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Chapter 1 Introduction 

1 RNA viruses: A relic to the RNA world 

The discovery that ribonucleic acid (RNA) can have certain enzymatic functions led to 

the emergence of the RNA world hypothesis. In this concept, it is proposed that RNA 

was an important player in early evolution as one of the first self-replicating molecules. 

It would have functioned as the main storage device, but also as a catalyst. Then, later 

in evolution, deoxyribonucleic acid (DNA) would replace RNA as the storage device 

and proteins would evolve as the working-horses in living cells (Bernhardt, 2012; 

Koonin et al., 2006). In the context of this hypothesis, it is interesting to imagine viruses 

that carry RNA as their genome without the involvement of DNA (RNA viruses) as a 

flashback to the primordial RNA world. 

RNA viruses can either have as their genome: single-stranded RNA (ssRNA), either 

positive-sense RNA ((+)RNA) or negative-sense  RNA ((-)RNA), or double-stranded 

RNA (dsRNA). Recent studies of the evolutionary relationships between these three 

classes revealed that (+)RNA viruses are possibly at the origin of RNA viruses. It also 

showed that dsRNA viruses evolved from (+)RNA viruses in at least two independent 

events, and that (-)RNA viruses evolved from a distinct group of dsRNA viruses. A 

(+)RNA to dsRNA to (-)RNA virus evolutionary pathway is coherent with the molecular 

mechanisms used for viral protein expression and genome replication. Indeed, dsRNA 

and (-)RNA viruses need to package their replication machinery in viral particles in 

order to start a new viral cycle (Fig. 1). In contrast, (+)RNA viruses use the most basic 

strategy for expression and replication of their genome as the positive sense of their 

RNA allows for direct translation of viral proteins and then amplification of the viral 

genome (Wolf et al., 2018). 
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Fig. 1 Replication strategies of RNA viruses 

(A) (+)RNA virus replication strategy: Endocytosed virions release their messenger-sense genomic RNA 
(straight red line) into the cytoplasm which will be directly translated to produce viral proteins. Viral 
replication proteins (blue) will then recruit the genomic RNA into membrane-associated replication 
compartments. In these sites, new (+)RNA will be synthesized and then packaged into new progeny 
virions. (B) dsRNA virus replication strategy: After endocytosis, the viral core of dsRNA viruses remains 
intact. In this core, the viral RNA polymerase (yellow) will be present and will produce new (+)RNA that 
will then be released into the cytoplasm. This RNA will be translated and packaged into the newly 
produced virion cores. Virion core maturation occurs after the synthesis of (-)RNA (dotted strand) leading 
to dsRNA formation (adapted from Ahlquist 2006). 
 

2 Positive sense single-stranded RNA viruses 

This ancient evolutionary past of (+)RNA viruses is mirrored by their abundance 

throughout the living world. They represent one of the largest classes of viruses and 

are present in all forms of life from bacteria to plants and animals (Strauss and Strauss, 

2008). 

All (+)RNA viruses encode an RNA-dependent RNA polymerase (RdRp). This enzyme 

will use the viral RNA as a template for the amplification of the viral genome, an 

essential process in the production of new virus progeny. In addition, (+)RNA viruses 
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will code for other types of enzymes (helicases and proteases) that will also be 

important in this process (Koonin et al., 2015). 

Given the diversity and abundance of these viruses, comparison and alignment of viral 

sequences have given limited amount of information on their evolution and phylogeny. 

Therefore, here came the role of RdRp based phylogeny in combination with 

comparisons of viral enzymes modularity and arrangements for the large-scale division 

of (+)RNA viruses into three different superfamilies: picornavirus-like, flavivirus-like and 

alphavirus-like superfamilies (Koonin, 1991; Koonin and Dolja, 1993). The 

picornavirus-like superfamily is by far is the largest and most diverse superfamily. It is 

widely distributed in eukaryotic hosts. It is then followed by the alphavirus-like and 

flavivirus-like superfamilies. This led to suggestions of a scenario where ancestral 

picornavirus-like superfamily acted as an evolutionary origin for the other superfamilies 

(Koonin et al., 2015). 

A common feature of all (+)RNA viruses is that the replication of the viral genome will 

pass by the synthesis of (-)RNA which will then be used as a template for (+)RNA 

production. This shared process will generate a dsRNA intermediate which is a 

hallmark element of (+)RNA viruses (Paul and Bartenschlager, 2013). Another 

fundamental aspect of (+)RNA replication machinery is that it will function in tight 

association with membranes which will be modified to produce replication organelles. 

However, the architecture and biogenesis of these virus-induced organelles can vary 

substantially within a certain virus superfamily and even family (Paul and 

Bartenschlager, 2013). I have described in a detailed review, the different type of 

replication organelles formed by (+)RNA viruses and the virus host-interactions 

involved in their creation (Bakhache et al., 2019). This review is presented in annex 1. 

These two prior described features universal to (+)RNA viruses might be intertwined 

since membrane-associated replication has been suggested to help with the evasion 

of dsRNA immune sensing (Scutigliani and Kikkert, 2017).  

3 Alphaviruses         

Among (+)RNA viruses, those belonging to the Alphavirus genus are impressive in their 

ability to cause important diseases in vertebrate hosts. Salmonid Alphaviruses (SAV) 

are a major economic problem for salmon and trout farmers. Losses due to infection 

by these viruses have been estimated at €35 million loss of turnover and €12 million 
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loss of profit during the 2003-2004 production period. Attesting to their economic 

downsides, measures have been put in place by the European Union to refuse import 

of salmon products from areas that have not been declared free of SAV (Jansen et al., 

2017). A medicinally important Alphavirus causing encephalitis in horses, but also in 

humans is Venezuelan Equine Encephalitis virus (VEEV). In some cases, infection is 

fatal. Its devastating effects were seen during the 1992 epidemic with 100,000 reported 

human cases and 300 associated deaths. This outbreak also resulted in 4000 equine 

deaths (Weaver et al., 2004). Finally, the most impactful Alphavirus in recent history, 

Chikungunya virus (CHIKV) infection, in humans, leads to incapacitating muscle and 

joint pain, fever, and rash. CHIKV has caused devastating socio-economic impact on 

the communities where it spread. This has recently been observed in the Réunion 

outbreak where 255,000 cases were recorded with 260 resultant deaths. The 

incapacitating nature of infection by CHIKV also had consequential outcomes on public 

health care and presence of workers. During the 2015 CHIKV outbreak in the United 

States Virgin Islands, the economic figures were estimated to range from $14.8 to $33.4 

million (Feldstein et al., 2019; Josseran et al., 2006). Finally, recently the “Centers for 

Disease Control and Prevention” federal agency has received multiple reports of 

infection with the Eastern Equine Encephalitis virus (EEEV), including 15 reported 

deaths. This raises the alarm on the re-emergence of yet another impactful Alphavirus.  

In this section, the geographical distribution, classification, mode of transmission, 

evolution, and life-cycle of Alphaviruses will be discussed, with a special focus on 

CHIKV, the main Alphavirus studied in this thesis. 

A- Taxonomy and phylogeny 

According to the International Committee on Taxonomy of Viruses (ICTV) classification, 

the Alphavirus genus belongs to the Togaviridae family which also includes the 

Rubivirus genus with the Rubella virus as the only member (Strauss and Strauss, 

1994). The Togaviridae family of viruses itself resides in the alphavirus-like superfamily 

which also contains various animal (Hepatitis E virus) and plant viruses (Brome Mosaic 

virus) as well. A characteristic of this superfamily is the presence of three modules, 

always in the same order, methyltransferase-helicase-RdRp. Finally, all viruses in this 

superfamily are capped at the 5’ end and have a poly(A) tail or transfer RNA (tRNA) 

structure at the 3’ end of their (+)RNA (Koonin and Dolja, 1993). 
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Traditionally, the classification of viruses inside the Alphavirus genus was mainly based 

on serological methods such as hemagglutination inhibition and complement fixation 

tests. If a newly identified virus strongly cross-reacted with antibodies against a 

recognized virus, then it was justified to include these two viruses into the same 

complex. This divided the Alphavirus genus which contains more than 30 different 

viruses into seven main antigenic complexes: Eastern Equine Encephalitis (EEE), 

Venezuelan Equine Encephalitis (VEE), Western Equine Encephalitis (WEE), Semliki 

Forest (SFV), Ndumu (NDU), Barmah Forest (BF), and Middelburg complex (MID) 

(Calisher et al., 1980). 

Furthermore, with the advent of next-generation sequencing methods and availability 

of viral sequences, the natural evolution for classification was to compare partial or 

complete sequences of different Alphaviruses. In general, these studies have 

confirmed relationships drawn from antigenic based approaches. As it was shown that 

members belonging to the same antigenic complex were more genetically similar 

(nucleotide divergence less than 43%) than viruses with different antigenic complexes 

(nucleotide divergence usually exceeded 38%). Different subtypes of a given 

Alphavirus had as little as 3% nucleotide divergence and 2% amino acid divergence in 

some cases such as with Sindbis virus (SINV), and as high as 25% and 13% 

respectively in other cases such as with Ross River virus (RRV). Impressively, the 

maximum divergence was observed between different subtypes of VEE where a given 

subtype differed by at least 22% in nucleotide sequence and 18% in amino acid 

sequence. Indeed, VEE is one of the most genetically diverse complexes due to its 

history of circulation in hosts and vectors with limited dispersal potential. Finally, the 

two fish viruses (Salmon Pancreas Disease virus and Sleeping Disease virus) were the 

most distinct when compared to all other Alphaviruses with a nucleotide divergence of 

49% and an amino acid divergence of 59%. However, these two aquatic viruses had 

minimal divergence between them (Powers et al., 2001; Weaver et al., 2012). A 

comparison of sequences also led to the re-construction of precise phylogenetic trees 

with high confidence (Fig. 2) (Forrester et al., 2012; Lavergne et al., 2006).  
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Fig. 2 Unrooted phylogenetic tree of Alphavirus species  

Phylogenetic tree generated from partial E1 envelope glycoprotein gene sequences by using the 
Neighbor-Joining method with Kimura 2 parameter model. Virus abbreviations: MUCV, Mucambo virus; 
TONV, Tonate virus; PIXV, Pixuna virus; CABV, Cabassou virus; FMV, Fort Morgan virus; HJV, 
Highlands virus; WHATV, Whataroa virus; SINV, Sindbis virus; MIDV, Middelburg virus; SFV, Semliki 
Forest virus; RRV, Ross River virus; CHICK, Chikungunya virus; ONNV, O’nyong nyong virus; 
BFV, Barmah Forest virus; SAGV, Sagiyama virus; SPDV, Salmon pancreas disease virus; SDV, 
Sleeping disease virus; GETV, Getah virus; NDUV, Ndumu virus; BEBV, Bebaru virus; TROCV, Troca 
virus; BCV, Buggy Creek virus; BABV, Babanki virus; OCKV, Ockelbo virus; AURAV, Aura virus; 
WEEV, Western Equine Encephalitis virus; VEEV, Venezuelan Equine Encephalitis virus; 
EEEV, Eastern Equine Encephalitis virus (adapted from Lavergne et al. 2006).  

 

B- Geographical distribution and evolutionary history 

Alphaviruses are widely spread all around the world, inhabiting all continents except 

the Antarctica. They can be classified according to their geographical origin and 

distribution. This split Alphaviruses into two main classes: New World (NW) and Old 

World (OW) Alphaviruses. NW and OW Alphaviruses, in most cases, differ in the type 

of symptoms induced upon infection (Strauss and Strauss, 1994). 
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NW Alphaviruses cause encephalitic symptoms and circulate in the Americas. They 

include viruses such as VEEV, EEEV, Western Equine Encephalitis virus (WEEV) 

(Strauss and Strauss, 1994). 

On the other hand, OW Alphaviruses which lead to arthrogenic symptoms circulate in 

Europe, Asia, Australia and parts of Africa and include viruses such as CHIKV, SINV, 

Mayaro (MAYV), and O’nyong-nyong virus (ONNV) (Strauss and Strauss, 1994). 

However, this geographical distribution is not as static as this classification suggests. 

The use of phylogenetic methods has allowed the revelation of exciting discoveries 

about the evolutionary history of the Alphavirus genus. One of the first eluding 

observations was that SINV, an Alphavirus which mainly circulates in the OW, is 

present in the NW WEE antigenic complex (Calisher et al., 1980). This was later 

reconciled by the finding that a recombination event occurred between the combined 

Envelope 2 and 1 (E2 and E1) genes of an ancestral form of SINV and the other viral 

genes of an EEEV-like ancestor. This episode led to the generation of the NW WEE 

complex (Weaver et al., 1997). Another intriguing remark was that Alphavirus 

distribution in NW and OW was not always associated with the respective symptoms 

mentioned above. This has been observed with certain Alphaviruses that share similar 

symptoms, but exist in diverse ecological conditions. A typical comparison is MAYV 

and ONNV which share almost indistinguishable clinical symptoms but circulate in 

different regions of the world. Unlike most OW Alphaviruses, MAYV circulation is mainly 

limited to South America. While, ONNV is only present in Africa. Reconstruction of the 

evolutionary history of this genus conciliated this remark and suggested that NW and 

OW Alphaviruses have circulated to opposite hemispheres multiple times probably by 

migratory birds and sailing ships.  

This raised the question about the evolutionary origins of Alphaviruses. The 

reconstructed evolutionary history was consistent with either a NW or OW origin but 

required at least three transoceanic introductions between the hemispheres (Powers 

et al., 2001). However, there is still no substantial evidence favoring Alphavirus origin 

being from the NW or OW.  

Interestingly, through the use of an even more robust and comprehensive phylogenetic 

analysis, a recent study has implicated a marine origin of the Alphavirus genus. In this 

scenario, Alphaviruses would have originated in the Pacific Ocean and then moved 
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from marine to terrestrial vertebrate hosts and then to mosquito vectors. Then, this 

ancestral Alphavirus of marine origin would have spread east and west leading to the 

creation of the ancestral NW and OW Alphaviruses of today. This evolutionary origin 

hypothesis would also require several re-introductions of NW and OW Alphaviruses 

across the hemispheres (Fig. 3). The argument for a marine origin has been supported 

by evidence showing that aquatic Alphaviruses were present at the basal root of the 

phylogenetic tree (Forrester et al., 2012). Additional support was that some NW 

Alphaviruses retained the ability to replicate in fish cells (Wolf and Mann, 1980). 

 

 

Fig. 3 Hypothetical evolutionary origin of Alphaviruses    

Grey and black arrows represent New World Alphaviruses. Arrow 1: Introduction of ancestral marine 
origin Alphavirus from the Pacific Ocean to the New World; arrow 2: secondary introduction into the Old 
World. Black arrows represent Old World Alphaviruses. Arrow 1: introduction from the Pacific Ocean to 
Australia and New Zealand; arrow 2: secondary introduction into south Africa; arrow 3: tertiary 
introduction to Eurasia; arrow 4a, secondary introduction of Ross River virus to Australasia; and arrow 
4b, secondary introduction of Mayaro virus to the New World (adapted from Forrester et al. 2012). 

 

C- Distinct geographical distribution: Distinct evolutionary lineages 

The emergence of these Alphaviruses in different geographical regions implied distinct 

evolutionary lineages with different adaptations to hosts. Indeed, striking differences in 

the molecular pathways have been described by several groups. For example, upon 
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infection, Alphaviruses are capable of inducing host-cell transcriptional shut-off as a 

mean to limit innate immune response detection. However, the Alphavirus protein 

responsible for this function varies between NW and OW Alphaviruses. For SINV and 

SFV, representatives of the OW Alphaviruses, mapping of the viral proteins responsible 

for this function revealed non-structural protein 2 (nsP2) as the determinant. The twist 

came when it was shown that the structural capsid protein is responsible for this 

function for VEEV and EEEV, representatives of the NW Alphaviruses (Garmashova et 

al., 2007). Another difference between NW and OW Alphaviruses relates to the nature 

of host-cofactors recruited for assisting viral replication. The usurping of such factors 

has been specially documented in studies dealing with interactants of nsP3. 

nsP3 contains a long intrinsically disordered domain called the hypervariable domain 

(HVD) which has a low sequence identity between different Alphaviruses. The HVD 

domain is essential for viral replication and is capable of recruiting proviral cofactors. 

Interestingly, it was shown that the HVD of OW Alphaviruses recruits the stress granule 

assembly factor, Ras GTPase-activating protein-binding protein 1 (G3BP1) and that 

these interactions are essential for viral replication. However, NW Alphaviruses do not 

require HVD-G3BP1 interaction, and will instead recruit a functionally similar family of 

proteins named Fragile X syndrome (FXR). Interestingly, replacement of the NW 

Alphavirus HVD with its OW form did not have any deleterious effect on NW Alphavirus 

replication. However, the opposite manipulation led to deleterious effects on OW 

Alphavirus replication suggesting that interaction with FXR proteins came later on in 

Alphavirus evolution. Impressively, a follow-up study has found that the NW Alphavirus 

EEEV has a unique level of redundancy in its use for these two cofactors. This 

suggested that this virus acted as an evolutionary stepping stone for the interaction 

with these host proteins (Frolov et al., 2017; Kim et al., 2016). In conclusion, these 

different molecular pathways illustrated the distinct evolutionary past of OW and NW 

Alphaviruses. The functional importance of these interactions in the Alphavirus life 

cycle will be further discussed later in the introduction in section “Virus-Host interactions 

in replication complex assembly and functioning”. 

D- Transmission: Host organisms and vectors 

Viruses can be transmitted by a variety of different ways such as aerosol, sexual, and 

vector-mediated transmission. 
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For Alphaviruses, the mode of transmission is through insect vectors, mainly 

arthropods. They are, therefore, known as arthropod-borne viruses (arboviruses).  

i. Arbovirus definition and history 

In 1878, the first hint that arthropods could act as vectors for human pathogens was 

described by Sir Patrick Manson. He showed that mosquitoes were able to transmit 

filarial worms to humans and dogs (Manson, 1878). A few years later, Carlos Finlay 

suggested that the yellow fever disease was transmitted by mosquitoes (Chaves-

Carballo, 2005). Yellow fever disease, at that time, was epidemic in many tropical and 

subtropical regions of Africa and the Americas. This led to significant attempts by the 

United States to study this disease in an endeavor to eradicate it. However, it was not 

until the year 1900 where the theory of Carlos Finlay was proven right in an expedition 

led by the team of Walter Reed. The breakthrough came from an experiment performed 

by Jesse Lazear, a researcher on this mission who was mainly charged with handling 

mosquitoes. In this experiment, Lazear allowed mosquitoes that had fed on patients 

with the yellow fever disease to bite him. Quickly after, Lazear died of this disease 

establishing these mosquitoes as the vector (Vasilakis et al., 2019).  

This series of events led to coining the term “arthropod-borne viruses”. Arboviruses, 

according to the World Health Organization (WHO) are “viruses that share the 

characteristic of being naturally maintained through biological transmission between 

susceptible vertebrate hosts by hematophagous arthropods or transovarial 

transmission from infected female arthropods to her progeny” (WHO, 1985). 

Arboviruses include a wide range of RNA viruses encompassing the three main 

classes: (-)RNA, (+)RNA and dsRNA viruses.  

ii. Mechanisms of arbovirus emergence 

In nature, arboviruses are maintained in a complex transmission cycle with most 

arboviruses being zoonotic. Zoonotic arboviruses are defined by their adoption of 

rodents, birds and non-human primates as reservoir hosts. This transmission cycle 

between wild animals and arthropod vectors is defined as an enzootic transmission 

cycle. Epidemics in human populations occur when the enzootic virus is introduced into 

urban areas. This event is termed “spillover” and can occur in different scenarios. In 

some situations, the virus will cycle between domesticated animals and primary or 

accessory vectors in what is known as an epizootic cycle. This situation can cause an 
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outbreak of this viral disease in the domesticated animal population leading to virus 

amplification. Then, because of the proximity between domesticated animals and 

humans, this may extend the outbreak to human populations with the implication of 

anthropophilic vectors such as Aedes (Ae.) aegypti mosquitoes. In other cases, 

humans crossing sylvatic habitats which are incidentally bitten by infected zoonotic 

vectors might contribute to the spread of this virus upon return to urban habitats (Fig. 

4). This capacity of arboviruses to emerge into urban areas has led to several outbreaks 

of high magnitude in the last decades (Weaver and Barrett, 2004). 

 

 

Fig. 4 Mechanisms of arbovirus emergence    

The typical mechanism of arbovirus emergence and the mosquito vectors implicated are shown above. 
The different cycles of arbovirus transmission are also illustrated (adapted from Scott C. Weaver and 
Barrett 2004). 
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Whatever the scenario of the spillover event, it is important to consider each arbovirus 

emergence event as a result of an aggregation of complex factors:   

(1) Climatic conditions are one of the deciding factors that play a role in arbovirus 

emergence. A prototypical example of the effect of the weather was devastatingly seen 

in the previously discussed 1878 yellow fever epidemic in Memphis. This event was 

recorded as one of the worst epidemics in the 19th century American history with a loss 

of around 16,000 human lives. In the years prior to this epidemic, rain days and intensity 

were particularly high. This led to a bloom in Ae. aegypti mosquitoes breeding in these 

regions which contributed to the destructive effects and rapid spread of this epidemic 

(Reed and Carroll, 1901). This established weather as an important driver in 

establishing populations of mosquitoes and therefore contributing to the extent of an 

epidemic. Given that climate change is a reality in today’s world, several groups have 

predicted that temperature change might lead to an increase in arbovirus emergence 

in previously untouched areas of the world. In the case of Dengue virus (DENV), for 

example, an increase in temperature has been predicted to boost the epidemic 

potential of this virus in temperate northern hemisphere regions (Liu-Helmersson et al., 

2014). 

(2) Human activities can also affect this arboviral emergence. This has been evident 

with the growth of the used-tire industry where car tires were found to provide the 

optimal humidity and temperature needed for the rapid breeding of mosquitoes. 

Transport of car tires also contribute to the spread of Alphaviruses into new 

ecosystems. In addition, during drought periods, water storage tanks provide another 

excellent breeding spot for mosquitoes (Benedict et al., 2007; Kamal et al., 2018). 

(3) The capacity of an arbovirus to adapt to new vectors and therefore invade new 

environments can also be critical in epidemic events. Additionally, arboviruses with the 

ability to evolve into more virulent strains can also contribute to a switch from an 

enzootic to epizootic/epidemic transmission cycle. Examples of Alphavirus that have 

emerged through these mechanisms will be described later on in the introduction in 

section “Evolution and dissemination”. 

iii. Alphavirus transmission  

Coming back to Alphaviruses, one of the main hosts are birds. In certain Alphaviruses, 

such as EEEV, humans and equids are considered as dead-end hosts. Dead-end hosts 
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are defined by their incapability to act as a reservoir for vector re-infection. However, 

this is not the case for all Alphaviruses. Indeed, in the CHIKV transmission cycle, 

humans are not considered as dead-end hosts and will act as an important reservoir 

for re-transmission of the virus back to its vector (Weaver et al., 2012). 

For Alphaviruses, the main vectors are mosquitos: either Ae. aegypti, Ae. Albopictus 

and Ae. taeniorhynchus for the urban transmission cycle or Ae. furcifer, Ae. africanus 

and Culex melanoconion for the enzootic transmission cycle (Weaver et al., 2004, 

2012). Mites and ticks have also been shown to be infected with Alphaviruses (SINV 

and EEEV). However, the frequency of this event and the transmission efficiency is not 

high enough to consider them as primary vectors (Strauss and Strauss, 1994). For 

SAV, transmission appears to be mainly horizontal via water contact. However, it has 

been recently shown that these viruses could replicate in arthropod cells suggesting 

that their transmission could pass by invertebrate hosts. If true, this is mainly thought 

to be carried out by the haematophagous salmon louse Lepeophtheirus salmonis which 

has already been found to harbor SAV (Deperasińska et al., 2018; Hikke et al., 2014). 

Furthermore, there exists regulators for mosquito mediated Alphavirus transmission. 

Parasites are one of the main players in this process where they can exert their effects 

by either enhancing or blocking the establishment of Alphavirus mosquito infection (Tan 

et al., 2017; Vaughan and Turell, 1996). Indeed, mosquitoes are frequently infected 

with parasites during blood meal acquisition from hosts. Furthermore, certain parasites 

can release what are known as microfilariae, an early developmental stage of parasites, 

into their host’s bloodstream. Consequently, these microfilariae are then ingested by 

mosquitoes taking a blood meal from a vertebrate host (Vaughan and Turell, 1996). 

Interestingly, the microfilariae of a parasite called Brugia malayi has been shown to 

lead to a dose-dependent increase in EEEV and VEEV infection in mosquitoes 

(Vaughan and Turell, 1996). This was later observed to be mediated by binding of the 

Brugia malayi microfilariae to the virion facilitating the penetration of the mosquito 

midgut epithelium barrier and contributing to the establishment of Alphavirus infection. 

This phenomenon has been shown to be important for various arboviruses and has 

been termed “microfilarial enhancement of arboviral transmission” (Vaughan and 

Turell, 2017). Conversely, a parasite that has been studied for its capacity to negatively 

affect Alphavirus infection in mosquitoes is the endosymbiotic bacterium Wolbachia. 

Wolbachia is an intracellular maternally inherited bacteria that is present in more than 
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20% of insects. Recently, through comparisons between wild type and Wolbachia 

infected Ae. Aegypti mosquitoes, a study demonstrated the ability of this bacteria to 

efficiently block CHIKV infection. Interestingly, Wolbachia was also able to block Zika 

virus (ZIKV) and DENV infection demonstrating its ability to act on different arboviruses 

(Geoghegan et al., 2017; Tan et al., 2017). Wolbachia has been suggested to block 

CHIKV mosquito infection by either immune activation or competition with the virus for 

mosquito metabolic resources (Terradas and McGraw, 2017). With respect to 

Wolbachia’s mechanism of action for Flaviviruses, this bacteria has been shown to 

perturb intra-cellular trafficking of cholesterol, a sterol which is important for various 

steps of Flavivirus infection (Osuna-Ramos et al., 2018). It would be interesting to 

investigate whether this mechanism of action might occur for Alphaviruses as well. This 

virus blocking function of Wolbachia in mosquitoes has led to a high interest in utilizing 

this bacterium to limit arbovirus transmission (Hoffmann et al., 2011). 

iv. Transmission cycle through mosquito vectors 

The Alphavirus mosquito transmission cycle begins with a female mosquito blood-

feeding off a viremic vertebrate host through its buccal apparatus. After blood-feeding, 

the virus will migrate to the midgut where viral replication occurs. However, during the 

blood digestion process, the midgut epithelium releases a peritrophic matrix which can 

block virus entry. Therefore, in the midgut epithelium, the virus will encounter its first 

barrier. Crossing of this barrier, known as the midgut infection barrier, will be essential 

to establish efficient infection and transmission. Once past this barrier, the virus will be 

present in the midgut where it will replicate and then escape into an open body cavity 

called the haemocoel. The haemocoel will be important for the dissemination and 

infection of the virus into other secondary tissues. The last step in the transmission 

cycle involves infection and replication in the salivary glands to sufficient virus titers for 

infection of the vertebrate host during the next blood meal. All of these steps, from 

crossing the midgut epithelium to replication in the salivary glands, will determine the 

vector competence for a particular virus (Lim et al., 2018). 

In the next part, the evolution of Alphaviruses and their consequences on pathogenesis 

and dissemination will be reviewed. Specifically, the vector adaption of CHIKV from Ae. 

aegypti to Ae. albopictus mosquitoes will be discussed. This impressive evolution 

demonstrates the flexibility of Alphaviruses to adapt to new vectors and therefore to 

conquer new environments.  
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E- Evolution and consequences on pathogenesis and dissemination 

RNA viruses are under a constant state of evolution. Evolution is caused by mutations 

committed during the copying process of the RdRp. Impressively, mutation rates for 

RNA viruses are high ranging between 10−6 and 10−4 substitutions per nucleotide site. 

This can be appreciated when compared to DNA viruses that have mutation rates in 

the order of 10−8 to 10−6 substitutions per nucleotide site (Duffy, 2018; Peck and 

Lauring, 2018). Mutations in the viral genome can lead to either beneficial or 

detrimental effects on virus fitness. By the process of natural selection, mutations that 

enhance virus fitness are positively selected during evolutionary time, and mutations 

having a negative effect on fitness are quickly diluted from the total virus growth pool.  

This phenomenon is especially interesting in the case of arboviruses since selection 

needs to maintain fitness in both vertebrate and invertebrate hosts. In this context, 

mutations and evolution rates have been studied using the CHIKV model. In this model, 

mutation rates were shown to reach around 10−3.3 substitutions per nucleotide site. 

Interestingly, isolation of a mutagen resistant variant of CHIKV has led to the 

identification of a single amino acid change (C483Y) in the RdRp, nsP4, which 

increased replication fidelity by 1.5-fold. Analysis of virus fitness established that this 

variant with a higher copying fidelity replicated much less efficiently in both vertebrate 

and invertebrate hosts (Coffey et al., 2011). This possibly explains the high mutation 

rates detected for RNA viruses and arboviruses specifically. 

In this scenario of high mutation rates for RNA viruses, the conservation of sequences 

will probably require high selective pressures and implies that these conserved 

residues are of high importance for virus infection. This has highly interested 

evolutionary biologists that aligned sequences of different Alphaviruses and checked 

for the conservation of nucleotides, amino acids and in some cases secondary 

structures (Ahola and Karlin, 2015; Kutchko et al., 2018). 

i. Evolution and dissemination 

A striking example of the evolution of an Alphavirus with consequences on virus 

dissemination is the case of the NW Alphavirus VEEV. VEEV belongs to the VEE 

antigenic complex which is comprised of 6 different antigenic subtypes denoted as I to 

VI. The I antigenic complex contains five different varieties AB, C, D, E and F (Powers 

et al., 2001). The antigenic subtypes II to VI and subtype I with varieties D and E have 
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not have been reported to cause any major outbreaks. They have no amplification 

potential due to their incapability to induce viremia in hosts and were therefore classed 

as enzootic strains. However, the antigenic subtype I with varieties AB and C, since 

their discovery in the 1930s, have caused sporadic cases of outbreaks with high rates 

of mortality in humans and equines. Interestingly, these VEEV subtypes disappeared 

for 19 years and were thought to either have gone extinct or are circulating in an 

enzootic cycle. It was not until 1992, in Venezuela, where VEEV re-emerged causing 

explosive epidemics (Weaver et al., 2004). An emerging hypothesis was that VEEV 

could have reappeared from enzootic strains that have acquired mutations leading to 

an increase in their amplification potential in equine hosts. The simplest explanation for 

an increase in amplification is an increase in the capacity of a virus to induce high 

viremia in hosts. Indeed, phylogenetic analysis of the VEEV strain of 1992, led to 

predictions that a mutation at the residue 213 of the E2 glycoprotein could have caused 

this switch from enzootic to epizootic/epidemic strain. Reverse genetics studies 

confirmed the ability of a T213R in the E2 glycoprotein to transform an avirulent strain of 

VEE subtype I-D to a virulent strain. The exact role of this residue in VEEV infection 

remains to be determined. This recapitulated the evolutionary events leading to the 

1992 VEEV outbreak and demonstrated the ability of Alphaviruses to re-emerge after 

long periods of absence (Anishchenko et al., 2006). 

Another illustration of the capacity of Alphaviruses to evolve genetically and 

disseminate into urban areas is the OW Alphavirus CHIKV. A large-scale epidemic of 

CHIKV began in Kenya in 2004 and then spread to several Indian Ocean islands such 

as the Réunion island. Ae. aegypti mosquitos are scarce in these regions, and it was 

found that the main mosquito vector responsible for the transmission to humans was 

Ae. albopictus. This was the first reported case in which these mosquitoes acted as the 

main vector for CHIKV (Delatte et al., 2010). Analysis of CHIKV genome evolution in 

this epidemic led to the detection of several amino acid changes in the non-structural 

proteins (nsPs), mainly in nsP2 and nsP4. This analysis also revealed changes in the 

structural proteins (sPs) region, notably an alanine to valine mutation in position 226 in 

the membrane fusion E1 protein (Schuffenecker et al., 2006; Tsetsarkin et al., 2007). 

Reverse genetics studies confirmed particularly the role of this E1-A226V mutation in 

increasing infectivity and transmission by Ae. albopictus mosquitoes. Further, this 

mutation was associated with an increase in cholesterol dependence for CHIKV in 
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these vectors (Tsetsarkin et al., 2007). Certain Alphaviruses (SINV and SFV) have 

been shown to be dependent on cholesterol in the early entry steps of the viral life cycle 

where E1 plays a role in the fusion of the viral and endosomal membranes leading to 

release of the viral genome (Li et al., 2010). Interestingly, in these studies, cholesterol 

dependence was mapped to the 226 residue present in the fusion loop of the E1 

protein, the same residue which was important for CHIKV adaptation to Ae. albopictus 

mosquitoes (Chatterjee et al., 2000; Lu et al., 1999). It is therefore tempting to 

speculate that CHIKV infection in Ae. albopictus mosquitoes occurs more efficiently if 

the E1 mediated fusion process is cholesterol-dependent. On the other hand, for Ae. 

aegypti mosquitoes, CHIKV infection can occur without the need for cholesterol 

explaining the conservation of E1 226 alanine residue in CHIKV strains which efficiently 

infect these mosquitoes. 

ii. Evolution and pathogenesis 

On the other hand, an example of Alphavirus evolution and its implication in 

pathogenesis is the role of crucial residues in nsP1, nsP3, and the E2 protein which 

were found to regulate Alphavirus induced neurovirulence (Atkins and Sheahan, 2016). 

This led to several investigations in order to decrypt the molecular determinants 

involved in this virulence (Tucker et al., 1993).  

A prominent Alphavirus used for these neurovirulence studies was SINV due to the 

vast knowledge of its molecular biology and pathogenesis. SINV is neurovirulent in 

neonatal, but not in weanling mice. However, the passage of SINV in mouse brains 

allowed the generation of laboratory-derived strains which were neurovirulent also in 

weanling mice. These different strains of SINV which differed in their capacity to induce 

neurovirulence in mice have been sequenced and compared revealing crucial residues 

implicated in this phenotype. The most reported mutation was a glutamine to histidine 

change at amino acid residue 55 in the E2 protein. This mutation was described to 

increase the capacity of the viral particle to bind to neurons (Lee et al., 2002) and to 

induce apoptosis (Ubol et al., 1994). Regulation of these two processes contributed to 

a greater neurovirulence for SINV strain with this mutation (Lee et al., 2002). This 

phenomenon demonstrated the capacity of Alphaviruses to mutate in order to efficiently 

replicate and spread in different organs. 
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Interestingly, SINV strains with high neurovirulence have been reported to infect poorly 

Ae. aegypti midgut epithelial cells indicating a possible loss of binding to receptors 

(Pierro et al., 2003). As mentioned earlier, these strains are laboratory-derived and 

might have therefore adapted to replicate in certain types of tissues while losing the 

capacity to replicate in invertebrate hosts. Therefore, in this artificial scenario, the 

adaptation to increase neurovirulence negatively affected virus dissemination.  

In the next part, the biology of CHIKV will be detailed including its emergence, 

phylogeny, symptoms, and pathogenesis. 

F- Chikungunya virus, an Alphavirus, always on the lurk 

i. History and emergence 

In 1952, a massive febrile illness with unknown cause spread in Mawia, Makonde and 

Rondo of present-day Southern Tanzania. This epidemic reached its peak in 1953 with 

49 localities involved. At that point in history, the society of this region was of primitive 

structure. However, the distinctive features of this illness made it easy to track 

(Lumsden, 1955). Due to the porous nature of the soil in this region, the people often 

stored their water in their home which in occurrence were infested by mosquitoes 

mainly of the Ae. aegypti type thought to be the main culprit for the spread of this illness 

(Lumsden, 1955). Analysis of Ae. aegypti mosquitoes isolated from these houses 

pointed towards strong evidence that the causative agent is a virus. The word 

Chikungunya was then given to this virus which originates from the Makonde dialect 

meaning “disease that bends up the joints”. This reflected the symptoms that the 

Tanzanian people observed upon infection with CHIKV. Infected individuals were 

rendered paralyzed with extreme joint and muscular pain upon movement and 

therefore had this characteristic bend up appearance (Ross, 1956). Although the virus 

originating from this epidemic was first thought to be a strain of DENV due to the 

resemblance of symptoms, CHIKV was later shown to belong to the Alphavirus genus 

(Weaver and Forrester, 2015). Shortly after the 1952 epidemic, CHIKV was reported in 

Uganda. Then, the later part of the 20th century saw recognition of CHIKV in sub-

Saharan Africa with sporadic outbreaks in Asia and Africa (Weaver and Forrester, 

2015). However, it was not until 2004 that CHIKV spread took a striking turn. Reports 

of epidemics first began in Kenya and then spread to India, Southeast Asia and to the 

Indian Ocean islands. The best-described epidemic being in the French island of the 
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Réunion in 2005, where an estimated third of the Réunionese population were infected 

with CHIKV. This had a disastrous socio-economic impact in this island (Zeller et al., 

2016). During this period, India also experienced a re-emergence of CHIKV after a gap 

of 32 years. This epidemic touched over 1.3 million people with an attack rate of 45% 

(Arankalle et al., 2007). Furthermore, the rest of Asia exhibited several outbreaks in 

countries such as Malaysia, Southern Thailand and Sri Lanka (Zeller et al., 2016). 

Infected travelers from India and the Indian Ocean islands led to imported cases of 

CHIKV in all areas of the world. In some instances, these imported cases caused small 

outbreaks in Europe such as the ones reported in northern Italy and Southern France 

(Grandadam et al., 2011; Rezza et al., 2007). CHIKV has recently emerged in the 

pacific regions spreading to countries such as New Caledonia and French Polynesia 

(Aubry et al., 2015). More recently reported cases in the Caribbean island of St Martin, 

indicate that CHIKV could also emerge in the western hemisphere and invade the 

Americas (Fig. 5) (Leparc-Goffart et al., 2014).  

 

 

Fig. 5 Chikungunya virus outbreak events 

The geographical spread of Chikungunya virus from Africa to new regions from 2005 to 2014 is 
illustrated. ECSA: East/Central/South African (adapted from Zeller, Van Bortel, and Sudre 2016).  
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ii. Geographical distribution and behavior of urban vectors 

The capacity of CHIKV to cause epidemics in different parts of the world is reflected by 

the broad prevalence of urban mosquito vectors that carry strains of this virus. Indeed, 

Ae. aegypti and Ae. albopictus mosquitoes are present in various regions of the world. 

Recent occurrence studies have demonstrated that these vectors are mainly present 

in Asia and the Americas. More than 50% of Ae. aegypti mosquitoes are present in 

Brazil, India, Thailand, Mexico and United States. However, Ae. Albopictus mosquitoes 

are mainly localized in Taiwan, United States and Indonesia. The distribution of these 

two mosquito species overlapped in some areas in Asia and West Africa and differed 

remarkably in Europe, United States and East Africa. This distribution of Ae. aegypti 

and Ae. Albopictus mosquitoes was heavily affected by climatic conditions with Ae. 

aegypti being adapted to tropical and sub-tropical regions, and Ae. albopictus 

acclimated to temperate regions (Fig. 6) (Kamal et al., 2018).  

 

 

Fig. 6 Ae. aegypti and Ae. Albopictus occurrence records (adapted from Kamal et al. 

2018). 

 

The ability of arthropods to spread the virus throughout a community can be calculated 

by a mathematical epidemiological model called the basic reproduction rate (R0). R0 

is calculated by a mathematical formula and will depend on multiple variables. One of 
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the most significant variables is the human-biting rate. Simply, the higher the human-

biting rate, the higher the capacity to spread the virus in human communities, therefore 

a higher R0. Conversely, zoophilic mosquitoes that favor biting of non-human primates, 

birds and reptiles will have a lower R0 (Roddam, 2001). Ae. aegypti are widely 

accepted as main vectors for various arboviruses and are considered to be 

anthropophilic mosquitoes with a high R0. This means that given the choice between 

humans and other mammals, these mosquitoes will preferentially bite humans 

(Crawford et al., 2017). However, conflicting results exist for Ae. albopictus mosquitoes 

that were thought to be opportunistic mosquitoes. This translates to a situation where 

these mosquitoes will bite humans if the opportunity arises, but would prefer other type 

of mammals. This is supported by the fact that Ae. albopictus mosquitoes are 

secondary vectors in most cases for arboviruses (Gould et al., 1970; Savage et al., 

1993). Surprisingly, a pertinent study on Ae. albopictus mosquitoes in the Réunion 

found that these mosquitoes behaved as anthropophilic vectors. In these regions, Ae. 

albopictus mosquitoes had two peaks of activity for feeding. The first peak was in the 

early morning, and the second in the late afternoon. Nonetheless, these mosquitos had 

a constant basal activity throughout the whole day. This study suggests that Ae. 

Albopictus mosquitoes are turning into dangerous primary vectors for CHIKV 

transmission (Delatte et al., 2010). 

iii. Phylogeny and evolutionary origin 

As is evident with the information presented earlier, CHIKV has spread to different parts 

of the world. This has led to efforts in performing phylogenetic analysis mainly revealing 

three main distinct geographical CHIKV lineages: Asian endemic/epidemic, West 

African and East/Central/South African (ECSA) enzootic lineages. These three CHIKV 

genotypes are highly conserved with 95.2% to 97% identity at the amino acid level (Am 

et al., 2000). The ECSA lineage has been the dominant lineage in the recent CHIKV 

outbreaks. This lineage is responsible for the emergence events of CHIKV from Kenya 

to the Indian Ocean islands and India. This recent emergence of CHIKV led to the 

establishment of an ECSA descendent strain known as the Indian Ocean lineage (IOL) 

strain. The ECSA lineage is also responsible for the recent outbreaks in the Americas 

(Haiti and Brazil) (White et al., 2018). The Asian lineage of CHIKV has also been 

associated with several outbreaks notably in Malaysia, New Caledonia, and French 

Polynesia. Further, the recently reported cases of isolated CHIKV in St Martin Island 
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were also attributed to this lineage (Gay et al., 2016; Leparc-Goffart et al., 2014). 

Finally, the Western African lineage of CHIKV is totally isolated and has not caused 

any outbreaks yet (de Bernardi Schneider et al., 2019). 

CHIKV is thought to have originated from Africa (Chen et al., 2016). Indeed, in this 

region, CHIKV has been circulating for a long time in a sylvatic cycle between non-

human primates and forest-dwelling mosquitoes such as Ae. furcifer, Ae. africanus, 

and Ae. luteocephalus. In some cases, incidental spill-overs have led to small 

outbreaks in this continent. However, the major CHIKV African outbreaks were caused 

by the ECSA CHIKV lineage seeding in regions having anthropophilic mosquitoes 

(mainly Ae. Aegypti) which then led to a human–mosquito cycle in urban areas of 

Africa. The Asian endemic/epidemic lineage resulted from an expansion of the CHIKV 

ECSA strain to South East Asia and its persistence in an urban cycle in these regions 

(Weaver, 2014).  

iv. Clinical symptoms 

The data accumulated to date show that CHIKV is an OW Alphavirus with mainly 

arthrogenic symptoms.  

CHIKV will cause what is known as Chikungunya fever (CHIKF). Impressively, CHIKV 

will induce CHIKF in the majority (50–97%) of infected individuals (Yactayo et al., 

2016). Characteristic symptoms of CHIKF include muscle and joint pain, fever, fatigue, 

and nausea. In rare cases, the infected individual will have neurological symptoms and 

submit to the Guillain–Barré syndrome (Balavoine et al., 2017). Fatal cases have been 

reported for CHIKV where the majority of attributed deaths were related with elderly 

people. Conformingly, being over the age of 65 increases the risk of CHIKV caused 

fatality by five times (Neto et al., 2019).  

CHIKV infection is divided into an acute and chronic stage. In acute infection, the virus 

is usually cleared after one week mainly because of triggering of the innate immune. 

Innate immune response is mainly mediated through the production of various 

cytokines and chemokines which attract immune cells such as macrophages, 

neutrophils, natural killer cells, CD4+ and CD8+ T cells limiting viral infection. An 

important cytokine mediating CHIKV anti-viral response is type I interferon (IFNa). The 

importance of this cytokine for limiting viral infection has been strikingly observed in 

mice with impaired IFNa pathway. CHIKV infection in these mice developed severe 
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symptoms which was correlated with the inability to control viral infection (Couderc et 

al., 2008; Sourisseau et al., 2007). The chronic stage of CHIKV can last from months 

to years and is an important health problem in the countries afflicted with CHIKV 

epidemics. Chronic infection is present in around 30% of infected individuals and 

characteristic symptoms include rheumatism and fatigue (Ganesan et al., 2017). This 

has been in some cases attributed to innate immune response due to the finding that 

macrophages infiltrating muscle and joint tissues promote local inflammation (Gardner 

et al., 2010). Indeed, macrophages are thought to be a reservoir for CHIKV RNA during 

chronic stages of infection (Labadie et al., 2010) and are therefore perhaps the 

mediator of chronic arthritis symptoms. This has been further reinforced by the finding 

that macrophages not only infiltrate affected tissues, but will also transform into 

osteoclasts possibly in this manner mediating the chronic symptoms observed (Phuklia 

et al., 2013). A recent study has detected a rare subset of skin and muscle fibroblasts 

cells that survived chronic CHIKV infection and harbored CHIKV RNA long after 

infection. However, similarly to macrophages, no active virus replication has been 

detected in these cells and how this subset of cells contributes to pathogenesis remains 

to be elucidated (Young et al., 2019).  

v. Natural history of Alphavirus infection in vertebrate hosts 

Following intradermal inoculation by an infected mosquito bite, CHIKV is capable of 

actively replicating in skin fibroblasts (Couderc et al., 2008). This virus will then, in 

certain cases, escape with the help of mosquito saliva which contains some 

immunomodulators, through the lymph nodes to other tissues such as the liver, muscle, 

joint and brain (Schneider et al., 2004). Conformingly, virus dissemination throughout 

the body has been detected in the liver, brain, joints, and muscles of experimentally 

infected macaques (Labadie et al., 2010). The final step of CHIKV infection consists of 

replication in peripheral tissues such as the muscle and joints leading to high blood 

viremia reaching viral loads of 3.3 × 109 copies/ml during the first week of infection 

(Parola et al., 2006). At this stage, an infected individual represents a perfect target for 

a mosquito blood meal leading to subsequent transmission and amplification of the 

virus (Fig. 7).  
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Fig. 7 CHIKV dissemination after a mosquito bite 

(A) After a mosquito bite, CHIKV actively replicates in skin fibroblasts. (B) Replication in fibroblasts 
attracts immune cells such as macrophages and neutrophils. (C) CHIKV then migrates through the lymph 
node to the blood circulation (D) CHIKV is then capable of disseminating to various different organs such 
as the joints and muscle cells (adapted from Kam et al. 2009). 

 

All this information points towards CHIKV being an important disease that emerged first 

in the 1950s and re-emerged recently in the 21st century. The capacity of this virus to 

adapt to new vectors and spread world-wide raises alarms of its never-ending danger. 

CHIKV is a virus that is always on the lurk waiting for the perfect opportunity to remerge. 

G- Virus structure and genome organization 

i. Virion structure  

An Alphavirus is composed of multiple organized layers which serve for the protection 

of viral RNA and its proper delivery into the host cell. The structure and organization of 

the viral particle have been resolved by cryo-electron microscopy by several groups 

(Fig. 8) (L. Chen et al. 2018; Mancini et al. 2000; Basore et al. 2019; Cheng et al. 1995). 

The innermost layer is an assembly of 240 copies of capsid proteins organized as 12 

pentamers and 30 hexamers forming an icosahedral shell. This layer, together with the 

viral RNA will compose the nucleocapsid (NC). The NC is enveloped by a host-derived 
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lipid bilayer. The lipid bilayer itself is embedded with 80 glycoprotein spikes with an 

icosahedral symmetry as well. Each spike is a trimer of heterodimers composed of one 

copy of the E1 and E2 proteins (Chen et al., 2018). In the Alphavirus virion, a 

hydrophobic pocket in the C-terminus of the capsid protein will bind the cytoplasmic tail 

of E2 linking the inner core proteins with the glycoprotein surface proteins (Lee et al., 

1996). The diameter of a mature virion is around 700 Å. As mentioned earlier, these 

layers will serve to protect the viral RNA which codes for the genetic information of the 

virus (Jose et al., 2009). 

 

 

Fig. 8 Alphavirus structure 

(A) 3D reconstruction of an Alphavirus particle with a 3.5Å resolution (B) Central cross-section of an 
Alphavirus particle (adapted from L. Chen et al. 2018; Sun et al. 2013). 

 

ii. Viral genome organization and cis-acting elements  

The Alphavirus genome is composed of a non-segmented single-stranded RNA of 

positive polarity and is around 12 kb in size (Fig. 9). This genome has a similar 

architecture to cellular messenger RNA (mRNA) as it includes a cap at the 5’ terminus 

and a poly(A) tail at the 3’ terminus. Unlike mRNA, the 5’ cap is only methylated at the 
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guanosine residue and is therefore named Cap (0) (Wengler et al., 1979). The 

Alphavirus genome codes for two cistrons with their respective genomic and sub-

genomic promoters. The first cistron at the 5’ end codes for the viral nsPs (nsP1, nsP2, 

nsP3, and nsP4) which form the replication machinery. The second cistron will code for 

the viral sPs (Capsid, E3, E2, 6K, TF, and E1) that will form the new Alphavirus particles 

(Strauss and Strauss, 1994).  

Other than the coding regions, there exists untranslated regions at the 5’ and 3’ end (5’ 

UTR and 3’ UTR) of the viral RNA which are variable in nucleotide length between 

different Alphaviruses. The 5’ UTR range in length from 27 (SAV) to 85 (SFV) 

nucleotides, and the 3’ UTR range in length from 87 (SAV) to 723 (CHIKV) nucleotides 

(Hyde et al., 2015). 

These represent part of the cis-acting elements of the viral genome that have been 

described to play a role in RNA synthesis and immune evasion. Starting from the 5’ 

end, the first cis-acting element, the 5’ UTR, is a component of the promoter for viral 

RNA synthesis and has been described to form stem-loop structures (Frolov et al., 

2001). These stem-loop structures were also identified to be important for the evasion 

of immune sensing, specifically IFIT1 mediated anti-viral activity (Reynaud et al., 2015). 

A recent study using biochemical “selective 2′-hydroxyl acylation analyzed by primer 

extension” (SHAPE) analysis, has identified a new stem-loop structure in the 5’ UTR 

denoted as SL47 and found it important for efficient CHIKV genome replication. SL47 

was also present in phylogenetically close Alphaviruses such as ONNV (Kendall et al., 

2019). 

Another cis-acting element is the 5’ conserved sequence element (CSE) present at the 

start of the nsP1 sequence which can forms up to 5 stem-loops (SL85, SL102, SL165, 

SL194, and SL246) (Kendall et al., 2019). Moving to the 3’ end of the viral genome, 

there also exists two 3’ CSEs, the first one is present in the sub-genomic RNA promoter 

and the second is localized directly upstream of the poly(A) tail (Ou et al., 1981). 

Modification of both 5’ and 3’ CSEs without changing the coding of their respective viral 

proteins has elucidated their importance in regulating viral RNA synthesis (Fayzulin 

and Frolov, 2004; Frolov et al., 2001).  

The function of the 3’ UTR is not well understood, but it has been implicated in mosquito 

vector adaptation. This has been specially investigated in studies dealing with the role 
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of the 3’ UTR in vertebrate and invertebrate host infection. Interestingly, deletions in 

the 3’ UTR do not completely abolish replication in vertebrate cells. However, these 

modifications decrease fitness in mosquito cells suggesting that the 3’ UTR plays an 

important role in interacting with mosquito cell factors. The relevance of the 3’ UTR for 

mosquito infection can be appreciated when comparing 3’ UTRs of different 

Alphaviruses. Indeed, Eilat, an Alphavirus which is restricted to insect cells has a large 

3’ UTR (520 nt). While, as mentioned earlier, SAV which do not replicate efficiently in 

insect cells have very short 3’ UTRs (Chen et al., 2013). 

An interesting finding was that modifications in the 5’ end of the viral genome affected 

(-)RNA synthesis. This implied that the 5’ and 3’ end need to interact in order to facilitate 

(-)RNA synthesis leading to circularization of the viral RNA (Frolov et al., 2001). 

However, no conclusive evidence exists for this interaction, and the role of host factors 

in this circularization has not yet been shown.  

Finally, the genomic RNA contains packaging signals allowing specific packaging of 

the viral RNA into newly synthesized virions. Studies in SINV revealed the packaging 

signal to be localized in nsP1 (Frolova et al., 1997). However, for SFV, the packaging 

signal was shown to be in nsP2 (White et al., 1998). 
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Fig. 9 Alphavirus genome and cis-acting elements 

Schematic representation of the Alphavirus genome and cis-acting elements. CSE: conserved sequence 
element; nts: nucleotides; PS: packaging signal; SG: sub-genomic; SL: stem loop; UTR: untranslated 
region (adapted from Kendall et al. 2019; Hyde et al. 2015; Frolov, Hardy, and Rice 2001). 

 

H- Life cycle of Alphaviruses: What we know / What we don’t know 

In this part, the knowledge on the Alphavirus life cycle will be detailed. It consists of 

over 30 years of elaborate studies on mainly SINV and SFV models. However, this 

knowledge mainly accumulated in these two models can also be transposed to 

understand CHIKV which remains less investigated.  Alphaviruses are interesting in 

their capacity to replicate in vertebrate and invertebrate cells. In invertebrate cells, 

Alphaviruses will replicate without fitness downsides on the host cell. However, 

Alphavirus infection in vertebrate cells engenders highly cytopathic effects that will be 

described in details later on. Here, the life cycle of Alphaviruses will be given with 

respect to the knowledge mainly accumulated in vertebrate (mainly human) cells (Fig. 

10).  

i. Virus entry 

Viruses enter the cell through the presence of entry factors at the plasma membrane 

of host cells. There are two types of entry factors: (1) receptors and (2) attachment 

factors. Receptors are defined by their specificity due to direct interactions with the 

envelope protein of the virus. However, attachment factors do not exhibit such specific 

interactions.  

For Alphaviruses, interactions with receptors occur mainly through the E2 viral protein. 

Studies on SINV have revealed NRAMP2, an iron metabolic transporter also named 

DNMT1 or SLC11A2, as a receptor and SEC61A/VCP as regulators of this viral entry 

(Panda et al., 2013; Rose et al., 2011). However, recently, by the use of a 

CRISPR/Cas9-based screen, Mxra8 (also called DICAM, ASP3, or limitrin) was 

identified as a receptor for CHIKV. Mxra8, for matrix remodeling associated 8 protein, 

is an adhesion molecule containing immunoglobulin-like domains and is found in 

mammals where it is mainly expressed on epithelial and mesenchymal cells. Intricate 

studies have been performed on the complex formed between the E2 protein and the 

newly discovered CHIKV receptor. Interaction occurs at the “valley” between two 

protomers of the envelope spikes. Interestingly, this interaction will involve not only E2 
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but also the E1 and E3 protein where a unique 3:3 binding interaction will be adapted 

with this receptor (Basore et al., 2019; Song et al., 2019). The requirement of Mxra8 

for viral entry is conserved for closely related OW Alphaviruses such as MAYV and 

ONNV. However, SINV and NW Alphaviruses show little dependence on this receptor 

(Zhang et al., 2018). This is of interest since SINV has a complex evolutionary past 

resulting from a recombination event which is consistent with the lack of Mxra8 

requirement for this virus (Weaver et al., 1997; Zhang et al., 2018). It has to be 

mentioned that some cell lines lacking cell surface expression of Mxra8 are highly 

infected in vitro by CHIKV raising questions about the presence of other receptors for 

this virus.  

Attachment factors play an important role in promoting virion binding to their target cell. 

Alphavirus attachment factors include cell surface heparan sulfate, DC-SIGN and L-

SIGN which have been shown to help virion attachment to the host cell (Klimstra et al., 

1998, 2003). Additionally, TIM1 and Axl, belonging to the TIM and TAM family of 

transmembrane proteins that participate in the phosphatidylserine (PtdSer) dependent 

phagocytic removal of apoptotic cells, have been shown to promote Alphavirus entry 

by their ability to bind PtdSer accessible between the envelope spikes of the virions 

(Jemielity et al., 2013; Morizono et al., 2011). Interestingly, attachment factors could 

also play roles in signaling as it has been shown for ZIKV, for example, that binding to 

Axl activates its kinase activity and downmodulates interferon signaling facilitating 

infection (Meertens et al., 2017). As Alphaviruses also use this attachment factor, it 

would be interesting to study whether a similar mechanism is highjacked by these 

viruses. 

Finally, a dynamic for Alphavirus entry can be proposed from the previously mentioned 

information (1) non-envelope mediated binding through attachment factors that have 

affinity to certain lipids at the surface of virions allows close proximity to receptors at 

the plasma membrane that will then (2) bind specifically the E2 protein and promote 

viral entry.  

ii. Endocytosis and fusion 

After binding, the virion will enter the cell by clathrin-mediated endocytosis. Clathrin 

coating of endocytic vesicles allows rapid traversing of the membranes and delivery of 

the viral particles into the cell (Helenius, 1980). Yet, this is not the only possible entry 
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pathway since it has been shown that Alphaviruses are capable of entering the cell in 

a clathrin-independent manner (Bernard et al., 2010). A recent study has added 

another layer to the knowledge of Alphavirus entry showing the involvement of the 

macropinocytosis process. Macropinocytosis mediated virus entry involves the 

activation of receptor tyrosine kinases which will induce bleb or ruffle formation. Then, 

the collapse of these structures will lead to the delivery of viruses inside the cell (Lee 

et al., 2019). Surprisingly, it has been observed that Alphavirus entry could occur 

directly at the plasma membrane through the formation of a pore by the virus, and 

perhaps with the involvement of host proteins. However, this excludes the delivery of 

the viral particle into endocytic vesicles and comes in contradiction with the dogma of 

Alphavirus entry (Vancini et al., 2013). 

After internalization by clathrin or the other endocytic pathways, viral particles will be 

delivered to early endosomes. Inhibiting the activity of Rab5, a Rab GTPase 

responsible for endosome biogenesis and transport has elucidated the importance of 

this delivery for the establishment of efficient Alphavirus infection (Bernard et al., 2010). 

Once inside the early endosomal compartment, the fusion of viral and endocytic 

membranes will depend on an acidic pH (lower than 6) environment of the vesicle. 

Acidification of endosomal vesicles is mediated through vacuolar ATPase pumps which 

will pump H+ into the vesicle leading to a decrease in pH. The use of inhibitors targeting 

endosomal acidification and vacuolar ATPase pump activities has confirmed the need 

for low pH for the fusion process (Bernard et al., 2010; Irurzun et al., 1997). So, why is 

low pH essential for viral fusion? Elaborate structural and functional studies have 

involved the E1 viral protein. In this model, acidification of endosomes will lead to 

dissociation of the E1 viral protein from its complex with E2 and its self-assembly into 

a hairpin-like homotrimer (Wahlberg et al., 1992). This homotrimer is capable of 

bringing the viral and endosomal membranes to proximity and in consequence merging 

the outer membranes which will lead to NC release (Gibbons et al., 2004). 

Controversially, it is important to note that several studies have found that fusion can 

occur independently of low pH as well (Cassell et al., 1984; Hernandez et al., 2001). 

These studies were carried out by the same group that proposed entry by fusion directly 

at the plasma membrane. 

Certain types of lipids also play an important role in this process as it has been shown 

that cholesterol is required for fusion (Lu et al., 1999). However, this is controversial as 
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lipid rafts, membrane microdomains rich in cholesterol, were not required for fusion to 

occur (Waarts et al., 2002). This study used large unilamellar vesicles (LUVs) which 

are artificial in nature and might explain the discordance with the previous study.  

iii. Translation 

Once the viral particle is delivered in the cytosol, NC disassembly will occur quickly (5 

minutes) by unknown mechanisms leading to the release of the viral RNA genome into 

the cytoplasm of the infected cell (Helenius, 1984). In this step, ribosomes recruitment 

for protein translation might occur through the capsid protein which has been shown to 

bind the large ribosomal subunit (Ulmanen et al., 1976). Additional evidence supporting 

this hypothesis is a recent study that demonstrated the importance of capsid/viral 

genomic RNA interactions after disassembly for efficient translation (Sokoloski et al., 

2017). 

The genomic RNA coding for the nsPs will be synthesized early in infection, and the 

sub-genomic RNA translation will be favored late in infection. nsPs are translated 

directly from the incoming RNA genome. The translation of nsPs begins at the AUG 

initiation codon present in nsP1. Translation will arrest at the stop codon (UGA) 

producing two different polyproteins: P123 and P1234. This selection is determined by 

an opal codon present at the C terminus of nsP3 which leads to the production of P123 

in 90% of the cases (Carrasco et al., 2018; Strauss et al., 1983). 

The viral RNA genome has a similar architecture to cellular mRNA and therefore has 

been suggested to utilize canonical cap-dependent translation machinery. This was 

confirmed by a study showing that a loss of expression or activity of the translation 

initiation factor eIF4E led to a significant decrease in Alphavirus infection (Joubert et 

al., 2015). eIF4E plays an important role in the assembly of the translational machinery 

where it is involved in directing ribosomes to the cap structure of mRNAs. Its activity is 

generally regulated by the mTOR pathway that controls host protein synthesis through 

phosphorylation/de-activation of the eIF4E inhibitor, 4E-BP1, leading to the release of 

translational repression (Joubert et al., 2015). However, surprisingly, mTORC1 

inhibition has been shown to boost Alphavirus infection. Indeed, mTOR activity is 

inhibited during viral infection in order to limit cellular translational machinery (Martin et 

al., 2012). The final piece of the puzzle came with the finding that Alphaviruses regulate 

eIF4E through an mTORC1-independent manner through activation of the MAP kinase-
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activated protein kinases (Mnks). In infected cells, Mnks directly phosphorylate and 

therefore activate eIF4E allowing the assembly of the translational machinery for viral 

protein production despite mTOR inhibition limiting general protein translation (Joubert 

et al., 2015). 

iv. Replication complex formation 

After nsP polyprotein translation, it will then be sequentially cleaved via the protease 

activity of nsP2. This sequential processing is essential for proper replication complex 

assembly (Lulla et al., 2018). The first cleavage occurs in cis at the level of the junction 

between nsP3^nsP4 leading to the release of nsP4. NsP4 together with P123 and viral 

RNA will associate at the plasma membrane via membrane interaction motifs in nsP1. 

This complex is short-lived and will be specialized in the production of (-)RNA leading 

to the formation of dsRNA intermediates. Further cleavage in trans of two different P123 

precursors will lead to the release of nsP1 and then the final cleavage occurs in the 

junction between nsP2^nsP3. This final step will restructure the replication complex to 

its mature form and will lead to the synthesis of genomic and sub-genomic (+)RNA 

(Jose et al., 2009; Reynaud et al., 2015). In the section, “Focus on the replication 

complex”, the Alphavirus replication process will be further detailed.  

v. Assembly and budding 

Late in infection, the viral sPs will be produced from the sub-genomic RNA in the form 

of a polyprotein Capsid-E3-E2-6K-E1. The capsid, through its protease activity present 

in the C-terminus, will quickly be cleaved off the structural polyprotein and will then 

assemble into a multimer of 240 capsid copies which can interact with the viral RNA to 

form the NC. Capsid cleavage will reveal a signaling peptide in E3 which re-localizes 

the structural polyprotein to the endoplasmic reticulum (ER) where it will further be 

processed to yield E3-E2 (pE2), 6K and E1. After this processing, pE2 will form a 

heterodimer with E1. Then, the oligomerization of three such heterodimers will form the 

immature, non-fusogenic spike. Further modification will occur in the trans-Golgi 

network where the cellular enzyme furin will release E3 from pE2. This renders the 

spike fusogenic. Finally, the mature spike will be transported to the plasma membrane. 

Lateral spike-spike interactions will lead to the formation of hexagonal arrays which will 

promote E2/NC interactions. Where does this E2/NC interaction occur? The answer to 

this question remains unanswered, however, it has been suggested that E2/NC could 
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be co-transported in cytopathic vacuoles of type II (CPVII) (Soonsawad et al., 2010). 

This transport to the cell surface has been proposed to involve an actin-dependent 

transport through Arf1 and Rac1 trafficking-related proteins (Radoshitzky et al., 2016). 

Another hypothesis is that the NC could be pre-assembled at the plasma membrane 

and that E2 interactions will occur there. In any case, no matter where these 

interactions occur, the E2/NC complex will promote assembly and budding of the 

mature virion from the plasma membrane or from virus-induced intercellular extensions 

(Martinez and Kielian, 2016; Mendes and Kuhn, 2018; Snyder and Mukhopadhyay, 

2012). The cellular machinery involved in the scission of the viral particles from 

membranes has not been elucidated yet for Alphaviruses. However, it is clear that this 

scission is independent of the endosomal sorting complexes required for transport 

(ESCRT)  pathway which mediates the budding of virus particles of a plethora of 

enveloped viruses (Taylor et al., 2007). Furthermore, in the case of Alphaviruses, it has 

been suggested that the extensive protein interactions between the envelope and the 

NC proteins might be sufficient to drive this process.  
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Fig. 10 Model of the Alphavirus life cycle  

Model of the Alphavirus life cycle: After attachment and binding to receptors (step 1 and 2), an Alphavirus 
virion is internalized by clathrin-mediated endoycytosis (step 3). Low PH mediated fusion will occur in 
late endosomes (step 4). This will then lead to nucleocapsid release and disassembly (step 5) 
discharging the viral genome which will then be translated producing the nonstructural polyproteins (step 
6). Replication and host proteins along with the viral RNA will form replication complexes (step 7). These 
complexes form in association with the plasma membrane (PM) leading to the formation of spherule 
structures and are sites of transcription and replication of viral RNA (step 8). Spherules can then, in 
some cases, be internalized from the plasma membrane into vesicles that by fusion of with lysosomes 
will generate CPV-I structures. Subgenomic RNA will act as a template for production of the structural 
polyprotein (step 9) which will then be processed into the capsid protein (CP) and envelope polyproteins 
that are translocated (step 10) to the ER, processed by signalase (step 11) and glycosylated and 
transported through the Golgi complex, where furin cleavage removes E3 from E2 (step 12) to the PM 
via the secretory pathway. CP will bind viral RNA for nucleocapsid formation (step 13) which will then 
bind to the glycoprotein spikes present on the PM, and the virus will bud from the PM (step 14) (adapted 
from Jose, Taylor, and Kuhn 2017). 
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I- Viral proteins  

Structural proteins  

The viral sPs, as their name indicates, will participate in the formation of the structure 

of the mature virion which will then be capable of infecting another host cell. 

In this sub-section, the role of each protein in the formation of an Alphavirus particle 

will be discussed. In addition, some atypical roles of these proteins will be mentioned 

as well. 

i. Capsid 

Monomeric capsid is a cytoplasmic protein with a molecular weight of 35 kDa.  

The capsid protein has a serine protease activity that has been mapped to its C-

terminus and involves a catalytic triad composed of Gly-Asp-Ser(219)-Gly. This activity 

allows this protein to cleave itself out of the newly produced structural polyprotein 

(Melancon and Garoff, 1987).  

During the assembly process, the monomeric capsid is capable of forming multimers 

composed of 240 capsid proteins with a T=4 arrangement (Cheng et al., 1995). This 

multimerization involves coiled-coil interactions through a secondary structure known 

as the helix I in the N-terminus of the capsid protein (Perera et al., 2001). Binding of 

the capsid protein to genomic viral RNA to form the NC is mediated by the first 100 

amino acids which are of very basic nature (Coombs and Brown, 1989).  

Finally, for NW Alphaviruses, the capsid protein causes toxic effects on host cells. This 

property mapped to the N-terminus of this protein, will exert its effects through the 

inhibition of the expression of RNA polymerase II transcribed genes. The capsid protein 

can also phosphorylate the eukaryotic initiation factor 2α (eIF2α) subunit suggesting an 

effect on translation as well (Aguilar et al., 2007). However, this property is not 

conserved for OW Alphaviruses where it has been shown that nsP2 exerts this function 

(Garmashova et al., 2007). 

Envelope proteins 

The envelope proteins are glycosylated and palmitoylated transmembrane proteins 

which will insert into the host-derived lipid bilayer forming the final shell of the virus (the 

envelope) during the budding process. The viral envelope consists of 240 copies of the 
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E1 and E2 glycoproteins in a one to one ratio. The E2/E1 heterodimer will appear on 

the surface as a trimer of heterodimers giving the viral particle its characteristic spiky 

appearance as resolved by cryo-electron microscopy (Chen et al., 2018; Cheng et al., 

1995).   

ii. E1 

The E1 protein (47 kDa) is an elongated molecule composed of three β-sheet-rich 

domains (DI-DIII). It is responsible for the fusion of the viral and endosomal membranes 

after virus entry. This function is induced after acidification of endosomes containing 

the viral particles which will lead to disassociation of E2/E1 heterodimers. This will 

expose the fusion loop present in the domain II of the E1 protein leading to its insertion 

into endosomal membranes. Then, the formation of E1 homotrimers will lead to the 

creation of a pore fusing the two membranes and allowing the release of the viral NC 

into the cytosol (Li et al., 2010). 

iii. E2 

E2 (47 kDa) has a long leaf-like structure and is composed of an ectodomain, stem 

region, and a transmembrane alpha helix. It is the envelope protein that will lead to 

virion recognition of host cell receptors and subsequent virus entry through receptor-

mediated endocytosis.  

Interestingly, E2 has a fascinating capacity to modify the host cell cytoskeleton leading 

to the formation of long intercellular extensions that contain actin and tubulin. It can 

exert this function either when expressed alone or in the context of an Alphavirus 

infection. These extensions were additionally shown to play a role in Alphavirus 

mediated cell to cell transmission (Martinez and Kielian, 2016). 

iv. E3 

Conversely to E1 and E2, the role of E3 is not clearly known. The emerging theory is 

that E3 acts as a chaperone for E2 folding during spike assembly. It also may associate 

with the E2/E1 heterodimers. This phenomenon, however, is not present in all 

Alphaviruses and is clade-specific (Snyder and Mukhopadhyay, 2012). 

v. 6K 

6K is a small (6 kDa) heavily acylated protein that is incorporated into virus particles in 

little amounts. (Gaedigk-Nitschko and Schlesinger, 1990). The exact functions of this 
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protein are poorly known. However, it is presumed to play an important role in the 

structure of the Alphavirus particle. This was supported by findings that mutations in 

6K lead to a substantial decrease in virus yield. 6K possibly exerts its structural 

functions by interactions with E2 since mutations in 6K were shown to be suppressed 

by compensatory mutations in E2 (Ivanova et al., 1995). 

Finally, 6K can form cation-selective ion channels in lipid bilayers and hence was 

characterized as a “viroporin” which is reminiscent of the HIV accessory protein, Vpu. 

This function might be important during the virus budding steps as ion strength has 

been shown to play a regulatory role in this process probably through conformational 

rearrangement of the E2 protein upon its release from the precursor pE2 (Melton et al., 

2002; Strauss et al., 1980). 

vi. TF 

The discovery of a slippery codon motif in the 6K gene suggested the presence of an 

additional structural protein. This protein was called trans-frame (TF) because of its 

production due to a ribosomal frameshifting into a -1 open reading frame. This 

frameshifting occurs with an estimated efficiency of approximately 10-18%. The TF 

protein shares the N-terminus containing the transmembrane domain with ion channel 

activity with the 6K protein but has a unique C-terminus  (Firth et al., 2008). The TF 

protein has been shown to be palmitoylated at its N-terminus promoting plasma 

membrane localization and incorporation into virions (Ramsey et al., 2017). Only one 

study has examined TF’s functions. In this study, TF was shown to be dispensable for 

genome synthesis and transport of envelope proteins to the cell surface. However, it 

was suggested that TF might be involved in virus particle assembly and release 

(Snyder et al., 2013). Palmitoylation of TF might be involved with this function since 

mutating palmitoylated cysteines led to abnormal virus particle morphologies (Ramsey 

et al., 2017). The discovery of TF impacts decades of Alphavirus research and new 

functions of this protein will probably be unveiled in the near future. 

Non-structural proteins: In and out 

The viral nsPs are responsible for the formation of the functional replication machinery. 

This will lead to the multiplication of the viral genome. In addition to their functions 

inside the replication complex, nsPs also exist in significant fractions elsewhere in the 
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cell exerting diverse effects. In this part, the knowledge accumulated on viral nsPs in 

and out of the replication complex will be described.  

i. NsP1 

NsP1 is composed of 535 amino acids and has a molecular weight of 60 kDa.  

In:  

NsP1 as the main capping enzyme 

One of nsP1’s prime functions inside the replication complex is to cap viral RNA. The 

mechanism behind nsP1-mediated viral capping has been well documented (Fig. 11). 

NsP1 methyltransferase activity (MTase) is able to transfer a methyl group from S-

Adenosyl methionine (SAM) to guanosine triphosphate (GTP) (Laakkonen et al., 1994). 

This will then lead to the formation of an nsP1-m7GMP complex. The formation of this 

covalent complex is dependent on the presence of divalent ions such as Mg2+ or Mn2+ 

(Li et al., 2015). Finally, nsP1 guanylyltransferase (GTase) activity will transfer the 

methylated guanosine to the 5’ end of the viral RNA previously processed thanks to 

nsP2’s RNA triphosphatase activity (RTPase) (Ahola and Kääriäinen, 1995). This 

capping mechanism is unconventional when compared to the capping of cellular 

mRNA. Since the guanosine residue is transferred to the 5’ end of mRNA and only then 

is this residue methylated (Decroly et al., 2011). Critical amino acids in the N-terminus 

of nsP1 have been identified for its corresponding GTase and MTase activity. These 

include D64, D90, R93 and C135 which upon their mutagenesis led to the abolishment 

of both GTase and MTase activities. The residue H38 is interesting in its relevance for 

only GTase activity and has been suggested to mediate nsP1 binding to m7GMP 

through a phosphoramide bond (Ahola et al., 1997; Wang et al., 1996). In addition, 

these critical residues for MTase and GTase activities have been shown to also be vital 

for viral infection. This is coherent with the important role of capping in the protection 

of newly synthesized viral RNA from degradation. This has led to important efforts to 

develop inhibitors blocking these activities since such molecules could be used as anti-

viral drugs against Alphaviruses. Furthermore, the attractiveness of anti-viral molecules 

targeting nsP1 capping activity is their specificity since, as mentioned earlier, nsP1 

capping differs from the cellular capping mechanisms. In these investigations, one of 

the compounds examined was a natural molecule called lobaric acid that was capable 

of inhibiting MTase and GTase activity in-vitro and viral in-vivo infection (Delang et al., 
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2016). Additionally, a new class of small molecules called ([1,2,3]triazolo[4,5-

d]pyrimidin-7(6H)-ones) were recently found to also act on nsP1 enzymatic activity. 

Interestingly, these molecules were only specifically active to the GTase activity. 

Alphavirus infected cells treated with the drug led to the generation of a mutation in the 

proline residue 34 in nsP1 indicating the possible binding region of these small 

molecules (Feibelman et al., 2018). Surprisingly, it has recently been shown that viral 

genomic RNAs of Alphaviruses are not all universally capped. A significant portion of 

viral particles encapsidated non-capped RNA which was in turn inversely related to 

viral particle infectivity (Sokoloski et al., 2015). A follow-up paper attempted to explain 

the function of these non-capped RNAs in viral infection by modifying certain residues 

in nsP1 that caused an increase in its capping efficiency. It was notably found that 

increase in capping activity negatively affected viral infection by perturbing proper 

particle assembly (LaPointe et al., 2018). This established, for the first time, an 

important role of non-capped RNAs in viral infection, and implied an importance in the 

balance of nsP1 capping activity for viral replication. 

 

 

Fig. 11 Alphavirus nsP1 capping mechanism 

Viral RNA capping starts with nsP2 mediated hydrolysis of gamma phosphate at the 5’ end of viral RNA. 

(1) nsP1, through its methyltransferase activity, transfers a methyl group from S-Adenosyl methionine 
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(SAM) to guanosine triphosphate (GTP) leading to the (2) formation of a nsP1-guanosine 
monophosphate methylated at position 7 intermediate (m7GMP-nsP1) (3) nsP1, through its 
guanylyltransferase activity, transfers m7GMP to the 5’ end of viral RNA leading to the formation of the 

cap. 

 

NsP1 as a membrane anchor  

Another important function of nsP1 is its role in replication complex membrane 

anchoring. Indeed, nsP1 is the only nsP capable of interacting with cellular membranes. 

In imaging studies, this protein has been mainly observed at the plasma membrane but 

also in some instances at endosomal membranes (Peränen et al., 1995). The model is 

that nsP1 will guide the other nsPs to the plasma membrane for replication complex 

assembly. Historically, nsP1 membrane association was first attributed to the presence 

of one to three palmitoylated cysteine residues present at the C terminal region of the 

protein (418-420 in CHIKV sequence). Indeed, mutations in this region led to a partial 

loss of nsP1 membrane affinity (Laakkonen et al., 1996). Recently, the two zinc finger 

DHHC domain containing palmitoyltransferases (ZDHHCs), ZDHHC2 and ZDHHC19 

were shown to be responsible for nsP1 palmitoylation (Zhang et al., 2019a). The 

importance of nsP1 palmitoylation for Alphavirus replication has been reported by 

several groups using different Alphavirus models. These studies have established that 

nsP1 palmitoylation can range from being unessential to absolutely vital for virus 

replication. Indeed, SINV with mutation in nsP1 palmitoylated cysteine is viable and 

replicate to high titers (Ahola et al., 2000). A moderate importance of nsP1 

palmitoylation has been described for SFV where an initial delay in virus growth is 

detected but which is then counteracted by second site mutations in nsP1 (Žusinaite et 

al., 2007). These mutations did not restore nsP1 palmitoylation, but recovered nsP1-

nsP4 interaction. The exact mechanism by which these mutations restore interaction 

between nsP1 and nsP4 remain to be described, but it has been suggested that these 

changes can affect the 3D conformation of nsP1 inside the replication complex. To the 

other end of the spectrum, there exists Alphaviruses which absolutely require nsP1 

palmitoylation for replication. This is the case of CHIKV where mutations in 

palmitoylated cysteines of nsP1 have been shown in two separate studies to completely 

abolish viral replication. Additionally, silencing of ZDHHC2 and ZDHHC19, the 

palmitoyltransferases responsible for nsP1 palmitoylation, also lead to complete 

abrogation of CHIKV replication further demonstrating the importance of this 
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modification. These studies either employed a complete infectious system or a 

replicon-based system which recapitulated only the replication steps of Alphavirus 

infection (Utt et al., 2019; Zhang et al., 2019a). So, why does nsP1 palmitoylation 

requirement differs between these Alphaviruses? All nsP1 of these corresponding 

Alphaviruses demonstrate partial loss of membrane affinity upon mutation of nsP1 

palmitoylated cysteines. Therefore, this membrane binding function does not 

completely explain the differences in palmitoylation requirement. It is therefore clear 

that in order to answer this question, more details on the exact role of nsP1 

palmitoylation should be provided.  

Since non-palmitoylated nsP1 mutant still retained partial membrane binding, and SFV 

with this mutation inserted into the viral genome replicated to high titers (Ahola et al., 

2000). Intensive studies, through the use of deletion mutants, were done to reveal if 

there exists another membrane binding determinant. This led to the mapping of a 

central region in nsP1 (245-268) (Ahola et al., 1999) which was later shown to be 

amphipathic, in nature, and to structure as an a-helix upon binding to negatively 

charged lipids. In this a-helix, an important role has been attributed to the tryptophan 

residue at position 259 which was shown to intercalate in the lipid bilayer to the depth 

of the ninth and tenth carbons of the lipid acyl chains (Lampio et al., 2000). It has to be 

mentioned that this a-helix has been only produced in the form of a synthetic peptide 

and its presence in the complete nsP1 protein remains an open question due to the 

lack of structural information on nsP1.  An interesting finding was that nsP1 with 

tryptophan to alanine mutation at position 259 was found to be poorly palmitoylated. 

This suggested that palmitoylation of nsP1 might be dependent on proper membrane 

targeting through the a-helix peptide (Spuul et al., 2007). The current model for nsP1 

membrane binding involves initial membrane interactions through its a-helix. This step 

is followed by nsP1 palmitoylation which will tighten membrane interactions (Fig. 12). 

The two functions of nsP1 inside the replication complex are possibly intertwined. Since 

it was shown that nsP1’s capping activity is regulated by the presence of anionic 

membrane phospholipids (Ahola et al., 1999). This hints that nsP1 requires association 

with specific lipid species at the membrane for its proper enzymatic activity. But this 

might not be true for all Alphavirus nsP1. For example, detection of SINV nsP1 

enzymatic activities do not require attachment to membranes. However, SFV 

enzymatic function absolutely depends on the presence of membranes (Ahola et al., 
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1999). This might also be the case for CHIKV since attempts to purify an enzymatically 

active CHIKV nsP1 hasn’t been successful to this date (Delang et al., 2016).   

 

 

Fig. 12 Alphavirus nsP1 membrane binding mechanism 

(A) Step 1: nsP1 associates with the plasma membrane through its central amphipathic alpha-helix motif. 
Association with anionic phospholipids at the plasma membrane will then activate nsP1’s capping 

activity. Step 2: palmitoylation of nsP1 will further tighten membrane interaction. (B) Nuclear magnetic 
resonance structure of the binding peptide (aa 245-264) of nsP1 (adapted from Lampio et al. 2000; 
Kääriäinen and Ahola 2002). 

 

Out: 

Interaction between nsP1 and the innate immune response 

Outside the replication complex, nsP1 has been described to exert functions with 

consequences on innate immunity. The first hint for such a function was demonstrated 

when nsP1 was identified as a critical determinant for RRV induced musculoskeletal 

inflammation (Jupille et al., 2011). It was later shown that this process was controlled 

by the production of IFNa by monocytes and that nsP1 counteracted this response 

(Haist et al., 2017). It is interesting to note that one of the determinants in nsP1 that 

have been associated with these functions is the palmitoylated cysteine residue at 
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position 416 which has been already implicated in Alphavirus neurovirulence (Ahola et 

al., 2000).  

The exact mechanism behind nsP1/innate immunity interaction is yet to be elucidated. 

However, a glimpse for this role was discerned when nsP1 was shown to be capable 

of counter-acting tetherin mediated anti-viral activity. Tetherin is an interferon-

stimulated gene that acts on the budding step of the Alphavirus lifecycle where it tethers 

the viral particle to the infected cell preventing its release from the cell surface. The 

exact mechanism behind nsP1-mediated downregulation of tetherin remains to be 

determined (Jones et al., 2013). Controversially, a recent paper has contested this 

nsP1 role as it was observed that no Alphavirus proteins encoded an antagonist for 

tetherin (Wan et al., 2019). 

Membrane deformation ability of nsP1 

Another intriguing role of nsP1 outside of the replication complex, when expressed 

alone or in the context of infection, is its capacity to remodel cellular membranes. 

Isolated expression of nsP1 was shown to induce the formation of filopodia-like 

structures containing actin filaments at the base and middle of these structures (Fig. 

13). However, this function was proposed to be independent of actin due the growth of 

these filopodia structures in the presence of the actin polymerization inhibitor, 

cytochalasin D. Interestingly, nsP1 also led to the disappearance of actin stress fibers. 

This suggested that nsP1 actions on cellular membranes might possibly be linked to its 

ability to remodel the actin cytoskeleton. Finally, this membrane deformation activity 

has been shown to be dependent on palmitoylated cysteines suggesting a regulatory 

role of nsP1 palmitoylation in this function (Laakkonen et al., 1998). To date, there is 

no data on the mechanism by which nsP1 can deform membranes. Also, the fitness 

benefit behind this nsP1 function is still not understood.  
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Fig. 13 Alphavirus nsP1 deforms the plasma membrane 

(A) Scanning electron microscopy image of BHK cells infected with SFV. (B) nsP1 deforms the plasma 
membrane and is present along the whole length of these membrane deformations. Upper panel: 
Electron microscopy images of HeLa cells transfected with nsP1. Lower panel: HeLa cells were stained 
with an anti-nsP1 followed by immunogold labelling. Arrowheads indicate retraction fibers; asterisks 
indicate filopodia (adapted from P. Laakkonen et al. 1998). 

 

ii. NsP2 

In: 

NsP2 is the viral nsP with the highest molecular weight of 90 kDa. This nsP is found 

mainly in (1) cellular membranes as part of the replication complex and (2) in the 

nucleus where it exerts various effects which will be explained later on. Like other nsPs, 

it is a multifunctional enzyme with an N terminal domain with helicase, nucleoside 

triphosphatase (NTPs) and RTPase activities and a C-terminal domain with protease 

activity and a methyltransferase-like domain (Russo et al., 2006). 

nsP2’s protease domain is similar to papain-like proteinases with the active sites 

mapped to cysteine (C481) and histidine (H558). By the means of this activity, nsP2 is 

capable of processing the produced nsP polyprotein precursor. nsP2 processes the 

P1234 and P12 polyprotein precursors in cis conformation, while the P123 precursor is 

processed in trans. Since timely cleavage and processing of the polyprotein is essential 

for correct replication complex assembly and functioning, nsP2 protease activity is 
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essential for viral replication. Indeed, mutations affecting this activity were shown to 

abolish viral replication (Balistreri et al., 2007; Lulla et al., 2018).  

Bioinformatics analysis has classified Alphavirus nsP2 to the helicase superfamily 1. 

Experiments on recombinant nsP2 has confirmed its capacity to unwind double-

stranded RNA from the 5’ to 3’ direction. This function has been proposed to play a role 

in unwinding secondary structures in the viral RNA enhancing promoter recognition by 

nsP4 (Cedrón et al., 1999; Das et al., 2014). Recently, the crystal structure of the nsP2 

helicase domain in association with the 3’ end of genomic RNA has been revealed. 

This illustrated the organization of this domain and demonstrated that the viral RNA 

stabilized the helicase region through hydrophobic interactions (Law et al., 2019). 

Helicase activity is an active process which requires energy. This energy is mainly 

provided by the hydrolysis of adenosine triphosphate (ATP). Interestingly, nsP2 also 

possesses an ATPase activity. Conformingly, this function has been shown to be 

indispensable for its helicase functions (Das et al., 2014). Therefore, through its own 

ATPase activity, nsP2 is capable of fueling its helicase function. 

Finally, NsP2’s RTPase activity is capable of removing the 5’ gamma phosphate from 

the nascent viral RNA before addition of the m7GMP mediated by nsP1. Therefore, 

nsP2 initiates capping at the 5’ end of the newly synthesized viral RNA. Mutation of the 

lysine at position 192 in the N-terminal of nsP2 led to complete abolishment of RTPase 

activity and virus infectivity demonstrating the importance of this function (Rikkonen, 

1996; Vasiljeva et al., 2000).  

Out: 

Outside of the replication complex, nsP2 plays an important role in controlling innate 

immune response by diverse mechanisms: (1) nsP2 has been shown to directly block 

phosphorylation of the protein STAT1 (Fros et al., 2010). Signal transducer and 

activator of transcription (STAT) proteins upon phosphorylation will re-localize to the 

nucleus where they will activate the expression of numerous interferon-stimulated 

genes and induce anti-viral responses. Therefore, nsP2 impact on STAT1 contributes 

to the shutting down of antiviral responses of the host cell. (2) NsP2 can translocate 

via a nuclear localization signal pentapeptide 648PRRRV652 where the middle arginine 

plays a central role in this localization (Rikkonen et al., 1994). This nuclear localization 

of nsP2 is responsible for inducing transcriptional shut off by degradation of Rpb1, a 
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catalytic subunit of the RNA polymerase II subunit (Gorchakov et al., 2005). The 

inhibition of transcription is another critical mechanism employed to suppress the 

expression of cellular viral stress-inducible genes (IFNa/b) (Frolova et al., 2002; 

Gorchakov et al., 2005). (3) Finally, also nsP2 in the nucleus through its 

methyltransferase-like domain can reduce the levels of nuclear phospho-STAT1 

through CRM1-mediated nuclear export again inhibiting this antiviral pathway (Göertz 

et al., 2018). 

NsP2’s ability to degrade Rbp1 and induce transcriptional shut-off leads to cytotoxicity 

and eventually programmed cell death by apoptosis. Mutations in nsP2 regions 

blocking its transcriptional shutoff activity will lead to loss of Alphavirus mediated 

cytotoxicity. However, this function of nsP2 is limited to OW Alphaviruses (Akhrymuk 

et al., 2018; Fros et al., 2010; Gorchakov et al., 2005).  

iii. NsP3 

In: 

nsP3 (60 kDa) is a modular phosphoprotein separated into three domains, the N-

terminal macro domain (MD), the central Alphavirus unique/zinc finger binding domain 

(AUD/ZBD), and the C-terminal HVD. In Alphavirus infected cells, nsP3 is concentrated 

in two main regions: (1) cytoplasmic aggregates with the stress granule protein G3BP1 

and (2) at the plasma or intracellular membranes where the replication complex 

composed of the other nsPs and viral RNA is present. 

The MD is a conserved domain among Alphaviruses. MD is an ancient protein domain 

family which can be present in other (+)RNA viruses (e.g. Hepatitis E virus nsP3), but 

also in eukaryotic systems such as in the human Poly (ADP-ribose) polymerase family 

(PARP) family of proteins (Rack et al., 2016). The role of this domain will be discussed 

in the “Out” part. AUD is highly conserved among Alphavirus where around 50% of 

amino acid residues are almost identical in comparisons performed between CHIKV 

and SINV (Gao et al., 2019). This domain has a distinct structure with a unique protein 

fold that coordinates, through four cysteines central in the domain, the binding of a zinc 

ion. Mutations of these cysteines have illustrated the importance of this function in viral 

replication (Shin et al., 2012). HVD, as its name indicates, is a domain that shows low 

sequence identity among different Alphaviruses. Although, this domain can have some 

homology between certain Alphaviruses belonging to either OW or NW, but it can also 
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vary significantly in sequence and size even between closely related members. Partial 

deletions in HVD demonstrate slight effect on viral replication making this domain an 

ideal location for insertion of fluorescent tags (Foy et al., 2013). This domain is 

predicted to have an intrinsically disordered structure and is heavily phosphorylated at 

residues 319 to 368. This post-translational modification has been involved in 

productive RNA synthesis (Vihinen and Saarinen, 2000; Vihinen et al., 2001). 

In contrast to other nsPs, nsP3’s role in the replication complex remained enigmatic for 

a long time due to the lack of associated enzymatic activity. The breakthrough for its 

role in the replication complex came from proteomics analysis performed on this 

protein. This led to the finding that G3BP1 and 14-3-3 proteins interacted with nsPs 

(Cristea et al., 2006). More importantly, these interactions had functional implications 

on Alphavirus replication which will be further detailed in the section “Virus-Host 

interactions in replication complex assembly and functioning”. It has to be stressed that 

G3BP1 is part of the replication complex, but will also be recruited by nsP3 in other 

situations that will be mentioned in the “Out” part. Several nsP3 interactors have been 

further found by extensive proteomic analysis on the HVD of nsP3. This list includes 

host proteins such as FHL1,CD2AP, FXR and DHX9 (Meshram et al., 2018; Mutso et 

al., 2018). Today, the emerging view is that nsP3 is a hub for host-cofactors usurping 

with HVD as the main platform for this recruitment. 

Finally, nsP3 is capable of activating the PI3K pathway. This function has been 

attributed to nsP3’s HVD where it was shown that the YXXM motif will mimic cellular 

growth factors and activate this pathway. This activation was then shown to be 

responsible for the internalization of replication complexes from the plasma membrane 

to intracellular organelles. However, this function is not conserved among 

Alphaviruses. Since, for example, CHIKV moderately activates the PI3K pathway with 

no internalization of replication complexes from the plasma membrane detected. This 

is, in contrast, with SFV which can strongly activate the PI3K pathway and will lead to 

internalization of replication complexes (Thaa et al., 2015). The exact consequences 

of this internalization are not known; however, it has been proposed to draw closer the 

replication products to the cellular translation machinery. Since the PI3K signaling 

pathway is central to many cellular processes, the action of nsP3 on this pathway has 

been suggested to have a wide range of consequences on Alphavirus infection.  
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Indeed, this activation has also been associated with an increase in glucose 

metabolism towards the synthesis of fatty acids suggesting that nsP3 could reprogram 

lipid metabolism in favor of viral replication (Mazzon et al., 2018). 

Out: 

A significant part of nsP3 in infected cells, is present in intracytoplasmic aggregates. 

These intra-cellular aggregates were shown to be positive for the protein G3BP1, a 

marker for stress granules. In mammalian cells, translational attenuation via the 

phosphorylation of eIF2α results in the formation of stress granules. Inside these 

granules, stalled translation initiation complexes are present. Stress granules form 

upon cell stress storing proteins involved in translation for recovery. These granules 

are often formed during viral infection and several observations have indicated that 

stress granules could be a mechanism of innate immune response activation (Fros and 

Pijlman, 2016). Therefore, in response, viruses have evolved to encode viral proteins 

that are able to disrupt stress granule formation, and also take advantage of its 

components. In the case of Alphaviruses, nsP3 through its two tandem FGDF motifs 

close to the C-terminus of the HVD disrupts stress granule formation by interacting and 

usurping G3BP1 at the level of its NTF2-like domain motif (Fros et al., 2012; Panas et 

al., 2015). 

nsP3 also plays a role in the recruitment of the translational initiation machinery. 

Interestingly, this is also done through an interaction with G3BP1. However, this time, 

the interaction occurs at the level of the RGG domain which recruits the 40S ribosomal 

subunit to the vicinity of replication complexes leading to the efficient translation of viral 

mRNAs (Götte et al., 2019). 

A final function for nsP3 outside the replication complex has been mapped to nsP3’s 

MD. MDs are structural modules which have been shown to bind ADP ribosyl residues. 

ADP ribosylation is a post-translational modification that is implicated in various key 

cellular processes such as DNA repair, apoptosis, gene regulation and protein 

degradation. In eukaryotic cells, ADP ribosylation is added through the action of the 

PARP family of proteins. This signaling process is reversible, and is regulated by 

readers and erasers which can detect ribosylation on target proteins and can then 

erase this mark. A recent study on nsP3 MD has confirmed not only its ability to bind 

ADP ribosyl (reader), but also to hydrolyze the bond between ADP ribosyl and the 
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corresponding amino acid chain with this modification (eraser). This activity of nsP3 is 

essential for viral replication (Abraham et al., 2018; McPherson et al., 2017). This 

function has been proposed to be important for immune evasion since anti-viral host 

factors are known to be activated upon ADP ribosylation. 

iv. NsP4 

In:  

nsP4 (70 kDa) is the most highly conserved protein in Alphaviruses (Khan et al., 2002; 

Weston et al., 2002). This corresponds well with its vital role as the work-horse of the 

replication complex. Indeed, nsP4 is responsible for the de-novo synthesis of the viral 

RNA genome. The first hint for this nsP4 activity came after sequence homology 

comparisons with other RdRps (Kamer and Argos, 1984). This was followed by 

experimental evidence mapping residues of nsP4 as regulators of Alphavirus (-)RNA 

synthesis (Sawicki et al., 1990).  More evidence and mechanistic data emerged after 

the purification of nsP4 in the E. coli system. Purified nsP4 was shown to be able to 

synthesize (-)RNA from (+)RNA. However, this system required the addition of derived 

membrane fractions containing uncleaved polyprotein precursor P123 (Rubach et al., 

2009).  The core catalytic domain has been mapped to 97 residues in the N-terminal of 

nsP4. This region is predicted to be disordered and is speculated to play a role in 

cellular/viral-nsP4 protein interactions which can then modify nsP4 activities such as 

RNA synthesis direction (Kamer and Argos, 1984). Finally, nsP4, in vitro, was also 

shown to possess terminal adenosyltransferase activity. (Rubach et al., 2009). 

However, it remains to be seen whether it is the enzyme responsible for 

polyadenylation of Alphavirus genome in vivo.  

Out: 

Until today, no function of nsP4 outside the replication complex has been described. 

This viral protein is produced at low levels due to the presence of the opal codon 

between nsP3 and nsP4 (Strauss et al., 1983). It also has a short half-life and is thought 

to be rapidly degraded outside the replication complex by the N-end rule pathway 

(Groot et al., 1991). 

J- Focus on the replication complex 

The Alphavirus replication complex is composed principally of the viral nsPs, viral RNA 

and host-cofactors. As explained previously, in this complex each nsP will exert various 
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roles serving for the efficient production of new viral RNA. However, there exists no 

information on the exact arrangement and stoichiometry of the viral nsPs inside the 

replication complex. This is due to the lack of structural data on this complex. Though, 

it has to be mentioned that various methods have provided basic information on the 

interactions between the different nsPs. These methods include: (1) Expression of 

different combinations of the nsPs and then performing coimmunoprecipitation or 

yeast-double hybrid assays. This revealed nsP1 as a common interactant with all the 

other nsPs. Additionally, interaction between nsP2 and nsP4 was detected (Kumar et 

al., 2018; Rana et al., 2014; Salonen et al., 2003; Sreejith et al., 2012). (2) Another 

method mainly focused on interactions with the nsP4 protein. This approach consisted 

of mutating the N-terminal region of nsP4 predicted to mediate interactions with the 

other nsPs in a viral context, and then to detect compensatory mutations in the other 

nsPs that can rescue this phenotype. This led to the identification of the exact 

interaction sites between nsP4 and all the other nsPs (Rupp et al., 2011). These 

interactions as well as the modular organization of the nsPs are presented in Fig. 14.  

In this section, the mechanism and features behind the replication of viral RNA will be 

discussed on the fundamental level. The second part will consist of discussing the 

membrane platforms where this process occurs. The third and final part will detail the 

host proteins that play a role in the replication process.  
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Fig. 14 Modular organization of Alphavirus non-structural proteins 

The general organization of the Alphavirus replication proteins is illustrated. The modules of the different 
non-structural proteins are detailed as well. Non-structural proteins colored in gold indicate an interaction 
at the respective site. Nsp: non-structural protein; MT: methyltransferase; Hel: helicase; Pro: protease; 
MD: macrodomain; RdRp: RNA-dependent RNA polymerase; MTase-GTase: methyltransferase and 
guanylyltransferase; Mb: membrane binding motif; AUD: Alphavirus unique/zinc finger binding domain; 
HVD: hypervariable domain; PR: proline and arginine rich element; SH3: SRC Homology 3 Domain; 
Hel/ATPase: helicase and ATPase; Nu: Nuclear localization signal; IDD: intrinsically disordered domain. 

 

i. RNA replication 

As mentioned before, RNA replication is mediated by the viral encoded RdRp, nsP4. 

However, it is not the only element needed. It is important to mention that nsP4 

interaction with the other nsPs will play a role in the regulation of this process. Here, 

RNA replication will be discussed in a step-wise fashion: 
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Formation of an early replication complex  

After the release of the viral genome into the cytoplasm, it will rapidly be engaged with 

host cell translation machinery leading to the production of the non-structural 

polyprotein, P1234. The P1234 polyprotein is not able to synthesize viral RNA. It is only 

after the first cleavage leading to the release of nsP4 that the “early replication complex” 

will form (Shirako and Strauss, 1994). 

Minus strand synthesis  

Initiation of (-)RNA synthesis from (+)RNA occurs upon binding of the copying enzyme 

to a promoter region at the 3’ end of the viral RNA genome (Fig. 15).  

For Alphaviruses, this region has been mapped to the 3’ CSE where specifically 13 

residues (UUUUUAACAUUUC) were identified as part of the promoter for (-)RNA 

synthesis. In these residues, initiation occurs on the cytidylate in the 3’ CSE region 

present at the -1 position with respect to the poly(A) tail. Modification of the previous 

12 residues was shown to significantly decrease (-)RNA synthesis, and might, 

therefore, play a role in promoter recognition and initiation to elongation transition. In 

addition, in this initiation process, the presence of at least 12 poly (A) residues close to 

the 3’ CSE region is essential (Hardy, 2006; Hardy and Rice, 2005). Finally, the 

interaction between the N-terminus of nsP4 and the region encompassing residues 

A348-T349 in nsP1 is important for promoter recognition and initiation of (-)RNA 

synthesis (Shirako et al., 2000). 

After binding to the cytidylate residue, nsP4 will begin copying the viral RNA from the 

3’ to 5’ direction leading to the synthesis of a complementary (-)RNA. This will lead to 

the formation of a dsRNA complex. 

Positive strand synthesis  

(-)RNA is an intermediate form of the replication process. However, the final product of 

replication is the production of viral RNA of positive polarity. This viral RNA will be 

packaged into newly formed virus particles, and can also serve as a template for the 

production of new viral proteins. 

The shift of RNA synthesis activity of nsP4 towards (+)RNA begins with cleavage of 

nsP1 from P123. NsP1, P23 and nsP4 complex is capable of producing (-)RNA and 

(+)RNA. However, this complex is extremely short-lived and can only be detected 
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following mutation of the 2^3 cleavage site. The final cleavage between nsP2 and nsP3 

will lead to an irreversible transformation of the replication complex towards the 

production of genomic and sub-genomic RNA of positive polarity. This replication 

complex is denoted as the “late replication complex” (Shirako and Strauss, 1994). 

How does cleavage of other nsPs affect the polarity of nsP4 mediated viral synthesis? 

No significant knowledge is present at the moment as structural information on the 

replication complex does not exist. It is presumed that cleavage will lead to a change 

in the conformation of nsP4 and therefore switching of viral RNA synthesis. Indeed, as 

mentioned earlier, nsP4 has been shown to interact with nsP1. In addition, studies 

showed that virus mutants deficient in minus-strand synthesis can be suppressed by 

second-site mutations in nsP1. This all points towards a hypothesis where cleavage of 

the polyprotein precursor can alter nsP1/nsP4 interactions and change its RNA 

synthesis activities. Second-site mutations have been also detected in nsP2 and nsP3 

indicating a potential role in the modification of nsP4 synthesis activities as well. These 

data hint to the importance of interaction with other nsPs for nsP4 structuring, especially 

at the disordered region present at the N-terminal of nsP4 (Rupp et al., 2011). 

The initiation site for (+)RNA synthesis, for genomic and sub-genomic regions, always 

starts with the AU residues. The initiation site for the genomic RNA synthesis is present 

at the 3’ end of the de novo synthesized (-)RNA which corresponds to the 5’ UTR of 

the viral genome. The key residues have been mapped to the positions 2-5 from the 3’ 

end of the (-)RNA. It was shown that the residues 531-538 in nsP4 will mediate binding 

to this region. For the sub-genomic RNA synthesis, the -19 to +5 residues from the 

initiation site have been shown to be crucial. nsP4 residues 329-334, predicted to form 

a beta-strand, will mediate binding to the sub-genomic promoter. These two regions in 

nsP4, residues 531-538 and 329-334, mediate independently genomic and sub-

genomic promoter binding respectively (Li and Stollar, 2007; Wielgosz et al., 2001). 

Finally, this step will lead to the generation of the genomic (49S) and the sub-genomic 

(26S) viral RNA. The sub-genomic promoter is highly active leading to an abundance 

of 26S viral RNA. This shifts protein synthesis towards sPs late in replication. The 

genomic viral RNA represents a new copy of the viral genome that will be packaged 

leading to the formation of new viral particles. 
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Fig. 15 Schematic representation of the Alphavirus replication process 

(A) Early replication composed of P123 and nsP4 will synthesize negative stranded RNA. (B) Cleavage 
of P123 to nsP1, nsP2 and nsP3 will lead conformational changes in nsP4 and binding to the genomic 
and sub-genomic promoters. (C) This change in conformation will cause a shift in RNA polarity synthesis 
towards positive stranded RNA. (D) Genomic and sub-genomic RNA will be the final products of the 
Alphavirus replication process. Orange box: Positive strand genomic promoter; Green box: Positive 
strand sub-genomic promoter; Purple box: Negative strand genomic promoter. 
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ii. Spherule formation 

The Alphavirus RNA replication process generates dsRNA as a replication 

intermediate. This intermediate is a possible activator of the innate immune system. As 

a way to evade an anti-viral response, Alphavirus RNA replication occurs in association 

with membranes.  

Historically, the Alphavirus RNA replication complex was presumed to form in 

association with modified endo/lysosomal membranes (Fig. 16). This hypothesis arose 

from the observation that Alphavirus infected cells formed vacuolar structures that have 

been since denoted as cytopathic vacuoles of type I or CPVI having a diameter of 0.6-

2 µm. CPVI structures have been established to be of endo/lysosomal nature since 

they stained positively for different endosomal (cationic ferritin and horseradish 

peroxidase) and lysosomal (lgpl20, lgpll0, lgp96, and cathepsin L) markers. Also, these 

structures were frequently found connected to the rough endoplasmic reticulum (RER) 

suggesting that they could also be sites of translation of viral proteins. In CPVI 

structures, invaginations could be detected at the limiting membrane. These 

corresponded to spherules which are invaginations of cellular membranes of 50-60 nm 

in size characterized by having at the base a highly curved narrow neck with an internal 

diameter of 8 nm (Froshauer et al., 1988). 
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Fig. 16 Outdated model of Alphavirus RNA replicase in association with the 

cytoplasmic surface of endosomes and lysosomes 

(1) An Alphavirus virion will bind to receptors at the plasma membrane, (2) move laterally and (3) will 
then be endocytosed into coated vesicles. (4) Coated vesicles will be delivered to endosomes where low 
pH will induce membrane fusion and nucleocapsid exposure to the cytosol. (5) The nucleocapsid remains 
associated with the endosomal membrane where it will uncoat and initial translation of non-structural 
proteins will occur. (6) The late endosome will fuse with a lysosome leading to the formation of a 
cytopathic vacuole with spherule invaginations formed by the replication proteins. Spherules may be 
connected to the rough endoplasmic reticulum favoring the translation of structural proteins and 
nucleocapsid assembly for completion of the late steps of the Alphavirus life cycle (Froshauer et al., 
1988). 
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However, later studies showed that the replication complex forms initially at the plasma 

membrane and will then be endocytosed to form CPVIs, in some Alphavirus (Fig. 17). 

This was supported by evidence showing that early in infection (2 to 4 hrs post-

infection), most spherules are present at the plasma membrane of the cell, with little 

CPVI structures detected. This has also been supported by the detection of dsRNA 

signal exclusively at the plasma membrane at these timepoints. Furthermore, the use 

of wortmannin, an inhibitor of the PI3K pathway, led to an accumulation of spherules at 

the plasma membrane. This further reinforced the argument that spherules formed at 

the plasma membrane and were then internalized by the PI3K signaling pathway. 

Another final strong evidence is the data accumulated on the profound ability of nsP1 

to accumulate at the plasma membrane (Frolova et al., 2010; Pietilä et al., 2018; Spuul 

et al., 2011).  

It is important to note that assembly of the Alphavirus complex at the plasma membrane 

is a phenomenon that has been only detected in mammalian cells. Since, in mosquito 

cells, no localization of the complex at the plasma membrane early in infection has 

been observed. This raises questions about differences in the assembly of the 

replication complex between mammalian and insect cells (Frolova et al., 2010). Indeed, 

a recent study has examined the differences in the Alphavirus life cycle between 

mammalian and mosquito cells. Differing with replication in mammalian cells, no 

significant amounts of nsPs (with the exception of nsP1) and dsRNA were detected at 

the plasma membrane of infected insect cells (Jose et al., 2017).  

Therefore, the updated model for creation of Alphavirus spherules is as follows: 

The early replication complex (P123, nsP4, and viral RNA) is addressed to the plasma 

membrane through membrane binding domains in nsP1 (Hellström et al., 2017). Upon 

minus-strand synthesis and generation of dsRNA intermediate of this early replication 

complex, plasma membrane invagination towards the extra-cellular medium will lead 

to the formation of spherule structures. Studies using partially uncleaved precursors of 

the non-structural polyprotein has demonstrated that the combination of P123 and 

nsP4 forms spherules most efficiently (Hellström et al., 2017). The newly synthesized 

RNA is relatively stable in the cytoplasm and therefore might be protected by 

encapsidation. This RNA will be engaged after for either virus assembly or used as a 

template for neighboring replication complexes (Pietilä et al., 2018). 
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Finally, it has to be mentioned that the length of the viral RNA template is a key 

determinant for the size of Alphavirus spherules. This has been beautifully 

demonstrated through the artificial modification of the template length.  Long templates 

yielded spherules of around 45 nm, while short templates generated spherules of 40 

nm emphasizing that the fact that RNA size played a major role in defining the size of 

a spherule (Kallio et al., 2013).  

 

 

Fig. 17 Schematic representation of the updated model for Alphavirus spherule 

formation at the plasma membrane 
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(A) P123 complex will be anchored to the plasma membrane through motifs in nsP1. Some of the nsP4 
molecules will bind to the P123 complex at the plasma membrane (B) Complex containing P123 and 
nsP4 will bind the viral genome. (C) Synthesis of dsRNA intermediate will lead to formation of membrane-
bound spherules. (D and E) Further processing of P123 will lead to synthesis of genomic and 
subgenomic RNAs which will be released from spherules and might serve as templates for neighboring 
replication complexes. (F) In some Alphaviruses, spherules are endocytosed into cytopathic vacuoles of 
type I (adapted from Frolova et al., 2010).  

 

iii. Virus-Host interactions in replication complex assembly and functioning 

A virus, by definition, is a non-living organism. This definition originates from the 

incapacity of viruses to multiply without their host cells. This insinuates that viruses will 

use the host cell’s machinery in order to replicate. In this part, the virus-host interactions 

established in the Alphavirus replication step will be detailed. 

The Alphavirus replication complex consists minimally of the four nsPs and viral RNA. 

In addition, host-cofactors have been described to be recruited to the replication 

complex leading to regulation of the replication process. 

The knowledge accumulated on Alphavirus cofactors arose mainly from four main 

approaches: 

(A) Proteomic analysis of replication complexes isolated from membranes of infected 

cells (Varjak et al., 2013).  

(B) Analysis of interactants of individual nsPs using proteomics or yeast-two hybrid 

approaches (Bouraï et al., 2012; Cristea et al., 2006; Mutso et al., 2018). 

(C) Genome-wide screens identifying cofactors important for Alphavirus infection 

(Meertens et al., 2019; Tanaka et al., 2017). 

(D) Comparative RNA-interactome capture technique that employs oligo(dT) to capture 

viral RNA followed by quantitative proteomics allowing the identification of viral RNA 

binding partners (Garcia-Moreno et al., 2019). 

Approach (A) revealed a plethora of host-cofactors that played a role in different cellular 

processes such as protein folding, cytoskeleton reorganization, stress granule 

formation, RNA unwinding and translation (Varjak et al., 2013).   

Approach (B) has also been proven to be useful. Since it first allowed the precision of 

the exact nsP that will recruit a specific cofactor. Second, this approach led to the 
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detection of new cellular cofactors that might have been missed due to sensitivity 

(Cristea et al., 2006). This has revealed nsP2 and nsP3 as the hubs for protein 

interactions. nsP4 seemed to interact the least with host cofactors, probably due to its 

specialized role in RNA replication. Interestingly, nsP2, nsP3 and nsP4 interactants 

overlapped revealing a redundancy in the cellular factor recruitment and possibly 

establishing importance to these interactions. While abundant data is present on the 

interactants of nsP2, nsP3 and nsP4 but information on nsP1 cofactors is lacking, 

probably due to its high affinity to membranes explaining why attempts on performing 

yeast-two hybrid studies on this protein have failed to identify any interactant (Bouraï 

et al., 2012). The only cellular protein known to interact with nsP1 is RpS6 (Montgomery 

et al., 2006). However, this protein also interacts with nsP2 and therefore this 

interaction could be indirect. It has to be mentioned that interactions detected with 

individual nsPs are probably modulated in the context of a complete infectious system. 

Approach (C) allowed the identification of cofactors which are functionally essential for 

Alphavirus infection. A subset of these cofactors was then later on shown to play an 

essential role in the replication step specifically.  

Finally, Approach (D) allowed for the first time to detect host-cofactors directly binding 

to the viral RNA. These cofactors are possibly recruited by viral nsPs, but might also 

recognize specific sequences in the viral RNA. This revolutionary approach is recent, 

and will allow the uncovering of new modulators of Alphavirus replication (Garcia-

Moreno et al., 2019; LaPointe et al., 2018). 

All four approaches have proven to be informative and complementary. The robustness 

of these proteomics and screening approaches were validated by later work that was 

done on these cellular cofactors. Here, several examples of these cofactors and their 

mechanistic role will be discussed. 

RNA binding proteins 

hnRNPs 

Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a family of RNA binding 

proteins with various functions in cellular nucleic acid metabolism. They play a role in 

the maturation of newly produced RNA, but also stabilization of mRNA and transport to 

the cytoplasm for translation. Due to their function in RNA processing, these proteins 



78 
 

have been heavily investigated for their roles in RNA virus replication (Geuens et al., 

2016). 

The first evidence of their involvement in Alphavirus replication came from mass 

spectrometry experiments comparing proteomes of membranes of mock- and 

Alphavirus-infected cells. This revealed an enrichment of several hnRNPs namely 

hnRNP M, hnRNP C, and hnRNP K and PCBP1 in the Alphavirus infected condition 

(Varjak et al., 2013). Interestingly these proteins are mainly localized in the nucleus of 

a cell. However, upon infection, hnRNPs were found to be re-localized at the vicinity of 

Alphavirus replication complexes indicating a possible role in Alphavirus replication.  

Functional studies utilizing replicons that mimic Alphavirus replication steps revealed 

differential effects depending on the hnRNP studied. For example, hnRNP M and 

hnRNP C inhibited viral replication. However, the protein PCBP1 was shown to be 

important for this step (Varjak et al., 2013). HnRNP K was interesting in the fact that its 

requirement was different among Alphaviruses. Deficiency in hnRNP K expression had 

little to no effect on SFV replication, but for SINV and CHIKV, hnRNP K deficiency 

significantly decreased viral replication. These differences in the need for hnRNPs can 

be explained by a difference in the concentration required of these proteins. In certain 

concentrations, an hnRNP could either act as an inhibitor or activator of replication. 

Finally, binding of these cellular factors to different regions of the viral RNA might 

additionally explain differences in the phenotypes observed (Varjak et al., 2013). 

The mechanism by which hnRNPs function in SINV replication has been recently re-

investigated. In this study, it was found that hnRNPs (hnRNP K, hnRNP I, and hnRNP 

M) were directly bound to the viral RNA and the exact localization of this binding was 

also defined. hnRNP K and hnRNP M mapped to regions within the structural coding 

part, while hnRNP I was found to interact with the 3’ UTR region of the viral RNA. The 

knowledge acquired on the interaction sites within the viral RNA allowed through 

modification of these regions to elucidate whether these interactions are functionally 

important. Indeed, mutations at the interaction sites of these hnRNPs decreased viral 

titers. Furthermore, this study explored how hnRNPs exert their effect on Alphavirus 

infection. Interestingly, it was found that binding of these proteins decrease expression 

of sPs and might subsequently modulate Alphavirus induced host translation shutoff 

(LaPointe et al., 2018). 
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Another RNA binding protein that has been further mechanistically characterized for its 

role in Alphavirus replication is DHX9. 

DHX9 

DExH-box RNA helicase 9 as its name indicates is an RNA, but also DNA, helicase 

whose function is to unwind DNA and RNA structures. This enzyme shuttles between 

the cytoplasm and nucleus where it regulates several cellular processes such as 

transcription, transport, and translation of mRNA (Zhang and Grosse, 2004). It has 

been identified by several approaches as a cofactor of the Alphavirus replication 

complex. Similarly, to hnRNPs, DHX9 is re-localized to Alphavirus replication complex 

upon infection. Recently, a mechanism on the mode of action of DHX9 in the replication 

complex has been described. The model is that DHX9 is recruited to the replication 

complex via nsP3 early in infection where it will promote translation and inhibit 

replication. The exact mechanism of action is unknown, but it has been suggested that 

DHX9 through its RNA helicase enzymatic activity can lead to the unwinding of RNA 

structures favoring the sliding of ribosomes. Interestingly, similar importance of DHX9 

for HIV RNA unwinding and subsequent translation has been described (Bolinger et 

al., 2010). Finally, late in infection, DHX9 is degraded leading to a translation to 

replication switch (Matkovic et al., 2019). 

Cytoskeletal and membrane curvature proteins 

Cytoskeletal and membrane curvature proteins are of high interest as partners for 

Alphavirus replication complex. Since they are presumed to play an essential role in 

spherule formation by membrane curvature induction. While the information on these 

partners remains scarce, here three different cofactors will be discussed. 

Amphiphysin 

Amphiphysin belongs to the family of Bin/amphiphysin/Rvs (BAR) proteins which are 

capable of sensing and inducing membrane curvature. BAR family of proteins can be 

divided into two different groups, ones that induce positive membrane curvature (N- 

and F-BAR), and ones that induce negative curvature (I-BAR). Positive membrane 

curvature is defined by a curve forming towards a relative compartment, while a 

negative membrane curvature will form away from a membrane compartment leading 

to the formation of membrane protrusions. BAR proteins are capable of exerting this 
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function by the adhesion of the BAR domain, insertion of amphipathic helices and, in 

certain conditions, oligomerization (Simunovic et al., 2015). Special attention has been 

given to this family of proteins since they can possibly induce the membrane curvature 

required for the formation of spherules.  

The main proof for an implication of BAR proteins in Alphavirus replication comes from 

a study showing that SFV nsP3 is capable of recruiting both amphiphysin-1 and 2 (N-

BAR proteins) in an SH3-dependent manner to replication complexes. This recruitment 

was essential for the viral replication since mutations in nsP3 SH3 binding motifs lead 

to replication-deficient viruses in infected cells and attenuated neurological symptoms 

in mice. In addition, the silencing of amphiphysin-2 decreased viral replication 

(Neuvonen et al., 2011). Furthermore, the recruitment of amphiphysin-1 and 2 appear 

to be limited to only to OW Alphaviruses. This was suggested due to the failure to detect 

these proteins in proteomics analysis using the HVD of VEEV and EEEV. However, 

other BAR domain-containing host factors such as SNX9 and SNX33 were detected 

for NW Alphaviruses suggesting a difference in the use of BAR proteins depending on 

the Alphavirus (Frolov et al., 2017; Meshram et al., 2018).  

This designates BAR proteins as interesting candidates contributing to the membrane 

curvature required for spherule formation, but the exact function and mechanism 

remain to be shown.  Additionally, the fact that no modification of spherule formation 

was observed in knockout cells for these proteins raises further questions on their 

implication or redundancy in their requirement (refer to the CD2AP part).  

CD2AP  

CD2AP is a scaffolding protein that regulates the actin cytoskeleton. It has been 

described to perform this function by binding to actin filaments through its actin-binding 

sites and capping them by recruiting the actin capping proteins (CAPZA1, CAPZA2, 

CAPZB). This recruitment has been reported to facilitate the formation of lamellipodia 

structures at the cell periphery (Zhao et al., 2013). Recently, through elaborate 

proteomics studies on nsP3, CD2AP was found to be recruited to replication complexes 

of SFV and CHIKV via nsP3’s HVD. Mutations in the interaction motif denoted M2 

(423PMASVR428) in nsP3 lead to a decrease in RNA infectivity and genome replication. 

However, this did not lead to a change in replication complex localization (Mutso et al. 

2018). It has been recently suggested that CD2AP and BIN1 play redundant roles in 
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the initiation of CHIKV replication (Agback et al., 2019). However, the common function 

played by these two proteins in this process remains uninvestigated.  

FHL1 

Four-and-a-half LIM domain protein or FHL1 is a protein highly expressed in heart and 

muscle tissues and plays a role in several cellular processes. FHL1 was first found in 

mass spectrometry analysis that aimed to find binding partners for nsP3’s HVD domain. 

(Meshram et al., 2018; Mutso et al., 2018) Interestingly, it was then identified as a top 

hit in a genome-wide screen searching for cofactors of CHIKV infection performed in 

HAP1 cells. This cofactor was of special interest since its high expression in muscle 

tissues correlates with CHIKV tropism. Knockout cells for FHL1 were not permissive by 

CHIKV. In addition, mice genetically engineered to not express FHL1 were not infected 

and did not generate any CHIKV-like symptoms. Further analysis on this cofactor 

showed that it played a direct role in the CHIKV replication step. Although, no direct co-

localization between dsRNA and FHL1 were provided in this study. The requirement 

for this cofactor was surprisingly not found to be conserved for MAYV which belongs to 

the same antigenic complex as CHIKV. This could indicate that MAYV is taking on a 

separate evolutionary branch during its circulation in South America (Meertens et al. 

2019). 

While the emphasis in the previous section was on host-cofactors playing a role in RNA 

binding and cytoskeleton organization, there remains an exhaustive list of factors 

whose roles remain to be investigated in the replication of Alphaviruses. 

iv. Knowledge acquired from other (+)RNA viruses on the biogenesis of 

spherules 

Evidence that the previously mentioned host/virus interactions participate in the 

biogenesis of Alphavirus spherules remain scare. Indeed, the mechanisms for the 

formation of these compartments have not been elucidated. On the other hand, there 

exists comprehensive information for phylogenetically neighboring viruses that 

generate morphologically similar replication compartments. This could aid in 

developing our understanding for Alphavirus replication complex biogenesis.  

In this context, a recent re-classification of (+)RNA viruses based on metagenomic data 

has divided them into three phylogenetic groups in an original way. One of these new 
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phylogenetic branches grouped the alphavirus-like superfamily with the flavivirus-like 

superfamily and nodaviruses as well. Remarkably, all these viruses form spherule 

structures at membranes for their viral replication (Wolf et al., 2018).  

However, it must be noted that the nature of membranes usurped as well as the 

mechanism behind membrane association differs between viruses of this branch. For 

example, Alphaviruses bind to the plasma membrane through an a-helix and 

palmitoylated cysteine(s), while Flaviviruses associate to the ER membrane through 

transmembrane domains. In addition, the number of replicase proteins varies 

substantially. Bromoviruses have two replicase protein, meanwhile, Alphaviruses have 

four replicase proteins. But, the conservation of spherule structures throughout 

evolution in eukaryotic hosts suggests the employment of common cellular 

mechanisms  (Ahola, 2019). 

In this section, a compelling way to understand how Alphavirus spherules are formed 

is presented by looking at the literature of other (+)RNA viruses that form the same type 

of structures. In this investigation, we can find two viruses, Brome mosaic virus (BMV) 

and Flock house virus (FHV), that form remarkably very similar structures to Alphavirus 

spherules. Therefore, the mechanisms behind spherule formation of these viruses will 

be detailed with comparisons with Alphaviruses when possible. 

Brome mosaic virus spherules 

BMV is a plant virus, belonging to the Bromovirus genus and to the Alphavirus-like 

superfamily, which infects many crop cereals without causing any economically 

important losses in crop production. However, due to several features that make it 

simple to investigate such as its capacity to replicate in yeast, it has been used as a 

model for (+)RNA virus replication studies. BMV has a segmented RNA genome 

composed of three capped RNAs. Only the two monocistronic RNAs coding for the viral 

proteins 1a and 2apol are required for BMV replication. The 1a contains the capping and 

helicase activity, and 2apol has a polymerase activity. Impressively, 1a is capable of 

forming spherules at the ER without the need for the 2apol protein or an RNA template 

(Noueiry and Ahlquist, 2003). BMV spherules (50–70 nm in diameter) have been 

observed by electron microscopy and are composed of a single lipid bilayer where 

electron-dense material could be observed inside these structures. Interestingly, the 

structure of BMV induced spherules has been paralleled to structures formed upon 
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retrovirus budding suggesting a common ancestor or shared mechanisms. 

Impressively, certain Gag mutations can block pinching off of budding virions leading 

to the formation of spherule-like structures in HIV infected cells (Schwartz et al., 2002).  

So, how does BMV through the 1a replicase protein lead to spherule formation? And 

what are the host-cofactors required? 

The first step of (+)RNA virus replication is the assembly of a replication complex at 

membranes. 1a is the master orchestrator of this process. The first step consists of 

self-interaction of 1a which will form a coat on the interior side of spherules and then 

the interaction with the 2apol protein occurs. After this step, 1a through membrane 

interaction domains mapped to residues 368–478, is capable of recruiting 2apol and the 

RNA template to the membrane of the ER. An 18 amino acid sequence in this domain 

is capable of forming an amphipathic helix with a hydrophobic face consisting of three 

leucine shown to be important for not only membrane association but also spherule 

induction. In these spherule structures, RNA templates will be protected from 

degradation and active replication can occur (Liu et al., 2009). 

Due to their capacity to induce structures similar to BMV spherules, the ESCRT family 

of proteins has been investigated for their implication in BMV replication organelle 

biogenesis. Indeed, ESCRT proteins lead to invagination away from membranes 

inducing negative membrane curvature causing the formation of structures called 

multivesicular bodies (MVBs). The only distinguishable difference with BMV spherule 

formation is that the ESCRT structures finish by pinching off the membranes. This 

implies that if recruited for BMV spherule formation, this pathway must be tightly 

controlled. Additionally, there exist 4 complexes of the ESCRT machinery ESCRT-0 to 

III where their sequential recruitment will be responsible for the formation of MVB 

structures. Interestingly, BMV spherule formation was shown to require only the 

ESCRT III complex and especially the late ESCRT protein called Snf7p. Snf7p 

interacted with 1a, and its knockout lead to the complete abolishment of BMV spherule 

formation. A model was then drawn for ESCRT involvement in BMV spherule formation. 

The first step involves 1a self-interaction. Next, 1a associates and curves membranes 

of the ER. Here comes the role of the ESCRT complex III proteins, specially Snf7p 

which are recruited and will contribute to constriction of the wide membrane rim formed 

by 1a multimers. Usually, at this step, MVB necks will be cleaved off. However, as is 

evident BMV evades this step. It has been proposed that reticulons, a family of 
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membrane reshaping proteins, contribute to the stabilization of spherules and therefore 

inhibit cleavage by the ESCRT complex (Diaz et al., 2015) (Fig. 18). 

 

 

Fig. 18 Model for the contribution of the ESCRT complex in BMV spherule 

formation 

(A) Multimeric BMV 1a interacts with the endoplasmic reticulum (ER) membrane initiating invagination 
away from the cytoplasm. At this step, 1a will recruit ESCRT proteins (B) ESCRT proteins will form 
concentric spirals driving the closure of the wide membrane rim induced by 1a leading to the formation 
of the narrow neck characteristic of spherules. (C) 1a might then recruit the reticulon proteins which can 
disassemble the ESCRT machinery inhibiting pinching off of the spherules and (D) stabilizing the BMV 
spherule structures (adapted from Diaz et al. 2015). 

 

All this evidence points towards BMV induced spherules being a two-step process. The 

first step, that occurs without the need for host-cofactors, but through molecularly 

encoded determinants in the 1a protein (a-helix). The second step implicates proper 

replication complex assembly in these spherules which requires ESCRT proteins for 

establishing membrane curvature. 

Comparisons with Alphavirus proteins have shown that the BMV 1a protein is a distant 

homologue to nsP1 and nsP2 proteins (Fig. 19). As mentioned earlier, 1a is capable of 
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forming spherules without the need for the other replicase protein. This is in contrast to 

nsP1 which upon expression alone can deform the plasma membrane but does not 

form spherule structures (Hellström et al., 2017; Kallio et al., 2013; Noueiry and 

Ahlquist, 2003). This implies that the evolution of spherule formation could have started 

from being performed by one protein into a complex system where several viral proteins 

are involved. This does not exclude the hypothesis that nsP1 since it is capable of 

deforming membranes does participate in inducing the membrane curvature required 

for spherule formation, but that, in contrast to BMV, includes other nsPs for the 

regulation of this process. Another scenario would be that spherule formation has 

evolved two distinct times in RNA virus history. However, recent sequence analysis has 

revealed conserved secondary structures between these two genera indicating a 

possible common origin (Ahola, 2019; Ahola and Karlin, 2015). 

 

 

Fig. 19 Conservation regions between SINV and BMV genome 

The viral genomes of Sindbis virus (SINV) and Brome Mosaic virus (BMV) are presented with similar fill 
patterns indicating conserved regions between the two genomes. The dashed line represents delimits 
the SINV and BMV genomes for the proteins coding for the replication proteins. The thick and thin arrows 
represent the normal and leaky opal reading frame respectively (adapted from Noueiry and Ahlquist 
2003). 

 

Flock house virus spherules 

FHV is an insect virus which belongs to the family Nodaviridae. FHV has a bipartite 

genome that will code for protein A and the capsid protein. The protein A is the sole 
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replicase protein and contains an N-terminal mitochondrial membrane association 

domain, RdRp domain and an RNA capping domain (Kopek et al., 2010).  

Parallels between Nodaviridae and Alphaviruses have been drawn due to comparisons 

between their RNA capping proteins which have been aligned, and shown to contain 

conserved residues. This is was performed due to the limited information existing on 

the RNA capping activity residues of FHV protein A, and the similarity in the structures 

produced upon viral replication. Therefore, an interesting study using alignments 

between FHV and SFV RNA capping domains found that three residues (H93, R100 

and D141) (Fig. 20) are highly conserved between Alphaviruses and Nodaviridae. 

Mutations in these residues led to the complete abolishment of capping activity of the 

protein A demonstrating a conservation for the importance of these residues between 

Nodaviridae and Alphaviruses. This suggested that these two replication proteins share 

similar mechanisms (Quirin et al., 2018).  
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Fig. 20 Organization of the replicase domains and core region of the capping 

domain 

Organization of Alphavirus (A) or Nodavirus (B) replicase domains with a zoom-in on the conserved 
residues in the core region of the capping domain. The red box represents conserved residues shown 
to be important for capping activity of both Alpha- and Noda-viruses. Mtase-Gtase: Methyl-transferase-
Gaunylyltransferase domain mb: membrane-associated region; Hel/Tpase: Helicase/Triphosphatase; 
Pro: Protease; RdRp: RNA-dependent RNA polymerase domain. a-helices and b-strands are indicated 
by rectangles and arrows respectively (adapted from Tero Ahola and Karlin 2015). 

 

Going back to mechanisms of spherule formation, upon infection, FHV protein A 

through mitochondrial membrane interaction domains will assemble the replication 

complex for de-novo RNA synthesis. This process will generate spherules between the 

outer and inner mitochondrial membranes of an infected cell. Interestingly, contrary to 

BMV and similarly to Alphaviruses, protein A requires a functional RNA template for 
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the induction of spherule formation. However, in contrast to Alphaviruses, the length of 

the template does not affect spherule size (Kallio et al., 2013; Kopek et al., 2010). 

Extensive studies do not exist on the mechanisms of FHV induced membrane curvature 

for spherule formation. However, FHV has probably the most resolved spherule 

structure for a (+)RNA virus to date. The high-resolution structure of these FHV 

replication compartments was resolved by cryo-electron tomography studies. 

Cry-electron tomography combines multiple electron microscopy techniques to 

generate three-dimensional structures of the object of interest. Advantages include 

cryo-freezing which will allow conservation of structures in their native conditions that 

otherwise might be disturbed by chemical fixation. By this technique, electron-dense 

structures were localized directly above the necks of the FHV spherules. This revealed 

a novel feature present at the neck of spherules which consisted of cupped ring 

structures of twelve-fold symmetry with a central ~19 nm diameter ‘turret’ projection 

and was referred to as a “crown” structure (Ertel et al., 2017).  In search of the viral 

factors that can contribute to this feature, protein A was a likely candidate since it is 

capable of multimerizing mainly through sequences present in its N-terminal region 

(Dye et al., 2005). Indeed, this crown structure was shown to consist of protein A 

multimers (Fig. 21). 

The crown structure is thought to play a role in spherule formation by promoting 

injection of newly synthesized (-)RNA causing mitochondrial membrane deformation 

and hence spherule formation. The crown structure is also hypothesized to be the 

active site of FHV RNA capping. As mentioned earlier, Alphavirus nsP1 and protein A 

are potentially evolutionarily linked (Ahola and Karlin, 2015). Therefore, it is possible 

that a similar structure containing nsP1 multimers exists at the neck of the Alphavirus 

spherules. However, elaborate cryo-electron microscopy studies on Alphavirus 

spherules are still lacking. Proofing the existence of such structures for Alphaviruses 

may reflect common ancestry if an evolutionary pathway connecting the different 

structures can be reconstructed. 
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Fig. 21 Model of FHV replication complex structure and function 

(A) Cryo-EM image 3D segmented of a single flock house virus (FHV) spherule formed at the 
mitochondrial membranes (dark blue). The spherule (white) membrane encloses viral RNA (red). The 
crown structure (light blue) composed of FHV protein A multimers is present at the neck of spherules 
and anchors the complex at the mitochondrial membrane. (B) Schematic representation of the FHV 
spherule presented in (A). (C) Model of FHV RNA complex and RNA synthesis. Positive stranded RNA 
(red) associates with protein A at mitochondrial membranes launching negative strand RNA synthesis 
(orange). Progeny positive-strand RNA are accommodated by increasing the volume of the spherule as 
if blowing up a balloon (adapted from Ertel et al. 2017). 

 

4 Cellular membranes as a playground for Alphavirus replication complex 

In the previous section, the Alphavirus life cycle was discussed with special attention 

to the process of replication. In that part, it was clear that the formation of replication 

organelles occurred in close association with membranes and required induction of 

membrane curvature. Additionally, it was mentioned that the MTase/GTase activity of 

nsP1 inside the replication complex was regulated by the presence of specific lipids. 

Therefore, in this subpart, the lipid composition of cellular membranes and their 
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organization, with special attention to microdomains, and the cellular machineries 

involved will be discussed.  

A- Cellular membranes and their lipid composition 

Cellular membranes are primary constituents of a cell. Not only do they delimit the cell 

defining its boundary and concentrating its constituents, but they also encircle intra-

cellular organelles leading to segregation of chemical processes in defined areas inside 

the cell. Cellular membranes also function as transporters of signaling molecules 

through the release of extracellular vesicles such as exosomes. Finally, membranes 

are also central for signaling networks and transmission of extra-cellular cues. 

Conformingly, a significant portion of cellular proteins coded by the human genome 

(one third of the human genome) spend their life-time in contact with membranes.  

At the most basic view, membranes are composed of two phospholipid layers opposing 

each other. This lipid bilayer is constituted of polar lipids having different affinity to 

aqueous solutions giving it an amphipathic nature. The hydrophobic “water-fearing” 

part is composed of the fatty acid tails directed towards the interior, and the hydrophilic 

“water-loving” part is composed of the phosphate head and is directed towards the intra 

and extra cellular aqueous medium. Minimizing the hydrophobic surface in contact with 

water to a low-energy conformation leads to the spontaneous assembly of this lipid 

bilayer (Simons and Sampaio, 2011). 

Membranes are composed of a pool of different lipids. Recent advances in lipidomics, 

the large-scale study of cellular lipids in biological systems, has elucidated the 

existence of thousands of lipids in eukaryotic cells. These studies also demonstrated a 

correlation between membrane architecture complexity and lipid diversity. This is 

exemplified by the comparisons between prokaryotic and eukaryotic cells, the latter 

having membrane-bound organelles. Even if a subsequent portion of these lipids 

remain uninvestigated with respect to their role in cellular membranes, there exists 

significant knowledge on the basic lipid composition of membranes. As mentioned 

above, membranes are composed due to the self-assembly of polar lipids. One of the 

most abundant membrane polar lipids are the glycerophospholipids. 

Glycerophospholipids are composed of a diacylglycerol (DAG) where the glycerol head 

group can be further modified by addition of an amino alcohol group such as choline, 

serine or ethanolamine. Furthermore, fatty acyl chains can be of varying length and 
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have different degrees of unsaturation. All of these combinations will result in a diversity 

of glycerophospholipids which give different conformations to the membranes. The 

most abundant glycerophospholipids in cellular membranes include 

phosphatidylcholine (PtdCho), phosphatidylethanolamine (PtdEtn), PtdSer, 

phosphatidylinositol (PtdIns) and phosphatidic acid (PA) where PtdCho is responsible 

for more than 50% of the phospholipids in eukaryotic membranes. Another important 

polar lipids are sphingolipids which are composed of a sphingosine backbone that can 

be modified by the addition of different groups yielding a diversity of different lipids such 

as sphingomyelin, cerebroside and ganglioside. These lipids not only play an important 

role as a structural component of membranes, but can function as signaling molecules 

in response to external signals. Membranes also contain sterols where cholesterol 

constitutes the main sterol in mammalian cells. This lipid has a unique structure 

composed of four linked hydrocarbon rings forming a bulky steroid structure. A 

hydrocarbon tail is linked to the steroid at one end, and a hydroxyl group is attached at 

the other end.  

An important thing to note is that lipid composition of membranes is different depending 

on the nature of organelles. Even, the lipid composition between the inner leaflet and 

outer membrane leaflet within the same organelle can vary substantially. In some 

cases, this has a functional cellular role. PtdSer, for example, is mainly localized in the 

inner leaflet of the plasma membrane. However, during a form of programmed cell 

death, apoptosis, this lipid is exposed through the action flippase proteins to the extra-

cellular surface functioning as an “eat me” signal for phagocytes. Going back to the 

lipid composition of organelles, the plasma membrane is abundant in sterols and 

sphingolipids which are packed at a higher density than glycerophospholipids. This 

gives the plasma membrane a certain rigidity and stability. As seen in Fig. 22, the 

plasma membrane has the highest cholesterol to phospholipid ratio (1.0). On the other 

hand, other organelle membranes such as the ER and mitochondrial membranes, are 

relatively poor in this particular lipid (van Meer et al., 2008).  
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Fig. 22 Distribution of lipids in different membrane organelles 

Lipid composition is expressed as a percentage of the total phospholipid (PL) content and is represented 
for yeast in light blue and mammals in blue. This is similarly represented for sterol content with 
cholesterol (CHOL) for mammals and ergosterol (ERG) for yeast. Inside the cell, the site of synthesis of 
the major phospholipids is represented by the blue circles and other lipids involved in signaling pathways 
are represented by the red circles. PC: phosphatidylcholine; PE: phosphatidylethanolamine; PI 
phosphatidylinositol; PS: phosphatidylserine; PA: phosphatidic acid; Cer: ceramide; GalCer: 
Galactosylceramide; SM: sphingomyelin; TG: triacylglycerol; GSLs: glycosphingolipids; ISL: yeast 
inositol sphingolipid; DAG: diacylglycerol; CL: cardiolipin; PI4P: phosphatidylinositol-4-phosphate; 
PI(3,5)P2: phosphatidylinositol-(3,5)-bisphosphate; PI(4,5)P2: phosphatidylinositol-(4,5)-bisphosphate; 
PI(3,4,5)P3: phosphatidylinositol-(3,4,5)-trisphosphate;BMP:bis(monoacylglycero)phosphate; S1P: 
sphingosine-1-phosphate; R: remaining lipids (adapted from van Meer et al., 2008). 

 

In this context, it has to be mentioned that a significant portion of a membrane’s 

biomass is also composed of proteins which bind through hydrophobic domains or post-

translation modifications present in these proteins.  
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B- Regulatory role of lipid composition on membrane organization and physical 

properties  

The difference in membrane composition delimiting different organelles have important 

implication on the organization and physical properties of membranes. In biological 

membranes, two type of phases can be described: liquid disordered (Ld) and liquid-

ordered (Lo) phases. Lo phases are described as highly organized thick layers with low 

membrane fluidity. On the other hand, Ld phases are more disordered allowing more 

place for diffusion and therefore an increase in fluidity. In this discussion, the lipid 

composition of membranes will play an important regulatory role. Saturated fatty acids 

(SFAs) allow tight packing of lipids increasing the thickness and rigidity of membranes. 

Conversely, unsaturated fatty acids (UFAs) will contain kinks allowing for a “looser” 

spacing of membrane lipids and increasing membrane fluidity. The fatty acid tail length 

also contributes to fluidity where the shorter the fatty acyl tail, the more fluid a 

membrane is. Cholesterol is also an essential player in this process where to it 

contributes to an increase in membrane order by intercalating between fatty acids (Fig. 

23) (Sáenz et al., 2012).  

 

 

Fig. 23 Lipid bilayer phase behavior and membrane lipid composition 

Membranes depending on their lipid composition can have different phase behavior. Liquid disordered 
phases (Ld) are rich in unsaturated lipids allowing high lipid diffusivity and acyl chain freedom of motion. 
While, liquid ordered phases (Lo) have low lipid diffusivity and acyl chain freedom of motion due to the 
presence of tightly packed saturated fatty acids intercalated with cholesterol (adapted from Sáenz et al. 
2012). 
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C- Lipid metabolism 

Most lipids are synthesized in the ER. The starting point for de-novo production of 

lipids is the glucose derived acetyl-CoA molecule produced from the Krebs cycle. The 

acetyl-CoA molecule can then be used for the production of cholesterol or fatty acids 

(Fig. 24). 

i. Fatty acid synthesis and unsaturated fatty acids  

Fatty acids are basic building blocks for the majority of cellular lipids and are therefore 

a source of components necessary for increased membrane production. The core 

reaction of fatty acid synthesis is catalyzed by the fatty acid synthase (FASN) that 

condensates one molecule of acetyl-CoA with seven molecules of malonyl CoA to 

generate the 16-carbon SFA palmitate. Starting from free fatty acids, stearoyl-CoA 

desaturase (SCD1) also known as Δ-9-desaturase, catalyzes the biosynthesis of 

monounsaturated fatty acids (MUFAs) used as precursors for the synthesis of various 

lipids including phospholipids, triglycerides and cholesteryl esters. Elongation and 

further desaturation through the mammalian fatty acid elongase (ELOVL) and fatty acid 

desaturase (FDS) enzymes will yield a repertoire of fatty acids with different saturation 

levels known as polyunsaturated fatty acids (PUFAs). PUFAs are building blocks for 

the production of eicosanoids and sphingolipids. With respect to palmitate, this fatty 

acid can be added to proteins leading the post-translational modification named 

palmitoylation. This modification is important in targeting of proteins to membranes 

(Baenke et al., 2013).  

ii. Cholesterol synthesis 

Cholesterol de novo synthesis occurs in the ER with 3-hydroxy-3-methylglutaryl-

coenzyme A (HMG-CoA) reductase being the rate-limiting enzyme. Starting from an 

HMG-CoA molecule, this enzyme produces mevalonate which then through a series of 

reactions will finally lead to the production of cholesterol. Cholesterol can also be 

obtained through receptor-mediated intake from the extracellular medium in the form 

of low-density lipoproteins (LDLs). In this scenario, LDLs are delivered to and 

hydrolyzed in late endosomes/lysosomes (LE/Ls) where free cholesterol is released. 

Then, cholesterol requires proper intracellular transport to exit the LE/Ls and reach its 

final destination mainly at the plasma membrane, in the Golgi apparatus and the ER. 

This is ensured by Niemann-Pick C 1 and 2 (NPC1 and NPC2) proteins localized at the 
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limiting membrane of lysosomes and in the lysosomal lumen respectively (Baenke et 

al., 2013). 

 

 

Fig. 24 Lipid biosynthesis pathway 

Schematic of the pathways involved in the synthesis of fatty acids (FAs), cholesterol, phosphoglycerides, 
eicosanoids and sphingolipids. The enzymes involved in these pathways are indicated in red. (a) 
Glucose-derived citrate is converted to acetyl-CoA by ACLY. (b) For production of FAs, the acetyl-CoA 
is converted into malonyl-CoA. The repeated condensation of these molecules by FASN will generate 
palmitic acid. Then, the SCD enzyme can generate a double in the Δ9 position of the acyl chain that will 
lead to the production of mono-unsaturated FAs. (c) Further elongation and desaturation will produce a 
plethora of FAs with different saturation levels. (d) Essential FAs cannot be synthesized and are obtained 
by dietary sources. (e,f) Combination of FAs with glycerol-3-phosphate (glycerol-3-P) will generate (e) 
phosphoglycerides and (f) phosphoinositides. (g) Eicosanoids are produced by from arachidonic acid, a 
polyunsaturated FA. (h) Sphingolipids contain acyl chains and polar head groups deriving from serine, 
phosphocholine or phosphoethanolamine (i) Conversion of acetyl-CoA to acetoacetyl-CoA will initiate 
cholesterol synthesis. The addition of another acyl group by HMGCS will produces 3-methylglutaryl-3-
hydroxy-CoA that is converted to mevalonate by HMGCR. Several reactions later will lead to the 
synthesis of cholesterol which also forms the structural backbone for steroid hormone biosynthesis. 
Enzyme abbreviations: ACAT: acetyl-CoA acetyltransferase; ACC: acetyl-CoA carboxylase; ACLY: ATP 
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citrate lyase; AGPAT: 1-acylglycerol-3-phosphate Oacyltransferase; PTGS: prostaglandin-endoperoxide 
synthase ; DGAT: diacylglycerol O-acyltransferase; ELOVL: fatty acid elongase; FADS: fatty acid 
desaturase; FASN: fatty acid synthase; GPAT: glycerol-3-phosphate acyltransferase; HMGCR: 3-
hydroxy-3-methylglutaryl-CoA reductase; HMGCS, 3-hydroxy-3-methylglutaryl-CoA synthase; PPAP: 
phosphatidic acid phosphatase; SCD: stearoyl-CoA desaturase; SPHK: sphingosine-1-kinase. 
Metabolite abbreviations: α-KG: α-ketoglutarate; CDP-DAG: cytidine diphosphate-diacylglycerol; CER: 
ceramide; DAG: diacylglycerol; FA: fatty acid; LPA: lysophosphatidic acid; PA: phosphatidicacid; PC: 
phosphatidylcholine; PE: phosphatidylethanolamine; PG: phosphatidylglycerol; PGE2: prostaglandin E2; 
PGH2: prostaglandin H2 PI: phosphatidylinositol; PIPx: phosphatidylinositol phosphate; PS: 
phosphatidylserine; S1P: sphingosine-1-phosphate; SPH: sphingosine; TAG: triacylglyceride (adapted 
from Baenke et al. 2013). 

 

D- Lipid rafts  

The discovery that certain lipids could be sorted through the Golgi network to be 

transferred to different regions of the cell raised questions about the capacity of cells 

to create domains with certain lipid composition. One of the first evidence for this lipid 

sorting was clear in epithelial cells. These cells are polarized having an apical and 

basolateral domain where the former domain is enriched in sphingolipids and 

cholesterol. This implied that in membranes, domains could be found with specific lipid 

composition and membrane organization. These domains have been termed lipid rafts 

(Simons and Ikonen, 1997). Different type of rafts exists, but these domains are 

generally defined by having a highly ordered membrane organization or an Lo lipid 

phase as defined earlier. The highly ordered membrane organization of rafts can be 

explained when looking at the lipid composition of these domains. They have been 

shown to be highly enriched with cholesterol and sphingolipids. Lipid rafts are purified 

by to their property of resistance to certain non-ionic detergents such as Triton X-100 

at cold temperatures. These methods have been also combined with the use of 

molecules such as methyl-beta-cyclodextrin that can selectively deplete cholesterol 

from membranes. The use of such molecules permitted to check whether raft 

association and localization were dependent on cholesterol, a main component of lipid 

rafts. Additionally, if such molecules perturbed the physiological or viral machineries 

studied, then it was presumed that raft formation is associated with the mechanism 

studied (Simons and Sampaio, 2011). Recent intensive proteomics studies on purified 

lipid rafts have revealed these microdomains as centers for signaling networks such as 

immune signaling (Foster et al., 2003). So, how are proteins implicated in these 

signaling pathways addressed to rafts? One of the most well described targeting 

signals to lipid rafts is palmitoylation, a post-translation modification that will add 

palmitate to cysteines (Fig. 25). It was also seen that in palmitoylation dependent raft 
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affinity was further enhanced protein oligomerization. Some examples of proteins which 

are addressed to rafts through palmitoylation include the Rho GTPase Rac1 (Navarro-

Lérida et al., 2012) and the Influenza hemagglutinin protein (Takeda et al., 2003). In 

this discussion, it is interesting to address the studies performed on Rac1. The wild 

type form of this Rho GTPase protein was shown to be addressed to lipid rafts through 

palmitoylation. This addressing was also essential for the activation of this Rho 

GTPase. Interestingly, oligomerization also participated in this process. This targeting 

of Rac1 to lipid rafts has important implications on actin cytoskeleton remodeling 

regulating membrane organization. Going back to target signals for lipid rafts, for 

transmembrane proteins, a critical modifier for lipid raft association is the length of the 

transmembrane domain (TMD) where shorter TMD was correlated with a lower raft 

affinity. 

 

 

Fig. 25 Lipid rafts and associated proteins (adapted from Simons and Sampaio 2011). 

 

E- Lipid requirements for (+)RNA virus replication  

As (+)RNA viruses form their replication complexes in association with membranes, the 

implication of membrane lipids in this process has been a wide area of investigation. 

This has revealed remarkable mechanisms by which these viruses can usurp lipid 

metabolism to attain the correct environment required for the creation of replication 

organelles. In this part, the requirement of membrane lipids for (+)RNA virus replication 

is illustrated by focusing on the knowledge accumulated on the Tombusviridae and 
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Flaviviridae family of viruses. The role of membrane lipids for Alphavirus replication 

represents one of the main objectives of this thesis, and will therefore be detailed later 

in the objectives and results part. 

i. Tombusviridae replication and membrane lipids 

Tombusviridae is a family of plant viruses with Tomato bushy stunt virus (TBSV) being 

the most studied. TBSV has been used as a model for investigations on virus-host 

interactions and recombination in yeast models. This virus has a small (+)RNA genome 

(4.8 kb) which codes for its viral proteins. In this context, the viral encoded integral 

membrane proteins p33 and p92pol with the viral RNA and host-cofactors will form the 

viral replication complex in association with peroxisomal membranes, and occasionally 

with ER membranes. At these sites, TBSV will form spherule structures similar to 

Alphaviruses. Therefore, it is interesting to discuss the membrane lipid requirements 

for replication complex formation of this virus.  

In this bibliography, sterols have been shown to be essential for replication of TBSV. 

Since peroxisomes and ER membranes are poor in sterol content, TBSV has evolved 

mechanisms to enrich sterols at replication site assembly. This is ensured by the direct 

binding of p33 to the oxysterol-binding machinery, a non-vesicular pathway for 

trafficking of sterols. Furthermore, viral replication sites have been shown to be present 

in detergent-resistant membrane microdomains rich in sterols. It should be mentioned 

that sterol binding sites have been identified in p33 and p92pol establishing further 

evidence for the implication of sterols in TBSV replication complex formation (Barajas 

et al., 2014; Xu and Nagy, 2017). So, why are sterols required for TBSV replication? 

The most direct explanation is that this sterol could ensure the correct oligomerization 

of replicase proteins. This has been supported by evidence that sterol play a role in the 

stability of p33 (Barajas et al., 2014). Additionally, sterols allow tighter packing of 

phospholipids which could be important for stabilizing spherule structures. 

Phospholipids are another membrane lipid component show to be important for TBSV 

replication. This has been demonstrated through knockdown of genes (INO2/INO4) 

that regulate the synthesis of phospholipids. In this scenario, phospholipids are not re-

directed to viral replication sites, but are upregulated by the interaction of p33 with 

repressors of phospholipid biosynthesis genes. This requirement for phospholipids is 

important for the attachment of viral replicase proteins to membrane replication sites. 
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Recently, the phospholipid, PtdEtn, was described to play a particular role in TBSV 

replication. In this study, artificially-produced vesicles containing PtdEtn were sufficient 

to harbor TBSV replication. Interestingly, other phospholipids did not exert this property 

demonstrating the specificity for the importance of PtdEtn for TBSV replication. The 

conical structure imposed by this phospholipid has been proposed to contribute to the 

negative membrane curvature present at the constricted neck of spherules (Sharma et 

al., 2011; Xu and Nagy, 2015). 

ii. Flaviviridae replication and membrane lipids 

Membrane lipids have also been investigated for their implication in the replication step 

of various other (+)RNA viruses. In this scenario, the most well studied model remains 

the Flaviviridae family of viruses. Even if the replication compartments formed by 

Flaviviridae can be different, the knowledge acquired on this model can inspire future 

studies on Alphaviruses. 

The Flaviviridae family constitutes a main branch of (+)RNA viruses. This family is 

subdivided to different genera with the Flavi- and Hepacivirus containing critically 

important human pathogens such as DENV, ZIKV, West Nile virus (WNV) and Hepatitis 

C virus (HCV). The viral genome of Flaviviridae encodes seven nsPs (NS1, NS2A, 

NS2B, NS3, NS4A, NS4B, and NS5) which are responsible for the formation of the 

Flaviviridae replication complex. This complex in association with the ER membranes 

will form either single membrane or double membrane vesicles (SMVs or DMVs) where 

active genome replication will take place. In this context, the NS2B, NS4A and NS4B 

proteins through their transmembrane domains anchor the other nsPs to the ER 

membrane (Yu et al., 2013). 

Given that ER membranes have specific lipid composition, important efforts have been 

exerted on elucidating the necessity of specific lipids for Flaviviridae replication 

revealing impressive mechanisms employed by these viruses to usurp lipid metabolism 

machinery.  

Flaviviridae replication and cholesterol 

One of the most studied lipids shown to be important for Flaviviridae replication is 

cholesterol. This sterol has been demonstrated by several groups to be vital for 

Flaviviridae replication through the use of a plethora of drugs that act on cholesterol 
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biosynthesis and transport such as U18666A, and lovastatin. siRNA mediated silencing 

of proteins involved in this pathway have further confirmed the requirement for proper 

cholesterol metabolism for Flaviviridae replication (Aizaki et al., 2004; Mackenzie et al., 

2007; Stoeck et al., 2017). 

However, the first real hint of cholesterol association at replication sites was the finding 

that the HCV replication complex associates with cholesterol-rich lipid raft membranes. 

(-)RNA and (+)RNA were also detected in these domains designating these sites of 

active replication (Aizaki et al., 2004). Accumulation of unesterified cholesterol at 

replication sites has been further characterized through electron microscopy studies on 

affinity-purified DMVs formed by HCV (Paul et al., 2013). So, how can these viruses 

accumulate cholesterol at their replication sites given that they form in association with 

ER membranes which have relatively poor sterol content. Impressively, these viruses 

have developed mechanisms to redistribute intracellular cholesterol to sites of viral 

replication. The up-regulation of the activity of HMG-CoA reductase, the rate-limiting 

enzyme in the cholesterol biosynthesis pathway, has been proposed to participate in 

this accumulation. This upregulation occurs through reduction of this enzyme’s 

phosphorylation levels through inhibition of AMPK activity (Soto-Acosta et al., 2017). 

Additionally, this enzyme has been observed to be re-localized to sites of viral 

replication contributing to a more restricted accumulation (Mackenzie et al., 2007). But, 

the massive accumulation of this lipid at ER membranes suggests that an active 

transport of cholesterol to viral replication complexes occurs. Recently, a study on the 

HCV has implicated the recruitment of the endosomal and lysosomal lipid transfer 

protein machinery at the ER membrane replication sites for the fulfillment of cholesterol 

recruitment. Knockdown of such proteins (STARD3 and NPC1) residing at late 

endosome and lysosome membranes and required for efficient HCV has demonstrated 

their necessity for cholesterol transport to viral replication sites. Surprisingly, this 

mechanism is not conserved for Flaviviruses suggesting that accumulation of 

cholesterol occurs through a different mechanism (Stoeck et al., 2017). 

The requirement of Flaviviridae for cholesterol at viral replication is presumed to be 

important for the stability of the membrane invaginations of these replication 

complexes. Although, direct evidence for this association has not been established yet. 

Nonetheless, HCV replication complex/cholesterol association has been linked with 

resistance to RNase and protease digestion (Aizaki et al., 2004). Interestingly, the need 
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for cholesterol has been also linked to a perturbation of the cellular immune response. 

Indeed, the previously described redistribution of cholesterol to ER membranes 

disrupts cholesterol-rich microdomain formation at the plasma membrane impairing the 

ability of cells to respond to IFN-stimulated JAK-STAT antiviral signaling response 

(Mackenzie et al., 2007). 

An important thing to note is that Alphavirus replication complexes form at the plasma 

membrane which are incidentally rich in cholesterol. This differentiates Alphaviruses 

from Flaviviridae which replicate in association to membranes with poor cholesterol 

content forcing them to invest in means to recuperate this sterol. This suggests that if 

Alphavirus replication requires cholesterol that it may occur in association with 

cholesterol-rich lipid raft microdomains.  

De-novo fatty acid synthesis for creation of Flaviviridae replication organelles  

Flaviviridae induction of extensive membrane curvature on ER membranes suggests 

the need for increased lipids at these sites for sufficient membrane surface area to 

harbor these invaginations. Therefore, the requirement of FASN, a key enzyme in the 

de-novo fatty acid synthesis pathway, for Flavivirus replication came as no surprise. 

This enzyme was shown to be recruited to viral replication sites where it had increased 

activity via an interaction with the N-terminal domain of the NS3 protein. Conformingly 

with the need of fatty acids for Flavivirus replication, ACACA, another enzyme involved 

the fatty acid biosynthetic pathway, has also been shown to play a role in this process. 

However, the exact molecular details of its mode of action remains to be determined. 

Increasing fatty acid synthesis at these sites and their incorporation to ER membranes 

allows significant membrane expansion to harbor Flavivirus replication organelles 

(Heaton et al., 2010).  

Requirement of unsaturated fatty acids for Flaviviridae replication  

Fatty acids can vary in length and saturation degree. This consequently can cause 

important effects on membrane fluidity. Specifically, the role of UFAs in the modulation 

of the physical properties of membranes is clearly established. In contrast with SFAs, 

UFAs have more distance between the tails and thus fewer intermolecular interactions 

and more membrane fluidity. The knockdown of the key de-saturating enzyme SCD1 

has demonstrated the absolute requirement of UFAs for Flavivirus replication. Of high 

interest, inhibitors blocking SCD1 activity inhibited Flavivirus infection designating 
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these molecules of high interest for treatment strategies. No molecular details exist on 

the implication of SCD1 in Flavivirus replication. This enzyme is present at the ER, 

therefore, proof of re-localization to viral replication sites might prove challenging. 

However, the requirement of SCD1 for viral replication suggests that Flaviviruses 

require ER membranes rich in UFAs for the formation of replication organelles (Hishiki 

et al., 2019). 

The membrane lipids implicated in the replication of the Flaviviridae replication complex 

formation are summarized in Fig. 26. 

 

 

Fig. 26 Model for Flaviviridae replication complex formation and implication of 

membrane lipids 

Cholesterol biosynthesis is locally increased at viral replication sites through the recruitment of the HMG-
CoA reductase enzyme. Reduction of HMG-CoA reductase phosphorylation levels through inhibition of 
AMPK will lead to an increase in this enzyme’s activity. Fatty acid synthesis is stimulated through NS3-
mediated recruitment of FASN to the ER membrane. The increase in cholesterol and fatty acids will 
participate in the formation of membrane organelles conductive of viral replication (Osuna-Ramos et al., 
2018). 

 

In conclusion, it is clear that (+)RNA viruses manipulate the lipid metabolism in order 

to create a niche with specific lipid composition suitable for the establishment of 

replication organelles. Although the mechanisms for the recruitment of cholesterol and 
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fatty acids may vary among (+)RNA viruses, their requirement for optimal viral 

replication is conserved in this class of viruses. 
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Objectives of the thesis 

In the section “Focus on the replication complex”, the mechanism behind Alphavirus 

replication was discussed. In that part, it was clear that Alphavirus replication 

complexes formed in association with the plasma membrane where the Alphavirus 

nsPs and their timely processing played an essential role in this process. In this context, 

nsP1 anchored the replication complex to the lipid bilayer, and interestingly could 

induce membrane curvature when expressed alone. Finally, nsP1 capping activity was 

shown to be modulated by the presence of specific lipids in-vitro.  

A missing element to this discussion is the role of the lipid composition of the membrane 

platforms where Alphavirus replication complexes form. Additionally, even if certain 

host co-factors have been identified, the exact molecular mechanism for the 

establishment of membrane curvature for the creation of such structures remain largely 

uninvestigated.  

For this reason and to address these gaps in Alphavirus literature, the objectives of this 

thesis are 

I. to define the membrane lipid requirements for efficient Alphavirus replication  

II. to elucidate the mechanism behind Alphavirus-induced membrane curvature  

In all of these investigations, nsP1 will be at the centerpiece. This is because, as 

mentioned earlier, nsP1 anchors the replication complex to the membrane and is also 

capable of inducing membrane curvature alone. The Alphavirus model primarily used 

will be CHIKV due to its medicinal relevance as is clear in recent epidemics. However, 

comparisons with other Alphaviruses will be performed, when possible, in order to study 

if findings on CHIKV can be extended to other Alphaviruses.  
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Chapter 2 Results 

Part I Alphavirus lipid requirements 

Project A The role of fatty acid synthase and stearoyl-CoA desaturase-1 in Old 

World Alphavirus genome replication 

i. Article summary 

As mentioned in the introduction, the lipid composition of membranes has important 

consequences on a membrane’s organization and physical properties. In that 

discussion, it was clear that fatty acids especially UFAs contributed to membrane 

fluidity. Fatty acid synthesis is primarily carried out by the multi-enzyme protein FASN 

which catalyzes the conversion of acetyl-CoA to the fatty acid palmitate. In addition, 

fatty acids can be further modified by introducing double bonds into the acyl chain, a 

process which is mainly carried out by the activity of the desaturase enzyme SCD1.  

Because Alphavirus replication complexes form in close association with membranes, 

studying the implication of lipid metabolism in viral replication is of high relevance. Here 

came the design of this study, which aimed specifically to investigate the role of the two 

membrane lipid components, fatty acids and UFAs in Alphavirus replication. The 

primary Alphavirus model used was CHIKV. Nevertheless, this research was also 

applied to MAYV, a poorly studied Alphavirus endemic in South America, in order to 

observe whether the necessity for these lipid components was retained in OW 

Alphaviruses. 

The aggregation of these examinations demonstrated an absolute requirement for fatty 

acid and UFAs for proper CHIKV and MAYV replication. Furthermore, mechanistic data 

on the requirement of fatty acids for Alphavirus replication was provided. This identified 

FASN products as important for nsP1 membrane affinity possibly though participation 

in the nsP1 palmitoylation process. However, the role of UFAs in Alphavirus replication 

and nsP1 functions remains to be determined. 
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ii. Article 1 “Fatty acid synthase and stearoyl-CoA 

desaturase-1 are conserved druggable cofactors of Old 

World Alphavirus genome replication” 
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iii. Supplementary data 

 

Supp. Fig. 1 

Viability of HEK293T cells incubated with increasing concentrations of quercetin (A), cerulenin (B), 
Orlistat (C), CAY10566 (D) was determined after 24 h. Values are expressed as a percentage of the 

DMSO-treated control condition and are mean of triplicate ± SEM. 
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Supp. Fig. 2  

Increasing concentrations of (A) quercetin, (B) cerulenin, (C) Orlistat, (D) CAY10566 were added to 
HEK293T cells infected with CHIKV-luc for 1.5 h. After 24 h, luciferase activities were quantified in the 
cell lysates. Values are expressed as a percentage of the DMSO condition. 

 

 

Supp. Fig. 3 

Aedes albopictus C6/36 cells were infected with CHIKV-luc for 1.5 h and then treated with increasing 

concentrations of cerulenin (A) or (B) Orlistat. After 24 h in culture, virus replication was monitored by 

quantification of luciferase activities in the cell lysates. (C–D) Cell viability was determined for each drug 
concentration. Values are expressed as a percentage of the control condition. 

 

 

Supp. Fig. 4  

(A) HEK293T cells were infected with the MAYV-luc reporter virus (MOI = 1). Replication was monitored 

over time by quantification of virus-encoded nanoluciferase gene expression in the cell lysate. (B) Cells 
were infected with CHIKV-luc or MAYV-luc virus (MOI = 1). Luciferase activity was monitored after 24 h. 

Values were normalized according to protein content in the sample. 
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Project B Functional role of cholesterol in Chikungunya virus replication 

i. Article summary 

Another main membrane lipid component with important implications on the fluidity and 

organization of membranes is cholesterol. This sterol, by inserting between fatty acids, 

contributes to the increased thickness and rigidity of biological membranes. This 

membrane lipid is also an essential component of the highly ordered plasma membrane 

microdomains named lipid rafts.  

As mentioned earlier, this sterol has been shown to be important for the replication of 

other (+)RNA viruses (Flaviviridae). Recently, a paper has suggested that this 

membrane lipid plays a role in the replication step of CHIKV (Wichit et al., 2017). This 

was demonstrated using drugs (imipramine and U18666A) that sequester cholesterol 

in intra-cellular aggregates depleting it from the plasma membrane. However, the exact 

role of this sterol in the CHIKV replication step was not provided. Indeed, observation 

of cholesterol relocalization to CHIKV replication complexes is challenging since these 

organelles form in association with the plasma membrane which is rich in cholesterol. 

This is in contrast with Flaviviridae that assemble their replication complex with the ER 

membranes which are poor in cholesterol facilitating the observation of relocalization 

events. Therefore, we took advantage of cholesterol transport inhibitors to understand 

the role of this lipid in CHIKV replication. The focus was put on nsP1 since it is the nsP 

that targets the Alphavirus replication complex to membranes. Interestingly, cholesterol 

trafficking inhibitors relocalized nsP1 into intra-cellular cholesterol-rich aggregates. 

This tempted the speculation that nsP1 could be localized to lipid rafts. Indeed, 

experiments confirmed nsP1 lipid raft affinity. Furthermore, in a replicon or infectious 

based systems, nsP1 was able to recruit the other components of the replication 

complex to these microdomains. The search for molecular determinants in nsP1 

identified palmitoylation as the main player in this protein’s targeting to lipid rafts. This 

came in perfect agreement with recent studies showing that CHIKV nsP1 palmitoylation 

is absolutely essential for CHIKV replication, and indicates that this newly discovered 

lipid raft and cholesterol association of nsP1 is functionally relevant. This association 

also uncovers the poorly understood role of palmitoylation in Alphavirus replication.  

In summary, this study showed that cholesterol is required for Alphavirus replication. 

This requirement for cholesterol was then associated with the affinity of palmitoylated 
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nsP1 to cholesterol-rich microdomains. However, why Alphavirus replication 

complexes will assemble at lipid rafts remains an open area for investigation.  
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ii. Article 2 “Anchoring of nsP1 methyl-guanylyltransferase 

to cholesterol-enriched plasma membrane microdomains 

and functional consequences on Chikungunya virus 

replication” 

 

 

 

 

 

 

 

 



126 
 

Palmitoylated cysteines in chikungunya virus nsP1 are critical for targeting to 

cholesterol-rich plasma membrane microdomains with functional consequences 

for viral genome replication 

 

William Bakhache a, Aymeric Neyret a, Eric Bernard a, Andres Merits b and Laurence 
Briant a# 

 

a IRIM, Univ. Montpellier - CNRS UMR9004, Montpellier, France.   

b Institute of Technology, University of Tartu, Tartu, Estonia. 

 

Running head: CHIKV nsP1 affinity for cholesterol enriched membranes  

 

# Address correspondence to Laurence Briant, IRIM - Institut de recherche en 
Infectiologie de Montpellier, UMR9004 CNRS-UM. 1919 route de Mende 34293 
Montpellier Cedex 5 laurence.briant@irim.cnrs.fr  

 

Key words: Chikungunya virus, Methyl/guanylyltransferase, Cholesterol, Plasma 
membrane, Replication complexes, Alphavirus, 

  



127 
 

Abstract  

In mammalian cells, alphavirus replication complexes are anchored to the plasma 

membrane. Interaction with lipid bilayers is mediated through the viral 

methyl/guanylyltransferase nsP1 and reinforced by palmitoylation of cysteine 

residue(s) in the C-terminal region of the protein. Here, we explore the membrane 

binding capacity of nsP1 with regards to cholesterol. Using the medically important 

chikungunya virus (CHIKV) as a model, we report that nsP1 co-segregates with 

cholesterol-rich detergent-resistant membrane microdomains (DRMs), also called lipid 

rafts. We identify nsP1 palmitoylation as a critical factor for cholesterol partitioning. In 

cells infected with CHIKV or transfected with CHIKV trans-replicase plasmids, nsP1 

together with other nonstructural proteins are detected in DRMs. While the functional 

importance of CHIKV nsP1 preference for cholesterol-rich membrane domains remains 

to be determined, we observed that U18666A– and imipramine-induced sequestration 

of cholesterol in late endosomes redirected nsP1 to these compartments and 

simultaneously dramatically decreased CHIKV genome replication. A parallel study of 

Sindbis virus (SINV) revealed that nsP1 from this divergent alphavirus displays a low 

affinity for cholesterol and only moderately segregates with DRMs. Thus, behaviors of 

CHIKV and SINV with regards to cholesterol match with the previously reported 

differences in requirement for nsP1 palmitoylation that is dispensable for SINV but 

strictly required for CHIKV replication. Altogether, this study highlights the functional 

importance of nsP1 segregation with DRMs and provides new insight into the functional 

role of nsP1 palmitoylation during alphavirus replication. 

Importance 

Functional alphavirus replication complexes are anchored to the host cell membranes 

through the interaction of nsP1 with the lipid bilayers. In this work, we investigate the 

importance of cholesterol for such association. We show that nsP1 has affinity for 

cholesterol-rich membrane microdomains formed at the plasma membrane and identify 

conserved palmitoylated cysteine(s) in nsP1 as the key determinant for cholesterol 

affinity. We demonstrate that drug-induced cholesterol sequestration in late 

endosomes not only redirects nsP1 to this compartment but also dramatically 

decreases genome replication, suggesting the functional importance of nsP1 targeting 

to cholesterol-rich plasma membrane microdomains. Finally, we evidence that nsP1 
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from chikungunya and Sindbis viruses display different sensitivity to cholesterol 

sequestering agents, that parallel with their difference in the requirement for nsP1 

palmitoylation for replication. This research, therefore, gives new insight into the 

functional role of palmitoylation in nsP1 for the assembly of functional alphavirus 

replication complexes in their mammalian host. 
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Introduction 

In the last decade, evidence has pointed toward the intricate relationship between host 

lipid metabolism and the replication of viral pathogens. Indeed, viruses can co-opt or 

reprogram lipid signaling, synthesis and metabolism either to generate ATP, to extend 

cellular membranes or to remodel membrane lipid content. These modifications will serve 

to create an environment that is optimal for viral replication. This need is dictated by the 

pivotal role played by membranes in almost all steps of virus life cycle. Indeed, the 

importance of cellular lipids during the binding/entry process and assembly/budding of 

new infectious progeny into the extracellular space has long been appreciated (for review 

see (1)). However, the discovery that viruses with a positive-strand RNA genome ((+)RNA 

viruses) replicate in association with host cell membranes has expanded the regulatory 

function of lipids to viral replication. It is now well established that such viruses create 

membranous compartments, also called virus replication organelles,  originating from the 

endoplasmic reticulum (ER), Golgi apparatus, mitochondria, peroxisomes, 

endosomes/lysosomes or from the plasma membrane (PM) (2). In these compartments, 

viral replication proteins bind cell membranes with an affinity for determined lipid species 

(3, 4).  

Cell membranes are composed of phospholipids, glycolipids, and cholesterol. Among 

other lipids, cholesterol constitutes a unique type of cellular membrane building block. It 

is responsible for regulating fluidity and impermeability to lipid bilayers. In vertebrate cells, 

cholesterol homeostasis is maintained through de novo synthesis in the ER with 3-

hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase being the rate-limiting 

enzyme, and through receptor-mediated intake from the extracellular medium in the form 

of low-density lipoproteins (LDLs) (5). In this scenario, LDLs are delivered to and 

hydrolyzed in late endosomes/lysosomes (LE/Ls) where free cholesterol is released. 

Then, cholesterol requires proper intracellular transport to exit the LE/Ls and reach its final 

destination mainly at the PM, in the Golgi apparatus and the ER. This is ensured by 

Niemann-Pick C 1 and 2 (NPC1 and NPC2) proteins localized at the limiting membrane 

of lysosomes and in the lysosomal lumen respectively (6). Once at the PM, cholesterol 

together with glycosphingolipids, glycophosphatidylinositol (GPI)-anchored proteins and 
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transmembrane proteins can cluster into discrete domains. These cholesterol-enriched 

detergent-resistant membrane microdomains referred to as DRMs or lipid rafts have been 

identified as platforms for both endocytosis of penetrating viral particles and for progeny 

assembly and budding (7). More recently, cholesterol regulatory function was extended to 

the replication step of (+)RNA viruses. The local accumulation of cholesterol was 

proposed to contribute to the creation of a membrane microenvironment conducive to 

assembly and optimal function of replication complexes formed by members of the 

Flaviviridae family, including hepatitis C virus (HCV) (8–10) and West Nile virus (11), by 

members of Picornaviridae family, including Coxsackievirus and poliovirus (12) and by 

plant viruses from the Bromoviridae family (Brome mosaic virus; BMV) (13). Consistent 

with the idea that cholesterol accumulation may be required for optimal activity of viral 

replication machinery, manipulation of cholesterol metabolism was found to impair 

genome replication of taxonomically divergent (+)RNA viruses (8, 12, 14–18).  

Alphaviruses are (+)RNA viruses, which are predominantly transmitted to vertebrates by 

mosquito vectors. Chikungunya virus (CHIKV) is an Old World alphavirus causing millions 

of infections in tropical and subtropical geographical areas with a potential risk of 

spreading to regions with a temperate climate. It has recently received significant attention 

as a consequence of its re-emergence in the Indian Ocean and Caribbean Islands before 

spreading worldwide (19). CHIKV, like other alphaviruses, replicates its genome in 

membranous niches derived from the host PM (20–22). The replication complex confined 

in these organelles is termed as spherule and contains four non-structural proteins nsP1, 

nsP2, nsP3 and nsP4 encoded by the 5’ ORF in the viral genome and expressed in form 

of P123 and P1234 polyprotein precursors. In this complex, membrane binding is 

mediated by nsP1, the viral methyltransferase (MTase) and guanylyltransferase (GTase), 

which catalyzes the formation of the cap structure at the 5’ end of nascent positive stand 

viral RNAs (23, 24). Interaction with membranes is strictly required for Semliki Forest virus 

(SFV) nsP1 enzymatic activity  (25) and genome  (26) replication while it is dispensable 

for enzymatic activity of nsP1 of Sindbis virus (SINV)(27). S-acylated cysteines located in 

the C-terminal region of nsP1 play a crucial role for membrane attachment. These 

residues were proposed to mediate and stabilize interaction with lipid bilayers (28). 

However, the functional requirement for nsP1 palmitoylation for genome replication varies 
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among alphaviruses. Especially, alanine substitution of palmitoylated cysteines 

completely abolishes the replication of CHIKV (29, 30). It leads to the acquisition of 

compensatory mutations for SFV (31, 32),  and has only a marginal inhibitory effect on 

SINV replication (31, 33).  

In vitro, SFV nsP1 has affinity for anionic phospholipids especially phosphatidylserine, 

phosphatidylglycerol, and cardiolipin; these lipid species significantly improve its capping 

activity (25, 34). In cells, however, nsP1 affinity for specific lipids remains almost 

uninvestigated. In recent years, cholesterol metabolism was reported to be critical for the 

replication of alphavirus genome. Indeed, SINV RNA replication and protein synthesis is 

significantly decreased in fibroblasts from patients with type A Niemann-Pick disease 

(NPD-A) which induces cholesterol and sphingolipid storage in LE/Ls (35). More recently, 

we reported that U18666A, a class II cationic amphipathic steroid 3-β-[2-

(diethylamine)ethoxy]androst-5-en-17-one, and the anti-depressant drug imipramine, 

which both phenocopy NPD-A, are CHIKV inhibitors with potential activity against RNA 

replication steps (16). Here, we further question the importance of cholesterol metabolism 

in alphavirus life cycle. We especially explore the outcome of cholesterol manipulation on 

nsP1 subcellular distribution and membrane anchoring. We show that U18666A or 

imipramine redirect CHIKV nsP1 to Lamp2-positive endosomal compartments where 

unesterified cholesterol accumulates. nsP1 affinity for DRMs was confirmed by membrane 

flotation assays. Investigating the molecular basis of nsP1 targeting to DRMs revealed 

that the palmitoylated cysteines are the main determinants for association with these 

domains. Interestingly, when expressed transiently in the context of a P1234 polyprotein 

precursor or by an infectious CHIKV, nsP2, nsP3, and nsP4 were found to co-segregate 

with nsP1 in cholesterol-rich membrane fractions, a property that was abolished when 

nsP1 palmitoylated cysteines were mutated. In a parallel study we found that nsP1 

association with cholesterol containing membranes through palmitoylation is conserved 

for SINV despite being less marked than for CHIKV. Moreover, SINV nsP1 was also less 

sensitive to U18666A-induced cholesterol sequestration. This phenotype with regard to 

nsP1 cholesterol partitioning parallels the reduced requirement for cysteine palmitoylation 

previously reported for SINV replication (31, 33). Altogether this study provides clues on 

the proviral role of cholesterol in alphavirus replication suggesting its regulatory function 
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in nsPs association with the PM and presumably in formation of functional replication 

complexes.   

Results  

Cholesterol is pivotal for alphavirus genome replication. 

First, we set out to study the involvement of cholesterol homeostasis in CHIKV replication. 

Cholesterogenesis was inhibited using lovastatin, an FDA-approved drug that inhibits the 

activity of HMG-CoA reductase, that catalyzes the conversion of HMG-CoA to mevalonate 

in the cholesterol biosynthesis pathway (Fig 1A) (36). Cholesterol availability at the PM 

was reduced using U18666A or imipramine. By targeting NPC1 transporter, both drugs 

block the transfer of endocytosed cholesterol from late endosomes to different organelles, 

including the PM or ER, without significant effect on other lipid species (37). Additionally, 

U18666A inhibits enzymes of the cholesterol synthesis pathway (38). Each drug, used in 

a concentration range that was controlled to have limited toxicity (Fig 1B-b,d,f), was added 

to HEK293T cells 30 mins before infection with CHIKV-LR-5’GFP at a multiplicity of 

infection (MOI) of 0.5. After 24 hrs in culture, the infection was monitored measuring levels 

of GFP reporter expressed by recombinant virus. In each case, CHIKV infection was 

significantly reduced as compared with the mock-treated condition (Fig 1B-a,c,e). 

 We and others have demonstrated that the depletion of membrane cholesterol is 

deleterious for fusion of the virion and host membranes (39, 40). Because host 

membranes are also pivotal for replication of alphavirus RNAs through the creation of 

membranous replication organelles, we investigated whether cholesterol biosynthesis is 

also required for the post-entry step of CHIKV infection cycle. To this end, we performed 

experiments in which cells were treated with cholesterol metabolism and transport 

inhibitors 1 hr after CHIKV infection. In these conditions, lovastatin treatment, but also 

treatment with U18666A or imipramine, decreased CHIKV genome replication indicating 

that cholesterol biosynthesis inhibitors impair intracellular steps of CHIKV life cycle (Fig 

2A). To definitively omit drug effects on viral entry, we finally took advantage of  CHIKV 

trans-replication system that recapitulate CHIKV RNA replication (29). Plasmids CMV-

P1234 and HSPolI-Fluc-Gluc, encoding the P1234 polyprotein and a replication-
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competent template RNA containing firefly and Gaussia luciferase reporter genes under 

the control of genomic and subgenomic viral promoters respectively (Fig 2B), were 

cotransfected in HEK293T cells. Consequences of cholesterol transport inhibition were 

assayed by adding increasing concentrations of lovastatin, U18666A, and imipramine to 

transfected cells and quantification of reporter activities in cell lysates. As depicted in 

figures 2C and 2D, reporter expression directed by both genomic and subgenomic 

promoters was decreased by the drugs when compared to control conditions. Altogether, 

these results indicate that cholesterol homeostasis, including ongoing biosynthesis and 

transport of unesterified cholesterol to the host membranes, is pivotal for CHIKV genome 

replication. 

Putative a-helix and palmitoylated cysteines cooperate for CHIKV nsP1 binding to 

host membranes. 

Alphavirus replication complexes are anchored to the host membranes thanks to nsP1 

membrane binding capacity. While extensively reported for nsP1 encoded by SFV and 

SINV (33, 34), this feature has not yet been studied functionally for CHIKV. To investigate 

CHIKV nsP1 behavior with regard to host cell membranes, a plasmid encoding a GFP-

fused CHIKV nsP1 protein (GFP-nsP1; Fig 3A) was generated and used to transfect 

HEK293T cells. NsP1 membrane association was investigated by fractionation of 

transfected cells. Post-nuclear extract prepared from GFP-nsP1-expressing cells was 

separated into membranous (P25) and cytosolic (S25) samples by differential 

centrifugation as previously reported (41). Each fraction was resolved using SDS-PAGE 

and probed with anti-GFP antibodies and with antibodies against Na+/K+ ATPase or 

GAPDH, that respectively associate with membrane and cytosolic compartments. In these 

conditions, GFP alone was detected in the cytosolic sample together with GAPDH (Fig 3B 

and 3C). By contrast, GFP-nsP1 was detected in the membrane fraction also containing 

Na+/K+ ATPase. In parallel HeLa cells expressing these proteins were analyzed using 

confocal microscopy. As expected, the fluorescence of individual GFP was diffuse in the 

cytoplasm and nucleus. However, GFP-nsP1 fluorescence overlapped with PM stained 

using wheat germ hemagglutinin (WGA)-conjugated with Alexa Fluor 647. As previously 

reported for related alphaviruses (42), expression of GFP-nsP1 generated huge 
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membrane reshaping creating filopodia- and lamellipodia-like structures covering the 

entire cell surface, that stained positive for the green fluorescence. Of note, this profile 

was also observed for a C-terminally GFP-tagged nsP1-GFP protein as well as for an 

untagged nsP1 detected by mean of anti-nsP1 serum (Fig 3E), thereby supporting that 

GFP-nsP1 behaves as native nsP1 regarding localization and association with 

membranes. According to the focal plane chosen, a fraction of each of these proteins was 

also detected as small cytosolic aggregates as illustrated for on figure 3E.  

Because alphavirus nsP1 was previously proposed to be trafficked to endosomes (43) 

and in light of our confocal microscopy analysis, we further questioned nsP1 subcellular 

distribution by performing fractionation assays that separated the PM from other cell 

membranes. The post-nuclear extract was prepared from GFP-nsP1 expressing cells and 

separated by isopycnic centrifugation in a self-forming linear 10-20-30% iodixanol density 

gradient. Twenty-four samples were collected from top to bottom and assayed by western 

blotting for GFP-nsP1 content. A roughly equal proportion of GFP-nsP1 was detected in 

the top fractions 1 and 2 and also in fractions 9 to 12 that all stained positive for the Na+/K+ 

ATPase membrane marker (Fig 3F). These fractions also contained flotillin-1 (FLOT1) that 

is known to localize predominantly to the PM and endosomal compartments, i.e. late 

endosomes and recycling endosomes (44). By contrast, individual GFP segregated with 

fractions 17 to 24 at the bottom of the gradient that corresponded to the cytosolic 

compartment. Altogether, these results show that CHIKV nsP1 is a membrane-associated 

protein, that cofractionates equally with the PM and some internal membranes, probably 

endosomal in nature, suggesting that this protein may traffic between the two 

compartments.  

We next questioned whether the functions of membrane binding determinants previously 

identified in alphavirus nsP1 proteins are also conserved for CHIKV nsP1. Extensive 

analysis performed using SFV and SINV as models established that membrane 

association of nsP1 relies on a central conserved sequence that folds as an amphipathic 

a-helix when studied as a synthetic peptide in solution (34). In this sequence, a pivotal 

role in membrane anchoring was attributed to tryptophan at position 259 (W259) that sinks 

into the phospholipid bilayer (34). This interaction was proposed to be reinforced by the 
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presence of cysteine residue at position 420 (C420) SINV or cysteine residues 418-420 

in SFV (C418-420) which are covalently palmitoylated and render the protein highly 

hydrophobic (28, 33). These motifs are conserved in the CHIKV nsP1 sequence where 

W258 and C417-419 of residues correspond to W259 and C418-420 of SFV nsP1, 

respectively (Fig 3A). To study the contribution of each motif in CHIKV nsP1 membrane 

binding, we generated GFP-nsP1 mutants in which W258 (GFP-nsP1W258A) or C417-419 

(GFP-nsP13A) residues in nsP1 sequence were replaced by alanine as well as a double 

nsP1 mutant bearing a combination of W258A or C417-419A mutations (GFP-nsP1DM). 

Fluorescence microscopy of cells transfected with the corresponding plasmids evidenced 

a diffuse green fluorescence that predominated in the cytoplasm by contrast with cells 

expressing GFP-nsP1 (Fig 3D). Fractionation experiments confirmed that GFP-nsP1W258A 

and GFP-nsP13A were more abundant in the cytosolic fraction than GFP-nsP1, with a 

significant amount of each mutant protein remaining associated with cell membranes (Fig 

3B and 3C). The same cell extracts were then subjected to membrane flotation assay in 

iodixanol gradient to appreciate their capacity to associate with the internal/plasma 

membrane compartments. GFP-nsP1W258A and GFP-nsP13A proteins were both detected 

in fractions 18-24 of the gradient thereby confirming that these proteins have a decreased 

membrane affinity (Fig 3F). Each mutant protein was also present at the top of the gradient 

in fractions 1-2 corresponding to the PM and in fractions 9-12 corresponding to internal 

membranes. Distribution of mutant proteins in these fractions generally mimicked that of 

GFP-nsP1, except that GFP-nsP1W258A was somewhat more abundant in internal 

membrane fractions. This was also reflected in more diffuse localization of GFP 

fluorescence in cells expressing GFP-nsP1W258A (compare panels b and d of Fig. 3D) 

indicating possible role of W258 for PM affinity of CHIKV nsP1. Nevertheless, the 

observed differences were small suggesting that W258A and C417-419A mutations despite 

decreasing membrane affinity do not prominently modify nsP1 distribution between 

intracellular and plasma membranes or nsP1 trafficking capacity. Finally, membrane 

association was further decreased when W258A and C417-419A mutations were combined 

in GFP-nsP1DM (Fig 3B and 3D). Altogether these results establish that CHIKV nsP1 

associates both with the plasma and endosomal membranes, an association dictated by 

the cooperation of motifs that contain C417-419 and W258 amino acids in the protein.  
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Cholesterol storage defect redirects CHIKV nsP1 to late endosomes.  

Based on the observation that cholesterol synthesis and transport is required for CHIKV 

RNA replication and on the intimate relationship of CHIKV nsP1 with membranes, we next 

wondered whether cholesterol homeostasis has an impact on nsP1 behavior. We first 

investigated nsP1 subcellular localization with respect to cholesterol distribution. Cells 

transfected with plasmid expressing GFP-nsP1 were incubated with U18666A or 

imipramine to generate a cholesterol entrapment in LE/Ls (45). This capacity was 

controlled using the antifungal antibiotic filipin III that forms a fluorescent complex upon 

association with unesterified cholesterol (46). In the presence of U18666A or imipramine, 

filipin III evidenced the formation of large fluorescent cytosolic aggregates that contrasted 

with the presence of cholesterol at the PM and more evenly distributed in the cytoplasm 

of mock-treated cells (Fig 4A and data not shown). For U18666A, these clusters 

colocalized with Lamp2 (Fig 4C), a LE/Ls marker, thereby confirming that this 

pharmacological agent stimulates the accumulation of unesterified cholesterol in late 

endosomes as previously reported (47). Using these experimental conditions, we next 

assessed the impact of cholesterol storage defect on GFP-nsP1 subcellular localization 

and membrane affinity. Fractionation assays established that drug treatment did not 

increase amount of cytosolic nsP1 (Fig 4B; S25 fraction) indicating that it had no 

consequence on nsP1 membrane affinity. However, microscopy imaging revealed that, in 

the presence of U18666A, a significant part of GFP-nsP1 fluorescence was redirected 

from the PM to cytosolic aggregates. This signal overlapped with filipin III staining as 

attested by cross-sectional analysis of the fluorescent signals (Fig 4D and 4E). In similar 

experimental conditions, no redistribution of individual GFP fluorescence was observed. 

Accordingly, upon cholesterol storage condition, GFP-nsP1 colocalized with unesterified 

cholesterol stored in late endosomes. This situation contrasted with that of mock-treated 

cells in which the GFP-nsP1 fluorescence colocalized with filipin III at the PM and did not 

overlap with Lamp 2 staining. Altogether, our results argue that the inhibition of NPC1-

mediated cholesterol transport by U18666A redirects GFP-nsP1 to LE/Ls where 

unesterified cholesterol accumulates. Re-targeting GFP-nsP1 to these compartments has 

no significant impact on nsP1 membrane binding capacity.  
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Palmitoylated cysteines but not W258 residue determine CHIKV nsP1 sensitivity to 

cholesterol distribution. 

Palmitoylation governs protein trafficking and association with membranes. A major focus 

of studies on protein palmitoylation has been the role of this modification in promoting 

interaction with gangliosides and cholesterol, leading at certain conditions, to protein 

translocation to raft/caveolae membrane domains (48). Having demonstrated that 

palmitoylated cysteines in CHIKV nsP1 are required for optimal membrane association, 

we investigated their contribution to GFP-nsP1 cholesterol affinity. The above described 

experiments were repeated using cells transfected with GFP-nsP1W25A and GFP-nsP13A 

plasmids. In the presence of U18666A, GFP-nsP1W258A fluorescence was concentrated in 

cytosolic foci colocalized with filipin III fluorescence (Fig 5A) as observed for GFP-nsP1. 

In contrast, GFP-nsP13A fluorescence remained diffuse in the cytoplasm whether the cells 

were maintained in the presence of U18666A or with an appropriate concentration of 

vehicle (Fig 5C). These phenotypes were confirmed by cross-sectional analysis of the 

fluorescent signals (Fig 5B and D). Accordingly, W258, even if required for strengthening 

nsP1 membrane affinity, is not critical for cholesterol affinity. In contrast, palmitoylated 

cysteine-to-alanine substitution in mutant GFP- nsP13A abolished sensitivity to U18666A, 

suggesting a critical role of palmitoylation in nsP1 cholesterol affinity.   

To further explore GFP-nsP13A behavior with regard to cholesterol, we took advantage of 

CD81, a heavily palmitoylated tetraspanin, segregating mainly with DRMs, as a lipid raft 

biomarker (49). Indeed, in our hands, this protein was mainly detected at the PM of 

untreated U2OS cells (Fig 6A). It was redirected to cytosolic aggregates in cells cultured 

with U18666A or imipramine (Fig 6B) where it colocalized with GFP-nsP1 as attested by 

Mander’s coefficient calculation (Fig 6D). CD81 therefore appears as a sensitive 

cholesterol sensor. Using this property, we explored the importance of nsP1 palmitoylation 

for cholesterol dependency. Cells transfected to express GFP-nsP13A were incubated in 

the presence of U18666A. Despite inducing the clustering of CD81 into intracellular 

compartments, this treatment did not affect GFP-nsP13A distribution (Fig 6C). Indeed, 

GFP-nsP13A remained detected as a diffuse cytoplasmic protein as observed in mock-

treated cells thereby contrasting with the phenotype observed for GFP-nsP1. No 



138 
 

colocalization of CD81 and GFP-nsP13A fluorescence was observed (Fig 6D). Optical 

sectioning (z-stack) and three-dimensional (3D) volume reconstruction from image stacks 

confirmed that conversely to GFP-nsP1, GFP-nsP13A poorly colocalized with CD81 in drug 

treated cells (Fig 6E and 6F). These phenotypes were confirmed from cells cultured with 

imipramine. According to these results, nsP1 behaves similarly to CD81 with regard to 

cholesterol storage, a property that requires the presence of palmitoylated cysteines in 

nsP1 C-terminus.   

CHIKV nsP1 partitions with DRMs.  

Given that nsP1 subcellular localization is sensitive to cholesterol redistribution to the PM, 

we questioned its capacity to segregate with cholesterol-enriched membrane 

microdomains. Cholesterol is not uniformly distributed in membranes. In living cells, it 

concentrates in nanoscale assemblies, also enriched in sphingolipids and 

glycosylphosphatidylinositol (GPI)-anchored proteins, referred to as lipid rafts. These 

compartments are characterized biochemically by their insolubility in non-ionic detergents, 

a property reflected in their name (DRM - detergent-resistant membrane microdomains), 

and by their light density on sucrose gradients. Therefore, they can be separated from 

non-raft membranes by centrifugation methods. Samples prepared from cells transfected 

with GFP-nsP1 expression plasmid were treated with Triton X-100 at 4°C, separated on 

a 10-80% sucrose density gradient, and then analyzed by western blot. Detergent-

resistant fractions corresponding to DRMs were identified utilizing an antibody against 

FLOT1, a well-known raft-associated protein (50). In our experimental conditions, FLOT1 

fractionated into light density fractions 1 and 2 at the top of the gradient thereby identifying 

DRMs (Fig 7A). In contrast, the non-raft marker Na+/K+ ATPase remained associated with 

fractions 7-9 of heavier density corresponding to non-raft membranes and cytosolic 

compartment (detergent sensitive; DS). Using this protocol, more than 85% of the GFP-

nsP1 protein was detected in FLOT1-positive fractions at the top of the gradient supporting 

its capacity to associate with cholesterol-enriched DRMs (Fig 7A and 7B). To confirm 

GFP-nsP1 affinity for cholesterol-enriched microdomains, this experiment was repeated 

starting from cells cultured in the presence of the cholesterol depleting agent methyl-b-

cyclodextrin (bMCD). Due to its ability to sequester cholesterol in its hydrophobic pocket, 
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bMCD extracts cholesterol from the lipid bilayer and disrupts DRMs (51). Under these 

cholesterol depletion conditions, FLOT1 was redistributed from DRMs to DS fractions and 

sedimented at the bottom of the density gradient (Fig 7C and 7D). Analysis of the same 

fractions with anti-nsP1 antibodies revealed that GFP-nsP1 was barely detectable in top 

fractions while it accumulated in fractions of heavier density together with FLOT1. 

Therefore, GFP-nsP1 fractionation with DRMs is sensitive to cholesterol extraction from 

cell membranes. Finally, this experiment was repeated starting from cells expressing 

GFP-nsP1W258A or GFP-nsP13A mutant proteins that displayed different sensitivity to 

U18666A. As observed for GFP-nsP1, the GFP-nsP1W258A mainly segregated with DRMs 

fractions attesting that raft association was not disrupted by mutation of W258 residue in 

the putative α-helix of nsP1 (Fig 7E and 7F). Analyzing the behavior of the GFP-nsP13A 

mutant protein revealed, in contrast, that most of this protein was absent from the top 

fraction and co-segregated with the DS fractions. These experiments demonstrate that 

the presence of GFP-nsP1 in DRMs is mainly dictated by acylated cysteines while 

mutation in the putative a-helical peptide has only marginal impact on this phenotype.  

nsPs associate with DRM fractions in cells with CHIKV RNA replication. 

Unlike SFV, CHIKV replication is completely abolished by nsP13A mutation regardless of 

the type and growth temperature of cells. In contrast, nsP1W258A mutation allows virus to 

grow efficiently in insect cells or in mammalian cells cultivated at 28oC (29, 52). Combined 

with data from previous experiments it strongly indicates that presence of nsP1 in DRM is 

an absolute requirement for CHIKV genome replication. Therefore, we questioned 

whether nsP1 affinity for DRMs was conserved in cells containing functional CHIKV 

replicase complexes. To this end, HEK293T cells either transfected with a trans-

replication system that reproduces CHIKV RNA replication (Fig 2B) or infected with the 

CHIKV-LR-5’GFP were used. DRM isolation followed by immunoblot analysis revealed 

that most of nsP1 expressed in transfected or infected cells (⁓85 and ⁓40%, respectively) 

was detected in DRMs (Fig 8A and 8B). NsP1 is the only alphavirus nonstructural protein 

with membrane affinity. In the replication complex, nsP1 co-localizes with nsP2, nsP3, 

and nsP4 (53–56). Thus, it is suspected to play a critical role in replication complex 

anchoring to the PM. Therefore, we investigated whether nsP1 capacity to segregate with 



140 
 

DRMs has an impact on the association of other nsPs with specialized membrane 

microdomains. Probing gradient fractions prepared from transfected and infected cells 

with antibodies against nsPs established that a significant part of each of them was 

detected in DS fractions thereby agreeing with the previously reported capacity of nsPs to 

be present in different cytosolic compartments (57). However, approximately 10% of total 

nsP3 and nsP4 levels were also present in raft fractions. In some, but not in all 

experiments, nsP2 was also detectable in DRMs; most probably this reflects weaker 

interaction of nsP2 with other components of replicase complexes. In order to assess the 

relevance of presence of nsP2, nsP3 and nsP4 in DRM fractions, these experiments were 

reproduced starting from cells transfected with a CHIKV trans-replicase system in which 

the nsP1 protein contained the C418-420A mutation. As expected, this mutation prevented 

nsP1 association with DRMs (Fig 8C). Concomitantly, nsP2, nsP3 and nsP4 were also 

excluded from these fractions. Altogether these results confirm the capacity of nsP1, 

expressed in the context of trans-replicase or by infectious CHIKV, to associate with 

DRMs, an association that dictates targeting of other nsPs, albeit at low levels, to 

cholesterol-enriched membrane microdomain. Furthermore, the C418-420A mutation that 

completely inactivates CHIKV trans-replicase (29) completely prevented association of 

CHIKV nsPs with DRM. 

Conservation of nsP1-directed cholesterol affinity among divergent Old World 

alphaviruses.  

The presence of palmitoylated cysteine residues in C-terminal region of nsP1 is a 

conserved feature of distantly related Old World alphaviruses (30, 33). Functional studies 

have highlighted differences with regard to cysteine requirement for genome replication: 

cysteine-to-alanine mutation are lethal for CHIKV (29, 30) but is well tolerated by SINV 

(33). In the light of such differences and of the herein evidenced role of the CHIKV nsP1 

cysteines in lipid raft association, we next questioned whether SINV nsP1 behaves 

similarly with respect to cholesterol. To achieve this, a plasmid encoding a GFP-fused 

SINV nsP1 protein was generated (Fig 9A) and used for the transfection of HEK293T 

cells. Then, we tested SINV nsP1 partitioning to DRMs by membrane flotation assays. As 

previously observed for CHIKV nsP1, SINV nsP1 was also detected in the top fractions of 
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the density gradient supporting its ability to partition with cholesterol-rich membrane 

microdomains. However, contrasting with CHIKV for which almost 85% of nsP1 

associated to DRM fractions, a roughly equal proportion of the SINV nsP1 was associated 

with DRMs and DS (Fig 9B). We further investigated SINV GFP-nsP1 affinity for 

cholesterol by testing its sensitivity to U18666A in confocal microscopy experiments. In 

control conditions, SINV GFP-nsP1 was detected at the PM, including in filopodia-like 

membrane protrusions that were abundantly observed as reported before for the 

untagged protein (42) and for CHIKV GFP-nsP1 (Fig 9C). In the presence of U18666A, 

SINV GFP-nsP1 was still mainly detected at the PM, while cholesterol stained with filipin 

was concentrated in intracellular storage compartments as expected. In these conditions, 

co-localization of GFP-nsP1 SINV with cholesterol-enriched endosomes was unfrequently 

detected. This is in contrast with the results obtained for CHIKV nsP1 (Fig 4D). Next, we 

investigated the role of palmitoylated cysteine by repeating these experiments starting 

from cells expressing a cysteine-to-alanine SINV nsP1 palmitoylation-negative mutant 

protein (GFP-nsP1C420A). As shown in Figure 9B, the DRM association of GFP-nsP1C420A 

was significantly reduced when compared with that of SINV GFP-nsP1 (Fig 8A). Analyzing 

SINV GFP-nsP1 C420A subcellular localization in U18666A treated cells confirmed that this 

mutant did not colocalize with filipin-labelled cholesterol (Fig 9D). Altogether these results 

suggest that SINV nsP1 is targeted to DRMs, a property that depends of palmitoylated 

cysteine as previously observed for CHIKV nsP1. However, compared with CHIKV 

counterpart, SINV nsP1 is equally abundant in DS compartments and displays only 

modest sensitivity to U18666A suggesting a reduced affinity for cholesterol. 

Discussion  

The present study identifies CHIKV nsP1 as a lipid-raft co-segregating protein with an 

affinity for cholesterol. We defined cysteine residues that can be palmitoylated as the 

molecular determinant important for this targeting. In the context of cells with ongoing 

CHIKV RNA replication, nsP1, together with a fraction of other nsPs, partitions with 

cholesterol-rich DRMs. Together with evidence that drugs reducing cholesterol availability 

at the PM impair CHIKV RNA replication, our results support that nsP1 targeting to 



142 
 

cholesterol-rich PM microdomains may have a functional importance for viral genome 

replication (Fig 10).  

Cholesterol is a main component of membranes. Together with sphingolipids, it 

segregates into discrete microdomains, referred to as lipid rafts or DRMs, present both on 

the inner and the outer leaflet of the PM (58, 59). These membrane domains with a size 

on the nm scale are highly dynamic. They accumulate a subset of membrane proteins, 

mainly GPI-anchored proteins, transmembrane proteins, and acylated cell components 

(60, 61). Based on these properties, rafts were seen as platforms that compartmentalize 

cellular processes with an important function in receptor-ligand interaction, signal 

transduction and endocytosis (60). Herein, we establish that CHIKV nsP1 associates with 

the PM. In this compartment, a pool of nsP1 is targeted to cholesterol-containing DRMs, 

an association that was reversed by bMCD cholesterol-removal agent. Affinity for 

cholesterol was further supported by investigating nsP1 behavior with regard to U18666A- 

or imipramine-mediated cholesterol sequestration in LE/Ls. We found that intracellular 

cholesterol storage resulted in nsP1 accumulation in endosomes without consequence on 

overall nsP1 membrane binding ability. Altogether these results indicate that availability 

of cholesterol at the PM is required for appropriate targeting of CHIKV nsP1 to this 

compartment. 

In the last decade, the biochemical or biophysical underpinnings that govern nsP1 

association with membranes have been the focus of an intense attention. For SFV and 

SINV, the central a-helical motif in nsP1 spanning amino acid residues 245 to 264 was 

proposed as the main determinant for membrane anchoring to lipid bilayers with W259 

residue being critical for hydrophobic interactions with the phospholipid acyl chains (34). 

Conserved acylated cysteine(s) in nsP1 were proposed to tighten this membrane 

interaction (26, 28, 30, 33). Using cell fractionation assays, we show that both W258A 

substitution in putative a-helix of CHIKV nsP1 and C417-419A mutations indeed decrease 

nsP1 affinity for cell membranes. Interestingly, combining W258A and C417-419A mutations 

further reduced nsP1 membrane association thereby suggesting that in the CHIKV nsP1 

the two domains may synergize for membrane interaction, a situation that was not 

described for other alphaviruses. Analyzing the contribution of these membrane 
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interaction determinants in nsP1 targeting to lipid rafts revealed that W258A mutation had 

only a slight effect on nsP1 co-fractionation with cholesterol-rich domains. This mutation 

also slightly reduced PM association of nsP1 and facilitated its association with internal 

membranes. This may indicate that W258 residue is important for membrane/plasma 

membrane targeting of nsP1 but not for its palmitoylation, DRM association and enzymatic 

activity. How these properties correlate with the proposed role of W258 residue as one of 

membrane anchors of nsP1 is currently unclear. For the proper understanding of the 

somewhat controversial data regarding the importance of W258 residue, the structure of 

the membrane bound α-helical peptide of nsP1 (34) should be compared with the structure 

of membrane-bound enzymatically active nsP1 which, to the date, is yet available.  In 

contrast to W258A mutation the effects of C417-419A mutation on CHIKV nsP1 were 

unambiguous. The mutation, previously reported to prevent CHIKV nsP1 palmitoylation  

and replication (29, 30), dramatically reduced DRM co-fractionation. Moreover, by 

contrast with wild-type nsP1, nsP1C417-419A sequestration with Lamp2 in endosomes could 

not be observed under U18666A or imipramine treatment. According to these 

experiments, acylation appears as critical to direct nsP1 to cholesterol-enriched 

membrane microdomains. This result parallels previous evidence regarding the role of 

palmitoylation in cellular (p59fyn and p60src) (62) or viral (influenza hemagglutinin) (63) 

proteins association with rafts. This observation raised the question of the functional 

outcome of nsP1 association with cholesterol-rich DRMs.  

Because other nonstructural proteins of alphaviruses cannot directly associate with 

membranes, nsP1 plays a decisive role in proper targeting and membrane binding of other 

nsPs involved in the formation and functioning of alphavirus replication complex (24). 

Starting from cells infected with CHIKV, we found that a fraction of each of the four nsPs 

was associated with DRMs. These results were confirmed in cells transfected with 

plasmids encoding fora CHIKV trans-replication system, in which other non-structural 

proteins co-sedimented with DRMs depending on the integrity of nsP1 C417-419 

residues. Currently the functional importance of nsPs targeting to rafts is unknown. 

Nevertheless, we observed that in addition to the nsP1 palmitoylation-dependent 

sequestration into late endosomes, U18666A and imipramine also generated a significant 
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drop in CHIKV genome replication. This raises the question of the functional 

consequences of nsP1 mistargeting and of its impact on replication complexes assembly. 

Over two decades, alphaviruses encoding nsP1 mutants with reduced membrane binding 

ability have been in the focus of different studies. They established that nsP1 

palmitoylation had only a mild impact on SINV or SFV infectivity, highlighting the essential 

role of W259 in nsP1 central a-helix for both membrane anchoring and genome replication 

(31, 33). For CHIKV, W258A mutant is viable, albeit having a temperature-sensitive 

phenotype (29). By contrast, C417-419A mutation results in complete inactivation of the 

CHIKV replicase, leading to non-functional enzymes unable to synthesize any viral RNAs 

both in mammalian and insect cells (29, 30, 52). Here, direct comparison of SINV and 

CHIKV revealed that SINV nsP1 partitions with DRMs but to a lesser extent than observed 

for CHIKV nsP1. This phenotype was equally dependent upon palmitoylated cysteine in 

nsP1. Moreover, SINV nsP1 targeting to the PM was less sensitive to cholesterol 

manipulation by U18666A. These discrepancies therefore parallel the differences in nsP1 

palmitoylation requirement reported for CHIKV and SINV replication (29). However, 

counterintuitively, SINV genome replication was also sensitive to U18666A and 

cholesterol sequestration (this study and (35)) albeit less than observed for CHIKV (data 

not shown). Conversely to CHIKV, this might not reflect dependency on PM rafts, but 

instead cholesterol-induced alteration of endosomes where SINV preferentially replicates 

as proposed by others (35, 64).  

In the last decade, cholesterol-rich membrane microdomains, beyond their role in virus 

entry and exit, have also been identified as platforms for the assembly and anchoring of 

replication complexes produced by a broad range of RNA viruses including HCV, 

picornaviruses or flaviviruses (9, 10, 12, 18, 65). A dramatic reduction of viral RNA 

replication was observed upon membrane cholesterol extraction or in conditions reducing 

cholesterol availability (12, 14, 66, 67) establishing functional importance for this 

association. Besides changing membrane composition and fluidity, which may affect 

different interactions between virus-encoded replicase subunits, cholesterol partitioning in 

membranes also attract cellular proteins, with functions in cell signaling and intracellular 

trafficking. We can assume that targeting CHIKV nsP1 and possibly other nsPs at these 
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sites may favor interaction with raft-associated cellular factors indispensable for viral 

replication. The exact necessity for nsP1 partitioning to DRMs therefore will deserve 

further investigations.  

Materials and Methods 

Antibodies and reagents: The following antibodies/reagents and respective dilutions 

were used in this study: rabbit polyclonal antisera against CHIKV nsP1, nsP2, nsP3, nsP4 

(all in-house, 1:1,000), monoclonal antibodies against GAPDH (1:1,000) (Santa Cruz 

Biotechnologies Inc.), Na+ K+ ATPase (1:50,000) (Ab76020, Abcam), GFP (1:1,000) 

(Chromotek), Lamp2 (1:1,000), CD81 (1:500) (Clone JS-81, BD Biosciences) and flotillin-

1 (1:1,000) (BD Biosciences). Secondary antibodies conjugated to horseradish 

peroxidase or Alexa Fluor were purchased from Jackson Immunoresearch and Thermo 

Fisher Scientific, respectively. Filipin III, U18666A, Lovastatin, methyl-β-cyclodextrin were 

purchased from Sigma-Aldrich. Imipramine was obtained from Abcam and WGA-647 from 

Thermo Fisher Scientific.  

Cells: HEK293T cells (ATCC # ACS-4500), HeLa cells (ATCC # CRM-CCL2), BHK21 

cells (ATCC # CCL-10) and U2OS cells (ATCC # HTB-96) used for propagation and Vero 

cells (ATCC # CCL-81) used for titration of the CHIKV were cultured in Dulbecco's 

modified Eagle's medium (DMEM, Thermo Fischer Scientific) supplemented with penicillin 

and 10% fetal calf serum (FCS, Lonza) and grown at 37°C in a 5% CO2 atmosphere. Cell 

viability was measured using Cell Titer 96 Aqueous one solution cell proliferation assay 

(Promega) according to the manufacturer's protocol. 

Viruses: The pCHIKV-LR-5’GFP, full-length molecular clone of CHIKV (LR2006OPY1 

strain) with GFP reporter (68), was linearized and transcribed in vitro using the 

mMESSAGE mMACHINE kit (Ambion-Life Technologies). 1 μg of RNA was then 

transfected with lipofectamine 2000 (Thermo Fisher Scientific) into 105 HEK293T cells 

and the cells were incubated at 37°C for 24 hrs. Culture medium was collected, and virus 

stock was amplified on BHK-21 cells. After 48 hrs at 37°C, the supernatant was collected, 

filtered through a 0.45 µm membrane, aliquoted and stored at -80°C. Viral stocks were 

tittered using plaque assay as previously reported (39).  
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Infection with CHIKV-reporter viruses: The cells (70-80% confluence) were rinsed once 

with PBS before infection with CHIKV-LR-5’GFP diluted to achieve the desired MOI. For 

pre-infection experiments, the cells were pre-incubated with the virus for 1 hr or 2 hrs 

before drug addition. For post-infection experiments, the cells were incubated with drugs 

for 30 min before infection. After 24 hrs in culture, the cells were lysed with RIPA buffer. 

GFP reporter fluorescence was measured directly from the cell lysate using an Infinite 

F200PRO fluorometer (Tecan). Values were normalized to the protein content in the 

sample determined using the BCA Assay (Pierce).  

Plasmids and transfection: Sequence encoding for CHIKV nsP1 was amplified by PCR 

using pCHIKV-LR-5’GFP as a template; obtained fragment was cloned into the pEGFP-

C1 plasmid as previously described (69). Sequences encoding for a nsP1W258A, nsP1C417-

419A and nsP1DM were generated using the Quikchange site-directed mutagenesis kit by 

Agilent. SINV nsP1 and  nsP1420A  were obtained using PCR and pTOTO1101 (70) or its 

derivative pSINV-C420A1 (33) as templates. These inserts were cloned in frame with EGFP 

in the pEGFP-C1 plasmid. Cells were transfected with obtained plasmids using JetPei 

reagent (Polyplus Transfection) according to manufacturer recommendations.  

Trans-replication assay: For trans-replication assays, CMV-P1234 (71) or CMV-SINV-

P1234 (B. Götte, A. Utt, R. Fragkoudis , A. Merits, G.M. McInerney; submitted for 

publication (72)) plasmids encoding nonstructural polyprotein from CHIKV or SINV 

respectively were cotransfected together with the HSPolI-Fluc-Gluc (29) or HSPolI-SINV-

tFluc-Gluc (72) template plasmids encoding for replication-competent template RNA of 

CHIKV or SINV containing firefly and Gaussia luciferase reporter sequences placed under 

control of genomic and subgenomic promoters respectively. Equal amounts of plasmids 

were transfected into HEK293T cells using JetPei transfection reagent. After 24 hrs in 

culture, cells were washed in PBS and lysed using Passive Lysis Buffer (Promega). 

Expression of firefly and Gaussia luciferase was determined using the Dual-Glo 

Luciferase Assay system (Promega) and a Spark luminometer (Tecan). Reporter activities 

were normalized to the protein content in the sample determined using the BCA Assay 

(Pierce). 
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Immunoblotting: Samples were separated by SDS-PAGE and then transferred to PVDF 

membrane (Hybond, Amersham). Membranes were blocked using 5% non-fat dry milk in 

PBS and probed with appropriate primary antibodies. After wash steps with PBS – 0.1% 

Tween 20, the membranes were probed with HRP-conjugated secondary antibodies. After 

final washes, the revelation was performed by incubating the membranes with 

either Luminata Forte (Merck) or Clarity Max (BioRad) and then image acquisition was 

done using a Chemidoc (Bio-Rad). 

Cell fractionation and membrane flotation assays: Cells were incubated in hypotonic 

buffer (10mM Tris/HCl [pH 7.4], 10 mM NaCl supplemented with protease inhibitors) for 

10 min on ice and then lysed with a Dounce homogenizer (30-40 strokes). The lysates 

were clarified by low-speed centrifugation at 1,000 g for 10 min. Obtained post-nuclear 

supernatants (PNS) were then adjusted to a final concentration of 500 mM NaCl and 

incubated for 30 min on ice. After ultracentrifugation at 25,000 g for 20 min, the cytosolic 

(supernatant, S25) and membrane fraction (pellet, P25) were collected. P25 samples 

were solubilized in lysis buffer composed of 1% Brij 96 in 20 mM Tris/HCl [pH 7.5] before 

analysis. For membrane flotation experiments, cells were resuspended in 250 mM 

sucrose in PBS supplemented with protease inhibitors and then lysed with a Dounce 

homogenizer (30-40 strokes). Cell lysates were spun at 1,000 g for 10 min to pellet the 

nuclei. The supernatant referred to as crude lysate (CL) was then adjusted to 30% 

iodixanol concentration by mixing Optiprep (Axis-Shield). CL (4 mL) was loaded at the 

bottom of a centrifuge tube, and then overlaid with 4 mL 20% iodixanol and then 4 mL 

10% iodixanol. The gradient was then spun 200,000 g at 4°C for 16 hrs in a Beckman 

SW41 rotor.  Finally, 24 fractions were collected from top to bottom. 

Detergent-resistant membrane isolation: Cells were lysed on ice in TNE buffer (10 mM 

Tris/HCl [pH 7.5], 100 mM NaCl, 10 mM EDTA) containing 0.5% Triton X-100 for 30 min. 

Lysates were then further treated with the Dounce homogenizer, and then clarified by low-

speed centrifugation at 1,000 g for 10 min to obtain the PNS. PNS (0.5 mL) was adjusted 

to 60% sucrose by adding 1.5 mL of 80% sucrose TNE (w/v). The lysates were layered 

over 500 μL of 80% sucrose TNE, then covered with 2 mL of 50% sucrose TNE, 6 mL of 

38% sucrose TNE, and 1.5 mL of 10% sucrose TNE. The sucrose gradients were 
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centrifuged at 100,000 g at 4°C for 18 hrs in a Beckman SW41 rotor (Beckman Coulter). 

Nine fractions were then collected and then analyzed by immunoblotting. 

Immunofluorescence microscopy and image analysis: Cells grown on glass 

coverslips were washed with PBS and then fixed with 4% paraformaldehyde/PBS (Sigma 

Aldrich) for 10 min. For intracellular labeling, the cells were permeabilized with 0.1% 

Triton-X100 in PBS and blocked for 30 min with PBS containing 0.2% Bovine Serum 

Albumin. Incubation with primary antibody was performed for 1 hr. After washes with PBS, 

secondary reagents were added for 30 min. DAPI (Sigma-Aldrich) was used to stain the 

nuclei. Filipin or WGA-647 staining was performed by incubation at room temperature for 

either 1 hr or 10 min respectively. After final washes, coverslips were mounted with 

Prolong Gold antifade mounting media (Thermo Fisher Scientific). Images were acquired 

using a Leica SP5-SMD scanning confocal microscope equipped with a 63×, 1.4 

numerical aperture Leica Apochromat oil lense at the Montpellier Resources Imaging 

platform. Image analysis was performed utilizing Fiji ImageJ and the JACoP plugin. 3D 

reconstruction was performed by Imaris software.  

Statistical analysis: All of the analyses (unpaired Student's t-test) were performed using 

GraphPad Prism version 6 (GraphPad Software Inc.). A p-value of <0.05 was considered 

statistically significant. Following designations are used on figures: * p<0.05; ** p<0.001; 

***p<0.0001; **** p<0.0001. 
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Figure legends 

Figure 1: Cholesterol homeostasis regulates CHIKV life cycle.  

(A) Cholesterol metabolism and biosynthesis inhibitors. (B) Compounds affecting 

cholesterol metabolism inhibit CHIKV infection. HEK293T cells treated for 30 min with the 

indicated concentrations of (a) lovastatin, (c) U18666A, (e) imipramine were infected with 

CHIKV-LR-5’GFP at a MOI of 0.5. Infection was monitored after 24 hrs by quantification 

of GFP reporter in the cell lysates. For each condition cell viability was determined using 

Cell Titer Glo assay (b, d, f). Values are expressed as a percentage of control condition 

that was taken as 100%. Means of triplicate experiments ± SEM are shown. p-values are 

calculated by comparing each treated-condition with the mock.  

 

Figure 2: Cholesterol transport inhibitors regulate intracellular CHIKV replication. 

 

(A) Post-infection addition of lovastatin, U18666A or imipramine reduces CHIKV 

replication. Increasing concentrations of drugs were added to HEK293T cells 1 hr after 

CHIKV infection at a MOI of 1. CHIKV replication was monitored by quantification of GFP 

fluorescence in the cell lysates. Values, normalized to the protein content in the samples, 

are expressed as a percentage of the non-infected (NI) condition. (B) Schematics of CMV-

P1234 and HSPolI-Fluc-Gluc constructs, plasmid backbones are not shown. (C) 

HEK293T cells were transfected with plasmids depicted in (B) and treated with the 

indicated concentrations of lovastatin, U18666A or imipramine at 2 hrs post-transfection. 

Firefly and Gaussia luciferase activities were determined after 24 hrs in culture. Values 

are expressed as a percentage of the untreated condition and are means of triplicate 

experiments ± SEM. NT designates non-transfected control cells. p-values are calculated 

by comparing each treated-condition with the mock. 

Figure 3: CHIKV nsP1 associates with the PM through conserved sequence motifs. 

(A) Organization of the CHIKV nsP1. Conserved amino-acids involved in the central α-

helix (aa 244-263) and those required for nsP1 acylation (C417-419) are indicated. 

Mutants used in this study are depicted. (B) Membrane affinity of GFP-nsP1, GFP-nsP13A, 
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GFP-nsP1W258A and GFP-nsP1DM was determined by cell fractionation assays. HEK293T 

cells transfected to express each GFP-fused protein were fractionated to produce 

cytosolic (S25) and membranous (P25) fractions. Equal amounts of fractions were 

analyzed by SDS-PAGE and western blotting with anti-nsP1 or anti-GFP antibodies. 

Antibodies against Na+/K+ ATPase and GAPDH were used to control the separation of 

membranes and cytosolic compartments respectively. For each experiment a sample of 

the unfractionated cell lysate (CL) was run in parallel to determine the relative amount of 

each nsP1 variant expressed. Cells expressing the GFP protein alone are shown as a 

control. Molecular mass markers are shown on the left. (C) The intensity of bands in S25 

and P25 samples from panel B was determined using Image J software and plotted as a 

histogram. (D) Subcellular localization of GFP-nsP1 and its mutant variants was 

determined by confocal imaging of transfected HeLa cells. Cell membranes are labeled 

with Alexa Fluor 647-conjugated wheat germ hemagglutinin (WGA) and nuclei are stained 

with DAPI. Scale bars are 5 µm. (E) Confocal microscopy imaging of HeLa cells 

transfected with expression plasmids for nsP1-GFP or for an untagged nsP1. The 

untagged nsP1 protein was detected with rabbit antiserum and Alexa-647-conjugated 

secondary reagents. Nuclei were stained with DAPI before analysis by confocal imaging. 

GFP-nsP1 at the plasma membrane and filopodia-like structures formed at the surface of 

transfected cells are indicated by white arrows. Cytosolic aggregates are indicated by blue 

arrows. Bars: 5 µm. (F) Lysates of cells expressing GFP-nsP1, GFP-nsP13A, GFP-

nsP1W258A, GFP were subjected to membrane flotation assay in iodixanol gradient. 

Fractions collected from top to bottom were separated on SDS-PAGE and probed with 

antibodies specific for nsP1. Lysates from GFP expressing cells were probed with 

antibodies specific for GFP, flotillin-1 (FLOT1) or Na+/K+ ATPase. Data are representative 

of three separate experiments. 

Figure 4: Cholesterol trafficking inhibitors redirect nsP1 to endo/lysosomal 

compartments. 

(A) HeLa cells cultured in the presence of 12µM U18666A were stained with filipin III to 

visualize cholesterol distribution. Cells cultured in medium containing an appropriate 

amount of vehicle are shown as control (Mock). (B) Consequences of U18666A treatment 
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on GFP-nsP1 membrane binding capacity was determined by cell fractionation assays. 

Crude lysates (CL) and cytosolic fractions (S25) prepared from mock-treated or U18666A-

treated HEK293T cells were separated on SDS-PAGE and probed with antibodies against 

GFP or GAPDH. (C) Cells expressing the GFP-nsP1 protein were maintained for 24 hrs 

in the presence of 12 µM U18666A and then co-labeled with filipin III and anti-Lamp2 

antibodies to visualize cholesterol and endo/lysosomes respectively. Cells maintained 

with vehicle alone are shown as controls (Mock). (D) HeLa cells transfected with GFP or 

GFP-nsP1 expression plasmid and maintained with 5 µg/mL U18666A or in medium alone 

(Mock) for 24 hrs were stained with filipin III and DAPI and then processed for confocal 

imaging. (E) Histograms indicate the signal intensity profile of filipin III and green 

fluorescence along the white lines in (D). Bars: 5 µm. 

Figure 5: GFP-nsP1W258A and GFP-nsP13A display different sensitivity to U18666A-

induced cholesterol storage defect.  

HeLa cells expressing either GFP-nsP13A (A) or GFP-nsP1W258A (C) were incubated with 

12 µM U18666A for 24 hrs. Unesterified cholesterol was stained with filipin-III and cells 

were processed for confocal microscopy. (B) and (D) Histograms showing filipin III and 

GFP fluorescence intensity along the white lines indicated in (A) and (B) respectively. 

Bars: 5 µm. 

Figure 6: Palmitoylated cysteines are key determinants for CHIKV nsP1 targeting to 

CD81-positive cholesterol-rich compartments.  

U2OS cells expressing (A) the GFP, (B) GFP-nsP1, (C) GFP-nsP13A were cultured in 

control condition or in medium supplemented with 12 µM U18666A or 75 µM imipramine 

for 24 hrs. Then, the cells were probed with anti-CD81 mAbs and Alexa Fluor-594-

conjugated secondary antibodies. Nuclei were stained with DAPI and the cells were 

processed for confocal microscopy. Scale bars are 5 µm. (D) Quantification of the degrees 

of colocalization of GFP fluorescence and CD81 staining in treated cells was determined 

by calculation of Mander’s overlap coefficients. The total number of cells per condition 

was 10. (E and F) 3D image reconstruction was performed from z-stacks acquired from 

treated cells expressing either GFP-nsP1 or GFP-nsP13A.  
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Figure 7: CHIKV nsP1 partitioning with lipid rafts in human cells requires 

palmitoylated cysteines 

(A) HEK293T cells were transfected with plasmids encoding GFP-nsP1 and processed 

for raft flotation. Nine fractions of the density gradients, numbered from top to bottom, 

were collected and analyzed using SDS-PAGE. Proteins were probed with antibodies 

against nsP1, FLOT1 and Na+/K+ ATPase. Fractions containing detergent-resistant 

membranes (DRM) and detergent soluble membranes (DSM) are indicated. (B) The 

amount of GFP-nsP1 and FLOT1 associated with each fraction was determined by 

densitometry scanning of immunoblots and expressed as a percentage of total protein 

expression level. The diagram is representative of three experiments. (C, D) A similar 

experiment was performed starting from cells incubated for 30 minutes in the presence of 

10 mM bMCD. (E) Cells expressing the GFP-nsP13A or GFP-nsP1W258A mutants were 

processed as in (A). (F) Amounts of GFP-nsP1, GFP-nsP13A or GFP-nsP1W258A in DRM 

and DS fractions were determined by densitometry scanning of the immunoblots shown 

in (A) and (E) and expressed as a percentage of total protein signal. 

Figure 8: nsPs expressed by a CHIKV trans-replicase or an infectious CHIKV co-

segregate with DRMs depending of nsP1 palmitoylated cysteines.  

DRM were isolated from (A) HEK293T cells transfected with CMV-P1234 and HSPolI-

Fluc-Gluc plasmids (depicted in Fig 2B); (B) Cells infected with CHIKV-LR-5’GFP (MOI 

0.1); (C) cells transfected with CMV-P13A234 and HSPolI-Fluc-Gluc plasmids.  Fractions 

were prepared and analyze as described for Fig 7A, immunoblots were probed with 

antibodies against each CHIKV nonstructural protein as indicated.  

Figure 9: SINV nsP1 affinity for cholesterol.  

(A) Organization of the SINV nsP1 and mutant studied. Conserved amino-acids involved 

in the central α-helix (aa 245-264) the conserved palmitoylated cysteine (C420) are 

indicated. Mutant used in this study is depicted. (B) HEK293T cells transfected with either 

SINV GFP-nsP1 or GFP-nsP1C420A plasmids were processed for DRMs isolation as 
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described for Fig 7. Fractions were probed in immunoblot with antibodies against GFP. 

Fractions are numbered from top to bottom. (C) HeLa cells were transfected with a 

plasmid encoding a SINV GFP-nsP1 protein for 4 hrs and cultured for an additional 24 hrs 

in the presence of 12µM U18666A. Cells were labeled with filipin III to visualize 

cholesterol. Controls cells (Mock) were maintained with vehicle. (D) Hela cells transfected 

to express the GFP-nsP1C420A mutant were processed as in (C). Bars: 5 µm. 

Figure 10: Model for nsP1/cholesterol interplay in transfected and CHIKV-infected 

cells.  

a) Palmitoylation of wild type nsP1 is critical for targeting to cholesterol-rich membranes 

microdomains. In infected cells, the preferential association of nsP1 with DRMs increases 

its local concentration which may facilitate its oligomerization and dictates the localization 

of a fraction of other nsPs to lipid rafts. In this scenario CHIKV efficiently replicates its 

genome. b) nsP13A that weakly interacts with the plasma membrane is not targeted to 

DRM microdomains. In this situation CHIKV genomes replication is impaired. c) 

Imipramine and U18666A, by inhibiting cholesterol trafficking to the PM, generate nsP1 

accumulation in Lamp2-positive late endosomes/lysosomes. Association of nsP2, nsP3 

and nsP4 to cholesterol rich microdomains is no more observed. Under these conditions, 

CHIKV genome replication is abolished by a mechanism that remains to be fully 

elucidated. For simplicity, only mature nsPs are shown for this model; in infection the 

membrane association begins by modification and membrane targeting of polyprotein 

precursors.  
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Fig. 1 Cholesterol homeostasis regulates CHIKV life cycle 
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Fig. 2 Cholesterol transport inhibitors regulate intracellular CHIKV replication 
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Fig. 3 CHIKV nsP1 associates with the PM through conserved sequence motifs 
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Fig. 4 Cholesterol trafficking inhibitors redirect nsP1 to endo/lysosomal 

compartments 

 

 



165 
 

 

Fig. 5 GFP-nsP1W258A and GFP-nsP13A display different sensitivity to U18666A-

induced cholesterol storage defect 
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Fig. 6 Palmitoylated cysteines are key determinants for CHIKV nsP1 targeting to 

CD81-positive cholesterol-rich compartments 
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Fig. 7 CHIKV nsP1 partitioning with lipid rafts in human cells requires 

palmitoylated cysteins 
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Fig. 8 nsPs expressed by a CHIKV trans-replicase or an infectious CHIKV co-

segregate with DRMs depending on nsP1 palmitoylated cysteines 
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Fig. 9 SINV nsP1 affinity for cholesterol 
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Fig. 10 Model for nsP1/cholesterol interplay in transfected and CHIKV-infected 

cells 
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Part II Studying the mechanism behind nsP1-induced 

membrane deformation  

Project C Implication of host-cofactors in Chikungunya virus nsP1-induced 

membrane protrusions  

i. Introduction and objectives 

Infection with Alphaviruses leads to the formation of membranous structures called 

spherules which are sites of active genome replication. Spherules are 50-70 nm electron 

translucent bulb-shaped organelles that result from negative curvature of the plasma 

membrane. They are in continuity with the lipid bilayer and stay connected to the cytosol 

through a narrow opening estimated at about 8-10 nm.  

Although elaborate information exists on the formation of spherule structures by other 

(+)RNA viruses, the host machinery for the formation of Alphavirus spherules remains a 

mystery. This motivated the design of this study with the strategy of focusing on CHIKV 

nsP1 which, when expressed alone, has the capacity to deform membranes forming 

filopodia-like structures. This nsP1 function, designated this nsP as an important actor for 

formation of these structures. And, thus, the idea is that by studying the mechanism 

behind nsP1 membrane protrusions, this information can then be later expanded to 

understanding the process of formation of Alphavirus spherules.  

To introduce this study, the concept of actin-driven membrane protrusions will be detailed 

with a special emphasis on the molecular machinery and cytoskeletal components 

involved in the formation of filopodia structures. 

Actin-driven membrane protrusions  

Cells maintain their structure through components forming the cell’s “skeleton” otherwise 

known as cytoskeleton. The cytoskeleton consists mainly of three different elements 

(actin, microtubules and intermediate filaments) which differ in function and protein 

composition. These components not only ensure that the cell conserves its shape, but will 

also play a central role in the movement of a cell. One of the most well described 

machineries involved in cellular movement are actin-driven membrane protrusions. In this 
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case, the three main type of projections described in the literature are filopodia, 

lamellipodia and stress fibers. Filopodia are thin extensions of the plasma membrane 

while lamellipodia are sheet-like protrusions that form at the edge of cells. Finally, stress 

fibers appear as filaments or fibers inside the cell (Hall, 1998) (Fig. 27). Actin is central in 

the formation of all these types of structures. However, in order to fulfill its functions, actin 

initially produced in a monomeric form named globular actin (G-actin) will polymerize into 

filaments denoted as F-actin allowing the generation of the forces needed to form such 

cellular protrusions. While actin is the central player in this process, molecular motors and 

regulatory machineries decide the type of protrusions formed. In this context, Rho 

GTPases are the master regulators of these processes.  

 

 

Fig. 27 Actin-driven membrane protrusions 

Swiss 3T3 fibroblasts were either microinjected with (A) FGD1 leading to activation of CdC42 (B) 
constitutively active Rac1 or (C) treated with lysophosphatidic acid leading to Rho activation. Actin filaments 
were visualized through rhodamine phalloidin staining (adapted from Hall, 1998). 

 

Rho GTPases and the actin cytoskeleton 

The Rho family of GTPases is a family of small (~21 kDa) signaling G proteins which 

sense and mediate extra-cellular signals by regulating numerous biological processes. 

This family of proteins, as all G proteins, are molecular switches having two different 

conformations (1) inactive conformation: Rho GTPase bound to guanosine diphosphate 

(GDP) and (2) active conformation: Rho GTPase bound to GTP (Fig. 28). These molecular 
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switches are under the control of two types of antagonistic regulators: the GTPase 

activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). GEFs 

stimulate the activation of Rho GTPases by their ability to exchange GDP to GTP while 

GAPs stimulate the intrinsic ability of Rho GTPases to hydrolyze GTP leading to a switch 

to an inactive conformation. There exists also another layer of regulation of Rho GTPases 

through the action of guanine nucleotide dissociation inhibitors (GDIs). GDIs sequester 

Rho GTPases in their GDP-bound state modifying their intracellular localization. The most 

well studied Rho GTPases for their role in actin-based membrane protrusions are Cdc42, 

Rac1, and Rho where each has been described to lead to the formation of different types 

of structures. Cdc42 has been implicated in the formation of filopodia structures, Rac1 for 

lamellipodia formation, and Rho for stress fiber formation. It is important to note that such 

pathways could intersect as it has been observed, for example, that Cdc42 can activate 

Rac1 (Moon and Zheng, 2003). 

Activation of these GTPases will lead to binding to their downstream effector proteins 

which can then exert their effect on the actin cytoskeleton. In the next part, the knowledge 

accumulated on filopodia formation through this pathway will be introduced.  
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Fig. 28 Regulation of Rho GTPase activity  

Rho GTPases are regulated by three different class of regulators: guanine nucleotide exchange factors 
(GEFs), GTPase activating proteins (GAPs), and guanine nucleotide disassociation inhibitors (GDIs). The 
activity of these three class of regulators are under the control of extra-cellular signals. GEFs are responsible 
for the activation of Rho GTPases by stimulating the exchange of guanosine diphosphate (GDP) to 
guanosine triphosphate (GTP). On the other hand, GAPs will stimulate the hydrolysis of GTP to GDP leading 
to Rho GTPase inactivation. The final class of regulator proteins, GDIs will sequester Rho GTPases in their 
inactive form. Activation of Rho GTPases will stimulate effectors that will then exert different biological 
outcomes (adapted from Moon and Zheng, 2003). 

 

Filopodia formation 

As mentioned earlier, filopodia are thin membrane protrusions with 100–200 nm in 

diameter and reaching up to 10 μm or more in length. Structurally, a filopodia is composed 

of a base, shaft and a tip. Inside these protrusions, filaments of actin are packed in parallel 

arrays. These extensions are implicated in the sensing of the extra-cellular environment, 
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and subsequently transmitting information to the cell about its surroundings. This is 

supported by the small surface area present at the tip of the filopodia making them ideal 

as sensitive “finger-tips” of a cell. Additionally, filopodia have been implicated in cell to cell 

transmission in the case of viral infections. 

Much of the knowledge accumulated on filopodia formation is based on studies dealing 

with the contribution of these organelles to the morphology of neural growth cones. As 

mentioned previously, the formation of filopodia are under the action of the Rho GTPase 

Cdc42. Upon activation, this Rho GTPase will recruit the cellular machinery required for 

the formation of these structures. One of these types of effector proteins are elongation 

factors (Fig. 29). These proteins are actin nucleators that will be responsible for the 

elongation of actin filaments generating the force required for the creation of filopodia 

structures. Formins and Ena/VASP proteins form the integral part of this type of effector 

proteins. Another effector protein essential, this time, for the stability of filopodia is the 

protein Fascin. Fascin is capable of cross-linking actin filaments into a bundle giving a 

certain rigidity and stability for filopodia. Finally, filopodia structures at the tip require highly 

curved membranes. Here comes the role of the final type of effector protein which are 

BAR domains. These type of proteins with IRSp53 being the most studied will be recruited 

at the tip of filopodia conferring the membrane curvature present at the tip of these 

structures. IRSp53 together with elongation factors are highly enriched at the tip of 

filopodia and will form what is called the “tip complex” (Mellor, 2010; Yang and Svitkina, 

2011).  
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Fig. 29 Rho GTPase signaling and actin organization 

(A) After activation, CdC42 can bind and activate numerous downstream effector proteins to promote the 
formation of filopodia. Three type of effector proteins are mainly recruited for filopodia formation (1) Actin 
crosslinkers such as Fascin, (2) Actin nucleators or elongation factors such formins and (3) membrane 
curvature proteins such IRSp53. (B) Rac1 is master regulator for lamellipodia formation. This Rho GTPase 
is responsible for recruiting the Arp2/3 complex which is capable of branching actin by creating new 
nucleation cores. Another effector family of proteins for lamellipodia formation are LIM kinases (LIMK). 
These proteins phosphorylate and inactivate cofilin, a protein that is responsible for actin filament severing 
and depolymerization (adapted from Sit and Manser, 2011). 

 

Although, the effectors studied for the formation of filopodia are well established, there 

still exists controversy on the initiation of these structures where mainly two models exist: 

(1) the tip nucleation model and the (2) convergent elongation model (Fig. 30). The first 

model suggests that actin nucleators cluster at a specific region at the plasma membrane 

that will then elongate filaments of actin and therefore generate the force required for 
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these membrane protrusions. The convergent elongation model suggests that pre-existing 

branched actin will act as a base for filopodia formation. Branched-actin is mainly present 

during lamellipodia formation and is therefore under the control of Rac1. A main effector 

protein for the formation of lamellipodia is the Arp 2/3 complex which is responsible for 

the branching of actin. Going back to the convergent elongation model, the barbed ends 

of branched actin will serve as binding spots for actin nucleators allowing then the 

elongation of parallel filaments of actin and filopodia formation (Yang and Svitkina, 2011). 

This model has gained popularity due to the unexpected finding that the Arp 2/3 complex 

and hence branched actin play an important role in filopodia formation (Korobova and 

Svitkina, 2008). 

 

 

Fig. 30: Model for filopodia initiation 

(Top) Convergent elongation model: (1) Branched actin previously formed through the Arp2/3 complex will 
serve as a base for (2) binding of actin nucleators such as formins and VASP at barbed ends (3) These 
nucleators will promote the parallel elongation of converged actin filaments which are then (4) crosslinked 
by the action of Fascin. (5) With time, the Arp2/3 complex will dissociate leaving free ends of actin filaments. 
(Bottom) Tip nucleation model: (1) Activated formins will cluster at the plasma membrane and will (2) 
promote actin polymerization. (3) Actin filaments are crosslinked by the action of Fascin leading to the 
formation of an actin bundle (adapted from Yang and Svitkina, 2011). 
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Finally, filopodia are highly dynamic structures which can typically grow at a speed of 0.2 

μm/s until reaching its critical length. The elements regulating filopodia’s indefinite growth 

are named capping proteins. These proteins will cap actin at the tip complex and therefore 

stop filopodia extension promoting retraction of these structures (Mellor, 2010).  

Our investigations on the machinery behind nsP1 induced filopodia-like structures will now 

be presented. 

ii. Results 

nsP1 induces the formation of dynamic filopodia-like extensions in a 

palmitoylation-dependent manner 

As mentioned in the introduction, SINV and SFV nsP1 have been previously described to 

form filopodia-like extensions upon ectopic expression.  This function has been reported 

to be dependent on nsP1 palmitoylation (Laakkonen et al., 1998). However, this 

membrane deformation capability has not yet been demonstrated in the CHIKV model.  

In order to extend this function to CHIKV nsP1, HeLa cells were transfected with plasmid 

encoding the GFP-fused CHIKV nsP1 protein (GFP-nsP1) and were then processed for 

z-stack confocal imaging. Abundant filopodia-like extensions of variable length were 

observed at the bottom stacks of GFP-nsP1 transfected cells (Fig. 31A). For simplicity, 

these structures will be referred to as nsP1 induced filopodia (NIF). nsP1 signal was 

present all along these NIF structures. Interestingly, in some cases, nsP1 was highly 

concentrated at the tip of NIF. Furthermore, in the top stacks, nsP1 was localized at the 

plasma membrane. To investigate whether nsP1 palmitoylation played a role in this 

function, the same experiment was performed using a mutant form of nsP1, where the 

three palmitoylated cysteines were replaced by alanine residues (GFP-nsP13A). In these 

conditions, few extensions were detected at the bottom stacks, and the top stacks showed 

a cytosolic localization of this mutant.  

Then, to observe the dynamics of NIF structures, live cell confocal imaging was performed 

on GFP-nsP1 expressing cells. This established NIF as highly dynamic since it was 

capable of forming and retracting in videos lasting less than 5 minutes. Dynamics of 

membrane deformations permitted to hypothesize how these structures can form. In most 
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cases, NIF formed through the retraction of previously formed membrane ruffles (Supp. 

Vid.1). 

Physiological filopodia extensions implicate the polymerization of monomeric actin into 

filament bundles organized in a parallel array. In order to observe if nsP1 protrusions 

contained actin filaments, the plasmid LifeAct fused to RFP was co-transfected with the 

plasmid GFP-nsP1. The LifeAct-RFP plasmid encodes a 17-amino-acid peptide which 

specifically stains filaments of actin (Fig. 31B). Imaging of co-transfected cells 

demonstrated the presence of actin filaments in NIF (Fig. 31C). Additionally, live cell 

imaging in the same conditions confirmed the existence of actin filaments during the 

formation of nsP1 extensions (Supp. Vid. 2). On the other hand, tubulin, another 

cytoskeleton component, was not found to be as highly abundant as actin in nsP1 

protrusions (Fig. 31D). 

NsP1’s concentration at the tip of these membrane extensions and the presence of actin 

was reminiscent of classical filopodial machinery. Therefore, we set out to investigate 

whether certain filopodia markers co-localized with nsP1 in these structures through the 

co-transfection of cells with a non-tagged nsP1 expression plasmid and GFP-fused 

filopodia markers. Interestingly, we could detect co-localization events with the protein 

Eps8 at the base of NIF indicating a possible classical filopodia machinery pathway. 

Another protein of interest was VASP which has been shown to be heavily concentrated 

at the tip of filopodia exerting an anti-capping activity at that position. VASP was present 

at the tip of some NIF. However, this was not consistently observed for all NIF structures 

(Fig. 31E and F). 

These findings extend the capacity of nsP1 of Alphaviruses to form filopodia-like 

structures to CHIKV, and confirmed the importance of nsP1 palmitoylation in this function. 

Elaborate characterization of NIF showed that they are dynamic, actin-rich and contain 

certain classical filopodia markers.  
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Fig. 31 nsP1 forms filopodia-like structures in a palmitoylation dependent manner 

(A) HeLa cells were transfected with either GFP-nsP1 or GFP-nsP13A and then processed for z-stack 
confocal imaging. Yellow arrows indicate NIF, and blue arrows indicate nsP1 concentration at the tip of NIF. 
(B) Cells were transfected with constructs that mark different cytoskeleton and filopodia markers and were 
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imaged by confocal microscopy (C) Cells were co-transfected with GFP-nsP1 and LifeAct-RFP constructs 
and then imaged as in (B) (D-F) Confocal imaging was performed on cells co-transfected with an nsP1 
expressing plasmid with either GFP-Tubulin, GFP-VASP or GFP-Eps8 constructs. White arrows indicate 
NIF structures containing different cytoskeleton or filopodia markers. Scale bar length is 5 µM. 

 

nsP1 requires active form of Rac1 for filopodia formation  

In order to study if activation of Rho GTPases is essential for NIF formation, wild type or 

dominant negative versions of these two Rho GTPases fused to GFP were co-transfected 

with nsP1. The dominant negative constructs of these Rho GTPases have a mutation at 

the residue 17 which abolishes the protein's affinity for GTP. Immunofluorescence images 

in these conditions revealed that both wild type CdC42 and Rac1 co-localized with nsP1 

in NIF (Fig. 32A and B). On numerous occasions, this co-localization was concentrated at 

the tip of filopodia. Interestingly, the dominant negative form of CdC42 did not have any 

significant effect on NIF formation. However, Rac1 dominant negative mutant led to a 

decrease in the formation of NIF structures. The importance of Rac1 activity for NIF 

formation was further confirmed using a selective inhibitor of Rac1 activity named 

NSC23766. Treatment with 100 µM of NSC23766 led to a significant decrease in 

extensions formed by nsP1 while treatment with 20 µM of the CdC42 inhibitor ML141 had 

a marginal effect (Fig. 32C). These observations were consolidated with quantification of 

filopodia count and length (Fig. 32D and E). Live cell imaging experiments on GFP-nsP1 

transfected cells treated with NSC23766 established that this Rac1 inhibitor blocks nsP1 

NIF dynamics (Supp. Vid. 3).  

To investigate whether nsP1 could activate Rac1 directly we took advantage of a FRET 

probe, consisting of the Rho GTPase flanked with two different fluorophores, YFP and 

CFP. Upon activation of a given Rho GTPase due to GTP loading, a conformational 

change will lead to an increase in proximity of these two fluorophores and detection of a 

FRET signal. The ratio of FRET can then be calculated and is directly proportional to the 

activity of the Rho GTPase. This allows the visualization of Rho GTPase activity in living 

cells. Additionally, for this experiment, an nsP1 fused to dsRed was used to avoid 

overlapping of signals with the YFP/CFP fluorophores. In control conditions, Raichu 

probes were co-transfected with a dsRed plasmid. In this situation, Rho GTPase activity 
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in cells varied substantially, but no significant amount of structures resembling NIF were 

detected (data not shown). On the other hand, upon expression of dsRed-nsP1, significant 

amounts of NIF structures were observed. Interestingly, we were able to detect active 

forms of Rac1 in these structures (Fig. 32F).  

Finally, in order to establish if Rac1 activity is essential for CHIKV replication, we took 

advantage of the CHIKV replicon system used previously. This established that 

NSC23766 had an inhibitory effect on CHIKV replication demonstrating the importance of 

Rac1 activity for this process (Fig. 32G). 

These findings hint at the possible implication of Rac1 in NIF formation, and possibly 

replication complex formation. 
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Fig. 32 nsP1 forms filopodia through a Rac1 dependent machinery  

Non-tagged nsP1 was co-transfected with either WT or N17 versions of Cdc42 (A) or Rac1 (B) and were 
then imaged by confocal microscopy. (C) Cells were transfected with GFP-nsP1 plasmid and were then 
treated with 20 µM of the Cdc42 inhibitor ML141 or 100 µM of the Rac1 inhibitor NSC23766 for 24 hrs and 
imaged as in A and B. (D) Quantification of filopodia length in the conditions presented in C. 15 images were 
analyzed. (E) Grouping of structures quantified in D into three groups according to filopodia length. Numbers 
on the stacks represent % of filopodia structures belonging to this category. (F) Co-transfected cells with 
nsP1-dsRed and Rac1 raichu probes were processed for FRET imaging. (G) Increasing concentrations of 
NSC23766 were added to HEK-293T cells were transfected with CHIKV transreplication plasmids. Firefly 
luciferase activities were monitored after 24 hrs in culture. Values are percentages of the DMSO control 
condition. Cells in the same conditions were processed for immunoblot analysis using anti-nsP1 and anti-
GAPDH antibodies.  

 

nsP1 proteomics methodology 

In order to fully decrypt nsP1’s filopodia machinery, a proteomics approach was designed 

to establish nsP1’s interactome. The strategy consisted of transiently transfecting HEK-

293T cells with GFP, GFP-nsP1 or GFP-nsP13A constructs, and then performing 

immunoprecipitation using GFP-trap magnetic agarose beads (Fig. 33A). Cell lysis was 

optimized in order to efficiently solubilize nsP1 from membranes. After screening different 

detergents, Brij96 was selected as the optimal detergent for cell lysis (Fig. 33B). 

Coomassie staining of immunoprecipitated GFP-fused proteins validated the technique 

as a band was observed at ~36 kDa in the GFP lane, and ~100 kDa in the nsP1 conditions 

(Fig. 33C). Mass spectrometry detection of trypsin-digested immunoprecipitated nsP1 

showed that around 80 % of nsP1’s amino acid sequence was retained. A unique peptide 

corresponding to the location of nsP1 palmitoylated cysteines was also detected. In wild 

type nsP1, this peptide contained the three palmitoylated cysteines residues (Fig. 33D). 

Conformingly in the GFP-nsP13A condition, three alanine residues were detected. 

Altogether, we have developed a proteomics methodology adapted for efficient 

solubilization and immunoprecipitation of nsP1. 
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Fig. 33 Proteomics methodology for nsP1 

(A) Experimental scheme for sample preparation prior to MS/MS analysis (B) HEK-293T cells transfected 
with GFP-nsP1 were lysed either with RIPA or Brij96 buffer. Then, samples were centrifuged at 16,000 g to 
yield a pellet which consists of cellular membranes. The input corresponds to the supernatant. (C) Cells 
were transfected with either GFP, GFP-nsP1 or GFP-nsP13A constructs and then processed for western 
blot. (D) Lysates from (C) were incubated with GFP trap beads to immunoprecipitate GFP-fused protein and 
were then loaded in an SDS-PAGE gel. The gel was stained with Coomassie blue to detect proteins. Black 
arrows indicate GFP-fused immunoprecipitated proteins (E) nsP1 amino acid sequence is illustrated using 
the Protter software. The yellow highlighted amino acids belong to a specific peptide and the green 
highlighted amino acids correspond to the identified peptides in the MS/MS analysis. 

 

nsP1 interactome established  

Proteomics analysis, in the conditions mentioned above, allowed the establishment of 

nsP1 interactome. This proteomics work was performed in collaboration with the 

functional proteomics platform of Montpellier (FPP). 
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Several types of analysis were performed in order to establish nsP1 specific interactants. 

An initial analysis was performed comparing the GFP condition, the negative control, with 

the GFP-nsP1 condition. This consisted of first determining proteins which were 

significantly enriched in the nsP1 sample. Furthermore, GFP-nsP1 and GFP-nsP13A 

conditions were compared to check whether the set of proteins retained as nsP1 specific 

interactants in previous analysis were lost in the GFP-nsP13A condition (Fig. 34A and B).  

Gene ontology analysis of the nsP1 interactome web revealed proteins belonging to 

different cellular components and having different functional roles (Fig. 34C). One of the 

most enriched pathways included the cytoskeleton proteins. These set of proteins are of 

high interest since they could contribute to NIF formation. Surprisingly, nsP1 interactants 

also clustered into sets of mitochondrial and ER proteins. This might be a guide to the 

discovery of new nsP1 related functions.  

Previous to establishing nsP1 interactome, we had employed a machine-learning 

framework called DeNovo in order to predict nsP1-human host protein interactions. This 

work was performed in collaboration with Fatma Elzahraa Eid (Virginia Tech) which was 

responsible for the development of this framework (Eid et al., 2016). This approach 

produced significant amounts of data with human host proteins given a score for their 

probability of interacting with nsP1. We used our nsP1 proteomics data to establish if this 

framework is capable of successfully predicting nsP1-host protein interactions. Plotting 

LFQ (Label-free quantification) against DeNovo predicted score of nsP1 interactants 

established a moderate positive relationship between these two scores with a correlation 

coefficient of around 0.35 (Fig. 34D). This data hints that the DeNovo framework can be 

a useful tool for nsP1-host interaction specifically, and virus-host interactions in general. 

The data and prediction scores for nsP1 predicted interactants will be provided in 

supplementary table 1.  

In conclusion, for the first time in Alphavirus research, we were able to establish nsP1 

interactants in mammalian host cells and showed the regulatory role of palmitoylated 

cysteines in these interactions. 
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Fig. 34 nsP1 interactome  

Volcano plots representing comparisons between the conditions (A) GFP vs. nsP1 and (B) nsP1 vs nsP13A 

(C) Proteins were clustered into functional modules using enriched gene ontology terms as a guideline and 
manual mining of literature. (D) DeNovo framework prediction scores of nsP1 interactants was plotted 
against proteomics Log2 LFQ score in nsP1 conditions. A linear regression line with the corresponding 
formula was plotted on the graph. The red circle represents the candidate Scribble. 

 

Scribble interacts with CHIKV nsP1 

Proteomics methods generate important amount of data, but can lead to false-positives 

and be labile to certain methodology bias. This is why it is essential to validate interactants 

using biochemistry-based techniques. Attesting to the success of our GFP-trap based 

methodology, we were able to confirm the specific interaction between nsP1 and three 

different hits in this proteomics screen (data not shown). We then focused specifically on 
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one of the top hits in our screen named Scribble (SCRIB). SCRIB is a master regulator of 

cell polarity, cytoskeleton protrusions and has been shown to activate the Rho GTPase 

Rac1. Therefore, the link with NIF was evident. The proteomics results detected SCRIB 

only in the GFP-nsP1 condition and not in the GFP or GFP-nsP13A samples. Co-

immunoprecipitation experiments in cells co-transfected with SCRIB with an HA tag 

(SCRIB-HA) and the corresponding GFP-fused proteins confirmed that SCRIB interacted 

specifically with nsP1, and that this interaction was dictated by nsP1 palmitoylated 

cysteines (Fig. 35A). In order to explore whether nsP1 was the only nsP capable of 

interacting with SCRIB, the same experiment was repeated, but this time GFP-fused 

nsP2, nsP3 and nsP4 proteins were also co-transfected with SCRIB-HA. This established 

nsP1 as the only nsP capable of interacting with SCRIB (Fig. 35B). 

Finally, to determine whether nsP1 co-localizes with SCRIB, HeLa cells co-transfected 

with GFP, GFP-nsP1 or GFP-nsP13A were processed for confocal microscopy. In GFP 

conditions, SCRIB had a punctuate staining throughout the cell (Fig. 35C). Impressively, 

upon GFP-nsP1 expression, SCRIB was re-localized into intra-cellular aggregates 

positive for GFP-nsP1 signal. SCRIB was not abundant in NIF. This phenotype was again 

dependent on palmitoylated cysteines in nsP1.  

Altogether, through co-immunoprecipitation experiments, we have validated nsP1 

proteomics data and have further characterized the functionally relevant hit SCRIB. The 

role of SCRIB in NIF remains to be determined.  
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Fig. 35 SCRIB interacts with nsP1, an interaction dictated by nsP1 palmitoylated 

cysteines 

(A) HEK-293T were co-transfected with GFP, GFP-nsP1 or GFP-nsP13A and SCRIB-HA and then processed 
for immunoprecipitation experiments using the GFP-trap technique. (B) Cells were co-transfected with 
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SCRIB-HA and GFP fused nsP1, nsP2, nsP3 or nsP4 proteins and processed as in (A). IP: 
Immunoprecipitation (C) HeLa cells were co-transfected as in (A), marked with an anti-HA antibody then 
processed for confocal microscopy. Scale bar length is 5 µM. 

 

iii. Materials and Methods 

Antibodies and reagents: The following antibodies/reagents and respective dilutions 

were used in this study: Rabbit polyclonal antisera against CHIKV nsP1, nsP2, nsP3, nsP4 

(all in-house, 1:1,000), monoclonal antibodies against GAPDH and HA (1:1,000) (Santa 

Cruz Biotechnologies Inc.), GFP (1:1,000) (Chromotek) and Rac1 (1:1,000) (BD 

Biosciences). Secondary antibodies conjugated to horseradish peroxidase or Alexa Fluor 

were purchased from Jackson Immunoresearch and Thermo Fisher Scientific 

respectively. NSC23766 and ML141 were purchased from Sigma-Aldrich. Rac1 activation 

G-LISA kit was purchased from Cytoskeleton, Inc. 

Cells: HEK293T cells (ATCC # ACS-4500) and HeLa cells (ATCC # CRM-CCL2) used 

for propagation were cultured in Dulbecco's modified Eagle's medium (DMEM, Thermo 

Fischer Scientific) supplemented with penicillin and 10% fetal calf serum (FCS, Lonza) 

and grown at 37 °C in a 5% CO2 atmosphere. HEK293T cells were used for biochemistry 

and proteomics experiments and HeLa cells were mainly employed for imaging 

experiments. 

Plasmids and transfection: Sequence encoding for CHIKV nsP1 was amplified by PCR 

using pCHIKV-LR-5’GFP as a template; obtained fragment was cloned into the pEGFP-

C1 plasmid. Sequences encoding for nsP1C417-419A were generated using the 

Quikchange site-directed mutagenesis kit by Agilent. Cells were transfected with obtained 

plasmids using JetPei reagent (Polyplus Transfection) according to manufacturer 

recommendations. In co-transfection experiments, the two plasmids were co-transfected 

in a 1:1 ration ratio.  

GFP trap assay: Cells were lysed in 200 µl of the Brij96 based lysis buffer for 30 minutes 

on ice. After cell lysate clearing by centrifugation at 13,000 RPM, the supernatant was 

diluted with 300 µl of dilution buffer (10 mM Tris/Cl pH 7.5; 150 mM NaCl; 0.5 mM EDTA). 

Then, 450 µl of cell lysate was incubated with 15 µl of magnetic agarose GFP-trap beads 
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at 4°C under rotation. 50 µl of cell lysate was kept as input for western blot experiments. 

After 4 hrs of incubation, three washes (2 times with 150mM NACL and once with 300 mM 

NACL wash buffer) were performed on these beads. Finally, 40 µl of laemmli buffer were 

added to the beads that were then heated at 95 °C for 10 minutes to release attached 

proteins. The samples were then processed for immunoblotting. 

Proteomics and MS/MS analysis: The GFP-trap samples were deposited on a 12 % 

SDS-PAGE gel and were migrated for a short period of time. Then, one band was cut and 

was resuspended in 10 µl of 0.1% formic acid and 2% ACN solution. This solution was 

then injected into an HPLC nano debit (RSLC U3000, ThermoScientific) coupled to a mass 

spectrometer having a nanoESI source (Q-Exactive Plus, ThermoScientific). Peptides 

were then separated on a capillary column (phase inverse C18, NanoViper, Dionex) 

having a gradient of 0-40% of 0.1% formic acid and 80% ACN for 80 min (run of 130 min) 

at a rate of 300nL/min. The spectra were saved using the Excalibur software 

(ThermoScientific). The raw spectral data were then analyzed using the MaxQuant 

v1.5.5.1 software. The database to match the spectral data was RefProteome_HUMAN-

cano_2018_01.fasta (source UniProtKB) with the nsP1 sequence added. 

GTP trap assay: Cells were lysed using an NP-40 based lysis buffer for 30 minutes. Then, 

lysates were cleared by centrifugation at 16,000 g for 10 minutes. Equal quantity of cell 

lysates was then incubated with agarose PAK-1 beads under constant mixing. A small 

fraction of lysate was retained as input control for subsequent western blot experiments. 

After 1 hr, beads were washed three times using the lysis buffer, and were then 

resuspended in laemmli buffer and heated at 95°C for 10 minutes. Samples were then 

analyzed by western blot. Until the last step, all of this experiment was carried in a cold 

room set at 4°C.  

G-LISA assay: After transfection or drug treatment, cells were lysed and processed 

according to manufacturer’s conditions.  

FRET imaging: For FRET imaging, cells were plated in a fluorodish and were then co-

transfected with the Raichu probes and corresponding dsRed plasmids for 24 hrs. Image 

acquisition was then performed using the inverted widefield epifluorescence microscope 

Nikon with the incubation temperature set at 37°C and 5 % CO2. CFP and FRET signal 
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was detected using the 420nm and 510nm filters respectively.  Image analysis was 

performed using ImageJ. First, background noise signal was subtracted from CFP and 

FRET images. Then, masks were created to define structures of interest. The signal for 

the FRET image was then divided with the CFP image to yield an image which represents 

FRET/CFP signal. This image was then represented using a lookup table which will assign 

a certain color to a pixel depending on the FRET/CFP ratio. 

Immunoblotting: Samples were separated by SDS-PAGE and then transferred to PVDF 

membrane (Hybond, Amersham). Membranes were blocked using 5% non-fat dry milk in 

PBS and probed with appropriate primary antibodies. After wash steps with PBS – 0.1% 

Tween 20, the membranes were probed with HRP-conjugated secondary antibodies. After 

final washes, the revelation was performed by incubating the membranes with 

either Luminata Forte (Merck) or Clarity Max (BioRad) and then image acquisition was 

done using a Chemidoc (Bio-Rad). 

Immunofluorescence microscopy and image analysis: Cells grown on glass 

coverslips were washed with PBS and then fixed with 4% paraformaldehyde/PBS (Sigma 

Aldrich) for 10 min. For intracellular labeling, the cells were permeabilized with 0.1% 

Triton-X100 in PBS and blocked for 30 min with PBS containing 0.2% Bovine Serum 

Albumin. Incubation with primary antibody was performed for 1 hr. After washes with PBS, 

secondary reagents were added for 30 min. DAPI (Sigma-Aldrich) was used to stain the 

nuclei. After final washes, coverslips were mounted with Prolong Gold antifade mounting 

media (Thermo Fisher Scientific).  For live cell imaging, cells were plated on a fluorodish 

in medium without phenol red. Imaging was performed under normal cell maintenance 

conditions (37 °C in a 5% CO2 atmosphere). Images were acquired using a Leica SP5-

SMD scanning confocal microscope equipped with a 63×, 1.4 numerical aperture Leica 

Apochromat oil lense at the Montpellier Resources Imaging platform. 
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Chapter 3 Discussion 

Viral infection, at the cellular level, is a multi-step process that begins with virus entry and 

ends with virus budding outside of a cell. Between these two steps, the virus will use all 

its prowess to ensure the replication of its own genetic material and the creation of a viral 

particle that will encapsidate the newly produced viral genome. During this race for 

multiplication, however, the virus will encounter multiple hurdles that will try to block its 

capacity to establish infection. This is why viruses have adopted multiple strategies to 

counteract cellular defense systems. In this thesis, the focus was shed on the replication 

step of (+)RNA viruses. It was evident from the bibliographic synthesis presented that 

these viruses have evolved to multiply their viral genome in association with cellular 

membranes partly in order to avoid detection by the immune system. This process 

generated different membranous structures (membranous webs, single or double 

membrane vesicles) depending on the virus. Naturally, an important part of the research 

on (+)RNA viruses focused on understanding the mechanism behind the formation of 

these structures. In this area of research, several aspects of (+)RNA virus replication 

complex formation were examined (1) the membrane platforms, their nature and exact 

lipid composition (2) the replication proteins and their corresponding functions inside the 

replication complex and (3) the cellular host-cofactors, their recruitment and impact on 

viral replication. These three aspects when combined created comprehensive molecular 

models on the formation and functioning of (+)RNA virus replication complexes. An 

englobing aspect that must not be forgotten is the structural information obtained on these 

organelles which can provide further information on their organization. 

In this body of work, with the exception of studying the structural aspect, I attempted to 

cover all three aspects of (+)RNA virus replication complex formation, focusing specifically 

on the Alphavirus family with the medicinally important CHIKV as the main model and 

taking nsP1 at the core of these studies.  

Indeed, the requirements for certain lipids at the CHIKV replication membrane platforms 

were first addressed. Additionally, the poorly understood function of nsP1 to deform 

membranes was investigated. Finally, the cellular host-cofactors implicated in this 
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capacity were also studied in an attempt to later expand the role of these factors for 

replication complex formation.  

In the light of the results presented in this thesis, I will cover all these three aspects 

chronologically by employing the rather diverse information available on the formation of 

replication complexes of other (+)RNA viruses  as the main subject of discussion. 

A- Membrane lipid composition of Alphavirus replication platforms 

In this study, our investigations established a requirement for fatty acids, UFAs and 

cholesterol in Alphavirus replication.  

i. Fatty acids  

Fatty acids are building blocks of biological membranes. The most common fatty acid 

found in animals and plants is palmitate. This fatty acid is produced by the action of the 

enzyme FASN, and serves as the skeleton for the production of other fatty acids (Baenke 

et al., 2013). 

Palmitate has been shown to be essential for replication of numerous (+)RNA viruses 

such as DENV, WNV and HCV. For these viruses, requirement for palmitate has either 

been attributed to (1) availability of this fatty acid for palmitoylation of viral proteins or to 

(2) increase local membrane lipid biogenesis at replication sites. In order to induce these 

effects, some viruses (such as DENV) will recruit FASN to replication sites and stimulate 

an increase of its activity. However, this is not the case for all viruses, since HCV, for 

example, does not recruit FASN to its replication compartments, but can increase the 

expression of this enzyme promoting an increase in fatty acid synthesis (Zhang et al., 

2019b). 

Blocking FASN activity has demonstrated the requirement of fatty acids for Alphavirus 

replication. Since it has been shown that blocking FASN activity can decrease nsP1 

palmitoylation (Zhang et al., 2019a), it is clear that our observed requirement for fatty acids 

is tightly linked to bioavailability of palmitate for nsP1 palmitoylation. This post-

translational modification is essential for Alphavirus replication (specially CHIKV) further 

emphasizing the importance of the observed phenotype (Utt et al., 2019). However, it 
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cannot be excluded that this fatty acid can also play a role in the creation of an increased 

surface area for the production of new replication organelles.  

With respect to the mechanism by which FASN is utilized in Alphavirus replication, in our 

study, we could not detect a significant increase in the expression of this enzyme. 

However, FASN has already been shown to be relocalized to CHIKV replication 

complexes by dsRNA staining (Karlas et al., 2016). In the lab, we have further attributed 

this recruitment to the nsP3 protein (data not shown). Finally, whether FASN activity is 

regulated after its recruitment to Alphavirus replication complexes remains to be 

investigated. 

Another final possibility is that by inhibiting the production of palmitate, the generation of 

other fatty acids or more complex palmitate-derived lipids are also reduced. This has been 

clear in the case of BMV replication and its requirement for PtdCho, a membrane lipid with 

palmitate as the main component. In this context, 1a is capable of recruiting choline 

requiring 2 (Cho2p), a cellular enzyme involved in PC synthesis, to sites of viral replication. 

This feature seems to be common among (+)RNA viruses since BMV, HCV and poliovirus  

also enhanced accumulation of PtdCho (Zhang et al., 2016). However, this remains 

unexplored for Alphaviruses and will deserve further studies. The establishment of 

changes in membranes lipids during Alphavirus infection through lipidomics studies could 

help in this endeavor. 

Another palmitate-derived lipids are UFAs which stem from desaturation of this fatty acid. 

UFAs are a diverse class of fatty acids which can be either mono- or poly-unsaturated. 

The rate liming enzyme in the production of these MUFAs is the enzyme SCD1. Finally, 

further elongation and desaturation will yield PUFAs which involve the enzymes ELOVL 

and FDS (Baenke et al., 2013). 

In our previously reported study, by targeting SCD1 activity or decreasing its expression, 

we were able to demonstrate an importance for UFAs in Alphavirus replication. Using this 

same approach, we could not detect any significant decrease in nsP1 membrane affinity. 

This suggested that these fatty acids did not play any critical role in anchoring of the 

Alphavirus replication complex. This came in agreement with a study performed on BMV 

where it was shown that UFAs were essential for replication of this virus but did not alter 
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the membrane association of the protein 1a (Lee et al., 2001). How UFAs contribute to 

(+)RNA virus replication still remains unexplored. However, with the information discussed 

above, it seems clear that these fatty acids are not essential for membrane interaction, 

but might play an intricate role contributing to the fluidity required for formation of 

membranous replication complexes.  

Another continuity for this study would be to establish which type of UFAs are essential 

for viral replication. As it has been shown for HCV, for example, that certain MUFAs can 

promote viral replication, but some PUFAs inhibited viral replication (Kapadia and Chisari, 

2005). This again suggests that (+)RNA viruses orchestrate their membrane lipid 

composition at viral replication organelles. 

ii. Cholesterol 

Cholesterol is perhaps the most studied lipid in the replication of (+)RNA viruses. This 

sterol has been implicated in the replication of a plethora of (+)RNA viruses such as HCV, 

WNV, DNV. This requirement for cholesterol has been shown by using various drugs that 

act on the synthesis and intra-cellular transport of this drug. Attesting to the importance of 

this lipid, (+)RNA viruses have evolved ways to subvert cholesterol into replication 

organelles. This is specially the case for (+)RNA viruses that replicate in association with 

organelles having poor cholesterol content such as Flaviviridae which replicate with the 

ER. For attraction of cholesterol to these replication organelles, some viruses re-direct the 

rate-limiting enzyme for cholesterol synthesis, HMG-CoA reductase, to these structures 

leading to increase in local cholesterol content paralleling the mechanisms used for FASN 

and fatty acid synthesis. In some viruses, active subversion of cholesterol has been 

observed by hijacking the lipid transfer machinery (Zhang et al., 2019b). 

In the case of Alphaviruses, the fact that replication complex assembly occurs at the 

plasma membrane which is rich in cholesterol content suggested different mechanisms. 

Indeed, our initial observation that drugs re-directing cholesterol from the plasma 

membrane to endosomes abolished CHIKV replication demonstrated that plasma 

membrane cholesterol is important for proper functioning of the CHIKV replication 

complex. However, here, we propose another mechanism for acquiring high cholesterol 

content in replication organelles. Conversely to other viruses that recruit cholesterol to 
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replication organelles, our observations indicate that the Alphavirus replication machinery 

are capable of assembling at pre-existing cholesterol-rich plasma membrane 

microdomains. In comparison with other (+)RNA viruses, this seems to be the most 

resource efficient strategy  to obtain high cholesterol content at replication organelles. 

By focusing on the only nsP with membrane affinity, nsP1, we have also elucidated the 

mechanism for assembly of the replication complex to these regions. In this context, 

palmitoylated cysteines of CHIKV nsP1 were crucial for this function. In contrast, the 

membrane binding peptide of nsP1 was not involved in this association. These two 

domains have been both implicated with membrane attachment of this viral protein with 

differential importance on replication depending on the Alphavirus. Mutations in the 

membrane binding peptide of nsP1 abolishes SINV replication, but has a temperature 

sensitive phenotype for CHIKV replication. However, palmitoylation is vital for CHIKV 

replication while being highly dispensable for SINV and SFV (Ahola et al., 2000; Utt et al., 

2019). Therefore, this study established for the first time a unique function for 

palmitoylation of Alphavirus nsP1. It would be interesting to attempt and establish if a 

unique function exists for the membrane binding peptide of Alphavirus nsP1. Furthermore, 

a special requirement for palmitoylation for CHIKV replication once again demonstrates 

that this virus has evolved to behave in a distinct manner than other OW Alphaviruses. 

This also further reinforces the importance of addressing to cholesterol-rich membrane 

microdomains for CHIKV. We hypothesize that these domains in addition to having the 

correct membrane lipid composition for replication complex formation might also contain 

certain co-factors essential for CHIKV replication as will be discussed later on.  

In conclusion, our study on the lipid requirements for Alphavirus replication has 

established an importance for (1) palmitate which is likely to be linked with nsP1 

palmitoylation, (2) cholesterol through the observation that palmitoylated nsP1 is targeted 

towards cholesterol-rich microdomains and (3) UFAs whose exact function remains to be 

investigated. These data provide strong evidence that CHIKV replication complex will 

assemble at membranes with specific lipid content. This emerging hypothesis is supported 

by the work of Tero Ahola showing that nsP1 enzymatic activity requires specific lipid 

species specially PtdSer (Ahola et al., 1999). While we have shown an importance for 
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UFA and cholesterol for CHIKV replication complex functioning, the use of lipid biosensors 

to study nsP1 lipid affinities will allow more detailed information on the exact lipid 

composition of CHIKV replication complexes. 

The next part will deal with another aspect of Alphavirus replication organelle biogenesis 

by focusing on nsP1 and its ability to deform cellular membranes. 

B- nsP1 and membrane deformation 

In 1998, the team of Leevi Kääriäinen described that Alphavirus nsP1 was capable of 

inducing filopodia-like structures when expressed alone (Laakkonen et al., 1998). These 

extensions often had a thick root and were branched at their distal parts to thin filopodia 

and their formation depended on palmitoylation of nsP1. In this revolutionary paper, it was 

surprisingly stated that the formation of these structures was independent of actin filament 

formation due to the lack of effect of the molecule cytochalasin D, an inhibitor of actin 

polymerization. However, in the same paper, nsP1 was found to co-localize with the 

protein Ezrin, an important component of filopodia. Additionally, filaments of actin could 

be observed at the base and middle of these structures suggesting the possible 

implication of actin in nsP1 filopodia formation. Until now, no publications have attempted 

to re-investigate the mechanism of formation of these nsP1 induced structures.  

In the work presented above, we have attempted to re-delve into understanding the 

mechanism behind the formation of nsP1 filopodia-like structures. We decided to take on 

this path because (1) these filopodia-like structures represent a poorly studied function of 

nsP1 when compared to other functions such as its RNA capping activity, and (2) we think 

that this membrane deformation ability is an indication of this protein’s capacity to induce 

membrane curvature for replication complex formation. Therefore, by understanding the 

mechanism behind nsP1 filopodia formation, we might also acquire a glimpse of the 

mechanism for the formation of spherule structures. We are aware that this nsP1 

membrane deformation function will have to be controlled by other nsPs or host-cofactors, 

since the two structures produced are different. 

In this investigation, we have found that, in agreement with the paper of Leevi Kääriäinen, 

nsP1 induced the formation of filopodia-like structures that were dependent on this nsP’s 
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palmitoylation. Actin filaments were present along imaged nsP1 filopodia and contrasting 

with the publication mentioned above, the formation and dynamics of these structures also 

depended on actin filament polymerization. Through access to live cell imaging 

technology, we were also able to acquire additional information on the dynamics of nsP1 

induced structures. Such structures began with the formation of lamellipodia which then 

retracted leading to the generation of the nsP1 filopodia which are often observed in fixed 

cell microscopy.  

Interestingly, nsP1 was also found concentrated at the tip of these filopodia structures. 

This is remarkably similar to the localization of proteins (formins, ENA/VASP, and IRSp53) 

present at the tip complex of physiological filopodia (Fig. 36). Additionally, in some cases, 

filopodia markers such as Eps8 and VASP co-localized with nsP1 inside these structures, 

suggesting a classical filopodia machinery with actin as the main cytoskeletal component. 

These two proteins belong to the Eps8/IRSp53/VASP network that can differentially 

control actin remodeling for filopodia formation (Vaggi et al. 2011) and it could therefore 

be interesting to further explore the interplay of these proteins in the formation of nsP1 

filopodia.  
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Fig. 36 nsP1 mimic the localization of proteins localized at the filopodia tip complex 

(A) Schematic representation of the composition of filopodia at the tip complex. (B) Immunofluorescence 
images showing the localization of GFP-nsP1, Cherry-VASP and myc-IRSp53 in filopodia. White arrows 
indicate the filopodia tip (adapted from Alieva et al. 2019; Crespi et al. 2012; Mellor 2010).  

 

A missing element of the previous study was the implication of Rho GTPases which are 

master regulators of actin-based membrane protrusions (Sit and Manser, 2011). Our 

experiments demonstrated an importance of Rac1 activity for the formation of nsP1 

structures. This is surprising since the established regulator for filopodia formation is the 

Rho GTPase Cdc42 while Rac1 regulates the formation of lamellipodia. However, in our 

conditions, we could not detect any significant involvement of CdC42. It should be 

mentioned that these pathways can intersect, and therefore might explain the observed 

phenotype. In addition, our findings can be explained by looking at the two main 

hypotheses for the initiation of filopodia formation (Yang and Svitkina, 2011). The fist 

model named “tip nucleation model” implicates actin nucleators clustering at the plasma 

membrane generating parallel filaments of actin which will eventually lead to the 

production of filopodia. On the other hand, the convergent elongation model suggests that 

filopodia initiation begins with formation of branched actin networks by the Arp2/3 complex 

which then serve as the base for actin nucleators for formation of filopodia. Both the 

implication of Rac1 and our imaging of nsP1 dynamics favors the more relevant 

convergent elongation model for nsP1 filopodia formation. 

The possible involvement of Rac1, but not CdC42, is also of interest when looking at the 

affinity of these Rho GTPases for membrane microdomains. Rac1 has been described to 

associate, through palmitoylation, with pre-existing lipid order domains or lipid rafts. This 

association favors the activation of this Rho GTPase and will initiate spatially confined 

branched-actin polymerization (Navarro-Lérida et al., 2012). On the other hand, CdC42 is 

not recruited to lipid rafts (Jaksits et al. 2004). This comes in agreement with the data 

obtained on nsP1’s affinity to lipid rafts where we observed that nsP1 is targeted to these 

regions also by the same post-translational modification. Conformingly, nsP1 

palmitoylation was also essential for formation of the filopodia-like structures mimicking 

the requirement of Rac1 association to these microdomains. A proposed model for 
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nsP1/Rac1 interplay would be that (1) nsP1 interacts directly or indirectly with Rac1 in the 

cytosol (2) palmitoylated nsP1 with Rac1 will then associate with lipid rafts favoring Rac1 

activation due to close vicinity to activators of this Rho GTPase (3) binding to effectors 

such as PAK can then lead to initiation of spatially confined branched-actin polymerization 

leading to lamellipodia formation (4) through unknown mechanisms, retraction of 

lamellipodia forms nsP1 induced filopodia-like structures (Fig. 37). To validate this model, 

it would be essential to demonstrate whether nsP1 could recruit Rac1 to lipid rafts, and to 

check whether this recruitment would be dependent on nsP1 palmitoylation.  

 

 

Fig. 37 Model for nsP1/Rac1 interplay 

(Step 1) nsP1 interacting directly or indirectly with Rac1 binds to the plasma membrane through its a-helix. 
(Step 2) Palmitoylation of nsP1 will lead to its translocation from Ld to L0 domains favoring activation of Rac1 
due to close vicinity to activators (not shown). (Step 3) Activated Rac1 will recruit effectors leading to the 
initiation of spatially confined branched-actin polymerization which eventually will initiate lamellipodia 
formation. 

 

The capacity of nsP1 to deform membranes is reminiscent of the ability of replication 

proteins of other (+)RNA viruses to have the same function. BMV protein 1a and FHV 
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protein A are both capable when expressed alone to deform the membranes of host cells 

(Kopek et al., 2010; Schwartz et al., 2002). In this case, it has to be mentioned that the 

structures induced by these replication proteins highly resemble their corresponding 

(+)RNA virus replication complex. This insinuates that nsP1’s capacity to deform 

membranes must be regulated by the other nsPs or the involvement of host-cofactors. In 

that scenario, it is interesting to draw a parallel with the regulation of nsP4 function in 

Alphavirus replication. nsP4’s polymerase activity in the replication complex is highly 

regulated by interaction with the other viral nsPs. As mentioned before, nsP4 with the 

P123 polyprotein produces mainly (-)RNA, but nsP4 interacting with the mature nsPs will 

shift this synthesis towards positive-stranded RNA (Shirako and Strauss, 1994).  A similar 

phenomenon might be occurring for nsP1 and its membrane deformation function (Fig. 

38). A hint for this regulation has recently been evidenced in a creative paper by the team 

of Tero Ahola which investigated the different combination of nsP precursors required for 

spherule formation. In this investigation, the combination of the P123 polyprotein with 

nsP4 were capable of forming remarkably similar structures to spherules observed during 

Alphavirus infection (Hellström et al., 2017). Not surprisingly, this combination of proteins 

did not generate filopodia structures indicating that nsP1 inside the P123 polyprotein is 

regulated for curvature of membranes. Therefore, a natural continuity of this study will be 

to establish the regulatory effect of the other nsPs on this nsP1 function while integrating 

the newly found mechanisms described above.  



208 
 

 

Fig. 38 Model for regulation of membrane deformation induced by CHIKV nsP1 

(A) CHIKV nsP1, when expressed alone, leads to the formation of filopodia-like structures. (B) Expression 
of P123 in combination with nsP4 leads to the formation of spherule structures similar to that observed in 
CHIKV infection.  

 

C- nsP1 and host-cofactors 

The ability of nsP1 to deform membranes can be (1) intrinsic to this protein’s structure 

similar to BAR proteins which can sense and curve membranes or (2) rely on the 
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recruitment of host-cofactors. While, the first mechanism for membrane deformation is 

certainly possible, the lack of structure for nsP1 does not allow the validation of this 

hypothesis. Furthermore, the regulatory role of palmitoylation as well as the implication of 

Rac1 for this function suggests the requirement of certain cofactors, probably present in 

plasma membrane microdomains.  

This motivated the search for nsP1 host-cofactors and led, for the first time in Alphavirus 

research, the establishment of nsP1’s interactome. Until now, nsP1’s interactome has 

remained uninvestigated probably due to the high affinity of this protein to membranes 

making proteomics analysis challenging. Indeed, in our hands, nsP1 was hard to efficiently 

solubilize and more importantly to immunoprecipitate. In retrospect, this certainly had to 

do with the presence of this protein in microdomains resistant to the detergent Triton X-

100. Conformingly with this hypothesis, the palmitoylation mutant form of nsP1 was easier 

to solubilize and immunoprecipitate. In our study, we screened for detergents that can 

most efficiently solubilize nsP1 from membranes and found Brij-96 as the best detergent 

for our purposes. Brij-96 or related detergents (since this exact version is no longer 

produced) could be useful in other biochemical studies on nsP1. 

Going back to the findings on nsP1’s interactome, no significant overlap could be found 

when comparing nsP1 interactants with proteomics analysis performed on the other nsPs 

or Alphavirus replication complexes (Bouraï et al., 2012; Varjak et al., 2013). However, 

functionally related modules could be detected such as sets of proteins involved in 

cytoskeleton remodeling and protein folding. This suggests that the interactants obtained 

in this study are specific to nsP1 along with its corresponding functions and thus can 

provide new information on the Alphavirus lifecycle. It has to be mentioned that FASN has 

been previously studied by us and others where it was found to be essential for Alphavirus 

replication (Bakhache et al., 2019; Zhang et al., 2019a). Unfortunately, no proteins were 

found in common between nsP1 interactome and the genome-wide screens that identified 

host-cofactors important for Alphavirus infection (Meertens et al., 2019; Tanaka et al., 

2017). However, such screens can have methodology-based biases and might favor the 

identification of cofactors implicated mainly in virus entry and cytotoxicity. Therefore, the 

nsP1 hits identified here could shed the light on previously unidentified cofactors 
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specifically involved in the Alphavirus replication step. Functional studies on candidates 

are being performed in the lab to study their role in Alphavirus infection. 

Conversely with the lack of overlap with Alphavirus host-cofactors, a significant portion of 

interactants have been previously described to play various roles in viral infection. This 

was particularly clear with the set of proteins belonging to the ubiquitin ligase complex 

which have been reported to mediate degradation of several restriction factors. 

Specifically, with the presence of two proteins which both belong to the CUL4-DDB1 E3 

ubiquitin-protein ligase complex. An example of such recruitment is the usurping of this 

E3 ligase complex by HIV-1 Vpr to induce degradation of MCM10 (Romani et al. 2015). 

Interestingly, this could help reveal the mechanism behind the previously described ability 

of nsP1 to mediate degradation of the restriction factor tetherin (Jones et al., 2013). 

Another set of interactants implicated in the viral life cycle, specifically at the virus entry 

and assembly steps, are the Rab proteins. The two identified Rab proteins which 

associate with early and late endosomes respectively have been implicated in the entry 

of numerous enveloped viruses, including Alphaviruses (Spearman, 2017). But, nsP1 

acting on this step doesn’t fit with the model of the Alphavirus lifecycle. However, the 

previously described finding that nsP1 has an affinity to late endosomes (Peränen et al., 

1995), and our results demonstrating that nsP1 could circulate between the plasma and 

endosomal membranes affirms the interest to study these candidates. It is possible that 

nsP1 through interaction with the Rab proteins can direct endocytosis of the viral 

replication complexes formed initially at the plasma membrane. Indeed, studies 

investigating the replication proteins implicated in the endocytosis of replication 

complexes have identified nsP1 and nsP3 as key players in this process (Salonen et al., 

2003). An interesting finding in the nsP1 interactome was the presence of a significant 

number of mitochondrial proteins. This is surprising since there is no evidence in the 

literature of an affinity of nsP1 to mitochondrial membranes. The only indication for such 

an association comes from the thesis of Pirjo Spuul who observed that tandem repeats of 

the nsP1 binding peptide (a-helix) fused to GFP was targeted to mitochondrial 

membranes. This association with mitochondrial proteins or membranes could possibly 

be interpreted as being a remnant property of ancestral Alphaviruses replicating in 

association with mitochondrial membranes. Another possibility is that nsP1 could be an 
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actor in the previously described alteration of mitochondrial dynamics upon Alphavirus 

infection (Keck et al., 2017).  

An important remark on this interactome is the use of a non-palmitoylated form of nsP1 

which allowed narrowing down of selected hits of interest due to two main reasonings (1) 

non-palmitoylated nsP1 does not deform membranes and (2) does not segregate to 

membrane microdomains. This gave a functional outlook to our proteomics approach. In 

this context, we have mainly focused on one hit of interest which is the protein SCRIB. 

SCRIB is a scaffold membrane protein which is involved in cell migration, cell polarity and 

cell proliferation. Furthermore, this protein has been shown to play a regulatory role on 

the activity of Rho GTPases. Particularly, SCRIB is capable of activation of Rac1 (Bonello 

and Peifer, 2019). This protein has also been identified to be a raft protein by an unbiased 

quantitative proteomics approach specific for lipid rafts (Foster et al., 2003). Finally, 

SCRIB has been implicated in the lifecycle of numerous viruses such as HIV and Influenza 

A virus where it has been shown to be degraded to protect cells from apoptosis. Whether 

this cofactor has a pro- or antiviral for CHIKV infection remains to be determined. The 

information obtained on this cofactor till now is that it interacts with only the palmitoylated 

form of nsP1. Additionally, other nsPs did not interact with this hit demonstrating that 

SCRIB recruitment is specific to nsP1. We hypothesize that SCRIB is possibly the direct 

mediator for nsP1 induced Rac1 activation. Current studies are going on in the lab to 

explore this scenario. 

Finally, comparing host-cofactors implicated for spherule formation of other (+)RNA 

viruses is perhaps one of the most relevant strategies to identify the most relevant hits for 

nsP1 membrane deformation functions. Accordingly, the host cell machinery used by 

(+)RNA viruses replication proteins to deform membranes forming spherules have been 

perhaps the most deeply investigated in the case of BMV where it was found that a highly 

regulated form of the ESCRT pathway was involved in the membrane curvature for BMV 

spherule formation (Diaz et al., 2015). The protein 1a, a distant homologue of nsP1, 

regulated these interactions with the ESCRT pathway. Unfortunately, no components of 

this pathway could be detected in the nsP1 interactome, and preliminary tests in our lab 

did not find a positive association with this machinery for Alphavirus spherule formation. 
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However, a point in common between the nsP1 interactome and BMV replication is the 

implication of protein folding proteins such as heat shock proteins. Indeed, heat shock 

proteins have been found to be important for appropriate folding of replication components 

of BMV. One can imagine that the abundant presence of this family of proteins in nsP1 

interactome could indicate that nsP1 has an important function in the appropriate folding 

of the replication components inside the replication complex. However, this function 

remains to be absolutely demonstrated and could be further elucidated with the eventual 

detailing of the 3D structure of the Alphavirus replication complex.  

In conclusion, we have established the very first information on the host-cell machinery 

behind nsP1 membrane deformation. This established an important role for the Rho 

GTPase Rac1, possibly mediated by SCRIB, in these deformations. The discovered 

mechanisms will serve as a base for future studies on Alphavirus replication organelle 

biogenesis. Since these organelles are viral factories contributing to the amplification of 

viral infection, the discovery of new actors in this process could allow the development of 

anti-viral molecules targeting Alphaviruses, specially CHIKV. 

A model combining the present data in this thesis with the previously described 

bibliography on Alphavirus replication organelle biogenesis is illustrated in Fig. 39. 
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Fig. 39 Model for Alphavirus replication organelle biogenesis 

(A) The non-structural polyprotein P123 binds to the plasma membrane through the a-helix motif present in 
nsP1. (B) nsP3 recruits FASN promoting synthesis of fatty acids, specially palmitate. A palmitoyl group will 
be transferred on nsP1 cysteines through the action of the ZDHHC2 and ZDHHC19 proteins. (C) 
Palmitoylation of nsP1 in the P123 polyprotein will lead to its translocation to lipid ordered domains rich in 
cholesterol. In these regions, the Alphavirus replication complex will assemble together with nsP4, viral RNA 
and host-cofactors. (D) Spherule structures will form and will be stabilized by the presence of branched actin 
at their base. nsP4 will synthesize (-)RNA leading dsRNA formation (E) Cleavage of the non-structural 
polyprotein into individual non-structural proteins will shift nsP4 synthesis into genomic and subgenomic 
(+)RNA. Also, mature nsP1 can form filopodia structures in association with Rac1. 
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Abstract: Positive strand RNA ((+) RNA) viruses share the common capacity to rearrange cellular membranes into 
vesicular organelles. These membranous compartments referred to as replication organelles (ROs), are seen as 
providing an appropriate environment recruiting all viral components and cofactors required for replication. Because of 
their strict necessity for viral replication, these compartments and the molecular mechanisms required for their assembly 
have generated an intense interest in recent years. Contrasting with the consequential advances made in this field for 
other (+)RNA viruses, virtually no mechanistic data has been produced on the formation of ROs by Alphaviruses which 
in the last decade have proven to be medically paramount viruses, especially with the recent spread of Chikungunya 
virus (CHIKV). CHIKV is a re-emerging virus transmitted by mosquitoes that has caused outbreaks with devastating 
socio-economic impact in countries where it propagates. Symptoms include high fever and rash, with a significant 
percentage of patients suffering of long-term, often incapacitating, joint pain. Currently there is no vaccine or anti-viral 
treatment for this virus.  
CHIKV ROs appear as 50-60 nm electron translucent bulb-shaped spherules resulting from negative curvature at the 
plasma membrane. Inside these compartments, the replication machinery is anchored to the membrane through the 
direct interaction of the non-structural protein 1 (nsP1) with the lipid bilayer. When expressed as an isolated protein 
nsP1 dramatically remodels cellular membranes into filopodia-like protrusions. Therefore, this designated nsP1 as a 
critical factor in cellular membrane reshaping observed during infection. In this context, the aim of this thesis, with nsP1 
at its centerpiece, is to characterize nsP1 interactions with cellular membranes and to define their functional 
consequences on viral replication. In this investigation, we have demonstrated the role of host cell lipid metabolism in 
nsP1 membrane anchoring and viral infection. Our results indicate that fatty acid synthesis is required for viral life cycle 
and favors nsP1 interaction with membranes. We also provide the very first information on the role of unsaturated fatty 
acids in Alphavirus replication. In-depth studies on the role of cholesterol revealed that palmitoylated nsP1 anchored 
CHIKV non-structural proteins to cholesterol-rich microdomains with functional consequences on replication. Finally, we 
have identified nsP1 interactome in order to identify host-cofactors required for the membrane deformation induced by 
this viral protein. Taken together, this thesis provides new information on nsP1/membrane lipids and host cofactors 
interplay. This work will allow the further comprehension of the mechanisms behind membrane deformation observed 
during Alphavirus replication. 

Résumé: Les virus à ARN de polarité positive (ARN(+)) partagent la capacité de réorganiser les membranes cellulaires 
en organelles vésiculaires. Ces compartiments, appelés organelles de réplication (OR), fournissent un environnement 
approprié permettant d’héberger la machinerie de réplication virale, ses cofacteurs cellulaires et les ARN viraux néo-
synthétisés. En raison de leur rôle indispensable à la réplication virale, ces compartiments et les mécanismes 
moléculaires nécessaires à leur assemblage ont suscité un réel intérêt ces dernières années. Alors que des progrès 
significatifs ont été réalisés dans ce domaine pour d’autres virus à ARN(+), peu de données relatives au mécanisme de 
formation des ORs des Alphavirus ont été produites. Ces virus ont pourtant été associés à des enjeux majeurs de santé 
publique au cours de la dernière décennie, en particulier avec la propagation récente du virus Chikungunya (CHIKV). 
CHIKV est en effet un virus réémergent transmis par les moustiques et à l’origine d’épidémies ayant des conséquences 
socio-économiques dévastatrices dans les pays où il se propage. Les symptômes se caractérisent par une forte fièvre 
et une éruption cutanée, avec un pourcentage significatif de patients qui souffrent de douleurs articulaires à long terme, 
souvent invalidantes. À l’heure actuelle, il n’existe aucun vaccin ou traitement antiviral pour ce virus.  
Les OR de CHIKV se présentent comme des sphérules de 50 à 60 nm résultant d’une courbure négative de la 
membrane plasmique. À l’intérieur de ces compartiments, la machinerie de réplication est ancrée à la membrane par 
l’interaction directe de la protéine non structurale 1 (nsP1) avec la bicouche lipidique. Cette protéine virale, exprimée 
de façon isolée, conduit à des déformations membranaires de type filopodes. Ainsi, nsP1 apparait comme un acteur 
majeur du remodelage membranaire au cours de l’infection par les Alphavirus. Dans ce contexte, le but de cette thèse, 
centrée sur nsP1, est de caractériser les interactions de nsP1 avec les membranes cellulaires et de définir les 
conséquences fonctionnelles de ces interactions dans la réplication virale. Nous avons mis en évidence le rôle du 
métabolisme lipidique dans l’ancrage membranaire de nsP1 et dans l’infection virale. Nos résultats indiquent que la 
production d’acides gras est nécessaire au cycle infectieux et favorise l’interaction de nsP1 avec les membranes. Ils 
mettent en évidence le rôle complètement nouveau des acides gras insaturés dans l’étape de réplication des Alphavirus. 
Nous avons également démontré l’affinité de la forme palmitoylée de nsP1 pour les microdomaines lipidiques riches en 
cholestérol de la membrane plasmique. Nous avons établi les conséquences fonctionnelles de cette affinité sur la 
localisation des autres protéines non structurales et sur la réplication virale. Enfin, nous avons défini l’interactome 
fonctionnel de nsP1, de façon à identifier les cofacteurs cellulaires pouvant contribuer aux déformations membranaires 
induites par cette protéine virale. Ce travail permet de mieux comprendre les mécanismes de déformation 
membranaires observés au cours de l’infection par les Alphavirus. 
 


