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Doctorat délivré par Centrale Lille

Titre de la thèse

On sampling determinantal point processes
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Université de Lille, Centrale Lille, CNRS, UMR 9189 - CRIStAL
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m’ont été accordées, ainsi que pour les remises en questions nécessaires

qui ont rythmées ces trois dernières années. Merci de m’avoir en-
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membres passés et présents des équipes SigMA et SequeL d’avoir su
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pour avoir créé et animé le cours sur les DPPs qui m’a permis de
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J’en profite pour remercier Daniele, Lilian et Slim d’avoir contribué à
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ments sur les chemins de course, ainsi que pour ton énergie positive et
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leur confiance, leur amour et m’ont toujours encouragé à suivre mon
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0.3 Outline of the manuscript 160.1 General introduction

Consider searching for the word “bolt” in an image search engine.

Given the vagueness of the query, one may expect from a good engine

to be shown pictures of the champion athlete Usain Bolt, a car with

the same name, the poster of the Disney’s movie “Bolt” or a kind of

fastener; in short a collection of images representing the polysemy of

the word “bolt”.

P[ , ✓ X ]� P[ , ✓ X ] K( , )

Figure 1: For the query “bolt”,

a properly designed DPP would

assign higher probability of dis-

play to the second row than the

first one.

A determinantal point process (DPP) is a probabilis-

tic model with the right properties to make recom-

mendations under diversity constraints. DPPs assign higher

probability to sets of images that are diverse, in a sense to be defined,

while guaranteeing that each image is marginally relevant for the query.

The notion of similarity between images x and y is

encoded as the entry Kxy of a positive semi-definite

kernel matrix. The probability that a set of N images labeled

x1 , . . . , xN ∈ N is part of the final display expresses as the determi-

nant of the corresponding submatrix. In an informal sense

P

[
images x1 , . . . xN

are present in the display

]
= det




Kx1x1 · · · Kx1xN
...

. . .
...

KxN x1
· · · KxN xN


.

(0.1.1)

In particular, the determinant vanishes if two images xi , xj are the

same, that is, identical images cannot be displayed simultaneously.

This determinantal structure enforces negative de-

pendence between items. In particular, for two distinct images
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x and y, and further assuming that K is symmetric,

P

[
images x and y

are present in the display

]
= KxxKxx −Kxy

2. (0.1.2)

In other words, the larger the magnitude of the similarity Kxy between

images x and y, the less likely they co-occur in the query’s result. In

fact, DPPs were introduced long before image search engines. Origi-

nally, DPPs arose in the context where items are actually points living

in a continuous domain.

In the continuous setting, the notion of diversity be-

tween items is replaced by a notion of repulsion be-

tween points: the points tend to repel each other, see

Figure 2. In the pioneering works of Ginibre (1965), Wigner (1967),

and Dyson (1962) describing the energy levels of physical systems as

the eigenvalues of large random Hermitian matrices, DPPs actually

characterize the very distribution of these eigenvalues. In particular,

the study of the eigenvalues of the sample covariance matrix of complex

random Gaussian vectors, started by Wishart (1928), found applica-

tions in biology (Arnold, Gundlach, and Demetrius, 1994), finance

(Laloux et al., 2000), and telecommunications (Couillet and Debbah,

2011).

Figure 2: The eigenvalues of a

Hermitian Gaussian matrix of

size 200 form a DPP called the

Ginibre ensemble (above) tend

to spread more homogeneously

than 200 points drawn indepen-

dently uniformly at random (be-

low).

While working on a mathematical framework to explain an optical

phenomenon known as the anti-bunching effect,1 Macchi (1975) rigor-

1 The anti-bunching effect of fermions

was anticipated by the theory but

could not be verified empirically be-
cause the poor temporal resolution of

the detectors at that time.

ously defined fermion processes – later renamed determinantal points

processes – as a model of the position of particles in a beam, accounting

for the fact that the probability of detecting two fermions in a short

interval of time is expected to be smaller than if the positions were

independently distributed, hence the name “anti-bunching”. Fermion

processes were characterized by the determinantal form of their coin-

cidence densities, also called correlation functions. These densities are

informally defined as

P




there is one point in each

infinitesimal volume

dx1, . . . ,dxN

around x1, . . . , xn


 = det[K(xi, xj)]

n
i,j=1dx1, . . . ,dxn,

(0.1.3)

where the function K, called the correlation kernel, plays the role of

K in our search engine example.2

2 We use the terminology “correlation
kernel” as reminder for Korrelation.

As a matter of fact, DPPs appear in a wide variety

of contexts, ranging from number theory (Rudnick and Sarnak,

1996), combinatorics (Baik, Deift, and Johansson, 1999; Borodin, Ok-

ounkov, and Olshanski, 2000), zeros of random analytic functions

(Peres and Virag, 2003; Hough et al., 2009), spatial statistics (La-

vancier, Møller, and Rubak, 2015), in connection with random graphs

and signal processing (Burton and Pemantle, 2004; Tremblay, Am-

blard, and Barthelme, 2017; Avena et al., 2018), telecommunication

networks (Li et al., 2015), statistical mechanics (Pathria and Beale,
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2011), machine learning (Kulesza and Taskar, 2012), survey sampling

(Loonis and Mary, 2015), or models for neural signals (Snoek, Zemel,

and Adams, 2013).

For surveys on DPPs we refer to Johansson (2006) and Anderson,

Guionnet, and Zeitouni (2009) for the connection with random ma-

trix theory; to Soshnikov (2000), Shirai and Takahashi (2003), Lyons

(2002), Hough et al. (2006), and Borodin (2015) for a probabilistic

viewpoint; to Lavancier, Møller, and Rubak (2015) for their use in

spatial statistics and to Kulesza and Taskar (2012) for their applica-

tion to machine learning.

The two natural tasks that arise to understand and

use DPPs as a statistical model or as a computational

tool, are inference and sampling. The main aspect of in-

ference consists in inferring the kernel K of the DPP from data, like

learning the notion of similarity between images from a user point of

view. Sampling corresponds to generating configurations of points dis-

tributed according to a DPP, like a search engine answering a query

under diversity constraints.

In the finite case, point processes are a probabilistic model over

subsets of a ground set of items. Naive approaches to both inference

and sampling face a formidable combinatorial problem. However, the

special algebraic structure of DPPs makes them a singular model, and

offers polynomial-time inference and sampling algorithms with respect

to the natural quantities describing the problem. Such quantities are

typically the total number M of items in the database, the expected

number of items in the realizations of the process, and potentially the

number d of features representing each item.

In the continuous case, there are infinitely many possible configu-

rations of points in an ambient space of dimension d. The usual class

of point processes considered to model points in repulsive interaction

is the class of Gibbs processes. However, Gibbs processes usually have

an intractable normalization constant and require elaborate sampling

methods (Møller and Waagepetersen, 2004). In contrast, the determi-

nantal structure of the correlation functions of DPPs reflects on the

likelihood of the process, namely

P




there are exactly n points,

one in each infinitesimal

volume dx1, . . . ,dxN

around x1, . . . , xn


 ∝ det[L(xi, xj)]

n
i,j=1dx1, . . . ,dxn

(0.1.4)

where L is called the likelihood kernel.3 3 We use this terminology as a reminder

for Likelihood.
Note that, in the finite setting, DPPs

defined through their likelihood kernel
are also called L-ensembles (Borodin
and Rains, 2004; Kulesza and Taskar,
2012).

The normalization constant of (0.1.4) is actually available in closed

form, which opens the way to likelihood-based inference of the kernel

L. However, the maximization of the log-likelihood is a non convex

optimization problem. Bayesian and Expectation-Maximization meth-

ods have been employed to learn parametric likelihood kernels (Affandi

et al., 2014; Bardenet and Titsias, 2015), while a fixed-point method

applies to the non parametric case (Mariet and Sra, 2015) in the dis-
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crete setting. Besides, Gillenwater et al. (2014), Urschel et al. (2017),

and Brunel (2018) also developed moment methods for learning the

kernel K instead, and Gartrell et al. (2019) recently considered learn-

ing non-Hermitian likelihood kernels. For a theoretical study of the

maximum likelihood estimator in the finite setting, we refer to Brunel

et al. (2017a, 2017b).

In this thesis, we focus on the sampling task, for instance

DPP samples can be used i) to empirically check the validity of theo-

retical results in random matrix theory, formulate or test conjectures.

Olver, Nadakuditi, and Trogdon (2014) numerically investigate uni-

versality phenomena. ii) as a way to generate diverse sets of items for

recommendation systems (Gillenwater et al., 2019), text summariza-

tion (Dupuy and Bach, 2018) etc. iii) in a Monte Carlo framework to

compute estimates of the integral of a function of interest (Bardenet

and Hardy, 2020; Belhadji, Bardenet, and Chainais, 2019; Gautier,

Bardenet, and Valko, 2019b). iv) to select rows or columns of a de-

sign matrix in linear regression or experimental design (Deshpande and

Rademacher, 2010; Dereziński et al., 2018; Pukelsheim, 2006; Mariet

and Sra, 2017) or for feature selection (Kojima and Komaki, 2016;

Belhadji, Bardenet, and Chainais, 2018).

More specifically, we focus on sampling from so-called

projection DPPs, in both the finite and the continu-

ous cases. The terminology comes from the fact that the underlying

kernel characterizes a projection operator. In particular, projection

DPPs generate samples with N points almost surely;4 this is a con- 4 Strictly speaking, the projection oper-

ator also needs to have finite rank. For
instance, the sine kernel (K(x, y) =
sinπ(x−y)
π(x−y) ) arising in the random ma-

trix literature (Mehta and Gaudin,

1960) generates infinite configurations
of points on the real line.

venient property for the display of a fixed number of images or to

control the cardinality of the configurations of points to be generated.

More generally, projection DPPs5 are the building blocks of the DPP

5 Projection DPPs are also called ele-

mentary DPPs in the machine learn-
ing literature (Kulesza and Taskar,

2012).

model. Indeed, Hough et al. (2006) showed that general DPPs defined

by an Hermitian6 correlation kernel K, can be expressed as a mixture

6K satisfies K(x, y) = K(y, x).

of projection DPPs. The weights in the mixture are functions of the

eigenvalues of the operator with kernel K. From this perspective, the

authors derived an exact procedure for sampling generic DPPs (with

Hermitian kernels), which requires the eigendecomposition of the ker-

nel. Furthermore, this generic sampling scheme internally calls a pro-

jection DPP sampling routine, which does not require preprocessing

the projection kernel.

Projection DPPs admit an exact sampling scheme, at

least on paper. In the continuous case, the chain-rule based

method of Hough et al. (2006) requires generating exact samples from

the conditionals. This non-trivial matter is usually tackled using re-

jection sampling (Lavancier, Møller, and Rubak, 2015), which in turn

requires tailored proposal distributions (Gautier, Bardenet, and Valko,

2019b). Putting aside the costs involved in the rejection steps and eval-

uations of the kernel K, the overall cost of this method for sampling

continuous projection DPPs is cubic in the number of points N to be
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generated. In the finite case, if we note M the total number of items,

the adaptation7 of the chain-rule based method of Hough et al. (2006) 7 See, e.g., Gillenwater (2014), Trem-

blay, Barthelme, and Amblard (2018),
and Poulson (2019).

yields exact projection DPP samples in O(MN2); with an additional

preprocessing cost of order O(M3) associated to the eigendecomposi-

tion of the underlying kernel in the non-projection case.

Some special DPPs arising in random matrix theory can be sampled

by computing the eigenvalues of a properly randomized N×N matrix.

From a computational viewpoint, this yields a practical rejection-free

exact sampling method with O(N3) time-complexity. The equivalent

tridiagonal models devised by Dumitriu and Edelman (2002) and Killip

and Nenciu (2004) further reduce the sampling cost from cubic to

quadratic in N . This has triggered our interest in using such random

tridiagonal matrix models for sampling more general DPPs.

Decreusefond, Flint, and Low (2013) also considered adapting the

elaborate procedure8 of Kendall and Møller (2000) to generate ex- 8 which is an instance of perfect simu-

lation, based on the method of cou-
pling from the past, see, e.g., Propp

and Wilson (1998) and Huber (2016).

act DPP samples associated to more general Hermitian kernels. This

procedure is shown to have a time-to-coalescence – roughly, the com-

putational cost – which only depends linearly and logarithmically on

the trace of the likelihood kernel.9 We mention that we have not in-

9 The time-to-coalescence is of order

O(
∫
L(x, x)dx log(

∫
L(x, x)dx)).

vestigated this line of research, but it might be of interest in the finite

case.

Finally, there exist special instances of projection DPPs admitting

alternative exact samplers, e.g., the uniform measure on spanning trees

of a graph is actually a projection DPP. For well-connected graphs,

random-walk-based methods (Propp and Wilson, 1998; Broder, 1989;

Aldous, 1990) can produce uniform spanning trees in roughlyO(M log(M))

steps. Like the random tridiagonal matrix models, this kind of exam-

ples leaves the possibility of fast DPP sampling open.

With today’s deluge of data, the polynomial-time sam-

pling algorithms can become impractical for large

scale applications, where M and potentially N can be very large:

in the order of millions. In such scenarios, the above generic proce-

dure and other matrix-factorization based methods (Launay, Galerne,

and Desolneux, 2018; Poulson, 2019) become too costly. Even the

linear dependency in M , the total number of items, may be prob-

lematic. Gillenwater et al. (2019) exploit a binary tree structure to

turn the O(MN2) cost of the original projection DPP sampler into

O(log(M)N4), which becomes practical when the expected number of

points N is small: typically a few tens in recommendation systems.

For generic Hermitian DPPs, the essential bottleneck is the cubic

preprocessing cost for the eigendecomposition of the kernel. A pos-

sible workaround is to consider a factored form of the likelihood ker-

nel L = ΦTΦ, where each item is represented by a feature vector of

size d, stored as a column of Φ (Kulesza and Taskar, 2012). In this

setting, the diagonalization step is performed on the so-called “dual

kernel” ΦΦT of size d × d, which makes the method practical when

d � M . Dereziński, Calandriello, and Valko (2019) devised an alter-

native methodology shifting the computational overhead of sampling
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from a target DPP defined on a potentially large ground set, onto sam-

pling from another DPP defined on a smaller subset of items. To do

this, they replace the computation of the spectral content of the kernel,

by cheaper-to-compute approximate statistics.10 From these approxi- 10 These statistics are an instance of the

ridge leverage scores used in kernel ap-

proximation methods, see, e.g., Alaoui
and Mahoney (2015).

mate statistics, they construct an intermediate distribution whose re-

alizations serve as ground set for another tailored DPP. Finally, they

prove that downsampling realizations of such intermediate distribu-

tion with this tailored DPP actually corrects the bias introduced at

the intermediate step; so that the whole procedure yields exact DPP

samples.

Another line of research focuses on approximate sam-

pling methods. The main methods for sampling approximate from

DPPs can be clustered into two categories. In the first class, the ap-

proximation is made on the kernel defining the underlying DPP either

using random projections or low-rank factorization techniques. The

second class relies on Monte Carlo Markov chain (MCMC) methods.

0.2 Contributions

The original ambition of the thesis was to develop new methods to

generate exact DPP samples more efficiently than the original tech-

nique of Hough et al. (2006); with a special focus on projection DPPs.

The ultimate goal was to make Monte Carlo integration with DPPs

(Bardenet and Hardy, 2020) fast and efficient in practice.

In this thesis, we tackle both finite and continuous

projection DPP sampling from non-conventional per-

spectives. In the finite case, we exploit the geometrical structure of

projection DPPs to establish the link between sampling and the reso-

lution of randomized linear programs. In particular, we build a novel

MCMC sampler that combines ideas from combinatorial geometry, lin-

ear programming, and Monte Carlo methods. This method relies on

the embedding of the finite support of projection DPPs into a contin-

uous convex domain, and yields a more sample-efficient exploration of

the state space than previous MCMC approaches.

In an attempt to generalize this idea to the continuous setting, we

investigated the randomization of semi-infinite linear programs.11 The 11 See, e.g., Goberna and López (2014).

theoretical and technical challenges were too big and we focused on a

special instance related to truncated moment problems, which are op-

timization problems over measures with moment constraints.12 The 12 See, e.g., Lasserre (2010).

fact that some of these optimization problems have solution measures

supported on a finite set of points, led us to consider generating DPP

samples through a proper randomization of the moments constraints.

Restricting to the univariate case, there exists in fact a canonical way

of parameterizing measures supported on a compact set. These param-

eters, derived from the natural moments, are called canonical moments

by Dette and Studden (1997). They actually characterize the coeffi-

cients of the three term recurrence relation satisfied by the orthogonal
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polynomials associated to the underlying measure. This recurrence

relation can also be encoded by a tridiagonal matrix. In the end,

leveraging all these connections, we use elementary arguments to unify

the treatment of the random tridiagonal matrix models for the three

classical β-ensembles, which were respectively proved using different

techniques by Dumitriu and Edelman (2002) and Killip and Nenciu

(2004). Then, we conduct an empirical study of a promising fast mix-

ing Monte Carlo Markov chain on tridiagonal matrices to simulate

more general β-ensembles.

In the context of Monte Carlo integration, we implemented an ef-

ficient version of the original sampler of Hough et al. (2006) tailored

to the projection DPP used by Bardenet and Hardy (2020), see Fig-

ure 3. This allowed us to empirically test the properties and explore

the behavior of two DPP-based Monte Carlo estimators, in regimes yet

unexplored. The first one due to Bardenet and Hardy (2020) works

as a random multivariate equivalent of the Gauss quadrature. The

second was actually devised by Ermakov and Zolotukhin (1960), but

remained mostly unknown in the literature. Thus, establishing its in-

trinsic link with projection DPPs sheds a new light on this estimator

based on the resolution of a randomized linear system involving the

integrand and the eigenfunctions of the DPP kernel.

Figure 3: A sample with

N = 1000 points from the

two-dimensional projection DPP

used for Monte Carlo integra-

tion.
Finally, our DPPy � toolbox is a new computational

entry-point to the DPP model. For better reproducibility, DPPy: DPP Sampling with Python

we created the DPPy Python toolbox (Gautier et al., 2019), which

comes with an extensive documentation� explaining and illustrating

the various properties of DPPs and the corresponding state-of-the-

art sampling methods. We mention that, apart from our own works,

several researchers already make use of this toolbox, like Kammoun

(2018), Burt, Rasmussen, and Wilk (2019), and Dereziński (2019).

Figure 4 shows the current (01/30/2020) activity status of the hosting

repository.

Figure 4: Links to DPPy

� github.com/guilgautier/DPPy

� dppy.readthedocs.io.

Below is a list of our contributions.

Journal paper (almost all the figures of the thesis were generated with DPPy)

N G. Gautier, G. Polito, R. Bardenet, and M. Valko. 2019. DPPy: DPP Sampling with Python. Journal of

Machine Learning Research - Machine Learning Open Source Software (JMLR-MLOSS). arXiv:1809.07258.

Submitted to a journal (cf. Chapter 5)

N G. Gautier, R. Bardenet, and M. Valko. 2020. Fast sampling from β-ensembles. ArXiv e-prints. arXiv:2003.02344.

Conference papers (cf. Chapters 3 and 4)

� G. Gautier, R. Bardenet, and M. Valko. 2017. Zonotope hit-and-run for efficient sampling from projection

DPPs. In International Conference on Machine Learning (ICML). arXiv:1705.10498.

� G. Gautier, R. Bardenet, and M. Valko. 2019b. On two ways to use determinantal point processes for

Monte Carlo integration. In Advances in Neural Information Processing Systems (NeurIPS).

Workshop papers

� G. Gautier, R. Bardenet, and M. Valko. 2019c. On two ways to use determinantal point processes for Monte

Carlo integration. In Workshop on Negative Dependence in Machine Learning, International Conference on

Machine Learning (ICML).

https://github.com/guilgautier/DPPy
https://dppy.readthedocs.io
http://jmlr.org/papers/v20/19-179.html
http://arxiv.org/abs/1809.07258
http://arxiv.org/abs/2003.02344
http://arxiv.org/abs/2003.02344
http://proceedings.mlr.press/v70/gautier17a
http://proceedings.mlr.press/v70/gautier17a
http://arxiv.org/abs/1705.10498
http://papers.nips.cc/paper/8992-on-two-ways-to-use-determinantal-point-processes-for-monte-carlo-integration
http://papers.nips.cc/paper/8992-on-two-ways-to-use-determinantal-point-processes-for-monte-carlo-integration
https://negative-dependence-in-ml-workshop.lids.mit.edu/schedule
https://negative-dependence-in-ml-workshop.lids.mit.edu/schedule
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� G. Gautier, R. Bardenet, and M. Valko. 2019a. Les processus ponctuels déterminantaux en apprentissage

automatique. In French Colloquium on Signal and Image Processing (GRETSI).

0.3 Outline of the manuscript

In the same spirit as the documentation of DPPy, we strive to give

intuitions and clear explanations of the definitions and mathemati-

cal properties of DPPs. At the end of each chapter, appendices collect

complementary remarks, related results and proofs. We exploit Tufte’s

book style (Tufte, 2006) and use its wide margins to accompany the

main body of the text with comments, or display figures (mostly) gen-

erated with DPPy.

The manuscript is divided into five chapters.

Chapter 1 lays the ground material for the subsequent chapters.

We introduce the main definitions and properties of DPPs in both the

continuous and finite settings, and explicit the informal descriptions

given in the introduction.

Chapter 2 discusses several methods available to generate exact

DPP samples in both the finite and continuous settings. In particular,

special sections are dedicated to projection DPPs to emphasize the

special role they play in the construction of the DPP model. We

also insist on the geometrical interpretation of the associated sampling

procedures.

Chapter 3 discusses various methods to generate approximate sam-

ples in both finite and continuous cases. The last section includes ma-

terial from an international conference,13 where we develop a Monte

13 G. Gautier, R. Bardenet, and M.

Valko. 2017. Zonotope hit-and-

run for efficient sampling from pro-
jection DPPs. In International Con-

ference on Machine Learning (ICML).

arXiv:1705.10498.

Carlo Markov Chain sampler for the simulation of finite projection

DPPs. In this work, we combine the geometrical properties of the

DPP model with linear programming to view DPP samples as the

solution of a randomized linear problem.

Chapter 4 includes material accepted to an international confer-

ence,14 where we consider the problem of estimating the integral of

14 G. Gautier, R. Bardenet, and M.
Valko. 2019b. On two ways to use de-
terminantal point processes for Monte

Carlo integration. In Advances in
Neural Information Processing Sys-

tems (NeurIPS).

a function f with a DPP-based Monte Carlo method. Our motiva-

tion comes from the recent result of Bardenet and Hardy (2020), who

showed that the samples of a specific projection DPP can be used to

construct unbiased estimates of the integral of interest with a vari-

ance that decays faster than classical Monte Carlo. Retrospectively,

the first DPP-based Monte Carlo estimator was devised by Ermakov

and Zolotukhin (1960), some fifteen years before Macchi (1975) even

formalized DPPs. In this contribution we first reveal the link between

this estimator involving the resolution of a random linear system and

projection DPPs, and analyze its properties using modern DPP ma-

chinery. In particular, to get the best estimation guarantee with a

fixed budget of points, the definition of the estimator suggests a spe-

http://researchers.lille.inria.fr/~valko/hp/publications/gautier2019processus.pdf
http://researchers.lille.inria.fr/~valko/hp/publications/gautier2019processus.pdf
http://proceedings.mlr.press/v70/gautier17a
http://proceedings.mlr.press/v70/gautier17a
http://proceedings.mlr.press/v70/gautier17a
http://arxiv.org/abs/1705.10498
http://papers.nips.cc/paper/8992-on-two-ways-to-use-determinantal-point-processes-for-monte-carlo-integration
http://papers.nips.cc/paper/8992-on-two-ways-to-use-determinantal-point-processes-for-monte-carlo-integration
http://papers.nips.cc/paper/8992-on-two-ways-to-use-determinantal-point-processes-for-monte-carlo-integration
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cific but very natural choice for the projection kernel. Assuming the

function f to integrate has fast decaying coefficients in a given or-

thogonal basis, it is strongly suggested to take as eigenfunctions for

the DPP kernel the orthogonal basis functions onto which f has the

largest coefficients. Then we investigate the empirical behavior of both

the estimator of Bardenet and Hardy (2020) and that of Ermakov and

Zolotukhin (1960) in various regimes, considering the so-called multi-

variate Jacobi-ensemble as projection DPP. To do this, we implement

a tailored efficient version of the exact sampling procedure originally

derived by Hough et al. (2006). In this respect, the exact sampling

scheme for orthogonal projection DPPs is presented in this chapter.

Chapter 5 includes material submitted to an international jour-

nal.15 We consider a class of repulsive point processes on the real line 15 G. Gautier, R. Bardenet, and M.

Valko. 2020. Fast sampling

from β-ensembles. ArXiv e-prints.
arXiv:2003.02344.

called β-ensembles, which contains projection DPP instances when

β = 2.

Our main motivation comes from the fact that β-ensembles appear

as the eigenvalues of random tridiagonal matrices. From a sampling

perspective, computing the eigenvalues of a properly randomized tridi-

agonal matrix is a way to generate exact samples in O(N2) time com-

plexity.

In this chapter, we give an unifying and elementary treatment of the

tridiagonal models corresponding to the classical Hermite, Laguerre

and Jacobi β-ensembles. In these special cases, the coefficients defin-

ing the associated tridiagonal matrix are independent with easy-to-

sample distributions. When targeting more general β-ensembles, the

independence vanishes, but the coefficients interact only within a short

range. We exploit this property and derive a Gibbs sampling strategy

to sample from β-ensembles with polynomial potentials.

We provide a tailored implementation, which allows us to test the

properties of the method, in regimes yet unexplored by the literature.

Our experiments reveal surprisingly fast convergence of the Gibbs sam-

pler. In particular, within ten Gibbs passes only, even for a large tridi-

agonal matrices, the marginal behavior of the eigenvalues fits very well

the theoretical expectations.

The final section contains a discussion on the different parts and

contributions presented in the manuscript, along with potential lines

of improvements and open questions regarding DPP sampling.

http://arxiv.org/abs/2003.02344
http://arxiv.org/abs/2003.02344
http://arxiv.org/abs/2003.02344
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A point process can be viewed as a random collection of points living

in an arbitrary domain. For example, the points may identify the

position of trees in a forest, or particles in a physical system but also

correspond to the items listed in a catalog or a database. Thus, point

processes may be considered as probabilistic models accounting for the

various types of interactions that may exist between these points.

Throughout the manuscript we only consider the case where the

points live in a continuous or finite space X = R, (0,+∞), [0, 1], [−1, 1]d

or {1, . . . ,M}. When the ambient space is continuous, realizations

of the point process materialize as a cloud of points {x1, . . . , xN} ⊂
X, where the number of points N may vary from one realization to

another. When the ambient space is finite, e.g., X = {1, . . . ,M},
realizations of the point process can be understood as a bag of items

extracted from a data base.

Among point processes, Determinantal Point Processes (DPPs) are

a parametric family of point processes parametrized by a kernel func-

tion K. Their essential characteristic is that the correlation between

the points is encoded under the special algebraic form of determinants.

The goal of this chapter is first to formalize the intuitions given

in the introduction. Then, we give the main properties induced by

this singular determinantal structure and discuss various ways of con-

structing a valid kernel.

For more details and illustrations we invite the reader to have a look

at the documentation of DPPy.� � dppy.readthedocs.io.

1.1 Definitions

In this section we give a brief account of the theory of point processes.

For more generality and technical details regarding the definition of

point processes we refer the reader to, e.g., Daley and Vere-Jones

(2003) and Møller and Waagepetersen (2004).

We note X the ambient space where the points live and restrict to

simple point processes for which each point can appear only once. Thus

a simple point process can be viewed as a random subset X ⊂ X, i.e.,

a random point pattern on X. Moreover to avoid any accumulation of

points, we consider locally finite point processes, i.e., for any bounded

set B ∈ B(X), the number of points of X falling in B is finite.

More formally, consider the measure space (X,B(X), µ) where B(X)

is the Borel σ-algebra associated to X and µ is a reference measure.

A point process X on (X,B(X), µ) is a measurable mapping from a

probability space (Ω,F ,P) onto the measurable space (Nlf ,Nlf ) of

https://dppy.readthedocs.io
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locally finite configurations of points of X where

Nlf , {S ⊂ X | |S ∩B| <∞ for all bounded B ∈ B(X)}. (1.1.1)

and Nlf is the smallest σ-algebra on Nlf making the mappings

Nlf → N
S 7→ |S ∩B|

measurable for all bounded B ∈ B(X).

There exist several ways to define point processes, e.g., through

their void probabilities, their Laplace transform, their correlation func-

tions and Janossy densities (Daley and Vere-Jones, 2003; Møller and

Waagepetersen, 2004; Shirai and Takahashi, 2003).

In this manuscript, we characterize point processes and define de-

terminantal point processes (DPPs) through their so-called correlation

functions.1 Intuitively, the n-th correlation function of X describes the 1 also called product densities or joint

intensities.inclusion probabilities of n points in the process

P




n points of the process are

located in the infinitesimal balls

B(x1,dx1), . . . , B(xn,dxn)


 = ρn(x1, . . . , xn)µ(dx1) · · ·µ(dxn).

(1.1.2)

More formally, the correlation functions of a point process can be

defined in the following way.

Definition 1.1.1. (Correlation functions) Let X be a (finite) point

process defined on X with reference measure µ. The correlation func-

tions of X , noted ρn for n ≥ 1, are symmetric nonnegative and locally

integrable functions such that for any measurable function f : Xn →
[0,∞)

E

[ ∑

(x1,...,xn)
x1 6=···6=xn∈X

f(x1, . . . ,xn)

]
=

∫

Xn
f(x1, . . . , xn)ρn(x1, . . . , xn)µ(dx1) · · ·µ(dxn),

(1.1.3)

with the condition that ρn(x1, . . . , xn) = 0, if xi = xj for some i 6= j.

Another characterization could be given in terms of the so-called

Janossy densities, which characterize the n-points likelihoods of the

process. Again, in an informal way

P

[
the process has exactly n points

one in each B(x1,dx1), . . . , B(xn,dxn)

]
= jn(x1, . . . , xn)µ(dx1) · · ·µ(dxn)

(1.1.4)

Paraphrasing Daley and Vere-Jones (2003, Section 5.4), from an

experimental point of view, the correlation functions (1.1.2) can be es-

timated from the results of n observations at specific times or places,

whereas the Janossy densities (1.1.4) require indefinitely many obser-

vations to determine the exact (total) number of occurrences. For

this reason, the correlation functions (1.1.2) are in principle amenable

to experimental determination (through ‘coincidence’ experiments, as

called by Macchi (1975)) in a way that Janossy densities are not, at
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least in the context of counting particles. However, the inclusion-

exclusion principle2 allows us to link the correlation functions ρn and 2 See also Theorem 1.D.1 for a different

application of the inclusion-exclusion
principle when X is finite.

the Janossy densities jn of a point process.

Lemma 1.1.2. (Daley and Vere-Jones, 2003, Lemma 5.4.III) Con-

sider a finite point process X ⊂ X with reference measure µ, such that

the correlation functions (ρn)n≥1 and Janossy densities (jn)n≥1 exist.

Then, for any k ≥ 1 and x1, . . . , xk ∈ X we have

ρk(x1, . . . , xk) =

∞∑

n=0

1

n!

∫

Xn
jk+n(x1, . . . , xk, y1, . . . , yn)µ(dy1) · · ·µ(dyn),

jk(x1, . . . , xk) =

∞∑

n=0

(−1)n

n!

∫

Xn
ρk+n(x1, . . . , xk, y1, . . . , yn)µ(dy1) · · ·µ(dyn).

When X is finite, for any A ⊂ X, this reads

P[A ⊂ X ] =
∑

A⊂S⊂X
P[X = S],

P[X = A] = (−1)−|A|
∑

A⊂S⊂X
(−1)|S|P[S ⊂ X ].

By Definition 1.1.1, the correlation functions are useful to express

moments of linear statistics of the point process.3 For example, the 3 See also Proposition 1.E.1 where we
compute the expectation and the vari-

ance of linear statistics of DPPs.
first correlation function ρ1, also called the intensity function of the

process, allows us to compute the expectation of the number of points

that fall in different regions of the ambient space. Indeed, for any

measurable set B ⊂ X, E[|X ∩B|] =
∫
B
ρ1(x)µ(dx). More generally,

for any family of mutually disjoint measurable subsets B1, . . . , Bn ⊂
X, if we take f =

∏n
i=1 1Bi then (1.1.3) becomes

E

[
n∏

i=1

|X ∩Bi|
]

=

∫

B1

· · ·
∫

Bn

ρn(x1, . . . , xn)µ(dx1) · · ·µ(dxn),

(1.1.5)

and for any n1, . . . , nk ≥ 1 such that
∑k
i=1 nk = n, we obtain

E

[
k∏

i=1

(|X ∩Bi|
ni

)
ni!

]
=

∫

B
n1
1

· · ·
∫

B
nk
k

ρn(x1, . . . , xn)µ(dx1) · · ·µ(dxn).

(1.1.6)

Now, the “determinantal” term in Determinantal Point Process

refers to the fact that correlation functions express as the determi-

nant of a matrix with entry ij given by the evaluation of a kernel

function K.

Definition 1.1.3 (Determinantal Point Process). Let (X,F , µ) be a

measurable space and consider a measurable function K : X×X→ C.

A point process X on X is said to be determinantal with reference

measure µ and kernel K, when for any n ≥ 1 and x1, . . . , xn ∈ X, the

correlation functions of X take the form4

4 A necessary condition on K for the
existence is that det[K(xi, xj)]

n
i,j=1 ≥

0, ∀n ≥ 1 and x1, . . . , xn ∈ X.

ρn(x1, . . . , xn) = det[K(xi, xj)]
n
i,j=1, (1.1.7)

in which case we note X ∼ DPP(µ,K).

Furthermore, when the kernel is Hermitian, i.e.,

K(y, x) = K(x, y), ∀x, y ∈ X, (1.1.8)
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the process X may be called a Hermitian DPP and we use symmetric

instead of Hermitian when K(x, y) ∈ R.

The finite counterpart of Definition 1.1.3 takes the following form.

Definition 1.1.4. Let X be finite with size |X| = M . Consider a

vector5 ω , (ω1, . . . ,ωM ) ∈ [0,+∞)M and a matrix K ∈ CM×M . The

5 ω plays the role of the reference mea-
sure µ =

∑M
m=1 ωmδm. The entry

ωm can be interpreted as the marginal

relevance or quality of item m.
point process X on X is said to be determinantal with weight vector ω

and correlation6 kernel K, when for any subset A ⊂ X,
6 It is also called marginal kernel in the

literature, but we prefer the term cor-
relation as a reminder for Korrelation.

P[A ⊂ X ] = det KA

∏

i∈A
ωi, where KA , [Kij ]i,j∈A, (1.1.9)

in which case we note X ∼ DPP(ω,K). When ωm = 1,∀m ∈ X, we

simply note X ∼ DPP(K). By convention det K∅ = 1

Furthermore, if K ∈ CM×M is Hermitian,7 i.e., KH = K, the pro- 7 the symbol H means conjugate trans-

pose.cess X is called a Hermitian DPP and we use symmetric instead of

Hermitian when KT = K is real-valued.

An alternative way of introducing DPPs, is to define them through

their likelihood function, i.e., their Janossy densities.8 To avoid the 8 See their informal definition (1.1.4).

technicalities of the continuous case regarding the definition of the

normalization constant as a Fredholm determinant, we only consider

the finite case.

Definition 1.1.5 (L-ensembles). Let X be finite and consider a matrix

L ∈ CM×M . The point process X ⊂ X with joint distribution9 9 Assuming det LS ≥ 0,∀S ⊂ X.

The normalizing constant of
(1.1.10) is given by Theorem 1.B.2∑
S⊂X det LS = det[I + L].

P[X = S] =
det LS

det[I + L]
, ∀S ⊂ X, (1.1.10)

is called an L-ensemble with likelihood kernel L.

In fact, there is a correspondence between the determinantal struc-

ture of the likelihood (1.1.10) of L-ensembles and the determinantal

structure of the inclusion probabilities (1.1.9) of DPPs.

Proposition 1.1.6 (L-ensembles are DPPs). Consider the point pro- See also Kulesza and Taskar (2012,

Theorem 2.2) or Borodin, Okounkov,

and Olshanski (2000, Proposition
A.6).

cess X to be an L-ensemble with kernel L ∈ C|X|×|X|, as in Defini-

tion 1.1.5. Then X ∼ DPP(K = L(I + L)−1).

We note X ∼ DPP(L) to emphasize that it is defined via its joint

distribution and call L the likelihood10 kernel. 10 The terminology serves as reminder

for Likelihood.
Proof. Let us compute the inclusion probabilities of this point process.

For any A ⊂ X,

P[A ⊂ X ] =
∑

A⊂S⊂X
P[X = S]

=
1

det[I + L]

∑

A⊂S⊂X
det LS

=
1

det[I + L]
det
[
IAL + IA

c

(I + L)
]

By Theorem 1.B.2, where
[
IA
]
ij

=

1i=j∈A.

= det
[
IAL(I + L)

−1
+ IA

c
]

= det
[
L(I + L)

−1
]
A
.
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Proposition 1.1.6 shows that an L-ensemble with likelihood kernel

L can be realized as a DPP with correlation kernel K = L(I + L)−1.

Conversely, the computation of the likelihood of X ∼ DPP(K) reveals

that this relation can be inverted, that is DPP(K) can be realized as

an L-ensemble with likelihood kernel L = K(I −K)−1, if and only if

P[X = ∅] > 0.11 In particular, if K is assumed to be Hermitian, this 11 See Corollary 1.D.3.

inversion fails when K has some eigenvalues equal to one.

Do we need complex kernels? Let us take a simple toy exam-

ple; let X = {1, 2, 3} and consider the point process X with likelihood

P[X = S] =





0, if S = ∅ or X,
1
6 , if |S| = 1, 2.

(1.1.11)

Is X actually a determinantal point process? The answer is positive,

X is indeed a DPP but the corresponding kernel K cannot be real-

valued. To see this, we can write the inclusion probabilities and the

compatibility relations as

P[S ⊂ X ] =





1, if S = ∅,
1
2 , if |S| = 1,

1
6 , if |S| = 2,

0, if |S| = X,

and





K11 = K22 = K33 = 1
2 ,

K12K21 = K13K31 = K23K32 = 1
12 ,

(K12K31K23)2 + 1
123 = 0.

Observe that the latter condition is not feasible when Kij ∈ R. How-

ever one can take the complex Hermitian kernel

K =




1
2

i√
12

− i√
12

− i√
12

1
2

i√
12

i√
12

− i√
12

1
2


,

and realize (1.1.11) as DPP(K).

We have just seen a simple toy example of DPP(K) but we seek

for more general conditions on K, K or L for the corresponding point

process to exist.

When do DPPs actually exist? We start with the so-called

projection kernels, which play a fundamental role in the construction

of more general DPPs, as we detail in Section 1.2, see, e.g., Theo-

rems 1.2.3 and 1.2.4.

Definition 1.1.7 (Projection and orthogonal projection kernels). A

function K : X×X→ C is called a projection kernel with rank N ∈ N∗

if it satisfies

K(x, y) =

∫

X
K(x, z)K(z, y)µ(dz), ∀x, y ∈ X, (1.1.12)

and
∫

X
K(x, x)µ(dx) = N. (1.1.13)

If K is also Hermitian, we call it an orthogonal projection kernel.12 12 Orthogonal projection kernels are in-
stances of reproducing kernels, see,

e.g., Berlinet and Thomas-Agnan

(2004, Example 1).



24 on sampling determinantal point processes

Proposition 1.1.8 (Projection and orthogonal projection DPPs).

According to Definition 1.1.7, let K be either This corresponds to a generalization

of Hough et al. (2009, Exercise 4.1.1)
where we start from a projection ker-

nel K itself which is (a) not assumed
Hermitian, (b) not given by its eigen-

decomposition.

(a) a projection kernel with rank N , such that

det[K(xi, xj)]
N
i,j=1 ≥ 0, ∀x1, . . . , xN ∈ X, or (1.1.14)

(b) an orthogonal projection kernel with rank N .

In both cases consider (x1, . . . ,xN ) with joint probability distribution

1

N !
det[K(xi, xj)]

N
i,j=1µ

⊗N (dx1, . . . ,dxN ). (1.1.15)

Then, for any 1 ≤ n ≤ N , (x1, . . . ,xn) has probability distribution

(N − n)!

N !
det[K(xi, xj)]

n
i,j=1µ

⊗n(dx1, . . . ,dxn). (1.1.16)

and {x1, . . . ,xN} ∼ DPP(µ,K), which we call a projection DPP, re- By construction, projection DPPs

have N points µ-almost surely.spectively an orthogonal projection DPP.

Proof. If we assume that (1.1.15) is a well-defined probability distribu-

tion with marginals (1.1.16), we can use the permutation invariance of

(1.1.15) and plug the marginals un(x1, . . . , xn) = (1.1.16), into Propo-

sition 1.A.1 to see that the correlation functions of {x1, . . . ,xN} are

determinantal:

ρn(x1, . . . , xn) = det[K(xi, xj)]
n
i,j=1, ∀1 ≤ n ≤ N.

It remains to prove that (1.1.15) indeed defines a probability distribu-

tion with marginals (1.1.16). First, the density associated to (1.1.15)

is non-negative by assumption in case (a), while in case (b) it is a

consequence of the fact that K is an orthogonal projection kernel,

det[K(xi, xj)]
N
i,j=1 = det

[∫

X
K(xi, y)K(y, xj)µ(dy)

]N

i,j=1

K(x, z) =
∫
XK(x, y)K(y, z)µ(dy)

by (1.1.12).

=
1

N !

∫

XN
det[K(xi, yj)]

N
i,j=1 det[K(yj , xi)]

N
i,j=1µ

⊗N (dy1, . . . ,dyN ) By Cauchy-Binet formula (1.C.2)
φi(y) = K(xi, y), ψj(y) = K(y, xj).

=
1

N !

∫

XN
det[K(xi, yj)]

N
i,j=1 det

[
K(xi, yj)

]N
i,j=1

µ⊗N (dy1, . . . ,dyN ) K(y, x) = K(x, y) by (1.1.8).

=
1

N !

∫

XN

∣∣det[K(xi, yj)]
N
i,j=1

∣∣2µ⊗N (dy1, . . . ,dyN ) ≥ 0. (1.1.17)

In both cases, starting from det[K(xi, xj)]
N
i,j=1 ≥ 0, successive appli-

cations of Lemma 1.A.2 reveal the N ! normalization of (1.1.15) along

with the (N − n)! term and the non-negativity of the minors

det[K(xi, xj)]
n
i,j=1 ≥ 0, ∀N ≥ n ≥ 1, (1.1.18)

which define the marginals (1.1.16).

When the correlation kernel of DPP(µ,K), resp. DPP(K) is as-

sumed to be Hermitian, the existence of the DPP is guaranteed by a

special condition on the eigenvalues of the underlying kernel, or alter-

natively as positive semi-definite conditions.
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Proposition 1.1.9 (Existence of Hermitian DPPs). Let K : X×X→ See also Macchi (1975) or Soshnikov

(2000, Theorem 3).C be a continuous function, which is Hermitian

K(y, x) = K(x, y), ∀x, y ∈ X, (1.1.19)

positive semi-definite, i.e., for all f ∈ L2(µ)

∫

X2

f(x)K(x, y)f(y)µ(dx)µ(dy) ≥ 0, (1.1.20)

and satisfies the trace class condition

∫

X
K(x, x)µ(dx) <∞, (1.1.21)

together13 with the Hilbert-Schmidt condition 13 Note that when K is an orthogonal

projection kernel, cf. Definition 1.1.7,
conditions (1.1.21) and (1.1.22) are

the same.

∫

X2

|K(x, y)|2µ(dx)µ(dy) <∞. (1.1.22)

Then the eigendecomposition of the kernel reads

K(x, y) =

∞∑

k=1

λkφk(x)φk(y), where

∫

X
φk(z)φ`(z)µ(dz) = δk`.

(1.1.23)

Furthermore, DPP(µ,K) exists if and only if 0 ≤ λk ≤ 1, for all k ≥ 1.

We also mention that, when the kernel is assumed stationary, i.e.,

K(x, y) = K0(y−x), existence conditions reflect on the Fourier trans-

form of K0, see, e.g., Lavancier, Møller, and Rubak (2015, Proposition

3.1). Indeed, under suitable conditions, if we note F(K0) the Fourier

transform,14 the existence condition simply reads as F(K0) ≤ 1. 14 For any Borel function h : Rd → C,

F(h)(x) =
∫
h(y)e−2πixTydy, x ∈ RdNext, we give the proof of the necessary and sufficient condition for

a finite Hermitian DPP(K) to exist.

Corollary 1.1.10. Let X = {1, . . . ,M} be finite and take K ∈ CM×M

to be Hermitian. Then DPP(K) exists if and only if 0 � K � I.

Proof. ⇒ Given that K is Hermitian, I −K is Hermitian too. Then,

since DPP(K) exists then the complementary process X c ∼ DPP(I −
K) also exists15 and we must have, for any A ⊂ X, 15 See Corollary 1.D.4.




P[A ⊂ X ] = det[K]A ≥ 0,

P[A ⊂ X c] = det[I −K]A ≥ 0,
(1.1.24)

which is equivalent to K � 0 and I −K � 0 by Sylvester’s criterion.16 16 See, e.g., Horn and Johnson (2012,
Theorem 7.2.5).⇐ Given that K is Hermitian, since 0 � K � I, we can write the

eigendecomposition

K =

M∑

n=1

λnunu
H

n = UΛUH, with 0 ≤ λn ≤ 1 and UHU = I,

(1.1.25)

to apply Theorem 1.2.4 to this finite setting.

In the same spirit, one can show that the Hermitian DPP(L), as

defined in Proposition 1.1.6, exists if and only if L � 0.
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Observe the contrast with the existence condition for Hermitian

DPP(K), which requires two positive semi-definite constraints, namely

0 � K � I.17 As a consequence, the simple requirement L � 0 17 See Corollary 1.1.10.

makes the L-ensemble viewpoint more practical for modeling purposes.

Indeed, if we represent each item m ∈ X by a feature vector φm ∈ Rd

and store these vectors in a feature matrix Φ = [φ1, . . . , φM ] ∈ Rd×M ,

then L = ΦTΦ � 0 defines a valid symmetric DPPs.

Can two kernels K and K ′ define the same DPP? In

other words what is the equivalence class of kernels that give the same

determinantal point process? We say that two DPP kernels K and

K ′ are equivalent when the correlation functions of DPP(µ, K ) and

DPP(µ, K ) match, that is, ∀n ≤ 1 and x1 , . . . , xn

det[K (xi , xj )]
n
i,j=1 = det[K ′(xi , xj )]

n

i,j=1 . (1.1.26)

Using the invariance by transposition of the determinant, a first simple

example is K ′(x, y) = K (y, x). A second example relies on the multi-

linearity property of the determinant. If we consider a function g which

does not vanish on X, then we can take

In the discrete case this reads

K′ = GKG−1, where G is a diagonal

matrix with no zero elements.
K ′(x, y) = g(x)K(x, y)g(y)−1 (1.1.27)

Stevens (2019, Conjecture 1.4) even conjectures that these two cases

describe the entire equivalent class of kernels. If we restrict to kernels

that satisfy the symmetry condition K(x, y) = K(y, x), Stevens (2019,

Theorem 1) proves that the corresponding equivalence class is exactly

described by (1.1.27) with g : X → {−1, 1}. For other insights in the

discrete case, we refer to Kulesza (2012, Section 4.3.1, Theorem 4.1)

and Poulson (2019, Proposition 2). This identifiability issue makes the

inference of the kernel a subtle problem.

Moreover, we note that when the reference measure µ has a density

ω w.r.t. another measure, say λ,18 that is µ(dx) = ω(x)λ(dx), then 18 For instance, the Lebesgue measure.

DPP(µ,K) can be alternatively seen as DPP(λ,K ′) where

K ′(x, y) =
√
w(x)K(x, y)

√
w(y). (1.1.28)

We refer to this transformation as a change of base measure. In an in-

formal way, the base measure can be either put into the kernel or taken

out from the kernel. In the discrete case, one can work equivalently

with DPP(ω,K) or DPP(Ω
1
2 KΩ

1
2 ), where Ω , diag(ω).
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1.2 How to construct a DPP?

We present three ways to construct valid DPP kernels, either starting

from a valid kernel K, a set of linearly independent functions or simply

vectors.

Rescaling the kernel K by a constant yields a an-

other DPP.

Proposition 1.2.1. (Stability by thinning). Let λ > 1 and X ∼
DPP(µ, K ). Consider the point process X λ whose realizations corre-

spond to the ones of X where each point is deleted independently with

probability 1 − 1
λ . Then X λ ∼ DPP(µ, 1

λK ).

Proof. Let X = {x1 , . . . , xN } and compute the correlation functions

of the thinned process X λ

E




∑

(x1,...,xn)
x1 6=···6=xn∈X

f(x1, . . . ,xn)

n∏

i=1

1{xi∈Xλ}




= E


E




∑

(x1,...,xn)
x1 6=···6=xn∈X

f(x1, . . . ,xn)

n∏

i=1

1{xi∈Xλ}

∣∣∣∣∣ X







= E




∑

(x1,...,xn)
x1 6=···6=xn∈X

f(x1, . . . ,xn)

n∏

i=1

E

[
1{xi∈Xλ}

∣∣∣∣∣ X
]

 Conditionally on the realizations of X ,

the deletions are independent.

= E




∑

(x1,...,xn)
x1 6=···6=xn∈X

f(x1, . . . ,xn)
1

λn


 Each point is deleted with probabil-

ity 1−1/λ, thus kept with probability
1/λ.

=

∫

Xn
f(x1, . . . , xn)

1

λn
det[K(xi, xj)]

n
i,j=1µ

⊗n(dx1, . . . ,dxn) By definition of the correlation func-
tions, cf. Definition 1.1.1.

=

∫

Xn
f(x1, . . . , xn) det

[
1

λ
K(xi, xj)

]n

i,j=1

µ⊗n(dx1, . . . ,dxn)

Projection DPPs can be constructed from a set of

functions or vectors. Depending on the task at hand, an

adapted choice of projection kernel may provide strong theoretical

guarantees. In particular, tailored choices of projection DPPs proved

to be useful, e.g., in the context of Monte Carlo integration (Bar-

denet and Hardy, 2020; Gautier, Bardenet, and Valko, 2019b; Ma-

zoyer, Coeurjolly, and Amblard, 2019),19 but also for kernel quadra- 19 This is the purpose of Chapter 4.

ture or column subset selection (Belhadji, Bardenet, and Chainais,

2019, 2018). Moreover, as we will see in the subsequent chapters, pro-

jection DPPs can be sampled efficiently which allow to turn theory

into practice.
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Proposition 1.2.2 (Biorthogonal ensembles). For a fixed N ≥ 1, take This corresponds to Johansson (2006,

Proposition 2.11) where ψ ≡ ψ.linearly independent measurable functions φ1, . . . , φN , resp. ψ1, . . . , ψN ,

such that
∫
X|ψk(x)φ`(x)|µ(dx) <∞,∀1 ≤ k, ` ≤ N.

Consider (x1, . . . ,xN ) with probability distribution20 20 assuming the ratio is nonnegative with

nonzero denominator, e.g., ψ ≡ φ.

The determinant in the denominator
corresponds to the normalizing con-

stant and is given by the Cauchy-Binet

formula (1.C.2).

1

N !

det[φk(xn)]
N
k,n=1 det

[
ψk(xn)

]N
k,n=1

det
[∫

X ψk(z)φ`(z)µ(dz)
]N
k,`=1

µ⊗N (dx1, . . . ,dxN ). (1.2.1)

Then, {x1, . . . ,xN} defines a projection DPP(µ,K) with kernel21 21 The kernel K characterizes the
oblique projection operator onto

span{φ1, . . . , φN} along the ortho-

complement of span{ψ1, . . . , ψN}.K(x, y) =

N∑

k,`=1

φk(x)
[
A−1

]
k`
ψ`(y), (1.2.2)

where A =
[∫

X ψk(z)φ`(z)µ(dz)
]N
k,`=1

. We call {x1, . . . ,xN} a biorthog-

nal ensemble.

The prototypical example of a biorthogonal system of function on

X = [−π, π] is {φk(x) = cos(kx), ψk(x) = sin(kx)}k∈I where |I| = N .

Intuitively, this example might find interesting applications in signal

processing. In the case where ψk ≡ φk are orthogonal polynomials

w.r.t. µ, the corresponding DPP also refers to as an orthogonal polyno-

mial ensemble (OPE). They notably appear in random matrix theory,

where they characterize the eigenvalue distribution of some special ran-

dom matrices (König, 2004; König, O’Connell, and Roch, 2002). We

mention that, in Chapter 4, we consider the points of a particular mul-

tivariate OPE as random quadrature nodes in the context of Monte

Carlo integration. Moreover, OPEs are in turn a specific instance of

β-ensembles (β = 2). Sampling from β-ensembles is the purpose of

Chapter 5.

In the finite case, orthogonal projection kernels with

rank N can be constructed from a set of N linearly

independent vectors. Consider that each item m ∈ X is rep-

resented by a feature vector φm ∈ RN , so that the feature matrix

Φ ∈ RN×M is full row rank, i.e., rank Φ = N ≤ M . Then K =

ΦT(ΦΦT)−1Φ defines the orthogonal projection onto the feature space,

i.e., the vector space spanned by the rows Φ1:, . . . ,ΦN : ∈ RM .

Besides, since the orthogonal projection DPP(K) has almost surely

N points, the likelihood of a set S ⊂ X reads We mention that this geometrical for-
mulation was the main source of in-

spiration for the conception of our
approximate projection DPP sampler,
see Section 3.3.

P[X = S] = det
[
ΦT(ΦΦT)−1Φ

]
S
1|S|=N =

(det Φ:S)
2

det ΦΦT 1|S|=N , (1.2.3)

which interprets as

P[X = S] ∝ volume2{φm}m∈S1|S|=N . (1.2.4)

That is, the larger the volume spanned by the feature vectors {φm}m∈S
the more likely S appears as a realization of DPP(K).
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Some more general DPPs can be constructed as mix-

tures of projection DPPs.

Theorem 1.2.3 (DPPs as mixtures of projection DPPs). Let φ1, . . . , φN This corresponds to a variant of

Hough et al. (2009, Theorem 4.5.3).and ψ1, . . . , ψN be as in Proposition 1.2.2 with the additional assump-

tion
∫
X φk(z)ψ`(z)dz = δk`,∀1 ≤ k, ` ≤ N and 0 ≤ λ1, . . . , λN ≤ 1.

Consider the point process X generated as follows

1. Draw independent random variables Bk ∼ Ber(λk) for 1 ≤ k ≤ N .

2. Conditionally on the realization of the Bernoulli variables, sample

from the projection DPP(µ,KB) where

KB(x, y) =

N∑

k=1

Bkφk(x)ψk(y). (1.2.5)

Then, the process X defines a determinantal point process DPP(µ,K)

in the sense of Definition 1.1.3, with kernel

K(x, y) =

N∑

k=1

λkφk(x)ψk(y). (1.2.6)

In particular the number of points |X | is random with distribution22 22 It is called the Poisson Binomial dis-

tribution.

|X | law=
N∑

k=1

Bk. (1.2.7)

Proof. First, observe that the process X constructed in Theorem 1.2.3

is well defined. Conditionally on the Bernoullis, KB is a projection

kernel with rank equal to
∑N
k=1Bk, and Proposition 1.1.8 ensures that

DPP(µ,KB) defines in turn a projection DPP with
∑N
k=1Bk points,

hence (1.2.7). Then, to prove that X ∼ DPP(µ,K) with kernel (1.2.6),

we check that the correlation functions of X are indeed equal to

ρn(x1, . . . , xn) = det[K(xi, xj)]
N
i,j=1.

Let f be a suitable test function

E




∑

(x1,...,xn)
x1 6=···6=xn∈X

f(x1, . . . ,xn)




= E


E




∑

(x1,...,xn)
x1 6=···6=xn∈X

f(x1, . . . ,xn)

∣∣∣∣∣ B1, . . . , BN







= E
[∫

Xn
f(x1, . . . , xn) det[KB(xi, xj)]

n
i,j=1µ

⊗n(dx1, . . . ,dxn)

]
Using Cauchy-Binet formula (1.C.1).

= E



∫

Xn
f(x1, . . . , xn)

∑

S⊂{1,...,N}
|S|=n

det[Bjφj(xi)]
n
i=1,j∈S det[ψi(xj)]

n
j=1,i∈Sµ

⊗n(dx1, . . . ,dxn)




=

∫

Xn
f(x1, . . . , xn)

∑

S⊂{1,...,N}
|S|=n

E


∏

j∈S
Bj


det[φj(xi)]

n
i=1,j∈S det[ψi(xj)]

n
j=1,i∈Sµ

⊗n(dx1, . . . ,dxn)

https://en.wikipedia.org/wiki/Poisson_binomial_distribution


30 on sampling determinantal point processes

=

∫

Xn
f(x1, . . . , xn)

∑

S⊂{1,...,N}
|S|=n

∏

j∈S
λj det[φj(xi)]

n
i=1,j∈S det[ψi(xj)]

n
j=1,i∈Sµ

⊗n(dx1, . . . ,dxn)

=

∫

Xn
f(x1, . . . , xn)

∑

S⊂{1,...,N}
|S|=n

det[λjφj(xi)]
n
i=1,j∈S det[ψi(xj)]

n
j=1,i∈Sµ

⊗n(dx1, . . . ,dxn)

=

∫

Xn
f(x1, . . . , xn) det

[
N∑

n=1

λnφn(xi)ψn(xj)

]n

i,j=1

µ⊗n(dx1, . . . ,dxn). Using Cauchy-Binet formula (1.C.1).

The previous construction can be adapted to the case where K is

Hermitian. This allows us to create Hermitian DPPs with at most N

points from a set of N orthonormal functions.

Theorem 1.2.4 (Hermitian DPPs as mixtures of orthogonal projec-

tion DPPs). Let φ1, . . . , φN ∈ L2(µ) be orthonormal, that is This corresponds to a variant of
Hough et al. (2009, Theorem 4.5.3).∫

X
φk(z)φ`(z)dz = δk`,∀1 ≤ k, ` ≤ N, (1.2.8)

and take 0 ≤ λ1, . . . , λN ≤ 1. Consider the point process X generated

as follows

1. Draw independent random variables Bk ∼ Ber(λk) for 1 ≤ k ≤ N .

2. Conditionally on the realization of the Bernoulli variables, sample

from the orthogonal projection DPP(µ,KB) where

KB(x, y) =

N∑

k=1

Bkφk(x)φk(y). (1.2.9)

Then, according to Definition 1.1.3, the process X defines an orthogo-

nal determinantal point process DPP(µ,K) with kernel

K(x, y) =

N∑

k=1

λkφk(x)φk(y). (1.2.10)

In particular the number of points |X | is random with distribution23 23 It is called Poisson Binomial.

|X | law=
N∑

k=1

Bk (1.2.11)

Conversely, a kernel in the form of (1.2.10) defines the Hermitian

DPP(µ,K).

https://en.wikipedia.org/wiki/Poisson_binomial_distribution
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Appendices

We compile a list of results, which are found to be useful in the main

text or simply to fulfill the curiosity of the reader. For the results

which were simply stated in the literature or left as an exercise, we

strive to give new or at least more explicit proofs.

1.a Construction of fixed-sized point processes from

exchangeable variables

Given the joint probability density function of a random vector (x1, . . . ,xN )

which is invariant by permutation of its coordinates, the ordering of

the coordinates can be removed to consider {x1, . . . ,xN} as a point

process with exactly N points.

Proposition 1.A.1. Consider a random vector (x1, . . . ,xN ) whose This corresponds to Exercise 1.2.5 of

Hough et al. (2009).probability density uN (x1, . . . , xN ) w.r.t. µ⊗N is invariant to permuta-

tion of the coordinates. Then X = {x1, . . . ,xN} defines a point process

with correlation functions ρ1, . . . , ρN given by

ρn(x1, . . . , xn) =
N !

(N − n)!
un(x1, . . . , xn), (1.A.1)

where un(x1, . . . , xn) ,
∫
XN−n uN (x1, . . . , xN )µ⊗N−n(dxn+1, . . . ,dxN )

denotes the marginal probability density function of n points.

Proof. For 1 ≤ n ≤ N , denote

INn , {τ : {1, . . . , n} → {1, . . . , N} | τ is injective}, (1.A.2)

and derive the correlation function ρn from Definition 1.1.1

E

[ ∑

(x1,...,xn)
x1 6=···6=xn∈X

f(x1, . . . ,xn)

]
= E


 ∑

τ∈INn

f(xτ(1), . . . ,xτ(n))




=

∫

XN

∑

τ∈INn

f(xτ(1), . . . , xτ(n))uN (x1, . . . , xN )µ⊗N (dx1, . . . ,dxN ),

since un is invariant to permutation and the integration is over XN

=
∑

τ∈INn

∫

XN
f(xτ(1), . . . , xτ(n))uN (xτ(1), . . . , xτ(n), y1, . . . , yN−n)µ⊗N (dxτ(1), . . . ,dxτ(n),dy1, . . . ,dyN−n),

but xτ(1), . . . , xτ(n) are dummy variables, we can write

=
∑

τ∈INn

∫

Xn
f(x1, . . . , xn)

(∫

XN−n
uN (x1, . . . , xn, xn+1, . . . , xN )µ⊗N−n(dxn+1, . . . ,dxN )

)
µ⊗n(dx1, . . . ,dxn),

the dependence on τ vanishes and there are
∣∣INn

∣∣ = N !/(N − n)! such injective mappings

=

∫

Xn
f(x1, . . . , xn)

(
N !

(N − n)!

∫

XN−n
uN (x1, . . . , xN )µ⊗N−n(dxn+1, . . . ,dxN )

)

︸ ︷︷ ︸
=ρn(x1,...,xn)

µ⊗n(dx1, . . . ,dxn).
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In Proposition 1.1.8 we combine the previous result with the fol-

lowing lemma to validate the construction of projection DPPs. This

lemma will provide the determinantal formulation of the correlation

functions.

Lemma 1.A.2. For any rank-N projection kernel and 1 ≤ n ≤ N , This corresponds to Mehta (1990;

2004, Theorem 5.2.1; 5.1.4) where we

do not assume K Hermitian. Besides,
we give a different proof.

∫

X
det[K(xi, xj)]

n
i,j=1µ(dxn) = (N − (n− 1)) det[K(xi, xj)]

n−1
i,j=1,

(1.A.3)

which specializes to the finite setting as

|X|∑

xn=1

det[Kxi,xj ]
n
i,j=1 = (N − (n− 1)) det[Kxi,xj ]

n−1
i,j=1. (1.A.4)

Proof. We can apply Lemma 1.B.1 to express

∫

X
det[K(xi, xj)]

n
i,j=1µ(dxn) det

[
A U

V T c

]
= cdetA− V T adj(A)U .

=

∫

X
[K(xn, xn) detK(x1:n−1, x1:n−1)−K(xn, x1:n−1) adj(K(x1:n−1, x1:n−1))K(x1:n−1, xn)]µ(dxn)

= detK(x1:n−1, x1:n−1)

∫

X
K(xn, xn)µ(dxn)−

n−1∑

i,j=1

∫

X
K(xn, xi)[adjK(x1:n−1, x1:n−1)]ijK(xj , xn)µ(dxn)

= detK(x1:n−1, x1:n−1)

∫

X
K(xn, xn)µ(dxn)−

n−1∑

i,j=1

[adjK(x1:n−1, x1:n−1)]ij

∫

X
K(xj , xn)K(xn, xi)µ(dxn)

= detK(x1:n−1, x1:n−1)

∫

X
K(xn, xn)µ(dxn)− Tr

[
adj(K(x1:n−1, x1:n−1))

[∫

X
K(xi, xn)K(xn, xj)µ(dxn)

]n−1

i,j=1

]
,

and conclude using the fact that K is a rank-N projection kernel

∫

X
det[K(xi, xj)]

n
i,j=1µ(dxn)

= N detK(x1:n−1, x1:n−1)− Tr[adj(K(x1:n−1, x1:n−1))K(x1:n−1, x1:n−1)] By (1.1.13) and (1.1.12).

= N detK(x1:n−1, x1:n−1)− detK(x1:n−1, x1:n−1) Tr[In−1] By definition of the adjugate:
adj(A)A = det[A]I.

= (N − (n− 1)) det[K(xi, xj)]
n−1
i,j=1.

1.b Classical matrix results

First, we prove a classical and useful lemma to compute the determi-

nant of a block matrix [ A U
V C ] and give a slight variant24 when A is not 24 used in the proof of Lemma 1.A.2.

invertible and C ∈ R1×1. Then we state a crucial result characteriz-

ing sums of principal minors of a symmetric kernel. This result is the

main ingredient used in Appendix 1.D, where we derive some stability

properties of finite DPPs.

Lemma 1.B.1 (Determinant and Schur complement). Let A ∈ Cm×m,

C ∈ Cn×n, U ∈ Cm×n and V ∈ Cn×m.

https://en.wikipedia.org/wiki/Adjugate_matrix
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det

[
A U

V C

]
=





detA det(C − V A−1U), if A is invertible,

C detA− V adj(A)U, if A is not invertible and n = 1,

detC det(A− UC−1V ), if C is invertible.

(1.B.1)

Proof. If A is invertible, an LDU decomposition yields

[
A U

V C

]
=

[
Im 0

V A−1 In

][
A 0

0 C − V A−1U

][
Im A−1U

0 In

]
, (1.B.2)

and the first result follows. If A is not invertible and n = 1, we use the

fact that the set of invertible matrices is dense in the set of matrices.

More specifically, consider a sequence of invertible matrices such that

Mk −→
k→∞

A. For any k ≥ 1, Mk is invertible, thus the first result applies

and the adjugate reads adj(Mk) = M−1
k detMk. Then,

det

[
Mk U

V C

]
= detMk det

[
C − VM−1

k U
]

= C detMk − V adj(Mk)U.

Finally, the two sides of the above relation being continuous functions

in the entries of Mk, we can take the limit and the result follows.

Theorem 1.B.2 (Sum of principal minors). Consider a matrix K ∈
C|X|×|X|. For any A ⊂ B ⊂ X, we have

where
[
IA
]
ij

= 1i=j∈A.
∑

A⊂S⊂B
detKS = det

[
IAK + IA

c

(I +K)
]
B
. (1.B.3)

Proof. See, e.g., Kulesza and Taskar (2012, Theorem 2.1) or Borodin,

Okounkov, and Olshanski (2000, Proposition A.4).

1.c Cauchy-Binet formulas

The Cauchy-Binet formula and its extension to the continuous case will

prove to be useful in various situations,25 to identify the determinant 25 See, e.g., Proposition 1.1.8, Proposi-
tion 1.2.2, Theorem 1.2.3, Chapter 4.of the product of two matrices as a sum of products of determinants.

Proposition 1.C.1 (Cauchy-Binet formula for matrices).

Let 1 ≤ m ≤ n and consider two rectangular matrices A ∈ Cm×n and

B ∈ Cn×m. Then, the Cauchy-Binet formula reads The determinant of the product of two
rectangular matrices is the sum over

all square submatrices of the product
of determinants.detAB =

∑

S⊂{1,...,n}
|S|=m

detA:,S detBS,:, (1.C.1)

where A:,S = [Aij ]
m
i=1,j∈S and BS,: = [Bij ]

m
j=1,i∈S.

Proposition 1.C.2 (Generalized Cauchy-Binet formula). This corresponds to Johansson (2006,
Proposition 2.10).Let (X,B, µ) be a measurable space and consider some measurable func-

tions φ1, . . . , φN and ψ1, . . . , ψN , such that for all 1 ≤ i, j ≤ N ,

https://en.wikipedia.org/wiki/Adjugate_matrix
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∫
X|φi(x)ψj(x)|µ(dx) <∞. Then, we have

det

[∫

X
φi(x)ψj(x)µ(dx)

]N

i,j=1

=
1

N !

∫

XN
det[φi(xj)]

N
i,j=1 det[ψi(xj)]

N
i,j=1 µ

⊗N (dx1, . . . ,dxN )(1.C.2)

=
1

N !

∫

XN
det Φ(x1:N ) det Ψ(x1:N )µ⊗N (dx1, · · · ,dxN ). (1.C.3)

Φ(x1:N ) =

 φ1(x1) ... φN (x1)

...
...

φ1(xN ) ... φN (xN )


Ψ(x1:N ) =

 ψ1(x1) ... ψN (x1)

...
...

ψ1(xN ) ... ψN (xN )


.

1.d Stability properties of finite DPPs

In this section, the ground space X is assumed to be finite. We focus

on proving some of the stability properties of DPPs under different set

operations f(X ) or conditioning X |?. We first derive the inclusion-

exclusion principle to express quantities of the form P[A ⊂ X ,X ∩B = ∅]
for general point processes X . Then, we use Theorem 1.B.2 to spe-

cialize the inclusion-exclusion principle to finite DPPs, which reveals

the determinantal structure of the previous quantities. As a direct

application we can explicitly derive the likelihood P[X = A] dear to

people using the L-ensemble viewpoint and the inclusion probabilities

of the complementary process X \ X which proves to be a DPP with

correlation kernel I −K.

Notation For any A ⊂ X, we use the notation IA to denote the indi-

cator matrix of the set A, i.e., the M ×M diagonal matrix with ones

only at indices of A. More formally, For M = 4 and A = {2, 4}

IA =

[
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

]
.[

IA
]
ij
, 1i=j∈A, for all i, j ∈ X. (1.D.1)

Theorem 1.D.1 (Inclusion-exclusion principle for point processes).

Let X be finite and consider the point process X ⊂ X. For any disjoint

subsets A,B ⊂ X, the following holds

P[A ⊂ X ,X ∩B = ∅] =
∑

S⊂B
(−1)|S|P[A t S ⊂ X ]

= (−1)|A|
∑

A⊂S⊂AtB
(−1)|S|P[S ⊂ X ].

Proof. If P[A ⊂ X ] = 0 then P[A ⊂ X ,X ∩B = ∅] = 0, otherwise we

can write

P[A ⊂ X ,X ∩B = ∅]
= P[A ⊂ X ]P[X ∩B = ∅ | A ⊂ X ]

= P[A ⊂ X ]P

[⋂

b∈B
{b /∈ X} | A ⊂ X

]

= P[A ⊂ X ]

[
1− P

[⋃

b∈B
{b ∈ X} | A ⊂ X

]]

= P[A ⊂ X ]


1−

|B|∑

n=1

(−1)n−1
∑

S⊂B
|S|=n

P

[⋂

b∈S
{b ∈ X} | A ⊂ X

]

 By the inclusion-exclusion principle.
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= P[A ⊂ X ]


P[∅ ⊂ X | A ⊂ X ] +

|B|∑

n=1

(−1)n
∑

S⊂B
|S|=n

P[S ⊂ X | A ⊂ X ]




=
∑

S⊂B
(−1)|S|P[S ⊂ X , A ⊂ X ] =

∑

S⊂B
(−1)|S|P[A t S ⊂ X ] Since A and B are disjoint.

= (−1)|A|
∑

A⊂S⊂AtB
(−1)|S|P[S ⊂ X ].

Theorem 1.D.2 (Inclusion-exclusion principle for DPPs). Let X be Intuitively the inclusion-exclusion
principle combines what happens in

X ∼ DPP(K) and X c ∼ DPP(I −K),
that A is included and B ⊂ Ac is

excluded.

finite and consider X ∼ DPP(K). Then, for any disjoint subsets

A,B ⊂ X, we have

P[A ⊂ X ,X ∩B = ∅] = det
[
IAK + IA

c

(I −K)
]
AtB

. (1.D.2)

In particular,

P[A ⊂ X ,X ∩B = ∅] =





det[I −K]B det
[
K + K:B [I −K]−1

B KB:

]
A
, if P[X ∩B = ∅] > 0,

det[K]A det
[
I − (K−K:AK−1

A KA:)
]
B
, if P[A ⊂ X ] > 0.

(1.D.3)

Proof. This is a simple application of the inclusion-exclusion principle See also Launay, Galerne, and Desol-

neux (2018, Theorem 2) for a different

approach.
given in Theorem 1.D.1 combined with Theorem 1.B.2.

P[A ⊂ X ,X ∩B = ∅] = (−1)|A|
∑

A⊂S⊂AtB
(−1)|S|P[S ⊂ X ] By Theorem 1.D.1.

= (−1)|A|
∑

A⊂S⊂AtB
det[−K]S P[S ⊂ X ] = det KS .

= (−1)|A| det
[
IA(−K) + IA

c

(I −K)
]
AtB

By Theorem 1.B.2.

= det
[
IAK + IA

c

(I −K)
]
AtB

. (1.D.4)

As a consquence, we have P[X ∩B = ∅] = det[I −K]B and we recover

P[A ⊂ X ] = det KA. Hence, if P[X ∩B = ∅] > 0 then [I − K]B is

invertible and (1.D.4) becomes

P[A ⊂ X ,X ∩B = ∅] = det

[
KAA KAB

[I −K]BA [I −K]BB

]

= det[I −K]B det
[
KAA −KAB [I −K]−1

B [I −K]BA
]

Using Lemma 1.B.1.

= det[I −K]B det
[
KAA + KAB [I −K]−1

B KBA

]
. Since A,B are disjoint, IBA = 0.

With the same arguments, if P[A ⊂ X ] > 0 then KA is invertible and

(1.D.4) becomes

P[A ⊂ X ,X ∩B = ∅] = det

[
KAA KAB

[I −K]BA [I −K]BB

]

= det KA det
[
[I −K]BB − [I −K]BAK−1

A KAB

]
Using Lemma 1.B.1.

= det KA det
[
I −K + K:AK−1

A KA:

]
B
. Since A,B are disjoint, IBA = 0.
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Several important corollaries follow from this inclusion-exclusion

principle, like the expression of the joint probability densities of DPP(K),

and several stability properties of the DPP model.

By way of illustration, we use the margins to display the kernel of

the DPPs resulting from the different transformations applied to X ∼
DPP(K). The original correlation kernel K is shown in Figure 1.D.1,

and the correlation kernels resulting from the various transformation

of X are displayed on the same scale for comparison.
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(a) K.
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Figure 1.D.1: The two types of

kernel associated to X : (a) Cor-

relation kernel K, (b) Likelihood

kernel L = K(I −K)−1.

Corollary 1.D.3 (Likelihood of DPP(K)). Let X be finite and con- See also Kulesza and Taskar (2012,

Section 3.5) Soshnikov (2000, Equa-
tion 1.36), Daley and Vere-Jones

(2003, Exercise 5.4.7) or Macchi (1975,

Theorem 12).

sider X ∼ DPP(K). Then, for any A ⊂ X we have

P[X = A] = det
[
IAK + IA

c

(I −K)
]

= (−1)|A
c| det

[
K− IAc

]
. (1.D.5)

When P[X = ∅] > 0, we have

P[X = A] = det[I −K] det
[
K(I −K)−1

]
A
. (1.D.6)

Proof. For any A ⊂ X,

P[X = A] = P[A ⊂ X , Ac ∩ X = ∅]
= det

[
IAK + IA

c

(I −K)
]
AtAc

By Theorem 1.D.2.

= det
[
IAK + IA

c

(I −K)
]

(1.D.7)

= (−1)|A
c| det

[
IAK + IA

c

(K− I)
]

= (−1)|A
c| det

[
K− IAc

]
In particular P[X = ∅] = det[I −K].

If P[X = ∅] = det[I − K] > 0, then I − K is invertible and (1.D.7)

becomes

P[X = A] = det[I −K] det
[
IAK(I −K)−1 + IA

c
]

= det[I −K] det
[
K(I −K)−1

]
A
.
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Figure 1.D.2: X \ X .

Corollary 1.D.4 (Complementary of a DPP). Let X be finite and

consider X ∼ DPP(K). Then the complementary process

X c , X \ X ∼ DPP(I −K). (1.D.8)

Proof. Let us compute the inclusion probabilities of the complemen-

tary process. Theorem 1.D.2 yields for any A ⊂ X,

P[A ⊂ X c] = P[X ∩A = ∅]
= P[∅ ⊂ X ,X ∩A = ∅]

= det
[
I∅K + I∅

c

(I −K)
]
∅tA

= det[I −K]A.
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Figure 1.D.3: X | {1, 5} ⊂ X .

Corollary 1.D.5 (DPP conditioned on B ⊂ X ). Let X be finite, and

consider X ∼ DPP(K). Then, for any B ⊂ X such that P[B ⊂ X ] > 0,

the conditioned process

X | B ⊂ X ∼ DPP(IB + K−K:BK−1
B KB:). (1.D.9)

It could also be defined as the process DPP(K−K:BK−1
B KB:) defined

on Bc = X \B.

Proof. Let us compute the inclusion probabilities of this conditioned

process. Since we assumed P[B ⊂ X ] = det KB > 0, then KB is

invertible. For any A ⊂ X,

P[A ⊂ X | B ⊂ X ] =
P[A ⊂ X , B ⊂ X ]

P[B ⊂ X ]

=
P[(A ∩Bc) tB ⊂ X ]

P[B ⊂ X ]
=

det K(A∩Bc)tB
det KB

By Definition 1.1.4.

=
1

det KB
det

[
KA∩Bc KA∩Bc,B

KB,A∩Bc KB

]

= det
[
KA∩Bc −KA∩Bc,B [KB ]

−1
KB,A∩Bc

]
Using Lemma 1.B.1.

= det
[
K−K:B [KB ]

−1
KB:

]
A∩Bc

= det
[
IB + IB

c
[
K−K:B [KB ]

−1
KB:

]
IB

c
]
A

= det
[
IB + K−K:B [KB ]

−1
KB:

]
A
. Since [K−K:B [KB ]−1KB:]B = 0.
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Figure 1.D.4: X | {1, 5}∩X = ∅.

Corollary 1.D.6 (DPP conditioned on X ∩ B = ∅). Let X be fi-

nite, and consider X ∼ DPP(K). Then, for any B ⊂ X such that

P[X ∩B = ∅] > 0, we have

X | B ∩ X = ∅ ∼ DPP
(
IB

c
[
K + K:B [I −K]

−1
B KB:

]
IB

c
)
. (1.D.10)

It could also be defined as the process DPP(K + K:B [I −K]
−1
B KB:)

defined on Bc = X \B.
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Proof. Let us compute the inclusion probabilities of this conditioned

process. Since we assumed P[B ∩ X = ∅] = det[I − K]B > 0, then

[I −K]B is invertible. For any A ⊂ X,

P[A ⊂ X | B ∩ X = ∅] =
P[A ⊂ X , B ∩ X = ∅]

P[B ∩ X = ∅] 1A⊂Bc

=
P[A ∩Bc ⊂ X , B ∩ X = ∅]

P[B ∩ X = ∅] 1A⊂Bc

=
det
[
IA∩B

c

K + I(A∩Bc)c(I −K)
]
(A∩Bc)tB

det[I −K]B
1A⊂Bc By Theorem 1.D.2.

=
1

det[I −K]B
det

[
KA∩Bc KA∩Bc,B

KB,A∩Bc [I −K]B

]
1A⊂Bc Since IB,A∩Bc = 0.

= det
[
KA∩Bc + KA∩Bc,B [I −K]

−1
B KB,A∩Bc

]
1A⊂Bc Using Lemma 1.B.1.

= det
[
K + K:B [I −K]

−1
B KB:

]
A∩Bc

1A⊂Bc

= det
[
IB

c
[
K + K:B [I −K]

−1
B KB:

]
IB

c
]
A
.
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Figure 1.D.5: X ∪ {1, 5}.

Lemma 1.D.7 (DPP union a subset B). Let B ⊂ X and consider

X ∼ DPP(K). Then the union process

X ∪B ∼ DPP(IB + IB
c

KIB
c

). (1.D.11)

It could also be defined as the process DPP(KBc) defined on Bc = X\B.

Proof. Let us compute the inclusion probabilities of the union process

X ∪B. For A ⊂ X, we have

P[A ⊂ X ∪B] = P[A ∩Bc ⊂ X ]

= det KA∩Bc

= det
[
IB + IB

c

KIB
c
]
A
.
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Figure 1.D.6: X ∩ {1, 5}.

Lemma 1.D.8 (DPP restricted to a subset B). Let B ⊂ X and con-

sider X ∼ DPP(K). Then the restricted process

X ∩B ∼ DPP(IBKIB). (1.D.12)

It could also be defined as the process DPP(KB) defined on B ⊂ X.

Proof. Let us compute the inclusion probabilities of the restricted pro-

cess X ∩B. For A ⊂ X, we have

P[A ⊂ X ∩B] = P[A ⊂ X ] 1A⊂B

= detKA 1A⊂B

= det
[
IBKIB

]
A
.

We finally derive a non-symmetric DPP! by considering the sym-

metric difference between a DPP and a given set B.
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Corollary 1.D.9 (Symmetric difference with a subset B). Let X be See also Borodin, Okounkov, and Ol-

shanski (2000, Proposition A.8).finite, consider X ∼ DPP(K) and take B ⊂ X. Then the symmetric

difference process X∆B , (X ∪B)\(X ∩B) is a non-symmetric DPP,

X∆B ∼ DPP(IB
c

K + IB(I −K)). (1.D.13)
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Figure 1.D.7: X∆{1, 5}.

Proof. Let us compute the inclusion probabilities of this symmetric

difference process. For any A ⊂ X,

P[A ⊂ X∆B]

= P[A ∩Bc ⊂ X , (A ∩B) ∩ X = ∅]

= det
[
IA∩B

c

K + IA∩B(I −K)
]

(A∩Bc)t(A∩B)
By Theorem 1.D.2.

= det
[
IA∩B

c

K + IA∩B(I −K)
]
A

= det
[
IB

c

K + IB(I −K)
]
A
.

1.e Expectation and variance of linear statistics

The computation of expectations and variances of linear statistics∑
x∈X f(x) of a process X may appear to be useful in various con-

text. For example, when f corresponds to the indicator function of

a given region, we could express analytically the expectation and the

variance of a number of points falling in this region. In Chapter 4, we

notably consider approximating integrals
∫
f(x)µ(dx) with a Monte

Carlo estimator, which expresses as a linear statistic of the DPP. In

particular, the bias of an estimator is obtained by the computation of

its expectation, and its variance gives non-asymptotic guarantees on

the quality of the estimation.

Proposition 1.E.1.

Let f be a suitable test function and consider X ∼ DPP(µ,K).

Then, we have

E

[∑

x∈X
f(x)

]
=

∫

X
f(x)K(x, x)µ(dx) (1.E.1)

Var

[∑

x∈X
f(x)

]
=

∫

X
f(x)2K(x, x)µ(dx)−

∫

X2

f(x)f(y)K(x, y)K(y, x)µ(dx)µ(dy). (1.E.2)

If K is Hermitian, i.e., K(y, x) = K(x, y),

Var

[∑

x∈X
f(x)

]
=

∫

X2

f(x)2K(x, x)µ(dx)−
∫

X
f(x)f(y)|K(x, y)|2µ(dx)µ(dy). (1.E.3)

If K satisfies (1.1.12), in particular K(x, x) =
∫
XK(x, y)K(y, x)µ(dy),

Var

[∑

x∈X
f(x)

]
=

1

2

∫

X2

[f(x)− f(y)]2K(x, y)K(y, x)µ(dx)µ(dy). (1.E.4)
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Proof of Proposition 1.E.1. By definition of the first order correlation

function of DPP(µ,K) we have

E

[∑

x∈X
f(x)

]
=

∫

X
f(x)ρ1(x)µ(dx) =

∫

X
f(x)K(x, x)µ(dx). (1.E.5)

Then, for any point process X which admits ρ1 and ρ2 as its first two

correlation functions we have

Var

[∑

x∈X
f(x)

]
= E


 ∑

x6=y∈X
f(x)f(y) +

∑

x∈X
f(x)2


−

(
E

[∑

x∈X
f(x)

])2

=

∫

X2

f(x)f(y)ρ2(x, y)µ(dx)µ(dy) When ρ2(x, y) = ρ1(x)ρ1(y), e.g., for
the Poisson point process, we have
Var
[∑

x∈X f(x)
]

=
∫
X f(x)2ρ1(x)µ(dx)..

+

∫

X
f(x)2ρ1(x)µ(dx)−

(∫

X
f(x)ρ1(x)µ(dx)

)2

. (1.E.6)

Considering X ∼ DPP(µ,K),

(1.E.6) =

∫

X
f(x)f(y)[((((

(((K(x, x)K(y, y)−K(x, y)K(y, x)]µ(dx)µ(dy). ρ2(x, y) = det
[
K(x,x) K(x,y)
K(y,x) K(y,x)

]
.

+

∫

X
f(x)2K(x, x)µ(dx)−

��
���

���
���

�(∫

X
f(x)K(x, x)µ(dx)

)2

ρ1(x) = K(x, x).

=

∫

X
f(x)2K(x, x)µ(dx)−

∫

X2

f(x)f(y)K(x, y)K(y, x)µ(dx)µ(dy).

(1.E.7)

If the kernel K is Hermitian, i.e., K(y, x) = K(x, y),

(1.E.7) =

∫

X2

f(x)2K(x, x)µ(dx)−
∫

X
f(x)f(y)|K(x, y)|2µ(dx)µ(dy). For f ≥ 0, there is variance reduction

in the sense VarDPP < VarPoisson.

If the kernelK satisfies (1.1.12), thenK(x, x) =
∫
XK(x, y)K(y, x)µ(dy)

and we have

(1.E.7) =

∫

X
f(x)2

(∫

X
K(x, y)K(y, x)µ(dy)

)
µ(dx) (1.E.8)

−
∫

X2

f(x)f(y)K(x, y)K(y, x)µ(dx)µ(dy)

=

∫

X2

(
f(x)2 + f(y)2

2
K(x, y)K(y, x)− f(x)f(y)K(x, y)K(y, x)

)
µ(dx)µ(dy)

=
1

2

∫

X2

[f(x)− f(y)]2K(x, y)K(y, x)µ(dx)µ(dy).
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Exact sampling methods guarantee that the statistical properties of

the random cloud of points or the random subset of items generated by

the procedure match with the ones prescribed by target DPP model.

On the theoretical side, generating exact samples is usually used

as a way to illustrate or validate empirically some results but also to

make new conjectures. In this setting, the efficiency of the sampling

method may not be the primary concern but generating exact samples

is key for the theoretical garantees of the approach to hold.

From a more application oriented perspective, finite DPP samples

are used, e.g., in a recommendation system to make diverse recom-

mendations of items or to generate summaries of large text corpus,

see, e.g., Wilhelm et al. (2018); Warlop (2018, Chapter 4); Kulesza

and Taskar (2012). This requires efficient sampling methods scaling

both with the number of items expected and the size of dataset.

In the context of Monte Carlo integration, DPP samples can be

used to construct estimators of the integral of a function of interest,

cf. Chapter 4. In order to make this approach applicable, the need for

exact sampling procedures scaling with the number of sample points

and the ambient dimension becomes critical.

The original exact sampling procedure was devised by Hough et al.

(2006, Algorithm 18) to generate samples from orthogonal projection

DPPs. It can serve as a core routine for sampling Hermitian DPPs

given the eigendecomposition of the kernel.

In this chapter, we review the different exact sampling methods for

continuous and finite DPPs. We start with the case where X is con-

tinuous, e.g., [−1, 1]d,Rd, the unit circle, etc. Then, we specialize the

sampling schemes to the finite case which is the most prominent use-

case in the ML literature. As in the previous Section 1.2 we emphasize

the distinction between projection and general DPPs.

Note that we intentionally avoid to deal with the so-called k-DPPs,

which can be understood as DPPs conditioned to have exactly k points

(Kulesza and Taskar, 2011). The main reason is because k-DPPs are

not DPPs in general; the only intersection between DPPs and k-DPPs

is when the underlying kernel is a projection DPP and k is equal to

the rank of the kernel. The second reason comes from the fact that

sampling schemes for DPPs can be adapted to sample from k-DPPs.

We mention that, when the kernel is indeed of projection type, and

only in that case, sampling exactly from the corresponding k-DPP

amounts to performing the first k steps of the classical routines for

sampling the associated projection DPP.

A substantial part of the material presented in this chapter is avail- � dppy.readthedocs.io.
� github.com/guilgautier/DPPy.

Gautier et al. (2019)
able in the documentation� of the DPPy Python toolbox�, where the

text is illustrated with practical implementations using DPPy objects.

https://dppy.readthedocs.io
https://github.com/guilgautier/DPPy
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2.1 Sampling from projection DPPs

The motivation for this section is twofold. First, we present generic

sampling methods that give a unifying view on the potentially different

models they come from. Second, recalling that Hermitian DPPs can

be seen as a mixture of orthogonal projection DPPs, cf. Theorem 1.2.4,

sampling methods for orthogonal projection DPPs serve the more gen-

eral purpose of sampling Hermitian DPPs, cf. Section 2.2.

In this section we lay the ground material for projection DPP sam-

pling and emphasize the geometrical interpretation of the generic sam-

pling scheme for orthogonal projection DPPs.

2.1.1 The continuous case

Apart from some specific instances like the projection DPPs arising in

random matrix theory as the eigenvalues of random matrices, the usual

sampling scheme for continuous projection DPPs relies on the chain

rule. Each of the N points forming the resulting sample {x1, . . . ,xN}
is drawn sequential conditionally on the previously selected points so

that (x1, . . . ,xN ) has distribution (1.1.15). The fact that the order

the points were selected does not matter comes from the fact that

the joint distribution of the points is invariant by permutation of its

coordinates, i.e., the variables x1, . . . ,xN are exchangeable, see also

Proposition 1.1.8.

Projection DPP sampling can be done using the chain

rule. Given an oracle to evaluate the kernel K(x, y) and sample from

the successive conditional distributions.

Proposition 2.1.1 (Projection DPP sampling given the kernel).

To generate a sample {x1, . . . ,xN} from a projection DPP(µ,K), as

defined by Proposition 1.1.8, it is sufficient to sequentially sample

x1, . . . ,xN using the following chain rule scheme and forget the or-

der the points were selected.

For n = 1, sample x1 from

1

N
K(x, x)µ(dx). (2.1.1)

For 2 ≤ n ≤ N , sample xn | x1, . . . ,xn−1 from1 1 Computationally, updating of the in-
verse of the growing matrix involved

in (2.1.2) can be done using the LDU

factorization (1.B.2).
K(x, x)−K(x,x1:n−1)K(x1:n−1,x1:n−1)−1K(x1:n−1, x)

N − (n− 1)
µ(dx).

(2.1.2)

Proof. We build on the elements of the proof of the construction of

projection DPPs given in Proposition 1.1.8. Assuming the matrix

K(x1:n−1,x1:n−1) is indeed invertible we can use Lemma 1.B.1 to

rewrite (2.1.2) as

det

[
[K(xi,xj)]

n−1
i,j=1 K(x1:n−1, x)

K(x,x1:n−1) K(x, x)

]

(N − (n− 1)) det[K(xi,xj)]
n−1
i,j=1

µ(dx). (2.1.3)
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To prove the validity of the chain rule, it is enough to show that the

marginal (2.1.1) and conditional densities (2.1.2) (w.r.t. µ) are well de-

fined probability distributions, since the telescopic product (2.1.1) ×∏N
n=2 (2.1.3) = (1.1.15) yields (x1, . . . ,xN ) with the right distribu-

tion. The marginal (2.1.1) and conditional densities (2.1.3) are indeed

nonnegative by (1.1.18) and integrate to one by (1.A.3).

The sequential nature of the chain rule makes the ratio (2.1.3)

well defined. Indeed, after sampling x1 according to (2.1.1) we have

K(x1,x1) > 0, µ-almost surely. This makes x2 | x1 given by (2.1.2)

well defined. Thus, after sampling from this conditional, (x1,x2) has

joint density proportional to det[K(xi, xj)]
2
i,j=1. A simple recursion

shows that after the first n− 1 steps of the chain rule, (x1, . . . ,xn−1)

has joint density proportional to det[K(xi, xj)]
n−1
i,j=1 as in (1.1.16) so

that det[K(xi,xj)]
n−1
i,j=1 > 0, µ-almost surely, which makes (2.1.2) well

defined. At the end of the day, the chain rule is valid and generates

(x1, . . . ,xN ) with the right distribution (1.1.15).

Overall, the main difficulty when using the chain rule

for projection DPP sampling is to find efficient ways

to sample from the conditionals. Typically, the cost of sam-

pling from a projection DPP with N points in dimension d using the

chain rule is of order O(N3). The dependence in the dimension hides

in the evaluation of K(x, y) or the feature vector Φ(x) when K is Her-

mitian, but also in the sampling of the conditionals. As we will see

below, when the kernel is assumed Hermitian, there is a direct way

of bounding the density of the conditionals which suggests using re-

jection sampling. In the one-dimensional case, we note that there are

some specific orthogonal projection DPPs related to the eigenvalues of

random matrices that can be sampled without rejection sampling in

O(N2), cf. Chapter 5.

When the kernel K is assumed Hermitian, K becomes an orthogonal

projection kernel. The corresponding DPP(µ,K) is usually called an

orthogonal projection DPP, but it is also referred to as an elementary

DPP, e.g., in the machine learning literature (Kulesza and Taskar,

2012). The latter terminology highlights the special role they play.

From a constructive perspective they can be understood as the building

blocks of more general Hermitian DPPs.2 And in terms of sampling, 2 See Hermitian DPPs as mixtures of

orthogonal projection DPPs (Theo-
rem 1.2.4).

they carry an additional enjoyable geometrical interpretation which we

present in the remaining part of the section.

The chain rule applied to sample from orthogonal

projection DPP has a natural geometrical interpre-

tation. In this case, the kernel has a Gram formulation,3 thus 3 In the discrete case, we have K2 = K
and KH = K so that K = KHK, see

also Section 2.1.2.
kernel evaluations can be written as an inner product either in a

functional space K(x, y) = 〈ψ(x), ψ(y)〉L2(µ) where ψ(x) = K(x, ·)
or in a finite dimensional space K(x, y) = Φ(y)HΦ(y) with Φ(x) =

(φ1(x), . . . , φN (x)) where φn corresponds to the n-th eigenfunction of

K. In this setting, the conditionals (2.1.2) can be expressed as a ra-

tio of determinants of Gram matrices (2.1.3) which in turn reads as a
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squared distance. In the end the likelihood of the resulting configura-

tion of points {x1, . . . ,xN} is proportional to the squared volume of the

parallelotope spanned by the corresponding feature vectors. Proposi-

tion 2.1.2 treats the case K(x, y) = Φ(y)HΦ(x).

Proposition 2.1.2 (Orthogonal projection DPP sampling given the

eigendecomposition of the kernel). To generate a sample {x1, . . . ,xN}
from an orthogonal projection DPP(µ,K), with kernel given by

K(x, y) =

N∑

k=1

φk(x)φk(y), with

∫

X
φk(z)φ`(z)µ(dz) = δk`, (2.1.4)

the formulation (2.1.2) can be exploited further to express K(x, y) as

an inner product in CN : for all x, y ∈ X,

K(x, y) = Φ(y)HΦ(x), with Φ(x) , (φ1(x), . . . , φN (x))
T
. (2.1.5)

As a consequence, the joint distribution (1.1.15) of (x1, . . . ,xN ) reads4 4 The larger the volume of the parallelo-

tope spanned by Φ(x1), . . . ,Φ(xN ) ∈
CN , the more likely x1, . . . , xN co-

occur.

1

N !
det[Φ(xj)

HΦ(xi)]
N
i,j=1 µ

⊗N (dx1, . . . ,dxN ) (2.1.6)

=
1

N !
volume2{Φ(x1), . . . ,Φ(xN )} µ⊗N (dx1, . . . ,dxN ), (2.1.7)

and the chain rule takes the following form.

For n = 1, sample x1 from

1

N
K(x, x)µ(dx) =

1

N
‖Φ(x)‖2µ(dx). (2.1.8)

For 2 ≤ n ≤ N , sample xn | x1, . . . ,xn−1 from
Note that the numerator corresponds
to the incremental posterior variance

of a noise-free Gaussian process

model with kernel K (Rasmussen and
Williams, 2006), giving yet another

intuition for repulsion.

Observe that if Φ(x) ∈
span{Φ(x1), . . . ,Φ(xn−1)} the
point x will not be sampled since the

square distance (2.1.11) becomes zero.

K(x, x)−K(x1:n−1, x)HK(x1:n−1,x1:n−1)−1K(x1:n−1, x)

N − (n− 1)
µ(dx) (2.1.9)

=

det




[Φ(xj)
HΦ(xi)]

n−1
i,j=1 [Φ(x)HΦ(xi)]

n−1
i=1[

Φ(x)HΦ(xj)
]n−1

j=1
〈Φ(x)HΦ(x)〉




(N − (n− 1)) det[Φ(xj)HΦ(xi)]
n−1
i,j=1

µ(dx) (2.1.10)

=
distance2(Φ(x), span{Φ(x1), . . . ,Φ(xn−1)})

N − (n− 1)
µ(dx). (2.1.11)

The chain rule has a strong geometrical flavor reflected by the base×height

formula (2.1.7) = (2.1.8)×∏N
n=2 (2.1.11) corresponding to the sequen-

tial Gram-Schmidt orthogonalization of the feature vectors Φ(x1), . . . ,Φ(xN ).

As mentioned above, given the formulation (2.1.11) of the condi-

tional densities, the squared distance in the numerator can always be

bounded by K(x, x), i.e., the numerator of the marginal density. To

see this take (2.1.11) and write

distance2(Φ(x), span{Φ(x1), . . . ,Φ(xn−1)}) ≤ ‖Φ(x)‖2 = K(x, x).

(2.1.12)

This domination of the conditional densities by the marginal density

suggests deriving the chain rule with a rejection sampling mechanism

to sample each conditional in turn, with the same proposal distribu-

tion N−1K(x, x)µ(dx). We give more details on this perspective in

Chapter 4, where we use a special orthogonal projection DPP in the

context of Monte Carlo integration.
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2.1.2 The finite case

The main difference from the previous section is that the state space X
is now finite and sampling from the conditionals boils down to sampling

from a probability vector. We detail only the case where K is an

orthogonal projection kernel. For non-orthogonal projection kernels,

one can use Proposition 2.1.1 and update the conditionals (2.1.2) based

on the LDU factorization (1.B.2) of the matrix involved in (2.1.2). At

iteration n this update can be done in time O(n2).

Proposition 2.1.3. Let X = {1, . . . ,M}. To generate a sample

{j1, . . . , jN} from an orthogonal projection DPP(ω,K), one can use

the fact that the kernel factorizes as

K = KKH = KHK, i.e., Kij = Ki:K
H

j: = KH

:iK:j . (2.1.13)

As a consequence, the joint distribution (1.1.15) of (j1, . . . , jN ) reads5 5 The larger the volume of the paral-
lelotope spanned by K:j1 , . . . ,K:jN ∈
RM , the more likely j1, . . . , jN co-

occur.
1

N !
det
[
Kjk:K

H

j`:

]N
k,`=1

N∏

n=1

ωn =
1

N !
volume2[Kj1:, . . . ,KjN :]

N∏

n=1

ωn

1

N !
det[K:jk

HK:j` ]
N

k,`=1

N∏

n=1

ωn =
1

N !
volume2[K:j1 , . . . ,K:jN ]

N∏

n=1

ωn

(2.1.14)

and the chain rule takes the following form.

For n = 1, sample j1 from

1

N
Kjj ωj =

1

N
‖Kj:‖2 =

1

N
‖K:j‖2 ωj . (2.1.15)

For 2 ≤ n ≤ N , note Jn−1 , {j1, . . . , jn−1} and sample jn | j1, . . . , jn−1 Observe that if j ∈ {j1, . . . , jn−1}
it cannot be sampled again since the
square distance (2.1.16) becomes zero.

from

Kjj −KjJn−1K
−1
Jn−1

KH

jJn−1

N − (n− 1)
ωj =

distance2(Kj:, span{Kj1:, . . . ,KjN :})
N − (n− 1)

ωj

Kjj −KJn−1j
HK−1

Jn−1
KJn−1j

N − (n− 1)
ωj =

distance2(K:j , span{K:j1 , . . . ,K:jN })
N − (n− 1)

ωj .

(2.1.16)

When K is an orthogonal projection kernel with rank(K) = N ,

the eigenfactorization K = UUH (where U ∈ CM×N with UHU = IN )

provides another way to write the chain rule.

Proposition 2.1.4. Let X = {1, . . . ,M}. To generate a sample

{j1, . . . , jN} from an orthogonal projection DPP(ω,K), given the eigen-

decomposition

K = UUH =

N∑

n=1

U:nU
H

:n, with UH diag(ω)U = IN , (2.1.17)

As a consequence, the joint distribution (1.1.15) of (j1, . . . , jN ) reads6 6 The larger the volume of the parallelo-
tope spanned by Uj1:, . . . , UjN : ∈ RN ,
the more likely j1, . . . , jN co-occur.1

N !
det
[
Ujk:U

H

j`:

]N
k,`=1

N∏

n=1

ωn =
1

N !
volume2[Uj1:, . . . , UjN :]

N∏

n=1

ωn

(2.1.18)
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Algorithm 1: Generate a sample X from an orthogonal projection

DPP(K) with rank(K) = N , given a factor U such that K = UUH.

Require: Factor U of the decomposition K = UUH.

1: X,A = ∅, {0, . . . ,M − 1}
2: C = zeros(M, N)

3: d =




diagonal(K) if U = K

(‖U [0,:]‖2, . . . , ‖U [M-1,:]‖2) otherwise

4: for n in range(N) do

5: draw j from A with probability d[A]

6: X, A = X ∪ {j},A \ {j}

7: C[A, n] =





K[A, j] if U = K

U [A, :]U [j, :]H otherwise
− C[A, :n] C[j, :n]H

8: C[A, n] /=
√

d[j]

9: d[A] −= |C[A, n]|2
10: end for

11: return X #
∏

d[X] = P[X = X]

and the chain rule takes the following form.

For n = 1, sample j1 from

1

N
Kjj ωj =

1

N
‖Uj:‖2 =

1

N
‖U:j‖2 ωj . (2.1.19)

For 2 ≤ n ≤ N , note Jn−1 , {j1, . . . , jn−1} and sample jn | j1, . . . , jn−1 Observe that if j ∈ {j1, . . . , jn−1}
it cannot be sampled again since the

square distance (2.1.20) becomes zero.
from

Kjj −KjJn−1
K−1
Jn−1

KH

jJn−1

N − (n− 1)
ωj =

distance2(Uj:, span{Uj1:, . . . , UjN :})
N − (n− 1)

ωj

(2.1.20)

The geometrical perspective of the chain rule expressed in Propo-

sition 2.1.3, resp. Proposition 2.1.4, allows us to view orthogonal pro-

jection DPP sampling as a sequential Gram-Schmidt orthogonalization

of the rows of K, resp. the rows of the factor U in the decomposition

K = UUH. The matrix U usually corresponds to the matrix of eigen-

vectors of the correlation kernel, w.r.t. to nonzero eigenvalues. For a

practical implementation we refer to Algorithm 1 which can be under-

stood as a combination of the views of Gillenwater (2014, Algorithms

2), Poulson (2019, Algorithm 3) and Tremblay, Barthelme, and Am-

blard (2018, Algorithm 3).

However, when the size of the ground set |X| = M is too large but

the size of the samples is relatively small N � M ,7 the O(MN) cost 7 This is usually a practical case in rec-

ommendation systems where the cata-
log contains millions of items but only

a few of them are proposed to the user.

required by Algorithm 1 (see l.7-9) to update the size M vector de-

scribing the n-th conditional probabilities (2.1.20) becomes prohibitive.

This has motivated research to find alternative methods scaling sub-

linearly with the total number M of items. In the following we present

two very different works which go in this direction. The first, due to

Gillenwater et al. (2019), applies to orthogonal projection DPPs while

the second, due to Dereziński, Calandriello, and Valko (2019) applies

more generally to symmetric DPP(L).
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Sampling from the conditionals driving the chain rule

can be done through the exploration of a binary tree

with a logarithmic dependency in the total number of

items. Given the eigendecomposition K = UU T, where U ∈ RM×N ,

Gillenwater et al. (2019) proposed a binary tree structure storing ap-

propriate summary statistics of the eigenvectors to generate repeated

samples from orthogonal projection DPPs in time O(log(M)N4).

{1, . . . , 8}

{1, . . . , 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

{5, . . . , 8}

{5, 6}

{5} {6}

{7, 8}

{7} {8}

Figure 2.1: An example of the

binary tree structure used by

Gillenwater et al. (2019), with

M = 8. Each conditional is sam-

pled by traversing the tree from

the root down to a leaf.

First we present the structure of the tree, see also Figure 2.1. The

statistics that are stored at each node will become apparent as we

explain the main idea of Gillenwater et al. (2019). Each node of this

binary tree represents a set of items S ⊂ X. The root corresponds

to the ground set X while the leafs represent each item individually.

Starting from the root node, each node S is partitioned into two child

nodes C`, Cr
8 of approximately the same size until all child nodes 8 C` for left child and Cr for right child,

so that S = C` ∪ Cr.contain a single item.

Since we are in a finite setting, the conditional distribution of n-th

item to be drawn is a multinomial distribution with marginal proba-

bilities




1
N−(n−1) (Kjj −KjJn−1

K−1
Jn−1

KT

jJn−1
), if j /∈ Jn−1

0, otherwise.
(2.1.21)

The update of such quantities using Algorithm 1 (see l.7-9) has roughly

O(M(N + n)) time complexity.

To amortize this linear dependency on M , Gillenwater et al. (2019)

propose to traverse the precomputed binary tree from top to bottom

in the following way. At each node S, proceed to the left child C` with

probability9 9 At the root node S = X we have

(2.1.22) =

∑
j∈C`

Kjj−KjJK
−1
J

KT
jJ

N−(n−1)

If the path ends at j,

(2.1.22) ∝ Kjj .

∑
j∈C` Kjj −KjJn−1

K−1
Jn−1

KT

jJn−1∑
j∈S Kjj −KjJn−1

K−1
Jn−1

KT

jJn−1

(2.1.22)

or to the right child with complementary probability. This procedure

generates a valid sample of the n-th conditional distribution (2.1.21).

To see this, assume the exploration ends at the leaf associated to item

j, then the corresponding transition probabilities (2.1.22) telescope so

that the remaining term is indeed (2.1.21).

In fact, the crux of the approach is to use the precomputed summary

statistics available at node C` to evaluate the above sum as a whole
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instead of calculating each term individually to then sum them. For

simplicity, let’s drop the indexing of Jn−1. The required statistics will

appear naturally after rewriting the numerator of (2.1.22) as

∑

j∈C`
Kjj −KjJK−1

J KT

jJ

=
∑

j∈C`
Kjj −

∑

j∈C`
Tr
[
K−1
J KT

jJKjJ

]

=
∑

j∈C`
Kjj −

∑

j∈C`
Tr
[
K−1
J (Uj:U

T
:J)TUj:U

T
:J

]
Using the factorization K = UUT.

=
∑

j∈C`
Kjj − Tr


K−1

J UJ:


∑

j∈C`
Uj:

TUj:


UJ:

T




For any two square matrices Tr[AB] =
1T[A◦BT]1 where A◦B corresponds to
the entrywise product and 1 denotes
the vector with unit entries of the ap-
propriate dimension.

=
∑

j∈C`
Kjj − 1T


K−1

J ◦ UJ:


∑

j∈C`
Uj:

TUj:


UJ:

T


1. (2.1.23)

Now, at the n-th step of the chain rule, if the following quantities were

stored at node C`
10 10 which do not depend on J but

would cost respectively O(|C`|N) and

O(|C`|N2) to evaluate on the fly. For
the nodes at the top of the tree |C`| ≈
M , this would imply a linear depen-

dency on M , which is exactly what we
want to avoid!

∑

j∈C`
Kjj =

∑

j∈C`
‖Uj:‖2 and

∑

j∈C`
Uj:

TUj:, (2.1.24)

then the probability (2.1.22) of transiting from S to its left child C`

evaluates in O(nN2) using (2.1.23). Sampling from each of the N

conditional distributions, requires to perform log(M) such transitions.

In the end, given the eigendecompostion K = UU T, this tree-based

method generates samples in O(log(M)N4) time complexity and re-

quires O(MN2) space in memory to store all the summary statistics.

Observe that if we consider the row Uj: as a latent feature vec-

tor of item j, then the summary statistics (2.1.24) that are stored at

each node refer to the squared norm and the covariance matrix of the

corresponding feature vectors.

2.2 Exact sampling from non-projection DPPs

2.2.1 Finite DPPs defined by their correlation kernel

We survey different exact sampling methods for finite DPPs defined

by their correlation kernel K, which is not assumed to be of projection

type. The first ones by Poulson (2019) and Launay, Galerne, and

Desolneux (2018) are based on matrix factorization techniques and

apply generically, even to non-Hermitian correlation kernels.

First, let us try to be generic and consider a correlation kernel K

which is not assumed Hermitian nor of projection type.

From a probabilistic viewpoint, a first way of think-

ing the sampling of DPP(K) is to perform a sequential

bottom-up chain rule on sets, i.e., starting from the empty set,

each item 1, . . . , M is decided in turn to be added or excluded to form

the final sample X (Launay, Galerne, and Desolneux, 2018, Section
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2.2). This can be formalized as a top-down exploration of the binary

probability tree displayed in Figure 2.2.

Example 2.2.1. For example, take M = 5 and assume the sample

X = {1, 4} was generated. The corresponding chain rule steps

P[X = {1, 4}] = P[1 ∈ X ]

× P[2 /∈ X | 1 ∈ X ]

× P[3 /∈ X | 1 ∈ X , 2 /∈ X ]

× P[4 ∈ X | 1 ∈ X , {2, 3} ∩ X = ∅]
× P[5 /∈ X | {1, 4} ⊂ X , {2, 3} ∩ X = ∅],

(2.2.1)

are highlighted as a blue path in the binary tree of Figure 2.2.

∅

{�1}

{�1, �2}

...

∅X = {M}

...

{�1, 2}

...
...

{1}

{1, �2}

...

{1, 4}

...

{1, 2}

...
...

{1, . . . ,M} M ∈ X ?

...

2 ∈ X ?

1 ∈ X ?

Figure 2.2: Chain rule on sets
In practice, at the m-th step of the procedure one needs to compute

the incremental conditional probabilities of inclusion of item m given

the past history of the exploration. To do this, the inclusion-exclusion

principle given in Theorem 1.D.2 helps us to compute these quantities.

At the m-th step of the chain rule, given that the subset A was in-

cluded and B was excluded during the previous steps, the conditional

probability of adding item m reads

P[m ∈ X | A ⊂ X ,X ∩B = ∅] =
P[A ∪ {m} ⊂ X ,X ∩B = ∅]

P[A ⊂ X ,X ∩B = ∅]

=
det
[
K−K:B [K− I]−1

B KB:

]
A∪{m}

det
[
K−K:B [K− I]−1

B KB:

]
A

· Using (1.D.3) in Theorem 1.D.2.

Following Launay, Galerne, and Desolneux (2018, Corollary 3), we

note HB = K−K:B [K− I]−1
B KB:, so that

P[m ∈ X | A ⊂ X ,X ∩B = ∅]

Using Lemma 1.B.1.=
det[HB ]A∪{m}

det[HB ]A
= [HB ]mm − [HB ]mA[HB ]−1

A [HB ]Am. (2.2.2)
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However, it may become cumbersome and expensive to sequentially

update the previous quantities naively.

More pragmatically, Poulson (2019, Algorithm 1, Theorem 2) put

into correspondence the chain rule factorization of the likelihood P[X = X] =∣∣det[K− IXc

]
∣∣ of the resulting sample with a slight modification of the

sequential LU factorization procedure11 applied to K − IX
c

. More 11 See, e.g., Golub and Van Loan (2013,
Algorithm 3.2.1) for the classical LU

decomposition.
specifically, we can identify the factors coming from different expan-

sions of the likelihood. During the first m − 1 steps of the decision

process, if we note Am−1, Bm−1 the set of indices respectively included

and excluded of X , the likelihood of the sample factorizes as

P[X = X] = P[X ⊂ X , Xc ∩ X = ∅]
=
∏

x∈X
P
[
x ∈ X | Ax−1 ⊂ X , Bx−1 ∩ X = ∅

]

×
∏

y∈Xc

P
[
y /∈ X | Ay−1 ⊂ X , By−1 ∩ X = ∅

]
. (2.2.3)

Correspondingly, from the matrix factorization viewpoint, the LU de-

composition of K − IXc

allows us to write

P[X = X] = (−1)|X
c| det[K− IXc

] By Corollary 1.D.3.

= (−1)|X
c| det[LU ] = (−1)|X

c|
M∏

i=1

Uii Since U is upper triangular and L is
lower triangualar with unit diagonal.

=
∏

x∈X
Uxx

∏

y∈Xc

−Uyy. (2.2.4)

As shown by Poulson (2019, Theorem 2), the unblocked and unpiv-

oted version of the sequential LU decomposition of K−IXc

performed

by Algorithm 2, guarantees the identification12 of the terms in the 12 We invite the reader to check on Ex-
ample 2.2.1 that Algorithm 2 performs

the right incremental updates (2.2.2).
products composing (2.2.3) and (2.2.4), that is

Umm =





P
[
m ∈ X | Am−1 ⊂ X , Bm−1 ∩ X = ∅

]
, if m ∈ X,

−P
[
m /∈ X | Am−1 ⊂ X , Bm−1 ∩ X = ∅

]
if m /∈ X.

= P
[
m ∈ X | Am−1 ⊂ X , Bm−1 ∩ X = ∅

]
− 1

(2.2.5)

In the end, the likelihood (2.2.3) of the sample can be computed via

(2.2.4) as P[X = X] =
∏M
i=1|Uii|.

2
664

3
775A =

L\ diag

U

Figure 2.3: Inplace LU factor-

ization of K−IXc

= LU returned

by Algorithm 2.

We mention that the decision of updating of the pivot element C[m,

m] made at l.4-7 of Algorithm 2 makes the division by C[m, m] stable

with high probability. Hence the stability of the global procedure.

Indeed, after m− 1 steps, if the m-th pivot element is ε close to zero,

i.e., C[m, m] = P
[
m ∈ X | Am−1 ⊂ X , Bm−1 ∩ X = ∅

]
< ε then is

updated to C[m, m]−1 ≤ −1+ ε with probability at least 1− ε. Hence

the stability of the division by C[m, m] at l.9 of Algorithm 2.

When the kernel K is Hermitian, one can leverage the symmetries

to replace the LU factorization-based Algorithm 2 by an equivalent

LDLH version, see Algorithm 5.

In the end, the overall cost of generating one sample from DPP(K)

using Algorithm 2 is of order O(M3). To get a new sample, one
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Algorithm 2: Generate a sample X from a generic DPP(K) (LU ver-

sion) see also Poulson (2019, Algorithm 1) and Figures 2.2 and 2.3

Require: Correlation kernel K

1: C = K.copy()

2: X = ∅
3: for m in range(M) do

4: if rand() < C[m, m] # = probability (2.2.2) then

5: X = X ∪ {m}
6: else

7: C[m, m] −= 1

8: end if

9: C[m+1:, m] /= C[m, m]

10: C[m+1:, m+1:] −= C[m+1:, m] C[m, m+1:] # outer product

11: end for

12: return X, C # C = inplace LU factorization of K−IXc

, Figure 2.3

needs to restart the procedure from scratch as opposed to the spectral

method presented below.

We mention that Poulson (2019) provides a fully optimized C++

package13 collecting implementations of this generic method along with 13 gitlab.com/hodge star/catamari.

several variants. These variants include orthogonal projection DPPs

which is equivalent to Algorithm 1, Hermitian DPPs, see also Algo-

rithm 5, and DPPs with sparse correlation kernels K. We mention

that the inclusion decisions can also be taken by block (Poulson, 2019,

Algorithm 5), this permits semi-parallel updates of the factorization.

In fact, before the work of Poulson (2019), the connection between

sequential DPP sampling and matrix factorization techniques started

with Launay, Galerne, and Desolneux (2018, Section 2.2) where the

focus was on symmetric DPP(K), i.e., when 0 � K � I. On top

of that, the authors introduced a particular coupling which favors a

special blocked version of the sequential algorithm.

The inclusion decisions of the sequential procedure

can be focused onto a smaller subset of items than

the entire ground set. Launay, Galerne, and Desolneux (2018,

Section 3.2) derived the so-called sequential thinning procedure, by

coupling a target DPP with another process, such the samples of the

other process contain the DPP samples.

The thinning term comes from the fact that the decision of including

item m into the final sample X ∼ DPP(K) is conditioned on the

presence of m into an intermediate sample Y , {y1, . . . , yp} drawn

from a so-called dominating process, with the guarantee that X ⊂ Y.

Only the items m ∈ Y are decided to be included or not in X but

we stress that this sequential thinning procedure does not reduce to

subsampling X from Y directly.14 Indeed, because of the sequential 14 Dereziński, Calandriello, and Valko
(2019) adopt a different thinning

strategy to effectively draw DPP sam-

ples from a preselected subset. This
idea is presented in Section 2.2.2.

nature of the procedure, the inclusion decision of adding y1 to X and

then excluding y1 +1, . . . , y2−1 impacts the decision of adding y2 into

X , etc. These conditional information can be passed via block updates

https://gitlab.com/hodge_star/catamari
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of the underlying factors.

The dominating process used by Launay, Galerne, and Desolneux

(2018) is a Bernoulli process. Sampling from it is easy since it boils

down to drawing independent Bernoulli variables, but the correspond-

ing parameters

qm , P
[
m ∈ X | {1, . . . ,m− 1}︸ ︷︷ ︸

,B̃m−1

∩X = ∅
]

(2.2.6)

= Kmm −Km,B̃m−1
[K− I]−1

B̃m−1
KB̃m−1m

, (2.2.7)

are expensive to compute. In practice, Launay, Galerne, and Desol-

neux (2018) propose to evaluate the qms from the precomputation, in

O(M3), of the Cholesky decomposition of I −K = LLT:

qm = Kmm + KT

B̃m−1m
[I −K]−1

B̃m−1
KB̃m−1m

(2.2.8)

= Kmm +
∥∥∥[LB̃m−1

]−1KB̃m−1m

∥∥∥
2

. (2.2.9)

However, we point out that these computations are unnecessary since

qm = P[m ∈ X | {1, . . . ,m− 1} ∩ X = ∅],

can be identified directly from a factored form of K− I or K− I. To

see this, consider the generic case and the factorization K − I = LU .

Plugging X = ∅ into (2.2.4)-(2.2.5) yields the correspondence qm =

1 +Umm. From I −K = LLT, the identification is qm = 1−L2
mm. For

more details on the latter identification we refer to Appendix 2.B.

After drawing Y from the dominating process one can adapt the

sequential Algorithm 2 and concentrate the decision of adding an item

or updating the pivots only at indices m ∈ Y with probability

Umm
qm

=
P[m ∈ X |Am−1 ⊂ X , Bm−1 ∩ X = ∅]
P[m ∈ X |{1, . . . ,m− 1} ∩ X = ∅] · (2.2.10)

This can be seen as an importance sampling phase which compensates

the fact that m ∈ Y has not the correct distribution, see Algorithm 3.

Finally, we mention that the sequential thinning procedure, origi-

nally developed for symmetric DPPs, can be extended directly to the

general case using a block LU factorization.15 15 See, e.g., Golub and Van Loan (2013,
Section 3.2.11).

When the kernel K is Hermitian, we can leverage the

fact that Hermitian DPPs are mixtures of orthogonal

projection DPPs to generate repeated samples given

the spectral content of the kernel. This method is com-

monly called the spectral method since it requires the spectral/eigen

decomposition of the Hermitian kernel

K = UΛU H =

M∑

m=1

λmU:mU
H

:m , (2.2.11)

where UH diag(ω)U = IM and 0 ≤ λm ≤ 1. After this expensive

O(M3) preprocessing step, the spectral content of the kernel can be

reused to generate new samples. In fact, Theorem 1.2.4 already pro-

vides the two steps of this spectral method:
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Algorithm 3: Generate a sample X from a generic DPP(K) with the

sequential thinning method (unblocked way)

Require: Correlation kernel K and Bernoulli parameters q of the

dominating process

1: C = K.copy()

2: Y = {m; rand() < q[m]} # = draw from the dominating process

3: X = ∅
4: for m in range(M) do

5: if m ∈ Y and rand() < C[m, m]
q[m] # = importance sampling then

6: X = X ∪ {m}
7: else

8: C[m, m] −= 1

9: end if

10: C[m+1:, m] /= C[m, m]

11: C[m+1:, m+1:] −= C[m+1:, m] C[m, m+1:] # outer product

12: end for

13: return X, C

Algorithm 4: Generate a sample X from a Hermitian DPP(K) with

the spectral method (pseudo code)

Require: The eigendecomposition K = UΛUH =
∑M
m=1 λmu:mu

H
:m

1: Draw independently B1, . . . , BM where Bm ∼ Bernoulli(λm)

2: Set B , {1 ≤ m ≤M ; Bm = 1}.
3: Generate a sample X from the orthogonal projection DPP(K =

U:BU:B
H) using, e.g., Algorithm 1.

4: return X

1. Select a component of the mixture by drawing independent Bernoulli

variables with parameters the eigenvalues of K.

2. Generate a sample from the selected orthogonal projection DPP.

In the end, the spectral method generates samples in timeO(M(Tr K)2)

on average, where Tr K = E[|X |] =
∑M
m=1 λm. The procedure is sum-

marized as a pseudo code in Algorithm 4.

Contrary to the sequential factorization-based methods, where each

sample requires to restart the whole procedure from scratch, the spec-

tral method offers a practical alternative. Indeed, given the eigende-

composition of the kernel, both the eigenvalues and eigenvectors can

then be reused to generate new samples.

2.2.2 Finite DPPs defined by their likelihood kernel

In the Hermitian case, while the correlation kernel must satisfy two

positive semi-definite constraints, namely 0 � K � I, the likelihood

kernel needs only to be positive semi-definite, i.e., L � 0. In terms of

modelization, the L-ensemble viewpoint is thus easier to handle.

Since an L-ensemble is a DPP with correlation kernel
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K = L(I + L)−1, cf. Proposition 1.1.6, if one can afford the inversion

of I + L followed by the multiplication with L,16 sampling from an 16 If L � 0, we can write L(I + L)−1 =

I − (I + L)−1 and only the inversion
of I + L is required.

L-ensemble boils down to sample from DPP(K = L(I + L)−1). This

can be done using Algorithm 2 (Poulson, 2019, Algorithm 1) where

each sample costs O(M3). However, if one can afford the O(M3) cost

for the inversion and sampling, one can also use Algorithm 4 involving

the eigendecomposition of the underlying kernel.

If the eigendecomposition of the likelihood kernel is

available or if one can afford to compute it in O(M3),

L =

M∑

j=1

γjvjv
T

j = V ΓV T, (2.2.12)

the corresponding correlation kernel K = L(I + L)−1 reads

K =

M∑

j=1

γj
1 + γj

vjv
T

j = V Γ(I + Γ)−1V T, (2.2.13)

Then, using the spectral method, i.e., Algorithm 2, with λj =
γj

1+γj

and U = V , each sample can be generated in O(M(Tr K)2) on average,

where Tr K = E[|X |] =
∑M
j=1

γj
1+γj

.

When the likelihood kernel is constructed as a Gram

matrix L = ΦTΦ, where each item j ∈ {1, . . . , M } is represented by

a feature vector φj ∈ Rd, one can consider shifting the computational

overhead on the so-called dual kernel.17 This may become particularly 17 See Kulesza and Taskar (2012, Section

3.3).useful when the number of items M is too large to work efficiently with

L directly but the dimension d of the features is much smaller, i.e., d�
M . In this setting, the dual kernel is of size d×d which is much smaller

than the original likelihood kernel, and its eigendecomposition18 18 one may also consider computing the
singular value decomposition of Φ.

ΦΦT =

d∑

j=1

θjwjw
T

j = WΘW T, (2.2.14)

becomes cheaper to compute, in O(d3). Observing that the eigende-

composition of the likelihood kernel (2.2.12) and its dual relate in the

following way19 19 See, e.g., Kulesza and Taskar (2012,
Proposition 3.1).

L = ΦTWΘ−
1
2︸ ︷︷ ︸

V (M×d)

Θ︸︷︷︸
Γ(d×d)

(ΦTWΘ−
1
2 )T

︸ ︷︷ ︸
V T

, (2.2.15)

we can resort again to the spectral method, i.e., Algorithm 4, with

V = ΦTWΘ−
1
2 and Λ = Γ. The overall cost of the procedure can

be summarized as follows. The preprocessing cost inherent to the

computation of ΦΦT, its eigendecomposition and the reconstruction

of the eigenvectors of the likelihood kernel as ΦTWΘ−
1
2 is of order

O(Md2 + d3). This is much lower than the original O(M3) cost to

eigendecompose L in the first place. Then, using Algorithm 4 with

λj =
θj

1+θj
and U = ΦTWΘ−

1
2 allows us to generate each sample in

O(M(Tr K)2) on average, where Tr K = E[|X |] =
∑d
j=1

θj
1+θj

< d.
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We also mention that the tree-based method we chose to present in

the context of orthogonal projection DPPs, was originally developed by

Gillenwater et al. (2019) to generate samples from DPP(L = ΦTΦ) us-

ing the dual viewpoint. The tree structure converts the O(M(Tr K)2)

complexity of second phase of the spectral method intoO(log(M)(Tr K)4+

d) on average, where Tr K = E[|X |] =
∑d
j=1

θj
1+θj

< d. This method

becomes a viable alternative to the spectral method when the total

number of items M is large and when the dimensionality d of the

features and the expected sample size are very small compared to M .

Motivated by recommendation applications where it is desirable to

make repeated personalized propositions to potentially a very large

number of users, Gillenwater et al. (2019, Section 4) also introduce

a personalized variant of this tree-based sampling scheme. The ulti-

mate goal is to recycle the tree structure and preserve the logarithmic

dependency on the total number of items and in order to scale to po-

tentially very large number of users. In a few words, to achieve this,

instead of changing the reference weights ω of DPP(ω,L = ΦTΦ) for

each user which would result in a M dependency, the d features are

reweighted on a user basis. As a consequence, for each user, a full

eigendecomposition of the rescaled dual kernel of size d× d is required

but the same tree structure with summary statistics shared by each

user, allows us to incorporate user preferences at query time and yields

repeated samples in O(log(M)d2(Tr K)2 + d3).

Exact DPP sampling can also be performed by thin-

ning an easy-to-sample intermediate process with an-

other tailored DPP. In a stream of works, Dereziński (2019) and

Dereziński, Calandriello, and Valko (2019) developed a thinning proce-

dure to generate exact samples from DPP(L). The authors first draw

an intermediate sample Y ⊂ X from an easy-to-sample distribution.

The bias introduced at this first step is then corrected by downsam-

pling/thinning of Y with a specific DPP(L̃). This method allows us to

shift the computational cost of exact DPP sampling from a potentially

large ground set X = {1, . . . ,M} onto a smaller subset Y ⊂ X. The

choice of the intermediate sampling distribution relies on the connec-

tion between DPPs and so-called ridge leverage scores (RLS),20 which 20 See, e.g., Alaoui and Mahoney, 2015.

are commonly used for sampling in randomized linear algebra.

Definition 2.2.2 (Ridge leverage scores and effective dimension). Let

L be a positive semi-definite matrix, i.e., L � 0. For any λ > 0, the

λ-ridge leverage scores (λ-RLS) associated to L are defined as

τi(λ) ,
[
L(λI + L)−1

]
ii
. (2.2.16)

We denote deff(λ) ,
∑M
i=1 τi(λ) the corresponding effective dimension.

In fact, the 1-RLS naturally arise in our setting21 as the first order 21 See Proposition 1.1.6.

inclusion probabilities of X ∼ DPP(L),

τi(1) =
[
L(I + L)−1

]
ii

= Kii = P[i ∈ X ],
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and the corresponding effective dimension is exactly the expected num-

ber of points

deff(1) = Tr[K] = E[|X |].

Intuitively, if one samples n items y1, . . . , yn, proportionally to the

1-RLS, i.e., i.i.d. with replacement from X according to the probability

vector

1

deff
(τ1, . . . , τM ) =

1

Tr[K]
(K11, . . . ,KMM ), (2.2.17)

the random set Y = {y1, . . . , yn} (the duplicates have been removed)

is similar to a sample of DPP(diag(K)) where there is no correlation

between the points. Thus, if the resulting set Y is sufficiently large,

typically22 when n = O(Tr[K]
2
) where Tr[K] = E[|X |], it is likely 22 Dereziński, Calandriello, and Valko

(2019) used the concentration results

of Pemantle and Peres (2014).
that a proper sample X ∼ DPP(L) will be contained within Y. Then,

they showed that a carefully designed DPP(L̃) defined on Y allows us

to correct the bias of the i.i.d. sampling (2.2.17) and produce an exact

DPP sample. In other words, subsampling the intermediate realization

Y with DPP(L̃) re-injects the proper correlations between the items,

and offers substantial computational savings when |Y| �M .

In practice, exact calculation of the 1-RLS costs O(M3). For the

same cost, one could resort to the spectral method by computing the

eigendecomposition of L. The main contribution of Dereziński, Ca-

landriello, and Valko (2019) was to show that one can work with a

cheaper approximate version of the leverage scores, while maintaining

the exactness of the output samples.

Finally, the authors show that their method generates exact DPP

samples with high probability. They can guarantee that, with proba-

bility 1 − δ (δ > 0), the first sample can be generated (preprocessing

included) in time-complexity

O
(
M Tr[K]

6
log2

(M
δ

)
+ Tr[K]

9
log3

(M
δ

)
+ Tr[K]

3
log4

(M
δ

))
.

Then, repeated samples can be generated in

O
(

Tr[K]
6

log
(M
δ

)
+ log4

(M
δ

))
.

Looking at the above costs, the overall procedure excels in the regime

where the total number of items M is potentially very large and the

expected number of points E[|X |] = Tr[K] is comparatively very small.

Nonetheless, some parameters of the algorithm, like the level of approx-

imation of the leverage scores and the expected size of the intermediate

sample, may need to be tuned. Besides, sampling DPP(L̃) in the last

phase, relies on classical DPP samplers.

For the details of this intricate procedure, combining the estimation

of the 1-RLS, Nyström approximation of L, concentration inequalities,

DPP sampling and rejection sampling, we refer directly to Dereziński,

Calandriello, and Valko (2019). We mention that we have worked with

Daniele Calandriello23 to make the actual sampler available in DPPy. 23 github.com/danielecc

https://github.com/danielecc
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2.2.3 The continuous case

Comparatively to the finite case, much less efforts have been put in the

sampling phase of generic continuous DPPs. In particular, we are not

aware of any algorithm like Algorithm 2 which would apply generically

to any correlation kernel K. However, the challenges that arise in the

continuous case differ radically from the finite setting. In the following,

we consider only Hermitian DPPs, that is K(x, y) = K(y, x).

In the continuous case, some additional conditions on the kernel are

required24 to be able to write its eigendecomposition (1.1.23)K(x, y) = 24 See, e.g., Proposition 1.1.9.∑∞
k=1 λkφk(x)φk(y). Starting from this expansion, one could think of

generalizing the spectral procedure presented in Theorem 1.2.4. The

two main challenges are (a) the infinite (but countable) number of

eigenvalues, (b) the evaluation of the eigenfunctions.

Regarding challenge (a), drawing an infinite number of independent

Bernoulli variables with parameters the eigenvalues λ1, λ2, . . . , is not

feasible without further assumption on the decay of (λk)k≥1. However,

the condition (1.1.13) on the trace of K is equivalent to
∑
k≥0 λk <∞

and Borel-Cantelli’s lemma gives that only a finite number of Bernoulli

variables can realize as ones (almost surely). Thus, the initial phase

of the spectral algorithm can be performed by first generating

Mmax , max(k ≥ 1 | Bk = 1), with Bk ∼ Bernoulli(λk), (2.2.18)

followed by an independent sampling of Bernoulli variables with pa-

rameters λ1, . . . , λMmax . In fact, sampling from (2.2.18) in the first

place is not granted in practice, since it requires a full access to the infi-

nite sequence of eigenvalues, or for instance, a recursive relation that is

simple to propagate. We refer to Lavancier, Møller, and Rubak (2015,

Appendix D) for more details on this matter. A potential workaround

would be to set a particular criterion to truncate the series (??), but

the resulting samples would not be exact.

Challenge (b) requires an efficient way to evaluate the entries of

the projection kernel (1.2.5), selected at the first stage. The formula-

tion (??) is given on paper but an analytic and tractable form of the

eigenfunctions is really the bottleneck for practical implementation.

Sometimes, the eigenfunctions are special functions like orthogonal

polynomials. In the latter case, the orthogonal polynomials are linked

together through the so-called three-term recurrence relation, which

becomes a practical way of evaluating the eigenfunctions, see, e.g.,

Olver, Nadakuditi, and Trogdon (2015).

Again, these challenges are inherent to the spectral method itself,

and conceptual shifts must be initiated to make exact sampling more

practical. In this direction, we mention the work of Decreusefond,

Flint, and Low (2013), where the authors adapt a perfect simulation

scheme, which seemingly requires only access to the trace of the like-

lihood kernel.

All the constraints and limitations arising in both the finite and

the continuous cases, have motivated research towards approximate

methods.
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Appendices

2.a Specialization of the sequential sampler for Her-

mitian DPPs

We saw that Algorithm 2 (Poulson, 2019, Algorithm 1) provides a

compact sequential procedure to sample from a generic DPP(K). It

reveals the intrinsic link between DPP sampling and the LU factoriza-

tion method. However, when the kernel is Hermitian, symmetries can

be exploited to replace the sequential LU factorization-based sampler

by the sequential LDLH factorization-based method.25 given in Algo- 25 See, e.g., Golub and Van Loan (2013,

Section 4.1.2) for the original LDLH

factorization procedure.
rithm 5. The latter generates exact samples distributed according to

an Hermitian DPP(K).

Algorithm 5: Generate a sample X from a Hermitian DPP(K), LDLH

variant of Algorithm 2

Require: Correlation kernel K

1: C = K.copy()

2: X = ∅
3: v = zeros(M)

4: for m in range(M) do

5: v[:m] = C[m, :m] * diagonal(C[:m, :m])

6: C[m, m] −= C[m, :m] v[:m]H

7: if rand() < C[m, m] # = probability (2.2.2) then

8: X = X ∪ {m}
9: else

10: C[m, m] −= 1

11: end if

12: C[m+1:, m] −= C[m+1:, :m] v[:m]H

13: C[m + 1:, m] /= C[m, m]

14: end for

15: return X, C # C = inplace LDLH factorization of K − IXc

2.b A note on the sequential thinning procedure

Orignally developped for sampling from symmetric DPPs, the sequen-

tial thinning procedure can be easily extended to Hermitian DPPs and

even generic DPP(K).

In particular, we want to point out that the computations of the

Bernoulli parameters driving the dominating process can be deduced

directly from a factored form of K − I or I −K with no extra com-

putations contrary to the original proposition of Launay, Galerne, and

Desolneux (2018, Algorithm 3 1.). We recall that a sample Y from the

dominating process is easy to generate: each item m ∈ X is decided to

be selected, independently, with probabilitity

qm , P
[
m ∈ X | {1, . . . ,m− 1}︸ ︷︷ ︸

,Bm−1

∩X = ∅
]
. (2.B.1)
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In the original setting of Launay, Galerne, and Desolneux (2018)

where K is real symmetric, the Bernoulli parameters (2.B.1) are de-

rived using the Cholesky decomposition of I−K, that is precomputed

in advance. More specifically, given the factorization I − K = LLT,

Launay, Galerne, and Desolneux (2018, Algorithm 3 1.) compute

qm = Kmm + KT

Bm−1m[I −K]−1
Bm−1

KBm−1m (2.B.2)

= Kmm +
∥∥[LBm−1 ]−1KBm−1m

∥∥2
. (2.B.3)

In fact, these computations are unnecessary. To see this, consider

for simplicity the case 0 � K ≺ I. For any m ≥ 1, we can express

P[{1, . . . ,m} ∩ X = ∅] in two different ways. First, using the chain rule

P[{1, . . . ,m} ∩ X = ∅] =

m∏

i=1

P
[
i /∈ X | Bi−1 ∩ X = ∅

]

=

m∏

i=1

1− P[i ∈ X | Bi−1 ∩ X = ∅]

=

m∏

i=1

1− (Kii −Ki,Bi−1
[K− I]−1

Bi−1
KBi−1i︸ ︷︷ ︸

=qi

). Using (1.D.10).

From the matrix factorization view point, given either the LU, LDLH

or Cholesky decomposition of I −K, we obtain

P[{1, . . . ,m} ∩ X = ∅] = det[I −K]{1,...,m} By Theorem 1.D.2.

The second equality follows from the
Cauchy-Binet formula (1.C.1) where
we exploit the triangular structure of
U and L and the fact that L has unit
diagonal in case of LU and LDLH.

= det[LU ]{1,...,m}

= detL{1,...,m}U{1,...,m}

=

m∏

i=1

Uii

= det[LDLH]{1,...,m}

= detD{1,...,m}

=

m∏

i=1

Dii

= det[LLH]{1,...,m}

=
∣∣detL{1,...,m}

∣∣2

=

m∏

i=1

|Lii|2

Since this holds for any 1 ≤ m ≤ M , we can recursively identify the

terms of each product, so that 1 − qm = Umm = Dmm = |Lmm|2.

Finally, we can summarize the different cases in the following way. For

a generic (valid) correlation kernel K:

• given the U factor of the decomposition K−I = LU or I−K = LU ,

we have qm = 1− |Umm|.

• If K is Hermitian, i.e., 0 � K � I, we can focus only on the diagonal

factor D of the decomposition K − I = LDLH or I −K = LDLH,

and take qm = 1− |Dmm|.

• If 0 � K ≺ I, we can consider the L factor of the Cholesky decom-

position I −K = LLH and take qm = 1− |Lmm|2.

Finally, note that, starting from K, it is less expensive to compute

with K− I than I −K.
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In this chapter, we consider methods generating approximate sam-

ples from DPPs. These methods can be clustered into two categories.

In the first class, the approximation is made on the kernel defining

the underlying DPP either using random projections or low-rank fac-

torization techniques. The second class relies on Monte Carlo Markov

chain (MCMC) methods. Our contribution,1 presented in Section 3.3,

1 G. Gautier, R. Bardenet, and M.

Valko. 2017. Zonotope hit-and-

run for efficient sampling from pro-
jection DPPs. In International Con-

ference on Machine Learning (ICML).

arXiv:1705.10498.
� github.com/guilgautier/DPPy

falls within the second cluster and it is the main focus of the chapter.

More details on approximate DPP sampling can also be found in the

Ph.D. dissertation of Affandi (2014).

3.1 Kernel approximation methods

Random projection methods Kulesza and Taskar (2012) and Gillen-

water (2014, Section 3.4) are usually applied in the setting where the

likelihood kernel is defined as a Gram matrix L = ΦTΦ, where Φ is

a feature matrix of size d ×M . When d � M , we have seen in Sec-

tion 2.2.2 that working with the so-called “dual” kernel ΦΦT can be

an effective approach to sample exactly from DPP(L). However, when

the number of features d becomes too large, typically of the order or

greater than M , the computational gain of working with the dual ker-

nel is lost. This is where random projection methods are useful, they

allow to reduce feature dimension guaranteeing that inner products,

and thus volumes are preserved within a good approximation.

Another kernel approximation technique used in practice is called

the Nyström method, (Belabbas and Wolfe, 2009; Affandi et al., 2013)

It involves selecting a subset of items to construct a low-rank projection

approximation of the likelihood kernel L.

3.2 Monte Carlo Markov chain methods

While fast Markov-chain based exact algorithms exist for specific DPPs

such as uniform spanning trees (Aldous, 1990; Propp and Wilson,

1998), generic DPPs have so far been addressed with approximate

MCMC algorithms (Belabbas and Wolfe, 2009; Kang, 2013; Rebes-

chini and Karbasi, 2015; Anari, Gharan, and Rezaei, 2016; Li, Jegelka,

and Sra, 2016a, 2016b).

In all these works, transitions are allowed only between states S and

S′ that differ by at most one element, that is |S∆S′| ∈ {0, 1}. In the

following, we may name transitions:

• S → S′ = S ∪ {j} as “add” moves,

• S → S′ = S \ {i} as “delete” moves,

• S → S′ = (S \ {i}) ∪ {j} as called “exchange” or “swap” moves.

http://proceedings.mlr.press/v70/gautier17a
http://proceedings.mlr.press/v70/gautier17a
http://proceedings.mlr.press/v70/gautier17a
http://arxiv.org/abs/1705.10498
https://github.com/guilgautier/DPPy
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In practice, transitions are made using a simple Metropolis kernel,

with DPP(L) as invariant measure. More precisely, the transition

S → S′ is accepted with probability proportional to

min

(
1,

det LS′

det LS

)
(3.2.1)

Seemingly naive, these natural MCMC methods have polynomial

bounds on their mixing rates with arbitrary DPPs as their limit-

ing measure; see Anari, Gharan, and Rezaei (2016) for cardinality-

constrained DPPs, and Li, Jegelka, and Sra (2016a, 2016b) for the

general case.

We mention a recent result devised by Hermon and Salez (2019); the

exchange random walk applied to generate samples from a projection

DPP(K) with a kernel of rank N has a mixing time of order

O
(
MN log

(
log

(
1

det KS0

)))
, (3.2.2)

where S0 is the initial state of the chain. Comparatively to previous

approaches the authors bring an additional log term, which represents

an important improvement guarding against a bad initialization.

However, the mixing time of these chains does not reflect entirely

the overall cost of the algorithm. Indeed, the mixing time characterizes

the number of iterations needed to reach ε-convergence to the limiting

distribution and does not take into account the cost of computing the

acceptance ratio (3.2.1) at each step. A naive computation of this ratio

of determinants costs O(N3) but smarter updates can be performed

using, e.g., Lemma 1.B.1 or tight lower/upper bounds (Li, Sra, and

Jegelka, 2016).

3.3 The zonotope viewpoint on finite projection DPPs

Our contribution is the construction of a fast-mixing Markov chain

with limiting distribution a given projection DPP. The main assump-

tion is that we require the feature matrix Φ ∈ RN×M to be full row-

rank, that is rank(Φ) = N . In that case, the (orthogonal) projection

DPP(K) with kernel

K = ΦT(ΦΦT)
−1

Φ, (3.3.1)

is well defined. In particular, as we saw in Section 1.1.8 the likelihood

of DPP(K) reads

P[X = B] =
(det Φ:B)

2

det ΦΦT 1|B|=N . (3.3.2)

In other words, this projection DPP assigns positive probability to sets

B ⊂ X made of exactly N items, such that the corresponding feature

vectors are linearly independent: {Φ:m}m∈B form a basis of RN .

Our goal is now to design a Markov chain on

B ,
{
B ⊂ X ; |B| = N, {Φ:j}j∈B are independent

}
, (3.3.3)
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where the elements B ∈ B are naturally called “bases”, in the matroid

literature.2 2 For more details on the connections
between matroids and DPPs we refer

to Lyons (2002).
The state space B of the chain can be described geometrically as

the collection of sets of N vectors of RN spanning a non-zero vol-

ume. Hence, each sample B ∈ B of DPP(K) is associated to a non-

degenerate parallelotope spanned by the corresponding feature vectors

{Φj}j∈B . Figure 3.1 illustrates the situation in the case where N = 2.

P[ , ✓ X ]
� P[ , ✓ X ] K( , )

Figure 3.1: For N = 2,

each item is associated to a

two-dimensional feature vector.

Samples of DPP(K) can be rep-

resented by a parallelogram, and

have likelihood (3.3.2) propor-

tional to the squared area.

We exploit further this geometrical embedding to construct a Markov

Chain which explores better the state space B by allowing bigger jumps

than the previous exchange walk, cf. Section 3.2, which performs only

very local moves. To do this, we introduce the notion of zonotope.

Definition 3.3.1 (Zonotope). The zonotope associated to Φ ∈ RN×M

is defined as

Z(Φ) , Φ[0, 1]M =

{
x ∈ RN | x =

M∑

m=1

yjΦj , with 0 ≤ yj ≤ 1

}
.

It can be identified as the affine transformation of the unit hypercube

[0, 1]M by Φ. In particular, Z(Φ) is a convex polytope, see Figure 3.2.

Figure 3.2: Z(Φ) where

Φ =

[
1 2 0 −1

0 1 2 1

]
.

Under the row-rank assumption of Φ, the zonotope Z(Φ) charac-

terizes a N -dimensional volume of RN . Moreover, each sample B ∈ B
can be represented by the parallelotope Z(Φ:B), as in Figure 3.1.

Linear programming gives a way to locate the points

of the zonotope Z (Φ) in regions shaped by the paral-

lelotopes Z (Φ:B ), representing the support of DPP(K).

Combining a continuous Markov chain on the zonotope Z(Φ) with

linear programing, we can explore the finite support of the target

DPP(ΦT(ΦΦT)
−1

Φ) more freely than the exchange random walk. The

crux of our method relies on the proof of the following theorem, in-

volving linear programming.

Proposition 3.3.2 (Dyer and Frieze, 1994, Theorem 3). The zonotope

Z(Φ) can be partitioned in regions shaped as Z(Φ:B), for each B ∈ B.

In particular,

volume(Z(Φ)) =
∑

B∈B
volume(Z(Φ:B)) =

∑

B∈B
|det Φ:B |. (3.3.4)

Proof. First, for any B ∈ B, Z(Φ:B) = Φ:B [0, 1]N corresponds to the

N -dimensional parallelotope spanned by {Φ:b}b∈B , so that

volume(Z(Φ:B)) =
√

det ΦT

:BΦ:B = |det Φ:B | > 0.

The rest of the proof given by Dyer and Frieze (1994) is not crystal

clear; for this reason we can only give the main ideas.

For any x ∈ Z(Φ), Dyer and Frieze (1994) consider the following

linear program (LP),

miny cTy

s.t. Φy = x

0 ≤ y ≤ 1

Px(Φ, c)
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where the linear objective c /∈ span ΦT. We propose to consider the

corresponding standard formulation

miny,z [cT 0]

[
y

z

]
,

s.t.

[
Φ 0N,M

IM IM

][
y

z

]
=

[
x

1

]
,

y ≥ 0, z ≥ 0,

(3.3.5)

to give more details on the analysis of Px(Φ, c). Solving (3.3.5) using

the simplex method, see, e.g., Luenberger and Ye (2016, Chapter 3),

allows us to focus on the so-called optimal basic solution vector (y∗, z∗),

which has exactly M +N nonzero components. A first observation is

that Bx , Y]0,1[ = {i | 0 < y∗i < 1} has cardinality N .3 Indeed, if 3 Note that N = rank Φ also corre-
sponds to the cardinality of the sam-

ples of our projection DPP(K). The

set Bx will actually materialize the
DPP samples, see also Algorithm 7.

we further denote Y0 = {i | y∗i = 0}, Y1 = {i | y∗i = 1} and use

the same notations for z∗, the number of nonzero components of the

optimal solution vector (y∗, z∗ = 1− y∗) reads

��M +N =
∣∣Y]0,1[

∣∣+ | Z]0,1[︸ ︷︷ ︸
=Y]0,1[

|+ |Y1|+ | Z1︸︷︷︸
=Y0

| = |Bx|+��M.

Next we prove that Bx ∈ B, by showing that det Φ:Bx 6= 0. To see

this, we first highlight the columns of the constraint matrix of (3.3.5)

associated to basic and non-basic variables of (y∗, 1− y∗)



Φ:Bx Φ:Y1
Φ:Y0

0N 0N,|Y1| 0N,|Y0|
IN 0 0 IN 0 0

0 I|Y1| 0 0 I|Y1| 0

0 0 I|Y0| 0 0 I|Y0|


,

and note

B =




Φ:Bx 0N Φ:Y1
0N,|Y0|

IN

0|Y1|,N IM

0|Y0|,N


 and N =




Φ:Y0
0N,|Y1|

0N,|Y0| 0N,|Y1|
0|Y1|,|Y0| I|Y1|
I|Y0| 0|Y0|,|Y1|


.

Since the matrix B is associated to basic variables, it is invertible and

Lemma 1.B.1 gives

det B = det IM × det
(
Φ:Bx − [0N ,Φ:Y1

, 0N,|Y0|]I
−1
M [IN , 0N,|Y1|, 0N,|Y0|]

T

︸ ︷︷ ︸
=0N

)

= det Φ:Bx 6= 0.

This shows that, solving Px(Φ, c) allows to locate any point x ∈ Z(Φ),

as falling inside the region4 4 For example, in Figure 3.2, the
green region can be described as
Φ(0, 0, 1, 0)T + Z(Φ:{2,4}).x ∈ Φy∗ + Z(Φ:Bx), (3.3.6)

where 0 < y∗Bx < 1, and y∗ ∈ {0, 1}M such that y∗
i
,





0, if i ∈ Bx,
y∗i , if i /∈ Bx.

Besides, the optimality conditions of the standard formulation (3.3.5)
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read

[cTY0
, 01,|Y1|]− [cTBx , 01,N , c

T

Y1
, 01,|Y1|]B

−1N ≥ 0

⇐⇒




cTY0
− cTBxΦ

−1
:Bx

Φ:Y0 ≥ 0, and

cTY1
− cTBxΦ

−1
:Bx

Φ:Y1
≤ 0.

(3.3.7)

In particular, consider x′ that belongs to the same region (3.3.6) as x,

i.e., x′ ∈ Φy∗ +Z(Φ:Bx), and such that the optimal solution y′ of Px′

satisfies 0 < y′∗Bx < 1. Then Px′ and Px share the same optimality

conditions (3.3.7), so that Bx′ = Bx and y′∗ = y∗.

More generally, Dyer and Frieze (1994) show that any B ∈ B is

associated to a unique region of Z(Φ) described as a potentially shifted

Z(Φ:B). To see this, consider η(B) ∈ {0, 1}M such that η(B)B = 0.

Then, solving Px(Φ, c) for all the points x ∈ Z(Φ) falling strictly

(0 < xB < 1) in the region

Φη(B) + Z(Φ:B),

yields Bx = B and ξ(x) = η(B), so that η(B) is unique. Finally, for a

given linear objective c /∈ span ΦT, solving Px(Φ, c) for all the points

x ∈ Z(Φ) provides the decomposition Z(Φ) =
⋃
x∈Z(Φ){Φξ(x) + Z(Φ:Bx)},

which in turn gives rise to the partition

Z(Φ) =
⊔

B∈B
{Φη(B) + Z(Φ:B)}.

We note that the tiling of Z(Φ) is not unique, indeed different lin-

ear objectives c ∈ RM may give different tilings, see Figure 3.3 for an

illustration. An arbitrary c gives a valid tiling, as long as there are

no ties when solving Px(Φ, c). Dyer and Frieze (1994) use a nonlinear

mathematical trick to fix c. In practice, we generate a random Gaus-

sian vector c once and for all, which makes sure no ties appear during

the execution, with probability one.

Figure 3.3: Different tilings ob-

tained by solving Px(Φ, c) with

different linear objectives.

More specifically, the linear programming arguments used by Dyer

and Frieze (1994) to prove this result were our main inspiration for

devising our sampling strategy.

Remark 3.3.3. We propose to interpret the proof of Proposition 3.3.2

as a volume sampling algorithm: if one manages to sample an x uni-

formly on Z(Φ) and extract the corresponding basis B = Bx by solving

Px(Φ, c), then B is drawn with probability proportional to volume(Φ:B) =

|det Φ:B |.
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Remark 3.3.3 is close to what we want, but there is missing square

exponent, compared to (3.3.2). In the rest of this section, we explain

how to efficiently sample x uniformly on Z(Φ), and how to change the

volume into its square.

3.3.1 Hit-and-run and the Simplex Algorithm

Z(Φ) is a convex set. Approximate uniform sampling on large-dimensional

convex bodies is one of the core questions in MCMC, see e.g., Cousins

and Vempala (2016) and Chen et al. (2018) and references therein. The

hit-and-run chain (Turčin, 1971; Smith, 1984) is one of the preferred

practical and theoretical solutions (Cousins and Vempala, 2016).

We describe the Markov kernel of the hit-and-run Markov chain for

a generic target distribution π supported on a convex set C. Sample

a point y uniformly on the unit sphere centered at x. Letting d =

y − x, this defines the line Dx , {x+ αd ; α ∈ R}. Then, sample

z from any Markov kernel Q(x, ·) supported on Dx that leaves the

restriction of π to Dx invariant. In particular, Metropolis-Hastings

kernel (MH, Robert and Casella, 2004) is often used with uniform

proposal on Dx, which favors large moves across the support C of the

target, see Figure 3.4.

Figure 3.4: A step of the Hit-

and-Run chain. Starting at x

the proposed point is x̃

The resulting Markov kernel leaves π invariant, see e.g., Andersen

and Diaconis (2007) for a general proof. Furthermore, the hit-and-run

Markov chain has polynomial mixing time for log concave π (Lovász

and Vempala, 2003, Theorem 2.1).

To implement Remark 3.3.3, the distribution to target on the zono-

tope is the uniform measure, i.e., πu ∝ 1Z(Φ), see Figure 3.5.

Figure 3.5: Uniform target dis-

tribution πu on Z(Φ). The

probability of falling into a given

tile is proportional to its volume.

πu is the limiting distribution of

Algorithm 6.

In practice, we can choose the secondary Markov kernel Q(x, ·) to

be MH with uniform proposal on Dx, as long as we can determine the

endpoints x+αm(y−x) and x+αM (y−x) of Dx∩Z(Φ), see Figure 3.4.

In fact, even an oracle saying whether a point belongs to the zonotope

requires solving LPs (basically, it is Phase I of the simplex algorithm).

As noted by Lovász and Vempala (2003, Section 4.4), hit-and-run with

LP is the state-of-the-art method for computing the volume of large-

scale zonotopes. Thus, by definition of Z(Φ), this amounts to solving
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Algorithm 6: unifZonoHitAndRun Generate an approximate sample

of πu, the uniform measure on Z(Φ).

Require: Φ

1: i← 0

2: x0 ← Φu with u ∼ U[0,1]N

3: while Not converged do

4: Draw d ∼ USr−1 and let Dxi , xi + Rd
5: Draw x̃ ∼ UDxi∩Z(A) # Solve 2 LPs, see (3.3.8)

6: xi+1 ← x̃

7: i← i+ 1

8: end while

Algorithm 7: extractBasis Solve Px(Φ, c) and keep the indices of the

basic variables.

Require: Φ, c, x ∈ Z(Φ)

1: Compute y∗ the optimal solution of Px(Φ, c) # 1 LP

2: B ← {i ; y∗i ∈]0, 1[}
3: return B

two more LPs: αm is the optimal solution to the linear program

min
λ∈RM ,α∈R

α

s.t. x+ αd = Φλ

0 ≤ λ ≤ 1,

(3.3.8)

while αM is the optimal solution of the same linear program with ob-

jective −α. Thus, a combination of hit-and-run and LP solvers such

as Dantzig’s simplex algorithm (Luenberger and Ye, 2016) yields a

Markov kernel with invariant distribution the uniform measure πu.

This is summarized in Algorithm 6. The acceptance in MH is 1 due

to our choice of the proposal and the target. By the proof of Propo-

sition 3.3.2, running Algorithm 6, taking the output chain (xi) and

extracting the bases (Bxi) with Algorithm 7, we obtain a chain on B
with invariant distribution proportional to the volume |det Φ:B | of the

tile associated to B ∈ B.

In terms of theoretical performance, this Markov chain inherits

Lovász and Vempala (2003) mixing time as it is a simple transfor-

mation of hit-and-run targeting the uniform distribution on a convex

set. We underline that this is not a pathological case and it already

covers a range of applications, as changing the feature matrix Φ yields

another zonotope, but the target distribution on the zonotope stays

uniform. Machine learning practitioners do not use volume sampling

for diversity sampling yet, but nothing prevents it, as it already en-

codes the same feature-based diversity as squared volume sampling

(i.e., DPPs). Nevertheless, our initial goal was to sample from the

projection DPP(K) given by (3.3.2). We now modify the Markov

chain just constructed to achieve that.
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Algorithm 8: volZonoHitAndRun

Require: Φ, c, x,B

1: Draw d ∼ USr−1 and let Dx , x+ Rd
2: Draw x̃ ∼ UDx∩Z(Φ) # Solve 2 LPs, see (3.3.8)

3: B̃ ← extractBasis(Φ, c, x̃) # Solve 1 LP, see Px(Φ, c)

4: Draw u ∼ U[0,1]

5: if u <
volume(Φ:B̃)

volume(Φ:B) =
∣∣∣det Φ:B̃

det Φ:B

∣∣∣ then

6: return x̃, B̃

7: else

8: return x,B

9: end if

Algorithm 9: zonotopeSampler Generate an approximate sample B

of DPP(ΦT(ΦΦT)
−1

Φ).

Require: Φ, c

1: i← 0

2: xi ← Φu, with u ∼ U[0,1]N

3: Bi ← extractBasis(Φ, c, xi)

4: while Not converged do

5: xi+1, Bi+1 ← volZonoHitAndRun(Φ, c, xi, Bi)

6: i← i+ 1

7: end while

3.3.2 From Volume to Squared Volume

Figure 3.6: Target distribution

πv on Z(Φ). The probability of

falling in a given tile is propor-

tional to its square volume. πv

is the limiting distribution of Al-

gorithm 9.

Consider the probability density function on Z(Φ)

πv(x) =
|det Φ:Bx |
det ΦΦT 1Z(Φ)(x), (3.3.9)

represented on our example in Figure 3.6. In particular, observe that

πv is constant on each tile. Running the hit-and-run algorithm with

πv as target instead of πu in Section 3.3.1, and extracting bases using

Algorithm 7 again, we obtain a Markov chain on B with limiting dis-

tribution (3.3.2), as required. To see this, consider the tiling of Z(Φ)

and simply integrate πv over the tile associated to each B ∈ B.

The resulting algorithm is given in Algorithm 9. Note that, con-

trary to Algorithm 6 where the target of the hit-and-run algorithm was

uniform, the subroutine Algorithm 8 now involves a rejection step.

3.4 Experiments

We investigate the behavior of our Algorithm 9 on synthetic graphs in

Section 3.4.1 and on a summary extraction task in Section 3.4.2.

3.4.1 Non-uniform Spanning Trees

We compare Algorithm 10 studied by Anari, Gharan, and Rezaei

(2016) and Li, Jegelka, and Sra (2016b) and our Algorithm 9 on two

types of graphs, in two different settings. The graphs we consider are
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Algorithm 10: basisExchangeSampler

Require: Φ or K, initial basis B0 ∈ B (3.3.3)

1: i← 0

2: while Not converged do

3: Draw u ∼ U[0,1]

4: if u < 1
2 then

5: Draw s ∼ UBi and t ∼ U[n]\Bi
6: P ← (Bi \ {s}) ∪ {t}
7: Draw u′ ∼ U[0,1]

8: if u′ < volume2(Φ:P )
volume2(Φ:Bi

)+volume2(Φ:P )
= det KP

det KBi
+det KP

then

9: Bi+1 ← P

10: else

11: Bi+1 ← Bi

12: end if

13: else

14: Bi+1 ← Bi

15: end if

16: i← i+ 1

17: end while

the complete graph K10 with 10 vertices (and 45 edges) and a realiza-

tion BA(20, 2) of a Barabási-Albert graph with 20 vertices and param-

eter 2. We chose BA as an example of structured graph, as it has the

preferential attachment property present in social networks (Barabási

and Albert, 1999). The input matrix Φ is a weighted version of the

oriented vertex-edge incidence matrix of each graph, for which we keep

only the 9 (resp. 19) first rows, so that Φ is indeed full row-rank. For

more generality, we introduce artificially a weight vector,5 by reweight- 5 As in Definition 1.1.4.

ing the columns of Φ with i.i.d. uniform weights ωm in [0, 1]. Samples

from the corresponding projection DPP are thus spanning trees drawn

proportionally to the products of their edge weights.

For Algorithm 9, a value of the linear objective c is drawn once and

for all, for each graph, from a standard Gaussian distribution. This

is enough to make sure no ties appear during the execution, as men-

tioned in Section 3.3. This linear objective is kept fixed throughout

the experiments so that the tiling of the zonotope remains the same.

We run both algorithms for 70 seconds, which corresponds to roughly

50 000 iterations of Algorithm 9. Moreover, we run 100 chains in par-

allel for each of the two algorithms. For each of the 100 repetitions,

we initialize the two algorithms with the same random initial basis,

obtained by solving Px(Φ, c) once, with x = Φu and u ∼ U[0,1]N . For

both graphs, the total number |B| of bases is of order 108, so com-

puting total variation distances is impractical. We instead compare

Algorithms 10 and 9 based on the estimation of inclusion probabilities

P[S ⊂ B] for various subsets S ⊂ [n] of size 3. We observed similar

behaviors across 3-subsets, so we display here the typical behavior on

a 3-subset.

The inclusion probabilities are estimated via a running average of
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the number of bases containing the subsets S. Figures 3.7(a) and 3.8(a)

show the behavior of both algorithms vs. MCMC iterations for the

complete graph K10 and a realization of BA(20, 2), respectively. Fig-

ures 3.7(b) and 3.8(b) show the behavior of both algorithms vs. wall-

clock time for the complete graph K10 and a realization of BA(20, 2),

respectively. In these four figures, bold curves correspond to the me-

dian of the relative errors, whereas the frontiers of colored regions

indicate the first and last deciles of the relative errors.

In Figures 3.7(c) and 3.8(c) we compute the Gelman-Rubin statistic

(Gelman and Rubin, 1992), also called the potential scale reduction

factor (PSRF). We use the PSRF implementation of CODA (Karen

et al., 2006) in R, on the 100 binary chains indicating the presence of

the typical 3-subset in the current basis.

(a) Relative error vs.MCMC itera-

tions.

(b) Relative error vs. wall-clock

time. (c) PSRF vs. MCMC iterations.

Figure 3.7: Comparison of Algo-

rithms 10 and 9 on the complete

graph K10.

(a) Relative error vs.MCMC itera-

tions.

(b) Relative error vs. wall-clock

time. (c) PSRF vs. MCMC iterations.

Figure 3.8: Comparison of Algo-

rithms 10 and 9 on a realization

of BA(20, 2).

In terms of number of iterations, our Algorithm 9 clearly mixes

faster. Relatedly, we observed typical acceptance rates for our algo-

rithm an order of magnitude larger than Algorithm 10, while simulta-

neously attempting more global moves than the local basis-exchange

moves of Algorithm 10. The high acceptance is partly due to the

structure of the zonotope: the uniform proposal in the hit-and-run al-

gorithm already favors bases with large determinants, as the length of

the intersection of Dx in Algorithm 8 with any Z(Φ:B) is an indicator

of its volume, see also Figure 3.4.

Under the time-horizon constraint, see Figures 3.7(b) and 3.8(b),

Algorithm 10 has time to perform more than 106 iterations compared

to roughly 50 000 steps for our chain. The acceptance rate of Algo-
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rithm 9 is still 10 times larger, but the time required to solve the lin-

ear programs at each MCMC iteration clearly hinders our algorithm

in terms of CPU time. Both algorithms are comparable in perfor-

mance, but given its large acceptance, we would expect our algorithm

to perform better if it was allowed to do 10 times more iterations.

Now this is implementation-dependent, and our current implementa-

tion of Algorithm 9 is relatively naive, calling the simplex algorithm

in the GLPK (Oki, 2012) solver with CVXOPT (Andersen, Dahl, and

Vandenberghe, 2008) from Python. We think there are big potential

speed-ups to realize in the integration of linear programming solvers

in our code. Moreover, we initialize our simplex algorithms randomly,

while the different LPs we solve are related, so there may be addi-

tional smart mathematical speed-ups in using the path followed by

one simplex instance to initialize the next.

Finally, we note that the performance of our Algorithm 9 seems

stable and independent of the structure of the graph, while the perfor-

mance of the basis-exchange Algorithm 10 seems more graph-dependent.

Further investigation is needed to make stronger statements.

3.4.2 Text Summarization

Looking at Figures 3.7 and 3.8, our algorithm will be most useful when

the bottleneck is mixing vs. number of iterations rather than CPU time.

For instance, when integrating a costly-to-evaluate function against a

projection DPP, the evaluation of the integrand may outweigh the cost

of one iteration. To illustrate this, we adapt an experiment of Kulesza

and Taskar (2012, Section 4.2.1) on minimum Bayes risk decoding for

summary extraction. The idea is to find a subset Y of sentences of a

text that maximizes

1

R

R∑

i=1

Rouge-1F(Y,Bi), (3.4.1)

where B1, . . . , BR are to be sampled from a projection DPP. Rouge-

1F is a measure of similarity of two sets of sentences. We consider

making 11-sentence summaries of the 64-sentence article entitled Sci-

entists, Stop Thinking Explaining Science Will Fix Things by subsam-

pling the sentences of this text using a projection DPP with kernel of

the form (3.3.1). Next, we describe how we build the corresponding

11×64 feature matrix Φ. For each sentence, we compute its number of

characters and its number of words. Then, we apply a Porter stemmer

(Steven Bird, Ewan Klein, and Edward Loper, 2009) and count again

the number of characters and words in each sentence. In addition, we

sum the tf-idf values of the words in each sentence and compute the

average cosine distance to all other sentences. Finally, we compute

the position of the sentence in the original article and generate binary

features indicating positions 1–5.

In this setting, evaluating once Rouge-1F in the sum (3.4.1) takes

0.1s on a modern laptop, while one iteration of our algorithm is 10−3s.

Our Algorithm 9 can thus compute (3.4.1) for R = 10 000 in about the

http://www.slate.com/articles/health_and_science/science/2017/04/explaining_science_won_t_fix_information_illiteracy.html
http://www.slate.com/articles/health_and_science/science/2017/04/explaining_science_won_t_fix_information_illiteracy.html
https://en.wikipedia.org/wiki/Tf%E2%80%93idf
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same CPU time as Algorithm 10, an iteration of which costs 10−5s.

We show in Figure 3.9 the value of (3.4.1) for 3 possible summaries(
Y (i)

)3
i=1

chosen uniformly at random in B, over 50 independent runs.

The variance of our estimates is smaller, and the number of differ-

ent summaries explored is about 50%, against 10% for Algorithm 10.

Evaluating (3.4.1) using our algorithm is thus expected to be closer to

the maximum of the underlying integral.

Figure 3.9: Summary extraction

results

3.5 Discussion

We proposed a new MCMC kernel with limiting distribution being an

arbitrary projection DPP. This MCMC kernel leverages optimization

algorithms to help making global moves on a convex body that repre-

sents the DPP. We provided empirical results supporting its fast mixing

when compared to the state-of-the-art basis-exchange chain of Anari,

Gharan, and Rezaei (2016) and Li, Jegelka, and Sra (2016b). Future

work will focus on an efficient implementation: while our MCMC chain

mixes faster, when compared based on CPU time our algorithm suffers

from having to solve linear programs at each iteration. We note that

answering the question whether a given point belongs to a zonotope

involves linear programming, so that chord-finding procedures used

in slice sampling (Neal, 2003, Sections 4 and 5) would not provide

significant computational savings.

We also plan to investigate theoretical bounds on the mixing time

of our Algorithm 8. We can build upon the work of Anari, Gharan,

and Rezaei (2016), as our Algorithm 8 is also a weighted extension of

our Algorithm 6, and the polynomial bounds for the vanilla hit-and-

run algorithm (Lovász and Vempala, 2003) already apply to the latter.

Note that while not targeting a DPP, our Algorithm 6 already samples

items with feature-based repulsion, and could be used independently

if the determinantal aspect is not crucial to the application.
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This chapter presents our contribution1 on the use of DPPs in the

1 G. Gautier, R. Bardenet, and M.
Valko. 2019b. On two ways to use de-

terminantal point processes for Monte

Carlo integration. In Advances in
Neural Information Processing Sys-

tems (NeurIPS).

� github.com/guilgautier/DPPy

context of Monte Carlo integration.

Numerical integration is a core task of machine learn-

ing, including most Bayesian methods (Robert, 2007).

Both deterministic (Davis and Rabinowitz, 1984; Dick and Pillichsham-

mer, 2010) and random (Robert and Casella, 2004) procedures have

been proposed; see also Evans and Swartz (2000) for a survey. All

methods require evaluating the integrand at carefully chosen points,

called quadrature nodes, and combining these evaluations to minimize

the approximation error.

Recently, a stream of work has made use of prior knowledge on

the smoothness of the integrand using kernels. Oates, Girolami, and

Chopin (2017) and Liu and Lee (2017) used kernel-based control vari-

ates, splitting the computational budget into regressing the integrand

and integrating the residual. Bach (2017) looked for the best way

to sample i.i.d. nodes and combine the resulting evaluations. Finally,

Bayesian quadrature (O’Hagan, 1991; Huszár and Duvenaud, 2012;

Briol et al., 2015), herding (Chen, Welling, and Smola, 2010; Bach,

Lacoste-Julien, and Obozinski, 2012), or the biased importance sam-

pling estimate of Delyon and Portier (2016) all favor dissimilar nodes,

where dissimilarity is measured by a kernel. Our work falls in this last

cluster.

We build on the particular approach of Bardenet and

Hardy (2020) for Monte Carlo integration based on

projection DPPs. Fifteen years before Macchi (1975) even for-

malized DPPs, Ermakov and Zolotukhin (EZ, 1960) had the intuition

to use a determinantal structure to sample quadrature nodes, followed

by solving a linear system to aggregate the evaluations of the inte-

grand into an unbiased estimator. This linear system yields a simple

and interpretable characterization of the variance of their estimator.

Ermakov and Zolotukhin’s result did not diffuse much2 in the Monte 2 Many thanks to Mathieu Gerber of
Univ. Bristol, UK, for digging up this

result from his human memory.
Carlo community, partly because the mathematical and computational

machinery to analyze and implement it was not available. Unaware of

this previous work, Bardenet and Hardy (2020) came up with a more

natural estimator of the integral of interest, and they could build upon

the thorough study of DPPs in random matrix theory (Johansson,

2006) to obtain a fast central limit theorem (CLT). Since then, DPPs

with stationary kernels have also been used by Mazoyer, Coeurjolly,

and Amblard (2019) and Coeurjolly, Mazoyer, and Amblard (2020) for

http://papers.nips.cc/paper/8992-on-two-ways-to-use-determinantal-point-processes-for-monte-carlo-integration
http://papers.nips.cc/paper/8992-on-two-ways-to-use-determinantal-point-processes-for-monte-carlo-integration
http://papers.nips.cc/paper/8992-on-two-ways-to-use-determinantal-point-processes-for-monte-carlo-integration
https://github.com/guilgautier/DPPy
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Monte Carlo integration. In any case, these DPP-based Monte Carlo

estimators crucially depend on efficient sampling procedures for the

corresponding (potentially multidimensional) DPP.

Our point is not to compare DPP-based Monte Carlo estimators to

the wide choice of numerical integration algorithms, but to get a fine

understanding of their properties so as to fine-tune their design and

guide theoretical developments.

4.1 Standard quadrature

Following Briol et al. (2015, Section 2.1), let µ(dx) = ω(x)dx be a

positive Borel measure on X ⊂ Rd with finite mass and density ω

w.r.t. the Lebesgue measure. Our goal is to compute integrals of the

form
∫
f(x)µ(dx) for some test function f : X→ R. A quadrature rule

approximates such integrals as a weighted sum of evaluations of f at

some nodes {x1, . . . , xN} ⊂ X,

∫
f(x)µ(dx) ≈

N∑

n=1

ωnf(xn), (4.1.1)

where the weights ωn , ωn(x1, . . . , xN ) do not need to be non-negative

nor sum to one.

Among the many quadrature designs, see, e.g., Evans and Swartz

(2000, Section 5), we pay special attention to the textbook example

of the (deterministic) Gauss-Jacobi rule. This scheme applies to di-

mension d = 1, for X , [−1, 1] and ω(x) , (1 − x)a(1 + x)b with

a, b > −1. In this case, the nodes {x1, . . . , xN} are taken to be the

zeros of pN , the orthonormal Jacobi polynomial of degree N , and the

weights ωn , 1/K(xn, xn) with K(x, x) ,
∑N−1
k=0 pk(x)2. In par-

ticular, this specific quadrature rule allows us to perfectly integrate

polynomials up to degree 2N − 1 (Davis and Rabinowitz, 1984, Sec-

tion 2.7). In a sense, the DPPs of Bardenet and Hardy (2020) are

a random, multivariate generalization of Gauss-Jacobi quadrature, as

we shall see in Section 4.3.1.

Monte Carlo integration can be defined as random choices of nodes

in (4.1.1). Importance sampling, for instance, corresponds to i.i.d. ;nodes,

while Markov chain Monte Carlo corresponds to nodes drawn from a

carefully chosen Markov chain; see, e.g., Robert and Casella (2004)

for more details. Finally, quasi-Monte Carlo (QMC, Dick and Pil-

lichshammer, 2010) applies to µ uniform over a compact subset of Rd,
and constructs deterministic nodes that spread uniformly, as measured

by their discrepancy.

4.2 The multivariate Jacobi ensemble

In this part, we specify the kernel We recall the notation

〈φk, φ`〉 ,
∫
φk(x)φ`(x)µ(dx).

K(x, y) =

N−1∑

k=0

φk(x)φk(y), where 〈φk, φ`〉 = δk`, (4.2.1)
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of the (orthogonal) projection DPP used in the following Monte Carlo

methods. We follow Bardenet and Hardy (2020) and take multivariate

orthonormal polynomials as eigenfunctions φk for the kernel. In dimen-

sion d = 1, letting (φk)k≥0 in (4.2.1) be the orthonormal polynomials

w.r.t. µ results in a projection DPP called an orthogonal polynomial

ensemble (OPE, König, 2004). When d > 1, orthonormal polynomials

can still be uniquely defined by applying the Gram-Schmidt procedure

to a set of monomials, provided the base measure is not pathological.

However, there is no natural order on multivariate monomials: an or-

dering b : Nd → N must be picked before we apply Gram-Schmidt to

the monomials in L2(µ). We follow Bardenet and Hardy (2020, Sec-

tion 2.1.3) and consider multi-indices k , (k1, . . . , kd) ∈ Nd ordered

by their maximum degree maxi k
i, and for constant maximum degree,

by the usual lexicographic order. We still denote the corresponding

multivariate orthonormal polynomials by (φk)k∈Nd . Figure 4.1: A sample of a 2D Ja-

cobi ensemble with N = 1000

points. The normalized refer-

ence densities, proportional to

ω1(x) = (1 − x)a
1

(1 + x)b
1

and

ω2(y) = (1 − y)a
2

(1 + y)b
2

,

are displayed in dashed lines.

The empirical marginal densities

which converges to the arcsine

density ωeq(x) = 1
π
√

1−x2
is plot-

ted in solid line.

By multivariate OPE we mean the projection DPP with base mea-

sure µ(dx) , ω(x)dx and orthogonal projection kernel K(x, y) ,∑N−1
b(k)=0 φk(x)φk(y). When the base measure is separable, i.e., ω(x) =

ω1(x1)×· · ·×ωd(xd), multivariate orthonormal polynomials are prod-

ucts of univariate ones, and the kernel (4.2.1) reads

K(x, y) =

N−1∑

b(k)=0

d∏

i=1

φiki(x
i)φiki(y

i), (4.2.2)

where (φi`)`≥0 are the orthonormal polynomials w.r.t. ωi(z)dz. For

X = [−1, 1]d and ωi(z) = (1 − z)a
i

(1 + z)b
i

, with ai, bi > −1, the

resulting DPP is called a multivariate Jacobi ensemble.

4.3 Description of the two DPP-based estimators

Our goal is to design random quadrature rules on

X , [−1, 1]d with desirable properties. We focus on com-

puting
∫
f (x)µ(dx) with the two unbiased DPP-based Monte Carlo

estimators of Bardenet and Hardy (BH, 2020) and Ermakov and Zolo-

tukhin (EZ, 1960). We start by presenting the natural BH estimator

which, when associated to the multivariate Jacobi ensemble, comes

with a CLT with a faster rate than classical Monte Carlo. Then, we

survey the properties of the less obvious EZ estimator. Using the

generalized Cauchy-Binet formula3 we provide a slight improvement 3 See Proposition 1.C.2.

of the key result of EZ. Despite the lack of result illustrating a fast

convergence rate, the EZ estimator has a practical and interpretable

variance.

4.3.1 A natural estimator

For f ∈ L1(µ), Bardenet and Hardy (2020) consider

Î BH
N (f) ,

N∑

n=1

f(xn)

K(xn,xn)
, (4.3.1)
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as an unbiased estimator of
∫
f(x)µ(dx), with variance4 4 See Proposition 1.E.1.

Var
[
Î BH
N (f)

]
=

1

2

∫ (
f(x)

K(x, x)
− f(y)

K(y, y)

)2

K(x, y)
2
µ(dx)µ(dy),

(4.3.2)

which clearly captures a notion of smoothness of f w.r.t. K but its

interpretation is not obvious.

For X = [−1, 1]d, the interest in multivariate Jacobi ensemble among

DPPs comes from the fact that (4.3.1) can be understood as a (ran-

domized) multivariate counterpart of the Gauss-Jacobi quadrature in-

troduced in Section 4.1. Moreover, for f essentially C1, Bardenet and

Hardy (2020, Theorem 2.7) proved a CLT with faster-than-classical-

Monte-Carlo decay,

√
N1+1/d

(
Î BH
N (f)−

∫
f(x)µ(dx)

)
law−−−−→

N→∞
N
(
0,Ω2

f,ω

)
, (4.3.3)

with Ω2
f,ω , 1

2

∑
k∈Nd(k1 + · · · + kd)F fω

ωeq

(k)2, where Fg denotes the

Fourier transform of g, and ωeq(x) , 1/
∏d
i=1 π

√
1− (xi)2. In the fast

CLT (4.3.3), the asymptotic variance also captures a notion of smooth-

ness of f : Ωf,ω is a measure of the decay of the Fourier coefficients of

the integrand.

4.3.2 The Ermakov-Zolotukhin estimator

We start by stating5 the main finding of Ermakov and Zolotukhin 5 See also Evans and Swartz (2000, Sec-

tion 6.4.3) and references therein.(1960). To the best of our knowledge, we are the first to make the

connection with projection DPPs. Using the generalized Cauchy-Binet

formula,6 we provide a simpler proof of the original result, along with 6 See Proposition 1.C.2.

a slight improvement. Finally, we apply the technique of Ermakov

and Zolotukhin (1960) to build an unbiased estimator of
∫
f(x)µ(dx),

which comes with a practical and interpretable variance.

Theorem 4.3.1. Take f ∈ L2(µ) and let φ0, . . . , φN−1 be orthonormal

functions with respect to µ. Consider {x1, . . . ,xN} ∼ DPP(µ,K), with

kernel K(x, y) =
∑N−1
k=0 φk(x)φk(y) and build the linear system




φ0(x1) . . . φN−1(x1)
...

...

φ0(xN ) . . . φN−1(xN )







y1

...

yN


 =




f(x1)
...

f(xN )


. (4.3.4)

Then, the solution vector of (4.3.4) is unique, µ-almost surely, with

Φ(x1:N ) ,

 φ0(x1) ... φN−1(x1)

...
...

φ0(xN ) ... φN−1(xN )

.

coordinates given by Cramer’s rules: Cramer’s rules applied to the system[
1 −2
3 1

][ x
y

]
=
[−3

5

]
yield

x =
det

[−3 −2
5 1

]
det

[
1 −2
3 1

] = 1, and

y =
det

[
1 −3
3 5

]
det

[
1 −2
3 1

] = 2.

yk =
det Φφk−1,f (x1:N )

det Φ(x1:N )
, (4.3.5)

where Φφk−1,f (x1:N ) is the matrix obtained by replacing the k-th col-

umn of Φ(x1:N ) by f(x1:N ). Moreover, for all 1 ≤ k ≤ N , we have

E[yk] = 〈f, φk−1〉, and (4.3.6)

Var[yk] = ‖f‖2 −
N−1∑

`=0

〈f, φ`〉2. (4.3.7)

In addition,7 we have that Cov[yj , yk] = 0, for all 1 ≤ j 6= k ≤ N . 7 This is our slight improvement of the
original result.

https://en.wikipedia.org/wiki/Cramer%27s_rule
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Before we provide the proof, several remarks are in order. We start

by considering a function f ,
∑M−1
k=0 〈f, φk〉φk, 1 ≤ M ≤ ∞, where

(φk)k≥0 forms an orthonormal basis of L2(µ), e.g., the Fourier basis

or wavelet bases (Mallat and Peyré, 2009). Next, we build the or-

thogonal projection kernel K onto HN , span{φ0, . . . , φN−1}, i.e.,

K(x, y) =
∑N−1
k=0 φk(x)φk(y). Then, Theorem 4.3.1 shows that solv-

ing (4.3.4), with points {x1, . . . ,xN} ∼ DPP(µ,K), provides unbiased

estimates of the N Fourier-like coefficients (〈f, φk〉)N−1
k=0 . Remarkably,

these estimates are uncorrelated and have the same variance (4.3.7)

equal to the residual
∑∞
k=N 〈f, φk〉

2
. The faster the decay of the co-

efficients, the smaller the variance. In particular, for M ≤ N , i.e.,

f ∈ HN , the estimators have zero variance. Put differently, f can be

reconstructed perfectly from only one sample of DPP(µ,K).

Proof of Theorem 4.3.1. First, observe that the joint distribution (2.1.6)

of (x1, . . . ,xN ) can be written as

1

N !
(det Φ(x1:N ))

2
µ⊗N (dx). (4.3.8)

Thus, det Φ(x1:N ) 6= 0, µ-almost surely. Hence, the matrix Φ(x1:N )

defining the linear system (4.3.4) is invertible, µ-almost surely. The

expression of the coordinates (4.3.5) follows from Cramer’s rule. Then,

we treat the case k = 1, the others follow the same lines. The proof

relies on the orthonormality of the φks. The expectation (4.3.7) reads

E
[

det Φφ0,f (x1:N )

det Φ(x1:N )

]
=

1

N !

∫
det Φφ0,f (x1:N ) det Φ(x1:N )µ⊗N (dx) Using (4.3.8).

= det




〈f, φ0〉 (〈f, φ`〉)N−1
`=1

(〈φk, φ0〉)N−1
k=1 (〈φk, φ`〉)N−1

k,`=1


 By Cauchy-Binet formula (1.C.2).

= det

[
〈f, φ0〉 (〈f, φ`〉)N−1

`=1

0N−1,1 IN−1

]
Using the orthonormality of (φk).

= 〈f, φ0〉. (4.3.9)

Similarly, the second moment reads

E

[(
det Φφ0,f (x1:N )

det Φ(x1:N )

)2
]

=
1

N !

∫
det Φφ0,f (x1:N ) det Φφ0,f (x1:N )µ⊗N (dx) Using (4.3.8).

= det

[
‖f‖2 (〈f, φ`〉)N−1

`=1

(〈f, φk〉)N−1
k=1 IN−1

]
Using Cauchy-Binet formula (1.C.2)
and the orthonormality of (φk).

= ‖f‖2 −
N−1∑

k=1

〈f, φk〉2. (4.3.10)

Finally, the variance (4.3.7) = (4.3.10) - (4.3.9)2. With the same argu-

ments, we can compute the covariance Cov[yj , yk]. We treat only the

case j = 1, k = 2, the general case follows the same lines.



78 on sampling determinantal point processes

Cov[y1, y2]

= E
[

det Φφ0,f (x1:N )

det Φ(x1:N )

det Φφ1,f (x1:N )

det Φ(x1:N )

]
− E

[
det Φφ0,f (x1:N )

det Φ(x1:N )

]
E
[

det Φφ1,f (x1:N )

det Φ(x1:N )

]

=
1

N !

∫
det Φφ0,f (x1:N ) det Φφ1,f (x1:N )µ⊗N (dx)− 〈f, φ0〉〈f, φ1〉 Using (4.3.8).

= det




〈f, φ0〉 〈f, f〉 (〈f, φ`〉)N−1
`=2

(〈φk, φ0〉)N−1
k=1 (〈φk, f〉)N−1

k=1 (〈φk, φ`〉)N−1
k=1,`=2


− 〈f, φ0〉〈f, φ1〉 By Cauchy-Binet formula (1.C.2).

= det




〈f, φ0〉 ‖f‖2 (〈f, φ`〉)N−1
`=2

0 〈φ1, f〉 0

0N−2,1 (〈φk, f〉)N−1
k=2 IN−2



− 〈f, φ0〉〈f, φ1〉 Using the orthonormality of (φk).

= 〈f, φ0〉〈f, φ1〉 − 〈f, φ0〉〈f, φ1〉 = 0.

Corollary 4.3.2. In the setting of Theorem 4.3.1, if φ0 is constant,

then
y1

φ0
defines an unbiased estimator of

∫
X f(x)µ(dx) with variance

equal to µ(X)×(4.3.7). In addition, this estimator can be seen as a

random quadrature rule (4.1.1) with weights summing to µ(X).

Proof. We readily have E
[
y1
φ0

]
= 1

φ0
E[y1] = 1

��φ0

〈
f,��φ0

〉
=
∫
X f(x)dx.

Then, since φ0 is constant with unit norm we have φ0 = µ(X)−1/2

and the variance reads Var
[
y1
φ0

]
= 1

φ0
2 Var[y1] = µ(X) × (4.3.7). In

addition, we can rewrite

y1

φ0
=

1

φ0

det Φφk−1,f (x1:N )

det Φ(x1:N )
=

1

φ2
0

det Φφ0,f (x1:N )

det Φφ0,1(x1:N )
(4.3.11)

= µ(X)
det Φφ0,f (x1:N )

det Φφ0,1(x1:N )
,

Note that there is a priori no reason
for the weights to be nonnegative.

and the expansion of the numerator w.r.t. the first column yields

y1

φ0
=

N∑

n=1

f(xn)
µ(X)

det Φφ0,1(x1:N )
(−1)1+n det(φk(xp))

N−1,N
k=1,p=16=n

︸ ︷︷ ︸
,ωn(x1:N )

·

(4.3.12)

Finally, summing the weights gives

N∑

n=1

ωn(x1:N ) =
µ(X)

((((
(((det Φφ0,1(x1:N )

��
���

���
���

���
�

N∑

n=1

(−1)1+n det(φk(xp))
N−1,N
k=1,p=16=n

︸ ︷︷ ︸
=det Φφ0,1

(x1:N )

·
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In the framework of the Jacobi ensemble described in Section 4.2, we

indeed have φ0 constant. We use Corollary 4.3.2 to define our second

DPP-based estimator:

Î EZ
N (f) , µ

(
[−1, 1]

)1/2 det Φφk−1,f (x1:N )

det Φ(x1:N )
· (4.3.13)

Unlike the variance of Î BH
N (f) in (4.3.2), the variance of Î EZ

N (f)

clearly reflects the accuracy of the approximation of f by its projec-

tion onto HN . In particular, it allows us to integrate and interpolate

polynomials up to “degree” b−1(N − 1), perfectly. Nonetheless, its

limiting theoretical properties, like a CLT, look hard to establish. In-

deed, the facts that the estimator has zero variance on the class of

functions belonging to HN and that each quadrature weight depends

on all quadrature nodes make it a peculiar object that doesn’t fit the

assumptions of traditional CLTs for DPPs (Soshnikov, 2000).

Figure 4.2 displays a sample of a d = 2 Jacobi ensemble with

N = 1000 points and compares how each estimator would reweight

the points.

Figure 4.2: (middle) Same sam-

ple as in Figure 4.1 Then we

plot the same sample where the

disk centered at xn has now

an area proportional to: (left)

the weight 1/K(xn,xn) of Î BH
N

in (4.3.1), observe that these

weights serve as a proxy for the

reference measure, like Gaussian

quadradure. (right) the weight

of Î EZ
N given by (4.3.12), observe

that they can be either positive

(blue disks) or negative (orange

disks). The histogram of the

absolute value of the weights is

plotted on the marginal axes.

4.4 Sampling from orthogonal projection DPPs

In this section, we first give generic guidelines for a practical imple-

mentation of the chain-rule-based algorithm of Hough et al. (2006,

Algorithm 18) for the simulation of orthogonal projection DPPs. For

simplicity, we consider the setting of Proposition 2.1.2. We then tailor

this procedure to the multivariate Jacobi ensemble.

We let µ(dx) = ω(x)dx and consider a real-valued orthogonal pro-

jection kernel K, such that

K(x, y) =

N∑

k=1

φk(x)φk(y) (4.4.1)

= Φ(x)TΦ(y), (4.4.2)

where Φ(x) , (φ1(x), . . . , φN (x))
T
.
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Algorithm 11: Generate a sample X from an orthogonal projection

DPP(µ,K) with N points

Require: Φ

1: X,C, d = ∅, zeros(N, N), 0
2: for n in range(N) do

3: while not Accepted do

4: Sample x ∼ 1
NK(x, x)ω(x)dx

5: C[:, n] = Φ(x)

6: Kxx = C[:, n]TC[:, n]

7: C[:, n] −= C[:, :n] C[:, n]T C[:, :n]

8: d = C[:, n]T C[:, n]

9: if rand() < d
Kxx then

10: C[:, n] /=
√
d

11: Accepted

12: end if

13: end while

14: X = X ∪{x}
15: end for

16: return X

We apply the chain rule using a two-layer rejection

sampling scheme. In this scenario, we consider the one-point

marginal distribution

1

N
K(x, x)ω(x)dx, (4.4.3)

as unique proposal for sampling each conditional

K(x, x)−K(x1:n−1, x)HK(x1:n−1,x1:n−1)−1K(x1:n−1, x)

N − (n− 1)
µ(dx) (4.4.4)

=
distance2(Φ(x), span{Φ(x1), . . . ,Φ(xn−1)})

N − (n− 1)
µ(dx). (4.4.5)

Indeed, combining the fact that K is assumed Hermitian and that

detK(x1:n−1,x1:n−1) ≥ 0 by (1.1.18), the quadratic form in (4.4.4) is

non-negative and we can bound the numerator by K(x, x). Thus, given

an oracle generating samples from the marginal distribution (4.4.3), we

can use a rejection sampling mechanism to sample from the successive

conditional distributions. The rejection constant associated to the n-th

conditional reads

(N − (n− 1))
−1(

K(x, x)−K(x1:n−1, x)HK(x1:n−1,x1:n−1)−1K(x1:n−1, x)
)
�
��ω(x)

N−1K(x, x)�
��ω(x)

=
N

N − (n− 1)

K(x, x)−K(x1:n−1, x)HK(x1:n−1,x1:n−1)−1K(x1:n−1, x)

K(x, x)

≤ N

N − (n− 1)
· (4.4.6)

The overall procedure is summarized in Algorithm 11.
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4.4.1 Sampling from the multivariate Jacobi ensemble

In the case of (multivariate) orthogonal polynomial ensembles,8 eval- 8 See Section 4.2.

uations of the kernel can be performed using the Gram representation

K(x, y) = Φ(x)TΦ(y) and one can leverage the three-term recurrence

relations satisfied by each of the univariate Jacobi polynomials (φi`)`.

This is what we do in our special case, we use the dedicated func-

tion scipy.special.eval jacobi to evaluate, up to depth d
√
N , the

three-term recurrence relations satisfied by each of the univariate Ja-

cobi polynomials. Instead of calling the recursive routine internally to

evaluate Φ(x), the corresponding d d
√
N univariate polynomials or N

multivariate polynomials could be stored in some way and evaluated

pointwise on the fly. The preprocessing time and the memory required

would increase but it might accelerate the evaluation of Φ(x).

In this work, we take X = [−1, 1]d and focus on sampling the multi-

variate Jacobi ensemble with parameters
∣∣ai
∣∣,
∣∣bi
∣∣ ≤ 1/2, cf. Section 4.2.

We remodeled the original implementation9 of the multivariate Jacobi

9 github.com/rbardenet/dppmc.

ensemble sampler accompanying the work of Bardenet and Hardy (BH,

2020) in a more Pythonic way. In particular, we address the previous

challenges in the following way:

1. contrary to BH, we leverage the Gram structure of the kernel to vec-

torize the computations and consider (4.4.5) instead of (4.4.4), and

evaluate K(x, y) via (4.4.2) instead of (4.2.2). The overall proce-

dure is akin to a sequential Gram-Schmidt orthogonalization of the

feature vectors Φ(x1), . . . ,Φ(xN ). Moreover we pay special atten-

tion to avoiding unnecessary evaluations of orthogonal polynomials

(OP) when computing a feature vector Φ(x). This is done by cou-

pling the slicing feature of the Python language with the dedicated

method scipy.special.eval jacobi, used to evaluate the three-

term recurrence relations satisfied by each of the univariate Jacobi

polynomials. Given the chosen ordering b, the computation of Φ(x)

requires the evaluation of d recurrence relations up to depth d
√
N .

2. like BH, we sample each conditional in turn using a rejection sam-

pling mechanism with the same proposal distribution. But BH take

as proposal ωeq(x)dx, which corresponds to the limiting marginal

of the multivariate Jacobi ensemble as N goes to infinity; see Simon

(2011, Section 3.11). On our side, we use a two-layer rejection sam-

pling scheme. We rather sample from the n-th conditional using the

marginal distribution N−1K(x, x)ω(x)dx as proposal and rejection

constant N/(N − (n − 1)). This allows us to reduce the number

of (costly) evaluations of the acceptance ratio. The marginal dis-

tribution itself is sampled using the same proposal ωeq(x)dx and

rejection constant as BH. The rejection constant, of order 2d, is de-

rived in Proposition 4.4.1. We further reduced the number of OP

evaluations by considering N−1K(x, x)ω(x)dx as a mixture, where

each component in (4.2.2) involves only one OP. In the end, the

expected total number of rejections is of order 2dN logN . Finally,

we implemented a specific rejection free method for the univariate

https://github.com/rbardenet/dppmc
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Jacobi ensemble; a special continuous projection DPP which can

be sampled exactly in O(N2), by computing the eigenvalues of a

random tridiagonal matrix (Killip and Nenciu, 2004, Theorem 2).

(a) ∝ ω1, ∝ ω2, ωeq

50 100 150 200 250 300N
0

1

2

3
<t>(s)

1 wo tri
1 w tri
2
3
4

(b) 〈time〉 to get one sample

50 100 150 200 250 300N
0

5000

10000

15000

20000
<#rej>

1 wo tri
1 w tri
2
3
4

(c) 〈#rejections〉 to get one sample

Figure 4.3: (a) A sample from a

2D Jacobi ensemble with N =

1000 points. (b)-(c) ai, bi =

−1/2, the colors and numbers

correspond to the dimension.

For d = 1, the tridiagonal model

(tri) of Killip and Nenciu offers

tremendous time savings. (c)

The total number of rejections

grows as 2dN log(N).

All these improvements resulted in dramatic speedups. For ex-

ample, on a modern laptop, sampling a 2D Jacobi ensemble with

N = 1000 points, see Figure 4.3, takes less than a minute, compared

to hours previously.

In dimension d = 1, we implemented the random tridiagonal matrix

model of Killip and Nenciu (2004, Theorem 2) to sample from the uni-

variate Jacobi ensemble, with base measure µ(dx) = (1−x)a(1+x)bdx,

where a, b > −1.10 That is to say, this one dimensional continuous pro-

10 See also Theorem 5.1.3.

jection DPP with N points can be sampled in O(N2), by computing

the eigenvalues of a N ×N random tridiagonal matrix with indepen-

dent coefficients.

For d ≥ 2, we detail the procedure for sampling exactly from the

multivariate Jacobi ensemble with parameters
∣∣ai
∣∣,
∣∣bi
∣∣ ≤ 1

2 , for all

1 ≤ i ≤ d. In other words we want to generate exact samples from the

(orthogonal) projection DPP(µ,K) where

• µ(dx) = ω(x)dx, with

ω(x) =

d∏

i=1

ωi(xi), where ωi(z) =

d∏

i=1

(1− z)ai(1 + z)b
i

, and
∣∣ai
∣∣,
∣∣bi
∣∣ ≤ 1

2
· (4.4.7)

• K(x, y) =
∑N−1

b(b)=0 φk(x)φk(y), with

φk(x) =

d∏

i=1

φiki(x
i), where

∫ 1

−1

φiu(z)φiv(z)ω
i(z)dz = δuv. (4.4.8)

Thus, sampling from (4.4.3) can be done in two steps:

(i) select a multi-index k = b−1(n) with n drawn uniformly at random in {0, . . . , N − 1}
(ii) sample from φk(x)2ω(x)dx

We perform Step (ii) using rejection sampling with proposal

ωeq(x)dx =

d∏

i=1

1

π
√

1− (xi)2
dxi, (4.4.9)
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which corresponds to the limiting marginal distribution of the multi-

variate Jacobi ensemble as N goes to infinity; see Simon (2011, Section

3.11) and Figure 4.1. The acceptance ratio writes

φk(x)2ω(x)

ωeq(x)
=

d∏

i=1

φiki(x
i)2 × (1− xi)ai(1 + xi)b

i

π−1(1− xi)− 1
2 (1 + xi)−

1
2

=

d∏

i=1

π(1− xi)ai+ 1
2 (1 + xi)b

i+ 1
2φiki(x

i)2. (4.4.10)

A more pragmatic reason which guided this choice of proposal lies

in the following result.

Proposition 4.4.1. Let (φk)k≥0 be the (univariate) orthonormal poly- See also Chow, Gatteschi, and Wong

(1994) and Gautschi (2009, Equation
1.3).

nomials w.r.t. (1− x)a(1 + x)bdx with |a| ≤ 1
2 , |b| ≤ 1

2 .

Then, for any x ∈ [−1, 1] and k ≥ 1,

π(1− x)a+ 1
2 (1 + x)b+

1
2φk(x)2 ≤ Ck ,

2 Γ(k + a+ b+ 1) Γ(k + max(a, b) + 1)

k! (k + a+b+1
2 )2 max(a,b) Γ(k + min(a, b) + 1)

· (4.4.11)

Each of the terms that appear in (4.4.10) can be bounded using the

following recipe:

• For ki = 0, φi0 is constant with unit norm, i.e.,

(φi0)2

∫ 1

−1

(1− x)a
i

(1 + x)b
i

dx = 1⇐⇒ (φi0)2 =
1

2ai+bi+1B(ai + 1, bi + 1)
, (4.4.12)

so that the corresponding term in (4.4.10) becomes

π(1− x)a
i+ 1

2 (1 + x)b
i+ 1

2

2ai+bi+1B(ai + 1, bi + 1)
≤ π(1−m)a

i+ 1
2 (1 +m)b

i+ 1
2

2ai+bi+1B(ai + 1, bi + 1)
, Cki=0 ≤ 2, (4.4.13)

where

m = argmax
−1≤x≤1

(1−x)a
i+ 1

2 (1+x)b
i+ 1

2 =





0, if ai = bi = − 1
2 ,

bi−ai
ai+bi+1

, otherwise.

• For ki ≥ 1, we use the bound Cki≥1 (4.4.11) provided originally

by Chow, Gatteschi, and Wong (1994). As mentioned by Gautschi

(2009), this bound is probably maximal for ki = 1 and parameters

ai ≈ −0.0691, bi = 1/2, with value ≈ 0.64297807π ≈ 2.02.

Finally, the expected number of rejections to perform Step (ii) is equal

to
∏d
i=1 Cki which is of order 2d, and the expected total number of

rejections of the chain rule is of order

N∑

n=1

2d
N

N − (n− 1)
= 2dN

N∑

n=1

1

n
≈ 2dN log(N). (4.4.14)

4.5 Empirical investigation

We perform three main sets of experiments to investigate the prop-

erties of the BH (4.3.1) and EZ (4.3.13) estimators of the integral



84 on sampling determinantal point processes

∫
f(x)µ(dx). We add the baseline vanilla Monte Carlo, where points

are drawn i.i.d. proportionally to µ. The two estimators are built from

the multivariate Jacobi ensemble, cf. Section 4.2. First, we extend, for

larger N , the experiments of Bardenet and Hardy (2020) illustrating

their fast CLT (4.3.3) on a smooth function. Then, we illustrate Theo-

rem 4.3.1 by considering polynomial functions that can be either fully

or partially decomposed in the eigenbasis of the DPP kernel. Finally,

we compare the potential of both estimators on various non smooth

functions.

4.5.1 The bump experiment

Bardenet and Hardy (2020, Section 3) illustrate the behavior of Î BH
N

and its CLT (4.3.3) on a unimodal, smooth bump function. The ex-

pected variance decay is of order 1/N1+1/d. We reproduce their ex-

periment in Figure 4.4 for larger N , and compare with the behavior of

Î EZ
N . In short, Î EZ

N dramatically outperforms Î BH
N in d ≤ 2, with sur-

prisingly fast empirical convergence rates. When d ≥ 3, performance

decreases, and Î BH
N shows both faster and more regular variance decay.

To know whether we can hope for a CLT for Î EZ
N , we performed

Kolmogorov-Smirnov tests for N = 300, which yielded small p-values

across dimensions, from 0.03 to 0.24. This is compared to the same

p-values for Î BH
N , which range from 0.60 to 0.99. The lack of normality

of Î EZ
N is partly due to a few outliers. Where these outliers come from

is left for future work; ill-conditioning of the linear system (4.3.4) is

an obvious candidate.

101 102 N

10 19

10 15

10 11

10 7

10 3
ar

BH -2.0, 0.99
EZ -15.4, 0.97
iid -1.0, 0.98

(a) d = 1

102 N

10 6

10 5

10 4

10 3

ar

BH -1.5, 0.98
EZ -3.1, 0.95
iid -1.0, 0.98

(b) d = 2

102 N

10 4

10 3

ar

BH -1.5, 0.99
EZ -1.2, 0.80
iid -1.0, 0.98

(c) d = 3

102 N
10 5

10 4

10 3ar

BH -1.2, 0.96
EZ -1.0, 0.64
iid -1.1, 0.97

(d) d = 4

Figure 4.4: Variance of the dif-

ferent estimators as a function of

the number of points, in the con-

text of Section 4.5.1. The num-

bers in the legend are the slope

and R2.

4.5.2 Integrating sums of eigenfunctions

In the next series of experiments, we are mainly interested in testing

the variance decay of Î EZ
N (f) prescribed by Theorem 4.3.1. To that

end, we consider functions of the form

f(x) =

M−1∑

b(k)=0

1

b(k) + 1
φk(x), (4.5.1)

whose integral w.r.t. µ is to be estimated based on realizations of the

multivariate Jacobi ensemble with kernelK(x, y) =
∑N−1

b(k)=0 φk(x)φk(y),

where N 6= M a priori. This means that the function f can be either

fully (M ≤ N) or partially (M > N) decomposed in the eigenbasis of

the kernel. In both cases, we let the number of points N used to build

the two estimators vary from 10 to 100 in dimensions d = 1 to 4.



application of dpp sampling to monte carlo integration 85

10 2

100
ar

101 102N10 30

10 29

10 28

BH -1.1, 0.92
EZ
iid -1.0, 0.97

(a) d = 1

10 3

10 1

ar

101 102N10 30

10 29

10 28

BH -1.1, 0.97
EZ
iid -1.0, 0.99

(b) d = 2

10 2

10 1

100
ar

101 102N10 29

10 28
BH -1.0, 0.98
EZ
iid -1.1, 0.99

(c) d = 3

10 2

10 1

100
ar

101 102N10 29

10 28
BH -0.9, 0.96
EZ
iid -1.1, 0.99

(d) d = 4

Figure 4.5: Variance of the dif-

ferent estimators as a function of

the number of points N , for f of

the form (4.5.1) with M = 70.

The numbers in the legend are

the slope and R2.

In the first setting, we set M = 70. Thus, N eventually reaches

the number of functions used to build f in (4.5.1), after what Î EZ
N is

an exact estimator, see Figure 4.5. For each dimension d, we indeed

observe a drop in the variance of Î EZ
N once the number of points of

the DPP hits the threshold N = M . This is in perfect agreement with

Theorem 4.3.1: once f ∈ HM ⊆ HN , the variance in (4.3.7) is zero.
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Figure 4.6: Variance of the dif-

ferent estimators as a function of

the number of points N , for f of

the form (4.5.1) with M = N+1.

The numbers in the legend are

the slope and R2.

The second setting has M = N + 1, so that the number of points N

is never enough for the variance in (4.3.7) to be zero, see Figure 4.6. In

the second setting, as N increases the contribution of the extra mode

φb−1(N) in (4.5.1) decreases as N−1. Hence, from Theorem 4.3.1 we

expect a variance decay of order N−2, which we observe in practice.

4.5.3 Further experiments

In Appendices 4.A.1-4.A.4 we test the robustness of both BH and

EZ estimators, when applied to functions presenting discontinuities

or which do not belong to the span of the eigenfunctions of the ker-

nel. Although the conditions of the CLT (4.3.3) associated to Î BH

are violated, the corresponding variance decay is smooth but not as

fast. For Î EZ, the performance deteriorates with the dimension. In-

deed, the cross terms arising from the Taylor expansion of the different

functions introduce monomials, associated to large coefficients, that do

not belong to HN . Sampling more points would reduce the variance

(4.3.7). But more importantly, for EZ to excel, this suggests to adapt

the kernel to the basis where the integrand is known to be sparse or to

have fast-decaying coefficients. In regimes where BH and EZ do not

shine, vanilla Monte Carlo becomes competitive for small values of N .

4.6 Discussion

Ermakov and Zolotukhin (EZ, 1960) proposed a non-obvious unbiased

Monte Carlo estimator using projection DPPs. It requires solving a

linear system, which in turn involves evaluating both the N eigenfunc-
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tions of the corresponding kernel and the integrand at the N points of

the DPP sample. This is yet another connection between DPPs and

linear algebra. In fact, solving this linear system provides unbiased

estimates of the Fourier-like coefficients of the integrand f with each

of the N eigenfunctions of the DPP kernel. Remarkably, these estima-

tors have identical variance, and this variance measures the accuracy

of the approximation of f by its projection onto these eigenfunctions.

With modern arguments, we have provided a much shorter proof of

these properties than in the original work of (Ermakov and Zolotukhin,

1960). Beyond this, little is known on the EZ estimator. While coming

with a less interpretable variance, the more direct estimator proposed

by Bardenet and Hardy (BH, 2020) has an intrinsic connection with

the classical Gauss quadrature and further enjoys stronger theoretical

properties when using multivariate Jacobi ensemble.

Our experiments highlight the key features of both estimators when

the underlying DPP is a multivariate Jacobi ensemble, and further

demonstrate the known properties of the BH estimator in yet un-

explored regimes. Although EZ shows a surprisingly fast empirical

convergence rate for d ≤ 2, its behavior is more erratic for d ≥ 3.

Ill-conditioning of the linear system is a potential source of outliers in

the distribution of the estimator. Regularization may help but would

introduce a stability/bias trade-off. More generally, EZ seems worth

investigating for integration or even interpolation tasks where the func-

tion is known to be decomposable in the eigenbasis of the kernel, i.e.,

in a setting similar to the one of Bach (2017). Finally, the new imple-

mentation of an exact sampler for multivariate Jacobi ensemble unlocks

more large-scale empirical investigations and asks for more theoretical

work.
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Appendices

4.a Further experiments

4.A.1 Integrating absolute value

We consider estimating the integral

∫

[−1,1]d

d∏

i=1

|xi|(1− xi)ai(1 + xi)b
i

dxi, (4.A.1)

where a1, b1 = − 1
2 and ai, bi i.i.d. uniformly in [− 1

2 ,
1
2 ], using BH

(4.3.1) and EZ (4.3.13) estimators. Results are given in Figure 4.A.1.
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Figure 4.A.1: Comparison of

Î BH
N and Î EZ

N for absolute value,

cf. Section 4.5.3.

In dimension d = 1, the absolute value is well approximated by its

truncated Taylor series of low order and EZ performs very well, but

as the dimension increases, its performance is more erratic. For d ≤ 2,

the performance of BH is smooth and better that vanilla Monte Carlo.

In particular, for d ≤ 2, the rate 1/N1+1/d seems to hold for BH while

the conditions for the CLT (4.3.3) are not satisfied. But it seems no

longer true in larger dimension.

4.A.2 Integrating Heaviside

Let H(x) =





1, if x > 0

0, otherwise
. We consider estimating the integral

∫

[−1,1]d

d∏

i=1

2

(
H(xi)− 1

2

)
(1− xi)ai(1 + xi)b

i

dxi, (4.A.2)

where a1, b1 = − 1
2 and ai, bi i.i.d. uniformly in [− 1

2 ,
1
2 ], using BH

(4.3.1) and EZ (4.3.13) estimators. Results are given in Figure 4.A.2.
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Figure 4.A.2: Comparison of

Î BH
N and Î EZ

N for Heaviside func-

tion, cf. Section 4.5.3.

The EZ estimator behaves in a very erratic way; it does not seem ro-

bust to the discontinuity we have introduced. This can be explained by
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considering H(x) = 1
2 limε→0 1 + tanh x

ε and taking the product of the

Taylor series expansions of tanh; the square of the coefficients in front

of the monomials in such expansion become very large as ε→ 0. One

could expect better behavior for very large N . The performance of BH

is smooth and the rate 1/N1+1/d seems to hold despite the conditions

for the CLT (4.3.3) are not satisfied.

4.A.3 Integrating cosine

We consider estimating the integral

∫

[−1,1]d

d∏

i=1

cos(πxi)(1− xi)ai(1 + xi)b
i

dxi, (4.A.3)

where a1, b1 = − 1
2 and ai, bi i.i.d. uniformly in [− 1

2 ,
1
2 ], using BH

(4.3.1) and EZ (4.3.13) estimators. Results are given in Figure 4.A.3.
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Figure 4.A.3: Comparison

of Î BH
N and Î EZ

N for cosine,

cf. Section 4.5.3.

The EZ estimator behaves well for d ≤ 2 but its performance dete-

riorates for d ≥ 3. Indeed, the cross terms arising from the Taylor

expansion of the different cos(πxi) introduce monomials, associated to

large coefficients, that do not belong to HN . One could expect better

behavior for very large N . For d ≤ 2, the rate 1/N1+1/d for BH seems

to hold despite the conditions for the CLT (4.3.3) are not satisfied.

For d ≥ 3, BH and vanilla Monte Carlo behave similarly.

4.A.4 Integrating a mixture of smooth and non smooth functions

Let f(x) = H(x)(cos(πx) + cos(2πx) + sin(5πx)). We consider esti-

mating the integral

∫

[−1,1]d

d∏

i=1

f(xi)(1− xi)ai(1 + xi)b
i

dxi, (4.A.4)

where a1, b1 = − 1
2 and ai, bi i.i.d. uniformly in [− 1

2 ,
1
2 ], using BH

(4.3.1) and EZ (4.3.13) estimators.
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This chapter presents our contribution1 regarding sampling algo-
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rithms for β-ensembles with time complexity less than cubic in the

cardinality of the ensemble. Since there are many long equations, we

shift to a larger text layout.

β-ensembles are probability distributions of the form

1

Zβ,N
|∆(x1, . . . , xN )|β

N∏

n=1

e−V (xn) dxn, x1, . . . , xN ∈ R, (5.0.1)

where ∆(x1, . . . , xN ) =
∏
i<j(xj − xi) is the Vandermonde determi-

nant, β > 0 is akin to an inverse temperature in statistical physics, and

V : R → R is called the potential. Loosely speaking, one can think of

(5.0.1) as representing the position of N particles living on the real line,

confined by the potential V , and repelling each other through the Van-

dermonde determinant. As this interpretation suggests, β-ensembles

arise as models in statistical physics (Forrester, 2010, Chapters 1 to 3).

They are also famous as eigenvalue distribution of the classical ran-

dom matrix models. The particular values β ∈ {1, 2, 4} respectively

appear when considering specific random matrices with real, complex,

or quaternionic Gaussian entries; see e.g., Forrester (2010), or (Ander-

son, Guionnet, and Zeitouni, 2009, Chapter 4).

The case β = 2 is of particular interest, since the distribution of {x1, . . . , xN} then becomes a particular

projection DPP, called an orthogonal polynomial ensemble (OPE, König, 2004). In the context of Monte

Carlo integration, see Chapter 4, we already used the so-called Jacobi OPE where e−V (x) is proportional to

the density of a Beta distribution.

Numerical procedures to generate samples from β-ensembles are also needed to establish conjectures in

statistical physics or random matrix theory. For instance, using a tailored version of the generic DPP sampler

of Hough et al. (2006), Olver, Nadakuditi, and Trogdon (2014) explore so-called universality properties in

random matrix theory, and make conjectures on the law of maxxi when β = 2 and V is a polynomial of

degree 4. Chafäı and Ferré (2018) rather use Hamiltonian Monte Carlo to approximately sample from various

Coulomb gases, including (5.0.1) with β = 2 and V (x) = x4/4, and investigate their limiting features when

N → ∞. From a different perspective, Li and Menon (2013) view (5.0.1) as the equilibrium distribution

for the Dyson Brownian motion associated to the potential V . When β = 2, they generate approximate

samples by discretizing the corresponding stochastic differential equation.

Sampling algorithms for β-ensembles come in three different guises, which we describe in increasing order

of complexity. First, when β > 0 and V is the negative logarithm of a Gaussian, gamma, or beta pdf,

we speak of the Hermite, Laguerre, and Jacobi β-ensemble, respectively. Dumitriu and Edelman (2002)

showed that the Hermite and Laguerre β-ensembles can be characterized as the eigenvalue distribution of a

random tridiagonal matrix with easy-to-sample independent entries. This gives a O(N2) sampling algorithm.

Dumitriu and Edelman (2002) expected the same to hold for the Jacobi β-ensemble, which was later proved

by Killip and Nenciu (2004).

Second, when β = 2, the generic projection DPP sampler of Hough et al. (2006) applies. That there

http://arxiv.org/abs/2003.02344
http://arxiv.org/abs/2003.02344
http://arxiv.org/abs/2003.02344
https://github.com/guilgautier/DPPy
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actually exists an exact sampler is maybe surprising, and it is a particular feature of DPPs among interacting

particle systems. The procedure remains costly, though. It has at least a cubic cost in N , with the total cost

further depending on rejection sampling subroutines, the cost of which is case-dependent and has been left

uninvestigated. Additionally, it is required in this procedure to numerically evaluate the first N orthonormal

polynomials pk, k = 0, . . . , N − 1 with respect to e−V (x) dx. This is traditionally done using their recurrence

relation √
bk−1pk−1(x) + akpk(x) +

√
bkpk+1(x) = xpk(x), (5.0.2)

see e.g., Gautschi (2004). In the Hermite, Laguerre, and Jacobi case, the recurrence coefficients ak, bk

are known, but as we just saw, these three cases are already covered by a computationally more efficient

tridiagonal matrix model. When the coefficients in (5.0.2) are not known, one can either rely on the Stieltjes

algorithm (Gautschi, 2004, Section 2.2) or numerically solve a Riemann-Hilbert problem (Olver, 2011). The

latter is theoretically only an O(N) overcost.

A third algorithm is Markov chain Monte Carlo (MCMC, see e.g., Robert and Casella, 2004), which is

in principle valid for any β > 0 and any V that gives a well-defined distribution in (5.0.1). MCMC only

requires to evaluate the pdf in (5.0.1) pointwise and up to a constant, but it only delivers approximate

samples of (5.0.1), in the sense that it outputs a sample from a Markov chain with (5.0.1) as its limiting

distribution. The issue is that the performance of MCMC samplers – the mixing time of the Markov chain –

deteriorates when N � 1, which is typically the regime of interest for conjectures in random matrix theory

or statistical physics. Hybrid Monte Carlo (HMC, Duane et al., 1987; Neal, 2011) is an MCMC sampler

that has demonstrated good mixing in high-dimensional problems, provided one can evaluate the gradient

of the pdf in (5.0.1). For β-ensembles with β = 2, Chafäı and Ferré (2018) provide empirical evidence that

the output of HMC successfully reproduces known limiting features of the large N regime, and they raise

new conjectures. The main limitation of this approach is the large number of MCMC iterations required by

HMC: Chafäı and Ferré (2018) require at least 104 iterations and are restricted to N ≤ 50.

In this chapter, we further investigate fast samplers of β-ensembles. Our contributions are twofold.

First we gather existing tools from different communities to give an elementary treatement of the tridiag-

onal models for the Hermite, Laguerre, and Jacobi β-ensembles. This proof crucially relies on successive

reparametrizations of the recurrence coefficients in (5.0.2) and unifies the treatment of tridiagonal models for

the three classical β-ensembles, pioneered with two different methods by Dumitriu and Edelman (2002) and

Killip and Nenciu (2004). We take no credit for the originality of the proof: the credit should go – among

others cited below – to Dette and Nagel (2012), who studied distributions on the space of moments, and

recognized these three β-ensembles as corresponding to natural distributions over moments. We rather take

credit for a stand-alone and elementary version of this unifying proof, using only basic facts on orthogonal

polynomials and linear algebra.

Our second contribution is an MCMC sampler that applies to polynomial potentials. For V of degree

at most 6, we give experimental evidence that the resulting Markov chain mixes extremely fast, which

confirms an intuition of Krishnapur, Rider, and Virág (2016, Section 2). On a variety of potentials, we

demonstrate that our simple Gibbs Markov kernel yields a much cheaper (although approximate) sampler

than the exact procedure of Hough et al. (2006, for β = 2). Importantly, our Markov kernel outperforms

the HMC approach of Chafäı and Ferré (2018) applied to β-ensembles. To give an idea, we are able to

reproduce known features of (5.0.1) for values of N in the hundreds, using only a few Gibbs sweeps, totaling

a few seconds on a modern laptop: it takes roughly 10s for N = 200 points and less than a minute for

N = 1000 points. That such a basic Gibbs kernel can outperform HMC may seem surprising. The key is

that we exploit the structure of β-ensembles by defining a Markov chain on the recurrence coefficients of

orthogonal polynomials. These recurrence coefficients are defined similarly to (5.0.2), but this time using the

orthogonal polynomials with respect to a random discrete measure, the support of which is the β-ensemble.

Intuitively, in that new parametrization, the interaction between variables is short-range compared to the

interaction among particles in (5.0.1), and Gibbs sampling thus becomes easier. In this sense, our MCMC

kernel extends the tridiagonal models of the three classical β-ensembles. Finally, we note that all experiments
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can be reproduced using our DPPy toolbox (Gautier et al., 2019, https://github.com/guilgautier/DPPy),

which features all samplers described here.

The rest of the chapter is organized as follows. In Section 5.1, we survey existing results on tridiagonal

models for β-ensembles. Known exact sampling results actually take the form of diagonalizing random

Jacobi matrices, that is, tridiagonal matrices with entries the recurrence coefficients of a sequence of or-

thogonal polynomials. We introduce the necessary background on orthogonal polynomials in Section 5.2. In

Section 5.3, we perform the change of variables between the points of a β-ensemble augmented with weights

and the entries of a Jacobi matrix. In Section 5.4, we give an elementary proof of the known results on

tridiagonal models. Finally, in Section 5.5, we demonstrate the potential of a simple MCMC scheme based

on a Gibbs kernel, to sample Jacobi matrices corresponding to β-ensembles with polynomial potentials.

5.1 Classical β-ensembles and their tridiagonal models

The Hermite, Laguerre and Jacobi β-ensembles were originally defined for β ∈ {1, 2, 4}, as the eigenvalue

distribution of some random full matrices; see e.g., Anderson, Guionnet, and Zeitouni (2009). The latter

matrices are symmetrizations of matrices filled with i.i.d. real, complex, or quarternionic Gaussian variables

when β is respectively 1, 2, and 4. In this section, we recall the seminal results of Dumitriu and Edel-

man (2002) and Killip and Nenciu (2004) regarding the construction of real-symmetric tridiagonal random

matrices, whose eigenvalues follow the classical Hermite, Laguerre and Jacobi β-ensembles. These results

actually allow any β ∈ (0,+∞), and can be interpreted as samplers with O(N2) time complexity, by simply

diagonalizing the proposed tridiagonal matrices.

Let a , (a1, . . . , aN ) ∈ RN , b , (b1, . . . , bN−1) ∈ (0,+∞)N−1, and define the tridiagonal matrix

Ja,b ,




a1

√
b1 (0)

√
b1 a2

. . .

. . .
. . .

√
bN−1

(0)
√
bN−1 aN



. (5.1.1)

Such a matrix is called a Jacobi matrix. As we will see in Section 5.2, Jacobi matrices naturally arise in the

study of orthogonal polynomials.

To derive the random tridiagonal matrix model for the Hermite β-ensemble, Dumitriu and Edelman

(2002) started from the original random full matrix model for the Hermite ensemble with β = 1. More

specifically, they considered the symmetric part of a random matrix filled with i.i.d. unit Gaussians, and

applied Householder transformations to reduce it to tridiagonal form, as in, e.g., Golub and Van Loan (2013,

Section 5.4.8).

Theorem 5.1.1 (Dumitriu and Edelman, 2002, II C, for µ = 0 and σ = 1). The Hermite β-ensemble, defined

as (5.0.1) with potential V (x) = 1
2σ2 (x − µ)2, corresponds to the eigenvalue distribution of the tridiagonal

matrix Ja,b in (5.1.1), with entries drawn independently as

an ∼ N
(
µ, σ2

)
, and bn ∼ Γ

(
β

2
(N − n), σ2

)
. (5.1.2)

For the Laguerre β-ensemble, Dumitriu and Edelman (2002) used the same linear algebra techniques start-

ing from the original full matrix model defining the Laguerre β-ensemble for β = 1. The latter corresponds

to the eigenvalue distribution of the covariance matrix XXT of i.i.d. N (0, I) vectors. More specifically, they

reduced the matrix X to bidiagonal form, see, e.g., Golub and Van Loan (2013, Section 8.3.1).

https://github.com/guilgautier/DPPy
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Theorem 5.1.2 (Dumitriu and Edelman, 2002, III B, for k = β
2 (M − N + 1) and θ = 2).

The Laguerre β-ensemble, defined as (5.0.1) with potential V (x) = −(k− 1) log(x) + x
θ , corresponds to the

eigenvalue distribution of the tridiagonal matrix Ja,b in (5.1.1) parametrized by

a1 = ξ1 , and an = ξ2n−2 + ξ2n−1 , for 2 ≤ n ≤ N, and

bn = ξ2n−1ξ2n , for 1 ≤ n ≤ N − 1,
(5.1.3)

with independent coefficients

ξ2n−1 ∼ Γ

(
β

2
(N − n) + k, θ

)
, and ξ2n ∼ Γ

(
β

2
(N − n), θ

)
. (5.1.4)

Dumitriu and Edelman (2002) left the construction of a tridiagonal model for the Jacobi β-ensemble as

an open problem. Killip and Nenciu (2004) found such a model as a byproduct of their study of the Circular

β-ensemble. The latter ensemble is originally defined, for β ∈ {1, 2, 4}, as the eigenvalue distribution

of orthogonal, unitary and symplectic matrices drawn uniformly at random from the corresponding Haar

measures. First, Killip and Nenciu (2004) applied Householder transformations to reduce to quindiagonal

form a unitary matrix drawn uniformly at random. Second, they projected the resulting eigenvalues onto

the real line to obtain the tridiagonal model for the Jacobi β-ensemble.

Theorem 5.1.3 (Killip and Nenciu, 2004, Theorem 2). The Jacobi β-ensemble, defined as (5.0.1) with

potential V (x) = −[(a − 1) log(x) + (b − 1) log(1 − x)], corresponds to the eigenvalue distribution of the

tridiagonal matrix Ja,b in (5.1.1) parametrized by

a1 = c1 , an = (1 − c2n−3)c2n−2 + (1 − c2n−2)c2n−1 , for 2 ≤ n ≤ N,

b1 = c1(1 − c1)c2 , bn = (1 − c2n−2)c2n−1(1 − c2n−1)c2n , for 2 ≤ n ≤ N − 1,
(5.1.5)

with independent coefficients

c2n−1 ∼ Beta

(
β

2
(N − n) + a,

β

2
(N − n) + b

)
, and

c2n ∼ Beta

(
β

2
(N − n),

β

2
(N − n − 1) + a + b

)
.

(5.1.6)

Observe how the stars align for these three special β-ensembles: Hermite, Laguerre, and Jacobi. The

coefficients in successive parameterizations of the Jacobi matrix Ja,b are independent with easy-to-sample

distributions. From a practical point of view, for any β > 0, the computation of the eigenvalues of these

random real-symmetric tridiagonal matrices can be seen as a O(N 2) sampler for each of the model; see

Coakley and Rokhlin (2013) for practical approaches to diagonalizing such matrices that can even run in

quasi-linear time.

Studying distributions over the space of moments, Dette and Nagel (2012) elegantly derived the three

classical tridiagonal models as the supports of random atomic measures corresponding to natural moment

distributions. On our side, we provide a unified treatment of these three classical models using a more

pedestrian, sampling-motivated approach. To do this, we consider an atomic measure µ =
∑N

n=1 ωnδxn ,

whose support points are distributed as a target β-ensemble, and take the Jacobi matrix Ja,b in (5.1.1)

with coefficients the recurrence coefficients (5.0.2) of the orthonormal polynomials w.r.t. µ. We shall see in

Section 5.2 that the recurrence coefficients are a suitable reparametrization of the atomic measure µ. In

particular, the support of µ actually coincides with the eigenvalues of Ja,b, so that a tridiagonal model for

the support of µ follows from knowing how to randomize Ja,b.

The first step of our proof will be to rederive Theorem 5.1.4, which allows changing variables from the

nodes and weights of an atomic measure µ to the recurrence coefficients defining the Jacobi matrix Ja,b.

Note that the specific choice of distribution on the weights is simply of mathematical convenience.
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Theorem 5.1.4 (Krishnapur, Rider, and Virág, 2016, Proposition 2). Consider a random atomic measure

µ =
∑N
n=1 ωnδxn , with nodes and weights independently distributed according to a β-ensemble with potential

V (5.0.1) and a Dirichlet Dir(β/2), respectively. Otherly put, the joint distribution of (x1, . . . , xN , w1, . . . , wN )

is proportional to

|∆(x1, . . . , xN )|β e
−

N∑
n=1

V (xn)
dx1:N

N∏

n=1

w
β
2−1
n 1wn≥01∑N

n=1 wn=1dw1:N−1. (5.1.7)

Then, the entries of Ja,b in (5.1.1), i.e., the recurrence coefficients associated to µ have joint distribution

proportional to
N−1∏

n=1

b
β
2 (N−n)−1
n e−Tr[V (Ja,b)] da1:Ndb1:N−1. (5.1.8)

In Section 5.3, we first re-prove that the change of variables underlying Theorem 5.1.4 is valid. Then, in

Section 5.4, we obtain the three classical tridiagonal models of Theorems 5.1.1, 5.1.2, and 5.1.3 as instances

of this result, using further smart-but-simple changes of variables. Before delving into the proof, we survey

how Jacobi matrices naturally appear in the theory of orthogonal polynomials.

5.2 Atomic measures, moments and Jacobi matrices

Throughout this section, we let µ =
∑N
n=1 wnδxn be a discrete probability measure on R with N distinct

atoms x1, . . . , xN and positive weights ω1, . . . , ωN . We further denote its moments by

mk ,
N∑

n=1

wnx
k
n, k ≥ 0.

5.2.1 Orthogonal polynomials and Jacobi matrices

This section closely follows Simon (2011, Section 1.3), to which we refer for details. Applying the Gram-

Schmidt procedure in L2(µ) to the monomials (x 7→ xk)N−1
k=0 yields monic polynomials (Pk)N−1

k=0 with degPk =

k and

〈Pk, P`〉µ ,
N∑

n=1

wnPk(xn)P`(xn) = 0, k 6= `. (5.2.1)

These polynomials are called the monic orthogonal polynomials (monic OPs, in short) with respect to µ.

We define the N -th monic OP as

PN (x) =

N∏

n=1

(x− xn).

Since ‖PN‖µ , 〈PN , PN 〉µ = 0, PN is the zero vector of L2(µ): it is orthogonal to all Pk with k ≤ N − 1.

Furthermore, for any n < N , since 〈xPn, Pk〉µ = 〈Pn, xPk〉µ = 0 for k < n − 1, the polynomial xPn can

be uniquely expressed using only Pn−1, Pn and Pn+1. This is usually phrased as follows. The monic OPs

satisfy a three-term recurrence relation involving two sequences of recurrence coefficients, namely

P−1 ≡ 0, P0 ≡ 1 and

xPn(x) = bnPn−1(x) + an+1Pn(x) + Pn+1(x), ∀0 ≤ n < N,
(5.2.2)

where a = a1:N = (an) ∈ RN , and b = b1:N−1 = (bn) ∈ (0,+∞)N−1. These relations can be written in

matrix form as 


a1 1 (0)

b1 a2
. . .

. . .
. . . 1

(0) bN−1 aN







P0(x)
...

PN−2(x)

PN−1(x)




= x




P0(x)
...

PN−2(x)

PN−1(x)



−




0
...

0

PN (x)



. (5.2.3)



94 on sampling determinantal point processes

From (5.2.3), it is clear that the roots of PN are also eigenvalues of the tridiagonal matrix Ta,b appearing

on the left-hand side. Roots and eigenvalues actually coincide since PN has N distinct roots by definition.

A lot more can be said on the links between OPs and their recurrence coefficients. For instance, Propo-

sition 5.2.1 will be of use later on.

Proposition 5.2.1. The squared norms of the monic polynomials (Pn)N−1
n=0 can be expressed as

‖P0‖2
µ = 1, ‖Pk‖2

µ =

k∏

n=1

bn , ∀1 ≤ k ≤ N − 1. (5.2.4)

Proof. For k = 0, ‖P0‖2
µ =

∑N
n=1 wn = 1. Then, for any 1 ≤ k ≤ N − 1,

〈(5.2.2), Pk−1〉µ ⇐⇒ 〈xPk , Pk−1〉µ = 〈bkPk−1 , Pk−1〉µ
⇐⇒ 〈Pk , xPk−1〉µ = bk〈Pk−1 , Pk−1〉µ
⇐⇒ 〈Pk , xn〉µ = bk‖Pk−1‖2

µ

⇐⇒ ‖Pk‖2
µ = bk‖Pk−1‖2

µ ,

and a simple recursion provides ‖Pk‖2
µ =

∏k
n=1 bn > 0.

Denoting by D = diag(‖P0‖, . . . , ‖PN−1‖), Proposition 5.2.1 yields Ja,b = D−1Ta,bD, where we recall

that the Jacobi matrix Ja,b was defined in (5.1.1). This yields the following proposition.

Proposition 5.2.2. The atoms of µ, coincide with the eigenvalues of Ja,b, where the coefficients of the

matrix are taken to be the recurrence coefficients of the monic OPs with respect to µ.

Proposition 5.2.2 already gives a tentative O(N 2) sampling algorithm for β-ensembles: find a distribution

over Jacobi matrices such that the eigenvalues form the desired β-ensemble. This is precisely what the

tridiagonal models of Dumitriu and Edelman (2002) do; see Theorem 5.1.1. To give a complete elementary

proof, we need to perform a change of variables from the atoms and weights of µ to the recurrence coefficients.

The rest of this section introduces the tools needed for this change of variables, which is then performed in

Section 5.3.

So far, we have explained how to obtain a Jacobi matrix from an atomic measure with finite support. The

reverse construction is also possible and elementary. This is called Favard’s theorem for atomic measures

with finite support. To save space and because our proof would be a simple copy of Simon’s book, we only

give a reference. We have used the same notation as Simon throughout this section, for ease of reference.

Theorem 5.2.3 (Simon, 2011, Theorem 1.3.3). Let

RN> , {x1 , . . . , xN ∈ R | x1 > · · · > xN } and SN ,

{
ω1 , . . . , ωN−1 > 0 |

N−1∑

n=1

ωn < 1

}
. (5.2.5)

Favard’s map

ψ :
RN> × SN −→ RN × (0,+∞)N−1

(x1:N , w1:N−1) 7−→ (a1:N , b1:N−1)
(5.2.6)

linking the nodes and weights of µ =
∑N

n=1 wnδxn with the entries of the corresponding Jacobi matrix Ja,b

defined in (5.1.1), is one-to-one and onto.

Note that whenever w1:N−1 ∈ SN , we always set wN = 1−∑N−1
n=1 ωn, so that µ is a probability measure.

As a side remark, the weights w1:N of µ can also be expressed using evaluations of the monic OPs on the

support of µ (Simon, 2011, Proposition 1.3.1): for all n = 1, . . . , N ,

wn =
1

KN (xn , xn)
, with KN (x, y) =

N−1∑

k=0

Pk(x)Pk(y)

‖Pk‖2
µ

· (5.2.7)

These weights are reminiscent of Gaussian quadrature (Gautschi, 2004, Section 1.4.2), where the OPs are

usually w.r.t. a non-atomic measure.
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5.2.2 Orthogonal polynomials and moments

We know from Theorem 5.2.3 that the change of variables ψ is a bijection. In order to prove that φ

is a C1-diffeomorphism and compute its Jacobian in Section 5.3, we pause to introduce an intermediate

parametrization through moments. Intuitively, the moments are responsible for the Vandermonde determi-

nant in (5.0.1).

The monic orthogonal polynomials (Pn)Nn=0 w.r.t.µ can also be expressed in terms of the moments (mk)

of µ. First, define the following moment matrices, see, e.g., Dette and Studden (1997, Equation 1.4.3).

Definition 5.2.4. Let

H2n = [mi+j ]
n
i,j=0 =




m0 · · · mn

...
...

...

mn · · · m2n


 (5.2.8)

H2n+1 = [mi+j+1]
n
i,j=0 =




m1 · · · mn+1

...
...

...

mn+1 · · · m2n+1


 (5.2.9)

H2n+1 = [mi+j −mi+j+1]
n
i,j=0 =




m0 −m1 · · · mn −mn+1

...
...

...

mn −mn+1 · · · m2n −m2n+1


. (5.2.10)

where H stands for Hankel matrix.

In the definition of β-ensembles (5.0.1), the determinant of the Vandermonde matrix

∆(x1, . . . , xn) ,




1 · · · 1

x1 · · · xn
...

xn−1
1 · · · xn−1

n



, (5.2.11)

comes out naturally when taking the determinant of moment matrices associated to discrete measures.

Lemma 5.2.5. It holds that

∣∣H2n−2

∣∣





> 0, for any 1 ≤ n ≤ N,
= |∆(x1, . . . , xN )|2∏N

n=1 wn, for n = N,

= 0, for n > N.

(5.2.12)

Moreover, we have

∣∣H2N−1

∣∣ =
∣∣H2N−2

∣∣
N∏

n=1

xn and
∣∣H2N−1

∣∣ =
∣∣H2N−2

∣∣
N∏

n=1

(1− xn). (5.2.13)

Proof. For any 1 ≤ n ≤ N , the Cauchy-Binet formula yields

∣∣H2n−2

∣∣ =

∣∣∣∣∣
N∑

k=1

wkx
i+j
k

∣∣∣∣∣

n−1

i,j=0

=

∣∣∣∣∣∣∣∣∣∣




1 · · · 1

x1 · · · xN
...

...
...

xn−1
1 · · · xn−1

N







w1

. . .

wN







1 x1 · · · xn−1
1

...
... · · ·

...

1 xN · · · xn−1
N




∣∣∣∣∣∣∣∣∣∣

(5.2.14)

=
∑

{i1,...,in}⊂[N ]

|∆(xi1 , . . . , xin)|2
n∏

k=1

wik > 0.

https://en.wikipedia.org/wiki/Hankel_matrix
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The particular case n = N yields

∣∣H2N−2

∣∣ = |∆(x1, . . . , xN )|2
N∏

n=1

wn.

In the same vein, the two other determinants are obtained starting from

∣∣H 2N−1

∣∣ =

∣∣∣∣∣
N∑

n=1

wnx
i+j
n xn

∣∣∣∣∣

N−1

i,j=0

and
∣∣H 2N−1

∣∣ =

∣∣∣∣∣
N∑

n=1

wnx
i+j
n (1 − xn)

∣∣∣∣∣

N−1

i,j=0

.

For n > N , (5.2.14) clearly shows that H 2n−2 is rank deficient.

Moment matrices also provide an alternative description of orthogonal polynomials.

Proposition 5.2.6. The monic polynomials (Pn)
N
n=0 orthogonal with respect to µ =

∑N
n=1 wnδxn admit

the following expression

P0 = 1 and Pn(x) =
1∣∣H2n−2

∣∣

∣∣∣∣∣∣∣∣
H2n−2

1
...

mn · · · m2n−1 xn

∣∣∣∣∣∣∣∣
, ∀1 ≤ n ≤ N. (5.2.15)

Besides,

‖P0‖2µ = 1 and ‖Pn‖2µ =
|H2n|∣∣H2n−2

∣∣ , ∀1 ≤ n ≤ N. (5.2.16)

In particular, PN (x) =
∏N
n=1(x− xn) is the zero vector of L2(µ).

Proof. The previous Lemma 5.2.5 validates the definition of (Pn)Nn=0 as a sequence of monic polynomials

with degPn = n since the denominator
∣∣H2n−2

∣∣ > 0. They are also mutually orthogonal. To see this, let

1 ≤ n ≤ N , then

〈
Pn, x

k
〉
µ

=
1∣∣H2n−2

∣∣

∣∣∣∣∣∣∣∣

m0 · · · mn−1 mk

...
...

...

mn · · · m2n−1 mn+k

∣∣∣∣∣∣∣∣
= 0, ∀k < n.

Moreover, ∀1 ≤ n ≤ N ,

‖Pn‖2µ = 〈Pn, Pn〉µ = 〈Pn, xn〉µ =
|H2n|∣∣H2n−2

∣∣ ·

Then, Lemma 5.2.5 yields ‖PN‖2µ =
|H2N |
|H2N−2| = 0. Thus, the distinct support points of µ are zeros of PN .

But the latter is monic with degPN = N , hence PN =
∏N
n=1(x− xn).

The next result further relates moment matrices and the recurrence coefficients.

Lemma 5.2.7. The moment matrix H2N−2 associated to µ =
∑N
n=1 wnδxn has determinant

∣∣H2N−2

∣∣ = |∆(x1, . . . , xN )|2
N∏

n=1

wn =

N−1∏

n=1

bN−nn . (5.2.17)

Proof. The first equality was established in Lemma 5.2.5. The second results from a simple recursion

combining (5.2.4) (5.2.16). For any 1 ≤ k ≤ N − 1,

‖Pk‖2µ =
|H2k|∣∣H2k−2

∣∣ =

k∏

n=1

bn =⇒ |H2k| =
k∏

`=1

∏̀

n=1

bn =

k∏

n=1

bk+1−n
n . (5.2.18)
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In order to generate samples from a β-ensemble, the previous Lemma 5.2.7 already hints what tridi-

agonal models can achieve: if we see the β-ensemble as the support of a random atomic measure, which

is parametrized by its recurrence coefficients, then the complex interaction term that is the Vandermonde

determinant in (5.0.1) gets replaced by a simple product of powers of bns. This intuition, formalized in

Theorem 5.1.4, requires to make explicit the change of variables between the nodes and weights of µ and

the recurrence coefficients of the corresponding Jacobi matrix Ja,b.

5.3 Making the change of variables

To compute the Jacobian of Favard’s map (x1:N , ω1:N ) 7→ (a1:N , b1:N−1), defined in Theorem 5.2.3, we

first compute the Jacobian of the moment map (x1:N , ω1:N ) 7→ (m1:2N−1), and then use the lattice path

construction of Hardy (2017) to express the Jacobian of (m1:2N−1) 7→ (a1:N , b1:N−1). We mention that

the overall Jacobian has already been derived, in a more concise style, by Forrester and Rains (2006) and

Krishnapur, Rider, and Virág (2016). Our contribution in this section is to give all details while remaining

as elementary as possible. In particular, we only rely on Favard’s theorem for atomic measures, and the

proof of Theorem 5.1.4 boils down to checking that the changes of variables are C1-diffeomorphisms.

Let φ : RN> × SN → R2N−1 map a set of N distinct atoms and N − 1 positive weights to their moments

(mk). Let M⊂ R2N−1 be the image of φ.

Proposition 5.3.1 (From atomic measures to moments). M ⊂ R2N−1 is open, φ is a C1-diffeomorphism

from RN> × SN onto M, and

∣∣∣∣
∂m1:2N−1

∂x1:N , w1:N−1

∣∣∣∣ = |∆(x1, . . . , xN )|4
N∏

n=1

wn =

∣∣H2N−2

∣∣2
∏N
n=1 wn

, (5.3.1)

where the Hankel matrix H2N−2 is defined by (5.2.8).

Proof. Moments define monic OPs; see Proposition 5.2.15. By Favard’s Theorem 5.2.3, monic OPs in turn

define the atoms and weights of µ uniquely. Thus, φ is injective. Moreover RN> × SN ⊂ R2N−1 is open, and

φ is C1. By the classical inverse function theorem, see e.g., Cartan (1971, Corollary 4.2.2), it is thus enough

to show that the Jacobian of φ never vanishes.

The i-th moment of µ can be written in two forms

mi =

N∑

j=1

wjx
i
j =

N−1∑

j=1

wj
(
xij − xiN

)
+ xiN , (5.3.2)

so that
∂mi

∂xj
= iwjx

i−1
j and

∂mi

∂wj
= xij − xiN . (5.3.3)

Thus,

∣∣∣∣
∂m1:2N−1

∂x1:N , w1:N−1

∣∣∣∣ =

∣∣∣∣∣∣

[[
∂mi

∂xj

∂mi

∂wj

]N−1

j=1

[
∂mi

∂xN

]]2N−1

i=1

∣∣∣∣∣∣

=

∣∣∣∣
[[
iwjx

i−1
j xij − xiN

]N−1

j=1
iwNx

i−1
N

]2N−1

i=1

∣∣∣∣

=

∣∣∣∣
[[
ixi−1
j xij − xiN

]N−1

j=1
ixi−1
N

]2N−1

i=1

∣∣∣∣×
N∏

n=1

wn

=

∣∣∣∣
[[

(i− 1)xi−2
j xi−1

j − xi−1
N

]N−1

j=1
(i− 1)xi−2

N xi−1
N

]2N
i=1

∣∣∣∣×
N∏

n=1

wn

=
∣∣∣
[
(i− 1)xi−2

j xi−1
j

]2N,N
i=1,j=1

∣∣∣
N∏

n=1

wn. (5.3.4)
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The last equality is obtained by adding the last column to all other even columns. The determinant in

(5.3.4) is called a confluent Vandermonde determinant, and has closed form expression

∣∣∣
[
(i− 1)xi−2

j xi−1
j

]2N,N
i=1,j=1

∣∣∣ =
∏

1≤i<j≤N
(xj − xi)2×2 = |∆(x1, . . . , xN )|4,

see, e.g., Ha and Gibson (1980, Corollary 1, with ηi ≡ 2) In particular, (5.3.4) never vanishes on RN> ×
SN .

Let us now consider the map

ρ : M→ RN × (0,+∞)N−1 , (5.3.5)

that takes moments m1:2N−1 and returns the recurrence coefficients (a1:N , b1:N−1).

Proposition 5.3.2 (From recurrence coefficients to moments). ρ is a C1-diffeomorphism from M onto

RN × (0,+∞)N−1, and

∣∣∣∣
∂m1:2N−1

∂a1:N , b1:N−1

∣∣∣∣ =

N−1∏

n=1

b2(N−n)−1
n =

∣∣H 2N−2

∣∣2
∏N−1
n=1 bn

, (5.3.6)

where the Hankel matrix H 2N−2 is defined by (5.2.8).

Proof. Using Theorem 5.2.3 and Proposition 5.3.1, ρ = ψ ◦ φ−1, so that ρ is bijective. As in the proof

of Proposition 5.3.1, we apply the inverse function theorem (Cartan, 1971, Corollary 4.2.2), but this time

to ρ−1. We first note that RN × (0,+∞)N−1 ⊂ R2N−1 is open. It is thus enough to show that ρ−1 is

C1 and that its Jacobian never vanishes. To this end, we borrow an elegant lattice path representation of

the recurrence relations for OPs from Hardy (2017, Equation 1.8). This allows us to express the successive

moments as polynomials in the recurrence coefficients.

To provide intuition, we first compute the first few moments by hand, recursively applying the recurrence

relation (5.2.2). It comes

m1 = 〈xP0 , P0〉 = 1 ·����〈P1 , P0〉 + a1 · 〈P0 , P0〉 + 0 = a1 ,

m2 =
〈
x2P0 , P0

〉
= 1 · 〈xP1 , P0〉 + a1 · 〈xP0 , P0〉 + 0

= 1 · (1 ·����〈P2 , P0〉 + a2 ·����〈P1 , P0〉 + b1〈P0 , P0〉)
+ a1 · (1 ·����〈P1 , P0〉 + a1 · 〈P0 , P0〉 + 0)

= 1 · b1 + a1 · a1 ,

m3 =
〈
x3P0 , P0

〉
= 1 ·

〈
x2P1 , P0

〉
+ a1 ·

〈
x2P0 , P0

〉
+ 0

= 1 · (1 · 〈xP2 , P0〉 + a2 · 〈xP1 , P0〉 + b1 · 〈xP0 , P0〉)
+ a1 · (1 · 〈xP1 , P0〉 + a1 · 〈xP0 , P0〉 + 0)

= 1 · 1 · (1 ·����〈P3 , P0〉 + a3 ·����〈P2 , P0〉 + b3 ·����〈P1 , P0〉)
+ 1 · a2 · (1 ·����〈P2 , P0〉 + a2 ·����〈P1 , P0〉 + b1 · 〈P0 , P0〉)
+ 1 · b1 · (1 ·����〈P1 , P0〉 + a1 · 〈P0 , P0〉 + 0)

+ a1 · 1 · (1 ·����〈P2 , P0〉 + a2 ·����〈P1 , P0〉 + b1 · 〈P0 , P0〉)
+ a1 · a1 × (1 ·����〈P1 , P0〉 + a1 · 〈P0 , P0〉 + 0)

= 1 · a2 · b1 + a1 · 1 · b1 + 1 · b2 · a1 + a1 · a1 · a1 . (5.3.7)

More generally, when computing mk =
〈
xkP0 , P0

〉
, the recursive application of the recurrence relation

(5.2.2) allows to decrease the power of x from k to 0 until each term in the development is proportional to

the inner product of P0 = 1 with another monic OP. The only nonzero such inner product is 〈P0 , P0〉 = 1.

Consequently, each nonzero term in the final development of mk corresponds to a path of length at most k
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that leaves from the lower left corner of the graph in Figure 5.1 and ends up on the bottom row. In between,

the path has to remain above the bottom row, and can only move North-East, East, or South-East. Each

edge corresponds to picking one of the three terms in the recurrence relation (5.2.2). For example, the

development of m3 in (5.3.7) corresponds to three such paths, shown in orange in Figure 5.1. The product

of the coefficients along each path forms the resulting term in the development.

(a) The North-East, East, South-East edges associated to weights 1,

an, bn are respectively represented as dashed, dashdotted and solid

lines. Note that on each dashed and dashdotted line, the weight is

constant.

(b) 1 · a2 · b1 (c) 1 · b2 · a1 (d) a1 · 1 · b1 (e) a1 · a1 · a1

Figure 5.1: The lattice path of

Hardy (2017) used to compute

mn = 〈xnP0, P0〉 is displayed

in (a) The paths used for the

computation of m3 (5.3.7) are

highlighted in (b)-(e) with the

corresponding weight as caption.

In the end, odd moments m2i−1, resp. even moments m2i, are the sum of the weights of the paths below

the i-th red, respectively blue path, counting from the bottom left. More precisely,

m2i−1 = ai

i−1∏

k=1

bk + f1(a1:i−1, b1:i−2) and m2i =

i∏

k=1

bk + f2(a1:i, b1:i−1). (5.3.8)

Thus, the Jacobian is the determinant of a triangular matrix

∣∣∣∣
∂m1:2N−1

∂a1:N , b1:N−1

∣∣∣∣ =

∣∣∣∣∣∣∣∣

[
∂m2i−1

∂aj

∂m2i−1

∂bj
∂m2i

∂aj
∂m2i

∂bj

] [
∂m2i−1

∂aN
∂m2i

∂aN

]

[
∂m2N−1

∂aj

∂m2N−1

∂bj

]
∂m2N−1

∂aN

∣∣∣∣∣∣∣∣

N−1

i,j=1

=

N∏

i=1

∂m2i−1

∂ai

N−1∏

i=1

∂m2i

∂bi
·

The formulation (5.3.8) yields

∂m2i−1

∂ai
=

i−1∏

k=1

bk and
∂m2i

∂bi
=

i−1∏

k=1

bk.

Finally, we obtain

∣∣∣∣
∂m1:2N−1

∂a1:N , b1:N−1

∣∣∣∣ =

N∏

i=1

i−1∏

k=1

bk

N−1∏

i=1

i−1∏

k=1

bk =

[∏N
i=1

∏i−1
k=1 bk

]2

∏N−1
k=1 bk

=

[∏N−1
n=1 b

N−n
n

]2

∏N−1
n=1 bn

,

which does not vanish since all bns are positive by construction. Finally, the last equality in (5.3.6) follows

from Lemma 5.2.7.

Propositions 5.3.1 and 5.3.2 now allow us to conclude that Favard’s map ψ = ρ ◦ φ (cf. Theorem 5.2.3) is

a C1-diffeomorphism, and compute its Jacobian.
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Proposition 5.3.3. Favard’s map ψ is a C1-diffeomorphism from RN> × SN onto RN × (0,+∞)N−1, and

∣∣∣∣
∂x1:N , w1:N−1

∂a1:N , b1:N−1

∣∣∣∣ =

N−1∏

n=1

b−1
n

N∏

n=1

wn. (5.3.9)

We now have all the ingredients to give an explicit proof of Theorem 5.1.4, of which the three classical

tridiagonal models of Section 5.4 will be seen to be corollaries.

Proof of Theorem 5.1.4. For simplicity we drop the indicator functions and rewrite the density of the nodes

and weights as

(5.1.7) =

(
|∆(x1 , . . . , xN )|2

N∏

n=1

wn

) β
2

e− Tr[V (diag(x1 ,...,xN ))]
N∏

n=1

w−1
n dx1:N dw1:N−1

Combining Lemma 5.2.7, and the fact that x1 , . . . , xN are the eigenvalues of Ja,b, the change of variables

provided by Proposition 5.3.3 yields

(5.1.7) =

(
N−1∏

n=1

bN−nn

) β
2

e− Tr[V (Ja,b)]
N∏

n=1

w−1
n

∣∣∣∣
∂x1:N , w1:N−1

∂a1:N , b1:N−1

∣∣∣∣da1:N db1:N−1

=

N−1∏

n=1

b
β
2 (N−n)−1
n e− Tr[V (Ja,b)] da1:N db1:N−1 ,

where the last equality follows from (5.3.9).

5.4 Proving the three classical tridiagonal models

Theorem 5.1.4 gives the distribution over recurrence coefficients, from which one has to sample, in order for

the atoms of the corresponding atomic measure to follow a given β-ensemble. When the potential of the

β-ensemble is taken among three particular forms, the recurrence coefficients turn out to be independent

with simple distributions. In particular, the recurrence coefficients are much simpler to sample than the

complex joint distribution (5.0.1) of the atoms.

5.4.1 The HβE and its tridiagonal model

The tridiagonal model associated to the Hermite β-ensemble, cf. Theorem 5.1.1, follows from a direct appli-

cation of Theorem 5.1.4 and the following immediate lemma.

Lemma 5.4.1. Let Ja,b be a Jacobi matrix as defined by (5.1.1), with eigenvalues x1, . . . , xN . It holds that

N∑

n=1

xn = Tr Ja,b =

N∑

n=1

an and

N∑

n=1

x2
n = Tr J2

a,b =

N∑

n=1

a2
n + 2

N−1∑

n=1

bn. (5.4.1)

Proof of Theorem 5.1.1. Starting from Theorem 5.1.4 it remains to express the term TrV (Ja,b), where

V (x) = (x−µ)2

2σ2 = 1
2σ2 (x2 − 2µx+ µ2). To this end, Lemma 5.4.1 yields

TrV (Ja,b) =
1

2σ2

[
Tr J2

a,b − 2µTr Ja,b +Nµ2
]

=
1

2σ2

N∑

n=1

(an − µ)2 +
1

σ2

N−1∑

n=1

bn.

Finally, we can plug this expression back into (5.1.7) to see that the entries of Ja,b are independently

distributed, with joint distribution proportional to

N−1∏

n=1

b
β
2 (N−n)−1
n e−

1
σ2
bn dbn

N∏

n=1

e−
1

2σ2
(an−µ)2 dan. (5.4.2)
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Note that when µ is still supported on R, but the potential is a more general polynomial, the recurrence

parameters are no longer independent, but the interaction remains short range. This is what we later

exploit in Section 5.5, where we derive a fast approximate sampler for various β-ensembles with polynomial

potentials.

5.4.2 The LβE and its tridiagonal model

When the target β-ensemble is supported on (0,+∞), there is a natural reparametrization of the recurrence

coefficients of µ, which allows to express other quantities than those in Lemma 5.4.1. This leads to the

tridiagonal model of Theorem 5.1.2 for the Laguerre β-ensemble.

The reparametrization, denoted by ξ1, . . . , ξ2N−1 > 0, arose in the work of Stieltjes (1894) on continued

fractions; see also Chihara (1978; 1971, Equation 9.12 in Corollary of Theorem 9.1; Equation 2) in the

context of three-term recurrence relations. To introduce these new parameters, first note that since µ is now

supported on (0,+∞), the recurrence relation (5.2.2) implies

an = ‖Pn−1‖−2〈xPn−1, Pn−1〉 = ‖Pn−1‖−2
∫ ∞

0

xP 2
n−1(x)µ(dx) > 0, n = 1, . . . , N. (5.4.3)

Now, we set

a1 = ξ1, an = ξ2n−2 + ξ2n−1, for 2 ≤ n ≤ N,
and bn = ξ2n−1ξ2n, for 1 ≤ n ≤ N − 1.

(5.4.4)

Equivalently, the new parameters correspond to the Cholesky factorization

Ja,b = Ξ ΞT, where Ξ =




√
ξ1 (0)√
ξ2
√
ξ3

. . .
. . .

(0)
√
ξ2N−2

√
ξ2N−1



. (5.4.5)

Note that this bidiagonal transformation is reminiscent of the construction of the tridiagonal model for

the LβE, where Dumitriu and Edelman (2002) bidiagonalize a random Gaussian matrix. The following

proposition shows that the change of variables replacing the recurrence coefficients by ξ1:2N−1 is valid.

Proposition 5.4.2. Consider µ supported on (0,+∞), then the corresponding Jacobi matrix (5.1.1) fac-

torizes uniquely as Ja,b = Ξ ΞT, where Ξ is given by (5.4.5). Moreover, the mapping

(ξ1, . . . , ξ2N−1) 7−→ (a1:N , b1:N−1), (5.4.6)

defined by (5.4.4) is a C1-diffeomorphism of (0,+∞)2N−1 onto itself, and its Jacobian reads

∣∣∣∣
∂a1:N , b1:N−1

∂ξ1:2N−1

∣∣∣∣ =
N−1∏

i=1

ξ2i−1. (5.4.7)

Proof. Given that Ja,b is symmetric with positive eigenvalues, the Cholesky factorization Ja,b = Ξ ΞT is

unique, see, e.g., Golub and Van Loan (2013, Theorem 4.2.7). Moreover, since Ja,b is tridiagonal, the factor

Ξ can only be bidiagonal. Hence, the mapping (5.4.6) is injective (and even bijective) and C1 because it is

polynomial. Finally, by definition of the transformation (5.4.4), the Jacobian reads as the determinant of a

triangular matrix

∣∣∣∣
∂a1:N , b1:N−1

∂ξ1:2N−1

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣

[
∂ai

∂ξ2j−1

∂ai
∂ξ2j

∂bi
∂ξ2j−1

∂bi
∂ξ2j

]N−1

i,j=1

[
∂ai

∂ξ2N−1

∂bi
∂ξ2N−1

]N−1

i=1[
∂aN
∂ξ2j−1

∂aN
∂ξ2j

]N−1

j=1

∂aN
∂ξ2N−1

∣∣∣∣∣∣∣∣∣
=

N∏

i=1

∂ai
∂ξ2i−1︸ ︷︷ ︸

=1

N−1∏

i=1

∂bi
∂ξ2i︸︷︷︸

=ξ2i−1

·
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For our purpose, the Cholesky factorization (5.4.5) is ideal to express the key quantities that appear in the

LβE. The proof of the corresponding tridiagonal model, cf. Theorem 5.1.2, follows from a direct application

of Theorem 5.1.4 and the following immediate lemma.

Lemma 5.4.3. Let Ja,b = Ξ ΞT as in (5.4.5) and note x1 , . . . , xN its eigenvalues. Then,

N∑

n=1

xn = Tr Ja,b =

2N−1∑

n=1

ξn and

N∏

n=1

xn = det Ja,b =

N∏

n=1

ξ2n−1 . (5.4.8)

Proof of Theorem 5.1.2. Applying Lemma 5.4.3 to the V (x) = −(k − 1) log(x) + x
θ yields

exp[−Tr V (Ja,b)] = (det Ja,b)
k−1

exp

(
− 1

θ
Tr Ja,b

)

(5.4.8)
=

N∏

n=1

ξk−1
2n−1 exp

(
− 1

θ

2N−1∑

n=1

ξn

)
. (5.4.9)

Starting from (5.1.8), Proposition 5.4.2 gives the joint distribution of the underlying ξ1:2N−1 parameters as

proportional to

N−1∏

n=1

b
β
2 (N−n)−1
n e− Tr V (Ja,b) da1:N db1:N−1

(5.4.4)
=

N−1∏

n=1

(ξ2n−1ξ2n)
β
2 (N−n)−1

e− Tr V (Ja,b)

∣∣∣∣
∂a1:N , b1:N−1

∂ξ1:2N−1

∣∣∣∣dξ1:2N−1

(5.4.7)
=

N−1∏

n=1

ξ
β
2 (N−n)−�1
2n−1 ξ

β
2 (N−n)−1
2n e− Tr V (Ja,b)

�
�
�
�
�N−1∏

n=1

ξ2n−1dξ1:2N−1 (5.4.10)

(5.4.9)
=

N∏

n=1

ξ
β
2 (N−n)
2n−1

N−1∏

n=1

ξ
β
2 (N−n)−1
2n

( N∏

n=1

ξ2n−1

)k−1

e−
1
θ

∑2N−1
n=1 ξn dξ1:2N−1

In the next section, we introduce another reparametrization of the recurrence coefficients, this time when

µ is supported in a compact interval: the canonical moments of Dette and Studden (1997).

5.4.3 The JβE and its tridiagonal model

Finding a tridiagonal model for the JβE was left as an open problem by Dumitriu and Edelman (2002, IV

B). The latter was addressed by Killip and Nenciu (2004, Theorem 2) in their study of the quindiagonal

model associated to the circular ensemble. However, the authors acknowledged that lifting the points on the

unit circle to apply their result represents a winding detour to prove the JβE. Besides, the Jacobian required

by this method was obtained by indirect means by Killip and Nenciu (2007, Lemma 4.3). Subsequently,

Forrester and Rains (2006, Theorem 2) obtained the Jacobian more directly.

We can actually derive the tridiagonal model of Theorem 5.1.3 by reparametrizing the Jacobi matrix Ja,b

again, this time using canonical moments (Dette and Studden, 1997, Chapter 1). In essence, the result can

be found in the work of Gamboa and Rouault (2010) and Dette and Nagel (2012), but we rephrase it as just

another consequence of Theorem 5.1.4.

Before formally introducing them, let us mention that canonical moments and their complex counterpart

were successfully used to investigate the connection between randomized moments problems, orthogonal

polynomials, and optimal design (Dette and Studden, 1997) and in random matrix theory (Gamboa and

Rouault, 2010; Gamboa, Nagel, and Rouault, 2016). In particular, canonical moments can be thought of

as a reparametrization of the moments, where 0 < cn < 1 represents the relative position of the n-th
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moment mn in the range of all possible moments associated to measure with compatible previous moments

m1 , . . . , mn−1, see Dette and Studden (1997).

Throughout this section, we assume that the N -atomic measure µ is supported on (0, 1). In particular,

with (ξn) the parameters introduced in Section 5.4.2, it comes

0 < ξ2n−2 + ξ2n−1 = an = ‖Pn−1‖−2〈xPn−1 , Pn−1〉 < 1, n = 2, . . . , N.

Similarly, ξ1 = a1 ∈ (0, 1). This implies 0 < ξn < 1 for all 1 ≤ n ≤ 2N − 1. Following the work of Wall

(1940) on chain sequences and continued fractions, we introduce a new parametrization of the recurrence

coefficients.

Lemma 5.4.4 (Wall). Assume µ is supported on (0, 1), there exists a sequence (cn) ∈ (0, 1)N such that

ξ1 = c1 and ξn = (1− cn−1)cn, ∀2 ≤ n ≤ 2N − 1. (5.4.11)

We do not prove Lemma 5.4.4 and refer to Wall (1940, Theorem 6.1); see also Chihara (1978, Chapter

3) for more details on chain sequences. We simply note that defining (cn) in (5.4.11) is straightforward, the

nontrivial part of the lemma is that 0 < cn < 1 for all n. We also note that the cns are today known as the

canonical moments of µ; see the monograph of Dette and Studden (1997).

The following proposition shows that the change of variables replacing ξ by c is valid.

Proposition 5.4.5. Consider µ supported on (0, 1), then the corresponding Jacobi matrix (5.1.1) can be

parametrized in terms of the canonical moments following (5.4.4) and (5.4.11). Moreover, the mapping

(c1, . . . , c2N−1) 7−→ (ξ1, . . . , ξ2N−1), (5.4.12)

defined by (5.4.11) is a C1-diffeomorphism of (0, 1)2N−1 onto itself, and its Jacobian reads

∣∣∣∣
∂ξ1:2N−1

∂c1:2N−1

∣∣∣∣ =

2N−2∏

n=1

(1− cn). (5.4.13)

Proof. The map (5.4.12) is a bijection by definition and Lemma 5.4.4, and C1 because it is polynomial.

Then, by definition of the transformation (5.4.11), the Jacobian is the determinant of a triangular matrix

∣∣∣∣
∂ξ1:2N−1

∂c1:2N−1

∣∣∣∣ =

2N−1∏

n=1

∂ξn
∂cn

= 1 ·
2N−1∏

n=2

(1− cn−1) =

2N−2∏

n=1

(1− cn).

For our purpose, the canonical moment parametrization is ideal to express the key quantities that appear

in the JβE. The proof of the corresponding tridiagonal model in Theorem 5.1.3 is again a direct application

of Proposition 5.4.5 and the following lemma.

Lemma 5.4.6. It holds that

N∏

n=1

xn = det Ja,b =

N∏

n=1

c2n−1

N−1∏

n=1

(1− c2n) and

N∏

n=1

(1− xn) = det[IN − Ja,b] =

2N−1∏

n=1

(1− cn). (5.4.14)

Proof. First, combine the result of Lemma 5.4.3 and the definition of the canonical moments in (5.4.11) to

get
N∏

n=1

xn = ξ1

N∏

n=2

ξ2n−1 = c1

N∏

n=2

(1− c2n−2)c2n−1 =

N∏

n=1

c2n−1(1− c2n). (5.4.15)

Then, Lemma 5.2.5 yields
N∏

n=1

(1− xn) =

∣∣H2N−1

∣∣
∣∣H2N−2

∣∣ · (5.4.16)
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The denominator can be expressed in terms of the ξ1:2N−1 parameters

∣∣H2N−2

∣∣2 (5.2.17)
=

N−1∏

n=1

bN−nn

(5.4.4)
=

N−1∏

n=1

[ξ2n−1ξ2n]
N−n

. (5.4.17)

For the numerator, we follow Dette and Studden (1997, Theorem 1.4.10) who introduced additional quantities

γ1:2N−1 to get

∣∣H2N−1

∣∣ = γN1

N−1∏

n=1

[γ2nγ2n+1]
N−n

, (5.4.18)

where 


ξ1 = c1

γ1 = 1 − c1

and




ξn = (1 − cn−1)cn

γn = cn−1(1 − cn)
∀2 ≤ n ≤ 2N − 1. (5.4.19)

We plug these results back into (5.4.16), and conclude that

N∏

n=1

(1 − xn) =

∣∣H 2N−1

∣∣
∣∣H 2N−2

∣∣ = γN1

N−1∏

n=1

[
γ2nγ2n+1

ξ2n−1ξ2n

]N−n

= (1 − c1)N
[
��c1(1 − c2)��c2(1 − c3)

��c1(1 − c1)��c2

]N−1 N−1∏

n=2

[
���c2n−1(1 − c2n)��c2n(1 − c2n+1)

(1 − c2n−2)���c2n−1(1 − c2n−1)��c2n

]N−n

= (1 − c1)N
N−1∏

n=1

[
1 − c2n+1

1 − c2n−1

]N−n
(1 − c2)N−1

N−1∏

n=2

[
1 − c2n

1 − c2n−2

]N−n

=

N∏

n=1

(1 − c2n−1)

N−1∏

n=1

(1 − c2n).

Proof of Theorem 5.1.3. Considering the potential V (x) = −[(a−1) log(x)+(b−1) log(1−x)], Lemma 5.4.6

yields

exp[−Tr V (Ja,b)] = (det Ja,b)
a−1

(det[IN − Ja,b ])
b−1

(5.4.14)
=

N∏

n=1

ca−1
2n−1(1 − c2n−1)b−1

N−1∏

n=1

(1 − c2n)a+b−2 . (5.4.20)

Starting from (5.4.10), Proposition 5.4.5 allows us to express the joint distribution of the canonical moments

as

N−1∏

n=1

[ξ2n−1ξ2n ]
β
2 (N−n)

ξ2n
e− Tr V (Ja,b)

∣∣∣∣
∂ξ1:2N−1

∂c1:2N−1

∣∣∣∣dc1:2N−1

(5.4.13)
=

N−1∏

n=1

[ξ2n−1ξ2n ]
β
2 (N−n)

ξ2n

2N−2∏

n=1

(1 − cn) e− Tr V (Ja,b) dc1:2N−1

(5.4.11)
=

[c1(1 − c1)c2 ]
β
2 (N−1)

��
��(1 − c1)c2

N−1∏

n=2

[(1 − c2n−2)c2n−1(1 − c2n−1)c2n ]
β
2 (N−n)

((((
(((1 − c2n−1)c2n

N−1∏

n=1

((((
(((1 − c2n−1)(1 − c2n) e− Tr V (Ja,b) dc1:2N−1

=

N∏

n=1

[c2n−1(1 − c2n−1)]
β
2 (N−n)

N−1∏

n=1

c
β
2 (N−n)−1
2n (1 − c2n)

β
2 (N−n−1)+1 e− Tr V (Ja,b) dc1:2N−1

(5.4.20)
=

N∏

n=1

c
β
2 (N−n)+a−1
2n−1 (1 − c2n−1)

β
2 (N−n)+b−1

N−1∏

n=1

c
β
2 (N−n)−1
2n (1 − c2n)

β
2 (N−n−1)+a+b−1dc1:2N−1 .
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5.5 Gibbs sampling tridiagonal models associated to polynomial potentials

For the specific potentials associated to the classical β-ensembles, the successive reparametrizations of the

Jacobi matrix Ja,b, presented in Section 5.4, yield independent coefficients with easy-to-sample distributions.

Thus, after a proper randomization of Ja,b, the calculation of its eigenvalues gives O(N2) exact samplers.

However, when the potential V is generic, these Jacobi parameters may not be independent anymore. For

polynomial potentials, this dependence remains mild, in the sense that each parameter remains independent

from the rest conditionally on a few “neighboring” parameters. As we shall see in this section, simple Gibbs

samplers in the space of these Jacobi parameters can provide surprisingly fast-mixing approximate samplers

for β-ensembles. In short, we study a Gibbs sampler on tridiagonal matrices, that can be diagonalized

in time complexity O(N2) to obtain approximate samples from a given β-ensemble. This approach is in

contrast with that of Li and Menon (2013) and Chafäı and Ferré (2018), who used MCMC directly on the

original space where the particles {x1, . . . , xN} live.

Our starting point is Proposition 2 of Krishnapur, Rider, and Virág (2016), which we rederived as Theo-

rem 5.1.4. In short, a Jacobi matrix Ja,b with coefficients distributed as

(a1, b1, . . . , aN−1, bN−1, aN ) ∼
N−1∏

i=1

b
β
2 (N−i)−1
i exp−TrV (Ja,b) da1:N , b1:N−1, (5.5.1)

has eigenvalues distributed according to the β-ensemble (5.0.1) with potential V . Krishnapur, Rider, and

Virág (2016) already mention their intuition that a Gibbs chain with invariant measure (5.5.1) and a poly-

nomial potential would mix fast, in O(logN), due to the short range interaction between the coefficients.

From an algorithmic point of view, the explicit conditionals in (5.5.1) similarly invite to use a Gibbs sampler,

which we investigate in this section. For the sake of presentation, we fix the potential to be a polynomial

with even degree at most 6 and positive leading coefficient, i.e.,

V (x) = g6x
6 +��

�g5x
5 + g4x

4 + g3x
3 + g2x

2 + g1x. (5.5.2)

The absence of a term of degree 5 in (5.5.2) comes from practical reasons detailed in Section 5.5.1. While the

method applies more generally, we restrict ourselves to potentials of the form (5.5.2) because (i) it already

goes beyond the numerical state-of-the-art, (ii) it is rich enough to require different sampling schemes for

different conditionals depending on the coefficients in (5.5.2), and (iii) the theory of sextic potentials is

advanced enough that we have means to empirically assess the convergence of our samplers.

5.5.1 Sampling from the conditionals

We implement a systematic scan Gibbs sampler (Robert and Casella, 2004, Chapter 10) to approximately

sample from the distribution (5.5.1) on the Jacobi coefficients. Writing the conditionals in closed form for

the generic sextic potential (5.5.2) is cumbersome, but we do it for a specific instance in Example 5.5.1

below. The expansion of TrV (Ja,b) in (5.5.1) reveals that the size of the Markov blanket of each coefficient

grows with degreeV . Quoting Krishnapur, Rider, and Virág (2016, Section 1), variables with indices that are

degreeV/2 apart are conditionally independent given the variables in between. In other words, the Jacobi

coefficients a1, . . . , aN , b1, . . . , bN−1 have a more short-range interaction than the corresponding particles

x1, . . . , xN . Gibbs sampling can leverage that property.

For 1 ≤ i ≤ N , let a\i = (a1, . . . , ai−1, ai+1, . . . , aN ). Similarly, for 1 ≤ j ≤ N − 1, let b\j =

(b1, . . . , bj−1, bj+1, . . . , bN−1). In practice, we define one complete Gibbs pass as sampling from an | a\n,b,

and then bn | a,b\n, for each n in turn. We avoid the term of degree 5 in (5.5.2) to make sure that the

conditionals bn | a,b\n are always log-concave, while the conditionals an | a\n,b are log-concave if g2 > 0

and g3 = g6 = 0. Univariate log-concave densities are interesting from a sampling point of view, since they

are usually amenable to efficient rejection sampling.
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Algorithm 12: Gibbs sampler to sample from (5.0.1) with β > 0 and

V as in (5.5.2)

Require: β parameter, potential V , number T of MCMC steps

1: Initialize a1 = · · · = aN = b1 = · · · = bN−1 = 0

2: for t = 1 to T do

3: for n = 1 to N do

4: Sample an | a\n , b
5: if n < N then

6: Sample bn | a, b\n
7: end if

8: end for

9: xt1 , . . . , x
t
N = eigvals(Ja,b)

10: end for

In our case, for every log-concave conditional, the mode of the corresponding density can be derived

analytically. We can thus use the tailored rejection sampler of Devroye (2012), with an expected 5 rejection

steps per draw; see Example 5.5.1 for details. The overall algorithm is given in Algorithm 12.

When non log-concave conditionals an | a\n , b, we switch from a Gibbs algorithm to a Metropolis-

within-Gibbs algorithm, and replace exact sampling of the corresponding conditional by a draw from a

Metropolis-Hastings kernel. More specifically, since the log of the conditional densities an | a\n , b are

polynomials, they are easy to differentiate, and we use their gradient in a Metropolis-adjusted Langevin

kernel (MALA, see, e.g., Robert and Casella, 2004, Section 7.8.5).

Example 5.5.1 (Quartic potential). Let V (x) = g4x
4 + g2x

2. With the convention a0 = aN+1 = b0 =

bN = 0, the conditionals write as follows.

For each 1 ≤ n ≤ N , the conditional an | a\n , b has density proportional to

an | a\n , b ∼ exp
[
−
[
g4a

4
n + a2

n [g2 + 4g4(bn−1 + bn)] + 4g4an(an−1bn−1 + an+1bn)
]]
, (5.5.3)

For each 1 ≤ n ≤ N − 1, the conditional bn | a, b\n has density proportional to

bn | a, b\n ∼ b
β
2 (N−i)−1
n exp

[
−2
[
g4b

2
n + bn

[
g2 + 2g4(a2

n + anan+1 + a2
n+1 + bn−1 + bn+1)

]]]
.

(5.5.4)

In this case, for g2 , g4 > 0, the conditionals given in (5.5.3) and (5.5.4) are unnormalized and log-concave,

with easy-to-find modes. Thus, the rejection sampling technique of Devroye (2012) applies, with an expected

number of rejections equal to 5. Given an unnormalized and log-concave target density π with mode m =

argmaxy π(y), Devroye (2012) constructs a piecewise dominating function h comprising 3 plateaus and 2

exponential tails such that
∫
h/
∫
π ≤ 5. The breakpoints m+ 2u, m+ u, m+ v, m+ 2v are located on both

sides of the mode, where u < 0 < v satisfy π(m + x) ≥ π(m)/4 ≥ π(m + 2x). Such u and v can be found

using a simple bisection method. In practice, we compute u′ < 0 < v ′ solutions of π(m + x) = π(m)/4

and assign u = u′/2 and v = v ′/2, see Figure 5.2.

5.5.2 Example simulations and empirical study of the convergence

In this section, we investigate the convergence of the Gibbs sampler detailed in Section 5.5.1. We sample from

β-ensembles with potential W (x) = βN
2 V (x), for various choices of V of the form (5.5.2). The rescaling

in W is applied to capture the weak convergence of the empirical distribution of the particles towards the

corresponding equilibrium measure µeq; see e.g., Deift (2000, Section 6.1). Intuitively, the rescaling balances

the effect of the Vandermonde determinant and that of the potential V in (5.0.1).
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(a) An example conditional (5.5.3)

(b) An example conditional (5.5.4)

Figure 5.2: Construction of the

dominating function h (solid

line) of Devroye (2012) to per-

form rejection sampling with

log-concave target π (dashed

line), which needs to be log-

concave with computable mode.

The enveloppe h is made of

three plateaus and two exponen-

tial tails.

Convergence of the marginals. Let (xtn)1≤n≤N be the vector of ordered particles after t full Gibbs passes,

that is, after t outer iterations of Algorithm 12. A first quantity to monitor is how well the empirical

distribution µ̂tN = N−1
∑N

n=1 δxtn approximates, as t grows, the empirical distribution of the target β-

ensemble

µ̂N =
1

N

N∑

n=1

δxn , where {x1, . . . , xN} is drawn from (5.0.1).

It turns out that, under assumptions on the potential V that are satisfied by (5.5.2), the random measure

µ̂N is itself well approximated when N � 1 by a (deterministic) measure µeq called the equilibrium measure

of the potential. This statement can be made rigorous; see for instance the large deviation principle with

fast rate 1/N2 in Serfaty, 2015, Theorem 2.3.

Two observations are in order. First, the fast rate hints that the approximation should hold even for

moderate values of N , as we shall confirm later on in our simulations. Second, µeq is known analytically for a

few choices of polynomial potentials. Thus, for these potentials, we compare draws from µ̂tN = N−1
∑N
n=1 δxtn

with µeq, to assess convergence of our marginals µ̂tN as t grows. This is in line with the experiments of Li

and Menon (2013), Olver, Nadakuditi, and Trogdon (2014) and Chafäı and Ferré (2018).

The quartic potential. The equilibrium measure µeq is available in closed form for potentials proportional

to x2d (Deift, 2000, Proposition 6.156). We consider again V (x) = 1
4x

4, as in Example 5.5.1. In this case

all conditionals are log-concave, and can thus be sampled exactly, cf. Section 5.5.1. Figure 5.3 shows the

agregation of the marginal histograms of 1000 independent runs, after each of the first few Gibbs passes.

Observe that convergence to the equilibrium measure is extremely fast: beyond t = 3 Gibbs passes, the

histograms are visually indistinguishable from the equilibrium measure. This observation is quantitatively

monitored in Figure 5.3, where we plot the logarithm of the L∞ distance between the empirical cdf of µ̂tN
and the cdf of µeq.

Other potentials of degree 4.. We also consider the potential V (x) = 1
20x

4− 4
15x

3 + 1
5x

2 + 8
5x and potentials

of the form V (x) = g2x
2 + 1

4x
4 where we vary g2. Except the case where g2 ≥ 0, the conditionals an | a\n,b

are not log concave and we sample from them using a few steps of MALA. This allows us to select various

qualitative behaviors of µeq, which may become dissymmetric (Claeys, Krasovsky, and Its, 2009; Olver,

Nadakuditi, and Trogdon, 2014, Example 1.2; Section 3.2), or supported by more than one connected

component (Molinari, 2018, Figure 4). Our approach allows to simulate from the corresponding β-ensembles

in regimes yet unexplored. Figure 5.4 shows good agreement of marginal histograms of a single sample of

N = 1000 points with the equilibrium distribution after only t = 10 Gibbs passes.
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Figure 5.3: For β = 2 and

V (x) = 1
4x

4, panels (a)-(e) give

a visual display of the conver-

gence of the empirical marginal

distribution µtN of the eigenval-

ues constructed from 1000 inde-

pendent chains. Each colored

line corresponds to a Gibbs pass

t ∈ {1, 2, 3, ...}, while the equi-

librium pdf is shown in black line

on each panel. Different panels

correspond to increasing values

of N . Panel (f) shows the supre-

mum norm of the difference be-

tween the cdf of µeq and the cdf

of µ̂tN as a function of the num-

ber t of Gibbs passes.
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Figure 5.4: For various choices

of potentials V of degree 4 and

β = 2, each panel shows the

histogram of a sample from µtN ,

with N = 1000 points after t =

10 Gibbs passes. The corre-

sponding equilibrium measures

are superimposed in black.

The sextic potential. We extend the derivations of Example 5.5.1 and consider sampling from the β-ensemble

with potential V (x) = 1
6x

6. The corresponding equilibrium distribution can be derived from Deift (2000,

Proposition 6.156). In this case, the conditionals an | a\n,b are not log-concave and we cannot use the exact

rejection sampler of Devroye (2012). Instead, we switch to a Metropolis-within-Gibbs sampler and make a

few steps of MALA; see Section 5.5.1.

One free parameter is the number of MALA steps in one Gibbs pass. We empirically observed (not

shown) that this number has an influence on the number of Gibbs passes needed to reach the plateau in
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Figure 5.5. Manually setting the number of MALA steps per Gibbs pass to 100 was enough for rapid overall

convergence in our experiments, and larger values did not significantly influence the fit in Figure 5.5, which

is already striking after less than 10 Gibbs passes.
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(d) Convergence of the empirical cdf

Figure 5.5: For β = 2 and

V (x) = 1
6x

6, panels (a)-(c) give

a visual display of the conver-

gence of the empirical marginal

distribution µtN of the eigenval-

ues constructed from 1000 inde-

pendent chains. Each colored

line corresponds to a Gibbs pass

t ∈ {1, 2, 3, ...}, while the equi-

librium pdf is shown as a black

line on each panel. Different

panels correspond to increasing

values of N . Panel (d) shows the

supremum norm of the difference

between the cdf of µeq and the

cdf of µ̂tN as a function of the

number t of Gibbs passes.

Fluctuations of the largest eigenvalue. After looking at the global behavior of the eigenvalues, we zoom at

the right edge of the support of µ to study the local behavior of our approximate samples. We do this for

the quartic and sextic potentials. When β = 2, the target β-ensemble is determinantal and we can test the

adequation of the largest atom of µ̂tN to the universal Tracy-Widom limiting distribution (Deift and Gioev,

2005, Corollary 1.3). We implemented the cumulative distribution function (cdf) of the Tracy-Widom law

following Bornemann (2009), and rescale the eigenvalues as Olver and Trogdon (2014, Section 3.2).

For each potential, we run 1000 independent chains and record only the largest eigenvalue of each chain

after each Gibbs pass. Figures 5.6 and 5.7 show the histograms of the rescaled largest particles after a few

Gibbs passes, respectively for the quartic and sextic potential. More quantitatively, in Figure 5.8 we monitor

the convergence to the Tracy-Widom distribution across Gibbs passes, by computing the supremum distance

between the empirical cdf of the largest eigenvalue and the cdf of the Tracy-Widom law.

For the quartic potential, we observe that the adequation with the cdf of the Tracy-Widom law gets

tighter as N grows, and again only a few passes of the Gibbs sampler are sufficient to reach a plateau.

In contrast, for the sextic ensemble there seems to be an impassable gap, as if the rescaling was not

adequate or the Tracy-Widom law was not the proper limiting distribution. This is despite the square

root singularity at the right edge of the equilibrium distribution (Deift, 2000, Section 6.1). In particular,

a simple Kolmogorov-Smirnov test at level 0.05 would reject the adequation to Tracy-Widom. Part of this

effect might be due to the fact that the conditionals are not sampled exactly in the sextic case, though.
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Figure 5.6: For β = 2 and

V (x) = 1
4x

4, we give a visual

display of the convergence of

the empirical distribution of the

largest atom of µtN constructed

from 1000 independent chains to

the Tracy-Widom distribution.

Each colored line corresponds to

a Gibbs pass t ∈ {1, 2, 3, ...}.
Different panels correspond to

increasing values of N . As N in-

creases the histogram of passes

t = 1 and t = 2 are farther

from matching the high density

regions of the Tracy-Widom law

but then the fit is good and fast;

see also Figure 5.8 for a more

quantitative monitoring.
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Figure 5.7: For β = 2 and

V (x) = 1
6x

6, we give a vi-

sual display of the convergence

of the empirical distribution of

the largest atom of µtN con-

structed from 1000 independent

chains to the Tracy-Widom dis-

tribution. Each colored line cor-

responds to a Gibbs pass t ∈
{1, 2, 3, ...}, while the equilib-

rium pdf is shown as a black line

on each panel. Different pan-

els correspond to increasing val-

ues of N . As N increases the

histogram of passes t = 1 and

t = 2 are farther from match-

ing the high density regions of

the Tracy-Widom law and con-

vergence is not as fast as for the

quartic case; see also Figure 5.8

for a more quantitative monitor-

ing.



fast sampling from β-ensembles 111

100 101 102

10 1

100
N = 10
N = 20
N = 50
N = 100
N = 250

(a) V (x) = 1
4
x4

5 4 3 2 1 0 1 2

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.1

0.2

0.3

0.4

FTW

N = 10
N = 20
N = 50
N = 100
N = 250

(b) V (x) = 1
4
x4

100 101 102

10 1

100
N = 10
N = 20
N = 50
N=100
N=200

(c) V (x) = 1
6
x6

5 4 3 2 1 0 1 2

0.0

0.2

0.4

0.6

0.8

1.0 FTW

N = 10
N = 20
N = 50
N = 100
N = 200

(d) V (x) = 1
6
x6

Figure 5.8: For β = 2 and

V (x) = 1
4x

4 and 1
6x

6, we mon-

itor the convergence of the em-

pirical cdf of the largest atom

of µ̂tN to the expected Tracy-

Widom distribution, for several

values of the number of points

N . Panels (a) and (c) show the

supremum norm of the difference

between the cdf of the Tracy-

Widom distribution and the em-

pirical cdf of the largest atom of

µ̂tN , constructed from 1000 inde-

pendent chains, as a function of

the number 1 ≤ t ≤ 100 of Gibbs

passes. Panels (b) and (d) show

the corresponding smoothed em-

pirical cdf constructed from the

aggregation of the 1000 indepen-

dent chains over the t = 100

passes. Different panels corre-

spond to increasing values of N .
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5.6 Conclusion

First, we provide the details of an elementary treatment of the three classical tridiagonal models for β-

ensembles. Most arguments of the proof already appeared in work by Dumitriu and Edelman (2002), Killip

and Nenciu (2004), Forrester and Rains (2006), Gamboa and Rouault (2010), Dette and Nagel (2012),

and Krishnapur, Rider, and Virág (2016) and we take no credit for the originality of the proof, only for

a stand-alone and elementary version, akin to a survey. We hope that this version will help share the

ideas of parametrizing a measure through its recurrence coefficients to computational scientists interested

in interacting particle systems. Indeed, throughout the proof, we outline natural reparametrizations of β-

ensembles through tridiagonal Jacobi matrices, in which the Vandermonde interaction disappears and leaves

only a stream of easy-to-sample, independent matrix entries. Coupled with diagonalization of the underlying

tridiagonal matrix, this gives a rejection-free, O(N2) exact sampler for the three classical β-ensembles.

Second, when the potential is more generic, independence is lost, but the new interaction can be short-

range. We exploited this property to implement a Gibbs kernel and a Metropolis-within-Gibbs variant, which

sample β-ensembles with polynomial potentials. This leads to simple MCMC samplers that empirically mix

much faster, even for a large number of points, than more sophisticated MCMC kernels working in the

original domain of the particles (Li and Menon, 2013; Chafäı and Ferré, 2018). In particular, marginal

behavior that matches known theoretical results can be obtained in a few Gibbs passes, totaling a few

seconds on a laptop for hundreds of points. However, local behavior, such as the law of the largest particle

in the β-ensemble, remains harder to approximate as the degree of the potential grows. Finally, to be fair, we

note that the sampler of Chafäı and Ferré (2018) applies much more generally than ours, and in particular

to multivariate β-ensembles.

Finally, we want to stress a third related approach, which we leave for future work. As we have seen,

diagonalizing a random Jacobi matrix is equivalent to solving a randomized moment problem. One can

thus cast sampling β-ensembles as a constrained optimization problem, namely a linear program, as in

the work of Ryu and Boyd (2015), but with randomized constraints. Our own interest in tridiagonal

models actually came from trying to generalize a sampler for finite determinantal point processes ((Gautier,

Bardenet, and Valko, 2017)) of this very form. It is then tempting to look for multivariate versions of

the corresponding randomized linear program. We conjecture that the semidefinite relaxations of Lasserre

(2010) of multivariate moment problems, with properly randomized constraints, would lead to efficient

samplers for multidimensional β-ensembles. This is a technically difficult next step, both in mathematical

and computational terms, but it would be useful for Monte Carlo integration (Bardenet and Hardy, 2020;

Coeurjolly, Mazoyer, and Amblard, 2020).



Discussion

In this discussion, I am making statements of opinions which can be

subjective. In spite of many attempts, it may feel disappointing that,

since Hough et al. (2006) derived the first exact DPP sampler, no real

paradigm shift occurred. The spectral method seemingly remains the

state of the art method for exact simulation of DPPs.

In the discrete case, the current main efforts of the machine learning

community focus on making this procedure more scalable, in regimes

where the total number of items can be very large but only a very few of

them are to be selected. This may suit well the purpose of recommend-

ing roughly ten items representing the “diversity” of a large database,

but there are some settings where the expected number of items is

required to be much larger than a few tens, e.g., for graph signal re-

construction (Tremblay, Amblard, and Barthelme, 2017). Nonetheless,

the strong connection between DPP sampling and randomized matrix

factorization techniques have been successfully established by Poulson

(2019). Besides, I see an interesting avenue of research in the ideas

of Launay, Galerne, and Desolneux (2018) and Dereziński (2019) with

the development of intermediate thinning strategies. Such thinning

procedures can be understood as a way to draw exact DPP samples

by first generating realizations of an easy-to-sample distribution fol-

lowed by a carefully designed downsampling step correcting the initial

bias. However, in both cases the downsampling step actually relies on

classical routines for sampling DPPs.

Applying the chain rule of Hough et al. (2006) in the continuous

case requires a case-by-case basis study. Especially when using rejec-

tion sampling for simulating from the conditionals, tailored proposals

need to be designed. In first approach, we recommend the choice of

the one-point marginal distribution as single proposal to sample each

conditional in turn, and focusing on efficient ways to sample from it.

Another interesting line of study that may be worth investigating

is perfect simulation. A canonical example where perfect sampling

and DPPs meet is the uniform measure on the spanning trees of a

graph (Aldous, 1990; Wilson, 1996). In particular, I would start by

specializing the work of Decreusefond, Flint, and Low (2013) to sample

finite DPP(L) defined by their likelihood kernel.

What is new in this thesis? I have tried to derive DPP samplers

departing from the original spectral method of Hough et al. (2006). In

the finite case, as presented in Section 3.3, I have embedded finite pro-

jection DPPs into a continuous convex domain, called zonotope. I am

pleased by the elegance of this solution and the representation of DPP

samples as the solution of a randomized linear program. However, sam-
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pling exactly from the target distribution supported on the zonotope is

intractable and MCMC alternatives are particularly costly. The main

computational bottleneck remains solving linear programs at each it-

eration of the procedure. In fact, even answering the question whether

a given point belongs to the zonotope involves linear programming.

But it is hard to be conclusive without more theoretical investigation

of the mixing time of our chain. The answer might be found exploring

the links between matroids and projection DPPs (Lyons, 2002), which

is a key property.

On the way to find candidate problems to extend the zonotope idea

in the continuous case, I have tried to randomize the constraints of

semi-infinite linear optimization problems. The ultimate goal was to

target DPPs as the support points of the corresponding solution mea-

sure and use them to build a random analog of multivariate Gaussian

quadrature (Xu, 1994; Ryu and Boyd, 2015). However, I faced im-

portant theoretical and technical challenges, while investigating the

potential of randomizing moment problems and their semidefinite re-

laxations (Lasserre, 2010). I have spent some time implementing exist-

ing solvers for multivariate moment problems; the main bottlenecks of

these techniques are computational, it is difficult to put the theory into

practice. The algorithms advocated in the literature and employed to

recover the support of the solution measure turned out to be pretty

unstable in our setting and do not scale to more than 20 points in di-

mension two. Then, I decided to focus on the one-dimensional setting

where the moment problems to be randomized were clearer (Dette

and Studden, 1997). In fact, the stars align in the univariate case

and I recovered random tridiagonal models associated to the classical

β-ensembles, which I then tried to generalize using a Gibbs sampler

having surprisingly fast empirical mixing behavior. Such tridiagonal

models are a striking example of an elegant and very practical way

of capturing the complex correlations arising in the input space and

reducing them to only short-range interactions in the parameter space.

In the end, I see a promising avenue in randomizing the constraints

of moment problems to sample DPPs, but I have now a good idea of

the theoretical and technical challenges and it is a highly non-trivial

matter to make this a concrete alternative.

An important step for guiding the choice of the method

to use in practice, would be to benchmark fully optimized im-

plementations of the different algorithms, exploring the regimes where

each excel. Technically, this could be done at least in the finite setting.

The difficulty in making fair comparisons of different sampling methods

is at least twofold. A first point is the clarity of the description of the

sampling method itself and the availability of, at least, a naive open-

source implementation of the algorithm. Secondly, the programming

skills of the developer making the implementation efficient, and the

computational infrastructure that is used are critical. In this respect,

let me highlight the work of Poulson (2019), which offers a top quality

open-source implementation2 of the matrix-factorization-based exact 2 gitlab.com/hodge star/catamari

https://gitlab.com/hodge_star/catamari
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samplers, but requires strong skills to interact with the code. With

DPPy� I have the modest ambition of providing simple and well docu- �github.com/guilgautier/DPPy

mented implementations of the various sampling schemes, making the

toolbox an accessible entry point to the DPP model, on a broad scale.

How to choose the kernel? The answer to this question is

application-dependent. For instance, when spatial repulsion between

the points is required, the kernel is usually assumed to be shift invariant

or isotropic, and parametrized by a small number of coefficients char-

acterizing local and global interactions (Biscio and Lavancier, 2016).

When computational tractability is the main concern, the kernel is

usually assumed to be in a low-rank factored form (Gartrell, Paquet,

and Koenigstein, 2016; Dupuy and Bach, 2018). As emphasized along

this thesis, I am a strong advocate of projection kernels, in particular,

when a control on the number of selected items or points is needed. A

first reason is that they usually come with strong theoretical guaran-

tees (Bardenet and Hardy, 2020; Coeurjolly, Mazoyer, and Amblard,

2020; Belhadji, Bardenet, and Chainais, 2018, 2019). Secondly, gen-

erating exact samples does not require the eigendecomposition nor

any costly preprocessing of the kernel. Finally, I want to point out

that projection kernels can also benefit the k-DPP model, often con-

sidered as the practical alternative to constrain the sample size. For

now, k-DPPs are almost exclusively defined through a generic (posi-

tive semi-definite) kernel,3 and suffer the same computational costs - 3 In the discrete setting, for k ≥ 1,

Pk-DPP[X = S] ∝ det LS1|S|=k.if not more - as generic DPPs. But when they are defined with a pro-

jection kernel, they come with very special properties. Indeed, exact

sampling simply requires to run a projection DPP sampling routine

for k iterations, and if one more point is desired, one extra iteration

suffices. Some authors have suggested sampling k-DPPs in this way

without checking whether the kernel is a projection, this is at best a

heuristic.

Are DPPs “the” right statistical model? On paper, DPPs

are very attractive. To some extent, they can be understood as the

kernel machine of points processes. The model is easily described with

a single parameter: a kernel function. When defined through a Hermi-

tian or symmetric kernel, the determinantal structure of the correlation

functions carries both the notion of repulsion between points and the

geometrical interpretability of the model. However, one can wonder

whether sampling exactly from an appealing but incorrect model is

better than sampling approximately from it. Besides, there are obvi-

ously alternative models for repulsive point patterns, which might be

less expressive than DPPs but cheaper to sample from, like the Pois-

son disk sampling strategy. One could also think of running only a few

steps of a Markov chain leaving a DPP target invariant, like the ones

presented in Chapter 3, as a way to produce “diverse” sets of points.

On the other hand, as a computational tool, DPPs offer strong guar-

antees. To enjoy this properties, exact samples are required, e.g., to

guarantee fast rates in Monte Carlo integration (Bardenet and Hardy,

https://github.com/guilgautier/DPPy
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2020; Coeurjolly, Mazoyer, and Amblard, 2020; Gautier, Bardenet,

and Valko, 2019c).

More generally, probabilistic models exhibiting properties of nega-

tive dependence in their weak or strong forms (Borcea, Brändén, and

Liggett, 2009) are gaining more and more interest from both the ma-

chine learning and the signal processing communities. In particular,

several special events have been recently organized on these topics.4,5,6 4 Tutorial on Negative Dependence,

Stable Polynomials, and All That,

NeurIPS, 2018
5 Workshop on Negative Dependence in

Machine Learning, ICML, 2019
6 Tutorial on Determinantal Point Pro-

cesses in Signal Processing and Ma-
chine Learning, EUSIPCO, 2019

As a closing remark, I sometimes heard: “mathematicians are physi-

cists who went astray”. This may suggest to go back to the roots of

the model (Macchi, 1975; Ginibre, 1965) and gain some insight from

the physics literature, which has proved to be very imaginative and

creative in the design of efficient sampling algorithms for interacting

particle systems (Liggett, 2005).

https://nips.cc/Conferences/2018/Schedule?showEvent=10983
https://nips.cc/Conferences/2018/Schedule?showEvent=10983
https://nips.cc/Conferences/2018/Schedule?showEvent=10983
https://negative-dependence-in-ml-workshop.lids.mit.edu/
https://negative-dependence-in-ml-workshop.lids.mit.edu/
http://eusipco2019.org/program/tutorials/
http://eusipco2019.org/program/tutorials/
http://eusipco2019.org/program/tutorials/


Résumé en français

Un processus ponctuel définit une configuration de

points aléatoire. Ces points représentent par exemple des partic-

ules en interaction ou les éléments d’un corpus, d’une base de donnéess.

Un processus ponctuel déterminantal (DPP) est un type de processus

ponctuel dont les points ont tendance à se repousser; où les éléments

sélectionnés représentent d’une certaine manière la diversité du corpus.

Au cours de l’élaboration d’un cadre mathématique permettant de

modéliser le phénomène optique appelé l’effet d’anti-bunching, effet

attendu mais pas encore observable à l’époque, Odile Macchi (1975) a

défini rigoureusement les processus fermioniques, renommés plus tard

processus ponctuels déterminantaux. Ce modèle caractérise la dis-

tribution des temps d’inter-arrivées de fermions émis par une source

spécifique : la probabilité de détecter deux fermions dans un intervalle

de temps court est plus faible que celle de deux particules qui auraient

été émises de manière indépendantes, d’où le nom anti-bunching.

Depuis, les DPP sont devenus un outil pour l’étude des grandes ma-

trices aléatoires (Johansson, 2006) et ont trouvé des applications aussi

variées qu’en statistiques spatiales (Lavancier, Møller, and Rubak,

2015), intégration numérique (Bardenet and Hardy, 2020; Coeurjolly,

Mazoyer, and Amblard, 2020), traitement du signal (Avena et al.,

2018; Tremblay, Amblard, and Barthelme, 2017) et apprentissage arti-

ficiel (Kulesza and Taskar, 2012), où ils sont utilisés à la fois pour leur

pouvoir de modélisation et comme outil d’échantillonnage intelligent.

Prenons l’exemple d’un processus ponctuel déterminantal X utilisé

pour sous-échantillonner, sous critère de diversité, un ensemble de

données (images, musiques, catalogue d’objets, etc.) étiquetées de

1 à M . Ce DPP est paramétré par une matrice symétrique K, de

taille M ×M , de sorte que l’entrée Kx,y encode la similarité entre les

items portant les étiquettes x et y. Cette matrice, appelée noyau du

DPP, caractérise complètement le processus à travers ses probabilités

d’inclusion : pour n’importe quel ensemble d’étiquettes {x1, . . . xN}
on a,

P[{x1, . . . xN} ⊂ X ] = det




Kx1x1 · · · Kx1xN
...

. . .
...

KxNx1
· · · KxNxN


.

Pour N = 2, l’équation précédente donne

P[{x1, x2} ⊂ X ] = Kx1x1
Kx1x1

−Kx1x2

2, (5.6.1)

ce qui s’interprète comme suit : la probabilité de trouver les deux items

étiquetés x1 et x2 dans un même échantillon du DPP est d’autant plus

faible que leur similarité |Kx1x2 | est grande.
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La structure déterminantale encode la notion diver-

sité ou de dépendance négative entre les différents items sélectionnés.

Cette forme algébrique particulière associée à un choix judicieux du

noyau K, confère aux DPP de nombreux avantages statistiques et com-

putationnels. En un certain sens les DPP sont les machines à noyaux

des processus ponctuels.

Cette thèse se concentre sur la phase d’échantillonnage

des DPP, c’est à dire sur la conception de méthodes de simulation

efficaces pour ce type de processus particulier. Les échantillons d’un

DPP sont utilisés par exemple pour i) confirmer expérimentalement

la validité de résultats théoriques, notamment en théorie des matri-

ces aléatoires ii) générer des ensembles d’items capturant la diversité

d’une base de données dans le cas de systèmes de recommandation,

ou d’un corpus de textes afin d’en produire un résumé représentatif,

etc. iii) servir à l’estimation de l’intégrale d’une fonction d’intérêt

dans une procédure Monte Carlo iv) pour sélectionner les lignes ou les

colonnes d’une matrices d’attributs dans des problèmes de régression

ou de design d’expériences.

Pour ce faire, il existe des procédures dites de simulation exacte et

de simulation approchée. Les configurations de points générées par une

méthode exacte possèdent bien les propriétés statistiques prescrites par

le modèle déterminantal. Cependant, à l’instar des autres méthodes

à noyaux, ces procédures ne passent pas à l’échelle car le coût de

simulation dépend le plus souvent de manière polynomiale en la taille

du problème: nombre de points, dimension de l’espace ambiant, taille

de la base de données etc. D’autre part, il existe des algorithmes de

simulation approchée qui cherchent à réduire ces coûts au prix d’une

approximation des propriétés statistiques du DPP ciblé. Ceci introduit

un compromis entre la qualité d’un l’échantillon, exact ou approché,

et son coût de simulation.

Ces travaux de thèse se portent principalement sur

l’échantillonnage des DPP dits de projection qui peu-

vent être compris comme les briques élémentaires du modèle ; tout

DPP peut s’écrire comme un mélange de DPP de projection. Ces DPP

particuliers, associés un noyau de projection orthogonale, permettent

notamment un contrôle de la taille des échantillons, donnée par le rang

du noyau. Dans le cadre fini, nous apportons un nouvel éclairage sur

la simulation des DPP de projection en établissant la correspondance

entre le problème d’échantillonnage et la résolution d’un problème

d’optimisation linéaire dont les contraintes sont aléatoires. Nous en

tirons une méthode d’échantillonnage par châıne de Markov efficace.

Sur la droite réelle, certains DPP classiques peuvent être simulés par

le calcul des valeurs propres de matrices tridiagonales aléatoires bien

choisies. Nous en fournissons une nouvelle preuve élémentaire et unifi-

ante, dont nous tirons également un échantillonneur approché efficace

servant à l’étude de processus plus généraux appelés β-ensembles. En

dimension supérieure, nous nous concentrons sur une classe de DPP de
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projection utilisée en intégration numérique. Les estimateurs Monte

Carlo construits à partir de DPP offrant des garanties théoriques de

convergence plus rapide que les estimateurs classiques

Dans le cadre d’une recherche reproductible, nous

avons développé une boı̂te à outils open-source, nommée

DPPy�. Celle-ci rassemble une implémentation des différentes tech-

G. Gautier, G. Polito, R. Bardenet,
and M. Valko. 2019. DPPy: DPP

Sampling with Python. Journal of

Machine Learning Research - Ma-
chine Learning Open Source Software

(JMLR-MLOSS). arXiv:1809.07258.

� github.com/guilgautier/DPPy
� dppy.readthedocs.io.

niques de simulations actuelles et s’accompagne d’une documentation�

complète et illustrée.

C’est dans ce même esprit que nous nous efforçons de donner les

intuitions et des explications claires aux définitions et propriétés des

DPP à travers le manuscrit. Les annexes placées en fin de chapitres

rassemblent des remarques, résultats et preuves complémentaires au

texte principal. Le format du texte est basé sur le style Tufte (2006)

dont les larges marges nous permettent distiller des commentaires et

d’illustrer le corps du texte avec des figures le plus souvent réalisées

avec DPPy.

Le manuscrit se divise en cinq chapitres. Les deux premiers peuvent

être compris comme une revue de l’état de l’art alors que les trois suiv-

ants présentent essentiellement les grandes contributions de la thèse.

Le chapitre 1 présente le formalisme des processus déterminantaux

et introduit les outils mathématiques utilisés dans les chapitres suiv-

ants. En annexe, nous avons souhaité présenter des preuves explicites

de résultats simplement énoncés ou laissés en exercices dans la littérature.

En particulier, nous recensons et démontrons différentes propriétés

de stabilité des DPP sous certains conditionnements probabilistes et

opérations ensemblistes.

Le chapitre 2 présente les différentes méthodes d’échantillonnage

exact connues pour les DPP à espace d’état continu et fini. Une place

spéciale est accordée aux DPP de projection, afin de souligner leur rôle

particulier dans la construction et la simulation de DPP plus généraux.

Dans le cas fini, la méthode d’échantillonnage classique de Hough

et al. (2006) requiert la décomposition spectrale du noyau K, dont le

coût est d’ordre O(M3). Il reste ensuite à simuler d’un DPP de pro-

jection construit par un tirage aléatoire des vecteurs propres à partir

de variables de Bernoulli de paramètre les valeurs propres. Le schéma

de simulation exact des DPP de projection s’apparente ensuite à une

procédure d’orthogonalisation de Gram-Schmidt randomisée sur des

vecteurs d’attributs latents obtenus à partir des vecteurs propres ou

simplement des colonnes du noyau de projection sélectionné. Ainsi le

coût de simulation d’un DPP de projection est d’ordre O(MN2), où N

est le rang du noyau de projection et qualifie également le nombre de

items contenus dans l’échantillon généré. Cette procédure générique de

simulation des DPP offre une belle interprétation géométrique. Cepen-

dant le coût initial cubique en M rend la méthode impraticable à large

échelle, lorsque le nombre d’items de la base de données est très grand.

http://jmlr.org/papers/v20/19-179.html
http://jmlr.org/papers/v20/19-179.html
http://arxiv.org/abs/1809.07258
https://github.com/guilgautier/DPPy
https://dppy.readthedocs.io
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Dans le cas continu, le challenge est d’autant plus grand, car il n’existe

pas de procédure numérique permettant d’obtenir la décomposition

spectrale du noyau. Et même pour les DPP de projection, la procédure

d’échantillonnage à la Gram-Schmidt requiert la capacité de simuler

de manière exacte selon des distributions conditionnelles complexes.

Des méthodes exactes alternatives reposent sur la donnée au préalable

d’une forme factorisée du noyau, ou bien appliquent une procédure

classique sur un ensemble de taille plus petite que M formé d’items

soigneusement présélectionnés de manière aléatoire. Ces techniques

permettent un échantillonnage moins coûteux dans certains régimes,

e.g., base de données de grande taille et échantillons de petite taille.

Lorsque la simulation d’échantillons exacts n’est pas cruciale ou trop

coûteuse pour l’application visée, on peut se tourner vers des méthodes

approchées.

Le chapitre 3 traite des différentes méthodes d’échantillonnage G. Gautier, R. Bardenet, and M.
Valko. 2017. Zonotope hit-and-

run for efficient sampling from pro-

jection DPPs. In International Con-
ference on Machine Learning (ICML).

arXiv:1705.10498.

approchées. Nous commençons par un rappel rapide des différentes

techniques de simulation approchées basées sur des approximations de

faible rang ou des projections aléatoires du noyau, ainsi que sur des

châınes de Markov autorisant des transitions entre états différents d’au

plus un item. Le reste du chapitre est consacré à la présentation d’une

contribution de la thèse. Nous développons une méthode à base de

châınes de Markov pour simuler de manière approchée des DPP de

projection de noyau K = ΦT(ΦΦT)−1Φ, où Φ ∈ RN×M est une ma-

trice d’attributs. Dans ce cadre, la probabilité d’obtenir un échantillon

X = {x1, . . . , xN} donné est proportionnelle à (det Φ:X)2, ce qui cor-

respond au carré du volume du parallélotope engendré par les vecteurs

d’attributs Φ:x1
, . . . ,Φ:xN . C’est à dire que chaque échantillon possi-

ble, i.e., chaque élément du support du DPP de projection considéré,

est représenté par un parallélotope ; plus son volume est grand, plus

l’échantillon associé à de chance d’être obtenu. Il s’avère que l’ensemble

de ces parallélotopes peut être arrangé de sorte à former un domaine

continu et convexe appelé zonotope. Nous nous appuyons sur une

preuve de ce résultat faisant intervenir un problème d’optimisation

linéaire sous contraintes permettant d’identifier un pavage du zono-

tope (Dyer and Frieze, 1994). Ainsi, en simulant des points dans le

zonotope selon une distribution bien choisie, les échantillons du DPP

de projection sous-jacent sont obtenus par résolution d’un problème

d’optimisation linéaire sous contraintes randomisées. L’approche développée

offre un point de vue nouveau sur l’échantillonnage des DPP de projec-

tion qui contraste avec l’aspect Gram-Schmidt de la procédure d’échantillonnage

exact classique. Cependant, la génération de points sur le zonotope

étant très complexe de manière exacte nous utilisons une châıne de

Markov ce qui donne le caractère approché à notre technique de simula-

tion. Cette nouvelle méthode permet de s’affranchir des contraintes de

transitions extrêmement locales inhérentes aux techniques approchées

existantes. De plus, elle offre empiriquement une meilleure qualité

d’approximation, au prix d’un coût computationnel plus élevé impli-

quant la résolution de problèmes d’optimisation.

http://proceedings.mlr.press/v70/gautier17a
http://proceedings.mlr.press/v70/gautier17a
http://proceedings.mlr.press/v70/gautier17a
http://arxiv.org/abs/1705.10498
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Le chapitre 4 présente notre contribution à l’utilisation du car- G. Gautier, R. Bardenet, and M.

Valko. 2019b. On two ways to use de-
terminantal point processes for Monte

Carlo integration. In Advances in

Neural Information Processing Sys-
tems (NeurIPS).

actère répulsif des DPP dans une procédure d’intégration numérique

par méthode de Monte Carlo. Ce travail a été motivé par celui de

Bardenet and Hardy (2020) ayant prouvé que les échantillons d’un

DPP de projection spécifique permettent de construire un estimateur

non-biaisé – proche d’une version aléatoire de la quadrature Gauss –

ayant une variance qui décrôıt plus rapidement que la variance obtenue

par les méthodes d’intégration Monte Carlo classiques. L’idée originale

d’utiliser les DPP pour l’intégration Monte Carlo revient rétrospectivement

à Ermakov and Zolotukhin (1960), soit une quinzaine d’années avant

qu’Odile Macchi (1975) n’introduise le formalisme des DPP! Dans

cette contribution nous révélons le lien intrinsèque entre cet estima-

teur basé sur la résolution d’un système linéaire randomisé et les DPP

de projection. Grâce aux outils modernes des DPP, nous proposons

une analyse actualisée des propriétés de cet estimateur. En partic-

ulier, afin d’obtenir la meilleure garantie d’approximation à partir d’un

échantillon de taille fixée, la définition même de l’estimateur suggère

un choix naturel pour le noyau du DPP. Supposons que la fonction

f à intégrer se décompose sur une base de fonctions dans laquelle les

coefficients associés décroissent rapidement, il est alors suggéré de con-

sidérer le noyau de projection construit à partir des fonctions de base

sur lesquelles la fonction f a ses plus grands coefficients. Dans un

second temps nous proposons une étude comparative des propriétés

de convergence empirique des estimateurs respectifs de Bardenet and

Hardy et Ermakov and Zolotukhin. Pour ce faire, nous considérons le

DPP de projection construit à partir de polynômes orthogonaux mul-

tivariés invoqué par Bardenet and Hardy. De plus, nous proposons

une version adaptée et efficace du schéma d’échantillonnage classique

d’Hough et al. (2006), qui nous a permis de gagner plusieurs ordres de

grandeur sur le temps de simulation de ce DPP spécifique par rapport

aux échantillonneurs existants, et ainsi d’explorer les propriétés des

deux estimateurs dans des régimes nouveaux.

Le chapitre 5 présente une contribution relative à l’échantillonnage G. Gautier, R. Bardenet, and M.

Valko. 2020. Fast sampling

from β-ensembles. ArXiv e-prints.
arXiv:2003.02344.

d’une classe de processus ponctuels répulsifs sur la ligne réelle appelés

β-ensembles apparaissant dans l’étude du comportement des grandes

matrices aléatoires. Le cas particulier β = 2 correspond à une classe

de DPP de projection construits à partir de polynômes orthogonaux.

Cette classe contient notamment le DPP de projection unidimension-

nel utilisé au chapitre 4 dans le cadre de l’intégration Monte Carlo avec

DPP. Notre motivation principale, vient du fait que les β-ensembles

correspondent à la distribution des valeurs propres de matrices tridi-

agonales aléatoires. Du point de vue de l’échantillonnage, le calcul

des valeurs propres d’une matrice tridiagonale aléatoire constitue une

méthode exacte pour générer des échantillons d’un processus continu,

de manière efficace en coût O(N2), où N correspond à la taille de

matrice qui dicte le nombre de points.

Dans ce chapitre nous proposons un traitement nouveau et élémentaire

des modèles tridiagonaux associés aux processus classiques des Her-

http://papers.nips.cc/paper/8992-on-two-ways-to-use-determinantal-point-processes-for-monte-carlo-integration
http://papers.nips.cc/paper/8992-on-two-ways-to-use-determinantal-point-processes-for-monte-carlo-integration
http://papers.nips.cc/paper/8992-on-two-ways-to-use-determinantal-point-processes-for-monte-carlo-integration
http://arxiv.org/abs/2003.02344
http://arxiv.org/abs/2003.02344
http://arxiv.org/abs/2003.02344
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mite, Laguerre et Jacobi β-ensembles. Dans ces cas spécifiques, les co-

efficients définissant la matrice tridiagonale impliquée sont indépendants

et suivent des lois simples à simuler. En revanche, pour des β-ensembles

plus généraux, il n’y a plus d’indépendance entres les coefficients,

mais ces derniers interagissent à faible échelle. En un certain sens,

les coefficients de la matrice tridiagonale vivent dans un espace de

représentation très spécial qui permet de réduire drastiquement la com-

plexité de l’interaction présente entre les points d’un β-ensembles dans

l’espace initial.

Nous exploitons cette propriété dans un schéma d’échantillonnage

de Gibbs pour simuler β-ensembles associés à des potentiels polyno-

miaux. Notre étude expérimentale met en évidence une convergence

étonnamment rapide de l’échantillonneur de Gibbs. En particulier,

après seulement dix passes de Gibbs, même pour de grandes matrices

tridiagonales, le comportement marginal empirique des valeurs propres

suit bien le comportement prescrit par la théorie.

Dans la section finale, nous discutons des différentes parties du

manuscrit et des contributions de la thèse. Nous présentons des pistes

d’améliorations et des questions ouvertes concernant l’échantillonnage

des processus ponctuels déterminantaux.
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On sampling determinantal point processes

Determinantal point processes (DPPs) generate random configuration of points where the points tend to

repel each other. The notion of repulsion is encoded by the sub-determinants of a kernel matrix, in the

sense of kernel methods in machine learning. This special algebraic form makes DPPs attractive both

in statistical and computational terms. This thesis focuses on sampling from such processes, that is on

developing simulation methods for DPPs. Applications include numerical integration, recommender systems

or the summarization of a large corpus of data. In the finite setting, we establish the correspondence between

sampling from a specific type of DPPs, called projection DPPs, and solving a randomized linear program.

In this light, we devise an efficient Markov chain-based sampling method. In the continuous case, some

classical DPPs can be sampled by computing the eigenvalues of carefully randomized tridiagonal matrices.

We provide an elementary and unifying treatment of such models, from which we derive an approximate

sampling method for more general models. In higher dimension, we consider a special class of DPPs used

for numerical integration. We implement a tailored version of a known exact sampler, which allows us to

compare the properties of Monte Carlo estimators in new regimes. In the context of reproducible research,

we develop an open-source Python toolbox, named DPPy, which implements the state-of-the-art sampling

methods for DPPs.

Keywords: Determinantal point processes, sampling, simulation, Monte Carlo methods, ran-

dom matrices

Sur l’échantillonnage des processus ponctuels déterminantaux

Un processus ponctuel déterminantal (DPP) génère des configurations aléatoires de points ayant tendance

à se repousser. La notion de répulsion est encodée par les sous-déterminants d’une matrice à noyau, au sens

des méthodes à noyau en apprentissage artificiel. Cette forme algébrique particulière confère aux DPP de

nombreux avantages statistiques et computationnels. Cette thèse porte sur l’échantillonnage des DPP, c’est

à dire sur la conception d’algorithmes de simulation pour ce type de processus. Les motivations pratiques

sont l’intégration numérique, les systèmes de recommandation ou encore la génération de résumés de grands

corpus de données. Dans le cadre fini, nous établissons la correspondance entre la simulation de DPP

spécifiques, dits de projection, et la résolution d’un problème d’optimisation linéaire dont les contraintes

sont randomisées. Nous en tirons une méthode efficace d’échantillonnage par châıne de Markov. Dans le

cadre continu, certains DPP classiques peuvent être simulés par le calcul des valeurs propres de matrices

tridiagonales aléatoires bien choisies. Nous en fournissons une nouvelle preuve élémentaire et unificatrice,

dont nous tirons également un échantillonneur approché pour des modèles plus généraux. En dimension

supérieure, nous nous concentrons sur une classe de DPP utilisée en intégration numérique. Nous proposons

une implémentation efficace d’un schéma d’échantillonnage exact connu, qui nous permet de comparer les

propriétés d’estimateurs Monte Carlo dans de nouveaux régimes. En vue d’une recherche reproductible, nous

développons une bôıte à outils open-source, nommée DPPy, regroupant les différents outils d’échantillonnage

sur les DPP.

Mots-clés : Processus ponctuels déterminantaux, échantillonnage, simulation, méthodes Monte

Carlo, matrices aléatoires
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