved from the origin web server.
- HIT: The content was retrieved from a cache edge web server.

If the value of the x-Cache header is HIT, we retrieve from the HAR file the web
server’s IP address which is correlated to RIPE NCC® database to obtain the corresponding
Autonomous System (AS). As an example when performing measurements for the website
ebay.com, 2 JavaScripts are downloaded from the domain assets.adobedtm.com where the x-
Cache value is HIT. The corresponding web server exposed IP address is 2.2.77.19 and
when correlated to the RIPE NCC database, the AS holder is AKAMAI When comparing
the TP address to Mazmind GeolP2 database, the edge web server is estimated to be in
Ireland. When having a HIT, if the AS Holder belongs to the major CDN companies™, we
estimate the remote web server to be a CDN and conversely a cache, e.g WIKIMEDIA.

Takeaways: In addition to the time to load the visible portion of a web page, the TFVR
also exposes the step by step processing phases for every downloaded object and identify
through which Internet protocol they are downloaded as well as the geographic location of
the corresponding web servers.

3.2.3 Accuracy of the TFVR

We assess in this section the accuracy of the TEFVR versus the ATF where the latter
can be calculated either through video recording or from the web browser’s exposed Resource
Timing information.

Rendering output

When making use of the ATF to calculate the time to load the visible portion, some
objects are not taken into account for two reasons. Firstly when making use of videos to
calculate the time to render the visible portion, dynamic content can change very often and
the pixel comparison phase as well as the identified moment to stop the video recording can
be a tedious task. Secondly, when calculating the browser-based ATF (through the RUM-
SpeedIndex), only downloaded objects into the PLT-W3C lapse of time are taken into
account. As identified in section 3.1.1, the PLT-W3C does not always take into account all
needed objects to render a web page.

Fig. 27 shows the fully rendered visible surface area of the web page youtube.com, at
the browser-based ATF and TFVR moment. When performing the ATF browser-based
calculation, the ATF is 1278 ms and Fig. 27(a) shows the graphical representation of the web
page at that moment. Compared to Fig. 27(b) several texts, images or headers are missing.
When comparing the pixels of Fig. 27(a) with the final visual rendering of the youtube.com
homepage at the PLT-HAR moment 21% of pixels are missing. On the other hand the
comparison for the TEFVR indicates 0.7% of pixels missing.

* https://stat.ripe.net/
% https:/ /www.cdn-advisor.com /companies /
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On a wider scope, Fig. 28 depicts the amount of missing pixels following different web
browser window sizes, with (or without) ad block use for the Top 1,000 Alexa websites when
comparing with the visible portion at the PLT-HAR moment. For a window size 768x1024,
when using an ad blocker, less than 60% of the measured homepages have less than 1% pixels
missing for the TFVR, 7.3% for the TTI and 10.6% for the browser-based ATF. Without an
ad blocker under same measurement conditions, the amount of missing pixels increases by
3.7% for the TTI and 8.1% for the browser-based ATF. This shows that the TFVR
calculation is more accurate compared to the browser-based ATFE or TTI with lowest number
of missing pixels with or without ad block use.
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Fig. 27: Visual representation of youtube.com
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Fig. 28: Missing pixels compared to visible portion at PLT-HAR
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Since the amount of missing pixels is more important for the TTI and browser-based
ATF compared to the TFVR, we now focus on the amount of missing objects. We compare
the screenshot of the visible portion of the web page for the ATF and TTI versus the TFVR.
The identification of missing objects is done by:
1. We make use of the Structural Similarity Index (SSIM) [122| which helps to
identify at which (x,y) coordinate location the image differences occur,
2. From the obtained (x,y) coordinates, we retrieve from the DOM information
which objects should be rendered at this position,
3. The number of missing objects is then summed up.

= EVoulube I N ) = @ Voulube o 3 i | @ seconecten |
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snapshots to TFVR
Fig. 29: Identification of missing objects contours

Fig. 29 shows the rendering output of the homepage of youtube.com for a European
end-user connected to an ADSL network access and using a Firefox web browser with
window size 1440x900. The Fig. 29(a) depicts the visible portion at the browser-based ATF
moment and Fig. 29(b) the visible portion at the TFVR moment. These two images are
converted to grayscale and the SSIM is calculated. The exposed SSIM is 0.944 and 263,670
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pixels are missing between both images. The threshold value which minimizes the weighted
within-class variance through the Otsu Binarization algorithm [123| between these two
grayscale images is then calculated. From the threshold value, the contours of missing objects
are then drawn, depicted by Fig. 29(c) and Fig. 29(d). From the (x,y) coordinates of these
contours, a comparison is performed with the DOM information to identify which
downloaded objects should have been rendered in the corresponding region with a red
contour are missing.

Fig. 30 depicts the overall distribution of missing objects for the Top 1,000 Alexa
websites when having a web browser window 1920x1080. Compared to the TFVR, for less
than 80% of measurements, when using an ad blocker, less than 18 objects are missing for the
TTT and less than 25 objects for the browser-based ATF.
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Fig. 30: Missing objects not taken into account compared to the TFVR

1.01" _e~ cpu with ad block " 1.0
—4— CPU no ad block |
0.8 -¥- RAM with ad block 0.8
w06 RAM no ad block w06
a e |
Yoa4 Voa —e— CPU with ad block
—4— CPU no ad block
0.2 0.2 -¥- RAM with ad block |
7 RAM no ad block

0 2‘4 6 8 10 12 14 16 18 20 22
Processing (%)

(a) ATF through video recording

0-2 4 6 8 10 12 14 16 18 20 22
Processing (%)

(b) ATF browser-based

Fig. 31: Computing power increase compared to the TFVR, calculation

Computing power

The calculation of the browser-based ATF where DOM information is assessed several
times or through video recording needs more computing power, compared to the TFVR. Fig.
31 shows the increase in CPU (Central Processing Unit) and RAM (Random Access
Memory) usage compared to the TFVR calculation. The use of video recording to calculate
the ATF needs more computing power since a video recording is firstly made, followed by a
decomposition into several chunks of images and finally a comparison of pixels between
images. Both techniques meant to calculate the ATF lead to an increase in computing power
and hence can impact web browsing measurements.

When measuring the time to render the visible portion of the web page, the ATF can
be calculated by making use of external tools, meant to record the loading progression. We
have noticed that an end-user device processor usage increases by 8% on average and
memory usage by 9%. Furthermore to be able to provide precise loading times, video
recordings are on average done during 40 seconds, although the visible portion is loaded into
less than one second which is mainly due to advertisements in a web page.
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Loading times

When comparing the obtained loading times of the visible portion, the ATF value is
on average 26.9% higher compared to the TFVR where the video recording and pixels
analysis process increase the usage of the end-user’s device processing capacity, and hence
impact web browsing measurements.

When comparing the browser-based ATF measurement technique making use of the
Resource Timing API versus the TFVR, ATF exposed timings can be up to 90% less than
the TFVR timings, which is mainly due to timings for different objects not offered by the
Resource Timing API. Furthermore, with the usage of asynchronous JavaScript as discussed
in section 3.1.2, additional downloaded objects to be rendered in the visible portion are not
captured, which is illustrated in Fig. 32(a) when browsing the web page forgeofempires.com.
Thanks to the TFVR as shown in Fig. 32(b), the entire loading process is captured where the
visible surface area is loaded into 3415.8 ms instead of the exposed ATF loading time being
1815.7 ms.
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Fig. 32: Loading time of the visible portion of forgeofempires.com
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Fig. 33: Loading time for the TFVR and ATF with window size 1920x1080

On a wider scope, for the Top 1,000 Alexa websites, when compared to the TFVR,
ATF loading times can be smaller or greater as illustrated in Fig. 33. The value for ATF
through video recording is smaller for less than 80% of the measurements and for the
browser-based ATF less than 70% of the measurements. This is mainly due to bad pixels’
comparison for the ATF through video recording and missing objects not taken into account
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for the browser-based ATF. The ATF values may also be greater than the TFVR due to
extra computing power needed for the ATF calculation through videos.

When the visible portion of a web page is 100%, the Page Load Time should be equal
to the time to load the visible portion. The Fig. 34 shows the different loading times as
defined into the literature. The TFVR equals to the PLT-HAR but the browser-based ATF
values are on average higher for more than 25% of the measurements, which is most of the
time due to JavaScript triggering the re-construction of the DOM and CSSOM tree and
increasing the overall processing time. On the other hand, the ATF calculation through
videos is smaller for less than 54% of the measurements and conversely more due to the video
capture quality and pixels analysis phase which needs more computing power.
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Fig. 34: Loading time when main web page is in Europe and 100% visible

Takeaways: When comparing different metrics offering the time to load the visible portion
of a web page versus the final rendering output of the visible portion of the web page, less
than 1% of pixels are missing for the TFVR, 7.3% for the TTI and 10.6% for the browser-
based ATF. When calculating the ATF through video recording, we have noticed that an
end-user device processor usage increases by 8% on average and memory usage by 9%. When
the visible portion of a web page is 100%, the TFVR equals to the PLT-HAR but the
browser-based ATF values can be higher due to JavaScript processing not captured. The
ATF calculation through videos might also be smaller if the video recording is of bad quality
and thus pixels being wrongly compared among them.

3.3 Conclusion

The PLT-W3C as implemented into web browsers does not offer accurate timings
since it uses the Resource Timing API which cannot retrieve the corresponding request and
download time of objects if a distant web server does not allow it. With the introduction of
PWAs, scripts run permanently in the end-user’s web browser to change the display or
download additional objects upon end-users’ action. The download of these additional objects
is not captured by the PLT-W3C. End-users generally concentrate on the visible portion of
websites at first glance and devices’ screens come in different sizes. The PLT measures the
time to load the entire web page, visible or not and is not adapted to measure finely end-
users’ perceived QoE.

The process of calculating the ATF from videos is time-consuming where human
interaction in the whole process is compulsory. High definition videos increase the accuracy of
the pixels comparison but reduce the end-user’s device processing and storage capacity.
Furthermore determining the needed snapshots from the video is non-trivial. The pixels
comparison task is also time-consuming as it depends on the number of snapshots. With the
proliferation of advertisements in the visible portion of the web page, another question arises
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from this measurement technique since advertisements change regularly. It is thus hard to
define when the video recording should be stopped and if pixels from advertisings should be
taken into account. The browser-based ATF technique can expose incorrect timings since it
uses the Resource Timing API information where networking times are not always exposed.
The RUM-SpeedIndex algorithm only takes into account images rendered into the visible
portion of the web page. The TTI is only implemented in the Google-Chrome web browser
and can be calculated if and only if the network state is idle during 5 seconds. Web pages are
mostly dynamic nowadays and network states are rarely idle, which prevents TTI to be
exposed.

The Time for Full Visual Rendering is a browser-based measurement technique which
is browser-type and browser-version independent. The TFVR is calculated in real-time with a
mean extra computational time of 0.156 seconds by making use of the web browser’s offered
networking logs. The TFVR takes into account new Web technologies and captures events
triggered by JavaScript or Progressive Web Applications. In addition to the time to load the
visible portion of a web page, the TFVR also exposes the step by step processing phases for
every downloaded object and identifies through which Internet protocol they are downloaded
as well as the geographic location of the corresponding web servers.

When comparing different metrics offering the time to load the visible portion of a
web page versus the final rendering output of the visible portion of the web page, less than
1% of pixels are missing for the TFVR, 7.3% for the TTI and 10.6% for the browser-based
ATF. When calculating the ATF through video recording, we have noticed that an end-user
device processor usage increases by 8% on average and memory usage by 9%. When the
visible portion of a web page is 100%, the TFVR equals to the PLT-HAR but the browser-
based ATF values can be higher due to JavaScript processing not captured. The ATF
calculation through videos might also be smaller if the video recording if of bad quality and
thus pixels being wrongly compared among them.

The TFVR has proven to provide fine-grained loading times taking into account new
web technologies such as Progressive Web Applications and side effects of JavaScript. The
TFVR is calculated in real-time and no external tool which can consume end-users’
computing power is needed.
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In this chapter we pay particular attention to the Web browsing eco-system. As
discussed in previous chapters, we have developed a new tool meant to measure web
browsing quality being embarked with new web metrics and measurements have been
performed over 2.5 years. Thanks to these measurements and their statistical analysis, we
firstly characterize the Web browsing eco-system to better understand which and how
different actors are implicated into the delivery process. Secondly, we expose how different
factors can contribute in increasing or decreasing the perceived Quality of Experience.

4.1 Web browsing delivery

When browsing websites, several factors are implicated such as the web browser used,
different network access bandwidths or ad blockers to visit web pages which can be static or
dynamic, being composed of content in different flavors. These contents are delivered by
different types of web servers such as regular web servers or Content Delivery Networks
(CDNs) through different Internet protocols.

We present in this section the analysis of 244 Million distinct measurements
performed over the Top 10,000 Alexa websites. Although our measurements sum up to more
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than 18 Trillion, we pay particular attention to measurements performed via the web
browsers Chrome v.63 and v.68 and Firefox v.56 and v.62 from Web View probes in Europe.
These web browsers have been released in 2017 and 2018 and have been used during more
than 2 years to perform measurements. Apart from new functionalities added to recent
Google-Chrome or Mozilla-Firefor web browsers, they make use of the same processing
engine implemented for example in Chrome v.68 and Firefox v.67 respectively.

From these 244 Million distinct measurements representing 9597 distinct websites, 403
distinct websites were discarded due to the small amount of web browsing results (these
websites were unavailable, blocked as per our geographic location or not responding in less
than 18 seconds). Although our probes are located in Europe (EU) and Africa (AF), we focus
on the measurements performed by EU Web View probes.

Our dataset then includes measurements for websites having their main web page
estimated to be in North America (NA) for 52.23%, in Europe (EU) for 28.44%, in Asia (AS)
for 16.22%, and in South America (SA) for 1.10%. To have a clearer view of the Web
browsing delivery, we will assess:

1. The amount and types of downloaded objects,

2. The types of web servers delivering content,

3. The Internet protocol through which content is delivered to web browsers,

B NA objects EES SA objects B EU objects E== AS objects

Mean number
of objects
H N WRULON W
OO0 C OO0 O0O0O0OC0C

North South Europe
America America
Main web page location

Fig. 35: Downloaded content from different continents

4.1.1 Amount and Types of downloaded content

Web pages are more complex nowadays and we wanted to evaluate their evolution,
compared to what it was few years ago [11] [12] [64]. Fig. 35 depicts the average distribution
of objects when browsing the Top 10,000 Alexa websites and shows that following a main
web page location, content is delivered from different continents to end-users. The mean
distributions help in profiling the overall location of the content servers for a European end-
user. Fig. 36 provides the complete distribution of downloaded objects for the 4 continents
where the main home page is estimated. We can observe that for a Furopean end-user, many
objects are downloaded from Europe, which is due to Content Delivery Networks. For main
web pages located in Asia, we can detect that for a European end-user, a bigger amount of
objects are downloaded from Asia, which could impact the quality, because of the network
delay. Last but not the least, we can also identify that following the estimated location of a
main web page, different amounts of objects will be downloaded, i.e a maximum of 300 for
main web pages in NA or EU and 185 for SA or AS. Since 2014, the amount of downloaded
resources composing a web page has increased by 17% on average for the Alexa websites
ranked 1-2000 and by 31% on average for websites ranked 5000-10000.
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Fig. 37: MIME-type of downloaded objects

Following the question about what are these objects, Fig. 37 represents the
breakdown of the downloaded objects by content MIME types of 8 random websites
belonging to different categories as referenced by Alexa®. While images occupy most of the
time the highest distribution type of downloaded objects, on average web pages (except
Search-Engines category) are composed of 4 c¢ss, 5 scripts, 16 images and 2 zml. We
identified that the average number of scripts and images has increased by 53% over the last
15 years from past studies [51| and by 7% from recent studies [11|. Furthermore when paying
particular attention to the different types of images, when using a Google-Chrome web
browser and visiting a Google website, on average 80% of images are now in WebP format

Thttps:/ /www.alexa.com/topsites /category
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(As from the last quarter of 2019, the Firefox v.70 web browser can process images in WebP
format). Compared to studies conducted in the timeframe 2011 — 2014, Flash usage has been
reduced by 61% as Adobe will remove support for Flash in 2020. We also noticed an
increasing PWA (Progressive Web Apps) usage of 6% between July 2018 and January 2019.
On a wider scope, based on the Alexa websites category listings available, 3921 websites were
assessed. The News websites download on average 19.81% more resources, Kids and Teens
websites have a significant greater fraction of Flash objects and Shopping websites make
greater usage of JavaScript.
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Fig. 38: MIME-types of objects downloaded per category

When assessing the overall distribution of resources aggregated by MIME type, the
Fig. 38 represents two different Alexa-referenced categories where a large variety of objects
are incorporated in the corresponding web pages. We selected these 2 categories, since they
represent a major part of the popular websites. The Fig. 38(a) shows that Entertainment
websites make greater usage of images in WebP, PNG or JPG format, followed by JavaScript
and videos which can be further decomposed in different formats like WebM, Mpj or Mp2t.
The Shopping category depicted by Fig. 38(b) also makes use of a high number of images in
different formats which greatly change all along the day thanks to JavaScript.

4.1.2 Types of web servers implicated

We also paid attention to which extent, when an end-user browses to a specific
website from Furope, the types of web servers from which the needed objects are
downloaded. For this, we analyzed if the contents are downloaded from the same
authoritative DNS name server of the main web page. Domains delivering contents and
having the same authoritative DNS name server as the main web page are entitled Same-
Origin domains and conversely Non-Origin domains.

From our measurements, when a main web page domain is in North America or
Europe, irrespective of the preferred Internet protocol, contents are served on average by 2
Same-Origin domains and 7 Non-Origin domains and when the main web page is in Asia or
South America, contents are delivered on average by 3 Same-Origin domains and 13 Non-
Origin domains. Those Non-Origin domains represent specific services involved in the web
page composition e.g Google services, advertisements or analytics, but also CDN nodes
providing contents on behalf of the origin web servers. The average number of domains is not
huge, but we can have some websites where several domains are involved in the delivery.

As an example of the complexity of web browsing delivery, Fig. 39 points out the web
servers delivering content when browsing the website lemonde.fr, where the main web page is
located in Europe and belongs to the News category. Although this website is a French online
newspaper, upon embedded advertisements or web services, content will be downloaded from
Europe, North America, Asia and Africa. The main web page, as well as the 13 Same-Origin
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domains, is hosted in Europe by Fastly serving 61.36% of the overall number of objects, while
Akamai and Amazon serve 11.36% of the objects. The other content servers regroup 9
different Non-Origin domain web servers. Our website Web View™ proposes a graphical
representation of this kind of analysis.

Other (5.68%)
Amazon Cloudfront (7.38%)
Facebook (1.70%)
Adsafeprotected (5.40%)
Google (2.84%)

Twitter (1.99%)

Akamai (3.98%)

Fastly (61.36%)

Fig. 39: Web servers serving content for the homepage lemonde. fr
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America America
Main web page location

Fig. 40: Objects downloaded in HTTP or HTTPS

Compared to the previous studies [3| [124] [4] encryption has been largely adopted to
preserve privacy. Indeed, web browsers nowadays favor it by adding by default https:// when
a user requests a web page. Furthermore, since Google marked non-HTTPS websites as
insecure in its Chrome browser in July 2018, HTTPS adoption has increased. However, from
the Top 10,000 Alexa websites, only 36.02% of the websites deliver their contents in full
HTTPS (100% HTTPS) and still 0.28% of the websites deliver their contents in full HTTP
(100% HTTP, no resource composing the web page is delivered by an HTTPS server). In
between, we have websites composed of resources received with both HTTPS and HTTP. As
per Fig. 40, on average, when the main web page is located in North America and Europe, a
greater fraction of content is delivered into a secured way, compared to websites’ main web
page located in South America and Asia.

4.1.3 Internet protocols adoption
Since the previous published papers [20] [21] [38] [40] [19] [33] analyzing Web browsing,
new Internet Protocols namely HTTP /2 and QUIC have been promoted. We thus evaluated

* https://webview.orange.com/d /UyllerUmz/
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the adoption of these protocols by web servers by performing measurements explicitly
requesting these protocols and analyzed if the remote web servers reply using them or if they
fall back to another one. Fig. 41 and Fig. 42 show the results of those measurements, in
terms of protocol distribution.

First and very logically, we note that when requesting web pages in HT'TP /1.1, all the
servers reply in HTTP/1.1 as shown in Fig. 41(a). When performing measurements and
requesting HTTP /2, objects are downloaded in strict HTTP/2 (100% H2) only for 11.82% of
the Top 10,000 Alexa websites. The other 88.18% of websites reply with a mixed distribution
of HTTP/1.1, HTTP/2 and Server Push. We can then see that although standardized in
2015, HTTP/2 is not yet widely deployed and that it is not equivalent worldwide, more used
for web servers in NA or SA, whereas in Europe and Asia, HTTP/1.1 is still prevalent as
shown in Fig. 42(b). When analyzing the adoption of HTTP/2 by web servers serving
content for the Top 10,000 Alexa websites, only 4% more objects are delivered in HTTP /2
through time (63% in March 2019 versus 59% in March 2018).

When requesting QUIC and using a Chrome web browser, we see that QUIC is not
deployed by many servers, but mainly Google ones. On average 97% of the different QUIC-
enabled web servers are Google web servers replying in QUIC. We detected that none of
these websites reply in full QUIC. QUIC responses are highest when the main web page is in
North America (in particular from Google servers). QUIC is natively used jointly with
HTTP/2 for the first request, but offers a QUIC 0-RTT connection when connecting to an
already known website. We then evaluate if the distribution is different with the QUIC
Repeat mode. In this configuration only 7.21% of the websites fully reply in QUIC.
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Fig. 41: Received protocol distribution upon request
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Fig. 42: Average received protocol distribution

Takeaways: Since 2014, the amount of downloaded resources has increased on average by
17% for Alexa websites ranked 1-2000 and by 31% for websites ranked 5000-10000. While
images occupy most of the time the highest distribution type of downloaded objects, on
average web pages are composed of 4 css, b scripts, 16 images and 2 zml. We identified that
the average number of scripts and images has increased by 53% over the last 15 years from
past studies [51] and by 7% from recent studies [11]. When the main web page is located in
North America and Europe, a greater fraction of content is delivered into a secured way,
compared to websites’ main web page located in South America and Asia. HTTP/1.1 is still
widely used by web servers and in particular when downloading objects for websites whose
main web page is in Asia. HI'TP /2, although standardized in 2015, is deployed at a low pace
and even if an end-user makes use of the latest updated web browser, content is downloaded
in both HTTP/1.1 and HTTP/2. When comparing measurements in March 2018 versus
March 2019 for the Top 10,000 Alexa websites, HI'TP /2 protocol distribution has increased
by only 4%. No website replies in 100% QUIC which is mainly deployed on Google web
servers. Since May 2019 where the QUIC standardization process has been started at the
IETF, major CDNs have started implementing QUIC in their web servers.

4.2 Factors impacting web browsing quality

An indicator of end-users’ perceived quality when performing web browsing is the
time needed to load a web page (entirely or certain parts of it). This section points out the
different factors impacting these loading times. We firstly assess the impact of a remote web
page structure on perceived quality, followed by elements implicated into the content delivery
as well as their impact on loading times and finally end-users’ environment such as the
network access or time of the day when performing web browsing

The 25" percentile and 75" percentile is denoted by Q; and Qs, the inter-quartile
range (Qz3 — Q) is denoted by IQ, and to identify the extreme values in the tails of the
distribution, the upper inner fence is calculated as (Qz + (1.5 * 1Q) and upper outer fence as
(Q; + (3 *1Q). Mild outliers are timings beyond inner fences and extreme outliers beyond
outer fences.
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4.2.1 Web pages’ structures and categories

We firstly pay particular attention to the structure of the web pages, i.e upon an end-
user geographic location how the main web page location can impact quality, following the
category to which the website belongs how the profiled content can increase loading times
and how the visible portion of a web page impacts its corresponding loading time.

Impact of main web page location

The Fig. 43 depicts the overall web pages’ loading times, grouped by estimated
continents location of the home page. The overall centered (median) time follows the
rule FP < TFVR < PLT. Being in Europe when performing those measurements, we noticed
that the overall loading times for a European end-user are smaller for the websites located in
North America and Europe than for those located in South America and Asia. This is mainly
thanks to content delivered closest to end-users visiting web pages in Europe and North
America. Loading times are higher due to high number of domains (mainly Non-origin), high
amount of downloaded objects and objects served over HTTP/1.1. The extreme outliers are
for objects downloaded from South America and Asia. When the main web page is located in
South America and Asia, the observed times are higher in general but the number of outliers
reduced since more resources are downloaded from the same continent of the main web page
domain and the upper limit closer to the defined timeout of 18 seconds for each
measurement.

Impact of websites’ referenced categories

Websites are all different among them, being composed of a wide number and types of
objects. Following their content, they can be referenced as belonging to different types of
categories, e.g Alexa, QuantCast® or Web Filter®. In our study, we make use of Alexa
referenced category listing where websites are classified upon 17 different categories. The Fig.
44 shows the overall observed PLT for different categories. Websites belonging to the
Computers, Reference and Shopping category have loading times being close among them
(compared to websites belonging to the Recreation, Business and News category) mainly due
to objects’ MIME types composing the webpage.

We can observe that the CDF is similar for many categories except for 2 of them
(Adult and Education) where we have a considerable gap in loading times. While these two
categories download on average the same types of objects, mainly images and videos, the
main difference which results in a higher observed PLT is that objects for Adult categories
are mainly downloaded in HTTP/2 protocol (HTTP/1.1 for Education category) and that

¥ https://help.quantcast.com/hc/en-us/articles /115014006128-Interest-Category-Definitions
“ https://fortiguard.com /webfilter /categories
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images and videos for the Fducation category are bigger in size. We can then see that the
category can play a role in the web browsing quality, but it is limited and less than the sizes
of downloaded objects and the protocol through which they are downloaded which contribute
most of the time to a higher PLT value.
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Fig. 44: PLT for different websites’ categories
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Fig. 45: Impact of the visible portion on the TFVR
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Impact of the visible portion on loading time

Our measurements have been performed following different web browsers’ window
sizes and the Fig. 45 (Heat map: Dark green represents higher concentration of values and
light green lower concentration of values together with the corresponding TFVR) shows that
depending on the main web page continent location and corresponding web browser window
size, an end-user might have a larger overview of the web page without scrolling. The default
logical assumption would be that the time to load 4 % of a web page would be proportional.
Fig. 45(d) depicts websites whose main web page is in Asia, where we can see that these web
pages have a visible portion massively ranging from 13% to 17% with loading times between
2700 ms and 5000 ms (apart from a limited number of web pages having a visible portion of
100% and TFVR between 1815 ms and 2104 ms). The loading time of the visible portion
increases according to the visible surface area if and only if the visible portion of the web
page is less or equal to 99%.

Takeaways: From the Top 10,000 Alexa websites, a greater portion of main web pages are
located in North America and Europe where the use of Continent Delivery Networks is
higher. This contributes to lower perceived loading times compared to web pages in South
America or Asia. Websites are all different among them but when regrouped as per different
categories, they share most of the time same types of content. Quality differs between
different categories mainly due to the types of content and Internet protocol to deliver them.
Websites referenced as Search-Engines are most of the time 100% visible at first glance with
small loading time values. For the other categories, the scroll length of web pages all differ
and the loading time increases accordingly to the visible surface area if and only if the visible
portion is strictly less than 100%.

4.2.2 Content delivery factors

Secondly we go in depth on the factors which contribute to content delivery and how
they can impact loading times, i.e the Internet protocol distribution received when requesting
a specific one, the number of domains as well as CDNs serving content at different times of
the day.

Impact of the requested protocol
We present in this sub-section the impact of Internet Protocols on end-users’
perceived quality following different loading times such as the FP, TFVR or PLT.

The First Paint (FP)

When the requested protocol is HTTP /1.1, as shown in Fig. 46(a) the median FP
value is close for websites having their main web page in North America and Europe. For
main web pages in South America or Asia, the median value is greater since a higher fraction
of content is not downloaded from Europe. This fact induces network delay and impacts the
FP value. When requesting HT'TP /2, depicted in Fig. 46(b), the observed FP time is close to
FP time when requesting HTTP/1.1. The reason is that on average 2 objects are downloaded
in the FP lapse of time and all the benefits of the HTTP/2 protocol (multiplexing, header
compression, server push function) cannot happen. When requesting QUIC, the observed FP
time is very close to HTTP /2 measurements. The reason is that the first request is always
sent in HTTP/2 by the web browser when a remote web server is triggered for the first time
and since the number of objects downloaded is mean, 99.76% of requested QUIC protocol
measurements receive HT'TP /2 replies. When requesting QUIC Repeat, as depicted in Fig.
46(d), objects are downloaded in 0-RTT from UDP-enabled web servers and in 1-RTT from
TCP-enabled web servers which contributes to a decrease in the FP value.
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Fig. 46: Impact of requested Internet protocol on the First Paint

The Time for Full Visual Rendering (TFVR)

The TFVR represents the loading time of the visible portion of the web page and is
proportionally linked to the end-user’s browser window size. Fig. 47 depicts the different
visible portion of websites following different viewports. In general, main web pages located
in North America offer a higher visible surface area to end-users since a large portion of these
websites mainly represent Search-Engines. When requesting HTTP/1.1, for an end-user
having a browser size of 1440 x 900, and main web page in EU, less than 50% of the
measurements have a TFVR less than 1646 ms and for Asia less than 4800 ms. The time to
load the visible portion of web pages in Asia is greater mainly due to a higher number of
downloaded objects needed to render the visible portion, contents served by a greater number
of domains and due to the geographic position of the probe being in Europe which induces
network delay, on average the TFVR is higher. When requesting HTTP/2, in Fig. 48(b), we
can see that TFVR values are greater by 7.37% than HTTP/1.1 measurements. This is
mainly due to Server Push where 1.21% more objects are downloaded. When requesting
QUIC, irrespective of the end-user’s browser window size or main web page location, the
observed timings are close to HTTP/2 measurements since replies from web servers are
mainly done over HTTP/2. When requesting QUIC Repeat, the overall TFVR values are
decreased mainly due to more replies delivered avec the QUIC protocol.
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Fig. 49: Impact of requested Internet protocol on the PLT

The Page Load Time (PLT-HAR)

The Page Load Time is the needed time to load an entire web page (visible and non-
visible parts). Through Fig. 49(a), we can see that when requesting HTTP /1.1 and the main
web page is in NA, less than 50% of the measurements have a PLT-HAR less than 2575 ms.
The parameters leading to a PLT-HAR less than 1505ms (25"percentile) are small number of
domains delivering contents and an average number of 21 resources downloaded. When the
main web page is in Asia, we can observe higher loading times since on average a higher
number of domains are involved into the content delivery process. Although HTTP/1.1
favors pipelining, only six parallel TCP connections can be performed, thus increasing
proportionally blocking and waiting time.

When requesting HT'TP /2, as shown in Fig. 49(b), the HTTP/1.1 Internet protocol is
omnipresent mainly due to services embedded in the web page which yields a loading time
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nearly identical to HTTP /1.1 measurements. When requesting QUIC and the main web page
is not in North America, the end-user’s perceived quality as compared to HI'TP /2 stays the
same due to the small amounts of QUIC-enabled content servers. When requesting QUIC
Repeat, every observed measurement is performed in 0-RTT UDP or 1I-RTT TCP and a
decrease up to 66.54% in loading times happen compared to HTTP/2 measurements. Main
web pages located in North America are served on average at a rate of 38% of QUIC, and
thus being the most QUIC-friendly. For web pages located in Asia, a decrease of 37.82% of
the PLT is observed but only thanks to the 1-RTT TCP.
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Fig. 50: Number of domains serving content to a European end-user

Impact of the number of domains serving content

When performing web browsing, content is downloaded from various domains (as
discussed in section 4.1.2, from either Same-Origin or Non-Origin domains). The number of
domains contacted increases proportionally to the DNS lookup times and thus the overall
loading times for the TFVR or PLT. When a web page is located in North America or
Europe, on average, resources are downloaded from 9 domains, with an overall DNS time of
316 ms and when the main web page is in South America, resources are downloaded on
average from 16 domains, with an overall DNS time of 1715 ms. In general websites being
served by large number of domains belong to the News and Shopping category.

Fig. 50 illustrates the overall tendency regarding the number of domains through
which resources are downloaded when requesting HTTP/2 and the corresponding loading
time. This is represented as a heat map where dark blue represents higher concentration of
values and light blue lower concentration of values together with the corresponding Page
Load Time. When a web page is located in North America or Europe, the PLT is good and
time increases with the number of domains from which the resources are downloaded. When
the main web page is in Asia, the PLT values increase mainly due to the number of domains
serving content mainly over HTTP/1.1. Fig. 50 allows to better profile the number of
domains contacted as per the main web page location which can increase the PLT.

84



Home Mean Top 5 Mean distribution (%)
page |downloaded| CDN | Content HTTP/1.1 HTTP/2 QUIC
location |content (%)| providers
Google 24.2 3.6 70.2 26.2
Amazon 19.9 30.9 69.1 -
North 29.14 Akamai | 17.8 48.5 51.5 -
America
Fastly 9.8 24.1 75.9 -
Verizon 9.4 20.1 79.2 0.7
Akamai 27.9 45.4 54.6 -
Google 26.3 3.9 69.7 26.8
Europe 24.52 Verizon 13.01 15.17 84.81 0.02
Amazon 11.3 32.07 67.93 -
Fastly 7.4 21.09 78.91 -
Amazon 41 1.2 98.8 -
Google 24.4 0.9 65.8 33.3
South )
. 25.72 Verizon 12.8 20.1 79.9 -
America
Akamali 9.6 84.4 15.6 -
Fastly 7.05 14.14 85.86 -
Amazon 25.8 45.9 54.1 -
Google 20.8 3.2 32.1 34.7
Asia 9.89 Akamali 19.2 59.7 40.3 -
Verizon 7.8 32.8 63.95 3.25
China Cdn| 6.06 7.44 92.6 -

Table 11: Content delivered when requesting QUIC

Impact of Content Delivery Networks on loading times

When performing web browsing, content is downloaded to web browsers from
different domains. These domains are hosted by web servers which can be of different types,
i.e origin web servers, caches or CDNs as discussed in section 1.2.

Since different web servers from around the globe might deliver needed content and as
discussed in section 4.1.3, they might not implement the latest Internet protocol. We
analyzed [125| through which Internet protocol content is delivered by CDN providers and
noticed that only 32 CDNs (out of 84 well-known CDNs) have adopted HTTP/2 and only 20
CDNs reply in QUIC. For those replying in QUIC, Google is the main actor (60.7%), Akamai
delivers 5.3%, whereas the others provide less than 1% (Verizon, Fastly, Level3, etc). Since
contents can (or not) be available in the CDN node, we performed additional tests with a
Repeat mode, to compare with the First mode, which is the normal behavior. This Repeat
mode means that we first get the home page of the website, clear all local objects’ caches and
request the same home page again. Since those resources have just been requested, they
might have been cached in a CDN node and thus we expect a larger number of resources
fetched from a CDN when requesting the home page the second time.

When requesting QUIC (with possible fallback to HTTP/2 and HTTP/1.1) for the
First mode, the CDN providers deliver an average of 22.3% of the contents to end-users,
illustrated in Table 11. When a main web page is in North America, South America and
Europe, the CDN delivery is at an average of 26.5% but less than 10% for websites having
their homepage located in Asia. Furthermore when a main web page is in Asia and the end-
user in Europe, apart from Google or Verizon, HTTP /1.1 is privileged by the different web
servers. When performing measurements in the Repeat mode as illustrated through Table 12,
the overall average CDN distribution increases from 22.3% to 31.2%, irrespective of the main
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web page location. With the Repeat mode, the average cache-hit rate is 98.6% which
indicates that most of cachable objects are retrieved from CDN edge servers.

Home Mean Top 5 Mean distribution (%)
page | downloaded CDN  |Content HTTP/1.1 HTTP/2 QUIC
location | content (%) | providers
Google 26.9 0.4 8.7 90.9
North Amazon 22.1 21.4 78.6 -
America 42.28 Akamai 19.7 41.9 58.1 -
Verizon 11.1 8.6 11.5 79.9
Fastly 9.9 26.8 73.2 -
Google 28.1 0.3 4.2 95.5
Akamai 29.8 32.1 67.9 -
Furope 31.49 Verizon 14.02 4.3 12.5 83.2
Amazon 12.1 21.4 78.6 -
Fastly 7.6 20.09 79.91 -
Amazon 45.9 0.2 96.7 3.1
South Google 24.4 0.4 7.1 92.5
America 38.21 Akamai 10.75 61.3 38.7 -
Verizon 14.3 7.2 8.9 83.9
Cloudflare 7.9 - 100 -
Amazon 26.6 44.2 55.8 -
Google 21.4 0.36 7.29 92.35
Asia 12.71 Akamai 19.8 49.2 50.8 -
Verizon 8.03 11.9 60.2 27.9
China Cdn 6.24 100 - -

Table 12: Content delivered when requesting QUIC Repeat

As discussed previously, we have seen that the Internet protocol through which
objects are downloaded can decrease web pages’ loading times. In order to analyze how CDNs
can enhance web browsing quality, we measured the PLT for the First and Repeat mode,
both with HTTP/2 and QUIC, at different times of the day. The Peak Period involves
measurements performed between 16H and 21H CET and the Off-Peak Period involves
measurements performed between 02H and 06H CET. When performing measurements in the
Off-Peak period, between every measurement we intentionally clear the network’s operator
router cache and wait 11 minutes. From the HAR files, we have identified that the median
time for objects being stored in a cache is 660 Kms (indicated by a Time-To-Live value). Fig.
51 illustrates the observed PLT of the Top 1,000 Alexa websites.

During Peak Periods, requesting HTTP/2 Repeat versus HTTP/2 increases CDN
usage and decreases the PLT on average by 31.2%. Requesting QUIC Repeat versus QUIC
increases CDN usage from 22.3% to 30.4% and decreases the PLT on average by 31.4%. The
Repeat mode irrespective of the protocol yields merely the same decrease in loading times.
The difference of CDN usage between the QUIC Repeat mode versus the HTTP/2 Repeat
mode is 1.5% and decreases the average PLT by only 181.2 ms since only three CDNs
involved in the Top 1,000 Alexa websites are QUIC-enabled.

For the Off-Peak Periods, when requesting HTTP /2 and QUIC, more resources need
to be fetched from the origin servers since during this period, CDN caches are less populated
with content. This results into a mean CDN usage of 15.3% when requesting HTTP/2 and
15.6% when requesting QUIC. The difference of CDN usage between the QUIC protocol and
HTTP/2 is only 0.28% which is mainly due to the latency to reach websites located in Asia
and South America. With the Repeat mode irrespective of the time of the day, the benefits of
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the CDN delivery is clearly highlighted in the web browsing quality, leading to a non-
negligible loading time reduction for all websites. If CDN providers deploy the new protocols
in their CDN nodes, the end-users’ QoE can even be more improved.
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Fig. 51: CDN usage and impact on PLT

Takeaways: While HTTP /1.1, HI'TP/2 and QUIC do not bring a fuliginous asset for the
FP value, QUIC Repeat on the other hand brings a notable enhancement on the observed
FP. When comparing QUIC Repeat versus HTTP /2, the TFVR loading time is reduced by
54.2% for a main web page in North America. The TFVR loading times increase when the
end-user’s browser visible surface area increases. HT'TP /1.1 impacts the TEVR, HTTP/2 and
QUIC bring along close loading times and QUIC Repeat enhances the most the TFVR
thanks to O-RTT UDP and 1-RTT TCP. The Page Load Time is only enhanced for the
Repeat mode since web servers do not fully implement new Internet protocols; HT'TP /1.1 is
omnipresent. The greater is the number of domains serving content for a web page, the
higher will the cumulative DNS time be and hence will increase the average TFVR and PLT.
The FP is not impacted by the number of domains serving content since the rendering of the
first pixel is most of the time thanks to content downloaded from the origin web server.
CDNs are now widely used and some big CDN providers have a very large footprint on the
world. For web browsing, our measurement campaign highlights its benefits, since in the
Repeat mode, the Page Load Time can be reduced by an average of 43.1% when requesting
HTTP/2 and 38.5% when requesting QUIC, leading to a better perceived quality by end-
users. In short, about more than a quarter of the global contents are served by CDNs but in
Asia, the use of well-known CDNs is yet limited (only 10%).

4.2.3 End-users’ environment

In this sub section, we pay attention to the end-users’ environment which can impact
loading times. We consider that the computing device, i.e the desktop or laptop has at least
an Intel processor i5 in terms of processing power and a minimum of 8Go of RAM, with
updated web browsers. We focus on the network access technology of end-users as well as the
time of the day during web browsing to assess their impact on perceived QoE.
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Impact of the network access

End-users may be served by different network service providers, along with different
bandwidths and data communication technologies (e.g ADSL, Wi-Fi, Fiber). Our
measurements reflect observed web browsing quality where

Bandwidth,ps; < Bandwidthy,_r; < Bandwidthg;e,

Fig. 52 depicts the observed PLT loading times when requesting HTTP /1.1 following
different network access. For a main web page located in North America, moving from an
ADSL to Fiber network access brings a reduction of the loading time by 42.03%. These
measurements take into account Web View probes located in Europe and when a main web
page is in Asia, an ADSL network access helps in reducing the PLT compared to a Wi-Fi
network access. Although a Fiber network access offers greater bandwidth, main web pages
located in Asia bear the particularity of downloading content mainly from Asia which
increases network delay for a Furopean end-user and the increased bandwidth does not
contribute to an important decrease in loading times.
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Fig. 52: PLT when requesting HT'TP /1.1

When requesting the QUIC protocol, as shown in Fig. 53, the end-user’'s QoL
increases proportionally to bandwidth increase for main web pages located in Europe and
North America. The decrease in the average loading times for these web pages is mainly due
to increased bandwidth when moving from ADSL to Fiber but also thanks to web servers in
Europe and North America implementing at a higher rate the QUIC or HTTP/2 protocol.
On average depending on the network access (ADSL versus Fiber), an end-user’s perceived
PLT is decreased by 30.25%. Increased end-user QoE is tightly linked to the corresponding
network access and requested protocol.

When focusing on the PLT for main web pages located in Asia, requesting QUIC
through a Fiber network access (Fig. 53(c)) versus requesting HTTP/1.1 through a Fiber
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network access (Fig. 52(c)) does not bring any enhancement. As discussed in section 4.1.3,
main web pages in Asia deliver contents mainly in HTTP /1.1 and when requesting QUIC,
fallback is firstly made to HTTP/2 and lastly to HTTP/1.1. Globally, when requesting
HTTP/2 or QUIC, irrespective of the main web page location, web pages’ loading times are
decreased on average by 19.73% from ADSL to Wi-Fi, 16.02% from Wi-Fi to Fiber and
30.25% from ADSL to Fiber.
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Fig. 53: PLT when requesting QUIC
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Parameters FP TFVR

Main web page location
Requested protocol
Web server location
Round Trip Time
Website category
Number of objects
Main HTML page size
Size of objects

Types of objects

Visible portion

Number of domains
Use of ad blockers
Time of day v
Network access v

"
s
=

\

ANENENEN
LU

NN N N N N N N N N NN

ANRNE NN

Table 13: Parameters impacting web browsing quality

Impact of time of the day

Our measurements have been performed round the clock all day long, since following
different times of the day a website might be visited by a larger number of end-users, and
thus increasing the time needed for the servers to deliver different objects. Furthermore, the
overall network state to reach the remote servers might be overloaded, e.g peak hours versus
off-peak hours. We have thus assessed the impact of the time of day on the perceived page
load time, depicted by the Fig. 54. While some websites’ loading times stay relatively the
same all day long, e.g wikipedia.org, other websites depending on their category (thus type
and size of content) may have their inner structure changing several times per day (e.g News:
chinatimes.com or Entertainment: twitch.tv). Our measurements have been performed in
Europe, and we can notice that the website chinatimes.com average PLT increases drastically
at 04H CET (12H in Asia) and 08H CET (16H in Asia). We can thus suppose that following
these times of the day in Asia that the website has a higher visit rate and a European end-
user experiences the side effects. In overall, we can notice that between 12H CET - 14 CET
or 20H CET -22H CET, the average loading times perceived by end-users also increase which
is most of the time due to the network state.

Takeaways: Globally, when requesting HTTP /2 or QUIC, irrespective of the main web page
location, web pages’ loading times are decreased on average by 19.73% from ADSL to Wi-Fi,
16.02% from Wi-Fi to Fiber and 30.25% from ADSL to Fiber. Web pages loading times are
impacted following different times of the day mainly due to their visit rate (web servers
impacted) and network state (overloaded during peak hours). The corresponding loading
times might also fluctuate depending upon the website category since the number of
downloaded objects (and MIME type and size) might increase.

4.3 Conclusion

The Web browsing eco-system is complex where several factors are implicated. We
have been able to identify, as per an end-user located in Europe, the different factors which
can impact QoE at different phases of web pages’ loading progression.

In terms of web browsing delivery, we have identified that since 2014, the amount of
downloaded resources has increased on average by 17% for Alexa websites ranked 1-2000 and
by 31% for websites ranked 5000-10000. We identified that the average number of scripts and

90



images has increased by 53% over the last 15 years from past studies [51] and by 7% from
recent studies [11]. HTTP/1.1 is still widely used by web servers and in particular when
downloading objects for websites whose main web page is in Asia. HTTP/2, although
standardized in 2015, is deployed at a low pace and even if an end-user makes use of the
latest updated web browser, content is downloaded in both HTTP/1.1 and HTTP /2. When
comparing measurements in March 2018 versus March 2019 for the Top 10,000 Alexa
websites, HTTP /2 protocol distribution has increased by only 4%. No website replies in 100%
QUIC which is mainly deployed on Google web servers. Since May 2019 where the QUIC
standardization process has been started at the IETF, major CDNs have started
implementing QUIC in their web servers. When websites are regrouped as per different
categories, they share most of the time same types of content. Quality differs between
different categories mainly due to the types of content and Internet protocol to deliver them.

When focusing on factors which can decrease or increase web pages’ loading times,
HTTP/1.1, HTTP/2 and QUIC do not bring a fuliginous asset for the FP value, QUIC
Repeat on the other hand brings a notable enhancement on the observed FP. HTTP/1.1
impacts the TFVR, HTTP/2 and QUIC bring along close loading times and QUIC Repeat
enhances the most the TFVR (reduction up to 54.2% for a main web page in North
America). The Page Load Time is only enhanced for the Repeat mode since web servers do
not fully implement new Internet protocols; HTTP/1.1 is omnipresent. The greater is the
number of domains serving content for a web page, the higher will the cumulative DNS time
be and hence will increase the TFVR and PLT value. The FP is not impacted by the number
of domains serving content since the rendering of the first pixel is most of the time thanks to
content downloaded from the origin web server. CDNs are now widely used and some big
CDN providers have a very large footprint on the world. For web browsing, our measurement
campaign highlights its benefits, since in the Repeat mode, the Page Load Time can be
reduced by an average of 43.1% when requesting HT'TP /2 and 38.5% when requesting QUIC,
leading to a better perceived quality by end-users. In short, about more than a quarter of the
global contents are served by CDNs but in Asia, the use of well-known CDNs is limited to an
average of 10%. Following the end-user’s environment, in particular the used network access,
web pages’ loading times are decreased on average by 19.73% from ADSL to Wi-Fi, 16.02%
from Wi-Fi to Fiber and 30.25% from ADSL to Fiber. Web pages loading times are impacted
following different times of the day mainly due to their visit rate and network state.

The Table 13 shows the different parameters which play the most important role in
either increasing or decreasing perceived quality as per the First paint (FP), TEFVR (Time for
Full Visual Rendering) and PLT (Page Load Time). Since only measurements performed by
Web View probes in Europe have been considered, the main web page location can
contribute positively or negatively to loading times. When requesting the main html of a web
page located in Asia, the corresponding time will be higher (Round-Trip-Time and network
delay) and is generally downloaded in HTTP/1.1. Following the network access (ADSL
versus Fiber) and time of the day (peak or off-peak periods), the network delay can fluctuate.
The number, size and type of objects and the main HTML page size have a strong link with
the website’s Alexa-referenced category listing (e.g Search-Engine category websites are
composed of small number of objects of small size but News category websites are longer in
scrollHeight, thus composed of many objects and served by a large number of domains,
etc.). Finally, other factors like the time of day or the visible portion can have an impact on
the quality but at a lower degree.
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Chapter 5

Predicting Web Browsing Quality
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In this Chapter, we focus on Web browsing quality prediction for the visible portion
and entire web page. With more than 1.7 Billion websites in 2019, it is time-consuming and
not feasible to measure the different loading times following a large set of configurations. Our
aim is to make use of Machine Learning techniques to learn the rules qualifying and
quantifying the web browsing quality of the Top 10,000 Alexa websites. From these identified
rules-based models, we predict the perceived QoE of end-users on never assessed websites.
When applying these rules-based models to predict the time to load the visible portion of web
pages, the prediction correctness on never measured websites is 90.4%. When focusing on the
web browsing quality prediction for the entire web page, the classical clustering techniques
used together with decision Trees yield up to 42.1% of error in prediction rates. This is
mainly due to a large number of websites whose loading times fluctuate a lot. We have thus
applied a Hierarchical Dirichlet Process Hidden Markov Model (HDP-HMM) with Gaussian
Mixture Model (GMM) emissions distributions to detect these fluctuations and hence enrich
our rules-based models which has helped in increasing the correctness in prediction rates up
to 25% for the entire web page.

5.1 Quality prediction of web pages’ visible portion

In this section, we focus on the quality prediction of the visible portion of web pages.
Web pages are all different and corresponding loading times of the visible portion may differ,
e.g Search-Engines versus News category. This is mainly due to some categories where the
visible portion is higher, e.g for a web browser viewport 1920x1080, a web page belonging to
the Search-Engine category will have a visible portion ranging between 80% and 100% while
a web page belonging to the News category can have the visible portion at first glance
ranging between 7% and 50%. Several studies have been conducted with real end-users
assessing the perceived QoE through Mean Opinion Score (MOS) benchmarking. We firstly

93



make use of these satisfaction degrees defined by the state of the art to identify rules-based
models through decision trees. From these identified rules, we predict the web browsing
quality of the visible portion. The error in prediction is high since these satisfaction degrees
have been defined from a limited number of web pages. Thanks to our large dataset, we
defined new satisfaction degrees and our corresponding rules-based model has proven to
predict correctly the web browsing quality of the visible portion of web pages.

5.1.1 Decision trees based on satisfaction degrees

To be able to get hold of the parameters qualifying and quantifying web browsing
quality, we have made use of Decision Trees. Decision Trees build classification or regression
(one or more independent variable which may determine an outcome) models into the form of
a tree structure. Data is broken into smaller and smaller subsets while at the same time an
associated tree is incrementally developed. The final result is a tree with decision nodes (two
or more branches) and leaf nodes (a classification or decision). Random Forests can be
assimilated to random decision trees that operate by constructing a multitude of decision
trees at training time and outputting the class that is the mode of the classes (classification)
or mean prediction (regression) of individual trees.

From 244 Million measurements, decision tree rules are built from 40% of the entire
dataset, which is denoted by the itraining dataset and the left 60% is used to validate the
obtained rules, denoted by the wvalidation dataset.

Satisfaction degrees Loading times (ms)
Instant response < 100
Seamless response 100 - 1000
Average response 1000 - 3000
Critical response 3000 - 10000
Bad response > 10000

Table 14: State of the art satisfaction degrees

Decision Trees based on state of the art satisfaction degrees
In order to identify these parameters’ thresholds we have firstly taken into account
state of the art satisfaction degrees* based on end-user sociological perceived feelings coupled
to Mean Opinion Score (MOS) studies [76] [84] [85] [36]. These different satisfaction degrees
are assimilated to the time to render the visible portion of a web page without scrolling, i.e
the TFVR, and are represented in Table 14 where:
- Instant response: indicates a high responsiveness from the visited web page,
- Seamless response: indicates that the end-user is happy with the overall experience,
- Awerage response: indicates that the end-user feels the delay for the web page to load
acceptable,
- Clritical response: indicates that the end-user strongly feels the bad side effects of the
long web page loading,
- Bad response: indicates that the end-user is not happy at all and can give up the
browsing.

Our decision tree has been built from the training dataset, taking into account for each
measurement the TFVR value and satisfaction degrees illustrated in Table 14. The obtained
decision tree is represented by 184 different nodes where for each satisfaction degree:

- Instant response: our measurements do not have any TFVR loading time lower than
100 ms and make this class unnecessary.

41 / . / . .
https://www.nngroup.com/ articles/website-response-times

94



- Seamless response: 24.32% of the training dataset has a TFVR in this range and the
main impacting factors for this classification are the main web page located in North
America or Europe, a low RTT value for the main web page, QUIC Repeat as
requested protocol and a Fiber network access.

- Average response: 30.67% of our training values belongs to this class and the main
factors are the main web page located in North America or Europe, the requested
Internet protocol being HTTP2, QUIC or QUIC Repeat, a Wi-Fi network access, the
use of an ad blocker and RTT value between 18 ms and 101 ms.

- Critical response: 43.78% of the training measurements have a TFVR in this class,
impacted by the main web page located in Europe, South America or Asia, the visible
portion between 22.76% and 41.39% (these web pages have a larger scroll height), the
objects served by various content servers mainly located in Asia and Wi-Fi or ADSL
as network access.

- Bad response: 1.23% of the training dataset is classified as Bad response, mainly
because of the use of Wi-Fi network access and HTTP /1.1 as requested protocol.

When going through the obtained decision tree, as an example, the corresponding rules
defining the Seamless response class is as follows:

{(2% < quicProtocolShare < 63.94%) A (requestedProtocol = Quic Repeat)}
A {(alexaRanking < 42) A (mainWebPageRTT < 18ms)}

or
{mainWebPageLocation = (NA v EU)} A {requestedProtocol = Quic Repeat}
A {networkAccess = Fiber} A {downloadedObjects < 21}

When taking into account the parameters identified in Table 13 from section 4.3,
following different state-of-art satisfaction degrees, the Table 15 illustrates which of these
parameters contribute the most to a specific satisfaction degree. While the network access
plays an important role for 80% of the classes, a seamless response is generally met with a
Fiber access network, an average response for Wi-Fi or Fiber and critical or bad response
when making use of an ADSL network access. The visible portion only counts for the average
response when being less or equal than 29.25% and for critical response when less or equal
than 15.95%.

Parameters Instant Seamless Average Critical Bad
Response | Response | Response | Response | Response

Main web page location v v v
Requested protocol v v v v
Web server location v v v
Round Trip Time v v v v
Website category v v
Number of objects v v v v
Main HTML page size v
Size of objects v v v
Types of objects v v v
Visible portion v v

Number of domains v v v
Use of ad blockers v

Time of day v v
Network access v v v v

Table 15: Parameters impacting QoE based on state-of-art satisfaction degrees
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Once this decision tree has been built based on the training dataset, we evaluated it
with the wvalidation dataset. The Table 16 depicts the obtained classification confusion
matrix, where the diagonal represents the percentage of measurements correctly predicted.
We can see that 84.79% of the predictions are good, but more than 15% of the validation
dataset is wrongly predicted. Looking at the matrix, the values identified in Table 14 and
measured TFVR values, we can say that the Instant Response class is unnecessary (no
measurement in this class) and that the prediction error rate for the Critical response class is
important (about 10%) because the loading time range is too wide. New ranges of satisfaction
degrees are thus needed to identify better the sets of rules which could decrease the
prediction error rate.

Actual class
Predicted class Instant Seamless | Average Critical Bad
Instant 0 0.15% 0 0 0
Seamless 0 22.21% 1.60% 0 0
Average 0 1.96% 29.01% 8.07% 0
Critical 0 0 0.04% 32.35% 0.01%
Bad 0 0 0.02% 3.36% 1.22%

Table 16: Classification confusion matrix based on user satisfaction degrees

Decision Trees based on estimated satisfaction degrees from clustering

Having seen that the proposed classification of the satisfaction degrees from literature
is not optimal for current Web Browsing experience, we decided to define a new one, based
on our huge dataset of web browsing measurements on the top 10,000 Alexa websites. We
thus look for the best satisfaction degrees using clustering (K-Means) to identify the different
classes.
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Fig. 55: Explained variance for TFVR values

Satisfaction degrees Loading times (ms)
Good response < 1232

Fair response 1232 — 3486
Moderate response 3486 — 6715
Worse response 6715 - 9281
Poor response > 9281

Table 17: Estimated satisfaction degrees derived from our measurements

The K-Means algorithm divides a set of samples X into K disjoint clusters C, where
each cluster is described by the mean u of the different samples in the cluster. In order to
determine the value K, we use the Elbow method where we assess the percentage of explained
variance (ratio between-group variance to the total variance) as a function of the number of
clusters. As shown in Fig. 55, the value K =5 seems to be the good Elbow Criterion, and
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using it, we can identify the 5 clusters representing the different satisfaction degrees,
illustrated in Table 17.

The first and second satisfaction degrees, i.e Instant and Seamless from Table 14 have
been merged into one degree and the Critical response satisfaction degree is distributed and
split into two degrees. The estimated satisfaction degrees illustrated in Table 17 are firstly
more uniformly distributed compared to Table 14 and secondly regarding the Instant
response satisfaction degree, the estimated values are more realistic since even with a Fiber
access network, use of caches (local and remote) and HTTP /2 Internet protocol distribution,
the home page of wikipedia.org TFVR is 102 ms for a web browser viewport 1920x1080.

Our decision tree is then re-built from the training dataset, taking into account for
each measurement the TFVR value and estimated satisfaction degrees illustrated in Table
17. The obtained decision tree is represented by 176 different nodes where for each
satisfaction degree:

- Good response: 23.32% of the training dataset has a TFVR in this range and the
main implicated parameters are the main web page located in North America or
Furope, a low RTT and number of domains serving contents from North America or
Furope, with replies delivered over the QUIC protocol.

- Fair response: 27.31% of the training measurements are classified in this class and the
main impacting factors are namely the main web page located in North America, a
RTT value less than 105.5ms, a Wi-Fi or Fiber network access, resources downloaded
from North America, Europe or Asia in HTTPS.

- Moderate response: 31.26% of our training dataset leads to Moderate response, mainly
based on the main web page located in Europe or Asia, the requested Internet
protocol being HTTP /1.1, HTTP/2 or QUIC, the visible portion of the websites less
than 13.25% and objects delivered from Asia or South America.

- Worse response: 12.09% of the training dataset has a TFVR in this range with the
main factors being the main web page located in South America or Asia, the number
of downloaded resources between 45 and 85 (mainly downloaded from Asia), RTT
value greater than 185.5 ms and the number of domains from Asia greater than 4.

- Poor response: 6.02% of the training measurements lead to a poor quality, mainly
because of the main web page located in Asia, HI'TP /1.1 used as requested protocol,
a high number of downloaded objects and the use of an ADSL network access.

When taking into account the parameters identified in Table 13 from section 4.3, following
different estimated satisfaction degrees, the Table 18 illustrates which of these parameters
contribute the most to a specific satisfaction degree.

Parameters Good Fair Moderate Worse Poor
Response Response | Response | Response | Response

Main web page location 4 v v v
Requested protocol v v v v
Web server location v v v v
Round Trip Time v v v v v
Website category v
Number of objects v v v v v
Main HTML page size v v
Size of objects v v v
Types of objects v
Visible portion v
Number of domains v v v v v
Use of ad blockers v v
Time of day v v v
Network access v v v v v

Table 18: Parameters impacting QoE upon estimated satisfaction degrees
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Actual class
Predicted class Good Fair Moderate Worse Poor
Good 22.19% 0.04% 0 0 0
Fair 1.13% 25.17% 0.82% 0 0
Moderate 0 2.10% 29.22% 0.43% 0
Worse 0 0 1.20% 11.63% 0.06%
Poor 0 0 0.02% 0.03% 5.96%

Table 19: Classification confusion matrix based on estimated satisfaction degrees

Actual class
Predicted class Good Fair Moderate Worse Poor
Good 6.51% 0.16% 0 0 0
Fair 0.76% 21.09% 0.72% 0 0.02%
Moderate 0.01% 1.96% 35.02% 0.12% 0.01%
Worse 0 0 3.60% 17.74% 1.03%
Poor 0 0 0 1.21% 10.04%

Table 20: Classification confusion matrix to validate the accuracy of our rules-based model

Once this decision tree has been built based on the training dataset, we evaluated it
with the wvalidation dataset. The Table 19 depicts the obtained classification confusion
matrix, where the diagonal represents the percentage of measurements correctly predicted.
We can see, looking at the diagonal representing the percentage of measurements correctly
predicted, that our rules can efficiently predict 94.17% of the validation dataset. Only 5.83%
of the validation dataset is wrongly predicted, which is 2.61 times less when compared to the
rules-based model obtained previously. We can then think that this model is better.

Takeaways: Websites are all different among them. Although we have identified the main
factors which can impact web browsing quality, we have made use of Decision Trees along
with new satisfaction degrees to identify the thresholds of these parameters which qualify and
quantify good or bad web browsing experience. Since some parameters are strongly linked
among themselves, the identified sets of rules qualifying QoE can efficiently predict 94.17% of
the validation dataset.

5.1.2 Accuracy of our rules-based model

In order to verify the correctness of the obtained decision tree from estimated
satisfaction degrees, we have performed in February 2019 measurements on the Alexa
websites ranging from rank 10,000 to 15,000. The dataset sums up to the measurement of
4861 never-assessed before distinct websites, which represent 2.7 Million different
measurements. The Table 20 illustrates the obtained classification confusion matrix for these
measurements when applying our rules-based model.

Among our measurements, 6.51% of the measurements provide a Good response (low
RTT and small number of objects), 21.09% for Fair response (low RTT and main web page
in Europe), 35.02% for Moderate response (large number of domains serving contents from
Europe and Asia), 17.04% for Worse response and finally 10.04% of the measurements yield
a Poor response (high HI'TP /1.1 reply distribution and objects mainly delivered from South
America and Asia).

In short, 90.4% of the overall new dataset was correctly predicted. This is a bit less
but it is related to websites which have never been measured before. We can then estimate
that our rules-based model can efficiently predict web pages’ visible portion quality for any
website an end-user located in France browses.
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Actual class
Predicted class Good Fair Moderate Worse Poor Bad

Good 3.02% 3.2% 2.07% 0 0 0
Fair 0.82% 7.68% 10.78% 4.02% 0 0
Moderate 0 0.69% 17.21% 5.79% 0.44% 0

Worse 0 0.09% 6.03% 11.9% 1.7% 0.06%

Poor 0 0 0.15% 2.46% 8.02% 1.63%

Bad 0 0 0 0.07% 2.1% 10.07%

Table 21: Classification confusion matrix for the PLT-HAR on never measured websites

5.2 Quality prediction of the entire web page

We focus in this section on the quality prediction following the entire web page.
Compared to our study in section 5.1 where our study was related to the visible portion of
web pages, we now pay particular attention on the ability to predict the overall quality of a
web page, i.e the QoE for the visible and non-visible portion of a web page. When comparing
the time frame following the TEFVR versus the PLT, a greater number of factors can be
implicated for the PLT time frame. As an example, with a web browser viewport 1920x1080
and web browsing the website www.stackoverflow.com, the TFVR represents the time to load
7% of the entire web page. The parameters (and their thresholds) involved during the PLT
time lapse have to be re-evaluated. We focused on PLT-HAR timings and identified different
quality degrees, followed by decision trees to identify the rules and then predict the quality.
We have noticed in our study that the error prediction rate is high, i.e 42.1%. The error in
prediction is not uniform among the different satisfaction degrees, and we have identified
that the error prediction rate is high for websites where content is regularly renewed which
creates fluctuations in the loading times. The TFVR quality prediction is not impacted since
only a small portion of these websites are visible. These fluctuations must be taken into
account and we have used a HDP-HMM with GMM emissions distributions to identify them
and enrich our model. This technique increases the quality prediction correctness for a whole
web page up to 25%.

5.2.1 Decision Trees based on quality degrees

We have gone through the same process identified in section 5.1.1 to build our rules-
based model. Since the state of the art satisfaction degrees focus on the visible portion of web
pages only, we have applied clustering (K-Means) to identify the different classes on the Top
10,000 Alexa websites. For the PLT-HAR, 6 classes are identified and these quality degrees
have been used along with the training dataset to obtain our rules-based model. When this
model is applied to the validation dataset, the error in prediction rate is 31.4%. The model
applied on never assessed websites, i.e Alexa websites ranged 10,000 — 15,000, yields an error
prediction rate of 42.1% which is highlighted in Table 21.

The error in prediction rate is important for two classes, i.e Moderate and Worse
quality and we wanted to understand why error rates are concentrated between the two
classes. Following the parameters we have identified in Table 13 in section 4.3, we noticed
that the thresholds of the parameters Round-Trip-Time, Number of objects, Web Server
Location and Requested Internet Protocol are more important. That means that the location
of servers delivering content might change regularly and thus increase the overall networking
time. The amount of content composing the web page might also change regularly and
impact our quality prediction. To obtain ground proof of this, we have used the monitoring
website of our tool. We analyzed several web pages’ Page Load Time belonging to different
classes and we hereunder expose our findings related to websites having smooth loading times
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(e.g wikipedia.org, google.com, etc.) versus websites changing constantly (e.g baidu.com,
tumblr.com, etc.).
Smooth loading times over time

As discussed in section 4.2.3 through Fig. 54, fluctuations in the loading times of the
website wikipedia.org are mean at different times of the day. The Fig. 56 and Fig. 57
illustrate the web delivery and loading time (PLT-HAR) of this website between August 2018
and November 2019 when requesting HTTP /1.1 and HTTP/2 through a Google-Chrome web
browser v.63. When requesting HTTP /1.1 from a Web View probe in Europe, the average
loading time for this period is 771 ms (Fig. 56(a)) where an average number of 7.4 objects
(Fig. 56(b)) are downloaded. Although the PLT-HAR ranges most of the time between 600
ms and 900 ms, we can identify through Fig. 56(b) that the number of downloaded objects
from web servers located in North America is increased by 2. This increase in the number of
downloaded objects has no impact on the PLT-HAR since their average size is 27 ko and
networking receiving time being 25 ms. But we can also identify that when requesting
HTTP/1.1, the number of outliers in the PLT-HAR is more important (compared to
requesting HTTP /2 discussed hereunder).

When requesting HTTP/2 from a Web View probe in Europe, depicted by Fig. 57,
the average PLT-HAR is 807 ms (Fig. 57(a)) which is 36 ms greater than when requesting
HTTP/1.1. While the average number of downloaded objects stays the same, i.e 7.4, as from
September 2019, objects are downloaded from both North America and Europe. When
comparing the average networking receiving time for this period with HTTP/1.1
measurements, the total receive time is on average 30 ms greater since content is downloaded
from North America, hence contributing to the increase in the PLT-HAR. When requesting
HTTP/2, we can notice that the loading times bear less outliers thanks to multiplexing.

2019-4 2019-7

(a) Page Load Time

2018-10 2019-1 20104 2019-

(1') Number of downloaded objectsmxw

20191 2019-4 20197 2019-10

From Asia From Europe From North America From Africa From Asia From Europe From North America
uth America == From South America

(c) Downloaded objects continent-wise (d) Number of domains continent-wise

Fig. 56: Website wikipedia.org delivery and loading time when requesting HTTP /1.1
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Fig. 58: Website wikipedia.org PLT from October 2018 to November 2019

When taking into account measurements performed between October 2018 and
November 2019 (Fig. 58), we firstly calculate the number of clusters through the Elbow
method as per the PLT-HAR values for this website only. As shown in Fig. 59, the value
K = 3 seems to be the good Elbow Criterion, and using it, we can identify the 3 clusters
representing the different quality degrees, illustrated in Table 22. When going through the
obtained decision tree, the corresponding rules defining the Good quality class is as follows:

{networkAccess = Fiber} A{HTTP2 — Replies = 100%} A {downloadedObjects < 7}
A {(requestedProtocol = HTTP/2) v (requestedProtocol = QUIC)}

and the Bad quality class:
{networkAccess = ADSL} A {HTTP2 — Replies # 100%} A {downloadedObjects > 8}
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Fig. 59: Explained variance for wikipedia.org PLT-HAR values

Quality degrees Loading times (ms)
Good quality < 511
Average quality 511 - 610
Bad quality > 610

Table 22: Estimated quality degrees for wikipedia.org

Actual class
Predicted class Good Average Bad
Good 63.98% 0 0
Average 0 27.67% 0.11%
Bad 0 0.01% 8.22%

Table 23: Classification confusion matrix for wikipedia.org

For wikipedia.org, the training dataset is composed of measurements from October
2018 and November 2019 and the validation dataset are measurements performed in
December 2019. The obtained confusion matrix is illustrated through Table 23 where the
prediction correctness is 99.88%. Regarding the website wikipedia.org, the perceived web
browsing quality is very regular due to the web page design being simple and optimized.
Fluctuations in the PLT are rare which contribute to a mean error prediction rate of 0.12%.

Fluctuations in loading times
When analyzing websites where fluctuations happen in the loading time regularly, the
Fig. 60 depicts the web delivery and PLT-HAR of the website baidu.com between April 2018
and November 2019 for a European end-user. Web pages loading times might increase (or
decrease) over time and it is important to identify why and which web browsing parameters
contribute to this situation.
As shown in Fig. 60(a), irrespective of the requested protocol, the average PLT-HAR
for this website changes upon 4 different periods through time:
- Period 1: 4.20s between the 28" April and 14" October 2018,
- Period 2: 2.15s between the 15" October 2018 and 10" February 2019
- Period 3: 5.38s between 11" February and 06™ August 2019
- Period 4: 3.48s between 07™ August and 28" November 2019
From our monitoring website, we can identify that for Period 1, an average number of
17.87 objects are downloaded (Fig. 60(b)) from web servers in Asia (Fig. 60(c)) to render the
web page. For the Period 2, an average number of 17.92 objects are downloaded from web
servers located in Asia and Europe. For the Period 3, an average number of 18.71 objects are
downloaded mainly from Asia which leads to an average PLT of 5.38s. This increase in the
PLT is mainly due to a higher number of downloaded objects which are downloaded from
Asia mainly through HTTP/1.1. For the Period 4, the average PLT is 3.483 where an
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average number of 18.84 objects are downloaded from Asia and North America. We can also
identify through Fig. 60(d) that content is downloaded through a higher HTTP/2
distribution.
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Fig. 60: Website baidu.com delivery and loading time

When focusing on the location of the different web servers delivering content, Web
View allows identifying which domains deliver content through CDNs. The Table 24 shows
the different web servers delivering contents to an end-user in Europe. For the Period 2, the
domain baidu.com which is a Same-Origin domain delivers resources from Asia and
ss1.bdstatic.com is a Non-Origin domain where content is generally served by the CDN
provider Amazon Cloudfront. For Period 2 and Period 4, Amazon Cloudfront serves content
either from North America or from Europe.

Periods Domains Web server estimated Average number of
location downloaded content
Period 1 bqidu.'cam HongﬂKong 16
panpic.baidu.com Beijing 2
Period 2 baidu.cgm Hong Kong 12
ss1.bdstatic.com Netherlands 6
Period 3 baidu.cpm Hong Kong 17
ss1.bdstatic.com Hong Kong 1
Period 4 baidu.com Hong Kong 10
ss1.bdstatic.com San Francisco 8

Table 24: Content servers for baidu.com
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The website baidu.com web browsing delivery and PLT-HAR is illustrated in Fig. 61
where fluctuations in the loading times happen regularly. The training set is composed of
measurements performed between July 2018 and January 2019 and the validation dataset are
measurements performed between February and September 2019. The number of clusters
through the Elbow method for the PLT-HAR values is shown in Fig. 62, where the value
K = 4 seems to be the good Elbow Criterion, and using it, we can identify the 4 clusters
representing the different quality degrees, illustrated in Table 25.
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Fig. 61: Website baidu.com PLT from July 2018 to September 2019
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Fig. 62: Explained variance for baidu.com PLT-HAR values

Quality degrees Loading times (ms)

Good quality <1900
Average quality 1900 — 4200
Bad quality 4200 — 5220
Worse quality >5220

Table 25: Estimated quality degrees for baidu.com

When going through the obtained decision tree, the corresponding rules defining the Good

Actual class
Predicted class Good Average Bad Worse
Good 16.23% 2.98% 0.01% 0
Average 4.02% 9.16% 10.71% 0
Bad 0 11.22% 21.3% 0.86%
Worse 0 0 4.28% 18.23%

Table 26: Classification confusion matrix for baidu.com

quality class is as follows:
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{networkAccess = Fiber} A{2 = domainsInEurope > 1}
A {downloadedObjectsFromEurope = 12}
A {downloadedObjectsFromAsia < 6}

The identified rules lead to an error prediction rate of 25.08%, as illustrated in Table 26,
since during the month of October and November 2019:

1. The PLT values for the website baidu.com have changed (Fig. 63(a)), oscillating
between 983ms and 5.50s. These values belong to the 3 classes Good, Average and
Bad response at the same time and this is why we have a total error prediction rate
of 24.22%.

2. The HTTP/2 reply share (Fig. 63(b)) has increased on average by 29% (from 34% to
63%), thus reducing the PLT values.

3. The total size of downloaded contents (overall web page size) illustrated in Fig. 63(c)
has decreased from 1.2 Mb to 700 Kb (mainly due to 1 image in gif format whose size
has decreased from 497 Kb to 705 bytes).

4. Content is intermittently delivered from web servers located in North America and
Asia (Fig. 63(d)), which causes the PLT to fluctuate.
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(a) Page Load Time (b) Protocol reply distribution
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(c) Overall web page size (d) Downloaded objects continent-wise

Fig. 63: Website baidu.com delivery and loading time for October & November 2019

Furthermore, when taking into account measurements performed on the website
baidu.com by Web View probes in Europe and web servers delivering content are mainly
from North America and Asia, we have large amounts of outliers in the different loading
times (confirmed by an Isolated Forest, through Fig. 64, which is an outlier detection
technique to identify anomalies instead of normal observations). Due to a high number of
outliers, and hence fluctuations, our rules-based model taking into account 4 clusters does not
predict web browsing quality for the entire web page efficiently.
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Fig. 64: Website baidu.com PLT outliers from July 2018 to November 2019

On a wider scope, based on the 84 websites monitored by Web View visualization
website, 14 websites bear a high number of outliers and hence identified rules lead to high
prediction error rates (between 21% and 34%). Other techniques, taking into account
important fluctuations in the web pages’ overall loading times are needed.

Takeaways: In order to identify the rules qualifying and quantifying Web browsing quality,
the joint usage of the Elbow method to identify quality degrees and Random Forest provide
good predictions when fluctuations are mean in loading times. For websites where important
fluctuations happen, this method can yield high error prediction rate. Other techniques,
taking into account important fluctuations in the web pages’ overall loading times are needed
in order to provide an accurate rules-based model when trying to predict web browsing
quality for the entire web page

5.2.2 Application of HDP-HMM with GMM emissions distributions on
loading times

We have used a Hierarchical Dirichlet Process Hidden Markov Models (HDP-HMM)
[126] [127]| [128] with a Gaussian Mixture Model (GMM) emissions distributions which helps
in identifying finely an infinite number of states with time dependency. The main advantage
of this model is to learn the order of the model from the measurements themselves, e.g PLT-
HAR values, where outliers are taken into account to identify more finely quality degrees
values.

From measurements of the website baidu.com from July 2018 to September 2019,
HDP-HMM with GMM emissions distributions is applied and the result is depicted in Fig.
65. 9 different states are identified (instead of 4 states in section 5.2.1) and for the different
states, the minimum and maximum PLT values are represented through Table 27. Four
states, namely State,, State,, State; and Stateq, are once again identified compared to
Elbow method process in section 5.2.1 where the number of clusters were previously
identified as K = 4. But from Fig. 65, five additional states (being mainly outliers identified
by an Isolated Forest in Fig. 64) are detected where:

State; € {State, v State;}
State;z € {State, v State, v State;}
States € {State, v Stateg}
State, € {State; v Stateg}
Stateg € {State; v Stateg}
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Fig. 65: HDP-HMM with GMM emissions distributions applied to baidu.com time series

PLT (ms Time
State Color Min ( M;X fluctuations(ms)
1 Burlywood 3.7 4.6 0.9
2 Light blueviolet 1.9 4.2 2.3
3 Yellow 1.8 5.3 3.5
4 Beige 0.8 1.9 1.1
5 Pink 0.9 5.2 4.3
6 Broun 4.8 9.1 4.3
7 Aquamarine 4.2 5.2 1.0
8 Green 0.9 7.4 6.5
9 Dark blueviolet 2.1 4.2 2.1

Table 27: Inferred states of baidu.com

When taking into account the state transition matrix for these five states, we obtain
additional information on the parameters creating fluctuations into the loading times but also
the underlying relation between the 9 states. Getting hold of the parameters impacting web
browsing quality is handy, but obtaining their thresholds is also important to be able to
predict finely the perceived quality. When focusing on States, we want to identify the rules
quantifying that state. We thus take into consideration each Pink state start and end date
time. From the corresponding measurements, we look for the number of clusters through the
Elbow method for these PLT values. As shown in Fig. 66, the value K = 4 seems to be the
good Elbow Criterion, and using it, we can identify the 4 clusters representing the different
clusters’ loading times, illustrated in Table 28.
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Fig. 66: Explained variance for 5" hidden state

Clusters | Loading times (ms)
G, 1200 — 1900
G, 1900 — 2700
C, 2700 — 3900
1 > 3900

Table 28: Estimated clusters for the 5™ hidden cluster

From the obtained decision trees (States for measurements between July 2018 and September
2019), the rules qualifying the clusters C;, C,, C; and C, through Table 28 are:

C; - {RTT < 18ms} A {(downloadedEuropeObjects = 12) A (downloadedAsiaObjects < 6)}
C, — {18ms < RTT < 27ms} A {downloadedEuropeObjects = 12}
C; - {27ms < RTT < 41.7ms} A {downloadedNorthAmericaObjects > 12}
A {downloadedAsiaObjects = 6}
Cy — {41.7ms < RTT < 44ms} A {downloadedAsiaObjects = 17}

As identified before, the States € {State, v Stateg} and from the obtained clusters’ rules, we
can decompose as:

States € {State,}

(Cl' Cz) € {State4}
and

States € {Stateq}

(C3, C4_) € {Stateg}

From the previously obtained rules for State, and Stateg in section 5.2.1, they are enriched
with identified rules for ¢, C,, C; and C,. As an example the State, is thus represented by:

Enriched Good Response = (C; rules) U (C, rules) U (Good Response Rules)
= {networkAccess = Fiber}
A{2 = domainsInEurope = 1}
A {downloadedObjectsFromEurope > 12}
A {downloadedObjectsFromAsia < 6}
v{RTT < 18ms}

The different quality degrees identified through Table 25 are all enriched following the
above identified states. From the obtained rules qualifying a corresponding quality degree,
the PLT is then predicted for measurements of the validation dataset (February to
September 2019). The Table 29 exposes the obtained confusion matrix for the website
baidu.com. The success in quality prediction is 96.42% which is an increase of 21.5%
compared to the prediction process identified through Table 26.
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Actual class
Predicted class Good Average Bad Worse
Good 19.17% 0.67% 0 0
Average 1.16% 21.07% 0.36% 0
Bad 0 0.84% 26.02% 0.07%
Worse 0 0.21% 0.63% 26.22%

Table 29: Classification confusion matrix for baidu.com from hidden states

Prediction success (%) Number of clusters/states
Websites Decision Trees Decision Trees K-Means HDP-HMM with
with K-Means and HDP-HMM clusters GMM
with GMM

amazon.com 63.89 72.98 7 13
bbe.com 83.02 92.27 3 10
cdiscount.com 87.51 89.23 2 3
chinatimes.com 76.90 91.22 3 9
csdn.net 84.12 92.60 6 11
irishtimes.com 89.08 92.65 3 )
leboncoin.fr 81.29 97.55 6 10
lefigaro.fr 74.99 89.10 5 11
reddit.com &81.88 94.16 4 8
spiceworks.com 82.59 91.65 3 4
taobao.com 94.22 95.17 4 7
tumblr.com 71.25 86.95 5 6
twitch.tv 60.56 89.23 5 16
yahoo.co.jp 61.13 88.27 6 13

Table 30: Prediction success rates and identified states

5.2.3 Accuracy of our solution

The Web View public visualization websites exposes the measurements of 84 websites
which we have taken into consideration to assess the accuracy of our solution. As discussed
into section 5.2.1, among these 84 websites, 14 websites have their PLT-HAR value which
fluctuates regularly. For the other 70 websites, Random Forests coupled to K-Means to
identify quality degrees provide good prediction rates since the number of outliers (identified
through Isolated Forests) are mean. From the obtained rules-model, we can predict finely the
different loading times.

For websites whose loading times vary regularly, we have applied both methods, i.e
the usage of Random Forests where quality degrees are identified by the K-Means algorithm
solely versus decision Trees where the numbers of states are deduced from HDP-HMM with
GMM emissions distributions. The quality correctness prediction rates of these 14 websites
are illustrated in Table 30. Together with the prediction success rates, we also expose the
number of clusters identified from the K-Means algorithm and number of states identified by
HDP-HMM with GMM emissions distributions.

Websites are all different among them, composed of content of different flavors which
are delivered by web servers from all around the globe. For some websites, especially those
belonging to the News and Shopping category, the usage of both prediction techniques do not
increase a lot the success in quality prediction since content is renewed very regularly, being
served at different times of the day by different CDNs or origin servers. An example of such
particularity is the website amazon.com where the classic correctness prediction rate through
Random Forests and K-Means is 63.89% and with the use of decision Trees coupled to HDP-
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HMM with GMM, the prediction correctness rate is 72.98%. Although the use of HDP-HMM
with GMM detects 13 states (7 clusters with K-Means), the correctness in prediction is only
increased by 9.09%.

The accuracy of our solution is focused on Web View probes in Europe and when a
main web page is in Asia, 87% of the time, the network receiving time is the main parameter
causing fluctuations in the loading times. On a general perspective, from Table 30, the use of
HDP-HMM with GMM instead of defining the number of clusters from the Elbow method do
help in decreasing the error prediction rates. But for some cases, e.g twitch.tv, the web pages
change very often and also the number of states identified is important, decision Trees rules
are not enough to predict correctly the corresponding perceived web browsing quality for the
entire web page.

5.3 Conclusion

Web pages’ loading times may fluctuate upon a wide set of factors and these loading
times may belong to different satisfaction degrees. It is important to identify why and which
parameters contribute to different ranges of loading times, along with the thresholds of these
parameters.

In order to predict the perceived web browsing quality of the visible portion of web
pages, we have used Decision Trees to identify these parameters’ thresholds and from the
obtained rules-based model performed web browsing quality prediction on never assessed
websites where 90.4% of the overall new dataset was correctly predicted. Generally speaking,
when taking into account the visible portion at first glance of web pages, TFVR timings do
not fluctuate regularly. Our model has proven to be correct for this configuration but it has
to be adapted to other situations, e.g end-user’s geographic location. Parameters to be re-
assessed will be the Round-Trip-Time (path taken by network packets will be different for an
end-user connected to a specific network operator at a specific geographic location), number
and types of objects (mainly due to advertising), the number of domains (specifically the
location of web servers delivering content), time of the day and corresponding network access
(the throughput offered by network operators from different regions are different).

When the same process is used to predict the entire web page quality, the above
method works well if and only if websites do not have important and regular fluctuations in
their PL'T time. These fluctuations are generally created by different types of web servers
delivering content from different geographic locations. Different servers are involved since the
content is regularly renewed for some websites. When websites are known to renew content
very often and fluctuations happen in the PLT, making use of HDP-HMM with GMM
emissions distributions helps in identifying an infinite number of states which may be hidden
to classical segmentation techniques. Thanks to the application of HDP-HMM, we have been
able to enrich identified rules-based models and increase the correctness in predicting the
quality for the entire web page.

The Web browsing eco-system is complex and relying on a unique method to predict
the quality during different phases of the loading progression may provide bad quality
prediction. The quality prediction when making use of K-Means to identify quality degrees
and decision trees works well most of the time for the First Paint, Time for Full Visual
Rendering or Above-The-Fold time lapse. When focusing on the quality prediction of the
visible surface area of Web pages, our rules-based model can be applied on any website and
underlying correctness in quality prediction is good. When focusing on the quality prediction
for the entire Web page, our rules-based model can be applied on any web page if and only if
fluctuations in loading times are mean. But if important fluctuations happen, a specific set of
rules for every web page is needed.
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Conclusion

In this dissertation, our work has dealt with characterizing and quantifying web
browsing quality along with the prediction of the underlying quality. The global Internet
traffic has continuously been increasing over the last decade where the digital transformation
of our society is accentuated by Web browsing. In a world where connectivity is of prime
importance, it is important to better understand the Web browsing eco-system and hence
enlighten end-users, network operators, and the research community how perceived Quality
of Experience can be leveraged and Quality of Service increased.

When an end-user performs a Web browsing activity, we have three main boundaries.
Firstly there is the environment of the end-user, i.e the type of used web browser or the
device computing capabilities. Secondly is the network operator to which the device is
attached where a wide range of networking technologies, e.g ADSL, Wi-Fi or Fiber are
available to offer increased bandwidth. Thirdly we have remote websites composed of various
web pages offering a wide set of services thanks to new Web technologies. These web pages
can be hosted by different types of web servers which deliver the content through different
Internet protocols. Our study is two-fold; understand the implications of the different factors
which can lead to an enhanced or decreased web browsing experience and be able to predict
the Web browsing quality during the different phases of a web page loading progression.

Over the past years, the computing power of end-users’ devices has been increasing
and network operators have been offering increasing bandwidth to their customers. New Web
technologies are used by Web developers to enhance the graphical representation of their
website. In order to deliver content faster and closest to end-users, Content Delivery
Networks have been introduced in the process. New Internet protocols, such as HTTP/2 and
QUIC have also been introduced to reduce content delivery time and promote end-users’
privacy. From past research studies, the Web browsing eco-system has been studied in a
standalone boundary-manner. In order to provide fine-grained information on the Web
browsing eco-system, we have studied it as a whole following a real end-users’ environment.

With the aim to quantify and qualify Web browsing into the most end-user
representative manner, we have studied different tools meant to measure Web browsing
activity. While some tools do not use real updated web browsers, the offered functionalities
are mean and do not allow a fine-grained assessment of the Web browsing eco-system. We
have thus designed, developed and deployed a new user-representative measurement tool,
Web View. The latter is deployed on end-user devices, e.g desktops and laptops, being
connected to residential access networks and makes use of real updated web browsers. Any
website can be measured on-the-fly with a wide set of input parameters such as type and
version of the web browser, requested protocol, the use or not of local caching, viewports, etc.
Eighty-four monitoring parameters are offered among which Web View exposes all available
web metrics and sheds light on the factors implicated in content delivery, i.e location and
types of web servers, Internet protocol distribution, types of downloaded objects, etc. All
measurements are represented in real-time on a public visualization website for specific
websites where end-users, service companies or researchers can better understand the Web
browsing eco-system.

In our work, we have studied all available Web metrics meant to measure web pages’
loading time, which correlates to Quality of Experience. We have been able to identify that
actual web metrics are either not supported by available web browsers or do not take into
consideration new Web technologies such as JavaScript usage or Progressive Web
Applications. Following studies on end-users’ behavior during Web browsing, psychological
studies show that the visible portion of web pages at first glance should be primarily
measured to better qualify Web browsing experience. To circumvent the inefficiencies of
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actual Web metrics, we have introduced the Time for Full Visual Rendering which measures
the time to load the visible portion of a Web page at first glance. This measurement
technique makes use of web browsers’ exposed networking logs to provide fine-grained
loading times, as well as an overview of the rendering process. This technique has proven to
be lightweight, calculated with a mean extra computational time and takes into account new
Web technologies.

To better understand the Web browsing eco-system but also its evolution over years,
more than 18 Trillion measurements have been performed over 2.5 years. Measurements’
analysis has shown that over the past 15 years, web pages have shifted from being static to
dynamic and the amount of content composing web pages has doubled. Although new
Internet protocols, such as HTTP/2 and QUIC, have been introduced to reduce the
download time of content and promote privacy, old Internet protocols coexist with them.
Content Delivery Networks are more and more adopted by Web developers to deliver content
closest to end-users which reduce the overall delivery time. We have also identified that
although we are in a privacy era, main web pages promote security but services embedded
into web pages provide a large amount of content into an unsecured manner.

When paying attention to which factors can impact Web browsing experience, we
have identified that upon a network access to which an end-user is attached, web pages’
loading times decrease proportionally when bandwidth increases, i.e moving from an ADSL to
Fiber network access can reduce up to one third loading times. The use of Content Delivery
Networks jointly with new Internet protocols can decrease the entire (or visible portion) web
page loading time. For some web pages making use of new Web technologies such as
JavaScript or Progressive Web Applications, we have also identified that web developers do
not prioritize the delivery of content to be rendered into the visible portion of web pages
which can have drawbacks on end-users’ rendering perception.

From measurements performed by our tool over the last 2.5 years, we have made use
of machine learning techniques in order to predict the perceived Quality of Experience. We
have firstly paid attention to the prediction of the quality as per the visible portion of web
pages. Along with newly estimated satisfaction degrees from our large dataset of
meagsurements, we have used decision trees to identify through a rules-based model which
parameters (with their thresholds) qualify the best these different satisfaction degrees. This
rules-based model has then been used to predict the web browsing quality of the visible
portion of web pages. On never measured websites, the correctness in quality prediction for
the visible portion is 90.4% which proves that our model is efficient. Secondly we have
focused our study on the prediction of web browsing quality for the entire web page (visible
and non-visible part), where the correctness in prediction rates are more than 95% if and
only if important fluctuations do not happen in the loading times. To circumvent fluctuations
which can yield high prediction error rates, we have made use of the Hierarchical Dirichlet
Process Hidden Markov Models (HDP-HMM) with a Gaussian Mixture Model (GMM)
emissions distributions to detect these fluctuations and enrich our rules based model. For
websites where fluctuations happen regularly, this solution has increased the correctness in
prediction rates up to 25% for the entire web page. When focusing on the quality prediction
of the visible surface area of Web pages, our rules-based model can be applied on any website
and underlying correctness in quality prediction is good. When focusing on the quality
prediction for the entire Web page, our rules-based model can be applied on any web page if
and only if fluctuations in loading times are mean. But if important fluctuations happen, a
specific set of rules for every web page is needed.

Based on our work where we have introduced a new automated Web browsing tool, a
new Web browsing measuring technique, and analyzed measurements performed on a wide
range of websites over 2.5 years, we draw the following conclusions from our work. Firstly, to
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be able to qualify finely web browsing experience, the visible portion of web pages at first
glance should be primarily measured through web metrics making use of web browsers’
networking logs and taking into account new Web technologies. Secondly, the Web browsing
eco-system must be studied as a whole since our work has shown that factors qualifying web
browsing experience are strongly linked among them. Thirdly, web developers should favor
the use of Content Delivery Networks offering content to end-users via new Internet protocols
which can decrease web pages’ loading times and strengthen customer experience which is the
key to retention and loyalty. Last but not the least; with more than 1.7 Billion websites in
2019, monitoring all of them is not feasible and quality prediction through machine learning
techniques have proven to be efficient. A unique method for quality prediction is hard to
define since a web page goes trough different phases rendering phases. As per these loading
phases different solutions should be privileged to take into account fluctuations of loading
times.
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Perspectives

Our work opens several perspectives in the field of Internet measurements. We firstly
go through the potential of our tool to follow up the adoption and impact of new Web
technologies on perceived QoE. Secondly we expose how rules-based models can be extended
to other scenarios to better predict experience.

Following the field of Internet measurements, Web View depicts the overall real-time
Web browsing eco-system through a public visualization website where measurements are
performed round the clock with real updated web browsers. With the addition of Web View
probes at different geographic position connected to different network operators, this can help
end-users to have an overview of the perceived QoE and prefer the use of a specific web
browser or move to a different network operator. Regarding network operators, they will be
able to assess in real-time the perceived QoE of their customers and identify how they can
increase their QoS. Web developers on the other end will also be able to assess improvements
related to QoE when selecting different CDNs as well as modifying the web page structure of
their website. Web View has been primarily designed to measure websites’ homepages. The
technologies used by our tool can also lead to qualify Web browsing when an end-user visits a
set of web pages belonging to the website itself. This can highlight Web developers which
content has to be downloaded in priority to increase QoE and at the same time highlight
CDNs which content needs to be automatically stored in their caches to reduce their
download time. It can also highlight different CDN providers on the added value of different
architectures promoted by their competitors and adopt them or introduce new ones.

Web View is designed into different independent modules and video delivery
monitoring can also be performed through the addition of video metrics. This can help in
better identifying the factors which can enhance Web browsing experience when video
delivery is involved. Regarding developers, they can choose different video encoding formats
following the end-user’s environment and network operator to speed up the delivery. With
the introduction of 5G networks in 2020, our study can also be extended to assess the impact
of increased bandwidth on Web browsing experience. This can help end-users, network
operators and Web developers to better understand the impact of this new technology.

Being in a privacy era where encryption has an important role, the Domain Name
System over HTTPS (DoH) has been lately introduced where public DNS infrastructures can
be used rather than the network operator’s one. As an example, an end-user located in
Europe can choose to use a public DNS, e.g Google or Cloudflare, through its web browser.
These servers might not be located in Furope and hence not favor the use of Content
Delivery Networks being the closest to end-users. The underlying impact should be studied to
better understand if privacy can decrease Web browsing experience. With end-to-end
encryption between end-users and web servers, Web browsing quality should also be profiled
from encrypted traffic.

Following the prediction of experience, the construction of our rules-based models has
shown that following different scenarios, the prediction of experience can be correctly
performed. The construction of rules-based models through the clustering of information and
decision trees can be used on any dataset where fluctuations are mean. When fluctuations
happen in datasets through time, the use of HDP-HMM can be used to identify an infinite
number of states and hence enrich rules-based models. Following the type of data, different
models can be used along with the HDP-HMM, e.g Bayesian Mixture Models. HDP-HMM
can also be used to detect degradations in different datasets where the number of outliers
over time are important, e.g predicting electricity consumption at peak hours. When
combined with decision trees, degraded states may also be identified and predicted.

115



Thesis Publications

International Journals

A. Saverimoutou, B. Mathieu and S. Vaton, "A 6-month analysis of factors
impacting web browsing quality for QoE prediction," Computer Networks, vol. 164, p.
106905, 2019.

A. Saverimoutou, B. Mathieu and S. Vaton, “Web View: A Measurement Platform

for Depicting Web browsing Quality and Delivery”, in IEEE Communications
Magazine Series, COMMAG 2020.

International Conferences

A. Saverimoutou, B. Mathieu and S. Vaton, "Which secure transport protocol for a
reliable HTTP /2-based web service: TLS or QUIC?" in 2017 IEEE Symposium on
Computers and Communications, ISCC 2017, Heraklion, Greece, July 3-6, 2017,
2017.

A. Saverimoutou, B. Mathieu and S. Vaton, "Web Browsing Measurements: An
Above-the-Fold Browser-Based Technique" in 88th IEEE International Conference on
Distributed Computing Systems, ICDCS 2018, Vienna, Austria, July 2-6, 2018, 2018.

A. Saverimoutou, B. Mathieu and S. Vaton, "Web View: Measuring and
Monitoring Representative Information on Websites" in I[IEEE International
Workshop on Quality of FExperience Management, QOE-MANAGEMENT Paris,
France, February 18, 2019, 2019.

A. Saverimoutou, B. Mathieu and S. Vaton, "Influence of Internet Protocols and
CDN on Web Browsing" in 10th IFIP International Conference on New
Technologies, Mobility and Security, NTMS 2019, Canary Islands, Spain, June 24-26,
2019, 2019 (Best Paper Award).

Alexis Huet, Antoine Saverimoutou, Zied Ben Houidi, Hao Shi, Shengming Cali,
Jinchun Xu, Bertrand Mathieu, Dario Rossi, "Revealing QoE of Web Users from
Encrypted Network Traffic", in International Federation for Information Processing

(IFIP), Networking 2020, Paris, France, June 22-25, 2020.

Other Publications

A. Saverimoutou, B. Mathieu and S. Vaton, “Real-Time Monitoring and
Troubleshooting of Web Browsing Sessions”, RIPE NCC Blog June 2018.

116



Part IV

Appendix

117



Appendix A

Résumé en Francais

Contenu
(70 TN 75 N 119
A.1 Acteurs de ’écosystéme de la navigation Web.....c.cocvvuiviuiiiiiiiiiininnnnnne. 120
A.2 Un nouvel outil automatisé de navigation Web : Web View................ 124
A.2.1 Architecture, Infrastructure et Fonctionnalités.........cccouuveiiiiiiinnnnnnn.n. 124
A.2.2 Site Web de surveillance en temps réel..........cccoiiiiiiiiiiiiiiiieeeeeee. 126
A.3 Une nouvelle métrique Web : Le Time for Full Visual Rendering....... 127
A.3.1 Inefficacités des métriques Web actuelles........oooiiiiiiiiiiiiiiinee, 128
A.3.2 TFVR : Design, Mécanique et Efficacité.........cccccvviiiiiiiiiiiiiiiinn. 128
A.4 Caractérisation de la qualité de la navigation Web.......cccoovininiecininennnns 130
A.4.1 Ecosystéme de la navigation Web.......coocooiiiiiiiiiiiiiceeenn 130
A.4.2 Facteurs impactant la qualité de la navigation Web.........c.c............. 131
A.5 Prédiction de la qualité de la navigation Web.......ccocvivirvereiiniiininennnenns 134
A.5.1 Prédiction de la qualité liée & la surface visible d'une page Web......... 135
A.5.2 Prédiction de la qualité liée a une page Web entiére........cccccceveeenennn. 136
[ @707 52 L5 T s I 139

La navigation Web est I'un des principaux services de I'Internet ot un large éventail
d'acteurs est impliqué et évolue de maniére constante. Pour mieux comprendre la Qualité
d'Expérience (QoE) pergue par les utilisateurs, il est donc essentiel d’identifier comment le
contenu des pages est constitué et délivré et de fournir une métrique de QoE pertinente.
Dans cette thése, nous avons conc¢u un nouvel outil, Web View, destiné a effectuer des
sessions de navigation Web automatisées et mesurant de nombreuses informations. Nous
avons aussi définit une nouvelle métrique Web, le Time for Full Visual Rendering (TEVR).
A partir de plus de 18 trillions de mesures effectuées pendant 2,5 ans sur les 10,000 sites Web
les plus visités (selon la classification Alexa), nous avons utilisé des techniques de statistiques
pour identifier les facteurs clés qualifiant et quantifiant la qualité de la navigation Web. Cet
ensemble de facteurs a été confirmé par un processus d'apprentissage automatique, donnant
en sortie un ensemble de régles pour prédire les temps de chargement des pages Web.
L'évaluation de notre modéle basé sur un arbre de décision sur des sites Web jamais mesurés
montre que nous pouvons prédire correctement la qualité de la navigation Web percue par les
utilisateurs. Pour certains sites Web ou les temps de chargement de la page Web entiére
fluctuent réguliérement, nous avons utilisé des chaines de Markov cachées qui permettent
d’enrichir nos régles de décision et ainsi augmenter le taux de prédiction de la QoE. Ces
travaux visent aussi & permettre aux opérateurs de réseaux et aux fournisseurs de services
d’augmenter la Qualité de Service (QoS) offerte a leurs clients.
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Contexte

Au cours de la derniére décennie, le trafic Internet global a augmenté de plus de 40%
et les utilisateurs de I'Internet représentent a I'heure actuelle 57% de la population mondiale.
Un grand nombre de services sont offerts aux utilisateurs & travers un grand nombre de sites
Web. Afin d’offrir une Qualité d’Expérience (QoE) augmentée aux utilisateurs, il est
important de mieux comprendre comment sont composées ces pages Web, tout en identifiant
comment le contenu est délivré aux utilisateurs. La navigation Web posséde un écosystéme
complexe oul sont impliqués le périphérique de l'utilisateur, le type de navigateur, ’accés
réseau, les protocoles de I'Internet, les serveurs Web délivrant le contenu et finalement les
pages Web |[1].

Le contenu est téléchargé via le protocole HT'TP (HyperText Transfer Protocol) [32],
plus particulierement via HT'TP /1.1 (HyperTeat Transfer Protocol Version 1) [5], HTTP /2
(HyperText Transfer Protocol Version 2) 6] et plus récemment, QUIC (Quick UDP Internet
Connections) 7] qui est en cours de standardisation en HTTP/3 (HyperText Transport
Protocol Version 3) a U'IETF (Internet Engineering Task Force). Les fournisseurs de services
délivrent le contenu au plus proche des utilisateurs & travers des serveurs caches [8], CDNs
(Content Delivery Networks) |9] et architectures a base de proxy [10].

Le nombre d’acteurs impliqués dans la navigation Web n’a cessé d’augmenter et
d’évoluer et cela peut diminuer ou augmenter la QoF percue des utilisateurs. Tandis que
certaines études sont consacrées & identifier les profils d’utilisation du Web [13] [14] [15] [16]
[17], d’autres études se focalisent sur 'apport des nouveaux protocoles de I'Internet [18] [19]
[20] |21]. Le processus de caching des contenus [22]| [23] contribue aussi & 'amélioration de la
qualité d’expérience des utilisateurs. De nouvelles technologies Web [25] [26] ont aussi été
introduites dans le but d’améliorer le téléchargement de contenus.

Problématique

La qualité pergue [29] [30] [31] lors de la navigation Web est la plupart du temps
corrélée au temps nécessaire pour afficher une page Web (ou certaines parties de la page).
Une augmentation dans le temps de chargement de certaines pages peut mener les
utilisateurs a abandonner la page visitée et ainsi créer une baisse de revenus pour les sociétés
de services. L’importance d’identifier les paramétres contribuant & une QoE améliorée peut
étre qualifiée & deux niveaux. Premiérement cela peut aider les développeurs de pages Web a
améliorer les temps de chargement de leurs pages et ainsi augmenter la fidélité de leurs
clients. Deuxiémement, ces parameétres peuvent étre utilisés comme valeurs de références et
permettre aux fournisseurs de services d’adapter leur Qualité de Service (QoS).

La navigation Web est activement étudiée par le monde de la recherche mais un
intérét particulier est consacré & l'impact des périphériques des utilisateurs, les types de
navigateurs utilisés, ’apport des nouveaux protocoles de I'Internet ou encore l'impact des
dégradations sur les utilisateurs finaux. Ces travaux de recherche ont permis de mieux cerner
la complexité de la navigation Web mais comportent un grand nombre de limites que nous
détaillons ci-aprés. Les navigateurs Web sont mis a jour réguliérement (en moyenne tous les
20 jours) et les études réalisées dans le passé prennent en compte un nombre limité de
navigateurs. Lors de la navigation Web, un grand nombre de contenus est téléchargé de
serveurs Web répartis tout autour du globe et les études effectuées qui sont orientées vers
I’apport de nouveaux protocoles de I'Internet, ne prennent pas en compte le taux de réception
de ces protocoles. Les différentes études ne prennent pas en compte les types de serveurs
délivrant le contenu, qui sont trés souvent sources d’une dégradation; ['utilisation de réseaux
de diffusion de contenus n’est pas toujours privilégiée. Les études réalisées sont en moyenne
effectuées sur une durée de 3 mois, ce qui n’est pas suffisant pour suivre de fagon objective
I’évolution du Web. Pour étudier la qualité de la navigation Web, plusieurs outils peuvent
étre utilisés mais leurs fonctionnalités sont limitées et ne permettent pas de tenir compte de
I’écosystéme du Web dans son intégralité.
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Contributions de la thése

Afin de répondre aux problématiques ci-dessus, nous avons étudié ’écosystéme du
Web dans sa globalité. Premiérement, nous avons conc¢u et déployé un nouvel outil
automatisé de navigation Web (Web View) qui permet d’identifier tous les acteurs impliqués
lors de la navigation Web. Les mesures effectuées par les sondes sont représentées en temps
réel sur un site Web public (https://webview.orange.com). Deuxiémement, face a
I'inefficacité des métriques Web actuelles, nous avons défini une nouvelle métrique web, le
Time for Full Visuel Rendering (TFVR) faisant abstraction des types et versions de
navigateurs, et permettant ainsi de mesurer finement la qualité d’expérience des utilisateurs
lors du chargement de la surface visible d’'une page Web. Troisiémement, nous avons
appliqué des techniques de statistiques sur les mesures effectuées pendant 2,5 années ; ce qui
nous a permis de mieux comprendre l'écosystéme du Web mais aussi d’identifier les
paramétres qui peuvent contribuer & une augmentation ou dégradation de la QoE. Enfin,
nous avons utilisé des techniques issues de I'Intelligence Artificielle pour représenter ces
paramétres sous une forme de régles. Ces derniéres permettent de prédire la qualité
d’expérience percue par les utilisateurs pour le téléchargement de la surface visible et entiére
des pages Web.

A.1 Acteurs de I'écosystéme de la navigation Web

Un grand nombre d’acteurs sont impliqués lors de la navigation Web. Nous les
introduisons, soulignons comment ils ont évolué ces derniéres années et les différentes études
qui leurs sont consacrées pour identifier leur apport a la qualité de la navigation Web.

Protocoles Internet

Les protocoles de I'Internet sont utilisés pour demander et télécharger le contenu a
afficher dans une page Web & partir de différents serveurs Web. Le protocole HTTP /1.1
(HyperText Transfer Protocol Version 1) [5] a été introduit en 1999 afin qu'une connexion
puisse étre réutilisée pour plusieurs requétes et est couplé au protocole TCP (Transmission
Control Protocol). Ce protocole permet d’envoyer une requéte (jusqu’a six connexions
paralléles) avant méme de revoir la réponse. Une problématique révélée par le protocole
HTTP/1.1 est que les réponses doivent étre regues dans 'ordre demandé, ce qui augmente la
latence. Le protocole HTTP /2 (HyperText Transfer Protocol Version 2) [6] couplé & TCP a
été introduit en 2015 avec deux axes d’amélioration majeurs : la rapidité et sécurité de la
navigation. Parmi les améliorations on peut mentionner la compression d’entétes des requétes
et des réponses, le multiplexage des requétes au serveur, et le fait qu'un serveur Web puisse
pousser automatiquement les ressources nécessaires sans que le navigateur les demandent. Le
protocole QUIC (Quick Internet UDP Connections) [7] a été introduit en 2016, couplé & UDP
(User Datagram Protocol), et est en phase de standardisation a 'TETF (Internet Engineering
Task Force). Le protocole QUIC fonctionne sur UDP et permet de réduire la latence, chaque
segment de données d'une connexion recoit son propre numéro de séquence, les paquets
perdus ne posent pas de gros problémes grace & un simple systéme de correction d'erreurs et
le protocole posséde un contréle de surcharge. Pour améliorer la sécurité de transfert de
données, le protocole TLS (Transfer Layer Security) est utilisé actuellement par HTTP/2-
TCP et la version 1.3 sera utilisée par HTTP /3-UDP.

Les protocoles de I'Internet ont évolué sans cesse ces vingt derniéres années avec pour
objectif de délivrer le contenu aux utilisateurs plus rapidement. Comme il est souligné &
travers le Tableau A-1, le protocole HTTP/1.1 a permis de réduire (par rapport a
HTTP/1.0) les temps de latence. HTTP/2 n’est pas déployé a grande échelle malgré sa
standardisation en 2015, mais permet de réduire les temps de téléchargement de contenus.
QUIC est en phase de standardisation et est actuellement déployé majoritairement sur les
serveurs de Google. QUIC permet de réduire la latence car fonctionne sur UDP et met en
avant la vie privée de 'utilisateur grice a un chiffrement des échanges de bout-en-bout.
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Protocoles Etude Littérature Résumé
Avantages Inconvénients
- Permet d’échanger des - Latence élevée
Mécanisme et | [32] [50] [51] | informations entre un - Connexion fermée
HTTP/1.0 efficacité navigateur et serveur aprés chaque requéte /
réponse
- Augmente le temps de
téléchargement
- Envoyer une requéte - Latence toujours
Mécanisme et | [5] [51] [52] avant de recevoir la considérable (TCP)
HTTP/1.1 efficacité réponse - Impacte le temps de
- Six connexions paralléles | téléchargement
- Reéduit la latence - Connexions non-
sécurisées
- Réduit le temps de - Taux d’adoption
Mécanisme, [6] [19] [52] téléchargement moyen
HTTP/2 taux d’adoption 33] [35] [34] | - Priorisation des flux - Latence toujours
et efficacité [35] [36] [53] | _ Meécanisme de controle considérable (TCP)
[54] [20] des flux
- Compression des headers
- Pousser le contenu
automatiquement
- Sécurité bout-en-bout
- Latence réduite (UDP) - Principalement
Mécanis (7] [37] [38] | E amélioré déplové les s
QUIC écanisme, 20] [21] [39] QQ améliore en éployé sur les serveurs
(HTTP/3) taux d’adoption [40] [55] [37] environnement a forte Google
et efficacité [41] latence - Taux de déploiement
- Sécurité bout-en-bout faible (hormis Google)
Sécurité de la - TLS 1.3 réduit la latence | - Faible taux d’adoption
couche TLS 1.2 /1.3 [45] [46] [47] | _ Securite bout-en-bout
transport [48] [49]

Tableau A-1 : Etudes liées aux protocoles de 'Internet

TLS 1.3 a été standardisé en 2018 et est plus robuste que TLS 1.2 mais trés peu déployé
actuellement.

Serveurs Web

Lors de la navigation Web, un grand nombre de ressources est téléchargé a partir de
plusieurs serveurs Web. Ces serveurs peuvent étre les serveurs d’origine, des caches ou CDNs
(Content Delivery Networks). Le but principal des caches et CDNs est de délivrer le contenu
au plus proche des utilisateurs, et ainsi réduire les temps de chargement de pages Web.
Tandis que les caches sont destinés & délivrer du contenu statique, c.a.d. du texte ou des
images, les CDNs peuvent délivrer tous types de contenus, c.a.d. des images, de la vidéo, des
scripts, etc. Les CDNs fonctionnent selon plusieurs architectures oi le contenu sera poussé
automatiquement par les serveurs d’origine (Push CDNs), le CDN récupére du serveur
d’origine le contenu suivant le temps de vie des différents objets (Pull CDN) et dispose d’'un
mécanisme de Pull, Push et stockage. Les CDNs et caches peuvent réduire la latence, les
temps de chargement de pages web et la consommation de bande passante [9] [23] [57] [58]
[59] [60]. Les CDNs ont été grandement utilisés dans le passé pour délivrer du contenu
statique mais avec I’évolution constante du Web, des contenus dynamiques sont aussi délivrés
[63]. Les caches [64] délivrent principalement des contenus statiques.
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Métriques Web Littérature
PLT [69] [70] [71] [72] [73] [27] (28] [11] [12] [74] [75] [54] [76] [52] [77] [78] [79]
[80] [81] [82] [55] [20] [21] [35] [36] [83] [84] [85]
Resource Timing | [69] [70] [71] [27] [76] [83] [84] [85]
Paint Timing [69] [27] [76] [81] [83] [84] [85] [75]

SpeedIndex [69] [76] [81] [83] [85] [75]
RUM SpeedIndex | [69] [83] [84]
ATF 27] [31] [83] [84] [86] [85]

Tableau A-2: Métriques Web utilisées par le monde de la recherche

Pages Web

Les pages Web sont composées d’objets de types différents. Lors de la navigation
Web, une page principale est premiérement téléchargée du serveur d’origine et est compilée
par le navigateur. Lors de la phase de compilation, les octets sont convertis en caractéres,
jetons, nceuds, pour finalement obtenir le DOM (Document Object Model). Une page Web
peut aussi étre composée de plusieurs feuilles de styles (Cascading Style Sheets) qui sont
téléchargées et compilées pour obtenir un CSSOM (Cascading Style Sheet Object Model).
Pour afficher la page Web correspondante dans le navigateur, ce dernier utilise le DOM et
CSSOM.

Métriques Web

Pour pouvoir mesurer les temps de chargement de pages Web de fagon uniforme, les
organismes de standardisation comme le W3C (World Wide Web Consortium) en
collaboration avec des sociétés de services ont défini des métriques Web.

Le Navigation Timing API [65] met en avant le Page Load Time (PLT) qui est le
temps de chargement d’une page Web entiére. Le PLT mesure le temps pour télécharger tout
le contenu nécessaire pour télécharger une page Web dans son intégralité et aussi le temps
nécessaire pour la création du DOM et CSSOM. Le PLT est la métrique la plus utilisée pour
qualifier la QoE des utilisateurs.

Le Resource Timing API [65] permet d’avoir des informations supplémentaires sur
chaque objet téléchargé, c.a.d le type de l'objet, le protocole Internet par lequel il a été
téléchargé, le temps nécessaire pour le télécharger, etc.

Le Paint Timing API [66] comprend quatre métriques: le First Paint (FP) qui est le
temps pour afficher le premier pixel a Iécran, le First Contentful Paint (FCP) qui est le
temps nécessaire au navigateur pour afficher une premiére image ou du texte, le First
Meaningful Paint (FMP) qui est le temps nécessaire pour afficher dans la surface visible le
texte et les images, et finalement le Time To Interactive (T'TI) qui est le temps nécessaire
pour afficher la partie visible de la page Web et que 'utilisateur puisse interagir avec elle.

Le SpeedIndex 67| est un score représentant le temps nécessaire pour afficher (sans
scroller) la surface visible de la page Web. Le SpeedIndezr est principalement calculé en
effectuant une vidéo lors de la phase de chargement de la surface visible, convertie en images
et en analysant les pixels pour identifier le moment ou la surface visible est intégralement
affichée.

Le RUM-SpeedIndex (Real User Monitoring SpeedIndexr) permet de calculer le
SpeedIndez en utilisant différents métriques W3C citées juste avant.

Le Above-The-Fold (ATF) [86] est une métrique utilisée pour mesurer le temps de
chargement de la surface visible (sans scroller) d'une page Web. Le calcul de cette métrique
peut se faire en effectuant une vidéo de progression de chargement de la partie visible de la
page (comme pour le SpeedIndex) ou en utilisant les métriques W3C (comme pour le RUM-
SpeedIndex).

Pour mieux qualifier la qualité de navigation Web, plusieurs travaux de recherche ont
utilisé ces métriques Web, comme il est indiqué dans le Tableau A-2. Parmi ces métriques
web, le PLT est la métrique la plus utilisée, mais cette métrique bien qu’elle soit
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standardisée, est implémentée de différentes maniéres par les concepteurs de navigateurs,
c.a.d. Google, Mozilla, Opera, etc. Avec lintroduction de nouvelles technologies Web,
I'objectivité du PLT est contesté [27] car cette métrique ne s’est pas adaptée. De plus,
d’aprés un grand nombre d’études réalisées pour mieux comprendre 'activité des utilisateurs
lors de la navigation Web [89] [14] [90] [15] [91] [92] [93] ou leurs comportements [94] [16] [95]
[96] [97], la mesure du temps de chargement de la partie visible (sans scroller) d’une page
Web doit etre privilégiée |77].
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AdFisher [107] v v v
Chameleon Crawler [101] v v v
CoLab [108] v v
FourthParty [99] v v v
EPDetective [98] v v v v
Gaze [75] v v v v
InspectorGadget [63] v v v
OpenWPM |70] v Rz v
PageSpeed Insights [102] v v v v
SiteSpeed.io [104] v Rz v v
WebPageTest [103] v v v v
WebXRay [106] v v v
WProf [54] v v v
XRay [100] v v v
YSlow [105] v v v

Tableau A-3: Outils pour étudier 1’écosystéme du Web

Outils d’automatisation pour étudier la navigation Web

Un grand nombre d’outils a été introduit dans le monde de la recherche dans le but
d’étudier I’écosystéme du Web. Tandis que certains outils se focalisent sur l'identification de
parameétres utilisés par les fournisseurs de services [63] [98] [70] [99] [100] [101], d’autres sont
orientés vers la mesure de la qualité de la navigation Web [54] [75] [102] [103] [104] [105] ou
encore 'étude de la vie privée des utilisateurs [99] [106] [100] [107]. Pour mieux comprendre le
comportement des utilisateurs lors des sessions de navigation Web, d’autres outils ont été
introduits [75] [80] [15]. Le Tableau A-3 illustre les différents outils utilisés et le domaine
étudié.
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A.2 Un nouvel outil automatisé de navigation Web :
Web View

Pour mieux comprendre 1'écosystéme de la navigation Web, un grand nombre
d’outils existent. Ces outils sont destinés & étudier les configurations de serveurs Web, la vie
privée des utilisateurs lors de la navigation sur des sites Web, le comportement des
utilisateurs et mesure de la qualité de navigation Web. Parmi ces outils, un nombre limité
d’entre eux s’intéresse a la qualité de la navigation Web.

Lors de notre phase de prise en main du sujet, nous avons utilisé ces outils destinés
a mesurer la qualité de la navigation Web et avons pu remarquer que les fonctionnalités
offertes sont limitées et ne permettent pas d’étudier la navigation Web dans son intégralité.
Nous détaillons ci-aprés trois outils. L’outil PhantomJS pilote le moteur du navigateur
Chrome pour accéder a différents sites Web. En utilisant uniquement le moteur uniquement,
nous n’avons pas la représentation graphique du navigateur habituellement utilisée. De plus,
les requétes sont toutes envoyées aux différents serveurs Web via le protocole HTTP /1.1, ce
qui engendre le téléchargement de contenus uniquement via HTTP/1.1 ; cet outil ne permet
pas de suivre les évolutions et apports des nouveaux protocoles de I'Internet. De plus cet
outil n’est plus maintenu depuis mai 2018. Un autre outil est WebPageTest qui offre un
environnement de mesure plus réaliste, comparativement a PhantomJS, car 'outil utilise de
vrais navigateurs Web. Les mesures peuvent étre effectuées a partir de sondes réparties tout
autour du globe. Mais 'outil WebPageTest n’offre pas la possibilité d’effectuer les mesures via
un grand nombre de navigateurs et les sondes effectuant les mesures ne sont pas rattachées a
des acces réseaux résidentiels.

L’outil SiteSpeed.io a été introduit en 2018, deux ans aprés le début de notre étude.
Cet outil permet d’effectuer des mesures de qualité de navigation Web selon un
environnement utilisateur réel, c.a.d. que l'outil peut étre déployé sur des périphériques
représentatifs de ceux des utilisateurs, étant rattachés a un accés réseau résidentiel. Cet outil
utilise les logs réseaux offerts par les navigateurs pour calculer les différents indicateurs de
qualité. Malgré I'environnement plus réaliste pour effectuer les mesures, plusieurs indicateurs
doivent étre calculés aprés avoir effectué les mesures. Cela ne permet pas de représenter en
temps réel 'écosystéme du Web.

A.2.1 Web View : Architecture, Infrastructure et Fonctionnalités

En 2017, face & linefficacité des outils existants ne permettant pas d’étudier
I’écosystéme du Web dans son intégralité, nous avons introduit un nouvel outil de mesure
automatisé, Web View" [69] [121]. Cet outil est déployé sur des ordinateurs de bureau ou
portables et utilise des navigateurs Web réels. Nous privilégions des réseaux d’acces
résidentiels pour mieux représenter l'environnement des utilisateurs. Web View permet de
mesurer la qualité de navigation d’un site Web unique, une liste de sites Web prédéfinie ou
les sites Web Alexa®™ représentant les pages Web les plus visitées au quotidien. Web View
met en avant toutes les métriques web définies par le W3C mais effectue aussi leur calcul &
partir des logs réseaux des navigateurs. Notre outil permet de mieux comprendre en temps
réel I'écosystéme du Web en offrant diverses informations sur le protocole Internet par lequel
les objets sont téléchargés, les types et nombres d’objets, les types de serveurs Web délivrant
le contenu et aussi leurs localisations géographiques. Web View offre aussi un site Web de
surveillance® ol sont représentées les mesures effectuées par les sondes réparties en Europe,
Asie ou Afrique.

# L’outil dans ses débuts de développement et déploiement était nommé MORIS (Measuring and
Observing Representative Information on webSites)

* https://www.alexa.com/siteinfo

* https://webview.orange.com
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L’architecture de Web View

Web View est composé de six modules indépendants, qui sont destinés & configurer les
parameétres des mesures, piloter des navigateurs Web réels, effectuer des calculs & partir des
logs réseaux offerts par les navigateurs et finalement représenter en temps réel ces mesures
sur un site Web public. L’architecture de notre outil est illustrée par la Figure A-1.

@) Alexa
Alexa 1 Test
Plugin \:“\‘ Initialization

83
Data
Collection

5 6
Results Data Storage

Visualizgtion .

Figure A-1: L’architecture de Web View

Web View a été développé via le langage de programmation Python et utilise I'outil
Selenium’” qui permet de piloter les différents navigateurs Web. Lors de la phase de mesure,
nous pouvons configurer le site Web a mesurer, le protocole Internet privilégié ou encore la
taille de fenétre du navigateur.

Type Localisation | Opérateur Bande passante Bande passante
d’ordinateur Télécom descendante montante
Bureau et Lannion Orange ADSL 10Mbps ADSL 1Mbps
Portable (France) Wi-Fi 200Mbps Wi-Fi 200Mbps
FIBRE | 800Mbps | FIBRE | 300Mbps
Bureau Lannion Orange ADSL 10Mbps ADSL 1Mbps
(France) FIBRE | 800Mbps | FIBRE | 300Mbps
Bureau Vannes Free FIBRE | 800Mbps | FIBRE | 300Mbps
(France)
Bureau Paris Orange FIBRE 1Gbps FIBRE | 300Mbps
(France)
Bureau Paris Free FIBRE 1Gbps FIBRE | 570Mbps
(France)
Bureau Paris Bouygues FIBRE 1Gbps FIBRE | 510Mbps
(France)
Bureau Paris SFR FIBRE 1Gbps FIBRE | 470Mbps
(France)
Bureau Curepipe Mauritius FIBRE 10Mbps | FIBRE 2Mbps
(Ile Maurice) Telecom
Cloud EC2-M5 Tokyo Amazon 10Gbps 4Gbps
(Japon)

Tableau A-4: L’infrastructure de Web View

¥ https://www.seleniumhgq.org/
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L’infrastructure de Web View

Web View est composé d’une plateforme qui implique les sondes (Vitesse de
processeur 2.5 Ghz et Mémoire 8Go), une base de données mutualisée et un site Web
représentant les différentes mesures. Actuellement 17 sondes sont déployées, illustrées par le
Tableau A-4. Chaque sonde mesure de facon continue les dix mille sites Web les plus visités
en utilisant divers navigateurs Web rattachés a différents réseaux d’accés (ADSL, Wi-Fi et
Fibre) selon plusieurs opérateurs et a divers endroits géographiques. Les différentes mesures
sont automatiquement relayées & une base de données mutualisée et représentées sur un site
Web public.

Les fonctionnalités de Web View

Web View permet d’effectuer de la navigation Web automatisée selon plusieurs
parameétres pour étudier la navigation Web. Quatre fonctionnalités sont offertes pour
effectuer des mesures :

o lightDomains : Effectuer des mesures de sites Web et mettre en avant différents temps
de chargement, la localisation des serveurs Web, les taux de réponses selon différents
protocoles de I'Internet et l'identification du type de contenu téléchargé.

o detailedDomains : Est complémentaire & la fonctionnalité lightDomains et permet
d’identifier le type de serveur Web délivrant le contenu, c.a.d. serveur d’origine,
caches ou CDN

o networkPath : Est complémentaire & la fonctionnalité de detailedDomains et permet
d’estimer en temps réel le chemin montant suivi par les paquets réseaux entre le
navigateur et leurs destinations.

o dohMode : Est complémentaire a lightDomains et permet de spécifier I'utilisation de
DNS (Domain Name System) publics, e.x. Google ou Cloudflare

La configuration des mesures peut se faire selon différents paramétres en spécifiant le
protocole Internet privilégié, le type et la version du navigateur, une fonctionnalité parmi les
quatre citées au-dessus, l'utilisation (ou pas) de bloqueur de publicités, la taille de la fenétre
du navigateur, le type d’adressage (IPv4 ou IPv6) et finalement le(s) site(s) Web a mesurer.

Web View offre 84 indicateurs™ de qualité qui mettent en avant les métriques W3C
mais aussi leur calcul & partir des logs réseaux offerts par les navigateurs. Les résultats des
mesures mettent aussi en avant une représentation fine du nombre et des types d’objets
téléchargés®. Selon la fonctionnalité demandée lors de la mesure, nous retrouvons parmi les
résultats l'identification des types de serveurs Web délivrant le contenu et leurs localisations
géographiques. Si la fonctionnalité networkPath est demandée, des mesures de chemins
réseaux pris par les paquets sont offertes.

A.2.2 Site Web de surveillance en temps réel

Les mesures effectuées par les sondes sont représentées en temps réel sur un site Web
public (https://webview.orange.com). Ce site Web est destiné aux utilisateurs, fournisseurs
de contenus ou au monde de la recherche afin de suivre 'évolution de certains sites Web.
Toute personne peut y accéder et choisir les paramétres de mesures des sondes et suivre les
temps de chargement, la distribution des protocoles de 1'Internet (selon un protocole
privilégié) comme le souligne la Figure A-2, la localisation des serveurs Web par continents
ou encore les types d’objets téléchargés. Une deuxiéme page™ permet d’identifier les différents
types de serveurs Web selon leurs localisations géographiques par ville ou pays, délivrant le

0 https://webview.orange.com /public/img/monit Param.png
" https://webview.orange.com /public/img/domainDetails.png
* https://webview.orange.com/d /UyllerUmz
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contenu aux utilisateurs comme le montre la Figure A-3. Ce site Web est destiné a suivre
I’évolution de la qualité de la navigation Web mais permet aussi d’identifier les dégradations
de qualité en temps réel.

Protocol distribution (received) when QUIC requested
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Figure A-2: La distribution des protocoles de I'Internet pour le site Web youtube.com
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Figure A-3: Localisation et types de serveurs Web délivrant le contenu

A.3 Une nouvelle métrique Web : le Time for Full
Visual Rendering

L’affichage d’une page Web se fait selon plusieurs étapes, c.a.d. téléchargement de la
page principale, compilation par le navigateur, téléchargement de contenus additionnels et
finalement affichage dans la fenétre du navigateur Web. Afin d’évaluer la qualité pergue par
les utilisateurs, un grand nombre de métriques Web ont été introduites pour mettre en avant
le temps nécessaire pour afficher la page entiére (ou certaines parties). Nous avons donc
implémenté ces métriques Web dans notre outil Web View et a partir des mesures effectuées,
nous avons pu identifier plusieurs inefficacités de ces métriques. Pour palier au manque
d’objectivité de ces métriques, nous avons introduit une nouvelle métrique Web, le Time for
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Full Visual Rendering (TFVR) qui est calculé & partir des logs réseaux du navigateur en
temps réel. Cette métrique comparé a d’autres a démontré & étre plus précise.

A.3.1 Inefficacités des métriques Web actuelles

Le Page Load Time (PLT) est une métrique permettant de mesurer le temps de
chargement d’une page Web dans son intégralité. Elle est standardisée par le W3C, que nous
référengons par PLT-W3C. Le PLT-W3C utilise le Resource Timing API aussi standardisé
par le W3C et son implémentation dans les navigateurs n’offre pas des temps de mesures
précis. Cela est principalement da au fait que le Resource Timing API n’expose pas certaines
informations liées au téléchargement de contenu si un serveur Web distant ne ['autorise pas.
De plus avec lintroduction de nouvelles technologies Web comme le Progressive Web
Applications (PWA), le PLT-W3C ne considére pas le téléchargement de différents objets qui
sont nécessaires pour afficher la page Web correctement.

La métrique Above-The-Fold (ATF) est destinée & mesurer le temps de chargement de
la surface visible d’'une page Web. Cette métrique peut étre calculée de deux facons ;
I'utilisation de vidéos pour analyser la progression de chargement et ['utilisation
d’informations offertes par les métriques du W3C. Dans le cas de l'utilisation de vidéos, des
outils externes au navigateur doivent étre utilisés et peuvent ainsi impacter la qualité des
mesures. A partir des vidéos sont extraites différentes images qui sont ensuite comparées pour
identifier si les pixels ne changent plus. Si tel est le cas, la derniére image o les pixels ne
changent plus indique le temps pour afficher la surface visible. Le temps de calcul de 'ATF
est important. Une autre fagon de calculer PATF est I'utilisation des informations offertes par
le Resource Timing API et comme nous l'avons indiqué précédemment, diverses
informations sur les objets téléchargés ne sont pas offertes.

La métrique Time-To-Interactive (TTI) est le temps nécessaire entre le début de
chargement d’une page Web et le moment auquel un utilisateur peut interagir avec la page.
Cette métrique Web est implémentée (en 2019) uniquement dans le navigateur Chrome et est
calculée si et seulement si aucune requéte n’est effectuée par le navigateur ni aucune réponse
recue de différents serveurs Web pendant 5 secondes. Les pages Web sont de nos jours
dynamiques et 1’'état du réseau rarement au repos, ce qui rend le calcul de cette métrique
complexe.

Ces métriques Web ne sont pas efficaces pour fournir des temps de chargement précis
car ils ne sont pas implémentés dans tous les navigateurs ou encore des outils externes pour
effectuer des vidéos sont nécessaires. Face aux nouvelles technologies du Web, ces métriques
ne mesurent pas finement les temps de chargement. Une nouvelle métrique Web est donc
nécessaire pour mesurer finement des temps de chargement en utilisant les logs réseaux
offerts par les navigateurs, tout en prenant en compte les nouvelles technologies du Web.

A.3.2 TFVR : Design, Mécanique et Efficacité

Le Time for Full Visual Rendering (TEFVR) [83] est une métrique Web que nous
avons définie et qui permet de mesurer le temps de chargement de la surface visible d’une
page Web. Elle fait abstraction des types et versions de navigateurs et est entiérement écrite
en langage de programmation JavaScript.

Design et Mécanique

Le calcul du TFVR se fait a partir des logs réseaux offerts par les navigateurs. Pour
récupérer ces logs réseaux dans leur intégralité, nous avons développé deux plugins pour
Chrome et Firefox, prenant en compte la complexité des pages Web dynamiques. A partir de
ces logs réseaux couplés aux informations de temps de compilations offerts par le navigateur,
nous identifions les objets qui sont affichés dans la surface visible du navigateur. Le temps de
chargement de la surface visible est alors calculé en prenant en compte le temps pour
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télécharger chaque objet ainsi que le temps nécessaire pour l'affichage. Lors de la phase de
calcul du TFVR, nous identifions aussi pour chaque objet affiché dans la surface visible, son
type, le protocole Internet par lequel il a été téléchargé et la localisation des serveurs Web

distants, comme illustré par la Figure A-4.
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Figure A-4: Design and mécanique du TFVR

Le calcul du TEFVR est effectué en temps réel selon un temps moyen de 0.156 secondes
pour les 10,000 sites Web d’Alexa les plus visités. Cette métrique prend en compte les
nouvelles technologies Web comme le JavaScript ou les Progressive Web Applications.
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Figure A-5: Pixels manquants de la surface visible quand la page entiére est affichée
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En comparant différentes métriques mesurant le temps nécessaire pour afficher la
surface visible d’une page Web, la précision du TFVR est démontrée dans la Figure A-5 ou
moins de 1% de pixels sont manquants au moment ou la page entiére est affichée, tandis que
pour le TTI 7.3% de pixels sont manquants et pour le ATF 10.6%. En calculant le temps
nécessaire pour afficher la surface visible, nous avons remarqué que la métrique ATF
consomme 8% de puissance de calcul et 9% de mémoire supplémentaires comparativement au
TFVR, illustré par la Figure A-6. Comparativement 4 d’autres métriques, le TFVR prend en
compte les nouvelles technologies Web et expose des temps de chargement fins. Le TFVR
permet aussi d’identifier les ressources bloquantes qui doivent étre affichées dans la surface
visible.

A.4 Caractérisation de la qualité de la navigation Web

Un grand nombre de facteurs est impliqué lors de la navigation Web, comme le
navigateur Web utilisé, les types d’accés réseaux offrants différentes bandes passantes ou des
bloqueurs de publicités et I’affichage de la page Web correspondante qui peut étre statique ou
dynamique. Le contenu est téléchargé a partir de plusieurs serveurs Web qui peuvent étre des
serveurs d’origine, des caches ou des réseaux de diffusion de contenus (CDN).

A.4.1 Ecosystéme de la navigation Web

Grace aux mesures effectuées par notre outil Web View offrant 84 indicateurs de
qualité pour chaque mesure, nous avons analysé 244 millions de mesures différentes via des
techniques de statistiques pour mieux comprendre [’écosystéme du Web. Les 10,000 sites Web
les plus visités (selon Alexa) ont été mesurés a partir des sondes Web View localisées en
Europe. Parmi les sites Web mesurés, 52.23% des pages principales sont délivrées par des
serveurs Web en Amérique du Nord, 28.44% en Europe, 16.22% en Asie et 1.10% en
Amérique du Sud.

A partir des études de la navigation Web effectuées en 2014, le nombre d’objets
téléchargé a augmenté de 17% pour les sites Web classés entre le rang 1 et 2000 et augmenté
de 31% pour les sites Web classés entre le rang 5000 et 10,000. Tandis que les images
occupent une grande partie du contenu téléchargé, nous avons identifié que les pages Web
sont composées en moyenne de 4 css (Feuille de styles), 5 scripts, 16 images et 2 zml. Nous
avons aussi identifié que 'utilisation du nombre moyen de scripts et images pour ces sites
Web a augmenté de 53% au cours des 15 derniéres années [51]| et de by 7% & partir des
études récentes [11].
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Figure A-7: Taux de distribution de protocoles Internet selon le protocole demandé

Quand la page principale est estimée d’étre délivrée par des serveurs Web en
Amérique du Nord et Europe, un plus grand pourcentage du contenu est délivré aux
utilisateurs de fagon sécurisée. Le protocole HTTP /1.1 a été standardisé depuis plus de 20
ans et est toujours utilisé par les serveurs Web pour délivrer le contenu aux utilisateurs, en
particulier des serveurs Web localisés en Asie. Bien que le protocole HTTP/2 ait été
standardisé en 2015, son déploiement est effectué a4 un rythme trés lent et méme si les
utilisateurs utilisent des navigateurs Web récents, le contenu est téléchargé via le protocole
Internet HTTP /1.1 et HTTP/2, comme illustré par la Figure A-7. En analysant les mesures
effectuées en mars 2018 et comparées a celles effectuées en mars 2019, seulement 4% de
contenus supplémentaires sont téléchargés en HTTP/2. Le protocole QUIC est
principalement déployé sur les serveurs Web de Google et depuis le début de sa phase de
standardisation en HT'TP /3, les réseaux de diffusion majeurs ont commencé a 'implémenter.

A.4.2 Facteurs impactant la qualité de la navigation Web

Un indicateur de la qualité percue lors de la navigation Web est le temps nécessaire
pour afficher une page Web entiére (ou certaines parties). Nous présentons dans cette sous-
section les différents facteurs qui peuvent impacter ces temps de chargement. Premiérement
nous analysons l'impact de la structure de la page Web et la catégorie & laquelle elle
appartient. Ensuite nous analysons les facteurs impliqués dans le téléchargement des contenus
et leurs impacts sur la qualité d’expérience. Finalement nous nous consacrons &
I’environnement de l'utilisateur qui peut impacter les temps de chargement des pages Web.

Structures et catégories des pages Web

Les pages Web sont toutes différentes et méme si nous les classifions par rapport a la
localisation de la page principale, pour différentes métriques nous pouvons voir & partir de la
Figure A-8, que les temps de chargement appartiennent & des tranches de valeurs trés
étendues. En comparant ces différentes catégories, nous remarquons que les temps de
chargements moyens sont importants mais pour certaines trés proches, comme illustré par la
Figure A-9. L’élément principal contribuant & ces différences dans les temps de chargement
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entre différentes catégories est le type des différents objets téléchargés a travers différents
protocoles de I'Internet.
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Figure A-8: Temps de chargement selon la localisation de la page principale
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Figure A-9: Temps de chargement de la page entiére selon catégories de sites Web

Facteurs impliqués dans le téléchargement de contenus

Tandis que privilégier le téléchargement de contenus & travers le protocole
HTTP/1 .1, HTTP/2 ou QUIC ne permet pas de diminuer le temps de chargement de pages
Web, l'utilisation du cache du navigateur est le seul élément permettant d’augmenter la
qualité percue par les utilisateurs, comme illustré par la Figure A-10. Méme en privilégiant
les nouveaux protocoles de I'Internet, les réponses sont généralement fournies selon différents
protocoles de 'Internet qui coexistent.

Les pages Web offrent un grand nombre de services qui sont distribués par différents
domaines. Le contenu téléchargé de ces domaines peut se faire & travers différents serveurs
Web. Nous avons pu identifier que plus le nombre de domaines délivrant le contenu est élevé,
plus les temps de chargement des pages Web sont élevés. Les réseaux de diffusion de
contenus (CDNs) sont de plus en plus utilisés par les développeurs Web dans le but de
délivrer le contenu au plus proche des utilisateurs. A partir de I'analyse de nos mesures [125],

132



nous avons identifié que si le contenu est délivré par des CDNs, le temps de chargement de
I'intégralité d’'une page Web peut étre diminué jusqu’a 43.1% en demandant le protocole
HTTP/2 et jusqu’a 38.5% en demandant le protocole QUIC. Plus d’un quart des contenus
pour les 1,000 sites Web les plus visités sont délivrés par les réseaux de diffusion de contenus.
Le taux d’utilisation de CDNs par des sites Web asiatiques est toutefois trés bas, de 1'ordre
de 10%.
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Environnement de 1’utilisateur

Nous nous sommes intéressés aux types d’accés réseaux résidentiels des utilisateurs
qui peuvent offrir des bandes passantes plus importantes selon différentes technologies
(ADSL, Wi-Fi et Fibre). En privilégiant le protocole Internet HTTP /2 ou QUIC, les temps
de chargement de pages Web peuvent étre diminués en moyenne de 19.73% en migrant de
I’ADSL vers le Wi-Fi, et de 16.02% en migrant du Wi-Fi vers la Fibre. De fagon générale,
pour un utilisateur dont le périphérique est rattaché & un accés réseaux ADSL et demandant
le protocole QUIC, la migration vers la Fibre peut diminuer les temps de chargement de
pages Web visitées jusqu’a 30.25% (Figure A-11). L’heure a laquelle un utilisateur visite un
site Web particulier peut aussi contribuer a diminuer la qualité d’expérience pergue qui est
essentiellement due au taux de fréquentation du site Web mais aussi en lien avec 1'état du
réseau qui peut étre chargé.
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Temps de réponse entre navigateur et serveurs
Catégorie du site Web
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Tableau A-5: Parameétres impactant la qualité de la navigation Web

De maniére générale, le Tableau A-5 met en avant les paramétres qui peuvent
impacter le plus les temps de chargement de pages en fonction des phases d’affichage, c.a.d.
First Paint (le temps nécessaire pour afficher un premier pixel dans la surface visible), le
Time for Full Visual Rendering (temps nécessaire pour afficher la partie visible de la page
Web) et le Page Load Time (temps pour afficher 'intégralité de la page Web).

A.5 Prédiction de la qualité de la navigation Web

Avec plus de 17 Billions de sites Web que des utilisateurs peuvent visiter, les mesurer
n’est pas évident selon des configurations unitaires en une seule journée. Il est dont crucial de
pouvoir prédire la qualité d’expérience pergue par les utilisateurs. Grace & nos mesures
effectuées pendant 2.5 ans, nous avons pu identifier quels sont les parameétres pouvant
contribuer a4 une QoE augmentée ou dégradée. Nous avons ensuite utilisé des techniques
d’Intelligence Artificielle pour quantifier ces paramétres et ainsi pouvoir grace a une suite de
régles pouvoir prédire la QoE. Nous nous focalisons sur deux grandes étapes lors de
I’affichage d’une page Web ; la partie visible de la page Web et l'intégralité de de la page.
Pour la partie visible d’'une page Web, nous pouvons prédire efficacement la QoE percue & un
taux de 90.4% pour des pages Web jamais mesurées. Concernant la prédiction de la QoE de
lintégralité de la page nous avons utilisé des solutions & base de chaines de Markov cachés
pouvant augmenter le taux d’efficacité de prédiction jusqu’a 25%.
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A.5.1 Prédiction de la qualité liée a la surface visible d’une page Web

Un grand nombre d’études a été effectué pour définir face & des utilisateurs réels les
temps de chargement de la partie visible d’une page Web qui définissent différents degrés de
qualité. Nous avons donc utilisé ces tranches de valeurs représentant la qualité ressentie par
des utilisateurs et des arbres de décisions pour obtenir en sortie une suite de régles pouvant
qualifier et quantifier la qualité d’expérience percue. Nous regroupons 40% de nos mesures en
fonction des valeurs de la métrique Time for Full Visual Rendering (TFVR) et des degrés de
qualité. En fonction de ces différents groupes, un arbre de décision est construit et permet
d’identifier pour chaque groupe les régles les qualifiant au mieux. Ces régles ont permis de
confirmer notre étude statistique du Chapitre A-4. Les régles qualifiant la classe Qualité
Transparente sont représentées sous la forme :

{(2% < TauxReceptionQUIC < 63.94%) A (protocoleDemandé = Quic Repeat)}
A {(RangAlexa < 42) A (TempsReponsePagePrincipale < 18ms)}

ou
{localisationPagePrincipale = (NA v EU)} A {protocoleDemandé = Quic Repeat}
A {accesRéseau = Fibre} A {nombreObjects < 21}

En fonction de régles obtenues pour chaque classe, nous les avons appliquées sur le
reste de nos données, c.a.d. 60% de nos mesures, sachant que le modéle n’a aucune
connaissance de la valeur du TFVR. Pour une mesure donnée, la qualité du TFVR est alors
prédite comme étant instantanée, transparente, moyenne, critigue ou mauvaise. Nous
vérifions ensuite la prédiction faite face & la vraie valeur du TFVR et représentons l'efficicaité
des prédictions & travers une matrice de confusion représentée par le Tableau A-6. Ce tableau
nous indique que seulement 84.79% des données sur lesquelles nous avons appliqué nos régles
de décisions sont correctement prédites. De plus nous pouvons voir que le taux d’erreur est
regroupé au sein de la classe Critique et qu’aucune mesure n’est prédite & appartenir a la
classe Instantanée. Ces degrés de qualités ont été définis dans la littérature & partir d’un
nombre de sites Web trés limité et ne peuvent pas s’appliquer sur nos mesures des 10,000
sites Web les plus visités.

Classe actuelle
Classe prédite Instantanée | Transparente | Moyenne | Critique | Mauvaise
Instantanée 0 0.15% 0 0 0
Transparente 0 22.21% 1.60% 0 0
Moyenne 0 1.96% 29.01% 8.07% 0
Critique 0 0 0.04% 32.35% 0.01%
Mauvaise 0 0 0.02% 3.36% 1.22%

Tableau A-6: Efficacité de prédiction du TFVR en utilisant les degrés de qualité de la littérature

Classe actuelle
Classe prédite Bonne Correcte | Moyenne | Dégradée | Mauvaise
Bonne 22.19% 0.04% 0 0 0
Correcte 1.13% 25.17% 0.82% 0 0
Moyenne 0 2.10% 29.22% 0.43% 0
Dégradée 0 0 1.20% 11.63% 0.06%
Mauvaise 0 0 0.02% 0.03% 5.96%

Tableau A-7: Efficacité de prédiction du TFVR en utilisant des degrés de qualité définis

Nous définissons alors nos propres degrés de qualité en fonction de nos données en
effectuant un clustering des mesures du TFVR. A partir des ces degrés de qualité, nous
fabriquons une fois de plus nos régles grace a des arbres de décision a partir de 40% de nos
mesures. Ces régles sont ensuite appliquées sur le reste de nos mesures, c.a.d. les 60%
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restantes. L’efficacité de notre taux de prédiction est représentée a travers le Tableau A-7 et
est de 94.17%.

Classe actuelle
Classe prédite Bonne Correcte | Moyenne | Dégradée | Mauvaise
Bonne 6.51% 0.16% 0 0 0
Correcte 0.76% 21.09% 0.72% 0 0.02%
Moyenne 0.01% 1.96% 35.02% 0.12% 0.01%
Dégradée 0 0 3.60% 17.74% 1.03%
Mauvaise 0 0 0 1.21% 10.04%

Tableau A-8: Efficacité de prédiction du TFVR pour des sites Web jamais mesurés

Nous vérifions par la suite la précision des régles identifiées sur des sites Web jamais
mesurés auparavant. Grace a nos régles de décision identifiées a partir des sites Web de rang
1 & 10,000, nous faisons la prédiction de la qualité percue de la surface visible des sites Web
de rang 10,000 & 15,000. La prédiction est efficace & un taux de 90.4%, représenté par le
Tableau A-8. Cela montre qu’a travers nos régles de décision, nous pouvons correctement
prédire la qualité pergue lors du chargement de la surface visible d'une page Web.

Classe actuelle
Classe prédite Bonne Correcte | Moyenne | Dégradée | Mauvaise | Absurde
Bonne 3.02% 3.2% 2.07% 0 0 0
Correcte 0.82% 7.68% 10.78% 4.02% 0 0
Moyenne 0 0.69% 17.21% 5.79% 0.44% 0
Dégradée 0 0.09% 6.03% 11.9% 1.7% 0.06%
Mauvaise 0 0 0.15% 2.46% 8.02% 1.63%
Absurde 0 0 0 0.07% 2.1% 10.07%

Tableau A-9: Efficacité de prédiction du PLT pour des sites Web jamais mesurés

A.5.2 Prédiction de la qualité liée & une page Web entiére

Nous nous intéressons maintenant & la prédiction de la qualité de la page Web
entiére. Nous avons appliqué le méme procédé qu’identifié dans la section A.5.1. Pour les
degrés de qualité en lien avec les temps de chargement de la page entiére, nous les définissons
a partir de 40% de nos mesures car il n’existe pas d’études impliquant des utilisateurs réels
pour les définir. Nous construisons nos régles de décision et les appliquons sur 60% des
mesures restantes et les taux de prédiction correctes sont de 68.6%. Ces mémes régles de
décisions appliquées sur les sites Web de rang 10,000 — 15,000 jamais mesurés auparavant

engendrent un taux d’erreur de 42.1% dans la prédiction, comme illustré par le Tableau A-9.

Voulant comprendre pourquoi le taux de prédiction correct est si bas pour la page
entiére, sachant que pour la partie visible des pages Web, le taux de prédiction était élevé,
nous nous intéressons a différents sites Web de fagon unitaire. Grace a notre site Web public,
nous remarquons qu’entre le début de la navigation jusqu’a laffichage de la surface visible,
des fluctuations dans les temps de chargement pour une trés grande partie des sites Web sont
minimes. Par ailleurs, pour certains sites Web, les temps de chargement de la page Web
entiére fluctuent beaucoup.
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Figure A-12: PLT du site Web wikipedia.org entre octobre 2018 et novembre 2019
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Figure A-13: PLT du site Web baidu.com entre juillet 2018 et septembre 2019

Nous avons alors construit nos régles de décision en se basant sur des sites Web dont
les temps de chargement fluctuent trés peu, e.x. wikipedia.org, représenté par la Figure A-12.
Cette figure représente le Page Load Time (PLT) entre octobre 2018 et novembre 2019 et
nous construisons nos régles & partir de ces mesures. Nous effectuons ensuite la prédiction de
la qualité de la page entiére pour le mois de décembre 2019. A notre surprise, la qualité est
correctement prédite & un taux de 99.88%.

Nous nous sommes ensuite intéressés a des sites Web dont les temps de chargement
fluctuent régulierement, e.x. baidu.com, représenté par la Figure A-13. Cette figure représente
le Page Load Time (PLT) entre juillet 2018 et septembre 2019. Nous construisons nos régles
a partir des mesures effectuées entre juillet 2018 et janvier 2019. Nous effectuons ensuite la
prédiction de la qualité de la page entiére pour la période de février & septembre 2019. Le
taux d’erreur dans la prédiction est de 25.08%.

Avec pour objectif de confirmer que notre modéle est inefficace face a des sites Web
ayant des fluctuations importantes dans les temps de chargement pour la page entiére, nous
identifions 14 autres sites Web via notre site Web public ayant cette particularité et
appliquons notre modéle. Les erreurs dans le taux de prédictions oscillent entre 21% et 34%.
Cela démontre que pour les sites Web avec des temps de chargement qui fluctuent en
permanence, d’autres solutions sont nécessaires pour augmenter 'efficacité des prédictions

pour la page Web entiére.
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Figure A-14: HDP-HMM avec des modéles de mélange Gaussiens appliqué a la série temporelle de baidu.com

Taux d’efficacité de prédiction (%) Nombres d’états
Sites Arbres de Arbres de décision Clustering HDP-HMM
Web décisiog et et HDP-HMM GMM
Clustering GMM

amazon.com 63.89 72.98 7 13
bbc.com 83.02 92.27 3 10
cdiscount.com 87.51 89.23 2 3
chinatimes.com 76.90 91.22 3 9
csdn.net 34.12 92.60 6 11
irishiimes.com 89.08 92.65 3 )
leboncoin.fr 81.29 97.55 6 10
lefigaro. fr 74.99 89.10 5 11
reddit.com 81.88 94.16 4 8
spiceworks.com 82.59 91.65 3 4
taobao.com 94.22 95.17 4 7
tumblr.com 71.25 86.95 5 6
twitch.tv 60.56 89.23 5 16
yahoo.co.jp 61.13 88.27 6 13

Tableau A-10: Taux de prédiction correcte et nombre d’états identifiés

Nous avons utilisé des chaines de Markov cachées suivant un processus de Dirichlet
hiérarchique (HDP-HMM) [126] [127] [128]| et des lois d’émissions étant des modéles de
mélange Gaussien (GMM) pour mieux détecter ces fluctuations dans le temps et ainsi affiner

nos régles. L’application de HDP-HMM sur la série temporelle du site Web baidu.com est

représentée par la Figure A-14. De nouvelles tranches de degré de qualité sont alors définies,

ce qui permet d’affiner nos régles de décisions. En appliquant ces nouvelles régles pour

prédire la qualité de la page Web entiére du site Web baidu.com, le taux de prédiction est

augmenté de 21.5%. Nous avons appliqué cette solution sur 14 sites Web dont les temps de

chargement fluctuent constamment et avons augmenté 'efficacité de prédiction jusqu’a 25%.

Ces différents sites Web sont illustrés par le Tableau A-10.
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Conclusion

Nous nous sommes intéressés dans cette thése a caractériser, quantifier et prédire la
qualité de la navigation Web. Le trafic global de I'Internet n’a cessé d’augmenter ces
derniéres années ol la navigation Web occupe une place importante. Dans un monde ot la
connectivité est importante, il est crucial de pouvoir mieux comprendre ’écosystéme du Web
et ainsi éclairer les utilisateurs, fournisseurs de services et le monde de la recherche sur la
facon dont la Qualité d’Expérience des utilisateurs peut étre améliorée.

Pour mieux caractériser la qualité de la navigation Web, nous avons introduit un
nouvel outil de mesure automatisé, Web View. Cet outil permet d’étudier I’écosystéme du
Web dans son intégralité en utilisant des navigateurs Web réels et est déployé sur des
périphériques utilisateurs représentatifs. Le rattachement de ces périphériques a un accés
réseau résidentiel est privilégié. Lors de la configuration des mesures, on peut y spécifier
I'utilisation d’un navigateur particulier, le type de protocole Internet privilégié, I'utilisation
de bloqueurs de publicités (ou pas) ou encore l'utilisation du cache (ou pas) du navigateur.
Web View offre 84 paramétres qui permettent de qualifier la qualité de la navigation Web.
Les mesures de certains sites Web prédéfinis sont représentées en temps réel sur un site Web
public qui permet de suivre I'’évolution du Web et aussi d’identifier en temps réel des
dégradations de qualité.

Nous avons aussi étudié et utilisé différentes métriques Web et avons pu identifier un
grand nombre d’inefficacités dans les méthodes de calcul, ne prenant pas en compte les
nouvelles technologies du Web. Nous avons donc défini une nouvelle métrique Web, le Time
for Full Visual Rendering (TFVR) qui est calculé & partir de logs réseau offerts par les
navigateurs. Le TFVR comparé a d’autres métriques Web a montré son efficacité face a de
nouvelles technologies Web et est calculé en temps réel sans 1'utilisation d’outils externes qui
peuvent impacter les mesures.

Grace & notre outil, Web View, et notre métrique, le TFVR, nous avons effectué des
mesures de qualité de navigation Web pendant plus de 2.5 années. Ces mesures ont été
analysées par différentes techniques statistiques, ce qui a permis d’identifier les acteurs
impliqués dans la navigation Web. Nous avons aussi analysé I'impact de ces différents
facteurs sur la qualité de la navigation Web.

Vu le grand nombre de sites Web, nous nous sommes intéressés & la prédiction de la
qualité de la navigation Web liée a la surface visible ou intégralité d’une page Web. Pour
prédire la qualité du temps d’affichage de la partie visible des pages, nous avons utilisé des
arbres de décision pour qualifier et quantifier les facteurs contribuant & divers degrés de
qualité. Ces régles de décision ont été identifiés & partir des 10,000 sites Web les plus visités
et la prédiction de qualité effectuée sur les sites Web de rang 10,000 & 15,000. Le taux
d’efficacité du taux de prédiction est de 90,4%. Concernant la prédiction de la qualité pour la
page Web entiére, ces régles de décision ont montrés qu’elles sont efficaces pour prédire la
qualité (taux d’efficacité de 99.88% pour le site Web wikipedia.org) si et seulement si les
fluctuations dans les temps de chargement sont minimes. Pour les sites Web oil les temps de
chargement de la page entiére fluctuent grandement et réguliérement au cours du temps,
nous avons utilisé des chaines de Markov cachées suivant un processus de Dirichlet
hiérarchique (HDP-HMM) et des lois d’émissions étant des modeéles de mélange Gaussien
(GMM). Cela permet d’identifier finement ces fluctuations et ainsi affiner nos régles de
décisions. L’utilisation d’arbres de décisions couplé au HDP-HMM a permis d’augmenter
Pefficacité de prédiction de ces sites Web jusqu’a 25%.
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Notre modéle a base de régles de décision est efficace a prédire la qualité de la surface
visible de n’importe quel site Web. Pour la prédiction de la qualité de la page Web entiére, si
nous avons peu de fluctuations dans les temps de chargement, notre modéle peut étre
appliqué & n’importe quel site Web. Si les fluctuations sont importantes, une suite de régle de
décision spécifique est nécessaire pour chacun de ces sites Web.
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