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Introduction

Context

When lasers were invented in the early 1960s by [Schawlow and Townes, 1958] and [Maiman,
1960], they were immediately described as ”a solution looking for a problem”. Since then, such
coherent light sources have found utilities in a tremendous number of applications from fun-
damental fields of research (chemistry, astrophysics...) to daily and industrial uses (medicine,
optical discs, metallurgy, remote detection...).

Few years after the laser invention, [Lamb, 1964] proposed the mode-locking technique to pro-
duce pulses of light of ultra-short duration in the order of few picoseconds (1 ps = 10−12 s)
to femtoseconds (1 fs = 10−15 s). Such extremely short light sources can probe the dynamics
of matter at timescales not accessible otherwise. To properly track a dynamical system, the
measurement process has to be faster than the evolution of this system. The laser technology
thus enables temporal precision down to a few femtoseconds. The study of ultrafast dynamics
is typically achieved via pump-probe experiments: an ultrashort beam (pump) first induces a
perturbation in a sample ; a second pulse (probe) then monitors the state of the system after
some delay. By varying the time delay between the two pulses, one can reconstruct the time evo-
lution of the system. This technique has led to a new field of chemistry, called femtochemistery,
that studies atom rearrangement within molecules during extremely short timescales. For his
pioneering work in the domain [Zewail, 1988; Zewail, 1994], Ahmed Zewail received the Nobel
prize in chemistry in 1999.

In 1985, the advent of the Chirped Pulse Amplification (CPA) technique and its application to
lasers [Strickland and Mourou, 1985] had another formidable impact on the laser community.
This technique, awarded by the Nobel Physics price in 2018, has enabled the compression of sig-
nificant amount of energy (∼ 10 mJ to J) in ultrashort pulses (∼ tens of femtoseconds) leading to
peak powers of few TW to several PW (petawatts). When tightly focused, the laser intensity I0
on target reaches up to 1018−20 W.cm−2. At these intensities, ordinary matter is rapidly ionized
by the strong laser fields and turns into an out of equilibrium plasma, which features electrons
accelerated up to the speed of light (relativistic velocity). The use of these lasers for scientific
purposes has opened up a new research branch commonly known as ultra-high intensity (UHI)
physics, which still largely remains to be explored.

The interest of the scientific community for the study of UHI physics is twofold. First, it rep-
resents a huge fundamental interest to study matter dynamics in strong electromagnetic fields.
In particular, it gives access in a laboratory to physical phenomena that only occur in remote
violent astrophysical processes [Remington et al., 2000]. Second, the interaction between a
ultra-intense lasers and a plasma can provide novel tabletop sources of bright ionizing radiation
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INTRODUCTION

(extreme ultra-violet (XUV), X-rays, gamma) radiations or energetic particles (electrons, ions).

Natural phenomena such as electron motion in atoms occur on timescales even shorter than a
femtosecond, as brief as few attoseconds (1 as = 10−18 s). To gauge these processes, the light
wavelength should lie in the XUV range: for a laser period T0 = 100 as, the corresponding
laser wavelength would be λ0 = 30 nm. However, it turns out to be rather challenging to effi-
ciently amplify light in that spectral range. That is why present high-power laser sources rely
on titanium-sapphire lasers that emit near-infrared light at λ0 = 800 nm. To produce XUV
light, a better approach consists of using already existing femtosecond laser pulses and to create
directly attosecond pulses in situ by a mechanism known as high harmonic generation (HHG).
The underlying idea is to distort laser wavefronts by non-linear interactions with matter. As the
deformation should be temporally periodic, the resulting wave is characterized in Fourier space
by a comb of harmonic frequencies, integer multiples of the driving laser frequency (e.g., for the
30th harmonic, λ30 = λ0/30 ≃ 27 nm or T30 = 89 as).

Alongside XUV pulses, bright relativistic electron bunches can also be used to probe matter at
attosecond timescales. Indeed, due their short de Broglie length, electrons easily penetrate into
most media, even those opaque for XUV radiations. Their cross section for inelastic scattering is
also far smaller than for photons. They thus deposit less energy into samples, lowering the risk
of non-reversible damages. The standard method to accelerate electrons up to velocities close
to the speed of light relies on radiofrequency accelerators. However, because the electric fields
within radiofrequency chambers are relatively low to avoid electric breakdown of the cavities
(∼ tens of MV.m−1), electrons have to traveled over long distances (up to kilometer scales) to
reach high energies.

On the other hand, compact and affordable femtosecond electron sources have been proposed
that rely yet on high-power femtosecond lasers [Corde et al., 2013; Guénot et al., 2017]. When
an intense laser beam (I0 ≳ 1018 W.cm−2) is traveling through a gas jet, it excites a plasma
wave in its wake. This wake is characterized by a succession of ion cavities void of electrons that
can sustain strong space-charge electric fields (∼ 100 GV.m−1). These can accelerate injected
electrons up to relativistic velocities within few centimeters [Tajima and Dawson, 1979; Faure,
Glinec, et al., 2004; Geddes et al., 2004; Mangles et al., 2004; Esarey, Schroeder, et al., 2009].
The record of the highest energetic electron beam generated by lasers is currently held by the
BELLA team in the Lawrence Berkeley Laboratory that successfully produced a 5pC-charge
electron beam up to 7.8 GeV in a capillary [Gonsalves et al., 2019]. However, despite significant
progress since 1990, laser wakefield acceleration currently suffers from low charge (due to the
low density of a gas medium) and low reproducibility at high energy that might prevent their
use in many targeted applications (colliders for example).

The proper control of these sources of particle and light however requires a very good under-
standing of the laser-plasma interaction processes. Due to the extremely short time and length
scales at play, a deep physical insight on the interaction is however not always accessible in
experiments. In that regard, the interpretation and guiding of laser-plasma experiments would
probably not have been possible without the support of numerical simulations and in particular
Particle-In-Cell (PIC) simulations. The latter rely on a particle-mesh approach to simulate the
plasma dynamics by self-consistently solving Maxwell’s equations on a grid and the Vlasov’s
equation discretized in phase space using Lagrangian superparticles (each superparticle repre-
senting a sample of the distribution in phase space) [Evans and Harlow, 1957; Morse and Nielson,
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1969; Dawson, 1983; Birdsall and Langdon, 1985; Arber et al., 2015]. PIC codes proved their
reliability and their importance in many fields of plasma physics where kinetic effects play a
major role from cold discharges to ultra-high intensity physics.

An efficient modeling of laser-plasma interaction experiments however requires to describe the
plasma dynamics with high spatial and temporal resolutions. This often results in large sim-
ulation boxes and high number of particles (typically 105−7 superparticles and grid points in
2D, 108−11 in 3D) that simply cannot be handled by personal desktops. Therefore, realistic nu-
merical simulations have to be run on massively-parallel supercomputers, in which particle and
field data are distributed over many different processing units. Nowadays, current machines1

are able to treat routinely 1015−16 float operations per second (= 1−10 petaflops) and the iconic
threshold of 1018 float operations per second (= 1 exaflop) should be reached within the coming
year by the Intel-Cray Aurora2 system slated for 2021.

Objectives
In this context, the objective of this PhD thesis was to better understand the interaction

between a high-power laser and a dense plasma through numerical simulations and theoretical
models. This physics topic was particularly studied both experimentally and theoretically in
the PHI group at CEA led by F. Quéré in the context of high harmonic generation. It gave rise
to multiple PhD works3.

When an intense femtosecond laser pulse is focused on a solid target, the electric field is suffi-
ciently high to quasi-instantly ionize matter that is reflective for the incident light. If the laser
is short enough, the plasma vacuum interface barely has time to expand in vacuum before the
interaction, on a spatial scale much shorter than the laser wavelength. The dense plasma there-
fore acts as an optical mirror that specularly reflects the incident light: it is a plasma mirror.
Upon reflection of the laser on the plasma mirror surface, non-linear mechanisms are responsible
for the emission of high order laser harmonics along the specular direction in the form of a
train of attosecond pulses. Nowadays, high harmonic generation on plasma mirrors are mostly
well-understood and have been clearly demonstrated both experimentally and numerically4.

Simultaneously to the high harmonic generation, a large number of electrons (∼ nC) is also emit-
ted from the solid surface towards vacuum in the form of attosecond bunches. These electrons
will co-propagate into vacuum with the laser reflected wave and undergo vacuum laser acceler-
ation. Recently, teams of PHI and LOA (Laboratoire d’Optique Appliquée) demonstrated the
use of plasma mirror as an electron injector in a high-power laser field providing high-charge
and relativistic collimated beams (10 MeV at 1.5 nC) [Thévenet, Leblanc, et al., 2016].

The PHI team operates the UHI100 Titanium-Sapphire beam line, which emits 100 TW and
25 fs laser pulses in λ0 = 800 nm. The specificity of the UHI100 laser is the high quality of
the beams that it delivers in term of temporal contrast [Nantel et al., 1998]. This is achieved
thanks to a set of optical systems [Lévy et al., 2007] located before the main experimental vac-
uum chamber that remove the long and intense pedestal preceding the main pulse. An excellent

1https://www.top500.org/lists
2https://aurora.alcf.anl.gov/
3Thaury, 2008; Vincenti, 2011; Monchocé, 2014; Leblanc, 2016; Chopineau, 2019; Bouchard, 2020
4Lichters et al., 1996; Dromey et al., 2006; Baeva et al., 2006; Quéré et al., 2006; Thaury and Quéré, 2010;
Vincenti, 2011; Borot, 2012; Leblanc, 2016
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temporal contrast is absolutely mandatory in plasma mirror experiments, because a too intense
pedestal would lead to premature creation and expansion of the plasma in front of the solid
surface. This ruins the expected profile of the target before the arrival of the main pulse and
complicates the interpretations.

My research precisely aimed to identify the different coupling mechanisms between light and
dense plasmas at play when the surface in front of the plasma mirror is not steplike but features
a finite (and controlled) density gradient characterized by a scale length in the order of the laser
wavelength. Under these conditions, electron and harmonic signals are observed to collapse that
clearly indicates a change of regime of interaction. My work provided a crucial support in the
interpretation of recent experiments performed by A. Leblanc, A. Denoeud and L. Chopineau,
with whom I worked in close collaboration.

Outline
This manuscript breaks down into four large parts and eight chapters. The first part intro-

duces the basics of the interaction between an ultra-short and ultra-intense laser and a dense
plasma, from its creation by ionization processes to applications as a source of high harmonics
or relativistic electrons. Then, we take a slight step aside from the main scope to introduce non-
linear and chaotic dynamics. Basic knowledge on that topics should prove useful to describe
plasma electron motion in the density gradient. By choice, this heavily mathematical topic
is treated from a physicist’s point of view by emphasizing intuitive features of simple chaotic
systems instead of focusing on complex analytical derivations.

The second part details the numerical tools used all along the manuscript. Precisely, simula-
tions, which aim to finely reproduce the experiments, are performed with the Particle-In-Cell
code WARP+PXR, co-developed by the Lawrence Berkeley National Laboratory and the CEA
Saclay. It is based on state-of-the-art pseudo-spectral Maxwell solver that I benchmark on
plasma mirror simulations. As opposed to standard Maxwell solvers, the former greatly improve
the simulation accuracy and render accessible 3D cases not possible otherwise. These large scale
PIC simulations are also complemented by simulations carried out by a particle tracker code
that I develop that significantly accelerates the time to solution, while giving thorough under-
standings of the processes at play.

The third part reports the first comprehensive numerical and experimental study of coupling
mechanisms between laser and overdense plasma as a function of the plasma-vacuum interface
at relativistic laser intensities. Our observations reveal a clear transition from a temporally
periodic mechanism to a chaotic process as the interface becomes smoother.

The last part encompasses all numerical and theoretical works aimed at explaining thoroughly
the key signatures of these two distinct regimes. First we discuss the acceleration of electrons
in vacuum after their emission from the solid target. The principal features have already been
published for simple laser configurations, but remain unknown in more complex situations. Sec-
ond, thanks to numerical simulations, the chaotic mechanism responsible for electron ejection is
fully characterized as well as its domain of validity in terms of laser-plasma parameters. Finally,
because this mechanism is found to be almost independent of plasma collective effects, the dy-
namics of plasma particles can be described as if they were in vacuum. It allows us for reducing
the equations governing the motion into well-known physical system, the pendulums. Similarly
to free electrons in electromagnetic waves, these systems may or may not exhibit chaotic be-
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haviours.

This work was subject to several publications and conference presentations listed at the end of
the manuscript. Other articles will be also submitted in a near future.
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1 Introduction to Plasma Mirrors

When an intense femtosecond laser pulse is focused on a solid target, the electric field is
sufficiently high to almost instantly ionize matter. It leads to a creation of a dense plasma,
which expands towards vacuum. Due to the very short pulse duration and its high-contrast, the
plasma barely expands during the interaction and forms a pre-plasma at the vacuum-plasma
interface with a scale-length much smaller than the incident laser wavelength. Such a dense
plasma reflects most of the incident light along the specular direction as if it were a mirror of
high optical quality.
This introductory chapter is dedicated to the physics of the plasma mirrors from their creations
to their fundamental use as particle and light sources with remarkable properties. In particular,
are detailed several nonlinear couplings between light and matter responsible for electron emis-
sion and high harmonic generation (HHG).
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1.1.1 Field ionization of matter . . . . . . . . . . . . . . . . . . . . . . . . . . 10
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1.3.1 High harmonic generation by the ROM mechanism . . . . . . . . . . . . 21
1.3.2 Electron acceleration from plasma mirrors . . . . . . . . . . . . . . . . . 25
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1.1 Creation of a Dense Plasma Reflective for the Incidence
Wave

1.1.1 Field ionization of matter
Described by Irving Langmuir as the fourth state of matter, a plasma is an ionized gas made

of free electrons and positive ions. In contrast to other states of matter (solid, liquid or gas), it is
highly electrically conductive to the point that long-range electric and magnetic fields dominate
the behaviour of the matter. It exists a large variety of plasmas, classified according to their
temperatures, densities or degrees of ionization: from cold and weakly ionized gas used in the
industry to hot and fully ionized plasmas deep inside stars.

In this manuscript, the plasma is created by focusing an intense laser pulse on a solid target,
composed of silica (SiO2) or plastic (C and H). Electrons will be ejected from their parent atoms
when they receive enough energy Ei to propel them from their bound state to the continuum
(e.g., 11.2 eV for C to C+ or 13.6 eV for H to H+). It can be done either by absorbing a single
high-frequency photon (such as XUV photons) or multiple lower frequency photons.

When using a Ti:sapphire laser, the photon energy is too weak to operate a direct photoionization
(only ∼ 1.5 eV per photon at 800 nm) but the concentration of light is such that multiphoton
ionization is likely to happen. This phenomenon is illustrated in Fig. 1.1–a.

ca b

Figure 1.1: Atom ionization by an external electric field - For panel (a), the external electric field
is weak. The potential is simply the Coulomb potential of the parent ion and the prevailing mechanism
is multiphoton ionization. When the external field becomes stronger, it can disturb the binding potential.
The different ionization processes are then (b): tunneling ionization or (c): over-the-barrier ionization.

When the intensity of the laser pulse becomes stronger, the laser field is able to distort the
Coulomb field felt by the electron [Gibbon, 2005]. With E0 the amplitude of the laser electric
field, the new electric potential of the electron reads:

V (x) = − Ze2

4πϵ0|x|
− eE0x, (1.1)

where Z is the charge of the parent ion, e the elementary charge and ϵ0 the vacuum permittivity.
Applying such an external laser field thus lowers the Coulomb barrier. It results that by quan-
tum mechanics effect, the electron may tunnel through the barrier, with a non-zero probability
(see Fig. 1.1–b). If the barrier falls below Ei, the electron does even escape spontaneously. The
last ionization mechanism is known as the over-the-barrier ionization (OBTI) and pictured in
Fig. 1.1–c.
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Quantitatively, it is possible to estimate the laser intensity required to suppress the ionization
barrier by equating V and Ei.
[Gibbon, 2005] gives a convenient expression for the threshold intensity IOBT I :

IOBT I = 4× 109 (Ei
[
eV
])4

Z−2 W.cm−2. (1.2)

In particular, for the elements of interest (Si, O, H and C), several values of IOBT I are listed in
the following table.

Ions Si+ Si12+ O+ O7+ H+ C+ C6+

Ei
[
eV
]

8.2 523 13.6 739 13.6 11.2 490
IOBT I

[
W.cm−2] 2× 1013 2× 1018 1014 2× 1019 1014 6× 1013 6× 1018

Table 1.1: Intensity thresholds for over-the-barrier ionization for Si, O, H and C.

According to Tab. 1.1, an intensity of I ∼ 1013 W.cm−2 seems to be high enough to pull some
electrons off carbon or silicon atoms. For 100 TW to multi-PW class laser pulses, the peak
intensity I0 is higher than 1019 W.cm−2 ≫ 1013 W.cm−2 so the ionization occurs in the pedestal
of the main pulse, i.e. well before the interaction between the peak of the pulse and the target.
Considering that the laser temporal envelope evolves as a Gaussian function, the intensity of
the electromagnetic wave varies as:

I(t) = I0 exp
(
−t2/τ2

0

)
(1.3)

with τ0 the laser temporal duration. For τ0 = 25 fs and I0 = 1019 W.cm−2, the target starts to
be ionized as soon as I(ti) ∼ IOBT I , which gives ti ∼ 400 fs before the peak intensity. Therefore,
the main pulse does not interact with a solid target but rather a plasma, probably almost fully
ionized at that time (see Tab. 1.1).

Before the interaction with the main pulse, the resulting plasma expands in vacuum under
thermal effects (mainly Coulomb collisions), creating an exponential density profile in front of
the target surface [Kruer, 1988]. This profile is characterized by a scale length — Lg — called
the density gradient length. Lg is found to be a crucial parameter of the interaction because
most, if not all, couplings between light and solid target take place in this region, located at the
interface between plasma and vacuum.

1.1.2 Propagation of an electromagnetic wave in a plasma
We now present the response of this plasma to an external electromagnetic wave. Maxwell’s

equations give the equation of propagation of the electric field in the medium:

∇2E − 1
c2
∂2E

∂t2
= µ0

∂J

∂t
+ 1
ϵ0
∇ρ, (1.4)

with E the total electric field, J the current density vector, ρ the charge density, c the celerity
of light and µ0 the vacuum permeability.

For a transverse electromagnetic wave with angular frequency ω0 — E = Ẽ exp
(
− jω0t

)
—

propagating in a cold and non-collisional plasma, the electric field and current can be found
using Ohm’s law:

J = −jϵ0
ω2

p

ω0
Ẽ, where j2 = −1. (1.5)
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We defined herein the electron plasma frequency ωp:

ωp =

√
nee2

mϵ0
, (1.6)

where ne is the electron density and m the electron mass. ωp corresponds to the typical longitudi-
nal quivering frequency of electrons, in response to a small charge separation. The dependency
on the electron density can be physically explained: in denser parts of the plasma, particles
will respond quicker to the perturbation as the electrostatic field induced by the space-charge
separation, is higher.

Uniform plasma density. When the plasma density is uniform (∇ρ = 0), the wave
equation can be obtained by combining Eq. (1.4) and Eq. (1.5):

∇2Ẽ + ω2
0
c2

(
1−

ω2
p

ω2
0

)
Ẽ = 0. (1.7)

Considering an electromagnetic mode (ω0, k) such that Ẽ = E0 exp
(
jk ·x

)
, the wave dispersion

relation reads:
k2c2 = ω2

0 − ω2
p. (1.8)

Eq. (1.8) exhibits two distinct plasma regimes depending on ω0:

• when ω0 > ωp, Eq. (1.8) admits a real solution for the wave vector k. The plasma behaves
as a transparent medium for the incident wave characterized by a refractive index Nr:

Nr =
√

1− ω2
p/ω

2
0 ≤ 1. (1.9)

• when ω0 < ωp, the wave vector becomes imaginary. The laser wave cannot propagate in
the medium anymore and is reflected as if the plasma acts as a mirror.

The transition from one regime to the other occurs at a peculiar density — nc — called the
critical density obtained for ω0 = ωp and defined by:

nc = mϵ0ω
2
0

e2 . (1.10)

It separates underdense plasmas (ne < nc) transparent for incident laser waves from overdense
plasmas (ne > nc) opaque and reflective.

For Ti:Sapphire lasers for which λ0 = 800 nm, nc ≃ 1.7 × 1021 cm−3. The critical density is
lower than the solid density of our target (ne ∼ 1023−24 cm−3) by several orders of magnitude.
A plasma created from a solid target is thus largely overdense. This plasma is then considered
as a plasma mirror as it will reflect a large fraction of the incoming laser light.

Note that the above equations were derived in the classical regime (I0 < 1018 W.cm−2) for which
electron dynamics are not relativistic. When the laser intensity is higher (I0 ≳ 1018 W.cm−2),
[Lefebvre and Bonnaud, 1995; Guérin et al., 1996] point out the existence of a relativistic trans-
parency. Due to relativistic effects, waves can propagate deeper into the plasma, up to a density
ne = γ0nc, γ0 being the Lorentz factor of the electrons related to the laser parameters:

γ0 =
√

1 + a2
0, (1.11)
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where a0 is the normalized laser amplitude:

a0 = eE0
mω0c

= λ0
[
µm
]√I0

[
W.cm−2]

1.37× 1018 . (1.12)

This dimensionless parameter is particularly relevant to discriminate non-relativistic regimes
(a0 ≪ 1) from the relativistic regime (a0 ≳ 1). In this case, the electron quivering motion
occurs at relativistic speeds. For a Ti:Sapphire lasers, this happens as soon as the intensity
I0 ≥ 2× 1018 W.cm−2.

In any case, even by taking into account the relativistic transparency, a uniform solid target
will ever stay a plasma mirror for realistic laser parameters. Indeed, a0 must be as huge as 1000
to allow laser channeling by relativistic transparency. This corresponds to intensities as high as
1022−24 W.cm−2 at λ0 = 800 nm, way beyond the scope of the present manuscript.

Plasma with a density gradient. Actually, due to plasma expansion after target ioniza-
tion, the dense plasma rarely shows a perfect step-like density profile (Fig. 1.2–a) but rather
exhibit an exponentially decaying density profile towards vacuum as shown in Fig. 1.2–b (for
isothermal expansions). The electron density is dropping as it gets close to vacuum until ulti-
mately falling below nc. The total plasma layer is thus composed of an underdense part and an
overdense part.

a

Laser

VacuumSolid

b

underdenseoverdense

Figure 1.2: Target density profile before and during interaction with the laser - (a) Before
interaction, the solid target is equally dense: ne = nmax(= 220 nc). (b) Under the laser light, a plasma is
formed and expends in vacuum. The profile of this plasma covers two regions: one underdense (ne < nc)
and one overdense (ne > nc).

Along the laser propagation in the underdense part of the gradient, the refractive index Nr(x) is
continuously evolving accordingly to the local density. At oblique incidence, the local angle θ(x)
between the wave vector k inside the plasma layer and the x-axis is obtained by integrating the
Snell-Descartes law: ∂(Nr(x) sin θ(x))/∂x = 0. It comes that:√

1− ne(x)
nc

sin θ(x) = sin θi, (1.13)

where we introduce θi the laser angle of incidence. It appears that the density at which the laser
is effectively reflected, nr (obtained when θ = π/2), is even lower than nc:

nr = nc cos2 θi. (1.14)
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Note that for normal incidence (θi = 0), we retrieve that the reflection occurs when nr = nc, as
if the underdense part of the gradient plays no role.

Now that we have defined a plasma mirror, let us focus on the physical processes occurring
during the laser plasma interaction.

1.2 Coupling Mechanisms between a Laser and a Dense Plasma
Since the laser pulse cannot penetrate into overdense regions of the plasma, the absorption

of the laser energy can occur either in the undercritical part of the gradient or within the skin
depth of the overcritical plasma, where the laser wave is evanescent. A fraction of this energy
can be later transported into deeper plasma regions through energetic electrons. These may be
generated during the interaction through several mechanisms.

At first, physicists initially anticipated the main mechanism of energy deposition to be collisional
absorption [Kruer, 1988], where the electron-ion collisions disrupt the regular quivering motion
of the plasma electrons in the light field, statistically leading to a net kinetic gain. However, in
typical ultraintense laser-plasma interactions, electrons are accelerated up to MeV−GeV in tens
of femtoseconds, while the time scales between collisions are usually longer than a picosecond.
Given this time scale discrepancy, actual absorption mechanisms cannot rely on collisions be-
tween particles.

Nevertheless, even if we restrict the study to collisionless couplings between light and matter,
the abundance of processes available in the literature is such that it would be too long and too
tedious to describe them all here. For interested readers, a in-depth review of the topic can be
found in [Gibbon, 2005] for example. Instead, we decide to narrow it down to three mechanisms
at the center of this thesis: the resonance absorption, the vacuum heating (or Brunel absorption)
and the less known in the solid target community stochastic heating.

1.2.1 Resonance absorption
Let us start this overview by presenting the resonance absorption1 (RA), mechanism which

is dominant for long gradient scale lengths. At oblique incidence, we have seen that the laser
wave is reflected at the density nr = nc cos2 θi. However, if the incident pulse is p-polarized2,
some laser energy may tunnel up to the critical density nc in the form of an evanescent wave,
where it drives a resonant plasma wave (see Fig. 1.3–a). This wave will grow as the laser keeps
providing energy until it is either being damped by collisional effects if the laser intensity is low,
or by wave breaking, if it is higher [Albritton and Koch, 1975; Bergmann and Mulser, 1993].

This can happen only if the density gradient length Lg is long enough that the refractive index
slowly varies over a laser wavelength [Ginsburg, 1964; Kruer, 1988]. It leads to a condition on
Lg: Lgk0 ≫ 1, k0 = ω0/c being the laser wave vector. Physically, it means that Lg has to be
much greater than the electrons quivering in the laser field. We will come back to this statement

1Freidberg et al., 1972; Estabrook, Valeo, et al., 1975; Forslund et al., 1975; Estabrook and Kruer, 1978; Kruer,
1988

2When the component of the laser electric field is parallel to the plane of incidence, the wave is termed to be
p-polarized (p for parallel). If E is on the contrary perpendicular to this plane, the wave polarization is called s
(s standing for senkrecht, the German world for perpendicular).
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Laser

Evanescence

Plasma wave

Reflective pointCritical densitya b

Figure 1.3: Resonance absorption mechanism - In panel (a), a laser is reflected by a plasma density
gradient at the position xr. Beyond xr, some energy is delivered into the plasma in the form of an
evanescent wave, which drives a resonance near the critical density. After some time, the resonance can
lead to wave breaking or can be damped by Coulomb collisions. Panel (b) displays the dependence of
the fraction of absorbed laser energy ηRA as a function of the parameter ξ = (k0Lg)1/3 sin θi.

in the next subsection.

According to [Denisov, 1957; Gibbon, 2005], for long density scale lengths, the fraction of ab-
sorbed laser energy ηRA is expressed as a function of a single parameter ξ depending on both
the gradient length Lg and the laser incidence angle θi — ξ = (k0Lg)1/3 sin θi:

ηRA = 1
2

(
2.3 ξ exp

(
− 2ξ3/3

))2
. (1.15)

The profile of ηRA(ξ) is plotted in Fig. 1.3–b. In certain conditions, the fraction of the energy
stored in the plasma wave can reach 85% of the laser energy. This occurs when ξ ≃ 0.79, which
gives Lg ≃ λ0/4 at θi = 45◦.

Despite quantitative results, most analytical derivations describing the RA are based on per-
turbation theories, in which the whole density gradient is only weakly disturbed. In particular,
they assume that the local densities are not modified by the laser pulse, which tends to be
incorrect as soon as the laser intensity becomes too high. Also, the Lorentz gamma factor is
often forgotten, implying that the electrons are not relativistic. Some efforts were proposed to
include the relativistic effects [Drake and Y. C. Lee, 1976] but as we will see further ahead in the
manuscript, resonance absorption is superseded by another mechanism at relativistic intensities
(a0 ≳ 1).

In any case, the necessary condition for resonance absorption is a density gradient that is long
enough for the laser wave to propagate, regardless of its intensity. At very steep gradients,
the RA will also cease to be dominant in favor of another collisionless coupling — the vacuum
heating or Brunel mechanism.

1.2.2 Brunel mechanism

When the density gradient in front of the target is too sharp, the excursion amplitude of
electrons in the laser oscillations — δx — becomes so large that it can exceed the gradient scale
length itself. In an iconic paper, [Brunel, 1987] predicted a transition towards a new collisionless
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mechanism, which he ironically called ”not-so-resonant, resonant absorption”. In this case, elec-
trons at the plasma surface are first pulled out of the plasma by the laser field, when E⊥ (the
component of the electric field perpendicular to the target surface) points towards the target
direction. As the laser electric field component changes sign, the same electrons will be pushed
back into the plasma under the combined action of the laser and the electrostatic space charge
fields. As soon as these so-called Brunel electrons have returned back to the plasma, they are
not subject to any field so they further travel ballistically into the target at the velocity that
they have acquired in vacuum. These particles never render their energy acquired in the laser
and are responsible for energy absorption by the plasma.

a b

Resonance absorption

Brunel

?

Figure 1.4: A transition to Brunel mechanism for short gradients - Panel (a) shows the evolution
of the quantity

(
δx − Lg

)
as a function of a0 and Lg. The black dashed curve indicates the particular

location where δx = Lg. The hatched area indicates that the whole diagram is not completely understood
yet. In panel (b), we represent electrons trajectories x(t). The different line colors correspond to different
time of injection ti ∈

[
0.08, 0.55

]
T0, from dark blue to white. On top of the figure is pictured the electric

field profile along time.

Brunel’s criterion to discriminate RA from his new mechanism is based on the relative values
of δx and Lg. In a crude approximation, one can use δx ≃ vosc/ω0, where vosc is the quivering
velocity of electrons in the laser field. Thanks to the equations of motion, vosc can be quantified
and reads vosc ≃ eE0/γ0mω0 = a0c/γ0, with γ0 the already defined Lorentz factor related to the
laser intensity — γ0 =

√
1 + a2

0. Overall, the resonance breaks down if the following condition
is fulfilled:

Lg < δx = a0λ0

2π
√

1 + a2
0

. (1.16)

In Fig. 1.4–a is plotted the quantity
(
δx − Lg

)
as a function of a0 and Lg. The black dash line

highlights the locations where δx = Lg and delimits the transition between the two mechanisms.
The Brunel absorption is found to be predominant in the bottom-right region, while the RA is
expected to prevail upper the line. In addition,we indicate a hatched area in the top-right corner
corresponding to high intensities and long gradients. The purpose of this manuscript will be to
unearth the dominant mechanism at stake in this regime.

Mechanism at low intensity. Now, let us focus on the Brunel mechanism itself. We
consider a p-polarized wave impinging on a steep plasma under oblique incidence with the angle
θi. For a simple model, Brunel imposed few hypotheses beforehand:
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• the laser intensity is kept modest (a0 ≲ 1) and the particles are not relativistic (γ = γ0 = 1).
It implies that the magnetic field contribution is ignored and the magnetic Lorentz force
FB = −ev ×B is neglected.

• The plasma-vacuum interface is modeled as an initial step-like density profile: for x > 0,
there is the vacuum where a standing electric wave is set up and for x < 0, there is the
plasma considered as a perfect conductor, which can freely emit electrons.

• At the plasma surface, the transverse components of the electric field are canceling so the
electrons only move along the normal direction. The Brunel mechanism is modeled in 1D.

At the interface, the driving electric field is given by:

E⊥(t) = 2E0 sin θi sin(ω0t). (1.17)

As the field increases for t > 0, electrons are pulled out of the plasma in order to maintain a
zero field on the conductor surface (x = 0). That creates an electrostatic field Es along x. This
field is given by the Gauss’s law for the ith electrons emitted at t = ti:

Es, i(t) = e

∫ +∞

xi

ne(x)
ϵ0

dx. (1.18)

Another fundamental hypothesis of the Brunel mechanism is that the electron trajectories never
cross each other, so that the total charge in front of the ith electron remains unchanged. The elec-
trostatic field seen by this electron is constant over time: Es, i(t) = Es, i and can be determined
at the surface where the total field canceled:

0 = E⊥(ti) + Es, i ⇔ Es, i = −E⊥(ti). (1.19)

The total electric field seen by the ith electron at any time is then:

E(t) = E⊥(t)− E⊥(ti) = 2E0 sin θi

(
sin(ω0t)− sin(ω0ti)

)
. (1.20)

The position xi(t) and velocity vi(t) of this electron can be obtained after integrating the equation
of motion mdvi/dt = −eE(t) and read:

• vi(t) = v′
osc

(
cos(ω0t)− cos(ω0ti) + ω0 (t− ti) sin(ω0ti)

)
,

• xi(t) = v′
osc

ω0

(
sin(ω0t)− sin(ω0ti)− ω0 (t− ti) cos(ω0ti) + 1

2
w2

0 (t− ti)2 sin(ω0ti)
)
.

(1.21)

with v′
osc = 2vosc sin θi. The corresponding trajectories are plotted in Fig. 1.4–b in various

shades of blue related to the time of emission ti. Electrons that are emitted at late times return
to the plasma also at late times but with a higher velocity. It induces a natural bunching of these
particles as they penetrate the overdense part of the plasma, along a peculiar caustic displayed
as a black line in the figure. It was shown by [Quéré et al., 2006; Thaury and Quéré, 2010]
that the electron density peak in that region will excite plasma oscillations at different positions
within the gradient and be responsible for an emission of harmonics up to the plasma frequency.
This process of generation is called Coherent Wake Emission.

Mechanism at relativistic intensities. It is important to note that Brunel’s electrons
are always supposed to return back to the plasma. Therefore, no electron should be detected
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a b
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0
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Figure 1.5: Brunel mechanism in the relativistic regime -
[
Image from [Thévenet, Vincenti, et al.,

2016]
]
. Electron trajectories from (a) a numerical simulation and (b) the analytical model developed in

[Thévenet, Vincenti, et al., 2016] for a0 = 8, Lg = λ0/10 and θi = 45◦.

in front of the target. However, when the laser intensity is heightened up to 1018−19 W.cm−2,
numerical simulations show that a fraction of surface electrons are emitted towards vacuum.
It means that the initial hypotheses of Brunel are somehow violated. At high intensities, the
gyromagnetic term of the Lorentz force becomes comparable to the electric term and cannot be
neglected any longer. Brunel’s electrostatic model has to be extended.

In [Thévenet, Vincenti, et al., 2016], the authors have enriched Brunel’s model with relativistic
and magnetic effects, as well as non-uniform fields that depend on the electron position. In
Fig. 1.5 are plotted some particle trajectories obtained from a numerical simulation in blue
and the new extended model in red. The electron dynamics end up to be more complex and
intertwined. Moreover, clear jets of electrons are expelled in vacuum, which never return back.
For convenience, we will also use the term Brunel’s electrons, when designating this particular
electron population, despite that it did not exist in Brunel’s original model.

Note that at high laser intensities, Brunel mechanism can even happen at normal incidence,
but this time the electrons are driven by the magnetic force rather than the electric force (the
electric field is tangent to the plasma surface). This mechanism happens twice per laser period
(because the Lorentz magnetic force oscillates at 2ω0) and is commonly named as J×B heating
[Kruer and Estabrook, 1985].

1.2.3 Stochastic heating

The last coupling mechanism between light and solid target presented here is called stochastic
heating [Mendonça and Doveil, 1982; Mendonca, 1983; Rax, 1992]. It is in general less known
in the solid target community than the two previous mechanisms, because it requires a large
quantity of electrons in the underdense part of the gradient, not compatible with the plasma
mirror regime. It should occur for long density gradients (Lg ≳ λ0) and relativistic intensities,
but the transitions from resonance absorption or Brunel mechanism remain unclear. In this
regime, the electrons are found to behave chaotically while absorbing the laser energy.

This mechanism simply happens when free electrons are evolving in a combination of two non-
collinear waves. In that case, the motion is in general non-integrable and can even become
chaotic if the intensity of one of the two wave is sufficiently high (typically one with a0 > 1
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and one with a0 ∼ 0.1 [Z.-M. Sheng, Mima, Sentoku, et al., 2002]). The system ends up to be
extremely sensible to initial conditions despite being deterministic a priori. More information
related to chaotic systems will be treated in the next chapter.

This process is not limited to free electrons but may also take place in very tenuous plasma
(ne ∼ 10−2 nc), where electron motion is mainly governed by direct interactions with the laser
pulse. Then, it did not take long to find evidences that stochastic heating is the mechanism at
play when two intense lasers are interfering within a gas jet [P. Zhang et al., 2003; Z.-M. Sheng,
Mima, J. Zhang, et al., 2004]. It was even theoretically proposed as a scheme to inject electron in
laser wakefield acceleration3: a first intense laser drives plasma waves and a weak second pulse,
sent in the opposite direction, will introduce a small perturbation propelling several electrons
out of their regular trajectories. Some of them may be trapped into the wake. Experiments
conducted during Rechatin’s thesis [Faure, Rechatin, et al., 2006; Rechatin, 2009] proved the
validity of the scheme. However, for evident problems of laser synchronization and alignment,
experiments of stochastic heating in gas are particularly challenging and ended to be abandoned
in favor of other much more reliable injection techniques [Esarey, Schroeder, et al., 2009].

Back to laser interactions on solid targets, as soon as in the 80s, [Mendonça and Doveil, 1982]
first suspected that a small fraction of a laser pulse reflected by a plasma surface could provide
an adequate perturbation to make the system non-integrable. This was later confirmed by [Sen-
toku et al., 2002], who, based on numerical simulations, demonstrated that electrons can gain
energy through stochastic heating in the underdense part of a density gradient. Upon reflection,
the combination of incident and reflected electromagnetic waves in the underdense part of the
plasma layer produces a standing wave near the position of reflection xr, corresponding to the
density nr = nc cos2 θi (see 1.2–b, page 13). The experimental setup becomes much more simple
because it does not require an additional synchronized laser pulse anymore: the additional wave
is directly created in situ by the overdense part of the gradient.

a b

e-
Laser wave 1

e-

Laser wave 1

e-

Laser wave 2

e-

Figure 1.6: Drawing of a simple model of photon absorption - Panel (a) displays an interaction
between a laser pulse (in red), carrying many photons γ̃, and a single electron (in green). The top line
corresponds to a state before interaction and the bottom line after interaction. In panel (b), a second
laser pulse is added (in blue) colliding with the first pulse. Note that the different laser colors are not
related to the actual laser wavelengths but are only rendered to help discriminating laser 1 from laser 2.

Model of photon absorption. An essential condition to stochastically heat electrons is
the presence of a second wave. When a single laser beam (assumed to be a monochromatic plane
wave) is present, photon absorption processes are hindered as they do not conserve both energy
3Umstadter et al., 1996; Esarey, Hubbard, et al., 1997; Fubiani et al., 2004; Rassou et al., 2014
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and momentum of the total system. By contrast, if another beam traveling in the opposite
direction is added to the system, the combined absorption of multiple photons simultaneously
from both beams becomes allowed.

To illustrate why in practice the electrons are able to gain energy in two waves rather than in
one, we derive a simple model of photon absorption for a single free electron. As displayed in
Fig. 1.6–a, we consider that the incoming light is made of a coherent sum of N1 photons (symbol
γ̃) with the same energy E1 and momentum p1 = p1x. The electron is initially set at rest such
that its energy Ee = mc2 and its momentum pe = 0.

We also suppose that N1 is sufficiently high to neglect all potential radiations created by electron-
photon scattering — such as Compton scattering — over the laser light. In addition, we are
strictly interested in the net kinetic energy gain after interaction and not how the electron en-
ergy can potentially evolve up and down in the middle of the interaction.

We are looking for the existence of a tuple (N ′
1, E ′

1, p′
1), quantities related to the photons after

interaction, which respects the conservation law of energy and momentum of the system, but
allowing for a photon absorption by the electron. In other words, we aim to find an electron
energy E ′

e and momentum p′
e after the interaction, different from the initial state (E ′

e ̸= Ee

and p′
e ̸= 0). Equating the whole energy and momentum of the system before and after the

interaction reads:

• N1E1 +mc2 = N ′
1E ′

1 + E ′
e,

• N1p1 = N ′
1p

′
1 + p′

e.
(1.22)

For both photons and electron, energy can be related to momentum: for a photon E1 = p1c and
for an electron E ′

e = γmc2, with γ =
√

1 +
(
p′

e/mc
)2 being the electron Lorentz factor. Overall,

after combining the two lines of Eq. (1.22):

mc2 = γmc2 − p′
ec,

⇔ γ2 = 1 +
(
p′

e

mc

)2
+ 2 p′

e

mc
. (1.23)

The only solution of this equation is p′
e = 0 = pe and thus E ′

e = mc2 = Ee. There cannot be any
photon absorption in this case.

Now, a second laser beam is added that travels in the opposite direction (see Fig. 1.6–b). In the
same way, we define the tuples (N2, E2, p2) and (N ′

2, E ′
2, p′

2) to designate the number of photons
related to the second laser, their energies and their momenta, before and after interaction with
the electron. Defining α the ratio between the photon energy of the first and second laser, it
comes that E2 = αE1 and p2 = −αp1 (and same equations for primed variables). The negative
sign in the momentum comes from the counter propagation. In case of two waves, the energy
balance becomes:

• (N1 + αN2) E1 +mc2 =
(
N ′

1 + αN ′
2
)
E ′

1 + E ′
e,

• (N1 − αN2) p1 =
(
N ′

1 − αN ′
2
)
p′

1 + p′
e

(1.24)
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and

2αN2p1c+mc2 = 2αN ′
2p

′
1c+ γmc2 − p′

ec,

⇔ γ = 1 + p′
e

mc
+ 2α
mc

(
N2p1 −N ′

2p
′
1

)
=

√
1 +

(
p′

e

mc

)2
,

⇒ p′
e = −2α

(
N2p1 −N ′

2p
′
1

) mc+ α
(
N2p1 −N ′

2p
′
1

)
mc+ 2α

(
N2p1 −N ′

2p
′
1

) . (1.25)

The exact value of p′
e does not matter much in practice, but more importantly, this formula

ensures that solutions with p′
e ̸= 0 exist for which both energy and momentum of the total

system are conserved. By contrast to the case with one wave, the electron is able to absorb
some photons from the two lasers and therefore be accelerated.

In this manuscript, we will extensively study the stochastic heating in laser plasma interactions
in many laser configurations (e.g., laser polarization, incidence, intensity, etc.) as well as the
transitions towards resonance and Brunel absorptions.

1.3 Plasma Mirrors as a Source of Particles and Light

1.3.1 High harmonic generation by the ROM mechanism
For more than a decade now, plasma mirrors have been subject of interest in the high power

laser community. One of the main motivations that drive such studies is mainly fundamental,
because they can provide bright electron and harmonic sources that are capable of probing the
ultrafast dynamics of the matter at the attosecond scale [Tsakiris et al., 2006; Vincenti and
Quéré, 2012; G. Ma et al., 2015]. More recently, [Vincenti, 2019] showed that they may also
be used to reach extreme light intensities, never achieved in experiments yet, allowing to probe
unexplored regimes of quantum electrodynamics.

Upon reflection on the plasma mirror surface, non-linear interactions between the laser and the
plasma can lead to the production of a high harmonic comb, associated in the temporal domain
to attosecond bunches. At high intensities (I > 1018 W.cm−2), the laser electric field drives
periodic oscillations of the surface, making it move at relativistic velocities. These oscillations
induce a Doppler shift that periodically distorts the reflected wavefronts and introduces new fre-
quencies multiple of ω0. This mechanism of generation is known as the Relativistic Oscillating
Mirror or ROM [Lichters et al., 1996; von der Linde and Rzàzewski, 1996; Dromey et al., 2006].

Doppler effect. Before considering a relativistic oscillating mirror, we derive a simpler
case, where a wave is reflected by a perfect mirror traveling at a constant velocity vM > 0
along the x axis (see Fig. 1.7–a). For a stationary observer, the reflected wave will show an
angular frequency ωr different from the frequency ω0 of the incidence wave: this is known as the
relativistic Doppler effect.

Indeed, in a case of a normal reflection on the mirror, the electric fields of the two waves read:

• Ei(x, t) = E0 cos
(
ω0(t+ x/c)

)
,

• Er(x, t) = E0 cos
(
ωr(t− x/c)

)
.

(1.26)
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a b

Figure 1.7: Doppler effect with a relativistic drifting mirror - On panel (a), an incident wave (in
red) with an angular frequency ω0 is reflected on a mirror drifting at the velocity vMx. After interaction,
the reflected wave (in purple) shows an angular frequency ωr > ω0. Panel (b) shows the variation of
ωr/ω0 as a function of the velocity vM for three different laser angles of incidence θi.

At the surface of the perfect mirror (x = xM = vM t), the boundary condition for the electric
field is simply Ei(xM , t) = −Er(xM , t). It comes that:

ωr = ω0
1 + vM/c

1− vM/c
= ω0

(
1 + vM

c

)2
γ2

M , (1.27)

where γM = 1/
√

1−
(
vM/c

)2 the Lorentz factor associated to the drifting mirror. Assuming
that the mirror is traveling at ultra relativistic velocity: vM → c, the angular frequency of the
reflected wave asymptotically scales as:

ωr = 4ω0γ
2
M . (1.28)

To convert ω0 to high frequency, the velocity of the mirror must be close to the speed of light:
for example if vM = 0.35 c, ωr = 2ω0, while if vM = 0.95 c, ωr ≃ 40ω0.

It is also possible to extend the model to oblique incidence with an angle θi, such as presented
in [Einstein, 1905; Yeh, 1965]. In that case, the frequency shift becomes:

ωr = ω0γ
2
M

(
1 +

(
vM

c

)2
+ 2

(
vM

c

)
cos θi

)
. (1.29)

In Fig. 1.7–b is displayed the variation of ωr/ω0 for different angles of incidence. This quantity
depends only weakly on θi.

Relativistic Oscillating Mirror model by Lichters. In practice, the mirror is not trav-
eling at constant velocity but is oscillating back and forth under the influence of the laser electric
field. Its velocity is thus continuously varying from 0 to some vMmax = vosc during a laser period
(see Sec. 1.2.2) and one should expect generating a comb of different harmonic orders rather
than a single frequency ωr.

The mechanism of generation based on a relativistic oscillating mirror was initially proposed by
[Wilks, 1993] and [Bulanov et al., 1994], but [Lichters et al., 1996] was the first to derive a model
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a b c

Figure 1.8: The Relativistic Oscillating Mirror model by Lichters - In panel (a) is pictured the
position of the surface electrons under the combined action of incident and reflected fields: X(t) is plotted
in dash line and X(tret) (X(t) at retarded times) in solid line. In panel (b), we plot the incident (red)
and reflected (blue) electric fields as well as the reflected field filtered for harmonics 20 to 40 (purple).
Finally, the whole spectrum of the electric field is displayed in panel (c) in log-log scale.

that gives the temporal shape of the reflected field. This model assumes that the plasma setup is
the same as for Brunel mechanism (see Fig. 1.4–b, page 16): the x < 0 area is filled with a steep
overdense plasma (ne ≫ nc and Lg ≪ λ0) and a p-polarized laser is impinging on this target
with an angle of incidence θi. Ions are kept immobile and electrons located at the position X(t)
are oscillating under the action of the laser electric field. Considering the steepness of the skin
depth — ls = c/ωp — at the interface vacuum-plasma, we suppose that the harmonic generation
also takes place at X(t) .

According to [Lichters et al., 1996], the expression of X(t) should not be simple, because the
restoring force created by the space charge electrostatic field behaves differently in the plasma
layer and in vacuum. This force can only be described by kinetic simulations, whereas Lichters’
model bases on hydrodynamic equations. So, the authors assume that the surface should mainly
be driven by the laser. That gives an analytical form for X(t) pictured as a sine wave (or a more
complicated periodic form, combination of different laser harmonics):

X(t) = vosc

ω0
cos(ω0t+ ϕ), (1.30)

where vosc reads at oblique incidence:

vosc

c
= 2a0 sin θi√

1 + (2a0 sin θi)2 . (1.31)

ϕ is the relative phase between the driving field and the surface oscillation. Recalling that the
harmonic source is sharply localized at X(t), the reflected electric field Er(x, t) is given by:

Er(x, t) ≃ µ0c

∫
J//

(
X(tret), tret

)
dx′ ≃ µ0c ls J//

(
X(tret), tret

)
, (1.32)

where J// is the current transverse to the plasma surface and

tret = t− (X(tret)− x)/c (1.33)

is the retarded time that takes into account the temporal delay between the emission from the
source and an observer located in x at a time t. Physically, X(tret) simply corresponds to the
position of the surface as seen by this observer.
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a b

Lichters
Simulated

Figure 1.9: Relativistic Oscillating Mirror in numerical simulation - The data were extracted
from a 1D Particle-In-Cell simulation. Panel (a) shows the temporal evolution of the plasma surface (in
black), as well as the emitted attosecond pulses (in purple). The plasma surface is sketched in a red dash
line as well as representative trajectories for ejected electrons in blue. In panel (b), the spectrum found
in this simulation (purple solid line) is compared to the one predicted by Lichters’ model (blue crosses).
The y-axis is in log scale.

The electric field can be determined by evaluating X(tret) = X
(
t − (X(tret) − x)/c

)
, which

corresponds to a fixed point problem f(a) = a. Because tret appears on both sides of Eq. (1.33),
X(tret) is solved by using a recursive algorithm:

• X0 = X(t),
• Xk+1 = X

(
t− (Xk − x)/c

)
,

(1.34)

where X(t) is given by Eq. (1.30).

The converged value of X(tret) is plotted in Fig. 1.8–a. From the point of view of the fixed
observer, the retarded times distort the profile of the surface. Because of the Doppler effect due
to the motion of the surface, the reflected electric field is distorted as well (see Fig. 1.8–b). It
results that extra frequencies appear in the spectral domain (see Fig. 1.8–c). The time corre-
sponding to the harmonic emission is obtained after filtering a certain range of harmonics (e.g.,
from the orders 20 to 40) and returning back into the temporal domain. As shown in Fig. 1.8–b,
the harmonics are mostly generated when the laser wavefront is steep. The filtered field (purple
line) is characterized by a train of attosecond bunches, each one separated by a laser period.

The principal results obtained with Lichters’ model are now compared to Particle-In-Cell simu-
lations (see Ch. 3, page 43 for more information on the Particle-In-Cell method). In Fig. 1.9–a,
we plot the plasma density along time in black as well as the filtered field extracted from a 1D
simulation. Similarly to the analytical derivation, the plasma surface (red line) oscillates in time
and at every laser period, attosecond pulses are emitted towards vacuum. However, as shown in
Fig. 1.9–b, the Lichters’ model fails to perfectly reproduce the harmonic efficiency decay (even
it well matches at lowest orders). This discrepancy might come from the principal assumption
of the Lichters’ model, which imposes a sine profile for X(t).

More generally, the ROM model allows for a simple understanding of the physics at play and
reproduces the main features of the reflected electric field waveform. However, it does not give
any precise insights on the spatial properties of the harmonic beam or a possible harmonic
cutoff. Since Lichters, many more authors have tried to extend the model of the oscillating
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mirror [Baeva et al., 2006; Gonoskov et al., 2011; Debayle et al., 2015], but it seems that a
universal model, capable of predict all right properties of the harmonic emission in any cases,
has not been found yet.

1.3.2 Electron acceleration from plasma mirrors
Synchronized with the harmonic emission, plasma mirrors can also inject attosecond electron

bunches into the intense reflected field. These electrons will undergo a direct interaction with
the laser beam through a process called Vacuum Laser Acceleration or VLA [Thévenet, Leblanc,
et al., 2016] and be continuously accelerated in vacuum. In fact, if an electron remains in a given
optical laser cycle, it constantly gains energy through transverse acceleration imposed by the
laser electric field, until it leaves the focal volume4. This scheme is promising because it relies
on accelerating fields as high as 10 TV.m−1 that largely overcome the typical values observed
in conventional accelerators (∼ 50 MV.m−1).

However, even if the process behind VLA has been known for a long time, experimental ob-
servations have largely remained ambiguous [Malka et al., 1997; Cline et al., 2013]. This is
because VLA requires a controlled injection with specific initial conditions, which are found to
be extremely challenging in actual experiments:

(i) the electron bunches must be narrow enough (≪ λ0) that the whole is equally accelerated,

(ii) the electron bunches must be injected at relativistic velocities at the beginning of an
accelerated cycle in order to maximize the gained energy. They must also leave the laser
at a right time before entering a decelerated cycle.

a b
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Rayleigh length
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Figure 1.10: Sketch of VLA with plasma mirrors -
[
Image from [Thévenet, Leblanc, et al., 2016]

]
Panel (a) displays the injection of electrons (black dots) in the reflected field (blue to red). Electrons
are grouped into attosecond bunches injected by the plasma mirror at each optical laser cycle. Panel (b)
pictures the interaction of electrons in vacuum. Several electron trajectories are plotted in blue extracted
from a 2D numerical simulation.

Electrons that are not properly injected in the laser beam tend to explore many different opti-
cal cycles, where they are accelerated and decelerated for an overall low gain of energy. This
problem did stand during many years until it was finally solved in [Thévenet, Leblanc, et al.,
2016], which proposes the first indubitable evidences of VLA by using plasma mirrors as electron
injectors, which verify both above conditions. The general idea is presented in Fig. 1.10. In

4It implies that the laser cannot be a plane wave (see Sec. 1.2.3) but must present a finite spatial extension. The
most common spatial envelop is the Gaussian waveform.
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Figure 1.11: Initial conditions of electrons ejected from plasma mirrors -
[
Image from [Thévenet,

Leblanc, et al., 2016]
]

Panel (a) illustrates the waveform of the laser magnetic field By reflected by the
plasma mirror (red line) and the temporal density profile of the ejected electrons (blue line), obtained from
a numerical simulation. Panel (b) shows the corresponding momentum distribution of these electrons,
along the specular direction, pz, and along the polarization direction of the reflected laser, px, taken from
the same simulation.

the following, the whole process is dissociated in two steps: the injection (Fig. 1.10–a) and the
interaction in vacuum (Fig. 1.10–b).

Electron injection in the reflected field. According to [Thévenet, Leblanc, et al., 2016],
two parameters are crucial to operate a suitable injection: the phase in the laser field and the
initial electron velocity (momentum). In [Geindre et al., 2010; Tian et al., 2012], it was noticed
that electrons are expelled from a plasma mirror in the form of attosecond bunches once per laser
period and at very precise phases, close to the nodes of the reflected laser field (see Fig. 1.11–a).
For now, let us assume that the bunching primarily comes from the ROM harmonic generation:
at each cycle, when an attosecond bunch of light is emitted towards vacuum by the surface
electrons, some of these manage to escape the mirror and concurrently travel with the harmonic
beam. Such electrons may be seen in numerical simulations (see the blue dash line in Fig. 1.9–a).
Further ahead in the manuscript (see Sec. 6.1), we will introduce another mechanism which is
also at play and helps rearranging electrons in bunches, right after the emission.

Regarding velocity, the electrons start their motion from the plasma surface at slightly rela-
tivistic energy (E ∼ 1.5 MeV) along the laser specular direction (see Fig. 1.11–b). The initial
conditions are thus quite ideal for VLA.

Interaction in vacuum. To study the dynamics in vacuum, [Thévenet, Leblanc, et al.,
2016] base their results on numerical simulations performed with a particle tracker code that
solves motion equations along time using analytically imposed fields (see Ch. 4, page 65 for
more information on the method). It appears that two electron populations can be discrimi-
nated depending on the number of optical cycles Noc that they have experienced during their
interaction with the laser:

• for low energy electrons, the dynamics in the laser are driven by a force depending on the
waveform (e.g., Gaussian) and directed towards low-intensity regions: the ponderomotive
force. The motion relies on a timescale separation, where every quantity f is written as
f = f̄ + f̃ with f̄ varying slowly and f̃ varying rapidly with respect to the laser period
[Quesnel and Mora, 1998]. In general, the particle experiences fast oscillations in the laser
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Figure 1.12: Electron interaction in vacuum -
[
Image from [Thévenet, Leblanc, et al., 2016]

]
On

panel (a) are shown two trajectories corresponding to a ponderomotive electron (dash line) and VLA
electron (solid line). The circles indicate the position of the electrons, as they escape the laser influence.
On panel (b) are plotted the energy of the same two electrons along time. Finally, panel (c) pictures the
angular distribution for various electron populations (Noc ∈

[
0, 3+]) as well as the whole distribution.

cycles and slow oscillations due to the variations of the pulse envelope in space. The
general form of the ponderomotive force is obtained after averaging all quantities over the
laser period and reads:

dp̄
dt = − e2

2mγ̄
∇|Ã2

⊥|, (1.35)

where A is the vector potential of the wave. The force only depends on the gradient of the
wave intensity and the direction of polarization plays no particular role. For a Gaussian
beam, electrons tend to be radially expelled from the high intensity regions (center of the
pulse).
Electrons, which explore several optical cycles (Noc > 3) are called ponderomotive electrons.
They are quickly propelled out of the laser volume at low energy in all directions (because
of the isotropy of the ponderomotive force) (see Fig. 1.12–a, b).

• When an electron is highly relativistic, it tends to stay longer in one optical cycle as its
speed is close to the phase velocity of the wave. It can gain energy all along its trajectory
and escapes the laser before dephasing (Noc = 0, see Fig. 1.12) after typical distances of
the order of the Rayleigh length.

The transition from one extreme population to another is of course continuous and depends on
the gamma of injection. In Fig. 1.12–c, we show how electrons are angularly distributed in the fi-
nal angular distribution as a function of Noc. Ponderomotive electrons form a ring-shaped beam
centered on the laser propagation axis, whereas VLA electrons (Noc = 0) tend to concentrate in
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a bright peak on the edge of the ponderomotive hole, along the polarization direction. This peak
is located on one side of the hole because electrons are ejected once every laser period and all
surf the same half-cycle (in practice the one corresponding to negative values of the electric field).

Conclusion

When an intense laser pulse (I > 1018 W.cm−2) is focused on a solid target, the electric field
is sufficiently powerful to completely ionize the target surface and create a dense plasma, which
expands towards vacuum. The density profile in front of the target is observed to be exponential,
characterized by the density gradient length — Lg.

When Lg ≪ λ0, the plasma behaves as a mirror of optical quality, which is able to completely
reflect the incoming light in the specular direction: it becomes a plasma mirror. In this regime,
the excursion amplitude of electrons in the laser oscillations becomes so large that it can exceed
the gradient scale length itself. At every optical cycle, the surface electrons are first pulled out
of the plasma by the electric field before being accelerated back to the target when its sign shifts.
It is the Brunel mechanism.

Under the action of the laser, the plasma surface periodically oscillates in time and acts as a rela-
tivistic oscillating mirror capable of distorting the incident field by Doppler effect. This periodic
temporal modulation is associated to a high harmonic content in the frequency domain or to a
train of attosecond pulses, in the temporal domain. Synchronized with this harmonic emission,
relativistic electrons are also emitted in the form of attosecond bunches that can be injected at
the right phase in the reflected field. These electrons undergo Vacuum Laser Acceleration and
gain energy by direct interaction with the laser in vacuum.

When Lg ∼ λ0, the laser can propagate in the underdense part of the plasma and be reflected
at the density nc cos2 θi. At low intensity, some energy can be transfered to a resonant plasma
wave, which grows near the critical density until eventually breaks. At higher intensities, the
dominant absorption mechanism has not been evidenced so far and the transition from resonance
absorption remains unclear. In this context, one objective of this PhD thesis will be to elucidate
and model this ”new” mechanism, called stochastic heating, for which particles are evolving
chaotically inside the underdense part of the plasma layer.
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2 Introduction to Chaotic Dynamics

Along this chapter, let us stand aside from the previously described framework to discuss on
a more general topic in physics known as system dynamics [Strogatz, 2018]. It will be useful in
the next chapters to describe stochastic heating. This topic encompasses all studies related to
the temporal evolutions of a given physical system. It all started in the mid-1600s, when Newton
discovered the basic laws of motion and explained celestial mechanics previously observed by
Copernicus or Kepler. In particular, he put into equation and resolved the two-body problem,
where two massive objects (e.g., the Earth and the Sun) move under the action of gravity.
From there, physicists tried to extend Newton’s derivation to more complex systems, starting
with the three-body problem (e.g., by adding the Moon in the previous Earth-Sun system) but
it surprisingly turned out to be much more difficult to solve. After two hundred years, it was
admitted that in fact this problem was fundamentally unsolvable, in a sense that no universal
analytical solution should exist.
In the late 1800s, a breakthrough came from Henri Poincaré [Poincaré, 1892], who introduced a
new topological approach for the dynamics. His method allowed for qualitatively understanding
intertwined behaviours of most solutions of the three-body problem. He was also the first to
recognize that such a system is extremely sensitive to small perturbations and that small differ-
ences in the initial conditions may lead to large variations over time [Poincaré, 1908]. His work
has truly paved the way towards a new branch of dynamics later called chaos theory, defined by
[Kautz, 2010] as ”the science of predictable random motion”.

During this chapter, we go through the first historical manifestation of chaos in a simple system
observed by Lorenz in [E. N. Lorenz, 1963]. We then extend this work to another class of non-
linear systems that we will widely manipulate in the following of the manuscript: the pendulum.
Note that by choice, this overview does not involve any heavy mathematical formalism so that
it can be read and understood by non-specialists of chaos theory.
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2.1 Butterfly Effect from Lorenz

2.1.1 History

In the first part of the 20th century, the ideas developed by Poincaré actually stayed marginal.
Physicists were indeed skeptical that strange mathematical behaviours could happen in actual
physical systems apparently governed by a well-defined set of deterministic equations (i.e., with-
out randomness). Everything changed with the development of computers in the 1950s. Thanks
to this new tool, one was capable of solving differential equations over large time scales, without
relying on tedious analytical derivations.

It was precisely on his personal computer — a Royal-McBee LGP-30 — that Edward Lorenz
accidentally observed chaos for the first time in 1961, while performing weather prediction simu-
lations [E. N. Lorenz, 1963]. At some point of his work, Lorenz had to repeat a past simulation,
but to save some time, he chose not to restart from the beginning but from a set of intermediate
values instead. To do so, he entered as a new input, a state from the previous simulation that
he recovered from a printout. However, the weather predicted by the second simulation largely
diverged from the earlier complete calculation.

This discrepancy actually comes from a rounding error introduced by Lorenz himself while re-
booting. Indeed, the printout data was rounded to three decimals, whereas the computer was
manipulating numbers with higher precision (in practice 6). So, when the computer restarted,
the new simulation was slightly different from the original run. Considering the simplicity of his
system, Lorenz expected that such a low variation would not perturb the final result. However,
he discovered that his weather model was highly unstable and extremely sensitive to initial con-
ditions.

To reach as many people as possible, Lorenz illustrated this sensitive dependence on initial con-
ditions in weather prediction by a poetic metaphor: the Butterfly effect [E. Lorenz, 1972]. He
asked the following question: Does the flap of a butterfly’s wings in Brazil set off a tornado in
Texas?. At first glance, this question might seem a bit puzzling, because a butterfly is obviously
not able to create a tornado on its own. In fact, the proposition herein does not rely on if it may
or may not create the tornado but rather whather a flap of its wings can sufficiently perturb the
whole atmospheric system that at some point down the road, a tornado would appear in Texas.

Hot

Cold

Figure 2.1: Lorenz convection cell.

It is actually impossible to answer Lorenz’s question by
direct weather observations. Of course the whole uni-
verse cannot reset and restart at a perfect state where
everything remains identical but a flap of some butter-
fly wings. Nonetheless, as we will see later on, results
from computational models of weather prediction tend
to indicate that any perturbation produces results that
diverge from each other at an exponential rate. Even
some disturbance as imperceptible as a butterfly flap
should eventually lead to great changes if one waits an
adequate amount of time. The Butterfly effect exempli-
fies the difficulty to precisely predict weather at large
time scales.
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2.1.2 Lorenz’s model for atmospheric convection
In 1961, the model that Lorenz developed was a simplified mathematical system for an atmo-

spheric convection cell. Such a cell is displayed in Fig. 2.1. It is a ring tube where the atmosphere
is heated in the bottom and cooled at the top. Because a warm air is rising up and a cold air
is falling down, the fluid within the ring is always flowing. The system is highly imbalanced
and there is no preferential sense for the direction of the fluid displacement. The fluid alterna-
tively turns clockwise and anticlockwise as long as the heating and cooling systems are operating.

To model the system, Lorenz defined 3 variables x(t), y(t) and z(t): x is somehow related to the
rate of convection (∼ the velocity of the fluid), y to the horizontal temperature gradient and z
to the vertical temperature gradient. The Lorenz model can be written as followed:

• dx
dt = σ

(
y − x

)
,

• dy
dt = Rax− y − xz,

• dz
dt = xy − bz,

(2.1)

where σ, Ra and b are fixed parameters: σ is called the Prandtl number, Ra the Rayleigh num-
ber and b > 0 is related to the convection itself. In his original paper, [E. N. Lorenz, 1963]
considered the case where σ = 10, Ra = 28 and b = 8/3.

In Fig. 2.2, we plot a solution along time in the 3D-space
(
x, y, z

)
. The trajectory remains

bounded to a particular volume, which curiously also looks like a butterfly. It appears that the

Figure 2.2: Trajectory on Lorenz’s strange attractor - In this figure is plotted a 3D-trajectory
of a solution of Eqs. (2.1) for t ∈ [0, 40] from white (t = 0) to dark blue (t = 40). Here, we use(
σ, Ra, b

)
=
(
10, 28, 8/3

)
and

(
x(0), y(0), z(0)

)
=
(
0, 1, 5

)
.
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curve is rolling over two points (located at ∼ [±8.5, ±8.5, 28]) but never stabilizes around one.
Instead, the solution jumps from one wing to the other.

In dynamical systems, we call attractor an ensemble towards which a system tends to evolve.
Most of the time, an attractor is simply a geometric subset of the whole space such as a fixed
point (e.g. for the linear pendulum) or a limit cycle, sketching a succession of the same periodic
set of values (e.g., the Van der Pol oscillator [Van der Pol, 1926]). Lorenz’s system exhibits
another class of attractors showing a complex structure that cannot be described by linear com-
bination of geometric objects. Such attractors are called strange attractors. Starting from any
initial state

(
x(0), y(0), z(0)

)
, the resulting solution of Eqs. (2.1) will ultimately tend to the

attractor and never depart from it.

The dimension of the Lorenz’s attractor can be measured by mathematical derivations [Haus-
dorff, 1919; Grassberger and Procacia, 1983] and shows a non-integer value of ∼ 2.05. The
dimension is then slightly larger than the dimension of a surface but necessarily below 3, the
dimension of the whole space.

2.1.3 Sensitivity to initial conditions

However, for now, even if the system behaviour is clearly anharmonic and nonlinear, it is not
yet sufficient to claim that it is chaotic. To do so, we have to prove that the system is extremely
sensitive to initial conditions. So, we intentionally repeat what Lorenz did by mistake: change
slightly the initial state and see how the final result is being affected.

We decide to conduct this study by modifying the initial value of x, but note that changing y or
z would lead to the same conclusions. So, let x1 be the solution for x(t) of the Lorenz’s system
plotted in Fig. 2.2 and x2 a solution for x(t) initialized arbitrary close to x1 by a small amount
d(0), where d(t) = |x1(t)− x2(t)|. Several trajectories corresponding to different values of d(0)

ba

dc

Figure 2.3: Temporal evolution of the fluid velocity for different initial conditions - On each
panel, two trajectories are plotted: x1 in dark blue considered as a baseline and x2 a trajectory initially
very close to x1 by a small offset d(0) given in labels. The Lorenz parameters are σ = 10, Ra = 28 and
b = 8/3.
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are reported in Fig. 2.3. Immediately, it comes that similarly to Lorenz, we found that x1 and
x2 are separating after a short time. As expected, the smaller the offset, the longer it takes
to perceive the effect of the initial deviation. However, for d(0) as small as 10−5 the motion is
grossly affected as early as t = 17 time units. Worse, dividing by a factor of 10 the offset only
delays the time to separation by ≃ 2 time units. It seems that indeed the system is extremely
sensitive to small perturbations.

The chaotic character of the dynamics can be further quantified by the calculation of the so-called
Lyapunov exponent — λL. The Lyapunov exponent of a dynamical system is a mathematical
quantity that characterizes the rate of separation of infinitesimally close trajectories. Quanti-
tatively, two trajectories in a given space initially separated by d(0) evolve along time at an
exponential rate given by:

d(t) = |x1(t)− x2(t)| ≈ d(0) exp (λLt) . (2.2)

ba

Figure 2.4: Lyapunov exponent of the Lorenz’s system - Panel (a) displays a schematic drawing of
the evolution of two trajectories x1 and x2 along time in function of the sign of the Lyapunov exponent
λL: (i) in the upper part of the panel, λL < 0 and the trajectories tend to get closer to each other, (ii)
when λL > 0, the system becomes chaotic and the trajectories diverge. On panel (b) is plotted in log
scale the deviation d(t) = |x1(t)− x2(t)| as a function of time for the Lorenz’s model for an initial offset
d(0) = 10−7. We plot as well the curve f(t) = exp (λLt) as a dashed line. The Lorenz parameters are
σ = 10, Ra = 28 and b = 8/3.

A schematic drawing of the trajectory separation in a general case is sketched in Fig. 2.4–a. The
behaviour of the system evolves differently depending on the sign of λL:

• when λL < 0 (upper drawing of Fig. 2.4–a), the two trajectories gets closer to each other,
the system is non chaotic and dissipative. Small perturbations do not affect the system.

• When λL ≈ 0, d(t) stays close to d(0) at all time, the system is also considered as non
chaotic but this time no more dissipative.

• when λL > 0 (lower drawing of Fig. 2.4–a), two trajectories even arbitrary close diverge,
the system becomes chaotic.

In numerical computations, it is common to define the Lyapunov exponent between x1 and x2
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as1:
λL(x1, x2) = lim

t→∞

(1
t

ln d(t)
d(0)

)
. (2.3)

For the Lorenz’s system, we find λL ≃ 0.94 > 0. In Fig. 2.4–a, d(t) is plotted along time in
log scale and follows an exponential trend until t ∼ 25 time units. However, at longer times,
the separation between original and perturbed trajectories are no longer growing. According to
[Kautz, 2010], the saturation comes from the system itself: the convecting fluid inside the cell
cannot travel faster than a certain threshold. As shown in Fig. 2.3, the absolute velocity of
the fluid |x1| is bounded by 18 units, so d cannot exceed 36 in the worst case scenario (when
x2 = −x1). This highlights an interesting property of chaotic systems (at least those involving
a strange attractor): they are locally unstable but yet globally stable. Two trajectories adopt
an overall similar motion (stay confined within the attractor), while remaining forever distinct.

Lorenz’s system is particularly interesting for those who discover chaos, for both historical and
physical reasons. From very simple equations, it illustrates the main chaos properties that we
will face again in the manuscript.

2.2 Chaos in Pendulums

2.2.1 Simple gravity pendulum
Another example of nonlinear systems that can sometimes exhibit chaotic behaviours are pendu-
lums at large. As a reminder, a pendulum consists of a bob suspended by a rigid (and massless)
rod to a pivot point. For now, we consider the simplest case of all, the Simple gravity pendulum,
for which the pivot position has been fixed.

We define θ(t) as the angle between the rod and the vertical axis and vθ(t) = dθ/dt the angular
velocity of the bob along time, as shown in Fig. 2.5–a. We define the so-called X and O points,
respectively the top unstable (θ = π) and bottom stable (θ = 0) positions of the bob. Its
temporal motion is governed by the following differential equation:

d2θ

dt2 + ν
dθ
dt + ω2

0 sin θ = 0, (2.4)

with ω0 the angular frequency of the system and ν a friction coefficient. If ν ̸= 0, the pendulum
motion is damped.

When ν = 0, the position and velocity are related as follows:

d2θ

dt2 = −ω2
0 sin θ, (2.5)

1
2

(dθ
dt

)2
= ω2

0 cos θ + Cst,

v2
θ = v2

0 − 2ω2
0 (1− cos θ), (2.6)

where we consider the initial conditions: θ(0) = 0 and vθ(0) = v0. In Fig. 2.5–b are plotted
different bob trajectories for different values of v0 in phase space

(
θ, vθ

)
. Note that θ describes

1This particular formula in fact gives the maximal Lyapunov exponent. In practice, there are as many Lyapunov
exponents as the dimension of the system (For Lorenz’s, = 3), but for our purpose, the only knowledge of the
maximal exponent is sufficient.
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X point

O point

a
b

c

simple

damped

X point O point Initial condition

Figure 2.5: Trajectories in phase space for a simple pendulum - Panel (a) sketches a simple
pendulum and highlights two positions of interest: the unstable X point and the stable O point. On
panels (b) and (c) are plotted different trajectories in phase space, solutions of Eq. (2.4): (b) ν = 0
and (c) ν = 0.1. Each trajectory starts from a different initial state (displayed as white circles), which
corresponds to θ(t) = 0 and vθ(0) = v0 from 0.3 to 2.5 ω0. The O and X points are also pictured in this
space.

angles defined between 0 and 2π radians, but we unwrap the θ-axis to keep track of potential
gains (or losses) of turns, observed when the bob crosses the top X position. According to Fig.
2.5–b, the system exhibits two peculiar behaviours:

• when |v0| is low, the trajectories stay trapped. The pendulum mass is reaching a certain
position θ0 < π and then returns backwards. It permanently oscillates around the stable
O point position, which is equivalent to describing a closed orbit in phase space. This
orbit tends to an ellipse if the initial kick is so weak that the approximation sin θ ≃ θ is
verified at all time.

• when |v0| is sufficiently large, the trajectories are not closed anymore and the mass is able
to complete full rotations. Along its motion, it crosses the position of the unstable X point.

The orbit that crosses θ = π at zero velocity, delimits trapped and circulating trajectories and
is called the separatrix (drawn in black in Fig. 2.5–b). It corresponds to v0 = 2 ω0.

When damping is taken into account (ν > 0), the pendulum progressively slows down, while
oscillating. A trajectory below the separatrix is not a closed ellipse anymore but rather a spiral
that gets closer to the O point at each passings (see light blue line in Fig. 2.5–c). If the bob
has started from a circulating orbit, its velocity decreases until being too weak to allow for a
full rotation (dark blue line). As soon as the trajectory crosses the separatrix, it also becomes
trapped and the mass is spiraling around the O point. For a damped pendulum, this fixed point
is an attractor.

The (damped) simple pendulum does not show chaotic motions. The trajectories are analytically
described when ν = 0 and when ν > 0, the pendulum tends to stop, no matter its initial velocity.
A system was shown to be chaotic, if any two initially close trajectories diverge. Regarding the
stated properties of the simple pendulum, finding chaos is unlikely.
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2.2.2 Forced pendulum
As we did not find any chaos signatures for the simple pendulum, we complicate the system

by imposing an external force oscillating at an angular frequency ω. In practice, the pivot point,
which was previously fixed, is now connected to a driver that applies a sinusoidal torque (see
Fig. 2.6–a). The equation governed the bob motion is thus being modified as follows:

dθ2

dt2 + ν
dθ
dt + ω2

0 sin θ = a sinωt, (2.7)

where a is the amplitude of the driving force.

X pointa b

0 1 2
O point

Figure 2.6: Trajectories in phase space for a forced pendulum - Panel (a) sketches a forced
pendulum and highlights two positions of interest: the unstable X point and the stable O point. On
panel (b) is plotted two trajectories in phase space, solutions of Eq. (2.7) for ν = 0.1, a = 1 and
v0 = vθ(0) = 0.2 ω0 for x1 and = 0.201 ω0 for x2. The O and X points are also pictured in this space.

In Fig. 2.6–b, similarly to the simple pendulum, we plot two trajectories in phase space, with
the slightly identical initial conditions θ(0) = 0 and vθ(0) = 0.205± 0.005ω0. Now, the resulting
trajectories seem unpredictable. When the pendulum is forced, the bob motion becomes non-
periodic and alternates times of oscillations and times of rotations, without any particular logic.
Fig. 2.6–b also highlights the extreme sensitivity of the system to initial conditions: two tra-
jectories x1 and x2, which are initially distant by a variation of 10−3ω0 on the angular velocity,
end up separating after only 10 ω−1

0 .

2.2.3 Origin of chaos
When a pendulum is driven by an external force, chaos seems to arise. Its origin can be

intuitively explained by the fundamental nature of the top unstable X point position.

In a case of a simple unforced pendulum, the X point discriminates closed and circulating tra-
jectories, so that a small variation on the velocity reached near that point, can lead to two very
different trajectories: one where the bob falls back and one where it effectively crosses the top
position. In a sense, it means that the simple pendulum may be sensitive to initial conditions.
However, since this behaviour remains exceptional, it does not make it chaotic. In general, most
trajectories initially very close do not radically diverge.
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This is illustrated in Fig. 2.7–a-c in a case of a damped pendulum. For each panel, two trajecto-
ries with similar initial conditions are plotted. In Figs. 2.7–a and c, the initial velocity is either
far too low or far too high when the bob approaches the X point, so that the two trajectories
remain almost superimposed. If the velocity is too low, the bob does not reach the X point and
falls back to oscillate around θ = 0. If the velocity is too high, the bob exceeds the X point
with a large velocity and the pendulum ends up oscillating around θ = 2π. By contrast, when
the initial angular velocity is chosen very close to 2.2ω0 (see Fig. 2.7–b), the bob mass almost
pauses at the top position and it either falls down (dark blue trajectory) or crosses the X point
(light blue trajectory). The two resulting trajectories are clearly separated.

a d

b

c

unperturbed

Figure 2.7: sensitivity near the X point - Panels (a-c) deal with the sensitivity to small variations
for a damped simple pendulum. For each of these panels, two trajectories distant from d(0) ∼ 0.01 are
plotted. The initial velocities are chosen to approach an X point displayed in horizontal dashed line.
On panel (d), the sensitivity is shown for a forced pendulum: a baseline trajectory is plotted in dark
blue as well as three others shifted by an initial offset indicated in labels. For each trajectory, a white
sun highlights the position, where it macroscopically differs from the baseline. The different horizontal
dashed lines pictured different X point positions.

When the pendulum is forced with a sufficiently powerful driver, the crossing of the X point
is repeated a large number of times. The divergence is no more limited to a single event but
rather persists indefinitely. Each time the bob approaches the X point, there is a chance that
neighboring trajectories diverge. Any trajectories, even very close initially, will eventually end
up separating if one waits a sufficient amount of time.

This behaviour is displayed in Fig. 2.7–d, where four trajectories are plotted. One particular
trajectory is chosen as a baseline and the three others are initialized with slightly different v0.
One can easily notice that the perturbed trajectories always diverge from the baseline when the
bob is closed to the X point (pictured as horizontal dashed lines). This sensitivity to the X point
is what makes the whole forced pendulum system chaotic.

2.2.4 Condition for chaos
In order to understand why chaos can only appear when the pendulum is forced, we now

turn to mathematics. The first thing that brings chaos in a system is nonlinearities. Indeed, if
a system is linear, a change of the input systematically leads to a proportional change of the
output. It means that any initial small variations d(0) does not grow in time, the system cannot
be chaotic.
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All the previously presented systems so far were actually nonlinear: the Lorenz’s system involves
two quadratic terms xz and xy and the gravitational force observed in pendulums depends on
sin θ rather than just θ. However, if nonlinearities are mandatory to exhibit chaos, they are not
sufficient.

In particular, it is found that nonlinear systems of 2 variables can never be chaotic. This
statement comes from a particular theorem intuited by H. Poincaré in 1881 and proved by I.
Bendixson in [Bendixson, 1901]:

Theorem 1 Given an autonomous2 differential equation for a two-component vector X —
dX/dt = f(X) — with f a differentiable function from IR2 to IR2, then all solutions on a
bounded support converge towards either a fixed point or a periodic function (= limit cycle).

This theorem ensures that the only possible attractors in a 2D phase space are fixed points and
limit cycles, both non chaotic. [Kautz, 2010] proposes a simple experiment to illustrate the
Poincaré - Bendixson theorem (PBT), requiring only a pencil and a sheet of paper. There, the
paper stands for a bounded 2D space and the pencil is used to draw a trajectory. The chal-
lenge is to find a trajectory that satisfies three conditions: (i) it must stay in the sheet domain,
(ii) it cannot cross itself and (iii) it cannot pass arbitrarily close to itself when headed in the
opposite direction (in order to preserve f differentiability). A simple try might convince the
reader that the drawn trajectory can either stop to a point or be forced to approach a limit cycle.

For a simple pendulum, it is possible to rewrite Eq. (2.4) in the form expected by the PBT:

X =
(
θ
vθ

)
→ dX

dt =
(

vθ

−ω2 sin θ − νvθ

)
= f(X). (2.8)

Here, we verify that f is precisely a differentiable function. The orbit solutions of the system
previously found are bounded. As you may recall θ designates an angle so θ ∈

[
− π, π

[
. The

velocity is also bounded to ±v0 due to energy conservation (see Eq. (2.6)). Then, the PBT
ensures that the system cannot exhibit any chaotic behaviours.

However, if the number of variables is higher than 2, the PBT cannot be applied and other
kinds of attractors appear that allow chaotic dynamics. In Sec. 2.1, the atmospheric convection
cell modeled by 3 time-dependent variables x, y and z (3D space) is chaotic within a strange
attractor.

When a pendulum is forced, the applied torque imposes a third degree of freedom by explicitly
adding t in the equation. It is possible to rewrite Eq. (2.7) as an autonomous system by
introducing a new variable t̃ = t, which reads:

X =

 θ
vθ

t̃

 → dX
dt =

 vθ

−ω2 sin θ − νvθ + a sinωt̃
1

 = f(X). (2.9)

As Lorenz’s system, the dimension for X is also 3 > 2, so the pendulum system may be chaotic
(and actually is, see Fig. 2.6).
2An equation or a system of equations are called autonomous when they do not explicitly depend on the variable
used in the derivatives. In this chapter, this variable is exclusively t.
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Conclusion
Along this chapter, we endeavor to introduce the basics of chaotic dynamics for non-chaos

specialists. To ensure accessibility, we choose the physicist’s point of view (rather than the
mathematician’s) and propose intuitive clues on how and why some nonlinear system can be-
have chaotically.

The starting point of this overview was the remarkable Lorenz’s model for atmospheric convec-
tion. From simple equations, it illustrates the extreme sensitivity to initial conditions in weather
prediction, a phenomenon known as the butterfly effect. A small perturbation does not change
the fundamental character of the fluid convective motion but it jumbles our ability to predict
it.

Chaos can also be encountered in even simpler nonlinear systems, the pendulums. For these, the
sensitivity to small variations is exclusively located near the top unstable position and a small
variation on the velocity observed near this point can discriminate trapped and circulating orbits.
When a pendulum is forced, the unreliability experienced near the X point is faced repeatedly,
which gives rise to global chaotic behaviour for any trajectories.

This study might be found a bit unrelated to laser-plasma interaction. However, we will demon-
strate further ahead that the equations of motion of free particles in plane waves can be in
fact reduced into pendulum equations. Understanding how chaos can appear in such systems is
essential to comprehend stochastic heating.
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3 Particle-In-Cell Simulations for
a full Kinetic Description

of Laser-Plasma Interactions

Although some aspects of laser-plasma mirror interactions can be analytically resolved in
the first chapter, many kinetic effects could not be efficiently captured without the support of
numerical simulations, especially Particle-In-Cell (PIC) codes. In addition, they offer deeper
insights on the interaction, not accessible in the experiments due to the extremely short time
and length scales at play. This chapter mainly focuses on the PIC method. After explaining the
general algorithm, we show typical diagnostics used in all simulations tackled in this manuscript.
Then, we show that the standard PIC method employing finite-difference Maxwell solvers induce
strong numerical noise, which can strongly affect the physical processes observed in laser-plasma
mirror interactions. This has hindered the understanding of key phenomenons at the center of
this thesis. These errors might be avoided using a dispersion-free solver, such as the recently
developed pseudo-spectral solver, available in the WARP+PXR code.
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3.1 Vlasov-Maxwell System

Being natural or artificial, the different plasmas are characterized by a large range of den-
sity ne or temperature Te, which span multiple spatio-temporal scales and particle interactions.
Nevertheless, it is common to classify plasmas in two large categories based on the particle col-
lision rate. For almost collisionless plasmas, two physical models are widely used: kinetic and
hydrodynamic models. The last ones can be used to study laser-plasma interactions as long as
kinetic effects (for instance particle trajectories crossing due to plasma wavebreaking) do not
play a notable role. In this case, it makes sense to average kinetic equations in space and define
typical fluid quantities such as density or mean velocity. These models are particularly interest-
ing to study plasma flow, such as solar wind or plasma discharge. However, in UHI physics, the
plasma dynamics are often much more complex and it is frequent to observe particles crossing,
which invalidates by definition the fluid hypotheses. We would therefore prefer using a kinetic
approach.

In a kinetic model, each particle species α (electrons or ions) is described as a distribution
function fα(r, p, t) in position-momentum space (r, p), which verifies the so-called Boltzmann-
Vlasov equation [Vlasov, 1968]:

dfα

dt = ∂fs

∂t
+ dr

dt ·
∂fα

∂r
+ dp

dt ·
∂fα

∂p
= 0. (3.1)

For relativistic particles with a charge qα, it is possible to include the Lorentz force in the Vlasov
equation through the equations of motion:

dp
dt = qα

(
E + v ×B

)
with v = dr

dt , (3.2)

where the electromagnetic fields E and B are given by the Maxwell’s equations:

• Maxwell - Gauss: ∇ ·E = ρ

ϵ0
,

• Maxwell - Gauss for magnetism: ∇ ·B = 0,

• Maxwell - Faraday: ∇×E = −∂B
∂t

,

• Maxwell - Ampère: ∇×B = µ0

(
J + ϵ0

∂E

∂t

)
.

(3.3)

Solving the coupled Vlasov-Maxwell’s equations can be done using two ways, defining two dif-
ferent types of codes: Vlasov codes and Particle-In-Cell codes. A Vlasov code discretizes these
equations along the 6D phase space (r, p) and advances them in time. However, in practice,
solving in the 6D space is incredibly resource demanding (e.g., storing 1000 points per axis would
require 1018 bytes or 1 exabyte!) and most of the time stringent simplifications are needed. In
the following, we would prefer a Lagrangian formalism to describe the plasma: the Particle-In-
Cell method, more tractable, even though not trivially solution to the Vlasov-Maxwell’s system
[Melzani et al., 2013; Grassi et al., 2016].
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3.2 Particle-In-Cell Method

3.2.1 General overview
The kinetic resolution of plasma physics is often supported by Particle-In-Cell (PIC) codes.

The PIC method relies on the Eulerian formalism for Maxwell’s equations and the Lagrangian
formalism for the Vlasov equation. The method itself is actually fairly old and was popularized
in the late 1950s by Buneman, Dawson, Hockney, Birdsall, Morse among others1. Whereas, the
particles can freely move all along the domain, electromagnetic fields and sources are discretized
and computed on a grid via Maxwell’s equations. The particles contribute to the electromagnetic
sources by using an interpolation function, designated as particle shape [Hockney and Eastwood,
1988]. The same function is used to interpolate the fields on particles. There is no direct inter-
action between particles, which see each other through the grid but never directly.

Plasmas in nature contain millions to tens of billions of particles per Debye sphere, and relevant
micro-physical phenomena spread over numerous Debye lengths: for example, a 53µm3 cube of
plasma at the solid density n ∼ 1023 cm−3 leads to more than 1013 particles to simulate! It
would require too much computational resources to track these particles one by one.

Instead, simulated particles represent a certain number Np of real particles, a statistical sample
of a finite volume of the distribution function in phase space. These are called super-particles
and present the same charge/mass ratio as real particles. They are treated as stiff bodies
with a define momentum pp but with a certain particle shape S(r − rp) for the particle-grid
interpolation. S is a normalized function defined on a bounded support (

∫
S(x)dx = 1), centered

around its average position rp. The common particle shape functions are pictured in Fig. 3.1.
Increasing the particle shape order imposes more computational power but considerably reduces
the numerical heating (finite-grid instability), which may drastically disturb the physics involved
[Vincenti, 2011].

0 2-2 0 2-2 0 2-2

Figure 3.1: Particle shape functions in 1D - (a) the top hat-function, also called the Nearest Grid
Point method (NGP), (b) the triangular function, also called Cloud-In-Cell (CIC), the convolution of (a)
with itself and (c) a spline function, the convolution of (b) with itself

From now and in the whole manuscript, we will abusively skip the term super- and just speak
about particle when designating a super-particle. Keep in mind that each of these particles can
still represent 103 to 1013 real particles in typical UHI simulations.

1Evans and Harlow, 1957; Morse and Nielson, 1969; Dawson, 1983; Birdsall and Langdon, 1985; Arber et al.,
2015.
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3.2.2 Particle-In-Cell loop
After this general overview, let us see in details how the particles and fields are advanced at

each time step. The general algorithm is called Particle-In-Cell loop and its principle is sketched
in Fig. 3.2.

M

P

Maxwell 
  solver

   Field 
Gathering

Particle 
        Pusher

       EM Source
deposition

Figure 3.2: Particle-In-Cell loop - Schematic drawing of the PIC algorithm performed at every time
step: (i) the particles (pictured as green disks, label P) contribute to electromagnetic sources, charge
and current defined on grid nodes (red crosses, label M), (ii) the Maxwell’s equations are solved on the
grid nodes, (iii) the electromagnetic fields are gathered from grid nodes to particles and finally (iv) the
particles are pushed according to equations of motion.

The method typically includes four steps detailed as follows:

(i) Current deposition from particle to mesh. Firstly, the electromagnetic sources,
current J(r) and charge ρ(r), have to be projected from particles to grid nodes, thanks to the
particle shape S. On each mesh point M (see Fig. 3.2), they are defined as:

ρ(rM) =
∑

p

qpS(rM − rp) and J(rM) =
∑

p

qpvpS(rM − rp), (3.4)

with qp and mp, respectively the charge and the mass of a particle p and vp its velocity defined
as:

vp = drp

dt = pp

mpγp
and γp =

√
1 + (pp/mpc)2. (3.5)

In practice, the charge conservation law is not automatically verified, i.e., ∂tρ+ ∇ · J ̸= 0. For
this reason, it is common to use the Esirkepov algorithm [Esirkepov, 2001], which ensures a
charge conserving deposition for any particle shape S for standard Maxwell solvers.

(ii) Maxwell solver on grid nodes. Secondly, the electromagnetic fields are advanced
according to Maxwell’s equations. Regarding the four equations, only the Ampere and Faraday
equations do matter to describe the evolution of a dynamical system. The two others are not
explicitly time-dependent and are verified all along the simulation assuming that they and the
charge conservation law are satisfied at initialization. Then, from the two curl equations, the
electromagnetic source are used to advance the fields E and B in time and space on the grid
nodes (e.g., mesh point M in Fig. 3.2).

The most commonly used method for advancing Maxwell’s equations on a grid was presented in
[Yee, 1966] and is based on a second-order discretization in time and space on a staggered grid
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Staggered grid in space Leapfrog in timea b

Figure 3.3: The Yee solver and Boris pusher - This figure displays at which position and time the
electromagnetic field components are defined in 2D, when using the Yee Maxwell solver (panel (a)). In
addition, the super-particle positions are defined at integer times n∆t whereas their momentums are
known at half-integer times (n + 1/2)∆t to ensure a second-order precision in the Boris pusher (panel
(b)).

(see Fig. 3.3–a). The staggering actually ensures a second-order precision within one time step
but the different field components are thus neither defined at the same position nor at the same
time.

In practice, the way to solve the Maxwell’s equations is crucial for an accurate simulation. In
Sec. 3.4, we will study the impact of Maxwell solver discretization errors on typical plasma
mirror simulations.

(iii) Field gathering from mesh to particles. The fields are interpolated from the
grid nodes to each particle position using the S particle shape. We define Ep and Bp, the
corresponding fields on each particle (e.g., P in Fig. 3.2) by:

Ep =
∑
M

EMS(rM − rp) and Bp =
∑
M

BMS(rM − rp). (3.6)

(iv) Particle pusher. Once the fields Ep and Bp are known, it is possible to update the
particle positions and momenta through the relativistic equations of motion:

• p
n+1/2
p − p

n−1/2
p

∆t
= qp

[
En

p +
(
p

n+1/2
p + p

n−1/2
p

2mpγn

)
×Bn+1/2

p

]
, (3.7)

•
rn+1

p − rn
p

∆t
= p

n+1/2
p

mp

√
1 + (pn+1/2

p /mpc)2
, (3.8)

• γn =

√√√√1 +
(
p

n+1/2
p + p

n−1/2
p

2mpc

)2

. (3.9)

The principal issue is to retrieve p
n+1/2
p , which appears in both sides of Eq. (3.7). The common

resolution technique is based on a leap frog second-order explicit method, known as the Boris
pusher [Boris, 1972]. This method is volume preserving. The Boris algorithm lies on three step
and reads:

1. A first half electric acceleration,
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2. the full magnetic rotation and middle γ calculation,

3. the second half electric acceleration.

This method was improved over time for different specific cases where the Boris pusher was not
optimal. In particular, [Vay, 2008] found that it does not preserve the property of electric field
and magnetic field cancellation. Assuming that a particle is submitted to constant nonzero elec-
tric and magnetic fields in such a way that their mutual contributions cancel, E+v×B = 0, the
particle should follow a ballistic motion. However, when using the Boris scheme, this equation
admits a solution only if E = cB = 0. It means that in the general case, where E ̸= 0 and
B ̸= 0, the particle would experience a spurious force. A way to bypass this problem is to use
the Vay pusher, which was specifically constructed to preserve the cancellation of electric and
magnetic fields but at the expense of volume conservation.

Recently, [Higuera and Cary, 2017] also developed their own pusher, which might combine the
benefits of Vay and Boris pushers, without any drawbacks.

In the following, we will extensively base our study on a self-developed particle tracker code (see
Chapter 4). This code solves the equations of motion with one of the three different pushers
without considering space charge effects. The fields are known via analytical formulas and are
directly applied onto the particles without using any grid or interpolation functions.

Parallelization method. In plasma mirror simulations, accurately solving different har-
monic orders requires a fairly high resolution, resulting in large simulation boxes and high
number of particles (typically 105−7 particles and grid points in 2D, 108−10 in 3D). These sim-
ulations do not fit in memory of a single CPU (Central Processing Unit) core and cannot be
performed in a reasonable amount of time. Instead, we distribute small subdomains across a cer-
tain number of cores. The PIC loop is executed independently on each subdomain. At the end
of a time step, each core exchanges information with its nearest neighbours that can be escaping
particles or points at the borders needed to advance Maxwell’s equations. The communication
between cores is operated via the Message Passing Interface (MPI).

Fig. 3.4 displays such an MPI exchange for the Yee solver. A simulated domain of 4 × 6 grid
nodes is split among 4 MPI subdomains, each corresponding to a different color

(
phase 1

)
.

Solving Maxwell’s equations on a given node with the Yee solver requires to know at least 2 other
adjacent points per axis, or stencil. The stencil corresponding to the bottom-left blue node is
highlighted in black and takes the form of a cross. After domain decomposition, the subdomain
S2 cannot access to any nodes but its own. The PIC loop cannot be performed near boundaries
by lack of information of the missing neighbouring points (see the blank nodes outside of S2). It
is necessary to introduce an extra layer of nodes at the border of each subdomain called guard
region or guard cells. At each time step, they are filled with copies of adjacent cells from another
subdomain (orange or green dots into S2).

After the exchange
(
phase 2

)
, it becomes possible to solve Maxwell’s equations everywhere

and the PIC loop is performed on each enlarged subdomain independently. Note that in this
particular example, the actually simulated domain is much larger than the initial domain (6× 8
or 2 times larger). The speedup in time is balanced by a cost on extra allocated memory and it is

48



CHAPTER 3: PARTICLE-IN-CELL SIMULATIONS

Simulated domain
S1 S2

S4S3

copy
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1
2

Figure 3.4: MPI exchange for standard Maxwell solvers - A large domain is split into four subdo-
mains, each handling 2 × 3 nodes (colored dots). In order to resolve the Maxwell’s equations with the
Yee solver, it is mandatory to know the 4 direct adjacent nodes for any given node. This dependency
is pictured as a black stencil for example for the bottom-left node of S2. At each time step, data from
neighbouring subdomains are copied into extra nodes to compensate the lack of information near the
boundaries. When all copies are performed, it results on an enlargement of the number of nodes handled
by each subdomain.

sometimes better to keep reasonably large subdomains to avoid overly large memory duplication.

Now that we presented the basics of the PIC loop, let us focus on PIC simulation set-ups
specifically designed to accurately study laser-plasma mirror interactions.

3.3 Typical PIC Simulations of Laser-Plasma Mirror Interac-
tions

3.3.1 WARP+PXR code
During my whole PhD, I used the legacy PIC code – WARP – coupled with the high-

performance library – PICSAR (for Particle-In-Cell Scalable Application Resource, abbreviated
in PXR).

WARP2 is an open-source 3D PIC code, which has been extensively developed at the Lawrence
Livermore National Laboratory (LLNL) and the Lawrence Berkeley National Laboratory (LBNL)
for over twenty years. It is written in a combination of Fortran for efficient implementation of
computationally intensive tasks and Python for control of simulations and input-output inter-
face. WARP is designed to simulate a rich variety of physical processes including laser-plasma
interactions at high laser intensities. To do so, it allows the use of state-of-the-art numerical
algorithms (most of them were actually developed by the WARP team) such as boosted frame
[Vay, 2007], galilean frame [Kirchen et al., 2016; Lehe et al., 2016] or a large range of Maxwell
solvers, we will detail furthermore.

Although it is possible to perform plasma mirror simulations with WARP alone, the time to
solution is highly accelerated by coupling the code to the open-source library PXR3. PXR has
2http://blast.lbl.gov/blast-codes-warp
3https://picsar.net
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been developed by J.L. Vay and H. Vincenti in close collaboration between the LBNL and the
CEA to help porting PIC codes to future many-core machines up to exascale supercomputers.
The PXR library includes numerous optimization strategies to fully benefit from the three levels
of parallelisms (internode, intranode, and vectorization) offered by current and upcoming archi-
tectures. It can be coupled to WARP or other PIC codes4 through a Python layer, which over-
writes most of time consuming routines of the PIC loop. We nicknamed this code WARP+PXR.

All PIC simulations reported in this manuscript were performed with the WARP+PXR code
either locally for 1D-2D simulations or on the supercomputer MIRA5 in Argonne National
Laboratory as part of an Innovative and Novel Computational Impact on Theory and Experiment
(INCITE) award, mainly for 3D simulations.

3.3.2 1D Simulation setup
Ideally, studying laser-plasma mirror interaction would always require highly resolved 3D

simulations for direct comparisons with experiments or phenomena that specifically requires
3D, e.g., harmonic focusing or laser diffraction. However, even if it starts to become reality to
run such simulations [Vincenti, 2018; Chopineau et al., 2019], it is much more common for the
community to rely on 1D or 2D simulations. The main reason is obviously the computational
cost of 3D simulations but also because for relative large laser waist (w0 ≫ λ0), 1D simulations
of plasma mirror physics still bring satisfying insights (see Chapter 1). Then, changing the
dimensionality is a trade-off between tractable simulations and realistic inputs.

Lorentz
transform

plasma

a

b

Lorentz
transform

plasmak

α

=α /2

e-
k

k'

e-k'

Laboratory frame Boosted frame

Figure 3.5: Bourdier transformation for our two cases of interest - Panel (a) shows the general
setup for 1D PIC simulations: in the laboratory frame (left drawing), a plane wave is impinging on a
plasma with an angle θi. In the boosted frame, the incidence is normal but the plasma is drifting at a
velocity v0 = c sin θi. The setup of panel (b) will be used mostly in Chapter 8 where two plane waves
interfere with an angle α = 2φ in the laboratory frame. In the boosted frame, the two waves are counter
propagating and the electron velocity is v0 = c cosφ.

4For example, it has been recently coupled to the SMILEI code as well by H. Kallala.
5https://www.alcf.anl.gov/alcf-resources/mira
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Bourdier frame transformation. It is possible to reduce a 2D geometry where a plane
wave obliquely impinges on a solid target to a 1D geometry, where the laser incidence is normal
to a drifting plasma. The method, introduced in [Bourdier, 1983], is based on a Lorentz trans-
formation and sketched in Fig. 3.5–a.

Let the laser wave vector be k = k0(− cos θi, 0, sin θi) and ω0 = k0c in the laboratory frame
R(x, y, z), the idea is to find a boosted frame R′(x′, y′, z′) where the longitudinal component of
the vector k in this new frame, named k′, disappears, i.e., k′ = k′

0(1, 0, 0). In this section, every
primed variable is related to the boosted frame R′. One can show that a frame R′ which moves
uniformly relative to R along the z axis with a velocity v0, is appropriate. The associated Lorentz
factor of this transformation is γboost = 1/

√
1− (v0/c)2. The wavevector and spatiotemporal

four-vectors become in R′:

• x′ = x, • k′
x = kx = −k0 cos θi,

• y′ = y, • k′
y = ky = 0,

• z′ = γboost (z − tv0) , • k′
z = γboost

(
kz − ω0v0/c

2
)

= 0,

• t′ = γboost

(
t− zv0/c

2
)
, • ω′ = γboost (ω0 − kzv0) .

(3.10)

Since k′
z = 0 and kz = ω0 sin θi/c by definition, it comes:

v0 = c sin θi and γboost = 1/ cos θi. (3.11)

Besides the previous four-vectors, the electromagnetic fields are also transformed. In R, they
are defined as followed:

E = E0

sin θi

0
cos θi

 sinψ and B = B0

0
1
0

 sinψ, (3.12)

with the phase ψ = k0z sin θi − k0x cos θi − ω0t.

a b

1280 4 1280 4

0

4

2

0-3 3 -2 1-5

Figure 3.6: Simulation set-up in 1D - Temporal evolution of the yboost component of the magnetic
field (panel a) and of the electronic density (panel b) in the Bourdier frame. The simulation parameters
were chosen in the laboratory frame such as a0 = 3, Lg = λ0/10, τ0 = 5T0, nmax = 100nc and θi = 45◦.
The position of the critical density nc is sketched in dashed line.
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Using the expressions of x′, z′ and t′ from Eq. (3.10), the phase is transformed such as:

ψ′ = −k0x
′ cos θi − ω0t

′ cos θi. (3.13)

Then, from the electromagnetic boosted transformation equations, the fields in R′ read

E′ = E0 cos θi

0
0
1

 sinψ′ and B′ = B0 cos θi

0
1
0

 sinψ′. (3.14)

Note that the normalized vector potential, a0 = eE0/ω0mc, remains unchanged.

The plasma parameters are also transformed. In particular, the plasma density n defined as the
number δ3N of particles per unit volume is increased by a factor γboost in the boosted frame:
n′ = δ3N/(δx′ × δy′ × δz′) = δ3N/(δx × δy × δz cos θi) = n/ cos θi. In addition, the plasma,
which was initially at rest in the laboratory frame, acquires a drift velocity vd = −v0 z in R′ in
the boosted frame.

The setup pictured in Fig. 3.5–b will be used mostly for the stochastic heating study in Chapter 8
and is related to the setup of Fig. 3.5–a by considering φ = π/2− θi. The interaction between
two lasers presenting an angle α = 2φ, is thus transformed to a simpler counter-propagating case.

An example of a 1D-PIC simulation performed in the Bourdier frame is sketched Fig. 3.6 in
the (x, t) space. A laser, a0 = 3 and pictured from blue to red in Fig. 3.6–a, is reflected by
an overdense plasma, pictured in grey in Fig. 3.6–b. The incident angle θi is chosen in the
laboratory frame as 45◦ and the corresponding Lorentz factor is thus γboost =

√
2. During the

reflection occurring when t ∈ [4.5, 9] T0, the laser drives periodic oscillations of the plasma mirror
and a high harmonic comb is emitted (see the field deformation after reflection). Synchronized
with this harmonic generation, electron jets are emitted towards vacuum.

3.3.3 2D/3D Simulation setup
However most of the time, 1D simulations do not entirely capture all physical phenomenons,
such as laser focusing or electron ejection far from target. These effects start to be relevant
when the laser pulse deviates significantly from a plane wave. In these cases, we need to run 2D
or 3D simulations. In particular, 3D simulations allow for direct comparisons with all experi-
mental observables.

In a high-dimensionality simulation (2D and a fortiori 3D), such as the 2D simulation presented
in Fig. 3.7–a, the volume of dumped data can become very large. It becomes necessary to use
diagnostics extracting the physically relevant subset of data from the simulation. Besides costly
full grid and particle dumps, we are using two other diagnostics:

(i) Plane detectors which record the field and the particles along time on a streak line in
2D, or plan in 3D (see Fig. 3.7–a). We use it either near the focal spot on a plane normal to the
target (P1) to study the dynamics of the surface or far from target (P2) to retrieve harmonic
content in the reflected field or ejected electron distribution.

The high harmonic spectrum in the (ω, k⊥) space can be obtained after computing a Fast
Fourier Transform of the reflected field recorded on P2 (see Figs. 3.7–a, b). k⊥ represents all
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Figure 3.7: Numerical set-up used for both 2D/3D simulations - Panel (a), a laser (By pictured
from blue to red), a0 = 4, w0 = 5λ0, is impinging a grey and overdense target with an angle θi = 55◦.
The exponential gradient in front of the target is characterized by a spatial scale length Lg = λ0/15. Here,
∆x = λ0/140. After interaction, some electrons, pictured as black dots, are expelled from the surface
and travel inside the reflected laser pulse. Their history after ejection is retrieved and displayed as blue
trajectories. In addition, the reflected magnetic field is recorded along time on an oblique streak plane
P2. The spatio-temporal evolution of this field is given on panel (b). Panel (c) shows the corresponding
angularly-resolved harmonic spectrum in log color scale.

0.3

-0.3

28 29 30 -1 10

0

Figure 3.8: Temporal dynamics of the plasma mirror using a plane detector in the plasma
surface - In panel (a), spatio-temporal plasma evolutions (in gray log color scale) are recorded on P1 (see
Fig. 3.7–a) as well as the attosecond light pulses emitted during the interaction (harmonics 10-20). Panel
(b) shows the electron distribution during the ejection in the (x, px) phase space at a time t = 28.2 T0
(blue dashed line). All physical and numerical parameters are kept the same as in Fig. 3.7.

vectors orthogonal to the reflected laser wavevector k0. An additional mathematical treatment
[Vincenti, 2011] gives the angularly-resolved spectrum in the (ω, θ) space, such as plotted in
Fig. 3.7–c.

An overview of results obtained on P1 is pictured in Fig. 3.8. In Fig. 3.8–a, the surface (in
grey) is oscillating and an attosecond pulse (in purple) is emitting at every cycle. In addition, at
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t = 28.2 T0 (purple dashed line), the different surface electrons are plotted in the (x, px) phase
space (see Fig. 3.8–b), where x is the direction normal to the target surface.

(ii) Ejected particle diagnostics, which save the spatial distribution of ejected electrons
at each time step. Only a small fraction of the total electrons are expelled from the plasma
mirror, which represents a much lower and managable quantity of data. Before run time, a
unique number or ID is associated to each particle, making possible the recovery of correspond-
ing trajectories, as the ones pictured in blue in Fig. 3.7–a.

In the following, we will use these diagnostics to assess which Maxwell solver is the most accurate
to model harmonic generation from plasma mirrors.

3.4 Influence of Maxwell solvers on Plasma Mirror Simulations

3.4.1 Dispersion relation in a numerical vacuum

Modeling of high-order harmonic generation with PIC codes is particularly challenging as it
involves an accurate description of short wavelenghts radiations spanning many harmonic orders
and broad emission angles. However, standard PIC codes currently fail to finely reproduce the
good harmonic properties, because of numerical errors induced, in particular, by the Maxwell
solver (step (ii) of the PIC algorithm in red in Fig. 3.2, page 46). Their mitigation would
demand a numerical resolution so high that realistic 3D simulations have not been possible so
far, even on the largest supercomputers worldwide.

The standard PIC method uses finite-difference time-domain (FDTD) Maxwell solvers on a
staggered grid (part 3.2.2). Although it offers second order accuracy in time and space, the
discretization inevitably introduces numerical artifacts, especially artificial numerical dispersion
of electromagnetic waves in vacuum.

In vacuum, the dispersion relation, ω = kc, ensures that any electromagnetic wave propagates
at the speed of light c. Instead, the numerical vacuum simulated by FDTD solvers behaves as a
dispersive medium, where waves with different frequencies do not travel with the same group and
phase velocities. For plasma mirror simulations, the plasma surface, along which the harmonics
are created, acts as an interface between two media – a perfect vacuum and a numerical vacuum
of refractive index nr ̸= 1 – that deflects highest frequency waves according to Snell-Descartes
law.

Dispersion relation for the Yee solver in 2D. For historical reasons, the Yee solver [Yee,
1966] is one of the most popular solvers, for which Maxwell’s equations are discretized using a
second-order finite difference scheme, where electromagnetic fields components are placed on a
staggered grid (see Fig. 3.3–a, page 47). They read in 2D in vacuum:
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(3.15)

where n is the current time step index and i and j are the mesh indices. As any EM wave can
be decomposed in plane waves and Maxwell’s equations are linear, we restrict the study to a
single plane wave as follows:

(A)n
i, j = Ae j(kxi∆x + kzj∆z − ωn∆t), (3.16)

where j2 = −1. To avoid too heavy notations, we define:
(Ex)n

i+ 1
2 , j

≡ Ex,

(Ez)n
i, j+ 1

2
≡ Ez,

(cBy)n+ 1
2

i+ 1
2 , j+ 1

2
≡ cBy.

(3.17)

The stability of the system can be derived through a von Neumann stability analysis [VonNeu-
mann and Richtmyer, 1950]. After simplification, the system of equations 3.15 becomes:


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)
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Ex.

(3.18)

Changing
(
e jX/2 − e−jX/2

)
by 2j sin(X/2) and reducing the system give the numerical dispersion

relation in vacuum for the Yee solver6:

1
c2∆t2

sin2
(
ω∆t

2

)
= 1

∆x2 sin2
(
kx∆x

2

)
+ 1

∆z2 sin2
(
kz∆z

2

)
. (3.19)

6This equation can easily be extended to 3D:

1
c2∆t2 sin2

(
ω∆t

2
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)
.
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Figure 3.9: Phase and group velocities for different Maxwell solvers in 2D in vacuum - The
panels (a) and (e) are respectively the phase and group velocity for the Yee solver, (b) and (f) same for
Cole-Karkkainen-Solver, (c) and (g) same for the spectral solver PSTD and (d) and (h) same for the
spectral solver PSATD. Both pseudo-spectral solvers are computed with a finite order 100. All these
quantities were computed at the corresponding CFL condition. The areas, where the velocities are equal
to c, are pictured in white. For the PSTD solver only, waves can be faster than c.

When ω∆t ≪ 1 and kx∆x, kz∆z ≪ 1, Eq. (3.19) does converge to the right solution ω = kc.
However, even if the laser fundamental frequency ω0 is resolved enough to mitigate numerical
dispersion effects, it is not necessarily the case for the highest generated harmonics (nω0 with
n ∼ 20− 30), for which the resolution may need to be tens times higher to completely mitigate
the deviation to the perfect dispersion equation.

Another consequence to this equation is that the time step cannot be arbitrary chosen. If
∆z = ∆x (always the case in solid target simulations) and η = c∆t/∆x, it reads:

sin2
(
ω∆t

2

)
= η2

[
sin2

(
kx∆x

2

)
+ sin2

(
kz∆z

2

)]
≤ 1. (3.20)

This inequality must be verified anywhere to ensure the scheme stability and in particular near
the Nyquist frequency, where kx∆x, kz∆z → π. Then, η is bounded from above7:

η ≤ 1/
√

2. (3.21)

This is the condition of stability for the simulation, also named as the Courant-Friedrichs-Lewy
(CFL) condition [Courant et al., 1928]. Beyond this limit, ω has a non-zero imaginary solution
and the plane wave amplitude (Eq. (3.16), page 55) exponentially grows over time.

From the dispersion equation (Eq. (3.19)), it is possible to define the numerical phase velocity

7In 3D, η ≤ 1/
√

3.
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vϕ and group velocity vg respectively equal to ω/k and |dω/dk|, with k =
√
k2

x + k2
z :

vϕ = ω

k
= 2c
ηk∆x

. sin−1
(
η
√

s2
x + s2

z

)
,

vg =
∣∣∣∣dωdk

∣∣∣∣ = c

2

√√√√ sin2 (kx∆x
)

+ sin2 (kz∆z
)(

1− η2 (s2
x + s2

z)
)(

s2
x + s2

z

) ,
(3.22)

with sx = sin (kx∆x/2), sz = sin (kz∆z/2) and sin−1 the inverse sine function. As pictured in
Fig. 3.9–a, e, these two velocities are in fact lower than c for any k.

Note that at the CFL condition, when a wave is propagating along the grid diagonal, i.e.,
kx∆x = kz∆z, the solver does not present any dispersion. It is something to keep in mind when
designing a simulation in order to maintain numerical artifacts as low as possible.

Dispersion equation for the Cole-Karkkainen-Cowan solver in 2D. Several decades
after Yee, Cole and Karkkainen proposed a new type of FDTD solvers [Cole, 1997, 2002;
Karkkainen et al., 2006], which are similar to Yee’s scheme but for which the spatial derivative
of the Maxwell-Faraday equation is discretized on more points, introducing a variable coefficient
β in the expression of the finite difference stencil in space. In practice, it is possible to add
even more coefficients in order to optimize the solver to a given problem [Vay, Geddes, et al.,
2011; Blinne et al., 2018]. However, in this manuscript, we will limit ourselves to the particular
case where ∆x = ∆z and β = 0.25, discussed by Cowan in [Cowan et al., 2011]. With the
same Von Neumann analysis, it is possible to find the corresponding numerical dispersion for
the Cole-Karkkainnen-Cowan (CKC) solver:

1
c2∆t2

sin2
(
ω∆t

2

)
= Ax

∆x2 sin2
(
kx∆x

2

)
+ Az

∆z2 sin2
(
kz∆z

2

)
, (3.23)

with Ax = (1− β) + β cos(kz∆z) and Az = (1− β) + β cos(kx∆x).

The numerical phase and group velocities corresponding to the CKC solver are displayed in
Fig. 3.9–b, f. This solver is interesting because the CFL condition is equal to 1 and thus allows
for larger time steps than the Yee solver: c∆t = ∆x (= ∆z). It is also dispersion-free along
the grid axes, i.e., when kx∆x = 0 or kz∆z = 0. It might be a good alternative to the Yee’s
scheme, e.g., for wakefield simulations, where a pulse is propagating along one axis during a
large number of time steps.

Looking at Fig. 3.9, it seems that second-order finite-difference solvers present numerical dis-
persion in most of the spatial domain. In order to minimize it, we turn to higher order-p
finite-difference solvers and their infinite order limit, pseudo-spectral solvers.

3.4.2 Introduction to pseudo-spectral solvers
When the order of a solver is increased, the discrete derivatives tend to their continuous

values and we should expect numerical artifacts, such as numerical dispersion, to be mitigated.
Then, using very high-order can significantly decrease the needed resolution and improve the
overall stability for a given accuracy. This can enable realistic 3D PIC simulation studies that
are otherwise not practical.
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When the order p becomes very large, using spatial convolutions (e.g. FDTD) start to be
extremely costly and must be replaced by Fast Fourier Transform (FFT)-based algorithms,
where the fields are resolved in the spectral domain:

• jk · Ẽ = ρ̃/ϵ0, • jk · B̃ = 0,

• ∂B̃

∂t
= −jk × Ẽ, • µ0ϵ0

∂Ẽ

∂t
= jk × B̃ − µ0J̃ ,

(3.24)

where F̃ is the Fourier transform of the quantity F . Solvers, which derive Maxwell’s equation
in Fourier space are called pseudo-spectral solvers.

However, despite significant advantages in terms of accuracy, high-order solvers have not been
widely used so far because of their poor scalability to tens of thousands of cores [Habib et al.,
2012]. Indeed, these solvers commonly use global FFTs, which require global communications
all across the domain. In contrast, parallelizing low order solvers involves local communications
with the neighbouring subdomains (as we have already seen in Fig. 3.4), which makes it easily
scalable up to millions of cores .

In [Vay, Haber, et al., 2013], the authors proposed to apply the cartesian domain decomposition
technique currently used with low order FDTD solvers to infinite order pseudo-spectral solvers.
This new parallelization method is based on local FFTs on each subdomain and allows for a
scaling almost as good as those obtained for FDTD solvers [Vincenti and Vay, 2018]. However,
the deviation from global FFTs indubitably generates numerical errors, equivalent to a trunca-
tion of the (infinite) stencil in the spatial domain. Fortunately, these errors stay quantitatively
small and localized near the guard regions, where the truncations are more likely to have impact.

The fundamental argument legitimating this method is that physical information cannot travel
faster than the speed of light. Since the guard cells are rewritten at every time step, a large
part of the errors do not have time to propagate inside the domain and end up to be erased.

Recently, [Vincenti and Vay, 2016] demonstrated that it is possible to strongly mitigate the
truncation errors by replacing the infinite order stencil by one with a high but finite order. To
do so, local FFTs are still performed on each subdomain but k is replaced in Eq. (3.24) by its
discrete value at a p-order, kp. It can be written thanks to the so-called Fornberg coefficients
Cp

l defined in [Fornberg, 1990; Vincenti and Vay, 2016]:

k2
p =

∑
X ∈ {x,z}

 2
∆X

p/2∑
l=1

Cp
l sin

((2l − 1)kX∆X
2

)2

. (3.25)

In practice, for all simulations performed with a pseudo-spectral solver in this manuscript,
p = 100. A more general and versatile domain decomposition method has been developed
in [Kallala et al., 2018], as part of Haithem Kallala’s PhD thesis to considerably reduce the
allocated memory.

We now present two pseudo-spectral solvers implemented in WARP+PXR, which differ on how
the time derivative are modeled: either analytically for the Pseudo Spectral Analytical Time
Domain (PSATD) solver or using finite discrete derivatives for the Pseudo Spectral Time Do-
main (PSTD) solver.
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Class solver Solver CFL condition Phase velocity

Finite Difference

Time Domain

Yee η ≤ 1/
√

2 2c
ηk∆x . sin−1

(
η
√

s2
x + s2

z

)
CKC η ≤ 1 2c

ηk∆x . sin−1
(
η
√
Ax s2

x +Az s2
z

)

Pseudo-Spectral

Time Domain

PSTD η ≤
√

2/π 2c
ηk∆x . sin−1 (ηk/2)

PSATD None 1

PSATD-p None ckp

k

Table 3.1: Summary table of CFL conditions and phase velocities for several Maxwell solvers.

The Pseudo Spectral Analytical Time Domain (PSATD) solver. In [Haber et al.,
1973], the authors presented a pseudo-spectral solver that integrates analytically the solution
over a finite time step, under the assumption that electromagnetic sources are constant over
this period. The mathematical derivation can be found in [Vay, Haber, et al., 2013] and is not
presented in detail in the manuscript.

The general idea is to separate the field components transverse and longitudinal to k in the
Eq. (3.24). While the longitudinal equations are easy to solve (since the terms k×F̃L disappear),
the transverse ones are much more complicated and the time integration is only possible by
assuming that the sources remain constant along ∆t. At the end, the total formulation for the
PSATD solver for a staggered grid is:

Ẽn+1 = Ẽn + 2jSh k̂ × B̃n+1/2 − 2jSh

kc
J̃n+1/2 + k̂

(
k̂ · J̃n+1/2

)(2jSh

kc
−∆t

)
,

B̃n+3/2 = B̃n+1/2 − 2jSh k̂ × Ẽn+1 + j 1− Ch

kc
k̂ ×

(
J̃n+3/2 − J̃n+1/2

)
,

(3.26)

with Sh = sin
(
kc∆t/2), Ch = sin

(
kc∆t/2) and k̂ = k/k.

Considering kp instead of k, the resulting solver, named PSATD-p, is extremely accurate in the
whole domain, regarding the phase and group velocities (see Fig. 3.9–d, h) and does not present
any CFL condition. In addition, recent works show its excellent scalability to million CPU cores
on MIRA [Vincenti and Vay, 2018]. Recent papers were published to show its advantages over
FDTD solvers in many domains of UHI physics8.

The Pseudo Spectral Time Domain (PSTD) solver. The last solver presented in this
manuscript is the PSTD scheme [Liu, 1997]. This solver is the limit of order-p FDTD solvers
when p → ∞. In this scheme, the Maxwell’s equations are solved in the Fourier space but the
time advance is not performed using analytical integration as in PSATD but rather using a finite
8Lehe et al., 2016; Kirchen et al., 2016; Jalas et al., 2017; Blaclard et al., 2017; Vincenti and Vay, 2018; P. Lee
and Vay, 2019.
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difference integration. Looking at Fig. 3.9–c, g, the PSTD solver is dispersive, but presents an
isotropic dispersion relation. It also imposes a stringent CFL condition, c∆t/∆x =

√
2/π ≃ 0.45

in 2D that severely increases the computation time. Unlike order-2 FDTD solvers, for which
departing from the CFL condition (c∆t < η∆x) introduces more dispersion and noise to the
simulation, the PSTD scheme tends to be dispersion-free, when the time step is reduced for a
fixed spatial resolution. In fact, when c∆t→ 0, the PSTD solver converges to the PSATD solver.
Its numerical dispersion equation is given by:

4
c2∆t2

sin2
(
ω∆t

2

)
= k2. (3.27)

In practice, this solver does not present any interest for HHG simulations. It has the same
spatial complexity as the PSATD solver at each time step, while it introduces non physical
dispersion and requires smaller time steps. Nevertheless, as one of the few purely superluminal
solvers, where vϕ, vg > c, see Fig. 3.9–c, g, we will use it as a comparison tool to see the effect
of a positive dispersion on HHG simulations.

A summary of all important results related to the different Maxwell solvers presented in this
section can be found in Tab. 3.1.

3.4.3 Effect of the numerical dispersion on harmonic generation
In the previous sections, it has been shown that the different Maxwell solvers introduce nu-

merical dispersion leading to errors in the wave propagation. In order to study these non physical
artifacts in HHG PIC simulations, we ran different cases with the numerical and physical inputs
defined in the Tab. 3.2. For all cases, physical parameters were fixed. The spatial mesh was
also fixed while the time step was varied using the corresponding CFL condition.
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20102010

Figure 3.10: Angularly resolved spectra for two different resolutions with CKC solver - Panel
(a) corresponds to the spectrum of the simulation numdisp_CKC2, where ∆x = ∆z = λ/50 and panel (b)
to the simulation numdisp_CKC1, where ∆x = ∆z = λ/100. The relative angular deviation is expressed in
degree. The harmonic comb seems to be deflected from the specular direction. This deflection is stronger
at lower resolution.

Effect of numerical dispersion on the spatial properties of harmonic beams. In
order to check the effect of a numerical artifact, one of the most natural solution consists to try
different resolutions and compare the numerical convergence. We thus ran two simulations with
the CKC solver — numdisp_CKC2 and numdisp_CKC1 — in the setup defined in section 3.3.3
but for two different resolutions, respectively ∆x = λ/50 and ∆x = λ/100. The two resulting
angularly resolved harmonic spectra are displayed in Fig. 3.10.
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Table 3.2: Numerical and physical parameters for the benchmark of different Maxwell solvers
on HHG simulations - The physical parameters remain fixed but the solver is changed. In addition,
we run two simulations with different resolutions with CKC. In order to ease the reading, we replace the
duplicate values by dashes.

Simulation solver ∆x, ∆z c∆t a0 w0 Lg θi

numdisp_Yee Yee λ0/100 ∆x/
√

2 8 5λ0 λ0/15 55◦

numdisp_PSTD PSTD -
√

2∆x/π - - - -
numdisp_PSATD PSATD - ∆x - - - -
numdisp_CKC1 CKC - ∆x - - - -
numdisp_CKC2 CKC λ0/50 ∆x - - - -

It is striking to notice the strong spectrum deflection, which depends on the harmonic order.
Since the deflection depends directly on the numerical resolution, it is of course a pure numerical
artifact. A converged simulation would present a perfectly straight spectrum.

This effect is in fact due to the numerical dispersion and we develop a simple toy model in
[Blaclard et al., 2017] that can be used to predict the angular deviation of high-order harmonics
based on the Maxwell solver and the spatio-temporal resolution of the simulation. This will al-
low us to further compute the best resolution that is needed to avoid angular dispersion effects
for a given harmonic range. Our model is based on the numerical refractive index nr = c/vϕ

and the Snell-Descartes law and its principle is sketched in Fig. 3.11. As already seen in the
previous sections, the numerical phase velocity in vacuum is different from c and depends on the
angle and the frequency of each wave. We would expect such a dependence for the refractive
index as well.

In experiments, Doppler harmonics are all generated at the laser-plasma interface and enter
vacuum with an angle θ = θi equal to the angle of incidence of the laser on the target. As har-

Laser Beam

Harmonic Beam

Angular dispersion

Imaginary Medium
with index

Physical Vacuum 
with index

Numerical Vacuum
with index

Laser Beam

Imaginary Medium
with index

Harmonic Beam

a b

Figure 3.11: Schematic drawing for harmonic angular deviation - The harmonic beam, in purple,
is modeled as an incident beam generated at the plasma-vacuum interface and entering in vacuum with
an incidence angle θ = θi. (a) The physical case is represented. Because the vacuum index is 1, there is
no dispersion and the harmonics are generated at the angle of specular reflection. (b) The transmission
medium is numerical, therefore dispersive. Each frequency is deflected with an angle θr(ω), which can be
calculated with our simple model based on Snell’s law.
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monics are generated exactly at the plasma-vacuum interface with the same angle θi, one could
see this situation as if each harmonic beam initially came from an imaginary non dispersive
medium of index ni = 1 and entered vacuum (see Fig. 3.11–a) with an angle of incidence θi.
As real vacuum is a non dispersive medium of refractive index nr = 1 for all frequencies, high-
order harmonics will thus not be refracted and propagate in vacuum with the same angle θr = θi.

Oppositely, in PIC simulations, ROM harmonics are still generated at the laser-plasma interface
but this time they enter a dispersive vacuum, which has a refractive index nr(ω, θr) (the brackets
standing for the dependency on the frequency ω and on the propagation angle in the numerical
medium θr). As a consequence, different harmonic orders will be refracted by the plasma-vacuum
interface at different angles θr (see Fig. 3.11–b). The Snell’s law presented below can be used
to model this effect :

ni sin θi = nr(ω, θr) sin θr(ω), (3.28)

where ni = 1 and θi is the laser angle of incidence. Notice that in this particular case, θr also
depends on ω due to the anisotropy of the Maxwell solver. The unknown in Eq. (3.28) to be
determined for each harmonic frequency ω is thus θr(ω). The medium refractive index nr is ob-
tained from the numerical dispersion and is the inverse of the phase velocity displayed in Fig. 3.9.

20 30 20 30 20 30 20 30

-7

7

12

15PSATDPSTDCKCYee

Figure 3.12: Angularly resolved spectra (log-scale) for different Maxwell solvers in the range
of ωn/ω0 = 15 to 35 - Panel (a): numdisp_Yee. Panel (b): numdisp_CKC1. Panel (c): numdisp_PSTD.
Panel (d): numdisp_PSATD. The white solid line is the curve expected by the refraction model. For (a)
and (b), nr > 1 and the harmonics get closer to the normal at higher frequency with a negative angle of
refraction (see Fig. 3.11). For (c), the PSTD solver numerical index nr < 1 and the refraction angle is
positive. The panel (d) shows a dispersion-free spectrum obtained with the PSATD solver.

With an iterative algorithm, it is easy to find the numerical value of θr for every frequency ω
at a given resolution. Fig. 3.12 shows angularly resolved harmonic spectra obtained from PIC
simulations for different Maxwell solvers. For each one, we overlap the angular deviation com-
puted by solving Eq. (3.28) for each frequency (white line) to the angularly resolved harmonic
spectra. For each case, our predictions do agree very well with the angular deviation observed
in simulation.

For FDTD solvers such as Yee or CKC, the refractive index is always greater than 1 (i.e., vϕ ≤ c,
see Fig. 3.9–a, b). As a consequence and because the refractive index increases with frequency,
the highest harmonics are deflected closer to the normal to the plasma mirror surface (see.
Fig. 3.12–a, b) as predicted by the Snell-Descartes law.

As opposed to FDTD solvers, the refractive index of vacuum for the PSTD solver is lower than
1 (vϕ ≥ 1 see. Fig. 3.9–c). As a consequence and because the refractive index decreases with
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Figure 3.13: Group velocity dispersion for different Maxwell solvers - Panels (a)-(d) display the
y component of the reflective magnetic field for the different simulations at a distance 55 λ0 from target.
Each simulation corresponds to a different solver: (a) numdisp_Yee, (b) numdisp_CKC2, (c) numdisp_PSTD
and (d) numdisp_PSATD. In addition, panels (e)-(h) show the relative position of each fitted harmonic
envelope in the total pulse for the same respective simulations. Every curve, pictured from white to blue,
corresponds to a specific filtered harmonic order and the amplitude is arbitrary chosen. Only the PSATD
solver does not present any group velocity dispersion, since all harmonic envelopes remain in phase.

frequency, the highest harmonics are deflected further from the normal towards the plasma mir-
ror surface. Moreover, when light travels from a medium with a higher refractive index toward
a medium with a lower refractive index, Snell’s law indicates that for an angle of incidence
greater than a certain limit angle θl, the wave should not pass through the interface and would
be totally reflected. The reflective limit angle is obtained when ni sin θi = nr. In practice, the
total reflection appears at grazing incidence (see [Blaclard et al., 2017]).

Effect of numerical dispersion on the temporal properties of attosecond pulses.
In parallel to the phase velocity dispersion, the different Maxwell solvers also induce strong
group velocity dispersion. It does not play a key role at generation but becomes clearly visible
after some propagation in vacuum. Even if the different harmonic orders are refracted when
they enter in the dispersive vacuum, they are still generated at the same time in the simulation,
time given by the plasma surface dynamics and the ROM mechanism (see Sec. 1.3.1, page
21). It means that overall all harmonic orders are initially in phase in space and time. But
after some iterations and because the group velocity depends on the frequency, the different
harmonic orders are propagating at different speeds, leading to a temporal chirp and a stretch
of the reflected field temporal envelope.

This harmonic temporal chirp can be seen in Fig. 3.13, where we recorded the reflective magnetic
field on a plane detector (see Fig. 3.7, page 53) at 55 λ0 from target. The pulse is propagating
from left to right and each panel corresponds to a simulation performed with a different solver:
(a) numdisp_Yee, (b) numdisp_CKC1, (c) numdisp_PSTD and (d) numdisp_PSATD. For sublumni-
nal solvers such as Yee (Fig. 3.13–a, e) and CKC (Fig. 3.13–b, f), the highest harmonic orders
are propagating slower than the fundamental frequency and one may notice high frequency sig-
nals behind each attosecond pulse. By contrast, for PSTD (Fig. 3.13–c, g), the highest-harmonic
wave packets are drifting in front of the pulse. Finally, since the PSATD solver is dispersion-free,
the attosecond pulses keep their entirety all along the propagation (Fig. 3.13–d, h).
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This effect is increasing over time and can be quantified as a function of the resolution for a
given distance or as a function of the distance for a certain resolution. Then, it can be used as
another convergence criterion in addition to the numerical harmonic deflection.

Conclusion
To efficiently describe laser-plasma interactions, it is necessary to use kinetic codes such as

Particle-In-Cell codes. These codes are particularly useful to access observables that are hard
to follow in experiments and are thus crucial to interpret and guide future measurements.

However, most of Particle-In-Cell codes employ finite-difference Maxwell solvers, which introduce
strong numerical errors, especially due to numerical dispersion. In this chapter, we character-
ized its effect on the properties (spatial and temporal) of the harmonic emission and it is safe
to conclude that standard solvers fail to accurately describe the laser-plasma mirror interaction,
at least at reasonable resolutions.

In the following and for all PIC simulations performed in this manuscript, we will use the
massively parallel version of the PSATD solver, which completely mitigates the errors related to
numerical dispersion. In particular, this solver allows for accurate solid target 3D-simulations,
impossible otherwise.
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4 Particle Tracking Simulations for
Laser-Matter Interactions without

Collective Effects

In this manuscript, certain coupling mechanisms between light and particles do not necessarily
have to be modeled with PIC simulations. Among others, we can cite Vacuum Laser Acceleration
(VLA) or Stochastic Heating, both studied further ahead. In these cases, the dynamics of
electrons are mainly governed by the interaction with the laser beam, while collective effects are
minor if not completely negligible. Then, particles can be advanced in time by only considering
the contribution of the laser fields in the Lorentz force. If these fields are known with analytical
formulas at any time and space, one does not need to numerically solve the whole Maxwell-Vlasov
system anymore. However, using a particle pusher code relies on few subtleties, in particular on
how well modeled a laser field can be.

Contents
4.1 Presentation of our Particle Tracker Code . . . . . . . . . . . . . . . . 66
4.2 Modeling Gaussian Pulses in Particle Tracker Simulations . . . . . . 67
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4.1 Presentation of our Particle Tracker Code
For specific applications, the dynamics of electrons can be efficiently captured without the

need of PIC codes. To do so, some simulations are performed with reduced models, less costly
in term of allocated memory as well as time to solution.

During my thesis, I developed and used a particle tracker (PT) code, specifically designed to
push test particles in a given electromagnetic field in 3D space. More precisely, at each time
step, the electromagnetic fields are first computed on exact particle positions thanks to analyt-
ical formulas. Then, the temporal motion of the particles is solved by using one of the three
already presented 2nd-order accurate relativistic particle pushers: the Boris, the Vay and the
Higuera pushers (step (iv) of the PIC loop, see Sec. 3.2.2). During the resolution, particles can
be independently treated as they do not influence the evolution of the electromagnetic fields. As
the code does not solve either Maxwell’s equations or source deposition (steps (i) and (ii) of the
PIC loop, see Sec. 3.2.2), there is no need for a spatial grid. Particles can freely move in the
simulation.

The code is written in Python, fully open-source and available on GitHub1. The code was
designed to be as complete as possible and it allows for an extensive choice of laser polarizations,
incidence angles, spatial and temporal shapes, on and off focus, radiative effects... For the I/Os,
similarly to the PIC code WARP+PXR, it adopts the OpenPMD standard2 to store particle
data. We can then reuse all viewer tools defined for this standard or data analysis scripts
developed for WARP+PXR.

Figure 4.1: Collision of two Laguerre-Gaussian beams in a cylindrically shaped electron cloud
- The rendering is performed with the 3D-visualization software VisIt. The fields are displayed from blue
to red, while the particles are pictured from white to orange depending on their energy. Alongside the
3D image in the middle, are plotted three different slices taken in the middle of the interaction box.

In Fig. 4.1, we show an example of a simulation performed with this code and rendered with the
3D-visualization software VisIt, developed in Livermore [Childs et al., 2012]. There, two laser
beams, carrying orbital angular momentum and modeled as Laguerre-Gaussian beams such as
defined in [Allen et al., 1992], are interfering in an electron cloud. During the interaction, a

1https://github.com/lidyl/particle_pusher
2https://github.com/openPMD/openPMD-standard
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portion of the orbital angular momentum is transfered to the particles.

It exists a full video of this interaction uploaded on the Internet3. This video was actually
presented at the EPS conference in Milan in 2019 and I was pleased to win the best video award
with it.

4.2 Modeling Gaussian Pulses in Particle Tracker Simulations
In order to perform PT simulations as close as possible to experiments, it is required to model

spatially shaped laser pulses, such as Gaussian beams. These are solutions to the Helmholtz
equation combined with the paraxial approximation. As a reminder, for any electromagnetic
waves4 U polarized along x and propagating along z, defined as:

U (x, y, z, t) = u(x, y, z) ej(ω0t−k0z)x, (4.1)

the Helmholtz equation is given by:

∇2(u e−jk0z)+ k2
0 u e

−jk0z = 0. (4.2)

Figure 4.2: Amplitude of the electric field for a monochromatic Gaussian beam near focus.

The paraxial approximation is a small-angle approximation assuming that the propagation di-
rection of light deviates only slightly from the beam axis. It means that the angle between k
and z remains low. For the field U , this approximation reads:∣∣∣∣∂2u

∂z2

∣∣∣∣≪ ∣∣∣∣k∂u∂z
∣∣∣∣. (4.3)

Expansion and approximation yield the following equation:

∇2
⊥u = 2jk0

∂u

∂z
. (4.4)

where the symbol ⊥ stands for the transverse directions, i.e., x and y. The spatial profile of a
laser beam solution of Eq. (4.4), can be decomposed in cylindrical modes. The lowest-order is

3https://www.epsplasma2019.eu/wp-content/uploads/2019/07/V2_Blaclard.mp4?_=2
4E = U or B = k × U/ck0
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precisely the Gaussian mode, for which u is defined as:

u(x, y, z) = U0
w0
w(z)

exp
(
−x

2 + y2

w2(z)

)
exp

(
− j
(
k0
x2 + y2

2R(z)
− ψ(z)

))
, (4.5)

with w(z) = w0
√

1 + z2/z2
R the laser beam width, w0 = w(0) the beam waist, U0 the amplitude of

the wave at origin, zR the Rayleigh length, R(z) the radius of curvature and ψ(z) = tan−1(z/zR)
the Gouy phase. Such a beam profile is pictured in Fig. 4.2 around focus.

Since this solution relies on the paraxial approximation, it is not accurate for strongly diverging
beams. In practice, the above form is valid as soon as k0w0 ≫ 1. In most simulations or experi-
ments presented in this manuscript, w0 = 5λ0 and k0w0 = 10π ≃ 31.4≫ 1.

However, one can easily check that a field defined in Eq. (4.5) does not currently verify Maxwell’s
equations out of axis (for example, ∇ ·E = ∂Ex/∂x ̸= 0). As we will see later on, the particle
dynamics within this field are found to be incorrect as well, even when k0w0 ≫ 1. It is then
essential to correct the fields and properly model a Gaussian beam in our code. A solution
can be found in [Quesnel and Mora, 1998], in which the authors proposed to expand Maxwell’s
equations near the paraxial solution as a power series of ϵ = 1/k0w0 ≪ 1. They found in
particular that at first order in ϵ, it is necessary to add extra 1st-order longitudinal components
Ez and Bz. The main components of the electromagnetic field, Ex and By, for a wave linearly
polarized along x, are still being defined by Eq. (4.5). The real parts of the whole field up to
first order become:

• Ex = E0
w0
w

exp
(
− r

2

w2

)
cosϕ0, • Bx = 0,

• Ey = 0, • By = Ex

c
,

• Ez = −2ϵE0
xw0
w2 exp

(
− r

2

w2

)
sinϕ1, • Bz = −2ϵE0

c

yw0
w2 exp

(
− r

2

w2

)
sinϕ1,

(4.6)

with:
• ϕ0 = ω0t− k0z − z

x2 + y2

zrw2 + tan−1
(
z

zr

)
,

• ϕ1 = ω0t− k0z − z
x2 + y2

zrw2 + 2 tan−1
(
z

zr

)
.

(4.7)

One can easily verify that these fields satisfy Maxwell’s equations at first order. The forms
defined in Eq. (4.6) are precisely the ones implemented in the particle tracker code.

The corrections brought by [Quesnel and Mora, 1998] are fundamental to describe the proper
electron trajectories in a realistic pulse. In a spatially shaped electromagnetic wave, particle
undergo a force depending on the wave envelope and directed towards low-intensity regions: the
ponderomotive force. The authors demonstrated in particular that corrections at first-order are
sufficient to take account for ponderomotive effects.

As a reminder, the ponderomotive force is defined after averaging all particle and laser quantities
over fast oscillations relatively to the laser period and reads:

dp̄
dt = − e2

2mγ̄
∇|Ã2

⊥|, (4.8)
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The force only depends on the gradient of the wave intensity and the direction of polarization
plays no particular role. For a Gaussian beam, electrons tend to be radially expelled from the
center of the pulse, where the fields show maximal intensities.

In order to illustrate ponderomotive effects on particles, we now run two simulations of a Gaus-
sian pulse crossing an electron cloud initially at rest and spatially distributed within a cylinder.
For the first simulation, the fields are expressed using the zeroth-order only, while for the second
one, we add the first-order corrections defined in Eq. (4.6). The trajectories of a given electron
and the final distributions are reported in Fig. 4.3.

a b

order 0 orders 0+1

Figure 4.3: Electron dynamics in Gaussian beam with and without first-order corrections
- On panel (a), three electron trajectories are plotted in the 3D-space (x, y, z): (i) in blue, with only
considering zeroth-order fields, (ii): in orange, with fields corrected up to the first order and (iii) in brown,
with ponderomotive force only (Eq. (4.8)). On panel (b) are plotted the final angular distributions without
(blue) and with (orange) first-order field corrections. The black dashed circle just helps the reader for
direct comparison between the two plots.

Without corrections, the particles (blue trajectory in Fig. 4.3–a and left panel of Fig. 4.3–b)
are maintained in the plane (x, z) of polarization. It can be intuitively expected since the
component of the Lorentz force along y is identically equal to zero at zeroth-order (Ey = 0 and(
v ×B

)
y

= 0). This description of a Gaussian field fails to reproduce the isotropic distribution
expected by the definition of the ponderomotive force in Eq. (4.8).

When first-order corrections are taken into account, the particles now travel also in the y-
direction. In Fig. 4.3–a, the brown line shows the trajectory of a particle only exposed to the
long time scale ponderomotive force, while the yellow line shows the trajectory of the same parti-
cle in the full oscillating field. It is clear that this whole motion combines dynamics at slow and
fast time scales and that the ponderomotive effects are well reproduced. Regarding the electron
distribution (see right panel of Fig. 4.3–b), it is isotropic and shaped as a ring. The particle are
correctly expelled in all transverse directions from the center of the pulse (corresponding to the
point (0, 0)).

Effect of the laser temporal shape. In the previous discussion and for simple considera-
tions, the pulse was supposed to be monochromatic and thus does not present a finite duration.
When adding a time envelope to the laser pulse, the previous Gaussian beam solution is simply

69



PART II: NUMERICAL TOOLS

multiplied by a function g(t− z/c). The main component of the electric field becomes:

Ex = E0
w0
w

exp
(
− r

2

w2

)
cosϕ0 g(t− z/c). (4.9)

In most of the time, g is chosen to be either a Gaussian function or a cosine function and reads:

• g(t− z/c) = exp
(
−(t− z/c)2

τ2
0

)
,

• g(t− z/c) = cos
(
t− z/c
τ0

π

)
for t− z/c ∈

[
− τ0/2, τ0/2

] (4.10)

with τ0 the pulse duration. Similarly to the spatial envelope, such fields do not satisfy Maxwell
equations in this form and may require corrections. Again in [Quesnel and Mora, 1998], the
authors also studied the effects of the finite pulse duration and showed that they can be com-
pletely neglected as soon as τ0ω0 ≫ 1. In practice, Ti:sapphire laser beam lines deliver few tens
of femtosecond pulses and the condition is largely verified: for τ0 = 25 fs, τ0ω0 ≃ 58≫ 1. Thus,
the corrections related to the temporal shape are not taken into account in our PT code.

Conclusion
In this chapter, we presented a particle tracker code, specifically designed when collective

effects do not play a significant role. It will be used in the following when the electron motion
is mainly governed by the laser pulse.

Despite the code simplicity, few corrections were added to perform appropriate simulations,
these mainly affecting the spatial shape of the laser beam. In particular, for Gaussian pulses,
the ponderomotive force is wrongly modeled when only the zeroth-order components of the
fields are considered. Only by introducing first-order corrections, electrons are expelled in all
transverse directions, as expected by theoretical formulas.

Simulations performed with a PT code can obviously also be run with a PIC code, but a large
amount of computing time would be wasted. For example a 3D simulation of Vacuum Laser
Acceleration respectively costs hundreds of CPU hours with a PIC code, while barely 10 CPU
minutes with the PT code. In addition, since particle data can be recorded at every time step,
it is also easier to follow their trajectories one by one. All along this manuscript, it will be a
powerful tool to dig into the physical processes at low cost, but obviously within the scope of
its area of   validity.
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5 Effect of the Density Gradient Scale
Length: Experimental and Numerical

Investigations

The interaction of intense laser beams with plasmas created on solid targets involves a rich
non-linear physics. Because such dense plasmas are reflective for laser light, the coupling with
the incident beam occurs within a thin layer at the interface between plasma and vacuum.
For very steep plasma surfaces, we expect the Brunel mechanism to be the mechanism at play
but its validity range remains uncertain, especially when the plasma-vacuum interface becomes
smoother in the relativistic regime.
The main results of this chapter were reported in [Chopineau et al., 2019], recently published
in Physical Review X. The first section of this chapter focuses on the experimental setup used
to control laser plasma mirror interactions in experiments. These experiments performed on
the UHI100 TW laser at CEA Saclay outline a clear transition between two main mechanisms
in function of the density scale gradient scale length Lg. The key signatures of these distinct
regimes are then compared to PIC simulation results obtained with the WARP+PXR code.
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5.1 Experiments on the UHI100 Laser at CEA Saclay

5.1.1 The UHI100 beam line
All experiments presented in this manuscript have been performed on the UHI100 laser lo-

cated at CEA Saclay by the experimental team led by F. Quéré and consisting of A. Leblanc,
L. Chopineau and A. Denoeud.

UHI100 is a Ti:sapphire laser, a commercial system developed by Amplitude Technologies, deliv-
ering an electromagnetic pulse with a temporal duration τ0 = 25 fs. The schematic drawing of
the beam line is sketched in Fig. 5.1. Such laser emits in a near-infrared light around λ0 = 800
nm and can be amplified to a peak power of 100 TW by the Chirped Pulse Amplification (CPA)
technique in the compressor. [Strickland and Mourou, 1985] actually received the Nobel Prize
in 2018 for the development of this technique.

Experimental 
              chamber      

Wavefront 
       sensors

Deformable mirror

Double plasma
 mirror

Compressor

Figure 5.1: The UHI100 beam line at CEA Saclay - Starting from the left, the laser pulse is
temporally compressed to a temporal duration τ0 = 25 fs. Then the temporal contrast is improved
thanks to a double plasma mirror. The laser beam profile is improved via a set of deformable mirror and
wavefront sensors and finally sent into the experimental chamber. Courtesy of L. Chopineau.

After temporal compression, the laser pulses generally presents a nanosecond pedestal before
arrival of the main pulse. Induced mainly by Amplified Spontaneous Emission (ASE), this
pedestal is typically 8 to 9 orders of a magnitude less intense than the main pulse. However, for
ultra high intensities (I ≥ 1018−19 W.cm−2), it becomes strong enough (I ∼ 1010−11 W.cm−2)
to start ionizing the target and creates a dense plasma. This plasma expands in vacuum dur-
ing a nanosecond time scale, therefore leading to a long and largely uncontrolled exponential
density profile in front of the target surface (characterized by a scale length Lg, see Sec. 1.1).
This lack of precision complicates the interpretation of experiments and prevents high harmonic
generation.

In order to avoid the premature creation of the plasma, UHI100 is equipped with a double
plasma mirror system placed after the compressor [Lévy et al., 2007]. It increases the temporal
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contrast by about 4 decades, thus reaching ∼ 13 orders of a magnitude for time delays ≳ 100
ps before the main pulse. In addition, the laser wave fronts are corrected by an adaptive set of
optical system (deformable mirror + wavefront sensors) to maximize the intensity on target in
the experimental chamber. Such a high contrast ensures that no gradient scale length is induced
before the main interaction. This is a prerequisite for the gradient control in experiments.

5.1.2 Gradient control in plasma mirror experiments
Now that the laser quality is sufficient, it becomes possible to perform plasma mirror exper-

iments in a relativistic regime. To do so, the laser beam is focused by a parabola (focal length
f = 300 mm) onto a glass target in the middle of the experimental chamber (see Fig. 5.2–a).
The intensity at focus is around 1019 W.cm−2 or a0 ≃ 3.
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Figure 5.2: Gradient control in plasma mirror experiments - In panel (a), a prepulse is obtained
from the main beam by simply adding a small mirror Mp placed in front of the mirror M, which introduces
a temporal delay τ between the two pulses. This prepulse is focused on target using the same parabola
as the main pulse. At focus, it ionizes the solid and creates a controllable gradient scale length by finely
adjusting the delay τ . Panel (b) shows experimental focal spots for the prepulse (gray scale) and the
main pulse (color scale). Because the prepulse spot is larger, the main pulse interacts with an almost
homogeneous surface. Courtesy of L. Chopineau

In experiments, the density gradient scale length Lg in front of the target is controlled thanks to
a weak prepulse traveling at an adjustable delay τ before the main pulse (0 < τ < 10 ps). This
prepulse can be simply created by a small mirror Mp placed on an edge of the main laser beam
at a variable distance in front of a mirror M used for the transport of the main beam [Kahaly
et al., 2013] (see Fig. 5.2–a). Its peak intensity is I = 1016 W.cm−2, which is high enough to
strongly ionize the surface. Due to its smaller diameter before focusing, the prepulse produces
a larger focal spot (pictured in gray scale in Fig. 5.2–b) than the main beam (in color). The
density gradient that it creates can thus be considered as spatially uniform over the focal spot
of the main laser pulse.

In the following, we systematically use Lg(τ) instead of just τ , since it gives direct information
on the steepness of the surface. The evolution of the gradient scale length as a function of the
delay can be measured in experiments using spatial domain interferometry [Bocoum et al., 2015].
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5.1.3 Plasma mirror experiments

Studying signatures of harmonic or electron signals in typical plasma mirror experiments
requires different experimental diagnostics that are presented in Fig. 5.3. As already seen be-
fore, the UHI100 laser is focused on a solid target and after interaction with an overcritical
plasma, is reflected towards vacuum. The incident angle of the laser θi is chosen equal to 55◦.
The experimental team concentrates on two types of observables: the relativistic electron beam
emitted by the target towards vacuum, and the beam of high-order harmonics generated around
the specular reflection direction.

Two diagnostics are used for the electron beam:

• a LANEX screen which records by fluorescence the spatial profile of emitted electrons, at
a distance of ∼ 10 cm from the target.

• a new type of magnetic spectrometer for relativistic electrons [Chopineau et al., 2019],
which provides the angularly-resolved kinetic energy spectrum of electrons in the plane of
incidence (i.e. for θy = 0).

Laser

Figure 5.3: Principle of a plasma mirror experiment - The main laser beam as well as a controlled
prepulse are impinging on a solid target. After reflection, harmonic and electron signals are recorded
thanks to the following diagnostics: a LANEX screen for the measurement of the spatial profile of the
high-energy electron beam, and the angularly-resolved XUV spectrometer.

The harmonic beam is characterized using an angularly-resolved extreme ultraviolet (XUV)
spectrometer [Kahaly et al., 2013], equipped with a micro channel plate (MCP) detector. An
example of an imaged harmonic signal is displayed at the right of Fig. 5.3. The harmonic spec-
trum and the electron beam spatial profiles can be measured simultaneously in a single shot,
thanks to a small hole in the LANEX screen that lets the harmonic beam reach the spectrometer.

A simple additional diagnostic, requiring additional laser shots, consists of measuring the spatial
profile of the reflected laser beam, by inserting a frosted glass plate that keeps only frequencies
near the fundamental laser frequency. This is exploited to determine the plasma reflectivity for
the incident laser beam.
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5.2 Experimental Signatures of the Interaction

5.2.1 Gradient scale length influence
With this experimental setup, we aim to clearly identify the laser-plasma coupling mech-

anisms between light and plasma, when Lg varies from Lg ≪ λ to Lg ∼ λ. The Fig. 5.4
summarizes the main findings of the experiment for a p-polarized incident laser for two extreme
density gradient scale lengths Lg = L1 ∼ λ/15 and Lg = L2 ∼ λ/1.5. When Lg is increased
from L1 to L2, the measured harmonic and relativistic electron signals radically change.

E
(M

eV
)

E
(M

eV
)

a b

Figure 5.4: Main experimental observables - The main experimental findings for a p-polarized laser
field are summarized: left images, angular emission pattern of relativistic electrons; bottom right im-
ages, angularly-resolved energy spectrum of electrons in the incidence plane (θy = 0); top right images,
angularly-resolved harmonic spectrum. Each panel corresponds to a different density gradient scale length
Lg: (a) short gradient Lg ∼ λ/15 and (b) long gradient Lg ∼ λ/1.5.

Three main differences are observed:

• When Lg = L1 ≪ λ, the electron emission is predominantly peaked at θx ∼ 100 mil-
liradians (mrad), close to the direction of laser specular reflection (θx = 0 mrad), with
a slight shift towards the target normal. As Lg is increased, it then switches to θx ∼
−200 mrad, a direction between specular direction and the tangent to the target surface
(θx = −600 mrad). It is also slightly broadened.

• Electrons reach energies about twice higher for large Lg (spectral peak around 10 MeV),
with an angularly-resolved energy distribution (θx, E) that significantly changes. In the
short gradient regime, a clear correlation is observed between emission angle θx and elec-
tron energy E, especially in the brightest part of the distribution (0 ≤ θx ≤ 200 mrad):
the electron energy increases as one gets closer to the specular direction. In contrast, in
the long gradient regime, the electron spectrum hardly varies angularly: no significant
correlation is observed on this angularly-resolved energy distribution.

• Harmonic emission is clearly observed for smallest gradient scale lengths, but it drops
below the experimental detection threshold for large Lg.

The details of the transition between these two regimes are presented in Fig. 5.5, which displays
the evolution with Lg of the electron beam angular profile in the incidence plane (Fig. 5.5–a),
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and of the harmonic spectrum (Fig. 5.5–b). The most important point is the quantitative corre-
lation, observed at short gradients, between the relativistic electron and harmonic signals (see
plots in Fig. 5.5–c). As Lg is gradually increased, the electron signal Se1 around θx = 100 mrad
and the harmonic signal SROM reach a common optimum around Lg = λ/15, and then both
quickly decrease. The electron signal Se2 on the other side of the specular direction then grows,
but is not associated with any harmonic signal.

a b c

Figure 5.5: Evolution of the experimental measurements with the density gradient scale
length - The angular profile of the relativistic electron beam (panel (a)), and the emitted harmonic
spectrum (panel (b)) in the plane of incidence (θy = 0) are plotted as a function of Lg, for a p-polarized
laser field. Panel (c) shows different curves derived from these datasets: the harmonic signal integrated
from the 20th to the 25th order (signal SROM ), and the electron signals on the right (50 mrad ≤ θx ≤
150 mrad, signal Se1) and left sides (−250 mrad ≤ θx ≤ −150 mrad, signal Se2) of the specular direction,
are plotted as a function of Lg.

These observations on the electron and harmonic beams clearly point to a complete change in
the coupling mechanism between the laser field and the plasma, when Lg is increased. In the
following, we will refer to these two interaction regimes as the short-gradient and long-gradient
regimes for convenience.

5.2.2 Other experimental scans
Another important difference between these two interaction regimes is the dependence of

electron signal on laser polarization, illustrated in Fig. 5.6. In the short gradient regime, the
electron signal is totally suppressed when the polarization is switched from p to s. By contrast,
for longer gradients, the electron signal is still observed for s-polarization, although it gets about
five times weaker.

This transition is also visible for the plasma reflectivity: Fig. 5.7–a, b displays the spatial inten-
sity profiles of the reflected laser beam in the two distinct coupling regimes. In the short gradient
regime, a smooth beam is observed, which is almost unaltered compared to the incident laser
beam: this is the so-called plasma mirror regime [Thaury, Quéré, et al., 2007], where the plasma
acts as a high-quality mirror, specularly reflecting the incident light. By contrast, in the long
gradient regime, the beam profile is strongly perturbed and starts exhibiting spatial structures
that were not present on the incident beam. The term plasma mirror is thus no longer appro-
priate to this regime, although the laser field still interacts with a dense -and hence reflective-
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a b

x5 x5

Figure 5.6: Effect of the laser polarization on relativistic electron emission - This figures shows
the angular profiles of the relativistic electron emission in the two gradient regimes for p and s polarizations
of the incident laser. In s-polarization, the signal amplitude is increased by a factor 5.

plasma. Experimentally, the spatial profile of the reflected laser beam might also be used as
alternative signature of the transition in the laser-plasma interaction. By spatially integrating
these images, the variation of the plasma reflectivity at the fundamental laser frequency as a
function of Lg can be determined, and is displayed in Fig. 5.7–c, for both p and s-polarizations
of the incident laser field.

0.5

0.5

a b c

Figure 5.7: Reflected fundamental beam and evolution of the plasma reflectivity - The spatial
intensity profile of the reflected laser beam are measured in the short (panel (a), Lg ∼ λ/15) and long
(panel (b), Lg ∼ λ/1.5) density gradient regimes, for p-polarization of the incident laser. The black
dashed circles indicate the initial divergence of the top-hat laser beam, before its interaction with the
target. The evolution of the plasma reflectivity for the fundamental laser frequency is plotted in panel (c)
as a function of Lg for both s and p polarizations (squares and circles). The lines show the corresponding
results of 2D PIC simulations.

5.3 Numerical Observations of the Two Mechanisms

5.3.1 3D-Particle-In-Cell simulations in the experimental regimes
To understand these experimental observations, we use PIC simulations in the setup defined

in Sec. 3.3.3 (page 52). First, we have to verify that these simulations are well performed in
the actual physical conditions of the experiment and if they are reliable to properly reproduce
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the key experimental findings. To check these two critical points, full 3D simulations of the
interaction are carried out, so that we can directly confront the numerical and experimental
results quantitatively, especially the full angular pattern of the electron emission, which is only
accessible by 3D simulations.

The 3D simulations reported here require 6.3 millions computing hours each on the MIRA1

cluster at ALCF and are performed in the same conditions as the experiments. All numerical
and physical parameters remain the sames but the density gradient scale length that varies from
λ0/15 (3D_short_gradient) to λ0/1.5 (3D_long_gradient) as precised in Tab. 5.1.

Simulation solver ∆x, ∆y, ∆z c∆t a0 w Lg θi polar

3D_short_gradient PSATD λ0/70 ∆x 3 5λ0 λ0/15 55◦ p

3D_long_gradient - - - - - λ0/1.5 - -

Table 5.1: Numerical and physical parameters for the 3D simulations - The physical parameters
are chosen as close as possible to the experiments and were performed on the supercomputer MIRA. The
only difference between the two cases is the density gradient scale length.

From these simulations, we extract the exact same observables as those measured in the experi-
ments: the angular profiles and angle-energy distributions of the emitted electron beam, as well
as the angularly-resolved harmonic spectra, displayed in Fig. 5.8. The harmonic spectra are
recorded on a streaking line defined at a distance ds = 21λ0 from target (see Fig. 3.7, page 53).

For the emitted electrons, the measure of the numerical angular distribution is particularly te-
dious as they keep interacting in the laser pulse in vacuum over large distances (the experimental
screen is placed in near field at ∼ 10 cm from target). It is far too time consuming to perform
the vacuum propagation with a PIC code, especially in 3D. Instead, as presented earlier in the
manuscript (see Sec. 1.3.2), the problem is treated with a PT code. The use of such a code is
valid since collective effects are negligible for relativistic electrons in vacuum. As a reminder,
the interaction is solved in three steps: (i) the emitted electron profile is first recorded in PIC
simulations close to the target, (ii) it is injected in the reflected field at the right phase and with
the right properties in the PT code and (iii) we let it evolve in vacuum over distances of the
order of the Rayleigh length. It ensures that most of electrons have escaped the laser volume at
the end of the PT simulation.

Comparison with the Fig. 5.4 (page 77) shows that these simulations very well reproduce the
two distinct interaction regimes found experimentally for all these observables. The only dif-
ference lies on the profile of the harmonic spectrum for 3D_short_gradient which does not
seem perfectly resolved. For these physical parameters, the spatio-temporal resolution has to
be at least twice higher on each axis [Blaclard et al., 2017] to reach convergence. The corre-
sponding simulation has thus not been possible at the current state so far. Note that in contrast
the electron trajectories are supposed to be converged at this resolution [Vincenti and Vay, 2018].

These 3D benchmark simulations demonstrate both the reliability of PIC simulations, as well
1https://www.alcf.anl.gov/alcf-resources/mira
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Figure 5.8: 3D PIC simulations of the laser-plasma interaction for two different density
gradient scale lengths - The physical conditions of these simulations are matched to the estimated
experimental conditions of the shots shown in the Fig. 5.4 (page 77): panel (a) corresponds to a density
gradient Lg = λ0/15 (3D_short_gradient) and panel (b) to Lg = λ0/1.5 (3D_long_gradient), while
all other physical parameters remain the same. From these simulations, we extract the same observables
as those measured in the experiment: the angular profile of the high-energy electron beam expelled in
vacuum (left image in each panel), the (θx, E) distribution of these electrons (bottom right image in each
panel), and the angularly-resolved harmonic spectrum (top right image in each panel).

as the excellent control of the interaction conditions in the experiments performed on UHI100.
However, 3D simulations are rather hard to tract and we will prefer to rely on 2D simulations
to get deep insights on the physical processes underlying these two distinct regimes.

5.3.2 Spatio-temporal properties of the electron emission

Now, that we ensured that simulations and experiments were performed in the same range
of parameters, we dig deeper in the simulations. We are looking for clear spatio-temporal sig-
natures of coupling mechanisms between light and plasma (see Sec. 1.2, page 14) that could be
responsible for experimental observables. To do so, we run four 2D PIC simulations for different
Lg = λ0/15 and λ0/1.5 and different laser polarizations. The other physical and numerical pa-
rameters remain the same and are presented in Tab. 5.2. The temporal dynamics of the plasma
surface during interaction are first investigated. In a second time, we will discuss on spatial
properties of the emitted electron beam.

Temporal dynamics of the plasma surface. The clear correlation observed between the
high-energy electron and the harmonic signals for short gradients and a p-polarized wave (see
Fig. 5.5–c, page 78) suggests that in this regime, the relativistic electrons are involved in the
harmonic emission. Then, generating a highly-contrasted harmonic comb would be an indication
that this electron emission is periodic in time, being locked to the driving laser field.

To support this idea, we consider the 2D PIC simulation 2D_short_gradient_p performed
with a short density gradient Lg = λ/15. In this simulation, the surface dynamics, displayed
in Fig. 5.9–a, present a temporal periodicity, characteristic of the Brunel mechanism. Electron
emission occurs in the form of bunches that are initially extremely short (in the attosecond range),
emitted once every optical period. For a0 > 1, these electrons reach relativistic velocities when
they escape the plasma, and thus induce a periodic Doppler effect on the reflected laser field: this
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Simulation solver ∆x, ∆z c∆t a0 w Lg θi polar

2D_short_gradient_p PSATD λ0/350 ∆x 3 5λ0 λ0/15 55◦ p

2D_long_gradient_p - - - - - λ0/1.5 - p

2D_short_gradient_s - - - - - λ0/15 - s

2D_long_gradient_s - - - - - λ0/1.5 - s

Table 5.2: Numerical and physical parameters for the 2D simulations - The physical parameters
are chosen as close as possible to the experiments. For these four simulations, we chose 2 gradient scale
lengths, λ0/15 and λ0/1.5, and 2 laser polarizations, p and s.
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Figure 5.9: Plasma surface evolution in the two distinct regimes for a p-polarized laser
- These data are obtained from 2D PIC simulations with different density gradients Lg − (a):
2D_short_gradient_p and (b): 2D_long_gradient_p (see Tab. 5.2). The temporal evolution of the
plasma electron density (gray-scale color map, in log scale) is spatially-resolved along the normal to the
target surface (see surface probe diagnostics, Sec. 3.3.3, page 52). The emitted attosecond pulses are
superimposed to this density map in purple. They are clearly visible in panel (a), but are too weak to
be observed in panel (b).

results in the generation of a comb of high-order harmonics of the laser frequency associated to a
train of attosecond light pulses, spaced by one laser period, clearly observed in Fig. 5.9–a. This
well-identified mechanism is the Relativistic Oscillating Mirror (ROM) mechanism, presented in
Sec. 1.3.1. This is the origin of the harmonic signal observed in the experiments on UHI100. As
emitted electrons are also responsible for the harmonic generation, this explains the clear experi-
mental correlations observed between harmonic and electron signals at the short gradient regime.

As described earlier in this chapter, the harmonic signal is observed to collapse for longer density
gradients Lg. One possible interpretation can be that the electron emission ceases to be periodic
in time. And indeed, PIC simulations for longer density gradients (such 2D_long_gradient_p
shown in Fig. 5.9–b) strikingly show that, in contrast to the Brunel mechanism, electron emis-
sion is no longer periodic in this regime. The absence of harmonic signal in conjunction with the
relativistic electron emission can thus be considered as a signature of the transition to another
coupling mechanism, associated to a very different plasma temporal dynamics observed Fig. 5.9.
This mechanism will be fully studied and is commonly known as stochastic heating.
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Switching the laser polarization to s (see Fig. 5.10) kills also the harmonic generation but this
time for both short and long density gradient regimes. It is expected that the Brunel mechanism
is no longer at play for s-polarization: the electric field component normal to the target that
drives Brunel electrons is being suppressed. Instead, the surface dynamics are driven by the
magnetic component of the Lorentz force, which becomes non-negligible for a0 > 1. Because
this force is the product of two quantities oscillating at the laser frequency ω0 − p and B −,
the plasma surface oscillates twice faster, perfectly shown in Fig. 5.10–a. We have already seen
(see Sec. 1.2.2) that this mechanism is an extension of Brunel mechanism at high intensity when
the normal component of the magnetic force supersedes the electric force (e.g., p-polarized laser
at normal incidence or s-polarization) and is commonly called J × B heating [Kruer and Es-
tabrook, 1985]. For the intensities achieved in experiments, the corresponding electron quivering
is however too weak to generate any train of attosecond light pulses and no harmonic signal was
observed either in experiments or in simulations.
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Figure 5.10: Plasma surface evolution in the two distinct regimes for a s-polarized laser
- This figure is similar to the Fig. 5.9 but the laser polarization is switched from p to s: (a)
2D_short_gradient_s, and (b) 2D_long_gradient_s (see Tab. 5.2). In this configuration, the emit-
ted attosecond pulses are too weak to be observed with the same color scale as in Fig. 5.9.

For longer Lg, the ejection mechanism seems very similar to the one observed for a p-polarized
laser (see Fig. 5.9–b versus Fig. 5.10–b). It supports the previous experimental observa-
tions, reported in Fig. 5.6–b, where the electron angular profiles looked very much alike when
Lg = λ0/1.5. In fact, this new mechanism is found to be weakly dependent on laser polarization
(details can be found in Sec. 8.5).

In addition, it discards the resonant absorption at this point: initially it was a good candidate
at play in the long gradient regime, but is supposedly suppressed in case of s-polarization. We
would thus expect a completely different behaviour after switching the laser polarization. In
Sec. 7.3.1 (page 112), we show that the resonant absorption indeed appears for long gradient
plasmas but at much lower intensities (when a0 ≪ 1).

Spatial structure of the electron emission. We now discuss the spatial properties of
the outgoing electron beams after reflection, illustrated in Fig. 5.11 for the two p-polarized cases.
In the short gradient regime, this structure is mostly determined by the interaction of expelled
electrons with the reflected laser field in vacuum, while in the long gradient regime, it is rather
imposed by their lifetime within the interference field.
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Figure 5.11: 2D PIC simulations in the two gradient regimes after reflection - These two
snapshots show the electron ejection after interaction for the two different density gradients Lg − (a):
2D_short_gradient_p and (b): 2D_long_gradient_p (see Tab. 5.2). The complete trajectories of a
selected set of expelled high-energy test electrons are displayed in blue lines, as well as the y-component
of the magnetic field (blue to red color map) at a given time after the laser-plasma interaction. The
plasma density profile is indicated in a gray log scale.

In the case of short density gradients, the peculiar angular structure of the electron beam has
recently been analyzed experimentally and theoretically in [Thévenet, Leblanc, et al., 2016] for
simple regimes, where the harmonic content inside the reflected field was neglected. In the
Brunel regime, electrons are expelled from the plasma as a very laminar beam, with relativistic
velocities initially quasi-parallel to the direction of specular reflection (Fig. 5.11–a). These rela-
tivistic electrons thus co-propagate with the intense reflected laser field, with which they interact
in vacuum over a distance of the order of the Rayleigh length. This interaction always results in
the ejection of electrons out of the laser beam by ponderomotive scattering, and therefore forms
a hole in the electron beam, centered on the specular direction, as observed in experiments Fig.
5.4–a (page 77) or 5.6–a (page 79).

Recalling the introductory section on Vacuum Laser Acceleration (VLA) (Sec. 1.3.2), there are
two typical scenarios for this ejection, depending on the electron exact initial conditions, as they
are expelled from the plasma into vacuum. Some electrons explore multiple optical cycles of the
laser pulse, and thus oscillate in the field. Then, they get expelled from the laser focal volume
by the so-called ponderomotive effect, isotropically and with a limited energy gain [Malka et al.,
1997; Quesnel and Mora, 1998]. They form the ring-shaped halo observed on the electron beam.
However, a large fraction of electrons actually remains around a given phase of the reflected field
and rather ’surf’ a single wavefront. They thus escape the laser beam laterally along the laser
polarization direction, and form the bright peak observed next to the specular direction. The
side on which this peak forms is determined by the laser phase at which electrons are expelled
from the plasma into vacuum: the observation of a peak on one side only of the ’ponderomotive
hole’ (between the specular direction and the target normal) is an indication that electrons are
ejected periodically once every laser period, when the laser field drags them out of the plasma,
in the form of a sub-optical cycle bunches.
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This second set of electrons experiences a quasi-constant E-field from the laser in vacuum until
they escape the focal volume, leading to a greater energy gain than in ponderomotive scatter-
ing: this VLA process accounts for the observed asymmetry of the (θx, E) distribution (see
Fig. 5.4–b), where higher energies are observed on one side of the hole (mostly VLA electrons)
than on the other (ponderomotive electrons), as well as for the angle-energy correlations on this
distribution [Thévenet, Vincenti, et al., 2016]. An important consequence is that the Doppler
upshift factor induced by outgoing electrons on the reflected field, which leads to the generation
of high-order harmonic (ROM mechanism), cannot be directly deduced from the electron spectra
measured experimentally. Indeed, electrons keep gaining energy after they escaped the target
and emitted high-order harmonics before being detected. For instance, simulations show that in
experiments, the electron Lorentz factor typically varies from γ ∼ 2-3, as they are ejected from
the plasma, to γ ≥ 15 after interaction with the reflected laser field [Thévenet, Leblanc, et al.,
2016], when they are detected.

The spatial properties of the electron beam observed in the long-gradient regime described here
have not been elucidated in detail before [Chopineau et al., 2019]. The electron trajectories
displayed in Fig. 5.11–b show that the conditions of electron ejection from the plasma are al-
ready very different in the short and long gradient regimes. In the second case, the expelled
electron beam is no longer laminar, and rather has a complex velocity distribution. As shown in
the next chapter, this feature can be attributed to the chaotic character of the electron heating
mechanism leading to ejection from the plasma.

Furthermore, these 2D PIC simulations show a spatial degradation of the reflected laser beam
wavefronts in the long gradient regime right after interaction (Fig. 5.11–b), while the beam
wavefront is preserved in the short gradient regime (Fig. 5.11–a). This is qualitatively consistent
with experimental observations (Fig. 5.7–a, b), where the laser beam intensity profile far from
the target is observed to become degraded for long gradients. Along the non-linear propagation
near the plasma critical density, a laser beam is partially depleted, and thus provides a possible
interpretation for the degradation of the reflected laser wavefronts (see Sec. 7.3.2, page 114).

Conclusion
The combination of experiments and PIC simulations has provided strong evidence for a

transition from Brunel absorption to another mechanism occurring when the density gradient
scale length Lg is increased. This regime is no more periodic in time but rather chaotic as it
involves complex trajectories within the interference field. In addition, it seems to persist after
switching the laser polarization, in contrast to Brunel or resonant absorptions.

In the next chapters, we will endeavor to describe this new mechanism in details through both
simulations (see Ch. 7, page 99) and theory (see Ch. 8, 119). However, before that, we want to
bring some new insights regarding Vacuum Laser Acceleration that aims to complete and clarify
the existing studies.
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6 Acceleration of Particles in Vacuum
in the Short Gradient Regime

In the short gradient regime, electrons are emitted from the target in the form of attosecond
bunches and then travel in the laser reflected wave. During their joined propagation with the
laser beam, a fraction of electrons can gain energy by a Vacuum Laser Acceleration (VLA) over
a distance of the order of the Rayleigh length. The remaining electrons get expelled radially
from the laser focal volume by ponderomotive effect and form a isotropic distribution shaped as
a ring.
Despite that [Thévenet, Leblanc, et al., 2016] characterized the principal features of VLA, some
important points still have to be clarified. In particular, just after the emission, the electrons
are crossing a standing wave resulting from the superposition of incident and reflected field and
located in vacuum on top of the target. The dynamics inside this wave might not be simple and
should be investigated.
Another important point is the influence of the laser wavefront on the electron distribution.
[Thévenet, Leblanc, et al., 2016] decided to model the reflected field with a monochromatic
Gaussian beam, whereas it actually shows a high harmonic content. We thus propose to com-
plete their initial work and study how the electron distributions evolve in more complex laser
configurations.
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6.1 Electron Filtering on Top of a Solid Target
We start this chapter by analyzing the electron evolution in the interference field on top

of solid targets. This happens in step 2 in Fig. 6.1 just after the ejection from the surface

k1

VLA

Interference
field

1

3

2

Figure 6.1: Drawing of the
electron emission.

but before vacuum laser acceleration in the reflected field.
Based on (1D-)models dealing with high harmonic genera-
tion on plasma mirrors such as [Thévenet, Vincenti, et al.,
2016] and according to the Brunel mechanism, electron ejec-
tion is synchronized with the harmonic emission. Then,
one would expect electrons to follow nearly ballistic mo-
tion from the emission time and be injected directly in the
laser at the right phase. Hence, no one in literature has
never questioned if it stays that simple at higher dimen-
sions.

However in practice in 2D or 3D spaces, emitted particles
first travel through an interference field, combination of both
incident and reflected laser pulses. Their motion in this
field is far from being simple but surprisingly tends to end
up regular. It actually results in a better injection in-
side the wave. As we will see, all trajectories, initially
not suitable for VLA, are either corrected or completely de-
flected.

PIC simulations. In Fig. 6.2, we display simulation results, performed with a PIC code
at first. Multiple electrons are observed to be expelled and injected in the interference field. At
t = 30T0, they are not particularly locked at a specific laser phase (see Fig. 6.2–a).

Thanks to plane detectors, such as presented in Sec. 3.3.3 (page 52), we manage to record all
emitted electrons along time at given x positions. The ensuing distribution are reported on
Figs. 6.2–b, c for x = 0.5 and 4.5λ0. At close distance from the surface (Fig. 6.2–b), electrons
located in front of the laser pulse are arranged into planes (t < 35T0 or z < 12λ0). However, the
distribution quickly becomes blurry as electrons are emitted later on. Especially, those traveling
in the tail of the pulse (t > 40T0 or z > 15λ0) are no more disposed in a regular manner.

By contrast, when the detector is placed after the interaction with the interference field, the
recorded distribution is far less noisy and the different layers are clearly visible all along the
pulse (see Fig. 6.2–b). Two consecutive layers are separated by a laser wavelength. It is fully
consistent with the distribution found from 1D -simulation by [Thévenet, 2016].

Note also that a significant fraction of the charge is lost between the two planes. For this simula-
tion, we find1 675 pC for the distribution of Fig. 6.2–c but only 155 pC for the one of Fig. 6.2–b.
The interference field seems to act as a filter, which eliminates most of electrons and shapes the
remaining ensemble making it suitable for a proper injection in the reflected laser field and for
subsequent VLA.

1Since the simulation is performed in a 2D space, the 3D charge is obtained by multiplying the 2D charge by a
factor equal to the laser waist, w0 = 5 λ0.
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Figure 6.2: Particle injection in an interference field in PIC simulations - Panel (a) shows a
typical PIC simulation of laser plasma-mirror interaction, where a laser pulse (blue to red color scale)
is reflected by a plasma surface pictured in grey scale. Here, ∆x = c∆t = λ0/100. The snapshot is
taken at t = 30T0. During the interaction, ejected electrons are expelled towards vacuum and evolve
in an interference field. These electrons are recorded along time on various planes located at different
x-positions: (b) x = 4.5λ0 and (c) x = 0.5λ0.

PT simulations. Now, we will try to understand what happens in the interference field
through PT simulations. As particles evolve directly in the electromagnetic field in vacuum, the
dynamics can be efficiently captured with a PT code. It is then easier to track particles one by
one and to follow their motion all along.

The main pitfall here relies on the design of the simulation since there is no plasma and thus no
laser reflection. Instead, as presented in the drawing located on the top-right corner of Fig. 6.3–a,
two laser pulses will cross each other in the electron cloud, ultimately leading to an interference
field. Throughout the manuscript. we will keep using two laser waves to emulate a plasma
reflection in PT simulations. In addition, to model the introduction in this field, all particle
initial momenta are positive, i.e., px, pz > 0. There is no preferred phase of injection: parti-
cles are continuously introduced in the interference field, without considering Brunel mechanism.

We perform such a simulation and report the electron distribution as well as the laser field on
Fig. 6.3–a. Although their initial injection was uniform, it is striking how electrons are reordered
into planes and that each plane is separated from one another by one laser wavelength. The
interference field really rearranges particles, even in PT simulations.

Inside the interference field, the electrons are considerably shaken and their motion is far from
ballistic. In Fig. 6.3–a, we highlight in blue a typical electron trajectory and it shows rotations
and cusps. This can be explained via the magnetic field, which changes the direction of the
particle near high-intensity regions.

In order to illustrate this statement, we superimpose, in Fig. 6.3–b, a quiver plot of the electron
displacement on the magnetic map extracted from Fig. 6.3–a, for 5 < z /λ0 < 9. Each particle
is pictured as a black arrow, which points towards its direction of propagation. It is clear that
some paths are favored over others and that particles alternatively turn in different directions
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Figure 6.3: Particle injection in an interference field in PT simulations - Panel (a) illustrates
the same simulation as in Fig. 6.2 but with the PT code. The reflection is modeled with two laser pulses
and all particles show px, pz > 0 (see inset in the top-right corner). A typical trajectory in these fields
is highlighted in blue. In panel (b), we superimpose the magnetic field map extracted from panel (a),
with a quiver plot of the electron displacement. In panel (c), the same map is sketched and we indicate
the direction of rotation (curved black arrows) of electrons in such magnetic field. We let then evolve
two particles within these fields. A forbidden gate (see text) is pictured in red, while a permitted gate is
rendered in green.

depending on the sign of the nearest magnetic field node: in the anticlockwise direction near
positive-magnitude regions and in the clockwise direction near negative-magnitude regions.

Studying the different trajectories is easier with the drawing of Fig. 6.3–c. It reproduces the
magnetic map of Fig. 6.3–b, but we keep only information related to the direction of rotation
around magnetic nodes. There, let us follow the trajectories of two particles injected at two
consecutive field zeros (separated by a distance of λ/2). One has to remind though that in PIC
simulations, only one of these electrons should exist as the injection is governed by the Brunel
mechanism, which occurs only once per laser period.

Just by considering the sign of rotation near the different nodes, the left particle is allowed to
travel upstream, while the right particle is forced to go back first. For further considerations,
we name gate a group of two consecutive vertical magnetic nodes. In Fig. 6.3–c, two gates are
displayed:

• a green gate, which is composed of a positive node on the top and a negative node on the
bottom. A particle approaching this gate is allowed to cross it, because both nodes attract
the particle towards its center.

• A red gate, which is composed of a negative node on the top and a positive node on the
bottom. It is forbidden for a particle approaching this gate to cross it, because the nodes
tend to push the particle out of its center.

The electron in the right cannot cross the red forbidden gate but still shows a positive pz, so
it drifts along z until it can travel through a permitted gate. After it crosses it, its motion
becomes similar to the one of the left particle. This process is repeated for all particles and it
explains why the motion seems to be regularized. Each trajectory is rather complex by itself
but in average all particles are following similar paths, through the same gates.
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In Fig. 6.3–b, we confirm that our two trajectories are consistent with the vector map and that
particles are likely to be found within a green gate or near a border of a red gate. Then, the
structure of oblique planes at every wavelength appears by itself (see the black oblique planes
which encompass most of electrons in Fig. 6.3–b). It persists even after the interaction.

Thanks to the PT code, we are able to clarify the electron arrangement as planes observed in
PIC simulations. The particles do not necessarily have to be periodically ejected to end up in
layers separated by a laser wavelength. The evolution in the magnetic interference field alone is
sufficient to explain the resulting distribution.

6.2 Vacuum Laser Acceleration
Now that we clarified the electron dynamics before injection in the laser pulse, we propose

to tackle the logical follow-up: the Vacuum Laser Acceleration (VLA). The theory behind VLA
was presented earlier in this manuscript (see Sec. 1.3.2, page 25) and will not be derived again.
Instead, we continue the work started in [Thévenet, 2016] in two more complex cases: (i) in a
pulse showing a harmonic content and (ii) when the laser reflection occurs out of focus. To do
so we again combine PIC and PT simulations to efficiently retrieve the angular distributions of
ejected electrons measured in experiments.

6.2.1 Influence of the harmonic content

In his thesis manuscript, [Thévenet, 2016, p. 137] extracted the electron conditions of injec-
tion (positions in the wave and momenta) from PIC simulations and inserted them into a PT
code. From 1D-PIC simulations, he found the initial conditions reported in Figs. 6.4–a, b. In
particular, the electrons are disposed in narrow planes near field nodes at every laser period.
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Figure 6.4: Initial conditions of electrons ejected from plasma mirrors according to M.
Thevenet -

[
Image from [Thévenet, 2016, p. 137]

]
Panel (a) illustrates the waveform of the laser mag-

netic field By reflected by the plasma mirror (red line) and the temporal density profile of the ejected
electron bunches (blue line), obtained from PIC simulations. Panel (b) shows the corresponding momen-
tum distribution of these electrons, along the specular direction (pz) and along the polarization direction
of the reflected laser (px) taken from a 1D-PIC simulation. On panels (c) and (d) are reported the initial
conditions as injected in Thevenet’s PT code.
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In order to find the same angular distributions as in experiments, the quantities injected in its
PT code has however been considerably smoothed. These are reported in Figs. 6.4–c, d. In
particular, he considered only one electron bunch in the reflected field (corresponding to ejection
in a single laser period) and increased the width of position and momentum distributions. He
also neglected the harmonic content of the reflected pulse and modeled it as a monochromatic
Gaussian wave. We now try to go further and study the effect of the harmonics on the angular
distribution of electrons.

Reflected field reconstruction The starting point of our analysis is to correctly model
a pulse with a harmonic content. As the reflected field is rather complex, we assume that it
is a perfect superposition of Gaussian waves (see Eq. (4.6), page 68), each wave oscillating at
a frequency multiple of ω0. Assuming that the different temporal and spatial envelopes are all
equivalent, we are looking for the amplitude and the spectral phase of each individual harmonic.
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Figure 6.5: Reflected field reconstruction in PT simulations - In panel (a), we report in yellow
the total field after reflection by a plasma mirror, extracted from a 3D-PIC simulation. This field shows
a high harmonic content. Each frequency is filtered in the spectral domain and plotted in the temporal
domain, e.g., on panels (b) to (e) (see labels for the orders). Note the different amplitude scales used in
the different panels. For PT simulations, we regularize each different frequency by fitting the envelopes by
a cosine shape (black curves). After summation up to the 10th harmonic, it gives the total field injected
in the PT code (in black on panel (a)).

In the literature, theoreticians have proposed along time multiple models for the harmonic ef-
ficiency decay law. Let m be the harmonic order, [Baeva et al., 2006] first found a ”universal”
m−8/3 law. However, it was then disputed by [Boyd and Ondarza-Rovira, 2008] in which the
authors observed a weaker decline — between m−7/3 and m−5/3. Recently, [Vincenti, 2018]
considered a m−2 law in the PetaWatt regime.

As there does not seem to exist an universal law, the proper harmonic amplitudes are directly
extracted from a 3D-PIC simulation. This particular run costed 500k CPU hours on Mira, the
spatial grid resolution was ∆x = c∆t = λ0/50 and the configuration was the one presented in
Sec. 3.3.3. The reflective field is recorded on an oblique plane detector far from target (see
P2 in Fig. 3.7–a, page 53) and its profile is reported in Fig. 6.5–a as an orange line. The
waveform is distorted implying the presence of a high harmonic content. Note that this profile
is also strongly dissymmetrical, this coming from the relative phase between harmonics, i.e., all
frequencies are not perfectly in phase with the fundamental frequency.
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As we do not have direct access to the analytical formula of the whole field, each harmonic is
independently treated. We first select each frequency one by one in the spectral domain and
deal with the corresponding filtered field in the time domain. In Figs. 3.7–b to e, four filtered
frequencies are displayed in yellow (1st, 2nd, 5th and 6th orders). The temporal envelopes of
the two first harmonics (Figs. 3.7–b, c) are close to the initial input (cosine shape) but as the
harmonic order raises, they become distorted (Figs. 3.7–d, e).

Influence of the harmonic content on electron distributions. Now, let us use the
modeled reflected field and see how it changes the final angular distribution in comparison to
the ones obtained with a monochromatic wave. The result can be intuitively guessed by the
form of the reflective wave and in particular how it varies close to the position of injection.

According to PIC simulation results (see Fig. 6.4–a, page 93), electron bunches are peaked
near field nodes. Still, electrons from a same bunch can experience very different fields, as the
waveform varies rapidly around zeros. For a monochromatic wave, its slope is much smoother
(see Fig. 6.4–c) and the width of the electron density profile has to be increased to cover the
same range of field magnitude. That is probably why [Thévenet, 2016] did broaden the temporal
distributions in his simulations.

a b c d

Figure 6.6: Angular distributions of electrons with or without harmonic content - All of these
distributions are results of PT simulations performed in the similar way as in [Thévenet, 2016]. In our
cases, a population of 50 000 electrons are recorded after the laser has traveled a distance equal to 3 zr.
Each panel corresponds to a different simulation performed with a narrow/broad initial temporal density
profile of electrons (pictured in blue or red) and a different laser waveform (monochromatic or extracted
from PIC simulations) as shown in top panels: (a) narrow/monochromatic, (b) broad/monochromatic,
(c) narrow/PIC and (d) broad/PIC.

In order to confirm this hypothesis, we now run 4 different simulations with two different initial
density profiles and two laser waveforms (extracted from PIC simulations and monochromatic).
We report the final angular electron distributions for each case in Fig. 6.6. As a reminder, in
experiments as in [Thévenet, Leblanc, et al., 2016], the final electron distribution presents two
main characteristics: a hole devoid of particles in the center, which indicates that the electrons
were expelled from the laser volume (similarly to Fig. 4.3), and a bright beam on one side of
the hole along the polarization direction, constituted on fast electrons that surfed on a single
half laser cycle.
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For the two center panels (Figs. 6.6–b, c), the angular distributions are akin to the one ob-
served experimentally. They precisely correspond to either the original Thevenet’s simulation
(Fig. 6.6–b) or to a simulation initialized with the field and electron profiles extracted from PIC
simulations (Fig. 6.6–c).

When the initial density profile is narrow and the pulse monochromatic (Fig. 6.6–a), particles
are subject to the same field amplitude, to a certain extent. In that case, most electrons undergo
a similar motion in the laser pulse, which results in a brighter beam than observed in experi-
ments. The hole is not clearly visible and very few particles show θx < 0.

Oppositely, when the initial density profile is large but the pulse contains a harmonic content
(Fig. 6.6–d), the electrons are distributed over radically different laser fields. They experience
very different motions, which tend to standardize the final distribution. The electron beam is
much weaker than in the last three cases and a second beam appears on the left part of the hole.
It is constituted by particles that have surfed on the other half laser cycle.

When a reflected wave showing a high harmonic content is replaced by a monochromatic wave,
the electromagnetic field near the position of injection varies less rapidly. In this condition, the
initial density profile of electrons has to be enlarged to maintain the same initial field environ-
ment. That is why, despite using a laser without any harmonic content, [Thévenet, 2016] found
quantitative results close to experiments.

6.2.2 Influence of laser focusing on electron distribution
Another interesting survey is the study of the impact of laser focusing on VLA, more precisely,

how the angular distribution of electrons evolve when the laser focal spot is located behind or
ahead the surface target. We decide to focus on three different conditions of electron injection.
All of them are illustrated in Fig. 6.7: (i) when the laser focal spot is located at zr before the
target, (ii) when at focus and (iii) when at zr behind the target. In all cases, the electron density
profile is kept centered around a field zero and the laser is chosen as a monochromatic wave (and
then the density profile is enlarged accordingly).

a c

Figure 6.7: Initial conditions of electron injection in a laser at focus and out of focus - Each
panel matches a case presented in the text: (a)→(i), (b)→(ii) and (c)→(iii). The initial electron density
profile is pictured in blue and the laser from blue to red.

The influence of laser focusing on VLA was subject to an experimental campaign at CEA, not
yet published in the literature. The experimental setup did not differ from the one presented
earlier in this manuscript in Fig. 5.3 (page 76). Simply, one has to change the laser focal point
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Figure 6.8: Angular distributions of electrons at focus and out of focus - Panels (a)-(c) picture
experimental angular distributions of ejected electron. Each panel corresponds to a different shot, where
the position of the focal point was displaced: (a): +zr, (b): 0 and (c): −zr. Panels (d)-(f) display the
same observables but from PT simulations. Note that here, as the specular direction is not known with
certainty in experiments, the position of θx = 0 is defined by the position of the electron beam.

position along the specular direction without displacing either the target or the diagnostics. The
main observed change concerns the final angular distributions of ejected electrons. These are
pictured for each case in Figs. 6.8–a-c.

The focusing seems to play a role on the size of the ponderomotive hole. When the laser focal
spot is located ahead the surface plane (see Figs. 6.8–a), the hole shrinks until completely disap-
pears. By contrast, when the laser is focused behind the target (see Figs. 6.8–c), the hole seems
to expand. Regarding the bright electron beam, the focusing does not play a significantly role
and the differences observed in the three figures are related to shot to shot fluctuations rather
than true focusing effects.

In order to validate these results, we run a set of PT simulations in the same condition of
injection. The final angular distributions of electrons are reported in Figs. 6.8–d-f and we quan-
titatively reproduce the same evolution of the hole size. It also confirms that this effect is mainly
introduced during the laser propagation and not at time of injection. As the hole is formed by
ponderomotive effects by electrons escaping the laser volume in all transverse directions, it
should also be ponderomotive effects that are responsible for its narrowing and expansion, when
the laser focal spot is displaced.

In case (i), the laser intensity starts weak and because the focal spot is behind the initial po-
sition, it gets only weaker and weaker (see laser amplitudes in Fig. 6.7–a). Consequently, the
ponderomotive force is never as intense as in the case (ii) (Fig. 6.7–b) and fewer electrons are
ejected from the laser volume. Thus, the ponderomotive hole is smaller (until completely absent).
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In case (iii), the laser intensity also starts weak but now the pulse begins by converging. Then,
the ponderomotive force magnitude will increase up to the focus and decrease again afterwards
as in cases (i) and (ii). The electrons will spend more time in strong field regions and be more
accelerated in the radial direction. Thus, the ponderomotive hole is larger.

Conclusion
In this chapter, we endeavored to track electron dynamics after their emission from a dense

plasma when the density gradient at the plasma-vacuum interface is short. Just after their
ejection towards vacuum, they first encounter a standing wave formed by the combination of
incident and reflected field. That field acts as a filter that eliminates too slow electrons and
structures the remaining particles suitable for their injection in the reflected field.

From there, electrons undergo vacuum laser acceleration in the reflected field. Based on the
work started in [Thévenet, Leblanc, et al., 2016], we studied VLA in two more complex cases:
(i) when the laser beam shows a harmonic content and (ii) when it is out of focus. In both cases,
we understood the final angular distribution of electrons thanks to PT simulations.
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7 Coupling Mechanism
in the Long Gradient Regime

After setting aside to tackle VLA, we come back to the coupling mechanisms between light
and matter occurring in the density gradient. According to experiments and preliminary PIC
simulations performed in the relativistic regime, increasing the density gradient scale length Lg

in front of a plasma mirror allows for switching from Brunel’s mechanism to another coupling
mechanism. The purpose of this chapter is to completely characterize this new mechanism
through Particle-In-Cell simulations.
When Lg ∼ λ0, electron ejection is observed to be no longer periodic but rather complex and
disorganized. The reason is that electrons located in the underdense part of the plasma layer
behave chaotically. The chaotic motion is driven by the standing wave formed by the incident
and reflected laser waves. This mechanism is identified to be stochastic heating.
Along the chapter we will present the stochastic heating mechanism and prove that it is indeed
at play in this regime. Then, we will see that despite occurring in the underdense part of the
plasma layer, plasma collective effects may impact the electron emission. Finally, we focus on
its domain of validity in terms of laser-plasma parameters.
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7.1 Electron Heating Mechanism in the Long Gradient Regime

7.1.1 Introduction to stochastic heating
Let us start this chapter by recalling the basics of stochastic heating. First, we consider a free

electron exposed to two non-collinear ultraintense laser beams. Using a quantum description of
the field as an ensemble of photons provides a simple way to understand that this electron can
gain more energy than when exposed to a single laser beam.

When a single laser beam (assumed to be a plane wave) is present, it is well-known that pho-
ton absorption processes are hindered because they do not enable to conserve both energy and
momentum of the total system. By contrast, when two non-collinear beams are present, the
combined absorption of multiple photons simultaneously from both beams is allowed, because
the availability of photons with different k vectors makes it possible to conserve both energy
and momentum of the total system (see Sec. 1.2.3, page 18).

For large field amplitudes, the laser field can be treated classically, and many previous studies
in the literature have shown that electron dynamics in these combined non-collinear fields is not
integrable and gets chaotic for high enough laser amplitudes (typically a0 ≳ 0.15 for at least
one of the two beams). This results in large energy gains, and this efficient regime of energy ab-
sorption by electrons is known as stochastic heating1 - although the name chaotic heating would
probably be more appropriate here, since the system is perfectly deterministic and involves no
stochastic process.

This effect is obviously not restricted to isolated free electrons: it can equally occur for electrons

Interference field

0

-3

3

plasma surface

plasma surface

a

b

Figure 7.1: Stochastic heating in the interference field in 2D simulation - The two panels
correspond to the same simulation (2D_long_gradient_p defined in Tab. 5.2). The panel (b) highlights
the mean electron energy (pictured from black to yellow) gained in the interference field (in blue to red
panel (a)).

1Mendonça and Doveil, 1982; Mendonca, 1983; Rax, 1992; Z.-M. Sheng, Mima, Sentoku, et al., 2002; Bourdier
et al., 2005; Patin et al., 2006; Kemp et al., 2009; Paradkar et al., 2012; Krygier et al., 2014.
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in an underdense plasmas, leading to an energy absorption process where neither collisions nor
collective plasma effects play any major role. Such a coupling of the plasma with multiple laser
beams has been studied experimentally in [P. Zhang et al., 2003] by exposing an underdense
plasma to two laser beams. It is also known to play a role in electron injection in laser-driven
plasma wakefield accelerators by the colliding pulse scheme [Faure, Rechatin, et al., 2006; Ras-
sou et al., 2014].

To the best of our knowledge, [Mendonça and Doveil, 1982] were the first to point out that one
of the simplest situations in which an electron can behave stochastically consists of a non-uniform
plasma submitted to the influence of an incident monochromatic wave. The small fraction of
wave field reflected by the plasma inhomogeneity provides the perturbation which makes the par-
ticle Hamiltonian non-integrable.. Also, [Sentoku et al., 2002] was the first to show it with the
support of PIC simulations.

In our case, the required second non-collinear laser beam results from the reflection of the single
input beam by the dense plasma. Electrons in the underdense plasma are then exposed to the
standing wave formed in front of the overcritical part by the superposition of the incident and
reflected beams, and can gain energy. This is precisely how we interpret the experimental results
of chapter 5 (page 73) in the long gradient regime.

This heating is illustrated in Fig. 7.1, where we plot side by side magnetic field and electron
energy along time. It is striking to notice that the plasma energy mostly increases, when the
interference field exists (time range delimited by the two vertical bold lines). When the laser
leaves the target, the whole underdense part of the plasma remains homogeneously hot.

7.1.2 Numerical proof of stochastic heating

With the help of simulations, we now support that the heating indeed occurring in the long
gradient regime comes from chaotic processes. To do so, just as we proceeded when we studied
the Lorenz system (see Sec. 2.1, page 30), the chaotic character of the electron dynamics is
exhibited by the calculation of the Lyapunov exponent of plasma electrons. As a reminder, the
Lyapunov exponent of a dynamical system is a mathematical quantity that characterizes the
rate of separation of infinitesimally close trajectories. Quantitatively, two trajectories in phase
space with initial separation d(0) diverge at a rate given by:

d(t) ≈ d(0) exp(λLt), (7.1)

where λL is the Lyapunov exponent.

A schematic drawing of the separation is shown in Fig. 7.2–a, where we consider two trajectories
(x1 or x2 for example) initially very close in the phase space at t = 0. The trajectories evolves
differently considering the sign of λL:

• when λL < 0 (upper drawing of Fig. 7.2–a), the two trajectories gets closer to each other,
the system is non chaotic and dissipative,

• when λL > 0 (lower drawing of Fig. 7.2–a), the two trajectories diverge, the system
becomes chaotic.
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Figure 7.2: Evolution of the Lyapunov exponent in 2D plane wave PIC simulations in the
case A - Panel (a) displays a schematic drawing of the evolution of two trajectories along time in phase
space in function of the sign of the Lyapunov exponent λL: (i) in the upper part of the panel, λL < 0 and
the trajectories x1 and x2 tend to get closer to each other, (ii) when λL > 0, the system becomes chaotic
and the trajectories diverge. In panel (b), we plot the evolution of λL(px) (the Lyapunov exponent for
the quantity px) in function of the laser amplitude for both p (black dots) and s (red dots) polarizations.
The chaos threshold is highlighted by a blue hatched area.

In simulations, it is possible to define the maximal Lyapunov exponent between two trajectories
x1 and x2 as:

λL = lim
t→∞

d(0)→0

(1
t

ln d(t)
d(0)

)
, (7.2)

for d(0) as small as possible. We also define the maximal Lyapunov exponent λL(V ) for a given
single phase space variable V considering dV the distance between the two trajectories projected
on the variable axis (e.g., X in Fig. 7.2–a). If λL(V ) > 0 for at least one variable then the system
will be chaotic. Typically, we run two simulations with the same initial conditions except for V
and we compare how a same particle has evolved in both cases. This treatment is iterated on
every particle of the simulation and averaged to get the total Lyapunov exponent.

The Lyapunov exponent λL(px) for the px variable, obtained from 2D plane wave PIC simula-
tions is displayed in Fig. 7.2–b, as a function of the incident laser amplitude and different laser
polarizations. The exponent is very close to zero at low intensity, and gets strictly positive
when a0 ≳ 0.15 (the blue hatched area), thus pointing to chaotic dynamics. This threshold in
laser intensity is consistent with early theoretical investigations of stochastic heating [Mendonca,
1983; Z.-M. Sheng, Mima, Sentoku, et al., 2002].

Note that the chaos seems to be more intense for p-polarization, this results will be explained
in detail in Sec. 8.5, page 147.

7.1.3 Importance of the reflected laser field and underdense plasma layer

In introduction of this chapter, we stressed the importance of a second wave to seed stochastic
heating. We thus run on a set of 2D plane wave PIC simulations for three different physical
configurations displayed in Fig. 7.3 (numerical and physical parameters defined in Tab. 7.1):
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Simulation solver ∆z a0 Lg θi nmax Nb waves

A: reflect_plasma_mirror PSATD λ0/350 3 λ0/1.5 55◦ 200nc 1

B: reflect_under_two_waves - - - - - 0.4nc cos2 θi 2

C: reflect_under_one_wave - - - - - 0.4nc cos2 θi 1

Table 7.1: Numerical and physical parameters for 2D-plane wave simulations performed
in this section - The laser and plasma parameters are the same for all three configurations defined in
Fig. 7.3. However, for cases B and C the plasma maximal density has been truncated for n > 0.4nc cos2 θi,
allowing the laser to cross the plasma. In the case B, a second beam is coming from the other part of the
plasma.

a b c

k1

200 nc

k1

k2

k1

Figure 7.3: Schematic drawing of three physical configurations aiming to exhibit the role of
the reflected field - In panel (a), it is the classical laser plasma mirror interaction in the long gradient
regime, where the laser wave is reflected by an overdense target. For panel (b) and (c), the plasma profile
has been truncated for densities n > αnc cos2 θi (α = 0.4) allowing the laser beam to cross. For panel
(b), an other laser beam is added, coming from the other side of the plasma.

• the first configuration (simulation reflect_plasma_mirror or case A) corresponds to the
interaction of an ultraintense laser pulse with a dense plasma in the long gradient regime.
It is the general setup of the experiments.

• In the second configuration (simulation reflect_under_two_waves or case B), now the
plasma profile has been truncated for densities n > 0.4nc cos2 θi, i.e. keeping only the
underdense part of the plasma, such that there is hardly any reflection of the incident
laser by the plasma. This underdense plasma layer, surrounded by vacuum on both sides,
is irradiated by the same laser beam as before, but also by a second beam, symmetrically
arriving from the other side of the plasma (see Fig. 7.3–b). The role of this second laser
is to emulate the beam reflected by the dense part of the plasma in case A.

• The last configuration (simulation reflect_under_one_wave or case C) is similar to case
B but the truncated plasma layer is irradiated by one laser beam only.

Their key results are summarized in Fig. 7.4, and shed light on the role of the reflected field
for driving stochastic heating. This figure displays the temporal evolution of the plasma elec-
tron density (Fig. 7.4–a-c), and the x − px phase space distribution of electrons (Fig. 7.4–d-f)
at the time when electron ejection from the plasma is observed to start (blue dashed line in
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a d

b e

fc

Figure 7.4: Set of 2D-plane
wave PIC simulations carried
out to reveal the role of the
laser field reflected by the
plasma - Each line corresponds
to a different physical case pre-
sented in the drawing Fig. 7.3:
- A: reflect_plasma_mirror
- B: reflect_under_two_waves
- C: reflect_under_one_wave
(see Tab. 7.1 for numerical and
physical parameters). In these
three cases, panels (a)-(c) show
plots of the temporal evolution
of the plasma electron density in
gray log color scale and panels
(d)-(f) display snapshots of the
x− px phase space distribution of
electrons in blue log color scale,
taken at the time indicated by the
blue line in panels (a)-(c) when
t = 17.3 T0.

Fig. 7.4–a-c).

The upper panels correspond to the case A and the middle panels t the case B. The key point
here is that both the temporal dynamics of the plasma density profile and the electron phase-
space distributions look very similar for cases A and B.

By contrast, if the truncated plasma layer is irradiated by one laser beam only (lower panels),
the plasma dynamics become totally different. More specifically, while similar upward electron
ejections are observed in cases A (corresponding to the electron signal observed in our experi-
ment) and B, this electron emission is strongly reduced in case C: less electrons are emitted, and
they have much weaker velocities.

This toy-model study leads to two important conclusions:

• the comparison of cases A and B indicates that in the long gradient regime, the coupling
mechanism leading to electron ejection mostly occurs in the underdense part of the density
gradient,

• the comparison of cases B and C indicates that the overdense part of the plasma nonetheless
plays a key role, by producing a reflected beam. When crossing and interfering with the
incident beam, this strongly modifies the dynamics of electrons in the underdense plasma
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layer.

These different electron dynamics in the underdense plasma layer can be also observed in phase
space (see Fig. 7.4–d-f). When a single laser beam is present (case C), electrons are observed
to simply oscillate non-linearly in the laser field, leading to a smooth and regular phase space
distribution (Fig. 7.4–f). In striking contrast, in cases A and B, electron dynamics in the stand-
ing wave resulting from the superposition of two non-collinear laser beams are complex: the
key point is that we observe a very strong local stretching and folding effect on the phase-space
distribution, around each node of the standing wave.

Such a stretching and folding effect results in very different trajectories for particles that are
initially very close in phase space: this is known to be one of the most typical routes to chaotic
dynamics [Strogatz, 2018]. This repetitive stretching and folding eventually results in a highly-
structured, multilayered phase space distribution (see Fig. 7.4–d, e), where electrons at a given
spatial position have a complex momentum distribution. The striking contrast between these
highly-structured phase space distributions, and the smooth distribution observed in case C
again demonstrates the impact of adding a second wave on electron dynamics in the underdense
part of the plasma.

7.2 Influence of Plasma Collective Effects

7.2.1 Influence of the underdense plasma layer density
Electron stochastic heating happens in tedious media, because laser waves must propagate.

However, does the electron density of the media matter for the mechanism ? In order to answer
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Figure 7.5: Schematic drawing of the
simulated density profile combining a
tenuous plasma and a perfect mirror.

this question, we propose yet another toy model,
where a tenuous plasma recovers a perfect mir-
ror as illustrated in Fig. 7.5. The tenu-
ous part is composed of a front density gradient
up to a tunable maximal density nmax < nc cos2 θi,
so that the laser can always reach the per-
fect mirror, where it is reflected. The max-
imal density is varied from 5 × 10−3 nc to
0.3 nc. The purpose of the study is to ob-
serve how the electron dynamics are being af-
fected.

We run a set of 2D simulations for three different max-
imal densities and plot in Figs. 7.6–a-c a snapshot of
the plasma density profile as well as the magnetic field

after reflection. It immediately comes that the spatial distribution of electrons are completely
different in all three cases. When the density is extremely low (Fig. 7.6–a), most of electrons are
expelled from the target in any directions ; some of them are even injected inside the reflected
field. By contrast, at highest density (Fig. 7.6–c), the density gradient is strongly perturbed
but not completely wiped out.

The spatial profile of the reflected field also highly depends on the density. In Fig. 7.6–a,
the reflected wavefront is almost identical to the incident wavefront, while in Fig. 7.6–c it is
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Figure 7.6: 2D PIC simulations of the interaction between a laser and a target combining a
tenuous plasma and a perfect mirror - The first three panels (a)-(c) show the electron ejection (grey
color scale) and the field profile (blue to red color scale) after interaction (t = 60 T0) for three different
maximal density: (a) nmax = 0.005 nc, (b) nmax = 0.08 nc and (c) nmax = 0.3 nc. Panels (d)-(f) display
snapshots of the x− px phase space distribution of electrons in blue log color scale, taken at the time of
interaction indicated by the blue square in panels (a)-(c) at t = 37 T0.

completely degraded. As suspected in Sec. 5.3.2, the spatial degradation observed in the long
gradient regime comes from non-linear couplings between the light and near-critical plasmas.

Now, let us focus on the electron dynamics inside the underdense plasma layer during interaction
displayed in Figs. 7.6–d-f for the same set of simulations. Surprisingly, the electron profiles in
phase space are heavily similar. We observe each time a strong stretching and folding effect that
mixes the electron distributions. According to the extremal values of px, the possible energy
gained by stochastic heating is comparable. It is a clear evidence that this mechanism is only
weakly dependent on the electron density.

Nevertheless, plasma collective effects still play an important role on the electron emission after
heating. To quantify their impact, we looked at the angularly resolved distributions far from
the target that are pictured in Figs. 7.7–a-c for the same simulations. Starting again at low
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Figure 7.7: Energy distributions far from the target after interaction between a laser and a
target combining a tenuous plasma and a perfect mirror - The fist three panels (a)-(c) display
the angularly resolved energy profiles of emitted electrons expelled into vacuum extracted from the same
simulations as in Fig. 7.6. In panel (d)-(f), these profiles are integrated along the angle axis and plotted
in log-log scale.

densities (Figs. 7.7–a), a clear correlation is observed between the angle of emission and the
energy: the electron energy is high close to the specular direction and decreases as one deviates
from θx = 0. This profile strongly resembles to a distribution found in the short gradient regime,
when particles undergo VLA in the reflected field (see Fig. 5.4–a, page 77 for example).

It might seem unsettling to find such distribution here. However, let us recall that in the short
gradient regime, free emitted electrons are first crossing an interference field as well that shapes
the distribution into electron planes (see Sec. 6.1, page 90). In particular, we were able to create
electron attosecond bunches in PT simulations, where particles were continuously introduced
in the interference field at non-zero velocities, without considering Brunel mechanism. A same
process happens here: the fastest electrons are emitted in the form of bunches into the reflected
field, the only difference is that the initial kick is given by stochastic heating.

For higher density (Fig. 7.7–c), we retrieve the main features of the long gradient regime: less
and less electrons are injected into the reflected field and most of the distribution is concentrated
between specular direction and target surface (θx < 0). In addition, there is no significant corre-
lation observed between angle and energy. The collective plasma effects are mainly responsible
for the direction of emission after electron heating. That can be explained by the strong space
charge fields that retain electrons close to the target. These fields appear because a large fraction
of electrons are expelled from the focal volume during interaction, while ions practically stay
immobile at the considered time scales.

In Figs. 7.7–d-f, we plot the integrated energy distribution far from target and we verify that

107



PART IV: THEORETICAL ANALYSIS OF COUPLING MECHANISMS

it barely varies with the density. That reinforces our previous guess that stochastic heating
itself hardly depends on the plasma density. These profiles are all three thermal distributions,
which legitimates the use of heating in stochastic heating. By theoretical considerations, we will
characterize the distribution of particle energy in the next chapter.

To summarize, the emission direction of electrons is strongly dependent on the underdense
plasma density but the stochastic heating not so much. It legitimates the following study
performed with a particle tracker code and free electrons.

7.2.2 Stochastic heating with a particle tracker code
As electron energy gain does not seem to depend on the plasma density, it may not be nec-

essary to compute the whole dynamics with a PIC code. It may be possible to study stochastic
heating in the interference field directly with the particle tracker (PT) code. The underdense
plasma layer would be simulated by a whole of free electrons, where no collective effects are at
play.

To validate the use of such a code over a full PIC code, we directly compare the results of a
same 2D simulation performed in the configuration B defined in Fig. 7.3–b. A snapshot of the
interaction is illustrated in Fig. 7.8–a. As a reminder, when two laser beams are interfering in
the middle of an underdense plasma, the temporal dynamics of the plasma density profile are
very close to the one obtained after interaction between a single ultra intense laser pulse and a
plasma mirror in the long gradient regime.

a b c

20-2 0-0.5 98 8.5

Figure 7.8: Comparison between 2D PIC and PT simulations in the setup defined in
Fig. 7.4–b - Panel (a) displays a snapshot after the interference of two beams (pictured from blue
to red) in the middle of an underdense plasma (in the gray log color scale). In panels (b) and (c) is
plotted the x − px phase space distribution in in blue log color scale for a subset of electrons located
in the blue rectangle panel (a), when the beams are interfering. Panel (b) corresponds to a simulation
performed with a PIC code, while panel (c) to a simulation performed with a PT code, with the same
particle initialization (∼ 107 particles).

For both simulations, we set the particles at the exact same initial position at rest. The phase
space distributions (x, px) at time of interaction are shown for both PT and PIC simulations
in Fig. 7.8–b, c. The two phase portraits look very much alike. Especially, the amplitude and
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periodicity of the stretching and folding envelop (−5 ≲ px / mec ≲ 5) are well reproduced with
the PT code.

Note that in a particle tracker code the concept of super-particle weight − Np defined in Ch. 3
(page 43), which represents a certain number of real particles per super-particle− does not fun-
damentally exist. In motion equations, only the ratio charge over mass (independent from the
weight) does matter to describe the species displacement. However, it is possible to assign a
dummy weight for each particle, which does not impact the electron dynamics but emulate a
plasma density. It becomes possible to quantitatively compare electron distributions with PIC
simulations.

Fig. 7.9 represents histograms of momentum and energy distributions after the laser has passed,
in blue for the PIC code and in red for the PT code. First thing to notice is the general good
agreement between the results of the two codes:

• the px distribution in log scale (Fig. 7.9–a, d) seems symmetrical around zero and varies
from px ∼ −20mec to px ∼ 20mec,

• the pz distribution in log scale (Fig. 7.9–b, e) is strongly asymmetrical and most of the
electrons travel towards large z.

ba
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c PIC
Particle tracker

Figure 7.9: Momentum and energy distributions for simulations performed with a PIC code
and a PT code - In panels (a)-(c), the different quantities —the momenta px, pz and the energy E—
are obtained with a PIC code. In panels (d-f), the exact same quantities are obtained with a PT code.
All of these histograms are expressed in log scale. For the particle tracker code, a dummy weight was
attributed to the electrons allowing for direct comparison with the PIC code.

Looking at these results, a particle tracker code seems to offer a good alternative to PIC codes in
the context of stochastic heating and interaction between laser and electrons without collective
effect. It allows for predictive values of plasma energy and behaviour in a much shorter time to
solution. Thus, it seems to be the perfect choice for having a better understanding on stochastic
heating at a fundamental level, subject of the upcoming chapter.
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7.2.3 Magneto-static fields on top of the surface
Besides stochastic heating, another specificity of the long gradient regime is the presence of

quasi-static fields (QF) on top of the plasma surface (see Fig. 5.11b, page 84). These grow dur-
ing the laser-plasma interaction, reach an amplitude typically of the same order of magnitude
as the laser magnetic field, and then persist even after the laser pulse has been reflected by the
plasma.

Such surface quasi-static fields have already been reported in multiple studies of the interaction
of intense lasers with dense plasmas2, and can be induced by a variety of physical processes3.
In the present case, our simulations indicate that their development can be attributed to the
’fountain effect’ described in [Sudan, 1993] where they originate from the cold return current
inside the plasma that compensates for the lateral charge ejection from the laser focal volume.

0

0

-3

a b

Figure 7.10: Fountain effect in drawing and simulation - A laser is going through an underdense
plasma layer in a setup close to Fig. 7.11–a. Panel (a) is a drawing of the mechanism: the electrons
are firstly expelled from the pulse by ponderomotive effect and cycle back thus generating a toroidal
magnetic field (light blue) which co-propagates with the laser. Panel (b) shows the corresponding 2D
PIC simulation, where the black arrows stand for the electronic displacement averaged over a time step.

In order to understand the fountain effect, it is easier to use the configuration of a laser traveling
inside an underdense plasma layer. We will see just after that this effect can be generalized on
solid targets. During the propagation the laser expels electrons by ponderomotive effect, which
cycle back generating the QF (Fig. 7.10–a). In simulations, it is possible to have access to the
return current by averaging in time the electron motion and smoothing fastest dynamics. The
return current is mainly carried by cold electrons and locally weaker than the one generated by
fast electrons but more persistent in time. The electronic displacement is pictured as a quiver
plot in Fig. 7.11–b and the black arrows are pointing in the same direction as in Fig. 7.11–a:
electrons on the side are circulating backwards until they loop behind the pulse. The signs of
the generated fields are coherent with the Ampère’s right-hand grip rule regarding the electron
directions of rotation.

The quasi-static fields presented herein are extensively discussed in [Bulanov, 2005] in the context
of ion acceleration in a Dipole Vortex. The authors noticed that a high-power laser propagation
in a gas target (n ∼ 0.1− 0.5nc) generates quasi-static magnetic fields associated to an electron

2Ruhl et al., 1999; Tatarakis et al., 2002; Bulanov, 2005; Li et al., 2006; Pérez et al., 2013; Nakatsutsumi et al.,
2018

3Fabbro and Mora, 1982; Sudan, 1993; Thaury, Mora, et al., 2010; Kumar et al., 2018
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vortex structure. When the laser escapes the plasma, these fields are persisting and an extended
region with a quasi-static electric field is formed, in which the ions can be accelerated. The con-
figuration they found as optimal to maximize the field magnitude is the configuration presented
in Fig. 7.10.

The QF shape of this configuration are then compared with two other cases: (i) when the laser
is reflecting on a plasma mirror target with a long gradient Lg = 1.5λ in normal incidence for
Fig. 7.11–b and (ii) with an oblique incidence (θi = 55◦) for Fig. 7.11–c.

a b c

k k
k

0.1 nc

200 nc 200 nc

Figure 7.11: Schematic drawing of three different laser interactions with a long gradient
plasma leading to quasistatic fields - In panel (a), the laser beam is crossing an underdense target
presenting density gradients in front and back. In panel (b) and (c), the laser is reflecting on a plasma
mirror with a long gradient Lg = 1.5λ in normal incidence (b) and with an angle θ (c).

The results of 2D PIC simulations corresponding to these three cases are pictured in Fig. 7.12.
It is particularly striking to notice how close the QF look alike in the first two cases (Figs. 7.12–a,
b) in term of amplitude and shape. Typically, their amplitude reaches a magnitude equivalent
to 0.8-1 in a0 magnetic unit (while the laser amplitude is initially a0 = 3) across 3-5λ0. This
indicates that a substantial portion of the energy of the incident laser pulse is converted into
these fields (in practice ∼ 15%).

In addition, in Fig. 7.12–a, as observed in [Bulanov, 2005] a plasma channel spans all across the
plasma layer. During a time significantly longer than the ones presented in the manuscript, the
channel size is actually growing and cavities -area empty of electrons and ions- start to appear
in the middle of the plasma.

Reflecting with an angle (Fig. 7.12–c) does not fundamentally change the physics at play and
the QF still persist. However, there is now a asymmetry between the absolute amplitude of
the surface fields. In fact, one can barely see the left and blue negative part of the surface
fields while the positive part seems more intense than before. This asymmetry comes from the
difference of density observed on both sides of the field, while traveling in the plasma. During
the interaction, the laser field is surrounded by low densities near the surface and high densities
(near-critical) at the point of reflection. Electrons are expelled by ponderomotive force from the
focal volume in all spatial directions but more electrons are pulled back from highest densities
to compensate the loss. They contribute to larger return currents and thus larger QF. The
QF span also a broader surface area because the interaction surface itself increases in oblique
incidence (as tan θi typically).

The fountain effect is obviously dependent on the laser waist as it is a ponderomotive effect.
When using a Gaussian pulse with a finite waist, e.g., w = 5λ0, QF emerge in normal incidence
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a c

0-30 -1.5

b

Figure 7.12: Evolution of the surface static fields in three different configuration with a long
gradient plasma leading to quasistatic fields - In all the three cases, we display a snapshot of the
By field and the plasma density (log scale) at the end of the interaction. The static fields are highlighted
by a gray dot-dash line.

0.5

-2.5

a b

Figure 7.13: Reflection in normal incidence for a Gaussian beam and a plane wave in the
long gradient regime in 2D - For both panels, the magnetic field is plotted in color scale, while the
plasma is plotted in gray log scale. The static fields are highlighted by a gray dot-dash line.

(Fig. 7.13–a). When the plasma surface is homogeneously illuminated by a plane wave, the
surface fields tend to completely disappear, as illustrated in Fig. 7.13–b.

To summarize, the quasi-static fields needs two conditions to appear in the long gradient regime:
(i) the crossed plasma density has to be sufficiently high to drive large return currents and (ii)
the laser waist has to be sufficiently small to maximize the ponderomotive force. In experimental
conditions, these two conditions are full filled and such surface fields can be indeed measured
[Tatarakis et al., 2002].

7.3 Validity Domain of Stochastic Heating

7.3.1 Threshold in intensity from resonance absorption to stochastic heating

Now that the mechanism in the long gradient regime is well understood, let us find the va-
lidity domain of stochastic heating in term of gradient and intensity.

As a reminder, in Sec. 1.2.2, we saw that resonance absorption is supposed to be the mechanism
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45 45

0.5

-2.5

a b

Figure 7.14: 2D-plane wave PIC simulations in the long gradient regime for two different laser
amplitudes in p-polarization - In both cases, the simulations are performed in the setup A defined in
Tab. 7.1, page 103. The gray log scale represents the temporal evolution of the plasma electron density
profile for (a) a0 = 0.1 and (b) a0 = 3. The insets represent zooms centered around the critical electron
density of the initial plasma profile n = nc (materialized with the white dashed line).

at play at low intensity, when the gradient scale length was sufficiently long. Then, it may be
possible to find a transition from resonance absorption to stochastic heating, when the intensity
is increased. In addition, Fig. 7.2–b (page 102) showed that for lower laser amplitudes a0 ≪ 1,
the Lyapunov exponent λL is very close to zero, suggesting that stochastic heating is no more
the leading mechanism at play.

This is supported by the results of Fig. 7.14 obtained for PIC simulations performed in the
case A (see Fig. 7.3–a page 103) for two different laser amplitudes a0 = 0.1 and a0 = 3. At
a lower laser intensity (Fig. 7.14–a), a resonant excitation of plasma waves is observed around
the critical density n = nc. The resonant growth of these plasma waves eventually lead to wave
breaking and subsequent ejection of hot electrons after the interaction. The underdense part of
the plasma gradient (n < nc) is only very weakly perturbed in this case.

However, for larger laser amplitudes, a0 = 3, Fig. 7.14–b shows that the resonant growth of
plasma waves at n = nc vanishes. As opposed to the classical case (a0 ≪ 1) where all resonance
absorption models assumed an initially unperturbed plasma density profile, the electron density
profile in the relativistic case is highly perturbed and the laser reflects on a density much higher
than nc (by relativistic transparency). This prevents the growth of any resonant waves near the
critical density. Instead and as previously described, the interference pattern produced by the
incident and reflected fields within the underdense part of the density gradient is responsible for
stochastic heating of electrons, and results in a homogeneously heated underdense plasma layer.

When the laser polarization is switched, resonance absorption is supposed to disappear but not
stochastic heating (see Fig. 5.10–b on page 83). This is perfectly illustrated in Fig. 7.15, at
a0 = 0.1 (Fig. 7.15–a) and a0 = 3 (Fig. 7.15–b). At lower intensity, the plasma is barely
perturbed by the laser and we observe no resonance near nc. At higher intensities, in coherence
with Fig. 5.10–b, stochastic heating appears and the electron density profile looks like the one
obtained with a p-polarized wave.

The transition from resonance absorption to stochastic heating is detailed in a smoother way in
Fig. 7.16 for 4 different laser intensities, a0 = 0.1, 0.5, 1 and 5 and two laser polarizations in
the setup A.
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45 45

0.5

-2.5

a b

Figure 7.15: 2D-plane wave PIC simulations in the long gradient regime for two different
laser amplitudes in s-polarization - Same as in Fig. 7.14 but the laser polarization was switched.
This time there is no resonance absorption at low intensity (panel (a)).

According to Fig. 7.2–b, the chaos appears for a0 ≳ 0.15 and consequently there is no sign
of stochastic heating in Fig. 7.16–a, e (where a0 < 0.15). Then, for the six other panels, the
intensity becomes high enough to allow stochastic heating to grow. Again, at a given intensity,
the two density profiles for both polarizations look very much alike, in term of ejection but also
in term of laser penetration, which increases by relativistic transparency.

Also for p-polarization, resonance absorption does not disappear immediately after passing the
chaos threshold. It still coexists with stochastic heating for moderate intensities, such as a0 = 0.5
and 1 (see the wave breaking near nc in Figs. 7.16–b, c, but absent in Fig. 7.16–f, g). However,
at some point the laser intensity becomes so high that the beam is reflecting on a density higher
than nc preventing the resonance absorption to exist (Fig. 7.16–d).

It is possible to theoretically estimate this limit. By recalling relativistic transparency, a high
power laser does not reflect on a density n = nc cos2 θi anymore but on a density n = γ0 nc cos2 θi

instead, with γ0 the equivalent Lorentz factor for the laser beam defined as:

γ0 ≡
√

1 + a2
0. (7.3)

However, resonance absorption still occurs at the point on the density profile, where ωp = ω0
(see Figs. 7.16–a-c). Then, if the point of the reflection is deeper than the position of nc, it
prevents the growth of the resonance:

γ0 nc cos2 θi > nc,

⇔ a0 >

√
1− cos4 θi

cos2 θi
≃ 2.87 for θi = 55◦. (7.4)

In experiments, a0 is roughly equal to 3 (> 2.87) and no resonance absorption signatures could
be observed in this regime a priori.

7.3.2 Evolution with gradient scale lengths
We already know that a too short density gradient scale length prevents the stochastic heating

to grow in favor of Brunel mechanism, because the laser does not propagate in a large enough
underdense plasma layer. At very long gradient scale lengths (Lg ≳ 3-5λ0), we would also ex-
pect the stochastic heating to disappear, since the reflection becomes continuous. In the plasma
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PART IV: THEORETICAL ANALYSIS OF COUPLING MECHANISMS

layer, the laser wave is continuously turning inside the plasma layer (kx varies with z), without
creating a standing wave, combination of incident and reflective fields. This standing wave is
mandatory for stochastically heating the plasma.

Reflection at low intensity. The reflection is indeed continuous when the laser intensity is
low as illustrated Fig. 7.17 with a drawing (Fig. 7.17–a) and through 2D-simulation at a0 ≪ 1
and Lg = 5λ0 (Fig. 7.17–b). The plasma layer is almost unperturbed along the wave propa-
gation. Also, the wave self-focuses in the near-critical part of the plasma and thus presents a
smaller waist.

Reflection at relativistic intensity. We now run the same simulation as in Fig. 7.17 but for
a0 = 3. The results are shown in Fig. 7.18 at different time steps. At higher intensities, non
linear effects start happening (mainly non-linear self-focusing) and the laser is actually depleted
during its propagation in the plasma. Looking at the By field in k-space in Fig. 7.18–e-h, the
laser wavevector is turning in a continuous way along the propagation in the plasma but its foot-
print in Fourier space broadens. This indicates that the laser fails to keep its initial waveform
and that its energy is spread over a wide range of angles.

In the spatial domain, Fig. 7.18–a-d shows that the laser is scattered in multiple filaments and
almost fully absorbed before leaving the plasma: in this simulation only 21.6% of the laser initial
energy is emitted toward vacuum as a highly deformed beam (Fig. 7.18–d). By ponderomotive
effect, the different laser filaments draw channels and overdense regions.

Laser absorption by an overdense plasma was particularly studied in the 90s in a context of
inertial fusion4. There, lasers are mostly picosecond to nanosecond and the interaction on a
near critical plasma leads to strong parametric instabilities, in particular stimulated Raman
scattering (SRS) or stimulated Brillouin scattering (SBS).

The incident laser light generates a scattered electromagnetic wave and a longitudinal wave that

1-2 -0.5 0 0.1-0.1
a

k1

200 nc

b

Figure 7.17: 2D-Reflection on plasma mirror with a very long density gradient at low intensity
- Panel (a) is a schematic drawing of this reflection where as always the laser pulses are pictured in blue
and red and the plasma in gray. Panel (b) is the simulation performed in the same setup as panel (a) at
low intensity (a0 = 0.1 and Lg = 5λ0) and is the combination of three snapshots, respectively taken at
t = 27T0, t = 49.5T0 and t = 72T0.

4Sakharov and Kirsanov, 1994; Decker et al., 1996; Quesnel, Mora, et al., 1997; Eliseev et al., 1998; Barr et al.,
2000; Young et al., 2001
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Figure 7.18: 2D-Reflection on plasma mirror with a very long density gradient at relativistic
intensity - The four upper panels are snapshots of the interaction of the laser (a0 = 3 in color scale) on
a very long gradient plasma (Lg = 5λ0 in gray log scale) at respectively t = 27T0, t = 40.5T0, t = 54T0
and t = 67.5T0. The lower panels display the Fourier transform of the By field in log scale at the same
times.

can be either an electron plasma wave in the case of SRS or an ion sound wave in the case of SBS.
For ultrashort pulses, the interaction spans only over tens of laser periods during which the ion
dynamics are mostly negligible. The SBS is thus unlikely. The absorption may be a combination
of SRS and filamentation instabilities. Unfortunately, extra time would be needed to completely
describe this regime, particularly rich in plasma physical processes and instabilities.

Conclusion
At relativistic intensities, the interaction between an ultra intense laser and a plasma mirror

in the long gradient regime had not been fully studied in the literature so far. However, in most
of experiments on solid targets, a poor beam contrast can often lead to density gradient scale
lengths relatively long (typically the order of magnitude of the laser wavelength) for which a
new mechanism happens.

This mechanism was found to be stochastic heating, where electrons in the underdense part of
the plasma gain energy in the standing wave formed by the interference of incident and reflected
field. In order to find such heating in the underdense layer, the overdense part is nevertheless
important as it creates the secondary wave.

We also investigated the dependency on the underdense layer density. It was found that the
energy gained by the electrons is relatively independent from the density, which legitimates
the following chapter based on analytical motion of free electrons in two waves. However, the
electron emission towards vacuum is strongly dependent from the density In addition to the
stochastic heating, in 2D/3D simulations, we noticed that the laser expels electrons out of the
focal volume, generating quasi-static fields along surface. These fields present a magnitude equiv-
alent to the incident laser pulse and persist after the laser has passed.
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The stochastic heating emerges at a specific laser intensity and below this threshold the reso-
nance absorption is dominant (at least for p-polarization). At very long gradients, there is no
clear interference field as the laser is continuously turning into the plasma. That should be
an upper limit for stochastic heating. In this regime, strong parametric instabilities seemed to
dominate the general behaviour at relativistic intensities but were not explored extensively in
this manuscript.
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8 Stochastic Heating in Plane Waves

The acceleration of free electrons in multiple electro-magnetic waves is a subject of interest
for many fields of physics specifically in magnetic nuclear fusion or laser-plasma interaction. For
many years, the theory behind stochastic heating has been studied with advanced mathematical
derivations such as the super-Hamiltonian formalism [Mendonca, 1983; Bourdier et al., 2005] or
the quasilinear theory [Rax, 1992; Rechatin, 2009]. Despite fair quantitative conclusions, these
theories fail to provide an intuitive physical understanding of the processes at play.
In this chapter, we propose a different approach based on the equations of motion and temporal
evolution of particles in phase space. The idea is to develop an alternative formalism, made of
simple physical concepts, that will be easily understandable by non-specialists of chaos theory
or Hamiltonian formalism and that allows to very quickly derive very accurate values of chaos
thresholds as a function of laser parameters.
We will at first write the equations of motion in two counter-propagating waves in the form of
pendulum equations, which are extensively studied dynamical systems, known to exhibit chaos
in some cases. Then, we will show that this formalism is useful to describe particle diffusion,
chaos threshold or electron trajectories. Finally, this chapter is closed by introducing an angle
of incidence between the two waves, which makes the mechanism more complex but allows for
direct comparisons with PIC simulations and experiments.
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8.1 Electron Motion in an Electro-Magnetic Field

8.1.1 Equation of motion and canonical momentum conservation
In the previous chapters, we saw that PIC simulations can capture most of the physical pro-

cesses at play to finely reproduce the experiments. Nevertheless, because of their complexity, it
is sometimes extremely challenging to extract quintessential concepts among the large amounts
of data produced. Studying stochastic heating does not require to consider collective dynamics.
We would prefer using reduced models, which provide quantitative results, while being highly
tractable. In this whole chapter, we run only particle tracker simulations, where plane waves
propagate and interfere in a medium exclusively composed of free electrons. The simulated
results are supported by a theoretical study based on equations of motion.

Let us start by deriving the electron motion in a given electro-magnetic field in the relativistic
regime. The equation of motion for a single electron reads:

dp
dt = −e

(
E + v ×B

)
and p = mγv. (8.1)

It is interesting to introduce the vector potential, defined as:

E = −∂A
∂t

and B = ∇×A. (8.2)

As a single electron is considered here, V does not appear in Eq. (8.2). The equation of motion
becomes:

dp
dt = −e

(
− ∂A

∂t
+ v ×

(
∇×A

))
= −e

(
− ∂A

∂t
+ ∇

(
v ·A

)
−
(
v ·∇

)
A
)
.

(8.3)

Now, let us consider only plane waves propagating along the x-direction. The polarization
directions are then the y and z axes. As the electro-magnetic fields are invariant by translation
along the transverse directions, it comes that:

• ∇
(
v ·A

)
=
(
vy
∂Ay

∂x
+ vz

∂Az

∂x

)
x =

(
v⊥ ·

∂A⊥
∂x

)
x,

•
(
v ·∇

)
A = vx

∂Ay

∂x
y + vx

∂Az

∂x
z = vx

∂A⊥
∂x

,

(8.4)

where the symbol ⊥ stands for the transverse components. It leads to two equations:

• projection along x: dpx

dt = −e
(
v⊥ ·

∂A⊥
∂x

)
, (8.5)

• projection along ⊥: dp⊥
dt = e

(
∂

∂t
+ vx

∂

∂x

)
A⊥ = e

dA⊥
dt , (8.6)

where we recognize the total derivative of A⊥. The Eq. (8.6) is the so-called canonical momentum
conservation equation:

d
dt
(
p⊥ − eA⊥

)
= 0 ⇔ p⊥ − eA⊥ = Cst. (8.7)
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p⊥ − eA⊥ is found to be a motion invariant. A particle initially at rest cannot gain any energy
in transverse directions, when it interacts with an electromagnetic pulse.

Using the conservation of the transverse canonical momentum in Eq. (8.5), it is possible to find
the differential equation in px:

dpx

dt = −e
(
p⊥
mγ
· ∂A⊥
∂x

)
= − e2

2mγ
∂A2

⊥
∂x

, (8.8)

where A2
⊥ = A2

y + A2
z. The right-hand side of the equation is the so-called ponderomotive force.

Let us now derive an equation for the position. To do so, we differentiate the particle velocity:
dvx

dt = 1
mγ

dpx

dt −
px

mγ2
dγ
dt

= − e2

2m2γ2
∂A2

⊥
∂x
− vx

γ

1
2γm2c2

(
dp2

⊥
dt + 2px

dpx

dt

)

= − e2

2m2γ2
∂A2

⊥
∂x
− e2vx

2γ2m2c2

(
dA2

⊥
dt − vx

∂A2
⊥

∂x

)
.

(8.9)

Finally, with ẋ = dx/dt = vx and the formula for the total derivative of A2
⊥, the equation of

motion in the relativistic regime reads:

d2x

dt2 + e2

2m2γ2

(
∂

∂x
+ ẋ

c2
∂

∂t

)
A2

⊥ = 0, (8.10)

where the red color highlights the relativistic terms. In the classical limit, i.e., γ → 1 and |ẋ| ≪ c,
it simply becomes:

d2x

dt2 + e2

2m2
∂A2

⊥
∂x

= 0. (8.11)

Eq. (8.10) is valid for any superposition of laser plane waves propagating along x. In the next
sections, we will expand A2

⊥ for different wave configurations and exhibit the main properties of
the resulting particle dynamics.

8.1.2 Electron dynamics in a single plane wave
Firstly, let us start with the simplest case: the electron dynamics in a single plane wave

linearly polarized along the z-axis. In this configuration, the vector potential reads:

A = A0 sin(k0x− ω0t)z, (8.12)

with A0 = a0mc/e. In this configuration, it is possible to derive the fully relativistic orbits of
electrons. This was presented for example in [Hartemann et al., 1995]. In this case, the system
admits an additional motion invariant mcγ − px:

mc
dγ
dt = −e

c
v ·E = e

γmc
pz
∂Az

∂t

= e2

2γmc
∂A2

z

∂t

= − e2

2γm
∂A2

z

∂x
,

= dpx

dt
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d
dt
(
mcγ − px

)
= 0. (8.13)

There are 3 independent motion invariants (two from Eq. (8.7) and mcγ − px) in a 3D space,
which makes the system integrable in the Liouville sense. Therefore, the system cannot exhibit
any chaotic behaviour.

In our case, the equations of motion in the classical regime are sufficient to give a physical insight
of the electron dynamics. They can easily be derived from Eq. (8.11):

d2x

dt2 + 2a2
0c

2k0 sin
(
2(k0x− ω0t)

)
= 0. (8.14)

We define a new variable ξ → 2(k0x − ω0t), position of the electron in its co-moving frame. ξ
satisfies the following equation:

d2ξ

dt2 + 4a2
0ω

2
0 sin ξ = 0. (8.15)

We recognize there the well-known equation of a simple gravity pendulum. The oscillation period
of this pendulum would be T = π/a0ω0 and the solution can be expressed using elliptic integrals.
The total particle motion along the x-axis is then a combination of a periodic behaviour related
to the pendulum and a drift towards x > 0.

ba

c

Figure 8.1: Electron dynamics in a single linearly polarized wave - In panel (a), a laser pictured
from blue to red is traveling towards positive x through an electron cloud pictured as black dots. One
particle is highlighted as a blue dot and its orbit as a blue line. At the same time step, we also display the
electron distribution in different spaces: (b): (x, px) and (c): (px, pz). To assist the reader, the magnetic
field is plotted in panel (b) as well.

In order to illustrate this statement, we picture in Fig. 8.1–a a plane wave, propagating towards
positive x and impinging on an electron cloud initially at rest and laid out randomly within a
square: −2λ0 ≤ xt=0, zt=0 ≤ 2λ0. One electron of this population is highlighted in blue and
its trajectory along time is pictured as the blue line in Fig. 8.1–a.
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When the particles are inside the wave, they oscillate along the polarization direction, as one
can see in Fig. 8.1–a in the (x > 0)-half space. But after the wave has passed, the global form
of the distribution returns to a square. The final state is comparable to the initial one but
slightly shifted towards positive x (see the (x < 0)-half space). The drift is clearly visible on the
blue trajectory. The corresponding particle has traveled around 3λ0 since the beginning of the
simulation.

Regarding the distributions in phase space (see Figs. 8.1–b, c), the system is again very simple.
Starting from the formulas leading to motion invariants, it is possible to express all momentum
components in term of Az only. For py and pz, Eq. (8.7) gives instantly py = 0 and pz = eAz

because the initial distribution is at rest. For px, we use the last invariant (see Eq. (8.13)):

mcγ − px = mc

⇔ m2c2 + p2
x + p2

y + p2
z = (mc+ px)2

⇔ 2mcpx = p2
z = e2A2

z. (8.16)

It results that every momentum component is known at all time and at every position across
space. From Eq. (8.16) in particular, we found that px is always positive and oscillates at twice
the laser frequency (see Fig. 8.1–b). It is coherent with the particle drift towards positive x.
In addition, it also comes that the relation between pz and px is an equation of a parabola as
illustrated in Fig. 8.1–c. During its propagation in phase space (px, pz), an electron would just
travel along the parabola. At the end of the interaction, Az returns to zero and so do px and pz.
As previously stated, this shows that particles cannot gain energy in a single plane wave (see
Figs. 7.4–c, f, page 104 for example).

In the following, we add a second laser pulse and show how it affects the electron motion.

8.2 Electron Dynamics in Two Counter-Propagating Plane Waves

8.2.1 Equations of motion

We have already seen in PIC simulations (Sec. 7.1.3 page 102) that when a second laser wave
is added, the electron dynamics in the interference field may become chaotic and particularly
complex after few laser cycles. In fact, the chaotic nature of the system can be directly evi-
denced, even in a non relativistic regime, through the classical equations of motion. These can
be written as different equations of simple or forced pendulums — dynamical systems known to
exhibit chaos (see Ch. 2).

Starting from Eq. (8.10) (page 121) in the classical limit − i.e., without the red terms −, we write
the equations of motion for two different cases: (i) two circularly polarized waves and (ii) two
waves linearly polarized in the same direction. For now, these two waves are counter-propagating
to one another along the x direction. This would correspond to studying electron dynamics in
the interference pattern of incident and reflected fields occurring inside the underdense part of
the target in the long gradient regime (see chapters 5 and 7). In all the following, the two waves
will feature the same amplitude a0 and angular frequency ω0 to emulate the reflective wave
produced by the overdense layer of the solid target.
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Equations of motion in two circularly polarized waves. In this case, the transverse
vector potential A⊥ for each wave reads :{

A1 = A0
(

cos(ω0t− k0x)y + sin(ω0t− k0x)z
)
/
√

2,
A2 = A0

(
cos(ω0t+ k0x)y ± sin(ω0t+ k0x)z

)
/
√

2,
(8.17)

where A1 corresponds to the wave propagating towards positive x and A2 the one propagating
towards negative x. The first laser is chosen to be right-handed circularly (RHC) polarized but
the second one can either be RHC polarized (negative sign) or left-handed circularly (LHC)
polarized (positive sign).

In the classical limit, we only need to compute the spatial partial derivative of A2
⊥ = A2

y + A2
z

to explicit Eq. (8.10), which reads:

∂A2
⊥

∂x
= A2

0
2

∂

∂x

([
cos(ω0t−k0x)+cos(ω0t+k0x)

]2
+
[

sin(ω0t−k0x)±sin(ω0t+k0x)
]2)

. (8.18)

After developing the inner brackets, we get:

∂A2
⊥

∂x
=

∣∣∣∣∣∣∣∣
A2

0
∂

∂x

(
1 + cos

(
2ω0t

))
= 0 if A2 is RHC,

A2
0
∂

∂x

(
1 + cos

(
2k0x

))
= −2A2

0 k0 sin
(
2k0x

)
if A2 is LHC,

(8.19)

where we used the following trigonometric formulas:

∀
(
φ, ψ

)
∈ IR2,

∥∥∥∥∥ • cos2 φ+ sin2 φ = 1,
• cosφ cosψ ± sinφ sinψ = cos(φ∓ ψ).

(8.20)

Back to Eq. (8.10), we find:

d2x

dt2 =
∣∣∣∣∣ 0 if RHC,
a2

0c
2k0 sin(2k0x) if LHC.

(8.21)

We define a new variable θ → π + 2k0x, its temporal evolution is given by:

d2θ

dt2 = 0 if RHC,

d2θ

dt2 + 2 a2
0 ω

2
0︸ ︷︷ ︸

ω2

sin θ = 0 if LHC.
(8.22)

When the two lasers are both RHC polarized, the first line of Eq. (8.22) shows that electrons do
not undergo any force along the x direction. If particular, when vx|t=0 = 0, one can note that
they never move along the longitudinal direction. This statement stays valid even in the rela-
tivistic regime because the relativistic equation of motion, Eq. (8.8), (page 121) simply becomes
dpx/dt = 0. Of course, the transverse dynamics still exist, since the motion is constrained by
the canonical momentum conservation (Eq. (8.7), page 120). Overall, the motion is known at
whole time: px = 0 and p⊥ = A⊥ and only presents a limited interest. Then, it will not be
discussed further ahead.
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When the two laser waves present opposite circular polarizations, we find that the equations of
motion can be written again as an equation of a simple gravity pendulum. The longitudinal
dynamics can be expressed using elliptic functions. The swing period of the corresponding pen-
dulum would be T = 2π/ω =

√
2π/a0ω0 and its proper angular frequency ω is linearly depending

on a0. It means that the higher the laser amplitude, the faster the pendulum. Note also that
when a0 = 1/

√
2, the pendulum oscillates at the laser frequency (ω = ω0).

The system is again fully integrable even in the relativistic regime and we find a third motion
invariant, which is simply γ:

mc
dγ
dt = e2

2γmc
∂A2

⊥
∂t

= e2

2γmc
∂

∂t

(
1 + cos

(
2k0x

))
= 0

(8.23)

The electrons cannot gain any energy in this configuration. px and p⊥ are still evolving in time
but the kinetic energy does not vary. Because the system is integrable in the Liouville sense,
the electron motion is completely predictable and there cannot be any chaotic behaviour.

Equations of motion in two linearly polarized waves. This time, both laser waves
show a linear polarization along the same direction − e.g., z. In the following, we refer to this
configuration as two p-polarized wave case (or just p/p case)1. It will matter however in Sec. 8.5,
when the angle of incidence between the two waves will be introduced. Nevertheless, for two
counter-propagating and similarly linearly polarized waves, the transverse vector potential A⊥
for each wave reads: {

A1 = A0 sin(ω0t− k0x)z,
A2 = A0 sin(ω0t+ k0x)z.

(8.24)

and the spatial partial derivative of A2
⊥:

∂A2
⊥

∂x
= A2

0
∂

∂x

([
sin(ω0t− k0x) + sin(ω0t+ k0x)

]2)
= 4A2

0
∂

∂x

(
cos2(k0x) sin2(ω0t)

)
= −8A2

0k0 sin2(ω0t) sin(k0x) cos(k0x)
= −2A2

0k0 sin(2k0x)
(
1− cos(2ω0t)

)
,

(8.25)

where we used the following trigonometric formulas:

∀
(
φ, ψ

)
∈ IR2,

∥∥∥∥∥∥∥∥
• sin

(
φ− ψ

)
+ sin

(
φ+ ψ

)
= 2 sinφ cosψ,

• 2 sinφ cosφ = sin 2φ,
• 2 sin2 φ = 1− cos 2φ.

(8.26)

The equation of motion becomes:

d2x

dt2 − a
2
0c

2k0 sin
(
2k0x

)(
1− cos

(
2ω0t

))
= 0. (8.27)

1The use of p here is an abuse of language, because for two counter-propagating waves, there is indeed no difference
between p or s-polarizations.
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Again, we define θ → π + 2k0x and its temporal evolution after a time shift (t→ t+ π/2ω0) is
given by:

d2θ

dt2 + 2 a2
0 ω

2
0︸ ︷︷ ︸

ω2

sin θ
(
1 + cos(2ω0t)

)
= 0. (8.28)

This equation is the equation of a pendulum commonly known as Kapitza’s pendulum [Kapitza,
1951,1951]. In the 50’s, Kapitza studied the properties of a rigid pendulum in which the pivot
point (a.k.a., the attached point) quivers in the vertical direction, up and down. In particular,
Kapitza demonstrated that under certain conditions based on the frequency of the vertical oscil-
lations, the stable position appears to be above its attachment point. In contrast to the gravity
pendulum, the stable position now lies above the pivot, while the position below the pivot, is
no longer stable. In this regard, the term of inverted pendulum is also widely popular in the
literature.

In the general case, the equation governing the bob motion for a Kapitza’s pendulum is given
by:

d2θ

dt2 + g

l
sin θ

(
1 + a ν2

g
cos νt

)
= 0, (8.29)

with a and ν respectively the amplitude and the frequency of the vertical oscillations, g the free
fall acceleration and l the length of the pendulum. It is possible to write Eq. (8.28) in a similar
form as Eq. (8.29) thanks to the following changes of variable:

g/l←→ ω2 = 2a2
0ω

2
0,

ν ←→ 2ω0,

a ν2/g ←→ 1.
(8.30)

Note that in all Kapitza’s studies, the variable parameters were a and ν, quantities imposed
by the external oscillator. However, in our equations, among a0 and ω0, only the laser ampli-
tude can be varied in experiments, which directly changes the proper angular frequency ω of the
mathematical pendulum. It would be equivalent for a Kapitza’s pendulum to change the length l.

For this type of forced pendulum, the stability of the upper position is ensured if the suspension
point is vibrating with small amplitudes a ≪ l and with a frequency much higher than the
proper frequency ν ≫ g/l. These two inequalities give the same general condition on the laser
amplitude:

a0 ≪ 1/
√

2 ≃ 0.707. (8.31)

Beyond this threshold, the upper position is a priori no longer stable and it means that a transi-
tion toward a non predictable regime should be expected. Indeed, we have already seen in PIC
simulations (see Sec. 7.1.2, page 101) that chaotic behaviour starts appearing at relatively low
intensity (a0 ≳ 0.15)

In the classical limit, the system is analogous to a forced pendulum, system known to exhibit
chaos in some cases (see Sec. 2.2, page 34). In order to understand chaos origin and proper-
ties, it is unnecessary to consider the relativistic terms, which make the equations of motion
fundamentally non-linear and complicate the analytical derivations. Actually, as we will see
further ahead, introducing relativistic terms rather unexpectedly tends to stabilize the system,
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e-e- e-

+ + +
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a b c d
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Figure 8.2: Summary drawing of the comparison electron dynamics-pendulum - The different
panels present a different laser electron interaction setup: (a) one linearly polarized wave, (b) two linearly
polarized waves, (c) one RHC and one LHC polarized waves and (d) two RHC polarized waves. For each
case, we recall its equivalent pendulum: (a) and (c): simple gravity pendulum, (b) Kapitza or inverted
pendulum and (d) pendulum at rest.

because the particle velocities remain bounded to c. Also, the magnitude of the ponderomotive
force is lowered by a factor γ2 in comparison to its classical value (see Eq. (8.10), page 121).
Highly energetic particles would experience less influence of different laser fields and would not
be accelerated as much as they would have without relativistic effects.

In Fig. 8.2, we have summarized the various configurations of laser wave polarizations discussed
herein. Based on the inherent forms of the pendulum equations, it is possible to discriminate
non-chaotic and chaotic configurations. So far, only the setup with two linearly polarized waves
does introduce potential chaotic behaviour.

8.2.2 Numerical analysis of electron dynamics in two waves

At this point, one cannot go any further in the analytical derivation and we propose to study
the dynamics thanks to PT simulations. This section aims to lay the foundation of a new formal-
ism and to introduce the different observables important to understand the following. We start
by giving a descriptive overview of the electron dynamics in the two different configurations of
interest: RHC/LHC and p/p.

In all of these simulations, 105 electrons are initially located along the x-axis in the range [−λ0,
λ0], with zero longitudinal velocity (px|t=0 = 0). The electromagnetic waves are considered
infinite in time and space, which imposes that all particles are directly initialized within the
interference field. To ensure the verification of the conservation of the transverse canonical mo-
mentum at any time (Eq. (8.7), page 120), the particle transverse momenta need to be initialized
to the corresponding transverse vector potentials at their positions: p⊥|t=0(x) = eA⊥|t=0(x).

Dynamics in two circularly polarized waves. For monochromatic plane waves, the
combination of a RHC and a LHC polarized waves defined in Eq. (8.17) (page 124) leads to the
following interference electromagnetic field:

{
E = +

√
2E0 cos(k0x)

(
sin(ω0t) y − cos(ω0t) z

)
,

B = −
√

2B0 sin(k0x)
(

sin(ω0t) y − cos(ω0t) z
)
,

(8.32)
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Figure 8.3: Electron dynamics in RHC/LHC configuration - Panel (a) shows the shape of the
interference field in space, created by 2 counter-propagating RHC polarized and LHC polarized waves.
Each line color corresponds to a different time within a laser period. In addition, the magnetic field
nodes are highlighted as black dash lines. In panels (b) and (c), we represent the electron distributions in
phase space after 2T0 in the fields of panel (a) for a0 = 0.8, when using the classical (b) and relativistic
(c) forms of the equations of motion. The discrete color scale depends on the different buckets, in which
particles were initially located.

This interference field is displayed in Fig. 8.3–a in space at different times within a laser period
(see the red color scale). It forms a standing wave, where time and space are decoupled. The
electric field is seen to show nodes for each k0x = π/2 + nπ (∀n ∈ Z) and the magnetic field for
each k0x = nπ.

The electron distribution after 2 laser periods in this field is pictured in Fig. 8.3, when using
the classical (Fig. 8.3–b) and relativistic (Fig. 8.3–c) forms of the equations of motion. In
the remainder of this chapter, the color scale of particle markers in phase space is related to
the electron initial position x|t=0 and expressed as a set of 4 discrete colors corresponding to a
different initial magnetic field bucket, i.e., the area between two magnetic field nodes, delimited
by black dash lines. Each bucket is centered around an electric field node. From the different
profiles of Figs. 8.3–b, c, one can infer three important points:

• the distributions look like simple pendulum phase portraits, where all the trajectories are
trapped. The particles are simply rotating around fixed points on a close elliptical orbit.
It happens that these fixed points exactly coincide with electric field nodes.

• the different colors do not mix, meaning that the particles are staying in their initial bucket
all along the interaction.

• There is barely no difference between classical and relativistic regimes except for the slight
change of amplitudes of the inner ellipses. In fact, the relativistic terms tends to damp
px, forcing the particles to get closer to the electric field nodes at every pendulum proper
period T = 2π/ω ≃ 0.88T0.

As stated in the previous subsection, the electron dynamics in two circularly polarized waves can
be related to simple pendulum dynamics. In this case, the system seems to keep its simplicity
in both classical and relativistic regimes.

Dynamics in two linearly polarized waves. When the laser polarizations are switched to
linear, we showed that the laser particle interaction was similar to a Kapitza’s pendulum, which
is no more predictable when a0 ≳ 1/

√
2. We should thus expect some clear signatures of chaos,
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Figure 8.4: Electron dynamics in p/p configuration - Similar to Fig. 8.3 but for two p-polarized
lasers.

when looking at the particle distribution in phase space for a laser amplitude a0 = 0.8 > 1/
√

2.
In this configuration, the interference field reads:{

E = −2E0 cos(k0x) cos(ω0t) z,
B = +2B0 sin(k0x) sin(ω0t) y.

(8.33)

This particular field is displayed in Fig. 8.4–a. Again the electric field presents nodes for each
k0x = π/2 + nπ (∀n ∈ Z) and the magnetic field for each k0x = nπ. In this configuration, the
full magnetic and electric fields are in quadrature in space but also in time.

The electron distributions in this interference field are pictured in Figs. 8.4–b, c at t = 2T0.
We again perform the same simulation with either the classical or the relativistic equations of
motion. However, this time, the two profiles present noticeable differences that are explained
below:

• first, the particles can now migrate between buckets and the different colors are thus mixing
along time. The associated particle diffusion is particularly strong in Fig. 8.4–b because
the particles are allowed to be faster than the speed of the light. In the classical regime,
we find that vx,max = px,max/m ≃ 1.6-1.7c and after only 2T0, the whole distribution
is all mixed up. When the relativistic effects are taken into account (Fig. 8.4–c), the
electron velocity is bounded to the speed of light. In the relativistic regime, we find
vx,max = px,max/γm ≃ 0.8c and fewer particles have left their initial bucket for this short
time.

• The general form of the relativistic distribution of Fig. 8.4–c was already presented in the
previous chapters as a typical stretching and folding pattern (see Fig. 7.4–e, page 104 or
Fig. 7.8–c, page 108 for example). This effect is responsible for multi-layered structures
especially near the magnetic field nodes (interface of the buckets). However, similarly
to the circular polarization, the electric field nodes keep behaving as fixed points around
which the whole distribution is rolling.

• The magnitude of the particle momentum is higher than the RHC/LHC configuration.

In the following, we stop using the classical equations of motion in simulation, which overesti-
mate the heating and diffusion. However, for all analytical derivations, we continue to neglect
relativistic terms. We now try to explain the temporal evolution of the electron distribution. In
particular, we provide a clear physical explanation of the stretching and folding in phase space
and why it can lead to chaos.
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8.3 Stretching and Folding in Two Waves

8.3.1 A two-step mechanism leading to chaos

In this manuscript, we saw several times that the electron phase space distribution in two
linearly polarized waves evolves in a peculiar fashion that we called stretching and folding (S&F).
As its name suggests, it is a two-step mechanism combining a first step where the electron
distribution is straighten (stretching phase) and a second one where it rotates around a fixed
position (folding phase). Such a mechanism is actually fairly common in the culinary domain,
when one wants to quickly distribute ingredients in a solid dough or introduce a multi-layer
structure. Two famous examples are presented below:

• American candies called Taffy, a chewy candy obtained after a long pulling in a specific
machine designed to stretch and fold the candy paste. The puller most in use today was
firstly patented in [Richards, 1905] and a picture of such puller is displayed in Fig. 8.5–a.
In his patent, the author drew several diagrams of taffy pulling in action. These drawings
are reported in Fig. 8.5–b. These machines are also subject of interest in mathematics as in
[Thiffeault, 2018], where taffy machines are described as topological toruses and compared
to find the ”best taffy puller in a mathematical case”.

• Another examples is the puff pastry (or pâte feuilletée), a French dough presenting dozens
of thin layers obtained by rolling out and folding a regular dough with fat. For a salted
dough, it is possible to drop a single salt pinch on top before starting the process. Then,
thanks to its chaotic motion, the salt will diffuse and be equally distributed inside the
paste.

ba

Figure 8.5: A machine designed to stretch and fold candies: the taffy puller - Both panels show
a design presented in [Richards, 1905] with four rotating rods set on two axles. Panel (a) is a picture
found on the Internet (Source: https://www.youtube.com/watch?v=XnndSkcjlBw), while panel (b)
displays drawings directly imported from Richards’ patent. In the picture of panel (a), the machine is
found to be in the ”Fig. 4” state of panel (b).

In the case of electrons in two waves, the stretching and folding occurs naturally, when the
ponderomotive force evolves in time. As a reminder, the ponderomotive force reads in the two
cases of interest (see Sec. 8.2, page 123 for the derivation):

• −∂xA
2
⊥ = 2A2

0k0 sin
(
2k0x

)
if RHC/LHC, (8.34)

• −∂xA
2
⊥ = 2A2

0k0 sin
(
2k0x

)(
1− cos(2ω0t)

)
if p/p. (8.35)
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Figure 8.6: Temporal evolution of the electron phase space distribution in the RHC/LHC
case - This figure illustrates different snapshots of the electron distribution in phase space at different
times labeled on top of each panel. Here, the laser intensity is a0 = 3. A typical particle is highlighted
as a large red dot and its trajectory as the red trail. In the top-right corner of each panel, we plot the
spatial profile of the ponderomotive force at each time.

S&F in the RHC/LHC configuration. In this case, the ponderomotive force is indepen-
dent of time and just varies along the spatial direction. It constrains the electrons to follow the
same motion during all the simulation.

In Fig. 8.6, we plot the evolution of the distribution of electrons at different times within half
a laser period (2.4 T0 ≤ t ≤ 2.9 T0) in two oppositely circularly polarized lasers, with a0 = 3.
The plots are focused on a single magnetic bucket. A typical particle is highlighted in red and
follows a trajectory on a close orbit, similarly to a simple gravity pendulum. Along this orbit
and in the classical regime, the velocity is bounded:

d2θ

dt2 = −2 a2
0 ω

2
0 sin θ (8.36)

1
2

(dθ
dt

)2
= 2 a2

0 ω
2
0 cos θ + Cst

v2
θ = 4 a2

0 ω
2
0 (cos θ − cos θ0) (8.37)

with θ0, the initial position and vθ the velocity of the particle in the θ-space. For small θ,
Eq. (8.36) reduces into an equation of a harmonic oscillator and the trajectories close to the
electric nodes, such the one of the red particle, are almost elliptical. The orbit defined with
θ0 = π delimits trapped and circulating particles and is called the separatrix. For a population
initially at rest, all particles are located below the separatrix.

S&F in the p/p configuration. In this case, the force is now also oscillating in time (see
Eq. (8.35)). The important thing to notice is that the temporal term — 1 – cos(2ω0t) — is
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Stretching phase
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Figure 8.7: Temporal evolution of the distribution of electrons in the p/p case - Same figure as
Fig. 8.6 for two p-polarized waves. This time the ponderomotive force evolves in time and the distribution
undergoes two steps: (a-c) stretching phase with a longitudinal elongation illustrated by two blue arrows
and (d-f) folding phase with a rotation around an electric field node illustrated by the curved blue arrow.

always positive, so the sign of the total force is given by the sign of sin(2k0x). It means that
simililarly to the RHC/LHC case, around an electric field node (e.g., x = 0.25λ0), the force will
always be positive on the left part (x ≤ 0.25 λ0) and negative on the right part (x ≥ 0.25 λ0).
The consequence is that electrons are always attracted towards electric field nodes even in the
p/p case.

Now, let us decompose the temporal electron dynamics in the interference field. Starting again
at t = 2.4 T0, Fig. 8.7 exhibits two phases:

• 2.4 T0 ≤ t ≤ 2.65 T0 (Figs. 8.7–a-c): the ponderomotive force stays close to zero, letting
the particles free from any force. Thus, they follow a ballistic motion, illustrated by the
blue arrows in Fig. 8.7–b: all particles located in the upper part of the plot (px > 0) are
traveling towards the positive x at constant velocity. Similarly, particles located in the
lower part of the plot (px < 0) are traveling towards the negative x. The trajectory of
the red particle in Fig. 8.7–c is almost straight and horizontal. The full distribution is
extended on both sides of the x-axis, this is the stretching phase.

• 2.65 T0 ≤ t ≤ 2.9 T0 (Figs. 8.7–d-f): the ponderomotive force is strong and looks like the
one obtained in the RHC/LHC case. Then, the electron motion is similar to Fig. 8.6, for
which the particles were rotating around the electric field node. The rotation is illustrated
with the blue curved arrow in Fig. 8.7–e. This arrow always points in a clockwise direction
because the ponderomotive force keeps the same sign on both sides of an electric node along
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time. The red trajectory describes a circular arc between Figs. 8.7–d and 8.7–f. The full
distribution rotates around the electric field node, this is the folding phase.

S&F in a simplified model. The transition from one phase to the next is continuous since
the ponderomotive force varies as a cosine of 2ω0t. As a toy model, we approximate the temporal
term by a square signal to clearly dissociate the stretching from the folding. The temporal term
is now a constant piecewise function2 equal to 0 during the whole first T0/4 period and 2 during
the whole second T0/4 period:

−∂xA
2
⊥ ∼

{
0 for t ∈

[
0, T0/4

]
,

4A2
0k0 sin

(
2k0x

)
for t ∈

[
T0/4, T0/2

]
.

(8.38)

This type of equation is known as the nonlinear Meissner’s equation [Meissner, 1918] and is still
widely studied in mathematics [A. P. Markeev, 2011; A. Markeev, 2015; Burov and Nikonov,
2019]. Using this formulation, it is easy to separate the two phases. It instantly comes that
the particles follow a ballistic motion for t ∈

[
0, T0/4

]
and a simple pendulum-type of motion

for t ∈
[
T0/4, T0/2

]
(same form as the RHC/LHC case in Eq. (8.34), page 130). The electron

dynamics in such an interference field is pictured in Fig. 8.8.

a b c

e fd

Figure 8.8: Temporal evolution of the distribution of electrons in the simplified p/p case -
Same figure as Figs. 8.6 and 8.7 but when the ponderomotive force is modeled by a constant piecewise
function defined Eq. (8.38) in order to clearly see the two different phases.

The red electron trajectory exhibits an unambiguous transition from a straight, and thus bal-
listic, motion (e.g., in Figs. 8.8–c) to a elliptical motion (e.g., in Fig. 8.8–f). The electron
distribution looks like the one given by Fig. 8.7, even though the approximation of approaching
the sinusoidal temporal term by a step function seemed strong a priori.

This simplified case is interesting because the equations of motion are solvable on both time
intervals. This will be helpful in further calculations.

8.3.2 Criterion for the onset of chaos
One of the interests of studying the stretching and folding mechanism in detail is that it

allows to derive a very simple geometrical for the onset of chaos that proves to be as accurate
2at t = 0, cos(2ω0t) = 1 so 1 − cos(2ω0t) = 0 and at t = T0/4, cos(2ω0t) = −1 so 1 − cos(2ω0t) = 2.
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as more complex Lyapunov calculations.

Switching to the pendulum analogy, it is natural to define the so-called X and O points, re-
spectively the top unstable and bottom stable positions of the bob (see Fig. 8.9–a). When the
bob is exactly located at the X point, it can either drop towards the left or towards the right
depending on its velocity at that moment. Small discrepancies on the velocity can lead to two
very different trajectories: one where the bob falls back and one where it crosses the X point.
In particular, small uncertainties on the initial velocity can lead to important divergence to the
analytical solution. In numerical simulations, these uncertainties mainly come from round-off
errors, introduced by using finite precision floating point numbers on computers.

Each time the bob approaches the X point, some neighboring trajectories diverge rapidly (see
Sec. 2.2, page 34). For a forced pendulum, the crossing of the X point is repeated a large
number of times and two trajectories, even very close initially, will eventually end up diverging
at an exponential rate very quickly. This sensitivity to initial conditions is what makes a system
chaotic. Being able to distinguish two trajectories would require infinite precision, which is never
achievable in real physical systems or in the numerical resolution of the corresponding equations
on computers.

X point

O point

X points O point

0

0

-0.5

0.5

1

-1

a
b

c

Figure 8.9: Metastability for a pendulum and for electron dynamics - Panel (a) shows a sketch of
a forced pendulum highlighting the 2 points of interest: the unstable X point and the stable O point. In
panels (b) and (c), we represent the distribution of electrons in phase space after 4T0 for two p-polarized
lasers, below the chaos threshold (a0 = 0.1, panel (b)) and beyond (a0 = 0.8, panel (c)). The O and X
points are also shown in this configuration.

For electron dynamics in an interference field, the electric field nodes stand for O points, while
the magnetic field nodes play the same role as X points. In Sec. 8.2.2, we discriminated the
chaotic regimes from the predictable, when the different particle colors, corresponding to their
respective initial bucket, started to mix. This indicates that particles crossed X points at some
moment of their lifetime and that the system is becoming chaotic.

In case of two circularly polarized waves (analog to a simple gravity pendulum), the particles
travel along close orbits within a bucket and do not have any opportunity to cross an X point.
For two linearly polarized waves, the electrons follow the same motion during the folding step
and remain trapped. However, during the stretching phase, the particles do not feel any field
influence and experience a ballistic motion, characterized by a constant velocity. If a particle
is fast enough or sufficiently close to a boundary, it can possibly cross an X point during that
time before being trapped again.
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Figure 8.10: Electron dynamics in the p/p case during the transition to chaos - In panel (a), a
particle (in red) previously on a trapped orbit (black dot-dash line) follows a ballistic motion from (θ1,
v1) to (θ2, v1) during the stretching phase. If it is fast enough or sufficiently close to the boundary, it can
cross an X point along the way. In all the grey area (mixed region), particles are able to change buckets.
In panels (b) and (c), we represent the distribution of electrons in phase space after 4T0 for two laser
amplitudes: (b) a0 = 0.3 and (c) a0 = 0.5. The blue envelope is the separatrix and the black dot-dash
lines are the limit orbit obtained with the analytical model presented in the text. This orbit separates
the distribution into two areas: stable islands and chaotic mixed region.

This simple physical insight shows that the value of the particle velocity, when the stretching
phase starts, is key, as it remains constant during this whole step. If the laser intensity is low,
most if not all particles are too slow to leave their bucket and the distribution in phase space
looks like the stable circular case (Fig. 8.9–b). For a high enough laser amplitude on the other
hand, the particles cross the buckets and pass through X points, which leads to chaos and par-
ticle diffusion (Fig. 8.9–c).

In between these two extreme regimes, the phase space shows a chaotic zone, which expands
gradually from the separatrix to the electric node. We call it mixed region and display it in grey
in Fig. 8.10–a. When in this area, particles follow closed orbits considered as trapped (below
the separatrix) but which admit at least one position allowing for escapes during the stretching
phase. In Figs. 8.10–b, c, we represent the distribution of electrons for two moderate amplitudes:
a0 = 0.3 and 0.5. It is clear that both regimes are chaotic, since particles are exchanged between
buckets. However, they present central zones, where the particle distribution remains stable
and looks like the one of Fig. 8.9–b. We call these areas stable islands, they are shrinking when
a0 is increased.

We now derive an analytical formula for the boundary of the mixed region. To do so, we
consider the simplified form of the stretching and folding defined in Eq. (8.38) (page 133) and
θ = π + 2k0x. Here, we only use the classical form of equations of motion (and velocity instead
of momentum), because we consider only moderate laser amplitudes (0.1 < a0 < 0.8), for which
relativistic effects do not play a major role. Using the reduced model, the classical equations of
motion read: 

d2θ

dt2 + 4 a2
0 sin θ = 0 for folding,

d2θ

dt2 = 0 for stretching.
(8.39)

During the folding phase, the particles are rotating around an electric field node along a closed
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orbit. Then, let us consider a single particle located on a closed orbit identified by the point (θ0,
0), where θ0 is the position of the particle, when it has zero velocity. Such an orbit is pictured
as a black dot-dash line in Fig. 8.10–a. At the end of the folding step, this particle (pictured
in red) is located at a position in phase space (θ, vθ). As a reminder, along its orbit, θ and vθ

are not independent and are bound by the following formula (see Eq. (8.37), page 131 for the
RHC/LHC case):

vθ = 2
√

2a0
√

cos θ − cos θ0. (8.40)

During the stretching phase which lasts π in θ-space, the velocity vθ is kept constant all along.
The particle leaves its initial bucket if it crosses an X point during that time, located at ±π (see
Fig. 8.10–a). After the ballistic motion from (θ, vθ) lasting π, a new point is reached (θf , vθ),
with θf the absolute position at the end of the stretching phase. A particle has escaped its
bucket if θf is beyond the X point, which reads:

θf = θ + πvθ > π. (8.41)

Replacing vθ by its value, it comes:

a0 >
π − θ

2
√

2π
√

cos θ − cos θ0
, (8.42)

or

θ0 > cos−1
(

cos θ −
(

π − θ
2
√

2πa0

)2
)
, (8.43)

where cos−1 is the inverse cosine function.

In Fig. 8.11–a, the amplitude a0 is pictured as a function of θ0 and θ. The whole bottom-right
part of the figure is forbidden since θ ≤ θ0 by definition of the orbit. An orbit is located in the
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Figure 8.11: Evolution of the limit orbit as a function of the laser amplitude - In panel (a), the
amplitude a0 is pictured as a function of θ0 and θ according to Eq. (8.42). θ is always smaller than θ0
so the bottom-right part is forbidden. In addition to the color scale, we represent, as plain white lines,
different isocontours corresponding to a0 = 0.2, 0.4, 0.6, 0.8. For a given amplitude (e.g. a0 = 0.2), the
limit orbit θl is obtained after minimizing θ0 along the right isocontour. Then, θl is reported in panel (b)
and plotted as a function of a0. Below the chaos threshold (a0 ∼ 0.159), the function is not defined.
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mixed region of the phase space displayed in Fig. 8.10–a, if it exists some positions θ, which
allow the particle to leave its buckets. We are looking for the limit orbit θ0,l, along which strictly
one value for θ exists. This limit orbit results from balance between a small distance to boundary
(θ → π) but a sufficiently large velocity (vθ ≫ 0).

As white lines, we highlight isocontours of a0 in (θ, θ0) space. The limit orbit is found where
only a single θ is allowed, that corresponds to the minimum of θ0 along the isocontour. For
example, we show in Fig. 8.11–a, how we find θ0,l, when a0 = 0.2.

For all orbits θ0 > θ0,l, there are multiple positions θ along the orbit allowing particle diffusion.
For θ0 < θ0,l, all the particles remain trapped since they do not have a sufficient velocity to cross
an X point during the stretching phase (stable islands). In Figs 8.10–b, c, the limit orbits found
with the model for both laser amplitudes are pictured as a black dot-dash line and separate
recognizable chaotic and non-chaotic simulated zones.

Another interesting point is that the function θ0,l = f(a0) (plotted in Fig. 8.11–b) is not defined
at lowest intensities (hatched zone). It is possible to find laser intensities for which strictly zero
particles are diffusing, even those exactly located on the separatrix and describing the orbit
identified by (π, 0):

a0 >
π − θ

2
√

2π
√

cos θ + 1
. (8.44)

The quantity is minimal when θ → π. It is possible to find the exact value of the limit thanks
to the Taylor series of cosine near π:

cos θ ∼
θ→π

cosπ − (π − θ)2

2
cosπ = −1 + (π − θ)2

2
. (8.45)

It comes that:
a0 >

1
2π
≃ 0.159 (8.46)

By using a simple geometric and analytical approach, we can guess a threshold for chaos on-
set based only on the laser amplitude. The value of a0 is nearly identical to the numerical
observations obtained through PIC simulations in Sec. 7.1.2.

8.3.3 Loss of predictability after few cycles
When a particle crosses multiple times an X point, small variations on its initial value of mo-

menta/positions can lead to completely different trajectories. The most common way to show
this behaviour is through the Lyapunov exponent such as presented in Sec. 7.1.2 (page 101):
two trajectories arbitrarily chosen very close in phase space at the beginning of the simulation
eventually end up far away from each other.

In this section, we show that numerical errors, as small as the machine epsilon 10−16 for double-
precision floating-point (float64), can still be large enough to observe a divergence to the con-
verged solution. As there is no formula for the converged solution, a different strategy consists in
trying to guess the initial position of each particle from its final position. To do so, we perform
some simulations back and forth: first, the simulation is run with a positive time step but after
a certain time, we shift its sign and perform the same number of iterations backwards.
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The equations of motion are reversible and the dynamical system is expected to return at its
exact initial state. However in case of chaotic systems and because of truncation errors, some
particles will be observed to end up at positions largely different from their initial ones.

a 1

3

Reverse
time 2

b stretching and folding

unfolding and unstretching 

Figure 8.12: Schematic drawing of the reverse time algorithm - The panel (a) displays how the
time is reversed in the Boris pusher to keep a second-order accuracy: step 1: regular Boris push with
∆t, step 2: time inversion and correspondence between each quantity and its prime equivalent, step 3:
regular Boris push with ∆t′. On panel (b), we show simulated distributions evolving under positive and
negative time steps: when it is positive, the stretching and folding tends to create a multi-layer pattern
and when it is negative, an unfolding and unstretching removes the different layers.

The reverse time algorithm. Running back and forth simulations requires to carefully
treat the sign inversion of the time step. For the Boris algorithm, positions and momenta are
staggered in time with positions always ahead of momenta. Switching the sign of the time step
without caution breaks the staggering and introduces a large error. This error dominates any
other source of errors in the simulation.

In order to ensure the second-order accuracy of the pusher algorithm, the position is kept
constant during the inversion process. A sketch of the algorithm is presented in Fig. 8.12–a.
After n time steps, the current variables are rn and pn−1/2. At step 1 , we regularly perform
the Boris pusher:

1
∥∥∥ (pn−1/2, rn) −→

∆t
(pn+1/2, rn+1). (8.47)

Then at step 2 , the time is reversed. We define the variables after the time inversion with
a prime. The subtlety here relies on the fact that rn+1 is not taken into account in order to
guarantee that position is ahead of momentum at any time even after the shift:

2

∥∥∥∥∥∥∥
∆t′ = −∆t,
(p′)n−1/2 = pn+1/2,
(r′)n = rn.

(8.48)

Finally at step 3 , we again perform the Boris algorithm but this time with ∆t′:

3
∥∥∥ ((

p′)n−1/2
,
(
r′)n) −−→

∆t′

((
p′)n+1/2

,
(
r′)n+1

)
. (8.49)

This 3-step algorithm ensures keeping the second order accuracy of the scheme. For a simula-
tion with two p-polarized waves, after time inversion, we observe that the electron distribution
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Figure 8.13: Final electron distributions after back and fourth simulations in different cases -
On each panel, we plot the distribution of electrons in phase space after ⇄ NT0: panels (a)/(c): N = 2
and (b)/(d): N = 4 in the RHC/LHC (panels (a-b)) and p/p configurations (panels (c-d)). a0 = 3. The
insets in the top right corner are zooms close to px = 0 for −λ0/2 < x|t=0 < λ0/2.

is unfolded and unstretched in phase space (see Fig. 8.12–b). Unlike the stretching and folding,
which adds extra layers to the distribution at each period, running the simulation backwards
removes these layers and simplifies the distribution of electrons.

In the following, we will use the notation ⇄ NT0 to designate simulation, with N laser periods
performed forward and N laser periods backwards. The total duration of the simulation is thus
2NT0.

Comparison between initial and final distributions. Starting from the usual initial
distribution (−λ0 < x|t=0 < λ0 and px|t=0 = 0), we should expect to retrieve the exact same one
after ⇄ NT0. In Fig. 8.13, we display the final distributions for different cases: N = 2, 4 and
the two polarization configurations — RHC/LHC and p/p at relativistic intensity.

The first thing to notice is that the exact initial distributions fail to be perfectly reproduced, no
matter the laser polarization. However, as expected for the circular case (Figs. 8.13–a, b), px

remains quantitatively close to zero even after ⇄ 4T0.

On the contrary, for two p-polarized laser waves (Figs. 8.13–c, d), the deviation from the initial
distribution is particularly strong: some particles do not even return to their initial bucket and
for example, some red particles end up in the yellow bucket. In any cases, the deviation is
larger when the simulation is longer. For longer simulations, the particles cross X points more
frequently, which makes the converged trajectory harder to follow.

In order to quantify the deviation, we define in phase space an error radius R for each particle,
defined as:

R =

√(x|⇄NT0
− x|t=0

λ0

)2
+
(px|⇄NT0

− px|t=0

mc

)2
, (8.50)
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a b

Linear,Linear,

Figure 8.14: Error radius R as a function of the initial position - The electron distribution is
represented in the space (x|t=0 , R) in the p/p case at low (a0 = 0.1, panel (a)) and high (a0 = 3, panel
(b)) intensities after ⇄ 4T0. Note the different scales for R. The machine epsilon is roughly equal to
10−16 for these simulations performed in float64.

where x|⇄NT0
and px|⇄NT0

are respectively the position and the momentum of the particles at
the end of a ⇄ NT0 simulation. If R is lower than the machine epsilon, the particle is considered
to have returned at its initial position in phase space. R is of course strongly dependent on the
particle initial position and if the particle crosses or not an X point during the simulation. We
should expect a large R when a particle is initialized near an X point and a low R when it is
initialized near an O point.

R also depends on the precision of the floating point system. In our simulations, we choose
double-precision floating-point format (float64) for which the machine epsilon is 2−53 ∼ 10−16.

In Fig. 8.14, we plot the particle distributions in the space (x|t=0 , R) in the p/p case for two
laser amplitudes: a0 = 0.1 and 3 after ⇄ 4T0. At low intensity (Fig. 8.14–a), there is a clear
correlation between the error radius and the initial position: for one value of x|t=0 corresponds
one value of R and the distribution looks like a plot R = f(x|t=0). This means that the system
is not sensitive to small variations by contrast to a chaotic system. This is true in most of the
space as far as x|t=0 is not too close to an X point. Near an X point, we have already seen that
the trajectories tend to rapidly diverge. Then, for two initially adjacent particles, R can take
multiple values near magnetic field nodes (look at the distinct dots near the bucket boundaries).

Beyond the chaos threshold, the particles are free to diffuse and thus cross multiple times an X
point. This also worsens, when the simulation is run backwards forcing the particles to recross X
points also on their way back. In Fig. 8.14–b, we observe now a completely different distribution,
comparable to a random noise without any correlation. Knowing R for a particle does not give
any indication on its initial position. Besides particles exactly initialized near an O point, the
memory of the particle initial position is completely lost after few laser periods.

Influence of the temporal resolution on R. We can go further and gauge how the
accuracy of the simulation influences the R quantity. We run a set of simulations with different
time durations and different time steps in the RHC/LHC and p/p cases. The different results
are reported in Fig. 8.15 in log-log scale in the space (T0/∆t, R), where R is the average value
of R over all simulated particles. Different shades of blue correspond to various simulation
durations from ⇄ 1T0 to ⇄ 8T0.

The cases displayed in Figs. 8.15–a-c are all three non-chaotic because they are associated
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Figure 8.15: Evolution of R as a function of the simulation time step - The average value of R,
R, is plotted as a function of the temporal resolution of the simulation. Each shade of blue corresponds
to a different simulation length from ⇄ 1T0 to ⇄ 8T0. In addition, a set of simulations lasting ⇄ 4T0
but using the single-precision floating-point format (float32) is performed and the corresponding results
reported as red curves.

to dynamics in circularly polarized waves or in linearly polarized waves but below the chaos
threshold. Thus, the different plots present the same specificities:

• first, R barely depends on the different length of simulations and the four curves are
superimposed. Because very few particles are crossingX points (namely the ones initialized
very close to a bucket boundary), most electrons follow a close orbit and their motion is
entirely predictable. Since the system is not sensitive to small variations (see Fig. 8.14–a),
trajectories do not diverge even for long simulations and it is always possible to retrieve
the initial position.

• Second, R evolves as a power law of T0/∆t with a negative exponent coefficient. In all of
these cases, its absolute value tends to 2. In R, is encompassed contribution of all errors
obtained by running numerical simulations instead of using the converged solution. It
includes round-off errors but also discretization errors introduced by the numerical scheme
— the Boris algorithm — which precisely vary as ∆t2. In such predictable systems, the
major source of discrepancy to the converged solution is thus given by the discretization
and not truncation errors.

The fourth case (Fig. 8.15–d) is much more interesting, because it involves chaotic trajectories.
This time, the four blue curves are clearly separated and the power coefficient tends to 0 for
the longest simulations. After ⇄ 8T0, R is almost independent from the time step as the power
coefficient equals −0.5. This is an evidence of chaotic behaviour, where the truncation errors
introduced by the particle diffusion now generates an error much greater than the discretization
error. It means that it is extremely delicate to reduce the value of R by playing on the temporal
resolution of the simulation. The longer the simulation, the more particles cross X points along
their trajectory and the smaller initial variations lead to great divergences.

A solution to lower R would be to change the overall precision of digits. We now perform a set
of ⇄ 4T0 simulations, for which all quantities are encoded in the single-precision floating-point
format (float32). For this digital representation, the truncation errors are larger than before
and the machine epsilon equals 6 × 10−8. The corresponding curves are displayed in red in
Fig. 8.15. For all panels, R is significantly larger by at least 3 orders of magnitude when using
single-precision instead of double-precision.

141



PART IV: THEORETICAL ANALYSIS OF COUPLING MECHANISMS

In Fig. 8.15–c, the red curve follows a law in ∆t−2 for large time steps but stabilizes at high
temporal resolution. The value of the saturated points happens to be close to the machine
epsilon. It indicates that we have reached the minimal possible error and that increasing the
resolution even more would not improve the accuracy of the simulation.

Beyond the chaos threshold, we saw that truncation errors are the main source of discrepancies
to converged trajectories. By reducing the digital precision, their amplitude is even heightened.
Then, when using single-precision, the time step even has no influence on R. Consequently, the
red curve in Fig. 8.15–d decreases less rapidly than the blue ones (power coefficient equal to
-1.5 in float32 versus -2.2 in float64 for ⇄ 4T0 simulations).

In order to confirm that increasing the significant precision would allow for a better accuracy,
even beyond the chaos threshold, I had originally planned to run extra simulations with the
quadruple-precision floating-point format (float128). However, not all Python packages seemed
to properly handle the format and the results were not compelling. Such simulations would
probably require an explicitly typed language, e.g., C or Fortran.

Overall, it seems to be a vain effort to perfectly approach the converged trajectories in numerical
simulations. In particular, the sensibility near X points is such that one cannot predict for sure if
a particle would cross or not a boundary. Instead, we now consider the crossing in a probabilistic
manner, where the knowledge of the accurate position and velocity is no more mandatory. The
resulting probabilistic model would give insights on the particle diffusion and heating.

8.4 Random Walk and Diffusion
Beyond the chaos threshold, the particles move freely across space and explore many different

buckets, sometimes far from their initial position. This diffusion process is akin to a random
walk, where particle randomly escape or remain in their respective bucket at regularly spaced
time intervals. At relativistic intensities, the velocities are bounded to c constraining the max-
imal distance covered during any time interval τ to cτ . In particular, a particle cannot cross
more than one bucket border during τ = T0/2, corresponding to a whole stretching and folding
duration. It is also forbidden for a particle to cross the same border back and forth during that
interval. This would indeed require a sudden change of direction, inconsistent with the ballistic
motion observed during the stretching phase.

In order to illustrate the random walk, some typical particle trajectories are plotted along time
in Fig. 8.16–a in an interference field formed by two p-polarized waves at a0 = 3. As usual,
the magnetic nodes are represented as black dashed lines. The different electrons are observed
to jump from bucket to bucket in a random fashion. Note however that the different jumps
between buckets always occur at a multiple of T0/2 (light grey vertical lines).

We focus in particular on the bottom dark blue trajectory, for which we highlight both the sur-
rounding bucket boundaries (the thick dark blue dash line) and the jumps (white dots). At each
half laser period, the particle gets close to a boundary, sometimes it gets through and sometimes
it does not. But nothing seems to predict a jump a priori: for example, for 5 T0 ≤ t ≤ 7 T0, the
trajectories on both subintervals of lengths T0 are practically the same, however only a single
jump occurs. The approach toward a boundary acts as a Bernoulli trial, where a fair coin is
tossed at every multiple of T0/2, head would be a jump and tail would be a stay. Both of these
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Figure 8.16: Particle trajectories as a random walk - In panel (a), four particle trajectories are
plotted with different shades of blue. The magnetic nodes are drawn as black dash lines. For the bottom
dark blue trajectory, we highlight its current buckets (dark blue dash line) as well as the positions and
times at which jumps from one bucket to another occur (white dots). At the end of every T0/2 period,
a particle can either cross a boundary and then change bucket (= ±1) or stay in its bucket (= 0). We
report on panel (b) the proportions of the three different outcomes summed over a whole simulation for
all the 105 electrons and a0 = 3. Finally, panel (c) displays a probability tree discussed in detail in the
text.

events ends up to be equiprobable.

Probability to change buckets. Back to the pendulum analogy, we sketch a probability
tree presented in Fig. 8.16–c. For a simple analysis, let us consider that all particles are ultra
relativistic (i.e., |vx| = c at any time) and do not change direction in a whole T0/2 period. These
conditions are very often fulfilled in practice as soon as the laser intensity becomes high enough
(see Fig. 8.16–a). Then, a coin toss strictly occurs one time for any particle every T0/2 period.
As a pendulum, it means that the equivalent bob always approaches the top position during
that time. The probability tree in Fig. 8.16–c presents two stages:

• for the first stage 1 we divide the particles into two populations based on the sign of px.
Starting from an electron distribution at rest, each sign is as likely as the other and the
probabilities to approach an X point from the left or from the right are both equal to 0.5.

• The second stage 2 is the coin toss at the boundary. A particle has 50% chance to cross
the border and then lose a turn if its momentum is negative or gain a turn if it is positive.
Otherwise, it just stays in its bucket but its direction is reversed (see the sign of the arrow
for the second bottom pendulum for example).

Overall, any particle is remaining in its bucket 50% of the time (P0 = 0.5) and crossing 25% of
the time in each direction (P±1 = 0.25).

For the same simulation as in Fig. 8.16–a, we estimate the corresponding probabilities and re-
port them as a bar chart in Fig. 8.16–b. The simulated probabilities are matching relatively well
with the model and we find P0 ≃ 0.54 and P1 ≃ P−1 ≃ 0.23. The slight discrepancy may come
from deeply trapped particles, for which |vx| ≪ c. These kind of particles rarely experiment a
coin toss and stay near an electric field node during many periods (e.g., the light blue trajectory
in Fig. 8.16–a after 7.5T0). Since they are not taken into account in our model for which |vx| = c,
their presence artificially inflates the value of P0. However, as a0 is increased, it is expected to
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find less and less trapped particles and to get closer to the predicted probabilities. For example,
for a simulation with a0 = 10, we find that the different probabilities become P0 ≃ 0.506 and
P1 ≃ P−1 ≃ 0.247.

Probabilistic distribution of particles. Now that the probabilities of any outcome are
well established for a single event lasting T0/2, it is possible to derive the probability mass func-
tion after a sequence of n such independent events. Knowing this function would give a fairly
good estimation of the electron position distribution after nT0/2.

Many important results can be derived from a simple binary random walk (for example in [Pa-
poulis, 1921]), where the random variable follows a binomial distribution and takes values −1
and +1 with a probability P±1 = 0.5. At first glance, this seems a bit different from our case,
where three outcomes are possible: −1, 0 and +1.

But, let us consider a random variable Xn following a binomial distribution with a probability
P = 0.5 for both failure/success but this time Xn is moved by −1/2 or +1/2 at each time step.
The probability mass function of Xn to toss k times the value +1/2 among n trials is given by:

P(Xn = k) = 1
2n

(
n
k

)
= 1

2n

n!
k!(n− k)!

, (8.51)

where
(
n
k

)
designates the binomial coefficient n choose k.

After 2 tries (n = 2), the two consecutive coin tosses may present the same outcome, which
gives X2 = 1 for two successes or X2 = −1 for two failures. The probabilities of these events
are both equal to P±1 = 0.25. By contrast, if the two consecutive coin tosses present different
outcomes, X2 = 0, with a probability P0 = 0.5. The probabilities and outcomes corresponding
to X2 exactly match our random walk law previously presented in Fig. 8.16. Then, assigning Yn

the random variable corresponding to our random walk, Yn is simply related to Xn as Yn = X2n.

Now, let us reckon the probability to toss k times among n trials the value +1 for the variable
Yn. It is equivalent to toss 2k times among 2n the value +1/2 for the variable X2n. It can be
expressed in term of binomial coefficients:

P(Yn = k) = P(X2n = 2k) = 1
22n

(
2n
2k

)
= 1

4n

(
2n
2k

)
. (8.52)

The probabilistic particle position xn after n iterations can be obtained by considering g the net
gain obtained after tossing 2k times the value +1/2 for X2n (and then tossing 2n− 2k times the
value −1/2):

g =
(

+1
2

)
· 2k +

(
−1

2

)
· (2n− 2k) = 2k − n

⇔ k = (n+ g)/2.
(8.53)

Then the probability that the particle ends in the bucket g reads:

P
(
xn = g

)
= P

(
Yn = (n+ g)/2

)
= 1

4n

(
2n
n+ g

)
= 1

4n

(2n)!
(n+ g)!(n− g)!

. (8.54)

This formula gives us the occupancy rate of the different buckets and is valid as soon as most
of the particles present relativistic velocities. However, under this form, there is no physical
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a b

Figure 8.17: Distribution of particle positions for n = 18 - In panel (a), the electron positions are
plotted as a 1D-histogram at t = 9T0 for the same simulation as in Fig. 8.16. Each bar corresponds to a
magnetic bucket. On top of the histogram is plotted a red line corresponding to the theoretical Gaussian
distribution written in Eq. (8.56). In panel (b), we plot the evolution of the full width at half maximum
(FWHM) of the distribution of panel (a) along time as well as a function varying as

√
t.

intuition on what the electron position distribution would look like. The limit behaviour at
large n gives a much better understanding. To do so, we use the Stirling’s approximation to
approach factorials:

n! ∼
√

2πn
(n
e

)n
, (8.55)

Replacing each factorial of Eq. (8.54) by its equivalent form, the particle distribution after n
iterations reads (the details of the derivation can be found in appendix A):

P
(
xn = g

)
= 1√

nπ
exp

(
−g

2

n

)
. (8.56)

The particle distribution thus approaches a Gaussian distribution for large n. The mathematical
expectation of the law is of course zero, since we start from a population centered around x = 0
and its standard deviation is

√
n/2. A standard deviation evolving as

√
n (or overall

√
t) is

characteristic of a normal diffusion.

In Fig. 8.17–a, the particle positions for the same simulation as in Fig. 8.16 at t = 9 T0 (or
n = 18) are plotted as a dark blue histogram as well as the theoretical Gaussian distribution
pictured as a red line. As one can see, the model agrees well with the simulated results. It is also
possible to fit the full width at half maximum (FWHM) of the distribution of electrons at each
time step. For a Gaussian distribution, the FWHM is linear with the standard deviation and as
shown in Fig. 8.17–b, its evolution in time also follows a law varying as

√
t. The evolution of

the particle positions in space is then completely described by the simple model of random walk
introduced in this section.

Evolution of the energy distribution. The distribution of energy will not be derived
here but is inspired from the kinetic theory of gases. In the most general case, the statistical
distribution of velocities in an idealized gas follows a Maxwell-Boltzmann distribution [Maxwell,
1860; Boltzmann, 1872]. It is closely related to the particle random motion and stochastic
processes such as elastic collisions. An idealized gas is also known to diffuse according to Fick’s
law [Fick, 1855]:

∂ng

∂t
= D∇2ng, (8.57)
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a b

c

Figure 8.18: Distribution of particle energy for n = 18 - The distribution of energy for two p/p
lasers with a0 = 3 is displayed as a blue histogram on panel (a) in log-log scale. Then, we fit the hot
electron tail with a Maxwell-Jüttner distribution (see Eq. (8.59)) and plot it as a red curve. Panels (b)
shows the average momentum along x and panel (c) the average γ as a function of time, as black lines.
The red curves are obtained after averaging the previous quantities over T0/2.

where ng is the gas density and D the diffusion coefficient. In infinite space, and if all particles
start initially from x = 0, the 1D-solution of Eq. (8.57) is:

ng(x, t) = ng,0√
4πDt

exp
(
− x2

4Dt

)
, (8.58)

where ng,0 is the initial gas density. The solution is identical to a Gaussian distribution with
mathematical expectation zero and variance 2Dt. Its general form looks like Eq. (8.56): elec-
trons in two p-polarized waves diffuse in similar fashion to gas particles in space.

Since the two position distributions are such akin, we expect the energy distribution of electrons
in an interference field to follow a Maxwell-Boltzmann distribution as well. In practice, because
electrons are relativistic, the expected distribution must be a Maxwell-Jüttner distribution [Jüt-
tner, 1911], limit of the Maxwell-Boltzmann distribution at relativistic velocities. Indeed, for
a Maxwell-Boltzmann distribution, the velocities are arbitrary large and may become greater
than c. In 1911, Ferencz Jüttner included relativistic effects into the Boltzmann derivation and
proposed a corrected distribution as a function of γ:

f(γ) = γ2β

θK2(1/θ)
exp

(
−γ
θ

)
, (8.59)

where θ = kBT/mc
2 the normalized temperature, kB ≃ 1.38 × 10−23 J.K−1 the Boltzmann

constant, β =
√

1− 1/γ2 and K2 the modified Bessel function of the second kind.

The γ distribution at t = 9 T0 for the same simulation as in Fig. 8.16 is plotted in Fig. 8.18–a
in log-log scale as well as a red fit line following the Eq. (8.59). It does match well with the
distribution of hot electrons. Numerically, we find θ ≃ 1.398 or T ≃ 715 keV. It legitimates the
use of heating in stochastic heating because it does create a thermalized distribution.

Another interesting point is that the system indeed reaches a thermodynamic equilibrium after
few laser periods. Actually, the average values of both px (defined as |px|) and γ (as γ) seem
to saturate after t ≥ 3 T0 (see Figs. 8.18–b, c). The heating is thus not significantly enhanced
by longer pulses. In experiments on laser interactions on solid targets with a long gradient, the
laser presents a finite waist and electrons are expelled from the interference zone quite rapidly.
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Despite the short time of interaction, it may be sufficient to acquire the maximal possible energy.

This section closes our long study about electron motion in two counter-propagating waves. Now,
let us be closer to the experimental conditions by adding an angle of incidence and show how it
affects the electron dynamics.

8.5 Influence of the Laser Angle of Incidence

8.5.1 Electron distributions in Bourdier’s frame
All the work presented so far was done assuming that the two plane waves were counter-

propagating, which is different from a typical experimental setup of laser-plasma interaction. In
this section, we introduce an angle α between the two waves and study how it changes electron
dynamics. We also define φ = α/2, as displayed in Fig. 8.19. For two counter-propagating
waves, we would have α = π and φ = π/2.

e-

α
e-=α /2

Figure 8.19: Emulation
of a 2D plane wave
problem at oblique in-
cidence to a 1D plane
wave problem at normal
incidence in a boosted
frame.

Introducing an angle between the two waves does not change
the method of solving the equations of motion. It is always
possible to emulate a 2D plane wave problem at oblique inci-
dence with a 1D plane wave problem at normal incidence using
Lorentz transformation in the Bourdier frame (see Sec. 3.3.2, page
50).

In such a frame, we have already seen that most quantities are
rescaled by a factor γboost = 1/ sinφ. In addition, the particles ac-
quires a drift velocity vd = c cosφ in the direction of the boost, z.
Besides that, the conservation of the transverse canonical momentum
(Eq. (8.7), page 120) is still preserved. The only difference with the
previous sections is that the distribution of electrons presents a non-
zero initial momentum pz,|t=0 , corresponding to the drift momentum:

pz,|t=0 = mγboostvd,

= mc tan θi = mc cotφ,
(8.60)

where cotφ is the cotangent of φ. The conservation of the transverse
canonical momentum in the boosted frame reads:{

py = eAy,

pz = eAz + pz|t=0 = eAz +mc cotφ.
(8.61)

With a similar derivation to the one of Sec. 8.1 (page 120), but now with the new expression of
pz, it comes:

d2x

dt2 + e2

2m2γ2

(
∂

∂x
+ ẋ

c2
∂

∂t

)(
A2

y +A2
z

)
+ ec

mγ2 cotφ
(
∂

∂x
+ ẋ

c2
∂

∂t

)
Az = 0 (8.62)

or

d2x

dt2 + ec

mγ2

(
eAz

mc
+ cotφ

)(
∂

∂x
+ ẋ

c2
∂

∂t

)
Az + e2

2m2γ2

(
∂

∂x
+ ẋ

c2
∂

∂t

)
A2

y = 0, (8.63)
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where we highlight the new terms introduced by the oblique incidence in blue.

When there is an angle between the two wave propagation directions, a third term is added
depending on both cotφ and the derivatives of Az. Ay and Az are both oscillating at frequency
ω0 sinφ (angular frequency in the boosted frame), while their squares are oscillating at the fre-
quency 2ω0 sinφ. The mix of two different laser frequencies usually tends to reduce the chaos
threshold as we will show later.

Now, let us derive the electron dynamics for different interference field configurations. Similarly
to Sec. 8.2, all theoretical developments are based on the classical form of equations of motion,
more convenient to work with.

Electron motion in two p/p waves. In the interference field formed by two p/p waves,
only Az exists. Replacing Az by its value given in Eq. (8.24) (page 125) leads to the equation
of motion:

d2x

dt2 −a
2
0c

2k′
0 sin

(
2k′

0x
)(

1− cos
(
2ω′

0t
))︸ ︷︷ ︸

Fp

− 2a0c
2k′

0 cotφ sin
(
k′

0x
)

sin
(
ω′

0t
)︸ ︷︷ ︸

Fd

= 0 (8.64)

or
d2x

dt2 − 2a0c
2k′

0 sin
(
k′

0x
)

sin
(
ω′

0t
)(

2a0 sin
(
ω′

0t
)

cos
(
k′

0x
)

+ cotφ
)

= 0 (8.65)

where k′
0 = k0 sinφ and ω′

0 = ω0 sinφ, the quantities in the boosted frame. The total force,
Ftot, is a combination of two forces: Fp, the ponderomotive force (same force as in two counter-
propagating waves) and Fd a new force, which we call inertial force and which depends on φ. In
the laboratory frame, the interference field is stationary along x but drifts along z. The force Fd

represents, in the laboratory frame, the displacement of the electron population towards positive
z, dragged by the interference field and accelerated by Ez. It was shown in [Serebryakov et al.,
2017] that indeed, in the grazing incidence regime, electrons could be accelerated on top of solid
target surfaces by surfing within the interference field created by the combination of incident
and reflective pulse.

If we define as before θ → π + 2k′
0x, the temporal evolution of the system after a time shift

(t→ t+ π/2ω′
0) is given by:

d2θ

dt2 + ω2 sin θ
(
1 + cos(2ω′

0t)
)

+ 2ω2a−1
0 cotφ cos

(
θ/2

)
cos

(
ω′

0t
)

= 0, (8.66)

with ω2 = 2a2
0ω

′ 2
0 . It does not look like a standard pendulum equation but it can still be viewed

as the equation of a Kapitza’spendulum with two drivers of different frequencies.

When increasing cotφ, Fd become the leading force over Fp and new dynamics appear, oscil-
lating at a characteristic frequency ω′

0. According to Eq. (8.65), the turning point occurs for
cotφ ∼ a0, which might impose grazing incidences (φ→ 0◦ and cotφ→ +∞) when a0 becomes
too high: for example for a0 = 0.1, φ ≃ 84.3◦ and for a0 = 3, φ ≃ 18.4◦. Because Fd ∝ a0
and Fp ∝ a2

0, the magnitude of Fd quickly becomes negligible at high intensities if cotφ is not
increased accordingly. Oppositely, in term of relativistic inertia, when cotφ≫ a0, the electrons
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drift at ultra-relativistic velocities and their inertial mass is larger. Then, the laser intensity
needs to be strong enough to impair the drift motion.

0.5 0.5

a b

c d

O O 

O O 

0.5 0.5

strong weak nodes

Figure 8.20: Spatial profile of the different forces at various times and angles of incidence -
For each panel, we plot three curves corresponding to different ponderomotive forces as a function of the
position in the boosted frame: Fp in blue, Fd in red and Ftot in purple. The different times or γboost

are reported in labels. The O point designates one position of an electric field node, while the vertical
dashed lines indicate the positions of magnetic field nodes. These can either be strong or weak at oblique
incidence.

In Fig. 8.20, we plot Fp, Fd and Ftot, for φ = 90◦ (counter-propagative case) and 30◦ and for
two different times separated by half a laser period. Here and in all the following, the electron
position x, is normalized to the laser wavelength in the boosted frame, λ′

0 = λ0γboost and each
time t to the laser period in the boosted frame T ′

0 = T0γboost. The locations of the electro-
magnetic nodes are unchanged, when considering the quantities in the boosted frame: electric
field nodes for each k′

0x = π/2 +nπ (∀n ∈ Z) and magnetic field nodes for each k′
0x = nπ. From

Fig. 8.20 comes few comments:

• in comparison to Fp, the sign of Fd does depend on both the sign of its spatial and temporal
terms (sin(ω′

0t) can be negative). It means that oppositely to Sec. 8.3, the total force on
particles, Ftot (= Fp + Fd), is no more necessarily positive on the left part of an electric
field node (O point) and negative on the right part.

• Fp is T ′
0/2-periodic in time and does not depend on φ so the blue curves are identical for

all panels.

• For the counter propagating case, in Figs. 8.20–a, c, Fd is identically zero and of course,
Ftot = Fp.

• When cotφ ̸= 0 and γboost > 1 (see Figs. 8.20–b, d), the red curves exhibit a periodic
behaviour with a space period twice larger than the blue ones. In addition, because the
time period is also twice larger, Fd is different at t = 1.25 and 1.75T ′

0.

• The spatial variation of the total force around two consecutive magnetic nodes is now differ-
ent. In the following, we will refer to a strong node (dark blue stars), when |∂Ftot/∂x| ≫ 0
(e.g., around x = −0.5λ′

0 in Fig. 8.20–b) and a weak node (light blue stars), when
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|∂Ftot/∂x| ≃ 0 (e.g., around x = 0 in Fig. 8.20–b). Each node is alternatively strong
and weak along time (Figs. 8.20–b vs d). Around a strong node, particles will rapidly
diverge, while around a weak node, they will follow a ballistic motion.

• The total amplitude of Ftot is also stronger in oblique incidence suggesting that electrons
would be more accelerated in this case.

1

-0.5

0

0.5

-1

b

d
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c

Figure 8.21: Electron dynamics in the p/p case for different angles of incidence - Each panel
represents the electron distribution in phase space at t = 2.8T ′

0 and a0 = 3 for different angles of incidence
indicated in labels. As always, the different colors correspond to the initial positions within buckets.

The distributions in phase space of electrons exposed to these forces are pictured in Fig. 8.21
for φ varying from 90◦ to 30◦ and a0 = 3. There is a continuous transition from a stretching
and folding pattern, where the profiles in all buckets look similar (Fig. 8.21–a), to a larger scale
behaviour where the distribution is different around two successive magnetic nodes (Fig. 8.21–d).

The particular profile of Fig. 8.21–d resembles to what we found in PIC simulations in the
previous chapter (see Fig. 7.4–d, page 104 or Figs. 7.8–b, c, page 108 for example). The energy
of electrons in the fields is also growing with cotφ as suggested by the variation of Ftot.

The distribution of Fig. 8.21–d seems more complex but still presents key signatures of the
previous stretching and folding. The distribution seems to fold around fixed points (e.g., around
x = −0.5λ′

0 in Fig. 8.21–d), which indicates a phase of folding but it is also stretched (e.g.,
around x = 0), which might be caused by a stretching phase.

We propose to analyze the temporal evolution of the electron distribution step by step, in the
similar way as in Fig. 8.7 (page 132). The results are reported in Fig. 8.22. Once again,
the corresponding profile of the total force is plotted on top of each panel but this time, we
choose different shades of blues to highlight weak (light blue) and strong nodes (dark blue).
We have already seen that introducing an angle adds new effects, which take place on larger
time and space scales. It is then necessary to consider at least two full periods in space and time.

Starting at t = 2.8T ′
0 (Fig. 8.22–a), the total force stays close to zero, which as we know, lets the

particle follow a ballistic motion (straight blue arrows in Fig. 8.22–b). The whole distribution
is thus elongated along the x-axis. We recognize a stretching phase, very similar to the case
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Figure 8.22: Tempo-
ral evolution of the
distribution of elec-
trons in the p/p case
in oblique incidence
- Same figures as Figs.
8.6 and 8.7 (pages 131
and 132) but with an
angle of incidence φ =
30◦. Each panel corre-
sponds to different snap-
shots of the electron dis-
tribution in phase space
for a0 = 3 at different
times. On top of each
panel, we plot the cor-
responding spatial pro-
file of Ftot in different
shades of blue to high-
light strong (dark) and
weak (light) nodes.
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φ = 90◦. It persists during half a laser period (between Figs. 8.22–a and c). Another stretching
phase is clearly visible in Fig. 8.22–d.

A more interesting mechanism occurs for both Figs. 8.22–c and e. This time, the total force is
non zero and different processes happen around magnetic nodes depending on their type (weak
or strong):

• Around strong nodes (e.g., x = 0 in Fig. 8.22–c), the total force is intense and the
particles are rotating. Considering a single bucket, it would be almost as if the distribution
were folding only in the half space between the strong node and the electric node (see the
dark blue curved arrow on the left part of the third bucket, 0 < x/λ′

0 < 0.5, in Fig. 8.22–c).

• Around weak nodes (e.g., x = 0.5λ′
0 in Fig. 8.22–c), the total force amplitude remains

low and particles do not feel much of any force. Then it is not so different from a stretching
phase and the particles located in the other half space of a bucket are almost ballistic (see
the light blue straight arrows on the right part of the third bucket in Fig. 8.22–c).

Now, let us focus on particle trajectories. In Fig. 8.22, two particles are drawn in red, one
trapped and one circulating. In the previous sections, a trapped particle described a quasi-
elliptic trajectory centered around an electric node. However, based on the spatial profile of
the whole ponderomotive force in Fig. 8.21–b, d, the position where the force vanishes, does
not perfectly match an electric field node anymore. In fact, this position is always closer to the
weak node and no more fixed in time. The trapped particles are now oscillating around two
limit attractive points instead of one, depending on which side of the bucket the weak node is.
The resulting trajectory is shaped as a butterfly (see Fig. 8.22–f).

Oppositely, some particles are circulating. If they are located at a right position, they may even
follow a quasi-ballistic motion during multiple laser periods. In counter-propagating incidence,
the whole electron distribution rotated when the ponderomotive force started to be intense.
When φ ̸= 90◦, the force might be neglected near a weak node, even during the folding phase.
It is then possible for a particle not to feel any force during most of the interaction and thus
keep a ballistic motion. Such a particle is pictured in red at the bottom of the different panels
of Fig. 8.22). From Figs. 8.22–a to f, this electron is traveling through zones where the force
remains low, because it is either a stretching phase or around a weak node (see the blue straight
arrows). As a consequence, its trajectory stays almost horizontal.

From an experimental point of view, increasing the angle of incidence can be worthwhile to in-
crease the plasma heating, while keeping the same laser intensities. However, this only works if
the laser polarization is in the plane of incidence. In two s-polarized waves, there is no influence
from the angle of incidence.

Electron distribution in two s/s waves. When the laser polarization is switched from
p to s, just Ay remains, while Az disappears and with it the dependency on cotφ. Then, the
equation of motion, Eq. (8.62) (page 147), is strictly equivalent to the counter-propagating case
(Eq. (8.10), page 121) no matter the angle between the two waves. In s-polarization, the electric
field is always orthogonal to the plane of incidence and the electric interference field created by
the two waves is invariant by φ. Since only the Lorentz electric force is working, the energy
gained by electrons along their motion cannot depend on φ.
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When the laser polarizations are orthogonal to the plane of incidence, there is no benefit to in-
crease the angle between the two waves for the longitudinal component. In the chapters 5 and 7,
the PIC simulations and experiments were performed in oblique incidence and we noticed slight
differences in the density profile and energy between p and s-polarizations. In p/p configuration,
the counter-propagating case seems always disadvantageous and changing φ tends to increase
the particle energy (see Fig. 8.21). Oppositely, in s/s configuration, every oblique incidence is
equivalent to the case φ = 90◦ for the longitudinal dynamics. The non-dependence in φ in this
case can explain the observed differences of electron energy in experiments.

Electron distribution in two circularly polarized waves. Finally, we treat the RHC/LHC
configuration. As a reminder, this case was stable in the Liouville sense, when φ = 90◦. How-
ever, we show now that in oblique incidence, the system is no more predictable. Here, the vector
potential was defined in Eq. (8.17) (page 124). After some math, the classical equation of motion
reads:

d2x

dt2 −a
2
0c

2k′
0 sin

(
2k′

0x
)︸ ︷︷ ︸

Fp

+ 2a0c
2k′

0 cotφ sin
(
k′

0x
)

sin
(
ω′

0t
)︸ ︷︷ ︸

Fd

= 0. (8.67)

As before, we write the last terms as two forces and recognize a first force Fp corresponding to
a simple pendulum and a second force Fd depending on cotφ. Fd is identical in the p/p case,
because this force only depends on Az, defined by the same formula (see Eq. (8.17), page 124,
and Eq. (8.24), page 125). The equation of motion is now rather complex and exhibits different
oscillators.
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Figure 8.23: Electron dynamics in the RHC/LHC case for different angle of incidence - Same
figure as Fig. 8.21 but for a different laser polarization.

In Fig. 8.23, we plot the distributions of electrons in phase space for different angles. Although
the electron dynamics are stable in Fig. 8.23–a, when φ ̸= 90◦, particle manage to escape
from their initial buckets and the different colors are mixing. It is an indication that chaotic
behaviours appear.

It is interesting to note that the limit profile when φ→ 0◦, tends to the p/p case (see Fig. 8.23–d
vs Fig. 8.21–d). At grazing incidences, the impact of the field components along y in the elec-
tron motion is lowered and Fd ≫ Fp. Then, both equations of motion tend to the same equation.
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Through equations of motion, we were able to understand the distribution of electrons in multiple
cases in the boosted frame for different γboost. When the angle of incidence is changed from 90◦,
a slower component appears, which modifies the stretching and folding. It introduces chaos in
initially predictable configurations and more generally increases particle energy.

8.5.2 Energy evolution

When two p-polarized waves interfere with different angles of incidence, the electron energy
seems to increase. This gain can be quantified trough equations of motion, at least at low
intensity. To do so, we follow the same mathematical reasoning performed in Sec. 8.3.2 and
derive the equation of the separatrix, when the energy is expected to be at its maximum, i.e.,
just before a stretching phase. When adding an angle, the folding phase was decomposed into
two regimes, around strong and weak nodes. We decide to consider a strong node for x = 0,
which gives t = 3 T ′

0/4. Eq. (8.64) near that time simplifies as:

d2x

dt2 = 2a2
0c

2k′
0 sin

(
2k′

0x
)

+ 2a0c
2k′

0 cotφ sin
(
k′

0x
)
. (8.68)

Multiplying both members by ẋ and integrating the result, we find the quadrature as:

1
2

(dx
dt

)2
= −a2

0c
2 cos

(
2k′

0x
)
− 2a0c

2 cotφ cos
(
k′

0x
)

+ Cst. (8.69)

Eq. (8.69) defines closed orbits similarly to the case without angle (see Sec. 8.3.2, page 133) but
this time, they are no more elliptical. We decide to label each orbit by the point (x0, 0), where
x0 is the position along the orbit, when vx = 0.
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(8.70)

where we used px instead of vx. It is of course an approximation because we start from the
classical form of the equations of motion. It will give good results at low a0 but the model might
give inaccurate results, when the intensity becomes too high. Also, the canonical momentum
conservation gives a value for pz near t = 3 T ′

0/4:

pz = eAz +mc cotφ

= mc
(

cotφ− 2a0 cos
(
k′

0x
))
,

(8.71)

154



CHAPTER 8: STOCHASTIC HEATING IN PLANE WAVES

and finally γ:
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where we used:∥∥∥∥∥∥∥∥
• 1 + cot2 φ = 1/ sin2 φ = γ2
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• cos
(
2k′

0x0
)
− cos

(
2k′

0x
)

+ 2 cos2 (k′
0x
)

= 2 cos
(
k′

0x0
)
− 1− 2 cos2 (k′

0x
)

+ 1 + 2 cos2 (k′
0x
)

= 2 cos
(
k′

0x0
)
. (8.73)

The equation on γ is valid on any orbit, but the separatrix is the one which allows the largest
domain of validity and for which the cosines of k′

0x0 are equal to 1. The limit γ is given by:
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√
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(8.74)

In Fig. 8.24, we plot for two angles of incidence φ = 70◦ and 30◦ the different electron distri-
butions as a function of px and γ as well as their respective separatrix (defined for px as Eq.
(8.70) and for γ as Eq. (8.74)). We chose a0 = 3 and despite our approximations, the theoretical
separatrices still fit the evolution of particle energy well, even in the relativistic regime.

In Eq. (8.74), the energy is expressed in the boosted frame. For direct comparison with exper-
imental observables, its value in the laboratory frame is mandatory. It can be obtained after
reverse Lorentz transformation:

γlab = γboostγ + βboostγboost
pz

mc

= γboost

√
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)) (8.75)
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Figure 8.24: Phase space distributions and energy separatrices for different angles of incidence
- Each panel represents the electron distribution at t = 2.75 T0γboost and a0 = 3 for different angles of
incidence: (a, c): θi = 20◦, (b, d): θi = 40◦ in different spaces: (a, b): (x, px) and (c, d): (x, γ). The
theoretical separatrices are plotted on top in blue and correspond to Eq. (8.70) for px and to Eq. (8.74)
for γ.

The mean energy of electrons can be obtained by averaging γlab along x. The integral of Eq.
(8.75) is not simple and can be expressed with elliptical function of the second kind. An approx-
imate value can be obtained by zeroing the cosines:

γlab ≃ cot2 φ+ 1
sinφ

√
1

sin2 φ
+ 4a2

0 + 2a0 cotφ (8.76)

This formula allows for direct comparisons with experimental observables of stochastic heating
with solid targets.

As a reminder, the stochastic heating was found to be the prevailing mechanism in laser-solid
target interaction, when the characteristic density gradient length Lgrad in front of the surface
was sufficiently long (Lgrad ∼ λ0). In [Chopineau et al., 2019] are discussed experimental evo-
lutions of the energy of ejected electrons as a function of Lgrad and the laser angle of incidence
on target — θi = π/2− φ. The main results of this scan are reported in Fig. 8.25–a, where the
bottom region corresponding to the short gradient regime is hatched. The plotted quantity is
E , the average energy of all electrons recorded on the detector.

Firstly, E is increasing with θi, which is coherent with the theoretical study presented earlier in
the manuscript. For Lgrad = 0.3 λ0, the profile of E as a function of θi is plotted in Fig. 8.25–b
as well as the analytical energy (γlab − 1)mc2 defined in Eq. (8.76). There is no perfect match
between the two curves but our model still gives fair quantitative results and reproduces the
energy growth.

Secondly, E is hardly affected by Lgrad as far as the density gradient is long enough so that
stochastic heating occurs in the under dense part of the plasma gradient . This reinforces the
choice of simulating free electrons and neglecting all effects that are expected to play a major
role in denser parts of the gradient. It also means that one does not need an extreme contrast
control of the main impulsion. A too strong pedestal would lead precisely to density gradient
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Exp
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a b

Figure 8.25: Measured averaged energy of ejected electrons as a function of θi and Lgrad -
On panel (a), we report experimental results presented in [Chopineau et al., 2019], for which we only
retain the part dealing with the long gradient regime, where the stochastic heating is predominant. On
panel (b), we plot a line out corresponding to Lgrad = 0.3 λ0. The experimental data are displayed as
blue crosses, while the theoretical energy — E = (γlab − 1)mc2 — is pictured in red.

scale lengths of the order of λ at the arrival of the main pulse and stochastic heating is likely
to be dominant. Then, for a given angle of incidence, a measure of the ejected electron energy
could give an indication of the value of a0 at the time of the interaction:

a0 ≃
1
4
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− cotφ+

√
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(
γlab − cot2 φ

) )
(8.77)
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+ 4 cos2 θi

(
γlab − tan2 θi

) )
(8.78)

It would be interesting to perform an experimental scan to test the validity domain of our model,
for a large range of laser intensity, θi and polarizations. If the outcomes agree with our analytical
results, it might be possible to design a diagnostic, which gives the laser intensity at focus, shot
to shot. It does not necessarily require a good control of the contrast in front of the laser pulse,
which could facilitate its use in most laser facilities dealing with solid targets.

Conclusion
In this chapter, the mechanism behind stochastic heating was extensively investigated. Un-

like most of previous studies, we tried to explain the different behaviours, with simple physical
concepts, which can be easily understandable by non-specialist of chaos theory or Hamiltonian
formalism.

To this end, we showed that electron dynamics in different laser polarizations, can be mod-
eled as different pendulum equations, which might be predictable or chaotic. In particular, the
equations of motion in two p-polarized waves can be written as a forced pendulum, known as
Kapitza’s pendulum, which exhibits chaotic properties if laser intensities become too high.
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Decomposing the time evolution of the pendulum driving force using a constant piecewise func-
tion, we distinguish two phases, one when the force on the particles is identically zero, resulting
in a ballistic motion — the stretching phase— and one when the force is intense and the particles
are rotating around electric nodes — the folding phase. Based on that stretching and folding
effect and by simple geometric and probabilistic models, we developed a model for the chaos
threshold as a function of laser intensity as well as a particle diffusion model.

Introducing an angle between the two waves complicates the mechanism but the energy gained
by the electrons is observed to increase. It is possible to write the full equations of motion in the
Bourdier frame, letting appear a new force oscillating at a different frequency. The stretching
and folding phases are modified in this case and we observe a succession of strong and weak
foldings, which change the profiles of the electron distributions.

Finally, we are able to derive the different equations for the separatrices and propose a mean
value for the ejected electron energy as a function of both angle of incidence and laser intensity.
This energy should be compared to experimental data. In a case of a well agreement, it might
be possible to design an experimental diagnostic, which gives an idea of the real laser intensity
reached at focus, shot to shot.
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Conclusion and Future Prospects

This PhD work sheds light on the major coupling mechanisms between ultra-intense lasers
and dense plasmas. This study heavily relies on numerical simulations that reproduce and sup-
port experiments conducted at CEA Saclay.

All along this manuscript, direct interpretations of experimental observations have been made
possible by performing accurate Particle-In-Cell (PIC) simulations with the WARP+PXR code.
As opposed to standard PIC codes, this code advances Maxwell’s equations in Fourier space
(= pseudo-spectral solver), which greatly reduces numerical dispersion of electromagnetic waves
in vacuum as well as numerical noise. This numerical dispersion induces spurious effects in the
simulation that, when applied to laser-plasma mirror interactions, severely deflect the high-order
harmonic beam emitted by the plasma mirror. This effect was extensively studied and a simple
toy model based on the Snell-Descartes law was developed. It allows us to finely predict the
angular deviation of harmonics depending on the spatio-temporal resolution and the Maxwell
solver used in the simulations. In particular, it was found that the use of pseudo-spectral solvers
as the ones implemented in the WARP+PXR code completely mitigates the spurious deviation
and thus renders physically realistic and reliable simulations of the interaction between a laser
and a dense plasma.

Couplings mechanisms between a laser and an overdense plasma

Based on pseudo-spectral PIC simulations performed with WARP+PXR, we investigated
the influence of the density gradient scale length Lg in front of the target surface on the ex-
perimentally observed emission of light and particles, when a high-power laser pulse (a0 > 1)
reflects off a dense plasma. When the plasma surface is steep (Lg ∼ λ0/15), the plasma be-
haves as a plasma mirror, capable of generating a comb of high order harmonics as well as a
high charge relativistic electron beam (∼ 1 nC at 10 MeV). The electron and harmonic signals
are synchronized in time and angularly separated by few tens of milliradians. By contrast, for
larger gradient scale lengths (Lg ∼ λ), the electron and harmonic signals radically change. The
harmonic signal completely collapses, while the electron distribution broadens angularly. The
electron energy is also higher and hardly varies with the angle of incidence of the laser on the
plasma.

Our numerical and theoretical investigation indicates that two different coupling mechanisms
between light and matter are responsible for such recorded electron and harmonic signals. We
provide unambiguous evidence for a transition between the temporally periodic Brunel absorp-
tion to the — chaotic — stochastic heating at relativistic laser intensities. Our work complements
previous investigations concentrated at lower intensity that expected a transition from Brunel
absorption to yet another mechanism, known as resonance absorption.
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Figure Concl.1: Transition diagram between different coupling mechanisms at play in the
interaction between a laser and an overdense plasma - Panel (a) displays three different regions
corresponding to the dominant coupling mechanisms as a function of a0 and Lg. In the other panels
are recalled the different behaviours of the target surface in each different case. Grey dots in panel (a)
indicate the condition on a0 and Lg leading to the right panels.

We summarize in Fig. Concl.1 our understanding of the laser dense plasma interaction so far at
the end of this thesis:

• starting at low intensity and large gradients (Fig. Concl.1–b), the dominant mechanism
is resonance absorption, which has been widely studied for many years. During the
interaction, some laser energy may tunnel from the reflective point up to the critical
density nc in the form of an evanescent wave, where it drives a resonant plasma wave.
This plasma wave will eventually break after some time, propelling electrons out of the
plasma.

• When the laser intensity is increased for a fixed Lg (Fig. Concl.1–c), a new mechanism
appears on top of resonance absorption: stochastic heating. Characterizing this mecha-
nism was precisely one of the main goal of my thesis. In the underdense part of the plasma,
electrons are exposed to the standing wave formed in front of the overcritical part of the
plasma by superposition of incidence and reflected beams. While evolving in the two waves,
electrons behave chaotically and absorb an important fraction of the laser energy. The
transition from resonance absorption to stochastic heating is smooth: the two mechanisms
actually coexist for a wide range of intensity starting from the onset of chaos (a0 ∼ 0.15) to
the disappearance of plasma wave growth near nc by relativistic transparency (a0 ∼ 2.87).
Indeed, at higher intensities, the laser reflects on a density higher than nc, which prevents
the resonance to happen.

• When Lg is lowered, the underdense part of the plasma subject to the standing wave
shrinks. Stochastic heating is then expected to faint in favor of the well-known Brunel
mechanism as soon as the quivering motion of electrons in the laser field exceeds the gra-
dient scale length (see Fig. Concl.1–c). In this case, the surface electrons are first pulled
out of the plasma into vacuum by the laser component normal to the plasma surface.
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When this component changes sign the electrons are pushed back to the target. Addition-
ally, numerical simulations show that a fraction of electrons still manages to escape the
plasma surface towards vacuum in the form of attosecond bunches. At high intensities,
these Brunel electrons reach relativistic velocities when they escape the plasma and in-
duce a relativistic Doppler effect on the reflected laser field. It results in the generation
of high-order harmonic comb through a process called the Relativistic Oscillating Mirror
mechanism.

This work should prove extremely useful for the interpretation of a broad range of experiments
and simulations performed with high-power ultrashort lasers on dense targets (related to particle
acceleration or high harmonic generation) principally for two reasons.

First, stochastic heating is likely to be dominant in experiments which do not require (or simply
do not feature) a high temporal contrast. The picosecond pedestal in front of the main pulse
would lead precisely to density gradient scale lengths of the order of λ before the arrival of the
main pulse. With the advent of petawatt class lasers worldwide, generating pulses that preserve
the target structure will be even more challenging. The intensities reached on target would
exceed 1022−23 W.cm−2 and a contrast as high as 109 will no more prevent target ionization and
plasma expansion. In that matter, additional optical components will have to be introduced to
strongly lower the intensity of the not-so weak pedestal (e.g., double plasma mirror or more).

Second, we provide several simple observables that can help finding which coupling mechanisms
dominate in the regimes of interaction. In addition to electron and harmonic emissions, the
redistribution of the initial laser energy after the laser-plasma interaction provides clear signa-
tures of each mechanism. In Fig. Concl.2, the different distributions obtained for both short
and long gradient regimes, and for both p and s laser polarizations, are displayed as pie charts
. For short gradients and p-polarization (pictured as the left chart Fig. Concl.2–a), around
25% of the laser is converted into harmonics of the laser frequency (mostly low-orders), and
about 30% is deposited as particle kinetic energy (including the relativistic electrons observed

(i)

(ii)

(iii)

(iv) 

(v)

a b

Figure Concl.2: Distribution of the initial laser pulse energy after the interaction, in different
laser-plasma configurations - These pie charts summarize how the laser energy is distributed after
the laser plasma interaction, in the short (panel (a)) and long (panel (b)) gradient regimes, for p and
s-polarizations. Five categories have been numerically separated as followed: (i) electromagnetic (EM)
energy in the fundamental laser frequency in the specular direction, (ii) in the harmonics of the laser
frequency in the specular direction, (iii) in quasi-static fields (i.e. with a frequency lower than the
laser frequency), (iv) in non-static fields in the non-specular direction, and (v) kinetic energy of plasma
particles.
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in the experiments). When the polarization is switched to s (right chart Fig. Concl.2–a), these
two contributions get considerably reduced, down to around 5% each, leading to a much higher
reflectivity of the fundamental laser frequency. By contrast, for long gradients (Fig. Concl.2–b),
very little energy is converted into harmonics, regardless of polarization. As already emphasized,
quasi-static fields around the plasma surface are observed in the long gradient regime that drain
a significant fraction of the laser energy compared to the short gradient regime. In p-polarization,
the fraction of energy going into particle kinetic energy is only slightly weaker than in the short
gradient case, and gets reduced by about 50% in s-polarization. A proper understanding of the
different coupling mechanisms can help finding optimal conditions in experiments and allow for
a better control of the interaction.

A novel approach to describe stochastic heating in two colliding waves
Another important part of this PhD thesis was dedicated to the derivation of a model for

stochastic heating understandable by non-specialists of chaos theory or Hamiltonian formalism.
Our approach precisely bridges the gap between a partially-predictive but non-intuitive heavy
Mathematical formalism and intuitive but not predictive physical reasoning. We demonstrated
that it is possible to reduce the equations of motion of particles in two waves to well-known
physical systems such as simple gravity pendulum or Kapitza’s pendulum. That correspondence
gives deep physical intuitions on how electrons behave in different laser configurations (intensity,
polarization or angle of incidence).

a b c

Stretching & Folding
e-

Figure Concl.3: Stretching and folding of electron distribution in two waves - This figure recalls
the principal features of electron motion in two waves: it is formally equivalent to the bob motion of a
Kapitza’s pendulum, for which the phase space is stretched and folded over time.

In two linearly polarized waves, we observe a strong stretching and folding effect on the
phase space distribution around electric nodes of the standing wave imposed by the temporal
evolution of the ponderomotive force (see Fig. Concl.3). This effect is held responsible for chaos
onset and to a loss of predictability each time a particle approaches a magnetic field node. For
a chaotic system, it is a vain effort to perfectly approach the converged trajectories in numerical
simulations, because both the numerical scheme and the finite precision of the floating point
format introduce small errors that diverge exponentially over time. Instead, the whole electron
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distribution can be modeled as a probabilistic random variable. Based on a random walk model,
it was shown in particular that the probabilistic law for electron diffusion approaches a Gaussian
distribution, when the intensity is sufficiently high.

Finally, the model was extended to oblique incidence and gives insights on the typical electron
energy gained in the two waves. This energy explicitly depends on the angle between the two
waves and their intensity and corresponds to the mean energy of emitted electrons recorded in
the experiments. From there, further experiments can substantiate these preliminary results
and demonstrate the feasibility of a new measurement technique that assesses the intensity at
focus. This technique is independent from the gradient scale length as long as stochastic heating
remains the dominant mechanism. Furthermore, the measurement only necessitates a single laser
shot and does not require complex data processing. Users from most high-power laser facilities
could thus benefit from this technique.
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A Probabilistic Distribution for Large n

Here we detail the derivation that gives the limit behaviour at large n of the probability law
found in the manuscript (Eq. 8.54, page 144):
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. (A.1)

We approach each factorial term of Eq. (8.54) by the Stirling’s approximation:
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It reads:

P
(
xn = g

)
= 1

4n
√

2π

√
2n√

(n− g)(n+ g)
en−g.en−g

e2n

(2n)2n

(n+ g)n+g(n− g)n−g
. (A.3)

We treat each term separately:
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Finally:
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The particle distribution thus approaches a Gaussian distribution for large n.
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C Résumé en Français

Ce travail de thèse met en lumière les principaux mécanismes de couplage entre lasers ultra-
intenses et plasmas denses. Cette étude s’appuie largement sur des simulations numériques, qui
reproduisent et supportent les expériences effectuées au CEA Saclay.

Tout au long de ce manuscrit, l’interprétation directe des observations expérimentales a été
rendue possible grâce à des simulations de type Particle-In-Cell (PIC) réalisées avec le code
WARP+PXR. Contrairement à la plupart des autres codes PIC, les équations de Maxwell sont
résolues dans l’espace de Fourier (on parle alors de code pseudo-spectral), ce qui réduit grande-
ment les effets de la dispersion numérique des ondes électromagnétiques dans le vide ou du
chauffage numérique. En particulier, la dispersion numérique introduit des effets non physiques
dans la simulation qui vont, par exemple dans le cadre de l’interaction entre un laser et de la
matière dense, dévier sévèrement les harmoniques élevées émises par le miroir plasma. Cette
déflexion a été étudiée de façon extensive dans le manuscrit par l’intermédiaire d’un modèle sim-
ple se reposant sur les lois de la réfraction de Snell-Descartes. Il permet de prédire précisément
l’angle de déviation des harmoniques en fonction de leur ordre, la résolution spatio-temporelle de
la simulation ou encore du solveur de Maxwell considéré. Ainsi, il a été démontré que l’utilisation
d’un solveur pseudo-spectral, comme celui implémenté dans WARP+PXR, réduit totalement la
plupart des effets non physiques, rendant ainsi possible des simulations réalistes non accessibles
auparavant. Les résultats de ces simulations vont alors pouvoir être comparés directement aux
grandeurs des expériences.

Mécanismes de couplage entre laser et matière dense
Grâce à l’utilisation du solveur pseudo-spectral de WARP+PXR, nous avons pu étudier

l’influence du gradient de densité, caractérisé par une longueur Lg et situé à l’avant de la face
éclairée par le laser, sur les émissions de lumière et de particules observées expérimentalement
lors de l’interaction entre un laser de haute puissance (a0 > 1) et un plasma surcritique. Quand
la surface du plasma est raide (Lg ∼ λ0/15), la cible se comporte comme un miroir plasma
capable de produire des trains d’harmoniques d’ordres élevés associés à des faisceaux d’électrons
ultra relativistes de haute charge (∼ 1 nC à 10 MeV). Ces signaux électroniques et harmoniques
sont synchronisés temporellement et séparés angulairement de quelques dizaines de milliradians.
En revanche, pour des gradients plus longs (Lg ∼ λ), l’aspect de ces deux différents signaux
varie radicalement. En effet, il a été observé que dans ce cas-là, l’intensité du signal harmonique
s’effondre complètement, tandis que le signal électronique s’élargit angulairement. De plus,
l’énergie des électrons est plus élevée et varie avec l’angle d’incidence du laser sur le plasma.
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Notre étude numérique et théorique indique que ce changement de caractère de l’émission peut
être attribué à une transition entre deux différents mécanismes de couplage entre lumière et
matière. En particulier, nous proposons des preuves irréfutables d’un passage entre un mécan-
isme de Brunel périodique à un chauffage stochastique, apériodique et chaotique. Ce travail
réalisé dans un régime où l’intensité du laser est élevée vient compléter les résultats bien connus
à bas flux, où une autre transition est observée entre l’absorption de Brunel vers un troisième
mécanisme, l’absorption résonnante.
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Figure C.1: Diagramme de transition entre les différents mécanismes de couplage en jeu lors
de l’interaction entre un laser et un plasma surcritique - Sur la figure (a), trois différentes régions
sont tracées dans un diagramme (a0, Lg). Chaque région indique lequel des trois mécanismes de couplage
considérés est prépondérant. Dans chacune des zones indiquées par des points gris, on trace à droite
l’évolution spatio-temporelle d’une couche de plasma.

Nous résumons notre compréhension globale des différents mécanismes dans la figure Fig. C.1:

• commençant à basse intensité et gradients longs (Fig. C.1–b), le mécanisme dominant
est l’absorption résonnante, très largement étudiée depuis de nombreuses années. Lors
de l’interaction, une partie de l’énergie du laser va pouvoir se propager par effet tunnel
du point de réflexion jusqu’à la densité critique nc du plasma sous la forme d’une onde
évanescente. De là, elle va pouvoir exciter une onde plasma résonnante. Après une quan-
tité suffisante d’énergie apportée à cette onde plasma, celle-ci va déferler, propulsant de
nombreux électrons hors du plasma.

• Quand l’intensité du laser augmente à Lg fixé (Fig. C.1–c), un nouveau mécanisme ap-
paraît en plus de l’absorption résonnante : le chauffage stochastique. Caractériser
ce mécanisme moins connu que les deux autres a été précisément le cœur de ma thèse.
Celui-ci est mis en jeu lorsque des électrons évoluent dans deux ondes, leur mouvement
devient alors chaotique et ils peuvent absorber une large fraction de l’énergie laser. Pour
un gradient long, la deuxième onde n’est autre que l’onde réfléchie par le miroir qui va
venir interférer avec l’onde incidente dans une zone de plasma située entre le vide et le
point de réflexion. La transition depuis l’absorption résonnante est douce, les deux mé-
canismes vont coexister pendant une large gamme d’intensité allant de l’apparition du
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chaos (a0 ∼ 0.15) à la disparition de la densité critique nc par transparence relativiste
(a0 ∼ 2.87), empêchant ainsi une résonance de s’y développer.

• À haute intensité, quand la longueur de gradient diminue, la zone de plasma sujette aux
deux ondes se rétrécit. Ainsi, le chauffage stochastique doit disparaître au profit du bien
connu mécanisme de Brunel dès que la distance parcourue par les électrons dans l’onde
laser dépasse la longueur de gradient (Fig. C.1–d). Dans ce cas, les électrons sont d’abord
extraits du plasma vers le vide sous l’action de la composante normale du champ élec-
trique. Si le champ est fort, les électrons sont accélérés fortement jusqu’à des vitesses
relativistes et vont introduire un effet Doppler relativiste sur le champ laser réfléchi. Ceci
va aboutir à la génération d’un train d’harmonique d’ordre élevé conformément au modèle
du Miroir Plasma Relativiste (ou ROM en anglais). Ensuite, quand le signe du champ
électrique s’inverse, les électrons sont repoussés vers le centre de la cible à des vitesses bal-
istiques. Quand l’intensité du laser est élevée, certains de ces électrons de Brunel arrivent
à s’échapper du champ de rappel du fond ionisant et sont introduits dans le laser réfléchi.

Ce travail permet donc une meilleure compréhension des différents phénomènes en jeu lors de
l’interaction entre un laser intense et un plasma dense. En particulier, le chauffage stochastique
est très probablement le mécanisme principal de gain d’énergie dans les expériences qui ne
nécessitent pas un bon contraste temporel (ou qui ne le maitrisent pas correctement). En effet,
le piédestal devant l’impulsion principale peut introduire des gradients de densité caractérisés
par des longueurs Lg de l’ordre de λ0 avant l’arrivée du laser intense, soit précisément le régime
en haut à droite de la figure Fig. C.1, qui correspond au chauffage stochastique.

Une nouvelle approche pour décrire le chauffage dans deux ondes
Une importante partie de cette thèse est consacrée à la dérivation d’un modèle du chauffage

stochastique qui soit compréhensible même par des non spécialistes du chaos ou du formalisme
Hamiltonien. Notre approche se situe à l’interface entre un modèle hautement mathématique
et peu intuitif et un modèle plus empirique mais moins prédictif. Nous démontrons ainsi qu’il
est possible d’écrire les équations du mouvement de particules dans deux ondes sous la forme de
systèmes physiques bien connus tels que le pendule simple ou le pendule dit de Kapitsa. Cette
correspondance apportent de solides intuitions physiques sur comment les électrons se compor-
tent dans telle ou telle configuration laser (intensité, polarisation ou encore angle d’incidence).

En particulier, dans deux ondes polarisées linéairement est observé un intense phénomène
d’élongation et de repliement (stretching and folding en anglais) des distributions de
particules dans l’espace des phases autour des nœuds de champ électrique dû à l’évolution tem-
porelle de la force pondéromotrice. Cet effet est tenu responsable de l’apparition du chaos et
de la perte en prédictibilité à chaque fois que les particules se rapprochent d’un nœud magné-
tique cette fois. Pour un système chaotique, il est alors totalement vain d’essayer d’approcher
parfaitement les trajectoires de ces particules avec une simulation numérique parce qu’à la fois
le schéma numérique mais aussi la troncature d’un nombre à virgule flottante introduisent à
chaque pas de temps de petites erreurs qui vont grandir exponentiellement. À l’inverse, on va
plutôt privilégier un modèle probabilistique, basé sur une marche aléatoire pour approcher la
loi de diffusion des particules au cours du temps. Il a été observé que cette loi tend vers une loi
normale quand l’intensité du laser est suffisamment élevée.

Enfin, ce modèle a pu être également étendu à des incidences obliques pour se rapprocher au
plus près des expériences sur cibles denses à long gradient. Dans ce cas, l’énergie des particules
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dépend explicitement de l’angle d’incidence entre les deux ondes et de leur intensité et coïncide
avec l’énergie moyenne des électrons éjectés observée dans les expériences. À partir de là, de
plus amples séries de mesures expérimentales doivent être menées pour venir valider ces résultats
préliminaires et démontrer la faisabilité d’une nouvelle technique de mesure de l’intensité du
laser au foyer. Cette technique serait globalement indépendante de la longueur de gradient
tant que l’on s’assure que le chauffage stochastique reste bien le mécanisme dominant. De
plus, cette technique ne nécessiterait potentiellement que d’un seul tir laser pour donner des
résultats quantitatifs sans recourir à des procédés d’analyse de données complexes. Ainsi, les
utilisateurs de la plupart des installations laser actuellement disponibles pourraient bénéficier
de ce diagnostic.
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Titre : Laser Ultra Intense sur Plasmas Denses : Dynamiques Périodiques vers Chaotiques

Mots clés : miroirs plasmas relativistes, simulations PIC, chaos, solveurs de Maxwell pseudo-spectraux

Résumé :
L’émergence des lasers ultra-brefs et ultra-intenses a per-
mis le développement d’une nouvelle branche de la phy-
sique encore largement inexplorée : la physique UHI (pour
Ultra-High Intensity). Lors de la réflexion d’un tel laser
sur une cible solide, l’intensité au foyer peut atteindre des
valeurs aussi importantes que 1018−20 W.cm−2, suffisam-
ment pour ioniser complétement la matière. Le plasma
ainsi formé se détend sur une longueur caractéristique L,
nommée longueur de gradient. Quand L ≪ λ (longueur
d’onde du laser), le plasma dense se comporte comme un
miroir de qualité optique capable de réfléchir spéculaire-
ment la lumière incidente : c’est un miroir plasma. Ce
système physique remarquable peut être utilisé dans de
multiples applications principalement comme source com-
pacte de faisceaux de particules à hautes charges et hautes
énergies ou de lumière intense, principalement ultraviolet
ou X, grâce à un phénomène de génération d’harmoniques
d’ordres élevés. Le bon contrôle de ces sources nécessite de
clairement identifier les différents mécanismes de couplage
entre lumière et matière en jeu lors de l’interaction.
Dans ce manuscrit, cela est rendu possible grâce à de
précises simulations de type Particle-In-Cell (PIC) réa-
lisées avec le code WARP+PXR. Ce nouveau code em-
ploie un solveur pseudo-spectral pour résoudre les équa-
tions de Maxwell. Celui-ci améliore grandement la précision
des simulations et notamment des émissions harmoniques

et électroniques, que les solveurs plus standards ne par-
viennent à décrire, même à hautes résolutions. Grâce à des
simulations WARP+PXR, nous avons étudié l’influence de
L sur les observables expérimentales que sont les émissions
de lumière et de particules, quand un laser de puissance
(I = 1019 W.cm−2) se réfléchit sur un plasma dense. Notre
étude révèle une claire transition entre un mécanisme pério-
dique en temps et un processus chaotique quand l’interface
devient plus lisse.
Nous nous sommes principalement concentrés sur le
deuxième mécanisme, appelé chauffage stochastique pour
lequel des études en profondeur vont être menées en fonc-
tion de différents paramètres d’interaction. Dans ce ré-
gime, les électrons de la partie sous-dense du plasma su-
bissent une dynamique chaotique dans l’onde stationnaire
formée par la superposition des ondes incidente et réflé-
chie, ce qui leur permet d’absorber une importante part de
l’énergie laser. La nature fondamentale de la dynamique
en jeu est révélée grâce aux équations du mouvement au
sein des deux ondes que l’on peut réduire en équations de
pendules forcés (comme celui de Kapitza), systèmes bien
connus comme chaotiques. Cette correspondance apporte
une intuition physique profonde sur le comportement des
électrons pour différentes configurations laser. Ceci nous
permet in fine de prédire les principaux aspects du chauf-
fage stochastique.
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Abstract :
The advent of high power femtosecond lasers has paved
the way to a promising and still largely unexplored branch
of physics called Ultra-High Intensity physics (UHI). Once
such a laser is focused on a solid target, the laser intensity
can reach values as large as 1018−20 W.cm−2, for which
matter is fully ionized. The plasma thus formed expands
towards vacuum on a spatial scale characterized by a quan-
tity L called the density gradient scale length. When L ≪ λ
the laser wavelength, the dense plasma therefore acts as an
optical mirror that specularly reflects the incident light :,
it is a plasma mirror. This remarkable physical system can
be used in many scientific applications as compact source
of high-energy and high-charge particle beams (electrons,
ions) or bright source of radiations ranging from extreme
ultraviolet-rays to X-rays through high harmonic genera-
tion processes. In order to finely control these sources, it is
required to properly identify the different coupling mecha-
nisms between light and matter at play during the interac-
tion.
In this manuscript, this has been made possible by per-
forming accurate Particle-In-Cell (PIC) simulations with
the WARP+PXR code. This recently developed code ad-
vances Maxwell’s equations in Fourier space, which proves

to correctly model harmonic/electron emissions that stan-
dard codes fail to accurate describe even at high resolution.
Based on WARP+PXR PIC simulations, we investigate the
influence of L on the experimentally observed emission of
light and particles, when a high-power laser pulse (I = 1019

W.cm−2) reflects off a dense plasma. Our study reveals an
unambiguous transition from a temporally periodic mecha-
nism to a chaotic process as the interface becomes smoo-
ther.
In particular, the latter mechanism, named stochastic hea-
ting, is fully characterized as well as its domain of validity
in terms of laser-plasma parameters. In this regime, elec-
trons in the underdense part of the gradient are exposed to
the standing wave formed in front of the overcritical part
of the plasma by superposition of incidence and reflected
beams. While evolving in the two waves, electrons behave
chaotically and absorb an important fraction of the laser
energy. The nature of the interaction is revealed by redu-
cing the equations of motion of particles in two waves to
physical systems, such Kapitza’s pendulum, well-known to
exhibit chaos. That relation gives deep physical intuitions
on how electrons behave in different laser configurations,
which allows us to predict major features of stochastic hea-
ting.
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