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Résumé

Dans cette these, nous proposons des algorithmes proximaux, avec réduction de dimension
automatique, pour des problemes d’optimisation avec solutions parcimonieuses. Dans un
premier temps, nous proposons une méthode générale de réduction de dimension, exploitant
la propriété d’identification proximale, par des projections adaptées a la structure de
I'itéré courant. Dans le cas parcimonieux, cet algorithme permet de travailler dans des
sous-espaces aléatoires de petites dimensions plutot que dans ’espace entier, possiblement
de tres grande dimension. Dans un deuxieme temps, nous nous placons dans un cadre
d’optimisation distribuée asynchrone et utilisons la méthode précédente pour réduire la
taille des communications entre machines. Nous montrons tout d’abord, que I'application
directe de notre méthode de réduction dimension dans ce cadre fonctionne si le probleme
est bien conditionné. Pour attaquer les problemes généraux, nous proposons ensuite un
reconditionnement proximal donnant ainsi un algorithme avec garanties théorétiques de
convergence et de réduction de communications. Des experiences numériques montrent
un gain important pour des problemes classiques fortement parcimonieux.
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Abstract

In this thesis, we develop a framework for reducing the dimensionality of composite
optimization problems using sparsity inducing regularizers.Based on the identification
property of proximal methods, we first develop a “sketch-and-project” method that uses
projections based on the structure of the correct point. This method allows to work with
random low-dimensional subspaces instead of considering the full space in the cases when
the final solution is sparse. Second, we place ourselves in the context of the delay-tolerant
asynchronous proximal methods and use our dimension reduction technique to decrease
the total size of communications. However, this technique is proven to converge only for
well-conditioned problems both in theory in practice. Thus, we investigate wrapping it up
into a proximal reconditioning framework. This leads to a theoretically backed algorithm
that is guaranteed to cost less in terms of communications compared with a non-sparsified
version. We show in practice that this method enjoys faster runtime convergence when
the sparsity of the problem is sufficiently big.
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Introduction

Mathematical optimization is one of the most important tools in machine learning.

Often, learning cames with some specific structure enforced to the final solution and
one of the popular ways to enforce it is to add a regularization term to the problem. Such
regularizers are often non-smooth, which calls for optimization methods able to handle
such non-smooth objectives.

Proximal algorithms are methods of choice for solving optimization problems with
explicit non-smooth objectives. Such methods for sparsity-inducing regularizers (e.g. ¢,
(1 5 norms or TV regularizer) have the additional property of identifying (near-)optimal
subspaces in finite time. This property opens the way for various dimension reduction
techniques.

In our work, we focus on the sparsification technique based on the identification
property of proximal methods and consider composite optimization problem with sparsity
inducing regularizers.

In Chapter 2, we present our sketch-and-project approach for solving composite
optimization problems with sparsity inducing regularizers. We propose a randomized
proximal gradient method harnessing the underlying structure. This algorithm is the first
algorithm that uses identification-based sketches. More precisely, we propose to select the
projections based on the properties of the regularizer. We introduce two key components:
i) a random subspace proximal gradient algorithm; ii) an identification-based sampling of
the subspaces. Their interplay brings a significant performance improvement in terms of
dimensions explored on typical learning problems.

In the second part of our work, we consider the centralized setup. We propose different
sparsified versions of the asynchronous proximal algorithm | ].

In Chapter 3, we present a general framework SPY for sparsification, where we propose
sending randomly chosen set of worker’s update coordinates. However, both theoretical
and practical analysis shows that usage of different probabilities could lead to divergence
of the algorithm. On the other hand, in case of uniform selection the algorithm converges
and, moreover, identifies the near-optimal support for the ¢; regularized problems that
motivate us to look at identification-based selection: some coordinates are selected with
probability 1 and other are selected with some fixed probability. This particular selection
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allows acceleration in terms of the number of communications when it converges. To
guarantee the convergence of SPY with different probabilities the scaling technique should
be used; however, the performance of such methods is worse than without sparsification
both in theory and in practice.

In Chapter 4, we present a modification of SPY that tackles the divergence issue
by using a proximal reconditioning scheme that consists in iteratively regularizing the
problem with the squared distance to some center point. We focused on wrapping up the
SPY algorithm with different probabilities. This allows us to perform much more aggressive
sparsifications. Furthermore, we show that when using a sparsity inducing regularizer, our
reconditioned algorithm generates iterates that identify the optimal sparsity pattern of
the model in finite time. This progressively uncovered pattern can be used to adaptively
update the sparsification distribution of the inner method. All in all, this method only
features sparse communications: the downward communications (master-to-worker) consist
in sending the (eventually) sparse model, and the upwards communications (worker-to-
master) are adaptively and aggressively sparsified. Finally, we show theoretically and
numerically that our method has better performance than its non-sparsified version in
terms of suboptimality with respect to the quantity of information exchanged.

Corresponding articles The contribution of this manuscript consists of the following
articles, prepared in scope of the research made during this Ph.D.

In Chapter 2, we present the contribution from | ].
In Chapters 3, 4, we present the contributions from | ].
In addition, a couple of articles were prepared outside of the scope of this work.

In [ |, we propose a universal acceleration technique for adaptive methods for
smooth convex but not strongly convex objective functions. It allows accelerating
well-known methods such as Steepest Descent, Random Adaptive Coordinate Descent,
and others where Lipschitz constant of the gradient is either unknown (expensive to
compute) or changes a lot along the trajectory of the iterates.

In | |, we present an asynchronous version of the Progressive Hedging algo-
rithm (a popular strategy in multistage stochastic programming) that is able to
compute an update as soon as a scenario subproblem is solved. Based on similar
arguments as in Asynchronous ADMM, we prove that the asynchronous version has
the same convergence properties as the standard. We release an easy-to-use Julia
toolbox!.

LGitHub link: https://github.com/yassine-laguel /RandomizedProgressiveHedging.jl


https://github.com/yassine-laguel/RandomizedProgressiveHedging.jl
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Introduction

Mathematical optimization is a tool for choosing some “optimal” parameter x within
the constraint set X such that it minimizes an objective function f. More formally, an
optimization problem could be written in the general form

min f(z).
This problem can be used to model many practical applications in areas such as bioinfor-
matics, advertising, and visual object recognition. However, this problem is too difficult
in general.

To produce an efficient algorithm with guarantees to solve the problem, some additional
assumptions on f and X are commonly made. One of the common assumptions is convexity
of the objective function f and of the constraint set X. In our work, we consider convex
functions f : R" — R U {+o0} and X = R", and in this chapter, we present some
algorithms and approaches that we used to discover new algorithms.

In order to make good predictions, large-scale data is used in practical applications:
the number of observations m is large and the dimension of each observation (or the
number of features) n is big (see more details in Section 1.2). Such context raises a lot of
questions, including, how to make the existing optimization algorithms computationally
more efficient? Classical optimization methods like gradient descent and its variations are
computationally expensive because every step of these algorithms requires a pass through
the full dataset. In contrast, incremental methods relying on using a single data point
(or a minibatch) to compute an estimator for the gradient reduce the computational cost
of iteration. To accept bigger datasets the state-of-the-art algorithms are distributed.
In such algorithms, the communication process between machines is also expensive and
methods that can reduce the number of communications or the size of every single update
are sought after.

Outline. This chapter is organized as follows. In Section 1.1, we introduce several basic
definitions from convex optimization. Furthermore, we recall some first-order optimization
methods and theoretical results that we use in later chapters. In Section 1.2, we discuss
Machine Learning. In Section 1.3, we present an overview of distributed learning: setting,
context, methods. In particular, we recall the asynchronous distributed proximal algorithm
[ |. We present in Section 1.4 an active-set identification property and prove it
for this algorithm.
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1.1 Convex optimization

This section is organized as folows. In Subsection 1.1.1, we introduce the definitions of
convex, strongly-convex, and L-smooth (with L-Lipschitz gradient) functions and prove
some important properties that are widely used in our further proofs. In Subsection
1.1.2, we recall the Gradient Descent algorithm (see Algorithm 1) and its convergence. In
Subsection 1.1.3, we present the notion of subgradient, proximal operator, and Moreau-
Yosida reqularization. Furthermore, we recall the basic methods for the minimization of
non-smooth functions: Subgradient Descent (see Algorithm 2) and Proximal Minimization
(see Algorithm 3). Finally, in Subsection 1.1.3, we overview several optimization methods
for solving regularized Empirical Risk Minimization problem: Coordinate Descent (see
Algorithm 6), Proximal Gradient Descent (see Algorithm 4), and Stochastic Gradient
Descent variations.

1.1.1 Convexity and smoothness
In this section, we recall the basic definitions and properties that are used to analyze

optimization methods for smooth and convex objective | .

In this thesis, we consider that the domain' of all functions is the entire space R"

unless explicitly written otherwise.

Definition 1.1 (Convex function). A function f : R" — R is called convez for any
z,y € R" and o € [0, 1]

flax+ (1 —a)y) < af(x)+(1—a)f(y), (1.1)
Moreover, function f is called p-strongly convex if function g = f — £ - ||3 is convex.

For continuously differentiable functions the (strongly) convexity to the following
first-order lower-bounds.

Lemma 1.2. [Theorem 2.1.2 [ 1] A continuously differentiable function f:R™ — R
1s convex iff for any x,y € R, we have

fly) = f@) +(Vf(z),y — z)°. (1.2)
Moreover, function f :R™ — R is p-strongly convex iff for any z,y € R™, we have

F(4) > f(2) + (Vf(@),y = )+ Slly - all3. (1.3)

tdom f = {x : f(z) < oo}
2In this thesis we denote by (-,-) the standard Euclidean scalar product.
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Convexity implies that any stationary point® of a continuously differentiable function f
is a global minima of f. In addition, strong convexity implies the existence and uniqueness
of * = argmin . f(z).

Now let us recall the definition of L-smoothness.

Definition 1.3 (L-smoothness). A continuosly differentiable function f is called L-smooth
if its gradient is L-Lipschitz

IVf(z) =Vl < Lllz —yll (1.4)
for any xz,y € R™.
If function f is L-smooth, then the following upper bound holds.

Lemma 1.4. [Theorem 2.1.5 [ /] Let us assume that f : R* — R is convex and
L-smooth. Then for any x,y € R™ we have

F) ~ ()~ (Vi()y — ) < 5l — ol (1.5

and

%Ilvf(fﬁ) —VIiWlz < (Vf(z) = VI(y).z —y) < Lllz -yl (1.6)

In Figure 1-1 we present a graphical illustration of the lower (1.3) and upper (1.5)
bounds for an L-smooth and p-strongly convex objective function f. As we could see
from this figure, the quadratic lower bound provided by (1.3) approximates the functional
value much better than the first-order approximation provided by (1.2). The quality of
these approximations can be characterized by the condition number of the problem,

defined as
1

R = —.

L

When this number is close to 1 (well-conditioned), the upper and lower bound are close
to each other. As a result, both of these bound are good upper/lower approximations of
f. When it is close to 0 (ill-conditioned), the difference between the lower and upper
bounds is large that drops the quality of such approximations.

The size of condition number impacts on the speed of the first order optimization
algorithms: better-conditioned problems are easier to solve (see e.g., Theorem 1.6).

Finally, let us present the following auxiliary lemma (Lemma 3.11 | ]) that is
widely used in the convergence analysis of first-order methods for L-smooth and u-strongly
convex objectives.

3Point z is called stationary or critical if V f(x) = 0.
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Fy) + (V) z —y) + Lz —yl2

Figure 1-1. Graphical illustration of lower and upper bound for L-smooth and p-strongly
convex function f: R — R

Lemma 1.5. Let us assume that f : R® — R s L-smooth and p-strongly convex. Then
for any x,y € R™ we have

2 1 2
(Vf(x) =Vi(y)z-y) = ||x—y||2+M+—L||Vf($) -Vl (1.7)

w4 L

1.1.2 Gradient descent

Let us consider the optimization problem

min f(z), (1.8)
where f is convex and differentiable. One of the most important methods in the mathemat-
ical optimization literature for solving (1.8) is gradient descent. This method can be traced
back at least to the work of Cauchy | , Extrait 383] and became elaborate after [ ].
Thanks to its simplicity, there are many extensions of it | , , , .

Consider the ordinary differential equation (ODE)

dx
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It is well known that the values of f(z) decrease along the trajectories before reaching
stationary point Vf(x) = 0. Another way to see that the anti-gradient is a descent
direction is described in the following. From the definition of the gradient, we have that

df,(u) = Vf(x) u

for any small vector u. Among all vectors u with fixed norm, the scalar product would be
the smallest if u is opposite to V f(x). This idea of using anti-gradient direction is exactly
the idea of the gradient descent | ]. More precisely, since the anti-gradient direction is
the descent direction we can consider the iterative (discretized) version defined as follows.

Algorithm 1 Gradient Descent (GD)
Initialize 2° € R®
for k>0 do
F gk — ARV f(2) where 7" is a stepsize
end for

Let us now present the convergence result for the gradient descent algorithm with the
fixed stepsize v* = v (Theorems 2.1.14 and 2.1.15 | -

Theorem 1.6 (Convergence of Gradient Descent). Let us assume that f : R" — R is
convexr and L-smooth. Take v € (0, %) Then Algorithm 1 generates sequence of points
()0 such that

l‘*||2+7k:(2 ”yL)(f(q;O)_f*)’ (1.9)

where f* = mingegn f and x* is an optimal solution, i.e., f(x*) = f*. If moreover, f is

FH) = < g

Algorithm 1 generates sequence

pu-strongly convex with p > 0, then taking v € (O, A

of points (z*)>0 such that

k
k:_*2< 1_2’yILLL 0 _ ,.x|2 1.10
% — 2|5 < P |27 — 2|3, (1.10)

where x* is the unique minimizer of (1.8).

As we can see from this result, the best theoretical rate for non-strongly convex fuctions

is achieved when v = argmax (7 ( — %)) = % This leads to the following rate

L)~ e~ ol 2Ll 3
A e e ey DR e B
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where for the last inequality we used (1.5). For a u-strongly convex objective function f,

and the optimal stepsize v = MLL, we get the rate
. apL " . 1—r\* .
ot =< (1= 20 ) It -l = (1) Il

The convergence rate depends on k, and it is faster if the problem is better conditioned.
For example, if the problem is 1-conditioned, then only 1 iteration of GD is enough to
converge.

1.1.3 Non-smooth optimization

Let us now consider the optimization problem

i 1.13
min r(z), (1.13)
where 7 is convex but is allowed to be non-smooth (= non-differentiable. These functions
are often assumed to be differentiable almost everywhere on their domain. One of the
common approaches in different applications is a model of max-type functions
r(z) = max fi(),
where f; are convex and differentiable.

Since r is allowed to be non-smooth the Gradient Descent method is not applicable for
such problems, since for some points the gradient is not defined. However, for all points
where the gradient is defined the anti-gradient direction is still the descent direction. It
motivates to find some object to replace gradient that will be equal to the gradient in all
smooth points and replaced by something in points of non-smoothness.

Subgradient descent

Let us start with the definition of the object that could replace gradients for non-smooth
functions.

Definition 1.7 (Subgradient). Let r : R* — R U {+o0} be convex. Vector g € R" is
called subgradient of r at point y € domr if for any x € domr holds

r(z) > r(y) + (g, — y). (1.14)

The set of all subgradients of r at y is called the subdifferential of r at point y and denoted
by Or(y).
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Now we are ready to present one of the most basic algorithms | | to solve (1.13).

Algorithm 2 Subgradient Descent

Initialize 2° € R"
Select the sequence of stepsizes * satisfying v¥ > 0, +* — 0, Yoo vF =00
for £k > 0 do
Compute any subgradient g* € dr(z*)
gh+l o gk — Ak HZ_ZH
end for

Let us now present the convergence result for this algorithm.

Theorem 1.8 (Convergence of Subgradient Descent). Let us assume that r : R" —
RU{+o0}. Take the sequence of stepsizes v* satisfying v* > 0, 4% — 0, and Y 7 7" = oo.
Then Algorithm 2 generates sequence of points (z*)r>o such that

r(z®) — r*,
where r* = mingegn ().

This method is worse than the gradient descent due to the decreasing stepsize. Moreover,
at the points of non-smoothnes the direction of —g* has no reason to be the descent
direction, see Figure 1-2. This explains the usage of decreasing stepsizes to converge to
the minimizer and stay in its neighborhood after the next step.
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Figure 1-2. Linear approximations of non-smooth function r = max {—2z, (0.2z + 1)* — 1}
from R to R at point y = 0 with different subgradients. As we could see, y = 0 is a
minimizer of r, however its subdifferential in this point is 9r(0) = [-2,0.4] 5 0. Depending
on the subgradient g (we plot for ¢ = —1,—0.5,0.4) different linear approximations of
function r at 0 appears and, as a result we will move from the optimal point with
probability 1.

Proximal methods

The subgradient descent method is not the only method that can provably solve non-
smooth optimization problems. We now present a class of methods called proximal
methods. First, let us recall the definition of the proximal operator [ ].

Definition 1.9 (Proximal operator). Given a convez function r : R" — RU{+o0}, the
proximal operator of v is the mapping

1
prox, (u) = argnin {1 (1) + 1 ~ 3} (1.15)

yeR™

If function r is non-smooth, it is usually assumed to be proper* and lower-semicontinuous
® thus it implies that the objective of argmin is proper and strongly convex, which means

4Proper convex function is a convex function r : R® — R U {+o00} such that 3z € R" : r(x) < 400
and r(z) > —oo V& € R™.
®Function r is called lower-semicontinuous if lim inf, ., r(z) > r(xq) for any zg € domr.
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that the value of the proximal operator at any point is well defined and unique.

In machine learning applications, many regularizers are relatively simple (see Section
1.2 for more details) that makes the computation of proximal operator cheap. More
precisely, a proximal operator for such problems usually has a closed-form solution (¢°,
Group-Lasso’) or could be computed iteratively (1-d Total Variation (TV)®). Moreover,
if r is the indicator function of a convex set’, the proximal operator is an orthogonal
projection onto this set.

Before presenting proximal algorithms, let us recall some important properties of the
proximal operator that will be useful. First, let us present the lemma about the optimal
solution of (1.13) | , Section 2.3].

Lemma 1.10. Consider convex, proper, and lower-semicontinuous function r: R* —
R U {+o00}. Point x* is a solution of (1.13) if and only if x* = prox,.(z*).

Now, we present an important property of the proximal operator that is widely used
in the analysis of proximal methods | , Prop. 12.27].

Lemma 1.11 (Firm nonexpansiveness of proximal operator). Consider a convex function
r:R" - RU{+o0}. Then for any z,y € R™ holds

lprox,(z) — prox,(y)|lz < (v — y, prox,(z) — prox,(y)). (1.16)

Finally, let us introduce the connection between the proximal operator and the
subdifferential of function r | ).

Lemma 1.12 (Resolvent). The prozimal operator prox., and the subdifferential Or are
related as follows:
prox., = (I + yOr) 0, (1.17)

where I is identity operator. The mapping (I +~Or)~' is called the resolvent of operator
Or with parameter v > 0.

In Figures 1-3 we present the proximal operator for the function r = A|| - ||; that is
also known as the soft-thresholding operator | |. It is easy to see that the following

For some A > 0 the ¢; regularizer is defined as follows r(z) = A>_7" |z;|, where 2}; denotes the
i-th coordinate of x.

"For some partition G of [n] and some A > 0 the group-lasso regularizer is defined as follows
r(x) = /\deG |zgll2, where [a:g][i] =z S iEg

8For some A > 0 the 1-d TV regularizer is defined as follows r(z) = A Z?;ll |zpi—1) — -
0 ifeelC

9Indicator function ic of the convex set C is defined as 7(x) = L.
400 otherwise

0By the definition (I +~vor)~(z) = {y: x € y + 0r(y)}.
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Ml

(; llyll)

Figure 1-3. Geometrical interpretation of the soft-thresholding operator

problems are equivalent

o iy {ulull o+ gllo -0l
max a min < A ||yl + =||lx —y .
N yeRn 2 ’

It implies that the proximal operator could be interpreted as a point where the lines r(x)
and —1||z — y||3 — @max touch each other. Moreover, from this figure, we could see the
sequence of points

2 = proxy, (2")

is decreasing (in terms of || - ||, that motivates the following proximal algorithm | .

Algorithm 3 Proximal Minimization

Initialize 2° € R®
for £k > 0 do

2t PI'OXW(fJUk)a where v is a stepsize
end for

Algorithm 3 converges to the minimizer if this minimizer exists (see, for example,
Theorem 23.41 | ).
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Moreau-Yosida regularization

Let us define the Moreau envelope, that is also called Moreau-Yosida regularization
[ 7 -

Definition 1.13. Given A > 0, the Moreau envelope M), of the function r : R" —
R U {+o0} with parameter X is defined as

: 1 9
Mu(y) = inf (o) + 55l = o13). (1.18)
Moreau-Yosida regularization of function r is continuously differentiable, even if r is
not | , Fact 17.17] and its gradient is given by
1
VM, = X(ZL’ — prox,,.(z)). (1.19)

Moreover, the set of minima of r and M/ are the same. Let us rewrite the proximal
operator as
prox,,(z) = x — A\VM,,.(z).

This shows that the proximal operator can be viewed as a gradient step and Algorithm 3
is a gradient descent algorithm with stepsize A for minimizing M), [ ]. Taking into
account, that the Moreau envelope has the same minimizers as r, we have the convergence
of the proximal point method. In Figure 1-4 we present a geometrical interpretation of
Moreau envelope for the non-smooth objective function r.

Let us talk a little bit about the properties of Moreau-Yosida regularization. Since
we mentioned that the proximal point method is a gradient descent method on Moreau
envelope of the function, let us present smoothness and strong convexity properties of
this envelope. From (1.19) we have that

Ly, =271 (1.20)

independent on the smoothness parameter of . If function r is strongly convex the Moreau
envelope is strongly convex with strongly convexity parameter

pA!
= — 1.21
/J/M)\'r /11 _|_ A_17 ( )
where p is the strongly convexity constant of r (see Theorem 2.2 of | | for the proof).

Thus, the condition number of this Moreau-Yosida regularization of u-strongly convex
function r is

Ky, = = . (1.22)
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Figure 1-4. Geometrical interpretation of Moreau envelope for r(x) = max {—z, 0.5z}
from R to R.

As a result, this problem becomes exceptionally well-conditioned when A is selected
big.

1.1.4 Composite optimization

Let us consider the composite optimization problem

min f(z) + r(z), (1.23)

zeR”
where f is smooth and convex and r is convex, non-smooth proper, and lower-semicontinuous.
Moreover, we consider r to be a prox-easy function meaning that its proximal operator
is easy to compute (a wide class of regularizers used in ML suits to this requirement).
As we already mentioned, this formulation corresponds to the regularized empirical loss
minimization problem that appears extensively in signal processing and machine learning
applications; we refer to e.g. | , , |, among a vast literature.

Proximal gradient descent

Let us start from the proximal gradient descent method with constant stepsize that
performs the gradient step and the proximal one alternatively. This class of method is
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also known as iterative shrinkage-thresholding algorithms (ISTA) | ], also called
forward-backward splitting method | , , ].

Algorithm 4 Proximal Gradient Descent (ISTA)
Initialize 2 € R™
for £ > 0 do
P41 prox., (ot =1V (%))
end for

Every iteration of this method consists of two steps: shift along the anti-gradient
direction of smooth part and proximal mapping to negotiate with the non-smoothness. It
could be reformulated as

1
e = argmin ¢ f(z") + (Vf(a*), 2 — 2%) + 2—||xk —23+r(2) ¢ (1.24)
z€ER™ i

N J/

-~

f(z.a%)

Ifv < %, where L is the smoothness parameter of f then f (2, 2%) is a convex upper-bound
to f that is tight at #*. This allows to interpret proximal methods as a majorization-
minimization algorithm | | that is widely used in optimization problems for mini-
mizing an objective function [ , , , , ]. The idea of such
methods in iterative minimizing of surrogate upper-bounds that leads to the objective
function value downhill.

From this form it is easy to see that the stationary point of this algorithm is a minimizer
of (1.23). Since. the objective in (1.24) is strongly-convex we could write the optimality
condition for fixed point

1
x* = argmin {(Vf(m*), z—a") + Zﬂx* — 2|3+ T(Z)}

z€R™
)
0 € or(z*) + Vf(xr),

that is an optimality condition for (1.23).

When r is the indicator of a convex set, the proximal operator projects the gradient
step back to the constraint set. In terms of convergence, these proximal variant has the
same rate as the gradient descent (see for example Theorem 3.1 of | 1.
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Coordinate descent methods

Coordinate descent methods is a class of iterative methods in which only one coordinate
(block) is updated on every iteration. Let us see the interest of such methods for the
problem with a least-squares objective function

f(@) = Az — b|I3,

where A is a matrix of examples, and b is a vector of observations. For such objective
function, the computational cost of one coordinate of the gradient is n times smaller than
the full gradient computation thanks to the function’s separable structure.

The idea of the underlying coordinate descent methods is the following: on every
iteration, we compute one (or some) coordinate of gradient and make a move in that
direction with some stepsize. There are different ways to select stepsize and the coordinate-
based, for example, on the smoothness constants of i-th coordinates of gradient | ] or
on the maximal absolute value of the gradient’s coordinates correspondingly | ].

Let us consider smooth optimization problem (1.8), where function f has coordinate-
wise Lipschitz continuous gradient

Vig f(z + he;) = Vi f(x)] < MIh], (1.25)

where subscript [i] means the i-th coordinate, e; is a i-th standard basis vector, and h € R.
For such function, it is easy to see that

Algorithm 5 Coordinate Descent (CD) for (1.8)
Initialize 2° € R”
for £ > 0 do
Select coordinate % = argmax, <, |V f(2*)]
aP e ah — LV f(2F)
end for

Py = P 2 S Ve fa? > VAR,

where the first inequality follows from (1.25) and the second follows from the coordinate
selection. It immediately implies (see the proof of Theorem 1.6) the following rate for the
non-strongly convex objective

2nM
k+4

|2 — 2713,

fa®) =<
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where we use the same notations as before.

As we could see from this result, the rate is n times worse than the rate of gradient
descent, and every iteration requires a full gradient computation for coordinate selection.
Moreover, it could happen that M > L where L is the smoothness constant of f that
makes algorithm worse in terms of the amount of gradient evaluations to reach the same
accuracy even if only 1 coordinate of the gradient is required.

Together with the greedy strategy, randomized and cyclic variations of this method
also appear widely in the literature. Besides, some modifications propose selecting the
block of coordinates on every iteration. Thus in practice, it is more popular to use a cyclic
or randomized selection of coordinate to be updated (see e.g. | 1.

Now, let us consider composite optimization problem (1.23), where f has coordinate-
wise Lipschitz continuous gradient and moreover regularizer r is coordinate-wise separable

n

r(r) = Z ri(2p)-

i=1

The best know example of coordinate-separable regularizers is ¢, regularizer with r;(zp;)) =
Alz|. This type of regularizers together with block-separable (for example ¢, » regulariza-
tion | ]) is usual assumption for (block) coordinate descent methods, because it
implies (block) separability of proximal operator

prox., () = prox.,. (zp).

The key idea of coordinate descent method for (1.23) is to make a majorization-
minimization algorithm where in (1.24) the upper bound is based on the coordinate
smoothness

filza®) = F@®) + Vg fb)(z — o) + %w 22

The simplest version of the coordinate descent for (1.23) is presented in Algorithm 6 (see
Theorem 1 of | ] for the proof).

Algorithm 6 Coordinate Descent (CD) for (1.23)

Initialize z° € R™

for £ > 0 do
Select coordinate i* € {1,...,n}
xﬁ:r]l ¢ prox,, <xﬁk] — ’}/V[ik]f(;pk)> with v = ﬁ
xﬁl « xfj] for all j # i*

end for
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Since a lot of common regularizers are not separable (for example 1-d Total Variation
[ ]) coordinate methods Algorithm 6 could not be widely used to solve arbitrary
regularized ERM problem (1.29). This calls for some modern modifications that allow to
use non-separable proximal term | ].

Part of our research considers the extension of Algorithm 6 with a surprising application
to the non-separable regularizers.

Incremental methods

In the big data era, the amount of examples m and the dimension of features n can be
very large, which excludes higher-order optimization methods. Under this setting, the
computational cost of each gradient could be large because it requires passing through all
the m training points. So the GD and CD (if m > n) methods that we have presented so far
are also expensive. This calls for incremental gradient methods that have the cost of each
iteration that does not depend on m. Let us recall that in machine learning, the usual
problem is ERM (1.28), where the objective function f has a sum structure (probably
infinite).
In case of a finite sum

F@) = =3 hla)

if 7 is selected uniformly at random from [m| = [1,...,m| then Vf;(z) is also an unbi-
ased estimator of gradient of f, but its computation is about m times faster than the
computation of V f(x)

Let us present the general scheme of stochastic gradient descent where by E [g’ﬂxﬂ

Algorithm 7 Stochastic Gradient Descent (SGD)

Initialize 20 € R™

for £ > 0 do
Compute an unbiased estimator g* E [¢*|2*] = V f(z*)
gl o gk kg
end for
we denote conditional expectation | , Chapter IV, Section 4]. In particular, g* could
be selected as V fix(z*) where i* is an index uniformly generated among 1,...,m. The

vector g* is a noisy approximation of the real gradient V f(z*). The difference ¢* — V f(2*)
represents this noise and its variance is the important measure of quality

E [llg" = Vf(z*)[312*]. (1.26)
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This variance is usually non-zero for any 2* and even in the optimal point 2*. For example,
the full gradient V f(z*) = 0 but there is no reason for Vf;(z*) to vanish. Consider
Algorithm 7 with fixed stepsize v* = ~. Since, for any point z* the noise (1.26) is
separated from 0 the point z* is not fixed point of the algorithm. This again (like for
subgradient descent) leads to the slower rate than for the gradient descent, see the usual
behaviour of convergence in Figure 1-5.

f(x) )
SGD (Algorithm 7)
GD (Algorithm 1)
Amount of gradients V f; computed
Figure 1-5. Evolution of iterates for GD with fixed stepsize v = ﬁ and SGD with decreasing
stepsize 4" = ¢ for L-smooth and p-strongly convex objective f(z) = || Az — b||3, with

random generated A € R190*100 j ¢ R190  Ag we could see from this plot, in the beginning,
when the stepsizes in these two algorithm are approximately the same SGD performs better,
however when 7¥ < % it slows down fast.

In [ | author propose SGD with a constant stepsize; however, this method does not
converge to the minimizer. In Proposition 2.4 | ] it was proven that such algorithm
has a convergence rate that could be split into two parts: first is dependent on the number
of iteration and converges linearly (for strongly convex objectives) to 0, though, the second
part is independent on k and does not go to 0 that implies a linear convergence but only
up to a fixed tolerance. In | | the linear convergence takes place only under some
additional assumptions about the relationship between f;. In | ] Stochastic Dual
Coordinate Ascent (SDCA) was proposed, this algorithm has a linear convergence rate;
however, it is limited to the finite sum problems with strongly convex f;. This work was
extended to the case when only the strong convexity of the global objective f is required

[5516].
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Another possible solution is to decrease the variance of the gradient to guarantee the
linear convergence for strongly convex objectives. One of the examples of such methods
is SAG | ]. In this paper, authors propose a randomized variant of incremental
aggregated gradient (IAG) | | with the following iterations

7 o
k+1 _ k k
P =k — N Ty
m 4
i=1

where on every iteration a random training example i* is selected and

. {Vfi(:ck) if § = ¥

b= Yt otherwise.

This algorithm combines the low cost of each iteration with the linear rate in the strongly
convex case. Memory allows usage of better approximations of the full gradient on each
iteration that allows using constant stepsize. This algorithm was further extended to the
composite set up SAGA in [ ]. Another example of variance reduction in stochastic
gradient descent methods is method SVRG | |. Every iteration of this algorithm could

be written as
1 m
BHL gk ok 7 (gR) gl 1 ,
T z" —y ( fi(z") —y; m;1y2>7

where y; is a last stored gradient for f;. The key difference of this algorithm is in the way
of updating gradients in the memory. Unlikely SAG/SAGA where on every iteration one
gradient is updated in SVRG gradients are updated simultaneously every p iterations

y; = Vfi(z?) for all 4,

where d is a moment of the last update of stored in memory gradients. It is now
understood that these algorithms are conceptually almost the same, and even they
could be proven using the same proof | , ]. Another class of methods is
majorization-minimization algorithms Finito | |, MISO | |, DAve-RPG| ].
The majorization-minimization approach goes beyond optimization that provides a good
start for designing new incremental methods | ].

1.2 Introduction to machine learning

The goal of machine learning is to learn the model from the provided data. In other
words, the goal of machine learners is to propose an algorithm (or a set of algorithms)
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that will be able to make the learning process without further human interventions. For
example, in binary classification problems, we would like to learn the binary function
that classifies every object into one of two possible groups based on the attributes of the
object. However, the set of functions from the set of attributes to {—1,1} is so rich that
for any given training set of examples, we could generate the function that will ideally suit
the classification on this set by merely memorizing the correct label for every example.
Nevertheless, such functions, generally, are not so good to predict the group of any new
object as far as their behavior on such examples is usually an arbitrary random. Thus it
is necessary to add some requirements on the nature of such functions in order to add
some learning ability that will allow us to use them for new (unknown during the learning
process) examples | ]. One of the first examples was the Rosenblatt Perceptron
[ |, where the author proposed to learn the separating hyperplane between classes
(as we could see in this work, the classification function is assumed to be linear). This
assumption is one of the common in machine learning and could be used, for example, in
the support vector machines (SVM) problem | ]. After fixing of the learning problem,
the search for predictors could be formalized as a mathematical optimization problem.
Let us consider m observations (a;, b;) € A X B as an input of our prediction algorithm.
The goal of prediction is to find prediction function h(a, ), that belongs to some specific
class and is parametrized by x € R™. Let us provide some examples of such functions

linear model h(a,z) =z ®(a) of features ®(a) € R", where ®: A — R";

neural networks h(a,z) = z/ o(x] jo(---x{a)), where o is an activation function.

Now, let us introduce the loss function that is used as a measure of the quality of the

prediction. Loss function £(-,-) is a function that represents a distance to between two

arguments and as a result is closer to 0 if these arguments are closer to each other. Most
widely used loss functions are

quadratic loss (b, h(a, z)) = 5(b — h(a, x))?,

logistic loss ((b, h(a,x)) = log(1 + exp(—bh(a,x))),

where the quadratic loss is used in regression problems with b € R | ] and logistic is
used in classification problems with b € {—1,1} | : .

As we already mentioned, the goal is to learn the best possible prediction function from
the specific class of predictors. In other words, we need to find the vector of parameters
r € R™ that minimizes the expected loss

min Ep, ) 0(b, h(a,x)), (1.27)

FASING
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where P(a,b) is unknown joint probability distribution over A x B.  However, we
have access only to the finite amount of examples so infer h under the empirical risk
minimization (ERM) principle :

min Y {(b;, h(a;,x)). (1.28)
zeR" P
The study of consistency of the ERM principle indicates that when the number of
examples m — oo; the empirical loss should converge to the expected loss and also to
the infimum expected loss | ]. This study leads to the second principle in Machine
Learning that is called structural risk minimization (SRM) and which states that learning
is a compromise between accuracy and complexity.
One way to tackle this is to consider a regularized ERM :

m
min Y l(b;, h(a;, x)) +r(z). (1.29)
zeR? Py

For example, in the variable selection problems it is important to have only few entries
of estimator be non-zero in this case ¢; regularization is used (r = || - ||1) to force the final
solution to have few non-zero entries | .

Solving (regularized) ERM problem is a complicated mathematical procedure that calls
for different optimization techniques. In general, to simplify the optimization problem,
loss functions are considered to be convex and smooth. For convex functions, any local
minimum is a global one, and smoothness allows us to operate with the gradient or even
higher derivatives to analyze the first-order approximation of the function. However,
regularizers that enforce the specific structure to the final solution are usually convex but
non-smooth. It calls for optimization methods that can handle a non-smooth objective. In
general, such methods are slower than their convex analogs since subgradients do not allow
to make an equally good approximation of function as gradients, but often, regularizers
have a simple geometrical structure that allows using proximal methods which reach the
same rate of convergence as smooth ones.

In modern machine learning applications, the dimension of the problem n and the
amount of training examples m are usually big. This makes the computation of the
full gradient of the loss function expensive and unreliable. It moves state-of-the-art
algorithms from gradient methods | | to the incremental methods | : ],
where instead of full gradient computation on every iteration some unbiased estimator
(stochastic gradient) is computed. These methods appear to be slow out of the box as far
as a non-zero variance of stochastic gradients force to use decreasing stepsize that leads
to a slower rate than for the standard full gradient methods. To figure it out in 2013 in
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[ |, stochastic variance reduced gradient method that allows using constant stepsize
but requires more gradient computations that give all in all better convergence rate.

Another way to make the optimization process faster is to make computations in
parallel. Thanks to the sum-structure ERM and its gradient could be computed in parallel
on different machines: each machine computes a gradient that corresponds to some subset
of examples and after the results are aggregated to the full gradient. Together with
computational speedups, these algorithms also bring a bottleneck: communication. When
the dimension (n) of the problem is big, the process of sending/receiving of the full
gradient could be extremely costly and takes even more time than the computation of the
gradient. During the last years, a lot of different algorithms that do data compression
before sending were proposed | , , , ]. In such methods,
the way of compression does not use the structure of the problem, more precisely, the
structure of the final solution. Let us consider ¢; regularized problems, so we a-priori
know that the optimal solution is sparse. If we could know the set of coordinates that
are non-zero in this solution, we could send only these coordinates of gradient and lose
nothing in terms of the rate as far as it would correspond to projected gradient descent.
The problem is: we never know this set of coordinates, but we could try to guess.

As we mentioned above, usually regularizers have some strong geometrical properties
that enforce the optimal solution to have a specific structure. Unfortunately, the exact

pattern is unknown, but proximal methods allow us to identify it | ]. However, this
result sheds light on the moment when the iterate becomes sparse; it does not greenlight
to switch to a projected mode. In the same view, the result of | ] says that for some

proximal algorithms after unknown time, this projection technique would be legal (see
Section 1.4 for more details). This motivates us to do this research.

1.3 Distributed learning

Given the tremendous production of data and the ever-growing size of collections, there
is a surge of interest for the development of efficient and scalable distributed learning
strategies. A distributed system could be interpreted as multiple entities (also mentioned
as nodes) that communicate in some way between each other, while also performing
operations. Training observations are generally split over different computing nodes, and
learning is performed simultaneously. This setup is different from shared-memory parallel
computing, where each worker machine can potentially have access to all available memory

[Valoo, J
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1.3.1 Computing setups

All distributed algorithms could be segregated according to the network structure. Some
of them use networks with one central node called master that has a connection with all
the other nodes called workers | , , |. In such setups usually, all
the data is split between worker machines, and worker machines update their parameters
simultaneously on a local sub-part of data and send their updated parameters to a master
machine. The master integrates all received parameters and broadcasts them back to
each computing node for a new local update of their parameters. This setup is called a
centralized (or master-worker) setup. There could be a different amount of layers: master
communicates only with some of the other nodes that are the local masters and so on.
Graphs of such networks are trees with the root being the master node, leaves being the
workers, and all the others being the local masters.

There is another setup called decentralized, when all the nodes are the same and could
communicate with neighbor nodes with respect to the network graph | , ,

, ]. In this setup, the approach usually builds on the seminal work of

Tsitsikas | ] (see also | | and | ]) who proposed a framework to analyze
the distributed computation models.

In our work, we focus on the centralized distributed setup without shared memory
[ ] where all the data D is separated between M workers and all local subsets D;
are stored on each machine. We also consider the case when there is only one layer, and
all worker machines are connected with the central node of the system - master node.
This setup could be further categorized into two approaches with different assumptions on
the communication rounds - synchronous and asynchronous. In the synchronous approach,
every communication round mobilizes all worker machines | , , . In
asynchronous setting, the communication round does not require all workers to participate
and could involve only one worker | -

Synchronous algorithms

The study of distributed SGD in a master-worker setting | ] raises the question of
the communication-computation tradeoff. Every communication round in a synchronous
setting consists of two phases: All-Reduce synchronization step when all the workers send
their updates to the master and Broadcasting step that shares the updated parameter
vector with all workers. This could significantly increase the working time of optimization
algorithms when the amount of communication rounds, workers, and bits in the update
are big due to the communication overhead. It promotes the paradigm of mini-batch
methods [ , , , , |. The main idea of these methods
in generalizing stochastic methods to process multiple data points on every iteration
to make communication rounds less often. However, when the significant reduction of



CHAPTER 1. BACKGROUND MATERIAL 26

communication required, the size of mini-batch becomes big, which revert stochastic
methods to the full-batch methods. Another way to look at this idea is local SGD
methods that have been investigated in | , , , , .
These methods perform well in practice; however, the theoretical understanding is an
open area.

Another idea to solve the communication problem in distributed algorithms is in
randomly selecting some entries to update. Random selection is used to sparsify lo-
cal gradients in the synchronous algorithm of | |, to sparsify the variance-
reducing term in the stochastic algorithm of | | and | |, or to sparsify
updates in fixed-point iterations | |. There are many different techniques of
reducing communications that were investigated during the last years: general quanti-
zation | , , |, ternary quantization | ], 1-bit quantization
[ ], and others [ : ].

Asynchronous algorithms

Synchronous algorithms perform well when it takes approximately the same time for all
machines to make their update. Otherwise, the slower worker machines may slow down
the whole process as the faster ones have to wait for all updates in order to terminate
their computation and exchange information. As a result, many approaches based on the
asynchrony of communications have been recently proposed on distributed optimization
methods without shared memory, see e.g., | , , , , ]. In
this case, worker machines update their parameters simultaneously on a local sub-part
of data and send their updated parameters to a master machine which broadcasts the
integrated updates back to each computing node for a new local update of their parameters
[ : : J

However, these methods generally suffer from communication cost between workers
and the master machine and usually rely on restrictive assumptions on the computing
system delays, which in turn impact the obtained convergence rates. To overcome
these restrictions, asynchronous coordinate descent methods were recently proposed in
[ , |. These techniques can handle unbounded delays, but they are based on
decreasing stepsizes. In contrast, the recent works | , | provide a delay-
independent analysis technique that allows integrating assumptions on the computing
system with a constant stepsize.

1.3.2 Notations and preliminaries

We place ourselves in a totally asynchronous setting as per the classification of Bertsekas
and Tsitsiklis | , Chap. 6.1], meaning that all workers are responsive but without
bounded delays.
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Let us consider a distributed setup where m observations are split down over M
machines, each machine ¢ having a private subset D; of the examples. Learning over such
scattered data leads to optimization problems with composite objective of the form

min FTQ& IZ:E:(ILﬁ<x)4—T(x), (P>

z€R™

with a; = |D;|/m being the proportion of observations locally stored in machine 7, hence
SMoai=1. fi(z) = Wlil > jep, lj(x) is the local empirical risk at machine i (I; standing
for the smooth loss function for example j) and r is a regularization term.

An asynchronous distributed setting allows the algorithm to carry on computation
without waiting for slower machines: the machine performs computations based on
outdated versions of the main variable, and the master has to gather the slaves inputs into
a productive update. We formalize this framework with the same notation as in | ].

e For a workeri € {1,...,M}. At time k, let d¥ be the elapsed moment since the
last time the master has communicated with worker i (df = 0 iff the master gets
updates from worker i at exactly time k, i.e. i* =i). We also consider D¥ as the
elapsed time since the second last update. This means that, at time k, the last
two moments that the worker i has communicated with the master are k — d¥ and

k — DF (see Figure 1-6).

e For the master. We define k, as the number of updates that the master has received
from any of the worker machines. Thus, at time k, the master receives some input
from a worker, denoted by i*, updates its global variables, z* and z*; and sends z*
back to worker i¥, where Z is equal to the average of received updates from workers

M M

s k k—d¥

¥ = g ax; = g a;x % (1.30)
i=1 i=1

To handle asynchrony, we define the sequence of stopping times (k,,) iteratively as kg = 0
and

kmi1 =min{k: k— D} > k,, for all i} . (1.31)

The stopping moment k,,; is the first moment of time when z* directly depends only

on “new epoch” variables. More precisely, as we could see from (1.30) it depends directly
k

—dk . . . . —D;
on the a:f % that are the result of some computation on i-th worker while having :cf b

-y
and 277 as a parameters.
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Figure 1-6. Notations of delays at iteration k.

1.3.3 DAve-PG

There exist a lot of distributed optimization algorithms with no shared memory. In
[ ], the authors propose Proximal Incremental Aggregated Gradient method PIAG
that is proven to converge under the assumption of bounded delays. However, the recent
[ ] provides DAve-PG algorithm with a delay-independent analysis technique that
allows integrating assumptions on the computing system with a constant stepsize. In
DAve-PG algorithm, the master machine asynchronously gathers delayed updates from
workers and sends back the global variable. More specifically, each worker independently
computes a gradient step on its local loss, and the master machine keeps track of the
weighted average of the most recent worker outputs, computes the proximity operator of
the regularizer at this average point, and sends this result back to the updating worker i¥.
Maintaining a weighted average of worker outputs is a special feature of DAve-PG; though
it may appear conservative, it actually performs well in practice due to the stability of
the produced iterations. The intuitive reason is that combining delayed points is more
stable than using a combination of delayed directions; see the numerical comparisons of
Section 2.4 of | | and Section 5 of | .

Let us recall DAve-PG which solves composite distributed problems of the form P
represented by a triplet ((«w), (f;),r) for (workers weights,workers functions,global regular-
ization) in Algorithm 8.

Convergence and rate for strongly convex objectives Let us assume that all (f;)
are p-strongly convex and L-smooth with the same constants. This may appear limiting,
but actually, this is achieved quickly by exchanging f5 term between functions. This setup
allows us to feature a single stepsize in our algorithm, which simplifies the presentation to
focus on the contributions.
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Algorithm 8 DAVE-PG on ((«), (f;),r) with stopping criterion C

Initialize 2°

while stopping criterion C not verified

do Initialize z; = ;0
Receive A* from agent i* while not interrupted by master do
Th o 7 4 AR Receive x from master
a¥ + prox_ . (z") x) x =V fi(r)
Send z* to agent i* A xf —x;
dk k1l Send A to master

en

+
Interrupt all slaves Ti = T
Output z* end

Under that assumption, we define the condition number of the (smooth part of)
Problem (P) as

_ M
Rp) = E

This definition may be slightly unusual, but it is convenient in the present work as we
will consider the case when = 0 in the upcoming chapters.

Theorem 1.14 (Th. 3.2 | ). Let the functions (f;) be u-strongly convex (u > 0)
and L-smooth. Let r be convez l.s.c. Using v € (0, MLL], DAve-PG converges linearly on
the epoch sequence (k). More precisely, for all k € [k, kmi1)

|*

— | < (1= )™ mae |9 — ]|
with the shifted local solutions x}f = x* — v,V fi(z*).

Furthermore, using the maximal stepsize v = we obtain for all k € [k, kmi1)

_2
pu+L’

11—k 2m
ot — 2| < (ng) a0 — a7

This result is given with respect to the epoch sequence (1.31) to encompass various
system behaviors. When we consider bounded delays, which is the standard assumption,
the particularization of the previous result leads to a rate depending as expected on the
bound on delays, as formalized in the following corollary.
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Corollary 1.15 (Special case of bounded delays). Under the assumptions of Theorem 1.14,
suppose that the delays are uniformly bounded over time and machines: d¥ < D for
all k and i. Then, the length of epochs is bounded ky,+1 — k,, < 2D + 1 and we have a rate
over k depending on the bound D

k ) 0 _ % 2
2D +1 1—yu

Proof. Directly from the definition in (1.31), we have that k,, 11 —k,, < 2D+ 1. Therefore,
km < (2D + 1)m. For all k € [k, k1), we deduce

(< et < L (12 2y
T —1-pu T “1—u 2D+1)

by the concavity of u +— (1 — u)?/ 2P+ which gives (1 — )P+ <1 —2u/(2d + 1) for
u € (0,1). O

Discussion on communication. DAve-PG is a delay-tolerant distributed algorithm
that has an automatic sparsification of master-to-worker communications for many popular
regularizations. For instance, proximal operators of ¢y and ¢; norms correspond respectively
to the hard and soft thresholding operators, which set the smallest coordinates to zero, thus
sparsifying the output. This kind of proximal sparsification was successfully used in the
case of synchronous distributed learning; see e.g., | , |. However, worker-to-
master communications do not need to be sparse, which implies that the communication
cost is a bottleneck of this algorithm. As we have already mentioned, different techniques to
solve this issue were developed for SGD: sparsification/quantization of updates | ]
and mini-batching/local SGD | , |. In | : |, the authors
propose DAve-RPG Algorithm that allows making a couple of repetitions p of local proximal
gradient steps. However, this requires the knowledge of ¥ by all workers that makes
communication from master to worker not sparse.

In this work, we focus on another way to resolve the communication bottleneck issue
- the sparsification of the updates. We aim at providing a distributed optimization
algorithm reducing the size of communications by using the model structure enforced by
the regularization r. Our adaptive communication reduction technique would then be
complementary to existing compression techniques (reviewed in Subsection 1.3.1).
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1.4 Identification

As mentioned in | |, the use of a proximal operator to handle the nonsmooth part r
plays a prominent role, as it typically enforces some “sparsity” structure on the iterates and
eventually on optimal solutions, see, e.g., | |. For instance, the popular ¢;-norm
regularization (r = || - ||;) promotes optimal solutions with a few nonzero elements, and its
associated proximity operator (called soft-thresholding, see [ |) zeroes entries along
the iterations. This is an example of identification: in general, the iterates produced by
proximal algorithms eventually reach some sparsity pattern close to the one of the optimal
solution. For ¢;-norm regularization, this means that after a finite but unknown number
of iterations, the algorithm “identifies” the final set of non-zero variables. This active-set
identification property is typical for constrained convex optimization (see e.g. [ )]
and nonsmooth optimization (see e.g. | D-

Related literature

The study of identification dates back at least to | | who showed that the projected
gradient method identifies a sparsity pattern when using non-negative constraints. Such
identification has been extensively studied in more general settings; we refer to | ,
[ ], | ] or the recent | |, among other references. Recent works on this
topic include: i) extended identification for a class of functions showing strong primal-
dual structure, including TV-regularization and nuclear norm | ]; ii) identification
properties of various randomized algorithms, such as coordinate descent | | and
stochastic methods | : : ]

The knowledge of the optimal substructure would reduce the optimization problem
in this substructure and solve a lower dimension problem. While identification can be
guaranteed in special cases (e.g. using duality for ¢;-regularized least-squares [ ,

]), after some substructure identification, one could switch to a more sophisticated
method, e.g. updating parameters of first-order methods | ]. Again, since the final
identification moment is not known, numerically exploiting identification to accelerate the
convergence of first-order methods has to be done with great care.

1.4.1 Active-set identification

In this section, we provide a general identification result for proximal algorithms useful
for our developments, using the notion of sparsity vector.

Definition 1.16 (Sparsity vector). Let M = {M;j,..., M.} be a family of subspaces
of R™ with m elements. We define the sparsity vector on M for point x € R" as the
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{0, 1}-valued"" vector Sp(x) € {0,1}™ verifying
(Sm(@); =0 if v € M; and 1 elsewhere. (1.32)

An identification result is a theorem stating that the iterates of the considered algorithm
eventually belong to some — but not all — subspaces in M. We formulate such a result
of almost surely converging proximal-based algorithms as follows. This straightforward
result is inspired by the extended identification result of | | (but does not rely on
strong primal-dual structures as presented in | 1.

Theorem 1.17 (Enlarged identification). Let (u*) be an R™-valued sequence converging
almost surely to u* and define sequence (z¥) as % = prox,,(u*) and 2* = prox_, (u*).
Then (%) identifies some subspaces with probability one; more precisely for any e > 0,
with probability one, after some finite time,

Sm(a*) < Sm(a*) < max{Sy(prox,,(u)): ue Bue)}. (1.33)

Proof of Theorem 1.17. The proof is divided between the two inequalities. We start with
the right inequality. As u* — u* almost surely, for any € > 0, u* will belong to a ball
centered around u* of radius ¢ in finite time with probability one. Then, trivially, it will
belong to a subspace if all points in this ball belong to it, which corresponds to the right
inequality

Sm(a*) < max {Sy(prox,,.(u): u € B(u*,e)}. (1.34)

Let us turn now to the proof of the left inequality. Consider the sets to which x*
belongs i.e. M* ={M,; € M :z* € M;}; as M is a family of subspaces, there exists a
ball of radius & > 0 around x* such that no point z in it belong to more subspaces than
r*ie. x ¢ M\ M*. As zF — z* almost surely, it will reach this ball in finite time with
probability one and thus belong to fewer subspaces than z*. O]

Two examples

Let us present a couple of important examples of the regularizers that enforce sparsity of
the final solution ([ 1, | I, | ]). The most common types of sparsity
are (block) coordinate one, when there are only a few non-zero (blocks of) coordinates
and variation one when there are few continuous blocks of coordinates such that the
coordinates inside of each are the same.

HFor two vectors a,b € {0,1}™, we use the following notation and terminology: (1) if ap;) < by for all
i =1,..,m, we say that b is greater than a, noted a < b; and (2) we define the union c =aUb as ¢ = 1
if ap =1 or by; = 1 and 0 elsewhere.
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Example 1.18 (¢, regularizer). It is known that if r is {15 regularizer induced by
non-overlapping partition B reads

r(z) =Y la”. (1.35)

BeB

where P is the restriction of x to the entries indexed by block B, it enforces block sparsity
i.e. it derives all the coefficients in one block to zero together (reqularizer £y is a particular
case of {19 so it leads to coordinate sparsity).

In this case the support of the optimal point x* will be small, where

supp(z) 2 {ie[1,n]|zy #0}. (1.36)

Let us specify a family M for the case of {15 reqularizer (or even ones that enforce (block)
coordinate sparsity.)

Let us define collection M = {M;}1<i<a as the set of all subspaces M; with fized
support i.e. supp(x) = supp(y) for all z,y € M;. In case of this collection, identification
result (1.33) can be reformulated as

supp(z*) C supp(z*) C max {supp(prox.,.(u)): u € B(u*,e)} . (1.37)
Proof. To prove this it is enough to show that

Sm(r) < Sm(y) <= supp(x) C supp(y). (1.38)

It follows from the definition that if M; C M; then (Sp(2))p < (Sm(z)) for any .
Using this fact let us prove this remark.

(=) Let Sp(x) < Sam(y) then for all i = 1,...,d it is true that (Sy(2))p < (Sam(w))p-
Choosing j such that supp(M;) = supp(y) we have (Sy((x))};; = 0 that means supp(z) C
supp(y)-

(<) (Sm(y))m = 0 if supp(y) € supp(M;). In this case, supp(z) C supp(y) C
supp(M;) that implies (Sa(x))p = 0 = (Sam(y))jg- On the other hand, if (Sy(y))p =1
then (Sa(x))p < (Sam(y))p that finishes the proof of (1.38). O

The identification result in case of regularizer r that enforce (block) coordinate sparsity
case can be clearly seen in the example of proximal gradient descent for ¢; regularized
problems.

In Figure 1-7 we can see how support changes during proximal gradient descent for
LASSO problem

1
min §HAx — b||3 + M\i]|z]x
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Figure 1-7. ¢; identification
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for random generated matrix A € R99*1%0 and vector b € R'® and hyperparameter \;
chosen to reach 8% of density (amount of non-zero coordinates) of the final solution.
Starting from 500" iteration, the support of iterates begins to change and becomes stable
after 4000. Moreover, some of the coordinates from the optimal support disappeared after
2000 iterations and re-appears only after the optimal support identification.

Another important example of sparsity inducing regularizer is 1-d TV regularizer.

Example 1.19 (TV regularizer). It is known that if v is 1-d TV regularizer

n—1
r() =Y |y — x|
i=1

it enforces variation sparsity.
In this case the amount of jumps (blocks) in optimal solution x* will be small, where

jumps(z)

2 {i€2,n]|zy # zi-y}-

(1.39)

(1.40)
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Let us define collection M = { M, }1<i<a as the set of all subspaces M; with the fized
block structure i.e. jumps(z) = jumps(y) for all x,y € M;. In case of this collection,
identification result (1.33) can be reformulated as

jumps(z*) C jumps(z¥) C max {jumps(prox..(u)): u € B(u*,¢e)} . (1.41)
To prove this it 1s enough to show that
Sm(z) < Smly) <= jumps(z) C jumps(y), (1.42)
which proves exactly the same way as (1.38).

The Theorem 1.17 explains that iterates of any converging proximal algorithm will
eventually be sandwiched between two extremes families of subspaces controlled by the
pair (z*,u*).

Under some qualifying constraints, the structure of the iterate Sy (2*) will coincide
precisely with the one of the solution Sp(z*); as a consequence the left and right terms in
(1.33) are the same, and the identification result from the Theorem 1.17 could be specified
as follows.

Corollary 1.20 (Exact identification). Consider the solution x* of Problem (1.23) verifies
the qualification constraint

Swi(a*) = max {Su(prox., (u)): u € Ba* —7Vf(x*).c)} Q)

for any € > 0 small enough. Then, under the same assumptions as in Theorem 1.17 the
sequence (x%) identifies an optimal subspace with probability one, after some finite time

Sm(*) = Sp(a").

In general, this corresponds to the relative interior assumption of | ]; see the
extensive discussion of | .

Proof of Corollary 1.20. Let u* = x* — 4V f(2*) and observe from the optimality con-
ditions of (1.23) that * = prox,,(u*). We apply Theorem 1.17 and the qualification
condition (QC) ensures that the left and right-hand sides in (1.33) coincide: we get Spq(z¥)
will exactly reach Sp((x*) in finite time. O

Remark 1.21 (Qualification constraint). The qualifying constraint (QC) may seem hard
to verify at first glance but for most structure-enhancing reqularizers, it simplifies greatly
and reduces to usual nondegeneracy assumptions. Broadly speaking, this condition simply
means that the point u* = x* — vV f(x*) is not borderline to be put to an identified value
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by the proximity operator of the regularizer prox.,. For example, when r(x) = ||z,
the qualifying constraint (QC) simply rewrites x7 = 0 < Vi f(a*) €] — A, M[; for r s
the TV-regularization (1.39), the qualifying constraint means that there is no point u (in
any ball) around x* — 'V f(x*) such that prox..(u) has a jump that x* does not have.

Let us present an example of exact identification result for ¢; regularized composite
optimization problem (1.23).

Example 1.22 (Exact identification for ¢; regularizer). Let us consider that composite
optimization problem
min () + Al

where f is L-smooth and convex is non-degenerate, that is
—V f(x*) €ri Or(z"). (ND)

Then for k > K big enough the iterates (%) of Algorithm /J identifies the optimal support
with probability one
supp(z*) = supp(z”).

Proof. First, let us rewrite the non-degeneracy condition for /; norm in closed form
|V f(@*)| <A forall j € supp(a*). (1.43)
Denoting by u**t = zF — 4V f(2*), from the convergence of * to z* we have that u*

converges to u* = z* — vV f(z*).
Now, let us prove the qualification constraint

supp(z*) = max {supp(prox. 5, (u)): u € B(z* =~V f(z*),€)} .

Using the non-degeneracy of the problem we have that for any coordinate ¢ such that
a:f;} = 0 we have

[uig| = |25y = V)| = [V ] =6 <
Selecting € = min;¢gupp(z+) (YA — €;)/2 for any u € B(z* — 'V f(2*), €) we have
}u[i]} < |:13[z] YV f(x [l]‘ +e <X foralli¢ supp(z”)
that implies

max {supp(prox. |, (u)): u € B(z* — 7V f(z*),€)} C supp(a*).
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Combining it with z* = prox. ., (z* =7V f(2*)) we get the statement of the corollary. [J

1.4.2 Identification of DAve-PG

No identification results have been yet reported in the literature for the asynchronous
algorithms. However, the delay-tolerant analysis of DAve-PG | ] allows verifying
the active-set identification property for the algorithm.

Corollary 1.23 (Identification of DAve-PG). Let the functions (f;) be u-strongly con-
vex (u > 0) and L-smooth. Let r be convex lsc. Using v € (0, ﬁ], iterates (z*) of
DAve-PG after finite amount of epochs identifies some subspaces with probability one.

Proof of 1.23. Let us denote by u* = z*. To use Theorem 1.17 we should find u* and
prove that u* converges almost surely to u*. First, let us notice that the local iterates (z;)
do not converge to a minimizer of the individual functions (f;) since the algorithm aims
at minimizing the global loss but rather to local shifts of the solution z* of (P) (unique
from the strong convexity assumption):

xf =x* —yV fi(2¥) for worker 1.

_ M . . . ..
From those, one can define u* = 2* = > ", a,;x}. First-order optimality conditions

0e Z a;V fi(x*) + Or(z™)

imply that

M M

5= Z ar; =x" — vz a;Vfi(z*) € x* + ~Or(z¥)

i=1 i=1
which directly leads to prox., (z*) = 2* (see Chap. 16 of | |). Now, using the definition
of ¥ we have

M M
|17 =213 = 1 Y ailaf —ai)ll3 < Y aullaf — 73 < miax o — 73
i=1 i=1

Now we could control the term ||z% — z7]|2 as follows

k—dk
7

* —Dk —Dk * *
— @il = 2" = AV AP — 2" + V[

2vulL
< (1- 20 ) 1kt - o
w+ L

|l = 2513 = [l
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where in the last inequality we use Lemma 1.5. Finally, using the result of Theorem 1.14
we have the convergence of z* to z*. O]
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Introduction
In this chapter, we consider composite optimization problems of the form

min f(x) + r(z), (2.1)
zeR?
where f is convex and differentiable, and r is convex and nonsmooth (see Section 1.1.4).

As we already mentioned in Section 1.4, proximal methods can identify the structure
of the final solution.

We propose randomized proximal algorithms leveraging on structure identification:
our idea is to sample the variable space according to the structure of r (see Examples
1.18, 1.19). To do so, we first introduce a randomized descent algorithm going beyond sep-
arable nonsmoothness and associated coordinate descent methods: we consider “subspace
descent” extending “coordinate descent” to generic subspaces. Then, we use a standard
identification property of proximal methods to adapt our sampling of the subspaces with
the identified structure. This results in a structure-adapted randomized method with
automatic dimension reduction, which performs better in terms of dimensions explored
compared to standard proximal methods and the non-adaptive version.

Though our main concern is the handling of non-separable nonsmooth functions r,
we mention that our identification-based adaptive approach is different from existing
adaptation strategies restricted to the particular case of coordinate descent methods.
Indeed, adapting coordinate selection probabilities is an important topic for coordinate
descent methods as both theoretical and practical rates heavily depend on them (see
e.g | , ). Though the optimal theoretical probabilities, named importance
sampling, often depend on unknown quantities, these fized probabilities can sometimes be
computed and used in practice, see | , ]. The use of adaptive probabilities is more
limited; some heuristics without convergence guarantees can be found in | , ],
and greedy coordinates selection are usually expensive to compute | , ,

|. Bridging the gap between greedy and fixed importance sampling, | ]
proposes primal-dual coordinate descent with adaptive coordinate sampling based on dual
residue. More precisely, if the selection of the coordinate happens more often if the dual
coordinate is suboptimal. Another way to adapt was proposed in | , , ]
where probabilities in the coordinate descent methods based on the coordinate-wise
Lipschitz constants and current values of the gradient.

The methods proposed in the present chapter, even when specialized in the coordinate
descent case, are the first theoretical supported ones where the iterate structure enforced
by a non-smooth reqularizer is used to adapt the selection probabilities. This idea was
initially proposed for ¢; regularized problems in | ]; however, there was no theoretical
guarantees for such probability selection.
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Outline. In Section 2.1, we introduce the formalism for subspace descent methods. First,
we formalize how to sample subspaces and introduce a first random subspace proximal
gradient algorithm. Then, we show its convergence and derive its linear rate in the strongly
convex case. Along the way, we make connections and comparisons with the literature
on coordinate descent and sketching methods, notably in the special cases of ¢; and
total variation regularization. In Section 2.2, we present our identification-based adaptive
algorithm. We begin by showing the convergence of an adaptive generalization of our
former algorithm; next, we show that this algorithm enjoys some identification property
and give practical methods to adapt the sampling, based on generated iterates, leading to
refined rates. Finally, in Section 2.3, we report numerical experiments on popular learning
problems to illustrate the merits and reach of the proposed methods.
This chapter corresponds to | ].

2.1 Randomized subspace descent

The premise of randomized subspace descent consists in repeating two steps: i) randomly
selecting some subspace; and ii) updating the iterate over the chosen subspace. Such
algorithms thus extend usual coordinate descent (see Section 1.1.4) to general sampling
strategies, which requires algorithmic changes and an associated mathematical analysis.
This section presents a subspace descent algorithm along these lines for solving (2.1). In
Section 2.1.1, we introduce our subspace selection procedure. We build on it to introduce,
in Section 2.1.2, our first subspace descent algorithm, the convergence of which is analyzed
in Section 2.1.3. Finally, we put this algorithm into perspective in Section 2.1.4 by
connecting and comparing it to related work.

2.1.1 Subspace selection

We begin by introducing the mathematical objects leading to the subspace selection used
in our randomized subspace descent algorithms. Though, in practice, most algorithms
rely on projection matrices, our presentation highlights intrinsic subspaces associated to
these matrices; this opens the way to a finer analysis, especially in Section 2.2.1 when
working with adaptive subspaces.

We consider a family C = {C;}; of (linear) subspaces of R™. Intuitively, this set
represents the directions that will be favored by the random descent; in order to reach a
global optimum, we naturally assume that the sum' of the subspaces in a family matches
the whole space.

n the definition and the following, we use the natural set addition (sometimes called the Minkowski
sum): for any two sets C,D C R™, the set C + D is defined as {x +y: z € C,y € D} C R™.
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Definition 2.1 (Covering family of subspaces). Let C = {C;}; be a family of subspaces of
R"™. We say that C is covering if it spans the whole space, i.e. if ), C; = R".

Example 2.2. The family of the aves C; = {x € R" :xp;;) =0 Vj #i} fori=1,...,nis
a canonical covering family for R™.

From a covering family C, we call selection the random subspace obtained by randomly
choosing some subspaces in C and summing them. We call admissible the selections that
include all directions with some positive probability; or, equivalently, the selections to
which no non-zero element of R” is orthogonal with probability one.In contrast with
the definition of “proper sampling” [ | we allow some probabilities to be equal to
0. In general, any proper sampling from covering family is an admissible selection (see
Remark 2.5).

Definition 2.3 (Admissible selection). Let C be a covering family of subspaces of R™. A
selection & s defined from the set of all subsets of C to the set of the subspaces of R™ as

6(@0):2&]. forw={C,,,...,Ci.}.
j=1

The selection & is admissible if Plx € &*] < 1 for all z € R™\ {0}.

Admissibility of selections appears on spectral properties of the average projection
matrix onto the selected subspaces. For a subspace F' C R", we denote by Pr € R™*"
the orthogonal projection matrix onto F'. The following lemma shows that the average
projection associated with an admissible selection is positive definite; this matrix and its
extreme eigenvalues will play a major role in our developments.

Lemma 2.4 (Average projection). If a selection & is admissible then
P:=E[Ps] is a positive definite matriz. (2.2)
In this case, we denote by Amin(P) > 0 and A\pax(P) < 1 its minimal and mazimal

eigenvalues.

Proof. Note first that for almost all w, the orthogonal projection Pg(y,) is positive semi-
definite, and therefore so is P. Now, let us prove that if P is not positive definite, then &
is not admissible. Take a nonzero x in the kernel of P, then

2'Pr=0 < 2'E[Pslr =0 <= E[z' Psx] = 0.

Since x" P s(w)® = 0 for almost all w, the above property is further equivalent for almost
all w to
2 Poyz =0 <= Pez =0 < z € S(w).
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Since x # 0, this yields that 2 € &(w)* for almost all w which is in contradiction with &
being admissible. Thus, if a selection & is admissible, P := E[Ps] is positive definite (so

/\min(P) > 0)
Finally, using Jensen’s inequality and the fact that Pg is a projection, we get ||Pz| =
|E[Ps]z|| < E|Psz|| < ||lx|, which implies that Apax(P) < 1. O

This result holds in the more general context and it is proven in | ].

Although the framework, methods, and results presented in this paper allow for infinite
subspace families (as in sketching algorithms); the most direct applications of our results
only call for finite families for which the notion of admissibility can be made simpler.

Remark 2.5 (Finite Subspace Families). For a covering family of subspaces C with a
finite number of elements, the admissibility condition can be simplified to P[C; C &] > 0
for all i.

Indeed, take x € R™\ {0}; then, since C is covering and x # 0, there is a subspace
C; such that Pe,x # 0. Observe now that C; C & yields Psx # 0 (since &+ C Ci, the
property Psxz = 0 would give Pe,x = 0 which is a contradiction with Pe,x # 0). Thus, we
can write

Plrx € 6 =P[Psz =0]=1—-P[Psx #0] <1 -P[C; C &] < 1.

Building on this property, two natural ways to generate admissible selections from a
finite covering family C = {C;}i=1

.....

e Fixed probabilities: Selecting each subspace C; according to the outcome of a Bernoulli
variable of parameter p; > 0. This gives admissible selections as P[C; C &] =p; >0
for all 1,

e Fixed sample size: Drawing s subspaces in C uniformly at random without replace-
ment. This gives admissible selections since P|C; C & = s/c for all i.

Example 2.6 (Coordinate-wise projections). Consider the family of the axes from Exam-
ple 2.2 and the selection generated with fixed probabilities as described in Remark 2.5. The
associated projections amount to zeroing entries at random and the average projection P is
the diagonal matriz with entries (p;); trivially Apin(P) = min; p; and < Apax(P) = max; p;.

2.1.2 Random subspace proximal gradient algorithm

An iteration of the proximal gradient algorithm ISTA (Algorithm 4) decomposes in gradient
and proximal steps. In order to construct a “subspace” version of the proximal gradient,
one has to determine which variable will be updated along the randomly chosen subspace
(which we will call a projected update). In Section 1.1.4 we already presented Algorithm 6
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where a projected update of z*, i.e., projecting after the proximity operation is used. This
choice has limited interest in the general case where the proximity operator is not separable
along subspaces and thus a projected update of x* still requires the computations of the
full gradient. In the favorable case of coordinate projection and r = || - |1, it was studied in
[ | using the fact that the projection and the proximity operator commute. Another
possible choice is to project an update of V f(2*), i.e. projecting after the gradient. This
option is considered recently in | ] in the slightly different context of sketching. A
further discussion on related literature is postponed to Section 2.1.4. In this work, we will
consider projecting after the gradient step.

This choice inspired by recent works highlighting that combining iterates usually works
well in practice (see | | and references therein). However, taking gradient steps
along random subspaces introduces bias and thus such a direct extension fails in practice.
In order to retrieve convergence to the optimal solution of (2.1), we slightly modify the
proximal gradient iterations by including a correction featuring the inverse square root
of the expected projection denoted by Q = P~'/2 (note that as soon as the selection is
admissible, Q is well defined from Lemma 2.4).

Formally, our Random Proximal Subspace Descent algorithm RPSD, displayed as
Algorithm 9, replaces the gradient step in Algorithm 4 by

F=QaF —Vf(«¥)  and  2F = Pe (vF) + (I — Pst) (2571 (2.3)

That is, we propose to first perform a gradient step followed by a change of basis (by
multiplication with the positive definite matrix Q), giving variable y*; then, variable 2* is
updated only in the random subspace &*: to Psk (yk) in &%, and keeping the same value
outside. Note that y* does not actually have to be computed and only the “PgrQ-sketch”
of the gradient (i.e. PsiQV f (x"“)) is needed. Finally, the final proximal operation in
forward-backward algorithm is performed after getting back to the original space (by
multiplication with Q1):

" = prox, (Q7' (")) (2.4)

Contrary to existing coordinate descent methods, our randomized subspace proximal
gradient algorithm does not assume that the proximity operator prox., is separable with
respect to the projection subspaces. In | ] authors also propose a sketch-and-project
method that converges without any assumption on the separability of the regularizer that
is an uncommon but highly desirable feature to tackle general composite optimization
problems. The key difference between our algorithm and the one proposed in | | is
in the moment of projection; we project after the gradient step and in | | autors
propose to make a projection of the gradient.

Let us provide a first example, before moving to the analysis of the algorithm in the
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Algorithm 9 Randomized Proximal Subspace Descent - RPSD

. Input: Q = P2
+ Initialize 2°, 2 = prox_.(Q~'(2"))
:for k=1,...do
Yyt =Q (2" =V (a*))
2F = Per (y*) + (I — Per) (271)
P41 = prox,, (@1 ()
end for

g ey

next section.

Example 2.7 (Interpretation for smooth problems). In the case where g = 0, our
algorithm has two interpretations. First, using prox., = I, the iterations simplify to

SRl _ Lk — yPsiQ (Vf (Q—l (Zk))) — Lk — yPsQ2Q7! (Vf (Q_l (Zk)))/

N

VfoQ-1 (k)

As B[P Q% = I, this corresponds to a random subspace descent on fo(Q™1) with unbiased
gradients. Second, we can write it with the change of variable u* = Q~'2* as

W = — Q' Pk Q (VS (wF))

As E[Q'Psx Q] = P, this corresponds to random subspace descent on f but with biased
gradient. We note that the recent work [ | considers a similar set-up and algorithm;
however, the provided convergence result does not lead to the convergence to the optimal
solution (due to the use of the special semi-norm).

2.1.3 Analysis and convergence rate

In this section, we provide a theoretical analysis for RPSD, showing linear convergence for
strongly convex objectives.

Assumption 2.8 (On the optimization problem). The function f is L-smooth and
p-strongly convex and the function r is convex, proper, and lower-semicontinuous.

Note that this assumption implies that Problem (2.1) has a unique solution that we
denote x* in the following.

Assumption 2.9 (On the randomness of the algorithm). Given a covering family C = {C;}
of subspaces, we consider a sequence &, &2, ... &* of admissible selections, which is i.i.d.
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In the following theorem, we show that the proposed algorithm converges linearly at a
rate that only depends on the function properties and on the smallest eigenvalue of P. We
also emphasize that the step size v can be taken in the usual range for proximal gradient
descent.

Theorem 2.10 (RPSD convergence rate). Let Assumptions 2.8 and 2.9 hold. Then, for
any v € (0,2/(u + L)], the sequence (x%) of the iterates of RPSD converges almost surely
to the minimizer x* of (2.1) with rate

k
E [Jle+! — 2*|2] < (1 —)\min(P)M> c
o p+ L

where C' = )\max(P)HZO - Q(LU* - ’YVf(l’*))”g

To prove this result, we first demonstrate two intermediate lemmas respectively
expressing the distance of 2* towards its fixed points (conditionally to the filtration of the
past random subspaces F* = o({&,},<1)), and bounding the increment (with respect to
|z||2 = (z,Pz) the norm associated to P).

Lemma 2.11 (Expression of the decrease as a martingale). From the minimizer x* of
(2.1), define the fized points z* = y* = Q (z* — YV f (z*)) of the sequences (y*) and (2*).
If Assumption 2.9 holds, then

E [l = 23 [ 7] = 127 = 2"l + lly" =y llp — 1127 = 2" [lp

Proof of Lemma 2.11. By taking the expectation on &% (conditionally to the past), we
get

E [l — 23 F*7) = E[l"" — 2+ Pek(yk - Zk_1)||2| F
— |25 = 2|2 4 2B [(F — ¥, Per(yF — 2F)| P 4 E [Hng ] i Faa
=[l" = 2+ 20" = 2 P - ) + B [(ng(y =270, Pear(yf — 27 P
= |27 = 2l + 20257 = 2 Py = AT + B [y — 2 Per(yt — ) FH]
= 257 = 25+ (T gt 227 PRt - 2MT),

where we used the fact that 2*~1 and y* are F*~!-measurable and that Ps: is a projection
matrix so Pgr = P, = PZ,.
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Then, using the fact y* = z*, the scalar product above can be simplified as follows
<Zk71 + yk o 22*, P(yk o Zkfl» —_ <Zk71 + yk o y*7 P(yk o k 1 Z*)>
= _<Zk_1 - Z*a P(’Zk_l - Z*)> + < A Z*u P<yk -y )>
+ =y PO —y) — (0 -y PG - 2)
= =y PO —y) — (M =2 PR =)
where we used in the last equality that P is symmetric. O

Lemma 2.12 (Contraction property in P-weighted norm). From the minimizer x* of
(2.1), define the fized points z* = y* = Q (z* — YV f (z*)) of the sequences (y*) and (2*).
If Assumptions 2.8 and 2.9 hold, then

_ Q’YML _
k * |2 k—1 * |2 k—1 * |2
||y Yy ||P || ||P > m ( ) [H ||2

Proof of Lemma 2.12. First, using the definition of 3* and y*,
ly" =y llp = (Q(a" =V f(2") — " + 7V f(27)),PQz" =1V f(a") — 2" + 7V f(a")))
= (2" =V [f(z") = 2" +Vf(z ) Q'PQ(a" — 4V f(a*) — a* + 1V f(2")))
= ||a* = V() — (@t = V)]

Using the standard stepsize range v € (0,2/(p + L)], one has (see Lemma 1.5)

2ypL "
—) ot — |12

=y 12 = |Ja* = 7V f(@*) — (" =V [ ()]s < (1 s

Using the non-expansivity of the proximity operator of convex l.s.c. function r (see
Lemma 1.11) along with the fact that as z* is a minimizer of (2.1), 2* = prox., (z* —

YV f(2*)) = prox.,.(Q7'2*) | , Th. 26.2], we get
2% — 2*[3 = [prox,,(Q~ (")) — prox,, (Q7'(z")Il; < Q="' = )13
QN ), QR = ) = (R — 2 P ) = [ — R

where we used that Q" 'Q™' = Q=2 = P. Combining the previous equations, we get

_ 2yul |
k * |12 k—1 * ]2 k—1 * |12
ly yllp — |l Ip < [H I

Finally, the fact that ||z||2 > Auin(P)||z||3 for positive definite matrix P enables to get the
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claimed result. O

Relying on these two lemmas, we are now able to prove Theorem 2.10 by showing that
the distance of ¥ towards the minimizer is a contracting super-martingale.

Proof of Theorem 2.10. Combining Lemmas 2.11 and 2.12, we get

x - 2ypL s
B (1 - 8177 < (1 dun(PIZT ) 47 -

and thus by taking the full expectation and using nested filtrations (F*), we obtain

2vuL \* 2vuL \*
E[)* - 22 < (1 - mmﬂ) 10— |12 = (1 - Amm<P>ﬂ) |9 Q( 1V f(a*)]

w+ L w+L

Using the same arguments as in the proof of Lemma 2.12, one has
2™ = 215 < 128 = 2*[F < Amax(P)II2* = 2”13

which enables to conclude

vl \ "
E [ — 2*[2] < <1 _ Amin(P)%) A (P)[|2° = Q(z* — AV £()]2.

Finally, this linear convergences implies the almost sure convergence of (z*) to z* as

+oo
Z ||Ik+1 _ x*HQ
k=1

implies that S5 [|[#¥*1 — 2*|? is finite with probability one. Thus we get

E

+o0 9 I k
<Cy (1 - Amm(P)%) < 400
k=1 K

+oo
1=P [Z |z — 2*|]” < 400 | < P[|jz* — 2*||* = 0]
k=1

which in turn implies that (z*) converges almost surely to z*. O

2.1.4 Examples and connections with existing work

In this section, we derive specific cases and discuss the relation between our algorithm
and related literature.

2
2-
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Projections onto coordinates

A simple instantiation of our setting can be obtained by considering projections onto
uniformly chosen coordinates (Example 2.6); with the family

and the selection & consisting of taking C; according to the output of a Bernoulli experiment
of parameter p;. Then, the matrices P = diag([p1,...,pn]), Psr and Q commute, and, by
a change of variables 7¥ = Q7'2* and §* = Q'y*, Algorithm 9 boils down to

g =ab — 4V f (:ck) % = Pai (g’“) + (I — Pgr) (2’“’1) , gt = prox., (2’“) ,

i.e., no change of basis is needed anymore, even if r is non-separable. Furthermore,
the convergence rate simplifies to (1 — 2min; p;yul/(p + L)), which translates to (1 —
4min; p;uL/(p + L)?) for the optimal choice of stepsize v = 2/(u + L).

In the special case where r is separable (i.e. r(xz) = > 7(z};)), we can further
simplify the iteration. In this case, projection and proximal steps commute, so that the
iteration can be written

a**! = Pgiprox,, (¢F — 4V f(a")) + (I — Per)a"
kil { prox.,. (:L’ﬁ] - ny[i]f(:ck)> if i € G

1.e. Ty = .
T elsewhere

which boils down to the usual (proximal) coordinate descent algorithm (see Algorithm 6),
that recently experienced a rebirth in the context of huge-scale optimization, see | ],
[ 1, [ | or | |. In this special case, the theoretical convergence rate of RPSD is
close to the existing rates in the literature. For clarity, we compare with the uniform
randomized coordinate descent of [ | (more precisely Th. 6 with L, = L, B; = 1,
L < 2) which can be written as (1 — puL/4n) in fo-norm. The rate of RPSD in the same

uniform setting (Example 2.6 with p; = p = 1/n) is (1 — %) with the optimal

step-size.

Projections onto vectors of fixed variations

The vast majority of randomized subspace methods consider the coordinate-wise projec-
tions treated in 2.1.4. This success is notably due to the fact that most problems onto
which they are applied have naturally a coordinate-wise structure; for instance, due to the
structure of r (¢1-norm, group lasso, etc). However, many problems in signal processing
and machine learning feature a very different structure. A typical example is when r is
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the 1D-Total Variation

r(@) =Yl =z, (2.5)
1=2

featured for instance in the fused lasso problem | ] (see Example 1.19). In order to
project onto subspaces of vectors of fixed variation (i.e., vectors for which zj;; = 2[4
except for a prescribed set of indices), one can define the covering family

C={C,....Comn} withC={zeR":a =a4q forall j€{l,....,n—1}\ {i}}

and an admissible selection & consisting in selecting uniformly s elements in C. Then, if

G selects Cy,, - . ., Cp,, the update will live in the sum of these subspaces, i.e. the subspace
of the vectors having jumps at coordinates ny,no,...,ns. Thus, the associated projection
in the algorithm writes
ni n—"ng
—_—~
L .. L 0 0
ny ny
} -
L. L 0
ni ni
Ps = (2.6)
0 0
0 n—lns n—ln
. .. .. .. . . .. . n—"mng
N L =

Note also that Psz has the same value for coordinates [n;, n;1), equal to the average of
these values.

As mentioned above, the similarity between the structure of the optimization problem
and the one of the subspace descent is fundamental for performance in practice. In
Section 2.2.3, we exploit the identification properties of the proximity operator in order
to automatically adapt the subspace selection, which leads to a tremendous gain in
performance.

Comparison with sketching

In sharp contrast with the existing literature, our subspace descent algorithm handles
non-separable regularizers r. A notable exception is the algorithm called SEGA | ],
a random sketch-and-project proximal algorithm, that can also deal with non-separable
regularizers. While the algorithm shares similar components with ours, the main differences
between the two algorithms are
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e biasedness of the gradient: SEGA deals with unbiased gradients while they are biased
for RPSD;

e projection type: SEGA projects the gradient while we project after a gradient step
(option (b) vs.option (c¢) in the discussion starting Section 3.1.1).

These differences are fundamental and create a large gap in terms of target, analysis
and performance between the two algorithms. The practical comparison is illustrated in
Section 2.3.2.

2.2 Adaptive subspace descent

This section presents an extension of our randomized subspace descent algorithm to the
setting in which the projections are iterate-dependent. Our aim is to automatically adapt
to the structure identified by the iterates along the run of the algorithm.

The methods proposed here are, up to our knowledge, the first theoretically supported
ones where the iterate structure enforced by a non-smooth regularizer is used to adapt
the selection probabilities in a randomized first-order method. As discussed in the
introduction, even for the special case of coordinate descent, our approach is different from
existing techniques that use fixed arbitrary probabilities | , |, greedy selection
[ 7 : ], or adaptive selection based on dual residue | | or on the
coordinate-wise Lipschitz constant and coordinates | , , ].

We present our adaptive subspace descent algorithm in two steps. First, we introduce
in Section 2.2.1 a generic algorithm with varying selections and establish its convergence.
Second, in Section 2.2.2, we provide a simple general identification result. We then
combine these two results to provide an efficient adaptive method in Section 2.2.3.

2.2.1 Random Subspace Descent with time-varying selection

For any randomized algorithm, using iterate-dependent sampling would automatically
break down the usual i.i.d. assumption. In our case, adapting to the current iterate
structure means that the associated random variable depends on the past. We thus need
further analysis and notation.

In the following, we use the subscript ¢ to denote the ¢-th change in the selection. We
denote by L the set of time indices at which an adaptation is made, themselves denoted
by k¢ = min{k > ky_q : k € L}.

In practice, at each time k, there are two decisions to make (see Section 2.2.3): (i)
if an adaptation should be performed; and (ii) how to update the selection. Thus, we
replace the i.i.d. assumption of Assumption 2.9 with the following one.
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Assumption 2.13 (On the randomness of the adaptive algorithm). For all k > 0, G* is
FF-measurable and admissible. Furthermore, if k ¢ L, (&F) is independent and identically
distributed on [ke, k]. The decision to adapt or not at time k is F*-measurable, i.e. (k;),
is a sequence of Fr-stopping times.

Under this assumption, we can prove the convergence of the varying-selection random
subspace descent, Algorithm 10. A generic result is given in Theorem 2.14 and a simple
specification in the following example. The rationale of the proof is that the stability of
the algorithm is maintained when adaptation is performed sparingly.

Algorithm 10 Adaptive Randomized Proximal Subspace Descent - ARPSD
1: Initialize 2%, 2 = prox,,(Qy'(2°)), £ =0, L = {0}.
2: for k=1,... do
3 Yy =Q (.Tk -V f (ack))

4: ¢ = Pai (yk) + (I — Pgr) (zkil)

5. ghtl = prox_, (Q;l (z’“))

6: if an adaptation is decided then

7 L—LU{k+1} 0 0+1

8: Generate a new admissible selection
9: Compute Q, = P, ? and Q"

10: Rescale zF « Qng_flzk

11:  end if

12: end for

Theorem 2.14 (ARPSD convergence). Let Assumptions 2.8 and 2.13 hold. For any
v € (0,2/(+ L)], let the user choose its adaptation strategqy so that:

e the adaptation cost is upper bounded by a deterministic sequence: |QQ, |13 < ay;

e the inter-adaptation time is lower bounded by a deterministic sequence: ky — ky_1 >
Cy;

e the selection uniformity is lower bounded by a deterministic sequence: Apin(Pe_1) >

)\E—l;

then, from the previous instantaneous rate 1 —ay_1 := 1 —2yuLA ;1 /(4 L), the corrected
rate for cycle € writes

(1—Be) = (1= apr)a,/. (2.7)
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Then, we have for any k € [ke, kos1)

L
E [ = 2*5] < (1= a)*™™ [T (1 = Bu)*" 12" = Qo (a* =7V f (7)) |I5-

m=1

This theorem means that by balancing the magnitude of the adaptation (i.e., a,,) with
the time before adaptation (i.e., c,,) from the knowledge of the current rate (1 — a,,_1),
one can retrieve the exponential convergence with a controlled degraded rate (1 — ).
This result is quite generic, but it can be easily adapted to specific situations. For
instance, we provide a simple example with a global rate on the iterates in the forthcoming
Example 2.15.

For now, let us turn to the proof of the theorem. To ease its reading, the main
notations and measurability relations are depicted in Figure 2-1.

adaptation = new adaptation possible

) \)

ke ke + cop1 k kE+1
I -t ---- I i —
o Sk R Skl 1terations
k—1 2ty 2=t =y
- = E {kepr =k +1}
- Ek

Figure 2-1. Summary of notations about iteration, adaptation and filtration. The filtration
F*=1is the sigma-algebra generated by {&*},<;_; encompassing the knowledge of all
variables up to y* (but not z*).

Proof of Theorem 2.14. We start by noticing that, for a solution z* of (2.1), the proof of
Theorem 2.10 introduces the companion variable z* = Q (z* — 4V f (z*)) which directly
depends on Q, preventing us from a straightforward use of the results of Section 2.1.3.
However, defining z; = Qy (z* — vV f (2*)), Lemmas 2.11 and 2.12 can be directly extended
and combined to show for any k € [k, ko)

_ 27ﬂL)\m1n(P€) _
E k|2 k—1 < 1 — Zrmimd & k-1 _* 2. 2.8
28 = 2[5 | F*71] < L [E Al (2.8)

~
<l-ay

Since the distribution of the selection has not changed since ky, iterating (2.8) leads to

E [l — 212 [ F*71] < (1 —ae)* ™[l = 3. (2.9)
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We focus now on the term ||z*~! — 272 corresponding to what happens at the last adap-

tation step. From the definition of variables in the algorithm and using the deterministic
bound on [|Q,Q; ", ||, we write

E [Il% 7" = 212 |77 77) < B IQeQy (#7774 Pop—a (™ — 27 7%) = QuQiy 27 13 | FH 77

<E [[|QeQ; 2112772 + Py (g — 2Ry — 25 |12 Fre?)

(2.10)
< ag(l— ap)[[77% = 2 I3
Repeating this inequality backward to the previous adaptation step zF-1, we get
E[[l2"7" = 2[5 | Fo] < ag(l — ) 7herl2hr — 20|13
< ag(l —agg)™|[2Mt — 215, (2.11)

using the assumption of bounded inter-adaptation times. Combining this inequality and
(2.9), we obtain that for any k € [ky, kei1),

l
E[|l25 = 27 13] < (1= an) " [ am(l = am)™[|2° = 13-
m=1

Using now (2.7), we get

¢
E[lz* =213 < (1—a)** [T~ Ba)2° =53

m=1

Finally, the non-expansiveness of the prox-operator propagates this inequality to xj, since
we have

[l — 2*[|3 = [[prox,,(Q; " (=" 7)) — prox, (Q7 (7)1 < [1Q; " (=" — 212

< A (Q7 )2 [125 71 = 27115 = Amax (P21 = 27115 < (1257 = 2715,
This concludes the proof. O

Example 2.15 (Explicit convergence rate). Let us specify Theorem (2.14) with the
following simple adaptation strategy. We take a fixed upper bound on the adaptation cost
and a fized lower bound on uniformity:

IQQ B <a  Awn(Pe) > A (2.12)
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Then from the rate 1 — a =1 — 2yuLA/(pn + L), we can perform an adaptation every

c = [log(a)/log ((2 — @)/(2 — 20))] (2.13)

iterations, so that a(1 — «)® = (1 — «/2)® and k, = lc. A direct application of Theorem
(2.14) gives that, for any k,

1PN
E k+1_*2<<1_’7,u )C’
[l —agl] < (1-2E77

where C' = ||2° — Qo(z* — YV f(2*))||5. That is the same convergence mode as in the
non-adaptive case (Theorem 2.10) with a modified rate. Note the modified rate provided
here (of the form (1 — «/2) to be compared with the 1 — a of Theorem 2.10) was chosen
for clarity; any rate strictly slower than 1 — « can bring the same result by adapting c
accordingly.

Remark 2.16 (On the adaptation frequency). Theorem 2.1/ and Example 2.15 tell us
that we have to respect a prescribed number of iterations between two adaptation steps.
We emphasize here that if this inter-adaptation time is violated, the resulting algorithm
may be highly unstable. We illustrate this phenomenon on a T'V-regularized least squares
problem: we compare two versions of ARPSD with the same adaptation strateqy verifying
(2.12) but with two different adaptation frequencies

e at every iteration (i.e. taking c, =1)
e following theory (i.e. taking ¢, = ¢ as per Eq. (2.13))

On Figure 2-2, we observe that adapting every iteration leads to chaotic behavior. Second,
even though the theoretical number of iterations in an adaptation cycle is often pessimistic
(due to the rough bounding of the rate), the iterates produced with this choice quickly
become stable (i.e., identification happens, which will be shown and exploited in the next
section) and show a steady decrease in suboptimality.
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every iteration = as in theory % every iteration — as in theory %
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Figure 2-2. Comparisons between theoretical and harsh updating time for ARPSD.

A drawback of Theorem 2.14 is that the adaptation cost, inter-adaptation time, and
selection uniformity have to be bounded by deterministic sequences. This can be restrictive
if we do not have prior knowledge of the problem or if the adaptation cost varies a lot.
This drawback can be circumvented to the price of losing the rate per iteration to the
rate per adaptation, as formalized in the following result.

Theorem 2.17 (ARPSD convergence: practical version). Let Assumptions 2.8 and 2.153
hold. Take v € (0,2/(p + L)], choose A > 0, and set B = yuLA/(pn + L). Consider the
following adaptation strateqy:

1) From the observation of x¥-1, choose a new sampling with P, and Qq, such that
Amin(Pe) > A;
2) Compute ¢, so that ||QeQ, " |12(1 — ap_1)% <1 — 3 where
g1 = 29pLAwin(Pe-1)/ (1 + L);
3) Apply the new sampling after c, iterations (ky = ko—1 + c¢).
Then, we have for any k € [ky, koy1)

E [l — 23] < (1 - a)* ™™ (1= 8) 12" = Qo (a* =7V f (@) |15
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Proof of Theorem 2.17. The proof follows the same pattern as the one of Theorem 2.14.
The only difference is that the three control sequences (adaptation cost, inter-adaptation
time, and selection uniformity) are now random sequences since they depend on the iterates
of the (random) algorithm. This technical point requires special attention. In (2.10),
the adaptation introduces a cost by a factor ||Q:Q,,||3, which is not deterministically
upper-bounded anymore. However it is F*-1-measurable by construction of Q,, so we
can write

e H
=B [B[h — 28] 74 | 7]
<E[E[IQQ7 (7 + Py — 272) = Q2,13 P4 [ 7]
< B [JQuQEY 31 — ap 1 )I|42 — 2, [ Fo]
= [QUQ ! I3(1 — a1 )E [|| 272 — 2, |13 | Frer]
Using Eq. (2.8), this inequality yields
E [l — 211 7] < IQuQE B — )RR [l — 2 3| )
< (1= BE[l" 7" — I3[ F].

where we used points 2) and 3) of the strategy to bound the first terms deterministically.
Finally, we obtain

E [Il2%7" = 23] = E[E [[l" " — 2[l3 | F]]
< (1= BE [l = 213

then the rest of the proof follows directly by induction. O]

2.2.2 Identification of proximal algorithms

As we mentioned in Section 1.4 proximal algorithms could identify a near optimal subspace
before the convegence moment.

This identification can be exploited within our adaptive algorithm ARPSD for solving
Problem (2.1). Indeed, assuming that the two extreme subspaces of (1.33) coincide, the
theorem says that the structure of the iterate Sy(z*) will be the same as the one of
the solutions Sx(x*). In this case, if we choose the adaptation strategy of our adaptive
algorithm ARPSD deterministically from S (z*), then, after a finite time with probability
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one, the selection will not be adapted anymore. This allows us to recover the rate of the
non-adaptive case (Theorem 2.10), as formalized in the next theorem.

Theorem 2.18 (Improved asymptotic rate). Under the same assumptions as in Theo-
rems 2.1/ and 2.17, if the solution x* of (2.1) verifies the qualification constraint (QC)

for any € > 0 small enough, then, using an adaptation deterministically computed from
(Sm(z")), we have

E[|2* — 23] = O, ((1 - Amin(P*)M)k>

-+ L

where P* is the average projection matriz of the selection associated with Sy (x*) and O,
denotes big O in probability.

Proof of Theorem 2.18. Let u* = x*—~V f(2*) and observe from the optimality conditions
of (2.1) that 2* = prox_ (u*). We apply Theorem 1.17 and the qualification condition
(QC) yields that Sy (x*) will exactly reach Sy (z*) in finite time Tj.

Let us first clarify that the rate before the moment of time T; can be rewritten as
following

E [[l2"" = 23] < (1= B)"|2" = Qo= = 7V f (@),

where we modify the result of Theorem 2.17 using that g < «, for any ¢.

Now, let us discuss what happens after the moment of time T — 4. Since S (z*)
becomes fixed and equal to Sp((z*) the operators P, and Q, become fixed as well. It
makes the rescaling step z¥ < QgQ[_ll 2% trivial and as a result, the adaptations process

——

I
costs nothing. Thus, the rate after that moment can be written as follows

2ypL
B [l — o' If] < (1= dmn(P) 227 ) E [l - 2]

Combining these 2 results together for k > T; we have

. * k _ T
B [lo*+ - o] < (1- 222)s) (11—5) 20— Qula" ~ V£

>\min P*
_ )\( ) 3
Since T; is almost sure finite, the second term is almost sure finite as well, that concludes
the proof. O

This theorem means that if r, M, and C are chosen in agreement, the adaptive
algorithm ARPSD eventually reaches a linear rate in terms of iterations as the non-adaptive
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RPSD. In addition, the term Ay, (P*) present in the rate now depends on the final selection
and thus on the optimal structure, which is much better than the structure-agnostic
selection of RPSD in Theorem 2.10. In the next section, we develop practical rules for an
efficient interlacing of r, M, and C.

2.2.3 Identification-based subspace descent

In this section, we provide practical rules to sample efficiently subspaces according to the
structure identified by the iterates of our proximal algorithm. According to Theorem 2.18,
we need to properly choose C with respect to r and M to have a good asymptotic regime.
According to Theorem 2.17, we also need to follow specific interlacing constraints to have
good behavior along with the convergence. These two aspects are discussed in Section
2.2.3 and Section 2.2.3, respectively.

How to update the selection

We provide here general rules to sample in the family of subspaces C according to the
structure identified with the family of M. To this end, we need to consider the two families
C and M that closely related. We introduce the notion of generalized complemented
subspaces.

Definition 2.19 (Generalized complemented subspaces). Two families of subspaces
M={My,... . My} and C = {Cy,...,Cp} are said to be (generalized) complemented

subspaces if for alli =1,....m

(€M) €N, C;
Ci+ M; = R"

Example 2.20 (Complemented subspaces and sparsity vectors for axes and jumps). For
the axes subspace set (see Section 2.1.4)

C={C,...,C.} with C; = {x € R" 1 x;; =0 Vj # i}, (2.14)

a complemented identification set is
M={My,.... M.} with M; ={z € R": z; = 0}, (2.15)
as M;(Ci = {0} =,;C; and C; + M; = R". In this case, the sparsity vector Sp(x)

corresponds to the support of « (indeed (Sp(x))p = 0 iff v € M; & xp) = 0). Recall that
the support of a point x € R™ is defined as the size-n vector supp(x) such that supp(x); = 1
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if xjy # 0 and 0 otherwise. By a slight abuse of notation, we denote by [supp(x)| the size
of the support of x, i.e. its number of non-null coordinates and |null(z)| = n — |supp(z)|.
For the jumps subspace sets (see Section 2.1.])

C={C,...,Ch1} with C; = {x € R" : xp) = x(jqq) for all j # 2} (2.16)
a complemented identification set is
M = {Ml,...,./\/ln_l} with M; = {ZL‘ e R" DT :x[i—l}}7 (2.17)

as M;(C; = span({1}) = N;C; and C; + M; = R*. Here Sp(z*) corresponds to the
jumps of = (indeed (Sp(2*))y =0 iff 2 € M; & a:ﬁ.] = :B@H]). . The jumps of a point
x € R" is defined as the vector jump(x) € RO such that for all i we have: jump(z); =1
if T # xji1) and O otherwise.

In this example, we use different collections M from Examples 1.18, 1.19. More
precisely, the collections M’ from Section 1.4 could be interpreted as {M s = Ujeg M } ses?
where S is a power set of {1,...,n} for the axes subspace set and a power set of
{1,...,n — 1} for jumps subspace set. Moreover, the big variety of admissible selections
makes these two “different” subspace families indistinguishable.

The practical reasoning with using complemented families is the following. If the
subspace M; is identified at time K (i.e. (Sp(2*))y =0 < 2* € M; for all k > K), then
it is no use to update the iterates in C; in preference, and the next selection &, should
not include C; anymore. Unfortunately, the moment after which a subspace is definitively
identified is unknown in general; however, subspaces M, usually show specific stability,
and thus C; may be “less included” in the selection. This is the intuition behind our
adaptive subspace descent algorithm: when the selection &* is adapted to the subspaces
in M to which 2* belongs, this gives birth to an automatically adaptive subspace descent
algorithm, from the generic ARPSD.

Table 2.1 summarizes the common points and differences between the adaptive and non-
adaptive subspace descent methods. Note that the two options introduced in this table are
examples of how to generate reasonably performing admissible selections. Their difference
lies in the fact that for Option 1, the probability of sampling a subspace outside the support
is controled, while for Option 2, the number of subspaces is controlled (this makes every
iteration computationally similar which can be interesting in practice). Option 2 will be
discussed in Section 2.2.3 and illustrated numerically in Section 2.3.

Notice that, contrary to the importance-like adaptive algorithms of | |, for
instance, the purpose of these methods is not to adapt each subspace probability to local
steepmess but rather to adapt them to the current structure. This is notably due to the
fact that local steepness-adapted probabilities can be difficult to evaluate numerically
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(non-adaptive) subspace adaptive subspace descent
descent RPSD ARPSD
Subspace family C={C,...,C}
y'= Q" =V (a%))
Algorithm 2" = Per (y*) + (I — Psr) (257)
gt = prox,, (Q_l (Zk))
] k. . 1.
e,
C; € &% with probability p ! M !
) 1 elsewhere
Selection : :
Sample s elements uniformly in
: Sample s elements {C; : 2F € My ie. [Sp(xF)]; =0}
Option 2 and add all elements in
uniformly in C {C; : 2% ¢ M, ie. [Su(a®)]; =1}

Table 2.1. Strategies for non-adaptive vs. adaptive algorithms

and that in heavily structured problems, adapting to an ultimately very sparse structure
already reduces the number of explored dimensions drastically, as suggested in | ]
for the case of coordinate-wise projections.

Practical examples and discussion

We discuss further the families of subspaces of Example 2.20 when selected with Option 2
of Table 2.1.

Coordinate-wise projections Using the subspaces (2.14) and (2.15), a practical adap-
tative coordinate descent can be obtained from the following reasoning at each adaptation
time k = k,_q:

e Observe Sp(z¥) i.e. the support of z*.

e Take all coordinates in the support and randomly select s coordinates outside the
support. Compute’ associated Py, Q;, and Q;'. Notice that Ay (P¢) = pr =
s/ null(z*)].

2Let us give a simple example in R*:

1.23 1
| —06 w1 [C, C &F] =P[C, C &F] =
for & = 0 > Smlt) = 0|’ then P[C3 C &%) = P[Cy C &F] = py := s/|null(2")] = s/2
0 0
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e Following the rules of Theorem 2.17, compute

o (108 (1QQ:"413) +log(1/(1 = 8))
f log(1/(1 = ar_1))

with ay_1 = 2py1yuL/(n+ L)

for some small fixed 0 < 8 < 2yuL/(n(p+ L)) < infy ay.
Apply the new sampling after c, iterations (i.e. ky = ko—1 + ¢).

Finally, we notice that the above strategy with Option 2 of Table 2.1 produces moderate
adaptations as long as the iterates are rather dense. To see this, observe first that Qng__ll
is a diagonal matrix, the entries of which depend on the support of the corresponding
coordinates at times k,_; and k;,_5. More precisely, the diagonal entries are described in
the following table:

7 is in the support at

—1
ko1 Koo [QQ. 1],
yes yes 1
(zFe—1
no yes 1 i@t
P E
S
n = ——
yes 0 Pe—1 = k2]
poe_1 _ |null(zFe-1)]
no no pe |null(z®e-2)|

Thus, as long as the iterates are not sparse (i.e. in the first iterations, when |null(z¥)| ~ s
is small), the adaptation cost is moderate so the first adaptations can be done rather
frequently. Also, in the frequently-observed case when the support only decreases
(Sm(xke=2) < Spq(ake-1)), the second line of the table is not active and thus [|Q,Q, || = 1,
so the adaptation can be done without waiting.

Vectors of fixed variations The same reasoning as above can be done for vectors of
fixed variation by using the families (2.16) and (2.17). At each adaptation time k = ky_;:

e Observe Sy (z¥) i.e. the jumps of x;
e The adapted selection consists in selecting all jumps present in 2* and randomly

selecting s jumps that are not in z*. Compute Py, Q;, and Q[l (to the difference of
coordinate sparsity they have to be computed numerically).

1 1 1

_ _ -1 _
Pé— pe QZ— 1/\/]74 Qg - \/ITZ

pe 1/y/pe Ve
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e For a fixed # > 0, compute

o _ 108 (1Q:Q;"413) +log(1/(1 = 8))
@ log(1/(1 = ar-1))

Apply the new sampling after ¢, iterations (i.e. ky = k;_1 + ¢;).

Practical consideration for TV

Before going to the numerical section, let us discuss the problem of computation of Q, for
1-d Total Variation.

First, to compute P, for arbitrary admissible selection &, we need to calculate the
sum of 2¢ — 1 matrices n x n where d is the size of the subspace family C. Second, the
computation of the inverse matrix Q, is also expensive. To figure out both of these
problems, let us propose the following adaptive selection based on Option 2 Table 2.1.

Consider the set of artificial jumps S = {ny,ng,...,n;—1} and denote by R = {i ¢ S :
[Sa(xF)]; = 0} the set of possible random entries. Fix the amount of sampled elements
s and sample “first” element Ry uniformly in R = {R;}1<i<,. Select “first s” elements
starting from R, considering the cyclic structure of the list of elements (R,11 = Ry).

This selection allows us to solve both issues stated above if set S is chosen as described
in this paragraph. If [ is small enough, it will not change the sparsity property of the
random projection Pgr; however, this modification will force all the projections to be
block-diagonal with blocks’ ends on positions 7, ...7;_;. In contrast with jumps(z*) that
we could not control, by adding [ artificial jumps, we could guarantee that each block of
the Pgr has at most [n/l] rows. Since every random projection has end of the block on
positions {n;},.,<,_,° P also has such block structure and we could split the computation
of Q[l and Q, into [ independent parts and could be done in parallel.

Second, the total amount of possible projections is equal to the r that decrease the
amount of terms in the sum; however, if [ is small and the final solution is sparse r = O(n)
and the computational cost of P, is O(n?). Due to our specific selection of S we could
make this computation in parallel block by block, and moreover, the amount of projections
to be considered for every block is at most the size of the block. All in all, it leads to
the same complexity as the inversion procedure and selecting S such that n; = [%1, the
computational cost of update of P, and Q, is O(n?l~2).

30f course, any projection also has the ends of the blocks on positions {i : [Sp(z¥)]; = 1} but we will
skip them for simplicity.
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2.3 Numerical illustrations

We report preliminary numerical experiments illustrating the behavior of our randomized
proximal algorithms on standard problems involving ¢; /TV regularizations. We provide an
empirical comparison of our algorithms with the standard proximal (full and coordinate)
gradient algorithms and a recent proximal sketching algorithm.

2.3.1 Experimental setup

We consider the standard regularized logistic regression with three different regularization

terms, which can be written for given (a;,b;) € R*™ (i = 1,...,m) and parameters
Al, )\2 >0
+ Mz, (2.18a)
) 1 & A2
min - — ;log (1+exp (<bia; 7)) + 25+ Ml (2.18b)
+ MTV(2) (2.18¢)

We use two standard data-sets from the LibSVM repository: the ala data-set (m = 1,605
n = 123) for the TV regularizer the rcvi_train data-set (m = 20,242 n = 47,236) for the
¢; and /0y 5 regularizers. We fix the parameters Ay = 1/m and A; to reach a final sparsity
of roughly 90%.

The subspace collections are taken naturally adapted to the regularizers: by coordinate
for (2.18a) and (2.18b), and by variation for (2.18c). The adaptation strategies are the
ones described in Section 2.2.3.

We consider five algorithms:

Name Reference Description Randomness
PGD vanilla proximal gradient descent None
x! RPCD [ ] standard proximal coordinate descent | x coordinates selected for each update
x SEGA [ ] Algorithm SEGA with coordinate sketches rank(S*) = x
x RPSD | Algorithm 9 | (non-adaptive) random subspace descent Option 2 of Table 2.1 with s =x
x ARPSD | Algorithm 10 adaptive random subspace descent Option 2 of Table 2.1 with s =x

For the produced iterates, we measure the sparsity of a point x by ||Sa(xk)||1, which
correspond to the size of the supports for the ¢, case and the number of jumps for the TV

4In the following, x is often given in percentage of the possible subspaces, i.e. x% of |C|, that is x% of
n for coordinate projections and x% of n — 1 for variation projections.
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case. We also consider the quantity:
k
Number of subspaces explored at time k = Z ISae (2|1
t=1

We then compare the performance of the algorithms on three criteria:
e functional suboptimality vs iterations;
e size of the sparsity pattern vs iterations (showing the identification properties);

e functional suboptimality vs number of subspaces explored (showing the gain of
adaptivity).

2.3.2 Illustrations for coordinate-structured problems
Comparison with standard methods

We consider first ¢;-regularized logistic regression (2.18a); in this setup, the non-adaptive
RPSD boils down to the usual randomized proximal gradient descent (see Section 2.1.4). We
compare the proximal gradient to its adaptive and non-adaptive randomized counterparts.

First, we observe that the iterates of PGD and ARPSD coincide. This is due to the fact
that the sparsity of iterates only decreases (Sy(zx) < Sym(xky1)) along the convergence,
and according to Option 2 all the non-zero coordinates are selected at each iteration and
thus set to the same value as with PGD. However, a single iteration of 10%-ARPSDcosts
less in terms of number of subspaces explored, leading the speed-up of the right-most
plot. Contrary to the adaptive ARPSD, the structure-blind RPSD identifies much later then
PGD and shows poor convergence.
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Figure 2-3. {;-regularized logistic regression (2.18a)

Comparison with SEGA

In Figure 2-4, we compare ARPSD algorithm with SEGA algorithm featuring coordinate
sketches | ]. While the focus of SEGA is not to produce an efficient coordinate descent
method but rather to use sketched gradients, SEGA and RPSD are similar algorithmically
and reach similar rates (see Section 2.1.4). As mentioned in | , Apx. G2], SEGA is
slightly slower than plain randomized proximal coordinate descent (10% RPSD) but still
competitive, which corresponds to our experiments. Thanks to the use of identification,
ARPSD shows a clear improvement over other methods in terms of efficiency with respect
to the number of subspaces explored.
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Figure 2-4. ¢, 5 regularized logistic regression (2.18b)

2.3.3 Illustrations for total variation regularization

We focus here on the case of total variation (2.18c) which is a typical usecase for our
adaptive algorithm and subspace descent in general. Figure 2-5 displays a comparison
between the vanilla proximal gradient and various versions of our subspace descent
methods.

We observe first that RPSD, not exploiting the problem structure, fails to reach satisfying
performances as it identifies lately and converges slowly. In contrast, the adaptive versions
ARPSD perform similarly to the vanilla proximal gradient in terms of sparsification and
suboptimality with respect to iterations. As a consequence, in terms of number of
subspaces explored, ARPSD becomes much faster once a near-optimal structure is identified.
More precisely, all adaptive algorithms (except 1 ARPSD, see the next paragraph) identify
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a subspace of size ~ 8% (10 jumps in the entries of the iterates) after having explored
around 10° subspaces. Subsequently, each iteration involves a subspace of size 22,32,62
(out of a total dimension of 123) for 10%,20%,50% ARPSD respectively, resulting in the
different slopes in the red plots on the rightmost figure.

] 1
; = PGD 107 ol = PCD
——20% RPSD —e—20% RPSD
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= »10
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Figure 2-5. 1D-TV-regularized logistic regression (2.18c¢)

Finally, Figure 2-6 displays 20 runs of 1 and 20% ARPSD as well as the median of the
runs in bold. We notice that more than 50% of the time, a low-dimensional structure is
quickly identified (after the third adaptation) resulting in a dramatic speed increase in
terms of subspaces explored. However, this adaptation to the lower-dimensional subspace
might take some more time (either because of poor identification in the first iterates or
because a first heavy adaptation was made early and a pessimistic bound on the rate
prevents a new adaptation in theory). Yet, one can notice that these adaptations are more
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stable for the 20% than for the 1 ARPSD, illustrating the “speed versus stability” tradeoff
in the selection.

——1 ARPSD —20% ARPSD
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Number of Subspaces explored-10° Number of Subspaces explored.10°

Figure 2-6. 20 runs of ARPSD and their median (in bold) on 1D-TV-regularized logistic
regression (2.18c¢)

2.4 Conclusion

In this chapter, we presented a sketch-and-project algorithm with automatic dimension
reduction. The key feature of our approach is an identification-based way to select
projections using the geometric structure of the regularizer in contrast with the common
approaches that propose taking into account only properties of the smooth term. We
shown both in theory and in practice, that after some moment of time the iteration
complexity of our method is the same as for vanilla proximal gradient descent; however,
the dimension of the problem solved on every iteration is sufficiently smaller. This leads
to acceleration in terms of the “number of subspaces explored”.
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Introduction

In this chapter, we propose an asynchronous distributed algorithm SPY featuring a
sparsification of upward communications (slave-to-master) of DAve-PG (see Section 1.3.3).
The sparsification mechanism consists in randomly zeroing of the local update entries.
This randomized technique maintains the linear convergence in the mean-squared error
sense for strongly convex objectives when difference in probabilities of coordinates to
be selected is small enough and is adjustable to various levels of communication costs,
machines’ computational powers, and data distribution evenness. An attractive and
original property of this algorithm is the possibility to use a fixed stepsize that depends
neither on communication delays nor on the number of machines.

We propose several options for the zeroing of coordinates. First, we analyze U-SPY:
the version of SPY, where all the coordinates are selected independently and uniformly.
We show that such sparsification performs worse than DAve-PG.

Considering the identification property of DAve-PG (see Subsection 1.4.2), we further-
more leverage on it to improve our sparsification technique by preferably sampling the
entries in the support of the master model in the case of ¢1-regularized problems performing
I-SPY. The good point about I-SPY is that when it converges, this approach can be seen
as an automatic dimension reduction procedure, resulting in better performance in terms
of quantity of information exchanged that is better than for the DAve-PG. Nevertheless,
the theoretical analysis prevents us from using different probabilities in the case when the
problem is ill-conditioned, and we show that in practice such algorithm could diverge.

To handle the divergence, we propose S-SPY Algorithm that allows using different
probabilities; however, it requires scaling. This algorithm is proven to have the same
theoretical rate as U-SPY, but with the identification based selection (I-SPY with scaling)
it performs better in practice.

Finally, we investigate the performance of I-SPY in terms of ezpected convergence time
and show empirically that it performs better than DAve-PG both in terms of the amount
of communications between machines and time.

Name Reference Description
DAve-PG | | ] delay-tolerant asynchronous proximal gradient descent
SPY Algorithm 11 general sparsification framework for DAve-PG
U-SPY | Algorithm 12 SPY with uniform selection
I-SPY | Algorithm 13 SPY with identification-based selection
S-SPY | Algorithm 14 SPY with scaled updates
IS-SPY | Algorithm 15 | SPY with identification-based selection and scaled updates

Outline. This chapter is organized as follows. In Section 3.1, we present the general
sparsification framework SPY and investigate the convergence. In Section 3.2, we present
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the U-SPY and S-SPY, prove the identification result for these algorithms, and show
numerically that the performance is weaker than for DAve-PG. In Section 3.3, we present
I-SPY and show numerically that the algorithm could both converge and diverge in practice.
Furthermore, we prove the identification result and better rate than for DAve-PG under
the additional assumption on convergence. Finally in Subsection 3.3.2, we present our
empirical investigation on the performance of I-SPY.

3.1 General sparsification framework

In this section, we present our distributed algorithm for solving (P) with sparse upward
communications.

3.1.1 Sparsification of local updates

In the presented methods, the master machine asynchronously gathers sparsified delayed
gradient updates from slaves and sends them the current point. More specifically, each
slave independently computes a gradient step on its local loss for a randomly drawn subset
of coordinates only. The master machine keeps track of the weighted average of the most
recent slave outputs, computes the proximity operator of the regularizer at this average
point, and sends this result back to the updating worker *.

Thus the k-th iteration of our algorithm is the following. The randomly drawn subset
of entries that worker i* updates at iteration k is called mask and is denoted by S’; (in
bold, to emphasize that it is the only random variable in the algorithm). Iteration k of
our algorithm thus writes

1=1
k (fck_Df - ’Ysz'@?'k_Df)) , . ok-DF
xf[j_]l otherwise
M
R prox., (i’k) with 7% = Z ok,
i=1

Assumption 3.1 (On the random sparsification). The sparsity mask selectors (S’;) are
independent and identically distributed random variables. We select a coordinate in the
mask as follows:

PljeSi=p; >0 forallje{l,...,n},

with p = (p1,...,pn) € (0,1]". We denote ppax = max; p; and Puyin = min; p;.
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The mask selectors (SF) being the only random variables of the algorithm, it is natural
to define the filtration F* = o({S{}¢<x) so that all variables at time k («f, z*, ¥, d¥, DF)
are F*-measurable but S’; is not. This filtration will be used in the proofs.

With the sparsification, this iteration corresponds to one iteration of randomized
(block-)coordinate descent, locally at the worker. However, our algorithm does not
correspond to an asynchronous stochastic block-coordinate descent algorithm | ,

, , |, since our method maintains a variable, ¥, aggregating all the
workers’ contributions asynchronously.

3.1.2 Distributed implementation

The proposed algorithm SPY is generic as none of its ingredients (including the stepsize
choice) depend on the computing system (data distribution, agents delays). A unique
feature of this algorithm is that although each master update relies on only one agent (and
thus part of the data), all the data is always implicitly involved in the master variable,
with even proportions. This allows the algorithm to cope with the heterogeneity of the
computing system. Its presentation uses the following notation: for a vector of x € R”
and a subset S of {1,...,n}, [z]s denotes the sparse size-n vector where S is the set
of non-null entries, for which they match those of z, i.e. ([x]g)y = @ if i € S and 0
otherwise.

The algorithm SPY has the same arguments as DAve-PG plus a probability vector (see
Assumption 3.1).

Algorithm 11 SPY on ((«;), (fi),r ; p) with stopping criterion C

.
_—

Initialize z°
while stopping criterion C not verified

Initialize z; = ;0
while not interrupted by master do

do
Receive [A¥] |, i from agent i* Receive z ['1"'01'11 master
s, i Draw sparsity mask S, as
T k1 4 ai[Ak}S,;,ka P[j €S,] = p,
a* « prox,,.(z") 2] ]s, < [z — 7V fi(2)]s,
Send z* to agent * A zf —
endk kAl Send [A]g, to master
Interrupt all slaves [Sﬂi]sp — [%ﬂsp

Output z* end
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The communications per iteration are (i) a blocking send/receive from a slave to the
master (in blue) of size |S|, and (ii) a blocking send /receive from the master to the last
updating slave (in red) of the current iterate. The upward communication is thus made
sparse by the algorithm, and the downward communication cost depends on the structure
of z¥, which is the output of a proximal operator on 7. In the case of ¢;-regularization,
2% will become sparse after some iterations, leading to a two-way sparse algorithm. This
particular case will be investigated in details in Section 3.2.

Without sparsification (i.e. S¥ = {1 ..., n} at any time k), this iteration corresponds
to the one of the asynchronous proximal-gradient algorithm DAve-PG | ].

This distinguishing feature is inspired by DAve-PG: though it may appear conservative,
it performs well in practice due to the stability of the produced iterations. The intuitive
reason is that combining delayed points is more stable than using a combination of delayed
directions; see the numerical comparisons of Section 2.4 of | | and Section 5 of

[ J

3.1.3 Convergence analysis

We study the convergence properties of our algorithm under standard assumptions on the
learning problem (P) and no apriori assumption on the system (neither on delays nor on
data distribution).

We emphasize here that we do not put assumptions on the delays; for instance they
do not need to be bounded or independent of the previous mask selectors (S).

Theorem 3.2 (Reach and Limits of Sparsification). Let the functions (f;) be p-strongly
convex (> 0) and L-smooth. Let r be convex lsc.

Suppose that Assumption 3.1 holds for the probability vector p, and take vy € (0, /HLL],
then SPY on ((«y), (fi),r ; p) verifies for all k € [kpm, kmi1)

E Jo* — 2| < Jo* - 2 < (pomell ~ 70° + 1~ pa)" max a? —

(3.2)

with the shifted local solutions x} = x* — vV fi(z*).

Furthermore, using the maximal stepsize v = ﬁ, we obtain for all k € [k, kmy1)
2 1-— /i(p) 2 " 2
Ellz* — 2| < | poax | ———2 ) + 1 — pin | max xd — 7" 3.3
e - 27| _(p (F2) +1-s ) o Y

Proof of Theorem 5.2. The co-existence of both deterministic and stochastic delays in the
algorithm calls for a fundamental mathematical analysis using the notation introduced in
Section 1.3.2; and in particular the notion of epoch sequence (1.31).
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. . k—df . _Dk S
For a time k and a worker 4, we have that 2¥ = x; " depends on i) 2*~P¢ which is

Fk=Df_measurable; and ii) S];_Di'c which is i.i.d.. First, we are going to control the term
|z¥ — 27|, using the same notations as in the proof of Corollary 1.23 .

Let us define ||z = P pixgy; where (pi,...,pa) is the vector of probabilities of
Assumption 3.1. The conditional expectation can be developed as follows:

d

* _Dk k—d¥ % _pk k—dk . _pk
Ef|laf — af|?|F*P ) = Ellla; " — 2} P|FP) =) CEl(zy " — a1 7

dl
j=1

—Dk —Dk * * k—Df *
= [|2* P =V fi(a" ) — (@ = AV eI+ o — 2l
Let us now bound both terms of this sum above using py.x = max; p; and py;, = min; p;.
k « « h—D}
2%~ P5 = AV fi(ah DY) — (2" = AV ()2 + Il - 2t ],
— Dz —Dk * * k—Df *
< Pl = AV fi(a" ) — (@ = AV @)+ (1= )l — 2]

We now use the p-strong convexity and L-smoothness of f; to write (see Lemma 1.5),

2

|25 P8 — AV fi(ahP) = (@ = AV filat)))?
<(1- —) ot o= (g =) [ - s

<[22 (oot

ot -

= (1 p)? [0

Thus, for any v € (0,2/(p + L)], one can drop the last non-negative term,

-Df K k—DF
B[} — 21 < e (1= 30 [0 — 4 (1= )
| k—DF .
< Prnax (1= )2 ([T 28 — 2| + (1 = pan) |27 = 272,

where we used that ||z*~ 2% — 2*(|? = ||prox., (z* Dy — prox.,.(7¥)[|* < |ZF—DF — 7*||2 by

definition and non-expansiveness of the proximity operator of r.
Taking full expectation on both sides, we get

* —K— k —x 2 k—Dk *
Ellzf = 271° < prae (1 = 900 E|[7F = 7|+ (1= prunElJf ™ = a7,
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k—D¥

Then, using that Z5 2% —7* = "M ay(2] " — Z7) and the convexity of || -

i=1 Y H2

, we get

M
_Dk 2 _pk
Ellzf = 217 < puax (1= 90" 3 0 2577 =25+ (1 = pusn) Bl ™™ = a7

j=1
2 k— Dk 2 k—D¥ 9
< P (1= 900" 1max B[a7™ = o3| 4 (1 = paia) By — a5
2 k—DF 2
< (P (1= 70 + 1= po) max B[l — a5

-----

result implies that
¢, < [ max c¢,_pk
j=1,.. J

and using the definition of the sequence (k,,), we get
Ck,, < 0 maxc, _pkm < max ¢y
b i km—D; 5€e[km,17km)
Ch+1 < 0 max(cy,, max c¢p) < max cy.
n=p ( " 0 km—1.,km) ) ﬁee[kzm_hkm)

Thus for all k > k,,, cx < 8 maxep
by gm = maXZE[k'm;

m_1,km) Ce- This implies that the sequence ¢, defined
kms1) C¢ has an exponential bound:

Cn < B Cna <" 0 < B max 2] — a7

Finally, it suffices to use once again the non-expansivity of the proximity operator of r
and the definitions to get that for all k € [k, k1),

M
Ellz* — 2> < E|Z* -2 < > all2f —27|]> < o < B max |af — 27|,
i=1 T

(3.4)
which concludes the proof. ]

This result establishes bounds that may or may not lead to convergence, depending
on the selection probabilities. First, if all probabilities are equal to 1, the algorithm
boils down to DAve-PG and Theorem 3.2 coincides with Theorem 1.14. However, in more
general cases, this result has to be interpreted more carefully as developed in the following
section.
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Algorithm 12 U-SPY on ((«), (f;),r ; )

Initialize z; = o =z = 7°

while not interrupted by master do
Receive x from master
Draw sparsity mask S, as

PljeS:)=m
[z{s, < [v =V fil2)ls,
Azl -z
Send [Als, to master

[]s, + [=]]s
end

™

3.2 On the sparsification choice for /; regularized
problems

In this section, we present 3 different options of sparsity mask selectors for ¢; regularized
problems.

Assuming that all machines are responsive (i.e. m — oo when k& — 00), the inequality
(3.2) gives linear convergence of the mean squared error in terms of epochs if

=_2_ 2
Pmin 2 YT (1 _ R(P))
> (1— > _— 3.5
Pmax ( r)/lu) o 1 Kp) ( )

and thus the behavior of the algorithm depends if the selection is performed uniformly
(and thus structure-blind) or non-uniformly (to encompass some prior information).

3.2.1 Inefficiency of uniform sparsification

If the selection is uniform U-SPY (see Algorithm 12), i.e. if p; = m € (0,1] for all 4, 2% — z*
in probability. Furthermore, the mean squared error vanishes linearly in terms of epochs
with a rate (1 — myu(2 —yp)). As a result, under the mild assumption over the delays
(Assumption 3.3) we could prove an almost sure convergence % — z* and as a corollary
the identification property (see Theorem 1.17) of U-SPY.
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Assumption 3.3 (Additional assumption for identification). The number of iterations
between two full updates cannot grow exponentially, i.e. kpyi1 — ky, = o(exp(m)). This
assumption is rather mild and subsumes the usual bounded delay assumption.

This assumption, together with an exponential decrease in terms of mean squared
error, implies the following result.

Lemma 3.4 (Almost-sure convergence of SPY). Let the functions (f;) be p-strongly convex
(k> 0) and L-smooth and assumptions 3.1 and 3.3 hold. Select the probability vector p
such that (3.5) holds then T converges almost surely to T".

Proof of Lemma 3.4. Recall first from the end of the proof of Theorem 3.2 that we have
for some C' and 0 €)0, 1]
E|z" — ¥ < C(1 — &)™ (3.6)

Notice that the exponent is not the iteration number but rather the number of stopping
times (k,,,) before k. Thus, we can decompose the sum of the (||z¥ — 2*||?); by epochs
and get in expectation

“+00
E | llz" — 2|
k=1

Assumption 3.3 now allows us to bound k,,;; — 1 — k,,, and to get that this sum is finite
almost surely:

“+o0o km+1 1

DRI el

m=1 k=kn,

<E <CZ ki1 — 1= k) (L —6)™

<P[z" -z — 0],

+o0
=P ) |7F -7 < o0
k=1

which means that (z*) converges almost surely to Z*. O

Almost sure convergence result guarantees the identification of the near-optimal support
by iterates of the algorithms in the finite time (see Theorem 1.17) with u* = z* and
(1.38).

Unfortunately, uniform selection usually results in poor performance in practice, as
displayed in Figure 3-1. Hence the need for a more adaptive sparsification manner.

3.2.2 Efficiency of adaptive sparsification

The idea of adaptively using the identified structure in coordinate descent for ¢;-regularized
problems methods was recently developed in | ] (see Section 2.2). Mathematically,
this means select coordinates in the mask as follows performing Algorithm 13
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(a) The functional suboptimality versus (b) The functional suboptimality versus amount
the amount of iterations/gradient computa- of coordinates sent during communication
tions/communication rounds done. rounds.

Figure 3-1. Evolution of U-SPY iterates comparing to DAve-PG. We consider logistic
regression objective function with elastic net regularizer on madelon dataset from LibSVM
library [ ]. We denote by “SPY + 77 the U-SPY with probability 7.

Assumption 3.5 (Sparsification with support identification). The sparsity mask selectors
(S¥) are random variables such that P[j € S¥] =1 if j € supp(a*) and either:

Option 1. P}’ € Sk] = 7 € (0,1] for all j' ¢ supp(z").

Option II. |Sk| = |supp(z¥)| + 7(n — |supp(z*)|) € {1,..,n} almost surely and
Plj" € S7] =P[j" € 8*] for all j',j" & supp(z*).

In words, this means updating/communicate all coordinates in the support of the last
computed master point z¥ and selecting coordinates outside the support with exploration
probability m for the Option I and select the set of fixed size for the Option II. These two
different approaches have no difference in terms of theoretical proofs since the expectation
E [(st)|2*] is the same for both of them and defined as

) if j € supp(z*)

[E [zyl2*]]; = .
L] otherwise

This kind of sampling showed tremendous gains compared to uniform sampling; however,
it adds two difficulties with respect to Lemma 3.2:
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Algorithm 13 I-SPY on ((«;), (f;), )

Initialize x; = z;” = 7°

while not interrupted do
Receive x from master
Draw sparsity mask S, as
1, if j € supp(x)

Plj €8+ = {77, if j ¢ supp(x)

[zi]s, < 2=V Sil@)]s.

— ot
A=z —ux
x; =)

Send A to master
end while

e a good conditioning is necessary to allow for a small p;, = 7 and pypa. = 1. More
precisely, from Eq. (3.5), we get the condition

1—/m
L+/m
on the minimal conditioning to allow for a probability 7 of selection outside the

support. As we aim at taking 7w quite small in order not to communicate much more
than needed, this is a stringent condition.

(3.7)

K(P) > Kmin =

e the sampling is not i.i.d. anymore since the probabilities depend on the points
generated by the algorithm.
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(a) The size of the support versus the (b) The functional suboptimality versus amount
amount of iterations/gradient computa- of coordinates sent during communication
tions/communication rounds done. rounds.

Figure 3-2. Evolution of I-SPY iterates comparing to DAve-PG. We consider logistic
regression objective function with elastic net regularizer on madelon dataset from LibSVM
library | ]. We present 3 different runs of I-SPY with adaptive selection as in Option
I of Assumption 3.5 with probability = = 0.1 showing both convergence and divergence of
I-SPY.

In Figure 3-2, we see that the algorithm with such selection (I-SPY) could misidentify
and diverge as a result; however, if it converges, it identifies the near-optimal support
and has the same linear rate as DAve-PG with fewer communication cost. We further
investigate this algorithm in Section 3.3.

3.2.3 Scaled adaptive sparsification

One of the possible modifications of SPY is a scaled version of it S-SPY see Algorithm 14.
This is often used in sparsification methods for SGD (see e.g. | |) to have the
unbiased estimator of the sparsified object. In our case, scaling helps to figure out the
difference in probabilities and keep the “probability-gap” equal to 0. More precisely,
every worker performs the following update

. .k
1=1
pmin( 2h=DE _ A f,(xh—DF ) + (1 — M) ool if _pk
T =4 " WA >U] py ) il jesy ™ (3.8)
2kl otherwise

il7]
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Algorithm 14 S-SPY on ((), (fi),7 ; p)

Calculate scaled probability vector ¢ = (%, ’%, e 1‘%)

Initialize x; = «

while not interrupted by master do
Receive z from master
Draw sparsity mask S, as
Plje Sp] =DPj
[z]s, < ldls, * [x — 7V fil@)]s, + 17 — dls, * [2i]s,”
Azl —ua

Send [A]g, to master

[z]s, « [z]]s,
end

“Here we denote by 1™ € R™ the identity vector and by * we denote
the coordinate-wise vector-to-vector multiplication.

w 1

The learning rate of the update is times smaller” than ~ because of the scaling.
On the other hand, this algorithm is proven to converge for any L-smooth and p-strongly
convex problem independent of its conditioning.

Theorem 3.6 (Convergence of S-SPY). Let the functions (f;) be pu-strongly convez (u > 0)
and L-smooth. Let r be convex lsc. Suppose that Assumption 3.1 holds for the probability
vector p, and take v € (0, ﬁ] Then S-SPY on ((a;), (fi),7 ; p) verifies for all k €
[kmv km+1)
* 2 * 2 m * 2
E|z* —2*||” <E||2" — 2*||" < (1 = prwnyne(2 — 1)) max ) — =],

(3.9)

with the shifted local solutions x} = x* — ~,;V f;(z*).

Proof of Theorem 5.6. The proof follows the same arguments as the one of Theorem 3.2,
expect for one crucial inequality. Using the same notations as in the proof of Theorem 3.2,
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we have

N D} k-DF D} k-DF D
E[||o¥ — 27|27 2 = Bl — af P F 2 =Y Bl — 2y F
p k— D} Pmi k—D¥ 2
_ min k v ; + 1_ min xi_ i o ilf: .
Z ( [ RRALLCS )Lj] ( pj )[ ]m | ]“])
2
k—DF *
+(1_pj> ([5’72 Z} L [%][ﬂ)
(5]
_ Pmi K k 2
< Pmin mk—Di — AV ; mk—Di . I: )
_;pj " ([ YV fil )]m (7]
e (1= ([ k—D"} ] )2+<1 ) ([#771],, - et )
- — x, ' — ;15 —Dj x, — ;15
p] pj 7 m 7 []] p] 7 m 7 []]

= painllTF = AV (5P — (2 = AV @)+ (1= pn) 2 — 22

where the inequality follows from convexity of || - [|>. The rest of the proof follows

unchanged. O]

As we could see, the theoretical rate depends only on the minimal probability of
coordinate to be selected; however, the size of communication is the smallest if all the
probabilities are the same.

Adaptive coordinate selection could be combined with this scaling technique to perform
IS-SPY see Algorithm 15.

On the one hand, this algorithm still has the dimension-reduction property - after
the moment of identification (see Lemma 3.4), all the critical coordinates update every
iteration. However, as we could see from the theorem, the rate of Algorithm 15 is the same
as for Algorithm 11 with uniform sampling; however, in practice it performs better in
case 7 = A|| - ||; thanks to the identification property (Lemma 3.4). More precisely, while
uniform sampling takes place, coordinates from the support are selected with probability
7w that makes it worse than selecting all of them but scaling. Unfortunately, even the
identification property of the IS-SPY algorithm does not help it to perform at least as
good as DAve-PG both in terms of iterations and communications (see Figure 3-3).
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Algorithm 15 IS-SPY on ((ay), (fi),r; )

Initialize z; = 27 = = 7°

while not interrupted by master do
Receive x from master
Draw sparsity mask S, as

1, if j € supp(x)
m, if j ¢ supp(z)

Plj € S,] :{

[a;i]sﬂ\supp(x) « [z = YV fi(2)]s\supp(a)
[Ii ]Supp(x) — 7T[$ - /vaz (I)]Supp(x) + (1 - W)[iUi]supp(x)
A x;L —T;

Send [Als, to master

[]s, « [z} ]s
end

™
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(a) The functional suboptimality versus (b) The functional suboptimality versus amount
the amount of iterations/gradient computa- of coordinates sent during communication
tions/communication rounds done. rounds.

Figure 3-3. Evolution of IS-SPY iterates comparing to DAve-PG. We consider logistic
regression objective function with elastic net regularizer on madelon dataset from LibSVM
library | ]. We denote by “IS-SPY + 7" the IS-SPY with selected as in Option I of

Assumption 3.5 with probability 7.
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3.3 Better analysis for I-SPY in case of /; regularized
problems

In this section, we present some additional analysis of I-SPY see Algorithm 13.

3.3.1 Identification and better rate

Let us consider the optimization problem (P) with ¢; regularization term, i.e.,

reR™

As before, we consider the distributed setup, where m observations are split down over M
machines, each machine ¢ having a private subset D; of the examples. We also denote by
a; = |D;|/m the proportion of observations locally stored in machine ¢, hence Zf\il a; = 1.
filz) = |71i| > jep, lj() is the local empirical risk at machine i (I; standing for the smooth
loss function for example j).

Let us recall the theoretical result (see Theorem 3.2), specified for this selection of
I-SPY. Using the same notations as in Theorem 3.2, the iterates of I-SPY satisfy

E ka — :E*H2 <E H:Ek - :E*HZ < ((1—yu)®+1—m) " max Hx? — :L'sz, (3.10)

This general result deserves several comments:

e We retrieve the convergence results of | ] in the case where there is no
sparsification (i.e., # = 1), and if there is no delay, we recover the rate of vanilla
proximal-gradient algorithm.

e Assuming that all machines are responsive (i.e. s — oo when k — c0), the inequality
(3.10) gives convergence if § > 0, i.e. 7 > 1 — . In other words, when we sample
entries non-uniformly, we still have convergence if the probability of selection is big
enough.

e Finally, when the problem is well-conditioned (i.e., u ~ L and thus a ~ 1), the
algorithm is guaranteed to converge for any reasonable choice of 7.

Taking into account that there is no almost sure convergence in our case, we could not
talk about identification result [ ] (see Section 1.4) out of the box. Let us introduce
the following assumption, that will help us t obtain an identification result.
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Assumption 3.7 (On convergence). Let us assume that for any e > 0 there ezists iterate
number K such that for any k > K, the average point ||z¥ — 7*||2 < ¢ is e-close to the
final solution.

As we could see from the Theorem 1.17, if this assumption holds for any particular
run of the Algorithm 13, then the iterates (z*) identifies the near-optimal support in finite
time. Furthermore, under the additional non-degeneracy assumption, the iterates will
identify the optimal support.

Lemma 3.8 (Identification). Suppose that Assumption 3.7 holds; furthermore, let us
assume that problem (Py,) is non-degenerate (ND). Then for any k > K, we have :

supp(z*) = supp(z*). (3.11)

Proof of Lemma 3.8. First, using nonexpansiveness of the proximal operator we could
have that for any € > 0 there exists K big enough such that for any &k > K :

2% — 2*[3 = Iprox,y, ., (7%) — prox,, ., (@[3 < [|7° — || < e.

k

Now, using the Corollary 1.20 with u* = z¥ we get the result of the lemma.

]

As a result, under these assumptions, ant together with the “convergence” of the
algorithm, we could even get the same rate as for non-sparsified DAve-PG | ].

Theorem 3.9 (Better rate of I-SPY). Suppose that all functions { fi}iz1, v in (P) are
p-strongly convex and L-smooth In addition suppose that Assumption 3.7 holds. For any
v €(0,2/(u+ L)) and for any k € [k, ksy1) we have:

2ypuL\°
k_ * 2: i
ot =i = 0, ((1- 222 (312)

where O, denotes big O in probability.

Proof. First, let us define the identification moment k; as follows
ki = max{k : supp(¢*~") # supp(z*)},

In addition, let us denote by s; the epoch number such that

ki € [ksw k5i+1)'
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Finally, let us denote by

NI ANEE .
G = (1—£) max ||z} — 2|2,
i i=1,..,M

R

Using the result of Lemma 3.8 we have that Cj is almost sure finite since s; is almost sure
finite.

Let us consider k big enough, such that supp(z*) = supp(2*), and let C = {z € R" :
supp(x) C supp(z*)} and let proje(-) be an orthogonal projection onto C.

Now, using the stability of the support of the algorithm run, let us consider an iterate
of the I-SPY algorithm.

Zl'fk = prOX’Y/\IH'Hl (:i'k_l + a/i[Ak]Skafk)

™

= prOjC(pr0X7>\l||'H1 (fkil + Oéi[Ak]Sk—ka ))

Using the fact that both proj(-) and prox,, ., () are coordinate-wise separable we can
change the order :

k _
L= ProXo\ |

= PTOX, 1., L PTOJc

(

(

= PI‘OXVAIH-HI(PTOjc
g . _Dk _ Dk k—DF

= prox.,,; ., (proje(z* 1) —|—\prOJC(ai(xk DE W fi(a" Py — )

k—D
supp(z*)CSx

.k _DH _DH k—DF
(Proje(a" ™" + au([" P = AV (@) — 2] o)

ik

= prox

YAl i

1

Hence the sequence of parameters generated by projected I-SPY algorithm with 7 =1

0 ksi+1

(DAve-PG algorithm) when starting from z° = 2"+ and 29 = ;""" for the worker

machines, satisfy Lemma 3.2 which gives :
2ypuL\*
ot~ < (1= 200 ) s a? = a8,V b )

where, the expectation can be dropped as far as we have a deterministic sequence of
points.
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Finally, combining two parts we have:

2yl \°
% — 2|2 < (1—M7+—“L> Ci, Yk € [k k1)

that finishes the proof. O

We can see from this theorem that after identification, the convergence rate does not
depend on probability 7. This means that communications become smaller with the same
rate. On the other hand, as identification depends on this probability m, in practice,
the selection of 7 should be a trade-off between speed of identification and the size of
sparsification.

3.3.2 Numerical experiments

In the previous sections we proved the convergence of I-SPY in the case where the mask is
formed with a high probability 7. In this section, we present numerical results providing
empirical evidence on a faster execution of I-SPY with lower communication cast than if
the mask is not used.

Experimental setup

In our experiments, we consider ¢; — >-regularized Logistic Regression surrogate loss that
is common to many machine learning and signal processing applications and which can
be minimized in a distributed way. With respect to our composite learning problem (P, ),
that is :

. 1 —YjX. T A
Vi€ (L M) file) = o 3 {log <1+e i )+32||x||g} (3.13)
" (xj.95)€D;

where D; = (x;,9j)jeq1,..1s;] € (R™ x {—=1,+1})/Pil is the sub-part of the training set
stored in the worker machine i € {1,..., M}.

We performed experiments on three publicly available datasets'. Each dataset is
normalized by dividing each feature characteristic by the maximum of the absolute
value in the column using the scikit-learn Transformer API.? In Table 3.1, we present
some statistics for these datasets as well as the percentage of no-zero entries of the final
parameter (supp(z*)). For the communications between the master and the workers, we

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
2https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.normalize.
html
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used the message passing interface for Python (MPI4py)?. We compared our approach
I-SPY with its direct competitor DAve-PG | | which is also a delay-independent
asynchronous technique with constant stepsize but does not use a sparsification mask. For
comparisons, we plot objective values as their relative distance to the optimum, referred
to as suboptimality, with respect to time, and also with respect to iterations and the
number of exchanges for different values of the probability 7 used in the mask. We also
present the dependence of sparsity of iterates to the number iterates.

Speed of convergence

Figure 3-4 (top) presents suboptimality, as the difference between the objective function
and its minimum with respect to time for the I-SPY algortihm with four values of
probability 7, to form the mask, and the DAve-PG algorithm | | with M = 20
workers on real-sim and rcvl_train datasets. To this end, the minimum of the loss function
(Py,), using (3.13), is first obtained with a precision e = 107!, As it can be observed,
for larger values of the probability m; I-SPY converges much faster than DAve-PG. This
is mainly because that I-SPY passes through the whole data (iteration) in lesser time
than DAve-PG as it can be seen in Figure 3-4 (down). For both datasets we notice that
for reaching the same number of epochs, at the beginning of each plateau on the left
hand side of the plots, I-SPY put ten times less time than DAve-PG for all values of the
probability 7. In the supplementary, we provide more plots on all datasets for different
number of workers and parameter ;.

Cost of communication

We have computed the cost of communication, as the number of exchanges, between the
master and the worker machines until convergence for different values of the probability 7

Dataset m n A1 Ao |supp(x¥)| in (%)
madelon 2000 500 2x 1072 1073 7
real-sim 72309 20958 104 107? 8.6
rcvl_train 20242 47236 10~ 1073 4.1

Table 3.1. Statistics of datasets used in our experiments; m, n, A1, Ay and support are
respectively the size of the training set, the number of parameters, the hyperparmeters
corresponding to ¢; and /5 regularization terms and the percentage of non-zero entries of
the final solution; supp(z*).

3https://mpidpy.readthedocs.io/en/stable/citing.html
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to form the mask. In the case where 7 is low, we know from the previous section that
there is no guarantee that the algorithm I-SPY converges. However, note that as all
workers are minimizing their local convex objectives, after one round of communication
between the master and all workers, it is easy to detect when the global objective (P, )
does not decrease at the master level and the algorithm can be stopped and restarted in
this case. In Figure 3-5 we plot the amount of exchanges between the master and the

- DAve-PG I-SPY, m=10"% -:3- I-SPY,m=10"3 .. I-SPY,m=10"2 .3 |-SPY,m=10"1
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Figure 3-4. Objective loss (P, ) suboptimality versus time in second (top) and epochs
with respect to time (down), for M = 20 workers and A\; = 107* on Real sim and RCV1
datasets.
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workers for different values of the probability 7 used to form the mask on the madelon
dataset. For each value of m; we run the algorithm 10 times. Blue dots correspond to
successful runs where the algorithm converged to the minimum of the objective (P, ) up
to the precision 107!, Red numbers at the bottom of the figure mention the number
of times when the algorithm diverged and expected amount of exchanges are shown by
orange stars. In addition, we plot the line (in cyan blue) for the number of exchanges
of the DAve-PG algorithm | ]. As it can be seen, in mostly all the cases the
I-SPY algorithm converges to the minimum of (P, ) with much less exchanges between the
master and the workers than in the DAve-PG algorithm. For lower values of 7, the number
of times where the algorithm converges is low and for larger values of m; the expected
number of exchanges tends to the one of the DAve-PG algorithm. This figure suggests that
for this dataset the best compromise between the number of convergence and number

le7

1.0 -
© — DAve-PG .
|
o . Success
™ 0.8 - . o
> 0 Fails :
© Average °
3 [A)
O 0.6 °
o * s
o . . .
+ o p °
wn ° ° ° hd ; :
()} ® L] o ° °
= . ] : b 3.5 *
G029 . 8 I A X
c [ J
(©) ¢ ¢ °
X o
LLl

0041 5 4 5 2 3 2 030 1 0 02

”10‘2 | - HlllC)l‘:L | - I”10°
Probability ()

Figure 3-5. madelon dataset, M = 10 workers, \; = 0.02.
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Figure 3-6. Objective loss (P;,) suboptimality versus number of exchanges, for M = 20
workers and A\; = 107 on real-sim and rcvl_train datasets.

of exchanges is reached for the values of = € [0.01,0.6]. In Figure 3-6, we present the
number of exchanges with respect to suboptimality for the DAve-PG algorithm | ]
and I-SPY with different values of the probability 7 to form the mask on real-sim and
rcvl_train datasets. As it can be observed; for larger values of 7, I-SPY converges faster
with much less exchanges. These plots with the ones of Figure 3-4, suggest that if the
mask is formed with a large enough probability 7, the proposed algorithm converges faster
with fewer exchanges and epochs to the optimum of the global objective function than
without sparsification.

Evolution of sparsity

Let us finally discuss the importance of sparsity, as the number of no-zero entries, of the
final solution. Figure 3-7, shows the evolution of the percentage of no-zero entries of the
parameter with respect to epochs on real-sim and rcvl_train datasets for M = 20 workers
and \; = 1075, The sparsity of the solution increases over epochs for both DAve-PG
and I-SPY algorithms. This is mainly due to the use of the ¢; in both algorithms. This
sparsification is accentuated for I-SPY by the use of the mask. From previous plots, we
observed that for higher values of the probability 7, the proposed algorithm converges
faster to the minimum of the composite objective. From Figure 3-7, it comes out that
in this case, the I-SPY algorithm is able to identify the same set of informative non-zero
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Figure 3-7. Evolution of sparsity versus iterations on real-sim and rcv1_train collections
with, M = 20 workers and \; = 10~%.

entries, than DAve-PG, at convergence for higher values of the probability 7.

In Figure 3-8, we present the evolution of the functional suboptimality for two different
datasets: rcvl_train and real-sim. For both datasets we see that the gain is bigger if the
final sparsity is smaller. It corresponds to the theoretical rate of Theorem 3.9.

3.4 Conclusion

In this chapter, we proposed an asynchronous distributed learning algorithm with spar-
sification. The sparsification is induced through a mask that selects a subpart of the
model parameters constituted with all non-zero entries and some others chosen randomly
with a fixed probability m. We analyzed the convergence property of the algorithm by
showing that when 7 is moderately high, the algorithm is ensured to converge for strongly
convex composite objectives. In the case of small values of m, we have empirically shown
on three benchmarks that when the algorithm converges, it reaches faster the minimum
with much fewer communications between the master and the worker machines than if
the mask is not used. This algorithm has no guarantee, and we propose its modification
with theoretical proofs of convergence in the next chapter.
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Introduction

In Chapter 3, we presented the general framework SPY as a version of DAve-PG | ]
with sparsified communication. However, this random sparsification technique provably
works only for i.i.d. sparsifications with either almost-uniform distributions, or well-
conditioned problems. This makes aggressive sparsification or adaptation to the sparsity
structure of the model impossible with such an algorithm.

The proximal point algorithm is a standard regularization approach in optimization. It
was presented in | , Chap. 5| to recondition a convex quadratic objective, for which
computing the proximal operator (1.15) is easy (it is the unique solution of a linear system,
well-conditioned by construction). The general proximal algorithm was then popularized
by the seminal works | , ]. The study of these algorithms, and especially their
inexact variants, has attracted a lot of attention; see e.g. | , , , ,

].

Practical implementations of such methods require an inner algorithm to compute
the proximal point and a rule to stop this algorithm. Several papers consider the key
question of inner stopping criteria for inexact proximal methods in various contexts; see
e.g. | | in smooth optimization, | ] in nonsmooth optimization, and | | in
operator theory.

Proximal reconditioning scheme wrapping up the previously mentioned algorithm as
an inner minimization method allows us to perform much more aggressive sparsifications.
Furthermore, we show that when using a sparsity-inducing regularizer, our reconditioned
algorithm generates iterates that identify the optimal sparsity pattern of the model in
finite time. This progressively uncovered pattern can be used to adaptively update the
sparsification distribution of the inner method. All in all, this method only features sparse
communications: the downward communications (master-to-worker) consists in sending
the (eventually) sparse model, and the the upwards communications (worker-to-master)
are adaptively and aggressively sparsified.

Finally, we show theoretically and numerically that our method has better performance
than its non-sparsified version, in terms of suboptimality with respect to the quantity of
information exchanged.

Outline This chapter is organized as follows. First, in Section 4.1, we present a proximal
reconditioning framework that allows wrapping up any optimization algorithm. We specify
it to the case of I-SPY (see Algorithm 13) and investigate the convergence of such algorithm
with three different stopping criterion. In Section 4.2, we present an identification result
for this method under the standard non-degeneracy assumption. It keeps the automatic-
dimension reduction property of the inner algorithm while it converges; furthermore, we
present an improved convergence rate based on this property. Finally, in Section 4.3, we
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present the numerical experiments to prove that in practice algorithm performs better
than DAve-PG.
This chapter corresponds to | ].

4.1 Proximal reconditioning for adaptive sparsifica-
tion

The learning problem (P) should be well-conditioned to safely apply the random sparsifi-
cation technique of I-SPY with reasonable exploration probability 7. The idea is then not
to apply I-SPY directly to (P) but rather to a modified problem for which we control the
condition number and thus the sparsification potential.

We thus propose to recondition the learning problem (P) using the standard proximal
algorithm (see e.g. | ]), as described in Section 4.1.1. We present in Section 4.1.2 our
algorithmic choices and the resulting algorithm, called Reconditioned—I-SPY.

4.1.1 Proximal reconditioning

This type of methods consist in iteratively regularizing the problem with the squared
distance to some center point. We call outer iteration the process of (approximatively)
solving such a reconditioned problem. At outer loop! ¢, we define the worker i’s regularized
function as

p
hie = fi + 5” : —er%

where p is the regularization factor and x, the center point at outer loop ¢. The recondi-
tioned problem for loop ¢ then writes

M
min Hi(x) =3 o, () + Gllo =) +r(a). (R)

hi,l(m)

For p-strongly convex L-smooth (f;), the regularized functions h;, are (1 + p)-strongly
convex and (L + p)-smooth. Hence, the condition number of the smooth part of (Ry)
writes

_nte (o K
Ko =7, \Z @ =7)

!The quantities related to outer loop ¢ are denoted with a subscript .
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The optimal solution of (R/) is exactly the proximal point (1.15) of F'/p at x, (see Section
1.1.3)

M
proxp,,(we) = arg%ﬂn Zalfz(x) +7(x) +g||x — 4|3,
rERT

J/

-

=F(x)
Thus, for solving (P), each outer iteration consists in an (inexact) proximal step:

Tep1 R ProxXp,,(we) (4.1)

4.1.2 Reconditioned—I-SPY

We present our main algorithm, which consists in applying the inexact proximal scheme (4.1)
with I-SPY as inner algorithm to solve (P).

At the outer iteration ¢, we run I-SPY for solving (R;) with i.i.d. non-uniform sparsifi-
cation probabilities given, for a fixed 0 < ¢ < n, by

. C .
pe=1¢ T (ynun(x,_,)y ’ 1> f@)e =0 jalje{l,...n}.  (42)
1 if (ze)i) # 0

The sparsification level over outer iterations is then bounded from below by

& .
m:=— < infm,.
n ¢
We now choose the reconditioning parameter p from 7 so that SPY converges linearly
to the solution of the reconditioned problem (R;). We know, from Section 2.2.3, that this
is the case as soon as
ptp Kminl — pt . 1—ym .
KR) = ——— > Kmin <= p>——— Wwith Ky = ———= as in (3.7).
RO =T, A — 1+ /7 (3.7)
To properly handle the strict inequality above, we propose to choose a conditioning
which guarantees a (1 — «) rate for SPY on the reconditioned problems uniformly over ¢.
Mathematically, for 0 < o < 7 (for instance o = 7/2), we choose
RR)L — 1

l1—Vm—a
= —— ith  KR)=——"F—=. 4.3
P 1 — KRy v RO =15 VT —« (4.3)
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Then, the contraction factor of SPY (3.3) for the reconditioned problem (R;) becomes

((—1_,{(&)) —|'1—7Tg> :(W—a+1—ﬁz):£1_a—(ﬁz—ﬁ))Sl_o‘<1' (4.4)

1+ KRy ~~ d
=:(1—ay)

This means that I-SPY is linearly convergent on the reconditioned problem (R;). Thus, it
can safely be used as an inner method in the inexact proximal algorithm (4.1) to solve
the original problem (P).

The remaining part is to the choice of a stopping criterion for the inner loop. We
propose to use three different criteria: epoch budget, absolute accuracy, and relative
accuracy (called Cy, Cy, and Cs, respectively). Stopping criteria based on accuracy are
usually much more stringent to enforce (see e.g. | , Sec. 2.3] and references therein),
however they may bring significant performance improvement when the instantaneous
rate is much better than the theoretical one.

The resulting algorithm, called Reconditioned—I-SPY, is presented as Algorithm 16.
Under any of the three stopping criteria, we recover the same convergence result, formalized
in the next theorem.

Theorem 4.1. Let the functions (f;) be p-strongly conver (u > 0) and L-smooth. Let
r be conver lsc. If p = 0 and C3 is used, we furthermore require that F' has a unique
minimizer x* and that liminf, ,..(F(z) — F(2*))/||lz — 2*||* > 0.

Then, the sequence generated by Reconditioned—I-SPY on ((cv), (f;),r) with stopping
criterion Cy, Co, or C3 converges almost surely to a minimizer of F'. Furthermore, if u > 0,
then we have”

¢
E [||zes1 — x*||§} =0 ((1 a ) ) for criterion Cy;

p+p/2

¢
oo —a*P=0( (1- —L— teria Cy, C
1 — 7|5 = for criteria Cy, Cs.

p+p/2

Even though the final result is similar for the three cases, the proof techniques are
rather different. We thus present them separated.

2We use the standard notation: a; = O((1 — r)*) denotes that there exists C,p such that a, <
cer(1—r)t.
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Algorithm 16 Reconditioned-I-SPY on ((c), (fi),7)

Initialize 21, n > ¢ > 0, and 6 € (0, 1).

uand’yE(O,

Setpzﬁ

while the desired accuracy is not achieved do
Observe the support of x,, compute p, as

pie=24 T (|—nu11(l“é)|; 1) fled; =0 g e 0. (46)

Compute an approximate solution of the reconditioned problem

M
Tt & Proxpy,(z) = argmin 4 Y ai (fi@) + Ll — ) +r(@) p (47)

rER™

J/

;— N
=1 -—

hie(z)

with I-SPY on <(ocz-), (hig), T ; pg) with z, as initial point and with the stopping

criterion:

C; (epoch budget): Run I-SPY with the maximal stepsize for

log ( 2t p )
M, = (1+9) log(f) + Sl epochs.

lOg (1—04—&#—717) lOg (1—&—&%—#5)

or C, (absolute accuracy): Run I-SPY until it finds x,,; such that

(1—-4)p
211 — proxp,,(z,)|l3 < Cu+ )l

lwe — proxg, (zo) 13-

or Cj (relative accuracy): Run I-SPY until it finds x4y such that

lwers — ell3.

9 14
|ze41 — PI'OXF/p(W)”z < A(2u + p)>+2

end
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4.1.3 Proof of Theorem 4.1

Two basic lemmas

First, let us present two simple lemmas that we have not found as such in the literature
and that are required in proofs of the theorem. They use the fact that the unique minimum
z* of a strongly convex function F is a fixed point of proxy,, for any p > 0; see | ,
Prop. 12.28]).

Lemma 4.2. Let F : R" — RU {400} be u-strongly convex lsc and p > 0. Then, for any
r € R,

1< L |l

* (|2
_x —_
< gl e = I3

HprOXF/p<x) - prOXF/p(x*) ”prOXF/p<x) - ‘ng

p
2+ p
Proof. The proof simply consists in developing norms as follows:
Iprox s, (z) — |3
= [lproxp, () — proxg,(z*) + 2 — |3
= [[prox,,(z) — proxp,(a*)|l; + [lv — 2" — 2{prox,(z) — proxy,,(+*);z — 2)
< [[proxp,(x) — proxg,(z*)|3 + [lo — 2*[|2 — 2(1 + 11/ p) IProx,(z) — proxy,(z*)|;
= |lz — 2*[3 — (1 + 2u/p)[proxy,,(z) — proxz,(«*)|3;

and a reordering concludes the proof. In words, we formalize the fact that the resolvent
of the u/p strongly monotone operator 0F/p is (1 + p/p)-cocoercive; see | | for
definitions. O

Lemma 4.3. Let F': R" — RU {400} be p-strongly convex Isc, p > 0. Then, for any
x, 2" € R™ such that

B[~ prox, (0| 1¢] < v e — prox, ()]

for some v > 0, we have for any € € (0,1)

]E|: /_*2i|<1+6 p
I~ ol le] < (0 +e) 5 0

p 1
_ {(1 +E)2M+ p — (1 + g> y] ||z — proxF/p(a:)H%.

lz — 213 (4.8)
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Proof. Using Young’s inequality, we get that for any € € (0, 1),
* 2
E |2’ - 2|l |2]

1
< (1 + E) E [Hx’ — proxF/p(x)H; |oc] +(1+¢) HproxF/p(:I;) — proxF/p(:c*)H;

1 P 2
< (14> — 5+ (1 —z*
< ( 8) v|z —proxp,(z)[; + (1 +¢) 217 [l =2

2

—(1+¢) s |2 — proxF/p(x)H2
p |2 p 1
— (e o= o'l - (e = (14 1) ] e = proxe (o)1
where we used Lemma 4.2. O

Proof of Theorem 4.1 for criterion C; (epoch budget)

We start by noticing that, at outer loop ¢, SPY solves the reconditioned problem (4.7)
over which it has a contraction factor of (1 — ) with 1 —ay:=1— a4+ 7 — 7m; see (4.4)
and (3.3).This means that SPY initialized with z, verifies after m epochs with the maximal
stepsize

B [l — 273 < (1~ o)™ max a5 < (1~ 00)" e — 7]

where 77 is the unique solution of (Ry), and 27, = x7 — yVh, o(x7) are its local shifts.
We now apply Lemma 4.3 with the following input: ©' = z4,1; © = x4; F = F (which
is yu strongly convex); #* = z* (minimizer of F); and v = (1 — o)™ (noting that this

term only depends on z,). We get for € = 5 € (0,1)

1
2 P |12
E [lee — o'IEled] < (14 57 ) 5 o = o7l

1 14 146 M 2
N [(l + W) +p (T+07°) (1 = )™ | [|r — proxg,(ze)|5.

TV
1=by

Choosing M, as per C; guarantees that

1 p op
by >0 (1 > .
‘= (+€”‘S) 2u0+p " 2p+p
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Thus, for any p > 0, we have

|2 1 P *|2 op
E o1 — o3 2] < (1+€m gt e = a5 = 5[l — prox g, ()3

p+p 2u+p
(4.9)
Convergence. By using > 0 in (4.9), we get
E (Jwees — o 12fe] < (14 o5 ) e — [ — Sl — prospy ()3 (410)
1+
By Robbins-Siegmund theorem | , Th. 1] (and | , , | for applications

to optimization), we have that 1) (||z; — 2*||3) converges almost surely to a random variable
with finite support; and i) Y22, ||z, — proxg,,(z¢)|l3 < co. This means that we can
extract a subsequence (x4 ) that converges almost surely to some T* which is necessarily
a minimizer from ii). Using (4.10) again with z* = T*, we see that (x,) converges to T*
almost surely.

Rate. Now, if ;1 > 0, we get by dropping the last term in (4.9) and successively taking
expectations that

E[erﬂ—w*nz}s<f+1>1+5(L)anl—m@:@((l / )) (1.11)

2u+p n+p/2

Proof of Theorem 4.1 for criterion C, (absolute accuracy)

We apply Lemma 4.3 with the following input: 2’ = zy.1; © = zy; F' = F (which is p
strongly convex); x* = x* (minimizer of F); and v = (1 — 6)p/((2p + p)¢**°) (noting that
the condition on @44, is almost sure). We get for e = 745 € (0,1)

*112 1 P *||2
foves = 18 < (14 5 ) 5 o = o1

2+ p

1 1% 146 1 (1_5)p 2

. Kl i W) s~ (L 0%) gyl = prox (o)
%

12
146 P |2
<@ (22 ool
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This directly gives the rate of convergence when p > 0. When p = 0, the inequality can
be simplified to

1
* 12 *[12
foves = 18 < (14 gz ) e =713
1 146y L 2
1+g1+5 (1+€ ) £1+5(1 J) ||.Z‘[—pI'OXF/p([Eg)||2
1 2
< (14 s ) e =12 = O proxi, (e .
In this case, the same arguments as for criterion C; enable to get almost sure convergence.

Proof of Theorem 4.1 for criterion C3 (relative accuracy)

Denoting 5 := +/p/ (21 + p) , the stopping criterion Cz writes

|7er1 — proxg,(zo)lla < edllze — well2 with g, = S (4.12)

Convergence. The condition (4.12) matches condition (B) of | , Th. 2]. We also have
clearly >, e, < +o00 and the regularity assumption of the operator is verified, by our
extra assumption and | , Prop. 7]. Thus | , Th. 2] directly gives us that ()
converges to a minimizer of F', that we denote by x*.

Rate. When F' is p-strongly convex, we can furthermore develop:

e — ¥l < [freer — proxg, ()|, + [proxg,(e) — o*|

< e llwen — @elly + B llze — 27,

<ep||lwepr — 2%y + e f|we — 2|, + Bllwe — 27,

2

where the first inequality used both condition C3 and Lemma 4.2. This implies that

2
2 e+ p 2
et — o[ < (1 - ) e — 2.

Finally, denoting dy := (**9/(¢*+° — 1) > 1, we have®

(de —1) N €e+5

T = o SAB <=1

e <p

2 2 2
3 2 _ B\ (de—1) 2 (de—1)
Note that &gy = 4(2H+5)52+25 < (5) [df <p (1_::,3(1[)2.
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This yields

/ 2426 P

* 12 *[[2
— < R —

o =< (727) gy o=l

which gives the result.

General comments on the result

This result thus establishes that Reconditioned—I-SPY converges linearly to a solution

of (P). This means that Reconditioned—-I-SPY has qualitatively the same behavior as
DAve-PG, with the additional feature of having sparse local updates and therefore sparse
upward communications. In other words, our algorithm is similar to the baseline in terms
of iterations, but it is expected to be faster in terms of communications (more precisely in
terms of quantity of information exchanged between master and workers) which would
result in a wallclock gain in practice, as shown in Section 4.3. Before this, we further
investigate in the next section the theoretical gain of our sparsification technique in the
case of sparse optimal solutions.
Remark 4.4 (Acceleration (with respect to iterations)). In this chapter, we are inter-
ested in sparsifying communications and we primarily consider the reconditioning aspect
of proximal methods, leaving aside other aspects including acceleration. As proposed
in [ |, the iterations of the inexact proximal algorithm can indeed be accelerated using
Nesterov’s method [ |. The recent works [ : | also propose accelerated
and quasi-Newton variants of the inexact proximal point algorithm as a meta-algorithm to
improve the convergence of optimization methods (driven by machine learning applications
[ /). In this chapter, we investigate the complexity in terms of communications
rather than iterations, so we do not insist much on these accelerated variants. However
the developments of this section could be extended with accelerated proximal algorithm,
following the meta-algorithm of [ ]

4.2 Identification for two-way sparse communications

In the previous section, we present an adaptive sparsification of upward communications
(worker-to-master) and show that the resulting algorithm converges after proximal recon-
ditioning. By construction, the downward communications (master-to-workers) depends
on the structure of z* (the master point of the inner method), which is the output of
a proximal operator on r. In the case of ¢;-regularization or other sparsity-promoting
regularization | ], we show in Section 4.2.1 that the 2* eventually become sparse
after some iterations. This automatically makes our algorithm a two-way sparse algorithm.
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Finally, in Section 4.2.2, we take a closer look to the complexity of our algorithm with
respect to the communication cost.

For this study, we make an additional assumption that our problem has a strongly
sparse solution. This assumption is divided into two parts: i) the regularizer r should
induce a stable support at the optimum (through its proximity operator); and ii) this
optimal support supp(z*) should be small with respect to the ambient dimension.

Assumption 4.5 (Strongly sparse optimal solution). Problem (P) is p-strongly convex
(> 0) and its solution x* verifies

i) 3 >0 such that
M
supp(z*) = supp (proxT (a:* — Z a;Vfi(z*) + e)) Ve € B(0,¢);
i=1
i) the size s* = |supp(z*)| of the optimal support is small compared to n: s* <K n.

While part ii) is rather explicit, part i) is quite abstract; this condition matches the
nondegeneracy condition (ND) for sparse solutions commonly admitted for exact recovery

in machine learning; see e.g. | , |. The interest of the general assumption i)
is that it accounts for a variety of sparsity-inducing regularizations, including weighted
¢1-norms, “group” ¢y /{,-norms; see | , Sec. 3.3].

4.2.1 Identification and consequences

The iterates of proximal algorithms usually identify the optimal structure; see Section 1.4.
Unfortunately, randomness may break this identification property. For instance, it is well-
known that for the proximal stochastic gradient descent, the sparse structure may not be
identified with probability one; see e.g. [ | and a counter-example in | ]. We first
establish that our algorithm does identify the optimal support under the non-degeneracy
assumption 4.5.

Theorem 4.6 (Identification). Let the functions (f;) be u-strongly convex and L-smooth.
Let r be convex lsc. Under Assumption 4.5, the outer and inner iterates of Reconditioned—
I-SPY identify the optimal structure in finite time with probability one: there exists a
finite time A < oo such that

supp(xh) = supp(z¢) = supp(z*)  for any k and all £ > A

where xf denotes the k-th iterate produced by SPY during the (-th outer loop.
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Proof. We proved in the previous section that Reconditioned—I-SPY converges almost
surely, but it is not enough to guarantee identification in general*. Here it is the fact that
the inner algorithm I-SPY features a proximity operator with a non-vanishing stepsize
that yields the following identification property.

More precisely, Reconditioned—I-SPY is of the form

Te1 A PrOXpy, (o)
and verify for all ¢, k
Ellz, —a*| <C(1—p)*  and  E|7} - 75| < C'|lae — a7

for some C,C" > 0 and p € (0,1), where

M
T, =x, — 7 Z a;Vh; o (x7).
i=1

As in the proof in Section 3.1.3, we also consider Z* given by (1.30). Then we have
M M
77 =" = |27 - Z @;Vhi(zp) — 2" + VZ a;V fi(2")||
= ||z; — ZaZVfZ wp) —yp(xs — a0) — ~|—72alVfl )|

< [log — =" + WZOéiHVfi(IL‘E) = VSila)l +ypllar — ]
i=1
M

< lzj =2+ ) aillla; — 2|l + vplla; — |
=1

< Dljaj — ™| + D' ||z — a7

iTake n = 1, F(x) = |z|, and 241 = prox. (z¢) + 1/¢2. The minimum of F is 0 but we have
zg=1/({ 1) >0 for all £ > 1.
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For any ¢, k, we then have

E||z; — 7*|”
< 2E [||z§ — = |* + ||z — 7]
< 2C"El|z, — a;|* + 2DE||z} — 2*||* + 2D'E||z, — 27|
< 4C'E||zy — 2*|]* + (4C" + 2D)E||z} — 2*||* + 2D'E||z, — x|
< (8C" + 2D + 2D"E|z, — =*|?
< (8C"+2D + 2D")E||(1+ By)(we — ) — Bu(wer — a)|* + 2D'E| |z} — x|
<2(8C" + 2D + 2D')(1 + Be)’E|lze — 2*)||* + 2(8C" + 2D + 2D") (1 + B¢)*Eljxe—y — 2*)|?
<2(8C" + 2D +2D')(1 + B¢)2C(1 — p)* 4+ 2(8C" + 2D +2D')(1 + B,)*C(1 — p)**
< 16(8C" +2D +2D"\C(1 — p)* 1.

Hence, by Markov’s inequality and Borel-Cantelli’s lemma, Tf — 7* almost surely. As a
direct result, we get

= prox., (TF) = 2* = prox.,.(7").
Together with Assumption 4.5, this convergence implies identification of optimal support
(see e.g. the recent survey | , Cor. 1]): there is a A < oo such that for all £ > A,

null(z}) = null(z*) and supp(zh) = supp(z*).
Finally, it suffices to notice that zy,; = x} for some k to conclude the proof. m

This identification has two consequences on communications in our distributed setting.
First, identification implies that the variables communicated by the master to the workers
will eventually be sparse. Second, this sparsity is also leveraged in the sparsification
strategies of Reconditioned-I-SPY where only the coordinates in (z;) are randomly
zeroed. Thus, for sparsity inducing problems such as ¢;-regularized learning problems,
our distributed algorithm has, structurally, two-way sparse communications.

Even better, once this identification occurs, the rate of the inner algorithm SPY
dramatically improves to match the rate of its non-sparsified version DAve-PG.

Theorem 4.7 (Improved rate). Let the functions (f;) be p-strongly convex and L-smooth.
Let r be convex Isc. Under Assumption 4.5, the inner iterates of Reconditioned—I-SPY
benefit from an improved rate after identification. There is A < oo such that for all £ > A
and k € [k, kmi1)

2m
ek = ailly < (1=tu+0) " llze— 23l
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where xf denotes the k-th iterate produced by I- SPY during the {-th outer loop.

Furthermore, using the mazximal stepsize v = m, we obtain for all k € [kuy, k1)

1— 2m
ot = < () e = i,
¢

Proof of Theorem 4.7. From Theorem 4.6 we know that identification takes place i.e. that
we have null(zf) = null(z*) = n* for all k,¢ (¢ > A). In this case,

@] =0 and [z}l =1y

where we denote by n* the complementary of n*. Then, we have

(25 )i = [prox, ([T7)5)] o = [I)IFOXW (Z ailaF P8 — Zal ViP5 )]
= [Proxw (Z b Pr — WZoéi[Vfi(kaf)]n*)]

This exactly coincides with a non-sparsified update on the restriction of f; to the subspace
of vectors with null coordinates in n*. More specifically, let S* = {z € R" : null(x) = n*}
be the subspace of vectors with null coordinates in n*, and Jin= be the restriction of f; to
S*. Then the above iteration coincides with non-sparsified update on ((a), (fizs),7). In
other words, after identification, I-SPY is no longer random and has the same iterates as
DAve-PG on S* (while in S**, the algorithm has converged to 0). Theorem 1.14 therefore
guarantees that I-SPY benefits from a (1 —~(u+ p))? rate in terms of epochs (since (u+ p)
is the modulus of strong convexity).

n*

]

Thus our algorithm eventually has the practical interest of having sparse two-way
communication, at almost no additional cost.

4.2.2 Communication complexity

We study in this section the asymptotic communication complexity of our method in
terms of number of coordinates (real numbers) exchanged between the master and the
workers.

To do so, we combine the controlled number of (inner) iterations with the communica-
tion cost by iteration. The convergence rate analysis relies on the epoch sequence through
the number of iterations (and thus communications) per epoch, which is unknown since it
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depends on the computing system. We thus make the assumption that the computing
setup is able to perform an epoch within a predefined number of iterations, which is
verified in many practical contexts e.g. when the delays are bounded (recall Corollary 1.15).
Note that this assumptions is only needed for the communication complexity analysis but
not by any means for the algorithm nor the previous results.

Assumption 4.8 (Tamed epochs). The number of iterations between two epochs is
bounded as k,, — k1 < K.

We now define the communication complexity of our method as the number C(g) of
coordinates exchanged between master and workers in order to reach an accuracy €. For
Reconditioned-I-SPY, we get that

C(e) = K(c™ + c?™)ML(¢) (4.13)

where

e ¢ (resp. ¢?°"") is the (expected) number of coordinates communicated from the
master to the active worker (resp. from the active worker to the master);

e MC is the (expected) number of epochs of the inner method to reach stopping
criterion Co and C3 (Note that, for C;, the complexity is different, in O(1) by
construction);

e L(¢) is the number of outer loops to reach accuracy e:
L(g) =min {¢: ||z, — 2*||* < €} .

Focusing on the final regime of the algorithm when identification has taken place (as
per Section 4.2.1), we get

c"P = [supp(zf)| = [supp(z*)| = s* and ¥ =5+

which leads to the following communication complexity for Reconditioned—-I-SPY.

Theorem 4.9 (Communication complexity of Reconditioned—I-SPY). Let the functions
(fi) be p-strongly convex and L-smooth (i > 0). Let r be convex lsc. Let assumptions /.5
and 4.8 hold. If the parameter c is of the same order as s* compared to n (c ~ s* <K n),
then the communication complexity (4.13) of Reconditioned—I-SPY with criteria Cy or Cs

C(e) =0 (L;“\/W max{\/g; \/Ec*}log (%)) .
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Proof of Theorem J.7. The proof consists in evaluating the terms in (4.13), one by one,
in the right regime. From Theorem 4.6 we know that identification takes place i.e. that
we have null(z¥) = null(z*) := n* for all k,¢ (¢ > A). In this case,

[mlg]n* =0 and [.I'IZ]F = ZL‘?

where we denote by n* the complementary of n*. Then, we have

(2§l = [prox., ([T)]e)] = = [proxw (Z il PE L Zal V fila~ Dk)]m)]
— [proxm, (Z it DF — Z o [Vfi(xk_Df)]m>]

This exactly coincides with a non-sparsified update on the restriction of f; to the subspace
of vectors with null coordinates in n*. More specifically, let S* = {z € R" : null(x) = n*}
be the subspace of vectors with null coordinates in n*, and Jin= be the restriction of f; to
S*. Then the above iteration coincides with non-sparsified update on ((a), (fizs),7). In
other words, after identification, SPY is no longer random and has the same iterates as
DAve-PG on S* (while in S*t, the algorithm has converged to 0). Theorem 1.14 therefore
guarantees that SPY benefits from a (1 — v(u + p))? rate in terms of epochs (since (u + p)
is the modulus of strong convexity). O

7’L*

n*

Comparing this result with the communication complexity of our baseline DAve-PG shows
the interest of our adaptive sparsification technique. For DAve-PG, the communication
complexity writes as

C(e) = K(c"™ + c®"™)M(¢)

where M(e) is the number of epochs to reach accuracy €. Theorem 1.14 gives us M(e) =
O((p+ L)/ulog(1/¢e)). Noticing that DAve-PG also identifies the optimal support (apply
e.g. | , Cor. 1]), we get c"P = s* as previously. However without the sparsification
of SPY, the cost of an upward communication is c?"® = n. This yields the following
gain in communication complexity of our algorithm (the greater, the more performing
Reconditioned-I-SPY compared to DAve-PG):

1 *
O( + K(p) mm{ /¢ : s}n%—s)'
1—/{ =

The gain thus shows a product of three terms. The first term depends on the condition
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number of the problem and indicates that our method dominates DAve-PG for all prob-
lems. The second term is in (0, 1] but should be not too far from 1, provided that the
final sparsity is not poorly estimated. Finally, the last term fully exhibits the merits
of adaptive sparsification with a term in nr + s* for DAve-PG much greater than the
v/ns* for Reconditioned-I-SPY. This last term really shows a nice dependence in the
dimension of the problem and optimal solution for the proposed method. The theoretical
gain of Reconditioned—I-SPY compared to DAve-PG is confirmed in the next numerical
illustrations.

4.3 Numerical illustrations

In this section, we illustrate the communication gain provided by our random sparsification
algorithms on two classic ¢; regularized empirical risk minimization problems.

4.3.1 Experimental setup
Problem

We first consider a synthetic LASSO problem

min | Az~ b3+ Al (4.14)
with n = 1000 features and two different sizes of example set m = 500 and m = 10, 000.
Data matrix A is generated from the standard normal distribution, b = Axg + e where z
is a 99% sparse vector and e is taken from the normal distribution with standard deviation
0.01. We take A\; to reach the density of the final solution approximately 1.2%.
We also examine the regularized logistic regression with elastic net

. 1 = T )\2 2
min Ez;log(lvtexp(—yjzj )+ Mllzll+ Tl (4.15)
]:

on two data-sets from the LibSVM repository: the madelon data-set (n = 500 m = 2000)
with hyperparameters Ay = 0.03 and A; = 0.001, chosen to reach a 99% sparsity; the
revl_train dataset (n = 47236 m = 20242) with parameters A\; = 0.001 and Ay = 0.0001
to reach a 99.7% sparsity.

Setup details

We used Python and MPI (Message Passing Interface) for the distributed communications
framework. To communicate sparse vectors, we send a list of coordinates then their values,
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as usual in sparse communications.

We run our experiments on a machine with 32 cores and 256 Gb of RAM: one core
plays the role the master, M cores are the slaves (M = 5 for LASSO problems, M = 10
for madelon, and M = 20 for rcvl_train). The data sets are split evenly between the M
slaves, each having access only to its own part.

Restart technique Let us precise the way we perform restarts for Reconditioned-I-SPY.
Since, after the restart only two things changes for every worker: the prox-center and the
probability vector, the first update received by master from any worker after the “restart”
could be modified by master to the “correct update” (with a new prox-center but with a
previous probability vector) by adding the weighted difference of old and new prox-centers
to it. Furthermore, after sending the new prox-center to the worker, this “shift” could
also be performed with the worker’s local variable x; that allows making “sliding” restart
without any synchronization rounds.

Algorithms

We compare three algorithms:
e ‘DAve-PG’: DAve-PG algorithm without any sparsification;

e ‘Reco-I-SPY; (xxx;n)”: Reconditioned-I-SPY with simplified stopping criteria C;
that consider My, = n. Where 'xxx’ corresponds to the algorithm parameter c - the
amount of randomly chosen coordinates;

e ‘Reco-I-SPY; (xxx;cn)’: Reconditioned-I-SPY with stopping criteria C,.

We display the performance of the algorithms in four ways: i) size of support vs
number of iterations, showing the identification properties; functional suboptimality vs ii)
communication cost, modeled as the number of couples (coordinate, value) sent from and
to the master, iii) amount of epochs (1.31), and iv) computational time (only for rev1_train
dataset, where the dimension of the problem is big enough to see the communication
bottleneck in practice.

Performance of fixed budget criterion

Let us discuss the performance of different stopping criteria in practice. For this, let us
consider two different criteria: theoretical (epoch budget) C; with constant budget n and
practical (fixed budget).

In Figure 4-1, we present the convergence of Reconditioned-I-SPY with fixed-budget
stopping criteria on synthetic LASSO problem (4.14) with m = 500 and n = 1000. As
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we could see, the performance of the Reconditioned—I-SPY with C; with fixed budget
M, = 1 is much better than for ones with inner cycle of bigger size. On the one hand,
the theoretical budget criterion C; propose the non-decreasing sequence My, > 1. On the
other hand, as we could see from the plots, the slope is constant after some time, that
means the rate of real C; is expected to be slower than the algorithm run with 1-epoch
fixed budget and this is shown in Figure 4-2. More precisely, we consider problem with
m = 10000 and n = 1000 and as we could see, that the rate of C; is worse and since lines
contains horizontal parts the size of inner loop is bigger than it should be. We could see
that algorithm with C; is faster in identification in the beginning; however it needs much
more time to identify the correct active-set in the end.

Comparing with relative accuracy criterion

Let us now consider the theoretical criterion C3. From the practical point of view this
criterion is impossible to use since it requires the knowledge of the full dataset to verify.
However, for us, it is important to make a comparison with it so we could see if the fixed
budget mode is good enough in practice.

Criterion C; for LASSO To verify the stopping criterion, we use the duality gap and
the fact that the inner problem is convex and lower semi-continuous, we could bound the
distance to the solution using the strong duality. We consider synthetic LASSO problem
for which the solution of the dual problem could be explicitly computed from the primal
solution.

=
o
>

10°
——— DAve-PG ——— DAve-PG
== Reco-I-SPY, (50,n) == Reco-I-SPY, (50,n)

g g
Suboptimality
5 S =)

Suboptimality

=
o
)
©
—
o
)
©

CONRN
10-10 VNN, 10-10 |
, N,

\\ \\
SRV N WY : . . . 10712 . : : . . . .
0 500 1000 1500 2000 2500 3000 3500 4000 0 200000 400000 600000 800000 1000000 1200000 1400000
Iteration Exchanges

10-12

Figure 4-1. Dependence between convergence and the size of fixed budget on synthetic
LASSO (4.14).
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In Figure 4-3, we see that the theoretical criterion C3 performs better in practice;
however, the performance of 1-epoch mode is worse only in the beginning since the duality
gap does not give a tight approximation of the distance to the solution in general.

Criterion C; for logistic regression Let us now consider logistic regression problem
(4.15) where the dual solution is hard to compute. In this case, we use the following bound

1 1
Tyy1 — ProxXp,, (x < ——||0Hy(x — OHy(z))||s < ——||0H,(x .
|Ter1 — Proxg,(z¢)|l2 < M+PH o(Te41) o(@7)]l2 < u+p” (o)l

Since we use ¢, regularized problem the distance of subdifferential to 0 is easy to compute;
however, it requires full dateset to calculate it. This bound is less tight than duality gap
one, so for practical experiments we use the stopping criterion

(b +p)%p
21+ p)(0.001£)2+25 g1 — ell3 (4.16)

|0H (w011) |3 < I

In Figure 4-4, we present the performance of 1-epoch mode versus C3 with the practical
consideration as in (4.16). We consider logistic loss with elastic-net regularization on
madelon dataset with A\; = 0.03 and \s = 0.001. As we could see from the plots, the
performance of such version of stopping criterion is worse than 1-epoch mode in practice
since the distance from the subdifferential to 0 is not the best approximator; however, in
the beginning, the performance of the theoretical run Cj is still better.
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Figure 4-2. Synthetic LASSO (4.14): 1-epoch vs C;.
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Figure 4-3. Synthetic LASSO (4.14): 1-epoch vs Cs.
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Figure 4-4. Logistic regression with elastic net regularization and madelon dataset: 1-epoch
VS C3.

4.3.2 Warm start

As we could see from the Figure 4-2, the identification moment takes much more iterates
for Reconditioned—-I-SPY; however, there is no need to sparsify updates from the beginning
since master-to-worker communication is not sparse. Considering this, we propose to run
DAve-PG Algorithm first, for some amount of iterations and switch to Reconditioned—I-SPY
when the current master point is sparse enough.

In Figure 4-5, we present the experimental result for rcvl_train dataset that has much
more coordinates so that we could see the communication bottleneck in practice. More



CHAPTER 4. RECONDITIONED SPARSIFICATION 117

10?
—— DAve-PG —— DAve-PG
0.28 4 Reco-I-SPY; (50;1) Reco-I-SPY; (50;1)
-a00-  Reco-I-SPY; (100;1) 10% 1 -a00-  Reco-I-SPY; (100;1)
0.26 1 a0 Reco-I-SPY; (200;1) -a0- Reco-I-SPY; (200;1)
s00- Reco-1-SPY; (500;1) 10-2 4 -#00-  Reco-I-SPY; (500;1)
@ Reco-I-SPY; (5000;1) - Reco-I-SPY; (5000;1)

Suboptimality

T T T T 10712 T T e T T T
0 20000 40000 60000 80000 100000 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Iteration Exchanges le8
102 102
—— DAve-PG —— DAve-PG
) Reco-I-SPY; (50;1) , Reco-I-SPY; (50;1)
10°4 w0 Reco--SPY; (100;1) 10%4 -am- Reco-I-SPY; (100;1)
-a00- Reco-I-SPY; (200;1) -a00-  Reco-I-SPY; (200;1)
10-2 4 #00- Reco-I-SPY; (500;1) 10-2 4 -s00-  Reco-I-SPY; (500;1)
> = Reco-I-SPY; (5000;1) > - Reco-I-SPY; (5000;1)
= £
© ® 194
10
£ 1S
=] =
Q Q
o o 107
Q Q
p=} -, >
0 e, )
.......... 1078 4
10710 4 _ 10710 4 i
10712 — — r r 1012 . e . h — .
0 20000 40000 60000 80000 100000 0 200 400 600 800 1000 1200 1400 1600 1800
Iteration Time (s)

Figure 4-5. Logistic regression with rcvl_train dataset: 1-epoch.

precisely, sparsified algorithm performs much better in terms of communication; however,
the total amount of iterations is also sufficiently bigger for the very small ¢. As a result,
the total time complexity is not well approximated by exchanges for ¢ < n, that prevents
us from using extreme sparsification that makes identification process and, as a result,
convergence slower.

4.4 Conclusion

In this chapter, we present Reconditioned—I-SPY Algorithm that consists of two key
components: I-SPY algorithm, that allows solving well-conditioned problems efficiently in
terms of data exchanges and proximal reconditioning technique that allows solving the
ill-conditioned problem via solving a sequence of well-conditioned subproblems iteratively.
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We present both the theoretical result and the performance in practice that both show
that the sparsification technique helps to save runtime of the minimization process by
decreasing the total amounts of bits sent.



Conclusion and perspectives

We propose a couple of techniques to reduce the dimensionality of the problem to reach a
better convergence result both for distributed and non-distributed setups. In both cases,
we focused on composite optimization problems with sparsity inducing regularizers.

First, we consider the non-distributed setting where on every iteration of algorithm,
we have an access to the whole dataset. It allows us to use vanilla proximal algorithm as
a basic method for our algorithm. Using the identification property of proximal methods
for a wide class of regularizers, we propose a “sketch-and-project” technique with specific
identification-based selections of projections. This allows the acceleration of proximal
gradient descent in terms of the amount of dimensions explored that we show both in
theory and practice. Moreover, our technique allows using non-separable regularizers.

Second, we present our approach for an asynchronous distributed master-worker setup.
We consider the problem of sparsification of distributed proximal algorithm by using the
same identification-based idea. However, asynchronicity brings additional restrictions,
so we consider only ¢; regularized problems in our study. Starting from a random
sparsification that performs worse both in theory and practice, we propose two different
approaches. In the first one, we investigate the practical performance of the algorithm
with identification-based sparsification that is proven to converge only for well-conditioned
problems. We show both that this algorithm could diverge, but in the same time, if it
converges, it brings a significant performance profit. In the second one, we propose a
proximal reconditioning technique that allows minimization of ill-conditioned problem via
iterative approximate minimization of well-conditioned ones. It allows using our algorithm
with theoretical guarantees to converge and good performance in practice.

This work opens several perspectives for future development. As we could see from
the Figures 4-5 and 3-6, 3-4 the correlation between runtime and the amount of exchanges
is better for I-SPY and it corresponds to the logic of the algorithm. As we could see
from the theoretical results, the amount of iterations to solve the problem is larger if
the sparsification is stronger. However, thanks to the identification property, the speed
becomes faster and performance becomes exactly the same as for DAve-PG. The situation
with Reconditioned—I-SPY is not the same. On the one hand, identification takes place
for this algorithm that allows solving the inner problem as fast as DAve-PG. On the other
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hand, the proximal parameter p is large for small ¢, which makes the profit in terms of
exchanges less significant than in I-SPY case. We could see from the numerical result, the
amount of iterations grows faster than the amount of communications decreases. This
property brings us to the “sparsification limit” (the smallest possible ¢ that leads to the
acceleration) and it could be further discovered in future works.

Furthermore, in Remark 4.4, we mention the acceleration of algorithms in Nesterov’s
sense and Catalyst algorithm as an example of the accelerated proximal reconditioning
technique. Since the dependence of amount of coordinates ¢ (as well as of proximal
parameter p) in case of acceleration would be as a square root it could make the amount
of required iterations for I-SPY to converge much smaller and closer to DAve-PG, or
even smaller that could lead to the better convergence both in theory and practice. In
addition, it would be interesting to compare performance of such accelerated method with
performance of I-SPY when it converges.

Finally, one of the important open question is to design an efficient distributed
version of Adaptive Randomized Proximal Subspace Descent, when each machine selects

the subspace to project independently like in | |]. Or even to investigate if the
asynchronous option is possible.
In recent | | authors propose a method that is much more stable in terms of

identification than accelerated proximal gradient descent and it is interesting to combine
this method with our sparsification technique.
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