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Résumé en Français

1 Introduction

La définition du dernier format vidéo standardisé en date, appelé TV Ultra Haute Défini-
tion (UHDTV) [1], a pour but d’améliorer le format standard actuellement déployé, appelé
TV Haute Définition (HDTV) [2], via l’ajout de nouvelles caractéristiques, telles que la réso-
lution spatiale 4K, une dynamique étendue, un gamut de couleur plus large et une fréquence
image plus importante, au signal vidéo [3, 4]. La définition technique du standard UHDTV
est disponible dans la recommandation BT.2020 fournie par l’Union Internationale des Télé-
communications (ITU) [1]. Le déploiement du standard UHDTV se faisant en trois phases,
la phase courante UHD-1 Phase 2 permet d’augmenter la résolution de la HD (1920x1080
pixels) à la UHD (3840x2160 pixels), ainsi que la fréquence image de 50/60 images par
secondes (ips) à 100/120 ips. La quantité de données à traiter avant la transmission de ce
nouveau signal à l’utilisateur final est donc multipliée par un facteur 8 par rapport au signal
actuel.

Ce nouveau format vidéo standard devrait bientôt être déployé par les diffuseurs tra-
ditionnels ainsi que les fournisseurs de services de streaming tels que Netflix ou Youtube.
Ceux-ci sont en effet poussés par la demande liée à la mise à disposition du grand public
par les fabricants de téléviseur d’équipements capables d’afficher ces nouveaux formats. La
quantité de données à transiter sur les réseaux internets et mobiles devraient donc exploser
dans les années à venir. Cisco, l’un des leaders mondiaux en équipements de gestion de
réseaux, prévoit même que la vidéo représentera d’ici 2022 79% du volume total de données
transitant sur les réseaux mobiles mondiaux [5].

En plus de cette demande accrue de bande-passante, de nombreux utilisateurs regardent
le même contenu vidéo sur une large gamme de systèmes ayant des capacités d’affichage très
hétérogènes ainsi que des bande-passantes disponible très variables. Les fournisseurs de con-
tenu doivent donc toujours considérer ces marchés en encodant leurs vidéos dans plusieurs
formats différents (résolution spatiale, fréquence image) et à plusieurs débits. Ainsi, une
importante contrainte de compatibilité avec les systèmes existants doit être respectée, ce qui
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est un vrai défi pour les diffuseurs TV et fournisseurs de services de streaming.
High Efficiency Video Coding (HEVC) [6] est la dernière norme de compression vidéo

mise au point de façon collaborative par l’ITU, l’Organisation Internationale de Normalisa-
tion (ISO) et la Commission Électrotechnique Internationale (IEC) au travers leur groupes
respectifs MPEG et VCEG réunis dans un groupe commun appelé JCT-VC. Une extension
scalable du standard HEVC, appelé HEVC scalable (SHVC), a également été développée
pour prendre en compte des cas d’usage de codage scalable dans lesquels la compatibilité
avec les infrastructures existantes et la présence de plusieurs formats vidéos dans le même
flux sont nécessaire.

Cette thèse a pour but de développer de nouvelles solutions de codage scalable afin de
réduire la complexité offerte par l’état de l’art SHVC. En effet, bien que ce standard soit
une solution prometteuse pour résoudre les problèmes de compatibilité rencontrés par les
diffuseurs et fournisseurs de contenu lors de l’introduction de nouveaux formats vidéo sur
le marché, son architecture très gourmande en termes de calculs atteint ses limites avec
l’encodage de vidéos respectant le format UHDTV.

Le travail effectué dans le cadre de cette thèse se focalise donc sur la proposition de
nouveaux algorithmes permettant d’effectuer un codage scalable à faible complexité des
vidéos ayant un format émergent tel que l’UHDTV, tout en conservant une compatibilité
avec les services HDTV existants. Le but de ces solutions est de faciliter le déploiement
des services UHDTV pour les fournisseurs de services de streaming et les diffuseurs de
contenu. En effet, cette thèse s’inscrit dans un contexte collaboratif entre l’équipe Vaader
du laboratoire académique IETR et l’institut de recherche b<>com, dont l’objectif est de
transférer ses solutions, entre autres, aux industriels du secteur de l’audio-visuel.

2 Contributions

Les contributions de cette thèse sont divisées en trois parties. La première a pour but
d’offrir la scalabilité spatiale avec seulement des algorithmes de pré et post-traitement as-
sociés à une seule instance d’encodeur HEVC. Pour cela, un nouveau schéma scalable
basse complexité est introduit. Celui-ci est basé sur la décomposition du signal vidéo avant
l’encodage de telle manière à permettre la scalabilité en utilisant uniquement des outils com-
pris dans le standard HEVC et une étape de reconstruction réalisée après décodage. Deux
façons différentes de décomposer le signal sont étudiées dans cette thèse:

• Décomposition basée polyphase: cette méthode de décomposition est basée sur l’état
de l’art qui consiste à décomposer chaque image de la vidéo d’entrée en quatre sous-
images différentes ayant une résolution divisée par deux horizontalement et verticale-
ment. Ces sous-images sont ensuite arrangées séquentiellement pour former une vidéo
qui est ensuite amenée à être encodée par une unique instance d’encodeur HEVC. La
scalabilité spatiale est atteinte en ne décodant que la partie du bitstream obtenu cor-
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respondant aux sous-images souhaitées, et ce en profitant du mécanisme de couches
temporelles inhérentes à la structure de codage hiérarchique des images d’une vidéo
utilisée par HEVC. Cependant, la décomposition polyphase comporte certains défauts
dus à sa simplicité, notamment l’introduction d’un décalage de phase entre les pix-
els de luma et les pixels de chroma de chaque type de sous-image. Un processus de
filtrage est proposé dans cette étude pour compenser ce décalage de phase et ainsi
obtenir de meilleurs résultats lors des prédictions inter-images faites par HEVC pour
les pixels de chroma. Les résultats expérimentaux montrent que des gains moyens en
débit de l’ordre de 3.6% sont obtenus par rapport à la décomposition polyphase de
l’état de l’art. Ainsi, comparée à SHVC, la solution proposée atteint une réduction de
complexité moyenne de 55% pour un surcoût moyen de débit de l’ordre de 6.6%.

• Décomposition basée ondelettes: cette approche remplace la décomposition polyphase
du schéma précédent par une décomposition basée sur des transformées en ondelettes.
Un modification du schéma d’ondelettes traditionnelle est proposée dans cette thèse
pour permettre l’utilisation de la vidéo transformée dans le même schéma de com-
pression scalable basse complexité qu’avec la décomposition polyphase. Plusieurs
ondelettes utilisant uniquement des opérations sur les entiers ont été considérées pour
leur compatibilité avec un encodage HEVC. Une modification du calcul du coût débit-
distortion en fonction du type de sous-bande a également été proposé pour les on-
delettes bi-orthogonales afin de prendre en compte la non conservation d’énergie due
à leur non-orthogonalité. Les résultats expérimentaux montrent que l’ondelette de
Haar offre les meilleurs résultats, avec réduction moyenne de la complexité de 54%
par rapport à SHVC pour un surcoût en débit de 1.9%. Cette méthode dépasse donc
les performances de la proposition précédente basée sur la décomposition polyphase.

La seconde partie de cette thèse se focalise sur le design d’un schéma scalable à deux
couches composé d’un encodeur HEVC standard pour la couche de base et d’une proposi-
tion d’encodeur très basse complexité pour la couche d’amélioration. Cet encodeur spéci-
fique pour la couche d’amélioration est basé sur la proposition d’un algorithme d’adaptation
locale de la résolution spatiale. La spécification de cet algorithme peut être séparée en deux
contributions complémentaires:

• Résolution spatiale adaptative pour les prédictions inter-couches: Cette méthode
a pour but d’adapter la résolution spatiale des images de la couche d’amélioration à un
niveau bloc afin de ne traiter que la quantité minimale de données permettant de cor-
rectement représenter les détails des images de la couche d’amélioration. Pour chaque
bloc en entrée, l’algorithme d’adaptation de la résolution spatiale proposé détermine
ainsi la résolution spatiale critique parmi un ensemble fixe de valeurs possibles. Le
choix de résolution spatiale se base sur l’analyse du contenu du bloc ainsi que des
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blocs du voisinage disponibles. Ensuite, une fois la résolution critique sélectionnée, la
prédiction et le reste des opérations constituant le cœur de l’encodage sont effectuées
dans la résolution spatiale choisie. Cette méthode, couplée à la réutilisation des déci-
sions d’encodage de la couche de base, permet d’atteindre une réduction moyenne de
la complexité d’encodage de l’ordre de 72% par rapport à SHVC pour un surcoût en
débit de 4.8%

• Extension de l’outil d’adaptation de la résolution spatiale aux prédictions inter-
images: Cette solution permet d’améliorer significativement les performances de la
proposition précédente en supprimant l’obligation de signaler la résolution spatiale
choisie pour un bloc de la couche d’amélioration lorsque son bloc co-localisé dans la
couche de base a bénéficié de l’utilisation de prédictions inter-images. En effet, après
une mise à l’échelle appropriée des vecteurs de mouvements de la couche de base,
la résolution des blocs de la couche d’amélioration peut être prédite à partir des im-
ages précédemment encodées via une solution proposée de dérivation de la résolution
spatiale. Les résultats expérimentaux montrent que le surcoût en débit moyen observé
tombe à 0.5% avec cette méthode comparée à SHVC, pour des réductions de complex-
ité toujours importantes, respectivement de l’ordre de 96% et 53% pour l’encodeur de
la couche d’amélioration seul et les deux couches combinées.

La dernière partie de cette thèse explore l’adaptation de la résolution temporelle pour des
contenus à fréquence d’images élevées (HFR), c’est à dire des vidéos ayant une fréquence
image égale à 120 ips. Dans ce but, un nouvel algorithme est proposé:

• Fréquence Image Variable (VFR) : cette méthode a pour but de réduire la fréquence
image d’une vidéo quand les mouvements qu’elle contient ne nécessitent pas 120 ips
pour être correctement représentés. Pour atteindre ce but, un modèle VFR, capable de
déterminer la fréquence image critique de façon dynamique, choisie parmi l’ensemble
fixe de valeurs {30ips, 60ips, 120ips}, pour chaque groupe de 4 images d’entrée con-
sécutives. Ce modèle est basé sur des algorithmes d’apprentissage automatique, en-
traînées à réaliser cette tâche spécifique en utilisant un ensemble de données construit à
partir de vidéos HFR sélectionnées spécialement pour cette étude. Les vidéos ont ainsi
été préalablement annotées avec les fréquences image critiques correspondantes pour
chaque groupe de 4 images consécutives. Les résultats expérimentaux montrent que le
modèle est capable de générer des vidéos à fréquence image variable ayant une qualité
perçue identique à la vidéo HFR originale correspondante, mais avec moins d’images.
Concernant la compression vidéo, les vidéos VFR obtenues à partir du modèle proposé
permettent de réduire le débit moyen de 4.3% par rapport à l’encodage HEVC de la
vidéo originale HFR, en plus de réduire la complexité moyenne de 28%.
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• Résolution spatio-temporelle adaptative pour un codage scalable à faible com-
plexité: cette méthode à pour but de combiner la solution basée sur l’adaptation de la
résolution spatiale et la solution basée sur la fréquence image variable VFR, afin de
proposer un schéma global de codage scalable à faible complexité. Ainsi, l’algorithme
de détection de fréquence image critique est d’abord appliqué pour adapter la ré-
solution temporelle à un niveau image. La vidéo VFR est ensuite encodée par le
codeur scalable qui adapte la résolution spatiale à un niveau bloc, dans la couche
d’amélioration. Cette méthode améliore les performances des algorithmes précédem-
ment proposés, offrant ainsi une solution qui surpasse les algorithmes d’encodage scal-
able de l’état de l’art en termes d’efficacité de codage et de réduction de complexité.

3 Conclusion

Ce document propose d’explorer des approches de codage scalable légères basées sur
l’adaptation de la résolution spatio-temporelle, soit à travers des algorithmes de pré-traitement
ou des outils de codage intégrés dans des codecs. Le but final était de proposer une méthode
de compression scalable basse complexité capable d’encoder efficacement des vidéos 4K
HFR tout en conservant une compatibilités avec les infrastructures HDTV existantes.

Pour atteindre ce but, trois contributions principales ont été proposées dans le cadre de
cette thèse. La première est basée sur des outils de pré-traitement utilisés pour permettre le
codage scalable basse complexité avec un seul encodeur HEVC. La seconde contribution se
focalise sur un schéma scalable à deux couches utilisant un encodeur très basse complexité
basé sur l’adaptation de la résolution spatiale pour la couche d’amélioration, tout en assurant
une compatibilité au travers de l’encodeur HEVC utilisé pour la couche de base. Enfin, la
troisième contribution s’intéresse à l’adaptation de la résolution temporelle avec le design
d’un algorithme de fréquence image variable, placé avant encodage.

Au travers de ces contributions, le déploiement de services vidéo scalables respectant
le standard UHDTV pourrait être considérablement facilité, grâce à la faible contrainte, en
termes de calculs, des solutions proposées. De plus, ce travail a mené à la publication de
plusieurs articles scientifiques dans des conférences et journaux internationaux ainsi qu’au
dépôt de deux brevets.
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Chapter 1

Introduction

1.1 Context and challenges

The definition of the latest Ultra-High Definition TV (UHDTV) standard [1] aims to increase
the user’s Quality of Experience (QoE) by improving the currently deployed High Definition
TV (HDTV) standard [2] via the introduction of new video signal features such as higher
spatial resolution, High Dynamic Range (HDR), wider color gamut and High Frame-Rate
(HFR) [3, 4]. Technical definition of the UHDTV signal is available in the BT. 2020 recom-
mendation of the International Telecommunication Union (ITU) [1]. Fig. 1.1 illustrates the
features enabled by the deployment of Digital Video Broadcasting (DVB) Ultra-High Defi-
nition (UHD) services in three phases. The UHD-1 Phase 2 specification enables to increase
the spatial resolution from High Definition (HD) (1920x1080 pixels) to UHD (3840x2160
pixels) and the video frame-rate from 50/60 frames per second (fps) to 100/120 fps, thus
multiplying by a factor 8 the amount of data to be processed before transmission to the end
user.

This new video signal standard is expected to soon be deployed by traditional broad-
casters and Over-The-Top (OTT) providers, such as Netflix and Youtube, since UHDTV
compliant display devices have already been pushed to the consumer market by display
manufacturers. The amount of video data transmitted over IP or mobile networks is thus
expected to further increase in the upcoming few years due to these new immersive data-
heavy video formats. Cisco, through its visual networking index [5], even estimates video
traffic to represent 79% of the world total mobile data traffic by the end of 2022.

In addition to this high bandwidth requirement, many users are consuming the same con-
tent on a wide variety of devices with heterogeneous video format and network capacities.
Content providers thus still have to reach these markets by encoding videos in different for-
mats (spatial resolution, frame-rate etc.) and different bitrates. Therefore, a strong constraint
on backward compatibility has to be addressed, which is a challenge for both broadcasters
and OTT providers.
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Fig. 1.1 DVB phased UHDTV deployment

High Efficiency Video Coding (HEVC) [6] is the latest video coding standard from the
collaboration between the ITU, the International Organization for Standardization (ISO) and
the International Electrotechnical Commission (IEC) through their respective Motion Picture
Expert Group (MPEG) and Video Coding Expert Group (VCEG) joint effort called Joint
Collaborative Team on Video Coding (JCT-VC). A scalable extension of the standard, named
SHVC, has also been developed to address scalable encoding use-cases where backward
compatibility and several video formats are required.

1.2 Objectives and Motivations

This thesis aims at designing new solutions to decrease the complexity of scalable encod-
ing compared to state-of-the-art codecs. Indeed, although SHVC is a promising solution to
address backward compatibility issues encountered by broadcasters and content providers
while introducing new video formats to the market, its computationally demanding architec-
ture reaches its limit with the encoding of the data-heavy new immersive video features of
the UHDTV video format.

The work of this thesis will thus focus on proposing new efficient ways to achieve a
lightweight scalable coding of emerging video formats such as UHDTV while ensuring a
backward compatibility with existing HDTV services. The solutions aims at facilitating the
deployment of new UHDTV services for broadcasters and OTT providers. Indeed, this thesis
is part of a collaborative project between the Vaader team of the IETR academic laboratory
and the research institute b<>com, whose objective is to transfer these solutions to the dif-
ferent actors of the audiovisual industry.
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1.3 Contributions

The contributions of this thesis are divided into three parts. The first part of this work aims
at achieving spatial scalability through only pre/post-processing tools with a single HEVC
encoder instance. To this end, a new low-complexity spatially scalable coding scheme is
introduced. It is based on a decomposition of the video signal prior to encoding in such a
way as to enable spatial scalability using built-in tools of the HEVC standard and a signal
reconstruction step performed after decoding. Two different decomposition approaches are
investigated in this work:

• Polyphase-based Decomposition: This decomposition method is based on the state-
of-the-art polyphase decomposition which consists in decomposing each image of the
input video into four different sub-resolution images. The newly obtained images are
then rearranged sequentially to form a video which is then encoded using a single
HEVC encoder instance. Spatial scalability is achieved by only decoding the parts
of the obtained layered bitstream containing the desired sub-resolution images. A
chroma-phase shift compensation filtering process is proposed to account for a flaw
inherent to the polyphase decomposition. A thorough coding performance evaluation
of the proposed improvement to the original polyphase decomposition is provided.
Several other potential polyphase specific coding tools are investigated and detailed in
this work.

• Wavelet-based Decomposition: This approach replaces the improved polyphase de-
composition by a wavelet-based decomposition. A modification of the conventional
wavelet transform scheme is proposed to enable the use of the transformed video
within the same low-complexity scalable coding scheme as with the polyphase de-
composition. A performance evaluation of the proposed wavelet decomposition with
several considered filter banks is detailed in this work. A number of investigated cod-
ing tools specific to the format of the wavelet transformed signal are also presented.

The second part of this thesis focuses on the design of a dual-layer scalable encoder
composed of a legacy HEVC encoder as Base Layer (BL) encoder and a proposed low-
complexity scalable encoder for the coding of the EL. This specific low-complexity EL en-
coder is based on a proposed algorithm relying on the local adaptation of the spatial reso-
lution. The design of this proposed coding tool can be separated into two complementary
contributions:

• ASR for inter-layer predictions: This method aims at adapting the spatial resolution
of the EL images at a block level to only process the minimal amount of data necessary
to correctly portray the spatial details of the EL input images. For each input block, the
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proposed ASR algorithm thus determines the critical spatial resolution among a fixed
set of possible values based on an analysis of both the block content and its available
neighboring blocks. Then, the inter-layer prediction and the rest of the core encoding
process are performed at the chosen spatial resolution. This method, together with
the re-utilization of BL encoding decisions, allows for a substantial decrease of the
encoding complexity compared to state-of-the-art scalable solutions, at the cost of a
bitrate overhead due to the additional spatial resolution signaling cost.

• Extension of the ASR coding scheme to inter-picture predictions: This method
allows for significant improvements of the proposed ASR coding scheme. A first algo-
rithm is proposed, aiming at removing the need to signal the spatial resolution of an EL
block when inter-picture predictions are used by the BL encoder for the co-located BL
block. To achieve this, the spatial resolution is predicted from the previously coded-
frames using the scaled BL Motion Vectors (MVs). A second algorithm is proposed
to enable inter-picture predictions, within the EL encoder, to be performed at the reso-
lution chosen by the ASR algorithm. These improvements of the ASR coding scheme
lead to a similar coding efficiency for the proposed dual-layer encoder compared to
state-of-the-art scalable solutions while dramatically reducing the encoding complex-
ity.

The last part of this thesis investigates the adaptation of the spatio-temporal resolution
for HFR content, i.e. videos with a frame-rate of 120 fps. To this end, two novel algorithms
are proposed:

• Variable Frame-Rate: This method aims at reducing the frame-rate of a video when
its inherent motion does not require a 120 fps frame-rate to be portrayed. To achieve
this, a Variable Frame-Rate (VFR) model, capable of determining the critical frame-
rate, chosen among a fixed number of possible values, for each chunk of 4 consecutive
frames of the input video. The model is based on Machine Learning (ML) algorithms
trained to perform this specific task using a carefully built dataset of HFR videos anno-
tated with their critical frame-rates. Experimental results shows that the model is capa-
ble of generating VFR videos with a perceived quality identical to their corresponding
source HFR video but with less frames. In a video coding context, the proposed VFR
algorithm achieves significant average bitrate savings and coding complexity reduction
compared to state-of-the-art encoding solutions.

• Locally Adaptive Spatio-Temporal Resolution (LASTR) for low-complexity scal-
able coding: This method aims at combining the ASR coding scheme and the VFR
solution to propose a lightweight scalable coding scheme based on adaptive spatio-
temporal resolution. The VFR model is first used to reduce the frame-rate at a frame-
level. The VFR video is then processed by the ASR-based scalable encoder, which
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adapts the spatial resolution at a block-level in the EL encoder. This method further
increases the performance of the previously proposed algorithms, thus offering an ef-
ficient solution that outperforms state-of-the-art scalable encoding algorithms both in
terms of coding efficiency and complexity reduction.

1.4 Outline

Chapter 2 includes background information essential to the development of this thesis. First,
the different properties of the video signal are presented, in particular the recent improve-
ments brought by the UHDTV signal specifications. Then, the basis of video compression
are explained, with a detailed description of the hybrid video coding architecture and a pre-
sentation of the common scalability types. Finally, the state-of-the-art standardized video
codecs are introduced, with an overview of the coding tools included in both HEVC and its
scalable extension SHVC.

Chapter 3 describes the first contribution of this thesis, the improved polyphase-based
low-complexity scalable coding scheme. An overview of the related works is first given.
Then, the proposed different improvements to the polyphase decomposition are presented,
followed by a detailed report of the experimental results.

The second contribution of this thesis, which consists in replacing the previously pro-
posed polyphase approach by a wavelet-based decomposition, is developed in Chapter 4.
First, the wavelet transform is briefly introduced together with an overview of related works
on wavelet-based coding. Then, the proposed solution is presented together with several
additional changes to the HEVC encoding process to account for the wavelet-transformed
signal. Finally, the experimental results comparing the performance of the proposed solu-
tions to SHVC.

Chapter 5 introduces the third contribution of this thesis, which proposes a dual-layer
low-complexity scalable encoder architecture. First, an overview of related works on down-
sampling based video coding, upsampling methods and SHVC complexity reduction algo-
rithms is provided. Then, the high-level description of the proposed scalable architecture is
presented, followed by a description of the adaptive spatial resolution algorithm, the coding
tool on which the low-complexity scalable encoder is based on. A study on resolution mode
decisions is also carried out proposing an improved selection process based on content and
neighboring blocks. Finally, the experimental results are detailed, in addition to a discussion
focusing on the ASR algorithm merits and main identified flaws.

Chapter 6 develops the fourth contribution, extending the ASR algorithm to handle Ran-
dom Access (RA) configuration and solve the known issues. The algorithm proposed to
limit the block-level resolution signaling cost based on a prediction of the resolution mode
via motion compensation is first described and evaluated. Then, the addition of inter-picture



8 Introduction

predictions within the ASR-based EL encoder is presented and analyzed in terms of coding
efficiency and encoding time reduction.

Chapter 7 describes the fifth contribution of this work, which is based on the design of
a variable frame-rate algorithm. Related works on HFR video processing are first reviewed
followed by a brief introduction to Random Forest (RF) algorithms and a description of
the VFR classification problem. Then, the ground truth generation process is described in
addition to the development and analysis of the RF training process. Finally, the VFR model
output videos perceived quality is subjectively assessed, followed by a description of the
performance results.

The last contribution of this thesis, based on the local adaptation of the spatio-temporal
resolution, is presented in Chapter 8. The method is first presented, followed by a preliminary
performance evaluation.

Chapter 9 concludes this dissertation. The initial goals are first reminded, and the achieved
work is then summarized. Finally, future work prospects and potential improvements are dis-
cussed.

Finally, Appendix A lists the publications and patents produced during the thesis
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Chapter 2

Background on Video Coding

2.1 Video Signal Format

The video signal usually consists on a sequence of frames - also called images or pictures -
that are characterized by a series of parameters whose values can be standardized to ensure
a correct processing of the video signal. The following sections aim to detail the main char-
acteristics of the video signal and introduce the latest standardized format that will be used
in this dissertation.

2.1.1 Spatial Resolution

An image is usually represented as a matrix of pixels I whose size W ×H corresponds to
the spatial resolution of the image. The image width W is defined as the number of pixels
in a row of matrix I while the height H is the number of pixels in each column as depicted
in Fig. 2.1a. A pixel p, p = I(i, j) with i and j respectively the row and column indexes of
the pixel in matrix I, is composed of several components (or channels), depending on the
color space under consideration. Typically, either the RGB color space, with one channel

Image I
i

j

H

W

(a)

time

(b)

Fig. 2.1 Representation of (a) an image with a spatial resolution W ×H and (b) a video
sequence with a frame-rate f .
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Y CrCb

(a) 4:4:4

Y CrCb

(b) 4:2:2

Y CrCb

(c) 4:2:0

Fig. 2.2 Representation of luminance (Y) and chrominance (Cb and Cr) pixel components
for common chroma subsampling formats.

per primary color (red, green and blue), or the YUV color space, with one channel for the
luminance Y and two for the chrominance U and V, are usually used in digital imaging.

2.1.2 Frame-Rate

In addition to the spatial resolution, the other main characteristic defining a video signal is
the frame-rate, usually expressed in fps. A frame-rate f corresponds to the frequency at
which the image changes within a video, i.e. an image is displayed for a period of 1

f seconds
on the display device, as depicted in Fig. 2.1b.

2.1.3 Bitdepth and Color Sampling

As previously stated, a pixel is commonly composed of three components or channels. To
be stored or transmitted, each of these components is represented, as an integer or in floating
point format, using a fixed number of bits, defined as the bitdepth of the video signal. Typical
bitdepth values range from 8-bit to 16-bit formats, thus resulting in a total of 24 to 48 bits
needed to represent a pixel in RGB color space.

However, in YUV color space, chroma subsampling is used to reduce the number of
bits per pixels for a given bitdepth. Indeed, studies on the Human Visual System (HVS)
showed a higher sensitivity to luminance compared to chrominance, enabling the possibility
of downsampling the chrominance channels without impairing the perceived quality of the
video which is one of the main reason of the widespread use of YUV color format in video
use-cases.

Typical chroma sampling formats are 4:4:4, the original format with no downsampling,
4:2:2, with a downsampling by 2 in the horizontal direction, and 4:2:0, with a downsampling
by 2 in both directions, as depicted in Fig. 2.2. Therefore, instead of the 24 bits needed to
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Fig. 2.3 Representation of the Rec. BT.709 (HDTV) and BT.2020 (UHDTV) using the CIE
1931 diagram.

represent a pixel in 8-bit 4:4:4 YUV format, an 8-bit 4:2:0 YUV image will require only 12
bits per pixels to be stored, thus achieving interesting compression performance using only
the color space representation.

2.1.4 Color Gamut

Color Gamut is the limitation of the color range that can be represented in an image com-
pared to the range of colors observed in reality. As depicted in Fig. 2.3, several color gamuts
have been standardized, following the different advances in display technologies and usually
associated to a certain television broadcasting standard. For example, ITU Rec. BT.601 [9]
defines the color gamut for Standard Definition TV (SDTV) while the color gamut for HDTV
has been defined in ITU-R Rec. BT.709 [2]. The wider the color gamut range is, the better the
color representation is, thus making Wide Color Gamut (WCG) an important feature to in-
crease the experience of reality in a digital image. To this end, Recommendation BT.2020 [1]
defines such a wide color gamut for the UHDTV standard.

2.1.5 Dynamic Range

Natural luminance range from extremely low levels, for example during a moonless night, to
extremely high levels for direct sunlight, thus displaying a very high dynamic range, defined
as the ratio between the lowest and highest level of luminance. In digital imaging, the dy-
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HDTV UHDTV

Aspect ratio 16/9 16/9

Spatial resolution 1920x1080 3840x2160, 7680x4320

Frame-rate
60, 60/1.001, 50, 30,

30/1.001, 25, 24, 24/1.001
120, 60, 60/1.001, 50, 30,
30/1.001, 25, 24, 24/1.001

Color gamut BT.709 color primaries BT.2020 color primaries

Dynamic range SDR SDR, HDR

Table 2.1 Parameter values for HDTV and UHDTV video systems.

namic range is limited both by the capture and display devices, which is an important factor
when evaluating the sensation of reality provided by a video system. For a long time, the
digital video industry, and more specifically the broadcast industry, has been limited to Stan-
dard Dynamic Range (SDR), i.e. luminance levels ranging from 0.1 to 100 cd/m2, which is
very far from the HVS capacities ranging from 10−6 to 108 cd/m2 [10]. In recent years, the
new generations of TV sets brought the support of HDR, with supported luminance levels
of up to 1000 or 4000 cd/m2 with contrast ratios of 1 000 000:1, thus greatly improving the
user experience.

2.1.6 UHDTV Standard and Scope of the Study

UHDTV, defined in the ITU-R Rec. BT.2020 [1], is the latest industrial standard for the tele-
vision broadcast of digital video. Several parameters of the video signal format are designed
to improve the visual quality perceived by the end user compared to the previous HDTV
standard [2], as summarized in Table 2.1. Particularly, the spatial resolution is increased to
reach 2160p or 4320p and 120 fps is added to the list possible frame-rates. In addition, the
UHDTV standard includes the support of WCG and HDR.

The DVB project [11], an industrial consortium providing technical standards for broad-
cast services, separates the introduction of the UHD video format into three different phases
UHD-1 Phase 1, UHD-1 Phase 2 and UHD-2, as depicted in Fig. 1.1. In this study, only the
increase in spatial resolution and frame-rate is considered. Indeed, HDR/WCG format only
requires a small number of additional specific coding tools [12–14] and can also be obtained
from the SDR format using efficient real-time conversion tools [15, 16]. It has thus been
excluded from this study for simplicity. Therefore, the SDR 2160p 120fps video format with
BT.709 color space is the reference format for the rest of this dissertation.
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Fig. 2.4 Hybrid encoder architecture.

2.2 Bases of Video Compression

Except for the recently emerging end-to-end deep-learning based video compression algo-
rithms [17, 18], which are out of the scope of this study, and the well-studied wavelet-based
video compression theory, introduced in Section 4.1, the most popular video compression
solutions rely on block-based hybrid encoding. This section aims at describing this hybrid
encoding architecture as well as introducing the concept of scalable encoding. The common
performance evaluation method used to compare two coding solutions is also described in
this section.

2.2.1 Hybrid Encoder

Hybrid video coding has been used in most of the popular and widely deployed video codecs
since the first standardized solution [6, 19–24]. This hybrid architecture is based both on
block-based prediction, either using temporal and/or spatial neighboring blocks, and trans-
form of the prediction residuals to achieve the desired compression, as depicted in Fig. 2.4.
The following sections detail the core coding tools of the hybrid coding scheme, which have
been optimized and completed with other algorithms in each new codec generation.
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Block Partitioning

Block partitioning is the first step of the block-based hybrid video coding scheme. It consists
in dividing the input image I into N blocks Bn of equal size of W ×H pixels, as defined by
Equation (2.1), which are then processed sequentially one after the other. In recent codecs,
these blocks are further divided in smaller blocks depending on the image content (contours,
quantity of details etc.) to achieve a better compression efficiency.

Bn(i, j) = I(i+ b n
W c, j+n%W ) ∀(i, j) ∈ [0,H[×[0,W [, (2.1)

with W and H respectively the width and height of block B, n the index of block B in
image I in raster scan order, n = {1,2, ...,N}, b.c and .% . the floor and modulus operators
respectively.

Prediction

Each block Bn is then processed to obtain a predicted block Bn,pred which is used to compute
the prediction error residual block Bn,err as follows

Bn,err(i, j) = Bn(i, j)−Bn,pred(i, j) ∀(i, j) ∈ [0,H[×[0,W [. (2.2)

The prediction step usually includes a choice between motion estimation and spatial pre-
diction algorithms. Motion estimation consists in finding the block from previously coded
images that best matches the current block to be compressed, i.e. the motion compensated
prediction block minimizing the error residual energy, and its associated motion vector. Spa-
tial prediction algorithms uses the neighboring pixels from previously coded blocks of the
current image being encoded to derive a prediction block that minimizes the error resid-
ual energy. Maximizing the prediction accuracy is an important criterion to achieve a good
overall compression efficiency, which is the reason behind the highly complex prediction
algorithms in recent codecs, as detailed in Section 2.3.2.

Transform

Once the prediction error residual block Bn,err is available, it is expressed in the transform do-
main before further processing, usually by applying a 2D Discrete Cosine Transform (DCT),
to obtain the transformed residual block Bn,trans which decorrelates the residuals and con-
centrates the residual energy in a smaller number of coefficients. The DCT is used in digital
signal processing for its energy compaction property and its highly efficient and optimized
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computation algorithms. The transform stage is defined using Equation (2.3)

Bn,trans(u,v) =
H−1

∑
i=0

W−1

∑
j=0

C(u, i) ·C(v, j) ·Bn,err(i, j) ∀(u,v) ∈ [0,H[×[0,W [, (2.3)

with C(x,y) the DCT transform matrix elements, whose values are computed as follows for
the commonly used orthogonal DCT-II transform of size T

C(x,y) =
P√
T
· cos

[
π

T
(y+

1
2
)x
]

and P =

{
1 i f x = 0√
2 i f x > 0

.

The most recent codecs offer the possibility to choose between different transforms, usually
variants of the discrete cosine or sine transforms, to achieve better compression efficiency.

Quantization

In order to reduce the number of possible real values for the transformed residuals, thus lim-
ited the number of bits needed to transmit these coefficients in the bitstream, a quantization
step is used. For the uniform quantizer, the most common in video codecs, the quantized
residual block Bn,quant is computed as follows

Bn,quant(u,v) = ∆ ·
⌊
|Bn,trans(u,v)|

∆
+

1
2

⌋
· sgn(Bn,trans(u,v)) ∀(u,v) ∈ [0,H[×[0,W [, (2.4)

with sgn(x) the operator returning the sign of x and ∆ the quantization step of the considered
uniform quantizer. The quantization step is an encoding parameter that highly influences the
resulting bitrate, and thus the reconstruction quality of the decoded pictures.

Entropy Coding

Entropy coding is the last stage of an hybrid video encoder that produces the elements trans-
mitted in the output bitstream. The coding decisions (partitioning, prediction mode) made by
the encoder and the quantized transformed coefficients are first binarized to obtain the syn-
tax elements which are then entropy coded using simple variable length coding algorithms
or complex context-based arithmetic coding algorithms to achieve better compression effi-
ciency. Indeed, depending on the entropy coding algorithm used, the syntax element will be
encoded in the bitstream using more or less bits based on the probability of their value, thus
achieving further compression of the data by removing statistical redundancies in the data.
The obtained bitrate is highly dependent on the efficiency of the binarization and entropy
coding processes, which are detailed in Section 2.3.2 for the recent standardized codecs.
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Fig. 2.5 Different types of scalability.

2.2.2 Different Types of Scalability

Scalable video coding has first been introduced by the MPEG-2/H.262 video coding stan-
dard [21], allowing layered coding with a different configuration and/or video format for
each layer. This coding scheme, which can provide significant gains, using inter-layer cor-
relations, over the independent coding of each layer - called simulcast encoding -, has been
designed to account for the heterogeneity of the end-users requirements, i.e. from the vari-
able available bandwidth to the different device capabilities. Indeed, depending on the end-
user requirement, only the base layer can be transmitted and decoded and the enhancement
layer(s) can then be transmitted when the network or the end device become compatible with
the higher requirements. In addition, scalable video coding offers an interesting solution for
backward compatibility with existing infrastructures when introducing a new video format
by using the previously handled format in the BL and the newly introduced one in the EL.
In this case, consumers with capable devices can decode both layers while others will only
decode the BL, thus avoiding compatibility issues.

To cover these different scalable coding use-cases, several types of scalability, depicted
in Fig. 2.5, have been considered:

• Spatial scalability: the spatial resolution is different in each layer, with usually a
factor 1.5 or 2 between the BL and EL resolutions. This is one of the most popular
type of scalability due to its adequacy with variable bandwidth and device resolution
capability issues.
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• Temporal scalability: the EL and BL have a different frame-rate, usually the EL
frame-rate is a multiple of the BL frame-rate, generally with a factor 2. Most video
codecs support temporal scalability due to the Group Of Pictures (GOP) organization
and prediction scheme.

• Dynamic range / gamut scalability: the dynamic range and/or color gamut of the
video signal is different for both layers. This type of scalability is particularly interest-
ing for the deployment of HDR/WCG content with backward compatibility with the
common SDR format.

• Quality scalability: the EL and BL are encoded with different quality configurations,
typically with a different quantization parameter. As for the spatial scalability, this type
of scalability is particularly useful to solve varying bandwidth issues while maintaining
a minimum base service under critical conditions.

• Codec scalability: different codecs are used to encode each layer. The possible inter-
layer communications are thus more limited than for other types of scalability, es-
pecially if the codecs highly differ from one another. Codec scalability is useful for
backward compatibility when deploying a new generation of codecs.

2.2.3 Coding System Performance Evaluation

In order to evaluate the performance of a video coding system P, the video quality of its
output compared to the quality of a reference anchor coding system A, either using objective
quality metrics or by performing subjective tests. The most basic way to objectively measure
the difference between a reference unimpaired image and an image distorted by a coding
system is the Mean Squared Error (MSE), computed using Equation (2.5)

MSE(I,Id) =
1

W ·H
×

H−1

∑
i=0

W−1

∑
j=0

(I(i, j)− Id(i, j))2, (2.5)

with W and H respectively the width and height of both the considered reference image I
and distorted image Id . The widely used Peak Signal-to-Noise Ratio (PSNR) metric, based
on MSE and expressed in dB, is usually preferred when evaluating the output quality of a
coding system. It is defined as follows

PSNR(I,Id) = 10× log10

(
2b−1

MSE(I,Id)

)
, (2.6)

where b is the bitdepth of both the considered images I and Id , i.e. 2b− 1 represents the
maximum value of each pixel component. For each image of a video, the PSNR is first
computed for each pixel component to obtain the weighted PSNR value representing the
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overall quality of the image over all color components. The weighted PSNR values are then
averaged over all frames to obtain a quality measure for the entire video. For YUV color
space, the usual weighting process is defined in Equation (2.7)

PSNRYUV =
6×PSNRY +PSNRU +PSNRV

8
. (2.7)

Several more advanced and complex quality metrics, such as Structural Similarity Index
(SSIM) [25], Video Quality Metric (VQM) [26] or more recently Video Multimethod Assess-
ment Fusion (VMAF) [27], have been designed to improve the quality evaluation consider-
ing certain characteristics of the human visual system. The other evaluation method, through
subjective tests, is more reliable to assess the perceptual quality of a video when following
the guidelines standardized in the ITU-R BT.500-13 [28] and ITU-T P.910 [29] recommen-
dations. However, these tests require to gather a significant number of participants, which is
highly time-consuming, and therefore not always a viable possibility.

Once the evaluated quality measures are available for both coding systems at several con-
figurations (bitrates), a comparison can be performed using the popular Bjøntegaard Delta
(BD-Rate) metric [30,31], which can quantify the average bitrate gain for an equivalent mea-
sured quality between both coding systems. The BD-Rate metric consists in measuring the
average difference between two Rate-Distortion (R-D) curves, one per coding system, each
interpolated from at least four bitrate points, as depicted in Fig. 2.6.

The first step is thus to interpolate the rate-distortion functions using log-based third-
order polynomials, as defined in Equation (2.8)

log(RX) := r̂X(DX) = a ·D3
X +b ·D2

X + c ·RX +d, (2.8)

with r̂X the interpolated function for coding system X , representing the bitrate R as a function
of the distortion D. The distortion is usually the average weighted PSNR but can also be
another objective quality metric or MOS obtained through a subjective evaluation.

Then, the BD-Rate value ∆RPA can be computed using Equations (2.9) and (2.10), where
the difference between the two interpolated curves is integrated to only take into considera-
tion the overlapping range of measured distortion, shown in gray in Fig. 2.6.

∆ r̂PA(DL,DH) =
1

DH−DL
×
∫ DH

DL

(r̂P(D)− r̂A(D))dD, (2.9)

∆RPA(DL,DH) = 10∆ r̂PA(DL,DH)−1, (2.10)

with DL = max(min(DP),min(DA)) and DH = min(max(DP),max(DA)) the boundaries of
the overlapping range of measured distortion for both the evaluated coding system P and the
considered anchor system A on which the BD-Rate value ∆RPA can be computed.
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Fig. 2.6 Illustration of Bjøntegaard Delta (BD-Rate) computation.

In addition to the coding efficiency, the complexity of a coding process is can also be
measured when evaluating the performance of a coding system. This complexity is usually
expressed as a time reduction percentage compared to a reference anchor coding system, as
defined in Equation (2.11)

T R%(TP,TA) = 100× (1− TP

TA
) (2.11)

with TX the processing time measured for a coding system X and T R%(TP,TA) the time
reduction offered by the coding system P compared to the anchor system A.

Both the BD-rate values and time reduction (T R%) measures are used in this thesis for
the evaluation of the proposed algorithm.

2.3 Standardization

In this section, the standardization of video coding systems is addressed. A brief history
of video coding standards is first given, followed by a detailed introduction to the different
coding standards that fit within the scope of this study, i.e. HEVC and the state-of-the-art
scalable video codec SHVC.
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2.3.1 Brief History of Video Coding Standards

Video coding aims at reducing the amount of data required to represent a digital video sig-
nal, as described in Section 2.1, in either a lossless or lossy manner depending on the desired
trade-off between perceived visual degradation and resulting bitrate. A video coding stan-
dard defines the different coding tools and standardizes the bitstream format to ensure a
straightforward production of encoded videos that can be decoded by any decoder compliant
with the worldwide standard.

Over the past few decades, most of the video codecs used in the digital video industry
either result from the ITU-T standardization committee, through its VCEG effort, or from
the MPEG, a joint effort between the ISO and IEC. Indeed, the ITU-T produced the H.261
(1990) [19] and H.263 (1995) [22] video coding standards while MPEG-1 (1993) [20] and
MPEG-4 Visual (1998) [23] have been standardized by the ISO/IEC. However, the most
popular and widely used video coding standards have been the product of a collaborative
work between VCEG and MPEG, with the H.262/MPEG-2 (1994) [21], H.264/MPEG-4
Advanced Video Coding (AVC) (2003) [24] and H.265/HEVC (2013) [6] standards. Each
new codec generation has brought new paradigms and coding tools in addition to reusing
and improving the algorithms from the previous codec generation. A new generation video
codec, named Versatile Video Coding (VVC), is currently in its final development phase
within the Joint Video Exploration Team (JVET), the latest collaboration between VCEG
and MPEG. As for the previous video coding standards, VVC is expected to provide a 50%
average bitrate gain for an equal perceived quality compared to its predecessor, HEVC.

Since VVC was in its very early development stage at the beginning of this thesis, with
a significant encoder complexity increase and without a scalable extension under way, the
work presented in this dissertation is solely based on and compared to HEVC and SHVC, its
scalable extension, that will both be detailed in the following sections.

2.3.2 HEVC Standard

HEVC has been finalized in 2013 by the JCT-VC, with its first version supporting three
different profiles: Main (8-bit video coding), Main10 (10-bit video coding) and Main Still
Picture (image coding). Later versions brought support of high bitdepth (12/14/16-bit) en-
coding and additional chroma subsampling formats (4:2:2 and 4:4:4) as well as two scalable
profiles, described in Section 2.3.3, and a multiview and other 3D profiles.

This section focuses on the architecture of the Main profiles, that relies, as depicted in
Fig. 2.7, on enhanced coding tools from the hybrid coding scheme previously presented,
as well as in-loop filters whose roles are to improve the decoded pictures perceived quality
before storing them in the Decoded Picture Buffer (DPD). The following sections provides
an overview of each of the principal HEVC coding tools, followed by a brief description of
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Fig. 2.7 Block diagram of a typical HEVC Encoder [7]

the reference software encoder.

Partitioning

HEVC provides a highly flexible and efficient block partitioning structure to follow both
small and large spatial variations of a video signal whose spatial resolution is expected to
reach up to 2160p (4K). Indeed, an input video picture is first divided into fixed-length
square blocks, called Coding Tree Unit (CTU), which are processed sequentially in raster-
scan order. Then, each CTU of size up to 64×64 can be further recursively split into smaller
blocks following a flexible quadtree representation [32], as shown in Fig. 2.8. The leaf
blocks, called Coding Units (CUs), have a minimum size of 8x8 pixels and are processed in
descending raster-scan order, as indicated by the ordered CU numbering in Fig. 2.8a. Each
CU is used as the basis for the prediction and transform/quantization processes, which are re-
spectively performed on subpartitions called Prediction Unit (PU) and Transform Unit (TU).
To each of these block units correspond their per-channel (Y, U and V) texture blocks, i.e.
Coding Tree Blocks (CTBs), Coding Blocks (CBs), Prediction Blocks (PBs) and Transform
Blocks (TBs).

The splitting of a CU into one or multiple PUs can follow the different PU modes depicted
in Fig. 2.9, depending on the chosen type of prediction for the CU. For intra-predicted blocks,
only square PUs are allowed, resulting in a PU of the same size as its corresponding CU, i.e.
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2Nx2N, or in a splitting of the CU into four PUs of the same size NxN, which is only
enabled for the minimum CU size. For inter-predicted blocks, PU modes resulting in two
PUs, either by a symmetrical/asymmetrical vertical/horizontal split, are enabled in addition
to the NxN and 2Nx2N modes. For the special skipped CUs mode, no splitting is allowed
for the prediction stage.

For the transform process, another quadtree representation, called the Residual QuadTree
(RQT), is used, with the CU as the root and the TUs as leaves. Several constraints are
considered while building the RQT: only square TUs with a minimum TU size of 4x4 pixels
are allowed and a TU must not cross PU boundaries.

Each CTU, CU, PU and TU partitioning decision is described through standardized syn-
tax elements to be transmitted in a HEVC bitstream.
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(a) (b)

Fig. 2.10 Intra prediction in HEVC with a) the reference and predicted pixels in red and
yellow respectively, b) the 33 angular predictors.

Intra Prediction

In HEVC, the current block samples can be predicted from the adjacent reference samples,
that have already been processed by the encoder, respectively depicted in yellow and red in
Fig. 2.10a. Three different types of prediction can be used, namely DC mode, planar mode
and angular modes [33]. In DC mode, the average value of available immediate neighboring
reference samples are assigned to each pixel of the predicted blocks. Planar mode uses a
weighted mean of an horizontal, a vertical and two corner sample predictions, aiming at pre-
serving continuities across block boundaries. For the angular mode, 33 different projection
angles can be used in HEVC, as shown in Fig. 2.10b, to interpolate the predicted samples
from the available reference ones. This complex intra prediction scheme enables significant
gains over the previous standards, notably due to the increased number of angular modes
which enables a better tracking of edges across adjacent blocks.

Inter Prediction

As most codecs based on an hybrid encoding architecture, HEVC enables the prediction of
a block from samples of previously coded reference pictures. The HEVC motion estimation
process, which consists in finding the most similar block in the reference pictures, allows
for MVs with up to quarter-pixel precision to increase the prediction accuracy [34]. Thus,
if a fractional pixel MV is considered, the reference pixels have to be interpolated to the
desired sub-pixel position, among the possible positions depicted in Fig. 2.11. The HEVC
interpolation process uses 8/7-tap and 4-tap 1D filters for the computation of 1

4 pixel and
1
8 pixel fractional samples for the luma and chroma channels respectively. The 1D filtering
operation, defined in Equation (2.12) is successively performed along the horizontal and
vertical directions, in this order, to obtain the interpolated fractional reference block samples.
The filter coefficients depend on the interpolation phase used for each filtering operation,
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Fig. 2.11 Fractional sample positions for the interpolation of luma pixels.

Table 2.2 Fractional-sample HEVC interpolation filter coefficients.

Channel phase p
Filter coefficients

f[p,0] f[p,1] f[p,2] f[p,3] f[p,4] f[p,5] f[p,6] f[p,7]

Luma
0 0 0 0 64 0 0 0 0

1/4 -1 4 -10 58 17 -5 1 0
2/4 -1 4 -11 40 40 -11 4 -1
3/4 0 1 -5 17 58 -10 4 -1

Chroma

0 N/A N/A 0 64 0 0 N/A N/A
1/8 N/A N/A -2 58 10 -2 N/A N/A
2/8 N/A N/A -4 54 16 -2 N/A N/A
3/8 N/A N/A -6 46 28 -4 N/A N/A
4/8 N/A N/A -4 36 36 -4 N/A N/A
5/8 N/A N/A -4 28 46 -6 N/A N/A
6/8 N/A N/A -2 16 54 -4 N/A N/A
7/8 N/A N/A -2 10 58 -2 N/A N/A

which can be derived from the desired fractional position, as summarized in Table 2.2.

vBn,interp(i) =
1

∑
F−1
k=0 f(p,k)

·
F−1

∑
k=0

f(p,k) ·vBn

(
i
2
+ k+1− F

2

)
, (2.12)

with vBn the input vector of block Bn, vBn,interp(i) the output vector interpolated with the
filter f of size F - F = 8 for luma and F = 4 for chroma -, i the vector sample index and p the
phase used for the interpolation, depending on the fractional pixel position.

Once the MVs are selected, several coding tools are included in HEVC to reduce the sig-
naling cost of motion data in the bitstream. On one hand, a complex motion vector prediction
algorithm, called Advanced Motion Vector Prediction (AMVP), can be used. It consists in
identifying a list of several prediction candidates, then only transmitting the index of the
candidate in the list as well as the difference between the MV to be coded and the chosen
candidate. The AMVP candidate list is constructed as follows, using the neighboring blocks
depicted in Fig. 2.12. First, two spatial candidates are selected among the five possible spa-
tial neighboring blocks A0, A1, B0, B1 and B2. A temporal candidate is also added to the list,
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Fig. 2.12 Advanced Motion Vector Prediction (AMVP) candidates

selected between the two possible temporal neighboring blocks C0 and C1. If the number of
candidates in the list is smaller than two, zero MVs are added to the list.

On the other hand, a new coding tool called Merge-Mode [35] is introduced in HEVC, us-
ing the motion data redundancies in a quad-tree structure to reduce the amount of prediction
information transmitted in the bitstream. Indeed, merged PUs will completely share their
motion data, thus only requiring the signaling of motion data from the first of the merged
PUs as well as merge information for each additional PU. The merge information to transmit
consists in an index within a merge candidate list. This list has a fixed size of five candidates
and is constructed using a similar process as for the AMVP candidate list. The same possible
neighboring blocks are considered, with up to four spatial and one temporal candidate se-
lected. However, if the merge candidate list is not complete due to unavailable neighboring
blocks, it is first completed with combined motion data from existing candidates or then with
zero-motion candidates if the list still contains less than five candidates.

Transform and Quantization

The transform stage of HEVC is similar to its predecessors, with a DCT-II transform kernel
used to reduce the number of significant coefficient in the residual signal. The only difference
is the use of a Discrete Sine Transform (DST) based transform for 4x4 intra-coded TBs.

The transformed residuals are then quantized and scaled depending on a Quantization
Parameter (QP), whose value is in the range 0 to 51. The QP has been designed so that an
increase of one represents an increase of the quantization step ∆ by ≈ 12 %, i.e. an increase
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of 6 in QP leads to a ∆ multiplied by a factor of two. Additionally, to completely define the
relation between QP and ∆, an absolute step size of one has been associated to a quantization
parameter equal to four, leading to the Equation( 2.13).

∆(QP) = gQP%6 <<
QP
6

, (2.13)

where
g = [g0,g1,g2,g3,g4,g5]

T = [2−4/6,2−3/6,2−2/6,2−1/6,20,21/6]T .

The quantization operation is defined using Equation (2.14), with C(i, j), W(i, j) and
Bn,quant(i, j) being respectively the transform matrix coefficient, the quantization weight and
the quantizer output at location (i, j) in the TB

Bn,quant(i, j)=
[[[

abs(C(i, j)) · 16
W(i, j)

· fQP%6 +o f f setQ

]
>>

QP
6

]
>> sQ

]
·sgn(C(i, j)),

(2.14)
where fQP%6 ≈ 214/gQP%6, sQ is a scaling factor depending on the bitdepth and transform
size, and o f f setQ is chosen to achieve the desired rounding.

To signal the quantized transformed residuals in the bitstream, HEVC uses new complex
but efficient paradigms [36], related to scanning order, significance map, sign coding and
coefficient level. A TB is processed by 4x4 sub-blocks, following on of the three available
specific scanning orders. Diagonal scan, shown in Fig. 2.13, is the most common scanning
order in HEVC, available for all TBs. Two additional scanning orders, namely horizontal
scan and vertical scan, are available only for 4x4 and 8x8 intra-coded TBs. Based on the 4x4
sub-block separation and the chosen scanning order, the following syntax elements can be
used to describe the residuals of a TB:

• last_sig_coeff_x: Horizontal position of the last significant coefficient of a TB in cho-
sen scanning order.

• last_sig_coeff_y: Vertical position of the last significant coefficient of a TB in chosen
scanning order.

• sig_coeff_flag: flag indicating if a coefficient is greater than zero. The flag corre-
sponding to the last significant coefficient is inferred to be set to 1.

• coeff_abs_level_greater1_flag: Conditional flag indicating if a significant coefficient
is greater than 1. Limited to 8 flags per 4x4 sub-block.

• coeff_abs_level_greater2_flag: Conditional flag indicating if a coefficient greater than
1 is greater than 2. Limited to 1 flag per 4x4 sub-block.
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Fig. 2.13 Diagonal scanning pattern used for HEVC residual blocks.

• coeff_abs_level_remaining: Conditional value representing the remaining absolute
coefficient level after considering previously signaled flags.

• coeff_sign_flag: Conditional flag indicating the sign of a significant coefficient.

These syntax elements are transmitted for each residual coefficient, depending on the
conditional flag dependencies and per sub-block limitations, except for last_sig_coeff_x and
last_sig_coeff_y, signaled at a TB level.

In-loop Filters

Two in-loop filters are integrated in HEVC in order to improve the perceived quality of
reconstructed pictures. The HEVC deblocking filter [37] is widely based on the deblocking
filter used in AVC. However, it more parallel friendly and has been well optimized in terms
of computational cost to limit its impact on the decoding time. The other in-loop filter is
a new tool called Sample Adaptive Offset (SAO) [38], which aims at reducing the sample
distortion. It consists in first classifying the reconstructed samples into different categories,
then obtaining an offset for each category and finally applying the offset to each sample
of each category. The offsets are computed at the CTU level only at the encoder side and
explicitly transmitted in the bitstream using a set of syntax elements, contrary to the sample
classification which is performed both by the encoder and decoder. Both in-loop filters bring
2% average bitrate savings for the same output objective quality.

Syntax Element and CABAC Entropy Coding

Once all syntax elements have been determined by the encoder, HEVC relies on several spe-
cific binarization techniques to transpose the syntax elements into bins that can be processed
by the entropy coder. Fixed-length or Variable-Length Coding (VLC) entropy coding is used
for the signaling of High Level Syntax (HLS) [39] while Context-Adaptive Binary Arith-
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metic Coding (CABAC) [40] is used for all syntax elements related to CUs, PUs, TUs and
SAO filtering.

The HEVC CABAC engine architecture is depicted in Fig. 2.14. The first step is to bina-
rize the syntax elements to be transmitted in the bitstream. The same binarization techniques
as AVC are used, namely unary, truncated unary, kth-order Exp-Golomb and fixed length
codes. Almost all syntax elements are binarized using one or several of these techniques.
For instance, the residual coding syntax element coeff_abs_level_remaining is separated into
a prefix and a suffix, respectively binarized with unary coding and fixed-length coding.

Then, a context selection is performed to choose either the context model associated to
the considered syntax element or no context modeling. Finally, arithmetic coding is per-
formed on the bins using a probability for each considered bin. This probability is either
estimated from the context model, triggering a subsequent context update, or equal to 0.5 if
no context has been selected. The latter case is called bypass coding and has been introduced
to limit the number of context coded bins, with their complex modeling and feedback update
loop, thus increasing the throughput of the HEVC CABAC engine.

Reference Software

The HEVC test Model (HM) reference software [41] is made available by the JCT-VC com-
mittee to demonstrate the capacities of the video coding standard. The version used in this
thesis is the Test Model 16 (HM16.12) [42], with the two configurations of interest in this
dissertation, namely All Intra (AI) and RA, being supported by the reference software. The
AI configuration relies only on intra prediction modes for the prediction stage, thus avoid-
ing temporal dependencies between pictures. Fig. 2.15a depicts the coding structure of the
AI configuration with its independently decodable I pictures. The RA configuration allows
for both intra and inter prediction modes, with P (uni-predicted) or B (bi-predicted) pictures
organized in GOP of fixed size, as shown in Fig. 2.15b. A GOP is composed of hierarchi-
cally decodable Temporal Layers (TLs), enabling built-in temporal scalability thanks to the
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possibility to drop one or several of the upper TLs without breaking the temporal prediction
dependencies.

Since the purpose of the reference implementation is to demonstrate the capacities of
the standard, the HEVC reference software encoder performs an exhaustive search among
all possible mode combinations, thus achieving high quality encodings. This efficient ex-
haustive search is done through a Rate Distortion Optimization (RDO) [43], consisting in
evaluating each possible mode combination and then selecting the one minimizing the eval-
uated R-D cost. The R-D cost J is defined as a linear combination of the distortion D and the
bit cost R, weighted by a Lagrangian multiplier λ , as defined in Equation (2.15)

J = D+λ ·R. (2.15)

The Lagrange multiplier λ is defined as a function of the QP and its computation has been
optimized following the method developed in [44]. The λ computation is also adapted for
each possible distortion metric, i.e. either the Sum of Absolute Differences (SAD), the Sum
of Squared Errors (SSE) or the Hadamard transformed SAD (SATD) in the reference soft-
ware, depending on the considered encoding step (partitioning, prediction, etc.).

Starting at the CTU-level with the CU partitioning modes and hierarchically evaluating
each subsequent mode combination until in-loop filtering parameters, the RDO-based en-
coding process provides the bitstream resulting in the best trade-off between distortion and
bitrate, driven by the given quantization parameter and derived λ value.

2.3.3 SHVC, the Scalable Extension of HEVC

SHVC [45] has been standardized as annex H of the second version of the HEVC standard. It
has been finalized in 2014 by the JCT-VC, enabling the support of spatial scalability, quality
scalability, gamut scalability, bit-depth and codec scalability coding schemes in addition to
the built-in support of temporal scalability already included in HEVC version 1.

To avoid the mistakes of SVC [46], the scalable extension of AVC, which was not adopted
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by industrials due to the late release and complex architecture of the scalable codec, SHVC
has been developed with a focus on simplicity. Indeed, scalability is achieved by coupling
one HEVC encoder instance per layer, with HLS changes, and ILP tools, as depicted for a
dual-layer scalable coding scheme in Fig. 2.16. The high-level syntax changes needed for
SHVC are located in the slice header and above, mainly to describe and signal the relevant
layer-specific information (number of layer, layer ID, etc.). ILP tools are used to generate the
Inter-Layer Reference (ILR) pictures from the BL decoded pictures and adapt the relevant
coding information to the format of the EL, depending on the type of scalability used. The
ILP tools used for spatial scalability, i.e. the type of scalability of interest in this dissertation,
as well as a brief overview of the reference software are presented in the following sections.

Inter-layer Texture Resampling

Due to the difference in spatial resolution between two adjacent layers, a texture resam-
pling [8] is required to upsample the BL decoded pictures to the spatial resolution of the EL
in order to generate the ILRs pictures to be used by EL HEVC encoder. SHVC supports a
number of different scaling ratios, ranging from 1 to 2, between the BL and EL, the most
popular ones being 1.5x and 2x spatial scalability. The resampling is achieved by applying
8-tap and 4-tap interpolation filters to the luma and chroma samples of the BL decoded pic-
tures, respectively. The resampling with a factor 2 reuses the same filter as for the half-pixel
interpolation performed in the motion compensation stage, while additional filters have been
designed for the 1.5x resampling, as summarized in Table 2.3.
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Table 2.3 SHVC ILP upsampling filters [8].

Channel
phase Filter coefficients

Note

p
f[p,0] f[p,1] f[p,2] f[p,3] f[p,4] f[p,5] f[p,6] f[p,7]

Luma

0 0 0 0 64 0 0 0 0 Same as MC filter
1/3 -1 4 -11 52 26 -8 3 -1 Additional filter
1/2 -1 4 -11 40 40 -11 4 -1 Same as MC filter
2/3 -1 3 -8 26 52 -11 4 -1 Additional filter

Chroma

0 N/A N/A 0 64 0 0 N/A N/A Same as MC filter

1/4 N/A N/A -4 54 16 -2 N/A N/A Same as MC filter
1/3 N/A N/A -6 52 20 -4 N/A N/A Additional filter
3/8 N/A N/A -6 46 28 -4 N/A N/A Same as MC filter
1/2 N/A N/A -4 36 36 -4 N/A N/A Same as MC filter
7/12 N/A N/A -4 30 42 -4 N/A N/A Additional filter
2/3 N/A N/A -2 20 52 -6 N/A N/A Additional filter
7/8 N/A N/A -2 10 58 -2 N/A N/A Same as MC filter

11/12 N/A N/A 0 4 62 -2 N/A N/A Additional filter

Inter-Layer Motion Vector Scaling

SHVC allows for the use of MVs from the ILR pictures as temporal candidates in the merge
and AMVP candidate list construction algorithms. The temporal motion vector prediction is
performed on a compressed motion field, at a 16x16 block level, thus the motion data of the
ILR picture is also extracted from the BL compressed motion field.

Therefore , for each 16x16 block in the ILR picture, its colocated 16x16 block is first
identified in the BL, taking into account the difference in spatial resolution if spatial scala-
bility is used. Then, the motion information of the ILR block, i.e. the inter-prediction mode,
reference pictures and MVs, is copied from its colocated BL block. Finally, the obtained
MVs are scaled using the spatial scalability resampling factor to obtain the corresponding
correct ILR MVs used for the motion vector prediction process in the EL encoder.

Reference Software

The SHVC test Model (SHM) reference software [47] is largely based on the same imple-
mentation as the HM. Indeed, the SHM software instantiates an encoder derived from the
HM, for each specific layer, capable of sending, receiving and using inter-layer information
from adjacent layers as reference for encoding. The previously described inter-layer pro-
cessing operations, i.e. texture resampling and MV scaling, are implemented in the SHM
within inter-layer processing units communicating with each instance of the specific layer
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Table 2.4 SHM downsampling filter coefficients for 1.5x and 2x spatial scalability.

Scaling phase Luma and Chroma channels coefficients
Factor p f[p,0] f[p,1] f[p,2] f[p,3] f[p,4] f[p,5] f[p,6] f[p,7] f[p,8] f[p,9] f[p,10] f[p,11]

1.5x

0 0 5 -6 -10 37 76 37 -10 -6 5 0 0
1/8 -1 5 -3 -12 29 75 45 -7 -8 5 0 0
1/2 -1 3 2 -13 8 65 65 8 -13 2 3 -1
5/8 -1 2 3 -12 2 59 70 14 -13 1 4 -1

2x 0 2 -3 -9 6 39 58 39 6 -9 -3 2 0
1/4 1 -1 -8 -1 31 57 47 13 -7 -5 1 0

encoders.
In addition, the SHVC reference software implements a downsampling filter bank rec-

ommended to generate the BL input video from the EL input original video. Table 2.4
summarizes the downsampling filter coefficients for 1.5x and 2x scalability. They have been
designed to minimize the introduced artifacts when coupled with the inter-layer resampling
filters. By doing so, the inter-layer prediction error is minimized and the amount of residuals
to code is thus reduced.

2.4 Conclusion

In this chapter, the different characteristics of the video signal have first been introduced, in
particular the new dimensions of the UHDTV signal. Then, the hybrid encoding architec-
ture, on which most popular video codecs are based on, has been presented followed by a
description of the usual scalability types. Finally, a detailed overview of the standardized
state-of-the-art encoders, namely HEVC and its scalable extension SHVC, has been given.
All this background information on regular and scalable video encoding are essential for
understanding the rest of this dissertation.
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Chapter 3

Polyphase-based Decomposition

As mentioned in Section 2.3.3, the state-of-the-art scalable solution, SHVC, relies on compu-
tationally expensive architecture requiring, in addition to inter-layer processing, one instance
of HEVC encoder per layer. This has been a long-time significant impediment to the wide
adoption of MPEG scalable video codecs. With the new immersive video formats increasing
the amount of data to be processed, the SHVC, and its already computationally demanding
architecture [48], becomes even more unsuitable.

With the recent developments proposed within the scope of JVET as a starting point,
this chapter proposes an improvement of the a low-complexity scalable coding chain for x2
spatial scalability achieved via purely pre and post processing tools. The contribution of this
chapter thus focuses on modifying the polyphase-based decomposition previously presented
to JVET within the scope of the future video coding standard development.

This chapter is organized as follows. Section 3.1 provides a detailed description of the
polyphase decomposition, the basis of the considered pre-processing tool. Then, the inves-
tigated improvements to the low-complexity scalable method are described in Section 3.2,
followed by a presentation of the experimental results in Section 3.3. A detailed study on the
decisions made by the encoder while processing the polyphase subsampled signal is given in
Section 3.4. Finally, Section 3.5 concludes this chapter.

3.1 Related Work

As part of the JVET effort, Thomas et al.. proposed a new scalable coding scheme rely-
ing on the polyphase subsampling of the input video prior to encoding [49]. This section
aims at presenting this new architecture, which enables x2 spatial scalability with a sin-
gle HEVC encoder instance, instead of the traditional dual-layer scalable approach of SHVC
containing on HEVC encoder per layer. The principle of the polyphase decomposition is first
detailed, followed by a description of the low-complexity scalable coding scheme, based on
this pre-processing tool, is given. Finally, the quality of the polyphase decomposed signal is
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analyzed.

3.1.1 Principle

The polyphase decomposition is defined as follows. The input video is first decomposed into
four sub-resolution components, each Resolution Component (RC) having one over four
pixels of each 2x2 block of the original signal. The resulting sub-resolution images are then
packed sequentially to form a new video at a quarter of the original spatial resolution but
with four times the number of frames, as illustrated in Fig. 3.1. The polyphase subsampled
video is then fed to an HEVC encoder. Spatial scalability is achieved at the decoder side by
choosing to decode only one RC or the entire bitstream. If the four resolution components
are decoded, an additional reconstruction step is performed to produce the full resolution
decoded video. The coding chain used for polyphase subsampled videos is further detailed
in the next section.

3.1.2 Low-complexity Scalable Coding Scheme based on Polyphase De-
composition

Fig. 3.2 illustrates the scalable coding chain used to encode polyphase subsampled videos.
The input UHD video is first decomposed into a HD signal following the scheme depicted in
Fig. 3.1. Then, the HD signal is encoded and decoded using HEVC and finally upsampled to
reconstruct the output UHD signal. It is important to note that the signal fed to the encoder



3.1 Related Work 39

B B

B

BB

B

B B

B

RC#0

RC#0 RC#0

RC#2 RC#2

RC#1 RC#1RC#3 RC#3

TL#0

TL#1

TL#2

TL#3

Fig. 3.3 Resolution Components (RC) distribution on temporal layers of HEVC Random
Access GOPs.

has an image frequency equal to four times the native one.
The two spatial resolution of the scalable solution can be obtained after decoding, the

choice between the HD or UHD output being made during the decoding process. To this end,
the temporal layers of the HEVC standard are used to obtain spatial scalability, assuming that
the base-layer, i.e. the first RC of the decomposed signal, is occupying the lower temporal
layers and that the enhancement layer, i.e. the three other RCs, occupies higher temporal
layers. As shown in Fig. 3.3, the traditional random access GOP structure of HEVC, in its
8-image or 16-image sizes, guarantees such an organization of the phases in the different
temporal layers. Thus, if the desired output is the HD video, the decoder only has to decode
the first 2 or 3 temporal layers, for GOP sizes of 8 or 16 images, respectively. For the UHD
output, the bitstream has to be decoded entirely, and an additional reconstruction step is
necessary to recover the decoded video in its original resolution.

The performance of the polyphase scalable scheme has been assessed in [50, 51], show-
ing promising results compared to simulcast HEVC coding. However, the coding efficiency
is greatly varying depending on the type of content, with important losses for highly textured
video sequences. This could be due to the different artifacts introduced by the polyphase de-
composition, described in the next section, prior to encoding. In addition, it was pointed out
that substantial losses can be observed in both chroma channels on most tested sequences, in-
dicating a probable mismanagement of the chroma in the polyphase decomposition scheme.

3.1.3 Quality of the Decomposed Signal

Given the nature of the performed subsampling operation, aliasing artifacts can be intro-
duced, thus possibly impairing the quality of the different RCs. This is especially problem-
atic for the RC serving as BL it can be directly used at the display end.

In [52], Thomas et al.. evaluate the artifacts introduced in the base layer of the polyphase
subsampled videos of all the different test sequence classes defined by MPEG, from UHD
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(a) Original sequence

(b) Patch from original sequence (c) Patch from polyphase downsampled sequence

Fig. 3.4 Example of aliasing artifacts introduced by polyphase subsampling on ToddlerFoun-
tain test sequence

to SD resolutions. It is shown that artifacts introduced are almost negligible for the UHD
sequences, whereas the more the resolution decreases, the more disturbing the artifacts are,
making the technique unsuitable for resolutions below HD. Focusing on UHD content, the
use-case considered in this thesis, several artifacts are still present in the RC output images.

The first source of artifacts is aliasing, as expected with a downsampling operation, which
is present in highly textured areas. Overall, on the tested UHD sequences, presented in Sec-
tion 3.3.1, the downsampled versions are visually good as aliasing only affects small parts
of the images, usually in areas with very sharp transitions, such as the book of the CatRobot
video clip, the power lines of DaylightRoad or the drain grill from ToddlerFountain, as de-
picted in Fig. 3.4.

A second type of artifacts is also introduced, or amplified, in the processed sequences.
Indeed, the base layer obtained by applying the polyphase decomposition on the CatRobot
sequence shows a very noisy background (the moving scarfs), whereas the original clip does
not contain as much visible noise. For other sequences like DaylightRoad, or to a lesser
extent Drums, the existing noise is amplified by the subsampling process, sometimes so
significantly that it disturbs the viewer.
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Fig. 3.5 Random Access GOP16 structure.

3.2 Enhanced Polyphase Coding Scheme

This section focuses on exploring possible improvements to the scalable coding scheme
based on the polyphase decomposition. First, two modifications to the GOP structure are
detailed. They respectively rely on modified TL QP offsets and the addition of intra-layer
temporal predictions, thus taking into account the special features of the polyphased decom-
posed signal. Then, a simple filtering operation is presented to improve the management of
chroma pixels during the decomposition stage.

3.2.1 Resolution Component dependent Temporal Layer QP Offsets

In the Common Test Conditions (CTC) for the scalable encoder SHVC [53], JCT-VC defines
a GOP structure of sixteen images, as depicted in Fig. 3.5, with five different TLs. These
TLs play an important role in HEVC because several parameters can be set at a temporal
layer level. For instance, in the CTC, a different QP is applied for each temporal layer, the
lowest QP being attributed to layer zero. This feature has been defined to favor pictures that
are used as reference, i.e. images from the lower temporal layers.

When used for the encoding of a polyphase decomposed signal, RC #0 will always be
on the three lower temporal layers, whereas the other three RCs will be either on the fourth
or fifth temporal layers, thus having higher QPs. While this feature could be interesting
in a scalable scheme where the major part of the bitrate would be attributed to the BL,
such a feature could be prejudicial to the quality of the full resolution reconstructed signal.
Indeed, with the current CTC, the number of transform blocks, which contain the residuals
of temporal predictions between images of different RCs, are hardly present in the encoded
fourth and fifth layer images due to their higher QP. Encoder decisions are further detailed
in Section 3.4.

In order to improve the coding efficiency for the three RCs of the EL, two alternative
configurations, relying on the decrease of the quantization step for these sub-images, are
proposed:
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Fig. 3.6 Modified Random Access GOP16 structure.

• Base layer unchanged, QP offsets equal to 3 for TL#3 and TL#4.

• Base layer unchanged, QP offsets equal to 0 for TL#3 and TL#4.

3.2.2 Intra-layer Temporal Predictions

Another idea is to allow for predictions between images of the same RC, i.e. between images
of the same temporal layers. This feature adds an alternative choice for the encoder that
should be selected when the correlation between two adjacent pixels of the original full
resolution image is less interesting, in a RDO sense, than the correlation between pixels of
two consecutive full resolution images.

Figure 3.6 depicts a modified GOP structure that allows such intra-layer predictions. It
is important to note that the inter-layer predictions between the fourth and fifth temporal
layers have been deactivated to limit the additional encoding time induced by the new GOP
structure.

3.2.3 Chroma Phase Shift Compensation

The polyphase subsampling technique takes one over four pixels, in each 2x2 block of the
input image, to create the four RCs. This decomposition is performed on both the luma and
chroma planes of the input images. However, for a video in 4:2:0 format, which is the most
commonly used chroma subsampling format, the polyphase decomposition introduces a mis-
alignment between the chroma pixels of the different sub-resolution images, as depicted in
Fig. 3.7. This misalignment has a significant impact on the motion compensation efficiency
in the chroma channels.

Indeed, during the motion compensation step, an encoder usually derives the MVs of the
chroma planes from the MVs of the luma plane. For example, in HEVC, the luma MVs are
scaled by a factor of two in both directions to compute the chroma MVs. For a polyphase sub-
sampled video, when a frame from a different RC is used as reference for an inter-prediction,
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Fig. 3.7 Pixel positions in 4:2:0 format for polyphase subsampling with and without chroma
pixel alignment.

the derived chroma motion vector is inherently wrong due to the misalignment of the chroma
pixels between RCs. The resulting chroma plane prediction is sub-optimal thus increasing
the amount of residuals to encode. To overcome this issue one can either change the chroma
motion vector derivation process depending on the RCs or realign the chroma planes before
the polyphase subsampling.

In order to avoid changing the core encoding process and to keep the proposed solution
entirely as a pre-processing step, a realignment of the chroma planes of the different RCs is
proposed, as shown in Fig. 3.7, using a simple mean filter before the polyphase subsampling.
The mean filter is applied on each 2x2 chroma block of the input full resolution image, as
described in Equation (3.1)

Ialign(2n,2m) = Isrc(2n,2m),

Ialign(2n+1,2m) = 1
2 · (Isrc(2n,2m)+ Isrc(2n+1,2m)) ,

Ialign(2n,2m+1) = 1
2 · (Isrc(2n,2m)+ Isrc(2n,2m+1)) ,

Ialign(2n+1,2m+1) = 1
2 · (Isrc(2n,2m)+ Isrc(2n+1,2m+1)) ,

(3.1)

with Isrc the input picture, Ialign the output chroma aligned picture, n and m the row and
column indexes, respectively. The inverse operation is performed after the reconstruction of
the output full resolution image from the four decoded RCs.
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3.3 Experimental Results

This section provides a study on the performance of the proposed enhanced polyphase scal-
able coding scheme on UHD sequences. First, the test sequences and experimental setup
used for the performance evaluations are detailed. Then, an objective evaluation is per-
formed to compare the polyphase-based coding scheme, with and without the proposed im-
provements, to SHVC.

3.3.1 Test Sequences

Since the subject of the study is focused on the coding of high resolution content, a dataset
comprising only UHD sequences has been defined. The dataset is similar to classes A1 and
A2 of the JCT-VC test sequences, with video clips made available by Netflix, SJTU, Huawei
and b<>com. Table 3.1 summarizes the characteristics of each test sequence. The sequences
have a 5-second duration and a frame-rate of 60 fps, except for Drums, which has a duration
of 3 seconds and a frame-rate of 100 fps.

Table 3.1 UHD test set sequences and their characteristics.

Sequence Resolution (width x height) Frame rate (fps) Frames

DaylightRoad 3840x2160 60 300
CatRobot 3840x2160 60 300
Drums 3840x2160 100 300
ToddlerFountain 4096x2160 60 300
Tango 4096x2160 60 294
RollerCoaster 4096x2160 60 300

As depicted in Fig. 3.8, the database offers a wide range of natural content. The different
sequences have been selected from various sources to ensure that they have different spatio-
temporal characteristics. Two simple metrics recommended by the ITU-T [29], namely the
spatial information SI and temporal information T I, have been computed for each video clip
to assess the validity of this statement.

The spatial information measurement (SI), i.e. the level of spatial details in the video
sequence, is based on the Sobel filter. Each frame Fn of the test sequence is thus first filtered
with the Sobel filter Sobel(F) before computing the standard deviation of the resulting im-
age. Once the entire video clip has been processed, the spatial information SI is obtained
by taking the maximum value of the standard deviation of the Sobel-filtered frames over the
whole sequence. Equation (3.2) represents this process:

SI = max
n
{std i, j(Sobel(Fn(i, j)))}, (3.2)
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(a) DaylightRoad (b) CatRobot (c) Drums

(d) ToddlerFountain (e) Tango (f) RollerCoaster

Fig. 3.8 Screenshots of UHD test sequences.

where Fn(i, j) is the pixel located at the ith row and jth column of the nth frame.

The temporal information measurement (TI), i.e. the amount of motion between succes-
sive frames, is based on the motion difference feature, which is the difference between the
pixel values of two consecutive frames. Mn(i, j), the motion difference pictures, is defined
as

Mn(i, j) = Fn(i, j)−Fn−1(i, j). (3.3)

The temporal information, T I, is then computed as the maximum, over all frames, of the
standard deviation of the motion difference picture, as defined in Equation (3.4).

T I = max
n
{std i, j(Mn(i, j))}. (3.4)

Fig. 3.9 shows the SI-TI metrics computed for the test sequences comprised in the
dataset. As expected, the video clips have different spatio-temporal characteristics, with
Tango and RollerCoaster showing a low amount of details compared to sequences like
Drums, and with CatRobot having a low temporal information measure compared to Tod-
dlerFountain.

Despite the simplicity and known flaws of these two metrics for the precise measure-
ment of spatio-temporal information, they are reliable enough to assess the diversity of the
spatio-temporal characteristics of video contents. Therefore, the differences observed should
lead to various behaviors over the dataset for the compression algorithms that will be tested
throughout the different studies carried out.
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Fig. 3.9 Perceptual spatio-temporal information of the test sequences

3.3.2 Experimental Set-up

Encodings have been performed with the HEVC reference software (HM16.12) [41] and
SHVC reference software (SHM9.0) [47]. According to the CTC for RA configuration, a
fixed QP scheme has been used for all encodings, with a hierarchical GOP of size 16 and
an intra-period of approximately one second for both the reference SHVC coding chain and
the proposed one. The performances have been assessed in terms of rate-distortion using the
Bjøntegaard delta metric (BD-Rate) [30], representing the average bitrate savings for equal
PSNR values. In order to evaluate the proposed scalable coding chain over a wide range of
bitrates, QP values ranging from 22 to 40 with a step of two have been used for each test
sequence.

3.3.3 Objective Evaluation

Results for Resolution Component dependent Temporal Layer QP Offsets

After encoding the UHD dataset following the coding chain presented in Section 3.1.2, the
two specific TL QP offset configurations did not show improved coding performances. The
decrease of the QP, i.e. a lower quantization step and a lower λ parameter in the RDO,
did increase the amount of transform units signaled in the bitstream, but the resulting higher
bitrate was not compensated by a substantial increase in PSNR value for the reconstructed
output signal.

Results for Intra-Layer Temporal Predictions

This new GOP structure has been tested with and without the modified temporal layer QP
offsets. The coding performances were similar to the original GOP structure, with average
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Table 3.2 BD-Rate results for chroma aligned polyphase compared to original scheme.

Sequence PSNR-Y PSNR-U PSNR-V PSNR-YUV

DaylightRoad -0.16 -12.5 -11.2 -2.96
CatRobot -3.55 -28.0 -31.8 -8.98
Drums -1.94 -15.0 -10.9 -3.51
Tango -0.10 -7.87 -14.9 -3.66
RollerCoaster -0.52 -14.5 -7.64 -2.64
ToddlerFountain -0.03 -4.47 -4.39 -0.11
Average -1.1 -13.7 -13.5 -3.6

BD-Rate values very close to 0%. Indeed, the new reference pictures allowed by the modified
GOP are not often chosen by the encoder as temporal predictor, preferring the RC #0 image
encoded with a lower QP. With the modified temporal layer QP offsets configurations, the
new predictions represent the majority of chosen reference pictures, with a slightly lower
resulting reconstructed quality without any decrease in bitrate, compared to the original GOP
structure with modified QP offsets.

To conclude this study on modification of the encoding GOP structure, the proposed
changes were not retained as they do not offer increased encoding performances, contrary to
the chroma phase compensation that improved the prediction quality of both chroma planes,
as shown in the next section.

Results for Chroma Phase Shift Compensation

Table 3.2 shows the results of the realignment of chroma pixels of the polyphase subsampled
signal presented in Section 3.1. Negative BD-Rate values represent bitrate savings for the
proposed decomposition compared to the original polyphase subsampling. It can be observed
that the proposed chroma realignment improves the performance for both chroma channels
(U and V) with an average gain of 13.6% compared to the original polyphase subsampling.
Thus, the losses due to the rounding error introduced by the proposed filtering are more than
compensated by the improved prediction step with correct chroma motion vector derivation.
Table 3.2 also shows minor gains for the luma channel. This can be explained by the overall
decrease in terms of number of bits, due to the improved chroma motion estimation, neces-
sary to achieve the same quality.

The polyphase subsampling scheme with and without the proposed chroma realignment
is compared to SHVC in Table 3.3. For equal PSNR-YUV, an average bitrate overhead
of 6.6% can be observed for polyphase with chroma realignment. Considering the per-
sequence results, it can observed that performance is highly variable, ranging from a 45%
overhead to a 13.3% bitrate reduction. Indeed, on one hand, the temporal prediction between
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Table 3.3 BD-Rate results (%) for proposed schemes vs SHVC.

Original polyphase Polyphase with Chroma Alignment
Sequence

Y U V YUV Y U V YUV

DaylightRoad 33.6 128 159 47.8 33.4 104 142 44.9
CatRobot 23.9 152 200 39.9 19.6 80.4 98.1 28.5
Drums -10.3 74.2 93.1 -1.1 -12.1 46.1 69.4 -4.6
Tango -17.2 39.9 49.9 -4.1 -17.3 31.0 31.4 -6.5
RollerCoaster -16.9 32.0 25.5 -11.1 -17.4 11.3 15.0 -13.3
ToddlerFountain -11.8 59.4 35.1 -9.4 -11.8 50.9 26.9 -9.5
Average 0.2 81.1 93.8 10.3 -0.9 53.9 63.8 6.6

Encoding T R% 55 55
Decoding T R% 42 42

the enhancement and base layers allows for the recovery of the spatial details of the full
resolution input video for most test sequences, resulting in a bitrate reduction compared to
SHVC. On the other hand, for the DaylightRoad and CatRobot test sequences, the large
losses can be explained by a noisy input, especially for DaylightRoad, and by the presence
of very sharp details, mostly text. The spatial high frequencies of these sharp details are
partially or totally lost in the base layer during the decomposition step and are thus too
costly to recover due to the high residual energy in the enhancement layer frames. The same
behavior is observed in the chroma channels for all sequences, where the smaller resolution
of the chroma planes amplifies this effect, which results in high positive chroma BD-Rate
values.

Regarding the coding complexity, the polyphase scalable scheme provides a substantial
55% (resp. 42%) reduction in encoding (resp. decoding) time compared to SHVC. The en-
coding complexity gain could be further increased, by limiting the possible reference frames
for the upper temporal layers, without any impact the coding efficiency.

3.4 Study on Encoder Decisions

This section aims at verifying that the encoder decisions follows the expected behavior con-
sidering the particularities of the polyphase decomposed signal being encoded. Indeed, the
polyphase-based scalable coding scheme relies on the use of temporal predictions to predict
spatially adjacent pixels. Therefore, RCs #1, #2 and #3 - respectively the top-right, bottom-
left and bottom-right pixels of each 2x2 block of the original input image - are supposed to
be temporally predicted from the RC #0 - the top-left pixel. Thus, the majority of blocks
should be encoded using a forward inter-prediction with motion vectors corresponding to
the phase difference between the sub-images of the base and enhancement layers. For in-
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Table 3.4 Prediction mode decisions for polyphase decomposed CatRobot sequence (QP 26).

Prediction Average number of CUs per frame
mode RC #1 RC #2 RC #3

Intra 0 0 % 6 0.3 % 1 0 %
Inter 150 12.3 % 459 24.4 % 125 9.6 %
Skip 1069 87.7 % 1419 75.3 % 1173 90.4 %
Total 1219 100 % 1884 100 % 1299 100 %

stance, the MV (2,0) - half-pixel motion in quarter pixel precision - should be used for RC
#1 blocks predicted from their corresponding RC #0 block. It is important to note that RCs
#1 and #3 sub-images can also be predicted from RC #2 images due to the particularity of
the Random Access GOP structure used in this experiment (see Section 3.2.1 for the detailed
structure). To verify these hypothesis, the chosen prediction modes are first studied, followed
by an analysis of the selected prediction directions, based on the encoding of the CatRobot
sequence at QP 26 (≈ 12 Mbps).

3.4.1 Chosen Prediction Modes

First, the prediction modes selected for the encoding of the enhancement layer images have
been studied. Table 3.4 shows the average number of CUs for different prediction modes,
namely intra, inter and skip. The skip mode corresponds to CUs that contain only one PU of
the same size, using block merging (full inheritance of motion parameters from spatially or
temporally adjacent blocks) and without any residual data signaled in the bitstream.

As expected, the number of blocks encoded using intra prediction is close to zero for the
three RCs of the enhancement layer. Indeed, almost every blocks are coded using temporal
prediction - inter or skip mode - thus confirming the interest of the polyphase decomposition
scheme. In addition, the majority of these temporally predicted blocks - 95.9%, 92.4% and
96.2% for RCs #1, #2 and #3, respectively - are using the merge mode, suggesting a certain
spatial homogeneity among motion vectors of each sub-resolution image.

3.4.2 Chosen Prediction Directions

To confirm the hypothesis on the expected motion vectors and their direction, the PUs have
been analyzed. Table 3.5 shows the average number of PUs using each possible temporal
prediction direction: L0 usually contains P or B reference images with lower Picture Order
Count (POC) numbers (forward prediction), L1 mainly contains B reference images with
higher POC numbers (backward prediction) and bi-pred is for bi-directional predictions us-
ing both L0 and L1 reference picture lists.
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Table 3.5 Chosen temporal prediction directions for polyphase decomposed CatRobot se-
quence at QP 26.

Prediction Average number of PUs per frame
direction RC #1 RC #2 RC #3

forward 1001 78.6 % 1468 71.9 % 1209 88.8 %
backward 76 6 % 99 4.8 % 30 2.2 %
bi-pred 196 15.4 % 475 23.3 % 122 9 %
Total 1273 100 % 2042 100 % 1361 100 %

As expected, forward prediction is the most chosen mode, mainly corresponding to the
use of RC #0 (or #2) images to predict frames of the enhancement layer. Among these for-
ward predictions, more than 90%, in average, of the signaled motion vectors directly match
the phase difference between the two RCs images. Thus, the experimentally observed en-
coder decisions correspond to the behavior that was expected while designing the polyphase
decomposition scheme.

3.5 Conclusion

In this chapter, improvements to the polyphase decomposition scheme, a pre/post-processing
tool to achieve x2 spatial scalability with a single HEVC encoder instance, have been pro-
posed.

First, two modifications of the GOP structure aiming at adapting the coding configuration
to the format of the polyphase decomposed signal have been proposed. It has been shown that
these modifications, on one hand relying on different TL QP offsets and on the other hand
on intra-layer temporal predictions, did not yield any improvements over a legacy HEVC
coding scheme, in terms of bitrate savings.

Then, a chroma phase shift filter has been presented to correct a flaw inherent to the
polyphase decomposition. It has been shown that this correction leads to 3.6% average
bitrate savings compared to the original polyphase decomposition, and an averaged bitrate
overhead of 6.6% compared to SHVC with a complexity reduction of 55% and 42% at the
encoder and decoder sides, respectively.

However, a high proportion of skipped blocks, and thus the very low amount of transform
residuals signaled in the bitstream, is observed. This raises the issue of the capacity to
reconstruct the level of details of the original full resolution. Indeed, even with a good
prediction stage, a bigger amount of residuals should remain in the bitstream at high bit
rates. The lack of transmitted transform residuals induces a level of detail relatively low
in the reconstructed output video, hence the BD-Rate values observed, especially on the
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chroma planes where the amount of transform blocks is even closer to zero. This limited
performance could be the result of the aliasing introduced by the polyphase decomposition
performed prior to encoding, which makes the spatial details harder to encode due to the
presence of unwanted high spatial frequencies.





Chapter 4

Wavelet-based Decomposition

As stated in the previous chapter, the main flaw of the polyphase subsampling technique is
the potential aliasing introduced in the four sub-resolution images obtained after decompo-
sition. Indeed, aliasing creates high frequencies which are costly to encode, for usual video
coding algorithms, due to the magnitude and position of the corresponding coefficients in
the transformed residual blocks. This is especially a problem for the resolution component
which serves as base layer, since it will be encoded with a lower QP than the sub-images of
the enhancement layer, if an HEVC encoding with a traditional hierarchical GOP is consid-
ered.

To avoid this issue, the use of a wavelet-based decomposition instead of the polyphase
subsampling is proposed in this chapter. Indeed, wavelet transforms have the nice property of
generating a lowpass version of the input image, thus with much lower aliasing, which could
serve as base layer in the considered low-complexity scalable coding scheme. Therefore, the
contribution of this chapter focuses on the design of a modified wavelet transform used in
lieu of the polyphase decomposition as the pre-processing operation of the proposed scalable
coding scheme.

This chapter is organized as follows. Section 4.1 provides a brief introduction to the
wavelet transform theory and an overview of standardized wavelet-based coding solutions.
Then, the proposed wavelet-based scalable coding scheme is presented in Section 4.2. Sev-
eral modifications of the encoding process to suit the wavelet transformed signal are in-
vestigated in Section 4.3. Finally, experimental results are detailed in Section 4.4 while
Section 4.5 concludes this chapter.

4.1 Related Works

Wavelet-based image and video coding has been an important field of research as an alter-
native to the traditional block-based hybrid encoding. This section aims at introducing the
theory of wavelet transforms and its application to video coding. An in-depth introduction
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Fig. 4.2 Analysis stage of a K-level 1-D wavelet decomposition. y fk represents the wavelet
coefficients for frequency sub-band f , f ∈ {L,H}, at the kth level of decomposition.

to the wavelet theory is out of the scope of this work and can be found in [54–61]. This
section is organized as follows. The key features of the Discrete Wavelet Transforms (DWT)
are first introduced, followed by a presentation of the standardized image and video codecs
using wavelet transforms.

4.1.1 Background on Discrete Wavelet Transforms

Definition of the DWT

The generic form of a DWT is depicted in Fig. 4.1. The analysis stage, i.e. the forward
transform, is first performed on the input signal x(n). It is done by applying the lowpass
and highpass wavelet filters. Each filtering operation is followed by a downsampling process
which selects the even and odd samples to respectively obtain the lowpass sub-band yL(n)
and highpass sub-band yH(n). The synthesis stage, i.e. the inverse transform, is the per-
formed to reconstruct the output signal z(n). To this end, an upsampling is first performed
on both sub-bands consisting in inserting zeros in-between every two samples. Finally, the
output reconstructed signal z(n) is the sum of the lowpass filtered upsampled lowpass sub-
band and highpass filtered highpass sub-band.

The 1-D DWT process can be performed with several levels of decomposition, as de-
picted in Fig. 4.2 for the analysis stage. Both a lowpass and highpass filers are applied
on the input signal x(n) followed by downsampling by a factor of 2, thus constituting one
level of transform. For each subsequent level, the same process is performed on the lowpass
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Fig. 4.3 Analysis stage of a K-level 2-D wavelet decomposition. y f k represents the wavelet
coefficients for frequency sub-band f , f ∈ {LL,LH,HL,HH}, at the kth level of decomposi-
tion.

frequency sub-band of the previous level. The number of levels is a finite number K, with
the filter outputs yHk(n) and yLk(n), k ∈ {1,2, ...,K}, referred to as kth wavelet coefficients.
The wavelet filter coefficients, and subsequent transform properties, depend on the wavelet
family, such as the Haar, Daubechies or bi-orthogonal wavelets, to name a few.

The 1-D DWT process can be extended to 2-D using separable filters [62]. Fig. 4.3
illustrates the generic form of a K-level 2-D wavelet transform. For each level, the transform
process is achieved by successively applying the 1-D lowpass and highpass filters along rows
and columns of the input signal X(m,n), resulting in 4 sub-band signals YLL(n), YLH(n),
YHL(n) and YHH(n). For each subsequent decomposition level k, the same transform process
is performed on the lowpass sub-band of the previous level yLLk−1 . As for the 1-D transform,
YLLk(n), YLHk(n), YHLk(n) and YHHk(n) are referred to as kth wavelet coefficients.

The result of a one-level 2-D Haar transform applied on the input image depicted in
Fig. 4.4a is shown in Fig. 4.4b, with the wavelet sub-bands, namely LL, LH, HL and HH
respectively carrying the lowpass filtered image, horizontal, vertical and diagonal contour
images.

Lifting Scheme

There are two different conventional filtering schemes to perform compute a wavelet trans-
formed signal: the convolution scheme and the lifting scheme. The convolution scheme
consists in traditionally convolving the filter kernel with the input image, which can be-
come computationally expensive for large wavelets, such as the well-known 9/7 Daubechies
wavelet [63]. The lifting scheme [64] consists in a sequence of simple filtering operations.
The basic idea is to split the input signal in two, the odd samples on one hand and the even
samples on the other hand. The highpass sub-band is obtained by applying the highpass
filter g on the odd samples whereas the lowpass sub-band is a linear combination of the fil-
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(a) Original CatRobot image

(b) One level 2-D decomposition using the Haar wavelet

Fig. 4.4 Example of 2-D DWT with the Haar transform.

tered even sampled, with the lowpass filter h, and highpass sub-band scaled with the scaling
operator s. Fig. 4.5 depicts the block diagram of this lifting scheme for a 2-D DWT.

As for any filtering operation, the case of image boundaries must be handled with care.
For wavelet transforms, Usevitch showed in [65] that for the output to be artifact free and
without coefficient expansion, the border extension and wavelet must satisfy certain con-
straints. On one hand, a whole sample symmetric extension at image boundaries must be
performed before filtering. It consists in symmetrically repeating the signal samples at the
exception of the first and last samples of each row or column, which are whole samples
and thus only appear once. Therefore, the required number of extended samples is only
filter-dependent and can thus be derived from the filter length of the considered DWT. On
the other hand, the wavelet filters must be linear phase filters, i.e. either symmetric or anti-
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Fig. 4.5 2-D Discrete Wavelet Transform - Lifting scheme.

symmetric. If these two constraints are respected, the wavelet filter pairs (h,g) satisfy the
perfect reconstruction property, defined by Equations 4.1 and 4.2. The output image of the
wavelet synthesis stage is thus identical to the input image of the analysis stage, even at
image boundaries.

h(z)h̃(z−1)+g(z)g̃(z−1) = 2z−l (4.1)

h(z)h̃(−z−1)+g(z)g̃(−z−1) = 0 (4.2)

However, there exists only one linear phase filter set for real-valued and compactly supported
orthogonal wavelets, the trivial Haar filter [54]. Thus, a more general form of wavelets have
been designed, known as bi-orthogonal wavelets, to allow for symmetric linear phase filters.
These wavelets are thus not energy preserving due to their non-orthogonality, which must be
taken into account for an optimal coding of wavelet coefficients.

4.1.2 Wavelet-based Standardized Codecs

Based on the breakthrough in wavelet-based coding introduced by Shapiro with the Em-
bedded Zero-tree Wavelet (EZW) algorithm [66], several wavelet coding scheme showed
promising state-of-the-art coding performance [67–69], notably the Embedded Block Cod-
ing with Optimized Truncation (EBCOT) algorithm [67, 70], and inspired the successor of
the well-known DCT-based JPEG still image coding standard [71], JPEG-2000 [72, 73].

Wavelet transform is thus at the core of the JPEG-2000 as depicted in Fig. 4.6, with either
the Daubechies 9/7 wavelet for the lossy profile or the Le Gall 5/3 wavelet for the lossless
profile of the standard. Since then, the standard has been extended to support video coding
with Motion JPEG 2000 [74], which introduces the the high level syntax enabling a bitstream
containing only frames individually coded with JPEG-2000.

Additionally, in an effort to improve the coding efficiency of wavelet-based video coding,
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Fig. 4.6 General Block Diagram of the JPEG2000 still image coding standard.
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Fig. 4.7 General Block Diagram of the VC-2 video coding standard.

several researchers worked on 3-D wavelet transforms [75–78], the third dimension being a
temporal filtering of the images, with optimal motion estimation in the wavelet transform
domain [79].

More recently, a second codec, based on the Dirac Pro solution of the British Broadcast-
ing Corporation (BBC) [80], has been standardized through the Society of Moving Pictures
and Television Engineers (SMPTE) norm ST 2042-1 [81]. VC-2 is a low-delay solution for
for the production industry, and thus focuses on different aspects of video compression than
typical broadcast-oriented codecs, namely low latency, low complexity and high fidelity. As
depicted in Fig. 4.7, the encoder is based on a lifted wavelet transform, chosen among sev-
eral supported wavelets whose implementation has been optimized to reach a latency equal
to a few lines. Due to the hard latency and complexity constraint of the production use-case,
a high compression ratio is not required. VC-2 thus allows for compression ratios ranging
from 2:1 up to 8:1, depending on the chosen supported wavelet and other coding parameters.

4.2 Proposed Wavelet-based Pre-Processing Tool

4.2.1 Modification of the Decomposition Step

The proposed wavelet-based decomposition process is shown in Fig. 4.8, with the modifica-
tions depicted in green. First, a DWT is applied on the input signal to produce four different
sub-bands. The LL sub-band, corresponding to a lowpass filtered version of the input sig-
nal, is used as base layer in the scalable coding chain. The LH, HL and HH sub-bands,
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Fig. 4.8 Discrete Wavelet Transform with modifications displayed in green - Analysis stage.

which correspond to horizontal, vertical and diagonal high-frequencies, respectively, form
the enhancement layer.

To make the decomposed signal suitable for a standard HEVC encoder, the LL sub-
band is added to each of the other three high-frequency sub-bands, thus enabling temporal
prediction between the base and enhancement layers. Indeed, the residuals of a temporal
prediction between a LL block and a LH ′ block with a (near-)zero motion vector would be
equivalent to the corresponding original LH block. The temporal packing of the sub-bands
follows the same process as for the polyphase subsampling, each sub-band corresponding to
a different resolution component.

The coding chain integrating the proposed wavelet-based decomposition remains the
same as the one described in Section 3.1.2, at the exception of the polyphase decomposition
step being replaced by the proposed wavelet-based decomposition. The spatial scalability
is thus achieved by only decoding the lowpass filtered sub-band, which composes the lower
temporal layers, if only the base layer is needed at the display end. If the original resolu-
tion is required, the entire bitstream is decoded and the inverse DWT (synthesis stage) is
performed to reconstruct the full resolution output video.

4.2.2 Considered DWTs

Considering the coding chain defined in the previous section, several DWTs can be used,
chosen among a vast pool of existing wavelets. Since the wavelet sub-bands are encoded
using a standard HEVC encoder, which uses integer format for the input video, the sub-band
coefficients must be integers. Thus, only the integer-to-integer DWTs Haar and Le Gall 5/3
are considered in this study.
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4.2.2.1 Haar Wavelet

The Haar wavelet is one of the most simple and easy to implement DWT, which has the nice
property of being orthogonal with perfect reconstruction even with integer values [54]. For
the analysis stage (respectively synthesis stage), the 1-D filtering is performed by applying
the lowpass and highpass filters of Equation (4.3), (resp. Equation (4.4)) successively on
both rows and columns of the input image, as depicted in Fig. 4.1.

Analysis


aLP(n) = 1√

2
·x(n)+ 1√

2
·x(n−1)

aHP(n) =− 1√
2
·x(n)+ 1√

2
·x(n−1)

(4.3)

Synthesis


sLP(n) = 1√

2
·x(n)− 1√

2
·x(n−1)

sHP(n) = 1√
2
·x(n)+ 1√

2
·x(n−1)

(4.4)

with n the sample index, x the input to the considered filter, aLP and aHP (resp. sLP and sHP)
the outputs of the considered filters for the analysis (resp. synthesis) stage.

As previously said, the Haar wavelet is very simple. Indeed, the 2-D lowpass filtering ba-
sically corresponds to the mean of the pixels of each 2x2 block. Therefore, the LL sub-band
contains very smooth edges and is lacking sharp details, decreasing the perceptual quality
of the base-layer, but also making it easier to encode. Additionally, the high-pass sub-bands
mainly contains high coefficients on sharp edges, which can be partially predicted from the
LL sub-band. This wavelet could thus lead to interesting results, despite its simplicity, when
used in the proposed coding scheme.

4.2.2.2 Le Gall 5/3 Wavelet

The Le Gall 5/3 wavelet [82] is more complex than the Haar wavelet previously described.
It uses a 5-tap lowpass (respectively highpass) filter and a 3-tap highpass (resp. lowpass) at
the analysis (resp. synthesis) stage. The filters are applied successively on both rows and
columns and are defined using Equations 4.5 and 4.6.

Analysis

{
aLP(n) = 3

4 ·x(n)+
1
4 · [x(n−1)+x(n+1)]− 1

8 · [x(n−2)+x(n+2)]

aHP(n) = x(n)− 1
2 · [x(n−1)+x(n+1)]

(4.5)

Synthesis

{
sLP(n) = x(n)+ 1

2 · [x(n−1)+x(n+1)]

sHP(n) = 3
4 ·x(n)−

1
4 · [x(n−1)+x(n+1)]− 1

8 · [x(n−2)+x(n+2)]
(4.6)
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With its wider lowpass filter, the Le Gall 5/3 DWT should result in a visually better LL
sub-band than the Haar DWT, making it potentially more suitable for a spatial scalability
scheme. However, contrary to the Haar transform, the Le Gall 5/3 DWT is not orthogonal,
and thus not energy preserving, which could induce a sub-optimal bit allocation while encod-
ing it with HEVC. Section 4.3.2 explores this issue of non-orthogonality and rate-distortion
optimization.

4.2.3 Implementation

The two above mentioned discrete wavelet transforms have been implemented in C++ and
added to the software package already used for the modified polyphase decomposition. In
order to reduce the computation time, fast algorithms have been considered.

For the Haar DWT, composed of low complexity 2-tap lowpass and highpass filters,
the 2x2 kernels of Equation (4.7) have been applied to the Isrc input image to generate the
transformed image IDWT and the kernels of Equation (4.8) to reconstruct the output image
Irec.

Analysis


ILL = 1

4 · Isrc ·

[
1 1
1 1

]
ILH = 1

4 · Isrc ·

[
−1 −1
1 1

]

IHL = 1
4 · Isrc ·

[
−1 1
−1 1

]
IHH = 1

4 · Isrc ·

[
1 −1
−1 1

] (4.7)

Synthesis


arec = IDWT ·

[
1 −1
−1 1

]
brec = IDWT ·

[
1 −1
1 −1

]

crec = IDWT ·

[
1 1
−1 −1

]
drec = IDWT ·

[
1 1
1 1

] (4.8)

with Isrc=

[
a b
c d

]
, IDWT =

[
ILL ILH

IHL IHH

]
and Irec=

[
arec brec

crec drec

]
2x2 blocks of the input, trans-

formed and reconstructed signals, respectively. The division by 2 originally performed at the
synthesis stage has been shifted to the analysis stage to keep a 10-bit output compliant with
the input format of the HEVC encoder.

For the Le Gall 5/3 DWT, the lifting scheme, introduced in Section 4.1, has been adapted
to follow the modified DWT scheme, as depicted in Fig. 4.9. The filters composing the
lifted Le Gall 5/3 wavelet transform are defined by Equations 4.9 and 4.10. The scaling
operator used for prediction in the analysis stage and update in the synthesis stage is defined
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Fig. 4.9 Modified Discrete Wavelet Transform - Lifting scheme.

as s(z) =−1
4 ·
(
z−1 +1

)
.

Analysis

{
h̃(z−1) = 1
g̃(z−1) = z− 1

2 ·
(
z2 +1

) (4.9)

Synthesis

{
h(z) = 1+ 1

2 ·
(
z−1 + z

)
g(z) = z−1 (4.10)

This implementation respects the perfect reconstruction property defined in Equations 4.1
and 4.2, with integer values.

4.3 Coding Configuration Modifications

This section presents the investigated experiments on coding configurations specifically de-
signed for the encoding of the proposed wavelet transformed signal. The experimental results
will be presented in Section 4.4.

4.3.1 Frequency-dependent Quantization Weighting

One of the main issues observed on the output of the proposed coding chain is a loss of
definition due to the lack of information in the decoded high frequency sub-bands, necessary
for a correct reconstruction. This lack of information is a consequence of the low amount
of transform blocks kept by the encoder in the high frequency sub-bands. Indeed, in these
images, the coefficients after prediction and forward transform have particularly low absolute
magnitudes, generally smaller than 2 once quantized. Thus, the encoder often finds the
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option of not signaling any coefficient a better solution, in a RDO sense, rather than signaling
them in a transform unit.

This study aims at increasing the amount of information in the high frequency sub-bands
after encoding by decreasing the quantization step for selected high frequencies, depend-
ing on the current sub-band, thus favoring the low magnitude transform coefficients during
quantization. This can be achieved by applying different frequency-dependent quantization
matrices for each sub-band, thus favoring the significant frequencies during quantization.

As stated in Section 2.3.2, the transform step of HEVC uses the two-dimensional DCT
on TBs of different sizes, from 4x4 to 32x32 pixels. Therefore, since a wavelet transform
splits the signal into four sub-bands, one with the low frequencies, the other with vertical,
horizontal or diagonal frequencies, the transform coefficients should be concentrated around
one quarter of the transform block, depending on the wavelet sub-band. This is the expected
behavior if the chosen DWT has a good frequency splitting property.

For each sub-band obtained with the Haar DWT, Fig. 4.10 depicts the energy of each
coefficient location for the different transform blocks signaled in the bitstream for the coding
of CatRobot sequence at QP 22. Black and white pixels represent the lowest and highest
energies, respectively. As expected, coefficients with the highest energy are located in the
quarter corresponding to the frequencies of their sub-band type. The only exception is for
the large transform block sizes of the HH sub-band, where the energy of the DC coefficient
is higher than the bottom right coefficients, which correspond to diagonal frequencies. With
this information, different quantization matrices adapted to each sub-band can be designed
with higher weights, i.e. a larger quantization step, for the non-significant frequencies.

As mentioned in Section 2.3.2, HEVC supports quantization weights for each trans-
formed coefficient location (frequency), i.e. the w(i, j) weights in Equation (2.14). These
weights can be set for each possible TB size through quantization matrices signaled in the
Picture Parameter Set (PPS), which defines several picture-level parameters. The PPS is usu-
ally the same for every frame of a bitstream and is thus only sent once for the first frame.
However, it can eventually be sent again each time a modification of the PPS parameters is
applied, for example to the quantization matrices.

Signaling the quantization matrices in the PPS of each frame - 24 matrices (4 transform
block sizes, Y, U and V components, intra and inter prediction modes) - would introduce
a non-negligible bitrate overhead. Instead, the scaling matrices are only signaled once for
each sub-band type, storing them in a dedicated memory which is then accessed to retrieve
the quantization matrices of subsequent frames. The association of a frame to a certain sub-
band type from the encoder point of view, and thus to a corresponding set of quantization
matrices, is simply done by looking at the POC of the frame. The HEVC reference software
has thus been modified to include the signaling of the scaling matrices in the PPS with the
necessary memory buffers needed to implement the scheme previously described.
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Fig. 4.10 Transform coefficients energy by position in TU and wavelet sub-band.

4.3.2 Optimized Bit Allocation for Non-Orthogonal Wavelets

Since the Le Gall 5/3 wavelet is bi-orthogonal, energy is not preserved throughout the trans-
form process contrary to orthogonal wavelets such as Haar. This non-orthogonality results
in a sub-optimal bit-allocation with usual RDO algorithms because each sub-band does not
equally contribute to the reconstructed signal. Thus, errors in a particular sub-band lead to a
larger output distortion than the same error in a different sub-band.

Usevitch proposed in [83] an optimal bit-allocation for bi-orthogonal wavelets based on a
weighting of the quantization error depending on the sub-band filter coefficients. Assuming
a two-level wavelet decomposition, the weights applied to the distortion of each sub-band
follow Equation (4.11).

ωi j = tr
(
( g j⊗gi )

T ( g j⊗gi )
)

(4.11)

with ωi j the weight applied to the sub-band i j, i, j ∈ {L,H}, gx the wavelet kernel, here
gL = 1

2 · [1,2,1] and gH = 1
8 · [−1,−2,6,−2,−1] for the Le Gall 5/3 wavelet, and ⊗ the
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Kronecker product. The obtained weights are as follows:

ωLL = 2.25 ωLH = 1.078 ωHL = 1.078 ωHH = 0.517

These weights have been transposed into the RDO stage of the HEVC reference software
using the following cost function:

J =
ωSB

4
·D+λ ·R (4.12)

with J the cost function to minimize, D the distortion, R the rate in number of bits required to
signal the coding parameters, λ the Lagrangian multiplier derived from the prediction mode
and QP, ωSB the weight applied to sub-band SB, SB ∈ {LL,LH,HL,HH}.

4.4 Experimental Results

This section provides a study on the performances of the modified DWT coding chain using
the previously introduced UHD dataset. As for the polyphase case, an objective evaluation
is performed first to compare the encoding scheme, including the proposed imrpovements,
to SHVC. Then, the observations of a viewing session aiming at comparing visual artifacts
on the outputs of the different coding chains are detailed.

4.4.1 Objective Evaluation

The objective evaluations presented in this section have been carried out using the same cod-
ing chain, test sequences and random access encoder configuration as the polyphase scalable
coding scheme.

Results for Frequency-dependent Quantization Matrices

Encodings with different sets of quantization matrices have been performed to estimate the
impact of the modifications on the coding efficiency. The shape of the tested quantization ma-
trices corresponds to the transform coefficient energy repartition of Fig. 4.10, with weights
higher than 16 - the normalizing factor - for frequencies with low average energy, in order to
set a higher quantization step for the non-significant coefficients compared to the weights of
the significant high frequencies.

No improvement in coding performance was observed using the UHD dataset. Indeed,
looking at the generated bitstreams, the number of signaled transform coefficients is not
higher when using the frequency-dependent quantization matrices, resulting in slightly neg-
ative or no impact on the output signal quality. This is mainly due to the fact that allo-
cating a high quantization step to non-significant coefficients tends to result to the same
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Table 4.1 BD-Rate results (%) for sub-band weighting vs original Le-Gall decomposition.

Sequence Y U V YUV

DaylightRoad -4.61 -14.5 -11.6 -6.85
CatRobot -5.43 -11.1 -6.9 -6.02
Drums -3.07 3.74 5.89 -2.01
Tango 0.88 1.38 4.01 1.48
Average -3.05 -5.12 -2.15 -3.35

rate-distortion cost and thus the same encoder decisions as with the original quantization
step.

Results for Optimized Bit Allocation for Non-Orthogonal Wavelets

Table 4.1 summarizes the performance comparison for the Le Gall wavelet with and without
the presented wavelet sub-band weighting. It can be observed that the proposed sub-band
weighting provides average bitrate savings of 3.35 % for equal PSNR-YUV values. More
particularly, the weighting shows a substantial increase in coding efficiency for the sequences
that present significant losses, i.e. DaylightRoad and CatRobot.

Indeed, the obtained weights tend to limit the importance of errors in the high-pass sub-
bands, thus favoring the low-pass sub-band during bit allocation. Thus, less bits will be
allocated to the costly to encode high-pas coefficients due to their smaller contribution to the
reconstructed output quality, hence the better results for sequences containing a high amount
of spatial details.

On the contrary, for the sequence Tango, which already has a low amount of encoded
high-pass coefficients, the weighting does not have a clear impact on the final bitrate by
further lowering the amount of transmitted high-pass coefficients, but only lowers the output
quality, thus resulting in a positive BD-rate value.

Table 4.2 summarizes BD-Rate values for both Haar and Le Gall wavelet decompositions
compared to SHVC. The optimized bit allocation for non-orthogonal wavelets has been ac-
tivated for the Le Gall wavelet. For equal PSNR-YUV, an average bitrate overhead of 1.9%
and 7.1% can be observed for Haar and Le Gall 5/3, respectively.

The results for both wavelet-based decompositions follow the same trend as for the
polyphase subsampling but with less bitrate overhead. On average, it can be observed that
the scheme based on the Haar wavelet performs better than the Le Gall 5/3 scheme. This is
mainly due to the smaller energy present in the transformed coefficients in the high-pass sub-
bands after the motion compensation stage. This is illustrated in Fig. 4.11 which depicts the
average energy in the 16x16 TU obtained by encoding the sequence CatRobot with a QP of
22. As can be observed, the Le Gall 5/3 scheme transformed residuals are less compact in the
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Table 4.2 BD-Rate results (%) and complexity (%) for proposed schemes vs SHVC.

Haar Le Gall 5/3
Sequence

Y U V YUV Y U V YUV

DaylightRoad 22.9 45.5 71.2 30.0 36.3 67.3 92.4 44.0
CatRobot 7.5 39.2 55.0 13.4 16.6 53.4 71.6 23.3
Drums -2.2 45.9 67.8 4.3 2.4 60.9 83.2 9.7
Tango -24.8 12.1 10.5 -16.0 -23.4 16.1 16.3 -13.7
RollerCoaster -12.8 13.9 17.8 -8.8 -15.6 10.2 13.6 -11.9
ToddlerFountain -12.6 12.9 -4.1 -11.5 -11.4 56.4 25.9 -8.7

Average -3.7 28.3 36.4 1.9 0.8 44.1 50.5 7.1

Encoding T R% 54 53
Decoding T R% 50 40

HL sub-bandLH sub-band

0

1

(a) Haar

HL sub-bandLH sub-band

(b) Le Gall 5/3

Fig. 4.11 Normalized average transformed coefficients of 16x16 HEVC TUs for (a) Haar and
(b) Le Gall wavelet-based schemes.

DCT domain compared to the Haar wavelet coefficients, especially in the LH and HL sub-
bands. This greatly increasing the number of bits required to signal such transform blocks
after the Rate Distortion Optimized Quantization (RDOQ)stage [84]. For the HH sub-band,
the residual energy is mainly contained in the DC coefficient for both wavelet schemes but is
much more diffused in the spatial frequency coefficients for the Le Gall 5/3 scheme. Thus,
the number of transmitted TUs is globally higher for the Haar wavelet scheme due to their
limited bit cost, resulting in a higher reconstruction quality for the same bitrate.

Encoding and decoding times are also summarized in Table 3.3, showing an average
encoding (resp. decoding) complexity reduction of 54% and 53% (resp. 50% and 40%) for
Haar and Le Gall 5/3 schemes, respectively, compared to SHVC.

4.4.2 Visualization of the Reconstructed Videos

An informal subjective viewing session with several experts has been organized in order to
assess if the perceived quality conforms to the different objective evaluations performed.
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Several test points have been selected among the encoded reduced dataset with the same bi-
trate for each coding chain under test. Overall, the differences in measured objective quality
globally correspond to the differences in perceived quality.

For the CatRobot sequence, at relatively high bitrate (≈ 15 Mbps), the SHVC encoded
sequence shows a better conservation of details on the moving scarfs in the background and
on the text in the foreground. For those particular areas, both wavelet-based encoded video
clips do perform better than the polyphase scheme, with more readable text on the book
pages.

For DaylightRoad, the same observations can be made, with more details present on the
trees and cable lines with SHVC. With the Le Gall DWT, some very sharp details, such
as an antenna at the top of a building, were partly missing from the reconstructed output
video, probably due to the high amount of high frequency information in this area, which
was filtered out during encoding due to its important coding cost.

For Drums and Tango, the differences between the reconstructed outputs of the proposed
wavelet-based scheme and the SHVC are hardly noticeable at high bitrates, which concurs
with the highly similar objective measures at these bitrates.

4.5 Conclusion

In this chapter, a modification to the pre-processing based scalable coding scheme presented
in Chapter 3 have been proposed. Indeed, the polyphase decomposition has been replaced
by a modified wavelet-based decomposition.

First, the proposed wavelet-based decomposition has been introduced, with a description
of the modification of the conventional wavelet transform necessary to make the transformed
signal suitable for the considered scalable coding scheme. Then, the chosen implementation
of the two considered wavelets filter banks has been presented.

Then, two modifications of the encoder configuration aiming at adapting the encoding
process to the format of the wavelet transformed signal have been proposed. It has been
shown that the first explored experiment, based on frequency-dependent quantization ma-
trices, did not yield any improvements over a legacy HEVC coding scheme, in terms of
bitrate savings. The other proposed improvement consists in optimizing the bit allocation
of the RDO process for non-energy preserving non-orthogonal wavelet such as the Le Gall
wavelet. It has been shown that this optimization leads to 3.35% average bitrate savings
compared to the regular HEVC RDO process. Compared to SHVC, the proposed coding
scheme achieved average bitrate overheads of 1.9% and 7.1% for the Haar and Le Gall 5/3
wavelets, respectively, while offering a greater than 50% reduced coding complexity.

However, as for the polyphase based decomposition, despite interesting coding perfor-
mance for the Haar wavelet, the proposed solution efficiency is highly dependent on the
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content being encoded, with notably significant losses for videos with a high amount of spa-
tial details, which is problematic for broadcast and streaming use-cases. The next part of this
thesis will thus focus on resolving this issue while achieving further complexity reduction.
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Chapter 5

Local Adaptation of the Spatial
Resolution through Inter-Layer
Predictions

Despite the interesting performance of the low-complexity scalable solutions based on pre-
and post-processing tools presented in Chapters 3 and 4, they show a limited coding effi-
ciency for content with high and complex spatial details due to the systematic application of
the proposed signal decompositions. This is particularly a concern for the UHDTV use-case
considered in this thesis.

To avoid this issue, a different way of achieving scalability with little complexity over-
head, compared to a single-layer scheme, would be to use a dual-layer scalable encoder
with a very lightweight EL encoder and a standard HEVC encoder in the BL to still ensure
backward compatibility with HDTV services.

In addition, although the increase in spatial resolution to 3840x2160 pixels, which has
been the first dimension of the UHD format to be deployed due to the relatively small changes
needed in the production pipeline, offers increased perceptual quality of natural images [4],
the visual gain is highly dependent on the content under consideration. This is especially the
case if encoding is part of the processing chain [85].

Therefore, in this chapter, a spatially scalable encoder based on a dual-layer architecture
involving adaptive spatial resolution is proposed to significantly reduce the complexity of the
encoding process. Indeed, the idea is to dynamically reduce the resolution when the UHD
resolution is not needed to portray the details of an image while keeping the high resolution
when it is justified. By doing this, only useful processing is performed the core encoding
process.

This chapter is organized as follows. Section 5.1 provides an overview of the related
works on downsampling-based video coding, upsampling and super-resolution algorithms
as well as SHVC complexity reduction solutions. The proposed scalable architecture is de-
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Input Downsampling Encoder DecoderBitstream Upsampling Output

Fig. 5.1 General architecture of downsampling-based encoding.

scribed in Section 5.2 followed by the detailed presentation of the adaptive spatial resolution
algorithm in Section 5.3. A study on the spatial resolution mode distribution is given in
Section 5.4. Finally, the experimental results are presented in Section 5.5 and Section 5.6
concludes this chapter.

5.1 Related Work

5.1.1 Downsampling-based Video Coding

Despite the constant effort to increase the capture and display devices spatial resolutions
further and further, such resolutions are not necessarily required to represent the critical
information of the signal. A well-known strategy consists in downsampling the video prior to
encoding and upsampling back to the original resolution after decoding in an effort to reduce
the bitrate and/or the coding complexity for a similar reconstructed output quality [86–98].
Adaptive Spatial Resolution (ASR) can be performed at different levels - whole sequence,
image or block - in the downsampling-based encoding scheme depicted in Fig. 5.1.

5.1.1.1 Sequence-level ASR

Sequence-level downsampling-based encoding is investigated in [87–91]. In [87], authors
extend the theory developed by Bruckstein et al. in [86] for still image downsampling-
based image coding, showing that downsampling a video sequence prior to encoding can
improve the coding efficiency compared to conventional AVC full frame coding schemes at
low bitrates. In [88], authors consider the downsampling based coding scheme as a joint opti-
mization of rate, distortion and complexity. They design a low-complexity Super Resolution
(SR) algorithm which is systematically applied to each frame, achieving better performances
than HEVC at low-bitrates, in addition to a significant reduction of the overall complexity.
Shen et al. [89] use systematic downsampling of inter-coded frames using a specific SR
algorithm trained online, while the intra-coded frames are coded at full resolution. This
scheme is shown to outperform AVC coding at full resolution for low to medium range bi-
trates. Dong et al. [91] design a model to estimate the downsampling and coding errors,
separately, at a given target bitrate to find the optimal downsampling ratio to encode a given
video sequence. This optimal ratio M? is obtained by minimizing the sum of variances of
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the downsampling error σ2
D and coding error σ2

C

M? = argmin
M

(σ2
D +σ

2
C). (5.1)

The model is shown to improve the coding efficiency compared to conventional coding of
HD videos with AVC.

5.1.1.2 Image-level ASR

Despite showing interesting coding efficiency, the sequence-level downsampling-based cod-
ing schemes do not take into account the possibly high variance in spatial details between the
different frames of a video sequence, thus requiring different downsampling ratios. Wang et
al. [92] investigate adaptive downsampling at a GOP-level (1-second long). They design
spatially scalable R-D models to estimate the downsampling and coding errors and find the
best encoding frame-size for a given bitrate, demonstrating a better overall coding efficiency
compared to AVC. Further resolution adaptation, at a frame-level, has also been investigated
by Afonso et al. [93] in which a resolution-quantization optimization module is trained to
find a QP threshold QPthresh for which the downsampling of a given image by a factor 2
becomes more efficient than a full-resolution encoding in a R-D sense. For each frame to be
encoded, QPthresh is first derived from the downsampling error and then used, together with
the input QP, QPin, to select the downsampling factor M and the final QP value QPenc using
Equations 5.2 and 5.3

M =

{
2 i f QPin ≥ QPthresh

1 otherwise
, (5.2)

QPenc =

{
QPin−K i f QPin ≥ QPthresh

QPin otherwise
, (5.3)

with K a QP adjustment value to account for the lower quantization step needed to achieve
the same bitrate at a lower spatial resolution compared to a full resolution encoding. This
image-level adaptive downsampling outperforms HEVC in AI configuration at low bitrates.
An extension of this work is proposed in [94] where an additional resolution, M = 1.5, is con-
sidered and the Lanczos3 upsampling is replaced by a Convolutional Neural Network (CNN)
based SR algorithm, leading to a better coding efficiency than HEVC in RA configuration,
at the cost of a greatly increased complexity due to the use of CNN.

5.1.1.3 Block-level ASR

Since the spatial frequency components can also be highly variable within different areas
comprised in a single natural image, several studies have investigated the local adaptation
of the spatial resolution, at a block level [95–98]. Lin and Dong [95] have first introduced
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the local ASR technique for still image compression using a modified JPEG encoder, allow-
ing the blocks to be coding in four different possible resolutions. For each 16x16 block,
an exhaustive search RDO process is used to find the spatial resolution resulting in the best
reconstructed quality while not increasing the bit budget compared to the full resolution cod-
ing of the block. The bit budget is estimated by counting the number of non-zero quantized
DCT coefficients for each possible resolution. This work is extended to video in [96], where
the scheme is integrated in a MPEG-2 encoder, demonstrating a better coding efficiency at
low bitrates for the local ASR scheme compared to regular MPEG-2 coding. More recently,
a CTU-level resolution adaptation scheme [97, 98] has been integrated in the HEVC refer-
ence software, allowing for the entire CTU coding process (quadtree partitioning, prediction,
transform and quantization) to be performed at a reduced spatial resolution when it leads to
R-D gains. The upsampling process to reconstruct the full resolution is chosen between tra-
ditional filter bank or a CNN-based SR algorithm. This solution offers significant coding
gains compared to regular HEVC coding but also multiplying encoding and decoding times
by 3 and 32, respectively.

5.1.2 Upsampling Filter banks and Super-Resolution

In downsampling-based video coding schemes, as well as in the scalable encoder proposed
in this chapter, image resizing techniques are usually used to upsample the video to a desired
spatial resolution.

Image resizing has been an active field of research for several decades, from the design
of the well-known and widely used simple interpolation filter kernels [99–101] to the devel-
opment of state-of-the-art resizing algorithms based on super-resolution [102–119], which is
currently a trending research topic [120–123] through the recent advances in deep learning
applied to image processing.

Common Interpolation Filter Banks

Image resampling is generally achieved via traditional sample interpolation using common
filter banks. The most simple interpolation algorithms are nearest-neighbor and bilinear in-
terpolation methods, which respectively consist in copying the nearest sample and linearly
interpolating from the pixels of the nearest 2x2 neighborhood using Equation (5.4) to obtain
an upsampled output sample. These two interpolation methods lead to relatively poor up-
sampled image quality, with either jagged artifacts due to aliasing for the nearest-neighbor
interpolation, or smoother edges for the bilinear interpolation.

Iup(x,y) = (1−dx)(1−dy) · Isrc(i, j)+dx(1−dy) · Isrc(i+1, j)
+ (1−dx)dy · Isrc(i, j+1)+dxdy · Isrc(i+1, j+1),

(5.4)
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where

i = bxc, dx = x− i,

j = byc, dy = y− j,

with (x,y) the coordinates of the pixel in the upsampled image Iup to be interpolated from
the source image Isrc and b.c the flooring operator.

The most widely-used interpolation techniques are the bicubic [99] and Lanczos [100]
filters. Bicubic interpolation is achieved by convolving, successively in both directions, the
input image Isrc by a filter kernel f of length 4 whose coefficients are derived from piecewise
cubic polynomials, as defined in Equation (5.5)

Iup(x,y) =
2

∑
m=−1

2

∑
n=−1

Isrc(i+m, j+n) · f(m−dx) · f(n−dy), (5.5)

with

i = bxc, dx = x− i,
j = byc, dy = y− j,

and f(s) =


3
2
|s|3− 5

2
|s|2 +1 0 < |s|< 1

−1
2
|s|3 + 5

2
|s|2−4|s|+2 1 < |s|< 2

0 2 < |s|

,

Bicubic interpolation thus uses a 4x4 neighborhood, which results in more visually pleasing
upsampled images with sharper edges, at the expanse of a slightly increased computation
time compared to bilinear interpolation.

The Lanczos filter bank [100] is arguably the best performing kernel-based interpolation
method [124, 125], offering a good trade-off between sharpness, reduction of aliasing and
limited ringing artifacts. It is defined as a Lanczos-windowed sinc function. Equation (5.6)
defines the decomposed 2D convolution of the input image Isrc by a filter kernel fa whose
length is dependent on the number of lobes a kept by the Lanczos-window

Iup(x,y) =
a

∑
m=−a+1

a

∑
n=−a+1

Isrc(i+m, j+n) · fa(m−dx) · fa(n−dy), (5.6)

with

i = bxc, dx = x− i,
j = byc, dy = y− j,

and fa(s) =


sinπs

πs
·

sinπ
s
a

π
s
a

0 < |s|< a

0 a < |s|
,

The most common implementation of the Lanczos uses a 6-tap kernel, i.e. a = 3, since it
offers the best reconstruction performance [125] while keeping a reasonable kernel complex-
ity.
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More recently, a new DCT-based Interpolation Filter (DCTIF) filter bank, based on the
theory developed in [101], has been designed by Alshin et al. [34,126] for the HEVC coding
standard. It is used to interpolate pixels to enable half and quarter pixel motion estimation
and are described in Section 2.3.2. This filter bank offers a good compromise between visual
quality and implementation complexity. To achieve this, longer filters - 7/8 taps for luma
and 4 taps for chroma -, with integer implementation and designed to preserve natural high-
frequencies present in videos, are used.

SR based on Traditional Signal-processing Tools

The first SR algorithms [102–113] rely on signal processing techniques to produce a High
Resolution (HR) image from several Low Resolution (LR) images [127]. Typically, the dif-
ferent LR images represent different "representations" of the same scene, with sub-pixels
shifts between one another to enable the HR image generation. They can either be obtained
by several cameras capturing the same scene, or from several images of a video sequence
where the motion between these images can be controlled or estimated at a sub-pixel preci-
sion. Then, from these LR images, different approaches have been designed to generate the
HR image.

The non-uniform interpolation approach [102–104], is intuitive and consists in three steps
performed successively: registration or motion estimation to obtain the sub-pixel shifts be-
tween the different LR images, followed by non-uniform interpolation to generate the HR
image and finally a deblurring process to improve the quality of the output image. The fre-
quency domain approach [105–107] uses the aliasing present in the LR images, together
with the continuous Fourier transform of an HR image and the discrete Fourier transform of
the LR images, to perform the resolution enhancement. The Bayesian Stochastic approach,
through a maximum a posteriori method [108,109], has been designed to tackle the generally
ill-posed problem of SR reconstruction, due to the insufficient number of LR images, result-
ing in robust and flexible SR models. The projection onto convex sets approach [110, 111]
utilize prior knowledge of the solution during the reconstruction process, enabling a simul-
taneous solving of the registration and interpolation stages. The iterative back-projection
approach [112,113] estimates the HR image by iteratively back projecting the error between
observed LR images and simulated LR images until the energy of the simulated error is mini-
mized. For an in depth overview of these SR reconstruction techniques, the reader is referred
to [128] and [129].

The main issues of these early SR algorithms are the need for several LR images to
produce a single HR image and, depending on the considered approach, the non-uniqueness
of the solution, the high computational cost or the possible constraints on the LR images.
In addition, acceptable reconstruction quality is generally only achieved for scaling factors
smaller than 2 with these SR algorithms, which is not optimal for most resizing-based image
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processing applications.

Learning-based SR Algorithms

A second category of SR algorithms has been designed using machine learning techniques.
The example-based SR approach is first introduced by Freeman et al. [114], using a Markov
random field to learn the prediction of a HR image from a single LR image. In practice, the
Markov network is trained to minimize the error between a HR image a linearly upscaled ver-
sion of the matching LR image, i.e. to recover the missing high frequencies in the upsampled
LR image. This is done by finding the nearest neighbor patch in the LR space thus requiring
a very large database of HR image patches and their matching downsampled LR version to
correctly generalize the SR problem. The method is extended in [115], with a faster training
phase and an interpolation method changed from linear to bicubic, thus reducing the amount
of details needed to be recovered by the Markov network. Chang et al. [116] have adopted
a different approach by using manifold learning, thus considering the similarities between
the manifold in the HR patch space and the one in LR patch space to predict the HR output.
Since the method uses a combination of several nearest neighbor training patches to gener-
ate the HR output, a smaller database is required to achieve good generalization of the SR
problem.

Motivated by the advances in the compressive sensing field, Yang et al. [117, 118] pro-
pose to use a sparse representation of the image patches to recover the HR patch from its LR
counterpart. Two compact dictionaries, one to represent the HR patches and the other to rep-
resent the LR ones, are jointly trained to ensure coherence between the sparse representations
of the patch pairs. The SR process thus consists in first computing the sparse representation
of a LR image patch using the relevant patch bases in the trained LR dictionary, and the cor-
responding sparse representation in the trained HR dictionary is then used to recover the HR
output patch. This work is further extended in [119], with an improved coupled dictionary
learning method and a faster LR sparse representation computation using a trained neural
network. The resulting images are shown to be very realistic with sharp edges, which was
one of the issues of the previous SR algorithms.

Neural Networks for SR

More recently, following the current research trend in applied artificial intelligence, CNN-
based single image and video SR algorithms have been designed [120–123]. SRCNN, the
first end-to-end SR algorithm solely based on a deep convolutional neural network is pro-
posed by Dong et al. in [120]. The CNN takes the LR image, previously upsampled to
the output resolution using bicubic interpolation, as input and generates the HR output us-
ing relatively small network architecture only consisting of three convolutional layers. The
first layer extracts feature maps from the LR input image, followed by a second layer that
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maps the resulting LR feature maps to the HR space. The final convolutional layer is used
to produce the final HR image from the HR feature maps. The number of convolution ker-
nels and their size can be set for each layer and optimized to obtain the desired trade-off
between inference time and reconstruction quality. Despite its relative simplicity, SRCNN
is shown to outperform the solutions based on sparse representations. Shi et al. [121] pro-
pose a faster CNN-based SR algorithm, called ESPCN, by keeping all convolutional layers
in the LR space, thus not performing the pre-processing interpolation operation, except for
the last layer which aggregates the LR feature maps and generates the HR output in a single
step. With this architecture, the inference time is reduced by a factor 10 while keeping a
reconstruction quality higher than SRCNN.

Both these single image SR algorithms have been extended and optimized for video SR
in [122] and [123], respectively. VSRnet [122] takes the same base architecture as SRCNN
but extends it to take as input several adjacent frames from a video sequence. These frames
are processed independently by the convolution layers until a concatenation, which can hap-
pen at different levels of depth in the network, is done to aggregate the adjacent frames
before convolution. This network architecture leads to better reconstruction quality com-
pared to single image SR algorithms, in addition to a more temporally consistent output. It
is also shown that performing a motion compensation step on the adjacent frame prior to
the CNN can lead to better reconstruction quality. Caballero et al. [123] also propose an
extension of ESPCN for videos, using slow temporal fusion of adjacent frames and spatial
transformer motion compensation in addition to the sub-pixel convolution scheme used by
ESPCN to achieve a better reconstruction quality than VSRnet while keeping a relatively
low computation cost.

A significant number of other CNN-based, and more generally deep learning based, SR
algorithms have been recently proposed, including [130–132] to name a few. However, they
utilize more complex architectures with deeper networks compared to SRCNN, ESPCN and
their video extension, which are already too computationally demanding to be integrated in
a low-complexity downsampling-based coding scheme, i.e. the scope of this chapter.

5.1.3 SHVC Complexity Reduction

As previously explained in Section 2.3.3, since the early stages of the HEVC scalable exten-
sion development, the main drawback of SHVC is its computational complexity. In an effort
to solve this issue, a number of encoding complexity reduction algorithms has been proposed
over the last few years [133–146]. These algorithms are usually specific to one of the scal-
ability types supported by SHVC, mainly focusing on either quality/fidelity scalability or
spatial scalability, i.e. the most popular scalability use-cases.
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Quality/fidelity Scalability

Since the BL and EL are highly correlated in the case of quality scalability - same input
video, different QP - the straightforward idea of exploiting the encoding decisions made by
the BL encoder to speed up the EL coding has been widely studied [133–140, 147], yielding
in a significant EL coding complexity reduction - around 55−65% in average - with a limited
impact on the output quality - between 1% and 4% average bitrate overhead.

Tohidypour et al. [133] propose a content-dependent complexity reduction algorithm,
based on two algorithms. The first one is an adaptive search range of the EL motion vectors,
which reduces the motion estimation search range based on the type of motion identified in
the co-located BL block. The second algorithm is an early termination scheme that ends the
RDO process of the EL encoder once the estimated R-D cost, obtained using the R-D costs
of the BL co-located block and the already coded neighboring EL ones, is reached.

In [134], Bailleul et al. propose a fast mode decision algorithm based on a statistical
analysis of both SHVC EL and BL encoding decisions. The EL RDO process is restricted to
use the same CU depth for both layers and certain prediction modes are skipped depending
on the decisions made by the BL encoder. In [135], authors also propose to use an offline
statistical analysis of the mode decisions of both BL and EL encoders, focusing mainly on
the CU depth of the BL to define prediction rules for the depth of the co-located EL CU thus
greatly reducing the amount of tested partitioning modes during the RDO stage.

Wang et al. [136] design CTU quadtree prediction algorithms for both the BL and EL
encoders. The algorithm for the BL relies on the decisions of the previously coded spa-
tial neighboring CUs and the co-located temporal CU which are each tested for the BL
quadtree partitioning in a RDO manner. If the R-D cost of the chosen mode does not meet
a QP-dependent constraint, the original exhaustive RDO search is performed. For the EL, a
quadtree prediction algorithm is proposed, where the co-located BL CU and spatial neigh-
boring CUs are used to predict the final decision, without further pruning to maximize the
coding time reduction.

Following the same idea, the algorithm proposed in [137] uses a weighted prediction of
the depth of spatio-temporal neighboring CUs to predict the optimal CU depth which is used
to reduce the number of tested depth levels in the RDO process. If not enough neighboring
blocks are available, the search range is set based on the depth of the co-located BL CU. The
EL encoding complexity is thus greatly reduced due to the lighter RDO stage.

Chiang et al. [138] extend this idea to reduce the complexity of the RDO determination
of the EL PU mode. To achieve this, a block motion complexity index is first computed using
the PU modes of spatio-temporal neighboring blocks and co-located BL PU. Based on this
index, the algorithm derives the PU modes to exclude from the RDO process, thus achieving
an interesting complexity reduction. Recently, a similar fast PU decision method is coupled
to fast CU depth decision and early termination in [139], showing significant complexity
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gains for a small bitrate overhead.
In [140], Tohidypour et al. introduce a machine-learning approach to reduce the com-

plexity of SHVC, capable of predicting the prediction mode of an EL PU. It incorporates a
Naive Bayes classifier to find the four most probable modes and their corresponding proba-
bility, which are then used to greatly reduce the amount of tested modes in the RDO process.
To achieve a better prediction, the ML model is refined online, i.e. its parameters are dynam-
ically updated after processing a sample.

Spatial scalability

Despite the difference in spatial resolution, the base and enhancement layers of a spatial
scalability scheme are well correlated, especially if a simple kernel-based upsampling op-
eration on the BL can recover most of the high frequencies of the EL. Thus, researchers
also investigated fast SHVC encoding using the BL encoder decisions to speed up the EL
processing [141–146].

Zuo et al. [141] propose a fast CU depth and intra prediction mode decision algorithm
based on the coding information from the BL. A statistical analysis is first carried out to study
the correlation between both layers, showing that, depending on the BL CU depth, certain
CU depths are rarely used by the EL encoder, thus indicating a possible skip of these modes
in the EL RDO process. The study also showed that if the BL encoder uses an angular intra
prediction mode, the EL encoder has a high probability to do the same, with a neighboring
angular intra predictor. A fast encoding algorithm taking advantage of these specificities
is thus designed, leading to an average complexity reduction of 29% for an equal coding
efficiency in AI configuration.

In [142], authors reduce the motion estimation RDO process by reducing the motion
vector search range in the EL encoder based on the average MV amplitude in the BL encoded
bitstream, showing a 28% encoding time reduction with equivalent output R-D performance
compared to SHVC reference software. Lu et al. [144] propose a complexity reduction
of both CU and PU mode decision algorithms offering a 36% complexity reduction over
SHVC by using several tools: an early termination of the CU depth determination process
based on texture classification and co-located BL CU mode; a reduction of the intra mode
prediction search relying on inter-layer, spatial and temporal correlations to remove unlikely
intra modes from the RDO process; an inter PU prediction mode decision using the motion
complexity and inter-layer dependency to determine the best mode. Shen et al. [146] also
combine fast CU and PU mode decision algorithms to further reduce the encoding time,
leading to average EL encoder complexity reduction of 69% for a coding loss of 2.3%.
Wali et al. [145] add a skip mode inheritance algorithm from BL to EL to the common fast
CU depth and PU size determination algorithms in order to achieve an overall complexity
reduction of spatial scalability with an average coding time reduction of 45% for a bitrate
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Fig. 5.2 Block diagram of the proposed dual-layer scalable encoder with ASR-based en-
hancement layer encoder.

overhead of 1.3%.
It is also possible to address both the quality and spatial scalability coding schemes with a

single coding complexity reduction algorithm. Tohidypour et al. [143] design a probabilistic
approach based on machine learning to predict the quadtree partitioning of the enhance-
ment layer. The learned model is a Bayesian classifier using the co-located CTUs in both
the corresponding BL frame and the temporally neighboring EL frames as well as spatially
neighboring CTUs of the considered EL frame as input. The model offers an average EL en-
coder complexity reduction of 77% (resp. 79%) with a coding loss of 4.2% (resp. 2.2%) for
spatial (resp. quality) scalability scheme compared to the original SHVC reference software
in RA configuration.

5.2 Scalable Scheme with Specific Enhancement Layer En-
coder

5.2.1 High-level Description

The scalable architecture under consideration, based on the one used in SHVC, is depicted in
Fig. 5.2. On one hand, the input UHD video is first downsampled to HD resolution and then
fed to the base-layer encoder, a standard HEVC encoder. On the other hand, the input UHD
video is fed to the enhancement layer encoder, which is based on adaptive spatial resolution
and also includes several HEVC features.

Both bitstreams are then processed by the decoder of their respective layer, the EL bit-
stream only being decoded if the desired output is the higher resolution video, e.g. UHD in
our use-case.

Inter-layer communications are enabled in this scalable coding scheme to facilitate the
processing of the UHD input video. On one hand, several encoding decisions (block parti-
tioning, prediction mode, motion vectors), made by the BL encoder, are transmitted to the
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EL encoder. On the other hand, the decoded BL frames are also fed to the EL encoder to be
used as reference, .

5.2.2 HEVC Base Layer Encoder

As already stated, the base layer encoder is a standard HEVC encoder in order to ensure
a backward compatibility with existing infrastructure. The chosen implementation of the
HEVC standard is the HM-16.12 encoder [41]. In the different experiments carried out in
this study, AI and RA configurations have been used for the BL encoding, both following the
JCT-VC common test conditions, with a 1 second intra period and a GOP size of 16 frames
for the RA configuration.

AI encoding has been used to assess the performance of the scalable coding scheme with
only the decoded BL as reference input to the EL encoder, as will be detailed in Section 5.5.

5.2.3 ASR-based Enhancement Layer Encoder

The enhancement layer encoder relies on several tools to achieve low-complexity scalable
coding. The architecture notably uses an inter-layer ASR-based prediction algorithm. It is
thus called ASR-IL in the rest of this dissertation. The architecture of the ASR-IL EL encoder
is depicted in Fig. 5.3. First, the input EL source block and the corresponding decoded BL
block are fed to the ASR-IL algorithm, which adapts the spatial resolution based on several
factors, as will be detailed in Section 5.3. Once a decision is taken, the decoded BL block
(resp. input EL block) is upsampled (resp. downsampled) to the chosen spatial resolution
for further processing. The downsampling filters are the same as those used to generate the
base layer input, i.e. the same as in the SHVC reference software, which are described in
Section 2.3.3. The chosen upsampling filters are identical to the filters used for the fractional
pixel interpolation in HEVC, described in Section 2.3.2.
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Both signals now having the same resolution, an inter-layer prediction step can be per-
formed on the EL signal with the BL signal as reference. Then, several tools taken from
the HM reference software are added to the coding chain, namely the transform step - only
the DCT-II implementation - the uniform quantization stage and finally the entropy coding
process for transformed coefficients using CABAC. These steps will be further explained in
the next section.

5.3 Adaptive Spatial Resolution

5.3.1 Description of the Technique

The ASR-IL scheme is at the core of the proposed low-complexity enhancement layer en-
coder. The idea is that, based on the assumption that improvements on visual quality brought
by the UHD format over HD resolution is content dependent, the spatial resolution can be
locally reduced with limited to no impact on the perceptual quality. Indeed, for image ar-
eas with certain characteristics, such as homogeneous content or smooth edges for example,
coding at full resolution might not be beneficial in terms of visual quality compared to a cod-
ing step performed at lower resolution followed by an upsampling to the original resolution.
On the contrary, for such blocks, the bit cost and complexity could be higher for the full
resolution encoding case.

The objective of this study is to assess this hypothesis by designing an adaptive spatial
resolution coding scheme that would adapt the resolution, at a block level, depending on the
block content and the quantization parameter. The chosen four possible resolution choices,
achieved by successive 1D downsampling of the EL input block, are as follows, with N the
width of the square block corresponding to the BL resolution, and W×H designing an EL
block chosen resolution of width W and height H:

• N×N: Downsampling in both directions.

• 2N×N: Downsampling in vertical direction.

• N×2N: Downsampling in horizontal directions.

• 2N×2N: No downsampling.

Both rectangular resolutions, 2N×N and N×2N, are included in the possible spatial reso-
lutions for EL blocks containing strong vertical or horizontal edges respectively, as depicted
in Figures 5.4b and 5.4c, which are common in natural content. Figures 5.4a and 5.4d also re-
spectively show intended typical EL block content for N×N - homogeneous areas or smooth
edges - and 2N×2N - highly detailed areas or sharp edges in several directions - spatial reso-
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Fig. 5.4 Typical EL blocks for each resolution of the adaptive spatial resolution scheme.
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lutions.

5.3.2 Implementation

To implement the ASR-IL into the proposed low-complexity scalable coding scheme, the
chosen resolution mode selection algorithm performs a rate-distortion optimization on the
possible choices, as depicted in Fig. 5.5. Thus, each possible resolution is tested to select the
best one in a RDO sense.

Therefore, the following EL encoding process is performed for each resolution succes-
sively and independently. First, the input EL and corresponding decoded BL blocks are
respectively downsampled and upsampled to the chosen resolution, according to the scheme
depicted in Fig. 5.6, to realize a simple prediction step. Then, the resulting prediction resid-
uals are transformed and quantized. At this stage, on one hand the quantized coefficients are
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entropy coded to evaluate the bit cost of the chosen resolution. On the other hand the inverse
process is performed to reconstruct the decoded EL block in order to assess the distortion
with respect to the source signal. The rate-distortion cost is then computed as follows

J(s,λ ) = D(s)+λ ·R(s), (5.7)

with J the join cost of the distortion D and rate R associated to the resolution mode s under
test, s ∈ {N×N,2N×N,N×2N,2N×2N}. λ is a Lagrangian weighting factor depending on
the QP. The λ derivation process, given in Equation (5.8) is the same as the one used for
intra-coded blocks in the HM reference software with an additional factor, λmod , to adapt the
resulting λ value to the spatial resolution selection case.

λ (QP) = λmod(QP) ·0.57 ·2
QP−12

3 (5.8)

The λmod values given in Equation (5.9) have been optimized through extensive testing,
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using the same process as in [44].

λmod(QP) =



12 i f QP ≤ 24
13 i f 24≤ QP < 27
14 i f 27≤ QP < 29
15 i f 29≤ QP < 31
16 otherwise

(5.9)

The quantization parameter QP, in the range [0..51], is defined as a coding parameter
whose value directly depends on the desired encoding quality and bitrate. It is thus set at
an encoder level, in the configuration file or command line. However, to compensate for the
losses induced by the downsampling and upsampling processes, an offset is applied on the
QP value used for N×N, 2N×N and N×2N resolutions, as follows:

QPs = QP2N×2N−5 with s ∈ {N×N, 2N×N, N×2N}. (5.10)

This QP offset value has been obtained after testing a wide range of offset values, from −10
to 10 independently for each resolution, aiming at giving the best rate-distortion performance
when averaged over the tested sequences.

Once the RDO algorithm has selected the best resolution in a rate-distortion sense, the
chosen mode is signaled in the bitstream, before the transform coefficients. Two new syntax
elements, and their corresponding CABAC context, are thus added to the entropy coding
process, namely use_rect_res_flag and use_vert_dim_flag respectively indicating if the EL
size corresponds to a rectangular resolution and if the vertical dimension is used.

5.4 Study on Resolution Mode Decision

This section aims at investigating the resolution decisions made by the EL encoder to further
improve the coding efficiency. The tuning algorithm performed on RDO choices is first
presented, followed by a detailed analysis of the resolution choices distribution.

5.4.1 Tuning of RDO choices

After encoding with several configurations, resolution choices have been analyzed to assess
if the expected behavior was a correct assumption. For example, the image sample shown in
Figure 5.7a, taken from the first frame of the CatRobot sequence, can be used to analyze the
resolution mode distribution with its diverse content - homogeneous areas, highly detailed
scarfs, vertical and horizontal edges etc.

Figure 5.7b depicts the decisions made by the RDO algorithm for an encoding with a QP
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(a) Source image (b) Original RDO algorithm (c) Tuned RDO algorithm

Fig. 5.7 Resolution mode decisions with and without RDO tuning for CatRobot test sequence
at QP=22 - yellow=2N×2N, green=N×2N, purple=2N×N, gray=N×N.

value of 22. As expected, for the highly textured scarf at the top left of the displayed area,
only the 2N×2N resolution has been chosen. However, as can be seen for most homogeneous
areas, such as the black foreground, or the several scarfs, the resolution choices are highly
varying, which is not the expected behavior from the ASR-IL algorithm. Highly varying res-
olution choices induce two problems. On one hand, the overly frequent resolution transitions
can be visually disturbing, especially in homogeneous areas. On the other hand, the context
adaptation of the CABAC engine cannot achieve a good compression rate if the state of the
flags used to signal the chosen resolution are constantly changing.

To explain this resolution variation, an analysis of the rate-distortion cost of each reso-
lution has been carried out at a block level. The study showed that for a significant part of
the blocks, several resolutions have a RD cost close to the optimal choice. Thus, the RDO
resolution choice could be adapted, depending on characteristics of both the current block
and its neighbors, in order to obtain more homogeneous resolution areas. This should lower
both the visual impact of frequent resolution changes and the resolution signaling cost while
having a limited effect on the objective output distortion.

Therefore, a RDO tuning algorithm has been designed, whose output resolution decisions
are depicted in Figure 5.7c. As can be observed, there are much less variations of the chosen
resolutions, especially in homogeneous areas such as the black foreground. Overall, the
tuned RDO behavior is closer to what was expected when designing the adaptive spatial
resolution scheme, notably for spatially homogeneous areas and rectangular resolutions.
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Algorithm 1: RDO Tuning algorithm.
Data: Current block B, Top neighboring block T, Left neighboring block L,

Current block distortion DB,res and bit cost RB,res for each resolution.
Result: Tuned resolution choice ResB for current block B

1 Jmin← maximum integer value;
2 foreach res in {N×N, 2N×N, N×2N,2N×2N} do
3 Compute RD cost JB,res(DB,res,RB,res) with equation (5.7);
4 if JB,res < Jmin then
5 Jmin← JB,res;
6 best_mode← res;
7 end
8 end
9 Jmax← Jmin +2.56 ·WB;

10 foreach res in {N×N, 2N×N, N×2N,2N×2N} do
11 if JB,res ∈ [Jmin,Jmax] then
12 best_modes_list.append(resolution)
13 end
14 end
15 if !checkRectangularResolutions(best_modes_list,B,JT ) then
16 if !checkneighborsResolution(best_modes_list,B,L,T,JT ) then
17 JT ← best_mode
18 end

Algorithm 1 details the RDO tuning process. The first step consists in performing the
usual RDO stage, i.e. finding the best resolution mode in terms of rate-distortion trade-
off. Then, the list of resolutions with close RD costs compared to the optimal choice,
best_modes_list, is computed. Finally, the tuning process is carried out by calling two func-
tions, namely checkRectangularResolutions() and checkneighborsResolution().

Function checkRectangularResolutions() addresses the case of rectangular resolutions by
verifying, for both 2N×N or N×2N resolutions, if they are present in best_modes_list. and
if so, the function checks for the presence of strong vertical or horizontal edges, respectively
using Equations 5.11 or 5.12 depending on the tested resolution. If both conditions are met
for one of the two rectangular resolutions, the tuned RDO decision is set to that resolution.

SB,x > Tgrad ·SB,y, (5.11)

SB,y > Tgrad ·SB,x, (5.12)

with SB,x and SB,y the average Sobel-based gradient, along horizontal and vertical axes re-
spectively, for the image block B. Tgrad is a threshold used to configure the strength of the
RDO tuning algorithm. Tgrad = 2 proved to be the value giving the best results in terms
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Function checkRectangularResolutions
Input: The list of resolution modes to test best_modes_list, current block B,

the tuned resolution to be updated ResB.
Output: True if the tuned resolution has been updated, False otherwise.

1 Compute SB,x and SB,y with Equation (5.13);
2 if 2N×N ∈ best_modes_list and B contains strong vertical edges (Eq. (5.11))

then
3 JT ← 2N×N;
4 return True;
5 else if N×2N ∈ best_modes_list and B contains strong horizontal edges

(Eq. (5.12)) then
6 JT ← N×2N;
7 return True;
8 else
9 return False;

10 end

Function checkneighborsResolution
Input: The list of resolution modes to test best_modes_list, current block B,

left block L, above block T, the tuned resolution to be updated ResB.
Output: True if the tuned resolution has been updated, False otherwise.

1 Compute SB,x, SB,y, SL,x, SL,y, ST,x and ST,y with Equation (5.13);
2 if ResL ∈ best_modes_list and B similar to L (Eq. (5.14)) then
3 JT ← ResL;
4 return True;
5 else if ResT ∈ best_modes_list and B similar to T (Eq. (5.14)) then
6 JT ← ResT ;
7 return True;
8 else
9 return False;

10 end

of tuning potential and rate-distortion performance. The Sobel-based gradients are obtained
using the Equation (5.13)

SB,d =
1

(W −1)(H−1)
·

H−1

∑
i=1

W−1

∑
j=1

kSd ∗B(i, j) (5.13)

with SB,d the average gradients for the W ×H input block B along direction d and ∗ the con-
volution product. The Sobel convolution kernels KSx and KSy used to respectively compute
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horizontal and vertical gradients are defined as

KSx =

−1 0 1
−2 0 2
−1 0 1

 KSy =

−1 −2 −1
0 0 0
1 2 1


Function checkneighborsResolution() addresses the neighboring resolution derivation case.

Similarly to the rectangular resolution case, two conditions have to be met for a neighbor-
ing block resolution to be chosen. First, this resolution has to be in best_modes_list, and
secondly the neighboring block must share similar characteristics with the current block.
The similarity is based on several gradient and size ratios being comprised in certain value
ranges, as detailed in Equation (5.14). Twidth and Tcorr are thresholds used to configure the
tuning strength, with optimal values of Twidth = 2 and Tcorr = 1.5.

B similar to V i f



1
Twidth

≤ WB

WH
≤ Twidth

1
Tcorr

≤
SB,h

SV,h
≤ Tcorr

1
Tcorr

≤
SB,v

SV,v
≤ Tcorr

1
Tcorr

≤
SB,h ·SV,v

SB,v ·SV,h
≤ Tcorr

(5.14)

with B the current block, V the neighboring block under test, Wi the width of block i and Si,d

the average Sobel-based gradient of block i along direction d.

5.4.2 Resolution Mode Distribution

After the design of the RDO tuning algorithm, the next step of the study on resolution mode
decisions is to assess the distribution of the chosen resolutions depending on the QP. The
whole dataset has thus been encoded with the proposed ASR-IL encoder. Fig. 5.8 shows the
ratio of blocks in each resolution over a wide range of QP values.

Overall, the same trend can be observed on every sequences: the ratios of N×N and
2N×2N are respectively gradually increasing and decreasing when the QP becomes larger,
while the ratios of rectangular blocks, i.e. in 2N×N or N×2N resolutions, remain roughly
constant over the entire range of QP values.

The main difference between the different sequences comprised in the dataset is the QP
value at which the majority choice switches from 2N×2N to N×N. Indeed, for sequences
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Fig. 5.8 Distribution of resolution modes after RDO with tuning enabled.
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with a relatively low amount of spatial details, such as Tango or RollerCoaster, the N×N
resolution becomes the majority choice at low QP values, respectively 24 and 27. This can
be explained by the good quality of the BL encoding and the efficient upsampling stage which
achieves a good detail restoration from the decoded base layer for these specific sequences,
thus making the coding of prediction residuals of the 2N×2N mode less effective in terms of
rate-distortion.

On the contrary, the Drums, ParkRunning1 and ToddlerFountain sequences, which com-
prise a large proportion of areas with high spatial frequencies, respectively the water foun-
tains, the different people and trees and the textured background, the majority resolution
switch occurs at high QP values of 32-33. In this case, the prediction residual coding is
mandatory for low QP values, in a RDO sense, to recover the spatial frequencies that have
been lost during the base layer processing.

For the case of rectangular resolutions, since they are intended for blocks with strong
vertical or horizontal edges which are common in natural content but generally do not cover
wide areas, the observed lower selection ratios correspond to the expected behavior. In
addition, the limited variation of these ratios over the range of QP values can be explained
by the fact that the dedicated tuning function, checkneighborsResolution(), does not take the
QP into account.

5.5 Experimental Results

This section focuses on evaluating the performance of the proposed low-complexity enhance-
ment layer in terms of both rate-distortion and complexity gains. First, the proposed ASR-IL
scalable encoder is compared to SHVC. Then, the impact of the adaptive spatial resolution
tool is analyzed by comparing different versions of the algorithm.

5.5.1 Objective Evaluation

The dataset previously used for the performance evaluations carried out in Chapters 3 and 4,
comprising six UHD sequences, has been extended to eight test sequences and used to eval-
uate the proposed scalable encoder. The reference encodings have been performed using the
SHVC reference model, SHM9.0 [148], with an AI configuration for the base layer and an
enhancement layer with P images having only their corresponding BL image as reference, as
depicted in Fig. 5.9. The QP values used for the encodings range from 22 to 37 with a step
of one.

BD-rate results are summarized in Table 5.1, positive values corresponding to a bitrate
overhead, considering the whole bitstream i.e. both the BL and EL information, for the
proposed ASR-IL encoder compared to SHVC for the same EL output PSNR value. It is
important to note that the same downsampling filters are used in both codecs for the BL
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Fig. 5.9 Scalable prediction scheme with AI mode in the BL and PBL-only in the EL.
Table 5.1 BD-Rate results (%) for proposed ASR-IL scalable encoder with and without res-
olution signaling compared to SHVC (BL in AI configuration, EL in PBL-only).

With resolution signaling cost Without resolution signaling cost
Sequence

Y U V YUV Y U V YUV

DaylightRoad 4.43 2.11 -1.49 3.67 1.08 -1.33 -4.81 0.35
CatRobot 3.16 9.71 12.98 5.4 -0.17 6.53 9.72 2.08
Drums 5.15 9.33 7.67 6.03 1.84 6.15 4.6 2.75
Tango 3.63 3.67 4.55 4.22 -0.49 -0.25 0.69 0.19
RollerCoaster 4.0 10.65 7.81 5.38 0.05 6.84 4.15 1.46
ToddlerFountain 5.41 6.44 2.14 5.4 2.78 4.06 -0.09 2.81
FoodMarket2 5.08 7.92 8.26 6.06 1.73 4.85 5.18 2.77
ParkRunning1 0.54 7.39 4.23 2.09 -1.07 5.98 2.83 0.53

Average 3.92 7.15 5.77 4.78 0.72 4.1 2.78 1.62

input generation, thus inducing the same decoded BL samples in both coding chains. Two
separate cases have been reported in the results, one with the resolution mode signaling
taken into account in the bitrate computation and one without. Indeed, this allows to assess
separately the coding potential of the ASR-IL scheme and the signaling cost of the resolution
mode.

With the resolution mode signaling cost taken into account, the average bitrate overhead
of the proposed ASR-IL encoder is 4.8 % compared to SHVC, for an equal PSNR-YUV
value. The per-sequence results are fairly homogeneous, around 4 ∼ 6 %, except for the
ParkRunning1 which shows a reduced average overhead of 2.1 % that can be explained
by the particularly better performance at low-bitrates for the ASR-IL scalable encoder. In
addition, for every sequences, the losses are higher in the chroma planes compared to the
luma one. It can be explained by the fact that, due to the higher sensitivity to the luma
channel, a greater weight is applied to the luma distortion compared to the errors present in
the chroma channels during RD cost computation in the RDO stage. This weighting process
could be changed to obtain a better coding performance in the chroma channels, but this
would be to the detriment of luma performance due to the higher overall bitrate for the same
luma PSNR.

Figure 5.10 shows the rate-distortion curves for the proposed ASR-IL scalable encoder
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Table 5.2 Complexity reduction for the proposed scalable encoder compared to SHVC (BL
in AI configuration, EL in PBL-only).

Enhancement Layer Overall (EL + BL)

Encoding T R% 88 % 72 %

and SHVC over a wide range of QP values. As can be observed, the performance of the
ASR-IL encoder is equal or higher than SHVC at low bitrates while SHVC performs better
when the bitrate increases. Indeed, at low bitrates, the majority of the blocks of the ASR-
IL encoder are either skipped or encoded in one of the rectangular resolutions, as detailed in
Section 5.4.2, thus reducing the residuals to encode and focusing mainly on the strong edges.
On the contrary, at high bitrates, the EL resolution, i.e. 2N×2N, is selected for the majority
of blocks in the ASR-IL algorithm. In this case, the encoder does not profit much from
the reduced resolution, and is thus close to what is done in SHVC, without the independent
EL partitioning and in-loop filtering present in the reference software, which explains the
difference in performance at high bitrates.

If the resolution mode signaling is not taken into account in the bit cost computation, the
average bitrate overhead of the proposed ASR-IL scalable encoder is, in average, 1.62 %
for equal PSNR-YUV compared to SHVC. The per-sequence BD-Rate values follow the
same trend as with the signaling cost taken into account, but with an average loss reduction
of 3.1 %. The sequences benefiting the most from the adaptive resolution have a higher
signaling cost than those for which the majority resolution remains 2N×2N on a wide range
of QP values. Indeed, when the chosen resolution is varying frequently, the signaling, which
simply consists in two context coded bins, costs more bits after entropy coding than a nearly
invariant resolution.

Complexity-wise, the proposed ASR-IL scalable coding scheme achieves a 72 % encod-
ing time reduction compared to the SHVC reference software, as reported in Table 5.2. If
only the EL layer is taken into account, the proposed scalable architecture is 8.5 times faster
(88% EL encoding T R%) than SHM at the encoder side. This complexity gain is mostly due
to the low computational demand of the RDO stage of the ASR-IL encoder, with the few
modes to test and the derived EL partitioning.

5.5.2 Impact of the Spatial Resolution Adaptation

In order to assess the coding potential of the ASR-IL scheme, two different experiments have
been carried out without taking into account the resolution mode signaling cost: the first is
a comparison between the proposed scalable encoder and the same architecture without the
adaptive resolution, i.e. with all blocks coded at full EL resolution (2N×2N); the second
experiment compares the proposed ASR-IL encoder to a constrained version, without the
rectangular resolutions, i.e. only with 2N×2N and N×N enabled. Table 5.3 summarizes the
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Fig. 5.10 Rate-Distortion curves for the proposed ASR-IL scalable encoder with resolution
mode signaling cost compared to SHVC (BL in AI configuration, EL in PBL-only).
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Table 5.3 BD-Rate results (%) for proposed ASR-IL scalable encoder compared to versions
either with only the full resolution or without rectangular resolutions.

ASR-IL vs ASR-IL vs
ASR-IL w/ only 2Nx2N ASR-IL w/o 2NxN and Nx2NSequence

Y U V YUV Y U V YUV

DaylightRoad -3.75 -8.82 -8.83 -4.92 -1.01 -4.7 -5.03 -2.05
CatRobot -4.76 -2.13 -1.56 -4.11 -0.69 -2.74 -2.58 -1.14
Drums -2.5 -3.42 -2.47 -2.57 -0.77 -0.95 -1.09 -0.8
Tango -3.92 -7.77 -5.04 -4.61 -1.57 -2.1 -2.29 -1.9
RollerCoaster -4.24 -1.85 -2.56 -3.77 -1.12 -0.15 0.13 -0.89
ToddlerFountain -1.75 -2.42 -2.38 -1.87 -0.67 -1.95 -1.76 -0.88
FoodMarket2 -3.09 -2.75 -2.65 -2.99 -1.19 -0.88 -0.98 -1.16
ParkRunning1 -1.6 1.15 -1.92 -1.3 -1.99 1.58 0.52 -1.34

Average -3.2 -3.5 -3.43 -3.27 -1.13 -1.49 -1.64 -1.28

results of these experiments.

The first experiment has been designed to assess the raw gain provided by the proposed
scheme. Results show an average bitrate reduction of 3.27 %, for the same PSNR-YUV
value, for the ASR-IL scheme compared to a version of the encoder with only 2N×2N blocks.
As can be expected from the resolution mode distributions of each sequence, detailed in
Section 5.4.2, sequences such as Drums, ParkRunning1 and ToddlerFountain, for which
the 2N×2N resolution remains the majority class for a wide range of QP values, the gains
are below average with respectively 1.87 %, 1.3 % and 2.57 % bitrate reductions. On the
contrary, for sequences that profit from the reduction in resolution even at low QP values,
around 4 % gains are achieved by the ASR-IL encoder.

The second experiment focuses on the efficiency of the rectangular resolutions 2N×N
and N×2N. The BD-rate values show an average gain of 1.28 % for the proposed ASR-IL
algorithm compared to a constrained version only allowing the BL and EL resolutions to
be chosen. It can be observed that the obtained results do not directly correlate with the
proportion of blocks coded at one of the rectangular resolutions. Indeed, due to the RDO
tuning part where the resolution is derived from the neighboring block, the blocks can be
signaled as a rectangular resolution even if there are no residuals to encode, thus resulting in
the same reconstructed signal as if it would have been processed in the BL resolution.
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Fig. 5.11 Resolution Mode signaling scheme.

5.5.3 Impact of Resolution Signalization

Syntax Elements and Entropy Coding

The resolution mode chosen by the ASR-IL algorithm is signaled, at a block level, using
two different flags. The first, use_rect_res_flag, indicates if the current block is processed
in a rectangular resolution or not. The second, use_vert_dim_flag, indicates if the vertical
dimension is used in the chosen resolution. Both these flags are entropy coded, each with a
dedicated CABAC context, to reduce the bit cost induced by the block level signaling.

Figure 5.11a summarizes the flag values for each resolution. Different combinations
have been tested in an effort to reduce the signaling cost, including decision trees inspired
by the intra mode prediction used in HEVC [33], but they did not provide any significant
improvement due to the small flexibility of the scheme (only 4 modes for 2 flags).

Since the syntax elements used to signal the transform coefficients, identical to those
described in Section 2.3.2, require the dimension of the block to be entropy coded (and
decoded), the flags indicating the resolution mode are signaled at the beginning of each EL
block, as depicted in Figure 5.11b.

Cost Evaluation

In Section 5.5.1, it was shown that the resolution mode syntax elements were responsible for
an overhead of around 3 to 4 %. In this section, the signaling cost is further analyzed, espe-
cially the impact of RDO tuning on entropy coding. Figure 5.12a depicts the average bits per
block necessary to signal the chosen resolution with and without RDO tuning enabled. The
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Fig. 5.12 Average resolution signaling costs for ASR-IL encoder with and without RDO
tuning.

results are presented per QP value, averaged over all sequences. It can be seen that, without
RDO tuning, the cost per block is gradually increasing over the entire QP range, reaching the
2 bits/pixels threshold at high QP values, meaning that the entropy coding does not provide
any gain at this point. Indeed, in addition to the overall more evenly distributed resolutions,
there is a high variability in chosen resolutions, making it impossible for the CABAC engine
to predict the flag values thus resulting in a high signaling cost. With the RDO tuning en-
abled, the variability is greatly reduced, which results in a much lower signaling cost at high
QP values.

However, despite the decrease in average bits per blocks, the signaling still represents
a significant part of the bitrate dedicated to the enhancement layer. Indeed, as depicted in
Figure 5.12b, with or without RDO tuning, the resolution mode syntax elements represent,
averaged over the QP range, from 3 to 10 % of the EL bitrate, depending on the sequence.
For instance, for the Tango sequence, which is the one that profits the most from the ASR-IL
scheme, the signaling reaches an average value of 10.5 % of the EL bitrate, with a peak values
over 15 % for high QP values. It is important to note that these cost values are computed by
only taking into account the EL bitrate, which is different from the signaling costs presented
in Section 5.5.1 where the overall (BL+EL) bitrate was considered.

In addition, it can be observed on Figure 5.12b that, even with a lower signaling cost in
number of bits, the contribution of the syntax elements signaling to the EL bitrate is higher
with RDO tuning enabled. Indeed, the tuning algorithm does not only impact the resolution
signaling but also the amount of residuals to encode due to the different mode decisions. In
general, the tuning algorithm has a tendency to lower the overall bitrate due to the increase
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in the number of blocks coded at lower resolutions, which explains why the resolution mode
syntax elements still represent a similar or slightly higher portion of the transmitted bits
compared to the case without decision tuning.

5.6 Conclusion

In this chapter, a low-complexity scalable encoder has been proposed to tackle the issue
limiting the deployment of state-of-the art scalable solutions such as SHVC. The proposed
encoder, called ASR-IL, relies on a dual-layer encoder to achieve x2 spatial scalability, us-
ing a standard HEVC as the base layer and a low-complexity encoder based on the local
adaptation of the spatial resolution to process the enhancement layer.

The proposed EL encoder locally selects the spatial resolution, at a block level, from four
possible resolutions depending on both the content of the block and the decisions taken to
encode its spatially neighboring EL blocks and co-located BL block. Experimental results
revealed that the proposed ASR-IL architecture can achieve average encoding complexity
reductions of 88% and 72% for the EL encoder and overall architecture, respectively, with
an average bitrate overhead of 4.8% compared to SHVC in the same configuration - AI for
the BL and inter-layer predictions only for the EL (PBL only).

The local adaptation of the spatial resolution appears to provide significant gains over a
regular coding at a fixed resolution. However, these gains are not high enough to compensate
the necessary signalization of the block-level resolution in the bitstream. If the signaling cost
of the chosen resolution could be considerably reduced, the ASR-IL scalable coding scheme
would reach the performance of SHVC, while offering a dramatic reduction of the encoding
complexity.





Chapter 6

Extension of the Adaptive Spatial
Resolution Tool to Inter-predicted
Frames

As identified in Section 5.5, the main issue of the ASR coding tool is the signaling cost of
the resolution mode chosen by the ASR algorithm at a block level. This chapter aims at
solving this issue by extending the ASR algorithm in order to handle a BL encoded in RA
configuration, i.e. using inter-picture predictions to encode the video frames.

Indeed, with inter-predicted BL frames, the transmitted MVs can be used by the EL
encoder to predict the optimal spatial resolution, in a R-D sense, from previously encoded
EL frames. In this case, the resolution signaling would not be required, leading to an overall
greatly limited signaling cost overhead for the ASR coding tool.

In addition, the BL MVs can also be used to perform inter-picture predictions within the
EL encoder. In this case, the popular RA coding configuration is enabled, and broadcast and
streaming use-cases can thus be addressed.

This chapter is organized as follows. First, a solution to limit the signaling overhead
of the ASR-IL scheme, based on resolution mode derivation via motion compensation is
proposed in Section 6.1. Then, a second extension of the ASR scheme is presented in Sec-
tion 6.2, consisting in using inter-picture predictions in the EL while considering adaptive
spatial resolution. Finally, Section 6.3 concludes this chapter.

6.1 Adaptive Spatial Resolution with Mode Derivation

This section focuses on proposing on extending the previously proposed ASR-IL solution
with an algorithm based on inter-layer ASR with mode derivation, thus called ASR-IL-MD
in the rest of this dissertation. The mode derivation scheme uses motion compensation to
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Fig. 6.1 Example of resolution mode derivation via motion compensation.

predict the optimal spatial resolution in order to avoid transmitting the resolution mode syn-
tax elements for the majority of blocks, in an effort to greatly reduce the overall signaling
cost. The ASR-IL-MD method is first presented, followed by a description of its implemen-
tation into the existing architecture. Finally, the coding efficiency is analyzed in terms of bit
rate gains over SHVC and impact on signaling cost.

6.1.1 Description of the Technique

The idea behind mode derivation via motion compensation is straightforward: select the
resolution chosen for the corresponding motion compensated block in the reference frame.
To avoid performing a highly computationally demanding motion estimation step in the EL
encoder, the motion vectors of the base-layer are directly reused, after an appropriate scaling,
to derive the resolution mode of the EL blocks, as depicted in Fig. 6.1. Therefore, if the BL
encoder is configured in Random-Access mode to allow for inter-picture predictions, this
method, whose architecture is shown in Fig. 6.2, can be used for every EL block whose
corresponding BL PU has been encoded using inter-picture predictions.

As for the scheme presented in Section 5.3, all EL blocks are encoded only using their
co-located block in the base layer as reference for pixel value predictions, while motion
compensation is only used to derive the spatial resolution, as depicted in Fig. 6.3. EL blocks
with a corresponding intra-picture coded BL PU will follow the same process as the previous
architecture (RDO, tuning, resolution mode signaling etc.).

With this scheme, the impact of resolution signaling on the resulting bitrate is expected to
drop significantly compared to the previous scheme. Indeed, in RA configuration, especially
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with the 16-image GOP used in the different studies presented in this report, the majority of
blocks are inter-coded, notably in the upper temporal layers, which should limit the number
of blocks requiring the resolution to be signaled.

The second advantage of this mode derivation via motion compensation scheme is the
temporal coherence of the resolution decisions. With the previous scheme, due to the inde-
pendent decisions from one frame to another, an intra-refresh effect was clearly visible, with
objects often being coded in different resolutions in adjacent frames. The resolution deriva-
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tion, and inter-coded base layer, should bring more temporal stability to the ASR decisions,
resulting in a more visually pleasing reconstructed output video.

The main drawback would be the additional parsing dependency required at the encoder
side, between both layers, due to the BL motion vectors being required before processing the
EL block.

6.1.2 Implementation

The first step to implement the mode derivation technique based on motion compensation
is to add the management of reordered pictures coding and HEVC GOP structure to the EL
encoder architecture. Indeed, the base layer being coded in RA configuration, the EL encoder
must follow the same coding order and keep identical reference frame buffers to allow for
a correct utilization of the motion estimation performed in the base layer. Then, assuming
a correct reference frame buffer management, the BL motion vectors, previously retrieved
from the base layer bitstream, can be directly used as it is in the enhancement layer encoder.
The only processing needed is a scaling of the MVs to match the EL resolution, in this case
a multiplication by a factor two in each direction.

The second step is to compute, for each reference frame, its resolution map containing
the resolution mode used to encode each pixel of the frame. Then, from the motion vector
and the associated reference frame, the block resolution is directly derived from the reso-
lution indicated in the corresponding motion compensated area in the resolution map. The
derivation process is defined in Equation (6.1)

res =


2N×2N i f P(x = 2N×2N)> pT h

y∗ = max
y∈L

P(x = y) otherwise
(6.1)

with res the derived resolution, L = {2N×2N, N×2N, 2N×N, N×N} is the set of possible res-
olutions; P(x) the probability of having a pixel of the EL reference block coded in resolution
x, with x ∈ L. The probability threshold for the selection of the 2N×2N (pT h = 0.3) resolu-
tion has been introduced to avoid losing important details when the majority of the reference
pixels has not been coded in the EL input resolution. Indeed, contrary to the intra-picture
partitioning, the inter-picture partitioning does not always depend on the contours and texture
of the image but rather on the similarity with the reference frame in a given area. Thus, it is
often the case to obtain different kinds of textures and details within a single inter-predicted
block, which requires special handling if the corresponding blocks in the reference frame
have been encoded using different resolutions. The value of 0.3 has been selected after ex-
tensive experiments. In the case of bi-predictions, the derivation process remains the same,
with the probabilities computed across both reference blocks.
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Fig. 6.4 EL partitioning derivation scheme from BL prediction unit size.

Table 6.1 EL block partitioning derivation depending on BL CU size and PU split mode.

BL
CU size

PU Split
Mode

2N×2N N×N 2N×nX or nX×2N

(8×8) (16×16) 4× (8×8) 8× (4×4)+2× (8×8)

(16×16) (32×32) 4× (16×16) 8× (8×8)+2× (16×16)

(32×32) 4× (32×32) 4× (32×32) 8× (16×16)+2× (32×32)

(64×64) 4× (64×64) 16× (32×32) 32× (16×16)+8× (32×32)

The last modifications made for the implementation of the proposed ASR-IL-MD scheme,
apart from the tuning algorithm optimization presented in the next section, concern the EL
partitioning derivation process from the base layer encoder decisions. In addition to the gen-
erally higher block size, the inter-prediction in HEVC also induces additional PU modes
compared to the two splitting modes (2N×2N and N×N) allowed for intra-predicted frames,
as depicted in Figure 6.4a. Thus, the EL block size derivation process optimized for the
previous architecture is not necessarily the best for a base layer including inter-picture pre-
dictions.

Therefore, several derivation rules, based on multiples of the PU base layer sizes, have
been tested to find the optimal EL partitioning. Figure 6.4b depicts the derivation process
used in the proposed scalable encoder with the BL encoded in RA configuration. The only
exception is a limitation to 64x64 size for the largest EL blocks, thus mainly affecting the
BL CUs of size 64x64. Table 6.1 summarizes all possible resulting partitioning depending
on the BL block size and the PU split mode.



108 Extension of the Adaptive Spatial Resolution Tool to Inter-predicted Frames

6.1.3 Adaptation of the RDO Tuning Optimization

Due to the introduction of the new resolution mode derivation tool, which increases the im-
portance of decisions taken after the RDO tuning stage, each threshold value, optimized for
the previous coding structure, must be re-evaluated to obtain the best coding efficiency with
the mode derivation enabled. Thus, for both main parameters of the RDO tuning algorithm,
i.e. T Grad and TCorr, an optimization study has been carried out.

Figure 6.5a shows the results achieved using different values for T Grad, the threshold
controlling the strength of the checkRectangularResolutions() function, the first step of the
tuning algorithm in charge of detecting vertical or horizontal contours and selecting the ap-
propriate rectangular resolution if necessary. As depicted on the graph, low values of T Grad,
i.e. below the previously used value of T Grad = 2.0 thus increasing the amount of rectan-
gular blocks, result in losses in the luma channel and gains in both chroma channels, while
the exact opposite is observed when the value of T Grad increases.

This behavior can be explained by the fact that spatial frequencies are generally higher
in the luma channel, hence the increased losses induced by downsampling the block in one
direction. This is further confirmed looking at the per-sequence performance, where low
values of T Grad result in high losses for sequences with a high amount of details, due to
the high coding cost of the residuals obtained after upsampling, while smaller gains are
achieved for sequences like Tango, for which the low amount of details is easily recovered
by the upsampling process. Therefore, in order to not further decrease the performance on
the sequences for which the encoder is already struggling to match state-of-the-art coding
efficiency, the optimal static value for T Grad remains 2.0.

However, this statement is only true if the QP is not taken into account. Indeed, for
low QP values, since the decoded base-layer has nearly been deprived of all high spatial
frequencies, even for sequences like ToddlerFountain, it often becomes more interesting,
in a RDO sense, to prioritize either only vertical or horizontal details instead of the costly
recovery of all frequencies. Thus, the overall performance can be increased by making the
T Grad value as a function of the quantization parameter. The final implementation uses the
linear relationship of Equation (6.2) to derive T Grad from the QP value

T Grad(QP) =


1.2 i f QP < 22
3.12−0.053×QP i f 22≤ QP≤ 37
2.0 i f QP > 37

(6.2)

Figure 6.5b shows the results achieved using different values for TCorr, the correla-
tion threshold used to assess the similarity between the current block and its above or left
neighbor in the second stage of the RDO tuning algorithm (function checkneighborsResolu-
tion()). It can be seen that a better performance in both luma and chroma channels is obtained
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Fig. 6.5 RDO tuning threshold optimization.

when TCorr increases. In fact, the best results are obtained with an infinite value of TCorr,
meaning that the neighbor resolution would be automatically selected if it is present in the
best_modes_list, which contains the different modes having a RD cost close to the optimal
resolution. This case, for which bitrate savings are obtained for all sequences compared to
the original value of TCorr = 1.5, has thus been chosen in the final implementation of the
RDO tuning algorithm.

6.1.4 Objective Evaluation

In order to perform a fair comparison between the proposed architecture and the state-of-
the-art, SHVC has been limited to only use the decoded BL frames as reference to encode
the corresponding EL picture, the base layer being encoded with inter-picture predictions
enabled (RA configuration) for both SHVC and the proposed ASR-IL-MD scalable encoder.
Apart from this modification, the same encoding parameters as the study presented in Sec-
tion 5.5.1 have been used.

Table 6.2 summarizes the BD-rate results for the proposed encoder compared to SHVC.
Overall, the proposed ASR-IL-MD achieves an average bitrate overhead of 0.5 % compared
to SHVC, for equal PSNR-YUV. The results obtained for both the U and V chroma channels
are better than the performance of the luma channel, with respectively −1.7 %, −2.6 % and
0.9 % average BD-rate values.

Due to the high variability of the per-sequence and per-channel performance, it is difficult
to perform a general analysis of the results, except from the fact that the ASR-IL-MD en-
coder performs better than the ASR-IL algorithm on sequences that benefit from the changes
in spatial resolution, and shows equivalent losses on the other sequences with high spatial
details. In particular, the chroma performance is highly variable depending on the sequence,
with BD-rate values ranging from 15.3 % bitrate savings to 14.1 % bitrate overhead for
DaylightRoad and ParkRunning1 sequences, respectively.
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Fig. 6.6 Rate-Distortion curves for the proposed ASR-based scalable encoder with mode
derivation compared to SHVC (BL in RA configuration, EL in PBL-only).
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Table 6.2 BD-Rate results (%) for proposed ASR-based scalable encoder with mode deriva-
tion compared to SHVC (BL in RA configuration, EL in PBL-only).

Sequence Y U V YUV

DaylightRoad -0.31 -15.3 -16.41 -3.98
CatRobot -1.48 -4.42 3.71 -0.85
Drums 4.16 0.86 0.49 3.81
Tango -2.58 -5.96 -7.63 -3.7
RollerCoaster -0.36 -0.03 -1.26 -0.2
ToddlerFountain 7.65 -3.17 -9.23 5.69
FoodMarket2 0.22 0.29 0.12 0.39
ParkRunning1 -0.12 14.12 9.69 2.92

Average 0.9 -1.7 -2.57 0.51

Table 6.3 Complexity reduction for the proposed scalable encoder compared to SHVC (BL
in RA configuration, EL in PBL-only).

Enhancement Layer Overall (EL + BL)

Encoding T R% 96 % 47 %

The rate-distortion curves depicted in Figure 6.6 show that the proposed ASR-IL-MD
encoder performs better than SHVC at low bitrates, where the algorithm can often affect
lower resolutions. On the contrary, this tendency is reversed for high QP values, especially
for sequences where the 2N×2N resolution is selected for a large majority of blocks. The
main gain over SHVC is obtained for high QP values, the proposed encoder performing
either similarly, for sequences with a limited amount of spatial details, or slightly worse than
SHVC at high bitrates. This trend can be explained by the fact that, at low QP values, the
behavior of the ASR-IL-MD encoder is very close to SHVC, especially for highly detailed
content, but without key coding tools such as in-loop filters, reference frame filtering or
EL-specific partitioning, that have not been implemented for complexity reasons. At lower
bitrates, the absence of these coding tools is compensated by the gain brought by the adaptive
spatial resolution, which is increased by the lower signaling cost, as will be shown in the next
section.

A significant change compared to the previous ASR-IL proposition, due to both the BL
coded in RA configuration and the resolution mode derivation, is the added temporal co-
herency which results in a greatly improved subjective quality, as observed by expert view-
ers. Indeed, the intra-refresh effect is no longer present thanks to the inter-predicted base
layer pictures and the resolution affected to a given area or object remains stable from one
frame to another thanks to the motion compensated resolution mode derivation.

Concerning the complexity of the ASR-IL-MD architecture, the average encoding times
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Fig. 6.7 Average costs for resolution mode signaling with and without mode derivation via
motion compensation.

are summarized in Table 6.3. If only the enhancement layer is taken into account, the pro-
posed EL encoder represents only 4 % of the processing time of the EL encoder of the SHVC
reference software. The lower computation time of the ASR-IL-MD solution compared to
the ASR-IL encoder is due to the RDO stage skipping when the block resolution can be de-
rived from both the scaled MVs and reference frame. Considering the overall complexity,
i.e. both the base and enhancement layers, the encoding complexity reduction reaches 47 %
compared to the SHM. This high difference between the EL-only and overall results can be
explained by the increased complexity brought by the inter-picture predictions in the BL.

6.1.5 Impact on Signaling Cost

The last part of this section focuses on the impact of the resolution mode derivation via
motion compensation technique on the resolution mode signaling cost. Table 6.4 summarizes
the BD-rate results for the proposed ASR-IL-MD encoder with and without the signaling cost
taken into account. It can be seen that, on average, the resolution syntax elements signaling
represents a bitrate overhead of 0.45 %, which is a clear improvement compared to the
previously evaluated cost results of more than 3 % for the ASR-IL encoder. As expected,
the resolution mode derivation greatly reduces the number of blocks for which the syntax
elements have to be signaled in the bitstream, the only ones remaining being the blocks
coded using intra-predictions in the base layer.

The per-sequence signaling costs are stable in general, around a 0.3 % overhead, ex-
cept for two sequences, namely Tango and ToddlerFountain with respectively a 0.62 % and
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Table 6.4 Signaling cost results (BD-Rate %) for the ASR-IL-MD scalable encoder.

Sequence Y U V YUV

DaylightRoad 0.3 0.32 0.31 0.3
CatRobot 0.29 0.28 0.28 0.29
Drums 0.28 0.28 0.27 0.28
Tango 0.62 0.63 0.62 0.62
RollerCoaster 0.35 0.35 0.34 0.35
ToddlerFountain 1.14 1.15 1.17 1.14
FoodMarket2 0.4 0.39 0.39 0.4
ParkRunning1 0.25 0.25 0.25 0.25

Average -0.45 -0.46 -0.45 -0.45

1.14 % bitrate overhead. For the Tango sequence, it can be explained by the high variability
in chosen resolutions compared to other sequences. For ToddlerFountain, the above aver-
age signaling cost is mainly due to the high amount of intra-coded blocks in the base layer.
Indeed, this sequence presents important unpredictable movements, especially with the nu-
merous water fountains. Therefore, inter-predictions are not effective, in a RDO sense, com-
pared to intra predictions, which results in a high amount of intra-coded blocks in the BL,
thus limiting the use of the resolution mode prediction in the EL.

Figure 6.7a shows the mean signaling cost, in bits per block, averaged over all sequences,
for each tested QP value for the ASR-IL and ASR-IL-MD encoders. As can be expected from
the BD-rate results, the signaling cost is at least divided by six for every QP when the mode
derivation is enabled. The cost is gradually decreasing when the quantization parameter
increases due to the overall lower amount of intra coded blocks in the base layer, at lower
bitrates.

Figure 6.7b depicts the per-sequence portion of the EL bitrate taken by the resolution
mode signaling, averaged over all QP values, for both the ASR-IL and ASR-IL-MD en-
coders. The cost reduction factor is nearly constant for every sequences, except with Tod-
dlerFountain for which the mode derivation cannot lead to great signaling cost reductions,
as previously explained.

6.2 ASR-based EL Inter-Predictions

This section focuses on extended the ASR-IL-MD scheme to fully support the RA config-
uration, i.e. with inter-picture predictions used in both the BL and EL. The proposed algo-
rithm, called ASR-IP-MD, enabling motion compensation with adaptive spatial resolution is
thus presented in order to offer a lightweight scalable coding solution compatible with both
broadcast and streaming use-cases. The ASR-IP-MD method is first described, followed
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by a detailed presentation of the ASR-based inter-predictions implementation. Finally, the
performance of the proposed encoder is evaluated and compared to SHVC.

6.2.1 Description of the Technique

The idea behind the addition of ASR-based inter-picture predictions in the EL encoder is
straightforward: enable the same motion-compensation process as in HEVC but at a poten-
tially different spatial resolution than the resolution of the input and reconstructed reference
EL frames. The proposed corresponding ASR-IP-MD encoder architecture is depicted in
Fig. 6.8.

Once again, to avoid a time consuming motion estimation algorithm, the MVs used for
the EL inter-picture predictions are the scaled BL MVs. Therefore, EL inter-picture pre-
dictions are only enabled for EL blocks with an inter-coded corresponding PU in the base
layer.

As for the previous proposed solutions, the resolution in which the prediction step, and
subsequent core encoding operations, are performed depends on the resolution chosen by
the mode derivation scheme. The algorithm proposed in Section 6.1 for the ASR-IL-MD
encoder is thus reused to derive the spatial resolution based on the decisions made in the
reference frames. Fig. 6.9 shows the prediction structure and coding dependencies of the
proposed ASR-IP-MD encoder.

EL inter-picture predictions are not systematically used when MVs are available. In-
deed, a choice between inter-picture predictions and inter-layer predictions, i.e. using the
upsampled BL corresponding block as reference, has been integrated in the EL encoder ar-
chitecture. The prediction mode decision is taken in a RDO manner. Both prediction modes
are thus tested sequentially and the one showing the best performance, in a R-D sense, is se-
lected. The chosen mode is transmitted in the output bitstream using a specific context-coded
syntax element, inter_pred_flag.

To summarize, three predictions schemes are available in the proposed ASR-IP-MD en-
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Fig. 6.9 Prediction scheme for the proposed ASR-IP-MD scalable encoder in RA configura-
tion in both layers and resolution mode prediction enabled in the EL.

coder to process the EL blocks:

• Inter-layer prediction with RDO-based resolution selection: used systematically
for EL blocks with a corresponding intra-coded BL PU (cf. Chapter 5 presenting the
ASR-IL encoder);

• Inter-layer prediction with resolution mode derivation: can be used for EL blocks
with a corresponding inter-coded BL PU (cf. Section 6.1 presenting the ASR-IL-MD
encoder);

• Inter-picture prediction with resolution mode derivation: can be used for EL blocks
with a corresponding inter-coded BL PU (presented in this section)).

These three predictions schemes are enabled in the implementation and performance
evaluation of the ASR-IP-MD encoder presented in the following sections.

6.2.2 Implementation

A first solution to implement inter-picture predictions with an adaptive spatial resolution
is intuitive and straightforward, as depicted in Fig. 6.10. Indeed, if the chosen resolution
is 2N×2N, the reference EL block, obtained using the corresponding reference frame in the
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Fig. 6.10 Example of straightforward implementation of ASR-based inter-predictions with
sub-optimal prediction of a 2N×N EL block.

Decoded Picture Buffer (DPB), is used as it is for the prediction. Otherwise, the reference EL
block can simply be downsampled to the chosen resolution and be used as it is for prediction.
However, in this case, due to the resolution derivation process, an upsampling to the output
EL resolution has been performed on most reference pixels for the subsequent storing of the
reconstructed reference frame in the DPB. Therefore, the predicted pixels of the EL block
being encoded are obtained using an upsampling operation followed by a downsampling
step. This first solution is thus greatly sub-optimal and produces a high prediction residual
energy. This phenomenon is further amplified if fractional pixel interpolation is directly
used as in HEVC. Indeed, since BL MVs are in quarter-pixel precision, the scaled MVs are
in half-pixel precision, which requires an additional interpolation step to be performed after
the upsampling and downsampling operations.

Instead, due to the inherent properties of the upsampling process used in the ASR scheme,
a more efficient implementation, depicted in Fig. 6.11, is proposed. Indeed, since the con-
sidered upsampling filter bank copies even samples, the reference EL block can be obtained
in the chosen resolution, smaller than 2N×2N, by only taking the even pixels. In this case,
for the 2N×N resolution, the pixels used for predictions are identical to the decoded pixels
before upsampling to the output EL resolution. The only sub-optimal case is when the EL
reference block overlaps with blocks coded in different spatial resolutions in the reference
frame. Indeed, a downsampling operation is needed for pixels not corresponding to the cho-
sen majority resolution. However, this happens for a small amount of pixels and is thus not
considered as an issue compared to the previously described implementation.

For the fractional interpolation process, the implementation can also be optimized, as
depicted for the 2N×N resolution in Fig. 6.11. Since the filter bank for the interpolation
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Fig. 6.11 Example fractional pixel interpolation for ASR-based inter-prediction with 2N×N
as chosen resolution.

is the same as the one used for upsampling, odd samples of the reconstructed reference
EL block, which have been obtained by upsampling, can be used as reference for one of
the three fractional sample positions, depending on the chosen resolution. For the remaining
two fractional sample positions, the half-pixel interpolation is performed to obtain the correct
reference pixels.

The other implementation decision made in the ASR-IP-MD encoder is the partition-
ing level at which the inter_pred_flag syntax element is signaled in the bitstream. As for
the resolution mode signaling cost, investigated in Section 5.5.3, signaling the inter-picture
decision for each EL block would result in a significant bitrate overhead. Instead, the imple-
mentation of the ASR-IP-MD encoder uses a signalization of the prediction mode at a PB
level. Therefore, the chosen prediction mode is the same for all EL blocks corresponding to
the same BL PU, i.e. for EL blocks sharing the same motion information. The RDO process
in charge of selecting the best prediction mode is thus performed over all EL blocks sharing
the same inter_pred_flag syntax element.

6.2.3 Objective Evaluation

The performance evaluation carried out in this section uses SHVC as reference, in RA con-
figuration for both layers, thus following the JCT-VC CTC [53], except for the GOP size
of 16 images. For the proposed ASR-IP-MD encoder, the HEVC BL encoder is also in RA
configuration while the EL encoder also enables inter-picture predictions, as described in the
previous sections. A QP offset of 4 has been used between the BL and EL encoder config-
urations of the proposed ASR-IP-MD scheme. Indeed, as it has been shown in [149], the
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Fig. 6.12 Rate-Distortion curves for the proposed ASR-IP-MD encoder compared to SHVC
(BL and EL in RA configuration).
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Table 6.5 BD-Rate results (%) for proposed ASR-IP-MD scalable encoder with mode deriva-
tion compared to SHVC (BL and EL in RA configuration).

Sequence Y U V YUV

DaylightRoad 2.42 -2.44 3.09 2.08
CatRobot -2.0 12.7 25.7 2.05
Drums 1.59 14.2 26.8 4.09
Tango -11.5 -9.88 -9.93 -10.7
RollerCoaster -11.4 -6.66 -3.48 -10.5
ToddlerFountain 2.27 -4.59 -2.36 1.74
FoodMarket2 -7.06 0.6 -1.47 -5.68
ParkRunning1 -4.38 55.9 51.4 3.77

Average -3.76 7.48 11.2 -1.64

bitrate ratio between both layers can be optimized. Extensive experiments resulted in this
optimal QP offset value of 4 for the proposed scalable coding scheme.

Table 6.5 summarizes the BD-rate results for the proposed ASR-IP-MD encoder com-
pared to SHVC. Overall, bitrate savings of 1.64% compared to SHVC are achieved, for
equal PSNR-YUV. The per-channel performance is quite variable, with a gain of 3.76% for
the luma channel and average overhead of 7.5% and 11.2% for the U and V chroma chan-
nels, respectively. This difference could be resulting from the optimization performed mostly
to improve the luma performance, as it is the channel that influences the perceived quality
the most. A better chroma performance could be achieved by both changing the weight of
chroma reconstructed errors in the R-D cost computation and adding chroma QP offsets.

As can be observed, the performance of the ASR-IP-MD encoder compared to SHVC
is significantly varying depending on the test sequence. As observed for the previously
presented ASR-IL and ASR-IL-MD solutions, the sequences with a lower amount of spa-
tial details show subsequent gains over SHVC while the proposed solution struggles with
sequences containing very highly textured areas. In addition, significantly higher chroma
losses are observed for the ParkRunning1 test sequence. This could be explained by the high
amount of color information present in this content, which is not correctly recovered by the
EL encoder with its less than optimal handling of chroma residuals.

The rate distortion curves depicted in Fig. 6.12 show that the proposed ASR-IP-MD
encoder and SHVC follow the same behavior as described in Section 6.1.4. The previously
detailed analysis is thus still valid for proposed ASR-IP-MD encoder coding scheme.

Complexity-wise, the proposed ASR-IP-MD encoder scalable coding scheme achieves
an overall average encoding time reduction of 78.6% compared to SHVC, as summarized in
Table 6.6. This performance is higher than for the previous architecture due to the EL being
coded in RA configuration. Therefore, the SHVC EL encoding time is greatly increased
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Table 6.6 Complexity reduction for the proposed scalable encoder compared to SHVC (BL
and EL in RA configuration).

Enhancement Layer Overall (EL + BL)

Encoding T R% 97.8 % 78.6 %

Day
lig

ht
Roa

d

CatR
ob

ot

Dru
ms

Ta
ng

o

Roll
er

Coa
ste

r

To
dd

ler
Fou

nt
ain

Foo
dM

ar
ke

t2

Pa
rk

Run
nin

g1

Sequence

0

20

40

60

80

100

E
nc

. T
im

e 
R

ed
uc

ti
on

 (
%

 o
f 

SH
V

C
)

Overall
EL-only

Day
lig

ht
Roa

d

CatR
ob

ot

Dru
ms

Ta
ng

o

Roll
er

Coa
ste

r

To
dd

ler
Fou

nt
ain

Foo
dM

ar
ke

t2

Pa
rk

Run
nin

g1

Sequence

0

20

40

60

80

100

R
el

at
iv

e 
E

nc
. T

im
e 

(%
 o

f 
SH

V
C

)

EL-SHVC
BL-SHVC
EL-ASR
BL-ASR

Fig. 6.13 Per-sequence encoding times comparison between proposed ASR-based encoder
and SHVC in RA configuration.

compared to the previous study where only PBL-only predictions were enabled in the EL
encoder. If only the EL encoding time is taken into account, the ASR-IP-MD encoder shows
an average complexity reduction of 97.8% compared to the HEVC EL encoder of the SHVC
architecture. This means that a x45 speedup is achieved in the EL encoder.

The per-sequence average encoding time reduction results are depicted in Fig. 6.13a. As
can be observed, the complexity gain is quite stable across all tested sequences and is thus
not content-dependent. Fig. 6.13b shows the relative encoding time for each layer for both
the SHVC and proposed ASR-IP-MD encoders. As can be seen, contrary to SHVC, spatial
scalability is achieved with only a small complexity overhead for the ASR-IP-MD encoder.
Indeed, the EL encoding time only represents a 11% encoding time average increase over
the BL encoding process whereas the complexity overhead reaches 400% for the SHVC
architecture.

Table 6.7 shows the performance of state-of-the-art SHVC complexity reduction algo-
rithm compared to the ASR-IP-MD solution. As can be seen, our proposition outperforms
state-of-the-art solutions both in terms of complexity reduction and coding efficiency. This
improvement is enabled by the replacement of the EL HEVC encoder by an ASR-based very
low complexity encoder, contrary to the state-of-the-art solutions that propose a speedup of
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Table 6.7 Comparison of proposed coding scheme to state-of-the-art SHVC complexity re-
duction solutions.

Tohidypour [143] Shen [146] Ours

EL Enc. time reduction 77 % 69 % 97.8 %
BD-rate value 4.2 % 2.3 % -1.3 %

the HEVC encoding process.

6.3 Conclusion

In this chapter, the low-complexity scalable encoder based on the local adaptation of the
spatial resolution proposed in Chapter 5 is improved with two complementary propositions.

The first solution, called ASR-IL-MD, aims at tackling the main issue of the ASR cod-
ing tool, i.e. the block-level spatial resolution signaling overhead. To this end, an extension
of the ASR-IL algorithm is proposed to handle a BL encoder in RA configuration and thus
exploit the BL MVs to limit the signaling cost of the coding tool. Indeed, a resolution mode
derivation via motion compensation algorithm is proposed to remove the resolution signal-
ing cost by predicted the chosen spatial resolution from previously encoded EL frames when
MVs are available in the BL encoded bitstream. Experimental results showed that the pro-
posed ASR-IL-MD solution can achieve a bitrate overhead reduced to 0.5% compared to
SHVC in the same configuration - RA for the BL and PBL only for the EL - for average en-
coding time reductions of 96% and 47% for the EL encoder and complete dual-layer encoder,
respectively.

A second solution, called ASR-IP-MD, is proposed to add the support of RA configura-
tion in the EL encoder, thus enabling the most popular coding configuration for broadcast and
streaming use-cases. To this end, an ASR-based inter-prediction scheme is proposed, reusing
the BL motion information and the previously proposed resolution mode derivation scheme.
Through optimized fractional pixel interpolation and prediction mode signaling processes,
a fast and efficient implementation of inter-predictions in the EL encoder is enabled. Ex-
perimental results showed that a complexity reduction of 78.6% and 97.8% can be achieved
for the overall scalable ASR-IP-MD encoder and EL encoder, respectively. Concerning the
coding efficiency, average bitrate savings of 1.3%, for equal PSNR-YUV quality, are shown
compared to SHVC, despite some losses observed in the chroma channels.

The ASR-IP-MD solution thus outperforms state-of-the-art SHVC complexity reduction
algorithms by a considerable margin. However, the proposed solution only tackles spatial
resolution adaptation, thus further gains could be achieved by investigating the possible res-
olution adaptation in the temporal domain.
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Chapter 7

Variable Frame-Rate

As mentioned in Section 2.1.2, the introduction of frame-rates up to 100/120 fps, i.e. HFR,
is one of the new features brought by the UHD video format. HFR video has been widely
studied in the past decade [85, 150–155], showing a significantly better motion protrayal
and thus greatly improving the perceived quality. However, these improvements are highly
content-dependent and mostly confined to certain types of video content, notably those with
high motion such as sporting events.

Besides, this increase in frame-rate doubles the amount of data to process compared
to the traditional frame-rates of 50/60 fps currently used in the broadcast and streaming
industries. This is one of the factors, in addition to the spatial resolution increase tackled in
the previous chapter, that significantly increases the coding and decoding complexities using
current solutions, thus greatly limiting the deployment of a complete UHDTV transmission
chain to the consumer.

Following the same idea as for the adaptive spatial resolution presented in Chapter 5, the
frame-rate of an input 120 fps video could be locally lowered when such a high frame-rate is
not necessary to depict the movements of the scene. By doing so, the additional processing
needed for HFR content would only be present when it provides visual gains.

In this chapter, a content-dependent VFR model capable of determining the ideal frame-
rate of HFR videos is proposed. The ideal frame-rate is the lowest possible frame-rate that
does not affect the perceived video quality of the original HFR video signal. The proposed
solution is based on a machine learning algorithm that takes as input spatial and temporal
features extracted from the HFR video content to determine the ideal frame-rate among an
set of possible frame-rates, limited to 30, 60 and 120 fps in this study.

The chapter is structured as follows. Section 7.1 reviews the related works on HFR
video and variable frame-rate. Section 7.2 describes the considered ML approach and the
tackled VFR classification problem. Then, the ground truth generation process is detailed
in Section 7.3 followed by the description of the ML model training process in Section 7.4.
Finally, the model prediction performance is evaluated in Section 7.5 and the related real-
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time demonstration of the VFR coding scheme is presented in Section 7.6.

7.1 Related Work

7.1.1 High Frame-Rate Video

The UHDTV signal, defined in the ITU-R BT. 2020 recommendation [1], introduces a num-
ber of improvements over the HDTV [2] aiming at providing a better visual experience to
the user. Along with a wider color gamut and an increased bitdepth, which allow to depict
real colors and avoid ringing artifacts respectively, the key features of the UHDTV signal
enabling a better depiction of live content are the higher spatial resolution - up to 3840x2160
and 7680x4320 pixels - and increased frame-rate - up to 120 fps. The different experi-
ments that lead to the definition of each characteristic of the UHDTV signal are summarized
in [3, 156].

Particularly, high frame-rate video has been an active field of research in the last decade,
with the goal of avoiding well-known motion-related artifacts, namely flickering, motion
blur and stroboscopic effect, which are present in traditional HDTV frame-rates of 60 fps
and lower. Flicker is a phenomenon in which unwanted visible fluctuations of luminance
appear on a large part of the screen and occurs at low refresh rates on non hold-type displays
(e.g. Cathode Ray Tubes (CRTs)). Several studies [4, 157] have shown that flicker can
be eliminated, for UHDTV signals, by simply using a frame-rate higher than 80 fps. The
stroboscopic effect is the result of temporal aliasing, where the frame-rate is insufficient to
represent smooth motion of objects in a scene causing them to judder or appear multiple
times. At a given frame-rate, strobing can be reduced by lowering the shutter speed of
the camera. However, a lower shutter speed also increases motion blur, which is caused
by the camera integration of an object position over time, while the shutter is opened. Thus,
strobing artifacts and motion blur can not be optimized independently except by using higher
frame-rate [158].

Based on previous studies by Barten [159] and Daly [160], Laird et al. [153] define a
spatio-velocity Contrast Sensitivity Function (CSF) model of the HVS taking into account
the effect of eye velocity on sensitivity to motion. In [152], Noland uses this model along
with traditional sampling theory to demonstrate that the theoretical frame-rate required to
eliminate motion-blur without any strobing effect is 140 fps for untracked motion and as
high as 700 fps if eye movements are taken into account. Since this theoretical critical
frame-rate is not yet achievable, several subjective studies have investigated the frame-rate
for which motion-related artifacts are acceptable for the HVS. In [161], Selfridge et al. in-
vestigate the visibility of motion blur and strobing artifacts at various shutter angles and
motion speeds for a frame-rate at 100 fps. Their subjective tests showed that even at such
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a frame-rate, all motion-blur and strobing artifacts can not be both avoided simultaneously.
Kuroki et al. [151] conducted a subjective test with frame-rates ranging from 60 to 480 fps,
concluding that no further improvements of the visibility of blurring and strobing artifacts
were visible above 250 fps. Recently, Mackin et al. [150] have performed subjective tests
on the visibility of motion artifacts for frame-rates up to 2000 fps, achieved using a strobe
light with controllable flash frequency. The study concluded that a minimum of 100 fps was
required to reach tolerable motion artifacts.

For the purpose of the UHDTV signal definition, several studies further investigated the
importance of HFR for television [85, 155, 162]. Emoto et al. [162] showed that increasing
the frame-rate from the traditional 60 fps to high frame-rate of 120 fps provides a significant
visual quality improvement. It is also stated that a further increase to 240 fps would also
improve the motion portrayal but to a much lesser extent than the transition from 60 to 120
fps. Salmon et al. [155] have also studied HFR for television, showing that at least 100 fps
is required for improvements over HDTV, especially for content with high motion such as
sports. Recently, with one of the first 65 inches UHD HFR prototype displays, Hulusic et
al. [85] studied the joint and independent contributions of 4K resolution and HFR. The sub-
jective tests carried out showed that the 2160p100Hz format enables a significant increase
in visual quality over other configurations - 1080p50Hz, 1080p100Hz and 2160p50Hz - but
also that the improvements are strongly content dependent.

7.1.2 Compression of HFR content and Variable Frame-Rate

Since the adoption of HFR in the future television standard, through the second phase of the
DVB UHD standard [163], several studies on the compression of HFR content have been
carried out. Authors in [154] investigate the impact of high frame-rate on video compres-
sion, focusing on the perceptual quality of different motion types and frame-rates at several
bitrates. Using the test sequences of the public HFR dataset described in [164] compressed
using an HEVC encoder, it is shown that HFR is beneficial and desirable, especially at high
bitrate and even at the current HDTV broadcast data rates for sequences containing camera
and/or simple motion, for which the encoder can make use of the increased temporal cor-
relation to predict adjacent frames. Sugito et al. [165] showed that the overhead, in terms
of bitrate, introduced by the increase from 60 to 120 fps is reasonable, with an optimal bit
allocation of 6-7% of the total bitrate for the additional frames needed to achieve HFR ca-
pability. However, one of the main limitation of doubling the frame-rate is the additional
encoding complexity, with a near 40% increase in encoding time.

VFR, where the image frequency can be adapted based on the signal characteristics, is
one of the solutions to cope with the complexity and bitrate increases. In [166], a variable
frame-rate algorithm is designed to skip frames when a constant image quality can not be
kept due to a limited bit budget. In [167], Song et al. add motion smoothness to the tradi-
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tional rate control criterion to decide when a frame can be skipped to reduce the overall bi-
trate. Other rate control algorithms are based on the scene movements to drive the frame-rate
adaptation, either through thresholds on simple frame differences [168] or motion vectors for
transcoding applications [169]. Considering other use cases with real-time low latency and
low bitrate constraints, such as video conferencing, a trade-off between spatial and temporal
quality is studied in [170] by adapting the encoding frame-rate and predicted output quality
based on the HVS. For mobile communications, Usach et al. [171] use a variable GOP size
in addition to the variable frame-rate to meet the 3G network constraints. However, these
variable frame-rate solutions have been designed for videos of up to 30 fps compressed with
H.264 and older codecs and are thus not suitable for the UHDTV use case tackled in this
chapter.

Recently, VFR for HFR content has been investigated, aiming at offering a perceptually
indistinguishable temporally downsampled video. A Support Vector Regression (SVR) is
used in [172] to predict a satisfied user ratio - percentage of people who do not see the
difference between original and lower frame-rates - which is then used to dynamically select
the appropriate image frequency at a GOP or sequence level. The trained SVR uses complex
and computationally demanding features, notably a visual saliency map for each frame, and
the training set is only composed of up to 60 fps content thus making it unsuitable for real-
time dynamic frame-rate selection on 120 fps source contents. Katsenou et al. train Bagged
Decision Trees to predict the critical frame-rate at a sequence level [173]. The selected
feature set is only composed of Farnbäck’s Optical Flow (OF) [174], for the temporal aspect,
and Gray Level Co-occurrence Matrix (GLCM) [175] for the spatial details contribution. In
addition, the considered dataset consists of 22 test sequences with critical frame-rates of 60
or 120 fps. Thus, a good generalization of the VFR decision problem is hard to achieve with
such few data to train and validate the model.

7.1.3 HFR oriented evaluation metrics

To evaluate the quality of the frame-rate adaptation, several metrics, with the goal of as-
sessing the motion related artifacts, can be used. A rate and perceptual quality model is
proposed in [176] to evaluate the quality based on the frame-rate and quantization stepsize.
Ou et al. [177] add the spatial resolution as a parameter of their perceptual quality model
in addition to the temporal and amplitude resolutions. Both these models require content
dependent parameters to be computed before using the metric.

With the introduction of HFR content, several metrics have been developed to specifi-
cally assess the perceptual impact of frame-rate reduction. In [178], Nasiri et al. designs a
spatio-temporal perceptual aliasing factor based on traditional sampling theory and a CSF
model of the HVS to measure the temporal aliasing introduced by lowering the frame-rate.
Authors in [179] focus on the analysis of highpass coefficients of a temporal wavelet de-
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composition to compare a temporally downsampled version to the original 120 fps source
content, resulting in good correlation with MOS values on the Bristol Vision Institute High
Frame-Rate (BVI-HFR) database. More recently, a metric based on the measure of tempo-
ral motion smoothness to evaluate the impact of frame-rate adaptation has been proposed
in [180]. The temporal motion smoothness is calculated by analyzing the local phase corre-
lation of complex temporal wavelets coefficients, which shows promising results compared
to subjective tests, with some issues for content with local and highly variable spatial motion.

7.1.4 Motion Blur Rendering and Video Frame Interpolation

In a pipeline using a VFR video format to transport the video, several processing steps could
be added to improve the perceptual quality of the output video. Indeed, on one hand, motion
blur can be synthesized when the frame-rate is lowered to render a video close to what would
have been captured with a camera at the lower frame-rate and its corresponding shutter speed.
This would reduce the stroboscopic effect due to the frame decimation thus improving the
visual quality of the VFR video. Motion blur synthesis has been extensively studied in an
effort to render synthetic images as real as possible [181]. These techniques mostly rely on
the perfect knowledge of the depth and motion of the scene and are thus not compatible for
a live broadcast use-case. More recently, a motion blur rendering algorithm using only two
consecutive images as inputs to produce a motion blurred output have been designed in [182].
These promising results are balanced by the computationally demanding algorithm, due to
the underlying CNN architecture used to synthesize motion blur.

On the other hand, since most display devices do not support a variable frame-rate, the
VFR video must be temporally upsampled to the original higher frame-rate before display-
ing it. Thus, frame interpolation methods can be used to improve the temporal upsampling
step in order to obtain a visually better displayed video. Video frame interpolation is a
well-studied field with several existing approaches to the problem. The classical approach
interpolates intermediate frames from the optical flow field [183] of the scene. Interpolated
frames, whose quality highly depends on the accuracy of the computationally expensive op-
tical flow computation [184], typically suffer from motion boundaries and severe occlusions
thus showing strong artifacts, even with state-of-the-art optical flow algorithms [185]. More
recent promising works rely on neural networks to either predict convolution kernels for each
pixel used to generate the interpolated frames [186, 187] or directly predict the intermediate
image pixel values [188]. However, these techniques involve a large number of convolutions,
sometimes with large kernels (up to 41x41 for each pixel) to cope with large motion, thus
making the computational demand unsuitable for real-rime use-cases.
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Fig. 7.1 Block diagram of the complete Variable Frame-Rate (VFR) coding scheme.

7.1.5 Objective and Motivation

Most existing algorithms containing variable frame-rate have been designed purely for rate
control in 30 fps video encoding schemes, with the goal of skipping frames when the bit
budget constraint can not be met. Such behavior does not take properly into account the
impact on perceptual quality, making these solutions not suitable for HFR, which has been
integrated to the UHDTV standard to improve motion portrayal.

Since the improvements brought by HFR capabilities are highly content dependent, sev-
eral recent studies have based the frame-rate selection on perceptual factors to lower the
frame-rate when there is no impact on visual quality. However, they use computationally
expensive features and rely on a small dataset, not always composed of 120 fps content, to
train and validate the variable frame-rate models. Thus, these solutions do not achieve good
generalization of the problem. Moreover, they are not suitable for a real-time constraint,
which is required for use-cases like live broadcast of, for example, sport events, that would
periodically highly benefit from HFR.

In this chapter, real-time variable frame-rate for HFR source content is addressed. The
proposed system, depicted in Fig. 7.1, relies on two RF classifiers to predict the critical
frame-rate. It has been designed with the following objectives:

• Design a dynamic frame-rate selection at a GOP level with a perceptually invisible
frame-rate changes.

• Real-time feature computation with low inference on the coding chain.

• Training and testing on a well dimensioned dataset containing various types of 120 fps
content.

• Perceptual validation of the obtained objective performance through subjective evalu-
ation test.

• Assess the bitrate and complexity savings within an HEVC encoding chain.

To meet the real-time constraint of live broadcast, state-of-the-art motion blur rendering
and frame interpolation have not been integrated in the VFR pipeline. Instead, the proposed
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system has been designed with simple frame decimation (resp. duplication) as a temporal
downsampling (resp. upsampling) tool.

7.2 Random Forest Classifier for Variable Frame-Rate

This section briefly presents Random Forests (RFs) as a classification tool and introduces the
method proposed in this work to reduce the frame-rate with no visual impact, i.e. the VFR
decision problem, as a combination of two binary classification problems.

7.2.1 Background on Random Forests

Random Forests [189] are a common ML tool used to solve classification problems. A RF
classifier is able to predict the value of a target variable, i.e. a class, based on a set of input
variables, i.e. input features, using the majority vote of an ensemble of nearly independent
decision trees.

A decision tree is constructed by first partitioning the training dataset, i.e. the features
and the associated class of each sample, into two different subsets, called nodes. This process
is performed recursively until either all the node samples belong to a single class or a tree
constraint has been reached. At each node, each available input feature is evaluated for all
its possible values, in order to achieve the best separation of the classes in the subsequent
child-nodes.

In this work, the criterion used to quantify the quality of a split, given the feature F and
its threshold value t, is based on the Gini impurity measure, a common metric for Decision
Trees [190]. It is computed as follows

IG(D) = ∑
c∈C

P(c |D) · (1−P(c |D)) , (7.1)

with D the sample set under consideration, C the set of possible class labels and P(c |D) the
conditional probability of class c given the sample set D.

The best split is then obtained by finding the pair (F, t) that maximizes the Mean Decrease
Impurity (MDI) ∆IG defined by Equation (7.2)

∆IG(D,F, t) = IG(D)− |DL|
|D|
· IG(DL)−

|DR|
|D|
· IG(DR), (7.2)

with DL = {x ∈ D,F(x) < t} (resp. DR = {x ∈ D,F(x) ≥}) the subset of sample set D for
which each sample x has a value of feature F(x) smaller (resp. larger) than threshold t and
|D| the cardinal of a set D.

To minimize the correlation between trees of the RF, the bootstrap aggregating, or bag-
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ging, technique [191] is used to construct the forest. This consists in training each tree Ti

with a different subset Di of the input data sample set D. Each Di is obtained by a uniform
sampling of D with replacement, i.e. replacing discarded samples by duplicates of a selected
one. In addition and to further reduce the correlation between trees, only a random subset of
the features, here

√
n features with n the total number of input features, are evaluated at each

node to find the best available split.

7.2.2 VFR Classification Problem

The proposed solution aims at predicting when the frame-rate can be reduced, by discarding
frames, without any perceptual impact on the quality of the original input HFR video. In an
effort to keep the number of possible frame-rates reduced and obtain a regular frame deci-
mation process, two frame-rates, 60 fps and 30 fps, were identified as potential candidates
in addition to the original frame-rate of 120 fps. The VFR decision problem thus becomes a
three-class classification, as depicted in Fig. 7.2.

120fps 60fps 30fps

Fig. 7.2 Possible classes of the VFR classification problem. Frames in the same color rep-
resent the same image repeated at multiple time-stamps to match the chosen frame-rate with
the original 120fps one.

In this work, a combination of two successive binary RF classifiers has been chosen to
solve the classification problem, as depicted in Fig. 7.3, instead of directly training a forest
with multi-class outputs. This decision leads to a better overall performance by training
both classifiers independently on separate datasets and features. Indeed, in addition to the
specialization of each binary classifier, almost all samples of the database for training either
one or both classifiers while keeping balanced training datasets, as described in Section 7.3,
thus increasing the accuracy of the overall model.

The first RF classifier, named 120fps - FD, is specialized in deciding whether the frame-
rate must remain 120 fps or a Frame Decimation (FD) can be applied without impacting the
visual quality. If the 120 fps class is chosen by the first classifier, the frame-rate prediction
process is stopped and no FD is applied. Otherwise, the prediction process continues by
requesting the second classifier, named 60fps - 30fps, which aims at selecting the appropriate
lower frame-rate if a FD is applied on the input HFR video.
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Fig. 7.3 Overall prediction scheme with cascaded binary RF classifiers.

7.3 Ground Truth Generation

One of the most crucial steps towards training a supervised RF model is to gather a dataset
which will be used as ground truth, i.e. examples - features representing a sample and the
sample class label - used by the model for learning to predict. It is thus important to have
a ground truth that contains a good representation of all the real cases the model could en-
counter in order to achieve a good generalization of the problem. This section focuses on
detailing the ground truth generation process, necessary to obtain the datasets used to train
both RF classifiers. The HFR database is first presented, followed by the detailed method-
ology for subjectively determining the critical frame-rate labels. Then, the creation of the
dataset is described, with the composition of the balanced training set on one hand and the
feature extraction process on the other hand.

7.3.1 HFR Video Database

To the best of our knowledge, there is no publicly available dataset for the VFR classifica-
tion problem except for the BVI-HFR database [164]. However, this database only contains
22 videos, which is rather small to train a reliable model. In addition, the temporal down-
sampling technique used to create the lower frame-rates in this database is frame averaging,
whereas the chosen method in this work is frame decimation, which could lead to different
decisions on the appropriate frame-rate.

Therefore, a new database has been gathered, composed of 375 native HFR video clips
of 5 to 10 second. These clips are all uncompressed and stored in YUV format with 4:2:0
chroma subsampling and 8-bit depth. Their original frame-rate is 120 fps and spatial reso-
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Test Video
30 or 60 fps

Reference Video
120 fps

(a) Side-by-side screen configuration

Vote - N1st Repetition 2nd Repetition
2 s 5-10 seconds 2 s 4 seconds5-10 seconds

Ref-N | Test-N
2 s 5-10 seconds

time
(b) Basic Test Cell

Fig. 7.4 Ground truth generation SDSCE evaluation method.

lution 1920x1080 pixels (HD) - a downsampling has been performed for source videos of
higher spatial resolution using Lanczos3 filter banks [100].

The database includes video clips from the BVI-HFR dataset [164], together with b<>com,
Harmonic and other non-publicly available test sequences. In order to later evaluate the
trained model on unseen data samples, 15 sequences, with heterogeneous spatio-temporal
characteristics, have been extracted from the database, leaving 360 video clips to annotate
before training both RF classifiers.

7.3.2 Optimal Frame-rate Decision Methodology

The ground truth generation process requires each video of the database to be assigned a crit-
ical frame-rate chosen among the three considered ones in the VFR classification problem.
A subjective test has thus been carried out with the objective of finding the lowest frame-rate
for which no visual degradation can be observed compared to the original 120 fps video. Fol-
lowing the ITU-R BT.500-13 recommendation [28], the Simultaneous Double Stimulus for
Continuous Evaluation (SDSCE) protocol has been used with a binary scale - either identical
or visible difference. Therefore, subjects were asked, for each video of the database, if there
was a visible difference between the known reference (left screen) and the lower frame-rate,
either 30 or 60 fps, test video displayed on the right screen, as depicted in Fig. 7.4a.

The test was composed of 750 Basic Test Cells (BTCs), randomly divided into 30-minute
test sessions. Each BTC is 40-second long and is composed of a 2-second message announc-
ing the test video index followed by the side-by-side display of the reference and test videos
with two repetitions.

A 2-second break displaying a mid-gray image has been added between each repeti-
tion. The BTC is concluded by a 4-second message asking the viewer to vote, as shown
in Fig. 7.4b. Due to the large duration of the subjective test, only five viewers, experts in
video processing, participated in the whole database annotation. The final frame-rate de-
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Table 7.1 Database critical frame-rate distribution.

Optimal frame-rate

30 60 120

# of shots w/ uniform motion 78 184 167

# of 4-frame chunks 3749 22327 19996

cision is the lowest frame-rate for which the majority of expert viewers did not notice any
visible difference with the reference 120 fps video.

The tests were conducted in a controlled laboratory environment, following the ITU-R
Rec BT.500-13 [28]. Two identical 27-inch screens capable of displaying 120 fps content
(Asus RoG Swift PG278Q) were used side-by-side, aligned and placed at a distance from
the viewer position of three times the screen height. Each participant has been screened to
ensure (corrected to) normal visual acuity and normal color vision.

7.3.3 Balanced Dataset Composition

The results of the expert subjective test are summarized in Table 7.1. As can be seen, the
sequences are not evenly distributed over the three possible frame-rates due to a large propor-
tion of the available content being captured with HFR-capable devices containing high mo-
tion content, for which frame decimation downsampling to 30 fps is critical. Since the goal is
to allow for a frame-rate adaptation at the lowest possible level, i.e. a frame-rate decision for
every chunk of 4 frames to keep a regular frame decimation process, the sequence-level la-
bels obtained via the subjective test have been extended to 4-frame chunk-level labels. Thus,
for sequences with significant motion discontinuities, video shots with uniform motion can
be identified and assigned different labels in a single sequence. Based on the observations
made by the experts after the subjective test, a total of 429 video shots with uniform motion
have been extracted from the 360 native HFR sequences. This refinement allows for a more
accurate annotation of the database, thus avoiding chunks being annotated with inconsistent
labels, for instance a chunk not containing any movement associated to the 120fps class.
However, such cases could still remain in the ground truth due to the difficulty to identify the
motion discontinuities with a precision of less than four frames.

From this ground truth, two different datasets were created to train the 120fps-FD and
60fps-30fps RF classifiers. The first one contains all samples of the 120fps class as well as
those from the FD class. The FD class is composed of all 30fps samples and a random subset
of the 60fps samples. The amount of selected 60fps samples has been chosen to produce a
balanced dataset, i.e. to roughly obtain the same sample size for both the 120fps and FD
classes. The second dataset, used to train the 60fps-30fps classifier, is comprised of the
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30fps samples and a random subset of the 60fps samples, whose size has also been chosen
to produce a balanced dataset. The choice of balancing datasets has been made because the
unbalanced class distribution in the database does not necessarily represent the distribution
of media content in a broadcast context, the chosen use-case for the proposed solution, but
rather relates to the current difficulty to find HFR content with low motion. This is due to the
fact that most of the currently available HFR content has been shot to demonstrate the gain
in perceptual quality and motion portrayal brought by the technology.

7.3.4 Feature Extraction

The goal of a feature set is to gather the different metrics relevant to the considered classifica-
tion problem that would help discriminate the output classes from one another. For the VFR
classification problem, a first feature would intuitively be the motion information, e.g. the
motion vectors between two consecutive frames. Indeed, high movement in a source HFR
video will likely lead to visible temporal aliasing, i.e. stroboscopic effect, if a lower frame-
rate is used after frame decimation. In addition, since motion blur is not added during the
temporal downsampling process used in this work, lowering the frame-rate could introduce
visible jerkiness in high motion videos.

For the three considered frame-rate classes, flickering, the other well-known motion-
related artifact, can appear in highly textured areas where the local variation in luminance
between two consecutively displayed frames would be visible at lower frame-rates. In an ef-
fort to capture this phenomenon in the feature set, the pixel luminance values and directional
gradients can be used.

Based on the performed expert viewing sessions, it has been observed that small ob-
jects with high velocity, which would not necessarily be detected by the motion vectors
depending on the used motion estimation algorithm, could induce visible artifacts at lower
frame-rates. To take this observation into account, a simple metric capable of detecting both
global displacements and small moving objects has been designed. This metric is based on
the thresholding of the difference between two consecutive frames. First, the frame differ-
ence Dn(i, j), i.e. the difference in pixel value of the luminance plane at the same location in
space (i, j) between the nth frame Fn and the preceding one Fn−1, is computed for each pixel
using Equation (7.3)

Dn(i, j) = |Fn(i, j)−Fn−1(i, j) |. (7.3)

Then, a thresholding operation is performed on the frame difference image, defined as
follows

An,T h(i, j) =

{
1 i f Dn(i, j)≥ T h
0 i f Dn(i, j)< T h

, (7.4)

with An,T h the resulting thresholding activation map for the nth frame and a threshold T h.
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(a) (b)

Fig. 7.5 Example of thresholded motion difference with (a) the original image of the Jokey
sequence and (b) the thresholding activation map with threshold T h = 25.

Fig. 7.5 depicts an example with both the original image and the resulting thresholded frame
difference image.

The designed feature set is thus based on the following feature maps:

• NormMV, HorMV, VerMV: maps respectively representing the MVs norm, horizon-
tal coordinate and vertical coordinate.

• ThreshDiffMap: thresholded frame difference map as defined in Equation (7.4).

• GradMag, GradHor, GradVer: maps respectively representing the Sobel gradient
magnitude, horizontal gradient and vertical gradient.

• Luma: pixel luminance map.

For each map, several scores have been computed, namely the mean value, the standard
deviation, the maximum value and the mean of the 10% highest values, to produce a total
of 32 different features that will serve as an initial feature set for the training of both the
considered RF models.

7.4 Random Forest Training Process

Once the ground truth is available and the features computed, the RF models can be trained
to solve the VFR classification problem. This section focuses first on the performance eval-
uation process, necessary to assess and optimize the quality of the model critical frame-rate
prediction task. Then, a feature selection process, used to reduce the initial feature set to
only the relevant features for each binary classifier, is presented. Finally, a description of
the optimization of several model hyper-parameters is given, followed by a presentation and
analysis of the classification results.
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Fig. 7.6 Error definitions for binary classification.

7.4.1 Model Evaluation Process

In order to optimize a ML classifier, it is necessary to use a metric capable of evaluating
the model classification performance to find the best parameters. To do so, several common
metrics, namely precision, recall and F1-score [192], can be used. First, the trained model
confusion matrix, as depicted in Fig. 7.6, has to be computed from the true and predicted
labels of the dataset samples. Then, once the different quantities of the confusion matrix,
namely True Positives (TP), False Positives (FP), False Negatives (FN) and True Negatives
(TN), are available either as number of samples or normalized probabilities, the precision,
recall and F1-score can be computed as follows, with C = {c1,c2} the set of classes for the
binary classifier under test

precision(C) =
1
|C|
· ∑

ci∈C

T P(ci)

T P(ci)+FP(ci)
, (7.5)

recall(C) =
1
|C|
· ∑

ci∈C

T P(ci)

T P(ci)+FN(ci)
, (7.6)

F1-score(C) =
2
|C|
· ∑

ci∈C

precision(ci)× recall(ci)

precision(ci)+ recall(ci)
, (7.7)

As for any binary classification problem, the goal is to maximize the confusion matrix
main diagonal values, i.e. the number of TP and TN representing the correct predictions.
This can be achieved by maximizing precision, recall, or F1-score during the training pro-
cess, depending on the considered classification problem and the criticality of each error
type. For the VFR classification problem, the main goal is also to minimize the critical
errors - predicted frame-rate lower than the ground truth - which would potentially induce
visible temporal artifacts thus greatly reducing the output visual quality. To emphasize these
critical errors and avoid them in the final model, another performance evaluation metric Mcrit

has been designed, as a combination of the precision of the lower frame-rate class and the
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recall of the higher frame-rate class, using Equation (7.8)

Mcrit(C) = 1
|C| · [precision(c1)+ recall(c2)]

= 1
|C| ·

[
T P(c1)

T P(c1)+FP(c1)
+ T P(c2)

T P(c2)+FN(c2)

]
= 1
|C| ·

[
T P(c1)

T P(c1)+FP(c1)
+ T N(c1)

T N(c1)+FP(c1)

] (7.8)

with C = {c1,c2} the set of ordered classes - frame-rate of c1 lower than the frame-rate of c2.
This metric has been used together with the F1-score to assess the quality of RF models for
both the feature selection process and hyper-parameter tuning described in the next sections.

7.4.2 Feature Selection

In an effort to limit the model complexity and improve its performance, a dimensionality re-
duction algorithm has been used on the proposed initial feature set. Indeed, by only selecting
the relevant features, thus removing features carrying useless information for the considered
classification problem, both the feature computation time and training time are greatly re-
duced. Additionally, model over-fitting is also decreased when the size of the feature set is
reduced due to the reduction of noise in the input data and the elimination of highly corre-
lated features, i.e. features that would carry the same information about the target variable.

In this work, a Recursive Feature Elimination (RFE) process has been used to reduce the
dimension of the initial feature set. It consists in recursively evaluating the model perfor-
mance on a dataset and a feature in which the least important feature is removed after each
iteration. The feature importance is computed in terms of mean decrease in Gini impurity,
i.e. the average capacity of a feature to reduce the Gini impurity computed a given tree node
using Equation (7.1). When the feature set size reaches the minimum tested dimension of
2, the feature set leading to the best model performance among all the tested dimensions is
selected as the final feature set.

This process has been performed independently for both proposed RF models with the
same initial feature set but leading to a different optimal feature set size for each binary
RF classifier, respectively 26 and 11 features for the 120fps-FD classifier and 60fps-30fps
classifier, as depicted in Fig. 7.7.

Fig. 7.8a shows the list of selected features for the 120fps-FD RF classifier with their
corresponding feature importance. As can be observed, the most relevant features to dis-
criminate samples from both classes are based on the two motion features ThreshDiffMap
and NormMV. This correlates well with the observations made by the experts during the
ground truth annotation subjective tests. Indeed, it was pointed out that above a certain
amount of movement, either from a moving camera or an object with high velocity - which
can be captured by both metrics -, a stroboscopic effect as well as jerkiness, due to lack of
motion blur, could easily be detected with frame-rates lower than 120 fps. Most of the fea-
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(b) 60fps-30fps RF model

Fig. 7.7 Recursive Feature Elimination process with weighted (F1,Mcrit) score.
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(a) 120fps-FD RF model
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(b) 60fps-30fps RF model

Fig. 7.8 Feature importance measured with Mean Decrease in Gini Impurity. yellow: spatial
features, green: motion features

tures based on spatial measures are present in the optimized feature set, with a significantly
lower importance compared to the aforementioned motion features. This tends to indicate
that flickering becomes an important criterion to keep a high frame-rate when the amount of
movement does not induce other motion artifacts.

For the 60fps-30fps RF model, the selected features and their importance are depicted in
Fig. 7.8b. As for the first RF model, the features based on the motion vectors, NormMV, have
a high capacity to discriminate samples from both classes. However, spatial features, based
on the Luma and GradHor feature maps, hold a significantly higher importance compared
to the first model, indicating that flickering mostly occurs at 30 fps for most of the videos of
the training dataset.
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Fig. 7.9 Per-classifier hyper-parameter optimization.

7.4.3 Hyper-parameter Tuning

The performance of a ML model can also be improved by optimizing the different hyper-
parameters characterizing it. Given these parameters, which are set beforehand, the training
process can learn the other model parameters from the data. For random forests classifiers,
several hyper-parameters are available to describe the forest and tree constructions, including
the number of trees, the maximum depth of a tree, the minimum number of samples required
to allow further splitting at a tree node or the minimum number of samples needed at a leaf
node.

The optimization process aims at finding the combination of hyper-parameters that gives
the best performance after training the model. This is done by exhaustively testing every
hyper-parameter combination from a list of possible values for each parameter. In this work,
only the number of trees comprised in the forest and the maximum tree depth have been
jointly optimized.

Fig. 7.9a depicts the influence of the number of trees on both RF models. For the 120fps-
FD classifier, the prediction performance becomes nearly stable above 50 trees with a max-
imum value reached at 200 trees. The performance curve is steeper for the 60fps-30fps
classifier, and begin to slowly decrease when the number of trees becomes larger than 100.
Since the aim is to use the models in a real-time application, the number of trees should be
as small as possible while maximizing the prediction score. Hence, the chosen final values
are 200 and 100 trees for the 120fps-FD and 60fps-30fps classifiers respectively.

For the depth hyper-parameter, depicted in Fig. 7.9b, the final chosen value is 7, the
one maximizing the prediction performance for both classifiers. Indeed, a decrease in per-
formance can be observed for larger than 7 maximum depth due to over-fitting the training
data. For depth values lower than 5, the performance significantly drops for the 60fps-30fps
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classifier due to the lower number of trees and more distributed feature importance.

7.4.4 Classification Results

With the final models and their associated feature sets, an in-depth analysis of the prediction
capability of the models, both individually and combined to form the overall VFR prediction
scheme, can be conducted. It is important to note that the models have been trained using a
10-fold cross-validation so that the considered performance is a combination of the results
from the validation fold of each iteration. This means that each tested sample prediction
presented in the different confusion matrices has been obtained without using the validation
sample for training. Additionally, the training set has not been shuffled, so that chunks from
a same sequence could not be in the training and validation folds at the same time, thus
avoiding a highly biased performance evaluation.

Fig. 7.10 shows the resulting confusion matrices of both RF models, individually. For the
120fps-FD classifier, error rates of 20% and 17% can be observed for the 120fps and Frame-
rate Decimation (FD) classes respectively, which represent a good performance considering
the VFR classification problem and its imperfect groundtruth. Indeed, the frontier between
annotating a sequence with a 120fps label and a 60fps label can be difficult to maintain
consistent during the processing of the 360 videos of the training set. In addition, as detailed
in Section 7.3.3, several sequences with high motion discontinuities have been separated
into shots with different labels. Since this motion change frontiers could only be determined
subjectively and not at a precise frame level, some dataset samples, i.e, 4-frame chunks,
located at these frontiers could have been annotated with incorrect labels. Therefore, the
error rate is likely to be over-estimated, leading to a visible motion artifacts rate lower than
the observed 20%. For the 60fps-30fps model, correct prediction rates are respectively 83%
and 91% for the 30fps and 60fps classes. Critical errors, defined as critical frame-rate under-
estimation, represent 9% of the 60fps class samples. This rate can be problematic since the
under-estimation with a frame-rate of 30 fps could lead to severe visible motion artifacts.
However, the same aforementioned remark concerning imperfect ground truth applies to
the training dataset of the 60fps-30fps model. The proportion of frame-rate over-estimation
errors, equal to 17%, does not impact the visual quality and is thus not as prejudicial as the
critical errors.

The overall VFR prediction scheme confusion matrix, obtained by combining the cross-
validation validation-fold predictions of both models, is depicted in Fig. 7.11. It is important
to note that only a subset of randomly chosen 120fps class samples has been used to com-
pute the overall prediction scheme confusion matrix so that the three classes have the same
number of samples. The observed performance is consistent with the individual RF model
prediction results, with good probabilities of correct prediction. The only significant change
is the 69% correct prediction rate for the 60fps class, which can be explained by the fact
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Fig. 7.10 Individual confusion matrices for a 10-fold cross-validation training of each pro-
posed classifier with their respective dataset.
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Fig. 7.11 Confusion matrix for the proposed overall prediction scheme.

that it is the intermediate class, thus sharing characteristics with the other two classes which
makes the discrimination of the class samples harder to generalize. In addition, the extreme
errors, i.e. the critical under-estimation of a 120fps sample with a 30fps predicted label or
the exact inverse, are rarely occurring with rates of 3% and 1%, respectively. This tends to
bolster the hypothesis on the ground truth being imperfect due to possibly unstable/blurry
annotation frontiers between adjacent labels. If this hypothesis is correct, the combined
prediction model should lead to VFR output video sequences visually identical to the HFR
input. However, the compression and encoding complexity gains should be slightly lower
than with ground truth labels. The next section aims at verifying this statement.
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Table 7.2 Test set sequence characteristics.

Sequence Resolution Frame-
Rate

#frames Source

bouncyball 1920x1080 120 1200
flowers 1920x1080 120 1200
library 1920x1080 120 1200
martial-arts 1920x1080 120 1200
pour 1920x1080 120 1200

BVI-HFR [164]

Katana 3840x2160 120 1200
Refuge1 3840x2160 120 1200
Refuge2 3840x2160 120 1200
Refuge3 3840x2160 120 1200
Refuge4 3840x2160 120 1200
Rowing1 3840x2160 120 1200
Rowing2 3840x2160 120 1200

b<>com

NYCBike 3840x2160 120 1553
Rugby6 3840x2160 120 1113
Rugby7 3840x2160 120 1561

Harmonic

7.5 Results and Analysis

Before analyzing the coding performance of the VFR coding scheme, the visual quality of
the output VFR video must be evaluated to assess whether the RF model frame-rate decisions
are preserving the perceptual quality compared to the HFR source video. This section first
describes the characteristics of the test set sequences and the chosen subjective evaluation
methodology. Then, the results of the subjective tests are detailed and discussed for both
uncompressed and compressed VFR videos. Finally, the coding performance of VFR coding
scheme is presented in terms of bitrate savings and complexity reduction.

7.5.1 Specific Test Datasets and Subjective Tests Motivations

A total of 15 sequences has been selected to validate the performance of the VFR model.
These sequences are unknown to the model, i.e. they have not been used during the cross-
validation training of both binary RF classifiers. Table 7.2 summarizes the characteristics of
the source sequences and Fig. 7.12 depicts the first frame of each test sequence.. The input
frame-rate is 120 fps for all test sequences and their duration ranges between 9 and 13 sec-
onds. Source content with a higher resolution than 1920x1080 pixels has been downsampled
with Lanczos3 filers [100] to ensure consistency during the subjective test.
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Fig. 7.12 Example first frames of every sequence dataset used for the subjective tests.
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Fig. 7.13 SI-TI characteristics for test sequences of the three considered sets.

The test set sequences have been selected from various sources to cover a wide range
of spatio-temporal characteristics both in terms of temporal and spatial information (SI and
TI), as recommenced in [29] and shown in Fig. 7.13. They also depict several use-cases,
including sporting events and movie-type clips, in addition to the more common natural
video content.

In order to generate the final VFR model, both RF classifiers have been retrained with
their respective whole datasets as well as their feature sets and hyper-parameters determined
via cross-validation. The prediction results for the test set are depicted in Fig. 7.14. As
can be observed, correct prediction rates reach 92%, 77% and 84% for the 30fps, 60fps
and 120fps classes, respectively, showing the capacity of the model to generalize the VFR
classification problem to unknown data. The slightly better prediction results for the test set
compared to the cross-validation predictions presented in Section 7.4.4 may be explained by
the more accurate ground truth labels obtained for the test set, thus minimizing the labeling
issue previously raised. In addition, the low amount of samples falsely predicted with a 30fps
class label should lead to a good perceptual quality of the VFR output videos, very close to
the HFR source content.

To verify this statement, a subjective test comparing the uncompressed HFR and VFR
videos has been designed. The 30fps and 60fps versions, obtained by frame decimation, have
also been introduced in the subjective evaluation to assess the interest of variable frame-rate
compared to systematic temporal downsampling in terms of perceived quality.
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Fig. 7.14 Cascaded RF model prediction performance on test set as confusion matrices.

7.5.2 Subjective Evaluation Methodology

The considered subjective evaluation aims at assessing the effect of a system, here the VFR
coding scheme, on the visual quality. For this kind of test, the ITU-R BT.500-13 recom-
mendation [28] proposes the Double Stimulus Continuous Qualisty Scale (DSCQS) method,
which consists in showing the observer pairs of videos - the un-processed source content and
the same sequence processed with the system under test - and asking the observer to rate
the quality of both sequences. The grading scale is a continuous vertical scale divided into
5 equal parts corresponding to the common 5-level ITU-R quality labels: Excellent, Good,
Fair, Poor and Bad.

For each test session, a series of video pairs is presented to the observer in a random
order, to distribute the degrees of quality impairments over the entire session. Each pair of
videos is internally random, i.e. the observer is not aware of the position of the reference
un-processed video (A or B), which is presented twice, successively. Fig. 7.15 depicts the
structure of a BTC presenting a pair of videos to assess. As can be observed, each BTC
begins with a 2-second message indicating the id number of the current test point and ends
with a message asking to vote. In addition, each display of a 10-second sequence is preceded
by a 1-second message indicating if the following video is A or B on the answer sheet,
making the total duration of a BTC equal to 50 seconds.

A total number of 10 sequences have been selected within the test set for the subjective
test, as indicated in Fig. 7.13. The sequence set has been formed to cover a wide range
of spatio-temporal characteristics and content types. For each sequence, 4 frame-rate pairs
have been evaluated by the observers: 120fps vs 120fps, 120fps vs VFR, 120fps vs 60fps and
120fps vs 30fps. Therefore, a total of 40 BTCs were presented to each observer, randomly
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Fig. 7.15 Subjective test BTC presentation structure for DSCQS evaluation method.
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Fig. 7.16 Frame-rate decisions of the VFR algorithm for test set sequences.

divided into two 20-minute sessions separated by a 10-minute break. VFR video sequences
have been obtained using the predicted frame-rates resulting from the proposed VFR model.
Fig. 7.16 depicts the evolution of frame-rate decisions over the duration of each sequence of
the subjective evaluation test set. As can be observed, the predicted frame-rates are highly
dependent on the test sequence, as expected considering the wide range of spatial and tem-
poral information characteristics for the selected sequence set. In addition, the predicted
frame-rates also vary over-time for most of the test sequences, demonstrating the interest of
the 4-frame level of granularity proposed for frame-rate decisions.

The test was conducted in a controlled laboratory environment, with a viewing distance
fixed to 3 times the screen height. A 65-inch LG OLED B6 display with HFR capabilities
and peak luminance of 340 cd/m2 has been used for both subjective tests. During the whole
duration of the tests, all internal post-processing were disabled to avoid any impact on the
perceived quality. Each test sequence in raw format (YUV 4:2:0 and 8-bit precision) has
been encoded using the libx265 encoder at 100 Mbps in order to be presented to the TV
set via USB3 interface. Special care has been taken to ensure that the encoding needed for
display did not introduce any ‘coding’ artifacts. A total of 19 participants took part in the
subjective test. They were aged between 20 and 53 with (corrected-to) normal vision acuity
and color vision. A post-screening analysis of the results has been carried out, according
to the method described in ITU-R Rec. BT.500-13, to detect and reject the outliers before
computing the MOS and Differential Mean Opinion Score (DMOS) values.
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7.5.3 Subjective Visual Quality Results

Fig. 7.17 shows the results of the subjective test carried out to demonstrate the interest of
variable frame-rate and evaluate the perceived quality of the proposed VFR model output.
For each sequence of the test set previously presented, the DMOS values, computed using
Equation (7.9), of each tested frame-rate are depicted together with their associated 95%
Confidence Intervals (CIs). Since none of the participants were flagged as outliers after the
post-screening analysis, the presented DMOS values have been obtained using the results
from the 19 participants.

DMOS f (s) = 100− 1
N
×

N

∑
n=1

Sn,120 f ps(s)−Sn, f (s), (7.9)

with N the total number of valid participants, N = 19 in this test, DMOS f (i) the DMOS
value for sequence s at the tested frame-rate f , f ∈ {120 f ps,V FR, 60 f ps, 30 f ps}. The pair
(Sn,120 f ps(s),Sn, f (s)) represents the scores attributed to sequence s at respectively the hidden
reference 120fps frame-rate and tested frame-rate f , i.e. both videos of a given BTC, by the
nth participant, n ∈ {1, ..,N}.

The first statement that can be made by analyzing the results of the subjective test is
that, as previously stated, the benefit brought by a frame-rate of 120 images per second com-
pared to lower frame-rates is highly content-dependent. Indeed, for the sequences Rugby7,
library and Rugby6, there is a significant difference between the DMOS values associated to
the 120fps frame-rate and those of the 60fps and 30fps frame-rates. The same trend can be
observed for the bouncyball, Rowing2 and martials_arts sequences. However, for these se-
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quences, the CIs of the 120fps and 60fps DMOS are overlapping, thus a significant difference
between the perceived quality of the two frame-rates cannot be confidently guaranteed for
these sequences. For other sequences, namely Refuge1, Refuge4 and flowers, the perceived
quality of the 120fps and 60fps seem equivalent, with similar DMOS and highly overlapping
CIs. Finally, the sequence Rowing1 shows no difference even with a frame decimation down
to 30fps.

Comparing the perceived qualities of the VFR model outputs with their source HFR
120 fps counterpart, the DMOS values of both configurations appear to be equivalent for
every sequence. This trend highlights the interest of variable frame-rate with its capacity
to adapt to the quantity of movement possibly varying over time. For instance, the library
sequence opens on a camera panning with a gradually slowing speed which then stops at
the middle of the sequence on a stationary top spinning at high speed. The first part of the
video requires 120 fps to correctly portray the camera panning, while lower frame-rates can
be used without introducing artifacts as the speed of the camera gradually drops. For this
sequence, participants attributed significantly lower scores to the 60fps and 30fps frame-rates
due to the important motion artifacts present in the first part of the video at these frame-rates.
On the contrary, the VFR model correctly lowers the frame-rate when the content permits it,
resulting in a score identical to the one attributed to the source HFR video. However, despite
highly correlated DMOS values and overlapping CIs, there is still a chance that the perceived
qualities of the compared frame-rates are actually different.

To confirm these observations and confidently state that the VFR model output perceived
quality is the same as for the source HFR content, a more rigorous analysis can be per-
formed using a two-sample unequal variance Student’s t-test with a two-tailed distribution
(also called Welsch’s t-test). This test allows to determine if indeed the perceived qualities
given by the MOS values of each pair of tested frame-rates are “significantly” different or
not. In this case, the null hypothesis, H0, would be that the tested frame-rate ftest has the
same perceived quality as the considered reference frame-rate fre f . The alternate hypothe-
sis, Ha, would be that there is a difference between the perceived qualities of ftest and fre f .
In order to test the similarity for each possible pair of frame-rates, the possible values for
both frame-rates are: ftest ∈ {V FR, 60 f ps, 30 f ps} and fre f ∈ {120 f ps,V FR, 60 f ps}.

First, considering the sample populations from the scores attributed to a sequence s at
the two frame-rates ftest and fre f being compared, the t-statistic t ftest , fre f (s) can be used,
expressed as follows

t ftest , fre f (s) =
S ftest (s)−S fre f (s)√√√√σ2

ftest
(s)

N ftest

+
σ2

fre f
(s)

N fre f

, (7.10)

with S fi(s), σ2
fi(s), N fi the sample mean, sample variance and sample population size for
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frame-rate fi, i ∈ {test, re f}. In this test, N ftest = N fre f = N, the number of observers that
took part in the subjective test.

Then, by approximating the t-statistic with a Student’s t-distribution, a value p, which
indicates the degree of correlation between the means of the two sample populations, can be
computed from the t-statistic. The higher the p-value is, the more significant the similarity
between the distributions of the two populations is. A p-value lower than 0.05 indicates
that there is statistical significance that the tested frame-rate ftest has a different perceived
quality compared to the considered reference frame-rate fre f . Indeed, in this case, there is
a low probability of committing a type-I error, i.e. rejecting the null hypothesis when it is
true, meaning that the null hypothesis can be confidently rejected. On the contrary, if the
p-value is greater than or equal to 0.05, the null hypothesis cannot be safely rejected and
both frame-rates can be considered to have the same perceived quality.

Finally, the p-value does not give information on the probability of committing a type-II
error, i.e. a failure to reject the null hypothesis when the alternate hypothesis is true, which
is thus still a possibility. To ensure a low type-II error probability, and thus a statistically
powerful test, the power β of the statistical test [193] must be lower than 0.2. The power
β has been computed for each possible pair of tested and reference frame-rates, resulting
in an average β value of 0.044, showing that there is a lower than 5% chance, on average,
to commit a type-II error. Therefore, the similarity assessment for each pair of possible
frame-rates can be only based on the p-values resulting from the Student’s t-test.

Fig. 7.18 depicts the p-values computed for each sequence and each possible frame-rate
combination. Green-colored cells show the frame-rate pairs for which the associated p-value
is greater than 0.05. Since every VFR vs 120fps comparison falls within this category, it
can be confidently concluded than the perceived quality of the VFR model output video is
always the same as the original 120 fps frame-rate. This confirms that the under-estimated
frame-rate predictions, identified in the confusion matrix depicted in Fig. 7.14, do not impact
the perceived quality of the VFR videos. This also tends to validate the hypothesis made
while analyzing training errors, stating that the ground truth is imperfect due to the coarse-
grained nature of the ground truth annotations. Indeed, with its fine-grained decisions, the
VFR model is capable of capturing smaller variations of critical frame-rates, thus resulting
in predictions different from the ground truth, which are identified as prediction errors.

7.5.4 Compression Efficiency and Complexity Reduction

In order to evaluate the impact of VFR on coding performance, both the source HFR videos
and VFR model outputs have been encoded using the HEVC reference software encoder
HM16.12 [41]. The encoder was configured to use the HEVC CTC in RA configuration
with a GOP size of 16 pictures and an intra-period of approximately 1 second to match
with the considered broadcasting use-case. The quantization parameter was set to QP =
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Fig. 7.18 p-value probabilities resulting from two-sample unequal variance bilateral Stu-
dent’s t-test on MOS values for each pair of tested frame-rates and each test set sequence.
p≥ 0.05 (green) means there is no significant difference between the MOS value of the row
and column frame-rate labels while p < 0.05 (red) indicates that the MOS value of the row
frame-rate label is significantly lower than the MOS value of the column frame-rate label.

{22,27,32,37} to cover a wide range of bitrates and applications.

For the VFR encodings, the reference software encoder has been modified to handle
the list of 4-frame chunk-level frame-rates decisions as input. Fig. 7.19 depicts the GOP
structures for both the 120fps and VFR encodings. As can be seen, only the frames kept by
the VFR model are processed by the encoder, allowing for a lower resulting bitrate and a
reduced coding complexity. Thanks to the built-in support of temporal scalability, removing
the frames from upper TLs does not break the decoding dependencies, making the VFR
bitstream decodable by the reference software decoder without modifications.

The bitrate savings presented in this performance evaluation assume that, with the same
QP, the perceived quality of the VFR decoded video is the same as the decoded original
120fps video, as was demonstrated for the VFR and 120fps uncompressed inputs. Indeed, the
frames decoded from the VFR bitstream are exactly the same as their corresponding picture
in the 120fps decoded video due to the use of identical GOP structures. This statement
has been verified by video coding experts during a viewing session comparing the decoded
videos of both systems, showing that the VFR decisions made on the uncompressed content
are still valid, and thus do not introduce additional artifacts after encoding and decoding.

Table 7.3 summarizes the performance results for the VFR encodings compared to reg-
ular 120fps HEVC encodings, in terms of both bitrate savings and encoding complexity
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Fig. 7.19 Example of GOP structures of size 16 for a) source HFR 120 fps content and b)
VFR with different frame-rates for each 4-frame chunk.

reduction for the 15 sequences of the objective evaluation test set. The proportion of frames
dropped by the VFR coding scheme are also added for information. Results for both the VFR
model and ground truth decisions are presented to compare the performance at two different
levels of granularity.

With the VFR model decisions, the VFR coding scheme offers 4.3% bitrate savings on
average, ranging from 0% to 15.4% for sequences where 120 and 30 frames per second
are chosen for the whole sequence, respectively. For sequences with mostly 60fps chosen
or with temporally varying decisions, the bitrate savings are generally around 4%. These
bitrate savings are not equal to the proportion of frames dropped by the VFR model due
to the significantly lower amount of bits used to encode the frames of the upper TLs. In-
deed, upper TL frames are coded using higher quantization steps and greatly benefit from
the inter-picture predictions of the RA coding configuration. Thus, the amount of transmitted
quantized residuals is lower for these frames, especially if the motion is easily predictable
and if high spatial details are not present in the source content. For the complexity reduction
brought by the VFR coding scheme, the results are close to the amount of frames dropped,



154 Variable Frame-Rate

Table 7.3 VFR HEVC encoding performance compared to 120fps HEVC encodings for VFR
predicted labels (Model) and ground truth (G-T) labels on the test set.

Sequence
Bitrate savings

Encoding Frames Decoding
T R% Dropped T R%

Model G-T Model G-T Model G-T Model G-T

Refuge1 -1.1 % -4.9 % 7.8 % 39 % 10 % 50 % 8.4 % 42 %
Rowing1 -9.3 % -9.3 % 60 % 60 % 75 % 75 % 58 % 58%
Rugby7 -0.1 % 0.0 % 0.6 % 0.0 % 0.9 % 0.0 % 0.6 % 0.0 %
library -5.0 % -4.8 % 39 % 37 % 42 % 41 % 35 % 33 %
bouncyball -2.5 % 0.0 % 6.7 % 0.0 % 8.7 % 0.0 % 7.4 % 0.0 %
Refuge4 -3.2 % -3.5 % 47 % 49 % 52 % 55 % 46 % 48 %
Rowing2 -0.6 % -0.4 % 6.1 % 5.4 % 9.7 % 8.7 % 6.4 % 5.6 %
Rugby6 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %
flowers -4.1 % -4.1 % 41 % 40 % 50 % 50 % 37 % 37 %
martial_arts -4.0 % -0.5 % 23 % 5.9 % 28 % 7.6 % 24 % 5.7 %
Katana -5.9 % -1.2 % 35 % 11 % 38 % 13 % 34 % 11 %
NYCBike -6.2 % -5.6 % 27 % 25 % 32 % 29 % 25 % 23 %
pour -1.6 % -1.6 % 11 % 11 % 16 % 15 % 11 % 11 %
Refuge2 -15 % -14.6 % 70 % 68 % 74 % 71 % 66 % 63 %
Refuge3 -5.8 % -5.6 % 53 % 52 % 58 % 56 % 52 % 50 %

Average -4.3 % -3.7 % 28 % 27 % 33 % 32 % 27 % 26 %

with an average encoding complexity reduction of 28%, ranging from 0% to 70%. The per-
sequence results follows the same trend as for bitrate savings but with higher gain variations.
The difference between the complexity reduction and frames dropped results mainly comes
from the slightly reduced coding complexity of the upper TL frames compared to the kept
frames of the lower TLs. Indeed, a higher number of residual coefficient to binarize and
process with the entropy coding engine increases the encoding time. For the decoding com-
plexity, the observed gains are highly similar to those observed for the encoding side, with
an average decoding complexity reduction of 27.4% for the VFR coding scheme.

With the ground truth annotated frame-rates, the bitrate savings and complexity reduc-
tion results are very close to the performance with the predicted frame-rates. This can be
explained by the high correct prediction rate of the VFR model on the test set. The results
are only significantly different for some sequences. Refuge1 shows lower gains for the VFR
model output due to the over-estimation of the required frame-rate, i.e. alternation between
120fps and 60fps prediction while the annotated ground truth frame-rate is 60fps for the
major part of the sequence. The opposite situation can be observed for the sequences boun-
cyball, martial_arts and Katana, where the VFR model allows for lower frame-rates more
frequently than the ground truth, thus resulting in higher gains.
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7.6 Real-time VFR Demonstration

The proposed VFR RF-based model has been implemented and integrated into the demon-
stration pipeline depicted in Fig. 7.20. This pipeline aims at demonstrating that the VFR
model can process HD HFR video streams in real-time while delivering an output quality
visually equivalent to the source HFR content but with less processed frames.

The input HD HFR video stream, in raw YUV 4:2:0 8-bit format, is fed to three different
processes: the VFR Model, a Frame Decimation process and a first HFR-capable screen,
called HFR Display A, directly displaying the source HFR content.

The VFR Model implementation is composed of several separate processes. The HFR
stream is first fed the Feature Extraction responsible for generating the feature set vector of
each input frame. An external Ffmpeg x264 Encoder [194] is used in parallel in ultrafast
configuration to generate the MVs required by the Feature Extraction process. This x264
encoding is only used as a motion estimation algorithm as only the MVs are subsequently
used, during the temporal feature extraction process, by the VFR model. It has been chosen
for its very low computational demand and fast implementation while delivering a good
enough motion field. It is important to note that the VFR prediction results presented in this
chapter have been obtained using the proposed RF classifiers trained with the MVs resulting
from the same x264 encoding process. Once the feature set of each frame of the current
4-frame chunk are available, the Frame-Rate Selection process, i.e. the proposed cascaded
binary RF classifiers, are used to predict the critical frame-rate.

The Frame Decimation process generates the VFR video from the input HFR stream and
the frame-rate instruction given by the Frame-Rate Selection process. Each 4-frame chunk
is processed as soon as its associated frame-rate decision is available. A Frame Repetition
process is added to format the VFR stream into a regular HFR stream by copying the previous
kept frame each time a frame is dropped by the VFR model. Thus, the video displayed on
the second HFR-capable screen, HFR Display B, is kept at a constant frame-rate. This aims
to mirror the behavior of conventional decoders that would copy the last decoded frame if
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the one expected at a given time-stamp, derived from the given 120 fps frame-rate, is not
available. Both the software video players used to feed the HFR displays are synchronized
to demonstrate the identical perceived quality between the legacy HFR content and its VFR
counterpart.

The display used for the demo are the same as for the expert database annotation view-
ing sessions, i.e. two identical Asus RoG Swift PG278Q (27" TN panel, QHD resolution,
144Hz max refresh rate, 350 cd/m2 peak luminance, 1000:1 contrast ratio). Both displays
are interfaced with a DisplayPort cable to the graphic card of the computer running all the
pipeline processes in parallel and in real-time. The computer configuration used for this real-
time demonstration is as follows: Intel i7-4930K, 3.4 GHz, 16GB RAM and Nvidia GeForce
GTX 1060 6GB GPU card.

7.7 Conclusion

In this chapter, a new variable frame-rate coding scheme is proposed for broadcast delivery
of HFR (120 fps) contents. The proposed scheme incorporates a machine learning based
VFR model capable of dynamically adapting the frame-rate of the video before encoding
and transmitting it to the end receiver.

The VFR model relies on several spatio-temporal features extracted from each frame of
the input video to predict the optimal lowest artifact-free frame-rate through two cascaded bi-
nary RF trained classifiers. The considered frame-rate adaptation is performed dynamically
by choosing for each chunk of 4 consecutive input frames its associated critical frame-rate,
among the three possible values: 30fps, 60fps or 120fps. The model achieves an average criti-
cal frame-rate correct prediction rate of 84%, while keeping the frame-rate under-estimations
error rate below 8%. The visual quality of the generated VFR videos has been carefully eval-
uated through formal subjective tests showing an identical perceived quality compared to the
source HFR content.

From a coding performance perspective, the proposed VFR coding scheme provides av-
erage bitrate savings of 4.3% in addition to average complexity reductions of 28% and 27.4%
at the encoding and decoding sides, respectively.

A real-time demonstration of the uncompressed VFR video generation, shown at both the
International Broadcasting Convention (IBC) 2019 and National Association of Broadcasters
(NAB) Show 2019, is also proposed. It includes a real-time software implementation of
the VFR prediction model running in parallel with two software raw video players each
feeding an HFR screen. Both the input legacy HFR and processed VFR videos are displayed
synchronously to demonstrate the equivalence in perceived quality.

The proposed solution is a practical candidate to lower the requirements for the broadcast
delivery of the upcoming HFR services of the DVB UHD second deployment phase.



Chapter 8

Locally Adaptive Spatio-Temporal
Resolution

As demonstrated in Chapters 5 and 6, the spatial resolution can be locally changed based on
the video content to achieve an efficient scalable encoding of UHD video clips, both in terms
of coding efficiency and processing time. On another hand, it has been shown in Chapter 7
that, depending on the content of the video, the frame-rate can also be dynamically lowered
to achieve an efficient coding of HFR contents without impacting the perceived quality.

Both these approaches have been developed independently, each showing a significant
reduction in encoding complexity and an interesting coding efficiency. This chapter aims at
combining the ASR-based scalable encoder and the VFR model to propose a low-complexity
scalable coding scheme based on Locally Adaptive Spatio-Temporal Resolution (LASTR).

This chapter is organized as follows. The proposed scalable coding scheme combining
the different algorithms proposed in this thesis is first described in Section 8.1. Then, the pre-
liminary performance evaluation of the proposed solution compared to SHVC is presented
in Section 8.2. Finally, Section 8.3 concludes this chapter.

8.1 Description of the Technique

Since the VFR model has been designed as an entirely pre-processing tool, the combination
with the ASR-based dual-layer scalable encoder is straightforward. Indeed, the proposed
LASTR scalable coding simply uses these two methods sequentially, with the VFR analysis
performed before the ASR-based scalable encoding.

The detailed block diagram of the proposed solution is depicted in Fig. 8.1. As can be
observed, the frame-rate selection process of the VFR model is performed on the spatially
downsampled input video. By doing this, the input to the VFR model has the same HD HFR
format as the content used to train the model. As soon as the frame-rate of a 4-frame chunk
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Fig. 8.1 Block diagram of the LASTR-based scalable encoder combining the VFR Model
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is available, both the input UHD HFR and its spatially downsampled version are temporally
downsampled to the chosen frame-rate to respectively serve as VFR inputs to the ASR-based
EL encoder and HEVC BL encoder.

Due to the RA configuration used, and its inherent out-of-order coding of the video
frames, there is a small latency introduced before the scalable encoding process can be per-
formed. Indeed, all images of a GOP must be available to begin the encoding process, thus
inducing a 16-frame (4 chunks) latency. Since the ASR-based encoder follows the same GOP
structure and decoding dependencies as HEVC, the VFR encoding of the EL is enabled in the
same way as for HEVC, as described in Section 7.5.4. After decoding, the decoded video of
the selected layer is temporally upsampled to 120 fps before being sent to the display device.

8.2 Performance Evaluation

Due to the highly limited amount of video content available in UHD HFR format, the per-
formance of the proposed solution has only been evaluated on a small video dataset. Three
videos of the test set presented in Section 7.5.1, namely Rowing1, Rowing2 and Refuge4 have
been used in their UHD version. The spatio-temporal characteristics of these sequences, for
their HD version, are shown in Fig. 7.13. Although these values slightly vary for the UHD
resolution, the distribution in the SI-TI space remains similar. One of the sequences used for
training, YachtRide has also been used to complete the performance evaluation dataset. This
sequence contains an horizontal camera panning following a moving boat. It thus contains
fairly high motion with a moderate amount of spatial details.

Even with this limited number of test sequences, a good insight on the performance of the
LASTR-based scalable coding scheme should be obtained since the frame-rate labels chosen
by the VFR model for these sequences reflect quite well the critical frame-rate distribution
expected for broadcast and streaming use-cases. Indeed, Rowing2 and YachtRide have the
120fps label attributed to the vast majority of their chunks, while Refuge4 and Rowing1 have
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Table 8.1 Performance comparison between the ASR-based, LASTR-based and SHVC en-
coders for 2x spatial scalability in RA configuration.

(a) BD-Rate for equal PSNR-YUV

Sequence
LASTR

vs
SHVC

LASTR
vs

ASR

ASR
vs

SHVC

YachtRide -5.58 % 0.0 % -5.58 %
Rowing1 3.88 % -20.8 % 31.4 %
Rowing2 0.35 % -1.29 % 1.7 %
Refuge4 -16.2 % -3.09 % -13.5 %

Average -3.52 % -7.17 % 3.49 %

(b) Encoding Time Reduction - T R% - (EL+BL)

Sequence
LASTR

vs
SHVC

LASTR
vs

ASR

ASR
vs

SHVC

YachtRide 74.7 % 0.0 % 74.7 %
Rowing1 91.3 % 65.1 % 75.2 %
Rowing2 76.6 % 7.16 % 74.8 %
Refuge4 87.8 % 45.3 % 76.9 %

Average 82.5 % 29.4 % 75.4 %

majority frame-rate labels of 60fps and 30fps, respectively.

Table 8.1a summarizes the coding performance results for the proposed LASTR-based
scalable encoder and SHVC. The comparison with the ASR-based encoder is also shown
to assess the impact of the VFR solution in a scalable context. As can be observed, the
LASTR-based solution achieves 3.5% average bitrate savings compared to SHVC, while the
ASR-based solution shows a bitrate overhead of 3.5% compared to SHVC for this dataset.

As expected form the analysis of the results the ASR and VFR schemes respectively
presented in Sections 6.2.3 and 7.5.4, the coding efficiency is content-dependent. Indeed, a
high coding gain is obtained for the Refuge4 test sequence, which mainly comes from the
ASR scheme due to the easily recovered spatial details through the upsampling of the BL.
For the YachtRide sequence, since a 120fps frame-rate is chosen for the whole sequence by
the VFR model, the observed bitrate savings only come from the better coding efficiency of
the ASR-based encoder for such sequences with a moderate amount of spatial details which
can be well recovered by the internal upsampling process.

For the remaining two sequences, the LASTR scheme shows a bitrate overhead compared
to SHVC. This is especially the case for the Rowing1 sequence which contains a consider-
able amount of very high spatial details in the water, thus leading to a poor performance of
the ASR-based scalable encoder - 31.4% losses compared to SHVC. However, this bitrate
overhead is almost entirely compensated by the coding gain achieved by the VFR model for
this sequence due to the choice of a 30fps frame-rate for the whole sequence. It is important
to note that the Rowing1 test sequence is an unusually critical sequence for video coding with
its very high spatial details that temporally vary, in an unpredictable manner, which can ex-
plain the poor performance of the ASR-IP-MD. Indeed, for another sequence with very high
spatio-temporal details, such as Rowing2, the ASR-IP-MD algorithm only shows reasonable
losses compared to SHVC.
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Fig. 8.2 Rate-Distortion curves for the proposed LASTR-based scalable encoder compared
to the ASR-based encoder and SHVC (BL and EL in RA configuration).

Overall, the VFR model results in average bitrate savings of 7% when added before the
ASR-based scalable encoder, with the per-sequence performance directly depending on the
proportion of frames removed when lowering the frame-rate, which is consistent with the
results obtained in Section 7.5.4. The rate-distortion curves depicted in Fig. 8.2 confirm this
analysis.

Concerning the complexity reduction brought by the proposed solution, the obtained
encoding time reduction measures are summarized in Table 8.1b. As can be seen, the average
encoding time reduction achieved by the LASTR-based scalable coding scheme, for the
complete encoder (BL + EL), compared to SHVC reaches 82.5%. This gain comes from
both the ASR scheme, with its 75% complexity reduction constant over all sequences, and
the VFR model, with its average 29% encoding time reduction. The per-sequence gains
mainly depend on the VFR model frame-rate decisions, with an encoding time reduction as
high as 91.3% for the Rowing1 coded with a frame-rate lowered to 30fps.

8.3 Conclusion

In this chapter, the LASTR algorithm, a complete low-complexity scalable coding scheme
based on the local adaptation of both the spatial and temporal resolutions has been proposed.
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To this end, the ASR-based scalable coding scheme, presented in Chapters 5 and 6, is coupled
to the VFR model, described in Chapter 7, performed prior to encoding.

The proposed LASTR solution leverages the advantages of adapting the spatial resolution
for the scalable coding of UHD contents and the benefits of dynamically lowering the frame-
rate for an efficient coding of HFR videos, with the goal of achieving further improvements
in terms of coding efficiency and complexity reduction compared to the previously proposed
algorithms.

The preliminary evaluation shows that the proposed LASTR coding scheme achieves
3.5% bitrate savings compared to SHVC, thus outperforming the ASR-based scalable scheme
by 7% in terms of resulting bitrate for an equal PSNR-YUV value. In addition, the complex-
ity is further reduced compared to the ASR-based encoder, with an average encoding time
reduction of 82.5% over SHVC, with both the BL and EL encoders taken into account.

The proposed solution thus appear to significantly outperform the state-of-the-art scalable
SHVC encoder in terms of both coding efficiency and encoding complexity. The LASTR-
based scalable coding scheme thus appears to be an efficient solution for the deployment of
UHDTV-compliant services necessitating the coding of UHD HFR video contents.

However, due to the limited amount of UHD HFR available to evaluate the performance
of the LASTR scalable coding scheme, all kinds of video contents have not been tested in
the preliminary performance evaluation carried out in this chapter. To confirm the observed
performance gains, the LASTR scalable coding scheme should thus be further evaluated on a
larger dataset to cover a more fine-grained scale of spatio-temporal characteristics. This will
be made possible in the upcoming months with the arrival of UHD HFR display devices in
the consumer market, which will surely increase the availability of such UHD HFR contents.
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Chapter 9

Conclusion

Due to the numerous improvements of the video signal characteristics defined in the UHDTV
standard, the deployment of UHDTV compliant services remains a challenging task for the
broadcasting industry and OTT service providers. Indeed, the introduction of technologies
such as 4K and beyond, HFR, HDR and WCG in the encoding pipeline considerably enlarges
the amount of data to process. The already very high computational demand of state-of-the-
art video codecs is thus further increased, especially for scalable use-cases.

The objective of this thesis was thus to investigate lightweight scalable encoding ap-
proaches based on the adaptation of the spatial and temporal resolutions, either through
pre-processing algorithms or coding tools implemented inside end-to-end codecs. The fi-
nal goal was to propose a low-complexity scalable method capable of efficiently encoding
4K HFR contents while providing a backward compatibility for existing HDTV compliant
infrastructures. Section 9.1 summarizes the main contributions of this thesis and Section 9.2
addresses future works through straightforward and more long-term potential improvements
and extensions of the proposed solutions.

9.1 Achieved Work

The contributions of this thesis are organized into three parts. The first one focused on the
design of pre- and post-processing tools to achieve spatial scalability with little complexity
overhead. To this end, two different signal decompositions performed prior to encoding have
been proposed.

First, a low-complexity scalable coding scheme, based on an improved polyphase-based
decomposition followed by a regular HEVC encoding process, has been proposed. The state-
of-the-art polyphase decomposition allows for a decomposition of each video frame into four
sub-resolution images, which can then be used to achieve spatial scalability with the built-in
decoding properties of the HEVC GOP structure. However, the polyphase decomposition
contains inherent flaws, such as the introduction of a phase shift difference between the luma
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and chroma pixel of each sub-resolution image. A filtering process has thus been proposed
to compensate this shift and thus obtain better inter-picture prediction of the chroma pixels.
The proposed solution offered average bitrate savings of 3.6% compared to the state-of-the-
art polyphase decomposition, leading to a lowered bitrate overhead of 6.6% compared to
SHVC while reducing the coding complexity by 55%. This work has been presented during
the 2018 IEEE Data Compression Conference (DCC) [195].

Then, a wavelet-based decomposition has been designed to replace the polyphase-based
decomposition in the proposed low-complexity scalable coding scheme, aiming at avoiding
the aliasing introduced by the polyphase decomposition. A modification to the conventional
wavelet transform was proposed to enable the use of both the wavelet transformed signal and
the HEVC GOP properties to achieve spatial scalability. Several integer-to-integer wavelet
transforms have been considered, with a proposed modification of the R-D cost computa-
tion based on the wavelet sub-band type for bi-orthogonal wavelets. Experimental results
showed that the simple orthogonal Haar wavelet achieved the best results, with an average
bitrate overhead of 1.9% compared to SHVC with a complexity reduction of 54%, thus out-
performing the previously proposed improved polyphase decomposition. This work has been
presented in the Picture Coding Symposium (PCS) in 2018 [196].

The second part of this thesis addressed the design of a more conventional dual-layer
scalable architecture using an HEVC encoder in the BL for backward compatibility and a
proposed low-complexity encoder based on several novel algorithms for the EL.

First, the ASR-IL algorithm, based on the local adaptation of the spatial resolution for
inter-layer predictions has been designed. It consists in enabling a R-D optimized and
content-based selection of the spatial resolution for each block of the EL, which is then
used for the inter-layer prediction stage and remaining core encoding processes. Experimen-
tal results showed that the proposed dual-layer architecture achieved a complexity reduction
of 72% compared to SHVC for a bitrate overhead of 4.8%.

Then, two improvements to the ASR-IL scalable coding scheme are proposed. The first
solution, called ASR-IL-MD, has been proposed to reduce the signaling cost of the ASR-IL
algorithm using a prediction scheme for the block-level optimal resolution. This resolution
mode prediction algorithm has been designed to reuse the MVs of the BL when motion
compensation was used by the BL encoder to predict the co-located BL block. After an
appropriate scaling of the MVs, the resolution of the EL blocks can be predicted from pre-
viously encoded EL frames through a proposed resolution derivation process. Experimental
results showed that the proposed solution enabled an average bitrate overhead of 0.5% com-
pared to SHVC, with the same prediction constraints, for complexity reductions of 96% and
47% for the EL encoder and dual-layer encoder, respectively. This work has been presented
at the 2019 International Conference on Image Processing (ICIP) [197] and protected by
patent [198]. The second improvement, called ASR-IP-MD, has been proposed to enable
inter-picture predictions in the EL encoder. Coupled with the resolution mode derivation
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scheme, this solution allows for an efficient support of the commonly used, in broadcast
and streaming use-cases, RA configuration. Experimental results showed that the complex-
ity reductions are further improved for both the EL encoder and overall dual-layer scheme
with respectively 97.8% and 78.6% average gains. In addition, the proposed ASR-IP-MD
solution achieved average bitrate savings of 1.3% compared to SHVC, despite some losses
observed in the chroma channels of several test sequences.

The last part of this dissertation investigated the spatio-temporal resolution adaptation to
propose a complete low-complexity scalable coding scheme.

First, a variable frame rate solution has been designed to locally detect the critical frame-
rate, i.e. the lowest frame-rate that does not introduce motion artifacts. Based on a ML
algorithm trained on a proposed large dataset of annotated HFR videos, the VFR model is
capable of dynamically changing the frame-rate, among 3 possible values, for each chunk of
4 frames. Subjective tests demonstrated that the VFR model output was visually identical
to the source HFR contents and experimental results showed that average bitrate savings of
4.3% and complexity reduction of 28% could be achieved using VFR videos instead of their
original HFR counterparts. This work, protected by patent [199], is currently under review
for a publication in the IEEE Transactions on Broadcasting journal. The real-time demon-
stration of this work has also been presented in two international industrial conventions, the
NAB Show 2019 and IBC 2019.

Then, the LASTR solution has been proposed to locally adapt both the spatial and tem-
poral resolutions in order to achieve a lightweight scalable encoding of UHD HFR contents.
This solution is based on the combination of the critical frame-rate detection offered by the
VFR model with the ASR-IP-MD scalable coding scheme. Preliminary experimental re-
sults showed that average bitrate savings of 3.5% can be achieved while reducing the overall
dual-layer scalable scheme encoding time by 82.5% compared to the state-of-the-art SHVC
encoder, thus outperforming by a significant margin state-of-the-art SHVC complexity re-
duction algorithms.

To summarize, three main contributions were proposed in this thesis. The first one is
based on pre-processing tools to achieve low-complexity scalable coding with a single HEVC
encoder instance. The second contribution investigated a dual-layer scalable coding scheme
using a low-complexity encoder based on adaptive spatial resolution for the enhancement
layer while ensuring backward compatibility through the HEVC base layer. Finally, the
third contribution of this thesis focused on the spatio-temporal resolution adaptation with
the design of a variable frame-rate algorithm performed prior to encoding combined with
the previously proposed scalable encoder. Through these contributions, the deployment of
scalable coding services compliant to the upcoming UHDTV standard could be considerably
eased, thanks to low computational demand of the proposed solutions. Furthermore, this
work led to several publications and patents, listed in Appendix A.
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9.2 Prospects and Future Works

The contributions presented in this dissertation opens opportunities for future works on low-
complexity scalable coding. This section presents the proposed research directions and
prospects.

9.2.1 Exploitation

Open-source implementations of the HEVC/SHVC standards, such as the Kvazaar encoder [200]
and the openHEVC decoder [201], could be used to implement the proposed solutions in
real-time encoders/decoders. This would allow for an increased coding performance and
potentially enable the real-time processing of additional new emerging formats compliant
with the UHDTV standard. In addition, real-time implementations of the proposed solutions
would ease their deployment by industrial broadcasters and OTT service providers.

9.2.2 Performance Improvement

Several contributions presented in this document could achieve a better performance by im-
proving certain processes of the proposed scalable schemes.

First, the ASR-IP-MD dual-layer scalable encoder presented in Chapters 5 and 6 rely on a
straightforward EL block partitioning process derived from the BL decisions to greatly limit
the computational demand of the proposed EL encoder. By enabling a limited search space
for optimal partitioning around the block size derived from the BL CU depth, the coding
efficiency could be significantly increased thanks to a better adaptation to the EL content. To
keep a low-complexity constraint, this improved EL partitioning could be inferred using ML
approaches as in [202]. Additionally, other HEVC features that have not been integrated in
the proposed encoder, such as a deblocking filter or other loop filters. This would potentially
significantly increase the output perceived quality for a reasonable complexity overhead.
Besides, the performance of the proposed should be further evaluated with perceptual video
quality metrics, such as VMAF or SSIM, and more importantly through formal subjective
tests.

Then, the complexity reduction of the proposed ASR-IP-MD encoder could also be in-
creased by replacing the R-D optimized selection of the spatial resolution by a ML-based
prediction of the R-D optimal resolution. Indeed, by using the BL and EL input pixels as
well as the decisions from previously encoded neighboring EL blocks, a RF regressor could
be trained to predict the R-D cost of each possible spatial resolution, thus avoiding the costly
RDO stage. Furthermore, if the regression model accuracy can achieve good accuracy with-
out the EL block pixel as input, the process could be reproduced at the decoder side, which
would remove the need to signal the chosen resolution, thus further improving the coding
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efficiency.
In addition, if such a resolution prediction is implemented, the kernel-based upsampling

process used in the ASR could be replaced by learned SR algorithms, for example using
shallow CNNs. This would considerably lower the inter-layer prediction residuals as well
as significantly improved the reconstruction quality of the EL output, especially for blocks
coded in one of the lower resolutions. However, this solution would most likely only be
viable for devices equipped with specific hardware, such as GPUs.

On another hand, for the VFR model presented in Chapter 7, a possible improvement of
the algorithm would be to train it with the labels annotated based on the compressed ver-
sions of the HFR dataset, at several compression ratios. By doing this, the frame-rate could
potentially be lowered more often due to the loss of spatial details induced by the encod-
ing process, thus lowering the possible flickering artifacts at lower frame-rates. This would
require a considerable time investment on dataset annotation but could lead to significant
compression and complexity reduction gains.

Finally, it would be highly beneficial to confirm the observed performance of the LASTR
algorithm presented in Chapter 8 by further evaluating the performance of this method
through both objective and subjective tests using a larger set of test sequences. This will
soon be made possible thanks to the upcoming arrival of UHD HFR displays in the con-
sumer market, which will surely increase the availability of UHD HFR contents. Besides, all
the potential improvements to the ASR-IP-MD and VFR solutions discussed in this section
would also impact the LASTR scalable encoder presented in Chapter 8.

9.2.3 Extension of Proposed Solutions

In addition to the performance improvements prospects presented in the previous section,
the contributions proposed in this document could be extended, either by straightforward
modifications to handle more use-cases or more long-term changes that modify the core
design of the solutions.

Since the beginning of this thesis, the JVET committee has been developing the next
generation video codec to be standardized by the ISO/IEC and ITU consortium as VVC, the
successor of HEVC. With its 40% increased coding efficiency, it could be really interesting
to adapt the proposed dual-layer encoder with a VVC encoder as BL, and a low-complexity
EL encoder modified to handle the new partitioning structures of VVC.

With a more long-term perspective, and without the low-complexity constraint, the pro-
posed solutions could be extended to use state-of-the-art artificial intelligence technologies.
For example, on one hand, Generative Adversarial Networks (GANs) [203] could be used as
a replacement of the EL to generate the supplemental enhancement information of the scal-
able coding scheme, potentially achieving substantial performance improvements consider-
ing the recent advances in the domain. On the other hand, the VFR model could be modified
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to handle additional cases in which the frame-rate of the encoded video would be lowered
but a CNN-based frame interpolation process would be introduced as a post-processing. This
would enable the reduction of the frame-rate in more cases, when a 30fps decimation would
be too severe but the missing frames could be recoverable by the frame-interpolation process
without visible artifacts.
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Titre: Résolution Spatio-temporelle Adaptative pour un Codage à Faible Complexité des Formats Vidéo Émergents

Mot clés : Compression vidéo, UHDTV, résolution adaptative, scalabilité, réduction de compléxité

Resumé : La standardisation du dernier format vidéo
en date, appelé Ultra-High Definition TV (UHDTV), vise
à améliorer la qualité d’expérience des utilisateurs en in-
troduisant de nouvelles technologies telles que la 4K ou
le High Frame-Rate (HFR). Cependant, ces améliorations
multiplient la quantité de données à traiter avant transmis-
sion du signal par un facteur 8.

En plus de ce nouveau format, les fournisseurs de con-
tenu doivent aussi encoder les vidéos dans des formats et
à des débits différents du fait de la grande variété des sys-
tèmes et réseaux utilisés par les consommateurs.

SHVC, l’extension scalable du dernier standard de
compression video High Efficiency Video Coding (HEVC)
est une solution prometteuse pour adresser ces probléma-
tiques. En revanche, son architecture, très demandeuse
en termes de calculs, atteint ses limites lors de l’encodage
des nouveaux formats vidéo immersifs tels que le standard
UHDTV.

L’objectif de cette thèse est donc d’étudier des
approches de codage scalables et légères basées sur
l’adaptation de la résolution spatio-temporelle des vidéos.
La première partie de cette thèse propose deux algorithmes

de pré-traitement, utilisant respectivement des approches
polyphase et ondelette basées image, afin de permettre la
scalabilité spatiale avec une faible augmentation de la com-
plexité.

Ensuite, dans un second lieu, le design d’une archi-
tecture scalable à deux couches, plus conventionnelle, est
étudié. Celle-ci est composée d’un encodeur HEVC stan-
dard dans la couche de base pour assurer la compatibilité
avec les systèmes existants. Pour la couche d’amélioration,
un encodeur basse complexité, se basant sur l’adaptation
locale de la résolution spatiale, est proposé.

Enfin, la dernière partie de cette thèse se focalise sur
l’adaptation de la résolution spatio-temporelle. Un algo-
rithme faisant varier la fréquence image est d’abord pro-
posé. Cet algorithme est capable de détecter localement
et de façon dynamique la fréquence image la plus basse
n’introduisant pas d’artefacts visibles liés au mouvement.
Les algorithmes de fréquence image variable et de résolu-
tion spatiale adaptative sont ensuite combinés afin d’offrir
un codage scalable à faible complexité des contenus 4K
HFR.

Title: Adaptive Spatio-temporal Resolution for Lightweight Coding of Emerging Video Formats

Keywords : Video coding, UHDTV, adaptive resolution, scalability, complexity reduction

Abstract : The definition of the latest Ultra-High Defi-
nition TV (UHDTV) standard aims to increase the user’s
quality of experience by introducing new video signal fea-
tures such as 4K and High Frame-Rate (HFR). However,
these new features multiply by a factor 8 the amount of data
to be processed before transmission to the end user.

In addition to this new format, broadcasters and Over-
The-Top (OTT) content providers have to encode videos in
different formats and at different bitrates due to the wide
variety of devices with heterogeneous video format and net-
work capacities used by consumers.

SHVC, the scalable extension of the latest video cod-
ing standard High Efficiency Video Coding (HEVC) is a
promising solution to address these issues but its compu-
tationally demanding architecture reaches its limit with the
encoding and decoding of the data-heavy newly introduced
immersive video features of the UHDTV video format.

The objective of this thesis is thus to investigate
lightweight scalable encoding approaches based on the

adaptation of the spatio-temporal resolution. The first part
of this document proposes two pre-processing tools, re-
spectively using polyphase and wavelet frame-based ap-
proaches, to achieve spatial scalability with a slight com-
plexity overhead.

Then, the second part of this thesis addresses the de-
sign of a more conventional dual-layer scalable architecture
using an HEVC encoder in the Base Layer (BL) for back-
ward compatibility and a proposed low-complexity encoder,
based on the local adaptation of the spatial resolution, for
the Enhancement Layer (EL).

Finally, the last part of this thesis investigates spatio-
temporal resolution adaptation. A variable frame-rate algo-
rithm is first proposed as pre-processing. This solution has
been designed to locally and dynamically detect the lowest
frame-rate that does not introduce visible motion artifacts.
The proposed variable frame-rate and adaptive spatial reso-
lution algorithms are then combined to offer a lightweight
scalable coding of 4K HFR video contents.
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