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A Note on Harris' ergodic theorem, controllability and perturbations of harmonic networks

This thesis consists mainly of a collection of papers on the study of the large-time asymptotics of entropy production and associated mixing problems. After having introduced the central notions, we present, in order: a study of the vanishing-noise limit for the large deviations of entropy production functionals in nondegenerate diffusions; an exponential mixing result for stochastic differential equations driven by degenerate Brownian noise; an exponential mixing result for stochastic differential equations driven by degenerate Poissonian noise; a study of the large-time behaviour of ensembles of fermionic walkers interacting with a structured environment; a study of currents and entropy production in a similar framework.

Résumé

Cette thèse consiste principalement en une collection d'articles portant sur l'étude du comportement asymptotique à temps longs de la production d'entropie et sur des problèmes de mélanges qui y sont associés. Après avoir introduit les notions centrales, on présente, dans l'ordre : une étude de la limite du bruit disparaissant de principes de grandes déviations locaux pour des fonctionnelles de production d'entropie dans le cadre des diffusions non dégénérées; un résultat de mélange exponentiel pour des équations différentielles stochastiques avec bruit brownien dégénéré; un résultat de mélange exponentiel pour des équations différentielles stochastiques avec bruit de Poisson dégénéré; une étude des comportements à temps longs d'ensembles de marcheurs fermioniques interagissant avec un environnement structuré; une étude des courants et de la production d'entropie dans ce même cadre. vi
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Motivation

The goal of this introduction is to motivate some of the objects that are studied in the subsequent chapters and to provide the interested readers additional references on the subject. Discussion of the state of the art for specific problems is postponed to the introductions of the different chapters.

We are interested in mathematical problems that stem from a desire to capture and understand the onset of physical phenomena that can be observed at time scales which -while perhaps small compared to cosmological time scales -are very large when compared to the characteristic time scales for the microscopic dynamics. Such phenomena include heat transfers, membrane transport, electrical currents and chemical reactions.

For the purpose of illustration, consider two large blocks of metal, one hotter than the other, sitting in a room separated by a distance which is small compared to the respective sizes of the blocks, but with little air for heat conduction between them. Upon joining the two blocks with a small metal rod, you expect a heat flow to settle across the rod. If your blocks are very large, the flow should remain relatively steady for a long time before the heat lost by the hotter block lowers its temperature in the bulk, or the heat gained raises that of the colder block. Several questions naturally arise. How fast does the current reach this steady value? How do you describe the state carrying this flow of heat? What are the properties of the statistical fluctuations of this flow? How is the confident prediction CHAPTER 1 that heat steadily flows from the hotter block to the colder one compatible with the microscopic reversibility of the dynamics?

We will introduce some of the mathematical tools that are used to frame such problems. This introduction is almost exempt of proofs, with the notable exception of a basic result on mixing for Markov chains which serves as an introduction to some of the ideas used in the more complicated settings of Chapters 3 and 4.

A Brief overview of the classical theory of entropy production

In classical systems, entropy production comes in many guises and -for the reader's conveniencewe briefly motivate different notions of entropy production that appear in the different chapters. We first approach the subject from the point of view of hypothesis testing rather than from a historical perspective. Our starting point will be a way of quantifying how easy it is to guess the original direction of time in a movie possibly shown to us backwards.

The references given are not exhaustive but should allow the reader to get a good idea of the different ideas in the literature.

Some remarks on Hamiltonian systems

We start by discussing what is generally admitted as the proper framework for the time evolution of confined systems in the classical regime: objects moving down inclined planes, masses connected by a set of springs, molecules of a monoatomic gas in a container, etc. From Hamilton's point of view, the physical time evolution of such a system is expressed in terms of integral curves of a vector field on a phase space, which is typically the co-tangent bundle 𝛵 * 𝛭 of a manifold 𝛭 used to describe the possible configurations in space. In a nutshell, a distinguished function 𝛨 on 𝛵 * 𝛭 called the Hamiltonian function of the system gives rise to a one-form d𝛨 which can then be associated to a vector field, called the Hamiltonian vector field, using the natural symplectic structure of 𝛵 * 𝛭 .

Consider the manifold 𝐑 𝛮 and a smooth function 𝛨 ∶ 𝛵 * 𝐑 𝛮 → [0, ∞) such that 𝛨 -1 ([0, 𝛦]) is compact for all 𝛦 ∈ 𝐑 and which is invariant under precomposition with the map 𝜃 which changes the sign in the fibre. With suitable coordinates (𝑞, 𝑝) = (𝑞 1 , … , 𝑞 𝛮 , 𝑝 1 , … , 𝑝 𝛮 ) on 𝛵 * 𝐑 𝛮 , the integral curves for the aforementioned Hamiltonian vector field constructed from 𝛨 in a canonical way are the solutions to the equations q𝑖 = 𝜕𝛨 𝜕 𝑝 𝑖 , ṗ𝑖 = -𝜕 𝛨 𝜕 𝑞 𝑖 .

(1.1)

These equations are known as Hamilton's equations of motion and induce a global flow (𝜙 𝑡 ) 𝑡 ≥0 on phase space. The following observations are consequences of elementary computations.

(EC) Any curve satisfying (1.1) is forever bound to a compact level set of 𝛨 specified by its initial condition.

(LT) The flow (𝜙 𝑡 ) 𝑡 ≥0 generated by Hamilton's equations (1.1) preserves volumes (the Lebesgue measure).

(TRI) If the curve [0, 𝛵 ] ∋ 𝑡 ↦ (𝑞(𝑡 ), 𝑝(𝑡 )) solves (1.1), then the curve [0, 𝛵 ] ∋ 𝑡 ↦ ( q(𝑡 ), p(𝑡 ))

defined by q𝑖 (𝑡 ) ∶= 𝑞 𝑖 (𝛵 -𝑡 ) and p𝑖 (𝑡 ) ∶= -𝑝 𝑖 (𝛵 -𝑡 ) also solves (1.1). In other words,

𝜙 -𝑡 = 𝜃 ∘ 𝜙 𝑡 ∘ 𝜃
for all 𝑡 ∈ 𝐑.

While we considered a particular form of the phase space for simplicity, these observations generalize to the abstract setup of Hamiltonian mechanics on finite-dimensional symplectic manifoldsimply referred to as confined Hamiltonian systems hereafter -; see e. to (𝑞, -𝑝) in the same time.

(LT) is called Liouville's volume theorem. The property (TRI) is called time reversal invariance1 and is illustrated in Figure 1.1.

While the above description is given in terms of curves in phase space, it is worth noting in passing that, for many applications, it is more convenient to focus on the algebra of physical observables of the system, i.e. an algebra of functions on phase space. The flow (𝜙 𝑡 ) 𝑡 ≥0 on phase space induces a semigroup (𝜏 𝑡 ) 𝑡 ≥0 acting on functions by precomposition:

𝜏 𝑡 𝑓 ∶= 𝑓 ∘ 𝜙 𝑡 .
From this point of view, points in phase space are still relevant in that they are associated to evaluation maps, which form a special class of linear functionals on the algebra of functions. More generally, we refer to any normalized postitive continuous linear functional on this algebra -that also includes integration against any Borel probability measure -as states of the system.

Hypothesis testing

Hamilton's equations (1.1), without knowledge of the initial conditions, merely separate the space of curves over an interval [0, 𝛵 ] into two classes: those that are physically admissible and those that can be ruled out. Note that (TRI) tells us that a curve [0, 𝛵 ] ∋ 𝑡 ↦ (𝑞(𝑡 ), 𝑝(𝑡 )) is admissible if and only if its reversal [0, 𝛵 ] ∋ 𝑡 ↦ (𝑞(𝛵 -𝑡 ), -𝑝(𝛵 -𝑡 )) is admissible.

The situation becomes more subtle and interesting if we have a prior on the values of the variables at time 𝑡 = 0: we can compare the likelihood of different admissible paths. Let 𝜆 be a probability measure which is invariant under 𝜃 and which possesses a continuous positive density with respect to the restriction of the Lebesgue measure to a shell 𝛭 𝛦,𝛿 ∶= {(𝑞, 𝑝) ∶ 𝛦 ≤ 𝛨 (𝑞, 𝑝) ≤ 𝛦 + 𝛿 } for some point 𝛦 of the range of 𝛨 and some small number 𝛿 > 0. The shell 𝛭 𝛦,𝛿 is compact and invariant under (𝜙 𝑡 ) 𝑡 ≥0 by (EC). 2 Knowing 𝜆 and given a path 𝛾 ∶ [0, 𝛵 ] → 𝐑 2𝛮 , you are asked to guess according to which of the two following protocols the path 𝛾 was generated:

(H0) An agent sampled an initial condition (𝑞(0), 𝑝(0)) from 𝜆, recorded the evolution up to time 𝛵 according to Hamilton's equation and showed you 𝛾 (𝑡 ) ∶= (𝑞(𝑡 ), 𝑝(𝑡 )), (H1) An agent sampled an initial condition (𝑞(0), 𝑝(0)) from 𝜆, recorded the evolution up to time 𝛵 according to Hamilton's equation and showed you 𝛾 (𝑡 ) = (𝑞(𝛵 -𝑡 ), -𝑝(𝛵 -𝑡 )).

We call the task of distinguishing between those two hypotheses hypothesis testing of the arrow of time.

In other words, with 𝛷 𝛵 ∶ (𝑞, 𝑝) ↦ (𝜙 𝑡 (𝑞, 𝑝)) 𝑡 ∈[0,𝛵 ] according to Hamilton's equations (1.1) and 𝛩 𝛵 ∶ (𝑞(𝑡 ), 𝑝(𝑡 )) 𝑡 ∈[0,𝛵 ] ↦ (𝑞(𝛵 -𝑡 ), -𝑝(𝛵 -𝑡 )) 𝑡 ∈[0,𝛵 ] the operation on paths introduced in (TRI) 2 The restriction to an energy shell of small finite width is technically convenient but not necessary. One can consider the whole phase space if making sure that reasonable bounds on the density of 𝜆 hold in order to deduce (1.4) from (1.3c)

below. If 𝛦 is a regular value of 𝛨 , the other limiting case 𝛿 → 0 is treated considering a reference measure 𝜆 equivalent to the surface measure 𝛴 𝛦 on 𝛭 𝛦,0 and using a comparison with 𝛬 𝛦 defined by |∇ 𝛨 | d𝛬 𝛦 = d𝛴 𝛦 -invariant under (𝜙 𝑡 ) 𝑡 ≥0 as well -instead of with the volume measure in (1.3a)-(1.3c).

CHAPTER 1 and (H1), the hypothesis (H0) is that 𝛾 was sampled from the distribution 𝒫 𝜆 𝛵 ∶= 𝜆 ∘ 𝛷 -1 𝛵 and the hypothesis (H1) is that 𝛾 was sampled from the distribution

P𝜆 𝛵 ∶= 𝜆 ∘ 𝛷 -1 𝛵 ∘ 𝛩 -1 𝛵 .
Let us assume for simplicity that the two hypotheses are a priori equally probable.

With the celebrated result of Neyman and Pearson in mind, you choose to make your guess based on the log-likelihood ratio for a sampled path 𝛾 : and this number cannot be improved by replacing NPT 𝜆 𝛵 with any other {0, 1}-valued function; this is sometimes called a Bayesian version of the Neyman-Pearson lemma. It is well known that decay of F[𝒫 𝜆 𝛵 , P𝜆 𝛵 ] as 𝛵 → ∞ is intimately linked to the behaviour of the moment-generating function of the log-likelihood ratio in the same regime. The following proposition can be found for example in [CJN + 20]; also see [JOPS12,BJPP18,[START_REF] Benoist | On entropy production of repeated quantum measurements II: Examples[END_REF].

𝑆 𝜆 𝛵 (𝛾 ) = log (
Proposition 1.2.1. Let (𝛲 𝛵 , 𝑄 𝛵 ) 𝛵 ≥0 be a family of pairs of mutually absolutely continuous measures on Polish spaces. Suppose that the limit (1.3c)

In other words, your best guess for the original direction of a curve in phase space is based on a comparison of the likelihood of the endpoints of the curves as initial conditions. Using continuity and compactness, we conclude that Hence, we can deduce from the proposition above that F[𝒫 𝜆 𝛵 , P𝜆 𝛵 ] does not decay exponentially as 𝛵 → ∞, i.e. that the Chernoff error exponent is trivial. In fact, the same arguments can be generalized to rule out any stretched exponential decay. In a nutshell, you do not get much better at guessing the original direction of time by having access to longer and longer footages of a confined Hamiltonian system. The reader familiar with the Gärtner-Ellis theorem will notice that the vanishing of the quantity 𝑒(𝛼) is rather singular from the point of view of the analysis of the large deviations of the sequence (𝑆 𝜆 𝛵 (𝛾 )) 𝑡 ≥0 of random variables. This lack of improvement is symptomatic of a general issue in mathematical physics: asymptotic results on confined Hamiltonian systems fail to sharply capture empirical observations of nonequilibrium phenomena on what feels, to us, like large time scales. Sharp results can be obtained using the idealized Hamiltonian mechanics of systems with infinitely many degrees of freedom -referred to as extended Hamiltonian systems -, but regularity CHAPTER 1 properties and the choice of a reference measure playing the role of 𝜆 are then much more delicate. These considerations are beyond the scope of the present thesis; we refer the interested reader to [START_REF] Pillet | Entropy production in classical and quantum systems[END_REF]JPRB11].

Luckily, without introducing as much machinery, one can build what are called effective finitedimensional non-Hamiltonian models for the evolution of a confined system interacting with an infinite-dimensional one, through which it is possible to capture nonequilibrium phenomena such as steady flows and irreversibility. Two classes of such effective descriptions are discussed in the next two subsections.

We emphasize that the discussion of the last three paragraphs should not be interpreted as a stance on the actual number of degrees of freedom in the physical universe or the actual structure of the dynamics of the universe. It is merely a pragmatic statement on the families of mathematical frameworks within which it is possible to capture certain idealized phenomena in nonequilibrium physics in the form of sharp asymptotic results.

Entropy production in thermostated systems

Historically, the first class of effective models were deterministic modifications of the equations of motion (1.1) called thermostated Hamiltonian systems. They are obtained by adding terms on the right-hand sides of Hamilton's equations -those terms are sometimes called phenomenological forces -in such a way that (EC) and (TRI) still hold while (LT) fails. For example, with a Hamiltonian of the form 𝛨 (𝑞, 𝑝) = 1 2 ⟨𝑝, 𝑝⟩ + 𝑉 (𝑞), one could consider q = 𝑝, ṗ𝑖 = -𝜕 𝑉 (𝑞) 𝜕 𝑞 𝑖 + 𝑏 𝑖 (𝑞) -⟨𝑏 (𝑞), 𝑝⟩ ⟨𝑝, 𝑝⟩ 𝑝 𝑖 , (1.5) for some suitable nonconservative vector field 𝑏 ∶ 𝐑 𝛮 → 𝐑 𝛮 .

One then defines the log-likelihood ratio 𝑆 𝜆 𝛵 between 𝒫 𝜆 𝑡 and P𝜆 𝑡 as the entropy production observable; because (1.3a) still holds, we simply write and entropy production is interpreted as function on phase space (or a region thereof) which quantifies the contraction of volumes as measured by the reference measure 𝜆. Here, 𝜙 𝛵 } denotes the flow induced by the system (1.5) after time 𝛵 .

Because (LT) fails, one cannot pass from (1.3b) to (1.3c): the best guess for the original direction of time depends on more than the endpoints of the curve. Hypothesis testing and large deviations of entropy production can then have nontrivial asymptotics in 𝛵 -as a sequence of random variables on phase space with respect to 𝜆 or any other physically relevant measure.

It is within this setup that two landmark results on entropy production were first discussed . In their own way, they both express a universality in the way in which positive values of entropy production are favored when compared to their negative counterparts.

The finite-time Evans-Searles symmetry

Note that the moment generating function (1.6)

for 𝑄 𝜆 𝛵 -almost all 𝜍 ∈ 𝐑. This symmetry is dubbed the transient fluctuation theorem or the finitetime Evans-Searles symmetry due to its first derivation in [START_REF] Evans | Equilibrium microstates which generate second law violating steady states[END_REF] using a different argument.

The Gallavotti-Cohen fluctuation theorem

For 𝜆 + a limit point of the net (𝛵 -1 ´𝛵 0 𝜆 ∘ 𝜙 -𝑡 d𝑡 ) 𝛵 ≥0 in a suitable topology -which is then necessarily invariant under 𝜙 𝑡 for all 𝑡 and typically referred to as a nonequilibrium steady state -, we say that a Gallavotti-Cohen fluctuation theorem holds in 𝜆 + if there is a large deviation principle for the sequence (𝑆 𝜆 𝛵 ) 𝛵 ≥0 of random variables on phase space with a rate function 𝛪 satisfying the symmetry for all Borel subsets 𝛦 of 𝐑 and the symmetry (1.7) of the rate function gives the heuristics 𝜆 + {𝛵 -1 𝑆 𝜆 𝛵 ≈ -𝜍} 𝜆 + {𝛵 -1 𝑆 𝜆 𝛵 ≈ 𝜍} ≈ e -𝛵 𝛪 (-𝜍) e -𝛵 𝛪 (𝜍) = e -𝛵 (𝛪 (-𝜎 )-𝛪 (𝜎 )) = e -𝛵 𝜍 , which is reminiscent of (1.6). Such a result was first derived using Anosov diffeomorphisms as a model for the dynamics of a strongly sheared fluid [START_REF] Gallavotti | Dynamical ensembles in stationary states[END_REF]. The large deviation principle is typically proved by studying the limit 

𝛵

-referred to as the entropic pressure -and applying a version of the Gärtner-Ellis theorem; see e.g. [START_REF] Dembo | Large deviations techniques and applications[END_REF]§2.3]. However, we should note that other routes to the fluctuation theorem have shown to be more powerful in other contexts; see e.g. [START_REF] Cuneo | Large deviations and fluctuation theorem for selectively decoupled measures on shift spaces[END_REF].

While they are both inspired by the same numerical experiments [START_REF] Evans | Probability of second law violations in shearing steady flows[END_REF] and capture a similar symmetry, the spirit of the finite-time Evans-Searles symmetry and the Gallavotti-Cohen fluctuation theorem are quite different and authors insist that they should not be confused [START_REF] Cohen | Note on two theorems in nonequilibrium statistical mechanics[END_REF]JPRB11,[START_REF] Gallavotti | Nonequilibrium and fluctuation relation[END_REF].

The principal distinction is that the Evans-Searles symmetries are universal -they hold for any TRI dynamical systems for which the objects in question are defined. The mechanism behind Gallavotti-Cohen symmetries a priori could be model dependent and in general they may fail. Perhaps surprisingly, a careful look at all principal classes of models for which the symmetries have been rigorously established reveals that the respective 

Entropy production in stochastic systems

Later, a second class of effective models started to attract attention: stochastic dynamics [Kur98, LS99,[START_REF] Crooks | Path-ensemble averages in systems driven far from equilibrium[END_REF]. They are again typically obtained by adding terms on the right-hand side of the equation for ṗ, but now in the form of a stochastic process. These terms are supposed to mimic the effect of infinitely extended reservoirs in some essentially steady state in certain regimes.

For such systems, the study of is typically focused on the log-likelihood ratio between the distribution of forward and backward trajectories rather than on a notion of contraction of volume in phase space. It is here the noise rather than time reversal invariance which ensures mutual absolute continuity of the distributions associated to the hypotheses to be tested. Again, the finite-time Evans-Searles symmetry holds without any further assumption.

As alluded to above, a key preliminary step to studying the Gallavotti-Cohen fluctuation theorem is to make sure that there indeed is an invariant measure for our process and understand the extent to which it is reasonable to expect the time evolution of a typical initial condition to converge to this invariant measure. This problem alone is the subject of two chapters of this thesis and we devote the next section of the present chapter to a short discussion of the tools that are available. Before we do so, let us complete our brief discussion of entropy production by mentioning extensions of the classical theory to quantum systems and links with thermodynamics.

Entropy production in quantum mechanics

In an algebraic description of nonrelativistic Hamiltonian quantum mechanics, physical observables are elements of a 𝐶 * -algebra 𝒜, states are nonnegative linear functionals on 𝒜 which are properly normalized, and the dynamics is a suitably continuous group of * -automorphisms of 𝒜. While this is a structure that is shared with classical mechanics, the fact that the algebras of observables considered in quantum mechanics are noncommutative prevents us from naturally finding an underlying notion of trajectory on which to base our notion of entropy production. However, formula (1.3a) can be adapted provided that we have a suitable analogue of the Radon-Nikodym derivative for quantum states. This analogue is the relative modular operator of Tomita-Takesaki theory: this is the approach developed in [Ara76, OHI88, Oji89, Rue01, JP01, Pil01, JP02, TM03]; see [JOPP11] for an overview of the theory for confined quantum systems.

In a certain class of models for a small system interacting with an infinitely extended reservoir, a definition of this type has been successfully linked to a definition at the level of effective Markovian descriptions of the small system alone in the weak coupling limit; see [JKP06, AJPP06, dR07,

DdRM08, JPW14].

There has also been a recent interest in the theory of entropy production associated to classical probability measures on shift spaces arising from repeated quantum measurements [Cro08, HP13, BJPP18, HJPR18, CJPS19, BB20].

Thermodynamics

The notion of entropy production is also used in the context of thermodynamics. In fact, the link between the information-theoretical notion of entropy production and physically relevant quantities from thermodynamics is fundamental. Justice can only be done to this subject in the framework of extended Hamiltonian systems, but the machinery that is involved in such a discussion is beyond the scope of this introduction. We provide a partial treatment within the confined framework of Subsection 1.2.1 and refer the reader to [START_REF] Pillet | Entropy production in classical and quantum systems[END_REF]JPRB11] for more details.

Consider a special case of the Hamiltonian setup of Subsection 1.2.1 in which the Hamiltonian is of the form 𝛨 = (𝛨 0 + 𝛨 1 + 𝛨 2 ) + 𝑉

where 𝛨 𝑖 depends only on variables in a subspace 𝛫 𝑖 with 𝐑 2𝛮 = 𝛫 0 ⊕ 𝛫 1 ⊕ 𝛫 2 and 𝑉 is allowed to depend on all the variables.

Also consider a reference probability measure 𝜆 of the form d𝜆 = 𝛧 -1 e -𝛽 1 𝛨 1 -𝛽 2 𝛨 2 dvol for some positive numbers 𝛽 1 , 𝛽 2 and 𝛧, where the "vol" is considered on the whole space. In other words, 𝜆 is the product of three measures: a normalized volume measure on 𝛫 0 , a measure on 𝛫 1 which has maximum entropy among the measures on 𝛫 1 giving a fixed mean to 𝛨 1 parametrized by 𝛽 1 , and a measure on 𝛫 2 which has maximum entropy among the measures on 𝛫 2 giving a fixed mean to 𝛨 2 parametrized by 𝛽 2 . The parameters 𝛽 1 and 𝛽 2 are called inverse temperatures.

If the subspaces 𝛫 1 and 𝛫 2 have very high dimensions compared to that of 𝛫 0 , they are to be thought of as acting as reservoirs of energy and entropy for the latter. Thermodynamics à la Clausius then suggests defining entropy production as the weighted sum of the energy flowing into each reservoir by its inverse temperature, that is the observable 𝐶 𝛵 ∶= 𝛽 1 (𝛨 1 ∘ 𝜙 𝛵 -𝛨 1 ) + 𝛽 2 (𝛨 2 ∘ 𝜙 𝛵 -𝛨 2 ).

The link with our previous definition of entropy production is made as follows. By (LT), a change of variables gives ˆ𝑓 d(𝜆 ∘ 𝜙 𝛵 ) = ˆ(𝑓 ∘ 𝜙 -𝛵 )(𝑝, 𝑞)𝛧 -1 e -𝛽 1 𝛨 1 (𝑝,𝑞)-𝛽 2 𝛨 2 (𝑝,𝑞) d𝑝 d𝑞 = ˆ𝑓 (𝑝, 𝑞)𝛧 -1 e -𝛽 1 𝛨 1 (𝜙 𝛵 (𝑝,𝑞))𝜙 𝑡 -𝛽 2 𝛨 2 (𝜙 𝛵 (𝑝,𝑞)) d𝑝 d𝑞, CHAPTER 1 so that d(𝜆 ∘ 𝜙 𝛵 ) d𝜆

(𝑝, 𝑞) = e -𝛽 1 𝛨 1 (𝜙 𝛵 (𝑝,𝑞))-𝛽 2 𝛨 2 (𝜙 𝛵 (𝑝,𝑞)) e -𝛽 1 𝛨 1 (𝑝,𝑞)-𝛽 2 𝛨 2 (𝑝,𝑞) ,

or equivalently log d𝜆 d(𝜆 ∘ 𝜙 𝛵 ) = 𝛽 1 (𝛨 1 ∘ 𝜙 𝛵 -𝛨 1 ) + 𝛽 2 (𝛨 2 ∘ 𝜙 𝛵 -𝛨 2 ) = 𝐶 𝛵 .

(1.8)

If one modifies the reference state 𝜆 by multiplying its density by a function on 𝛫 0 , say a constant times e -𝛽 0 𝛨 0 for some positive number 𝛽 0 , this identity must be corrected with terms which should be small compared to 𝐶 𝛵 for large values of 𝛵 .

As pointed out in Subsection 1.2.2, one cannot hope 𝐶 𝛵 to truly display interesting asymptotic properties in the limit 𝛵 → ∞ as long as we stay within the framework of confined Hamiltonian systems. Yet, such calculations are good indications of what can be done in important class of examples of extended Hamiltonian systems and suggest interpreting the Gallavotti-Cohen fluctuation theorem as a statement on the universality of statistical fluctuations violating the second law of thermodynamics formulated in terms of thermodynamic affinities; see [JPRB11,§9] and [START_REF] Jakšić | Entropic fluctuations in gaussian dynamical systems[END_REF].

For effective models introduced in Subsection 1.2.3 and 1.2.4, relations between entropy production and heat currents from thermodynamics can also be exhibited; see e.g. [START_REF] Chernov | Steady-state electrical conduction in the periodic Lorentz gas[END_REF]LS99,MNV03]. In Chapter 2, we will see the information-theoretical notion of entropy being linked to the work done by the nonconservative force driving the system out of equilibrium.

One should note that the ease with which one passes from a thermodynamic interpretation of entropy production to the other fundamentally relies on the commutativity of observables in the classical setting. For this reason, many of the basic relations from thermodynamics are much more subtle in the quantum setting. For example, even the very definition of work and heat -let alone the way they relate to each other in closed systems via the first law of thermodynamics beyond the level of averages -requires some care; see e.g. [TLH07, CHT11, BPR19, BPP20].

Mixing

In all physical paradigms discussed above, the dynamics is ultimately encoded in a suitably continuous semigroup (𝜏 𝑡 ) 𝑡 ≥0 of operators on an involutive Banach algebra of observables which preserves nonnegativity. In this picture, states of the system are continuous linear functionals on the algebra of observables that are nonnegative and normalized. For example, the flow (𝜙 𝑡 ) 𝑡 ≥0 on a symplectic manifold induced by Hamilton's equations or modifications thereof induces a semigroup of so-called Koopman operators on different reasonable algebras of functions through the formula 𝜏 𝑡 𝑓 ∶= 𝑓 ∘ 𝜙 𝑡 . In stochastic models, a semigroup of so-called Markov operators is constructed from the transition functions 𝛲 𝑡 through the formula (𝜏 𝑡 𝑓 )(𝑥) ∶= ´𝑓 (𝑦)𝛲 𝑡 (𝑥, d𝑦). In both cases, the adjoint of 𝜏 𝑡 then acts on a space of measures which contains states as we have defined them.

Vaguely speaking, a mixing result for a dynamics (𝜏 𝑡 ) 𝑡 ≥0 and a state 𝜔 + on 𝒜 is a guarantee that lim 𝑡 →∞ 𝜔 0 ( 𝜏 𝑡 𝑓 ) = 𝜔 + (𝑓 )

for important classes of observables 𝑓 and initial states 𝜔 0 . It is in the state 𝜔 + that we can expect to measure true nonequilibrium quantities and prove the Gallavotti-Cohen fluctuation theorem.

When dealing with the microscopic description of a system with infinitely many degrees of freedom -classical or quantum -the set of initial conditions 𝜔 0 allowed for convergence crucially depends on 𝜔 + for genuine physical reasons. Indeed, in the thought experiment of Section 1.1, we expect the state carrying a steady flow of heat to change if we completely change the initial temperature of a block. For stochastic systems with finitely many degrees of freedom -which will be the main focus for the remainder of the chapter -, the "physical" part of this restriction is in some sense already included in the choice of the noise and the only restrictions left will be more technical (e.g. mild regularity and decay assumptions).

Mixing for stochastic differential equations

Consider a stochastic differential equation in 𝐑 𝛭 of the form d𝛸 𝑡 = 𝑐(𝛸 𝑡 ) d𝑡 + 𝑄 d𝑌 𝑡 CHAPTER 1

where 𝑐 ∶ 𝐑 𝛭 → 𝐑 𝛭 is a vector field, (𝑌 𝑡 ) 𝑡 ≥0 is an 𝐑 𝐷 -valued Lévy process defined on a probability space (𝛺, ℱ, 𝚸 ), and 𝑄 ∶ 𝐑 𝐷 → 𝐑 𝛭 is a linear map. 4 If 𝑐 and (𝑌 𝑡 ) 𝑡 ≥0 are nice enough, the solution (𝛸 𝜆 𝑡 ) 𝑡 ≥0 will be essentially uniquely specified by any initial condition 𝛸 𝜆 0 ∼ 𝜆 as a process on (𝛺, ℱ, 𝚸 ). The transition functions

𝛲 𝑡 (𝑥, 𝛦) = 𝚸 [𝛸 𝜆 𝑡 ∈ 𝛦 | 𝛸 𝜆 0 = 𝑥]
for Borel sets 𝛦 ⊆ 𝐑 𝛭 can be defined independently of 𝜆 and give rise to a semigroup on Borel bounded functions via the formula (𝜏 𝑡 𝑓 )(𝑥) ∶= ˆ𝑓 (𝑦) 𝛲 𝑡 (𝑥, d𝑦) (1.9)

for 𝑓 bounded and measurable, or equivalently (𝜏 𝑡 𝑓 )(𝑥) ∶= 𝚬[𝑓 (𝛸

𝛿 𝑥 𝑡 )
]. An important problem in the study of such equations is to find reasonable conditions on 𝑐, 𝑄, (𝑌 𝑡 ) 𝑡 ≥0 and 𝜆 that guarantee the convergence lim 𝑡 →∞ 𝜆(𝜏 𝑡 𝑓 ) = 𝜆 inv (𝑓 )

(1. [START_REF] Zkg + | [END_REF] for some probability measure 𝜆 inv common to all 𝑓 in a large class of functions.

A possible approach is to show that 𝜏 𝑡 , considered on a suitable Banach space of functions, converges weakly as 𝑡 → ∞ to its rank-one spectral projector for the eigenvalue 1 using general results from the spectral theory of semigroups. This approach is well suited for equations driven by Brownian noises because the infinitesimal generator of the semigroup then admits a nice closed-form expression as a differential operator for which powerful tools have been developed.

Let us sketch how this is done for the simple case where 𝑐(𝑥) = -𝑥 and (2 -1/2 𝑄𝑌 𝑡 ) 𝑡 ≥0 is a standard Brownian motion in 𝐑 𝛭 . The formula (1.9) then defines a strongly continuous semigroup on the space 𝐿 2 (𝐑 𝛭 , e -1 2 |𝑥| 2 d𝑥) and its generator is a differential operator satisfying

(𝛢𝑓 )(𝑥) = (Δ𝑓 )(𝑥) -⟨𝑥, (∇𝑓 )(𝑥)⟩ 4
The dimension 𝛭 could naturally be 2𝛮 if the stochastic differential equation is the effective dynamics of the position and momentum variable subject to interaction with reservoirs or 𝛮 if the equation describes the effective dynamics of the position variables only (e.g. in the Smoluchowski-Kramers limit). However, in some situations, 𝛭 could be larger than 2𝛮 if additional degrees of freedom are necessary in order to make the effective dynamics Markovian; see e.g. [EPRB99b].

for all 𝑓 ∈ 𝐶 2 c (𝐑 𝛭 ). In fact, this semigroup is immediately infinitely differentiable, thanks to the regularizing properties of the Laplacian; irreducible, thanks to the maximum principle; compact, thanks to Sobolev's embedding and the fact that the potential 𝑉 (𝑥) = 1 2 |𝑥| 2 from which 𝑐(𝑥) derives is coercive. In the general theory of semigroups, these three conditions suffice for convergence to the spectral projector of interest; see e.g. [AGG + 86, Ch. C-IV] or [START_REF] Engel | A Short course on operator semigroups[END_REF]§VI.3]. This approach can be adapted in a straightforward -yet slightly more technical -way to the more general setting of Chapter 2.

Of course, the Laplacian is a very special operator and one should not hope to so easily obtain the result if 𝑄 does not have full rank. We call this this obstacle degeneracy of the noise: if 𝑄 does not have full rank, we do not have linearly independent combinations of the independent one-dimensional Brownian motions explicitly appearing in each of the one-dimensional equations for individual coordinates (referred to as degrees of freedom). Generators associated to degenerate Brownian noises may still enjoy good regularization and irreducibility properties, but both checking and exploiting those properties in a physically relevant context are far from easy. We refer the reader to [Tro77, EPRB99b, EPRB99a, EH00, CEHRB18] for successful analyses along those general lines.

In Chapters 3 and 4 of this thesis, a considerably different route to mixing is taken. It is based on a body of works from S. Kuksin, A. Shirikyan and their coauthors.

The Approach of Kuksin and Shirikyan

In their own words, S. Kuksin and A. Shirikyan, have been working on a programme whose goal is to develop methods for applying the results and tools of the control theory in the study of mixing properties of flows generated by randomly forced evolution equations. 5The biggest successes of this endeavour concern the mixing properties of stochastic partial differential equations (e.g. stochastically driven Navier-Stokes systems) [KS01, AKSS07, Shi07, Shi15, CHAPTER 1 KNS19, KZ20, Shi20]. However, the approach has also met with success in revisiting stochastic ordinary differential equations: Chapters 3 and 4 are in line with the approach presented in [Shi17].

To motivate the use of different notions of controllability in the study of mixing, let us discuss one of the most basic setups in which one can discuss mixing: Markov chains on a finite set 𝛬 of cardinality 𝐿. This discussion is centered around a stochastic matrix P = [𝑝 𝑖 ,𝑗 ] 𝑖 ,𝑗 ∈𝛬 , i.e. an 𝐿-by-𝐿 matrix with nonnegative entries such that

∑ 𝑖 ∈𝛬 𝑝 𝑖 ,𝑗 = 1,
for each 𝑗 ∈ 𝛬. We use 𝑝 𝑚 𝑖 ,𝑗 the (𝑖 , 𝑗 )-th entry of the 𝑚-th power of the matrix P. Such a matrix indeed allows us to construct a discrete-time semigroup (𝜏 𝑡 ) 𝑡 ∈𝚴 acting on functions on 𝛬:

(𝜏 𝑡 𝑓 )(𝑖 ) ∶= ∑ 𝑗 ∈𝛬 𝑝 𝑡 𝑖 ,𝑗 𝑓 (𝑗 ) = ∑ 𝑗 1 ∈𝛬 ∑ 𝑗 2 ∈𝛬 ⋯ ∑ 𝑗 𝑡 ∈𝛬 𝑝 𝑖 ,𝑗 1 𝑝 𝑗 1 ,𝑗 2 ⋯ 𝑝 𝑗 𝑡 -1 ,𝑗 𝑡 𝑓 (𝑗 𝑡 ).
In this context, it is convenient to identify functions on 𝛬 with column vectors in 𝐑 𝐿 and states on the algebra of functions on 𝛬 with row vectors in 𝐑 𝐿 whose components are nonnegative and sum to 1. 6The following mixing result -whose hypotheses are illustrated in Figure 1.2 -can be proved using a variety of methods. While we will discuss two proof sketches which motivate relevant notions of controllability, we note in passing that a proof appealing to the Perron-Frobenius theorem would, in spirit, be the closest to the method discussed in the previous subsection.

Proposition 1.5.1. Suppose that there exists a subset 𝛣 of the state space with the following two properties:

(a) there exists 𝑚 ≥ 1 such that ∑ 𝑗 ∈𝛣 𝑝 𝑚 𝑖 ,𝑗 > 0 for all 𝑖 ;

(b) there exists 𝑘 0 such that 𝑝 𝑗 ,𝑘 0 > 0 for each 𝑗 ∈ 𝛣.

Then, there exist a nonnegative row vector for all 𝑖 ∈ 𝛬 and all choices of (𝑓 𝑗 ) 𝑗 ∈𝛬 .

Remark 1.5.2. The way the proposition is formulated is not optimal for Markov chains on a finite set 𝛬; hypotheses (a) and (b) together are equivalent to the simpler requirement that 𝑝 𝑚 ′ 𝑖 ,𝑘 ′ > 0 for each 𝑖 ∈ 𝛬 and some fixed 𝑘 ′ ∈ 𝛬 and 𝑚 ′ ∈ 𝚴. The purpose here is to illustrate techniques which we use in Chapters 3 and 4 in situations where mere pointwise positivity of transition functions has to be complemented with different notions of accuracy and uniformity for the analogues of Hypotheses (a) and (b).

Harris' theorem

A first way of obtaining the result is to appeal to Harris' ergodic theorem. Let us present the version elegantly proved by M. Hairer and J.C. Mattingly [HM11]. The hypotheses are formulated for a semigroup (𝜛 𝑛 ) 𝑛∈𝚴 acting on bounded measurable function on a (not necessarily finite) space 𝚾 and Dirac measures 𝛿 𝑥 at points 𝑥.

Theorem 1.5.3. Let (𝜛 𝑛 ) 𝑛∈𝚴 be the semigroup associated to a discrete-time Markov chain on a space 𝚾.

Suppose that there exists a function 𝑉 ∶ 𝚾 → [0, ∞) and constants 𝛫 ∈ [0, ∞) and 𝛾 ∈ (0, 1) such that

(𝜛 1 𝑉 )(𝑥) ≤ 𝛾 𝑉 (𝑥) + 𝛫 CHAPTER 1
for all 𝑥 ∈ 𝚾 and suppose that there exists a constant 𝛼 ∈ (0, 1) and a probability measure 𝜈 on 𝚾 such that inf 𝑥∈𝑉 -1 ([0,𝑅]) (𝜛 1 ) * 𝛿 𝑥 ≥ 𝛼𝜈 for some 𝑅 > 2𝛫 1-𝛾 , as measures on 𝚾. Then, there exists a unique invariant state 𝜆 + for the semigroup (𝜛 𝑛 ) 𝑛∈𝚴 . Furthermore, there exist constants 𝐶 , 𝑐 ∈ (0, ∞) such that for any 𝑖 , with nonzero infima by the Hypothesis (a). In other words, the evolution for 𝑚 +1 steps of a Dirac measure in 𝑖 is bounded below by a positive 𝑖 -independent constant times the Dirac measure in 𝑘 0 . With 𝑉 ≡ 0 and any 𝑅 > 0, this is precisely the second hypothesis of Harris' theorem for

sup 𝑥∈𝚾 |(𝜛 𝑛 𝑓 )(𝑥) -𝜆 + (𝑓 )| 1 + 𝑉 (𝑥) ≤ 𝐶 e -𝑐𝑛
𝜛 𝑛 𝑓 ∶= P 𝑛(𝑚+1) 𝑓 .
Therefore, there exists a unique state 𝜆 + such that 𝜆 + = 𝜆 + P 𝑚+1 , and there exist constants 𝐶 and 𝑐 such that

| ∑ 𝑖 ,𝑗 ∈𝛬 𝜆 𝑗 𝑝 𝑛(𝑚+1) 𝑗 ,𝑖 𝑓 𝑖 -∑ 𝑗 𝜆 + 𝑗 𝑓 𝑗 | ≤ 𝐶 e -𝑐(𝑚+1)(𝑛+1) .
(1.12)

To show that this measure is also invariant for the original chain, and not only its (𝑚+1)-skeleton, take 𝑓 the indicator of an arbitrary point 𝑖 ∈ 𝛬:

| ∑ 𝑗 ∈𝛬 𝜆 𝑗 𝑝 𝑛(𝑚+1) 𝑗 ,𝑖 -𝜆 + 𝑖 | ≤ 𝐶 e -𝑐(𝑚+1)(𝑛+1)
and, in the special case 𝜆 = 𝜆 + P 𝑠 for an arbitrary 𝑠,

| ∑ 𝑗 ∈𝛬 𝜆 + 𝑗 𝑝 𝑛(𝑚+1)+𝑠 𝑗 ,𝑖 -𝜆 + 𝑖 | ≤ 𝐶 e -𝑐(𝑛+1) .
But using the semigroup property and the invariance of 𝜆 + under 𝜆 + P 𝑛(𝑚+1) = 𝜆 + , we obtain

| ∑ 𝑗 ∈𝛬 𝜆 + 𝑗 𝑝 𝑠 𝑗 ,𝑖 -𝜆 + 𝑖 | ≤ 𝐶 e -𝑐(𝑛+1) .
Because the left-hand side is independent of 𝑛, we may take 𝑛 → ∞ to deduce that 𝜆 + P 𝑠 = 𝜆 + .

Given a function 𝑓 , it is then easy to show using (1.12) and (1.12) with 𝑓 replaced with P 1 𝑓 up to P 𝑚 𝑓 that (1.11) holds.

Couplings

This second approach is more probabilistic in spirit. We say that a process (𝛸 𝑡 𝑖 ) 𝑡 ∈𝚴 defined on a probability space (𝛺, ℱ, 𝚸 ) is a copy of the chain starting in 𝑖 if it is a 𝛬-valued process with the property that whenever 𝑗 , 𝑘 ∈ 𝛬 and 𝑠, 𝑡 ∈ 𝚴 are such that 𝑝 𝑠 𝑖 ,𝑗 > 0. We may at will construct such copies for each 𝑖 in such a way that they are independent of each other on a common space (𝛺 ind , ℱ ind , 𝚸 ind ).

A coupling of the chains starting in 𝑖 and 𝑖 ′ is a process (𝒵 𝑡 ) 𝑡 ∈𝚴 on a probability space (𝛺, ℱ, 𝚸 ), taking values in the product space 𝛬 × 𝛬, such that

𝚸 [𝜋 (𝒵 0 ) = 𝑖 ] = 1
and

𝚸 [𝜋 (𝒵 𝑡 +𝑠 ) = 𝑘|𝜋 (𝒵 𝑠 ) = 𝑗 ] = 𝑝 𝑡 𝑗 ,𝑘
whenever 𝑗 , 𝑘 ∈ 𝛬 and 𝑠, 𝑡 ∈ 𝚴 are such that 𝑝 𝑠 𝑖 ,𝑗 > 0, and For such a coupling, consider the (possibly infinite) random variable on (𝛺, ℱ, 𝚸 ) defined as

𝚸 [𝜋 ′ (𝒵 0 ) = 𝑖 ′ ] = 1 and 𝚸 [𝜋 ′ (𝒵 𝑡 +𝑠 ) = 𝑘|𝜋 ′ (𝒵 𝑠 ) = 𝑗 ] = 𝑝 𝑡 𝑗 ,𝑘
𝒯 ∶= inf{𝑡 ∈ 𝚴 ∶ 𝜋 (𝒵 𝑡 ′ ) = 𝜋 ′ (𝒵 𝑡 ′ ) for all 𝑡 ′ ≥ 𝑡 }, CHAPTER 1
i.e. the first time the coupling hits the diagonal in the space 𝛬 ×𝛬 and never leaves it, an event referred to as coalescence. The key observation about 𝒯 is the following. 

))] = 𝚬[𝟏 {𝜋 (𝒵 𝑡 )≠𝜋 ′ (𝒵 𝑡 )} (𝟏 𝑆 (𝜋 (𝒵 𝑡 )) -𝟏 𝑆 (𝜋 ′ (𝒵 𝑡 )))] ≤ 𝚬[𝟏 {𝜋 (𝒵 𝑡 )≠𝜋 ′ (𝒵 𝑡 )} ].
This concludes the proof.

Corollary 1.5.5. Suppose that for any pair gives the desired conclusion.

Thus, we will be done with the proof of the proposition if, for an arbitrary pair (𝑖 , 𝑖 ′ ), we are able to construct a coupling 𝒵 of the chains starting in 𝑖 and 𝑖 ′ in such a way that it sticks to the diagonal soon enough, often enough. This is where we use our assumptions. The precise construction of 𝒵 involves a fair amount of notation but can be, up to a timing technicality, summarized as follows:

Step 1. Launch a copy of the process starting at 𝑖 as the first component and a copy of the process starting at 𝑖 ′ as the second component, independently of one another;

Step 2. Wait until the independent components land simultaneously in 𝛣 (i.e. until the coupling hits the set 𝛣 × 𝛣 in the product space);

Step 3. Correlate the two components in order to maximize the probability that they meet (i.e. that the coupling hits the diagonal in the product space) at the next step;

Step 4. If they meet, let them be equal forever (i.e. let the coupling stick to the diagonal in the product space); else, go back to 2. Now, concretely, the process 𝒵 is constructed on a product of countably many identical spaces

(𝛺 𝑟 , ℱ 𝑟 , 𝚸 𝑟 ) ∶= (𝛺 ind , ℱ ind , 𝚸 ind ) × (𝛺 max , ℱ max , 𝚸 max )
where (𝛺 max , ℱ max , 𝚸 max ) denotes the product over pairs of the spaces in the following lemma, which expresses an important relation between the notion of coupling and the total variation distance and is key to Step 3; see for example Section 1.2.4 in [KS12].

Lemma 1.5.6. For any pair (𝑗 , 𝑗 ′ ) ∈ 𝛬 × 𝛬, there exists a (𝛬 × 𝛬)-valued random variable ℛ 𝑗 ,𝑗 ′ on a probability space space (𝛺 max 𝑗 ,𝑗 ′ , ℱ max 𝑗 ,𝑗 ′ , 𝚸 max 𝑗 ,𝑗 ′ ) such that

𝚸 max 𝑗 ,𝑗 ′ [𝜋 (ℛ 𝑗 ,𝑗 ′ ) = 𝑘] = 𝑝 𝑗 ,𝑘 , 𝚸 max 𝑗 ,𝑗 ′ [𝜋 ′ (ℛ 𝑗 ,𝑗 ′ ) = 𝑘] = 𝑝 𝑗 ′ ,𝑘
for all 𝑘 ∈ 𝛬 and

𝚸 max 𝑗 ,𝑗 ′ [𝜋 (ℛ 𝑗 ,𝑗 ′ ) ≠ 𝜋 ′ (ℛ 𝑗 ,𝑗 ′ )] = 1 2 ∑ 𝑘∈𝛬 |𝑝 𝑗 ,𝑘 -𝑝 𝑗 ′ ,𝑘 |.
We denote (𝛸 𝑡 𝑖 ;𝑟 ) 𝑡 ∈𝚴 the process on (𝛺, ℱ, 𝚸 ) ∶= ∏ 𝑟 ∈𝚴 (𝛺 𝑟 , ℱ 𝑟 , 𝚸 𝑟 ) which is a copy of the chain starting at 𝑖 living on the appropriate space in the 𝑟 -th spot in the countable product, and CHAPTER 1 similarly for other random variables. With this notation, we construct (𝒵 𝑡 ) 𝑡 ∈𝚴 on (𝛺, ℱ, 𝚸 ) inductively in 𝑟 according to the rules 𝑚+1) ;𝑟 , 𝛸 𝑠 𝜋 ′ 𝒵 𝑟 (𝑚+1) ;𝑟 ) if 1 ≤ 𝑠 ≤ 𝑚, or 𝑠 = 𝑚 + 1 and 𝒵 𝑟 (𝑚+1)+𝑚 ∉ (𝛣 × 𝛣)

𝒵 𝑟 (𝑚+1)+𝑠 ∶= ⎧ ⎨ ⎩ (𝛸 𝑠 𝜋 𝒵 𝑟 (
ℛ 𝒵 𝑟 (𝑚+1) ;𝑟 if 𝑠 = 𝑚 + 1 and 𝒵 𝑟 (𝑚+1) ∈ (𝛣 × 𝛣)\ diag(𝛬),
(𝛸 𝑠 𝜋 𝒵 𝑟 (𝑚+1) ;𝑟 , 𝛸 𝑠 𝜋 𝒵 𝑟 (𝑚+1) ;𝑟 ) if 𝑠 = 𝑚 + 1 and 𝒵 𝑟 (𝑚+1) ∈ (𝛣 × 𝛣) ∩ diag(𝛬). Lemma 1.5.7. The coupling (𝒵 𝑡 ) 𝑡 ∈𝚴 is such that there exist 𝐶 ∈ (0, ∞) and 𝛾 ∈ (0, 1) depending on 𝑖 , 𝑖 ′ and P only such that

𝚸 [𝒯 > 𝑡 ] < 𝐶 𝛾 𝑡 for all 𝑡 ∈ 𝚴. Proof. For 𝑟 ∈ 𝚴, 𝚸 [𝒵 𝑟 (𝑚+1)+𝑚 ∈ 𝛣 × 𝛣|𝒵 𝑟 (𝑚+1) ∉ diag(𝛬)] = ( ∑ 𝑗 ∈𝛣 𝑝 𝑚 𝜋 𝒵 𝑟 (𝑚+1) ,𝑗 )( ∑ 𝑗 ′ ∈𝛣 𝑝 𝑚 𝜋 ′ 𝒵 𝑟 (𝑚+1) ,𝑗 ′ ).
(1.15) by independence, and

𝚸 [𝒵 𝑟 (𝑚+1)+𝑚 ∈ 𝛣 × 𝛣|𝒵 𝑟 (𝑚+1)𝑚 ∈ diag(𝛬)] = ∑ 𝑗 ∈𝛣
𝑝 𝑚 𝜋 𝒵 𝑟 (𝑚+1) ,𝑗 .

(1.16)

Both the right-hand side of (1.15) and the right-hand side of (1.16) can be bounded away from 0, say by a small number 𝛾 1 ∈ (0, 1), thanks to Assumption (a). On the other hand,

𝚸 [𝒵 (𝑟 +1)(𝑚+1) ∈ diag(𝛬)|𝒵 𝑟 (𝑚+1)+𝑚 ∈ 𝛣 × 𝛣] ≥ min 𝑗 ,𝑗 ′ ∈𝛣 𝚸 max 𝑗 ,𝑗 ′ [ℛ 𝑗 ,𝑗 ′ ∈ diag(𝛬)], but Lemma 1.5.6 gives 𝚸 max 𝑗 ,𝑗 ′ [ℛ 𝑗 ,𝑗 ′ ∈ diag(𝛬)] ≥ 1 2 min{𝑝 𝑗 ,𝑘 0 , 𝑝 𝑗 ′ ,𝑘 0 }.
The right-hand side can be bounded away from 0 by a small number 𝛾 2 which is independent of 𝑗 and 𝑗 ′ in 𝛣, thanks to Assumption (b). Hence, by induction,

𝚸 [𝒵 (𝑟 +1)(𝑚+1) ∉ diag(𝛬)] ≤ (1 -𝛾 1 𝛾 2 ) 𝑟 +1 .
Therefore,

𝚸 [𝒯 > 𝑡 ] ≤ 𝚸 [𝒯 > ⌊ 𝑡 𝑚+1 ⌋(𝑚 + 1)] ≤ 𝚸 [𝛧 ⌊ 𝑡 𝑚+1 ⌋(𝑚+1) ∉ diag(𝛬)] ≤ (1 -𝛾 1 𝛾 2 ) ⌊ 𝑡 𝑚+1 ⌋
and the proof is complete.

Extracting the key steps

In both proofs, the hypotheses on the entries of the stochastic matrix and its powers had the following key consequences:

(A) For arbitrary large sets of initial conditions, there is a uniform lower bound for transitions to 𝛣 in some common time step;

(B) There is a nontrivial measure bounding from below all transitions from 𝛣 in some common time step.

Back to the context of stochastic differential equations of the form

d𝛸 𝑡 = 𝑐(𝛸 𝑡 ) d𝑡 + 𝑄 d𝑌 𝑡 ,
a small ball around a point x could play a role similar to that of 𝛣 provided that the two controllability conditions below are satisfied. To formulate them, let us set

𝑆 𝑡 ∶ 𝐑 𝛭 × 𝛦 → 𝐑 𝛭 (𝑥, 𝜂) ↦ 𝑥(𝑡 )
to be the map which sends an initial condition 𝑥 ∈ 𝐑 𝛭 and a control 𝜂 in a space 𝛦 of functions from [0, 𝑡 ] to 𝐑 𝑑 to the solution at time 𝑡 to

{ ẋ(𝑠) = 𝑐(𝑥(𝑠)) + 𝑄𝜂(𝑠), 𝑥(0) = 0.
With this notation, the controllability conditions are:

The system is approximately controllable to x : for any number 𝜖 > 0 and any radius 𝑅 > 0, we can find a time 𝛵 > 0 such that for any initial point We emphasize that the existence of a function 𝑉 as in Harris' theorem is key to making use of this condition with dependence in 𝑅 in a noncompact space. Such functions appear in Chapters 2, 3 and 4 and are called Lyapunov functions.

To see why solid controllability is related to (B), the first step is to note that transition function in time 𝑡 is the pushforward of ℓ through the map 𝑆 𝑡 (𝑥, ⋅ ). Hence, if the Jacobian 𝐷 𝑆 𝑡 (𝑥, ⋅ ) has full rank and behaves nicely in 𝑥 near x, then it is reasonable to expect that the implicit function theorem and a change of variables can be used to obtain a lower bound on 𝛲 𝑡 (𝑥, ⋅ ) that is independent of 𝑥 close enough to x. Therefore, in view of Sard's theorem, it makes sense that a condition saying that maps well approximating 𝑆 𝛵 0 ( x, ⋅ ) cover a ball would guarantee (B) for the time 𝛵 0 .

Both of these heuristic arguments of course need some assumptions on ℓ to be turned into rigorous proofs. Abstract We investigate the behaviour of a family of entropy production functionals associated to stochastic differential equations of the form d𝛸 𝑠 = -∇𝑉 (𝛸 𝑠 ) d𝑠 + 𝑏 (𝛸 𝑠 ) d𝑠 + √ 2𝜖 d𝑊 𝑠 , where 𝑏 is a globally Lipschitz nonconservative vector field keeping the system out of equilibrium, with emphasis on the large-time limit and then the vanishing-noise limit. Different members of the family correspond to different choices of boundary terms. We use techniques from the theory of semigroups and from semiclassical analysis to reduce the description of the asymptotic behaviour of the functional to the study of the leading eigenvalue of a quadratic approximation of a deformation of the infinitesimal generator near critical points of 𝑉 . Our analysis yields a law of large numbers and a local large deviation principle which does not depend on the choice of boundary terms and which exhibits a Gallavotti-Cohen symmetry.

Introduction

The study of reversibility of diffusion processes was pioneered by A.N. Kolmogorov in [START_REF] Kolmogoroff | Zur Umkehrbarkeit der statistischen Naturgesetze[END_REF], with one of its first basic results being that a diffusion

d𝛸 𝑠 = 𝑐(𝛸 𝑠 ) d𝑠 + 𝜎 d𝑊 𝑠 (2.1)
on 𝐑 𝛮 with constant diffusion matrix 𝜎 > 0 and initial condition 𝛸 0 ∼ 𝜆 is reversible if and only if there exists a function 𝑈 such that 𝑐 = -𝜎 𝜎 T ∇𝑈 and 𝜆 is the unique probability measure whose density is proportional to exp(-1 2 𝑈 ). In all other cases, the time reversal of the original diffusion is a Markov process which is different from the original one.

The question whether the reversal of a diffusion is itself a diffusion was explored and understood in the 1980s, most notably by B. D. O. Anderson [START_REF] Anderson | Reverse-time diffusion equation models[END_REF] and by E. Pardoux and U. Haussmann [START_REF] Haussmann | Time reversal of diffusions[END_REF]. When it is the case, it is natural to ask how distinguishable the two diffusions are: this more quantitative question -and its connection with thermodynamics -is the subject of the present paper. It has a long history in both the physics and mathematics literature, but we will only give references to the mathematically rigorous works on the particular aspects we are interested in.

Both the original process observed during the interval [0, 𝑡 ] and its time reversal give rise to probability measures on a space of continuous functions; let us call them respectively 𝒫 𝑡 and 𝒫 𝑡 ∘ 𝛩 -1 𝑡 . Using statistical tools to distinguish between these two measures is called hypothesis testing of the arrow of time in [JOPS12,[START_REF] Cuneo | What is a Fluctuation Theorem? SpringerBriefs in Mathematical Physics[END_REF]. To explore the basic questions in the realm of hypothesis testing, the log-likelihood ratio

𝑆 LLR 𝑡 ∶= log d𝒫 𝑡 d(𝒫 𝑡 ∘ 𝛩 -1 𝑡 ) (2.2)
and its moment-generating function are of great significance; 𝑆 LLR 𝑡 is sometimes called the canonical entropy production functional.

In dimension 2 or 3, the diffusion (2.1) -called an overdamped Langevin equation -is naturally interpreted as a small-inertia approximation of the dynamics of a single particle in the force field 𝑐, perturbed by a thermal noise -the matrix 𝜎 𝜎 T is related to temperature through an Einsteintype relation. Hence, a thermodynamic notion of entropy production is natural: with 𝑏 the part of 𝑐 which is nonconservative, the integral One expects 𝑆 LLR 𝑡 and 𝑆 W 𝑡 to be quantities of order 𝑡 and only differ by a additive terms that depend on the initial and final conditions of the paths. In the present article, we consider an abstract entropy production functional 𝒮 𝑡 corresponding to any sufficiently well-behaved modification of these so-called boundary terms and study its behaviour as 𝑡 → ∞ and then in the limit as 𝜎 vanishes.

𝑆 W 𝑡 ∶= 2 ˆ𝑡 0 ⟨(𝜎 𝜎 T ) -1 𝑏 (𝛸 𝑠 ), ∘ d𝛸 𝑠 ⟩ (2.3)
The way in which we take 𝜎 to 0 leaves out some geometric considerations: we consider 𝜎 𝜖 = √ 2𝜖𝟏 and take the scalar parameter 𝜖 to 0. Considering the more general case 𝜎 𝜖 = √𝜖𝜎 1 for some fixed positive-definite matrix 𝜎 1 has been sacrificed for readability and ease of interpretation of the formulas: one can perform a suitable change of variables and carry on with a similar analysis, but one must then be careful with the physical interpretation. Indeed, from the physical point of view, the case we look at here corresponds to situations where the lack of equilibrium comes from a nonconservative driving force and is conceptually different from situations where the lack of equilibrium comes from an imbalance between the sources of thermal fluctuations.

The asymptotic behaviour of entropy functionals as 𝑡 → ∞ at fixed 𝜖 > 0 was studied by L. Bertini and G. Di Gesù in [START_REF] Bertini | Small noise asymptotic of the Gallavotti-Cohen functional for diffusion processes[END_REF] and by F.Y. Wang, J. Xiong and L. Xu in [START_REF] Wang | Asymptotics of sample entropy production rate for stochastic differential equations[END_REF] under more restrictive technical conditions. For a class of degenerate linear diffusions, V. Jakšić, C.-A. Pillet and A. Shirikyan have performed a very detailed analysis of the limit 𝑡 → ∞ [JPS17]. In [START_REF] Bertini | Small noise asymptotic of the Gallavotti-Cohen functional for diffusion processes[END_REF], the authors also tackled the limit 𝜖 → 0 at fixed 𝑡 > 0 by means of Freidlin-Wentzell theory and then the limit as 𝑡 → ∞ using subadditivity and results on Γ -convergence; also see [START_REF] Rey-Bellet | Asymptotic behavior of thermal nonequilibrium steady states for a driven chain of anharmonic oscillators[END_REF] and [START_REF] Kurchan | Gallavotti-Cohen theorem, chaotic hypothesis and the zero-noise limit[END_REF].

As already discussed by some of these authors, taking 𝑡 → ∞ first and then 𝜖 → 0 is physically more natural and was left open. This order is the one taken here, revealing a different picture than in [START_REF] Bertini | Small noise asymptotic of the Gallavotti-Cohen functional for diffusion processes[END_REF].

In Section 2.2, we set our assumptions, discuss the basic theory surrounding the time reversal of CHAPTER 2 the diffusion and rigorously relate (2.2) to (2.3) by boundary terms. In Section 2.3, we introduce a family of entropic functionals 𝒮 𝜖 𝑡 depending on the choice of boundary terms. We then give a representation for the moment-generating function 𝜒 𝜖 𝑡 (𝛼) involving the chosen boundary term and the compact and irreducible semigroup generated by the deformation

𝛬 𝜖,𝛼 = 𝜖Δ + ⟨𝑐 -2𝛼𝑏 , ∇⟩ -𝛼(1-𝛼) 𝜖 |𝑏 | 2 + 𝛼 𝜖 ⟨𝑏 , 𝑐 -𝑏 ⟩ -𝛼 div 𝑏
of the generator associated to (2.1). Relevant spectral properties of 𝛬 𝛼,𝜖 , including domain technicalities, a Perron-Frobenius-type result for its spectral bound spb(𝛬 𝛼,𝜖 ) and a result of convergence in the large-time limit for the generated semigroup, are given in Appendix 2.A.

In Section 2.4, we study the asymptotics of the moment-generating function as 𝑡 → ∞ for fixed 𝜖 > 0: we show that lim

𝑡 →∞ 1 𝑡 log 𝜒 𝜖 𝑡 (𝛼) = spb(𝛬 𝛼,𝜖 )
for a set of 𝛼 which depends on the behaviour of the boundary terms at infinity. Our set of assumptions is more general than that of [START_REF] Bertini | Small noise asymptotic of the Gallavotti-Cohen functional for diffusion processes[END_REF]: we most notably allow 𝑏 to be unbounded; see Assumptions (L0), (L1) and (RB).

If the behaviour at infinity of the boundary terms is suitable -cf. Assumption (IP) -, we prove a local large deviation principle (ldp):

lim 𝑡 →∞ 1 𝑡 log 𝚸 {𝑡 -1 𝒮 𝜖 𝑡 ∈ 𝐺 } = -inf 𝜍∈𝐺 𝑒 𝜖 * (𝜍)
for all open sets 𝐺 close enough to the expectation, where the rate function 𝑒 𝜖 * is the Legendre transform in the variable 𝛼 of spb(𝛬 𝛼,𝜖 ). At this level of generality, the local nature of the ldp is not merely technical: while we have not focused on enlarging the interval of validity of the principle as much as technically possible, it is known that different choices of boundary terms may give rise to different behaviour of the rate functions far away from the mean; see the pioneering work [START_REF] Van Zon | Extension of the fluctuation theorem[END_REF] as well as the mathematical account [JPS17], where many other references are given.

In Section 2.5, we characterise the vanishing of the mean entropy production per unit time and give detailed information on the rate function 𝑒 * 𝜖 in the case where the diffusion is linear. In Section 2.6, we use the linear case and a result in semiclassical analysis proved in Section 2.7 to describe the asymptotic behaviour of the rate function 𝑒 𝜖 * as 𝜖 → 0 in the general case. Many properties of the limiting rate function can be deduced from the behaviour of the deterministic dynamics near the local minima of 𝑉 . This analysis requires extra conditions on the behaviour of the vector field near the critical points of 𝑉 ; see Assumption (ND).

Setup, definitions and preliminary results

We study a stochastic differential equations (sde) in 𝐑 𝛮 of the form

d𝛸 𝑠 = -∇𝑉 (𝛸 𝑠 ) d𝑠 + 𝑏 (𝛸 𝑠 ) d𝑠 + √ 2𝜖 d𝑊 𝑠 ,
where 𝑉 is a coercive Morse function and 𝑏 is a nonconservative vector field vanishing at the critical points of 𝑉 , and the log-likelihood ratio (2.2) between the corresponding path measure and its time reversal. We will explicitly keep track of the dependence on the initial condition and on 𝜖 as superscripts for relevant quantities.

Remark 2.2.1.

There is some freedom in decomposing a deterministic drift in the form -∇𝑉 + 𝑏 . Because this drift may already be provided in a given such decomposition coming from a physical context, we facilitate the verification of our hypotheses by avoiding making the assumption that this decomposition is in any sense canonical.

Assumptions on the equation and immediate consequences

Throughout the paper, 𝛮 ≥ 2 is a fixed natural number and the 𝛮 -dimensional euclidean space 𝐑 𝛮 is equipped with an inner product ⟨ ⋅ , ⋅ ⟩. Let 𝑉 ∶ 𝐑 𝛮 → 𝐑 be a fixed function of class 𝐶 3 and 𝑏 ∶ 𝐑 𝛮 → 𝐑 𝛮 a fixed globally Lipschitz vector field of class 𝐶 2 . We introduce the following assumptions.

Assumption (L0).

There exists a positive-definite matrix 𝛨 0 and a constant 𝛫 0 such that ⟨∇𝑉 (𝑥), 𝛨 0 𝑥⟩ ≥ |𝑥| 2 -𝛫 0 for all 𝑥 ∈ 𝐑 𝛮 and the function 𝑥 ↦ |∇𝑉 (𝑥)| 2 -𝑎‖𝐷 2 𝑉 (𝑥)‖ is bounded below for all values of 𝑎 ∈ 𝐑.
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Assumption (L1).

There exists a positive-definite matrix 𝛨 𝑏 and a constant 𝛫 𝑏 such that ⟨∇𝑉 (𝑥) -𝑏 (𝑥), 𝛨 𝑏 𝑥⟩ ≥ |𝑥| 2 -𝛫 𝑏 for all 𝑥 ∈ 𝐑 𝛮 .

Assumption (RB).

There exist constants ℎ 𝑏 ∈ (0, ∞) and 𝑘 𝑏 ∈ [0, 1 2 ) such that for each 𝑗 = 1, … , 𝑚.

Assumption (L0) yields a Lyapunov structure for the ordinary differential equation

Ẏ = -∇𝑉 (𝑌 )
and Assumption (L1) plays the same role for Χ = -∇𝑉 (𝛸 ) + 𝑏 (𝛸 ).

The relative bounds in Assumption (RB) guarantee that these two deterministic dynamics have the same fixed points, which form a finite set (2.5)

To be more precise, the following consequence of (L1) plays a key role in the proof of existence and uniqueness in [START_REF] Khasminskii | Stochastic stability of differential equations[END_REF]§3.3]. We will also use it throughout the paper. for almost all 𝑥 and the second inequality in (2.6) follows from Grönwall's lemma.

Both 𝜆 𝜖 inv and 𝜇 𝜖 0 possess positive continuous densities with respect to the Lebesgue measure on 𝐑 𝛮 , denoted "vol" hereafter. Whenever we write "almost everywhere" or "almost all" without specifying the measure, it is with respect to any of those equivalent measures. While we do not have a general explicit formula for the density of 𝜆 𝜖 inv -decay and regularity are discussed in Appendix 2.A -, we have

𝜇 𝜖 0 (𝛦) ∶=
´𝛦 e -𝜖 -1 𝑉 (𝑥) d𝑥 ´𝐑𝛮 e -𝜖 -1 𝑉 (𝑦) d𝑦 (2.7) for all Borel subsets 𝛦 of 𝐑 𝛮 . and we conclude the proof using the identity 𝜋 0 (𝛩 𝑡 𝛾 ) = 𝜋 𝑡 𝛾 .

Time reversal and the canonical entropy production functional
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The behaviour of 𝒫 𝜆,𝜖 𝑡 under the time reversal 𝛩 𝑡 is in general more subtle and, consistently with the intuition from thermodynamics, the dependence of the Radon-Nikodym derivative is not limited to the initial and final conditions of the path. The proof we give of the proposition below uses comparison with 𝒬 𝜆,𝜖 𝑡 , as in e.g. [JPS17]. Another possible route is to use the results of [HP86] on the reversal of (𝛸 where the right-hand sides are defined 𝒫 𝜆,𝜖 𝑡 -almost surely according to the usual theory of, respectively, Stratonovich and Itô stochastic integration with respect to continuous semimartingales [Pro05, §II.4-II.7].

Proof of Proposition 2.2.5. Throughout the proof, we omit keeping explicitly track of the dependence on 𝜖 in the notation. We first reduce the general case to the technically easier case where the nonconservative vector field has compact support. For the latter, we suppose that the reader is familiar with Girsanov's theorem and related criteria; see e.g. [START_REF] Protter | Stochastic integration and differential equations[END_REF]§III.8] Once mutual absolute continuity is proved, the symmetry expressed in (2.10) is an immediate consequence of the definition of the Radon-Nikodym derivative and the fact that 𝛩 𝑡 is an involution. Log-convexity is a consequence of Hölder's inequality.

Step 1: Reduction to the case where 𝑏 has compact support. Suppose that the proposition has been proved in the case where 𝑏 has compact support. For The fact that 𝐹 (𝛾 ) is strictly positive and equals the right-hand side of (2.9) follows from basic properties of the exponential, the absolute-continuity assumption and the fact that lim 𝑅→∞ ˆ⟨𝑏 𝑅 (𝛾 ), ∘ d𝛾 ⟩ = ˆ⟨𝑏 (𝛾 ), ∘ d𝛾 ⟩ CHAPTER 2 for all 𝛾 ∈ 𝒞 𝑡 (given 𝛾 , take 𝑅 > ‖𝛾 ‖ ∞ ).

Step 2: Proof in the case where 𝑏 has compact support.

Step 2a: Comparing 𝒫 𝜆,𝜖 𝑡 and 𝒬 𝜆,𝜖 𝑡 . Because 𝑏 is bounded, Novikov's condition is satisfied and the process (𝛧 𝑠 ) 𝑠∈[0,𝑡 ] defined by the Doléans-Dade exponential 

Generalised entropy production functionals

Motivated by the structure revealed in the previous section and by [Kur98,LS99,[START_REF] Van Zon | Extension of the fluctuation theorem[END_REF]MNV03,JPS17], we introduce a family of entropy production functionals parametrised by the choice of boundary terms. Throughout the remainder of the paper, the function 𝑔 ∶ 𝐑 𝛮 → (0, ∞) is continuous and the initial condition 𝜆 is absolutely continuous with respect to the Lebesgue measure and has finite variance. with the double integral on the right-hand side being bounded uniformly in 𝑡 by Tonelli's theorem, Lemma 2.2.3 and the fact that 𝑏 is globally Lipschitz.

Definition and the weak law of large numbers

As for the boundary terms in the definition of 𝑡 -1 𝒮 𝜖 𝑡 , we note that it is no loss of generality to assume that 𝑔(0) = 1. Then, by positivity and continuity of 𝑔, there exists a monotone family (𝑅 𝛭 ) 𝛭 >0 of radii properly diverging to +∞ with 𝛭 such that 𝑔 -1 ([e -𝛭 /5 , e 𝛭 /5 ]) ⊇ {𝑥 ∈ 𝐑 𝛮 ∶ |𝑥| ≤ 𝑅 𝛭 }.

Using this inclusion with

𝛭 = 𝑡 𝛿 , 𝒫 𝜆,𝜖 𝑡 {|𝑡 -1 log 𝑔(𝜋 0 𝛾 )| > 1 5 𝛿 } ≤ 𝒫 𝜆,𝜖 𝑡 {|𝜋 0 𝛾 | ≥ 𝑅 𝑡 𝛿 } = 𝜆{𝑥 ∈ 𝐑 𝛮 ∶ |𝑥| ≥ 𝑅 𝑡 𝛿 }
converges to 0 as 𝑡 → ∞ because 𝑅 𝑡 𝛿 → ∞ and the initial condition 𝜆 is a probability measure.

Using the same inclusion, Chebyshëv's inequality and Lemma 2.2.3,

𝒫 𝜆,𝜖 𝑡 {|𝑡 -1 log 𝑔(𝜋 𝑡 𝛾 )| > 1 5 𝛿 } ≤ 𝒫 𝜆,𝜖 𝑡 {|𝜋 𝑡 𝛾 | ≥ 𝑅 𝛿 𝑡 } ≤
´⟨𝑦, 𝛨 𝑏 𝑦⟩ 𝜆(d𝑦) + 𝐶 𝑅 2 𝛿 𝑡 inf sp 𝛨 𝑏 also converges to 0 as 𝑡 → ∞. The proof is then concluded using the triangle inequality and a union bound.

We see from the formula (2.16) that the behaviour as 𝜖 → 0 of the mean entropy production per unit time 𝔪 𝜖 will depend on that of 𝜆 𝜖 inv and hence on the Freidlin-Wentzell quasipotential [VF70, §6-8] associated to the ordinary differential equation, Χ = -∇𝑉 (𝛸 )+𝑏 (𝛸 ). In situations where the quasipotential is proportional to 𝑉 , more detailed information can be obtained and points where 𝑉 attains its global minimum play a particular role. We will come back to this in Section 2.6.

Assumptions on the boundary terms and the initial condition

As mentioned in the Introduction, the ldp at the heart of this article is local. At the technical level, this is due to the fact that we are able to prove convergence of the rescaled logarithm of the mgf, 𝑡 -1 log 𝜒 𝜖 𝑡 (𝛼), as 𝑡 → ∞ and then as 𝜖 → 0 only for certain values of 𝛼.

In the special case where 𝑏 is bounded and orthogonal to ∇𝑉 , and 𝑔 ≡ 1, L. Bertini and G. Di

Gesù have shown convergence as 𝑡 → ∞ for all 𝛼 ∈ 𝐑, bypassing the type of assumption we are about to introduce. However, the analysis of the linear case in [JPS17] shows the intricacies of taking the limit 𝑡 → ∞ for 𝛼 ∉ [0, 1] in the case where 𝑏 is unbounded, as well as the sensitivity of the limit to the choice of boundary terms. Subsequently taking the limit 𝜖 → 0 for 𝛼 outside [0, 1] also comes with its own technical complications.

To be more precise, a first obstruction to our methods stems from a change of sign of an auxiliary potential which is central in the study of the limit 𝜖 → 0; see Section 2.7. We avoid this by restricting our attention to 𝛼 in the interval 

𝒜 ∶= ⋃ ℓ ∈(0,1) int{𝛼 ∶ ℓ 1 4 |∇𝑉 (𝑥)| 2 -

Assumption (IP).

There exists an open interval 𝛪 𝜖 with [0, 1] ⊂ 𝛪 𝜖 ⊆ 𝒜 and such that the following property holds for all 𝛼 ∈ 𝛪 𝜖 : there exists 𝑝 𝜖 𝛼 ∈ (1, ∞) and ℓ 𝜖 𝛼 ∈ (0, 1) such that Proof. We will show that there exists a nonempty interval of the form (𝛼 -, 0] which does not depend on 𝜖 and such that (2.18) and (2.19) hold for all 𝛼 in this interval, with common 𝑝 and ℓ . A similar argument can be given to find an interval of the form [1, 𝛼 + ).

ℓ 𝜖 𝛼 1 𝑝 𝜖 𝛼 (1 -1 𝑝 𝜖 𝛼 )|∇𝑉 (𝑥)| 2 - 1-2𝛼+𝛼𝑝
Fix 𝑝 = 2 + 𝛿 for some 𝛿 > 0 small enough that there exists ℓ ∈ (0, 1) such that condition (2.18) holds for all 𝛼 in a nonempty interval of the form ( α-, 0]. whenever |𝑥| > ̃𝑟𝜖 . We conclude that the claim (2.21) indeed holds for all 𝛼 ∈ ( ᾱ-, 0] with ᾱ-1 -∶= -𝑝( 1 2 + 𝛫 2𝛾 -).

A representation for the moment-generating function

Under Assumption (IP), we prove the validity of a commonly used representation of the mgf 𝜒 𝜖 𝑡 (𝛼) in terms of a semigroup of operators acting on L 𝑝 𝜖 𝛼 (𝐑 𝛮 , d𝜇 𝜖 0 ) obtained by deformation of the infinitesimal generator 𝛬 𝜖,0 = 𝜖Δ + ⟨-∇𝑉 + 𝑏 , ∇⟩ of the semigroup associated to the sde (2.5). The Proof. We use an approximation strategy similar to that in the proof of Proposition 2.2.5 and again omit keeping explicit track of 𝜖.

proof
Step 1: Reduction to the case where 𝑏 has compact support. Suppose that the proposition has been proved in the case where 𝑏 has compact support. For a general 𝑏 , let (𝑏 𝑅 ) 𝑅∈𝚴 be a sequence of compactly supported approximations of 𝑏 as in the proof of Proposition 2.2.5.

Fix 𝛼 and set where Ζ𝑠 (𝛾 ) ∶= exp( 𝛼 √2𝜖 ´𝑠 0 ⟨𝑏 (𝛾 ), d𝑊 (𝛾 )⟩ -𝛼 2 4𝜖 ´𝑠 0 |𝑏 (𝛾 (𝑟 ))| 2 d𝑟 ). The proof is concluded with a standard Itô calculus computation.

𝛬 𝛼 𝑅 ∶= 𝜖Δ + ⟨-𝛥𝑉 + (1 -2𝛼)𝑏 𝑅 , ∇⟩ -

Large deviations in the large-time limit

The quantity 𝑒 𝜖 (𝛼) ∶= sup{Re 𝑧 ∶ 𝑧 ∈ sp(𝛬 𝛼,𝜖 , W 2,2 (𝐑 𝛮 , d𝜇 𝜖 0 ))} for 𝛼 ∈ 𝒜 will play a crucial role in our analysis of the large deviations of 𝒮 𝜖 𝑡 . We will interchangeably refer to this quantity as the leading eigenvalue of 𝛬 𝛼,𝜖 or as spb(𝛬 𝛼,𝜖 ). Let us first state and prove a lemma concerning its regularity in 𝛼 at fixed 𝜖 > 0.

Lemma 2.4.1. Under Assumptions (L0), (L1) and (RB), the function 𝑒 𝜖 is real-analytic on 𝒜.

Proof. Fix 𝛼 0 ∈ 𝒜. The differential operator 𝛬 𝛼 0 ,𝜖 defined by (2.23) on W 2,2 (𝐑 𝛮 , d𝜇 𝜖 0 ) is closed as an unbounded operator on L 2 (𝐑 𝛮 , d𝜇 𝜖 0 ); see Appendix 2.A. For 𝜘 ∈ 𝐂, 𝛣 𝛼 0 ,𝜖 (𝜘) ∶= -2𝜘 ⟨𝑏 , ∇⟩ -

𝜘(1-𝜘-2𝛼 0 ) 𝜖 |𝑏 | 2 + 𝜘 𝜖 ⟨𝑏 , ∇𝑉 ⟩ -𝜘 div 𝑏
is a relatively bounded perturbation of 𝛢 𝛼 0 ,𝜖 . The relative bound can be made arbitrarily small by taking |𝜘| small enough.

Hence, by Theorem 1.1 in [Kat95, Ch. IV], there exists a neighbourhood 𝛺 of 𝛼 0 in 𝐂 such that the differential operator 𝛬 𝛼,𝜖 = 𝛬 𝛼 0 ,𝜖 +𝛣 𝛼 0 ,𝜖 (𝛼-𝛼 0 ) on L 2 (𝐑 𝛮 , d𝜇 𝜖 0 ) with domain W 2,2 (𝐑 𝛮 , d𝜇 𝜖 0 ) is closed for all 𝛼 ∈ 𝛺. Moreover, a straightforward estimate shows that 𝜘 ↦ 𝛣 𝛼,𝜖 (𝜘)𝑓 ∈ L 2 (𝐑 𝛮 , d𝜇 𝜖 0 )

CHAPTER 2 is holomorphic whenever 𝑓 ∈ W 2,2 (𝐑 𝛮 , d𝜇 𝜖 0 ). Hence, for fixed 𝜖 > 0, {𝛬 𝛼,𝜖 } 𝛼∈𝛺 is a holomorphic family of type (A) in the sense of [Kat95, §VII.2.1]. By Proposition 2.A.7, 𝑒 𝜖 (𝛼 0 ) is a simple eigenvalue of 𝛬 𝛼 0 ,𝜖 and can be separated from the rest of sp 𝛬 𝛼 0 ,𝜖 by a simple closed curve. Following [Kat95, §VII.2.3], the spectrum of (𝛬 𝛼,𝜖 , W 2,2 (𝐑 𝛮 , d𝜇 𝜖 0 )) is likewise separated into two parts for 𝛼 ∈ 𝛺 close enough to 𝛼 0 , and 𝛼 ↦ 𝑒 𝜖 (𝛼) admits an analytic extension to a small complex neighbourhood of 𝛼 0 .

Lemma 2.4.2. Under Assumptions (L0), (L1) and (RB),

𝔪 𝜖 = -𝐷 𝑒 𝜖 (0).
Proof. With the appropriate normalisation, the eigenvector corresponding to the eigenvalue 𝑒 𝜖 (0) = 0 is the constant 1 and the corresponding eigenvector of the adjoint (the Fokker-Planck operator) is obtained from 𝜆 𝜖 inv ; see the proof of Lemma 2.A.8. Because 𝑒 𝜖 is analytic in 0 and is a simple eigenvalue for all 𝛼 close enough to 0, the derivative can be computed using a formula colloquially known as the Hellmann-Feynman formula: Hence, using Hölder's inequality and Proposition 2.A.7 to control the difference in the integrand, lim

𝐷 𝑒 𝜖 (0) = ˆ(-2 ⟨𝑏 , ∇⟩ -𝜖 -1 |𝑏 | 2 + 𝜖 -1 ⟨𝑏 , ∇𝑉 ⟩ -div 𝑏 )1 d𝜆 𝜖 inv ; see (2.33) in [Kat95,
𝑡 →∞ 1 𝑡 log ˆ𝒞𝑡 e -𝛼𝒮 𝜆,𝜖 𝑡 d𝒫 𝜉 ,𝜖 𝑡 = 𝑒 𝜖 (𝛼).
Remark 2.4.4. In particular, in this regime, the mean canonical entropy production and the Chernoff and Hoeffding error exponents for the hypothesis testing of the arrow of time do not depend on the specific choice of initial distribution 𝜆, as long as it is mutually absolutely continuous with respect to 𝜇 𝜖 0 . Actually, if one is solely interested in this fact, one only needs the proposition for 𝛼 ∈ [0, 1] and can therefore relax Assumption (IP). We refer the reader to [JOPS12,§6], [CJPS20, Ch. I.1].

Corollary 2.4.5. Under the same assumptions, the function 𝑒 𝜖 ∶ 𝒜 → 𝐑 is convex and

𝑒 𝜖 (1 -𝛼) = 𝑒 𝜖 (𝛼)
for all 𝛼 ∈ 𝒜.

Proof. Consider the particular case 𝑔 ≡ 1 and 𝜆 = 𝜇 𝜖 0 and take the appropriate limit in the second part of Proposition 2.2.5 using Proposition 2.4.3. 

For 𝜍 ∈ {-𝐷 𝑒 𝜖 (𝛼) ∶ 𝛼 ∈ 𝒜}, set 𝑒 𝜖 * (𝜍) ∶= sup 𝛼∈𝒜 ( -𝛼𝜍 -𝑒 𝜖 (𝛼)). ( 2 
⊂ {-𝐷 𝑒 𝜖 (𝛼) ∶ 𝛼 ∈ 𝛪 0 }, then -inf 𝜍∈int(𝛦) 𝑒 𝜖 * (𝜍) ≤ lim inf 𝑡 →∞ 𝑡 -1 log 𝒫 𝜖 𝑡 {𝑡 -1 𝒮 𝜖 𝑡 ∈ 𝛦} ≤ lim sup 𝑡 →∞ 𝑡 -1 log 𝒫 𝜖 𝑡 {𝑡 -1 𝒮 𝜖 𝑡 ∈ 𝛦} ≤ -inf 𝜍∈cl(𝛦)
𝑒 𝜖 * (𝜍).

The linear case

We have shown in Section 2.4 that the large deviations of 𝒮 𝜖 𝑡 can be understood in terms of the leading eigenvalue 𝑒 𝜖 (𝛼) of 𝛬 𝛼,𝜖 and its Legendre transform (2.33). We devote the present section to the study of these quantities in the case where we make the additional assumptions that 𝑉 is quadratic and 𝑏 is linear -equivalently 𝑉 (𝑥) = 1 2 ⟨𝑥, 𝐷 2 𝑉 𝑥⟩ and 𝑏 (𝑥) = 𝐷 𝑏 𝑥. Note that (ND) is then a consequence of (L0), which becomes

𝐷 2 𝑉 > 0.
(2.35)

Assumption (RB) becomes ⟨𝐷 𝑏 𝑥, 𝐷 2 𝑉 𝑥⟩ ≤ 𝑘 𝑏 |𝐷 2 𝑉 𝑥| 2 (2.36)
for all 𝑥 ∈ 𝐑 𝛮 .

The linear case is particularly important for several reasons. First and foremost, we will see in Sections 2.6 and 2.7 that the general case can be reduced to this one in the limit 𝜖 → 0. Second, linearity makes computations more tractable and allows to give a characterisation of the vanishing of the mean entropy production per unit time 𝔪 𝜖 .

Note that the operator 𝛬 𝛼,𝜖 introduced in (2.23) is in this case isospectral to the 𝜖-independent operator

𝑄 𝛼 = Δ + ⟨ℓ 𝛣 (𝛼) , ∇⟩ -𝑞 𝛫 (𝛼) + 1 2 tr 𝐷 2 𝑉 -𝛼 tr 𝐷 𝑏 (2.37)
where ℓ 𝛣 (𝛼) is the auxiliary linear vector field 𝑥 ↦ 𝛣 (𝛼) 𝑥 and 𝑞 𝛫 (𝛼) is the auxiliary quadratic potential 𝑥 ↦ ⟨𝑥, 𝛫 (𝛼) 𝑥⟩, with

𝛣 (𝛼) ∶= (1 -2𝛼)𝐷 𝑏
and

𝛫 (𝛼) ∶= 1 4 (𝐷 2 𝑉 ) 2 -1 4 (𝐷 𝑏 T 𝐷 2 𝑉 + 𝐷 2 𝑉 𝐷 𝑏 ) + 𝛼(1 -𝛼)𝐷 𝑏 T 𝐷 𝑏 .
To see this, conjugate with the Gaussian weight e -(2𝜖) -1 𝑉 and its inverse and then make a change of variable 𝑥 ↦ 𝜖 1/2 𝑥.

Such elliptic operators with quadratic symbols have been fairly well understood since the seminal work of [START_REF] Sjöstrand | Parametrices for pseudodifferential operators with multiple characteristics[END_REF]. Here, inspired by [FS97, JPS17], we emphasise a slightly different point of view, which relies on the study of the corresponding algebraic Riccati equation (are)

𝛸 2 -1 2 (𝛣 (𝛼) ) T 𝛸 -1 2 𝛸 𝛣 (𝛼) -𝛫 (𝛼) = 0 (2.38)
for a symmetric matrix 𝛸 . The general theory of such equations is discussed in [START_REF] Lancaster | The algebraic Riccati equation[END_REF]. See [START_REF] Budhiraja | Large deviations and fluctuation theorem for the entropy production rate of a stochastic particle system in magnetic field[END_REF] for yet another approach in a special case.

Proposition 2.5.1. For all 𝛼 ∈ 𝒜, the are (2.38) admits a maximal solution 𝛸 (𝛼) and spb 𝑄 𝛼 = -tr 𝛸 (𝛼) + 1 2 tr 𝐷 2 𝑉 -𝛼 tr 𝐷 𝑏 .

Moreover, 𝛼 ↦ tr 𝛸 (𝛼) defines a real-analytic function on 𝒜 and we have the identity

tr 𝛸 (𝛼) = - 1 2 ( tr 𝛣 (𝛼) - ∑ 𝜆 (𝛼) ∈sp 𝒦 (𝛼) Ham | Re 𝜆 (𝛼) |) (2.39)
where

𝒦 (𝛼) Ham ∶= [ -1 2 𝛣 (𝛼) 𝟏 𝛫 (𝛼) 1 2 (𝛣 (𝛼) ) T
] .

(2.40)

Proof. Consider 𝜙 𝛸 (𝑥) ∶= exp(-1 2 ⟨𝑥, 𝛸 𝑥⟩) for some positive-definite matrix 𝛸 and compute

(𝑄 𝛼 𝜙 𝛸 )(𝑥) = -tr 𝛸 𝜙 𝛸 (𝑥) + ⟨𝛸 𝑥, 𝛸 𝑥⟩ 𝜙 𝛸 (𝑥) -⟨𝛣 (𝛼) 𝑥, 𝛸 𝑥⟩ 𝜙 𝛸 (𝑥) -⟨𝑥, 𝛫 (𝛼) 𝑥⟩ 𝜙 𝛸 (𝑥) + ( 1 2 tr 𝐷 2 𝑉 -𝛼 tr 𝐷 𝑏 )𝜙 𝛸 (𝑥).
Note that 𝜙 𝛸 is an eigenvector with eigenvaluetr 𝛸 + 1 2 tr 𝐷 2 𝑉 -𝛼 tr 𝐷 𝑏 if

Because 𝛫 (𝛼) is positive definite for all 𝛼 ∈ 𝒜, 𝑅(𝛼, 0) < 0. Therefore, there exists a maximal positive-definite matrix 𝛸 (𝛼) such that 𝑅(𝛼, 𝛸 (𝛼) ) = 0, and -𝛸 (𝛼) + 1 2 𝛣 (𝛼) is stable [LR95, §9.1]. This argument is valid for all 𝛼 ∈ 𝒜 and 𝛸 (𝛼) is a real-analytic function of 𝛼 ∈ 𝒜 [LR95, §11.3].

In 𝛼 = 1 2 , we have 𝑅( 1 2 , 𝛸 ) = 𝛸 2 -𝛫 (1/2) and the square root of 𝛫 (1/2) clearly is the maximal solution to the are 𝑅( 1 2 , 𝛸 ) = 0. But the trace of this maximal solution coincides with the smallest eigenvalue of the quantum harmonic oscillator -Δ + 𝑞 𝛫 (1/2) . Thus, first part of the lemma follows by simplicity and continuity of spb 𝑄 𝛼 . Relations between the eigenvalues of -𝛸 (𝛼) + 1 2 𝛣 (𝛼) and those of the matrix (2.40) are discussed in [LR95, §8.3].

Remark 2.5.2. Note that once a Gaussian weight is introduced to define 𝑄 𝛼 , the method for obtaining the formula for its leading eigenvalue does not appeal to the fact 𝐷 2 𝑉 > 0, but only to the fact that (𝐷 2 𝑉 ) 2 > 0.

Proposition 2.5.3. Under the assumptions of Proposition 2.4.3 and the additional assumption that

𝑉 is quadratic and 𝑏 is linear, ii. if the matrix 𝐷 𝑏 is symmetric, then 𝔪 𝜖 = 0.

lim 𝑡 →∞ 1 𝑡 log 𝜒 𝜖 𝑡 (𝛼) = -tr 𝛸 (𝛼) +
Proof. Combining Proposition 2.4.3 and Proposition 2.5.1 with the fact that 𝑒 𝜖 (𝛼) = spb 𝑄 𝛼 immediately gives (2.42). It follows from Corollary 2.4.5 that 𝑒 𝜖 is convex on 𝒜 and that 𝑒 𝜖 (0) = 𝑒 𝜖 (1) = 0. Hence, by analyticity, it will fail to be strictly convex if and only if it vanishes identically, which is in turn equivalent to 𝑒 𝜖 ( 12 ) = 0. This last condition takes the explicit form tr √ (𝐷 2 𝑉 -𝐷 𝑏 ) T (𝐷 2 𝑉 -𝐷 𝑏 ) = tr(𝐷 2 𝑉 -𝐷 𝑏 ).

Let 𝛢 ∶= 𝐷 2 𝑉 -𝐷 𝑏 and |𝛢| ∶= √ 𝛢 T 𝛢. We can find orthonormal bases {𝑣 𝑖 } 𝛮 𝑖 =1 and {𝑤 𝑖 } 𝛮 𝑖 =1

of 𝐂 𝛮 such that 𝛢 = ∑ 𝛮 𝑖 =1 𝜇 𝑖 𝑣 𝑖 ⟨𝑤 𝑖 , ⋅ ⟩ and |𝛢| = ∑ 𝛮 𝑖 =1 𝜇 𝑖 𝑤 𝑖 ⟨𝑤 𝑖 , ⋅ ⟩, where {𝜇 𝑖 } 𝛮 𝑖 =1 are the singular values of 𝛢 listed with multiplicity; see e.g. [Sim15, §3.5]. Computing traces in the basis {𝑤 𝑖 } 𝛮 𝑖 =1 and using 𝜇 𝑖 ≥ 0, we find that tr 𝛢 = tr |𝛢| implies ⟨𝑣 𝑖 , 𝑤 𝑖 ⟩ = 1 for each 𝑖 such that 𝜇 𝑖 ≠ 0. Note that Case i in Proposition 2.5.3 occurs if and only if the linear vector field 𝑏 is nonconservative; Case ii, if 𝑏 is conservative. To see this, recall that the Hessian of a sufficiently regular function is always symmetric and that the gradient of a function of the form 𝑥 ↦ 1 2 ⟨𝑥, 𝛣𝑥⟩ is the linear vector field 𝑥 ↦ 1 2 (𝛣 + 𝛣 T )𝑥. In view of this, we will say that a nonlinear vector field 𝑏 behaves like a gradient near a point 𝑥 if 𝐷 𝑏 | 𝑥 is is symmetric.

Because |𝑤 𝑖 | = |𝑣 𝑖 | = 1, ⟨𝑣 𝑖 , 𝑤 𝑖 ⟩ = 1 implies 𝑤 𝑖 =

The rate function in the vanishing-noise limit

We consider the limit 𝜖 → 0. The main result of this section is the local ldp of Theorem 2.6.5, but we also discuss the behaviour of the mean entropy production per unit time. It is reasonable to allow the initial condition 𝜆 and the function 𝑔 to change with 𝜖 -it is in fact necessary if one wants to study the steady-state canonical entropy production. We require Assumption (IP) to hold with a certain uniformity in 𝜖.

Assumption (IPu).

There exists an open interval 𝛪 0 containing 0 and 1, and whose closure is contained in lim inf 𝜖→0 𝛪 𝜖 , where 𝛪 𝜖 is as in Assumption (IP) with 𝑔 replaced with 𝑔 𝜖 and 𝜆 re-placed with 𝜆 𝜖 . Before we proceed to the general statements and proofs, let us illustrate the main points with an example.

Example 2.6.1. Let 𝑉 be a potential satisfying our general assumptions and suppose that its global minimum is achieved in a single point 𝑥 𝑗 ⋆ . Suppose that 𝑏 satisfies our general assumptions, div 𝑏 ≡ 0 and ⟨𝑏 , ∇𝑉 ⟩ ≡ 0, and consider the steady-state functional with 𝑔 ≡ 1. This is a situation in which one can easily show that 𝜆 = 𝜆 𝜖 inv = 𝜇 𝜖 0 .

At the level of the mean entropy production per unit time, one can show the convergence

𝔪 𝜖 → 𝔪 𝑗 ⋆ ,
where 𝔪 𝑗 ⋆ is as in Section 2.5 for the linear problem near 𝑥 𝑗 ⋆ . In particular, we have strict positivity of the limit if and only if 𝑏 does not behave like a gradient near 𝑥 𝑗 ⋆ . This strict positivity is a key signature of nonequilibrium.

At the level of the fluctuations, the situation is the following. If |𝛼| is small enough, 𝑒 𝜖 (𝛼) → max 𝑗 𝑒 𝑗 (𝛼), where the maximum is taken over indices 𝑗 corresponding to all local minima of 𝑉 and 𝑒 𝑗 is as in Section 2.5 for the linear problem near 𝑥 𝑗 . Therefore, with 𝑒 * the Legendre transform of 𝛼 ↦ max 𝑗 𝑒 𝑗 (𝛼), the rate functions 𝑒 𝜖 * (𝜍) converge to 𝑒 * (𝜍) for all 𝜍 in an interval 𝛴 . In cases where there is at least one index 𝑗 ′ corresponding to local minimum such that 𝐷 𝑒 𝑗 ′ (0) ≠ 0, the interval 𝛴 has nonempty interior. Hence, as far as the rate of exponential suppression of fluctuations is concerned, there is no discrimination between the global and local minima of 𝑉 .

In cases where there are indices 𝑗 ′ and 𝑗 ″ corresponding to local minima such that 𝐷 𝑒 𝑗 ′ (0) ≠ 𝐷 𝑒 𝑗 ″ (0), then 𝑒 𝑗 ′ and 𝑒 𝑗 ″ cross in 𝛼 = 0. Such a crossing necessarily yields a nondegenerate closed interval strictly contained in 𝛴 on which the rate function 𝑒 * vanishes. Hence, by tuning the behaviour of 𝑏 near the critical points of a potential 𝑉 with a single global minimum and other local minima, one can construct examples where lim 𝜖 𝔪 𝜖 lies at either end of this vanishing piece as well as examples where it lies in the interior.

Back to the general case, recall that we have successfully reduced the study of the rate function to that of the leading eigenvalue 𝑒 𝜖 (𝛼) of the deformed generator 𝛬 𝜖,𝛼 and its Legendre transform in

the variable 𝛼. Because e -(2𝜖) -1 𝑉 𝛬 𝜖,𝛼 (e (2𝜖) -1 𝑉 𝑓 ) = 𝜖Δ𝑓 + ⟨(1 -2𝛼)𝑏 , ∇𝑓 ⟩ -1 4𝜖 |∇𝑉 | 2 𝑓 + 1 2𝜖 ⟨𝑏 , ∇𝑉 ⟩ 𝑓 -𝛼(1-𝛼) 𝜖 |𝑏 | 2 𝑓 + 1 2 𝑓 Δ𝑉 -𝛼𝑓 div 𝑏 (2.43)
for sufficiently regular 𝑓 , the semiclassical folklore suggests that the quadratic approximations near the zeroes of

1 4 |∇𝑉 | 2 -1 2 ⟨𝑏 , ∇𝑉 ⟩ + 𝛼(1 -𝛼)|𝑏 | 2
-which coincide with the critical points of 𝑉 for 𝛼 ∈ 𝒜 -should play an important role as 𝜖 → 0. While it is possible that Proposition 2.6.3 below is known to workers in the field of semiclassical analysis, we were not able to track a convenient reference and hence provide a complete proof in Section 2.7. Such a quadratic approximation of the deformed conjugated generator near a critical point 𝑥 𝑗 is of the form treated in Section 2.5. In view of this analysis, we define

𝑒 𝑗 (𝛼) ∶= -tr 𝛸 (𝛼) 𝑗 + tr 1 2 𝐷 2 𝑉 | 𝑥 𝑗 -𝛼 tr 𝐷 𝑏 | 𝑥 𝑗 , (2.44) 
for 𝛼 ∈ 𝒜, where 𝛸 (𝛼) 𝑗 is the maximal solution to the are

(𝛸 (𝛼) 𝑗 ) 2 -1 2 (𝛣 (𝛼) 𝑗 ) T 𝛸 (𝛼) 𝑗 -1 2 𝛸 (𝛼) 𝑗 𝛣 (𝛼) 𝑗 -𝛫 (𝛼) 𝑗 = 0 (2.45) with 𝛣 (𝛼) 𝑗 ∶= (1 -2𝛼)𝐷 𝑏 | 𝑥 𝑗 and 𝛫 (𝛼) 𝑗 ∶= 1 4 𝐷 2 𝑉 | T 𝑥 𝑗 𝐷 2 𝑉 | 𝑥 𝑗 -1 4 (𝐷 𝑏 | T 𝑥 𝑗 𝐷 2 𝑉 | 𝑥 𝑗 + 𝐷 2 𝑉 | T 𝑥 𝑗 𝐷 𝑏 | 𝑥 𝑗 ) + 𝛼(1 -𝛼)𝐷 𝑏 | T 𝑥 𝑗 𝐷 𝑏 | 𝑥 𝑗 .
We give an example in Figure 2.1.

Lemma 2.6.2. Suppose that Assumptions (RB) and (ND) are satisfied. Then, 𝑒 𝑗 (0) ≤ 0 with equality if and only if 𝑥 𝑗 is a local minimum of 𝑉 .

Proof. One can check directly that 1 2 𝐷 2 𝑉 | 𝑥 𝑗 is a symmetric solution to (2.45) with 𝛼 = 0, so that

𝛸 (0) 𝑗 ≥ 1 2 𝐷 2 𝑉 | 𝑥 𝑗 and 𝑒 𝑗 (0) = -tr 𝛸 (0) 𝑗 + 1 2 tr 𝐷 2 𝑉 | 𝑥 𝑗 ≤ 0.
(2.46)

On the other hand, Assumption (RB) yields that the matrix 0 is a subsolution to (2.45) with 𝛼 = 0, which implies that

𝛸 (0) 𝑗 ≥ 0. 𝛼 𝑥 1 𝑒 𝑉 ( ⋅ , 0) 𝑒 = 𝑒 1 (𝛼) 𝑥 2 𝑏 𝑒 = 𝑒 3 (𝛼) 𝑥 1 1 𝑥 1 2 𝑥 1 3 0 1 0 Figure 2.1: We consider a polynomial potential 𝑉 ∶ 𝐑 2 → 𝐑 with a global minimum in 𝑥 1 = (𝑥 1 1 , 0), a saddle point in 𝑥 2 = (𝑥 1
2 , 0) and a local minimum in 𝑥 3 = (𝑥 1 3 , 0). On the left: the profile of 𝑉 for 𝑥 2 ≡ 0 as well as a nonconservative vector field 𝑏 which is stationary in all those critical points superimposed on a contour plot of 𝑉 . On the right: 𝑒 1 and 𝑒 3 from (2.44) are plotted as functions of 𝛼; 𝑒 2 lies below the visible region.

If 𝑥 𝑗 is not local minimum, then 𝐷 2 𝑉 | 𝑥 𝑗 is not positive semidefinite by (ND) and the inequality (2.46) must be strict. (2.47)

The convergence is uniform on compact subsets of 𝒜. The limit defines a convex and piecewise real- -𝐷 𝑒 𝜖 (𝛼 1 ) = -𝐷 𝑒(𝛼 1 ) and lim Then, for any 𝜍 ∈ 𝛦 and 𝜖 > 0 small enough, we have -𝐷 𝑒 𝜖 (𝛼 1 ) < 𝜍 < -𝐷 𝑒 𝜖 (𝛼 2 ).

analytic
𝜖→0 -𝐷 𝑒 𝜖 (𝛼 2 ) = -𝐷 𝑒(𝛼 2 ). 𝜍 𝛼 0 1 𝔪 3 𝔪 1 -𝔪 1 𝑒 0 𝑒 * 0 𝔪 1 -𝔪 3
Therefore,

𝑒 * (𝜍) = sup 𝛼∈𝒜 ( -𝛼𝜍 -𝑒(𝛼)) = sup 𝛼∈[𝛼 2 ,𝛼 1 ] ( -𝛼𝜍 -𝑒(𝛼))
and

𝑒 𝜖 * (𝜍) = sup 𝛼∈𝒜 ( -𝛼𝜍 -𝑒 𝜖 (𝛼)) = sup 𝛼∈[𝛼 2 ,𝛼 1 ] ( -𝛼𝜍 -𝑒 𝜖 (𝛼))
for 𝜖 > 0 sufficiently small. The result thus follows from the uniform convergence of 

Convergence in the proof of Proposition 2.6.3

We devote this section to proving the semicalssical result at the core of Proposition 2.6.3, that is the convergence expressed in (2.50) for 𝑒 𝜖 (𝛼) ∶= spb 𝛬 𝜖,𝛼 . Our proof of the lower bound

lim inf 𝜖→0 spb(𝛬 𝜖,𝛼 ) ≥ max 𝑗 =1,…,𝑚 spb(𝑄 𝛼 𝑗 )
uses the Protter-Weinberger characterisation of the spectral bound and follows some ideas borrowed from [START_REF] Berestycki | The principal eigenvalue and maximum principle for second-order elliptic operators in general domains[END_REF]. The Protter-Weinberger characterisation is a variational principle which states that

spb 𝑄 𝛼 𝑗 = inf 𝑢≫0 sup 𝑥 (𝑄 𝛼 𝑗 𝑢)(𝑥) 𝑢(𝑥) ,
where the infimum is taken over all strictly positive function 𝑢 of class We fix 𝛼 ∈ 𝒜 for the rest of the section and omit the corresponding superscript from the notation. We show in Appendix 2.A (take 𝑝 = 2 there) that the spectral properties of 𝛬 𝜖 can be deduced from those of the operator

𝛢 𝜖 ∶= 𝜖Δ + ⟨𝐹 , ∇⟩ -𝜖 -1 𝑊 0 -𝑊 1
on the space L 2 (𝐑 𝛮 , dvol), with domain

D 2 ∶= {𝑓 ∈ W 2,2 (𝐑 𝛮 , dvol) ∶ |∇𝑉 | 2 𝑓 ∈ L 2 (𝐑 𝛮 , dvol)},
with the auxiliary vector field

𝐹 ∶= (1 -2𝛼)𝑏
and the auxiliary potentials

𝑊 0 ∶= 1 4 |∇𝑉 | 2 -1 2 ⟨𝑏 , ∇𝑉 ⟩ + 𝛼(1 -𝛼)|𝑏 | 2 and 𝑊 1 ∶= -1 2 Δ𝑉 + 𝛼 div 𝑏 .
We will use the fact that, 𝐹 , 𝑊 0 and 𝑊 1 are of class 𝐶 2 , 𝐶 3 and 𝐶 1 respectively, but these assumptions can be slightly relaxed if necessary. With

ℓ 𝑗 (𝑥) ∶= 𝐷 𝐹 | 𝑥 𝑗 (𝑥 -𝑥 𝑗 ), 𝑞 𝑗 (𝑥) ∶= 1 2 ⟨𝑥 -𝑥 𝑗 , 𝐷 2 𝑊 0 | 𝑥 𝑗 (𝑥 -𝑥 𝑗 )⟩
and

𝑤 𝑗 ∶= -1 2 tr 𝐷 2 𝑉 | 𝑥 𝑗 + 𝛼 tr 𝐷 𝑏 | 𝑥 𝑗 CHAPTER 2
for each index 𝑗 = 1, … , 𝑚, we set

𝑄 𝜖 𝑗 ∶= 𝜖Δ + ⟨ℓ 𝑗 , ∇⟩ -𝜖 -1 𝑞 𝑗 -𝑤 𝑗 .
This is the best approximation of 𝛢 𝜖 near 𝑥 𝑗 which is of the form considered in Section 2.5. Its leading eigenvalue admits 𝜙 𝜖 𝑗 ∶= exp(-(2𝜖) -1 ⟨𝑥 -𝑥 𝑗 , 𝛸 𝑗 (𝑥 -𝑥 𝑗 )⟩) as an eigenvector, where 𝛸 𝑗 is positive definite and satisfies the are

𝛸 2 𝑗 -1 2 𝐷 𝐹 | T 𝑥 𝑗 𝛸 𝑗 -1 2 𝛸 𝑗 𝐷 𝐹 | 𝑥 𝑗 = 1 2 𝐷 2 𝑊 0 | 𝑥 𝑗 .
(2.54)

Note that 𝑄 𝑗 defined in (2.49) coincides with 𝑄 1 𝑗 and that the leading eigenvalue spb 𝑄 𝜖 𝑗 is independent of 𝜖.

Lower bound. If Assumptions (L0), (L1), (RB) and (ND) are satisfied, then

lim inf 𝜖→0 spb(𝛢 𝜖 ) ≥ max 𝑗 =1,…,𝑚 spb(𝑄 𝑗 ).
Let 𝑗 ∈ {1, … , 𝑚} and 𝛫 ∈ (0, ∞) be arbitrary. Then,

inf 𝑢≫0 sup 𝑥∈𝛣 (𝑥 𝑗 ,𝛫 ) (𝑄 𝑗 𝑢)(𝑥) 𝑢(𝑥) = inf 𝑢≫0 sup 𝑥∈𝛣 (𝑥 𝑗 ,𝜖 1/2 𝛫 ) (𝑄 𝜖 𝑗 𝑢)(𝑥) 𝑢(𝑥) ,
with the infimum taken over all strictly positive fonctions 𝑢 of class 𝐶 2 . In view of Lemma 2.A.6, we may pick a strictly positive eigenfunction 𝜓 𝜖 for the eigenvalue spb(𝛢 𝜖 ) of 𝛢 𝜖 which is of class 𝐶 2 .

Hence,

inf 𝑢≫0 sup 𝑥∈𝛣 (𝑥 𝑗 ,𝛫 ) (𝑄 𝑗 𝑢)(𝑥) 𝑢(𝑥) ≤ sup 𝑥∈𝛣 (𝑥 𝑗 ,𝜖 1/2 𝛫 ) (𝑄 𝜖 𝑗 (𝜓 𝜖 ) 𝑎 )(𝑥) (𝜓 𝜖 (𝑥)) 𝑎 .
(2.55) Now, by the chain rule and Young's inequality,

(𝑄 𝜖 𝑗 (𝜓 𝜖 ) 𝑎 )(𝑥) (𝜓 𝜖 (𝑥)) 𝑎 - 𝑎(𝛢 𝜖 𝜓 𝜖 )(𝑥) (𝜓 𝜖 (𝑥)) = 𝑎(𝑄 𝜖 𝑗 𝜓 𝜖 )(𝑥) (𝜓 𝜖 (𝑥)) + 𝜖𝑎(𝑎 -1)|∇𝜓 𝜖 (𝑥)| 2 (𝜓 𝜖 (𝑥)) 2 - 𝑎(𝛢 𝜖 𝜓 𝜖 )(𝑥) (𝜓 𝜖 (𝑥)) ≤ 𝜖 -1 |𝑊 0 (𝑥) -𝑞 𝑗 (𝑥)| + |𝑊 1 (𝑥) -𝑤 𝑗 (𝑥)| + |𝐹 (𝑥) -ℓ 𝑗 (𝑥)||∇𝜓 𝜖 (𝑥)| 𝜓 𝜖 (𝑥) - 𝜖𝑎|1 -𝑎||∇𝜓 𝜖 (𝑥)| 2 |𝜓 𝜖 (𝑥)| 2 ≤ 𝜖 -1 |𝑊 0 (𝑥) -𝑞 𝑗 (𝑥)| + |𝑊 1 (𝑥) -𝑤 𝑗 (𝑥)| + |𝐹 (𝑥) -ℓ 𝑗 (𝑥)| 2 4𝜖𝑎|1 -𝑎| .
Using the above in (2.55) and exploiting the regularity of 𝐹 , 𝑊 0 and 𝑊 1 , we deduce that inf

𝑢≫0 sup 𝑥∈𝛣 (𝑥 𝑗 ,𝛫 ) (𝑄 𝑗 𝑢)(𝑥) 𝑢(𝑥) ≤ 𝑎 spb(𝛢 𝜖 ) + 𝐶 (𝜖 3𝑟 -1 + 𝜖 𝑟 + 1 4𝑎(1 -𝑎) 𝜖 4𝑟 -1 ).
for some constant 𝐶 which is uniform in 𝑎 and 𝜖. Taking 𝜖 → 0 and then 𝑎 → 1 and using the Protter-Weinberger principle for the leading eigenvalue, we obtain

spb (𝑄 𝑗 ↾ 𝛣 (𝑥 𝑗 ,𝛫 ) ) ≤ lim inf 𝜖→0 spb(𝛬 𝜖 ).
Here, "↾ 𝛣 (𝑥 𝑗 ,𝛫 ) " denotes the restriction to 𝛣(𝑥 𝑗 , 𝛫 ) with Dirichlet boundary condition. Taking Let 𝜒 ∶ [0, ∞) → [0, 1] be a function of class 𝐶 2 such that 𝜒 (𝜌) = 1 for 𝜌 ∈ [0, 1], 𝜒 is strictly decreasing on (1, 4) and 𝜒 (𝜌) = 0 for 𝜌 ∈ [4, ∞). Note that the following quantity defined for 𝛽 ∈ [ 1 2 , 1) vanishes as 𝛽 → 1:

𝛾 𝛽 ∶= sup 𝜒 (𝜌)≥𝛽 |∇𝜒 (𝜌)| + |Δ𝜒 (𝜌)|.
In order to focus on small neighbourhoods around the minima of 𝑊 0 , but which yet are large compared to the width of the eigenfunction 𝜙 𝜖 𝑗 of 𝑄 𝜖 𝑗 , we fix some

𝑟 ∈ ( 1 3 , 1 2 )
and set

𝜂 𝜖 𝑗 (𝑥) ∶= 𝜒 (𝜖 -2𝑟 ⟨𝑥 -𝑥 𝑗 , 𝛸 𝑗 (𝑥 -𝑥 𝑗 )⟩)
for 𝑗 = 1, … , 𝑚, and

𝜂 𝜖 0 (𝑥) ∶= 1 - 𝑚 ∑ 𝑗 =1
𝜂 𝜖 𝑗 (𝑥).
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We consider 𝜖 ∈ (0, 𝜖 0 ) with 𝜖 0 > 0 small enough to guarantee supp

𝜂 𝜖 𝑗 ∩ supp 𝜂 𝜖 𝑗 ′ = ∅ if 1 ≤ 𝑗 < 𝑗 ′ ≤ 𝑚. We set 𝑓 𝜖 𝛽 (𝑥) ∶= 𝜅 𝜖 𝛽 𝜂 𝜖 0 (𝑥) + 𝑚 ∑ 𝑗 =1 𝜂 𝜖 𝑗 (𝑥)𝜙 𝜖 𝑗 (𝑥),
where

𝜅 𝜖 𝛽 ∶= e -1 2 𝜒 -1 (𝛽)𝜖 2𝑟 -1 .
By the Protter-Weinberger principle,

spb 𝛢 𝜖 ≤ sup 𝑥∈𝐑 𝛮 (𝛢 𝜖 𝑓 𝜖 𝛽 )(𝑥) 𝑓 𝜖 𝛽 (𝑥) = max { sup 𝑥∶𝜂 𝜖 0 (𝑥)>1-𝛽 (𝛢 𝜖 𝑓 𝜖 𝛽 )(𝑥) 𝑓 𝜖 𝛽 (𝑥) , max 𝑗 =1,…,𝑚 { sup 𝑥∶𝜂 𝜖 𝑗 (𝑥)≥𝛽 (𝛢 𝜖 𝑓 𝜖 𝛽 )(𝑥) 𝑓 𝜖 𝛽 (𝑥)
}}.

(2.56)

Using Lemmas 2.7.2 and 2.7.3 below in (2.56) and taking 𝜖 → 0 yields lim sup

𝜖→0 spb 𝛢 𝜖 ≤ max 𝑗 =1,…,𝑚 𝛽 spb 𝑄 𝑗 + (𝛽 -1 -𝛽)|𝑤 𝑗 | + 𝐶 𝛾 𝛽
for some positive constant 𝐶 independent of 𝛽. Because 𝛽 ∈ [ 1 2 , 1) was arbitrary and both 𝛾 𝛽 → 0 and 𝛽 -1 -𝛽 → 0 as 𝛽 → 1, we conclude that lim sup

𝜖→0 spb 𝛢 𝜖 ≤ max 𝑗 =1,…,𝑚 spb 𝑄 𝑗 .
Before we state and prove Lemmas 2.7.2 and 2.7.3 to conclude the proof of the upper bound, let us give a collection of bounds which follow from the observation that 𝜂 𝜖 𝑗 (𝑥) ≥ 𝛽 if and only if 𝜙 𝜖 𝑗 (𝑥) ≥ 𝜅 𝜖 𝛽 . Lemma 2.7.1. There exists a constant 𝐶 with the following property:

i. if 𝜂 𝜖 0 (𝑥) > 1 -𝛽, then 0 < 𝜙 𝜖 𝑗 (𝑥) 𝑓 𝜖 𝛽 (𝑥) < 𝜅 𝜖 𝛽 𝑓 𝜖 𝛽 (𝑥) < 1 1-𝛽 and 𝜖 𝑟 |∇𝜂 𝜖 𝑗 (𝑥)| + 𝜖 2𝑟 |Δ𝜂 𝜖 𝑗 (𝑥)| ≤ 𝐶 for each 𝑗 ∈ {1, … , 𝑚}; ii. if 𝜂 𝜖 𝑗 (𝑥) ≥ 𝛽, then 0 ≤ 𝜅 𝜖 𝛽 𝑓 𝜖 𝛽 (𝑥) ≤ 1 ≤ 𝜙 𝜖 𝑗 (𝑥) 𝑓 𝜖 𝛽 (𝑥) ≤ 1 𝛽 and 𝜖 𝑟 |∇𝜂 𝜖 𝑗 (𝑥)| + 𝜖 2𝑟 |Δ𝜂 𝜖 𝑗 (𝑥)| ≤ 𝐶 𝛾 𝛽 . Lemma 2.

There exists strictly positive constants 𝐶 and 𝛿 such that

sup 𝑥∶𝜂 𝜖 0 (𝑥)>1-𝛽 (𝛢 𝜖 𝑓 𝜖 𝛽 )(𝑥) 𝑓 𝜖 𝛽 (𝑥) ≤ -(1 -𝛽)𝛿 𝜖 2𝑟 -1 + 𝐶
for all 𝜖 ∈ (0, 𝜖 0 ) and all 𝛽 ∈ [ 1 2 , 1).

Proof. Let 𝑥 such that 𝜂 𝜖 0 (𝑥) > 1 -𝛽 be arbitrary. Throughout the proof, the big 𝛰 notation refers to constants that are uniform in 𝑥, 𝜖 and 𝛽. We compute

∇𝑓 𝜖 𝛽 (𝑥) = 𝜅 𝜖 𝛽 ∇𝜂 𝜖 0 (𝑥) + 𝑚 ∑ 𝑗 =1
𝜙 𝜖 𝑗 (𝑥)∇𝜂 𝜖 𝑗 (𝑥) -𝜖 -1 𝜂 𝜖 𝑗 (𝑥)𝜙 𝜖 𝑗 (𝑥)𝛸 𝑗 (𝑥 -𝑥 𝑗 ), (2.57)

Δ𝑓 𝜖 𝛽 (𝑥) = 𝜅 𝜖 𝛽 Δ𝜂 𝜖 0 (𝑥) + 𝑚 ∑ 𝑗 =1 𝜙 𝜖 𝑗 (𝑥)Δ𝜂 𝜖 𝑗 (𝑥) + 2𝜖 -1 ⟨𝜙 𝜖 𝑗 (𝑥)𝛸 𝑗 (𝑥 -𝑥 𝑗 ), ∇𝜂 𝜖 𝑗 (𝑥)⟩ -𝜖 -1 𝜂 𝜖 𝑗 (𝑥)𝜙 𝜖 𝑗 (𝑥) tr 𝛸 𝑗 + 𝜖 -2 𝜂 𝜖 𝑗 (𝑥)𝜙 𝜖 𝑗 (𝑥)|𝛸 𝑗 (𝑥 -𝑥 𝑗 )| 2 .
(2.58) (2.59)

Substracting 𝜖 -1 𝑊 0 + 𝑊 1 ≥ 𝜖 -1 𝛽( 𝑚 ∑ 𝑗 =1 𝟏 supp 𝜂 𝜖 𝑗 𝑊 0 ) + (1 -𝛽)𝑊 0 + 𝛰 (1)
-we have used (L0) and 𝛼 ∈ 𝒜 to obtain 𝛽𝜖 -1 (1 -∑ 𝑗 𝟏 supp 𝜂 𝜖 𝑗 )𝑊 0 + 𝑊 1 ≥ 𝛰 (1) -from (2.59), we obtain

(𝛢 𝜖 𝑓 𝜖 𝛽 )(𝑥) 𝑓 𝜖 𝛽 (𝑥) ≤ 𝜖 -1 𝑚 ∑ 𝑗 =1 𝛽𝟏 supp 𝜂 𝜖 𝑗 (𝑥)(𝑞 𝑗 (𝑥) -𝑊 0 (𝑥)) -𝜖 -1 (1 -𝛽)𝑊 0 (𝑥) + 𝛰 (1).
Now, because |𝑊 0 -𝑞 𝑗 | = 𝛰 (𝜖 3𝑟 ) on supp 𝜂 𝜖 𝑗 , we have

(𝛢 𝜖 𝑓 𝜖 𝛽 )(𝑥) 𝑓 𝜖 𝛽 (𝑥) ≤ 𝜖 -1 𝛽𝛰 (𝜖 3𝑟 ) -𝜖 -1 (1 -𝛽)𝑊 0 (𝑥) + 𝛰 (1).
Because 𝑊 0 ≥ 0 with nondegenerate zeroes precisely in {𝑥 𝑗 } 𝑚 𝑗 =1 , and because the set {𝑥 ∶ 𝜂 𝜖 𝑗 (𝑥) < 𝛽} excludes a ball of radius of order 𝜖 𝑟 around 𝑥 𝑗 , there exists a strictly positive constant 𝛿 > 0 such that 𝑊 0 (𝑥) > 𝛿 𝜖 2𝑟 for all 𝑥 such that 𝜂 𝜖 0 (𝑥) > 1 -𝛽.

Lemma 2.7.3. There exists a positive constant 𝐶 such that sup

{𝜂 𝜖 𝑗 (𝑥)≥𝛽} (𝛢 𝜖 𝑓 𝜖 𝛽 )(𝑥) 𝑓 𝜖 𝛽 (𝑥) ≤ 𝛽 spb 𝑄 𝜖 𝑗 + (𝛽 -1 -𝛽)|𝑤 𝑗 | + 𝐶 (𝛾 𝛽 (1 + 𝛽 -1 )(1 + 𝜖 1-2𝑟 ) + 𝜖 3𝑟 -1 + 𝜖 𝑟 ).
for all 𝜖 ∈ (0, 𝜖 0 ) and all 𝛽 ∈ [ 1 2 , 1).

Proof. 

Let

2.A Properties of the deformed generators

In this appendix, we collect some results from the theory of semigroups applied to partial differential equations involving elliptic operators of the form

𝛬 𝜖,𝛼 ∶= 𝜖Δ + ⟨-∇𝑉 + (1 -2𝛼)𝑏 , ∇⟩ -𝛼(1-𝛼) 𝜖 |𝑏 | 2 + 𝛼 𝜖 ⟨𝑏 , ∇𝑉 ⟩ -𝛼 div 𝑏 (2.62)
appearing in Sections 2.4, 2.6 and 2.7 of the paper, similarly as in Appendix A of [START_REF] Bertini | Small noise asymptotic of the Gallavotti-Cohen functional for diffusion processes[END_REF] (the case where 𝑏 is bounded). They are deformations of the infinitesimal generator of the semigroup associated to (2.5).

We use technical results from the article [START_REF] Metafune | 𝐿 𝑝 -regularity for elliptic operators with unbounded coefficients[END_REF], Chapter 1 of [START_REF] Landis | Second order equations of elliptic and parabolic type[END_REF] and Chapters A-I, C-IV and B-IV of [AGG + 86]. Throughout this section, whenever we refer to 𝑉 and 𝑏 , we assume that (L0), (L1) and (RB) hold. Also, we write L 𝑝 (𝐑 𝛮 ) for L 𝑝 (𝐑 𝛮 , dvol), and similarly for the Sobolev spaces. For the spaces 𝐶 (𝐑 𝛮 ) of continuous functions and 𝐶 𝑘 (𝐑 𝛮 ) of 𝑘-times differentiable functions, the subscript "0" is used for "vanishing at infinity", and "c" for "compactly supported".

For 𝑝 ∈ (1, ∞), a straightforward computation shows that e -(𝑝𝜖) -1 𝑉 𝛬 𝛼,𝜖 (e (𝑝𝜖) -1 𝑉 𝑓 ) = 𝜖Δ𝑓 + ⟨𝐹 𝑝 , ∇𝑓 ⟩ -𝛺 𝑝 𝑓 for all 𝑓 ∈ 𝐶 2 c (𝐑 𝛮 ), where

𝐹 𝑝 ∶= ( 2 𝑝 -1)∇𝑉 + (1 -2𝛼)𝑏 , 𝛺 𝑝 ∶= 1 𝜖 𝑊 0 -1 𝑝 Δ𝑉 + 𝛼 div 𝑏 and 𝑊 0 ∶= 1 𝑝 (1 -1 𝑝 )|∇𝑉 | 2 - 1-2𝛼+𝛼𝑝 𝑝 ⟨𝑏 , ∇𝑉 ⟩ + 𝛼(1 -𝛼)|𝑏 | 2 .
For technical reasons, we need to restrict our attention to a certain 𝛼-dependent set of powers 𝑝. We introduce an admissibility condition for the pair (𝛼, 𝑝).

Definition 2.A.1. The pair (𝛼, 𝑝) ∈ 𝐑 × (1, ∞) is said to be admissible if there exists ℓ ∈ (0, 1) such that

ℓ 1 𝑝 (1 -1 𝑝 )|∇𝑉 (𝑥)| 2 - 1-2𝛼+𝛼𝑝 𝑝 ⟨𝑏 (𝑥), ∇𝑉 (𝑥)⟩ + 𝛼(1 -𝛼)|𝑏 (𝑥)| 2 ≥ 0 for all 𝑥 ∈ 𝐑 𝛮 .
The next lemma -whose proof follows from straightforward applications of (RB) and the Cauchy-Schwarz inequality -gives concrete sufficient conditions for admissibility. These conditions are illustrated in Figure 2.3. Until further notice, we fix 𝛼, 𝑝 and ℓ as in the admissibility condition. By Assumption (L0) and the fact that 𝐹 is globally Lipschitz, there exist 𝑐 0 𝑝 and 𝜃 ∈ (0, 1) such that

𝛼 0 1 𝛼 0 1 𝛼 0 1 𝑝 1 𝑘 𝑏 1 1-𝑘 𝑏
| div 𝐹 𝑝 | ≤ 𝜃 ((1 -ℓ ) 1 𝜖𝑝 (1 -1 𝑝 )|∇𝑉 | 2 + 𝑐 0 𝑝 ).
(2.63)

Set 𝑈 𝑝 ∶= (1 -ℓ ) 1 𝜖𝑝 (1 -1 𝑝 )|∇𝑉 | 2 + 𝑐 0 𝑝 .
Using the same properties again, we may pick 𝜅 such that

|𝐹 𝑝 | ≤ 𝜅𝑈 1 2 𝑝 .
(2.64) 

D 𝑞 ∶= {𝑓 ∈ W 2,𝑞 (𝐑 𝛮 ) ∶ 𝑈 𝑝 𝑓 ∈ L 𝑞 (𝐑 𝛮 )}
is closed as an unbounded operator on L 𝑞 (𝐑 𝛮 ) and generates an analytic, compact, positivity-preserving semigroup on L 𝑞 (𝐑 𝛮 ) for all 𝑞 ∈ (1, ∞). With domain

D ∞ ∶= {𝑓 ∈ 𝐶 0 (𝐑 𝛮 ) ∶ 𝑓 ∈ W 2,𝑞 loc for all 𝑞 ∈ (1, ∞) and Δ𝑓 , 𝑈 𝑝 𝑓 ∈ 𝐶 0 (𝐑 𝛮 )},
it is closed as an unbounded operator on 𝐶 0 (𝐑 𝛮 ) and generates a positivity-preserving semigroup on 𝐶 0 (𝐑 𝛮 ) which is analytic and compact.

Proof. For any real number 𝑟 > 0, by (L0) and Cauchy's inequality, there exists 𝐶 𝑝,𝑟 > 0 such that

|∇𝑈 𝑝 | ≤ 16𝑟 𝑈 3 2 𝑝 + 𝐶 𝑝,𝑟 .
(2.66)

The bounds (2.63)-(2.66) precisely give hypotheses (H2)-(H5) of [START_REF] Metafune | 𝐿 𝑝 -regularity for elliptic operators with unbounded coefficients[END_REF]. Therefore, Theorem 3.4 in [START_REF] Metafune | 𝐿 𝑝 -regularity for elliptic operators with unbounded coefficients[END_REF] gives that (𝛢 𝑝 , D 𝑞 ) generates a holomorphic positivity-preserving semigroup on L 𝑞 (𝐑 𝛮 ), and Theorem 4.4 in [START_REF] Metafune | 𝐿 𝑝 -regularity for elliptic operators with unbounded coefficients[END_REF] gives that It is proved as part of Theorem 7.4 in [START_REF] Metafune | 𝐿 𝑝 -regularity for elliptic operators with unbounded coefficients[END_REF] that the isometry 𝑓 ↦ e (𝑝𝜖) -1 𝑉 𝑓 between the Banach spaces L 𝑝 (𝐑 𝛮 ) and L 𝑝 (𝐑 𝛮 , d𝜇 𝜖 0 ) used to introduce 𝛢 𝑝 maps the domain D 𝑝 to the space W 2,𝑝 (𝐑 𝛮 , d𝜇 𝜖 0 ). Hence, it follows immediately from Lemmas 2.A.3 and 2.A.4 that 𝛬 𝛼,𝜖 with domain W 2,𝑝 (𝐑 𝛮 , d𝜇 𝜖 0 )) is the generator of an analytic semigroup which is compact and irreducible, provided that (𝛼, 𝑝) is admissible. Also, by Lemmas 2.A.5 and 2.A.6, 𝑒 𝜖 (𝛼) ∶= sup{Re 𝑧 ∶ 𝑧 ∈ sp(𝛬 𝛼,𝜖 , W 2,𝑝 (𝐑 𝛮 , d𝜇 𝜖 0 ))} is indeed independent of 𝑝 and admits an eigenvector with the properties stated in the proposition below.

Proposition 2.A.7. Let the pair (𝛼, 𝑝) be admissible. Then, 𝑒 𝜖 (𝛼) is a simple isolated eigenvalue of (𝛬 𝛼,𝜖 , W 2,𝑝 (𝐑 𝛮 , d𝜇 𝜖 0 )) and there exists a strictly positive associated eigenfunction 𝜓 𝛼,𝜖 ∈ 𝐶 2 (𝐑 𝛮 ) ∩ W 2,𝑝 (𝐑 𝛮 , d𝜇 𝜖 0 ) and a strictly positive linear functional 𝑢 𝛼,𝜖 on L 𝑝 (𝐑 𝛮 , d𝜇 𝜖 0 ) such that lim 𝑡 →∞ ∥e -𝑡 𝑒 𝜖 (𝛼) e 𝑡 𝛬 𝛼,𝜖 𝑓 -𝜓 𝛼,𝜖 (𝑢 𝛼,𝜖 , 𝑓 ) 𝜇 𝜖 0 ∥ L 𝑝 (𝐑 𝛮 ,d𝜇 𝜖 0 ) = 0 for all 𝑓 ∈ L 𝑝 (𝐑 𝛮 , d𝜇 𝜖 0 ).

Lemma 2.A.8. The measure 𝜆 𝜖

inv is of the form

𝜆 𝜖 inv (d𝑥) = e -(2𝜖) -1 𝑉 (𝑥) 𝜑 𝜖 (𝑥) d𝑥
for some strictly positive function 𝜑 𝜖 ∈ 𝐶 2 0 (𝐑 𝛮 ) ∩ L 2 (𝐑 𝛮 ).

Proof. Consider the operator (𝛢 2 , D 2 ) introduced in the case 𝛼 = 1, that is

𝛢 2 = 𝜖Δ -⟨𝑏 , ∇⟩ -1 4𝜖 |∇𝑉 | 2 + 1 2𝜖 ⟨𝑏 , ∇𝑉 ⟩ + 1 2 Δ𝑉 -div 𝑏 -𝑐 2 .
One can show that its adjoint has domain D 2 and is given by the formula

𝛢 * 2 = 𝜖Δ + ⟨𝑏 , ∇⟩ -1 4𝜖 |∇𝑉 | 2 + 1 2𝜖 ⟨𝑏 , ∇𝑉 ⟩ + 1 2 Δ𝑉 -𝑐 2 .
Note that 𝛢 * 2 just as well satisfies (H1)-(H5) in [START_REF] Metafune | 𝐿 𝑝 -regularity for elliptic operators with unbounded coefficients[END_REF] and thus generates a semigroup with the same properties. Note that e -(2𝜖) -1 𝑉 is a strictly positive eigenvector of (𝛢 * 2 , D 2 ) with eigenvalue -𝑐 2 . But it is easy to show by contradiction that spb(𝛢 * 2 , D 2 ) is the only eigenvalue of 𝛢 2 admitting a strictly positive eigenvector. Hence, we have spb

(𝛢 2 , D 2 ) = spb(𝛢 * 2 , D 2 ) = -𝑐 2 . CHAPTER 2
Therefore, there exists a strictly positive function 𝜙 𝜖 ∈ 𝐶 2 0 (𝐑 𝛮 ) ∩ L 2 (𝐑 𝛮 ) such that 𝛢 2 𝜙 𝜖 = -𝑐 2 𝜙 𝜖 . Then, 𝜌 𝜖 ∶= e -(2𝜖) -1 𝑉 𝜙 𝜖 satisfies the stationary Fokker-Planck equation

(𝜖Δ + ⟨∇𝑉 -𝑏 , ∇⟩ + Δ𝑉 -div 𝑏 )𝜌 𝜖 = 0,
to which the density of 𝜆 𝜖 inv is -up to normalisation -the unique bounded solution; see for example Lemma 4.16 in [START_REF] Khasminskii | Stochastic stability of differential equations[END_REF]Ch. 4].

Lemma 2.A.9. For all 𝛽 ∈ (0, 2), (d𝜆 𝜖 inv / d𝜇 𝜖 0 ) 𝛽 ∈ L 1 (𝐑 𝛮 , d𝜇 𝜖 0 ).

Proof. Set 𝑟 ∶= 2𝛽 -1 and let 𝜑 𝜖 be as in Lemma 2.A.8. Then, by Hölder's inequality,

ˆ𝐑𝛮 | d𝜆 𝜖 inv d𝜇 𝜖 0 | 𝛽 d𝜇 𝜖 0 = ˆ𝐑𝛮 |𝜑 𝜖 | 𝛽 e 𝛽(2𝜖) -1 𝑉 e -𝜖 -1 𝑉 dvol ≤ ( ˆ𝐑𝛮 |𝜑 𝜖 | 𝛽𝑟 dvol ) 1 𝑟 ( ˆ𝐑𝛮 e -𝜖 -1 (1-𝑟 -1 ) -1 (1-1 2 𝛽)𝑉 dvol ) 1-1 𝑟 .
Since 𝛽𝑟 = 2, the first integral is a power of the L 2 (𝐑 𝛮 )-norm of 𝜑 𝜖 , which is finite by Lemma 2.A.8.

The second integral is finite because (1 -𝑟 -1 )(1 -1 2 𝛽) is strictly positive and 𝑉 satisfies (L0).

Introduction

Thermally driven networks of oscillators play an important role in the investigation of various aspects of nonequilibrium statistical mechanics. On a mathematical level, a driven network of classical harmonic oscillators can be modeled as a 𝑑-dimensional process (𝛸 𝑡 ) 𝑡 ≥0 described by a linear stochastic differential equation (sde) of the form

d𝛸 𝑡 = 𝛢𝛸 𝑡 d𝑡 + 𝛣 d𝛧 𝑡 ,
where the linear operators 𝛢 and 𝛣 satisfy certain structural conditions and where (𝛧 𝑡 ) 𝑡 ≥0 is a given 𝑛dimensional stochastic process describing the noise due to thermal fluctuations. The integer 𝑛 ≤ 𝑑 is the number of degrees of freedom of the network that are coupled to heat baths. The noise is often taken to be a Wiener process, but other types of noise are physically interesting. A particularly important question regarding such systems and perturbations thereof is that of invariant measures.

In this work, we consider 𝛢 and 𝛣 satisfying the Kalman condition, a smooth globally Lipschitz perturbing vector field 𝑥 ↦ 𝐹 (𝑥) that grows slower than |𝑥| 1/2𝑑 at infinity 1 and (𝑊 𝑡 ) 𝑡 ≥0 a Wiener process, and show with arguments from control theory and an application of Hairer and Mattingly's version of Harris' ergodic theorem that the process described by the sde d𝛸 𝑡 = 𝛢𝛸 𝑡 d𝑡 + 𝐹 (𝛸 𝑡 ) d𝑡 + 𝛣 d𝑊 𝑡 admits a unique stationary measure when 𝛢 is dissipitaive and a weak Hörmander condition on the vector fields in the sde holds in at least one point 𝑥 0 of the phase space. Moreover, the convergence to this stationary measure then happens exponentially fast. The abstract mathematical setup and the result are made more precise in Section 3.2. The proof is provided in Section 3.3.

In Section 3.4, we introduce the mathematical description of perturbed networks of harmonic oscillators in this framework, both in the Langevin regime and in the so-called semi-Markovian regime, and for geometries that go beyond the 1-dimensional chain. In this context, the matrix 𝛢 1 The power 1 2𝑑 is generically not optimal. As we will see, 𝑑 can be replaced by an integer 𝑑 * appearing in the formulation of the Kalman rank condition. In all cases 𝑑 * ≤ 𝑑.

encodes the friction, kinetic and harmonic terms (both the pinning and the interaction) while the perturbation 𝐹 corresponds to minus the gradient of the anharmonic part of the potential.

In the case of a 1-dimensional chain of oscillators connected to heat baths at both ends, results of this type have been established for a very general class of quasi-homogeneous potentials [EPRB99b, EPRB99a, EH00, RBT02, Car07]. The recent paper [CEHRB18] extends these results to more complicated networks. Roughly speaking, these results require that the pinning potential grows as |𝑞| 𝑘 1 at infinity, that the interaction potential grows as |𝑞| 𝑘 2 with 𝑘 2 ≥ 𝑘 1 ≥ 2, and that the interaction part of the potential has no flat piece or infinitely degenerate points. While our growth condition is considerably more restrictive than the ones found in these works, the form of local nondegeneracy that we require is weaker: we only need a weak Hörmander condition to hold at a single point. Moreover, our setup accommodates a wide variety of geometries and bounded manybody interaction terms (beyond pinning and two-body interactions). Another advantage is that our general strategy is not based on the Gaussian structure of Brownian motion and can thus be more easily adapted to different types of noise that are physically relevant.

Similar arguments can be used to discuss the analogous problem with compound Poisson processes; this type of problem will be analyzed in a subsequent work.

The proof can be summarized as follows. For a discrete-time Markov process, Harris' theorem states that the existence and uniqueness of an invariant measure, with exponentially fast convergence in the total variation metric, can be obtained from the existence of a suitable Lyapunov function and a minorization for the transition probabilities starting from any point in the interior of a suitable level set of that Lyapunov function. The precise statement we use is the one formulated in [HM11]; also see [START_REF] Harris | The existence of stationary measures for certain Markov processes[END_REF] and [MT12]. We then pass from discrete to continuous time.

The function 𝑉 (𝑥) ∶= ´∞ 0 |e 𝑠𝛢 𝑥| 2 d𝑠 is shown to be a suitable Lyapunov function using dis-sipativity of 𝛢, the behaviour of 𝐹 at infinity, and basic Itô calculus. The details are given in Section 3.3.1.

In order to prove the lower bound on transitions, we use the Kalman condition on the pair (𝛢, 𝛣) and again the estimate on the behaviour of 𝐹 at infinity. These hypotheses yield that the point 𝑥 0 in which the weak Hörmander condition holds can be approached from {𝑉 ≤ 𝑅} with a uniform lower bound on the probability. On the other hand, the weak Hörmander condition in 𝑥 0 implies solid controllability from 𝑥 0 and we can combine solid controllability and approachability to obtain the desired lower bound. The details are given in Section 3.3.2. Different sufficient conditions for the hypotheses of the main theorem to hold are given in more concrete terms throughout Sections 3.4 and 3.5. In the former, we give criteria for the dissipativity, Kalman and growth conditions in terms of more physical quantities for networks of oscillators based on [JPS17]. In the latter, we give a perturbative condition for the weak Hörmander condition to hold.

Setup, assumptions and main result

Notation Throughout the paper, we use: ‖ ⋅ ‖ to denote the operator norm of linear maps; {𝑒 𝑖 } 𝑛 𝑖 =1

for the standard orthonormal basis of 𝐑 𝑛 ; | ⋅ | to denote the euclidean norm on 𝐑 𝑑 (arising from the standard inner product ⟨ ⋅ , ⋅ ⟩); 𝛣(𝑥, 𝑟 ) for the open ball of radius 𝑟 > 0 centered at the point 𝑥 in 𝐑 𝑑 ; 𝐶 𝑘 0 ([0, 𝛵 ]; 𝐑 𝑛 ) to denote the space of 𝑘 times continuously differentiable functions 𝜂 ∶ [0, 𝛵 ] → 𝐑 𝑛 with 𝜂(0) = 0; Prob(𝐑 𝑑 ) for the space of Borel probability measures on 𝐑 𝑑 ; ℒ 𝐺 for the Lie derivative with respect to the vector field 𝐺 ; 𝟏 𝑆 to denote the indicator function of the set 𝑆 . The natural numbers 𝚴 start at 1. The underlying probability space is (𝛺, ℱ, 𝚸 ) and we use the letter 𝜔 to denote elementary events there.

Let 𝑑 and 𝑛 be natural numbers with 𝑛 ≤ 𝑑 and let 𝜔 ↦ (𝑊 𝑡 (𝜔)) 𝑡 ≥0 be a Wiener process in 𝐑 𝑛 . We are interested in the 𝑑-dimensional diffusion process 𝜔 ↦ (𝛸 𝑡 (𝑥 in , 𝜔)) 𝑡 ≥0 governed by CHAPTER 3 the equation

𝛸 𝑡 (𝑥 in , 𝜔) = 𝑥 in + ˆ𝑡 0 𝛢𝛸 𝑠 (𝑥 in , 𝜔) + 𝐹 (𝛸 𝑠 (𝑥 in , 𝜔)) d𝑠 + 𝛣𝑊 𝑡 (𝜔) (3.1)
where 𝛣 ∶ 𝐑 𝑛 → 𝐑 𝑑 is a linear map, 𝛢 ∶ 𝐑 𝑑 → 𝐑 𝑑 is a linear map, 𝐹 is a smooth globally Lipschitz vector field on 𝐑 𝑑 , and 𝑥 in ∈ 𝐑 𝑑 is an initial condition. We often omit writing explicitly the dependence on 𝑥 in or 𝜔 and write the equation in differential notation. We assume the following dissipativity and controllability conditions on the linear maps 𝛢 and 𝛣.

(D) the eigenvalues of the linear map 𝛢 (considered over 𝐂 𝑑 ) each have strictly negative real part.

(K) the pair (𝛢, 𝛣) satisfies the Kalman condition, meaning that the columns of 𝛣, 𝛢𝛣 , 𝛢 2 𝛣, 𝛢 3 𝛣 and so forth span 𝐑 𝑑 .

Then, by the Cayley-Hamilton theorem, there exists 𝑑 * ≤ 𝑑 such that span{𝛣𝑒 𝑖 , 𝛢𝛣𝑒 𝑖 , 𝛢 2 𝛣𝑒 𝑖 , … , 𝛢 𝑑 * -1 𝛣𝑒 𝑖 ∶ 𝑖 = 1, … , 𝑛} = 𝐑 𝑑 .

The Kalman condition is commonly used in the basic theory of controllability for linear systems (i.e.

when 𝐹 ≡ 0); it is then equivalent to several notions of controllability [Cor07, § §1.2-1.3].

We further assume that the perturbing vector field 𝐹 satisfies the following growth condition.

(G) there exists a constant 𝑎 ∈ [0, 1 2𝑑 * ) such that sup 𝑥∈𝐑 𝑑 |𝐹 (𝑥)| (1 + |𝑥|) 𝑎 < ∞. (3.2)
Finally, we suppose the existence of a point 𝑥 0 where the weak Hörmander condition on the vector fields appearing in the stochastic equation (3.1) is satisfied.

(H) there exists a point 𝑥 0 ∈ 𝐑 𝑑 in which the family

{𝑉 0 , ℒ 𝑉 2 𝑉 1 , ℒ 𝑉 3 ℒ 𝑉 2 𝑉 1 , … ∶ 𝑉 0 ∈ ℬ and 𝑉 1 , 𝑉 2 , 𝑉 3 , … ∈ ℬ ∪ {𝛢 + 𝐹 }}
of vector fields spans 𝛵 𝑥 0 𝐑 𝑑 ≅ 𝐑 𝑑 , where ℬ = {𝛣𝑒 1 , … , 𝛣𝑒 𝑛 }.

Remark 3.2.1. In the linear case (i.e. when 𝐹 ≡ 0), a straightforward computation shows that the Kalman condition (K) implies the weak Hörmander condition (H). This suggests that the latter can be obtained from a perturbative argument in a point 𝑥 0 far from the origin if 𝐹 can be neglected at infinity in a suitable sense; see Section 3.5.

It is convenient to study the properties of such a diffusion process through the corresponding controlled equation

{ ẋ(𝑡 ) = 𝛢𝑥(𝑡 ) + 𝐹 (𝑥(𝑡 )) + 𝛣 η(𝑡 ), 𝑥(0) = 𝑥 in , (3.3) understood as 𝑥(𝑡 ) = 𝑥 in + ˆ𝑡 0 𝛢𝑥(𝑠) + 𝐹 (𝑥(𝑠)) d𝑠 + 𝛣(𝜂(𝑡 ) -𝜂(0))
when 𝜂 is a merely continuous function. We define, for 0 ≤ 𝑡 ≤ 𝛵 ,

𝑆 𝐹 𝑡 ∶ 𝐑 𝑑 × 𝐶 0 ([0, 𝛵 ]; 𝐑 𝑛 ) → 𝐑 𝑑 (𝑥 in , 𝜂) ↦ 𝑥(𝑡 )
giving the solution at time 𝑡 of this problem. We refer to the second argument as the control. The function 𝑆 𝐹 𝑡 is uniformly continuous in each argument. It is also Fréchet differentiable. We will make use of these regularity properties in Section 3.3.2. Remark 3.2.2. The law for 𝜂 ∈ 𝐶 0 ([0, 𝛵 ]; 𝐑 𝑛 ) corresponding to the Wiener process 𝑊 𝑡 (𝜔) restricted to the interval [0, 𝛵 ] in (3.1), which we denote by ℓ , is decomposable in the following sense.

There exist a sequence (𝐹 𝛮 ) 𝛮 ∈𝚴 of nested finite-dimensional subspaces and a sequence (𝐹 ′ 𝛮 ) 𝛮 ∈𝚴 of closed subspaces of the Banach space 𝐶 0 ([0, 𝛵 ]; 𝐑 𝑛 ) such that (i) the union ⋃ 𝛮 ∈𝚴 𝐹 𝛮 is dense in 𝐶 0 ([0, 𝛵 ]; 𝐑 𝑛 );

(ii) the space 𝐶 0 ([0, 𝛵 ]; 𝐑 𝑛 ) decomposes as the direct sum 𝐹 𝛮 ⊕𝐹 ′ 𝛮 for each 𝛮 ∈ 𝚴, with corresponding (bounded) projections 𝛱 𝛮 and 𝛱 ′ 𝛮 , and the measure ℓ decomposes as the product ℓ 𝛮 ⊗ ℓ ′ 𝛮 of its projected measures;
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(iii) the projected measure ℓ 𝛮 possesses a smooth positive density 𝜌 𝛮 with respect to the Lebesgue measure on the finite-dimensional space 𝐹 𝛮 .

The requirement of [Shi17] that 𝛱 𝛮 𝜁 → 𝜁 in norm does not hold for all controls 𝜁 ∈ 𝐶 0 ([0, 𝛵 ]; 𝐑 𝑛 ).

However, the convergence will hold true on nice enough subsets -which suffices for our endeavour. These decomposability properties play a central role in the arguments of [Shi07,Shi17] Proof. Fix an initial condition 𝛸 0 ∈ 𝐑 𝑑 . First note that we have

⟨𝐷 𝑥 𝑉 (𝑥), 𝛢𝑥⟩ = 2 ⟨𝑥, 𝛭 𝛢𝑥⟩ = ˆ∞ 0 d d𝑠 ⟨e 𝑠𝛢 𝑥, e 𝑠𝛢 𝑥⟩ d𝑠 = -|𝑥| 2 .
On the other hand, by assumption (G), there exists 𝑐 1 > 0 such that |𝐹 (𝑥)| ≤ 1 8‖𝛭 ‖ |𝑥| + 𝑐 1 and thus there exists a constant 𝑐 2 > 0 depending on 𝑐 1 and ‖𝛭 ‖ such that

⟨𝐷 𝑥 𝑉 (𝑥), 𝛢𝑥 + 𝐹 (𝑥)⟩ ≤ -1 2 |𝑥 2 | + 𝑐 2 .
for all Since e 𝑠𝛢 is nonsingular for any 𝑠 ∈ [0, 1] by assumption (D), there exists 𝑐 3 > 0 depending on the eigenvalues of 𝛢 such that

𝑉 (𝑥) ≥ ˆ1 0 |e 𝑠𝛢 𝑥| 2 ≥ 𝑐 3 |𝑥| 2
for all 𝑥 ∈ 𝐑 𝑑 . Hence,

𝚬𝑉 (𝛸 𝑡 ) ≤ 𝑉 (𝛸 0 ) - ˆ𝑡 0 1 2𝑐 3 𝚬𝑉 (𝛸 𝑠 ) d𝑠 + (𝑐 2 + tr(𝛭 𝛣𝛣 * ))𝑡
By Grönwall's inequality, we conclude that there exists a constant 𝛫 > 0 (independent of 𝛸 0 ) such that 𝚬𝑉 (𝛸 𝑡 ) ≤ e -𝑡 2𝑐 3 𝑉 (𝛸 0 ) + 𝛫 .

Approachability and solid controllability

The goal of this section is to show the existence of a time 𝛵 > 0 and a nontrivial measure 𝜈 𝛵 on 𝐑 𝑑 such that the bound

𝛲 𝐹 𝛵 (𝑥, ⋅ ) ≥ 𝜈 𝛵 holds for all 𝑥 ∈ 𝐑 𝑑 such that 𝑉 (𝑥) ≤ 1 + 2𝛫 (1 -𝛾 ) -1
, where 𝛾 and 𝛫 are as in Lemma 3.3.1. This is done in two steps: we first control the probability of reaching neighbourhoods of 𝑥 0 where (H) holds, and then the probability of reaching an arbitrary set when starting from 𝑥 ′ close enough to 𝑥 0 .

Throughout this section, the controlled nonlinear system (3.3) is to be thought of as a perturbation of the controlled linear system

{ ż(𝑡 ) = 𝛢𝑧(𝑡 ) + 𝛣 η(𝑡 ), 𝑧(0) = 𝑥 in .
(3.7)

For 𝜂 ∈ 𝐶 0 ([0, 𝛵 ]; 𝐑 𝑛 ) and 0 ≤ 𝑡 ≤ 𝛵 , 𝑆 𝛵 (𝑥 in , 𝜂) is defined as the solution at time 𝑡 of the problem (3.7).

We set 𝑅 ∶= 1 + 2𝛫 (1 -𝛾 ) -1 . We make extensive use of the compact set {𝑥 ∈ 𝐑 𝑑 ∶ 𝑉 (𝑥) ≤ 𝑅}, which we often write as {𝑉 ≤ 𝑅} for short.

We Suppose for contradiction that there exists such 𝑥 with |𝑥| = 1 and 0 = 𝜕 𝑘 𝛵 ⟨𝑥, 𝑄 𝛵 𝑥⟩ for each 𝑘 ≤ 2𝑑 * -1. From the first derivative, we have

𝛣 * 𝑥 = 0.
From the third derivative, we have ⟨𝑥, 𝛣𝛣 * (𝛢 * )2 𝑥⟩ + 2 ⟨𝑥, 𝛢𝛣𝛣 * 𝛢 * 𝑥⟩ + ⟨𝑥, 𝛢 2 𝛣𝛣 * 𝑥⟩ = 0, but then, using again the consequence of the vanishing first derivative, we have 𝛣 * 𝛢 * 𝑥 = 0.
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Inductively, from the (2𝑗 + 1)th derivative, we have 𝛣 * (𝛢 * ) 𝑗 𝑥 = 0, for 𝑗 = 0, 1, … 𝑑 * -1. We conclude that

𝑥 ∈ 𝑑 * -1 ⋂ 𝑗 =0 ker(𝛣 * (𝛢 * ) 𝑗 ) = 𝑑 * -1 ⋂ 𝑗 =0 (ran(𝛢 𝑗 𝛣)) ⟂ ,
contradicting the Kalman condition. Combining these two inequalities, there exists a constant 𝐶 ″ > 0 such that

|𝑦 𝛵 (𝑡 )| ≤ 𝐶 ″ ˆ𝑡 0 |𝑦 𝛵 (𝑠)| d𝑠 + 𝑡 𝐶 ″ (1 + |𝑥| + |𝑥 0 |)(1 + 𝛵 𝑎(1-𝑚) )
Recall that 0 ≤ 𝑎 < then 𝛷 (𝑄) ⊇ 𝐺 .

Most of the ideas for the next three results are present in different parts of [Shi17]; also see [Shi07].

We retrieve the key steps and repiece them in a way that is suitable for our endeavour. Hence, by the Brouwer fixed point theorem, there exists 𝑥 ∈ 𝐷 such that 𝑥 = 𝛹 𝑥 ′ (𝑥), i.e. such that 𝑥 ′ = 𝛷 (𝑓 (𝑥)). We conclude 𝐺 ⊆ 𝛷 (𝑓 (𝐷 )).

We will use this for 𝑆 𝐹 1 defined in Section 3.2. In this case, the Banach space 𝛦 of controls is 𝐶 0 ([0, 1]; 𝐑 𝑛 ) equipped with the supremum norm. Proposition 3.3.6. If the weak Hörmander condition (H) is satisfied in 𝑥 0 , then 𝑆 𝐹 1 is solidly controllable from 𝑥 0 , with a set 𝑄 consisting of functions that are all Lipschitz with a common Lipschitz constant 𝜅.

Proof. By the previous lemma, to show solid controllability, it suffices to provide a ball 𝐷 ⋐ 𝐑 𝑑 

where the control 𝜉 is taken in 𝐿 2 ([0, 1]; 𝐑 𝑛 ). The Hörmander condition implies that the Lie algebra generated by the family { Ṽ 𝜂 (𝑥, 𝑠) = (𝛢𝑥 + 𝐹 (𝑥), 1) + (𝛣𝜂, 0) ∶ 𝜂 ∈ 𝐑 𝑛 } of vector fields has full rank at the point (𝑥 0 , 0). Hence, one can show using ideas from the proof of Krener's theorem that there exists a choice of small intervals (𝑎 𝑙 , 𝑏 𝑙 ) ⊂ [0, 1] and vectors 𝜂 𝑙 ∈ 𝐑 𝑛 for 𝑙 = 0, 1, … , 𝑑 such that the parallelepiped

Π = {𝛼 = (𝛼 0 , 𝛼 1 , … , 𝛼 𝑑 ) ∈ 𝐑 𝑑+1 ∶ 𝛼 𝑙 ∈ (𝑎 𝑙 , 𝑏 𝑙 )} embeds into 𝐑 𝑑 × 𝐑 via the map 𝜙 ∶ Π → 𝐑 𝑑 × 𝐑 𝛼 ↦ (e 𝛼 𝑑 Ṽ 𝜂 𝑑 ∘ ⋯ ∘ e 𝛼 0 Ṽ 𝜂 0 )(𝑥 0 , 0).
In other words, 𝜙 takes 𝛼 to the solution 𝑦 at time 𝛵 𝛼 ∶= 𝛼 0 + 𝛼 1 + ⋯ + 𝛼 𝑑 of the extended problem (3.8)

with the control

𝜉 𝛼 (𝑡 ) = 𝟏 [0,𝛼 0 ) (𝑡 )𝜂 0 + 𝑑 ∑ 𝑙=1 𝟏 [𝛼 0 +⋯+𝛼 𝑙 -1 ,𝛼 0 +⋯+𝛼 𝑙 -1 +𝛼 𝑙 ) (𝑡 )𝜂 𝑙 .
(3.9)

Fixing an α ∈ Π with corresponding 𝛵 α ∈ (0, 1], one finds that the solutions at time 𝛵 α of the problem Let 𝑓 ∶ 𝐷 → 𝐶 0 ([0, 1]; 𝐑 𝑛 ) be defined by 𝑓 (𝑥 * ) ∶= ´⋅ 0 ( f (𝑥 * ))(𝑠) d𝑠. Then,

{ ẋ = 𝛢𝑥 + 𝐹 (𝑥) + 𝛣𝜉 𝛼 𝑥(0) = 𝑥 0 provide a diffeomorphsim
‖𝑓 (𝑥 * ) -𝑓 (𝑥 * * )‖ 𝐶 0 = sup 𝑡 ∈[0,1] | ˆ𝑡 0 ( f (𝑥 * ))(𝑠) d𝑠 - ˆ𝑡 0 ( f (𝑥 * * ))(𝑠) d𝑠| ≤ ‖ f (𝑥 * ) -f (𝑥 * * )‖ 𝐿 2
so that 𝑓 is continuous. We conclude that 𝑆 𝐹 1 is solidly controllable from 𝑥 0 , with 𝑄 = 𝑓 (𝐷 ). The constant 𝜅 is a common Lipschitz constant for all functions in 𝑄.

Proposition 3.3.7. If the weak Hörmander condition (H) is satisfied in 𝑥 0 , then there exist 𝛿 0 > 0 and a nonzero Borel measure ̃𝜈 on 𝐑 𝑑 such that

𝛲 𝐹 1 (𝑥 ′ , ⋅ ) ≥ ̃𝜈
for all 𝑥 ′ ∈ 𝛣(𝑥 0 , 𝛿 0 ).

Proof. By the previous proposition, we have solid controllability of the system 𝑆 𝐹 1 from the point 𝑥 0 , with a set 𝑄 consisting of Lipschitz functions. Then, the strategy of [Shi17, §1.2] (also see [Shi07, §2.1]) yields the desired measure. We outline the argument for completeness and to emphasize that we do not need the full strength of the decomposability assumption made there. for the 𝜖 in (sC). Taking 𝛷 = 𝑆 𝐹 1 (𝑥 0 , 𝛱 𝛮 ⋅ ) there, 𝛷 (𝑄) contains a ball (which has positive measure). By Sard's theorem, there exists a point 𝜁 0 ∈ 𝑄 in which 𝐷 𝛷 has full rank. Because 𝛷 ∘ 𝛱 𝛮 = 𝛷 , this property still holds true if we restrict 𝛷 to 𝐹 𝛮 = ran 𝛱 𝛮 . There then exists a 𝑑-dimensional

subspace 𝐹 1 𝛮 ⊆ 𝐹 𝛮 such that 𝐷 𝛷 | 𝜁 0 (𝐹 1 𝛮 ) = 𝐑 𝑑 . Let 𝐹 2 𝛮 be such that 𝐹 1
𝛮 ⊕ 𝐹 2 𝛮 = 𝐹 𝛮 . We will write 𝜁 ∈ 𝐹 𝛮 as (𝜁 1 , 𝜁 2 ) according to this decomposition. More generally, we will write a generic element of 𝐶 0 as (𝜁 1 , 𝜁 2 , 𝜁 ′ ) with 𝜁 ′ ∈ 𝐹 ′ 𝛮 . The Jacobian of the map 𝑆 𝐹 1 (𝑥 0 , ( ⋅ , 𝜁 2 0 , 0)) ∶ 𝐹 1 𝛮 → 𝐑 𝑑 at the point 𝜁 1 0 is a linear isomorphism between 𝐹 1 𝛮 and 𝐑 𝑑 . By the implicit function theorem, there exist neighbourhoods 𝑉 1 of 𝜁 1 0 , 𝑉 2 of 𝜁 2 0 , 𝑉 ′ of 0, 𝑊 of 𝑥 0 , 𝑈 of 𝑆 𝐹 1 (𝑥 0 , (𝜁 1 0 , 𝜁 2 0 , 0)); and a continuously differentiable function 𝑔 ∶ 𝑊 ×𝑈 ×𝑉 2 ×𝑉 ′ → 𝑉 1 such that, for points in the appropriate open sets, 𝑆 𝐹 1 (𝑥 ′ , (𝜁 1 , 𝜁 2 , 𝜁 ′ )) = 𝑥 * is equivalent to 𝜁 1 = 𝑔(𝑥 ′ , 𝑥 * , 𝜁 2 , 𝜁 ′ ).

Recall that ℓ equals the product measure ℓ 𝛮 × ℓ ′ 𝛮 with ℓ 𝛮 possessing a continuous and positive density 𝜌 𝛮 on 𝐹 𝛮 . Let 𝜒 ∶ 𝐑 𝑑 × 𝐶 0 → [0, 1] be continuous, supported in 𝑊 × 𝑉 1 × 𝑉 2 × 𝑉 ′ , and equal to 1 at (𝑥 0 , 𝜁 1 0 , 𝜁 2 0 , 0). Then, for any Borel set 𝛤 ⊆ 𝐑 𝑑 ,

𝛲 𝐹 1 (𝑥 ′ , 𝛤 ) ≥ ˚𝑆𝐹 1 (𝑥 ′ ,⋅ ) -1 (𝛤 ) 𝜒 (𝑥 ′ , 𝜁 1 , 𝜁 2 , 𝜁 ′ )𝜌 𝛮 (𝜁 1 , 𝜁 2 ) d𝜁 1 d𝜁 2 ℓ ′ 𝛮 (d𝜁 ′ ) = ¨𝑉 2 ×𝑉 ′ ˆ𝛤 𝜒 (𝑥 ′ , 𝑔(𝑥 ′ , 𝑥 * , 𝜁 2 , 𝜁 ′ ), 𝜁 2 , 𝜁 ′ )𝜌 𝛮 (𝑔(𝑥 ′ , 𝑥 * , 𝜁 2 , 𝜁 ′ ), 𝜁 2 ) det[𝐷 𝑆 𝐹 1 (𝑥 ′ , ( ⋅ , 𝜁 2 , 𝜁 ′ ))| 𝑔(𝑥 ′ ,𝑥 * ,𝜁 2 ,𝜁 ′ ) ] d𝑥 * d𝜁 2 ℓ ′ 𝛮 (d𝜁 ′ )
for all 𝑥 ′ ∈ 𝑊 .

By continuity, there exist numbers 𝛿 0 > 0 and 𝛼 > 0 such that

𝛲 𝐹 1 (𝑥 ′ , 𝛤 ) ≥ 𝛼 vol(𝛤 ∩ 𝛣(𝑆 𝐹 1 (𝑥 0 , 𝜁 0 ), 𝛿 0 ))
for all 𝑥 ′ ∈ 𝛣(𝑥 0 , 𝛿 0 ) and all Borel sets 𝛤 ⊆ 𝐑 𝑑 .

Then, by the Chapman-Kolmogorov equation,

𝛲 𝐹 𝛵 +1 (𝑥, 𝛤 ) ≥ ˆ𝑥′ ∈𝛣(𝑥 0 ,𝛿 0 ) 𝛲 𝐹 𝛵 (𝑥, d𝑥 ′ )𝛲 𝐹 1 (𝑥 ′ , 𝛤 ) ≥ ˆ𝑥′ ∈𝛣(𝑥 0 ,𝛿 0 ) 𝛲 𝐹 𝛵 (𝑥, d𝑥 ′ ) ̃𝜈 (𝛤 ) = 𝛲 𝐹 𝛵 (𝑥, 𝛣(𝑥 0 , 𝛿 0 )) ̃𝜈 (𝛤 )
for any Borel set 𝛤 ⊆ 𝐑 𝑑 and any 𝛵 > 0. We conclude that for any 𝛵 > 1 the nontrivial measure

𝜈 𝛵 ∶= ( inf 𝑥∈{𝑉 ≤𝑅} 𝛲 𝐹 𝛵 -1 (𝑥, 𝛣(𝑥 0 , 𝛿 0 ))) ̃𝜈
is such that 𝛲 𝐹 𝛵 (𝑥, ⋅ ) ≥ 𝜈 𝛵 for all 𝑥 ∈ 𝐑 𝑑 such that 𝑉 (𝑥) ≤ 𝑅. The infimum in the definition of 𝜈 𝛵 is positive by Proposition 3.3.4.

Application of Harris' ergodic theorem

Recall that, by Lemma 3.3.1, the conditions (D) and (G) ensure the existence of constants 𝛫 > 0 and 𝛾 ∈ (0, 1) such that the function 𝑉 satisfies

| ˆ𝐑𝑑 𝑉 (𝑦)𝛲 𝐹 𝑡 (𝑥, d𝑦)| ≤ 𝛾 𝑡 𝑉 (𝑥) + 𝛫 (3.10)
for all 𝑥 ∈ 𝐑 𝑑 and all 𝑡 > 0. Using the conditions (G) and (K), we also showed in Proposition 3.3.4 that, for any 𝛿 > 0, (𝑥, 𝛵 ) ↦ 𝛲 𝐹 𝛵 (𝑥, 𝛣(𝑥 0 , 𝛿 )) is positive and jointly lower semicontinuous. Then, we concluded from this, hypothesis (H) and the arguments of [Shi17] that, for any 𝛵 > 1, there is a nontrivial measure 𝜈 𝛵 such that

𝛲 𝐹 𝛵 (𝑥, ⋅ ) ≥ 𝜈 𝛵 (3.11) CHAPTER 3
for all 𝑥 ∈ 𝐑 𝑑 such that 𝑉 (𝑥) ≤ 𝑅.

The existence of a function 𝑉 satisfying the condition (3.10) and a nontrivial measure 𝜈 𝛵 satisfying (3.11) are precisely the hypotheses we need to apply Harris' theorem.

Indeed, considering the 𝛵 -skeleton of our diffusion process4 for 𝛵 = 2, Theorem 1.2 in [HM11] yields constants 𝑐, 𝐶 > 0 and a stationary measure 𝜇 inv ∈ Prob(𝐑 𝑑 ) against which 𝑉 is integrable and such that sup

|𝑓 |≤1+𝑉 | ˆ𝐑𝑑 𝑓 (𝑦)[𝛲 𝐹 2𝑚 (𝑥, d𝑦) -𝜇 inv (d𝑦)]| ≤ 𝐶 e -𝑐(2𝑚+2) (1 + 𝑉 (𝑥)) (3.12)
for all 𝑥 ∈ 𝐑 𝑑 and all 𝑚 ∈ 𝚴 ∪ {0}.

The measure 𝜇 inv is the unique stationary probability measure for the 2-skeleton, but it could a priori depend on our choice of 𝛵 -skeleton. However, we can show that this measure is actually stationary, not only for the 2-skeleton, but also for the continuous-time process. Putting 𝜆 defined by 𝜆(𝛤 ) = ´𝛲 𝐹 𝑠 (𝑥, 𝛤 )𝜇 inv (d𝑥) in (3.13) for some 𝑠 ≥ 0, we have by the Chapman-Kolmogrov equation that

Note that with

| ˆ𝐑𝑑 𝛲 𝐹 2𝑚+𝑠 (𝑥, 𝛤 )𝜇 inv (d𝑥) -𝜇 inv (𝛤 )| ≤ 𝐶 e -𝑐(2𝑚+2) (1 + ˆ𝐑𝑑 ˆ𝐑𝑑 𝑉 (𝑦)𝛲 𝐹 𝑠 (𝑥, d𝑦)𝜇 inv (d𝑥)).
Using (3.10),

| ˆ𝐑𝑑 𝛲 𝐹 2𝑚+𝑠 (𝑥, 𝛤 )𝜇 inv (d𝑥) -𝜇 inv (𝛤 )| ≤ 𝐶 e -𝑐(2𝑚+2) (1 + 𝛫 + ˆ𝐑𝑑 𝑉 (𝑥)𝜇 inv (d𝑥)).
But the left-hand side does not depend on 𝑚 ∈ 𝚴 because 𝜇 inv is invariant for the 2-skeleton. We therefore have ´𝛲 𝐹 𝑠 (𝑥, ⋅ )𝜇 inv (d𝑥) = 𝜇 inv for all 𝑠 ≥ 0, i.e. that 𝜇 inv is stationary for the orginial continuous-time process. Because any time 𝑡 > 0 can be written as 2𝑚 + 𝑠 with 𝑠 ∈ [0, 2), this is -up to a relabeling of the constants -the assertion of Theorem 3.2.3.

Now, for any

Networks of oscillators

We introduce the mathematical description of important physical systems that our main result covers, from the simplest to the most intricate. Based on [JPS17], we also discuss the assumptions (K), (D) and (G) of our main result in this context. Discussion of the weak Hörmander condition (H) is postponed to the next section.

The linear chain coupled to Langevin thermostats

Consider 𝐿 unit masses, each labelled by an index in {1, 2, … , 𝐿 -1, 𝐿} and whose position is restricted to a line. For 𝑖 = 1, 2, … , 𝐿 -1, the 𝑖 th mass is attached to the (𝑖 + 1)th mass by a spring of 

ℎ ∶ 𝐑 𝐿 ⊕ 𝐑 𝐿 → 𝐑 (𝑝, 𝑞) ↦ 1 2 𝐿 ∑ 𝑖 =1 𝑝 2 𝑖 + 1 2 𝐿 ∑ 𝑖 =1 𝜅𝑞 2 𝑖 + 1 2 𝐿-1 ∑ 𝑖 =1 𝑘(𝑞 𝑖 +1 -𝑞 𝑖 ) 2 + 𝑈 (𝑞)
where 𝑈 ∈ 𝐶 ∞ (𝐑 𝐿 ; 𝐑) is a perturbing potential.

Coupling the 1st and 𝐿th oscillator to Langevin heat baths at positive temperatures 𝜃 1 and 𝜃 𝐿 with positive coupling constants 𝛾 1 and 𝛾 𝐿 yields the equations of motion

d𝑞 𝑖 = 𝑝 𝑖 d𝑡 , 1 ≤ 𝑖 ≤ 𝐿, d𝑝 𝑖 = -[𝜅𝑞 𝑖 + 𝑘(𝑞 𝑖 -𝑞 𝑖 -1 ) -𝑘(𝑞 𝑖 +1 -𝑞 𝑖 ) + 𝜕 𝑖 𝑈 (𝑞)] d𝑡 , 1 < 𝑖 < 𝐿, d𝑝 1 = -[𝜅𝑞 1 -𝑘(𝑞 2 -𝑞 1 ) + 𝜕 1 𝑈 (𝑞)] d𝑡 -𝛾 1 𝑝 1 d𝑡 + √2𝛾 1 𝜃 1 d𝑊 1,𝑡 , d𝑝 𝐿 = -[𝜅𝑞 𝐿 + 𝑘(𝑞 𝐿 -𝑞 𝐿-1 ) + 𝜕 𝐿 𝑈 (𝑞)] d𝑡 -𝛾 𝐿 𝑝 𝐿 d𝑡 + √2𝛾 𝐿 𝜃 𝐿 d𝑊 𝐿,𝑡 ,
where (𝑊 1,𝑡 ) 𝑡 ≥0 and (𝑊 𝐿,𝑡 ) 𝑡 ≥0 are independent 1-dimensional Wiener processes.

This system can be put into the form (3.1) with 𝑑 = 2𝐿 and 𝑛 = 2 by setting

𝛸 = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝑝 𝑞 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ , 𝛢 = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ -𝛾 1 0 0 0 0 0 ⋱ 0 0 0 0 0 -𝛾 𝐿 -𝑘-𝜅 𝑘 𝑘 -2𝑘-𝜅 0 𝑘 ⋱ 𝑘 0 -2𝑘-𝜅 𝑘 𝑘 -𝑘-𝜅 𝟏 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ , 𝛣 = ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ √2𝛾 1 𝜃 1 0 0 0 ⋮ ⋮ 0 0 0 √2𝛾 𝐿 𝜃 𝐿 0 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ and 𝐹 (𝛸 ) = 𝐹 (𝑝, 𝑞) = -∇ 𝑞 𝑈 (𝑞).
The Kalman condition (K) is met for the pair (𝛢, 𝛣) (with 𝑑 * ≤ 𝐿) as soon as 𝑘 > 0 and the eigenvalues of 𝛢 then have strictly negative real part (condition (D) holds) [JPS17].

The growth condition (G) on the vector field 𝐹 in the general setting is to be imposed on the gradient ∇ 𝑞 𝑈 of the perturbing potential 𝑈 for the chain of oscillators: we require that it is Lipschitz and that there exists

𝑎 ∈ [0, 1 2𝑑 * ) such that |∇ 𝑞 𝑈 (𝑞)| = 𝛰 (1 + |𝑞|) 𝑎 as |𝑞| → ∞.
This potential is not restricted to one-body (pinning) or two-body interaction terms; it can for example include a sum of bounded three-body interaction terms.

More general geometries in the Langevin regime

Let 𝛪 be a finite set and distinguish a nonempty subset 𝐽 ⊂ 𝛪 of the sites, where the thermal noise will act. Fix a temperature 𝜃 𝑗 > 0 for the bath associated to each site 𝑗 ∈ 𝐽 . We can then generalize the above model to different geometries and different spring constants by considering Again, 𝛾 𝑗 is the coupling constant for the 𝑗 th oscillator of the boundary. More explicitly, the equations of motion then take the familiar form

𝛸 = ( 𝑝 𝜔𝑞 ) , 𝛢 = ( -1 2 𝜄𝜄 * -𝜔 * 𝜔 0 ) , 𝛣 = ( 𝜄 0 ) 𝜗 1/2 , ( 3 
d𝑞 = 𝑝 d𝑡 , d𝑝 = -𝜔 * 𝜔𝑞 d𝑡 -∇ 𝑞 𝑈 (𝑞) d𝑡 -1 2 𝜄𝜄 * 𝑝 d𝑡 + 𝜄𝜗 1/2 d𝑊 𝑡 .
Lemma 4.1 in [JPS17] states that if the pair (𝜔 * 𝜔, 𝜄) satisfies the Kalman condition (K), then the pair (𝛢, 𝛣) defined by (3.14) also satisfies the Kalman condition. By Theorem 5.1(2) there, it then immediately implies the dissipativity condition (D). In Section 4.1 there, the case of the triangular network is treated and explicit sufficient conditions for the Kalman condition are given in terms of the spring constants. Again, the growth condition (G) is to be imposed on the gradient ∇ 𝑞 𝑈 of the pertrubing potential 𝑈 .

As mentioned in the introduction, the recent work [CEHRB18] of Cuneo, Eckmann, Hairer and Rey-Bellet provides a result of existence, uniqueness and exponentially fast convergence in a similar setup. Their conditions C3-C5 on the behaviour of the potential at infinity are significantly less restrictive than our conditions (D) and (G), allowing for strong anharmonicity. However, their nondegeneracy condition C2 is needed in all points of the phase space while our Hörmander condition (H) is only needed in one point. Their controllability condition C1 on the topology of the graph plays a role similar to that of our Kalman condition (K).

Coupling through additional degrees of freedom

As pointed out e.g. in [JPS17], models where the noise acts through auxiliary degrees of freedom enjoy the same structural properties, and are thus also suitable for our framework. We refer the reader to [FKM65,Tro77,EPRB99b] for discussions of the physical interpretation and derivation of such models. Because of these auxiliary degrees of freedom, the model is sometimes said to be semi-Markovian.

Let 𝛪 and 𝐽 be finite sets as above and consider 𝛸 = (𝑟 , 𝑝, 𝜔𝑞) ∈ 𝐑 𝐽 ⊕ 𝐑 𝛪 ⊕ 𝐑 𝛪 for some nonsingular linear map 𝜔 ∶ 𝐑 𝛪 → 𝐑 𝛪 . In addition, let 𝛬 ∶ 𝐑 𝐽 → 𝐑 𝛪 be a linear injection and let 𝜄 ∶ 𝐑 𝐽 → 𝐑 𝐽 and 𝜗 ∶ 𝐑 𝐽 → 𝐑 𝐽 be linear bijections. We set (3.17)

The perturbation 𝐹 is taken to be of the form

𝐹 ∶ 𝛸 = (𝑟 , 𝑝, 𝜔𝑞) ↦ -∇ 𝑞 𝑈 (𝑞)
for some smooth potential 𝑈 ∶ 𝐑 𝛪 → 𝐑 encoding the anharmonic part of both the interaction and the pinning potential. More explicitly, the equations of motion then read

d𝑞 = 𝑝 d𝑡 , d𝑝 = -𝜔 * 𝜔𝑞 d𝑡 -∇ 𝑞 𝑈 (𝑞) d𝑡 + 𝛬𝑟 (𝑡 ) d𝑡 , d𝑟 = -1 2 𝜄 * 𝜄𝑟 d𝑡 -𝛬 * 𝑝 d𝑡 -𝜄𝜗 1/2 d𝑊 𝑡 .
Proposition 3.4.1. If the pair (𝜔 * 𝜔, 𝛬) satisfies the Kalman condition, then the pair (𝛢, 𝛣) also satisfies the Kalman condition (K).
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Proof. Let ( ̂𝑟 , p, 𝜔 q) be a target for the system in time 𝛵 > 0. If (𝜔 * 𝜔, 𝛬) satisfies the Kalman condition, there exists 𝜂 1 ∈ 𝐶 1 0 ([0, 𝛵 ]; 𝐑 𝑛 ) such that the solution (𝑝 1 (𝑡 ), 𝑞 1 (𝑡 )) of ṗ1 = -𝜔 * 𝜔𝑞 1 + 𝛬 η1 , 𝑝 1 (0) = 0, q1 = 𝑝 1 , 𝑞 1 (0) = 0, satisfies (𝑝 1 (𝛵 ), 𝑞 1 (𝛵 )) = ( p, q). Note that ( 𝑡 𝛵 ̂𝑟 , 𝑝 1 (𝑡 ), 𝑞 1 (𝑡 )) is then a solution of the system

̇𝑟2 = -1 2 𝜄𝜄 * (𝑟 2 + η2 ) -𝛬 * 𝑝 2 + 𝜄𝜗 1/2 ζ 2 , 𝑟 2 (0) = 0, ṗ2 = -𝜔 * 𝜔𝑞 2 + 𝛬(𝑟 2 + η2 ), 𝑝 2 (0) = 0, q2 = 𝑝 2 𝑞 2 (0) = 0,
for the choices of control

𝜂 2 (𝑡 ) = 𝜂 1 (𝑡 ) - ˆ𝑡 0 𝑠 𝛵 ̂𝑟 d𝑠, 𝜁 2 (𝑡 ) = (𝜄𝜗 1/2 ) -1 ˆ𝑡 0 1 𝛵 ̂𝑟 + 1 2 𝜄𝜄 * η1 (𝑠) + 𝛬 * 𝑝 1 (𝑠) d𝑠,
hitting the prescribed target at time 𝑡 = 𝛵 .

Finally, note that with ̃𝜂 a smooth approximation of η2 that is 0 at times 𝑡 = 0 and 𝑡 = 𝛵 , (𝑟 2 (𝑡 ) + ̃𝜂(𝑡 ), 𝑝 2 (𝑡 ), 𝑞 2 (𝑡 )) is an approximate solution of

̇𝑟 = -1 2 𝜄𝜄 * 𝑟 -𝛬 * 𝑝 + 𝜄𝜗 1/2 ζ , 𝑟 (0) = 0, ṗ = -𝜔 * 𝜔𝑞 + 𝛬𝑟 , 𝑝(0) = 0, q = 𝑝, 𝑞(0) = 0,
for the choice of control

𝜁 (𝑡 ) = 𝜁 2 (𝑡 ) + (𝜄𝜗 1/2 ) -1 ̃𝜂(𝑡 ).
Therefore, the original system is approximately controllable from 0. Because the system is linear, we conclude that the pair (𝛢, 𝛣) satisfies the Kalman condition.

Then, Theorem 5.1(2) of [JPS17] states that, in this setup, the Kalman condition (K) implies that all the eigenvalues of 𝛢 have strictly negative real part, i.e. condition (D).

In particular, for 𝛢 and 𝛣 arising from a pair (𝜔 * 𝜔, 𝛬) satisfying the Kalman condition (K), as long as |∇ 𝑞 𝑈 (𝑞)| = 𝛰 (1 + |𝑞|) 𝑎 as |𝑞| → ∞, and as long as there exists a point where the weak Hörmander condition holds, the field 𝑞 ↦ 𝜔 * 𝜔𝑞 + ∇ 𝑞 𝑈 (𝑞) is allowed to be degenerate in nonnegligible regions of the position space. This is to be compared the nondegeneracy hypothesis H2) in [EPRB99b, RBT02, Car07] and C2 in [CEHRB18] that are needed everywhere.

The weak Hörmander condition

As a starting point, we note that under the assumption (K), the condition (H) is automatically satisfied for any 𝐹 with compact support or any 𝐹 whose derivatives up to order 𝑑 -1 vanish at a point.

Also note that a standard perturbative argument shows that if the conditions (D), (K) and (G) are satisfied, then there exists 𝜆 0 > 0 such that the system d𝛸 𝑡 = 𝛢𝛸 𝑡 d𝑡 + 𝜆𝐹 (𝛸 𝑡 ) d𝑡 + 𝛣 d𝑊 𝑡 admits a unique invariant measure satisfying (3.4) as soon as 0 < 𝜆 < 𝜆 0 .

A more subtle perturbative argument is presented in Proposition 3.5.1. We then give an example of a physically motivated potential to which this proposition applies in the context of networks of oscillators.

In view of the definition of the weak Hörmander condition, we are interested in the part of the tangent space spanned by Lie derivatives. The Lie derivatives

ℒ 𝐺 𝑏 , ℒ 2 𝐺 𝑏 , … , ℒ 𝑑 * -1 𝐺 𝑏 with
𝐺 ∶ 𝑥 ↦ 𝛢𝑥 + 𝐹 (𝑥) and 𝑏 a constant vector field will play a particularly important role. A direct computation shows

ℒ 𝐺 𝑏 = -𝐷 𝐺 [𝑏 ], ℒ 2 𝐺 𝑏 = +𝐷 𝐺 2 [𝑏 ] -𝐷 2 𝐺 [𝑏 , 𝐺 ], ℒ 3 𝐺 𝑏 = -𝐷 𝐺 3 [𝑏 ] + 2𝐷 𝐺 [𝐷 2 𝐺 [𝑏 , 𝐺 ]] + 𝐷 2 𝐺 [𝐷 𝐺 [𝑏 ], 𝐺 ] -𝐷 3 𝐺 [𝑏 , 𝐺 , 𝐺 ] -𝐷 2 𝐺 [𝑏 , 𝐷 𝐺 [𝐺 ]],
CHAPTER 3 and so forth. Here, the point of the space at which the vectors fields are taken is implicit and we use (3.18)

𝐷 𝑗 𝐺 [⋅ , ⋅ , … , ⋅ ] ∶ 𝐑 𝑑 × 𝐑 𝑑 × ⋯ ×
Proof. We proceed by induction on 𝑘. For 𝑘 = 1 we have

ℒ 𝐺 𝑏 = -𝐷 𝐺 [𝑏 ],
which satisfies the claim. Assume now that the result holds for some 𝑘 ∈ 𝚴 so that ℒ 𝑘 𝐺 𝑏 -(-1) 𝑘 𝐷 𝐺 𝑘 [𝑏 ] is a sum of terms satisfying (3.18). Since

ℒ 𝑘+1 𝐺 𝑏 = -𝐷 𝐺 [ℒ 𝑘 𝐺 𝑏 ] + 𝐷 (ℒ 𝑘 𝐺 𝑏 )[𝐺 ],
the first term yields -(-1) 𝑘 𝐷 𝐺 [𝐷 𝐺 𝑘 [𝑏 ]] and terms with the same form as those of ℒ 𝑘 𝐺 𝑏 , but with the changes 𝑘 ↦ 𝑘 + 1 (adding 𝛮 𝑘+1 = 0) and 𝛮 1 ↦ 𝛮 1 + 1. It indeed satisfies the right condition on the 𝛮 's if ℒ 𝑘 𝐺 𝑏 does. As for the second term, by the product rule, each term in ℒ 𝑘 𝐺 𝑏 yields a sum of terms undergoing 𝛮 0 ↦ 𝛮 0 + 1 and 𝛮 𝑗 ↦ 𝛮 𝑗 -1 and 𝛮 𝑗 +1 ↦ 𝛮 𝑗 +1 + 1 for one and only one 𝑗 ∈ {1, … , 𝑘}. Proposition 3.5.1. Suppose that the pair (𝛢, 𝛣) satisfies the Kalman condition (K) and that there exists a sequence (𝑦 (𝑛) ) 𝑛∈𝚴 in 𝐑 𝑑 that is bounded away from 0 and such that lim 𝑛→∞ |𝑦 (𝑛) | 𝑘-1 ‖𝐷 𝑘 𝐹 (𝑦 (𝑛) )‖ = 0 for each 𝑘 = 1, 2, … , 𝑑 * -1. Then, there exists a point 𝑥 0 ∈ 𝐑 𝑑 where the weak Hörmander condition (H) is satisfied.

Proof. Let 𝐺 denote 𝑦 ↦ 𝛢𝑦 + 𝐹 (𝑦) and let 𝑏 stand for a column of 𝛣. By our previous claim, we have the bound

|(ℒ 𝑘 𝐺 𝑏 )(𝑦) -(-1) 𝑘 (𝐷 𝐺 (𝑦)) 𝑘 [𝑏 ]| ≤ ∑ 𝛮 ∈𝒜 |𝐶 𝛮 ||𝑏 ||𝐺 (𝑦)| 𝛮 0 ‖𝐷 𝐺 (𝑦)‖ 𝛮 1 ‖𝐷 2 𝐺 (𝑦)‖ 𝛮 2 ⋯ ‖𝐷 𝑘 𝐺 (𝑦)‖ 𝛮 𝑘 ≤ ∑ 𝛮 ∈𝒜 |𝐶 𝛮 ||𝑏 |(‖𝛢‖|𝑦| + 1 8 ‖𝛭 ‖ -1 |𝑦| + 𝑐 1 ) 𝛮 0 ‖𝐷 𝐺 (𝑦)‖ 𝛮 1 ‖𝐷 2 𝐺 (𝑦)‖ 𝛮 2 ⋯ ‖𝐷 𝑘 𝐺 (𝑦)‖ 𝛮 𝑘
where 𝒜 ∶= {𝛮 = (𝛮 0 , 𝛮 1 , … , 𝛮 𝑘 ) ∈ (𝚴 ∪ {0}) 𝑘 satisfying (3.18) and 𝛮 1 ≠ 𝑘} and 𝐶 𝛮 is a combinatorial factor in 𝚭.

By condition (3.18),

|𝑦| 𝛮 0 ‖𝐷 𝐺 (𝑦)‖ 𝛮 1 ‖𝐷 2 𝐺 (𝑦)‖ 𝛮 2 ⋯ ‖𝐷 𝑘 𝐺 (𝑦)‖ 𝛮 𝑘 = |𝑦| ∑ 𝑘 𝑗 ′ =2 (𝑗 ′ -1)𝛮 𝑗 ′ 𝑘 ∏ 𝑗 =1 ‖𝐷 𝑗 𝐺 (𝑦)‖ 𝛮 𝑗 = ‖𝐷 𝐺 (𝑦)‖ 𝛮 1 𝑘 ∏ 𝑗 =2
|𝑦| (𝑗 -1)𝛮 𝑗 ‖𝐷 𝑗 𝐺 (𝑦)‖ 𝛮 𝑗 .

Along the subsequence (𝑦 (𝑛) ) 𝑛∈𝚴 in the hypothesis, for each 𝑗 ≥ 2,

lim 𝑛→∞ |𝑦 (𝑛) | 𝑗 -1 ‖𝐷 𝑗 𝐺 (𝑦 (𝑛) )‖ = lim 𝑛→∞ |𝑦 (𝑛) | 𝑗 -1 ‖𝐷 𝑗 𝐹 (𝑦 (𝑛) )‖ = 0.
In the case 𝑗 = 1, we have The results holds with 𝑥 0 = 𝑦 (𝛮 ) .

Example 3.5.2. Consider that the masses in the models of Section 3.4, although restricted to a single spatial degree of freedom, live in 3-dimensional space and each hold an electric charge of Gaussian density

𝜌 𝑖 ( ⋅ ) = 𝑄 (2𝜋 ) 3/2 𝜎 3 exp ( - | ⋅ -(𝑞 𝑖 + 𝑞 eq 𝑖 )| 2 2𝜎 2 )
where 𝜎 is a parameter with dimension of length and 𝑄 is the electric charge of each mass. In view of Poisson's equation in 𝐑 3 , this gives rise to the term e -𝑠 2 d𝑠 also satisfies the hypotheses of our previous proposition. However, note that

𝑈 (𝑞) = ∑ 𝑖 ∈𝛪 ∑ 𝑖 ′ ∈𝛪 𝑖 ′ ≠𝑖 𝑄 2 4𝜋 𝜖 0 |(𝑞 𝑖 + 𝑞
𝜕 𝑞 2 𝜕 𝑞 3 𝑈 n.n. (𝑞) = 𝑄 2 4𝜋 3 2 𝜖 0 𝜎 3 ( - 4 ´| q2 -q3 | √2𝜎 0 e -𝑠 2 d𝑠 | q2 -q3 | 3 /𝜎 3 + 2 √ 2𝑒 - | q2 -q3 | 2 2𝜎 2 | q2 -q3 | 2 /𝜎 2 + √ 2e - | q2 -q3 | 2 2𝜎 2 )
does not have a definite sign. Hence, for large values of 𝑄 2 𝜎 -3 (very concentrated charge distribution), the uniform condition H2) in [EPRB99b,EPRB99a,RBT02,[START_REF] Carmona | Existence and uniqueness of an invariant measure for a chain of oscillators in contact with two heat baths[END_REF] is not satisfied.

3.A Decomposability properties

We devote this appendix to the decomposability properties of ℓ in Remark 3.2.2. We consider the case 𝛵 = 1 and 𝑛 = 1 but the argument can be easily adapted to the general case. Although we use results from the theory of Gaussian measures to show the decomposability properties, these properties are not specific to Gaussian processes and can be proved for other types of noises.

The Wiener process restricted to the interval [0, 1] is a nondegenerate Gaussian measure on the Banach space 𝐶 0 ([0, 1]; 𝐑). It has as its Cameron-Martin space the space 𝑊 1,2 0 ([0, 1]; 𝐑) equipped with the inner product

⟨𝜂, 𝜁 ⟩ 𝑊 1,2 0 = ˆ1 0 η(𝑠) ζ (𝑠) d𝑠.
This Hilbert space has orthonormal basis {𝜓 𝑚 } 𝑚∈𝚴 where 𝜓 𝑚 (𝑡 ) = ˆ𝑡 0 𝜙 𝑚 (𝑠) d𝑠 and where {𝜙 𝑚 } 𝑚∈𝚴 is a Fourier basis for 𝐿 2 ([0, 1]; 𝐑). It is dense as a subspace of 𝐶 0 ([0, 1]; 𝐑)

equipped with the supremum norm.

Let 𝐹 𝛮 ∶= span{𝜓 𝑚 ∶ 𝑚 ≤ 𝛮 } and let 𝐹 ′ 𝛮 be the closure in 𝐶 0 ([0, 1]; 𝐑) of the linear span of {𝜓 𝑚 ∶ 𝑚 > 𝛮 }. These sequences of subspaces satisfy (i) and provide a decomposition 𝐹 𝛮 ⊕ 𝐹 ′ 𝛮 : any 𝜂 ∈ 𝐶 0 ([0, 1]; 𝐑) can be written in a unique way as 𝜂 𝛮 + 𝜂 ′ 𝛮 with 𝜂 𝛮 ∈ 𝐹 𝛮 and 𝜂 ′ 𝛮 ∈ 𝐹 ′ 𝛮 . To this decomposition are associated the projectors 𝛱 𝛮 and 𝛱 ′ 𝛮 . By the general theory of Gaussian measures (see e. where (𝛯 𝑚 ) 𝑚∈𝚴 is a sequence of independent scalar standard normal random variables. The two sums are independent and provide the decomposition (ii) of ℓ as the product of the projected laws.

Property (iii) clearly holds. CHAPTER 3

These abstract results from the theory of Gaussian measures do not provide strong convergence of 𝛱 𝛮 to the identity operator on the Banach space 𝐶 0 ([0, 1]; 𝐑) as 𝛮 → ∞ (or boundedness of the set of norms {‖𝛱 𝛮 ‖ ∶ 𝛮 ∈ 𝚴}, which is used in [Shi17]). However, we have the following weaker convergence result for regular enough sets of functions. Proof. First note that by construction of the basis,

∑ 𝑚∈𝚴 ‖𝜓 𝑚 ‖ 2 𝐶 0 < ∞.
For 𝜂 ∈ 𝑊 1,2 0 ([0, 1]; 𝐑), the decomposition into the two subspaces can be made explicit:

𝜂(𝑡 ) = ∑ 𝑚≤𝛮 𝜓 𝑚 (𝑡 ) ˆ1 0 𝜙 𝑚 (𝑠) η(𝑠) d𝑠 + ∑ 𝑚>𝛮 𝜓 𝑚 (𝑡 ) ˆ1 0 𝜙 𝑚 (𝑠) η(𝑠) d𝑠
and by the Cauchy-Schwarz inequality

‖𝜂 -𝛱 𝛮 𝜂‖ 𝐶 0 ≤ ( ∑ 𝑚>𝛮 ‖𝜓 𝑚 ‖ 2 𝐶 0 ) 1 2 ( ∑ 𝑚>𝛮 | ˆ1 0 𝜙 𝑚 (𝑠) η(𝑠) d𝑠| 2 ) 1 2 ≤ ( ∑ 𝑚>𝛮 ‖𝜓 𝑚 ‖ 2 𝐶 0 ) 1 2 ‖𝜂‖ 𝑊 1,2 0 .
The convergence thus follows from the hypothesis sup 𝜂∈𝑄 ‖𝜂‖ 𝑊 1,2 0 < ∞. 
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𝑌 𝑡 = ∞ ∑ 𝑘=1 𝜂 𝑘 𝟏 [𝜏 𝑘 ,∞) (𝑡 ). (4.2)
Throughout the paper, the jump displacements {𝜂 𝑘 } 𝑘∈𝚴 are independent and identically distributed random variables with law ℓ and the waiting times separating the jumps, defined as 𝑡 1 = 𝜏 1 and 𝑡 𝑘 = 𝜏 𝑘 -𝜏 𝑘-1 for 𝑘 ≥ 2, form a sequence {𝑡 𝑘 } 𝑘∈𝚴 of independent exponentially distributed random variables with common rate parameter 𝜆 > 0. Moreover, the sequences {𝜂 𝑘 } 𝑘∈𝚴 and {𝑡 𝑘 } 𝑘∈𝚴 are independent from one another. We are interested in the noise-degenerate case, that is when rank(𝛣) < 𝑑.

The aim of this paper is to establish exponential mixing for the sde (4.1) under some mild dissipativity and controllability conditions. The precise hypotheses are the following.

(C1) There are numbers 𝛼 > 0 and 𝛽 > 0 such that ⟨𝑓 (𝑦), 𝑦⟩ ≤ -𝛼‖𝑦‖ 2 + 𝛽 (4.3) for all 𝑦 ∈ 𝐑 𝑑 , where ⟨ ⋅ , ⋅ ⟩ and ‖ ⋅ ‖ are a scalar product and the associated norm in 𝐑 𝑑 .

Combined with the regularity of 𝑓 and the fact that ∑ ∞ 𝑘=1 𝑡 𝑘 = +∞ with probability 1, it ensures the global well-posedness of the sde (4.1). It also strongly suggests the norm squared as a candidate Lyapunov function. The other two conditions are related to the controllability of the system: we ask that there exists a point x ∈ 𝐑 𝑑 such that the system is both approximately controllable to x and solidly controllable form x. To formulate these conditions more precisely, we introduce the following (deterministic) mapping. For 𝛵 > 0 a given time, (4.5)

Accordingly, we will refer to the first argument of 𝑆 𝛵 ( ⋅ , ⋅ ) as an initial condition and to the second one as a control.

(C2) The system is approximately controllable to x ∈ 𝐑 𝑑 : for any number 𝜖 > 0 and any radius In the literature, the problem of ergodicity for sdes driven by a degenerate noise is mostly considered when the perturbation is a Brownian motion, the system admits a Lyapunov function, and the Hörmander condition is satisfied at all the points of the state space. Under these assumptions, the transition function of the underlying Markov process has a smooth density with respect to Lebesgue measure which is almost surely positive. This implies that the process is strong Feller and irreducible, so it has a unique invariant measure by Doob's theorem (see Theorem 4.2.1 in [START_REF] Da Prato | Ergodicity for infinite dimensional systems[END_REF] and [START_REF] Meyn | Markov Chains and Stochastic Stability[END_REF][START_REF] Khasminskii | Stochastic stability of differential equations[END_REF] for related results).

Even with the assumption that the noise is Gaussian, there are only few papers that consider the problem of ergodicity for an sde without the Hörmander condition being satisfied everywhere.

In [START_REF] Arnold | On unique ergodicity for degenerate diffusions[END_REF], the uniqueness property for invariant measures is proved for degenerate diffusions, under the assumption that the Hörmander condition holds at one point and that the process is irreducible. The proof relies heavily on the Gaussian nature of the noise. In the paper [Shi17], an approach based on controllability and a coupling argument is given for a study of dynamical systems on compact metric spaces subject to a more general degenerate noise: under the controllability assumptions (C2) and (C3) and a decomposability assumption on the noise, exponential mixing in the total-variation metric is established. This approach can be carried to problems on a non-compact space, provided a dissipativity of the type of (C1) holds; see [START_REF] Raquépas | A note on Harris' ergodic theorem, controllability and perturbations of harmonic networks[END_REF] for a study of networks of quasiharmonic oscillators. The class of decomposable noises includes -but is not limited to -Gaussian measures.
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The present paper falls under the continuity of the study carried out in these references. The main difficulty in our case comes from the fact that the Poisson noise we consider, in addition to being degenerate, does not have a decomposability structure; also see [START_REF] Nersesyan | Polynomial mixing for the complex Ginzburg-Landau equation perturbed by a random force at random times[END_REF], where polynomial mixing is proved for the complex Ginzburg-Landau equation driven by a non-degenerate compound Poisson process. Yet, the methods we use still stem from a control and coupling approach, which we outline in the following paragraphs; also see the beginning of Section 4.3. Indeed, the combination of coupling and controllability arguments has the advantage of yielding rather simple proofs of otherwise very technical results and also accommodates a wide variety of (non-Gaussian) noises for which other methods fail.

We hope that treating a relatively tractable problem in an essentially self-contained way will help interested readers in making their way to understanding technically more difficult problems for which methods of the same flavour are used.

For a discrete-time Markov family on a compact state space 𝒳, existence of an invariant measure can be obtained from a Bogolyubov-Krylov argument and it is typical to derive uniqueness and mixing from a uniform upper bound on the total-variation distance between the transition functions from different points. One way to prove uniqueness using such a uniform squeezing estimate is through a so-called Doeblin coupling argument, where one constructs a Markov family on 𝒳 ×𝒳 whose projections to each copy of 𝒳 have the same distribution as the original Markov family, and with the property that it hits the diagonal {(𝑥, 𝑥) ∶ 𝑥 ∈ 𝒳} soon enough, often enough. We refer the interested reader to the paper [START_REF] Griffeath | A maximal coupling for Markov chains[END_REF] and to Chapter 3 of the monograph [KS12] for an introduction to these ideas, which go back to Doeblin, Harris, and Vaserstein.

When the state space 𝒳 is not compact, existence of an invariant measure requires additional arguments and one can rarely hope to prove squeezing estimates which hold uniformly on the whole state space. The Bogolyubov-Krylov argument for existence can be adapted provided that one has a suitable Lyapunov structure. As for uniqueness and mixing, the coupling argument will go through with a squeezing estimate which only holds for points in a small ball, provided that one can obtain good enough estimates on the hitting time of that ball. Over the past years, it has become evident that control theory provides a good framework for formulating conditions that are sufficient for this CHAPTER 4

endeavor when the noise is degenerate. 
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Notation

For (𝒳, 𝑑) a Polish space, we shall use the following notation throughout the paper:

• 𝛣 𝒳 (𝑥, 𝜖) for the closed ball in 𝒳 of radius 𝜖 centered at 𝑥 (we shall simply write 𝛣(𝑥, 𝜖) in the special case 𝒳 = 𝐑 𝑑 );

• ℬ(𝒳) for its Borel 𝜎 -algebra;

• 𝐿 ∞ (𝒳) for the space of all bounded Borel-measurable functions 𝑔 ∶ 𝒳 → 𝐑, endowed with the norm ‖𝑔‖ ∞ = sup 𝑦∈𝒳 |𝑔(𝑦)|;

• 𝒫(𝒳) for the set of Borel probability measures on 𝒳, endowed with the total variation norm:

for 𝜇 1 , 𝜇 2 ∈ 𝒫(𝒳),

‖𝜇 1 -𝜇 2 ‖ var ∶= 1 2 sup ‖𝑔‖ ∞ ≤1 |⟨𝑔, 𝜇 1 ⟩ -⟨𝑔, 𝜇 2 ⟩| = sup 𝛤 ∈ℬ(𝒳) |𝜇 1 (𝛤 ) -𝜇 2 (𝛤 )|,
where ⟨𝑔, 𝜇⟩ = ´𝒳 𝑔(𝑦) 𝜇(d𝑦) for 𝑔 ∈ 𝐿 ∞ (𝒳) and 𝜇 ∈ 𝒫(𝒳).

Let (𝒴, 𝑑 ′ ) be another Polish space. The image of a measure 𝜇 ∈ 𝒫(𝒳) under a Borel-measurable mapping 𝐹 ∶ 𝒳 → 𝒴 is denoted by 𝐹 * 𝜇 ∈ 𝒫(𝒴).

On any space, 𝟏 𝛤 stands for the indicator function of the set 𝛤 .

We use 𝚭 for the set of integers and 𝚴 for the set of natural numbers (without 0). For any 𝑚 ∈ 𝚴, we set 

Preliminaries and existence of an invariant measure

The sde (4.1) has a unique càdlàg solution satisfying the initial condition 𝛸 0 = 𝑥. It is given by

𝛸 𝑡 = { 𝑆 𝑡 -𝜏 𝑘 (𝛸 𝜏 𝑘 ) if 𝑡 ∈ [𝜏 𝑘 , 𝜏 𝑘+1 ), 𝑆 𝑡 𝑘+1 (𝛸 𝜏 𝑘 ) + 𝛣𝜂 𝑘+1 if 𝑡 = 𝜏 𝑘+1 , (4.9) 
where 𝜏 0 = 0 and 𝑆 𝑡 (𝑥) = 𝑆 𝑡 (𝑥, 0) is the solution of the undriven equation. Relation (4.9) will allow us to reduce the study of the ergodicity of the full process (𝛸 𝑡 ) 𝑡 ≥0 to that of the embedded process (𝛸 𝜏 𝑘 ) 𝑘∈𝚴 obtained by considering its values at jump times 𝜏 𝑘 . The strong Markov property implies that the latter is a Markov process with respect to the filtration generated by the random variables {𝑡 𝑗 , 𝜂 𝑗 } 𝑘 𝑗 =1 . We denote by Ρ 𝑘 the corresponding transition function: for 𝑥 ∈ 𝐑 𝑑 and 𝛤 ∈ ℬ(𝐑 𝑑 ), Ρ 𝑘 (𝑥, 𝛤 ) ∶= 𝚸 𝑥 {𝛸 𝜏 𝑘 ∈ 𝛤 } .

(4.10)

The key consequences of the dissipativity Condition (C1) are the moment estimates of the following lemma. They imply, in particular, existence of a suitable Lyapunov structure given by the norm squared.

Lemma 4.2.1. Under Condition (C1), we have the following bounds:

(i) for any 𝜖 > 0, there exists a constant 𝐶 𝜖 > 0 such that

‖𝛸 𝜏 𝑘 ‖ 2 ≤ (1 + 𝜖) 𝑘 e -2𝛼𝜏 𝑘 ‖𝛸 0 ‖ 2 + 𝐶 𝜖 𝑘 ∑ 𝑗 =1
e -2𝛼(𝜏 𝑘 -𝜏 𝑗 ) (1 + 𝜖) 𝑘-𝑗 (1 + ‖𝜂 𝑗 ‖ 2 ) (4.11) for all 𝑥 ∈ 𝐑 𝑑 and 𝑘 ∈ 𝚴;

(ii) there are numbers 𝛾 ∈ (0, 1) and 𝐶 > 0 such that 𝚬 𝑥 ‖𝛸 𝜏 𝑘 ‖ 2 ≤ 𝛾 𝑘 ‖𝑥‖ 2 + 𝐶 (1 + 𝛬), (4.12)

𝚬 𝑥 ‖𝛸 𝑡 ‖ 2 ≤ (1 -𝛾 ) -1 ‖𝑥‖ 2 + 𝐶 (1 + 𝛬) (4.13)
for all 𝑥 ∈ 𝐑 𝑑 , 𝑘 ∈ 𝚴, and 𝑡 ≥ 0, where 𝛬 ∶= 𝚬‖𝜂 1 ‖ 2 and 𝚬 𝑥 is the expectation with respect to 𝚸 𝑥 .

Proof. First note that Condition (C1) implies the following estimate for the solution to the undriven equation:

‖𝑆 𝑡 (𝑥)‖ 2 ≤ e -2𝛼𝑡 ‖𝑥‖ 2 + 𝛽𝛼 -1 (4.14)
for all 𝑥 ∈ 𝐑 𝑑 and 𝑡 ≥ 0. Let 𝜖 > 0 be arbitrary. Combining (4.9) and (4.14), we find a positive constant 𝐶 𝜖 such that

‖𝛸 𝜏 𝑘 ‖ 2 ≤ (1 + 𝜖)e -2𝛼𝑡 𝑘 ‖𝛸 𝜏 𝑘-1 ‖ 2 + 𝐶 𝜖 (1 + ‖𝜂 𝑘 ‖ 2 ).
Iterating this inequality, we get (4.11). Taking expectation in (4.11) and using the independence of the sequences {𝜂 𝑘 } and {𝜏 𝑘 }, we obtain

𝚬 𝑥 ‖𝛸 𝜏 𝑘 ‖ 2 ≤ (1 + 𝜖) 𝑘 ( 𝜆 𝜆 + 2𝛼 ) 𝑘 ‖𝑥‖ 2 + 𝐶 𝜖 𝑘 ∑ 𝑗 =1 ( 𝜆 𝜆 + 2𝛼 ) 𝑘-𝑗 (1 + 𝜖) 𝑘-𝑗 (1 + 𝛬).
Choosing 𝜖 > 0 so small that 𝛾 ∶= (1 + 𝜖) 𝜆 𝜆+2𝛼 ∈ (0, 1) yields (4.12). To prove (4.13), we introduce the random variable Proof. Let us fix 𝜖 0 , 𝒦, and 𝐺 as in Condition (C3). To simplify the presentation, we assume that 𝛵 0 =1. For any 𝑚 ∈ 𝚴 and 𝜁 ∈ 𝐶 ([0, 1]; 𝐑 𝑛 ), let 𝜄 𝑚 (𝜁 ) ∶ [0, 1] → 𝐑 𝑛 be the step function

𝜄 𝑚 (𝜁 ) = 𝑚-1 ∑ 𝑗 =0 𝟏 [ 𝑗 𝑚 , 𝑗 +1 𝑚 )
ˆ𝑗 𝑚 0 𝜁 (𝑠) d𝑠, and let 𝒦 𝑚 be the set 𝜄 𝑚 (𝒦). If 𝜁 is a continuous function which allows the system to be controlled from x to some target in time 1, then 𝜄 𝑚 (𝜁 ) is a discretization in time of the antiderivative of 𝜁 and we expect that feeding its jump discontinuities to 𝐹 𝑚 would result in a final position which is close to the target if 𝑚 is large enough. With this in mind, we often identify the function 𝜄 𝑚 (𝜁 ) with the 𝑚-tuple of vectors in 𝐑 𝑛 consisting of its jumps at the times 1 𝑚 , 2 𝑚 , … , 𝑚 𝑚 . We proceed in three steps. First, we show that Condition (C3) implies that the set 𝐹 𝑚 ( x, ̂𝐬, 𝒦 𝑚 ) contains a ball in 𝐑 𝑑 . Then, combining this with Sard's theorem and some properties of images of measures under regular mappings, we show a uniform lower bound on 𝐹 𝑚 (𝑥, 𝐬, ⋅ ) * (ℓ 𝑚 ) for (𝑥, 𝐬) close enough to ( x, ̂𝐬) where ̂𝐬 ∶= ( 1 𝑚 , … , 1 𝑚 ) ∈ [0, 1] 𝑚 . Finally, from this uniform lower bound we derive the desired estimate in total variation.

Step 1: Solid controllability. Let 𝑆 𝛵 be the mapping defined by (4.4). By the compactness of 𝒦, for any 𝜖 > 0, there exists 𝑚 0 (𝜖) ∈ 𝚴 such that sup

𝜁 ∈𝒦 ∥𝜄 𝑚 𝜁 - ˆ⋅ 0 𝜁 (𝑠) d𝑠∥ 𝐿 ∞ ([0,1],𝐑 𝑛 ) ≤ 𝜖
whenever 𝑚 ≥ 𝑚 0 (𝜖). Hence, taking 𝑚 ≥ 𝑚 0 (𝜖) for sufficiently small 

and

(𝐹 𝑚 (𝑥, 𝐬, ⋅ ) * (ℓ 𝑚 )) (d𝑦) ≥ 𝜓 ((𝑥, 𝐬), 𝑦) d𝑦 (as measures, with 𝑦 ranging over 𝐑 𝑑 ) whenever 𝑥 ∈ 𝛣( x, 𝑟 𝑚 ) and 𝐬 ∈ 𝛣 𝐑 𝑚 ( ̂𝐬, 𝑟 𝑚 ).
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Step 

Coupling argument and exponential mixing

In this section, we shall always assume that Conditions (C1)-(C3) are satisfied. The Main Theorem is established by using the coupling method, which consists in proving uniqueness and convergence to an invariant measure for a Markov family by using the inequality

‖𝛲 𝑡 (𝑥, ⋅ ) -𝛲 𝑡 (𝑥 ′ , ⋅ )‖ var ≤ 𝚸 {𝒯 > 𝑡 },
where 𝒯 is a random time given by 𝒯 ∶= inf {𝑠 ≥ 0 ∶ 𝛧 𝑢 = 𝛧 ′ 𝑢 for all 𝑢 ≥ 𝑠} (4. 20) and (𝛧 𝑡 , 𝛧 ′ 𝑡 ) 𝑡 ≥0 is any (𝐑 𝑑 × 𝐑 𝑑 )-valued random process defined on a space (𝛺, ℱ, 𝚸 (𝑥,𝑥 ′ ) ) with 𝚸 (𝑥,𝑥 ′ ) (𝛧 𝑡 ∈ 𝛤 ) = 𝛲 𝑡 (𝑥, 𝛤 ) and 𝚸 (𝑥,𝑥 ′ ) (𝛧 ′ 𝑡 ∈ 𝛤 ) = 𝛲 𝑡 (𝑥 ′ , 𝛤 ) for all 𝑡 ≥ 0 and all measurable 𝛤 ⊆ 𝐑 𝑑 . This inequality is of course most useful when the process (𝛧 𝑡 , 𝛧 ′ 𝑡 ) 𝑡 ≥0 , called a coupling, is constructed in a such a way that 𝚸 {𝒯 > 𝑡 } decays as fast as possible as 𝑡 → ∞, with a reasonable dependence on 𝑥 and 𝑥 ′ . To do so, one usually uses at some point a general result of the type of Lemma 4.C.1 on the existence of so-called maximal couplings (see [KS12, Chapter 3]).

We first proceed to construct a coupling of two embedded discrete-time processes as introduced at the beginning of Section 4.2, but with different initial conditions: given 𝑥 and 𝑥 ′ in 𝐑 𝑑 , we define a sequence (𝑧 𝑘 , 𝑧 ′ 𝑘 ) 𝑘∈𝚴 of (𝐑 𝑑 × 𝐑 𝑑 )-valued random variables on a probability space (𝛺, ℱ, 𝚸 (𝑥,𝑥 ′ ) )

with 𝚸 (𝑥,𝑥 ′ ) (𝑧 𝑘 ∈ 𝛤 ) = Ρ 𝑘 (𝑥, 𝛤 ) and 𝚸 (𝑥,𝑥 ′ ) (𝑧 ′ 𝑘 ∈ 𝛤 ) = Ρ 𝑘 (𝑥 ′ , 𝛤 ) for all 𝑘 ∈ 𝚴 and measurable 𝛤 ⊆ 𝐑 𝑑 In essence, the worst-case scenario is when the initial conditions 𝑥 and 𝑥 ′ are different and very far from the origin, but the number 𝛪 ∶= min{𝑖 ∈ 𝚴 0 𝑚 ∶ (𝑧 𝑖 , 𝑧 ′ 𝑖 ) ∈ 𝛣(0, 𝑅) × 𝛣(0, 𝑅)} (4.21) of jumps needed for both components to enter a large2 compact set around the origin is controlled by the Lyapunov structure inherited from (C1). Then, the approximate controllability assumption (C2) allows us to prove an estimate for an exponential moment of the number

𝐽 ∶= min{𝑗 ∈ 𝚴 0 𝑚 ∶ (𝑧 𝑗 , 𝑧 ′ 𝑗 ) ∈ 𝛣( x, 𝑟 ) × 𝛣( x, 𝑟 )} (4.22)
of jumps needed for both components to simultaneously enter 𝛣( x, 𝑟 ). Finally, combining this with the solid controllability assumption (C3), we control the probability distribution of the number

𝛫 ∶= min{𝑘 ∈ 𝚴 0 𝑚 ∶ 𝑧 𝑘 = 𝑧 ′ 𝑘 } = min{𝑘 ∈ 𝚴 0 𝑚 ∶ 𝑧 ℓ = 𝑧 ′ ℓ for all ℓ ∈ 𝚴 with ℓ ≥ 𝑘} (4.23)
of jumps after which the two components coincide.
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Alternatively, in a language which avoids the particularities of the coupling method, one could rephrase the above strategy by saying that combining (C2) and the consequence of (C3) expressed in Lemma 4.2.3 gives a local Doeblin condition in 𝛣(0, 𝑅) which, when combined with the Lyapunov structured conferred by (C1), yields exponential mixing by Meyn-Tweedie-type arguments [MT12].

Coupling for the embedded discrete-time process

In this section, we construct a coupling (𝑧 𝑘 , 𝑧 ′ 𝑘 ) 𝑘∈𝚴 for the embedded discrete-time process in such a way that the random time after which the two components coincide has an exponential moment which we can estimate in terms of the initial conditions (see Proposition 4.3.2).

Let us fix the numbers 𝑚, 𝑟 , and 𝑝 as in Lemma 4.2.3. The coupling is constructed by blocks of 𝑚 steps as follows. Let 𝒳 = 𝐑 𝑑 ×(𝐑 + ) 𝑚 ×(𝐑 𝑛 ) 𝑚 , 𝒴 = 𝐑 𝑑 , and 𝒰 = 𝐑 𝑑 ×𝐑 𝑑 ×(𝐑 + ) 𝑚 . Recall that the functions 𝐹 𝑖 ∶ 𝒳 → 𝒴 are defined by (4.18) for 𝑖 = 1, … , 𝑚. We consider two random probability measures 𝑢 ∈ 𝒰 ↦ 𝜇(𝑢, ⋅ ), 𝜇 ′ (𝑢, ⋅ ) on 𝒳 given by and

ℛ ′ 𝑖 (𝑧, 𝑧 ′ , 𝐬, ω) ∶= ⎧ ⎨ ⎩ 𝐹 𝑖 (𝜉 (𝑧, 𝑧 ′ , 𝐬, ω)) if 𝑧 = 𝑧 ′ , 𝐹 𝑖 (𝜉 ′ (𝑧, 𝑧 ′ , 𝐬, ω)) if 𝑧 ≠ 𝑧 ′ both in 𝛣( x, 𝑟 ), 𝐹 𝑖 (𝜉 ″ (𝑧, 𝑧 ′ , 𝐬, ω)) if 𝑧 ≠ 𝑧 ′ not both in 𝛣( x, 𝑟 )
for each (𝑧, 𝑧 ′ , 𝐬, ω) ∈ 𝐑 𝑑 × 𝐑 𝑑 × (𝐑 + ) 𝑚 × Ω and 𝑖 = 1, … , 𝑚. Now, let ℰ 𝑚 𝜆 be the 𝑚-fold direct product of exponential laws with rate parameter 𝜆. We denote by (𝛺, ℱ, 𝚸 (𝑥,𝑥 ′ ) ) the direct product of the probability space (𝐑 𝑑 × 𝐑 𝑑 , ℬ(𝐑 𝑑 ) × ℬ(𝐑 𝑑 ), 𝛿 𝑥 × 𝛿 𝑥 ′ ) with countably many copies of the probability space

((𝐑 + ) 𝑚 × Ω, ℬ((𝐑 + ) 𝑚 ) × F, ℰ 𝑚 𝜆 × Ρ ),
and define the process (𝑧 𝑘 (𝜔), 𝑧 ′ 𝑘 (𝜔)) 𝑘∈𝚴 inductively. First, set (𝑧 0 (𝜔), 𝑧 ′ 0 (𝜔)) = (𝑦, 𝑦 ′ ) where 𝜔 = (𝑦, 𝑦 ′ , 𝜔 0 , 𝜔 1 , … ) ∈ 𝛺 with 𝜔 𝑗 = (𝐬 𝑗 , ω𝑗 ) ∈ (𝐑 + ) 𝑚 × Ω, 𝑗 = 0, 1, 2, … , and 𝑖 = 1, … , 𝑚. Then, 𝑧 𝑗 𝑚+𝑖 (𝜔) ∶= ℛ 𝑖 (𝑧 𝑗 𝑚 (𝜔), 𝑧 ′ 𝑗 𝑚 (𝜔), 𝐬 𝑗 , ω𝑗 ), 𝑧 ′ 𝑗 𝑚+𝑖 (𝜔) ∶= ℛ ′ 𝑖 (𝑧 𝑗 𝑚 (𝜔), 𝑧 ′ 𝑗 𝑚 (𝜔), 𝐬 𝑗 , ω𝑗 ).

By construction, the pair (𝑧 𝑘 , 𝑧 ′ 𝑘 ), 𝑘 ∈ 𝚴 is a coupling for the embedded process:

𝚸 (𝑥,𝑥 ′ ) {𝜔 ∈ 𝛺 ∶ 𝑧 𝑘 ∈ 𝛤 } = Ρ (𝑥, 𝛤 ) and 𝚸 (𝑥,𝑥 ′ ) {𝜔 ∈ 𝛺 ∶ 𝑧 ′ 𝑘 ∈ 𝛤 } = Ρ (𝑥 ′ , 𝛤 ) (4.25)
for all measurable 𝛤 ⊆ 𝐑 𝑑 .

We now state and prove two important properties of the constructed coupling. The first one relies on (C3) and elucidates the choice of a construction by blocks of 𝑚 steps with 𝑚 as in Lemma 4.2.3.

The second combines this first property and some technical consequences of Condition (C1) and

3 For example, one can take as a new ( Ω, F, Ρ ) the product of the old ( Ω, F, Ρ ) with itself and set 𝜉 new (𝑢, ω1 , ω2 ) = 𝜉 old (𝑢, ω1 ), 𝜉 ′ new (𝑢, ω1 , ω2 ) = 𝜉 ′ old (𝑢, ω1 ) and 𝜉 ″ new (𝑢, ω1 , ω2 ) = 𝜉 ′ old (𝑢, ω2 ) where ( ω1 , ω2 ) is a generic element of the product of the old space with itself.

Combining these results, we get the following bound on an exponential moment of the first simultaneous hitting time of the ball 𝛣( x, 𝑟 ): there exist positive constants 𝜃 2 and 𝛢 2 such that 𝚬 (𝑥,𝑥 ′ ) e 𝜃 2 𝐽 ≤ 𝛢 2 (1 + ‖𝑥‖ 2 + ‖𝑥 ′ ‖ 2 ) .

(4.28)

This is stated and proved as Proposition 4.A.6 in the first appendix. Then, we introduce a sequence of random times defined inductively by 𝐽 0 ∶= 0 and and almost-sure finiteness follows from the Borel-Cantelli lemma. Now, by Hölder's inequality,

𝚬 (𝑥,𝑥 ′ ) e 𝜃 1 𝛫 ≤ 1 + ∞ ∑ 𝑖 =0 𝚬 (𝑥,𝑥 ′ ) (𝟏 {𝐽 𝑖 <𝛫 ≤𝐽 𝑖 +1 } e 𝜃 1 𝐽 𝑖 +1 ) ≤ 1 + ∞ ∑ 𝑖 =0 (𝚸 (𝑥,𝑥 ′ ) {𝛫 > 𝐽 𝑖 }) 1-1 𝑞 (𝚬 (𝑥,𝑥 ′ ) e 𝑞𝜃 1 𝐽 𝑖 +1 ) 1 𝑞
for any 𝑞 ≥ 1. In each summand, the first term is controlled by the inequality (4.30) and the second one by (4.29), provided that 𝜃 1 ≤ 𝜃 2 /𝑞:

𝚬 (𝑥,𝑥 ′ ) e 𝜃 1 𝛫 ≤ 1 + Ĉ 1 𝑞 p 1 𝑞 -1 (1 + ‖𝑥‖ 2 + ‖𝑥 ′ ‖ 2 ) 1 𝑞 ∞ ∑ 𝑖 =0 ( Ĉ 1 𝑞 p1-1 𝑞 ) 𝑖 .
The proposition follows by taking 𝑞 ≥ 2 large enough that

Ĉ 1 𝑞 p1-1 𝑞 < 1.

Coupling for the original continuous-time process

Let the probability space (𝛺, ℱ, 𝚸 (𝑥,𝑥 ′ ) ) and the process (𝑧 𝑘 , 𝑧 ′ 𝑘 ) be as in the previous subsection. Recall that an element 𝜔 of 𝛺 consists in an initial condition in 𝐑 𝑑 × 𝐑 𝑑 and a sequence (𝐬 𝑗 , ω𝑗 ) 𝑗 ∈𝚴 of elements in (𝐑 + ) 𝑚 × Ω for some other probability space Ω we have constructed. Let 𝜏 𝑗 𝑚+𝑖 (𝜔) be the positive real obtained by summing all the entries of 𝐬 1 , 𝐬 2 , … , 𝐬 𝑗 and the first 𝑖 entries of 𝐬 𝑗 +1 .

Then, it follows from the construction of 𝚸 (𝑥,𝑥 ′ ) that the sequence (𝜏 𝑘 ) 𝑘∈𝚴 of random variables on (𝛺, ℱ, 𝚸 (𝑥,𝑥 ′ ) ) has independent increments distributed according to an exponential distribution with rate parameter 𝜆. Proof. Let 𝛫 be defined by (4.23). As 𝜏 𝑘 is a sum of 𝑘 independent exponentially distributed random variables with parameter 𝜆, the expectation of e 2𝑐𝜏 𝑘 can be computed explicitly for 𝑐 in the interval (0, 1 2 𝜆), and 𝜏 𝛫 is also almost-surely finite. For such a number 𝑐, the Cauchy-Schwarz inequality yields

We define

𝚬 (𝑥,𝑥 ′ ) e 𝑐𝜏 𝛫 = ∞ ∑ 𝑘=0 𝚬 (𝑥,𝑥 ′ ) (e 𝑐𝜏 𝑘 𝟏 {𝛫 =𝑘} ) ≤ ∞ ∑ 𝑘=0 (𝚬 (𝑥,𝑥 ′ ) e 2𝑐𝜏 𝑘 ) 1 2 (𝚸 (𝑥,𝑥 ′ ) {𝛫 = 𝑘}) 1 2 .
On the other hand, we control 𝚸 (𝑥,𝑥 ′ ) {𝛫 ≥ 𝑘} by Proposition 4.3.2 and Chebyshev's inequality. Therefore,

𝚬 (𝑥,𝑥 ′ ) e 𝑐𝜏 𝛫 ≤ ∞ ∑ 𝑘=0 ( 𝜆 𝜆 -2𝑐 ) 𝑘 2 (e -𝜃 1 𝑘 𝛢 1 (1 + ‖𝑥‖ + ‖𝑥 ′ ‖)) 1 2 ≤ 𝛢 1 2 1 (1 + ‖𝑥‖ + ‖𝑥 ′ ‖) ∞ ∑ 𝑘=0 ( 𝜆e -𝜃 1 𝜆 -2𝑐 ) 𝑘 2 ,
where 𝜃 1 and 𝛢 1 are as in Proposition 4.3.2. The series will converge for 𝑐 > 0 small enough; fix such a value of 𝑐. By Chebyshev's inequality, we find 𝐶 > 0 such that

𝚸 (𝑥,𝑥 ′ ) {𝜏 𝛫 > 𝑡 } ≤ 𝐶 (1 + ‖𝑥‖ + ‖𝑥 ′ ‖)e -𝑐𝑡
for all 𝑥, 𝑥 ′ ∈ 𝐑 𝑑 . By construction, we have 𝒯 ≤ 𝜏 𝛫 almost surely and therefore

𝚸 (𝑥,𝑥 ′ ) {𝒯 > 𝑡 } ≤ 𝐶 (1 + ‖𝑥‖ + ‖𝑥 ′ ‖)e -𝑐𝑡 .
This completes the proof of the proposition.

Concluding the proof of the Main Theorem

In view of Lemma 4.2.2, if we can find constants 𝐶 > 0 and 𝑐 > 0 such that

‖𝔓 * 𝑡 𝛿 𝑥 -𝔓 * 𝑡 𝛿 𝑥 ′ ‖ var ≤ 𝐶 (1 + ‖𝑥‖ + ‖𝑥 ′ ‖)e -𝑐𝑡
for all 𝑥, 𝑥 ′ ∈ 𝐑 𝑑 and all 𝑡 ≥ 0, then integrating in 𝑥 against 𝜇 and in 𝑥 ′ against 𝜇 inv gives the desired bound (4.7) with a different constant 𝐶 . By construction of the coupling (𝛧 𝑡 , 𝛧 ′ 𝑡 ) 𝑡 ≥0 , we have

(𝔓 𝑡 𝑔)(𝑥) -(𝔓 𝑡 𝑔)(𝑥 ′ ) = 𝚬 (𝑥,𝑥 ′ ) (𝑔(𝛧 𝑡 ) -𝑔(𝛧 ′ 𝑡 ))
for all 𝑔 ∈ 𝐿 ∞ (𝐑 𝑑 ). Therefore,

‖𝔓 * 𝑡 𝛿 𝑥 -𝔓 * 𝑡 𝛿 𝑥 ′ ‖ var = 1 2 sup ‖𝑔‖ ∞ ≤1 |(𝔓 𝑡 𝑔)(𝑥) -(𝔓 𝑡 𝑔)(𝑥 ′ )| ≤ 1 2 sup ‖𝑔‖ ∞ ≤1 𝚬 (𝑥,𝑥 ′ ) |𝑔(𝛧 𝑡 ) -𝑔(𝛧 ′ 𝑡 )| = 1 2 sup ‖𝑔‖ ∞ ≤1 𝚬 (𝑥,𝑥 ′ ) {𝟏 {𝛧 𝑡 ≠𝛧 ′ 𝑡 } |𝑔(𝛧 𝑡 ) -𝑔(𝛧 ′ 𝑡 )|} ≤ 𝚸 (𝑥,𝑥 ′ ) {𝛧 𝑡 ≠ 𝛧 ′ 𝑡 } ≤ 𝚸 (𝑥,𝑥 ′ ) {𝒯 > 𝑡 }
CHAPTER 4 for all 𝑥, 𝑥 ′ ∈ 𝐑 𝑑 and 𝑡 ≥ 0, and the result follows from Proposition 4.3.3.

Applications

In this section, we apply the Main Theorem to the Galerkin approximations of pdes and to stochastically driven quasi-harmonic networks. For the Galerkin approximations we give a detailed derivation of the controllability conditions and in the case of the networks we appeal to the results obtained in [START_REF] Raquépas | A note on Harris' ergodic theorem, controllability and perturbations of harmonic networks[END_REF]. Before we do so, we briefly discuss the solid controllability assumption (C3).

Criteria for solid controllability

The notion of solid controllability was introduced by Agrachev and Sarychev in [START_REF] Agrachev | Navier-Stokes equations: controllability by means of low modes forcing[END_REF] (see also the survey [START_REF] Agrachev | Solid controllability in fluid dynamics[END_REF]) in the context of the controllability of the 2D Navier-Stokes and Euler systems. It has been used in [AKSS07] to prove the existence of density for finite-dimensional projections of the laws of the solutions of randomly forced pdes. In [Shi17], solid controllability is used to establish exponential mixing for some random dynamical systems in a compact space, and in [START_REF] Raquépas | A note on Harris' ergodic theorem, controllability and perturbations of harmonic networks[END_REF], for some classes of quasi-harmonic networks of oscillators driven by a degenerate Brownian motion. It is the degeneracy allowed by this condition which sets our work apart from previous works on sdes driven by compound Poisson processes (that are too numerous to be cited here).

We compare it to two related well-known properties, which might be more straightforward to check in some applications.

(C3 ′ ) Continuous exact controllability from x: there exists a nondegenerate closed ball 𝐷 ⊂ 𝐑 𝑑 , a time 𝛵 0 > 0, and a continuous function 𝛹 ∶ 𝐷 → 𝐶 ([0, 𝛵 0 ]; 𝐑 𝑛 ) such that 𝑆 𝛵 0 ( x, 𝛹 (𝑥)) = 𝑥 for all 𝑥 ∈ 𝐷 .

(C3 ″ ) Weak Hörmander condition at x: the vector space spanned by the family of vector fields [START_REF] Hairer | On Malliavin's proof of Hörmander's theorem[END_REF]). It is often assumed to hold in all points of the state space.

{𝑉 0 , [𝑉 1 , 𝑉 2 ], [𝑉 1 , [𝑉 2 , 𝑉 3 ]], … ∶ 𝑉 0 ∈ 𝚩
For finite-dimensional control systems, it ensures the global exact controllability; for Itô diffusions, it guarantees existence and smoothness of the density of solutions with respect to the Lebesgue measure -a major step towards proving important ergodic properties. We emphasize that we bypass the study of smoothing properties of the transition function of our Markov process and that the conditions stated need only hold in one point of the state space (where Condition (C2) is also satisfied).

Recall that a pair of matrices, 𝛢 ∶ 𝐑 𝑑 → 𝐑 𝑑 and 𝛣 ∶ 𝐑 𝑛 → 𝐑 𝑑 , is said to satisfy the Kalman condition if any 𝑥 ∈ 𝐑 𝑑 can be written as 𝑥 = 𝛣𝑦 0 + 𝛢𝛣𝑦 1 + ⋯ + 𝛢 𝑑-1 𝛣𝑦 𝑑-1 for some 𝑦 0 , … , 𝑦 𝑑-1 ∈ 𝐑 𝑛 .

For a linear control system of the form Χ = 𝛢𝛸 + 𝛣𝜁 , the Kalman condition implies (C3 ″ ) in all points through a straightforward computation of the Lie brackets; see [Cor07, §1.2-1.3] for other well-known implications. When 𝑓 is a linear vector field 𝑥 ↦ 𝛢𝑥 plus a perturbation, Condition (C3 ″ ) can be deduced at a point x far from the origin by perturbing the Kalman condition on the pair (𝛢, 𝛣), provided that one has good control on the decay of derivatives of the perturbation along a sequence of points [START_REF] Raquépas | A note on Harris' ergodic theorem, controllability and perturbations of harmonic networks[END_REF]§5].

Galerkin approximations of randomly forced PDEs

In this section, we apply the Main Theorem to the Galerkin approximations of the following parabolic pde on the torus 𝚻 𝐷 ∶= 𝐑 𝐷 /2𝜋 𝚭 𝐷 :

𝜕 𝑡 𝑢(𝑡 , 𝑥) -𝜈 Δ 𝑥 𝑢(𝑡 , 𝑥) + 𝐹 (𝑢(𝑡 , 𝑥)) = ℎ(𝑥) + 𝜁 (𝑡 , 𝑥), 𝑥 ∈ 𝚻 𝐷 , (4.33)

where 𝜈 > 0 is a constant, ℎ ∶ 𝚻 𝐷 → 𝐑 is a given smooth function, and 𝐹 ∶ 𝐑 → 𝐑 is a function of the form 𝐹 (𝑢) = 𝑎𝑢 𝑝 + 𝑔(𝑢).

(4.34)

We assume that 𝑎 > 0 is an arbitrary constant, 𝑝 ≥ 3 is an odd integer, and 𝑔 ∶ 𝐑 → 𝐑 is a smooth function satisfying the following two conditions4 :

(i) there is a constant 𝐶 > 0 such that

|𝑔(𝑢)| ≤ 𝐶 (1 + |𝑢|) 𝑝-1
for all 𝑢 ∈ 𝐑.

(ii) with 𝑔 (𝑝) the 𝑝-th derivative of 𝑔, the following limit holds lim 𝑢→±∞ 𝑔 (𝑝) (𝑢) = 0.

For any 𝛮 ∈ 𝚴, consider the following finite-dimensional subspace of 𝐿 2 (𝚻 𝐷 ): Let us emphasize that the space 𝛨 1 for the driving 𝜁 is the same for any level 𝛮 ≥ 1 of approximation, any value of the constant 𝜈 and any function 𝑔 satisfying (i) and (ii).

The main interest of the example considered in this section is that the perturbation term 𝑔 in (4.34) is quite general. In particular, we may have 𝐹 (𝑢) = 0 in a large ball, so that the weak Hörmander condition is not necessarily satisfied at all the points of the state space. where we at times identify the vector 𝑉 ∈ 𝒱 𝑖 ( û) with the corresponding constant vector field on 𝛨 𝛮 . Clearly, showing that 𝒱 𝑖 ( û) = 𝛨 𝛮 for some 𝑖 large enough shows that the weak Hörmander condition (C3 ″ ) holds in û. We show in two steps that, indeed,

𝒱 (𝛮 -1)𝑝 ( û) = 𝛨 𝛮 if ‖ û‖ 𝐿 2
is sufficiently large.

Step 1: Polynomial nonlinearity. In this step, we assume that 𝑔 ≡ 0, so that 𝑓 𝛮 (𝑢) = 𝜈 Δ𝑢 -𝑎P 𝛮 (𝑢 𝑝 ) + ℎ.

(4.37)

In this case, Lie brackets with constant vector fields are especially straightforward to compute because Δ is a linear operator and ℎ is a constant vector. In particular, for any constant vector fields 𝑉 1 , … , 𝑉 𝑝-2 , 𝑉 𝑝-1 and 𝑉 𝑝 ,

[𝑉 1 , … [𝑉 𝑝-2 , [𝑉 𝑝-1 , [𝑉 𝑝 , 𝑓 𝛮 ]]] … ]( û) = -𝑎 𝑝! P 𝛮 (𝑉 1 ⋯ 𝑉 𝑝-2 𝑉 𝑝-1 𝑉 𝑝 ), (4.38)
where the product 𝑉 1 ⋯ 𝑉 𝑝-2 𝑉 𝑝-1 𝑉 𝑝 is understood as a pointwise multiplication of functions.

We claim that, for each multi-index 𝑚 with 0 < |𝑚| ≤ 𝛮 , the vectors 

P 𝛮 𝑐 𝑚±𝑙 = P 𝛮 (1 ⋯ 1 𝑐 𝑙 𝑐 𝑚 ) ∓ P 𝛮 (1 ⋯ 1 𝑠 𝑙 𝑠 𝑚 ) (4.39) = -1 𝑎 𝑝! [𝑐 0 , … [𝑐 0 , [𝑐 𝑙 , [𝑐 𝑚 , 𝑓 𝛮 ]]] … ]( û) ± 1 𝑎 𝑝! [𝑐 0 , … [𝑐 0 , [𝑠 𝑙 , [𝑠 𝑚 , 𝑓 𝛮 ]]] … ]( û)
and

P 𝛮 𝑠 𝑚±𝑙 = P 𝛮 (1 ⋯ 1 𝑠 𝑙 𝑐 𝑚 ) ± P 𝛮 (1 ⋯ 1 𝑐 𝑙 𝑠 𝑚 ) (4.40) = -1 𝑎 𝑝! [𝑐 0 , … [𝑐 0 , [𝑠 𝑙 , [𝑐 𝑚 , 𝑓 𝛮 ]]] … ]( û) ± -1 𝑎 𝑝! [𝑐 0 , … [𝑐 0 , [𝑐 𝑙 , [𝑠 𝑚 , 𝑓 𝛮 ]]] … ]( û)
are in 𝒱 (|𝑚|-1)𝑝+𝑝 ( û). The result thus holds by induction on |𝑚|.

Step 2: The General case. Let f 𝛮 be the vector field given by (4.37). If we consider the same Lie brackets as in Step 1, but now for the sum f 𝛮 + P 𝛮 𝑔, the contribution of P 𝛮 𝑔 will vanish as û → ∞, thanks to assumption (ii). Therefore, 𝒱 (|𝛮 |-1)𝑝 ( û) = 𝛨 𝛮 , provided that ‖ û‖ 𝐿 2 is sufficiently large.

Stochastically driven networks of quasi-harmonic oscillators

Stochastically driven networks of oscillators play an important role in the investigation of various aspects of nonequilibrium statistical mechanics. In its simplest form, the setup can be described as follows. Consider 𝐿 unit masses, each labelled by an index 𝑖 ∈ {1, … , 𝐿} restricted to move in one dimension. Each of them is pinned by a spring of unit spring constant and, for 𝑖 ≠ 𝐿, the 𝑖 th mass is connected to the (𝑖 + 1)th mass by a spring of unit spring constant. The equations of motion for CHAPTER 4 the positions and momenta, (𝑞 𝑖 , 𝑝 𝑖 ) 𝐿 𝑖 =1 , are the Hamilton equations

⎧ ⎨ ⎩ d𝑞 𝑖 = 𝑝 𝑖 d𝑡 , d𝑝 𝑖 = -(3𝑞 𝑖 -𝑞 𝑖 -1 -𝑞 𝑖 +1 ) d𝑡 , 1 < 𝑖 < 𝐿, d𝑞 1 = 𝑝 1 d𝑡 , d𝑝 1 = -(2𝑞 1 -𝑞 2 ) d𝑡 , d𝑞 𝐿 = 𝑝 𝐿 d𝑡 , d𝑝 𝐿 = -(2𝑞 𝐿 -𝑞 𝐿-1 ) d𝑡 .
Coupling the 1st [resp. the 𝐿th] oscillator to a fluctuating bath with dissipation constant 𝛾 1 [resp. 𝛾 𝐿 ] leads to the sde

⎧ ⎨ ⎩ d𝑞 𝑖 = 𝑝 𝑖 d𝑡 , d𝑝 𝑖 = -(3𝑞 𝑖 -𝑞 𝑖 -1 -𝑞 𝑖 +1 ) d𝑡 , 1 < 𝑖 < 𝐿, d𝑞 1 = 𝑝 1 d𝑡 , d𝑝 1 = -(2𝑞 1 -𝑞 2 ) d𝑡 -𝛾 1 𝑝 d𝑡 + d𝛧 1,𝑡 , d𝑞 𝐿 = 𝑝 𝐿 d𝑡 , d𝑝 𝐿 = -(2𝑞 𝐿 -𝑞 𝐿-1 ) d𝑡 -𝛾 𝐿 𝑝 d𝑡 + d𝛧 𝐿,𝑡 , (4.41) 
or variants thereof, where 𝛧 1 and 𝛧 2 are independent one-dimensional stochastic processes describing the fluctuations in the baths.

In the mathematical physics literature, many authors have considered nonlinear variants of this model where the thermal fluctuations -either acting on the momenta (the Langevin regime, as above) or on auxiliary degrees of freedom -are described by white noise, 𝛧 𝑗 ,𝑡 = √2𝛾 𝑗 𝜃 𝑗 𝑊 𝑗 ,𝑡 , with 𝑊 𝑗 ,𝑡 a standard Wiener process. We refer the interested reader to [FKM65,Tro77] for introductions to these models and discussions of their ergodic properties at thermal equilibrium; also see [START_REF] Jakšić | Ergodic properties of the non-Markovian Langevin equation[END_REF][START_REF] Jakšić | Ergodic properties of classical dissipative systems I[END_REF] for a generalization to non-Markovian models. The existence and uniqueness of the invariant measure is much more problematic out of equilibrium; see [SL77, EPRB99b, EPRB99a, EH00, RBT02, CEHRB18]. However, interesting phenomena pointed out in the physics literature for a single particle in a non-Gaussian bath [BC09, TC09, MQSP11, MG12] motivate a rigorous study of the mixing properties of corresponding networks. While the methods used for most of the previously cited existence and uniqueness results are not suitable to deal with compound Poisson processes, most of the ideas of [Shi17,[START_REF] Raquépas | A note on Harris' ergodic theorem, controllability and perturbations of harmonic networks[END_REF] are. We develop the strategy to be followed in the present section.

Allowing for different spring constants and different ways of connecting the masses while staying in the Langevin regime leads us to considering the following generalization of (4.41). Let 𝛪 be a finite set and distinguish a nonempty subset 𝐽 ⊂ 𝛪 , where masses will be coupled to fluctuating baths. We use for each 𝑘 = 0, 1, … , 𝑑 -1;

imply that the control system

( ṗ 𝜔 q) = ( -∑ 𝑗 ∈𝐽 𝛾 𝑗 𝜄 𝑗 𝜄 * 𝑗 -𝜔 * 𝜔 0 ) ( 𝑝 𝜔𝑞 ) -( ∇𝑈 (𝑞) 0 ) + ∑ 𝑗 ∈𝐽 ( 𝜄 𝑗 0 ) 𝜁
satisfies the conditions (C1), (C2) and (C3).

The exponent in the formulation of the growth condition is typically not optimal; see [START_REF] Raquépas | A note on Harris' ergodic theorem, controllability and perturbations of harmonic networks[END_REF] for a formulation in terms of a power related to the Kalman condition. Proof. If 𝜆 is small enough, the Kalman condition on the pair (𝜔 * 𝜔, 𝜄𝜄 * ) implies the Kalman condition on the pair ( ω * ω, 𝜄𝜄 * ). This in turn implies that the pair CHAPTER 4 admits a unique stationary measure 𝜇 inv ∈ 𝒫(𝐑 𝐽 ⊕ 𝐑 𝛪 ⊕ 𝐑 𝛪 ). Moreover, it is exponentially mixing in the sense that (4.7) holds for some constants 𝐶 > 0 and 𝑐 > 0, any 𝜇 ∈ 𝒫(𝐑 𝐽 ⊕ 𝐑 𝛪 ⊕ 𝐑 𝛪 ), and any time 𝑡 ≥ 0.

Proof sketch. If the noise ∑ 𝑗 ∈𝐽 𝛿 𝑗 𝛮 𝑗 were replaced by a single compound Poisson process whose jump distribution possesses a finite second moment and a positive continuous density with respect to the Lebesgue measure on 𝐑 𝐽 , then our Main Theorem would apply.

Although the probability that jumps in the different baths occur simultaneously is zero by independence, there is a positive probability that they occur arbitrarily close to simultaneity. Since an independent sum of a jump from each distribution gives a random variable with a finite variance and a positive continuous density with respect to the Lebesgue measure on 𝐑 𝐽 , our control arguments can be adapted by continuity.

4.A Exponential estimates on hitting times

In this appendix, we present results on hitting times for the coupling (𝑧 𝑘 , 𝑧 ′ 𝑘 ) constructed in Subsection 4.3.1. Loosely speaking, estimates on the hitting times of a small ball near x are obtained by combining a lower bound on the hitting time of a (large) compact around the origin and a lower bound on the probability of making a transition from the aforementioned compact to the small ball. We shall assume that Conditions (C1)-(C3) are satisfied and fix the parameters 𝑚, 𝑟 , and 𝑝 as in Lemma 4.2.3.

We provide an estimate for the first simultaneous hitting time 𝛪 of a ball of large radius 𝑅 around the origin. To do this, we use the preliminary estimates of Lemma 4.2.1 to exhibit the existence of a suitable Lyapunov structure and conclude with a standard argument. 

‖𝑥‖ ∨ ‖𝑥 ′ ‖ ≥ (𝑎 -𝛾 𝑚 ) -1/2 (1 -𝑎 + 2𝐶 (1 + 𝛬)) 1/2 =∶ 𝑅,
we get

𝚬 (𝑥,𝑥 ′ ) (1 + ‖𝑧 𝑚 ‖ 2 + ‖𝑧 ′ 𝑚 ‖ 2 ) ≤ 𝑎 (1 + ‖𝑥‖ 2 + ‖𝑥 ′ ‖ 2 ) .
Thus, (4.42) holds. In the case ‖𝑥‖ ∨ ‖𝑥 ′ ‖ ≤ 𝑅, by (4.44), we have

𝚬 (𝑥,𝑥 ′ ) (1 + ‖𝑧 𝑘 ‖ 2 + ‖𝑧 ′ 𝑘 ‖ 2 ) ≤ 1 + 2𝑅 2 + 2𝐶 (1 + 𝛬) =∶ 𝐶 * .
This gives (4.43) and completes the proof of the lemma.

It is well known that the Lyapunov structure of the previous lemma implies a bound on an exponential moment for the time needed to reach a large enough level set of the Lyapunov function 𝑉 .

While arguments for this implication can be found in [MT12], we give a brief proof sketch and refer the reader to Proposition 3.1 in [START_REF] Shirikyan | Exponential mixing for randomly forced partial differential equations: method of coupling[END_REF] for a statement and complete proof which more precisely reflects our approach.

Corollary 4.A.2. There exist positive constants 𝑅, 𝑐 1 , and 𝐶 1 such that

𝚬 (𝑥,𝑥 ′ ) e 𝑐 1 𝛪 ≤ 𝐶 1 (1 + ‖𝑥‖ 2 + ‖𝑥 ′ ‖ 2 )
for all 𝑥, 𝑥 ′ ∈ 𝐑 𝑑 , where 

𝚬 (𝑥,𝑥 ′ ) e 𝑐 1 𝛪 1 = e 𝑐 1 𝛭 𝚬 (𝑥,𝑥 ′ ) (𝚬 (𝑧 𝛭 ,𝑧 ′ 𝛭 ) e 𝑐 1 𝛪 ) ≤ 𝐶 1 e 𝑐 1 𝛭 𝚬 (𝑥,𝑥 ′ ) (1 + ‖𝑧 𝛭 ‖ 2 + ‖𝑧 ′ 𝛭 ‖ 2 ) ≤ 𝐶 1 e 𝑐 1 𝛭 (1 + 𝛾 𝛭 ‖𝑥‖ 2 + 𝛾 𝛭 ‖𝑥 ′ ‖ 2 + 2𝐶 (1 + 𝛬)) ≤ C1 (1 + ‖𝑥‖ 2 + ‖𝑥 ′ ‖ 2 ) (4.47)
for C1 a combination of 𝐶 , 𝐶 1 and 𝛬. In particular, for any 𝑥, 𝑥 ′ ∈ 𝛣(0, 𝑅), 𝚬 (𝑥,𝑥 ′ ) e 𝑐 1 𝛪 1 ≤ C1 (1 + 𝑅 2 + 𝑅 2 ) =∶ 𝐶 2 .

Then 𝑧 𝛪 𝑖 -1 , 𝑧 ′ 𝛪 𝑖 -1 ∈ 𝛣(0, 𝑅) for any 𝑖 > 1, and therefore 𝚬 (𝑥,𝑥 ′ ) e 𝑐 1 𝛪 𝑖 = 𝚬 (𝑥,𝑥 ′ ) (e 𝑐 1 𝛪 𝑖 -1 𝚬 (𝑧 𝛪 𝑖 -1 ,𝑧 ′ 𝛪 𝑖 -1

) e 𝑐 1 𝛪 1 ) ≤ 𝐶 2 𝚬 (𝑥,𝑥 ′ ) e 𝑐 1 𝛪 𝑖 -1 ≤ 𝐶 𝑖 -1 2 𝚬 (𝑥,𝑥 ′ ) e 𝑐 1 𝛪 1 .

Finally, using (4.47), we obtain (4.46).

Lemma 4.A.5. Consider the random variable

𝐽 ∶= min {𝑗 ∈ 𝚴 0 𝑚 ∶ 𝑧 𝑗 , 𝑧 ′ 𝑗 ∈ 𝛣( x, 𝑟 )} ,
where x is as in Condition (C2). There exists 𝛭 ∈ 𝚴 𝑚 such that

0 < 𝑞 ∶= inf 𝑥,𝑥 ′ ∈𝛣(0,𝑅) 𝚸 (𝑥,𝑥 ′ ) {𝐽 ≤ 𝛭 } . (4.48)
Proof. Let 𝛵 be the time in Condition (C2) for 𝜖 = 𝑟 2 and radius 𝑅. To simplify the presentation, we assume that 𝛵 = 1.

Step 1: controlling a single trajectory of the sde (4.1). First, let us show an inequality like (4.48) for a single trajectory of the sde (4.1). Take an initial condition 𝑥 ∈ 𝛣(0, 𝑅). By Condition (C2), there exists a control 𝜁 𝑥 ∈ 𝐶 ([0, 1]; 𝐑 𝑛 ) such that 

ℰ 𝛭 𝜆 (𝛥) = 𝛭 ∏ 𝑗 =1 (𝑒 -𝜆 1-𝛿 𝛭 -𝑒 -𝜆 1 𝛭 ) > 0, inf 𝑥∈𝛣 (0,𝑅) ℓ 𝛭 (𝛯 𝑥 ) > 0,
since there is only a finite number of sets 𝛯 𝑥 for 𝑥 in 𝛣(0, 𝑅). We conclude that

0 < inf 𝑥∈𝛣 (0,𝑅) 𝚸 𝑥 {‖𝛸 𝜏 𝛭 -x‖ < 𝑟 } . (4.50)
Step 2: case of coupling trajectories. We consider three cases.

• If 𝑥 = 𝑥 ′ , then the trajectories 𝑧 𝑗 and 𝑧 ′ 𝑗 coincide for all 𝑗 and the result follows immediately from (4.50).

• If 𝑥 ≠ 𝑥 ′ with 𝑥, 𝑥 ′ ∈ 𝛣( x, 𝑟 ), then 𝚸 (𝑥,𝑥 ′ ) {𝐽 = 0} = 1.

• If 𝑥 ≠ 𝑥 ′ not both in 𝛣( x, 𝑟 ), consider 𝐬 ∈ 𝛥 , 𝛏 ∈ 𝛯 𝑥 , and 𝛏 ′ ∈ 𝛯 𝑥 ′ . By construction, both 𝐹 𝛭 (𝑥, 𝐬, 𝛏) and 𝐹 𝛭 (𝑥 ′ , 𝐬, 𝛏) lie in 𝛣( x, 𝑟 ). Then, there exists a minimal 𝑘 ∈ 𝚴 𝑚 such that both 𝐹 𝑘 (𝑥, 𝐬, 𝛏) and 𝐹 𝑘 (𝑥 ′ , 𝐬, 𝛏) lie in 𝛣( x, 𝑟 ). Necessarily, 𝑘 satisfies 𝑘 ≤ 𝛭 . Therefore, the construction of the coupling 6 implies that 𝑧 𝑘 , 𝑧 ′ 𝑘 are guaranteed to be in 𝛣( x, 𝑟 ) for some 𝑘 ≤ 𝛭 for all 𝜔 = (𝑥, 𝑥 ′ , (𝐬 𝑗 , ω𝑗 ) 𝑗 ∈𝚴 ) such that (𝐬 𝑗 ) 𝛭 /𝑚 𝑗 =1 lies in 𝛥 and such that (𝜉 (𝑥, 𝑥 ′ , 𝐬 𝑗 , ω𝑗 )) 𝛭 /𝑚 𝑗 =1 and

(𝜉 ″ (𝑥, 𝑥 ′ , 𝐬 𝑗 , ω𝑗 ))

𝛭 /𝑚 𝑗 =1 lie respectively in 𝛯 𝑥 and 𝛯 𝑥 ′ . By construction,

Ρ { ω𝑗 ∶ 𝜉 (𝑥, 𝑥 ′ , 𝐬 𝑗 , ω𝑗 ) ∈ 𝛯 𝑥 } = ℓ 𝛭 (𝛯 𝑥 ), Ρ { ω𝑗 ∶ 𝜉 ″ (𝑥, 𝑥 ′ , 𝐬 𝑗 , ω𝑗 ) ∈ 𝛯 𝑥 ′ } = ℓ 𝛭 (𝛯 𝑥 ′ ),
5 Recall that ℰ 𝛭 𝜆 and ℓ 𝛭 sand for the 𝛭 -fold products of the exponential distribution and ℓ , respectively. 6 When the coupling starts with 𝑥 ≠ 𝑥 ′ not both in 𝛣 ( x, 𝑟 ), the first 𝑚 jumps are independent. The probability of

𝑧 𝑚 = 𝑧 ′
𝑚 is zero by our assumptions on ℓ . Thus going by blocks of 𝑚 steps, we see that the jumps are independent until both trajectories simultaneously hit 𝛣 ( x, 𝑟 ) at a time which is a multiple of 𝑚. and

ℰ 𝛭 𝜆 (𝛥) = 𝛭 ∏ 𝑗 =1 (𝑒 -𝜆 1-𝛿 𝛭 -𝑒 -𝜆 1 𝛭 ) .
Then, independence gives

𝚸 (𝑥,𝑥 ′ ) {𝐽 ≤ 𝛭 } ≥ ℓ 𝛭 (𝛯 𝑥 ) ℓ 𝛭 (𝛯 𝑥 ′ ) 𝛭 ∏ 𝑗 =1 (𝑒 -𝜆 1-𝛿 𝛭 -𝑒 -𝜆 1 𝛭 ) > 0.
The uniformity in 𝑥 and 𝑥 ′ follows from the fact that there is only a finite number of sets 𝛯 𝑥 and 𝛯 𝑥 ′ to consider as 𝑥 and 𝑥 ′ range over the set 𝛣(0, 𝑅).

The main result of this appendix is the following exponential-moment bound on the random variable 𝐽 . The argument used to deduce the proposition from the previous lemmas is well known and sis for example discussed in depth in Section 3.3.2 in [KS12].

Proposition 4.A.6. There are constants 𝜃 2 > 0 and 𝛢 2 > 0 such that

𝚬 (𝑥,𝑥 ′ ) 𝑒 𝜃 2 𝐽 ≤ 𝛢 2 (1 + ‖𝑥‖ 2 + ‖𝑥 ′ ‖ 2 ) (4.51)
for all 𝑥, 𝑥 ′ ∈ 𝐑 𝑑 .

Proof. Let 𝛪 𝑖 be defined as in Lemma 4.A.3 with constant 𝛭 ∈ 𝚴 𝑚 as in Lemma 4.A.5. Then 𝚸 (𝑥,𝑥 ′ ) {𝐽 > 𝑘} ≤ 𝚸 (𝑥,𝑥 ′ ) {𝛪 𝑖 < 𝐽 } + 𝚸 (𝑥,𝑥 ′ ) {𝛪 𝑖 ≥ 𝑘} for any choice of integers 𝑖 , 𝑘 ≥ 1. To control the first term, note that the Markov property and Lemma 4.A.5 imply

𝚸 (𝑥,𝑥 ′ ) {𝛪 𝑖 < 𝐽 } ≤ (1 -𝑞) 𝚸 (𝑥,𝑥 ′ ) {𝛪 𝑖 -1 < 𝐽 } ≤ (1 -𝑞) 𝑖 -1 .
For the second term, we have the bound

𝚸 (𝑥,𝑥 ′ ) {𝛪 𝑖 ≥ 𝑘} ≤ 𝐶 𝑖 2 e -𝑐 1 𝑘 (1 + ‖𝑥‖ 2 + ‖𝑥 ′ ‖ 2 )
by Chebyshev's inequality and Lemma 4.A.3. In particular, taking 𝑖 scaling like 𝜖𝑘 for 𝜖 small enough, we find

𝚸 (𝑥,𝑥 ′ ) {𝐽 > 𝑘} ≤ (1 -𝑞) 𝜖𝑘-1 + 𝐶 𝜖𝑘 2 e -𝑐 1 𝑘 (1 + ‖𝑥‖ 2 + ‖𝑥 ′ ‖ 2 ) ≤ 𝑎 𝑘 (1 + ‖𝑥‖ 2 + ‖𝑥 ′ ‖ 2 )
for some 𝑎 ∈ (0, 1). This exponential decay of the probability yields the proposition for 𝜃 2 small enough and 𝛢 2 large enough.

4.B Controllability of ODEs with polynomially growing nonlinearities

When the perturbation term 𝑔 in (4.34) is a polynomial, this result follows from [JK85, Thm. 3] or [Jur97, Thm. 11 in Ch. 5] and the system is even exactly controllable. In the general case, when 𝑔 is an arbitrary smooth function satisfying (i) and (ii), these results cannot be applied since the Hörmander condition is not necessarily satisfied at all the points. We adapt an argument used in [Ner20, Thm. 2.5] which is particularly simple in the case of ordinary differential equations. Let us consider the equation

u(𝑡 ) -𝜈 Δ(𝑢(𝑡 ) + 𝜉 (𝑡 )) + P 𝛮 𝐹 (𝑢(𝑡 ) + 𝜉 (𝑡 )) = ℎ + 𝜁 (𝑡 ), (4.52) 
with two controls 𝜉 and 𝜁 in 𝐶 ([0, 𝛵 ]; 𝛨 𝛮 ). 7 We denote by 𝑆 𝑡 (𝑢 0 , 𝜉 , 𝜁 ) the solution of (4.52) satisfying the initial condition 𝑢(0) = 𝑢 0 . To simplify the presentation, we shall assume that 𝑎 = 1 in (4.34). Let us define a sequence {ℋ 𝑖 } 𝑖 ≥1 of subspaces of 𝛨 𝛮 as follows: ℋ 1 = 𝛨 1 and

ℋ 𝑖 = span {P 𝛮 (𝜑 1 ⋅ … ⋅ 𝜑 𝑝 ) ∶ 𝜑 𝑗 ∈ ℋ 𝑖 -1 , 𝑗 = 0, … , 𝑝}
for 𝑖 ≥ 2. The trigonometric identities (4.39) and (4.40) give that 𝑠 𝑙±𝑚 , 𝑐 𝑙±𝑚 ∈ ℋ 𝑖 , provided that 𝑠 𝑙 , 𝑠 𝑚 , 𝑐 𝑙 , 𝑐 𝑚 ∈ ℋ 𝑖 -1 . Recalling the definition of 𝛨 1 , it is easy to infer that

ℋ 𝑖 = 𝛨 𝛮 for sufficiently large 𝑖 ≥ 1. (4.53)
We will also use another form of these subspaces:

ℋ 𝑖 = span {𝜑 0 , P 𝛮 𝜑 𝑝 ∶ 𝜑 0 , 𝜑 ∈ ℋ 𝑖 -1 } (4.54)
for 𝑖 ≥ 2, which can be verified as in Lemma 4.2 in [START_REF] Nersesyan | Approximate controllability of nonlinear parabolic PDEs in arbitrary space dimension[END_REF].

The following lemma will play an important role in the proof of Proposition 4.4.2. It is established at the end of this subsection.

Lemma 4.B.1. Under the conditions of Theorem 4.4.1, for any vectors 𝑢 0 , 𝜑, 𝜓 ∈ 𝛨 𝛮 , we have 𝑆 𝛿 (𝑢 0 , 𝛿 -1/𝑝 𝜑, 𝛿 -1 𝜓 ) → 𝑢 0 + 𝜓 -P 𝛮 𝜑 𝑝 in 𝛨 𝛮 as 𝛿 → 0.

(4.55)

Proof of Proposition 4.4.2. By a general argument (see for example Step 4 in the proof of Theorem 2.3 in [START_REF] Nersesyan | Approximate controllability of nonlinear parabolic PDEs in arbitrary space dimension[END_REF]) approximate controllability in any fixed time 𝛵 > 0 can be obtained from controllability in arbitrarily small time.

Lemma 4.B.1 gives that for all 𝑢 0 ∈ 𝛨 𝛮 , 𝜓 ∈ 𝛨 1 = ℋ 1 , 𝜖 > 0, and 𝛵 > 0, there exists 𝜁 ∈ 𝐶 ([0, 𝛿 ]; 𝛨 1 ) with 0 < 𝛿 < 𝛵 such that

‖𝑆 𝛿 (𝑢 0 , 𝜁 ) -(𝑢 0 + 𝜓 )‖ 𝐿 2 < 𝜖. (4.56) 
Because 𝛨 𝛮 = ℋ 𝑖 for some 𝑖 , we may proceed by induction on 𝑖 : let us suppose that for all 𝑢 0 ∈ 𝛨 𝛮 , 𝜓 ∈ ℋ 𝑖 -1 , 𝜖 > 0, and 𝛵 > 0, there exists 𝜁 ∈ 𝐶 ([0, 𝛿 ]; 𝛨 1 ) with 0 < 𝛿 < 𝛵 such that (4.56) holds; we will show that this property then also holds for 𝑖 , and the proof of the proposition will be complete.

Fix 𝑢 0 ∈ 𝛨 𝛮 . By (4.54), any 𝜓 ∈ ℋ 𝑖 can be written as a linear combination of elements of the form P 𝛮 𝜑 𝑝 with 𝜑 ∈ ℋ 𝑖 -1 , plus a vector in ℋ 𝑖 -1 . Hence, by an iteration argument, it suffices to consider vectors 𝜓 of the form -P 𝛮 𝜑 𝑝 for some 𝜑 ∈ ℋ 𝑖 -1 . Let 𝜖 > 0 and 𝛵 > 0 be arbitrary. By Lemma 4.B.1, there exists 𝛿 2 ∈ (0, 1 3 𝛵 ) such that

‖𝑆 𝛿 2 (𝑢 0 , 𝛿 -1/𝑝 2 𝜑, 0) -(𝑢 0 -P 𝛮 𝜑 𝑝 )‖ 𝐿 2 < 1 4 𝜖.
On the other hand, a change of vairiable shows

𝑆 𝛿 2 (𝑢 0 , 𝛿 -1/𝑝 2 𝜑, 0) = 𝑆 𝛿 2 (𝑢 0 + 𝛿 -1/𝑝 2 𝜑, 0) -𝛿 -1/𝑝 2 𝜑 so that ‖𝑆 𝛿 2 (𝑢 0 + 𝛿 -1/𝑝 2 𝜑, 0) -(𝑢 0 -P 𝛮 𝜑 𝑝 + 𝛿 -1/𝑝 2 𝜑)‖ 𝐿 2 < 1 4 𝜖.
By continuity, there exists a radius 𝜌 > 0 such that

‖𝑆 𝛿 2 (𝑢, 0) -(𝑢 0 -P 𝛮 𝜑 𝑝 + 𝛿 -1/𝑝 2 𝜑)‖ 𝐿 2 < 1 2 𝜖 for all 𝑢 with ‖𝑢 -(𝑢 0 + 𝛿 -1/𝑝 2 𝜑)‖ 𝐿 2 < 𝜌.
By the induction hypothesis, there exists ζ 1 ∈ 𝐶 ([0, 𝛿 1 ]; 𝛨 1 ) with 0 < 𝛿 1 < 1 3 𝛵 such that ‖𝑆 𝛿 1 (𝑢 0 , ζ 1 )-

(𝑢 0 + 𝛿 -1/𝑝 2
𝜑)‖ 𝐿 2 < 𝜌, and therefore such that

‖𝑆 𝛿 2 (𝑆 𝛿 1 (𝑢 0 , ζ 1 ), 0) -(𝑢 0 -P 𝛮 𝜑 𝑝 + 𝛿 -1/𝑝 2 𝜑)‖ 𝐿 2 < 1 2 𝜖.
Yet again by the induction hypothesis, there exists ζ 3 ∈ 𝐶 ([0, 𝛿 3 ]; 𝛨 1 ) with 0 < 𝛿 3 < 1 3 𝛵 such that

‖𝑆 𝛿 3 (𝑆 𝛿 2 (𝑆 𝛿 1 (𝑢 0 , ζ 1 ), 0), ζ 3 ) -(𝑆 𝛿 2 (𝑆 𝛿 1 (𝑢 0 , ζ 1 ), 0) -𝛿 -1/𝑝 2 𝜑)‖ 𝐿 2 < 1 4 𝜖.
Therefore, by the triangle inequality,

‖𝑆 𝛿 3 (𝑆 𝛿 2 (𝑆 𝛿 1 (𝑢 0 , ζ 1 ), 0), ζ 3 ) -(𝑢 0 -P 𝛮 𝜑 𝑝 )‖ 𝐿 2 < 3
4 𝜖. We conclude that (4.56) holds with 𝜁 ∈ 𝐶 ([0, 𝛿 1 + 𝛿 2 + 𝛿 3 ]; 𝛨 1 ) a good enough continuous approximation of the function 𝟏 [0,𝛿 1 ) ζ 1 + 𝟏 [𝛿 1 +𝛿 2 ,𝛿 1 +𝛿 2 +𝛿 3 ] ζ 3 ( ⋅ -(𝛿 1 + 𝛿 2 )). Note that 0 < 𝛿 1 + 𝛿 2 + 𝛿 3 < 𝛵 by construction.

Proof of Lemma 4.B.1. Fix 𝜑, 𝜓 ∈ 𝛨 𝛮 and let 𝑢(𝑡 ) = 𝑆 𝑡 (𝑢 0 , 𝜉 , 𝜁 ) with the constant controls 𝜉 (𝑡 ) ≡ 𝜑 and 𝜁 (𝑡 ) ≡ 𝜓 . Also let 𝑤 (𝑡 ) ∶= 𝑢 0 + 𝑡 (𝜓 -P 𝛮 𝜑 𝑝 ) and 𝑣 (𝑡 ) ∶= 𝑢(𝛿 𝑡 ) -𝑤 (𝑡 ).

Clearly, the fact that 𝑢 solves (4.52) with 𝑢(0) = 𝑢 0 implies that 𝑣 sloves ̇𝑣 (𝑡 ) -𝜈 𝛿 Δ(𝑣 (𝑡 ) + 𝑤 (𝑡 ) + 𝛿 -1/𝑝 𝜑) + 𝛿 P 𝛮 𝐹 (𝑣 (𝑡 ) + 𝑤 (𝑡 ) + 𝛿 -1/𝑝 𝜑) -P 𝛮 𝜑 𝑝 = 𝛿 ℎ with 𝑣 (0) = 0. Taking the scalar product in 𝐿 2 of this equation with 𝑣 (𝑡 ), applying the Cauchy-Schwarz inequality, and dropping the arguments (𝑡 ) for notational simplicity, we get

1 2 d d𝑡 ‖𝑣 ‖ 2 𝐿 2 ≤ (𝜈 𝛿 ‖Δ𝑤 ‖ 𝐿 2 + 𝜈 𝛿 1-1/𝑝 ‖Δ𝜑‖ 𝐿 2 + 𝛿 ‖ℎ‖ 𝐿 2 (4.57)
+ ‖𝛿 P 𝛮 𝐹 (𝑣 + 𝑤 + 𝛿 -1/𝑝 𝜑) -P 𝛮 𝜑 𝑝 ‖ 𝐿 2 )‖𝑣 ‖ 𝐿 2 ≤ 𝐶 1 (𝛿 1-1/𝑝 + ‖𝛿 P 𝛮 𝐹 (𝑣 + 𝑤 + 𝛿 -1/𝑝 𝜑) -P 𝛮 𝜑 𝑝 ‖ 𝐿 2 ) ‖𝑣 ‖ 𝐿 2 (4.58)

for any 𝑡 ≤ 1 and 𝛿 ≤ 1. Using the assumption (i) and the Young inequality, we obtain Then, (4.60) is equivalent to

‖𝛿 P 𝛮 𝐹 (𝑣 + 𝑤 + 𝛿 -1/𝑝 𝜑) -P 𝛮 𝜑 𝑝 ‖ 𝐿 2 ≤ 𝐶 2 𝛿 (‖𝑣 ‖ 𝑝 𝐿 2 + ‖𝑤 ‖ 𝑝 𝐿 2 + 𝛿 -(𝑝-1)/𝑝 ‖𝜑‖ 𝑝-1 𝐿 2 + 1) ≤ 𝐶 3 𝛿 (‖𝑣 ‖ 𝑝 𝐿 2 + 𝛿 -(𝑝-1)/𝑝 + 1) . ( 4 
( Φ ) 2/(𝑝+1) ≤ 𝛢 2/(𝑝+1) 𝛿 𝛷 ,
and Φ 𝛷 (𝑝+1)/2 ≤ 𝛢 𝛿 . Integrating this inequality, we derive

𝛷 (𝑡 ) ≤ 𝛢 𝛿 (1 - 𝑝 -1 2 𝛢 (𝑝+1)/2 𝛿 𝑡 ) -2/(𝑝-1)
for all 0 ≤ 𝑡 < 1 ∧ 𝛵 * (𝛿 ), where

𝛵 * (𝛿 ) ∶= ( 𝑝 -1 2 𝛢 (𝑝+1)/2 𝛿 ) -1
.

Because 𝛵 * (𝛿 ) ↑ ∞ monotonically as 𝛿 ↓ 0, there exists 𝛿 0 > 0 small enough that

𝛷 (𝑡 ) ≤ 2𝛢 𝛿 (4.62)
for all 0 ≤ 𝑡 ≤ 1, whenever 0 < 𝛿 ≤ 𝛿 0 . Then, combining (4.60)-(4.62), we obtain

‖𝑣 (1)‖ 2 𝐿 2 ≤ 𝐶 5 𝛿 1/𝑝
for some constant 𝐶 5 independent of 𝛿 . Thus 𝑣 (1) → 0 as 𝛿 → 0, which implies (4.55).

4.C Some results from measure theory

4.C.1 Maximal couplings

Let 𝒳, 𝒴, and 𝒰 be Polish spaces endowed with their Borel 𝜎 -algebras, 𝑢 ∈ 𝒰 ↦ 𝜇(𝑢, ⋅ ), 𝜇 ′ (𝑢, ⋅ )

be two random probability measures on 𝒳, and 𝐹 ∶ 𝒳 → 𝒴 be a measurable mapping. We denote by 𝐹 * 𝜇(𝑢, ⋅ ) the image of 𝜇(𝑢, ⋅ ) under 𝐹 (similarly for 𝜇 ′ ). The following lemma on the existence of maximal couplings is a particular case of Exercise 1.2.30.ii in [KS12] (see the last section of the book for a proof).

Lemma 4.C.1.

There is a probability space (𝛺, ℱ, 𝚸 ) and measurable mappings 𝜉 , 𝜉 ′ ∶ 𝒰×𝛺 → 𝒳 such that the following two properties are satisfied:

• for all 𝑢 ∈ 𝒰, (𝜉 (𝑢, ⋅ ), 𝜉 ′ (𝑢, ⋅ )) is a coupling of 𝜇(𝑢, ⋅ ) and 𝜇 ′ (𝑢, ⋅ ) in the sense that

𝜉 (𝑢, ⋅ ) * 𝚸 = 𝜇(𝑢, ⋅ ) and 𝜉 ′ (𝑢, ⋅ ) * 𝚸 = 𝜇 ′ (𝑢, ⋅ ); (4.63) 
• for all 𝑢 ∈ 𝒰, (𝐹 (𝜉 (𝑢, ⋅ )), 𝐹 (𝜉 ′ (𝑢, ⋅ ))) is a maximal coupling of 𝐹 * 𝜇(𝑢, ⋅ ) and 𝐹 * 𝜇 ′ (𝑢, ⋅ ) in the sense that 𝚸 ({𝜔 ∈ 𝛺 ∶ 𝐹 (𝜉 (𝑢, 𝜔)) ≠ 𝐹 (𝜉 ′ (𝑢, 𝜔))}) = ‖𝐹 * 𝜇(𝑢, ⋅ ) -𝐹 * 𝜇 ′ (𝑢, ⋅ )‖ var (4.64)

and the random variables 𝐹 (𝜉 (𝑢, ⋅ )) and 𝐹 (𝜉 ′ (𝑢, ⋅ )) conditioned on the event

{𝜔 ∈ 𝛺 ∶ 𝐹 (𝜉 (𝑢, 𝜔)) ≠ 𝐹 (𝜉 ′ (𝑢, 𝜔))} are independent.

4.C.2 Images of measures under regular mappings

Let 𝒳 be a compact metric space, 𝒴 and 𝒰 be finite-dimensional spaces, and 𝐹 ∶ 𝒳 × 𝒰 → 𝒴 be a continuous mapping. The following is a consequence of a more general result proved in Theorem 2.4 in [Shi07] (see also Chapter 9 of [START_REF] Bogachev | Differentiable measures and the Malliavin calculus[END_REF]). In this simplified context in finite dimension, it can be proven directly from the implicit function theorem and a change of variable.

Lemma 4.C.2. Assume that the mapping 𝐹 (𝑥, ⋅ ) ∶ 𝒰 → 𝒴 is differentiable for any 𝑥 ∈ 𝒳, the derivative 𝐷 𝑢 𝐹 is continuous on 𝒳 × 𝒰, the image of the linear operator (𝐷 𝑢 𝐹 )( x, û) has full rank for some ( x, û) ∈ 𝒳 × 𝒰, and 𝜚 ∈ 𝒫(𝒰) is a measure possessing a positive continuous density with respect to the Lebesgue measure on 𝒰. Then there is a continuous function 𝜓 ∶ 𝒳 × 𝒴 → 𝐑 + and a number 𝑟 > 0 such that 𝜓 ( x, 𝐹 ( x, û)) > 0, and (𝐹 * (𝑥, ⋅ )𝜚)(d𝑦) ≥ 𝜓 (𝑥, 𝑦) d𝑦 (as measures on 𝒴) for all 𝑥 ∈ 𝛣 𝒳 ( x, 𝑟 ).
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Introduction

At times arising as successful approximations of continuous-time quantum evolutions that are of interest to , where they prove a form of return to equilibrium for ensembles of walkers interacting with a chain of auxiliary fermions in two special cases of the model considered here.

The main model under consideration concerns a finite graph on which a variable number of noninteracting fermions may hop to a neighbouring vertex at discrete times. We call this component of the system the sample 𝒮. The free dynamics in Fock space is given by the second quantization of a one-particle unitary matrix 𝑊 . To model the interaction with an environment, we introduce an auxiliary bi-infinite chain ℰ of sites where fermions are forced to hop to their left at discrete times. The free dynamics there is thus described by the second quantization of a shift operator 𝑆 . These two components of the system then interact through a term which allows the exchange of particles in preferred states. The intensity of this exchange is controlled by a coupling constant 𝛼. They undergo a step of free evolution, a step of interaction evolution, a step of free evolution, and so on.

We consider the case in which the environment ℰ is in an initial state which is translational-invariant, gauge-invariant (gi) and quasi-free (qf), described at the one-particle level by a function 𝐹 of the shift operator 𝑆 . Most notably, we show that the asymptotic state in the sample 𝒮 is then also giqf and completely described by its own dynamics 𝑊 and the same function 𝐹 , up to an interaction-dependent deformation which vanishes in the limit 𝛼 → 0. This deformation is explicit. This is a generalization of the results of Hamza and Joye in [HJ17]: they had covered the cases where the sites in the environment ℰ are uncorrelated or where the free hopping in the sample 𝒮 is a uni-directional shift on a ring.

We further generalize to more complicated structured environments by considering 𝑚 ≥ 1 internal degrees of freedom at each site of the bi-infinite chain and a dynamics determined at the one-particle level by 𝑆 ⊗ 𝑈 for some unitary 𝑚-by-𝑚 matrix 𝑈 with simple eigenvalues. Invariance of the state under the dynamics and under translations along the chain yield a set (𝜋 𝑖 ) 𝑚 𝑖 =1 of rank-one projections such that the symbol describing the initial state of the environment ℰ is ∑ 𝑚 𝑖 =1 (2 Re 𝐹 𝑖 (𝑆 * ⊗ 𝑈 * ))(𝟏 ⊗ 𝜋 𝑖 ) for some family (𝐹 𝑖 ) 𝑚 𝑖 =1

of functions. In this generalized version of the model, the asymptotic state in the sample 𝒮 is again giqf and completely described by its own dynamics 𝑊 and the functions (𝐹 𝑖 ) 𝑚 𝑖 =1 -again up to an explicit 𝛼-dependent correction -; see Theorem 5.4.3. We can also study the flux of particles into the different parts (ℰ 𝑖 ) 𝑚 𝑖 =1 of the environment ℰ and determine -for small enough couplings -the signs by comparing the values of the functions (𝐹 𝑖 ) 𝑚 𝑖 =1 at the point 1.

In Section 5.2, we introduce more precisely the description of the spaces, observables and dynamics; we leave some comments on the choice of quantum statistics and interaction for Appendix 5.A. We devote Section 5.3 to a discussion of the initial state of the system. This is where we introduce the decomposition of the translation-invariant environment ℰ into different parts (ℰ 𝑖 ) 𝑚 𝑖 =1 , to each of which is associated a scalar function 𝐹 𝑖 . In Section 5.4, we state our main results on the asymptotic state in the sample and asymptotic fluxes out of the different parts of the environment. We present more concrete examples with 𝑚 = 1 in Section 5.5. For a model on a ring, we get an explicit expression for the profile of the particle density as a function of the node of the graph and for the corresponding correlations between the occupation of two nodes. We also study the role of disorder and of the essential range of the function 𝐹 in the limit of an infinitely large sample.

CHAPTER 5

The system and its dynamics

A quantum walk in a sample

In this subsection, we introduce the description of the sample, which is the small system of interest interacting with an environment. We start by considering a single walker for two classes of graphs, and then introduce our general assumptions and the passage to a variable number of fermionic walkers.

The coined walk on a cycle

We first wish to start by describing the motion of a spin-1 2 quantum walker on a cycle of 𝑛 vertices. Let {𝛿 0 , 𝛿 1 , … , 𝛿 𝑛-1 } be an orthonormal basis for 𝐂 𝑛 , the Hilbert space for the position, and let {𝑒 -1 , 𝑒 +1 } be an orthonormal basis for 𝐂 2 , the Hilbert space for the spin. The unitary

𝑊 1 ∶= 𝑛-1 ∑ 𝜈 =0 ∑ 𝜏 =±1 𝛿 𝜈 +𝜏 ⊗ 𝑒 𝜏 ⟨𝛿 𝜈 ⊗ 𝑒 𝜏 , ⋅ ⟩ ,
on 𝐂 𝑛 ⊗ 𝐂 2 , with the arithmetics on the index 𝜈 understood modulo 𝑛, can be interpreted as follows. If a walker is located on the site 𝜈 with its spin up [resp. down], it moves clockwise [resp. counter-clockwise] and its spin variable is unchanged. A second unitary

𝑊 2 ∶= 𝑛-1 ∑ 𝜈 =0 𝛿 𝜈 ⟨𝛿 𝜈 , ⋅ ⟩ ⊗ 𝐶 𝜈 ,
where each 𝐶 𝜈 is a 2-by-2 unitary called a coin matrix, is used to locally change the spin variable. The so-called Hadamard coin 1 √2 ( 1 1 -1 1 ) is most often considered in the literature. The product

𝑊 ∶= 𝑊 1 𝑊 2 ,
a unitary on the finite dimensional Hilbert space ℋ 𝒮 = 𝐂 𝑛 ⊗ 𝐂 2 , gives a dynamics for a single time step where a quantum coin is shuffled, and the walker hops to a neighbouring site or the other depending on the outcome of the coin.

If each coin matrix 𝐶 𝜈 is such that ⟨𝑒 +1 , 𝐶 𝜈 𝑒 +1 ⟩ ⟨𝑒 +1 , 𝐶 𝜈 𝑒 -1 ⟩ ≠ 0, then the vector 𝜓 * = 𝛿 0 ⊗ 𝑒 -1 is cyclic for 𝑊 . Such a preferred state will be used later to introduce exchange of particles with the environment, and cyclicity will ensure good propagation of the interaction.

Coined walks on some more general graphs

We now treat a second class of graphs, called class-1 regular graphs in [Por13], for which we can give a precise description of the dynamics without introducing too much machinery from graph theory.

Let 𝐺 be a finite 𝑟 -regular graph with 𝑛 vertices whose edges can be coloured with 𝑟 colours, 𝑎 = 0, … , 𝑟 -1, and consider the unitary 𝑟 , where 𝜈 ′ (𝜈 , 𝑎) is the unique vertex such that (𝜈 , 𝜈 ′ ) is an edge of colour 𝑎. By a standard result, the colouring property forces 𝑛 to be even. The action of 𝑊 1 is interpreted as follows. If a walker is at the node 𝜈 , looking along the edge of color 𝑎, after one time step, it will go to the node 𝜈 ′ at the other end of this edge, now facing where it came from.

𝑊 1 ∶= 𝑛-1 ∑ 𝜈 =0 𝑟 -1 ∑ 𝑎=0 𝛿 𝜈 ′ (𝜈 ,𝑎) ⊗ 𝑒 𝑎 ⟨𝛿 𝜈 ⊗ 𝑒 𝑎 , ⋅ ⟩ on 𝐂 𝑛 ⊗ 𝐂
We also introduce a unitary coin matrix 𝐶 𝜈 at each node 𝜈 and the unitary

𝑊 2 ∶= 𝑛-1 ∑ 𝜈 =0 𝛿 𝜈 ⟨𝛿 𝜈 , ⋅ ⟩ ⊗ 𝐶 𝜈 .
on 𝐂 𝑛 ⊗ 𝐂 𝑟 . The role of the coin matrix is to change the direction in which the walker is looking into a normalized superposition of directions.

Finally, we set

𝑊 ∶= 𝑊 1 𝑊 2 .
This unitary matrix 𝑊 on the finite-dimensional Hilbert space ℋ 𝒮 = 𝐂 𝑛 ⊗ 𝐂 𝑟 of dimension 𝑑 = 𝑛𝑟 describes the discrete-time dynamics for a single walker on the graph 𝐺 . Under generic assumptions on the coin matrices, the matrix 𝑊 will admit a cyclic vector 𝜓 * .

General formulation and second quantization

Quantum walks on more general classes of finite graphs can be given a similar description using slightly heavier machinery from graph theory; see for example Chapter 7 in [Por13]. Any description of a quantum walk on a (directed) graph 𝐺 = (𝑉 , 𝛦) should involve a unitary 𝑊 on a space of the form 𝐂 |𝑉 | ⊗ 𝐂 𝑟 whose matrix elements ⟨𝛿 𝜈 ′ ⊗ 𝑤 , 𝑊 (𝛿 𝜈 ⊗ 𝑤 )⟩ vanish unless (𝜈 , 𝜈 ′ ) is in the set 𝛦 of (directed) edges of 𝐺 .

The specific structure of 𝑊 inherited from the graph is irrelevant for most of our computations and results and will only be used in the interpretation of some asymptotic results, especially in Section 5.5. Hence, for the rest of the paper we will consider that the one-particle dynamics 𝑊 on a 𝑑-dimensional Hilbert space ℋ 𝒮 and the unit vector 𝜓 * ∈ ℋ 𝒮 are admissible whenever 𝑊 is unitary and 𝜓 * is cyclic for 𝑊 .

A variable number of non-interacting fermionic walkers are then described on the algebra CAR(ℋ 𝒮 ) of canonical anti-commutation relations, which we represent on the fermionic Fock space Γ -(ℋ 𝒮 ), with the creation [resp. annihilation] operator associated to the one-particle state 𝜓 ∈ ℋ 𝒮 denoted by 𝑎 * (𝜓 )

[resp. 𝑎(𝜓 )]. We have the usual norm identity ‖𝑎 # (𝜓 )‖ = ‖𝜓 ‖ for each 𝜓 ∈ ℋ 𝒮 . Here and in what follows, 𝑎 # is used as a placeholder for either 𝑎 * or 𝑎.

The discrete-time dynamics there is given by

𝑎 # (𝜓 ) ↦ 𝑎 # (𝑊 * 𝜓 )
for all 𝜓 ∈ ℋ 𝒮 , extended by linearity to CAR(ℋ 𝒮 ). We refer to this as the free dynamics in the sample 𝒮.

Interaction with an environment

To model interaction of the sample 𝒮 with an environment ℰ, we introduce the Hilbert space ℋ ℰ ∶= ℓ 2 (𝚭) ⊗ 𝐂 𝑚 and the one-particle dynamics 𝑆 ⊗ 𝑈 there, where 𝑆 is the shift 𝛿 ℓ ↦ 𝛿 ℓ -1 on ℓ 2 (𝚭) = {∑ ℓ ∈𝚭 𝑎 ℓ 𝛿 ℓ ∶ {𝑎 ℓ ∶ ℓ ∈ 𝚭} ⊂ 𝐂, ∑ ℓ ∈𝚭 |𝑎 ℓ | 2 < ∞} and 𝑈 is an arbitrary unitary on 𝐂 𝑚 with simple eigenvalues.

A variable number of walkers in this environment are then described on the algebra CAR(ℋ ℰ ) with discrete-time dynamics given by 𝑏 # (𝜑) ↦ 𝑏 # ((𝑆 * ⊗ 𝑈 * )𝜑) for all 𝜑 ∈ ℋ ℰ , extended by linearity to CAR(ℋ ℰ ). 1 We refer to this as the free dynamics in the environment ℰ.

Recall that we assume that the unitary 𝑊 used to describe the free dynamics in the sample 𝒮 admits a cyclic vector 𝜓 * ∈ ℋ 𝒮 . We use this vector to construct the interaction unitary

𝛫 𝛼 ∶= exp[-i𝛼(𝑏 * (𝛿 0 ⊗ 𝑣 ) ⊗ 𝑎(𝜓 * ) + 𝑏 (𝛿 0 ⊗ 𝑣 ) ⊗ 𝑎 * (𝜓 * ))]
on CAR(ℋ ℰ ) ⊗ CAR(ℋ 𝒮 ), where 𝑣 ∈ 𝐂 𝑚 is a unit vector and where 𝛼 ∈ 𝐑\𝜋 𝚭 is a coupling constant. The environment and the interaction remain simple enough to yield one of the rare analytical results on such systems, yet possess enough parameters to allow an investigation of interesting phenomena which should arise similarly in more complex systems. By considering the algebra CAR(ℋ ℰ ) ⊗ CAR(ℋ 𝒮 ), we are specifying that the fermions in the sample and in the environment are distinguishable. Folklore suggests that such details of the description of the environment should not influence the asymptotics in the sample 𝒮; see Appendix 5.A for a further discussion. We will often omit tensored identities and tensor products between 𝑎 # s and 𝑏 # s.

To the unitary 𝛫 𝛼 is closely related the rank-one operator

𝜄 ∶ ℋ 𝒮 → ℋ ℰ 𝜓 ↦ 𝛿 0 ⊗ 𝑣 ⟨𝜓 * , 𝜓 ⟩
and its adjoint 𝜄 * . We introduce the shorthands 𝛲 for the projector 𝜄 * 𝜄 on ℋ 𝒮 and 𝑄 for the projector 𝜄𝜄 * on ℋ ℰ .

We consider the following coupled discrete-time Heisenberg dynamics:

𝜏 (𝛸 ) ∶= 𝛫 * 𝛼 (𝛤 (𝑆 * ⊗ 𝑈 * ) ⊗ 𝛤 (𝑊 * ))𝛸 (𝛤 (𝑆 ⊗ 𝑈 ) ⊗ 𝛤 (𝑊 ))𝛫 𝛼
for all observables 𝛸 in CAR(ℋ ℰ ) ⊗ CAR(ℋ 𝒮 ). This describes a dynamics where both the sample and the environment first evolve independently, and then are allowed to interact through a term which exchanges particles in the state 𝜓 * ∈ ℋ 𝒮 and the state 𝛿 0 ⊗ 𝑣 ∈ ℋ ℰ . This dynamics preserves the total number of fermions and the strength of the interaction is controlled by the coupling constant 𝛼.

The joint dynamics is given by a product of unitaries which cannot be written as the exponential of a sum of physically significant free Hamiltonians and an interaction potential. For this reason, many of the tools and definitions from Hamiltonian quantum statistical mechanics -most notably the notion of temperatureare not available.

We have the following lemmas, which will serve as building blocks for our computation of the evolution of observables of interest. As can be seen from the formulae, the case 𝛼 ∈ 𝜋 𝚭 is in some sense trivial and we later exclude it from our analysis.

Lemma 5.2.1. For all 𝜓 ∈ ℋ 𝒮 𝛫 𝛼 𝑎 # (𝜓 )𝛫 𝛼 = 𝑎 # ((𝟏 + (cos 𝛼 -1)𝛲 )𝜓 ) -i sin 𝛼 𝑏 # (𝜄𝜓 ), (5.1)

and for all 𝜑 ∈ ℋ ℰ 𝛫 𝛼 𝑏 # (𝜑)𝛫 𝛼 = 𝑏 # ((𝟏 + (cos 𝛼 -1)𝑄)𝜑) -i sin 𝛼 𝑎 # (𝜄 * 𝜑).

(5.2)

Proof. The functions 𝛼 ↦ 𝛫 𝛼 𝑏 # (𝜑)𝛫 𝛼 and 𝛼 ↦ 𝛫 𝛼 𝑎 # (𝜓 )𝛫 𝛼 are real-analytic and hence completely determined by their derivatives in 𝛼 = 0. Both formulae in the lemma are obtained by differentiating and exploiting the canonincal anticommutation relations {𝑎 * (𝜓 1 ), 𝑎(𝜓 2 )} ∶= 𝑎 * (𝜓 1 )𝑎(𝜓 2 ) + 𝑎(𝜓 2 )𝑎 * (𝜓 1 ) = ⟨𝜓 2 , 𝜓 1 ⟩ 𝟏 and {𝑎(𝜓 1 ), 𝑎(𝜓 2 )} = 0 and the commutation relation 𝑏 # 1 (𝜑 1 )𝑎 # 2 (𝜓 2 ) = 𝑎 # 2 (𝜓 2 )𝑏 # 1 (𝜑 1 ) for all 𝜓 1 , 𝜓 ∈ ℋ 𝒮 and 𝜑 1 ∈ ℋ ℰ . We omit the subscript 𝛼 to lighten the notation.

Indeed, differentiating, d d𝛼

𝛫 𝑎 * (𝜓 )𝛫 = -i𝛫 {𝑏 (𝛿 0 ⊗ 𝑣 )𝑎 * (𝜓 * ) + 𝑏 * (𝛿 0 ⊗ 𝑣 )𝑎(𝜓 * ), 𝑎 * (𝜓 )}𝛫 = -i𝛫 ⟨𝜓 * , 𝜓 ⟩ 𝑏 * (𝛿 0 ⊗ 𝑣 )𝛫 = -i𝛫 𝑏 * (𝜄𝜓 )𝛫 .

Similarly, d d𝛼

𝛫 𝑏 * (𝜑)𝛫 = -i𝛫 𝑎 * (𝜄 * 𝜑)𝛫 .
As a consequence of the definition of 𝛲 = 𝜄 * 𝜄 and the identity 𝜄𝜄 * 𝜄 = 𝜄, for all 𝑛 ≥ 0, d 2𝑛+1 d𝛼 2𝑛+1 𝛫 𝑎 * (𝜓 )𝛫 = (-i) 2𝑛+1 𝛫 𝑏 * (𝜄𝜓 )𝛫 , d 2𝑛+2 d𝛼 2𝑛+2 𝛫 𝑎 * (𝜓 )𝛫 = (-i) 2𝑛+2 𝛫 𝑎 * (𝛲 𝜓 )𝛫 so that

𝛫 𝑎 * (𝜓 )𝛫 = 𝑎 * (𝜓 ) + ∑ 𝑛≥0 (-i𝛼) 2𝑛+1 (2𝑛 + 1)! 𝑏 * (𝜄𝜓 ) + (-i𝛼) 2𝑛+2 (2𝑛 + 2)! 𝑎 * (𝛲 𝜓 ).
The other formula is obtained similarly.

Lemma 5.2.2. For all 𝜓 1 , 𝜓 2 ∈ ℋ 𝒮 𝜏 (𝑎 # 1 (𝜓 1 )𝑎 # 2 (𝜓 2 ))

= 𝑎 # 1 ((𝟏 + (cos 𝛼 -1)𝛲 )𝑊 * 𝜓 1 )𝑎 # 2 ((𝟏 + (cos 𝛼 -1)𝛲 )𝑊 * 𝜓 2 ) + i sin 𝛼 𝑎 # 1 ((𝟏 + (cos 𝛼 -1)𝛲 )𝑊 * 𝜓 1 )𝑏 # 2 (𝜄𝑊 * 𝜓 2 ) -i sin 𝛼 𝑏 # 1 (𝜄𝑊 * 𝜓 1 )𝑎 # 2 ((𝟏 + (cos 𝛼 -1)𝛲 )𝑊 * 𝜓 2 ) + sin 2 𝛼 𝑏 # 1 (𝜄𝑊 * 𝜓 1 )𝑏 # 2 (𝜄𝑊 * 𝜓 2 )

(5.3)

and, for all 𝜑 1 , 𝜑 2 ∈ ℋ ℰ , 𝜏 (𝑏 # 1 (𝜑 1 )𝑏 # 2 (𝜑 2 ))

= 𝑏 # 1 ((𝟏 + (cos 𝛼 -1)𝑄)𝑆 * 𝑈 * 𝜑 1 )𝑏 # 2 ((𝟏 + (cos 𝛼 -1)𝑄)𝑆 * 𝑈 * 𝜑 2 )

i sin 𝛼 𝑎 # 1 (𝜄 * 𝑆 * 𝑈 * 𝜑 1 )𝑏 # 2 ((𝟏 + (cos 𝛼 -1)𝑄)𝑆 * 𝑈 * 𝜑 2 )

+ i sin 𝛼 𝑏 # 1 ((𝟏 + (cos 𝛼 -1)𝑄)𝑆 * 𝑈 * 𝜑 1 )𝑎 # 2 (𝜄 * 𝑆 * 𝑈 * 𝜑 2 ) + sin 2 𝛼 𝑎 # 1 (𝜄 * 𝑆 * 𝑈 * 𝜑 1 )𝑎 # 2 (𝜄 * 𝑆 * 𝑈 * 𝜑 2 ).
Moreover, for all 𝜓 1 ∈ ℋ 𝒮 and 𝜑 2 ∈ ℋ ℰ ,

𝜏 (𝑏 # 1 (𝜑 1 )𝑎 # 2 (𝜓 2 )) = 𝑏 # 1 ((𝟏 + (cos 𝛼 -1)𝑄)𝑆 * 𝑈 * 𝜑 1 )𝑎 # 2 ((𝟏 + (cos 𝛼 -1)𝛲 )𝑊 * 𝜓 2 ) + i sin 𝛼 𝑎 # 1 (𝜄 * 𝑆 * 𝑈 * 𝜑 1 )𝑎 # 2 ((𝟏 + (cos 𝛼 -1)𝛲 )𝑊 * 𝜓 2 ) -i sin 𝛼 𝑏 # 1 ((𝟏 + (cos 𝛼 -1)𝑄)𝑆 * 𝑈 * 𝜑 1 )𝑏 # 2 (𝜄𝑊 * 𝜓 2 ) + sin 2 𝛼 𝑎 # 1 (𝜄 * 𝑆 * 𝑈 * 𝜑 1 )𝑏 # 2 (𝜄𝑊 * 𝜓 2 ).
Proof. Because the formulae follow from the previous lemma and the fact that 𝜏 is a morphism.

The initial state

The initial state of the compound system is taken to be a tensor product of an arbitrary even state 𝜌 on the algebra CAR(ℋ 𝒮 ) with a giqf state 𝜔 𝛴 on CAR(ℋ ℰ ) with symbol 𝛴 in ℬ(ℋ ℰ ). In other words, the state 𝜌 vanishes on all monomials of odd degree,

𝜌(𝑎 # 1 (𝜓 1 )𝑎 # 2 (𝜓 2 ) ⋯ 𝑎 # 2𝛮 +1 (𝜓 2𝛮 +1 )) = 0,
and there exists 𝛴 ∈ ℬ(ℋ ℰ ), called the density or symbol of the state 𝜔 𝛴 , such that

𝜔 𝛴 (𝑏 * (𝜑 1 ) ⋯ 𝑏 * (𝜑 𝛮 )𝑏 (𝜑 ′ 𝛮 ′ ) ⋯ 𝑏 (𝜑 ′ 1 )) = 𝛿 𝛮 𝛮 ′ det[⟨𝜑 𝜇 , 𝛴 𝜑 ′ 𝜇 ′ ⟩] 𝛮 𝜇,𝜇 ′ =1 .
In addition to the usual requirement that 0 ≤ 𝛴 ≤ 𝟏, we require that the symbol is translation invariant, in the sense that

[𝛴 , 𝑆 ⊗ 𝟏] = 0, (5.4) 
and invariant under the one-particle free dynamics in the environment, i.e.

[𝛴 , 𝑆 ⊗ 𝑈 ] = 0.

(5.5)

Finally, we assume that

∑ ℓ ∈𝚭 | ⟨𝛿 -ℓ ⊗ 𝑤 , 𝛴 (𝛿 0 ⊗ 𝑤 ′ )⟩ | < ∞ (5.6)
for all 𝑤 , 𝑤 ′ ∈ 𝐂 𝑚 . This is a technical assumption that will ensure absolute convergence of important series.

It can be interpreted as a decay of spatial correlations in the environment.

Remark 5.3.1. The case 𝑚 = 1 (and 𝑈 = 1) is the one considered in [HJ17]. They proved a special case of Theorem 5.4.3 below in two situations: when the symbol 𝛴 is proportional to the identity or when 𝑊 is a shift on ℋ 𝒮 .

Allowing 𝛴 to have off-diagonal terms allows us to study the effect of correlations in the structured environment ℰ (absent in repeated interaction systems) on the asymptotics of the sample 𝒮, and considering 𝑚 > 1 is a first step towards studying non-equilibrium situations.

Recall that we assumed 𝑈 to have simple eigenvalues: its spectral projectors 𝜋 𝑖 , for 𝑖 = 1, … , 𝑚, have rank one and each of them corresponds to a unit eigenvector 𝑥 𝑖 for a distinct eigenvalue. Then, for any indices 𝑘 ∈ 𝚭 and 𝑖 ∈ {1, … , 𝑚}, we have

𝛴 (𝛿 𝑘 ⊗ 𝑥 𝑖 ) = ∑ ℓ ∈𝚭 𝑚 ∑ 𝑗 =1 𝛿 ℓ +𝑘 ⊗ 𝑥 𝑗 ⟨𝛿 ℓ +𝑘 ⊗ 𝑥 𝑗 , 𝛴 (𝛿 𝑘 ⊗ 𝑥 𝑖 )⟩ = ∑ ℓ ∈𝚭 𝛿 ℓ +𝑘 ⊗ 𝑥 𝑖 ⟨𝛿 ℓ +𝑘 ⊗ 𝑥 𝑖 , 𝛴 (𝛿 𝑘 ⊗ 𝑥 𝑖 )⟩ = ∑ ℓ ∈𝚭 ⟨𝛿 0 ⊗ 𝑥 𝑖 , 𝛴 (𝑆 ⊗ 𝑈 ) ℓ (𝛿 0 ⊗ 𝑥 𝑖 )⟩ (𝑆 * ⊗ 𝑈 * ) ℓ (𝛿 𝑘 ⊗ 𝑥 𝑖 ) = 2 Re ( 1 2 ⟨𝛿 0 ⊗ 𝑥 𝑖 , 𝛴 (𝛿 0 ⊗ 𝑥 𝑖 )⟩ + ∞ ∑ ℓ =1 ⟨𝛿 0 ⊗ 𝑥 𝑖 , 𝛴 (𝑆 ⊗ 𝑈 ) ℓ (𝛿 0 ⊗ 𝑥 𝑖 )⟩ (𝑆 * ⊗ 𝑈 * ) ℓ )(𝛿 𝑘 ⊗ 𝑥 𝑖 ).
The coefficients in the sum on the right-hand side define analytic functions in the unit disk,

𝐹 𝑖 (𝜁 ) ∶= 1 2 ⟨𝛿 0 ⊗ 𝑥 𝑖 , 𝛴 (𝛿 0 ⊗ 𝑥 𝑖 )⟩ + ∞ ∑ ℓ =1 ⟨𝛿 0 ⊗ 𝑥 𝑖 , 𝛴 (𝑆 ⊗ 𝑈 ) ℓ (𝛿 0 ⊗ 𝑥 𝑖 )⟩ 𝜁 ℓ , (5.7) 
which extend continuously up to the boundary. In particular, the real number

2𝐹 𝑖 (0) = ⟨𝛿 0 ⊗ 𝑥 𝑖 , 𝛴 (𝛿 0 ⊗ 𝑥 𝑖 )⟩
is the translation-invariant particle density in the 𝑖 th subspace of the reservoir.

Note that the one-particle operator 𝛴 specifying the initial state of the environment ℰ is a sum of functions of the dynamics 𝑆 * ⊗ 𝑈 * :

𝛴 = 𝑚 ∑ 𝑖 =1
(2 Re 𝐹 𝑖 (𝑆 * ⊗ 𝑈 * ))(𝟏 ⊗ 𝜋 𝑖 ).

(5.8)

One of the main results of this paper is that the asymptotic state in the sample is a giqf state whose density can be expressed as a sum of those same functions, but now of a matrix describing the dynamics in the sample.

As discussed in Appendix 5.A, this state remains the same when one considers some variants of this model.

Remark 5.3.2. The meaning of 𝐹 𝑖 (𝛣) for a linear operator 𝛣 with ‖𝛣‖ ≤ 1 is given through the power series (5.7). Convergence in norm holds by our assumption (5.6) on the decay of correlations. The real part of 𝐹 𝑖 (𝛣) is simply the self-adjoint operator 1 2 (𝐹 𝑖 (𝛣) + (𝐹 𝑖 (𝛣)) * ). If the function extends analytically to a disk of radius 𝑟 > spr(𝛣), then we have the integral formula

𝐹 𝑖 (𝛣) = 1 2𝜋 i ‰ 𝑟 𝐒 1
𝐹 𝑖 (𝜁 )𝑅(𝜁 , 𝛣) d𝜁 (5.9)

by the residue theorem and the Neumann series 𝑅(𝜁 , 𝛣) = 1 𝜁 ∑ ∞ ℓ =0 𝜁 -ℓ 𝛣 ℓ for the resolvent of 𝛣 for |𝜁 | > spr 𝛣.

Asymptotics

We are interested in the behaviour of the system in the limit 𝑡 → ∞ along 𝚴. In particular, we study the behaviour of the state in the sample 𝒮 and flux observables.

Throughout the section, we will use the following hypotheses: with 𝑊 a unitary on 𝐂 𝑑 , 𝛴 a non-negative definite bounded operator on ℓ 2 (𝚭) ⊗ 𝐂 𝑚 , 𝑈 a simple unitary on 𝐂 𝑚 and 𝛼 the coupling constant for the interaction, (i) the initial state for the compound system is the tensor product of the giqf state 𝜔 𝛴 on the algebra CAR(ℓ 2 (𝚭)⊗𝐂 𝑚 ), where 𝛴 satisfies [𝛴 , 𝑆 ⊗𝑈 ] = [𝛴 , 𝑆 ⊗𝟏] = 0, with an even state 𝜌 on CAR(𝐂 𝑑 );

(ii) the decay condition (5.6) on 𝛴 holds;

(iii) the vector 𝜓 * used to define the interaction is cyclic for 𝑊 ;

(iv) the coupling constant 𝛼 is not an integer multiple of 𝜋 .

The state in the sample

In what follows, we use 𝛭 ∶= 𝑊 (𝟏 + (cos 𝛼 -1)𝛲 )

for the matrix appearing in the formulae from Section 5.2 for time-evolved creation and annihilation operators. The dependence on the coupling constant 𝛼 is not apparent in this notation but should be kept in mind.

Consequently, we will write statements such as 𝛭 → 𝑊 as 𝛼 → 0, referring to the initial dependence of 𝛭 on 𝛼.

Since 𝑊 is a unitary and 𝛲 = 𝜄 * 𝜄 is an orthogonal projector, the operator norm of the matrix 𝛭 is necessarily bounded by 1. We have the following stronger property, which is proved in [HJ17].

Lemma 5.4.1 (Lemma 4.11 in [HJ17]). Under assumptions (iii) and (iv), spr 𝛭 < 1.

In particular ‖𝛭 𝑡 ‖ converges exponentially fast to 0 as 𝑡 → ∞ along 𝚴.

We also introduce the shorthand ℋ + ℰ for the closure of the linear span of vectors of the form 𝛿 ℓ ⊗ 𝑤 for ℓ ≥ 0 and arbitrary 𝑤 ∈ 𝐂 𝑚 . It corresponds to one side of the bi-infinite environment. Combining Lemmas 5.2.2 and 5.4.1, we have the following proposition on the long-time evolution of pairs of creation and annihilation operators.

Proposition 5.4.2. For all 𝑡 ∈ 𝚴, under assumptions (ii)-(iv), we have:

1. for all 𝜓 1 , 𝜓 2 ∈ ℋ 𝒮 , 𝜏 𝑡 (𝑎 # 1 (𝜓 1 )𝑎 # 2 (𝜓 2 )) = sin 2 𝛼 𝑡 ∑ 𝑠 ′ ,𝑡 ′ =1
𝑏 # 1 ((𝑆 ⊗ 𝑈 ) 𝑠 ′ -𝑡 𝜄𝑊 * 𝛭 * 𝑠 ′ -1 𝜓 1 )𝑏 # 2 ((𝑆 ⊗ 𝑈 ) 𝑡 ′ -𝑡 𝜄𝑊 * 𝛭 * 𝑡 ′ -1 𝜓 2 ) + 𝛰 (𝑡 ‖𝛭 𝑡 ‖);

for all

𝜑 1 ∈ ℋ + ℰ and 𝜓 2 ∈ ℋ 𝒮 , 𝜏 𝑡 (𝑏 # 1 (𝜑 1 )𝑎 # 2 (𝜓 2 )) = -i sin 𝛼 𝑡 ∑ 𝑡 ′ =1
𝑏 # 1 ((𝑆 ⊗ 𝑈 ) -𝑡 𝜑 1 )𝑏 # 2 ((𝑆 ⊗ 𝑈 ) 𝑡 ′ -𝑡 𝜄𝑊 * 𝛭 * 𝑡 ′ -1 𝜓 2 ) + 𝛰 (𝑡 ‖𝛭 𝑡 ‖);

3. for all 𝜑 1 , 𝜑 2 ∈ ℋ + ℰ , 𝜏 𝑡 (𝑏 # 1 (𝜑 1 )𝑏 # 2 (𝜑 2 )) = 𝑏 # 1 ((𝑆 ⊗ 𝑈 ) -𝑡 𝜑 1 )𝑏 # 2 ((𝑆 ⊗ 𝑈 ) -𝑡 𝜑 2 ).

The notation 𝛰 (𝑡 ‖𝛭 𝑡 ‖) stands for error terms which are bounded in norm by 𝑡 ‖𝛭 𝑡 ‖ times a numerical constant that is independent of the vectors under consideration, as long as they are normalized.

Proof. In the second and third part of the proposition, we are considering 𝜑 𝑖 ∈ ℋ + ℰ because those are the ones that appear in the time evolution of pairs of creation and annihilation operators in the sample (see Lemma 5.2.2). They have the property that 𝜄 * 𝑆 * 𝑈 * 𝜑 𝑖 = 0, which makes the computations more tractable.

We prove the claims in a different order.

3. The formula follows directly from applying the formula in Proposition 5.2.2 and the identity 𝜄 * 𝑆 * 𝑈 * 𝜑 𝑖 = 0.

2. Using 𝜄 * 𝑆 * 𝑈 * 𝜑 1 = 0, Proposition 5.2.2 yields 𝜏 (𝑏 # 1 (𝜑 1 )𝑎 # 2 (𝜓 2 )) = 𝑏 # 1 (𝑆 * 𝑈 * 𝜑 1 )𝑎 # 2 (𝛭 * 𝜓 2 ) -i sin 𝛼 𝑏 # 1 (𝑆 * 𝑈 * 𝜑 1 )𝑏 # 2 (𝜄𝑊 * 𝜓 2 ), and again 𝑆 * 𝑈 * 𝜑 1 ∈ ℋ + ℰ . Hence, for any 𝑡 ∈ 𝚴, 𝜏 𝑡 (𝑏 # 1 (𝜑 1 )𝑎 # 2 (𝜓 2 )) = 𝑏 # 1 ((𝑆 * 𝑈 * ) 𝑡 𝜑 1 )𝑎 # 2 ((𝛭 * ) 𝑡 𝜓 2 )

- 𝑡 ∑ 𝑡 ′ =1
i sin 𝛼 𝑏 # 1 ((𝑆 * 𝑈 * ) 𝑡 𝜑 1 )𝑏 # 2 ((𝑆 * 𝑈 * ) 𝑡 -𝑡 ′ 𝜄𝑊 * 𝛭 * 𝑡 ′ -1 𝜓 2 ).

Because ‖𝑎 # (𝜓 )‖ = ‖𝜓 ‖ for any 𝜓 ∈ ℋ 𝒮 and similarly for 𝑏 # , we have the bound i sin 𝛼 𝑏 # 1 ((𝑆 * 𝑈 * ) 𝑡 -𝑠 ′ 𝜄𝑊 * 𝛭 * 𝑠 ′ -1 𝜓 1 )𝑎 # 2 (𝛭 * 𝑡 𝜓 2 )

+ 𝑡 ∑ 𝑠 ′ =1 𝑡 ∑ 𝑡 ′ =1
sin 2 𝛼 𝑏 # 1 ((𝑆 * 𝑈 * ) 𝑡 -𝑠 ′ 𝜄𝑊 * (𝛭 * ) 𝑠 ′ -1 𝜓 1 ) 𝑏 # 2 ((𝑆 * 𝑈 * ) 𝑡 -𝑡 ′ 𝜄𝑊 * (𝛭 * ) 𝑡 ′ -1 𝜓 2 ).

The norm estimates are obtained with similar bounds as in the previous part.

The main result of this section is the following theorem. It states that, under our ongoing assumptions, the limiting state of the sample 𝒮 is giqf and completely described by its own dynamics 𝑊 and the same scalar functions (𝐹 𝑖 ) 𝑚 𝑖 =1 , up to an interaction-dependent deformation which vanishes in the limit 𝛼 → 0.

Theorem 5.4.3. Under hypotheses (i)-(iv) stated at the beginning of the section, the limit where 𝛭 = 𝑊 (𝟏 + (1 -cos 𝛼)𝛲 ). Moreover, the convergence tr CAR(ℋ ℰ ) ((𝜔 𝛴 ⊗ 𝜌) ∘ 𝜏 𝑡 ) → 𝜌 ∞ happens exponentially fast in norm.

Before we proceed with the proof, let us make a few comments on the result. The fact that the asymptotic density 𝛥 in the sample 𝒮 can be rewritten in terms of the functions 𝐹 𝑖 defined by (5.7) (also see Remark 5.3.2) is to be compared with the formula

𝛴 = 𝑚 ∑ 𝑖 =1
2 Re 𝐹 𝑖 (𝑆 * ⊗ 𝑈 * )(𝟏 ⊗ 𝜋 𝑖 )

for the symbol for the initial state 𝜔 𝛴 of the environment ℰ.

Note that 𝛥 depends on the coupling constant 𝛼 through the matrix 𝛭 . In the small coupling limit 𝛼 → 0, we have 𝛭 * → 𝑊 * and thus

𝛥 → 𝑚 ∑ 𝑖 =1
‖𝜋 𝑖 𝑣 ‖ 2 2 Re 𝐹 𝑖 (𝑊 * ).

In this regime, the asymptotic of the sample is completely determined by its free dynamics, the functions defining the initial state of the environment, and the ratios between the coupling with the different parts of the environment. This state is of course invariant under the free dynamics in the sample 𝒮.

Typically, for 𝜓 1 , 𝜓 2 ∈ ℋ 𝒮 , (𝜔 𝛴 ⊗ 𝜌 ∞ )(𝜏 (𝑎 * (𝜓 1 )𝑎(𝜓 2 ))) ≠ 𝜌 ∞ (𝑎 * (𝜓 1 )𝑎(𝜓 2 )).

(5.11) This is not surprising since it can be seen from the formula (5.3) that the reduced dynamics corresponding to one step of time evolution with a fresh environment only sees the first coefficient in the expansion for the state of the environment. However, equality holds for all 𝜓 1 , 𝜓 2 ∈ ℋ 𝒮 when the functions 𝐹 𝑖 are constant -that is when there are no correlations in the environment ℰ. Also, in any case, both sides converge to the same quantity in the limit 𝛼 → 0.

Proof of Theorem 5.4.3. It is sufficient to prove the result for observables 𝛢 which are monomials in creation and annihilation operators in the sample 𝒮. The convergence in norm will then be immediate from the convergence of the matrix elements because we are working on a CAR for a finite number of degrees of freedom.

We proceed in four steps. First, we show that the fact that the initial state is a tensor product of two even states implies that 𝛢 ↦ (𝜔 𝛴 ⊗ 𝜌)(𝜏 𝑡 (𝟏 ⊗ 𝛢)) is an even state on CAR(ℋ 𝒮 ) for all 𝑡 ≥ 0. Then, we need only consider the asymptotic evolution of monomials of even degree in 𝑎 and 𝑎 * . We simplify the formula at the last step.

Throughout the proof, whenever a product ∏ 𝑖 𝑎 # 𝑖 (𝑒 𝑘 𝑖 ) appears in a formula, it is ordered with the term for 𝑖 + 1 to the right of the term for 𝑖 .

Step 1: the asymptotic state is even. Since the dynamics 𝑎 # 𝑖 (𝜓 𝑖 ))) = 0.

(5.12)

for any 𝑚 ∈ 𝚴 and any choices of 𝜓 1 , … , 𝜓 2𝛮 +1 ∈ ℋ 𝒮 .

Step 2: the asymptotic time evolution of monomials of even degree. Using the appropriate formula from Proposition 5.4.2 and the fact that 𝜏 𝑡 is a morphism, we have

𝜏 𝑡 ( 2𝛮 ∏ 𝑖 =1 𝑎 # 𝑖 (𝜓 𝑖 )) = 2𝛮 ∏ 𝑖 =1 ( 𝑡 ∑ 𝑡 𝑖 =1
sin 𝛼 𝑏 # 𝑖 ((𝑆 ⊗ 𝑈 ) 𝑡 𝑖 -𝑡 𝜄𝑊 * 𝛭 * 𝑡 𝑖 -1 𝜓 𝑖 ) + 𝛰 (𝑡 ‖𝛭 𝑡 ‖)).

(5.13)

Step 3: the asymptotic state is a gauge-invariant quasi-free state. From the previous step, we have

𝜌 ∞ ( 2𝛮 ∏ 𝑖 =1 𝑎 # 𝑖 (𝜓 𝑖 )) = lim 𝑡 →∞ (𝜔 𝛴 ⊗ 𝜌)(𝜏 𝑡 ( 2𝛮 ∏ 𝑖 =1 𝑎 # 𝑖 (𝜓 𝑖 ))) = lim 𝑡 →∞ 𝜔 𝛴 ( 2𝛮 ∏ 𝑖 =1 𝑡 ∑ 𝑡 𝑖 =1
sin 𝛼 𝑏 # 𝑖 ((𝑆 ⊗ 𝑈 ) 𝑡 𝑖 -𝑡 𝜄𝑊 * 𝛭 * 𝑡 𝑖 -1 𝜓 𝑖 )).

Using the definition of 𝜔 𝛴 as a gauge-invariant quasi-free state with density 𝛴 , .

Using [𝛴 , 𝑆 * ⊗ 𝑈 * ] = 0, and omitting the details of the indexation of the matrix considered for the determinant,

𝜌 ∞ (𝑎 * (𝜓 1 ) ⋯ 𝑎 * (𝜓 𝛮 )𝑎(𝜓 ′ 𝛮 ) ⋯ 𝑎(𝜓 ′ 1 )) = lim 𝑡 →∞ det[ 𝑡 ∑ 𝑠 ′ ,𝑡 ′ =1 sin 2 𝛼 ⟨𝜓 ′ 𝜈 , 𝛭 𝑡 ′ -1 𝑊 𝜄 * 𝛴 (𝑆 ⊗ 𝑈 ) 𝑠 ′ -𝑡 ′ 𝜄𝑊 * 𝛭 * 𝑠 ′ -1 𝜓 𝜇 ⟩] 𝜇,𝜈 = det [⟨𝜓 ′ 𝜈 , ∞ ∑ 𝑠 ′ ,𝑡 ′ =1 sin 2 𝛼 ⟨𝛿 0 ⊗ 𝑣 , 𝛴 (𝑆 𝑠 ′ -𝑡 ′ 𝛿 0 ⊗ 𝑈 𝑠 ′ -𝑡 ′ 𝑣 )⟩ 𝛭 𝑡 ′ -1 𝑊 𝜄 * 𝜄𝑊 * 𝛭 * 𝑠 ′ -1 𝜓 𝜇 ⟩] 𝜇,𝜈 .
The fact that 𝜌 ∞ (𝑎 * (𝜓 1 ) ⋯ 𝑎 * (𝜓 𝛮 )𝑎(𝜓 ′ 𝛮 ′ ) ⋯ 𝑎(𝜓 ′ 1 )) = 0 whenever 𝛮 ≠ 𝛮 ′ follows from (5.12) of Step 1 if 𝛮 + 𝛮 ′ is odd, and from (5.13) of Step 2 and the fact that 𝜔 𝛴 is a gauge-invariant quasi-free state if 𝛮 + 𝛮 ′ is even. We conclude that 𝜌 ∞ ∶ 𝛢 ↦ lim 𝑡 →∞ (𝜔 𝛴 ⊗ 𝜌)(𝜏 𝑡 (𝟏 ⊗ 𝛢)) is a gauge-invariant quasi-free state with density ∞ ∑ 𝑠 ′ ,𝑡 ′ =1 ⟨𝛿 0 ⊗ 𝑣 , 𝛴 (𝑆 𝑠 ′ -𝑡 ′ 𝛿 0 ⊗ 𝑈 𝑠 ′ -𝑡 ′ 𝑣 )⟩ 𝛭 𝑡 ′ -1 sin 2 𝛼 𝑊 𝛲 𝑊 * 𝛭 * 𝑠 ′ -1 .

Step 4: the alternate formula. By definition, 𝛭 = 𝑊 (𝟏 + (cos 𝛼 -1)𝛲 ). Using the fact that 𝑊 is unitary and basic trigonometry, we find the identity sin 2 𝛼 𝑊 𝛲 𝑊 * = 𝟏 -𝛭 𝛭 * .

The formula (5.10) for 𝛥 given in the statement of the proposition then follows from a telescoping and reindexing of the summation. This knowledge of the asymptotic state in the sample 𝒮 allows us to investigate the number of particles there. We give more details on the particle number at each node 𝜈 of the graph in a more concrete example in Section 5.5. Corollary 5.4.4. Under assumptions (i)-(iv), in the limit 𝑡 → ∞, the number of particles in the sample is distributed as a sum of 𝑑 independent Bernoulli random variables with parameters 𝜆 0 , … , 𝜆 𝑑-1 ∈ (0, 1) that are the eigenvalues of the self-adjoint matrix 𝛥 .

Proof. By a standard continuity argument (see e.g. [DFP08, §IV.A]), we need only consider the case 0 < 𝛥 < 𝟏.

By standard results on giqf states (see e.g. [JOPP11, §4.7.3] or [DFP08, §IV.A]), the quasi-free state is associated to the density matrix

𝜌 ∞ = det(𝟏 -𝛥) 𝑑 ⨁ 𝑝=0 ( 𝛥 𝟏 -𝛥 ) ∧𝑝 .
Therefore, the probability of observing 𝑝 particles in the sample is given by

𝚸 (𝑝) = det(𝟏 -𝛥 ) tr (( 𝛥 𝟏 -𝛥 ) ∧𝑝 ).
Diagonalizing 𝛥 , labeling its eigenvalues 𝜆 0 , … , 𝜆 𝑑-1 and using cyclicity of the trace yields

𝚸 (𝑝) = (1 -𝜆 0 ) ⋯ (1 -𝜆 𝑑-1 ) ∑ 𝑘 1 <⋯<𝑘 𝑝 𝜆 𝑘 1 ⋯ 𝜆 𝑘 𝑑 (1 -𝜆 𝑘 1 ) ⋯ (1 -𝜆 𝑘 𝑑 ) = ∑ 𝑘 1 <⋯<𝑘 𝑝 𝜆 𝑘 1 ⋯ 𝜆 𝑘 𝑑 ∏ 𝑗 ∉{𝑘 𝑛 } 𝑝 𝑚=1
(1 -𝜆 𝑗 ).

This probability mass function is precisely that of a sum of 𝑑 independent Bernoulli random variables (𝛸 𝑖 ) 𝑑 𝑖 =1

where 𝛸 𝑖 ∼ Ber(𝜆 𝑖 ), also known as Poisson binomial distribution of parameter (𝜆 0 , … , 𝜆 𝑑-1 ).

Flux observables

Recall that 𝑈 is a unitary on 𝐂 𝑚 and {𝜋 𝑖 } 𝑚 𝑖 =1 is its set of spectral rank-one projectors associated to distinct eigenvalues {e i𝛾 𝑖 } 𝑚 𝑖 =1 . The commutation relation for the flux into the whole environment. This is in agreement 2 with formula (28) in [HJ17] and with a similar computation that can be done for the flux out of the sample. Of course, lim 𝑡 →∞ (𝜔 𝛴 ⊗ 𝜌)𝜏 𝑡 (𝛷 ℰ ) = 0.

In order to compute the limiting expectation of the flux operators 𝛷 1 , … , 𝛷 𝑚 , we need the long-time evolution of the quadratic monomials appearing in the defining formula. We may then compute the asymptotics of the flux 𝛷 𝑖 into the 𝑖 th part of the environment. If the coupling constant 𝛼 is small enough, we may then determine the sign of this flux by comparing 𝐹 𝑖 (1) with the different 𝐹 𝑗 (1), 𝑗 ≠ 𝑖 , weighted by the appropriate scalar products; see the remark below.

Proposition 5.4.6. Under assumptions (i)-(iv), we have lim 𝑡 →∞ (𝜔 𝛴 ⊗ 𝜌)𝜏 𝑡 (𝛷 𝑖 ) = (2 -2 cos 𝛼)(‖𝜋 𝑖 𝑣 ‖ 2 ⟨𝛿 0 ⊗ 𝑣 , 𝛴 (𝛿 0 ⊗ 𝑣 )⟩ -⟨𝛿 0 ⊗ 𝜋 𝑖 𝑣 , 𝛴 (𝛿 0 ⊗ 𝜋 𝑖 𝑣 )⟩ )

+ 2 Re sin 2 𝛼 ∞ ∑ 𝑡 ′ =1
⟨𝜓 * , 𝛭 𝑡 ′ -1 𝑊 𝜓 * ⟩ (‖𝜋 𝑖 𝑣 ‖ 2 ⟨𝑆 𝑡 ′ 𝛿 0 ⊗ 𝑈 𝑡 ′ 𝑣 , 𝛴 (𝛿 0 ⊗ 𝑣 )⟩ -⟨𝑆 𝑡 ′ 𝛿 0 ⊗ 𝑈 𝑡 ′ 𝜋 𝑖 𝑣 , 𝛴 (𝛿 0 ⊗ 𝜋 𝑖 𝑣 )⟩ ).

Remark 5.4.7. For 𝛼 ≪ 1, we have 2 -2 cos 𝛼 = 𝛼 2 + 𝛰 (𝛼 3 ) and hence

lim 𝛼→0 lim 𝑡 →∞ (𝜔 𝛴 ⊗ 𝜌)𝜏 𝑡 (𝛷 𝑖 ) 𝛼 2 = ‖𝜋 𝑖 𝑣 ‖ 2 (1 -‖𝜋 𝑖 𝑣 ‖ 2 )2 Re (( ∑ 𝑗 ≠𝑖 ‖𝜋 𝑗 𝑣 ‖ 2 1-‖𝜋 𝑖 𝑣 ‖ 2 𝐹 𝑗 (1)) -𝐹 𝑖 (1)),
assuming 𝑣 ≠ 𝜋 𝑖 𝑣 for each 𝑖 . Therefore, for small enough coupling, the sign of the flux into the 𝑖 th subreservoir is given by that of ⟨𝛿 0 ⊗ 𝑣 , 𝛴 (𝑆 𝑠 ′ -𝑡 ′ 𝛿 0 ⊗ 𝑈 𝑠 ′ -𝑡 ′ 𝑣 )⟩ ⟨𝜓 * , 𝛭 𝑡 ′ -1 𝑊 𝛲 𝑊 * 𝛭 * 𝑠 ′ -1 𝜓 * ⟩ .

The identity sin 2 𝛼 𝑊 𝛲 𝑊 * = 𝟏 -𝛭 𝛭 * then implies lim 𝑡 →∞ (𝜔 𝛴 ⊗ 𝜌)𝜏 𝑡 (𝛷 𝑖 ) = (cos 𝛼 -1) 2 ‖𝜋 𝑖 𝑣 ‖ 2 ⟨𝛿 0 ⊗ 𝑣 , 𝛴 (𝛿 0 ⊗ 𝑣 )⟩ + 2(cos 𝛼 -1) ⟨𝛿 0 ⊗ 𝜋 𝑖 𝑣 , 𝛴 (𝛿 0 ⊗ 𝜋 𝑖 𝑣 )⟩ -2 sin 2 𝛼 (cos 𝛼 -1)

‖𝜋 𝑖 𝑣 ‖ 2 Re ∞ ∑ 𝑡 ′ =1 ⟨𝜓 * , 𝛭 𝑡 ′ -1 𝑊 𝜓 * ⟩ ⟨𝑆 𝑡 ′ 𝛿 0 ⊗ 𝑈 𝑡 ′ 𝑣 , 𝛴 (𝛿 0 ⊗ 𝑣 )⟩ -2 sin 2 𝛼 Re ∞ ∑ 𝑡 ′ =1 ⟨𝜓 * , 𝛭 𝑡 ′ -1 𝑊 𝜓 * ⟩ ⟨𝑆 𝑡 ′ 𝛿 0 ⊗ 𝑈 𝑡 ′ 𝜋 𝑖 𝑣 , 𝛴 (𝛿 0 ⊗ 𝜋 𝑖 𝑣 )⟩ + sin 2 𝛼 ‖𝜋 𝑖 𝑣 ‖ 2 ⟨𝛿 0 ⊗ 𝑣 , 𝛴 𝛿 0 ⊗ 𝑣 )⟩ + 2 sin 2 𝛼 ‖𝜋 𝑖 𝑣 ‖ 2 Re ∞ ∑ 𝑡 ′ =1 ⟨𝑆 𝑡 ′ 𝛿 0 ⊗ 𝑈 𝑡 ′ 𝑣 , 𝛴 (𝛿 0 ⊗ 𝑣 )⟩ ⟨𝜓 * , 𝛭 𝑡 ′ 𝜓 * ⟩ .
Using the identities sin 2 𝛼 + (cos 𝛼 -1) 2 = 2 -2 cos 𝛼 and cos 𝛼 𝑊 𝜓 * = 𝛭 𝜓 * , we conclude lim 𝑡 →∞ (𝜔 𝛴 ⊗ 𝜌)𝜏 𝑡 (𝛷 𝑖 ) = -2(cos 𝛼 -1)‖𝜋 𝑖 𝑣 ‖ 2 ⟨𝛿 0 ⊗ 𝑣 , 𝛴 (𝛿 0 ⊗ 𝑣 )⟩ + 2(cos 𝛼 -1) ⟨𝛿 0 ⊗ 𝜋 𝑖 𝑣 , 𝛴 (𝛿 0 ⊗ 𝜋 𝑖 𝑣 )⟩

+ 2 sin 2 𝛼 ‖𝜋 𝑖 𝑣 ‖ 2 Re ∞ ∑ 𝑡 ′ =1 ⟨𝜓 * , 𝛭 𝑡 ′ -1 𝑊 𝜓 * ⟩ ⟨𝑆 𝑡 ′ 𝛿 0 ⊗ 𝑈 𝑡 ′ 𝑣 , 𝛴 (𝛿 0 ⊗ 𝑣 )⟩ -2 sin 2 𝛼 Re ∞ ∑ 𝑡 ′ =1
⟨𝜓 * , 𝛭 𝑡 ′ -1 𝑊 𝜓 * ⟩ ⟨𝑆 𝑡 ′ 𝛿 0 ⊗ 𝑈 𝑡 ′ 𝜋 𝑖 𝑣 , 𝛴 (𝛿 0 ⊗ 𝜋 𝑖 𝑣 )⟩ .

Examples

To give more detailed information on the profile of the particle density on the graph and to give further interpretation of other related quantities, we restrict our attention to simple models in which 𝑚 = 1.

Quantum walks on a ring

Consider the first example, the case of spin-1 2 quantum walkers on a cycle of 𝑛 vertices. We use the shorthands 𝑒 𝜈 ,± for the vector 𝛿 𝜈 ⊗ 𝑒 ±1 and 𝑛 𝜈 for the observable 𝑎 * (𝑒 𝜈 ,+ )𝑎(𝑒 𝜈 ,+ ) + 𝑎 * (𝑒 𝜈 ,-)𝑎(𝑒 𝜈 ,-). Under the hypotheses of our results, the particle density at the vertex 𝜈 , 𝑝 𝑡 (𝜈 ) ∶= (𝜔 𝛴 ⊗ 𝜌)𝜏 𝑡 (𝑛 𝜈 ), CHAPTER 5 converges to 𝜌 ∞ (𝑛 𝜈 ) = ⟨𝑒 𝜈 ,+ , 𝛥𝑒 𝜈 ,+ ⟩ + ⟨𝑒 𝜈 ,-, 𝛥 𝑒 𝜈 ,-⟩ as 𝑡 → ∞. We refer to the function of the node 𝜈 defined by this limit as the profile 𝑝.

Note that the block structure of 𝛭 implies ⟨𝑒 𝜈 ,± , 𝛭 2𝑗 +1 𝑒 𝜈 ,± ⟩ = 0 for each natural number 𝑗 . Therefore, the asymptotic profile 𝑝 of the particle density in the sample is independent of the odd coefficients in the series (5.7) describing the symbol 𝛴 (the initial state in the reservoir) via (5.8).

We can also consider the position correlations 𝐶 𝑡 (𝜈 , 𝜐 ) = (𝜔 𝛴 ⊗ 𝜌)(𝜏 𝑡 (𝑛 𝜈 𝑛 𝜐 )) -(𝜔 𝛴 ⊗ 𝜌)(𝜏 𝑡 (𝑛 𝜈 ))(𝜔 𝛴 ⊗ 𝜌)(𝜏 𝑡 (𝑛 𝜐 )).

In the large time limit, a standard computation shows lim ). If the series (5.7) terminates after the quadratic term (ℓ = 2), we can compute explicitly

𝑡 →∞ 𝐶 𝑡 (𝜈 , 𝜐 ) = 𝜌 ∞ (𝑛 𝜈 𝑛 𝜐 ) -𝜌 ∞ (𝑛 𝜈 )𝜌 ∞ (𝑛 𝜐 ) = -∑ 𝜏 𝜈 ,
𝑝(𝜈 ) = ⎧ ⎨ ⎩ 2𝐹 (0) -Re 𝐹 (2) (0)(cos 𝛼 sin 𝜃 𝑛 sin 𝜃 1 + sin 𝜃 1 sin 𝜃 2 ) 1 = 𝜈 2𝐹 (0) -Re 𝐹 (2) (0)(sin 𝜃 𝜈 -1 sin 𝜃 𝜈 + sin 𝜃 𝜈 sin 𝜃 𝜈 +1 )
1 < 𝜈 < 𝑛 2𝐹 (0) -Re 𝐹 (2) (0)(sin 𝜃 𝑛-1 sin 𝜃 𝑛 + cos 𝛼 sin 𝜃 𝑛 sin 𝜃 1 ) 𝜈 = 𝑛 .

In the limit 𝛼 → 0, we simply get lim 𝛼→0 𝑝(𝜈 ) = 2𝐹 (0) -(Re 𝐹 (2) (0))(sin 𝜃 𝜈 -1 sin 𝜃 𝜈 + sin 𝜃 𝜈 sin 𝜃 𝜈 +1 ).

A Large sample with disorder

We wish to consider a large ring with the coin matrix 𝐶 𝜈 at each vertex 𝜈 independently sampled from a common distribution. To this end, we consider a probability measure 𝜇 on [0, 2𝜋 ] and introduce the product measure (𝜇 × 𝜇) ×𝚭 on the product space 𝛺 ∶= ([0, 2𝜋 ] × [0, 2𝜋 ]) 𝚭 . We denote elements 𝜔 of 𝛺 in the form (𝜔 + 𝜈 , 𝜔 - 𝜈 ) 𝜈 ∈𝚭 . We also fix real numbers 𝑡 and 𝑟 with 𝑡 𝑟 ≠ 0 and 𝑡 2 + 𝑟 2 = 1.

Then, according to a random element 𝜔 we set 𝐶 𝜈 (𝜔) = ( e -i𝜔 + 𝜈 𝑡 -e -i𝜔 + 𝜈 𝑟 e -i𝜔 - 𝜈 𝑟 e -i𝜔 - 𝜈 𝑡

)

and the unitary

𝒲(𝜔) = ∑ 𝜈 ∈𝚭 ∑ 𝜏 =±1
𝛿 𝜈 +𝜏 ⟨𝛿 𝜈 , ⋅ ⟩ ⊗ 𝑒 𝜏 ⟨𝑒 𝜏 , 𝐶 𝜈 (𝜔) ⋅ ⟩ .

on ℓ 2 (𝚭) ⊗ 𝐂 2 . This is the form of quantum walk discussed in [START_REF] Joye | Dynamical localization of quantum walks in random environments[END_REF] (also see [START_REF] Joye | Density of states and Thouless formula for random unitary band matrices[END_REF][START_REF] Ahlbrecht | Disordered quantum walks in one lattice dimension[END_REF]); it arises as the general form (up to unitary equivalence) of a disordered quantum walk on 𝚭 where the quantum amplitudes of the transitions the right and to the left are independent random variables and the quantum transition probabilities between neighbouring sites are deterministic and independent of the site.

Note that

(𝑆 𝒮 ⊗ 𝟏)𝒲(𝜔)(𝑆 * 𝒮 ⊗ 𝟏) = 𝒲(𝜙𝜔) (5.14)
where 𝜙 is the shift (𝜔 + 𝜈 , 𝜔 - 𝜈 ) 𝜈 ∈𝚭 ↦ (𝜔 + 𝜈 +1 , 𝜔 - 𝜈 +1 ) 𝜈 ∈𝚭 on 𝛺 and 𝑆 * 𝒮 is the periodic shift on 𝐂 𝑛 . The corresponding walk on a ring of 𝑛 sites has one-particle dynamics prescribed by the unitary 𝑊 (𝑛) (𝜔) = 𝛿 𝑛-1 ⟨𝛿 0 , ⋅ ⟩ 𝑒 -1 ⟨𝑒 -1 , 𝐶 0 (𝜔) ⋅ ⟩ + 𝛿 1 ⟨𝛿 0 , ⋅ ⟩ 𝑒 +1 ⟨𝑒 +1 , 𝐶 0 (𝜔) ⋅ ⟩

+ 𝑛-2 ∑ 𝜈 =1 ∑ 𝜏 =±1 𝛿 𝜈 +𝜏 ⟨𝛿 𝜈 , ⋅ ⟩ ⊗ 𝑒 𝜏 ⟨𝑒 𝜏 , 𝐶 𝜈 (𝜔) ⋅ ⟩ + 𝛿 𝑛-2 ⟨𝛿 𝑛-1 , ⋅ ⟩ 𝑒 -1 ⟨𝑒 -1 , 𝐶 𝑛-1 (𝜔) ⋅ ⟩ + 𝛿 0 ⟨𝛿 𝑛-1 , ⋅ ⟩ 𝑒 +1 ⟨𝑒 +1 , 𝐶 𝑛-1 (𝜔) ⋅ ⟩ .
on ℓ 2 ({0, 1, … , 𝑛 -1}) ⊗ 𝐂 2 . If we chose the state 𝜓 * = 𝛿 0 ⊗ 𝑒 -1 for the coupling with the environment ℰ, we have to consider the random contraction 𝛭 (𝑛) (𝜔) defined by 𝛭 (𝑛) = (𝟏 + (cos 𝛼 -1)(𝛿 0 ⊗ 𝑒 -1 ) ⟨𝛿 0 ⊗ 𝑒 -1 , ⋅ ⟩)𝑊 (𝑛) .

Let us suppose for simplicity that the support of 𝜇 is a small nondegenerate interval. Let us also suppose that the series (5.7) terminates after finitely many terms. Adapting slightly the arguments of [START_REF] Joye | Density of states and Thouless formula for random unitary band matrices[END_REF] and [START_REF] Ahlbrecht | Disordered quantum walks in one lattice dimension[END_REF], we see that since 𝒲 is a band unitary matrix satisfying (5.14) and since 𝛭 (𝑛) CHAPTER 5

for any polynomial 𝑓 and for 𝜇 ×𝚭 -almost all 𝜔 ∈ 𝛺. The right-hand side is usually written as the integral as 𝑛 → ∞.

The techniques of [START_REF] Joye | Density of states and Thouless formula for random unitary band matrices[END_REF]ABJ15] give us detailed information on the support of the density of states 𝑘 for 𝒲. Indeed, the spectrum of the operator for 𝜔 identically 0 is made of the two bands

𝛬 ± = {𝑥 ± i √ 1 -𝑥 2 ∶ 𝑥 ∈ [-|𝑡 |, |𝑡 |]}.
Hence, a standard perturbation argument yields that for 𝜇 supported on a small enough interval, almost surely.

Therefore, by tuning 𝑡 and 𝜇 and taking 𝑛 large enough, one can bring the asymptotic average density lim 𝑡 →∞ 1 𝑛 ∑ 𝑛-1 𝜈 =0 𝑝 𝑡 (𝜈 ) arbitrarily close to any value in the essential range of the function 𝐒 1 ∋ 𝑧 ↦ 2 Re 𝐹 (𝑧) ∈ 𝐑. exists and satisfies

5.A Comments on the statistics

𝛺 + (0 ⊕ 𝟏) = i sin 𝛼 ∞ ∑ 𝑡 ′ =0
(𝑆 ⊗ 𝑈 ) 𝑡 ′ +1 𝜄𝑊 * ((𝟏 + (cos 𝛼 -1)𝜄 * 𝜄𝑊 * ) 𝑡 ′ .

In particular, one quickly recovers (0 ⊕ 𝟏)𝛺 * + (𝛴 ⊕ 𝛯 )𝛺 + (0 ⊕ 𝟏) = 0 ⊕ 𝛥 for all 𝛯 ∈ ℬ(ℋ 𝒮 ), showing that -at least when the initial state in the sample is a giqf state associated to a density 𝛯 invariant for the free dynamics -the limiting state is the same as in the case previously considered.

This reduction to a one-body problem also suggests the same behaviour for Bose statistics.

Introduction

Motivation

The mathematical description of the long time dynamics of many-body quantum systems coupled to several infinite reservoirs, and of the transport properties of non-equilibrium steady states they give rise to, is a long standing problem in quantum statistical mechanics, see e.g. [START_REF]Open quantum systems. III Recent developments[END_REF], [JOPP11]. To achieve a better understanding of those important conceptual issues, many efforts have been devoted to the construction and analysis of models in various contexts and regimes. Following More precisely, each reservoir consists in noninteracting fermionic QW on a bi-infinite chain, forced to hop to their left at discrete times. Hence the reservoirs free dynamics is the second quantization of a shift operator 𝑆 , while the free dynamics on the finite sample is the second quantization of an arbitrary one-particle unitary matrix 𝑊 . The interaction between the sample and each reservoir is given at the one-particle level by a unitary operator exchanging particles at specific sites of the sample and the reservoir, whose intensity is monitored by some coupling constant 𝛼. The overall discrete dynamics is defined by one step of interaction, one step of free evolution, one step of interaction, one step of free evolution and so on. Considering an initial state 𝜌(0) given by a product of quasifree states in each reservoir defined by a translation invariant symbol 𝛵 (two-point function), and an arbitrary (even) state 𝜌 S (0) in the sample, we determine the evolved state 𝜌(𝑡 )

for all time 𝑡 ∈ 𝚴.

Under mild assumptions, we prove that 𝜌(𝑡 ) converges as 𝑡 → ∞ to a quasifree state, irrespective of the initial state in the sample, which allows us to determine the reduced asymptotic states in the sample and in the reservoirs. We extend the results of [HJ17,[START_REF] Raquépas | On fermionic walkers interacting with a correlated structured environment[END_REF] to our multi-reservoir setup by showing that the reduced asymptotic states in the sample is also a quasifree non-equilibrium state whose symbol 𝛥 ∞ is fully parametrized by 𝛵 , 𝑊 and the coupling terms. Then, we turn to the flux into the different reservoirs and determine the steady state quantum mechanical expectation value of the flux observables, or QW currents. We establish the validity of the first law of thermodynamics under very general conditions, and describe the conditions on the initial state 𝜌(0) that induce nontrivial currents between the reservoirs. Assuming 𝜌 S (0) is quasifree as well and considering the entropy production rate 𝜎 (𝑡 ) defined in terms the relative entropy between the symbols for the quasifree states at time 0 and 𝑡 , we prove that the asymptotic entropy production rate 𝜎 + = lim 𝑡 →∞ 𝜎 (𝑡 ) exists and we characterize its strict positivity as a function of the initial state 𝛵 of the reservoirs, the dynamics 𝑊 in the sample and the couplings. Finally, we express the asymptotic entropy production rate 𝜎 + in terms of the asymptotic currents between the reservoirs through the sample.

Illustration

For concreteness, let us illustrate our main results in the case of an environment composed of two reservoirs.

We consider that the Hilbert space of the environment is the fermionic second quantization of the space ℓ 2 (𝚭) ⊗ 𝐂 2 with a basis {𝛿 𝑙 ∶ 𝑙 ∈ 𝚭} of ℓ 2 (𝚭) and a basis {𝜓 L , 𝜓 R } for 𝐂 2 . Heuristically ℓ 2 (𝚭) ⊗ {𝜓 L } supports the one-particle space a reservoir situated to the left of the sample and ℓ 2 (𝚭) ⊗ {𝜓 R } the one-particle space a reservoir situated to the right of the sample. The Hilbert space of the sample is the fermionic second quantization of ℋ S , a finite-dimensional space, so that the full one-particle space representing the sample and the environment is

ℋ tot = ℓ 2 (𝚭) ⊗ 𝐂 2 ⊕ ℋ S .
The free evolution of the sample is defined by a fixed oneparticle unitary operator 𝑊 on ℋ S , while that of the reservoirs is described by the one-particle shift operator on ℓ 2 (𝚭):

𝑆 𝛿 𝑙 = 𝛿 𝑙-1 .

To make the sample interact with the environment, we fix two orthonormal vectors 𝜙 L and 𝜙 R of ℋ S , representing the position of the sample which are in contact respectively with the left and the right reservoir, and we suppose that walkers in the sample which are in the state 𝜙 L [resp. Walkers at sites with a positive index 𝑙 in the environment cannot have interacted with the sample yet.

Suppose that, at the level of Fock spaces, the left [resp. right] reservoir is initially a quasifree state with translation invariant symbol that has sufficiently regular Fourier transform 𝑓 L [resp. 𝑓 R ] defined on [0, 2𝜋 ] and the sample is initially in an arbitrary even state. Then, under some generic assumptions on 𝑊 , the total system relaxes to a quasifree state whose zeroth order approximation in 𝛼 depends only on 𝑊 , 𝑓 L and 𝑓 R and not on the initial state on the sample. Moreover, a steady current of particles settles across the sample. Assuming that 𝑊 has only simple eigenvalues 𝜆 1 , ..., 𝜆 𝑛 with normalized eigenvectors 𝜒 1 , ..., 𝜒 𝑛 we can express the current into the right reservoir in the limit 𝛼 → 0 as

𝐽 R = 𝛼 2 𝑛 ∑ 𝑖 =1 | ⟨𝜒 𝑖 , 𝜙 R ⟩ | 2 | ⟨𝜒 𝑖 , 𝜙 L ⟩ | 2 | ⟨𝜒 𝑖 , 𝜙 R ⟩ | 2 + | ⟨𝜒 𝑖 , 𝜙 L ⟩ | 2 (𝑓 L (log 𝜆 𝑖 ) -𝑓 R (log 𝜆 𝑖 )) + 𝛰 (𝛼 3 ),
while the current 𝐽 L into the right reservoir is such that 𝐽 L + 𝐽 R = 0. If 𝑓 L (𝜃 ) > 𝑓 R (𝜃 ) for all 𝜃 ∈ 𝐑 then the current is necessarily directed from the left to the right. However, if the function 𝑓 R and 𝑓 L cannot be compared on the unit circle, then we may choose the sign of the current 𝐽 R by tuning the eigenvalues of 𝑊 . This last property occurs when considering for example the one-particle free dynamics 𝑊 of a coined spin-1 2 quantum walk on the sample provided by a cycle with an even number 𝑛 of vertices sketched in Figure 6.1.

With a basis {𝑥 𝜈 ⊗ 𝑒 𝜏 ∶ 𝜈 = 0, 1, … , 𝑛 -1; 𝜏 = -1, +1} of ℋ S = ℓ 2 ({0, 1, … , 𝑛 -1}) ⊗ 𝐂 2 , an oft-studied model for the one-particle dynamics is given by the unitary for some real parameters 𝛽, 𝜑 ∈ (0, 1 2 𝜋 ) independent of 𝜈 , the spectrum of 𝑊 is easily shown to be contained in {e i𝑢 ∶ 𝜑 ≤ ±𝑢 ≤ 𝜋 -𝜑} and is simple if 𝛽 ∉ (2𝜋 /𝑛)𝚭.

Before each step of the free walk, spin-up walkers located at sites 0 or 1 2 𝑛 of the ring can be exchanged with those of the left or the right reservoirs. That means the interaction term above has

𝜙 L = 𝑥 0 ⊗ 𝑒 +1 , 𝜙 R = 𝑥 𝑛/2 ⊗ 𝑒 +1 .
Moreover, the eigenvectors of 𝑊 being explicitly computable, the current into the right reservoir eventually takes the form

𝐽 R = 𝛼 2 ∑ 𝜆 𝑖 ∈sp 𝑊 sin 2 (2𝜑)| sin 𝜑 -1 + 𝜆 𝑖 2 | 2 4 (𝑓 L (log 𝜆 𝑖 ) -𝑓 R (log 𝜆 𝑖 )) + 𝛰 (𝛼 3 ).
Therefore, if 𝑓 L > 𝑓 R holds on open neighbourhoods of 𝜋 /2 and -𝜋 /2, while 𝑓 L < 𝑓 R on open neighbourhoods of 0 and 𝜋 , choosing the parameter 𝜑 small enough, one gets that 𝐽 R > 0, while considering i𝑊 instead of 𝑊 yields 𝐽 R < 0, for the same reservoirs, at small coupling; see Figure 6.2.

Structure of the paper

The paper is organized as follows: The next section is devoted to the description of our quantum dynamical system in a fairly general abstract framework. The long time asymptotic state is determined in Section 3, together with its restrictions to the sample and the reservoirs. Section 4 analyses the properties of the steady state currents of particles across the sample, while the study of the entropy production rate is conducted in Section 5. Eventually, the small coupling regime is analyzed in Section 6, and the paper closes with the proofs of certain results.

The setup

The spaces and one-particle dynamics

Let ℋ S be a finite-dimensional Hilbert space. Throughout the paper, our terminology implicitly relies on the assumption that ℋ S is the appropriate Hilbert space for the description of a quantum walker on a finite graph, sometimes referred to as a sample. An evolution for a quantum walker on a slight extension of this sample could be encoded in a unitary operator 𝛧 on a Hilbert space of the form ℋ B ⊕ ℋ S where ℋ B is the Hilbert space associated the extension. With respect to this direct sum decomposition, the blocks of 

on ℋ tot where 𝛲 0 ∶ ℓ 2 (𝚭) → ℓ 2 (𝚭) is the orthogonal projector on the span of 𝛿 0 and 𝛲 ⟂ 0 ∶= 𝟏 -𝛲 ⟂ 0 . Here, 𝛿 0 ∈ ℓ 2 (𝚭) is identified with a linear operator from 𝐂 to ℓ 2 (𝚭), so that e.g. 𝛿 0 ⊗ 𝛧 BS can indeed be considered as an operator from ℋ S ≃ 𝐂 ⊗ ℋ S to ℓ 2 (𝚭) ⊗ ℋ B . The unitary operator 𝔘 is quite natural to consider: it acts as the unitary operator 𝛧 on the space {𝛿 0 } ⊗ ℋ B ⊕ ℋ S ≃ ℋ B ⊕ ℋ S and then as the free evolution 𝑆 ⊗ 𝑈 on ℓ 2 (𝚭) ⊗ ℋ B ; see Section 6.6 for the discussion of the explicit link with the Introduction.

We make the following assumptions on the effective dynamics in the sample which was previously discussed in [HJ17,[START_REF] Raquépas | On fermionic walkers interacting with a correlated structured environment[END_REF] in important examples.

Assumption (Sp)

The spectrum of 𝛭 is contained in the interior of the unit disk.

The initial state in Fock space

To describe the evolution of a varying number of fermionic walkers in the system we consider observables in the canonical anticommutation algebra CAR(ℋ tot ) represented on the fermionic Fock space Γ -(ℋ tot ).

The fermionic Fock space space Γ -(ℋ tot ) is unitarily equivalent to the tensor product Γ -(ℓ 2 (𝚭)⊗ℋ B )⊗ Γ -(ℋ S ) of Fock spaces through a map E such that E𝑎 * (𝑣 ⊕ 𝑤 )E -1 = 𝑎 * (𝑣 ) ⊗ 𝟏 + (-1) dΓ(𝟏) ⊗ 𝑎 * (𝑤 ) for all 𝑣 ∈ ℓ 2 (𝚭) ⊗ ℋ B and 𝑤 ∈ ℋ S . This map associates quasifree states on CAR(ℋ tot ) with a symbol of the form 𝛵 ⊕ 𝛥 for some suitable 𝛵 ∶ ℓ 2 (𝚭) ⊗ ℋ B → ℓ 2 (𝚭) ⊗ ℋ B and 𝛥 ∶ ℋ S → ℋ S with the product of the corresponding quasifree states on CAR(ℓ 2 (𝚭) ⊗ ℋ B ) and CAR(ℋ S ) respectively. We refer the reader to [AJPP06, §5.1,6.3] for a more thorough discussion.

We recall that 𝜔 𝛵 is a gauge-invariant quasifree state on CAR(ℓ 2 (𝚭) ⊗ ℋ B ) with symbol 0 ≤ 𝛵 ≤ 𝟏 if 𝜔 𝛵 [𝑎 * (𝑣 𝑛 ) ⋯ 𝑎 * (𝑣 1 )𝑎(𝑢 1 ) ⋯ 𝑎(𝑢 𝑚 )] = 𝛿 𝑛,𝑚 det[⟨𝑢 𝑖 , 𝛵 𝑣 𝑗 ⟩] for all choices of 𝑣 1 , … , 𝑣 𝑛 , 𝑢 1 , … , 𝑣 𝑚 ∈ ℓ 2 (𝚭) ⊗ ℋ B , where 𝑎 * and 𝑎 are the usual Fock space creation and annihilation operators -and similarly for other spaces. We refer the reader to [DFP08] for the basic theory of such states.

We will always make either of the following two assumptions on the initial state of the system, the second being technically more convenient and allowing simpler expressions for quantities of interest:

Assumption (IC)

The initial state of the joint system is of the form

𝜌(0) = E -1 (𝜔 𝛵 ⊗ 𝜌 S )E
where 𝜌 S is an even state on the algebra CAR(ℋ S ) and 𝜔 𝛵 is a gauge-invariant quasifree state on the algebra CAR(ℓ

2 (𝚭) ⊗ ℋ B ) with symbol 𝛵 ∶ ℓ 2 (𝚭) ⊗ ℋ B → ℓ 2 (𝚭) ⊗ ℋ B , 0 ≤ 𝛵 ≤ 𝟏 such that [𝛵 , 𝑆 ⊗ 𝑈 ] = 0.
In addition, we assume that for some one-particle selfadjoints operators 𝑘 E , 𝑘 S and 𝑣 and compare the resulting dynamics on Fock space to the content of Section II of [BJM14] using the exponential law for fermions.

However, in general, the effective dynamics in the sample The difference between 𝛥 𝑡 RIS obtained in the ris scenario and our general 𝛥 𝑡 amounts to the terms with 𝑛 ≠ 𝑚 in the latter, which generically do not cancel out. More generally, tracing out at steps that are multiples of a number 𝜏 ≥ 2 for which 𝛵 0,𝑚 = 0 for 𝑚 > 𝜏 , a similar computation shows that the dynamics differs from the original one by terms with no particular structure for cancellation.

On the other hand, the fact that we obtain our dynamics from the second quantization of a one-body operator imposes a conservation law which rules out certain ris scenarios where nontrivial entropy production rates arise from interaction with a single reservoir; see e.g. the discussions surrounding Lemma 6.5 in [HJPR17] and Section 3.4 in [BB20].

Mixing

We present several results on the large-time behaviour of the system. While explicit formulae using the canonical relations in Fock space have proved to be useful in [HJ17,[START_REF] Raquépas | On fermionic walkers interacting with a correlated structured environment[END_REF], we here focus on a scattering approach to the problem. We set 𝑌 0 ∶= 𝐶 (6.6) and 𝑌 𝑚 ∶= 𝛧 BS 𝛭 𝑚-1 𝛧 SB (6.7)

for 𝑚 ≥ 1 . Heuristically, 𝑌 𝑚 encodes what happens to the wave function of a fermion from a reservoir which enters the sample, spends 𝑚 -1 more time steps there and then exits the sample.

Scattering and the asymptotic state

It is straightforward to check by induction that

𝔘 𝑡 -∑ 𝑛≠0,…,𝑡 -1 𝛿 𝑛-𝑡 𝛿 * 𝑛 ⊗ 𝑈 𝑡 ⊕ 0 = ( ∑ 𝑡 -1 𝑙=0 ∑ 𝑡 -𝑙-1 𝑚=0 𝛿 𝑙-𝑡 +𝑚 𝛿 * 𝑙 ⊗ 𝑈 𝑡 -𝑙-𝑚 𝑌 𝑚 𝑈 𝑙 ∑ 𝑡 -1 𝑚=0 𝛿 -𝑡 +𝑚 ⊗ 𝑈 𝑡 -𝑚 𝛧 BS 𝛭 𝑚 ∑ 𝑡 -1 𝑚=0 𝛿 * 𝑡 -𝑚-1 ⊗ 𝛭 𝑚 𝛧 SB 𝑈 𝑡 -𝑚-1 𝛭 𝑡
) . (6.8) for all 𝑡 ≥ 0. As is customary, we investigate the behaviour of 𝔘 𝑡 for large 𝑡 through Møller-like operators.

Multiplying (6.8) by (𝑆 ⊗ 𝑈 ⊕ 𝟏) -𝑡 on the right and performing a reindexation to eliminate explicit occurrences of 𝑡 in the summand for the double sum, we find

𝔘 𝑡 (𝑆 ⊗ 𝑈 ⊕ 𝟏) -𝑡 -∑ 𝑛≠-𝑡 ,…,-1 𝛿 𝑛 𝛿 * 𝑛 ⊗ 𝟏 ⊕ 0 = ( ∑ 𝑡 -1 𝑚=0 ∑ 𝑡 -𝑚 𝑙=1 𝛿 -𝑙 𝛿 * -𝑚-𝑙 ⊗ 𝑈 𝑙 𝑌 𝑚 𝑈 -𝑚-𝑙 ∑ 𝑡 -1 𝑚=0 𝛿 -𝑡 +𝑚 ⊗ 𝑈 𝑡 -𝑚 𝛧 BS 𝛭 𝑚 ∑ 𝑡 -1 𝑚=0 𝛿 * -𝑚-1 ⊗ 𝛭 𝑚 𝛧 SB 𝑈 -𝑚-1 𝛭 𝑡 ) (6.9)
for 𝑡 ≥ 0. Multiplying the adjoint of (6.8) by (𝑆 ⊗ 𝑈 ⊕ 𝟏) 𝑡 on the right and performing a reindexation, we find a similar formula for 𝔘 -𝑡 (𝑆 ⊗ 𝑈 ⊕ 𝟏) 𝑡 with 𝑡 ≥ 0.

Under Assumption (Sp), it is thus easy to see from the matrix elements that the limits Proof. We expand

(𝟏 ⊗ 𝟏 ⊕ 0)(𝛺 + 𝑈 ) * 𝛺 - 𝑈 (𝟏 ⊗ 𝟏 ⊕ 0) = ∑ 𝑚≥0 ∑ 𝑙≥1 𝛿 -𝑙 𝛿 * -𝑚-𝑙 ⊗ 𝑈 𝑙 𝑌 𝑚 𝑈 -𝑚-𝑙 + ∑ 𝑚 ′ ≥0 ∑ 𝑙 ′ ≥𝑚 ′ 𝛿 𝑙 ′ 𝛿 * 𝑙 ′ -𝑚 ′ ⊗ 𝑈 -𝑙 ′ 𝑌 𝑚 ′ 𝑈 -𝑚 ′ +𝑙 ′ + ∑ 𝑚 ′ ≥0 ∑ 𝑚≥0 𝛿 𝑚 ′ 𝛿 * -𝑚-1 ⊗ 𝑈 -𝑚 ′ 𝛧 BS 𝛭 𝑚 ′ 𝛭 𝑚 𝛧 SB 𝑈 -𝑚-1 .
Rewriting the double sum on the last line in terms of 𝑌 𝑚 ″ with 𝑚 ″ = 𝑚 + 𝑚 ′ yields the desired formula.

We use a subscript 𝑈 on some of the objects introduced in this section because it is at times convenient to factor out the contribution from the unitary 𝑈 and then consider the special case 𝑈 = 𝟏. For example, 

∏ ℎ=1 𝑎(𝑉 ℎ )) * ( 𝛮 ′ ∏ ℎ ′ =1 𝑎(𝑉 ′ ℎ ′ ))𝛤 (𝔘) 𝑡 ] = 𝛿 𝛮 ,𝛮 ′ det[⟨𝑉 ′ ℎ ′ , 𝛵 ∞ tot 𝑉 ℎ ⟩] 𝛮 ℎ,ℎ ′ =1
for an arbitrary choice of 𝛮 , 𝛮 ′ ≥ 0 and 𝑉 1 , … , 𝑉 𝛮 , 𝑉 ′ 1 , … , 𝑉 ′ 𝛮 ′ ∈ ℋ tot . Because 𝛵 commutes with 𝑆 ⊗ 𝑈 , we have

𝜌(0)[𝛢] = 𝜌(0)[𝛤 (𝑆 ⊗ 𝑈 ⊕ 𝟏) 𝑡 𝛢𝛤 (𝑆 * ⊗ 𝑈 * ⊕ 𝟏) 𝑡 ]
for all 𝛢 ∈ CAR(ℋ tot ) and the Bogolyubov relation gives that the identity to be shown is equivalent to lim for each ℎ = 1, … , 𝛮 by Proposition 6.3.1, and similarly with primes. Hence, by continuity of the fermionic creation and annihilation operators as functions from (ℋ tot , ‖ ⋅ ‖) to (ℬ(Γ -(ℋ tot )), ‖ ⋅ ‖), the limit in (6.18) will exist if and only if the limit lim

𝑡 →∞ 𝜌(0) [( 𝛮 ∏ ℎ=1 𝑎((𝛺 (𝑡 ) 𝑈 ) * 𝑉 ℎ )) * 𝛮 ′ ∏ ℎ ′ =1 𝑎((𝛺 (𝑡 ) 𝑈 ) * 𝑉 ′ ℎ ′ )] = 𝛿 𝛮 ,𝛮 ′ det[⟨𝑉 ′ ℎ ′ , 𝛵 ∞ tot 𝑉 ℎ ⟩] 𝛮 ℎ,ℎ ′ =1 , ( 6 
𝑡 →∞ 𝜔 𝛵 [( 𝛮 ∏ ℎ=1 𝑎((𝟏 ⊗ 𝟏 ⊕ 0)(𝛺 (𝑡 ) 𝑈 ) * 𝑉 ℎ )) * 𝛮 ′ ∏ ℎ ′ =1 𝑎((𝟏 ⊗ 𝟏 ⊕ 0)(𝛺 (𝑡 ) 𝑈 ) * 𝑉 ′ ℎ ′ )]
exists, in which case they will coincide. In particular, we may as well assume that the initial state 𝜌 S (0) is quasifree with vanishing symbol.

Under this extra assumption, the state 𝜌(𝑡 ) is quasifree for all 𝑡 ∈ 𝚴 and has symbol 𝛵 tot (𝑡 ):

𝜌(0) [( 𝛮 ∏ ℎ=1 𝑎((𝛺 (𝑡 ) 𝑈 ) * 𝑉 ℎ )) * 𝛮 ′ ∏ ℎ ′ =1 𝑎((𝛺 (𝑡 ) 𝑈 ) * 𝑉 ′ ℎ ′ )] = 𝛿 𝛮 ,𝛮 ′ det[⟨𝑉 ′ ℎ ′ , 𝛵 tot (𝑡 )𝑉 ℎ ⟩] 𝛮 ℎ,ℎ ′ =1 ,
where

𝛵 tot (𝑡 ) = 𝛺 (𝑡 ) 𝑈 (𝛵 ⊕ 0)(𝛺 (𝑡 ) 𝑈 ) * .
Therefore, we will be done if we can show that 𝛵 tot (𝑡 ) converges weakly to the proposed limit 𝛵 ∞ tot . But this is easily deduced from Proposition 6.3.1.

We are now in a position to get the symbol of the restriction of the state to the sample, i.e. Proof. Since,

𝛥 ∞ ∶= (0 ⊕ 𝟏)𝛵 ∞ tot (0 ⊕ 𝟏). ( 6 
(0 ⊕ 𝟏)𝛺 - 𝑈 (𝟏 ⊕ 0) = ∞ ∑ 𝑚=0 𝛿 * -𝑚-1 ⊕ 𝛭 𝑚 𝛧 SB 𝑈 -𝑚-1
by Proposition 6.3.1, (6.19) gives

𝛥 ∞ = ∞ ∑ 𝑚,𝑛=0 𝛭 𝑚 𝛧 SB 𝑈 -𝑚-1 𝛵 -𝑚-1,-𝑛-1 𝑈 𝑛+1 𝛧 * SB (𝛭 * ) 𝑛 = ∞ ∑ 𝑚,𝑛=0
𝛭 𝑚 𝛧 SB 𝛯 𝑚-𝑛 𝛧 * SB (𝛭 * ) 𝑛 using 𝛵 -𝑚-1,-𝑛-1 = 𝑈 𝑚+1 𝛯 𝑚-𝑛 𝑈 -𝑛-1 . Splitting the contributions with 𝑚 -𝑛 > 0, 𝑚 -𝑛 = 0 and 𝑚 -𝑛 < 0 and reindexing with 𝑙 = |𝑚 -𝑛| gives the proposed formula.

Remark 6.3.5. If Assumption (IC+) holds, the symbol of the restriction to the sample at time 𝑡 reads

𝛥 𝑡 = 𝛭 𝑡 𝛥 (𝛭 * ) 𝑡 + 𝑡 -1 ∑ 𝑚=0 𝑡 -1 ∑ 𝑛=0 𝛭 𝑚 𝛧 SB 𝛵 0,𝑚-𝑛 𝑈 𝑛-𝑚 𝛧 * SB (𝛭 * ) 𝑛 .
We now turn our attention to the block

𝛵 ∞ E ∶= (𝟏 ⊗ 𝟏 ⊕ 0)𝛵 ∞ tot (𝟏 ⊗ 𝟏 ⊕ 0)
of 𝛵 tot corresponding to the environment. As a direct consequence of Proposition 6.3.1, we have the following corollary.

Corollary 6.3.6. Suppose that Assumption (Sp) holds and let 𝜌(0) be an initial state on Γ -(ℋ tot ) as in Assumption (IC). Then,

𝛿 * 𝑛 𝛵 ∞ E 𝛿 𝑚 = ⎧ ⎨ ⎩ 𝑈 -𝑛 (∑ 𝑙,𝑙 ′ ≥0 𝑌 𝑙 𝛯 𝑙-𝑙 ′ +𝑚-𝑛 𝑌 * 𝑙 ′ ) 𝑈 𝑚 𝑛 < 0, 𝑚 < 0, 𝑈 -𝑛 (∑ 𝑙≥0 𝑌 𝑙 𝛯 𝑙+𝑚-𝑛 ) 𝑈 𝑚 𝑛 < 0, 𝑚 ≥ 0, 𝑈 -𝑛 𝛯 𝑚-𝑛 𝑈 𝑚 𝑛 ≥ 0, 𝑚 ≥ 0.
(6.20)

In particular, 𝛿 * 𝑛 𝛵 ∞ E 𝛿 𝑚 = 𝛿 * 𝑛 𝛵 𝛿 𝑚 for 𝑛, 𝑚 ≥ 0.

Note that the asymptotic symbol 𝛵 ∞ E needs not commute with 𝑆 ⊗ 𝑈 ; blocks corresponding to positions having already interacted (negative indices) are given a different expression than those corresponding to position which have not yet interacted. This is inherent to our choice of dynamics in the environment, which prevents the effects of the interaction taking place at the site zero to affect the state at locations that have not yet been in contact with the sample. We will come back to this point in the next subsection.

Fourier representation

Many of the expressions call for a representation in Fourier space that we will take advantage of in what follows.

We introduce the unitary map ℱ ∶ ℓ 2 (𝚭) ⊗ ℋ B → 𝐿 2 ([0, 2𝜋 ]; ℋ B ) as follows: for 𝜓 = ∑ 𝑙∈𝚭 𝛿 𝑙 ⊗ 𝜓 𝑙 with ∑ 𝑙∈𝚭 ‖𝜓 𝑙 ‖ 2 < ∞ and 𝜃 ∈ [0, 2𝜋 ], we set

(ℱ𝜓 )(𝜃 ) ∶= ∑ 𝑙∈𝚭 e i𝑙𝜃 𝜓 𝑙 .
In practice, we will more often use the notation We will make use of this representation for 𝛯 :

ψ ∶= ℱ𝜓 . Let 𝑅 ∶ ℓ 2 (𝚭) ⊗ ℋ B → ℓ 2 (𝚭) ⊗ ℋ B have
Ξ (𝜃 ) = ∑ 𝑙∈𝚭 e i𝑙𝜃 𝛯 𝑙 .
Recall That 𝛯 is of the form (6.21) by construction (under Assumption (IC)), with blocks Proof. In view of (6.14) and (6.15), it suffices to prove the lemma with 𝑈 = 𝟏. Let Ŷ(𝜃 ) ∶= ∑ 𝑙≥0 e -i𝑙𝜃 𝑌 𝑙 be as in the previous lemma; it is clear that it suffices to show that Ŷ(𝜃 ) for all 𝜃 ∈ 𝐑.

Given the definitions 𝑌 0 ∶= 𝐶 and 𝑌 𝑙 ∶= 𝛧 BS 𝛭 𝑙-1 𝛧 SB for 𝑙 ≥ 1, the operator Ŷ(𝜃 ) can be expressed in terms of resolvents of 𝛭 : Ŷ(𝜃 ) = 𝐶 + ∑ 𝑙≥0 e -i𝜃 e -i𝑙𝜃 𝛧 BS 𝛭 𝑙 𝛧 SB = 𝐶 -𝛧 BS (𝛭 -e i𝜃 ) -1 𝛧 SB (6.25) an expression which is well defined for all 𝜃 ∈ 𝐑 under Assumption (Sp). The operators involved correspond to the block representation (6.1) of the unitary operator 𝛧. Unitarity of Ŷ is given by the next lemma and the present lemma follows.

Lemma 6.3.8. Let 𝛧 be a unitary operator with block decomposition 𝛧 = ( 𝑎 𝑏 𝑐 𝑑 ) with respect to an orthogonal direct sum decomposition of a finite-dimensional Hilbert space. Then, for all 𝜂 ∈ 𝐑, the bounded operator 𝑠(𝜂) ∶= 𝑎 -𝑏 (𝑑 -e i𝜂 ) -1 𝑐 is a unitary operator on the first subspace in the decomposition.

Proof. Simply expand the expression 𝑠(𝜂)𝑠(𝜂) * and make use of the relation satisfied by 𝑎, 𝑏 , 𝑐 and 𝑑 as a consequence of unitarity of 𝛧 as well as of the identity 𝑑(𝑑 -e i𝜂 ) -1 = 𝟏 + e i𝜂 (𝑑 -e i𝛼 ) -1 .

Fluxes of particles

We associate to a bounded selfadjoint operator 𝛸 ∶ ℋ B → ℋ B the flux

𝛷 𝛸 = dΓ(𝔘 * (𝟏 ⊗ 𝛸 ⊕ 0)𝔘 -𝟏 ⊗ 𝛸 ⊕ 0).
Using the block form of 𝔘, one can check that

𝔘 * (𝟏 ⊗ 𝛸 ⊕ 0)𝔘 -𝟏 ⊗ 𝛸 ⊕ 0 = ( 𝛲 0 ⊗ 𝛸 + 𝛲 0 ⊗ 𝐶 * 𝛸 𝐶 𝛿 0 ⊗ 𝐶 * 𝛸 𝛧 BS 𝛿 * 0 ⊗ 𝛧 * BS 𝛸 𝐶 𝛧 * BS 𝛸 𝛧 BS )
is trace class. The interest of such quantities is best seen through the case of particle fluxes between the different parts of the environment, hereafter referred to as reservoirs, whose definition requires the structure in Assumption (Bl). Such a structure is evidently present in the special case discussed in the introduction. Formally, the (infinite) number of fermions in the reservoir ℓ 2 (𝚭) ⊗ 𝛱 𝑘 ℋ B is given by the observable dΓ(𝟏 ⊗ 𝛱 𝑘 ⊕ 0), and the number of fermions that enter this reservoir in one time step is given by the observable 𝛷 𝑘 ≡ 𝛷 𝛱 𝑘 = 𝛤 (𝔘 * ) dΓ(𝟏 ⊗ 𝛱 𝑘 ⊕ 0)𝛤 (𝔘) -dΓ(𝟏 ⊗ 𝛱 𝑘 ⊕ 0) on Γ -(ℋ tot ).

Back to the general observable 𝛸 , we know from Section 6.3.1 that the asymptotic state of the full system, denoted 𝜌(∞), is quasifree with symbol 𝛵 ∞ tot = 𝛺 - 𝑈 (𝛵 ⊕ 0)(𝛺 - 𝑈 ) * if 𝜌(0) satisfies Assumption (IC). Hence, the steady-state expectation value of the flux 𝛷 𝛸 , or current, is given by Proof sketch. We consider the case 𝑈 = 𝟏 to lighten the notation. Use cyclicity of the trace to rewrite the trace over ℋ S as a trace over ℓ 2 (𝚭) ⊗ ℋ B . Then, expand the formulae for 𝛵 ∞ E , 𝛵 ∞ ES , 𝛵 ∞ SE and 𝛥 ∞ . The part on ℓ 2 (𝚭) is restricted to the span of 𝛿 0 and we are left with a trace on ℋ B . Rewrite this trace gathering all occurrences of 𝑌 𝑚 defined by (6.6)-(6.7): which gives the second formula for 𝐽 𝑘 and the summation property of 𝐶 𝑘,𝑘 ′ (𝜃 ).

Entropy production

Since nontrivial asymptotic currents can develop between the reservoirs of the system at hand, we expect that the total system genuinely settles into a nonequilibrium steady state. Another key signature of such states is the nontrivial entropy production rate they give rise to. We prove here the existence and strict positivity of the asymptotic entropy production rate related to the convergence towards the nonequilibrium steady state.

More precisely, we work under Assumption (IC+) and provide a convergence result for the quantity for any trace-class operators 𝛸 and 𝑌 with 𝜖 ≤ 𝛸 , 𝑌 ≤ 𝟏 -𝜖 on some common Hilbert space. This definition is motivated by a formula for the relative entropy between quasifree states which is well established for finitedimensional systems [DFP08, §IV.B] and the observation that 𝛺 (𝑡 ) 𝑈 is a finite-rank perturbation of the identity. It will also be a posteriori justified by the relation to fluxes established in Corollary 6.5.3.

The following theorem states that the entropy production rate converges to the integral of the relative entropies of matrices related to the initial and asymptotic states of the environment introduced in Section 6.3.2. Its proof is postponed to Section 6.8. Theorem 6.5.1. Under Assumption (IC+), 𝛵 tot (𝑡 ) -𝛵 tot (0) has finite rank and 𝜎 (𝑡 ) in (6.31) is well defined for all 𝑡 ∈ 𝚴. If, in addition, Assumption (Sp) holds, then the limit At this stage, the picture of entropy production is still short of a study of the statistical fluctuations in measurement processes of physical observable properly related to the "information-theoretical" notion of entropy production; see e.g. [JOPP11, §4.4.5].

Discussion for small coupling strength

In order to investigate the regime where the interaction between the sample and its environment is weak, we will consider a special case where the unitary operator 𝛧 on ℋ B ⊕ ℋ S is of the form In this particular setup, we can give a more tractable condition for the Assumption (Sp) to hold true as well as more explicit formulas as the coupling strength 𝛼 tends to 0.

Proposition 6.6.1. Let us consider 𝛭 (𝛼) ∶= 𝑊 cos(𝛼 √ 𝛢𝛢 * ) for 𝛼 ∈ 𝐑, and write 𝒱 ⊆ ℋ S the range of 𝛢.

Then, there exists 𝛼 𝛢 > 0 depending on 𝛢 only such that the following properties are equivalent:

1. The spectrum of 𝛭 (𝛼) is contained in the interior of the unit disc for all 𝛼 ∈ (-𝛼 𝛢 , 𝛼 𝛢 ),

2. The subspace 𝒱 is contained in no strict subspace of ℋ S which is stable by 𝑊 , 3. We have

span 𝑖 =0,…,dim ℋ S 𝑊 𝑖 𝒱 = ℋ S ,
The equivalence between the second and third property is well known and only included because of its relation to linear control theory, where it is called the Kalman condition.

Proof. Let {𝜇 𝑖 } 𝑖 ≥0 be the (nonnegative) eigenvalues of √ 𝛢𝛢 * and let {𝑝 𝑖 } 𝑖 ≥0 be the corresponding spectral projectors. We include 0 as 𝜇 0 , possibly at the cost of having 𝑝 0 = 0. Choose 𝛼 𝛢 > 0 small enough that 𝜈 𝑖 𝑝 𝑖 .

Note that 𝑝 0 is the orthogonal projection onto the kernel of √ 𝛢𝛢 * , which coincides with the orthogonal complement of 𝒱.

If the first property is not satisfied, then there exists a normalized eigenvector 𝜙 of 𝛭 (𝛼) with eigenvalue 𝜆 with |𝜆| ≥ 1 for some 𝛼 ∈ (-𝛼 𝛢 , 𝛼 𝛢 ). Then, We conclude that 𝒱 is contained in the orthogonal complement of the span of 𝜙, which is stable by 𝑊 since 𝜙 is an eigenvector of 𝑊 . Thus the second property is not satisfied.

Conversely, if the second property is not satisfied, then there exists an eigenvector 𝜙 of 𝑊 in the orthogonal complement of 𝒱. Then, 𝜙 is clearly an eigenvector of 𝛭 (𝛼) with eigenvalue on the unit circle for all 𝛼, which implies in particular that the first property is not satisfied. where 𝑐 𝑗 ∶= tr[𝑄 𝑗 (0)𝛢𝛢 * ] > 0.

Before we proceed with the proof, let us remark that the appearance of a logarithm is due to the fact that we have defined our Fourier representation on the interval rather than on the unit circle. By periodicity of Ξ and the fact that 𝜆 𝑖 is on the unit circle, the choice of logarithm is irrelevant.

Proof of Theorem 6.6.3. By Proposition 6.6. 
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Since 𝑊 is unitary we have 𝑄 𝑗 (0) * = 𝑄 𝑗 (0) and 𝜆 𝑗 ′ (0) = 𝜆 𝑗 ′ (0) -1 . If 𝜆 𝑗 (0) ≠ 𝜆 𝑗 ′ (0), the expansion (6.35) gives 1 1 -𝜆 𝑗 (𝛼)𝜆 𝑗 ′ (𝛼) = 1 1 -𝜆 𝑗 (0)𝜆 𝑗 ′ (0) -1 + 𝛰 (𝛼 2 ) which, multiplied by 𝛼 2 , vanishes as 𝛼 → 0. This leaves the terms for which 𝜆 𝑗 (0) = 𝜆 𝑗 ′ (0) (i.e.

𝑗 , 𝑗 ′ ∈ 𝛪 𝑖 for some 𝑖 ), for which we have Proof. The starting point is the expression (6.29) for 𝐽 𝑘 .

𝑌 0 = 𝐶 = cos(𝛼 √ 𝛢 * 𝛢) = 𝛪 -𝛼 2 2 𝛢 * 𝛢 + 𝛰 (𝛼 4 ) 𝑌 𝑙 = 𝛧 BS 𝛭 𝑙-1 𝛧 SB = -𝛼 2 𝛢 * 𝛭 𝑙-1 𝑊 𝛢 + 𝛰 (𝛼 3 ‖𝛭 𝑙-1 ‖),

where 𝛭 𝑙-1 = 𝛭 (𝛼) 𝑙-1 is such that ‖𝛭 (𝛼) 𝑙-1 ‖ is uniformly bounded in 𝑙 > 0 and 𝛼 ∈ 𝛺. Thus, using Equation (6.29) we have Now, 1 𝜆 𝑗 (𝛼) 𝑄 𝑗 (𝛼)𝑊 = 𝑄 𝑗 (0) + 𝛰 (𝛼), and 𝐹 is differentiable (since ∑ 𝑘∈𝚭 |𝑘|‖𝛯 𝑘 ‖ < +∞) so 𝐹 (log 𝜆 𝑗 (𝛼)) = 𝐹 (log 𝜆 ℎ ) + 𝛰 (𝛼) where ℎ is such that 𝑗 ∈ 𝛪 ℎ . Taking into account the identity ∑ 𝑗 ∈𝛪 𝑄 𝑗 (0) = 𝟏, and repeating the argument for the second sum, we get Writing 𝛭 = ∑ 𝑗 ∈𝛪 𝜆 𝑗 (𝛼)𝑄 𝑗 (𝛼) and performing the summations as in the proof of Theorem 6.6.3, we obtain We also saw in the proof of Theorem 6.6.3 that as 𝛼 → 0 𝛼 2 1 -𝜆 𝑗 (𝛼)𝜆 𝑗 ′ (𝛼) = { 2 (𝑐 𝑗 +𝑐 𝑗 ′ ) + 𝛰 (𝛼 2 ) if 𝜆 𝑗 (0) = 𝜆 𝑗 ′ (0) 𝛰 (𝛼 2 ) if 𝜆 𝑗 (0) ≠ 𝜆 𝑗 ′ (0) and since 𝛧 SB = -𝑖 𝛼𝑊 𝛢 + 𝛰 (𝛼 3 ) and 𝛧 BS = -𝑖 𝛼𝛢 * + 𝛰 (𝛼 3 ) we obtain CHAPTER 6

Similarly, using the differentiability of 𝑧 ↦ ∑ 𝑑>0 𝑧 𝑑 𝛯 𝑑 we have Adding up all the previous estimates we get for the order-𝛼 2 term in parentheses in (6.37) Note that 𝛢𝛢 * being an orthogonal projector on ℋ S , Lemma 6.6.2 applies.

The following proposition expresses, to leading order in the coupling parameter 𝛼, the currents as a sum of the contributions from channels corresponding to the eigenvalues {𝜆 𝑖 } 𝑖 ∈𝛪 associated to normalized eigenvectors {𝜒 𝑖 } 𝑖 ∈𝛪 of 𝑊 , each expressed in terms of a simple star-shaped linear circuit.

Proposition 6.6.5. Suppose that Assumption (Sp) holds for all 𝛼 ∈ 𝛺∩𝐑 and that Assumptions (IC) and (Sim) are satisfied in the setup described above. Then the symbol 𝛥 ∞ 𝛼 admits an expansion The sign of the currents is not completely determined by the properties of the initial state of the different reservoirs. In keeping with the illustration of the introduction, consider ℋ B = 𝐂 2 , with orthonormal basis {𝜓 1 , 𝜓 2 } and note that if the functions 𝑓 1 and 𝑓 2 in the decomposition Τ (𝜃 ) = 𝑓 1 (𝜃 )𝜓 1 𝜓 * 1 + 𝑓 2 (𝜃 )𝜓 2 𝜓 * 2 of 𝛵 ∶ ℓ 2 (𝚭) × 𝐂 2 → ℓ 2 (𝚭) × 𝐂 2 are such that neither 𝑓 1 ≥ 𝑓 2 or 𝑓 1 ≤ 𝑓 2 everywhere, then we can construct a unitary one-particle dynamics 𝑊 → ∶ ℋ S → ℋ S in the sample and a bounded operator 𝛢 → ∶ 𝐂 2 → ℋ S of the form (6.38) such that 𝐽 1 > 0 for all nonzero 𝛼 ∈ 𝛺 sufficiently small, as well as a unitary dynamics 𝑊 ← ∶ ℋ S → ℋ S in the sample and a bounded operator 𝛢 ← ∶ 𝐂 2 → ℋ S of the form (6.38) such that 𝐽 1 < 0 for all nonzero 𝛼 ∈ 𝛺 sufficiently small. Indeed, we can choose 𝑊 to have simple eigenvalues associated to eigenvectors (𝜒 𝑖 ) 𝑖 ∈𝛪 such that ⟨𝜒 𝑖 , 𝜙 𝑘 ⟩ ≠ 0 for both 𝑘 = 1 and 𝑘 = 2. Then, by (6.39), choosing the eigenvalues in {𝑧 ∈ 𝐒 1 ∶ 𝑓 1 (log 𝑧) < 𝑓 2 (log 𝑧)} [resp. 𝑓 1 (log 𝑧) > 𝑓 2 (log 𝑧)] gives 𝐽 1 > 0 [resp. 𝐽 1 < 0] for 𝛼 small enough.

Remark 6.6.6. In case 𝑓 𝑘 (𝜃 ) ≡ 𝑓 𝑘 for all 𝑘, Proposition 6.6.5 and Corollary 6.5.3 provide the following small coupling expression of the entropy production rate where the leading term is zero if and only if the summand vanishes for all pairs 𝑘 ≠ 𝑘 ′ . Because 𝐶 (2) 𝑘,𝑘 ′ > 0 and because the function (0, 1) ∋ 𝑓 ↦ log((1 -𝑓 )/𝑓 ) defining 𝜇 is strictly decreasing, this is in turn equivalent to 𝑓 𝑘 = 𝑓 𝑘 ′ for each pair (𝑘, 𝑘 ′ ).

Proof of Proposition 6.3.1

The following lemma is straightforward, but we give a proof for lack of convenient reference. It can alternatively be shown to be a consequence of the Riemann-Lebesgue lemma. Proof. Clearly, it is sufficient to show that the limit vanishes along the subsequence with even values of 𝑡 . Now, for 𝑡 even, we have Hence, the result follows from square summability.

Proof of Proposition 6.3.1. The selfadjoint term being subtracted on the left-hand side of (6.9) obviously converges strongly to ∑ 𝑛≥0 𝛿 𝑛 𝛿 * 𝑛 ⊗𝟏⊕0 as 𝑡 → ∞. The only explicit 𝑡 -dependence in summands on the right-hand side of (6.9) is in the upper-right block, but the adjoint of this contribution vanishes strongly as 𝑡 → ∞. To see this, combine Lemma 6.7.1 with the estimate where ULB - 𝑚,𝑙 and LLB - 𝑚 are respectively the summands in the upper-left and lower left-block on the righthand side of (6.9).

For the upper-left block, we will make use of the shorthand 𝚻 𝑡 ∶= {(𝑚, 𝑙) ∶ 0 ≤ 𝑚 ≤ 𝑡 -1; 1 ≤ 𝑙 ≤ 𝑡 -𝑚}.

We want to show that the sequence of partial sums is Cauchy for the uniform operator topology. For 0 < 𝑡 < 𝑢, we have Let us recall that we are looking at the relative entropy between the quasifree states associated to the symbols 𝛵 tot and 𝛵 tot (𝑡 ) = 𝛺(𝑡 )𝛵 tot 𝛺 * (𝑡 ) -we have dropped some indices for readability -assuming that 𝛵 tot has the block diagonal form

𝛵 tot = ( 𝛵 E 0 0 𝛵 S ) .
We also decompose the unitary ) .

It easy to see from Proposition 6.3.1 that 𝛺 ES (𝑡 ), 𝛺 SE (𝑡 ) and 𝛺 S (𝑡 ) have their rank bounded by dim ℋ S , uniformly in 𝑡 ≥ 0. ) .

Let us introduce

Note that the rank of the lower-right block is bounded by dim ℋ S and hence cannot contribute to the limit of (6.41). The same is true for each term in which 𝛵 S appears. Hence, provided that the limit exists, we must have We have used yet again cyclicity of the trace, as well as the identity with |𝑌 𝑘 𝑙 | decaying exponentially fast in 𝑙 thanks to Assumption (Sp). Reindexing the second term in (6.47), we obtain a term which -thanks again to (6.46) -cancels the first term of (6.47) up to an error term which can be shown to not contribute in the limit with similar arguments. Performing a reindexation similar to that of the previous lemma, we find Note that the first sum on the left-hand side is, up to truncation and multiplication by 𝑡 , a sum of products of Fourier coefficients whose indices sum to 0, which coincides with the integral in the statement of the lemma.

Once divided by 𝑡 , the error due to truncation and the second sum on the right-hand side both vanish as 𝑡 → ∞ thanks to the decay of ‖𝑌 𝑙 ‖ in 𝑙, ‖𝑌 * 𝑙 ′ ‖ in 𝑙 ′ and |𝐺 𝑘 ′ 1 (ℎ)| in ℎ.
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Figure 1

 1 Figure 1.1: Time reversal invariance for Hamiltonian systems: if the physical time evolution 𝜙 brings an initial condition (𝑞, 𝑝) to (𝑞 ′ , 𝑝 ′ ) in time 𝛵 , then this same time evolution also brings (𝑞 ′ , -𝑝 ′ )

F

  𝛾 provided by the agent, you choose to guess (H0) or (H1) according to the outcome H0) if NPT 𝜆 𝛵 (𝛾 ) = 0 and (H1) if NPT 𝜆 𝛵 (𝛾 ) = 1. Doing so, you expect to be wrong at a frequency

  log ˆe-𝛼𝑆 𝜆 𝛵 (𝛾 ) d𝒫 𝜆 𝛵 (𝛾 ) = 0 (1.4) for all 𝛼 ∈ [0, 1].

  𝑆 𝜆 𝛵 (𝑞, 𝑝) = log ( d𝜆 d(𝜆 ∘ 𝜙 𝛵 ) (𝑞, 𝑝))

  𝛪 (-𝜍) = 𝛪 (𝜍) + 𝑠.(1.7) for all possible values of 𝑠. More explicitly, log 𝜆 + {𝛵 -1 𝑆 𝜆 𝛵 ∈ 𝛦} ≤ -inf 𝜍∈cl(𝛦) 𝛪 (𝜍)

  functionals satisfy 𝑒 + (𝛼) = 𝑒(𝛼) [...] In each single case the strong ergodic properties of the model force [this relation]. 3

  is the work done by the nonconservative force, appropriately rescaled by the temperature [Kur98, LS99]. When considering several particles, 𝜎 𝜎 T may have different blocks for different particles, each related to a (possibly different) temperature, and the above integral can be split into a sum of the corresponding contributions [LS99, MNV03].

  Proposition 2.6.3. Suppose that Assumptions (L0), (L1), (RB) and (ND) are satisfied. Then, for all 𝛼 ∈ 𝒜, lim 𝜖→0 𝑒 𝜖 (𝛼) = max 𝑗 =1,…,𝑚 𝑒 𝑗 (𝛼).

Figure 2

 2 Figure 2.2: In the case of the function 𝑒 on the left, obtained by taking the maximum of 𝑒 1 , 𝑒 2 and 𝑒 3 in Figure 2.1, the jump in the derivative from -𝔪 3 to -𝔪 1 at the origin causes 𝑒 * to vanish on the interval [𝔪 1 , 𝔪 3 ]. The Legendre transform 𝑒 * is sketched on the right.

  𝐶 2 , and similarly for other uniformly elliptic operators; see [PW66, DV75, NP92]. Our proof of the upper bound lim sup 𝜖→0 spb(𝛬 𝜖,𝛼 ) ≤ max 𝑗 =1,…,𝑚 spb(𝑄 𝛼 𝑗 ) is inspired by B. Simon's localisation argument in the self-adjoint case [Sim83], with the Rayleigh-Ritz principle replaced by the Protter-Weinberger principle.Let us mention that the selfadjoint case was also covered by B. Helffer and J. Sjöstrand in a series of papers starting with [HS84] using different methods. In the non-selfadjoint case, a collection of similar results are available, even beyond the elliptic case, but under some extra smoothness and growth conditions; see e.g. [HSS05, HPS13]. Under minimal regularity assumptions for the quadratic expansion to make sense, W. H. Flemming and Sh.-J. Sheu proved a similar result in the case of a single minimum; see[START_REF] Fleming | Asymptotics for the principal eigenvalue and eigenfunction of a nearly first-order operator with large potential[END_REF].

  𝛫 → ∞ gives the desired lower bound. Upper bound. If Assumptions (L0), (L1), (RB) and (ND) are satisfied, then lim sup 𝜖→0 spb(𝛢 𝜖 ) ≤ max 𝑗 =1,…,𝑚 spb(𝑄 𝑗 ).

Figure 2

 2 Figure2.3: The orange region enclosed in the solid contours is the set of values allowed in Lemma 2.A.2 computed for (𝑘 𝑏 , ℎ 𝑏 ) = (0.33, 0.7 5), (0.33, 1.5) and (0.49 , 1.5) -from left to right.

  Such results typically involve carefully studying smoothing properties of the associated Markov semigroup. The strategy here is different and instead relies on recent developments on the use of solid controllability in the study of mixing properties of random dynamical systems [AS05, AKSS07, Shi07, Shi17]. The simplicity of the argument can in itself justify the presentation of such an application.

Lemma 3.3. 5 .

 5 If there exists a closed ball 𝐷 ⋐ 𝐑 𝑑 and a continuous function 𝑓 ∶ 𝐷 → 𝛦 such that 𝑆 (𝑥 0 , 𝑓 (𝑥)) = 𝑥 for all 𝑥 ∈ 𝐷 , then 𝑆 satisfies the solid controllability condition (sC) from 𝑥 0 , with 𝑄 = 𝑓 (𝐷 ). Proof. Take 𝜖 < 1 4 diam(𝐷 ) and set 𝐺 ∶= {𝑥 ∈ 𝐷 ∶ 𝑑(𝑥, 𝜕 𝐷 ) ≥ 𝜖}. Let 𝛷 be a continuous map on 𝑓 (𝐷 ) such that sup 𝜁 ∈𝑓 (𝐷 ) |𝛷 (𝜁 ) -𝑆 (𝑥 0 , 𝜁 )| ≤ 𝜖. Then, for any 𝑥 ′ ∈ 𝐺 , the continuous function 𝛹 𝑥 ′ defined on 𝐷 by 𝛹 𝑥 ′ (𝑥) = 𝑥 ′ -𝛷 (𝑓 (𝑥)) + 𝑥 maps 𝐷 to itself. Indeed, |𝑥 ′ -𝛹 𝑥 ′ (𝑥)| = |𝑥 ′ -(𝑥 ′ -𝛷 (𝑓 (𝑥)) + 𝑥)| = |𝛷 (𝑓 (𝑥)) -𝑆 (𝑥 0 , 𝑓 (𝑥))| ≤ sup 𝜁 ∈𝑓 (𝐷 ) |𝛷 (𝜁 ) -𝑆 (𝑥 0 , 𝜁 )| ≤ 𝜖.

  and a continuous function 𝑓 ∶ 𝐷 → 𝐶 0 ([0, 1]; 𝐑 𝑛 ) such that 𝑆 𝐹 1 (𝑥 0 , 𝑓 (𝑥 * )) = 𝑥 * for all 𝑥 * ∈ 𝐷 . As part of Theorem 2.1 in [Shi17, §2.2], it is shown in a similar setting that the Hörmander condition implies the existence of a ball 𝐷 ⋐ 𝐑 𝑑 and a continuous function f ∶ 𝐷 → 𝐿 2 ([0, 1]; 𝐑 𝑛 ) such that the solution of { ẋ = 𝛢𝑥 + 𝐹 (𝑥) + 𝛣 f (𝑥 * ) 𝑥(0) = 𝑥 0 satisfies 𝑥(1) = 𝑥 * . Moreover, 𝜅 ∶= sup 𝑥 * ∈𝐷 ‖ f (𝑥 * )‖ 𝐶 0 < ∞. The construction of 𝐷 and f uses local arguments and can be directly translated to our setup. The idea behind the proof is the following. Consider the following extended problem for 𝑦(𝑡 ) = (𝑥(𝑡 ), 𝑠(𝑡 )) in 𝐑 𝑑 × 𝐑: { ̇𝑦 = (𝛢𝑥 + 𝐹 (𝑥), 1) + (𝛣𝜉 , 0) 𝑦(0) = (𝑥 0 , 0) ,
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 3 𝛱 𝛮 be as in Remark 3.2.2 and Appendix 3.A. Because all controls in 𝑄 have a common Lipschitz constant 𝜅, we have lim 𝛮 →∞ sup 𝜁 ∈𝑄 ‖𝜁 -𝛱 𝛮 𝜁 ‖ 𝐶 0 = 0 by Lemma 3.A.1. Then, because 𝑆 𝐹 1 (𝑥 0 , ⋅ ) ∶ 𝐶 0 ([0, 1]; 𝐑 𝑛 ) → 𝐑 𝑑 is uniformly continuous, there exists 𝛮 ∈ 𝚴 large enough that sup 𝜁 ∈𝑄 |𝑆 𝐹 1 (𝑥 0 , 𝛱 𝛮 𝜁 ) -𝑆 𝐹 1 (𝑥 0 , 𝜁 )| < 𝜖,

  𝑓 = 𝟏 𝛤 the characteristic function of any Borel set 𝛤 ⊆ 𝐑 𝑑 , integrating (3.12) in the variable 𝑥 yields that | ˆ𝐑𝑑 𝛲 𝐹 2𝑚 (𝑥, 𝛤 )𝜆(d𝑥) -𝜇 inv (𝛤 )| ≤ 𝐶 e -𝑐(2𝑚+2) (1 + ˆ𝐑𝑑 𝑉 (𝑥)𝜆(d𝑥)) (3.13)for any measure 𝜆 ∈ Prob(𝐑 𝑑 ).

Figure 3

 3 Figure 3.1: Depiction of the linear harmonic chain where the 1st and 𝐿th oscillator are connected to heat baths at temperatures 𝜃 1 and 𝜃 𝐿 respectively.

  -𝛢 * ) ∩ ker 𝛣 * = {0}, 𝛢 + 𝛢 * = -𝛣𝜗 -1 𝛣 * .

  𝑦 (𝑛) )‖ ≤ ‖𝛢‖ + lim sup 𝑛→∞ ‖𝐷 𝐹 (𝑦 (𝑛) )‖ = ‖𝛢‖. Therefore, lim 𝑛→∞ |(ℒ 𝑘 𝐺 𝑏 )(𝑦 (𝑛) ) -(-1) 𝑘 (𝐷 𝐺 (𝑦 (𝑛) )) 𝑘 [𝑏 ]| = 0 for 𝑘 = 1, 2, … , 𝑑 * -1, and for 𝑛 large enough, span{𝑏 , ℒ 𝐺 𝑏 , … , ℒ 𝑑 * -1 𝐺 𝑏 } 𝑦=𝑦 (𝑛) = span{𝑏 , 𝐷 𝐺 (𝑦)𝑏 , … , (𝐷 𝐺 (𝑦)) 𝑑 * -1 𝑏 } 𝑦=𝑦 (𝑛) . 𝐷 𝐺 (𝑦 (𝑛) )) 𝑘 𝑏 -𝛢 𝑘 𝑏 ‖ ≤ lim sup -𝑗 ‖𝐷 𝐹 (𝑦 (𝑛) )‖ 𝑗 = 0.We conclude from the Kalman condition that for 𝛮 ∈ 𝚴 large enough span{𝑏 , 𝐷 𝐺 (𝑦)𝑏 , … , (𝐷 𝐺 (𝑦)) 𝑑 * -1 𝑏 ∶ 𝑏 ∈ ran 𝛣} 𝑦=𝑦 (𝛮 )coincides with ran{𝛣, 𝛢𝛣, … , 𝛢 𝑑 * -1 𝛣} = 𝐑 𝑑 .

  2 d𝑠 in the Hamiltonian. This potential satisfies the condition of the previous proposition: take for example a sequence with 𝑞 (𝑛) 𝑖 = 𝑖 𝑛𝜎 . For the sake of matching exactly the setup of [EPRB99b, RBT02, Car07], consider that 𝛪 = {1, … , 𝐿} and 𝐽 = {1, 𝐿} and that only nearest neighbours interact through the Coulomb force. Let us use the shorthand q𝑖 ∶= 𝑞 𝑖 + 𝑞 eq 𝑖 . Then, the corresponding perturbing potential 𝑈 n.n. (𝑞) =

  g. [Bog98, §3.5]), Brownian motion can be represented as the almost surely convergent sum 𝑊 𝑡 (𝜔) = ∑ 𝑚≤𝛮 𝛯 𝑚 (𝜔)𝜓 𝑚 (𝑡 ) + ∑ 𝑚>𝛮 𝛯 𝑚 (𝜔)𝜓 𝑚 (𝑡 ),

Lemma 3 .

 3 A.1. If 𝑄 is a subset of 𝐶 0 ([0, 1]; 𝐑) that is bounded in the norm induced by the inner product ⟨ ⋅ , ⋅ ⟩ 𝑊 1𝛮 𝜂‖ 𝐶 0 = 0.

  𝑆 𝛵 ∶ 𝐑 𝑑 × 𝐶 ([0, 𝛵 ]; 𝐑 𝑛 ) → 𝐑 𝑑 , (𝑥, 𝜁 ) ↦ 𝑦 𝛵 , (4.4) where (𝑦 𝑡 ) 𝑡 ∈[0,𝛵 ] is the solution of the controlled problem { ̇𝑦𝑡 = 𝑓 (𝑦 𝑡 ) + 𝛣𝜁 𝑡 , 𝑦 0 = 𝑥.
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  the conditions (C1), (C2) and (C3).

  Kalman condition; see Proposition 4.1 in[START_REF] Raquépas | A note on Harris' ergodic theorem, controllability and perturbations of harmonic networks[END_REF]. It follows by Lemma 5.1(2) in[JPS17] that the eigenvalues of 𝛢 then have strictly negative real part. Combined with the growth assumption (G), the negativity of the eigenvalues implies (C1) for a suitable inner product; see Lemma 3.1 in[START_REF] Raquépas | A note on Harris' ergodic theorem, controllability and perturbations of harmonic networks[END_REF]. Proposition 3.3 in[START_REF] Raquépas | A note on Harris' ergodic theorem, controllability and perturbations of harmonic networks[END_REF] says that the Kalman condition on (𝛢, 𝛣) and the growth condition (G) on ∇𝑈 give (C2) everywhere. The fact that the Kalman condition on (𝛢, 𝛣) and assumption (pH) give the weak Hörmander condition (C3") in one point is the content of Proposition 5.1 in[START_REF] Raquépas | A note on Harris' ergodic theorem, controllability and perturbations of harmonic networks[END_REF]. But, as previously mentioned, the weak Hörmander condition implies solid controllability.Concerning the corresponding sde with Poissonian noise, we have the following mixing result -which again parallels that of[START_REF] Raquépas | A note on Harris' ergodic theorem, controllability and perturbations of harmonic networks[END_REF] -as a corollary of the controllability properties. Corollary 4.4.7. Under the same assumptions, if (𝛮 𝑗 ) 𝑗 ∈𝐽 is a collection of |𝐽 | independent one-dimensional compound Poisson processes with jump distributions with finite variances and continuous positive densities with respect to the Lebesgue measure on 𝐑, then the sde d( 𝑗 d𝛮 𝑗 .

  experimental and theoretical physicists, at times arising as natural quantum counterparts of classical discretetime processes in different sciences, discrete-time quantum evolutions have become an extensively studied topics in mathematical physics. Examples of the first kind appear in the effective description of quantum systems that repeatedly interact with probes [KM00, BJM14], quantum systems that undergo time-periodic driving[START_REF] Howland | Stationary scattering theory for time-dependent Hamiltonians[END_REF][START_REF] Yajima | Scattering theory for Schrödinger equations with potentials periodic in time[END_REF] or models related to the quantum Hall effect, where strong perpendicular magnetic fields are involved[CC88,[START_REF] Kramer | Random network models and quantum phase transitions in two dimensions[END_REF]; examples of the second kind can be found in quantum information science[START_REF] Meyer | From quantum cellular automata to quantum lattice gases[END_REF][START_REF] Watrous | Quantum simulations of classical random walks and undirected graph connectivity[END_REF].Discrete-time quantum evolutions where the dynamics for a single time step only couples neighbouring sites of a (possibly infinite) graph are often referred to as quantum walks and have been studied extensively in the last twenty years; see for example[AAKV01, Kem03, VA12, Por13]. Most works on the subject consider a single particle, called a quantum walker. However, interesting phenomena arise when two walkers are coupled [AAM + 12, SBP + 17] and natural questions concerning the collective behaviour of a variable number of walkers arise, especially by analogy with phenomena of Hamiltonian quantum statistical mechanics such as return to equilibrium, existence of nonequilibrium steady states, entropy production, et cetera. This was initiated by Hamza and Joye in the work[HJ17]

(

  𝛤 (𝑆 * ⊗ 𝑈 * ) ⊗ 𝛤 (𝑊 * ))𝑎 # (𝜓 )(𝛤 (𝑆 ⊗ 𝑈 ) ⊗ 𝛤 (𝑊 )) = 𝑎 # (𝑊 * 𝜓 ) and (𝛤 (𝑆 * ⊗ 𝑈 * ) ⊗ 𝛤 (𝑊 * ))𝑏 # (𝜑)(𝛤 (𝑆 ⊗ 𝑈 ) ⊗ 𝛤 (𝑊 )) = 𝑏 # ((𝑆 * ⊗ 𝑈 * )𝜑),

  𝜌 ∞ (𝑎 * (𝜓 1 ) ⋯ 𝑎 * (𝜓 𝛮 )𝑎(𝜓 ′ 𝛮 ) ⋯ 𝑎(𝜓 ′ 1 )) = lim 𝑡 →∞ det [ 𝑡 ∑ 𝑠 ′ ,𝑡 ′ =1sin 2 𝛼 ⟨(𝑆 ⊗ 𝑈 ) 𝑡 ′ -𝑡 𝜄𝑊 * 𝛭 * 𝑡 ′ -1 𝜓 ′ 𝜈 , 𝛴 (𝑆 ⊗ 𝑈 ) 𝑠 ′ -𝑡 𝜄𝑊 * 𝛭 * 𝑠 ′ -1 𝜓 𝜇 ⟩] 𝛮 𝜇,𝜈 =1

[

  𝛴 , 𝟏 ⊗ 𝜋 𝑖 ] = 0 for each 𝑖 suggest a decomposition of the Hilbert space ℋ ℰ into 𝑚 infinite-dimensional subspaces, in which we can formally count the number of particles. Lemma 5.2.2 allows us to formally compute the difference∑ ℓ ∈𝚭 𝜏 (𝑏 * (𝛿 ℓ ⊗ 𝑥 𝑖 )𝑏 (𝛿 ℓ ⊗ 𝑥 𝑖 )) -𝑏 * (𝛿 ℓ ⊗ 𝑥 𝑖 )𝑏 (𝛿 ℓ ⊗ 𝑥 𝑖 )in the number of particles in those subspaces between two time steps. The result of this computation yields a bona fide bounded self-adjoint operator and we define 𝛷 𝑖 ∶= (cos 𝛼 -1) 2 ‖𝜋 𝑖 𝑣 ‖ 2 𝑏 * (𝛿 0 ⊗ 𝑣 )𝑏 (𝛿 0 ⊗ 𝑣 ) + (cos 𝛼 -1)𝑏 * (𝛿 0 ⊗ 𝜋 𝑖 𝑣 )𝑏 (𝛿 0 ⊗ 𝑣 ) + (cos 𝛼 -1)𝑏 * (𝛿 0 ⊗ 𝑣 )𝑏 (𝛿 0 ⊗ 𝜋 𝑖 𝑣 ) + i sin 𝛼 (cos 𝛼 -1)‖𝜋 𝑖 𝑣 ‖ 2 (𝑏 (𝛿 0 ⊗ 𝑣 )𝑎 * (𝜓 * ) -𝑏 * (𝛿 0 ⊗ 𝑣 )𝑎(𝜓 * )) + i sin 𝛼 (𝑏 (𝛿 0 ⊗ 𝜋 𝑖 𝑣 )𝑎 * (𝜓 * ) -𝑏 * (𝛿 0 ⊗ 𝜋 𝑖 𝑣 )𝑎(𝜓 * )) + sin 2 𝛼 ‖𝜋 𝑖 𝑣 ‖ 2 𝑎 * (𝜓 * )𝑎(𝜓 * ), the flux observable into the 𝑖 th subreservoir, ℰ 𝑖 , accordingly. Summing over the indices 𝑖 = 1, 2, … , 𝑚, we get the observable 𝛷 ℰ ∶= (cos 2 𝛼 -1)𝑏 * (𝛿 0 ⊗ 𝑣 )𝑏 (𝛿 0 ⊗ 𝑣 ) + sin 2 𝛼 𝑎 * (𝜓 * )𝑎(𝜓 * ) + i sin 𝛼 cos 𝛼 (𝑏 (𝛿 0 ⊗ 𝑣 )𝑎 * (𝜓 * ) -𝑏 * (𝛿 0 ⊗ 𝑣 )𝑎(𝜓 * )),
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 5 Proof of Proposition 5.4.6. From the definition of 𝛷 𝑖 lim 𝑡 →∞ (𝜔 𝛴 ⊗ 𝜌)𝜏 𝑡 (𝛷 𝑖 ) = (cos 𝛼 -1) 2 ‖𝜋 𝑖 𝑣 ‖ 2 lim 𝑡 →∞ (𝜔 𝛴 ⊗ 𝜌)𝜏 𝑡 (𝑏 * (𝛿 0 ⊗ 𝑣 )𝑏 (𝛿 0 ⊗ 𝑣 )) + (cos 𝛼 -1) lim 𝑡 →∞ (𝜔 𝛴 ⊗ 𝜌)𝜏 𝑡 (𝑏 * (𝛿 0 ⊗ 𝜋 𝑖 𝑣 )𝑏 (𝛿 0 ⊗ 𝑣 )) + (cos 𝛼 -1) lim 𝑡 →∞ (𝜔 𝛴 ⊗ 𝜌)𝜏 𝑡 (𝑏 * (𝛿 0 ⊗ 𝑣 )𝑏 (𝛿 0 ⊗ 𝜋 𝑖 𝑣 ))+ i sin 𝛼 (cos 𝛼 -1)‖𝜋 𝑖 𝑣 ‖ 2 lim 𝑡 →∞ (𝜔 𝛴 ⊗ 𝜌)𝜏 𝑡 (𝑏 (𝛿 0 ⊗ 𝑣 )𝑎 * (𝜓 * )) -i sin 𝛼 (cos 𝛼 -1)‖𝜋 𝑖 𝑣 ‖ 2 lim 𝑡 →∞ (𝜔 𝛴 ⊗ 𝜌)𝜏 𝑡 (𝑏 * (𝛿 0 ⊗ 𝑣 )𝑎(𝜓 * )) + i sin 𝛼 lim 𝑡 →∞ (𝜔 𝛴 ⊗ 𝜌)𝜏 𝑡 (𝑏 (𝛿 0 ⊗ 𝜋 𝑖 𝑣 )𝑎 * (𝜓 * )) -i sin 𝛼 lim 𝑡 →∞ (𝜔 𝛴 ⊗ 𝜌)𝜏 𝑡 (𝑏 * (𝛿 0 ⊗ 𝜋 𝑖 𝑣 )𝑎(𝜓 * )) + sin 2 𝛼 ‖𝜋 𝑖 𝑣 ‖ 2 lim 𝑡 →∞ (𝜔 𝛴 ⊗ 𝜌)𝜏 𝑡 (𝑎 * (𝜓 * )𝑎(𝜓 * )).Using Corollary 5.4.5 for each term gives lim 𝑡 →∞ (𝜔 𝛴 ⊗ 𝜌)𝜏 𝑡 (𝛷 𝑖 ) = (cos 𝛼 -1) 2 ‖𝜋 𝑖 𝑣 ‖ 2 ⟨𝛿 0 ⊗ 𝑣 , 𝛴 (𝛿 0 ⊗ 𝑣 )⟩ + 2(cos 𝛼 -1) Re ⟨𝛿 0 ⊗ 𝑣 , 𝛴 (𝛿 0 ⊗ 𝜋 𝑖 𝑣 )⟩ -2 sin 2 𝛼 (cos 𝛼 -1)‖𝜋 𝑖 𝑣 ‖ 2 Re ∞ ∑ 𝑡 ′ =1 ⟨𝜓 * , 𝑊 * 𝛭 * 𝑡 ′ -1 𝜓 * ⟩ ⟨𝑆 𝑡 ′ 𝛿 0 ⊗ 𝑈 𝑡 ′ 𝑣 , 𝛴 (𝛿 0 ⊗ 𝑣 )⟩ -2 sin 2 𝛼 Re ∞ ∑ 𝑡 ′ =1 ⟨𝜓 * , 𝑊 * 𝛭 * 𝑡 ′ -1 𝜓 * ⟩ ⟨𝑆 𝑡 ′ 𝛿 0 ⊗ 𝑈 𝑡 ′ 𝑣 , 𝛴 (𝛿 0 ⊗ 𝜋 𝑖 𝑣 )⟩ + sin 4 𝛼 ‖𝜋 𝑖 𝑣 ‖ 2 ∞ ∑ 𝑠 ′ ,𝑡 ′ =1 ⟨𝛿 0 ⊗ 𝑣 , 𝛴 (𝑆 𝑠 ′ -𝑡 ′ 𝛿 0 ⊗ 𝑈 𝑠 ′ -𝑡 ′ 𝑣 )⟩ ⟨𝜓 * , 𝛭 𝑡 ′ -1 𝑊 𝜄 * 𝜄𝑊 * 𝛭 * 𝑠 ′ -1 𝜓 * ⟩ .Using the commutation relation[𝛴 , 𝟏 ⊗ 𝜋 𝑖 ] = 0, we have lim 𝑡 →∞ (𝜔 𝛴 ⊗ 𝜌)𝜏 𝑡 (𝛷 𝑖 ) = (cos 𝛼 -1) 2 ‖𝜋 𝑖 𝑣 ‖ 2 ⟨𝛿 0 ⊗ 𝑣 , 𝛴 (𝛿 0 ⊗ 𝑣 )⟩ + 2(cos 𝛼 -1) ⟨𝛿 0 ⊗ 𝜋 𝑖 𝑣 , 𝛴 (𝛿 0 ⊗ 𝜋 𝑖 𝑣 )⟩ -2 sin 2 𝛼 (cos 𝛼 -1)‖𝜋 𝑖 𝑣 ‖ 2 Re ∞ ∑ 𝑡 ′ =1 ⟨𝜓 * , 𝛭 𝑡 ′ -1 𝑊 𝜓 * ⟩ ⟨𝑆 𝑡 ′ 𝛿 0 ⊗ 𝑈 𝑡 ′ 𝑣 , 𝛴 (𝛿 0 ⊗ 𝑣 )⟩ -2 sin 2 𝛼 Re ∞ ∑ 𝑡 ′ =1 ⟨𝜓 * , 𝛭 𝑡 ′ -1 𝑊 𝜓 * ⟩ ⟨𝑆 𝑡 ′ 𝛿 0 ⊗ 𝑈 𝑡 ′ 𝜋 𝑖 𝑣 , 𝛴 (𝛿 0 ⊗ 𝜋 𝑖 𝑣 )⟩ + sin 4 𝛼 ‖𝜋 𝑖 𝑣 ‖ 2 ∞ ∑ 𝑠 ′ ,𝑡 ′ =1

  is a rank-six perturbation of (𝟏 [0,𝑛-1] ⊗ 𝟏)𝒲(𝟏 [0,𝑛-1] ⊗ 𝟏), it follows from Birkhoff's ergodic theorem that lim 𝑛→∞ 1 2𝑛 tr(𝑓 (𝛭 (𝑛) (𝜔))) = lim 𝑛→∞ 1 2𝑛 tr((𝟏 [0,𝑛-1] ⊗ 𝟏)𝑓 (𝒲(𝜔))(𝟏 [0,𝑛-1] ⊗ 𝟏))

  sp(𝒲(𝜔)) ⊆ ( ⋃ 𝜃 ∈supp 𝜇 e i𝜃 𝛬 + ) ∪ ( ⋃ 𝜃 ∈supp 𝜇 e i𝜃 𝛬 -)

Following [ HJ17 ]

 HJ17 , we have made the choice of considering different species of fermions for the sample 𝒮 and the environment ℰ. Considering the same species for both components of the system would have amounted to imposing the anticommutation relation {𝑎 # (𝜓 ), ̃𝑏 (𝜑)} = 0 for all 𝜓 ∈ ℋ 𝒮 and 𝜑 ∈ ℋ ℰ instead of the commutation relation [𝑎 # (𝜓 ), 𝑏 (𝜑)] = 0. This is realized on the Fock space Γ -(ℋ ℰ ) ⊗ Γ -(ℋ 𝒮 ) by setting ̃𝑏 (𝜑) ∶= 𝑏 (𝜑) ⊗ (-1) dΓ(𝟏) . In this case, one finds with the same techniques formulae such as Κ * 𝛼 𝑎 * (𝜓 ) Κ𝛼 = 𝑎 * ((𝟏 + (cos 𝛼 -1)𝛲 )𝜓 ) + i sin 𝛼 ̃𝑏 * (𝜄𝜓 ), leading to the same formulae as in Lemma 5.2.2. Therefore, the asymptotics of the state in the sample 𝒮 and the fluxes are the same. With this choice of statistics, one may alternatively view Κ𝛼 as arising from the second quantization of a one-body operator on ℋ ℰ ⊕ ℋ 𝒮 : Κ𝛼 = 𝒰𝛤 (𝟏 + (cos 𝛼 -1)(𝜄 * 𝜄 + 𝜄𝜄 * ) -i sin 𝛼 (𝜄 * + 𝜄))𝒰 * , where 𝒰 ∶ Γ -(ℋ ℰ ⊕ ℋ 𝒮 ) → Γ -(ℋ ℰ ) ⊗ Γ -(ℋ 𝒮 ) is the usual fermionic exponential map; see for example [AJPP06, §5.1]. The dynamics implemented by the unitary Γ ((𝑆 ⊗ 𝑈 ⊕ 𝑊 )e -i𝛼(𝜄+𝜄 * ) ) gives rise to a quasi-free dynamics and the corresponding one-particle Møller operator 𝛺 + = s-lim 𝑡 →∞ (𝑆 ⊗ 𝑈 ⊕ 𝑊 ) 𝑡 ((𝑆 ⊗ 𝑈 ⊕ 𝑊 )e -i𝛼(𝜄+𝜄 * ) ) -𝑡

  Jakšić and Pillet [JP01, JP02], the main objectives for these models considered in the framework of open quantum systems are to establish the validity of the laws of thermodynamics, to derive the positivity of the entropy production rate and to analyse its fluctuations. It is desirable too to grasp model dependent salient features of the corresponding non-equilibrium steady states and currents they induce between the reservoirs. See the following papers for a non exhaustive list of works dedicated to those questions in different contexts and regimes: [Spo78, SL78, DdRM08, JPW14], [AJPP06, AJPP07, JOPP11], [Rue00, Rue01, AP03, JLP13], [BJM06, BJM14, HJPR17, HJPR18, BJPP18, And20, BB20], [MMS07b, MMS07a],... In these works, the quantum dynamics of these systems derives from their Hamiltonians. The last two decades have seen the emergence of a class of non-Hamiltonian models that proves efficient in modelling the quantum dynamics of complex systems, namely quantum walks. A quantum walk (QW for short) arises as a unitary operator defined on a Hilbert space with basis elements associated to the vertices of an infinite graph, matrix elements coupling vertices of the graph a finite distance away from each other only. The QW discrete time dynamics implemented by iteration of the unitary operator has finite speed of propagation, and yields a dynamical system easily amenable to numerical investigation. By contrast to the models mentioned above, there is no Hamiltonian with natural physical meaning attached to a QW. It was demonstrated over the years that QW provide useful approximations in various physical contexts and regimes, see e.g. [CC88, KFC + 09, SVA + 13, ZKG + 10, SAM + 19, WM13, TMT20]. Furthermore, QW play an important role in quantum computing [AAKV01, Kem03, San08, Por13], and they are also considered a quantum counterparts of classical random walks [Gud08, Kon08, APSS12]; see also the reviews [VA12, ABJ15].Given the versatility of QW and the wide range of physical situations they model and claims regarding different notions of quantum transport[START_REF] Kassal | Environment-assisted quantum transport in ordered systems[END_REF][START_REF] Mareš | Counterintuitive role of geometry in transport by quantum walks[END_REF], it is natural to investigate their collective dynamical behaviour within the framework of open quantum systems when considered as indistinguishable quantum particles (quantum walkers) interacting with reservoirs. The first steps in this direction were performed in the work[HJ17] and its generalisation[START_REF] Raquépas | On fermionic walkers interacting with a correlated structured environment[END_REF]. They analyse the discrete time dynamics of an ensemble of fermionic QW on a finite sample, exchanging particles with an infinite reservoir of quasifree QW, and establish a form of return to equilibrium of the system. From a different perspective, these efforts can be viewed as an extension to discrete-time dynamics of a program which has mainly been carried out in Hamiltonian continuous-time settings.Building on [HJ17, Raq20], our aim is twofold. First we generalize the framework to the genuinely out of equilibrium situation in which the fermionic QW on the finite sample interact with several different quasifree QW reservoirs. Second, we analyse the onset of a non-equilibrium steady state in the sample and reservoirs, the development of related particle currents between the reservoirs, and establish strict positivity of the entropy production rate, in keeping with the program above. This closely parallels the work [AJPP07] on a Hamiltonian continuous-time model called the "electronic black box".

Figure 6

 6 Figure6.1: The setup we are using to illustrate our results: walkers in a sample 𝒮 consisting of a cycle with 8 vertices can hop to and from two environments, one on the left and one on the right.

Figure 6

 6 Figure 6.2: Still in the setup of Figure 6.1, with 𝜑 = 1 3 𝜋 and 𝛽 = 0.1, the spectrum of 𝑊 (on the left, in red) lies in closed cones of opening 𝜋 -2𝜑 about the imaginary axis. The corresponding arguments are values of 𝜃 for which 𝑓 L (𝜃 ) > 𝑓 R (𝜃 ) (on the right). Multiplying 𝑊 by a phase of i amounts to a rotation by quarter turn of the spectrum on the left and to a horizontal shift for the arguments on the right, leading to the opposite inequality.

  𝔘 𝑡 (𝑆 ⊗ 𝑈 ⊕ 𝟏) -𝑡 . First note that lim 𝑡 →∞ ‖(𝛺 (𝑡 ) 𝑈 ) * 𝑉 ℎ -(𝟏 ⊗ 𝟏 ⊕ 0)(𝛺 (𝑡 ) 𝑈 ) * 𝑉 ℎ ‖ = 0

  𝐽 𝛸 ∶= 𝜌(∞)[𝛷 𝛸 ] = tr ℋ tot [𝛵 ∞ tot {𝔘 * (𝟏 ⊗ 𝛸 ⊕ 0)𝔘 -𝟏 ⊗ 𝛸 ⊕ 0}].

  𝛸 = tr ℓ 2 (𝚭)⊗ℋ B (𝛵 ∞ E (𝛲 0 ⊗ (𝐶 𝛸 𝐶 * -𝛸 )) + 𝛵 ∞ ES (𝛿 * 0 ⊗ 𝛧 * BS )𝛸 𝐶 ) + tr ℋ S (𝛵 ∞ SE )(𝛿 0 ⊗ 𝐶 * 𝛸 𝛧 BS + 𝛥 ∞ 𝛧 * BS 𝛸 𝛧 BS ).

(6. 28 )

 28 This expression serves as a basis for obtaining more transparent expressions. Proposition 6.4.1. Under Assumptions (IC) and (Sp), if 𝛸 ∶ ℋ B → ℋ B is a bounded observable, then 𝐽 𝛸 = tr [𝛸 ˆ2𝜋 0 ( Ŷ(𝜃 ) Ξ (𝜃 ) Ŷ * (𝜃 ) -Ξ (𝜃 )) d𝜃 2𝜋 ].

  𝛱 𝑘 = 𝟏 and Ŷ(𝜃 ) is unitary for all 𝜃 , we have ∑ 𝑛 𝛣 𝑘=1 𝐽 𝑘 = 0. Now by assumption (Bl) we have𝛯 = ∑ 𝑛 𝛣 𝑘 ′ =1 𝛱 𝑘 ′ 𝛯 𝛱 𝑘 ′ = ∑ 𝑛 𝛣 𝑘 ′ =1 𝛱 𝑘 ′ 𝛯 hence tr [𝛱 𝑘 Ŷ(𝜃 )𝛱 𝑘 ′ Ξ (𝜃 ) Ŷ * (𝜃 ) -𝛱 𝑘 Ξ (𝜃 )]d𝜃 2𝜋 and by the properties of 𝛱 𝑘 and Ŷ(𝜃 ) we have tr [𝛱 𝑘 Ξ (𝜃 )] = 𝑛 𝛣 ∑ 𝑘 ′ =1 tr [ Ŷ * (𝜃 )𝛱 𝑘 ′ Ŷ(𝜃 )𝛱 𝑘 Ξ (𝜃 )]. This proves that 𝐽 𝑘 = ∑ 𝑘 ′ ≠𝑘 𝛢 𝑘,𝑘 ′ -𝛢 𝑘 ′ ,𝑘 for 𝛢 𝑘 ′ ,𝑘 = tr[ Ŷ * (𝜃 )𝛱 𝑘 Ŷ(𝜃 )𝛱 𝑘 ′ Ξ (𝜃 )]. Moreover, in the case where the 𝛱 𝑘 are of rank one, we have 𝛱 𝑘 Ξ (𝜃 ) = 𝛱 𝑘 Ξ (𝜃 )𝛱 𝑘 = tr[𝛱 𝑘 Ξ (𝜃 )] 𝛱 𝑘 and, restoring the summation to all indices, ∑ 𝑘 ′ tr [ Ŷ * (𝜃 )𝛱 𝑘 ′ Ŷ(𝜃 )𝛱 𝑘 ] = tr[𝛱 𝑘 ] = ∑ 𝑘 ′ tr [ Ŷ(𝜃 )𝛱 𝑘 ′ Ŷ * (𝜃 )𝛱 𝑘 ],

  𝜎 (𝑡 ) ∶= 𝑡 -1 (𝑆 [𝛵 tot (𝑡 )|𝛵 tot (0)] + 𝑆 [𝟏 -𝛵 tot (𝑡 )|𝟏 -𝛵 tot (0)]), (6.31) where 𝛵 tot (𝑡 ) ∶= 𝛺 (𝑡 ) 𝑈 (𝛵 ⊕ 𝛥 )(𝛺 (𝑡 ) 𝑈 ) * and 𝑆 [𝛸 |𝑌 ] ∶= tr[𝛸 (log 𝛸 -log 𝑌 )]

  -Ŷ(𝜃 ) Ξ (𝜃 ) Ŷ * (𝜃 )|𝟏 -Ξ (𝜃 )] d𝜃 2𝜋 . (6.32) Moreover, 𝜎 + ≥ 0 with equality if and only if Ξ (𝜃 ) = Ŷ(𝜃 ) Ξ (𝜃 ) Ŷ * (𝜃 ) for Lebesgue-almost all 𝜃 ∈ [0, 2𝜋 ]. Remark 6.5.2. Recall that 𝜃 ↦ Ŷ(𝜃 ) Ξ (𝜃 ) Ŷ * (𝜃 ) is the Fourier transform of a translation-invariant operator 𝛯 ∞ which, up to the transformation which relates 𝛯 to 𝛵 , shares its blocks with 𝛵 ∞ E . The following reformulation of the result is closer to typical formulations in terms of currents and thermodynamic potentials (see for example Equation (17) in [JPW14]), albeit frequency-wise. It can be compared to Corollary 4.3 of [AJPP07]; see also Remark 6.4.3. Corollary 6.5.3. Suppose that Assumptions (IC+), (Sp) and (Bl) hold with the projectors 𝛱 1 , … , 𝛱 𝑛 B having rank one. Then we have the identity 𝜃 ) ∶= log 1 -𝑓 𝑘 (𝜃 ) 𝑓 𝑘 (𝜃 ) and ȷ 𝑘 (𝜃 ) denotes the integrand of the expression (6.30) for the 𝑘-th flux of particles. Remark 6.5.4. In the case where each 𝑓 𝑘 is constant in 𝜃 , the formula simplifies to 𝜇 𝑘 (𝑓 𝑘 ′ -𝑓 𝑘 ) ˆ𝐶𝑘,𝑘 ′ (𝜃 ) d𝜃 𝜇 𝑘 (𝑓 𝑘 ′ -𝑓 𝑘 ) ∑ 𝑙≥0 tr[𝑌 * 𝑙 𝛱 𝑘 𝑌 𝑙 𝛱 𝑘 ′ ].

  operator 𝑊 ∶ ℋ S → ℋ S which represents the free evolution on the sample, some bounded operator 𝛢 ∶ ℋ B → ℋ S which couples sites of the sample and sites of the environment, and some coupling strength 𝛼 ∈ 𝐑. Computing the exponential, we obtain 𝐶 = cos(𝛼 √ 𝛢 * 𝛢) 𝛧 BS = -i𝛢 * sin(𝛼 √ 𝛢𝛢 * ) √ 𝛢𝛢 * 𝛧 SB = -i𝑊 sin(𝛼 √ 𝛢𝛢 * ) √ 𝛢𝛢 * 𝛢 𝛭 = 𝑊 cos(𝛼 √ 𝛢𝛢 * ).

|𝜆| 2 =

 2 ⟨𝛭 (𝛼)𝜙, 𝛭 (𝛼)𝜙⟩ = ⟨𝜙, 𝑝 0 𝜙⟩ + ∑ 𝑖 ≥1 𝜈 2 𝑖 ⟨𝜙, 𝑝 𝑖 𝜙⟩ and since ∑ 𝑖 ≥0 ⟨𝜙, 𝑝 𝑖 𝜙⟩ = 1 this implies that |𝜆| 2 = 1, 𝑝 0 𝜙 = 𝜙 and ∑ 𝑖 ≥1 𝑝 𝑖 𝜙 = 0. Then, 𝜙 is in the orthogonal complement of 𝒱 and is also an eigenvector of 𝑊 since 𝜆𝜙 = 𝛭 (𝛼)𝜙 = 𝑊 (𝑝 0 + ∑ 𝑖 ≥1𝜈 𝑖 𝑝 𝑖 )𝜙 = 𝑊 𝜙.

(6. 37 )

 37 Let us estimate the first sum, making use of Assumptions (IC) and ( 𝑗 (𝛼)𝑊 𝛢𝜆 𝑗 (𝛼) 𝑙-1 𝛯 𝑙 + 𝛰 (𝛼 3 ) 𝛼) 𝑙 𝛯 𝑙 ) + 𝛰 (𝛼 3 ) .Thanks to 𝛯 * 𝑙 = 𝛯 -𝑙 , we have Ξ (𝜃 ) = 𝐹 (𝜃 ) + 𝐹 (𝜃 ) * = 2 Re(𝐹 (𝜃 )), where

2

  Re(𝛢 * 𝑄 ℎ 𝛢𝐹 (log 𝜆 ℎ )) + 𝛰 (𝛼 3 ).The only thing left is the double sum. We consider the cases where 𝑙 = 𝑙 ′ , 𝑙 < 𝑙 ′ and 𝑙 > 𝑙 ′ separately to write ∑ 𝑙,𝑙 ′ >0 𝑌 𝑙 𝛯 𝑙-𝑙 ′ 𝑌 * 𝑙 ′

  𝑗 (𝛼)𝜆 𝑗 ′ (𝛼) 𝛧 BS 𝑄 𝑗 (𝛼)𝛧 SB 𝛯 0 𝛧 * SB 𝑄 𝑗 ′ (𝛼) * 𝛧 * BS .

  ′ ∈𝛪 ℎ 2 𝑐 𝑗 + 𝑐 𝑗 ′ 𝛢 * 𝑄 𝑗 (0)𝛢𝛯 0 𝛢 * 𝑄 𝑗 ′ (0)𝛢 + 𝛰 (𝛼 3 ) .

  ) 𝛢 * 𝑄 𝑗 ′ (0)𝛢 + 𝛰 (𝛼 3 ) .

2

  Re { -𝛢 * 𝑄 ℎ 𝛢𝐹 (log 𝜆 ℎ ) + ∑ 𝑗 ,𝑗 ′ ∈𝛪 ℎ 2 𝑐 𝑗 + 𝑐 𝑗 ′ 𝛢 * 𝑄 𝑗 (0)𝛢𝐹 (log 𝜆 ℎ )𝛢 * 𝑄 𝑗 ′ (0)𝛢}.Finally, the relation [𝛱 𝑘 , 𝐹 (𝜃 )] = 0 and the cyclicity of the trace in the definition of the current proves the proposition. For the remainder of the section, we fix basis (𝜓 𝑘 ) 𝑛 B 𝑘=1 of ℋ B and an orthonormal family (𝜙 𝑘 ) 𝑛 B 𝑘=1 in ℋ S , and assume that 𝜃 )𝜓 𝑘 𝜓 * 𝑘 for some scalar functions 𝑓 𝑘 ∶ [0, 2𝜋 ] → [0, 1]. This corresponds to the situation from the introduction.

  | ⟨𝜒 𝑖 , 𝜙 𝑘 ′ ⟩ | 2 𝑓 𝑘 (log 𝜆 𝑖 )𝜒 𝑖 𝜒 * 𝑖 + 𝛰 (𝛼)and the 𝑘-th current admits an expansion𝐽 𝑘 = 𝛼 2 , 𝜒 𝑖 ⟩ | 2 | ⟨𝜙 𝑘 ′ , 𝜒 𝑖 ⟩ | 2 ∑ 𝑛 B 𝑘 ″ =1 | ⟨𝜙 𝑘 ″ , 𝜒 𝑖 ⟩ | 2 (𝑓 𝑘 ′ (log 𝜆 𝑖 ) -𝑓 𝑘 (log 𝜆 𝑖 )).

Figure 6

 6 Figure 6.3: The currents (𝐽 (2) 𝑘,𝑖 ) 𝑛 𝑏 𝑘=1 in Proposition 6.6.5 are the steady-state solutions to a linear circuit with voltage sources (𝑓 𝑘 (log 𝜆 𝑖 )) 𝑛 𝑏 𝑘=1 and resistors (| ⟨𝜙 𝑘 , 𝜒 𝑖 ⟩ | -2 ) 𝑛 B 𝑘=1 . Such a circuit is associated to each eigenvalue 𝜆 𝑖 of 𝑊 .

  Lemma 6.7.1. Let 𝐱 = (𝑥 𝑛 ) 𝑛≥1 and 𝐲 = (𝑦 𝑛 ) 𝑛≥1 be two square-summable sequences. Then, 𝑡 -𝑛 | = 0.

  -𝑡 +𝑚 ⊗ (𝛭 * ) 𝑚 𝛧 * BS 𝑈 𝑚-𝑡 )𝑣 ∥ ≤ 𝑡 ∑ 𝑛=1 ‖𝛭 𝑡 -𝑛 ‖‖(𝛿 -𝑛 ⊗ 𝟏)𝑣 ‖keeping in mind that the facts that 𝑣 ∈ ℓ 2 (𝚭) ⊗ ℋ B and that Assumption (Sp) holds imply respectively that∑ 𝑚≥0 ‖𝛭 𝑚 ‖ 2 < ∞ and ∑ 𝑛≥0 ‖(𝛿 * -𝑛 ⊗ 𝟏)𝑣 ‖ 2 < ∞.Thus, in order to prove the proposition, it is sufficient to show the uniform convergences lim

  𝛺(𝑡 ) = ( 𝛺 E (𝑡 ) 𝛺 ES (𝑡 )𝛺 SE (𝑡 ) 𝛺 S (𝑡 )

𝔜

  𝑡 = 𝛲 [-𝑡 ,-1] 𝔜 𝑡 𝛲 [-𝑡 ,-1]following immediately from the definition. Lemma 6.8.2. Under the ongoing hypotheses,lim 𝑡 →∞ 𝑡 -1 tr[𝛲 [-𝑡 ,-1] 𝛵 E log(𝛵 E )] = ˆ2𝜋 0 tr[ Ξ (𝜃 )log Ξ (𝜃 )] d𝜃 2𝜋 with Ξ the Fourier of transform of 𝛯 according to the conventions of Section 6.3.2. Proof. Because 𝛵 E is invariant under translations, it has a decomposition of the form 𝛵 E = ∑ 𝑘 𝛯 (𝑘) ⊗ 𝜓 𝑘 𝜓 * 𝑘 with {𝜓 𝑘 } 𝑘 an orthonormal basis of ℋ B and 𝛯 (𝑘) an operator on ℓ 2 (𝚭) whose representation in Fourier space is a multiplication operator. Then, 𝛵 E log 𝛵 E = ∑ 𝑘 𝛯 (𝑘) log 𝛯 (𝑘) ⊗ 𝜓 𝑘 𝜓 * 𝑘 (6.44) with log 𝛯 (𝑘) also a multiplication operator in Fourier representation; the matrix elements for the summands satisfy 𝛿 * 𝑛 𝛯 (𝑘) log(𝛯 (𝑘) )𝛿 𝑚 = 𝛿 * 0 𝛯 (𝑘) log(𝛯 (𝑘) )𝛿 𝑚-𝑛 =∶ 𝐺 𝑘 0 (𝑚 -𝑛) (6.45) CHAPTER 6 Proof. Keeping with the notation used in the proof of the previous lemma, splitting the projector 𝛲 ⟂ [-𝑡 ,-1] as 𝟏 -∑ 𝑡 𝑛=1 𝛿 -𝑛 𝛿 * -𝑛 , tr[𝔜 𝑡 𝛵 E 𝛲 ⟂ [-𝑡 ,-1] log(𝛵 E )] 𝑛) -(-𝑚 -𝑙))𝐺 𝑘 2 (-𝑚 -(-𝑛))(6.47)The first term on the right-hand side in (6.47) simplifies to

Lemma 6.8. 5 .

 5 Under the ongoing hypotheses, lim 𝑡 →∞ 𝑡 -1 tr[𝔜 𝑡 𝛵 E 𝔜 * 𝑡 log(𝛵 E )] = ˆ2𝜋 0 tr[ Ŷ(𝜃 ) Ξ (𝜃 ) Ŷ * (𝜃 ) log( Ξ * (𝜃 ))] d𝜃 2𝜋 . Proof. Keeping with the notation used in the proof of the previous lemmata, tr[𝔜 𝑡 𝛵 E 𝔜 * 𝑡 log(𝛵 E )] + 𝑚 -(𝑙 ′ + 𝑚 ′ ))𝑌 * 𝑙 ′ 𝑘 ′ ,𝑘 𝐺 𝑘 2 (𝑚 ′ -𝑚).

  B ) 2 (𝑙 + 𝑙 ′ + |ℎ|)‖𝑌 𝑙 ‖‖𝑌 𝑙 ′ ‖ sup 𝑘,𝑘 ′ |𝐺 𝑘 ′ 1 (ℎ)||𝐺 𝑘 2 (𝑙 -𝑙 ′ -ℎ)|).

  -𝛼 log d𝛲 𝛵 d𝑄 𝛵 d𝛲 𝛵 exists for all 𝛼 ∈ [0, 1] and defines a continuously differentiable function of 𝛼 ∈ (0, 1). Then, the sequence of optimal error frequencies (F[𝛲 𝛵 , 𝑄 𝛵 ]) 𝛵 ≥0 satisfies

		lim 𝛵 →∞	𝛵 -1 log F[𝛲 𝛵 , 𝑄 𝛵 ] = inf 𝛼∈[0,1]	𝑒(𝛼).
	The limit in Proposition 1.2.1 is called a Chernoff error exponent. In our case, it follows easily
	from (LT) that						
	𝑆 𝜆 𝛵 (𝛾 ) = log = log = log	d𝜆 d(𝜆 ∘ 𝜙 𝛵 ) d𝜆 dvol (𝛾 (0)) + log (𝛾 (0)) d𝜆 dvol (𝛾 (0)) -log	dvol d(vol ∘𝜙 𝛵 ) d𝜆 dvol	(𝛾 (0)) + log	d(vol ∘𝜙 𝑡 ) d(𝜆 ∘ 𝜙 𝛵 )	(𝛾 (0))	(1.3a) (1.3b)
			𝛵 →∞	1 𝛵	log		

𝑒(𝛼) ∶= lim ˆe(𝛾 (𝛵 ))

  𝜒 𝜆 CHAPTER 1 respect to 𝒫 𝜆 𝛵 . With Q𝜆 𝛵 that of -𝛵 -1 𝑆 𝛵 , we have Q𝜆

		𝛵 ≪ 𝑄 𝜆 𝛵 and
	d Q𝜆 𝛵 𝛵 d𝑄 𝜆	(𝜍) = e -𝛵 𝜍

  Figure 1.2: A Markov chain on a set 𝛬 consisting of 8 element represented by gray circles: there is an arrow from the element 𝑖 to the element 𝑗 if and only if 𝑝 𝑖 ,𝑗 > 0. The elements inside the dashed contour form a subset 𝛣 such that (a) starting from any point, there is a path of length 𝑚 = 3 ending in 𝛣, and (b) each element in 𝛣 has a direct edge to the element 𝑘 0 .

		𝑘 0	
			𝛣	
	(𝜆 + 𝑖 ) 𝑖 ∈𝛬 whose components sum to 1 and such that	
	lim 𝑡 →∞ ∑ 𝑗 ∈𝛬	𝑝 𝑡 𝑖 ,𝑗 𝑓 𝑗 = ∑ 𝑗 ′ ∈𝛬	𝑓 𝑗 ′ 𝜆 + 𝑗 ′	(1.11)

  whenever 𝑛 ∈ 𝚴 and 𝑓 is a measurable function such that |𝑓 | ≤ 1 + 𝑉 .

	𝑝 𝑚+1 𝑖 ,𝑘 ≥ ∑ 𝑗 ∈𝛣	𝑝 𝑚 𝑖 ,𝑗 𝑝 𝑗 ,𝑘 ≥ ( inf 𝑖 ∈𝛬	∑ 𝑗 ∈𝛣	𝑝 𝑚 𝑖 ,𝑗 )( inf 𝑗 ∈𝛣	𝑝 𝑗 ,𝑘 0 )𝟏 𝑘,𝑘 0

Now, of course, the first condition -say with 𝑉 ≡ 0 -becomes trivial when 𝚾 = 𝛬 is a finite set, but is relevant for semigroups arising from stochastic differential equations on noncompact phase space.

Hypothesis (b) of Proposition 1.5.1 gives the bound 𝑝 𝑗 ,𝑘 ≥ ( inf 𝑗 ∈𝛣 𝑝 𝑗 ,𝑘 0 )𝟏 𝑘,𝑘 0 for each 𝑗 ∈ 𝛣, with a nonzero infimum on the right-hand side. But then,

  whenever 𝑗 , 𝑘 ∈ 𝛬 and 𝑠, 𝑡 ∈ 𝚴 are such that 𝑝 𝑠 𝑖 ′ ,𝑗 > 0. Here and in what follows, 𝜋 [resp. 𝜋 ′ ] denotes the projection onto the first component [resp. second component] in the cartesian product 𝛬 × 𝛬.

  If 𝒯 is the coalescence time of a coupling of the chains starting in 𝑖 and 𝑖 ′ , then Proof. Because ∑ 𝑗 ∈𝛬 |𝑝 𝑡 𝑖 ,𝑗 -𝑝 𝑡 𝑖 ′ ,𝑗 | = 2 sup 𝑆 ⊆𝛤 ∑ 𝑗 ∈𝑆 𝑝 𝑡 𝑖 ,𝑗 -𝑝 𝑡 𝑖 ′ ,𝑗 and 𝚸 [𝜋 (𝒵 𝑡 ) ≠ 𝜋 ′ (𝒵 𝑡 )] ≤ 𝚸 [𝒯 > 𝑡 ], it suffices to show that ∑ 𝑗 ∈𝑆 𝑝 𝑡 𝑖 ,𝑗 -𝑝 𝑡 𝑖 ′ ,𝑗 ≤ 𝚸 [𝜋 (𝒵 𝑡 ) ≠ 𝜋 ′ (𝒵 𝑡 )] for an arbitrary subset 𝑆 of 𝛬. But because 𝒵 is a coupling of the chains starting in 𝑖 and 𝑖 ′ ,

	Lemma 1.5.4. 1 2	𝑗 ∈𝛬 ∑	|𝑝 𝑡 𝑖 ,𝑗 -𝑝 𝑡 𝑖 ′ ,𝑗 | ≤ 𝚸 [𝒯 > 𝑡 ].	(1.13)
	∑	𝑝 𝑡 𝑖 ,𝑗 -𝑝 𝑡 𝑖		
	𝑗 ∈𝑆			

′ ,𝑗 = 𝚬[𝟏 𝑆 (𝜋 (𝒵 𝑡 ))] -𝚬[𝟏 𝑆 (𝜋 ′ (𝒵 𝑡

  (𝜆 + 𝑗 ) 𝑗 ∈𝜆 such that ∑ 𝑖 ∈𝛬 𝜆 + 𝑖 𝑝 𝑖 ,𝑗 = 𝜆 + 𝑗 for all 𝑗 ∈ 𝛬. Hence, summing (1.13) over 𝑖 ′ against 𝜆 + 𝑖 ′ and using the convergence of 𝚸 [𝒯 > 𝑡 ]

	𝑡 →∞ ∑ 𝑗 ∈𝛬	𝑝 𝑡 𝑖 ,𝑗 𝑓 𝑗 = ∑ 𝑗 ′ ∈𝛬	𝑓 𝑗 ′ 𝜆 + 𝑗

(𝑖 , 𝑖 ′ ) ∈ 𝛬 × 𝛬, there exists a coupling of the chains starting in 𝑖 and 𝑖 ′ such that it coalescence time satisfies lim 𝑡 →∞ 𝚸 [𝒯 > 𝑡 ] = 0, then there exists a state 𝜆 + such that lim ′ (1.14) for all 𝑖 ∈ 𝛬 and all choices of (𝑓 𝑗 ) 𝑗 ∈𝛬 .

Proof. By a standard compactness argument of the Bogolyubov-Krylov type (see e.g. Section 2.5.1 in

[KS12]

), there exists a state

  The system is solidly controllable from x : there is a number 𝜖 0 > 0, a time 𝛵 0 > 0, a compact set 𝒦 in 𝐶 ([0, 𝛵 0 ]; 𝐑 𝑛 ) and a non-degenerate ball 𝐺 in 𝐑 𝑛 such that, for any continuous function 𝛷 ∶ 𝒦 → 𝐑 𝑑 satisfying the relation

	sup 𝜂∈𝒦	‖𝛷 (𝜂) -𝑆 𝛵 0 ( x, 𝜂)‖ ≤ 𝜖 0 ,
	we have 𝐺 ⊂ 𝛷 (𝒦).	

Indeed, there is hope that approximate controllability is sufficient to guarantee (A) if enough controls close to 𝜁 are probable enough according to the law ℓ of the noise over the interval [0, 𝛵 ].
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The notion of decomposability of ℓ used by Shirikyan in

[Shi07, Shi17] 

is suitable in many situations, including -up to a minor modification -that of Chapter 3, but does not directly apply to Poisson noises considered in Chapter 4. Bibliography [AGG + 86] W. Arendt, A. Grabosch, G. Greiner, U. Moustakas, R. Nagel, U. Schlotterbeck, U. Groh, H. P. Lotz, and F. Neubrander. One-parameter semigroups of positive operators, volume 1184 of Lecture Notes in Mathematics. Springer, 1986.

  {𝑥 𝑗 } 𝑗 ∈𝚴 and are all nondegenerate by (ND). The regularity assumptions on 𝑉 and 𝑏 are made for simplicity of technical estimates and can be relaxed if necessary.For example, in the case of 𝑉 , class 𝐶 2 with 𝑥 ↦ 𝐷 2 𝑉 | 𝑥 locally Hölder continuous would only require minor changes to the proofs in Appendix 2.7.

	and				
	{	d𝛸 𝑥,𝜖 𝑠 𝛸 𝑥,𝜖 0	= -∇𝑉 (𝛸 𝑥,𝜖 𝑠 ) d𝑠 + 𝑏 (𝛸 𝑥,𝜖 𝑠 ) d𝑠 + √ 2𝜖 d𝑊 𝑠 , = 𝑥.
	The Lyapunov structure for the ordinary differential equations guarantees the existence and
	uniqueness of the solution to the sdes		
		{	d𝑌 𝑠 𝑦,𝜖 𝑌 𝑦,𝜖 0	= -∇𝑉 (𝑌 = 𝑦,	𝑦,𝜖 𝑠 ) d𝑠 + √ 2𝜖 d𝑊 𝑠 ,	(2.4)

  𝑥 ↦ ⟨𝑥, 𝛨 𝑏 𝑥⟩ + 2𝛫 𝑏 + 2𝜖 tr 𝛨 𝑏 and 𝑐 = 1.

	𝜕 𝑡 𝚬𝑓 𝑅 (𝛸 𝑥,𝜖 𝑡 ) = 𝛬 𝜖,0 𝚬𝑓 𝑅 (𝛸 𝑥,𝜖 𝑡 ) for any approximation 𝑓 𝑅 ∈ 𝐶 2 c (𝐑 𝛮 ) of 𝑓 . We show in Appendix 2.A
	that (𝛬 𝜖,0 , 𝑊 2,2 (𝐑 𝛮 , d𝜇 𝜖 0 )) generates a strongly continuous semigroup of bounded linear operators
	on L 2 (𝐑 𝛮 , d𝜇 𝜖 0 ). Hence, using basic semigroup properties -see e.g. Proposition 1.6.ii and Theo-
	rem 1.7 in [AGG + 86, Ch. A-I] -, we find	
	Lemma 2.2.2. Suppose that Assumption (L1). Then, 𝜕 𝑡 𝚬𝑓 (𝛸 𝑥,𝜖 𝑡 ) = 𝚬[𝜖Δ𝑓 (𝛸 𝑥,𝜖 𝑡 ) + ⟨-∇𝑉 (𝛸 𝑥,𝜖 𝑡 ) + 𝑏 (𝛸 𝑥,𝜖 𝑡 ), ∇𝑓 (𝛸 𝑥,𝜖 𝑡 )⟩ ]	
	𝚸 { sup 𝑠∈[0,𝑡 ] for almost all 𝑥 by an approximation argument. Then, by (L1), |𝛸 𝑥,𝜖 𝑠 | ≥ 𝑅} ≤ ⟨𝑥, 𝛨 𝑏 𝑥⟩ + 2𝛫 𝑏 + 2𝜖 tr 𝛨 𝑏 𝑅 2 inf sp 𝛨 𝑏 𝜕 𝑡 𝚬 ⟨𝛸 𝑥 𝑡 , 𝛨 𝑏 𝛸 𝑥 𝑡 ⟩ ≤ 2𝜖 tr 𝛨 𝑏 -2 ⟨𝛸 𝑥 𝑡 , 𝛸 𝑥 𝑡 ⟩ + 2𝛫 𝑏 e The study of (2.5) is intimately related to partial differential equations involving ≤ 2𝜖 tr 𝛨 𝑏 + 2𝛫 𝑏 -2‖𝛨 𝑏 ‖ -1 𝚬 ⟨𝛸 𝑥 𝑡 , 𝛨 𝑏 𝛸 𝑥 𝑡 ⟩	
	𝛬 𝜖,0 ∶= 𝜖Δ + ⟨-∇𝑉 + 𝑏 , ∇⟩	
	and its adjoint. We refer to [Kha11, §3.6] for the general basic relations and to Appendix 2.A for
	more precise technical properties of 𝛬 𝜖,0 in this specific case.	
	Finally, let us mention an estimate which -together with the nondegeneracy of the diffusion
	matrix -is useful in showing that that there exists a unique stationary measure 𝜆 𝜖 inv for (2.5); 𝜇 𝜖 0
	for (2.4).	
	Lemma 2.2.3. Let 𝛨 𝑏 be as in Assumption (L1). Then, for all 𝜖 0 > 0, there exist positive constants 𝑐
	and 𝐶 such that	
	inf sp 𝛨 𝑏 𝚬|𝛸 𝑥,𝜖 𝑡 | 2 ≤ 𝚬 ⟨𝛸 𝑥,𝜖 𝑡 , 𝛨 𝑏 𝛸 𝑥,𝜖 𝑡 ⟩ ≤ e -𝑐𝑡 ⟨𝑥, 𝛨 𝑏 𝑥⟩ + 𝐶	(2.6)
	for all 𝜖 ∈ (0, 𝜖 0 ) and 𝑡 ≥ 0 and almost all 𝑥 ∈ 𝐑 𝛮 .	
	Proof. The first inequality in (2.6) is immediate from the fact that 𝛨 𝑏 is positive definite. Let 𝑓 ∶
	𝑥 ↦ ⟨𝑥, 𝛨 𝑏 𝑥⟩. By Kolmogorov's backwards equation -see e.g. Lemma 3.3 in [Kha11, Ch. 3] -,

𝑡

for all 𝑡 ≥ 0, 𝑥 ∈ 𝐑 𝛮 and 𝑅 > 0.

Proof. Using (L1), follow the first steps of the proof of Theorem 3.5 in [Kha11, Ch. 3] with the nonnegative function

  𝑊 ) for a probability measure 𝜆 on 𝐑 𝛮 . In other words, 𝒫 𝜆,𝜖 𝑡 is the unique Borel measure on 𝒞 𝑡 such that We have mentioned in the Introduction that 𝒬 𝜆,𝜖 𝑡 is invariant under time reversal if and only if 𝜆 possesses a density proportional to exp(-𝜖 -1 𝑉 ). This is made more precise as follows. For 𝑠 ∈ [0, 𝑡 ], let 𝜋 𝑠 ∶ 𝒞 𝑡 → 𝐑 𝛮 be evaluation map 𝛾 ↦ 𝛾 (𝑠). The time reversal is the unique involution 𝛩 𝑡 ∶ 𝒞 𝑡 → 𝒞 𝑡 determined by the relation 𝜋 𝑠 ∘ 𝛩 𝑡 = 𝜋 𝑡 -𝑠 .

	Throughout the paper, we use the shorthand 𝒞 𝑡 for the space 𝐶 ([0, 𝑡 ]; 𝐑 𝛮 ) of continuous paths in 𝐑 𝛮 over the time interval [0, 𝑡 ]. It is always equipped with the supremum norm ‖ ⋅ ‖ ∞ ; the corresponding Borel 𝜎 -algebra is denoted ℬ 𝑡 . We denote the distribution of (𝛸 𝑥,𝜖 𝑠 ) 0≤𝑠≤𝑡 in (2.5) by 𝒫 𝑥,𝜖 𝑡 . This is a measure on (𝒞 𝑡 , ℬ 𝑡 ). With a slight abuse of notation, we define 𝒫 𝜆,𝜖 𝑡 as the analogous object but with random initial condi-tion 𝛸 𝜆,𝜖 0 𝛨 (𝛾 ) 𝒫 𝜆,𝜖 𝑡 (d𝛾 ) = ˆ𝐑𝛮 ( ˆ𝒞𝑡 𝛨 (𝛾 ) 𝒫 𝑥,𝜖 𝑡 (d𝛾 )) 𝜆(d𝑥) (2.8) for any nonnegative measurable function 𝛨 ∶ 𝒞 𝑡 → 𝐑. The measures 𝒬 𝑥,𝜖 𝑡 and 𝒬 𝜆,𝜖 𝑡 are defined analagously using (2.4) i.e. the case 𝑏 ≡ 0. Lemma 2.2.4. Under Assumption (L0), if 𝜆 and the Lebesgue measure are mutually absolutely con-tinuous, then 𝒬 𝜆,𝜖 𝑡 and 𝒬 𝜆,𝜖 𝑡 ∘ 𝛩 𝑡 are mutually absolutely continuous and log d𝒬 𝜆,𝜖 𝑡 d(𝒬 𝜆,𝜖 𝑡 ∘ 𝛩 𝑡 ) (𝛾 ) = log d𝜆 d𝜇 𝜖 0 (𝛾 (0)) -log d𝜆 d𝜇 𝜖 0 (𝛾 (𝑡 )) for 𝒬 𝜆,𝜖 𝑡 -almost all 𝛾 ∈ 𝒞 𝑡 . Proof. Let 𝛤 be a measurable subset of 𝒞 𝑡 . Using (2.8), 𝒬 𝜆,𝜖 𝑡 (𝛤 ) = ˆ𝐑𝛮 ˆ𝒞𝑡 𝟏 𝛤 (𝛾 )𝟏 𝜋 -1 0 {𝑥} (𝛾 ) 𝒬 𝑥,𝜖 𝑡 (d𝛾 ) d𝜆 d𝜇 𝜖 0 (𝑥)𝜇 𝜖 0 (d𝑥) = ˆ𝐑𝛮 ˆ𝒞𝑡 𝟏 𝛤 (𝛾 ) d𝜆 d𝜇 𝜖 0 (𝜋 0 𝛾 )𝟏 𝜋 -1 0 {𝑥} (𝛾 ) 𝒬 𝑥,𝜖 𝑡 (d𝛾 ) 𝜇 𝜖 0 (d𝑥) = ˆ𝒞𝑡 𝟏 𝛤 (𝛾 ) d𝜆 d𝜇 𝜖 0 (𝜋 0 𝛾 )𝒬 𝜇 0 ,𝜖 𝑡 (d𝛾 ), that is 𝒬 𝜆,𝜖 𝑡 (d𝛾 ) = d𝜆 d𝜇 𝜖 0 (𝜋 0 𝛾 ) 𝒬 𝜇 𝜖 0 ,𝜖 𝑡 (d𝛾 ). Now, by the celebrated result of Kolmogorov [Kol37], 𝒬 𝜇 𝜖 0 ,𝜖 𝑡 = 𝒬 𝜇 𝜖 0 ,𝜖 𝑡 ∘ 𝛩 -1 𝑡 so that ∼ 𝜆 (independent of ˆ𝒞𝑡 d𝒬 𝜆,𝜖 𝑡 d(𝒬 𝜆,𝜖 𝑡 ∘ 𝛩 𝑡 ) = d𝒬 𝜆,𝜖 𝑡 d𝒬 𝜇 𝜖 0 ,𝜖 𝑡 × ( d𝒬 𝜇 𝜖 0 ,𝜖 𝑡 𝑡 d𝒬 𝜆,𝜖 ∘ 𝛩 𝑡 )

  Brownian motion, the evaluation map 𝜋 0 has distribution 𝜆 and is independent of 𝑊 , and the canonical process (𝜋 𝑠 ) 𝑠≥0 is the unique solution to the sde (2.5) with initial condition 𝜆. Hence,

				𝜆,𝜖 𝑠 ) 𝑠≥0 .								
	Proposition 2.2.5. Under Assumptions (L0) and (L1), if 𝜆 and the Lebesgue measure are mutually
	absolutely continuous, then 𝒫 𝜆,𝜖 𝑡 and 𝒫 𝜆,𝜖 𝑡 ∘ 𝛩 -1 are mutually absolutely continuous and
	log	d𝒫 𝜆,𝜖 𝑡 d(𝒫 𝜆,𝜖 𝑡 ∘ 𝛩 -1 𝑡 )	(𝛾 ) = log	d𝜆 d𝜇 𝜖 0	(𝛾 (0)) -log	d𝜆 d𝜇 𝜖 0	(𝛾 (𝑡 )) +	1 𝜖	ˆ⟨𝑏 (𝛾 ), ∘ d𝛾 ⟩	(2.9)
	for 𝒫 𝜆,𝜖 𝑡 -almost all 𝛾 ∈ 𝒞 𝑡 , where 𝜇 𝜖 0 is defined by (2.7). Moreover,
	ˆ𝒞𝑡	(	d𝒫 𝜆,𝜖 𝑡 d(𝒫 𝜆,𝜖 𝑡 ∘ 𝛩 -1 𝑡 )	(𝛾 ))	𝛼	𝒫 𝜆,𝜖 𝑡 (d𝛾 ) =	ˆ𝒞𝑡	(	d𝒫 𝜆,𝜖 𝑡 d(𝒫 𝜆,𝜖 𝑡 ∘ 𝛩 -1 𝑡 )	(𝛾 )) 1-𝛼	𝒫 𝜆,𝜖 𝑡 (d𝛾 )	(2.10)
	for all 𝛼 ∈ 𝐑 for which both sides are finite. Both sides of (2.10) are log-convex in 𝛼.
	Before we proceed with the proof, let us briefly clarify the meaning of the expression (2.9). On
	the canonical probability space (𝒞 𝑡 , ℬ 𝑡 , 𝒫 𝜆,𝜖 𝑡 ), the random variable 𝑊 = (𝑊 𝑠 ) 𝑠≥0 defined by
				𝑊 𝑠 (𝛾 ) ∶=	1 √ 2𝜖	(𝛾 (𝑠) -𝛾 (0) -	ˆ𝑠 0	( -∇𝑉 (𝛾 (𝑟 )) + 𝑏 (𝛾 (𝑟 ))) d𝑟 )	(2.11)
	is a (𝜋 𝑠 ) 𝑠≥0 is a continuous semimartingale and we allow ourselves notational shortcuts such as
						ˆ⟨𝑏 (𝛾 ), ∘ d𝛾 ⟩ ∶= (	ˆ𝑡 0	⟨𝑏 (𝜋 𝑠 ), ∘ d𝜋 𝑠 ⟩ )(𝛾 )
	and			ˆ⟨𝑏 (𝛾 ), d𝑊 (𝛾 )⟩ ∶= (	ˆ𝑡 0	⟨𝑏 (𝜋 𝑠 ), d𝑊 𝑠 ⟩ )(𝛾 ),

  𝑅 ∈ 𝚴, pick a globally Lipschitz vector field 𝑏 𝑅 satisfying |𝑏 𝑅 (𝑥)| ≤ |𝑏 (𝑥)| for all |𝑥| ∈ 𝐑 𝛮 , 𝑏 𝑅 (𝑥) = 𝑏 (𝑥) whenever |𝑥| ≤ 𝑅 -1, and 𝑏 𝑅 (𝑥) = 0 whenever |𝑥| ≥ 𝑅. 𝒫 𝜆 𝑡 [𝑅] be the path measure associated to the sde with initial condition 𝜆 and drift 𝑏 𝑅 , and let 𝛣 𝑅 denote the cenetered open ball of radius 𝑅 in 𝒞 𝑡 . Observe that 𝛣 𝑅 is invariant under 𝛩 𝑡 and that

	Let 𝒫 𝜆 𝑡 [𝑅](𝛤 ∩ 𝛣 𝑅 ) = 𝒫 𝜆 𝑡 (𝛤 ∩ 𝛣 𝑅 )
	for all Borel sets 𝛤 ⊆ 𝒞 𝑡 ; see e.g. the construction in [Kha11, §3.4]. Hence, by hypothe-
	sis, (𝒫 𝜆 𝑡 ∘ 𝛩 -1 𝑡 )(𝛣 𝑅 ∩ ⋅ ) is absolutely continuous with respect to 𝒫 𝜆 𝑡 (𝛣 𝑅 ∩ ⋅ ) and 𝐹 𝑅 (𝛾 ) ∶= 𝟏 𝛣 𝑅 (𝛾 ) d𝜆 d𝜇 0 (𝛾 (0)) d𝜇 0 d𝜆 (𝛾 (𝑡 )) exp ( 1 𝜖 ˆ⟨𝑏 𝑅 (𝛾 ), ∘ d𝛾 ⟩ )
	is a Radon-Nikodym derivative. Because,	
	lim 𝑅→∞	𝒫 𝜆 𝑡 (𝛣 𝑅 ) = 1
	by Lemma 2.2.2, we can deduce that 𝒫 𝜆 𝑡 ∘ 𝛩 𝑡 is absolutely continuous with respect to 𝒫 𝜆 𝑡 ,
	with a Radon-Nikodym derivative	
	𝐹 (𝛾 ) ∶= lim 𝑅→∞	𝐹 𝑅 (𝛾 ).

Definition 2.3.1. The

  entropy production functional associated to the function 𝑔 is the function 𝒮 𝜖 We are mainly interested in the large deviations of 𝒮 𝜖 𝑡 as 𝑡 → ∞ and then 𝜖 → 0. To tackle this problem, we will need additional assumptions on the behaviour of the boundary term 𝑔 at infinity. Before we do so, let us state and prove a weak law of large numbers which holds under minimal assumptions on the decay of the boundary terms.

	Remark 2.3.2. The choice of -𝛼 in the exponent is common in the physics literature and is made here By Chebyshëv's inequality and Itô's isometry, we have
	to facilitate the identification of certain symmetries. Indeed, the symmetry noted in Proposition 2.2.5 can be used to deduce 𝜒 𝜖 𝑡 (1 -𝛼) = 𝜒 𝜖 𝑡 (𝛼) in the case 𝑔 = d𝜆/ d𝜇 𝜖 0 . However, this symmetry at finite 𝑡 𝒫 𝜆,𝜖 𝑡 {| √ 2𝜖 ⌊𝑡 ⌋ ˆ𝑡 ⌊𝑡 ⌋ ⟨𝑏 (𝛾 ), d𝑊 (𝛾 )⟩ | > 1 5 𝛿 } ≤ 50𝜖 𝛿 2 ⌊𝑡 ⌋ 2 ˆ𝒞𝑡 ˆ𝑡 ⌊𝑡 ⌋ |𝑏 (𝜋 𝑠 𝛾 )| 2 d𝑠 𝒫 𝜆,𝜖 𝑡 (d𝛾 ),
	is not expected to hold for a generic choice of 𝑔. This choice also has an incidence on our choice of sign for
	the Legendre transform in Sections 2.4 to 2.6.
	Proposition 2.3.3. Suppose that Assumptions (L0) and (L1) are satisfied and let
		ˆ𝐑𝛮			ˆ𝐑𝛮
		𝔪 𝜖 ∶=	(𝜖 -1 |𝑏 | 2 -𝜖 -1 ⟨𝑏 , ∇𝑉 ⟩ ) d𝜆 𝜖 inv +	div 𝑏 d𝜆 𝜖 inv .	(2.16)
	Then, for all 𝛿 > 0,		
				lim 𝑡 →∞ 𝒫 𝜆,𝜖 𝑡 {|	1 𝑡	𝒮 𝜖 𝑡 -𝔪 𝜖 | > 𝛿 } = 0.	(2.17)
	Proof. The Stratonovich integral in the definition (2.15) of 𝑡 -1 𝒮 𝜖 𝑡 can be decomposed as
	1 𝑡 ˆ𝑡 0	⟨𝑏 (𝛾 ), ∘ d𝛾 ⟩ =	1 𝑡 ˆ𝑡 0 +	(|𝑏 (𝜋 𝑠 𝛾 )| 2 -⟨𝑏 (𝜋 𝑠 𝛾 ), ∇𝑉 (𝜋 𝑠 𝛾 )⟩ + 𝜖 div 𝑏 (𝜋 𝑠 𝛾 )) d𝑠 √ 2𝜖 𝑡 ˆ𝑡 0 ⟨𝑏 (𝛾 ), d𝑊 (𝛾 )⟩ .
	𝑡 The integral on the first line of the right-hand is admissible for an application of the law of large
	defined by numbers for continuous functions of 𝛸 𝜖 𝒮 𝜖 𝑡 (𝛾 ) ∶= log 𝑔(𝛾 (0)) -log 𝑔(𝛾 (𝑡 )) + 𝑠 -see e.g. Theorem 4.2 in [Kha11, Ch. 4] -, which yields 1 𝜖 ˆ⟨𝑏 (𝛾 ), ∘ d𝛾 ⟩ , (2.15) considered as a random variable on 𝒞 𝑡 with respect to the probability measure 𝒫 𝜆,𝜖 lim 𝑡 →∞ 𝒫 𝜆,𝜖 𝑡 {| 1 (|𝑏 (𝜋 𝑠 𝛾 )| 2 -⟨𝑏 (𝜋 𝑠 𝛾 ), ∇𝑉 (𝜋 𝑠 𝛾 )⟩ + 𝜖 div 𝑏 (𝜋 𝑠 𝛾 )) d𝑠 -𝔪 𝜖 | > 1 5 𝛿 } = 0. 𝑡 ˆ𝑡 0 𝑡 . For 𝛼 ∈ 𝐑, we The integral on the second line of the right-hand side is a martingale. For integer times, the hypothe-use 𝜒 𝜖 𝑡 (𝛼) ∶= ˆ𝒞𝑡 e -𝛼𝒮 𝜖 ses of the law of large numbers for discrete-time martingales in [Fel66, §VII.8] are satisfied thanks to 𝑡 d𝒫 𝜆,𝜖 𝑡 the Itô isometry and Lemma 2.2.3. Hence,
	for the mgf of 𝒮 𝜖 𝑡 in 𝛼. We speak of a steady-state functional if the initial condition 𝜆 entering the definition of 𝒫 𝜆,𝜖 𝑡 equals the invariant measure 𝜆 𝜖 inv . lim 𝑡 →∞ 𝒫 𝜆,𝜖 𝑡 {| ˆ⌊𝑡⌋ √ 2𝜖 ⌊𝑡 ⌋ 0 ⟨𝑏 (𝛾 ), d𝑊 (𝛾 )⟩ | > 1 5 𝛿 } = 0.

  relies on preliminary results on elliptic operators collected in Appendix 2.A, based on [AGG + 86,

	Lan97, MPSR05].			
	Proposition 2.3.6. Suppose that Assumptions (L0), (L1), (RB) and (IP) are satisfied. Then, for
	all 𝛼 ∈ 𝛪 𝜖 , the mgf 𝜒 𝜖 𝑡 (𝛼) is finite and can be represented as
	𝜒 𝜖 𝑡 (𝛼) =	ˆ𝐑𝛮	𝑔 -𝛼 (e 𝑡 𝛬 𝛼,𝜖 𝑔 𝛼 ) d𝜆,	(2.22)
	where 𝛬 𝜖,𝛼 is the infinitesimal generator of a semigroup on L 𝑝 𝜖 𝛼 (𝐑 𝛮 , d𝜇 𝜖 0 ) given by
	𝛬 𝜖,𝛼 𝑓 = 𝜖Δ𝑓 + ⟨-∇𝑉 + (1 -2𝛼)𝑏 , ∇𝑓 ⟩ -𝛼(1-𝛼) 𝜖	|𝑏 | 2 𝑓 + 𝛼 𝜖 ⟨𝑏 , ∇𝑉 ⟩ 𝑓 -𝛼𝑓 div 𝑏 ,	(2.23)
	for all 𝑓 ∈ 𝐶 2 c (𝐑 𝛮 ).			

Step 2: Proof in the case where 𝑏 has compact support. In

  𝑝 𝛼 (𝐑 𝛮 , d𝜇 0 ), which contains 𝑔 𝛼 by (2.19) of Assumption (IP). In particular, there exists a subsequence (𝑅 𝑘 ) 𝑘∈𝚴 properly diverging to +∞ such that 𝑅 𝑘 ] is the measure on the paths associated to the sde with initial condition 𝑥 and drift -∇𝑉 + 𝑏 𝑅 𝑘 , and where 𝛣 𝑅 𝑘 denotes the ball of radius 𝑅 𝑘 in 𝒞 𝑡 . Using uniqueness, 𝑥 ∈ 𝐑 𝛮 , where (e 𝑡 𝛬 𝛼 ) 𝑡 ≥0 is the positivity-preserving semigroup generated by 𝛬 𝛼 on L 𝑝 𝛼 (𝐑 𝛮 , d𝜇 0 ). By definition of 𝒮 𝑡 , this is equivalent to

	CHAPTER 2 CHAPTER 2
	right-hand side of (2.22) is well defined and finite for all 𝛼 ∈ 𝛪 . Therefore, by (2.8), it suffices Note that this limit must be finite because the left-hand side of (2.25) is finite, 𝑔 𝛼 (𝑥) is strictly final result by taking a sequence (𝜂 𝑅 ) 𝑅∈𝚴 converging pointwise to the constant function 1 recall again that 𝑏 is temporarily assumed to be compactly supported -that
	to show that for almost all 𝑥 ∈ 𝐑 𝛮 . One can show using the isometry between L 𝑝 𝛼 (𝐑 𝛮 , d𝜇 0 ) and L 𝑝 𝛼 (𝐑 𝛮 , dvol) and the second (e 𝑡 𝛬 𝛼 𝑔 𝛼 )(𝑥) = 𝑔 𝛼 (𝑥) ˆ𝒞𝑡 e -𝛼𝒮 𝑡 d𝒫 𝑥 𝑡 (2.24) resolvent identity that positive and the integral over the complement of the ball on the right-hand side of (2.25) is nonnegative. Because 𝛪 is open, ˆ𝒞𝑡 e -(𝛼+𝛿 𝛼)𝒮 𝑡 d𝒫 𝑥 𝑡 < ∞ from below. ˆ𝒞𝑡 𝑔 𝛼 (𝛾 (𝑡 )) exp ( -𝛼(1-𝛼) 𝜖 |𝑏 (𝛾 (𝑠))| 2 + 𝛼 𝜖 ⟨𝑏 (𝛾 (𝑠)), (∇𝑉 )(𝛾 (𝑠))⟩ ˆ𝑡 0 Set 𝑚(𝑠, 𝑥) to be the left-hand side of (2.28) with 𝑡 replaced by 𝑠 ∈ [0, 𝑡 ]. Because 𝑔 𝛼 ∈ L 𝑝 (𝐑 𝛮 , d𝜇 𝜖 0 ) and because the semigroup generated by 𝛬 𝛼 with domain W 2,𝑝 (𝐑 𝛮 , d𝜇 𝜖 0 ) on L 𝑝 (𝐑 𝛮 , d𝜇 𝜖 0 ) is analytic, e 𝑠𝛬 𝛼 𝑔 𝛼 ∈ W 2,𝑝 (𝐑 𝛮 , d𝜇 𝜖 0 ) and -𝛼(div 𝑏 )(𝛾 (𝑠)) d𝑠) Q𝑥 𝑡 (d𝛾 ) = ˆ𝒞𝑡 𝑔 𝛼 (𝛾 (𝑡 )) exp ( -𝛼(1-𝛼) 𝜖 |𝑏 (𝛾 (𝑠))| 2 + 𝛼 𝜖 ⟨𝑏 (𝛾 (𝑠)), (∇𝑉 )(𝛾 (𝑠))⟩ ˆ𝑡 0 as well if 𝛿 > 0 is small enough. Hence, we may apply Hölder's inequality with exponents 1+𝛿 and (1 -(1 + 𝛿 ) -1 ) -1 to derive 𝜕 𝑠 (e 𝑠𝛬 𝛼 𝑔 𝛼 ) = 𝛬 𝛼 e 𝑠𝛬 𝛼 𝑔 𝛼 -𝛼(div 𝑏 )(𝛾 (𝑠)) d𝑠) Ζ𝑡 (𝛾 )𝒫 𝑥 𝑡 (d𝛾 ),
	s. r. -lim 𝑅→∞ Hence, by Theorem 2.16 in [Kat95, Ch. IX], ˆ𝛣C s. -lim 𝑅→∞ e 𝑡 𝛬 𝛼 𝛬 𝛼 𝑅 = 𝛬 𝛼 . 𝑅 = e 𝑡 𝛬 𝛼 lim 𝑘→∞ | e -𝛼𝒮 𝑡 d𝒫 𝑥 𝑡 | for all 𝑠 > 0; see e.g. Proposition 1.6.ii in [AGG + 86, Ch. A-I]. Hence, (2.28) becomes 𝑚(𝑡 , 𝑥) = 𝑅 𝑘 ≤ lim 𝑘→∞ | ˆ𝒞𝑡 e -(𝛼+𝛿 𝛼)𝒮 𝑡 d𝒫 𝑥 𝑡 | 1 1+𝛿 (1 -𝒫 𝑥 𝑡 [𝑅 𝑘 ](𝛣 𝑅 𝑘 )) 1-(1+𝛿 ) -1 e 𝑡 𝛬 𝛼 𝑔 𝛼 and, by uniqueness, we need only show that 𝑚 also satisfies the partial differential equa-, tion
	which is controlled by Lemma 2.2.2. Using this bound and (2.26) in (2.25) yields (2.24) and the proof is concluded. { 𝜕 𝑠 𝑚(𝑠, 𝑥) = (𝛬 𝛼 𝑚(𝑠, ⋅ ))(𝑥), 𝑥 ∈ 𝐑 𝛮 , 𝑠 > 0, 𝑚(0, 𝑥) = 𝑔 𝛼 (𝑥), 𝑥 ∈ 𝐑 𝛮 . (2.30) on L (e 𝑡 𝛬 𝛼 𝑔 𝛼 )(𝑥) = lim 𝑘→∞ (e 𝑡 𝛬 𝛼 𝑅 𝑘 𝑔 𝛼 )(𝑥) for almost all 𝑥 ∈ 𝐑 𝛮 . Hence, by hypothesis, (e 𝑡 𝛬 𝛼 𝑔 𝛼 )(𝑥) = lim 𝑘→∞ (e view of (2.8), it suffices to show that 𝑔 𝛼 (𝑥) A straightforward computation shows that ˆ𝒞𝑡 e -𝛼𝒮 𝑡 d𝒫 𝑥 𝑡 = (e 𝑡 𝛬 𝛼 𝑔 𝛼 )(𝑥) (2.27) 𝛬 𝛼 𝑓 = Λ𝑓 -𝛼(1-𝛼) 𝜖 |𝑏 | 2 𝑓 + 𝛼 (2.31) 𝜖 ⟨𝑏 , ∇𝑉 ⟩ 𝑓 -𝛼(div 𝑏 )𝑓 𝑡 𝛬 𝛼 𝑅 𝑘 𝑔 𝛼 )(𝑥) = lim 𝑘→∞ 𝑔 𝛼 (𝑥) ˆ𝒞𝑡 e -𝛼𝒮 𝑡 d𝒫 𝑥 𝑡 [𝑅 𝑘 ] = 𝑔 𝛼 (𝑥) lim 𝑘→∞ ( 𝑅 𝑘 ˆ𝛣𝑅 𝑘 e -𝛼𝒮 𝑡 d𝒫 𝑥 𝑡 [𝑅 𝑘 ] + ˆ𝛣C e -𝛼𝒮 𝑡 d𝒫 𝑥 𝑡 [𝑅 𝑘 ]), where Λ is the infinitesimal generator associated to the deformed sde for almost all 𝑔 𝛼 (𝑥) ˆ𝒞𝑡 𝑔 -𝛼 (𝛾 (0))𝑔 𝛼 (𝛾 (𝑡 ))e -𝛼𝜖 -1 ´𝑡 0 ⟨𝑏 (𝛾 ),∘ d𝛾 ⟩ 𝒫 𝑥 𝑡 (d𝛾 ) = (e 𝑡 𝛬 𝛼 𝑔 𝛼 )(𝑥). (2.28) d Ỹ 𝑡 = -∇𝑉 ( Ỹ 𝑡 ) d𝑡 + (𝑏 ( Ỹ 𝑡 ) -2𝛼𝑏 ( Ỹ 𝑡 )) d𝑡 + √ 2𝜖 d𝑊 𝑡 .
	𝛼(1-𝛼) 𝜖 Note that the terms 𝑔 𝛼 (𝑥) and 𝑔 -𝛼 (𝛾 (0)) cancel each other out. |𝑏 𝑅 | 2 + 𝛼 𝜖 ⟨𝑏 𝑅 , ∇𝑉 ⟩ -𝛼 div 𝑏 𝑅 and where 𝒫 𝑥 By Lebesgue monotone convergence and continuity of e 𝑡 𝛬 𝛼 , it is enough to show that Hence, in view of the Feynman-Kac formula -see e.g. Lemma 3.7 in [Kha11, Ch. 3] keeping in mind that 𝑏 is temporarily assumed to be compactly supported -, (2.30) will hold if 𝑡 [(e 𝑡 𝛬 𝛼 𝑔 𝛼 )(𝑥) = 𝑔 𝛼 (𝑥) lim 𝑘→∞ ( ˆ𝛣𝑅 𝑘 e -𝛼𝒮 𝑡 d𝒫 𝑥 𝑡 + ˆ𝛣C 𝑅 𝑘 e -𝛼𝒮 𝑡 d𝒫 𝑥 𝑡 [𝑅 𝑘 ]). (2.25) ˆ𝒞𝑡 (𝜂𝑔 𝛼 )(𝛾 (𝑡 ))e -𝛼𝜖 -1 ´𝑡 0 ⟨𝑏 (𝛾 ),∘ d𝛾 ⟩ 𝒫 𝑥 𝑡 (d𝛾 ) = (e 𝑡 𝛬 𝛼 𝜂𝑔 𝛼 )(𝑥) ˆ𝒞𝑡 (2.29) 𝑚(𝑡 , 𝑥) = 𝑔 𝛼 (𝛾 (𝑡 ))
	𝛬 𝛼 ∶= 𝜖Δ + ⟨-𝛥𝑉 + (1 -2𝛼)𝑏 , ∇⟩ -𝛼(1-𝛼) 𝜖 It is shown in Appendix 2.A that these operators with domain W 2,𝑝 𝛼 (𝐑 𝛮 ; d𝜇 0 ) generate semi-|𝑏 | 2 + 𝛼 𝜖 ⟨𝑏 , ∇𝑉 ⟩ -𝛼 div 𝑏 . groups on L 𝑝 𝛼 (𝐑 𝛮 ; d𝜇 0 ) if 𝛼 ∈ 𝒜. Hence, in view of (2.19) and the definition of 𝛪 , the By Lebesgue monotone convergence, lim 𝑘→∞ ˆ𝛣𝑅 𝑘 e -𝛼𝒮 𝑡 d𝒫 𝑥 𝑡 = for all smooth functions 0 ≤ 𝜂 ≤ 1 with compact support. We will not keep this cutoff e ´𝑡 0 -𝛼(1-𝛼) 𝜖 |𝑏 (𝛾 (𝑠))| 2 + 𝛼 𝜖 ⟨𝑏 (𝛾 (𝑠)),(∇ 𝑉 )(𝛾 (𝑠))⟩-𝛼(div 𝑏 )(𝛾 (𝑠)) d𝑠 Q𝑥 𝑡 (d𝛾 ). ˆ𝒞𝑡 e -𝛼𝒮 𝑡 d𝒫 𝑥 𝑡 . function 𝜂 explicitly in the formulas, but we will use theorems that would generally apply to (2.26) a continuous compactly supported function 𝑔 with the understanding that we can obtain the But it follows from a Girsanov argument similar to that used in the proof of Proposition 2.2.4 -

Proposition 2.4.3. Suppose

  §II.2.2] and the argument in [Kat95, §VII.1.3]. Fix 𝛼 ∈ 𝛪 𝜖 and pick 𝑝 = 𝑝 𝜖 𝛼 as in (IP). Let 𝜓 𝛼,𝜖 [resp. 𝑢 𝛼,𝜖 ] be a strictly positive right [resp. left] eigenvector of 𝛬 𝛼,𝜖 for the eigenvalue 𝑒 𝜖 (𝛼) with the properties of Proposition 2.A.7. By Proposi-where 𝐽 𝛼,𝜖 is finite, strictly positive and independent of 𝑡 . Recall that our choice of 𝛼 ∈ 𝛪 𝜖 satisfying condition (2.19) guarantees

			𝑔 𝛼 (𝑥) ∈ L 𝑝 (𝐑 𝛮 , d𝜇 𝜖 0 ) and d𝜆 d𝜇 𝜖 0	𝑔 -𝛼 (𝑥) ∈ L 𝑝 (𝐑 𝛮 , d𝜇 𝜖 0 )
			lim 𝑡 →∞	1 𝑡	log 𝜒 𝜖
	tion 2.3.6, we have ˆ𝒞𝑡 e -𝛼𝒮 𝜆,𝜖 𝑡 d𝒫 𝜉 ,𝜖 𝑡
	=	ˆ𝐑𝛮	d𝜆 d𝜇 𝜖

that Assumptions (L0), (L1), (RB) and (IP) are satisfied. Then, 𝑡 (𝛼) = 𝑒 𝜖 (𝛼) (2.32) for all 𝛼 ∈ 𝛪 𝜖 . Proof. 0 (𝑥)𝑔 -𝛼 (𝑥)(e 𝑡 𝛬 𝛼 𝑔 𝛼 )(𝑥) 𝜇 𝜖 0 (d𝑥) = e 𝑡 𝑒 𝜖 (𝛼) ( ˆ𝐑𝛮 d𝜆 d𝜇 𝜖 0 (𝑥)𝑔 -𝛼 (𝑥)(e -𝑡 𝑒 𝜖(𝛼) e 𝑡 𝛬 𝛼 𝑔 𝛼 -𝜓 𝜖,𝛼 (𝑢 𝛼,𝜖 , 𝑔 𝛼 ) 𝜇 𝜖 0 )(𝑥) 𝜇 𝜖 0 (d𝑥) + 𝐽 𝛼,𝜖 ), * .

  .33) It is immediate from Corollary 2.4.5, the symmetry 𝒜 = 1 -𝒜 and the definition of 𝑒 𝜖 * that

	𝑒 𝜖 * (𝜍) -𝑒 𝜖 * (-𝜍) = -𝜍	(2.34)

for all 𝜍 ∈ {-𝐷 𝑒

𝜖 

(𝛼) ∶ 𝛼 ∈ 𝒜}. Combining Lemma 2.4.1, Proposition 2.4.3 and a local version of the Gärtner-Ellis theorem (see e.g. [JOPP11, §A.2]), we get the following large deviation result. The symmetry (2.34) of the rate function 𝑒 𝜖 * in this ldp is referred to as the Gallavotti-Cohen symmetry. Proposition 2.4.6. Under assumptions (L0), (L1), (RB) and (IP), if 𝛦 is a Borel set with cl(𝛦)

  𝑣 𝑖 and we conclude that 𝛢 = |𝛢|. Of course, 𝛢 = |𝛢| implies tr 𝛢 = tr |𝛢|. Since 𝐷 2 𝑉 is already symmetric, 𝛢 = |𝛢| if and only if 𝐷 𝑏 T = 𝐷 𝑏 and all the eigenvalues of 𝐷 2 𝑉 -𝐷 𝑏 are nonnegative. For the second condition only to fail, we would need a nonzero vector 𝑢 and a strictly positive number 𝜆 such that (𝐷 2 𝑉 -𝐷 𝑏 )𝑢 = -𝜆𝑢. Taking an inner product with

𝐷 2 𝑉 𝑢 in this eigenvalue equation gives ⟨𝐷 𝑏 𝑢, 𝐷 2 𝑉 𝑢⟩ = |𝐷 2 𝑉 𝑢| 2 + 𝜆 ⟨𝑢, 𝐷 2 𝑉 𝑢⟩ , which contradicts (2.35)-(2.36).

  Let J be a compact subset of 𝒜. The fact that the convergence is uniform on J and that the derivatives converge on a dense subset are well-known consequences of convexity. Each 𝑒 𝑗 is real analytic on 𝒜 by Proposition 2.5.1. Hence, the difference between any two 𝑒 𝑗 and 𝑒 𝑗 ′ is real analytic and therefore has finitely many zeroes on J , or 𝑒 𝑗 ≡ 𝑒 𝑗 ′ on 𝒜. It is no loss of generality to exclude the 𝑥 𝑗 ⋆ and 𝑥 𝑗 ⋆⋆ . The changes 𝑉 ↦ 𝑉 +𝛿 𝜂 ⋆ and 𝑏 ↦ 𝑏 +𝛿 ∇𝜂 ⋆ for a small positive number 𝛿 and a suitable bump function 𝜂 ⋆ centered at 𝑥 𝑗 ⋆ do not change the dynamics nor the validity of the assumptions, but the new potential does not achieve its global minimum in 𝑥 𝑗 if 𝑏 behaves like a gradient near each local minimum of 𝑉 . On the other hand, 𝔪 𝜖 is bounded away from 0 as 𝜖 → 0 if there is no local minimum of 𝑉 near which 𝑏 behaves like a gradient. From a thermodynamical point of view, strict positivity of the mean entropy production per unit time 𝔪 𝜖 is a key signature of nonequilibrium.The nonvanishing of 𝔪 𝜖 also ensures that the content of our ldp is nontrivial. Indeed, the The proposition is vacuously true if 𝛴 has empty interior. Let us now consider that int(𝛴 ) is nonempty. Convexity of 𝑒 * follows from that of 𝑒. Since cl(𝛦) ⊂ int(𝛴 ), Proposition 2.6.3 ensures that we may pick 𝛼 1 and 𝛼 2 in 𝒜 such that inf 𝛴 < -𝐷 𝑒(𝛼 1 ) < inf 𝛦 ≤ sup 𝛦 < -𝐷 𝑒(𝛼 2 ) < sup 𝛴

	We postpone the proof of the fact that			
	lim 𝜖→0	𝑒 𝜖 (𝛼) = max 𝑗 =1,…,𝑚	spb 𝑄 𝛼 𝑗	(2.50)
	to Section 2.7.			
	intervals			
	𝛴 ∶= lim inf	
	Proof. By (2.43), Proposition 2.5.1 and Remark 2.5.2,	
	max 𝑗 =1,…,𝑚	𝑒 𝑗 (𝛼) = max 𝑗 =1,…,𝑚	spb 𝑄 𝛼 𝑗	(2.48)
	while			
	lim 𝜖→0			

function 𝑒 ∶ 𝒜 → 𝐑 satisfying the symmetry 𝑒(1 -𝛼) = 𝑒(𝛼), and 𝐷 𝑒 𝜖 (𝛼) converges to 𝐷 𝑒(𝛼) for all 𝛼 in a dense subset of 𝒜 for all 𝛼 ∈ 𝒜, where 𝑄 𝛼 𝑗 has the form 𝑄 𝛼 𝑗 ∶= Δ + ⟨ℓ 𝛣 (𝛼) 𝑗 , ∇⟩ -𝑞 𝛫 (𝛼) 𝑗 + 1 2 tr 𝐷 2 𝑉 | 𝑥 𝑗 -𝛼 tr 𝐷 𝑏 | 𝑥 𝑗 . (2.49) second case. There must be at most finitely many points in J where the maximum in (2.48) changes index. We conclude that 𝑒 is piecewise real analytic. Proposition 2.6.3 has the following important consequences. Note that Lemma 2.6.2 implies that the maximum in Proposition 2.6.3 must be achieved for an index 𝑗 corresponding to a local minimum if 𝛼 is close enough to 0. Thus, using Lemma 2.4.2, min 𝑗 loc. min. 𝔪 𝑗 ≤ lim inf 𝜖→0 𝔪 𝜖 ≤ lim sup 𝜖→0 𝔪 𝜖 ≤ max 𝑗 loc. min. 𝔪 𝑗 , (2.51) where 𝔪 𝑗 ∶= -𝐷 𝑒 𝑗 (𝛼)| 𝛼=0 (2.52) for indices 𝑗 that correspond to local minima of 𝑉 . The fact that we are not able to generally strengthen (2.51) by taking the minimum and maximum only over indices corresponding to global minimisation of 𝑉 as in Example 2.6.1 is a drawback of the freedom of the decomposition mentioned in Remark 2.2.1. To see this, consider a potential 𝑉 with its global minimum achieved in two points ⋆ . Such a freedom is gone if we restrict are attention to decompositions where the Freidlin-Wentzell quasipotential [VF70] is proportional to 𝑉 -as is the case in Example 2.6.1. Recall that Proposition 2.5.3 gives that 𝔪 𝑗 in (2.52) is nonnegative and equals zero if and only if 𝐷 𝑏 | 𝑥 𝑗 is symmetric. Therefore, the mean entropy production per unit time 𝔪 𝜖 vanishes as 𝜖 → 0 𝜖→0 {-𝐷 𝑒 𝜖 (𝛼) ∶ 𝛼 ∈ 𝒜} and 𝛴 0 ∶= lim inf 𝜖→0 {-𝐷 𝑒 𝜖 (𝛼) ∶ 𝛼 ∈ 𝛪 0 }, are always nonempty, but could a priori be singletons; strict positivity of 𝔪 𝜖 in the limit 𝜖 → 0 rules out this possibility. More generally, degeneracy of these intervals is ruled out whenever there exist a local minimum of 𝑉 near which 𝑏 does not behvae like a gradient. Proposition 2.6.4. Suppose that Assumptions (L0), (L1), (RB), (ND) and (IPu) are satisfied. If 𝛦 is a Borel set with cl(𝛦) ⊂ int(𝛴 ), then lim 𝜖→0 inf 𝑠∈𝛦 𝑒 𝜖 * (𝜍) = inf 𝑠∈𝛦 𝑒 * (𝜍) (2.53) where 𝑒 * (𝜍) ∶= sup 𝛼∈𝒜 ( -𝛼𝜍 -𝑒(𝛼))

defines a convex and nonnegative function of 𝜍 ∈ 𝛴 .

Proof.

  𝑒 𝜖 to 𝑒 on the compact interval [𝛼 2 , 𝛼 1 ] in Proposition 2.6.3.

	-inf 𝜍∈int(𝛦)	𝑒 * (𝜍) ≤ lim 𝜖→0	lim inf 𝑡 →∞ 𝑡 -1 log 𝒫 𝜖 𝑡 {𝑡 -1 𝒮 𝜖 𝑡 ∈ 𝛦}
		≤ lim 𝜖→0	lim sup 𝑡 →∞	𝑡 -1 log 𝒫 𝜖 𝑡 {𝑡 -1 𝒮 𝜖 𝑡 ∈ 𝛦} ≤ -inf 𝜍∈cl(𝛦)	𝑒

The interest of Proposition 2.6.4 of course is that it can be used in conjunction with the local ldp of Proposition 2.4.6 for fixed 𝜖 > 0. The last part of the following theorem is illustrated by an example sketched in Figure

2

.2. Theorem 2.6.5. If Assumptions (L0), (L1), (RB), (ND) and (IPu) are satisfied and 𝛦 is a Borel set with cl(𝛦) ⊂ int(𝛴 0 ), then * (𝜍). and the function 𝑒 * ∶ 𝛴 0 → [0, ∞) is continuous and satisfies the Gallavotti-Cohen symmetry 𝑒 * (𝜍) -𝑒 * (-𝜍) = -𝜍.

If min 𝑗 loc. min. 𝔪 𝑗 ≠ max 𝑗 loc. min. 𝔪 𝑗 , then these two values define a nondegenerate interval in 𝛴 0 on which 𝑒 * vanishes. Remark 2.6.6. Recall that the rate function 𝑒 * is the Legendre transform of 𝑒, which is in turn the pointwise maximum among the family {𝑒 𝑗 } 𝑚 𝑗 =1 . Therefore, 𝑒 * can be computed as the convex hull of the family {(𝑒 𝑗 ) * } 𝑚 𝑗 =1 of Legendre transforms coming from the linearised problems near the critical points of 𝑉 ; see Theorem 16.5 in [Roc70, Pt. III]

  Hence, using Lemma 2.7.1.i and the fact that |𝐹 (𝑥)| = 𝛰 (𝜖 𝑟 ) on supp ∇𝜂 𝜖 0 and supp ∇𝜂 𝜖 𝑗 , Using |𝐹 -ℓ 𝑗 | = 𝛰 (𝜖 2𝑟 ) on supp 𝜂 𝜖 𝑗 and then the are, we obtain

	𝜖Δ𝑓 𝜖 𝛽 (𝑥) + ⟨𝐹 (𝑥), ∇𝑓 𝜖 𝛽 (𝑥)⟩ 𝑓 𝜖 𝛽 𝑗 (𝑥 -𝑥 𝜖Δ𝑓 𝜖 = 𝑚 ∑ 𝑗 =1 𝜙 𝜖 𝑗 (𝑥)𝜂 𝜖 𝑗 (𝑥) 𝜖𝑓 𝜖 𝛽 (𝑥) ⟨𝑥 -𝑥 𝑗 , 𝛸 2 𝛽 (𝑥) + ⟨𝐹 (𝑥), ∇𝑓 𝜖 𝛽 (𝑥)⟩ 𝑓 𝜖 𝛽 = 𝜖 -1 𝑚 ∑ 𝑗 =1 𝜙 𝜖 𝑗 (𝑥)𝜂 𝜖 𝑗 (𝑥) 𝑓 𝜖 𝛽 (𝑥) 𝑞 𝑗 (𝑥) + 𝛰 (1).
	Using Lemma 2.7.1.i again,			
	𝜖Δ𝑓 𝜖 𝛽 (𝑥) + ⟨𝐹 (𝑥), ∇𝑓 𝜖 𝛽 (𝑥)⟩ 𝑓 𝜖 𝛽	≤ 𝜖 -1 𝛽	𝑚 ∑ 𝑗 =1	𝟏 supp 𝜂 𝜖 𝑗 𝑞

𝑗 ) -𝛸 𝑗 𝐹 (𝑥)⟩ + 𝛰 (1). 𝑗 (𝑥) + 𝛰 (1).

  𝑥 such that 𝜂 𝜖 𝑗 (𝑥) ≥ 𝛽 be arbitrary. In particular, |𝑥 -𝑥 𝑗 | = 𝛰 (𝜖 𝑟 ). Throughout the proof, the big 𝛰 notation refers to constants that are independent of 𝑥, 𝜖 and 𝛽. By (2.57), (2.58), Lemma 2.7.1.ii and the fact that |𝐹 | = 𝛰 (𝜖 𝑟 ), 𝜖 3𝑟 ) and |𝑊 1 (𝑥) -𝑤 𝑗 (𝑥)| = 𝛰 (𝜖 𝑟 ) for 𝑥 ∈ supp 𝜂 𝜖 𝑗 , Because 𝜙 𝜖 𝑗 is an eigenvector of [𝑄 𝜖 𝑗 -|𝑤 𝑗 |] with eigenvalue spb 𝑄 𝑗 -|𝑤 𝑗 | ≤ 0 and because the prefactor on the right-hand side lies in the interval [𝛽, 𝛽 -1 ] by Lemma 2.7.1.ii, we have

	|	(𝛢 𝜖 𝑓 𝜖 𝛽 )(𝑥) 𝑓 𝜖 𝛽 (𝑥)	-	𝜂 𝜖 𝑗 (𝑥)(𝛢 𝜖 𝜙 𝜖 𝑗 )(𝑥) 𝑓 𝜖 𝛽 (𝑥)	| ≤ 𝐶 𝛾 𝛽 (1 + 𝛽 -1 )(𝜖 1-2𝑟 + 1).	(2.60)
	𝜂 𝜖 𝑗 (𝑥)(𝛢 𝜖 𝜙 𝜖 𝑗 )(𝑥) 𝑓 𝜖 𝛽 (𝑥)	=	𝜂 𝜖 𝑗 (𝑥)𝜙 𝜖 𝑗 (𝑥) 𝑓 𝜖 𝛽 (𝑥)	(	([𝑄 𝜖 𝑗 -|𝑤 𝑗 |]𝜙 𝜖 𝑗 )(𝑥) 𝜙 𝜖 𝑗 (𝑥)	+ |𝑤 𝑗 | + 𝜖 -1 𝛰 (𝜖 3𝑟 ) + 𝛰 (𝜖 𝑟 )).
	𝜂 𝜖 𝑗 (𝑥)(𝛢 𝜖 𝜙 𝜖 𝑗 )(𝑥) 𝑓 𝜖 𝛽 (𝑥)	≤ 𝛽 spb 𝑄 𝑗 + (𝛽 -1 -𝛽)|𝑤 𝑗 | + 𝐶 (𝜖 3𝑟 -1 + 𝜖 𝑟 ).	(2.61)
	Combining (2.60) and (2.61) and using the fact that 𝜂 𝜖 𝑗 (𝑥) ≥ 𝛽 implies |𝐹 (𝑥)| = 𝛰 (𝜖 𝑟 ), we con-
	clude that a bound of the proposed form indeed holds.

Now, using |𝐹 (𝑥) -ℓ 𝑗 (𝑥)| = 𝛰 (𝜖 2𝑟 ), ∇𝜙 𝜖 𝑗 (𝑥)/𝜙 𝜖 𝑗 (𝑥) = 𝜖 -1 𝛰 (𝜖 𝑟 ), |𝑊 0 (𝑥) -𝑞 𝑗 (𝑥)| = 𝛰 (

  Using Assumption (L0) and the admissibility condition, we can pick positive constants 𝑐 𝑝 and 𝑐 1 Suppose that the pair (𝛼, 𝑝) is admissible. Then, the operator 𝛢 𝑝 ∶= 𝜖Δ + ⟨𝐹 𝑝 , ∇⟩ -𝛺 𝑝 -𝑐 𝑝

		𝑝
	such that	
	𝑈 𝑝 ≤ 𝛺 𝑝 + 𝑐 𝑝 ≤ 𝑐 1 𝑝 𝑈 𝑝 .	(2.65)
	Lemma 2.A.3. with domain	

  (𝛢 𝑝 , D ∞ ) generates a holomorphic positivitypreserving semigroup on 𝐶 0 (𝐑 𝛮 ). Compactness follows from Proposition 6.4 in[START_REF] Metafune | 𝐿 𝑝 -regularity for elliptic operators with unbounded coefficients[END_REF]. Suppose that the pair (𝛼, 𝑝) is admissible and let𝑠 𝑝 ∶= sup{Re 𝑧 ∶ 𝑧 ∈ sp(𝛢 𝑝 , D 𝑝 )}.Then, 𝑠 𝑝 is a simple isolated eigenvalue and there exist a strictly positive vector ψ𝑝 ∈ D 𝑝 and a strictly positive functional ũ𝑝 on L 𝑝 (𝐑 𝛮 ) such that lim 𝑡 →∞ ∥e -𝑡 𝑠 𝑝 e 𝑡 𝛢 𝑝 𝑓 -ψ𝑝 ( ũ𝑝 , 𝑓 )∥ 𝑝 = 0(2.67)forall 𝑓 ∈ L 𝑝 (𝐑 𝛮 ). 𝑓 ∈ 𝐶 c (𝐑 𝛮 )\{0} in both (2.67) and (2.68) and using Lemma 2.A.4 gives ̄𝑠𝑝,𝑞 = 𝑠 𝑝 and ψ𝑝,𝑞 ∝ ψ𝑝 . Because 𝛢 𝑝 + 𝑐 𝑝 and 𝛢 𝑝 ′ + 𝑐 𝑝 ′ are related by a conjugation which preserves 𝐶 c (𝐑 𝛮 ), a similar argument also yields that e.g. ̄𝑠𝑝,∞ + 𝑐 𝑝 coincides with ̄𝑠𝑝 ′ ,∞ + 𝑐 𝑝 ′ . Note that ψ2 is in a Hölder space 𝐶 1,𝛽 (𝐑 𝛮 ) with 𝛽 ∈ (0, 1) by a Sobolev embedding. The approximation method for inferring that ψ2 belongs to 𝐶 2,𝛽 (𝐑 𝛮 ) via classical interior Schauder estimates and the maximum principle is carried out in [Lan97, §1.8].

	Lemma 2.A.4. The semigroups in Lemma 2.A.3 coincide on the intersection of their spaces of definition
	and are all irreducible (positivity improving) on their respective spaces.

Proof. The first part of the lemma is proved as Lemma 4.3 in

[START_REF] Metafune | 𝐿 𝑝 -regularity for elliptic operators with unbounded coefficients[END_REF]

.

The 

second part follows from the strong maximal principle; see Step 6 in the proof of Lemma A.1 in [BDG15]. CHAPTER 2 Lemma 2.A.5. Proof. The first part of the lemma is a well-established consequence of irreducibility, compactness and preservation of positivity; see Theorem 2.1 and Remark 2.2(e) in [AGG + 86, Ch. C-IV]. Lemma 2.A.6. For all 𝑓 ∈ 𝐶 c (𝐑 𝛮 ), the convergence expressed in (2.67) holds in the norm ‖ ⋅ ‖ 𝑞 for all 𝑞 ∈ (1, ∞]. Moreover, the vector ψ𝑝 has a representative which is strictly positive, twice continuously differentiable, vanishes at infinity and belongs to L 𝑞 (𝐑 𝛮 ) for all 𝑞 ∈ (1, ∞]. If (𝛼, 𝑝) and (𝛼, 𝑝 ′ ) are both admissible, then 𝑠 𝑝 + 𝑐 𝑝 conicides with 𝑠 𝑝 ′ + 𝑐 𝑝 ′ . Proof. By the same argument giving Lemma 2.A.5, there exist a real number ̄𝑠𝑝,𝑞 , a strictly positive vector ψ𝑝,𝑞 ∈ D 𝑞 and a strictly positive functional ū𝑝,𝑞 on L 𝑞 (𝐑 𝛮 ) or 𝐶 0 (𝐑 𝛮 ) such that lim 𝑡 →∞ ∥e -𝑡 ̄𝑠𝑝,𝑞 e 𝑡 𝛢 𝑝 𝑓 -ψ𝑝,𝑞 ( ū𝑝,𝑞 , 𝑓 )∥ 𝑞 = 0 (2.68) for all 𝑓 in L 𝑞 (𝐑 𝛮 ) or 𝐶 0 (𝐑 𝛮 ); see Corollary 2.2 in [AGG + 86, Ch. B-IV] for 𝑞 = ∞. Taking a common nonnegative

  We use 𝛲 𝐹 𝑡 (𝑥 in , ⋅ ) to denote the distribution of the random variable 𝜔 ↦ 𝛸 𝑡 (𝑥 in , 𝜔) defined by (3.1). Then, 𝛲 𝐹 𝑡 satisfies the Chapman-Kolmogorov equation:for all 𝑥 in ∈ 𝐑 𝑑 , all 𝑡 ≥ 0 and all measurable functions 𝑓 with |𝑓 | ≤ 1 + 𝑉 . 𝑥 ∈ 𝐑 𝑑 and all 𝑡 ≥ 0, and the existence of a positive measure bounding from below the probability of reaching a set when starting from the interior of a suitable level set of 𝑉 :

	𝛲 𝐹 𝛵 (𝑥, ⋅ ) ≥ 𝜈 𝛵	(3.6)
	and are discussed here for all 𝑥 ∈ 𝐑 𝑑 such that 𝑉 (𝑥) ≤ 1 + 2𝛫 (1 -𝛾 ) -1 . The first one is dealt with in Section 3.3.1; the
	in Appendix 3.A. second one, in Section 3.3.2.	
	3.3 Proof of Theorem 3.2.3	
	ˆ𝐑𝑑	
	𝛲 𝐹 𝛵 (𝑥, 𝛤 ) = 3.3.1 Dissipativity and Lyapunov stability 𝛲 𝐹 𝛵 -𝑡 (𝑦, 𝛤 )𝛲 𝐹 𝑡 (𝑥, d𝑦)	
	𝑥 ↦ ⟨e | ˆ∞ 0 ˆ𝐑𝑑 𝑓 (𝑦)𝛲 𝐹 𝑡 (𝑥 in , d𝑦) -ˆ𝐑𝑑 𝑓 (𝑦)𝜇 inv (d𝑦)| ≤ 𝐶 (1 + 𝑉 (𝑥 in ))e -𝑐𝑡	(3.4)
	The proof of this theorem is developed throughout Section 3.3. The last key step there is an
	application of Hairer and Mattingly's version of Harris' ergodic theorem [HM11]. It requires two

for all times 0 ≤ 𝑡 ≤ 𝛵 , all 𝑥 ∈ 𝐑 𝑑 and all Borel sets 𝛤 ⊆ 𝐑 𝑑 . We are interested in the large-time behaviour of 𝛲 𝐹 𝑡 . Our main result is the following. Theorem 3.2.3. Suppose that the sde d𝛸 𝑡 = 𝛢𝛸 𝑡 d𝑡 + 𝐹 (𝛸 𝑡 ) d𝑡 + 𝛣 d𝑊 𝑡 satisfies the conditions (D), (K), (G) and (H). Then, it admits a unique invariant measure 𝜇 inv ∈ Prob(𝐑 𝑑 ). Moreover, the function 𝑉 ∶ 𝐑 𝑑 → [0, ∞) defined by 𝑠𝛢 𝑥, e 𝑠𝛢 𝑥⟩ d𝑠 is integrable with respect to 𝜇 inv and there exist constants 𝑐, 𝐶 > 0 such that hypotheses: the existence of constants 𝛾 ∈ (0, 1) and 𝛫 > 0 such that | ˆ𝐑𝑑 𝑉 (𝑦)𝛲 𝐹 𝑡 (𝑥, d𝑦)| ≤ 𝛾 𝑡 𝑉 (𝑥) + 𝛫 (3.5) for all Condition (D) ensures that the integral defining 𝑉 ∶ 𝑥 ↦ ´∞ 0 |e 𝑠𝛢 𝑥| 2 d𝑠 converges. To this function

𝑉 is naturally associated a positive definite matrix 𝛭 such that 𝑉 (𝑥) = ⟨𝑥, 𝛭 𝑥⟩. We wish to show that, under the conditions (D) and (G), this function satisfies the inequality (3.5) for some constants 𝛾 ∈ (0, 1) and 𝛫 > 0 that do not depend on 𝑥. Lemma 3.3.1. Under the conditions (D) and (G), there exist constants 𝛫 > 0 and 𝛾 ∈ (0, 1) such that the function 𝑉 satisfies | ˆ𝐑𝑑 𝑉 (𝑦)𝛲 𝐹 𝑡 (𝑥, d𝑦)| ≤ 𝛾 𝑡 𝑉 (𝑥) + 𝛫

for all 𝑥 ∈ 𝐑 𝑑 and all 𝑡 ≥ 0.

  𝑥 ∈ 𝐑 𝑑 . By Itô's lemma applied to the smooth function 𝑉 (with no explicit 𝑡 -dependence), d𝑉 (𝛸 𝑡 ) = ⟨𝐷 𝑉 (𝛸 𝑡 ), 𝛢𝛸 𝑡 + 𝐹 (𝛸 𝑡 )⟩ d𝑡 + 2 ⟨𝛭 𝛸 𝑡 , 𝛣 d𝑊 𝑡 ⟩ + tr(𝛭 𝛣𝛣 * ) d𝑡
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	and thus	𝚬𝑉 (𝛸 𝑡 ) ≤ 𝑉 (𝛸 0 ) +	ˆ𝑡 0	(-1 2 𝚬|𝛸 𝑠 | 2 + 𝑐 2 ) d𝑠 + tr(𝛭 𝛣𝛣

* )𝑡 .

  start by showing that the point 𝑥 0 in which the weak Hörmander condition (H) holds can be approximately reached with suitable control when starting from {𝑉 ≤ 𝑅}. 2 To do this, we need a technical lemma on a matrix often referred to as the controllability Gramian, which is used to

	construct relevant controls; see e.g. [Cor07, § §1.2-1.3].
	𝑄 𝛵 =	ˆ𝛵 0	e 𝑡 𝛢 𝛣𝛣

Lemma 3.3.2. If 𝛢 and 𝛣 are such that the Kalman condition (K) is satisfied with 𝑑 * , then the symmetric positive definite matrix * e 𝑡 𝛢 * d𝑡 has full rank and ‖𝑄 -1 𝛵 ‖ = 𝛰 (𝛵 1-2𝑑 * ) as 𝛵 → 0. Proof. Because 𝑄 𝛵 is symmetric and by real-analyticity of the maps (0, 1) ∋ 𝛵 ↦ ⟨𝑥, 𝑄 𝛵 𝑥⟩ ∈ 𝐑 + , it suffices to show that for each 𝑥 ∈ 𝐑 𝑑 with |𝑥| = 1, there exists 𝑘 ≤ 2𝑑 * -1 such that 𝜕 𝑘 𝛵 ⟨𝑥, 𝑄 𝛵 𝑥⟩ | 𝛵 =0 ≠ 0.

  Proposition 3.3.3. Fix 𝑥 0 ∈ 𝐑 𝑑 . If the growth condition (G) and the Kalman condition (K) hold, then for any 𝑥 ∈ 𝐑 𝑑 , 𝛿 > 0 and 𝛵 > 0 there exists a control 𝜂 𝑥,𝛿 ,𝛵 ∈ 𝐶 1 0 ([0, 𝛵 ]; 𝐑 𝑛 ) such that d𝑠 is such that 𝑆 𝛵 (𝑥, 𝜁 𝑥,𝛵 ) = 𝑥 0 ; see e.g. [Cor07, §1.2]. We immediately have the bound With 𝑧 𝛵 (𝑡 ) ∶= 𝑆 𝑡 (𝑥, 𝜁 𝑥,𝛵 ), 𝑥 𝛵 (𝑡 ) ∶= 𝑆 𝐹 𝑡 (𝑥, 𝜁 𝑥,𝛵 ) and 𝑦 𝛵 (𝑡 ) ∶= 𝑥 𝛵 (𝑡 ) -𝑧 𝛵 (𝑡 ), we have By (G), there exists 𝐶 ′ > 0 depending on 𝛢 and 𝐹 only such that |𝑧 𝛵 (𝑡 )| ≤ |e 𝑡 𝛢 𝑥| + ˆ𝑡 0 |e (𝑡 -𝑠)𝛢 𝛣 ζ 𝑥,𝛵 (𝑠)| d𝑠 ≤ 𝐶 ′ |𝑥| + 𝑡 𝐶 e 𝛵 ‖𝛢‖ ‖𝛣‖(|𝑥| + |𝑥 0 |)𝛵 -𝑚 .

	|𝑦 𝛵 (𝑡 )| ≤ 𝐶 ′	ˆ𝑡 0	1 + |𝑦 𝛵 (𝑠)| 𝑎 + |𝑧 𝛵 (𝑠)| 𝑎 d𝑠.
	On the other hand,		
	𝑆 𝐹 𝛵 (𝑥, 𝜂 𝑥,𝛿 ,𝛵 ) ∈ 𝛣(𝑥 0 , 1 2 𝛿 ).		
	𝜁 𝑥,𝛵 (𝑡 ) ∶= 𝛣 | ζ 𝑥,𝛵 (𝑡 )| ≤ ‖𝛣‖e 𝛵 ‖𝛢‖ ‖𝑄 -1 ˆ𝑡 0 𝛵 ‖(|𝑥 ̇𝑦𝛵 (𝑡 ) = 𝛢𝑦 𝛵 (𝑡 ) + 𝐹 (𝑥 𝛵 (𝑡 )),
	𝑦 𝛵 (0) = 0.

Proof. Let 𝑥 ∈ 𝐑 𝑑 and 𝛿 > 0 be arbitrary. Because the Kalman condition (K) holds, for any 𝛵 ∈ (0, 1], the control * e (𝛵 -𝑠)𝛢 * 𝑄 -1 𝛵 (𝑥 0 -e -𝛵 𝛢 𝑥) 0 | + e 𝛵 ‖𝛢‖ |𝑥|)

and the hypotheses yield through Lemma 3.3.2 the existence of a constant 𝐶 > 0 depending on 𝛢 and 𝛣 such that

| ζ 𝑥,𝛵 (𝑡 )| ≤ 𝐶 (|𝑥| + |𝑥 0 |)𝛵 -𝑚

for all 𝛵 ∈ (0, 1], where 𝑚 ∶= 2𝑑 * -1.

Then, for 𝑡 ∈ [0, 𝛵 ],

𝑦 𝛵 (𝑡 ) = ˆ𝑡 0 e (𝑡 -𝑠)𝛢 𝐹 (𝑥 𝛵 (𝑠)) d𝑠 = ˆ𝑡 0 e (𝑡 -𝑠)𝛢 𝐹 (𝑦 𝛵 (𝑠) + 𝑧 𝛵 (𝑠)) d𝑠.

  1 2𝑑 * and 𝑚 = 2𝑑 𝜁 𝑥,𝛵 ) -𝑥 0 | = |𝑦 𝛵 (𝛵 )| < 1 4 𝛿 for all 0 < 𝛵 ≤ 𝛵 𝑥,𝛿 . If 𝛵 ≤ 𝛵 𝑥,𝛿 , pick 𝜂 𝑥,𝛿 ,𝛵 = 𝜁 𝑥,𝛵 . If 𝛵 > 𝛵 𝑥,𝛿 , let |𝑆 𝛵 -𝑠 𝛵 (𝑥, 0)| < 𝑟 𝛵 and by the above 𝜁 𝑆 𝛵 -𝑠 𝛵 (𝑥,0),𝑠 𝛵 is such that 𝑆 𝑠 𝛵 (𝑆 𝛵 -𝑠 𝛵 (𝑥, 0), 𝜁 𝑆 𝛵 -𝑠 𝛵 (𝑥,0),𝑠 𝛵 ) ∈ 𝛣(𝑥 0 , 1 4 𝛿 ). ̃𝜂𝑥,𝛿,𝛵 (𝑡 ) ∶= 𝟏 [𝛵 -𝑠 𝛵 ,𝛵 ] (𝑡 )𝜁 𝑆 𝛵 -𝑠 𝛵 (𝑥,0),𝑠 𝛵 (𝑡 -(𝛵 -𝑠 𝛵 )) defined on [0, 𝛵 ]. A 𝐶 1 0 ([0, 𝛵 ]; 𝐑 𝑛 ) regularisation 𝜂 𝑥,𝛿 ,𝛵 of ̃𝜂𝑥,𝛿,𝛵 will then satisfy 𝑆 𝛵 (𝑥, 𝜂 𝑥,𝛿 ,𝛵 ) ∈ Fix 𝑥 0 ∈ 𝐑 𝑑 and 𝛿 > 0 and suppose that the conditions (G) and (K) hold. Then, Proof. For any 𝑥 ∈ 𝐑 𝑑 and 𝛵 > 0, there exists 𝜂 𝑥,𝛿 ,𝛵 ∈ 𝐶 1 0 ([0, 𝛵 ]; 𝐑 𝑛 ) such that 𝑆 𝐹 𝛵 (𝑥, 𝜂 𝑥,𝛿 ,𝛵 ) ∈ 𝛣(𝑥 0 , 1 2 𝛿 ). By the Stroock-Varadhan support theorem, 3 the support of the distribution of paths [0, 𝛵 ] ∋ 𝑡 ↦ 𝛸 𝑡 (𝑥, 𝜔) contains the closure of {[0, 𝛵 ] ∋ 𝑡 ↦ 𝑆 𝐹 𝑡 (𝑥, 𝜂) ∶ 𝜂 ∈ 𝐶 1 0 ([0, 𝛵 ]; 𝐑 𝑛 )} with respect to the supremum norm on 𝐶 0 ([0, 𝛵 ]; 𝐑 𝑑 ). In particular, 𝛲 𝐹 𝛵 (𝑥, 𝛣(𝑥 0 , 𝛿 )) > 0. For 𝚸 -almost every 𝜔 ∈ 𝛺, the path 𝑡 ↦ 𝑊 𝑡 (𝜔) is continuous. Since 𝛸 𝑡 satisfies the integral equation 𝛸 𝑡 (𝑥, 𝜔) = 𝑥 + ˆ𝑡 0 𝛢𝛸 𝑠 (𝑥, 𝜔) + 𝐹 (𝛸 𝑠 (𝑥, 𝜔)) d𝑠 + 𝛣𝑊 𝑡 (𝜔) with 𝑦 ↦ 𝛢𝑦 + 𝐹 (𝑦) globally Lipschitz and 𝑡 ↦ 𝛣𝑊 𝑡 (𝜔) continuous, a standard argument shows that the map (𝑥, 𝛵 ) ↦ 𝛸 𝛵 (𝑥, 𝜔) is jointly continuous. Therefore, the function (𝑥, 𝛵 ) ↦ 𝟏 {𝜔 ′ ∈𝛺 ∶ 𝛸 𝛵 (𝑥,𝜔 ′ )∈𝛣(𝑥 0 ,𝛿 )} (𝜔) 𝑥 0 is sufficient to provide appropriate control of the transition probabilities from points 𝑥 ′ close enough to 𝑥 0 . (sC) a system 𝑆 ∶ 𝐑 𝑑 × 𝛦 → 𝐑 𝑑 , where 𝛦 is a Banach space, is said to be solidly controllable from 𝑥 0 , with compact 𝑄 ⋐ 𝛦, if there is a ball 𝐺 in 𝐑 𝑑 and a number 𝜖 > 0 such that if a
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	𝑟 𝛵 ∶= sup 0≤𝑡 ≤𝛵	|𝑆 𝑡 (𝑥, 0)| and 𝑠 𝛵 = min{ 1 2 𝛵 , inf |𝑦|≤𝑟 𝑥,𝛵	𝛵 𝑦,𝛿 }.
	This corresponds to the control		
	𝛣(𝑥 0 , 1 2 𝛿 ). continuous map 𝛷 ∶ 𝑄 → 𝐑 𝑑 satisfies
	Proposition 3.3.4. the function	sup 𝜁 ∈𝑄	|𝛷 (𝜁 ) -𝑆 (𝑥 0 , 𝜁 )| ≤ 𝜖,
		(𝑥, 𝛵 ) ↦ 𝛲 𝐹 𝛵 (𝑥, 𝛣(𝑥 0 , 𝛿 ))
	is positive and jointly lower semicontinuous.	

* + 1. Hence, 𝑎(1 -𝑚) + 1 > 0 and, by Grönwall's inequality, there exists 𝛵 𝑥,𝛿 ∈ (0, 1] small enough, depending continuously on 𝑥 and 𝛿 , such that |𝑆 𝐹 𝛵 (𝑥, Then, is jointly lower semicontinuous for 𝚸 -almost all 𝜔 ∈ 𝛺. Then, so is the map

(𝑥, 𝛵 ) ↦ ˆ𝛺 𝟏 {𝜔 ′ ∈𝛺 ∶ 𝛸 𝛵 (𝑥,𝜔 ′ )∈𝛣(𝑥 0 ,𝛿 )} (𝜔) d𝚸 (𝜔)

by Fatou's lemma. Now that we have established that, starting from {𝑉 ≤ 𝑅}, any neighbourhood of 𝑥 0 can be suitably reached, we seek a minorization for transitions from points close to 𝑥 0 to arbitrary points of the space. In

[Shi17]

's study of sdes on compact manifolds, the notions of decomposability and solid controllability are used to show that the weak Hörmander condition (H) in

  between a neighbourhood of α in {𝛼 ∈ Π ∶ 𝛵 𝛼 = 𝛵 α} and an open set 𝛰 ⊂ 𝐑 𝑑 . Inverting this diffeomorphism, one finds a function that associates to each point 𝑥 * ∈ 𝛰 a control 𝜉 𝛼(𝑥 * ) ∈ 𝐿 2 ([0, 𝛵 α]; 𝐑 𝑛 ) of the form (3.9). By construction, ) (𝑠) d𝑠) = 𝑥 * for all 𝑥 * ∈ 𝛰 . A standard argument then allows to find a closed ball 𝐷 ⋐ 𝐑 𝑑 and a continuous function f ∶ 𝐷 → 𝐿 2 ([0, 1]; 𝐑 𝑛 ) such that ∈ 𝐷 . The supremum 𝜅 is bounded by the sum of the |𝜂 𝑙 | used in the construction of the embedding 𝜙.

	𝑆 𝐹 𝛵 α (𝑥 0 , 𝜉 𝛼(𝑥 𝑆 𝐹 ˆ⋅ 0 1 (𝑥 0 , ˆ⋅ 0 ( f (𝑥

* * ))(𝑠) d𝑠) = 𝑥 * for all 𝑥 *

  |𝑓 | ≤ 1 + 𝑉 , 𝑠 ∈ [0, 2) and 𝑚 ∈ 𝚴 ∪ {0},

	|	ˆ𝐑𝑑	𝑓 (𝑦)[𝛲 𝐹 2𝑚+𝑠 (𝑥, d𝑦) -𝜇 inv (d𝑦)]|
			= |	ˆ𝐑𝑑 ˆ𝐑𝑑	𝑓 (𝑦)𝛲 𝐹 2𝑚 (𝑥, d𝑧)𝛲 𝐹 𝑠 (𝑧, d𝑦) -𝑓 (𝑦)𝛲 𝐹 𝑠 (𝑧, d𝑦)𝜇 inv (d𝑧)|
			= |	ˆ𝐑𝑑	(	ˆ𝐑𝑑	𝑓 (𝑦)𝛲 𝐹 𝑠 (𝑧, d𝑦))[𝛲 𝐹 2𝑚 (𝑥, d𝑧) -𝜇 inv (d𝑧)]|.

Since |𝑓 | ≤ 1 + 𝑉 , we have by (3.10) that

| ˆ𝐑𝑑 𝑓 (𝑦)𝛲 𝐹 𝑠 (𝑧, d𝑦)| ≤ ˆ𝐑𝑑 (1 + 𝑉 (𝑦))𝛲 𝐹 𝑠 (𝑧, d𝑦) ≤ (𝛫 + 1)(1 + 𝑉 (𝑧)).

Therefore, we may apply (3.12) with 𝑓 replaced by 1 𝛫 +1 ´𝑓 (𝑦)𝛲 𝐹 𝑠 (⋅ , d𝑦) to get | ˆ𝐑𝑑 𝑓 (𝑦)[𝛲 𝐹 2𝑚+𝑠 (𝑥, d𝑦) -𝜇 inv (d𝑦)]| ≤ (𝛫 + 1)𝐶 e -𝑐(2𝑚+2) (1 + 𝑉 (𝑥)).

  CHAPTER 3 is a nonsingular linear map 5 and where 𝜗 and 𝜄 are of the form 𝑢 𝑗 ) 𝑗 ∈𝐽 ↦ (√2𝛾 𝑗 𝑢 𝑗 ) 𝑗 ∈𝐽 ⊕ 0 𝛪 \𝐽 .

	𝜗 ∶	𝐑 𝐽 → 𝐑 𝐽
		(𝑢 𝑗 ) 𝑗 ∈𝐽 ↦ (𝜃 𝑗 𝑢 𝑗 ) 𝑗 ∈𝐽 ,
	and	
	𝜄 ∶	𝐑 𝐽 → 𝐑 𝛪

.14) and 𝐹 (𝑝, 𝜔𝑞) = -∇ 𝑞 𝑈 (𝑞), where 𝜔 ∶ 𝐑 𝛪 → 𝐑 𝛪 , (

  𝑗 th Fréchet derivative of the map 𝐺 ∶ 𝐑 𝑑 → 𝐑 𝑑 at this point. The above pattern generalises in the following way.Claim. The difference between ℒ 𝑘𝐺 𝑏 and (-1) 𝑘 𝐷 𝐺 𝑘 [𝑏 ] is a linear combination over 𝚭 of compositions of Fréchet derivatives of 𝐺 with 𝑏 . In each term, 𝑏 appears once, 𝐺 appears 𝛮 0 times, 𝐷 𝐺 appears 𝛮 1 times, … , 𝐷 𝑘 𝐺 appears 𝛮 𝑘 times, with 𝛮 1 ≠ 𝑘 and

		𝐑 𝑑 ⏟⏟ ⏟⏟⏟ ⏟⏟ 𝑗 times	→ 𝐑 𝑑
	for the 𝑘		𝑘	
	∑	𝛮 𝑗 =	∑	𝑗 𝛮 𝑗 = 𝑘.
	𝑗 =0		𝑗 =0	

  𝐑 𝑑 → 𝐑 𝑑 is a smooth vector field, 𝛣 ∶ 𝐑 𝑛 → 𝐑 𝑑 is a linear map, and (𝑌 𝑡 ) 𝑡 ≥0 is an 𝑛-

	4.1 Introduction
	Motivated by applications to thermally driven harmonic networks and to Galerkin approximations
	of partial differential equations (pdes) randomly forced by degenerate noise, we consider a stochastic
	differential equation (sde) of the form
		d𝛸 𝑡 = 𝑓 (𝛸 𝑡 ) d𝑡 + 𝛣 d𝑌 𝑡 ,	(4.1)
	where 𝑓 ∶	
	[AKSS07]	A. A. Agrachev, S. Kuksin, A. V. Sarychev, and A. Shirikyan. On finite-dimensional
		projections of distributions for solutions of randomly forced 2D Navier-Stokes equa-
		tions. Ann. Inst. Henri Poincaré (B) Probab. Statist., 43(4):399-415, 2007.

[AS05]

A. A. Agrachev and A. V. Sarychev. Navier-Stokes equations: controllability by means of low modes forcing. J. Math. Fluid Mech., 7(1):108-152, 2005. dimensional compound Poisson process of the form

  We denote by (𝛸 𝑡 , 𝚸 𝑥 ) the Markov family associated with the sde (4.1) parametrised by the time 𝑡 ≥ 0 and the initial condition 𝑥 ∈ 𝐑 𝑑 , by 𝛲 𝑡 (𝑥, ⋅ ) the corresponding transition function, and by 𝔓 𝑡 and 𝔓 * 𝑡 the Markov semigroups where 𝑔 ∈ 𝐿 ∞ (𝐑 𝑑 ) and 𝜇 ∈ 𝒫(𝐑 𝑑 ). Recall that a measure 𝜇 inv ∈ 𝒫(𝐑 𝑑 ) is said to be invariant if 𝔓 * 𝑡 𝜇 inv = 𝜇 inv for all 𝑡 ≥ 0. Assume that Conditions (C1)-(C3) are satisfied and that the law of 𝜂 𝑘 has finite variance and possesses a continuous positive density with respect to the Lebesgue measure on 𝐑 𝑛 . Then, the semigroup (𝔓 * 𝑡 ) 𝑡 ≥0 admits a unique invariant measure 𝜇 inv ∈ 𝒫(𝐑 𝑑 ). Moreover, there exist constants 𝐶 > 0 and 𝑐 > 0 such that

	Main Theorem. ‖𝔓 * 𝑡 𝜇 -𝜇 inv ‖ var ≤ 𝐶 e -𝑐𝑡 (1 +	ˆ𝐑𝑑	‖𝑥‖ 𝜇(d𝑥))	(4.7)
	𝜁 ∈𝒦	‖𝛷 (𝜁 ) -𝑆 𝛵 0 ( x, 𝜁 )‖ ≤ 𝜖 0 ,
	we have 𝐺 ⊂ 𝛷 (𝒦).			
	Condition (C2) is a well-known controllability property, and (C3) is an accessibility property that
	is weaker than the weak Hörmander condition at the point x (see Section 4.4.1 for a discussion).

𝑅 > 0, we can find a time 𝛵 > 0 such that for any initial point 𝑥 ∈ 𝐑 𝑑 with ‖𝑥‖ ≤ 𝑅, there exists a control 𝜁 ∈ 𝐶 ([0, 𝛵 ]; 𝐑 𝑛 ) verifying ‖𝑆 𝛵 (𝑥, 𝜁 ) -x‖ < 𝜖.

(4.6) (C3) The system is solidly controllable from x: there is a number 𝜖 0 > 0, a time 𝛵 0 > 0, a compact set 𝒦 in 𝐶 ([0, 𝛵 0 ]; 𝐑 𝑛 ) and a non-degenerate ball 𝐺 in 𝐑 𝑛 such that, for any continuous function 𝛷 ∶ 𝒦 → 𝐑 𝑑 satisfying the relation sup 𝔓 𝑡 𝑔(𝑥) = ˆ𝐑𝑑 𝑔(𝑦) 𝛲 𝑡 (𝑥, d𝑦) and 𝔓 * 𝑡 𝜇(𝛤 ) = ˆ𝐑𝑑 𝛲 𝑡 (𝑦, 𝛤 ) 𝜇(d𝑦),

for any 𝜇 ∈ 𝒫(𝐑 𝑑 ) and 𝑡 ≥ 0.

  We use 𝑎 ∨ 𝑏 [resp. 𝑎 ∧ 𝑏 ] for the maximum [resp. minimum] of the numbers 𝑎, 𝑏 ∈ 𝐑.

	𝚴 𝑚 ∶= {𝑛 ⋅ 𝑚 ∶ 𝑛 ∈ 𝚴} and 𝚴 0 𝑚 ∶= 𝚴 𝑚 ∪ {0}.	(4.8)

  𝒩 𝑡 ∶= max{𝑘 ≥ 0 ∶ 𝜏 𝑘 ≤ 𝑡 } Under Condition (C1), the semigroup (𝔓 * 𝑡 ) 𝑡 ≥0 admits at least one invariant measure 𝜇 inv ∈ 𝒫(𝐑 𝑑 ). Moreover, any invariant measure 𝜇 ∈ 𝒫(𝐑 𝑑 ) has a finite second moment, thatWe consider the family of maps 𝐹 𝑘 ∶ 𝐑 𝑑 × (𝐑 + ) 𝚴 × (𝐑 𝑛 ) 𝚴 → 𝐑 𝑑 defined by 𝐑 𝑑 , 𝐬 = (𝑠 𝑗 ) 𝑗 ∈𝚴 ∈ (𝐑 + ) 𝚴 , and 𝛏 = (𝜉 𝑗 ) 𝑗 ∈𝚴 ∈ (𝐑 𝑛 ) 𝚴 ; see Figure4.1. Because 𝐹 𝑘 does not depend on {𝑠 𝑗 , 𝜉 𝑗 } 𝑗 ≥𝑘+1 , i.e. the times and displacements for kicks that happen later than the 𝑘-th kick, we will often consider the domain of 𝐹 𝑘 to be 𝐑 𝑑 × (𝐑 + ) 𝑚 × (𝐑 𝑛 ) 𝑚 for some natural Figure4.1: The map 𝐹 𝑘 takes as an input a point 𝑥, a sequence 𝐬 of times and a sequence 𝛏 of displacement vectors and outputs the final position of a test particle which starts at 𝑥, follows the integral curves of 𝑓 for a time 𝑠 1 , is immediately displaced by 𝜉 1 , follows the integral curves of 𝑓 for a time 𝑠 2 , is immediately displaced by 𝜉 2 , and so on until it is finally displaced by 𝜉 𝑘 . We have sketched this for 𝑘 = 4.

	and								𝑓	
	∞ ∑ 𝑘=1	𝑘 ∑ 𝑗 =1	(1 + 𝜖) 𝑘-𝑗 𝚬 (𝟏 {𝒩 𝑡 =𝑘} e -2𝛼(𝜏 𝑘 -𝜏 𝑗 ) ) =	∞ ∑ 𝑘=0	(1 + 𝜖) 𝑘 𝚬 (e -2𝛼𝜏 𝑘 ) =	∞ ∑ 𝑘=0	(1 + 𝜖) 𝑘 (	𝜆 𝜆 + 2𝛼	𝑘 )	,
	which is finite by our choice of 𝜖. Combining this with (4.15) and (4.16), we get (4.13) and complete 𝑥
	the proof of the lemma.				𝜉 1	𝑆 𝑠 1 (𝑥)	
	As mentioned in the introduction, the dissipativity Condition (C1) guarantees the existence of 𝐹 4 (𝑥, 𝐬, 𝛏)
	an invariant measure. Indeed, the last lemma, combined with a Bogolyubov-Krylov argument and 𝜉 4
	Fatou's lemma yields the following result. We refer the reader to [KS12, §2.5.2] for more details.
	Lemma 4.2.2. is		ˆ𝐑𝑑					
					‖𝑦‖ 2 𝜇(d𝑦) < ∞.			(4.17)
	and use (4.14):	𝐹 𝑘 (𝑥, 𝐬, 𝛏) = 𝑆 𝑠 𝑘 (𝐹 𝑘-1 (𝑥, 𝐬, 𝛏)) + 𝛣𝜉 𝑘 { 𝐹 0 (𝑥, 𝐬, 𝛏) = 𝑥,		(4.18)
	for 𝑘 ∈ 𝚴, 𝑥 ∈ number 𝑚 ≥ 𝑘.	𝚬 𝑥 ‖𝛸 𝑡 ‖ 2 ≤ 𝚬 𝑥 ‖𝛸 𝜏 𝒩 𝑡	‖ 2 + 𝛽𝛼 -1 =	∞ ∑ 𝑘=0	𝚬 𝑥 (𝟏 {𝒩 𝑡 =𝑘} ‖𝛸 𝜏 𝑘 ‖ 2 ) + 𝛽𝛼 -1 .	(4.15) (4.16)

Inequality (4.11) and the independence of {𝜂 𝑘 } and {𝜏 𝑘 } imply 𝚬 𝑥

(𝟏 

{𝒩 𝑡 =𝑘} ‖𝛸 𝜏 𝑘 ‖ 2 ) ≤ 𝛾 𝑘 ‖𝑥‖ 2 + 𝐶 𝜖 (1 + 𝛬) 𝑘 ∑ 𝑗 =1

(1 + 𝜖) 𝑘-𝑗 𝚬 (𝟏 {𝒩 𝑡 =𝑘} e -2𝛼(𝜏 𝑘 -𝜏 𝑗 ) )

We now turn to an important consequence of the solid controllability Condition (C3). The main ideas in its proof are borrowed from [Shi17, §1] (also see the earlier works [AKSS07, §2] and [KS12, Ch. 3]). Such results are sometimes referred to as squeezing estimates, a concept to which we have referred in the introduction. This lemma is used to prove a key property of the coupling constructed in the next section. Lemma 4.2.3. Suppose that x is as in Condition (C3). Then, there exist numbers 𝑚 ∈ 𝚴, 𝑟 > 0, and 𝑝 ∈ (0, 1) and a non-degenerate ball 1 𝛴 in [0, 𝛵 0 ] 𝑚 such that ∥𝐹 𝑚 (𝑥, 𝐬, ⋅ ) * (ℓ 𝑚 ) -𝐹 𝑚 (𝑥 ′ , 𝐬, ⋅ ) * (ℓ 𝑚 )∥ var ≤ 𝑝 (4.19) for all 𝐬 ∈ 𝛴 and 𝑥, 𝑥 ′ ∈ 𝛣( x, 𝑟 ), where 𝐹 𝑚 (𝑥, 𝐬, ⋅ ) * (ℓ 𝑚 ) is the image of ℓ 𝑚 (the 𝑚-fold product of the law ℓ with itself) under the mapping 𝐹 𝑚 (𝑥, 𝐬, ⋅ ) ∶ (𝐑 𝑛 ) 𝑚 → 𝐑 𝑑 .

  𝒴 = 𝐑 𝑑 , and 𝒰 = (𝐑 𝑛 ) 𝑚 and the map 𝐹 𝑚 ∶ 𝒳 × 𝒰 → 𝒴 as before. As 𝐹 𝑚 ( x, ̂𝐬, 𝒦 𝑚 ) contains a ball in 𝐑 𝑑 , Sard's theorem yields the existence of a point û ∈ 𝒦 𝑚 ⊂ 𝒰 in which the derivative 𝐷 𝛏 𝐹 𝑚 ( x, ̂𝐬, ⋅ ) has full rank. Hence, by Lemma 4.C.2, there exists a continuous function 𝜓 ∶ 𝒳 × 𝒴 → 𝐑 + and a

	radius 𝑟 𝑚 > 0 such that
	𝜓 (( x, ̂𝐬), 𝐹 𝑚 ( x, ̂𝐬, û)) > 0

𝜖, we have sup 𝜁 ∈𝒦 ‖𝐹 𝑚 ( x, ̂𝐬, 𝜄 𝑚 𝜁 ) -𝑆 1 ( x, 𝜁 )‖ ≤ 𝜖 0 ,

where we use the aforementioned identification of functions in 𝒦 𝑚 with 𝑚-tuples of displacement vectors in 𝐑 𝑛 . Using the continuity of 𝐹 𝑚 ( x, ̂𝐬, 𝜄 𝑚 ⋅) ∶ 𝒦 → 𝐑 𝑑 and Condition (C3), we conclude that 𝐹 𝑚 ( x, ̂𝐬, 𝒦 𝑚 ) contains a ball in 𝐑 𝑑 . Until the end of the proof, we fix 𝑚 ≥ 𝑚 0 (𝜖) for such a small 𝜖.

Step 2: Uniform lower bound. We want to apply Lemma 4.C.2 with 𝒳 = 𝛣( x, 1)×[0, 1] 𝑚 ,

  3: Estimate in total variation. Shrinking 𝑟 𝑚 if necessary, Step 2 yields positive numbers 𝜖 𝑚,1and 𝜖 𝑚,2 and a non-degenerate ball 𝛴 ⊂ [0, 1] 𝑚 such that 𝐹 𝑚 (𝑥, 𝐬, ⋅ ) * (ℓ 𝑚 ) ∧ 𝐹 𝑚 (𝑥 ′ , 𝐬, ⋅ ) * (ℓ 𝑚 ) ≥ 𝜖 𝑚,1 Vol 𝐑 𝑑 ( ⋅ ∩ 𝛣(𝐹 𝑚 ( x, ̂𝐬, û), 𝜖 𝑚,2 )) whenever 𝑥, 𝑥 ′ ∈ 𝛣( x, 𝑟 𝑚 ) and 𝐬 ∈ 𝛴 . Therefore,

	‖𝐹 𝑚 (𝑥, 𝐬, ⋅ ) * (ℓ 𝑚 ) -𝐹 𝑚 (𝑥 ′ , 𝐬, ⋅ ) * (ℓ 𝑚 )‖ var ≤ 1 -𝜖 𝑚,1 𝜖 𝑑 𝑚,2	𝑑 2 2 + 1) 𝜋 𝛤 ( 𝑑	=∶ 𝑝 𝑚

whenever 𝑥, 𝑥 ′ ∈ 𝛣( x, 𝑟 𝑚 ) and 𝐬 ∈ 𝛴 . This proves (4.19) with 𝑟 = 𝑟 𝑚 and 𝑝 = 𝑝 𝑚 .

  . In this context, we call (𝑧 𝑘 ) 𝑘∈𝚴 [resp. (𝑧 𝑘 ) 𝑘∈𝚴 ] the first [resp. second] component of the coupling (𝑧 𝑘 , 𝑧 ′ 𝑘 ) 𝑘∈𝚴 . The structure of the waiting times and the relation (4.9) then allow us to recover estimates for the original continuous-time process. The construction of this coupling is inductive and relies on the numbers 𝑚 ∈ 𝚴 and 𝑟 > 0 in Lemma 4.2.3 and correlates the two components in a different way according to three cases: for 𝑗 ∈ 𝚴 0 𝑚 , • if 𝑧 𝑗 = 𝑧 ′ 𝑗 , then 𝑧 𝑘 = 𝑧 ′ 𝑘 for all 𝑘 ∈ 𝚴 with 𝑘 ≥ 𝑗 ; • if 𝑧 𝑗 and 𝑧 ′ 𝑗 are different but both in 𝛣( x, 𝑟 ), then the next 𝑚 jumps are synchronous and, given the times of these jumps, 𝑧 𝑗 +𝑚 and 𝑧 ′ 𝑗 +𝑚 are maximally coupled in the sense of Lemma 4.C.1; • if 𝑧 𝑗 and 𝑧 ′ 𝑗 are different and not both in 𝛣( x, 𝑟 ), then the next 𝑚 jumps are synchronous, but the respective jump displacements are independent.

  𝐽 𝑖 ∶= min {𝑗 ∈ 𝚴 𝑚 ∶ 𝑧 𝑗 , 𝑧 ′ 𝑗 ∈ 𝛣( x, 𝑟 ) and 𝑗 > 𝐽 𝑖 -1 } for 𝑖 ≥ 1. Using the strong Markov property and applying the inequality (4.28) repeatedly gives 𝚬 (𝑥,𝑥 ′ ) e 𝜃 2 𝐽 𝑖 ≤ 𝚬 (e 𝜃 2 𝐽 𝑖 -1 𝚬 (𝑧 𝐽 𝑖 -1 ,𝑧 ′

	𝐽 𝑖 -1	) e 𝜃 2 𝐽 1 ) ≤ Ĉ 𝑖 (1 + ‖𝑥‖ 2 + ‖𝑥 ′ ‖ 2 )	(4.29)
	for some positive constant ′ 𝐽 𝑖 +𝑚 }	
	= 𝚸 (𝑥,𝑥 ′ ) ({𝑧 𝐽 𝑖 +𝑚 ≠ 𝑧 ′ 𝐽 𝑖 +𝑚 } | {𝑧 𝐽 𝑖 ≠ 𝑧 ′ 𝐽 𝑖 }) 𝚸 (𝑥,𝑥 ′ ) {𝑧 𝐽 𝑖 ≠ 𝑧 ′ 𝐽 𝑖 }	
	≤ p 𝚸 (𝑥,𝑥 ′ ) {𝑧 𝐽 𝑖 ≠ 𝑧 ′ 𝐽 𝑖 }		
	≤ p 𝚸 (𝑥,𝑥 ′ ) {𝑧 𝐽 𝑖 -1 +𝑚 ≠ 𝑧 ′ 𝐽 𝑖 -1 +𝑚 }	
	≤ p𝑖		(4.30)

Ĉ .

Note that Proposition 4.3.1 implies that 𝛫 is almost surely finite for all 𝑥, 𝑥 ′ ∈ 𝐑 𝑑 . Indeed, 𝚸 (𝑥,𝑥 ′ ) {𝛫 > 𝐽 𝑖 } ≤ 𝚸 (𝑥,𝑥 ′ ) {𝑧 𝐽 𝑖 +𝑚

≠ 𝑧 

  Here, 𝐷 𝑈 (𝑥) is the Jacobian matrix of 𝑈 at 𝑥.It is shown in [Shi17, §2.2] that (C3 ″ ) implies (C3 ′ ) with arbitrary 𝛵 0 , and that (C3 ′ ) in turn implies (C3) with the same 𝛵 0 ; see also [Raq19, §3.2]. The first implication appeals to some ideas from geometric control theory. The second implication can be seen from a degree theory argument (or alternatively from an application of Brouwer's fixed point theorem).

	point 𝑥:
	[𝑈 , 𝑉 ](𝑥) = 𝐷 𝑉 (𝑥)𝑈 (𝑥) -𝐷 𝑈 (𝑥)𝑉 (𝑥).

, 𝑉 1 , 𝑉 2 , … ∈ 𝚩 ∪ {𝑓 }} (4.32) at the point x coincides with 𝐑 𝑑 , where 𝚩 is the set of constant vector fields formed by the columns of the matrix 𝛣 and [𝑈 , 𝑉 ](𝑥) is the Lie bracket of the vector fields 𝑈 and 𝑉 in the The weak Hörmander condition, also known as the parabolic Hörmander condition, has many important applications both in control theory (e.g., see [Jur97, Ch. 5]) and stochastic analysis (e.g., see [Nua06, §2.3 in Ch. 2] and [

  𝛨 𝛮 ∶= span{𝑠 𝑘 , 𝑐 𝑘 ∶ 𝑘 ∈ 𝚭 𝐷 , |𝑘| ≤ 𝛮 }, where 𝑠 𝑘 (𝑥) ∶= sin⟨𝑥, 𝑘⟩, 𝑐 𝑘 (𝑥) ∶= cos⟨𝑥, 𝑘⟩, ⟨𝑥, 𝑘⟩ ∶= 𝑥 1 𝑘 1 + … + 𝑥 𝐷 𝑘 𝐷 and |𝑘| ∶= |𝑘 1 | + … + |𝑘 𝐷| for any multi-index 𝑘 = (𝑘 1 , … , 𝑘 𝐷 ) ∈ 𝚭 𝐷 and any vector 𝑥 ∈ 𝚻 𝐷 . In particular, 𝑐 0 is the constant function 1. This subspace is endowed with the scalar product ⟨⋅, ⋅⟩ 𝐿 2 and the norm ‖ ⋅ ‖ 𝐿 2 inherited from 𝐿 2 (𝚻 𝐷 ). Let P 𝛮 be the orthogonal projection onto 𝛨 𝛮 in 𝐿 2 (𝚻 𝐷 ). 𝑢 is an unknown 𝛨 𝛮 -valued function, ℎ is an arbitrary vector in 𝛨 𝛮 and 𝜁 is a continuous 𝛨 1 -

	valued function.
	The Galerkin
	approximations of (4.33) are given by

u(𝑡 ) -𝜈 Δ𝑢(𝑡 ) + P 𝛮 𝐹 (𝑢(𝑡 )) = ℎ + 𝜁 (𝑡 ), (4.35) where

  The sde under consideration is of the form (4.1) with 𝑑 = dim 𝛨 𝛮 , 𝑛 = dim 𝛨 1 = 2𝐷 + 1, a smooth function 𝑓 𝛮 ∶ 𝛨 𝛮 → 𝛨 𝛮 given by 𝛨 𝛮 the natural embedding operator. Let us show that Conditions (C1)-(C3) are verified. Using the assumption (i), the fact that 𝑠 𝑘 and 𝑐 𝑘 are eigenfunctions of the Laplacian, and the Cauchy-Schwarz inequality, we get Equation (4.35) is approximately controllable: for any number 𝜖 > 0, any time 𝛵 > 0, any initial condition 𝑢 0 ∈ 𝛨 𝛮 , and any target û ∈ 𝛨 𝛮 , there exists a control 𝜁 ∈ 𝐶 ([0, 𝛵 ]; 𝛨 1 ) such that the solution 𝑢 of (4.35) with 𝑢(0) = 𝑢 0 satisfies ‖𝑢(𝛵 ) -û‖ 𝐿 2 < 𝜖. In view of the weak Hörmander condition, we are interested in the nested subspaces {𝒱 𝑖 } 𝑖 ≥0 of 𝛨 𝛮 defined by 𝒱 0 = 𝛨 1 and
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	Condition (C2) (to all points) is a consequence of the global approximate controllability prop-
	erty of Proposition 4.4.2 below, whose proof is given in Appendix 4.B. Since it is proved in [Shi17,
	§2.2] that the weak Hörmander condition implies solid controllability, Proposition 4.4.3 below
	yields Condition (C3).	
	Thus, Conditions (C1)-(C3) are satisfied and the proof of Theorem 4.4.1 is completed by ap-
	plying our Main Theorem.	
	Proposition 4.4.2.	
	𝑓 𝛮 (𝑢) = 𝜈 Δ𝑢 -P 𝛮 𝐹 (𝑢) + ℎ,	(4.36)
	and 𝛣 ∶ 𝛨 1 → ⟨𝑓 (𝑢), 𝑢⟩ 𝐿 2 = ⟨𝜈 Δ𝑢 -P 𝛮 𝐹 (𝑢) + ℎ, 𝑢⟩ 𝐿 2 ≤ -𝜈 ˆ𝚻𝐷 |𝑢(𝑥)| 2 d𝑥 -𝐶 1 ˆ𝚻𝐷	|𝑢(𝑥)| 𝑝+1 d𝑥 + 𝐶 2
	≤ -𝜈 ‖𝑢‖ 2 𝐿 2 + 𝐶 2 ,	

Theorem 4.4.1. Suppose that (i) and (ii) hold. Let (𝑌 𝑡 ) 𝑡 ≥0 be an 𝛨 1 -valued compound Poisson with jump distribution ℓ of finite variance and possessing a positive continuous density with respect to the Lebesgue measure on 𝛨 1 . Then, the semigroup (𝔓 * 𝑡 ) 𝑡 ≥0 for the sde d𝑢 -𝜈 Δ𝑢 d𝑡 + P 𝛮 𝐹 (𝑢) d𝑡 = ℎ d𝑡 + d𝑌 in 𝛨 𝛮 admits a unique invariant measure 𝜇 inv ∈ 𝒫(𝛨 𝛮 ). Moreover, it is exponentially mixing in the sense that (4.7) holds for some constants 𝐶 > 0 and 𝑐 > 0, any measure 𝜇 ∈ 𝒫(𝛨 𝛮 ), and any time 𝑡 ≥ 0.

Proof.

where 𝐶 1 > 0 and 𝐶 2 > 0 are some constants and 𝑢 ∈ 𝛨 𝛮 is arbitrary. This implies Condition (C1). Proposition 4.4.3. There is a number 𝑅 > 0 such that the weak Hörmander Condition (C3 ″ ) is satisfied for equation (4.35) at any point û ∈ 𝛨 𝛮 with ‖ û‖ 𝐿 2 ≥ 𝑅. Proof of Proposition 4.4.3. 𝒱 𝑖 +1 ( û) ∶= span(𝒱 𝑖 ∪ {[𝑉 , 𝑓 𝛮 ]( û) ∶ 𝑉 ∈ 𝒱 𝑖 ( û)}),

  𝑐 𝑚 and 𝑠 𝑚 are in 𝒱 (|𝑚|-1)𝑝( û) for all û ∈ 𝛨 𝛮 . To start, note thatif |𝑙| ≤ 1, then 𝑐 𝑙 and 𝑠 𝑙 are in 𝛨 1 and thus in 𝒱 𝑖 ( û) for each 𝑖 .Suppose now that 𝑐 𝑚 and 𝑠 𝑚 are in 𝒱 (|𝑚|-1)𝑝 ( û). As noted above, for all multi-indices 𝑙 with |𝑙| ≤ 1, the vectors 𝑐 𝑙 and 𝑠 𝑙 are also in 𝒱 (|𝑚|-1)𝑝 ( û). Therefore, combining the computation (4.38) with trigonometric identities yields that

  {𝛿 𝑖 } 𝑖 ∈𝛪 [resp. {𝛿 𝑗 } 𝑗 ∈𝐽 ] as the standard basis for 𝐑 𝛪 [resp. 𝐑 𝐽 ]. Let 𝜔 ∶ 𝐑 𝛪 → 𝐑 𝛪 be a nonsingular linear map and let 𝜄 𝑗 ∶ 𝐑 𝐽 → 𝐑 𝛪 be the rank-one map 𝛿 𝑗 ⟨𝛿 𝑗 , ⋅ ⟩ for each 𝑗 ∈ 𝐽 ⊂ 𝛪 . 𝐑 2|𝛪 | then describes the positions 𝑞 and momenta 𝑝 of |𝛪 | masses connected to each other and pinned according to the matrix 𝜔, with the 𝑗 th oscillator being coupled to a Langevin bath with dissipation controlled by the constant 𝛾 𝑗 > 0 and fluctuations described by the process 𝛧 𝑗 .In Proposition 4.4.4 and Corollary 4.4.5, we consider a nonlinear version of this sde where the quadratic potential resulting form the springs is now perturbed by a potential 𝑈 ∶ 𝐑 𝑑 → 𝐑.

	The sde								
		d( 𝜔𝑞 𝑝	) = (	-∑ 𝑗 ∈𝐽 𝛾 𝑗 𝜄 𝑗 𝜄 * 𝑗 -𝜔 * 𝜔 0	) (	𝑝 𝜔𝑞	) d𝑡 + ∑ 𝑗 ∈𝐽	(	𝜄 𝑗 0	) d𝛧 𝑗
	1 + |𝑞|	1 4|𝛪 | ;							
	(pH) there exists a sequence {𝑞 (𝑛) } 𝑛∈𝚴 of points in 𝐑 𝛪 , bounded away from 0, such that
				lim 𝑛→∞ |𝑞 (𝑛) | 𝑘 ‖𝐷 𝑘+1 𝑈 (𝑞 (𝑛) )‖ = 0		

in Their proofs are omitted since they are essentially the same as those of Proposition 4.4.6 and Corollary 4.4.7 respectively. We start with dissipativity and controllability properties of the control system. Proposition 4.4.4. Let 𝛪 , 𝐽 , 𝜔 and (𝛾 𝑗 ) 𝑗 ∈𝐽 be as above. Then, the conditions (K) the pair (𝜔 * 𝜔, ∑ 𝑗 ∈𝐽 𝜄 𝑗 𝜄 * 𝑗 ) satisfies the Kalman condition;

(G) the gradient of 𝑈 is a smooth globally Lipschitz vector field growing strictly slower than 𝑞 ↦

  Under the same assumptions, if (𝛮 𝑗 ) 𝑗 ∈𝐽 is a collection of |𝐽 | independent one-dimensional compound Poisson processes with jump distributions with finite variance and continuous positive densities with respect to the Lebesgue measure on 𝐑, then the sde In addition to the notation used so far, let (𝜆 𝑗 ) 𝑗 ∈𝐽 be small positive numbers and let us use the shorthand 𝛾 𝜄𝜄 * for ∑ 𝑗 𝛾 𝑗 𝜄 𝑗 𝜄 * 𝑗 , the shorthand 𝜆𝜄 * 𝜄 for ∑ 𝑗 𝜆 𝑗 𝜄 * 𝑗 𝜄 𝑗 , and so on. The sde as the effective equation for the positions 𝑞 and momenta 𝑝 of a network of |𝛪 | masses connected to each other and pinned according to the matrix 𝜔, with the 𝑗 th oscillator being coupled to a classical Gaussian field at temperature 𝜃 𝑗 under some particular conditions on the coupling; see [EPRB99b]. The |𝐽 | auxiliary degrees of freedom 𝑟 ∈ 𝐑 𝐽 are introduced to make the process Markovian. The parameters 𝜆 𝑗 and 𝛾 𝑗 describe the coupling and dissipation for the 𝑗 th bath. Here, Let 𝛪 , 𝐽 , 𝜔 and (𝛾 𝑗 ) 𝑗 ∈𝐽 be as above. Then, for (𝜆 𝑗 ) 𝑗 ∈𝐽 small enough, the conditions (K), (G) and (pH) as in the previous proposition imply that the the control system

	The following mixing result for the corresponding sde with Poissonian noise essentially follows from our Main Theorem (see the proof of Corollary 4.4.7). Corollary 4.4.5. d( 𝑝 𝜔𝑞 ) = ( -∑ 𝑗 ∈𝐽 𝛾 𝑗 𝜄 𝑗 𝜄 * 𝑗 -𝜔 * 𝜔 0 ) ( 𝑝 𝜔𝑞 ) d𝑡 -( ∇𝑈 (𝑞) 0 ) d𝑡 + ∑ 𝑗 ∈𝐽 ( 𝜄 𝑗 0 ) 𝛿 𝑗 d𝛮 d( 𝑟 𝑝 ω𝑞 ) = ( -𝛾 𝜄𝜄 * 𝜆𝜄𝜄 * 0 -𝜆𝜄 * 𝜄 0 -ω * 0 ω 0 ) ( 𝑟 𝑝 ω𝑞 ) d𝑡 + ( √2𝛾 𝜃 𝜄 * 𝜄 0 0 ) d𝑊 can be derived Proposition 4.4.6.

𝑗

admits a unique stationary measure 𝜇 inv ∈ 𝒫(𝐑 𝛪 ⊕ 𝐑 𝛪 ). Moreover, it is exponentially mixing in the sense that (4.7) holds for some constants 𝐶 > 0 and 𝑐 > 0, any measure 𝜇 ∈ 𝒫(𝐑 𝛪 ⊕ 𝐑 𝛪 ), and any time 𝑡 ≥ 0.

the matrix ω encodes an effective quadratic potential and is such that ω * ω = 𝜔 * 𝜔 -𝜆 2 𝜄𝜄 * (𝜆 is small), where 𝜔 encodes the original quadratic potential.

  The function 𝑉 defined by 𝑉 (𝑦, 𝑦 ′ ) ∶= 1 + ‖𝑦‖ 2 + ‖𝑦 ′ ‖ 2 is a Lyapunov function in the sense that there exist positive constants 𝑅 and 𝐶 * and a constant 0 < 𝑎 < 1 such that 𝚬 (𝑥,𝑥 ′ ) 𝑉 (𝑧 𝑚 , 𝑧 ′ 𝑘 ∈ 𝚴 and 𝑥, 𝑥 ′ ∈ 𝐑 𝑑 . Taking 𝑘 = 𝑚, any 𝑎 ∈ (0, 𝛾 𝑚 ), and any 𝑥, 𝑥 ′ ∈ 𝐑 𝑑 such that

	Proof. By Lemma 4.2.1, there is 𝛾 ∈ (0, 1) such that	
	𝚬 (𝑥,𝑥 ′ ) (1 + ‖𝑧 𝑘 ‖ 2 + ‖𝑧 ′ 𝑘 ‖ 2 ) = 1 + 𝚬 𝑥 ‖𝛸 𝜏 𝑘 ‖ 2 + 𝚬 𝑥 ′ ‖𝛸 𝜏 𝑘 ‖ 2	
	≤ 1 + 𝛾 𝑘 (‖𝑥‖ 2 + ‖𝑥 ′ ‖ 2 ) + 2𝐶 (1 + 𝛬)	(4.44)
	for all	
	Lemma 4.A.1. (4.43)

𝑚 ) ≤ 𝑎 𝑉 (𝑥, 𝑥 ′ ) for ‖𝑥‖ ∨ ‖𝑥 ′ ‖ ≥ 𝑅, (4.42) 𝚬 (𝑥,𝑥 ′ ) 𝑉 (𝑧 𝑘 , 𝑧 ′ 𝑘 ) ≤ 𝐶 * for ‖𝑥‖ ∨ ‖𝑥 ′ ‖ < 𝑅, 𝑘 ≥ 0.

  𝑥 ′ )[𝟏 {𝛪 =𝑛𝑚} e 𝑐 1 𝛪 ] and, for 𝑐 1 small enough, the right-hand side can be bounded using (4.45) in terms of 𝑉 (𝑥, 𝑥 ′ ) and a convergent geometric series.In what follows 𝑅, 𝑐 1 and 𝐶 1 will be as in Corollary 4.A.2. We continue with another estimate on an exponential moment. 𝑥, 𝑥 ′ ∈ 𝐑 𝑑 and 𝑖 ∈ 𝚴, where 𝛪 0 ∶= 0 and 𝛪 𝑖 ∶= min {𝑗 ∈ 𝚴 𝑚 ∶ 𝑗 ≥ 𝛪 𝑖 -1 + 𝛭 and 𝑧 𝑗 , 𝑧 ′
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	and deduce using 𝑉 ≥ 1 that		
	𝚸 (𝑥,𝑥 ′ ) [𝛪 > 𝑛𝑚] ≤ 𝑎 𝑛 𝑉 (𝑥, 𝑥 ′ ).	(4.45)
	By (4.45) and the Borel-Cantelli lemma, 𝛪 is almost surely finite. Therefore, one can use
	𝚬 (𝑥,𝑥 ′ ) e 𝑐 1 𝛪 ≤ 1 +	∞ ∑	𝚬 (𝑥,
		𝑛=1	
	𝛪 ∶= min{𝑗 ∈ 𝚴 0 𝑚 ∶ 𝑧 𝑗 , 𝑧 ′ 𝑗 ∈ 𝛣(0, 𝑅)}

Proof sketch. One can show using the Markov property and (4.42) repeatedly that 𝚬 (𝑥,𝑥 ′ ) [𝟏 {𝛪 >𝑛𝑚} 𝑉 (𝑧 𝑛𝑚 , 𝑧 ′ 𝑛𝑚 )] ≤ 𝑎 𝑛 𝑉 (𝑥, 𝑥 ′ ) Lemma 4.A.3. For any 𝛭 ∈ 𝚴, there is a constant 𝐶 2 > 0 such that 𝚬 (𝑥,𝑥 ′ ) e 𝑐 1 𝛪 𝑖 ≤ 𝐶 𝑖 2 (1 + ‖𝑥‖ 2 + ‖𝑥 ′ ‖ 2 ) (4.46) for all 𝑗 ∈ 𝛣(0, 𝑅)} . Remark 4.A.4. The stopping time 𝛪 𝑖 depends on both 𝛭 and 𝑅. The value of 𝑅 was already fixed in Corollary 4.A.2 and, in our application, 𝛭 will be as in Lemma 4.A.5. It is important that the constant 𝐶 2 does not depend on 𝑥 and 𝑥 ′ . Proof. By our last corollary, the Markov property, and (4.12) in Lemma 4.2.1, we have

  such that the control 𝜁 𝑥 in (4.49) can be chosen from 𝛧 for any 𝑥 ∈ 𝛣(0, 𝑅). For any integer 𝛭 ≥ 1, let the mapping 𝐹 𝛭 ∶ 𝐑 𝑑 ×(𝐑 + ) 𝛭 ×(𝐑 𝑛 ) 𝛭 → 𝐑 𝑑 be defined by (4.18), let 𝜄 𝛭 be as in Lemma 4.2.3, CHAPTER 4 for sufficiently large 𝛭 ∈ 𝚴 𝑚 , small 𝛿 > 0, and any 𝑥 ∈ 𝛣(0, 𝑅). Note that 𝐹 𝛭 (𝑥, 𝐬, 𝛏) = 𝛸 𝜏 𝛭 when 𝐬 = (𝑡 𝑗 ) 𝛭 𝑗 =1 and 𝛏 = (𝜂 𝑗 ) 𝛭 𝑗 =1 . By our assumptions on the laws of 𝑡 𝑗 and 𝜂 𝑗 , it is clear that 5

	‖𝑆 (𝑥, 𝜁 𝑥 ) -x‖ <	𝑟 2	.	(4.49)
	By a standard continuity and compactness argument, we can find a finite set
	𝛧 ∶= {𝜁 𝑖 ∶ 𝑖 ∈ 𝛪 } ⊂ 𝐶 ([0, 1]; 𝐑 𝑛 )
	and consider the sets				
	𝛥 ∶= {𝐬 = (𝑠 𝑗 ) 𝛭 𝑗 =1 ∈ (𝐑 + ) 𝛭 ∶ 𝑠 𝑗 ∈ (	1 -𝛿 𝛭	,	1 𝛭	) , 𝑗 = 1, … , 𝛭 } ,
	𝛯 𝑥 ∶= {𝛏 = (𝜉 𝑗 ) 𝛭 𝑗 =1 ∈ (𝐑 𝑛 ) 𝛭 ∶ ‖𝜄 𝛭 (𝜁 𝑥 ) -𝛏‖ (𝐑 𝑛 ) 𝛭 < 𝛿 , 𝑗 = 1, … , 𝛭 }

for any 𝛿 > 0. Again by a continuity and compactness argument, it is not hard to see that 𝛥 × 𝛯 𝑥 ⊂ {𝐬 ∈ (𝐑 + ) 𝛭 , 𝛏 ∈ (𝐑 𝑛 ) 𝛭 ∶ ‖𝐹 𝛭 (𝑥, 𝐬, 𝛏) -x‖ < 𝑟 }

  ‖𝑏 # 1 ((𝑆 * 𝑈 * ) 𝑡 𝜑 1 )𝑎 # 2 ((𝛭 * ) 𝑡 𝜓 2 )‖ ≤ ‖(𝑆 * 𝑈 * ) 𝑡 𝜑 1 ‖‖(𝛭 * ) 𝑡 𝜓 2 ‖ ≤ ‖𝛭 𝑡 ‖. 𝜏 (𝑎 # 1 (𝜓 1 )𝑎 # 2 (𝜓 2 )) = 𝑎 # 1 (𝛭 * 𝜓 1 )𝑎 # 2 (𝛭 * 𝜓 2 ) + i sin 𝛼 𝑎 # 1 (𝛭 * 𝜓 1 )𝑏 # 2 (𝜄𝑊 * 𝜓 2 ) -i sin 𝛼 𝑏 # 1 (𝜄𝑊 * 𝜓 1 )𝑎 # 2 (𝛭 * 𝜓 2 ) + sin 2 𝛼 𝑏 # 1 (𝜄𝑊 * 𝜓 1 )𝑏 # 2 (𝜄𝑊 * 𝜓 2 ), with 𝜄𝑊 * 𝜓 1 , 𝜄𝑊 * 𝜓 2 ∈ ℋ + ℰ . Hence, for any 𝑡 ∈ 𝚴,

	𝜏 (𝑎 # 1 (𝜓 1 )𝑎 # 2 (𝜓 2 ))
	= 𝑎 # 1 (𝛭 * 𝑡 𝜓 1 )𝑎 # 2 (𝛭 * 𝑡 𝜓 2 )
	+	𝑡 ∑ 𝑡 ′ =1	i sin 𝛼 𝑎 # 1 (𝛭 * 𝑡 𝜓 1 )𝑏 # 2 ((𝑆 * 𝑈 * ) 𝑡 -𝑡 ′ 𝜄𝑊 * 𝛭 * 𝑡 ′ -1 𝜓 2 )
		𝑡	
	-	∑	
		𝑠 ′ =1	
	1. Again by Proposition 5.2.2,		

  CAR(ℋ 𝒮 ) and 𝜌 ∞ defines a giqf state on 𝒮 with symbol

	𝜌 ∞ (𝛢) ∶= lim 𝑡 →∞ (𝜔 𝛴 ⊗ 𝜌)(𝜏 𝑡 (𝟏 ⊗ 𝛢))	
	exists for all 𝛢 ∈ 𝛥 ∶=	𝑚 ∑	‖𝜋 𝑖 𝑣 ‖ 2 2 Re 𝐹 𝑖 (𝛭 * ),	(5.10)
		𝑖 =1		

  (𝜏 𝑡 ) 𝑡 ∈𝚴 preserves the total number of particles, 𝜏 maps monomials of odd degree in 𝑎 and 𝑎 * to a linear combination of monomials of odd degree in 𝑎, 𝑎 * , 𝑏 and 𝑏 * . Then, each monomial is either of odd degree in 𝑎 and 𝑎 * or of odd degree in 𝑏 and 𝑏 * . Since both 𝜌 and 𝜔 𝛴 are even states, this implies

	and thus	𝜌 ∞ (	2𝛮 +1 ∏ 𝑖 =1	𝑎 # 𝑖 (𝜓 𝑖 )) = lim 𝑡 →∞ (𝜔 𝛴 ⊗ 𝜌)(𝜏 𝑡 (	2𝛮 +1 ∏ 𝑖 =1
				(𝜔 𝛴 ⊗ 𝜌)(𝜏 𝑡 (	2𝛮 +1 ∏	𝑎 # 𝑖 (𝜓 𝑖 ))) = 0.
					𝑖 =1

  The following result follows directly from Proposition 5.4.2 and the definition of 𝜔 𝛴 . 𝛼 ⟨𝑆 𝑡 ′ 𝛿 0 ⊗ 𝑈 𝑡 ′ 𝑣 , 𝛴 (𝑆 𝑠 ′ 𝛿 0 ⊗ 𝑈 𝑠 ′ 𝑣 )⟩ ⟨𝜓 2 , 𝛭 𝑡 ′ -1 𝑊 𝛲 𝑊 * 𝛭 * 𝑠 ′ -1 𝜓 1 ⟩ ;2. for all𝜑 1 ∈ ℋ + ℰ and 𝜓 2 ∈ ℋ 𝒮 , lim 𝑡 →∞ (𝜔 𝛴 ⊗ 𝜌)𝜏 𝑡 (𝑏 * (𝜑 1 )𝑎(𝜓 2 )) = -i sin 𝛼 𝑡 ′ 𝛿 0 ⊗ 𝑈 𝑡 ′ , 𝛴 𝜑 1 ⟩ ⟨𝜓 * , 𝑊 * 𝛭 * 𝑡 ′ -1 𝜓 2 ⟩;3. for all 𝜑 1 , 𝜑 2 ∈ ℋ + ℰ , lim 𝑡 →∞ (𝜔 𝛴 ⊗ 𝜌)𝜏 𝑡 (𝑏 * (𝜑 1 )𝑏 (𝜑 2 )) = ⟨𝜑 2 , 𝛴 𝜑 1 ⟩ .

	1. for all 𝜓 1 , 𝜓 2 ∈ ℋ 𝒮 ,	
	lim 𝑡 →∞ (𝜔 𝛴 ⊗ 𝜌)𝜏 𝑡 (𝑎 * (𝜓 1 )𝑎(𝜓 2 ))
	=	∞ ∑ 𝑠 ′ ,𝑡 ′ =1	sin 2 ∞
			∑
			𝑡 ′ =1
	Corollary 5.4.5. Under assumptions (i)-(iv), we have

⟨𝑆

  Re 𝐹 𝑗 (1)) -Re 𝐹 𝑖 (1), which is simply the sign of Re 𝐹 𝑗 (1) -Re 𝐹 𝑖 (1) in the case of two subreservoirs. This gives interpretation of the number 2 Re 𝐹 𝑖 (1). Recall that 2𝐹 𝑖 (0) is the average particle density in the 𝑖 th sub reservoir.

	( ∑ 𝑗 ≠𝑖	‖𝜋 𝑗 𝑣 ‖ 2 1-‖𝜋 𝑖 𝑣 ‖ 2

  𝜏 𝜐 ∈{+,-} | ⟨𝑒 𝜈 ,𝜏 𝜈 , 𝛥 𝑒 𝜐 ,𝜏 𝜐 ⟩ | 2 for 𝜈 ≠ 𝜐 . Note the definite sign. Consider the case where each coin unitary is a rotation matrix of angle 𝜃 𝜈 ∉ 𝜋 2 𝚭, i.e. 𝐶 𝜈 = ( cos 𝜃 𝜈 -sin 𝜃 𝜈 sin 𝜃 𝜈 cos 𝜃 𝜈

	Example 5.5.1.

  ˆ𝐒1𝑓 (e i𝜃 ) d𝑘(𝜃 )of 𝑓 against the density of state 𝑘 for 𝒲, defined through the Riesz-Markov representation theorem and which is an almost sure quantity in the sense that it is the same for 𝜇 ×𝚭 -almost all 𝜔 ∈ 𝛺. In particular, this gives us, for large 𝑛, an approximation of the asymptotic (in time) averaged (over the vertices of the graph)

	particle number density:					
	lim 𝑡 →∞	1 𝑛	𝑛-1 ∑ 𝜈 =0	𝑝 𝑡 (𝜈 ) =	1 𝑛	tr(2 Re 𝐹 (𝛭 (𝑛) )) = 2	ˆ𝐒1	2 Re 𝐹 (e i𝜃 ) d𝑘(𝜃 ) + 𝑜(1)

  𝛧, say 𝛧 = 𝟏 to hold (and similarly for 𝛧𝛧 * = 𝟏). The off-diagonal blocks 𝛧 BS and 𝛧 SB describe the coupling between the sample and its extension and the bock 𝛭 is thought of as an effective perturbation of a unitary 𝑊 on ℋ S . 𝔘 on ℋ tot such that powers of 𝔘 can be interpreted as successive interactions of the type encoded in 𝛧 with different blocks of this infinite environment.Let (𝛿 𝑙 ) 𝑙∈𝚭 be the canonical basis of ℓ 2 (𝚭) and let be the shift operator and 𝑈 ∶ ℋ B → ℋ B be an arbitrary unitary operator. We set

			𝛧 = (	𝐶 𝛧 BS 𝛧 SB 𝛭	) ,	(6.1)
	should satisfy			
	{	𝐶 * 𝐶 + 𝛧 * SB 𝛧 SB = 𝟏, 𝐶 * 𝛧 BS + 𝛧 * BS 𝛭 = 0, 𝛧 * BS 𝐶 + 𝛭 * 𝛧 SB = 0, 𝛧 * BS 𝛧 BS + 𝛭 * 𝛭 = 𝟏,	(6.2)
	for the identity 𝛧 The Hilbert space			
			𝑆 ∶ ℓ 2 (𝚭) → ℓ 2 (𝚭)
				𝛿 𝑙 ↦ 𝛿 𝑙-1
	𝔘 ∶= (	(𝑆 ⊗ 𝑈 )(𝛲 ⟂ 0 ⊗ 𝟏 + 𝛲 0 ⊗ 𝐶 ) 𝑆 𝛿 0 ⊗ 𝑈 𝛧 BS 0 ⊗ 𝛧 SB 𝛭 𝛿 *	) ,

*

ℋ tot ∶= (ℓ 2 (𝚭) ⊗ ℋ B ) ⊕ ℋ S for some finite-dimensional Hilbert space ℋ B is instead suitable for the description of situations where the sample is interacting with an infinite environment which has a certain translation-invariant structure. Let us construct a single-particle unitary operator

  with an initial state as in Assumption (IC+). A straightforward computation making use of the Bogolyubov relation shows that 𝛬 1 (𝜌) is a quasifree state with symbol𝛥 1 = 𝛭 𝛥 𝛭 * + 𝛧 SB 𝛵 0,0 𝛧 * SB .Repeatedly applying the map 𝛬 1 , say 𝑡 times to obtain a quasifree state with symbol is an instance of a ris, as noted in the single reservoir setups of[HJ17,[START_REF] Raquépas | On fermionic walkers interacting with a correlated structured environment[END_REF]. One can show that this ris picture coincides precisely with what happens at the level of the sample in the setup of Subsections 6.2.1 and 6.2.2 if 𝛵 𝑛,𝑚 = 0 whenever 𝑛 ≠ 𝑚. For example, compare our setup with 𝛧 = exp[-i𝜏 (𝑘 E ⊕ 𝑘 S + 𝜆𝑣 )]

	𝛥 𝑡 RIS = 𝛭 𝑡 𝛥 (𝛭 * ) 𝑡 +	𝑡 -1 ∑ 𝑚=0	𝛭 𝑚 𝛧 SB 𝛵 0,0 𝛧 * SB (𝛭 * ) 𝑚 ,
	∑	|𝑙|‖(𝛿 * 0 ⊗ 𝟏)𝛵 (𝛿 𝑙 ⊗ 𝟏)‖ < ∞.
	𝑙∈𝚭		

starting

  𝛬 𝑡 (𝜌) ∶= tr Γ -(ℓ 2 (𝚭)⊗ℋ B ) [𝛤 (𝔘 * ) 𝑡 (𝜔 𝛵 ⊗ 𝜌)𝛤 (𝔘) 𝑡 ]need not enjoy the semigroup property 𝛬 𝑡 +𝑡 ′ = 𝛬 𝑡 ∘𝛬 𝑡 ′ . Indeed, we will see in Remark 6.3.5 below that, under Assumption (IC+), 𝛬 𝑡 (𝜌) is a quasifree state with density

	𝛥 𝑡 = 𝛭 𝑡 𝛥 (𝛭 * ) 𝑡 +	𝑡 -1 ∑ 𝑚=0	𝑡 -1 ∑ 𝑛=0	𝛭 𝑚 𝛧 SB 𝛵 0,𝑚-𝑛 𝑈 𝑛-𝑚 𝛧

* SB (𝛭 * ) 𝑛 .

  Note that we have not yet projected onto ℓ 2 (𝚭) ⊗ ℋ B , i.e. the subspace associated to the absolutely continuous spectrum of (𝑆 ⊗ 𝑈 ⊕ 𝟏), but have used the weak operator topology. As expected, strong convergence holds on the appropriate subspace; the proof of the following proposition concerning 𝛺 - 𝑈 is postponed to Section 6.7. While not needed in what follows, an analogue result holds for 𝛺 + 𝑈 . ℋ B will also frequently appear in the sequel. The following lemma makes its structure more explicit. A direct proof that 𝔜 𝑈 is unitary is given in the next section.

	and						
	𝛺 + 𝑈 = (	∑ 𝑛 ′ ≤-1 𝛿 𝑛 ′ 𝛿 * 𝑛 ′ ⊗ 𝟏 0 0 0	) + ∑ 𝑚 ′ ≥0	(	∑ 𝑙 ′ ≥𝑚 ′ 𝛿 𝑙 ′ -𝑚 ′ 𝛿 * 𝑙 ′ ⊗ 𝑈 𝑚 ′ -𝑙 ′ 𝑌 * 𝑚 ′ 𝑈 𝑙 ′ 0 𝛿 * 𝑚 ′ ⊗ (𝛭 * ) 𝑚 ′ 𝛧 * BS 𝑈 𝑚 ′ 0	) .	(6.12)
	Proposition 6.3.1. Suppose that Assumption (Sp) holds. Then, both
			s-lim 𝑡 →∞ 𝔘 𝑡 (𝑆 ⊗ 𝑈 ⊕ 𝟏) -𝑡 (𝟏 ⊗ 𝟏 ⊕ 0) = 𝛺 -𝑈 (𝟏 ⊗ 𝟏 ⊕ 0)
	The scattering matrix				
			𝔜 𝑈 ∶= (𝟏 ⊗ 𝟏 ⊕ 0)(𝛺 + 𝑈 ) * 𝛺 -𝑈 (𝟏 ⊗ 𝟏 ⊕ 0)
	on ℓ 2 (𝚭) ⊗ Lemma 6.3.2. Under Assumption (Sp),				
			𝔜 𝑈 = ∑ 𝑚≥0	𝑙∈𝚭 ∑	𝛿 𝑙 𝛿 * 𝑙-𝑚 ⊗ 𝑈 -𝑙 𝑌 𝑚 𝑈 𝑙-𝑚 .	(6.13)
			𝛺 ± 𝑈 ∶= w-lim 𝑡 →∓ ∞ 𝔘 𝑡 (𝑆 ⊗ 𝑈 ⊕ 𝟏) -𝑡	(6.10)
	exist and are given by the explicit expressions		
	𝛺 -𝑈 = (	∑ 𝑛≥0 𝛿 𝑛 𝛿 * 𝑛 ⊗ 𝟏 0 0 0	) + ∑ 𝑚≥0	(	∑ 𝑙≥1 𝛿 -𝑙 𝛿 * -𝑚-𝑙 ⊗ 𝑈 𝑙 𝑌 𝑚 𝑈 -𝑚-𝑙 0 𝛿 * -𝑚-1 ⊗ 𝛭 𝑚 𝛧 SB 𝑈 -𝑚-1 0	)	(6.11)

and s-lim 𝑡 →∞ (𝔘 𝑡 (𝑆 ⊗ 𝑈 ⊕ 𝟏) -𝑡 ) * = (𝛺 - 𝑈 ) * .

  Note that 𝛯 is selfadjoint and commutes with 𝑆 ⊗ 𝟏 and 𝟏 ⊗ 𝛱 𝑘 , 𝑘 = 1, … , 𝑛 𝛣 .

	𝛺 -𝑈 = ( ∑	𝛲 𝑚 ⊗ 𝑈 𝑚 ⊕ 𝟏)	*	𝛺 -𝟏 ( ∑	𝛲 𝑛 ⊗ 𝑈 𝑛 ⊕ 𝟏)
		𝑚∈𝚭						𝑛∈𝚭
	and						
		𝔜 𝑈 = ( ∑	𝛲 𝑚 ⊗ 𝑈 𝑚 ) *	𝔜 𝟏 ( ∑	𝛲 𝑛 ⊗ 𝑈 𝑛 ).	(6.14)
			𝑚∈𝚭				𝑛∈𝚭
	In view of this factorization, we introduce a modification of 𝛵 which absorbs part of the free dynamics in the
	environment:	𝛯 ∶= ( ∑	𝛲 𝑛 ⊗ 𝑈 𝑛 )𝛵 ( ∑	𝛲 𝑚 ⊗ 𝑈 𝑚 )	*	,	(6.15)
			𝑛∈𝚭				𝑚∈𝚭
	so that						
			𝛯 = ∑	𝛿 𝑛 𝛿 * 𝑚 ⊗ 𝛯 𝑚-𝑛 ,
				𝑛,𝑚∈𝚭			
	where						
				𝛯 𝑛 ∶= 𝛵 0,𝑛 𝑈 -𝑛 .
	Proposition 6.3.3. Under Assumptions (IC) and (Sp), the limit
		𝜌(∞)[𝛢] ∶= lim 𝑡 →∞ 𝜌(0)[𝛤 (𝔘) -𝑡 𝛢𝛤 (𝔘) 𝑡 ]	(6.16)
	exists for all 𝛢 ∈ CAR(ℋ tot ) and defines a quasifree state with symbol
			𝛵 ∞ tot ∶= 𝛺 -𝑈 (𝛵 ⊕ 0)(𝛺 -𝑈 ) * .	(6.17)
	Proof. To prove the proposition it suffices to show that		
	lim 𝑡 →∞ 𝜌(0) [𝛤 (𝔘 * ) 𝑡 (	𝛮					

  the form Also note that 𝑅 is selfadjoint if and only if 𝑅 -𝑙 = 𝑅 * 𝑙 for each 𝑙 ∈ 𝚭, in which case R(𝜃 ) is real for all 𝜃 ∈

	𝑅 = ∑	𝛿 𝑛 𝛿 * 𝑚 ⊗ 𝑅 𝑛-𝑚	(6.21)
	𝑛,𝑚∈𝚭		
	[0, 2𝜋 ].		

for some norm-summable sequence (𝑅 𝑙 ) 𝑙∈𝚭 of operators on ℋ B -hereafter referred to as Fourier coefficients -, so that ‖𝑅‖ ≤ ∑ 𝑙∈𝚭 ‖𝑅 𝑙 ‖. Then, (ℱ𝑅𝜓 )(𝜃 ) = ((ℱ𝑅ℱ -1 )(ℱ𝜓 ))(𝜃 ) = R(𝜃 ) ψ (𝜃 ), where R ∶ 𝐿 2 ([0, 2𝜋 ]; ℋ B ) → 𝐿 2 ([0, 2𝜋 ]; ℋ B ) is the multiplication operator by R(𝜃 ) ∶= ∑ 𝑙∈𝚭 e -i𝑙𝜃 𝑅 𝑙 .

  Equivalently, Ξ ∞ (𝜃 ) is the Fourier representation of an operator 𝛯 ∞ of the form (6.21) with blocks and 𝑚 < 0. In other words, 𝛯 ∞ is translation invariant, but as far as blocks that have been affected by the interaction with the sample, 𝛯 ∞ is to 𝛵 ∞ E as 𝛯 is to 𝛵 ; compare (6.24) to (6.22). Note that 𝛵 ∞ E = 𝛵 implies 𝛯 ∞ = 𝛯 ; the converse implication fails. The operator 𝔜 𝑈 is unitary.

	(note the sign of i𝑙𝜃 ), we set		
	Ξ ∞ (𝜃 ) ∶= Ŷ(𝜃 ) Ξ (𝜃 ) Ŷ(𝜃 ) * .
	𝛯 ∞ 𝑚 = ∑ 𝑙,𝑙 ′ ≥0	𝑌 𝑙 𝛯 𝑙-𝑙 ′ +𝑚 𝑌 * 𝑙 ′	(6.23)
	for all 𝑚 ∈ 𝚭. To see this, integrate Ŷ(𝜃 ) Ξ (𝜃 ) Ŷ(𝜃 ) * against 1 2𝜋 e -i𝑚𝜃 to find the 𝑚-th block.
	Note that combining (6.20) and (6.23) gives		
	𝛯 ∞ 𝑚-𝑛 = 𝑈 𝑛 𝛿 * 𝑛 𝛵 ∞ E 𝛿 𝑚 𝑈 -𝑚	(6.24)
	if 𝑛 < 0 Lemma 6.3.7.		
	𝛯 𝑚-𝑛 = 𝑈 𝑛 𝛵 𝑛,𝑚 𝑈 -𝑚 .	(6.22)
	Then, with		
	Ŷ(𝜃 ) ∶= ∑	e -i𝑙𝜃 𝑌 𝑙
		𝑙≥0	

  𝐽 𝛸 = tr ℋ B [𝛸 ( ∑ Conclude using the identity (6.23).For the currents 𝐽 𝑘 ≡ 𝐽 𝛱 𝑘 associated to the projectors 𝛱 𝑘 , 𝑘 = 1, … , 𝑛 B , we immediately get the two following consequences.More precisely, for each𝑘 = 1, … , 𝑛 B , Ŷ * (𝜃 )𝛱 𝑘 Ŷ(𝜃 )𝛱 𝑘 ′ Ξ (𝜃 )] -tr[ Ŷ * (𝜃 )𝛱 𝑘 ′ Ŷ(𝜃 )𝛱 𝑘 Ξ (𝜃 )] d𝜃 2𝜋 and, with the additional assumption that each {𝛱 𝑘 } 𝐽 𝑘 = ˆ∑ 𝑘 ′ ≠𝑘 𝐶 𝑘,𝑘 ′ (𝜃 )(𝑓 𝑘 ′ (𝜃 ) -𝑓 𝑘 (𝜃 )) d𝜃 where 𝑓 𝑘 (𝜃 ) ∶= tr[𝛱 𝑘 Ξ (𝜃 )] and 𝐶 𝑘,𝑘 ′ (𝜃 ) ∶= tr[ Ŷ * (𝜃 )𝛱 𝑘 Ŷ(𝜃 )𝛱 𝑘 ′ ] are nonnegative, and satisfy Formula (6.30) in the case where each 𝛱 𝑘 has rank one implies in particular that if one of the functions 𝑓 𝑘 ∶ 𝜃 ↦ tr[𝛱 𝑘 Ξ (𝜃 )] satisfies 𝑓 𝑘 (𝜃 ) ≥ 𝑓 𝑘 ′ (𝜃 ) for all 𝑘 ′ ≠ 𝑘, then the flux of particles is necessarily going out of the 𝑘-th reservoir (i.e. 𝐽 𝑘 ≤ 0). We may think of the 𝐶 𝑘 ′ ,𝑘 (𝜃 ) as some effective conductance at frequency 𝜃 . This is similar to the Landauer-Büttiker formula presented in [AJPP07] (Corollary 4.2), with the following differences: the context in [AJPP07] is in continuous time and not in discrete time, and the free dynamics on the reservoir number 𝑘 is generated by some Hamiltonian ℎ 𝑘 instead of the shift 𝑆 . The flux of some observable 𝑞 is then expressed as a sum of integrals over sp ac (ℎ 𝑘 )∩sp ac (ℎ 𝑘 ′ ), where sp ac (ℎ 𝑘 ′ ) is the absolutely continuous spectrum of the Hamiltonian ℎ 𝑘 ′ of another reservoir, while in our expression we integrate over the spectrum of 𝑆 , i.e. the unit circle. Proof of Corollary 6.4.2. We have 𝐽 𝑘 = 𝐽 𝛱 𝑘 , which by Proposition 6.4.1 gives

	Remark 6.4.4. 𝐽 𝑘 =	ˆ2𝜋 0	𝑛,𝑚≥0 tr [𝛱 𝑘 Ŷ(𝜃 ) Ξ (𝜃 ) Ŷ * (𝜃 ) -𝛱 𝑘 Ξ (𝜃 )] 𝑌 𝑛 𝛯 𝑛-𝑚 𝑌 * 𝑚 -𝛯 0 )].	d𝜃 2𝜋	.	(6.29)
					𝑛 B	
					∑	𝐽 𝑘 = 0.
					𝑘=1	
	𝐽 𝑘 = ∑ 𝑘 ′ ≠𝑘	ˆtr[ 𝑛 B 𝑘=1 has rank one,
							2𝜋	,	(6.30)
				𝑛 B			𝑛 B
			∑	𝐶 𝑘,𝑘 ′ (𝜃 ) =	∑	𝐶 𝑘,𝑘 ′ (𝜃 ) = 1.
			𝑘 ′ =1			𝑘=1

Corollary 6.4.2. Under Assumptions (IC), (Sp) and (Bl), we have Remark 6.4.3.

  |𝛼𝜇 𝑖 | < 𝜋 whenever |𝛼| < 𝛼 𝛢 . Then, with 𝜈 𝑖 ∶= cos(𝛼𝜇 𝑖 ), we have cos(𝛼 √ 𝛢𝛢 * ) = 𝑝 0 +

𝑙 ∑ 𝑖 =1

  Theorem 6.6.3. Suppose that Assumption (Sp) holds for all 𝛼 ∈ 𝛺 ∩ 𝐑, that Assumptions (IC) and ( 1 2 Sim) hold. Then, the symbol 𝛥 ∞ 𝛼 in Proposition 6.3.4, which depends on the coupling strength 𝛼, admits an expansion

	𝛥 ∞ 𝛼 =	𝑟 ∑ 𝑖 =1	∑ 𝑗 ,𝑗 ′ ∈𝛪 𝑖	2 𝑐 𝑗 + 𝑐 𝑗 ′	𝑄 𝑗 (0)𝛢 Ξ (log 𝜆 𝑖 )𝛢 * 𝑄 𝑗 ′ (0) + 𝛰 (𝛼)

  1, Assumption (Sp) implies that the image of 𝛢𝛢 * is contained in no nontrivial subspace which is stable by 𝑊 . Hence, 𝑐 𝑗 ∶= tr[𝑄 𝑗 (0)𝛢𝛢 * ] > 0 for each 𝑗 . Since, 𝛭 (𝛼) = 𝑊 (𝟏 -1 2 𝛼 2 𝛢𝛢 * ) + 𝛰 (𝛼 4 ), standard perturbation theory gives 𝑗 ∈ 𝛪 𝑖 ⇒ 𝜆 𝑗 (𝛼) = 𝜆 𝑖 (1 -1 2 𝛼 2 𝑐 𝑗 ) + 𝛰 (𝛼 4 ). (6.35) Claim. The map 𝛹 introduced in Proposition 6.3.4 is such that for any linear map 𝛸 on ℋ S . Accepting this claim, we need only note that 𝛧 SB = -i𝑊 sin(𝛼 √ 𝛢𝛢 * ) √ 𝛢𝛢 * 𝛢 = -i𝛼𝑊 𝛢 + 𝛰 (𝛼 3 ) and the summability condition in Assumption (IC) imply that the map 𝐺 appearing in Proposition 6.3.4 has Proof of Claim. Inserting the spectral decomposition (6.34) of 𝛭 in Assumption ( 1 2 Sim) in the definition of 𝛹 (𝛸 ) ∶= ∑ ∞ 𝑚=0 𝛭 𝑚 𝛸 (𝛭 * ) 𝑚 yields

			lim 𝛼→0	𝛼 2 𝛹 (𝛸 ) =	𝑟 ∑ 𝑖 =1	∑ 𝑗 ,𝑗 ′ ∈𝛪 𝑖	2 𝑐 𝑗 + 𝑐 ′ 𝑗	𝑄 𝑗 (0)𝛸 𝑄 𝑗 ′ (0)
	the expansion	𝐺 = 𝛼 2 (	1 2	𝑊 𝛢𝛯 0 𝛢 * 𝑊 * +	𝑘=1 ∞ ∑	𝑊 𝑘+1 𝛢𝛯 𝑘 𝛢 * 𝑊 * ) + 𝛰 (𝛼 4 )
	to conclude the proof.					
						∞
		𝛹 (𝛸 ) = ∑	∑
					𝑗 ,𝑗 ′ ∈𝛪	

𝑚=0

𝜆 𝑗 (𝛼)

𝑚 

𝜆 𝑗 ′ (𝛼) 𝑚 𝑄 𝑗 (𝛼)𝛸 𝑄 𝑗 ′ (𝛼) * = ∑ 𝑗 ,𝑗 ′ ∈𝛪 1 1 -𝜆 𝑗 (𝛼)𝜆 𝑗 ′ (𝛼) 𝑄 𝑗 (𝛼)𝛸 𝑄 𝑗 ′ (𝛼) * .

  𝜆 𝑗 (𝛼)𝜆 𝑗 ′ (𝛼) = 1 -1 2 𝛼 2 (𝑐 𝑗 + 𝑐 𝑗 ′ ) + 𝛰 (𝛼 4 ).whenever 𝑗 , 𝑗 ′ ∈ 𝛪 𝑖 for some common 𝑖 .And the Claim yields the Proposition. Suppose that Assumption (Sp) for all 𝛼 ∈ 𝛺 ∩ 𝐑 and that Assumptions (IC) and ( 1 2 Sim) hold. Then, with 𝐽 𝑘 as in Corollary 6.4.2 depending on 𝛼, we have 𝐽 𝑘 = 𝛼 2 tr(𝛱 𝑘 𝐷 ) + 𝛰 (𝛼 3 ),

	by (6.35). Hence,	𝛼 2 1 -𝜆 𝑗 (𝛼)𝜆 𝑗 ′ (𝛼)	=	1 𝑐 𝑗 + 𝑐 𝑗 ′	+ 𝛰 (𝛼 2 )
	Proposition 6.6.4. (6.36)
	as 𝛺 ∋ 𝛼 → 0, where			
	𝐷 =	𝑟 ∑ ℎ=1	( -𝛢 * 𝑄 ℎ 𝛢 Ξ (log 𝜆 ℎ ) + ∑ 𝑗 ,𝑗 ′ ∈𝛪 ℎ	2 𝑐 𝑗 + 𝑐 𝑗 ′	𝛢

* 𝑄 𝑗 (0)𝛢 Ξ (log 𝜆 ℎ )𝛢 * 𝑄 𝑗 ′ (0)𝛢).

  𝐽 𝑘 = tr ℋ B [𝛱 𝑘( - 

	𝛼 2 2	(𝛢 * 𝛢𝛯 0 + 𝛯 0 𝛢 * 𝛢)
	+	+∞ ∑ 𝑙=1	𝑌 𝑙 𝛯 𝑙 𝐶 + 𝐶	+∞ ∑ 𝑙=1	𝛯 -𝑙 𝑌 * 𝑙 + ∑ 𝑙,𝑙 ′ >0	𝑌 𝑙 𝛯 𝑙-𝑙 ′ 𝑌 * 𝑙

′ )] + 𝛰 (𝛼 4 ).

  ⟨𝜙 𝑘 , 𝜒 𝑖 ⟩ | 2 | ⟨𝜙 𝑘 ′ , 𝜒 𝑖 ⟩ | 2 ∑ 𝑛 B 𝑘 ″ =1 | ⟨𝜙 𝑘 ″ , 𝜒 𝑖 ⟩ | 2 + 𝛰 (𝛼 3 ) Setting 𝐶 (2) 𝑘,𝑘 ′ ∶= ∑ 𝑖 ∈𝛪 |⟨𝜙 𝑘 ,𝜒 𝑖 ⟩| 2 |⟨𝜙 𝑘 ′ ,𝜒 𝑖 ⟩| 2 𝑘 ″ ,𝜒 𝑖 ⟩| 2 > 0, we have 𝐶 (2) 𝑘,𝑘 ′ = 𝐶 (2) 𝑘 ′ ,𝑘 , ∑ 𝑘 𝐶 (2)𝑘,𝑘 ′ = 1 and

	𝜎 + = 𝛼 2 𝑛 B 𝑘 ″ =1 | ∑ 𝑛 B ∑ 𝑛 B ∑ 𝜇 𝑘 (𝑓 𝑘 ′ -𝑓 𝑘 ) ∑ 𝜎 + = 𝛼 2 2 ∑ 𝑘≠𝑘 ′ (𝜇 𝑘 -𝜇 ′ 𝑘 )(𝑓 𝑘 ′ -𝑓 𝑘 )𝐶 𝑘,𝑘 ′ + 𝛰 (𝛼 3 ). (2)
	𝑘=1	𝑘 ′ =1	𝑖 ∈𝛪

|⟨𝜙

  𝑐 𝑛 ′ ,𝑗 ′ 𝛿 𝑛 ′ ⊗ 𝜙 𝑗 ′ ⟩|. where 𝑛 and 𝑛 ′ are understood to range over 𝚭; 𝑗 and 𝑗 ′ , to range over the index set for the orthonormal basis {𝜙 𝑗 } 𝑗 of ℋ B . Because of 𝛿 * -𝑚-𝑙 and 𝛿 -𝑙 in the expression for ULB - 𝑚,𝑙 for fixed 𝑚 and 𝑙, we have 𝑐 𝑛 ′ ,𝑗 ′ 𝛿 𝑛 ′ ⊗ 𝜙 𝑗 ′ ⟩ ≤ ∑ |𝑎 -𝑙,𝑗 |‖𝑌 𝑚 ‖|𝑐 -𝑚-𝑙,𝑗 ′ |

	∥ ∑	ULB -𝑚,𝑙 -∑	ULB -𝑚,𝑙 ∥			
	𝑚,𝑙∈𝚻 𝑢			𝑚,𝑙∈𝚻 𝑡					
						=	sup ∑ 𝑛,𝑗 |𝑎 𝑛,𝑗 | 2 =1	|⟨ ∑ 𝑛,𝑗	𝑎 𝑛,𝑗 𝛿 𝑛 ⊗ 𝜙 𝑗 , ∑ 𝑚,𝑙∈𝚻 𝑢 \𝚻 𝑡	ULB -𝑚,𝑙 ∑ 𝑛 ′ ,𝑗 ′
						∑ 𝑛 ′ ,𝑗 ′ |𝑐 𝑛 ′ ,𝑗 ′ | 2 =1
		⟨ ∑ 𝑛,𝑗	𝑎 𝑛,𝑗 𝛿 𝑛 ⊗ 𝜙 𝑗 , ULB -𝑚,𝑙 ∑ 𝑛 ′ ,𝑗 ′		𝑗	|𝑐 -𝑚-𝑙,𝑗 |‖𝑌 𝑚 ‖ ∑ 𝑗 ′	|𝑎 -𝑙,𝑗 ′ |
	and thus								
		∥ ∑ 𝑚,𝑙∈𝚻 𝑢	ULB -𝑚,𝑙 -∑ 𝑚,𝑙∈𝚻 𝑡	ULB -𝑚,𝑙 ∥ ≤	sup ∑ 𝑛,𝑗 |𝑎 𝑛,𝑗 | 2 =1 ∑ 𝑛 ′ ,𝑗 ′ |𝑐 𝑛 ′ ,𝑗 ′ | 2 =1	∑ 𝑚≥𝑡 1≤𝑚+𝑙≤∞	∑ 𝑗 ,𝑗 ′
									≤	sup ∑ 𝑛,𝑗 |𝑐 𝑛,𝑗 | 2 =1	∑ 𝑚≥𝑡	‖𝑌 𝑚 ‖ ∑ 𝑑≥1	∑ 𝑗 ,𝑗 ′	|𝑎 𝑚-𝑑,𝑗 ||𝑐 𝑑,𝑗 ′ |
										∑ 𝑛 ′ ,𝑗 ′ |𝑎 𝑛 ′ ,𝑗 ′ | 2 =1
									≤ (dim ℋ B ) ∑ 𝑚≥𝑡	‖𝑌 𝑚 ‖,
					∑	( ∑	|𝑎 𝑑,𝑗 | 2 )	1/2	≤ ( ∑	1/2 |𝑎 𝑑,𝑗 | 2 )	( ∑	1/2 1)	.
					𝑗	𝑑				𝑑,𝑗	𝑗

thanks to the Cauchy-Schwarz inequality and the fact that

  Then, rk 𝔜 𝑡 ≤ 𝑡 dim ℋ S and Proposition 6.3.1 gives 𝛺 E (𝑡 ) -𝟏 E = -𝛲 [-𝑡 ,-1] ⊗ 𝟏 + 𝔜 𝑡 . Hence, Lemma 6.8.1 applies and𝜎 (𝑡 ) = 𝑡 -1 tr[(𝛵 tot -𝛺(𝑡 )𝛵 tot 𝛺 * (𝑡 )) log 𝛵 tot ] + [𝛵 tot ↦ 𝟏 -𝛵 tot ],(6.41)where " + [𝛵 tot ↦ 𝟏 -𝛵 tot ]" means to we add the same term with 𝟏 -𝛵 tot instead of 𝛵 tot . We will show how to deal with the first of the two traces, the other one being similar. The term log 𝛵 tot being bounded, we consider the following representation of its multiplier 𝛵 tot -𝛺(𝑡 )𝛵 tot 𝛺 * (𝑡 ) = ( 𝛺 E (𝑡 )𝛵 E 𝛺 * E (𝑡 ) + 𝛺 ES 𝛵 S 𝛺 * ES (𝑡 ) -𝛵 E 𝛺 E (𝑡 )𝛵 E 𝛺 * SE (𝑡 ) + 𝛺 ES (𝑡 )𝛵 S 𝛺 * S (𝑡 ) 𝛺 SE (𝑡 )𝛵 E 𝛺 * E (𝑡 ) + 𝛺 S (𝑡 )𝛵 S 𝛺 * ES (𝑡 ) 𝛺 SE (𝑡 )𝛵 E 𝛺 * SE (𝑡 ) + 𝛺 S (𝑡 )𝛵 S 𝛺 * S (𝑡 ) -𝛵 S

	𝔜 𝑡 ∶=	𝑡 -1 ∑ 𝑙=0	𝑡 -𝑙 ∑ 𝑚=1	𝛿 -𝑚 𝛿 * -𝑚-𝑙 ⊗ 𝑌 𝑙 .	(6.40)

  𝜎 + = lim 𝑡 →∞ 𝑡 -1 tr[(𝛵 E -𝛺(𝑡 )𝛵 E 𝛺 * (𝑡 )) log 𝛵 E ] + [𝛵 E ↦ 𝟏 -𝛵 E ]. 𝑡 + 𝔜 𝑡 𝛵 E 𝔜 * 𝑡 ,where the operator on the second line has finite rank since 𝔜 𝑡 does. The first line of the right hand side above writes(𝛲 ⟂ [-𝑡 ,-1] ⊗ 𝟏)𝛵 E (𝛲 ⟂ [-𝑡 ,-1] ⊗ 𝟏) -𝛵 E = (𝛲 [-𝑡 ,-1] ⊗ 𝟏)𝛵 E (𝛲 [-𝑡 ,-1] ⊗ 𝟏) -𝛵 E (𝛲 [-𝑡 ,-1] ⊗ 𝟏) -(𝛲 [-𝑡 ,-1] ⊗ 𝟏)𝛵 E , (6.43) where 𝛲 [-𝑡 ,-1] has rank 𝑡 , so that altogether, each term in this composition of 𝛺(𝑡 )𝛵 E 𝛺 * -𝛵 E has finite rank of order 𝑡 . Let us now spell out what is left of the (first) trace in (6.42) dropping the tensored identities for readability: tr[𝛵 E 𝛲 [-𝑡 ,-1] log(𝛵 E )] + tr[𝛲 [-𝑡 ,-1] 𝛵 E 𝛲 ⟂ [-𝑡 ,-1] log(𝛵 E )] -tr[𝔜 𝑡 𝛵 E 𝛲 ⟂ [-𝑡 ,-1] log(𝛵 E ) + h.c.] -tr[𝔜 𝑡 𝛵 E 𝔜 * 𝑡 log(𝛵 E )].

	(6.42)
	Proposition 6.3.1 yields

𝛺 E (𝑡 )𝛵 E 𝛺 * E (𝑡 ) -𝛵 E = (𝛲 ⟂ [-𝑡 ,-1] ⊗ 𝟏)𝛵 E (𝛲 ⟂ [-𝑡 ,-1] ⊗ 𝟏) -𝛵 E + 𝔜 𝑡 𝛵 E (𝟏 E -𝛲 [-𝑡 ,-1] ⊗ 𝟏) + (𝟏 E -𝛲 [-𝑡 ,-1] ⊗ 𝟏)𝛵 E 𝔜 *

Our definition of time reversal involves a change of sign of the momentum variables 𝑝 1 , … , 𝑝 𝛮 because they are structurally related to the time derivatives of the coordinates 𝑞 1 , … , 𝑞 𝛮 and d d𝑡 𝑞 𝑖 (𝛵 -𝑡 ) = -d d𝑠 𝑞 𝑖 (𝑠)| 𝑠=𝛵 -𝑡 . In Chapter

2, we consider an approximate dynamics in terms of position variables only, in which case the time reversal takes a simpler form.

From[JPRB11], Section 7, pages 735-736.

From[START_REF] Shirikyan | Controllability implies mixing II. Convergence in the dual-Lipschitz metric[END_REF], page 3.

In what follows, we always mean by "state" a row vector or the linear functional it represents, even though this name usually refers to an element of 𝛬 in the literature on Markov chains.

𝑅(𝛼, 𝛸 ) ∶= 𝛸 2 -1 2 (𝛣 (𝛼) ) T 𝛸 -1 2 𝛸 𝛣 (𝛼) -𝛫 (𝛼) = 0.(2.41)

This part of the argument actually holds for any 𝑥 0 ∈ 𝐑 𝑑 , regardless of the Hörmander condition.

In the case of an additive noise, the Stroock-Varadhan support theorem can be given a direct proof by continuity arguments even if the vector field is unbounded, as long as the solutions are defined globally in time.

By 𝛵 -skeleton of a (continuous time) stochastic process, we mean the restriction to times in the countable set 𝛵 𝚴.

We use the symbol 𝜔 for the linear map encoding the frequencies of the system in order to ease the comparison with other works to which we refer. Unfortunately, 𝜔 is also standard notation for elements of the underlying probability space. We trust that the meaning of the symbol is clear from the context.

Here [0, 𝛵 0 ] 𝑚 is endowed with the metric inherited from 𝐑 𝑚 .

The radius 𝑅 of this compact set will be chosen to suitably fit the Lyapunov structure; cf. Corollary 4.A.2.

The results of this subsection remain true under weaker assumptions on the function 𝑔. This setting is chosen for the simplicity of presentation.

The idea of introducing the second control 𝜉 comes from[START_REF] Agrachev | Navier-Stokes equations: controllability by means of low modes forcing[END_REF] and is nowadays extensively used in the control theory of PDEs with finite-dimensional controls (see the surveys[START_REF] Agrachev | Solid controllability in fluid dynamics[END_REF][START_REF] Shirikyan | Control theory for the Burgers equation: Agrachev-Sarychev approach[END_REF]).

We represent the CAR in the environment ℰ on Γ -(ℋ ℰ ) and use 𝑏 * (𝜑) [resp. 𝑏 (𝜑)] for the creation [resp. annihilation] operator associated to the vector 𝜑 ∈ ℋ ℰ . We use 𝑏 # as a placeholder for either 𝑏 * or 𝑏 .
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Abstract We prove existence and uniqueness of the invariant measure and exponential mixing in the total-variation norm for a class of stochastic differential equations driven by degenerate compound Poisson processes. In addition to mild assumptions on the distribution of the jumps for the driving process, the hypotheses for our main result are that the corresponding control system is dissipative, approximately controllable and solidly controllable. The solid controllability assumption is weaker than the well-known parabolic Hörmander condition and is only required from a single point to which the system is approximately controllable. Our analysis applies to Galerkin projections of stochastically forced parabolic partial differential equations with asymptotically polynomial nonlinearities and to networks of quasi-harmonic oscillators connected to different Poissonian baths. CHAPTER 4 Condition (C2) proved in Appendix 4.A to establish an estimate on the time 𝛫 needed for the coupling to hit the diagaonal, i.e. for the two coupled components to coincide; see (4.23). This will be crucial in the proof of the Main Theorem. Proposition 4.3.1. There is a number p ∈ (0, 1) such that

for all 𝑥, 𝑥 ′ ∈ 𝛣( x, 𝑟 ).

Proof. With 𝛴 as in and Lemma 4.2.3, the equality (4.24) gives

whenever 𝑥 and 𝑥 ′ are in the ball 𝛣( x, 𝑟 ). Therefore, Abstract We study the large-time behaviour of a sample 𝒮 consisting of an ensemble of fermionic walkers on a graph interacting with a structured infinite reservoir of fermions ℰ through an exchange of particles in preferred states. We describe the asymptotic state of 𝒮 in terms the initial state of ℰ, with especially simple formulae in the limit of small coupling strength. We also study the particle fluxes into the different parts of the reservoir.

Chapter 6

Fermionic walkers driven out of equilibrium

Author Simon Andréys, Alain Joye and Renaud Raquépas arXiv ID 2009.00604 Abstract We consider a discrete-time non-Hamiltonian dynamics of a quantum system consisting of a finite sample locally coupled to several bi-infinite reservoirs of fermions with a translation symmetry. In this setup, we compute the asymptotic state, mean fluxes of fermions into the different reservoirs, as well as the mean entropy production rate of the dynamics.

The direction of the mean fluxes is sensitive to the details of the internal dynamics of the sample.

Assumption (IC+)

The initial state of the joint system is as in (IC) with 𝜌 S also quasifree, with a symbol 𝛥 ∶ ℋ S → ℋ S ; equivalently, the initial state is a quasifree state with a density of the form 𝛵 ⊕𝛥 . Moreover, it is bounded away from 0 and 𝟏 in the sense that there exists 𝜖 > 0 such that 𝜖𝟏 ≤ 𝛵 ≤ (1 -𝜖)𝟏.

We also suppose that Assumption (Bl) There exists a family {𝛱 𝑘 } 𝑛 B 𝑘=1 of orthogonal projections summing to the identity on ℋ B such that

and

Note that Assumption (Bl) technically always holds with 𝑛 B = 1 and 𝛱 1 = 𝟏, but is thought of as a separation of the environment into 𝑛 B different bi-infinite reservoirs of fermions, with their own dynamics, which only interact through the sample.

In terms of the linear operators 𝛵 𝑛,𝑚 ∶= (𝛿 * 𝑛 ⊗ 𝟏)𝛵 (𝛿 𝑚 ⊗ 𝟏) (6.4) on ℋ B , referred to as blocks, the commutation assumption in (IC) becomes the requirement that 𝛵 𝑛,𝑚 = 𝑈 -𝑛 𝛵 0,𝑚-𝑛 𝑈 𝑛 . (6.5) for all 𝑛, 𝑚 ∈ 𝚭.

Relation to repeated interaction systems

To clarify the place of our model in the zoo of discrete-time quantum dynamics, we comment on its relation to repeated interaction systems (ris). This subsection can be skipped on a first reading. Consider the effective one-step dynamics in the sample

CHAPTER 6

In order to carry some usual procedures from perturbation theory, we will need a semisimplicity and regularity assumption on the spectral decompostion of the family of operators 𝛭 (𝛼) analytic in the coupling strength 𝛼.

Assumption ( 1 2 Sim) There exists a punctured neighbourhood 𝛺 of 0 in 𝐂 such that the eigenvalues of 𝛭 (𝛼) are semisimple for all 𝛼 ∈ 𝛺 and there is a decomposition (0) and {𝜆 𝑗 } 𝑗 ∈𝛪 𝑖 is called the 𝜆 𝑖 -group in the terminology of Kato. The Assumption ( 1 2 Sim) is more general than the following simplicity assumption, which is already rather generic from a topological point of view and sometimes easier to verify.

Assumption (Sim)

Each eigenvalue 𝜆 𝑖 of 𝑊 is simple in the sense that the associated spectral projector 𝑄 𝑖 is of the form 𝜒 𝑖 𝜒 * 𝑖 for some unit vector 𝜒 𝑖 ∈ ℋ S .

One interesting advantage of Assumption ( 1 2 Sim) over (Sim) is that it can be inferred from a simple condition on 𝛢𝛢 * , thanks to the following lemma. Lemma 6.6.2. If 𝜅 -1 𝛢𝛢 * is an orthogonal projection for some nonzero 𝜅 ∈ 𝐑, then Assumption ( 1 2 Sim) is satisfied.

Proof. Analytically extend 𝛭 (𝛼) to the complex plane and consider the set

Then, 𝛭 (𝛼) is unitary for 𝛼 ∈ 𝒞. It can be shown that 𝒞 contains nontrivial curves and hence has at least one accumulation point. The lemma thus follows from Theorem 1.1 in [Kat95, §II.1.6]. Now that we have clarified our assumptions, we can proceed to give the limiting behaviour of the formula for the reduced asymptotic symbol in the sample in Proposition 6.3.4 and for the asymptotic currents in Corollary 6.4.2 as 𝛼 → 0.
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Hence, the Cauchy property of the sequence of double sums, follows from the fact that the sequence (‖𝑌 𝑚 ‖) 𝑚≥1 , like (‖𝛭 𝑚 ‖) 𝑚≥1 , is summable.

For the lower left-block, note that, for 0 < 𝑡 < 𝑢,

Again because the sequence (‖𝑌 𝑚 ‖) 𝑚≥1 is summable, the sequence of partial sums is Cauchy in the uniform operator topology.

Proof of Theorem 6.5.1

We will make use of the following technical lemma. for 𝑚, 𝑛 ∈ 𝚭. Hence, taking the trace using the basis

Lemma 6.8.3. Under the ongoing hypotheses,

Proof. In view of Lemma 6.8.2 and the definition of 𝛲 ⟂ [-𝑡 ,-1] , the claim will be proved if we can show that

What was said about the function 𝐺 0 (𝑥) ↦ 𝑥 log 𝑥 in (6.44)-(6.45) equally holds for 𝐺 1 ∶ 𝑥 ↦ 𝑥 and 𝐺 2 ∶ 𝑥 ↦ log 𝑥. In this language,

and reindexing the sum in 𝑚 with 𝑙 = 𝑛 -𝑚 yields

Now, the second sum is absolutely convergent if |𝐺 𝑘 1 (𝑙)| decays fast enough in 𝑙, in which case it cannot contribute to the limit of interest. Hence, the lemma follows from the relation

for discrete convolutions.

Lemma 6.8.4. Under the ongoing hypotheses,
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Discussion and conclusion

We have focused our attention on effective finite-dimensional descriptions of classical systems and on a very particular case of a truly infinite-dimensional quantum system. For stochastic systems with a nondegenerate

Brownian noise, we have ben able to perform a detailed analysis of the fluctuations of entropy production and study the vanishing-noise limit whereas we only reached an understanding of the basic ergodicity properties when the noise is degenerate -save the linear case [JPS17]. For ensembles of fermionic walkers, we have tackled the basic ergodicity properties as well as mean properties of entropy production and their relations to currents of particles.

While the general mathematical structure of the relations between the different notions of entropy production and the fluctuation theorems for extended classical systems is relatively well understood [JPRB11],

this is far from being the case for quantum systems. This is partly due to the impressive amount of preliminary notions from the theory of von Neumann algebras that is needed to even frame the discussion. Meanwhile, the study of toy models such as the electronic black box model [AJPP06, AJPP07, JOPP11], the XY spin chain [JLP13], repeated interaction systems [BJM14, HJPR17, HJPR18, BB20] and the model of Chapters 5 and 6 remains important: they provide explicit cases where the assumptions in the abstract theory holdswhen it exists -and allow for the analysis of model-dependent physical phenomena.

On the more concrete side, as far as the precise class of models in Chapters 5 and 6 are concerned, there is much left to be understood. Most notably, one should investigate whether the information-theoretical notion of entropy production can be related to the statistics of a physically relevant measurement process.

Also, the infinite-volume limit of the sample should be considered -with and without disorder -and the CHAPTER 7 links between spectral and transport properties should be studied.

Perhaps the most obvious technical open problem related to Chapters 2 and 3 is to study the vanishingnoise limit of the rate function for entropy production in degenerate diffusions enjoying good controllability properties. Another interesting problem related to Chapter 2 is that the sde at the heart of the paper is physically relevant as a small-mass limit of a Langevin equation which is itself obtained from an open system through yet another limiting procedure: the interchangeably of those limits with the vanishing-noise limit poses important technical difficulties. This could clarify the relevance of the stochastic model when in the appropriate regime.
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