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-Charles Mérieux

Doyenne: Mme Carole BURILLON
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Réadaptation (ISTR)

Directeur: M. Xavier PERROT

Institut des Sciences Pharmaceutiques et Bi-
ologiques (ISBP)

Directrice: Mme Christine VINCIGUERRA

COMPOSANTES & DEPARTEMENTS DE SCIENCES & TECHNOLOGIE
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Resumé en français

Cette thèse de doctorat porte sur l’analyse du métabolisme des micro-organismes. Le métabolisme

est l’ensemble des réactions d’un organisme. Il peut être modélisé comme un réseau métabolique qui

contient les métabolites présents dans un organisme et les réactions correspondantes qui les transfor-

ment. Les réseaux métaboliques peuvent être, par exemple, représentés sous forme de hypergraphes

ou de matrices stœchiométriques. La modélisation du métabolisme peut être utilisée pour obtenir des

informations sur l’activité métabolique d’un micro-organisme et pour prédire certains comportements.

La disponibilité croissante des données métabolomiques et leur analyse améliorent la compréhension

des mécanismes cellulaires. L’intégration des données métabolomiques dans les réseaux métaboliques

permet de comprendre comment les systèmes biologiques réagissent à différentes perturbations. Cela

peut être, par exemple, l’adaptation du micro-organisme à un changement de milieu, au stress ou

l’impact des perturbations génétiques sur l’activité métabolique du micro-organisme. La modification

de l’activité métabolique d’un micro-organisme est appelée changement métabolique (en anglais

”metabolic shift”). Comme il est important de comprendre les changements métaboliques dans

différentes conditions pour faire progresser la recherche dans différents domaines comme la bio-

ingénierie ou la santé humaine, il est nécessaire de disposer de méthodes de calcul qui facilitent la

compréhension des données métabolomiques disponibles.

Un autre sujet commun dans l’analyse des réseaux métaboliques est le calcul des stratégies d’interven-

tion optimales. Les micro-organismes sont déjà utilisés à l’échelle industrielle pour produire des

substances chimiques cibles importantes. Il est essentiel de comprendre comment les différentes

parties du métabolisme interagissent et sont liées entre elles pour trouver des moyens d’améliorer les

taux de production. Le métabolite souhaité peut souvent n’être qu’un sous-produit du métabolisme

habituel lorsque le micro-organisme est en croissance et son rendement peut être très faible. Il est

donc nécessaire de modifier le métabolisme du micro-organisme afin d’augmenter le rendement du

composé cible souhaité et établir ainsi une production plus efficace. L’un des domaines de la biologie

synthétique est le génie génétique des micro-organismes pour améliorer la production de substances

chimiques cibles importantes par un micro-organisme. L’idée est d’éliminer des réactions spécifiques

en manipulant les gènes métaboliques qui codent pour les enzymes catalytiques. En fonction du

rôle que les réactions d’élimination jouent dans le métabolisme, l’organisme peut utiliser différentes

voies pour compenser son manque. Les réactions éliminées doivent être choisies de manière que le

métabolisme modifié entrâıne une augmentation de la production de la substance chimique cible.

En raison de la structure complexe du métabolisme, il est nécessaire de modéliser les perturbations in

silico afin de proposer des stratégies d’intervention qui pourraient conduire au meilleur résultat in vivo.

En prédisant et en analysant le comportement modifié et en identifiant les meilleures perturbations

à l’aide d’approches computationnelles, la conception d’expériences pratiques peut être guidée.

De plus en plus d’approches sont mises au point pour calculer des knock-outs optimaux pour des

scénarios différents. Certaines ne sont applicables qu’à des modèles de réseaux plus petits qui ne

représentent qu’une version condensée ou que certaines parties du métabolisme. L’application aux

réseaux métaboliques à l’échelle du génome qui modélisent le métabolisme complet d’un micro-

organisme de manière aussi détaillée que possible reste particulièrement difficile. En raison de

leur taille et de leur complexité, l’effort de calcul des méthodes appliquées peut augmenter con-

sidérablement.

Il y a cependant un aspect qui n’est souvent pas pris en compte lors du calcul des knock-outs
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optimaux qui devraient augmenter la production cible. Dans certains cas, le produit chimique cible

est un sous-produit qui est en fait toxique pour le micro-organisme. Par conséquent, l’accumulation

du métabolite cible peut inhiber la croissance du micro-organisme. Elle peut également diminuer le

taux de production, ce qui rendra l’application à l’échelle industrielle moins efficace.

Les knock-outs restreignent généralement le métabolisme d’un micro-organisme parce qu’ils enlèvent

certaines fonctionnalités. Par conséquent, dans le cadre mentionné ci-dessus, il est crucial de s’assurer

que les knock-outs effectués n’inhibent pas des processus importants que le micro-organisme peut

utiliser pour établir une tolérance contre la cible toxique. Cela ne contribuera pas spécifiquement

à augmenter la résistance contre le produit chimique cible, mais cela permet de s’assurer que la

tolérance naturelle est préservée.

J’ai déjà travaillé sur les réseaux métaboliques pendant mon mastère, ce qui a également été l’une des

raisons pour lesquelles je me suis intéressée à ce doctorat. J’ai travaillé sur deux approches pour les

réseaux métaboliques qui utilisent l’optimisation multi-objectifs. Une approche était applicable aux

communautés microbiennes, c’est-à-dire pour un scénario où différents micro-organismes interagissent

les uns avec les autres. La seconde utilisait l’optimisation multi-objectifs pour identifier les compromis

possibles entre la production de biomasse et la production cible dans les micro-organismes. Des

knock-outs sont énumérées consécutivement. Cette deuxième approche a donné une première idée

de base pour l’approche développée qui sera la partie principale de cette thèse. Elle sera présentée

dans le chapitre 2.

Au début de cette thèse, dans le chapitre 1, je ferai un bref résumé sur certains sujets qui sont

importants pour la compréhension des deux approches qui seront présentées dans les chapitres 2

et 3. Je ferai d’abord une brève introduction à la programmation linéaire, en particulier à la pro-

grammation linéaire multi-objectifs qui sera utilisée dans l’approche décrite au chapitre 2. Ensuite,

je donnerai une introduction aux réseaux métaboliques, à leurs représentations et aux méthodes

associées. Dans les deux dernières sections, je résumerai les approches communes pour prévoir les

stratégies d’intervention et analyser les changements métaboliques.

Le chapitre 2 représente le principal travail que j’ai effectué pendant mon doctorat. Cette partie

se concentre sur une approche d’exploitation du métabolisme des micro-organismes. La motivation

principale était de développer une stratégie pour prédire les knock-outs optimaux qui augmentent

la production d’une substance chimique cible dans un micro-organisme dans le cas où le métabolite

cible produit est toxique pour le micro-organisme utilisé. En outre, je souhaitais une approche qui

soit également applicable aux réseaux métaboliques à l’échelle du génome.

L’approche développée se compose de deux parties différentes. Dans la première partie, un problème

d’optimisation multi-objectifs est formulé qui calcule les compromis entre la production de biomasse,

la production cible et un score qui mesure la résistance possible à la toxicité contre le métabolite cible

toxique. Dans la deuxième partie, on énumère des knock-outs qui devraient imposer des distributions

de flux spécifiques. Dans un premier temps, un MILP a été proposé pour énumérer les différents

knock-outs. En raison de ses limites et de ses défauts, il était nécessaire de développer une deuxième

idée qui est basée sur l’identification et l’isolation de sous-réseaux.

La méthode proposée est appliquée à l’étude de cas de la production d’éthanol dans la levure.

L’éthanol est déjà produit par la levure dans l’industrie et il y a un intérêt croissant pour l’éthanol

en raison de son utilisation comme biocarburant. Cependant, un facteur limitant important pour la

production d’éthanol dans la levure est en effet la toxicité de l’éthanol pour la levure. Lorsque l’éthanol

s’accumule, il inhibe la croissance mais entrâıne également un déclin de la production d’éthanol.
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Il pourrait donc être important de tenir compte de cet aspect lorsque l’on essaie d’améliorer la

production d’éthanol en introduisant des knock-outs qui entrâıneront un changement dans l’activité

métabolique de la levure. En appliquant notre approche à l’étude de cas de la production d’éthanol

dans la levure, nous avons pu calculer des ensembles de désactivation avec moins de 20 réactions.

Il reste à déterminer quelle est la plus petite taille possible. En outre, nous avons besoin d’une

évaluation biologique plus poussée pour les ensembles de désactivation proposés afin d’établir la

viabilité des réactions suggérées dans la pratique.

Les avantages de notre approche sont qu’elle est applicable sur des réseaux métaboliques à l’échelle

du génome comme nous l’avons montré en utilisant le modèle de la levure 5.01. En outre, le cadre

est flexible et il devrait être possible de modifier les objectifs pour différents scénarios. Nous sommes

donc également intéressés par l’application de notre approche à d’autres exemples afin de confirmer

son adaptabilité. Nous prévoyons de peaufiner l’approche et de la rendre disponible comme outil sur

le Gitlab de l’équipe. Après avoir obtenu un avis biologique supplémentaire des collaborateurs sur

nos résultats, nous voulons soumettre ce travail sous forme d’article avant la fin de l’année.

Dans le chapitre 3, je présenterai une nouvelle méthode de calcul qui s’est concentrée sur étudier

l’activité métabolique des micro-organismes. Cette approche est appelée Totoro, ce qui est

l’abréviation de ”Transient respOnse to meTabOlic pertuRbation inferred at the whole netwOrk

level”. Cette approche est le résultat d’une collaboration avec Ricardo Andrade et Mariana Ferrarini.

Un ancien membre du groupe, Alice Julien-Laferrière, a déjà travaillé sur cette approche lors de son

doctorat. Nous avons soumis un papier sur ce travail à Bioinformatique en Septembre 2020.

Totoro intègre les concentrations internes de métabolites qui ont été mesurées avant et après une

perturbation dans des reconstructions métaboliques à l’échelle du génome. Il prédit les réactions qui

étaient actives pendant l’état transitoire qui a suivi la perturbation. Il s’agit d’une approche basée

sur les contraintes qui prend en compte la stœchiométrie du réseau. Elle minimise le changement des

concentrations pour les métabolites non mesurés et également le nombre de réactions actives pendant

l’état transitoire pour tenir compte d’une hypothèse parcimonieuse. Totoro est un outil disponible

librement. Il a été implémenté en C++ et peut être consulté à l’adresse https://gitlab.inria.

fr/erable/totoro.

Nous avons appliqué notre méthode à trois expériences d’impulsions dans Escherichia coli pour

montrer qu’elle peut récupérer des voies actives connectées et prédire des directions distinctes pour

des réactions réversibles qui sont conformes aux observations biologiques connues. Nous avons utilisé

un modèle de base et un modèle à l’échelle du génome de E. coli pour montrer que notre approche

est également applicable à des modèles de réseaux d’une taille plus grande.

Un autre projet sur lequel j’ai commencé à travailler pendant mon doctorat est une collaboration

avec Marianne Borderes. Nous développons une approche visant à combiner les résultats de plusieurs

méthodes de regroupement appliquées aux données de la métagénomique. Ce projet ne sera pas

présenté dans cette thèse car il est toujours en cours et, de plus, il n’est pas directement lié à

l’analyse des réseaux métaboliques.

https://gitlab.inria.fr/erable/totoro
https://gitlab.inria.fr/erable/totoro
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Scope of the thesis

This PhD thesis is about the analysis of the metabolism of microorganisms. The metabolism is

the set of reactions of an organism. It can be modeled as a metabolic network which contains the

metabolites that are present in an organism and the corresponding reactions that transform them.

Metabolic networks can be, for instance, represented as a hypergraph or a stoichiometric matrix.

Modeling the metabolism can be used to gain insights on the metabolic activity of a microorganism

and to predict certain behaviors,

The increasing availability of metabolomic data and their analysis are improving the understanding

of cellular mechanisms. Integrating metabolomic data into metabolic networks makes it possible to

understand how biological systems respond to different perturbations. This can be, for example, the

adaption of the microorganism to a change in the medium or to stress, or else the impact of genetic

perturbations on its metabolic activity. The change in the metabolic activity of a microorganism is

called metabolic shift. Since understanding metabolic changes under different conditions is important

for advancing research in different fields like bioengineering or human health, there is a need for

computational methods that facilitate the comprehension of available metabolomic data.

Another common topic in the analysis of metabolic networks is the computation of optimal interven-

tion strategies. Microorganisms are already used on an industrial scale to produce important target

chemicals. Understanding how different parts of the metabolism interact and are linked together is

crucial to find ways that will improve production rates. The desired compound might often just be

a by-product of the usual metabolism when the microorganism is growing and its yield can be very

low. Thus, it is necessary to modify the metabolism of the microorganism to increase the yield of

the desired target compound and to establish a more efficient production. One of the areas of syn-

thetic biology is the genetic engineering of microorganisms to improve the production of important

target chemicals by a microorganism. The idea is to knockout specific reactions by manipulating

the metabolic genes that code for the catalyzing enzymes. Depending on the role the knocked out

reactions play in the metabolism, the organism might use different pathways to compensate for its

lack. The reactions that are knocked out must be chosen in a way that the altered metabolism leads

to an increase in the production of the target chemical.

Due to the complex structure of metabolisms, there is a need to model perturbations in silico in order

to propose intervention strategies that might lead to the best outcome in vivo. By predicting and

analyzing the altered behavior and identifying optimal knockouts with computational approaches,

the design of practical experiments can be supported and guided.

More and more approaches are developed that aim to compute optimal knockouts for different sce-

narios. Some are only applicable to smaller network models which are only representing a condensed

version or certain parts of the metabolism. Especially the application to genome-scale metabolic

networks which model the whole metabolism of a microorganism as detailed as possible remains

challenging. Due to their size and complexity, the computational effort of the applied methods can

increase significantly.

When computing optimal knockouts that should increase the target production, there is however

one aspect that is often not taken into account. In some cases, the desired target chemical is a

by-product that is actually toxic for the microorganism and, therefore, its accumulation can severely

inhibit the growth of the microorganism. It can also decrease the production rate which will make

the application on a industrial scale less efficient.



14 Scope of the thesis

Knockouts usually restrict the metabolism of a microorganism because they are taking away certain

functionalities. Hence, in the above-mentioned setting, it is crucial to ensure that the inserted

knockouts do not inhibit important processes that a microorganism can use to establish a tolerance

against the toxic target. This will not specifically help to increase the resistance against the target

chemical but it ensures that the natural tolerance is preserved.

I already worked on metabolic networks during my master’s degree which was also one of the reasons

why I got interested in this PhD. I worked on two approaches for metabolic networks that use multi-

objective optimization. One approach was applicable to microbial communities, i.e., for a scenario

where different microorganisms interact with each other. The second one was using multi-objective

optimization to identify possible tradeoffs between biomass production and target production in

microorganisms. Knockouts for each tradeoff were enumerated afterwards. This second approach

gave a first, basic idea for the developed approach that will be the main part of this thesis. It will

be presented in Chapter 2.

In the beginning of this thesis, in Chapter 1, I will give a brief summary on certain topics that are

important for the understanding of the two approaches that will be presented in the Chapters 2

and 3. I will first do a short introduction to linear programming, especially multi-objective linear

programming which will be used in the approach described in Chapter 2. Afterwards, I will give

an introduction to metabolic networks, their representations and associated methods. In the last

two sections, I will summarize common approaches to predict intervention strategies and to analyze

metabolic shifts.

Chapter 2 represents the main work that I did during my PhD. This part focuses on an approach

to exploit the metabolism of microorganisms. The main motivation was to developed a strategy to

predict optimal knockouts that increase the production of a target chemical in a microorganism in the

scenario where the produced target metabolite is toxic for the utilized microorganism. Furthermore,

I aimed for an approach that is also applicable to genome-scale metabolic networks.

The developed approach consists of two different parts. In the first part, a multi-objective optimiza-

tion problem is formulated that computes tradeoffs between biomass production, target production

and a score that measures the possible toxicity resistance against the toxic target metabolite. In

the second part, knockouts are enumerated that should enforce specific flux distributions. As a first

idea, a mixed-integer linear program was proposed to enumerate different knockouts. Due to its

limitations and flaws, there was a need to develop a second idea which is based on identifying and

cutting off subnetworks.

The proposed method is applied to the case-study of ethanol production in yeast. Ethanol is already

produced by yeast in industry and there is a growing interest in ethanol due to its use as bio-fuel.

However, an important limiting factor for the production of ethanol in yeast is indeed the toxicity of

ethanol for yeast. When ethanol accumulates, it inhibits growth but leads also to a decline of the

ethanol production. It might thus be important to consider this aspect when trying to improve the

ethanol output by introducing knockouts that will lead to a change in the metabolic activity of yeast.

Based on this case-study, I will describe insights that we could gain from both parts of the approach,

especially on the identified subnetworks. We plan on submitting a paper on this subject this year

after obtaining some more biological evaluation of the obtained results. Furthermore, the developed

approach will be made available as tool on the Gitlab of our group.

In Chapter 3, I will present a novel computational method that focused on investigating the metabolic

activity of microorganisms. The approach is called Totoro which is short for ”Transient respOnse
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to meTabOlic pertuRbation inferred at the whole netwOrk level”. This approach is the result of a

collaboration with Ricardo Andrade and Mariana Ferrarini. A former member of the group, Alice

Julien-Laferrière, already worked on this approach during her PhD. We submitted a paper on this

work to Bioinformatics in September 2020.

Totoro integrates internal metabolite concentrations that were measured before and after a per-

turbation into genome-scale metabolic reconstructions. It predicts reactions that were active during

the transient state that occurred after the perturbation. It is a constraint-based approach that takes

the stoichiometry of the network into account. It minimizes the change in concentrations for unmea-

sured metabolites and also the number of active reactions during the transient state to account for

a parsimonious assumption. Totoro is a freely available tool implemented in C++ and it can be

accessed at https://gitlab.inria.fr/erable/totoro.

We applied our method to three published pulse experiments in Escherichia coli to show that it can

retrieve connected active pathways and predict distinct directions for reversible reactions that are in

accordance with known biological observations. We used a core model and a genome-scale model of

E. coli to further demonstrate that our approach is also applicable to larger network models.

Another project that I started working on during my PhD is a collaboration with Marianne Borderes.

We are developing an approach to combine the results of multiple clustering methods applied to

metagenomics data. This project will not be presented in this thesis because it is still ongoing and

additionally, it is not directly connected to the analysis of metabolic networks.

https://gitlab.inria.fr/erable/totoro
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In this chapter, I will first present a short introduction to linear programming, especially multi-

objective linear programming which will be used in the approach described in Chapter 2. Afterwards,

I will give an introduction to metabolic networks, their representations and associated methods. In

the last two sections, I will summarize common approaches to predict intervention strategies and to

analyze metabolic shifts.

1.1 Linear programming

As described in (Dantzig and Thapa, 2006), linear programming maximizes or minimizes a linear

objective function for the variables that are subject to linear constraints. Introductions to linear

programming and its applications are, for example, given in (Bertsimas and Tsitsiklis, 1997; Dantzig,

1998; Schrijver, 1998; Gass, 2003). Linear programming is part of the larger field of mathematical

programming that includes amongst others integer programming and nonlinear programming.

1.1.1 Problem formulation

Mathematically, a linear program finds the values for the problem variables x that maximize an

objective function z (Equation 1.1). The problem variables are subject to m linear constraints

(Equation 1.2).

max
x

z = f(x) = cTx (1.1)

s.t. Ax ≤ b (1.2)

A ∈ Rm,n, x ∈ Rn, b ∈ Rm, c ∈ Rn (1.3)

A vector x′ ∈ Rn is a feasible solution if it does not violate any of the given constraints. The feasible

region is the set of all feasible solutions. Geometrically, the feasible region is described by a polyhe-

dron. A solution x∗ is optimal if it it a feasible solution and f(x∗) = max{f(x)|Ax ≤ b, x ∈ Rn}.
Linear programs can be infeasible which means that no solution exists that satisfies all constraints.

Furthermore, it can have several optimal solutions which means that there are multiple feasible solu-

tions that lead to the same optimal value for the objective function. The linear program is unbounded

if the value for the objective function can be increased (or decreased) without any limit.

If all variables are integer, the resulting problem is called integer linear program (ILP). If some are

integer and some are continuous, it is a mixed integer linear program (MILP).

Solvers for linear programs are, for example, IBM ILOG CPLEX (IBM, 2019), Gurobi Opti-

mization (Gurobi Optimization, 2020) or SCIP (Achterberg et al., 2008; Achterberg, 2009).

1.1.2 Multi-objective linear programming

In contrast to a linear program which optimizes one objective function, a multi-objective linear

program minimizes or maximizes k objective functions at the same time (Equation 1.4). The different

objective functions can be contradictory. Multi-objective programs are, for instance, described in
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(Ehrgott, 2005) and (Antunes et al., 2016).

max
x

z1 = f1(x)

... (1.4)

max
x

zk = fk(x)

s.t. Ax ≤ b (1.5)

x ∈ Rn (1.6)

A multi-objective linear program has, like a single-objective linear program, linear constraints that

define the set of feasible solutions X in the decision space (Equation 1.7). In contrast to a linear

program, here, the objective space is not one but k-dimensional where k matches with the number

of objective functions. If k is one, the optimization problem is a single-objective linear program. The

feasible set Z in the objective space is defined by all the points which are part of the feasible set in

the decision space (Equation 1.8).

X = {x ∈ Rn|Ax ≤ b, xj ∈ Z, j ∈ I} (1.7)

Z = {z ∈ Rk |zi = fi(x), x ∈ X, i = 1, ..., k} (1.8)

The concept of optimality in multi-objective optimization problems is different from single-objective

linear programs because it is possible that the objective functions conflict with each other. This

means that it is not necessarily possible that all objective functions can reach their optimal value

at the same time. Solutions that are optimal in the sense of multi-objective programs are called

efficient.
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Figure 1.1: Objective space of a multi-objective linear program for k = 2. In this small example,
the set of points {a, b, c, d, e, f, g, h} should represent the full set of feasible points Z. (a) All
nondominated points ZN = {a, b, c, d, e, f} are highlighted in green. The dotted lines illustrate
that it is not possible to improve one of the objectives without decreasing the other objective. The
points {g, h} are dominated. For example, compared to point c, the objective values in point h are
both smaller and therefore, h is dominated by c. The set of all nondominated points is also called
Pareto front. (b) The nondominated points can be divided into supported (highlighted in green)
and unsupported (highlighted in red) nondominated points. Point b is unsupported because it is
dominated by an infeasible convex combination of a and c which is illustrated by the dotted line.
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Hence, a new relation � is introduced to enable the comparison of two solutions z1, z2 ∈ Rk of a

multi-objective linear program (Equation 1.9). This relation can be used to decide which solution

is better or which solution dominates the other. A solution z1 dominates another solution z2 if

z1 � z2.

z1 � z2 ⇐⇒ z1
i ≥ z2

i , i = 1, ..., k and z1 6= z2 (1.9)

A solution x∗ is called efficient if the corresponding point in the objective space is not dominated by

any other point. The set XE includes all efficient solutions (Equation 1.10). The corresponding points

in the objective space are nondominated points because there exit no other points that dominate

them. The set ZN contains all nondominated points (Equation 1.11).

XE = {x ∈ X|@x̄ ∈ X : f(x̄) � f(x)} (1.10)

ZN = {z ∈ Z|z = f(x), x ∈ XE} (1.11)

In other words, a solution is treated as an efficient solution if it is not possible to increase the value

of one objective function further without decreasing the values of one or more of the other objective

functions. The difference between nondominated and dominated points is further illustrated in Figure

1.1a. The set of all nondominated points is called Pareto front which is why efficient or nondominated

solutions are also referred to as Pareto optimal or Pareto efficient solutions.

Furthermore, it is possible to distinguish between supported and unsupported nondominated solutions.

Unsupported nondominated solutions are dominated by a (infeasible) convex combination of other

nondominated points (Figure 1.1b).

Concepts to solve multi-objective linear programs

In (Antunes et al., 2016) and (Ehrgott, 2005), some basic techniques to solve multi-objective linear

programs are given. They include the weighted-sum method and the ε-constraint method which both

rely on transforming the multi-objective linear program into several single-objective linear programs

that have to be solved separately.

In the case of the weighted-sum method, the corresponding single-objective linear programs maximize

the weighted sum for all objective functions of the multi-objective linear program (Equation 1.12.

By changing the weights λ in the sum and resolving the changed single-objective linear program,

different efficient solutions for the multi-objective linear program can be computed. Usually, the

weights are normalized (Equation 1.13).

max
x

k∑
i=1

λifi(x) (1.12)

k∑
i=1

λi = 1 (1.13)

The weighted-sum method has the advantage that no additional constraints have to be added when

transforming the problem. The computation complexity is therefore not changed and the transform

problem requires the same computational effort as the single-objective version of the problem. On the

other hand, it is only possible to compute supported nondominated points. Unsupported nondom-
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Figure 1.2: Basic concept of the ε-constraint method for k = 2. The idea for this figure is taken
from (Antunes et al., 2016). In this example, z1 is kept as objective function in the transformed
problem. The remaining objective function z2 is turned into the constraint z2 ≥ ε2. In a first step, ε2
can be set to zero, that is only z1 is considered and maximized which means that the nondominated
point f can be found. Afterwards, the value of ε2 needs to be increased to compute other efficient
solutions.

inated points cannot be found which means that in nonconvex problems, not all efficient solutions

can be found by this approach.

Similar to the weighted-sum method, the ε-constraint method also transforms the problem into

multiple single-objective linear programs. In the transformed problem, only one of the objective

functions is kept (Equation 1.14). The other objective functions are transformed into constraints

(Equation 1.15).

max
x

fj(x) (1.14)

s.t. fi(x) ≥ εi, i = 1, ..., k, i 6= j (1.15)

Changing the bounds for εi allows to compute different efficient solutions for the multi-objective

linear program. An illustration of this idea can be found in Figure 1.2 for the case of two objective

functions. In contrast to the weighted-sum method, the ε-constraint method can find all efficient

solutions but as a result of the additional constraints, the transformed problem can be more difficult

to solve.

Another disadvantage that both problems have in common is that it is not clear when or if all

nondominated points have been found.

PolySCIP (Borndörfer et al., 2016) is, for example, a solver for multi-objective linear programs.

1.2 Metabolic networks

The metabolism is the set of chemical reactions that are taking place in an organism. The metabolism

can be modeled through a metabolic network. An introduction to metabolic networks, their definitions

and also associated methods are given in (Lacroix et al., 2008; Klamt et al., 2014; Cottret and

Jourdan, 2010). The following definitions are taken from (Lacroix et al., 2008).

Metabolic networks consist of chemical compounds, biochemical reactions, enzymes and also genes.

The chemical compounds are also called metabolites. These are small molecules inside an organism

that can be imported and exported but also synthesized and degraded. A biochemical reaction pro-
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duces a set of metabolites, the products, from another set of metabolites, the substrates. Reactions

can import metabolites from an external source and they convert them, for example, into other build-

ing blocks needed by the organism to survive and to grow. Metabolites that are not needed by the

organism and considered as waste can be excreted. Theoretically, reactions can take place in both

directions which means that the set of products and substrates are interchangeable. These reactions

are therefore reversible. However, depending on the physiological conditions, there are reactions that

only take place in one specific direction. These reactions are called irreversible.

Reactions are catalyzed by enzymes. There are some reactions that happen spontaneously and that

can be accelerated by enzymes but most reactions need to be catalyzed by enzymes or they cannot

take place. Enzymes are proteins or protein complexes that are coded by one or by multiple genes.

Understanding the relationships between genes, enzymes and reactions in detail is difficult because

a single enzyme can catalyze different reactions and a single reaction can be catalyzed by different

enzymes. Moreover, sometimes co-factors are necessary to enable the catalysis of a reaction by

enzymes. Co-factors are small molecules that can bind enzymes thereby changing the activity of the

enzyme.

A metabolic network connects metabolites with reactions that transform them. Source reactions

can uptake necessary metabolites from external sources and sink reactions excrete waste products or

excess metabolites. Certain sets of reactions as a whole are referred to as metabolic pathway if they

are part of the global synthesis or degradation of a specific metabolite with intermediate steps. For

example, the glycolysis converts glucose into pyruvate and can be seen as one metabolic pathway.

1.2.1 Metabolic network reconstruction and databases

Metabolic networks are reconstructed based on the available knowledge on relations between genes,

enzymes and reactions (Lacroix et al., 2008). Usually, the reconstruction depends on comparative

genomics but also on the use of metabolomic data which quantifies the metabolites that are present

in the given organism. It is possible to infer from comparative genomics certain reactions that are

present in an organism. In a first step, the functional annotation for genes is used to determine which

enzymes are existent. Afterwards, the functional annotation is linked to the reaction by identifying

which reactions are catalyzed by the present enzymes. Metabolic networks can be reconstructed

automatically but the results can be erroneous. Due to their low quality, they should be used with

care. To obtain accurate reconstructions, manual corrections based on the literature are necessary.

Metabolic pathways are available in databases like KEGG (Kanehisa and Goto, 2000) and BioCyc

(Karp et al., 2019; Caspi et al., 2016). Some databases are specialized on a specific organism, e.g.

EcoCyc (Karp et al., 2018) for Escherichia coli or HumanCyc (Romero et al., 2005) for the human

metabolism. Depending on the organism of interest, it can be difficult to find accurate metabolic

networks, especially genome-scale metabolic networks which represent the complete metabolism of

an organism. Problematically, the catalogued metabolic pathways can also differ between databases

(Altman et al., 2013).

1.2.2 Graph representation

Metabolic networks can be represented in different ways. One of the most common representations

is the modeling of a metabolic network as a graph (Lacroix et al., 2008). In general, a graph G is

formally defined as a pair (V,E). V corresponds to the set of vertices and E to the set of edges,
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where an edge is a subset of 2 vertices in V . The choice of which graph model should be used

depends on the application.

The compound graph models the metabolic network in a way where the compounds are represented

by the vertices of the graph and the edges correspond to the reactions. If an edge connects two

compounds, it means that there exists a reaction that transforms one compound into the other one.

Therefore, one compound is a substrate and the other one is a product (see Figure 1.3a).

The problem is that there are many reactions that have multiple substrates and multiple products.

In order to represent these connections, hypergraphs can be used to describe the metabolic network

structure (Yeung et al., 2007; Pearcy et al., 2014; Klamt et al., 2009).

Hypergraphs are described in (Berge, 1973). A hypergraph allows to use edges that link more than

just two compounds (see Figure 1.3b). A hypergraph H can be again denoted by a pair (V,E) where

E is a set of hyperedges. While an edge is a set of two vertices, a hyperedge can be an arbitrary

subset of vertices. However, this representation does not allow to distinguish between two sets of

vertices that are necessary to represent the substrates and products of a reaction. Additionally, as

mentioned before, metabolic networks can also contain reactions that are irreversible. To enable a

more precise representation of the metabolic network, a directed hypergraph as described in (Ausiello

et al., 2001) can be used. A directed hypergraph is a pair (V,A) where A is the set of directed

hyperedges, that is the set of hyperarcs. An hyperarc e, is an ordered pair (t, h) of two sets of

vertices that are called tail and head of e. They are denoted by tail(e) and head(e). Consequently,

substrates and products of a reaction can be represented by these two sets. Here, tail(e) corresponds

to the substrates and head(e) to the products of the reactions. Additionally, the distinct orientation

of a hyperarc allows to represent the direction of the corresponding reaction (see Figure 1.3c). To

A

B

C D

(a)

A

B

C D

(b)

A

B

C D

(c)

Figure 1.3: Different compound graphs. The figures were adapted from (Lacroix et al., 2008). (a)
An undirected graph. The edges represent reactions that transform one compound into another
one. It is difficult to represent reactions that have multiple substrates and/or products. This means
that the three displayed edges A ↔ B, B ↔ C and B ↔ C could correspond to three different
reactions but they could also be the result of, for example, the reaction B ↔ A + C + D. Since
no distinct directions can be represented, it is not possible to distinguish between reversible and
irreversible reactions. (b) An undirected hypergraph. A hyperedge has one arbitrary subset of
vertices. Therefore, it is not possible to distinguish between the substrates and products of a reaction.
Here, the represented reaction could be B ↔ C +D but other interpretations like C ↔ B +D are
also possible. Additionally, it is not possible to represent that a reaction is irreversible. (c) A directed
hypergraph. The possible directions for each reaction are displayed by arrows. This representation
allows for a simple discrimination between reversible and irreversible reactions. Additionally, there is a
clear separation between substrates and products. Reaction A↔ B is reversible whereas B → C+D
is irreversible.
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model reversible reactions, bidirectional hyperarcs can be used.

1.2.3 Stoichiometric matrix

All presented graph models represent the structure (topology) of the metabolic network but they do

not take into account any information that might be available about the quantitative relationships

between the substrates and the products of a reaction. Depending on the application, it might be

important to include the stoichiometry of the reactions. A stoichiometric coefficient describes the

quantity in which a metabolite participates in a specific reaction. For example, given the reaction

2A + 1B → 3C, two molecules of metabolite A and one molecule of metabolite B are needed to

produce three molecules of C. It is possible to add the stoichiometric information as labels in a

graph model. However, another commonly used representation is the stoichiometric matrix.

The stoichiometric matrix S is an m × n matrix where the m rows correspond to the metabolites

in the metabolic network and the n columns to the reactions. The entry Sij corresponds to the

stoichiometric coefficient of metabolite i in reaction j. If the stoichiometric coefficient is positive, the

metabolite is produced by the corresponding reaction. If it is negative, the metabolite is consumed.

If the stoichiometric coefficient is zero, it indicates that the metabolite is not participating in this

reaction or that the production compensates precisely its consumption.

The stoichiometric matrix itself does not contain any information about the reversibility of the

reactions. Usually, this information is stored alongside the matrix in the form of lower bounds LBj

and upper bounds UBj for the flux of each reaction j. For irreversible reactions, the lower bounds

are greater or equal to zero. Changing the lower and upper bounds for source reactions can be used
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Figure 1.4: Directed hypergraph and stoichiometric matrix representation. (a) A metabolic net-
work can be represented as a directed hypergraph. In a directed hypergraph, the set of re-
actions R = {r1, r2, r3, r4, r5, r6, r7} is represented by the hyperarcs. The set of metabolites
M = {S1, S2, A,C,B, T} is represented by the vertices. It is possible to display the stoichio-
metric values for each reactions by labeling the hyperarcs. In the given example, all reactions except
reaction R3 are irreversible. (b) The network can also be represented as stoichiometric matrix S.
The rows of S correspond to the metabolites in M and the columns to the reactions in R. The
stoichiometric values are displayed as coefficients of the matrix. If a coefficient is positive, the cor-
responding metabolite is produced by the reactions. If it is negative, it is consumed. Hence, in the
matrix representation, a direction is assumed for each reaction. However, it is not possible to see if
a reaction is reversible or not. Lower and upper bounds for reactions have to be stored separately.
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to model different growth media by allowing or restricting the uptake of specific metabolites, that is

the import of metabolites from an external source.

1.2.4 Constrained-based modeling for metabolic networks

The stoichiometric matrix representation is used in constraint-based modeling of metabolic networks

(Covert and Palsson, 2003; Palsson, 2000; Lacroix et al., 2008; Lewis et al., 2012). In constraint-

based modeling, the idea is to analyze or identify possible flux distributions in the metabolic network

under certain constraints.

The flux vector describes the state of all reactions of the metabolic network and shows if a reaction

has a flux, i.e. is active. The flux vector v is an n-vector in which vj corresponds to the flux of

reaction j.

A common assumption is that the metabolic network is in steady-state which means that every

metabolite is produced in the same amount as it is consumed. Based on the stoichiometric matrix

and the flux vector, these conditions can be formulated as constraints:

S · v = 0 (1.16)

LBj ≤ vj ≤ UBj ∀j ∈ Rrev (1.17)

0 ≤ vj ≤ UBj ∀j ∈ Rirr. (1.18)

Equation 1.16 defines the mass balance for all metabolites. Additionally, lower and upper bounds

are added to restrict the flux of single reactions (Equation 1.17). For irreversible reactions, the lower

bound is set to zero (Equation 1.18). These constraints describe the core idea for several constraint-

based approaches for metabolic networks. In the following, some of the most common among such

approaches are presented that can also be used as a basis for more advanced methods.

Probably the most important approach is Flux-balance-analysis (FBA) which is widely used to analyze

metabolic networks (Orth et al., 2010b; Mahadevan and Schilling, 2003; Edwards and Palsson, 2000;

Durot et al., 2008; Covert and Palsson, 2003; Gottstein et al., 2016). FBA uses the aforementioned

constraints to restrict the feasible flux space. Additionally, FBA optimizes a specific objective function

(Equation 1.19), e.g. it can simulate the growth of an organism by maximizing the production of

biomass compounds.

max cT v (1.19)

s.t. S · v = 0 (1.20)

0 ≤ vj ≤ UBj ∀j ∈ Rirr (1.21)

LBj ≤ vj ≤ UBj ∀j ∈ Rrev (1.22)

Common applications for FBA are, for instance, to predict the growth of an organism on different

media or under different conditions (e.g. aerobic and anaerobic). It can predict the phenotype

(Edwards and Palsson, 2000; Edwards et al., 2001) and hence, it is also used to analyze the altered

behavior of an organism that is subject to metabolic interventions, i.e. to predict the behavior of

a mutant strain. The maximization of biomass or energy (ATP) production are frequently used

objectives (Feist and Palsson, 2010; Pramanik and Keasling, 1997). The core idea of FBA is also

used as basis for other similar methods, such as flux variability analysis. In Figure 1.5, a general

work-flow of FBA is presented.
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Figure 1.5: Flux balance analysis. The figure was taken from (Kim and Lun, 2014). (a) Example
of a small metabolic network. Reaction 1 is a source reaction that imports metabolites into the
boundaries of the system. Reaction 3 exports metabolites. The network can be represented as
stoichiometric matrix. Since reaction 1 can uptake metabolites from an external source, is does not
have a substrate. In the same way, reaction 3 does not have any products. (b) Often, steady-state
is assumed which means that concentration for metabolites does not change. (c) The feasible flux
space can be restricted by adding lower and upper bounds for reactions.
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A variant of FBA, parsimonious enzyme usage FBA (pFBA) (Lewis et al., 2010), assumes that an

optimal solution should correspond the lowest overall flux through the network which simulates the

minimization of the total amount of enzyme mass that is necessary.

As argued in (Segrè et al., 2002), when analysing metabolic networks, the maximization of the

biomass production can be a reasonable assumption because it reflects the hypothesis that organism

tend to optimize their growth under evolutionary pressure. Problematically, this assumption might

not be valid for mutant strains that are the result of metabolic engineering because they are less

exposed to evolutionary pressure than the original wild type strain.

Based on these observations, the authors in (Segrè et al., 2002) present their method Minimization

of metabolic adjustment (MOMA) which is similar to FBA but instead of maximizing the biomass

to predict flux distributions for the mutant strain, they are minimizing the distance between the

wild type flux and the flux in the mutant type (Equation 1.23). Here, the assumption is that the

perturbed flux should remain as close as possible to the original flux because the organism might try

to make as little changes as possible to its metabolic activity because using different reactions that

were inactive before might also require different or additional enzymes.

min f(v) =

√√√√√ |R|∑
j=1

(vj − v̄j)2 (1.23)

MOMA is a quadratic optimization problem because the objective function minimizes the square

root of the sum of the squared distances between the wild type flux v̄ and the perturbed flux in the

mutant type v. The flux values for the wild type can, for instance, be obtained by doing a FBA that

maximizes the biomass production. In many cases, there is however not only one unique flux vector

that leads to the optimal biomass production (Mahadevan and Schilling, 2003). This can render

the choice for the wild type flux more difficult and the outcome of MOMA may differ depending on

which exact flux vector was chosen as wild type. Alternative solutions are a general problem of FBA

because it only computes one flux distribution.

One possible approach to analyze alternative solutions is to identify by how much the flux for reac-

tions can differ under the optimal condition, e.g. when the biomass is maximized. Flux variability

analysis (FVA) allows to analyze the possible variation of the flux for all reactions under a specific

condition (Mahadevan and Schilling, 2003; Burgard et al., 2001). It determines the minimum and the

maximum flux values for all reactions under the optimal condition (Equation 1.24). This is achieved

by introducing a constraint that fixes the biomass production to the optimal value z∗ calculated by

FBA (Equation 1.28).

min/max vj (1.24)

s.t. S · v = 0 (1.25)

0 ≤ vj ≤ UBj ∀j ∈ Rirr (1.26)

LBj ≤ vj ≤ UBj ∀j ∈ R (1.27)

cT v = z∗ (1.28)

In (Lee et al., 2000), a recursive MILP is proposed to find alternative solutions. Furthermore, in

(Kelk et al., 2012) it is described that often, the possible flux distributions of a few subnetworks lead

to the combinatorial explosion of optimal fluxes for the whole network.
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A similar idea to FVA can also be used to analyze how reactions depend on each other if reactions

are blocked under certain conditions (Burgard et al., 2004). Flux coupling analysis identifies different

relations between two fluxes v1 and v2: They are directionally coupled (v1 → v2) if a non-zero flux

for v1 implies that v2 must have a non-zero flux. This does not have to imply that a non-zero flux

for v2 always leads to a non-zero flux for v1. Furthermore, they are partially coupled (v1 ↔ v2) if

a non-zero flux for v1 implies a non-zero flux for v2 and a non-zero flux for v2 implies a non-zero

flux for v1. Finally, two fluxes are fully coupled (v1 ⇔ v2) if the same conditions hold as for the

partial coupling and in addition the implied fluxes are not variable but fixed which means that the

ratio between the two fluxes is constant. If none of these relations holds for a pair of reactions, they

are uncoupled. The differences are also displayed in Figure 1.6.

In (Burgard et al., 2004), the authors also identify blocked reactions which are reactions that can

only have a zero flux under the given constraints that model, for instance, a certain medium, thereby

restricting certain uptake fluxes (Equation 1.31). All reversible reactions are split into two irreversible

reactions. Thus, negative fluxes are not possible (Equation 1.32) and it is sufficient to maximize the

flux for a reaction to determine if the reaction is blocked or not. If reversible reactions are not split,

both the maximum and minimum have to be computed which shows the direct relation to the FVA.

max vj (1.29)

s.t. S · v = 0 (1.30)

vuptakej ≤ vuptake max
j ∀j ∈ Rtransport (1.31)

vj ≥ 0 ∀j ∈ R (1.32)

Identifying blocked reactions is of interest because it can help to simplify the underlying network

structure for specific cases. If reactions are blocked under the conditions that are modeled, it

is possible to remove these reactions for other analyses under the same conditions. However, it

is important to note that whether a reaction is blocked or not is very depending on the specific

Figure 1.6: Different types of flux coupling. The figure was taken from (Burgard et al., 2004).
Different scenarios for flux coupling are shown based on the flux ratio limits of Rmin = min v1/v2

and Rmax = max v1/v2 which have to be computed.
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conditions (e.g. steady-state or uptake rates).

Another way to analyze the steady-state flux distributions in metabolic networks are elementary

flux modes (EFM) (Schuster and Hilgetag, 1994). A more recent review on the calculation and

application of EFMs is given in (Zanghellini et al., 2013). The support of a flux vector v is defined

by supp(v) = {i|vi 6= 0} that is the set of indices of non-zero elements. A flux vector v is called

mode if it is non-trivial (i.e. v 6= 0) and is feasible under steady-state conditions. An EFM is a mode

whose support cannot be written as proper subset of any other feasible mode. Therefore, EFMs

are non-decomposable and represent minimal functional building blocks. A closely related idea are

extreme pathways which are a subset of elementary modes (Schilling et al., 2000).

1.3 Predicting optimal intervention strategies

One of the areas of synthetic biology is the genetic engineering of microorganisms to improve the

production of important target chemicals by a microorganism. Microorganisms are able to produce

chemical compounds that can, for instance, be used in industry. The desired compound might often

just be a by-product of the usual metabolism when the microorganism is growing and the yield can

be very low. Thus, it is necessary to modify the metabolism of the organism to increase the yield of

the desired target compound and to establish a more efficient production. The idea is to deactivate

(knockout) specific reactions by manipulating the metabolic genes that are coding for the catalyzing

enzymes. Depending on the role the knocked out reactions play in the metabolism, the organism

might use different pathways to compensate for its lack.

Given the complexity of the problem, there is a need to identify the most promising intervention

strategies in silico and it is necessary to predict and analyze the altered behavior after a knockout

is introduced. A review on constraint-based methods for optimal strain design in silico is given in

(Maia et al., 2016). In the following, I will summarize some computational approaches to predict

optimal intervention strategies.

In (Burgard et al., 2003), the authors present OptKnock which is one of the most well known

methods for identifying knockouts. Their method is based on a bi-level optimization problem that

aims to find a flux distribution that maximizes the production of the compound of interest while also

maximizing the production of the biomass given some knocked out reactions.

max
yj

vtarget (1.33)

s.t.
max
vj

vbiomass

s.t. S · v = 0

LBj(1− yj) ≤ vj ≤ UBj(1− yj) ∀j ∈ R

 (1.34)

∑
j∈R

yj = K (1.35)

yj ∈ {0, 1}, vj ∈ R ∀j ∈ R (1.36)

The outer problem of the bi-level framework maximizes the bioengineering objective, i.e. the produc-

tion of the target (Equation 1.33). The inner problem maximizes a cellular objective like the biomass

production (Equation 1.34). The knockouts are modeled using a binary variable yj for each reaction
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j. If the binary is set to one, the lower and upper bounds of the corresponding reaction are forced to

zero which imitates a knockout (Equation 1.34). The approach identifies the optimal knockout set

for a maximum number of knockouts (Equation 1.35). OptKnock is integrated in the COBRA

Toolbox (Heirendt et al., 2019) available in MATLAB.

OptKnock can be overoptimistic because it assumes that both biomass and target production are

maximized by the organism. For a given biomass production, even though a specific maximum target

yield is possible, it does not mean that it will be how the organism behaves in reality. As explained

in Section 1.2.4, there can be lots of alternative flux distributions that lead to the same optimal

value. To account for competing pathways, in (Tepper and Shlomi, 2009), the authors present

another bi-level program which is called RobustKnock. It is similar to OptKnock. However,

the crucial difference is that in the outer problem the minimum of the bioengineering objective is

maximized. In this way, they ensure that the target metabolite has to be produced at least in the

determined minimum amount in all flux distributions that are still achievable after knockouts have

been introduced.

The approaches considered so far only model knockouts. To consider also up- an downregulation

of fluxes, OptForce is presented in (Ranganathan et al., 2010). Like OptKnock, it is a bi-level

optimization problem. In a first step, for each reaction, the possible lower and upper bounds are

computed by FVA to characterize the wild-type. This information is used to identify reactions sets

that must change to achieve a desired overproduction specified by the user. These sets are called

MUST sets. Based on the them, FORCE sets are computed which are minimal sets of reactions

that must be genetically manipulated to force a change and to achieve the desired production yield.

Another different concept that can be used to identify intervention strategies in metabolic networks

are minimal cut sets (MCS) which are described in (Klamt and Gilles, 2004; Klamt, 2006; Ballerstein

et al., 2012). In general, MCSs are suitable to determine reactions that can be used to block

metabolic functionalities. With regard to a specific target reaction that should be blocked, a set

of reactions is a cut set if after all these reactions have been removed (e.g. knocked out), there is

no feasible flux distribution possible that contains the target reaction. A cut set C is minimal if no

proper subset of C is also a cut set.

The idea of MCS led to the introduction of constraint minimal cut sets (cMCS) in (Hädicke and

Klamt, 2011). Whereas MCSs are used to block undesired phenotypes, cMCSs allow to specify

desired behaviors that should be kept. It prevents that MCSs are computed that block important

functions. This concept was further generalized to regulatory MCSs that are able to not only model

the knockout of reactions but also up/downregulations of reaction rates (Mahadevan et al., 2015).

Regulatory MCSs and cMCSs were already applied successfully to identify intervention strategies in

genome-scale metabolic networks (von Kamp and Klamt, 2014; Mahadevan et al., 2015).

1.4 Metabolic shifts

Metabolomics is a field that concerns itself with the measurement of metabolites (Roessner and

Bowne, 2009). It studies the metabolome which refers to the total number of metabolites that

are found in the cells of an organism. Experiments to measure metabolite levels can be targeted,

which means that a specific set of metabolites is quantified that are suspected to be relevant for the

given experiment but there are also global analyses techniques available that take into account all

measurable metabolites (Fiehn, 2002).
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Like transcriptomics and proteomics, metabolomics plays an important part in understanding how

an organism reacts to changes in the environment. This can be, for example, the adaption of the

organism to a change in the medium (e.g. nutritional stress). Furthermore, also the impact of genetic

perturbations (e.g. mutations) on the organism can be analysed. Metabolomics makes it possible

to explain how the metabolic activity of an organism changes after a perturbation and to identify

which parts of the organism are affected. The change in metabolic activity is called metabolic shift.

Understanding metabolic changes under different conditions is important for advancing research in

different fields like bioengineering or human health (Sevin et al., 2015; Goel et al., 2012).

In enrichment analyses of metabolomic data based on the metabolites and their relative abundances,

pathways are identified that are more impacted by the perturbation than others (Booth et al.,

2013). Several tools are already published that facilitate the analysis of metabolomic data. For

example, MetaboAnalyst (Xia et al., 2015; Chong et al., 2018) is a web-based tool that includes

different modules for the integration of metabolomic data. Amongst others, it provides modules for

metabolite set enrichment analysis (Xia and Wishart, 2010b), metabolic pathway analysis (Xia and

Wishart, 2010a), as well as two-factor and time-series analyses (Xia et al., 2011). MetExplore

(Cottret et al., 2018), another web-based application, is a versatile tool for the analysis of metabolic

networks. It also implements MetaboRank (Frainay et al., 2019) which can be used to interpret

and enrich metabolomic data. MBRole (Chagoyen and Pazos, 2011), which is another web-server,

can also be used to perform enrichment analysis of metabolomic data. Different tools and methods

for the enrichment analysis of metabolomics are compared and evaluated in (Marco-Ramell et al.,

2018; Booth et al., 2013; Alonso et al., 2015).

As also mentioned in (Frainay and Jourdan, 2017), one of the main issues in the analysis of

metabolomic data is that there is no single metabolomics technology that allows to measure all

metabolites. This means that only a partial view of the metabolome can be obtained which makes

the subsequent analysis more complicated. Furthermore, as summarized in (Booth et al., 2013)

there is still a large number of metabolites that is unidentified and therefore also not characterized

or annotated in known databases. A lack of refined networks and databases for organisms that are

less commonly studied makes the analysis of metabolomic data more challenging.
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2.1 Introduction

Microorganisms are already used on an industrial scale to produce important target chemicals.

Metabolic engineering of strains has been widely used in order to optimize the bioconversion pathways

aiming at higher product yield. However, accumulation of the target chemical can often negatively

impact the cultivation of the microorganism (Mukhopadhyay, 2015). Problematically, there are even

more extreme cases where the target chemical is toxic for the used microorganism which might

therefore restrict the efficiency of the production. Strain engineering also focuses on alleviating these

bottlenecks, reducing cellular burdens that might limit product yield in order to achieve optimal

production.

Among such chemicals, there is a growing interest in ethanol due to its use as bio-fuel (Mussatto et al.,

2010). Yeasts can convert sugars to ethanol during a process called fermentation (Lin and Tanaka,

2006; Bai et al., 2008; Boulton et al., 1999) which is already used to produce ethanol industrially.

The production of ethanol in yeast can be improved by metabolic engineering (Borodina and Nielsen,

2014; Nielsen et al., 2013; Van Vleet and Jeffries, 2009). However, an important limiting factor for

the production of ethanol in yeast on an industrial scale is indeed the toxicity of ethanol for the yeast.

When ethanol accumulates, it inhibits growth but leads also to a decline of the ethanol production

(Van Uden, 1985; Dombek and Ingram, 1986; D’Amore and Stewart, 1987; Casey and Ingledew,

1986; Lam et al., 2014; D’amore et al., 1989). Therefore, different approaches are investigated to

increase the tolerance of yeast to ethanol (Dombek and Ingram, 1986; Alper et al., 2006; Lam et al.,

2014). Such tolerance can differ between yeast strains (Casey and Ingledew, 1986).

As mentioned in Section 1.3, different constraint-based approaches were already developed that can

be used to identify optimal intervention strategies in metabolic networks. The methods that were

presented (e.g. OptKnock, RobustKnock) are some of the most common ones for metabolic

engineering but they are mostly based on single-objective linear programs or bi-level approaches.

However, in general, multi-objective optimization is already commonly applied in bioinformatics and

computational biology (Handl et al., 2007). Multi-objective approaches have the advantage that

they can investigate conflicting objectives at the same time.

In the context of metabolic engineering, this can be, for example, the maximization of a cellular

objective (e.g. biomass production) and the maximization of an engineering objective (e.g. the

production of a target chemical). For example, in (Patané et al., 2019), the authors propose a

multi-objective metabolic engineering algorithm that can model gene knockouts but also up- and

downregulation of enzymes. Their method solves a multi-objective optimization problem for biomass

production and ethanol production. Other examples of the application of multi-objective frameworks

for ethanol production are presented in (Vera et al., 2003; Send́ın et al., 2006). In (Andrade et al.,

2020), a multi-objective approach called MOMO is introduced that identifies points in the Pareto

front that represent different tradeoffs between biomass and target production. Afterwards, MOMO

enumerates and analyzes possible single knockouts for each point in the Pareto front. These methods

however do not account for the fact that ethanol is toxic for yeast.

In this chapter, we present a new constraint-based approach inspired by MOMO (Andrade et al.,

2020) that proposes knockout sets to improve the production of any target chemical that is also toxic

for the microorganism and whose accumulation might inhibit growth and slow down the production.

We therefore also ensure that the introduced knockouts do not restrict the metabolic activity of the

organism that is crucial for a better resistance against the toxic target chemical. The approach is

separated in two parts. In the first part, a multi-objective optimization problem is used to identify
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different efficient flux distributions that maximize the biomass production, the target production

and the resistance against the toxic target. In the second part, different approaches are presented

to enforce a flux distribution of interest that was identified in the first part. For the second part,

different ideas were explored. As a first idea, a MILP is proposed to enumerate different knockouts.

Due to its limitations, there was a need to develop a second idea which is based on identifying and

cutting off subnetworks. The present method is applied to the case-study of ethanol production in

yeast.

2.2 Computation of tradeoffs

In the first part of this approach, a multi-objective optimization problem is used to identify tradeoffs

between biomass production, target production and the resistance against the toxic target. To

calculate a score that describes the resistance of the organism against the toxic target, it is necessary

to have information on certain critical reactions that must have been identified beforehand. A critical

reaction is a reaction that increases the resistance of the organism against the toxic target when it is

active. Computing these tradeoffs allows to gain an overview of optimal outcomes for which feasible

flux distributions exist.

2.2.1 Toxicity resistance score

To evaluate the resulting resistance against the toxic target for a specific flux distribution, a score r

is defined that depends on the flux values of the critical reactions:

r =
∑

j∈Rcritical

(ωjtj + ωj
vj
UBj

). (2.1)

The score is based on three different assumptions concerning the reactions that are critical for the

resistance against the target metabolite:

1. A non-zero flux is more important than the amount of flux for a critical reaction. This as-

sumption is represented by the first part of the sum. For each reaction j that was identified to

be important for the toxicity resistance, a binary variable tj is introduced. If the corresponding

reaction has a flux, the binary variable is set to one. Thus, if many important reactions have

a flux, the score will be high. The exact quantity of the flux has no impact on this part of the

score.

2. A higher flux is better than a lower one. It is represented by the second part of the sum. The

flux values vj are normalized by their upper bound UBj to be between 0 and 1 before they are

added to the score to ensure that they are less significant for the total score than the binary

variables.

3. Some reactions have a higher impact on the toxicity resistance than other reactions. These

differences can be modeled by setting individual weights wj for each critical reaction.

2.2.2 Multi-objective optimization problem

The toxicity resistance score is used to formulate a multi-objective optimization problem that maxi-

mizes three different objectives: The biomass production vbiomass, the target production vtarget and
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the toxicity resistance score r.

max vtarget, vbiomass,
∑

j∈Rcritical

(ωjtj + ωj
vj
UBj

) (2.2)

s.t. S · v = 0 ∀i ∈M (2.3)

LBj ≤ vj ≤ UBj ∀j ∈ R (2.4)

vj = 0 =⇒ tj = 0 ∀j ∈ Rcritical (2.5)

vj , ωj ∈ R; tj ∈ {0, 1} (2.6)

The system assumes a steady-state (Equation 2.3) and for each reaction upper and lower bounds

are specified (Equation 2.4). Furthermore, constraints are introduced to connect the flux values vj

to the binary variables tj for all critical reactions Rcritical (Equation 2.5). If the corresponding flux

value is zero, the binary variable must be set to zero too. If the reaction has a non-zero flux, the

binary variable can be set to one. Here, it is not necessary to explicitly model vj 6= 0 =⇒ tj = 1 that

would ensure that a binary variable has to be set to one if the corresponding flux value is different

from zero because the optimization problem is maximizing the toxicity resistance score. This means

that if a tj can be set to one, the solver will set it to one to increase the score.

In practice, a small threshold m is used to identify reaction fluxes different from zero and the

implication constraint is remodeled:

−∞ ≤ tj − vj ≤ 1−m. (2.7)

There are two possibilities. If the reaction has a flux greater or equal to m, the difference dj = vj−m
is greater to equal to zero. Therefore, tj ≤ 1 + dj holds and tj can be set to one. If the reaction

flux is smaller than m (and hence it is assumed to be zero), dj is negative and tj can only be set to

a value smaller than one, and since tj is a binary, it can only be set to zero.

However, this is only viable if the reaction cannot have a negative flux. For reversible reactions, the

constraint needs to be adjusted:

−∞ ≤ tj − |vj |≤ 1−m. (2.8)

To model the absolute value |vj |, this part can be split:

−∞ ≤ tj − v+
j − v

−
j ≤ 1−m. (2.9)

In this case, v+ and v− are two new non negative variables with the corresponding bounds:

0 ≤ v+
j ≤ UBj · yj (2.10)

0 ≤ v−j ≤ |LBj |·(1− yj). (2.11)

The idea is the same as splitting a reversible reaction in two irreversible reactions. The forward

direction is represented by v+
j and the backward direction by v−j . Since in the case of a reversible

reaction, the lower bound is negative, the absolute value of it is used as upper bound for v−j . The

new binary variable yj prevents that v+
j and v−j are non zero at the same time. The variables v+

j

and v−j are only needed if the reaction is reversible (i.e. the lower bound is negative). Otherwise,
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Equation 2.7 is sufficient.

In the resulting Pareto front of this multi-objective optimization problem, each point describes a

different possible tradeoff between the three objectives. Computing only the extreme points is enough

to gain a broad overview of the whole Pareto front. The idea is to choose a point in the Pareto front

that has a high target yield and a sufficient biomass production and to find a way to enforce the

values for target and biomass yield and the toxicity score. One possibility is to introduce knockouts

that restrict the phenotypic space around the desired values for target and biomass production as

mentioned in Section 1.3.

The multi-objective optimization problem was implemented in C++ and PolySCIP (Borndörfer

et al., 2016) was used as solver which is part of the SCIP Optimization Suite 5.0 (Gleixner

et al., 2017a,b). The metabolic network was modeled using the library metnetlib which is available

on https://gitlab.inria.fr/erable/kirikomics/metnetlib.

2.3 First approach - Identifying knockouts that enforce the tradeoff

flux

2.3.1 MILP formulation

After a promising point p of the Pareto front has been picked, a modified version of the first MILP

is used to search for knockouts that might restrict the phenotypic space enough to enforce the

desired values for the toxicity score and the target and biomass yield. The values are fixed to the

corresponding values from the Pareto front vptarget, v
p
biomass and rp (Equations 2.15, 2.16, 2.17). It

is not necessary to minimize or maximize an objective function because we are looking for different

feasible solutions that correspond to these fixed values.

Additionally, new binary variables xj are introduced to model reaction knockouts. It is possible that

not all reactions are potential candidates for a knockout. If it is known before that it is not viable

to knockout a certain reaction in vivo, it is not included in Rknockout. Each reaction j in Rknockout

has an associated binary variable xj . If the binary is set to one, the reaction flux is forced to zero

(Equation 2.18). Furthermore, the number of total knockouts that are introduced in the metabolic

network are fixed to a specified number K (Equation 2.19).

s.t.
∑
j∈R

sijvj = 0 ∀i ∈M (2.12)

LBj ≤ vj ≤ UBj ∀j ∈ R (2.13)

vj = 0 =⇒ tj = 0 ∀j ∈ Rcritical (2.14)

vtarget = vptarget (2.15)

vbiomass = vpbiomass (2.16)

r = rp (2.17)

xj = 1 =⇒ vj = 0 ∀j ∈ Rknockout (2.18)∑
xj = K ∀j ∈ Rknockout (2.19)

vj , ωj ∈ R; tj , xj ∈ {0, 1};K ∈ N+ (2.20)

To model xj = 1 =⇒ vj = 0, in CPLEX, indicator constraints can be used. They are also called

https://gitlab.inria.fr/erable/kirikomics/metnetlib
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IfThen constraints. In SCIP, the included indicator constraint is modeled as follows:

z = 1 =⇒ ax ≤ 0. (2.21)

Here, z is a binary variable. To model the equality in Scip if the flux can be negative, the constraint

in Equation 2.18 has to be split into two new indicator constraints:

xj = 1 =⇒ vj ≤ 0 (2.22)

xj = 1 =⇒ −vj ≤ 0. (2.23)

The proposed MILP can be used to propose reaction knockouts that still allow the desired values for

the three objectives. To enumerate different combination of knockouts, it has to be solved multiple

times and after each iteration, the computed knockout set has to be excluded as solution by adding

a corresponding constraint to the optimization problem. A knockout set P contains all variables xj

that were set to one by the solver. By adding Equation 2.24 as constraint, it can be prevented that

the exact same combination of xj is chosen again:∑
xj∈P

xj ≤ K − 1. (2.24)

The problem can be solved repeatedly until it becomes infeasible to enumerate all knockout sets that

are possible for the fixed values for biomass and target production and the toxicity score. For a small

K, i.e. K = 1 or K = 2, it is possible to enumerate all knockout sets even for larger networks.

Depending on the size of the network and on the size of Rknockout, for larger K, this task becomes

more difficult. Therefore, reducing the size of Rknockout can help simplify the problem.

2.3.2 Reducing the number of knockout candidates

Several steps can be taken to reduce the size of Rknockout. First of all, a pre-selection should be done.

For example, it can be difficult to knockout some transport reactions, given that a substrate can

sometimes be transported by more than one system and also because transporters can be nonspecific.

Exchange reactions are artificial reactions added to the networks to model boundaries of the organism.

Furthermore, all genome-wide reconstructed models have reactions that do not have any associated

genes. These reactions should be removed from Rknockout because their knockout is not applicable

in vivo.

As a next step, a certain aspect of Flux coupling analysis is used to determine groups of reactions

that are knocked out simultaneously. We are interested in identifying such groups of reactions. For

each two reactions i, j in a group, it holds that:

vj == 0⇐⇒ vi == 0. (2.25)

To achieve this, single knockouts for all reactions currently in Rknockout are done and afterwards,

FVA is used to analyze the possible flux values for the other reactions in Rknockout. If a reaction

can only have a zero flux, the other direction of the equivalence of Equation 2.25 is verified. As

a result, reactions will be grouped together and only one representative for each group is present

in Rknockout. All others are removed. If the representative is chosen as knockout, afterwards, it is
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possible to replace it by other reactions from the same group without changing the result. This step

also eliminates the need to simplify linear pathways. For instance, if there is a linear pathway like

A→ B → C → D, it is possible to reduce it to A→ D thereby lowering the number of metabolites

and reactions without changing the overall behavior of the metabolic network. By determining the

coupled groups of reactions and only using one representative that can be knocked out, it is also

possible to remove parts of linear pathways from Rknockout without changing the network.

To further reduce the size of Rknockout, it might be important to analyze the influence of single

knockouts. All remaining reactions in Rknockout are knocked out separately (Equation 2.29) and

afterwards, FBA is used to maximize the biomass production. If it is zero, the candidate k can be

removed from Rknockout. Otherwise, the target production is maximized subsequently. Likewise, if

the maximum target production is zero, the candidate k is removed.

max vbiomass (or vtarget) (2.26)

s.t.
∑
j∈R

sijvj = 0 ∀i ∈M (2.27)

LBj ≤ vj ≤ UBj ∀j ∈ R (2.28)

vk = 0 (2.29)

vj ∈ R (2.30)

The reactions that are removed in this way from Rknockout cannot be chosen by the MILP presented

in Section 2.3.1 because they do not allow for a biomass or target production. However, removing

them beforehand leads to less binary variables in the MILP because only for reactions in Rknockout,

an associated binary variable xj is introduced.

All the steps to reduce the size of Rknockout that are presented until now are independent of the

point in the Pareto front that was chosen. The next steps however will depend on the exact point

in the Pareto front and have to be repeated if different points are investigated.

For a specific tradeoff p, it is possible to verify for each candidate k if there exists a flux distribution

where reaction k can have a zero flux (i.e. it can be knocked out). The corresponding MILPs are

shown below (Equation 2.31 to 2.38).

min/max vk (2.31)

s.t.
∑
j∈R

sijvj = 0 ∀i ∈M (2.32)

LBj ≤ vj ≤ UBj ∀j ∈ R (2.33)

vj = 0 =⇒ tj = 0 ∀j ∈ Rcritical (2.34)

vtarget = vptarget (2.35)

vbiomass = vpbiomass (2.36)

r = rp (2.37)

vj ∈ R; tj ∈ {0, 1} (2.38)

To model the specific tradeoff, the values for the biomass and target productions and the toxicity

score are fixed to the values of the tradeoff. For irreversible reactions, it is sufficient to minimize

vk. If the minimum is greater than zero, it has to be active in all flux distributions that are possible
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for the fixed values of the tradeoff and it cannot be knocked out. Thus, it can be removed from

Rknockout. For reversible reactions, it needs to be verified that the minimum is smaller or equal to

zero and that the maximum is greater or equal to zero. Otherwise, it will be removed from Rknockout.

Again, the removed candidates cannot be chosen by the MILP in Section 2.3.1 but their early removal

will reduce the number of binary variables in the MILP.

In the next step, the idea is to compare the FVA values between the wild type flux and the tradeoff

flux for all remaining candidates in Rknockout. Therefore, first, FVA is done for all reactions in

Rknockout for the wild type. Afterwards, the values for biomass production, target production and

the toxicity resistance score are fixed to the values of the tradeoff and the FVA is repeated. Based

on the comparison of the possible flux values between wild type and tradeoff flux, the reactions are

sorted into groups. The idea is that some reactions might be more likely to have an impact on the

resulting flux than others. It might be advantageous to try candidates that are more likely to change

the flux first or, when looking for double (or larger) knockouts, to ensure that every knockout set

contains at least one of the higher priority candidates.

The first group contains all reactions that must have a non zero flux in the wild type and that must

have a zero flux in the tradeoff flux. The flux of these reactions must change to establish the tradeoff

flux and therefore, these are potentially very strong candidates and they should have a high priority.

The assumption for the next group is similar but less strict. It includes all reactions that must have a

non zero flux in the wild type and that can have a zero flux in the tradeoff. All remaining candidates

are put into the last group.

2.3.3 Evaluation of knockout sets

After reducing the size of Rknockout as much as possible, the MILP in Section 2.3.1 is used to

compute different knockout sets that are possible for the chosen point in the Pareto front. The

disadvantage of the given formulation is that the proposed knockout sets do not necessarily enforce

the desired values for biomass production, target production and the toxicity resistance score but all

knockout sets are computed that still allow for these values but that can also result in less optimal

ones. Hence, it is necessary to evaluate all computed knockout sets afterwards to identify the ones

that lead to the best results.

To evaluate a knockout set P , first, the biomass production is maximized after all reactions in P are

knocked out.

max vbiomass (2.39)

s.t.
∑
j∈R

sijvj = 0 ∀i ∈M (2.40)

LBj ≤ vj ≤ UBj ∀j ∈ R (2.41)

vj = 0 =⇒ tj = 0 ∀j ∈ Rcritical (2.42)

xj = 1 =⇒ vj = 0 ∀j ∈ Rknockout (2.43)

xj = 1 ∀j ∈ P (2.44)

vj ∈ R; tj , xj ∈ {0, 1} (2.45)

Then, the computed maximum biomass v∗biomass is fixed and the target production is minimized and
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the toxicity resistance score is maximized.

min vtarget (or max r) (2.46)

s.t. (2.40)− (2.44) (2.47)

vbiomass = v∗biomass (2.48)

vj ∈ R; tj , xj ∈ {0, 1} (2.49)

Here, the target production is minimized to account for the worst case in which the organism does

not prioritize the target production at all. As described in Section 1.3, due to alternative pathways,

it is not enough to maximize the target production because this might not be in accordance with

the behavior of the organism and no real improvement for the target yield might be achieved which

also happened in some cases for OptKnock. The evaluation is based on the assumption that the

biomass production is still maximized after introducing knockouts. As described in Section 1.2.4,

this is not necessarily the case and it is also possible to use an approach like MOMA that minimizes

the distance to the wild type flux. The toxicity resistance score however is maximized because if the

organism is under the stress of a toxic environment, it should have a biological incentive to increase

its own resistances.

2.3.4 Main drawbacks and other approaches

In the results that are presented in Section 2.5.3, it will become clear that this approach is not

viable for larger networks. The required number of knockouts to enforce the desired tradeoff values

might be too large and enumerating all possible combinations would take too much time and is not

reasonable. After evaluating the computed knockout sets, it becomes clear that almost all of the

enumerated knockout sets do not lead to a change in the target production compared to the wild

type. The MILP is not restrictive enough. It is possible to enumerate single or double knockouts but

already knockout sets of size three are problematic because there are too many combinations that

are possible. Hence, it was necessary to change the approach.

A first idea was to address the main problem of the used MILP and render it more restrictive.

This could be done by using a max-min problem (similar to RobustKnock) while computing the

knockout sets. The problem should maximize the minimum ethanol production. In this way, it should

be ensured that the introduced knockouts lead to a change in the target production.

Although the idea itself is simple, the main drawback is that the modified problem is no longer a

linear optimization problem and solving it becomes considerably more difficult.

2.4 Second approach - Isolating the active subnetwork

2.4.1 Hyperpaths

Different flux distributions can result in the same values for biomass production, target production

and toxicity resistance score. To analyze different feasible flux distributions for one point in the Pareto

front, we introduce the notion of a hyperpath for a solution which allows to compare solutions on a

topological level. The hyperpath of a flux distribution consists of all reactions that have a non-zero
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Figure 2.1: Example for a hyperpath. All reactions that have a non-zero flux in the solution and
participating metabolites are highlighted in green. The active reactions are r9, r4, r3, r10. The only
internal metabolite is Target. The metabolites S1, S2, C,D,E,Biomass are on the border of the
hyperpath. Reactions r2, r8, r9 are incoming and reactions r1, r5, r9 are outgoing. Given that reaction
r3 is a critical reaction, using reactions r9, r4, r3 instead of r1, r2 is increasing the resistance against
the toxic target.

flux value and of all metabolites that are either produced or consumed by these reactions. Reactions

having a non-zero flux are called active reactions. All other reactions are inactive reactions.

Metabolites that are exclusively connected to active reactions are referred to as internal metabolites.

Metabolites that are connected to at least one active reaction and at least one reaction with a zero

flux are metabolites lying on the border of the hyperpath.

Furthermore, inactive reactions that are connected to at least one metabolite lying on the border

of the hyperpath are called incoming or outgoing reactions. An inactive reaction is an incoming

(outgoing) reaction if it is producing (consuming) a metabolite on the border. It is possible for a

reaction to be incoming and outgoing at the same time.

Enumerating different hyperpaths

To enumerate topologically different solutions for one point p of the Pareto front, a MILP is solved.

Again, we assume that the system is in steady-state (Equation 2.50), each reaction has lower and

upper bounds (Equation 2.51) and the critical reactions are associated with binary variables (Equation

2.52). Additionally, the values for target production, biomass production and the toxicity score are

fixed at their optimal values in p (Equation 2.53, 2.54, 2.55). Since we are interested in topologically

different solutions, each reaction j is associated with a binary variable aj that indicates if the

corresponding reaction has a non-zero flux and therefore participates in the solution (Equation 2.56).

Additionally, smaller hyperpaths (solutions that have less active reactions) are preferable because

fewer reactions of the whole network are needed. However, minimizing the number of active reactions

means that
∑

j∈R aj has to be minimized which renders the problem computationally more expensive.

Hence, only the size of the resulting hyperpath is limited to K (Equation 2.57) which does not
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compute the smallest hyperpaths but avoids that large hyperpaths appear as a solution.

s.t.
∑
j∈R

sijvj = 0 ∀i ∈M (2.50)

LBj ≤ vj ≤ UBj ∀j ∈ R (2.51)

vj = 0 =⇒ tj = 0 ∀j ∈ Rcritical (2.52)

vtarget = vptarget (2.53)

vbiomass = vpbiomass (2.54)

r = rp (2.55)

aj = 0⇐⇒ vj = 0 ∀j ∈ R (2.56)∑
j∈R

aj = K (2.57)

vj , ωj ∈ R; tj , aj ∈ {0, 1} (2.58)

After one hyperpath H is computed, it has to be excluded as solution by adding another constraint

before the problem is solved again:∑
j∈H

aj ≤ |H|. (2.59)

This process can be repeated until the problem becomes infeasible and therefore no more new

topologically different solutions exist or until the desired number of hyperpaths have been enumerated.

Rating a hyperpath

After having enumerated different hyperpaths for one point in the Pareto front, it must be investigated

which of these hyperpaths are preferable compared to the others. The idea is to compare what kind of

production values a specific hyerpath can achieve. One hyperpath is representing a certain subnetwork

which must be cut off from the rest of the metabolic network.

The hyperpath can be isolated by knocking out all incoming and outgoing reactions. Alternatively,

it is possible to remove all sources that are not part of the hyperpath and knock out only the

outgoing reactions. If all sources of the network are part of the hyperpath, it is enough to knock

out all outgoing reactions. Indeed, doing this prevents that the flux can deviate from the hyperpath.

Removing all external sources is equal to knocking out all incoming reactions because if all outgoing

reactions are removed, incoming reactions can only have a flux if they are fed from an external source

that is not part of the subnetwork. An illustration is shown in Figure 2.2.

With the hyperpath isolated from the rest of the network, it is now possible to compute the biomass

production, target production and the toxicity score just for the remaining subnetwork. We assume

that the organism is still maximizing the biomass production after knocking out all outgoing reactions.

This assumption is not accurate in all cases but it is possible to change it if a better estimation is

on hand and to modify the MILP accordingly.

The following MILP can be used to compute the maximum biomass production v∗biomass in the

hyperpath.
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max vbiomass (2.60)

s.t.
∑
j∈R

sijvj = 0 ∀i ∈M (2.61)

LBj ≤ vj ≤ UBj ∀j ∈ R (2.62)

vj = 0 =⇒ tj = 0 ∀j ∈ Rcritical (2.63)

vj = 0 ∀j ∈ Rincoming (2.64)

vj = 0 ∀j ∈ Routgoing (2.65)

vj , ωj ∈ R; tj ∈ {0, 1} (2.66)

As already mentioned, it is possible that Rincoming = ∅.

Afterwards, minimum and maximum target productions and minimum and maximum toxicity resis-

tance scores are calculated when the biomass production is fixed to its optimum v∗biomass.

min/max vtarget (2.67)

s.t. (2.61)− (2.65) (2.68)

vbiomass = v∗biomass (2.69)

vj , ωj ∈ R; tj ∈ {0, 1} (2.70)

T B

A C

S1 S2

r1 r3
r2

r4
r5

Figure 2.2: Illustration how incoming reactions can be blocked by removing external sources. In this
small example, the hyperpath is highlighted by the rectangle which means that r1 and r4 are the
active reactions of the hyperpath. r5 is an incoming reaction and r2 is an outgoing reactions. The
metabolites S1 and S2 are sources of the network. T is an internal metabolite. A, B and S1 are
metabolites on the border of the hyperpath. We are interested in producing the target metabolite T
while also maintaining some biomass production (metabolite B). To make sure that the flux cannot
deviate from the desired hyperpath flux distribution, all incoming and outgoing reactions have to
be knocked out. An alternative way is to only knock out all outgoing reactions and to remove all
external sources that remain outside of the hyperpath. After knocking out all outgoing reactions,
the only way that the substrates of incoming reactions are present is through external sources of
the network. So in this case, by knocking out reaction r2 and removing the metabolite S2 from the
medium, C cannot be produced and the incoming reaction r5 cannot take place.
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min/max r (2.71)

s.t. (2.61)− (2.65) (2.72)

vbiomass = v∗biomass (2.73)

vj , ωj ∈ R; tj ∈ {0, 1} (2.74)

The result can be used to compare different hyperpaths. A hyperpath is rated high if it has a good

target production. A high maximum target production is not sufficient. To account for the worst

case, it is more important to have a high minimum target production. Preferably, minimum and

maximum target productions are very close to each other. Furthermore, it should be possible to

achieve high values for the toxicity resistance score.

Contrary to the target production, for the toxicity resistance score, it is more important to have a

high maximum value. Since we assume that the critical reactions might only be active if the need

arises, that is when the concentration of the toxic product is high, a minimum score close to zero

should not be a criterion to dismiss the corresponding hyperpath. In this case, it is more important

to be able to achieve a high maximum toxicity resistance score because then, it is possible that

a significant number of critical reactions can be activated if the organism is exposed to the toxic

product.

Based on these assumptions, hyperpaths with high minimum target production and high maximum

resistance score should be considered for further investigation. Hyperpaths that do not fit these

criteria are less efficient.

2.4.2 Identifying smaller knockout sets

For simplification, the next steps assume that all sources of the network are included in the hyperpath.

If this is not the case, it is necessary to remove the remaining sources (e.g. by removing them from the

media). If there are sources outside of the hyperpath and it is not possible to remove these sources,

not only the outgoing but also the incoming reactions have to be considered in the subsequent

approaches.

So far, to isolate the hyperpath from the rest of the network, all outgoing reactions are knocked out.

However, the number of such reactions can be high and it might not be feasible to knockout such a

high amount of reactions in vivo. Consequently, it is necessary to reduce the number of reactions that

have to be knocked out. Our first ideas were based on minimal cut sets and topological precursors.

In the final approach, we decided to use a random exploration approach to find smaller subsets that

are still leading to good values for minimum target production and maximum resistance score.

Topological precursor cut sets

The first approach is based on the identification of minimal topological sources for the incoming and

outgoing reactions. The concept for topological precursors is introduced in (Cottret et al., 2008;

Acuña et al., 2012b).

In (Acuña et al., 2012b), the notion of forward propagation is used to define what a precursor is.

If M is a set of metabolites, then the forward propagation of M , denoted by Fwd(M), is the set

of metabolites that can be produced from M . Subs(r) are all metabolites that are substrates of

reaction r. Likewise, Prod(r) contains all metabolites that are products of reaction r. Reac(M) is

the set of reactions that can take place if all the metabolites in M are present in the network because
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Figure 2.3: Topological precursors. The figure was adapted from (Acuña et al., 2012b). The
metabolites S1, S2, S3 and S4 are the sources of the metabolic network. Metabolite T is the
target node whose topological sources should be identified. For example, if M0 = {S1, S2, S3},
it is possible to produce A because both substrates of reaction r1 are present. Therefore, M1 =
{S1, S2, S3, A}. Now, both substrates of reaction r2 are available and C can be produced which
means that subsequently also T can be produced. Afterwards, no more changes can be made and a
fixed point is reached. Hence, Fwd({S1, S2, S3}) = {S1, S2, S3, A,C, T}.

all substrates of these reactions are available which means that Reac(M) = {r ∈ R|Subs(r) ⊆M}.
Furthermore, if R is a set of reactions, the authors define two more sets: Subs(R) = ∪r∈RSubs(r)
and Prod(R) = ∪r∈RProd(r). Based on these notations, Fwd(M) can be computed by the

recursion Mi+1 = M ∪ Prod(Reac(Mi)). The recursion starts from M0 = M and finishes when

a fixed point is reached which means that no more new metabolites can be added. An example

is shown in Figure 2.3. Moreover, as proposed in (Cottret et al., 2008), the authors include other

metabolites in their model which are called internal supply and are always available. FwdZ(M)

is the forward propagation of M given that the set of metabolites Z is an internal supply and the

recursion can be reformulated as Mi+1 = M ∪ Prod(Reac(Mi ∪ Z)).

The set of metabolites S denotes the set of all source metabolites of the metabolic network which

means that they can be available as an external supply. Based on the idea of forward propagation and

internal supply, a set of source metabolites X ⊆ S is a precursor set of the set of target metabolites

T if FwdZ(X) contains both T and also Z. It is necessary that Z is included to make sure that it

can be reproduced.

Since we are not interested in producing a set of target metabolites but our goal is to cut off all

incoming and outgoing reactions, the most important idea is the precursor cut sets. The authors

of (Cottret et al., 2008) define that a set of sources X ⊆ S is a cut set of the set of target

metabolites T if and only if the set S \X is not a precursor set of T . Hence, the production of T is

prevented by removing the the elements in X as source metabolites. To ensure that the production

of all metabolites in T is cut off, it is necessary to introduce a special target metabolite t∗. For

each metabolite ti ∈ T , a new reaction ri is added with Subs(ri) = {ti} and Prod(ri) = {t∗}.
Afterwards, the new set of target metabolites is T ′ = {t∗}.
Since we are interested in cutting off reactions, we have to modify the network because the idea

of precursor cut sets is used to prevent the production of metabolites. One possibility is to add

a new metabolite for each incoming and outgoing reaction that splits the reactions in two. For

each incoming or outgoing reaction ri, a new metabolite mi is created and ri is split into r′i and

r′′i whereas Subs(r′i) = Subs(ri), Prod(r′i) = {mi} and Subs(r′′i ) = {mi}, Prod(r′i) = Prod(ri).
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Furthermore, as explained before, a special target metabolite t∗ has to be created and one additional

reaction for each mi must be added that consumes mi and produces t∗.

To identify precursor cut sets for the outgoing reactions, the directions for all reactions of the network

have to be reversed. This means that all metabolites that were sources of the network become sinks of

the network and likewise, all metabolites that were previously sinks are now sources of the metabolic

network. However, this implies that the precursor cut sets for incoming and outgoing reactions

have to be identified separately. Furthermore, only metabolites that are not part of the hyperpath

can be considered as sources because otherwise they are needed to obtain the biomass and target

production. It might be preferable to cut out the identified hyperpath and to only take into account

the remaining part of the network when looking for precursor cut sets.

As presented in (Acuña et al., 2012b), a minimal precursor cut set can be found quite easily. Starting

from X ′ = ∅, sources are added if the target cannot be produced. As a result, the set X = S \X ′

is a minimal precursor cut set. Identifying minimum precursor cut sets is however considerably

more difficult but also more important because we are interested in the smallest changes that are

necessary to achieve our goal. The authors in (Cottret et al., 2008) present an approach to enumerate

all precursor sets that uses a kind of depth-first search on the hyperpath that traverses the reactions

in their opposite direction to explore paths from the target to the sources. To avoid fake solutions,

some cycles have to be removed from the metabolic network in a preprocessing step because they can

lead to the production of certain metabolites without any external sources. During the preprocessing,

these undesired cycles are removed by deleting some reactions. It is a heuristic and the preprocessed

network is not always the same which also influences the minimal precursor sets that are computed

afterwards.

In practice, we abandoned the idea to use topological precursors cut sets as a solution to our problem

due to difficulties that were linked to the removal of the aforementioned cycles. Additionally, it can

only identify sources as cut points and we are also interested in proposing reaction knockouts as

intervention strategy. Furthermore, since this approach is based on the topology of the network, it

might have been preferable to also remove small metabolites and co-factors from the network to

simplify the network structure. It can however be difficult to automatically identify and remove co-

factors in a way that the stoichiometry of the network is kept intact. The stoichiometry is not needed

to identify minimal precursor sets but it might be important for subsequent analyses since in general,

our method should include the stoichiometry of the network. It might be possible to circumvent

some of the difficulties by using the idea of stoichiometric precursor sets (Andrade et al., 2016) but

so far, we did not explore this concept further because we assumed that the computation might be

more difficult and there might be other approaches that are more accessible for our problem.

Minimal cut sets

Next, we were interested in applying the concept of minimal cut sets to our problem. In this case,

we want to find the smallest MCSs that block all outgoing reactions for a hyperpath. Therefore, all

outgoing reactions are set as the target reactions. Additionally, it is not possible to knockout the

active reactions of the hyperpath.

The MSCEnumerator presented in (von Kamp and Klamt, 2014) enumerates MCSs and cMCSs.

An implementation is available in CellNetAnalyzer (Klamt and von Kamp, 2011; Klamt et al.,

2007; von Kamp et al., 2017). CellNetAnalyzer uses MATLAB.

In (von Kamp and Klamt, 2014), MSCEnumerator is used to compute the smallest MCSs in
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a genome-scale metabolic network. However, as shown in their results, it can be computationally

expensive for larger networks to compute MCSs. In our case, this approach was not suitable in

practice. We assume that one of the main problems is that a larger number of reactions has to be

knocked out to block all of the outgoing reactions.

Random exploration

In this last approach, we propose a random exploration that identifies smaller subsets of the outgoing

reactions that are still leading to good values for minimum target production and maximum resis-

tance score. The starting point for this approach are all outgoing reactions for a hyperpath that was

chosen based on its promising values. The outgoing reactions are forming the reaction pool P0. The

maximum biomass for this hyperpath is used as reference value for the biomass production vrefbiomass.

Step 1: The reaction pool is split into two different subsets. For each reaction r in the reaction

pool P0, all reactions in P0 are knocked out except reaction r. Afterwards, the maximum biomass is

computed. If the maximum biomass remains the same as vrefbiomass, not knocking out only reaction r

does not change the result and reaction r will be part of subset 2. If the maximum biomass is not

the same as vrefbiomass, not knocking out reaction r does lead to a change and reaction r will be part

of the subset 1. This procedure is repeated for all reactions in P0. Consequently, subset 1 contains

all reactions that have to be knocked out at all time because otherwise it is not possible to obtain

the same production values as in 2.4.1. However, subset 2 contains reactions that do not have to be

necessarily knocked out and it might be possible to remove several of them from the knockout set

without changing the production values.

Step 2: A new knockout P1 set is generated. All reactions of subset 1 must be in P1. One by one,

reactions from subset 2 are randomly drawn and added to P1. Every time a new reaction is added,

the maximum biomass production is computed given that all reactions in P1 are knocked out. If the

maximum biomass production is not equal to vrefbiomass, the next reaction is drawn and added to P1.

If the maximum biomass production is equal to vrefbiomass, no more reactions are added to P1.

Step 3: Step 2 is repeated n times to compute P11, P12, ..., P1n. Then, the smallest (with regard to

the number of reactions it contains) valid knockout set P1x is chosen. If P1x and P0 are identical,

no smaller knockout set can be chosen and the procedure is stopped. Otherwise, P1x is set to be

the new P0 and Steps 2 and 3 are repeated.

It is not necessary to recompute the subsets 1 and 2. Subset 1 always remains the same and the

new subset 2 will be a subset of the previous subset 2 containing only the reactions that are present

in P1x.

Furthermore, it is important to observe that this approach is based on using the biomass production

as main indicator because in our case study, the target production depends heavily on the obtainable

biomass production. Therefore, it is not necessary to also compare the target production after each

added reaction which saves computation time. In different cases, it might be advantageous to chose

another main indicator or to compare both values after each newly drawn reaction

The exploration is random and greedy and it is not guaranteed to obtain the smallest possible

knockout set. The probability to achieve a small knockout set can be increased by choosing a high n
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Figure 2.4: Disadvantage of the first version of the random exploration. In this example, reactions
r1, r2 and r3 are outgoing reactions and the metabolites A, B and C are metabolites that lie on the
border of the hyperpath. The metabolites D, E and F and reaction r4 are outside of the hyperpath.
When drawing reactions for the next knockout sets, if r2 and r3 are getting picked before r1, the
limit for the biomass production might already be reached before r1 is added because by knocking
out r2 and r3, the flux cannot deviate from the hyperpaths via r4. If this knockout set gets chosen
for the next iteration, it is not possible anymore that r1 gets picked anymore instead of r2 and r3

which would reduce the size of the knockout set.

and by repeating the whole exploration several times and comparing the results. Since the approach

is greedy, always the smallest knockout set is chosen for the next iteration. It is likely that there are

cases where choosing a different knockout set will lead to a better final result because it contains a

better combination of reactions. An example is shown in Figure 2.4.

After applying this random exploration to the case study that will be presented in the results, it

becomes clear that this described random exploration is too straightforward and it would be better

to modify it in order to make it less greedy. The main idea is to not always take the smallest knockout

set as next candidate but to introduce probabilities that guide the choice of the next candidate and

aid in better exploring possible solutions. Still, smaller solutions should be prioritized.

Steps 1 and 2 of the modified version remain unchanged. Step 3 is modified in the following way:

Instead of repeating Step 2 n times, it is only done once to compute one new knockout set P1. All

already computed knockout sets can be potential candidates for the next iteration. All computed

knockout sets are unique. This means that if the newly computed knockout set was already computed

previously, it is not added to the pool of all knockout sets. All computed knockout sets are sorted

by size and split into buckets. In the following explanation, s is the size of the currently smallest

knockout set. Furthermore, B is the size that is chosen for the buckets. This means that the first

bucket b0 contains all knockout sets with a size in between s and s + B − 1 and the bucket bn

contains all knockout sets with a size in between s+ n ·B and s+ (n+ 1) ·B − 1. However, there

is a further adjustment for the first bucket. It contains all knockout sets of size s and additionally,

the same amount of larger solutions. For example, if there are 50 knockout sets of size s, it also

contains the 50 next bigger knockout sets. Furthermore, it should have a minimum size F . If there

are less than F/2 knockout sets of size s, it will be filled with the next bigger knockout sets until

it contains a total of F knockout sets. If in the current iteration, less than F knockout sets have

been computed in total, the first bucket contains all knockout sets. Consequently, the limits for

the subsequent buckets have to be adjusted. Given that the largest size that is still contained in

bucket b0 is s∗, the bucket bn contains all knockout sets with a size in between (s∗ + 1) + n ·B and
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(s∗ + 1) + (n+ 1) ·B − 1.

To choose the next candidate, first a bucket is chosen and afterwards a knockout set in the chosen

bucket is picked. Starting with b0, each bucket has a probability p1 to be accepted. If the bucket is

rejected, the next bucket is tried. If a bucket is accepted, a knockout set from this bucket is drawn.

In this case, a uniform distribution is used which means that all knockout sets inside one bucket have

the same probability.

After a knockout set is chosen, steps 2 and 3 are repeated. After each iteration, it is verified if a

smaller knockout set was found. If after a specified amount of iterations, no smaller knockout set

was computed, the random exploration stops.

The main idea behind the buckets is to make it easier that larger knockout sets get chosen as

candidates but at the same time knockout sets of same or similar size have the same probability

of getting picked. Additionally, since all computed knockout sets can be potentially drawn in the

next iteration, this approach is less greedy than the first version where it was not possible to pick a

previous candidate in a later iteration.

Implementation

Since in the second part, only single-objective optimization problems are solved, PolySCIP is no

longer needed and all linear programs are solved with CPLEX 12.71 (IBM, 2016). They are

implemented in C++ and the metabolic network was modeled using the library metnetlib which

is available on https://gitlab.inria.fr/erable/kirikomics/metnetlib.

2.5 Results

To apply our approach, we used the production of ethanol in yeast since ethanol is an interesting

target chemical due to its use as biofuel but it is also toxic to yeast.

All computations are done using the yeast 5.01 model (Heavner et al., 2012). The network model

contains a total of 2109 reactions and 2759 metabolites. After the removal of blocked reactions

which are all reactions that can only have a zero flux for the given lower and upper bounds (see

Section 1.2.4) and the subsequent removal of isolated metabolites, the model contains 1165 reactions

and 914 metabolites.

We will first present the observations on the computed Pareto front. Afterwards, the results for the

first approach are shortly summarized before showing the results for the second approach that is

based on the idea of the hyperpaths.

2.5.1 Critical reactions

To identify reactions that might be involved in increasing the resistance of yeast against ethanol,

the growth of single gene knockout yeast strains under ethanol stress was compared to the wild type

growth under the same conditions. If the biomass production was decreased in the modified strain, it

is assumed that the knocked out gene is implicated in developing a resistance against ethanol. Genes

that are known to participate in growth mechanisms were not tested since knocking these genes out

would likely lead to a reduced growth but not because they are influencing the resistance against

ethanol.

https://gitlab.inria.fr/erable/kirikomics/metnetlib
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Depending on the amount that the growth decreased compared to the wild type, the genes were

separated into two groups. Group 1 contains genes whose knock out resulted in a biomass production

between 50% and 70% of the wild type biomass production. Knocking out the genes in group 2 led

to less than 50% of the wild type biomass production. Hence, genes in group 2 might be playing a

more significant role in building a resistance against ethanol than genes in group 1.

Afterwards, the gene identifiers were used to link these genes to reactions in the network file. Not

all genes can be associated with reactions. It is also possible to have several genes linked with the

same reaction and one gene connected with several reactions in the network file.

The reactions that can be connected to the genes in groups 1 and 2 are the critical reactions that

are used to compute the toxicity resistance score. A total of 61 critical reactions could be identified.

After removing blocked reactions, the list could be reduced to 41 remaining critical reactions. The

reduced list can be found in the Supplementary Table A.3.

2.5.2 Computation of the Pareto front

The critical reactions were used to compute different tradeoffs between biomass production, ethanol

production and the score measuring the potential resistance against ethanol. The multi-objective

optimization problem was solved using PolySCIP version 2.0 (Borndörfer et al., 2016). The critical

reactions in group 1 have weight 1.0 when calculating the resistance score, reactions in group 2 have

a weight of 2.0. Only the extreme points of the Pareto front were computed which allows to gain a

broad overview of the whole Pareto front (see Figure 2.5). Some extreme points have very similar

ethanol and biomass production values but differ considerably in their ethanol resistance score. In

this case, a point with a higher ethanol resistance is preferable.

A list of computed extreme points and their identification number can be found in the Supplementary

Table A.2. A reduced version that contains only the extreme points that will be referred to in the

text is shown in 2.1.

Id Biomass Ethanol Toxicity

1 0.131931 17.6169 37.0072

2 0.138936 17.6120 36.0071

3 0.145084 17.5654 35.0066

4 0.157094 17.6384 26.0035

6 0.165196 17.5216 26.0035

9 0.180441 16.6031 37.0120

11 0.187788 16.6035 36.0115

13 0.185612 15.0541 43.0187

19 0.103374 13.4770 52.0291

47 0.347631 10.2221 43.0447

Table 2.1: Computed tradeoffs between biomass production, ethanol production and toxicity score
- short version. Only the extreme points in the Pareto front were computed. Lower bounds for
biomass production was set to 0.1, lower bounds for ethanol production to 10. The list is sorted
by descending ethanol production. The list presented here contains only those tradeoffs that are
explicitly mentioned in the text. For a full list, we refer the reader to the Supplementary Table A.2.
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Figure 2.5: Computed tradeoffs between biomass production, target production and toxicity resis-
tance score. Only the extreme points were computed. The lower bound for the biomass production
was set to 0.1 and the lower bound for ethanol production was set to 10. For a clearer representation,
the third dimension, the toxicity resistance score, is displayed by a color scale. Red points have a
low toxicity resistance score, blue points have a higher score. It is interesting to see that there are
some points that have very similar ethanol and biomass production values but differ in the resistance
score. It shows that it might be possible to gain a considerably better resistance against ethanol by
choosing slightly worse production values for ethanol and biomass.

2.5.3 First approach

An important remark for the results for the first approach is that they were obtained using the original

network model. The preprocessing step was introduced at a later point in time when the idea based

on the identification of the hyperpaths was developed.

As described in Section 2.3.2, the number of candidates for knockouts was reduced. After eliminating

all reactions without a gene association and all transport and exchange reactions, 660 reactions

remained in the candidate pool. Afterwards, for the remaining candidates, the coupled groups were

identified and only one representative for each group was kept in the pool which reduced the candidate

pool to 492 reactions. Subsequently, biomass and target production in the wild type were verified

for single knockout of the remaining candidates. After discarding all candidates whose knockout

resulted in a zero biomass or target production, 435 reactions were left in the candidate pool. These

steps are the same for all tradeoffs and do not have to be repeated.

The last step is shown on the example of the tradeoff 1 (as presented in Table 2.1). Having verified if

a candidate reaction can have a zero flux in at least one tradeoff flux distribution, 65 more reactions

could be removed from the pool. Finally, the remaining 370 candidates were sorted into the three

groups. The first group was empty (must have non zero flux in the wild type and zero flux in the

tradeoff). The second group contained 28 reactions (must have non zero flux in the wild type and

can have zero flux in the tradeoff). Therefore, the third group included the last 342 reactions.

Single knockouts were enumerated for all extreme points. These are however never sufficient to

enforce the desired tradeoff flux. When we computed the double knockouts, we realized that enu-

merating all solutions is not practicable because there are only a few double knockouts that actually
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make the optimization problem infeasible. Consequently, almost all pairs of candidates were enumer-

ated as double knockouts. After each iteration, for the newly found knockout set, a new constraint

was added which meant that the time it took to enumerate the next solution slowly increased.

To reduce the number of enumerated pairs, we used the groups to prioritize certain candidates. We

enumerated pairs that needed to include at least one of the 28 reactions from group 2 (i.e. they

could appear together in a pair). This led to the computation of around 10000 double knockouts.

Hence, each of the 28 reactions was paired with almost all of the other remaining 369 candidates

(groups 2 and 3). This showed again that the main problem is that almost all pairs of candidates

are feasible and do not disrupt the tradeoff flux. The underlying MILP is not restrictive enough. It

might be faster just to try all pairs and verify the resulting biomass and target productions because

it would avoid to solve the MILP for each new pair which renders this approach impracticable.

2.5.4 Second approach

In the following, the results for the second approach that is based on the hyperpaths are shown.

Before applying the random exploration to identify knockout sets, the similarities and differences

between the hyperpaths and tradeoffs are investigated.

Active reactions

In the subsequent computations of the hyperpaths, the number of active reactions was always limited

to 500 reactions to prevent that too large hyperpaths can be enumerated.

To gain an overview of different flux distributions that are possible in the network, for 47 different

tradeoffs, one hyperpath was computed and the active reactions were compared (see Figure 2.6).

More than 300 active reactions were present in all hyperpaths. Since ethanol and biomass are

produced in all of these 47 tradeoffs, reactions that are specific to these pathways have to participate

in the solution. Although their values for biomass and ethanol production can differ significantly,

topologically these solutions have many reactions in common. Furthermore, there are more than 100

reactions that appear in five or less hyperpaths. It is already an indicator that there might be several

reactions that can be easily added or removed from a hyperpath without changing the resulting flux

significantly.

This impression is confirmed when comparing different hyperpaths for one tradeoff. The results for

1000 different hyperpaths for tradeoff 1 are shown in Figure 2.7. There are more than 200 reactions

that are participating only in less than 10 hyperpaths. Hence, they do not seem to have a big impact

on the solution and are probably only part of the hyperpath because it has to differ from previously

computed hyperpaths that are then excluded by constraints. Besides, more than 350 reactions appear

in all solutions.

Comparison of 10 hyperpaths for each of the 47 tradeoffs

Comparing the computed tradeoffs, some seem to be preferable because they have a higher ethanol

production value and a better resistance score than others. However, it is necessary to compare

many hyperpaths for each tradeoff because knocking out all outgoing reactions of a hyperpath does

usually not enforce the exact values of the tradeoff. Since many reactions are essential for biomass

production and ethanol production, the remaining subnetwork is still quite large and thereby also

contains a lot of variability.
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Figure 2.6: Histogram of active reactions in 47 different tradeoffs. For 47 extreme points, one
hyperpath was computed for each. The figure shows in how many hyperpaths a reaction was active
among these 47. A large part of the active reactions was present in all of them.

Figure 2.7: Histogram of active reactions in 1000 different hyperpaths for tradeoff 1. In total, 884
reactions were active in at least one of these 1000 hyperpaths. Most of them participate either in all
of the 1000 hyperpaths or they appear in just a very few cases. The binwidth for this histogram was
set to five which means that, for example, the first bar counts all reactions that appeared exactly
zero to four times in all 1000 hyperpaths. However, none of the represented reactions appeared zero
times because reactions that were not part of any hyperpaths were not considered for this plot.
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Before applying the random exploration approach to compute knockout sets, an adequate hyperpath

has to be chosen. Thus, in a first step, for each tradeoff, 10 different hyperpaths were computed.

All hyperpaths are evaluated by their ethanol production and resistance score when the biomass

production is maximized as explained in 2.4.1.

First of all, it can be observed that ethanol production is dependent on the maximum biomass

production. A high ethanol production can only be achieved if the maximum biomass production is

low. If a high maximum biomass production is possible, it prevents a profitable ethanol production

(see Figure 2.8). This happens because both biomass and product are directly dependent on the

same carbon sources, which means that if all carbon molecules uptaken from the substrate are used

for biomass production, there is nothing left to produce ethanol and vice versa. This fact can be

exploited during the random exploration.

Moreover, different hyperpaths can lead to the same production values (see Table 2.2 for some

selected results). For some tradeoffs, all ten hyperpaths have the same results (e.g. tradeoffs 9 and

11). In most of the other cases, the results for all ten hyperpaths are at least very similar (e.g.

tradeoffs 2 and 4). Problematically, there are also instances where the results between the different

hyperpaths can differ considerably. For example, the first nine hyperpaths for tradeoff 1 have very low

maximum toxicity resistance scores and the achievable ethanol production is only mediocre. However,

the tenth computed hyperpath differs in an important way and is superior in all values. Even the

biomass production is slightly higher. This shows how important the choice of a specific hyperpath

is. Enumerating ten hyperpaths for a tradeoff is not sufficient to ensure that favorable hyperpaths

are available.

To show how the result is influenced if the toxicity resistance score is not taken into account, for each

tradeoff, 10 hyperpaths were computed where only biomass production and target production were

fixed in the optimization. The constraint (Equation 2.55) that is fixing the toxicity resistance to its

optimal value from the tradeoff is removed from the optimization problem. Ideally, when including

the toxicity resistance score in the optimization problem, the obtained hyperpaths should have a

better toxicity resistance score than when it is omitted. Not fixing the toxicity score will not prevent

the solver to choose a flux distribution that results in a high toxicity resistance score. However, it also

does not encourage it and therefore, the probability for choosing a hyperpath with a lower toxicity

should be higher.

The maximum toxicity resistance scores for both cases are displayed in Figures 2.9 and 2.10. Com-

paring the results, globally, higher maximum resistance can be achieved when the score is included

in the optimization problem. Omitting it, only two of the resulting hyperpaths (tradeoff 19) have a

maximum toxicity score over 20 as opposed to all ten when it is included. By including the score

when computing the hyperpath, this can be achieved more consistently.

However, there are a few cases (e.g. tradeoff 4) where the ten hyperpaths computed without

taking the toxicity resistance score into account have better maximum scores. A higher number of

hyperpaths might be necessary to investigate if for this tradeoff a better toxicity resistance score can

be reached when omitting the score from the optimization problem. It is possible that by enumerating

more hyperpaths, other solutions are found where the score is at least as good as the highest one

that can be obtained when the toxicity score is omitted from the optimization problem. Indeed, when

enumerating 1000 hyperpaths for tradeoff 4, it is possible to obtain some hyperpaths that have a

better toxicity score than any of the hyperpaths that are computed when omitting the score.
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Figure 2.8: Dependency of the maximum ethanol production on the maximum biomass production.
For 47 tradeoffs with 10 different hyperpaths each, the resulting maximum biomass production is
plotted against the maximum ethanol production that is possible. An ethanol production of more
than 14 can only be achieved if the maximum biomass production is lower than 0.2.
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Id Max. biomass Min. ethanol Max. ethanol Max. toxicity score

1 0.1642 14.677 15.370 13.003

0.1642 14.677 15.370 13.003

0.1642 14.677 15.370 13.003

0.1642 14.677 15.370 13.003

0.1642 14.677 15.370 13.003

0.1642 14.677 15.370 13.003

0.1642 14.677 15.370 13.003

0.1642 14.677 15.021 13.003

0.1642 14.677 15.021 13.003

0.1643 17.101 17.297 21.008

2 0.1642 14.689 15.033 13.003

0.1642 14.689 15.033 13.003

0.1642 14.689 15.033 13.003

0.1642 14.689 15.033 13.003

0.1642 14.689 15.033 13.003

0.1642 14.689 15.033 13.003

0.1642 14.689 15.033 13.003

0.1642 14.689 15.033 13.003

0.1643 14.788 15.137 13.003

0.1642 14.676 15.020 13.003

4 0.1716 17.433 17.473 11.002

0.1716 17.433 17.473 11.002

0.1777 17.348 17.388 10.002

0.1777 17.348 17.388 10.002

0.1777 17.348 17.388 10.002

0.1777 17.348 17.388 10.002

0.1777 17.348 17.388 10.002

0.1777 17.348 17.388 10.002

0.1777 17.348 17.388 10.002

0.1777 17.348 17.388 10.002

9 0.2870 12.716 12.732 20.041

0.2870 12.716 12.732 20.041

0.2870 12.716 12.732 20.041

0.2870 12.716 12.732 20.041

0.2870 12.716 12.732 20.041

0.2870 12.716 12.732 20.041

0.2870 12.716 12.732 20.041

0.2870 12.716 12.732 20.041

0.2870 12.716 12.732 20.041

0.2870 12.716 12.732 20.041

11 0.2874 12.717 12.733 22.041

0.2874 12.717 12.733 22.041

0.2874 12.717 12.733 22.041

0.2874 12.717 12.733 22.041

0.2874 12.717 12.733 22.041

0.2874 12.717 12.733 22.041

0.2874 12.717 12.733 22.041

0.2874 12.717 12.733 22.041

0.2874 12.717 12.733 22.041

0.2874 12.717 12.733 22.041

Table 2.2: Results for ten different hyperpaths for certain tradeoffs. For tradeoffs 1, 2, 4, 9 and 11
the production values are shown for ten different hyperpaths each.
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Figure 2.9: Maximum toxicity resistance score for hyperpaths where the score was included in the
optimization problem. For each of the 47 tradeoffs, the maximum possible toxicity resistance score
for ten different hyperpaths is plotted. To group similar results together, the score was rounded
to the first digit. For some tradeoffs, all ten hyperpaths lead to the same or very similar toxicity
resistance scores. For others (e.g. tradeoff 1 or 20), the results differ significantly.

Figure 2.10: Maximum toxicity resistance score for hyperpaths where the score was omitted in
the optimization problem. For each of the 47 tradeoffs, the maximum possible toxicity resistance
score for ten different hyperpaths is plotted. These hyperpaths were computed without fixing the
toxicity resistance score in the optimization problem. To group similar results together, the score was
rounded to the first digit. Comparing the results to Figure 2.9, globally the scores are lower. Only
two hyperpaths (tradeoff 19) have maximum scores that are over 20.
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Comparison of 1000 hyperpaths for chosen tradeoffs

Therefore, to get a more detailed view, 1000 different hyperpaths are enumerated for specific trade-

offs. Tradeoff 1 was chosen to investigate the fact that its tenth hyperpath differed significantly

from the other nine and because it showed promising values for ethanol production. Additionally, the

tenth hyperpath also had a high maximum toxicity score. Tradeoff 3 also had high values for ethanol

production and toxicity score. One of the main objectives is to find a hyperpath with a very high

ethanol production value and a high toxicity resistance score. Hence, both tradeoff 1 and tradeoff

3 needed to be explored further. Tradeoff 6 was chosen because the ten hyperpaths were inferior

to the ones from tradeoffs 1 and 3 but we wished to explore whether enumerating a higher number

might lead to better results. Tradeoff 13 was chosen for the same reason. Tradeoff 47 was selected

because it is the tradeoff with the highest biomass production.

The results for tradeoff 1 are shown in Figure 2.11. First of all, by enumerating 1000 hyperpaths, it

was possible to find more hyperpaths that have high ethanol production and high toxicity resistance

score. Before, the tenth hyperpath was definitely the best result for tradeoff 1. It has a minimum

target production of 17.10 and a maximum score of 21.01. The same result can be obtained for

one of the newly enumerated hyperpaths. Additionally, several other hyperpaths were computed that

have a slightly lower minimum ethanol production (in between 16.5 and 16.9) but also a slightly

higher toxicity resistance score of around 22. Therefore, they are also interesting candidates for the

random exploration.

Compared to tradeoff 1, the results for tradeoff 3 were inferior (see Figure 2.12). The highest

minimum ethanol production is at 17.09. However, the corresponding maximum toxicity resistance

score is only 13.01. The highest found maximum toxicity score was around 21.01 and the matching

minimum ethanol production at 16.97. These values are slightly inferior to the best results of

tradeoff 1.

For tradeoff 6, the 1000 enumerated hyperpaths did not contain any with a high maximum toxicity

resistance score (see Figure 2.13). This might be also due to the fact that the optimal toxicity

resistance score for tradeoff 6 was clearly lower than for tradeoff 1 or 3. Similarly, for tradeoff

13 which has a higher optimal toxicity resistance score than tradeoffs 1 and 3, it was possible to

obtain hyperpaths with maximum toxicity resistance scores that were higher than any of the scores

for tradeoffs 1 and 3. However, the corresponding minimum ethanol productions are lower (see

Figure 2.14) because the optimal ethanol production of tradeoff 6 is also significantly lower than for

tradeoff 1 or 3.

As expected, the computed hyperpaths for tradeoff 47 do not have very high values (see Figure 2.15).

Especially, the ethanol productions are very limited. Interestingly, the minimum ethanol productions

and the maximum toxicity resistance scores are not very diverse. It might show again that the

variability of the flux distributions that remain possible is limited if the biomass production is high.

All in all, the results of these five different tradeoffs confirm that choosing a tradeoff with a high

optimal toxicity resistance score can lead to hyperpaths with higher minimum toxicity resistance

scores. Likewise, choosing a tradeoff with a lower optimal toxicity resistance score limits the min-

imum toxicity resistance scores for its hyperpaths. Furthermore, selecting a tradeoff with a high

optimal ethanol production allows for the computation of hyperpaths with a high minimum ethanol

production. Consequently, even though the computed hyperpaths have values for ethanol production

and toxicity resistance score that differ from the optimal values of the corresponding tradeoff, the

choice of the tradeoff does influence the result. It is important to choose a tradeoff whose optimal
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values are very close to the desired ones for target and biomass production and the toxicity score.

To justify the importance of the toxicity resistance score, the minimum ethanol production and

maximum toxicity resistance score for hyperpaths including and omitting the toxicity resistance score

in the optimization problem are compared. In tradeoffs 1 and 3 (see Figures 2.11 and 2.12), by

including the toxicity resistance score, higher minimum toxicity resistance scores can be reached.

Discarding the toxicity resistance score, a slightly higher ethanol production can be achieved.

In the case of tradeoff 47, the toxicity resistance scores are better when ommitting the score (see

Figure 2.15). However, as already mentioned before, fixing the toxicity score when enumerating the

hyperpaths is restricting the model. Hence, all solutions that are feasible in this case are also feasible

when omitting the toxicity score. It is therefore possible to obtain hyperpaths with a high toxicity

score when the score is omitted.

The results for tradeoff 13 are similar to those for tradeoffs 1 and 3 but the difference between

the highest minimum ethanol productions is larger. In contrast to tradeoffs 1 and 3, the results

for tradeoff 6 are different because similar minimum toxicity resistance scores are obtained for both

cases. This can be explained by the fact that tradeoff 3 has a lower optimal toxicity resistance score.

Accordingly, it influences the resulting hyperpaths less and they are more similar to the hyperpaths

generated without taking the toxicity resistance score into account.

Overall, analyzing the different hyperpaths, it is preferable to include the toxicity resistance score in

the optimization problem to obtain hyperpaths with a higher maximum toxicity resistance score and

similar minimum ethanol production.

Figure 2.11: Results of different hyperpaths for tradeoff 1. One thousand different hyperpaths were
computed taking the toxicity resistance score into account (red points) and 1000 different hyperpaths
were computed omitting it (blue points).
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Figure 2.12: Results of different hyperpaths for tradeoff 3.

Figure 2.13: Results of different hyperpaths for tradeoff 6.
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Figure 2.14: Results of different hyperpaths for tradeoff 13.

Figure 2.15: Results of different hyperpaths for tradeoff 47.
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Random exploration results

Afterwards, we used the random exploration presented in Section 2.4.2 to find a subset of the outgoing

reactions that can be used as knockout set. To compare the values for the biomass productions that

are computed during the random exploration to vrefbiomass, a small tolerance of ε = 0.005 was used.

This means that no new reactions are drawn for a knockout set if the maximum possible biomass

production is smaller than or equal to vrefbiomass + ε. The bin size was set to 10 and the minimum

size for the first bin was set to 50. In each iteration, one new knockout set was computed. The

enumeration was stopped if no new smaller knockout set was found after 1000 iterations. When

choosing the candidate for the next iteration, the probability to accept a bin was set to 0.5 to

increase the chance that not only the smallest current knockout sets are picked as candidates and

that more diverse solutions are explored.

Based on the results of the analyses of the different hyperpaths, knockout sets were enumerated for

different hyperpaths of tradeoff 1 that were chosen based on their minimum ethanol productions and

maximum toxicity scores (see Table 2.3). A total of 13 different hyperpaths were chosen and for

each of these hyperpaths, the random exploration was repeated twice. After all runs were finished,

interesting knockout sets were selected as follows. Only knockout sets that contained less than 25

reactions were selected. Furthermore, the minimum ethanol production needed to be above 14 and

the maximum toxicity score above 20. For each run, only the smallest knockout sets were selected.

However, if there was a slightly larger knockout set that led to an increase in the minimum target

production, it was picked in addition. For example, if for one run the two smallest knockout sets

have size 19 and both fulfill the desired threshold for ethanol production and toxicity score, they are

selected. If there are knockout sets of size 20, they are not selected because the smaller knockout

sets that are available are likely subsets of them. Therefore, the only reason to choose them is in the

case where they lead to an increase in ethanol production and/or toxicity resistance score. In total,

18 knockout sets were selected in this way. The results are shown in Table 2.4.

When selecting the smallest computed knockout sets, a first observation was that not all runs led

to knockout sets that fulfilled the above mentioned criteria. In Table 2.4, we can see that in

total, knockout sets got selected only from 12 out of the 26 runs that were done (two runs for 13

hyperpaths). Additionally, for several hyperpaths (ids 799, 800, 657, 31), neither of the two runs

led to very small knockout sets. There are several possibilities to explain that. Since the proposed

approach to select the knockout sets is randomized, it might be necessary to do more repetitions

which might lead to smaller knockout sets also for these hyperpaths. Another possibility is that

indeed, the outgoing reactions for these hyperpaths contain less favorable combinations of reactions

and it is actually necessary to knock out more reactions to cut off the desired subnetwork. Lastly,

the proposed parameter settings for the random exploration are the results of multiple test runs and

seemed to offer a good tradeoff between time, exploring different (larger) solutions and driving the

exploration towards smaller knockout sets. However, the possibility remains that further fine tuning

of the parameters might improve the results.

The 18 knockout sets contain 73 different reactions. A full version can be found in the Supplementary

Table A.5. In Table 2.5, only the reactions are shown that occurred at least in five out of the 18

knockout sets. The three reactions that occurred the most (r 1110, r 0766 and r 1112) were always

the reactions of subset 1 (reactions that have to be knocked out). The only exception was for

hyperpath #169 for which both r 0766 and r 1112 were not part of subset 1. A possible explanation

for this difference in relation to the other hyperpaths is that hyperpath #169 also had a slightly lower



64 2 Identifying knockouts when the target chemical is toxic for the organism

H-Id Max. biomass Min. ethanol Max. toxicity score

799 0.1690 16.713 22.016

800 0.1686 16.747 22.015

656 0.1706 16.753 22.014

657 0.1706 16.753 22.014

599 0.1661 16.815 22.011

31 0.1659 16.831 22.011

537 0.1659 16.831 22.011

536 0.1659 16.831 22.011

638 0.1653 16.899 22.011

169 0.1671 16.520 22.011

879 0.1657 16.961 22.010

638 0.1652 16.992 22.009

10 0.1643 17.101 21.008

Table 2.3: List of hyperpaths that were chosen for the random exploration. The first column indicates
the id of the hyperpath. A total of 13 hyperpaths of tradeoff 1 were chosen based on their minimum
ethanol productions and their maximum toxicity scores. The table is sorted by decreasing toxicity
scores. The last hyperpaths (#10) has a slightly lower maximum toxicity score.

H-Id Run Size Max. biomass Min. ethanol Max. ethanol Max. toxicity score

10 1 17 0.1691 14.829 17.327 21.024

10 1 18 0.1690 16.119 17.331 21.016

10 2 21 0.1692 15.912 16.687 21.012

169 1 24 0.1721 14.773 16.819 22.024

536 1 19 0.1709 15.487 16.698 21.019

536 2 20 0.1709 14.627 15.864 21.012

536 2 20 0.1707 14.836 15.978 21.011

537 1 18 0.1709 14.220 15.864 21.012

537 1 18 0.1709 14.220 15.864 21.012

537 1 19 0.1709 15.427 15.864 21.012

537 1 19 0.1709 15.427 15.864 21.012

599 1 17 0.1720 15.177 15.689 21.011

638 1 19 0.1702 16.943 17.109 21.010

638 2 18 0.1739 14.637 16.524 22.028

638 2 19 0.1739 15.394 16.563 22.024

656 1 17 0.1709 15.801 16.702 21.014

658 2 20 0.1729 16.211 16.817 22.021

879 1 22 0.1706 15.177 16.421 21.018

Table 2.4: Size and production values for selected knockout sets. In total, 18 interesting knockout
sets got selected based on their size and their values for ethanol productions and toxicity scores. The
smallest knockout sets that were enumerated contained 17 reactions.
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minimum ethanol production compared to all the other chosen hyperpaths (see Table 2.3).

The smallest knockout set that could be found and that satisfied the thresholds included 17 reactions.

Problematically, many out of the 73 reactions represent transports in the organism (see Table 2.5) and

it might be difficult to knock them out in vivo which means that the proposed knockout sets might

not be practicable. As can be seen in Table 2.5, not all of the reactions do have associated genes

which also makes it infeasible to knock them out in vivo. Furthermore, for example, reaction r 1110,

which is an ADP/ATP transporter and was always part of subset 1 for the chosen hyperpaths and

therefore played an important role in attaining the desired values for ethanol production and toxicity

scores, has three associated genes. This means that it might require a greater effort to actually

knockout this reaction in practice compared to other reactions that have less associated genes. The

selected knockout sets were chosen based on the number of reactions that they contained. It might

be necessary to select them based on the number of associated genes to identify knockout sets

that need the smallest amount of gene knockouts. It is however not always necessary to knock out

all associated genes of a reaction. If multiple associated genes for one reaction correspond to an

enzymatic complex, knocking out one single gene might be enough to already disrupt its activity.

For example, reaction r 1030 has five associated genes that are connected by ’and’ in the model.

Thus, knocking out one of the five genes should already interrupt the activity of this reaction.

Although certain reactions appeared in most of the selected knockout sets, a certain variability

remained in the reactions that occurred less often which might make it possible to exchange at least

some of the reactions that are more problematic or more costly (i.e. in terms of gene associations)

to knock out. This also implies that by doing more runs or by broadening the selection of knockout

sets, this choice could be further increased which could also help to identify knockout sets with fewer

gene associations.

2.6 Discussion

We showed on the example of ethanol production in yeast that our developed approach can compute

knockout sets that increase the target production and that ensure that reactions that are critical for

a tolerance against the target can be active. To apply this approach, prior knowledge or experiments

are essential to identify the reactions that are critical to improve the resistance of the microorganism

against the toxic target. Without this information, the formulated multi-objective optimization

problem is not applicable. If detailed knowledge for different reactions is on hand, their weights can

be adjusted accordingly to improve the model. It is however also possible to modify the score that

was used to capture the resistance against the toxic target if in specific cases a different model is

preferable.

First of all, we computed the Pareto front to gain valuable insights about different efficient flux

distributions in the network. As an advantage of this approach, we could see that there are some

extreme points that have very similar ethanol and biomass production values but differ considerably

in their toxicity resistance score. This already demonstrates that it is beneficial to include the

toxicity resistance score in the optimization problem because desirable values for biomass and ethanol

production can be reached without having reactions active that are critical for ethanol resistance.

Consequently, when focusing exclusively on biomass production and target production, it is possible

that knockouts are proposed that will reduce the resistance against the toxic target. The Pareto front

that displays tradeoffs between all three objectives can be used to choose more favorable outcomes
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for which knockouts should be enumerated.

Problematically, the MILP that was initially formulated to enumerate different knockout sets was not

viable. It is possible to enumerate single knockouts but they are not sufficient to enforce the aspired

flux values. For larger knockouts, the approach is unsuitable because the MILP is not restrictive

enough. Moreover, even for single knockouts, the value of this approach is questionable because in

retrospect, it seems to be easier to simply check all single knockouts instead of enumerating them.

As already proposed before, it might be possible to narrow down the enumerated knockouts to the

ones that actually lead to a change by using a min-max formulation. The resulting increase in the

complexity of the problem however might also make this approach less viable in practice, especially

for larger networks.

In the second approach, we enumerated and analyzed hyperpaths for different points in the Pareto

front. Interestingly, there was a huge overlap between all hyperpaths which confirmed that certain

parts of the metabolic network are indispensable for the production of biomass and ethanol. Moreover,

we could show the advantage of including the toxicity resistance score in our model. It must be said

that by fixing the toxicity score when enumerating the hyperpaths, the model is more restricted. This

means that all solutions that are feasible in this case are also feasible when omitting the constraint

that fixes the toxicity score to a specific value. However, when omitting the score, the feasible space

is larger and therefore, the solver is not guided to include the critical reactions in the hyperpath.

Therefore, the probability that the computed hyperpaths lead to a good toxicity resistance score

(based on the evaluation that was used) is lower. Analysing the different results revealed that

multiple reactions that are critical for the resistance against ethanol are not essential for biomass and

ethanol production.

One other benefit of the presented approach is that it is applicable to genome-scale networks. Al-

though metabolic networks are commonly subject to analyses, many approaches are only applicable

to smaller networks that represent just a condensed version of the metabolism and they struggle with

larger networks due to the increased complexity. It is however important to analyse the complete

metabolism to understand more complex relations and to model the organisms in a way that is as

detailed as possible. Our method manages to extract knockout sets for very specific conditions from

genome-scale metabolic networks.

The smallest computed knockout set contained 17 reactions. Realizing knockouts of this size in vivo

is still challenging. However, we did not prove that 17 is the smallest knockout set that is possible.

The results that we obtained with the proposed parameter settings for the random exploration were

promising but, of course, tuning the parameters further might actually also improve the results

further, e.g. lead to the computation of smaller knockout sets. Additionally, we chose hyperpaths

for the random exploration that aimed for a very high ethanol production. Giving more freedom and

reducing these expectations might also allow for the computation of smaller knockout sets.

Up to now, the presented results are purely theoretical and their practical value remains to be

evaluated biologically. Although the utilized metabolic network of yeast is very detailed and well

curated, the simulated flux distributions for the introduced knockouts do not necessarily match

reality. Furthermore, it is important to remark that it still needs to be investigated how applicable

the proposed reactions are for knockouts. As mentioned during the presentation of the results, many

of the reactions that were part of the smallest computed knockout sets were modeling different

transports in the organism. It is known that these kinds of reactions are not always usable as

candidates for knockouts in vivo. Some reactions also did not have associated genes. To avoid that
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reactions get included in the computed knockout sets that are unsuitable in practice, a list could be

provided that contains only reactions that can be knocked out in vivo. This list can, for example,

also be used to exclude reactions that have no known gene associations. By providing this type

of list, the evaluation of the different hyperpaths also needs to be adapted because it will lead to

outgoing reactions that cannot be knocked out. This means that the remaining variability of the

hyperpath can be higher because it will be less restricted. Hence, different hyperpaths might actually

get chosen as good candidates for the random exploration. One disadvantage of excluding certain

reactions is that it might also bias the outcome and it is possible to miss important insights. So

far, the approach models reactions knockouts. The smallest reaction knockouts do not necessarily

correspond to the smallest gene knockouts. Hence, it might be preferable to adapt the approach to

directly model gene knockouts.

It must also be noted that it is likely that certain genes have other functions that are not modeled

in the metabolic network. Knocking them out might impact the results in unexpected ways. On the

other hand, it could also mean that less knockouts are needed to achieve the theoretical results in

vivo. It might therefore be advantageous to perform the knockouts in a sequential way. For example,

knocking out one single gene from a reaction with multiple genes that correspond to an enzymatic

complex might be enough to already disrupt the activity.

So far, we only considered knockouts in our approach. Other methods like OptForce (Ranganathan

et al., 2010) and regulatory MCSs (Mahadevan et al., 2015) show that it is also interesting to identify

up- and downregulation that will force a specific overproduction. In our case, the values that we

wanted to enforce, which correspond to the different points in the Pareto front, were not obtainable

in the enumerated hyperpaths. Indeed, when we maximized the biomass production and fixed it to

its maximum for the consecutive minimization of ethanol production or maximization of the toxicity

resistance score, the resulting values differed from the ones of the points in the Pareto front.

The subnetworks that remain after removing all of the outgoing reactions of a hyperpath include

more than 300 reactions. This size also leads to high variability for the possible flux distributions.

Especially the biomass production was often not restricted significantly which is problematic because

we could also show that higher values for the ethanol production can only be obtained if the value

for the biomass production does not exceed a certain limit. On the other hand, we also know that

we cannot knockout any of the reactions on the hyperpath to further restrict the biomass production

because the active reactions of the hyperpath were identified as vital to reach the values of the point

in the Pareto front (i.e. for biomass production, ethanol production and toxicity resistance score).

Since we cannot knockout any of the active reactions, one possibility could be to up- or downregulate

some reactions on the hyperpath to reduce the undesired variability.

Another interesting aspect of this approach is that the overall framework is very flexible. We devel-

oped our approach to address situations where the desired target metabolite is toxic for the producing

microorganism and might therefore result in a less efficient production. Hence, we computed trade-

offs between biomass production, ethanol production and a toxicity resistance score. It is however

quite straightforward to modify this multi-objective optimization problem to account for different

circumstances. For example, if the desired target metabolite is not toxic for the microorganism,

the toxicity resistance score can be omitted from the problem. It would also be possible to com-

pute tradeoffs between biomass production and the productions of two different target metabolites.

Another example would be to consider a case where the production of the target metabolite also

leads to the production of a toxic by-product. Here, the idea would be to identify tradeoffs that
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maximize the target production and minimize the production of the by-product. Independently of the

adapted multi-objective optimization problem, hyperpaths can be enumerated accordingly, i.e. the

newly formulated objective functions have to be fixed to their optimal values. Apart from that, the

enumeration remains unchanged and also the concept for the random exploration does not change.

Since our approach is suitable for genome-scale metabolic networks, this flexibility might make it

interesting for different types of analyses.

2.7 Conclusion and perspectives

In this chapter, we presented a constraint-based approach that uses multi-objective optimization to

identify tradeoffs between biomass production, target production and a score that measures the po-

tential resistance of the microorganism against the toxic target. After tradeoffs have been computed,

our method determines subnetworks that are needed to uphold the values of the three objectives.

The different subnetworks are evaluated based on the assumption that the biomass production is

prioritized. The target production and the score are therefore always computed for the maximum

possible biomass production. This assumption can be changed if a better model is on hand. Af-

terwards, our approach uses a random exploration to identify smaller knockout sets for promising

subnetworks based on the outgoing reactions.

Applying our approach to the case-study of ethanol production in yeast, we were able to compute

knockout sets with less than 20 reactions. It remains an open question to determine what the smallest

possible size is. Additionally, we need more biological evaluation for the proposed knockout sets to

establish how viable the suggested reactions are in practice.

The advantages of our approach are that it is applicable on genome-scale metabolic networks as we

showed by using the yeast 5.01 model. Moreover, the framework is flexible and it should be possible

to alter the objectives for different scenarios. Hence, we are also interested in applying our approach

to other examples to further confirm its adaptability.

We plan on polishing the approach and making it available as a tool on the Gitlab of the team. After

obtaining some more biological opinion from collaborators on our results, we want to submit this

work as a paper later this year.
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3.1 Introduction

This chapter is based on the publication (Ziska et al., 2020) that was submitted to Bioinformatics.

The work is the result of a collaboration with Ricardo Andrade and Mariana Ferrarini. It is the

continuation of an approach that Alice Julien-Laferrière developed during her PhD (Julien-Laferrière,

2016). This work was performed using the computing facilities of the CC LBBE/PRABI.

The increasing availability of metabolomic data and their analysis are improving the understanding of

cellular mechanisms and elucidating how biological systems respond to different perturbations (Sevin

et al., 2015). Metabolomics can identify the metabolic capacities of an organism and this fact can

be used to obtain a metabolic profile that characterizes the physiological response of a cell, tissue or

organism to stress or to a general perturbation (Roessner and Bowne, 2009). Different network-based

strategies for metabolomic data analysis have been recently reviewed in (Perez de Souza et al., 2020)

and amongst others, such strategies can be used to establish associations between metabolites or to

integrate them into metabolic pathways.

Metabolic profiles are often analyzed and interpreted with the help of bioinformatic software such

as MetExplore (Cottret et al., 2018; Frainay et al., 2019), MetaboAnalyst (Xia et al., 2015;

Chong et al., 2018) or 3Omics (Kuo et al., 2013) that can identify the set of metabolites with a

significant change in their concentration. The metabolomic data are projected on the annotated

metabolic pathways in order to highlight the processes that may be linked to the observed changes.

The aforementioned software also try to integrate different kinds of omic data (such as transcriptomic,

metabolomic or proteomic data) in order to give a deeper understanding of the studied mechanisms

(Cambiaghi et al., 2017). Different approaches were reviewed in (Rosato et al., 2018; Ivanisevic

and Want, 2019; Stanstrup et al., 2019) and software for the enrichment analysis of metabolomic

data were evaluated and their results compared in (Marco-Ramell et al., 2018). However, metabolic

pathways have subjective definitions and can differ between databases (Ginsburg, 2009). Additionally,

this kind of analysis can make it hard to identify the connections between metabolites since they can

be part of many pathways and it is thus possible to miss paths which traverse several pathways.

Another approach is to use graph-based methods that allow us to consider the whole metabolism as

an integrated system focusing on the parts that are connecting the metabolites of interest. Usually,

these methods rely mainly on the network structure, chemical information and on an input list of

metabolites (Frainay and Jourdan, 2017).

In (Acuña et al., 2012a; Milreu et al., 2014), a method is proposed in this direction that is based on

the enumeration of metabolic stories. A metabolic story is defined there as the set of reactions that

summarize the flow of matter from a set of source metabolites to a set of target metabolites and is

characterized as a maximum directed acyclic sub-graph connecting the metabolites of interest. One

of the drawbacks of this approach is that a metabolic story is acyclic and thus, it is not possible to

obtain sets of reactions that contain cycles. However, cycles are common in metabolic networks and

this assumption might thus not reflect reality. Additionally, it does not take the stoichiometry of the

reactions into account. This can in turn lead to a set of reactions that is not feasible in practice.

Metabolite concentrations have been used to assess the responses to small perturbations in the

context of constraint-based models (Palsson, 2000; Covert and Palsson, 2003; Klamt et al., 2014). In

(Reznik et al., 2013), the authors used a method that is derived from the classical flux balance analysis

(FBA) framework. They showed that the variables of the dual problem, the so-called shadow prices,

which correspond to the sensitivity of FBA to imbalances in the flux, can indicate if a metabolite

is a growth-limiting metabolite in FBA. In (Rohwer and Hofmeyr, 2008; Christensen et al., 2015),
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methods are presented to identify regulatory metabolites and paths by varying in silico their known

concentrations in a measured steady-state using supply-demand analysis. Therefore, these methods

are based on the response of an organism to a relatively small perturbation and on the influence of the

metabolite concentrations on the reaction rates of the system to return to the original equilibrium.

In this work, we focus not on the metabolite pools in one condition but on the difference of the

obtained measurements between two conditions. We suppose that the difference of metabolite

pools between two metabolic states can provide information on the transient state, that is, on

the transition between the two measured conditions. In (Sajitz-Hermstein et al., 2016), the authors

provide a method to integrate relative metabolomic measurements in order to make predictions about

differential fluxes. They used a constraint-based approach which minimizes the distance between the

two flux vectors of the two different states based on the ratio between the measured metabolite

concentrations in both conditions. For both states, steady-state is assumed for the flux vectors. The

authors identify differential fluxes between the two conditions whereas our approach will aim to find

reactions that are potentially active during the transient state.

In (Case et al., 2016), a similar problem was studied. The authors investigated reachability problems

in chemical reaction networks. Given two different states of the network, the goal is to identify a

path that leads the network from the first state to the second one. They prove that this problem can

be solved in polynomial time. However, they also discuss that a variant of this problem in which the

maximum size of the path is fixed is more difficult to solve. Our approach overcomes this limitation

and is able to minimize the number of active reactions which is important since we are interested in

identifying only the parts of the network that are potentially active during the transient state.

The method we propose uses a constraint-based modeling to enumerate sets of reactions that explain

the changes in concentrations for some measured metabolites, i.e. how the system moved from a

state to another. We implemented our approach in a software we called Totoro (for ”Transient

respOnse to meTabOlic pertuRbation inferred at the whole netwOrk level”), that is publicly available

at https://gitlab.inria.fr/erable/totoro. It is implemented in C++ and depends on IBM CPLEX

which is freely available for academic purposes. We also tested our method with data from pulse

experiments with different carbon sources (glucose, pyruvate and succinate) in Escherichia coli.

3.2 Methods

A metabolic network can be represented as a directed hypergraph H(V,R,S) where V is the set of

vertices, R the set of hyperarcs and S the stoichiometric matrix. Each c ∈ V represents a metabolite

of the network and each hyperarc r ∈ R a reaction that connects two sets of disjoint metabolites

Subsr, P rodr with Subsr, P rodr ⊆ V. The stoichiometric matrix S is a m × n matrix where each

column represents a reaction and each row a different metabolite. It contains the stoichiometric

coefficients which are positive if a metabolite is produced by a reaction and negative if it is consumed.

The set X ⊆ V contains all measured metabolites. The metabolomic data is given as a list which, for

each measured metabolite in X, contains an interval. This interval describes by how much the internal

metabolite concentration changed between two different states. Usually, small deviations for the

measurements are available which can be used to calculate the minimum and the maximum possible

difference between the internal metabolite concentrations. Furthermore, all reversible reactions of

the network are split into forward and backward reactions.

We are interested in solving the following problem: Given a network H and a list containing the
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changes for some metabolite concentrations before and after a perturbation, we want to identify sets

of reactions that were involved in diverting the system from the initial state before the perturbation

to the state after the perturbation. We will present a constraint-based approach to solve this problem

where the change of concentrations between two states is represented as an interval.

3.2.1 Core model

The variation of the concentrations in time of the metabolites in X can be written as:

dX

dt
= (S · v)X . (3.1)

In this equation, v is a flux vector and the (·)X operator means that only the entries of the vector

corresponding to the metabolites in X are taken into account. We use [X]t to denote the con-

centration for the metabolites in X at time point t. Considering two points t0 and t1 in time and

∆X = [X]t1 − [X]t0 , one can write:

∆X = S · ϕ. (3.2)

In this case, each entry of the vector ϕ can be interpreted as the overall number of moles that

passed through the reaction j during the time interval [t0, tf ] which corresponds to the area under

the reaction rate curve in this time interval:

ϕj =

∫ t1

t0

vj(t) · dt. (3.3)

Due to biological and technical variability that can arise from different replicates of the same ex-

periment, we assume that the measured variations in concentrations of the metabolites in X are

represented by an interval rather than using a fixed number:

∆X = [∆min
X , ∆max

X ]. (3.4)

Furthermore, for the non-measured metabolites, we do not know if their concentration changed or

not. Therefore, we will assume that a small variation is possible for all non-measured metabolites

X = V \X:

∆X = [εmin, εmax]. (3.5)

Based on these assumptions, we can model the production or consumption of metabolites between

two states by the following constraints:

∆min ≤ S · ϕ ≤ ∆max

0 ≤ ϕj ≤ uj ∀j ∈ R.
(3.6)

All ϕj are positive and have an upper bound uj . ∆min is a vector composed of ∆min
X and εmin while

∆max is composed of ∆max
X and εmax.

The numerical values of the ϕ vector are difficult to interpret. The variable ϕ can only be zero or

have a positive value. This means that we do not know if the activity of the corresponding reaction
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was increased or decreased during the shift compared to the baseline. We only know that if ϕj is zero

in the solution, reaction j was not active during the shift while if ϕj has a non-zero value, reaction

j was active during the shift. Hence, we are only interested in the reactions that have a non-zero ϕ

because we want to identify the part of the metabolic network that was active during the metabolic

shift. These reactions are represented by the support of the vector ϕ.

3.2.2 Minimizing the number of reactions and the variation of the concentrations

for the non-measured metabolites

Since the number of possible paths that can explain the measured metabolic shifts can be very large,

we will focus on finding the smallest solutions with regard to the number of active reactions that

still explain the metabolic shift. This corresponds to the parsimonious assumption that the fewest

possible resources are used or the smallest changes are made. Thus, we are interested in identifying

minimum sets of reactions that play a major role in the metabolic shift. For each reaction j, a binary

variable yj is then introduced that is set to zero if and only if the corresponding ϕj is zero and

therefore, the reaction is not part of the solution. In this way, these variables will correspond to the

support vector of ϕ and it will be sufficient to minimize their sum:

yj = 0↔ ϕj = 0 ∀j ∈ R

yj ∈ {0, 1}.
(3.7)

Additionally, to prevent that both a reaction j and its reversible j̄ can be picked at the same time

for one solution, the following constraint is used:

yj + yj̄ ≤ 1 ∀(j, j̄) ∈ R. (3.8)

To minimize the number of reactions that are part of the solution, the objective function is written

as:

min

m∑
j=1

yj . (3.9)

However, we are not only interested in minimizing the number of reactions in the solution but

also in minimizing the variation in concentration for the non-measured metabolites X. Since the

measured compounds are usually the more important ones for analyzing the biological experiment, it

is reasonable to aim for solutions where other compounds do not accumulate or deplete a lot. This

leads to the following minimization:

min
∑
|S · ϕ|X . (3.10)

On the other hand, we are trying to explain as much change in the concentration as possible for the

measured metabolites:

max
∑
|S · ϕ|X . (3.11)
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To combine both ideas in one objective function, a weight λ is used for both objectives:

minλ

m∑
j=1

yj + (1− λ)
∑
|S · ϕ|X − (1− λ)

∑
|S · ϕ|X . (3.12)

The value for λ should lie between 0 and 1. Finding a good balance between these two objectives

can be challenging but necessary to identify meaningful biological solutions. This will be further

discussed in Section 3.3.

Summing up, the mixed-integer linear program (MILP) that is implemented in our software Totoro

is the following:

min
ϕ,y

λ

m∑
j=1

yj + (1− λ)
∑
|S · ϕ|X − (1− λ)

∑
|S · ϕ|X

s.t ∆min ≤ S · ϕ ≤ ∆max

0 ≤ ϕj ≤ uj ∀j ∈ R

yj = 0↔ ϕj = 0 ∀j ∈ R

yj + yj̄ ≤ 1 ∀(j, j̄) ∈ R

yj ∈ {0, 1};λ ∈ (0, 1);uj , ϕj ∈ R.

(3.13)

3.2.3 Enumerating different solutions

To enumerate different solutions, once a solution is found, it must be excluded for the next iteration.

Two solutions are different if they do not contain the same reactions. We are using the following

constraint where y∗ is a previously found solution vector:

∑
j∈R:y∗

j =1

yj ≤
m∑
j=1

y∗j − 1. (3.14)

This prevents that the exact same combination of reactions gets chosen again. Afterwards, we can

solve the updated MILP again to compute a different solution. We repeat this process until no more

new solutions can be found or until a desired number of solutions has been computed.

3.2.4 Dealing with source/sink reactions and co-factors

In graph-based methods, it is known that looking for shortest paths without taking into consideration

co-factors (for example ADP) can lead to irrelevant paths because such metabolites can introduce

shortcuts through the network (Frainay and Jourdan, 2017). In our case, although we are using a

constraint-based approach and taking stoichiometry in account, similar problems can arise. When

considering only shortest paths, depending on the presence of source or sink reactions and/or the

value chosen for εmin and εmax, the active reactions in the solution can be highly disconnected. This

makes them biologically less meaningful because it is not possible to identify possible pathways that

played a role during the metabolic shift.

For example, if only the size of the solution is minimized, it is possible that changes in the concen-

tration are just transferred to a close source or sink without actually selecting a pathway. To avoid

this effect, it is important to block transport reactions in the network. Blocking transport reactions
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means that they cannot be part of a solution. However, if the substrates of a sink reaction are

accumulated or the products of a source reaction are depleted in a solution, this indicates that the

corresponding transport reaction can be part of the solution. Their use is limited by the chosen ε

but it can be set to a very low or large value to imitate an infinite source or sink. Specific sources or

sinks can be added to the problem by specifying a large negative ∆min or a large positive ∆max for

certain metabolites. Therefore, transport reactions should always be blocked by setting their lower

and upper bounds to zero.

A similar effect can happen if the value of epsilon for the non-measured metabolites is chosen

too big. In this case, the changes in concentration of the measured metabolites can simply be

distributed on (accumulated on or taken from) the nearby non-measured metabolites. This prevents

that longer pathways are chosen which would actually connect several measured metabolites and could

explain how the depletion of one measured metabolite leads to the accumulation of another measured

metabolite (and vice-versa). However, this issue can be addressed by decreasing the value of λ in the

objective function and thereby giving more weight to the function that minimizes the accumulation

in non-measured metabolites. This should result in solutions that are larger but that connect the

measured metabolites better than when only the number of reactions is minimized. Furthermore,

it might be preferable to choose smaller epsilons to further restrict the accumulation/depletion of

non-measured metabolites.

Before we minimized the accumulation and depletion of non-measured metabolites, we tried to

prevent that shortcuts through the network are taken by limiting the amount of connected reactions

that appear in the solution as active for each metabolite. Co-factors can usually have a very high

degree which means that they are involved in many reactions. To prevent a high degree in the

solution, the following constraint was used:∑
j∈R:i∈Prodj∪Subsj

yj ≤ D ∀i ∈ V. (3.15)

As a consequence, a metabolite cannot have more than D producing and consuming reactions that

are part of the solution.

However, after including the minimization of the accumulation and depletion of non-measured

metabolites in the objective function, we omitted this constraint. It was not necessary to treat

co-factors differently since we can still obtain connected pathways as will be shown in Section 3.3.

3.2.5 Calculating the input deltas

To apply Totoro, it is necessary to provide the input deltas for measured metabolites. In most cases,

they will not be available but they have to be calculated from the available metabolite concentrations

of the different two conditions.

In the data that we used to apply Totoro, internal metabolite concentrations for the first condition

(glucose baseline experiments) were given. They also included deviations that resulted from different

replicates of the same experiment. The concentrations for the second condition (a pseudo-steady

state after a pulse) had to be calculated from the metabolite concentrations of the first conditions

and a fold change.

Therefore, for each measured metabolite x ∈ X, we computed the minimum (maximum) inter-

nal concentration for the pseudo-steady state [x]pss−min ([x]pss−max) using the baseline glucose
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concentration [x]baseline with the given deviations dx and the fold changes fx:

[x]pss−min = ([x]baseline − dx) · fx
[x]pss−max = ([x]baseline + dx) · fx.

(3.16)

Afterwards, we computed the minimum difference ∆min
x and maximum difference ∆max

x between the

internal concentrations of the glucose baseline and the pseudo-steady state:

∆min
x = [x]pss−min − ([x]baseline + dx)

∆max
x = [x]pss−max − ([x]baseline − dx).

(3.17)

When the differences are negative, ∆min
x and ∆max

x are swapped.

The interval defined by ∆min
x and ∆max

x must have a distinct direction meaning that it is not possible

that ∆min
x is negative and ∆max

x is positive. Therefore, measured metabolites with a fold change

of 1.0 are considered as non-measured metabolites and are assigned the chosen generic ε. In some

cases, for example if the fold change is close to 1.0 and the baseline deviations are large enough, it

is possible that ∆min
x is negative and ∆max

x is positive. If one of them is clearly closer to zero, it will

be set to zero. If no clear direction is determinable, the corresponding metabolite will be treated as

a non-measured metabolite.

3.3 Results

To evaluate our approach, we used data from different pulse experiments with different carbon

sources in E.coli as presented in (Taymaz-Nikerel et al., 2013). The authors measured the internal

concentrations for several metabolites for a glucose baseline and for glucose, pyruvate and succinate

pulse experiments. These data were used to apply the method on the E.coli core model (Orth et al.,

2010a) and the E. coli iJO1366 model (Orth et al., 2011) available from the BiGG database (King

et al., 2015b). The E. coli core model consists of 72 metabolites and 95 reactions, the E. coli

iJO1366 model of 1805 metabolites and 2583 reactions.

We were interested in the difference between the glucose baseline and the pseudo-steady state shortly

after the pulse experiment. In (Taymaz-Nikerel et al., 2013), the authors provided the internal

concentrations for the baseline, including the deviations for their measurements and the fold changes

for the three different pseudo-steady states which we used to calculate the internal concentrations for

each pseudo-steady state. In (Taymaz-Nikerel et al., 2013), deviations for the measured concentration

of the glucose baseline are given that were derived from several replicates of the same experiment. We

used them to be able to calculate the minimum difference ∆min
X and maximum difference ∆max

X in the

concentrations between the glucose baseline and each pseudo-steady state. A detailed explanation

can be found in the Supplementary Material Section 3.2.5. The calculated ∆min
X and ∆max

X for all

three pulse experiments can be found in the Supplementary Tables A.6, A.7 and A.8.

We used all measured metabolites that are present in the network and that had a significant change

in their concentration as input. It should be noted that a change for each given metabolite must be

either positive or negative. For further details, see the Supplementary Material Section 3.2.5.

Furthermore, transport reactions cannot be chosen as part of the solution and therefore glucose,

pyruvate and succinate were added as sources for the corresponding pulse experiment. Oxygen was

added as another source because in (Taymaz-Nikerel et al., 2013), the authors identified increased
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oxygen uptake rates during the pulse experiment. To allow unlimited growth, the biomass was added

as sink.

The expected active reactions in the core metabolism of E. coli are displayed in Figure 3.1 for each

pulse experiment.

3.3.1 E. coli core model

At first, the method was applied using the E. coli core model. To better understand how the different

parts of our model impacted the solutions, we did several runs with different values for λ (0.1, 0.5

and 0.9) and ε (5 and 10) for each pulse experiment. Although a single solution should be enough to

identify some pathways responsible for the shift, we wanted to see if we could also obtain alternative

pathways. Furthermore, we wanted to investigate how the solutions evolve when they are slightly

suboptimal. For each different parameter setting, 100 different solutions were therefore enumerated.

The results are displayed using Escher (King et al., 2015a) in the Supplementary Figures A.1 to

A.15.

In general, we could observe that solutions with λ = 0.1 are preferable since usually the goal is to

have a final solution which is overall more connected. In this way, we were able to extract complete

pathways that played a role during the metabolic shifts. This was the case for all three pulse experi-

ments. A higher λ leads to solutions that are less connected since the optimizer prioritizes solutions

with fewer active reactions in this case. However, this means that it is difficult to obtain complete

pathways as solutions and it might be hard to interpret these solutions biologically. Nevertheless, the

user is able to fine-tune the number of reactions in the final solution and the degree of connectivity

(for instance, if the goal is to highlight only parts of the complete metabolic network instead of

finding a connected pathway). We show this fine-tuning for the case of the glucose pulse, in which

decreasing the parameter ε was used to obtain more connected pathways (see Figure 3.3).

By adjusting the parameters λ and ε, Totoro could propose complete pathways for all three pulse

experiments. The predicted solutions did not use co-factors as shortcuts through the network. We

therefore did not modify our method further to treat co-factors separately.

Pyruvate pulse

For the pyruvate pulse, we expected that the activity of the TCA cycle would go up and that reac-

tions for gluconeogenesis would be active (see Figure 3.1). Both observations could be reproduced

for λ = 0.1 for ε = 5 or 10. The TCA cycle was proposed to be active by Totoro in all the

100 enumerated solutions. The four measured metabolites citrate, isocitrate, L-malate and fumarate

had positive input deltas and could thus be used as sinks. The results showed how the TCA cycle

was fed from pyruvate either by the Phosphoenolpyruvate carboxylase (PPC) or by the combina-

tion of Pyruvate dehydrogenase (PDH) and Citrate synthase (CS). Furthermore, the pathway from

pyruvate to D-fructose 6-phosphate was active, thereby also producing the biomass precursor glycer-

aldehyde 3-phosphate (G3P) in all of the 100 solutions. The pathway from pyruvate to G3P contains

five reactions including the reversible reactions Enolase (ENO), Phosphoglycerate mutase (PGM),

Phosphoglycerate kinase (PGK) and Glyceraldehyde-3-phosphate dehydrogenase (GAPD). Especially

here, it is important to state that all these reversible reactions were predicted in the correct direction

going from pyruvate towards G3P. One important difference between the results for ε = 5 and ε

= 10 was that for ε = 5, the biomass reaction was chosen in all solutions which makes it slightly
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Figure 3.1: Expected active reactions for different pulse experiments. These essential reactions along
with their expected directions are highlighted in red whereas other non-essential reactions (but which
nonetheless could be chosen) are depicted in grey. Each pulse is indicated by the short yellow arrow
(Glc: glucose; Pyr: pyruvate and Suc: Succinate). During the glucose pulse, the glycolysis reactions
(depicted in green) should be active in order to generate ATP from the hydrolysis of glucose. On the
other hand, the pyruvate and succinate pulse experiments should show gluconeogenesis activation
(also depicted in green but in the opposite sense), generating glucose-6-phosphate from these two
carbon sources. Furthermore, the TCA cycle (depicted in blue) can be fed from pyruvate during the
pyruvate and glucose pulses. During the succinate pulse, the overflow in the TCA cycle should lead
to the production of pyruvate with a subsequent activation of gluconeogenesis to produce biomass
precursors. The pentose phosphate pathway (depicted in purple) is most likely active in all pulses
in order to generate biomass precursors; however, since this pathway is a mere interconversion of
carbohydrates, there is no particular expectation as to the actual direction of these reactions.
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Figure 3.2: E. coli core model - Results for pyruvate pulse (λ = 0.1, ε = 5). The metabolites that
were given as input are highlighted in blue if the corresponding input deltas were below zero and red
if they were above zero. Reactions that are highlighted in orange were chosen in almost all of the
enumerated solutions. Reactions that are yellow were chosen only in around half of the solutions.
White reactions were not chosen in any solution. The expected reactions of the gluconeogenesis and
part of the TCA cycle are active in all 100 solutions. The reversible reactions of the gluconeogenesis
are chosen in the correct direction. The figure was created using Escher (King et al., 2015a).
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Pulse experiment 1st sol. 100th sol. Abs. diff. %

Pyruvate (λ = 0.1, ε = 5) -32.1394 -30.6635 1.48 5.5%

Glucose (λ = 0.1, ε = 1.2) 5.3830 6.5582 1.18 21.8%

Succinate (λ = 0.1, ε = 5) -158.1770 -157.5760 0.60 0.4%

Table 3.1: Comparison of different objective values for the best runs for each experiment. Since
we are not fixing the objective value of the first solution in our optimization problem, the objective
values for the subsequent solutions can be worse. In this table, we are comparing the difference in
the objective values between the first solution and the 100th solution. In addition to the absolute
differences, also the percentage of how much the objective value worsened compared to the first
solution is displayed. The underlying optimization problem is a minimization problem. Therefore,
smaller objective values are better.

preferable. Besides the biomass precursor G3P, Totoro proposed the production of alpha-D-ribose

5-phosphate (R5P) via ribose-5-phosphate isomerase (RPI) and the production of D-erythrose 4-

phosphate (E4P) via Transketolase (TKT2). The results for λ = 0.1 and ε = 5 are shown in Figure

3.2 (see Supplementary Figure A.5 for ε = 10).

For λ = 0.9 (see Supplementary Figures A.1 and A.2), neither the TCA nor the gluconeogenesis

pathway were proposed to be active. Setting λ to 0.5 already improved the results: the TCA cycle

was proposed as active but the gluconeogenesis pathway was only recovered in less than 50% of the

solutions (see Supplementary Figures A.3 and A.4).

We do not fix the objective value in our optimization problem after obtaining the first solution but

in every iteration, the minimization problem is solved again after excluding the newly found solution.

This means that the next solution can have the same objective value but it is also possible that the

objective value is worse than in the previous iteration. In this particular case, the 100th solution had

an objective value that is only 5.5% worse than the objective value of the first solution (see Table

3.1) which shows that, as concerns optimality, all 100 solutions were very similar. They also had very

similar active reactions. Comparing the 100 enumerated solutions for λ = 0.1 and ε = 5, a total of

43 reactions with a specific direction were chosen in all solutions. Out of these 43 reactions, 24 were

chosen in every solution (including reactions in the TCA cycle and the gluconeogenesis pathway).

This means that certain core pathways were consistently picked also in slightly suboptimal solutions.

Looking at only the ten best solutions, already 38 out of the 43 reactions were identified. The missing

reactions were mostly part of the pentose phosphate pathway which also contains reactions that were

part of the solution only in a few cases. Even with only ten solutions, we were able to obtain the

alternative pathways feeding the TCA cycle (PPC/PDH). This indicates that it is not necessary to

enumerate a large amount of solutions to get significant results and to identify alternative pathways.

Glucose pulse

For the glucose pulse, we expected that reactions that are part of the glycolysis pathway would be

active as they convert glucose into pyruvate generating energy. Consequently, the TCA cycle should

also be fed (see Figure 3.1). For λ = 0.9 and 0.5, the active reactions proposed by Totoro were

disconnected and it was not possible to identify active pathways. However, even for λ = 0.1 and ε

= 5, only disconnected parts of the network were active (see Figure 3.3). Since we were interested

in connected pathways, we decided to fine-tune the solutions by lowering the value of ε as much as

possible. The result for ε = 1.2 can be found in Figure 3.3. Lowering the value of ε to 1.1 rendered
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(a) λ = 0.5 and ε = 5 (b) λ = 0.1 and ε = 5

(c) λ = 0.1 and ε = 2 (d) λ = 0.1 and ε = 1.2

Figure 3.3: E. coli core model - Results for glucose pulse. The labels for reaction and metabo-
lite names were omitted. The metabolites that were given as input are highlighted in blue if the
corresponding input deltas were below zero and red if they were above zero. Reactions that are
highlighted in orange were chosen in almost all of the enumerated solutions. Reactions that are
yellow were chosen only in around half of the solutions. White reactions were not chosen in any
solution. In (a) and (b), even for λ = 0.1 the active reactions remain disconnected. In (c) and
(d), lowering ε allowed for a fine-tuning of the solution which made it possible to obtain complete
pathways. All figures were created using Escher (King et al., 2015a).
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the underlying optimization problem infeasible. As previously mentioned, decreasing the value of ε

allowed us to obtain more connected solutions. For ε = 1.2, we got solutions that linked intermediate

metabolites of the glycolysis pathway to the TCA cycle through the PPC reaction. Followed by a

reversed Malate dehydrogenase (MDH), reversed Fumarase (FUM) and Fumarate reductase (FRD7),

the solutions allowed for an accumulation of the input metabolites L-malate, fumarate and succinate.

However, in some solutions, the TCA cycle was additionally fed by PDH and Citrate synthase (CS)

to account for the accumulation of citrate. This means that when the solutions are disconnected

and this is unwanted, better results might be obtained by lowering the value of parameter ε.

Again, the 100 solutions were very similar (λ = 0.1, ε = 1.2). They accounted for a total of 47

reactions (with distinct directions) and 30 of these appeared in all solutions. Similarly to the pyruvate

pulse, the difference in these solutions were mostly based on a few reactions that are not part of

the main pathways (glycolysis/TCA cycle). One critical observation is that the D-glucose transport

reaction (GLCpts) was not part of every solution although glucose should be used as important

source. However, the bacteria were already grown in glucose as the baseline, which in turn might be

a reason why glucose was already internalized prior to the initial pulse. When comparing the objective

values for these 100 solutions, the absolute difference between the first solution and the 100th one

was similar to the one observed for the pyruvate pulse (see Table 3.1). However, proportionally this

value was 21.8% worse than for the first solution. When we repeated the run for λ = 0.1 and ε = 1.2

with 50 iterations, the D-glucose transport reaction was part of 42 solutions. For ten iterations, this

reaction was picked in all ten solutions. Hence, the glucose transport reaction was active in solutions

with the best objective values. This showed that although the solutions remained very similar, there

was a decline in their quality. For the pyruvate pulse, we saw that it is not necessary to enumerate

a large amount of solutions.

Succinate pulse

After the succinate pulse, part of the TCA cycle should always be active. Furthermore, the glu-

coneogenesis pathway should be active to produce G3P and glucose-6-phosphate from succinate.

Again, the results for λ = 0.5 and 0.9 led to smaller solutions that were more disconnected (see

Supplementary Figures A.12 - A.15). Therefore, we focused on the analysis of the results for λ = 0.1

(see Supplementary Figure A.16 and Figure 3.4). For both ε = 5 and 10, succinate entered the TCA

cycle and turned into oxaloacetate. Totoro proposed two possibilities to output the excess of the

TCA cycle: Either phosphoenolpyruvate (PEP) was produced by PEP carboxykinase (PPCK) or by

PEP synthase (PPS) using pyruvate as intermediate substrate. Subsequently, PEP was, as expected,

transformed to G3P. The lower right part of the TCA cycle predicted as active can be explained by

the fact that the concentration of L-glutamate decreased and the concentration of citrate increased.

The active reaction in this part connected these two metabolites. Furthermore, reactions of the

pentose phosphate pathway were proposed as active and the biomass precursors R5P, E4P and G3P

were produced.

The results for ε = 5 and 10 were very similar. For example, one difference was that for ε = 10,

the reverse D-lactate dehydrogenase (LDH) was predicted to be active in 56 solutions which led to

a small accumulation of D-lactate. It does make sense biologically because in general, D-lactate

is one of the main products of the fermentation but we do not have the measurements for the

concentration of D-lactate for this pulse experiment to actually verify this observation. However,

in total, the differences were negligible and in contrast to the glucose pulse, the parameter ε had a
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Figure 3.4: E. coli core model - Results for succinate pulse (λ = 0.1, ε = 5). The metabolites that
were given as input are highlighted in blue if the corresponding input deltas were below zero and red
if they were above zero. Reactions that are highlighted in orange were chosen in almost all of the
enumerated solutions. Reactions that are yellow were chosen only in around half of the solutions.
White reactions were not chosen in any solution. The reactions of the gluconeogenesis pathway and
the reactions that transform succinate in the TCA cycle and subsequently into pyruvate are active
in all 100 solutions. The figure was created using Escher (King et al., 2015a).
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lower impact on the outcome.

Again, the core reactions of all 100 solutions were very similar. In total, 41 reactions (with distinct

directions) appeared in all 100 solutions (for λ = 0.1, ε = 5). We observed that 22 of these were

always active (mostly in the gluconeogenesis pathway and part of the TCA cycle). The objective

values for all 100 solutions were extremely close (see Table 3.1).

3.3.2 E. coli iJO1366 model

Based on the results for the E. coli core model, we only did runs with λ = 0.1 for the E. coli iJO1366

model. The inputs were updated because this network contains more metabolites and therefore, more

measured metabolites could be added. The amount of iterations was decreased to ten because the

runtime in the larger network is significantly higher and we had already established in the core model

that it is not necessary to enumerate a larger amount of solutions. To decrease the runtime for each

solution, CPLEX was configured differently. The relative MIP gap tolerance was set to 0.05 which

means that the solver will stop an iteration if a solution is found that is within 5% of the optimal.

This allows for a faster result and we could see in the core model that the first 100 solutions tend to

be very similar. This means that even if we are enumerating slightly suboptimal solutions, we should

be able to compute solutions that are very similar to the actual optimal solution. If the 5% limit is

not reached after 48h, the iteration is stopped. The memory usage of CPLEX was limited to 10 GB.

The runtime for the different pulse experiments differed a lot. The results for the pyruvate and

glucose pulse were computed on a cluster. For the pyruvate pulse, the 5% limit was reached only in

three iterations (see Supplementary Table 3.2). All other iterations were stopped after 48h. However,

all solutions obtained were within 7% of the optimum. Thus, we still took them into account when

analyzing the predicted active reactions. In none of the iterations for the glucose pulse, the 5% limit

was reached. The obtained solutions were within 8.5% of the optimal value (see Supplementary

Table 3.3).

In contrast to the pyruvate and the glucose pulse, the 5% limit was reached in all iterations for the

succinate pulse and computing all ten solutions took less than 5 minutes on a personal machine

(2.90GHz Intel i7-7820HQ CPU, 16GB RAM). This shows that the constraints describing the input

deltas in the MILP have a large influence on the difficulty of the optimization problem, and thus also

on the runtime.

However, although the obtained solutions were suboptimal, the active reactions predicted by Totoro

for the core metabolism are very similar to the best results of the E. coli core model for all three

pulse experiments.

The additional measurements that were added as input deltas for the large network were mostly

amino acids (see Supplementary Tables A.6 to A.8). In (Waschina et al., 2016), the authors show

for the example of amino acid production in E. coli how the production cost for individual amino

acids can depend on the available carbon source, and reactions close to the entry point of the carbon

source might have considerably higher fluxes (see Figure 3.5). Indeed, from the experimental data,

valine only accumulated during the pyruvate pulse, and was depleted with the other two carbon

sources. Pyruvate is a direct precursor for valine production. Therefore, we expected that reactions

of the valine metabolism should play a greater role in the predicted results for pyruvate compared to

the other two pulses. Totoro predicted a higher turnover from pyruvate to valine, which resulted

in the accumulation of this amino acid. Even though the pathway was also predicted as active for

the glucose pulse, it was consumed more in this case (see Supplementary Table 6). In accordance
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Iteration Objective value Optimality (%) Runtime (h)

1 -135.112 5.66 48

2 -134.915 5.48 48

3 -134.879 5.00 29

4 -134.902 6.19 48

5 -134.976 5.00 9

6 -135.309 5.00 23

7 -135.303 6.62 48

8 -135.142 6.31 48

9 -135.117 5.65 48

10 -135.146 6.45 48

Table 3.2: Results for pyruvate (λ = 0.1, ε = 1.0). In total, 10 solutions were computed. The
table shows the objective value for each solution and how close this value is to the optimum (in %).
The solver stopped either if a solution within 5% of the optimal value was found or after 48 hours.
Only in three iterations, the 5% limit was reached. In all other iterations, the solver stopped after
48 hours. However, the obtained solutions had objective values with 7% of the optimum. Thus, we
still took them into account when analyzing the predicted active reactions.

Iteration Objective value Optimality (%) Runtime (h)

1 -147.134 8.39 48

2 -147.153 8.35 48

3 -147.744 6.58 48

4 -147.75 8.09 48

5 -147.744 7.72 48

6 -147.772 7.47 48

7 -147.809 8.32 48

8 -147.998 7.30 48

9 -148.259 7.47 48

10 -148.331 8.08 48

Table 3.3: Results for glucose (λ = 0.1, ε = 1.0). In total, 10 solutions were computed. The table
shows the objective value for each solution and how close this value is to the optimum (in %). The
solver stopped either if a solution within 5% of the optimal value was found or after 48 hours. The
5% limit was never reached and the solver always stopped after 48 hours. All computed solutions
were within 8.50% of the optimal value.
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with the predictions in (Waschina et al., 2016), another example is the accumulation of threonine

during the succinate pulse. As shown in Figure 3.5, threonine and succinate are closely connected, and

Totoro predicted active reactions leading to its accumulation during the succinate pulse. Compared

to the results for succinate, Totoro predicted more active reactions consuming threonine during

the glucose pulse and less active reactions producing threonine during the pyruvate pulse, resulting

in the depletion of this amino acid in these two cases (see Supplementary Table 6). Moreover, only

during the glucose pulse, phenylalanine was accumulated. As a result, Totoro proposed more

reactions of the phenylalanine metabolism as active compared to the pyruvate and succinate pulses,

in accordance with the predictions in (Waschina et al., 2016) of lower cost to produce this amino

acid with glucose as carbon source (see Figure 3.5).

Another interesting pathway we noticed as active only in the glucose results was the murein recycling

pathway. Murein (or peptidoglycan) is a polymer consisting of sugars and aminoacids and is a major

component of cell wall in bacteria. As bacteria grow and the cells divide, this layer of peptidoglycans

breaks and the fragments are transported back for reutilization (Goodell, 1985; van Heijenoort, 2011).

Indeed, around 60% of the murein sacculus is thought to be cleaved and reused at each generation in

E. coli (Park and Uehara, 2008). Although merely speculative at this point, as glucose is the carbon

source with the highest growth rate for E. coli, it is plausible to assume that the higher growth rate

when compared to pyruvate or succinate results in a higher amount of murein to be recycled at each

generation.

Figure 3.5: Carbon sources and closely connected amino acids. The production cost for individual
amino acids can depend on the available carbon source, and reactions close to the entry point of the
carbon source might have considerably higher fluxes. This figure shows the entry points for different
carbon sources and closely connected amino acids. For example, Pyruvate is a direct precursor for
valine production.
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3.4 Discussion

Totoro was able to predict expected pathways as active based on the differences in the measured

concentrations for some internal metabolites. We could show that in general, it is preferable to

use λ = 0.1 though the method is not critically sensible to this setup, being robust to small per-

turbations. However, it is worth noting that a higher λ can lead to smaller solutions but they are

biologically irrelevant. We were interested in extracting complete pathways that explain the changes

in concentration between two different conditions. We could see that a reduction of ε could be used

to obtain a more connected solution and therefore, in our case, a smaller ε led to better solutions.

However, there might be situations where we are more interested in only local changes around the

measurements. In this context, it might be advantageous to choose a higher ε. Furthermore, since

we are doing more than just minimizing the number of active reactions, something which would be

closer to looking for shortest paths, we did not encounter problems specific to co-factors. By splitting

reversible reactions, Totoro is able to predict distinct directions for them.

Both in the core network and in the larger network, we were able to recover pathways that make sense

biologically. Additionally, although the larger network contains more reactions and we added more

input deltas, the predictions for the core metabolism of E. coli were similar to the results for the core

network. It must be however noted that the predictions do depend on the measured metabolites. If

for large parts of the network, no metabolite concentrations are measured, Totoro will likely not

be able to find active pathways for these parts of the network.

Moreover, we could also see that it is not necessary to enumerate a high number of solutions which

is especially important when larger networks are used and the runtime of Tororo increases. We

enumerated 100 different solutions for the core network. However, in our case, the enumerated

solutions are very similar and a large amount of reactions appeared in all 100 solutions. Therefore,

already one solution would have been sufficient to infer the most important reactions that were

proposed to be active.

3.5 Conclusion

In this work, we presented Totoro, a method that identifies active reactions during the transient

state based on the differences in the concentrations for some measured metabolites in two different

states and we showed its prediction power on the example of different pulse experiments in E. coli.

Our method Totoro only uses metabolomic data as basis for the prediction. It is able to handle

full networks which take into account in the model stoichiometry, cycles, reversible reactions as well

as co-factors.

With the current developments, it gets more common to have different kinds of data available which

creates a need for methods that combine, for instance, metabolomic, transcriptomic and proteomic

data. In (Pandey et al., 2019), the authors proposed a framework that predicts differential fluxes.

It consists of three different methods that use either thermodynamic and transcriptomic data or

thermodynamic and metabolomic data or thermodynamic, transcriptomic and metabolomic data at

the same time. It might then be interesting in the future to adapt our approach to be able to

integrate different kinds of data.





Conclusions and perspectives

In this thesis, I presented two different methods for the analyses of metabolisms of microorganisms.

One approach focused on the identification of knockout sets, the other one on the analysis of

metabolic shifts.

The first method that I described was the main work of my PhD. It can be used to identify knockout

sets that increase the production of a valuable target metabolite in a microorganism in the scenario

where the target metabolite is toxic for the microorganism and its accumulation can therefore inhibit

growth or lead to a decline in its production. In the given approach, the resistance of the microor-

ganism against the toxic target was measured based on the activity of some critical reactions that

were identified experimentally beforehand.

In the studied example of ethanol production in yeast, already in the first part of the approach where

tradeoffs between biomass and ethanol productions and the toxicity resistance score are calculated,

we could indeed see that there are flux distributions that have very similar biomass and ethanol pro-

ductions but that differed significantly in the calculated toxicity resistance score. This showed that

not all of the critical reactions are necessary for growth and ethanol production. Hence, accounting

specifically for the toxicity is important to ensure that the microorganism can keep its natural resis-

tance. We could further demonstrate the advantage of the toxicity resistance score by comparing

different hyperpaths in the second part of our approach.

Applying the random exploration, we were able to identify smaller subsets of the outgoing reactions

for some hyperpaths that can be used as knockout sets. However, we still need to obtain a more

biological examination of the computed knockout sets to establish how viable they would be in

practice.

One of the main advantages of our approach is that it is applicable to genome-scale metabolic net-

works. Moreover, the described framework is flexible and it should be possible to adapt it to identify

knockout sets for different examples, not just cases where the target is toxic for the microorgan-

ism. We plan to submit our method as paper after receiving a biological view of our results from

our collaborator. Furthermore, the implementation in C++ that uses PolyScip as solver for the

multi-objective optimization problems and CPLEX for all other MILPs will be made available on

the Gitlab of our group.

The second method that I presented in this thesis is called Totoro and it can be used to analyze

metabolic shifts. Totoro predicts reactions that are active during the transient state that occurs

after a perturbation. It minimizes the change in concentrations for unmeasured metabolites and also

the number of active reactions during the transient state to account for a parsimonious assumption. It

predicts distinct directions for reversible reactions. An implementation of Totoro in C++ that uses

CPLEX as solver for the underlying MILPs is available at https://gitlab.inria.fr/erable/

totoro.

On the example of three different pulse experiments in E. coli, we could show that this constraint-

based approach is also applicable to larger network models. We could reproduce the main observations

obtained in the E. coli core model in the E. coli iJO1366 model. Furthermore, we showed that by

limiting the accumulation/depletion of unmeasured metabolites in the MILP and also prioritizing

their minimization in the objective function, Totoro can predict connected pathways. We did not

encounter problems specific to co-factors.

With the current developments, it gets more common to have different kinds of data available.

https://gitlab.inria.fr/erable/totoro
https://gitlab.inria.fr/erable/totoro
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Hence, it might be interesting to see if our method is adaptable to also integrate, for instance,

transcriptomic and/or proteomic data.
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Serrano, F., Shinano, Y., Viernickel, J. M., Vigerske, S., Weninger, D., Witt, J. T., and Witzig,

J. (2017a). The SCIP Optimization Suite 5.0. Technical report, Optimization Online.

Gleixner, A., Eifler, L., Gally, T., Gamrath, G., Gemander, P., Gottwald, R. L., Hendel, G., Hojny, C.,

Koch, T., Miltenberger, M., Müller, B., Pfetsch, M. E., Puchert, C., Rehfeldt, D., Schlösser, F.,
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Lacroix, V., Cottret, L., Thébault, P., and Sagot, M.-F. (2008). An introduction to metabolic

networks and their structural analysis. IEEE/ACM transactions on computational biology and

bioinformatics, 5(4):594–617.

Lam, F. H., Ghaderi, A., Fink, G. R., and Stephanopoulos, G. (2014). Engineering alcohol tolerance

in yeast. Science, 346(6205):71–75.

Lee, S., Phalakornkule, C., Domach, M. M., and Grossmann, I. E. (2000). Recursive milp model

for finding all the alternate optima in lp models for metabolic networks. Computers & Chemical

Engineering, 24(2-7):711–716.

Lewis, N. E., Hixson, K. K., Conrad, T. M., Lerman, J. A., Charusanti, P., Polpitiya, A. D., Adkins,

J. N., Schramm, G., Purvine, S. O., Lopez-Ferrer, D., et al. (2010). Omic data from evolved e.

coli are consistent with computed optimal growth from genome-scale models. Molecular systems

biology, 6(1):390.

Lewis, N. E., Nagarajan, H., and Palsson, B. O. (2012). Constraining the metabolic genotype–

phenotype relationship using a phylogeny of in silico methods. Nature Reviews Microbiology,

10(4):291–305.

Lin, Y. and Tanaka, S. (2006). Ethanol fermentation from biomass resources: current state and

prospects. Applied microbiology and biotechnology, 69(6):627–642.

Mahadevan, R. and Schilling, C. (2003). The effects of alternate optimal solutions in constraint-based

genome-scale metabolic models. Metabolic engineering, 5(4):264–276.

Mahadevan, R., Von Kamp, A., and Klamt, S. (2015). Genome-scale strain designs based on

regulatory minimal cut sets. Bioinformatics, 31(17):2844–2851.

Maia, P., Rocha, M., and Rocha, I. (2016). In silico constraint-based strain optimization methods:

the quest for optimal cell factories. Microbiol. Mol. Biol. Rev., 80(1):45–67.

Marco-Ramell, A., Palau-Rodriguez, M., Alay, A., Tulipani, S., Urpi-Sarda, M., Sanchez-Pla, A., and

Andres-Lacueva, C. (2018). Evaluation and comparison of bioinformatic tools for the enrichment

analysis of metabolomics data. BMC bioinformatics, 19(1):1.

Milreu, P. V., Klein, C. C., Cottret, L., Acuña, V., Birmelé, E., Borassi, M., Junot, C., Marchetti-
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Reznik, E., Mehta, P., and Segrè, D. (2013). Flux imbalance analysis and the sensitivity of cellular

growth to changes in metabolite pools. PLOS Computational Biology, 9:1–13.

Roessner, U. and Bowne, J. (2009). What is metabolomics all about? Biotechniques, 46(5):363–365.

Rohwer, J. M. and Hofmeyr, J.-H. S. (2008). Identifying and characterising regulatory metabolites

with generalised supply–demand analysis. Journal of theoretical biology, 252(3):546–554.

Romero, P., Wagg, J., Green, M. L., Kaiser, D., Krummenacker, M., and Karp, P. D. (2005). Com-

putational prediction of human metabolic pathways from the complete human genome. Genome

biology, 6(1):R2.



104 BIBLIOGRAPHY

Rosato, A., Tenori, L., Cascante, M., Carulla, P. R. D. A., dos Santos, V. A. M., and Saccenti,

E. (2018). From correlation to causation: analysis of metabolomics data using systems biology

approaches. Metabolomics, 14(4):37.
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Appendix

Supplementary material for Chapter 2

Id Biomass Ethanol Toxicity

1 0.131931 17.6169 37.0072

2 0.138936 17.6120 36.0071

3 0.145084 17.5654 35.0066

4 0.157094 17.6384 26.0035

5 0.159635 17.5740 29.0040

6 0.165196 17.5216 26.0035

7 0.168954 17.4082 28.0047

8 0.141714 16.0393 43.0142

9 0.180441 16.6031 37.0120

10 0.185103 16.7232 35.0105

11 0.187788 16.6035 36.0115

12 0.154335 15.4269 44.0196

13 0.185612 15.0541 43.0187

14 0.242456 15.2165 37.0185

15 0.248702 15.2362 36.0177

16 0.266104 15.0928 29.0171

17 0.125938 14.1871 49.0216

18 0.232248 14.9783 39.0199

19 0.103374 13.4770 52.0291

20 0.105248 13.8536 51.0233

21 0.180364 13.0074 49.0285

22 0.373706 12.0860 37.0402

23 0.382106 12.0263 36.0399

24 0.394393 12.0021 29.0387

25 0.122139 11.3336 54.0767

26 0.154353 11.0129 54.0684

27 0.317404 11.6915 44.0432

28 0.330150 11.5924 43.0425

29 0.333643 11.3673 43.0431

30 0.360746 11.8979 39.0410

31 0.371885 11.6655 38.0411

32 0.385956 11.7410 36.0409

33 0.387230 11.8536 35.0402

34 0.400338 11.8970 26.0387

35 0.134482 10.5433 54.0787

36 0.156743 10.9324 54.0688

37 0.169067 10.1430 54.0708

38 0.190924 10.5895 54.0542

39 0.195540 10.4200 54.0543
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40 0.219911 10.9508 52.0439

41 0.224613 10.3661 53.0514

42 0.229225 10.1968 53.0515

43 0.254288 10.1605 52.0486

44 0.278927 10.4040 50.0478

45 0.293279 10.3044 49.0469

46 0.332376 10.1183 45.0455

47 0.347631 10.2221 43.0447

Table A.2: Computed tradeoffs between biomass production, ethanol production and toxicity score.
Only the extreme points in the Pareto front were computed. Lower bounds for biomass production
was set to 0.1, lower bounds for ethanol production to 10. The list is sorted by descending ethanol
production.
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Reaction Id Reaction name Group

r 0074 4PP-IP5 pyrophosphorylation to 4-5-PP2-IP4 1

r 0083 5-diphosphoinositol-1-2-3-4-6-pentakisphosphate synthase 1

r 0090 6-phosphofructo-2-kinase 2

r 0093 6PP-IP5 pyrophosphorylation to 5-6-PP2-IP4 1

r 0099 acetyl-CoA ACP transacylase 1

r 0142 adenosine kinase 1

r 0195 alpha-alpha-trehalose-phosphate synthase (UDP-forming) 1

r 0226 ATP synthase 2

r 0227 ATPase (cytosolic) 1

r 0231 C-14 sterol reductase 2

r 0243 C-8 sterol isomerase 1

r 0358 diphosphoinositol-1-3-4-6-tetrakisphosphate synthase 1

r 0396 fatty acyl-ACP synthase (n-C8:0ACP) 1

r 0423 fatty-acyl-ACP synthase (n-C10:0ACP) 1

r 0424 fatty-acyl-ACP synthase (n-C12:0ACP) 1

r 0425 fatty-acyl-ACP synthase (n-C14:0ACP) 1

r 0426 fatty-acyl-ACP synthase (n-C14:1ACP) 1

r 0427 fatty-acyl-ACP synthase (n-C16:0ACP) 1

r 0428 fatty-acyl-ACP synthase (n-C16:1ACP) 1

r 0429 fatty-acyl-ACP synthase (n-C18:0ACP) 1

r 0430 fatty-acyl-ACP synthase (n-C18:1ACP) 1

r 0431 fatty-acyl-ACP synthase (n-C18:2ACP) 1

r 0511 glycogen phosphorylase 1

r 0568 inorganic diphosphatase 2

r 0667 isopentenyl-diphosphate D-isomerase 2

r 0721 malonyl-CoA-ACP transacylase 1

r 0770 NADH dehydrogenase 2

r 0858 phosphatidylethanolamine methyltransferase 2

r 0900 phospholipid methyltransferase 2

r 0901 phospholipid methyltransferase 2

r 0908 phosphoribosyl amino imidazolesuccinocarbozamide synthetase 1

r 0916 phosphoribosylpyrophosphate synthetase 2

r 0967 riboflavin synthase 1

r 0974 ribonucleotide reductase 2

r 0976 ribonucleotide reductase 2

r 0978 ribonucleotide reductase 2

r 0980 ribonucleotide reductase 2

r 1040 threonine aldolase 1

r 1051 trehalose-phosphatase 1

r 1172 glycerol transport via channel 2

r 1260 spermidine transport 2

Table A.3: Critical reactions for resistance against ethanol in yeast. Reactions in group 1 are
associated to genes whose knock out resulted in a biomass production between 50% and 70% of
the wild type biomass production under ethanol stress. Reactions in group 2 are connected to genes
whose knock out lead to less than 50% of the wild type biomass production.
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Supplementary material for Chapter 3

Network model Metabolite Id ∆min
X ∆max

X

S + L M g6p c 1.790 2.130

S + L M f6p c 0.473 0.547

S + L M 6pgc c 0.183 0.237

S + L M fdp c 3.672 3.816

S + L M pep c -1.060 -0.988

S + L M pyr c 2.632 2.776

S + L M cit c 0.760 0.860

S + L M succ c 7.255 12.605

S + L M fum c 0.880 1.616

S + L M mal L c 0.488 0.728

S + L M adp c -0.269 -0.003

S + L M gln L c -2.036 -1.492

S + L M glc D e -50.000 0

S + L M o2 c -50.000 0

S + L M biomass c 0 50.000

L M man6p c 0.205 0.255

L M val L c -0.300 0

L M his L c -0.105 -0.015

L M phe L c 0.106 0.290

L M tyr L c -0.084 -0.020

L M gly c -0.772 -0.228

L M trp L c -0.019 -0.007

L M pro L c -0.121 0

L M asp L c -1.344 -0.672

L M asn L c -0.132 0

L M thr L c -0.307 0

L M ile L c -0.087 0

Table A.6: Calculated variations interval for glucose pulse experiment. The network model indicates
if the metabolite was present in the E. coli core model (S) or in the E. coli iJO1366 model (L).
The interval for each metabolite was calculated based on the baseline concentration and the fold
change for the pseudo-steady state taking into account the given small variations for the baseline
measurements. To add glucose as a source, ∆min

glucose was set to -50. Oxygen was added as a source
in the same way. Biomass was added as a sink.
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Network model Metabolite Id ∆min
X ∆max

X

S + L M g6p c -1.045 -0.915

S + L M f6p c -0.252 -0.228

S + L M 6pgc c -0.296 -0.275

S + L M fdp c -0.723 -0.703

S + L M pep c -1.060 -0.988

S + L M cit c 1.560 1.680

S + L M icit c 1.560 1.680

S + L M fum c 0 0.272

S + L M mal L c 0.341 0.571

S + L M atp c -1.180 0

S + L M adp c -0.269 -0.003

S + L M glu L c -4.232 -3.908

S + L M gln L c -1.464 -0.888

S + L M pyr c -50.000 0

S + L M o2 c -50.000 0

S + L M biomass c 0 50.000

L M man6p c -0.335 -0.309

L M ala L e 1.986 2.172

L M val L c 0 0.480

L M leu L c 0.087 0.249

L M phe L c -0.514 -0.410

L M tyr L c -0.095 -0.035

L M gly c -0.556 0

L M trp L c -0.012 0

L M lys L c -0.240 -0.164

L M asp L c -1.806 -1.218

L M asn L c -0.184 -0.040

L M thr L c -0.394 0

Table A.7: Calculated variations interval for pyruvate pulse experiment. The network model indicates
if the metabolite was present in the E. coli core model (S) or in the E. coli iJO1366 model (L).
The interval for each metabolite was calculated based on the baseline concentration and the fold
change for the pseudo-steady state taking into account the given small variations for the baseline
measurements. To add pyruvate as a source, ∆min

pyruvate was set to -50. Oxygen was added as a
source in the same way. Biomass was added as a sink.
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Network model Metabolite Id ∆min
X ∆max

X

S + L M g6p c -0.505 -0.335

S + L M f6p c -0.107 -0.073

S + L M 6pgc c -0.252 -0.228

S + L M fdp c 0.051 0.093

S + L M pep c -0.185 -0.071

S + L M pyr c 0.847 0.921

S + L M cit c 3.160 3.320

S + L M fum c 23.720 33.592

S + L M mal L c 25.919 27.889

S + L M adp c -0.269 -0.003

S + L M glu L c -4.232 -3.908

S + L M succ c -100.000 0

S + L M o2 c -100.000 0

S + L M biomass c 0 100.000

L M man6p c -0.155 -0.121

L M val L c -0.350 -0.010

L M leu L c -0.102 0

L M his L c -0.087 0

L M phe L c -0.204 -0.060

L M trp L c -0.014 -0.001

L M asp L c 3.738 5.334

L M asn L c 0 0.140

L M thr L c 0.0410 0.547

Table A.8: Calculated variations interval for succinate pulse experiment. The network model indi-
cates if the metabolite was present in the E. coli core model (S) or in the E. coli iJO1366 model (L).
The interval for each metabolite was calculated based on the baseline concentration and the fold
change for the pseudo-steady state taking into account the given small variations for the baseline
measurements. To add glucose as a source, ∆min

succinate was set to -100. Oxygen was added as a
source in the same way. Biomass was added as a sink. Higher values for sources and sinks were
chosen due to larger calculated ∆min and ∆max than in the other two experiments.
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Active reactions in the E. coli core model

The following figures show the results for the three pulse experiments for different parameters. The

metabolites that were given as input are highlighted in blue if the corresponding input deltas were

below zero and red if they were above zero. Reactions that are highlighted in orange were chosen in

almost all of the enumerated solutions. Reactions that are yellow were chosen only in around half of

the solutions. White reactions were not chosen in any solution.
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Figure A.1: E. coli core model - Results for pyruvate pulse (λ = 0.9, ε = 10). The active reactions
are disconnected. Since λ = 0.9, the optimization prioritizes the minimization of the number of
active reactions, fewer active reactions are thus chosen in total and the accumulation/depletion of
unmeasured metabolites is higher. The figure was created using Escher (King et al., 2015a).
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Figure A.2: E. coli core model - Results for pyruvate pulse (λ = 0.9, ε = 5). Similar reactions are
active as for λ = 0.9 and ε = 10. An important difference is that the biomass reaction is part of the
solution. The figure was created using Escher (King et al., 2015a).
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Figure A.3: E. coli core model - Results for pyruvate pulse (λ = 0.5, ε = 10). After lowering λ to
0.5, the solutions already contain more active reactions and we are able to see connected pathways
that are active during the metabolic shift. The biomass reaction is only chosen in 8 out of the 100
solutions. The figure was created using Escher (King et al., 2015a).
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Figure A.4: E. coli core model - Results for pyruvate pulse (λ = 0.5, ε = 5). The results are similar
to λ = 0.5 and ε = 10. However, again the biomass reaction is active in all solutions. The figure
was created using Escher (King et al., 2015a).
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Figure A.5: E. coli core model - Results for pyruvate pulse (λ = 0.1, ε = 10). We can see connected
pathways. The expected reactions of the gluconeogenesis and part of the TCA cycle are active in
all 100 solutions. The reversible reactions of the gluconeogenesis are chosen in the correct direction.
The figure was created using Escher (King et al., 2015a).
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Figure A.6: E. coli core model - Results for glucose pulse (λ = 0.9, ε = 5). Similar to the results
of the pyruvate pulse for λ = 0.9, the active reactions in the solutions are disconnected. The figure
was created using Escher (King et al., 2015a).
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Figure A.7: E. coli core model - Results for glucose pulse (λ = 0.5, ε = 5). The result is still similar
to λ = 0.9 although more reactions get chosen more frequently in the different solutions. The figure
was created using Escher (King et al., 2015a).
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Figure A.8: E. coli core model - Results for glucose pulse (λ = 0.1, ε = 5). Even for λ = 0.1, we
are not able to see that the expected reactions of the glycolysis and parts of the TCA cycle are active
in most of the solutions. Therefore, λ was decreased further to see if it is possible to improve the
results and to obtain connected pathways. The figure was created using Escher (King et al., 2015a).
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Figure A.9: E. coli core model - Results for glucose pulse (λ = 0.1, ε = 2). After decreasing λ to
2, more reactions of the glycolysis were active more frequently in the 100 solutions. The figure was
created using Escher (King et al., 2015a).
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Figure A.10: E. coli core model - Results for glucose pulse (λ = 0.1, ε = 1.2). The previous result
could be improved even further by decreasing λ to 1.2. Reactions of the glycolysis and the TCA
cycle are active in all 100 solutions. The active reactions of the glycolysis pathway that are reversible
are chosen in the correct direction. Furthermore, in contrast to the previous results, the biomass
reaction is part of the solution. However, the reaction that transports glucose is only active in 64
out of 100 solutions. Lowering λ to 1.1 rendered the optimization problem infeasible. The figure
was created using Escher (King et al., 2015a).
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Figure A.11: E. coli core model - First ten solutions for glucose pulse (λ = 0.1, ε = 1.2). In the first
ten solutions, the transport reaction for glucose is always active. The other active reactions are very
similar to the results for 100 solutions. The figure was created using Escher (King et al., 2015a).
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Figure A.12: E. coli core model - Results for succinate pulse (λ = 0.9, ε = 10). We can see
similarities to the results of the other pulse experiments. For λ = 0.9 the active reactions are
disconnected. The figure was created using Escher (King et al., 2015a).
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Figure A.13: E. coli core model - Results for succinate pulse (λ = 0.9, ε = 5). For λ = 0.9 the
active reactions are disconnected. The figure was created using Escher (King et al., 2015a).
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Figure A.14: E. coli core model - Results for succinate pulse (λ = 0.5, ε = 10). The results are
already more connected than for λ = 0.5 but we are not able to obtain the expected gluconeogenesis
pathway. The figure was created using Escher (King et al., 2015a).
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Figure A.15: E. coli core model - Results for succinate pulse (λ = 0.5, ε = 5). The results are
already more connected than for λ = 0.5 but we are not able to obtain the expected gluconeogenesis
pathway. The figure was created using Escher (King et al., 2015a).
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Figure A.16: E. coli core model - Results for succinate pulse (λ = 0.1, ε = 10). The reactions
of the gluconeogenesis pathway and the reactions that transform succinate in the TCA cycle and
subsequently into pyruvate are active in all 100 solutions. The figure was created using Escher (King
et al., 2015a).
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Modèles et algorithmes pour étudier et exploiter le métabolisme des micro-organismes

RESUME en français

Dans cette thèse, j’ai travaillé sur deux approches différentes pour étudier le métabolisme des micro-

organismes. La première méthode identifie les knock-outs qui augmentent la production d’une

métabolite cible dans un micro-organisme dans le cas où le métabolite cible est toxique pour le

micro-organisme utilisé. Dans la première partie de l’approche, un problème d’optimisation multi-

objectifs est formulé qui calcule des compromis entre la production de biomasse, la production du

métabolite cible et un score qui mesure la résistance possible à la toxicité du métabolite cible. Dans

la deuxième partie, des knock-outs sont calculés sur la base de l’identification et de la séparation des

sous-réseaux qui peuvent atteindre les valeurs de production souhaitées identifiées dans la première

partie. L’approche est applicable aux réseaux métaboliques à l’échelle du génome, comme est montré

dans l’étude de cas sur la production d’éthanol dans la levure.

La deuxième méthode, appelée Totoro, a été développée pour l’analyse des changements

métaboliques. Elle intègre les concentrations internes de métabolites qui ont été mesurées avant

et après une perturbation dans les réseaux métaboliques. Il prédit les réactions qui étaient actives

pendant l’état transitoire qui s’est produit après la perturbation. Totoro est une approche basée

sur les contraintes qui prend en compte la stœchiométrie du réseau. La méthode est appliquée à trois

expériences d’impulsions dans Escherichia coli pour montrer qu’elle peut récupérer des voies actives

connectées et prédire des directions distinctes pour des réactions réversibles qui sont conformes aux

observations biologiques connues. Totoro est applicable aux réseaux métaboliques à l’échelle du

génome.
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Abstract in english

In this thesis, I worked on two different constraint-based approaches to study the metabolism of

microorganisms. The first method identifies knockouts that increase the production of a target

chemical in a microorganism in the scenario where the produced target metabolite is toxic for the

utilized microorganism. In the first part of the approach, a multi-objective optimization problem

is formulated that computes tradeoffs between biomass production, target production and a score

that measures the possible toxicity resistance against the toxic target metabolite. In the second

part, promising knockout sets are computed based on identifying and cutting off subnetworks that

can lead to the desired production values identified in the first part. The approach is applicable to

genome-scale metabolic networks which is shown in the case-study of ethanol production in yeast.

The second method which is called Totoro was developed for the analysis of metabolic shifts. It

integrates internal metabolite concentrations that were measured before and after a perturbation into

genome-scale metabolic networks. It predicts reactions that were active during the transient state that

occurred after the perturbation. Totoro is a constraint-based approach that takes the stoichiometry

of the network into account. The method is applied to three pulse experiments in Escherichia coli

to show that it can retrieve connected active pathways and predict distinct directions for reversible

reactions that are in accordance with known biological observations. Totoro is applicable to

genome-scale metabolic networks.

Keywords in english

metabolism; metabolic network modeling; enumeration; knockouts; metabolic shift; directed hyper-

graphs; constraint-based programming
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