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“La clef de toutes les sciences est sans contredit le point d’interrogation ; nous devons la plupart
des grandes découvertes au : Comment ? et la sagesse dans la vie consiste peut-être à se
demander à tout propos : Pourquoi ?”

La Peau de chagrin (1831), Honoré de Balzac, éd. Gallimard, coll. « Folio », 1974,
L’Agonie, p. 339
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Deux aspects de l’information utile : représentation anonymisée par

l’apprentissage profond et surveillance de prédicteur

par Clément FEUTRY

L’apprentissage automatique est un sujet en pleine expansion. Les améliorations tech-
nologiques des moyens de calcul supportant l’apprentissage profond ont rendu ce
domaine de recherche de plus en plus populaire année après année. L’apprentissage
profond a successivement supplanté les meilleurs résultats sur un large éventail de
tâches : la reconnaissance de formes sur des images, le suivi d’objet sur des vidéos, le
traitement du langage naturel sur fichier audio et l’extraction de données dans les bases
de données textuelles. De manière corrélée, des préoccupations se font jour: vie privée
et fiabilité. La vie privée des individus a même été l’objet d’une loi européenne sur la
protection des données qui a été promulguée pendant ce doctorat. La fiabilité, elle pose
question dans beaucoup d’applications où des décisions sont prises automatiquement,
sans contrôle de l’utilisateur.
Le travail présenté ici est pour une première partie à l’intersection de l’apprentissage
profond et anonymisation. Un cadre de travail complet est développé dans le but
d’identifier et de retirer, dans une certaine mesure et de manière automatique, les
caractéristiques privées d’une identité pour des données de type image. Deux méth-
odes différentes de traitement des données sont étudiées : une supervisée et une
semi-supervisée. Ces deux méthodes partagent une même architecture de réseau en
forme de Y et cela malgré des différences concernant les types de couches de neu-
rones utilisés conséquemment à leur objectif d’utilisation. La première méthode de
traitement des données concerne la création ex nihilo par apprentissage de représenta-
tions anonymisées permettant un compromis entre la conservation des caractéristiques
pertinentes et l’altération des caractéristiques privées. Ce cadre de travail a abouti
à une nouvelle fonction de perte, à une architecture et un méthode d’entrainement
adaptées. Le deuxième type de traitement des données ne fait usage d’aucune informa-
tion pertinente sur ces données et utilise uniquement des informations privées; ceci
signifie que tout ce qui n’est pas une caractéristique privée est supposé pertinent et
doit être conservé dans la mesure du possible. Cela implique que les représentations
anonymisées sont de même nature que les données initiales (une image est transformée
en une image anonymisée). Cette tâche a conduit à un léger changement de la fonction
coût et à un autre type d’architecture (toujours en forme de Y). Les résultats fournis
dans ce contexte sont fortement sensibles au type des données mais ils produisent des
images, quel que soit le type de données, pouvant tromper un œil humain.
La seconde partie de mon travail concerne une autre sorte d’information utile : cette
partie se concentre sur la surveillance du comportement des prédicteurs. Dans le cadre
de l’analyse de "modèle boîte noire", on a uniquement accès aux probabilités que le
prédicteur fournit (sans aucune connaissance du type de structure/architecture qui pro-
duit ces probabilités). Cette surveillance est effectuée pour détecter des comportements
anormaux. L’étude de ces probabilités peut servir d’indicateur d’inadéquation potentiel
entre les statistiques des données et les statistiques du modèle. Ceci permet potentielle-
ment de détecter une anomalie et de demander la vérification de l’adéquation entre
modèle et données par un opérateur humain. Deux méthodes utilisant différents outils
sont présentées. La première compare la fonction de répartition des statistiques de
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sortie d’un ensemble connu et d’un ensemble de données à tester. Cette comparaison
se fait à l’aide d’un test statistique et par conséquent nécessite une quantité de données
significative pour chaque décision. En revanche la seconde méthode nécessite moins
de données pour chacune des décisions. Cette seconde méthode fait intervenir deux
outils : un outil reposant sur l’incertitude du classifieur et un autre outil reposant sur la
matrice de confusion. Ces méthodes produisent des résultats concluants en terme de
détection de comportements anormaux.
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Machine learning is a booming topic. The improvement of deep learning compati-
ble computation means made the subject more popular years after years. The deep
learning successively overtook best results on a wide variety of tasks from pattern
recognition in images, object tracking in video, natural language processing in sound
signal and data mining in large text database. Correlated serious topics arise: privacy
and reliability. Individual privacy is a concerning matter that was subject to a new
European data protection law that was enacted during the length of this doctorate.
Reliability is concerning too. In many applications decisions are taken in an automated
manner without constant operator (human) monitoring.
The work presented here is for a first part at the cross section of deep learning and
anonymization. A full framework was developed in order to identify and remove to a
certain extant, in an automate manner, the features linked to an identity in the context
of image data. Two different kind of processing data were explored. They both share
the same Y-shaped network architecture despite component of this network varying
according to the final purpose. The first one was about building from the ground an
anonymized representation that allowed a trade-off between keeping relevant features
and tampering private features. This framework has lead to a new loss. The second
kind of data processing specified no relevant information about the data, only private
information, meaning that everything that was not related to private features is as-
sumed relevant. Therefore the anonymized representation share the same nature as
the initial data (e.g. an image is transformed into an anonymized image). This task
lead to another type of architecture (still in a Y-shape) and provided results strongly
dependent of the type of data.
The second part of the work is relative to another kind of relevant information: it
focuses on the monitoring of predictor behavior. In the context of black box analy-
sis, we only have access to the probabilities outputted by the predictor (without any
knowledge of the type of structure/architecture producing these probabilities). This
monitoring is done in order to detect abnormal behavior that is an indicator of a po-
tential mismatch between the data statistics and the model statistics. Two methods
are presented using different tools. The first one is based on comparing the empirical
cumulative distribution of known data and to be tested data. The second one intro-
duce two tools: one relying on the classifier uncertainty and the other relying on the
confusion matrix. These methods produce concluding results.
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Chapter 1

Introduction

1.1 Motivation

Artificial intelligence (AI) aims at building a device that can perform cognitive tasks.
The word intelligence come from the Latin: intelligentia (the power of discernment, un-
derstanding) itself derived from the verb intellegere (understand, comprehend, perceive,
discern) which is built from the two words inter- (between) and legō (choose, read).
Most of these words describe tasks that are hot topics in AI research.

AI covers a really large field of which machine learning is an important part.
Machine learning main principle is to extract information from data statistics: The
model you create needs to be fed with large amount of data samples to extract relevant
underlying statistic, and this extracted information is used as knowledge to process
new data.

Deep learning may be the most popular subtopic of machine learning. Deep learn-
ing aims to model the processed data with high level of abstraction using specific
layered architectures, and specific non linear functions. Originally deep learning was
intertwined with neural networks. Neural networks are using neurons that mimic the
behavior of biological neurons as elementary bricks. Diversified networks are now
used in deep learning mostly adapted to the type of data processed. Building the right
kind of model is not enough if it is not properly trained. Here again depending on
the kind of goal to be achieved, there are several method of training your model for
learning relevant statistics. The main categories are supervised training and unsuper-
vised training. For the first one the device is trained on examples on which the answers
are known and used for the training. For the second one the device is only shown
examples without any answer provided. Both theses methods behave differently and
are used to perform different tasks most of the time.

The popularity increase in machine learning comes from major breakthroughs that
have been achieved since more than ten years. It performs overwhelmingly good in
classification tasks. Its use have widen to a variety of fields and applications. Deep
learning methods provide effective tools to handle and process large datasets. Digital
information lies and is collected everywhere: users profile information and behavior
on commercial websites, user notation on ranking websites, banking, insurance or
even medical insurance information, phone collected information. As the digital era
rises, information has became a more and more important resource sometimes having
monetary value and yet accessible to company. Processing it properly is more and more
a core obligation.

This raises the question of privacy and anonymity which have become a hot topic.
It has become subject to new European Union laws in the courses of the last few years
in order to protect privacy of individuals. This is a first step toward a more ethic way
of data processing that this work also tries to address: How to protect (hide) sensitive
information while processing data ?

The work presented in this thesis relies on the hypothesis that the owner of the data
is willing to protect sensitive information from being disclosed. We investigate new
methods based on representation learning and deep neural networks, and motivated by
novel information-theoretical bounds applied to anonymization. We introduce a novel
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training objective for simultaneously training a predictor over target variables of inter-
est (the regular labels) while preventing an intermediate representation to be predictive
of the private labels. We demonstrate the success of this approach for two distinct
classification versus anonymization tasks (handwritten digits and sentiment analysis).
We further introduce a semi-supervised method of learning invariant representation
while preserving most of the data, tackling even the case of strong intertwinement and
we successfully applied it to the same anonymization tasks.

In recent years, some datasets containing sensitive information about individuals
have been released into public domain with the goal of facilitating data mining research.
Databases are frequently anonymized by simply suppressing identifiers that reveal the
identities of the users, like names or social security number home adress. However,
even these definitions cannot prevent background attacks, in which the attackers
already know something about the information contained in the dataset. An attacker
can for example use side information, meaning information acquiered from a different
source or database.

In this thesis we address the interplay between deep neural networks and statistical
anonymization of datasets. We focus on the following fundamental questions: What
conditions can we place to learn invariant (or sanitized) representations in order to minimize
the amount of information which could be revealed about a specified variable? What is the effect
of sanitization on these procedures? How to sanitize without prior knowledge of the regular
tasks? The line of research we investigate is based on privacy-preserving statistical
methods, such as learning differentially private algorithms [Abadi et al., 2016] from
the supervised case. The main goal of this framework is to enable an analyst to learn
relevant properties (e.g., regular labels) of a dataset as a whole while protecting the
privacy of the individual contributors (private labels which can identify a person). Even
further we address the hypothesis of an analyst removing in a semi-supervised manner
information related to a known private variable (e.g., private label) with no prior about
usefulness or relevant properties (no label of any regular task). This assumes the
database is held by a trusted person who can release freely information about regular
labels, e.g., in response to a sequence of queries, and used for many new purposes.

Another problem of rising concern is the reliability of the results provided by such
algorithms. Once the algorithm has been running, is there any way of measuring the
degree of confidence one can have in its outputs ? This very sensitive question is
addressed in the last part of this work.

1.2 Artificial intelligence

Before designing the first machine, mankind has dreamt about building complex device
that imitates human action. The ultimate purpose of this quest is to build a human
like working automaton capable of human behavior such as thinking and learning.
From mythological Hephaestus automaton blacksmith workers that could forge for
their creator, to the giant automation Talos bodyguard of Crete, the ancient time have
several tales about cognitive device. Since then, comparatively recent yet complex
mechanical automaton capable of writing predefined text and drawing a specific
sketch (Maillardet’s automaton, built in London circa 1800 by the Swiss mechanician,
Henri Maillardet) or playing flute (The Flute Player, invented by the French engineer
Jacques de Vaucanson in 1737, actually played a real flute), the dream has slowly
taken shape from the mind of their inventor to the real world, following or provoking
technical innovation. Since the foundation of the computer science the gap has reduced
dramatically but yet remains of significant size. Machines present more and more
accuracy to their specific task, but yet a specific task trained machine would not
perform well on another task it is not trained for. Machines learn efficiently mostly on
tasks they were designed for. They lack the plasticity and adaptability of the human
brain capable to learn from a wide variety of tasks: this is where I think the next
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FIGURE 1.1: Venn diagramm showing the relative position of machine
learning among artificial intelligence. Red text shows a related example.

breakthrough will occur, machines that can learn by themselves when exposed to new
data, the way human babies learn when exposed to new stimuli.

Artificial intelligence (AI) is only a meaningful designation when opposed to the
’not-artificial’ intelligence, which is the natural intelligence which primary example
is the human intelligence. AI devices should be able to exhibit human like cognitive
ability such as learning and problem solving. The machine most definitely mimic some
human abilities and often they outperform the human baseline on some tasks. The
artificial part is not to be neglected in the explanation of nowadays AI Just like the
automaton of the XVIIIth century were only capable of performing action within their
limited capacity/reach, most AI can only process information and take action within
the specific range of action/response their human builders have design them. The
most fallacious thing about artificial intelligence is actually its name: AI machines
are definitely artificial, but they are not for now endowed of any intelligence. The
main meaning of intelligence in this context is the fact that the device, when shown a
problem can provide an answer to it; this answer being, with reasonable probability,
a/the good solution to the problem. One of the most impressive capacity some AI
machines are endowed with is a capacity of generalization: with the right training
samples (both quality and quantity), a model can infer some results on brand new data
samples, provided that new samples share an underlying structure with the training
samples. Other AI technology may rely on different frameworks like for example a
comprehensive and structured storing of knowledge into memory base.

1.3 Introduction to machine learning

Machine learning, as shown in Figure 1.1 (Loosely inspired from [Goodfellow, Bengio,
and Courville, 2016, Ch. 1, p. 9] ) is a specific subset of artificial intelligence. A general
definition of machine learning is the following: the study of statistical models and
algorithms that computer systems used to perform a task, without using explicit
instructions, but relying on pattern and inference. The term of Machine Learning was
first used at IBM in 1959, where Arthur Samuel (researcher in computer gaming and
artificial intelligence, senior member of the TeX community) first invented the term.

1.3.1 Basics

The most important part of the model is designed by a human operator: the architecture
is designed based on decision of the operator. Initialization and optimization pattern
are also operator driven. The part of the model which is build without the help of the
operator, which is learned, is the value of the various architecture parameters. These
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values are computed using training data, to make prediction without any special hard
coded data specific instruction. As stated above, the main assumption of machine
learning is that a mathematical model can generalize: being optimized to perform a
given task on training samples should produce a model that performs well on new
test data provided that these data are "close enough" to training data. The notion of
close enough means that data from training set and test set are similar but not identical:
similar data share the same underlying features and theses features can be accessed
in the same way for both sets. For example if the training examples consist only on
vertically aligned number and the test set contains only randomly tilted number, the
model would not be able to generalize. If the training set also has a fair share of tilted
numbers, the model will have good performance on the randomly tilted number test
set.

The elementary bricks used to make machine learning model are neural networks.
Neural networks were first introduced by [McCulloch and Pitts, 1943] who created
a computational model for neural networks. This paper first tries to model the liv-
ing being nervous system activity. From this funding paper, two main approaches
have derived, the study of biological processes and the study of artificial intelligence
processes.

Neuron

The neuron is the most elementary brick of a model. A simple neuron representation
is shown Figure 1.2. It works by applying two math functions to its input: A first
linear function called pre-activation function: a(x) = (Wx + b) where for a vector
input x, W is the weight vector, b is the bias term. The weight vector is noted with a
simple capital letter to stand for an horizontal vector. The second function, called the
activation function, is applied to the pre-activation and gives the output of the neuron:
f
(
a(x)

)
= f (Wx + b) where f is the activation function (preferably non linear). The

most common non linear functions are the following: rectified linear unity (relu which
is plotted on the Figure 1.3), sigmoid function and hyperbolic tangent. W and b are the
parameters that are learned by the model during the training phase.

x1

x2

x3

x4

f
(
a(x)

)

FIGURE 1.2: Example of a representation of a neuron with a four compo-
nents input vector.

Layer

The above elementary bricks are assembled to make a layer as shown on Figure 1.4
in the case of a feed forward layer. Each component of the input vector is used to
compute the output of each neuron. The information from the different neurons are
then interpreted as the components of the output vector of the layer. The previous
activation function can be seen as a vector function which components are each related
to one particular neuron. The concatenation of all these components leads to the
following equation: a(x) = (Wx + b) where for a vector input x, W is now the weight
matrix, b is the vector bias and a is the pre-activation vector ( each component is the pre-
activation function applied to x). Similarly to the neuron case, the activation function is
applied to the pre-activation and gives the output of the neuron: f

(
a(x)

)
= f(Wx + b)

where f is the vector activation function (which components are activation functions
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FIGURE 1.3: Plot of f as the Relu function

f ) and b is the vector of bias (which components are bi). Dense layer is another name
of a feed forward layer. Note that there is a wide variety of types of layers, other than
feedforward layer.

x1

x2

x3

x4

f (a1(x))

f (a2(x))

f (a3(x))

f (a4(x))

f (a5(x))

x layer f(a(x))

FIGURE 1.4: Example of a neural layer

Deep neural network

If you stack layers on top of each other, using the output of the previous layer as
the input for the next layer, you produce a deep neural network. This means that the
information is processed through several layers before reaching the output of the model
as shown on Figure 1.5 with two layers. The inside layers of a deep neural network
are usually called hidden layers. Here layers 1 and 2 are hidden layers. The layer i
parameters are within its pre-activation function noted ali Each hidden layer output is
computed using the previous layer value. The layer number 3 is the output layer. Note
that the denomination of the deep neural neural network starts at network that have
at least two hidden layers i.e. only one hidden layer is not sufficient to be called deep.
Models may present a wide variety of depth, sizes, and types of layer combination.
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FIGURE 1.5: Example of a simple feedforward deep neural network

Output of neural network

Neural networks’ output layer is most of the time defined by its purpose. Note that the
output layer characteristics are defined by the task the network should perform.
For a classification task the output layer has usually the same number of neurons as
the number of different classes labeled. The activation function too is adapted to the
task of classification. The softmax function f of components fi define here for a vector
t of components ti:

fi : t →
exp(ti)

∑
C−1
k=0 exp(tk)

, (1.1)

is a normalized function that provide the probability for a sample to belong to each
possible class. Output of such a model are a distribution of probability over the different
classes and are also called the soft outputs of the model. From this values, the prediction
of the model is assed by taking the argmax:

jpred = arg max
i∈[0:C−1]

fi(t). (1.2)

For a model that should reconstruct an image, the number of neurons of the output
layer is the number of pixels the reconstructed image should have. In this case a
sigmoid function is used as an activation function in most cases. The sigmoid function
is given for a variable t:

f : t →
1

1 + exp−t
. (1.3)

Dropout

One of most used method of regularization is dropout. The term dropout comes form
the action of dropping out neurons during the training. The regularization method is
done by randomly selecting a fixed number of neurons in a layer and removing their
connections to other neurons for each batch during the training. This prevents part
of the layer to be overused compared to other part. When this method is applied to
the whole network, it prevents over-fitting because the network cannot rely on specific
neurons. It is described in [Hinton et al., 2012] as an efficient method to perform model
averaging. It is worth mentioning that during the testing phase, all the neurons are
used.
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1.3.2 Famous type of neural network

Brief intoduction to multilayer perceptron

The multilayer perceptron (MLP) is a class of feedforward neural network. Note that
feedforward neural network have an internal structure where the nodes do not form a
cycle. In this simplest architecture, the information moves only forward from the input
through the network and to the output nodes. An MLP consists of at least three layers:
an input layer, a hidden layer and an output layer. Except for the input nodes, each
node is a neuron that uses a nonlinear activation function. Many additional hidden
layers can be added. This network can distinguish data that is not linearly separable.

Historically the perceptron was first introduced by F. Rosenblatt in 1957 at Cornell
Aeronautical Laboratory. He further developed his work in [Rosenblatt, 1961]. The
main novelty of his perceptron related work was that exposing examples to these
models was a way to train them to perform better on a specific task. This special
ability allowed this model to earn quite some fame at the time: most the scientific
community praised his work and it was made intelligible to the general public through
a New York Times article titled “New Navy Device Learns By Doing”. The term of
learning applied to a system was already present in this 1950s article. The major flaw
of the nowadays perceptron ancestor was the lack of non linearity, which bounded
it to learn only linear function. This limitation to linear function was overcomed by
applying a method taken from control theory. This method called chain rule in control
theory was introduced in 1974 as backpropagation in the neural network community by
[Werbos, 1975]. Note that other scientists were working at the time on this method and
Werbos name remains because he first mentioned it potential use on neural network.
Backpropagation method is efficient to produce an iterative and recursive method
to compute the network parameters updates values in order to improve the model
behavior in this particular task.

Autoencoder

An autoencoder is a type of neural network that tries to copy its input to its outputs
(i.e. without using the trivial solution of a network learning the identity function ). Its
paternity is disputed and many autoencoders’ core ideas come from several people:
[Lecun and Fogelman Soulie, 1987], [Bourlard and Kamp, 1988] and [Hinton and Zemel,
1994]. It is an unsupervised model, therefore it does not require any label during the
training. The main decomposition of its architecture uses the notion of a code at the
hidden layer h so that the network is divided in two parts: the part of the network from
the input to h called the encoder and the part from h to the output called the decoder.

The important feature of the autoencoders is that one prevents them from learning
the identity function. This makes autoencoders learn relevent representation and
’coding scheme’. In its simplest form the autoencoder is a MLP with one hidden layer
(.i.e. feedforward network with an input layer, an hidden layer and a output layer.)
where the output layer as the same number of neurons as the input layer. In this case
the network loss measures the discrepancy between the input sample and the generated
output and aims to minimize the reconstruction error, for example using the mean
squared error between the sample and the output.

The fact that one prevents the model to simply copy the input makes the network
learns features about the set whose samples it should reconstruct: these features
are called the hidden representations. Indeed the reconstruction is not really the
interesting part of the network. The interesting part is the hidden features the encoder
learns to extract. Note that the most recent autoencoders encoders and decoders have
transitioned from deterministic mapping to stochastic mapping.

Denoising autoencoders: The denoising autoencoders force the learning of relevant
features through a specific framework. The original samples are combined with a



8 Chapter 1. Introduction

random noise before going through the autoencoder. The output is then compared
to the original sample (i.e. without the noise). This prevents the network to learn the
identity function and on the opposite it forces the extraction of relevant features despite
the additive noise. The noise here is used as a regularization method. Other regularized
autoencoder examples are the sparse autoencoder and the contractive autoencoder
that respectively add a sparsity constrain and a regularized norm term to the loss (the
regulizer term forces the autoencoder to learn a function robust to small variations of
input values).

Variational autoencoders: The variational autoencoders are quite different, they are
generative models. This kind of autoencoders aims to map the distribution of the
learnt hidden feature to a given distribution (multivariate Gaussian distribution in
the wide majority of case). Once the training is done, the features actually follow
the given distribution which makes the code space a continuous space. From here
using information of the mean and standard deviation makes it possible to make some
mathematical computation on the feature, like vectorial addition or subtraction.

Generative adversarial network: GAN

The generative adversarial network (GAN) was introduced by [Goodfellow et al.,
2014]. The GAN framework aims at generating likely samples compared to an original
database in an unsupervised manner. This framework makes two neural networks
compete against each other in a game (under the game theory definition). The two
networks names are respectively the generator and the discriminator. The generator
input receives some noise and uses it to generate an output. The discriminator is a
classifier network that is trained to distinguish between generated samples and original
samples from the dataset. The main purpose of the generator is to fool the discriminator
and conversely the purpose of the discriminator is to be able not to be fooled by the
generator output. The core idea of this scheme is that the relevant information that
allowed the discriminator to properly classify samples is used to improve the generator
performances. Moreover, as the discriminator gets better, the generator learning uses
more and more precise details and thus produces generated samples closer and closer
to the dataset original samples. This means that both networks have to perform
better together in order to improve the overall results. Here actually lies the main
weakness of the GAN framework: Training such a pair of networks in a productive
manner is highly unstable: if one outperforms too much the other, the generative
process and the quality of the produced samples is jeopardized. A lot of recent work
on GAN is oriented toward method to robustify the training such as the famous
introduction of the Wasserstein distance by [Arjovsky, Chintala, and Bottou, 2017]. The
Wasserstein distance is introduced in the GAN framework as a similarity metric to
compare probabilities distribution with a smooth measure that gives a finite value for
disjoint support distribution, whereas Kullback-Liebler divergence and Jensen-Shannon
divergence lack smoothness in this case (respectively infinite value and differentiability
issue).

As stated above, both networks play a minimax game: the generator aims at
maximizing the error rate of the discriminator while the discriminator aims at having
good detection performances i.e. minimizing its error rate. This specific result is
obtained via the following loss:

L(D, G) = EP̂x
[log(D(x))] + EP̂z

[log(1 − D(G(z))] , (1.4)

where:

• D(x) is the discriminator’s estimate of the probability that real sample instance x
is real,

• P̂x is the empirical distribution of the real samples,
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• EP̂x
is the expected value over all real data instances,

• G(z) is the generator’s output when given the noise realization z,

• D(G(z)) is the discriminator’s estimate of the probability that a fake instance is
real.

• P̂z is the empirical distribution of z

• EP̂z
is the expected value over all random inputs to the generator (in effect, the

expected value over all generated fake instances G(z)).

Note that this formula derives from the binary cross-entropy between the real and the
generated distributions. Indeed we want to ensure that the discriminator’s decisions
over real data are accurate by maximizing the first term of eq. (1.4). Meanwhile, given
a fake sample G(z), the discriminator is expected to output a probability, D(G(z)), close
to zero by maximizing the second term of eq. (1.4). Simultaneously the generator is
trained to increase the chances of D producing a high probability for a fake example,
thus to minimize the second term. Therefore, the GAN framework is performing the
following min-max equation:

min
G

max
D

L(D, G). (1.5)

1.4 Information measure

The information is the resolution of uncertainty as defined by [Shannon, 1948] in the
case of communication of information over a noisy channel. Therefore measuring
a quantity of information is measuring the uncertainty. If we take for example the
random variable X with its associated distribution pX and x a realization of X. The
information given by this realization is linked to its probability pX(x). The fact that
the event is unlikely means that observing it brings more information that observing a
likely event, which brings less information. The measure of information of the random
variable X called entropy is defined as the average of information of each possible
realization:

H(X) := ∑
x∈X

−pX(x) log pX(x) (1.6)

H(X) := EpX [− log pX(X)] . (1.7)

Given a second random variable Y, with the distribution pY, we introduce the mutual
information between X and Y. The mutual information is the quantity that measures
the amount of information about one random variable that can be deduced from the
observation of the other. How will be affected the knowledge of the information of X
(i.e. its uncertainty) if a realization of Y is observed ?

I(X; Y) := ∑
x∈X

∑
y∈Y

pXY(x, y) log
pXY(x, y)

pX(x)pY(y)
(1.8)

I(X; Y) := EpXY

[
log

pXY(X, Y)

pX(X)pY(Y)

]
. (1.9)

The mutual information can be decomposed using the entropy of X and the entropy of
X knowing Y:

I(X; Y) = H(X)−H(X|Y). (1.10)

Note that because the mutual information is always positive or 0, it means that on
average, knowing the realization of a random variable decreases the uncertainty about
the other random variable except if the two random variables are independent and the
uncertainty is unchanged (no information is provided).
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The Kullback-leibler divergence (KL) is a quantity that measures the difference
between a distribution and a reference distribution. The expression of this divergence
is the following:

D(pX||qX) = ∑
x∈X

pX(x) log
(

pX(x)

qX(x)

)
. (1.11)

The KL is linked to the mutual information:

I(PX; PY) = EpX
D(PY|X||PY). (1.12)

Note that the KL is a divergence and not a distance, despite being always non-negative.
KL is not symmetric and does not satisfy the triangular inequality.

The cross-entropy is defined as:

H(pX, qX) = − ∑
x∈X

pX(x) log qX(x) (1.13)

= EpX [− log qX] , (1.14)

this can be written using the KL and the entropy

H(pX, qX) = H(pX) + D(pX||qX). (1.15)

In a machine learning framework, crossentropy is used as one of the most usual loss
function where the first distribution is the target distribution (i.e. labels in the case of
a classifier’s training) and the second distribution is the classifier soft outputs. Rényi
entropy is a more general formulation of entropy whose Shannon entropy is a limit
case. For a parameter α it is written:

Hα(X) =
1

1 − α
log

(
∑

x∈X

pα
X(x)

)
, (1.16)

from this definition of entropy it is possible to derive Rényi divergence:

Dα(pX||qX) =
1

α − 1
log

(
∑

x∈X

pX(x)α

qX(x)α−1

)
, (1.17)

when α tends toward 1, the limit of Dα is the KL.

Useful inequalities: The data processing inequality states that mathematical oper-
ation (deterministic or stochastic) done on a random variable cannot increase the
quantity of information carried by the random variable. Considering f the function
applied to X as a processing, the inequalities is:

I(X, Y) ≥ I( f (X), Y). (1.18)

The equality only holds if the f function is one to one. This strong inequality states
counter intuitively that feed forward neural network can at best maintain the initial
quantity of information along successive layers. The hidden reality here that the usual
databases hold tremendous amount of information, losing some along the way is a
bearable cost especially if it allows to reduce the sample dimension in a way that eases
the learning of accurate predictions.
Fano’s inequality is another important inequality that allows to find a lower bound
of the probability of error in the case of estimating a random variable using another
random variable by the conditional distribution. Let us say that the g function outputs
an estimate of X g(Y) = X̂, Fano’s inequality is written as follow:

H(X|Y) ≤ H2(Pe) + Pe log(|X| − 1), (1.19)
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where Pe = Pr(X̂ 6= X) is the probability of error and H2 is the binary entropy, |X| is
the cardinal of X. A less tight bound gives a direct lower bound of Pe:

H(X|Y) ≤ 1 + Pe log(|X|), (1.20)

gives

Pe ≥
H(X|Y)− 1

log(|X|)
. (1.21)

Remark: The above mentioned statistics are given for the true distributions of prob-
ability. These statistics are not known for real samples where the only accessible
distribution is the empirical distribution computed over the samples, whether the
whole dataset, the training subset or a batch of samples. Therefore the formula above
mentioned will be used to derive variational bounds.

1.5 Anonymization and privacy

Privacy is one of the most challenging issue in the era of information. The concern
appeared because of tools that allowed data collect on a large scale, mainly internet,
and large data manipulation, mainly modern computer. Social network for example
provide a tremendous amount of data. In the context of machine learning and more
widely in the context of collecting data into database, everyone should have in mind
this issue. Web scraping using bots to collect online accessible data is the core buisness
of some company from start-ups to large firms, and the most valuable data are often
private data. It is also the case for companies which business relies on collecting their
customer data were always aware of this topic and now at least everyone operating in
Europe addresses this particular topic. Especially since the GDPR1 (The General Data
Protection Regulation (EU) 2016/679). There is different kind of privacy adapted to the
different types of database one can build.

1.5.1 Related work for the supervised anonymization.

The literature in statistics and computer science on anonymization and privacy is
extensive; we discuss only directly relevant work here (for more general references see
the survey from [Chen et al., 2009] and references therein).

A definition of anonymization was given by European authority2 in a document3 :
anonymisation results from processing personal data in order to irreversibly prevent
identification.
In other terms, anonymization is a data processing technique that modifies parts
of samples to prevent any possible linking between one database sample and one
individual. This process should be done in a manner adapted to the type of data. Table
database where each entry is a unique user and some features are characterized by text,
other by number will not be anonymized the same way as images or sound samples.

Several methods are used to anonymize the data in text database whose main
purposes are: generalizing the data, or adding noise to the data. For example Google is

1The GDPR is a regulation in EU law on data protection and privacy for all individual citizens of
the European Union and the European Economic Area. It also addresses the transfer of personal data
outside the European Union and European Economic Area. The GDPR aims primarily to give control to
individuals over their personal data and to simplify the regulatory environment for international business
by unifying the regulation within the European Union.

2Article 29 Data protection working party (Art. 29 WP) was an advisory body focused on data
protection replaced by European Data Protection Board (EDPB) after the GDPR enactement

3Opinion 05/2014 on Anonymisation Techniques, available at the following link: https://cnpd.

public.lu/dam-assets/fr/publications/groupe-art29/wp216_en.pdf
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concerned with this topic and they explain online4 these two methods and why they
apply them on databases to anonymize them:

Generalizing the data: some features of samples may link directly to a particular
individual (for example home address). To prevent any tracking, a well known method
is to link one sample with other close samples to form an indistinguishable group
regarding this feature (for example change street name to the same street name for
every sample that shares a close address). This method is called generalization and
allows to achieve k-anonymity. k-anonymity means that for every sample there is at
least k − 1 other samples with the same features. Each of these samples are merged
together in the same group of k samples regarding one or several features, depending
on the constrains. The k-anonymity introduced by [Sweeney, 2002] is now described
by Google as an industry-standard term.

The opposite case is if everyone in the database shares a common feature. In this
case, learning that someone’s data are in the database definitely informs that this
individual has this specific feature. To prevent this privacy risk, one solution is to
enforce some diversity: samples with a different feature for this database entry are
added to provide diversity. This method is called the l-diversity and was introduced
by [Machanavajjhala et al., 2006]. It is also described as an industry-standard term.

Adding noise to the data: A method that takes advantage of noise addition and
which is used by Google is called differential privacy (DP), a popular approach intro-
duced in [Dwork, 2006] which is formally introduced in the definition below: // Let A
: Dn → V be a randomized algorithm. Let D1,D2 ∈ Dn be two databases that differ in
at most one entry (we call these databases neighbors).
Definition Let ǫ > 0. Define A to be ǫ-differentially private if for all neighboring databases
D1,D2, and for all subsets V ⊂ V , we have

Pr[A(D1) ∈ V]

Pr[A(D2) ∈ V]
≤ exp ǫ, (1.22)

where the probability is taken over the con tosses of A. The notion of (DP) has been largely
studied in the literature (see survey [Dwork, 2008]). It offers provable privacy in a
specific context. In the case of a query mechanism on a database containing information
over various people, the query, even if it requests information on some global statistic,
could reveal information about a specific user of the database. The idea of differential
privacy is to enforce a query mechanism to provide indistinguishable answer while
used on two databases differing only by one individual. This kind of databases is
called adjacent databases: two databases are adjacent if they differ in a single entry,
that is, if one image-label pair is present in one set and absent in the other. Intuitively, it
uses random noise to ensure that the mechanism outputting the information about the
underlying dataset is robust to any change of one individual, thus protecting privacy.
It is then impossible to retrieve any information on a specific person, including even
the possibility of telling whether or not they are in the database.
From a statistical perspective, convergence rates of minimax risk for problems in
which the data must be kept confidential even from the learner have been reported
in [Smith, 2008] and [Duchi, Jordan, and Wainwright, 2014]. DP has been widely
studied in the context of the machine learning literature: [Wasserman and Zhou,
2010] and [Chaudhuri, Monteleoni, and Sarwate, 2011] develop differentially private
empirical risk minimization algorithms, and [Bassily, Smith, and Thakurta, 2014] and
[Wang, Lei, and Fienberg, 2016] study similar statistical and sample complexity of
differentially private procedures. [Chen and Zhong, 2009] and [Yuan and Yu, 2014]
presented a privacy-preserving distributed backpropagation algorithm which allows a
neural network to be trained without requiring either party to reveal her data to the
other. [Abadi et al., 2016] studied the feasibility at a small cost of deep neural networks
algorithm that complies with differential privacy through a special modification of the
stochastic gradient descent (SGD).

4 https://policies.google.com/technologies/anonymization?hl=en
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[Hamm, 2015] studied the case of the distributed learning of different privacy
preserving filters coordinated with a data aggregator. The experiments involved at least
one binary task (either the classical task or the private task if not both). His measure
of privacy risk differs from our and use a specific weighting. Our framework was
developed using a single encoder (not distributed). Another difference is that our
framework handles simultaneous M-ary tasks. [Edwards and Storkey, 2015] focused
mainly on fairness issues. All of the previously presented methods come with a cost:
the anonymization impacts the future usage of the database and makes it less useful.
The anonymization methods introduced in this manuscript can also make the data less
useful.

The classical method of anonymization of images is blurring the part where private
information lies. However, the fundamental differences rely on our statistical treatment
of the anonymization problem and instead of having only one version of each attribute
(or label), we require multiple statistical versions of the same attribute for each indi-
vidual. Additionally, we focus on databases where identification can be learned and
not database containing direct identification data (name, zipcode) which is the case of
databases used with k-anonymity methods. They contain data that clearly identifies a
person. Instead, we look for data transformations which discard identifying sometimes
constitutive features from the data.
[Belghazi et al., 2018] present a neural network based estimator of the mutual informa-
tion whereas our work only focuses on using an upper bound of the mutual information
to ease the optimization of the trade-off we want to achieve. Our framework results
are less complex while providing a satisfying bound. The work of [Yang et al., 2018]
which is recent too, focuses on the anonymization of click stream that occurs during
the visualization of a MOOC’s video by students. The task they want to prevent is
the identification of a student from its ‘click profile’ while at the same time preserving
the utility task: inferring from the clicks the results of the student to the MOOC quizz.
The common point with our work we can exhibit is the usage of a really similar archi-
tecture in a Y-shape but the internal layers differ because they use LSTM neurons in
their network (Long short-term memory is a type of neuron that have a memory of its
previous state meaning it is a recurrent neural network fitted for analysis of sequence
data, video file for example). They don’t mention precisely the value of the baseline on
their anonymity task and only talk about the relative variation on the anonymity.

A major challenge in addressing privacy guarantees is to determine and control
the balance between statistical efficiency and the level of privacy, which requires itself
a careful mathematical but also meaningful definition. Typically, these techniques
depend on how the data are released and the literature contains various approaches to
this vast problem.

1.5.2 Semi-supervised anonymization

The work presented by [Chen, Konrad, and Ishwar, 2018] is quite close to our semi-
supervized work of the following chapter 4. They propose a tool that allows to perform
some emotion preservation while transferring identities using a variational generative
adversarial network. This work uses identity and emotion labels, to produce represen-
tations which are the same nature as the samples. Furthermore this framework uses
one identity as a template to provide anonymity for everyone in the database. Our
supervised framework does not produce representation similar to the samples, and
therefore does not need a template for the anonymized face. In our case the model itself
decides the template to use. If we were to compare our semi-supervised work to this,
the main difference would be that we do not ever use the emotion label to produce our
generated samples which makes our framework more general. Note that depending
on the case, we might in the semi-supervised case use one identity of database as a
template, and we can decide, depending on the method, which identity should be used
as the template.
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In the work of [Edwards and Storkey, 2015] the anonymization task is the removal
of printed text label from face pictures (i.e. remove a tag embedded in the image) using
adversarial networks. This is somewhat different (in terms of objective as in terms of
tools) from our target: anonymize faces pictures themselves. On another side, we differ
significantly from disentanglement learning because our representations do not consist
in separated variable, they rather remove a chosen variable from the representation
while preserving the other.

The work of [Raval, Machanavajjhala, and Cox, 2017] focuses on protecting sensitive
information in picture in an adversarial manner. Similar to the work of [Edwards and
Storkey, 2015] the private information here is a QR code embedded in the image.
The sanitized version of the data should remove the QR code in such a way that a
discriminator cannot tell whether or not a QR code was present in the initial image.
A second constraint is that in the case of initial images with QR code an adversary
network should not be able to locate the position of the QR code on the initial image
once it is sanitized. This work uses adversarial networks too, but is quite different from
our goal because we do not want to hide some regions of the image (regions used here
for its spatial definition). We focus on hiding inherent private data.

More recently the work of [Pittaluga, Koppal, and Chakrabarti, 2018] focuses on
providing privacy to picture of different places on four categories through an encoding
network trained with a discriminator. The results are assessed based on the capacity of
a single binary discriminator which seems not as strong as our method of assessment
based on a multiple output classifier. The produced encoded images are anonymized
in a really strong manner that removes any useful information most of the time.

The work of [Zhu et al., 2017] is not initially applied to anonymization but is a
famous paper about domain adaptation and transferring image from one domain to
another without matching pair samples from the two domains. They present a method
based on adversarial network to shift images from one domain to the other with a
pair of GAN. Their visual results are quite neat. Our method also use adversarial
network to produce neat results but it differentiates from this work because instead
of translating images into many domains, we focus on providing a single ‘identity
domain’ representation where we make as hard as possible to track the initial identity.

The work of [Moyer et al., 2018] is about learning invariant representations without
adversarial training. It uses a mutual information derived loss and a VAE network.
Their mutual information bound is based on a divergence as in traditional VAE and
they choose to model the latent space empirical distribution through a gaussian mixture
to compute its divergence. The model is tested on database where the data they want
to hide is binary for supervised invariance.

The work of [Liu, Breuel, and Kautz, 2017] is also about image to image translation.
Their work is not oriented toward anonymization. They focus on learning a joint
distribution of images from different domains using a shared space between the two
domains and two GANs and two VAEs. Therefore one of their trained model can trans-
late images from one domain into another domain. They do not test their method on
several domains at the same time as we are doing while anonymizing several identities
with the same model.

Another keyword which sound similar to but is different from anonymization is
de-identification. Definitions given by [Ribaric, Ariyaeeinia, and Pavesic, 2016] explain
clearly the difference between the two. De-identification refers to the reversible process
of removing or obscuring any personally identifiable information from individual
records in a way that minimizes the risk of unintended disclosure of the identity of
individuals and information about them. It involves the provision of additional infor-
mation to enable the extraction of the original identifiers by, for instance, an authorized
body. Anonymization refers to the process of data de-identification that produces data
where individual records cannot be linked back to an original as they do not include
the required translation variables to do so. In other words, if you recall the earlier
definition of anonymization given by european authority: anonymization irreversibly
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prevents identification. If the data processing is done in a way to prevent any direct
identification, but indirect identification is still possible (using additional data not con-
tained in the database for example), then this process is called De-identification. The
main difference between this concept and data anonymization is that some identifying
features can be preserved, not leading to a direct re-identification, but in order to be
relinked only by a trusted party or by the original data operator, whereas in the case of
anonymization, no re-identification should be possible by anyone.

We introduce here the two de-identification papers most related to our work. The
first paper is the work of [Meden et al., 2017]. They focus on faces de-identification
with generative deep neural network. They present an extensive complex model to
perform feature extraction from the images, then compare the feature to the k-closest
faces and generate a new image combining the k-closest images. The model they used
is called a pipeline and produces good results but the corresponding architecture is
really different from our because of its complexity. Any comparison with our method
is difficult, because, even if they mention the goal of preserving useful non-private
information they never perform any test related to it.
The second paper is the work of [Li and Lyu, 2019]. It focuses on de-identification
while keeping as much as possible of the non-private attributes which is exactly the
scope of our work. The process is to transfer facial attribute from a subject to the face
of a ‘donor’ whose identity will be released on purpose. The method they used is
quite complex and uses different successive processing: face detector that locates and
bounds in a box the face, a facial landmark extraction algorithm detects landmark face
points (tips of eyes, eyebrows, nose, mouth ad contour). The landmark are then aligned
with a standard frontal oriented face. This allows to transform the extracted face to
a frontal oriented version of the face. They afterwards use a facial attribute transfer
model that transposes the extracted face to the produce a donor version of it (This
transfer model is based on [Liu, Breuel, and Kautz, 2017]). This version with the donor
identity is then reoriented to fit the original picture with a lot more complication to
blend it nicely. Their method produces neat results but the test they have done to check
for anonymization gives disappointing results and they are puzzled about it.
The process explained in the above mentioned paper is quite close to methods used to
produce deepfake video content. Deepfake videos are produced using regular video
footage and a collection of a person’s face pictures. The facial features of the person
depicted in the video are changed into the one provided by the pictures. Face features
are transferred frame by frame. The processed is assessed using the discriminator of
as in the GAN framework; the discriminator network is used to enhance the resulting
images into lifelike images. Images are then assembled into a video. The results are
really neat and can full human eyes in some cases (see youtube deepfake video of
celebrities). Nonetheless, deepfake videos can be distinguished from genuine videos
as presented in the work of [Korshunov and Marcel, 2018] and [Li and Lyu, 2018].
Note that deepfake is a term that is also applied to forged sound files: the specific
person’s voice samples are used to produce record of sentences that were never tell by
the person.

Remark: The state of the art of the chapter 5 is actually at the beginning of the above
mentioned chapter because its notation is intrinsic with the presentation of the problem.

1.6 Contributions

Statistical methods protecting sensitive information or the identity of the data owner
have become critical to ensure privacy of individuals as well as of organizations. This
work investigates statistical anonymization methods.
Another side of my work is the study of predictor outputs to extract relevant informa-
tion about the predictor’s behavior.
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1.6.1 Supervised anonymization (Chapter 3)

In the chapter regarding the supervised framework (private and regular labels are
known) the contributions are mainly the introduction of a new loss that is designed
to provide representation under a trade-off constraint: preserve as much as possible
the useful information regarding a target task while anonymizing as much as possible
the representation. The associated architecture was designed in order to learn a model
that can process the samples into the representation. Additionally a training procedure
was devised in order to train this complex architecture model. The combination of the
loss with the architecture mains characteristics are: i the adversarial network tries to
classify among a large number of person’s identities (instead of among two domains),
and ii the training objective is designed to lead to more robust training, avoiding the
numerical difficulties that would be caused by maximizing unbounded cross-entropy
(between the representation and the private label). This maximization would occur if a
vanilla method is used to maximize cross-entropy in order to anonymize the private
features5.

1.6.2 Semi-supervised anonymization(Chapter 4)

In the chapter regarding the semi-supervised framework, the contribution is the adapta-
tion of the previously mentioned loss. This leads to the design of a new architecture due
both to the lack of regular task labels and to the change in the nature of the anonymized
representation (from a simple feature vector to a coherent picture). A training proce-
dure was also derived to fit the new framework. This new model was used on the
same images dataset and provided interesting results in the context of anonymization
without a target task: some quantitative and other qualitative. Indeed the notion of in-
tertwined database (intertwined meaning that the targeted private variable features are
strongly connected to the other constitutive features of the image) was a unsuspected
factor that laid two main variations each being of a related yet distinct interest.
The first proposal focused on processing separable database, separable meaning that
the targeted private variable features are not deeply connected with other features.
This resulted on good results on the not-intertwined dataset and poor results on the
intertwined dataset.
This is why the second proposal was designed to tackle the case of producing signifi-
cantly better visual results for this type of dataset. Adding geometric consideration, this
second variation manages to perform pertinent face substitution therefore providing
stronger results on a computer tested anonymity while keeping as much as possible
other features.

1.6.3 Predictor monitoring (Chapter 5)

In the last chapter we focused on monitoring a ‘black box’ predictor outputs behavior
in order to detect possible discrepancy between test samples and training samples.
Two methods are used to detect change of behavior of the classifier statistic in the
context of batches data. The first method is a coding theory induced idea to assess the
behavior of the predictor with the help of Pearson’s chi-squared test.
The second method compares different tools performances. These tools are motivated
with mathematical considerations. The performances of these tools, despite being
affected by the type and nature of the database are conclusive even for small sized
batches.

5Vanilla method is for example applying straight domain adaptation methods to anonymize represen-
tation.
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Chapter 2

Datasets presentation

This chapter presents the various datasets used in the following chapters. They are first
introduced and the less famous ones are also illustrated with samples. For preprocessed
database, the method of preprocessing is precisely described and illustrated by samples
before and after preprocessing.

The databases chosen for the anonymization task are the ones that are easily ex-
ploitable in this context. We wanted primarily picture databases in order to focus on the
core of the problem of anonymization. We avoided other forms of data. The ones that
rely on the meaning of words and their relation with each other are difficult to represent
in numerical values. The same goes for databases that involved qualitative words as
one or several attributes. The use of embeddings that maps words to vectors is a possi-
ble solution to this problem, however the design of such embeddings adds significant
complexity to the initial task. To avoid any interference between the performance of
such a pre-processing and the performance of our framework we limited ourselves to
the use of numerical value database such as digital data (pictures here). Traditional
datasets such as list of features or tabular sometimes used in privacy articles are not
used here. Databases composed of digits attributes or composed of unequivocal digits
translatable attributes would then have to meet the requirement of our framework:
Having at least several samples for each pair of labels (the pair of labels stands for both
the private task label and the regular task label). Table datasets that are used in privacy
learning are often composed of a unique sample per pair of labels and even a unique
sample per private label. This is not the kind of problem our framework is build to
tackle.

2.1 MNIST

MNIST (Modified National Institute of Standards and Technology database) database
is for sure one of the most famous datasets used in several machine learning fields such
as handwriting recognition.

The MNIST database is composed of handwritten digits and is derived from NIST
database and introduced initially by [Lecun et al., 1998] (today’s reference is [LeCun and
Cortes, 2010]). This database consists in black digits from 0 to 9 on a white background.
These images have been normalized with respect to their size and centered to fit into
a 28-by-28 pixels and anti-aliased which introduce shades of grey in the image. The
database is split into two sets: a 60 000 samples training set and a 10 000 samples test
set. Note that each set is matched by the corresponding label file.

2.2 Fashion-MNIST

The Fashion-MNIST database introduced by [Xiao, Rasul, and Vollgraf, 2017] is an
MNIST-like database, meaning it is similar to the above presented MNIST database:
centered object on a white background in a square image. This database has been made
by Zalando research team and consists in 28-by-28 pixels grey scale images of clothes.
The ten classes of this database are: t-shirt/top, trouser, pullover, dress, coat, sandal,
shirt, sneaker, bag and ankle boot. The size of the sets is the same as MNIST: 60 000
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images in the training set and 10 000 images in the test set with the corresponding label
file.

2.3 CIFAR-10

CIFAR-10 (Canadian Institute For Advanced Research) database was introduced by
[Krizhevsky, 2009]. This database is composed of small square (32-by-32 pixels) color
images each picturing an object or a living creature in their usual background environ-
ment. There are exactly 10 classes in this database (CIFAR-10): airplane, automobile,
bird, cat, deer, dog, frog, horse, ship, truck. The train set and the test set consist of
respectively 50 000 and 10 000 images. Note that the classes are mutually exclusive,
meaning there is no overlap: one picture displays a subject that belongs to one and
only one class.

2.4 SVHN

SVHN (Street View House Number) database was introduced by [Netzer et al., 2011].
Note that the format 2 has been used for this work. This database is composed of house
number pictures extracted from the street view’s feature of Google Maps. The format 2
means that the picture have been pre-processed in the following manner: digits have
been cropped and resized to a 32-by-32 pixels resolution color image. This cropping
and resizing is done without any distortion. The fact that most of the time house
numbers are made of numbers and not digits means that this cropped digit images may
have some residuals parts of other digits on sides (most of the time left and right side,
but with variability due to numbers being tilted due to numerous reasons).

2.5 Pen-digits

2.5.1 Presentation

We selected a convenient enough dataset, named Pen-digits from Alpaydin [Alimoglu
and Alpaydin, 1996]. This dataset is interesting to study anonymization because it
has double labels (the user IDs of writers and the digit categories) and it has many
examples of each writer. The dataset provides the coordinates of digitally acquired
pen movements of 44 persons (30 are involved in the training set and 14 in the test-set)
writing digits from 0 to 9. We only used the training set (to use only 30 identities) which
was randomly split into training, validation and test data sets (size 5494, 1000 and 1000,
respectively), sharing images of the same 30 persons. At the time of collecting this
dataset, inconclusive digits were removed. This dataset contains 25 times each digits
for each person minus the few discarded digits. The raw data is a set of pen trajectories.
It is preprocessed in several steps. The coordinates of all the curves corresponding to a
single sample were normalized in order to center the image and reduce variability by
making it fit a 80x80 image. After being drawn, each image was then down-sampled
into a 20x20 image. Resulting images were transformed into grey scale images with a
black background.

2.5.2 Samples

A table overview of the samples is shown Figure 2.1: digits in the same lines come from
the same writer. Variability between written samples is exposed on Figure 2.2 for the
digit 9.
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FIGURE 2.1: Samples from the Pen-digits database. Each line corre-
sponds to one writer and shows samples of different digits from the

training set.

2.6 JAFFE

2.6.1 Presentation

The JAFFE (Japanese Female Facial Expression) database [Lyons et al., 1998] and [Dailey
et al., 2010] contains 213 pictures of Japanese women’s faces composed of 10 different
persons as shown Figure 2.3. Each person has between 2 and 4 pictures per facial
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FIGURE 2.2: Samples from the Pen-digits database. Each line shows the
same writer variability of the 9s. Samples are from the training set.
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expressions. The seven facial expressions are associated with the following feelings:
“neutral”, “anger”, “fear”, “surprise”, “sadness”, “joy” and “disgust”. The pictures
were processed to remove irrelevant background pixels. Pictures have been cut in order
to have the bottom of the chin as the bottom pixels line, the frontier between hair and
forehead as the top pixels line, the frontier between hair and temple as the far right
and far left pixels columns. To do so the cumulative brigthness (either vertically or
horizontally) variation are plotted and minimum value among a specified window
are chosen as frontier, as shown on the Figure 2.4. The remaining pixels in the corner
that does not belong to the face were set to black. The original pictures are 256x256
pixels and the resulting images are 29x37 pixels and they are shown on Figure 2.5. The
dataset is divided into a 139 pictures training set and a 74 pictures test set. There are
barely enough data to perform the training properly so the training set is used as the
validation set as well. This decision may be considered as fallacious but a validation
set is needed because several steps of the algorithm are optimized with the loss value
or the accuracy value on the validation set.

2.6.2 Samples

Figure 2.3 shows the unprocessed images, Figure 2.4 shows the preprocessing and
Figure 2.5 shows the processed images.

2.7 FERG

2.7.1 Presentation

The FERG (Facial Expression Research Group) database [Aneja et al., 2016] contains
55767 annotated face synthetic images of six stylized characters modeled using the
MAYA software (a 3D computer animation, modelling, simulation and rendering
software). This database has 256x256 pixels images depicting the seven following facial
expressions (or feelings): “neutral”, “anger”, “fear”, “surprise”, “sadness”, “joy” and
“disgust”. The main advantage of this database is the number of samples which is
huge. It contains a double labeling and the synthetic face have human-like emotion
expressions. For each expression and character, there are between 911 and 2088 images.
Original 256x256 pixels colour images have been pre-processed into re-sized 8-bit
grey-scale 50x50 pixels images.

2.7.2 Samples

Figures 2.6 and 2.7 display samples from the database respectively before and after the
pre-processing.
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FIGURE 2.5: Jaffe database samples after pre-processing
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FIGURE 2.6: Initial samples from the FERG database.
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FIGURE 2.7: Pre-processed samples from the FERG database.
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Chapter 3

Supervised anonymization

3.1 Introduction

This chapter addresses the precise situation where some supervised classification task
has to be performed on a dataset, while keeping another information (which could
also be obtained via some classifier) secret. The most simple example would be to
keep secret the identity of the writer in the pen-digits database while still allowing
efficient recognition of the handwritten numbers. This obviously requires to have
doubly labeled data sets for training. In the next chapter, we will address the situation
where we do not know exactly which kind of classification (processing) the regular task
will be, but still want to maintain some information hidden.

We investigate anonymization from a perspective which is related but different
from that of differential privacy. The main difference relies on the condition of the
information release (sanitize) mechanism which in our case depends on the dataset
itself. Additionally, differential privacy introduces randomized predictors whereas our
method (after training is accomplished) induces a deterministic algorithm. As stated
above, our intent is to hide information about the private labels which is implicitly
present in a dataset while preserving as much information as possible about the regular
relevant labels. For this purpose, we introduce a novel adversarial training objective
and framework inspired by Generative Adversarial Networks (GAN) by [Goodfellow
et al., 2014] and by the domain adaptation framework of [Ganin and Lempitsky, 2015].

We propose an efficient way of optimizing an information-theoretic objective by
deriving backpropagation signals through a competitive process involving three net-
works, illustrated in Figure 3.1 for the supervised case, an encoder network which is a
common trunk mapping input X to a representation U, as well as two branch networks
taking U as input, i.e. a predictor for the regular labels Y and a predictor for the private
labels Z. While the encoder is trained to help the predictor of Y as much as possible, it
is also trained to prevent the Z predictor from extracting private information from U,
leading to a trade-off between these two objectives.

3.2 Theory

We introduce our model from which sanitized representations will be learned. We
develop a precise formalization of the problem and derive an information-theoretic
criterion that together GAN provides a tractable supervised objective to guide the
learning of constrained representations.

3.2.1 Learning model and problem definition

In this work, we are concerned with the problem of pattern classification which is
about predicting the regular label (public information) of an observation based on
high-dimensional representations. An observation is a sample x ∈ X presented to
the learner about a target concept y ∈ Y (the regular label) and the user ID z ∈ Z
(the private label). This consists of a typical supervised learning setup with a training
dataset of n i.i.d. tuples: Tn := {(x1, y1, z1) · · · (xn, yn, zn)}, sampled according to an
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unknown distribution pXYZ. We consider the problem of learning a representation
from examples of pXYZ. We would like to find a (possibly stochastic) transformation
qU|X that maps raw data X to a higher-dimensional (feature) space U :

pYZ ∼ (Y, Z)
pX|YZ

−−−−−→
(unknown)

X
qU|X

−−−−−−−−−→
(encoder/sanitize)

U.

This representation U should be designed in such a way that it allows to simultaneously
find a (randomized) deep encoder qU|X : X → P(U ) and a soft-classifier qŶ|U : U →

P(Y) which maps the representation to a distribution on the label space Y . Hence, our
ultimate goal is to learn qU|X from a deep neural network to perform this classification
task while preventing any classifier qẐ|U : U → P(Z) from learning the private
label Z from representation U. In other words, our representation model must learn
invariant features with respect to private labels. We will formalize this problem as being
equivalent to that of optimizing a trade-off between both misclassification probabilities
(regular and private label). It is therefore necessary to define this notion:

Definition 1. The probability of misclassification of the induced decision rule from an encoder
qU|X and a classifier qŶ|U with respect to the distribution pXY is given by

Pe

(
qU|X, qŶ|U

)
:= 1 − EpXYqU|X

[
qŶ|U(Y|U)

]
. (3.1)

We can now provide an operational definition of what would make a good rep-
resentation U in the anonymization problem. A representation should be useful for
minimizing the misclassification probability of the public task of interest with regular
labels Y while bounding from below, whatever classifier qẐ|U is chosen, the proba-
bility of misclassification of the identity Z, which is formally introduced in the next
subsection.

3.2.2 Bounds on the probability of misclassification

Definition 2 (Learning with anonymization constraints). Consider the following con-
strained pattern classification problem:

min
(qU|X ,qŶ|U)∈F

{
Pe

(
qU|X, qŶ|U

)
:

min
qẐ|U :U→P(Z)

Pe

(
qU|X, qẐ|U

)
≥ 1 − ε

}
,

(3.2)

for a prescribed probability 1/|Z| ≤ ε < 1, where the minimization is over the set of restricted
encoders and classifiers (qU|X, qŶ|U) ∈ F according to a model class F .

The above expression requires representations with (1− ε)-approximate guarantees
(over all possible classifiers) w.r.t. the misclassification probability of the private labels.
ε can be replaced by a suitable positive multiplier λ ≡ λ(ε) yielding a relaxed version
of the objective.

min
{

Pe

(
qU|X, qŶ|U

)
− λ · Pe

(
qU|X, q⋆

Ẑ|U

)}
, (3.3)

where q⋆
Ẑ|U

is the minimizer of Pe

(
qU|X, qẐ|U

)
. Expression (3.3) does not lead to a

tractable objective for training (qU|X, qŶ|U). However, it suggests a competitive game
between two players: an adversary trying to infer the private labels Z from our rep-
resentations U, by minimizing Pe

(
qU|X, qẐ|U

)
over all possible qẐ|U over a prescribed

model class F , and a legitimate learner predicting the regular labels Y, by optimizing a
classifier qŶ|U over a prescribed model class F . We can trade-off these two quantities
via the representation (encoder) model qU|X. This key idea will be further developed in
the next section through an adversarial framework to guide learning of all involved
parameters in the class F .
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In order to derive a tractable surrogate to (3.2), it is convenient to first introduce the
rate-distortion function [Cover and Thomas, 2006].

Definition 3. The rate-distortion function of a RV Z ∈ Z with distortion d(z, u) := 1 −
qẐ|U(z|u) is defined as:

RZ,qẐ|U
(D) := min

pÛ|Z :Z →P(U )

Ep
ÛZ

[1−qẐ|U(Z|U)]≤ D

I
(
Z; U

)
, (3.4)

where pÛZ = pÛ|ZPZ. Furthermore, there exists D > 0 s.t. RZ,qẐ|U
(D) is finite [Csiszár,

1974], let the minimum be Dmin with Rmax := RZ,qẐ|U
(D) as D → Dmin+.

Moreover, RZ,qẐ|U
(D) is positive, monotonically decreasing and convex. Let us

define:
R−1

Z,qẐ|U
(I) := inf

{
D ∈ R≥0 : RZ,qẐ|U

(D) ≤ I
}

, (3.5)

which is known as the distortion-rate function 1. The function I 7→ R−1
Z,qẐ|U

(I) is positive

and monotonically decreasing.
Another notion that will be necessary to obtain an upper bound of the untractable

objective of (3.3) is the cross-entropy risk defined below:

Definition 4 (Cross-entropy loss). Given two distributions qU|X : X → P(U ) and qŶ|U :
U → P(Y), define the average (over representations) cross-entropy loss as:

ℓ
(
qU|X(·|x), qŶ|U(y|·)

)
:=
〈
qU|X(·|x),− log qŶ|U(y|·)

〉
(3.6)

= EqU|X=x

[
− log qŶ|U(y|U)

]
. (3.7)

As usual, we shall measure the expected performance of (qU|X, qŶ|U) via the risk:

L(qŶ|U , qU|X) := EpXY

[
ℓ
(
qU|X(·|X), qŶ|U(Y|·)

)]
. (3.8)

The following lemma provides bounds on the misclassification probability via
mutual information and the cross-entropy loss (proof available in appendix A).

Lemma 5. The probabilities of misclassification Pe(qU|X, qŶ|U) and Pe(qqU|X ,Ẑ|U) induced

by an encoder qU|X : X → P(U ) and two arbitrary classifiers qŶ|U : U → P(Y) and

qẐ|U : U → P(Z) are bounded by

Pe(qU|X, qẐ|U) ≥ R−1
Z,qẐ|U

(I(Z; U)) , (3.9)

Pe(qU|X, qŶ|U) ≤ 1 − exp
(
−L(qŶ|U , qU|X)

)
, (3.10)

where qU|Z(u|z) = ∑x∈X qU|X(u|x)pX|Z(x|z).

Observe that the lower bound in (3.9) is a monotonically decreasing function of the
mutual information I(Z; U). This implies that any limitation of the mutual information
between private labels Z and representations U will bound from below the probability
of misclassification of private labels, whatever classifier qẐ|U is chosen. On the other
hand, the upper bound in (3.10) shows that the cross-entropy loss L(qŶ|U , qU|X) can be
used as a surrogate to optimize the misclassification probability of regular labels, which

1It is worth to mention that by using R−1
Z,qẐ|U

(I) we are abusing notation. This is because in general

it is not true that RZ,qẐ|U
(D) is injective for every D ≥ 0. However, when I ∈ [Rmin, Rmax) with

Rmin := RZ,qẐ|U
(Dmax) and Dmax := min

u∈U
EPZ

[
1 − qẐ|U(Z|u)

]
, under some very mild conditions on PZ

and qẐ|U(z|u), R−1
Z,qẐ|U

(I) is the true inverse of RZ,qẐ|U
(D), which is guaranteed to be injective in the

interval D ∈ (Dmin, Dmax].
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motivates the cross-entropy loss. The practical relevance of these information-theoretic
bounds is to provide a mathematical objective for browsing the trade-off (3.2) between
all feasible misclassification probabilities Pe

(
qU|X, qŶ|U

)
as a function of the prescribed

(1 − ε) probability. Therefore, the learner’s goal is to select an encoder qU|X and a
classifier qŶ|U by minimizing jointly the risk and the mutual information, leading to
tightening both bounds in Lemma 5.

However, since pXYZ is unknown the learner cannot directly measure neither the
risk in (3.10) nor the mutual information in (3.9). It is common to measure the agreement
of a pair of candidates with a training data set based on the empirical data distribution
p̂XYZ. This yields an information-theoretic objective, being a surrogate of expression of
eq. (3.3):

min
{
Lemp(qŶ|U , qU|X) + λ · Î(Z; U)

}
, (3.11)

for a suitable multiplier λ ≥ 0, where Lemp(qŶ|U , qU|X) denotes the empirical risk as
in Definition 4 taking the average w.r.t. p̂XY and the mutual information must be
evaluated with empirical distribution (reminder ·̂ means empirical) using q̂Z|U as
being the posterior according to qU|X p̂XZ. As a matter of fact, eq. (3.11) may be inde-
pendently motivated by a rather different problem studying distortion-equivocation
trade-offs [Villard and Piantanida, 2013].

3.2.3 Representation learning with anonymization

We performed initial experiments in which the training objective was similar to the one
introduced by [Ganin and Lempitsky, 2015] for domain adaptation, and found that
training was unstable and led to a poor trade-off between the degree of anonymity (with
the classification error on private labels Z as a proxy) and the accuracy on the regular
task (predicting regular labels Y). This led us to change both the training objective
and the training procedure, compared to those proposed by [Ganin and Lempitsky,
2015]: the training objective in Ganin is directly the difference of the cross-entropy
losses with a multiplier in front of the domain one. Our loss written further below
in the current subsection is based on different approach and results in an additional
term and absolute value in its expression. The training is explained in the algorithm
subsection. The new adversarial training objective is presented below, starting from
the information-theoretic surrogate presented above in expression (3.11).

A careful examination of expression (3.11) shows that it cannot be optimized since
the posterior distribution q̂Z|U is still not computable in high dimensions. We will
further loosen this surrogate by upper bounding the empirical mutual information
Î(Z; U) = Ĥ(Z) − Ĥ(Z|U). The empirical entropy of Z can be upper bounded as
follows:

Ĥ(Z) ≤ EP̂Z

[
− log q̂Ẑ(Z)

]
(3.12)

≤ EP̂Z
Eq̂U

[
− log qẐ|U(Z|U)

]
(3.13)

≡ EP̂Z
E p̂X

[
ℓ
(
qU|X(·|X), qẐ|U(Z|·)

)]
(3.14)

:= L
obj
emp(qẐ|U , qU|X), (3.15)

where (3.12) follows since the relative entropy is non-negative (cf. section 1.4); (3.13)
follows by the convexity of t 7→ − log(t) and (3.14) follows from the definition of the
cross-entropy loss. We will also resort to an approximation of the conditional entropy
Ĥ(Z|U) by learning an adequate empirical cross-entropy risk:

Ĥ(Z|U) ≈

E p̂XZ

[
ℓ
(
qU|X(·|X), qẐ|U(Z|·)

)]
≡ Lemp(qẐ|U , qU|X),

(3.16)
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which assumes a well-selected classifier qẐ|U , i.e., the resulting approximation error
given by D

(
q̂Z|U‖qẐ|U |q̂U

)
w.r.t. the exact qẐ|U is small enough. By combining expres-

sions (3.15) and (3.16), and taking the absolute value, we obtain :

Î(Z; U) -
∣∣Lobj

emp(qẐ|U , qU|X)−Lemp(qẐ|U , qU|X)
∣∣, (3.17)

that together with eq. (3.11) leads to our tractable objective for learning, which is an
approximation of expression (3.11), being the surrogate of (3.3), i.e., the objective of
interest:

Lλ(qŶ|U , qẐ|U , qU|X) := Lemp(qŶ|U , qU|X)

+ λ ·
∣∣∣Lobj

emp(qẐ|U , qU|X)−Lemp(qẐ|U , qU|X)
∣∣∣ , (3.18)

for a suitable classifier qẐ|U and multiplier λ ≥ 0, being a meta-parameter that controls
the sensitive trade-off between data anonymity and statistical efficiency. Consequently,
we can minimize and maximize the incompatible objectives of the cross-entropy losses
in (3.18). Intuitively, the data representations we wish to achieve from qU|X must
blur the private labels Z from the raw data X while preserving as much as possible
relevant information about the regular labels Y. It is worth to mention that (3.15)
corresponds to the loss of a ‘random guessing’ classifier in which the representations
U are independent of private labels Z. As a consequence, training encoders qU|X to
minimize (3.18) enforces the best classifier qẐ|U (private labels) to get closer – in terms
of loss – to the random guessing classifier.

Note also that since (3.16) is only an approximation, one cannot fully ensure that
the right-hand side of (3.17) is really an upper bound of the entropy. The accuracy of
the approximation will be checked in the simulation section.

3.2.4 Estimation of the probability of misclassification

The following proposition provides an interesting lower bound on the estimated (e.g.
over a choice of test-set) misclassification probability of any classifier attempting to
learn Z from the released representations:

Proposition 1. Let qU|X be a sanitize encoder and p̂XZ be an empirical distribution over a
choice of a data-set Tn := {(x1, z1) · · · (xn, zn)}. Then, the probability of misclassification of
private labels satisfies:

P̂e(qU|X, qẐ|U) ≥ g−1
(

log |Z| − Î
(
Z; U

))
, (3.19)

uniformly over the choice of qẐ|U , where for 0 ≤ t ≤ 1:

g(t) := t · log (|Z| − 1) + H(t), (3.20)

with

H(t) := −t log(t)− (1 − t) log(1 − t), (3.21)

and 0 log 0 := 0

(3.22)

The function g−1(t) := 0 for t < 0 and, for 0 < t < log |Z|, g−1(t) is a solution of the
equation g(ε) = t w.r.t. ε ∈

[
0, 1 − 1/ |Z|

]
; this solution exists since the function g is

continuous and increasing on
[
0, 1 − 1/ |Z|

]
and g(0) = 0, g

(
1 − 1/ |Z|

)
= log |Z|.

The proof of this proposition is in the appendix A.
The importance of expression (3.19) is that it provides a concrete measure for

the anonymization performance of the representations. It bounds from below the
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misclassification probability over the choice of the classifier qẐ|U , using the sanitized
representations. The right hand side is a quantity that involves the empirical mutual
information between the representations and the private labels. It should be pointed
out that since in many cases Ĥ(Z) ≈ H(Z) ≡ log |Z|, assuming pZ is uniformly
distributed over the set Z , then:

inf
qẐ|U

P̂e(qU|X, qẐ|U) % g−1
(
Ĥ
(
Z|U

))
, (3.23)

and using our approximation in (3.16) the lower bound in (3.23) leads to an approxi-
mate but computable lower bound on the misclassification probability of the private
labels. However, in order to provide statistical guarantees on (3.23), we need to study
confidential bounds on D(q̂Z|U‖qẐ|U |q̂U) ≤ δ which goes into the scope of further
development of this work and is an interesting perspective.

3.3 Anonymization with Deep Neural Networks

Our ultimate goal is to learn parameters Rdc ∋ θc 7→ qU|X of a deep encoder and
parameters Rdr ∋ θr 7→ qŶ|U and Rdp ∋ θp 7→ qẐ|U of the classifiers, (dc, dr, dp) being
the parameters’ dimensions. In the following, we introduce a simplified notation to
rewrite the objective (3.18) as:

θ
∗ ≡ arg min

θ∈Θ

{
Lr(θc, θr) + λ ·

∣∣∣Lobj
p (θc, θp)−Lp(θc, θp)

∣∣∣
}

, (3.24)

for a suitable hyperparameter λ ≥ 0 to tune the trade-off between regular and private
tasks, where all involved parameters are simply denoted by Θ ∋ θ := (θc, θr, θp) with

Lr(θc, θr) ≡ Lemp(qŶ|U , qU|X), (3.25)

Lp(θc, θp) ≡ Lemp(qẐ|U , qU|X), (3.26)

L
obj
p (θc, θp) ≡ L

obj
emp(qẐ|U , qU|X). (3.27)

Assume a training set Tn of size n, where each element of the dataset (xi, yi, zi) is
composed of xi ∈ X ≡ R

m is a real vector of size m, the regular label of the sample
yi ∈ Y and private label of the sample zi ∈ Z .

3.3.1 Adversarial training objective

Each classifier branch of the proposed architecture, i.e., qŶ|U and qẐ|U , is trained to
minimize the associated cross-entropy loss, whereas the encoder qU|X will be trained to
simultaneously minimize the cross-entropy loss on the prediction of Y while maximiz-
ing an adversarial loss defined with respect to the private label predictor Z.

Each sample input xi produces a representation ui ∼ qU|X=xi
and outputs two

probability vectors qŶ|U(·|ui) and qẐ|U(·|ui) as soft predictions of the true labels: the
regular one yi and the private one zi, respectively. The expressions of the losses we
found in (3.25) and (3.26) are two cross-entropies computed over the whole training set:

Lr(θc, θr) =
1
n

n

∑
i=1

〈
e(yi),− log qŶ|U(·|ui)

〉
, (3.28)

Lp(θc, θp) =
1
n

n

∑
i=1

〈
e(zi),− log qẐ|U(·|ui)

〉
, (3.29)

with e(yi) and e(zi) being “one-hot” vectors (yi component is 1 and the others 0) of the
true labels of sample i = [1 : n].

Let us now consider the adversarial objective. There are too many possible networks
that mismatch the private labels and maximize the corresponding cross-entropy. In
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particular the cross-entropy loss on the private label predictor could be increased
arbitrarily by making it produce a wrong answer with high probability, which would
not make much sense in our context. Hence, we want to maximize this cross-entropy
but not more than that of the cross-entropy of a predictor which would be unable to
distinguish among the identities, i.e., with a posterior distribution approximatly equal
to p̂Z:

L
obj
p (θc, θp) =

1
n

n

∑
i=1

〈
p̂Z,− log qẐ|U(·|ui)

〉
, (3.30)

which is indeed expression (3.15). This artificial loss, formally introduced by our
surrogate (3.18), denotes the cross-entropy between the vector of empirical estimates of
probabilities p̂Z and the predictions ẑ. By forcing private task predictions to follow the
estimated empirical probability distribution of the private labels (in many cases close
to equiprobable labels) the encoder is trained to produce anonymized representations.
Indeed these representations private features are expected to fool a classifier into
learning a random guess model on the private task. Keep in mind that random
guessing is a universal lower bound for anonymization. In fact, if the private label
predictor had a cross-entropy loss higher than that of the random guessing predictor,
the surrogate indicates we must reduce its loss. This is consistent with the adversarial
training objective in (3.24). Notice that if our predictions follow the random guessing
distribution then the term

∣∣Lobj
p (θc, θp)−Lp(θc, θp)

∣∣ approaches zero.
This upper bound of the cross-entropy of the private classifier induces large im-

provement on the training compare to a regular cross-entropy maximization without
an upper bound. The training is more robust and avoid numerical difficulties which
may arise from the number of private labels while using an unbounded loss. Indeed
the straight application of the loss of [Ganin and Lempitsky, 2015] for task where the
number of private label is more than two (in domain adaptation there is usually only
two domains) gave inconclusive simulations. These numerical difficulties arise in
particular when the cross-entropy was worse than a random guess predictor on the
private-label.

3.3.2 Architecture

The architecture is similar to that of [Ganin and Lempitsky, 2015] (especially for the
gradient reversal layer showed in the Fig. 3.1), initially introduced in the context of
domain adaptation. The goal of domain adaptation is to train a loss on a dataset and be
able to apply it efficiently on a different but related dataset. Here we have two branches
on top of a common encoder. One branch is the regular task classifier and the other
one is the private task classifier. The general shape of the network is shown on Fig.
3.1. The fact that the backpropagation is done while reversing the sign we coming
from the private branch to the encoder is due to the usage of a layer called the gradient
reversal layer, showed with pink arrow. This layer is first introduced in [Ganin and
Lempitsky, 2015]. It is not actually a layer, but just a specific connection where the
forward information is untouched but the backward gradient is multiplied by −1.

3.4 Algorithm

3.4.1 Training procedure

We have found best results according to the following adversarial training procedure.

1. The encoder and regular label predictor are jointly pre-trained (as a standard
deep network) to minimize the regular label cross-entropy (eq. (3.28)).

2. The encoder is frozen and the private label predictor is pre-trained to minimize
its cross-entropy (eq. (3.29)).
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FIGURE 3.1: Architecture of the proposed deep neural network. Note
that the number of layer here is just for readability of the figure and not

representative of the actually used architecture

3. Adversarial training is organized by alternatively either training the branch
predictors or training the encoder:

(a) Sample N training examples and update both branch predictors with respect
to their associated cross-entropies, using batch stochastic gradient descent
(SGD) (i.e. the N examples are broken down into batches, with one update
after each batch).

(b) Sample N training examples and update the encoder to minimize the adver-
sarial objective (eq. (3.24)), again using batch SGD.

In our experiments, we simply picked N as the size of the training set, so we alternated
between the two kinds of updates after several epochs on each. We used batch SGD
with Nesterov momentum [Nesterov, 2007].

3.4.2 Testing procedure

Once the training is done we need to test the produced results. To do so the data is
processed through the encoder. The representations are then associated with both their
original labels (private one and regular one). We assume the worst case scenario: an
attacker have access to the private labels of the training data. The idea is to test for the
presence of remaining private information inside the representations. We design an
assessment network to learn to classify data from the training set according to their
private labels. It is a network whose task is the same as the private branch network .i.e
classifying as accurately according to the private labels. Once trained to produce the
best possible results we measure the performances on the processed test set (processed
through the encoder). The accuracy of this classifier on the test set representation
gives us the performance of anonymization of the encoder. A lower accuracy means a
better anonymization. The performances of the regular task are measured in the same
fashion using a second assessment network trained on the encoded representations
from training set and tested on the encoded representations from the test set. This gives
the accuracy of the regular task for the encoded representation. The accuracies (regular
and private) are plotted in the figure of the next section as a function of λ.

Note that this is the worst case scenario concerning the privacy. Indeed the attacker
dispose of all the possible information (i.e. all the private labels) he needs to train a
de-anonymizer network.
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3.5 Experimental Results

The dataset used in this section are presented in the chapter 2. The ones used here all
have two labels for each samples. One will be used for the private task classification
and the other one will be used for the regular task classification. Information about the
label is at the beginning of each dataset subsection.

We emphasize that the present method gives an anonymizer for the whole dataset,
as opposed to anonymizing a query related process or a subset of the dataset. In order
to tune the anonymization, we have trained a network for a wide range of values of λ.
For each of them, we compute the accurate rates of both tasks: the private and the
regular labels.

3.5.1 Toggle (or sequential) vs simultaneous training

The procedure we found to provide better results when training the parameters of
our deep neural nets is a toggle training, as opposed to simultaneous training [Ganin
and Lempitsky, 2015] where all updates at the encoder and at the branches occur at
the same time. With toggle training the updates are performed either at the encoder
or at the branches (Fig. 3.1). The purpose is to let the branches of the network to
keep track of the encoder updates. This method has a key role in learning useful
representations. Indeed, if classifiers are performing as efficiently as possible on their
own tasks, they will feedback the most relevant information to update the encoder.
In Fig. 3.2, we confronted the result of toggled training versus the simultaneous (or
concurrent) training method. The regular task classification accuracies are plotted as a
function of the private task anomymization accuracy. To keep this comparison fair, we
found better to chose a lower learning rate on the encoder than on the branches. Note
the different scale between the left axis (toggle training) and the right axis (simultaneous
training). We can observe that simultaneous training enables only two regimes: either
a light anonymization, with almost no available trade-off, or a strong anonymization,
where a few features relevant to the regular task remain. Indeed, after training with
a significant large range of λ values, we found the network to randomly converge to
either of these extremes, that is why several points are not achievable and thus, missing
in the plots. The toggle training makes reachable some trade-off points (high regular
task accuracies while providing some degree of anonymization) that was not available
in the other method.

3.5.2 Pen-digits database

The regular task consists in digit classification and the private task consists in writer
identity classification. The trade-off between the regular and private tasks is presented
in Fig. 3.3. The N-curve corresponds to the test accuracy on the private task while the
⋆-curve denotes the test accuracy on the regular task. The doted curve is the probability
of error lower bound on the private task estimated with the values of cross entorpy
loss function after the verification model is trained. This denotes the estimation of
the private task accuracy according to (3.23) using (3.16) computed on the loss of
the test-set (under the uniform private label empirical distribution hypothesis, which
is true on this dataset). The rather good fitting indicates that (3.16) is a reasonable
approximation.

Interestingly, the impact on the regular task stays contained inside the previously
approximated baseline lower bound for the classification error probability. Some
interesting conclusions can be drawn from these plots. Its ordinate reads on the right
axis. The value of the accuracies of both tasks at λ = 0 is interesting. Indeed, when
λ = 0 the network is updated without any concern of the private task. On the other
hand, the baseline for the private task was computed separately with a dedicated
network (equivalent to cascading a network similar to the encoder and the private
branch). The accuracy baseline for the private task in theses conditions was found to
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Chapter 4

Semi-supervised anonymization

4.1 Presentation of the problem

In chapter 3, we addressed a quite constrained problem: the regular task has to be
known before undertaking the network optimization. This is a very strong constraint
that we will not consider in this chapter: we are requiring that any queries possible on
the original image should be possible on the processed data, while keeping the private
label hidden. Allowing to have the same queries on the representations as on the
original data, necessarily guided us into having representations with the same nature
as the original data. It does not suppose or guarantees anything on the performances
of those queries. Therefore, the process is supervised with respect to the private label,
but unsupervised with respect to the original image. That is why we choose to call it a
semi-supervised anonymization.

4.1.1 New objective: new architecture

There is a main difference in the goals between the previous fully supervised scheme,
and this one. Obviously we still know what to hide: private labels are still available.
However, we would like to be able to perform any other search in the processed data.
Therefore, we cannot make any assumption about what is useful in the original data.
Indeed, the method presented in the previous chapter was really different and did not
preserve all the information (i.e. it was designed to keep relevant labeled information
and was achieving its purpose). We need to emphasize on the limits of the previous
method to motivate the new challenge.
With some craftiness, it is theoretically possible to used the supervised method to keep
more than one feature at a time. Let us imagine that you want to keep information
about a couple of features like for example (eyes status,mouth status) which for both
could be in the set {closed, hal f closed, open, wide open}. It is simple to devise a
single labeling method that would take into account both features label and therefore
simply apply the supervised method. It could then seem less necessary to design a
new method since in theory it is possible to store several features in one label. The
limitation is not here indeed: what if, to keep with the same example, we want to
retrieve, once the network is designed and the database anonymized, information
about the position of the eyebrows. The representations were not designed to keep
any eyebrow information. There is no guarantee that the inference we can do on the
eyebrow position from the anonymized representations will be correct or even useful.
The limitation of our supervised method presented in the previous chapter is that the
features we want to keep have to be know before processing the database.
The work of this chapter focuses on providing anonymization while keeping as much
possible of the original (non private) features. In other words, the anonymized repre-
sentation we seek to achieve should not suppose anything about what we need to keep.
A solution to this issue is to keep as much information as possible inside the obtained
representation of the data, except the one that has to be kept private. This means that
the outputted processed data need to have the same type as the input data. For example,
the model needs to produce an image from image input. Any change in the nature of
the data would compromise our hypothesis of compatibility of queries: anonymized
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FIGURE 4.1: Semi-supervised architecture (S is the selector block)

representations have to be compatible for original data queries. Therefore the lack
of knowledge about useful information yields a fundamental shift in our model: the
metrics used to evaluate the output have to be a mix between a fidelity metric (in order
to ensure that as much information as possible remains) and the previous private met-
rics. In order to do so, a similarity metric needs to be chosen. Choosing a fixed metric
tailored for a specific application, or type of input looks appealing and would produce
good results on specific database but it will most likely fail on a different type of input
or application. Furthermore, the model we wish to design should also allow some
changes, since one has to remove the information corresponding to the private label. In
fact, this is not compatible with a high fidelity fixed metric that prevents any pixel to
shift too much. In fact, a preliminary work has been done using cumulative Euclidean
distance between pixels as a fidelity metric and the results were quite disappointing
since this choice prevented the needed changes to occur. This is the motivation to use a
GAN-like discriminator as the flexible metric to be trained. This has the advantage of
keeping a really flexible range of applications and yet to obtain accurate results. Note
that the flexibility of the metric is also useful regarding the training of the model for a
specific application: this flexibility allows the model to have some degrees of freedom
which can be used to shift the output of any type of data into an anonymized space.

In order to have comparable inputs and outputs, the encoder used in the previous
chapter should be augmented by a decoder. The resulting architecture, displayed on
Figure 4.1, is an auto-encoder followed by two branches, namely: one discriminator
and one private features classifier. On the discriminator branch, one finds first a selector,
denoted S, which allows a selection between x and x̂, followed by the discriminator.
More precisely, the input v of the discriminator is the output of the selector block,
driven by a random variable y that decides on the output of the selector S. If y = 1 then
v = x and if y = 0 then v = x̂.

4.1.2 Training objective

Here our goal is to learn three sets of parameters: i) Rdc ∋ θc 7→ qX̂|X of a deep
auto-encoder; ii) parameters Rdd ∋ θd 7→ qŶ|V of the discriminator; and iii) parameters

R
dp ∋ θp 7→ qẐ|X̂ of the private classifiers, (dc, dd, dp) being the parameters’ dimensions.

Variable Y is binary and gives the information whether X or X̂ (either the original
data or the autoencoded data) has gone through the selector and is inside V to enter
the discriminator during its training. Respectively qŶ|V is the output distribution of the
discriminator giving the estimated probability of input being V = X. In the following,
we introduce a simplified notation to rewrite the objective (3.18) as:

θ
∗ ≡ arg min

θ∈Θ

{
Ld(θc, θd) + λ ·

∣∣∣Lobj
p (θc, θp)−Lp(θc, θp)

∣∣∣
}

, (4.1)

for a suitable hyperparameter λ ≥ 0 which tunes the trade-off between the discrim-
inator and the private task, where all involved parameters are denoted by Θ ∋ θ :=
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(θc, θd, θp) with

Ld(θc, θd) ≡ Lemp(qŶ|V , qX̂|X), (4.2)

Lp(θc, θd) ≡ Lemp(qẐ|X̂, qX̂|X), (4.3)

L
obj
p (θc, θp) ≡ L

obj
emp(qẐ|X̂, qX̂|X). (4.4)

Assume a training set Tn of size n, where each element (xi, zi) is composed of xi ∈ X ≡
R

m, a real vector of size m and of zi ∈ Z , the private label of this sample. Additionally
define the vector YD with components yi ∈ {0, 1} which is used during the training of
the discriminator, and another vector YA with components yi = 1, used for the training
of the auto-encoder. Each branch of the proposed architecture, i.e., qŶ|V and qẐ|X̂, is
trained to minimize the associated cross-entropy loss, whereas the auto-encoder qX̂|X
will be trained to simultaneously minimize the cross-entropy loss on the prediction
Ŷ of Y while maximizing an adversarial loss defined with respect to the private label
predictor Z.

4.1.3 Loss

Compared to (3.24) (fully supervised objective), the new objective stated in (4.1) differs
with the term Ld(θc, θd). This term is the loss of the discriminator. During the dis-
criminator training (while the auto-encoder parameters are fixed) minimizing this loss
should improve the discriminator performance. The output Ŷ should be as accurate as
possible to predict if the data are auto-encoded (Y = 0 ) or original ones X taken from
the dataset. This discriminator, like the one in GAN, measures through its output Ŷ the
fidelity the auto-encoded samples compared to the original samples. This information
is then used to improve the parameters of the auto-encoder θd.

The purpose of this loss during the training of the auto-encoder (while the discrimi-
nator parameters are fixed) is different since it acts as a similarity metric. Each sample
input xi produces an output x̂i ∼ qX̂X=xi

which outputs a probability vector qẐ|X̂(·|x̂i)

as soft predictions of the true private labels zi. It outputs qŶ|V(1|vi) as the probability
of yi = 1.
The precise definitions of the losses are as follows.
The loss of the discriminator is a binary cross-entropy:

Ld(θc, θr) =−
1
n

n

∑
i=1

[
yi log qŶ|V(1|vi)

+(1 − yi) log(1 − qŶ|V(1|vi))
]

.

(4.5)

The private classifier loss is unchanged in its nature, just adapted to the new model
(the same cross-entropy as (3.29) computed over the whole training set):

Lp(θc, θp) =
1
n

n

∑
i=1

〈
e(zi),− log qẐ|X̂(·|x̂i)

〉
, (4.6)

with e(zi) being “one-hot” vectors (zi component is 1 and the others 0) of the true labels
of sample i = [1 : n]. The objective cross-entropy is also the one of a predictor which
would be unable to distinguish among the identities, i.e., with a posterior distribution
approximately equal to p̂Z:

L
obj
p (θc, θp) =

1
n

n

∑
i=1

〈
p̂Z,− log qẐ|X̂(·|x̂i)

〉
, (4.7)

which is indeed the expression (3.30) with U = X̂. This artificial loss serves the same
purpose as in the fully supervised case. It denotes the cross-entropy between the vector
of empirical estimates of probabilities p̂Z and the predictions ẑ. By forcing private
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task predictions to follow the estimated probability distribution of the private labels
(that may or may not be close to equiprobable labels) the model output is expected
to prevent any classifier from having better prediction that a random guessing. As
stated before, random guessing is a universal lower bound for anonymization. Note
likewise that if the predictions follow the random guessing distribution then the term∣∣Lobj

p (θc, θp)−Lp(θc, θp)
∣∣ approaches zero.

4.1.4 Training procedure

The training procedure in the semi-supervised case is quite different from the fully
supervised case.

1. The parameters of the auto-encoder are initialized using a classical pixels to pixels
metric loss during the pretraining of the auto-encoder, which produces relevant
image in shape but with poor frontier definition. However, this constitutes a
good starting point for the next steps of the training.

2. The auto-encoder and the discriminator are trained together with alternatively:

(a) updates on the discriminator parameters while auto-encoder parameters
are frozen, with inputs being a combination of auto-encoded samples and
original samples i.e. x and x̂ going through the selector block as illustrated
in Figure 4.1. By doing so, the discriminator learns the difference between
both distributions. This step is similar to the training of the discriminator in
GAN.

(b) updates on the auto-encoder while the parameters of the discriminator are
frozen. The previous training of the discriminator lets him be a relevant
flexible metrics to improve the distribution of the outputs X̂

3. The next part is the alternate updates between the auto-encoder on one side
and the discriminator and the private branch on the other side. This part is
putting the privacy constraint on the auto-encoder. It is during this step that the
privacy/fidelity trade-off occurs.

Note that among all the differences between the full supervised case and the semi
supervised case an important one is the use of convolutional network. The anonymized
representation changed (sample-like type representation in the semisupervised case,
here image, instead of a feature vector in the fully supervised case). Therefore the
network needed a change as well to adapt the new representation.

4.2 Simulation results

The dataset used in this section are presented in the chapter 2. The ones used here have
two labels for each samples. One label is used for the private task classification and the
other one is used for the regular task classification. Information about the label is at the
beginning of each dataset subsection.

4.2.1 Pendigits database

The pen-digits database is used to validate the new architecture. The private task label
are the writer identity label. The task is to transform handwritten digit pictures into
other handwritten digit pictures while removing the private task related feature while
at the same time having the encoded image keeping relevant information about the
original image digit.
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time the change regarding the private features and the change to some other features.
The strong side of this assessment method is that it is very pessimistic regarding the
anonymization: We use all the private information available to train the model that
should extract private information from the data, this is a best case scenario for an ill
intended person wanting to recover data from the processed database. Regarding the
general preservation of the picture, the assessment is done using only one of potentially
many regular features, yet we use to the full extent the label shipped with the database.
However the information of the regular label has never been used during the training
of the semi-supervised encoder. Therefore even if one regular feature may not be ideal,
we still perform an assessment of fidelity on a feature that neither the decoder or the
autoencoder have been trained for.

4.2.2 FERG database

Here the private labels that the encoder tries to remove from the representations are
the users identity labels.

Special care for intertwined task and complex database

The standard procedure explained earlier worked well on the pen-digits database, but
failed on the FERG database. On the FERG database, the failure is really insidious:
the auto-encoder produce realistic images, that can easily fool human eyes but failed
to fool a neural network. Using our standard architecture led to a network that can
produce visually anonymized results, without computer validated anonymization. Our
explanation is the following: According to the value of parameter lambda, there were
3 possible outcomes: either no change in the image (value of lambda too small), or
all images changed into the same identity while transposing most facial expressions
(intermediate value for lambda). The last possibility was when a too high lambda
value was used and resulted in all images outputs being the same regardless of the
input: either a full black image, or an artifact looking image i.e. an image without
any information. With a carefully chosen value of lambda, the constraint put on the
auto-encoder by the private branch and the discriminator leads to an interesting result:
The images were blurred at the first epochs (privacy constraint part of the loss), the
resulting blur kept a vague shape of a face. Progressively the images which first
presented blurred forms converge epochs after epochs to a single identity. The resulting
identity was always the same, despite having no explicit constraint on the network to
influence such a choice. To our understanding, the first epochs blurred shape was some
barycentric representation of a mixture of all identities. This make sense because the
loss directs the network toward the empirical distribution of the training set i.e. a fixed
proportions mix of each identities. It seems that the discriminator kicks in after (which
seems reasonable considering the privacy part of the loss term is quite low in this
configuration and around these epochs.) and it constrains the trunk in the following
epochs into a shift from this barycenteric representation to the closest existing identity
(closest in the sense of the discriminator similarity metrics which is hard to interpret
in geometric terms). This shift is done quite progressively and uniformly on all the
samples, therefore the privacy constraint part of the loss remains low during theses
epochs, while the discriminator loss is decreasing on average. The resulting images
are quite convincing and can definitely fool a human operator trying to classify output
images according to their identity.

Despite a good anonymization on the human assessing level, the output failed to
fool a neural network classifier trying to predict the identity. The failure is intuitively
surprising because of the neat quality of the output images, nonetheless a neural
network trained to classify the identity from the output images has an error rate
between 0% and 2% leaving no doubt on the lack of anonymization of this first method.
The quality of the images is not a sufficient criteria to assess anonymity. Nonetheless,
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even not suited for anonymization purposes, this method can assuredly be used to
satisfy aesthetic purposes.

The second method we developed is based on the same architecture. The main
novelty of this method is the restriction we used on the classifier training. The core
idea of this improvement is to remove useless identity from the pool used to train
the discriminator. Instead of using the whole dataset to train the discriminator we
restricted its training pool to only one arbitrary chosen identity. This restriction forced
the discriminator to learn a special identity and its features. Such a trained discriminator
mechanically impacts the autoencoder to shift all samples toward the arbitrary chosen
identity. The impact of this variation is strong enough to produce qualitative results (in
the sense of neat image according to the human eye) even when the private branch is
not used (case λ = 0). In this configuration the tests over the value of lambda produced
better results but were far from conclusive. Indeed all of the regimes decided by the
lambda value are not producing satisfying results. In the case of small lambda, the
autoencoder produces human level grade fooling images but a neural network testing
proves that there is no anonymity at all ( 100% accuracy on the identity classifier).

For the optimal value of lambda, the private branch influence kicks in. Even if the
difference on the produced outputs from the previous regime is not visually blatant (the
image more or less looks as neat to the human eye as the previous regime) the impact
on the anonymity is measurable with the neural network classifier. The accuracy for
the identity classification task is 96%. This small gain in anonymity is yet interesting
because it proves that the images produced by the autoencoder with this method are
better than the ones produce by the previous one. The last regime is for higher value of
lambda, where there is too much degradation, and the resulting images are not usable.
The final method we used on strong intertwined tasks is entirely based on the usage
of the previous method. The idea is to take advantage of the high visual quality of
the resulting images. Our previous analysis showed that the problem of the outputed
images are far from being anonymized despite a conclusive visual analysis. Not being
able to directly output anonymized images, we decided to enforce in a stronger manner
a guaranteed anonymity. The method is to substitute outputted images by images from
the training database directly.

For the sake of clarity let consider the problem from a geometric point of view.
The space we use is the one defined by a generic similarity measure such as the
cumulative Euclidean distance between pixels. In the case of intertwined database you
can consider the following. The dataset is composed of disjoint set or more precisely of
not overlapping space regions defined by the common label of their samples (recall we
only have knowledge over the private label). In order to have a meaningful purpose
and at the same time to be anonymization worthy, the data need to have an (supposedly
unknown) underling structure inside each of this space region but also this structure
should be generalized over all space regions. In other words the dataset is composed of
several disjoint clusters which labels we want to anonymized, and inside each of them
there are several sub-clusters all sharing an exploitable common structure regardless of
their cluster of origin. To illustrate this with the FERG database: consider that even if
all images of one identity form a cluster separable from the other identity clusters, they
all share underlying sub-cluster structures. For example they all have the constitutive
elements of a face (eyes, eyebrows, mouth, nose etc.). Moreover they also share the
emotion sub-cluster structure which is strongly linked to small hierarchical variations
of the facial elements.

Our idea is to replace all sub-cluster samples by samples coming exclusively from
a specified cluster. The way we choose to do it is to spatially shift clusters from their
initial positions to the chosen cluster position without losing each of the underlying
unknown sub-cluster structure. If the shift is done carefully and the sub-cluster does
exist they will overlap one another keeping the underlying structure intact. Once the
sub-clusters overlap it is easy to measure their similarity and to affect any sample
to its closest neighbor from the specified cluster. Once the spatial shift is done the
substitution comes easy with generic metrics, all thanks to the spatial shift. To put
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targeted
identity

0 2 3 4 5

identity
task
accuracy
(%)

42.47 38.25 36.21 32.77 31.62

emotions
task
accuracy
(%)

72.45 77.46 72.32 66.79 72.95

TABLE 4.1: Accuracies for the anonymization (supervised during train-
ing) task with different targeted identities and with the accuracies of
emotions recognition (unsupervised during training) to measure conser-
vation of unlabeled intertwined features. These accuracies are obtained

by training a classifier on the processed database.

It outputs the identification probability of each sample. Dropout layers with the same
dropout parameters as in the autoencoder are used in both branches.

Results

As stated above, two methods are associated with this particular framework. The
first one begins by applying the classical method, and the second one is using the
spatial shift substitution method (for intertwined database). The first method produce
qualitative results, whereas the second one produce more measurable results regarding
the anonymization performance.

Qualitative approach: The first method (the one that does not restrict the identity
of original samples used to train the discriminator) produce interesting results on
the visual quality side but poor results on the quantified performance side. It was
really interesting to observe the network making the output converge to a specific
identity each time whereas there was no explicit constraint on it. The second method
for intertwined data base (with restriction of identity for the discriminator’s training
set) results are shown on the Figures 4.4, 4.5, 4.6, 4.7. The Figures 4.4 and 4.5 show
the evolution, over the training epochs, of the reconstructed image for respectively a
training sample and a validation sample. These pictures display the successive epochs
from left to right and top to bottom. The first epochs is the end of the pretraining phase:
the autoencoder is just trained to reproduce exactly (pixel to pixel) its entry. Therefore
and according to the performance of the pre-training the first image is the exact copy of
original sample. The first two rows are where the most drastic changes occurs: it is the
shifting from one identity into the chosen anonymized identity. The following epochs
only refine details in output to make it more genuine Figure 4.6 shows couple of input
images and their associated outputs for random emotions and random identities. The
first column images are from the training set, the other columns are from the validation
set. Figure 4.7 show in an organized manner all the different identities/emotions
couples. The identity is the same in each column, the emotion is the same in each row.
Figure 4.8 shows some of the few images where artifact remains.

Anonymity results The anonymity was provided by the substitution method. It used
the same network as before with the discriminator training pool restriction variation
(only the target identity samples in this pool). The results are in the table 4.1. It shows
that some differences appear in the results of the anonymization task but the general
trend is consistent.
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FIGURE 4.4: Evolution of the model produced image for each epoch
for a training set sample. The input image is top left and going to the
right and top down follows the increase of the training epochs by one
unit increment. The resulting identity is fixed by the operator. The most
impressive change occurs over the first epoch (firsts lines) and the other

epochs refine the image.
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FIGURE 4.5: Example of the evolution of the model produced image
for each epoch for a validation set sample. The input image is top left
and going to the right and top down follows the increase of the training
epochs by one unit increment. The resulting identity is fixed by the
operator. The most impressive change occurs over the first epoch (firsts

lines) and the other epochs refine the image.
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FIGURE 4.6: Couple of images composed of the sample and the model
output. The first columns are examples from the training set. The other

columns are samples from the validation set.
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FIGURE 4.7: Couple of images composed of the sample and the corre-
sponding model output. All examples are from the test set. All identities
and emotions are represented here. Same column couple represents the
same identity with from top to bottom the following emotions: anger,
disgust, fear, joy, neutral, sadness and surprise. Therefore for each line

only one emotion is displayed for all identities 4.6

Remarks : One could argue that even if the database is anonymized, the chosen
identity is still disclose because every other sample wear the face of one preexisting
identity. This is not a problem at all considering one can artificially add a chosen virtual
identity to be the template of the anonymized faces, while still using our framework.
Indeed the fact that the second method allow to chose the final identity as one from the
training set make possible the addition of a virtual identity that would be chosen as a
destination for all the other identities to be transformed into.

4.3 Conclusion

We succeed in providing a more general usage of the previous framework by shifting
from a fully supervised training where regular labels and private labels were used to a
semi-supervised training where only the private labels are used. This shift was done
while keeping the same spirits of the loss, but at the cost of a transformation of the
architecture of the network and the training procedure.
We took advantage and reused widely known and efficient methods such as GAN
discriminator and auto-encoder, and we managed to perform a smart combination
of both to design a working architecture that was suited to our loss. The results of
this chapter are made even more impressive because of the visual representation that
we had, compared to the previous chapter representation that does not allow any
direct visual representation. Indeed the vector u of the previous chapter has no visual
structure constraint. It would be nonetheless possible to train a network to produce an
image from the encoded representation of the previous chapter (See 6 in perspective
work). The network we designed manages to affect the hidden representation of the
data in the auto-encoder to shift private bit of information toward a database universal
template with minimum cost to the other part of the information (this cost being the
artifact shown above). The generalized information that we can deduce from this is that
this method allows a spatial shift in a data structure adapted learnt space: shifting from
identity to another without major loss of sub-cluster structure. The usage of the learnt
discriminator allows a neat output image, pixel perfect in most cases. I have the strong
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FIGURE 4.8: Couple of images composed of the sample and the corre-
sponding model output. All examples are from the test set. We display
here some selected images found while searching a hundred of ran-
domly selected images of the test set. The first columns show pictures
with artifacts: the main issue is one of the eye either not here (first line)
or not fully formed (lines 2, 3 and 4). The last picture present or do
not present an artifact on the right eye of the model. The input sample
present closed eye (one more close that the other) and this is what the
processed sample actually display, the number of pixels is not sufficient
to be sure. The left column present other remarkable results selected
by a human eye. The first line couple images display a mismatch of
emotion and a difference of eyes symmetry on the generated model.
Another difference of symmetry on the second line, but it does not affect
the realism of the image. On the third line, the encoded image display
almost closed eye with a small discrepancy between left and right eye.
The last two lines show realistic encoded images with an human eye

assessed shift of emotion.



4.3. Conclusion 53

feeling that a further work on this framework could produce a fully anonymizing
model, without the need of the substitution.
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Chapter 5

Dataset shift

Advancing machine learning methods require making Artificial Intelligence (AI) sys-
tems smarter and in particular, it requires preventing accidents, that is, guaranteeing
that AI systems do what users actually want them to perform on specific tasks. There
has been an increasing focus on safety research from the machine learning community,
such as enhancing the robustness of Deep Neural Networks (DNNs) to change in
the data distribution or to build soft-classifiers that indicate appropriate uncertainty
when shown novel types of images, instead of confidently trying to use its potentially
non-adapted learned model. Most of the time, the classifier takes X as an input and the
predictor pY|X provides a vector containing the probabilities, with respect to a number
of discrete labels Y, that the processed sample belongs to each classes which are not
carefully examined: the decision function directly outputs the most likely class from the
predictor which implies that the end user of the model may be unaware that the DNN is
inadequately confident. It may especially be the case when the classifier is used to pre-
dict the appropriate label for other instances of X that are hence assumed to be drawn
from the same distribution. This is a fundamental requirement for many real-world
applications, therefore it is of great importance to monitor the model behavior in order
to detect prediction discrepancy between test samples predictions and training samples
predictions because the classifier is blind to dataset shift. For example, introducing a
dog picture in a written digit classifier results in the DNN outputting a digit, the most
likely one, even if this is a complete nonsense. As a matter of fact, this situation can
be further critical due to the widespread of DNNs: non-specialist users are more and
more frequent since it only takes a few lines of code from a public library to train and to
implement a DNN. This chapter makes a step in that direction by proposing two ‘black
box’ methods that works as ‘dataset shift detector’ via a careful examination of the label
predictions. ‘black box’ here means that the method does not require any knowledge
of the predictor’s architecture. Experiments demonstrate accurate shift detection on
different high-dimensional datasets of natural images. Note that our method only
intends to perform detection, and does not reveal specific information about the origin
of the model behavior shift.

5.1 Introduction

Deep learning with large enough labeled datasets has been highly successful in several
applications such as image recognition, speech recognition, recommendation, machine
translation [LeCun, Bengio, and Hinton, 2015] and more recently communications [Kim
et al., 2018]. These methods implicitly assume the data of interest follow the same
distribution as the one underlying training sequences. However, this is a very strong
assumption since in many real-world applications such as communication networks
the statistics of the data evolve over time. In most cases, we have very little or even
no prior knowledge about how the test distribution may shift. It is thus necessary to
build from scratch, with as little hypothesis as possible, a decision rule to try to detect
such changes in order to take appropriate decisions (i.e. start a new training if it seems
necessary).
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This work addresses the problem of detecting changes of the model output distribu-
tion, from pŶ|X estimated from the training data to pŶ|X̃ 6= pŶ|X estimated from the test
data. To this end, we propose a simple yet effective method which is applicable to any
trained deep neural soft-classifier pY|X describing the probability of the label Y given
the features X. This method does not require joint training nor to access the details of
the classifier itself, such as the intermediate representations or parameters. Our first
approach relies mainly on the inference of the cumulative probability function of the
likelihood predictor1:

F(r|pX) ≡ EY

[
Pr
(
− log pY|X(Y|X) ≤ r

)]
, (5.1)

which can be used to relate behavior shift from PŶ|X to pŶ|X̃ based on the model
misspecification F(r|pX) and F(r|pX̃) induced by the predictor pŶ|X. A chi-squared
test [Lehmann and Romano, 2005] is then implemented to determine whether there is a
significant deviation between the expected frequencies from the likelihood predictor
during training and the frequencies observed from test data.

The main contribution in this method is a systematic method for checking prediction
shift with ‘black boxes’. We demonstrate the effectiveness of the proposed method
using deep feed-forward neural networks, trained for image classification tasks on
various well-known datasets including: CIFAR-10 [Krizhevsky, 2009], MNIST [Lecun
et al., 1998], SVHN [Netzer et al., 2011] and Fashion-MNIST [Xiao, Rasul, and Vollgraf,
2017] which are widely used in the field (see chapter 2 for their precise content).

Related work

We wish to detect when some changes occur in the distribution of the prediction. The
case where "some changes" where existing between training and test data sets was
studied at various places, very often with an intuitive explanation, such as:

• "Concept shift" or "concept drift" where the idea of different data distributions is
associated with changes in the class definitions (i.e. the "concept" to be learned)
[Widmer and Kubat, 1996]

• "Changes of classification", where it is defined as "In the change mining problem,
we have an old classifier, representing some previous knowledge about classi-
fication, and a new data set that has a changed class distribution." [Wang et al.,
2003]

• "Changing environments", defined as "The fundamental assumption of super-
vised learning is that the joint probability distribution pX,Y(x, y) will remain
unchanged between training and testing. There are, however, some mismatches
that are likely to appear in practice." [Alaiz-Rodríguez and Japkowicz, 2008]

• "Fracture points" defined as "fracture points in predictive distributions and alter-
ation to the feature space, where a fracture is considered as the points of failure
in classifiers’ predictions - deviations from the expected or the norm." [Cieslak
and Chawla, 2009]

We shall consider the following definition, following [Moreno-Torres et al., 2012]:
Dataset shift appears when training and test joint distributions are different. That is,
when pX,Y 6= pX̃,Y

Intuition: Consider the task of classifying the images (xi ∈ X ) containing handwrit-
ten digits (yi ∈ Y). Assume the classifier is able to output estimates pŶ|X(ŷi|xi) of a
given label for each input vector xi. The "learning step" consists in computing for each
xi of the training set the corresponding class probabilities, and, since the true label

1The probability on X is determined by the distribution pX , which is not a function of the labels.
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y is known, one is also able to empirically estimate PY (the true label distribution).
This allows the computation of the so-called confusion matrix, which component are
ai,j = pŶ|Y(ŷi|yj), which characterizes the performance of the model on the training
and/or validation sets.

Counter examples: First counter example, the situation of interest is different: a
pneumonia predictor is trained in August. The training set consists of chest X-rays
administered in the previous year (training distribution pX) and the labels binary
indicators obtained via the diagnosis of a physician. The model f is trained to predict
pneumonia given an X-ray image. Assume that in the training set 0.1% of patients
have pneumonia. We deploy f in the clinic and for several months, it reliably predicts
roughly 0.1% positive while used on pX̃ the test set. Running f on January’s data,
5% of patients are predicted to have pneumonia. Because f remains fixed, the shift
must owe to a change from pX̃ = pX to pX̃ 6= pX. Several questions arise form this
situation: since the statistics of X changed, is f still accurate? What is the real current
rate of pneumonia? Is the classifier, trained under an obsolete prior, underestimating
pneumonia? The real prevalence may be greater than 5%. The model of this situation is
as follows: the conditional probability of the pneumonia pY|X certainly did not change
(a reasonable approximation), but the distribution of radiologic findings has changed,
pX̃ 6= pX.

This is denoted as covariate shift: pY|X = pY|X̃ but pX̃ 6= pX.

Second counter example with the same setup. The physician realizes that some
patients have strong cough and does not enter this information in the model. Obviously,
during an epidemic, ppneumonia|cough may go up substantially, and you have a prior
information on pY for the winter measurements. The (coarse) model of this situation is
as follows: the manifestation of the disease of the pneumonia pX|Y did not change (a
"reasonable" approximation), but the distribution of the decisions pY has changed.

This is denoted as label shift: pX̃|Y = pX|Y but pỸ 6= pY.

Other possible scenario: Sample selection bias: the discrepancy in distribution is due
to the fact that the training examples have been obtained through a biased method, and
thus do not represent reliably the operating environment where the classifier is to be
deployed (which, in machine learning terms, would constitute the test set).
Suppose we wish to generate a model to diagnose breast cancer. Suppose, moreover,
that most women who participate in the breast screening test are middle-aged and
likely to have attended the screening in the preceding 3 years. Consequently the sample
includes mostly older women and those who have low risk of breast cancer because
they have been tested before. This problem is referred to as sample selection bias: the
examples in the training set do not reflect the general population with respect to age
(which amounts to a bias in pX) and they only contain very few diseased cases (i.e. a
bias in pY|X).

The last two examples are much more difficult to model and to address:
Non-stationary environments. It appears when the training environment is different

from the test one, whether it is due to a temporal or a spatial change.
In real-world applications, it is often the case that the data is not (time- or space-)
stationary. The signals of interest may have a drift, and it may be useful to detect the
drift to launch a new training.

Spam filtering and network intrusion detection. The non-stationary environment is due
to an adversary that tries to work around the existing classifier’s learned concepts. In
terms of the machine learning task, this adversary warps the test set so that it becomes
different from the training set, thus introducing any possible kind of dataset shift.
Detecting such intrusion and outliers would be very beneficial.
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"Reliability" evaluation and the "black box" approaches: Many published works
assume that they have a full set of training and validation samples, and also a full set
of test samples, so that they can compute a statistical characterization of the test signals
statistics or of the consequences of these changes on the output statistics. Having
access to that much information, they also try also to compensate for the changes in
the situation. We outline below two approaches, one is succeeding in working with
very small test sets, but requires a re-design of the training algorithm and access to the
information that lies inside the model (i.e. each layer outputs) , and another one is a
full "black box" approach, but requires many test samples.

"Mahalanobis distance" for detecting out of distribution samples [Lee et al., 2018]. The tar-
get of this paper: detect Out of Distribution as well as adversarial samples. Main idea:
measure the probability density of test sample on feature spaces of DNNs utilizing the
concept of a "generative" (distance-based) classifier. Specifically, pre-trained features are
fitted by a class-conditional Gaussian distribution and it is shown that its posterior dis-
tributions are equivalent to the softmax classifier under Gaussian discriminant analysis.
Under this assumption, they define the confidence score using the Mahalanobis dis-
tance with respect to the closest class-conditional distribution, where its parameters are
chosen as empirical class means and tied empirical covariance of training samples. A

pre-trained softmax neural classifier is given: pY|X(y = c|x) =
exp(WT

c f (x) + bc)

∑c′(exp(WT
c′ f (x) + bc′)

where Wc and bc are the weight and the bias of the softmax classifier for class c, and
f (·) denotes the function that maps the sample to the output of the penultimate layer
of DNNs. The method heavily relies on three items:

i) derivation of generative classifiers from softmax ones. Define C class-conditional
Gaussian distributions with a tied covariance Σ: pŶ|Y( f (x)|y = c) = N( f (x)|µc, Σ),
where µc is the mean of multivariate Gaussian distribution of class c ∈ {1, ..., C}. The
pre-trained features of the softmax neural classifier f (x) have been shown to follow the
class-conditional Gaussian distributions. (mean and covariance are empirical)
ii) Mahalanobis distance-based confidence score: M(x) = maxc −( f (x)−µc)TΣ( f (x)−
µc) which corresponds to the logarithm of the probability density function (PDF) of the
test sample.
iii) Confidence scores computed from all layers in DNNs and integrated by weighted
averaging: ∑l αl Ml(x), where Ml(x) and αl are respectively the confidence score and
weight at l−th layer.
A threshold-based detector measures some confidence score of the test sample, and
classifies it as in-distribution if the confidence score is above some threshold. The paper
reports implementation with many layers (34 or 100) on various data sets (many layers
are necessary because some layers may not carry a lot of information, and to avoid
overconfident decisions). They tune all hyper parameters (many) on a validation set.
Results are impressive for detecting out of distribution or adversarial samples as well
as for class-incremental learning.

‘black box’ predictors for detecting and correcting label shift by [Lipton, Wang, and Smola,
2018]. Label Shift: pX̃|Y = pX|Y, and pỸ 6= pY This implies pŶ|Ỹ = pŶ|Y Computation
based on the confusion matrix:

pŶ = ∑
y∈Y

pŶ|Ỹ(Ŷ|Ỹ = y)pỸ(Ỹ = y) (5.2)

= ∑
y∈Y

pŶ|Y(Ŷ|Y = y)pỸ(Ỹ = y) (5.3)

= ∑
y∈Y

pŶ,Y(Ŷ, Y = y)
pỸ(Ỹ = y)

pY(Y = y)
. (5.4)

This is a linear system of equations, in which one can estimate empirically the confusion
matrix on the training data, and p ̂̃Y is estimated by the unlabeled test data. The system
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can therefore be solved in w(y) =
pỸ(Ỹ = y)

pY(Y = y)
, providing ŵ(y) Then one can obtain the

following estimates, based on an empirical evaluation of the corresponding quantities
(confusion matrix and probabilities of the labels) in vector form: Ŵ(Y) = C−1

Ŷ,Ỹ
p̂ ̂̃Y and

p̂ ̂̃Y = p̂ỸŴ(Y).
In other words, the authors are correcting the empirical estimates of pỸ by the

knowledge of the probabilities of error. The authors prove that these are consistent
estimators, and validate the computation under various label shift experiments.

Various other approaches:

• [Shimodaira, 2000] approach, in which both training and test distributions share
the same conditional distribution pY|X, while their marginal distributions, pX and
pX̃, are different. The focus was on correcting the distribution shift while here we
concentrate on the detection of this shift.
Major efforts have been dedicated to importance reweighing (see [Sugiyama and
Kawanabe, 2012] and references therein). These methods have been developed
for detecting either out-of-distribution or adversarial samples, or both.

• An evaluation of the confidence one can have in a classifier prediction has been
studied in [Jiang et al., 2018].

• [Lee et al., 2018] (outlined above)- Detection of abnormal samples based on a Ma-
halanobis distance on intermediate representations. It outperforms [Hendrycks
and Gimpel, 2017], [Liang, Li, and Srikant, 2018] based on the maximum proba-
bility of the softmax output. Although this method has been shown to improve
significantly the detection performance, this approach comes in contradiction
with the ‘black box’ assumption considered in this paper. Indeed the method
relies on measuring and combining the final features of the neural network with
low level features.

• While [Hendrycks and Gimpel, 2017; Liang, Li, and Srikant, 2018] methods are
based on the sole maximum probability at the softmax output, we prove here
that considering the complete softmax output is beneficial for the detection of
covariate shift. [Hendrycks and Gimpel, 2017] adopts a ‘black box’ approach
using only softmax outputs, they use labels to separate correctly and incorrectly
classified test examples, our work only uses the softmax output without the labels.

• [Liang, Li, and Srikant, 2018] work is based on the softmax output but they
used perturbations of the input as a preprocessing for their method ODIN, while
the method proposed in the present work relies on a regular use of the soft
probabilities: our method can be used while the model is actively used for
classification. Note that our method is designed to apply to already trained ‘black
box’ model.

• Recent work from [Lee et al., 2017] introduce a new term in the training loss
so that the Kullback-Leibler divergence (KL) between the models’ output for
out-of-distribution samples and the uniform distribution is minimized. This
method produce interesting results but it cannot be applied to a already trained
‘black box’ model.

• [Taigman et al., 2015, Section 4], introduces L2-norm, and links it to entropy, to
reject mismatched samples from classifier softmax outputs. [Shalev, Adi, and
Keshet, 2018] work rely on K-embeddings to improve quality prediction and use
L2-norm over predicted embedded vector to detect out-of-distribution inputs on
such embedded vectors. As opposed to this work, these two papers focus on a
single sample at a time, not exploring a sequential approach.
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We prove here that, despite the common belief stated at several places, considering the
complete softmax output is beneficial for the detection of under-confident behavior in a
sequential processing. While most of the research efforts have been towards improving
classifier performance and compensating for covariate shift, detecting the presence of
distribution shift using unlabeled samples in a sequence framework has received less
attention.

5.2 First approach

The first approach proposed here is a first work toward the monitoring of classifier
behavior.

The rest of this section is organized as follows: firstly we formulate the problem,
secondly we introduce Pearson’s chi-squared test which is used to detect the dataset
shift. Afterward simulations results are presented. We finish with concluding remarks.

5.2.1 Problem formulation

Consider a pre-trained deep neural network with a softmax classifier denoted by
pY|X. Let x ∈ X denote a feature input and let y ∈ Y ≡ {0, 1, . . . , C − 1} denote
the corresponding output or label. The softmax classifier provides as an output the
probability pY|X(c|x) for each class label c given the feature x. Without loss of generality,
the network is assumed to perform an image classification task. Therefore, the image
can be interpreted as being a redundant representation of the class and the image
classification problem could be seen as a data compression process.

A binary instantaneous code of minimum expected-length could be constructed to
describe the source with optimal coding length: − log2 pY|X(c|x). Intuition behind this
work is that the statistical distribution of the code lengths should reflect to some extent
the statistical distribution of the inputs. In the following, the empirical cumulative
distribution function F̂n(r|Data) of − log2 pY|X:

F̂n(r|Data) ≡ EY

[
1
n

n

∑
i=1

I[0,r](Y|xi)

]
, (5.5)

where I[0,r](y|xi) = 1 if − log2 pY|X(y|xi) ≤ r and zero otherwise, is used in order to
detect data shift. Obviously, assuming that the data samples come from distribution
pX, by the Glivenko-Cantelli theorem [Billingsley, 1986], it follows that

sup
r

∣∣∣F̂n(r|Data)− F(r|pX)
∣∣∣ −→ 0, (5.6)

almost surely in the limit when n goes to infinity. Kolmogorov strengthened this result,
by effectively providing the rate of this convergence. However, in practice, the statistic
requires a relatively large number of data points (in comparison to other goodness of fit
criteria) to properly reject the null hypothesis. This will be made clear in the following
example.

Assume that detection is based on batches of images, which is indeed the case
for many practical situations. Consider the empirical cumulative distribution func-
tion plotted in Fig. 5.1 for the case of CIFAR-10 based on the neural network spec-
ified in Algorithm 3 relegated to appendix B.1. Two different variants are studied:
F̂n(r|Matched test) which is the restriction of the predictor’s likelihood to feature
inputs x belonging to the test set and F̂n(r|Mismatched data), which is obtained by
adding salt and pepper noise to Matched test with corruption probability 0.08. We
use 104 input images and the CIFAR-10 dataset consists of 10 classes. The size of each
set is thus equal to 105.

It is observed in Fig. 5.1 that the range is almost the same for both sets. Whereas an
hypothesis test based on the comparison of the value of the components of − log2 pY|X
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and pTBT
k . Then we want to test the following hypotheses:

{
H0 : pBAS

k = pTBT
k = pk,

H1 : otherwise.
(5.7)

A standard test, proposed by Pearson (1900), rejects H0 for large values of Pearson’s
Chi-squared statistic:

T ≡
|K|

∑
k=1

(NBAS
k,th − NBAS

k )2

NBAS
k,th

+
(NTBT

k,th − NTBT
k )2

NTBT
k,th

, (5.8)

where NBAS
k and NTBT

k stand for the number of instances in the k-th category within
each sample group, i.e., the evidence NBAS

k = p̂BAS
k NTBT and NTBT

k = p̂BAS
k NBAS. The

theoretical numbers of instances are computed as follows: NBAS
k,th ≡ pkNBAS and NTBT

k,th ≡

pkNTBT. Since the true probabilities {pk} are unknown, these are estimated as: pk ≈
NBAS

k +NTBT
k

C(NBAS+NSMP)
which is the best estimator based on the observations and under the

assumption that H0 holds. The total number of categories is chosen to be 10, with
intervals of equal length. If either NBAS

k,th < 5 or NTBT
k,th < 5 then the k-th category is

grouped with an adjacent category and thus |K| ≤ 10.

Dataset shift detection

As previously mentioned, Baseline (BAS) serves as a benchmark and characterizes the
behavior of the pre-trained network with respect to the likelihood’s predictor when in-
put features and random labels are used. Therefore, a simple way to construct Baseline
is to aggregate the softmax outputs obtained with the validation set. To-be-tested
(TBT) is obtained by randomly sampling the likelihood’s predictor either from Matched

test feature inputs, i.e., H0 holds, or from Mismatched test feature inputs, i.e., H1
holds and H0 should be rejected. For that purpose, T should be compared to the critical
value. The critical value of the test is chosen according to the desired level of confidence
and can be estimated from expression (5.5) according to the Baseline feature inputs.
The efficiency of this test is usually measured through the two error probabilities and
for several critical values:

{
α(T) ≡ Pr (reject H0 |TBT ≡ Matched test) ,
β(T) ≡ Pr (accept H0 |TBT ≡ Mismatched test) .

5.2.3 Simulation results

Noisy data detection

In this subsection, the mismatched test data is modelled by an additive noise on
background of the proper data [Vincent et al., 2010]. Namely, Mismatched test =
{x + n, x ∈ Matched test} where n is a background noise with uniform distribution
between 0 and Umax = 30 on a grey scale image (i.e. pixels values are in [0, 255]). In
the following, we use two datasets presented in Chapter 2, namely MNIST dataset and
Fashion-MNIST dateset. The two datasets present a uniform background that can be
affected with this additive noise. Both training sets were split such that 10% of the set
is used as a validation set.

Numerical results are given in Table 5.1 and 5.2. The true negative rate (TNR) stands
for the proportion of mismatched sequences that are properly identified, true positive
rate (TPR) stands for proportion of matched sequences that are properly identified.
AUROC stands for Area under Receiver Operating Characteristic and is computed
from the area under the curves plotted on Figures 5.2 and 5.3.

The main trend in the results follows the intuition: the larger NTBT is, i.e. the longer
sequences are, the better are the performances. The detection accuracy is over 95%
with NTBT = 40 on MNIST database. The results are even better with Fashion-MNIST
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database, the main reason for the differences is the nature of the network being different.
The network used for MNIST has a simple feed-forward architecture with one layer
and dropout. The accuracy of the classification task is 98.02% on the test set (matched
sequence) and 96.75% on the noisy version of the test set (mismatched sequence) The
Fashion-MNIST network involved a deeper and more complex architecture based on
convolutional layers with dropout, details are in the appendix (see appendix B.1).The
accuracy on the classification task is 91.40% on the matched sequence (test set) and
90.30% on the mismatched sequence (noisy test set). The 95% detection accuracy
(detecting true matched sequence and true mismatched sequence) is reached with
only NTBT = 20 on this database. The method is efficient to separate target data and
mismatched data even when the difference between them is a rather small disturbance.
These results prove the efficiency of our method, but also demonstrate that it can be
applied to any neural network outputs regardless of their architecture complexity, truly
behaving as a ‘black box’ dataset shift detector.

NTBT TNR at TPR 95% AUROC Detection accuracy
10 48.82 83.93 80.24
20 75.96 94.40 89.05
30 90.88 97.82 93.80
40 95.76 99.04 95.77
50 98.6 99.62 97.81
60 99.58 99.88 98.79
70 99.88 99.97 99.34

TABLE 5.1: Results on the MNIST dataset for several values of NTBT

when mismatched is additive background noise

NTBT TNR at TPR 95% AUROC Detection accuracy
10 52.76 88.74 84.87
20 92.72 98.40 95.09
30 97.62 99.40 96.87
40 99.6 99.80 98.45
50 99.78 99.93 99.01
60 99.88 99.95 99.20
70 > 99.96 99.996 99.71

TABLE 5.2: Results on the fashion-MNIST dataset for several values of
NTBT when mismatched data is additive background noise

Plots of Figures 5.2 and 5.3 show the accuracy trade-off for different values of
NTBT respectively for MNIST and Fashion-MNIST. The performances shown here are
quite good even with a small sequence (NTBT ≤ 20). For the higher value of NTBT the
detection of mismatched data can be made with high confidence (the probability is
over 0.9995). It seems that for a wide range of applications one can still find the proper
NTBT value to satisfy its needs.

Out-of-distribution samples detection

We turn now to the detection of out-of-distribution samples. These abnormal samples
can be due to an adversarial attack or to an error of manipulation. In this context, the
images in Mismatched test and in Matched test are significantly different therefore
the test of homogeneity is expected to be efficient for smaller values of NTBT than in
the previous context. The dataset we are using in this sub-subsection are CIFAR-10 and
SVHN, both presented in chapter 2. The network used is a deep convolutional network
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• We derive a formal relationship between the uncertainty of the classifier and
two relevant statistics: the "standard deviation" (SD) and "geometric mean" (GM)
methods which motivate the use of new statistics to measure classifier uncertainty.

• We demonstrate the effectiveness of our approach using Deep Convolutional
Neural Networks (DCNNs), trained for image classification tasks on well-known
datasets.

The derived tool is intended to be added on top of a working in use classifier which has
already been trained and without altering inputs or outputs. Faced with distribution
shift, our goals are as follows: (i) detect when distribution shift occurs from as a few
examples as possible and without labels; (ii) quantify the amount of uncertainty. The
proposed method applies to any arbitrary classifier.

5.3.2 Uncertainty Based-Methods for Detecting Confidence

The key idea is that we are not interested in the network classification rate, we only
assume that the network is fairly trained on dataset’s classification task. What we are
interested in is the confidence of the predictions expressed by the network on the data
we feed it with.

Definitions and presentation of tool

Given a set of M classes Y ∈ Y and a feature vector X ∈ X , DNNs usually output soft-
probabilities pŶ|X. We assume that we do not have access to the DNN but only to its out-
put soft probability, i.e., a ‘black box’ approach relying solely on PŶ|X. Most of the time,
the DNN directly outputs the most likely class estimator f (x) := arg maxy∈Y pŶ|X(y|x).
In this framework, a change in the distribution of X from pX to pX̃ should result in a
change of the conditional distribution provided by the DNN from pŶ|X to pŶ|X̃, except
for adversarial attacks which is out of the scope of this paper.

We assume that samples from pXY are available for training (e.g., training and
validation sets). However, we do not have any information about how the distribution
pX will evolve or shift to pX̃, neither the true nor samples from pX̃. Our main goal is to
develop a method that can provide a meaningful statistic for detecting the shift of the
dataset. To this end, the samples are grouped into batches of size N. The decision rule
should use only the soft probabilities output by the DNN: pŶ|X(·|xi). The test statistics
– to be defined in the next paragraph – are computed based on the components of
pŶ|X(ŷ|xi) for xi such that i ∈ [0, N − 1] within the considered batch. Accepting the
null hypothesis (H0) implies that the batch is considered as in-distribution pX. The type
I error indicates that the hypothesis H0 is rejected whereas it was true. On the other
hand, the error of type II implies that the hypothesis H1 is rejected while it was true.

While it is very intuitive that the conditional probabilities should contain infor-
mation about the reliability of the result, the precise test can take various forms, and
we provide below two approaches that will be compared in the experimental section.
A first approach is based on a precise definition of the uncertainty of the test, also
linked to conditional Shannon entropy (see [Cover and Thomas, 2006]) of the sequence.
Entropy can easily be interpreted as a measure of confidence: if one of the labels is
highly probable, its probability will be dominant, and the entropy small. Conversely,
if the network is mis-adapted, the entropy will become larger. Beside the Shannon
entropy, another efficient characterization of the behavior of a test can be obtained via
the so-called confusion matrix pŶ|Y, measuring the probabilities that a given label is
predicted as any other one. Given an output of the classification algorithm, the com-
parison with the corresponding column of the confusion matrix should provide useful
information. The sub-subsection formalize these connections between the confidence
of a classifier and two relevant statistics related to the soft-probability.
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Uncertainty of the classifier: the standard deviation (SD method) The classical ex-
pression for the error probability associated with the Bayes decision rule is Pe := P(Y 6=
f (X)), computed over the underlying probability distribution pXY. The expression of
this error probability is:

Pe(pX) := P(Y 6= f (X)) = 1 − EX∼pX

[
max
y∈Y

pY|X(y|X)
]
. (5.9)

We also define the uncertainty of the classifier as:

Pu(pX) := P(Ŷ 6= f (X)) = 1 − EX∼pX

[
max
y∈Y

pŶ|X(y|X)
]
. (5.10)

Note that both Pu(pX) and Pe(pX) are fundamentally different quantities. One
measures the uncertainty of the classifier and the other one measures the classification
error. In the following, we propose an uncertainty based-method for detecting dataset
shift. We investigate shift detection through the lens of statistical two-sample testing
between Pu(pX) and Pu(pX̃), according to samples from the source distribution pX

(from which training data is sampled) and a few sample batches from the target
distribution pX̃ (from which real-world data is sampled). However, estimating high-
quality confidence scores of the probabilities (eq.(5.10)) remains difficult and unstable,
as will be observed from numerical results. To overcome this difficulty, we will show
that a relationship exists between the uncertainty of the classifier and a "standard
deviation" which is defined below and the following quantities:

∆α(Ŷ|X = x) := ∑
y∈Y

(
pŶ|X(y|x)− EX∼pX

[
pŶ|X(y|X)

]

︸ ︷︷ ︸
:=pŶ(y)

)α, (5.11)

and

∆α(Ŷ|X) := EX∼pX

[
∆α(Ŷ|X = x)

]
, (5.12)

for α > 0, where pŶ is a given prior to model the distribution of labels, e.g., pŶ(y) =
1/M or pŶ(y) = EX∼pX

[pŶ|X(y|X)]. Interestingly , this statistics without the prior is

related to Rényi entropy [Erven and Harremos, 2014]: Hα(Ŷ|X = x) of order α ∈
(0, 1) ∪ (1, ∞) by noticing that (1 − α)Hα(Ŷ|X = x) = log ‖pŶ|X(·|x)‖

α
α. In particular,

we will show that Pu(pX) and the useful statistics in eq. (5.11) with the particular choice
of α = 2 share some interesting connections that will be exploited to motivate the
empirical estimate of ∆2(Ŷ|X) = EX∼pX

[∆2(Ŷ|X)] as a measure of eq. (5.10), i.e., the
confidence (or uncertainty) of the classifier. The formal relationship is presented in the
following proposition.

Proposition 2. Let pŶ|X be a soft classifier and pŶ a probability modeling the probability of

labels, the following inequalities hold:

1 −
√

∆2(Ŷ|X) + ∑
y∈Y

p2
Ŷ
≤ Pu(pX) ≤ 1 − ∆2(Ŷ|X) + ∑

y∈Y

p2
Ŷ
(y). (5.13)

This result suggests the use of ∆2(Ŷ|X) (since ∑y∈Y p2
Ŷ
(y) is constant relative to the

feature inputs) to measure deviations from the confidence of the classifier on the test
samples (from distribution pX̃) w.r.t. that on the training samples (from distribution
pX). Obviously, it is not possible to train a binary discriminator since there are no
available samples from the testing distribution. Instead of this, we shall characterize the
cumulative probability distribution on the training samples of the standard deviation.
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Proof. The upper bound is given by:

∆2(Ŷ|X) = ∑
y∈Y

p2
Ŷ|X

(y|X)− 2 ∑
y∈Y

pŶ(y)pŶ|X(y|X) + ∑
y∈Y

p2
Ŷ
(y) (5.14)

EX∼pX

[
∆2(Ŷ|X)

]
= EX∼pX

[
∑

y∈Y

p2
Ŷ|X

(y|X)

]
− ∑

y∈Y

p2
Ŷ
(y) (5.15)

EX∼pX

[
∑

y∈Y

p2
Ŷ|X

(y|X)

]
≤ EX∼pX

[
max
y∈Y

pŶ|X(y|X)

]

︸ ︷︷ ︸
=1−Pu(pX)

. (5.16)

Combining the previous inequality with eq. (5.9) and (5.15) leads to:

1 − Pu(pX) ≥ ∆2(Ŷ|X) + ∑
y∈Y

p2
Ŷ
(y) (5.17)

Pu(pX) ≤ 1 − ∆2(Ŷ|X)− ∑
y∈Y

p2
Ŷ
(y). (5.18)

The lower bound is derived from this inequality:

max
y∈Y

pŶ|X(y|X) ≤

√
∑

y∈Y

p2
Ŷ|X

(y|X). (5.19)

We take the expectation over the two different terms and we apply Jensen’s inequality
to the right term:

EX∼pX

[
max
y∈Y

pŶ|X(y|X)

]
≤

√√√√EX∼pX

[
∑

y∈Y

p2
Ŷ|X

(y|X)

]
. (5.20)

Combining the previous inequality with eq. (5.9) and (5.15) leads to:

1 − Pu(pX) ≤

√
∆2(Ŷ|X) + ∑

y∈Y

p2
Ŷ

(5.21)

Pu(pX) ≥ 1 −
√

∆(Ŷ|X) + ∑
y∈Y

p2
Ŷ

. (5.22)

Note that for the uniform case:

∑
y∈Y

p2
Ŷ
(y) =

1
|Y|

(5.23)

Pu(pX) ≥ 1 −

√
∆(Ŷ|X) +

1
|Y|

. (5.24)

The following proposition shows that the standard deviation is also related to the
conditional Shannon entropy of the label Ŷ given the input feature X, which represents
another natural possibility to measure the uncertainty of a classifier.

Proposition 3. Let pŶ|X be a soft classifier and PŶ a probability modeling the probability of

labels, the following inequalities hold for the conditional entropy:

1 + (1 − ∆2(Ŷ|X)) log(M − 1) ≥ H(Ŷ|X) ≥ log M − log
(

1 + M∆2(Ŷ|X)
)

, (5.25)
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Proof. Using the concavity of the function x 7→ log(x), we can lower bound the entropy
by

H(Ŷ|X) = −EXŶ[log pŶ|X(Ŷ|X)], (5.26)

using Jensen’s inequality:

≥ − log EXŶ[pŶ|X(Ŷ|X)] (5.27)

= − log EX

[
∑

y∈Y

p2
Ŷ|X

(y|X)
]
. (5.28)

The above expression can be rewritten using the definition of ∆2:

H(Ŷ|X) ≥ − log
(

∆2(Ŷ|X) + ∑
y∈Y

p2
Ŷ
(y)
)

. (5.29)

Assuming the distribution of Ŷ is uniform and |Y| = M

= − log
(

∆2(Ŷ|X) +
1
M

)
(5.30)

= log M − log
(

M∆2(Ŷ|X) + 1
)

, (5.31)

which is the lower bound of the conditional entropy in eq. (5.28).
The upper bound follows from using Fano’s inequality on the RV Ŷ and X with the

uncertainty probability Pu(pX) := P(Ŷ 6= f (X)):

H(Ŷ|X) ≤ 1 + Pu log(M − 1), (5.32)

using the hypothesis that Ŷ is uniform and using the upper bound in Proposition 2:

≤ 1 +
[

1 −
1
M

− ∆2(Ŷ|X)

]
log(M − 1) (5.33)

≤ 1 +
[
1 − ∆2(Ŷ|X)

]
log(M − 1), (5.34)

which concludes the proof of the proposition.

It is worth mentioning that the initial definition of uncertainty in eq. (5.10) could
be used to estimate uncertainty. Whereas we will illustrate in the numerical results
(Fig. 5.9) that the corresponding estimates are highly unstable to be trusted. This is not
the case of the SD method and GM method below.

Confusion matrix: geometric mean (GM method) The "learning step" consists in
computing for each xi of the training set the corresponding probabilities pŶ|X of a given
label. Using the training set is possible to further estimate the confusion matrix, noted
pŶ||Y, on the source domain. The ‘black box’ depends implicitly on stable properties of
the classifier when applied to the sequence of features, corresponding to a stable matrix,
i.e., closed to a diagonal matrix. Now assume the properties of the test sequence change
while that of the ‘black box’ does not. Tracking the confusion matrix would potentially
allow to monitor those changes. Two cases are identified: If pŶ|Y does not change, then
the test seems as valid as before; On the other hand, if pŶ|Y changes, then the "distance"
between this new matrix and the previous one is an indicator of the amount of change.
We suggest to detect the change based on KL divergence. More specifically we study
the case where we assume that a single estimate pŶ|X(·|xi) is available, one can build
a rough estimate of a confusion matrix based on this sample, by introducing a prior
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P(Y):
q(Ŷ|xi, Y) = q(Ŷ|xi)P(Y). (5.35)

The KL divergence between the confusion matrix of the training leads to the following
decomposition:

D
(

pŶ||Y(·||Y)‖pŶ|X||Y(·|xi||Y)
)
= ∑

y∈Y
∑

ŷ∈Y

pŶ||Y(Ŷ = ŷ||Y = y) log
pŶ|Y(Ŷ = ŷ|Y = y)

qŶ|X(Ŷ = ŷ|X = xi)

(5.36)

= ∑
y∈Y

∑
ŷ∈Y

pŶ||Y(Ŷ = ŷ||Y = y) log pŶ|Y(Ŷ = ŷ|Y = y)

︸ ︷︷ ︸
=h constant on xi

− ∑
y∈Y

∑
ŷ∈Y

pŶ||Y(Ŷ = ŷ||Y = y) log qŶ|X(Ŷ = ŷ|X = xi)

(5.37)

= h− ∑
ŷ∈Y

pŶ(Ŷ = ŷ) log qŶ|X(Ŷ = ŷ|X = xi)

︸ ︷︷ ︸
f (xi)

, (5.38)

under the assumption Ŷ is uniform

f (xi) =
1
|Y| ∑

ŷ∈Y

− log qŶ|X(Ŷ = ŷ|X = xi). (5.39)

The f function is another expression of the geometric mean:

GM(xi) = exp (− f (xi)) = ∏
ŷ∈Y

|Y|

√
qŶ|X(Ŷ = ŷ|X = xi). (5.40)

The resulting expression eq. (5.40) corresponds to the geometric mean (GM) of the
output probabilities.

Implementation of the statistical tests

Our approach relies mainly on the inference of the cumulative probability function of
the involved statistical distance, i.e., SD or GM, with respect to the training samples:

F∆(r|pX) := P̂

(
∆2(Ŷ|X) ≤ r

)
, (5.41)

FGM(r|pX) := P̂ (GM(X) ≤ r) . (5.42)

These functions will be used to relate distribution shift from pX to pX̃, by detecting
the shift from F(r|pX) to F(r|pX̃) based on the model mis-specification induced by the
appropriate quantity (either the SD or the GM). After a threshold is computed on the
validation data, the observed sequence of test (or mismatched) samples: (x̃1, . . . , x̃N)
is used to compute the empirical average ÊX̃[∆2(Ŷ|X̃)] or ÊX̃[GM(X̃)] and then the
decision follows by comparing to a fix threshold r > 0.

Testing setup

Testing protocol. The protocol aims at evaluating the capacity of detection of the
mismatched data sequences while keeping the False Positive Rate (FPR) of true matched
samples under control. Clearly, if the detection rate on the mismatched data is of the
same order of magnitude as the FPR, the method is not reliable. The efficiency of the
algorithm is measured by the increase of detection rate compared to the FPR. The
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classifier is based on vanilla deep convolutional networks. The DCNN architecture is
two convolutional layers (respectively 64 and 32 (3x3) filters), each followed by a 2x2
max pooling layer and on top a fully connected layer of 512 neurons and a softmax
activation output layer. We use dropout with parameter 0.35. Training is performed
over 20 epochs with batch size 128 and Adam Optimizer [Kingma and Ba, 2015] with
learning rate 0.001.

Testing model specs. The dataset used to train the network and the detector is
divided into training and validation sets. The training set is dedicated to learn the
network to perform the desired classification task. Once the training is accomplished,
the validation set is used to determine a threshold corresponding to a pre-determined
FPR given by the degree of confidence the user wants to have. The validation samples
are only used once, and they are grouped into sequences of size N. Therefore, as N
grows, the number of sequences decreases. The value of the threshold is numerically
evaluated: once the validation sequences are processed, we search for the value that
splits validation sequences in two parts, one of which having a size congruent with the
required FPR. The data from the test set is then processed in sequences of same size N.
Each sequence outputs a value that is compared to the threshold, deciding on matched
or mismatched samples. The results are averaged over 10 different realizations of
the DCNN. Even if the performance of the model is similar from one training to the
other, this gives a more reliable input less dependant of the precise network weights
configuration (leading to slight performance variations).

TABLE 5.5: False positive rate (FPR) threshold consistency between
validation and training sets with the SD method for SVHN trained

model.

Target set FPR (in
%)

Obtained test set FPR (in %) for sequence of size N

N 2 3 4 5 6 7 8 9 10

5 4.98 4.26 4.28 3.3 4.16 3.94 3.8 4.24 3.58
0.5 0.10 0.54 0.52 0.42 0.36 0.36 0.38 0.28 0.22

Threshold specificity. Obviously, both methods of interest do not react exactly the
same way to specific mismatches (this will be clear from experimental results). The
mismatched samples are above the threshold for the GM method while they are below
it for the SD method. In all experiments described below, performance is evaluated
for FPR at 5% (square curves) and 0.5% (triangle curves), the black dashed curves
corresponding to the SD method and the blue dotted curve to the GM method.

5.3.3 Experimental results

A first verification to be performed is to check whether the shape of the statistics of the
validation set matches that of the test set without modification or not. This is checked
on one example in table 5.5 where it is clear that the threshold value used for the
validation set with the FPR gives really consistent values when applied to the test set.
This is confirmed by the histograms in Figure 5.6. In this Figure, for both (a) and (b), the
overlapping of the two empirical distributions of the corresponding statistics (SD value
on the validation set and SD values on test set) for N = 9 is an additional evidence that
evaluating the FPR threshold from validation set distribution is appropriate.

Direct performance without the use of validation (Mismatched data against test set)
are summarized in table 5.6 which presents: (i) False Positive Rate (FPR) at 95%; True
Positive Rate (TPR): probability of a mismatched sample classified as regular sample
when the TPR is at 95%; (ii) Detection error: the misclassification probability when
both error are equiprobable; (iii) Area Under the Receiver Operating Characteristic
curve (AUROC); (iv) Area Under the Precision-Recall curve (AUPR) for both regular
and mismatched samples. This table shows the raw performances of the investigated
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determination of the threshold is still done from the validation set (all trucks images
were removed form the validation set also). The mismatched data set is composed of the
1000 images of trucks removed from the test set. Therefore the computed values here
use a lower number of sequences compared to the previous simulations. Nonetheless,
as shown in Figure 5.11 the SD method clearly outperforms the GM method.

5.3.4 Concluding Remarks

We investigated the problem of detecting a mismatch between the trained deep neural
network and the statistical properties of the sequence samples using this network,
which may have useful applications, such as (i) deciding when the network should be
re-trained, due to a progressive shift in the statistical properties of the sequence; (ii)
when several users are using the same network, warn some users that they seem to use
the network out of its nominal behaviour; and (iii) if the mismatch detection is very
efficient, remove outliers during the training periods. The ‘black box’ scenario in which
one cannot observe internal states of the network would seem to be a challenging one,
but the methods proposed in this chapter result in amazing performance. However,
performances seem to be of varying efficiency depending on the target context, which
is not a surprise since the amount of mismatch should clearly impact the performance,
i.e., small mismatch will require more samples to be detected than very strong ones.
Clearly, the best criterion depends on the target scenario since the best algorithm based
on SD and GM methods was not always the same among all experiments.
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Chapter 6

Conclusion and perspectives

6.1 Conclusion

This manuscript presents the two main directions of my research: i data anonymization
using deep learning tools, ii monitoring predictor behavior.

Concerning the anonymized representation, the first contribution is a loss involving
some approximation, and it produced quite meaningful results on image type datasets.
The private features were identified and accurately removed from the anonymized
representation (to a certain degree that is controlled by a trade-off parameter) while the
relevant features are kept as much as possible in the anonymized representation. The
loss was based on an approximation of an information theoretic bound. Some limits of
the methods where showed and leaded to a quite global understanding of this custom
designed algorithm.

One of the limit of the supervised method (only features specified at the processing
time are kept in the representation) lead us to think about a more general problem,
the semi-supervised one. This method addresses the case where we do not have prior
information about the features we want to keep. This second problem was addressed
using a semi-supervised anonymized representation. In this case the representation
shares the same type as the initial sample (here an image was anonymized into another
image). The main purpose was to propose a method that took care of making as hard as
possible the identification of private features while at the same time providing a partial
integrity of the reconstructed representation. Partial integrity means here that the
processed data keep as much coherence as possible under the anonymization constrain.
The problem was solved using two methods according to the type of task: one for
simple tasks and the other one for more intertwined tasks. The quality check of the
reconstruction showed conclusive results.

Concerning the predictor monitoring in a ‘black box’ context, two approaches were
presented.

The first one is based on a direct processing of the soft outputs provided by the
predictor. The method is very simple, and is quite efficient for detecting a drift of
the dataset statistics. Even if the detection requires a certain number of samples, its
construction certainly allows to detect small changes, since it involves the full shape
of the empirical PDF of the soft outputs, instead of the most significant values. The
second approach intends to design predictors with a quick alarm in the case of unusual
behavior.

From a more wider and technical standpoint, this work also contained a strong
practical part. It means that I learnt to use various tools, some of which are already
obsolete, and some other are cutting edge programming language for deep learning.
I also learnt to work on huge GPU cluster as well as on small server that I had full
responsibility of (i.e. installing my own tools and software to run simulation, and also
tackling bugs when they arose).
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6.2 Future work

The perspectives are numerous for the different parts of my work.

• A general remark is that it would present some interest to test the anonymization
methods presented here on another type of data, for example voice recording.

• A special study of the statistical guarantees about the probabilities of error re-
garding the private task in the case of anonymized representation would be a
nice development.

• The presented supervised method could be used in the converse way, using the
regular label in the anonymization task branch and using the private label in the
regular task branch. It would for sure produce surprising results.

• The practical case of crowd monitoring is a fitted application for the semi-
supervised method on video data.

• A novel idea would be to produce anonymized representations that are of the
same type as the original data, using the outputted representations of the super-
vised method. These new anonymized representations would be comparable to
the representations produced by the semi-supervised method, and an assessment
of the performance of each method would be interesting.

• An other idea is to test the behavior of the anonymizing encoder on data samples
from another identity (another identity meaning that it is an identity that was not
in the initial dataset). It would be an interesting way to test the methods for an
other kind of generalization.

• Concerning the predictor monitoring work, the perspective lies into trying to
make the tools available to people using machine learning without being ex-
pert. Such a goal could be achieve by developing an open access python library
compatible with tensorflow for example.

• The presented methods could be tested for other types of shift.

• On a more practical note, a lot of work could be done to optimize the code of the
algorithms developed here.

• Several smart grid data applications have been suggested and need to be investi-
gated
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Appendix A

Developpement of chapter 3

A.1 Proof of Lemma 5

The upper bound simply follows by using Jensen-Inequality [Cover and Thomas, 2006]
while the lower bound is a consequence of the definition of the rate-distortion and
distortion-rate functions. The probability of misclassification corresponding to the
classifier can be expressed in terms of the expected distortion:

Pe(qU|X, qẐ|U) = EpXZqU|X
[d(Z, U)] , (A.1)

based on the distorsion measure d(z, u) := 1 − qẐ|U(z|u). Because of the Markov chain
Z −
− X −
− U, we can use the data processing inequality [Cover and Thomas, 2006]
and the definition of the rate-distortion function, obtaining the following bound for the
classification error:

I(Z; U) ≥ min
pÛ|Z :Z→P(U )

Ep
ÛZ

[d(Z,Û)]≤EpXZqU|X
[d(Z,U)]

I
(
Z; U

)
(A.2)

= RZ,qẐ|U

(
Pe(qU|X, qẐ|U)

)
. (A.3)

For EpXZqU|X
[d(Z, U)], we can use the definition of R−1

Z,qẐ|U
(·) (positive and monotoni-

cally decreasing) to obtain from (A.2), the desired inequality:

R−1
Z,qẐ|U

(I(Z; U)) ≤ PE (QẐ|U , QU|Z). (A.4)

A.2 Proof of proposition 1

Here is the lemma 2.10 (Fano’s lemma) in [Tsybakov, 2008]:

g
(

P̂e(qẐ|U , qU|X)
)
≥ log(|Z|)−

1
|Z|

|Z|

∑
j=1

D(pẐ|U ||pZ), (A.5)

where for 0 ≤ t ≤ 1:

g(t) := t · log (|Z| − 1) + H(t), (A.6)

with

H(t) := −t log(t)− (1 − t) log(1 − t), (A.7)

and 0 log 0 := 0.

(A.8)
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Let’s remark that :

1
|Z|

|Z|

∑
j=1

D(pẐ|U ||pZ) = EpU
[D(pẐ|U ||pZ)] (A.9)

= D(pẐU ||pZ pU) (A.10)

= Î(Z; U), (A.11)

the lemma expression is :

g
(

P̂e(qẐ|U , qU|X)
)
≥ log(|Z|)− Î

(
Z; U

)
. (A.12)

The function g is continuous and increasing on
[
0, 1 − 1/ |Z|

]
, g is log |Z| above the

interval and g is 0 below the interval. Therefore g−1 exists and can be applied on both
term of the lemma which gives:

P̂e(qẐ|U , qU|X) ≥ g−1
(

log(|Z|)− Î
(
Z; U

))
, (A.13)

which conclude the proof.
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Appendix B

Developpement of chapter 5

B.1 First method

The Neural Network Architectures used in the paper are given below. Dense(n) denotes
a fully-connected layer with n output units. Con2D(n, w × h) denotes a convolutional
layer with n output features and filter size of w × h. ReLU is the rectified linear unit
activation. The implementation is based on Keras.

Algorithm 1 Building MNIST model

model = models.Sequential()
model.add(Dense(512),activation=’relu’)
model.add(Dropout(0.2))
model.add(Dense(10))
model.add(Activation(’softmax’))

Algorithm 2 Building Fashion-MNIST model

model = models.Sequential()
model.add(Conv2D(64, (2, 2), activation=’relu’, input_shape=(28, 28, 1)))
model.add(MaxPool2D())
model.add(Dropout(0.3))
model.add(Conv2D(32, (2, 2), activation=’relu’))
model.add(MaxPool2D())
model.add(Dropout(0.3))
model.add(Flatten())
model.add(Dense(256),activation=’relu’)
model.add(Dropout(0.5))
model.add(Dense(10))
model.add(Activation(’softmax’))

B.2 Second method

B.2.1 Detailed description of our numerical results and simulations

Model training. The models employed to produce the figures are using the architec-
ture presented below. The training procedure was simple and quick: We used an Adam
optimizer with a learning rate of 0.001, β1 = 0.9 and β2 = 0.999 and no decay. The
training set was split into 128 samples batches. The model was trained for 20 epochs.
For each trained model, the whole validation is processed, and the softmax outputs
are stored into N (size of sequence) labelled file. After this, for each trained model,
500 randomly chosen sequences of size N from the test set and from the missmatched
data test set are processed through the model, and the softmax outputs are stored
sequentially. The model is then reset and retrained. Our results use 10 model training
realizations. For each new training, the performances are shown on the console.
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Algorithm 3 Building CIFAR-10 or SVHN model

model = models.Sequential()
model.add(Conv2D(32, (3, 3), activation=’relu’, input_shape=(32, 32, 3)))
model.add(MaxPool2D())
model.add(Dropout(0.2))
model.add(Conv2D(64, (3, 3), activation=’relu’))
model.add(MaxPool2D())
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(512,activation=’relu’))
model.add(Dropout(0.2))
model.add(Dense(10))
model.add(Dropout(0.2))
model.add(Activation(’softmax’))

From outputs to our curves. Once the python script has ended, one can load the data
and process them one fixed sequence size at a time. After computing the each sequence
value according to the chosen method, we advice to define a fixed false alarm rate
threshold and process the validation given values accordingly to have a threshold:
split in two parts the validation values such as smallest part compared to the biggest
part give the same ratio as the false alarm rate. The value achieving this split is the
threshold, process the test set sequences and the mismatched data sequences to obtain
corresponding values. Each value is compared to the threshold: depending of the
chosen method and of the position of the value to the threshold, the sample is assessed
either compatible with the dataset distribution or not compatible, i.e., coming from the
mismatched dataset (out of distribution sample). Note that the whole process does not
include any use of labels, any modification of the initial classifier, any modification
of the input of the model or any training of a learning based criteria. We emphasize
that this method is therefore suited to an online usage on classifier, to monitor any
under-confident behavior.

B.2.2 Architectures

Dense(n) denotes a fully-connected layer with n output units. Con2D(n, w × h) denotes
a convolutional layer with n output features and filter size of w × h. ReLU is the
rectified linear unit activation. The implementation is based on Keras.

Algorithm 4 Building CIFAR-10 or SVHN model

model = models.Sequential()
model.add(Conv2D(64, (3, 3), activation=’relu’, input_shape=(32, 32, 3)))
model.add(MaxPool2D(2,2))
model.add(Dropout(0.35))
model.add(Conv2D(32, (3, 3), activation=’relu’))
model.add(MaxPool2D(2,2))
model.add(Dropout(0.35))
model.add(Flatten())
model.add(Dense(512,activation=’relu’))
model.add(Dropout(0.2))
model.add(Dense(10))
model.add(Activation(’softmax’))
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B.2.3 Additional simulation results

Direct performances without the use of validation (Mismatched data against test set)
are summarized in the following tables which presents: (i) False Positive Rate (FPR)
at 95%; True Positive Rate (TPR): probability of a mismatched sample classified as
regular sample when the TPR is at 95%; (ii) Detection error: the misclassification
probability when both error are equiprobable; (iii) Area Under the Receiver Operating
Characteristic Curve (AUROC); (iv) Area Under the Precision-Recall Curve (AUPR) for
both regular and mismatched samples. This table shows the raw performances of the
investigated methods compared to the L2-norm baseline on softmax, without using
validation samples.

Result of the detection in various settings for the Baseline Method (BL), i.e., non-
centered L2 norm of the sotf-probabilities, the SD method and the GM method. All
values are percentages, ↑ indicates larger value is better, ↓ indicates lower value is
better.

CIFAR-10 shifted to SVHN

Results show that the SD method clearly outperforms other methods except for the
lower value of N i.e. N = 2. Yet there is a definitive gap between SD method and other
methods for N ≥ 5

TABLE B.1: CIFAR-10 shifted to SVHN

Training
data

Mismatched
data

N- Method FPR
(95% TPR)↓

Detection
error ↓

AUROC ↑ AUPR
test data ↑

AUPR
mismatched ↑

CIFAR-10 SVHN

2
BL 31.60 16.27 91.00 92.33 86.57
GM 51.82 16.89 90.63 75.00 92.16
SD 29.32 17.91 88.52 91.38 51.38

3
BL 21.62 12.23 94.52 95.36 90.69
GM 35.82 13.01 94.04 92.38 95.04
SD 13.84 8.83 96.37 97.02 62.5

4
BL 11.34 8.35 97.44 97.77 97.15
GM 14.26 8.39 97.38 96.95 97.81
SD 5.00 5.01 98.68 98.92 83.33

5
BL 9.90 7.43 97.87 98.14 97.59
GM 8.66 6.31 98.24 97.89 98.57
SD 2.34 3.23 99.48 99.56 99.26

6
BL 6.70 5.83 98.53 98.69 98.46
GM 4.88 5.05 98.91 98.81 99.06
SD 1.10 2.31 99.74 99.79 99.75

7
BL 3.06 3.89 99.28 99.37 99.16
GM 2.02 3.39 99.31 96.96 99.44
SD 0.44 1.39 99.87 99.91 99.88

8
BL 1.82 2.79 99.60 99.65 99.60
GM 0.94 2.77 99.63 99.61 99.68
SD 0.14 0.65 99.95 99.98 99.97

9
BL 1.72 2.87 99.62 99.67 99.63
GM 1.38 3.11 99.56 99.57 99.62
SD 0.06 0.43 99.97 99.99 99.99

10
BL 0.46 1.59 99.85 99.88 99.86
GM 0.14 1.21 99.87 99.87 99.91
SD 0.02 0.33 99.97 99.99 99.99
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SVHN shifted to CIFAR-10

Results show that the baseline method and the GM method give close results, baseline
method is often slighty better. SD method is a little less competitive on this particular
configuration of simulation while staying close to the top results.

TABLE B.2: SVHN shifted to CIFAR-10

Training
data

Mismatched
data

N Method FPR
(95% TPR)↓

Detection
error ↓

AUROC ↑ AUPR
test data ↑

AUPR
mismatched ↑

SVHN CIFAR-10

2
BL 30.60 14.73 93.57 93.95 93.15
GM 30.92 13.97 92.23 92.76 92.64
SD 36.94 19.95 85.75 88.54 50.61

3
BL 14.70 8.85 96.98 97.13 97.00
GM 14.88 8.47 96.43 96.73 96.59
SD 40.18 12.85 93.65 93.43 51.07

4
BL 7.52 6.21 98.49 98.58 98.50
GM 6.82 5.75 98.16 98.47 98.20
SD 15.96 10.51 96.19 96.41 56.25

5
BL 5.76 5.35 98.86 98.91 98.91
GM 5.08 5.35 98.33 98.73 98.35
SD 11.06 7.71 97.53 97.78 62.50

6
BL 2.04 3.03 99.59 99.62 99.63
GM 1.42 3.11 99.34 99.49 99.36
SD 4.90 4.93 98.82 98.95 75.00

7
BL 0.76 1.97 99.76 99.79 99.79
GM 0.40 1.71 99.66 99.77 99.68
SD 1.90 2.93 99.51 99.57 99.52

8
BL 0.32 1.19 99.90 99.92 99.92
GM 0.12 1.39 99.84 99.88 99.86
SD 1.26 2.49 99.66 99.72 99.63

9
BL 0.14 0.99 99.91 99.93 99.94
GM 0.22 0.95 99.93 99.95 99.94
SD 0.60 1.69 99.80 99.83 99.81

10
BL 0.24 1.21 99.91 99.94 99.93
GM 0.20 1.27 99.83 99.89 99.84
SD 0.56 1.65 99.85 99.88 99.87
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CIFAR-10 shifted to CIFAR-100

Results show that for lower value of N GM method and baseling method are close. For
higher value of N GM method seems to lay slightly better results than the baseline.

TABLE B.3: CIFAR-10 shifted to CIFAR-100

Training
data

Mismatched
data

N Method FPR
(95% TPR)↓

Detection
error ↓

AUROC ↑ AUPR
test data ↑

AUPR
mismatched ↑

CIFAR-10 CIFAR-100

2
BL 67.28 28.55 78.21 78.78 76.00
GM 72.68 27.17 79.64 77.72 80.63
SD 69.60 31.47 73.09 75.85 51.79

3
BL 57.36 24.81 83.42 83.93 82.00
GM 61.08 22.73 85.04 83.95 85.70
SD 65.24 27.25 79.97 80.56 56.25

4
BL 51.08 21.07 86.99 87.44 86.34
GM 52.50 19.71 88.27 87.31 88.88
SD 53.84 23.19 84.98 85.54 66.67

5
BL 43.90 18.67 89.24 89.69 88.22
GM 46.72 17.61 90.04 89.36 90.43
SD 47.38 20.35 87.89 88.30 86.42

6
BL 33.50 16.73 91.44 92.20 90.19
GM 37.58 15.41 92.42 91.82 92.96
SD 37.20 17.47 90.57 91.10 75.00

7
BL 32.56 15.45 92.68 93.07 92.50
GM 32.36 13.79 93.58 93.27 93.91
SD 35.88 15.71 92.00 92.40 91.59

8
BL 27.96 13.57 93.96 94.23 93.77
GM 23.96 11.81 95.14 94.93 95.45
SD 27.66 14.17 93.48 93.88 93.04

9
BL 21.74 11.73 95.30 95.60 95.11
GM 21.36 11.23 95.93 95.88 96.20
SD 22.28 11.79 95.08 95.40 94.82

10
BL 18.64 10.65 95.91 96.17 95.68
GM 19.78 9.99 96.41 96.35 96.61
SD 21.10 11.05 95.65 95.90 83.20
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F-MNIST shifted to MNIST

Results show that the SD method outperforms other methods even for the lowest value
of N. The other methods results are nowhere close. As N increase the gap is more and
more tremendous.

TABLE B.4: F-MNIST shifted to MNIST

Training
data

Mismatched
data

N Method FPR
(95% TPR)↓

Detection
error ↓

AUROC ↑ AUPR
test data ↑

AUPR
mismatched ↑

F-MNIST MNIST

2
BL 74.18 33.37 73.61 73.51 74.96
GM 69.08 27.51 64.09 78.12 78.49
SD 53.46 23.31 82.62 85.19 79.87

3
BL 74.48 32.05 76.30 75.61 76.91
GM 76.12 22.39 61.64 79.69 78.15
SD 38.66 17.45 90.53 91.11 85.95

4
BL 69.56 28.65 79.79 78.52 81.92
GM 78.26 19.13 60.73 79.79 77.94
SD 20.62 11.13 95.38 95.84 94.83

5
BL 68.88 24.89 82.38 80.61 83.59
GM 77.84 17.14 61.01 80.24 78.04
SD 11.88 7.73 97.51 97.66 97.30

6
BL 64.84 24.65 82.95 81.83 83.61
GM 86.26 14.89 56.83 78.15 76.81
SD 5.68 5.45 98.82 98.89 98.84

7
BL 67.88 22.69 85.28 82.01 86.94
GM 99.98 13.83 50.01 79.55 77.50
SD 2.38 3.41 99.44 99.49 99.46

8
BL 60.76 21.23 86.82 85.03 88.08
GM 99.98 12.27 50.01 79.46 77.45
SD 2.22 3.41 99.51 99.57 99.53

9
BL 41.32 16.47 91.44 91.12 91.91
GM 99.98 8.38 50.01 78.79 77.05
SD 0.90 1.91 99.80 99.83 99.82

10
BL 47.32 17.73 90.24 89.47 90.99
GM 99.98 7.37 50.01 77.48 76.31
SD 0.48 1.67 99.85 99.88 99.87
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CIFAR-9 (CIFAR-10 without a label) shifted to CIFAR-1 (set of the removed label)

Results show that the SD method outperforms tremendously other methods on this
additional class task. This method lays impressive results as N grows larger.

TABLE B.5: CIFAR-9 (CIFAR-10 without a label) shifted to CIFAR-1 (set
of the removed label)

Training
data

Mismatched
data

N Method FPR
(95% TPR)↓

Detection
error ↓

AUROC ↑ AUPR
test data ↑

AUPR
mismatched ↑

CIFAR-9 CIFAR-1

2
BL 95.48 48.41 52.11 46.10 52.85
GM 87.90 45.05 58.08 59.19 61.91
SD 77.98 29.67 76.26 75.27 72.92

3
BL 93.66 46.53 54.50 55.46 54.08
GM 85.32 41.47 61.97 62.87 64.57
SD 52.58 23.35 85.22 85.71 84.55

4
BL 93.14 43.79 58.00 36.68 57.81
GM 79.88 36.21 69.55 69.76 70.04
SD 45.56 19.51 88.51 88.94 88.05

5
BL 92.72 44.51 57.36 62.50 57.27
GM 78.52 35.49 70.38 70.89 70.94
SD 34.98 16.07 92.07 92.30 92.11

6
BL 91.88 43.73 59.36 56.74 58.14
GM 76.92 35.43 70.67 71.52 70.61
SD 25.04 12.29 94.74 94.98 94.71

7
BL 90.26 41.93 61.21 59.51 60.37
GM 77.28 33.05 72.84 72.70 72.94
SD 20.20 10.67 96.06 96.08 96.15

8
BL 92.12 42.91 59.84 57.40 58.41
GM 76.70 34.17 71.74 72.29 71.84
SD 13.10 8.59 97.21 97.39 97.16

9
BL 93.04 44.17 58.01 75.01 58.31
GM 77.36 35.17 70.76 71.98 70.12
SD 8.90 7.07 98.20 98.34 98.18

10
BL 89.42 41.49 62.27 60.28 58.96
GM 69.82 31.09 76.27 76.36 75.77
SD 8.96 6.89 98.12 98.23 98.11
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