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Chapter 1

Introduction en Français

Les statisticiens ont observé que les bases de données réelles contenaient des données anormales
(outliers en anglais, nous utiliserons le terme anglais) et ces données anormales peuvent avoir
un effet négatif sur l’analyse statistique de la base de donnée. Par données anormales, nous
entendons ici des données qui sont difficiles à modéliser ou des données que l’on devrait ignorer
dans notre analyse, et à cause de la présence de ce type de données, nous devons utiliser des
méthodes dites robustes. Ce problème est déjà assez vieux, Newcomb en 1882 [Gut01] et Laplace
avant lui étaient déjà conscients de l’effet de outliers sur l’analyse de données. Fisher avait aussi
souligné le problème en inférence statistique [FR22]. Il y a en ce moment un regain d’intérêt
pour ce genre de technique, en grande partie à cause des besoins pour l’apprentissage statistique
robuste.

Cette thèse a donné lieu à l’écriture de cinq articles : l’article [LLM20] qui a été publié
dans le journal Machine Learning, l’article [LSML19] qui a été publié comme proceeding de la
conférence ICML en 2019, l’article [MM19] qui a été accepté à la publication dans Information
and Inference: A Journal of the IMA et les deux articles [Mat20b, Mat20a] que j’ai écris seul
et qui seront bientôt proposés à la publication. Dans ces articles, nous étudions les statistiques
robustes et en particulier leurs applications à l’apprentissage statistique. Cette thèse a aussi
donné lieu à une contribution de code pour l’apprentissage statistique robuste dans la librairie
python scikit-learn-extra.

Dans un premier temps, je présente quelques résultats de base sur les statistiques robustes
et la formulation mathématique de la robustesse. Ensuite, je présente l’état de l’art en termes
d’estimation robuste de la moyenne. En effet, l’estimation robuste de la moyenne est un problème
central dans cette thèse et ces résultats sont le point de départ des travaux présentés ici.

Dans un second temps, je présente succinctement nos contributions aux statistiques robustes.
Premièrement avec des bornes de déviations non-asymptotiques pour l’estimation de la moyenne
en utilisant des résultats de [Mat20b] et [Mat20a], dans un contexte de distribution à queue lourde
et/ou de base de données corrompue. Ensuite, je présente les contributions faites à l’apprentissage
statistique robuste, notamment à travers les trois articles [LLM20, LSML19, MM19] avec des
applications en régression, en classification et en méthode à noyaux.
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Pour une lecture peut-être plus ludique de ce travail, les lecteurs sont encouragés à exécuter
le notebook que j’ai préparé pour illustrer cette thèse: https://colab.research.google.com/
drive/1yyGCgmif1EXBNLBgM0DaZvPLyHuJW8zf?usp=sharing.

1.1 La robustesse selon Huber et les estimateurs sous-Gaussiens

1.1.1 Distributions à queues lourdes et corruption de base de données

De façon informelle, un estimateur est dit robuste si un petit changement dans les hypothèses
que l’on suppose sur la base de données ne change pas beaucoup le résultat de l’estimation.
Pour préciser cette définition, il faut définir ce que l’on entend par “un petit changement des
hypothèses" et par “ne change pas beaucoup".

Considérons un exemple. Supposons que l’on a accès à n observations X1, . . . , Xn dans R. Il
se trouve que cet échantillon est corrompu : X1, . . . , Xn−1 sont tirés i.i.d, suivant une distribution
gaussienne N (µ, σ2) et Xn est égal à une constante M � µ (Xn est alors appelé outlier). La
moyenne empirique devient alors 1

n

∑n−1
i=1 Xi + M

n , ce qui peut être arbitrairement loin de la
moyenne µ des points non anormaux si M est très grand comparé à

∑n−1
i=1 Xi. La moyenne

empirique n’est donc pas robuste, notre but dans ce problème serait alors de trouver un estimateur
qui ne présente pas ce problème comme cela est illustré dans la Figure 2.1.

Figure 1.1: Histogramme d’une base de donnée corrompue par des outliers. Dans cette figure, θ̂n
désigne un estimateur robuste de la moyenne.

Nous considérons trois différents cadres de travail : les distributions à queue lourde, les bases
de données corrompues par des outliers et ce qu’on appelle un voisinage de corruption (voir
ci-après pour la définition). Ces trois cadres de travail sont représentés dans la Figure 1.2.

Distributions à queue lourde. Les résultats non asymptotiques classiques ne sont bien
souvent valides que dans le cas de données i.i.dX1, . . . , Xn ayant pour loi commune une distribution
Gaussienne ou une distribution à queue légère. Typiquement, pour obtenir un résultat de
concentration en apprentissage statistique, on aura besoin d’une hypothèse sous-gaussienne sur
les données. Cependant, les données réelles sont bien souvent plus proches d’une loi à queue
lourde. Une sorte de déviation du cas idéal est donc de considérer le cas des distributions à queue
lourde où X n’a typiquement qu’ un second moment fini. C’est dans ce contexte que les deux
articles [Cat12, DLLO16] ont été écrits.
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1.1. LA ROBUSTESSE SELON HUBER ET LES ESTIMATEURS SOUS-GAUSSIENS
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Figure 1.2: Tracé du graphe de la fonction de répartition dans différents cadres de corruption.
Le graphique du haut représente le cas non corrompu (Gaussienne standard), celui d’en bas à
gauche un modèle de contamination de Huber, celui d’en bas au milieu un cas de distribution à
queue lourde et celui en bas à droite un voisinage de corruption (distance de Kolmogorov).

Données corrompues, cadre de travail I ∪O. Soient X1, . . . , Xn des variables aléatoires.
Soit I,O une partition de {1, . . . , n} en deux ensembles disjoints, l’ensemble I des inliers et
l’ensemble O des outliers (avec |O| petit comparé à |I|). Certaines hypothèses seront faites sur
(Xi)i∈I , typiquement des hypothèses de moment fini, mais par contre nous ne supposerons rien
sur (Xi)i∈O. Les ensembles I et O sont inconnus du statisticien. Ceci est une généralisation du
contexte des distributions à queue lourde dans lequel les données ne sont plus supposées i.i.d. Ce
cadre de travail a été utilisé dans [LL20, LSML19].

Base de données corrompue par des outliers, contamination de Huber. Le second
scénario de corruption considéré est ce qui est appelé dans la littérature la contamination de
Huber. Dans ce modèle, X1, . . . , Xn sont i.i.d avec pour commune loi un mélange de distribution
(1− ε)P + εH où ε est petit. P est supposé connu, alors que nous ne faisons aucune hypothèse
sur H. H joue le rôle de la distribution des outliers. Ce cadre de travail est très proche du
cadre I ∪ O présenté précédemment, mais contrairement au cadre I ∪ O, la contamination de
Huber contient des données i.i.d ce qui peut donc être vu comme un cadre non-adversarial. La
contamination de Huber est définie dans [Hub64, HR09, ZJS19] et a entre autres été utilisée dans
[CGR+18].

Voisinage de corruption. Comme cela a été dit précédemment, nous pouvons définir une
déviation du cas idéal en disant que X1, . . . , Xn sont i.i.d avec une distribution commune qui
est voisine de la distribution P , par exemple cette notion de voisinage peut être définie par le
biais de la contamination de Huber. Plus généralement, soit d une distance entre distributions de
probabilité (i.e. distance de Kolmogorov, distance de variation totale, distance de Wasserstein
. . . ) et suppose que X1, . . . , Xn est tiré selon une distribution Q telle que d(P,Q) ≤ ε. Cela
généralise la corruption de Huber, en effet si Q = (1− ε)P + εH est une version corrompue de P ,
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on a que la variation totale entre P et Q est inférieure à ε. Utiliser les voisinages d’une distance
est plus générale que la contamination de Huber et le type d’outliers considéré va dépendre en
grande partie de la distance entre distributions choisies pour définir les voisinages. Les voisinages
de corruptions ont été en premier utilisés dans [HR09, Ham71].

Dans tous les cas de corruptions présentés, le but est d’utiliser des méthodes qui donnent
des résultats similaires quand on les utilise sur la base de donnée idéale (i.i.d suivant une loi
gaussienne par exemple) que quand on utilise la même méthode sur une base de donnée corrompue.
Ceci constitue une définition informelle de ce que l’on considère comme méthode robuste dans
cette thèse et à chaque fois que l’on énonce un résultat, on prend soin de préciser la situation de
corruption dans laquelle on se trouve.

On peut identifier deux principaux champs de recherches en statistiques robustes théoriques :
un champ de recherche asymptotique et un non-asymptotique. Au début des statistiques robustes,
il y a eu beaucoup de résultats asymptotiques et les théorèmes principaux étaient en terme de
normalité asymptotique avec une variance asymptotique optimale [Hub64]. Récemment, beaucoup
de résultats non-asymptotiques sont apparus dans ce champ de recherche notamment en utilisant
des techniques telles que les inégalités de concentration et les processus empiriques avec pour
motivation première d’utiliser ces méthodes en apprentissage statistique. Dans cette thèse, nous
donnons à la fois des résultats asymptotiques et non asymptotiques en contribution à la théorie
des statistiques robustes.

1.1.2 Robustesse et inégalités de concentration

La théorie de la robustesse a connu un renouveau récemment dû aux besoins de l’apprentissage
statistique. Dans les applications en apprentissages statistiques telles que la régression ou la
classification linéaire, il est assez facile de trouver des exemples où l’on constate la non-robustesse
des estimateurs (regarder par exemple Figure 2.3). Soient X et Y deux ensembles, typiquement

Figure 1.3: Tracé de la ligne séparatrice apprise par plusieurs algorithmes de classification sur
la base de donnée représentée par les points tracés dans la même figure.Il y a un groupe de 30
outliers parmi les 300 points de la base de données, les outliers se situent dans le coin supérieur
droit et perturbent l’estimation de la frontière séparatrice entre les deux classes.

X ⊂ Rd et Y ⊂ R. Soit F un ensemble de fonctions f : X → Y . Le but est de trouver f∗ tel que
f∗(X) soit une bonne approximation de Y . La qualité de l’approximation est quantifiée par le
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risque R(f) d’une fonction f qui est définie par

R(f) = E[`(f(X), Y )],

où ` : Y × Y → R est une fonction de perte (i.e. une fonction à valeur positive, et telle que
`(y, y) = 0). Par exemple, en régression on peut utiliser `(f(x), y) = (f(x) − y)2 et le risque
R(f) est alors le risque quadratique moyen. Le problème se reformule donc en un problème
d’optimisation, on cherche f qui minimise R(f) sur l’ensemble F . La classe de fonctions F peut
par exemple être la classe des fonctions linéaires en régression linéaire ou alors l’ensemble de tous
les réseaux de neurones possibles en apprentissage profond. Pour simplifier, on va supposer qu’il
existe f∗ ∈ F qui réalise le minimum sur F :

f∗ ∈ argmin
f∈F

R(f). (1.1.1)

Soit f̂ un estimateur de f∗ basé sur (X1, Y1), . . . , (Xn, Yn), des copies i.i.d du couple (X,Y ). Pour
étudier l’efficacité de f̂ , nous allons principalement utiliser des inégalités oracles. Une inégalité
oracle donne une borne supérieure sur l’excès de risque R(f̂)−R(f∗). Remarquez que la première
espérance dans la définition de l’excès de risque est aléatoire, en effet nous n’intégrons que par
rapport à l’aléa de (X,Y ), et R(f̂) est donc toujours aléatoire. Le type de résultat recherché est
donc de trouver ∆n,δ(F) tel que pour tout δ ∈ (0, 1),

P
(
R(f̂)−R(f∗) ≤ ∆n,δ

)
≥ 1− δ.

Pour obtenir un tel résultat, l’outil principal que nous allons utiliser est la théorie des
inégalités de concentration. Les inégalités de concentration nous permettent de contrôler la
moyenne empirique, en particulier elles permettent de borner la probabilité que la moyenne
empirique est éloignée de plus de t > 0 de la moyenne théorique, quantifiant ainsi de façon
non-asymptotique la vitesse de convergence de la moyenne empirique vers la moyenne théorique.
Typiquement, pour borner l’excès de risque, on aura besoin de contrôler le risque empirique défini
par

R̂(f) =
1

n

n∑
i=1

`(f(Xi), Yi),

parce que la construction de f̂ donne souvent des informations sur R̂(f̂). C’est ici que les problèmes
arrivent puisque les inégalités de concentration reposent le plus souvent sur une hypothèse de
queue légère de `(f(X), Y ), `(f(X), Y ) doit être sous-gaussienne ou au moins sous-exponentielle
(cf [BLM13]) et en général les inégalités de concentration ne sont pas valides dans le cas des
distributions présentées dans la Section 2.1.1. Notre but est de trouver un estimateur ayant de
bonnes propriétés de concentration même quand les données sont à queues lourdes ou corrompues.
Les articles qui sont à la base de ce courant de pensée sont [Cat12] et [DLLO16].

Un des problèmes classiques dans ce champ de recherche est de trouver un estimateur robuste
de la moyenne (ceci peut être vu comme une minimisation d’un risque où ` est la perte quadratique
et F est l’ensemble des fonctions constantes). Nous cherchons un estimateur qui aurait les mêmes
garanties que la moyenne empirique dans le cas gaussien et qui garderait ces garanties aussi quand
les données ne sont pas gaussiennes. De façon informelle, si µ̂ est un estimateur robuste de la
moyenne basé sur X1, . . . , Xn i.i.d ayant un second moment fini, soient W1, . . . ,Wn des variables
i.i.d avec pour commune loi N (E[X], V ar(X)), on cherche C > 0 tel que pour tout δ > 0

P(|µ̂− E[X]| > δ) ≤ CP
(∣∣∣∣∣ 1n

n∑
i=1

Wi − E[X]

∣∣∣∣∣ > δ

)
. (1.1.2)
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Quand nous voulons prouver l’efficacité d’un estimateur, on cherchera à prouver une inégalité
similaire à l’Équation (2.1.2).

1.1.3 Aspect infinitésimal de la robustesse

Il n’y a pas une définition de la robustesse qui soit acceptée par tous, Hampel a proposé d’utiliser
la fonction la fonction d’influence pour quantifier la robustesse d’un estimateur. La fonction
d’influence est définie comme la dérivée de Gâteau de T dans la direction de la distribution de
Dirac (voir [Fer83]). Soit Dx(t) = 1{t ≥ x} la fonction de répartition de la distribution de Dirac
pour x ∈ R, la fonction d’influence est définie pour tout x ∈ R par,

IF (x, T, F ) = lim
ε→0

T ((1− ε)F + εDx)− T (F )

ε
. (1.1.3)

Hampel [Ham71] propose de quantifier la robustesse de T en F en utilisant supx |IF (x, T, F )|.
Une des raisons de ce choix est qu’il permet la formulation suivante du développement de Taylor
de T (en supposant que T est suffisamment régulier) : soient F et G des fonctions de répartitions,

T (F ) = T (G) +

∫
IF (x, T, F )d(G− F )(x) +R(F,G)

où le terme de reste R(F,G) est négligeable comparé aux autres termes si certaines conditions sont
vérifiées sur T , F et G. Ainsi, si supx |IF (x, T, F )| <∞, on peut alors montrer que |T (F )−T (G)|
est petit dès que d(F,G) est petit (pour d la distance de Kolmogorov).

1.2 État de l’art dans l’estimation robuste de la moyenne

1.2.1 M-estimateurs et la fonction d’influence

Dans cette section on s’intéresse à l’estimation d’un paramètre de localisation. Soit X ∼ P pour
P une distribution de probabilité sur Rd, soit ρ une fonction croissante de R+ à valeur dans R+,
T (P ) est alors définie par le problème d’optimisation suivant:

T (P ) ∈ argmin
θ∈Rd

E[ρ(‖X − θ‖)], (1.2.1)

où ‖ · ‖ est la norme euclidienne. Alternativement, si ρ est suffisamment régulière (ce qui sera le
cas dans cette thèse), on définit T (P ) par

E
[
X − T (P )

‖X − T (P )‖ψ(‖X − T (P )‖)
]

= 0, (1.2.2)

où ψ = ρ′ est appelée la fonction de score. Pour ψ(x) = x, on retrouve la moyenne T (P ) = E[X] et
pour ψ(x) = 1, la médiane. Si ψ est bornée, T (P ) peut être vue comme une médiane géométrique
lissée [Min15, CG17].

L’estimateur obtenu par plug-in de la densité empirique P̂n dans l’équation (2.2.2) est appelé
M-estimateur associé à ψ, et sera noté T (P̂n). On calcule T (P̂n) à partir d’un échantillon i.i.d
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sample X1, . . . , Xn en utilisant l’équation suivante :
n∑
i=1

Xi − T (P̂n)

‖Xi − T (P̂n)‖
ψ(‖Xi − T (P̂n)‖) = 0. (1.2.3)

Pour ψ(x) = x on obtient T (P̂n) = 1
n

∑n
i=1Xi et pour ψ(x) = 1, T (P̂n) est la médiane géométrique

empirique. Selon le choix de ψ que l’on fait, le M-estimateur qui en résulte peut être plus robuste
aux outliers et aux distributions à queues lourdes que la moyenne empirique, et plus efficace que
la médiane dans un cas non-corrompu. Les M-estimateurs sont particulièrement intéressants
puisque leurs fonctions d’influence ont une forme relativement simple :

IF(x, T, P ) = M−1
P,T

x− T (P )

‖x− T (P )‖ψ(‖x− T (P )‖), (1.2.4)

où MP,T est une matrice inversible qui ne dépend pas de x (la formule explicite de MP,T existe
et peut être trouvée par exemple dans [HRRS86, Eq 4.2.9, Section 4.2C.] cependant elle ne sera
pas utilisée dans cette étude). En particulier, nous allons étudier les trois fonctions ψ suivantes
(représentées dans la Figure 2.4):

0 2 4 6 8 10
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5 ψH

ψC

ψP

Figure 1.4: Tracé de ψH etψC pour β = 1. ψP est tracé pour β = 10 et p = 5.

Estimateur de Huber. Soit β > 0. Pour tout x ≥ 0, on définit

ψH(x) = x1{x ≤ β}+ β 1{x > β}. (1.2.5)

En dimension 1, le M-estimateur associé à ψC est appelé estimateur de Huber [Hub64]. On
note TH la fonctionnelle associée.

Estimateur de Catoni. Soit β > 0. pour tout x ≥ 0, on définit

ψC(x) = β log

(
1 +

x

β
+

1

2

(
x

β

)2
)
. (1.2.6)

En dimension 1, le M-estimateur associé à ψC est l’un des estimateurs considérés par Catoni
dans [Cat12]. On note TC la fonctionnelle associée.
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Estimateur Polynomial. Soit p ∈ N∗, β > 0. Pour tout x ≥ 0, on définit

ψP (x) =
x

1 +
(
x
β

)1−1/p
. (1.2.7)

On note TP la fonctionnelle associée.

Le point de rupture de l’estimateur de Huber tend vers 1/2 en dimension 1 alors que celui
de l’estimateur de Catoni et l’estimateur Polynomiale tendent tous deux vers 0. On verra par
la suite que l’estimateur de Catoni et l’estimateur Polynomiale ne sont pas robustes au sens
traditionnel du terme mais on peut tout de même définir une notion plus faible de robustesse que
ces deux estimateurs vérifient. Plus généralement, le comportement de ψ(x) quand x tends vers
l’infini sera l’indicateur principal de la robustesse de T (P̂n) (voir Théorème 10 et Corollaire 2)
alors que le comportement de ψ proche de 0 contrôle la distance ‖T (P )−E[X]‖ quand P est une
distribution asymétrique (voir Lemme 2).

1.2.2 Estimateur de la médiane des moyennes

Soient X1, . . . , Xn des variables aléatoires i.i.d ayant un second moment fini. Soit K ∈ N et
suppose que n est divisible par K. Fixe B1, . . . , BK une partition de {1, . . . , n} et b ∈ N∗ tel que

∀k ∈ {1, . . . ,K}, |Bk| = b, ∀k 6= j, Bk ∩Bj = ∅ et ∪Kk=1 Bk = {1, . . . , n}

Pour tout B ⊂ {1, . . . , n}, dénote la moyenne empirique sur le bloc B par

PB(Xn
1 ) =

1

b

∑
i∈B

Xi,

l’estimateur de médiane des moyennes, qui date de [NY83, AMS99, JGV86], est définit par

MOMK(Xn
1 ) = Med(PBk(Xn

1 ), 1 ≤ k ≤ K). (1.2.8)

La médiane des moyennes est une interpolation entre la moyenne empirique et la médiane
empirique et le paramètre K indique le niveau de robustesse de l’estimation puisque moins de
K/2 outliers ne peuvent corrompre au plus que K/2 blocs, ce qui implique que la médiane dans
l’Équation (2.2.8) est toujours égale à la moyenne empirique d’un bloc non corrompu. Si n n’est
pas divisible par K, on peut toujours utiliser des blocs de tailles différentes mais la théorie est
plus facile à énoncer avec des blocs de même taille. Le point de rupture de la médiane des
moyennes est de 1

ndK/2e. Pour plus d’information sur les déviations de la médiane des moyennes,
voir [DLLO16, MS17, LCB19, LSC20, Min18]. Pour des résultats asymptotiques, voir [Min20].
La médiane des moyennes a aussi été adaptée dans d’autres contextes, par exemple dans [BAM20]
est définie une médiane des moyennes qui est “differentially private" (i.e. sensé respecter la
vie privée dans une application statistique) nous verrons aussi dans la suite son application à
l’apprentissage statistique.

Le principe de la médiane des moyennes est le suivant : on commence par utiliser une méthode
non robuste (comme la moyenne empirique, ou les moindres carrés en régression) sur des blocs
de données disjoints, et ensuite on agrège les résultats en utilisant un estimateur robuste (la
médiane). Ce principe peut être utilisé pour résoudre de nombreux problèmes de manière robuste.
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1.3 Contributions à l’étude des déviations d’estimateurs ro-
bustes

1.3.1 Concentration d’estimateurs robustes de la moyenne en dimen-
sion 1

En dimension 1, pour un échantillon Gaussien, on a les déviations suivantes pour la moyenne
empirique [BLM13] : Soient X1, . . . , Xn i.i.d de loi N (µ, σ2), alors pour tout t > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi − µ
∣∣∣∣∣ > σ

√
t

2n

)
≤ e−t. (1.3.1)

Dans cette section, on montre que la médiane des moyennes et les M-estimateurs vérifient des
bornes de déviations similaires à l’Équation (2.3.1) même quand X1, . . . , Xn ne sont pas tirés
selon une Gaussienne.

Pour construire des inégalités de concentration dans un contexte de robustesse, on commence
toujours par montrer que la concentration de l’estimateur peut être approchée par la concentration
de la moyenne empirique d’une variable transformée plus facile à contrôler. En dimension 1,
nous avons les résultats suivants, connus pour la médiane des moyennes et originaux pour les
M-estimateurs.

Médiane des moyennes. En interprétant la médiane, on obtient

P(|MOMK(Xn
1 )− E[X]| > ε) ≤ P

(
K∑
k=1

1{|PBk(Xn
1 )− E[X]| > ε} ≥ K

2

)
.

On a changé le problème pour se ramener au cas i.i.d. Par exemple, en utilisant l’inégalité de
Hoeffding, on obtient le théorème suivant.

Theorem 1 (Déviations de la médiane des moyennes). Soient X1, . . . , Xn, X des variables
aléatoires réelles i.i.d, avec une variance finie σ2. Alors, pour tout K ∈ {1, . . . , n},

P

(
|MOMK(Xn

1 )− E[X]| > 2σ

√
K

n

)
≤ e−K/8. (1.3.2)

Cette borne de déviation peut être comparée à celle obtenue par la moyenne empirique dans le
cas Gaussien dans l’Équation (2.3.1)mais il y a cependant des différences notables. L’estimateur
dépend d’un paramètre K qui représente le nombre de blocs, et ce nombre de blocs intervient
aussi dans le niveau de confiance, selon le niveau de confiance voulu, on n’utilisera pas le même
estimateur. Une autre différence avec l’Équation (2.3.1) est que tous les niveaux de confiances ne
sont pas accessibles. Le terme de droite dans l’Équation (2.3.2) ne peut être fixé arbitrairement
petit, on ne peut aller que jusqu’à des probabilités d’ordre e−n. Ceci est en fait inévitable, il a
été montré dans [DLLO16] qu’en général on ne peut avoir un estimateur qui a une concentration
sous-gaussienne autour de la moyenne pour tous les niveaux de confiance en même temps.

Ainsi, la médiane des moyennes est appropriée pour estimer la moyenne même quand les
données sont à queues lourdes (second moment fini). On peut aussi montrer des bornes de
déviations similaires dans un contexte I ∪ O (voir [Ler19]).
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M-estimateur. Dans le cas des M-estimateurs, on montre le théorème suivant qui contrôle
les déviations d’un M-estimateur.

Theorem 2 ([Mat20b]). Soient X1, . . . , Xn, X des variables aléatoires réelles i.i.d de loi P , soit
ψ l’une des trois fonctions de scores définies dans la Section 2.2.1, on suppose que T (P ) et T (P̂n)
existent et sont uniques. On note ψodd(x) = sign(x)ψ(|x|), le résultat suivant est alors vérifié.

• Pour tout λ > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

ψodd(Xi − T (P ))

∣∣∣∣∣ > 3λ

)
≤ P

(∣∣∣T (P̂n)− T (P )
∣∣∣ > λ

)
.

• Si de plus V = E[ψ(|X − T (P )|)2] ≤ ψ(β/2)2/2 <∞,alors pour tout λ ∈ (0, β/2),

P
(∣∣∣T (P̂n)− T (P )

∣∣∣ > λ
)
≤ P

(∣∣∣∣∣ 1n
n∑
i=1

ψodd(Xi − T (P ))

∣∣∣∣∣ > λγ

4

)
+ e−nγ

2/8. (1.3.3)

où γ = 1 si ψ = ψh, γ = 4/5 si ψ = ψC et γ = 1/4 si ψ = ψP .

Équation (2.3.3) montre que les déviations de T (P̂n) sont contrôlées à travers celles de
ψodd(X − T (P )) et que le paramètre de variance est V = E[ψ(|X − T (P )|)2]. Ayant que ψ est
concave sur R+ et ψ(0) = 0,on obtient que ψodd(X − T (P )) a une queue de distribution plus
légère que X et par exemple si ψ est bornée on a que ψodd(X−T (P )) est sous-gaussien. Cela rend
le contrôle des déviations de T (P̂n) facile puisque une somme de variables à queue légère i.i.d peut
être gérée en utilisant des inégalités de concentration classiques. Une inégalité de concentration
pour M-estimateurs dans un cas plus général (multivarié et en contexte corrompue) est présenté
dans la sous-section suivante. Pour plus d’information sur la dimension 1, voir [Mat20b].

1.3.2 Estimation robuste de la moyenne multivariée

Dans cette section, nous étudions l’estimation robuste de la moyenne en dimension d > 1. Le
théorème suivant, conséquence de l’inégalité d’Hanson-Wright, nous donne les déviations de la
moyenne empirique dans le cas gaussien.

Theorem 3 ([HW71]). Soit X ∼ N (0,Σ) et X1, . . . , Xn des copies i.i.d de X, avec Σ une
matrice définie positive. Alors, pour tout t > 0,

P

∥∥∥∥∥ 1

n

n∑
i=1

Xi

∥∥∥∥∥
2

>
2Tr(Σ)

n
+

9t‖Σ‖op
n

 ≤ e−t,
où ‖ · ‖op est la norme d’opérateur associée à la norme euclidienne ‖ · ‖.

Les vitesses de convergence exhibées dans le Théorème 12 est notre objectif quand on estime
la moyenne. Remarque que le Théorème 12 nous donne des déviations d’ordre O(1/

√
n) similaire

au cas d = 1 mais au-delà de ça, nous devons aussi faire attention au numérateur, ‖Σ‖op peut
être beaucoup plus petit que Tr(Σ) (par exemple, si Σ = Id on ‖Σ‖op = 1 et Tr(Σ) = d).
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Pour pouvoir utiliser un estimateur de la moyenne dans Rd, on doit faire attention à ce que
la dimension n’ai pas d’effet non voulu sur l’erreur d’estimation. En particulier, en estimation
robuste, l’erreur due à la corruption ne doit pas augmenter avec la dimension. Dans ce contexte,
il y a eu de nombreuses propositions d’estimateurs. Premièrement, il y a les estimateurs qui ont
de bonnes garanties théoriques mais qui ne sont pas calculables en pratique, par exemple les
estimateurs basés sur l’agrégation d’estimateurs uni-dimensionnel comme dans [Ler19, Theorem
44] ou des estimateurs basés sur la profondeur, voir [DG92, CGR+18], par exemple avec la
médiane de Tukey. Une seconde famille d’estimateurs sont ceux qui sont calculables en pratique
mais dont les garanties théoriques ne sont pas suffisantes, par exemple la médiane coordonnée
par coordonnée ou la médiane géométrique [Min15]. Récemment, il y a eu quelques propositions
d’algorithmes qui se disent en même temps calculables et minimax [DKP20, DL19, Hop20] mais
en pratique la plupart de ces algorithmes sont trop long à exécuter.

Dans le cas de la médiane de Tukey, [CGR+18] montre que dans un contexte de données
corrompues où X1, . . . , Xn sont i.i.d de loi (1− ε)P + εH, si P est une gaussienne et ε ≤ 1/

√
n,

alors on peut estimer la moyenne efficacement (avec une vitesse minimax, i.e. les mêmes vitesses
que l’inégalité de Hanson-Wright). Au contraire, si P a un second moment fini et aucun moment
d’ordre supérieur à 2 n’est fini, on doit demander à ce que ε ≤ 1/n pour récupérer les vitesses
minimax. Cela peut être interprété comme une sorte de point de rupture : quelle doit être la
valeur de ε pour que l’ordre de grandeur de la vitesse de convergence ne change pas (voir [LL20]).

Pour continuer notre étude, une version multivariée du théorème 10 est montrée dans [Mat20b],
cependant il manque encore un ingrédient à notre analyse puisque pour l’instant nous n’avons la
maitrise que de la distance ‖T (P̂n)− T (P )‖ et pas de la distance ‖T (P )− E[X].

Lemma 1. Suppose que ψ est Ck avec une dérivée keme bornée, ψ′(0) = 1 et pour 2 ≤ j ≤ k− 1,
ψ(j)(0) = 0. Soit X une variable aléatoire sur Rd telle que E[‖X‖k] <∞, alors,

‖E[X]− T (P )‖ ≤ 2‖ψ(k)‖∞
γk!βk−1

E
[
‖X − T (P )‖k

]
(1.3.4)

où γ = 1 si ψ = ψh, γ = 4/5 si ψ = ψC et γ = 1/4 si ψ = ψP .

De plus, on peut montrer que dans le cas de l’estimateur de Huber, on a que ‖TH(P )−E[X]‖
est d’ordre O(1/βq−1) où q est le nombre de moments finis de P . On peut montrer que cet ordre
de grandeur est optimal en β dès que la distribution P est asymétrique (Si P est symétrique
‖TH(P )− E[X]‖ = 0 et il n’y a pas besoin d’une telle borne).

Cette séparation de l’effet des déviations et de celui de la distance ‖T (P )− E[X]‖ peut être
comparé au compromis biais variance souvent constaté en statistiques.

Dans le cas de l’estimateur de Huber (dont on rappelle que la fonction de score est définie
pour x ≥ 0 par ψH(x) = x∧β) on est ramené à contrôler la somme de variables aléatoires bornées
i.i.d.

Dans [Mat20a] on montre le résultat suivant, que l’on présente ici sous forme informelle. Soient
X1, . . . , Xn i.i.d de loi (1− ε)P + εQ où P est une distribution ayant q moments finis, alors si
l’on suppose quelques hypothèses sur ψ et n, il existe une constante absolue C > 0 telle que, pour
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tout 0 < λ . n, avec probabilité plus grande que 1− 5 exp(−λ/8), on a∥∥∥E[X]− TH(P̂n)
∥∥∥ .

√
Tr(Σ) +

√
‖Σ‖opλ√

n

∨
E[‖X − E[X]‖q]1/qε1−1/qg

(
λ,
ε1/2−1/q

M
,

1

M
q
2n

q−2
4

)
.

(1.3.5)

Où . représente le fait d’être plus petit à une constante multiplicative près, M =

√
Tr(Σ)

E[‖X−E[X]‖q ]1/q ,

et g : R3 → R+ est tel que g(λ, x, y) = 1 + o(λ) + o(x) + o(y) pour (λ, x, y) qui tends vers 0.

La dépendance en le nombre de moments finis fait le lien entre les deux contextes déjà connus
: quand P a deux moments finis, la borne est d’ordre

√
ε comme dans [DL19, DKP20], on a alors

besoin de ε ≤ 1/n pour récupérer des vitesses en 1/
√
n similaires à l’inégalité d’Hanson-Wright. Si

on a que P est gaussien, la dépendance en ε devient linéaire ce qui revient à demander ε ≤ 1/
√
n

pour récupérer les vitesses voulues. l’Équation (2.3.6) interpole entre ces deux extrêmes.

Une conséquence peut être surprenante de cette séparation de l’effet du biais et de la variance
de T (P̂n) est que l’on peut avoir une vitesse de l’ordre de ε quand les inliers (points non outliers)
sont symétriques, il n’y a pas besoin que P soit Gaussien et ceci est vrai même quand le second
moment de P n’est pas fini.

Une généralisation possible de la médiane des moyennes est de remplacer la médiane empirique
par un estimateur de huber et prendre ainsi l’estimateur de huber des moyennes sur les blocs. On
peut montrer que dans ce cadre, il n’est utile de faire des blocs que si les données proviennent
d’une distribution très asymétrique, voir [Mat20a].

1.4 Contributions aux résultats asymptotiques de statistiques
robustes : une notion plus faible de la robustesse pour
des estimateurs plus efficaces

1.4.1 Continuité des M-estimateurs asymptotiques

Prenant naissance dans le travail de Hampel [Ham71], une définition de la robustesse est donnée
comme une continuité de T si l’estimateur est un estimateur de type plug-in : T est continue à
une distribution de probabilité P si pour toute distribution de probabilité Q,

∀ε > 0,∃δ > 0, tel que d(P,Q) ≤ δ ⇒ |T (P )− T (Q)| ≤ ε.

Ceci est une propriété importante de T qui se traduit en français en disant qu’un petit changement
dans la loi P ne devrait causer que de petits changements dans la valeur de T (P ). Par exemple, on
peut montrer en dimension d = 1 que si la fonction de score ψ est continue et bornée (la fonction
d’influence est alors bornée), alors T est continue pour la distance de Kolmogorov, ce qui signifie
que T est robuste dans un voisinage de corruption pour la distance de Kolmogorov comme cela a
été défini dans la Section 2.1.3. Il y a aussi des travaux qui considèrent d’autres distances comme
la distance de Prokhorov, la distance en variation totale [HR09], et plus récemment la distance
de Hellinger avec les travaux sur la rho-aggregation [BBS17, BGH14]. Toutes ces distances entre
distributions sont insensibles à des outliers arbitraires, c’est à dire que pour toute distribution
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NOTION PLUS FAIBLE DE LA ROBUSTESSE POUR DES ESTIMATEURS PLUS EFFICACES

P,Q, on a d(P, (1−ε)P +εQ) ≤ ε. Un tel voisinage peut donc contenir des outliers arbitrairement
loin de l’origine.

Si au lieu de prendre en compte des outliers arbitraires, on suppose qu’ils vérifient des
conditions faibles, il se peut que l’ensemble des fonctions T continues soit plus grand. C’est ce
qui motive la définition d’une nouvelle famille de distances entre distributions.

Soit ψ : R+ → R+ et on note Pψ = {P ∈ P : EP [ψ(‖X‖)] < ∞}. Pour tout P,Q ∈ Pψ, on
définit

Wψ(P,Q) = sup
h�ψ

{∫
h(x)dP (x)−

∫
h(x)dQ(x)

}
, (1.4.1)

où h : Rd → R vérifie h � ψ si et seulement si pour tout x, y ∈ Rd, |h(x)− h(y)| ≤ ψ(‖x− y‖).
Wψ n’est pas une distance inconnue jusqu’alors puisque c’est en fait une distance Wasserstein-1
dans l’espace métrique (Rd, dψ) où dψ(x, y) = ψ(‖x − y‖). Si ψ est l’identité, on récupère la
distance Wasserstein-1 usuelle et dans le cas extrême où ψ est la fonction constante égale à 1 on
récupère la distance de variation totale et on peut se convaincre que Wψ est une distance plus
faible que la distance en variation totale puisqu’on doit en demander plus à la distribution Q
pour que Wψ((1− ε)P + εQ, P ) −−−→

ε→0
0. Le théorème suivant est central dans l’article [Mat20b].

Theorem 4. Soit ψ une des trois fonctions ψH , ψC ou ψP . Soit T la fonctionnelle construite
à partir de ψ par le biais de l’Équation (2.2.2), et soit P ∈ Pψ. On suppose que ψ(+∞) >
EP [ψ(‖X‖)] et que ‖X‖ est presque sûrement finie.
Alors, T est continue en P pour la distance Wψ sur Pψ. Ce qui signifie que pour tout Q ∈ Pψ,

‖T (P )− T (Q)‖ −−−−−−−−→
Wψ(P,Q)→0

0.

Le Théorème 13 nous dit que le choix de la fonction ψ nous donne la distanceWψ pour laquelle
T est continue et de façon informelle, cela définit aussi la corruption à laquelle T peut résister.
Dans la Section 2.4.2, nous précisons cette remarque et on montre l’usage que l’on peut faire de
Wψ.

1.4.2 Stabilité asymptotique des M-estimateurs

Le choix de la fonction de score ψ influe beaucoup sur la robustesse du M-estimateur associée
à cette fonction de score. En particulier, si ψ est bornée, alors l’estimateur est robuste au
sens de Hampel (voir [HR09]) et si ψ est proche de l’identité au voisinage de 0,alors le biais de
l’estimateur associé est petit (voir Lemme 2). Si au contraire ψ n’est pas borné, cela ne signifie pas
forcément que l’on perd toute la robustesse de l’estimateur mais nous devons faire des hypothèses
supplémentaires sur les outliers pour que l’estimateur soit encore consistant dans un contexte
corrompu. Plus précisément, on a le résultat suivant.

Corollary 1. Supposons que l’on est dans le contexte I ∪ O où (Xj)j∈I sont i.i.d suivant P et
(Xj)j∈O sont tous égaux à g(n)u pour un certain u ∈ Rd, u 6= 0 et g : N→ R croissante. On note
|O| = kn le cardinal de l’ensemble des outliers. Le résultat suivant est vérifié.

Éstimateur de Huber Soit P une distribution de probabilité sur Rd et suppose que E[ψH(‖X‖)] <
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β <∞, alors (
kn
n
−−−−→
n→∞

0

)
⇒
(
TH

(
1

n

n∑
i=1

δXi

)
P−−−−→

n→∞
TH(P )

)
.

Éstimateur de Catoni Soit P une distribution de probabilité telle que X ∼ P , E[ψC(‖X‖)] <
β <∞, alors (

kn log(g(n))

n
−−−−→
n→∞

0

)
⇒
(
TC

(
1

n

n∑
i=1

δXi

)
P−−−−→

n→∞
TC(P )

)
.

Éstimateur polynomiale Soit P une distribution de probabilité telle que X ∼ P , E[ψP (‖X‖)] <
β <∞, alors (

kng(n)1/p

n
−−−−→
n→∞

0

)
⇒
(
TP

(
1

n

n∑
i=1

δXi

)
P−−−−→

n→∞
TP (P )

)
.

Ce corollaire nous dit à quel point les outliers peuvent être grands et en quel nombre, pour
qu’ils n’affectent pas le comportement de l’estimateur. Pour l’estimateur de Huber, il n’y a pas de
restriction sur g tant que le nombre d’outliers kn = o(n). Pour l’estimateur de Catoni, si kn est
borné par exemple (i.e. le nombre d’outliers est fini), alors g(n) soit être négligeable par rapport
à exp(n) pour conserver des bonnes propriétés d’estimations. Pour l’estimateur Polynomiale, si
kn est borné alors g(n) doit être négligeable comparé à np. En pratique, si les hypothèses de
convergence de l’estimateur de Catoni sont vérifiées par exemple, alors celui-ci sera plus efficace
que l’estimateur de Huber sur ces mêmes données. Ce résultat nous donne des informations sur
comment construire des M-estimateurs quand on a une idée de l’échelle à laquelle se placent les
outliers.

1.5 Contributions à l’apprentissage robuste

Dans cette section nous sommes intéressés dans l’estimation de fonctions. Nous commençons par
la classification et la régression (voir [Kol11, DGL96, MRT12] pour des références sur le sujet)
et ensuite nous présentons une application dans les méthodes à noyaux pour le maximum mean
discrepancy (MMD) introduit dans [GBR+12]. Notre but est d’avoir des estimateurs robustes
des quantités considérées.

1.5.1 Classification et régression utilisant le principe de la médiane de
moyenne

En classification et en régression, nous utilisons les M-estimateurs et MOM (médiane des moyennes)
pour rendre robuste un estimateur déjà existant. En particulier, nous nous sommes intéressés à la
régression/classification linéaire à travers la régression logistique et les moindres carrés ordinaires,
mais nous avons aussi appliqué nos méthodes au cas non-linéaire avec des méthodes à noyaux en
classification. Le principe de la médiane des moyenne a été appliqué en apprentissage statistique
dans plusieurs travaux notamment pour les tournois MOM [LM19a, LM19c] qui sont efficaces
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théoriquement mais incalculable en pratique, il y a aussi les estimateurs minmax [LL18, LL20] et
les travaux en grande dimension et sparsité [CLL19a, LM+18].

Dans l’Équation (2.1.1), nous cherchions f∗ définie par

f∗ ∈ argmin
f∈F

R(f) = argmin
f∈F

E[`(f(X), Y )]. (1.5.1)

où ` est une fonction de perte. Selon le principe de minimisation du risque empirique [Vap98] on
cherche à approcher R(f) en remplaçant l’espérance par la moyenne empirique, on estime ensuite
f∗ en utilisant f̂ , un minimiseur du risque empirique,

f̂ ∈ argmin
f∈F

1

n

n∑
i=1

`(f(Xi), Yi).

Parmis les exemples classiques de fonction de perte ` il y a la perte logistique `(f(x), y) =
log(1 + exp(−f(x)y)) en classification ou la perte quadratique `(f(x), y) = (f(x) − y)2 en
régression. Le problème vient du fait que l’estimation n’est pas bonne dès que la loi de `(f(X), Y )
est à queue lourde.

Pour décrire le comportement d’un estimateur de f∗, nous avons besoin d’une notion de
complexité de F , l’estimation est plus difficile si F est très complexe (i.e. réseaux de neurones).
Il y a plusieurs notions standard de complexité comme la dimension VC ou l’entropie d’un espace
de fonction. Dans ce travail, nous utilisons la complexité Rademacher (présentée par exemple
dans [MRT12, p34]). On suppose que X appartient à un espace X . Soit G un espace de fonctions
f : X → R et on note (εi)1≤i≤n des variables i.i.d de loi de Rademacher, les εi sont supposés
indépendants de (Xi)1≤i≤n . La complexité de Rademacher de l’espace G est définie par

Rad(G) = E

[
sup
f∈G

n∑
i=1

εif(Xi)

]
.

Si la complexité de Rademacher est grande, l’espace G sera considéré complexe et il sera alors
plus compliqué d’estimer les fonctions de G. Par exemple, pour les fonctions linéaires dans
Rd dont le coefficient directeur a une norme euclidienne bornée par θ2, on peut montrer que
Rad(G) ≤ θ2

√
nd.

Le principe de la minimisation du risque empirique robuste est la suivante: au lieu d’estimer
l’espérance dans (2.5.1) en utilisant la moyenne empirique, on utilise un estimateur robuste de la
moyenne

f̂rob ∈ argmin
f∈F

Ê(`(f(Xi), Yi), 1 ≤ i ≤ n)

où Ê est un estimateur robuste de la moyenne, typiquement un M-estimateur ou la médiane des
moyennes. Premièrement, regardons le cas de la médiane des moyennes. On définit

f̂MOM,K ∈ argmin
f∈F

MOMK(`(f(Xi), Yi), 1 ≤ i ≤ n).

Theorem 5. Soit f ∈ F , θ2 := E[f(X)2] <∞, on suppose que Rad(F) <∞ et que la fonction
de perte est Lipschitz dans le sens qu’il existe L > 0 tel que pour tout (x, y) ∈ X × Y, et tout
f, f ′ ∈ F ,

|`(f(x), y)− `(f ′(x), y)| ≤ L|f(x)− f ′(x)|.

27



CHAPTER 1. INTRODUCTION EN FRANÇAIS

On suppose que n > K > 4|O| et on note ∆ = 1/4− |O|/K. Alors, avec probabilité plus grande
que 1− 2e−2∆2K ,

R(f̂MOM,K) ≤ inf
f∈F

R(f) + 4Lmax

(
4Rad(F)

n
, 2θ2

√
K

n

)

L’inégalité du Théorème 14 atteint la vitesse de convergence optimale (quand on ne suppose
pas de condition de marge) alors que nous avons supposé que F est bornée dans L2 et que nous
avons affaire à une base de données corrompue. Dans les résultats classiques d’apprentissages
statistiques, F est supposé borné dans L∞. Dans beaucoup de cas (classification linéaire, SVM,
... ) on a Rad(F) ≤ O(

√
n) et c’est pourquoi on va souvent dire que la vitesse optimale est de

l’ordre de O(1/
√
n).

Dans l’article [MM19], nous sommes allés plus loin en incluant une condition de marge qui
nous permet de récupérer des vitesses plus rapides que 1/

√
n. La condition de marge se présente

comme suivant : il existe des constantes D > 0, δB > 0 telles que

V ar(`(f(X), Y )− `(f∗(X), Y )) ≤ D2(R(f)−R(f∗)) (1.5.2)

dès que R(f)−R(f∗) ≤ δB .

Pour obtenir des vitesses rapides, nous considérons un estimateur plus général dans lequel
l’opérateur de médiane empirique est remplacé par un M-estimateur similaire à l’estimateur de
Huber. On commence par définir un estimateur de R(f) noté R̂(f)β,K et défini par

K∑
k=1

ψ

√bPBk(`(f(Xi), Yi)1≤i≤n)− R̂(f)β,K
β

 = 0. (1.5.3)

Où ψ est supposé impaire et continûment dérivable cinq fois. On suppose aussi que si |x| ≤ 1,
alors ψ(x) = x, si |x| ≥ 2 alors ψ est contant et x− ψ(x) est croissant. ψ est essentiellement une
version plus régulière de ψH .On propose alors l’estimateur suivant de f∗ :

f̂HOME,K ∈ argmin
f∈F

R̂(f)β,K .

Avec cet estimateur,on montre que l’on peut obtenir une vitesse O(1/n3/4) si la condition de
marge est vérifiée (on montre aussi la vitesse lente en l’absence des conditions de marge). Cette
vitesse est plus rapide que O(1/

√
n) mais même si on constate en pratique une vitesse en O(1/n)

nous n’avons pas réussi à montrer une telle borne. Nous avons donc défini un estimateur alternatif
basé sur le principe min-max, et cet estimateur achève une vitesse optimale en O(1/n) si la
condition de marge est vérifiée. Ces théorèmes sont quelque peu techniques et nous présentons ici
une version informelle simplifiée. Voir [MM19] pour des résultats détaillés sur ces estimateurs.

Theorem 6 (Informal). Si pour tout f ∈ F , E[`(f(X), Y )4] <∞ et Rad(F) <∞. Alors pour
K et β choisi de façon appropriée, il existe des constantes c1, c2 > 0 telles que avec probabilité
plus grande que 1− e−s pour 0 < s ≤ c1K, on ait

R(f̂HOME,K) ≤ inf
f∈F

R(f) + c2

(
Rad(F)

n
+

s

n3/4
+

( |O|
n

)3/4
)
.
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Théorème 15 montre que dans un contexte sans condition de marge, tant que l’on a un
quatrième moment fini, l’erreur additionnelle due à la corruption est de l’ordre de O(1/n3/4)
ce qui est négligeable comparé à Rad(F)/n. On atteint donc la vitesse optimale. On présente
ensuite le cas où la vitesse rapide peut être atteinte.

Theorem 7 (Informal). Si f ∈ F , E[`(f(X), Y )4] <∞ et Rad(F) <∞, si de plus la condition
de marge (2.5.2) est vérifiée. Alors, il existe un estimateur f̂fr tel que avec probabilité plus grande
que 1− e−s pour s ≤ smax où smax −−−−→

n→∞
∞, on ait

R(f̂fr) ≤ inf
f∈F

R(f) + c2

(
Rad(F − f∗)

n
+
s

n
+
|O|
n

)
où F − f∗ = {x 7→ f(x)− f∗(x), f ∈ F}.

En supposant quelques conditions sur F , on peut montrer que la borne du Théorème 16 est
d’ordre O(1/n) ce qui est minimax optimal pour ce problème quand la condition de marge est
vérifiée. La description de l’estimateur f̂fr est plus compliquée que celle de f̂HOME,K et le lecteur
est encouragé à lire [MM19] pour la description précise de cet estimateur.

1.5.2 Méthode à noyaux et estimation robuste en dimension infinie.

Soit X un ensemble sur lequel K est une fonction de noyau, on peut représenter une densité de
probabilité P sur X comme une moyenne dans le RKHS HK.

µP =

∫
X
ϕ(x)dP (x), ϕ(x) := K(·, x).

Ce procédé est appelé plongement de la moyenne et en utilisant ce plongement, on introduit la
distance entre distribution suivante appelée “maximum mean discrepancy" (MMD),

MMD(P,Q) = ‖µP − µQ‖HK = sup
f∈BK

〈µP − µQ, f〉HK ,

où BK = {f ∈ HK : ‖f‖HK ≤ 1}. Les méthodes à noyaux sont très performantes pour travailler
avec des données structurées, l’ADN par exemple, parce qu’on peut construire un noyau adapté à
la structure. Le MMD peut ensuite être utilisé par exemple pour construire un test de comparaison
entre deux populations, c’est ce que nous avons fait pour illustrer notre méthode dans [LSML19].

Dans le calcul du MMD, nous devons calculer une moyenne en dimension infinie et nous
voyons ceci comme un problème d’estimation robuste de la moyenne. On suppose que l’on a accès
à X1, . . . , Xn i.i.d de loi P et Y1, . . . , Yn i.i.d de loi Q. On note PB,x = 1

|B|
∑
i∈B δxi la mesure

empirique associée à (xi)i∈B, on note B1, . . . , BK une equi-partition de {1, . . . , n}. On propose
l’estimateur suivant du MMD.

M̂MDK(P,Q) = sup
f∈BK

Med
(
〈f, µPBk ,x − µPBk ,y, 1 ≤ k ≤ K

)
.

Cet estimateur présente des avantages théoriques en terme de robustesse mais aussi des avantages
pratiques en terme de temps de calcul (voir Section 2.6.4). Nous avons les garanties suivantes en
terme de concentration.Soit (ei)i∈I une base orthonormale dénombrable de HK (qui existe car
HK est séparable), on définit ‖A‖1 =

∑
i∈I〈(A ∗A)1/2ei, ei〉HK où A∗ est l’opérateur adjoint de

A et ‖A‖ la norme d’opérateur de A.
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Theorem 8. Suppose que ΣP est un opérateur linéaire sur HK avec ‖ΣP ‖1 <∞. Suppose que
la base de données (xi, yi)i≤n est corrompue par nc outliers dans le cadre de travail I ∪ O décrit
dans la Section 2.1.1 (i.e. Il peut y avoir nc couples outliers (xi1 , yi1), . . . , (xinc , yinc ) sur lesquels
on ne fait aucune hypothèse). Soit δ ∈ (0, 1/2] tel que nc ≤ K(1/2− δ). Alors, pour tout η ∈ (0, 1)

avec K = 72δ−2ln(1/η) tel que K ∈
(

nc
1/2−δ ,

n
2

)
, avec probabilité plus grande que 1− η, on a

∣∣∣M̂MDK(P,Q)−MMD(P,Q)
∣∣∣ ≤ 12

δ
max

(√
(‖ΣP ‖+ ‖ΣQ‖)ln(1/η)

δn
, 2

√
Tr(ΣP ) + Tr(ΣQ)

n

)
.

Le Théorème 17 montre que l’estimateurM̂MDK atteint la vitesse O(1/
√
n) qui est optimale

pour ce problème. Il indique aussi que notre estimateur est robuste aux outliers avec un point
de rupture proche de K/2. La vitesse du Théorème 17 est très similaire à celle de l’inégalité
d’Hanson-Wright, cela peut être vu comme une extension infinie-dimensionnelle de l’inégalité
d’Hanson-Wright.

1.6 La robustesse en pratique, quelques contributions aux
algorithmes robustes et illustrations numériques

1.6.1 Algorithmes robustes pour l’apprentissage supervisé et non-supervisé

Dans cette section, on étudie les deux estimateurs f̂MOM,K et f̂HOME,K et on illustre leurs
performances sur la base de données représentée dans la Figure 2.7. Le second estimateur a une
implémentation simple utilisant une descente de gradient sur le risque défini par l’Équation (2.5.3),
on peut en effet prendre la dérivée de cette expression pour obtenir le gradient de R̂K,β par rapport
à f . Par contre, la médiane des moyennes utilisée pour définir f̂MOM,K n’est pas différentiable, ce
n’est pas véritablement un problème car ce risque empirique robuste est en réalité différentiable
presque partout. Soit BMed ce que l’on va appeler le bloc médian dans le sens que l’on a

1

b

∑
i∈BMed

`(f(Xi), Yi) = PBMed
(`(f(Xi), Yi)) = Med{PBk(`(f(Xi), Yi)), 1 ≤ k ≤ K}

= MOMK(`(f(Xi), Yi), 1 ≤ i ≤ n).

On montre dans l’article [LLM20] que prendre la dérivée du critère MOM revient à prendre la
dérivée seulement sur le bloc médian BMed. On a presque partout (dans un sens qui est rendu
rigoureux dans [LLM20]) que

d

df
MOMK(`(f(Xi), Yi), 1 ≤ i ≤ n) =

∑
i∈BMed

d

df
`(f(Xi), Yi). (1.6.1)

Maintenant que l’on a un gradient, on peut donc utiliser un algorithme de descente de gradient.
Le problème est que la fonction objectif n’est plus convexe puisque l’on fait des blocs et il peut
donc y avoir des minima locaux. Les blocs sont construits arbitrairement et sont supposés fixes en
théorie. En pratique, il est plus efficace de changer les blocs à chaque étape de gradient, autrement
dit on mélange les données à chaque itération. Un des effets de ce mélange à chaque itération
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Figure 1.5: Représentation d’une base de donnée corrompue pour la classification. La base de
données est composée de deux nuages Gaussiens de 300 points chacun et de 30 outliers situés en
haut à droite de la figure.

est l’introduction de bruit avec la même idée que la descente de gradient stochastique où ici la
partie stochastique vient de la permutation aléatoire utilisée pour mélanger les données. Il n’y a
pas de preuve de convergence de l’algorithme mais des résultats théoriques sur les U-Statistics
(dans l’article [MM19] et des observations empiriques semblent montrer que l’algorithme est bien
construit.

Figure 1.6: Tracé de la frontière de décision calculée pour plusieurs classifieurs tous entraînés sur
la base de données de la Figure 2.7.

Par exemple, dans la Figure 2.8 on trace le résultat de l’estimation de plusieurs classifieurs
entraînés sur la base de données de la Figure 2.7, le classifieur MOM a été entraîné en utilisant
une descente de gradient selon l’Équation (2.6.1) et les classifieurs non-robustes viennent de la
librairie scikit-learn. La Figure 2.8 montre que nos méthodes sont robustes alors que les méthodes
usuelles ne le sont pas. On obtient le même genre de résultat en régression. Il est plus compliqué
d’interpréter des méthodes non-linéaires parce qu’il est compliqué de concevoir ce qu’est un outlier
pour une telle méthode et c’est donc difficile à simuler. On peut se rendre compte de ce qu’est un
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outlier pour une méthode spécifique comme SVM ou QDA mais en général c’est plus compliqué:
qu’est-ce qu’un outlier pour un réseau de neurones ?

Le choix de K peut être complexe, l’intuition nous dit de choisir K un peu plus grand que
|O|/2 mais le problème est que |O| est inconnu et même si il l’était (on estime que dans la plupart
des bases de données réelles il y a entre 5% et 10% d’outliers) ce n’est qu’une règle intuitive et la
valeur optimale de K dépend en réalité aussi des inliers. Nous pensons donc que la marche à
suivre est d’utiliser la validation croisée pour choisir K.

Pour étudier les performances de notre méthode, on regarde une tâche de classification de base
de donnée réelle en utilisant f̂HOME,K . La base de données considérée est “Communities and
Crime Unnormalized Data Set" que l’on peut télécharger sur UCI Machine Learning Repository.
La base de données contient 2215 observations tirées d’un recensement et des données des forces
de l’ordre. La tâche que nous nous sommes fixée est de prédire l’activité criminelle (représentée
par le nombre d’incidents) en utilisant les caractéristiques suivantes : la population, le salaire par
personne,le salaire médian par famille, le nombre de maisons vides et la superficie de l’endroit
considéré. Le choix de cette base de données en particulier est motivé par le fait qu’elle contient
très certainement une quantité non négligeable d’outliers dus à la nature des données et à l’absence
de pré-traitement, ce qui nous permettra d’illustrer l’avantage de nos méthodes.

Figure 1.7: Histogrammes des densités du logarithme de la MSE (erreur quadratique moyenne)
pour différentes méthodes (bleu clair correspond à notre approche, orange aux moindres carrés
ordinaires et vert pour une régression de perte Huber).

Nous comparons le regresseur linéaire f̂HOME,K (appelé A2 dans la figure) utilisant la perte
quadratique, les moindres carrés ordinaires (OLS) et un estimateur qui minimise la perte Huber
(HuberRegressor dans scikit-learn, il faut cependant faire attention que HuberRegression utilise la
perte Huber de telle façon à être robuste en la variable réponse y mais il n’est pas choisi robuste
en le vecteur de caractéristiques x). Les paramètres sont choisis en utilisant une version robuste
de la validation croisée utilisant 500 blocs de données. Nous obtenons ainsi une MSE ' e4.2 pour
notre approche, la MSE de OLS est ' e22.1 et la MSE de l’approche utilisant la perte Huber est
' e8.9. La densité de la MSE sur les différents blocs est représentée dans la Figure 2.9 (nous
avons pris le logarithme du MSE pour rendre la figure plus lisible). Nous voyons ainsi qu’il semble
en effet y avoir des outliers dans la base de données comme prévu et que ces outliers ne sont
pas seulement en la variable réponse y mais aussi dans le vecteur de caractéristiques x (ce qui
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explique que notre approche soit plus efficace que HuberRegressor).

Une version simplifiée de ces algorithmes a aussi été implémenté comme module dans la librairie
python scikit-learn-extra que l’on peut trouver à https://scikit-learn-extra.readthedocs.
io/en/latest/modules/robust.html. On peut aussi utiliser ces algorithmes pour la détection
d’outliers. Voir par exemple l’article [LLM20] pour plus d’information.

1.6.2 MOM algorithmes pour l’estimation du MMD et méthodes à
noyaux

On rappelle que notre estimateur robuste du MMD a la formulation suivante :

M̂MDK(P,Q) = sup
f∈BK

Med

{
1

b

∑
i∈Bk

f(xi)−
1

b

∑
i∈Bk

f(yi); 1 ≤ k ≤ K
}
. (1.6.2)

Par le théorème de représentation, la fonction f optimale peut être exprimée par

f(a, b) =

n∑
i=1

aiK(·, xi) +

n∑
i=1

biK(·, yi), (1.6.3)

où a = (ai)1≤i≤n ∈ Rn et b = (bi)1≤i≤n ∈ Rn. On note c = [a; b] ∈ R2n la concaténation de
deux vecteurs, et K la matrice de noyau définie par K = [Kxx,Kxy;Kyx,Kyy] ∈ R2n×2n, Kxx =
[K(xi, xj)]1≤i,j≤n ∈ Rn×n, Kxy = [K(xi, yj)]1≤i,j≤n = K∗yx ∈ Rn×n, Kyy = [K(yi, yj)]1≤i,j≤n ∈
Rn×n.

Équation (2.6.5) peut être réécrite,

M̂MDK(P,Q) = max
c∈R2n:cTKc≤1

Med

{
1

b
[1k; 1k]TKc; 1 ≤ k ≤ K

}
,

où 1k est l’indicatrice du bloc Bk. De façon similaire à la Section 2.6.1 nous utilisons itérativement
une étape d’optimisation sur le bloc médian, la différence ici est que l’on n’utilise pas de descente
de gradient puisque l’on est en réalité confronté à une optimisation linéaire avec contraintes
quadratiques. Il existe donc une solution analytique au problème d’optimisation sur le bloc
médian :

argmax
c∈R2n:cTKc≤1

1

b
[1kMed

; 1kMed
]TKc =

[1kMed
; 1kMed

]

‖LT [1kMed
; 1kMed

]‖2
où L est la matrice de décomposition de Cholesky de K (K = LLT ) et kMed est tel que
BMed = BkMed

. Les observations sont mélangées à chaque itération. Cet algorithme (appelé
MONK BCD pour Median Of meaNs Kernel Block Coordinate Descent) a une complexité O(n3)
ce qui peut être gênant quand la taille de l’échantillon n est grande. Nous proposons donc un
autre algorithme appelé MONK BCD-Fast qui approche MONK BCD dans lequel la somme∑n
i=1 dans Équation (2.6.6) après l’avoir insérée dans Équation (2.6.5) est remplacée par

∑
i∈Bk

(cela correspond à calculer la matrice de noyau seulement comme une matrice par bloc). Nous
comparons nos algorithmes à l’état de l’art qui est une approche U-Statistique qui correspond
au cas où seulement un bloc est considéré. Quand un seul bloc est considéré, une simplification
permet en effet de se réduire à calculer une U-Statistique.
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Table 1.1: Complexité du calcul des estimateurs de MMD. n: taille de l’échantillon, K: nombre
de blocs, T : nombre d’itérations.

U-Stat O
(
n2
)

MMD BCD O
(
n3 + T

[
n2 +K log(K)

])
MMD BCD-Fast O

(
n3

K2 + T
[
n2

K +K log(K)
])

La distance MMD est utilisée par exemple pour les tests de comparaison, l’application
numérique que l’on propose est sur une base de donnée biologique. Nous avons choisi une base de
données d’ADN tiré du UCI repository, la base de données Molecular Biology (Splice-junction
Gene Sequences). La base de données est composée de 3190 échantillons d’une chaîne de 60-
caractères qui décrivent une petite partie de l’ADN. Le problème est de reconnaître, à séquence
d’ADN donnée, les frontières entre exons (les parties de l’ADN conservées après épissage) et
les introns (les parties de l’ADN éliminées par l’épissage). La tâche peut se subdiviser en deux
sous-problèmes, identifier les frontières exon/intron (notées EI) et les frontières intron/exon
(notées IE). Nous avons pris 1532 échantillons en sélectionnant 766 observations des deux classes
EI et IE (La classe des parties d’ADN n’étant ni EI ni IE est plus hétérogène et ont été enlevés
pour cette étude), et nous avons étudié le pouvoir de discrimination entre EI et IE. L’ADN est
représentée par une suite de caractères, le noyau K que l’on a choisi est le "String Subsequence
Kernel" pour calculer le MMD, et nous avons ensuite utilisé cette estimation du MMD pour faire
des tests de comparaison des deux populations en utilisant les trois estimateurs MONK BCD,
MONK BCD-Fast et U-Stat.

Les valeurs agrégées de M̂MD(EI, IE)− q̂1−α, M̂MD(EI,EI)− q̂1−α et M̂MD(IE, IE)−
q̂1−α sont résumées dans Figure 2.13 où q̂1−α est une estimation du (1− α) quantile via B = 150

permutations bootstrap. Dans le cas idéal, M̂MD − q̂1−α est positif (resp. négatif) dans le cas
inter-classe (resp. intra-classe). Comme le montre la Figure 2.13, les trois techniques sont capables
de résoudre la tâche autant pour le cas inter-class (quand l’hypothèse nulle est fausse) que dans
le cas intra-class (l’hypothèse nulle est vraie) et ils convergent vers une bonne performance. Un
autre avantage majeur de notre méthode, en plus d’être robuste, est la complexité. Le temps de
calcul est souvent un point déterminant dans les méthodes à noyaux quand la base de donnée
devient grande et le noyau est long à calculer (ce qui est le cas du noyau considéré ici). Dans
ce contexte, MONK BCD-Fastt. Par exemple, quand on prend tous les échantillons (n=766) et
K = 15, calculer MONK BCD-Fast prend 32s alors que U-Stat est calculé en 1m28s sur le même
ordinateur.
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(a) Inter-class: EI-IE (b) Intra-class: EI-EI (c) Intra-class: IE-IE

Figure 1.8: Estimateurs du MMD intra-classe et inter-classe comme fonction de la taille de
l’échantillon comparé au (1− α)-quantile bootstrap. Nous avons tracé moyenne±std. Remarquez
que l’ordre de grandeur est différent dans le cas intra-classe et dans le cas inter-classe.
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Chapter 2

Introduction in english

Statisticians have observed that real datasets contain anomalous data (also called outliers) and
those can have a serious impact on the results of a statistical analysis. Anomalous data are
data difficult to model or data that we should ignore when doing inference. Hence the need for
robust methods that can deal with these anomalous data. This problem is very old, Newcomb
in 1882 [Gut01] and Laplace before him were already aware of outliers and their effects on
data analysis. Fisher also highlighted the problem of outliers when one wants to do statistical
inference [FR22].

This dissertation contains five original articles: the article [LLM20] which has been published
in the Machine Learning Journal, the article [LSML19] which has been published as proceeding of
2019 ICML conference, the article [MM19] which has been accepted for publication in Information
and Inference: A Journal of the IMA and the two articles [Mat20b, Mat20a] which will soon be
submitted for publication. In these articles, we investigate robust statistics with a particular
accent on robust machine learning and empirical processes. I also present at the end of the
introduction the work I did to implement robust machine learning algorithms in the python
library scikit-learn-extra.

The dissertation is composed of an introduction to the subject and to the contributions of
this thesis. Then, the articles written during the phD are presented one after the other.

In the first part of the introduction, I will present some basic facts about robust statistics
and the formulation of robust statistics in mathematical terms. Then, I present the state of
the art in robust mean estimation, the problem of robust mean estimation is central in this
dissertation and these results were the basis of this PhD. The second part of the introduction
contains our contributions to robust statistics. First are non-asymptotic deviation bounds in
the problem of estimating the mean using results from Chapter 4 and Chapter 3, then we look
at asymptotic results such as consistency in a corrupted setting in the same problem using
results from Chapter 3. Then, I explain our contributions to robust machine learning and in
particular classification, regression and kernel methods using results from Chapter 5, Chapter 6
and Chapter 7. Finally, I present the algorithms and practical work I did to implement robust
Machine Learning algorithms.
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For a more interactive reading, the reader is encouraged to run the notebook prepared by the au-
thor at https://colab.research.google.com/drive/1yyGCgmif1EXBNLBgM0DaZvPLyHuJW8zf?
usp=sharing. In this notebook, we show illustrations of robust mean estimation and robust
Machine Learning algorithms.

2.1 From Huber’s view of robustness to sub-Gaussian esti-
mators

2.1.1 Corrupted and Heavy-tailed distributions

To represent real-life data, statisticians use models or assume simplifying hypotheses. These
hypotheses are often considered as the ideal case, and a major question is how to handle deviations
from this ideal case. Informally, an estimator is said to be robust if a small change in the hypothesis
does not change the estimation by too much. To be more precise, one has to define what deviations
from the hypothesis are considered and what we mean by “does not change by too much”.

For example, suppose we have access to n data X1, . . . , Xn. Suppose that this sample is
corrupted: X1, . . . , Xn−1 are i.i.d from a Gaussian distribution N (µ, σ2) and Xn is equal to a
constant M � µ (Xn is called an outlier). Then, the empirical mean becomes 1

n

∑n−1
i=1 Xi + M

n .
The empirical mean can be arbitrarily far from the mean of the inliers µ of the non-outliers points
because M can be very large compared to

∑n−1
i=1 Xi. The empirical mean is thus non-robust and

using robust statistics, we aim at finding robust estimators that do not have this problem, see
Figure 2.1.

Figure 2.1: Histogram of a dataset with outliers. In this figure θ̂n is some robust estimator of the
mean.

In practice, situations where corruption arises are not rare. For instance, one may think of
quality control, where one owns several machines. The majority of the machines work fine with
potential errors that follow a centered Gaussian law with small variance, yet one of the machine is
defective and has an error that is some order of magnitudes more variable (i.e. heavy-tailed) than
the normal machines, this means that outliers will come out of the defective machine. Another
possibility is for the defective machine to have an error that is Gaussian but not centered in 0
(systematic error). In this case, the objects produced by this machine are not functional and
cannot be used. We may want to detect which machine is defective to repair it.
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Let us consider another example. In clinical checkups, respiratory exercises would give results
that would be very different if the patient is a smoker or if he is not. Whether the patient smokes
or not may not be accessible to the clinician and the statistician: typically teenagers may not
say that they are smoking even to their physician. Human errors or captor errors are another
source of corruption and outliers arise also naturally in a lot of datasets, for instance in biological
datasets or demographic datasets (see Chapter 7 and Chapter 6). Depending on the corruption
and the task at hand, robust methods may be needed.

In this dissertation, we consider three different settings. The first one setting is heavy-tailed
distributions, the second one is a dataset corrupted by outliers and the third is what we call a
corruption neighborhood.
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Figure 2.2: Plot of the c.d.f for different corruption settings. The plot on top corresponds to the
un-corrupted case (standard Gaussian), the bottom-left plot is a case of Huber contamination
model, the bottom-middle plot is a case of Heavy-tailed distribution and the bottom-right plot is
a case of corrupted neighborhood where a corrupted c.d.f has to be comprised in the shaded area.

Heavy-tailed distribution. Classical non-asymptotic results in statistics often hold for i.i.d
data X1, . . . , Xn following a Gaussian distribution or a distribution with light tail. Typically,
to derive concentration results for Machine Learning applications, we will need a sub-Gaussian
behavior of the random variables that we study but in reality, there are a lot of datasets that
can’t be modeled by light-tailed densities. Hence, a deviation from the assumptions that we want
to consider is the case of heavy-tailed distributions where one does not suppose that X1, . . . , Xn

follow a Gaussian or sub-Gaussian distribution but only that X has a finite number of finite
moments. Typically we only suppose two finite moments. This is the setting in [Cat12, DLLO16].

Dataset corrupted by outliers, I ∪ O framework. Let X1, . . . , Xn be random variables.
Let I,O be a partition of {1, . . . , n} into two sets, the set I of inliers and the set O of outliers
(with |O| small compared to |I|). We make some assumptions on (Xi)i∈I , typically finite moments
assumptions whereas we don’t assume anything on (Xi)i∈O. The sets I and O are unknown
to the statistician. This is a generalization of the Heavy-tailed distribution setting and the
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data are not supposed i.i.d. This is sometimes called adversarial corruption, this is the setting
in [LL20, LSML19].

Dataset corrupted by outliers, Huber contamination framework. The second cor-
ruption scenario is the so-called Huber contamination where X1, . . . , Xn are i.i.d from a mixture
of distribution (1− ε)P + εH with ε small. We make assumptions on P but not on H and H
plays the role of outlier distribution. This setting is very close to the I ∪ O framework presented
above except that in Huber contamination neighborhood the outliers can’t depend on the inliers
and the data are i.i.d, this could be said to be a non-adversarial corruption setting. This setting
comes from [Hub64, HR09, ZJS19] and has been used for instance in [CGR+18].

Corruption neighborhood. As said previously we can define deviations from the usual
hypothesis saying that X1, . . . , Xn are i.i.d from a distribution that is not far from some model
distribution P , an example is Huber’s contamination neighborhood. More generally, let d be a
distance between probability distributions (i.e. Kolmogorov distance, Total variation distance,
Wasserstein distance. . . ) and suppose that X1, . . . , Xn come from a distribution Q such that
d(P,Q) ≤ ε. This is a generalization of Huber contamination framework as it can be seen that
if Q = (1− ε)P + εH is a corrupted version of P , then the total variation distance between P
and Q is smaller than ε. However the framework is more general than the Huber contamination
neighborhood and difference distances between distribution will greatly change the type of outliers
or deviation from P . This setting has been used in [HR09, Ham71].

In the three cases of deviation from usual assumptions, the goal is to use methods that give
results that are not very different from what we would observe in some ideal cases (i.i.d Gaussian
setting, uncorrupted setting,...). This is the informal definition of robustness that we consider here
and each time we state a result we will first explain which deviation from the usual hypothesis we
are considering.

A reasonable question is: why can’t we use an outlier removal scheme and deal with the “cleaned
dataset” as though there were no outliers? This is the old problem of robustness vs diagnostics,
see [Hub91] for further information. The first and maybe most compelling reason is that robust
algorithms work better (see Figure 2 in the introduction of [HRRS86]). One of the reasons for this
is that when we perform outlier removal, we don’t recover the inlier distribution but instead we
recover a trimmed version of it. For example, in the case of a mixture H(x) = (1− ε)Φ(x) + εδM
where δM is a Dirac distribution in M , we will not recover a standard Gaussian but instead we
will have a trimmed Gaussian. Another reason to construct robust statistics is that we need
robust algorithms in order to do outlier detection algorithms: if we want to detect outliers, we
can’t be influenced by these outliers. Yet another way of dealing with outliers is transformation.
We often use the logarithm to transform a skewed distribution or a Box-Cox transformation to
handle non-Gaussian random variables, but it has been shown that this does not necessarily solve
outlier problems (see for example in the context of testing [Ras89, DW83]). Another problem
with transformation is that there is sometimes no way to go back to the un-transformed variable
and this is a problem if one wants to have an interpretable statistical procedure.

We may identify two streams of research in theoretical robust statistics: an asymptotic and a
non-asymptotic one. At the beginning of robust statistics, there has been a large amount of work
on the asymptotic properties of robust estimators and typical theorems were that an estimator
is asymptotically normal with an optimal asymptotic variance [Hub64]. On the other hand,
there were very little non-asymptotic results at the time. Among the non-asymptotic results,
one can cite the large Princeton Monte-Carlo study [AH15] that compared 68 robust estimators
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using Monte-Carlo techniques or techniques such as small-sample asymptotics [FRR90] or the
breakdown point [DH83, Hub84] that we recall below in Section 2.1.3. In this thesis, we give
both asymptotic and non-asymptotic results with an emphasis on non-asymptotic results such as
convergence notions that hold with high probability.

2.1.2 Robustness and concentration inequalities with heavy-tailed dis-
tributions

In recent years, robustness theory has known a rebirth with the motivation of robust machine
learning algorithms. In machine learning applications such as regression and classification using
linear models, one can easily see on examples (Figure 2.3) that the usual techniques such as
least-squares estimators, SVM or logistic regression are not robust to outliers.

Figure 2.3: Plot of the separation line of a classifier (perceptron on the left and logistic regression
on the right) trained on the dataset represented by the scatter plot present on the same figure.
There is a group of 30 outliers among the 300 dataset points, the outliers are in the top right
corner and they mislead the classifiers.

Formally, the problem is often stated as follows. Let X and Y be two sets, typically X is a
subset of Rd and Y a subset of R. Let F be a set of functions f : X → Y. Our task is to find
f such that f(X) is a good approximation of Y , and we quantify this using the risk R(f) of a
function f which is defined by

R(f) = E[`(f(X), Y )],

where ` : Y×Y → R is a so-called loss function. For instance, in regression `(f(x), y) = (f(x)−y)2

and the risk R(f) is then the mean squared error. Then, when we say that we want f to be such
that f(X) is a good approximation of Y , we mean that f must minimize R(f) over f ∈ F . The
class F can be a family of linear functions in the case of linear regression for example, or the set
of all possible neural networks in deep learning. To simplify, we will suppose that there exists f∗
in F that minimizes the risk among all the functions in F .

f∗ ∈ argmin
f∈F

R(f). (2.1.1)

Let f̂ be an estimator of f∗ based on (X1, Y1), . . . , (Xn, Yn), i.i.d copies of (X,Y ). Results to
assess the efficiency of f̂ come mainly under the form of an oracle inequality which which is an
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upper bound on the excess risk R(f̂) − R(f∗). Remark that the expectation in the definition
of the risk being with respect to the couple (X,Y ), R(f̂)−R(f∗) is in fact a random variable,
its randomness coming from the data (X1, Y1), . . . , (Xn, Yn), hence bounding R(f̂)−R(f∗) from
above means finding a ∆n,δ(F) such that for all δ ∈ (0, 1),

P
(
R(f̂)−R(f∗) ≤ ∆n,δ

)
≥ 1− δ.

To obtain such a result, the principal building blocks are concentration inequalities on the
empirical mean used to bound the probability that an estimator deviates from the parameter it
wants to estimate by more than some value t > 0. Typically, to bound the excess risk, we will
first control the empirical risk defined by

R̂(f) =
1

n

n∑
i=1

`(f(Xi), Yi),

because the construction of f̂ often gives us information on R̂(f̂). This is where we may have
an issue because concentration inequalities on sums of i.i.d random variables generally rely on
strong concentration properties of the data, typically we need `(f(X), Y ) to be sub-Gaussian or
sub-Exponential (see [BLM13]) and in general concentration inequalities are not valid in any of
the settings presented in Section 2.1.1. Our goal is to find estimators with good concentration
properties even though the data are heavy-tailed. Important articles developing this line of
thought are [Cat12] and [DLLO16].

One of the classical problems is to find a robust estimate of the mean of some random variable
X (this can be set in a risk minimization framework by taking ` to be the squared loss and F
the set of constant functions). We want the estimator to exhibit the same concentration as the
empirical mean would on a Gaussian sample even when the data are not Gaussian. Informally, if
µ̂ is a robust estimator of the mean based on a sample X1, . . . , Xn of i.i.d data with finite second
moment, let W1, . . . ,Wn be i.i.d N (E[X], V ar(X)), we ask that there exists C > 0 such that for
all δ > 0

P(|µ̂− E[X]| > δ) ≤ CP
(∣∣∣∣∣ 1n

n∑
i=1

Wi − E[X]

∣∣∣∣∣ > δ

)
. (2.1.2)

In this dissertation, when we want to prove the efficiency of an estimator we will always try
to prove a deviation inequality similar to Equation (2.1.2) that shows that our estimator is as
good on a heavy-tailed dataset as the standard method would be if data were light-tailed and
uncorrupted.

2.1.3 Infinitesimal aspect of robustness and breakdown point

There is no universally accepted definition of robustness, but one of the early and most widely
accepted attempts to do so was by Hampel in his seminal paper of 1971 [Ham71]. Let Tn be a
sequence of estimators using a sample X1, . . . , Xn. Hampel’s definition of robustness says that
Tn is robust at a c.d.f F if and only if for all ε > 0, there exists δ > 0 such that for any c.d.f G
and any n ∈ N we have

d(F,G) < δ ⇒ d(LF (Tn),LG(Tn)) < ε,
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where LF (Tn) (resp LG(Tn)) is the probability distribution of Tn when X1, . . . , Xn are i.i.d
distributed according to the c.d.f F (resp G). In the case where Tn is in fact a function of the
empirical c.d.f, Tn = T (F̂n), this definition can be seen as an equi-continuity of T , this is one
possible mathematical translation of our robustness paradigm “small changes in the hypothesis
cause only small changes in the result of the estimation”. The choice of the distance d is
very important in defining the corruption to which we want to be robust to, this is linked to
the corruption neighborhood defined in Section 2.1.1. If d(F,G) = supx |F (x) − G(x)| is the
Kolmogorov distance, we can show that the empirical median is robust while the empirical mean
is not robust. The choice of the distance is very important to define what is a corruption and
what is a robust estimator.

This definition of robustness is only qualitative and in order to quantify robustness, Hampel
used the tool of the influence function. The influence function is defined as the Gateaux derivative
of T in the direction of the Dirac distribution (also called the Von-Mises derivative, see [Fer83]).
Let Dx(t) = 1{t ≥ x} be the c.d.f of a Dirac distribution in some x ∈ R, the influence function is
defined for all x ∈ R by,

IF (x, T, F ) = lim
ε→0

T ((1− ε)F + εDx)− T (F )

ε
. (2.1.3)

Hampel [Ham71] proposes to quantify the robustness of T in F using supx |IF (x, T, F )|. One
reason for this choice is a functional Taylor expansion that says (provided that T is smooth
enough) for all F,G c.d.f,

T (F ) = T (G) +

∫
IF (x, T, F )d(G− F )(x) +R(F,G)

where the term R(F,G) can be shown to be negligible compared to the other terms, under some
assumptions on T , F and G. Then, if supx |IF (x, T, F )| <∞, we can show that |T (F )− T (G)|
is small as long as d(F,G) is small (for d the Kolmogorov distance). This motivates Hampel’s
definition of B-robustness [HRRS86] saying that an estimator is B-robust if its influence function
is bounded. More generally, as its name indicates the influence function measures the influence
that a data point placed in x has on the value of T and we want this influence to be bounded.

All these definitions of robustness are infinitesimal and this does not give us information on
how many outliers the estimator can handle. A maybe more practical measure of robustness is the
breakdown point introduced in [DH83]. For an estimator T (X1, . . . , Xn) invariant by permutation
of X1, . . . , Xn, we define the breakdown point by

ε∗n = min

{
m

n
,m ∈ {1, . . . , n} : sup

X′1,...,X
′
m

|T (X1, . . . , Xn)− T (X ′1, . . . , X
′
m, Xm+1, . . . , Xn}| =∞

}
.

For example, one can compute that for the empirical mean, the breakdown point is ε∗n = 1/n
while for the empirical median the breakdown point is ε∗n = bn2 c 1

n : we need only one outlier to
make the empirical mean arbitrarily large whereas for the empirical median we need to corrupt
more than half of the data if we want to affect the result arbitrarily . The breakdown point is the
proportion of outliers that an estimator can handle before “breaking down" in the sense of taking
arbitrary large values. This constitutes another measure of robustness of an estimator.

We will see in what follows that we can use other measures of robustness for an estimator but
it will often be only variations of the influence function or the breakdown point.
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2.2 State of the art in robust estimation of the mean

2.2.1 M-estimators and influence function

In this section, we are interested in the problem of estimating a location parameter meant to
exhibit a central tendency of the data. Let X ∼ P for some P probability on Rd, let ρ be an
increasing function from R+ to R+, let T (P ) be defined by the following optimization problem

T (P ) ∈ argmin
θ∈Rd

E[ρ(‖X − θ‖)], (2.2.1)

where ‖ · ‖ is the euclidean norm. Alternatively, if ρ is smooth enough (which will be the case
here), we define T (P ) by

E
[
X − T (P )

‖X − T (P )‖ψ(‖X − T (P )‖)
]

= 0, (2.2.2)

where ψ = ρ′ is called the score function. For ψ(x) = x, we recover the mean T (P ) = E[X] and
for ψ(x) = 1, we recover the median. If ψ is bounded, T (P ) can be seen as smoothed geometric
median estimators, see [Min15, CG17].

The empirical estimator obtained by plugging the empirical density P̂n in equation (2.2.2) is
called M-estimator associated with ψ, it is denoted T (P̂n) and computed from an i.i.d sample
X1, . . . , Xn using the following equation:

n∑
i=1

Xi − T (P̂n)

‖Xi − T (P̂n)‖
ψ(‖Xi − T (P̂n)‖) = 0. (2.2.3)

For ψ(x) = x we obtain T (P̂n) = 1
n

∑n
i=1Xi and for ψ(x) = 1 T (P̂n) is the geometrical median. A

careful choice of the function ψ yields estimators that are more robust to outliers and heavy-tailed
data than the empirical mean and more efficient than the median. M-estimators are especially
nice to work with because their influence function (introduced in equation (2.1.3)) takes a very
simple form:

IF(x, T, P ) = M−1
P,T

x− T (P )

‖x− T (P )‖ψ(‖x− T (P )‖), (2.2.4)

where MP,T is a nonsingular matrix which does not depend on x (an explicit formula for MP,T

exists and may be found for instance in [HRRS86, Eq 4.2.9, Section 4.2C.] however we will not
use it for our study). In particular, we will study three different functions ψ (see in Figure 2.4):

Huber’s score and estimator. Let β > 0. For all x ≥ 0, let

ψH(x) = x1{x ≤ β}+ β 1{x > β}. (2.2.5)

In dimension 1, the M-estimator constructed from this score function is called the Huber’s
estimator [Hub64]. Call TH the associated functional.

Catoni’s score and estimator. Let β > 0. For all x ≥ 0, let

ψC(x) = β log

(
1 +

x

β
+

1

2

(
x

β

)2
)
. (2.2.6)

44



2.2. STATE OF THE ART IN ROBUST ESTIMATION OF THE MEAN

0 2 4 6 8 10

0

1

2

3

4

5 ψH

ψC

ψP

Figure 2.4: Plot of ψH and ψC for β = 1. ψP is plotted for β = 10 and p = 5.

The associated M-estimator in dimension 1 is one of the estimators considered by Catoni
in [Cat12]. Call TC the associated functional.

Polynomial score and estimator. Let p ∈ N∗, β > 0. For all x ≥ 0, let

ψP (x) =
x

1 +
(
x
β

)1−1/p
. (2.2.7)

Call TP the associated functional.

The breakdown point for Huber’s estimator tends to 1/2 in dimension 1 whereas the breakdown
point for both Catoni and Polynomial estimators go to 0. We will see that Catoni’s and Polynomial
estimators will be robust in a weaker sense than Hampel’s definition of robustness. The behavior
of ψ(x) when x goes to infinity dictates the robustness of the estimator T (P̂n) (see Theorem 10
and Corollary 2) while on the other hand the behavior of ψ near 0 will control the distance of
the location parameter T (P ) to the mean ‖T (P )− E[X]‖ when P is a skewed distribution (see
Lemma 2).

2.2.2 Median of means estimators

Let X1, . . . , Xn be i.i.d from a distribution with finite second moment, let K ∈ N and suppose
that K divides n. Let B1, . . . , BK be a partition of {1, . . . , n} and b ∈ N∗ be such that

∀k ∈ {1, . . . ,K}, |Bk| = b, ∀k 6= j, Bk ∩Bj = ∅ and ∪Kk=1 Bk = {1, . . . , n}

For all B ⊂ {1, . . . , n}, define the empirical mean over block B by

PB(Xn
1 ) =

1

b

∑
i∈B

Xi,

45



CHAPTER 2. INTRODUCTION IN ENGLISH

the median of mean estimator, which dates back to [NY83, AMS99, JGV86], is defined as

MOMK(Xn
1 ) = Med(PBk(Xn

1 ), 1 ≤ k ≤ K). (2.2.8)

The median of means estimator interpolates between the empirical mean and the empirical

X1

...

Xb

...

Xn

...

Xn−b

B1

BK

K
N

∑
i∈B1

Xi

...

K
N

∑
i∈BK Xi

MOMK(Xn
1 )

Block’s
Mean

Median

Figure 2.5: Construction of the median of means.

median with parameter K that indicates how robust the estimation is, since less than K/2
outliers may corrupt at most K/2 blocks, leaving the median in Equation (2.2.8) equal to an
empirical mean of a block with uncorrupted data. Remark that if K does not divide n, in practice
we can use blocks of different sizes but it is easier for the theory to consider blocks with the
same size. The breakdown point of the median of means is 1

ndK/2e. For more information on
MOM’s deviation bounds, one can see [DLLO16, MS17, LCB19, LSC20, Min18], see [Min20] for
asymptotic results on median of means estimators. The median of means has also been adapted
to other setting, see for instance [BAM20] for a differentially private median of means estimator
or Chapters 5,6,7 for its use in Machine Learning.

The median of means principle is that we begin by using classical methods (such as empirical
mean, or ordinary least squares when in regression) on blocks of data, and then we aggregate
the results of the blocks using a robust estimator. This principle can be used to solve numerous
problems in a robust fashion. The median of means can be generalized, for instance we can use a
Huber estimator or any M-estimator instead of the median, as it is done in Chapter 6 this makes
the resulting estimator more stable to the choice of the number of blocks K and this is often
more efficient than median of means. We can use median of means principle for kernel method
estimators as in Chapter 7 to obtain robust kernel method estimators, and finally the median of
means principle can also be used in learning algorithms as in Chapters 5 and 6 to obtain robust
machine learning algorithms.
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2.3 Contributions to the study of deviations of robust esti-
mators

2.3.1 Concentration of robust estimators of the mean in dimension 1

In dimension 1, for a Gaussian sample, it is well known [BLM13] that the empirical mean has the
following deviations. Let X1, . . . , Xn be i.i.d with law N (µ, σ2), then for all t > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi − µ
∣∣∣∣∣ > σ

√
t

2n

)
≤ e−t. (2.3.1)

In this section we show that the median of means and M-estimators achieve similar deviation
bounds even when X1, . . . , Xn are not drawn from Gaussian distribution.

To construct concentration inequality in a robust context, we will always show that the
concentration of the estimator can be approximated by the concentration of some empirical mean
of transformed variables which are easier to control. In dimension 1, we have the following known
result for Median of Means and our contribution for M-estimators.

Median of Means. By interpreting what it means for a median to be larger than some
constant, we get

P(|MOMK(Xn
1 )− E[X]| > ε) ≤ P

(
K∑
k=1

1{|PBk(Xn
1 )− E[X]| > ε} ≥ K

2

)
.

We changed the problem into an easier problem where we can use usual i.i.d concentration
inequalities. For example via Hoeffding’s inequality, we obtain the following theorem.

Theorem 9 (Deviation Median of Means). Let X1, . . . , Xn, X be i.i.d real-valued random variables,
with finite variance σ2. Then, for all K ∈ {1, . . . , n},

P

(
|MOMK(Xn

1 )− E[X]| > 2σ

√
K

n

)
≤ e−K/8 (2.3.2)

This deviation bound can be compared to the Gaussian case from equation (2.3.1) but there
are notable differences. The estimator of the mean depends on K the number of blocks, and this
number of blocks also intervene in the deviation bound: we don’t use the same estimator for all
the confidence levels. Another difference with equation (2.3.1) is that we don’t have a deviation
for all level t > 0, i.e. the right-hand-side of equation (2.3.2) cannot be arbitrarily small we can
only go until probabilities of order e−n. It is in fact unavoidable, it has been shown in [DLLO16]
that we can’t have a sub-Gaussian concentration around the mean for all confidence levels at the
same time.

Then, the median of means is suitable to estimate the mean even when the data are heavy-
tailed (finite second moment). We can also show deviations very similar in a I ∪ O setting (see
[Ler19]).

M-estimator. In the case of M-estimator, in Chapter 3 we show the following theorem that
controls the deviation of a M-estimator.
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Theorem 10 ([Mat20b]). Let X1, . . . , Xn, X be i.i.d real-valued random variables with law P ,
let ψ be one of the three score functions defined in Section 2.2.1 and suppose that T (P ) and T (P̂n)
exist and are unique. Define ψodd(x) = sign(x)ψ(|x|), then the following holds.

• For all λ > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

ψodd(Xi − T (P ))

∣∣∣∣∣ > 3λ

)
≤ P

(∣∣∣T (P̂n)− T (P )
∣∣∣ > λ

)
.

• If moreover V = E[ψ(|X − T (P )|)2] ≤ ψ(β/2)2/2 <∞, then for all λ ∈ (0, β/2),

P
(∣∣∣T (P̂n)− T (P )

∣∣∣ > λ
)
≤ P

(∣∣∣∣∣ 1n
n∑
i=1

ψodd(Xi − T (P ))

∣∣∣∣∣ > λγ

4

)
+ e−nγ

2/8. (2.3.3)

where γ = 1 if ψ = ψh, γ = 4/5 if ψ = ψC and γ = 1/4 if ψ = ψP .

Equation (2.3.3) shows that the deviations of T (P̂n) are controlled through the deviations of
ψodd(X − T (P )) and that the variance parameter is V = E[ψ(|X − T (P )|)2]. Having that ψ is
concave on R+ and ψ(0) = 0, we obtain that ψodd(X − T (P )) has a lighter tail than X and for
instance if ψ is bounded we have that ψodd(X − T (P )) is sub-Gaussian. This makes it very easy
for us to control the deviations of T (P̂n) because a sum of i.i.d light-tailed random variables can
be handled through classical concentration inequalities, we give an example in Theorem 11 for
Huber’s estimator.

We also show the following lemma in Chapter 4 that controls the distance of T (P ) to the
mean (the Lemma in Chapter 4 holds for more general score functions ψ than just the three
presented here).

Lemma 2. Suppose that ψ is Ck with bounded kth derivative, ψ′(0) = 1 and for 2 ≤ j ≤ k − 1,
ψ(j)(0) = 0. Let X be a random variable such that E[‖X‖k] <∞, then,

‖E[X]− T (P )‖ ≤ 2‖ψ(k)‖∞
γk!βk−1

E
[
‖X − T (P )‖k

]
(2.3.4)

where γ = 1 if ψ = ψh, γ = 4/5 if ψ = ψC and γ = 1/4 if ψ = ψP .

Moreover, we can also show that for Huber score function, ‖TH(P ) − E[X]‖ is of order
O(1/βq−1) where q is the number of finite moments of P . We can show that this bound is
tight in its dependency on β as soon as the distribution is asymmetric (in the symmetric case,
‖TH(P )− E[X]‖ = 0 and there is no need for such a bound).

This separation of the effect of the deviation and the effect of the distance ‖T (P )− E[X]‖
is similar to a bias-variance trade-off and it allows some in-depth analysis of M-estimators (see
Chapter 4), to our knowledge this separation in variance term and bias term was not known
before this result.

For example in the case of Huber’s estimator (whose score function is defined for x ≥ 0 by
ψH(x) = x ∧ β) we are again reduced to controlling the concentration of a sum of i.i.d bounded
random variable. The following theorem for Huber’s estimator is proved in Chapter 4 and is a
consequence of Theorem 10 and Lemma 2.
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Theorem 11. Let X be a real-valued random variable with σ2 = E[(X − E[X])2] <∞. For all
t ∈ (0, n/16), with probability greater than 1− 2e−t − e−n/8,∣∣∣TH(P̂n)− E[X]

∣∣∣ ≤ 8σ

√
2t

n
. (2.3.5)

Equation (2.3.5) shows that we recover the rates of Equation (2.3.1) but in a corrupted setting
with limitations that are similar to what we obtained with MOM on the level: the probability
with which Equation (2.3.5) holds with probability that can’t be larger than the order 1− e−n.

A maybe surprising corollary of Theorem 10 is that when the distribution is symmetric, we
don’t need to use Lemma 2 and a direct consequence of Theorem 10 when ψ = ψH is bounded is
that the estimator TH(P̂n) has a rate of convergence to the expectation of order O(1/

√
n) . This

is surprising because we know (from [DLLO16]) that the rate of convergence of an estimator of
the mean towards E[X] cannot be faster than Ω(1/nδ/(1+δ)) in general when the distribution has
a finite moment 1 + δ for some δ ∈ [0, 1]. It shows that when we restrict ourselves to symmetric
distribution, we can achieve a faster rate of convergence than in the general case.

In these theorems, we didn’t specify the parameters β for M-estimators or K for Median
of Means. One way of choosing the parameter is via cross-validation which we briefly describe
here. In a learning framework, our task is to minimize a risk as in equation (2.1.1) and we have
available an estimator of the risk that we can compute. When doing cross-validation, we try to
estimate the generalization risk by training our algorithm on one part of the data, and computing
the estimated risk on the second part of the data. This gives us an estimate of the generalization
risk of our model and we want to find the hyper-parameters (in our case, β or K) that minimizes
the estimated generalization risk. This technique is used in Chapter 5, Chapter 6 and Chapter 7.

If cross-validation is not available (if we are not in a learning framework), we can use Lepski’s
method as it is done for example in [Loh18] to estimate a parameter of scale in Huber loss regression
or in [DLLO16] with median of means estimators, this method allows us to choose parameters but
at the cost of a rather high computational cost which makes this method impractical in numerous
applications. A description of Lepski’s method and illustration in the case of M-estimator is
available in Chapter 4.

We presented in this section several estimators and some of their theoretical guarantees. In
the next subsections, we compare these estimators and give some indications on which estimator
to use in practice.

2.3.2 Multivariate robust mean estimation

In this section, we study the estimation of the mean in dimension d > 1. First, let us see
what the concentration of the empirical mean is in Rd. The following theorem, consequence of
Hanson-Wright inequality, holds.

Theorem 12 ([HW71]). Let X ∼ N (0,Σ) and X1, . . . , Xn i.i.d copies of X, with Σ a positive
definite matrix. Then, for any t > 0,

P

∥∥∥∥∥ 1

n

n∑
i=1

Xi

∥∥∥∥∥
2

>
2Tr(Σ)

n
+

9t‖Σ‖op
n

 ≤ e−t,
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where ‖ · ‖op is the operator norm with respect to the euclidean norm ‖ · ‖.

Theorem 12 will be our objective when estimating the mean: we aim to obtain the same
convergence rates when the data are not Gaussian. Remark that Theorem 12 tells us that the
deviations are of order O(1/

√
n) but we also have to be careful about the numerator because

‖Σ‖op can be a lot smaller than Tr(Σ) (a typical case is for Σ = Id for which ‖Σ‖op = 1 and
Tr(Σ) = d).

In order to be able to use a robust estimator of the mean in Rd, we have to be careful that
the dimension does not have an unwanted effect on the estimation error. In particular, in robust
estimation the error due to corruption should not increase with the dimension. In this context,
there have been numerous propositions of robust estimators in high dimension. First, there are
estimators that have strong theoretical guarantees but that are intractable, for example one
can see estimators based the aggregation of one-dimensional estimators, see [Ler19, Theorem
44] and reference therein or estimators based on depth [DG92, CGR+18], for example Tukey’s
median. On the other hand, there are tractable algorithms but whose theoretical guarantees are
lacking, for example the coordinate-wise median or the geometrical median [Min15]. Recently
there have been several propositions of algorithms that are said to be at the same time tractable
and minimax, see [DKP20, DL19, Hop20] but in practice most of these algorithms take too long
to run.

Let us give an example of theoretical results. In the case of Tukey’s median, [CGR+18] shows
that in a corrupted framework where X1, . . . , Xn are i.i.d with law (1 − ε)P + εH. If P is a
Gaussian and ε ≤ 1/

√
n, we can estimate the mean efficiently (with minimax rate, i.e. same

rates as Hanson-Wright’s inequality). On the other hand, if P has a finite second moment and
no finite higher moments, we have to ask for ε ≤ 1/n to recover minimax rates. This could be
interpreted as a sort of breakdown point for Machine learning: which ε are sufficiently small so
that the corruption does not change the rate of convergence (see [LL20]).

In Chapter 4 we show that informally if X1, . . . , Xn are i.i.d from a mixture distribution
(1− ε)P + εQ with P having q finite moments, then, under some assumptions on ψ and n there
exists an absolute constant C > 0 such that, for all 0 < λ . n, with probability larger than
1− 5 exp(−λ/8),∥∥∥E[X]− TH(P̂n)

∥∥∥ .

√
Tr(Σ) +

√
‖Σ‖opλ√

n

∨
E[‖X − E[X]‖q]1/qε1−1/qg

(
λ,
ε1/2−1/q

M
,

1

M
q
2n

q−2
4

)
.

(2.3.6)

Where . is ≤ up to some constant, M =

√
Tr(Σ)

E[‖X−E[X]‖q ]1/q , and g : R3 → R+ is such that
g(λ, x, y) = 1 + o(λ) + o(x) + o(y) for (λ, x, y) that tend to 0.

The dependency in the number of finite moments links the two common settings: when P
has two finite moments, the bound will be in

√
ε as in [DL19, DKP20] in which case we need

ε ≤ 1/n to recover minimax rates similar to Hanson-Wright inequality, while if P is Gaussian
the dependency in ε is linear which we already seen in the fact that we must have ε ≤ 1/

√
n in

order to preserve minimax rates of convergence. Equation (2.3.6) interpolates between these two
extremes.

A surprising consequence of the fact that we separate the effects of the bias and of the variance
is that, to achieve rates of order ε (see Corollary 10 in Chapter 4), we don’t need the inliers to be

50



2.3. CONTRIBUTIONS TO THE STUDY OF DEVIATIONS OF ROBUST ESTIMATORS

Gaussian, we only need them to be symmetric, and this is true even when the second moment of
P is not finite.

We don’t achieve minimax rates with this estimator but, in my opinions, this is only because
we use the same β for all coordinates. If instead of multiplying by 1/β, we multiply by a d× d
matrix B, then I believe that the estimator can be minimax and wI made some simulations that
support this claim in Section 4.

2.3.3 Is it useful to make blocks? — from Huber estimator to HOME
estimator

A generalization of Median of Means estimator is to replace the empirical median by a Huber
estimator giving birth to HOME (Huber Of Means Estimator) denoted by HOMEK,β(Xn

1 ) when
K blocks are used and β is the parameter of Huber’s score function. Then, we have to choose how
many blocks to use and it is not clear that we really need to use blocks because, as we saw before,
Huber estimator is already robust and efficient and the natural question is: when is it useful
to make blocks? We made several experiments on synthetic datasets and observed that skewed
distribution may be problematic for Huber’s estimator and the theory validates this empirical
observation at least in the case of stable distributions.

In the following results we explicitly put β in the subscripts of the quantities considered as it
may change from one line to the other.

Denote VH,β = E[ψH,β(|X − T (P )|)2]. Suppose n,K, b ∈ N with n = Kb, there exists an
asymmetric distribution P with mean 0 such that for some β1 > 0 there exists β2 > 0 such that
for X1, . . . , Xn i.i.d with law P , we have the following results.

Huber’s estimator : suppose 8VH,β2
≤ β2

2 . For all t > 0 such that 4
√

2VH,β2
t/n+4β2t/n ≤

β2/2, with probability greater than 1− 2e−t − e−n/8,∣∣∣TH,β2
(P̂n)− E[X]

∣∣∣ ≤ 4

√
2VH,β2t

n
+ 4

β2t

n
+ |TH,β2

(P )|. (2.3.7)

HOME : suppose 8VH,β2
≤ β2

2b
−(α−1)/α. For all t > 0 such that 4

√
2VH,β2

tb
α−1
α /K +

4β2t/K ≤ β2/2, with probability greater than 1− 2e−t − e−K/8,

|HOMEK,β1(Xn
1 )− E[X]| ≤ 4

√
2VH,β2

t

Kb
α−1
α

+ 4
β2t

Kb
α−1
α

+
1

b
α−1
α

|TH,β2(P )|. (2.3.8)

Then, in Equation (2.3.8), we see that increasing b (hence decreasing K) will decrease the
value of the bias term |TH,β2(P )| while increasing the value of the other terms of the right hand
side of Equation (2.3.8). This verifies that if the bias |TH,β2(P )| of Huber’s estimator is large and
n is large, then it can be interesting to use HOME instead of Huber’s estimator.

Remark that replacing the median in MOM by Huber’s estimator slows down the computation
of the estimator and for practical purposes, it can be interesting to use MOM even in cases where
Huber’s estimator would have been better for the task from a theoretical point of view.
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2.4 Contributions to asymptotic results in robust estima-
tion — A weaker notion of robustness for a more effi-
cient estimation

2.4.1 Continuity of asymptotic M-estimators

Beginning with Hampel’s work [Ham71], an alternative definition of robustness different but close
to the one in Section 2.1.3 is the continuity of the functional T : T is continuous at a probability
distribution P if we have for all probability distribution Q,

∀ε > 0,∃δ > 0, s.t. d(P,Q) ≤ δ ⇒ |T (P )− T (Q)| ≤ ε.
This is an important robust property for T as it says that a small change in the probability P
should only cause a small change in the value of T (P ). For instance it can be shown in dimension
d = 1 that if the score function ψ is continuous and bounded (bounded influence function), then T
is continuous for Kolmogorov distance, which means that T is robust to a Kolmogorov corruption
neighborhood as defined in Section 2.1.3. We interpret this as saying that T is insensitive to small
corruption according to Kolmogorov distance and it can be seen that the continuity of T will
depend a lot on the distance that we consider. There has been some work to define corruption
using other distances like Prokhorov distance, total variation distance, Bounded Lipshitz distance
[HR09] and more recently Hellinger distance with the works on rho-aggregation [BBS17, BGH14]
which takes another point of view of the problem. All these distances between distributions
are insensitive to arbitrary outliers meaning that for any probability distribution P,Q, we have
d(P, (1 − ε)P + εQ) ≤ ε. Such neighborhoods can contain arbitrary outliers (outliers that are
arbitrarily large).

On the other hand, if we are allowed to make some assumptions on the distribution of outliers
then maybe there will be a larger set of continuous functionals T with respect to this distance
and the associated estimators may be more efficient in practice on uncorrupted datasets. This
motivates the definition of a new family of distances on distributions.

Let ψ : R+ → R+ and let Pψ = {P ∈ P : EP [ψ(‖X‖)] <∞}. For all P,Q ∈ Pψ, let

Wψ(P,Q) = sup
h�ψ

{∫
h(x)dP (x)−

∫
h(x)dQ(x)

}
, (2.4.1)

where h : Rd → R verifies h � ψ if and only if for all x, y ∈ Rd, |h(x)− h(y)| ≤ ψ(‖x− y‖). Wψ

is not a very unusual distance, it is in fact a Wasserstein-1 distance in the metric space (Rd, dψ)
where dψ(x, y) = ψ(‖x− y‖). If ψ is the identity, we recover the usual Wasserstein-1 distance and
in the extreme case for which ψ is the constant function equal to 1 we recover the total variation
distance and it can be understood that Wψ is a weaker notion of distance than total variation in
the sense that we will have to ask some assumptions on Q so that Wψ((1− ε)P + εQ, P ) −−−→

ε→0
0.

Now that Wψ has been defined, we can state the following theorem which is central in [Mat20b].

Theorem 13. Let ψ denote one of the three functions ψH , ψC or ψP . Let T be the functional
constructed from ψ according to Equation (2.2.2), and let P ∈ Pψ. Suppose that ψ(+∞) >
EP [ψ(‖X‖)] and that ‖X‖ is almost surely finite.
Then, T is continuous at P for the distance Wψ over Pψ. In other words, we have for all Q ∈ Pψ,

‖T (P )− T (Q)‖ −−−−−−−−→
Wψ(P,Q)→0

0.
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From Theorem 13, we see that the choice of the function ψ decides the distance Wψ to which
T is continuous and the notion of neighborhood with respect to Wψ and informally this also
defines the corruption that T can handle. In Section 2.4.2, we precise this remark and show a
consequence of the use Wψ.

2.4.2 Asymptotic stability of M-estimators — comparison of M-estimators
with different score functions

The choice of the score function ψ has a big impact on the robustness of the resulting M-estimator.
In particular, if ψ is bounded then the estimator is robust in the sense of Hampel (see [HR09]) and
if ψ is close to the identity near 0, then the bias of the resulting estimator when we estimate the
mean is small (see Lemma 2). On the other hand, if ψ is not bounded it does not necessarily mean
that we are loosing all the robustness of the estimator but we have to make some assumptions on
the outliers for the estimator to still be consistent in a corrupted setting. We have the following
result.

Corollary 2. Suppose we are in a I ∪ O framework where (Xj)j∈I denote an i.i.d sample from
P , and let (Xj)j∈O all be equal to g(n)u for some u ∈ Rd, u 6= 0 and g : N → R increasing.
Denote by |O| = kn the cardinal of the set of outliers. The following results hold true.

Huber’s estimator Let P be a probability distribution on Rd and suppose that E[ψH(‖X‖)] <
β <∞. (

kn
n
−−−−→
n→∞

0

)
⇒
(
TH

(
1

n

n∑
i=1

δXi

)
P−−−−→

n→∞
TH(P )

)
.

Catoni’s estimator Let P be such that for X ∼ P , E[ψC(‖X‖)] < β <∞.(
kn log(g(n))

n
−−−−→
n→∞

0

)
⇒
(
TC

(
1

n

n∑
i=1

δXi

)
P−−−−→

n→∞
TC(P )

)
.

Polynomial estimator Let P be such that for X ∼ P , E[ψP (‖X‖)] < β <∞. We have,(
kng(n)1/p

n
−−−−→
n→∞

0

)
⇒
(
TP

(
1

n

n∑
i=1

δXi

)
P−−−−→

n→∞
TP (P )

)
.

This corollary tells us how big outliers can be and how many of them the estimator can handle
before it affects the behavior of this estimator. For Huber’s estimator there is no restriction on
g as long as the number of outliers kn = o(n). For Catoni’s estimator, if kn is bounded (finite
number of outliers), g(n) must be negligible compared to exp(n) and for the Polynomial estimator,
if kn is bounded, g(n) must be negligible compared to np. Figure 2.6 illustrates this behavior.
In practice, if the outliers satisfy the hypothesis for Catoni’s estimator (respectively Polynomial
estimator) to converge, then Catoni’s estimator (respectively Polynomial estimator) will be a bit
more efficient than Huber estimator (see Chapter 3). This result gives us some rules to design
M-estimators when we have an idea of the scale of the outliers.
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Figure 2.6: Plots of the mean absolute distance to 0 (log-scale) for various estimators on Gaussian
datasets corrupted with one outlier as a function of the sample size n. The polynomial estimator
uses p = 3.

2.5 Contributions to robust Machine Learning

In this section we are interested in infinite dimensional estimation. We begin with classification
and regression framework (see [Kol11, DGL96, MRT12] for background on these subjects) and
then we present kernel space embedding of probability distributions with application in maximum
mean discrepancy (MMD) estimation (see [GBR+12] for background on MMD). Our goal is to
get robust estimators of the quantities considered.

2.5.1 Classification and regression using Median of Means principle

In classification and regression, we will use M-estimators and MOM estimators to make existing
estimators robust. In particular, we will be interested in linear classification/regression through
logistic regression and ordinary least square but we will also apply this to non-linear classification
with kernel methods. Median of Means principle has been applied to Machine Learning problem
in several works and among them, one can cite the MOM tournaments methods [LM19a, LM19c]
that are theoretically efficient but intractable in practice, see also minmax MOM estimators [LL18,
LL20] and works on sparse recovery and high dimension Machine Learning [CLL19a, LM+18].
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Recall the goal of equation (2.1.1) where we search for

f∗ ∈ argmin
f∈F

R(f) = argmin
f∈F

E[`(f(X), Y )]. (2.5.1)

with ` some loss function. The empirical risk minimization [Vap98] framework dictates to estimate
the risk R(f) by replacing the expectation by an empirical mean and then we estimate f∗ using
f̂ , a minimizer of this empirical risk,

f̂ ∈ argmin
f∈F

1

n

n∑
i=1

`(f(Xi), Yi).

Classical examples of loss functions ` are the logistic loss `(f(x), y) = log(1 + exp(−f(x)y)) in
classification or the squared loss `(f(x), y) = (f(x) − y)2 in regression. The problem is that
empirical risk minimization is not robust when X1, . . . , Xn are not light-tailed.

To describe the behavior of an estimator of f∗, we will need a notion of complexity of F
and the more complex F is the harder the estimation is. There are several standard notions of
complexity like the VC dimension or the Entropy. In this work, we will use the Rademacher
complexity (see [MRT12, p34]). Suppose that the features X are in a set X . Let G be a set of
functions f : X → R and let (εi)1≤i≤n denote i.i.d Rademacher random variables independent
from (Xi)1≤i≤n . The Rademacher complexity of G is defined by

Rad(G) = E

[
sup
f∈G

n∑
i=1

εif(Xi)

]
.

The larger the Rademacher complexity is, the more complex G is and the harder it is to estimate
functions in G. For example for linear classifiers on Rd whose coefficient has an Euclidean norm
bounded by θ2, we can show that Rad(G) ≤ θ2

√
nd.

The principle of robust empirical risk minimization is as follows: instead of estimating the
expectation in (2.5.1) using the empirical mean, we use a robust estimator of the mean.

f̂rob ∈ argmin
f∈F

Ê(`(f(Xi), Yi), 1 ≤ i ≤ n)

where Ê is some robust estimator of the mean, typically a M-estimator or Median of Means
estimator. First, let us describe the result when using the Median of Means estimator. Let

f̂MOM,K ∈ argmin
f∈F

MOMK(`(f(Xi), Yi), 1 ≤ i ≤ n)

Theorem 14. Suppose that for all f ∈ F , θ2 := E[f(X)2] <∞, suppose Rad(F) <∞ and that
the loss function is Lipshitz in the sense that there exists L > 0 such that for all (x, y) ∈ X × Y,
and all f, f ′ ∈ F ,

|`(f(x), y)− `(f ′(x), y)| ≤ L|f(x)− f ′(x)|.
Assume n > K > 4|O| and denote ∆ = 1/4 − |O|/K. Then, with probability greater than
1− 2e−2∆2K ,

R(f̂MOM,K) ≤ inf
f∈F

R(f) + 4Lmax

(
4Rad(F)

n
, 2θ2

√
K

n

)
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The inequality in Theorem 14 attains the minimax rates of convergence (when we don’t
suppose any margin assumption) even though we only supposed a finite L2 norm and we are in a
corruption framework; whereas typical machine learning results will suppose F bounded in L∞.
There are a lot of class of functions (e.g. linear classifiers, SVM, ... ) for which Rad(F) ≤ O(

√
n)

and this is why we may say sometimes that the optimal rate is in O(1/
√
n).

Then in Chapter 6 we have gone further to include margin condition which allow us to recover
rates that are faster than 1/

√
n (for this part, we change the notations compared to Chapter 6 to

match the ones presented until now in the introduction). The margin condition is the following
assumption: there exists constants D > 0, δB > 0 such that

V ar(`(f(X), Y )− `(f∗(X), Y )) ≤ D2(R(f)−R(f∗)) (2.5.2)

whenever R(f)−R(f∗) ≤ δB .

We consider a more general estimator where the median operator in the median of means
principle is replaced by a M-estimator similar to Huber’s estimator. First we define an estimator
of R(f) denoted by R̂(f)β,K and defined as

K∑
k=1

ψ

√bPBk(`(f(Xi), Yi)1≤i≤n)− R̂(f)β,K
β

 = 0. (2.5.3)

Where the assumptions on ψ are that ψ is odd and five times continuously differentiable, that if
|x| ≤ 1, then ψ(x) = x and if |x| ≥ 2 then ψ is constant and x − ψ(x) is non-decreasing. ψ is
essentially a smoothed version of ψH . Then, the proposed estimator of f∗ is given by

f̂HOME,K ∈ argmin
f∈F

R̂(f)β,K

For this estimator, we show that we can get a rate O(1/n3/4) under margin conditions (we also
prove the slow rates when we don’t have the margin condition). This rate is faster than the usual
rate of O(1/

√
n) but even though we witness an optimal rate of O(1/n) in practice we didn’t

succeed in proving this bound. On the other hand, we also propose another estimator based on
the min-max principle, and this estimator achieves optimal rates O(1/n) under margin conditions.
These theorems are a bit technical and we present here only an informal version, see Chapter 6
for details.

Theorem 15 (Informal). Suppose that for all f ∈ F , E[`(f(X), Y )4] <∞ and suppose Rad(F) <
∞. Then for K and β appropriately chosen, there exists constants c1, c2 > 0 such that with
probability greater than 1− e−s for all 0 < s ≤ c1K

R(f̂HOME,K) ≤ inf
f∈F

R(f) + c2

(
Rad(F)

n
+

s

n3/4
+

( |O|
n

)3/4
)
.

Theorem 15 shows that in the context without margin condition, as long as we have a fourth
moment condition, the additional error due to the corruption is of order O(1/n3/4) which is
negligible compared to Rad(F)/n. We attain optimal rates. Then, we also present the case where
fast rates can be proven.
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Theorem 16 (Informal). Suppose that for all f ∈ F , E[`(f(X), Y )4] <∞ and suppose Rad(F) <

∞, if the margin assumption from equation (2.5.2) is verified. Then there exists an estimator f̂fr
such that with probability greater than 1− e−s for all s ≤ smax where smax −−−−→

n→∞
∞, we have

R(f̂fr) ≤ inf
f∈F

R(f) + c2

(
Rad(F − f∗)

n
+
s

n
+
|O|
n

)
where F − f∗ = {x 7→ f(x)− f∗(x), f ∈ F}.

Under some conditions on F , one can show that the bound in Theorem 16 is of order O(1/n)
which is minimax optimal for the problem at hands when the margin condition is verified. The
description of f̂fr is much more involved than f̂HOME,K and is described in Chapter 6.

2.5.2 Kernel method and concentration in infinite dimensional space

Let X be a set on which K is a kernel, we can represent a probability P on X as a mean in the
RKHS HK.

µP =

∫
X
ϕ(x)dP (x), ϕ(x) := K(·, x).

This is called a mean embedding and using this embedding, we introduce the following distance
between distributions called the maximum mean discrepancy,

MMD(P,Q) = ‖µP − µQ‖HK = sup
f∈BK

〈µP − µQ, f〉HK ,

where BK = {f ∈ HK : ‖f‖HK ≤ 1}. Kernel methods are very efficient when dealing with
structured data, DNA for example, because we can design a kernel adapted to the structure of
the data. Then, the MMD can be used for instance to construct two sample tests to compare two
populations, this is what has been done as an illustration of our method and this is presented in
Section 2.6.4.

In the computation of MMD, we have to compute a mean in infinite dimension and we view
this problem as a robust estimation of the mean. Assume that we have access to X1, . . . , Xn i.i.d
with law P and Y1, . . . , Yn i.i.d with law Q. Denote PB,x = 1

|B|
∑
i∈B δxi the empirical measure

associated with (xi)i∈B, denote by B1, . . . , BK an equi-partition of {1, . . . , n}, we propose the
following estimator.

M̂MDK(P,Q) = sup
f∈BK

Med
(
〈f, µPBk ,x − µPBk ,y〉, 1 ≤ k ≤ K

)
.

This estimator presents theoretical advantages in terms of robustness but also practical advantages
in terms of computation (See 2.6.4). We have the following guarantees in terms of concentration.
Denote (ei)i∈I a countable orthonormal basis of HK (which exists because HK is separable), define
‖A‖1 =

∑
i∈I〈(A ∗ A)1/2ei, ei〉HK where A∗ is the adjoint operator of A and ‖A‖ the operator

norm of A.

Theorem 17. Assume that ΣP is a linear operator on HK with ‖ΣP ‖1 <∞. Suppose the dataset
(xi, yi)i≤n is corrupted by nc outliers in the I ∪ O framework described in Section 2.1.1 (i.e.
there can be nc outlier couples (xi1 , yi1), . . . , (xinc , yinc ) on which we make no hypothesis). Let
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δ ∈ (0, 1/2] be such that nc ≤ K(1/2− δ). Then, for any η ∈ (0, 1) such that K = 72δ−2ln(1/η)

satisfies K ∈
(

nc
1/2−δ ,

n
2

)
, with probability at least 1− η,

∣∣∣M̂MDK(P,Q)−MMD(P,Q)
∣∣∣ ≤ 12

δ
max

(√
(‖ΣP ‖+ ‖ΣQ‖)ln(1/η)

δn
, 2

√
Tr(ΣP ) + Tr(ΣQ)

n

)

Theorem 17 shows that the estimator M̂MDK attains the rate O(1/
√
n) which is optimal for

this problem, it also shows that our estimator is robust to outliers with breakdown point almost
K/2. The rates in Theorem 17 are very similar to Hanson-Wright inequality, this can be seen as
an infinite dimension extension of Hanson-Wright inequality.

2.6 Robustness in practice, some contributions to robust
algorithms and empirical studies

2.6.1 Robust algorithms for supervised and unsupervised learning

In this section we look into the two estimators f̂MOM,K and f̂HOME,K and we illustrate the
computation of these estimators on the dataset represented in Figure 2.7. The second estimator
has a straightforward implementation with gradient descent because using equation (2.5.3) we
can take the derivative and get the gradient of R̂K,β with respect to f . On the other hand, the
Median of Means used to define f̂MOM,K is not differentiable, it is however not an issue because
it is in fact differentiable almost everywhere. Let BMed be the median block in the sense that it
verifies

1

b

∑
i∈BMed

`(f(Xi), Yi) = PBMed
(`(f(Xi), Yi)) = Med{PBk(`(f(Xi), Yi)), 1 ≤ k ≤ K}

= MOMK(`(f(Xi), Yi), 1 ≤ i ≤ n).

We show in Chapter 5 that taking the derivative of the median of means criterion is the same as
taking the derivative only on BMed. We have almost everywhere (in a sense that is made clear in
Chapter 5) that

d

df
MOMK(`(f(Xi), Yi), 1 ≤ i ≤ n) =

∑
i∈BMed

d

df
`(f(Xi), Yi). (2.6.1)

Now that we have a gradient, we can make a gradient descent algorithm. The problem is that the
objective function is not convex due to the blocks and there can be local minima in the objective
function. Recall that the blocks are constructed arbitrarily and are supposed fixed in theory. In
practice we see that it is better to change the blocks at each gradient step, or said differently
we shuffle the data at each step. This has the effect of introducing noise with an idea similar
to stochastic gradient descent but with the stochastic part being the permutation of the data
(we could rewrite the problem as saying that instead of minimizing the MOM of the losses, we
minimize the mean on all permutations of the MOM’s where we shuffle the data according to the
permutation). There is no proof of convergence of this algorithm but theoretical results from
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Figure 2.7: Plot of a corrupted dataset for classification purpose. It is composed of two Gaussian
blobs of 300 points each and 30 outliers in the upper right corner of the figure.

Figure 2.8: Plot of the decision boundary computed by several classifiers trained on the dataset
from Figure 2.7.

U-Statistics (see Chapter 6) and empirical observations support this algorithm and we obtain
good performances in practice.

For instance, in Figure 2.8 we plot the result of several linear classifiers when trained on the
dataset from Figure 2.7, the MOM classifiers have been trained using gradient descent with the
gradient from equation (2.6.1) and the non-robust algorithms are from python library scikit-learn.
Figure 2.8 could be said to be just a sanity check: our methods are robust and the usual ones are
not. We get similar results in regression with linear methods. Interpreting non-linear methods
is harder because it is difficult to conceive what is an outlier for such a method and hence it is
difficult to simulate, we can understand on specific examples like SVM or QDA what is an outlier
with respect to such classifiers but in general it is harder.

The choice of K can be tricky, the intuition is that we should choose K a little larger than
|O|/2 but the problem is that |O| is not known to the statistician and even if it was (we estimate
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that in most real datasets, there is between 5% and 10% outliers) this is only a rule of the thumb
and the choice of optimal K depends also on the inliers. Hence we think that the best course of
action is to use cross-validation to tune K.

To study the performance of our method, we look at the classification of a real dataset using
f̂HOME,K . The dataset considered is “Communities and Crime Unnormalized Data Set" and is
available through the UCI Machine Learning Repository. These data contain 2215 observations
from a census and law enforcement records. The task we devised was to predict the crime activity
(represented as the count of incidents) using the following features: the population of the area,
the per capita income, the median family income, the number of vacant houses, and the land area.
The choice of this specific dataset was motivated by the fact that it likely contains a non-negligible
number of outliers due to the nature of the features and the fact that the data have not been
pre-processed, hence the advantages of proposed approach could be highlighted.

Figure 2.9: Histogram of densities of the logarithm of the MSE for the different methods (light
blue corresponds to our approach, orange to the standard least squares regression, and green to
Huber’s loss regression).

We compare the linear regressor f̂HOME,K (called A2 in the figure) with respect to the
squared loss, the ordinary least square estimator (OLS) and the estimator that uses the Huber loss
(HuberRegressor in scikit-learn, be careful that even though HuberRegression use the Huber loss,
this is not a robust algorithm according to our definition of robust estimator). The parameters
are tuned using a robust version of a 500 fold cross-validation. We obtain an MSE ' e4.2 for our
approach, the MSE of OLS is ' e22.1 and the MSE of Huber loss approach is ' e8.9. The density
of the MSE on the different folds is represented in Figure 2.9 (we took the logarithm to make
things readable). Then, we see that indeed there seems to be outliers in the dataset as expected
and that the outliers are not only in the response variable (to which Huber loss approach is
robust) but also in the features because our algorithm gives the better results.

2.6.2 Outlier detection using Median of Means

In Section 2.6.1, f̂MOM,K is constructed via a gradient descent on the median block BMed. We
also said that we shuffle the blocks at each step. Then, it can be interesting to consider how
many times a given point appears in the median block and this is interpreted as some degree of
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how much of an outlier a point is, a score of some sort. If the point is a very bad outlier it is
intuitive that it will almost never be selected in BMed. For example, if we plot this score when
computing the Logistic Regression MOM on the toy dataset from Figure 2.7 we get Figure 2.10,
we colored the bar according to whether the point was an outlier (in the upper right corner of
Figure 2.7) or not.

Figure 2.10: Sorted Histogram of the score (number of times a data belongs to the selected
median block) of each points in a Logistic Regression MOM algorithm on a toy dataset. Red is an
outlier and blue is an informative sample. K = 120 blocks and the number of iterations is 2000.

In Figure 2.10 we see that indeed we recover the outliers as the points with low score.
This outlier detection algorithm is peculiar because it only detects outliers with respect to the
classification (or regression) problem which means that in Figure 2.11 the points on the bottom
left corner are not considered outliers, this is very different from the behavior of unsupervised
algorithms like one-class SVM or isolation forest. We have injected some knowledge: the learning
task to be considered.

Compared to a learning task, the choice of K for outliers detection is done with a different
criterion. In this application, it will most of the time pay to choose K a lot larger than |O|/2.
Indeed, if K is large, then one outlier point will more easily make the mean of a group very large
and then its score would be low. The parameter K becomes a measure of how robust we want to
be, or said differently it is a measure of how anomalous a point has to be to detect it as an outlier.
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Figure 2.11: Scatter plot of a dataset that present outliers on the upper right corner and non-
outliers points on the bottom left corner.

2.6.3 A unified view of robust algorithms for empirical risk minimiza-
tion — implementation in scikit-learn-extra library

We explain here the principle behind the algorithms implemented by the author as a part of the
python library scikit-learn-extra (accessible via pip). Scikit-learn-extra is a Python module for
machine learning that extends scikit-learn [PVG+11]. It includes algorithms that are useful but
do not satisfy the scikit-learn inclusion criteria, for instance due to their novelty or lower citation
number.

The regressors and classifiers that we considered are all based on the robust empirical risk
minimization principle:

f̂MOM,K ∈ argmin
f∈F

MOMK(`(f(Xi), Yi), 1 ≤ i ≤ n)

or
f̂HOME,K ∈ argmin

f∈F
R̂(f)β,K .

As a unified view of this, we see that in fact a robust estimator can be expressed as the minimizer
of a weighted sum whose weights depend on the data.

f̂w ∈ argmin
f∈F

n∑
i=1

wi`(f(Xi), Yi) (2.6.2)

where wi is a positive number that can depend on all the data and f . For example, using the
Median of Means, f̂MOM,K = f̂w with

wi = 1

{
i ∈ B :

1

b

∑
i∈B

`(f(Xi), Yi) = MOMK(`(f(Xi), Yi), 1 ≤ i ≤ n)

}
= 1{i ∈ BMed},
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we consider only the points that are in the “median block" with respect to the loss function (i.e.
the block that realizes the median of means).

Consider the following equation, equivalent to (2.5.3) in the extreme case where all the blocks
are of size 1.

n∑
i=1

`(f(Xi), Yi))− R̂(f)β

`(f(Xi), Yi))− R̂(f)β

ψ

`(f(Xi), Yi))− R̂(f)β
β

 = 0. (2.6.3)

that we rewrite

R̂(f)β =

n∑
i=1

(
`(f(Xi), Yi))− R̂(f)β

) ψ

(
`(f(Xi),Yi))−R̂(f)β

β

)
∑n
i=1 `(f(Xi), Yi))− R̂(f)β

 (2.6.4)

this is also a weighted sum (this can be extended to the case where the blocks have a size larger
than 1) where

wi =
ai∑n
i=1 ai

where ai = β

ψ

(∣∣∣∣ `(f(Xi),Yi))−R̂(f)β
β

∣∣∣∣)
`(f(Xi), Yi))− R̂(f)β

.

This rewriting as a weighted sum is famous in the context of M-estimators and it gives rise
to the iterative reweighted algorithm which consist in iteratively optimizing the weighted sum
while considering the weight fixed (with a gradient descent typically) and then we recompute
the weights and then loop back to optimizing the weighted sum. This algorithm has been
implemented in the library scikit-learn-extra. It exhibits the same performances on classification
and regression than the ones shown in Section 2.6.1 and it can also be used for example for
k-means clustering. More generally, the same algorithm can also be used with the libraries
xgboost and keras because both support the sample_weight parameter however these imple-
mentations are not part of scikit-learn-extra library. For example of results in the case of the
Diabetes UCI dataset is given in Figure 2.12, the robust algorithm is both less variable and
more efficient than the non-robust scikit-learn algorithm SGDClassifier (stochastic gradient
descent on hinge loss). Further examples and documentation on the usage of scikit-learn-
extra can be found at https://scikit-learn-extra.readthedocs.io, see in particular https:
//scikit-learn-extra.readthedocs.io/en/latest/modules/robust.html and examples in
https://scikit-learn-extra.readthedocs.io/en/latest/auto_examples/index.html.

2.6.4 MOM algorithm for MMD estimation and kernel method

Recall that the robust MMD estimator is given by

M̂MDK(P,Q) = sup
f∈BK

Med

{
1

b

∑
i∈Bk

f(xi)−
1

b

∑
i∈Bk

f(yi); 1 ≤ k ≤ K
}
. (2.6.5)

By the representer theorem, the optimal f can be expressed as

f(a, b) =

n∑
i=1

aiK(·, xi) +

n∑
i=1

biK(·, yi), (2.6.6)
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Figure 2.12: Boxplot of the AUC of the two estimators on the Diabetes dataset. The AUC is
computed through 10-fold cross validation, this gives us one value and we repeat this experience
10 times to obtain 10 scores that constitute this boxplot. The algorithms are random and we use
the boxplots to assess the variability of the results of the two algorithms.

where a = (ai)1≤i≤n ∈ Rn and b = (bi)1≤i≤n ∈ Rn. Denote c = [a; b] ∈ R2n the concatenation of
the two vectors and K the kernel matrix defined by K = [Kxx,Kxy;Kyx,Kyy] ∈ R2n×2n, Kxx =
[K(xi, xj)]1≤i,j≤n ∈ Rn×n, Kxy = [K(xi, yj)]1≤i,j≤n = K∗yx ∈ Rn×n, Kyy = [K(yi, yj)]1≤i,j≤n ∈
Rn×n.

Equation (2.6.5) can be rewritten as

M̂MDK(P,Q) = max
c∈R2n:cTKc≤1

Med

{
1

b
[1k; 1k]TKc; 1 ≤ k ≤ K

}
,

where 1k is the indicator vector of the block Bk. Similarly to Section 2.6.1 we do iteratively an
optimization step on the median block except that in this case we don’t have to use gradient descent
because on the median block, we are confronted to a quadratic constrained linear optimization
problem which has an analytic solution:

argmax
c∈R2n:cTKc≤1

1

b
[1kMed

; 1kMed
]TKc =

[1kMed
; 1kMed

]

‖LT [1kMed
; 1kMed

]‖2

where L is the Cholesky factor of K (K = LLT ) and kMed is such that BMed = BkMed
. The

observations are shuffled at each iteration. Notice that this algorithm (called MONK BCD for
Median Of meaNs Kernel Block Coordinate Descent) has a complexity of O(n3) which can be
prohibitive for large sample size. Hence, we propose another algorithm called MONK BCD-Fast
that approximate MONK BCD where the summation

∑n
i=1 in (2.6.6) after plugging it into (2.6.5)

is replaced by
∑
i∈Bk (this correspond to computing the kernel matrix only as a block matrix).

We compare our algorithms to the state of the art U-statistic approach corresponding to the case
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Table 2.1: Computational complexity of MMD estimators. n: sample number, K: number of
blocks, T : number of iterations.

U-Stat O
(
n2
)

MMD BCD O
(
n3 + T

[
n2 +K log(K)

])
MMD BCD-Fast O

(
n3

K2 + T
[
n2

K +K log(K)
])

where only one block is considered in which case some simplifications in the optimization reduce
the problem to the computation of a U-statistic.

The MMD distance is used for example in two sample testing, the numerical application that
we propose is on a biological dataset. We chose a DNA benchmark from the UCI repository,
the Molecular Biology (Splice-junction Gene Sequences) Data Set. The dataset consists of 3190
instances of 60-character long DNA sub-sequences. The problem is to recognize, given a sequence
of DNA, the boundaries between exons (the parts of the DNA sequence retained after splicing)
and introns (the parts of the DNA sequence that are spliced out). This task consists of two
sub-problems, identifying the exon/intron boundaries (referred to as EI sites) and the intron/exon
boundaries (IE sites). We took 1532 of these samples by selecting 766 instances from both the EI
and the IE classes (the class of those being neither EI nor IE is more heterogeneous and thus
we dumped it from the study), and investigated the discriminability of the EI and IE categories.
We represented the DNA sequences as strings, chose K as the String Subsequence Kernel to
compute MMD, and performed two-sample testing based on MMD using the MONK BCD, MONK
BCD-Fast and U-Stat estimators.

The aggregated values of M̂MD(EI, IE)−q̂1−α, M̂MD(EI,EI)−q̂1−α and M̂MD(IE, IE)−
q̂1−α are summarized in Figure 2.13 where q̂1−α is the estimated (1− α) quantile via B = 150

bootstrap permutations. In the ideal case, M̂MD − q̂1−α is positive (resp. negative) in the
inter-class (resp. intra-class) experiments. As Figure 2.13 shows all three techniques are able
to solve the task both in the inter-class (when the null hypothesis does not hold) and in the
intra-class experiment (null holds) and they converge to a good stable performance.

One other major advantage of our method, in addition to being robust is the complexity. The
time of computation is often a bottleneck in kernel methods when the dataset gets big and the
kernel is long to compute (which is the case of the sub-sequence string kernel). In this context,
MONK BCD-Fast is especially adapted because it performs faster than the U-Stat approach.
For example, taking all the samples (n=766) in the DNA benchmark with K = 15, computing
MONK BCD-Fast takes 32s while U-Stat takes 1m28s on the same computer.
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(a) Inter-class: EI-IE (b) Intra-class: EI-EI (c) Intra-class: IE-IE

Figure 2.13: Intra-class and inter-class MMD estimates as function of the sample size compared
to the bootstrap estimated (1− α)-quantile. Are plotted mean±std. Notice the different scales in
the inter-class and intra-class experiments.
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Chapter 3

Robustness to outliers and
concentration of M-estimators by
means of influence function

Abstract

We present a new analysis of M-estimators of locations parameters in Rd using their influence function
and we investigate in particular the robustness of M-estimators whose influence function is not bounded.
First we control the deviations of an M-estimator using the deviations of its influence function obtaining
concentration inequalities for M-estimators, then we show that in a Huber contamination setting, under
mild assumptions on the outliers distribution, we still have a consistency even when the influence function
is unbounded (this extend Hampel’s result [Ham71]). Finally, we illustrate this theory on numerical
examples and in particular, we exhibit examples in which M-estimators with unbounded influence function
are more efficient than Huber’s estimator in a given corrupted setting.

3.1 Introduction

One of the first tasks considered in robustness theory has been to compute so-called locations
estimators meant to exhibit a central tendency of the data. Let X ∼ P for some P probability on
Rd, let ρ be an increasing function from R+ to R+, we are interested in estimating the location
parameter T (P ) defined by

T (P ) ∈ argmin
θ∈Rd

E[ρ(‖X − θ‖)] = 0, (3.1.1)

or alternatively, if ρ is smooth enough (which will be the case in this article), we define T (P ) by

E
[
X − T (P )

‖X − T (P )‖ψ(‖X − T (P )‖)
]

= 0, (3.1.2)
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where ψ = ρ′ is called the score function. The empirical estimator obtained by plugging the
empirical density P̂n in equation (3.1.2) is called M-estimator associated with ψ, it is denoted
T (P̂n) and computed from an i.i.d sample X1, . . . , Xn using the following equation:

n∑
i=1

Xi − T (P̂n)

‖Xi − T (P̂n)‖
ψ(‖Xi − T (P̂n)‖) = 0. (3.1.3)

This way of estimating T (P ) is taken from empirical risk minimization theory and a particular case
of T (P ) is obtained when choosing ψ(x) = x in which case T (P ) = E[X] and T (P̂n) = 1

n

∑n
i=1Xi,

however it is well known that the empirical mean is not robust. A careful choice of the function
ψ yield estimators that are more robust to outliers and to heavy-tailed data (see [Cat12]).

The subsequent problem is to see how the properties of ψ impact the robustness and efficiency
of T (P̂n) when estimating T (P ). From robust statistics theory it is known that ψ is strongly related
to the influence function of the associated M-estimator. The influence function is a classical tool
used to quantify the robustness of an estimator, see for example [Ham74, HRRS86, HR09, Ron97]
in which are derived properties such as the asymptotic variance or the breakdown point of the
estimator T (P̂n) using the influence function. The influence function is the Gâteaux derivative of
T evaluated in the Dirac distribution in a point x ∈ Rd and in the case of M-estimators, from
[HRRS86, Eq 4.2.9 in Section 4.2C.], the influence function takes the following simple form:

IF(x, T, P ) = M−1
P,T

x− T (P )

‖x− T (P )‖ψ(‖x− T (P )‖), (3.1.4)

where MP,T is a non-singular matrix whose explicit formula is not important for our application
(an explicit formula can however be found in [HRRS86, Eq 4.2.9 in Section 4.2C.]).

The general idea is that, if the estimator is smooth enough, for example if it is Fréchet or
Hadamard differentiable, see [Fer83], then one can write the following expansion

T (P ) = T (Q) +

∫
Rd

IF(x, T,Q)d(P −Q)(x) +R(P,Q), (3.1.5)

where the remainder term R(P,Q) is controlled. For example, if we apply equation (3.1.5) to
Q = P̂n the empirical distribution, the influence function provides a first order approximation for
the difference between the estimator T (P̂n) and its limit T (P ). This technique of approximating
the estimator by its influence function is also linked to the Bahadur decomposition, see [Bah66]
and [HS96] for applications to M-estimators. The influence function of M -estimators is usually
chosen bounded in robust statistics, in particular from [Ham71, HR09] we have that if ψ is
bounded, then the influence function is bounded and T is qualitatively robust (i.e. the estimator
T (P̂n) is equi-continuous, c.f. [HR09]) and have asymptotic breakdown point 1/2. On the other
hand if ψ is unbounded, then T (P̂n) is not qualitatively robust, the influence function is not
bounded and the asymptotic breakdown point is zero. From Hampel’s Theorem [HR09, Theorem
2.21] we also have that ψ is bounded if and only if T is a continuous functional with respect
to the Levy metric. More generally, the influence function has been used in a lot of works on
asymptotic robustness, see [HRRS86, HR09] or [Ham74, Ron97].

The influence function has also been used recently in Machine Learning literature in order to
have a model selection tool specialized in robustness, see for example [DHS08], [KL17] and the
closely related tool of leave one out error [EP02]. The field of Robustness in Machine Learning
has been very active in the last few years, in particular after several works by Olivier Catoni and
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co-authors in [Cat12, CG17], the goal being to prove non-asymptotic deviation bounds when the
data are more heavy-tailed than what is usually considered in classical Machine Learning. This
line of thought has been continued in a number of articles, in particular [DLLO16] introduced
some general concept of sub-Gaussian estimators that have been then used successfully in other
applications, see [CLL19b, DK19, Cat12, LM19a, ZBFL18, MM19]. See also some comprehensive
lecture notes on the subject in [Ler19].

It is interesting to note that contrary to works from classical robust theory from the 70’s, the
influence functions of the M-estimators used by Catoni are not bounded. In this article, we initiate
the analysis of the effect of unbounded influence function on the robustness of M-estimators,
Huber [Hub64] told us that the influence function must be bounded while Catoni use unbounded
influence function and he still shows robust properties for this type of estimator, the difference is
in their vision of what is a robust estimator.

There will be two parts in our analysis of this problem, first we develop Catoni’s non-asymptotic
analysis of M-estimators as we analyze M-estimators with more general influence functions using
the properties of the influence function. Second we investigate asymptotic results and we show
that under mild assumptions on the outliers, we still have consistency of the estimator even when
the influence function is not bounded. Finally, we present numerical experiments showing the
performance of M-estimators with unbounded influence function as well as some advances in
choosing the scaling parameter of M-estimators.

More precisely, In Section 3.3, we show that concentration inequalities for M-estimators derive
from concentration inequalities on the influence function by showing roughly that

‖T (P̂n)− T (P )‖ '
∥∥∥∥∥ 1

n

n∑
i=1

Xi − T (P )

‖Xi − T (P )‖ψ(‖Xi − T (P )‖)
∥∥∥∥∥. (3.1.6)

From equation (3.1.4), the right hand side of equation (3.1.6) can be interpreted as the deviation
probability of the influence function. The right hand side of equation (3.1.6) can be controlled
under classical assumptions, for example in dimension 1, if ψ is bounded by β > 0 (huber
estimator), we can use Hoeffding or Bernstein inequality to get a control on ‖T (P̂n) − T (P )‖.
Using Hoeffding inequality, we obtain a concentration rate similar to the rate of the empirical
mean on Gaussian data.

P

(∣∣∣∣∣ 1n
n∑
i=1

ψ(Xi − T (P ))

∣∣∣∣∣ ≥ β√
n
λ

)
≤ e−2λ2

.

Remark that this gives us a concentration around T (P ), but when the density is symmetric
(which implies that T (P ) = E[X]), our result implies that the concentration of T (P̂n) around
the mean is as fast as the concentration of the influence function, see Corollary 3. In particular,
for Huber estimator this result implies that T (P̂n) can concentrate around E[X] at a O(1/

√
n)

rate even if P does not have a finite second moment. It is known that a finite second moment is
necessary in general to obtain O(1/

√
n) concentration around the expectation [DLLO16], but this

result shows that the symmetry of P allows to overcome this limit and a finite second moment is
not necessary if we want to control the deviations when the distribution is symmetric.

In a second part (Section 3.4), we investigate asymptotic Robustness results. Robustness is
about dealing with deviations from the hypothesis usually supposed in statistics. One way to
define deviations from hypothesis is to use a distance between distribution and say that a sample
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is corrupted if instead of coming from a distribution P that is easy to handle (like a Gaussian
distribution), it comes from a distribution Q such that d(P,Q) is small. Depending on which
distance d we use, we get different definitions of acceptable deviations from the hypothesis. The
usual choice for d in robust statistics is the Total Variation distance or the Prokhorov distance.
We say that T is robust if it is continuous with respect to such a distance. However, for Prokhorov
distance for example, Hampel Theorem [HR09, Theorem 2.21] implies that if T is continuous,
then its influence function is bounded and this is a rather conservative choice of robust estimators.

There has already been some works defining corruption using other distances like the Wasser-
stein distance, as in the concept of resilience introduced in [SCV17]. In this paper, we define a
new family of distances to model different types of data corruption. Once these distances are
defined, we study the continuity of operators with respect to these distances and this allows us to
establish a class of acceptable outliers for an estimator. We show that a well-chosen Wasserstein
distance can be used to derive continuity properties on M-estimators with unbounded influence
function and therefore prove asymptotic distributional robustness properties for such estimators.
A corollary of this result (Corollary 9) is the following, based on a sample X1, . . . , Xn containing
kn outliers and n− kn i.i.d random variables with common distribution P , let ψ be a bijection,
then if the outliers are located (i.e. sampled from a dirac distribution) at g(n)u for some function
g : N 7→ R and u ∈ Rd, ‖u‖ = 1, then

knψ
−1(g(n))

n

n→∞−−−−→ 0 ⇒
∥∥∥∥∥T
(

1

n

n∑
i=1

δXi

)
− T (P )

∥∥∥∥∥ n→∞−−−−→
proba.

0. (3.1.7)

This is a condition on the amplitude of the outliers and their number for the estimator to converge
in probability and this result is more general than hampel result in the sense that we don’t limit
ourselves to bounded ψ function but we also state the result for unbounded ψ for which we have
to ask the outliers to verify a mild condition (right hand side of equation (3.1.7)). For example,
if ψ grows like a logarithm at infinity (this is the case of Catoni’s estimator), then as long as
there are a finite number of outliers that are smaller than o(exp(n)) then Catoni’s estimator will
converge. In practice, unbounded score functions are a bit more efficient than bounded score
function M-estimators when the outliers verify these mild assumptions.

In Section 3.5, we present a short numerical study of M-estimators and particularly M-
estimators with unbounded score function on corrupted and heavy-tailed datasets. Our algorithm
is very fast but does not give, to our knowledge, minimax optimal solutions in high dimensions.
In this part, we are interested in particular in three M-estimators corresponding to three different
ψ function: ψ bounded (Huber’s estimator), ψ with logarithmic growth (Catoni’s estimator)
and finally ψ with a growth like x1/p for some p > 1 that we call Polynomial estimator. For all
these estimators we have to tune a scale hyper-parameter such as β for Huber’s estimator and p
for the Polynomial estimator. We present an algorithm that allows us to automatically choose
these hyper-parameters in an adaptive fashion. In particular, we show that provided that the
hyper-parameter are well tuned, the Polynomial estimator can adapt to the distribution with
a higher p when the distribution is very heavy-tailed and a small p if the distribution has a lot
of finite moment, we exhibit a dataset on which the Polynomial estimator is better than both
Huber’s and Catoni’s estimator.
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3.2 Setting and Notations

3.2.1 Setting

We consider the functional T defined by

E
[
X − T (P )

‖X − T (P )‖ψ(‖X − T (P )‖)
]

= 0, (3.2.1)

for some ψ : R+ → R+, the existence and unicity of T is discussed in Lemma 3. We are interested
in the behavior of the associated M-estimator T (P̂n) defined by

n∑
i=1

Xi − T (P̂n)

‖Xi − T (P̂n)‖
ψ(‖Xi − T (P̂n)‖) = 0. (3.2.2)

Assumptions 1. ψ is continuous, derivable, non-decreasing, concave on R+, ψ(0) = 0, and
there exist β, γ > 0 such that

∀x ≥ 0, 1 ≥ ψ′(x) ≥ γ1{x ≤ β}.

where 1 is the indicator function.

By concavity, if ψ is not identically zero, there are always a couple of positive constants β, γ
such that Assumptions 1 holds. For our results to hold we will ask that β and γ are not too
small. A first result that can be derived from Assumptions 1 and some additional assumptions
is that our problem is well defined. This is formalized in the following lemma whose proof is in
Section 3.7.2.

Lemma 3. Let ψ satisfy Assumptions 1, define ρ : x 7→
∫ x

0
ψ(t)dt and let X satisfy E[ρ(‖X −

E[X])‖)] < ρ(β), then T (P ) defined by equation (3.2.2) exists and is unique.

In the whole article, we will suppose that T (P ) is unique, we do not necessarily suppose the
assumptions of Lemma 3 as they are not minimal assumptions for unicity and existence of T (P ).

Assumptions 2. T (P ) defined by equation (3.2.2) and the associated empirical estimator T (P̂n)
exist and are unique.

Assumptions 1 and Assumptions 2 will be supposed true. The behavior of ψ at 0 allows
us to control the deviations of the estimator using the influence function, see Section 3.3 and
it is also important to control the bias of the resulting estimator, see Section 3.3.1. On the
other hand, the growth rate of ψ at +∞ is central to derive concentration bounds of T (P̂n), as
will become clear all along Section 3.3 and Section 3.4. Assumptions 1 do not always apply to
M-estimators, for example the sample median is not an estimator derived from a function ψ
satisfying these assumptions. On the other hand, we provide three examples of score functions
satisfying Assumptions 1, with three different growth rates when x goes to infinity.

Huber’s estimator. Let β > 0. For all x ≥ 0, let

ψH(x) = x1{x ≤ β}+ β 1{x > β}. (3.2.3)
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In dimension 1, the M-estimator constructed from this score function is called the Huber’s
estimator [Hub64].

Catoni’s estimator. Let β > 0. For all x ≥ 0, let

ψC(x) = β log

(
1 +

x

β
+

1

2

(
x

β

)2
)
. (3.2.4)

The associated M-estimator is one of the estimators considered by Catoni in [Cat12]. We
call the resulting M-estimator Catoni’s estimator.

Polynomial estimator. Let p ∈ N∗, β > 0. For all x ≥ 0, let

ψP (x) =
x

1 +
(
x
β

)1−1/p
. (3.2.5)

We call Polynomial estimator the M-estimator obtained using this score function.
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Figure 3.1: Plot of ψH and ψC for β = 1. ψP is plotted for β = 10 and p = 5.

The following result shows that the score functions from the previous three examples satisfy
Assumptions 1.

Lemma 4. For all x ≥ 0, we have

ψ′H(x) = 1{x ≤ β},

ψ′C(x) ≥ 4

5
1{x ≤ β},

ψ′P (x) ≥ 1

4

(
1 +

1

p

)
1{x ≤ β}.

The proof of Lemma 4 is postponed to Section 3.7.2.
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3.2.2 Notations

Let P denote the set of probability distributions on Rd, Sd−1 = {x ∈ Rd : ‖x‖ = 1} where ‖ · ‖ is
the Euclidean norm. For any ψ : R+ → R+, let Pψ = {P ∈ P : EP [ψ(‖X‖)] <∞}.

Let X,X1, . . . , Xn denote i.i.d random variables such that X ∼ P ∈ P. Let P̂n denotes
the empirical distribution given by P̂n = 1

n

∑n
i=1 δXi where, for any x ∈ Rd, δx is the Dirac

distribution in x.

For any h : Rd → R and ψ : R+ → R+, we denote h � ψ if

∀x, y ∈ Rd : h(x)− h(y) ≤ ψ(‖x− y‖). (3.2.6)

Let TH , TC and TP denote the functionals such that, for ψP ,ψH and ψC defined respectively
in (3.2.3), (3.2.4) and (3.2.5),

E
[
X − TH(P )

‖X − TH(P )‖ψH(‖X − TH(P )‖)
]

= 0 and E
[
X − TC(P )

‖X − TC(P )‖ψC(‖X − TC(P )‖)
]

= 0

and E
[
X − TP (P )

‖X − TP (P )‖ψP (‖X − TP (P )‖)
]

= 0.

Define the following variance terms

VH = E[ψH(‖X − TH(P )‖)2], σ2
H =

∥∥∥∥E[ (X − TH(P ))(X − TH(P ))T

‖X − TH(P )‖2 ψH(‖X − TH(P )‖)2

]∥∥∥∥
op

.

and similarly for VC , σ2
C , VP and σ2

P . These variance terms are to be compared with Tr(Σ) and
‖Σ‖op in the Gaussian setting, Hanson-Wright inequality tells us that Tr(Σ) and ‖Σ‖op describe
the spread of the empirical mean in high dimension. Here we are not in a Gaussian setting and
for example in the case of Huber’s estimator, VH and σ2

H will describe the spread of the influence
function of Huber’s estimator.

3.3 Tail probabilities of M-estimator and Influence function

3.3.1 Concentration inequalities on T using the influence function, case
d = 1

Main result

For simplicity, we begin with a description of our results in dimension 1, the multidimensional
case is treated in Section 3.3.2. The first main result of the paper compares the tail probabilities
of |T (P̂n)− T (P )| and those of the influence function.

Theorem 18. Let ψ satisfies Assumptions 1 and suppose Assumptions 2 are satisfied. Define
ψodd(x) = sign(x)ψ(|x|), then the following holds.
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• For all λ > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

ψodd(Xi − T (P ))

∣∣∣∣∣ > 3λ

)
≤ P

(∣∣∣T (P̂n)− T (P )
∣∣∣ > λ

)
.

• If moreover V = E[ψ(|X − T (P )|)2] ≤ ψ(β/2)2/2 <∞, then for all λ ∈ (0, β/2),

P
(∣∣∣T (P̂n)− T (P )

∣∣∣ > λ
)
≤ P

(∣∣∣∣∣ 1n
n∑
i=1

ψodd(Xi − T (P ))

∣∣∣∣∣ > λγ

4

)
+ e−nγ

2/8. (3.3.1)

The proof of this result is given in Section 3.7.1. In Theorem 18 we managed to control
the deviations of T (P̂n) using the deviations of a sum of i.i.d random variables and moreover
these random variables are given using the function ψodd which is in general smaller than the
identity at infinity. For example, in the case of Catoni’s estimator, ψodd(x) is logarithmic when x
goes to infinity, hence even if X is heavy tailed, ψodd(|X − T (P )|) might be light tailed. Then,
Theorem 18 allows us to easily derive sharp concentration inequalities for M-estimators that are
defined implicitly.

Theorem 18 holds if V ≤ ψ(β/2)2/2, this is a condition on the variance of the points with low
error, indeed for example with Huber’s estimator;

V = E
[

min(|X − T (P )|2, β2)
]
. (3.3.2)

This choice of β is closely linked to robust scale estimators (see [HR09]) and in particular
Huber’s second proposal [Hub64] which also makes use of ψ2 to find β. In this article, we limit
ourselves to the simple estimation of location estimator and not of simultaneous estimation of
scale and location as it is done for Huber’s second proposal, doing so could be an extension of
this work.

Notice that although our work is on location estimators, it can be extended to scale estimators
by finding the location estimator of log((X − T (P ))2) as suggested in [Hub64].

Examples

Theorem 18 allows us to study the deviations of T (P̂n) using the deviations of a sum of i.i.d
centered random variables. We illustrate that we can then easily get sub-gaussian concentration
as defined in [DLLO16] for Huber and Catoni’s estimator. For simplicity’s sake, we don’t always
search for the best constants we can find in the bounds, better bounds are found and discussed
in Section 3.3.2. We use concentration inequalities from [BLM13] and in particular Bernstein’s
inequality (Theorem 2.10 of [BLM13] reminded in Section 3.7.3 for completness).

Huber’s estimator: in the case of Huber’s estimator, ψ is bounded and from Lemma 4,
γ = 1.
Because ψH is bounded by β, we have directly from Bernstein inequality for all t > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

sign(X − TH(P ))ψH(|X − TH(P )|)
∣∣∣∣∣ >

√
2VHt

n
+
βt

n

)
≤ 2e−t.
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Then, by Theorem 18, if VH ≤ β2/8, for all t > 0 such that 4
√

2VHt/n+ 4βt/n ≤ β/2,

P

(∣∣∣TH(P̂n)− TH(P )
∣∣∣ > 4

√
2VHt

n
+ 4

βt

n

)
≤ 2e−t + e−n/8. (3.3.3)

Remark that choosing β =
√
VH gives us a Sub-Gaussian concentration around TH(P ), this is

similar to the concentrations inequalities introduced in [DLLO16] except that we concentrate
around TH(P ) instead of E[X]. Remark also that the condition VH ≤ β2/8 is rather weak because
we already have VH ≤ β2, the condition asks that there is enough weight in the interval [−β, β].

Catoni’s estimator: in the case of Catoni’s estimator, from Lemma 4, γ = 4/5. We use the
following elementary inequality: for all x > 0 and q ∈ N,

log(1 + x)q ≤ q!x.

To prove this, one can proceed by induction on q and use the variations of the function. Then,
we have access to bounds on the moments of ψC(|X − TC(P ))|, we have for all q ∈ N,

E[ψC(|X − TC(P )|)q] ≤ q!βqE
[ |X − TC(P )|

β
+

(X − TC(P ))2

2β2

]
Hence, by Bernstein inequality, denoting v = E

[
β|X − TC(P )|+ (X − TC(P ))2/2

]
P

(∣∣∣∣∣ 1n
n∑
i=1

sign(X − TC(P ))ψC(|X − TC(P )|)
∣∣∣∣∣ >

√
2vt

n
+
βt

n

)
≤ 2e−t.

Then, by Theorem 18, if VC ≤ β2 log(13/8)2/2, for all t > 0 that satisfy 5
√

2vt/n+ 5βt/n ≤ β/2,
we have

P

(∣∣∣TC(P̂n)− TC(P )
∣∣∣ > 5

√
2vt

n
+ 5

βt

n

)
≤ 2e−t + e−2n/25. (3.3.4)

Remark that once again choosing β =
√
v gives us a Sub-Gaussian concentration around TC(P ).

Polynomial estimator: in the case of the Polynomial estimator, from Lemma 4, γ =
(1 + 1/p)/4 ≥ 1/4. Then, by Chebychev inequality, we have for all t > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

sign(X − TP (P ))ψP (|X − TP (P )|)
∣∣∣∣∣ > t

)
≤ VP
nt2

.

Hence, By Theorem 18, if VP ≤ β2/(2(1 + 21/p−1)2), for all λ ∈ (0, β/2), we have

P
(
|TP (P̂n)− TP (P )| > λ

)
≤ 256

VP
nλ2

+ e−n/128.

This result is not optimal and we stated it like that for simplicity, for a more detailed analysis,
see Section 3.3.3.
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Bias of Huber’s estimator in 1D and link with previous results

In most applications in Machine Learning, we don’t want to estimate T (P ), instead we want to
estimate E[X], then T (P̂n) is a biased estimator and in addition to Theorem 18 we may want to
bound the bias. This would also allow us to compare our results to the results obtained in other
articles as most of them try to estimate E[X].

For simplicity, we consider only the case of Huber’s estimator in dimension 1. From [ZBFL18,
Proposition A.1.], we have a control of the bias of Huber’s estimator if X has a finite variance σ2.
If β ≥ 8σ/ log(2)2, we have

|TH(P )− E[X]| ≤ 2
σ2

β
.

This bound tends to 0 when β tends to infinity and from equation (3.3.3), for all for all t > 0
such that 4

√
2VHt/n+ 4βt/n ≤ β/2,

P

(∣∣∣TH(P̂n)− TH(P )
∣∣∣ > 4

√
2VHt

n
+ 4

βt

n

)
≤ 2e−t + e−n/8.

Hence,

P

(∣∣∣TH(P̂n)− E[X]
∣∣∣ > 4

√
2VHt

n
+ 4

βt

n
+ 2

σ2

β

)
≤ 2e−t + e−n/8.

Similarly to [Cat12], take β = σ
√
n/t which yields

P

(∣∣∣TH(P̂n)− E[X]
∣∣∣ > 4

√
2VHt

n
+ 6

σ
√
t√
n

)
≤ 2e−t + e−n/8.

This rate of convergence is similar to [Cat12, Proposition 2.4] because it can be shown that VH is
smaller than σ2 (using equation (3.3.2)). Our result decouples the effect of the bias and the effect
of the spread of the estimator.

Notice that the bound |TH(P )− E[X]| ≤ 2σ
2

β does not take into account the symmetry of X.
Actually, if X is symmetric then |TH(P )− E[X]| is zero for all β and equation (3.3.3) implies the
following result.

Corollary 3. Assume that X has a finite first moment and is symmetric around E[X] and that
8E[ψH(‖X − E[X])‖)2] ≤ β2 <∞.
For all t > 0 such that 4

√
2VHt/n+ 4βt/n ≤ β/2,

P

(∣∣∣TH(P̂n)− E[X]
∣∣∣ > 4

√
2VHt

n
+ 4

βt

n

)
≤ 2e−t + e−n/8.

Corollary 3 shows that M-estimators concentrate at rate O(1/
√
n), when P is symmetric, even

if it does not have a finite second moment. It is known that no estimator concentrates around
the expectation at rate O(1/

√
n), for all distributions P ∈ P with infinite second moment (see

the result in [DLLO16] reminded in Section 3.7.3), from Corollary 3, it is not surprising to read
in [DLLO16] that the proof of this result relies on a very asymmetric distribution.
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3.3.2 Concentration inequalities on T using the influence function, case
d ≥ 1

In this section, we study the same problem as Section 3.3.1 but for a dimension greater than 1.

Definition 1. We call tT and tIF the tail probability functions defined by

tT (λ) := P
(
‖T (P̂n)− T (P )‖ ≥ λ

)
(3.3.5)

tIF (λ) := P

(∥∥∥∥∥ 1

n

n∑
i=1

Xi − T (P )

‖Xi − T (P )‖ψ(‖Xi − T (P )‖)
∥∥∥∥∥ ≥ λ

)
. (3.3.6)

The main theorem of Section 3.3 is the following.

Theorem 19. If ψ satisfies Assumptions 1 and Assumptions 2 are satisfied, then the following
holds.

• For all λ > 0,
tIF(3λ) ≤ tT (λ).

• If moreover V = E[ψ(‖X − T (P )‖)2] ≤ ψ(β/2)2/2 <∞, then for all λ ∈ (0, β/2),

tT (λ) ≤ tIF(λγ/4) + e−nγ
2/8. (3.3.7)

The proof of this result is given in Section 3.7.1.

Because of the factor 3, the lower bound on tT is not tight. With a careful analysis of the
proof, one could make this factor close to 1, but as this inequality is not the most important of
the theorem, it is presented in this simplified form. Remark also that in the upper bound on
tT , we could weaken the condition to E[ψ(‖X − T − P‖)] ≤ ψ(β/2)/2 by weakening the Markov
inequality used in equation (3.7.9) In practical examples, to get some concentration on a sum of
i.i.d random variables, we need a finite second moment at least and hence we ask that V be finite
to get a sharp bound on tIF.

3.3.3 Examples

The results we show in this section are not optimal, a more careful analysis would be necessary
to obtain the correct sub-Gaussian rates similar to [CG17]. Our goal is to illustrate the use of
the influence function and particularly Theorem 19 for an easy derivation of concentration for M-
estimators. These examples also illustrate an interesting phenomenon derived from Theorem 19 by
showing that the concentration of T (P̂n) around T (P ) can be much faster than the concentration
of T (P̂n) around E[X], and as such even though the rates are not optimal, they can be much
faster than usual sub-gaussian rates in [CG17] because the variance term is not Tr(Σ) but V
which can be a lot smaller than Tr(Σ). We use the following corollary of [A+08, Theorem 4]
recalled in Section 3.7.3.
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Corollary 4. Let Y1, . . . , Yn be i.i.d random variables taking values in Rd, centered with covariance
matrix Σ, and such that the Orlicz norm of Y is finite:

‖Y ‖ψ1 = inf{λ > 0 : E[exp(‖Y ‖/λ)− 1] ≤ 1} <∞.

There exists an universal constant C > 0 such that, for all t ≥ 0,

P

(∥∥∥∥∥
n∑
i=1

Yi

∥∥∥∥∥ ≥ 3

2

√
E
[
‖Y ‖2

]
n+ 2

√
nt‖Σ‖op + Ct‖ max

1≤i≤n
‖Yi‖‖ψ1

)
≤ 4 exp(−t). (3.3.8)

Proof. From [A+08, Theorem 4] and because ‖Y ‖ = sup‖u‖=1〈Y, u〉, there exists an absolute
constant C1 such that, for all t ≥ 0,

P

(∥∥∥∥∥
n∑
i=1

Yi

∥∥∥∥∥ ≥ 3

2
E

[∥∥∥∥∥
n∑
i=1

Yi

∥∥∥∥∥
]

+ t

)
≤ exp

(
− t2

4nσ2

)
+ 3 exp

(
− t

C1‖max1≤i≤n ‖Yi‖‖ψ1

)
.

where σ2 = n supu∈Sd−1 E[〈X,u〉2]. Remark that σ2 can be rewritten

σ2 = n sup
u∈Sd−1

uTE[XXT ]u = n‖Σ‖op. (3.3.9)

By Cauchy-Schwarz inequality,

E

[∥∥∥∥∥
n∑
i=1

Yi

∥∥∥∥∥
]
≤ E

∥∥∥∥∥
n∑
i=1

Yi

∥∥∥∥∥
2
1/2

=
√
nE
[
‖Y ‖2

]1/2
.

The last term in equation (3.3.8) can be handled using [vdVW96, Lemma 2.2.2] from which
we get that there exists an absolute constant K > 0 such that∥∥∥∥ max

1≤i≤n
‖Yi‖

∥∥∥∥
ψ1

≤ K log(n)‖Yi‖ψ1
. (3.3.10)

However, note that Hanson-Wright’s inequality for Gaussian random variables shows that this
logarithm factor is not optimal. This extra logarithm factor can be removed if Y is bounded,
which will be the case when we apply this result to Huber’s estimator but not for the two other
estimators.

In the rest of the section, we prove concentration inequalities for the estimators featured in
Section 3.2 using Corollary 4 applied to Y = X−T (P )

‖X−T (P )‖ψ(‖X − T (P )‖).

Huber’s estimator

Let β > 0, and, for all x ≥ 0, let ψH(x) = x1{x ≤ β} + β 1{x > β}. From Lemma 4,
Assumptions 1 hold in this example with γ = 1. As ψH is bounded by β, Hoeffding’s lemma (see
[BLM13, Section 2.3]) shows that max1≤i≤n |ψH(‖Xi − T (P )‖)‖ψ1 ≤ β.
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Hence, from Corollary 4, for all t > 0,

tIF

(
3V

1/2
H

2
√
n

+ 2σH

√
t

n
+
C

n
tβ

)
≤ 4e−t.

From Theorem 19, we deduce the following corollary.

Corollary 5. If 8E[ψH(‖X − T (P )‖)2] ≤ β2 <∞, there exists an absolute constant C > 0 such
that, for all λ ∈ (0, λmax), with probability larger than 1− 4 exp(−λ)− exp(−n/8),

∥∥∥TH(P )− TH(P̂n)
∥∥∥ ≤ 6

V
1/2
H√
n

+ 8σH

√
λ

n
+
C

n
λβ. (3.3.11)

Where λmax is such that

3V
1/2
H

2
√
n

+ 2σH

√
λmax

n
+
C

n
λmaxβ ≤

β

2
.

Remark that the condition on λmax implies that λ is at most of order n. Therefore, in this
result, the additional deviation probability exp(−n/8) is asymptotically negligible.

Catoni’s estimator

Let β > 0 and, for all x ≥ 0, let

ψC(x) = β log

(
1 +

x

β
+

x2

2β2

)
.

From Lemma 4, ψC satisfies Assumptions 1 with γ = 4/5. This function satisfies the following
property.

Lemma 5. If X satisfies E[‖X‖2] <∞, then, for all q ∈ N∗,

E[ψC(‖X − TC(P )‖)q] ≤ q!(sβ)q,

where

s = max

(
e, log

(
1 +

E[‖X − TC(P )‖])
β

+
E[‖X − TC(P )‖2]

2β2

))
.

The proof of Lemma 5 is postponed to Section 3.7.2. Then, using the power series expansion
of the exponential function, we get that, for all t > βs,

E
[
exp

(
ψC(‖X − TC(P )‖)

t

)]
=

∞∑
q=0

E[ψC(‖X − T (P )‖q]
tqq!

≤
∞∑
q=0

βqsq

tq
=

1

1− βs/t .
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Choosing t = 2βs shows that ‖ψC(‖X − TC(P )‖)‖ψ1
≤ 2βs. From Corollary 4 and equa-

tion (3.3.10), it follows that, for all λ > 0,

tIF

(
VC√
n

3

2
+ 2σC

√
t

n
+

2Cs

n
t log(n)β

)
≤ 4e−t.

By Theorem 19, we deduce the following corollary.

Corollary 6. If E[ψC(‖X − TC(P )‖)2] ≤ β2 ln(13/8)2/2, then there exists an absolute constant
C > 0 such that, for all λ ∈ (0, λmax), with probability larger than 1− 4 exp(−λ)− exp(−2n/25),∣∣∣TC(P̂n)− TC(P )

∣∣∣ ≤ 15V
1/2
C

2
√
n

+ 10σC

√
λ

n
+
Cs

n
λ log(n)β, (3.3.12)

where s is defined in Lemma 5 and λmax satisfies

3V
1/2
C

2
√
n

+ 2σC

√
λmax
n

+
Cs

n
λmax log(n)β ≤ β

2
.

Compared to the result in dimension 1, we get a faster concentration because in most cases VC
and σ2

C will be of lower order of magnitude compared to the variance term used in equation (3.3.4).
However, we also have that the rate of convergence is slower by a factor log(n) on the last term
that is due to the use of Corollary 4.

Polynomial estimator

Let ψP (x) = x
1+(x/β)1−1/p . The following lemma applies.

Lemma 6. Let n ∈ N∗, suppose X1, . . . , Xn are i.i.d. Let q ∈ N∗ and suppose E[‖X‖q] < ∞.
There exists an absolute constant K > 0 such that

tIF(λ) ≤ E[‖X − TP (P )‖q]
βq

(
Kpqβ√
nλ

)qp
.

The proof is postponed to Section 3.7.2.
From Lemma 4, ψP satisfies Assumptions 1 withγ = 1

4

(
1 + 1

p

)
≥ 1/4. Hence, by Theorem 19

and Lemma 6, for all λ ∈ (0, β/2),

P
(∥∥∥TP (P̂n)− TP (P )

∥∥∥ > λ
)
≤ E[‖X − TP (P )‖q]

βq

(
16Kpqβ√

nλ

)qp
+ exp

(
− n

128

)
,

under the condition that

VP = E[ψP (‖X − TP (P )‖)2] ≤ ψP (β/2)2/2 =
β2

2(1 + 21/p−1)2
.

For example, if p =
√
nλ

16eKqβ (recall that p is a tuning parameter of the estimator and as such we
can choose it as we want provided that the condition on VP is verified) which is greater than 1
for n large enough, we get the following corollary.
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Corollary 7. If X has more than q ≥ 2 moments and VP ≤ β2/(2(1 + 21/p−1)2), then there
exists an absolute constant C > 0 such that for p =

√
nλ

Cqβ and for all λ ∈ (0, β/2),

P
(∥∥∥TP (P̂n)− TP (P )

∥∥∥ > λ
)
≤ E[‖X − TP (P )‖q]

βq
exp

(
−
√
nλ

Cβ

)
+ exp

(
− n

128

)
.

From Corollary 7 we get that
∥∥∥TP (P̂n)− TP (P )

∥∥∥ is of order O(β/
√
n) with high probability,

this bound is comparable to the bound of Huber’s estimator because E
[
ψH(‖X − TH(P )‖)2

]
≤ β2

however this bound does not seem to be optimal as it is known that the asymptotic variance of
TP (P̂n) is Var(IF(X,T, P )) which can be smaller than β.

3.4 Some asymptotic properties derived from the influence
function

In Section 3.3, we have shown results for finite sample robustness to heavy-tailed distributions.
We used the influence function to show that the concentration of T (P̂n) around T (P ) can be
bounded by the concentration of a sum of i.i.d random variables. In this section, we show
asymptotic results for T (P̂n) and provide sufficient conditions on the sample to have that∣∣T ( 1

n

∑n
i=1 δXi

)
− T (P )

∣∣→ 0.

In the classical theory of robustness, it is usually assumed that the influence function is
bounded. A reason is that it is necessary and sufficient for T to be continuous with respect to
the Levy metric for example. In this section we study the continuity of T with respect to other
distances and we relax the boundedness assumption on the influence function.

Let P ε = (1−ε)P+εH(ε) where ε is small and H(ε) is a distribution different from P modeling
the distribution of outliers. It is easy to check that the total variation distance TV (P ε, P ) ≤ ε
for any distribution H(ε) and any ε ∈ [0, 1], from this it could be said that the total variation is
blind to a small portion of outliers. No matter how far from P the distribution H(ε) is, P ε is
close to P with respect to the Total variation distance if ε is close to 0.

3.4.1 Definition of a family of distance between probabilities

Let ψ : R+ → R+ and let Pψ = {P ∈ P : EP [ψ(‖X‖)] <∞}. For all P,Q ∈ Pψ, let

Wψ(P,Q) = sup
h�ψ

{∫
h(x)dP (x)−

∫
h(x)dQ(x)

}
. (3.4.1)

If ψ is non-decreasing, sub-additive, continuous, increasing in a neighborhood of 0 and ψ(0) = 0,
then dψ = ψ(‖x− y‖) is a distance. In this case, Wψ is the Wasserstein-1 distance in the metric
space (Rd, dψ). In particular if ψ satisfies Assumptions 1 then Wψ is a distance. If ψ is the
identity function, Wψ is the usual Wasserstein-1 distance on (Rd, ‖ · ‖). If ψ is constant equal
to 1, Wψ is close to Total Variation distance (for total variation we take the supremum on all
functions h such that suph− inf h ≤ 1).

81



CHAPTER 3. ROBUSTNESS TO OUTLIERS AND CONCENTRATION OF M-ESTIMATORS BY
MEANS OF INFLUENCE FUNCTION

We recall the following result from optimal transport theory.

Theorem 20. Let ψ satisfy Assumptions 1, Wψ metrizes the weak convergence in Pψ. In other
words, if (Pk)k∈N is a sequence of probability measures in Pψ and P ∈ P, then the following
statements are equivalent:

Pk
law−−−−→
k→∞

P and Wψ(Pk, P ) −−−−→
k→∞

0.

Refer, for example, to [Vil09, Theorem 6.9] for a proof. This theorem implies the following
result.

Lemma 7. Let ψ satisfy Assumptions 1 and let P ∈ Pψ. If X1, . . . , Xn are i.i.d with distribution
P , we have

Wψ(P̂n, P )
a.s.−−−−→
n→∞

0.

Lemma 7 follows from Theorem 20 and Glivenko-Cantelli theorem. We are now in position to
use the distance Wψ to study the asymptotic properties of T .

3.4.2 Continuity of M-estimators

We define the stability of a distance.

Definition 2. Let Q be a subset of the set P of all probabilities. Let H : [0, 1]→ Q. A distance
d is (H,Q)-stable if for any probability measure P ∈ Q we have

d((1− t)P + tH(t), P ) −−−→
t→0

0.

Then, we have the following theorem.

Theorem 21. For all ψ satisfying Assumptions 1, Wψ is (H,Pψ)-stable if

tEH(t)[ψ(‖X‖)] −−−→
t→0

0.

Moreover, let g : [0, 1]→ Rd, if H(t) = δg(t) is a Dirac distribution at g(t), Wψ is (H,Pψ)-stable
if and only if

tψ(‖g(t)‖) −−−→
t→0

0.

This result is proved in Section 3.7.1. In dimension 1 the Kolmogorov distance and the the
Total Variation (two distances usually used in robustness theory) are (H,P)-stable for any H
taking values in P, in dimension greater than 2, we can’t use the Kolmogorov distance anymore
but the Total variation distance is still (H,P)-stable for any H taking values in P.
Theorem 22. Let ψ denote a function satisfying Assumptions 1 and suppose Assumptions 2
are satisfied. Let T be the M-estimator constructed from ψ, let P ∈ Pψ and suppose that
ψ(+∞) > EP [ψ(‖X‖)] and ‖X‖ almost surely finite.
Then, T is continuous at P for the distance Wψ over Pψ. In other words, we have for all Q ∈ Pψ,

‖T (P )− T (Q)‖ −−−−−−−−→
Wψ(P,Q)→0

0.
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This result is proved in Section 3.7.1. The conditions of Theorem 22 are weak. Indeed, as ψ is
non-decreasing and strictly increasing near 0, if ‖X‖ is not constant, then ψ(+∞) > EP [ψ(‖X‖)].
Remark that in our definition P and Q must belong to Pψ but we could still define a notion of
distance Wψ(P,Q) if for X ∼ P, Y ∼ Q and X,Y independent, we have E[ψ(‖X − Y ‖)] <∞

Theorem 21 gives a condition on H for Wψ to be stable which gives us a condition on H for
(1− t)P + tH(t) to converge to P . Theorem 22 studies the continuity of T with respect to Wψ

and this gives us the condition on H for the convergence of T ((1− t)P + tH(t)) to T (P ) which is
interpreted as an infinitesimal robustness of T .

3.4.3 Consistency of T (P̂n) using Wψ in I ∪ O corruption setting

In this section, we look for statistical asymptotic properties of T .

Let I and O denote unknown subsets of {1, . . . , n}, with I∪O = {1, . . . , n} and I∩O = ∅. Let
(Xj)j∈I denote an i.i.d sample from P , and let (Xj)j∈O denote random variables with distribution
Hn ∈ P (not necessarily i.i.d and not necessarily independent to the other Xi’s). Denote by
|O| = kn the cardinal of the set of outliers. We say that X1, . . . , Xn are sampled according to the
design (I, P,Hn, kn).

We have the following lemma.

Lemma 8. Let ψ satisfy Assumptions 1 and suppose Assumptions 2 are satisfied. Let T denote
the M-estimator defined in Eq (3.2.2), let P ∈ Pψ. Let X1, . . . , Xn be sampled according to the
design (I, P,Hn, kn). Denote by X ′1, . . . , X ′n random variables such that X ′i = Xi for i ∈ I and
(X ′i)i∈O are i.i.d random variables with law P , independent of X1, . . . , Xn, we have

Wψ

(
1

n

n∑
i=1

δXi ,
1

n

n∑
i=1

δX′i

)
≤ 1

n

∑
i∈O

ψ(‖Xi −X ′i‖). (3.4.2)

In particular, let On ∼ Hn. If

kn
n
E[ψ(‖On‖)] −−−−→

n→∞
0, (3.4.3)

then,

Wψ

(
1

n

n∑
i=1

δXi , P

)
prob.−−−−→
n→∞

0.

Lemma 8 is proved in Section 3.7.2. The last part of this lemma holds even if the exact value
of kn is unknown provided that Eq (3.4.3) is satisfied. Then, the following corollary follows from
the continuity of T .

Corollary 8. Let ψ satisfy Assumptions 1 and suppose Assumptions 2 are satisfied. Let T be the
M-estimator associated to ψ, let P ∈ Pψ and suppose that ψ(+∞) > EP [ψ(‖X‖)]. Let Hn ∈ P.
Let X1, . . . , Xn be sampled according to the design (I, P,Hn, kn). Denote dn = EHn [ψ(‖On‖)],
then (

kndn
n
−−−−→
n→∞

0

)
⇒
(
T

(
1

n

n∑
i=1

δXi

)
P−−−−→

n→∞
T (P )

)
.
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Corollary 8 follows from Lemma 8 and Theorem 22. An informal interpretation of this corollary
is that T (P̂n) is robust to up to kn outliers distributed as Hn as long as kn

n EHn [ψ(‖On‖)] −−−−→
n→∞

0.

3.4.4 Examples

We apply Corollary 8 and we particularize to the case where Hn = δg(n) for some g : N 7→ R to
get the following lemma.

Corollary 9. For all functions g : N→ R increasing, for all u ∈ Sd, the following results hold.

Huber’s estimator Let P ∈ P and suppose that EP [ψH(‖X‖)] < β. Let X1, . . . , Xn be sampled
according to the design (I, P, δg(n)u, kn). We have(

kn
n
−−−−→
n→∞

0

)
⇒
(
TH

(
1

n

n∑
i=1

δXi

)
P−−−−→

n→∞
TH(P )

)
.

Catoni’s estimator Let P ∈ PψC and suppose that EP [ψC(‖X‖)] < ∞. Let X1, . . . , Xn be
sampled according to the design (I, P, δg(n)u, kn).(

kn log(g(n))

n
−−−−→
n→∞

0

)
⇒
(
TC

(
1

n

n∑
i=1

δXi

)
P−−−−→

n→∞
TC(P )

)
.

Polynomial estimator Let P ∈ PψP and suppose that EP [ψP (‖X‖)] <∞. Let X1, . . . , Xn be
sampled according to the design (I, P, δg(n)u, kn).(

kng(n)1/p

n
−−−−→
n→∞

0

)
⇒
(
TP

(
1

n

n∑
i=1

δXi

)
P−−−−→

n→∞
TP (P )

)
.

A consequence of Corollary 9 is that Huber’s estimator converges when the number of outliers
is o(n). This was already known as Huber’s estimator has a non-zero asymptotic breakdown
point. On the other hand, Corollary 9 shows that some assumptions on the outliers are required
if we want that Catoni’s estimator and the Polynomial estimator converge. This is not surprising,
since both Catoni’s estimator and Polynomial’s estimators have a zero asymptotic breakdown
point, see [HR09, Theorem 3.6].

3.5 Simulations and the value of knowing the scale of out-
liers

To compute M-estimators, we use the iterative re-weighting algorithm, see [HR09, Section 7.8].
This famous algorithm is often used to compute M-estimators. It usually converges in a few
iterations when properly initialized. For example, it can be initialized with a coordinate-by-
coordinate sample median. In these simulations, we compare four estimators: sample median,
Catoni’s estimator, the Polynomial M-estimator and Huber’s estimator.
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3.5.1 Gaussian corrupted simulated dataset

First, we study the behavior of our estimators when the dataset is constituted of X1, . . . , Xn−1

i.i.d N (0, 1) to which we add one outlier situated in respectively n2, n5 and exp(n2/1000).

The theory predicts that for outliers of scale n2, all estimators converge to 0, for outliers of
scale n5 the polynomial estimator with p = 4 does not converge but the others do and finally for
outlier of scale exp(n2/1000), only Huber’s estimator and the median converges to 0, this is what
is illustrated in Figure 3.2 in which we plot the Monte-Carlo mean error estimate as a function of
n for the three corrupted datasets considered.
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(b) One outlier in n5
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(c) One outlier in exp(n2/1000)

Figure 3.2: Plots of the mean absolute distance to 0 (log-scale) for various estimators on Gaussian
dataset corrupted with one outlier as a function of the sample size n.

In these figures, the parameters are not tuned, β = 1 for all estimators.

3.5.2 Performance on heavy-tailed dataset and a corrupted simulated
dataset

In this section we consider four datasets.
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• Dataset 1: X1, . . . , Xn i.i.d with Xi ∼ N (0, 1) with probability 1 − ε and Xi = 42 with
probability ε, this is a corrupted Gaussian distribution with ε = 0.05.

• Dataset 2: X1, . . . , Xn i.i.d ∼ T (3), this is a heavy tailed symmetric distribution with T (3)
being a student distribution with 3 degrees of freedom.

• Dataset 3: X1, . . . , Xn i.i.d such that Xi ∼ T (10) with probability 1− ε and 5Xi ∼ T (10)
with probability ε with ε = 0.05.

• Dataset 4: X1, . . . , Xn i.i.d from Pareto(5, 1) a pareto distribution with shape parameter 5
and scale parameter 1. This is a heavy-tailed and asymmetric distribution.

Datasets 1, 2 and 3 the inliers are symmetric, hence we will compare our estimator to the
center of symmetry of the inliers which is 0. Dataset 4 is asymmetric and it is meant to model a
common occurrence in Machine Learning in which one wants to compute a robust estimation of
the mean of some loss random value. The fact that it comes from a loss (with positive values)
dictates that it must be asymmetric and we represent that with a Pareto and in a robust setting
we study a Pareto with a small number of finite moments. To assess the accuracy on Dataset 4,
we compare our estimators to the theoretical mean.

Because this is a toy example and we can sample at will from the initial distribution, we use
Monte-Carlo simulation. Let n = 100,M = 500 and for a sample (Xi,j) 1≤i≤n

1≤j≤M
we use the mean

absolute error defined by

MAE =
1

M

M∑
j=1

∣∣∣∣∣T
(

1

n

n∑
i=1

δXi,j

)
− E[X]

∣∣∣∣∣,
and we quantify the precision with the associated standard error:

SAE2 =
1

M

M∑
j=1

(
T

(
1

n

n∑
i=1

δXi,j

)
−MAE

)2

β and p are chosen optimally by computing the MAE on a grid of values of β and p, see figure 3.3
which depict the MAE as a function of β in our Datasets (for the optimal value of p when
computing Polynomial estimator).

In these examples, the choice of β is through a grid-search on potential values. Catoni in his
article recommended that for a distribution with variance σ2, β ' σ

√
n. In practice, most of

the time the optimal value of β to minimize the MAE will be much smaller than σ
√
n. We plot

the MAE as a function of β for the different estimators and the different datasets in Figure 3.3,
recall that for our datasets, σ ' 1 and n = 100 and observe in Figure 3.3 that most of the time
indeed, the optimal choice for β is much smaller than σ

√
n = 10, this is due to our datasets being

corrupted by outliers.

Then, using the values of β dictated by Figure 3.3, we can study the performances of our
estimators. In the table Figure 3.4 we see that there is no estimator that is better in all the
cases, of particular interest for our application is Dataset 3 for which the optimal parameter p
for the Polynomial estimator is not infinity and the two estimators with unbounded influence
function are more efficient than Huber’s estimator. On the other hand, on the heavily corrupted
Dataset 1 and the heavy-tailed Dataset 2 and Dataset 3, Huber’s estimator outperforms the other
estimators.
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(c) Dataset 3
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Figure 3.3: Log-log scale

3.6 Annex

3.7 Main Proofs

3.7.1 Proof of Theorems

Proof of Theorems 18 and 19

Theorem 18 is a particular case of Theorem 19, we will only prove the latter.
The proof is divided into two parts.

Lower bound on tT .

By definition (Equation (3.2.2)), we have

1

n

n∑
i=1

Xi − T (P̂n)

‖Xi − T (P̂n)‖
ψ(Xi − T (P̂n)) = 0.
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Median Mean Polynomial Catoni Huber

MAE 1.06E+00 3.00E+00 1.06E+00 1.11E+00 1.06E+00

Dataset 1 SAE 1.31E-01 8.58E-01 1.29E-01 1.23E-01 1.27E-01

Parameters NAN NAN 1.00E-02 1.00E-02 1.02E-01
1/p =0

MAE 1.09E-01 1.33E-01 9.92E-02 1.00E-01 9.84E-02

Dataset 2 SAE 8.13E-02 1.00E-01 7.46E-02 7.49E-02 7.49E-02

Parameters NAN NAN β = 6.14E-01
β =4.98E-02 β =9.33E-01

1/p =0

MAE 8.63E-02 8.62E-02 8.09E-02 8.10E-02 8.28E-02

Dataset 3 SAE 6.46E-02 6.82E-02 6.17E-02 6.16E-02 6.30E-02

Parameters NAN NAN β = 6.58E-02
β = 4.33E-02 β = 2.85E-01

1/p =2.97E-01

MAE 1.45E-01 3.56E-02 3.34E-02 3.30E-02 3.19E-02

Dataset 4 SAE 2.90E-02 2.93E-02 2.51E-02 2.47E-02 2.33E-02

Parameters NAN NAN β =1.00E+01
β =1.23E+00 β =1.87E+00

1/p =0

Figure 3.4

Define φ : θ 7→∑n
i=1

Xi−θ
‖Xi−θ‖ψ(‖Xi − θ‖), by Taylor inequality on φ,∥∥∥∥∥ 1

n

n∑
i=1

Xi − T (P )

‖Xi − T (P )‖ψ(Xi − T (P ))

∥∥∥∥∥ ≤ ‖T (P )− T (P̂n)‖ 1

n
sup
θ∈Rd

‖dθφ‖op. (3.7.1)

Where dθφ(h) is the differential of φ in θ applied to h and ‖ · ‖op the operator norm with respect
to the Euclidean norm. Let us control the differential of φ. For all θ and h ∈ Rd such that
‖h‖ ≤ 1,

dθφ(h) =

n∑
i=1

( −h
‖Xi − θ‖

+
〈h,Xi − θ〉(Xi − θ)

‖Xi − θ‖3
)
ψ(‖Xi − θ‖)

− 〈h,Xi − θ〉(Xi − θ)
‖Xi − θ‖2

ψ′(‖Xi − θ‖).

Then, by triangular inequality,

‖dθφ(h)‖ ≤
n∑
i=1

(
1

‖Xi − θ‖
+
|〈h,Xi − θ〉|
‖Xi − θ‖2

)
ψ(‖Xi − θ‖) +

|〈h,Xi − θ〉|
‖Xi − θ‖

ψ′(‖Xi − θ‖). (3.7.2)

Now, by Cauchy-Schwarz inequality,

‖dθφ(h)‖ ≤
n∑
i=1

2

(
ψ(‖Xi − θ‖)
‖Xi − θ‖

+ ψ′(‖Xi − θ‖)
)
≤ 3n. (3.7.3)

To obtain the last inequality, we used ψ′(x) ≤ 1 and ψ(x) ≤ x for all x ∈ R+. Plugging (3.7.3) in
(3.7.1) yields the result.

88



3.7. MAIN PROOFS

Upper bound on tT .

For all n ∈ N∗, λ ∈ R and u ∈ Sd−1, the unit sphere in dimension d, let

fn,u(λ) =
1

n

n∑
i=1

〈Xi − T (P )− λu, u〉
‖Xi − T (P )− λu‖ ψ(‖Xi − T (P )− λu‖).

We have the following lemma.

Lemma 9. Suppose that the hypothesis of Theorem 19 are verified, then

f ′n,u(λ) ≤ − 1

n

n∑
i=1

ψ′(‖Xi − T (P )− λu‖). (3.7.4)

In particular, because ψ′ is non-negative, the function fn,u is non-increasing.

The proof of Lemma 9 is given Section 3.7.2. Hence, for all n ∈ N∗, λ ∈ R and u ∈ Sd−1

〈T (P )− T (P̂n), u〉 ≥ λ⇒ fn,u(〈T (P )− T (P̂n), u〉) = 0 ≤ fn,u(λ).

And then,

P(‖T (P )− T (P̂n)‖ ≥ λ) = P(∃u ∈ Sd−1, 〈T (P )− T (P̂n), u〉 ≥ λ)

≤ P(∃u ∈ Sd−1, fn,u(λ) ≥ 0). (3.7.5)

Let us show that with high probability, for all u ∈ Sd−1, fn,u(λ) ≤ 0. We apply Taylor’s inequality
to the function t 7→ fn,u(t). As fn,u is non-increasing, for all λ > 0,

fn,u(λ) ≤ fn,u(0)− λ inf
t∈[0,λ]

∣∣f ′n,u(t)
∣∣. (3.7.6)

Then, from equation (3.7.4),

|f ′n,u(t))| ≥ 1

n

n∑
i=1

ψ′(‖Xi − T (P )− tu‖). (3.7.7)

The right-hand side of equation (3.7.6) is the minimum of the mean of n i.i.d random variables in
[0, 1]. Hence, the function

(X1, . . . , Xn) 7→ sup
u∈Sd−1

t∈[0,λ]

−|f ′n,u(t)|

satisfies, by sub-linearity of the supremum operator and triangular inequality, the bounded
difference property, with differences bounded by 1/n. By the bounded difference inequality, for
all ε > 0, with probability larger than 1− e−2nε2 , we have

sup
u∈Sd−1

t∈[0,λ]

−|f ′n,u(λ)| ≤ E

 sup
u∈Sd−1

t∈[0,λ]

− 1

n

n∑
i=1

ψ′(‖Xi − T (P )− tu‖)

+ ε.

This implies that, with the same probability,

inf
u∈Sd−1

t∈[0,λ]

|f ′n,u(λ)| ≥E

 inf
u∈Sd−1

t∈[0,λ]

1

n

n∑
i=1

ψ′(‖Xi − T (P )− tu‖)

− ε = m− ε,

89



CHAPTER 3. ROBUSTNESS TO OUTLIERS AND CONCENTRATION OF M-ESTIMATORS BY
MEANS OF INFLUENCE FUNCTION

where m = E

[
infu∈Sd−1

t∈[0,λ]

1
n

∑n
i=1 ψ

′(‖Xi − T (P )− tu‖)
]
. For ε = m/2, we get that, with prob-

ability larger than 1 − e−nm
2/2, for all u ∈ Sd−1, |f ′n,u(λ))| ≥ m/2. Use this equation and

equation (3.7.5), equation (3.7.6), equation (3.7.7),

P(‖T (P )− T (P̂n)‖ ≥ λ) ≤ P(∃u ∈ Sd−1, fn,u(λ) ≥ 0)

≤ 1− P
(
∀u ∈ Sd−1, fn,u(0)− λ

∣∣f ′n,u(λ)
∣∣ ≤ 0

)
≤ 1− P

(
∀u ∈ Sd−1, fn,u(0) ≤ λm

2

)
+ e−nm

2/2

= P

(∥∥∥∥∥ 1

n

n∑
i=1

Xi − T (P )

‖Xi − T (P )‖ψ(‖Xi − T (P )‖)
∥∥∥∥∥ ≥ λm2

)
+ e−nm

2/2

≤ tIF(λm/2) + e−nm
2/2. (3.7.8)

Finally, we bound m using Assumptions (1). For all λ < β/2,

E

 inf
u∈Sd−1

t∈[0,λ]

1

n

n∑
i=1

ψ′(‖Xi − T (P )− tu‖)

 ≥ γE
 inf
u∈Sd−1

t∈[0,λ]

1

n

n∑
i=1

1{‖Xi − T (P )− tu‖ ≤ β}


≥ γE

[
inf

u∈Sd−1

1

n

n∑
i=1

1{‖Xi − T (P )‖ ≤ β − λ}
]

≥ γE
[

1

n

n∑
i=1

1{‖Xi − T (P )‖ ≤ β/2}
]

= γP(‖Xi − T (P )‖ ≤ β/2)

= γP(ψ(‖Xi − T (P )‖) ≤ ψ(β/2)).

The last inequality holds because ψ is increasing on [0, β]. As V = E[ψ(‖X − T (P )‖)2] <∞, by
Markov’s inequality, it follows that

E

 inf
u∈Sd−1

t∈[0,λ]

1

n

n∑
i=1

ψ′(‖Xi − T (P )− tu‖)

 ≥ γ(1− V

ψ(β/2)2

)
. (3.7.9)

As V ≤ ψ(β/2)2/2, we get m ≥ γ/2. Plugging this bound in equation (3.7.8) concludes the proof.
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Proof of Theorem 21

Let us show that for all H(t) such that tEH(t)[ψ(‖X‖)] −−−→
t→0

0, we have thatWψ is (H,Pψ)-stable.
For all t ∈ [0, 1], we have

Wψ((1− t)P + tH(t), P ) = sup
h�ψ

(∫
h(x)d((1− t)P + tH(t))(x)−

∫
h(x)dP (x)

)
= sup
h�ψ

(
(1− t)

∫
h(x)dP (x) + t

∫
h(x)dH(t)(x)−

∫
h(x)dP (x)

)
= t sup

h�ψ

(∫
h(x)dH(t)(x)−

∫
h(x)dP (x)

)
≤ tEX∼H(t)

Y∼P
[ψ(‖X − Y ‖)],

where EX∼H(t)
Y∼P

is the expectation withX and Y independents, X ∼ H(t) and Y ∼ P . The last line

comes from h � ψ. Since ψ is sub-additive and increasing, for all x, y, ψ(‖x−y‖) ≤ ψ(‖x‖)+ψ(‖y‖).
Hence,

Wλ((1− t)P + tH(t), P ) ≤ t
(
EH(t)[ψ(‖X‖)] + EP [ψ(‖Y ‖)]

)
. (3.7.10)

This tends to 0 as t tends to 0.

In particular, if H(t) = δg(t) is a Dirac distribution in g(t), where g satisfies tψ(‖g(t)‖) −−−→
t→0

l > 0. Then,

Wψ((1− t)P + tH(t), P ) = t sup
h�ψ

{
EX∼H(t)

Y∼P
[h(X)− h(Y )]

}
= t sup

h�ψ
{h(g(t))− EP [h(Y )]}.

Consider h(x) = ψ(‖x‖). By sub-additivity of ψ, h � ψ. Thus,
Wψ((1− t)P + tH(t), P ) ≥ t(ψ(‖g(t)‖)− EP [ψ(‖Y ‖)]).

The right hand side tends to l > 0 when t→ 0.

Proof of Theorem 22

Let P ∈ Pψ, we want to show that T is continuous in P . Let us denote

ZP (θ) = EP
[
X − θ
‖X − θ‖ψ(‖X − θ‖)

]
.

First, we show that ZP (T (Q)) tends to 0. Denote, for i ∈ {1, . . . , d},

ZiP (θ) = EP
[
Xi − θi
‖X − θ‖ψ(‖X − θ‖)

]
.

By equation (3.2.2), ZiP (T (P )) = 0 and

ZiP (T (Q)) =

∫
xi − T (Q)i
‖x− T (Q)‖ψ(‖x− T (Q)‖)dP (x)−

∫
yi − T (Q)i
‖y − T (Q)‖ψ(‖y − T (Q)‖)dQ(y).

Then, we use the following lemma, whose proof is postponed to Section 3.7.2.
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Lemma 10. Let ψ satisfy Assumptions 1. Then, for all θ, x, y ∈ Rd,∥∥∥∥ x− θ
‖x− θ‖ψ(‖x− θ‖)− y − θ

‖y − θ‖ψ(‖y − θ‖)
∥∥∥∥ ≤ 7ψ(‖x− y‖).

hence, ψi : x 7→ xi−T (Q)i
‖x−T (Q)‖ψ(‖x−T (Q)‖) verifies that 1

7ψi � ψ. This implies that ZiP (T (Q)) ≤
7Wψ(P,Q) and thus

ZiP (T (Q)) −−−−−−−−→
Wψ(P,Q)→0

0. (3.7.11)

Now, let Qn denote a sequence such that ZP (T (Qn)) −−−−→
n→∞

0. We want to show that
T (Qn)→ 0. First, we show that the sequence T (Qn) is bounded. By contradiction, suppose that
there exists a subsequence (kn)n∈N such that ‖T (Qkn‖ −−−−→

n→∞
∞. We show that ZP (T (Qkn))

would not tend to zero. Let un =
−T (Qkn )
‖T (Qkn )‖ , we have

‖ZP (T (Qkn))‖ =

∥∥∥∥E[ X − T (Qkn)

‖X − T (Qkn)‖ψ(‖X − T (Qkn)‖)
]∥∥∥∥

≥E
[ 〈X − T (Qkn), un〉
‖X − T (Qkn)‖ ψ(‖X − T (Qkn)‖)

]
≥ ψ(‖T (Qkn)‖)E

[ 〈X − T (Qkn), un〉
‖X − T (Qkn)‖

]
− E

[ |〈X − T (Qkn), un〉|
‖X − T (Qkn)‖ ψ(‖X‖)

]
.

(3.7.12)

Observe that we have the two inequalities

‖T (Qkn)‖ − ‖X‖ ≤ ‖X − T (Qkn)‖ ≤ ‖X‖+ ‖T (Qkn)‖,

and because ‖T (Qkn)‖ → ∞ we have that

‖X − T (Qkn)‖
‖T (Qkn)‖

a.s.−−−−→
n→∞

1 and
〈X − T (Qkn),−T (Qkn)〉

‖T (Qkn)‖2
a.s.−−−−→
n→∞

1.

This implies, by dominated convergence theorem (dominated by 1),

E
[ 〈X − T (Qkn),−T (Qkn)〉
‖X − T (Qkn)‖‖T (Qkn)‖

]
−−−−→
n→∞

1

and again by dominated convergence theorem (dominated by ψ(‖X‖) integrable),

E
[ 〈X − T (Qkn),−T (Qkn)〉
‖X − T (Qkn)‖‖T (Qkn)‖ψ(‖X‖)

]
−−−−→
n→∞

E[ψ(‖X‖)].

From these two limits and equation (3.7.13), we get as n tends to infinity

lim inf
n→∞

‖ZP (T (Qkn))‖ ≥ ψ(∞)− E[ψ(‖X‖)] (3.7.13)

the right-hand side is strictly positive by hypothesis and this contradicts ‖ZP (T (Qkn))‖ −−−−→
n→∞

0.
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Hence, ‖T (Qn)‖ is a bounded sequence. Then, by Bolzano–Weierstrass theorem, there exists
a subsequence (kn)n∈N with kn that tends to infinity as n tends to infinity and with T (Qkn) that
converges to a limit l ∈ Rd. By continuity of ZP , we have that

ZP (T (Qkn)) −−−−→
n→∞

ZP (l)

and by (3.7.11), we also have ZP (T (Qkn)) −−−−→
n→∞

0, hence by unicity of the limit ZP (l) = 0 and
by definition of T (P ), we have that l = T (P ) because we assumed that T (P ) was unique (see
Section 3.2). All subsequences of T (Qn) converge to T (P ), this means T (Qn) converges to T (P ).

3.7.2 Proof of auxiliary results.

Proof of Lemma 3

Define ρ : R+ → R+ by

ρ(x) =

∫ x

0

ψ(t)dt.

ρ is C2, even and increasing on R+. Consider the problem equivalent to (3.2.2) of finding

T (P ) ∈ argmin
θ∈Rd

E[ρ(‖X − θ‖)]. (3.7.14)

Let J(θ) = E[ρ(‖X − θ‖)], we prove that finding T (P ) is a convex problem. J is differentiable
and its gradient is

∇J(θ) = −E
[
X − θ
‖X − θ‖ψ(‖X − θ‖)

]
.

Let us compute the Hessian. Let Id be the identity matrix in Rd×d, we have

Hess(J)(θ) = E
[(

Id
‖X − θ‖ −

(X − θ)(X − θ)T
‖X − θ‖3

)
ψ(‖X − θ‖) +

(X − θ)(X − θ)T
‖X − θ‖2 ψ′(‖X − θ‖)

]
.

Then, for all u ∈ Rd, u 6= 0

uTHess(J)(θ)u = E
[( ‖u‖2
‖X − θ‖ −

〈u,X − θ〉2
‖X − θ‖3

)
ψ(‖X − θ‖) +

〈u,X − θ〉2
‖X − θ‖2 ψ′(‖X − θ‖)

]
.

(3.7.15)
Now, use Cauchy-Schwarz inequality to get

‖u‖2
‖X − θ‖ −

〈u,X − θ〉2
‖X − θ‖3 ≥ 0 (3.7.16)

and because ψ is concave and ψ(0) = 0, we have that for all x > 0, ψ(x) ≥ xψ′(x). Hence, from
equations (3.7.15) and (3.7.16),

uTHess(J)(θ)u ≥ E
[(
‖u‖2 − 〈u,X − θ〉

2

‖X − θ‖2
)
ψ′(‖X − θ‖) +

〈u,X − θ〉2
‖X − θ‖2 ψ′(‖X − θ‖)

]
= E

[
‖u‖2ψ′(‖X − θ‖)

]
≥ 0 (3.7.17)
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Hence, J is convex. Moreover, we have from Assumptions 1,

E[ψ′(‖X − T (P )‖)] ≥ γP(‖X − T (P )‖ ≤ β) = γP(ρ(‖X − T (P )‖) ≤ ρ(β))

and from Markov inequality

E[ψ′(‖X − T (P )‖)] ≥ γ
(

1− E[ρ(‖X − T (P )‖)]
ρ(β)

)
now, because of equation (3.7.14),

E[ψ′(‖X − T (P )‖)] ≥ γ
(

1− E[ρ(‖X − E[X])‖)]
ρ(β)

)
> 0.

Hence, from Equation (3.7.17), for all u ∈ Rd u 6= 0,

uTHess(J)(T (P ))u > 0

The Hessian is definite positive at T (P ), hence T (P ) is unique.

Proof of Lemma 4

Huber’s score function: The equality for the Huber’s score function is immediate by derivation
of ψH .

Catoni’s score function: ψC is differentiable, and we have for all x ≥ 0,

ψ′C(x) =
1 + x

β

1 + x
β + x2

2β2

.

This function is decreasing on R+, positive and even, hence

ψ′C(x) ≥ ψ′C(β)1{x ≤ β} =
4

5
1{x ≤ β}.

Polynomial score function: ψP is differentiable, and we have for all x ≥ 0

ψP (x)′ =
1 + 1

p

(
x
β

)1−1/p

(
1 +

(
x
β

)1−1/p
)2 .

As in the case of Catoni’s score function, this function is decreasing over R+, positive and even.
Then, we get

ψ′P (x) ≥ ψ′P (β)1{x ≤ β} =
1

4

(
1 +

1

p

)
1{x ≤ β}.
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Proof of Lemma 5

First, we can show that for all q ∈ N∗, we have that

gq : x 7→
{
qqx/(eq − 1) if x ∈ [0, eq − 1]

log(1 + x)q if x > eq − 1

is a concave function over R+.

gq is continuous at eq − 1, the left and right limits are equal to qq. gq is derivable on [0, eq − 1)
and (eq − 1,∞). This derivative is non-increasing on both intervals. At eq − 1, the left derivative
is qq(eq − 1)−1 while the derivative on the right is qqq−1e−q = qqe−q. Thus, the left derivative
at eq − 1 is larger than the right derivative. Hence the derivative is non-increasing on R+, gq is
concave on R+.

By concavity, log(1 + x)q is smaller than its tangent in eq−1 − 1. This tangent is given by the
function

x 7→ (q − 1)q +
qq

eq−1 − 1

(
x− (eq−1 − 1)

)
.

This last function is clearly smaller than the function x 7→ qqx/(eq − 1). Hence, x 7→ log(1 + x)q

is smaller than gq, we found a concave upper bound of x 7→ log(1 + x)q.

Since gq is concave, by Jensen’s inequality, for any positive random variable Z such that
E[Z] <∞, we have

E[log(1 + Z)q] ≤ E[gq(Z)] ≤ gq(E[Z]).

Then, for all x, we have gq(x) ≤ max(qq, log(1 + x)q), hence,

E[log(1 + Z)q] ≤ max(qq, log(1 + E[Z])q).

Finally, use that qq ≤ q!eq to get

E[log(1 + Z)q] ≤ q! max(e, log(1 + E[Z]))q. (3.7.18)

Denote

s = max

(
e, log

(
1 +

E[‖X − TC(P )‖])
β

+
E[‖X − TC(P )‖2]

2β2

))
,

and apply equation (3.7.18) to Z = X/β +X2/(2β2) to get

E[ψC(‖X − TC(P )‖)q] ≤ q!(βs)q.

Proof of Lemma 6

By Markov’s inequality, we have

tIF(λ) ≤
E
[∥∥∥ 1

n

∑n
i=1

Xi−TP (P )
‖Xi−TP (P )‖ψP (‖Xi − TP (P )‖)

∥∥∥qp]
λqp

. (3.7.19)
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Let Yi = 1
n

∑n
i=1

Xi−TP (P )
‖Xi−TP (P )‖ψP (‖Xi−TP (P )‖) for 1 ≤ i ≤ d, from [DG12, Theorem 1.2.5], there

exists an absolute constant K > 0 such that

E

[∥∥∥∥∥
n∑
i=1

Yi

∥∥∥∥∥
pq]1/(pq)

≤ Kpq

E

∥∥∥∥∥
n∑
i=1

Yi

∥∥∥∥∥
2
1/2

+ E
[

max
1≤i≤n

‖Yi‖pq
]1/(pq)

. (3.7.20)

Let ε1, . . . , εn denote i.i.d Rademacher random variable independents from Y1, . . . , Yn. By the
symmetrization lemma (see [DG12, Lemma 1.2.6]),

E

∥∥∥∥∥
n∑
i=1

Yi

∥∥∥∥∥
2
 ≤ 4E

∥∥∥∥∥
n∑
i=1

εiYi

∥∥∥∥∥
2
 = 4E

[
n∑
i=1

‖Yi‖2
]

= 4nE[‖Y ‖2].

Thus, by Jensen’s inequality,

E

∥∥∥∥∥
n∑
i=1

Yi

∥∥∥∥∥
2
 ≤ 4nE[‖Y ‖pq]2/(pq).

For the second term, as the max of n non-negative real numbers is smaller than their sum, we
have

E
[

max
1≤i≤n

‖Yi‖pq
]
≤ E

 ∑
1≤i≤n

‖Yi‖pq
 ≤ nE[‖Y ‖pq] ≤ npq/2E[‖Y ‖pq].

Putting these two equations together we obtain from equation (3.7.20),

E

[∥∥∥∥∥
n∑
i=1

Yi

∥∥∥∥∥
pq]1/(pq)

≤ 3Kpq
√
nE[‖Y ‖pq]1/(pq). (3.7.21)

From equations (3.7.19) and (3.7.21) and if we reinject the definition of Yi’s, we get

tIF(λ) ≤ E[ψP (‖X − TP (P )‖)pq]
(
Kpq√
nλ

)qp
.

Then, use that ψp(‖x‖) ≤ ‖x‖1/pβ1−1/p to get

tIF(λ) ≤ E[‖X − TP (P )‖q]
βq

(
Kpqβ√
nλ

)qp
.

Proof of Lemma 8

We have

Wψ

(
1

n

n∑
i=1

δXi ,
1

n

n∑
i=1

δX′i

)
= sup
h�ψ

(
1

n

n∑
i=1

h(Xi)−
1

n

n∑
i=1

h(X ′i)

)

= sup
h�ψ

(
1

n

∑
i∈O

h(Xi)− h(X ′i)

)

≤ 1

n

∑
i∈O

ψ(‖Xi −X ′i‖). (3.7.22)
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If (Xi)i∈O are i.i.d, then by Markov inequality, we have that for all λ > 0,

P

(
1

n

n∑
i=n−kn

ψ(‖Xi −X ′i‖) > λ

)
≤ knE[ψ(‖Xi −X ′i‖)]

nλ
≤ kn(E[ψ(‖Xi‖)] + E[ψ(‖X ′i‖)])

nλ
.

By hypothesis this last upper bound converges to 0 as n tends to infinity. This proves the
convergence in probability. Now, by the triangular inequality we have,

Wψ

(
1

n

n∑
i=1

δXi , P

)
≤Wψ

(
1

n

n∑
i=1

δXi ,
1

n

n∑
i=1

δX′i

)
+Wψ

(
P,

1

n

n∑
i=1

δX′i

)
.

We have proved that the first term converges to 0 The second term converges to 0 by Lemma 7.

Proof of Lemma 9

fn,u derivable and we have

f ′n,u(λ) =
1

n

n∑
i=1

(
−1 +

〈Xi − T (P )− λu, u〉2
‖Xi − T (P )− λu‖2

)
ψ(‖Xi − T (P )− λu‖)
‖Xi − T (P )− λu‖

− 1

n

n∑
i=1

〈Xi − T (P )− λu, u〉2
‖Xi − T (P )− λu‖2 ψ′(‖Xi − T (P )− λu‖). (3.7.23)

By Cauchy-Schwarz inequality,

∀i ∈ {1, . . . , n}, −1

‖Xi − T (P )− λu‖ +
〈Xi − T (P )− λu, u〉2
‖Xi − T (P )− λu‖3 ≤ 0.

As ψ is concave on R+, we also have that, for all y > 0, yψ′(y) ≤ ψ(y). Combining these two
inequalities, we get

f ′n,u(λ) ≤ 1

n

n∑
i=1

(
−1 +

〈Xi − T (P )− λu, u〉2
‖Xi − T (P )− λu‖2

)
ψ′(‖Xi − T (P )− λu‖)

− 1

n

n∑
i=1

〈Xi − T (P )− λu, u〉2
‖Xi − T (P )− λu‖2 ψ′(‖Xi − T (P )− λu‖)

=− 1

n

n∑
i=1

ψ′(‖Xi − T (P )− λu‖).

Proof of Lemma 10

Let δ > 0, we want to bound, for all h ∈ Rd such that ‖h‖ ≤ δ, the quantity

J(x, h) =

∥∥∥∥ x+ h

‖x+ h‖ψ(‖x+ h‖)− x

‖x‖ψ(‖x‖)
∥∥∥∥.

We consider two cases
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Case 1: ‖x‖ ≤ 2δ.
As ‖h‖ ≤ δ, both x and x + h have a norm bounded from above by 3δ. Then, by triangular
inequality we have

J(x, h) ≤ ψ(‖x‖) + ψ(‖x+ h‖) ≤ 2ψ(3δ).

and finally, by sub-additivity, we have ψ(3δ) ≤ 3ψ(δ) which implies that J(x, h) ≤ 6ψ(δ).

Case 2: ‖x‖ > 2δ.
Let xh = ‖x+ h‖ x

‖x‖ . By the triangular inequality

J(x, h) ≤
∥∥∥∥ x+ h

‖x+ h‖ψ(‖x+ h‖)− xh
‖xh‖

ψ(‖xh‖)
∥∥∥∥+

∥∥∥∥ xh
‖xh‖

ψ(‖xh‖)−
x

‖x‖ψ(‖x‖)
∥∥∥∥

=

∥∥∥∥ x+ h

‖x+ h‖ψ(‖x+ h‖)− x

‖x‖ψ(‖x+ h‖)
∥∥∥∥+

∥∥∥∥ x

‖x‖ψ(‖x+ h‖)− x

‖x‖ψ(‖x‖)
∥∥∥∥. (3.7.24)

We use the following lemma whose proof is given Section 3.7.2.

Lemma 11. If ψ verifies Assumptions 1. Then for all h ∈ Rd such that ‖h‖ ≤ δ, for all x ∈ Rd
with ‖x‖ ≥ 2δ, ∥∥∥∥ x+ h

‖x+ h‖ψ(‖x+ h‖)− x

‖x‖ψ(‖x+ h‖)
∥∥∥∥ ≤ 6ψ(δ).

In the second term of the right hand side of equation (3.7.24), we are reduced to the 1-
dimensional case, ∥∥∥∥ x

‖x‖ψ(‖x+ h‖)− x

‖x‖ψ(‖x‖)
∥∥∥∥ = |ψ(‖x+ h‖)− ψ(‖x‖)|.

Then, by sub-additivity of ψ and triangular inequality,

ψ(‖x‖)− ψ(‖h‖) ≤ ψ(‖x+ h‖) ≤ ψ(‖h‖) + ψ(‖x‖)

which shows that ∥∥∥∥ x

‖x‖ψ(‖x+ h‖)− x

‖x‖ψ(‖x‖)
∥∥∥∥ ≤ ψ(‖h‖) ≤ ψ(δ).

Inject this and Lemma 11 in equation (3.7.24) to get for all x, h ∈ Rd with ‖x‖ ≥ 2δ and ‖h‖ ≤ δ

J(x, h) ≤ 7ψ(δ).

Proof of Lemma 11

We have∥∥∥∥ x+ h

‖x+ h‖ψ(‖x+ h‖)− x

‖x‖ψ(‖x+ h‖)
∥∥∥∥ =

∥∥∥∥ x+ h

‖x+ h‖ −
x

‖x‖

∥∥∥∥ψ(‖x+ h‖). (3.7.25)

Set f(x) = x
‖x‖ . The function f is derivable away from 0 and as ‖x‖ ≥ 2δ, both x and x+ h are

bounded away from 0. By Taylor inequality, we have

‖f(x+ h)− f(x)‖ ≤ ‖h‖ sup
t∈[0,1]

‖dfx+th‖op, (3.7.26)
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where df is the differential of f and ‖ · ‖op is the operator norm with respect to the Euclidean
norm. We have, for all y ∈ Sd−1,

dfx+th(y) =
y

‖x+ th‖ −
〈y, x+ th〉(x+ th)

‖x+ th‖3 .

Suppose that ‖x‖ ≥ 2δ, by triangular inequality and Cauchy-Schwarz inequality, we have

‖dfx+th‖op ≤
‖y‖

‖x+ th‖ +
|〈y, x+ th〉|‖x+ th‖

‖x+ th‖3 ≤ 2

‖x+ th‖ ≤
2

‖x‖ − t‖h‖ ≤
2

‖x‖ − ‖h‖ ,

inject this in equation (3.7.26) and because ‖h‖ ≤ δ,

‖f(x+ h)− f(x)‖ ≤ ‖h‖ 2

‖x‖ − ‖h‖ ≤
2δ

‖x‖ − δ .

From equation (3.7.25)∥∥∥∥ x+ h

‖x+ h‖ψ(‖x+ h‖)− x

‖x‖ψ(‖x+ h‖)
∥∥∥∥ ≤ 2δ

‖x‖ − δψ(‖x+ h‖).

By sub-linearity of ψ, this implies∥∥∥∥ x+ h

‖x+ h‖ψ(‖x+ h‖)− x

‖x‖ψ(‖x+ h‖)
∥∥∥∥ ≤ 2δ

‖x‖ − δψ(‖x‖+ δ)

≤ 2δ

‖x‖ − δ (ψ(‖x‖ − δ) + ψ(2δ)) (3.7.27)

then, because ψ is concave and ψ(0) = 0, we have that λ 7→ ψ(λ)/λ is non-increasing over [0,∞)
and because ‖x‖ − δ ≥ δ, we have

2δ

‖x‖ − δψ(‖x‖ − δ) ≤ 2δ

δ
ψ(δ) = 2ψ(δ).

The second term in equation (3.7.27) can be directly bounded using ‖x‖ ≥ 2δ,

2δ

‖x‖ − δψ(2δ) ≤ 2δ

δ
ψ(2δ) ≤ 2ψ(2δ)

and because ψ is sub-additive, ψ(2δ) ≤ 2ψ(δ). Inject this in equation (3.7.27) to get∥∥∥∥ x+ h

‖x+ h‖ψ(‖x+ h‖)− x

‖x‖ψ(‖x+ h‖)
∥∥∥∥ ≤ 6ψ(δ).

3.7.3 Technical tools

We remind the reader of Bernstein inequality, a classical concentration inequality, this form of
Bernstein inequality is borrowed from [BLM13, Theorem 2.10].

Theorem 23. Let X1, . . . , Xn be independent real-valued random variables. Assume that there
exist positive numbers v and c such that

∑n
i=1 E[X2

i ] ≤ v and

n∑
i=1

E[(Xi)
q
+vc

q−2 for all integers q ≥ 3,
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where x+ = max(0, x). Then for all t > 0

P

(
n∑
i=1

(Xi − E[Xi]) ≥
√

2vt+ ct

)
≤ e−t.

The following theorem is borrowed from [A+08, Theorem 4], it is a concentration inequality
for suprema of sums of independent random variables.

Theorem 24. Let X1, . . . , Xn be independent random variables with values in a measurable space
(S,B) and let F be a countable class of measurable functions f : S → R. Assume that for every
f ∈ F and every i, E[f(Xi)] = 0 and for any α ∈ (0, 1] and all i, ‖ supf |f(Xi)|‖ψα <∞. Let

Z = sup
f∈F

∣∣∣∣∣
n∑
i=1

f(Xi)

∣∣∣∣∣.
Define moreover

σ2 = sup
f∈F

n∑
i=1

E[f(Xi)
2].

Then, for all 0 < η < 1 and δ > 0, there exists a constant C = C(α, η, δ) > 0 such that for all
t ≥ 0,

P(Z ≥ (1 + η)E[Z] + t) ≤

exp

(
− t2

2(1 + δ)σ2

)
+ 3 exp

(
−
(

t

C‖maxi supf∈F |f(Xi)|‖ψα

)α)
, (3.7.28)

and

P(Z ≤ (1− η)E[Z]− t) ≤

exp

(
− t2

2(1 + δ)σ2

)
+ 3 exp

(
−
(

t

C‖maxi supf∈F |f(Xi)|‖ψα

)α)
. (3.7.29)

The following theorem is found as Theorem 3.1 in [DLLO16] and show that the rate of
convergence of an estimator towards the mean when E[X2] =∞ cannot be of order O(1/

√
n).

Theorem 25. For any M > 0 and α ∈ (0, 1), let PM1+α be the set of all distributions on R such
that E[|X − E[X]|α] = M . Let n > 5 be a positive integer and δ ∈ (2e−n/4, 1/2). Then, for any
estimator of the mean Ên,

sup
P∈PM1+α

P

(∣∣∣Ên(Xn
1 , δ)− E[X]

∣∣∣ > (M1/α log(1/δ)

n

)α/(α+1)
)
≥ δ.
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Chapter 4

Tractable robust mean estimation
using M-Estimators.

Abstract

We present a new analysis of M-estimators of locations in Rd using results from [Mat20b]. In particular,
we use concentration inequality on M-estimators from [Mat20b] to investigate the robust estimation of
the mean in high dimension in a corrupted setting (Huber corruption neighborhood). The bounds we
present are for q > 1 finite moments, for a sample of size n and covariance matrix Σ, we attain the
minimax speed

√
Tr(Σ)/n+

√
‖Σ‖op/n in a heavy-tailed setting. In a corrupted setting, we attain speed

E[‖X − E[X]‖q]1/qε1−1/q when X has q finite moments. One of the major advantages of our approach
compared to others recently proposed is that our estimator is tractable and fast to compute even in very
high dimension, we present simulation results that show such computation using the iterative reweighting
algorithm.

4.1 Introduction

One of the first tasks considered in robustness theory has been to compute so-called locations
estimators meant to exhibit a central tendency of the data. Let X ∼ P for some P probability
measure on Rd, let ρ be an increasing function from R+ to R+, β > 0, we are interested in
estimating the location parameter T (P ) defined by

T (P ) ∈ argmin
θ∈Rd

E
[
ρ

(‖X − θ‖
β

)]
, (4.1.1)

where ‖ · ‖ is the euclidean norm. Alternatively, if ρ is smooth enough (which will be the case in
this article), we define T (P ) by

E
[
X − T (P )

‖X − T (P )‖ψ
(‖X − T (P )‖

β

)]
= 0, (4.1.2)
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where ψ = ρ′ is called the score function. The existence and unicity of T (P ) is assured under
some hypothesis on ρ and P , see for instance Lemma 1 in [Mat20b]. To avoid cluttered notation,
if ψ and β do not change, the dependency of T on β and ψ will be assumed without it being
shown, otherwise it will be indicated in subscript.

The empirical estimator obtained by plugging the empirical density P̂n in equation (4.1.2) is
called M-estimator (or Z-estimator) associated with ψ, it is denoted T (P̂n) and computed from
an i.i.d sample X1, . . . , Xn using the following equation:

n∑
i=1

Xi − T (P̂n)

‖Xi − T (P̂n)‖
ψ

(
‖Xi − T (P̂n)‖

β

)
= 0. (4.1.3)

T (P̂n) always exists if ψ is non-decreasing for instance but it is not necessarily unique, if there
are several possible choices we choose one arbitrarily. An estimator of this type has already been
studied in [CG17]. This way of estimating T (P ) is taken from empirical risk minimization theory
and a particular case of T (P ) is obtained when choosing ψ(x) = x in which case T (P ) = E[X]

and T (P̂n) = 1
n

∑n
i=1Xi, however it is well known that the empirical mean is not robust to both

outliers and heavy-tailed data [Cat12] for instance in a corruption setting. A careful choice of
the function ψ yields estimators that are more robust to corrupted and heavy-tailed data as it is
shown in [Mat20b].

We consider T (P̂n) as an estimator of the mean and when we talk of the bias in this article, we
mean the quantity ‖E[X]− T (P )‖. We are interested in the robustness of the empirical estimator
T (P̂n) through the lense of the tools introduced in the article by the same author in [Mat20b].
Informally, in [Mat20b], we showed that the deviations of T (P̂n) around T (P ) could be controlled
using the deviations of a sum of i.i.d random variables:

‖T (P̂n)− T (P )‖ '
∥∥∥∥∥ 1

n

n∑
i=1

Xi − T (P )

‖Xi − T (P )‖ψ
(‖Xi − T (P )‖

β

)∥∥∥∥∥. (4.1.4)

Then, we only need to bound the bias ‖T (P )− E[X]‖ in order to have a control of the deviation
of T (P̂n) around the mean E[X] because the term on the right hand side of equation (4.1.4) is
easily controlled using standard concentration inequalities (see [BLM13] for general concentration
inequalities and [Mat20b] for their application to our problem). One of the consequences of this
result is that if ψ is bounded, we can get a control on ‖T (P̂n)− T (P )‖ even when X does not
have a finite second moment, see Corollary 1 in [Mat20b]. The moment condition comes from the
need to control the bias ‖T (P )− E[X]‖. When P is symmetric, there is no need to control the
bias and we obtain very fast concentration of T (P̂n) around E[X] even when the second moment
is infinite, see Corollary 10 below.

In Section 4.3, we provides bounds on the bias ‖T (P )− E[X]‖ and on the variance terms in
the concentration inequality from [Mat20b]. Bounding the bias has often been a problem ignored
in robust statistics by saying that the methods work on symmetric distributions where we know
that all the locations estimators are equal to E[X] and if the distribution is skewed we only say
that we estimate a quantity meant to quantify a central tendency of P but not E[X] directly.
However in statistical learning for example, estimating the mean is not just an arbitrary choice
and we don’t want to estimate a central tendency of the dataset, we want to estimate its mean.
In this article, we give explicit bounds on the bias and we use those bounds (in Section 4.4.2) to
give concentration results on T (P̂n) around E[X] in the context of heavy-tailed distribution even
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beyond the L2 case. We attain minimax rates as soon as X has strictly more than 2 moments
provided a careful choice of the parameter of the score function is made. The choice of the
parameter is a trade-off between bias (controlled in Section 4.3) and variance (controlled in
Section 4.4.1 and through concentration inequalities from [Mat20b]) and we explicit this trade-off.
This distinction between bias term and variance term in the bounds was not present in other
works on robust estimation of the mean vector, to our knowledge.

In the literature, there are estimators that have strong theoretical guarantees but that are
intractable, for example one can see estimators based on the aggregation of one-dimensional
estimators (same idea as projection pursuits), see [Ler19, Theorem 44] and reference therein,
see also [LM+19d] and there has also been estimators based on depth, for example Tukey’s
median [CGR+18]. On the other hand, there are tractable algorithms but whose theoretical
guarantees are lacking for example the coordinate-wise median or the geometrical median [Min15,
CG17], our work belong to this type of methods, our estimator is easily computable and even
though the obtained error bounds are much better than for the coordinate-wise median, at least in
corrupted setting it is not minimax. Recently there have been several propositions of algorithms
whose goal was to be at the same time tractable and minimax, see [DKP20, DL19, Hop20]
however these algorithms are often hard to implement and in practice the complexity makes them
intractable for high-dimensional problems.

In this context, in Section 4.4.3, we show that T (P̂n) is suitable to estimate the mean in high
dimension in a heavy-tailed and corrupted setting. In a corrupted setting we show a sub-optimal
error bound, our estimator is not minimax when the data comes from Huber contamination
distributions (except in dimension 1). Our result takes the following form informally: ifX1, . . . , Xn

are i.i.d from a mixture distribution (1− ε)P + εQ with P having q ≥ 2 finite moments and Σ
the covariance matrix of P . Then, under some assumptions on ψ and n, for all 0 < λ . n, with
probability larger than 1− 8 exp(−λ/8),∥∥∥E[X]− T (P̂n)

∥∥∥ .

√
Tr(Σ) +

√
‖Σ‖opλ√

n

∨
E[‖X − E[X]‖q]1/qε1−1/q.

See Theorem 27 below for the formal and more precise statement.

This type of bound is not really surprising and because of the factor in front of the ε term,
this is not minimax. The dependency in the number of finite moments links the two common
settings: when P has two finite moments, the bound will be in

√
ε as in [DL19, DKP20] while if

P is Gaussian, it is known for example in [CGR+18] that the dependency can be of order ε. Our
result extrapolate between these two results. A maybe more surprising consequence of the fact
that we separate the effect of the bias and the effect of the variance is that we show that in fact to
achieve rates in ε, we don’t need the inliers to be Gaussian, we only need them to be symmetric,
see Corollary 10. Moreover, when the inliers are symmetric we have a bound that greatly improve
on the asymmetric case because we replace the terms in Tr(Σ) and ‖Σ‖op can be replaced by
smaller terms that are assured to be finite even if X does not have a finite second moment.

In Section 4.4.4 we study the case where before feeding the samples to the estimator T (P̂n),
we begin by grouping them and computing the mean on each group using the same principle as
median of means estimator. This section gives advances in answering the question: is it interesting
to make groups and take the route of median of means estimators or is it better to just use
M-estimators out of the box? Our answer is that when the density is very skewed and heavy-tailed,
it is interesting to make blocks but if the density is symmetric, using a Huber estimator is advised.
This observation is later illustrated in the numerical experiments of Section 4.6.2. In practice
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we gave indication on how to choose the parameter β of a M-estimator but in doing so, we used
characteristics of the underlying distribution such as its variance which is not available to the
statistician in most cases. To resolve this problem, in Section 4.5, we show how to tune the
hyperparameter β adaptively in dimension 1 through Lepski’s method.

Finally, Section 4.6 presents an algorithm to compute T (P̂n) and a proof of convergence of this
algorithm. The algorithm used is the well-known iterative-reweighting algorithm used to compute
M-estimators for example in the context of regression (see [HR09, Section 7.8] or [BT74, HI17a]),
this algorithm has a complexity O(Tnd) where T is the number of iterations, n is the sample size
and d the dimension, it is very fast in practice. One of the advantages of an iterative-reweighting
algorithm is that the computation is rather fast, the complexity is linear in both the sample size and
the dimension and it can be used in a high-dimensional setting. Using this algorithm, we illustrate
the techniques highlighted in this article with a study of Lepski’s method in dimension 1 and a
comparison of diverse robust mean estimators in high dimension. The code for this last section
can be found on github at https://github.com/TimotheeMathieu/RobustMeanEstimator/.

4.2 Setting and Notations

4.2.1 Setting

Throughout the article, we use the following assumptions on ψ.

Assumptions 3. Suppose that X is a continuous random variable, ψ is a continuous, non-
decreasing, concave function on R+, differentiable almost everywhere, ψ(0) = 0 and we have for
almost every x > 0,

γ1{x ≤ 1} ≤ ψ′(x) ≤ 1

for some γ > 0. Let β > 0 and let ρ(x) =
∫ x

0
ψ(t)dt, we assume that

ρ(1/3) ≥ E[ρ(‖X − E[X]‖/β)]. (4.2.1)

Remark that there exists always a β > 0 that satisfies equation (4.2.1) as long as the right
hand side of (4.2.1) is finite, just take β large enough. Equation (4.2.1) makes us choose β large
enough for us to be able to do our analysis, this is a technical assumption that could be weakened
at the cost of simplicity. Similarly, we use continuous random variables by simplicity, this could
also be weakened. If Assumptions 3 are satisfied, we have in particular that our problem is well
defined in the sense that T (P ) exists and is unique. See [Mat20b, Lemma 1] for a proof of this
fact.

Of special interest for us will be Huber’s estimator whose score function ψH is defined as
follows. For all x ≥ 0, let

ψH(x) = x1{x ≤ 1}+ 1{x > 1}. (4.2.2)

In dimension 1, the M-estimator constructed from this score function is called the Huber’s
estimator [Hub64]. ψH is differentiable except in 1 and we have ψ′(x) = 1{x ≤ 1} for x 6= 1
which verifies Assumptions 3 with γ = 1. The corresponding ρ function is for x > 0,

ρH(x) =
x2

2
1{x ≤ 1}+

(
x− 1

2

)
1{x > 1}.
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4.3. BIAS AND VARIANCE OF M-ESTIMATORS WHEN CONSIDERED AS ESTIMATORS OF THE
MEAN

Assumptions 3 are verified for β large enough if X has a finite first moment.

Asymptotically, we know that in a Gaussian contamination neighborhood, ψH is optimal for
the variance (see [HR09]). However it is not clear which ψ is optimal in the context of heavy-tailed
distribution to estimate the mean or if unbounded ψ function can be sometimes interesting and
even though [Mat20b] tries to expound on this point there is no definite answer given.

4.2.2 Notations

Let P denote the set of probability distributions on Rd, Sd−1 = {x ∈ Rd : ‖x‖ = 1} where ‖ · ‖ is
the Euclidean norm. For any two reals a, b, denote a . b is a ≤ Cb for some universal constant
C > 0.

Let X,X1, . . . , Xn denote i.i.d random variables such that X ∼ P ∈ P. Let P̂n denotes
the empirical distribution given by P̂n = 1

n

∑n
i=1 δXi where, for any x ∈ Rd, δx is the Dirac

distribution in x. If it exists, we will denote Σ the covariance matrix of X.

Let TH , denote the functional such that, for Huber’s score function ψH defined in (4.2.2)

E
[
X − TH(P )

‖X − TH(P )‖ψH
(‖X − TH(P )‖

β

)]
= 0.

Define the following variance terms appearing in [Mat20b],

V = E

[
β2ψ

(‖X − T (P )‖
β

)2
]
, v =

∥∥∥∥∥E
[

(X − T (P ))(X − T (P ))T

‖X − T (P )‖2 ψ

(‖X − T (P )‖
β

)2
]∥∥∥∥∥

op

(4.2.3)
where ‖ · ‖op denotes the operator norm associated with ‖ · ‖. In the special case of Huber’s
estimator, denote

VH = E

[
ψH

(‖X − TH(P )‖
β

)2
]
, vH =

∥∥∥∥∥E
[

(X − TH(P ))(X − TH(P ))T

‖X − TH(P )‖2 ψH

(‖X − TH(P )‖
β

)2
]∥∥∥∥∥

op

.

In the Gaussian setting X ∼ N (µ,Σ) for ψ(x) = x, we have V = Tr(Σ) and v = ‖Σ‖op and, from
Hanson-Wright inequality (see equation (4.4.2)), we have that Tr(Σ) and ‖Σ‖op describe the
spread of the empirical mean in high dimension. Here we are not in a Gaussian setting and for
example in the case of Huber’s estimator, VH and vH will describe the variability of the influence
function of Huber’s estimator, notice that VH and vH are always finite, for any distribution P .

4.3 Bias and variance of M-estimators when considered as
estimators of the mean

The problem of bounding the bias ‖T (P ) − E[X]‖ has been avoided in a number of articles
on robust statistics by saying that if P is symmetric then T (P ) = E[X], which is true but
unfortunately in the case of skewed distribution this bias can be very large and the choice of β
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will determine how large the bias is. In this section, we aim at finding how the bias behaves as β
grows.

We introduce the following function

Zβ : θ 7→ E
[
β

(X − θ)
‖X − θ‖ψ

(‖X − θ‖
β

)]
.

Zβ is linked to the influence function of T which can be defined as a Gâteaux differential of the
functional T and which informally measures the influence that a point placed on θ has on the
value of T , see [HRRS86] for a formal definition. The following lemma is the cornerstone of this
article as it links Zβ with the distance between T (P ) and E[X].

Theorem 26. Let X be a random vector in Rd, X ∼ P with finite expectation and suppose
Assumptions 3, then

1

3
‖Zβ(E[X])‖ ≤ ‖E[X]− T (P )‖ ≤ 2

γ
‖Zβ(E[X])‖

We postpone the proof to Section 4.7.1. From Theorem 26, it is sufficient to upper bound
‖Zβ(E[X])‖ to get a bound on the bias.

The choice of β is a very important problem when estimating E[X] using T (P̂n) and in
particular we will need to choose β carefully as a function of n in order to have T (P̂n) that
converges to E[X]. The choice of β will entail a sort of bias-variance tradeoff. Remark that we do
not need a finite second moment for our analysis to work, we only need E[ρ(‖X −T (P )‖/β)] <∞
which is linked to the first moment of X in the case of ψ = ψH .

4.3.1 Bias of Huber’s estimator

We begin with the bias of the Huber estimator obtained from equation (4.1.3) with ψ = ψH . In
the case of Huber’s estimator, we can do some explicit computations for example with the Pareto
distribution and this will give us some baseline.

Lemma 12. Let TH be Huber functional defined in equation (4.1.2), if X follows a Pareto
distribution with shape parameter α (i.e. X has density f(x) = α1{x ≥ 1}/xα+1), then when
β →∞,

|E[X]− TH(P )| = Θ

(
1

βα−1

)
.

Where Θ is the Landau notation that corresponds to being lower bounded and upper bounded
by constant times the function under the parenthesis. The proof is in Section 4.8.1. Lemma 12
shows that the distance to the mean depends strongly on the tail of the distribution of X and this
Lemma gives some lower bound on the attainable bias when we have only a few finite moments.
Then, we can show the following lemma that gives a bound on the bias of the Huber estimator
for a distribution with a finite number of moments.

Lemma 13. Let X be a random variable with E[‖X‖q] < ∞ for q ∈ N∗ and suppose that
Assumptions 3 hold. Then

‖E[X]− TH(P )‖ ≤ 2E[‖X − E[X]‖q]
(q − 1)βq−1

.
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The proof is in Section 4.8.2. Lemma 13 is not exactly tight as can be seen on the example of
the Pareto distribution for d = 1 from Lemma 12: when α = 2, we have only one finite moment
but we obtain nonetheless a rate of 1/β. However, our result is almost tight as we see that in fact
if α > 2, then we have two finite moments and a rate of 1/β.

In addition to Lemma 13 we can also show an exponential bound on the bias when the random
variable X is sub-exponential however because the primary use of Huber estimator is with robust
statistics, we only state the result for a finite number of finite moments as it is what will interest
us. An interested reader can adapt the proof to lighter-tailed distributions and obtain bounds
that are exponentially small with β.

4.3.2 Bias of smooth M-estimators

For a ψ function that is not Huber’s score function, the bias also depends strongly on the behavior
of ψ near 0.

Lemma 14. Suppose that ψ is Ck with bounded kth derivative and that Assumptions 3 hold,
ψ′(0) = 1 and for 2 ≤ j ≤ k−1, ψ(j)(0) = 0. Let X be a random variable such that E[‖X‖k] <∞,
then,

‖ZB(E[X])‖ ≤ ‖ψ
(k)‖∞

k!βk−1
E
[
‖X − T (P )‖k

]
(4.3.1)

And if X follows a Bernoulli distribution of parameter p, this bound is tight in its dependency in
β, when β →∞, we have

Zβ(E[X]) = ψ(k)(0)
p(1− p)k − (1− p)pk

k!βk−1
+ o

(
1

βk−1

)

For example, we can show that for Catoni’s score function ψ(x) = log(1 + x+ x2/2) whose
second derivative is ψ′′(x) = −(x+ x2/2)/(1 + x+ x2/2)2, we have that ψ(x) = x+ x3/6 + o(x3)
and then the bias of Catoni’s estimator is in general of order 1/β2. Lemma 14 shows that the
bias depends on the smoothness of the function near 0 and also the number of finite moments,
when the distribution is light-tailed it can be interesting to choose an estimator that is equal to
the identity near 0 in order to have a bound on the bias that is similar to Huber estimator, then
we have to choose the behavior of ψ near infinity and this depends on the robustness/efficiency
trade-off see [Mat20b] for more information on the choice of ψ at infinity.

4.4 Concentration inequalities of Huber’s estimator and HOME

In this section, we investigate the concentration of Huber’s estimator around the mean in diverse
settings. The goal will be to recover deviations similar to the one we would have in a Gaussian
setting, but when the data are not Gaussian. It can be that the data are heavy-tailed (sere
Section 4.4.2) or corrupted by outliers (see Section 4.4.3). The gold standard in this context is
the deviation of the empirical mean in a Gaussian setting (see [BLM13]). If X1, . . . , Xn are i.i.d
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from N (µ, σ2) for some µ ∈ R and σ > 0, then for all t > 0,

P

(∣∣∣∣∣ 1n
n∑
i=1

Xi − µ′
∣∣∣∣∣ > σ

√
t

2n

)
≤ e−t. (4.4.1)

An equivalent of this in the multi-dimensional setting is Hanson-Wright inequality [HW71]: let
X ∼ N (µ,Σ) for Σ a positive definite matrix, µ ∈ Rd. Then, for any t > 0,

P

∥∥∥∥∥ 1

n

n∑
i=1

Xi − µ
∥∥∥∥∥

2

>
2Tr(Σ)

n
+

9t‖Σ‖op
n

 ≤ e−t. (4.4.2)

This form of Hanson-Wright inequality can be found for example in [Ler19]. These two deviation
bounds will be the gold standard for our task, we obtain deviations similar to the ones in
equations (4.4.1) and (4.4.2) but in a non-Gaussian setting.

4.4.1 Bound on the variance of M-estimators

First, we have to control the variability of T (P̂n) in order to control its deviations. The following
lemma gives an upper bound on both V and v.

Lemma 15. Suppose that Assumptions 3 are satisfied, we have that V ≤ E[‖X−E[X]‖2] = Tr(Σ),
and v ≤ ‖Σ‖op + ‖E[X]− T (P )‖2.

Lemma 15 (proven in Section 4.8.4) gives a control on V and v using the properties of X.
Next we show that Lemma 15 is tight in the case of Huber’s estimator as long as X is sufficiently
concentrated using the following lemma whose proof is provided in Section 4.8.5.

Lemma 16. Suppose that Assumptions 3 are satisfied and that X is such that E[‖X‖2q] < ∞
for some q > 1, then

VH ≥ E[‖X − E[X]‖2]− 4q
E
[
‖X − TH(P )‖2q

]1−1/q

(E[‖X − TH(P )‖2q] + β2q)
1−2/q

.

and

vH ≥ ‖Σ‖op − 4q
E
[
‖X − TH(P )‖2q

]1−1/q

(E[‖X − TH(P )‖2q] + β2q)
1−2/q

Lemma 15 and 16 imply that if X has enough moments, say with 4 finite moments, and if β
is sufficiently large, then the behavior of the variance term is the same as the variance term for
the empirical mean. On the other hand, if X is not very concentrated, Lemma 15 can be a very
rough bound and in the case of Huber estimator if X has only a finite first moment but no finite
variance, then VH and vH are finite even though Tr(Σ) = ‖Σ‖op =∞.

4.4.2 Concentration of Huber’s estimator

In this section we use the concentration inequalities of TH(P̂n) around TH(P ) proved in [Mat20b]
and the bound on the bias obtained in Section 4.3 to get the concentration of TH(P̂n) around
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E[X]. This allows us to get results with a similar flavour to the results from [Cat12] and [CG17].
Let X be a real random variable, in dimension 1, VH reduces to VH = E[β2 ∧ |X − T (P )|2]. From
[Mat20b], we have the following lemma.

Lemma 17. Let X be a real random variable with law P . If 8VH ≤ β2 <∞, then for all t > 0
such that 4

√
2VHt/n+ 4βt/n ≤ β/2, with probability greater than 1− 2e−t − e−n/8,

∣∣∣TH(P̂n)− TH(P )
∣∣∣ ≤ 4

√
2VHt

n
+ 4

βt

n
. (4.4.3)

Then, using Lemma 13 we have a bound on what we call the bias term and using Lemma 17
we have a bound on what one could call the variance term. We use this terminology because
in practice, the choice of β will imply a tradeoff which will be very similar to the bias/variance
tradeoff in classic statistics. In the rest of the article, bias term will denote the bound on the bias
from Lemma 13 and the variance term will always be from a concentration inequality around
T (P ) similar to Lemma 17. We have the following lemma.

Lemma 18. Let X be a real random variable with E[|X|q] < ∞ for some q > 1, suppose that
Assumptions 3 are satisfied and 8VH ≤ β2. For all t > 0 such that 4

√
2VHt/n+ 4βt/n ≤ β/2,

with probability greater than 1− 2e−t − e−n/8,∣∣∣TH(P̂n)− E[X]
∣∣∣ ≤ 4

√
2VHt

n
+ 4

βt

n
+

2E[|X − E[X]|q]
(q − 1)βq−1

. (4.4.4)

To conclude on the concentration of Huber estimator, we have to choose β and we see that
the rate of convergence of order O(

√
VHt/n) is preserved if β satisfies(

E[|X − E[X]|q]√n√
VHt

)1/(q−1)

≤ β ≤
√
nVH .

Then, choosing such a β gives us sub-Gaussian rates similar to equation (4.4.1).

From Section 4.4.1 we have that as soon as q ≥ 4 and β ≥ E[|X − E[X]|q]1/q, even though
VH is in general smaller than σ2 we have in fact that VH ' σ2, and then we may want to choose
β that optimizes 4βtn + 2E[|X−E[X]|q ]

(q−1)βq−1 which corresponds to βq = nE[|X−E[X]|q ]
2t , in this case the

dominant term is the variance term 4
√

2VHt/n ≤ 4σ
√

2t/n. On the other hand, if one does not
care about the constants, we can deduce the following alternative result when X has a finite
variance, this is another flavor of the concentration of Huber’s estimator obtained by Catoni in
[Cat12] but with worst constants. Take β = σ

√
n/(2t), the condition on t and β can both be

resumed to one condition which gives us the following lemma.

Lemma 19. Let X be a real random variable with σ2 = E[(X−E[X])2] <∞. For all t ∈ (0, n/16),
with probability greater than 1− 2e−t − e−n/8,∣∣∣TH(P̂n)− E[X]

∣∣∣ ≤ 8σ

√
2t

n
. (4.4.5)

In higher dimension, we can also have similar results to the one-dimensional case. From [Mat20b],
we have the following lemma.
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Lemma 20. Let X1, . . . , Xn be i.i.d random variables with law P on Rd. If β2 ≥ 8VH , then
there exist an absolute constant C > 0 such that, for all 0 < λ . n, with probability larger than
1− 4 exp(−λ)− exp(−n/8),

∥∥∥TH(P )− TH(P̂n)
∥∥∥ ≤ 6

V
1/2
H√
n

+ 8

√
vH

λ

n
+
C

n
λβ. (4.4.6)

Once again, we have a bias term and a variance term. Then, we inject the control on the bias
obtained in Lemma 13 in Lemma 20 to get under the same hypothesis as in Lemma 20, for all
λ ≤ λmax, with probability greater than 1− 4e−λ − e−n/8,

∥∥∥E[X]− TH(P̂n)
∥∥∥ ≤ 6

V
1/2
H√
n

+ 8

√
vH

λ

n
+
C

n
λβ +

2E[‖X − E[X]‖q]
(q − 1)βq−1

. (4.4.7)

Let us explicit the rate of convergence in equation (4.4.7). As soon as(
E[‖X − E[X]‖q]√n√

VH

)1/(q−1)

≤ β ≤
√
nvH
λ

,

the bias term is of a smaller order of magnitude than the variance term. Contrary to the d = 1
case, we don’t recover Catoni’s result from [CG17], if we choose β optimally in the case of 2 finite
moments we get a bound of order

√
Tr(Σ)λ/n. However, as soon as we have strictly more than 2

moments the bias becomes negligible in front of the variance term and we recover Catoni’s result

in [CG17] with worst constants, specifying equation (4.4.7) with β =

√
E[‖X−E[X]‖3]

√
n√

Tr(Σ)
.

Lemma 21. Let X be such that E[‖X‖3] < ∞, suppose that Assumptions 3 are satisfied. For
all n ≥ 64, there exists a universal constant C > 0 such that for all 0 < λ . n, with probability
larger than 1− 4 exp(−λ)− exp(−n/8),

∥∥∥E[X]− TH(P̂n)
∥∥∥ .

Tr(Σ)1/2

√
n

+

√
‖Σ‖op

λ

n
+

λ

n3/4

E[‖X − E[X]‖3]1/2

Tr(Σ)1/4

We simplified the condition on λmax thanks to the given value of β. The condition n ≥ 64
can be weakened to n ≥ 64Tr(Σ)3/2/E[‖X − E[X]‖3] if one needs to use this inequality for small
sample-size.

Remark 1 (Comparison of bias term and variance term). To compare the bias and variance
terms, we have to understand the relation of E[‖X − E[X]‖q]1/q with Tr(Σ) and ‖Σ‖op. For
instance, let X(i) be the ith coordinate of X, by Jensen’s inequality gives us for q ≥ 2,

E[‖X − E[X]‖q] = E

( d∑
i=1

(X(i) − E[X(i)])2

)q/2 ≤ dq/2−1
d∑
i=1

E
[
|X(i) − E[X(i)]|q

]

Hence, the dependency of E[‖X − E[X]‖q]1/q in the dimension is of order
√
d if the distribution

have the same marginal on each direction and this is the behavior recovered in the case of Gaussian
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random variables with covariance matrix proportional to the identity matrix. Indeed, it can be
shown ([BLM13]) that for X ∼ N (0,Σ) for some positive definite matrix Σ,

E[‖X‖2q]1/2q ≤ 4(q!)1/2q
√
Tr(Σ) + ((2q)!)1/2q8

√
‖Σ‖op.

The Gaussian behavior is recovered as long as the marginals of X have sub-Gaussian behavior of
its ith moment for 1 ≤ i ≤ q. In this setting, as long as all the quantities mentioned are finite, in
regard to the dimension, we can treat similarly

√
Tr(Σ) and E[‖X − E[X]‖q]1/q.

Lemma 21 can be extended to smooth M-estimators using the bound on the bias found in
Lemma 14 and concentration inequalities on the influence function using tools in [Mat20b], such
a concentration inequality would depend on the properties of X and ψ.

4.4.3 Huber estimator in Huber corruption setting

Let Pε = (1− ε)P + εQ for some probability distribution Q. We want to estimate the expectation
of the distribution P while we have only access to a sample X1, . . . , Xn i.i.d from Pε. The variance
term that takes the place of VH is

Vε = (1− ε)VH + εEX∼Q

[
β2ψH

(‖X − T (P )‖
β

)2
]
≤ VH + εβ2 (4.4.8)

the last inequality being a consequence of ψH ≤ 1. Similarly,

vε ≤ (1− ε)vH + ε

∥∥∥∥∥EX∼Q
[
β2 (X − T (P ))(X − T (P ))T

‖X − T (P )‖2 ψ

(‖X − T (P )‖
β

)2
]∥∥∥∥∥

op

≤ vH + εβ2.

(4.4.9)
This conclude the bound on the variance term, now let us control the bias term, we have

‖TH(Pε)− E[X]‖ ≤ ‖TH(Pε)− TH(P )‖+ ‖TH(P )− E[X]‖. (4.4.10)

The first term in the right hand side of equation (4.4.10) is controlled by the following lemma
whose proof is in Section 4.8.6

Lemma 22. If ε ≤ 1/8 and 8VH ≤ β2, then

‖TH(P )− TH(Pε)‖ ≤ 4εβ

Bounding the difference ‖TH(Pε)− TH(P )‖, is a rather old problem and it has already been
treated in numerous application with no explicit bound, see for example the computation of the
breakdown point of M-estimators in [HR09] and the gross-error sensitivity in [HRRS86].

From Lemma 20, if 8Vε ≤ β2 <∞, there exists an absolute constant C > 0 such that, for all
λ ∈ (0, λmax), with probability larger than 1− 4 exp(−λ)− exp(−n/8),

∥∥∥TH(P )− TH(P̂n)
∥∥∥ ≤ 6

V
1/2
ε√
n

+ 8

√
vε
λ

n
+
C

n
λβ. (4.4.11)
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Where λmax is such that
3V

1/2
ε

2
√
n

+ 2

√
vε
λmax

n
+
C

n
λmaxβ ≤

β

2

which is verified by λmax . n when β ≥ 8Vε. A direct corollary of Lemma 22 and equation (4.4.11)
in the case of symmetric P and choosing β2 . VH , we have the following.

Corollary 10. Suppose P is a symmetric distribution in Rd, let X1, . . . , Xn be i.i.d random
variables with law Pε. Suppose VH < ∞. For all 0 < λ . n, with probability larger than
1− 4 exp(−λ)− exp(−n/8),∥∥∥TH(P )− TH(P̂n)

∥∥∥ .

√
VH√
n

+

√
vHλ

n
+
λ
√
VH
n

+ ε
√
VH . (4.4.12)

Then, from Lemma 22 and Lemma 13, we get

‖TH(Pε)− E[X]‖ ≤ 4βε+
2E[‖X − E[X]‖q]

(q − 1)βq−1
. (4.4.13)

From equation (4.4.11) simplified using equations (4.4.8) and (4.4.9) and using equation (4.4.13),
we get the following lemma.

Lemma 23. Suppose P is a distribution in Rd with covariance matrix Σ, let X1, . . . , Xn be i.i.d
random variables with law Pε. Suppose 8(VH + εβ2) ≤ β2 < ∞, E[‖X‖q] < ∞ for some q > 1
and Assumptions 3 are satisfied, then there exists an absolute constant C > 0 such that, for all
0 ≤ λ . n, with probability larger than 1− 4 exp(−λ)− exp(−n/8),∥∥∥E[X]− TH(P̂n)

∥∥∥ ≤ 6

√
VH + εβ2

n
+8

√
(vH + εβ2)λ

n
+
C

n
λβ+4βε+

2E[‖X − E[X]‖q]
(q − 1)βq−1

. (4.4.14)

For the sake of comparison with the state of the art, we can also simplify Lemma 23 as the
following theorem proved in Section 4.7.2.

Theorem 27. Suppose P is a distribution in Rd with covariance matrix Σ, let X1, . . . , Xn be i.i.d
random variables with law Pε. Suppose that ε ≤ 1/16, n ≥ 16q−1 Tr(Σ)q

E[‖X−E[X]‖q ]2 , EP [‖X‖3] <∞
and Assumptions 3 are satisfied, then for all 0 < λ . n, with probability larger than 1−4 exp(−λ)−
exp(−n/8),

∥∥∥E[X]− TH(P̂n)
∥∥∥ .

(√
Tr(Σ) +

√
‖Σ‖opλ√

n

∨
E[‖X − E[X]‖q]1/qε1−1/q

)
g

(
λ,
ε1/2−1/q

M
,

1

M
q
2n

q−2
4

)
.

Where M =

√
Tr(Σ)

E[‖X−E[X]‖q ]1/q , and g : R3 → R+ is such that g(λ, x, y) = 1 + o(λ) + o(x) + o(y) for
(λ, x, y) that tend to 0.

Notice that ε is multiplied by a quantity that increases with the dimension in general, this
bound is not minimax at least in the case of Gaussian inliers, see [DL19] who achieve a sharper
bound. However, we see that the bound is of order ε1−1/q which is what is found for example
in [HL19], one highlight of this section however is that in Corollary 10, it was not Gaussian inliers
that were needed to have a dependency in ε but only symmetric inliers, from Corollary 10.
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4.4.4 Application to the concentration of HOME

Let X1, . . . , Xn be i.i.d random variables on Rd, let K ∈ N and suppose that K divides n. Let
B1, . . . , BK be a partition of {1, . . . , n} and b ∈ N∗ be such that

∀k ∈ {1, . . . ,K}, |Bk| = b, ∀k 6= j, Bk ∩Bj = ∅ and ∪Kk=1 Bk = {1, . . . , n}

We define Huber of Means Estimator as HOMEK , solution of

1

K

K∑
k=1

∑
i∈Bk(Xi −HOMEK(Xn

1 ))∥∥∑
i∈Bk(Xi −HOMEK(Xn

1 ))
∥∥ψ
(

1

bβ

∥∥∥∥∥∑
i∈Bk

(Xi −HOMEK(Xn
1 ))

∥∥∥∥∥
)

= 0

The theoretical counterpart of HOMEK(Xn
1 ) will here be TH(PB) where PB is the law of the

empirical mean 1
b

∑b
i=1Xi.

Lemma 24. Suppose that X has a finite second moment, then there exists a constant C ′ that
does not depend on q or b such that,

‖E[X]− TH(PB)‖ ≤ C ′q
√
bTr(Σ) + b1/qE[‖X − E[X]‖q]1/q

(q − 1)βq−1
.

The proof is provided in Section 4.8.7. This takes care of the bias term Then we can
control the variance term in the concentration inequality, we have by elementary equalities that
E[‖ 1

b

∑b
i=1(Xi − E[X])‖2] = Tr(Σ)/b and∥∥∥∥∥∥E

(1

b

b∑
i=1

(Xi − E[X])

)(
1

b

b∑
i=1

(Xi − E[X])

)T∥∥∥∥∥∥
op

=
‖Σ‖op
b

.

Then, from Lemma 20, Lemma 15 and Lemma 24, we can obtain a lemma that gives the deviations
of HOMEK(Xn

1 ) as a function of β and like before we choose β accordingly to get the following
lemma.

Lemma 25. Let X1, . . . , Xn be i.i.d random variables with law P on Rd with E[‖X‖q] < ∞
for some q ≥ 2. If β2 ≥ 8Tr(Σ)/b, then there exist absolute constants C > 0 such that, for all
0 < λ . K, with probability larger than 1− 4 exp(−λ)− exp(−K/8),

‖HOMEK(Xn
1 )− E[X]‖ ≤ 12

√
Tr(Σ)√
n

+ 16

√
‖Σ‖op

λ

n

+
Cλq

q
q−1

√
n

(√
Tr(Σ)

K
q−2
2q

+K
1
2q
E[‖Xi − E[X]‖q]1/q

n
1
2− 1

q

) q
q−1(

1

Tr(Σ)

) 1
2(q−1)

. (4.4.15)

Lemma 25 shows that the parameter K will allow a trade-off between
√
Tr(Σ) and E[‖X −

E[X]‖q]1/q. When K increases, the bias term that depends on E[‖X − E[X]‖q]1/q increases while
the bias term that depends on Tr(Σ) decreases in equation (4.4.15). The difference between
E[‖X − E[X]‖q]1/q and

√
Tr(Σ) will strongly depend on the tail of the distribution, if the

distribution is light tailed (for example Gaussian, see Remark 1) then
√
Tr(Σ) is not very far

from E[‖X − E[X]‖q]1/q but if the distribution is heavy tailed E[‖X − E[X]‖q]1/q can be much
larger than

√
Tr(Σ) and making blocks can be interesting.
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4.4.5 Comparison HOME and Huber on Stable distributions

As said previously in a comment to Lemma 25, when the qth central moment of X is much bigger
than its second central moment, it can be interesting to make blocks. There is another situation
when it can be interesting to make blocks and that is when the distribution is very skewed. It
can be seen in the example of stable distributions in dimension 1.

Let X1, . . . , Xn be i.i.d sample from a stable distribution with the characteristic function of
Xi defined for some α ∈ (1, 2), c > 0 and γ ∈ [−1, 1],

∀y ∈ R, φX(y) = exp
(
−|cy|α

(
1− iγsign(y) tan

(πα
2

)))
it is known (see [Fel]) that with this choice of α, the mean of Xi is 0, the variance is infinite and if
γ 6= 1, the distribution is skewed. This constitutes an example of a heavy-tailed distribution which
does not have a finite second moment. We have the following property of stable distribution:
if x 7→ f(x) is the density of Xi and 1 ≤ b ≤ n is an integer, then 1

b

∑b
i=1Xi has the density

y 7→ b
α−1
α f

(
yb

α−1
α

)
.

Then, we can easily compare the bias of HOME with Huber’s estimator (we compare the
distance to the mean which is here 0). Let β1 > 0 and θ ∈ R,

E

[
β1sign

(
1

b

b∑
i=1

Xi − θ
)
ψ

(
| 1b
∑b
i=1Xi − θ|
β1

)]
= E

[
β1b

α−1
α sign

(
Xb−

α−1
α − θ

)
ψ

(
|Xb−α−1

α − θ|
β1

)]

= E

[
β2sign(X − θbα−1

α θ)ψ

(
|X − θbα−1

α θ|
β2

)]
,

where we used β2 = β1b
α−1
α .

Then, based on the definition of HOME and Huber’s estimator, we have that

HOMEK,β1
(X) = b−

α−1
α TH,β2

(P ).

As expected the procedure of using blocks decreases the bias. Moreover, we have

E

β2
1ψ

(
| 1b
∑b
i=1Xi −HOMEK,β1

(Xn
1 )|

β1

)2
 = b−

α−1
α E

[
β2

2ψ

( |X − TH,β2
(P )|

β2

)2
]

= b−
α−1
α VH,β2

.

Then, using the concentration inequality from Lemma 17, we get the following statistical guarantees
for Huber’s estimator and HOME:

Huber’s estimator : suppose 8VH,β2 ≤ β2
2 . For all t > 0 such that 4

√
2VH,β2t/n+4β2t/n ≤

β2/2, with probability greater than 1− 2e−t − e−n/8,∣∣∣TH,β2
(P̂n)− E[X]

∣∣∣ ≤ 4

√
2VH,β2t

n
+ 4

β2t

n
+ |TH,β2

(P )|. (4.4.16)

HOME : suppose 8VH,β2
≤ β2

2b
−(α−1)/α. For all t > 0 such that 4

√
2VH,β2

tb
α−1
α /K +
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4β2t/K ≤ β2/2, with probability greater than 1− 2e−t − e−K/8,

|HOMEK,β1
(Xn

1 )− E[X]| ≤ 4

√
2VH,β2

t

Kb
α−1
α

+ 4
β2t

Kb
α−1
α

+
1

b
α−1
α

|TH,β2
(P )|. (4.4.17)

By using blocks, we increase the variance term because Kb(α−1)/α = n1−1/αK1/α < n, we
also decrease the bias term and decrease the probability with which we make the decision. Hence,
it can be interesting to make blocks when TH is very biased and n large, which happens when the
distribution is very skewed with γ close to 1 and increasing c increase the bias while we always
have VH,β ≤ β2.

Then, we conjecture that more generally, there is interest in making blocks of data when the
distribution is at the same time heavy tailed (so that the bias term is not negligible compared
to the variance term, see Section 4.4.1) and also very skewed (so that the bias is large) and the
sample size is large. On the other hand, if the distribution is symmetric we advise to use Huber’s
estimator instead of HOME.

4.5 Algorithm and choice of β

4.5.1 Algorithm: iterative re-weighting

To compute T (P̂n), we use an iterative re-weighting algorithm. This algorithm is rather well
known to compute M-estimators, see [HR09, Section 7] and it has already been extensively studied.
The principle is to rewrite the definition of T (P̂n) from equation (4.1.3) as

T (P̂n)

n∑
i=1

ψ
(
‖Xi−T (P̂n)‖

β

)
‖Xi − T (P̂n)‖

=

n∑
i=1

Xi

ψ
(
‖Xi−T (P̂n)‖

β

)
‖Xi − T (P̂n)‖

,

then, denote wi =
βψ
(
‖Xi−T (P̂n)‖

β

)
‖Xi−T (P̂n)‖ , we get an expression of T (P̂n) as a weighted sum:

T (P̂n) =

n∑
i=1

Xi
wi∑n
i=1 wi

.

The weights wi depend on T (P̂n) and the principle of the algorithm is as follows. Initialize θ0

with the coordinate-wise median and iterate the following

w
(m)
i =

βψ
(
‖Xi−θ(m)‖

β

)
‖Xi − θ(m)‖

θ(m+1) =

n∑
i=1

Xi
w

(m)
i∑n

i=1 w
(m)
i

.

We show that this algorithm allows us to find a minimizer of

Zn(θ) =
1

n

n∑
i=1

ρ

(‖Xi − θ‖
β

)
.
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Lemma 26. Assume that ρ is convex, that x 7→ ψ(x)/x is bounded and decreasing, then unless
θ(m) is the minimizer of Zn we have that Zn(θ(m+1)) < Zn(θ(m)).

The proof is provided in Section 4.8.9. Then, from Lemma 26 and as Zn is non-negative, we
have that the sequence Zn(θ(m)) converge to its minimum Zn(T (P̂n)), hence θ(m) converges to
T (P̂n). The Lemma does not provide the number of iterations needed to attain a certain precision;
it only provides the convergence, in practice the algorithm seems to converge in a few iterations.

4.5.2 Choice of β: Lepski’s method

In this section because we will often change the β parameter, we indice the quantities that depend
on a parameter β by this parameter, TH becomes TH,β , ψH becomes ψH,β and VH becomes VH,β .
We define the following quantity

V̂β =
1

n(n− 1)

∑
i6=j

ψH,β(Xi −Xj)
2,

Let B be a finite grid of [0, βmax] where βmax is the solution of β =
√

2nV̂β (this upper bound is

dictated by the theory so as not to lower the rate of convergence of TH,β(P̂n), see equation (4.4.5)).
Define

Îβ(t) =

TH,β(P̂n)− 4

√
V̂βt

n
+

√
2t3/2β2

n3/2
− 4βt

n
− 2σ2

β
, TH,β(P̂n) + 4

√
V̂βt

n
+

√
2t3/2β2

n3/2
+

4βt

n
+

2σ2

β

.
So that

Îβ(t/β2) =

TH,β(P̂n)− 4

√
V̂βt

nβ2
+

√
2t3/2

βn3/2
− 4t

βn
− 2σ2

β
, TH,β(P̂n) + 4

√
V̂βt

nβ2
+

√
2t3/2

βn3/2
+

4t

βn
+

2σ2

β

.
(4.5.1)

and finally define the estimator of β given by

β̂t = max

{
β ∈ B : ∩b∈B

b≤β
Îb(t/b

2) 6= ∅
}

(4.5.2)

We have the following lemma

Lemma 27. Let X1, . . . , Xn be i.i.d from a distribution P and suppose that Assumptions 3 hold,
let β̂t be constructed from equation (4.5.2), then

P

|T̂H,β̂t(P )− E[X]| > inf
β∈B

8

√
V̂βt

β2n
+

√
2t3/2

βn3/2
+

8t

βn
+

2σ2

β

 ≤∑
b∈B

(
4e−t/b

2

+ e−n/8
)

From Lemma 27, we can use β̂t to choose β adaptively. There is still a parameter that has to
be set and that is the value of t. The choice of the parameter t has some impact on the algorithm,
theoretically, a large value of t gets results that are less accurate than for small values but with

116



4.6. NUMERICAL ILLUSTRATIONS

a higher confidence. In numerical applications, we see that a choice of t between 1 and 10 was
suitable for most distributions.

We may use Lepski’s method in a multi-dimensional setting but it would add a lot of
computational time, and the estimation of ‖Σ‖op is not easy and not efficient in practice and
moreover the added complexity would make the algorithm computationally intensive.

4.6 Numerical illustrations

The code for this section can be found on github: https://github.com/TimotheeMathieu/
RobustMeanEstimator/.

4.6.1 Numerical illustration of Lepski’s method in dimension 1

In this section, we apply Lepski’s method to the problem of the estimation of the mean in one
dimension. If we look carefully at the proof of Lemma 27 and Lemma 13, we see that in fact the
term σ2/β is not optimal as soon as the distribution has more than 2 moments and in fact in
practice, we witnessed that it is much more efficient to use

Ĩβ(t/β2) =

TH,β(P̂n)− 4

√
V̂βt

nβ2
+

√
2t3/2

βn3/2
− 4t

βn
, TH,β(P̂n) + 4

√
V̂βt

nβ2
+

√
2t3/2

βn3/2
+

4t

βn

,
instead of Îβ(t/β) defined in equation (4.5.1). Although Lemma 27 does not use these intervals, in
fact we can see (using the results from Lemma 21) that the bias term σ2/β is negligible compared
to the other terms for a large choice of β and in practice this is much more efficient.

To compute the estimator T (P̂n) we use an iterated reweighting algorithm (see Section 4.5.1),
we use a grid B of 50 points linearly spaced in [0, βmax] (βmax is computed using newton algorithm).
We use simulated examples so that we can sample at will from the initial distribution and use
Monte-Carlo simulation. We consider 3 datasets:

• Dataset 1: X1, . . . , Xn are i.i.d from a Pareto distribution with shape parameter 10 and
scale parameter 1.

• Dataset 2: X1, . . . , Xn are i.i.d from a Pareto distribution with shape parameter 3 and
scale parameter 1.

• Dataset 3: X1, . . . , Xn are i.i.d from a mildly corrupted Pareto distribution with shape
parameter 5 and scale parameter 1: Xi ∼ (1− ε)Pareto(5, 1) + εδ3, ε = 0.05.

• Dataset 4: X1, . . . , Xn are i.i.d from a highly corrupted Pareto distribution with shape
parameter 5 and scale parameter 1: Xi ∼ (1− ε)Pareto(5, 1) + εδ10, ε = 0.05

The different datasets represent respectively a light-tailed dataset, a heavy-tailed dataset, a
dataset with mild corruption and a dataset with heavy corruption. Figure 4.1 show the intervals
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Figure 4.1: Plot of the intervals Iβ(t/β) for β in B.

Iβ(t/β) for β ∈ B and t = 5. As expected the intervals will quickly have an empty intersection on
corrupted datasets (Datasets 3 and 4) whereas on non-corrupted data sets the value of β chosen
by the procedure will be much larger and it even attain the upper bound of βmax in Dataset 1.

Let n = 100,M = 500 and we sample (Xi,j) 1≤i≤n
1≤j≤M

i.i.d from one of the four datasets and on

each sample we compute the absolute deviation from the theoretical mean∣∣∣∣∣T
(

1

n

n∑
i=1

δXi,j

)
− µ

∣∣∣∣∣,
where µ is the expectation if the dataset is not corrupted (Dataset 1 and 2) and µ is the expectation
of the inliers when the dataset is corrupted (Dataset 3 and 4). Figure 4.2 summarizes these
results using boxplots. The Benchmark estimator is Huber estimator where β is selected using
a grid search (this is an oracle estimator normally not accessible to the statistician if we can’t
simulate according to the estimator and if we don’t know the theoretical mean), lepski estimators
are Huber estimators where β is tuned as described before. In Figure 4.2 we see that we can’t
use a value of t that is good for all the examples, if the corruption is very high a small value of
t is preferable and if the dataset is not corrupted a high value of t may be more efficient. We
may think that this procedure is not useful as we still have a parameter to choose but experience
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shows that t is much easier to tune than β.
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Figure 4.2: Boxplots of the MAE of the median and of Huber estimator with β chosen with grid
search (benchmark) and Huber estimator with β chosen using Lepski’s method (for t ∈ {0.1, 1, 5}).
MAE stands for mean absolute error.

4.6.2 Numerical illustration in dimension d > 1

In this section, we apply our algorithm in a high dimensional setting up to d = 10 000. We
consider two datasets, first is a multivariate Gaussian Dataset with outliers and second is a
skewed, heavy-tailed and corrupted dataset. In this section, all the data is simulated and the
parameters β and K are tuned to minimize the error (we used additional simulations of the
dataset to tune the parameters).

Dataset 5. In this dataset, we consider X1, . . . , Xn−5 i.i.d from a standard normal and
Xn−4, . . . , Xn i.i.d from N (10 · 1, Id) with n = 50 and 1 the vector with all the coordinates set to
1. We plot the distance of T (P̂n) to 0 as a function of the dimension d. For comparison purposes,
we also plot Hanson-Wright bound which is here

√
2d/n+ 9t/n where t = log(1/0.05) is chosen

to get a 95% confidence into Hanson-Wright inequality. The result is provided in Figure 4.3.
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Also included in Figure 4.3 is a plot of the computation time on a i9 CPU (Intel(R) Core(TM)
i9-9980HK CPU @ 2.40GHz).
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Figure 4.3: In Figure 4.3a: plot of the error ‖T (P̂n) − E[X]‖ for one different sample for each
point as a function of the dimension d and Hanson-Wright bound. Figure 4.3b: plot of the mean
computation time in second on 100 runs on Dataset 5.

Figure 4.3a shows that the error evolves similarly to Hanson-Wright inequality which confirms
that the estimator is minimax in this context. Figure 4.3b show the computation time of the
algorithm which is rather fast, even in dimension d = 10 000, and although the theory does not
assure convergence in a few steps, the plot seems to indicate that the algorithm converges in a
few steps in practice and that the complexity is linear in d.

Dataset 6. In this dataset, we consider X1, . . . , Xn−5 i.i.d from a mixture of two multivariate
student distributions. X ∼ 0.6t6(0,Σ) + 0.4t6(0.3 · 1,Σ) where tν(µ,Σ) is a multivariate t
distribution with ν degree of freedom and parameters (µ,Σ). Σ has been sampled from an
inverse Wishart distribution, its trace (on this example) is Tr(Σ) ' 0.99 and its operator norm is
‖Σ‖op ' 0.03. The mean of this distribution is (0.4× 0.3) · 1. Finally, Xn−4, . . . , Xn are outliers
sampled from N (10 · 1, Id). The dimension d = 200 and the number of points is n = 100.

Figure 4.4 represents the first two coordinates of one sample dataset and a zoom on the
inliers. To measure the performance of an estimator, as previously, we will look at the distance (in
euclidean norm) to the mean of the inliers over M = 30 runs, the result is presented in Figure 4.5,
the estimators considered are the empirical mean, the coordinate-wise median, Huber’s estimator
and HOME.

In Figure 4.5 we see that the empirical mean performs worst on this task, this is not surprising
because it is the only non-robust estimator. Then, the coordinate-wise median comes second
because of its large bias. Finally, HOME is a little bit better than Huber’s estimator which is
within expectation because the dataset is skewed and Heavy-tailed which favors HOME as said
in Section 4.4.4. We can’t really compare to Hanson-Wright inequality because we are not in a
Gaussian setting, on the other hand, we can compute what is the error of the empirical mean
computed only on the inliers because we know which points are the inliers. Doing this, we obtain
an MAE ' −2.2 hence our estimator seems to attain what was announced which is to be as good
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Figure 4.4: Plot of the first two coordinates of one realization of Dataset 6.

as the empirical mean would be if the data were not corrupted.

4.7 Proof of Theorems

4.7.1 Proof of Theorem 26

The function θ 7→ Zβ(θ) is differentiable and by the mean value theorem, we have

‖Zβ(E[X])− Zβ(T (P ))‖ ≥ ‖E[X]− T (P )‖ inf
t∈[0,1]

‖Jac(Zβ)(tE[X] + (1− t)T (P ))‖op (4.7.1)

Where Jac denotes the Jacobian matrix that we control with the following lemma.

Lemma 28. Let u ∈ Sd−1 and θ ∈ Rd,

uTJac(Zβ)(θ)u ≤ −E
[
ψ′
(∥∥∥∥X − θβ

∥∥∥∥)]

Proof.

Jac(Zβ)(θ) =− E
[
β

Id
‖X − θ‖ψ

(∥∥∥∥X − θβ

∥∥∥∥)]+ E
[
β

(X − θ)(X − θ)T
‖X − θ‖3 ψ

(∥∥∥∥X − θβ

∥∥∥∥)]
− E

[
(X − θ)(X − θ)T
‖X − θ‖2 ψ′

(∥∥∥∥X − θβ

∥∥∥∥)]
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Figure 4.5: Boxplots of the performance of different estimators on Dataset 6. MAE stands for
mean absolute error.

Then, for all u ∈ Sd−1,

uTJac(Zβ)(θ)u =− E
[
β

uTu

‖X − θ‖ψ
(∥∥∥∥X − θβ

∥∥∥∥)]+ E
[
β
uT (X − θ)(X − θ)Tu

‖X − θ‖3 ψ

(∥∥∥∥X − θβ

∥∥∥∥)]
− E

[
uT (X − θ)(X − θ)Tu

‖X − θ‖2 ψ′
(∥∥∥∥X − θβ

∥∥∥∥)]
=− E

[
β

1− 〈 X−θ
‖X−θ‖ , u〉2

‖X − θ‖ ψ

(∥∥∥∥X − θβ

∥∥∥∥)
]
− E

[ 〈X − θ, u〉2
‖X − θ‖2 ψ′

(∥∥∥∥X − θβ

∥∥∥∥)]
then, because ψ is concave and ψ(0) = 0, we have that ∀y ≥ 0, ψ(y) ≥ yψ′(y) and by Cauchy-

Schwarz inequality we have that 1−
〈

X−θ
‖X−θ‖ , u

〉2

≥ 0. Hence,

uTJac(Zβ)(θ)u ≤− E

[(
1−

〈
X − θ
‖X − θ‖ , u

〉2
)
ψ′
(∥∥∥∥X − θβ

∥∥∥∥)
]
− E

[ 〈X − θ, u〉2
‖X − θ‖2 ψ′

(∥∥∥∥X − θβ

∥∥∥∥)]
= −E

[
ψ′
(∥∥∥∥X − θβ

∥∥∥∥)]

Hence, for all u ∈ Sd−1 and θ ∈ Rd, because ψ′(x) ≥ 0 for x ≥ 0,

|uTJac(Zβ)(θ)u| ≥ E
[
ψ′
(∥∥∥∥X − θβ

∥∥∥∥)],
which implies

‖Jac(Zβ)(θ)‖op ≥ E
[
ψ′
(∥∥∥∥X − θβ

∥∥∥∥)].
Then, by assumption on ψ,

‖Jac(Zβ)(θ)‖op ≥ γP(‖X − θ‖ ≤ β)
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Hence, for all t ∈ [0, 1],

‖Jac(Zβ)(tE[X] + (1− t)T (P ))‖op ≥ γP(‖X − tE[X]− (1− t)T (P )‖ ≤ β)

≥ γP(‖X − T (P )‖ ≤ β − ‖E[X]− T (P )‖)

Then, use the following lemma proven in Section 4.8.11.

Lemma 29. If ρ(1/3) ≥ E[ρ(‖X − E[X]‖/β)], then ‖E[X]− T (P )‖ ≤ β
3 .

We get,

‖Jac(Zβ)(tE[X] + (1− t)T (P ))‖op ≥ γP(‖X − T (P )‖ ≤ 2β/3)

= γP
(
ρ

(‖X − T (P )‖
β

)
≤ ρ(2/3)

)
≥ γP

(
ρ

(‖X − T (P )‖
β

)
≤ 2ρ(1/3)

)

because ρ is increasing and super-additive on R+ (ρ is increasing because ψ(0) = 0 and ψ is
non-decreasing because ψ′ ≥ 0, hence ψ = ρ′ ≥ 0). Hence, by Markov’s inequality and using the
hypothesis,

‖Jac(Zβ)(tE[X] + (1− t)T (P ))‖op ≥ γ

1−
E
[
ρ
(
‖X−T (P )‖

β

)]
2ρ(1/3)

 ≥ γ

2

Then, from equation (4.7.1), we get the result

For the inequality in the other direction, write that by mean value theorem,

‖Zβ(E[X])− Zβ(T (P ))‖ ≤ ‖E[X]− T (P )‖ sup
t∈[0,1]

‖Jac(Zβ(tE[X] + (1− t)T (P )))‖op (4.7.2)

In proof of Lemma 28 we showed that for all u ∈ Sd,

|uTJac(Zβ)(θ)u| =
∣∣∣∣∣−E

[
β

1− 〈 X−θ
‖X−θ‖ , u〉2

‖X − θ‖ ψ

(∥∥∥∥X − θβ

∥∥∥∥)
]
− E

[ 〈X − θ, u〉2
‖X − θ‖2 ψ′

(∥∥∥∥X − θβ

∥∥∥∥)]
∣∣∣∣∣

hence, by triangular inequality, and Cauchy-Schwarz inequality,

|uTJac(Zβ)(θ)u| ≤E
[
β

2

‖X − θ‖ψ
(∥∥∥∥X − θβ

∥∥∥∥)]+ E
[
ψ′
(∥∥∥∥X − θβ

∥∥∥∥)]
and finally, using that ψ′ ≤ 1 and hence ψ is 1-Lipshitz and ψ(0) = 0, for all u ∈ Sd−1,

|uTJac(Zβ)(θ)u| ≤ 3

which prove the result by injecting this equation in equation (4.7.2).
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4.7.2 Proof of Theorem 27

From Lemma 23, if 8(VH + εβ2) ≤ β2 < ∞ and E[‖X − TH(P )‖] ≤ β/4, E[‖X‖q] < ∞ and
Assumptions 3 are satisfied, then there exists an absolute constant C > 0 such that, for all
λ ∈ (0, λmax), with probability larger than 1− 4 exp(−λ)− exp(−n/8),

∥∥∥E[X]− TH(P̂n)
∥∥∥ ≤ 6

√
Tr(Σ)

n
+ 8

√
‖Σ‖opλ
n

+

√
εβ√
n

(
1 +
√
λ
)

+
C

n
λβ+ 4βε+

E[‖X − E[X]‖q]
(q − 1)βq−1

.

(4.7.3)
using the sub-linearity of the square root and Lemma 15.

Denote Rλ =
√

Tr(Σ)
n +

√
‖Σ‖opλ

n , M =

√
Tr(Σ)

E[‖X−E[X]‖q ]1/q and choose

β =

(
E[‖X − E[X]‖q]√n√

Tr(Σ)

)1/(q−1)

= E[‖X − E[X]‖q]1/q
(√

n

M

) 1
q−1

.

Then

∥∥∥E[X]− TH(P̂n)
∥∥∥ . Rλ

 1√
n

+

√
ε
(

1 +
√
λ
)
n

1
2(q−1)

M1+ 1
q−1
√
n

+
λn

1
2(q−1)

M1+ 1
q−1n

+
n

1
2(q−1) ε

M1+ 1
q−1

. (4.7.4)

Then, we proceed in two parts.
First part: if ε1−1/q . M√

n
.

From equation (4.7.4),

∥∥∥E[X]− TH(P̂n)
∥∥∥ . Rλ

 1√
n

+
M

q
2(q−1)

(
1 +
√
λ
)

M
q
q−1n

1
2− 1

2(q−1)
+ q

4(q−1)

+
λ

M
q
q−1n

2q−3
2q−2

. (4.7.5)

Which simplifies in

∥∥∥E[X]− TH(P̂n)
∥∥∥ .

Rλ√
n

1 +

(
1 +
√
λ
)

M
q

2(q−1)n
q−2

4(q−1)

+
λ

M
q
q−1n

q−2
2q−2

. (4.7.6)

Second part: if M√
n
. ε1−1/q.

∥∥∥E[X]− TH(P̂n)
∥∥∥ . Rλ

ε1−1/q

M
+
ε

1
2 + q−1

q − 1
q

(
1 +
√
λ
)

M2
+
λε2 q−1

q

ε1/qM3

 (4.7.7)

=
Rλ
M
ε1−1/q

1 +
ε

1
2− 1

q

(
1 +
√
λ
)

M
+
λε1− 2

q

M2

 (4.7.8)

(4.7.9)
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Now, we simplify the conditions. The first condition is 8(VH + εβ2) ≤ β2, which is implied,
with our choice of β and using Lemma 15, to

8Tr(Σ) ≤ (1− 8ε)

(
E[‖X − E[X]‖q]√n√

Tr(Σ)

)2/(q−1)

.

Then, use that ε ≤ 1/16 and isolate n to get the form used in the lemma. The condition on λmax
is under the form √

VH
n

+

√
vHλmax

n
+

√
ε√
n

(
1 +

√
λmax

)
β +

C

n
λmaxβ .

β

2
.

then, because β ≥ E[‖X − E[X]‖q]1/qn1/(2(q−1)), this condition can be simplified√
VH
n

+

√
vHλmax

n
+

√
ε√

n
q−2
q−1

(
1 +

√
λmax

)
E[‖X−E[X]‖q]1/q +

C

n
2q−3
2q−2

λmaxE[‖X−E[X]‖q]1/q

.
E[‖X − E[X]‖q]1/qn1/(2(q−1))

2
. (4.7.10)

which is verified as long as λmax . n.

4.8 Proofs of the lemmas

4.8.1 Proof of Lemma 12

We compute Zβ . For all θ ∈ R,

Zβ(θ) = E[(X − θ)1{|X − θ| ≤ β}] + βP(X − θ > β)

= α

∫ θ+β

1

x− θ
xα+1

dx+
β

(θ + β)α

= α

([
1

(α− 1)xα−1
− θ

αxα

]θ+β
1

)
+

β

(θ + β)α

= α

(
1

(α− 1)(θ + β)α−1
− θ

α(θ + β)α
− 1

α− 1
+
θ

α

)
+

β

(θ + β)α

Then, Zβ(E[X]) = Zβ(α/(α− 1))

Zβ(E[X]) = α

(
1

(α− 1)(α/(α− 1) + β)α−1
− 1

(α− 1)(α/(α− 1) + β)α

)
+

β

(α/(α− 1) + β)α

=
α

(α− 1)(α/(α− 1) + β)α−1

(
1− 1

(α/(α− 1) + β)

)
+

β

(α/(α− 1) + β)α

When β gets large, we have Zβ(E[X]) = O(1/βα−1). Hence by Theorem 26 (because ψH satisfies
Assumptions 3), the bias is |E[X]− T (P )| = O(1/βα−1).
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4.8.2 Proof of Lemma 13

From Theorem 26 we only need to control Zβ(E[X]). We have,

Zβ(E[X]) = E
[
β

(X − E[X])

‖X − E[X]‖ψ
(∥∥∥∥X − E[X]

β

∥∥∥∥)]
= E

[
β

(X − E[X])

‖X − E[X]‖ψ
(∥∥∥∥X − E[X]

β

∥∥∥∥)]− E
[
β

(X − E[X])

‖X − E[X]‖

∥∥∥∥X − E[X]

β

∥∥∥∥]
Hence, by triangular inequality,

‖Zβ(E[X])‖ ≤ βE
[∣∣∣∣ψ(∥∥∥∥X − E[X]

β

∥∥∥∥)− ∥∥∥∥X − E[X]

β

∥∥∥∥∣∣∣∣]
We denote Y = ‖X − E[X]‖/β, we have

‖Zβ(E[X])‖ ≤ βE[|ψ(Y )− Y |] = β

∫
|ψ(y)− y|dFY (y)

= β

∫ ∞
0

(y − ψ(y))dFY (y)

because ψ is 1-Lipshitz and ψ(0) = 0. Then, by integration by part,

‖Zβ(E[X])‖ ≤ β
∫ ∞

0

(1− ψ′(y))(1− FY (y))dy

Until now, the proof was valid for any ψ, for the specific case of Huber score function (see (4.2.2)),
we get that

‖E[X]− TH(P )‖ ≤ 2β

∫ ∞
1

P(‖X − E[X]‖ ≥ βy)dy

Then, use Markov’s inequality,

‖E[X]− TH(P )‖ ≤ 2β

∫ ∞
1

‖X − E[X]‖q
βqyq

dy =
2‖X − E[X]‖q

(q − 1)βq−1
.

4.8.3 Proof of Lemma 14

We have,

Zβ(E[X]) = E
[
X − E[X]

‖X − E[X]‖βψ
(∥∥∥∥X − E[X]

β

∥∥∥∥)]
Then, by Taylor expansion

‖Zβ(E[X])‖ ≤
∥∥∥∥E[ X − E[X]

‖X − E[X]‖β
∥∥∥∥X − E[X]

β

∥∥∥∥]∥∥∥∥+ βE

[
‖ψ(k)‖∞

k!

∥∥∥∥X − E[X]

β

∥∥∥∥k
]

=E
[‖ψ(k)‖∞E[‖X − E[X]‖k]

k!βk−1

]
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which proves the first part of the lemma. In the case of Bernoulli distribution, the result follows
from a Taylor expansion:

Zβ(E[X]) = E
[
sign(X − E[X])βψ

(∣∣∣∣X − E[X]

β

∣∣∣∣)]
= p

(
βψ

(
1− p
β

))
+ (1− p)

(
βψ

(−p
β

))
= pβ

(
1− p
β

+
1

k!
ψ(k)(0)

(1− p)k
βk

+ o

(
1

βk

))
− (1− p)β

(
p

β
+

1

k!
ψ(k)(0)

pk

βk
+ o

(
1

βk

))

4.8.4 Proof of Lemma 15

First, remark that we have for all x ∈ R+, ψ2(x) ≤ 2ρ(x). Indeed, let h(x) = ψ2(x) − 2ρ(x),
its derivative is h′(x) = 2ψ(x)(ψ′(x)− 1) and because ψ′ ≤ 1 and ψ(0) = 0, we get that h is
decreasing, the fact that h(0) = 0 implies that for all x ∈ R+, ψ2(x) ≤ 2ρ(x). Then,

V ≤ 2β2E
[
ρ

(‖X − T (P )‖
β

)]
. (4.8.1)

Define J(θ) = E
[
ρ
(
‖X−θ‖
β

)]
by definition 4.1.1, T (P ) is the minimum of J and by equation (4.8.1),

V ≤ 2β2E
[
ρ

(‖X − E[X]‖
β

)]

Then finally, using that by integration of ψ′ ≤ 1 we have ρ(x) ≤ x2/2, hence the result. Similarly,
note that

v2 = β2 sup
u∈Sd−1

E

[
uT (X − T (P ))(X − T (P ))Tu

‖X − T (P )‖2 ψ

(‖X − T (P )‖
β

)2
]

= β2 sup
u∈Sd−1

E

[
〈u,X − T (P )〉2
‖X − T (P )‖2 ψ

(‖X − T (P )‖
β

)2
]

≤ β2 sup
u∈Sd−1

E
[ 〈u,X − T (P )〉2
‖X − T (P )‖2 2ρ

(‖X − T (P )‖
β

)]
≤ β2 sup

u∈Sd−1

E

[
〈u,X − T (P )〉2
‖X − T (P )‖2

(‖X − T (P )‖
β

)2
]

= sup
u∈Sd−1

E
[
〈u,X − T (P )〉2

]
= sup
u∈Sd−1

E
[
(〈u,X − E[X]〉+ 〈u,E[X]− T (P )〉)2

]
= sup
u∈Sd−1

E
[
〈u,X − E[X]〉2 + 〈u,E[X]− T (P )〉2

]
= ‖Σ‖op + ‖E[X]− T (P )‖2
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4.8.5 Proof of Lemma 16

We have

VH = E

[
β2ψH

(‖X − TH(P )‖
β

)2
]

= E[β2 ∧ (‖X − TH(P )‖)2]

= E[‖X − TH(P )‖2]− E[
(
‖X − TH(P )‖2 + β2

)
1{‖X − TH(P )‖ > β}]

Then, by Hölder inequality,

VH ≥ E[‖X − TH(P )‖2]− E
[(
‖X − TH(P )‖2 + β2

)q]1/qP(‖X − TH(P )‖ > β)
1−1/q (4.8.2)

Then, use the following lemma

Lemma 30. Let Y be a positive real random variable, E[Y q] <∞. We have for all λ > 0,

P(Y ≥ λ) ≤ 2q−1 E[Y q]

λq + E[Y q]

See Section 4.8.12 for the proof. Then, for Y = ‖X − TH(P )‖, we get,

VH ≥ E[‖X−TH(P )‖2]−E
[(
‖X − TH(P )‖2 + β2

)q]1/q(
22q−1 E

[
‖X − TH(P )‖2q

]
E[‖X − TH(P )‖2q] + β2q

)1−1/q

.

Use the fact that (a+ b)q ≤ 2q−1(aq + bq),

VH ≥ E[‖X − TH(P )‖2]− 2(q−1)/q+(2q−1)(1−1/q) E
[
‖X − TH(P )‖2q

]1−1/q

(E[‖X − TH(P )‖2q] + β2q)
1−2/q

≥ E[‖X − TH(P )‖2]− 22q E
[
‖X − TH(P )‖2q

]1−1/q

(E[‖X − TH(P )‖2q] + β2q)
1−2/q

And finally, because E[X] is the minimizer of the quadratic loss,

VH ≥ E[‖X − E[X]‖2]− 4q
E
[
‖X − TH(P )‖2q

]1−1/q

(E[‖X − TH(P )‖2q] + β2q)
1−2/q

.

Then, we operate the same manner for the bound on vH . We have,

vH = sup
u∈Sd−1

E
[ 〈u,X − TH(P )〉2
‖X − TH(P )‖2

(
β2 ∧ (‖X − TH(P )‖)2

)]
= sup
u∈Sd−1

E
[
〈u,X − TH(P )〉2

]
− E

[ 〈u,X − TH(P )〉2
‖X − TH(P )‖2

(
β2 − (‖X − TH(P )‖)2

)
1{‖X − TH(P )‖ ≥ β}

]
Then, use Cauchy-Schwarz inequality,

vH ≥ sup
u∈Sd−1

E
[
〈u,X − TH(P )〉2

]
− E

[(
β2 − (‖X − TH(P )‖)2

)
1{‖X − TH(P )‖ ≥ β}

]
≥ sup
u∈Sd−1

E
[
〈u,X − E[X]〉2

]
+ 〈u,E[X]− TH(P )〉2 − E

[(
β2 − (‖X − TH(P )‖)2

)
1{‖X − TH(P )‖ ≥ β}

]
≥ sup
u∈Sd−1

E
[
〈u,X − E[X]〉2

]
− E

[(
β2 − (‖X − TH(P )‖)2

)
1{‖X − TH(P )‖ ≥ β}

]
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Then, use the same reasoning as for the bound on VH to conclude that

vH ≥ ‖Σ‖op − 4q
E
[
‖X − TH(P )‖2q

]1−1/q

(E[‖X − TH(P )‖2q] + β2q)
1−2/q

4.8.6 Proof of Lemma 22

Let

ZP (θ) = EP
[
X − θ
‖X − θ‖ψH

(‖X − θ‖
β

)]
.

We have that, for all u ∈ Sd−1 and C > 0,

〈ZPε(TH(P ) + Cu), u〉 = (1− ε)〈ZP (TH(P ) + Cu), u〉+ ε〈ZQ(TH(P ) + Cu), u〉

then, by Cauchy-Schartz inequality,

〈ZPε(TH(P ) + Cu), u〉 ≤ (1− ε)〈ZP (TH(P ) + Cu), u〉+ εβ. (4.8.3)

Use Taylor inequality on the function f : t 7→ 〈ZP (TH(P ) + tCu), u〉, we have

〈ZP (TH(P ) + Cu), u〉 ≤ C sup
t∈[0,1]

uTJac(ZP )(tTH(P ) + (1− t)(TH(P ) + Cu))u

= C sup
t∈[0,1]

uTJac(ZP )(TH(P ) + (1− t)Cu)u,

where we used that ZP (TH(P )) = 0. But, from the lemma 28,

uTJac(ZP )(θ)u ≤ −E
[
ψ′H

(∥∥∥∥X − θβ

∥∥∥∥)] = −P(‖X − θ‖ ≤ β)

Hence,

〈ZP (TH(P ) + Cu), u〉 ≤ −C inf
t∈[0,1]

P(‖X − TH(P )− (1− t)Cu‖ ≤ β)

≤ −CP(‖X − TH(P )‖ ≤ β − C)

≤ −CP(ψH(‖X − TH(P )‖) ≤ ψH(β − C))

≤ −C
(

1− VH
(β − C)2

)
Take C = 4εβ,

〈ZP (TH(P ) + Cu), u〉 ≤ −4εβ

(
1− VH

β2(1− 4ε)2

)
and given the hypothesis that ε ≤ εmax ≤ 1/8, we get

〈ZP (TH(P ) + Cu), u〉 ≤ −4εβ

(
1− 4VH

β2

)
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then, because 4VH ≤ β2/2, we get that 〈ZPε(TH(P ) + Cu), u〉 ≤ −2εβ. Then, from equa-
tion (4.8.3),

〈ZPε(TH(P ) + Cu), u〉 ≤ −(1− ε)2εβ + εβ ≤ −
(

1− 1

8

)
2εβ + εβ < 0. (4.8.4)

Now, let fu : λ 7→ 〈ZPε(TH(P ) + λu), u〉. For all λ ∈ R, we have

f ′u(λ) = (1− ε)uTJac(ZP )(TH(P ) + λu)u+ εuTJac(ZH)(TH(P ) + λu)u.

Then, using Lemma 28, we have that both jacobian matrices are non-positive and hence f ′u is
non-positive. which proves that fu is non-increasing. Then, as fu(〈TH(P ) − TH(Pε), u〉) = 0,
equation (4.8.4) translates in fu(C) ≤ fu(〈TH(P ) − TH(Pε), u〉), which implies because fu is
non-increasing that

C = 4εβ ≥ 〈TH(P )− TH(Pε), u〉.
This is valid for any u ∈ Sd−1, hence

‖TH(P )− TH(Pε)‖ ≤ 4εβ

4.8.7 Proof of Lemma 24

Using Lemma 13, we have

‖E[X]− TH(PB)‖ ≤
2E
[∥∥∥ 1

b

∑b
i=1Xi − E[X]

∥∥∥q]
(q − 1)βq−1

.

We only have to control the numerator. Then, use a bound on the moments of a sum of i.i.d
random variables found [DG12, Theorem 1.2.5], which says that there exists an absolute constant
K > 0 such that

E

[∥∥∥∥∥
b∑
i=1

Xi − E[X]

∥∥∥∥∥
q]1/q

≤ Kq

E

∥∥∥∥∥
b∑
i=1

Xi − E[X]

∥∥∥∥∥
2
1/2

+ E
[

max
1≤i≤b

‖Xi − E[X]‖q
]1/q


(4.8.5)

Let ε1, . . . , εn denote i.i.d Rademacher random variable independents from Y1, . . . , Yn. By the
symmetrization lemma (see [DG12, Lemma 1.2.6]),

E

∥∥∥∥∥
b∑
i=1

Xi − E[X]

∥∥∥∥∥
2
 ≤ 4E

∥∥∥∥∥
b∑
i=1

εiXi

∥∥∥∥∥
2
 = 4E

[
b∑
i=1

‖Xi‖2
]

= 4bE[‖X‖2] = 4bTr(Σ).

Then, inject this equation in equation (4.8.6)

E

[∥∥∥∥∥
b∑
i=1

Xi − E[X]

∥∥∥∥∥
q]1/q

≤ Kq
(

2
√
bTr(Σ) + E

[
max
1≤i≤b

‖Xi − E[X]‖q
]1/q

)
(4.8.6)

≤ Kq

2
√
bTr(Σ) + E

[
b∑
i=1

‖Xi − E[X]‖q
]1/q

 (4.8.7)

= Kq
(

2
√
bTr(Σ) + b1/qE[‖X − E[X]‖q]1/q

)
. (4.8.8)

Hence the result.
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4.8.8 Proof of Lemma 25

from Lemma 20, Lemma 15 and Lemma 24, if β2 ≥ 8Tr(Σ)/b, then there exist absolute constants
C,C ′ > 0 such that, for all λ ∈ (0, λmax), with probability larger than 1−4 exp(−λ)−exp(−K/8),

‖HOMEK(Xn
1 )− E[X]‖ ≤ 6

√
Tr(Σ)√
n

+8

√
‖Σ‖op

λ

n
+
C

K
λβ+C ′qqq

(√
bTr(Σ) + b1/qE[‖Xi − E[X]‖q]1/q

)q
(q − 1)bqβq−1

.

(4.8.9)
where λmax is such that

3
√
Tr(Σ)

2
√
n

+ 2

√
‖Σ‖op

λmax

n
+
C

K
λmaxβ ≤

β

2
.

Using the same reasoning used to simplify this condition under Lemma 21, the condition on λmax
is implied by

3

2
√
n

+ 2

√
λmax

n
+
C

K
λmax

β√
Tr(Σ)

≤ β

2
√
Tr(Σ)

.

Choose β = C ′
q
q−1 q

q
q−1 b−

q
2(q−1)

(√
Tr(Σ) + b

1
q− 1

2E[‖Xi − E[X]‖q]1/q
) q
q−1
(

n
Tr(Σ)

) 1
2(q−1)

. Then,
inject this in equation (4.8.9), there exists a constant C > 0 such that

‖HOMEK(Xn
1 )− E[X]‖ ≤ 12

√
Tr(Σ)√
n

+ 16

√
‖Σ‖op

λ

n

+
Cλq

q
q−1

K1− q
2q−2
√
n

(√
Tr(Σ) +K

1
2− 1

q
E[‖Xi − E[X]‖q]1/q

n
1
2− 1

q

) q
q−1(

1

Tr(Σ)

) 1
2(q−1)

. (4.8.10)

which implies

‖HOMEK(Xn
1 )− E[X]‖ ≤ 12

√
Tr(Σ)√
n

+ 16

√
‖Σ‖op

λ

n

+
Cλq

q
q−1

√
n

(√
Tr(Σ)

K
q−2
2q

+K
1
2q
E[‖Xi − E[X]‖q]1/q

n
1
2− 1

q

) q
q−1(

1

Tr(Σ)

) 1
2(q−1)

. (4.8.11)

Finally let us simplify the condition on λmax. We have

β√
Tr(Σ)

= C ′
q
q−1 q

q
q−1

√
n

K1− 1
2(q−1)

(
1 +

E[‖Xi − E[X]‖q]1/q

b
1
2− 1

q

√
Tr(Σ)

) q
q−1

≥ C ′q
√
n

K1− 1
2(q−1)

.

Then, the condition

3

2
√
n

+ 2

√
λmax

n
+
C

K
λmax

β√
Tr(Σ)

≤ β

2
√
Tr(Σ)

,

is implied by
3

2
√
n

+ 2

√
λmax

n
+
λmax
K

C ′′
√
n

K1− 1
2(q−1)

≤ C ′q
√
n

K1− 1
2(q−1)

,

for some absolute constant C ′′ > 0.
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4.8.9 Proof of Lemma 26

The proof is derived from the proof of iterative reweighting algorithm for regression found in [HR09,
Section 7.8] and surprisingly we don’t need to change anything in the proof. We only need to
check that it works also for our setting. We remind here the proof for completeness purpose.

Define

U(θ) =
1

n

n∑
i=1

Ui

(‖Xi − θ‖
β

)
, (4.8.12)

where Ui(x) = ai + 1
2bix

2 with ai, bi ∈ R such that, for all 1 ≤ i ≤ n,

Ui(ri) ≥ ρ(ri) and Ui(ri) = ρ(ri) (4.8.13)

with ri = ‖Xi − θ(m)‖/β, see Figure 4.6. Equation (4.8.13) implies that Ui and ρ have the same

ri

rho

Ui

Figure 4.6: Comparison function for proof of convergence

tangent at ri:
U ′i(ri) = biri = ψ(ri). (4.8.14)

Hence,

wi =
ψ(ri)

ri
= bi,

and
ai = ρ(ri)−

1

2
riψ(ri).
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Let us check that equation (4.8.13) holds. Let for x ≥ 0,

zi(x) = Ui(x)− ρ(x) = ρ(ri)−
1

2
riψ(ri) +

ψ(ri)

2ri
x2 − ρ(x).

We have that z satisfies
zi(ri) = 0 and z′i(ri) = 0

and

z′i(x) =
ψ(ri)

ri
x− ψ(x).

Then, since x 7→ ψ(x)/x is decreasing for x > 0, this implies for 0 ≤ x ≤ ri, z′i(x) ≤ 0 and for
x ≥ ri, z′i(x) ≥ 0. Hence, zi(x) ≥ zi(ri) = 0 which proves that U verifies equations (4.8.13).

Now, rewriting equation (4.8.12) using equation (4.8.14),

U(θ) =
1

n

n∑
i=1

(
wi
2

(‖Xi − θ‖
β

)2

+ ρ(ri)−
1

2
riψ(ri)

)
.

U is a strictly convex function and its minimum is found in θ = θ(m+1). This proves that if θ(m)

does not realize the minimum of U, then

U(θ(m+1)) < U(θ(m)) =
1

n

n∑
i=1

Ui(ri).

Hence, Zn(θ(m+1)) ≤ U(θ(m+1)) <
∑n
i=1 ρ(ri) = Zn(θ(m)) except if θ(m) realizes the minimum of

Zn in which case θ(m) = θ(m+1).

4.8.10 Proof of Lemma 27

To prove the lemma, the goal is to use Theorem 18 in Section 2.5 of [Ler19] that we recall here.

Theorem 28. Let µ ∈ R, assume that, for any β in a finite set B ⊂ R, there exists a confidence
interval Îβ such that

• for any β, β′ ∈ B such that β ≤ β′, |Îβ | ≥ |Îβ′ |,

• P
(
µ ∈ Îβ

)
≥ 1− αβ

Then, if one defines
β̂ = min{β ∈ B : ∩b∈B

b≤β
Îb 6= ∅}, and µ̂ ∈ Îβ̂

we have,

∀β ∈ B, P
(
|µ̂− µ| > 2|Îβ |

)
≤
∑
b∈B
b≤β

αb
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ψH,β is sub-additive, thus we have,

VH,β = E
[
(ψH,β(X − T (P ))− E[ψH,β(X ′ − T (P ))])

2
]
≤ E

[
(E[ψH,β(X −X ′)|X])

2
]
,

where X and X ′ are independent and with the same law. Then, by Jensen’s inequality VH,β ≤
E[ψH,β(X −X ′)2] which we estimate using the U-Statistic

V̂β =
1

n(n− 1)

∑
i6=j

ψH,β(Xi −Xj)
2.

Then, we verify that for any β, β′ in B, β ≥ β′, we have that

|Ĩβ(t/β)| ≤ |Ĩβ′(t/β′)|

because V̂β/β2 = 1
n(n−1)

∑
i 6=j 1 ∧ (Xi−Xj)2

β2 is a non-decreasing function of β, this is the first

hypothesis of Theorem 28 with Îβ = Ĩβ(t/β2). Now we have to bound P(µ /∈ Ĩβ(t)). First, by an
equivalent of Hoeffding’s inequality for U-Statistics (see Theorem 8.1.1 in [KB13]), because ψH is
bounded by β, we have

P

(
|V̂β − E[ψH(X −X ′)2]| >

√
tβ2√

2bn/2c

)
≤ 2e−t

which implies

P

(
|V̂β − E[ψH(X −X ′)2]| >

√
tβ2√
n/2

)
≤ 2e−t

Then, with probability greater than 1− 4e−t − e−n/8, we have

|TH(P̂n)− TH(P )| ≤ 4

√
V̂βt

n
+

√
2t3/2β2

n3/2
+

4βt

n

and taking the bound on the bias into account, this translates in P(E[X] ∈ Ĩβ(t)) ≥ 1−4e−t−e−n/8,
hence,

P
(
E[X] ∈ Ĩβ

(
t/β2

))
≥ 1− 4e−t/β

2 − e−n/8.

Then, by Theorem 28, we have for all β ∈ B,

P

|T̂H,β̃(P )− E[X]| > 8

√
V̂βt

β2n
+

√
2t3/2

βn3/2
+

8t

βn
+

2σ2

β

 ≤∑
β∈B
b≤β

(
4e−t/β

2

+ e−n/8
)

4.8.11 Proof of Lemma 29

ρ is convex because ρ′′ = ψ′ ≥ 0 and it is increasing because ψ = ρ′ ≥ 0 (ψ(0) = 0 and ψ
increasing). Then, from triangular inequality and Jensen’s inequality, we have

ρ

(‖E[X]− T (P )‖
β

)
≤ ρ
(
E[‖X − T (P )‖]

β

)
≤ E

[
ρ

(‖X − T (P )‖
β

)]
.
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By definition of T (P ), it is a minimizer of θ 7→ E
[
ρ
(
‖X−θ‖
β

)]
, hence,

ρ

(‖E[X]− T (P )‖
β

)
≤ E

[
ρ

(‖X − E[X]‖
β

)]
then, use the hypothesis to upper bound the right-hand side by ρ(1/3), we get

ρ

(‖E[X]− T (P )‖
β

)
≤ ρ(1/3).

Finally, because ρ is non-decreasing on R+ (its derivative is non-negative), we get the result.

4.8.12 Proof of Lemma 30

We have for all u, λ > 0,

P(Y ≥ λ) = P((Y + u)q ≥ (λ+ u)q)

≤ E[(Y + u)q]

(λ+ u)q
≤ E[(Y + u)q]

(λq/2 + uq/2)2

Then, use that by convexity of the qth-power function, (a + b)q ≤ 2q−1(aq + bq) and also
(a+ b)q ≥ aq + bq,

P(Y ≥ λ) ≤ 2q−1 E[Y q + uq]

(λq/2 + uq/2)2

Take u = E[Y q]2/q/λ,

P(Y ≥ λ) ≤ 2q−1E[Y q] + E[Y q ]2

λq

λq(1 + E[Y q ]
λq )2

= 2q−1 E[Y q]

λq(1 + E[Y q ]
λq )

= 2q−1 E[Y q]

λq + E[Y q]

4.9 Addendum: towards a faster estimator

As said in Section 4.4.3, TH(P̂n) is not minimax because its deviations are of the type∥∥∥E[X]− TH(P̂n)
∥∥∥ .

√
Tr(Σ) +

√
‖Σ‖opλ√

n

∨
E[‖X − E[X]‖q]1/qε1−1/q, (4.9.1)

and we know that there are estimators that achieve on a Gaussian dataset∥∥∥E[X]− T (P̂n)
∥∥∥ .

√
Tr(Σ) +

√
‖Σ‖opλ√

n

∨
ε
√
‖Σ‖op, (4.9.2)

which can be a lot tighter (see [CGR+18]). In practice, we can see that indeed, our estimator
achieves (4.9.1) and that this bound is tight. In this section, we propose an algorithm and we
conjecture that this estimator follows a bound of the type (4.9.2), we only test empirically and
we don’t give any theoretical proof of this fact.
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Estimator ε = 0.1 ε = 0.2 slope between ε = 0.2 and ε = 0.1
Same β for all coordinates 0.10 0.24 1.4

Different β for each coordinates 0.28 0.56 2.6

Figure 4.7: Results of the experience. Given equations (4.9.2) and (4.9.1), we can expect an error
on these numbers of at most

√
Tr(Σ)/n ' 0.02 (when doing several times the experiment we

indeed observe this error) which may change the results a bit but will not change the conclusion.

The estimator: we propose to use the estimator Tn which corresponds to TB(Xn
1 ) =

T (X1B
−1, . . . , XnB

−1)B where B is an invertible parameter matrix of size d× d. For now, we
restrict ourselves to diagonal B matrices. This is an extension of what has been done in this
article where B was a constant times the identity matrix.

To choose B, we use a gradient descent on a bootstrap estimation of the variance: for M
bootstrap samples (X∗i,j)1≤i≤n,1≤j≤M

Vboot =
1

M

M∑
j=1

∥∥∥∥∥∥TB((X∗i,j)1≤i≤n)− 1

M

M∑
j=1

TB((X∗i,j)1≤i≤n)

∥∥∥∥∥∥
2

.

The bootstrap estimation of the variance seems to be a good measure of performance in our
case. Intuitively this can be understood that if there are corrupted sample in our dataset, only a
portion of the bootstrap samples will be corrupted and Vboot will be a sort of distance between
the estimation on corrupted and the estimation on non-corrupted.

Due to the bootstrap estimation of the variance at each step, this algorithm is very heavy and
could use more work.

The simulated dataset: To assess whether an estimator has a bound of the type (4.9.1)
or (4.9.2), we use a dataset in whichX1, . . . , Xn are i.i.d from a corrupted Gaussian (1−ε)N (0,Σ)+
εN (1000 · 1, Id), with d = 6, Σ = diag(1, 2, 1, 0.1), n = 10000 and ε ∈ {0.1, 0.2}. The high value
of n makes it so that the variance of the estimator is of an order smaller than the bias of the
estimator and all the error will come from the bias: the variance is of order

√
Tr(Σ)/n ' 0.020

and the bias is (hopefully) of order ε
√
‖Σ‖op ≥ 0.14. The goal is to see whether the coefficient

of proportionality between the the error for a corruption ε = 0.2 and the error for a corruption
ε = 0.1 is 0.1 ×

√
‖Σ‖op ' 0.14 or if it is closer to the non-optimal 0.1 ×

√
Tr(Σ) ' 0.20. We

realize only one run because the randomness doesn’t play a prevalent role in this study as n is
very big (and also because the algorithm is rather slow and making several runs would take time).

The results are represented in Figure 4.7 which indicates that indeed our estimator seems to be
minimax while the estimator where all the coordinates are treated in the same way is not minimax
(the same algorithm is used to optimize the two estimators), this is provided that our algorithm
did indeed attain a global minimum (which is in no way certain because of the lack of theoretical
result on this). There is still a lot of work to be done in this line of thought. The algorithm is
very simplistic and a better optimization and/or objective function would be beneficial. There
are for now no theoretical results, but nonetheless this is encouraging as this may be a way to
solve the problem of tractable minimax robust mean estimation is high dimension.
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Chapter 5

Robust classification via MOM
minimization

Abstract

We present an extension of Chervonenkis and Vapnik’s classical empirical risk minimization (ERM) where
the empirical risk is replaced by a median-of-means (MOM) estimator of the risk. The resulting new
estimators are called MOM minimizers. While ERM is sensitive to corruption of the dataset for many
classical loss functions used in classification, we show that MOM minimizers behave well in theory, in
the sense that it achieves Vapnik’s (slow) rates of convergence under weak assumptions: the function in
the hypothesis class are only required to have a finite second moment and some outliers may also have
corrupted the dataset.

We propose algorithms, inspired by MOM minimizers, which may be interpreted as MOM version of
Block Stochastic Gradient Descent (BSGD). The key point of these algorithms is that the block of data
onto which a descent step is performed is chosen according to its “ centrality” among the other blocks.
This choice of “ descent block” make these algorithms robust to outliers also this is the only extra step
added to classical BSGD algorithms. As a consequence, classical BSGD algorithms can be easily turn
into robust MOM versions. Moreover, MOM algorithms perform a smart subsampling which may help to
reduce substantially time computations and memory resources when applied to non linear algorithms.
These empirical performances are illustrated on both simulated and real datasets.

5.1 Introduction

The article presents a class of robust (to outliers and heavy-tailed data) estimators and algorithms
for the classification problem. Consider the classical binary classification problem, let F denote a
class of functions from X to {±1}, the empirical risk minimizer (ERM) is defined by

f̂ERM ∈ argmin
f∈F

1

N

N∑
i=1

I{Yi 6= f(Xi)} (5.1.1)
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where I{Yi 6= f(Xi)} = 1 if Yi 6= f(Xi) and 0 otherwise. In this paper, we are interested
in the case where the random variables f(Xi) only satisfy a second moment assumption and
where the dataset {(Xi, Yi)i∈{1,...,N}} may contain outliers. The ERM behaves well under these
assumptions (see Theorem 29 below). The reason is that the 0− 1 loss `0−1

f (x, y) = I{y 6=f(x)} is
bounded, which grants concentration no matter the distribution of X and a small number of data
cannot really impact the empirical mean performance. However, it is well known that ERM is a
theoretical estimators that can only be approximated in most situations by efficient algorithms.
Indeed, the minimization problem (5.1.1) is NP-hard even for classes F of half-spaces indicators
[GR09, FGRW12]. One of the most classical way to approximate ERM is to choose a convex
relaxation of the problem (5.1.1) and design an algorithm solving the associated convex problem.
The problem of these approaches in the setting of this paper is that the relaxed criteria are
unbounded and therefore way more sensitive to outliers or heavy tailed inputs. This results into
poor performance of the algorithms on corrupted and/or heavy-tailed data. Figure 5.1 illustrates
this problem on a toy example where most data would be well separated by a linear classifier like
Perceptron [Ros58] or logistic classifier, but some anomalies flaw these algorithms.

Figure 5.1: Scatter plot of the toy dataset, the color of the points gives their class. The background
color gives the linear separation provided by the perceptron (left) and the logistic regression
(right) trained on this corrupted dataset.

The example in Figure 5.1 is representative of a general problem that this paper intends to
study. Robust learning has received particular attention in recent years by practitioners working
on large datasets which are particularly sensitive to data corruption. Challenges recently posted
on “kaggle", the most popular data science competition platform, have put forward this topic
(see, the 1.5 million dollars problem “Passenger Screening Algorithm Challenge” involves the
discovery of terrorist activity from 3D images or the challenge named “NIPS 2017: Defense Against
Adversarial Attack” consists in building algorithms robust to adversarial data). Robust algorithms
have also been studied theoretically both in statistical and computer science communities. In
statistics, robust results usually deal with issues arising when data have heavy-tailed distribution
[LM19c, Min15, CGR+18, FK18]. In computer science, most works deal with corrupted datasets,
in particular when this corruption arise from adversarial outliers [DKK+19a, CDG19, DKK+17].
Only few papers consider both problems simultaneously [LL18, LL20].
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In learning theory, most alternatives to ERM manage the problem of outliers and heavy tail
distributions for outputs only. These solutions are based on the pioneering work of John Tukey
[Tuk60, Tuk62], Peter Huber [Hub64, Hub67] and Frank Hampel [Ham71, Ham74], replacing the
square loss by a robust alternative like Huber loss or Tukey’s biweight loss. These methods do
not allow to treat the case where the inputs are with heavy tails or corrupted, which is a classical
problem in robust statistics also known as the “ leverage point problem”, see [HR09].

In this article, we address this question by considering an alternative to M-estimators, called
median-of-means (MOM) minimizers. Several estimators based on MOM have recently been
proposed in the literature [Min15, LL18, LM19a, LM+19d, LM19c, Men, LL20]. To our knowledge,
these articles use the small ball hypothesis [KM15, Men15] to treat problems of least squares
regression or Lipschitzian loss regression. This assumption is restrictive in some classic functional
regression frameworks [Sau18, HW17] or for problems such as the construction of recommendation
system where inputs are sampled in the canonical basis and therefore do not satisfy a small ball
condition.

We construct a natural estimator based on the MOM principle, which is called MOM minimizer.
This estimator is studied here without the small ball hypothesis. Instead, we assume an a priori
bound on the L2-norm of learning functions. We can identify mainly two streams of hypothesis
in Learning theory: 1) boundedness with respect to some norm of the class F of functions and
the output Y , the typical example is the boundedness in L∞ assumption or 2) norm equivalence
assumption over the class F (or, more precisely, on the shifted class F − f∗ = {f − f∗ : f ∈ F}
where f∗ is the oracle in F , i.e. the minimizer of the theoretical risk among the functions in F ) and
Y , the typical example being the subgaussian assumption, i.e. ‖f − f∗‖ψ2

≤ L‖f − f∗‖L2 ,∀f ∈ F
where for g ∈ F ‖g‖ψ2 = inf{t > 0 : E[exp(X2/t2)] ≤ 2}. The small ball assumption is a norm
equivalence assumption between the L1 and L2 norms and is concerned with the second type
of assumptions. Our approach here deals with the first type of assumption. As we only assume
boundedness in L2-norm, this can be seen as a significant relaxation upon the L∞ boundedness
assumption. It turns out that, in this relaxed setting, MOM minimizers achieve minimax rates of
convergence [DGL96] in the absence of a margin condition [MT99] even under a L∞ assumption.

The estimation of the expectation of a univariate variable by median-of-means (MOM)
[AMS99, JGV86, NY83] is done as follows: given a partition of the dataset into blocks of the
same size, an empirical mean is constructed on each block and the MOM estimator is obtained
by taking the median of these empirical means (see Section 5.2.2 for details). These estimators
are naturally resistant to the presence of a few outliers in the dataset: if the number of these
outliers does not exceed half the number of blocks, more than half of these blocks are made of
“clean" data and the median is a reliable estimator.

On the practical side, we introduce algorithms inspired by the MOM minimizers. In these
algorithms, the MOM principle is used within algorithms originally intended for the evaluation of
ERM estimators associated to convex loss functions. In Section 5.4, we present a “ MOM version”
of gradient descent algorithms following this approach. The general principle of this iterative
algorithm is as follows: at iteration t, a dataset equipartition B1, . . . , BK is selected uniformly at
random and the most central block Bmed is determined according to the following formula

∑
i∈Bmed

`ft(Xi, Yi) = median

(∑
i∈Bk

`ft(Xi, Yi) : k = 1, . . . ,K

)
= MOMK

(
`ft
)

(5.1.2)

where `ft(Xi, Yi) = `(ft(Xi), Yi) is the loss of the prediction ft(Xi) of the label Yi. Next iteration
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ft+1 is then produced by taking from ft a step down in the direction opposite to the gradient
of f →∑

i∈Bmed
`f (Xi, Yi) at ft, cf. Algorithm 1. The underlying heuristic is that the data in

the selected block Bmed are safe for estimating the risk of ft, in the sense that empirical risk
|Bmed|−1

∑
i∈Bmed

`ft(Xi, Yi) is a subgaussian estimator of E`f (Xi, Yi), cf. [DLLO16] and that
data indexed by Bmed should not be outliers. The differentiation properties of f → MOMK

(
`f
)

are studied in Section 5.4.2. One additional advantage of our algorithm is that it is based on a
simple idea: select a “good” block of data in such as way that it does not contain outliers and it
is a subgaussian estimator of the risk. As a result, it requires only little modifications on existing
Gradient descent based algorithms to make them robust to outliers and heavy-tailed data. As a
proof of concept, in this article, we perform this “MOM modification” to the Logistic Regression,
Perceptron and SVM-like algorithm.

In Section 5.5, the practical performances of thess algorithms are illustrated on several
simulations, involving in particular different loss functions. These simulations illustrate not
surprisingly the gain of robustness that there is to use these algorithms in their MOM version
rather than in their traditional version, as can for example be appreciated on the toy-example
of Figure 5.1 (see also Figure 5.4 below). MOM estimators are compared to different learning
algorithms on real datasets that can be modeled by heavy tailed data, obtaining in each case
performances comparable to the best of these benchmarks.

Another advantage of our procedure is that it works on blocks of data. This can improve
speed of execution and reduce memory requirements, which can be decisive on massive datasets
and/or when one wishes to use non-linear algorithms as in Section 5.4.3. This principle of dividing
the dataset to calculate estimators more quickly and then aggregating them is a powerful tool in
statistics and machine learning [Jor13]. Among others, one can mention bagging methods [Bre96]
or subagging —a variant of bagging where the bootstrap is replaced by subsampling— [BY02].
These methods are considered difficult to study theoretically in general and their analysis is often
limited to obtaining asymptotic guarantees. By contrast, the theoretical tools for non-asymptotic
risk analysis of MOM minimizers have already essentially been developed. Finally, subsampling
by the central block Bmed ensures robustness properties that cannot be guaranteed by traditional
alternatives.

Moreover, the algorithm provides an empirical notion of data depth: data providing good
risk estimates of f → E`f (X,Y ) are likely to be selected many times in the central block Bmed
along the descent, while outliers will be systematically ignored. This notion of depth, based on
the risk function, is very natural for prediction problems. It is complemented by an outliers
detection procedure: data that are selected a number of times below a predetermined threshold are
classified outliers. This procedure is evaluated on our toy example of Figure 5.1 – for this example,
data represented by the dots in the top right corner (the outliers) all end with a null score (see
Figure 5.8 below). The procedure is then tested on a real dataset on which the conclusions are
more interesting. On this experiment, according to the theoretical upper bounds in Theorem 30,
MOM minimizer’s prediction qualities are deteriorated with large values of K, and this result is
verified in some practical cases cf. Figure 5.11. On the other hand, when there are enough data
and when the data are not too heavy tailed (finite third moment of the f(Xi)), the article [MS17]
decouples K and N in the risk bound and find an optimal scaling of K �

√
N , and one might

think that this decoupling ought to be possible also in our context. On the other hand, outlier
detection is best when the number of blocks is large, cf. Figure 5.9. Outlier resistance and
anomaly detection tasks can therefore both be handled using the MOM principle, but the main
hyper-parameter K – the number of blocks of data – for setting this method must be chosen
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carefully according to the objective. A number of blocks as small as possible (about twice the
number of outliers) will give the best predictions, while large values of this number of blocks
will accelerate the detection of anomalies. Note that it is essential for outliers detection to use
different (for instance, random) partitions at each step of the descent to avoid giving the same
score to an outlier and to all the data in the same block containing it.

Detecting outliers is usually performed in machine learning via some unsupervised preprocessing
algorithm that detects outliers outside a bulk of data, see for example [HD04, HF00, CD01b, Nec15]
or other algorithms like DBSCAN [BK07] or isolation forest [LTZ08]. These algorithms assume
elliptical symmetry of the data, a solution for skewed data can also be found in [HV10]. These
unsupervised preprocessing removes outliers in advance, i.e. before starting any learning task. As
expected, these strategies work well in the toy example from Figure 5.1. There are several cases
where it will fail though. First, as explained in [HR09], this strategy classifies data independently
of the risk, it is likely to remove from the dataset outlier coming from heavy-tailed distribution,
yielding biased estimators. Moreover, a small group of misclassified data inside a bulk won’t be
detected. Our notion of depth, based on the risk, seems more adapted to the learning task than
any preprocessing procedure blind to the risk.

The paper is organized as follows. Section 5.2 presents the classification problem, the ERM and
its MOM versions and gathers the assumptions granted for the main results. Section 5.3 presents
theoretical risk bounds for the ERM estimator and MOM minimizers on corrupted datasets.
Section 5.4 deals with theoretical results on the algorithm computing MOM minimizers. We
present the algorithm, study the differentiation property of the objective function f → MOMK

(
`f
)

and provide theoretical bounds on its complexity. Section 5.5 shows empirical performance of
our estimators in both simulated and real datasets. Proofs of the main results are postponed to
Section 5.6 where we also added heuristics on the practical choice of the hyper-parameters.

5.2 Setting

5.2.1 Empirical risk minimization for binary classification

Consider the supervised binary classification problem, where one observes a sample (X1, Y1), . . .,
(XN , YN ) taking values in X ×Y . The set X is a measurable space and Y = {−1, 1}. The goal is
to build a classifier —that is, a measurable map f : X → Y— such that, for any new observation
(X,Y ), f(X) is a good prediction for Y . For any classifier f , let

`0−1
f (x, y) = I{y 6= f(x)}, R0−1(f) = P`0−1

f = P(X,Y )∼P
(
Y 6= f(X)

)
.

The 0− 1 risk R0−1(·) is a standard measure of the quality of a classifier. Following Chervonenkis
and Vapnik [Vap00], a popular way to build estimators is to replace the unknown measure P in
the definition of the risk by the empirical measure PN defined for any real valued function g by
PNg = N−1

∑N
i=1 g(Xi, Yi) and minimize the empirical risk. The empirical risk minimizer for

the 0− 1 loss on a class F of classifiers is f̂0−1
ERM ∈ argminf∈F{PN `0−1

f }.

The main issue with f̂0−1
ERM is that it cannot be computed efficiently in general. One source

of computational complexity is that both F and the 0 − 1 loss function are non-convex. This
is why various convex relaxations of the 0− 1 loss have been introduced in statistical learning
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theory. These proceed in two steps. First, F should be replaced by a convex set F of functions
taking values in R. Then one builds an alternative loss function ` for `0−1 defined for all
f ∈ F . The new function ` should be convex and put less weight on those f ∈ F such that
f(Xi)Yi > 0, these loss functions are commonly called "classification-calibrated losses" in the
literature. Classical examples include the hinge loss `hinge

f (x, y) = (1− yf(x))+, or the logistic
loss `logisticf (x, y) = log(1 + e−yf(x)). A couple (F, `) such that F is a convex set of real valued
functions and ` is a convex function (i.e. for all y ∈ {−1, 1} and x ∈ X , f ∈ F → `f (x, y) is
convex) such that `f (x, y) < `f (x,−y) whenever yf(x) > 0 will be called a convex relaxation of
(F , `0−1). Given a convex relaxation (F, `) of (F , `0−1), one can define the associated empirical
risk minimizer by

f̂ERM ∈ argmin
f∈F

PN `f . (5.2.1)

Note that f̂ERM does not build a classifier. To deduce, a classification rule from f̂ERM one
can simply consider its sign function defined for all x ∈ X by sign(f̂ERM(x)) = 2(I{f̂ERM(x) ≥
0}−1/2). The procedure f̂ERM is solution of a convex optimization problem that can therefore be
approximated using a descent algorithm. We refer for example to [Bub15] for a recent overview
of this topic and Section 5.4 for more examples.

5.2.2 Corrupted datasets

In this paper, we consider a framework where the dataset may have been corrupted by outliers
(or anomalies). There are several definitions of outliers in the literature, here, we assume that
the dataset is divided into two parts. The first part is the set of inliers, indexed by I, data
(Xi, Yi)i∈I are hereafter always assumed to be independent and identically distributed (i.i.d.)
with common distribution P . The second one is the set of outliers, indexed by O ⊂ [N ] which
has cardinality |O|. Nothing is assumed on these data which may not be independent, have
distributions Pi totally different from P , satisfying Pi|f |α = ∞ for any α > 0, etc... Doing no
hypothesis on the outliers is commonly done in Machine Learning with adversarial examples, see
[CGR+18, DKK+17] for examples of such application. In particular, this framework is sufficiently
general to cover the case where outliers are i.i.d. with distribution Q 6= P as in the ε-contamination
model [HR09, CGR+18, Gao17, DM15].

Our first result shows that the rate of convergence of f̂0−1
ERM is not affected by this corruption as

long as |O| does not exceed N × (rate of convergence) see Theorem 29 and the remark afterward.
However, it is easy to remark that, when the number N of data is finite as it is always the case in
practice, even one aggressive outliers may yield disastrous breakdown of the empirical mean’s
statistical performance. Consequently, even if f̂0−1

ERM behaves correctly, its proxy f̂ERM defined in
(5.2.1) for a convex relaxation (F, `) can have disastrous statistical performances, particularly
when F and ` are unbounded, cf. Figure 5.4 for an illustration.

To bypass this problem, we consider in this paper an alternative to the empirical mean called
median-of-means [AMS99, JGV86, NY83]. Let K ≤ N denote an integer and let B1, . . . , BK
denote a partition of {1, . . . , N} into bins Bk of equal size |Bk| = N/K. If K doesn’t divide
N , one can always drop a few data. For any function f : X × Y → R and any non-empty
subset B ⊂ {1, . . . , N}, define the empirical mean on B by PBf = |B|−1

∑
i∈B f(Xi, Yi). The

median-of-means (MOM) estimator of Pf is defined as the empirical median of the empirical
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means on the blocks Bk

MOMK

(
f
)

= median{PBkf : k = 1, . . . ,K} .

As the classical Huber’s estimator [Hub64], MOM estimators interpolate between the unbiased but
non robust empirical mean (obtained for K = 1) and the robust but biased median (obtained for
K = N). In particular, when applied to loss functions, these new estimators of the risk P`f , f ∈ F
suggest to define the following alternative to Chervonenkis and Vapnik’s ERM estimator, called
MOM minimizers

f̂MOM,K ∈ argmin
f∈F

MOMK

(
`f
)
. (5.2.2)

From a theoretical point of view, we will prove that, when the number |O| of outliers is smaller
than N × (rate of convergence), f̂MOM,K performs well under a second moment assumptions on
F and `. To illustrate our main assumptions and theoretical results, we will regularly use the
following classical example.

Example 1 (linear classification.). Let X = Rp and let ‖·‖2 denote the classical Euclidean norm
on Rp. Let F denote a set of linear functions

F = {ft : x 7→
〈
x, t
〉

: ‖t‖2 ≤ Γ} .

Let ` denote either the hinge loss or the logistic loss defined respectively for any (x, y) ∈ X × Y
and f ∈ F by

`hinge
f (x, y) = (1− yf(x))+, `logisticf (x, y) = log(1 + e−yf(x)) .

Remark that the case with an intercept is included in this linear case by adding an artificial
(p+ 1)th dimension: we consider x′ = (x1, . . . , xp, 1) where x1, . . . , xp are the coordinated of x,
and then

〈
x′, (t1, . . . , tp, tp+1

〉
=
〈
x, (t1, . . . , tp)

〉
+ tp+1. In practice this correspond to adding a

column of 1 at the end of the design matrix.

5.2.3 Main assumptions

As already mentioned, data are divided into two groups, a subset {(Xi, Yi) : i ∈ O} made of
outliers (on which we will make no assumption) and the remaining data {(Xi, Yi) : i ∈ I} contains
all data that bring information on the target/oracle

f∗ ∈ argmin
f∈F

P`f .

Data indexed by I are therefore called inliers or informative data. To keep the presentation
as simple as possible, inliers are assumed to be i.i.d. distributed according to P although this
assumption could be relaxed as in [LL18, LL20]. Finally, note that the O ∪ I = {1, . . . , N}
partition of the dataset is of course unknown from the statistician. Moreover, since no assumption
is granted on the set of data indexed by O, this setup covers the framework of adversarial attack
where one may imagine that the data indexed by O have been changed in the worst possible way
by some malicious adverser.

Let us now turn to the set of assumptions we will use to study MOM minimizers procedures.
For any measure Q and any function f for which it makes sense, denote by Qf =

∫
fdQ. Denote
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also, for all q ≥ 1, by Lq the set of real valued functions f such that
∫
|f |qdP <∞ and, for any

f ∈ Lq, by

‖f‖Lq =

(∫
|f |qdP

)1/q

.

Our first assumption is an L2-assumption on the functions in F .

Assumption 1. For all f ∈ F , we have ‖f‖L2 ≤ θ2.

Of course, Assumption 1 is granted if F is a set of classifiers. It also holds for the linear class
of functions from Example 1 as long as P‖X‖22 <∞ with θ2 = Γ(P‖X‖22)1/2. As announced in
the introduction, it is a boundedness assumption (w.r.t. the L2-norm) and not a norm equivalence
assumption. For instance, it covers cases that cannot be handled via norm equivalence. A
typical example is for matrix completion problems where X is uniformly distributed over the
canonical basis (Epq : p ∈ [m], q ∈ [T ]) of the linear space Rm×T of m × T matrices. One has
for f(·) =

〈
·, E11

〉
and any r ≥ 1, ‖f‖Lr = (E|f(X)|r)1/r = (1/(mT ))1/r. Hence, any norm

equivalence assumption on the class F = {fA =
〈
·, A
〉

: ‖fA‖L2 ≤ θ2} will depend on the
dimension mT of the problem resulting either in wrong rates of convergence or in assumption on
the number of data. Our approach does not use any norm equivalence assumption so that our
rates of convergence do not depend on dimension dependent ratio. Rates depend only on the L2

radius θ2 of F from Assumption 1.

The second assumption deals with the complexity of the class F . This complexity appears in
the upper bound of the risk. It is defined using only informative data. Let

K = {k ∈ {1, . . . ,K} : Bk ∩ O = ∅} and J = ∪k∈KBk .

Definition 3. Let G denote a class of functions f : X → R and let (εi)i∈I denote i.i.d.
Rademacher random variables independent from (Xi, Yi)i∈I . The Rademacher complexity of G is
defined by

R(G) = max
A∈{I,J}

E

[
sup
f∈G

∑
i∈A

εif(Xi)

]
.

The Rademacher complexity is a standard measure of complexity in classification problems
[BM02]. It can be upper bounded by comp/

√
N where comp is a measure of complexity such

as the square root of the VC dimension or the Dudley’s entropy integral or the Gaussian mean
width of the class F see for example [BBL05, Kol11, BM02, BLM13, DGL96] for a presentation
of these classical bounds. Our second assumption is simply that the Rademacher complexity of
the class F is finite.

Assumption 2. The Rademacher complexity of F is finite, R(F ) <∞.

Assumption 2 holds in the linear classification example under Assumption 1 since it follows
from Cauchy-Schwarz inequality that R(F ) ≤ θ2

√
|I|p. Finally, our last assumption is that the

loss function ` considered is Lipschitz in the following sense.

Assumption 3. The loss function ` satisfies for all (x, y) ∈ X × Y and all f, f ′ ∈ F ,

|`f (x, y)− `f ′(x, y)| ≤ L|f(x)− f ′(x)| .
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Assumption 3 holds for classical convex relaxation of the 0− 1 loss such as hinge loss `hinge or
logistic loss `logistic as in Example 1. In these examples, the constant L can be chosen equal to 1.
It also covers non-convex loss functions such as the one in [BBS17, Cat12, AC11] or sigmoid loss
functions such as the one used in Deep Learning. In particular, our results do not follow from
other work on MOM estimators using convex loss functions such as in [CLL19b].

5.3 Theoretical guarantees

Our first result follows Vapnik-Chervonenkis’s original risk bound for the ERM and shows that
f̂0−1
ERM is insensitive to the presence of outliers in the dataset. Moreover, it quantifies this robustness
property since Vapnik-Chervonenkis’s rate of convergence is still achieved by f̂0−1

ERM when there
are less than (number of observations) times (Vapnik’s rate of convergence) outliers.

Theorem 29. Let F denote a collection of classifiers. Let L0−1
F = {`0−1

f − `0−1
f∗ : f ∈ F} be the

family of excess loss functions indexed by F where f∗ ∈ argminf∈F R
0−1(f). For all K > 0, with

probability at least 1− e−K , we have

R0−1(f̂0−1
ERM)− inf

f∈F
R0−1(f) ≤ 2R(L0−1

F )

N
+

√
K

2|I| +
2|O|
N

.

Theorem 29 is proved in Section 5.6.1. It is an adaptation of Vapnik-Chervonenkis’s proof of
the excess risk bounds satisfied by f̂0−1

ERM in the presence of outliers.

Remark 2. In the last result, one can easily bound the excess risk using R(F) instead of R(L0−1
F )

since

R(L0−1
F ) = max

A∈{I,J}
E

[
sup
f∈F

∑
i∈A

εi(f(Xi)− f∗(Xi))

]
= R(F) .

The final bound is of similar flavor: for all K > 0, with probability at least 1− e−K , we have

R0−1(f̂0−1
ERM)− inf

f∈F
R0−1(f) . max

(
R(F)

N
,

√
K

|I| ,
|O|
N

)
. (5.3.1)

Remark 3. When F is the class of all linear classifiers, that is when F = {sgn(
〈
t, ·
〉
) : t ∈ Rp},

one has R(F) ≤
√
|I|p (see Theorem 3.4 in [BBL05]). Therefore, when |I| ≥ N/2, Theorem 29

implies that for all 1 ≤ K ≤ p, with probability at least 1− exp(−K),

R0−1(f̂0−1
ERM)− inf

f∈F
R0−1(f) . max(

√
p/N, |O|/N) .

As a consequence, when the number of outliers is such that |O| . N×
√
p/N , Vapnik-Chervonenkis’s

classical “slow" rate of convergence
√
p/N is still achieved by the ERM estimator even if |O|

outliers have polluted the dataset. The interested reader can also check that “fast rates" p/N
could also be achieved by the ERM estimator in the presence of outliers if |O| . p and when the
so-called strong margin assumption holds (see, [BBL05]). Note also that the previous remark also
holds if F is a class with VC dimension p beyond the case of indicators of half spaces.
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The conclusion of Theorem 29 can be misleading in practice. Indeed, theoretical performance
of the ERM estimator for the 0− 1 loss function are not downgraded by outliers, but its proxies
based on convex relaxation (F, `) of (F , `0−1) are. This can be seen on the toy example in
Figure 5.1 and in Figure 5.4 from Section 5.5. In this work, we propose a robust surrogate, based
on MOM estimators of the risk and defined in (5.1.2), to the natural empirical risk estimation of
the risk which works for unbounded loss functions. In the next result, we prove that the MOM
minimizer f̂MOM,K defined as

f̂MOM,K ∈ argmin
f∈F

MOMK

(
`f
)

(5.3.2)

satisfies an excess risk bound under weak assumptions introduced in Section 5.2.

Theorem 30. Grant Assumptions 1, 2 and 3. Assume that N > K > 4|O| and let ∆ =
1/4− |O|/K. Then, with probability larger than 1− 2 exp

(
−2∆2K

)
, we have

R(f̂MOM,K) ≤ inf
f∈F

R(f) + 4Lmax

(
4R(F )

N
, 2θ2

√
K

N

)
.

Theorem 30 is proved in Section 5.6.2. Compared to Theorem 29, f̂MOM,K achieves the same
rate (R(F )/N) ∨ (

√
K/N) under the same conditions on the number of outliers with the same

exponential control of the probability as for the ERM estimator f0−1
ERM. The main difference is

that the loss function may be unbounded, which is often the case in practice. Moreover, unlike
classical analysis of ERM obtained by minimizing an empirical risk associated with a convex
surrogate loss function, we only need a second moment assumption on the class F .

These theoretical improvements have already been noticed in previous works [Min15, DLLO16,
LL18, LM19b, LM+19d, LM19c, Men, LL20]. Contrary to tournaments of [LM19c], Le Cam
MOM estimators of [LL18] or minmax MOM estimators [LL20], Theorem 30 does not require the
small ball assumption on F but only shows “slow rates" of convergence. These slow rates are
minimax optimal in the absence of a margin or Bernstein assumption [BM06, MT99]. Removing
the small ball assumption may be useful in some examples. As an illustration, consider the toy
example where the design

X =

1W∈I1...
1W∈Id


where I1, . . . , Id is a partition of a measurable set W into subsets such that P(W ∈ Ii) = 1/d
for each i ∈ {1, . . . , d}. Then X = [0, 1]d and one can consider the set F of linear functions
f(X) =

〈
t,X

〉
, where the Euclidean norm of t satisfies ‖t‖ 6 B

√
d. Then, as ‖

〈
t, ·
〉
‖2L2 =∑d

i=1 t
2
iP(W ∈ Ii) = ‖t‖2/d, Assumption 1 holds with θ2 = B. In this example, Assumption 2

holds with R(F ) ≤ θ2

√
|I|d 6 B

√
Nd. It follows from Theorem 30 that the remainder term in

this example is bounded from above by

4LBmax

(
4

√
d

N
, 2θ2

√
K

N

)
.

In particular, it converges to 0 if d ∨K � N . By comparison, in the same example, it is shown
in [CLL19b] that the remainder term converges to 0 only if d .

√
N .
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Proof of Theorem 30 does not enable fast rates to be obtained. Indeed, the non-linearity of
the median excludes the possibility of using localization techniques leading to these fast rates.
However, we show in the simulation study (cf. left side picture of Figure 5.13) that fast rates
seem to be reached by the MOM minimizer.

Remark 4. The MOM principle has been used together with Lipschitz loss functions recently
in [CLL19b]. In this paper, a minmax MOM estimator is constructed which can achieve fast
rates of convergence under a margin condition. The argument from [CLL19b] relies heavily on
the convexity of the loss – an assumption we do not have here. The reason why the convexity
of the loss is so important in [CLL19b] is that it allows to exclude (as potential minmax MOM
estimator) all the functions in F outside a L2-ball centered in f∗ with radius r if all the functions
in F in the sphere f∗ + rS2 are excluded. Therefore, thanks to convexity, the latter “ homogeneity
argument” reduces the problem to the study of the sub-model F ∩ (f∗ + rS2) (which is bounded
in L2 with the right radius r). Here, no such homogeneity argument can be used because we did
not assume the loss to be convex. Nevertheless, if we assume that the loss is convex then we may
still apply Theorem 4 in [CLL19b] and replace all the localized sets by the entire set F and the
variance term by the L2 uniform bound θ2 coming from Assumption 1 to obtain a similar result
as Theorem 30 for a minmax MOM estimator. These stronger results require the convexity of the
loss and a Bernstein assumption that may be satisfied only under strong assumptions as discussed
in the toy example.

Finally, the main advantage of our approach is its simplicity, we just have to replace empirical
means by their MOM alternative in the definition of the ERM estimator. Moreover, as expected,
this simple alternative to ERM estimators yields a systematically way to modify algorithms
designed for approximating the ERM estimator. The resulting “MOM versions” of these algorithms
are both faster and more robust than their original “ERM version”. Before illustrating these facts
on simulations, let us describe algorithms approximating MOM minimizers.

5.4 Computation of MOM minimizers

In this section, we present a generic algorithm to provide a MOM version of descent algorithms.
We study the differentiation property of the objective function f → MOMK

(
`f
)
. Then we check

on simulated and real databases the robustness and outlier detection property of these MOM
algorithms.

5.4.1 MOM algorithms

The general idea is that any descent algorithms such as gradient descent, Newton method,
alternate gradient descent, etc. (cf. [MB11, Bub15, BV04, BJMO12]) can easily be turned into a
robust MOM-version. To illustrate this idea, a basic gradient descent is analyzed in the sequel.
We start with a block splitting policy of the database.

The choice of blocks greatly influences the practical performance of the algorithm. In particular,
a recurring flaw is that iterations tend to get stuck in local minima, which greatly slows the
convergence of the alogorithm. To overcome this default and improve the stability of the procedure,
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a new partition is constructed at each iteration by drawing it uniformly at random, cf. step 2 of
Algorithm 1.

Let SN denote the set of permutations of {1, . . . , N}. For each σ ∈ SN , let B0(σ) ∪ · · · ∪
BK−1(σ) = {1, . . . , N} denote an equipartition of {1, . . . , N} defined for all j ∈ J0,K − 1K by

Bj(σ) = {σ(Kj + 1), . . . , σ(K(j + 1))} = σ({Kj + 1, . . . ,K(j + 1)}) .

To simplify the presentation, let us assume the class F to be parametrized F = {fu : u ∈ Rp},
for some p ∈ N∗. Let’s assume that the function u 7→ fu is as regular as needed and convex (a
typical example is fu(x) =

〈
u, x

〉
for all x ∈ Rp). Denote by ∇u`fu the gradient or a subgradient

of u 7→ `fu in u ∈ Rp. The step-sizes sequence is denoted by (ηt)t≥0 and satisfies the classical
conditions:

∑∞
t=1 ηt =∞ and

∑∞
t=1 η

2
t <∞. Iterations will go on until a stopping time T ∈ N∗

has been achieved. With these notations, a generic MOM version of a gradient descent algorithm
(with random choice of blocks) is detailed in Algorithm 1 below.

Algorithm 1: MOM gradient descent algorithm.

input : u0 ∈ Rp, K ∈ J3, N/2K, T ∈ N∗ and (ηt)t∈{0,...,T−1} ∈ RT+
output : a MOM version of BSGD

1 for t = 0, · · · , T − 1 do
2 choose a permutation at random: σt ∼ Unif(SN ),
3 build a partition of the dataset: B0(σt), . . . , BK−1(σt),
4 find a median block: kmed(t) s.t. MOMK

(
`fut

)
= PBkmed(t)(σt)

(
`fut

)
,

5 do a descent step on the median block

ut+1 = ut − ηt∇t where ∇t =
∑

i∈Bkmed(t)(σt)

∇ut`fut (Xi, Yi).

6 end
7 Return uT

Remark 5 (MOM gradient descent algorithm and stochastic block gradient descent). Algorithm 1
can be seen as a stochastic block gradient descent (SBGD) algorithm minimizing the function
t → E`t(X,Y ) using a given dataset. The main difference with the classical SBGD is that the
choice of the block along which the gradient direction is performed is chosen according to a
centrality measure computed thanks to the median operator in step 4 of Algorithm 1.

In Section 5.5, we use the MOM principle (as in the generic Algorithm 1) to construct MOM
versions for various classical algorithms such as Perceptron, Logistic Regression, Kernel Logistic
Regression, SGD Classifiers or Multi-layer Perceptron.

148



5.4. COMPUTATION OF MOM MINIMIZERS

5.4.2 Differentiation properties of f → MOMK

(
`f
)
, random partition

and local minima

Let us try to explain the choice of the descent direction ∇t in step 5 of Algorithm 1. In the
previous sections, we introduced and studied MOM minimization procedures which are minimizers
of f → MOMK

(
`f
)
over F . The optimization problem that needs to be solved to construct a

MOM minimizer is not convex, in general. It therefore raises difficulties since classical tools and
algorithms from the convex optimization toolbox cannot be used a priori. Nevertheless, one
may still try to do a gradient descent algorithm for this (non-convex) optimization problem with
objective function given by f → MOMK

(
`f
)
. To do so, we first need to check the differentiation

properties of f → MOMK

(
`f
)
over F .

First observe that the descent direction ∇t is the gradient of the empirical risk constructed on
the median block of data Bkmed(t)(σt) at fut (we recall that F is parametrized like {fu : u ∈ Rp}).
A classical Gradient Descent algorithm on f → MOMK

(
`f
)
starting from fut would use a gradient

at fut of the objective function. Let us first identify situations where this is indeed the case i.e.
when ∇t is the gradient of f → MOMK

(
`f
)
in fut .

Assumption 4. For almost all datasets DN = {(Xi, Yi) : i = 1, . . . , N} and Lebesgue almost
all u ∈ Rp, there exists an open convex set B containing u such that for any equipartition of
{1, . . . , N} into K blocks B1, . . . , BK there exists kmed ∈ {1, · · · ,K} such that for all v ∈ B,
PBkmed (`fv ) ∈ MOMK

(
`fv
)
.

In other word, under Assumption 4, for almost all u0 ∈ Rp, the median block Bkmed achieving
MOMK

(
`fu0

)
is the same as the one achieving MOMK

(
`fu
)
for all u in an open and convex

neighborhood B of u0. It means that the objective function u → MOMK

(
`fu
)
is equal to

the empirical risk function over the same block of data Bkmed : u → PBkmed `fu, on B. Since
B is an open set and that u → PBkmed `fu is differentiable in u0 then the objective function
u→ MOMK

(
`fu
)
is also differentiable in u0 and the two gradients coincide:

∇
(
u→ MOMK

(
`fu
))
|u0

= ∇
(
u→ PBkmed `fu

)
|u0

. (5.4.1)

Under Assumption 4, Algorithm 1 is indeed a gradient descent algorithm performed on the
objective function u ∈ Rp → MOMK

(
`fu
)
.

Let us give an example where Assumption 4 is satisfied. Let B1 ∪ · · · ∪BK = {1, . . . , N} be
an equipartition and let ψ be defined for all x = (xi)

N
i=1 ∈ RN and u ∈ Rp by,

ψu(x) = MOMK

(
fu(x)

)
= median

(
K

N

∑
i∈Bk

fu(xi), 1 ≤ k ≤ K
)

= PB(K/2)(u)(fu),

where for all blocks B ⊂ {1, . . . , N}, PBfu = |B|−1
∑
i∈B fu(xi) and the blocks B(k)(u), k =

1, . . . ,K are rearranged blocks defined such that PB(1)(u)(fu) ≥ · · · ≥ PB(K)(u)(fu). Proposition 1
below shows that Assumption 4 is satisfied in several situations. Its proof can be found in Section
5.6.

Proposition 1. Let X1, . . . , XN be N real-valued random variables, suppose K is odd and N
is a multiple of K. Let (fu)u∈Rd be a family of functions with values in R. Assume that for all
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x ∈ R, the function u 7→ fu(x) is Lipschitz and the probability distribution of fu(X1) has a law
absolutely continuous with respect to Lebesgue measure. Then, with probability 1, Assumption 4 is
satisfied, in particular, the partial derivative of u 7→ ψfu((Xi)

N
i=1) = MOMK(fu((Xi)

N
i=1)) with

respect to the jth coordinate is given for almost all X1, . . . , XN by

∂jψfu((Xi)
N
i=1) =

K

N

∑
i∈B(dK/2e)(u)

∂jfu(Xi)

where ∂j denote the derivative with respect to the jth coordinate of u.

Under Assumption 4, the picture of the MOM gradient descent algorithm is pretty simple and
depicted in Figure 5.2. At every step t, the median operator makes a partition of Rp into K cells
Ck(t) = {u ∈ Rp : MOMK

(
`fu
)

= PBk`fu} for k = 1, . . . ,K – this partition changes at every step
because the blocks B1, . . . , BK are chosen randomly at the beginning of every step according to
the random partition σt. We want every iteration ut of the MOM algorithm to be in the interior
of a cell and not on a frontier in order to differentiate the objective function u→ MOMK

(
`fu
)
at

ut. This is indeed the case under Assumption 4, given that in that case, there is an open neighbor
B of ut such that for all v ∈ B, MOMK

(
`fv
)

= PBk`fv where the index k = kmed of the block
is common to every v ∈ B. Therefore, to differentiate the objective function u→ MOMK

(
`fu
)

at ut one just needs to differentiate u → PBk`fu at ut. The objective function to minimize is
differentiable almost everywhere under Assumption 4 and a gradient of the objective function is
given by ∇(u→ PBk`fu)|u=ut , that is ∇t from step 5 of Algorithm 1.

ut−2

ut−1

ut

ut+1

−ηt∇uPBkmed(t)(σt)(`fu)|u=ut

C1(t)

C2(t)

C3(t)

C4(t)

Ck(t)

CK(t)

Figure 5.2: Partition of Rp at step t by the median operator and iteration number t− 2, t− 1, t
and t+ 1 of the MOM gradient descent algorithm. Under Assumption 4, there is a natural descent
direction given at step t by −∇u(u→ PBkmed(t)(σt)(`fu)))|u=ut .

Under Assumption 4, the importance of partitioning the dataset at each new iteration
is more transparent. Indeed, if we were to perform the MOM gradient descent such as in
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Algorithm 1 but without a new partition at each step then local minima of the K empirical risks
u→ PBk`fu , k ∈ [K] may mislead the descent algorithm. Indeed, if a minimum of u→ PBk`fu
for some k ∈ [K] is in the cell Ck then the algorithm will reach this minimum without noticing
that a “ better” minimum is in another cell. That is why re-partitioning the dataset of every
iteration avoid this effect and speed up the convergence (see [LL20] for experiments).

5.4.3 Complexity of MOM risk minimization algorithms

In this section, we compute the computational cost of several MOM versions of some classical
algorithms. Let C(m) be the computational complexity of a single standard gradient descent
update step on a dataset of size m and let L(m) be the computational complexity of the evaluation
of the empirical risk (1/m)

∑
i∈B `f (Xi, Yi) of some f ∈ F on a dataset B containing m data.

Here the computational complexity is simply the number of basic operations needed to perform a
task [AB09b].

For each epoch, we begin by computing the “MOM empirical risk”. We perform K times N/K
evaluations of the loss function, then we sort the K means of these blocks of loss to finally get the
median. The complexity of this step is then O(KL(N/K) +K ln(K)), assuming that the sort
algorithm is in O(K ln(K)) (like quick sort [Hoa62]). Then we do the gradient step on a sample
of size N/K. Hence, the time complexity of this algorithm is

O(T (KL(N/K) +K ln(K) + C(N/K))).

Example 2 (Linear complexity “ ERM version” algorithms). For example, if the standard
gradient step and the loss function evaluation have linear complexity – like Perceptron or Logistic
Regression – the complexity of the MOM algorithm is O(T (N +K log(K))) against O(TN) for
the ERM algorithm. Therefore, the two complexities are of the same order and the only advantage
of MOM algorithms lies in their robustness to outliers and heavy-tailed properties.

Example 3 (Super-linear complexity “ ERM version” algorithms). If, on the other hand, the
complexity is more than linear as for Kernel Logistic Regression (KLR), taking into account
the matrix multiplications whose complexity can be found in [Gal14], the complexity of the
MOM version of KLR, due to the additional need of the computation of the kernel matrix, is
O(N2 +T (N2/K+K log(K)+(N/K)2.373)) against O(TN2.373) for the standard “ ERM version”.
MOM versions of KLR are therefore faster than the classical version of KLR on top of being
more robust. This advantage comes from the fact that MOM algorithms work on blocks of data
instead on the entire dataset at every step. More informations about Kernel Logistic Regression
can be found in [Rot01] for example.

In this last example, the complexity comes in part from the evaluation of the kernel matrix
that can be computationally expensive. Following the idea that MOM algorithms are performing
ERM algorithm restricted to a wisely chosen block of data, then one can modify our generic
strategy in this particular example to reduce drastically its complexity. The idea here is that we
only need to construct the kernel matrix on the median block. The resulting algorithm, called
Fast KLR MOM is described in Figure 2.

In Figure 2, we compute only the block kernel matrices, denoted byN1, . . . , Nk and constructed
from the samples in the block Bk. We also denote by Nk

i the ith row in Nk.
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Algorithm 2: Description of Fast KLR MOM algorithm.

input :α0 ∈ Rp, K ∈ J3, N/2K, T ∈ N∗, (ηt)t∈{0,...,T−1} ∈ RT+, β ∈ R∗+, κ : X × X → R
a positive definite kernel and a bloc decomposition B1, . . . , BK of {1, . . . , N}.

output : a MOM version of KLR classifiers

1 Construct the bloc Kernel matrices Nk = (κ(Xi, Xj))i,j∈Bk for 1 ≤ k ≤ K,
2 for t = 0, · · · , T − 1 do
3 find a median block: kmed(t) s.t. MOMK

(
`fαt

)
= PBkmed(t)

(
`fαt

)
with

4

PBk(`fαt ) =
1

|Bk|
∑
i∈Bk

ln(1 + e−N
k
i α

k
t Yi) + β

K∑
k=1

(αkt )TNkαkt ,

where αkt is the vector in R|Bk| made of the coordinates of αt with indices in Bk.
5 Do an IRLS descent step for KLR with weight matrice Wkmed(t), design matrice

Xkmed(t) and labels ykmed(t) on Bkmed(t)

α
kmed(t)
t+1 = α

kmed(t)
t (1− ηt) + ηt(X

T
kmed(t)Wkmed(t)Xkmed(t))

−1XT
kmed(t)Wkmed(t)ykmed(t).

αkt+1 = αkt (1− ηt), ∀k 6= kmed(t).6

7 end
8 Return αT , Nkmed(T )

There are several drawbacks in the approach of Algorithm 2. First, the blocks are fixed at the
beginning of the algorithm; therefore the algorithm needs a bigger dataset to work well and it may
converge to a local minimum. Nonetheless, from the complexity point of view, this algorithm will
be much faster than both the classical KLR and MOM KLR (see below for a computation of its
complexity) which is important given the growing use of kernel methods on very large databases
for example in biology. The choice of K should ultimately realize a trade-off between complexity
and performance (in term of accuracy for example) when dealing with big databases containing
few outliers.

Example 4 (Complexity of Fast KLR-MOM algorithm). The complexity of Fast KLR-MOM is
O(N2/K + T (N2/K +K log(K) + (N/K)2.373)) against O(TN2.373) for the ERM version.

5.5 Implementation and Simulations

5.5.1 Basic results on a toy dataset

The toy model we consider models outliers due to human or machine errors we would like to
ignore in our learning process. It is also a dataset corrupted to make linear classifiers fail. The
dataset is a 2D dataset constituted of three “labeled Gaussian distribution”. Two informative
Gaussians N ((−1,−1), 1.4I2) and N ((1, 1), 1.4I2) with label respectively 1 and −1 and one
outliers Gaussian N ((24, 8), 0.1I2) with label 1. In other words, the distribution of informative
data is given by L(X|Y = 1) = N ((−1,−1), 1.4I2), L(X|Y = −1) = N ((1, 1), 1.4I2) and
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P(Y = 1) = P(Y = −1) = 1/2. Outliers data have distribution given by Y = 1 a.s. and
X ∼ N ((24, 8), 0.1I2).

Figure 5.3: Scatter plot of 630 samples from the training dataset (600 informative data, 30
outliers), the color of the points correspond to their labels.

The algorithms we study are the MOM adaptations of Perceptron, Logistic Regression and
Kernel Logistic Regression.

Based on our theoretical results, we know that the number of blocks K has to be larger than
4 times the number of outliers for our procedure to be on the safe side. The value K = 120 is
therefore used in all subsequent applications of MOM algorithms on the toy dataset except when
told otherwise. To quantify performance, we compute the miss-classification error on a clean
dataset made of data distributed like the informative data.

For Kernel Logistic Regression, we study here a linear kernel because outliers in this dataset
are clearly adversarial when dealing with linear classifiers. The algorithm can also use more
sophisticated kernels, a comparison of the MOM algorithms with similar ERM algorithms is
represented in figure 5.4, the ERM algorithms are taken from the python library scikit-learn
[PVG+11] with their default parameters.

Figure 5.4 illustrates resistance to outliers of MOM’s algorithms compared to their classical
version.

These first results are completed in Figure 5.5 where we computed accuracy on several run of the
algorithms. These results confirm the visual impression of our first experiment.

Finally, we illustrate our results regarding complexities of the algorithms on a simulated
example. MOM algorithms have been computed together with state-of-the art algorithms from
scikit-learn [PVG+11] (we use Random forest, SVM classifier as well as SGD classifier optimizing
Huber loss which entail a robustness in Y but not in X, see [HR09, Chapter 7]) on a simulated
dataset composed of two Gaussian blobs N ((−1,−1), 1.4I2) and N ((1, 1), 1.4I2) with label
respectively 1 and −1. We sample 20000 points for the training dataset and 20000 for the test
dataset. The parameters used in the algorithms are those for which we obtained the optimal
accuracy, (this accuracy is illustrated in the next section). Time of training plus time of evaluation
on the test dataset are gathered in Figure 5.6.

Not surprisingly, very efficient versions of linear algorithms from Python’s library are extremely
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Figure 5.4: Scatter plot of 500 samples from the test dataset (500 informative data), the color of
the points correspond to their labels and the background color correspond to the prediction. The
score in the title of each subfigure is the accuracy of the algorithm.

fast (results are sometimes provided before we even charged the dataset in some experiments).
The performance of our algorithm are nevertheless acceptable in general (around 5 times longer
than random forest for example). The important fact here is that non linear algorithms such as
SVM take much more time to provide a result. FAST KLR MOM is able to reduce substantially
the execution time of SVM with comparable predictive performance.

5.5.2 Applications on real datasets

We used the HTRU2 dataset, also studied in [LSCB15], that is provided by the UCI Machine
Learning Repository. The goal is to detect pulsars (a rare type of Neutron star) based on radio
emission detectable on earth from which features are extracted to gives us this dataset. The
problem is that most of the signal comes from noise and not pulsar, the goal is then to classify
pulsar against noise, using the 17 898 points in the dataset.

The accuracy of different algorithms is obtained using on several runs of the algorithms
each using 4/5 of the datasets for training and 1/5 for testing algorithms. Boxplots presenting
performance of various algorithms are displayed in Figure 5.7. To improve performance, RBF
kernel was used both for KLR MOM and Fast KLR MOM.

5.5.3 Outlier detection with MOM algorithms

When we run MOM version of a descent algorithm, we select at each step a block of data
points realizing the median of a set of “local/block empirical risk” at the current iteration of the
algorithm. The number of times a point is selected by the algorithm can be used as a depth
function measuring reliability of the data. Note that this definition of depth of a data point has
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Figure 5.5: Comparison of the MOM algorithms and their counterpart with the boxplots of the
accuracy on the test dataset from 50 runs of the algorithms on 50 sample of the training/test toy
dataset (one run for each dataset sampled).

Algorithm Perceptron MOM Log. Reg. MOM KLR MOM Fast KLR MOM
Time (s) 1.06 1.05 13.6 1.2

Algorithm Rand. Forest SVM SGD Hub. loss
Time (s) 0.21 9.0 0.0078

Figure 5.6: Time of different algorithms on a simulated dataset .

the advantage of taking into account the learning task we want to solve, that is the loss ` and the
class F . It means that outliers are considered w.r.t. the problem we want to solve and not w.r.t.
some a priori notion of centrality of points in Rd unrelated with the problem considered at the
beginning.

We apply this idea on the toy dataset with the Logistic Regression MOM algorithm. Results
are gathered in a sorted histogram given in Figure 5.8. Red bars represent outliers in the original
datasets.

Quite remarkably, outliers are in fact those data that have been used the smallest number of
times. The method targets a very specific type of outliers, those disturbing the classification task
at hand. If there was a point very far away from the bulk of data but in the half-space of its
label, it wouldn’t be detected.

This detection algorithm doesn’t scale well when the dataset gets bigger as a large number of
iterations is necessary to choose each point a fair number of times. For bigger datasets, we suggest
to adapt usual outlier detection algorithms [Agg13]. We emphasize that clustering techniques
and K-Means are rather easy to adapt in a MOM algorithm and detect points far from the bulk
of data. This technique might greatly improve usual K-Means as MOM K-Means is more robust.

Let us now analyze the effect of K on the outlier detection task. The histogram of the 1000
smaller counts of points of HTRU2 dataset as K gets bigger is plotted in Figure 5.9.

It appears from Figure 5.9 that K measures the sensitivity of the algorithm. Severe outliers
(as in the toy example) are detected for small K while mild outliers are only discovered as K gets
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Figure 5.7: Comparison of the MOM algorithms and common algorithms with the boxplots
and the medians of the accuracy 1

n

∑n
i=1 1{f̂(xi) = yi} on the test dataset from 50 runs of the

algorithms on 100 sample of a 4/5 cut of the dataset HTRU2 (one run is trained on a sample of
4/5 of the dataset and tested on the remaining 1/5)

bigger.

It seems therefore that the optimal choice of K in MOM depends on the task one is interested
in. For classification, K should be as small as possible to get better risk bounds (but it still should
be larger than the number of outliers) whereas for detecting outliers we may want to choose K
much larger to even detect an outlier, (but it should also be small enough for the underlying
classification to perform correctly). As a proof of concept, for Pulsar database, we got optimal
results choosing K = 10 for classification whereas we only detect a significant amount of outliers
when K is around 1000.

5.6 Proofs

5.6.1 Proof of Theorem 29

We adapt Vapnik-Chervonenkis’s classical analysis [Vap98] of excess risk bound of ERM to a
dataset corrupted by outliers. We first recall that f∗ ∈ argminf∈F R

0−1(f) and for all f ∈ F ,
the excess loss function of f is L0−1

f = `0−1
f − `0−1

f∗ . For simplicity we denote f̂ = f̂0−1
ERM and for

all f ∈ F , L0−1
f = Lf and R(f) = R0−1(f).

It follows from the definition of the ERM estimator that PNLf̂ ≤ 0. Therefore, if we denote
by PI (resp. PO) the empirical measure supported on {(Xi, Yi) : i ∈ I} (resp. {(Xi, Yi) : i ∈ O}),
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Figure 5.8: Sorted Histogram of the score (number of times a data belongs to the selected median
block) of each points in a Logistic Regression MOM algorithm on a toy dataset. Red is an outlier
and blue is an informative sample. K = 120 and T = 2000.

we have

R(f̂)−R(f∗) = (P − PN )Lf̂ + PNLf̂ ≤ (P − PN )Lf̂ =
|I|
N

(P − PI)Lf̂ +
|O|
N

(P − PO)Lf̂

≤ |I|
N

sup
f∈F

(P − PI)Lf +
2|O|
N

because |Lf̂ | ≤ 1 a.s.. Then, by the bounded difference inequality [BLM13, Theorem 6.2], since
all f ∈ F satisfies −1 ≤ Lf ≤ 1, one has, for any x > 0,

P

(
sup
f∈F

(P − PI)Lf ≥ E[sup
f∈F

(P − PI)Lf ] + x

)
≤ e−2|I|x2

.

Furthermore, by the symmetrization argument (cf. Chapter 4 in [LT91]),

E[sup
f∈F

(P − PI)Lf ] ≤ 2
R(LF )

|I| .

Therefore, for any x > 0, with probability larger than 1− e−2|I|x2

,

R(f̂)−R(f∗) ≤ 2R(LF )

N
+ x+

2|O|
N

.

The proof is completed by choosing x =
√
K/(2|I|).
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Figure 5.9: Sorted Histogram on the score (number of times a data is selected in a median block)
of each points in a Logistic Regression MOM algorithm on the pulsar dataset for various values of
K and T = 20×K (only the 1000 smaller counts among the 17898 sample of the pulsar dataset
are represented).

5.6.2 Proof of Theorem 30

Let f∗ ∈ argminf∈F P`f . By definition, one has MOMK

(
`f̂MOM,K

)
≤ MOMK

(
`f∗
)
, therefore,

R(f̂MOM,K)−R(f∗) ≤ P`f̂MOM,K
−MOMK

(
`f̂MOM,K

)
−
(
P`f∗ −MOMK

(
`f∗
))

. (5.6.1)

Let us now control the two expressions in the right-hand side of (5.6.1). Let x > 0. We have

P
[
P`f∗ −MOMK

(
`f∗
)
> x

]
= P

[
K∑
k=1

I(P`f∗ − PBk`f∗ > x) ≥ K

2

]
=

K∑
k=K/2

(
K

k

)
pk(1−p)K−k ≤ pK/22K

where p = P[P`f∗−PBk`f∗ > x]. Using Markov inequality together with var(`f∗) ≤ 2L2E(f∗(X))2 ≤
2L2θ2, we obtain

P
[
P`f∗ −MOMK

(
`f∗
)
> x

]
≤
(

4var(`f∗)K

Nx2

)K/2
≤
(

8L2θ2K

Nx2

)K/2
= exp(−K/2)
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when x = 2Lθ
√

2eK/N .

Now, for any x > 0, one has supf∈F MOMK

(
P`f − `f

)
> x iff

sup
f∈F

K∑
k=1

I{(P − PBk)`f > x} ≥ K

2
. (5.6.2)

Let us now control the probability that (5.6.2) holds via an adaptation of the small ball
method [KM15, Men15]. Let x > 0 and let φ(t) = (t− 1)I{1 ≤ t ≤ 2}+ I{t ≥ 2} be defined for
all t ∈ R. As φ(t) ≥ I{t ≥ 2}, one has

sup
f∈F

K∑
k=1

I{(P − PBk)`f > x}

≤ sup
f∈F

∑
k∈K

E[φ(2(P − PBk)`f/x)]+|O|+sup
f∈F

∑
k∈K

(φ(2(P − PBk)`f/x)− E[φ(2(P − PBk)`f/x)])

where we recall that K = {k ∈ {1, · · · ,K} : Bk ∩ O = ∅}}.

Since, φ(t) ≤ I{t ≥ 1} and for all f ∈ F , Var(`f ) ≤ 2L2Ef(X)2 ≤ 2L2θ2
2, we have for all

f ∈ F and k ∈ K,

E[φ(2(P − PBk)`f/x)] ≤ P
(

(P − PBk)`f ≥
x

2

)
≤ 4Var(`f )

x2|Bk|
≤ 8L2θ2

2K

x2N
.

One has therefore

sup
f∈F

K∑
k=1

I{(P − PBk)`f > x}

≤ K
(

8L2θ2
2K

x2N
+
|O|
K

+ sup
f∈F

1

K

∑
k∈K

(
φ

(
2(P − PBk)`f

x

)
− E

[
φ

(
2(P − PBk)`f

x

)]))
.

As 0 ≤ φ(·) ≤ 1, by the bounded-difference inequality, for any y > 0, with probability larger than
1− e−2y2K ,

sup
f∈F

1

K

∑
k∈K

(
φ

(
2(P − PBk)`f

x

)
− E

[
φ

(
2(P − PBk)`f

x

)])

≤ E

[
sup
f∈F

1

K

∑
k∈K

(
φ

(
2(P − PBk)`f

x

)
− E

[
φ

(
2(P − PBk)`f

x

)])]
+ y .

Now, by the symmetrization inequality,

E

[
sup
f∈F

1

K

∑
k∈K

(
φ

(
2(P − PBk)`f

x

)
− E

[
φ

(
2(P − PBk)`f

x

)])]

≤ 2E

[
sup
f∈F

1

K

∑
k∈K

εkφ

(
2(P − PBk)`f

x

)]
.

159



CHAPTER 5. ROBUST CLASSIFICATION VIA MOM MINIMIZATION

Since φ is 1-Lipschitz and φ(0) = 0, by the contraction principle (see [LT91, Chapter 4] or more
precisely equation (2.1) in [Kol11]),

E

[
sup
f∈F

1

K

∑
k∈K

εkφ

(
(P − PBk)`f

x

)]
≤ E

[
sup
f∈F

1

xK

∑
k∈K

εk(P − PBk)`f

]
.

By the symmetrization principle,

E

[
sup
f∈F

2

xK

∑
k∈K

εk(P − PBk)`f

]
≤ 2

xN
E

[
sup
f∈F

∑
i∈J

εi`f (Xi, Yi)

]
.

Finally, since ` is L-Lipschitz, by the contraction principle (see equation (2.1) in [Kol11]),

E

[
sup
f∈F

∑
i∈J

εi`f (Xi, Yi)

]
≤ 2LR(F ) .

Thus, for any y > 0, with probability larger than 1− exp(−2y2K),

sup
f∈F

K∑
k=1

I{(P − PBk)`f > x} ≤ K
(

8L2θ2
2K

x2N
+
|O|
K

+ y +
4LR(F )

xN

)
.

Let ∆ = 1/4− |O|/K and let y = ∆ and x = 8Lmax
(
θ2

√
K/N, 4R(F )/N

)
so

P

(
sup
f∈F

K∑
k=1

I{(P − PBk)`f > x} < K

2

)
≥ 1− e−∆2K/8 .

Going back to (5.6.2), this means that

P

(
sup
f∈F

MOMK

(
`f − P`f

)
≤ 4Lmax

(
θ2

√
K

N
,

4R(F )

N

))
≥ 1− exp(−2∆2K) . (5.6.3)

Plugging this result in (5.6.1) concludes the proof of the theorem.

5.6.3 Proof of Proposition 1

We denote by B(1)(u), . . . , B(K)(u) the blocks such that the corresponding empirical means
PB(k)(u)(fu(XN

1 )), k = 1, . . . ,K are sorted: PB(1)(u)(fu(XN
1 )) ≥ · · · ≥ PB(K)(u)(fu(XN

1 )). De-
note J ∈ N such that K = 2J + 1.

The goal is to show that u 7→ ψfu((Xi)
N
i=1) = MOMK(fu((Xi)

N
i=1)) is differentiable and to

compute its partical derivatives. To that end, it suffices to show that for all ε with ‖ε‖2 sufficiently
small, we have B(J)(u) = B(J)(u+ tε) for all t ∈ [0, 1] and for that it is sufficient to check that
the same order of the K empirical means is preserved for all fu+tε:

∀1 ≤ k ≤ K − 1,∀t ∈ [0, 1], PB(k)(u)(fu+tε)− PB(k+1)(u)(fu+tε) > 0. (5.6.4)
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We decompose this difference in three parts,

PB(k)(u)(fu+tε)− PB(k+1)(u)(fu+tε) ≥PB(k)(u)(fu)− PB(k+1)(u)(fu)

−
∣∣PB(k)(u)(fu)− PB(k)(u)(f(u+tε)

∣∣
−
∣∣PB(k+1)(u)(fu+tε)− PB(k+1)(u)(fu)

∣∣
The two last terms are controlled by the Lipshitz property of u 7→ fu,

∀t ∈ [0, 1], PB(k)(u)(fu+tε)− PB(k+1)(u)(fu+tε) ≥ PB(k)(u)(fu)− PB(k+1)(u)(fu)− 2tL‖ε‖2.

We denote by

hk(‖ε‖2) = P
(
∀t ∈ [0, 1], PB(k)(u)(fu)− PB(k+1)(u)(fu)− 2tL‖ε‖2 ≥ 0

)
for all 1 ≤ k ≤ K − 1, hk is an non-decreasing function. Because for all 1 ≤ k ≤ K, PB(k)(u)(fu)
has a uniformly continuous law with respect to the Lebesgue measure (because its density is a
convolution of several copies of the density of fu(X)), there is no jump in the c.d.f and then hk
verifies that

hk(‖ε‖2) −−−−−→
‖ε‖2→0

1.

And again because for all 1 ≤ k ≤ K, PB(k)(u)(fu) has a uniformly continuous law with respect
to the Lebesgue measure, we also have that

hk(‖ε‖2) = P
(
∀t ∈ [0, 1], PB(k)(u)(fu)− PB(k+1)(u)(fu)− 2tL‖ε‖2 > 0

)
.

Then, taking the union bound for 1 ≤ k ≤ K − 1,

h(‖ε‖2) := P
(
∀1 ≤ k ≤ K − 1,∀t ∈ [0, 1], PB(k)(u)(fu)− PB(k+1)(u)(fu)− 2tL‖ε‖2 > 0

)
≥ 1−

K−1∑
k=1

(1− hk(‖ε‖2)).

Moreover, h can be rewritten as a probability that the blocks don’t change using the reasoning
leading to equation (5.6.4), hence

h(‖ε‖2) = P(∀1 ≤ k ≤ K − 1, B(k)(u) = B(k)(u+ tε)) ≤ P(∀t ∈ [0, 1], B(J)(u) = B(J)(u+ tε)).

We now compute the partial derivatives of the median of means ψfu . Let e1, . . . , ep ∈ Rp be
the canonical basis of Rp. For all m ∈ N, we define εjm = δmej with (δm)m a decreasing sequence
of R∗+ such that for all 1 ≤ k ≤ K − 1 we have hk(δm) ≥ 1− 2−m, δm exists because hk(δ)→ 1
when δ → 0. Then,

h(‖εjm‖2) ≥ 1−K2−m. (5.6.5)

We denote by Ajm the event Ajm :=
{
∀t ∈ [0, 1], B(J)(u) = B(J)(u+ tεjm′)

}
and we study the

limiting event Ωj = limm→∞Ajm.

First, let us note that for all 1 ≤ j ≤ p, the sequence of set (Ajm)n is non-increasing, hence

Ωj = limm→∞A
j
m = limm→∞A

j
m = (limm→∞(Ajm)c)c,
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then, for all 1 ≤ j ≤ d, we can study the limm→∞(Ajm)c with Borel-Cantelli Lemma. Indeed, we
have from equation (5.6.5), P((Ajm)c) ≤ K2−m. Hence, the series

∑
m P((Ajm)c) converges and by

Borel Cantelli Lemma, P(limm→∞(Ajm)c) = 0, then for all 1 ≤ i ≤ p, P(Ωj) = 1. In other words,
we have that for all ω ∈ Ωj , there exists m ≥ 1 such that ω ∈ Ajm. Hence, there exists m ≥ 1
such that for all t ∈ [0, 1], B(J)(u) = B(J)(u+ tεjm), which implies that for all 1 ≤ j ≤ p,

∂jψfu(X) = lim
t→0

ψf
u+tε

j
m

(X)− ψfu(X)

t
= lim
t→0

PB(J)(u)(fu+tεjm
)− PB(J)(u)(fu)

t

=
1

N/K
lim
t→0

∑
i∈B(J)(u)

fu+tεjm
(Xi)− fu(Xi)

t
=

1

N/K

∑
i∈B(J)(u)

∂jfu(Xi).

5.7 Annex

5.7.1 Choice of the number of blocks

Let us study the behaviour of our algorithms when the number of blocks changes. We plot the
accuracy as a function of K averaged on 50 runs to have a good idea of the evolution of the
performance with respect to K, the result is represented in figure 5.10.

There is a clear separation around 2|O| = 60 that is consistent with the theory. On the other
hand the accuracy doesn’t decrease when K gets bigger one would expect. This may be due to
the symmetry of the dataset. If we run the same experiment on the real dataset, we get a much
more regular plot, see Figure 5.11.

Figure 5.11 confirms our predictions on clean datasets, the accuracy getting better as K gets
smaller (the MOM minimizer is the ERM estimator when K = 1 and ERM is optimal in the i.i.d.
setup, [LM13]). This may be due to the small number of outliers in this dataset.

5.7.2 Illustration of convergence rate

In this section, we estimate the rate of convergence of the MOM risk minimization algorithm
Logistic Regression on two databases (see figure 5.12). The first dataset is composed of points
located on two interlaced half-circle with a Gaussian noise of standard deviation 0.3, the two
"moons" are each of a different class. We assume that these moons don’t satisfy the margin property
(we checked that the rate was slow for ERM algorithms, using the vanilla logistic regression).
The second dataset is composed of two Gaussians N ((−1,−1), 1.42I2) and N ((1, 1), 1.42I2) with
respective label 1 and 0, we can prove that this dataset verifies the margin property needed to
obtain fast rate in ERM

There are no outliers in the datasets because we only want to test the rate of convergence. To il-
lustrate the rates of convergence of our algorithms, we plot the curve log

(∣∣∣R̂0−1(f̂K))− R̂0−1(f∗)
∣∣∣)

as a function of log(n) where the risk is estimated by Monte-Carlo. The figure obtained for
Logistic Regression MOM is represented in figure 5.13. It seems that MOM minimizers can
achieve fast rates of convergence even if we did not prove them.
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5.7. ANNEX

Figure 5.10: Plot of the accuracy on the toy dataset of Logistic Regression MOM as a function of
K.

Remark 6. We used random blocks sampled at each iteration for this application because it is
the algorithm that we described earlier but even if we use one partition of blocks for the whole
algorithm (as in the theory we developed) we obtain nonetheless fast rate for the Gaussians dataset.

5.7.3 Comparison with robust algorithms based on M-estimators.

In this section we compare the algorithm Logistic Regression MOM with two other algorithms
based on M-estimators, these algorithms are studied on the toy dataset presented in Section 5.5.

One algorithm is a gradient on the Huber estimation of the loss function, it follows the same
reasoning as MOM risk minimization and minimizes E[`f (X,Y )] using as a proxy the Huber
estimator for this quantity. The Huber estimator is then defined as a M -estimator, denoted here
µ̂f , solution of

n∑
i=1

ψc(µ̂f − `(f(Xi), Yi)) = 0

where ψc = max(−c,min(c, x)) is the Huber function, c > 0. Using this definition of µ̂f , it is
then easy to compute the gradient ∇µ̂f and then use a gradient descent algorithm. The theory
behind this algorithm is studied further in [BJL15].
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Figure 5.11: Plot of the accuracy on HTRU2 dataset of Logistic Regression MOM as a function
of K.

The second algorithm uses a “redescending" loss function, in short we do ERM with a bounded
loss function. Here we use Tukey biweight loss function rescaled by MADN scale estimator and
IRLS algorithm to optimize the empirical risk.

Figure 7.1 shows that all algorithms perform similarly on this easy, low dimensional dataset.
The situation is quite different in higher dimension. In Figure 5.15 we used a 200 dimensional
dataset and the algorithm using a redescending loss function does not perform well. This may
be due to local minima in which the algorithm gets stuck, as local minima are multiplied when
the dimension gets higher. The other algorithms don’t suffer this drawback since they use a
“projection by the loss function" that makes the problem one dimensional.

The algorithm using redescending loss functions is a simple gradient descent that has linear
complexity. The Huber gradient algorithm estimates at each iteration a Huber estimator of
location. The complexity of this estimator depends on the algorithm used but for most M-
estimators a commonly used algorithm is an iteratively reweighted algorithm whose complexity is
linear in the sample size. In practice we can nonetheless notice a great complexity of the Huber
estimator in some cases where data are not well spread. In most cases, Logistic Regression MOM
is the fastest among these three algorithms and the gradient Huber is the slowest, even though
logistic regression may need a lot more iterations than the other algorithms.
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(a) Scatter plot of the Moons dataset (b) Scatter plot of the Gaussians dataset

Figure 5.12: Scatter plot of the two dataset used in this section, the color represent the class of
the points.

(a) Convergence rate for the Moons dataset (b) Convergence rate for the Gaussians dataset

Figure 5.13: Plot of the logarithm of the excess risk as a function of log(n) in two cases: (a)
where the margin assumption does not hold and (b) where the margin assumption holds. A linear
regression is fitted on the curve, its slope is printed at the top of each figure revealing a slow
n−0.51 rate of convergence in case (a) and a fast n−1.1 in case (b).
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Figure 5.14: Boxplot of the accuracy obtained on 50 training/test run (1000 training sample, 2%
corruption) of each algorithms on a 2-dimensional toy dataset.

Figure 5.15: Boxplot of the accuracy obtained on 50 training/test run (2000 training sample, 2%
corruption) of each algorithms on a 200-dimensional toy dataset.
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Chapter 6

Excess risk bounds in robust
empirical risk minimization

Abstract

This paper investigates robust versions of the general empirical risk minimization algorithm, one of the
core techniques underlying modern statistical methods. Success of the empirical risk minimization is based
on the fact that for a “well-behaved” stochastic process {f(X), f ∈ F} indexed by a class of functions
f ∈ F , averages 1

N

∑N
j=1 f(Xj) evaluated over a sample X1, . . . , XN of i.i.d. copies of X provide good

approximation to the expectations Ef(X), uniformly over large classes f ∈ F . However, this might no
longer be true if the marginal distributions of the process are heavy-tailed or if the sample contains
outliers. We propose a version of empirical risk minimization based on the idea of replacing sample
averages by robust proxies of the expectations, and obtain high-confidence bounds for the excess risk of
resulting estimators. In particular, we show that the excess risk of robust estimators can converge to
0 at fast rates with respect to the sample size N , referring to the rates faster than N−1/2. We discuss
implications of the main results to the linear and logistic regression problems, and evaluate the numerical
performance of proposed methods on simulated and real data. Keywords: robust estimation, excess risk,
median-of-means, regression, classification

6.1 Introduction

This work is devoted to robust algorithms in the framework of statistical learning. A recent
Forbes article [Ron19] states that “Machine learning algorithms are very dependent on accurate,
clean, and well-labeled training data to learn from so that they can produce accurate results” and
“According to a recent report from AI research and advisory firm Cognilytica, over 80% of the time
spent in AI projects are spent dealing with and wrangling data.” While some abnormal elements
of the sample, or outliers, can be detected and filtered during the preprocessing steps, others are
more difficult to detect: for instance, a sophisticated adversary might try to “poison” data to force
a desired outcome [MDC14]. Other seemingly abnormal observations could be inherent to the
underlying data-generating process. An “ideal” learning method should not discard informative
samples, while limiting the effect of individual observation on the output of the learning algorithm
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at the same time. We are interested in robust methods that are model-free, and require minimal
assumptions on the underlying distribution. We study two types of robustness: robustness to
heavy tails expressed in terms of the moment requirements, as well as robustness to (a variant of)
adversarial contamination. Heavy tails can be used to model variation and randomness naturally
occurring in the sample, while adversarial contamination is a convenient way to model outliers of
unknown nature.

The statistical framework used throughout the paper is defined as follows. Let (S,S) be
a measurable space, and let X ∈ S be a random variable with distribution P . Suppose that
X1, . . . , XN are i.i.d. copies of X. Moreover, assume that F is a class of measurable functions
from S to R and ` : R→ R+, where R+ is a set of non-negative integers, is a loss function. Many
problems in statistical learning theory can be formulated as risk minimization of the form

E `(f(X))→ min
f∈F

.

We will frequently write P`(f) or simply L(f) in place of the expected loss E`(f(X)). Throughout
the paper, we will also assume that the minimum above is attained for some (unique) f∗ ∈ F
(however, f∗ does not necessarily coincide with the global minimizer of L(f) over all measurable
functions that might not belong to F). For example, in the context of regression, X = (Z, Y ) ∈
Rd × R, f(Z, Y ) = Y − g(Z) for some g in a class G (such as the class of linear functions),
`(x) = x2, and f∗(z, y) = y− g∗(z), where g∗ = argming∈G E(Y − g(Z))2. As the true distribution
P is usually unknown, a proxy of f∗ is obtained via empirical risk minimization (ERM), namely

f̃N := argmin
f∈F

LN (f), (6.1.1)

where PN is the empirical distribution based on the sample X1, . . . , XN and

LN (f) := PN `(f) =
1

N

N∑
j=1

`(f(Xj)).

Performance of any f ∈ F (in particular, f̃N ) is measured via the excess risk E(f) := P`(f)−
P`(f∗). The excess risk of f̃N is a random variable defined as

E(f̃N ) := P `
(
f̃N
)
− P`(f∗) = E

[
`
(
f̃(X)

)
|X1, . . . , XN

]
− E`(f∗(X)).

General bounds for the excess risk have been extensively studied; a small subsample of the
relevant works includes the papers [VvdG00, vdVW96, Kol11, AB09a, BBM05, Tsy04] and
references therein. However, until recently sharp estimates were known only in the situation when
the functions in the class `(F) := {`(f), f ∈ F} are uniformly bounded, or when the envelope
F`(x) := supf∈F |`(f(x))| of the class `(F) possesses finite exponential moments. Our focus
is on the situation when marginal distributions of the process {`(f(X)), f ∈ F} indexed by
F are allowed to be heavy-tailed, meaning that they possess finite moments of low order only
(in this paper, “low order” usually means between 2 to 4). In such cases, the tail probabilities
of the random variables

{
1√
N

∑N
j=1(`(f(Xj))− E`(f(X))), f ∈ F

}
decay polynomially, thus

rendering many existing techniques ineffective. Moreover, we consider a challenging framework
of adversarial contamination where the initial dataset of cardinality N is merged with a set of
O < N outliers which are generated by an adversary who has an opportunity to inspect the data,
and the combined dataset of cardinality N◦ = N +O is presented to an algorithm; in this paper,
we assume that the proportion of contamination ON (or its upper bound) is known.

168



6.1. INTRODUCTION

The approach that we propose is based on replacing the sample mean at the core of ERM by
a more “robust” estimator of E `(f(X)) that exhibits tight concentration under minimal moment
assumptions. Well known examples of such estimators include the median-of-means estimator
[NY83, AMS99, LO11] and Catoni’s estimator [Cat12]. Both the median-of-means and Catoni’s
estimators gain robustness at the cost of being biased. The ways that the bias of these estimators
is controlled is based on different principles however. Informally speaking, Catoni’s estimator
relies on delicate “truncation” of the data, while the median-of-means (MOM) estimator exploits
the fact that the median and the mean of a symmetric distribution both coincide with its center
of symmetry. In this paper, we will use “hybrid” estimators that take advantage of both symmetry
and truncation. This family of estimators has been introduced and studied in [MS17, Min18],
and we review the construction below.

6.1.1 Organization of the paper.

The main ideas behind the proposed estimators are explained in Section 6.1.3, followed by the
high-level overview of the main theoretical results and comparison to existing literature in Section
6.1.4. The complete statements of the key results are given in Section 6.2, and in Section 6.3
we deduce the corollaries of these results for specific examples. Finally, the main ideas and
key inequalities necessary for the proofs is explained in Section 6.4. The remaining technical
arguments are contained in the supplementary material. Finally, in Section 6.7 of the supplement
we discuss practical implementation and numerical performance of our methods on synthetic and
real data.

6.1.2 Notation.

For two sequences {aj}j≥1 ⊂ R and {bj}j≥1 ⊂ R for j ∈ N, the expression aj . bj means that
there exists a constant c > 0 such that aj ≤ cbj for all j ∈ N; aj � bj means that aj . bj and
bj . aj . Absolute constants will be denoted c, c1, C, C ′, etc, and may take different values in
different parts of the paper. For a function h : Rd 7→ R, we define

argmin
y∈Rd

h(y) = {y ∈ Rd : h(y) ≤ h(x) for all x ∈ Rd},

and ‖h‖∞ := ess sup{|h(y)| : y ∈ Rd}. Moreover, L(h) will stand for a Lipschitz constant of
h. For f ∈ F , let σ2(`, f) = Var(`(f(X))) and for any subset F ′ ⊆ F , denote σ2(`,F ′) =
supf∈F ′ σ

2(`, f). Additional notation and auxiliary results are introduced on demand.

6.1.3 Robust mean estimators.

Let k ≤ N be an integer, and assume that G1, . . . , Gk are disjoint subsets of the index set
{1, . . . , N} of cardinality |Gj | = n ≥ bN/kc each. Given f ∈ F , let

Lj(f) :=
1

n

∑
i∈Gj

`(f(Xi))

169



CHAPTER 6. EXCESS RISK BOUNDS IN ROBUST EMPIRICAL RISK MINIMIZATION

be the empirical mean evaluated over the subsample indexed by Gj . Given a convex, even function
ρ : R 7→ R+ and ∆ > 0, set

L̂(k)(f) := argmin
y∈R

k∑
j=1

ρ

(√
n
Lj(f)− y

∆

)
. (6.1.2)

Clearly, if ρ(x) = x2, L̂(k)(f) is equal to the sample mean. If ρ(x) = |x|, then L̂(k)(f) is the
median-of-means estimator [NY83, AMS99, DLLO16]. We will be interested in the situation
when ρ is smooth and “shaped” like Huber’s loss, in particular, that ρ′ is bounded and Lipchitz
continuous (exact conditions imposed on ρ are specified in Assumption 1 below). Note that (6.1.2)
defines a whole family of estimators for different values of k and n. It is instructive to consider
two cases: first, when k = N (so that n = 1) and the scaling factor ∆ �

√
Var(`(f(X)))

√
N ,

L̂(k)(f) is akin to Catoni’s estimator [Cat12], and when n is large (e.g.
√
N � n � N and

∆ �
√

Var(`(f(X)))), L̂(k)(f) is the “median-of-means type” estimator. Let us elaborate on
these two cases further. Generally speaking, the estimator L̂(k)(f) is biased, and, as we already
mentioned in the introduction, one way to understand the difference between Catoni’s and
median-of-means type estimators is via the difference in mechanisms used to control the bias. In
the case of Catoni’s estimator, this mechanism is based on truncating each observation at the
level of order

√
N 1 encoded in the choice of ∆ �

√
Var(`(f(X)))

√
N , while in the case of the

median-of-means estimator it relies on the approximate symmetry, implied by the Central Limit
Theorem, of the distribution of the empirical averages Lj(f), and in particular the fact that any
reasonable estimator of location for this distribution will be close to the mean L(f) when |Gj | is
large. In Section 6.2.1, we formally introduce the key quantities that allow us to control the bias
under various moment assumptions on the underlying classes.

We also construct a permutation-invariant version of the estimator L̂(k)(f) that does not depend
on the specific choice of the subgroups G1, . . . , Gk. We conjecture that this estimator is more
efficient than L̂(k)(f); see remark 6.1.3 below for more details. Next, let

A(n)
N := {J : J ⊆ {1, . . . , N}, |J | = n}.

Let h be a measurable, permutation-invariant function of n variables. Recall that a U-statistic of
order n with kernel h based on an i.i.d. sample X1, . . . , XN is defined as [Hoe48]

UN,n =
1(
N
n

) ∑
J∈A(n)

N

h({Xj}j∈J). (6.1.3)

Given J ∈ A(n)
N , let L(f ; J) := 1

n

∑
i∈J f(Xi). Consider U-statistics of the form

UN,n(z; f) =
∑

J∈A(n)
N

ρ

(√
n
L(f ; J)− z

∆

)
.

Then the permutation-invariant version of L̂(k)(f) is defined as

L̂(k)
U (f) := argmin

z∈R
UN,n(z; f).

1Reference to truncation can be made explicit by setting ρ(x) = min
(
x2/2, |x| − 1/2

)
to be Huber’s loss and

considering the gradient descent iteration for the optimization problem (6.1.2).
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Finally, assuming that L̂(k)(f) provides good approximation of the expected loss L(f) of each
individual f ∈ F , it is natural to consider

f̂N := argmin
f∈F

L̂(k)(f), (6.1.4)

as well as its permutation-invariant analogue

f̂UN := argmin
f∈F

L̂(k)
U (f) (6.1.5)

as an alternative to standard empirical risk minimization (6.1.1). The main goal of this paper
is to obtain general bounds for the excess risk of the estimators f̂N and f̂UN under minimal
assumptions on the stochastic process {`(f(X)), f ∈ F}. More specifically, we are interested
in scenarios when the excess risk converges to 0 at fast, or “optimistic” rates, referring to the
rates faster than N−1/2. Rate of order N−1/2 (“slow rates”) are easier to establish: in particular,
results of this type follow from bounds on the uniform deviations supf∈F

∣∣∣L̂(k)(f)− L(f)
∣∣∣ that

have been investigated in [Min18]. Proving fast rates is a more technically challenging task: to
achieve the goal, we develop Bahadur-type representations [Bah66] of the estimators L̂(k)(f) and
L̂(k)
U (f) that provide linear, in `(f), approximations of these nonlinear statistics that are easier to

study, and carefully analyze the remainder terms. Introduction of such representations in the
framework of median-of-means estimation is one of the main technical novelties of the paper; the
tools we develop could prove useful in other related problems, such as study of the asymptotic
distributions of the robust estimators f̂N and f̂UN .

Remark. The main reason we introduce the permutation-invariant estimator f̂UN is our conjecture
that it has superior, compared to f̂N , performance. We were able to confirm this fact numerically in
our experiments; however, complete theoretical confirmation is not yet available, and requires new
technical tools beyond those developed in the present work. Specifically, we conjecture that f̂UN is
more efficient than f̂N : when F is finite dimensional, this means, informally, that the asymptotic
distribution of

√
N(f̂UN−f∗) has smaller variance than the asymptotic distribution of

√
N(f̂N−f∗).

In other words, the conjectured difference in performance is about the constant factors rather
than the rates. Such improvements are too subtle to be captured by the non-asymptotic bounds for
the excess risk that are being pursued in this work, nevertheless they are clearly noticeable in the
simulations.

It should also be acknowledged that exact evaluation of the U-statistics-based estimators
L̂(k)
U (f) and f̂UN is not feasible due to the number of summands

(
N
n

)
being very large even for

small values of n. However, exact computation is typically not required, and throughout our
detailed simulation studies, gradient descent methods proved to be very efficient for the problem
(6.1.5) in scenarios like least-squares and logistic regression. These points, as well as comparison
of the numerical performance of the estimators f̂UN and f̂N , are further discussed in Section 6.7 of
the supplementary material.

6.1.4 Overview of the main results and comparison to existing bounds.

Our main contribution is the proof of high-confidence bounds for the excess risk of the estimators
f̂N and f̂UN . First, we show (see Theorem 33 and (6.2.4)) that the excess risk is bounded from
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above by the quantity of order N−1/2 (referred to as “slow rates”) with exponentially high
probability if

σ2(`,F) = sup
f∈F

σ2(`, f) <∞ and E sup
f∈F

1√
N

N∑
j=1

(`(f(Xj))− E`(f(X))) <∞.

The latter is true if the class {`(f), f ∈ F} is P-Donsker [Dud14], in other words, if the empirical
process f 7→ 1√

N

∑N
j=1(`(f(Xj))− E`(f(X))) converges weakly to a Gaussian limit. This result

is analogous to its counterpart in the standard empirical risk minimization framework. Moreover,
it is known [Men08, LM10] that in general, the N−1/2 rate for the excess risk of the empirical
risk minimizers can not be improved. Our main contribution is the proof of the fact that that
under additional assumption requiring that any f ∈ F with small excess risk is itself close to
f∗ (that minimizes the expected loss), f̂N and f̂UN attain fast rates. This fact is well-known
in the usual empirical risk minimization framework [BM06, Kol11] but is new for the type of
robust estimators considered here. We state the bounds below only for f̂N while the results
for the U-statistics based f̂UN are similar, up to the change in absolute constants. In order to
avoid excessive technical details at this stage, we will first illustrate our general results by stating
corollaries for the popular frameworks of logistic regression and regression with quadratic loss,
while the most general versions of the theorems and additional examples will be stated afterwards.

Binary classification and logistic regression. Assume that (Z, Y ) ∈ S × {±1} is a
random couple where Z is an instance and Y is a binary label, and let g∗(z) := E[Y |Z = z] be
the regression function. It is well-known that the binary classifier b∗(z) := sign(g∗(z)) achieves
smallest possible misclassification error defined as P (Y 6= g(Z)). Let F be a given convex class of
functions mapping S to R, ` : R 7→ R+ a convex, nondecreasing, Lipschitz loss function, and let

h∗ = argmin
all measurable f

E`(Y f(Z)).

The loss ` is classification-calibrated if sign(h∗(z)) = b∗(z) P-almost surely; we refer the reader to
[BJM06] for a detailed exposition. In the case of logistic regression considered below, S = Rd,

`(y, f(z)) = `(yf(z)) := log
(

1 + e−yf(z)
)

is the classification-calibrated loss and F =
{
fβ(·) = 〈·, v〉, v ∈ Rd, ‖v‖2 ≤ R

}
. Note that results

stated below hold without assuming that h∗ ∈ F .

Regression with quadratic loss. Let (Z, Y ) ∈ S × R be a random couple satisfying
Y = f∗(Z) + η where the noise variable η is independent of Z and f∗(z) = E[Y |Z = z] is the
regression function. Linear regression with quadratic loss corresponds to S = Rd,

`(y, f(z)) = `(y − f(z)) := (y − f(z))2

and F =
{
fβ(·) = 〈·, v〉, v ∈ Rd, ‖v‖2 ≤ R

}
. In this case, we will assume that f∗ ∈ F ; it is

possible to avoid this assumption at the cost of additional technicalities and taking advantage of
the deep results of S. Mendelson [Men16] on the multiplier inequalities.

In the statements below, we will assume that we are given an i.i.d. sample (Z1, Y1), . . . , (ZN , YN )
having the same distribution as (Z, Y ) where the marginal distribution of Z is supported on a
compact set. Moreover, suppose that E|η|8 < ∞ in the case of regression with quadratic loss;
Section 6.3 contains other examples covering a wider class of distributions and classes F .
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Theorem 31 (Informal). Assume the framework of either logistic regression or linear regression
with quadratic loss. Then, for appropriately chosen k and ∆,

E(f̂N ) ≤ C(R,P, ρ)

(
d

N
+

s

N3/4
+

(O
N

)3/4
)

with probability at least 1− e−s for all s . k.

Moreover, we construct a two-step estimator f̂ ′′N based on f̂N that is capable of achieving
further improved rates.

Theorem 32 (Informal). Assume the framework of either logistic regression or linear regression
with quadratic loss. There exists an estimator f̂ ′′N , defined later in the paper, such that

E
(
f̂ ′′N
)
≤ C(R,P, ρ)

(
d

N
+

s

N
+
O
N

)
with probability at least 1− e−s for all 1 ≤ s ≤ smax where smax := smax(N)→∞ as N →∞.

The estimator f̂ ′′N mentioned in Theorem 32 is based on a two-step procedure, where f̂N serves
as an initial approximation that is refined on the second step via risk minimization restricted
to a “small neighborhood” of f̂N . All of the bounds in this paper have the form E(f̂N ) ≤
δ + C(F , P )

(
s
Nγ +

(O
N

)γ)
, where 1

2 ≤ γ ≤ 1 and δ is the quantity (formally defined in (6.2.5))
that often coincides, up to log-factors, with the optimal rate for the excess risk [ACL19, LM19c]
– for instance, δ � d

N in the examples above. In the standard empirical risk minimization, the
excess risk bounds in the linear and logistic regression admit the bounds of order d

N + s
N , albeit

under more restrictive assumptions and in the corruption-free framework. Therefore, the bound of
Theorem 31 is suboptimal in these cases due to the “remainder terms” being of order N−3/4, and
the improvement achieved by the two-step estimator f̂ ′′N , as described in Theorem 32, becomes
important.

Next, we provide a brief overview of the literature on the topic and compare our results to
the state of the art. Robustness of statistical learning algorithms has been studied extensively in
recent years. Existing research has mainly focused on addressing robustness to heavy tails as well
as adversarial contamination. One line of work investigated robust versions of the gradient descent
method for the optimization problem (6.1.1) based on variants of the multivariate median-of-means
technique [PSBR20, CSX17, YCKB18, AAZL18], as well as Catoni’s estimator [HI17a]. The line
works initiated in the theoretical computer science community [LRV16, DKK+19a, DKK+17, also
see the survey paper [DK19]] tackled the problem of optimal mean estimation in the adversarial
contamination framework by establishing deep connections between the mean and covariance
estimation problems that culminated in the family of powerful filtering algorithms; these algorithms
can also be used as subroutines in robust gradient descent-type methods [DKK+19b, CHK+20].
While these algorithms admit strong theoretical guarantees, they require robustly estimating
the gradient vector at every step (with the exception of [DKK+19b] that offers a more efficient
approach) hence are computationally demanding; moreover, results are weaker for losses that are
not strongly convex (for instance, the hinge loss). The line of research that is closest in spirit to
the approach of this paper includes the works that employ robust risk estimators based on Catoni’s
idea [AC11, BJL15, HI17b] and the median-of-means technique, such as “tournaments” and the
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“min-max median-of-means” [LM19c, LM19b, LL20, LLM20, CLL19b], also see [CHK+20, Hop20]
for the computationally efficient algorithms related to the tournament-type procedures. As it
was mentioned in the introduction, the core of our methods can be viewed as a “hybrid” between
Catoni’s and the median-of-means estimators. We provide a more detailed comparison to the
results of the aforementioned papers:

1. We show that risk minimization based on a version of Catoni’s estimator is capable of
achieving fast rates, thus improving the results and weakening the assumptions stated in
[BJL15] that only allowed the slow rates to be established;

2. We develop new tools and techniques to analyze proposed estimators. In particular, we
do not rely on the “small ball” method [KM15, Men15] and the standard “majority vote-
based” analysis [LL20, LM19c] of the median-of-means estimators. Instead, we provide
accurate bounds for the bias and investigate the remainder terms for the Bahadur-type
linear approximations of the estimators defined in (6.1.2). In particular, we demonstrate
that the order of typical deviations of the estimator L̂(k)(f) around L(f) are significantly
smaller than the deviations of the subsample averages Lj(f), which is not easy to do using
the majority vote-based proof techniques; consequently, this fact allows us to “decouple”
the confidence parameter s that controls the deviation probabilities from parameters k and
O responsible for the number of subsamples and the degree of contamination respectively.
Unlike the tournaments-based estimators, in some regimes our algorithms admit a “universal”
choice of k that is independent of the parameter δ controlling the optimal rate. In the
previous works, parameter k was often overloaded as it controlled the deviation probabilities
while depending on δ (or a closely related quantity) at the same time. Finally, our techniques
allow us to establish bounds that are uniform over a certain range of confidence parameter
s while the previously existing deviation results were only available for s � k.

3. We are able to simultaneously treat the case of Lipschitz as well as non-Lipschitz (e.g.,
quadratic) loss functions `. At the same time, in some situations (e.g. linear regression
with quadratic loss), the required assumptions are stronger compared to the best results
in the literature tailored specifically to the task, e.g. [LL20, LM19c] that treat the case of
regression with quadratic loss.

4. Existing approaches based on the median-of-means estimators are either computationally
intractable [LM19c], or outputs of practically efficient algorithms do not admit strong
theoretical guarantees [LL20, LLM20, CLL19b]. We design numerical algorithms specifically
for the estimators f̂N and f̂UN defined via (6.1.4) and (6.1.5), and show that they enjoy good
performance in numerical experiments as well as strong theoretical guarantees.

6.2 Theoretical guarantees for the excess risk.

In this section, we give complete statements of the main results and explain the high-level ideas
behind their proofs.

6.2.1 Preliminaries.

We start by introducing the main quantities that appear in our results, and state the key
assumptions. Recall that σ2(`,F ′) stands for supf∈F ′ σ

2(`, f), where F ′ ⊆ F . The loss functions
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ρ that will be of interest to us satisfy the following assumption.

Assumption 1. Suppose that the function ρ : R 7→ R is convex, even, 5 times continuously
differentiable and such that

(i) ρ′(z) = z for |z| ≤ 1 and ρ′(z) = const for z ≥ 2,
(ii) z − ρ′(z) is nondecreasing.

An example of a function ρ satisfying required assumptions is given by “smoothed” Huber’s
loss defined as follows. Let

H(y) =
y2

2
I{|y| ≤ 3/2}+

3

2

(
|y| − 3

4

)
I{|y| > 3/2}

be the usual Huber’s loss. Moreover, let φ be the “bump function” φ(x) = C exp
(
− 4

1−4x2

)
I
{
|x| ≤ 1

2

}
where C is chosen so that

∫
R φ(x)dx = 1. Then ρ given by the convolution ρ(x) = (h ∗ φ)(x)

satisfies Assumption 1.

Remark. (a) The requirements that ρ is 5 times continuously differentiable is of the technical
nature and is likely not necessary. It appears due to the fact that we need to control higher
order terms in the Bahadur-Kiefer type representations of the estimator L̂(k)(f), as well as
rely on the Lindeberg replacement-type arguments in our proofs.

(b) The derivative ρ′ has a natural interpretation of being a smooth version of the truncation
function. Moreover, observe that ρ′(2) − 2 ≤ ρ′(1) − 1 = 0 by (ii), hence ‖ρ′‖∞ ≤ 2. It is
also easy to see that for any x > y, ρ′(x)− ρ′(y) = y − ρ′(y)− (x− ρ′(x)) + x− y ≤ x− y,
hence ρ′ is Lipschitz continuous with Lipschitz constant L(ρ′) = 1.

In section 6.1.3, we have briefly discussed the bias of robust mean estimators and various ways
that it can be controlled. Now we will introduce the key quantities necessary to make the bounds
precise. Everywhere below, Φ(·) stands for the cumulative distribution function of the standard
normal random variable and W (f) denotes a random variable with distribution N

(
0, σ2(f)

)
. For

f ∈ F such that σ(f) > 0, n ∈ N and t > 0, define

Mf (t, n) :=

∣∣∣∣∣Pr

(∑n
j=1(f(Xj)− Pf)

σ(f)
√
n

≤ t
)
− Φ(t)

∣∣∣∣∣,
where Pf := Ef(X). In other words, Mf (t, n) controls the rate of convergence in the central
limit theorem. It follows from the results of L. Chen and Q.-M. Shao (Theorem 2.2 in in [CS01])
that

Mf (t, n) ≤ gf (t, n) := C

(E(f(X)− Ef(X))2 I
{
|f(X)−Ef(X)|

σ(f)
√
n

> 1 +
∣∣∣ t
σ(f)

∣∣∣}
σ2(f)

(
1 +

∣∣∣ t
σ(f)

∣∣∣)2

+
1√
n

E|f(X)− Ef(X)|3 I
{
|f(X)−Ef(X)|

σ(f)
√
n

≤ 1 +
∣∣∣ t
σ(f)

∣∣∣}
σ3(f)

(
1 +

∣∣∣ t
σ(f)

∣∣∣)3

)

given that the absolute constant C is large enough. Note that, crucially, the control of the rate in
terms of gf (t, n) is non-uniform, since gf (t, n) is a decreasing function of t. Moreover, let

Gf (n,∆) :=

∫ ∞
0

gf

(
∆

(
1

2
+ t

)
, n

)
dt.
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The quantity Gf (n,∆)√
n

plays the key role in controlling the bias of the estimator L̂(k)(f): it decreases
both as ∆ get large and as the subsample size n increases, referring to different bias-controlling
mechanisms of Catoni’s and the median-of-means type estimators, see discussion after (6.1.2).
The following statement provides simple upper bounds for gf (t, n) and Gf (n,∆) that depend on
the tail properties of f(X); its proof can be found in [Min18, Section 4.4].

Lemma 31. Let X1, . . . , Xn be i.i.d. copies of X, and assume that Var(f(X)) < ∞. Then
gf (t, n)→ 0 as |t| → ∞ and gf (t, n)→ 0 as n→∞, with convergence being monotone. Moreover,
if E|f(X)− Ef(X)|2+δ <∞ for some δ ∈ [0, 1], then for all t > 0

gf (t, n) ≤ C ′E
∣∣f(X)− Ef(X)

∣∣2+δ

nδ/2(σ(f) + |t|)2+δ
≤ C ′E

∣∣f(X)− Ef(X)
∣∣2+δ

nδ/2|t|2+δ
, (6.2.1)

Gf (n,∆) ≤ C ′′E
∣∣f(X)− Ef(X)

∣∣2+δ

∆2+δnδ/2
,

where C ′, C ′′ > 0 are absolute constants.

We can rewrite the bound for supf∈F Gf (n,∆) as supf∈F Gf (n,∆) ≤ C ′′ supf∈F E(|f(X)−Ef(X)|/σ(`,F))2+δ

(∆/σ(`,F))2+δnδ/2 ,

where the numerator supf∈F E(|f(X)− Ef(X)|/σ(`,F))
2+δ is the quantity akin the kurtosis

while the ratio M∆ := ∆
σ(`,F) appearing in the denominator can be interpreted as a truncation

level expressed in the “units” of σ(`,F). This “truncation level,” along with the subgroup size n,
are the two main quantities controlling the bias of the estimators L̂(k)(f), f ∈ F .

6.2.2 Slow rates for the excess risk.

Let

δ̂N := E(f̂N ) = L
(
f̂N
)
− L(f∗),

δ̂UN := E(f̂UN ) = L
(
f̂UN
)
− L(f∗)

be the excess risk of f̂N and its permutation-invariant analogue f̂UN which are the main objects
of our interest. The following bound for the excess risk is well known in the empirical risk
minimization literature [Kol11], and it easily leads to control of the excess risk in terms of the
uniform deviations of robust mean estimators.

E
(
f̂N
)

= L
(
f̂N
)
− L(f∗)

= L
(
f̂N
)

+ L̂(k)(f̂N )− L̂(k)(f̂N ) + L̂(k)(f∗)− L̂(k)(f∗)− L(f∗)

=
(
L
(
f̂N
)
− L̂(k)(f̂N )

)
−
(
L(f∗)− L̂(k)(f∗)

)
+ L̂(k)(f̂N )− L̂(k)(f∗)︸ ︷︷ ︸

≤0

≤ 2 sup
f∈F

∣∣∣L̂(k)(f)− L(f)
∣∣∣. (6.2.2)

The first result, Theorem 33 below, together with the inequality (6.2.2) immediately implies the
“slow rate bound” (meaning rate not faster than N−1/2) for the excess risk. This result has been
previously established in [Min18]. Define

∆̃ := max(∆, σ(`,F)).
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Theorem 33. There exist absolute constants c, C > 0 such that for all s > 0, n and k satisfying

1

∆

 1√
k
E sup
f∈F

1√
N

N∑
j=1

(`(f(Xj))− P `(f)) + σ(`,F)

√
s

k

+ sup
f∈F

Gf (n,∆)+
s

k
+
O
k
≤ c, (6.2.3)

the following inequality holds with probability at least 1− 2e−s:

sup
f∈F

∣∣∣L̂(k)(f)− L(f)
∣∣∣ ≤ C[∆̃

∆

E sup
f∈F

1

N

N∑
j=1

(`(f(Xj))− P `(f)) + σ(`,F)

√
s

N


+ ∆̃

(√
n
s

N
+

supf∈F Gf (n,∆)√
n

+
O
k
√
n

)]
.

Moreover, same bounds hold for the permutation-invariant estimators L̂(k)
U (f), up to the change

in absolute constants.

An immediate corollary is the bound for the excess risk

E(f̂N ) ≤ C
[

∆̃

∆

E sup
f∈F

1

N

N∑
j=1

(`(f(Xj))− P `(f)) + σ(`,F)

√
s

N


+ ∆̃
√
n

(
s

N
+

supf∈F Gf (n,∆)

n
+
O
N

)]
(6.2.4)

that holds under the assumptions of Theorem 33 with probability at least 1 − 2e−s. When
the class {`(f), f ∈ F} is P-Donsker [Dud14], lim sup

N→∞

∣∣∣E sup
f∈F

1√
N

∑N
j=1(`(f(Xj))− P`(f))

∣∣∣ is
bounded, hence condition (6.2.3) holds for N large enough whenever s is not too big and ∆ and k
are not too small, namely, s ≤ c′k and ∆

√
k ≥ c′′σ(F). The bound of Theorem 33 also suggests

that the natural “unit” to measure the magnitude of the parameter ∆ is σ(`,F).

To put these results in perspective, let us consider two examples. First, assume that n = 1,
k = N and set ∆ = ∆(s) := σ(F)

√
N
s for s ≤ c′N . Using Lemma 31 with δ = 0 to estimate

Gf (n,∆), we deduce that

E(f̂N ) ≤ C
[
E sup
f∈F

1

N

N∑
j=1

(`(f(Xj))− P`(f)) + σ(`,F)

(√
s

N
+
O√
N

)]

with probability at least 1− 2e−s. This inequality improves upon excess risk bounds obtained for
Catoni-type estimators in [BJL15], as it does not require functions in F to be uniformly bounded.

The second case we consider is when N � n ≥ 2. For the choice of ∆ � σ(`,F), the estimator
L̂(k)(f) most closely resembles the median-of-means estimator, as we have explained in Section
6.1.3. In this case, Theorem 33 yields the excess risk bound of the form

E(f̂N ) ≤ C
[
E sup
f∈F

1

N

N∑
j=1

(`(f(Xj))− P`(f))+σ(`,F)

(√
s

N
+

√
k

N
sup
f∈F

Gf (n, σ(F)) +
O
k

√
k

N

)]
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that holds with probability ≥ 1−2e−s for all s ≤ c′k. As supf∈F Gf (n,∆) is small for large n and
O
k

√
k
N ≤

√
O
N whenever O ≤ k, this bound improves upon Theorem 2 in [LLM20] that provides

bounds for the excess risk for robust classifiers based on the the median-of-means estimators.

6.2.3 Towards fast rates for the excess risk.

It is well known that in regression and binary classification problems, excess risk often converges
to 0 at a rate faster than N−1/2, and could be as fast as N−1. Such rates are often referred to
as “fast” or “optimistic” rates. In particular, this is the case when there exists a “link” between
the excess risk and the variance of the loss class, namely, if for some convex nondecreasing and
nonnegative function φ such that φ(0) = 0,

E(f) = P`(f)− P`(f∗) ≥ φ
(√

Var(`(f(X))− `(f∗(X)))
)
.

It is thus natural to ask if fast rates can be attained by estimators produced by the robust
algorithms proposed above. Results presented in this section give an affirmative answer to this
question. Let us introduce the main quantities that commonly appear in the excess risk bounds
[Kol11, LM19c]. For δ > 0, let

F(δ) := {`(f) : f ∈ F , E(f) ≤ δ},
ν(δ) := sup

`(f)∈F(δ)

√
Var(`(f(X))− `(f∗(X))),

ω(δ) := E sup
`(f)∈F(δ)

∣∣∣∣∣∣ 1√
N

N∑
j=1

(
(`(f)− `(f∗))(Xj)− P (`(f)− `(f∗))

)∣∣∣∣∣∣.
Moreover, define

B(`,F) :=
supf∈F E1/4(`(f(X))− E`(f(X)))

4

σ(`,F)
.

The following condition, known as Bernstein’s condition following [BM06], plays the crucial role
in the analysis of excess risk bounds.

Assumption 2. There exist constants D > 0, δB > 0 such that

Var(`(f(X))− `(f∗(X))) ≤ D2 E(f)

whenever E(f) ≤ δB.

Informally speaking, Assumption 2 postulates that any f ∈ F (more precisely, the loss `(f)
induced by it) with small excess risk is itself close to f∗. If this is true, it turns out that one can
avoid global bounds for on the expected supremum of the empirical process used to obtain “slow”
rates, and instead rely on the modulus of continuity ω(δ) of the empirical process locally in the
neighborhood of `(f∗) in order to get better upper bounds on the excess risk. The basics of this
approach in the classical empirical risk minimization frameworks are clearly explained in [Kol11,
Chapter 1.2], and we rely on similar ideas below.
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Assumption 2 is known to hold in many concrete cases of prediction and classification tasks,
and we provide examples and references in Section 6.3 below. More general versions of the
Bernstein’s condition are often considered in the literature: for instance, it can be replaced by
assumption requiring that Var(`(f(X))− `(f∗(X))) ≤ D2 (E(f))

τ for some τ ∈ (0, 1], as was
done in [BM06]; clearly, our assumption corresponds to τ = 1. Results of this paper admit
straightforward extensions to the slightly less restrictive scenario when τ < 1; we omit the details
to reduce the level of technical burden on the statements of our results.

Following [Kol11, Chapter 4], we will say that the function ψ : R+ 7→ R+ is of concave type
if it is nondecreasing and x 7→ ψ(x)

x is decreasing. Moreover, if for some γ ∈ (0, 1) x 7→ ψ(x)
xγ

is decreasing, we will say that ψ is of strictly concave type with exponent γ. We will assume
that ω(δ) admits an upper bound ω̃(δ) of strictly concave type (with some exponent γ), and
that ν(δ) admits an upper bound ν̃(δ) of concave type. For instance, when Assumption 2 holds,
ν(δ) ≤ D

√
δ for δ ≤ δB , implying that ν̃(δ) = D

√
δ is an upper bound for ν(δ) of strictly concave

type with γ = 1
2 .

2 Moreover, the function ω(δ) often admits an upper bound of the form
ω̃(δ) = R1 +

√
δR2 where R1 and R2 do not depend on δ; such an upper bound is also of concave

type. Next, set

δ := min

{
δ > 0 : C1(ρ)

1√
N

∆̃

∆

ω̃(δ)

δ
≤ 1

7

}
, (6.2.5)

where C1(ρ) is a sufficiently large positive constant that depends only on ρ. The quantity δ often
coincides with the optimal rates for the excess risk in the classical empirical risk minimization
framework: for example, it is of order d

N up to logarithmic factors in linear regression with
quadratic loss and in logistic regression when Bernstein’s condition is satisfied; in general, the
order of δ ranges between the pessimistic N−1/2 in “hard” problems and “optimistic” N−1 where
the rates between correspond to weaker versions of Assumptions 2, for instance, see [BJM06].
Theorems below provide estimates for the excess risk of robust risk minimizers under various
conditions on the tails of the random variables {f(X), f ∈ F}. All these bounds have the same
structure that includes the term δ as well as the “remainder terms” that account for the bias of
the robust risk estimators L̂(k)(f) as well as the outlier contamination proportion ON ; naturally,
stricter moment conditions result in better remainder terms.

Theorem 34. Assume that conditions of Theorem 33 hold. Additionally, suppose that M∆ :=
∆

σ(`,F) ≥ 1. Then

δ̂N ≤ δ + C(ρ)

(
D2

(
1

M2
∆n

+
s+O
N

)
+ σ(`,F)

√
nM∆

(
1

M4
∆n

+
s+O
N

))
.

with probability at least 1− 10e−s, where the constant C(ρ) depends on ρ only and D is a constant
appearing in Assumption 2.

Under stronger moment assumptions, the excess risk bound can be strengthened and take the
following form.

Theorem 35. Assume that conditions of Theorem 33 hold. Additionally, suppose that

sup
f∈F

E1/4(`(f(X))− E`(f(X)))
4
<∞

2This is only true in some neighborhood of 0, but is sufficient for our purposes.
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and that M∆ := ∆
σ(`,F) ≥ 1. Then

δ̂N ≤ δ + C(ρ)
(
D2 + σ(`,F)

√
nM∆

)(B6(`,F)

M4
∆n

2
+
s+O
N

)
.

with probability at least 1− 10e−s, where the constant C(ρ) depends on ρ only and D is a constant
appearing in Assumption 2.

The main ideas behind the proofs of Theorems 34 and 35 are explained in the beginning of Section
6.4.

Remark.

1. The bounds of Theorems 34 and 35 hold for the excess risk δ̂UN of the permutation-invariant
estimator f̂UN , up to a change in absolute constants.

2. It is evident that whenever O = 0, the best possible rates implied by Theorem 34 are of order
N−2/3 (indeed, this is the case whenever M∆

√
n � N1/3 and δ . N−2/3), while the best possible

rates attained by Theorem 35 are of order N−3/4 (when M∆
√
n � N1/4 and δ . N−3/4); in

particular, in this case the choice of M∆ and n is independent of δ. In general, if O = εN for
ε > 0, the best rates implied by Theorems 34 and 35 are δ+C(F , ρ, P )ε2/3 and δ+C(F , ρ, P )ε3/4

respectively.

3. Assumption requiring that M∆ ≥ 1 is introduced for convenience: without it, extra powers of
the ratio max(∆,σ(`,F))

∆ appear in the bounds.

Our next goal is to describe an estimator that is capable of achieving excess risk rates up
to N−1. The approach that we follow is similar in spirit to the “minmax” estimators studied in
[AC11, LO11, LL20], among others, as well as the “median-of-means tournaments” introduced in
[LM19c]; all these methods focus on estimating the differences L(f1)− L(f2) for all f1, f2 ∈ F .
Recall that f∗ = argminf∈F P`(f), and observe that for any fixed f ′ ∈ F , f∗ can be equivalently
defined via

f∗ = argmin
f∈F

P (`(f)− `(f ′)).

A version of the robust empirical risk minimizer (6.1.4) corresponding to this problem can be
defined as

L̂(k)(f − f ′) := argmin
y∈R

1√
N

k∑
j=1

ρ

(
√
n

(
Lj(f)− Lj(f ′)

)
− y

∆

)
for appropriately chose ∆ > 0, and

f̂ ′N := argmin
f∈F

L̂(k)(f − f ′).

Moreover, if f ′ ∈ F is a priori known to be “close” to f∗, then it suffices to search for the minimizer
in a neighborhood F ′ of f ′ that contains f∗ instead of all f ∈ F :

f̂ ′′N := argmin
f∈F ′

L̂(k)(f − f ′).

The advantage gained by this procedure is expressed by the fact that supf∈F ′ Var(`(f(X))− `(f ′(X)))
can be much smaller than σ(`,F).
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We will now formalize this argument and provide performance guarantees; we use the framework
of Theorem 35 which leads to the bounds that are easier to state and interpret. However, similar
reasoning applies to the setting of Theorem 34 as well. The presented algorithms also admit
straightforward permutation-invariant modifications that we omit. Let

ÊN (f) := L̂(k)(f)− L̂(k)(f̂N )

be the “empirical excess risk” of f . Indeed, this is a meaningful notion as f̂N is the minimizer of
L̂(k)(f) over f ∈ F . Assume that the initial sample of size N is split into two disjoint parts S1

and S2 of cardinalities that differ at most by 1: (X1, Y1), . . . , (XN , YN ) = S1 ∪ S2. The algorithm
proceeds in the following way:

1. Let f̂|S1| be the estimator (6.1.4) evaluated over subsample S1 of cardinality |S1| ≥ bN/2c,
with the scale parameter ∆1 and the partition parameter k1 corresponding the group size
n1 = b|S1|/k1c;

2. Let δ′ = δ+C(ρ)
(
D2 + σ(`,F)

√
nM∆1

)(B6(`,F)
M4

∆1
n2

1
+ s+O

N

)
be a known upper bound on the

excess risk in Theorem 35 (while this condition is restrictive, it is similar to the requirements
of existing approaches [BJL15, LM19c]; discussion of adaptation issues is beyond the scope
of this paper and will be addressed elsewhere). Set

F̂(δ′) :=
{
f ∈ F : ÊN (f) ≤ δ′

}
.

3. Define f̂ ′′N := argminf∈F̂(δ′) L̂(k)(f − f̂|S1|) where

L̂(k)
(
f − f̂|S1|

)
= argmin

y∈R

k2∑
j=1

ρ

√n
(
Lj(f)− Lj(f̂|S1|)

)
− y

∆2


is based on the subsample S2 of cardinality |S2| ≥ bN/2c, a scale parameter ∆2 and the
partition parameter k2 corresponding the group size n2 = b|S2|/k2c.

It will be demonstrated in the course of the proofs that on event of high probability, F̂(δ′) ⊆ F(cδ′)
for an absolute constant c ≤ 7. Hence, on this event supf∈F̂(δ′) Var(`(f(X))− `(f∗(X))) ≤
ν2(cδ′) ≤ cD2δ′ by the definition of ν(δ) and Assumption 2, thus ∆2 = DM∆2

√
cδ′ withM∆2

≥ 1
often leads to an estimator with improved performance.

Theorem 36. Suppose that

sup
f∈F

E1/4(`(f(X))− E`(f(X)))
4
<∞

and that ∆1, ∆2 satisfy M∆1 := ∆1

σ(`,F) ≥ 1 and M∆2 := ∆2

D
√

7δ′
≥ 1. Moreover, assume that

for a sufficiently small absolute constant c′ > 0, supf∈F max(Gf (n1,∆1), Gf (n2,∆2)) ≤ c′ and
s+O

min(k1,k2) ≤ c′. Finally, we require that

√
k1M∆1 ≥

c′

σ(`,F)
E sup
f∈F

1√
|S1|

|S1|∑
j=1

(`(f(Xj))− P `(f)) and (6.2.6)

√
k2M∆2 ≥ c′

√
Nδ′

D
.
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Then

E
(
f̂ ′′N
)
≤ δ + C(ρ)

(
D2 +D

√
δ′
√
nM∆2

)(B6(`,F)

M4
∆2
n2

+
s+O
N

)
with probability at least 1− 20e−s, where C(ρ) depends on ρ only and D is the constant appearing
in Assumption 2.

The statement of Theorem 36 is technical, so let us try to distill the main ideas. The key difference
between Theorem 35 and Theorem 36 is that the “remainder term”

σ(`,F)
√
nM∆

(
B6(`,F)

M4
∆n

2
+
s+O
N

)
is replaced by a potentially much smaller quantity

√
δ′
√
nM∆

(
B6(`,F)
M4

∆n
2 + s+O

N

)
. In particular,

if δ′ �
(
nM2

∆

)−1, this term often becomes negligible. To be more specific, assume that δ̄ =
C(F)√
N
· h(N) where h(N) → 0 as N → ∞ (meaning that fast rates are achievable) and that

O = εN for ε ≥ 1
N . Moreover, suppose that B(`,F) is bounded above by a constant. If

∆1 is chosen such that ∆1 � σ(`,F), then δ′ = C
(
δ + σ(`,F)

((
k
N

)3/2
+ s+O√

kN

))
. Hence, if

max
(
h(N)

√
N,Nε2/3

)
� kj ≤ CN

√
ε for j = 1, 2 and ∆2 �

√
δ′, then

δ′ · nM2
∆2

= O(1),

and the excess risk of f̂ ′′N admits the bound

E
(
f̂ ′′N
)
≤ δ + C(ρ,D)

(
ε+

s

N

)
that holds with probability at least 1 − Ce−s. A possible choice satisfying all the required
conditions is kj � N

√
ε, j = 1, 2 (indeed, it this case it is straightforward to check that conditions

(6.2.6) hold for sufficiently large N as kj &
√
N, j = 1, 2). Analysis of the case when O = 0

follows similar steps, with several simplifications.

6.3 Examples.

In this section, we consider two common prediction problems, regression and binary classification,
and discuss the implications of our main results for these problems in detail.

6.3.1 Binary classification with convex surrogate loss.

The key elements of the binary classification framework were outlined in Section 6.1.4. Here,
we recall few popular examples of classification-calibrated losses and present conditions that are
sufficient for the Assumption 2 to hold.

Logistic loss `(yf(z)) = log
(
1 + e−yf(z)

)
. Consider two scenarios:
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1. Uniformly bounded classes, meaning that for all f ∈ F , supz∈S |f(z)| ≤ B. In this
case, Assumption 2 holds with D = 2eB for all f ∈ F . See [BJM04] and Proposition
6.1 in [ACL19].

2. Linear separators and Gaussian design: in this case, we assume that S = Rd, Z ∼
N(0, I) is Gaussian, and F = {〈·, v〉 : ‖v‖2 ≤ R} is a class of linear functions. In this
case, according to the Proposition 6.2 in [ACL19], Bernstein’s assumption is satisfied
with D = cR3/2 for some absolute constant c > 0.

Hinge loss `(yf(z)) = max(0, 1− yf(z)). In this case, sufficient condition for Assumption 2
to hold is the following: there exists τ > 0 such that |g∗(Z)| ≥ τ almost surely, where
g∗(z) = E[Y |Z = z]. It follows from Theorem 7 in [BJM04] (see also [Tsy04]) that
Assumption 2 holds with D = 1√

2τ
in this case.

Bound for δ. Let Π stand for the marginal distribution of Z and recall that

ω(δ) := E sup
`(f)∈F(δ)

∣∣∣∣∣∣ 1√
N

N∑
j=1

(
(`(Yjf(Zj))− `(Yjf∗(Zj)))− E(`(Y f(Z))− `(Y f∗(Z)))

)∣∣∣∣∣∣.
Since ` is Lipchitz continuous by assumption (with Lipschitz constant denoted L(`)), consequent
application of symmetrization and Talagrand’s contraction inequalities [LT91, Van16] yields that

ω(δ) ≤ 4L(`)E sup
‖f−f∗‖L2(Π)≤D

√
δ

∣∣∣∣∣∣ 1√
N

N∑
j=1

εj(f − f∗)(Zj)

∣∣∣∣∣∣
where ε1, . . . , εN are i.i.d. random signs independent from Yj ’s and Zj ’s. The latter quantity
is the modulus of continuity of a Rademacher process, and various upper bounds for it are
well known. For instance, if F is a subset of a linear space of dimension d, then, according to
Proposition 3.2 in [Kol11], E sup‖f−f∗‖L2(Π)≤D

√
δ

∣∣∣ 1√
N

∑N
j=1 εj(f − f∗)(Zj)

∣∣∣ ≤ D
√
δ
√
d, whence

ω̃(δ) := 4DL(`)
√
δd is an upper bound for ω(δ) and is of concave type, implying that

δ ≤ C(ρ, `)D2 d

N
.

More generally, assume that the class F has a measurable envelope F (z) := supf∈F |f(z)| that
satisfies ‖F (Z)‖ψ2 <∞, where ‖x‖ψ2 := inf

{
C > 0 : E exp

(
|x/C|2

)
≤ 2
}
is the ψ2 (Orlicz) norm.

Moreover, suppose that the covering numbers N(F , Q, ε) of the class F with respect to the norm
L2(Q) 3 satisfy the bound

N(F , Q, ε) ≤
(
A‖F‖L2(Q)

ε

)V
(6.3.1)

for some constants A ≥ 1, V ≥ 1, all 0 < ε ≤ 2‖F‖L2(Q) and all probability measures Q. For
instance, VC-subgraph classes are known to satisfy this bound with V being the VC dimension of
F [vdVW96, Kol11]. In this case, it is not difficult to show (see for example the proof of Lemma
32 in the supplementary material) that

E sup
‖f−f∗‖L2(Π)≤D

√
δ

∣∣∣∣∣∣ 1√
N

N∑
j=1

εj(f − f∗)(Zj)

∣∣∣∣∣∣ ≤ ω̃(δ) := C
√
V log(e2A2N)

(
√
δ +

√
V

N
log(A2N)‖F‖ψ2

)
,

3Definition: the covering number N(F , Q, ε) is the smallest integer k ≥ 1 such that there exist f1, . . . , fk ∈ L2(Q)

satisfying
⋃k

j=1B(fj , ε) ⊇ F , where B(fj , ε) is the L2(Q) ball of radius ε centered at fj .
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hence it is easy to check that in this case

δ ≤ C(ρ)
V log3/2(e2A2N)‖F‖ψ2

N
.

It immediately follows from the discussion following Theorem 36 that the excess risk of the
estimator f̂ ′′N satisfies

E
(
f̂ ′′N
)
≤ C(ρ,D)

(
O
N

+
V log3/2(e2A2N)‖F‖ψ2

+ s

N

)
with probability at least 1 − 20e−s. Note that we did not need to assume that the oracle
h∗ := argmin

all measurable f
E`(Y f(Z)) belongs to F . Similar results hold for regression problems with

Lipschitz losses, such as Huber’s loss or quantile loss [ACL19].

6.3.2 Regression with quadratic loss.

Let X = (Z, Y ) ∈ S ×R be a random couple with distribution P satisfying Y = f∗(Z) + η where
the noise variable η is independent of Z and f∗(z) = E[Y |Z = z] is the regression function. Let
‖η‖2,1 :=

∫∞
0

√
Pr(|η| > t)dt, and observe that ‖η‖2,1 < ∞ as supf∈F E(Y − f(Z))4 < ∞ by

assumption. As before, Π will stand for the marginal distribution of Z. Let F be a given convex
class of functions mapping S to R and such that the regression function f∗ belongs to F , so that

f∗ = argmin
f∈F

E(Y − f(Z))
2
.

In this case, the natural choice for the loss function is the quadratic loss `(x) = x2 which is not
Lipschitz continuous on unbounded domains. Assume that the class F has a measurable envelope
F (z) := supf∈F |f(z)| that satisfies ‖F (Z)‖ψ2

<∞. Moreover, suppose that the covering numbers
N(F , Q, ε) of the class F with respect to the norm L2(Q) satisfy the bound

N(F , Q, ε) ≤
(
A‖F‖L2(Q)

ε

)V
(6.3.2)

for some constants A ≥ 1, V ≥ 1, all 0 < ε ≤ 2‖F‖L2(Q), and all probability measures Q. For
instance, VC-subgraph classes are known to satisfy this bound with V being the VC dimension of
F [vdVW96, Kol11].

Verification of Bernstein’s assumption. It follows from Lemma 5.1 in [Kol11] that

F(δ) ⊆
{

(y − f(z))2 : f ∈ F , E(f(Z)− f∗(Z))2 ≤ 2δ
}
,

hence ν(δ) ≤
√

2δ so D can be taken to be
√

2 in Assumption 2.

Bound for δ. Required estimates follow from the following lemma:

Lemma 32. Under the assumptions made in this section and for ∆ ≥ σ(`,F),

δ̄ ≤ C(ρ)
V log2(A2N)(‖F‖2ψ2

+ ‖η‖22,1)

N
.

Moreover, if the functions if F are uniformly bounded, the log2(A2N) can be removed.
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The proof is given in Section 6.5.9 of the supplementary material. An immediate corollary
of the lemma, according to the discussion following Theorem 36, is that the excess risk of the
estimator f̂ ′′N satisfies the inequality

E
(
f̂ ′′N
)
≤ C(ρ)

(
O
N

+
V log2(A2N)(‖F‖2ψ2

+ ‖η‖22,1) + s

N

)

with probability at least 1− 20e−s, for 0 < s ≤ cN1/4.

6.4 Proofs of the main results.

In the proofs of the main results, we will rely on the following convenient change of variables.
Denote

Ĝk(z; f) =
1√
k

k∑
j=1

ρ′
(√

n
(Lj(f)− L(f))− z

∆

)
,

Gk(z; f) =
√
kEρ′

(√
n

(L1(f)− L(f))− z
∆

)
.

In particular, when O = 0, Gk(z; f) = EĜk(z; f). Let ê(k)(f) and e(k)(f) be defined by the
equations

Ĝk

(
ê(k)(f); f

)
= 0,

Gk

(
e(k)(f); f

)
= 0.

Comparing this to the definition of L̂(k)(f) (6.1.2), it is easy to see that ê(k)(f) = L̂(k)(f)−L(f).

Let us explain the main high-level ideas behind the proof. In the classical empirical risk
minimization framework, L̂(k)(f) is replaced by the empirical mean PN`(f) = 1

N

∑N
j=1 `(f(Xj)); in

particular, it is linear in `(f), meaning that PN (`(f1)− `(f2)) = PN`(f1)−PN `(f2), while L̂(k)(f)

lacks this property. Imagine that L̂(k)(f) was linear in `(f). Then, setting δ̂N = L(f̂N )− L(f∗),
we would be able to write that

δ̂N = L(f̂N )− L(f∗) = (L(f̂N )− L̂(k)(f̂N ))− (L(f∗)− L̂(k)(f∗)) + L̂(k)(f̂N )− L̂(k)(f∗)︸ ︷︷ ︸
≤0

≤ sup
f :E(f)≤δ̂N

∣∣∣L̂(k)(f − f∗)− L(f − f∗)
∣∣∣. (6.4.1)

It would then suffice to find a good upper bound for the supremum on the right side of (6.4.1) and
solve the resulting inequality to get an upper bound for δ̂N . However, this argument does not work
directly due to the lack of linearity. Instead, we use Bahadur-type representation of the ê(k)(f) to
introduce linearity into the problem. Specifically, we will show that ê(k)(f) = − Ĝk(0;f)

∂zGk(0;f) + rN (f)

where rN (f) is a small remainder term. The process Ĝk(0; f) is “almost” linear in `(f), the only
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obstacle being the nonlinearity due to ρ′. Mimicking (6.4.1), we can write that

δ̂N = ê(k)(f̂N )− ê(k)(f∗) + L̂(k)(f̂N )− L̂(k)(f∗)︸ ︷︷ ︸
≤0

≤ ê(k)(f̂N )− ê(k)(f∗)

=

∣∣∣∣∣∣
Ĝk

(
0; f̂N

)
∂zG

(
0; f̂N

) − Ĝk(0; f∗)
∂zG(0; f∗)

∣∣∣∣∣∣+r′N (f̂N , f∗) ≤ sup
f :E(f)≤δ̂N

(∣∣∣∣∣ Ĝk(0; f)

∂zG(0; f)
− Ĝk(0; f∗)
∂zG(0; f∗)

∣∣∣∣∣+ r′N (f, f∗)

)

for appropriately defined r′N (·, ·). The difference Ĝk(0;f)
∂zG(0;f) −

Ĝk(0;f∗)
∂zG(0;f∗)

can be tackled with the
techniques commonly used to estimate suprema of the empirical processes; in particular, sym-
metrization and contraction inequalities for Rademacher sums [LT91] are used to remove the
additional nonlinearity in the definition of Ĝk(z, f) introduced by ρ′. At that point, one only
needs to carefully estimate the remainder term r′N .

6.4.1 Technical tools.

We summarize the key results that our proofs rely on.

Lemma 33. Let ρ satisfy Assumption 1. Then for any random variable Y with EY 2 <∞,

Var(ρ′(Y )) ≤ Var(Y ).

Proof. See Lemma 5.3 in [Min18].

Lemma 34. For any function h of with bounded third derivative and a sequence of i.i.d. random
variables x1, . . . , xn such that Ex1 = 0 and E|x1|3 <∞,∣∣∣∣∣∣Eh

 n∑
j=1

xj

− Eh

 n∑
j=1

Zj

∣∣∣∣∣∣ ≤ Cn ‖h′′′‖∞ E|x1|3,

where C > 0 is an absolute constant and Z1, . . . , Zn are i.i.d. centered normal random variables
such that Var(Z1) = Var(x1).

Proof. This bound follows from a standard application of Lindeberg’s replacement method; see
chapter 11 in [O’D14].

Lemma 35. Assume that E|f(X)−Ef(X)|2 <∞ for all f ∈ F and that ρ satisfies Assumption
1. Then for all f ∈ F and z ∈ R satisfying |z| ≤ ∆√

n
1
2 ,∣∣∣∣Eρ′(√n (θ̄j(f)− Pf)− z

∆

)
− Eρ′

(
W (f)−√nz

∆

)∣∣∣∣ ≤ 2Gf (n,∆).

Proof. See Lemma 4.2 in [Min18].
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Given N i.i.d. random variablesX1, . . . , XN ∈ S, let ‖f−g‖L∞(ΠN ) := max1≤j≤N |f(Xj)−g(Xj)|.
Moreover, define

Γn,∞(F) := Eγ2
2(F ;L∞(ΠN )),

where γ2(F , L∞(ΠN )) is Talagrand’s generic chaining complexity [Tal14].

Lemma 36. Let σ2 := supf∈G Ef2(X). Then there exists a universal constant C > 0 such that

E sup
f∈F

∣∣∣∣∣∣ 1

N

N∑
j=1

f2(Xj)− Ef2(X)

∣∣∣∣∣∣ ≤ C
(
σ

√
ΓN,∞(F)

N

∨ ΓN,∞(F)

N

)
.

Proof. See Theorem 3.16 in [Kol11].

The following form of Talagrand’s concentration inequality is due to Klein and Rio (see Section
12.5 in [BLM13]).

Lemma 37. Let {Zj(f), f ∈ F}, j = 1, . . . , N be independent (not necessarily identically
distributed) separable stochastic processes indexed by class F and such that |Zj(f)−EZj(f)| ≤M
a.s. for all 1 ≤ j ≤ N and f ∈ F . Then the following inequality holds with probability at least
1− e−s:

sup
f∈F

 N∑
j=1

(Zj(f)− EZj(f))

 ≤ 2E sup
f∈F

 N∑
j=1

(Zj(f)− EZj(f))

+ V (F)
√

2s+
4Ms

3
,(6.4.2)

where V 2(F) = supf∈F
∑N
j=1 Var(Zj(f)).

It is easy to see, applying (6.4.2) to processes {−Zj(f), f ∈ F}, that

inf
f∈F

 N∑
j=1

(Zj(f)− EZj(f))

 ≥ −2E sup
f∈F

 N∑
j=1

(EZj(f)− Zj(f))

− V (F)
√

2s− 4Ms

3

with probability at least 1− e−s.

6.4.2 Proof of Theorems 34 and 35.

We will provide detailed proofs for the estimator f̂N that is based on disjoint subsamples indexed
by G1, . . . , Gk. The bounds for its permutation-invariant version f̂UN follow exactly the same steps
where all applications of the Talagrand’s concentration inequality (Lemma 37) should be replaced
by its version (6.6.3) for nondegenerate U-statistics stated in Section 6.6 of the supplementary
material.

Let J ⊂ {1, . . . , k} of cardinality |J | ≥ k−O be the set containing all j such that the subsample
{Xi, i ∈ Gj} does not include outliers. Clearly, {Xi : i ∈ Gj , j ∈ J} are still conditionally i.i.d.
as the partitioning scheme is independent of the data. Moreover, set NJ :=

∑
j∈J |Gj |, and note

that, since O < k/2,

NJ ≥ n|J | ≥
N

2
.

187



CHAPTER 6. EXCESS RISK BOUNDS IN ROBUST EMPIRICAL RISK MINIMIZATION

Consider stochastic process RN (f) defined as

RN (f) = Ĝk(0; f) + ∂zGk(0; f) · ê(k)(f), (6.4.3)

where ∂zGk(0; f) := ∂zGk(z; f)|z=0
. Whenever ∂zGk(0; f) 6= 0 (this assumption will be justified

by Lemma 38 below), we can solve (6.4.3) for ê(k)(f) to obtain

ê(k)(f) = − Ĝk(0; f)

∂zGk(0; f)
+

RN (f)

∂zGk(0; f)
, (6.4.4)

which can be viewed as a Bahadur-type representation of ê(k)(f). Setting f := f̂N and recalling
that ê(k)(f) = L̂(k)(f)− L(f), we deduce that

L̂(k)(f̂N ) = L(f̂N )−
Ĝk

(
0; f̂N

)
∂zGk

(
0; f̂N

) +
RN (f̂N )

∂zGk

(
0; f̂N

) .
By the definition (6.1.4) of f̂N , L̂(k)(f̂N ) ≤ L̂(k)(f∗), hence

L(f̂N )−
Ĝk

(
0; f̂N

)
∂zGk

(
0; f̂N

) +
RN (f̂N )

∂zGk

(
0; f̂N

) ≤ L(f∗)−
Ĝk(0; f∗)
∂zGk(0; f∗)

+
RN (f∗)

∂zGk(0; f∗)
.

Rearranging the terms, it is easy to see that

δ̂N = L(f̂N )− L(f∗) ≤

∣∣∣∣∣∣
Ĝk

(
0; f̂N

)
∂zG

(
0; f̂N

) − Ĝk(0; f∗)
∂zG(0; f∗)

∣∣∣∣∣∣+ 2 sup
f∈F(δ̂N )

∣∣∣∣ RN (f)

∂zGk(0; f)

∣∣∣∣. (6.4.5)

Remark. Similar argument also implies, in view of the inequality L(f∗) ≤ L(f̂N ), that

L̂(k)(f∗) +
Ĝk(0; f∗)
∂zGk(0; f∗)

− RN (f∗)
∂zGk(0; f∗)

≤ L̂(k)(f̂N ) +
Ĝk

(
0; f̂N

)
∂zGk

(
0; f̂N

) − RN (f̂N )

∂zGk

(
0; f̂N

) ,
hence

L̂(k)(f∗)− L̂(k)(f̂N ) ≤

∣∣∣∣∣∣
Ĝk

(
0; f̂N

)
∂zG

(
0; f̂N

) − Ĝk(0; f∗)
∂zG(0; f∗)

∣∣∣∣∣∣+ 2 sup
f∈F(δ̂N )

∣∣∣∣ RN (f)

∂zGk(0; f)

∣∣∣∣.

It follows from (6.4.5) that in order to estimate the excess risk of f̂N , it suffices to obtain the
upper bounds for

A1 :=

∣∣∣∣∣∣
Ĝk

(
0; f̂N

)
∂zGk

(
0; f̂N

) − Ĝk(0; f∗)
∂zGk(0; f∗)

∣∣∣∣∣∣ and A2 := sup
f∈F(δ̂N )

∣∣∣∣ RN (f)

∂zGk(0; f)

∣∣∣∣.
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Observe that

Ĝk

(
0; f̂N

)
∂zGk

(
0; f̂N

) − Ĝk(0; f∗)
∂zGk(0; f∗)

=
Ĝk

(
0; f̂N

)
− Ĝk(0; f∗)

∂zGk

(
0; f̂N

) +
Ĝk(0; f∗)

∂zGk(0; f∗)∂zGk
(

0; f̂N

)(∂zGk(0; f∗)− ∂zGk
(

0; f̂N

))
.

Since ρ′′ is Lipschitz continuous by assumption,∣∣∣∣∣∣ Ĝk(0; f∗)

∂zGk(0; f∗)∂zGk
(

0; f̂N

)(∂zGk(0; f∗)− ∂zGk
(

0; f̂N

))∣∣∣∣∣∣
=

∣∣∣∣∣∣ Ĝk(0; f∗)

∂zGk(0; f∗)∂zGk
(

0; f̂N

)√nk
∆

E

(
ρ′′
(√

n
L1(f∗)− L(f∗)

∆

)
− ρ′′

(
√
n
L1(f̂N )− L(f̂N )

∆

))∣∣∣∣∣∣
≤ L(ρ′′)

∣∣∣∣∣∣ Ĝk(0; f∗)

∂zGk(0; f∗)∂zGk
(

0; f̂N

)√nk
∆2

Var1/2
(
`(f̂N (X))− `(f∗(X))

)∣∣∣∣∣∣
= C(ρ)

∣∣∣∣∣∣ Ĝk(0; f∗)

∂zGk(0; f∗)∂zGk
(

0; f̂N

)
∣∣∣∣∣∣
√
nk

∆2
ν(δ̂N ). (6.4.6)

The following two lemmas are required to proceed.

Lemma 38. There exist C(ρ) > 0 such that for any f ∈ F ,

|∂zGk(0; f)| ≥
√
kn

2
√

2π∆

(
min

(
∆√

Var(`(f(X)))
, 2
√

log 2

)
− C(ρ)√

n
E
∣∣∣∣`(f(X))− P`(f)

∆

∣∣∣∣3
)
.

Proof. See Section 6.5.1.

In particular, the bound of Lemma 38 implies that for n large enough,

inf
f∈F
|∂zGk(0; f)| ≥ 1

4
√

2π

√
kn

max(∆, σ(`,F))
=

1

4
√

2π

√
kn

∆̃
. (6.4.7)

It is also easy to deduce from the proof of Lemma 38 that for small n and ∆ > σ(`,F),
inff∈F |∂zGk(0; f)| ≥ c(ρ)

√
kn
∆ for some positive c(ρ).

Lemma 39. For any f ∈ F ,

Ĝk(0; f) ≤ 2

(√
k Gf (n,∆) +

σ(`, f)

∆

√
s+

2s√
k

+
O√
k

)
with probability at least 1− 2e−s, where C > 0 is an absolute constant.

Proof. See Section 6.5.2.
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Lemma 39 and (6.4.7) imply, together with (6.4.6), that∣∣∣∣∣∣ Ĝk(0; f∗)

∂zGk(0; f∗)∂zGk
(

0; f̂N

)(∂zGk(0; f∗)− ∂zGk
(

0; f̂N

))∣∣∣∣∣∣
≤ C(ρ)

∆̃2

∆2

(
σ(`, f∗)

∆

√
s

N
+
Gf∗(n,∆)√

n
+
√
n
s

N
+
√
n
O
N

)
ν(δ̂N )

on event Θ1 of probability at least 1− 2e−s. As ∆̃ ≥ σ(`,F) by assumption, we deduce that∣∣∣∣∣∣ Ĝk(0; f∗)

∂zGk(0; f∗)∂zGk
(

0; f̂N

)(∂zGk(0; f∗)− ∂zGk
(

0; f̂N

))∣∣∣∣∣∣
≤ C(ρ)ν(δ̂N )

(√
s

N
+
Gf∗(n,∆)√

n
+
√
n
s

N
+
√
n
O
N

)
.

Define

δ1 := min

{
δ > 0 : C1(ρ)

(√
s

N
+
Gf∗(n,∆)√

n
+
√
n
s+O
N

)
ν̃(δ)

δ
≤ 1

7

}
(6.4.8)

where C1(ρ) is sufficiently large. It is easy to see that on event Θ1 ∩ {δ̂N > δ1},∣∣∣∣∣∣ Ĝk(0; f∗)

∂zGk(0; f∗)∂zGk
(

0; f̂N

)(∂zGk(0; f∗)− ∂zGk
(

0; f̂N

))∣∣∣∣∣∣ ≤ δ̂N
7
, (6.4.9)

for appropriately chosen C1(ρ).

Our next goal is to obtain an upper bound for
∣∣∣∣ Ĝk(0;f̂N)−Ĝk(0;f∗)

∂zGk(0;f̂N)

∣∣∣∣. To this end, we will need

to control the local oscillations of the process Ĝk(0; f). Specifically, we are interested in the
bounds on the random variable supf∈F(δ)

∣∣∣Ĝk(0; f)− Ĝk(0; f∗)
∣∣∣. The following technical lemma

is important for the analysis.

Lemma 40. Let (x1, η1), . . . , (xn, ηn) be a sequence of independent identically distributed random
couples such that Ex1 = 0, Eη1 = 0, and E|x1|2 + E|η1|2 <∞. Let F be an odd, smooth function
with bounded derivatives up to fourth order. Then∣∣∣∣∣∣EF

 n∑
j=1

xj

− EF

 n∑
j=1

ηj

∣∣∣∣∣∣ ≤ max
α∈[0,1]

√
nVar1/2(x1 − η1)

(
E|F ′(Sηn + α(Sxn − Sηn))|2

)1/2

.

Moreover, if E|x1|4 + E|η1|4 <∞, then∣∣∣∣∣∣EF
 n∑
j=1

xj

− EF

 n∑
j=1

ηj

∣∣∣∣∣∣ ≤ C(F ) · n
(
Var1/2(x1 − η1)

(
R2

4 +
√
n− 1R3

4

)
+
(
E|x1 − η1|4

)1/4
R3

4

)
,

where R4 =
(
max

(
E|x1|4,E|η1|4

))1/4and C(F ) > 0 is a constant that depends only on F .
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Proof. See Section 6.5.3.

Now we are ready to state the bound for the local oscillations of the process Ĝk(0; f). Let

U(δ, s) :=
2

∆

(
8
√

2ω(δ) + ν(δ)

√
s

2

)
+

32s

3
√
k
.

Moreover, if ω̃(δ) and ν̃(δ) are upper bounds for ω(δ) and ν(δ) and are of concave type, then

Ũ(δ, s) :=
2

∆

(
c(γ) ω̃(δ) + ν̃(δ)

√
s

2

)
+

32s√
k
, (6.4.10)

where c(γ) > 0 depends only on γ, is also an upper bound for U(δ, s) of strictly concave type.
Moreover, define

R4(`,F) := sup
f∈F

E1/4
(
`(f(X))− E`(f(X))

)4

,

ν4(δ) := sup
f∈F(δ)

E1/4

(
`(f(X))− `(f∗(X))− E(`(f(X))− `(f∗(X)))

)4

,

B(`,F) :=
R4(`,F)

σ(`,F)
,

B̃(δ) :=


ν̃(δ)
∆

1
M∆

, R4(`,F) =∞,
B3(`,F)√

n

(
ν̃(δ)
∆

1
M2

∆
+ ν̃4(δ)

∆
1

M3
∆

√
n

)
, R4(`,F) <∞,

where ν̃4(δ) upper bounds ν4(δ) and is of concave type. Below, we will use a crude bound
ν4(δ) ≤ 2R4(`,F), but additional improvements are possible if better estimates of ν4(δ) are
available.

Lemma 41. With probability at least 1− e−2s,

sup
f∈F(δ)

∣∣∣Ĝk(0; f)− Ĝk(0; f∗)
∣∣∣ ≤ U(δ, s) + C(ρ)

√
k B̃(δ) + 4

O√
k
,

where C(ρ) > 0 is constant that depends only on ρ.

Proof. See Section 6.5.4.

Next, we state the “uniform version” of Lemma 41.

Lemma 42. With probability at least 1− e−s, for all δ ≥ δmin simultaneously,

sup
f∈F(δ)

∣∣∣Ĝk(0; f)− Ĝk(0; f∗)
∣∣∣ ≤ C(ρ)δ

(
Ũ(δmin, s)

δmin
+
√
k
B̃(δmin)

δmin

)
+ 4
O√
k
,

where C(ρ) > 0 is constant that depends only on ρ.

Proof. See Section 6.5.5.
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It follows from Lemma 42 and inequality (6.4.7) that on event Θ2 of probability at least
1− e−s, for all δ ≥ δmin simultaneously,

sup
f∈F(δ)

∣∣∣∣∣ Ĝk(0; f)− Ĝk(0; f∗)
∂zGk(0; f)

∣∣∣∣∣ ≤ C(ρ)δ

(
∆̃√
N

Ũ(δmin, s)

δmin
+

∆̃√
n

B̃(δmin)

δmin

)
+ 4∆̃

√
n
O
N
.

Define

δ2 := min

{
δ > 0 : C2(ρ)

∆̃√
N

Ũ(δ, s)

δ
≤ 1

7

}
,

δ3 := min

{
δ > 0 : C3(ρ)

∆̃√
n

B̃(δ)

δ
≤ 1

7

}
,

where C2(ρ), C3(ρ) are sufficiently large constants. Then, on event Θ2 ∩
{
δ̂N > max(δ2, δ3)

}
,

sup
f∈F(δ̂N )

∣∣∣∣∣ Ĝk(0; f)− Ĝk(0; f∗)
∂zGk(0; f)

∣∣∣∣∣ ≤ 2 δ̂N
7

+ 4∆̃
√
n
O
N

(6.4.11)

for appropriately chosen C2(ρ), C3(ρ).

Finally, we provide an upper bound for the process RN (f) defined via

RN (f) = Ĝk(0; f) + ∂zGk(0; f) · ê(k)(f).

Lemma 43. Assume that conditions of Theorem 33 hold, and let δmin > 0 be fixed. Then for all
s > 0, δ ≥ δmin, positive integers n and k such that

δ
Ũ(δmin, s)

δmin

√
k

+ sup
f∈F

Gf (n,∆) +
s+O
k
≤ c(ρ), (6.4.12)

the following inequality holds with probability at least 1 − 7e−s, uniformly over all δ satisfying
(6.4.12):

sup
f∈F(δ)

|RN (f)| ≤ C(ρ)
√
N

∆̃2

∆2

(
n1/2δ2

(
Ũ(δmin, s)

δmin

√
N

)2∨ σ2(`, f∗)
∆2

n1/2 s

N

∨
n1/2

(
sup
f∈F

Gf
(
n,∆

)
√
n

)2∨
n3/2 s

2

N2

∨
n3/2O2

N2

)
.

Moreover, the bound of Theorem 33 holds on the same event.

Proof. See Section 6.5.6.

Recall that

δ2 = min

{
δ > 0 : C2(ρ)

∆̃√
N

Ũ(δ, s)

δ
≤ 1

7

}
,
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where C2(ρ) is a large enough constant. Let Θ3 be the event of probability at least 1− 7e−s on
which Lemma 43 holds with δmin = δ2, and consider the event Θ3 ∩{δ̂N > δ2}. We will now show
that on this event, Lemma 43 applies with δ = δ̂N . Indeed, the bound of Theorem 33 is valid
on Θ3, hence the inequality (6.2.4) implies that on Θ3, δ̂N ≤ C(ρ) ∆̃√

n
, and it is straightforward

to check that condition (6.4.12) of Lemma 43 holds with δmin = δ2 and δ = δ̂N . It follows from
inequality (6.4.7) that on event Θ3 ∩ {δ̂N ≥ δ2},

sup
f∈F(δ̂N )

∣∣∣∣ RN (f)

∂zGk(0; f)

∣∣∣∣ ≤ C(ρ)
∆̃2

∆2

(
n1/2

∆̃
δ̂2
N

(
∆̃√
N

Ũ(δ2, s)

δ2

)2∨
∆̃
σ2(`, f∗)

∆2

n1/2 s

N

∨
n1/2∆̃

(
sup
f∈F

Gf
(
n,∆

)
√
n

)2∨
n3/2∆̃

s2 +O2

N2

)
.

Consider the expression

C(ρ)
∆̃2

∆2

n1/2

∆̃
δ̂2
N

(
∆̃√
N

Ũ(δ2, s)

δ2

)2

= C(ρ)
∆̃2

∆2

(
∆̃√
N

Ũ(δ2, s)

δ2

)2

δ̂N ·
n1/2δ̂N

∆̃
,

and observe that whenever Theorem 33 holds, n
1/2δ̂N

∆̃
≤ c(ρ), hence the latter is bounded from

above by

δ̂N · C(ρ)
∆̃2

∆2

(
∆̃√
N

Ũ(δ2, s)

δ2

)2

≤ δ̂N
7

whenever ∆ ≥ σ(`,F) (so that ∆̃ = ∆) and C2(ρ) in the definition of δ2 is large enough. Moreover,

C(ρ)
∆̃3

∆3

σ2(`, f∗)
∆

n1/2 s

N
≤ C ′(ρ) · σ(`, f∗)

√
n
s

N
≤ C ′(ρ)∆̃

√
n
s

N

if ∆̃ ≥ σ(`, f∗). As s+O
k ≤ c under the conditions of Theorem 33, n3/2∆̃ s2+O2

N2 ≤ C∆̃
√
n s+ON .

Combining the inequalities obtained above, we deduce on event Θ3 ∩ {δ̂N ≥ δ2},

2 sup
f∈F(δ̂N )

∣∣∣∣ RN (f)

∂zGk(0; f)

∣∣∣∣ ≤ 2δ̂N
7

+ C(ρ)∆̃

(
√
n
s+O
N

∨ supf∈F
(
Gf
(
n,∆

))2
√
n

)

whenever ∆̃ ≥ σ(`,F). Finally, define

δ4 := C4(ρ)∆̃

(
√
n
s+O
N

∨ supf∈F
(
Gf
(
n,∆

))2
√
n

)
,

where C4(ρ) is sufficiently large. Then on event Θ3 ∩
{
δ̂N ≥ max

(
δ2, 7δ4

)}
,

2 sup
f∈F(δ̂N )

∣∣∣∣ RN (f)

∂zGk(0; f)

∣∣∣∣+ 4∆̃
√
n
O
N
≤ 2δ̂N

7
+
δ̂N
7

=
3δ̂N

7
. (6.4.13)

Note that the expression above takes care of the term 4∆̃
√
nON that appeared in (6.4.11). Combin-

ing (6.4.9), (6.4.11), (6.4.13), we deduce that on event Θ1∩Θ2∩Θ3∩
{
δ̂N ≥ max

(
δ1, δ2, δ3, 7 δ4

)}
,

δ̂N ≤
6

7
δ̂N ,
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leading to a contradiction, hence on event Θ1 ∩Θ2 ∩Θ3 of probability at least 1− 10e−s,

δ̂N ≤ max
(
δ1, δ2, δ3, 7δ4

)
. (6.4.14)

Recall the definition (6.4.8) of δ1. If condition 2 (“Bernstein condition”) holds, then ν̃(δ) ≤ D
√
δ

for small enough δ, in which case

δ1 ≤ C(ρ)D2

(
s+O
N

+
G2
f∗

(n,∆)

n

)
,

where we used the fact that s
k ≤ c by assumption. Together with the bound (6.2.1) for Gf∗(n,∆),

we deduce that, under the assumption that R4(`,F) <∞,

δ1 ≤ C(ρ)D2

s+O
N

+

(
E
∣∣f∗(X)− Ef∗(X)

∣∣3)2

∆6 n2

.
Since ∆ = σ(`,F)M∆,

E
∣∣f∗(X)−Ef∗(X)

∣∣3
∆3 ≤ supf∈F E

∣∣f(X)−Ef(X)
∣∣3

σ3(`,F)M3
∆

≤ B3(`,F)
M3

∆
, where

B(`,F) =
supf∈F E1/4(`(f(X))− E`(f(X)))

4

σ(`,F)
,

hence

δ1 ≤ C(ρ)D2

(
s+O
N

+
B6(`,F)

n2M6
∆

)
. (6.4.15)

At the same time, if only σ(`,F) <∞, we similarly obtain that

δ1 ≤ C(ρ)D2

(
s+O
N

+
1

M4
∆ n

)
. (6.4.16)

Next we will estimate δ3. Recall that, when R4(`,F) <∞,

B̃(δ) =
B3(`,F)√

n

(
ν̃(δ)

∆

1

M2
∆

+
ν̃4(δ)

∆

1

M3
∆

√
n

)
.

For sufficiently small δ (namely, for which condition 2 holds) and ∆ ≥ σ(`,F),

∆̃√
n
B̃(δ) ≤ B3(`,F)

n

(
ν̃(δ)

M2
∆

+
R4(`,F)

M3
∆

√
n

)
≤ B3(`,F)

n

(
D

√
δ

M2
∆

+ σ(`,F)
B(`,F)

M3
∆

√
n

)

and

δ3 ≤ C(ρ)

(
D2B

6(`,F)

n2M4
∆

+ σ(`,F)
B4(`,F)

n3/2M3
∆

)
. (6.4.17)

At the same time, if only the second moments are finite, B̃(δ) = ν̃(δ)
∆

1
M∆

, and it is easy to deduce
that in this case,

δ3 ≤ C(ρ)
D2

M2
∆ n

. (6.4.18)
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Next, we obtain a simpler bound for δ4: as ∆ ≥ σ(`,F) by assumption, ∆̃ = ∆ = σ(`,F)M∆,
and the estimate (6.2.1) for Gf∗(n,∆) implies (if R4(`,F) <∞) that

δ4 ≤ C(ρ)σ(`,F)

(√
nM∆

s+O
N

+
B6(`,F)

M5
∆n

3/2

)
. (6.4.19)

If only σ(`,F) <∞, we similarly deduce from (6.2.1) that

δ4 ≤ C(ρ)σ(`,F)

(√
nM∆ ·

s+O
N

+
1

M3
∆

√
n

)
. (6.4.20)

Finally, recall that Ũ(δ, s) = 2
∆

(
c(γ) ω̃(δ) + ν̃(δ)

√
s
2

)
+ 32s√

k
and δ2 = min

{
δ > 0 : C2(ρ) ∆̃√

N

Ũ(δ,s)
δ ≤ 1

7

}
,

hence

δ2 ≤ δ
∨
C(ρ)D2 s

N

∨
C(ρ)σ(`,F)

s
√
nM∆

N
, (6.4.21)

where δ was defined in (6.2.5). Combining inequalities (6.4.15), (6.4.21), (6.4.17), (6.4.19) and
(6.4.14), we obtain the final form of the bound under the stronger assumption R4(`,F) < ∞.
Similarly, the combination of (6.4.16), (6.4.21), (6.4.18), (6.4.20) and (6.4.14) yields the bound
under the weaker assumption σ(`,F) <∞.

6.4.3 Proof of Theorem 36.

Recall that ÊN (f∗) := L̂(k)(f∗)−L̂(k)(f̂ ′N ) is the “empirical excess risk” of f∗, and let δ̂N := E(f̂ ′N ).
It follows from Remark 6.4.2 that (using the notation used in the proof of Theorems 34 and 35)

ÊN (f∗) ≤

∣∣∣∣∣∣
Ĝk

(
0; f̂ ′N

)
∂zG

(
0; f̂ ′N

) − Ĝk(0; f∗)
∂zG(0; f∗)

∣∣∣∣∣∣+ 2 sup
f∈F(δ̂N )

∣∣∣∣ RN (f)

∂zGk(0; f)

∣∣∣∣.
On the event of Theorem 35 of probability at least 1− 10e−s,

E(f̂ ′N ) ≤ δ′ := δ + C(ρ)
(
D2σ(`,F)

√
nM∆

)(B6(`,F)

M4
∆n

2
+
s+O
N

)
,

hence on this event

ÊN (f∗) ≤ sup
f∈F(δ′)

∣∣∣∣∣ Ĝk(0; f)

∂zG(0; f)
− Ĝk(0; f∗)
∂zG(0; f∗)

∣∣∣∣∣+ 2 sup
f∈F(δ′)

∣∣∣∣ RN (f)

∂zGk(0; f)

∣∣∣∣ ≤ 6

7
δ′

where the last inequality again follows from main steps in the proof of Theorem 35; note
that similar result holds if δ′ is replaced by its analogue from Theorem 35. Consider the set
F̂(δ′) =

{
f ∈ F : ÊN (f) ≤ δ′

}
. First, observe that on the event E1 of Theorem 35, f∗ ∈ F̂(δ′)

as implied by the previous display. We will next show that F̂(δ′) ⊆ F(7δ′) on the event E1 of
Theorem 35, meaning that for any f ∈ F̂(δ′), E(f) ≤ 7δ′. Indeed, let f ∈ F̂(δ′) be such that
E(f) = σ. Then (6.4.4) implies that

L(f)−L(f∗) ≤ L̂(k)(f)− L̂(k)(f∗) +

∣∣∣∣∣ Ĝk(0; f)

∂zGk(0; f)
− Ĝk(0; f∗)
∂zGk(0; f∗)

∣∣∣∣∣+
∣∣∣∣ RN (f)

∂zGk(0; f)
+

RN (f∗)
∂zGk(0; f∗)

∣∣∣∣
≤ ÊN (f) + sup

f∈F(σ)

∣∣∣∣∣ Ĝk(0; f)

∂zGk(0; f)
− Ĝk(0; f∗)
∂zGk(0; f∗)

∣∣∣∣∣+ 2 sup
f∈F(σ)

∣∣∣∣ RN (f)

∂zGk(0; f)

∣∣∣∣.
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Again, it follows from the arguments used in proof of Theorem 35 that on event E1 of probability
at least 1− 10e−s,

sup
f∈F(σ)

∣∣∣∣∣ Ĝk(0; f)

∂zGk(0; f)
− Ĝk(0; f∗)
∂zGk(0; f∗)

∣∣∣∣∣+ 2 sup
f∈F(σ)

∣∣∣∣ RN (f)

∂zGk(0; f)

∣∣∣∣ ≤ 6

7
max(δ′, σ).

Consequently, σ ≤ δ′ + 6
7 max(δ′, σ) on this event, implying that σ ≤ 7δ′. Next, Assumption 2

yields that

sup
f∈F̂(δ′)

Var
(
`(f(X))− `(f̂ ′N )

)
≤ 2

(
sup

f∈F̂(δ′)

Var(`(f(X))− `(f∗(X))) + Var
(
`(f̂ ′N (X))− `(f∗(X))

))
≤ 2D(

√
7 + 1)δ′

on E1. It remains to apply Theorem 35, conditionally on E1, to the class

F̂(δ′)− f̂ ′N :=
{
f − f̂ ′N , f ∈ F̂(δ′)

}
.

To this end, we need to verify the assumption of Theorem 33 that translates into the requirement

c∆2 ≥
1√
k2

E sup
f∈F(7δ′)

1√
|S2|

|S2|∑
j=1

(`(f(Xj))− `(f∗(Xj))− P (`(f)− `(f∗))).

As δ′ > δ and |S2| ≥ bN/2c, we have the inequality

E sup
f∈F(7δ′)

1√
|S2|

|S2|∑
j=1

(`(f(Xj))− `(f∗(Xj))− P (`(f)− `(f∗))) ≤ Cδ′
√
N,

hence it suffices to check that ∆2 = DM∆2

√
7δ′ ≥ Cδ′

√
N
k2
. The latter is equivalent to δ′ ≤

CD2M2
∆2

k2

N that holds by assumption. Result now follows easily as we assumed that the
subsamples S1 and S2 used to construct f̂ ′N and f̂ ′′N are disjoint.
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Supplementary material.

6.5 Remaining proofs.

6.5.1 Proof of Lemma 38.

As ρ is sufficiently smooth,

∂zGk(0; f) = −
√
kn

∆
Eρ′′

(√
n
L1(f)− L(f)

∆

)
.

Let W (`(f)) denote a centered normal random variable variance equal to Var(`(f(X))). Lemma
34 implies that∣∣∣∣Eρ′′(√nL1(f)− L(f)

∆

)
− Eρ′′

(
W (`(f))

∆

)∣∣∣∣ ≤ C ‖ρ(5)‖∞
∆3
√
n

E
∣∣`(f(X))− P`(f)

∣∣3.
Next, as ρ′′(x) ≥ I{|x| ≤ 1} by assumption,

Eρ′′
(
W (`(f))

∆

)
≥ Pr(|W (`(f))| ≤ ∆).

Gaussian tail bound implies that

Pr(|W (`(f))| ≤ ∆) ≥ 1− 2 exp

(
−1

2

∆2

Var(`(f(X)))

)
≥ 1

2

whenever ∆2 ≥ 4 log(2)Var(`(f(X))). On the other hand, if x ∼ N(0, 1), then clearly Pr(Z ≤ |t|) ≥
2|t|√

2π
e−t

2/2, hence

Pr(|W (`(f))| ≤ ∆) ≥ 2∆√
2πVar(`(f(X)))

exp

(
−1

2

∆2

Var(`(f(X)))

)
≥ ∆√

8πVar(`(f(X)))

whenever ∆2 < 4 log(2)Var(`(f(X))). Combination of two bounds yields that

Pr(|W (`(f))| ≤ ∆) ≥ 1

2
√

2π
min

(
∆√

Var(`(f(X)))
, 2
√

log 2

)
.

6.5.2 Proof of Lemma 39.

Observe that

1√
k

k∑
j=1

ρ′
(√

n
L1(f)− L(f)

∆

)
=

1√
k

∑
j∈J

ρ′
(√

n
L1(f)− L(f)

∆

)
+

1√
k

∑
j /∈J

ρ′
(√

n
L1(f)− L(f)

∆

)

≤
√
|J |
k

1√
|J |
∑
j∈J

ρ′
(√

n
L1(f)− L(f)

∆

)
+ 2
O√
k
,
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where we used the fact that ‖ρ′‖∞ ≤ 2. Bernstein’s inequality implies that∣∣∣∣∣∣ 1√
|J |

∑
j∈J

ρ′
(√

n
L1(f)− L(f)

∆

)
− Eρ′

(√
n
L1(f)− L(f)

∆

)∣∣∣∣∣∣
≤ 2

(
Var1/2

(
ρ′
(√

n
L1(f)− L(f)

∆

))√
s+

2s√
|J |

)

with probability at least 1− 2e−s, where we again used the fact that ‖ρ′‖∞ ≤ 2. Moreover,

Var
(
ρ′
(√

n
L1(f)− L(f)

∆

))
≤ σ2(`, f)

∆2

by Lemma 33, hence with the same probability

|Ĝk(0; f)| ≤
√
k

∣∣∣∣Eρ′(√nL1(f)− L(f)

∆

)∣∣∣∣+ 2

(
σ(`, f)

∆

√
s+

2s√
k

+
O√
k

)
.

Lemma 6.2 in [Min18] implies that∣∣∣∣Eρ′(√nL1(f)− L(f)

∆

)∣∣∣∣ ≤ Eρ′
(
W (`(f))

∆

)
︸ ︷︷ ︸

=0

+2Gf (n,∆),

hence the claim follows.

6.5.3 Proof of Lemma 40.

Since F is smooth, for any x, y ∈ R, F (y) − F (x) =
∫ 1

0
F ′(x + α(y − x))dα · (y − x). Let

Sxn =
∑n
j=1 xj , S

η
n =

∑n
j=1 ηj . Then

F (Sxn)− F (Sηn) = (Sxn − Sηn)

∫ 1

0

F ′(Sηn + α(Sxn − Sηn))dα,

hence

E(F (Sxn)− F (Sηn)) =

∫ 1

0

E[(Sxn − Sηn)F ′(Sηn + α(Sxn − Sηn))]dα.

Hö’s inequality yields that

∣∣∣E(Sxn − Sηn)F ′(Sηn + α(Sxn − Sηn))
∣∣∣ ≤ (E|Sxn − Sηn|2)1/2(

E|F ′(Sηn + α(Sxn − Sηn))|2
)1/2

≤ √nVar1/2(x1 − η1)
(
E|F ′(Sηn + α(Sxn − Sηn))|2

)1/2

,

implying the first inequality. The rest of the proof is devoted to the second inequality of the
lemma. Let (W,Z) be a centered Gaussian vector with the same covariance as (x1, η1), and let
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(W1, Z1), . . . , (Wn, Zn) be i.i.d. copies of (W,Z). We also set SWn =
∑n
j=1Wj , S

Z
n =

∑n
j=1 Zj .

As EF
(
SWn
)

= EF
(
SZn
)

= 0 for bounded odd F , it is easy to see that

|E(F (Sxn)− F (Sηn))| =
∣∣E(F (Sxn)− F (Sηn))− E

(
F
(
SWn
)
− F

(
SZn
))∣∣

=
∣∣∣ ∫ 1

0

(
E(Sxn − Sηn)F ′(Sηn + α(Sxn − Sηn))− E

(
SWn − SZn

)
F ′
(
SZn + α

(
SWn − SZn

)))
dα
∣∣∣

≤
∫ 1

0

∣∣∣E(Sxn − Sηn)F ′(Sηn + α(Sxn − Sηn))− E
(
SWn − SZn

)
F ′
(
SZn + α

(
SWn − SZn

))∣∣∣dα.
Next we will estimate, for each α ∈ [0, 1], the expression∣∣∣E(Sxn − Sηn)F ′(Sηn + α(Sxn − Sηn))− E

(
SWn − SZn

)
F ′
(
SZn + α

(
SWn − SZn

))∣∣∣. (6.5.1)

To this end, we will use Lindeberg’s replacement method. For i = 0, . . . , n, denote

Ti = (x1 − η1, . . . , xi − ηi,Wi+1 − Zi+1, . . . ,Wn − Zn, η1, . . . , ηi, Zi+1, . . . , Zn).

Then the expression in (6.5.1) is equal to |EG(Tn)− EG(T0)|, where

G(T ) =

(
n∑
i=1

T (i)

)
F ′

 n∑
j=1

(
T (j+n) + αT (j)

)
and T (j) stands for the j-th coordinate of T . Clearly,

|EG(Tn)− EG(T0)| ≤
n∑
i=1

|EG(Ti)− EG(Ti−1)|. (6.5.2)

Fix i, and consider the Taylor expansions of G(Ti) and G(Ti−1) at the point

T 0
i = (x1 − η1, . . . , xi−1 − ηi−1, 0,Wi+1 − Zi+1, . . . ,Wn − Zn, η1, . . . , ηi−1, 0, Zi+1, . . . , Zn)

(note that T 0
i does not depend on xi, ηi, Wi and Zi). For G(Ti) we get, setting δi = xi − ηi

and using ∂(m)
i1,...,im

to denote the m-th order partial derivative with respect to the i1, . . . , im-th
variables, that

G(Ti) = G(T 0
i ) + ∂iG(T 0

i ) · δi + ∂n+iG(T 0
i ) · ηi

+
1

2

(
∂2
i,iG(T 0

i ) · δ2
i + 2∂2

i,n+iG(T 0
i ) · δiηi + ∂2

n+i,n+iG(T 0
i ) · η2

i

)
+

1

6

(
∂3
i,i,iG(T̃ 0

i ) · δ3
i + ∂3

n+i,n+i,n+iG(T̃ 0
i ) · η3

i + ∂3
n+i,n+i,iG(T̃ 0

i ) · η2
i δi + ∂3

n+i,i,iG(T̃ 0
i ) · ηiδ2

i

)
,

where T̃ 0
i is a point on a line segment between T 0

i and Ti. Similarly, setting ∆i = Wi − Zi,

G(Ti−1) = G(T 0
i ) +G(T 0

i ) + ∂iG(T 0
i ) ·∆i + ∂n+iG(T 0

i ) · Zi
+

1

2

(
∂2
i,iG(T 0

i ) ·∆2
i + ∂2

i,n+iG(T 0
i ) ·∆iZi + ∂2

n+i,n+iG(T 0
i ) · Z2

i

)
+

1

6

(
∂3
i,i,iG(T̃ 0

i ) ·∆3
i + ∂3

n+i,n+i,n+iG(T̃ 0
i ) · Z3

i + 3∂3
n+i,n+i,iG(T̃ 0

i ) · Z2
i ∆i + 3∂3

n+i,i,iG(T̃ 0
i ) · Zi∆2

i

)
,

(6.5.3)
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where T̄ 0
i is a point on a line segment between T 0

i and Ti−1. Using independence of T 0
i and

(xi, ηi,Wi, Zi) and the fact that covariance structures of (xi, ηi) and (W,Z) are the same, we
deduce that

|EG(Ti)− EG(Ti−1)| ≤ 1

6
E
∣∣∣∂3
i,i,iG(T̃ 0

i ) · δ3
i + ∂3

n+i,n+i,n+iG(T̃ 0
i ) · η3

i + 3∂3
n+i,n+i,iG(T̃ 0

i ) · η2
i δi

+ 3∂3
n+i,i,iG(T̃ 0

i ) · ηiδ2
i

∣∣∣
+

1

6
E
∣∣∣∂3
i,i,iG(T̃ 0

i )·∆3
i +∂3

n+i,n+i,n+iG(T̃ 0
i )·Z3

i +3∂3
n+i,n+i,iG(T̃ 0

i )·Z2
i ∆i+3∂3

n+i,i,iG(T̃ 0
i )·Zi∆2

i

∣∣∣.
It remains to estimate each of the terms above. Assume that τ ∈ [0, 1] is such that

T̃ 0
i = (x1−η1, . . . , xi−1−ηi−1, τ(xi−ηi),Wi+1−Zi+1, . . . ,Wn−Zn, η1, . . . , ηi−1, τηi, Zi+1, . . . , Zn).

1. Direct computation implies that

∂3
i,i,iG(T̃ 0

i ) = 3α2F ′′′

∑
j 6=i

(
ηj + αδj

)
+ τ(ηi + αδi)


+ α3F ′′′′

∑
j 6=i

(
ηj + αδj

)
+ τ(ηi + αδi)

(∑
j 6=i

δj + τδi

)
,

hence

E
∣∣∣∂3
i,i,iG(T̃ 0

i ) · δ3
i

∣∣∣ ≤ 3α2‖F ′′′‖∞E|δ3
i |+ α3‖F ′′′′‖∞

E
∣∣∑
j 6=i

δj
∣∣E|δi|3 + E|δi|4


≤ 3α2‖F ′′′‖∞

(
Eδ2

i

)1/2(Eδ4
i

)1/2
+ α3‖F ′′′′‖∞

√∑
j 6=i

Eδ2
j

(
Eδ2

i

)1/2(Eδ4
i

)1/2
+ E|δi|4

,
(6.5.4)

where we used Hölder’s inequality in the last step.

2. Next,

∂3Gηi,ηi,ηi(T̃
0
i ) = F ′′′′

∑
j 6=i

(
ηj + αδj

)
+ τ(ηi + αδi)

(∑
j 6=i

δj + τδi

)
,

hence Hölder’s inequality, together with the identity ‖F ′′′′‖∞ = M−3‖H ′′′′‖∞, imply that

E
∣∣∣∂3
n+i,n+i,n+iG(T̃ 0

i ) · η3
i

∣∣∣ ≤ ‖F ′′′′‖∞
E|ηi|3E

∣∣∣∣∣∣
∑
j 6=i

δj

∣∣∣∣∣∣+ E|δiη3
i |


≤ ‖F ′′′′‖∞

E|ηi|3
√∑

j 6=i
Eδ2

j +
(
Eδ4

i

)1/4(Eη4
i

)3/4. (6.5.5)
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3. Proceeding in a similar fashion, we deduce that

∂3Gn+i,n+i,i(T̃
0
i ) = F ′′′

∑
j 6=i

(
ηj + αδj

)
+ τ(ηi + αδi)


+ αF ′′′′

∑
j 6=i

(
ηj + αδj

)
+ τ(ηi + αδi)

(∑
j 6=i

δj + τδi

)
,

so that, applying Hölder’s inequality, we obtain

E
∣∣∣∂3
n+i,n+i,iG(T̃ 0

i ) · η2
i δi

∣∣∣ ≤ ‖F ′′′‖∞(Eη4
i

)1/2(Eδ2
i

)1/2
+ α‖F ′′′′‖∞E

∣∣∣∣η2
i δi

(∑
j 6=i

δj + τδi

)∣∣∣∣
≤ ‖F ′′′‖∞

(
Eη4

i

)1/2(Eδ2
i

)1/2
+ α‖F ′′′′‖∞

√∑
j 6=i

Eδ2
j

(
Eη4

i

)1/2(Eδ2
i

)1/2
+
√

Eδ4
i Eη4

i

.
(6.5.6)

4. Finally,

∂3Gn+i,i,i(T̃
0
i ) = 2αF ′′′

∑
j 6=i

(
ηj + αδj

)
+ τ(ηi + αδi)


+ α2F ′′′′

∑
j 6=i

(
ηj + αδj

)
+ τ(ηi + αδi)

(∑
j 6=i

δj + τδi

)
.

Hölder’s inequality implies that E|ηiδ2
i | = E|ηiδiδi| ≤

(
Eδ2

i

)1/2(Eδ4
i

)1/4(Eη4
i

)1/4, hence∣∣∣E∂3
n+i,i,iG(T̃ 0

i ) · ηiδ2
i

∣∣∣ ≤ 2α‖F ′′′‖∞
(
Eδ2

i

)1/2(Eδ4
i

)1/4(Eη4
i

)1/4
+α2‖F ′′′′‖∞E

∣∣∣ηiδ2
i

(∑
j 6=i

δj+τδi

)∣∣∣
≤ 2α‖F ′′′‖∞

(
Eδ2

i

)1/2(Eδ4
i

)1/4(Eη4
i

)1/4
+ α2‖F ′′′′‖∞

√∑
j 6=i

Eδ2
j

(
Eδ2

i

)1/2(Eδ4
i

)1/4(Eη4
i

)1/4
+
(
Eδ4

i

)3/4(Eη4
i

)1/4. (6.5.7)

Similar calculations yield an analogous bound for the terms in the expansion (6.5.3) of
G(Ti−1). The equivalence of the moments of Gaussian random variables together with
the fact that the covariance structure of (W,Z) matches that of (x1, η1) imply that the
upper bounds (6.5.4), (6.5.5), (6.5.6), (6.5.7) remain valid for the terms in (6.5.3), up to an
additional absolute multiplicative constant. Hence, combination of (6.5.2), (6.5.4), (6.5.5),
(6.5.6), (6.5.7) and straightforward application of Hölder’s inequality yields the result.

6.5.4 Proof of Lemma 41.

Define

D(δ) := sup
`(f)∈F(δ)

E1/2

(
ρ′
(√

n
Lj(f)− L(f)

∆

)
− ρ′

(√
n
Lj(f∗)− L(f∗)

∆

))2

.
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Recall that ρ′ is Lipschitz continuous and L(ρ′) = 1, hence

(
ρ′
(√

n
L1(f)− L(f)

∆

)
− ρ′

(√
n
L1(f∗)− L(f∗)

∆

))2

≤
(√

n
L1(f)− L1(f∗)− (L(f)− L(f∗))

∆

)2

, (6.5.8)

which implies that

D(δ) ≤ ν(δ)

∆
. (6.5.9)

Next, observe that Ĝk(0; f) = 1√
k

∑
j∈J ρ

′
(√

n
(Lj(f)−L(f))−z

∆

)
+ 1√

k

∑
j /∈J ρ

′
(√

n
(Lj(f)−L(f))−z

∆

)
,

hence application of the triangle inequality yields that

sup
f∈F(δ)

∣∣∣Ĝk(0; f)− Ĝk(0; f∗)
∣∣∣ ≤ sup

f∈F(δ)

|Gk(0; f)−Gk(0; f∗)|

+

√
|J |
k

sup
f∈F(δ)

∣∣∣Ĝ|J|(0; f)− Ĝ|J|(0; f∗)− E
(
Ĝ|J|(0; f)− Ĝ|J|(0; f∗)

)∣∣∣+ 4
O√
k
, (6.5.10)

where Ĝ|J|(0; f) := 1√
|J|
∑
j∈J ρ

′
(√

n
(Lj(f)−L(f))−z

∆

)
. Talagrand’s concentration inequality

(specifically, the bound of Lemma 37) implies, together with the inequalities ‖ρ′‖∞ ≤ 2 and
|J | > k/2, that for any s > 0

sup
f∈F(δ)

∣∣∣Ĝ|J|(0; f)− Ĝ|J|(0; f∗)− E
(
Ĝ|J|(0; f)− Ĝ|J|(0; f∗)

)∣∣∣ ≤
2

[
E sup
f∈F(δ)

∣∣∣Ĝ|J|(0; f)− Ĝ|J|(0; f∗)− E
(
Ĝ|J|(0; f)− Ĝ|J|(0; f∗)

)∣∣∣+D(δ)

√
s

2
+

32
√

2s

3
√
k

]

with probability at least 1 − 2e−s. According to (6.5.9), D(δ) ≤ L(ρ′)
∆ ν(δ). Hence, it remains

to estimate the expected supremum. Sequential application of symmetrization, contraction and
desymmetrization inequalities implies that

E sup
f∈F(δ)

∣∣∣Ĝ|J|(0; f)− Ĝ|J|(0; f∗)− E
(
Ĝ|J|(0; f)− Ĝ|J|(0; f∗)

)∣∣∣
≤ 2E sup

f∈F(δ)

∣∣∣∣∣∣ 1√
|J |
∑
j∈J

εj

(
ρ′
(√

n
Lj(f)− L(f)

∆

))
− ρ′

(√
n
Lj(f∗)− L(f∗)

∆

)∣∣∣∣∣∣
≤ 4L(ρ′)

∆
E sup
f∈F(δ)

∣∣∣∣∣∣
√
n√
|J |

∑
j∈|J|

εj
(
(Lj(f)− L(f))(Xj)− (Lj(f∗)− L(f∗))(Xj)

)∣∣∣∣∣∣
≤ 8
√

2L(ρ′)
∆

E sup
f∈F(δ)

∣∣∣∣∣∣ 1√
N

NJ∑
j=1

(
(`(f)− `(f∗))(Xj)− P (`(f)− `(f∗))

)∣∣∣∣∣∣ ≤ 8
√

2

∆
ω(δ) (6.5.11)

since L(ρ′) = 1. To estimate supf∈F(δ)|Gk(0; f)−Gk(0; f∗)|, we consider 2 cases: the first case
when only 2 finite moments of `(f(X)), f ∈ F exist, and the second case when 4 moments are
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finite. To obtain the bound in the first case, we observe that, since E
(√

nL1(f)−L(f)
∆

)
= 0 for any

f ∈ F ,∣∣∣∣Eρ′(√nL1(f)− L(f)

∆

)
− Eρ′

(√
n
L1(f∗)− L(f∗)

∆

)∣∣∣∣
=

∣∣∣∣ET(√nL1(f)− L(f)

∆

)
− ET

(√
n
L1(f∗)− L(f∗)

∆

)∣∣∣∣
where T (x) = x − ρ′(x). Next, we apply Lemma 40 with F = T , xj =

`(f(Xj)−E`(f(Xj))

∆
√
n

and

ηj =
`(f∗(Xj)−E`(f∗(Xj))

∆
√
n

. The first inequality of the lemma implies that

∣∣∣∣Eρ′(√nL1(f)− L(f)

∆

)
− Eρ′

(√
n
L1(f∗)− L(f∗)

∆

)∣∣∣∣ ≤
√

Var
(
`(f(X))− `(f∗(X))

∆

)

× max
α∈[0,1]

√
E
(
T ′
(
α
√
n
L1(f)− L(f)

∆
+ (1− α)

√
n
L1(f∗)− L(f∗)

∆

))2

.

Observe that T ′(x) = 1− ρ′′(x) ≤ I{|x| ≥ 1} by Assumption 1. It implies that for any α ∈ [0, 1],

E
(
T ′
(
α
√
n
L1(f)− L(f)

∆
+ (1− α)

√
n
L1(f∗)− L(f∗)

∆

))2

≤ Pr

(∣∣∣∣α√nL1(f)− L(f)

∆
+ (1− α)

√
n
L1(f∗)− L(f∗)

∆

∣∣∣∣ ≥ 1

)
≤ sup
f∈F

Var
(√

n
L1(f)− L(f)

∆

)
= sup
f∈F

σ2(`, f)

∆2
.

by Chebyshev’s inequality. Hence∣∣∣∣Eρ′(√nL1(f)− L(f)

∆

)
− Eρ′

(√
n
L1(f∗)− L(f∗)

∆

)∣∣∣∣ ≤ Var1/2(`(f(X))− `(f∗(X)))
σ(`,F)

∆2
.

and, taking supremum over f ∈ F(δ) and recalling that ∆ = M∆ · σ(`,F) for M∆ ≥ 1, we obtain
the inequality

sup
f∈F(δ)

|Gk(0; f)−Gk(0; f∗)| ≤
√
k
ν(δ)

∆

1

M∆
≤
√
k B̃(δ).

On the other hand, under the assumption of existence of 4 moments, we get that∣∣∣∣Eρ′(√nL1(f)− L(f)

∆

)
− Eρ′

(√
n
L1(f∗)− L(f∗)

∆

)∣∣∣∣
≤ C(ρ)√

n∆

(
Var1/2(`(f(X))− `(f∗(X)))

(
R2

4(`,F)

∆2
+
R3

4(`,F)

∆3

)
+

E1/4(`(f(X))− `(f∗(X)))4

√
n

R3
4(`,F)

∆3

)
,
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Again, taking supremum over f ∈ F(δ) and recalling that ∆ = M∆ · σ(`,F) for M∆ ≥ 1, we
deduce that

sup
f∈F(δ)

|Gk(0; f)−Gk(0; f∗)| ≤ C(ρ)

√
k

n

(
ν(δ)

∆

(
B3(`,F)

M3
∆

∨ B2(`,F)

M2
∆

)
+
ν4(δ)

∆

B3(`,F)

M3
∆

√
n

)

≤ C(ρ)

√
k

n
B3(`,F)

(
ν(δ)

∆

1

M2
∆

+
ν4(δ)

∆

1

M3
∆

√
n

)
≤ C(ρ)

√
k B̃(δ), (6.5.12)

implying the result.

6.5.5 Proof of Lemma 42.

Recall that Ĝ|J|(0; f) := 1√
|J|
∑
j∈J ρ

′
(√

n
(Lj(f)−L(f))−z

∆

)
. Given δ ≥ δmin, define

Q̂|J|(δ) := sup
f∈F(δ)

δmin

δ

∣∣∣Ĝ|J|(0; f)− Ĝ|J|(0; f∗)
∣∣∣,

T̂|J|(δmin) := sup
δ≥δmin

Q̂|J|(δ).

Observe that for any δ ≥ δmin,

sup
f∈F(δ)

∣∣∣Ĝ|J|(0; f)− Ĝ|J|(0; f∗)
∣∣∣ ≤ δ

δmin
T̂|J|(δmin). (6.5.13)

Hence, our goal will be to find an upper bound for T̂|J|(δmin). To this end, note that

T̂|J|(δmin) ≤ sup
δ≥δmin

sup
f∈F(δ)

δmin

δ

∣∣∣Ĝ|J|(0; f)− Ĝ|J|(0; f∗)− E
(
Ĝ|J|(0; f)− Ĝ|J|(0; f∗)

)∣∣∣
+ sup
δ≥δmin

sup
f∈F(δ)

δmin

δ
|Gk(0; f)−Gk(0; f∗)|. (6.5.14)

It remains to estimate both terms in the inequality above. Inequality (6.5.8) implies the bound

sup
δ≥δmin

sup
f∈F(δ)

δmin

δ
Var1/2

(
ρ′
(√

n
L1(f)− L(f)

∆

)
− ρ′

(√
n
L1(f∗)− L(f∗)

∆

))
≤ L(ρ′)

∆
sup
δ≥δmin

δmin

δ
ν(δ) ≤ L(ρ′)

∆
sup
δ≥δmin

δmin

δ
ν̃(δ) ≤ 1

∆
ν̃(δmin)

since ν̃ is a function of concave type. Moreover, it is clear that for any δ ≥ δmin,∣∣∣∣δmin

δ
ρ′
(√

n
L1(f)− L(f)

∆

)
− δmin

δ
ρ′
(√

n
L1(f∗)− L(f∗)

∆

)∣∣∣∣ ≤ 2‖ρ′‖∞ ≤ 4

204



6.5. REMAINING PROOFS.

almost surely. Now, Talagrand’s concentration inequality implies that for any s > 0,

sup
δ≥δmin

sup
f∈F(δ)

δmin

δ

∣∣∣Ĝ|J|(0; f)− Ĝ|J|(0; f∗)− E
(
Ĝ|J|(0; f)− Ĝ|J|(0; f∗)

)∣∣∣
≤ 2
[
E sup
δ≥δmin

sup
f∈F(δ)

δmin

δ

∣∣∣Ĝ|J|(0; f)− Ĝ|J|(0; f∗)− E
(
Ĝ|J|(0; f)− Ĝ|J|(0; f∗)

)∣∣∣
+
L(ρ′)

∆
ν̃(δmin)

√
s

2
+

32
√

2s

3
√
k

]
(6.5.15)

with probability at least 1− e−s. To estimate the expectation, we proceed as follows: for j ∈ Z,
set δj := 2−j , and observe that

E sup
δ≥δmin

sup
f∈F(δ)

δmin

δ

∣∣∣Ĝ|J|(0; f)− Ĝ|J|(0; f∗)− E
(
Ĝ|J|(0; f)− Ĝ|J|(0; f∗)

)∣∣∣
≤ E sup

j:δj≥δmin

sup
δ∈(δj+1,δj ]

δmin

δ
sup

f∈F(δ)

∣∣∣Ĝ|J|(0; f)− Ĝ|J|(0; f∗)− E
(
Ĝ|J|(0; f)− Ĝ|J|(0; f∗)

)∣∣∣
≤

∑
j:δj≥δmin

δmin

δj+1
E sup
δ∈(δj+1,δj ]

sup
f∈F(δ)

∣∣∣Ĝ|J|(0; f)− Ĝ|J|(0; f∗)− E
(
Ĝ|J|(0; f)− Ĝ|J|(0; f∗)

)∣∣∣
≤ 2

∑
j:δj≥δmin

δmin

δj
E sup
f∈F(δj)

∣∣∣Ĝ|J|(0; f)− Ĝ|J|(0; f∗)− E
(
Ĝ|J|(0; f)− Ĝ|J|(0; f∗)

)∣∣∣,
where the last inequality relied on the fact that F(δ) ⊆ F(δ′) for δ ≤ δ′. It follows from (6.5.11)
that

E sup
f∈F(δj)

∣∣∣Ĝ|J|(0; f)− Ĝ|J|(0; f∗)− E
(
Ĝ|J|(0; f)− Ĝ|J|(0; f∗)

)∣∣∣ ≤ 8
√

2L(ρ′)
∆

ω(δj) ≤
8
√

2

∆
ω̃(δj),

where ω̃(·) is an upper bound on ω(·) of strictly concave type (with exponent γ for some γ ∈ (0, 1)).
Hence, applying Proposition 4.2 in [Kol11], we deduce that

E sup
δ≥δmin

sup
f∈F(δ)

δmin

δ

∣∣∣Ĝ|J|(0; f)− Ĝ|J|(0; f∗)− E
(
Ĝ|J|(0; f)− Ĝ|J|(0; f∗)

)∣∣∣
≤ 16

∆
δmin

∑
j:δj≥δmin

ω̃(δj)

δj
≤ c(γ)

∆
δmin

ω̃(δmin)

δmin
=
c(γ)

∆
ω̃(δmin),

and (6.5.15) yields the inequality

sup
δ≥δmin

sup
f∈F(δ)

δmin

δ

∣∣∣Ĝ|J|(0; f)− Ĝ|J|(0; f∗)− E
(
Ĝ|J|(0; f)− Ĝ|J|(0; f∗)

)∣∣∣ ≤ Ũ(δmin, s), (6.5.16)

where Ũ(δ, s) was defined in (6.4.10). For the second term in (6.5.14), inequality (6.5.12) implies
that

sup
δ≥δmin

sup
f∈F(δ)

δmin

δ
|Gk(0; f)−Gk(0; f∗)|

≤ C(ρ)δmin

√
k

n
R

3
(`,F ,∆) sup

δ≥δmin

(
ν(δ)

δ∆

1

M2
∆

+
ν4(δ)

δ∆

1

M3
∆

√
n

)

≤ C(ρ)
√
kB3(`,F)

(
ν̃(δmin)

∆

1

M2
∆

+
ν̃4(δmin)

∆

1

M3
∆

√
n

)

205



CHAPTER 6. EXCESS RISK BOUNDS IN ROBUST EMPIRICAL RISK MINIMIZATION

since ν(δ) ≤ ν̃(δ), ν4(δ) ≤ ν̃4(δ) and ν̃(δ), ν̃4(δ) are functions of concave type. Combining the
bound above with (6.5.16), we deduce that

T̂|J|(δmin) ≤ Ũ(δmin, s) + C(ρ)
√
kB̃(δmin),

hence (6.5.10) and (6.5.13) imply that for all δ ≥ δmin simultaneously,

sup
f∈F(δ)

∣∣∣Ĝk(0; f)− Ĝk(0; f∗)
∣∣∣ ≤ C(ρ)δ

(
Ũ(δmin, s)

δmin
+
√
k
B̃(δmin)

δmin

)
+ 4
O√
k

with probability at least 1− e−s.

6.5.6 Proof of Lemma 43.

The following identity is immediate:

RN (f) = Ĝk

(
ê(k)(f); f

)
︸ ︷︷ ︸

=0

+ ∂zGk(0; f) · ê(k)(f)−
(
Ĝk

(
ê(k)(f); f

)
− Ĝk(0; f)

)
.

Assumptions on ρ imply that for any f ∈ F and j = 1, . . . , k, there exists τj ∈ [0, 1] such that

ρ′
(√

n
Lj(f)− L(f)− ê(k)(f)

∆

)
= ρ′

(√
n
Lj(f)− L(f)

∆

)
−
√
n

∆
ρ′′
(√

n
Lj(f)− L(f)

∆

)
·ê(k)(f)

+
n

∆2
ρ′′′
(√

n
Lj(f)− L(f)− τj ê(k)(f)

∆

)
·
(
ê(k)(f)

)2

,

hence

Ĝk

(
ê(k)(f); f

)
− Ĝk(0; f) = −

√
n

∆

ê(k)(f)√
k

k∑
j=1

ρ′′
(√

n
Lj(f)− L(f)

∆

)

+
n

∆2

(
ê(k)(f)

)2
√
k

k∑
j=1

ρ′′′
(√

n
Lj(f)− L(f)− τj ê(k)(f)

∆

)
,

and

RN (f) =

√
n

∆

ê(k)(f)√
k

k∑
j=1

(
ρ′′
(√

n
Lj(f)− L(f)

∆

)
− Eρ′′

(√
n
Lj(f)− L(f)

∆

))

− n

∆2

(
ê(k)(f)

)2
√
k

k∑
j=1

ρ′′′
(√

n
Lj(f)− L(f)− τj ê(k)(f)

∆

)
. (6.5.17)

We will need the following modification of Theorem 33 that is stated below and proved in Section
6.5.7.
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Lemma 44. Then there exist positive constants c(ρ), C(ρ) with the following properties. Fix
δmin > 0. Then for all s > 0, δ ≥ δmin, positive integers n and k such that

δ
Ũ(δmin, s)

δmin

√
k

+ sup
f∈F

Gf (n,∆) +
s+O
k
≤ c(ρ),

the following inequality holds with probability at least 1− 2e−s:

sup
f∈F(δ)

∣∣∣ê(k)(f)
∣∣∣ ≤ C(ρ)∆̃

[
δ√
N

Ũ(δmin, s)

δmin
+
σ(`, f∗)

∆

√
s

N
+

supf∈F Gf (n,∆)√
n

+
(s+O)

√
n

N

]
.

(6.5.18)

In the rest of the proof, we will assume that conditions of Lemma 44 and Theorem 33 hold,
and let Θ′ be an event of probability at least 1− 4e−s on which inequalities (6.5.18) and (6.2.4)
are valid. On event Θ′, the last term in (6.5.17) can thus be estimated as

sup
f∈F(δ)

∣∣∣∣∣∣ n∆2

(
ê(k)(f)

)2
√
k

k∑
j=1

ρ′′′
(√

n
Lj(f)− L(f)− τj ê(k)(f)

∆

)∣∣∣∣∣∣ ≤ C1(ρ)

√
nN

∆2
sup

f∈F(δ)

∣∣∣ê(k)(f)
∣∣∣2

≤ C2(ρ)
√
N

∆̃2

∆2

(
n1/2δ2

N

(
Ũ(δmin, s)

δmin

)2∨ σ2(`, f∗)
∆2

n1/2 s

N

∨
n1/2

(
sup
f∈F

Gf
(
n,∆

)
√
n

)2∨
n3/2 s

2 +O2

N2

)
, (6.5.19)

where we used the fact that ‖ρ′′′‖∞ <∞. It remains to estimate the first term in (6.5.17). The
required bound will follow from the combination of Theorem 44 and the following lemma that is
proved in Section 6.5.8.

Lemma 45. Fix δmin > 0. With probability at least 1− 3e−s, for all δ ≥ δmin simultaneously,

sup
f∈F(δ)

∣∣∣∣∣∣ 1√
k

k∑
j=1

(
ρ′′
(√

n
Lj(f)− L(f)

∆

)
− Eρ′′

(√
n
Lj(f)− L(f)

∆

))∣∣∣∣∣∣
≤ C(ρ)

(
δ
Ũ(δmin, s)

δmin
+
σ(`, f∗)

∆

√
s+

s+O√
k

)
.

Let Θ′′ be the event of probability at least 1− 3e−2s on which the inequality of Lemma 45 holds.
Then simple algebra yields that on event Θ′ ∩Θ′′ of probability at least 1− 7e−s,

sup
f∈F(δ)

∣∣∣∣∣∣
√
n

∆

ê(k)(f)√
k

k∑
j=1

(
ρ′′
(√

n
Lj(f)− L(f)

∆

)
− Eρ′′

(√
n
Lj(f)− L(f)

∆

))∣∣∣∣∣∣
≤ C3(ρ)

√
N

∆̃

∆

(
n1/2δ2

N

(
Ũ(δmin, s)

δmin

)2∨ σ2(`, f∗)
∆2

n1/2 s

N

∨
n1/2

(
sup
f∈F

Gf
(
n,∆

)
√
n

)2∨
n3/2 s

2 +O2

N2

)
. (6.5.20)
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Combination of inequalities (6.5.19) and (6.5.20) that hold with probability at leat 1−7e−s yields
the result.

6.5.7 Proof of Lemma 44.

In the situation when δ is fixed, the argument mimics the proof of Theorem 4.1 in [Min18], with
minor modifications outlined below. Recall that

Ĝk(z; f) =
1√
k

k∑
j=1

ρ′
(√

n
(Lj(f)− L(f))− z

∆

)
.

Let z1, z2 be such that on an event of probability close to 1, Ĝk(z1; f) > 0 and Ĝk(z2; f) < 0 for
all f ∈ F(δ) simultaneously. Since Ĝk is decreasing in z, it is easy to see that ê(k)(f) ∈ (z1, z2)
for all f ∈ F(δ) on this event. Hence, our goal is to find z1, z2 satisfying conditions above and
such that |z1|, |z2| are as small as possible. Observe that

Ĝk(z; f) =
1√
k

∑
j∈J

ρ′
(√

n
(Lj(f)− L(f))− z

∆

)
+

1√
k

∑
j /∈J

ρ′
(√

n
(Lj(f)− L(f))− z

∆

)

and
∣∣∣ 1√

k

∑
j /∈J ρ

′
(√

n
(Lj(f)−L(f))−z

∆

)∣∣∣ ≤ 2 O√
k
. Moreover,

1√
k

∑
j∈J

ρ′
(√

n
(Lj(f)− L(f))− z

∆

)

=
1√
k

∑
j∈J

(
ρ′
(√

n
(Lj(f)− L(f))− z

∆

)
− ρ′

(√
n

(Lj(f∗)− L(f∗))− z
∆

)

− E
[
ρ′
(√

n
(Lj(f)− L(f))− z

∆

)
− ρ′

(√
n

(Lj(f∗)− L(f∗))− z
∆

)])

+
1√
k

∑
j∈J

(
ρ′
(√

n
(Lj(f∗)− L(f∗))− z

∆

)
− Eρ′

(√
n

(Lj(f∗)− L(f∗))− z
∆

))

+
1√
k

∑
j∈J

(
Eρ′
(√

n
(Lj(f)− L(f))− z

∆

)
− Eρ′

(
W (`(f))−√nz

∆

))

+
1√
k

∑
j∈J

Eρ′
(
W (`(f))−√nz

∆

)
.

We will proceed in 4 steps: first, we will find ε1 > 0 such that for any z ∈ R and all f ∈ F(δ),

1√
k

∑
j∈J

(
ρ′
(√

n
(Lj(f)− L(f))− z

∆

)
− ρ′

(√
n

(Lj(f∗)− L(f∗))− z
∆

)

− E
[
ρ′
(√

n
(Lj(f)− L(f))− z

∆

)
− ρ′

(√
n

(Lj(f∗)− L(f∗))− z
∆

)])
≤ ε1
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with high probability, then ε2 > 0 such that

1√
k

∑
j∈J

(
ρ′
(√

n
(Lj(f∗)− L(f∗))− z

∆

)
− Eρ′

(√
n

(Lj(f∗)− L(f∗))− z
∆

))
≤ ε2,

ε3 satisfying

sup
f∈F(δ)

∣∣∣∣∣∣ 1√
k

∑
j∈J

(
Eρ′
(√

n
(Lj(f)− L(f))− z

∆

)
− Eρ′

(
W (`(f))−√nz

∆

))∣∣∣∣∣∣ ≤ ε3,
and finally we will choose z1 < 0 such that for all f ∈ F(δ),

1√
k

∑
j∈J

Eρ′
(
W (`(f))−√nz

∆

)
> ε1 + ε2 + ε3 + 2

O√
k
. (6.5.21)

Talagrand’s concentration inequality (e.g. Corollary 16.1 in [Van16]), together with the bound
‖ρ′‖∞ ≤ 2, implies that for any s > 0,√

|J |
k

sup
f∈F(δ)

∣∣∣Ĝ|J|(z; f)− Ĝ|J|(z; f∗)− E
(
Ĝ|J|(z; f)− Ĝ|J|(z; f∗)

)∣∣∣ ≤
2

[
E sup
f∈F(δ)

∣∣∣Ĝ|J|(z; f)− Ĝ|J|(z; f∗)− E
(
Ĝ|J|(z; f)− Ĝ|J|(z; f∗)

)∣∣∣+D(δ)

√
s

2
+

32

3

s√
k

]
with probability at least 1− 2e−s. It has been observed in (6.5.9) that D(δ) ≤ ν(δ)

∆ . It remains
to estimate the expected supremum. Sequential application of symmetrization, contraction and
desymmetrization inequalities, together with the fact that L(ρ′) = 1, implies that

E sup
f∈F(δ)

∣∣∣Ĝ|J|(z; f)− Ĝ|J|(z; f∗)− E
(
Ĝ|J|(z; f)− Ĝ|J|(z; f∗)

)∣∣∣
≤ 2E sup

f∈F(δ)

∣∣∣∣∣∣ 1√
|J |
∑
j∈J

εj

(
ρ′
(√

n
Lj(f)− L(f)− z

∆

))
− ρ′

(√
n
Lj(f∗)− L(f∗)− z

∆

)∣∣∣∣∣∣
≤ 4

∆
E sup
f∈F(δ)

∣∣∣∣∣∣
√
n√
|J |
∑
j∈J

εj
(
(Lj(f)− L(f))− (Lj(f∗)− L(f∗))

)∣∣∣∣∣∣
≤ 8
√

2

∆
E sup
f∈F(δ)

∣∣∣∣∣∣ 1√
N

NJ∑
j=1

(
(`(f)− `(f∗))(Xj)− P (`(f)− `(f∗))

)∣∣∣∣∣∣ ≤ 8
√

2

∆
ω(δ).

Hence, it suffices to choose

ε1 =
8
√

2

∆
ω(δ) +

ν(δ)

∆

√
s+

32

3

s√
k
.

Next, Bernstein’s inequality and Lemma 33 together yield that with probability at least 1− 2e−s,

1√
k

∑
j∈J

(
ρ′
(√

n
(Lj(f∗)− L(f∗))− z

∆

)
− Eρ′

(√
n

(Lj(f∗)− L(f∗))− z
∆

))

≤ 2

(
σ(`, f∗)

∆

√
s+

3s√
k

)
,

209



CHAPTER 6. EXCESS RISK BOUNDS IN ROBUST EMPIRICAL RISK MINIMIZATION

thus we can set ε2 = 2
(
σ(`,f∗)

∆

√
s+ 3 s√

k

)
. Lemma 35 implies that ε3 can be chosen as

ε3 =
√
k sup
f∈F(δ)

Gf (n,∆).

Finally, we apply Lemma 6.3 of [Min18] with

ε := ε1 + ε2 + ε3 + 2
O√
k

to deduce that

z1 = −C ∆̃√
N
·
(
ε1 + ε2 + ε3 + 2

O√
k

)
,

satisfies (6.5.21) under assumption that ε1+ε2+ε3√
k

+ O
k ≤ c for some absolute constants c, C > 0.

Proceeding in a similar way, it is easy to see that setting z2 = −z1 guarantees that Ĝk(z2; f) < 0
for all f ∈ F(δ) with probability at least 1− e−s, hence the claim follows.

It remains to make the bound uniform in δ ≥ δmin. To this end, we need to repeat the “slicing
argument” of Lemma 42 below (specifically, see (6.5.16)) to deduce that with probability at least
1− 2e−s,

sup
f∈F(δ)

∣∣∣Ĝ|J|(z; f)− Ĝ|J|(z; f∗)− E
(
Ĝ|J|(z; f)− Ĝ|J|(z; f∗)

)∣∣∣ ≤ δ Ũ(δmin, s)

δmin

uniformly for all δ ≥ δmin, hence the value of ε1 should be replaced by ε1 = δ Ũ(δmin,s)
δmin

.

6.5.8 Proof of Lemma 45.

Observe that

1√
k

k∑
j=1

(
ρ′′
(√

n
Lj(f)− L(f)

∆

)
− Eρ′′

(√
n
Lj(f)− L(f)

∆

))

=
1√
k

∑
j /∈J

(
ρ′′
(√

n
Lj(f)− L(f)

∆

)
− Eρ′′

(√
n
Lj(f)− L(f)

∆

))

+
1√
k

∑
j∈J

(
ρ′′
(√

n
Lj(f)− L(f)

∆

)
− ρ′′

(√
n
Lj(f∗)− L(f∗)

∆

)

− E
(
ρ′′
(√

n
Lj(f)− L(f)

∆

)
− ρ′′

(√
n
Lj(f∗)− L(f∗)

∆

)))

+
1√
k

∑
j∈J

(
ρ′′
(√

n
Lj(f∗)− L(f∗)

∆

)
− Eρ′′

(√
n
Lj(f∗)− L(f∗)

∆

))
.

Clearly, as ‖ρ′′‖∞ ≤ 1,
∣∣∣ 1√

k

∑
j /∈J

(
ρ′′
(√

n
Lj(f)−L(f)

∆

)
− Eρ′′

(√
n
Lj(f)−L(f)

∆

))∣∣∣ ≤ 2 O√
k
. Next,

repeating the “slicing argument” of Lemma 42, it is not difficult to deduce that with probability
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at least 1− 2e−2s,

sup
f∈F(δ)

∣∣∣∣∣ 1√
k

∑
j∈J

(
ρ′′
(√

n
Lj(f)− L(f)

∆

)
− ρ′′

(√
n
Lj(f∗)− L(f∗)

∆

)

− E
(
ρ′′
(√

n
Lj(f)− L(f)

∆

)
− ρ′′

(√
n
Lj(f∗)− L(f∗)

∆

)))∣∣∣∣∣ ≤ C(ρ) δ
Ũ(δmin, s)

δmin

uniformly for all δ ≥ δmin. Next, we will apply Bernstein’s inequality to estimate the remaining
term. Since ρ is convex, ρ′′ is nonnegative, moreover, it follows from Assumption 1 that

ρ′′(x) 6= 0 for |x| ≤ 2, ρ′′(x) = 1 for |x| ≤ 1, and ‖ρ′′‖∞ = 1, hence
(
Eρ′′

(√
n
Lj(f)−L(f)

∆

))2

≥(
Pr
(∣∣∣√nLj(f)−L(f)

∆

∣∣∣ ≤ 1
))2

,

E
(
ρ′′
(√

n
Lj(f)− L(f)

∆

))2

≤ Pr

(∣∣∣∣√nLj(f)− L(f)

∆

∣∣∣∣ ≤ 1

)
+ Pr

(∣∣∣∣√nLj(f)− L(f)

∆

∣∣∣∣ ∈ [1, 2]

)
,

and

Var
(
ρ′′
(√

n
Lj(f)− L(f)

∆

))
≤ Pr

(∣∣∣∣√nLj(f)− L(f)

∆

∣∣∣∣ ≤ 1

)
−
(

Pr

(∣∣∣∣√nLj(f)− L(f)

∆

∣∣∣∣ ≤ 1

))2

+ Pr

(∣∣∣∣√nLj(f)− L(f)

∆

∣∣∣∣ ≥ 1

)
≤ 2Pr

(∣∣∣∣√nLj(f)− L(f)

∆

∣∣∣∣ ≥ 1

)
≤ 2

Var(`(f(X)))

∆2
.

Bernstein’s inequality implies that with probability at least 1− e−s,

1√
k

∑
j∈J

(
ρ′′
(√

n
Lj(f∗)− L(f∗)

∆

)
− Eρ′′

(√
n
Lj(f∗)− L(f∗)

∆

))
≤ 2

(
σ(`, f∗)

∆

√
s+

s√
k

)
,

hence the desired conclusion follows.

6.5.9 Proof of Lemma 32.

In the context of regression with quadratic loss, ω(δ) takes the form

ω(δ) = E sup
`(f)∈F(δ)

∣∣∣∣∣∣ 1√
N

N∑
j=1

(
(Yj − f(Zj))

2 − (Yj − f∗(Zj))2 − E
(
(Yj − f(Zj))

2 − (Yj − f∗(Zj))2
))∣∣∣∣∣∣.

In view of Bernstein’s assumption verified above, ω(δ) is bounded by

E sup
‖f−f∗‖2L2(Π)

≤2δ

∣∣∣∣∣∣ 1√
N

N∑
j=1

(
(Yj − f(Zj))

2 − (Yj − f∗(Zj))2 − E
(
(Yj − f(Zj))

2 − (Yj − f∗(Zj))2
))∣∣∣∣∣∣.
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To estimate the latter quantity, we will use the approach based on the L∞(Πn)-covering numbers
of the class F (e.g., see [BMN12]). We will also set

B(F ; τ) := {f ∈ F : ‖f − f∗‖2L2(Π) ≤ τ}.
It is easy to see that

(Y − f(X))2 − (Y − f∗(X))2 = (f(X)− f∗(X))2 + 2(f(X)− f∗(X))(f∗(X)− Y ),

hence

w(δ) ≤ E sup
B(F ;2δ)

∣∣∣∣∣∣ 1√
N

N∑
j=1

(f(Zj)− f∗(Zj))2 − E(f(Zj)− f∗(Zj))2

∣∣∣∣∣∣
+ 2E sup

B(F ;2δ)

∣∣∣∣∣∣ 1√
N

N∑
j=1

(f(Zj)− f∗(Zj))(Yj − f∗(Zj)

∣∣∣∣∣∣. (6.5.22)

We will estimate the two terms separately. By assumption, the covering numbers of the class F
satisfy the bound

N(F , L2(ΠN ), ε) ≤
(
A‖F‖L2(ΠN )

ε

)V
∨ 1 (6.5.23)

for some constants A ≥ 1, V ≥ 1 and all ε > 0. We apply bound of Lemma 36 to the first term in
(6.5.22) to get that

E sup
B(F ;2δ)

∣∣∣∣∣∣ 1√
N

N∑
j=1

(f(Zj)− f∗(Zj))2 − E(f(Zj)− f∗(Zj))2

∣∣∣∣∣∣
≤ C

(√
2δ
√

ΓN,∞(B(F ; 2δ))
∨ ΓN,∞(B(F ; 2δ))√

N

)
.

To estimate Γn,∞(B(F ; 2δ)) := Eγ2
2(B(F ; 2δ);L∞(ΠN )), we will use Dudley’s entropy integral

bound. Observe that
diam(B(F ; 2δ);L∞(ΠN )) ≤ 2‖F‖L∞(ΠN ).

Moreover, for any f, g ∈ F ,

1

N

N∑
j=1

(f(Zj)− g(Zj))
2 ≥ 1

N
max

1≤j≤N
(f(Zj)− g(Zj))

2,

hence N(B(F ; 2δ), L∞(ΠN ), ε) ≤ N
(
B(F ; 2δ), L2(ΠN ), ε√

N

)
and, whenever (6.5.23) holds,

logN(B(F ; 2δ), L∞(ΠN ), ε) ≤ V log+

(
A
√
N‖F‖L2(ΠN )

ε

)
,

where log+(x) := max(log x, 0). It yields that

ΓN,∞(B(F ; 2δ)) ≤ E

√V 2‖F‖L∞(ΠN )∫
0

log
1/2
+

(
A‖F‖L2(ΠN )

√
N

ε

)
dε


2

≤ C V E

(
‖F‖2L∞(ΠN ) log

(
A
√
N‖F‖L2(ΠN )

‖F‖L∞(ΠN )

∨ e
))
≤ C V log(A

√
N)E‖F‖2L∞(ΠN )
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for an absolute constant C > 0. Finally, since ‖F‖ψ2
<∞,

E
∥∥F 2

∥∥
L∞(ΠN )

≤ C1 log(N)‖F 2‖ψ1
= C1 log(N)‖F‖2ψ2

,

hence

E sup
B(F ;2δ)

∣∣∣∣∣∣ 1√
N

N∑
j=1

(f(Zj)− f∗(Zj))2 − E(f(Zj)− f∗(Zj))2

∣∣∣∣∣∣
≤ C2

(
√
δ
√
V log(A2N)‖F‖ψ2

∨ V ‖F‖2ψ2
log2(A2N)
√
N

)
. (6.5.24)

Next, the multiplier inequality [vdVW96] implies that

E sup
B(F ;2δ)

∣∣∣∣∣∣ 1√
N

N∑
j=1

(f(Zj)− f∗(Zj))(Yj − f∗(Zj)

∣∣∣∣∣∣
≤ C‖η‖2,1 max

k=1,...,N
E sup
B(F ;2δ)

∣∣∣∣∣∣ 1√
k

k∑
j=1

(f(Zj)− f∗(Zj))

∣∣∣∣∣∣.
Using symmetrization inequality and applying Dudley’s entropy integral bound, we deduce that
for any k

E sup
B(F ;2δ)

∣∣∣∣∣∣ 1√
k

k∑
j=1

(f(Zj)− f∗(Zj))

∣∣∣∣∣∣ ≤ C√V E
∫ σk

0

log1/2

(
A‖F2δ‖L2(Πk)

ε

)
dε

≤ C1

√
V E
(
σk log1/2

(
eA‖F2δ‖L2(Πk)

σk

))
,

where F2δ is the envelope of the class B(F ; 2δ) and σ2
k := sup

f∈B(F ;2δ)

‖f−f∗‖2L2(Πk). Cauchy-Schwarz

inequality, together with an elementary observation that kσ2
k ≥ ‖F2δ‖2L2(Πk), gives

E
(
σk log1/2

(
eA‖F2δ‖L2(Πk)

σk

))
≤
√
Eσ2

k log1/2(eA
√
k).

According to (6.5.24),

Eσ2
k ≤ 2δ + C2

(
√
δ

√
V

N
log(A2N)‖F‖ψ2

∨ V ‖F‖2ψ2
log2(A2N)

N

)
.

Simple algebra now yields that

E sup
B(F ;2δ)

∣∣∣∣∣∣ 1√
N

N∑
j=1

(f(Zj)− f∗(Zj))(Yj − f∗(Zj)

∣∣∣∣∣∣
≤ C‖η‖2,1

√
V log(e2A2N)

(
√
δ +

√
V

N
log(A2N)‖F‖ψ2

)
. (6.5.25)
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Finally, combination of inequalities (6.5.24) and (6.5.25) implies that

w(δ) ≤ ω̃(δ) := C

(
√
δ
√
V log(A2N)(‖F‖ψ2 + ‖η‖2,1)

∨ V (‖F‖2ψ2
+ ‖η‖22,1) log2(A2N)
√
N

)
,

where ω̃(δ) is of strictly concave type, hence

δ̄ ≤ C(ρ)
V log2(A2N)(‖F‖2ψ2

+ ‖η‖22,1)

N

thus proving the claim.

6.6 Technical results for the U-statistics based estimator f̂UN .

In this section, we describe the tools necessary to extend Klein and Rio’s inequality stated in
Lemma 37 to nondegenerate U-statistics. First, we note that the deviation inequality (6.4.2) is a
corollary of the following bound for the moment generating function (Section 12.5 in [BLM13]):

logEeλ(
∑N
j=1(Zj(f)−EZj(f))) ≤ eλM − λM − 1

M2

V 2(F) + 2M E sup
f∈F

 N∑
j=1

(Zj(f)− EZj(f))


(6.6.1)

that holds for all λ > 0. We use this fact to demonstrate a straightforward extension of Lemma
37 to the case of U-statistics. Let πN be the collection of all permutations τ : {1, . . . , N} 7→
{1, . . . , N}. Given (i1, . . . , iN ) ∈ πN and a U-statistic UN,n with kernel h defined in (6.1.3), let

Ti1,...,iN :=
1

k

(
h(Xi1 , . . . , Xin) + h

(
Xin+1 , . . . , Xi2n

)
+ . . .+ h

(
Xi(k−1)n+1

, . . . , Xikn

))
.

It is well known (e.g., see Section 5 in [Hoe63]) that the following representation holds:

UN,n =
1

N !

∑
(i1,...,iN )∈πN

Ti1,...,iN . (6.6.2)

Let U ′N,n(z; f) = 1

(Nn)

∑
J∈A(n)

N

ρ′
(√

n (L(f ;J)−E`(f(X)))−z
∆

)
. Applied to U ′N,n(z; f), relation (6.6.2)

yields that

U ′N,n(z; f) =
1

N !

∑
(i1,...,iN )∈πN

Ti1,...,iN (z; f),

where

Ti1,...,iN (z; f) =
1

k

(
ρ′
(√

n
L(f ; {i1, . . . , in})− E`(f(X))− z

∆

)
+

. . .+ ρ′
(
√
n
L(f ; {i(k−1)n+1, . . . , ikn})− E`(f(X))− z

∆

))
.
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Jensen’s inequality implies that for any λ > 0,

E exp

 λ

N !

∑
(i1,...,iN )∈πN

(Ti1,...,iN (z; f)− ETi1,...,iN (z; f))


≤ 1

N !

∑
(i1,...,iN )∈πN

E exp
(
λ(T1,...,N (z; f)− ET1,...,N (z; f))

)
,

hence bound (6.6.1) can be applied and yields that

sup
f∈F

(
U ′N,n(z; f)− EU ′N,n(z; f)

)
≤ 2E sup

f∈F
(T1,...,N (z; f)− ET1,...,N (z; f))

+ sup
f∈F

√
Var
(
ρ′
(√

n
θ̄(f ; {1, . . . , n})− Pf − z

∆

))√
2s

k
+

8s‖ρ′‖∞
3k

(6.6.3)

with probability at least 1 − e−s. The expression can be further simplified by noticing that
‖ρ′‖∞ ≤ 2 and that

Var
(
ρ′
(√

n
θ̄(f ; {1, . . . , n})− Pf − z

∆

))
≤ σ2(f)

∆2
.

due to Lemma 33.

6.7 Numerical algorithms and examples.

The main goal of this section is to discuss in detail the numerical algorithms4 used to approximate
estimators f̂N and f̂UN , as well as assess the quality of the resulting solutions. We will also compare
our methods with the ones known previously, specifically, the median-of-means based approach
proposed in [LLM20]. Finally, we perform the numerical study of dependence of the solutions on
the parameters ∆ and k. All evaluations are performed for logistic regression in the framework
of binary classification as well as linear regression with quadratic loss using simulated data; the
main definitions pertaining to the logistic and linear regression were given in Section 6.1.4. In
both examples, we will assume that we are given an i.i.d. sample (Z1, Y1), . . . , (ZN , YN ) having
the same distribution as (Z, Y ). In the end of this section, we also demonstrate applications to
the real dataset from the UCI Machine Learning Repository.

Let us mention that the numerical methods for closely related approach in the special case
of linear regression have been investigated in a recent work [HI17b]. Here, we focus on general
algorithms that can easily be adapted to other predictions tasks and loss functions. Let us first
briefly recall the formulations of both the binary classification and the linear regression problems.

6.7.1 Gradient descent algorithms.

Optimization problems (6.1.4) and (6.1.5) are not convex, so we will focus our attention of the
variants of the gradient descent method employed to find local minima. We will first derive the

4The code used in this section is available on github at https://github.com/TimotheeMathieu/
Excess-risk-bounds-in-robust-empirical-risk-minimization/
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expression for ∇βL̂(k)(β), the gradient of L̂(k)(β) := L̂(k)(fβ), for the problems corresponding to
logistic regression and regression with quadratic loss. It follows from (6.1.2) that L̂(k)(β) satisfies
the equation

k∑
j=1

ρ′
(
√
n
Lj(β)− L̂(k)(β)

∆

)
= 0. (6.7.1)

Taking the derivative in (6.7.1) with respect to β, we retrieve ∇βL̂(k)(β):

∇βL̂(k)(β) =

∑k
j=1

(
1
n

∑
i∈Gj Zi `

′(Yi, fβ(Zi))
)
ρ′′
(√

n
Lj(β)−L̂(k)(β)

∆

)
∑k
j=1 ρ

′′
(√

n
Lj(β)−L̂(k)(β)

∆

) ,

where `′(Yi, fβ(Zi)) stands for the partial derivative ∂`(y,t)
∂t with respect to the second argument

t, so that `′(Yi, fβ(Zi)) = −Yi e−Yi〈β,Zi〉
1+e−Yi〈β,Zi〉

in the case of logistic regression and `′(Yi, fβ(Zi)) =

2(〈β, Zi〉 − Yi) for regression with quadratic loss. In most of our numerical experiments, we choose
ρ to be Huber’s loss,

ρ(y) =
y2

2
I{|y| ≤ 1}+

(
|y| − 1

2

)
I{|y| > 1}.

In this case, ρ′′(y) = I{|y| ≤ 1} for all y ∈ R, hence the expression for the gradient can be
simplified to

∇βL̂(k)(β) =

∑k
j=1

(
1
n

∑
i∈Gj Zi `

′(Yi, fβ(Zi))
)
I
{∣∣∣Lj(β)− L̂(k)(β)

∣∣∣ ≤ ∆√
n

}
#
{
j :
∣∣∣Lj(β)− L̂(k)(β)

∣∣∣ ≤ ∆√
n

} , (6.7.2)

where we implicitly assume that ∆ is chosen large enough so that the denominator is not equal to
0. To evaluate L̂(k)(β), we use the “modified weights” algorithm due to Huber and Ronchetti, see
Section 6.7 in [HR09]. Complete version of the gradient descent algorithm used to approximate
β̂N (identified with the solution f̂N of the problem (6.1.4)) is presented in Figure 6.1.

Figure 6.1: Algorithm 1 – evaluation of β̂N .

Input: the dataset (Zi, Yi)1≤i≤N , number of blocks k ∈ Z+, step size parameter η > 0,
maximum number of iterations M , initial guess β0 ∈ Rd, tuning parameter ∆ > 0.
Construct blocks G1, . . . , Gk;
for all t = 0, . . . ,M do
Compute L̂(k)(βt) using the Modified Weights algorithm;
Compute ∇βL̂(k)(βt) from (6.7.2);
Update

βt+1 = βt − η∇βL̂(k)(βt).

end for
Output: βM+1.

Next, we discuss a variant of a stochastic gradient descent for approximating the “permutation-
invariant” estimator f̂UN used when the subgroup size n > 1; in our numerical experiments
(see Section 6.7.5 for the numerical comparison of two approaches), this method demonstrated
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consistently superior performance. Below, we will identify f̂UN with the vector of corresponding
coefficients β̂UN . Recall that A(n)

N := {J : J ⊆ {1, . . . , N}, Card(J) = n}, and that

L̂(k)
U (β) = argmin

z∈R

∑
J∈A(n)

N

ρ

(√
n
L(fβ ; J)− z

∆

)
. (6.7.3)

Similarly to the way that we derived the expression for ∇βL̂(k)(β) from (6.1.2), it follows from
(6.7.3), with ρ again being the Huber’s loss, that

∑
J∈A(n)

N

ρ′
(
√
n
L(fβ ; J)− L̂(k)

U (β)

∆

)
= 0 and

∇βL̂(k)
U (β) =

∑
J∈A(n)

N

(
1
n

∑
i∈J Zi `

′(Yi, fβ(Zi))
)
I
{∣∣∣L(β; J)− L̂(k)(β)

∣∣∣ ≤ ∆√
n

}
#
{
J ∈ A(n)

N :
∣∣∣L(β; J)− L̂(k)(β)

∣∣∣ ≤ ∆√
n

} . (6.7.4)

Expressions in (6.7.4) are closely related to U-statistics, and it will be convenient to write
them in a slightly different form. To this end, let πN be the collection of all permutations
τ : {1, . . . , N} 7→ {1, . . . , N}. Given τ = (i1, . . . , iN ) ∈ πN and an arbitrary U-statistic UN,n
defined in (6.1.3), let

Ti1,...,iN :=
1

k

(
h(Xi1 , . . . , Xin) + h

(
Xin+1 , . . . , Xi2n

)
+ . . .+ h

(
Xi(k−1)n+1

, . . . , Xikn

))
.

Equivalently, for τ = (i1, . . . , iN ) ∈ πN , let

Gj(τ) =
(
i(j−1)n+1, . . . , ijn

)
, j = 1, . . . , k = bN/nc, (6.7.5)

which gives a compact form

Tτ =
1

k

k∑
j=1

h(Xi, i ∈ Gj(τ)).

It is well known (Section 5 in [Hoe63]) that the following representation of the U-statistic holds:

UN,n =
1

N !

∑
τ∈πN

Tτ . (6.7.6)

Applying representation (6.7.6) to (6.7.3), we deduce that

L̂(k)
U (β) = argmin

z∈R

∑
τ∈πN

Rτ (β, z), (6.7.7)

with Rτ (β, z) =
∑k
j=1 ρ

(√
n
L(fβ ;Gj(τ))−z

∆

)
. Similarly, applying representation (6.7.6) to the

numerator and the denominator in (6.7.4), we see that ∇βL̂(k)
U (β) can be written as a weighted

sum

∇βL̂(k)
U (β) =

∑
τ∈πN

∑k
j=1 I

{∣∣∣L(β;Gj(τ))− L̂(k)(β)
∣∣∣ ≤ ∆√

n

}
∑
π∈πN

∑k
j=1 I

{∣∣∣L(β;Gj(π))− L̂(k)(β)
∣∣∣ ≤ ∆√

n

}
︸ ︷︷ ︸

=ωτ , weight corresponding to permutation τ

·Γ̃τ (β),
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where

Γ̃τ (β) :=

∑k
j=1

(
1
n

∑
i∈Gj(τ) Zi `

′(Yi, fβ(Zi))
)
I
{∣∣∣L(β;Gj(τ))− L̂(k)(β)

∣∣∣ ≤ ∆√
n

}
∑k
j=1 I

{∣∣∣L(β;Gj(τ))− L̂(k)(β)
∣∣∣ ≤ ∆√

n

} (6.7.8)

is similar to the expression for the gradient of L̂(k)(β) defined for a fixed partition G1(τ), . . . , Gk(τ),
see (6.7.2). Representations in (6.7.7) and (6.7.8) can be simplified even further noting that
permutations that do not alter the subgroups G1, . . . , Gk also do not change the values of Rτ (β, z),
ωτ and Γ̃τ (β). To this end, let us say that τ1, τ2 ∈ πN are equivalent if Gj(τ1) = Gj(τ2) for all
j = 1, . . . , k. It is easy to see that there are N !

(n!)k·(N−nk)!
equivalence classes, and let πN,n,k be

the set of permutations containing exactly one permutation from each equivalence class. We can
thus write

L̂(k)
U (β) = argmin

z∈R
Q(β, z) := argmin

z∈R

∑
τ∈πN,n,k

Rτ (β, z),

∇βL̂(k)
U (β) =

∑
τ∈πN,n,k

ω̃τ · Γ̃τ (β), (6.7.9)

where ω̃τ = (n!)k (N − nk)! · ωτ . Representation (6.7.9) suggests that in order to obtain an
unbiased estimator of ∇zQ(β, z), one can sample a permutation τ ∈ πN,n,k uniformly at random,
compute ∇zRτ (β, z) and use it as a descent direction. This yields a version of the stochastic
gradient descent for evaluating L̂(k)

U (β) presented in Figure 6.2. Once a method for computing

Figure 6.2: Algorithm 2 – evaluation of L̂(k)
U (β).

Input: the dataset (Zi, Yi)1≤i≤N , number of blocks k ∈ Z+, step size parameter η > 0,
maximum number of iterations M , initial guess z0 ∈ R, tuning parameter ∆ > 0.
for all t = 0, . . . ,M do

Sample permutation τ uniformly at random from πN,n,k, construct blocks G1(τ), . . . , Gk(τ)
according to (6.7.5);
Compute ∇zRτ (β, zt) = −

√
n

∆

∑k
j=1 ρ

′
(√

n
L(fβ ;Gj(τ))−zt

∆

)
;

Update
zt+1 = zt − η∇zRτ (β, zt).

end for
Output: zM+1.

L̂(k)
U (β) is established, similar reasoning leads to an algorithm for finding f̂UN . Indeed, using

representation (6.7.9), it is easy to see that an unbiased estimator of ∇βL̂(k)
U (β) can be obtained

by first sampling a permutation τ ∈ πN,n,k according to the probability distribution given by
the weights {ω̃τ , τ ∈ πN,n,k}, then evaluating Γ̃τ (β) via (6.7.8), and using Γ̃τ (β) as a direction
of descent. In most typical cases, the number M of the gradient descent iterations is much
smaller than N !

(n!)k·(N−nk)!
, whence it is unlikely that the same permutation will be repeated twice

in the sampling process. This reasoning suggests the idea of replacing the weights ω̃τ by the
uniform distribution over πN,n,k that leads to a much faster practical implementation which
is detailed in Figure 6.3. It is easy to see that the presented gradient descent algorithms for
evaluating f̂N and f̂UN have the same numerical complexity. The following subsections provide
several “proof-of-concept” examples illustrating the performance of proposed methods, as well as
comparison to the existing techniques.
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Figure 6.3: Algorithm 3 – evaluation of β̂UN .

Input: the dataset (Zi, Yi)1≤i≤N , number of blocks k ∈ Z+, step size parameter η > 0,
maximum number of iterations M , initial guess β0 ∈ Rd, tuning parameter ∆ > 0.
for all t = 0, . . . ,M do

Sample permutation τ uniformly at random from πN,n,k, construct blocks G1(τ), . . . , Gk(τ)
according to (6.7.5);
Compute L̂(k)

U (βt) using Algorithm 2 in Figure 6.2;
Compute Γ̃τ (βt) via (6.7.8);
Update

βt+1 = βt − ηΓ̃τ (βt).

end for
Output: βM+1.

6.7.2 Logistic regression.

The dataset consists of pairs (Zj , Yj) ∈ R2 × {±1}, where the marginal distribution of the
labels is uniform and conditional distributions of Z are normal, namely, Law(Z |Y = 1) =
N
(
(−1,−1)T , 1.4I2

)
, Law(Z |Y = −1) ∼ N ((1, 1), 1.4I2), and Pr(Y = 1) = Pr(Y = −1) = 1/2;

here and below, I2 stands for the 2× 2 identity matrix. The dataset includes outliers for which
Y ≡ 1 and Z ∼ N ((24, 8), 0.1I2). We generated N = 600 “informative” observations along with
O = 30 outliers, and compared the performance or our robust method (based on evaluating β̂UN )
with the standard logistic regression that is known to be sensitive to outliers in the sample (we
used implementation available in the Scikit-learn package [PVG+11]). Results of the experiment
are presented in Figure 6.4 and illustrate robustness of proposed techniques. Parameters k and ∆
in our implementation were tuned via cross-validation.

(a) Training Dataset (b) Decision function – standard
Logistic Regression

(c) Decision function – Algorithm
3

Figure 6.4: Scatter plot of N◦ = 630 samples from the training dataset (N = 600 informative
observations, O = 30 outliers), the color of the points correspond to their labels and the
background color – to the predicted labels (brown region corresponds to “yellow” labels and blue –
to “purple”).
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6.7.3 Linear regression.

In this section, we compare the performance of our method (again based on evaluating β̂UN ) with
standard linear regression as well as with robust Huber’s regression estimator, see Section 7 in
[HR09]; linear regression and Huber’s regression were implemented using ‘LinearRregression’ and
‘HuberRegressor’ functions in the Scikit-learn package [PVG+11]. As in the previous example, the
dataset consists of informative observations and outliers. Informative data (Zj , Yj), j = 1, . . . , N
for N = 570 are i.i.d. and satisfy the linear model Yj = 10Zj + εj + 20 where Zj ∼ Unif[−3, 3]
and εj ∼ N (0, 1). We consider two types of outliers: (a) outliers in the response variable Y only,
and (b) outliers in the predictor Z. It is well-known that standard linear regression is not robust
in any of these scenarios, Huber’s regression estimator is robust to outliers in response Y only,
while our approach is shown to be robust to corruption of both types. In both test scenarios, we
generated O = 30 outliers. Given Zj , the outliers Yj of type (a) are sampled from a N (100, 0.01)
distribution, while the outliers of type (b) are Zj ∼ N

(
(24, 24)T , 0.01 I2

)
. Results are presented

(a) Outliers in response variable (b) Outliers in predictors

Figure 6.5: Scatter plot of N◦ = 600 training samples (N = 570 informative data and O = 30
outliers) and the corresponding regression lines for our method, Huber’s regression and regression
with quadratic loss.

in Figure 6.5, and confirm the expected outcomes.

6.7.4 Choice of k and ∆.

In this subsection, we evaluate the effect of different choices of k and ∆ in the linear regression
setting of Section 6.7.3, again with N = 570 informative observations and O = 30 outliers
of type (b) as described in Section 6.7.3 above. Figure 6.6a shows the plot of the resulting
mean square error (MSE) against the number of subgroups k. As expected, the error decreases
significantly when k exceeds 60, twice the number of outliers. At the same time, the MSE remains
stable as k grows up to k ' 100, which is a desirable property for practical applications. In
this experiment, ∆ was set using the “median absolute deviation” (MAD) estimator defined as
follows. We start with ∆0 being a small number (e.g., ∆0 = 0.1). Given a current approximate
solution βt, a permutation τ and the corresponding subgroups G1(τ), . . . , Gk(τ), set M̂(βt) :=
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median
(
L̂(k)(βt;G1(τ)), . . . , L̂(k)(βt;Gk(τ))

)
, and

MAD(βt) = median
(∣∣∣L̂(k)(βt;G1(τ))− M̂(βt)

∣∣∣, . . . , ∣∣∣L̂(k)(βt;Gk(τ))− M̂(βt)
∣∣∣).

Finally, define ∆̂t+1 := MAD(βt)
Φ−1(3/4) , where Φ is the distribution function of the standard normal law.

After a small number m (e.g. m = 10) of “burn-in” iterations of Algorithm 3, ∆ is fixed at the
level ∆̂m for all the remaining iterations.

Next, we study the effect of varying ∆ for different but fixed values of k. To this end, we set
k ∈ {61, 91, 151}, and evaluated the MSE as a function of ∆. The resulting plot is presented in
Figure 6.6b. The MSE achieves its minimum for ∆ � 102; for larger values of ∆, the effect of
outliers becomes significant as the algorithm starts to resemble regression with quadratic loss
(indeed, outliers in this specific example are at a distance ≈ 100 from the bulk of the data).
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Figure 6.6: Plot of the tuning parameter (x-axis) against the MSE (y-axis) obtained with
Algorithm 3. The MSE was evaluated via 300 runs of the Monte-Carlo simulation with N = 500
samples of the data. The dotted lines show the interquartile range (25%-75%) over the runs of
Monte-Carlo.

Comparison with existing methods.

In this section, we compare the performance of Algorithm 3 with a median-of-means-based robust
gradient descent algorithm studied in [LLM20]. The main difference of this method is in the way
the descent direction is computed at every step. Specifically, Γ̃τ (β) employed in Algorithm 3 is
replaced by ∇βL�(β) where L�(β) := median

(
L(β;G1(τ)), . . . ,L(β;Gk(τ))

)
, see Figure 6.7 and

paper [LLM20] for the detailed description. Experiments were performed for the logistic regression
problem based on the “two moons” pattern, one of the standard datasets in the Scikit-learn
package [PVG+11] presented in Figure 6.8a. We performed two sets of experiments, one on the
outlier-free dataset and one on the dataset consisting of 90% of informative observations and 10%
of outliers, depicted as a yellow dot with coordinates (0, 5) on the plot. In both scenarios, we
tested the “small” (N = 100) and “moderate" (N = 1000) sample size regimes. We used standard
logistic regression trained on an outlier-free sample as a benchmark; its accuracy is shown as
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Figure 6.7: Algorithm 4.

Input: the dataset (Zi, Yi)1≤i≤N , number of blocks k ∈ Z+, step size parameter η > 0,
maximum number of iterations M , initial guess β0 ∈ Rd, tuning parameter ∆ > 0.
for all t = 0, . . . ,M do

Sample permutation τ uniformly at random from πN,n,k, construct blocks G1(τ), . . . , Gk(τ)
according to (6.7.5);
Compute ∇βL�(β);
Update

βt+1 = βt − η∇βL�(β).

end for
Output: βM+1.

a dotted red line on the plots. In all the cases, parameter ∆ was tuned via cross-validation.
In the outlier-free setting, our method (based on Algorithm 3) performed nearly as good as
logistic regression; notably, performance of the method was strong even for large values of k,
while classification accuracy decreased noticeably for Algorithm 4 for large k. In the presence
of outliers, our method performed similar to Algorithm 4, while both methods outperformed
standard logistic regression; for large values of k, our method was again slightly better. At the
same time, Algorithm 4 was consistently faster than Algorithm 3 across the experiments.

A remark on cross-validation in a corrupted setting

Cross-validation is a common way to assess the performance of a machine learning algorithm.
However, cross-validation is not robust when the method itself is not robust (as it is the case here
with regression with quadratic loss). For our purposes, we slightly changed the way we approach
cross validation. Namely, we still partition the data into m parts used separately for training
and testing, however, once we obtain the m scores associated with the m folds, we evaluate
the median of these scores instead of the mean; see Figure 6.9 for the details. The rationale
behind this approach is that if at least half of the folds do not contain outliers, the results of
cross-validation will be robust. To use this approach, we choose m, the number of folds, to be
large (in the example above, m = 500).

We compared the three algorithms using robust cross-validation with median described above
Our method (based on Algorithm 3) yields MSE of ' e4.2 while the MSE for the ordinary least
squares regression is of order e22.1, while the Huber Regression leads to MSE ' e8.9. The empirical
density of the logarithm of the MSE over 500 folds is shown in Figure 6.10.

6.7.5 Comparison of Algorithm 1 and Algorithm 3.

We present a numerical evidence that the permutation-invariant estimator f̂UN is superior to
the the estimator f̂N based on fixed partition of the dataset. Evaluation was performed for
the regression task where the data contained outliers of type (a), as described in Section 6.7.3.
Average MSE was evaluated over 500 repetitions of the experiment, and the standard deviation
of the MSE was also recored. Results are presented in Figure 6.11 and confirm the significant
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(a) “Two moons” dataset [PVG+11]
with outliers.

 

(b) N = 100, no outliers
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(d) N = 1000, no outliers
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(e) N = 1000, with 100 outliers

Figure 6.8: Comparison of Algorithm 3, Algorithm 4 and standard logistic regression. The
accuracy was evaluated using Monte-Carlo simulation over 300 runs. The dotted lines show the
interquartile range (25%-75%) over the runs of Monte-Carlo.

improvements achieved by Algorithm 3 over Algorithm 1. We set k = 71 and ∆ = 1 for both
algorithms.

6.7.6 Application to the “Communities and Crime” data.

We compare the performance of our methods with the least squares regression applied to a real
dataset. The dataset we chose is called “Communities and Crime Unnormalized Data Set” and is
available through the UCI Machine Learning Repository. These data contain 2215 observations
from a census and law enforcement records. The task we devised was to predict the crime activity
(represented as the count of incidents) using the following features: the population of the area,
the per capita income, the median family income, the number of vacant houses, and the land
area. The choice of this specific dataset was motivated by the fact that it likely contains a
non-negligible number of outliers due to the nature of the features and the fact that the data
have not been preprocessed, hence the advantages of proposed approach could be highlighted.
We regularized both the robust risk and the usual squared loss with ‖ · ‖2 norm (ridge regression)
where the regularization parameter was selected using cross-validation. Figure 6.12 presents a
pairplot of the dataset; specifically, a pairplot shows all the different scatter plots of one feature
versus another (hence, the diagonal consists of the histograms of an individual feature). Such a
pairplot offers a visual confirmation of the fact that the data likely contains outliers. We were
interested in the dependence of the MSE on the partition cardinality k. Similarly to Figure 6.6a,
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Figure 6.9: Robust cross-validation with the median.

Input: the dataset (Xi, Yi)1≤i≤N , the number of folds m.
Construct the blocks G1, . . . , Gm, partition of {1, . . . , N}.
for all j = 1, . . . ,m do
Train f̂ on the dataset (Xl, Yl), l ∈

⋃
i 6=j Gi.

Compute the test MSE Scorej = 1
|Gj |

∑
l∈Gj (f̂(Xl)− Yl)2

end for
Output: Median(Score1, . . . ,Scorem).

Figure 6.10: Histogram of densities of the logarithm of the MSE for the different methods (light
blue corresponds to the approach of this paper (Algorithm 3), orange - to the standard least
squares regression, and green - to Huber’s regression).

we plotted the MSE as a function of k (Figure 6.13).
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Algorithm 1 Algorithm 3
average MSE 97.8 2

standard deviation of MSE 577.3 13

Figure 6.11: Comparison of Algorithms 1 and 3.

Figure 6.12: Pairplot detailing the 2D marginals of the dataset.
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Figure 6.13: Plot of the number of blocks k (x-axis) vs the test mean squared error (y-axis)
obtained with Algorithm 3 on 500 folds.
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Chapter 7

MONK – Outlier-Robust Mean
Embedding Estimation by
Median-of-Means

Abstract

Mean embeddings provide an extremely flexible and powerful tool in machine learning and statistics
to represent probability distributions and define a semi-metric (MMD, maximum mean discrepancy;
also called N-distance or energy distance), with numerous successful applications. The representation is
constructed as the expectation of the feature map defined by a kernel. As a mean, its classical empirical
estimator, however, can be arbitrary severely affected even by a single outlier in case of unbounded
features. To the best of our knowledge, unfortunately even the consistency of the existing few techniques
trying to alleviate this serious sensitivity bottleneck is unknown. In this paper, we show how the recently
emerged principle of median-of-means can be used to design estimators for kernel mean embedding and
MMD with excessive resistance properties to outliers, and optimal sub-Gaussian deviation bounds under
mild assumptions.

7.1 Introduction

Kernel methods [Aro50] form the backbone of a tremendous number of successful applications in
machine learning thanks to their power in capturing complex relations [SS02, SC08]. The main
idea behind these techniques is to map the data points to a feature space (RKHS, reproducing
kernel Hilbert space) determined by the kernel, and apply linear methods in the feature space,
without the need to explicitly compute the map.

One crucial component contributing to this flexibility and efficiency (beyond the solid the-
oretical foundations) is the versatility of domains where kernels exist; examples include trees
[CD01a, KK02], time series [Cut11], strings [LSST+02], mixture models, hidden Markov models
or linear dynamical systems [JKH04], sets [Hau99, GFKS02], fuzzy domains [GHC17], distribu-
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tions [HB05, MSX+09, MFDS11], groups [CFV05] such as specific constructions on permutations
[JV16], or graphs [VSKB10, KP16].

Given a kernel-enriched domain (X,K) one can represent probability distributions on X as a
mean

µP =

∫
X

ϕ(x)dP(x) ∈ HK , ϕ(x) := K(·, x),

which is a point in the RKHS determined by K. This representation called mean embedding
[BTA04, SGSS07] induces a semi-metric1 on distributions called maximum mean discrepancy
(MMD) [SGSS07, GBR+12]

MMD(P,Q) = ‖µP − µQ‖HK
. (7.1.1)

With appropriate choice of the kernel, classical integral transforms widely used in probability
theory and statistics can be recovered by µP; for example, if X equipped with the scalar product
〈·, ·〉 is a Hilbert space, the kernelK(x, y) = e〈x,y〉 gives the moment-generating function,K(x, y) =

eγ‖x−y‖
2
2 (γ > 0) the Weierstrass transform. As it has been shown [SKGF13] energy distance

[BF04, SR04, SR05]—also known as N-distance [ZKK92, Kle05] in the statistical literature—
coincides with MMD.

Mean embedding and maximum mean discrepancy have been applied successfully, in kernel
Bayesian inference [SGB+11, FSG13], approximate Bayesian computation [PJS16], model criticism
[LDG+14, KKK16], two-sample [BF04, SR04, SR05, HBM07, GBR+12] or its differential private
variant [RLSP18], independence [GFT+08, PBSP17] and goodness-of-fit testing [JXS+17, BLY17],
domain adaptation [ZSMW13] and generalization [BDD+17], change-point detection [HC07],
probabilistic programming [SMF+15], post selection inference [YUFT18], distribution classification
[MFDS11, ZKR+17] and regression [SBPG16, LSSF18], causal discovery [MPJ+16, PBSP17],
generative adversarial networks [DRG15, LSZ15, BSAG18], understanding the dynamics of
complex dynamical systems [KSM18, KBSS19], or topological data analysis [KFH16], among
many others; [MFBS17] provide a recent in-depth review on the topic.

Crucial to the success of these applications is the efficient and robust approximation of
the mean embedding and MMD. As a mean, the most natural approach to estimate µP is the
empirical average. Plugging this estimate into Eq. (7.1.1) produces directly an approximation
of MMD, which can also be made unbiased (by a small correction) or approximated recursively.
These are the V-statistic, U-statistic and online approaches [GBR+12]. Kernel mean shrinkage
estimators [MKF+16] represent an other successful direction: they improve the efficiency of the
mean embedding estimation by taking into account the Stein phenomenon. Minimax results have
recently been established: the optimal rate of mean embedding estimation given N samples from
P is N−1/2 [TKM17] for discrete measures and the class of measures with infinitely differentiable
density when K is a continuous, shift-invariant kernel on X = Rd. For MMD, using N1 and N2

samples from P and Q, it is N−1/2
1 +N

−1/2
2 [TKS16] in case of radial universal kernels defined

on X = Rd.

A critical property of an estimator is its robustness to contaminated data, outliers which
are omnipresent in currently available massive and heterogenous datasets. To the best of our
knowledge, systematically designing outlier-robust mean embedding and MMD estimators has
hardly been touched in the literature; this is the focus of the current paper. The issue is

1[FGSS08, KGF+10] provide conditions when MMD is a metric, i.e. µ is injective.
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particularly serious in case of unbounded kernels when for example even a single outlier can ruin
completely a classical empirical average based estimator. Examples for unbounded kernels are
the exponential kernel (see the example above about moment-generating functions), polynomial
kernel, string, time series or graph kernels.

Existing related techniques comprise robust kernel density estimation (KDE) [KS12]: the
authors elegantly combine ideas from the KDE and M-estimator literature to arrive at a robust
KDE estimate of density functions. They assume that the underlying smoothing kernels2 are
shift-invariant on X = Rd and reproducing, and interpret KDE as a weighted mean in HK . The
idea has been (i) adapted to construct outlier-robust covariance operators in RKHSs in the
context of kernel canonical correlation analysis [AFW18], and (ii) relaxed to general Hilbert
spaces [SGRA18]. Unfortunately, the consistency of the investigated empirical M-estimators is
unknown, except for finite-dimensional feature maps [SGRA18], or as density function estimators
[VS13].

To achieve our goal, we leverage the idea of Median-Of-meaNs (MON). Intuitively, MONs
replace the linear operation of expectation with the median of averages taken over non-overlapping
blocks of the data, in order to get a robust estimate thanks to the median step. MONs date back
to [JGV86, AMS99, NY83] for the estimation of the mean of real-valued random variables. Their
concentration properties have been recently studied by [DLLO16, MS17] following the approach
of [Cat12] for M-estimators. These studies focusing on the estimation of the mean of real-valued
random variables are important as they can be used to tackle more general prediction problems
in learning theory via the classical empirical risk minimization approach [Vap00] or by more
sophisticated approach such as the minmax procedure [AC11].

In parallel to the minmax approach, there have been several attempts to extend the usage
of MON estimators from R to more general settings. For example, [Min15, MS17] consider the
problem of estimating the mean of a Banach-space valued random variable using “geometrical”
MONs. The estimators constructed by [Min15, MS17] are computationally tractable but the
deviation bounds are suboptimal compared to those one can prove for the empirical mean
under sub-Gaussian assumptions. In regression problems, [LM19c, LL18] proposed to combine
the classical MON estimators on R in a “test” procedure that can be seen as a Le Cam test
estimator [Le 73]. The achievement in [LM19c, LL18] is that they were able to obtain optimal
deviation bounds for the resulting estimator using the powerful so-called small-ball method
of [KM15, Men15]. This approach was then extended to mean estimation Rd by [LM+19d]
providing the first rate-optimal sub-Gaussian deviation bounds under minimal L2-assumptions.
The constants of [LM19c, LL18, LM+19d] have been improved by [CG17] for the estimation of the
mean in Rd under L4-moment assumption and in least-squares regression under L4/L2-condition
that is stronger than the small-ball assumption used by [LM19c, LL18]. Unfortunately, these
estimators are computationally intractable; their risk bounds however serve as an important
baseline for computable estimators such as the minmax MON estimators in regression [LL20].

Motivated by the computational intractability of the tournament procedure underlying the first
rate-optimal sub-Gaussian deviation bound holding under minimal assumptions in Rd [LM+19d],
[Hop20] proposed a convex relaxation with polynomial, O(N24) complexity where N denotes
the sample size. [CFB19] have recently designed an alternative convex relaxation requiring
O(N4 + dN2) computation which is still rather restrictive for large sample size and infeasible in

2Smoothing kernels extensively studied in the non-parametric statistical literature [GKKW02] are assumed to
be non-negative functions integrating to one.
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infinite dimension.

Our goal is to extend the theoretical insight of [LM+19d] from Rd to kernel-enriched domains.
Particularly, we prove optimal sub-Gaussian deviation bounds for MON-based mean estimators
in RKHS-s which hold under minimal second-order moment assumptions. In order to achieve this
goal, we use a different (minmax [AC11, LL20]) construction which combined with properties
specific to RKHSs (the mean-reproducing property of mean embedding and the integral probability
metric representation of MMD) give rise to our practical MONK procedures. Thanks to the usage
of medians the MONK estimators are also robust to contamination.

Section 7.2 contains definitions and problem formulation. Our main results are given in
Section 7.3. Implementation of the MONK estimators is the focus of Section 7.4, with numerical
illustrations in Section 7.5.

7.2 Definitions & Problem Formulation

In this section, we formally introduce the goal of our paper.

Notations: Z+ is the set of positive integers. [M ] := {1, . . . ,M}, uS := (um)m∈S , S ⊆ [M ].
For a set S, |S| denotes its cardinality. E stands for expectation. medq∈[Q]{zq} is the median of
the (zq)q∈[Q] numbers. Let X be a separable topological space endowed with the Borel σ-field, x1:N

denotes a sequence of i.i.d. random variables on X with law P (shortly, x1:N ∼ P). K : X×X→ R
is a continuous (reproducing) kernel on X, HK is the reproducing kernel Hilbert space associated
to K; 〈·, ·〉K := 〈·, ·〉HK

, ‖·‖K := ‖·‖HK
.3 The reproducing property of the kernel means that

evaluation of functions in HK can be represented by inner products f(x) = 〈f,K(·, x)〉K for all
x ∈ X, f ∈ HK . The mean embedding of a probability measure P is defined as

µP =

∫
X

K(·, x)dP(x) ∈ HK , (7.2.1)

where the integral is meant in Bochner sense; µP exists iff
∫
X
‖K(·, x)‖KdP(x) =

∫
X

√
K(x, x)dP(x) <

∞. It is well-known that the mean embedding has mean-reproducing property Pf := Ex∼Pf(x) =
〈f, µP〉K for all f ∈ HK , and it is the unique solution of the problem:

µP = argmin
f∈HK

∫
X

‖f −K(·, x)‖2KdP(x) . (7.2.2)

The solution of this task can be obtained by solving the following minmax optimization

µP = argmin
f∈HK

sup
g∈HK

J(f, g), (7.2.3)

with J(f, g) = Ex∼P
[
‖f −K(·, x)‖2K − ‖g −K(·, x)‖2K

]
. The equivalence of (7.2.2) and (7.2.3)

is obvious since the expectation is linear. Nevertheless, this equivalence is essential in the
construction of our estimators because we will below replace the expectation by a non-linear
estimator of this quantity. More precisely, the unknown expectations are computed by using

3HK is separable by the separability of X and the continuity of K [SC08, Lemma 4.33]. These assumptions on
X and K are assumed to hold throughout the paper.
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the Median-of-meaN estimator (MON). Given a partition of the dataset into blocks, the MON
estimator is the median of the empirical means over each block. MON estimators are naturally
robust thanks to the median step.

More precisely, the procedure goes as follows. For any map h : X→ R and any non-empty
subset S ⊆ [N ], denote by PS := |S|−1

∑
i∈S δxi the empirical measure associated to the subset

xS and PSh = |S|−1
∑
i∈S h(xi); we will use the shorthand µS := µPS . Assume that N ∈ Z+

is divisible by Q ∈ Z+ and let (Sq)q∈[Q] denote a partition of [N ] into subsets with the same
cardinality |Sq| = N/Q (∀q ∈ [Q]). The Median Of meaN (MON) is defined as

MONQ[h]=medq∈[Q]

{
PSqh

}
=medq∈[Q]

{〈
h, µSq

〉
K

}
,

where assuming that h ∈ HK the second equality is a consequence of the mean-reproducing
property of µP. Specifically, in case of Q = 1 the MON operation reduces to the classical mean:
MON1[h] = N−1

∑N
n=1 h(xn).

We define the minmax MON-based estimator associated to kernel K (MONK) as

µ̂P,Q = µ̂P,Q(x1:N ) ∈ argmin
f∈HK

sup
g∈HK

J̃(f, g),

where for all f, g ∈ HK

J̃(f, g) = MONQ
[
x 7→ ‖f −K(·, x)‖2K − ‖g −K(·, x)‖2K

]
.

When Q = 1, since MON1[h] is the empirical mean, we obtain the classical empirical mean based
estimator: µ̂P,1 = 1

N

∑N
n=1K(·, xn).

One can use the mean embedding (7.2.1) to get a semi-metric on probability measures: the
maximum mean discrepancy (MMD) of P and Q is

MMD(P,Q) := ‖µP − µQ‖K = sup
f∈BK

〈f, µP − µQ〉K ,

where BK = {f ∈ HK : ‖f‖K ≤ 1} is the closed unit ball around the origin in HK . The second
equality shows that MMD is a specific integral probability metric [Mül97, Zol83]. Assume that
we have access to x1:N ∼ P, y1:N ∼ Q samples, where we assumed the size of the two samples to
be the same for simplicity. Denote by PS,x := 1

|S|
∑
i∈S δxi the empirical measure associated to

the subset xS (PS,y is defined similarly for y), µSq,P := µPSq,x , µSq,Q := µPSq,y . We propose the
following MON-based MMD estimator

M̂MDQ(P,Q)= sup
f∈BK

med
q∈[Q]

{〈
f, µSq,P − µSq,Q

〉
K

}
. (7.2.4)

Again, with the Q = 1 choice, the classical V-statistic based MMD estimator [GBR+12] is
recovered:

M̂MD(P,Q) = sup
f∈BK

 1

N

∑
n∈[N ]

f(xn)− 1

N

∑
n∈[N ]

f(yn)


=

√√√√ 1

N2

∑
i,j∈[N ]

(
Kx
ij +Ky

ij − 2Kxy
ij

)
, (7.2.5)
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where Kx
ij = K(xi, xj),K

y
ij = K(yi, yj) and Kxy

ij = K(xi, yj) for all i, j ∈ [N ]. Changing
in Eq. (7.2.5)

∑
i,j∈[N ] to

∑
i,j∈[N ],i6=j in case of the Kx

ij and Ky
ij terms gives the (unbiased)

U-statistic based MMD estimator
1

N(N − 1)

∑
i,j∈[N ]
i 6=j

(
Kx
ij +Ky

ij

)
− 2

N2

∑
i,j∈[N ]

Kxy
ij . (7.2.6)

Our goal is to lay down the theoretical foundations of the µ̂P,Q and M̂MDQ(P,Q) MONK
estimators: study their finite-sample behaviour (prove optimal sub-Gaussian deviation bounds)
and establish their outlier-robustness properties.

A few additional notations will be needed throughout the paper. S1\S2 is the difference of
set S1 and S2. For any linear operator A : HK → HK , denote by ‖A‖ := sup06=f∈HK

‖Af‖K/‖f‖K
the operator norm of A. Let L(HK) = {A : HK → HK linear operator : ‖A‖ <∞} be the
space of bounded linear operators. For any A ∈ L(HK), let A∗ ∈ L(HK) denote the adjoint
of A, that is the operator such that 〈Af, g〉K = 〈f,A∗g〉K for all f, g ∈ HK . An operator
A ∈ L(HK) is called non-negative if 〈Af, f〉K ≥ 0 for all f ∈ HK . By the separability of
HK , there exists a countable orthonormal basis (ONB) (ei)i∈I in HK . A ∈ L(HK) is called
trace-class if ‖A‖1 :=

∑
i∈I

〈
(A∗A)

1/2
ei, ei

〉
K
<∞ and in this case Tr(A) :=

∑
i∈I〈Aei, ei〉K <

∞. If A is non-negative and self-adjoint, then A is trace class iff Tr(A) < ∞; this will hold
for the covariance operator (ΣP, see Eq. (7.2.7)). A ∈ L(HK) is called Hilbert-Schmidt if
‖A‖22 := Tr(A∗A) =

∑
i∈I〈Aei, Aei〉K < ∞. One can show that the definitions of trace-class

and Hilbert-Schmidt operators are independent of the particular choice of the ONB (ei)i∈I .
Denote by L1(HK) := {A ∈ L(HK) : ‖A‖1 <∞} and L2(HK) := {A ∈ L(HK) : ‖A‖2 <∞}
the class of trace-class and (Hilbert) space of Hilbert-Schmidt operators on HK , respectively.
The tensor product of a, b ∈ HK is (a ⊗ b)(c) = a〈b, c〉K , (∀c ∈ HK), a ⊗ b ∈ L2(HK) and
‖a⊗ b‖2 = ‖a‖K‖b‖K . L2(HK) ∼= HK ⊗ HK where the r.h.s. denotes the tensor product of
Hilbert spaces defined as the closure of

{∑n
i=1 ai ⊗ bi : ai, bi ∈ HK (i ∈ [n]), n ∈ Z+

}
. Whenever∫

X
‖K(·, x)⊗K(·, x)‖2dP(x) =

∫
X
K(x, x)dP(x) <∞, let ΣP denote the covariance operator

ΣP = Ex∼P([K(·, x)− µP]⊗ [K(·, x)− µP]) ∈ L2(HK), (7.2.7)

where the expectation (integral) is again meant in Bochner sense. ΣP is non-negative, self-adjoint,
moreover it has covariance-reproducing property 〈f,ΣPf〉K = Ex∼P[f(x)− Pf ]2. It is known that
‖A‖ ≤ ‖A‖2 ≤ ‖A‖1.

7.3 Main Results

Below we present our main results on the MONK estimators, followed by a discussion. We allow
that Nc elements((xnj )

Nc
j=1 ) of the sample x1:N are arbitrarily corrupted (In MMD estimation

{(xnj , ynj )}Ncj=1 can be contaminated). The number of corrupted samples can be (almost) half
of the number of blocks, in other words, there exists δ ∈ (0, 1/2] such that Nc ≤ Q(1/2− δ). If
the data are free from contaminations, then Nc = 0 and δ = 1/2. Using these notations, we can
prove the following optimal sub-Gaussian deviation bounds on the MONK estimators.

Theorem 37 (Consistency & outlier-robustness of µ̂P,Q). Assume that ΣP ∈ L1(HK). Then, for
any η ∈ (0, 1) such that Q = 72δ−2 ln(1/η) satisfies Q ∈ (Nc/(1/2− δ), N/2), with probability at
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least 1− η,

‖µ̂P,Q − µP‖K ≤
12
(
1 +
√

2
)

δ
max

(√
6‖ΣP‖ ln(1/η)

δN
, 2

√
Tr (ΣP)

N

)
.

Theorem 38 (Consistency & outlier-robustness of M̂MDQ(P,Q)). Assume that ΣP and ΣQ ∈
L1(HK). Then, for any η ∈ (0, 1) such that Q = 72δ−2 ln(1/η) satisfies Q ∈ (Nc/(1/2− δ), N/2),
with probability at least 1− η,

∣∣∣M̂MDQ(P,Q)−MMD(P,Q)
∣∣∣ ≤ 12 max

(√
(‖ΣP‖+‖ΣQ‖) ln(1/η)

δN , 2
√

Tr (ΣP)+Tr (ΣQ)
N

)
δ

.

Proof (sketch). The technical challenge is to get the optimal deviation bounds under the (mild)
trace-class assumption. The reasonings for the mean embedding and MMD follow a similar high-
level idea; here we focus on the former. First we show that the analysis can be reduced to the unit
ball in HK by proving that ‖µ̂P,Q − µP‖K ≤ (1 +

√
2)rQ,N , where rQ,N = supf∈BK MONQ

[
x 7→

〈f,K(·, x)− µP〉K
]

= supf∈BK med
q∈[Q]

{r(f, q)} with r(f, q) =
〈
f, µSq − µP

〉
K
. The Chebyshev

inequality with a Lipschitz argument allows us to control the probability of the event {rQ,N ≤ ε}
using the variable Z = supf∈BK

∑
q∈U [φ(2r(f, q)/ε)− Eφ(2r(f, q)/ε)], where U stands for the

indices of the uncorrupted blocks and φ(t) = (t−1)I1≤t≤2 +It≥2. The bounded difference property
of the Z supremum of empirical processes guarantees its concentration around the expectation by
using the McDiarmid inequality. The symmetrization technique combined with the Talagrand’s
contraction principle of Rademacher processes (thanks to the Lipschitz property of φ), followed by
an other symmetrization leads to the deviation bound. Details are provided in Section 7.6.1-7.6.2
(for Theorem 37-38) in the supplementary material.

Remarks:

• Dependence on N : These finite-sample guarantees show that the MONK estimators
– have optimal N−1/2-rate—by recalling [TKS16, TKM17]’s discussed results—, and
– they are robust to outliers, providing consistent estimates with high probability even under

arbitrary adversarial contamination (affecting less than half of the samples).
• Dependence on δ: Recall that larger δ corresponds to less outliers, i.e., cleaner data in which case

the bounds above become tighter. In other words, making use of medians the MONK estimators
show robustness to outliers; this property is a nice byproduct of our optimal sub-Gaussian
deviation bound. Whether this robustness to outliers is optimal in the studied setting is an
open question.

• Dependence on Σ: It is worth contrasting the rates obtained in Theorem 37 and that of the
tournament procedures [LM+19d] derived for the finite-dimensional case. The latter paper
elegantly resolved a long-lasting open question concerning the optimal dependency in terms of
Σ. Theorem 37 proves the same dependency in the infinite-dimensional case, while giving rise
to computionally tractable algorithms (Section 7.4).

• Separation rate: Theorem 38 also shows that fixing the trace of the covariance operators of P
and Q, the MON-based MMD estimator can separate P and Q at the rate of N−1/2.

• Breakdown point: Our finite-sample bounds imply that the proposed MONK estimators using
Q blocks is resistant to Q/2 outliers. Since Q is allowed to grow with N (it can be can be
chosen to be almost N/2), this specifically means that the breakdown point of our estimators
can be 25%.
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7.4 Computing the MONK Estimator

This section is dedicated to the computation4 of the analyzed MONK estimators; particularly we
will focus on the MMD estimator given in Eq. (7.2.4). Numerical illustrations are provided in
Section 7.5. Recall that the MONK estimator for MMD [Eq. (7.2.4)] is given by

M̂MDQ(P,Q) = sup
f∈BK

med
q∈[Q]

 1

|Sq|
∑
j∈Sq

f(xj)−
1

|Sq|
∑
j∈Sq

f(yj)

. (7.4.1)

By the representer theorem [SHS01], the optimal f can be expressed as

f(a,b) =
∑
n∈[N ]

anK(·, xn) +
∑
n∈[N ]

bnK(·, yn), (7.4.2)

where a = (an)n∈[N ] ∈ RN and b = (bn)n∈[N ] ∈ RN .

Denote c = [a;b] ∈ R2N , K = [Kxx,Kxy;Kyx,Kyy] ∈ R2N×2N , Kxx = [K(xi, xj)]i,j∈[N ] ∈
RN×N , Kxy = [K(xi, yj)]i,j∈[N ] = K∗yx ∈ RN×N , Kyy = [K(yi, yj)]i,j∈[N ] ∈ RN×N . With these
notations, the optimisation problem (7.4.1) can be rewritten as

max
c∈R2N :c∗Kc≤1

med
q∈[Q]

{
|Sq|−1[1q;−1q]∗Kc

}
, (7.4.3)

where 1q ∈ RN is indicator vector of the block Sq. To enable efficient optimization we follow a
block-coordinate descent (BCD)-type scheme: choose the qm ∈ [N ] index for which the median is
attained in (7.4.3), and solve

max
c∈R2N :c∗Kc≤1

|Sqm |−1[1qm ;−1qm ]∗Kc.

This optimization problem can be solved analytically: c =
[1qm ;−1qm ]

‖L∗[1qm ;−1qm ]‖2
, where L is the

Cholesky factor of K (K = LL∗). The observations are shuffled after each iteration. The
pseudo-code of the final MONK BCD estimator is summarized in Algorithm 3.

Notice that computing L in MONK BCD costs O(N3), which can be prohibitive for large
sample size. In order to alleviate this bottleneck we also consider an approximate version of
MONK BCD (referred to as MONK BCD-Fast), where the

∑
n∈[N ] summation after plugging

(7.4.2) into (7.4.1) is replaced with
∑
n∈Sq :

max
c=[a,b]∈R2N

c∗Kc≤1

med
q∈[Q]

{∑
j,n∈Sq [anK(xj , xn) + bnK(xj , yn)]

|Sq|
−
∑
j,n∈Sq [anK(yj , xn) + bnK(yj , yn)]

|Sq|

}
.

This modification allows local computations restricted to blocks and improved running time.
The samples are shuffled periodically (e.g., at every 10th iterations) to renew the blocks. The
resulting method is presented in Algorithm 4. The computational complexity of the different
MMD estimators are summarized in Table 7.1.

4The Python code reproducing our numerical experiments is available at https://bitbucket.org/
TimotheeMathieu/monk-mmd; it relies on the ITE toolbox [Sza14].
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Algorithm 3: MONK BCD estimator for MMD
Input: Aggregated Gram matrix: K with Cholesky factor L (K = LL∗).
for all t = 1, . . . , T do
Generate a random permutation of [N ]: σ.
Shuffle the samples according to σ: for ∀q ∈ [Q]

Sq =

{
σ

(
(q − 1)

N

Q
+ 1

)
, . . . , σ

(
q
N

Q

)}
.

Find the block attaining the median (qm):
[1qm ;−1qm ]∗Kc

|Sqm |
= med
q∈[Q]

[1q;−1q]∗Kc

|Sq|
.

Compute the coefficient vector: c =
[1qm ;−1qm ]

‖L∗[1qm ;−1qm ]‖
2
.

end for
Output: med

q∈[Q]

(
1
|Sq| [1q;−1q]

∗Kc
)

7.5 Numerical Illustrations

In this section, we demonstrate the performance of the proposed MONK estimators. We exemplify
the idea on the MMD estimator [Eq. (7.2.4)] with the BCD optimization schemes (MONK BCD
and MONK BCD-Fast) discussed in Section 7.4. Our baseline is the classical U-statistic based
MMD estimator [Eq. (7.2.6); referred to as U-Stat in the sequel].

The primary goal in the first set of experiments is to understand and demonstrate various
aspects of the estimators for (K,P,Q) triplets [MFBS17, Table 3.3] when analytical expression
is available for MMD. This is the case for polynomial and RBF kernels (K), with Gaussian
distributions (P, Q). Notice that in the first (second) case the features are unbounded (bounded).
Our second numerical example illustrates the applicability of the studied MONK estimators in
biological context, in discriminating DNA subsequences with string kernel.

Experiment-1: We used the quadratic and the RBF kernel with bandwith σ = 1 for
demonstration purposes and investigated the estimation error compared to the true MMD value:
|M̂MDQ(P,Q) − MMD(P,Q)|. The errors are aggregates over 100 Monte-Carlo simulations,
summarized in the median and quartile values. The number of samples (N) was chosen from
{200, 400, . . . , 2000}.

We considered three different experimental settings for (P,Q) and the absence/presence of
outliers:

1. Gaussian distributions with no outliers: In this case P = N
(
µ1, σ

2
1

)
and Q = N

(
µ2, σ

2
2

)
were normal where (µ1, σ1) 6= (µ2, σ2), µ1, σ1, µ2, σ2 were randomly chosen from the [0, 1]

interval, and then their values were fixed. The estimators had access to (xn)Nn=1
i.i.d.∼ P and

(yn)Nn=1
i.i.d.∼ Q.

2. Gaussian distributions with outliers: This setting is a corrupted version of the first one.
Particularly, the dataset consisted of (xn)N−5

n=1
i.i.d.∼ P, (yn)N−5

n=1
i.i.d.∼ Q, while the remaining 5-5

samples were set to xN−4 = . . . = xN = 2000, yN−4 = · · · = yN = 4000.
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Algorithm 4: MONK BCD-Fast estimator for MMD
Input: Aggregated Gram matrix: K with Cholesky factor L (K = LL∗).
Indices at which we shuffle: J .
for all t = 1, . . . , T do
if t ∈ J then
Generate a random permutation of [N ]: σ.
Shuffle the samples according to σ: for ∀q ∈ [Q]

Sq =

{
σ

(
(q − 1)

N

Q
+ 1

)
, . . . , σ

(
q
N

Q

)}
.

Compute the Gram matrices and the Cholesky factors on each block Kq and Lq
for q ∈ [Q].

end if
Find the block5 attaining the median (qm):

[1qm ;−1qm ]∗Kqmcqm
|Sqm |

= med
q∈[Q]

[1q;−1q]∗Kqcq
|Sq|

.

Update the coefficient vector: cqm =
[1qm ;−1qm ]

‖L∗qm [1qm ;−1qm ]‖
2

.

end for
Output: med

q∈[Q]

(
1
|Sq| [1q;−1q]

∗Kqcq

)

Table 7.1: Computational complexity of MMD estimators. N : sample number, Q: number of
blocks, T : number of iterations.

Method Complexity
U-Stat O

(
N2
)

MONK BCD O
(
N3 + T

[
N2 +Q log(Q)

])
MONK BCD-Fast O

(
N3

Q2 + T
[
N2

Q +Q log(Q)
])
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3. Pareto distribution without outliers: In this case P = Q = Pareto(3) hence MMD(P,Q) = 0

and the estimators used (xn)Nn=1
i.i.d.∼ P and (yn)Nn=1

i.i.d.∼ Q.

The 3 experiments were constructed to understand different aspects of the estimators: how a
few outliers can ruin classical estimators (as we move from Experiment-1 to Experiment-2); in
Experiment-3 the heavyness of the tail of a Pareto distribution makes the task non-trivial.

Our results on the three datasets with various Q choices are summarized in Fig. 7.1. As we
can see from Fig. 7.1a and Fig. 7.1d in the outlier-free case, the MONK estimators are slower than
the U-statistic based one; the accuracy is of the same order for both kernels. As demonstrated by
Fig. 7.1b in the corrupted setup even a small number of outliers can completely ruin traditional
MMD estimators for unbounded features while the MONK estimators are naturally robust to
outliers with suitable choice of Q;6 this is precisely the setting the MONK estimators were
designed for. In case of bounded kernels (Fig. 7.1e), by construction, traditional MMD estimators
are resistant to outliers; the MONK BCD-Fast method achieves comparable performance. In
the final Pareto experiment (Fig. 7.1c and Fig. 7.1f) where the distribution produces “natural
outliers”, again MONK estimators are more robust with respect to corruption than the one relying
on U-statistics in the case of polynomial kernel. These experiments illustrate the power of the
studied MONK schemes: these estimators achieve comparable performance in case of bounded
features, while for unbounded features they can efficiently cope with the presence of outliers.

Experiment-2 (discrimination of DNA subsequences): In order to demonstrate the
applicability of our estimators in biological context, we chose a DNA benchmark from the UCI
repository [DK17], the Molecular Biology (Splice-junction Gene Sequences) Data Set. The dataset
consists of 3190 instances of 60-character-long DNA subsequences. The problem is to recognize,
given a sequence of DNA, the boundaries between exons (the parts of the DNA sequence retained
after splicing) and introns (the parts of the DNA sequence that are spliced out). This task consists
of two subproblems, identifying the exon/intron boundaries (referred to as EI sites) and the
intron/exon boundaries (IE sites).7 We took 1532 of these samples by selecting 766 instances from
both the EI and the IE classes (the class of those being neither EI nor IE is more heterogeneous
and thus we dumped it from the study), and investigated the discriminability of the EI and IE
categories. We represented the DNA sequences as strings (X), chose K as the String Subsequence
Kernel [LSST+02] to compute MMD, and performed two-sample testing based on MMD using the
MONK BCD, MONK BCD-Fast and U-Stat estimators. For completeness the pseudocode of the
hypothesis test is detailed in Algorithm 5 (Section 7.9). Q, the number of blocks in the MONK
techniques, was equal to 5. The significance level was α = 0.05. To assess the variability of the
results 400 Monte Carlo simulations were performed, each time uniformly sampling N points
without replacement resulting in (Xn)n∈[N ] and (Yn)n∈[N ]. To provide more detailed insights
the aggregated values of M̂MD(EI, IE) − q̂1−α, M̂MD(EI,EI) − q̂1−α and M̂MD(IE, IE) − q̂1−α
are summarized in Fig. 7.2, where q̂1−α is the estimated (1− α)-quantile via B = 150 bootstrap
permutations. In the ideal case, M̂MD− q̂1−α is positive (negative) in the inter-class (intra-class)
experiments. As Fig. 7.2 shows all 3 techniques are able to solve the task, both in the inter-class
(when the null hypothesis does not hold; Fig. 7.2a) and the intra-class experiment (null holds;

6In case of unknown Nc, one could choose Q adaptively by the Lepski method (see for example [DLLO16]) at
the price of increasing the computational effort. Though the resulting Q would increase the computational time, it
would be adaptive thanks to its data-driven nature, and would benefit from the same guarantee as the fixed Q
appearing in Theorem 37-38.

7In the biological community, IE borders are referred to as “acceptors” while EI borders are referred to as
“donors”.
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(a) Gaussian distribution, Nc = 0
(no outlier), quadratic kernel.

(b) Gaussian distribution, Nc = 5
outliers, quadratic kernel.

(c) Pareto distribution, quadratic
kernel.

(d) Gaussian distribution, Nc = 0
(no outlier), RBF kernel.

(e) Gaussian distribution, Nc = 5
outliers, RBF kernel.

(f) Pareto distribution, RBF kernel.

Figure 7.1: Performance of the MMD estimators: median and quartiles of ln(|M̂MDQ(P,Q)−
MMD(P,Q)|). Columns from left to right: Experiment-1 – Experiment-3. Top: quadratic kernel,
bottom: RBF kernel.
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(a) Inter-class: EI-IE (b) Intra-class: EI-EI (c) Intra-class: IE-IE

Figure 7.2: Inter-class and intra-class MMD estimates as a function of the sample number
compared to the bootstrap-estimated (1 − α)-quantile: M̂MD − q̂1−α; mean ± std. The null
hypothesis is rejected iff M̂MD − q̂1−α > 0. Notice the different scale of M̂MD − q̂1−α in the
inter-class and the intra-class experiments.

Fig. 7.2b and Fig. 7.2c), and they converge to a good and stable performance as a function of
the sample number. It is important to note that the MONK BCD-Fast method is especially
well-adapted to problems where the kernel computation (such as the String Subsequence Kernel)
or the sample size is a bottleneck, as its computation is often significantly faster compared to the
U-Stat technique. For example, taking all the samples (N = 766) in the DNA benchmark with
Q = 15, computing MONK BCD-Fast (U-Stat) takes 32s (1m28s). These results illustrate the
applicability of our estimators in gene analysis.
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Supplement

The supplement contains the detailed proofs of our results (Section 7.6), a few technical
lemmas used during these arguments (Section 7.7), the McDiarmid inequality for self-containedness
(Section 7.8), and the pseudocode of the two-sample test performed in Experiment-2 (Section 7.9).

7.6 Proofs of Theorem 37 and Theorem 38

This section contains the detailed proofs of Theorem 37 (Section 7.6.1) and Theorem 38 (Sec-
tion 7.6.2).
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7.6.1 Proof of Theorem 37

The structure of the proof is as follows:

1. We show that ‖µ̂P,Q − µP‖K ≤ (1+
√

2)rQ,N , where rQ,N = supf∈BK MONQ
[
〈f,K(·, x)− µP〉K︸ ︷︷ ︸

f(x)−Pf

]
,

i.e. the analysis can be reduced to BK .
2. Then rQ,N is bounded using empirical processes.

Step-1: Since HK is an inner product space, for any f ∈ HK

‖f −K(·, x)‖2K − ‖µP −K(·, x)‖2K = ‖f − µP‖2K − 2〈f − µP,K(·, x)− µP〉K . (7.6.1)

Hence, by denoting e = µ̂P,Q − µP, g̃ = g − µP we get

‖e‖2K − 2rQ,N‖e‖K
(a)

≤ ‖e‖2K − 2MONQ
[〈

e

‖e‖K
,K(·, x)− µP

〉]
K

‖e‖K
(b)

≤ MONQ
[
‖e‖2K − 2

〈
e

‖e‖K
,K(·, x)− µP

〉
K

‖e‖K
]

(c)

≤ MONQ
[
‖µ̂P,Q −K(·, x)‖2K − ‖µP −K(·, x)‖2K

]
(d)

≤ sup
g∈HK

MONQ
[
‖µ̂P,Q −K(·, x)‖2K − ‖g −K(·, x)‖2K

]
(e)

≤ sup
g∈HK

MONQ
[
‖µP −K(·, x)‖2K − ‖g −K(·, x)‖2K

]
(f)
= sup

g∈HK

{
2MONQ

[
〈g̃,K(·, x)− µP〉K︸ ︷︷ ︸

‖g̃‖K
〈

g̃
‖g̃‖K

,K(·,x)−µP

〉
K

]
− ‖g̃‖2K

}

(g)
= sup

g∈HK

{
2‖g̃‖KrQ,N − ‖g̃‖

2
K

} (h)

≤ r2
Q,N , (7.6.2)

where we used in (a) the definition of rQ,N , (b) the linearity8 of MONQ[·], (c) Eq. (7.6.1), (d)
supg, (e) the definition of µ̂P,Q, (f) Eq. (7.6.1) and the linearity of MONQ[·], (g) the definition
of rQ,N . In step (h), by denoting a = ‖g̃‖K , r = rQ,N , the argument of the sup takes the form
2ar − a2; 2ar − a2 ≤ r2 ⇔ 0 ≤ r2 − 2ar + a2 = (r − a)2.

In Eq. (7.6.2), we obtained an equation a2 − 2ra ≤ r2 where a := ‖e‖K ≥ 0. Hence
r2 + 2ra− a2 ≥ 0, r1,2 =

[
−2a±

√
4a2 + 4a2

]
/2 =

(
−1±

√
2
)
a, thus by the non-negativity of a,

r ≥ (−1 +
√

2)a, i.e., a ≤ r√
2−1

= (
√

2 + 1)r. In other words, we arrived at

‖µ̂P,Q − µP‖K ≤
(

1 +
√

2
)
rQ,N .

It remains to upper bound rQ,N .

8MONQ[c1 + c2f ] = c1 + c2MONQ[f ] for any c1, c2 ∈ R.
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Step-2: Our goal is to provide a probabilistic bound on

rQ,N = sup
f∈BK

MONQ[x 7→ 〈f,K(·, x)− µP〉K ]

= sup
f∈BK

med
q∈[Q]

{
〈
f, µSq − µP

〉
K︸ ︷︷ ︸

=:r(f,q)

}.

The Nc corrupted samples can affect (at most) Nc of the (Sq)q∈[Q] blocks. Let U := [Q]\C stand
for the indices of the uncorrupted sets, where C := {q ∈ [Q] : ∃nj s.t. nj ∈ Sq, j ∈ [Nc]} contains
the indices of the corrupted sets. If

∀f ∈ BK : |{q ∈ U : r(f, q) ≥ ε}|︸ ︷︷ ︸∑
q∈U Ir(f,q)≥ε

+Nc ≤
Q

2
, (7.6.3)

then for ∀f ∈ BK , medq∈[Q]{r(f, q)} ≤ ε, i.e. supf∈BK medq∈[Q]{r(f, q)} ≤ ε. Thus, our task
boils down to controlling the event in (7.6.3) by appropriately choosing ε.

• Controlling r(f, q): For any f ∈ BK the random variables 〈f, k(·, xi)− µP〉HK
= f(xi)− Pf

are independent, have zero mean, and

Exi∼P〈f, k(·, xi)− µP〉2K = 〈f,ΣPf〉K
≤ ‖f‖K‖ΣPf‖K ≤ ‖f‖

2
K‖ΣP‖ = ‖ΣP‖ (7.6.4)

using the reproducing property of the kernel and the covariance operator, the Cauchy-Schwarz
(CBS) inequality and ‖f‖HK

= 1.
For a zero-mean random variable z by the Chebyshev’s inequality P(z > a) ≤ P(|z| > a) ≤
E
(
z2
)
/a2, which implies P

(
z >

√
E(z2)/α

)
≤ α by a α = E

(
z2
)
/a2 substitution. With z :=

r(f, q) (q ∈ U), using E
[
z2
]

= E
〈
f, µSq − µP

〉2
K

= Q
NExi∼P〈f, k(·, xi)− µP〉2K and Eq. (7.6.4)

one gets that for all f ∈ BK , α ∈ (0, 1) and q ∈ U : P
(
r(f, q) >

√
‖ΣP‖Q
αN

)
≤ α. This means

P
(
r(f, q) > ε

2

)
≤ α with ε ≥ 2

√
‖ΣP‖Q
αN .

• Reduction to φ: As a result ∑
q∈U

P
(
r(f, q) ≥ ε

2

)
≤ |U |α

happens if and only if∑
q∈U

Ir(f,q)≥ε ≤ |U |α+
∑
q∈U

[
Ir(f,q)≥ε − P

(
r(f, q) ≥ ε

2

)
︸ ︷︷ ︸

E
[
Ir(f,q)≥ ε

2

]
]

=: A.

Let us introduce φ : t ∈ R→ (t−1)I1≤t≤2+It≥2. φ is 1-Lipschitz and satisfies I2≤t ≤ φ(t) ≤ I1≤t
for any t ∈ R. Hence, we can upper bound A as

A ≤ |U |α+
∑
q∈U

[
φ

(
2r(f, q)

ε

)
− Eφ

(
2r(f, q)

ε

)]
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by noticing that ε ≤ r(f, q)⇔ 2 ≤ 2r(f, q)/ε and ε/2 ≤ r(f, q)⇔ 1 ≤ 2r(f, q)/ε, and by using
the I2≤t ≤ φ(t) and the φ(t) ≤ I1≤t bound, respectively. Taking supremum over BK we arrive
at

sup
f∈BK

∑
q∈U

Ir(f,q)≥ε ≤ |U |α+ sup
f∈BK

∑
q∈U

[
φ

(
2r(f, q)

ε

)
− Eφ

(
2r(f, q)

ε

)]
︸ ︷︷ ︸

=:Z

.

• Concentration of Z around its mean: Notice that Z is a function of xV , the samples in
the uncorrupted blocks; V = ∪q∈USq. By the bounded difference property of Z (Lemma 47) for
any β > 0, the McDiarmid inequality (Lemma 49; we choose τ := Qβ2/8 to get linear scaling
in Q on the r.h.s.) implies that

P(Z < ExV [Z] +Qβ) ≥ 1− e−Qβ
2

8 .

• Bounding ExV [Z]: Let M = N/Q denote the number of elements in Sq-s. The G = {gf : f ∈
BK} class with gf : XM → R and PM := 1

M

∑M
m=1 δum defined as

gf (u1:M ) = φ

( 〈f, µPM − µP〉K
ε

)

is uniformly bounded separable Carathéodory (Lemma 48), hence the symmetrization technique
[SC08, Prop. 7.10], [LT91] gives

ExV [Z] ≤ 2ExV Ee sup
f∈BK

∣∣∣∣∣∣
∑
q∈U

eqφ

(
2r(f, q)

ε

)∣∣∣∣∣∣,

where e = (eq)q∈U ∈ R|U | with i.i.d. Rademacher entries [P(eq = ±1) = 1
2 (∀q)].

• Discarding φ: Since φ(0) = 0 and φ is 1-Lipschitz, by Talagrand’s contraction principle of
Rademacher processes [LT91], [Kol11, Theorem 2.3] one gets

ExV Ee sup
f∈BK

∣∣∣∣∣∣
∑
q∈U

eqφ

(
2r(f, q)

ε

)∣∣∣∣∣∣ ≤ 2ExV Ee sup
f∈BK

∣∣∣∣∣∣
∑
q∈U

eq
2r(f, q)

ε

∣∣∣∣∣∣.

• Switching from |U | to N terms: Applying an other symmetrization [(a)], the CBS inequality,
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f ∈ BK , and the Jensen inequality

ExV Ee sup
f∈BK

∣∣∣∣∣
Q∑
q=1

eq
r(f, q)

ε

∣∣∣∣∣ (a)

≤ 2Q

εN
ExV Ee′

[
sup
f∈BK

∣∣∣ ∑
n∈V

e′n〈f,K(·, xn)− µP〉K︸ ︷︷ ︸
=〈f,∑n∈V e

′
n[K(·,xn)−µP]〉

K

∣∣∣]

≤ 2Q

εN
ExV Ee′

 sup
f∈BK

‖f‖K︸ ︷︷ ︸
=1

∥∥∥∥∥∑
n∈V

e′n[K(·, xn)− µP]

∥∥∥∥∥
K


=

2Q

εN
ExV Ee′

∥∥∥∥∥∑
n∈V

e′n[K(·, xn)− µP]

∥∥∥∥∥
K

≤ 2Q

εN

√√√√ExV Ee′

∥∥∥∥∥∑
n∈V

e′n[K(·, xn)− µP]

∥∥∥∥∥
2

K

(b)
=

2Q
√
|V |Tr(ΣP)

εN
.

In (a), we proceed as follows:

ExV Ee sup
f∈BK

∣∣∣∣∣∣
∑
q∈U

eq
r(f, q)

ε

∣∣∣∣∣∣ = ExV Ee sup
f∈BK

∣∣∣∣∣∣
∑
q∈U

eq

〈
f, µSq − µP

〉
K

ε

∣∣∣∣∣∣
(c)

≤ 2Q

Nε
ExV EeEe′ sup

f∈BK

∣∣∣∣∣∑
n∈V

e′ne
′′
n〈f,K(·, xn)− µP〉K

∣∣∣∣∣
=

2Q

Nε
ExV Ee′ sup

f∈BK

∣∣∣∣∣∑
n∈V

e′n〈f,K(·, xn)− µP〉K

∣∣∣∣∣,
where in (c) we applied symmetrization, e′ = (e′n)n∈V ∈ R|V | with i.i.d. Rademacher en-
tries, e′′n = eq if n ∈ Sq (q ∈ U), and we used that (e′ne

′′
n〈f,K(·, xn)− µP〉K)

n∈V
distr
=

(e′n〈f,K(·, xn)− µP〉K)
n∈V .

In step (b), we had

ExV Ee′

∥∥∥∑
n∈V

e′n[K(·, xn)− µP]
∥∥∥2

K
= ExV Ee′

∑
n∈V

[e′n]
2〈K(·, xn)− µP,K(·, xn)− µP〉K

= |V |Ex∼P〈K(·, x)− µP,K(·, x)− µP〉K
= |V |Ex∼P Tr([K(·, x)− µP]⊗ [K(·, x)− µP])

= |V |Tr(ΣP)

exploiting the independence of e′n-s and [e′n]2 = 1.

Until this point we showed that for all α ∈ (0, 1), β > 0, if ε ≥ 2
√
‖ΣP‖Q
αN then

sup
f∈BK

Q∑
q=1

Ir(f,q)≥ε ≤ |U |α+Qβ +
8Q
√
|V |Tr(ΣP)

εN
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with probability at least 1− e−Qβ
2

8 . Thus, to ensure that supf∈BK
∑Q
q=1 Ir(f,q)≥ε +Nc ≤ Q/2 it

is sufficient to choose (α, β, ε) such that |U |α+Qβ +
8Q
√
|V |Tr(ΣP)

εN +Nc ≤ Q
2 , and in this case

‖µ̂P,Q − µP‖K ≤ (1 +
√

2)ε. Applying the |U | ≤ Q and |V | ≤ N bounds, we want to have

Qα+Qβ +
8Q
√

Tr(ΣP)

ε
√
N

+Nc ≤
Q

2
. (7.6.5)

Choosing α = β = δ
3 in Eq. (7.6.5), the sum of the first two terms isQ 2δ

3 ; ε ≥ max

(
2
√

3‖ΣP‖Q
δN , 24

δ

√
Tr (ΣP)
N

)
gives ≤ Q δ

3 for the third term. Since Nc ≤ Q( 1
2 − δ), we got

‖µ̂P,Q − µP‖K ≤ c1 max

(√
3‖ΣP‖Q
δN

,
12

δ

√
Tr (ΣP)

N

)

with probability at least 1−e−
Qδ2

72 . With an η = e−
Qδ2

72 , and hence Q =
72 ln( 1

η )
δ2 reparameterization

Theorem 37 follows.

7.6.2 Proof of Theorem 38

The reasoning is similar to Theorem 37; we detail the differences below. The high-level structure
of the proof is as follows:

• First we prove that
∣∣M̂MDQ(P,Q)−MMD(P,Q)

∣∣ ≤ rQ,N ,

where rQ,N = sup
f∈BK

∣∣∣med
q∈[Q]

{〈
f,
(
µSq,P − µSq,Q

)
− (µP − µQ)

〉
K

}∣∣∣.
• Then rQ,N is bounded.

Step-1:

• M̂MDQ(P,Q)−MMD(P,Q) ≤ rQ,N :
By the subadditivity of supremum [supf (af + bf ) ≤ supf af + supf bf ] one gets

M̂MDQ(P,Q) = sup
f∈BK

med
q∈[Q]

{〈
f,
(
µSq,P − µSq,Q

)
− (µP − µQ)

+ (µP − µQ)
〉
K

}
≤ sup
f∈BK

med
q∈[Q]

{〈
f,
(
µSq,P − µSq,Q

)
− (µP − µQ)

〉
K

}
+ sup
f∈BK

〈f, µP − µQ〉K

≤ sup
f∈BK

∣∣∣∣med
q∈[Q]

{〈
f,
(
µSq,P − µSq,Q

)
− (µP − µQ)

〉
K

}∣∣∣∣︸ ︷︷ ︸
=rQ,N

+ MMD(P,Q).

• MMDQ(P,Q)− M̂MDQ(P,Q) ≤ rQ,N :
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Let af := 〈f, µP − µQ〉K and bf := med
q∈[Q]

{〈
f, (µP − µQ)− (µSq,P − µSq,Q)

〉
K

}
. Then

af − bf = 〈f, µP − µQ〉K
+ medq∈[Q]

{〈
f, (µSq,P − µSq,Q)− (µP − µQ)

〉
K

}
= medq∈[Q]

{〈
f, µSq,P − µSq,Q

〉
K

}
by medq∈[Q]{−zq} = −medq∈[Q]{zq}. Applying the supf (af−bf ) ≥ supf af−supf bf inequality
(it follows from the subadditivity of sup):

M̂MDQ(P,Q) ≥ MMD(P,Q)− sup
f∈BK

med
q∈[Q]

{〈
f, (µP − µQ)− (µSq,P − µSq,Q)

〉
K

}
︸ ︷︷ ︸

−med
q∈[Q]
{〈f,(µSq,P−µSq,Q)−(µP−µQ)〉

K
}

≥ MMD(P,Q)− sup
f∈BK

∣∣∣∣med
q∈[Q]

{〈
f, (µSq,P − µSq,Q)− (µP − µQ)

〉
K

}∣∣∣∣︸ ︷︷ ︸
rQ,N

.

Step-2: Our goal is to control

rQ,N = supf∈BK

∣∣∣medq∈[Q]

{
r(f, q)

}∣∣∣, where
r(f, q) :=

〈
f, (µSq,P − µSq,Q)− (µP − µQ)

〉
K
.

The relevant quantities which change compared to the proof of Theorem 37 are as follows.

• Median rephrasing:

sup
f∈BK

∣∣∣med
q∈[Q]

{r(f, q)}
∣∣∣ ≤ ε⇔ ∀f ∈ BK : −ε ≤ medq∈[Q]{r(f, q)} ≤ ε

⇐ ∀f ∈ BK : |{q : r(f, q) ≤ −ε}| ≤ Q/2 and |{q : r(f, q) ≥ ε}| ≤ Q/2
⇐ ∀f ∈ BK : |{q : |r(f, q)| ≥ ε}| ≤ Q/2.

Thus, ∀f ∈ BK : |{q ∈ U : |r(f, q)| ≥ ε}|+Nc ≤ Q
2 , implies supf∈BK

∣∣∣medq∈[Q]{r(f, q)}
∣∣∣ ≤ ε.

• Controlling |r(f, q)|: For any f ∈ BK the random variables [f(xi)− f(yi)]− [Pf −Qf ] are
independent, zero-mean and

E(x,y)∼P⊗Q([f(x)− Pf ]− [f(y)−Qf ])2 = Ex∼P[f(x)− Pf ]2 + Ey∼Q[f(y)−Qf ]2

≤ ‖ΣP‖+ ‖ΣQ‖,

where P⊗Q is the product measure. The Chebyshev argument with z = |r(f, q)| implies that
∀α ∈ (0, 1)

(P⊗Q)

(
|r(f, q)| >

√
(‖ΣP‖+ ‖ΣQ‖)Q

αN

)
≤ α.

This means (P⊗Q)(|r(f, q)| > ε/2) ≤ α with ε ≥ 2
√

(‖ΣP‖+‖ΣQ‖)Q
αN .
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• Switching from |U | to N terms: With (xy)V = {(xi, yi) : i ∈ V }, in ’(b)’ with x̃n :=
K(·, xn)− µP, ỹn := K(·, yn)− µQ we arrive at

E(xy)V Ee′

∥∥∥∥∥∑
n∈V

e′n(x̃n − ỹn)

∥∥∥∥∥
2

K

= E(xy)V Ee′

∑
n∈V

[e′n]
2〈x̃n − ỹn, x̃n − ỹn〉K

= |V |E(xy)∼P‖[K(·, x)− µP]− [K(·, y)− µQ]‖K
= |V |[Tr(ΣP) + Tr(ΣQ)].

• These results imply

Qα+Qβ +
8Q
√

Tr(ΣP) + Tr(ΣQ)

ε
√
N

+Nc ≤ Q/2.

ε ≥ max

(
2
√

3(‖ΣP‖+‖ΣQ‖)Q
δN , 24

δ

√
Tr (ΣP)+Tr (ΣQ)

N

)
, α = β = δ

3 choice gives that

∣∣∣M̂MDQ(P,Q)−MMD(P,Q)
∣∣∣ ≤ 2 max

(√
3(‖ΣP‖+ ‖ΣQ‖)Q

δN
,

12

δ

√
Tr (ΣP) + Tr (ΣQ)

N

)

with probability at least 1− e−Qδ
2

72 . η = e−
Qδ2

72 , i.e. Q =
72 ln( 1

η )
δ2 reparameterization finishes

the proof of Theorem 38.

7.7 Technical Lemmas

Lemma 46 (Supremum). ∣∣∣ sup
f
af − sup

f
bf

∣∣∣ ≤ sup
f
|af − bf |.

Lemma 47 (Bounded difference property of Z). Let N ∈ Z+, (Sq)q∈[Q] be a partition of [N ],
K : X × X → R be a kernel, µ be the mean embedding associated to K, x1:N be i.i.d. random

variables on X, Z(xV ) = sup
f∈BK

∑
q∈U

[
φ

(
2〈f,µSq−µP〉

K

ε

)
− Eφ

(
2〈f,µSq−µP〉

K

ε

)]
, where U ⊆ [Q],

V = ∪q∈USq. Let x′Vi be xV except for the i ∈ V -th coordinate; xi is changed to x′i. Then

sup
xV ∈X|V |,x′i∈X

∣∣Z(xV )− Z
(
x′Vi
)∣∣ ≤ 4, ∀i ∈ V.

Proof. Since (Sq)q∈[Q] is a partition of [Q], (Sq)q∈U forms a partition of V and there exists a
unique r ∈ U such that i ∈ Sr. Let

Yq := Yq(f, xV ),

q ∈ U = φ

(
2
〈
f, µSq − µP

〉
K

ε

)
− Eφ

(
2
〈
f, µSq − µP

〉
K

ε

)
,

Y ′r := Yr(f, x
′
Vi).
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In this case

∣∣Z(xV )− Z
(
x′Vi
)∣∣ =

∣∣∣∣∣∣ sup
f∈BK

∑
q∈U

Yq − sup
f∈BK

 ∑
q∈U\{r}

Yq + Y ′r

∣∣∣∣∣∣
(a)

≤ sup
f∈BK

|Yr − Y ′r |
(b)

≤ sup
f∈BK

(
|Yr|︸︷︷︸
≤2

+ |Y ′r |︸︷︷︸
≤2

)
≤ 4,

where in (a) we used Lemma 46, (b) the triangle inequality and the boundedness of φ [|φ(t)| ≤ 1
for all t].

Lemma 48 (Uniformly bounded separable Carathéodory family). Let ε > 0, N ∈ Z+, Q ∈ Z+,
M = N/Q ∈ Z+, φ(t) = (t − 1)I1≤t≤2 + It≥2, K : X × X → R is a continuous kernel on the
separable topological domain X, µ is the mean embedding associated to K, PM := 1

M

∑M
m=1 δum ,

G = {gf : f ∈ BK}, where gf : XM → R is defined as

gf (u1:M ) = φ

(
2〈f, µPM − µP〉K

ε

)
.

Then G is a uniformly bounded separable Carathéodory family: (i) supf∈BK‖gf‖∞ < ∞ where
‖g‖∞ = supu1:M∈XM |g(u1:M )|, (ii) u1:M 7→ gf (u1:M ) is measurable for all f ∈ BK , (iii) f 7→
gf (u1:M ) is continuous for all u1:M ∈ XM , (iv) BK is separable.

Proof.

(i) |φ(t)| ≤ 1 for any t, hence ‖gf‖∞ ≤ 1 for all f ∈ BK .
(ii) Any f ∈ BK is continuous since HK ⊂ C(X) = {h : X → R continuous}, so u1:M 7→

(f(u1), . . . , f(uM )) is continuous. φ is Lipschitz, specifically continuous. The continuity of
these two maps imply that of u1:M 7→ gf (u1:M ), specifically it is Borel-measurable.

(ii) The statement follows by the continuity of f 7→ 〈f, h〉K (h = µPM − µP) and that of φ.
(iv) BK is separable since HK is so by assumption.

7.8 External Lemma

Below we state the McDiarmid inequality for self-containedness.

Lemma 49 (McDiarmid inequality). Let x1:N be X-valued independent random variables. Assume
that f : XN → R satisfies the bounded difference property

sup
u1,...,uN ,u′r∈X

|f(u1:N )− f(u′1:N )| ≤ c, ∀n ∈ [N ],

where u′1:N = (u1, . . . , un−1, u
′
n, un+1, . . . , uN ). Then for any τ > 0

P

(
f(x1:N ) < Ex1:N

[f(x1:N )] + c

√
τN

2

)
≥ 1− e−τ .
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7.9 Pseudocode of Experiment-2

The pseudocode of the two-sample test conducted in Experiment-2 is summarized in Algorithm 5.

Algorithm 5: Two-sample test (Experiment-2)

Input: Two samples: (Xn)n∈[N ], (Yn)n∈[N ]. Number of bootstrap permutations: B ∈ Z+.
Level of the test: α ∈ (0, 1). Kernel function with hyperparameter θ ∈ Θ: Kθ.

Split the dataset randomly into 3 equal parts:

[N ] =

3⋃̇
i=1

Ii, |I1| = |I2| = |I3|.

Tune the hyperparameters using the 1st part of the dataset:

θ̂ = argmax
θ∈Θ

Jθ := M̂MDθ((Xn)n∈I1 , (Yn)n∈I1).

Estimate the (1− α)-quantile of M̂MDθ̂ under the null, using B bootstrap permutations
from (Xn)n∈I2 ∪ (Yn)n∈I2 : q̂1−α.

Compute the test statistic on the third part of the dataset:

Tθ̂ = M̂MDθ̂((Xn)n∈I3 , (Yn)n∈I3).

Output: Tθ̂ − q̂1−α.
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