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Abstract

This thesis consists mainly of a collection of papers on the study of the large-time asymptotics of

entropy production and associated mixing problems. After having introduced the central notions,

we present, in order: a study of the vanishing-noise limit for the large deviations of entropy pro-

duction functionals in nondegenerate diffusions; an exponential mixing result for stochastic differ-

ential equations driven by degenerate Brownian noise; an exponential mixing result for stochastic

differential equations driven by degenerate Poissonian noise; a study of the large-time behaviour of

ensembles of fermionic walkers interacting with a structured environment; a study of currents and

entropy production in a similar framework.

Résumé

Cette thèse consiste principalement en une collection d’articles portant sur l’étude du comporte-

ment asymptotique à temps longs de la production d’entropie et sur des problèmes de mélanges qui

y sont associés. Après avoir introduit les notions centrales, on présente, dans l’ordre : une étude de

la limite du bruit disparaissant de principes de grandes déviations locaux pour des fonctionnelles

de production d’entropie dans le cadre des diffusions non dégénérées; un résultat de mélange expo-

nentiel pour des équations différentielles stochastiques avec bruit brownien dégénéré; un résultat de

mélange exponentiel pour des équations différentielles stochastiques avec bruit de Poisson dégénéré;

une étude des comportements à temps longs d’ensembles de marcheurs fermioniques interagissant

avec un environnement structuré; une étude des courants et de la production d’entropie dans ce

même cadre.
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Chapter 1

Introduction

1.1 Motivation

The goal of this introduction is to motivate some of the objects that are studied in the subsequent

chapters and to provide the interested readers additional references on the subject. Discussion of

the state of the art for specific problems is postponed to the introductions of the different chapters.

We are interested in mathematical problems that stem from a desire to capture and understand

the onset of physical phenomena that can be observed at time scales which — while perhaps small

compared to cosmological time scales — are very large when compared to the characteristic time

scales for the microscopic dynamics. Such phenomena include heat transfers, membrane transport,

electrical currents and chemical reactions.

For the purpose of illustration, consider two large blocks of metal, one hotter than the other,

sitting in a room separated by a distance which is small compared to the respective sizes of the blocks,

but with little air for heat conduction between them. Upon joining the two blocks with a small

metal rod, you expect a heat flow to settle across the rod. If your blocks are very large, the flow should

remain relatively steady for a long time before the heat lost by the hotter block lowers its temperature

in the bulk, or the heat gained raises that of the colder block. Several questions naturally arise. How

fast does the current reach this steady value? How do you describe the state carrying this flow of heat?

What are the properties of the statistical fluctuations of this flow? How is the confident prediction
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that heat steadily flows from the hotter block to the colder one compatible with the microscopic

reversibility of the dynamics?

We will introduce some of the mathematical tools that are used to frame such problems. This

introduction is almost exempt of proofs, with the notable exception of a basic result on mixing for

Markov chains which serves as an introduction to some of the ideas used in the more complicated

settings of Chapters 3 and 4.

1.2 A Brief overview of the classical theory of entropy produc-

tion

In classical systems, entropy production comes in many guises and — for the reader’s convenience —

we briefly motivate different notions of entropy production that appear in the different chapters. We

first approach the subject from the point of view of hypothesis testing rather than from a historical

perspective. Our starting point will be a way of quantifying how easy it is to guess the original

direction of time in a movie possibly shown to us backwards.

The references given are not exhaustive but should allow the reader to get a good idea of the

different ideas in the literature.

1.2.1 Some remarks on Hamiltonian systems

We start by discussing what is generally admitted as the proper framework for the time evolution of

confined systems in the classical regime: objects moving down inclined planes, masses connected by

a set of springs, molecules of a monoatomic gas in a container, etc. From Hamilton’s point of view,

the physical time evolution of such a system is expressed in terms of integral curves of a vector field

on a phase space, which is typically the co-tangent bundle 𝛵 ∗𝛭 of a manifold 𝛭 used to describe

the possible configurations in space. In a nutshell, a distinguished function 𝛨 on 𝛵 ∗𝛭 called the

Hamiltonian function of the system gives rise to a one-form d𝛨 which can then be associated to a

vector field, called the Hamiltonian vector field, using the natural symplectic structure of 𝛵 ∗𝛭 .

Consider the manifold𝐑𝛮 and a smooth function𝛨 ∶ 𝛵 ∗𝐑𝛮 → [0,∞) such that𝛨−1([0, 𝛦])
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is compact for all 𝛦 ∈ 𝐑 and which is invariant under precomposition with the map 𝜃 which

changes the sign in the fibre. With suitable coordinates (𝑞, 𝑝) = (𝑞1, … , 𝑞𝛮 , 𝑝1, … , 𝑝𝛮 ) on 𝛵 ∗𝐑𝛮 ,

the integral curves for the aforementioned Hamiltonian vector field constructed from𝛨 in a canon-

ical way are the solutions to the equations

�̇� 𝑖 = 𝜕𝛨
𝜕𝑝𝑖

,

�̇�𝑖 = −
𝜕𝛨
𝜕𝑞 𝑖 .

(1.1)

These equations are known as Hamilton’s equations of motion and induce a global flow (𝜙𝑡 )𝑡≥0 on

phase space. The following observations are consequences of elementary computations.

(EC) Any curve satisfying (1.1) is forever bound to a compact level set of 𝛨 specified by its initial

condition.

(LT) The flow (𝜙𝑡 )𝑡≥0 generated by Hamilton’s equations (1.1) preserves volumes (the Lebesgue

measure).

(TRI) If the curve [0, 𝛵 ] ∋ 𝑡 ↦ (𝑞(𝑡), 𝑝(𝑡)) solves (1.1), then the curve [0, 𝛵 ] ∋ 𝑡 ↦ (�̄�(𝑡), �̄�(𝑡 ))
defined by

�̄� 𝑖 (𝑡) ∶= 𝑞 𝑖 (𝛵 − 𝑡) and �̄�𝑖 (𝑡) ∶= −𝑝𝑖 (𝛵 − 𝑡)

also solves (1.1). In other words,

𝜙−𝑡 = 𝜃 ∘ 𝜙𝑡 ∘ 𝜃

for all 𝑡 ∈ 𝐑.

While we considered a particular form of the phase space for simplicity, these observations gener-

alize to the abstract setup of Hamiltonian mechanics on finite-dimensional symplectic manifold —

simply referred to as confined Hamiltonian systems hereafter —; see e.g. [AM87, §II.3.3] or [Lee13,

§22]. They are fundamental properties of the structure of classical mechanics with a finite number

of degrees of freedom. The observation (EC) is named after the concept of energy conservation and
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𝑝

𝑞

𝜃(𝑞, 𝑝)
(𝑞 ′, 𝑝 ′)

(𝑞, −𝑝)
(𝑞 ′, −𝑝 ′)

𝜙

𝜙

Figure 1.1: Time reversal invariance for Hamiltonian systems: if the physical time evolution𝜙 brings

an initial condition (𝑞, 𝑝) to (𝑞 ′, 𝑝 ′) in time 𝛵 , then this same time evolution also brings (𝑞 ′, −𝑝 ′)
to (𝑞, −𝑝) in the same time.

(LT) is called Liouville’s volume theorem. The property (TRI) is called time reversal invariance1 and

is illustrated in Figure 1.1.

While the above description is given in terms of curves in phase space, it is worth noting in passing

that, for many applications, it is more convenient to focus on the algebra of physical observables of

the system, i.e. an algebra of functions on phase space. The flow (𝜙𝑡 )𝑡≥0 on phase space induces a

semigroup (𝜏 𝑡 )𝑡≥0 acting on functions by precomposition:

𝜏 𝑡𝑓 ∶= 𝑓 ∘ 𝜙𝑡 .

From this point of view, points in phase space are still relevant in that they are associated to evaluation

maps, which form a special class of linear functionals on the algebra of functions. More generally, we

refer to any normalized postitive continuous linear functional on this algebra — that also includes

integration against any Borel probability measure — as states of the system.

1Our definition of time reversal involves a change of sign of the momentum variables 𝑝1, … , 𝑝𝛮 because they are

structurally related to the time derivatives of the coordinates𝑞1, … , 𝑞𝛮 and d
d𝑡 𝑞

𝑖 (𝛵 −𝑡) = − d
d𝑠 𝑞

𝑖 (𝑠)|𝑠=𝛵 −𝑡 . In Chapter 2,

we consider an approximate dynamics in terms of position variables only, in which case the time reversal takes a simpler

form.
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1.2.2 Hypothesis testing

Hamilton’s equations (1.1), without knowledge of the initial conditions, merely separate the space

of curves over an interval [0, 𝛵 ] into two classes: those that are physically admissible and those that

can be ruled out. Note that (TRI) tells us that a curve [0, 𝛵 ] ∋ 𝑡 ↦ (𝑞(𝑡), 𝑝(𝑡)) is admissible if and

only if its reversal [0, 𝛵 ] ∋ 𝑡 ↦ (𝑞(𝛵 − 𝑡), −𝑝(𝛵 − 𝑡)) is admissible.

The situation becomes more subtle and interesting if we have a prior on the values of the variables

at time 𝑡 = 0: we can compare the likelihood of different admissible paths. Let 𝜆 be a probability

measure which is invariant under 𝜃 and which possesses a continuous positive density with respect

to the restriction of the Lebesgue measure to a shell

𝛭𝛦,𝛿 ∶= {(𝑞, 𝑝) ∶ 𝛦 ≤ 𝛨(𝑞, 𝑝) ≤ 𝛦 + 𝛿}

for some point 𝛦 of the range of 𝛨 and some small number 𝛿 > 0. The shell 𝛭𝛦,𝛿 is compact and

invariant under (𝜙𝑡 )𝑡≥0 by (EC).2

Knowing 𝜆 and given a path 𝛾 ∶ [0, 𝛵 ] → 𝐑2𝛮 , you are asked to guess according to which of

the two following protocols the path 𝛾 was generated:

(H0) An agent sampled an initial condition (𝑞(0), 𝑝(0)) from 𝜆, recorded the evolution up to

time 𝛵 according to Hamilton’s equation and showed you 𝛾 (𝑡) ∶= (𝑞(𝑡), 𝑝(𝑡)),

(H1) An agent sampled an initial condition (𝑞(0), 𝑝(0)) from 𝜆, recorded the evolution up to

time 𝛵 according to Hamilton’s equation and showed you 𝛾 (𝑡) = (𝑞(𝛵 − 𝑡), −𝑝(𝛵 − 𝑡)).

We call the task of distinguishing between those two hypotheses hypothesis testing of the arrow of time.

In other words, with 𝛷𝛵 ∶ (𝑞, 𝑝) ↦ (𝜙𝑡 (𝑞, 𝑝))𝑡∈[0,𝛵 ] according to Hamilton’s equations (1.1) and

𝛩𝛵 ∶ (𝑞(𝑡), 𝑝(𝑡))𝑡∈[0,𝛵 ] ↦ (𝑞(𝛵 − 𝑡), −𝑝(𝛵 − 𝑡))𝑡∈[0,𝛵 ] the operation on paths introduced in (TRI)

2The restriction to an energy shell of small finite width is technically convenient but not necessary. One can consider

the whole phase space if making sure that reasonable bounds on the density of𝜆 hold in order to deduce (1.4) from (1.3c)

below. If𝛦 is a regular value of𝛨 , the other limiting case 𝛿 → 0 is treated considering a reference measure 𝜆 equivalent

to the surface measure 𝛴𝛦 on 𝛭𝛦,0 and using a comparison with 𝛬𝛦 defined by |∇𝛨| d𝛬𝛦 = d𝛴𝛦 — invariant under

(𝜙𝑡 )𝑡≥0 as well — instead of with the volume measure in (1.3a)–(1.3c).
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and (H1), the hypothesis (H0) is that 𝛾 was sampled from the distribution

𝒫𝜆
𝛵 ∶= 𝜆 ∘ 𝛷 −1

𝛵

and the hypothesis (H1) is that 𝛾 was sampled from the distribution

�̂�𝜆
𝛵 ∶= 𝜆 ∘ 𝛷 −1

𝛵 ∘ 𝛩−1
𝛵 .

Let us assume for simplicity that the two hypotheses are a priori equally probable.

With the celebrated result of Neyman and Pearson in mind, you choose to make your guess based

on the log-likelihood ratio for a sampled path 𝛾 :

𝑆𝜆𝛵 (𝛾 ) = log (d𝒫𝜆
𝛵

d�̂�𝜆
𝛵
(𝛾 )). (1.2)

Given a path 𝛾 provided by the agent, you choose to guess (H0) or (H1) according to the outcome

of the test

NPT𝜆
𝛵 (𝛾 ) ∶= {

0 if 𝑆𝜆𝛵 (𝛾 ) ≥ 0,

1 otherwise;

you guess (H0) if NPT𝜆
𝛵 (𝛾 ) = 0 and (H1) if NPT𝜆

𝛵 (𝛾 ) = 1. Doing so, you expect to be wrong at a

frequency

F[𝒫𝜆
𝛵 , �̂�𝜆

𝛵 ] = 1
2𝒫𝜆

𝛵 {𝛾 ∶ NPT𝜆
𝛵 (𝛾 ) = 0} + 1

2�̂�𝜆
𝛵 {𝛾 ∶ NPT𝜆

𝛵 (𝛾 ) = 1}

and this number cannot be improved by replacing NPT𝜆
𝛵 with any other {0, 1}-valued function; this

is sometimes called a Bayesian version of the Neyman–Pearson lemma. It is well known that decay

of F[𝒫𝜆
𝛵 , �̂�𝜆

𝛵 ] as 𝛵 → ∞ is intimately linked to the behaviour of the moment-generating function

of the log-likelihood ratio in the same regime. The following proposition can be found for example

in [CJN+20]; also see [JOPS12, BJPP18, BCJP20].

Proposition 1.2.1. Let (𝛲𝛵 , 𝑄𝛵 )𝛵 ≥0 be a family of pairs of mutually absolutely continuous measures

on Polish spaces. Suppose that the limit

𝑒(𝛼) ∶= lim
𝛵→∞

1
𝛵 log

ˆ
e−𝛼 log d𝛲𝛵

d𝑄𝛵 d𝛲𝛵
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exists for all 𝛼 ∈ [0, 1] and defines a continuously differentiable function of 𝛼 ∈ (0, 1). Then, the
sequence of optimal error frequencies (F[𝛲𝛵 , 𝑄𝛵 ])𝛵 ≥0 satisfies

lim
𝛵→∞

𝛵 −1 log F[𝛲𝛵 , 𝑄𝛵 ] = inf
𝛼∈[0,1]

𝑒(𝛼).

The limit in Proposition 1.2.1 is called a Chernoff error exponent. In our case, it follows easily

from (LT) that

𝑆𝜆𝛵 (𝛾 ) = log d𝜆
d(𝜆 ∘ 𝜙𝛵 )

(𝛾 (0)) (1.3a)

= log d𝜆
dvol(𝛾 (0)) + log dvol

d(vol ∘𝜙𝛵 )
(𝛾 (0)) + log

d(vol ∘𝜙𝑡 )
d(𝜆 ∘ 𝜙𝛵 )

(𝛾 (0)) (1.3b)

= log d𝜆
dvol(𝛾 (0)) − log d𝜆

dvol(𝛾 (𝛵 )) (1.3c)

In other words, your best guess for the original direction of a curve in phase space is based on a

comparison of the likelihood of the endpoints of the curves as initial conditions. Using continuity

and compactness, we conclude that

𝑒(𝛼) = lim
𝛵→∞

𝛵 −1 log
ˆ

e−𝛼𝑆
𝜆
𝛵 (𝛾 ) d𝒫𝜆

𝛵 (𝛾 ) = 0 (1.4)

for all 𝛼 ∈ [0, 1].
Hence, we can deduce from the proposition above that F[𝒫𝜆

𝛵 , �̂�𝜆
𝛵 ] does not decay exponen-

tially as 𝛵 → ∞, i.e. that the Chernoff error exponent is trivial. In fact, the same arguments can be

generalized to rule out any stretched exponential decay. In a nutshell, you do not get much better

at guessing the original direction of time by having access to longer and longer footages of a con-

fined Hamiltonian system. The reader familiar with the Gärtner–Ellis theorem will notice that the

vanishing of the quantity 𝑒(𝛼) is rather singular from the point of view of the analysis of the large

deviations of the sequence (𝑆𝜆𝛵 (𝛾 ))𝑡≥0 of random variables.

This lack of improvement is symptomatic of a general issue in mathematical physics: asymptotic

results on confined Hamiltonian systems fail to sharply capture empirical observations of nonequi-

librium phenomena on what feels, to us, like large time scales.

Sharp results can be obtained using the idealized Hamiltonian mechanics of systems with in-

finitely many degrees of freedom — referred to as extended Hamiltonian systems—, but regularity
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properties and the choice of a reference measure playing the role of 𝜆 are then much more deli-

cate. These considerations are beyond the scope of the present thesis; we refer the interested reader

to [Pil01, JPRB11].

Luckily, without introducing as much machinery, one can build what are called effective finite-

dimensional non-Hamiltonian models for the evolution of a confined system interacting with an

infinite-dimensional one, through which it is possible to capture nonequilibrium phenomena such

as steady flows and irreversibility. Two classes of such effective descriptions are discussed in the next

two subsections.

We emphasize that the discussion of the last three paragraphs should not be interpreted as a

stance on the actual number of degrees of freedom in the physical universe or the actual structure

of the dynamics of the universe. It is merely a pragmatic statement on the families of mathematical

frameworks within which it is possible to capture certain idealized phenomena in nonequilibrium

physics in the form of sharp asymptotic results.

1.2.3 Entropy production in thermostated systems

Historically, the first class of effective models were deterministic modifications of the equations

of motion (1.1) called thermostated Hamiltonian systems. They are obtained by adding terms on

the right-hand sides of Hamilton’s equations — those terms are sometimes called phenomenological

forces — in such a way that (EC) and (TRI) still hold while (LT) fails. For example, with a Hamilto-

nian of the form𝛨(𝑞, 𝑝) = 1
2 ⟨𝑝, 𝑝⟩ + 𝑉 (𝑞), one could consider

�̇� = 𝑝,

�̇�𝑖 = −
𝜕𝑉 (𝑞)
𝜕𝑞 𝑖 + 𝑏𝑖 (𝑞) −

⟨𝑏(𝑞), 𝑝⟩
⟨𝑝, 𝑝⟩ 𝑝𝑖 ,

(1.5)

for some suitable nonconservative vector field 𝑏 ∶ 𝐑𝛮 →𝐑𝛮 .

One then defines the log-likelihood ratio 𝑆𝜆𝛵 between 𝒫𝜆
𝑡 and �̂�𝜆

𝑡 as the entropy production ob-

servable; because (1.3a) still holds, we simply write

𝑆𝜆𝛵 (𝑞, 𝑝) = log ( d𝜆
d(𝜆 ∘ 𝜙𝛵 )

(𝑞, 𝑝))



CHAPTER 1 9

and entropy production is interpreted as function on phase space (or a region thereof) which quan-

tifies the contraction of volumes as measured by the reference measure 𝜆. Here, 𝜙𝛵 } denotes the

flow induced by the system (1.5) after time 𝛵 .

Because (LT) fails, one cannot pass from (1.3b) to (1.3c): the best guess for the original direction

of time depends on more than the endpoints of the curve. Hypothesis testing and large deviations of

entropy production can then have nontrivial asymptotics in 𝛵 — as a sequence of random variables

on phase space with respect to 𝜆 or any other physically relevant measure.

It is within this setup that two landmark results on entropy production were first discussed . In

their own way, they both express a universality in the way in which positive values of entropy pro-

duction are favored when compared to their negative counterparts.

The finite-time Evans–Searles symmetry

Note that the moment generating function 𝜒𝜆𝛵 of the entropy production 𝑆𝜆𝛵 as a random variable

on phase space (an energy shell𝛭𝛦,𝛿 or all of (𝐑2𝛮 ,ℬ𝐑2𝛮 , 𝜆)) is a relative Rényi entropy,

𝜒𝜆𝛵 (𝛼) =
ˆ

𝒞𝛵

(d�̂�𝜆
𝛵

d𝒫𝜆
𝛵
)
𝛼

d𝒫𝜆
𝛵 ,

and is a real-analytic function of 𝛼 ∈ (0, 1)— at least. Using the sole fact that 𝛩𝛵 is an involution,

we find

𝜒𝜆𝛵 (1 − 𝛼) =
ˆ

𝒞𝛵

(d(𝒫𝜆
𝛵 ∘ 𝛩−1

𝛵 )
d𝒫𝜆

𝛵
)
1−𝛼

d𝒫𝜆
𝛵

=
ˆ

𝒞𝛵

(d(𝒫𝜆
𝛵 ∘ 𝛩−1

𝛵 )
d𝒫𝜆

𝛵
∘ 𝛩𝛵 )

1−𝛼
d(𝒫𝜆

𝛵 ∘ 𝛩−1
𝛵 )

=
ˆ

𝒞𝛵

( d𝒫𝜆
𝛵

d(𝒫𝜆
𝛵 ∘ 𝛩−1

𝛵 ))
1−𝛼

d(𝒫𝜆
𝛵 ∘ 𝛩−1

𝛵 )

=
ˆ

𝒞𝛵

(d𝒫𝜆
𝛵

d�̂�𝜆
𝛵
)
−𝛼

d𝒫𝜆
𝛵

= 𝜒𝜆𝛵 (𝛼).

One can show that this symmetry of the moment-generating function 𝜒𝛵 implies the following sym-

metry for 𝑄𝜆
𝛵 , the distribution of the mean entropy production 𝛵 −1𝑆𝛵 as a random variable with
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respect to 𝒫𝜆
𝛵 . With �̂�𝜆

𝛵 that of −𝛵 −1𝑆𝛵 , we have �̂�𝜆
𝛵 ≪ 𝑄𝜆

𝛵 and

d�̂�𝜆
𝛵

d𝑄𝜆
𝛵
(𝜍) = e−𝛵 𝜍 (1.6)

for 𝑄𝜆
𝛵 -almost all 𝜍 ∈ 𝐑. This symmetry is dubbed the transient fluctuation theorem or the finite-

time Evans–Searles symmetry due to its first derivation in [ES94] using a different argument.

The Gallavotti–Cohen fluctuation theorem

For 𝜆+ a limit point of the net (𝛵 −1
´ 𝛵
0 𝜆 ∘ 𝜙

−𝑡 d𝑡 )𝛵 ≥0 in a suitable topology — which is then neces-

sarily invariant under 𝜙𝑡 for all 𝑡 and typically referred to as a nonequilibrium steady state —, we say

that a Gallavotti–Cohen fluctuation theorem holds in 𝜆+ if there is a large deviation principle for the

sequence (𝑆𝜆𝛵 )𝛵 ≥0 of random variables on phase space with a rate function 𝛪 satisfying the symmetry

𝛪 (−𝜍) = 𝛪 (𝜍) + 𝑠. (1.7)

for all possible values of 𝑠 . More explicitly,

− inf
𝜍∈int(𝛦)

𝛪 (𝜍) ≤ lim inf
𝛵→∞

𝛵 −1 log𝜆+{𝛵 −1𝑆𝜆𝛵 ∈ 𝛦}

≤ lim sup
𝛵→∞

𝛵 −1 log𝜆+{𝛵 −1𝑆𝜆𝛵 ∈ 𝛦} ≤ − inf
𝜍∈cl(𝛦)

𝛪 (𝜍)

for all Borel subsets 𝛦 of𝐑 and the symmetry (1.7) of the rate function gives the heuristics

𝜆+{𝛵 −1𝑆𝜆𝛵 ≈ −𝜍}
𝜆+{𝛵 −1𝑆𝜆𝛵 ≈ 𝜍}

≈ e−𝛵 𝛪 (−𝜍)

e−𝛵 𝛪 (𝜍)
= e−𝛵 (𝛪 (−𝜎 )−𝛪 (𝜎 )) = e−𝛵 𝜍 ,

which is reminiscent of (1.6). Such a result was first derived using Anosov diffeomorphisms as a

model for the dynamics of a strongly sheared fluid [GC95]. The large deviation principle is typically

proved by studying the limit

𝑒+(𝛼) ∶= lim𝑡→∞
1
𝛵 log

ˆ
e−𝛼𝑆

𝜆
𝛵 d𝒫𝜆+

𝛵

— referred to as the entropic pressure — and applying a version of the Gärtner–Ellis theorem; see

e.g. [DZ10, §2.3]. However, we should note that other routes to the fluctuation theorem have shown

to be more powerful in other contexts; see e.g. [CJPS19].
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While they are both inspired by the same numerical experiments [ECM93] and capture a simi-

lar symmetry, the spirit of the finite-time Evans–Searles symmetry and the Gallavotti–Cohen fluc-

tuation theorem are quite different and authors insist that they should not be confused [CG99,

JPRB11, Gal19].

The principal distinction is that the Evans–Searles symmetries are universal — they hold

for any TRI dynamical systems for which the objects in question are defined. The mech-

anism behind Gallavotti–Cohen symmetries a priori could be model dependent and in

general they may fail. Perhaps surprisingly, a careful look at all principal classes of mod-

els for which the symmetries have been rigorously established reveals that the respective

functionals satisfy 𝑒+(𝛼) = 𝑒(𝛼) [...] In each single case the strong ergodic properties

of the model force [this relation].3

1.2.4 Entropy production in stochastic systems

Later, a second class of effective models started to attract attention: stochastic dynamics [Kur98,

LS99, Cro00]. They are again typically obtained by adding terms on the right-hand side of the

equation for �̇� , but now in the form of a stochastic process. These terms are supposed to mimic the

effect of infinitely extended reservoirs in some essentially steady state in certain regimes.

For such systems, the study of is typically focused on the log-likelihood ratio between the dis-

tribution of forward and backward trajectories rather than on a notion of contraction of volume

in phase space. It is here the noise rather than time reversal invariance which ensures mutual abso-

lute continuity of the distributions associated to the hypotheses to be tested. Again, the finite-time

Evans–Searles symmetry holds without any further assumption.

As alluded to above, a key preliminary step to studying the Gallavotti–Cohen fluctuation the-

orem is to make sure that there indeed is an invariant measure for our process and understand the

extent to which it is reasonable to expect the time evolution of a typical initial condition to converge

to this invariant measure. This problem alone is the subject of two chapters of this thesis and we

3From [JPRB11], Section 7, pages 735–736.
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devote the next section of the present chapter to a short discussion of the tools that are available. Be-

fore we do so, let us complete our brief discussion of entropy production by mentioning extensions

of the classical theory to quantum systems and links with thermodynamics.

1.3 Entropy production in quantum mechanics

In an algebraic description of nonrelativistic Hamiltonian quantum mechanics, physical observables

are elements of a 𝐶 ∗-algebra 𝒜, states are nonnegative linear functionals on 𝒜 which are properly

normalized, and the dynamics is a suitably continuous group of ∗-automorphisms of 𝒜. While this

is a structure that is shared with classical mechanics, the fact that the algebras of observables consid-

ered in quantum mechanics are noncommutative prevents us from naturally finding an underlying

notion of trajectory on which to base our notion of entropy production. However, formula (1.3a)

can be adapted provided that we have a suitable analogue of the Radon–Nikodym derivative for

quantum states. This analogue is the relative modular operator of Tomita–Takesaki theory: this is

the approach developed in [Ara76, OHI88, Oji89, Rue01, JP01, Pil01, JP02, TM03]; see [JOPP11]

for an overview of the theory for confined quantum systems.

In a certain class of models for a small system interacting with an infinitely extended reservoir,

a definition of this type has been successfully linked to a definition at the level of effective Marko-

vian descriptions of the small system alone in the weak coupling limit; see [JKP06, AJPP06, dR07,

DdRM08, JPW14].

There has also been a recent interest in the theory of entropy production associated to classical

probability measures on shift spaces arising from repeated quantum measurements [Cro08, HP13,

BJPP18, HJPR18, CJPS19, BB20].

1.4 Thermodynamics

The notion of entropy production is also used in the context of thermodynamics. In fact, the link

between the information-theoretical notion of entropy production and physically relevant quanti-

ties from thermodynamics is fundamental. Justice can only be done to this subject in the framework
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of extended Hamiltonian systems, but the machinery that is involved in such a discussion is beyond

the scope of this introduction. We provide a partial treatment within the confined framework of

Subsection 1.2.1 and refer the reader to [Pil01, JPRB11] for more details.

Consider a special case of the Hamiltonian setup of Subsection 1.2.1 in which the Hamiltonian

is of the form

𝛨 = (𝛨0 +𝛨1 +𝛨2) + 𝑉

where 𝛨𝑖 depends only on variables in a subspace 𝛫𝑖 with 𝐑2𝛮 = 𝛫0 ⊕ 𝛫1 ⊕ 𝛫2 and 𝑉 is allowed

to depend on all the variables.

Also consider a reference probability measure 𝜆 of the form

d𝜆 = 𝛧−1e−𝛽1𝛨1−𝛽2𝛨2 dvol

for some positive numbers 𝛽1, 𝛽2 and𝛧 , where the “vol” is considered on the whole space. In other

words, 𝜆 is the product of three measures: a normalized volume measure on 𝛫0 , a measure on 𝛫1

which has maximum entropy among the measures on 𝛫1 giving a fixed mean to 𝛨1 parametrized

by 𝛽1, and a measure on𝛫2 which has maximum entropy among the measures on𝛫2 giving a fixed

mean to𝛨2 parametrized by 𝛽2. The parameters 𝛽1 and 𝛽2 are called inverse temperatures.

If the subspaces 𝛫1 and 𝛫2 have very high dimensions compared to that of 𝛫0 , they are to be

thought of as acting as reservoirs of energy and entropy for the latter. Thermodynamics à la Clau-

sius then suggests defining entropy production as the weighted sum of the energy flowing into each

reservoir by its inverse temperature, that is the observable

𝐶𝛵 ∶= 𝛽1(𝛨1 ∘ 𝜙𝛵 −𝛨1) + 𝛽2(𝛨2 ∘ 𝜙𝛵 −𝛨2).

The link with our previous definition of entropy production is made as follows. By (LT), a

change of variables gives
ˆ
𝑓 d(𝜆 ∘ 𝜙𝛵 ) =

ˆ
(𝑓 ∘ 𝜙−𝛵 )(𝑝, 𝑞)𝛧−1e−𝛽1𝛨1(𝑝,𝑞)−𝛽2𝛨2(𝑝,𝑞) d𝑝 d𝑞

=
ˆ
𝑓 (𝑝, 𝑞)𝛧−1e−𝛽1𝛨1(𝜙𝛵 (𝑝,𝑞))𝜙𝑡−𝛽2𝛨2(𝜙𝛵 (𝑝,𝑞)) d𝑝 d𝑞,
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so that

d(𝜆 ∘ 𝜙𝛵 )
d𝜆 (𝑝, 𝑞) = e−𝛽1𝛨1(𝜙𝛵 (𝑝,𝑞))−𝛽2𝛨2(𝜙𝛵 (𝑝,𝑞))

e−𝛽1𝛨1(𝑝,𝑞)−𝛽2𝛨2(𝑝,𝑞)
,

or equivalently

log d𝜆
d(𝜆 ∘ 𝜙𝛵 )

= 𝛽1(𝛨1 ∘ 𝜙𝛵 −𝛨1) + 𝛽2(𝛨2 ∘ 𝜙𝛵 −𝛨2) = 𝐶𝛵 . (1.8)

If one modifies the reference state 𝜆 by multiplying its density by a function on 𝛫0 , say a constant

times e−𝛽0𝛨0 for some positive number 𝛽0 , this identity must be corrected with terms which should

be small compared to 𝐶𝛵 for large values of 𝛵 .

As pointed out in Subsection 1.2.2, one cannot hope 𝐶𝛵 to truly display interesting asymptotic

properties in the limit 𝛵 → ∞ as long as we stay within the framework of confined Hamiltonian

systems. Yet, such calculations are good indications of what can be done in important class of exam-

ples of extended Hamiltonian systems and suggest interpreting the Gallavotti–Cohen fluctuation

theorem as a statement on the universality of statistical fluctuations violating the second law of ther-

modynamics formulated in terms of thermodynamic affinities; see [JPRB11, §9] and [JPS16].

For effective models introduced in Subsection 1.2.3 and 1.2.4, relations between entropy pro-

duction and heat currents from thermodynamics can also be exhibited; see e.g. [CELS93, LS99,

MNV03]. In Chapter 2, we will see the information-theoretical notion of entropy being linked to

the work done by the nonconservative force driving the system out of equilibrium.

One should note that the ease with which one passes from a thermodynamic interpretation of

entropy production to the other fundamentally relies on the commutativity of observables in the

classical setting. For this reason, many of the basic relations from thermodynamics are much more

subtle in the quantum setting. For example, even the very definition of work and heat — let alone

the way they relate to each other in closed systems via the first law of thermodynamics beyond the

level of averages — requires some care; see e.g. [TLH07, CHT11, BPR19, BPP20].
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1.5 Mixing

In all physical paradigms discussed above, the dynamics is ultimately encoded in a suitably continu-

ous semigroup (𝜏 𝑡 )𝑡≥0 of operators on an involutive Banach algebra of observables which preserves

nonnegativity. In this picture, states of the system are continuous linear functionals on the alge-

bra of observables that are nonnegative and normalized. For example, the flow (𝜙𝑡 )𝑡≥0 on a sym-

plectic manifold induced by Hamilton’s equations or modifications thereof induces a semigroup

of so-called Koopman operators on different reasonable algebras of functions through the formula

𝜏 𝑡𝑓 ∶= 𝑓 ∘ 𝜙𝑡 . In stochastic models, a semigroup of so-called Markov operators is constructed from

the transition functions 𝛲𝑡 through the formula (𝜏 𝑡𝑓 )(𝑥) ∶=
´
𝑓 (𝑦)𝛲𝑡 (𝑥, d𝑦). In both cases, the

adjoint of 𝜏 𝑡 then acts on a space of measures which contains states as we have defined them.

Vaguely speaking, a mixing result for a dynamics (𝜏 𝑡 )𝑡≥0 and a state 𝜔+ on 𝒜 is a guarantee that

lim𝑡→∞𝜔0( 𝜏
𝑡𝑓 ) = 𝜔+(𝑓 )

for important classes of observables 𝑓 and initial states 𝜔0 . It is in the state 𝜔+ that we can expect to

measure true nonequilibrium quantities and prove the Gallavotti–Cohen fluctuation theorem.

When dealing with the microscopic description of a system with infinitely many degrees of free-

dom — classical or quantum — the set of initial conditions 𝜔0 allowed for convergence crucially de-

pends on 𝜔+ for genuine physical reasons. Indeed, in the thought experiment of Section 1.1, we

expect the state carrying a steady flow of heat to change if we completely change the initial temper-

ature of a block. For stochastic systems with finitely many degrees of freedom — which will be the

main focus for the remainder of the chapter —, the “physical” part of this restriction is in some sense

already included in the choice of the noise and the only restrictions left will be more technical (e.g.

mild regularity and decay assumptions).

1.5.1 Mixing for stochastic differential equations

Consider a stochastic differential equation in𝐑𝛭 of the form

d𝛸𝑡 = 𝑐(𝛸𝑡 ) d𝑡 + 𝑄 d𝑌𝑡
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where 𝑐 ∶ 𝐑𝛭 → 𝐑𝛭 is a vector field, (𝑌𝑡 )𝑡≥0 is an 𝐑𝐷 -valued Lévy process defined on a proba-

bility space (𝛺,ℱ, 𝚸 ), and 𝑄 ∶ 𝐑𝐷 → 𝐑𝛭 is a linear map.4 If 𝑐 and (𝑌𝑡 )𝑡≥0 are nice enough, the

solution (𝛸𝜆
𝑡 )𝑡≥0 will be essentially uniquely specified by any initial condition 𝛸𝜆

0 ∼ 𝜆 as a process

on (𝛺,ℱ, 𝚸 ). The transition functions

𝛲𝑡 (𝑥, 𝛦) = 𝚸 [𝛸𝜆
𝑡 ∈ 𝛦 ∣ 𝛸𝜆

0 = 𝑥]

for Borel sets 𝛦 ⊆ 𝐑𝛭 can be defined independently of 𝜆 and give rise to a semigroup on Borel

bounded functions via the formula

(𝜏 𝑡𝑓 )(𝑥) ∶=
ˆ
𝑓 (𝑦) 𝛲𝑡 (𝑥, d𝑦) (1.9)

for 𝑓 bounded and measurable, or equivalently (𝜏 𝑡𝑓 )(𝑥) ∶= 𝚬[𝑓 (𝛸 𝛿𝑥
𝑡 )]. An important problem in

the study of such equations is to find reasonable conditions on 𝑐 , 𝑄, (𝑌𝑡 )𝑡≥0 and 𝜆 that guarantee

the convergence

lim𝑡→∞𝜆(𝜏
𝑡𝑓 ) = 𝜆inv(𝑓 ) (1.10)

for some probability measure 𝜆inv common to all 𝑓 in a large class of functions.

A possible approach is to show that 𝜏 𝑡 , considered on a suitable Banach space of functions, con-

verges weakly as 𝑡 → ∞ to its rank-one spectral projector for the eigenvalue 1 using general results

from the spectral theory of semigroups. This approach is well suited for equations driven by Brow-

nian noises because the infinitesimal generator of the semigroup then admits a nice closed-form

expression as a differential operator for which powerful tools have been developed.

Let us sketch how this is done for the simple case where 𝑐(𝑥) = −𝑥 and (2−1/2𝑄𝑌𝑡 )𝑡≥0 is a stan-

dard Brownian motion in𝐑𝛭 . The formula (1.9) then defines a strongly continuous semigroup on

the space 𝐿2(𝐑𝛭 , e− 1
2 |𝑥|2 d𝑥) and its generator is a differential operator satisfying

(𝛢𝑓 )(𝑥) = (Δ𝑓 )(𝑥) − ⟨𝑥, (∇𝑓 )(𝑥)⟩
4The dimension 𝛭 could naturally be 2𝛮 if the stochastic differential equation is the effective dynamics of the

position and momentum variable subject to interaction with reservoirs or 𝛮 if the equation describes the effective dy-

namics of the position variables only (e.g. in the Smoluchowski–Kramers limit). However, in some situations,𝛭 could

be larger than 2𝛮 if additional degrees of freedom are necessary in order to make the effective dynamics Markovian; see

e.g. [EPRB99b].
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for all 𝑓 ∈ 𝐶 2
c (𝐑𝛭 ). In fact, this semigroup is immediately infinitely differentiable, thanks to the

regularizing properties of the Laplacian; irreducible, thanks to the maximum principle; compact,

thanks to Sobolev’s embedding and the fact that the potential 𝑉 (𝑥) = 1
2 |𝑥|2 from which 𝑐(𝑥)derives

is coercive. In the general theory of semigroups, these three conditions suffice for convergence to the

spectral projector of interest; see e.g. [AGG+86, Ch. C-IV] or [EN06, §VI.3]. This approach can

be adapted in a straightforward — yet slightly more technical — way to the more general setting of

Chapter 2.

Of course, the Laplacian is a very special operator and one should not hope to so easily ob-

tain the result if 𝑄 does not have full rank. We call this this obstacle degeneracy of the noise: if

𝑄 does not have full rank, we do not have linearly independent combinations of the independent

one-dimensional Brownian motions explicitly appearing in each of the one-dimensional equations

for individual coordinates (referred to as degrees of freedom). Generators associated to degenerate

Brownian noises may still enjoy good regularization and irreducibility properties, but both check-

ing and exploiting those properties in a physically relevant context are far from easy. We refer the

reader to [Tro77, EPRB99b, EPRB99a, EH00, CEHRB18] for successful analyses along those gen-

eral lines.

In Chapters 3 and 4 of this thesis, a considerably different route to mixing is taken. It is based

on a body of works from S. Kuksin, A. Shirikyan and their coauthors.

1.5.2 The Approach of Kuksin and Shirikyan

In their own words, S. Kuksin and A. Shirikyan, have been working on a

programme whose goal is to develop methods for applying the results and tools of the

control theory in the study of mixing properties of flows generated by randomly forced

evolution equations.5

The biggest successes of this endeavour concern the mixing properties of stochastic partial differ-

ential equations (e.g. stochastically driven Navier–Stokes systems) [KS01, AKSS07, Shi07, Shi15,
5From [Shi20], page 3.
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KNS19, KZ20, Shi20]. However, the approach has also met with success in revisiting stochastic or-

dinary differential equations: Chapters 3 and 4 are in line with the approach presented in [Shi17].

To motivate the use of different notions of controllability in the study of mixing, let us discuss

one of the most basic setups in which one can discuss mixing: Markov chains on a finite set 𝛬 of

cardinality 𝐿. This discussion is centered around a stochastic matrix P = [𝑝𝑖 ,𝑗 ]𝑖 ,𝑗∈𝛬, i.e. an 𝐿-by-𝐿
matrix with nonnegative entries such that

∑
𝑖∈𝛬

𝑝𝑖 ,𝑗 = 1,

for each 𝑗 ∈ 𝛬. We use 𝑝𝑚𝑖,𝑗 the (𝑖 , 𝑗 )-th entry of the 𝑚-th power of the matrix P. Such a matrix

indeed allows us to construct a discrete-time semigroup (𝜏 𝑡 )𝑡∈𝚴 acting on functions on 𝛬:

(𝜏 𝑡𝑓 )(𝑖) ∶= ∑
𝑗∈𝛬

𝑝 𝑡𝑖 ,𝑗𝑓 (𝑗 ) = ∑
𝑗1∈𝛬

∑
𝑗2∈𝛬

⋯∑
𝑗𝑡∈𝛬

𝑝𝑖 ,𝑗1𝑝𝑗1,𝑗2 ⋯𝑝𝑗𝑡−1,𝑗𝑡 𝑓 (𝑗𝑡 ).

In this context, it is convenient to identify functions on𝛬 with column vectors in𝐑𝐿 and states on

the algebra of functions on 𝛬 with row vectors in𝐑𝐿 whose components are nonnegative and sum

to 1.6

The following mixing result — whose hypotheses are illustrated in Figure 1.2 — can be proved

using a variety of methods. While we will discuss two proof sketches which motivate relevant no-

tions of controllability, we note in passing that a proof appealing to the Perron–Frobenius theorem

would, in spirit, be the closest to the method discussed in the previous subsection.

Proposition 1.5.1. Suppose that there exists a subset 𝛣 of the state space with the following two proper-

ties:

(a) there exists𝑚 ≥ 1 such that∑𝑗∈𝛣 𝑝𝑚𝑖,𝑗 > 0 for all 𝑖 ;

(b) there exists 𝑘0 such that 𝑝𝑗 ,𝑘0 > 0 for each 𝑗 ∈ 𝛣 .

Then, there exist a nonnegative row vector (𝜆+𝑖 )𝑖∈𝛬 whose components sum to 1 and such that

lim𝑡→∞∑
𝑗∈𝛬

𝑝 𝑡𝑖 ,𝑗𝑓𝑗 = ∑
𝑗 ′∈𝛬

𝑓𝑗 ′𝜆+𝑗 ′ (1.11)

6In what follows, we always mean by “state” a row vector or the linear functional it represents, even though this

name usually refers to an element of 𝛬 in the literature on Markov chains.



CHAPTER 1 19

𝛣

𝑘0

Figure 1.2: A Markov chain on a set 𝛬 consisting of 8 element represented by gray circles: there is

an arrow from the element 𝑖 to the element 𝑗 if and only if 𝑝𝑖 ,𝑗 > 0. The elements inside the dashed

contour form a subset𝛣 such that (a) starting from any point, there is a path of length𝑚 = 3 ending

in 𝛣 , and (b) each element in 𝛣 has a direct edge to the element 𝑘0 .

for all 𝑖 ∈ 𝛬 and all choices of (𝑓𝑗 )𝑗∈𝛬.

Remark 1.5.2. The way the proposition is formulated is not optimal for Markov chains on a finite

set 𝛬; hypotheses (a) and (b) together are equivalent to the simpler requirement that 𝑝𝑚′

𝑖 ,𝑘′ > 0 for
each 𝑖 ∈ 𝛬 and some fixed 𝑘′ ∈ 𝛬 and𝑚′ ∈ 𝚴 . The purpose here is to illustrate techniques which we

use in Chapters 3 and 4 in situations where mere pointwise positivity of transition functions has to be

complemented with different notions of accuracy and uniformity for the analogues of Hypotheses (a)

and (b).

Harris’ theorem

A first way of obtaining the result is to appeal to Harris’ ergodic theorem. Let us present the version

elegantly proved by M. Hairer and J.C. Mattingly [HM11]. The hypotheses are formulated for a

semigroup (𝜛 𝑛)𝑛∈𝚴 acting on bounded measurable function on a (not necessarily finite) space 𝚾
and Dirac measures 𝛿𝑥 at points 𝑥.

Theorem1.5.3. Let (𝜛 𝑛)𝑛∈𝚴 be the semigroupassociated to adiscrete-timeMarkov chain ona space𝚾.

Suppose that there exists a function 𝑉 ∶ 𝚾 → [0,∞) and constants𝛫 ∈ [0, ∞) and 𝛾 ∈ (0, 1) such that

(𝜛 1𝑉 )(𝑥) ≤ 𝛾 𝑉 (𝑥) + 𝛫
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for all 𝑥 ∈ 𝚾 and suppose that there exists a constant 𝛼 ∈ (0, 1) and a probability measure 𝜈 on𝚾 such

that

inf
𝑥∈𝑉 −1([0,𝑅])

(𝜛 1)∗𝛿𝑥 ≥ 𝛼𝜈

for some 𝑅 > 2𝛫
1−𝛾 , as measures on 𝚾. Then, there exists a unique invariant state 𝜆+ for the semi-

group (𝜛 𝑛)𝑛∈𝚴 . Furthermore, there exist constants 𝐶, 𝑐 ∈ (0, ∞) such that

sup
𝑥∈𝚾

|(𝜛 𝑛𝑓 )(𝑥) − 𝜆+(𝑓 )|
1 + 𝑉 (𝑥) ≤ 𝐶 e−𝑐𝑛

whenever 𝑛 ∈ 𝚴 and 𝑓 is a measurable function such that |𝑓 | ≤ 1 + 𝑉 .

Now, of course, the first condition — say with 𝑉 ≡ 0 — becomes trivial when 𝚾 = 𝛬 is a finite

set, but is relevant for semigroups arising from stochastic differential equations on noncompact

phase space.

Hypothesis (b) of Proposition 1.5.1 gives the bound

𝑝𝑗 ,𝑘 ≥ ( inf
𝑗∈𝛣

𝑝𝑗 ,𝑘0)𝟏𝑘,𝑘0

for each 𝑗 ∈ 𝛣 , with a nonzero infimum on the right-hand side. But then,

𝑝𝑚+1𝑖,𝑘 ≥ ∑
𝑗∈𝛣

𝑝𝑚𝑖,𝑗𝑝𝑗 ,𝑘 ≥ ( inf
𝑖∈𝛬

∑
𝑗∈𝛣

𝑝𝑚𝑖,𝑗 )( inf
𝑗∈𝛣

𝑝𝑗 ,𝑘0)𝟏𝑘,𝑘0

for any 𝑖 , with nonzero infima by the Hypothesis (a). In other words, the evolution for𝑚+1 steps of

a Dirac measure in 𝑖 is bounded below by a positive 𝑖 -independent constant times the Dirac measure

in 𝑘0 . With 𝑉 ≡ 0 and any𝑅 > 0, this is precisely the second hypothesis of Harris’ theorem for

𝜛 𝑛𝑓 ∶= P𝑛(𝑚+1)𝑓 .

Therefore, there exists a unique state 𝜆+ such that 𝜆+ = 𝜆+P𝑚+1, and there exist constants 𝐶 and 𝑐
such that

∣ ∑
𝑖 ,𝑗∈𝛬

𝜆𝑗𝑝𝑛(𝑚+1)𝑗 ,𝑖 𝑓𝑖 −∑
𝑗
𝜆+𝑗 𝑓𝑗 ∣ ≤ 𝐶 e−𝑐(𝑚+1)(𝑛+1). (1.12)

To show that this measure is also invariant for the original chain, and not only its (𝑚+1)-skeleton,

take 𝑓 the indicator of an arbitrary point 𝑖 ∈ 𝛬:

∣∑
𝑗∈𝛬

𝜆𝑗𝑝𝑛(𝑚+1)𝑗 ,𝑖 − 𝜆+𝑖 ∣ ≤ 𝐶 e−𝑐(𝑚+1)(𝑛+1)
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and, in the special case 𝜆 = 𝜆+P𝑠 for an arbitrary 𝑠 ,

∣∑
𝑗∈𝛬

𝜆+𝑗 𝑝𝑛(𝑚+1)+𝑠𝑗 ,𝑖 − 𝜆+𝑖 ∣ ≤ 𝐶 e−𝑐(𝑛+1).

But using the semigroup property and the invariance of 𝜆+ under 𝜆+P𝑛(𝑚+1) = 𝜆+, we obtain

∣∑
𝑗∈𝛬

𝜆+𝑗 𝑝 𝑠𝑗 ,𝑖 − 𝜆+𝑖 ∣ ≤ 𝐶 e−𝑐(𝑛+1).

Because the left-hand side is independent of 𝑛, we may take 𝑛 → ∞ to deduce that 𝜆+P𝑠 = 𝜆+.

Given a function 𝑓 , it is then easy to show using (1.12) and (1.12) with 𝑓 replaced with P1𝑓 up

to P𝑚𝑓 that (1.11) holds.

Couplings

This second approach is more probabilistic in spirit. We say that a process (𝛸 𝑡
𝑖 )𝑡∈𝚴 defined on a

probability space (𝛺,ℱ, 𝚸 ) is a copy of the chain starting in 𝑖 if it is a 𝛬-valued process with the

property that

𝚸 [𝛸 𝑡
𝑖 = 𝑖] = 1 and 𝚸 [𝛸 𝑡+𝑠

𝑖 = 𝑘|𝛸 𝑠
𝑖 = 𝑗 ] = 𝑝 𝑡𝑗 ,𝑘

whenever 𝑗 , 𝑘 ∈ 𝛬 and 𝑠, 𝑡 ∈ 𝚴 are such that 𝑝 𝑠𝑖 ,𝑗 > 0. We may at will construct such copies for

each 𝑖 in such a way that they are independent of each other on a common space (𝛺 ind,ℱind, 𝚸 ind).
A coupling of the chains starting in 𝑖 and 𝑖 ′ is a process (𝒵𝑡 )𝑡∈𝚴 on a probability space (𝛺,ℱ, 𝚸 ),

taking values in the product space 𝛬 × 𝛬, such that

𝚸 [𝜋(𝒵0) = 𝑖] = 1 and 𝚸 [𝜋(𝒵𝑡+𝑠) = 𝑘|𝜋(𝒵𝑠) = 𝑗 ] = 𝑝 𝑡𝑗 ,𝑘

whenever 𝑗 , 𝑘 ∈ 𝛬 and 𝑠, 𝑡 ∈ 𝚴 are such that 𝑝 𝑠𝑖 ,𝑗 > 0, and

𝚸 [𝜋 ′(𝒵0) = 𝑖 ′] = 1 and 𝚸 [𝜋 ′(𝒵𝑡+𝑠) = 𝑘|𝜋 ′(𝒵𝑠) = 𝑗 ] = 𝑝 𝑡𝑗 ,𝑘

whenever 𝑗 , 𝑘 ∈ 𝛬 and 𝑠, 𝑡 ∈ 𝚴 are such that𝑝 𝑠𝑖 ′,𝑗 > 0. Here and in what follows,𝜋 [resp.𝜋 ′] denotes

the projection onto the first component [resp. second component] in the cartesian product 𝛬 × 𝛬.

For such a coupling, consider the (possibly infinite) random variable on (𝛺,ℱ, 𝚸 ) defined as

𝒯 ∶= inf{𝑡 ∈ 𝚴 ∶ 𝜋(𝒵𝑡 ′) = 𝜋 ′(𝒵𝑡 ′) for all 𝑡 ′ ≥ 𝑡},
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i.e. the first time the coupling hits the diagonal in the space𝛬×𝛬 and never leaves it, an event referred

to as coalescence. The key observation about 𝒯 is the following.

Lemma 1.5.4. If 𝒯 is the coalescence time of a coupling of the chains starting in 𝑖 and 𝑖 ′, then

1
2 ∑𝑗∈𝛬

|𝑝 𝑡𝑖 ,𝑗 − 𝑝 𝑡𝑖 ′,𝑗 | ≤ 𝚸 [𝒯 > 𝑡]. (1.13)

Proof. Because∑𝑗∈𝛬 |𝑝 𝑡𝑖 ,𝑗 − 𝑝 𝑡𝑖 ′,𝑗 | = 2 sup𝑆⊆𝛤 ∑𝑗∈𝑆 𝑝 𝑡𝑖 ,𝑗 − 𝑝 𝑡𝑖 ′,𝑗 and 𝚸 [𝜋(𝒵𝑡 ) ≠ 𝜋 ′(𝒵𝑡 )] ≤ 𝚸 [𝒯 >
𝑡], it suffices to show that ∑𝑗∈𝑆 𝑝 𝑡𝑖 ,𝑗 − 𝑝 𝑡𝑖 ′,𝑗 ≤ 𝚸 [𝜋(𝒵𝑡 ) ≠ 𝜋 ′(𝒵𝑡 )] for an arbitrary subset 𝑆 of 𝛬.

But because 𝒵 is a coupling of the chains starting in 𝑖 and 𝑖 ′,

∑
𝑗∈𝑆

𝑝 𝑡𝑖 ,𝑗 − 𝑝 𝑡𝑖 ′,𝑗 = 𝚬[𝟏𝑆 (𝜋(𝒵𝑡 ))] − 𝚬[𝟏𝑆 (𝜋 ′(𝒵𝑡 ))]

= 𝚬[𝟏{𝜋(𝒵𝑡 )≠𝜋 ′(𝒵𝑡 )}(𝟏𝑆 (𝜋(𝒵𝑡 )) − 𝟏𝑆 (𝜋 ′(𝒵𝑡 )))]

≤ 𝚬[𝟏{𝜋(𝒵𝑡 )≠𝜋 ′(𝒵𝑡 )}].

This concludes the proof.

Corollary 1.5.5. Suppose that for any pair (𝑖 , 𝑖 ′) ∈ 𝛬×𝛬, there exists a coupling of the chains starting
in 𝑖 and 𝑖 ′ such that it coalescence time satisfies lim𝑡→∞ 𝚸 [𝒯 > 𝑡] = 0, then there exists a state 𝜆+ such
that

lim𝑡→∞∑
𝑗∈𝛬

𝑝 𝑡𝑖 ,𝑗𝑓𝑗 = ∑
𝑗 ′∈𝛬

𝑓𝑗 ′𝜆+𝑗 ′ (1.14)

for all 𝑖 ∈ 𝛬 and all choices of (𝑓𝑗 )𝑗∈𝛬.

Proof. By a standard compactness argument of the Bogolyubov–Krylov type (see e.g. Section 2.5.1

in [KS12]), there exists a state (𝜆+𝑗 )𝑗∈𝜆 such that ∑𝑖∈𝛬 𝜆+𝑖 𝑝𝑖 ,𝑗 = 𝜆+𝑗 for all 𝑗 ∈ 𝛬. Hence, sum-

ming (1.13) over 𝑖 ′ against 𝜆+𝑖 ′ and using the convergence of 𝚸 [𝒯 > 𝑡] gives the desired conclu-

sion.

Thus, we will be done with the proof of the proposition if, for an arbitrary pair (𝑖 , 𝑖 ′), we are able

to construct a coupling 𝒵 of the chains starting in 𝑖 and 𝑖 ′ in such a way that it sticks to the diagonal

soon enough, often enough. This is where we use our assumptions. The precise construction of 𝒵
involves a fair amount of notation but can be, up to a timing technicality, summarized as follows:
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Step 1. Launch a copy of the process starting at 𝑖 as the first component and a copy of the process

starting at 𝑖 ′ as the second component, independently of one another;

Step 2. Wait until the independent components land simultaneously in 𝛣 (i.e. until the coupling

hits the set 𝛣 × 𝛣 in the product space);

Step 3. Correlate the two components in order to maximize the probability that they meet (i.e. that

the coupling hits the diagonal in the product space) at the next step;

Step 4. If they meet, let them be equal forever (i.e. let the coupling stick to the diagonal in the

product space); else, go back to 2.

Now, concretely, the process 𝒵 is constructed on a product of countably many identical spaces

(𝛺𝑟 ,ℱ𝑟 , 𝚸𝑟 ) ∶= (𝛺 ind,ℱind, 𝚸 ind) × (𝛺max,ℱmax, 𝚸max)

where (𝛺max,ℱmax, 𝚸max) denotes the product over pairs of the spaces in the following lemma,

which expresses an important relation between the notion of coupling and the total variation dis-

tance and is key to Step 3; see for example Section 1.2.4 in [KS12].

Lemma 1.5.6. For any pair (𝑗 , 𝑗 ′) ∈ 𝛬 × 𝛬, there exists a (𝛬 × 𝛬)-valued random variable ℛ𝑗 ,𝑗 ′ on

a probability space space (𝛺max
𝑗 ,𝑗 ′ ,ℱmax

𝑗 ,𝑗 ′ , 𝚸max
𝑗 ,𝑗 ′ ) such that

𝚸max
𝑗 ,𝑗 ′ [𝜋(ℛ𝑗 ,𝑗 ′) = 𝑘] = 𝑝𝑗 ,𝑘 ,

𝚸max
𝑗 ,𝑗 ′ [𝜋 ′(ℛ𝑗 ,𝑗 ′) = 𝑘] = 𝑝𝑗 ′,𝑘

for all 𝑘 ∈ 𝛬 and

𝚸max
𝑗 ,𝑗 ′ [𝜋(ℛ𝑗 ,𝑗 ′) ≠ 𝜋 ′(ℛ𝑗 ,𝑗 ′)] =

1
2 ∑𝑘∈𝛬

|𝑝𝑗 ,𝑘 − 𝑝𝑗 ′,𝑘|.

We denote (𝛸 𝑡
𝑖 ;𝑟 )𝑡∈𝚴 the process on (𝛺,ℱ, 𝚸 ) ∶= ∏𝑟 ∈𝚴(𝛺𝑟 ,ℱ𝑟 , 𝚸𝑟 ) which is a copy of the

chain starting at 𝑖 living on the appropriate space in the 𝑟 -th spot in the countable product, and
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similarly for other random variables. With this notation, we construct (𝒵𝑡 )𝑡∈𝚴 on (𝛺,ℱ, 𝚸 ) in-

ductively in 𝑟 according to the rules

𝒵𝑟 (𝑚+1)+𝑠 ∶=
⎧

⎨
⎩

(𝛸 𝑠
𝜋𝒵𝑟 (𝑚+1);𝑟 , 𝛸

𝑠
𝜋 ′𝒵𝑟 (𝑚+1);𝑟 ) if 1 ≤ 𝑠 ≤ 𝑚, or 𝑠 = 𝑚 + 1 and 𝒵𝑟 (𝑚+1)+𝑚 ∉ (𝛣 × 𝛣)

ℛ𝒵𝑟 (𝑚+1);𝑟 if 𝑠 = 𝑚 + 1 and 𝒵𝑟 (𝑚+1) ∈ (𝛣 × 𝛣)\ diag(𝛬),

(𝛸 𝑠
𝜋𝒵𝑟 (𝑚+1);𝑟 , 𝛸

𝑠
𝜋𝒵𝑟 (𝑚+1);𝑟 ) if 𝑠 = 𝑚 + 1 and 𝒵𝑟 (𝑚+1) ∈ (𝛣 × 𝛣) ∩ diag(𝛬).

Lemma 1.5.7. The coupling (𝒵𝑡 )𝑡∈𝚴 is such that there exist 𝐶 ∈ (0, ∞) and 𝛾 ∈ (0, 1) depending
on 𝑖 , 𝑖 ′ and P only such that

𝚸 [𝒯 > 𝑡] < 𝐶𝛾 𝑡

for all 𝑡 ∈ 𝚴 .

Proof. For 𝑟 ∈ 𝚴 ,

𝚸 [𝒵𝑟 (𝑚+1)+𝑚 ∈ 𝛣 × 𝛣|𝒵𝑟 (𝑚+1) ∉ diag(𝛬)] = (∑
𝑗∈𝛣

𝑝𝑚𝜋𝒵𝑟 (𝑚+1),𝑗 )( ∑
𝑗 ′∈𝛣

𝑝𝑚𝜋 ′𝒵𝑟 (𝑚+1),𝑗 ′). (1.15)

by independence, and

𝚸 [𝒵𝑟 (𝑚+1)+𝑚 ∈ 𝛣 × 𝛣|𝒵𝑟 (𝑚+1)𝑚 ∈ diag(𝛬)] = ∑
𝑗∈𝛣

𝑝𝑚𝜋𝒵𝑟 (𝑚+1),𝑗 . (1.16)

Both the right-hand side of (1.15) and the right-hand side of (1.16) can be bounded away from 0,

say by a small number 𝛾1 ∈ (0, 1), thanks to Assumption (a). On the other hand,

𝚸 [𝒵(𝑟 +1)(𝑚+1) ∈ diag(𝛬)|𝒵𝑟 (𝑚+1)+𝑚 ∈ 𝛣 × 𝛣] ≥ min
𝑗 ,𝑗 ′∈𝛣

𝚸max
𝑗 ,𝑗 ′ [ℛ𝑗 ,𝑗 ′ ∈ diag(𝛬)],

but Lemma 1.5.6 gives

𝚸max
𝑗 ,𝑗 ′ [ℛ𝑗 ,𝑗 ′ ∈ diag(𝛬)] ≥ 1

2 min{𝑝𝑗 ,𝑘0 , 𝑝𝑗 ′,𝑘0}.

The right-hand side can be bounded away from 0 by a small number 𝛾2 which is independent of 𝑗
and 𝑗 ′ in 𝛣 , thanks to Assumption (b). Hence, by induction,

𝚸 [𝒵(𝑟 +1)(𝑚+1) ∉ diag(𝛬)] ≤ (1 − 𝛾1𝛾2)𝑟 +1.

Therefore,

𝚸 [𝒯 > 𝑡] ≤ 𝚸 [𝒯 > ⌊ 𝑡
𝑚+1⌋(𝑚 + 1)] ≤ 𝚸 [𝛧 ⌊ 𝑡

𝑚+1 ⌋(𝑚+1) ∉ diag(𝛬)] ≤ (1 − 𝛾1𝛾2)⌊
𝑡

𝑚+1 ⌋

and the proof is complete.
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Extracting the key steps

In both proofs, the hypotheses on the entries of the stochastic matrix and its powers had the follow-

ing key consequences:

(A) For arbitrary large sets of initial conditions, there is a uniform lower bound for transitions

to 𝛣 in some common time step;

(B) There is a nontrivial measure bounding from below all transitions from 𝛣 in some common

time step.

Back to the context of stochastic differential equations of the form

d𝛸𝑡 = 𝑐(𝛸𝑡 ) d𝑡 + 𝑄 d𝑌𝑡 ,

a small ball around a point �̂� could play a role similar to that of𝛣 provided that the two controllability

conditions below are satisfied. To formulate them, let us set

𝑆𝑡 ∶ 𝐑𝛭 × 𝛦 → 𝐑𝛭

(𝑥, 𝜂) ↦ 𝑥(𝑡)

to be the map which sends an initial condition 𝑥 ∈ 𝐑𝛭 and a control 𝜂 in a space 𝛦 of functions

from [0, 𝑡 ] to𝐑𝑑 to the solution at time 𝑡 to

{
�̇�(𝑠) = 𝑐(𝑥(𝑠)) + 𝑄𝜂(𝑠),

𝑥(0) = 0.

With this notation, the controllability conditions are:

The system is approximately controllable to �̂� : for any number 𝜖 > 0 and any radius 𝑅 > 0, we

can find a time 𝛵 > 0 such that for any initial point 𝑥 ∈ 𝐑𝑑 with ‖𝑥‖ ≤ 𝑅, there exists a

control 𝜁 ∈ 𝐶([0, 𝛵 ];𝐑𝑛) verifying

‖𝑆𝛵 (𝑥, 𝜁 ) − �̂�‖ < 𝜖.
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The system is solidly controllable from �̂� : there is a number 𝜖0 > 0, a time 𝛵0 > 0, a compact

set 𝒦 in 𝐶([0, 𝛵0];𝐑𝑛) and a non-degenerate ball 𝐺 in 𝐑𝑛 such that, for any continuous

function 𝛷 ∶ 𝒦 →𝐑𝑑 satisfying the relation

sup
𝜂∈𝒦

‖𝛷 (𝜂) − 𝑆𝛵0 (�̂�, 𝜂)‖ ≤ 𝜖0 ,

we have 𝐺 ⊂ 𝛷 (𝒦).

Indeed, there is hope that approximate controllability is sufficient to guarantee (A) if enough

controls close to 𝜁 are probable enough according to the law ℓ of the noise over the interval [0, 𝛵 ].
We emphasize that the existence of a function 𝑉 as in Harris’ theorem is key to making use of this

condition with dependence in 𝑅 in a noncompact space. Such functions appear in Chapters 2, 3

and 4 and are called Lyapunov functions.

To see why solid controllability is related to (B), the first step is to note that transition function

in time 𝑡 is the pushforward of ℓ through the map𝑆𝑡 (𝑥, ⋅ ). Hence, if the Jacobian𝐷𝑆𝑡 (𝑥, ⋅ ) has full

rank and behaves nicely in 𝑥 near �̂�, then it is reasonable to expect that the implicit function theorem

and a change of variables can be used to obtain a lower bound on 𝛲𝑡 (𝑥, ⋅ ) that is independent of 𝑥
close enough to �̂�. Therefore, in view of Sard’s theorem, it makes sense that a condition saying that

maps well approximating 𝑆𝛵0 (�̂�, ⋅ ) cover a ball would guarantee (B) for the time 𝛵0 .

Both of these heuristic arguments of course need some assumptions on ℓ to be turned into rig-

orous proofs. The notion of decomposability of ℓ used by Shirikyan in [Shi07, Shi17] is suitable in

many situations, including — up to a minor modification — that of Chapter 3, but does not directly

apply to Poisson noises considered in Chapter 4.
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The large-time and vanishing-noise limits

for entropy production in nondegenerate

diffusions
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Abstract We investigate the behaviour of a family of entropy production functionals as-

sociated to stochastic differential equations of the form d𝛸𝑠 = −∇𝑉 (𝛸𝑠) d𝑠 +
𝑏(𝛸𝑠) d𝑠 + √2𝜖 d𝑊𝑠 , where 𝑏 is a globally Lipschitz nonconservative vector field

keeping the system out of equilibrium, with emphasis on the large-time limit and

then the vanishing-noise limit. Different members of the family correspond to

different choices of boundary terms. We use techniques from the theory of semi-

groups and from semiclassical analysis to reduce the description of the asymptotic

behaviour of the functional to the study of the leading eigenvalue of a quadratic

approximation of a deformation of the infinitesimal generator near critical points

of 𝑉 . Our analysis yields a law of large numbers and a local large deviation princi-

ple which does not depend on the choice of boundary terms and which exhibits

a Gallavotti–Cohen symmetry.
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2.1 Introduction

The study of reversibility of diffusion processes was pioneered by A.N. Kolmogorov in [Kol37], with

one of its first basic results being that a diffusion

d𝛸𝑠 = 𝑐(𝛸𝑠) d𝑠 + 𝜎 d𝑊𝑠 (2.1)

on 𝐑𝛮 with constant diffusion matrix 𝜎 > 0 and initial condition 𝛸0 ∼ 𝜆 is reversible if and only

if there exists a function 𝑈 such that 𝑐 = −𝜎 𝜎 T∇𝑈 and 𝜆 is the unique probability measure whose

density is proportional to exp(−1
2𝑈 ). In all other cases, the time reversal of the original diffusion is

a Markov process which is different from the original one.

The question whether the reversal of a diffusion is itself a diffusion was explored and under-

stood in the 1980s, most notably by B. D. O. Anderson [And82] and by E. Pardoux and U. Hauss-

mann [HP86]. When it is the case, it is natural to ask how distinguishable the two diffusions are:

this more quantitative question — and its connection with thermodynamics — is the subject of the

present paper. It has a long history in both the physics and mathematics literature, but we will only

give references to the mathematically rigorous works on the particular aspects we are interested in.

Both the original process observed during the interval [0, 𝑡 ] and its time reversal give rise to prob-

ability measures on a space of continuous functions; let us call them respectively 𝒫𝑡 and 𝒫𝑡 ∘ 𝛩−1
𝑡 .

Using statistical tools to distinguish between these two measures is called hypothesis testing of the ar-

row of time in [JOPS12, CJPS20]. To explore the basic questions in the realm of hypothesis testing,

the log-likelihood ratio

𝑆LLR
𝑡 ∶= log d𝒫𝑡

d(𝒫𝑡 ∘ 𝛩−1
𝑡 ) (2.2)

and its moment-generating function are of great significance;𝑆LLR
𝑡 is sometimes called the canonical

entropy production functional.

In dimension 2 or 3, the diffusion (2.1) — called an overdamped Langevin equation — is nat-

urally interpreted as a small-inertia approximation of the dynamics of a single particle in the force

field 𝑐 , perturbed by a thermal noise — the matrix 𝜎 𝜎 T is related to temperature through an Einstein-

type relation. Hence, a thermodynamic notion of entropy production is natural: with 𝑏 the part
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of 𝑐 which is nonconservative, the integral

𝑆W
𝑡 ∶= 2

ˆ 𝑡

0
⟨(𝜎 𝜎 T)−1𝑏(𝛸𝑠), ∘ d𝛸𝑠⟩ (2.3)

is the work done by the nonconservative force, appropriately rescaled by the temperature [Kur98,

LS99]. When considering several particles, 𝜎 𝜎 T may have different blocks for different particles,

each related to a (possibly different) temperature, and the above integral can be split into a sum of

the corresponding contributions [LS99, MNV03].

One expects 𝑆LLR
𝑡 and 𝑆W

𝑡 to be quantities of order 𝑡 and only differ by a additive terms that de-

pend on the initial and final conditions of the paths. In the present article, we consider an abstract

entropy production functional 𝒮𝑡 corresponding to any sufficiently well-behaved modification of

these so-called boundary terms and study its behaviour as 𝑡 → ∞ and then in the limit as 𝜎 vanishes.

The way in which we take 𝜎 to 0 leaves out some geometric considerations: we consider 𝜎 𝜖 = √2𝜖𝟏
and take the scalar parameter 𝜖 to 0. Considering the more general case 𝜎 𝜖 = √𝜖𝜎 1 for some fixed

positive-definite matrix 𝜎 1 has been sacrificed for readability and ease of interpretation of the formu-

las: one can perform a suitable change of variables and carry on with a similar analysis, but one must

then be careful with the physical interpretation. Indeed, from the physical point of view, the case

we look at here corresponds to situations where the lack of equilibrium comes from a nonconserva-

tive driving force and is conceptually different from situations where the lack of equilibrium comes

from an imbalance between the sources of thermal fluctuations.

The asymptotic behaviour of entropy functionals as 𝑡 → ∞ at fixed 𝜖 > 0 was studied by

L. Bertini and G. Di Gesù in [BDG15] and by F.Y. Wang, J. Xiong and L. Xu in [WXX16] under

more restrictive technical conditions. For a class of degenerate linear diffusions, V. Jakšić, C.-A. Pil-

let and A. Shirikyan have performed a very detailed analysis of the limit 𝑡 → ∞ [JPS17]. In [BDG15],

the authors also tackled the limit 𝜖 → 0 at fixed 𝑡 > 0 by means of Freidlin–Wentzell theory and then

the limit as 𝑡 → ∞ using subadditivity and results on Γ -convergence; also see [RBT00] and [Kur07].

As already discussed by some of these authors, taking 𝑡 → ∞ first and then 𝜖 → 0 is physically

more natural and was left open. This order is the one taken here, revealing a different picture than

in [BDG15].

In Section 2.2, we set our assumptions, discuss the basic theory surrounding the time reversal of
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the diffusion and rigorously relate (2.2) to (2.3) by boundary terms. In Section 2.3, we introduce

a family of entropic functionals 𝒮𝜖
𝑡 depending on the choice of boundary terms. We then give a

representation for the moment-generating function 𝜒 𝜖𝑡 (𝛼) involving the chosen boundary term and

the compact and irreducible semigroup generated by the deformation

𝛬𝜖,𝛼 = 𝜖Δ + ⟨𝑐 − 2𝛼𝑏 , ∇⟩ − 𝛼(1−𝛼)
𝜖 |𝑏 |2 + 𝛼

𝜖 ⟨𝑏 , 𝑐 − 𝑏⟩ − 𝛼 div 𝑏

of the generator associated to (2.1). Relevant spectral properties of 𝛬𝛼,𝜖 , including domain techni-

calities, a Perron–Frobenius-type result for its spectral bound spb(𝛬𝛼,𝜖) and a result of convergence

in the large-time limit for the generated semigroup, are given in Appendix 2.A.

In Section 2.4, we study the asymptotics of the moment-generating function as 𝑡 → ∞ for

fixed 𝜖 > 0: we show that

lim𝑡→∞
1
𝑡 log 𝜒 𝜖𝑡 (𝛼) = spb(𝛬𝛼,𝜖)

for a set of 𝛼 which depends on the behaviour of the boundary terms at infinity. Our set of as-

sumptions is more general than that of [BDG15]: we most notably allow 𝑏 to be unbounded; see

Assumptions (L0), (L1) and (RB).

If the behaviour at infinity of the boundary terms is suitable — cf. Assumption (IP) —, we prove

a local large deviation principle (ldp):

lim𝑡→∞
1
𝑡 log𝚸 {𝑡−1𝒮𝜖

𝑡 ∈ 𝐺} = − inf
𝜍∈𝐺

𝑒 𝜖∗(𝜍)

for all open sets𝐺 close enough to the expectation, where the rate function 𝑒 𝜖∗ is the Legendre trans-

form in the variable 𝛼 of spb(𝛬𝛼,𝜖). At this level of generality, the local nature of the ldp is not

merely technical: while we have not focused on enlarging the interval of validity of the principle as

much as technically possible, it is known that different choices of boundary terms may give rise to

different behaviour of the rate functions far away from the mean; see the pioneering work [vZC03]

as well as the mathematical account [JPS17], where many other references are given.

In Section 2.5, we characterise the vanishing of the mean entropy production per unit time and

give detailed information on the rate function 𝑒∗𝜖 in the case where the diffusion is linear. In Sec-

tion 2.6, we use the linear case and a result in semiclassical analysis proved in Section 2.7 to describe
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the asymptotic behaviour of the rate function 𝑒 𝜖∗ as 𝜖 → 0 in the general case. Many properties of

the limiting rate function can be deduced from the behaviour of the deterministic dynamics near

the local minima of 𝑉 . This analysis requires extra conditions on the behaviour of the vector field

near the critical points of 𝑉 ; see Assumption (ND).

2.2 Setup, definitions and preliminary results

We study a stochastic differential equations (sde) in 𝐑𝛮 of the form

d𝛸𝑠 = −∇𝑉 (𝛸𝑠) d𝑠 + 𝑏(𝛸𝑠) d𝑠 + √2𝜖 d𝑊𝑠 ,

where 𝑉 is a coercive Morse function and 𝑏 is a nonconservative vector field vanishing at the criti-

cal points of 𝑉 , and the log-likelihood ratio (2.2) between the corresponding path measure and its

time reversal. We will explicitly keep track of the dependence on the initial condition and on 𝜖 as

superscripts for relevant quantities.

Remark 2.2.1. There is some freedom in decomposing a deterministic drift in the form−∇𝑉 +𝑏 . Be-
cause this drift may already be provided in a given such decomposition coming from a physical context,

we facilitate the verification of our hypotheses by avoiding making the assumption that this decomposi-

tion is in any sense canonical.

2.2.1 Assumptions on the equation and immediate consequences

Throughout the paper,𝛮 ≥ 2 is a fixed natural number and the𝛮 -dimensional euclidean space𝐑𝛮

is equipped with an inner product ⟨ ⋅ , ⋅ ⟩. Let 𝑉 ∶ 𝐑𝛮 → 𝐑 be a fixed function of class 𝐶 3 and

𝑏 ∶ 𝐑𝛮 → 𝐑𝛮 a fixed globally Lipschitz vector field of class 𝐶 2. We introduce the following

assumptions.

Assumption (L0). There exists a positive-definite matrix𝛨0 and a constant𝛫0 such that

⟨∇𝑉 (𝑥),𝛨0𝑥⟩ ≥ |𝑥|2 − 𝛫0

for all 𝑥 ∈ 𝐑𝛮 and the function 𝑥 ↦ |∇𝑉 (𝑥)|2 −𝑎‖𝐷 2𝑉 (𝑥)‖ is bounded below for all values

of 𝑎 ∈ 𝐑.
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Assumption (L1). There exists a positive-definite matrix𝛨𝑏 and a constant𝛫𝑏 such that

⟨∇𝑉 (𝑥) − 𝑏(𝑥),𝛨𝑏𝑥⟩ ≥ |𝑥|2 − 𝛫𝑏

for all 𝑥 ∈ 𝐑𝛮 .

Assumption (RB). There exist constants ℎ𝑏 ∈ (0, ∞) and 𝑘𝑏 ∈ [0, 12 ) such that

⟨𝑏 (𝑥), ∇𝑉 (𝑥)⟩ ≤ 𝑘𝑏 |∇𝑉 (𝑥)|2 and |𝑏 (𝑥)|2 ≤ ℎ𝑏 |∇𝑉 (𝑥)|2

for all 𝑥 ∈ 𝐑𝛮 .

Assumption (ND). The critical points of 𝑉 form a finite set {𝑥𝑗 }𝑚𝑗=1 and

det𝐷 2𝑉 |𝑥𝑗 ≠ 0

for each 𝑗 = 1, … ,𝑚.

Assumption (L0) yields a Lyapunov structure for the ordinary differential equation

�̇� = −∇𝑉 (𝑌 )

and Assumption (L1) plays the same role for

�̇� = −∇𝑉 (𝛸) + 𝑏(𝛸).

The relative bounds in Assumption (RB) guarantee that these two deterministic dynamics have the

same fixed points, which form a finite set {𝑥𝑗 }𝑗∈𝚴 and are all nondegenerate by (ND). The regularity

assumptions on 𝑉 and 𝑏 are made for simplicity of technical estimates and can be relaxed if necessary.

For example, in the case of 𝑉 , class 𝐶 2 with 𝑥 ↦ 𝐷 2𝑉 |𝑥 locally Hölder continuous would only

require minor changes to the proofs in Appendix 2.7.

The Lyapunov structure for the ordinary differential equations guarantees the existence and

uniqueness of the solution to the sdes

{
d𝑌 𝑦,𝜖𝑠 = −∇𝑉 (𝑌 𝑦,𝜖𝑠 ) d𝑠 + √2𝜖 d𝑊𝑠 ,
𝑌 𝑦,𝜖0 = 𝑦,

(2.4)
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and

{
d𝛸 𝑥,𝜖

𝑠 = −∇𝑉 (𝛸 𝑥,𝜖
𝑠 ) d𝑠 + 𝑏(𝛸 𝑥,𝜖

𝑠 ) d𝑠 + √2𝜖 d𝑊𝑠 ,
𝛸 𝑥,𝜖
0 = 𝑥.

(2.5)

To be more precise, the following consequence of (L1) plays a key role in the proof of existence and

uniqueness in [Kha11, §3.3]. We will also use it throughout the paper.

Lemma 2.2.2. Suppose that Assumption (L1). Then,

𝚸 { sup
𝑠∈[0,𝑡 ]

|𝛸 𝑥,𝜖
𝑠 | ≥ 𝑅} ≤ ⟨𝑥,𝛨𝑏𝑥⟩ + 2𝛫𝑏 + 2𝜖 tr𝛨𝑏

𝑅2 inf sp𝛨𝑏
e𝑡

for all 𝑡 ≥ 0, 𝑥 ∈ 𝐑𝛮 and𝑅 > 0.

Proof. Using (L1), follow the first steps of the proof of Theorem 3.5 in [Kha11, Ch. 3] with the

nonnegative function 𝑥 ↦ ⟨𝑥,𝛨𝑏𝑥⟩ + 2𝛫𝑏 + 2𝜖 tr𝛨𝑏 and 𝑐 = 1.

The study of (2.5) is intimately related to partial differential equations involving

𝛬𝜖,0 ∶= 𝜖Δ + ⟨−∇𝑉 + 𝑏 , ∇⟩

and its adjoint. We refer to [Kha11, §3.6] for the general basic relations and to Appendix 2.A for

more precise technical properties of 𝛬𝜖,0 in this specific case.

Finally, let us mention an estimate which — together with the nondegeneracy of the diffusion

matrix — is useful in showing that that there exists a unique stationary measure 𝜆𝜖inv for (2.5); 𝜇𝜖0
for (2.4).

Lemma 2.2.3. Let𝛨𝑏 be as in Assumption (L1). Then, for all 𝜖0 > 0, there exist positive constants 𝑐
and 𝐶 such that

inf sp𝛨𝑏 𝚬|𝛸 𝑥,𝜖
𝑡 |2 ≤ 𝚬 ⟨𝛸 𝑥,𝜖

𝑡 , 𝛨𝑏𝛸 𝑥,𝜖
𝑡 ⟩ ≤ e−𝑐𝑡 ⟨𝑥,𝛨𝑏𝑥⟩ + 𝐶 (2.6)

for all 𝜖 ∈ (0, 𝜖0) and 𝑡 ≥ 0 and almost all 𝑥 ∈ 𝐑𝛮 .

Proof. The first inequality in (2.6) is immediate from the fact that 𝛨𝑏 is positive definite. Let 𝑓 ∶
𝑥 ↦ ⟨𝑥,𝛨𝑏𝑥⟩. By Kolmogorov’s backwards equation — see e.g. Lemma 3.3 in [Kha11, Ch. 3] —,
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𝜕𝑡𝚬𝑓𝑅(𝛸 𝑥,𝜖
𝑡 ) = 𝛬𝜖,0𝚬𝑓𝑅(𝛸 𝑥,𝜖

𝑡 ) for any approximation 𝑓𝑅 ∈ 𝐶 2
c (𝐑𝛮 )of 𝑓 . We show in Appendix 2.A

that (𝛬𝜖,0 , 𝑊 2,2(𝐑𝛮 , d𝜇𝜖0)) generates a strongly continuous semigroup of bounded linear operators

on L2(𝐑𝛮 , d𝜇𝜖0). Hence, using basic semigroup properties — see e.g. Proposition 1.6.ii and Theo-

rem 1.7 in [AGG+86, Ch. A-I] —, we find

𝜕𝑡𝚬𝑓 (𝛸 𝑥,𝜖
𝑡 ) = 𝚬[𝜖Δ𝑓 (𝛸 𝑥,𝜖

𝑡 ) + ⟨−∇𝑉 (𝛸 𝑥,𝜖
𝑡 ) + 𝑏(𝛸 𝑥,𝜖

𝑡 ), ∇𝑓 (𝛸 𝑥,𝜖
𝑡 )⟩ ]

for almost all 𝑥 by an approximation argument. Then, by (L1),

𝜕𝑡𝚬 ⟨𝛸 𝑥
𝑡 , 𝛨𝑏𝛸 𝑥

𝑡 ⟩ ≤ 2𝜖 tr𝛨𝑏 − 2 ⟨𝛸 𝑥
𝑡 , 𝛸 𝑥

𝑡 ⟩ + 2𝛫𝑏

≤ 2𝜖 tr𝛨𝑏 + 2𝛫𝑏 − 2‖𝛨𝑏 ‖−1𝚬 ⟨𝛸 𝑥
𝑡 , 𝛨𝑏𝛸 𝑥

𝑡 ⟩

for almost all 𝑥 and the second inequality in (2.6) follows from Grönwall’s lemma.

Both 𝜆𝜖inv and 𝜇𝜖0 possess positive continuous densities with respect to the Lebesgue measure

on 𝐑𝛮 , denoted “vol” hereafter. Whenever we write “almost everywhere” or “almost all” without

specifying the measure, it is with respect to any of those equivalent measures. While we do not

have a general explicit formula for the density of 𝜆𝜖inv — decay and regularity are discussed in Ap-

pendix 2.A —, we have

𝜇𝜖0(𝛦) ∶=
´
𝛦 e−𝜖

−1𝑉 (𝑥) d𝑥´
𝐑𝛮 e−𝜖−1𝑉 (𝑦) d𝑦 (2.7)

for all Borel subsets 𝛦 of𝐑𝛮 .

2.2.2 Time reversal and the canonical entropy production functional

Throughout the paper, we use the shorthand 𝒞𝑡 for the space 𝐶([0, 𝑡 ];𝐑𝛮 ) of continuous paths

in 𝐑𝛮 over the time interval [0, 𝑡 ]. It is always equipped with the supremum norm ‖ ⋅ ‖∞; the

corresponding Borel 𝜎 -algebra is denoted ℬ𝑡 .

We denote the distribution of (𝛸 𝑥,𝜖
𝑠 )0≤𝑠≤𝑡 in (2.5) by 𝒫𝑥,𝜖

𝑡 . This is a measure on (𝒞𝑡 ,ℬ𝑡 ). With

a slight abuse of notation, we define 𝒫𝜆,𝜖
𝑡 as the analogous object but with random initial condi-

tion 𝛸𝜆,𝜖
0 ∼ 𝜆 (independent of 𝑊 ) for a probability measure 𝜆 on 𝐑𝛮 . In other words, 𝒫𝜆,𝜖

𝑡 is the
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unique Borel measure on 𝒞𝑡 such that
ˆ

𝒞𝑡

𝛨(𝛾 )𝒫𝜆,𝜖
𝑡 (d𝛾 ) =

ˆ
𝐑𝛮

(
ˆ

𝒞𝑡

𝛨(𝛾 )𝒫𝑥,𝜖
𝑡 (d𝛾 )) 𝜆(d𝑥) (2.8)

for any nonnegative measurable function𝛨 ∶ 𝒞𝑡 →𝐑.

The measures 𝒬𝑥,𝜖
𝑡 and 𝒬𝜆,𝜖

𝑡 are defined analagously using (2.4) i.e. the case 𝑏 ≡ 0. We have

mentioned in the Introduction that 𝒬𝜆,𝜖
𝑡 is invariant under time reversal if and only if 𝜆 possesses

a density proportional to exp(−𝜖−1𝑉 ). This is made more precise as follows. For 𝑠 ∈ [0, 𝑡 ], let 𝜋𝑠 ∶
𝒞𝑡 →𝐑𝛮 be evaluation map 𝛾 ↦ 𝛾 (𝑠). The time reversal is the unique involution 𝛩𝑡 ∶ 𝒞𝑡 → 𝒞𝑡

determined by the relation 𝜋𝑠 ∘ 𝛩𝑡 = 𝜋𝑡−𝑠 .

Lemma 2.2.4. Under Assumption (L0), if 𝜆 and the Lebesgue measure are mutually absolutely con-

tinuous, then 𝒬𝜆,𝜖
𝑡 and 𝒬𝜆,𝜖

𝑡 ∘ 𝛩𝑡 are mutually absolutely continuous and

log d𝒬𝜆,𝜖
𝑡

d(𝒬𝜆,𝜖
𝑡 ∘ 𝛩𝑡 )

(𝛾 ) = log d𝜆
d𝜇𝜖0

(𝛾 (0)) − log d𝜆
d𝜇𝜖0

(𝛾 (𝑡))

for 𝒬𝜆,𝜖
𝑡 -almost all 𝛾 ∈ 𝒞𝑡 .

Proof. Let 𝛤 be a measurable subset of 𝒞𝑡 . Using (2.8),

𝒬𝜆,𝜖
𝑡 (𝛤 ) =

ˆ
𝐑𝛮

ˆ
𝒞𝑡

𝟏𝛤 (𝛾 )𝟏𝜋−10 {𝑥}(𝛾 )𝒬𝑥,𝜖
𝑡 (d𝛾 )

d𝜆
d𝜇𝜖0

(𝑥)𝜇𝜖0(d𝑥)

=
ˆ
𝐑𝛮

ˆ
𝒞𝑡

𝟏𝛤 (𝛾 )
d𝜆
d𝜇𝜖0

(𝜋0𝛾 )𝟏𝜋−10 {𝑥}(𝛾 )𝒬𝑥,𝜖
𝑡 (d𝛾 ) 𝜇𝜖0(d𝑥)

=
ˆ

𝒞𝑡

𝟏𝛤 (𝛾 )
d𝜆
d𝜇𝜖0

(𝜋0𝛾 )𝒬𝜇0 ,𝜖𝑡 (d𝛾 ),

that is

𝒬𝜆,𝜖
𝑡 (d𝛾 ) = d𝜆

d𝜇𝜖0
(𝜋0𝛾 )𝒬𝜇𝜖0 ,𝜖𝑡 (d𝛾 ).

Now, by the celebrated result of Kolmogorov [Kol37], 𝒬𝜇𝜖0 ,𝜖𝑡 = 𝒬𝜇𝜖0 ,𝜖𝑡 ∘ 𝛩−1
𝑡 so that

d𝒬𝜆,𝜖
𝑡

d(𝒬𝜆,𝜖
𝑡 ∘ 𝛩𝑡 )

= d𝒬𝜆,𝜖
𝑡

d𝒬𝜇𝜖0 ,𝜖𝑡
× (d𝒬𝜇𝜖0 ,𝜖𝑡

d𝒬𝜆,𝜖
𝑡

∘ 𝛩𝑡)

and we conclude the proof using the identity 𝜋0(𝛩𝑡 𝛾 ) = 𝜋𝑡 𝛾 .
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The behaviour of 𝒫𝜆,𝜖
𝑡 under the time reversal 𝛩𝑡 is in general more subtle and, consistently

with the intuition from thermodynamics, the dependence of the Radon–Nikodym derivative is not

limited to the initial and final conditions of the path. The proof we give of the proposition below

uses comparison with 𝒬𝜆,𝜖
𝑡 , as in e.g. [JPS17]. Another possible route is to use the results of [HP86]

on the reversal of (𝛸𝜆,𝜖
𝑠 )𝑠≥0 .

Proposition 2.2.5. Under Assumptions (L0) and (L1), if 𝜆 and the Lebesgue measure are mutually

absolutely continuous, then 𝒫𝜆,𝜖
𝑡 and 𝒫𝜆,𝜖

𝑡 ∘ 𝛩−1 are mutually absolutely continuous and

log d𝒫𝜆,𝜖
𝑡

d(𝒫𝜆,𝜖
𝑡 ∘ 𝛩−1

𝑡 )
(𝛾 ) = log d𝜆

d𝜇𝜖0
(𝛾 (0)) − log d𝜆

d𝜇𝜖0
(𝛾 (𝑡)) + 1

𝜖

ˆ
⟨𝑏(𝛾 ), ∘ d𝛾 ⟩ (2.9)

for 𝒫𝜆,𝜖
𝑡 -almost all 𝛾 ∈ 𝒞𝑡 , where 𝜇𝜖0 is defined by (2.7). Moreover,
ˆ

𝒞𝑡

( d𝒫𝜆,𝜖
𝑡

d(𝒫𝜆,𝜖
𝑡 ∘ 𝛩−1

𝑡 )
(𝛾 ))

𝛼
𝒫𝜆,𝜖

𝑡 (d𝛾 ) =
ˆ

𝒞𝑡

( d𝒫𝜆,𝜖
𝑡

d(𝒫𝜆,𝜖
𝑡 ∘ 𝛩−1

𝑡 )
(𝛾 ))

1−𝛼
𝒫𝜆,𝜖

𝑡 (d𝛾 ) (2.10)

for all 𝛼 ∈ 𝐑 for which both sides are finite. Both sides of (2.10) are log-convex in 𝛼.

Before we proceed with the proof, let us briefly clarify the meaning of the expression (2.9). On

the canonical probability space (𝒞𝑡 ,ℬ𝑡 ,𝒫𝜆,𝜖
𝑡 ), the random variable𝑊 = (𝑊𝑠)𝑠≥0 defined by

𝑊𝑠(𝛾 ) ∶=
1
√2𝜖

(𝛾 (𝑠) − 𝛾 (0) −
ˆ 𝑠

0
( − ∇𝑉 (𝛾 (𝑟 )) + 𝑏(𝛾 (𝑟 ))) d𝑟 ) (2.11)

is a Brownian motion, the evaluation map 𝜋0 has distribution 𝜆 and is independent of 𝑊 , and the

canonical process (𝜋𝑠)𝑠≥0 is the unique solution to the sde (2.5) with initial condition 𝜆. Hence,

(𝜋𝑠)𝑠≥0 is a continuous semimartingale and we allow ourselves notational shortcuts such as
ˆ
⟨𝑏 (𝛾 ), ∘ d𝛾 ⟩ ∶= (

ˆ 𝑡

0
⟨𝑏 (𝜋𝑠), ∘ d𝜋𝑠⟩ )(𝛾 )

and ˆ
⟨𝑏 (𝛾 ), d𝑊 (𝛾 )⟩ ∶= (

ˆ 𝑡

0
⟨𝑏(𝜋𝑠), d𝑊𝑠⟩ )(𝛾 ),

where the right-hand sides are defined 𝒫𝜆,𝜖
𝑡 -almost surely according to the usual theory of, respec-

tively, Stratonovich and Itô stochastic integration with respect to continuous semimartingales [Pro05,

§II.4–II.7].



CHAPTER 2 43

Proof of Proposition 2.2.5. Throughout the proof, we omit keeping explicitly track of the depen-

dence on 𝜖 in the notation. We first reduce the general case to the technically easier case where

the nonconservative vector field has compact support. For the latter, we suppose that the reader

is familiar with Girsanov’s theorem and related criteria; see e.g. [Pro05, §III.8]

Once mutual absolute continuity is proved, the symmetry expressed in (2.10) is an immediate

consequence of the definition of the Radon–Nikodym derivative and the fact that 𝛩𝑡 is an involu-

tion. Log-convexity is a consequence of Hölder’s inequality.

Step 1: Reduction to the case where 𝑏 has compact support. Suppose that the proposition has

been proved in the case where 𝑏 has compact support. For 𝑅 ∈ 𝚴 , pick a globally Lipschitz

vector field 𝑏𝑅 satisfying |𝑏𝑅(𝑥)| ≤ |𝑏(𝑥)| for all |𝑥| ∈ 𝐑𝛮 , 𝑏𝑅(𝑥) = 𝑏(𝑥) whenever |𝑥| ≤
𝑅 − 1, and 𝑏𝑅(𝑥) = 0 whenever |𝑥| ≥ 𝑅.

Let 𝒫𝜆
𝑡 [𝑅] be the path measure associated to the sde with initial condition 𝜆 and drift 𝑏𝑅,

and let 𝛣𝑅 denote the cenetered open ball of radius 𝑅 in 𝒞𝑡 . Observe that 𝛣𝑅 is invariant

under 𝛩𝑡 and that

𝒫𝜆
𝑡 [𝑅](𝛤 ∩ 𝛣𝑅) = 𝒫𝜆

𝑡 (𝛤 ∩ 𝛣𝑅)

for all Borel sets 𝛤 ⊆ 𝒞𝑡 ; see e.g. the construction in [Kha11, §3.4]. Hence, by hypothe-

sis, (𝒫𝜆
𝑡 ∘ 𝛩−1

𝑡 )(𝛣𝑅 ∩ ⋅ ) is absolutely continuous with respect to 𝒫𝜆
𝑡 (𝛣𝑅 ∩ ⋅ ) and

𝐹𝑅(𝛾 ) ∶= 𝟏𝛣𝑅(𝛾 )
d𝜆
d𝜇0

(𝛾 (0))d𝜇0
d𝜆 (𝛾 (𝑡)) exp (1𝜖

ˆ
⟨𝑏𝑅(𝛾 ), ∘ d𝛾 ⟩ )

is a Radon–Nikodym derivative. Because,

lim
𝑅→∞

𝒫𝜆
𝑡 (𝛣𝑅) = 1

by Lemma 2.2.2, we can deduce that 𝒫𝜆
𝑡 ∘ 𝛩𝑡 is absolutely continuous with respect to 𝒫𝜆

𝑡 ,

with a Radon–Nikodym derivative

𝐹 (𝛾 ) ∶= lim
𝑅→∞

𝐹𝑅(𝛾 ).

The fact that 𝐹 (𝛾 ) is strictly positive and equals the right-hand side of (2.9) follows from basic

properties of the exponential, the absolute-continuity assumption and the fact that

lim
𝑅→∞

ˆ
⟨𝑏𝑅(𝛾 ), ∘ d𝛾 ⟩ =

ˆ
⟨𝑏 (𝛾 ), ∘ d𝛾 ⟩
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for all 𝛾 ∈ 𝒞𝑡 (given 𝛾 , take𝑅 > ‖𝛾 ‖∞).

Step 2: Proof in the case where 𝑏 has compact support.

Step 2a: Comparing 𝒫𝜆,𝜖
𝑡 and 𝒬𝜆,𝜖

𝑡 . Because 𝑏 is bounded, Novikov’s condition is satisfied

and the process (𝛧𝑠)𝑠∈[0,𝑡 ] defined by the Doléans-Dade exponential

𝛧𝑠(𝛾 ) ∶= exp ( 1
√2𝜖

ˆ 𝑠

0
⟨𝑏 (𝛾 ), d𝑊 (𝛾 )⟩ − 1

4𝜖

ˆ 𝑠

0
|𝑏(𝛸𝜆,𝜖

𝑟 (𝛾 ))|2 d𝑟 ) (2.12)

is a martingale. Hence, by Girsanov’s theorem, the process (𝑤𝑠)𝑠∈[0,𝑡 ] defined by

𝑤𝑠(𝛾 ) ∶= 𝑊𝑠(𝛾 ) −
1
√2𝜖

ˆ 𝑠

0
𝑏(𝛾 (𝑟 )) d𝑟 (2.13)

is a Brownian motion with respect to the measure d𝛲𝑡 = 𝛧𝑡 d𝒬𝜆,𝜖
𝑡 . Substituting (2.13)

into (2.4) and comparing with (2.5), we deduce that 𝛲𝑡 = 𝒫𝜆,𝜖
𝑡 , that is

d𝒫𝜆,𝜖
𝑡

d𝒬𝜆,𝜖
𝑡
(𝛾 ) = 𝛧𝑡 (𝛾 ) > 0.

Step 2b: Comparing 𝒫𝜆,𝜖
𝑡 and 𝒫𝜆,𝜖

𝑡 ∘ 𝛩−1
𝑡 . Combining Lemma 2.2.4 and Step 2a, we have

d𝒫𝜆,𝜖
𝑡

d𝒫𝜆,𝜖
𝑡 ∘ 𝛩−1

𝑡
(𝛾 ) = 𝛧𝑡 (𝛾 )

d𝜆
d𝜇𝜖0

(𝜋0𝛾 )
d𝜇𝜖0
d𝜆 (𝜋𝑡 𝛾 )

1
𝛧𝑡 (𝛩𝑡 𝛾 )

. (2.14)

Using the identity

𝑊𝑠(𝛩𝑡 𝛾 ) = −(𝑊𝑡−𝑠(𝛾 ) − 𝑊𝑡 (𝛾 )) +
2(𝜋𝑠𝛩𝑡 𝛾 − 𝜋𝑡 𝛾 )

√2𝜖
following from (2.11) in a sequence of approximations of 𝛧𝑡 (𝛩𝑡 𝛾 ) by discretisation

of (𝑏 ∘ 𝜋𝑠)𝑠∈[0,𝑡 ] using a random partition of [0, 𝑡 ] tending to the identity in the sense

of [Pro05, §II.5], we find
ˆ
⟨𝑏(𝛩𝑡 𝛾 ), d𝑊 (𝛩𝑡 𝛾 )⟩ =

ˆ
⟨𝑏 (𝛾 ), d𝑊 (𝛾 )⟩ − 2

√2𝜖

ˆ
⟨𝑏(𝛾 ), ∘ d𝛾 ⟩ .

Therefore,

log
𝛧𝑡 (𝛾 )
𝛧𝑡 (𝛩𝑡 𝛾 )

= 1
𝜖

ˆ
⟨𝑏(𝛾 ), ∘ d𝛾 ⟩

and taking the logarithm of (2.14) gives the proposed formula.
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The logarithm of the Radon–Nikodym derivative in Proposition 2.2.5 is called the canonical

entropy production functional in [JPS17]. We note the following immediate corollary of Propo-

sition 2.2.5, the definition (2.7) of 𝜇𝜖0 and well-known properties of Stratonovich integrals; see

e.g. [Pro05, §V.5].

Corollary 2.2.6. Under Assumption (L0) and (L1), if 𝜆 and the Lebesgue measure are mutually

absolutely continuous, then 𝒫𝜆,𝜖
𝑡 and 𝒫𝜆,𝜖

𝑡 ∘ 𝛩−1
𝑡 are mutually absolutely continuous and

log d𝒫𝜆,𝜖
𝑡

d(𝒫𝜆,𝜖
𝑡 ∘ 𝛩−1

𝑡 )
(𝛾 ) = log d𝜆

dvol(𝛾 (0)) − log d𝜆
dvol(𝛾 (𝑡)) +

1
𝜖

ˆ
⟨−∇𝑉 (𝛾 ) + 𝑏(𝛾 ), ∘ d𝛾 ⟩

for 𝒫𝜆,𝜖
𝑡 -almost all 𝛾 ∈ 𝒞𝑡 .

2.3 Generalised entropy production functionals

Motivated by the structure revealed in the previous section and by [Kur98, LS99, vZC03, MNV03,

JPS17], we introduce a family of entropy production functionals parametrised by the choice of

boundary terms. Throughout the remainder of the paper, the function 𝑔 ∶ 𝐑𝛮 → (0,∞) is contin-

uous and the initial condition 𝜆 is absolutely continuous with respect to the Lebesgue measure and

has finite variance.

2.3.1 Definition and the weak law of large numbers

Definition 2.3.1. The entropy production functional associated to the function 𝑔 is the function𝒮𝜖
𝑡

defined by

𝒮𝜖
𝑡 (𝛾 ) ∶= log 𝑔(𝛾 (0)) − log 𝑔(𝛾 (𝑡)) + 1

𝜖

ˆ
⟨𝑏(𝛾 ), ∘ d𝛾 ⟩ , (2.15)

considered as a random variable on 𝒞𝑡 with respect to the probability measure 𝒫𝜆,𝜖
𝑡 . For 𝛼 ∈ 𝐑, we

use

𝜒 𝜖𝑡 (𝛼) ∶=
ˆ

𝒞𝑡

e−𝛼𝒮𝜖
𝑡 d𝒫𝜆,𝜖

𝑡

for the mgf of 𝒮𝜖
𝑡 in 𝛼. We speak of a steady-state functional if the initial condition 𝜆 entering the

definition of 𝒫𝜆,𝜖
𝑡 equals the invariant measure 𝜆𝜖inv.
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Remark 2.3.2. The choice of−𝛼 in the exponent is common in the physics literature and is made here

to facilitate the identification of certain symmetries. Indeed, the symmetry noted in Proposition 2.2.5

can be used to deduce 𝜒 𝜖𝑡 (1 − 𝛼) = 𝜒 𝜖𝑡 (𝛼) in the case 𝑔 = d𝜆/ d𝜇𝜖0 . However, this symmetry at finite 𝑡
is not expected to hold for a generic choice of 𝑔 . This choice also has an incidence on our choice of sign for
the Legendre transform in Sections 2.4 to 2.6.

We are mainly interested in the large deviations of 𝒮𝜖
𝑡 as 𝑡 → ∞ and then 𝜖 → 0. To tackle this

problem, we will need additional assumptions on the behaviour of the boundary term 𝑔 at infinity.

Before we do so, let us state and prove a weak law of large numbers which holds under minimal

assumptions on the decay of the boundary terms.

Proposition 2.3.3. Suppose that Assumptions (L0) and (L1) are satisfied and let

𝔪𝜖 ∶=
ˆ
𝐑𝛮

(𝜖−1|𝑏 |2 − 𝜖−1 ⟨𝑏 , ∇𝑉 ⟩ ) d𝜆𝜖inv +
ˆ
𝐑𝛮

div 𝑏 d𝜆𝜖inv. (2.16)

Then, for all 𝛿 > 0,
lim𝑡→∞𝒫𝜆,𝜖

𝑡 {∣1𝑡 𝒮𝜖
𝑡 −𝔪𝜖∣ > 𝛿} = 0. (2.17)

Proof. The Stratonovich integral in the definition (2.15) of 𝑡−1𝒮𝜖
𝑡 can be decomposed as

1
𝑡

ˆ 𝑡

0
⟨𝑏 (𝛾 ), ∘ d𝛾 ⟩ = 1

𝑡

ˆ 𝑡

0
(|𝑏(𝜋𝑠𝛾 )|2 − ⟨𝑏(𝜋𝑠𝛾 ), ∇𝑉 (𝜋𝑠𝛾 )⟩ + 𝜖 div 𝑏(𝜋𝑠𝛾 )) d𝑠

+ √2𝜖
𝑡

ˆ 𝑡

0
⟨𝑏(𝛾 ), d𝑊 (𝛾 )⟩ .

The integral on the first line of the right-hand is admissible for an application of the law of large

numbers for continuous functions of𝛸 𝜖
𝑠 — see e.g. Theorem 4.2 in [Kha11, Ch. 4] —, which yields

lim𝑡→∞𝒫𝜆,𝜖
𝑡 {∣1𝑡

ˆ 𝑡

0
(|𝑏(𝜋𝑠𝛾 )|2 − ⟨𝑏(𝜋𝑠𝛾 ), ∇𝑉 (𝜋𝑠𝛾 )⟩ + 𝜖 div 𝑏(𝜋𝑠𝛾 )) d𝑠 −𝔪𝜖∣ > 1

5 𝛿} = 0.

The integral on the second line of the right-hand side is a martingale. For integer times, the hypothe-

ses of the law of large numbers for discrete-time martingales in [Fel66, §VII.8] are satisfied thanks to

the Itô isometry and Lemma 2.2.3. Hence,

lim𝑡→∞𝒫𝜆,𝜖
𝑡 {∣√2𝜖⌊𝑡 ⌋

ˆ ⌊𝑡 ⌋

0
⟨𝑏(𝛾 ), d𝑊 (𝛾 )⟩ ∣ > 1

5 𝛿} = 0.
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By Chebyshëv’s inequality and Itô’s isometry, we have

𝒫𝜆,𝜖
𝑡 {∣√2𝜖⌊𝑡 ⌋

ˆ 𝑡

⌊𝑡 ⌋
⟨𝑏 (𝛾 ), d𝑊 (𝛾 )⟩ ∣ > 1

5 𝛿} ≤
50𝜖
𝛿 2⌊𝑡 ⌋2

ˆ
𝒞𝑡

ˆ 𝑡

⌊𝑡 ⌋
|𝑏(𝜋𝑠𝛾 )|2 d𝑠 𝒫𝜆,𝜖

𝑡 (d𝛾 ),

with the double integral on the right-hand side being bounded uniformly in 𝑡 by Tonelli’s theorem,

Lemma 2.2.3 and the fact that 𝑏 is globally Lipschitz.

As for the boundary terms in the definition of 𝑡−1𝒮𝜖
𝑡 , we note that it is no loss of generality

to assume that 𝑔(0) = 1. Then, by positivity and continuity of 𝑔 , there exists a monotone fam-

ily (𝑅𝛭 )𝛭>0 of radii properly diverging to +∞with𝛭 such that

𝑔−1([e−𝛭/5 , e𝛭/5]) ⊇ {𝑥 ∈ 𝐑𝛮 ∶ |𝑥| ≤ 𝑅𝛭 }.

Using this inclusion with𝛭 = 𝑡𝛿 ,

𝒫𝜆,𝜖
𝑡 {|𝑡−1 log 𝑔(𝜋0𝛾 )| > 1

5 𝛿} ≤ 𝒫𝜆,𝜖
𝑡 {|𝜋0𝛾 | ≥ 𝑅𝑡𝛿 } = 𝜆{𝑥 ∈ 𝐑𝛮 ∶ |𝑥| ≥ 𝑅𝑡𝛿 }

converges to 0 as 𝑡 → ∞ because 𝑅𝑡𝛿 → ∞ and the initial condition 𝜆 is a probability measure.

Using the same inclusion, Chebyshëv’s inequality and Lemma 2.2.3,

𝒫𝜆,𝜖
𝑡 {|𝑡−1 log 𝑔(𝜋𝑡 𝛾 )| > 1

5 𝛿} ≤ 𝒫𝜆,𝜖
𝑡 {|𝜋𝑡 𝛾 | ≥ 𝑅𝛿 𝑡} ≤

´
⟨𝑦 ,𝛨𝑏𝑦⟩ 𝜆(d𝑦) + 𝐶
𝑅2
𝛿 𝑡 inf sp𝛨𝑏

also converges to 0 as 𝑡 → ∞. The proof is then concluded using the triangle inequality and a union

bound.

We see from the formula (2.16) that the behaviour as 𝜖 → 0 of the mean entropy production per

unit time 𝔪𝜖 will depend on that of 𝜆𝜖inv and hence on the Freidlin–Wentzell quasipotential [VF70,

§6–8] associated to the ordinary differential equation, �̇� = −∇𝑉 (𝛸)+𝑏(𝛸). In situations where the

quasipotential is proportional to 𝑉 , more detailed information can be obtained and points where 𝑉
attains its global minimum play a particular role. We will come back to this in Section 2.6.

2.3.2 Assumptions on the boundary terms and the initial condition

As mentioned in the Introduction, the ldp at the heart of this article is local. At the technical level,

this is due to the fact that we are able to prove convergence of the rescaled logarithm of the mgf,

𝑡−1 log 𝜒 𝜖𝑡 (𝛼), as 𝑡 → ∞ and then as 𝜖 → 0 only for certain values of 𝛼.
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In the special case where 𝑏 is bounded and orthogonal to ∇𝑉 , and 𝑔 ≡ 1, L. Bertini and G. Di

Gesù have shown convergence as 𝑡 → ∞ for all𝛼 ∈ 𝐑, bypassing the type of assumption we are about

to introduce. However, the analysis of the linear case in [JPS17] shows the intricacies of taking the

limit 𝑡 → ∞ for 𝛼 ∉ [0, 1] in the case where 𝑏 is unbounded, as well as the sensitivity of the limit to

the choice of boundary terms. Subsequently taking the limit 𝜖 → 0 for 𝛼 outside [0, 1] also comes

with its own technical complications.

To be more precise, a first obstruction to our methods stems from a change of sign of an auxiliary

potential which is central in the study of the limit 𝜖 → 0; see Section 2.7. We avoid this by restricting

our attention to 𝛼 in the interval

𝒜 ∶= ⋃
ℓ ∈(0,1)

int{𝛼 ∶ ℓ 14 |∇𝑉 (𝑥)|2 − 1
2 ⟨𝑏 , ∇𝑉 (𝑥)⟩ + 𝛼(1 − 𝛼)|𝑏(𝑥)|2 ≥ 0 for all 𝑥 ∈ 𝐑𝛮 }.

One can use (RB) to show that if ℓ is close enough to 1, then the quantity of interest is nonneg-

ative for 𝛼 in an open interval containing [0, 1]; see Lemma 2.A.2. The interval 𝒜 is symmetric

about 𝛼 = 1
2 . Another possible obstruction is the behaviour of the boundary term 𝑔 used in the

construction of 𝒮𝜖
𝑡 . We introduce the following technical assumption and immediately give more

tractable sufficient conditions.

Assumption (IP). There exists an open interval 𝛪 𝜖 with [0, 1] ⊂ 𝛪 𝜖 ⊆ 𝒜 and such that the follow-

ing property holds for all 𝛼 ∈ 𝛪 𝜖 : there exists 𝑝 𝜖𝛼 ∈ (1, ∞) and ℓ 𝜖𝛼 ∈ (0, 1) such that

ℓ 𝜖𝛼 1
𝑝 𝜖𝛼 (1 −

1
𝑝 𝜖𝛼 )|∇𝑉 (𝑥)|

2 − 1−2𝛼+𝛼𝑝 𝜖𝛼
𝑝 𝜖𝛼 ⟨𝑏 (𝑥), ∇𝑉 (𝑥)⟩ + 𝛼(1 − 𝛼)|𝑏(𝑥)|2 ≥ 0, (2.18)

for all 𝑥 ∈ 𝐑𝛮 , and both

𝑔𝛼 ∈ L𝑝 𝜖𝛼(𝐑𝛮 , d𝜇𝜖0) and d𝜆
d𝜇𝜖0
𝑔−𝛼 ∈ L𝑞 𝜖𝛼(𝐑𝛮 , d𝜇𝜖0), (2.19)

with 1
𝑝𝛼 +

1
𝑞𝛼 = 1.

In the case 𝑔 ≡ 1, we can give a simple condition on the initial condition 𝜆 which is sufficient

for Assumption (IP) to hold. The proof elucidates why we leave 𝑝 𝜖𝛼 as a parameter instead of fixing

𝑝 𝜖𝛼 = 𝑞 𝜖𝛼 = 2: it is this parameter which allows us to accomodate measures 𝜆 for which d𝜆
d𝜇𝜖0

∈
L2−𝛿 (𝐑𝛮 , d𝜇𝜖0)with 𝛿 > 0 small, but not with 𝛿 = 0; cf. Lemma 2.A.9.
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Lemma2.3.4. Suppose thatAssumptions (L0), (L1)and (RB)are satisfiedand that 𝑔 ≡ 1. With𝑘𝑏 ∈
[0, 12 ) as in (RB), if there exists 𝛿 ∈ (0, 12 ) such that the initial condition 𝜆 satisfies

d𝜆
d𝜇𝜖0

∈ L
1

1−𝑘𝑏 −𝛿 (𝐑𝛮 , d𝜇𝜖0), (2.20)

then Assumption (IP) is satisfied.

Proof. For any given 𝑝 ∈ ( 1
1−𝑘𝑏 ,

1
𝑘𝑏 ), there exists ℓ ∈ (0, 1) such that condition (2.18) holds for all 𝛼

in an open interval containing [0, 1]; see Lemma 2.A.2. Without loss of generality, 𝛿 > 0 in (2.20)

is small enough that 𝑝 = 1
𝑘𝑏+𝛿 is such a value, but then we have 𝑞 = 1

1−𝑘𝑏−𝛿 and (2.19) with 𝑔 ≡ 1
reduces to (2.20).

In the steady-state canonical case, 𝑔 = d𝜆/ d𝜇𝜖0 and 𝜆 = 𝜆𝜖inv, (2.19) is guaranteed to hold for

all 𝛼 ∈ [0, 1]. Indeed, one can apply Lemma 2.A.9 with some 𝑝 𝜖𝛼 close enough to 2 that (2.18)

holds. However, obtaining (2.19) outside the interval [0, 1] is in general a delicate task which, to our

knowledge, requires extra assumptions.

Lemma 2.3.5. Suppose that Assumptions (L1) and (RB) are satisfied, that 𝑔 = d𝜆/ d𝜇𝜖0 and that the
initial condition is 𝜆 = 𝜆𝜖inv. If there exists 𝑐−, 𝑐+, 𝛾−, 𝛾+ > 0 and 𝑎 ≥ 2 such that

𝑉 (𝑥) ≥ 𝛾−|𝑥|𝑎 − 𝑐−

and

|∇𝑉 (𝑥)|2 ≤ 𝛾 2+𝑎2|𝑥|2(𝑎−1) + 𝑐+

for all 𝑥 ∈ 𝐑𝛮 , then Assumption (IP) is satisfied, uniformly in 𝜖.

Proof. We will show that there exists a nonempty interval of the form (𝛼−, 0]which does not depend

on 𝜖 and such that (2.18) and (2.19) hold for all 𝛼 in this interval, with common 𝑝 and ℓ . A similar

argument can be given to find an interval of the form [1, 𝛼+).
Fix 𝑝 = 2+𝛿 for some 𝛿 > 0 small enough that there exists ℓ ∈ (0, 1) such that condition (2.18)

holds for all 𝛼 in a nonempty interval of the form (�̂�−, 0]. Then, 𝑞 ∈ (1, 2) and the second inclusion
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in (2.19) for all 𝛼 in a nonempty interval of the form (�̃�−, 0] is guaranteed by Lemma 2.A.9. Finally,

we claim that the fact that

(d𝜆𝜖inv
d𝜇𝜖0

)
𝛼
∈ L𝑝(𝐑𝛮 , d𝜇𝜖0) (2.21)

for all 𝛼 in a nonempty interval of the form (�̄�−, 0] follows from the work [ABG19]. We then take

𝛼− ∶= max{�̂�−, �̃�−, �̄�−} to complete the proof.

To establish (2.21), pick𝛭 > 0 such that | ⟨𝑏 (𝑥), 𝑥⟩ | ≤ 𝛭|𝑥|2 for all 𝑥 ∈ 𝐑𝛮 . Combining the

upper bound with 𝛾+ and Assumption (RB), we obtain a constant �̃�+ such that

− 1
4𝜖 |∇𝑉 (𝑥)|2 + 1

2𝜖 ⟨𝑏(𝑥), ∇𝑉 (𝑥)⟩ − 1
2Δ𝑉 (𝑥) − div 𝑏(𝑥) ≥ − 1

8𝜖 𝛾+(1 − 2𝑘𝑏 )|𝑥|2(𝑎−1)

if |𝑥| is sufficiently large. Set

𝛫 ∶= 1
2𝑎(𝛭 + √𝛭 2 + 𝛾+(1 − 2𝑘𝑏 )).

By Theorem 4.1 in [ABG19] applied to the conjugated Fokker–Planck operator

𝜖𝛥 − ⟨𝑏 , ∇⟩ − 1
4𝜖 |∇𝑉 |2 + 1

2𝜖 ⟨𝑏 , ∇𝑉 ⟩ − 1
2Δ𝑉 − div 𝑏 ,

there exists constants 𝐶𝜖 > 0 and 𝑟𝜖 > 0 such that the unique function 𝜑 𝜖 such that

𝜆𝜖inv(d𝑥) = e−(2𝜖)
−1𝑉 (𝑥)𝜑 𝜖(𝑥) d𝑥

satisfies

𝜑 𝜖(𝑥) ≥ 𝐶𝜖e−𝜖
−1𝛫|𝑥|𝑎

whenever |𝑥| > 𝑟𝜖 ; also see Lemma 2.A.8. This last inequality can be rewritten as

d𝜆𝜖inv
d𝜇𝜖0

(𝑥) ≥ �̃�𝜖e−(2𝜖)
−1𝑉 (𝑥)e−𝜖

−1𝛫|𝑥|𝑎

with some �̃�𝜖 > 0. Using the lower bound in 𝛾−, there exists ̃𝑟𝜖 > 0 such that

(d𝜆𝜖inv
d𝜇𝜖0

(𝑥))
−|𝛽|

≤ �̃�−1
𝜖 exp (|𝛽|𝜖 (12 +

𝛫
2𝛾−

)𝑉 (𝑥))

whenever |𝑥| > ̃𝑟𝜖 . We conclude that the claim (2.21) indeed holds for all 𝛼 ∈ (�̄�−, 0] with �̄�−1− ∶=
−𝑝(12 + 𝛫

2𝛾− ).
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2.3.3 A representation for the moment-generating function

Under Assumption (IP), we prove the validity of a commonly used representation of the mgf 𝜒 𝜖𝑡 (𝛼)
in terms of a semigroup of operators acting on L𝑝 𝜖𝛼(𝐑𝛮 , d𝜇𝜖0) obtained by deformation of the in-

finitesimal generator 𝛬𝜖,0 = 𝜖Δ + ⟨−∇𝑉 + 𝑏 , ∇⟩ of the semigroup associated to the sde (2.5). The

proof relies on preliminary results on elliptic operators collected in Appendix 2.A, based on [AGG+86,

Lan97, MPSR05].

Proposition 2.3.6. Suppose that Assumptions (L0), (L1), (RB) and (IP) are satisfied. Then, for

all 𝛼 ∈ 𝛪 𝜖 , the mgf 𝜒 𝜖𝑡 (𝛼) is finite and can be represented as

𝜒 𝜖𝑡 (𝛼) =
ˆ
𝐑𝛮

𝑔−𝛼(e𝑡𝛬𝛼,𝜖𝑔𝛼) d𝜆, (2.22)

where 𝛬𝜖,𝛼 is the infinitesimal generator of a semigroup on L𝑝 𝜖𝛼(𝐑𝛮 , d𝜇𝜖0) given by

𝛬𝜖,𝛼𝑓 = 𝜖Δ𝑓 + ⟨−∇𝑉 + (1 − 2𝛼)𝑏 , ∇𝑓 ⟩ − 𝛼(1−𝛼)
𝜖 |𝑏 |2𝑓 + 𝛼

𝜖 ⟨𝑏 , ∇𝑉 ⟩ 𝑓 − 𝛼𝑓 div 𝑏 , (2.23)

for all 𝑓 ∈ 𝐶 2
c (𝐑𝛮 ).

Proof. We use an approximation strategy similar to that in the proof of Proposition 2.2.5 and again

omit keeping explicit track of 𝜖.

Step 1: Reduction to the case where 𝑏 has compact support. Suppose that the proposition has

been proved in the case where 𝑏 has compact support. For a general 𝑏 , let (𝑏𝑅)𝑅∈𝚴 be a se-

quence of compactly supported approximations of 𝑏 as in the proof of Proposition 2.2.5.

Fix 𝛼 and set

𝛬𝛼𝑅 ∶= 𝜖Δ + ⟨−𝛥𝑉 + (1 − 2𝛼)𝑏𝑅, ∇⟩ − 𝛼(1−𝛼)
𝜖 |𝑏𝑅|2 + 𝛼

𝜖 ⟨𝑏𝑅, ∇𝑉 ⟩ − 𝛼 div 𝑏𝑅

and

𝛬𝛼 ∶= 𝜖Δ + ⟨−𝛥𝑉 + (1 − 2𝛼)𝑏 , ∇⟩ − 𝛼(1−𝛼)
𝜖 |𝑏 |2 + 𝛼

𝜖 ⟨𝑏 , ∇𝑉 ⟩ − 𝛼 div 𝑏 .

It is shown in Appendix 2.A that these operators with domain W2,𝑝𝛼(𝐑𝛮 ; d𝜇0) generate semi-

groups on L𝑝𝛼(𝐑𝛮 ; d𝜇0) if 𝛼 ∈ 𝒜. Hence, in view of (2.19) and the definition of 𝛪 , the
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right-hand side of (2.22) is well defined and finite for all 𝛼 ∈ 𝛪 . Therefore, by (2.8), it suffices

to show that

(e𝑡𝛬𝛼𝑔𝛼)(𝑥) = 𝑔𝛼(𝑥)
ˆ

𝒞𝑡

e−𝛼𝒮𝑡 d𝒫𝑥
𝑡 (2.24)

for almost all 𝑥 ∈ 𝐑𝛮 .

One can show using the isometry between L𝑝𝛼(𝐑𝛮 , d𝜇0) and L𝑝𝛼(𝐑𝛮 , dvol) and the second

resolvent identity that

s. r. -lim
𝑅→∞

𝛬𝛼𝑅 = 𝛬𝛼.

Hence, by Theorem 2.16 in [Kat95, Ch. IX],

s. -lim
𝑅→∞

e𝑡𝛬
𝛼
𝑅 = e𝑡𝛬

𝛼

on L𝑝𝛼(𝐑𝛮 , d𝜇0), which contains 𝑔𝛼 by (2.19) of Assumption (IP). In particular, there exists

a subsequence (𝑅𝑘)𝑘∈𝚴 properly diverging to +∞ such that

(e𝑡𝛬𝛼𝑔𝛼)(𝑥) = lim
𝑘→∞

(e𝑡𝛬
𝛼
𝑅𝑘 𝑔𝛼)(𝑥)

for almost all 𝑥 ∈ 𝐑𝛮 . Hence, by hypothesis,

(e𝑡𝛬𝛼𝑔𝛼)(𝑥) = lim
𝑘→∞

(e𝑡𝛬
𝛼
𝑅𝑘 𝑔𝛼)(𝑥)

= lim
𝑘→∞

𝑔𝛼(𝑥)
ˆ

𝒞𝑡

e−𝛼𝒮𝑡 d𝒫𝑥
𝑡 [𝑅𝑘]

= 𝑔𝛼(𝑥) lim
𝑘→∞

(
ˆ
𝛣𝑅𝑘

e−𝛼𝒮𝑡 d𝒫𝑥
𝑡 [𝑅𝑘] +

ˆ
𝛣C
𝑅𝑘

e−𝛼𝒮𝑡 d𝒫𝑥
𝑡 [𝑅𝑘]),

where 𝒫𝑥
𝑡 [𝑅𝑘] is the measure on the paths associated to the sde with initial condition 𝑥 and

drift −∇𝑉 + 𝑏𝑅𝑘
, and where 𝛣𝑅𝑘

denotes the ball of radius𝑅𝑘 in 𝒞𝑡 . Using uniqueness,

(e𝑡𝛬𝛼𝑔𝛼)(𝑥) = 𝑔𝛼(𝑥) lim
𝑘→∞

(
ˆ
𝛣𝑅𝑘

e−𝛼𝒮𝑡 d𝒫𝑥
𝑡 +
ˆ
𝛣C
𝑅𝑘

e−𝛼𝒮𝑡 d𝒫𝑥
𝑡 [𝑅𝑘]). (2.25)

By Lebesgue monotone convergence,

lim
𝑘→∞

ˆ
𝛣𝑅𝑘

e−𝛼𝒮𝑡 d𝒫𝑥
𝑡 =
ˆ

𝒞𝑡

e−𝛼𝒮𝑡 d𝒫𝑥
𝑡 . (2.26)
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Note that this limit must be finite because the left-hand side of (2.25) is finite, 𝑔𝛼(𝑥) is strictly

positive and the integral over the complement of the ball on the right-hand side of (2.25) is

nonnegative. Because 𝛪 is open,
ˆ

𝒞𝑡

e−(𝛼+𝛿𝛼)𝒮𝑡 d𝒫𝑥
𝑡 < ∞

as well if 𝛿 > 0 is small enough. Hence, we may apply Hölder’s inequality with exponents 1+𝛿
and (1 − (1 + 𝛿)−1)−1 to derive

lim
𝑘→∞

∣
ˆ
𝛣C
𝑅𝑘

e−𝛼𝒮𝑡 d𝒫𝑥
𝑡 ∣

≤ lim
𝑘→∞

∣
ˆ

𝒞𝑡

e−(𝛼+𝛿𝛼)𝒮𝑡 d𝒫𝑥
𝑡 ∣

1
1+𝛿 (1 −𝒫𝑥

𝑡 [𝑅𝑘](𝛣𝑅𝑘
))1−(1+𝛿)

−1
,

which is controlled by Lemma 2.2.2. Using this bound and (2.26) in (2.25) yields (2.24) and

the proof is concluded.

Step 2: Proof in the case where 𝑏 has compact support. In view of (2.8), it suffices to show that

𝑔𝛼(𝑥)
ˆ

𝒞𝑡

e−𝛼𝒮𝑡 d𝒫𝑥
𝑡 = (e𝑡𝛬

𝛼𝑔𝛼)(𝑥) (2.27)

for almost all 𝑥 ∈ 𝐑𝛮 , where (e𝑡𝛬𝛼)𝑡≥0 is the positivity-preserving semigroup generated by𝛬𝛼

on L𝑝𝛼(𝐑𝛮 , d𝜇0). By definition of 𝒮𝑡 , this is equivalent to

𝑔𝛼(𝑥)
ˆ

𝒞𝑡

𝑔−𝛼(𝛾 (0))𝑔𝛼(𝛾 (𝑡))e−𝛼𝜖−1
´ 𝑡
0 ⟨𝑏 (𝛾 ),∘ d𝛾 ⟩ 𝒫𝑥

𝑡 (d𝛾 ) = (e𝑡𝛬
𝛼𝑔𝛼)(𝑥). (2.28)

Note that the terms 𝑔𝛼(𝑥) and 𝑔−𝛼(𝛾 (0)) cancel each other out.

By Lebesgue monotone convergence and continuity of e𝑡𝛬
𝛼
, it is enough to show that

ˆ
𝒞𝑡

(𝜂𝑔𝛼)(𝛾 (𝑡))e−𝛼𝜖−1
´ 𝑡
0 ⟨𝑏 (𝛾 ),∘ d𝛾 ⟩ 𝒫𝑥

𝑡 (d𝛾 ) = (e𝑡𝛬
𝛼𝜂𝑔𝛼)(𝑥) (2.29)

for all smooth functions 0 ≤ 𝜂 ≤ 1 with compact support. We will not keep this cutoff

function 𝜂 explicitly in the formulas, but we will use theorems that would generally apply to

a continuous compactly supported function 𝑔 with the understanding that we can obtain the
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final result by taking a sequence (𝜂𝑅)𝑅∈𝚴 converging pointwise to the constant function 1
from below.

Set 𝑚(𝑠, 𝑥) to be the left-hand side of (2.28) with 𝑡 replaced by 𝑠 ∈ [0, 𝑡 ]. Because 𝑔𝛼 ∈
L𝑝(𝐑𝛮 , d𝜇𝜖0) and because the semigroup generated by 𝛬𝛼 with domain W2,𝑝(𝐑𝛮 , d𝜇𝜖0) on

L𝑝(𝐑𝛮 , d𝜇𝜖0) is analytic, e𝑠𝛬
𝛼𝑔𝛼 ∈ W2,𝑝(𝐑𝛮 , d𝜇𝜖0) and

𝜕𝑠(e𝑠𝛬
𝛼𝑔𝛼) = 𝛬𝛼e𝑠𝛬

𝛼𝑔𝛼

for all 𝑠 > 0; see e.g. Proposition 1.6.ii in [AGG+86, Ch. A-I]. Hence, (2.28) becomes𝑚(𝑡 , 𝑥) =
e𝑡𝛬

𝛼𝑔𝛼 and, by uniqueness, we need only show that𝑚 also satisfies the partial differential equa-

tion

{
𝜕𝑠𝑚(𝑠, 𝑥) = (𝛬𝛼𝑚(𝑠, ⋅ ))(𝑥), 𝑥 ∈ 𝐑𝛮 , 𝑠 > 0,

𝑚(0, 𝑥) = 𝑔𝛼(𝑥), 𝑥 ∈ 𝐑𝛮 .
(2.30)

A straightforward computation shows that

𝛬𝛼𝑓 = �̃�𝑓 − 𝛼(1−𝛼)
𝜖 |𝑏 |2𝑓 + 𝛼

𝜖 ⟨𝑏 , ∇𝑉 ⟩ 𝑓 − 𝛼(div 𝑏)𝑓 (2.31)

where �̃� is the infinitesimal generator associated to the deformed sde

d�̃�𝑡 = −∇𝑉 (�̃�𝑡 ) d𝑡 + (𝑏(�̃�𝑡 ) − 2𝛼𝑏(�̃�𝑡 )) d𝑡 + √2𝜖 d𝑊𝑡 .

Hence, in view of the Feynman–Kac formula — see e.g. Lemma 3.7 in [Kha11, Ch. 3] keeping

in mind that 𝑏 is temporarily assumed to be compactly supported —, (2.30) will hold if

𝑚(𝑡 , 𝑥) =
ˆ

𝒞𝑡

𝑔𝛼(𝛾 (𝑡))

e
´ 𝑡
0 −

𝛼(1−𝛼)
𝜖 |𝑏(𝛾 (𝑠))|2+ 𝛼

𝜖 ⟨𝑏 (𝛾 (𝑠)),(∇ 𝑉 )(𝛾 (𝑠))⟩−𝛼(div 𝑏)(𝛾 (𝑠)) d𝑠�̃�𝑥
𝑡 (d𝛾 ).

But it follows from a Girsanov argument similar to that used in the proof of Proposition 2.2.4 —
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recall again that 𝑏 is temporarily assumed to be compactly supported — that
ˆ

𝒞𝑡

𝑔𝛼(𝛾 (𝑡)) exp (
ˆ 𝑡

0
−𝛼(1−𝛼)

𝜖 |𝑏(𝛾 (𝑠))|2 + 𝛼
𝜖 ⟨𝑏 (𝛾 (𝑠)), (∇𝑉 )(𝛾 (𝑠))⟩

− 𝛼(div 𝑏)(𝛾 (𝑠)) d𝑠)�̃�𝑥
𝑡 (d𝛾 )

=
ˆ

𝒞𝑡

𝑔𝛼(𝛾 (𝑡)) exp (
ˆ 𝑡

0
−𝛼(1−𝛼)

𝜖 |𝑏(𝛾 (𝑠))|2 + 𝛼
𝜖 ⟨𝑏 (𝛾 (𝑠)), (∇𝑉 )(𝛾 (𝑠))⟩

− 𝛼(div 𝑏)(𝛾 (𝑠)) d𝑠)�̃�𝑡 (𝛾 )𝒫𝑥
𝑡 (d𝛾 ),

where �̃�𝑠(𝛾 ) ∶= exp( 𝛼
√2𝜖
´ 𝑠
0 ⟨𝑏 (𝛾 ), d𝑊 (𝛾 )⟩ − 𝛼2

4𝜖
´ 𝑠
0 |𝑏 (𝛾 (𝑟 ))|

2 d𝑟 ). The proof is concluded

with a standard Itô calculus computation.

2.4 Large deviations in the large-time limit

The quantity

𝑒 𝜖(𝛼) ∶= sup{Re 𝑧 ∶ 𝑧 ∈ sp(𝛬𝛼,𝜖 ,W2,2(𝐑𝛮 , d𝜇𝜖0))}

for 𝛼 ∈ 𝒜 will play a crucial role in our analysis of the large deviations of 𝒮𝜖
𝑡 . We will interchange-

ably refer to this quantity as the leading eigenvalue of𝛬𝛼,𝜖 or as spb(𝛬𝛼,𝜖). Let us first state and prove

a lemma concerning its regularity in 𝛼 at fixed 𝜖 > 0.

Lemma 2.4.1. Under Assumptions (L0), (L1) and (RB), the function 𝑒 𝜖 is real-analytic on 𝒜.

Proof. Fix 𝛼0 ∈ 𝒜. The differential operator 𝛬𝛼0 ,𝜖 defined by (2.23) on W2,2(𝐑𝛮 , d𝜇𝜖0) is closed as

an unbounded operator on L2(𝐑𝛮 , d𝜇𝜖0); see Appendix 2.A. For 𝜘 ∈ 𝐂,

𝛣𝛼0 ,𝜖(𝜘) ∶= −2𝜘 ⟨𝑏 , ∇⟩ − 𝜘(1−𝜘−2𝛼0)
𝜖 |𝑏 |2 + 𝜘

𝜖 ⟨𝑏 , ∇𝑉 ⟩ − 𝜘 div 𝑏

is a relatively bounded perturbation of 𝛢𝛼0 ,𝜖 . The relative bound can be made arbitrarily small by

taking |𝜘| small enough.

Hence, by Theorem 1.1 in [Kat95, Ch. IV], there exists a neighbourhood𝛺 of 𝛼0 in𝐂 such that

the differential operator𝛬𝛼,𝜖 = 𝛬𝛼0 ,𝜖+𝛣𝛼0 ,𝜖(𝛼−𝛼0) on L2(𝐑𝛮 , d𝜇𝜖0)with domain W2,2(𝐑𝛮 , d𝜇𝜖0) is

closed for all𝛼 ∈ 𝛺. Moreover, a straightforward estimate shows that𝜘 ↦ 𝛣𝛼,𝜖(𝜘)𝑓 ∈ L2(𝐑𝛮 , d𝜇𝜖0)
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is holomorphic whenever 𝑓 ∈ W2,2(𝐑𝛮 , d𝜇𝜖0). Hence, for fixed 𝜖 > 0, {𝛬𝛼,𝜖}𝛼∈𝛺 is a holomor-

phic family of type (A) in the sense of [Kat95, §VII.2.1]. By Proposition 2.A.7, 𝑒 𝜖(𝛼0) is a simple

eigenvalue of 𝛬𝛼0 ,𝜖 and can be separated from the rest of sp𝛬𝛼0 ,𝜖 by a simple closed curve. Follow-

ing [Kat95, §VII.2.3], the spectrum of (𝛬𝛼,𝜖 ,W2,2(𝐑𝛮 , d𝜇𝜖0)) is likewise separated into two parts

for 𝛼 ∈ 𝛺 close enough to 𝛼0 , and 𝛼 ↦ 𝑒 𝜖(𝛼) admits an analytic extension to a small complex

neighbourhood of 𝛼0 .

Lemma 2.4.2. Under Assumptions (L0), (L1) and (RB),

𝔪𝜖 = −𝐷𝑒 𝜖(0).

Proof. With the appropriate normalisation, the eigenvector corresponding to the eigenvalue 𝑒 𝜖(0) =
0 is the constant 1 and the corresponding eigenvector of the adjoint (the Fokker–Planck operator)

is obtained from 𝜆𝜖inv; see the proof of Lemma 2.A.8. Because 𝑒 𝜖 is analytic in 0 and is a simple

eigenvalue for all 𝛼 close enough to 0, the derivative can be computed using a formula colloquially

known as the Hellmann–Feynman formula:

𝐷𝑒 𝜖(0) =
ˆ
(−2 ⟨𝑏 , ∇⟩ − 𝜖−1|𝑏 |2 + 𝜖−1 ⟨𝑏 , ∇𝑉 ⟩ − div 𝑏)1 d𝜆𝜖inv;

see (2.33) in [Kat95, §II.2.2] and the argument in [Kat95, §VII.1.3].

Proposition 2.4.3. Suppose that Assumptions (L0), (L1), (RB) and (IP) are satisfied. Then,

lim𝑡→∞
1
𝑡 log 𝜒 𝜖𝑡 (𝛼) = 𝑒 𝜖(𝛼) (2.32)

for all 𝛼 ∈ 𝛪 𝜖 .

Proof. Fix𝛼 ∈ 𝛪 𝜖 and pick 𝑝 = 𝑝 𝜖𝛼 as in (IP). Let𝜓 𝛼,𝜖 [resp. 𝑢𝛼,𝜖] be a strictly positive right [resp. left]

eigenvector of 𝛬𝛼,𝜖 for the eigenvalue 𝑒 𝜖(𝛼) with the properties of Proposition 2.A.7. By Proposi-

tion 2.3.6, we haveˆ
𝒞𝑡

e−𝛼𝒮𝜆,𝜖
𝑡 d𝒫𝜉 ,𝜖

𝑡

=
ˆ
𝐑𝛮

d𝜆
d𝜇𝜖0

(𝑥)𝑔−𝛼(𝑥)(e𝑡𝛬𝛼𝑔𝛼)(𝑥) 𝜇𝜖0(d𝑥)

= e𝑡 𝑒
𝜖(𝛼)(
ˆ
𝐑𝛮

d𝜆
d𝜇𝜖0

(𝑥)𝑔−𝛼(𝑥)(e−𝑡𝑒 𝜖(𝛼)e𝑡𝛬𝛼𝑔𝛼 − 𝜓 𝜖,𝛼(𝑢𝛼,𝜖 , 𝑔𝛼)𝜇𝜖0 )(𝑥) 𝜇
𝜖
0(d𝑥) + 𝐽 𝛼,𝜖),
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where 𝐽 𝛼,𝜖 is finite, strictly positive and independent of 𝑡 . Recall that our choice of 𝛼 ∈ 𝛪 𝜖 satisfying

condition (2.19) guarantees

𝑔𝛼(𝑥) ∈ L𝑝(𝐑𝛮 , d𝜇𝜖0) and d𝜆
d𝜇𝜖0
𝑔−𝛼(𝑥) ∈ L𝑝(𝐑𝛮 , d𝜇𝜖0)∗.

Hence, using Hölder’s inequality and Proposition 2.A.7 to control the difference in the integrand,

lim𝑡→∞
1
𝑡 log

ˆ
𝒞𝑡

e−𝛼𝒮𝜆,𝜖
𝑡 d𝒫𝜉 ,𝜖

𝑡 = 𝑒 𝜖(𝛼).

Remark 2.4.4. In particular, in this regime, themean canonical entropy production and theChernoff

and Hoeffding error exponents for the hypothesis testing of the arrow of time do not depend on the

specific choice of initial distribution 𝜆, as long as it is mutually absolutely continuous with respect to 𝜇𝜖0 .
Actually, if one is solely interested in this fact, one only needs the proposition for 𝛼 ∈ [0, 1] and can

therefore relax Assumption (IP). We refer the reader to [JOPS12, §6], [CJPS20, Ch. I.1].

Corollary 2.4.5. Under the same assumptions, the function 𝑒 𝜖 ∶ 𝒜 →𝐑 is convex and

𝑒 𝜖(1 − 𝛼) = 𝑒 𝜖(𝛼)

for all 𝛼 ∈ 𝒜.

Proof. Consider the particular case 𝑔 ≡ 1 and 𝜆 = 𝜇𝜖0 and take the appropriate limit in the second

part of Proposition 2.2.5 using Proposition 2.4.3.

For 𝜍 ∈ {−𝐷𝑒 𝜖(𝛼) ∶ 𝛼 ∈ 𝒜}, set

𝑒 𝜖∗(𝜍) ∶= sup
𝛼∈𝒜

( − 𝛼𝜍 − 𝑒 𝜖(𝛼)). (2.33)

It is immediate from Corollary 2.4.5, the symmetry 𝒜 = 1 −𝒜 and the definition of 𝑒 𝜖∗ that

𝑒 𝜖∗(𝜍) − 𝑒 𝜖∗(−𝜍) = −𝜍 (2.34)

for all 𝜍 ∈ {−𝐷𝑒 𝜖(𝛼) ∶ 𝛼 ∈ 𝒜}. Combining Lemma 2.4.1, Proposition 2.4.3 and a local version of

the Gärtner–Ellis theorem (see e.g. [JOPP11, §A.2]), we get the following large deviation result. The

symmetry (2.34) of the rate function 𝑒 𝜖∗ in this ldp is referred to as the Gallavotti–Cohen symmetry.
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Proposition 2.4.6. Under assumptions (L0), (L1), (RB) and (IP), if 𝛦 is a Borel set with cl(𝛦) ⊂
{−𝐷𝑒 𝜖(𝛼) ∶ 𝛼 ∈ 𝛪 0}, then

− inf
𝜍∈int(𝛦)

𝑒 𝜖∗(𝜍) ≤ lim inf𝑡→∞ 𝑡−1 log 𝒫𝜖
𝑡{𝑡−1𝒮𝜖

𝑡 ∈ 𝛦}

≤ lim sup
𝑡→∞

𝑡−1 log 𝒫𝜖
𝑡{𝑡−1𝒮𝜖

𝑡 ∈ 𝛦} ≤ − inf
𝜍∈cl(𝛦)

𝑒 𝜖∗(𝜍).

2.5 The linear case

We have shown in Section 2.4 that the large deviations of 𝒮𝜖
𝑡 can be understood in terms of the

leading eigenvalue 𝑒 𝜖(𝛼) of 𝛬𝛼,𝜖 and its Legendre transform (2.33). We devote the present section

to the study of these quantities in the case where we make the additional assumptions that 𝑉 is

quadratic and 𝑏 is linear — equivalently 𝑉 (𝑥) = 1
2 ⟨𝑥, 𝐷 2𝑉 𝑥⟩ and 𝑏(𝑥) = 𝐷𝑏 𝑥. Note that (ND) is

then a consequence of (L0), which becomes

𝐷 2𝑉 > 0. (2.35)

Assumption (RB) becomes

⟨𝐷𝑏 𝑥, 𝐷 2𝑉 𝑥⟩ ≤ 𝑘𝑏 |𝐷 2𝑉 𝑥|2 (2.36)

for all 𝑥 ∈ 𝐑𝛮 .

The linear case is particularly important for several reasons. First and foremost, we will see in

Sections 2.6 and 2.7 that the general case can be reduced to this one in the limit 𝜖 → 0. Second,

linearity makes computations more tractable and allows to give a characterisation of the vanishing

of the mean entropy production per unit time 𝔪𝜖 .

Note that the operator 𝛬𝛼,𝜖 introduced in (2.23) is in this case isospectral to the 𝜖-independent

operator

𝑄𝛼 = Δ + ⟨ℓ𝛣 (𝛼) , ∇⟩ − 𝑞𝛫 (𝛼) + 1
2 tr𝐷 2𝑉 − 𝛼 tr𝐷𝑏 (2.37)

where ℓ𝛣 (𝛼) is the auxiliary linear vector field 𝑥 ↦ 𝛣 (𝛼)𝑥 and 𝑞𝛫 (𝛼) is the auxiliary quadratic poten-

tial 𝑥 ↦ ⟨𝑥, 𝛫 (𝛼)𝑥⟩, with

𝛣 (𝛼) ∶= (1 − 2𝛼)𝐷𝑏
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and

𝛫 (𝛼) ∶= 1
4 (𝐷 2𝑉 )2 − 1

4 (𝐷𝑏T𝐷 2𝑉 + 𝐷 2𝑉 𝐷𝑏) + 𝛼(1 − 𝛼)𝐷𝑏T𝐷𝑏.

To see this, conjugate with the Gaussian weight e−(2𝜖)
−1𝑉 and its inverse and then make a change of

variable 𝑥 ↦ 𝜖1/2𝑥.

Such elliptic operators with quadratic symbols have been fairly well understood since the seminal

work of [Sjö74]. Here, inspired by [FS97, JPS17], we emphasise a slightly different point of view,

which relies on the study of the corresponding algebraic Riccati equation (are)

𝛸 2 − 1
2 (𝛣 (𝛼))T𝛸 − 1

2𝛸𝛣 (𝛼) − 𝛫 (𝛼) = 0 (2.38)

for a symmetric matrix𝛸 . The general theory of such equations is discussed in [LR95]. See [BCX20]

for yet another approach in a special case.

Proposition 2.5.1. For all 𝛼 ∈ 𝒜, the are (2.38) admits a maximal solution 𝛸 (𝛼) and

spb𝑄𝛼 = − tr𝛸 (𝛼) + 1
2 tr𝐷 2𝑉 − 𝛼 tr𝐷𝑏.

Moreover, 𝛼 ↦ tr𝛸(𝛼) defines a real-analytic function on 𝒜 and we have the identity

tr𝛸 (𝛼) = −12( tr𝛣 (𝛼) − ∑
𝜆(𝛼)∈sp 𝒦(𝛼)

Ham

|Re𝜆(𝛼)|) (2.39)

where

𝒦(𝛼)
Ham ∶= [

−1
2𝛣 (𝛼) 𝟏
𝛫 (𝛼) 1

2 (𝛣 (𝛼))T
] . (2.40)

Proof. Consider 𝜙𝛸 (𝑥) ∶= exp(−1
2 ⟨𝑥, 𝛸𝑥⟩) for some positive-definite matrix 𝛸 and compute

(𝑄𝛼𝜙𝛸 )(𝑥) = − tr𝛸 𝜙𝛸 (𝑥) + ⟨𝛸𝑥, 𝛸𝑥⟩ 𝜙𝛸 (𝑥) − ⟨𝛣 (𝛼)𝑥, 𝛸𝑥⟩ 𝜙𝛸 (𝑥)

− ⟨𝑥, 𝛫 (𝛼)𝑥⟩ 𝜙𝛸 (𝑥) + (12 tr𝐷 2𝑉 − 𝛼 tr𝐷𝑏)𝜙𝛸 (𝑥).

Note that 𝜙𝛸 is an eigenvector with eigenvalue − tr𝛸 + 1
2 tr𝐷 2𝑉 − 𝛼 tr𝐷𝑏 if

𝑅(𝛼, 𝛸) ∶= 𝛸 2 − 1
2 (𝛣 (𝛼))T𝛸 − 1

2𝛸𝛣 (𝛼) − 𝛫 (𝛼) = 0. (2.41)
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Because 𝛫 (𝛼) is positive definite for all 𝛼 ∈ 𝒜, 𝑅(𝛼, 0) < 0. Therefore, there exists a maximal

positive-definite matrix 𝛸 (𝛼) such that 𝑅(𝛼, 𝛸 (𝛼)) = 0, and −𝛸 (𝛼) + 1
2𝛣 (𝛼) is stable [LR95, §9.1].

This argument is valid for all 𝛼 ∈ 𝒜 and 𝛸 (𝛼) is a real-analytic function of 𝛼 ∈ 𝒜 [LR95, §11.3].

In 𝛼 = 1
2 , we have 𝑅(12 , 𝛸) = 𝛸 2 − 𝛫 (1/2) and the square root of 𝛫 (1/2) clearly is the maximal

solution to the are𝑅(12 , 𝛸) = 0. But the trace of this maximal solution coincides with the smallest

eigenvalue of the quantum harmonic oscillator −Δ + 𝑞𝛫 (1/2) . Thus, first part of the lemma follows

by simplicity and continuity of spb𝑄𝛼. Relations between the eigenvalues of −𝛸 (𝛼) + 1
2𝛣 (𝛼) and

those of the matrix (2.40) are discussed in [LR95, §8.3].

Remark 2.5.2. Note that once a Gaussian weight is introduced to define𝑄𝛼, the method for obtain-

ing the formula for its leading eigenvalue does not appeal to the fact 𝐷 2𝑉 > 0, but only to the fact
that (𝐷 2𝑉 )2 > 0.

Proposition 2.5.3. Under the assumptions of Proposition 2.4.3 and the additional assumption that

𝑉 is quadratic and 𝑏 is linear,

lim𝑡→∞
1
𝑡 log 𝜒 𝜖𝑡 (𝛼) = − tr𝛸 (𝛼) + 1

2 tr𝐷 2𝑉 − 𝛼 tr𝐷𝑏, (2.42)

for all 𝛼 ∈ 𝒜. Moreover,

i. if thematrix𝐷𝑏 is not symmetric, then themean entropy production per unit time𝔪𝜖 is strictly

positive and independent of 𝜖 and the rate function 𝑒 𝜖∗ in Proposition 2.4.6 is strictly convex and
independent of 𝜖;

ii. if the matrix𝐷𝑏 is symmetric, then 𝔪𝜖 = 0.

Proof. Combining Proposition 2.4.3 and Proposition 2.5.1 with the fact that

𝑒 𝜖(𝛼) = spb𝑄𝛼

immediately gives (2.42). It follows from Corollary 2.4.5 that 𝑒 𝜖 is convex on 𝒜 and that 𝑒 𝜖(0) =
𝑒 𝜖(1) = 0. Hence, by analyticity, it will fail to be strictly convex if and only if it vanishes identically,

which is in turn equivalent to 𝑒 𝜖(12 ) = 0. This last condition takes the explicit form

tr√(𝐷 2𝑉 − 𝐷𝑏)T(𝐷 2𝑉 − 𝐷𝑏) = tr(𝐷 2𝑉 − 𝐷𝑏).
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Let 𝛢 ∶= 𝐷 2𝑉 − 𝐷𝑏 and |𝛢| ∶= √𝛢T𝛢. We can find orthonormal bases {𝑣𝑖}𝛮𝑖=1 and {𝑤𝑖}𝛮𝑖=1
of 𝐂𝛮 such that 𝛢 = ∑𝛮

𝑖=1 𝜇𝑖𝑣𝑖 ⟨𝑤𝑖 , ⋅ ⟩ and |𝛢| = ∑𝛮
𝑖=1 𝜇𝑖𝑤𝑖 ⟨𝑤𝑖 , ⋅ ⟩, where {𝜇𝑖}𝛮𝑖=1 are the singular

values of 𝛢 listed with multiplicity; see e.g. [Sim15, §3.5]. Computing traces in the basis {𝑤𝑖}𝛮𝑖=1
and using 𝜇𝑖 ≥ 0, we find that tr𝛢 = tr |𝛢| implies ⟨𝑣𝑖 , 𝑤𝑖 ⟩ = 1 for each 𝑖 such that 𝜇𝑖 ≠ 0.

Because |𝑤𝑖 | = |𝑣𝑖 | = 1, ⟨𝑣𝑖 , 𝑤𝑖 ⟩ = 1 implies 𝑤𝑖 = 𝑣𝑖 and we conclude that 𝛢 = |𝛢|. Of course,

𝛢 = |𝛢| implies tr𝛢 = tr |𝛢|.
Since 𝐷 2𝑉 is already symmetric, 𝛢 = |𝛢| if and only if 𝐷𝑏T = 𝐷𝑏 and all the eigenvalues of

𝐷 2𝑉 −𝐷𝑏 are nonnegative. For the second condition only to fail, we would need a nonzero vector 𝑢
and a strictly positive number 𝜆 such that (𝐷 2𝑉 − 𝐷𝑏)𝑢 = −𝜆𝑢. Taking an inner product with

𝐷 2𝑉 𝑢 in this eigenvalue equation gives

⟨𝐷𝑏 𝑢,𝐷 2𝑉 𝑢⟩ = ∣𝐷 2𝑉 𝑢∣2 + 𝜆 ⟨𝑢,𝐷 2𝑉 𝑢⟩ ,

which contradicts (2.35)–(2.36).

Note that Case i in Proposition 2.5.3 occurs if and only if the linear vector field 𝑏 is nonconserva-

tive; Case ii, if 𝑏 is conservative. To see this, recall that the Hessian of a sufficiently regular function

is always symmetric and that the gradient of a function of the form 𝑥 ↦ 1
2 ⟨𝑥, 𝛣𝑥⟩ is the linear vec-

tor field 𝑥 ↦ 1
2 (𝛣 + 𝛣T)𝑥. In view of this, we will say that a nonlinear vector field 𝑏 behaves like a

gradient near a point 𝑥 if𝐷𝑏|𝑥 is is symmetric.

2.6 The rate function in the vanishing-noise limit

We consider the limit 𝜖 → 0. The main result of this section is the local ldp of Theorem 2.6.5, but

we also discuss the behaviour of the mean entropy production per unit time. It is reasonable to allow

the initial condition 𝜆 and the function 𝑔 to change with 𝜖 — it is in fact necessary if one wants to

study the steady-state canonical entropy production. We require Assumption (IP) to hold with a

certain uniformity in 𝜖.

Assumption (IPu). There exists an open interval 𝛪 0 containing 0 and 1, and whose closure is con-

tained in lim inf𝜖→0 𝛪 𝜖 , where 𝛪 𝜖 is as in Assumption (IP) with 𝑔 replaced with 𝑔 𝜖 and 𝜆 re-
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placed with 𝜆𝜖 .

Before we proceed to the general statements and proofs, let us illustrate the main points with an

example.

Example 2.6.1. Let 𝑉 be a potential satisfying our general assumptions and suppose that its global

minimum is achieved in a single point 𝑥𝑗 ⋆ . Suppose that 𝑏 satisfies our general assumptions, div 𝑏 ≡ 0
and ⟨𝑏 , ∇𝑉 ⟩ ≡ 0, and consider the steady-state functional with 𝑔 ≡ 1. This is a situation in which one
can easily show that 𝜆 = 𝜆𝜖inv = 𝜇𝜖0 .

At the level of the mean entropy production per unit time, one can show the convergence𝔪𝜖 → 𝔪𝑗 ⋆ ,

where𝔪𝑗 ⋆ is as in Section 2.5 for the linear problem near 𝑥𝑗 ⋆ . In particular, we have strict positivity of
the limit if and only if 𝑏 does not behave like a gradient near 𝑥𝑗 ⋆ . This strict positivity is a key signature
of nonequilibrium.

At the level of the fluctuations, the situation is the following. If |𝛼| is small enough, 𝑒 𝜖(𝛼) →
max𝑗 𝑒𝑗 (𝛼), where the maximum is taken over indices 𝑗 corresponding to all local minima of 𝑉 and 𝑒𝑗
is as in Section 2.5 for the linear problem near 𝑥𝑗 . Therefore, with 𝑒∗ the Legendre transform of 𝛼 ↦
max𝑗 𝑒𝑗 (𝛼), the rate functions 𝑒 𝜖∗(𝜍) converge to 𝑒∗(𝜍) for all 𝜍 in an interval 𝛴 . In cases where there

is at least one index 𝑗 ′ corresponding to local minimum such that 𝐷𝑒𝑗 ′(0) ≠ 0, the interval 𝛴 has

nonempty interior. Hence, as far as the rate of exponential suppression of fluctuations is concerned,

there is no discrimination between the global and local minima of 𝑉 .
In cases where there are indices 𝑗 ′ and 𝑗 ″ corresponding to local minima such that 𝐷𝑒𝑗 ′(0) ≠

𝐷𝑒𝑗 ″(0), then 𝑒𝑗 ′ and 𝑒𝑗 ″ cross in 𝛼 = 0. Such a crossing necessarily yields a nondegenerate closed

interval strictly contained in 𝛴 on which the rate function 𝑒∗ vanishes. Hence, by tuning the behaviour

of 𝑏 near the critical points of a potential 𝑉 with a single global minimum and other local minima,

one can construct examples where lim𝜖 𝔪𝜖 lies at either end of this vanishing piece as well as examples

where it lies in the interior.

Back to the general case, recall that we have successfully reduced the study of the rate function

to that of the leading eigenvalue 𝑒 𝜖(𝛼) of the deformed generator𝛬𝜖,𝛼 and its Legendre transform in
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the variable 𝛼. Because

e−(2𝜖)
−1𝑉 𝛬𝜖,𝛼(e(2𝜖)−1𝑉 𝑓 ) = 𝜖Δ𝑓 + ⟨(1 − 2𝛼)𝑏 , ∇𝑓 ⟩ − 1

4𝜖 |∇𝑉 |2𝑓

+ 1
2𝜖 ⟨𝑏 , ∇𝑉 ⟩ 𝑓 − 𝛼(1−𝛼)

𝜖 |𝑏 |2𝑓 + 1
2𝑓 Δ𝑉 − 𝛼𝑓 div 𝑏

(2.43)

for sufficiently regular 𝑓 , the semiclassical folklore suggests that the quadratic approximations near

the zeroes of 1
4 |∇𝑉 |2 − 1

2 ⟨𝑏 , ∇𝑉 ⟩ + 𝛼(1 − 𝛼)|𝑏|2 — which coincide with the critical points of 𝑉
for 𝛼 ∈ 𝒜 — should play an important role as 𝜖 → 0. While it is possible that Proposition 2.6.3

below is known to workers in the field of semiclassical analysis, we were not able to track a convenient

reference and hence provide a complete proof in Section 2.7.

Such a quadratic approximation of the deformed conjugated generator near a critical point 𝑥𝑗 is

of the form treated in Section 2.5. In view of this analysis, we define

𝑒𝑗 (𝛼) ∶= − tr𝛸 (𝛼)
𝑗 + tr 1

2𝐷 2𝑉 |𝑥𝑗 − 𝛼 tr𝐷𝑏|𝑥𝑗 , (2.44)

for 𝛼 ∈ 𝒜, where 𝛸 (𝛼)
𝑗 is the maximal solution to the are

(𝛸 (𝛼)
𝑗 )2 − 1

2(𝛣
(𝛼)
𝑗 )T𝛸 (𝛼)

𝑗 − 1
2𝛸

(𝛼)
𝑗 𝛣 (𝛼)

𝑗 − 𝛫 (𝛼)
𝑗 = 0 (2.45)

with 𝛣 (𝛼)
𝑗 ∶= (1 − 2𝛼)𝐷𝑏|𝑥𝑗 and

𝛫 (𝛼)
𝑗 ∶= 1

4𝐷 2𝑉 |T𝑥𝑗𝐷
2𝑉 |𝑥𝑗 −

1
4 (𝐷𝑏|T𝑥𝑗𝐷

2𝑉 |𝑥𝑗 + 𝐷
2𝑉 |T𝑥𝑗𝐷𝑏|𝑥𝑗 ) + 𝛼(1 − 𝛼)𝐷𝑏|

T
𝑥𝑗𝐷𝑏|𝑥𝑗 .

We give an example in Figure 2.1.

Lemma 2.6.2. Suppose that Assumptions (RB) and (ND) are satisfied. Then, 𝑒𝑗 (0) ≤ 0 with equality
if and only if 𝑥𝑗 is a local minimum of 𝑉 .

Proof. One can check directly that 1
2𝐷 2𝑉 |𝑥𝑗 is a symmetric solution to (2.45) with 𝛼 = 0, so that

𝛸 (0)
𝑗 ≥ 1

2𝐷 2𝑉 |𝑥𝑗 and

𝑒𝑗 (0) = − tr𝛸 (0)
𝑗 + 1

2 tr𝐷 2𝑉 |𝑥𝑗 ≤ 0. (2.46)

On the other hand, Assumption (RB) yields that the matrix 0 is a subsolution to (2.45) with 𝛼 = 0,

which implies that

𝛸 (0)
𝑗 ≥ 0.
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𝛼𝑥1

𝑒

𝑉(
⋅,
0)

𝑒 = 𝑒1(𝛼)

𝑥2

𝑏

𝑒 = 𝑒3(𝛼)

𝑥11 𝑥12 𝑥13 0 1

0

Figure 2.1: We consider a polynomial potential 𝑉 ∶ 𝐑2 →𝐑with a global minimum in 𝑥1 = (𝑥11 , 0),
a saddle point in 𝑥2 = (𝑥12 , 0) and a local minimum in 𝑥3 = (𝑥13 , 0). On the left: the profile of 𝑉
for 𝑥2 ≡ 0 as well as a nonconservative vector field 𝑏 which is stationary in all those critical points

superimposed on a contour plot of 𝑉 . On the right: 𝑒1 and 𝑒3 from (2.44) are plotted as functions

of 𝛼; 𝑒2 lies below the visible region.

If 𝑥𝑗 is not local minimum, then 𝐷 2𝑉 |𝑥𝑗 is not positive semidefinite by (ND) and the inequal-

ity (2.46) must be strict.

Proposition 2.6.3. Suppose that Assumptions (L0), (L1), (RB) and (ND) are satisfied. Then, for

all 𝛼 ∈ 𝒜,

lim𝜖→0 𝑒
𝜖(𝛼) = max

𝑗=1,…,𝑚
𝑒𝑗 (𝛼). (2.47)

The convergence is uniform on compact subsets of 𝒜. The limit defines a convex and piecewise real-

analytic function 𝑒 ∶ 𝒜 → 𝐑 satisfying the symmetry 𝑒(1 − 𝛼) = 𝑒(𝛼), and 𝐷𝑒 𝜖(𝛼) converges
to𝐷𝑒(𝛼) for all 𝛼 in a dense subset of 𝒜

Proof. By (2.43), Proposition 2.5.1 and Remark 2.5.2,

max
𝑗=1,…,𝑚

𝑒𝑗 (𝛼) = max
𝑗=1,…,𝑚

spb𝑄𝛼
𝑗 (2.48)

for all 𝛼 ∈ 𝒜, where𝑄𝛼
𝑗 has the form

𝑄𝛼
𝑗 ∶= Δ + ⟨ℓ𝛣 (𝛼)

𝑗
, ∇⟩ − 𝑞𝛫 (𝛼)

𝑗
+ 1

2 tr𝐷 2𝑉 |𝑥𝑗 − 𝛼 tr𝐷𝑏|𝑥𝑗 . (2.49)
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We postpone the proof of the fact that

lim𝜖→0 𝑒
𝜖(𝛼) = max

𝑗=1,…,𝑚
spb𝑄𝛼

𝑗 (2.50)

to Section 2.7.

Let �̄� be a compact subset of 𝒜. The fact that the convergence is uniform on �̄� and that the

derivatives converge on a dense subset are well-known consequences of convexity. Each 𝑒𝑗 is real

analytic on 𝒜 by Proposition 2.5.1. Hence, the difference between any two 𝑒𝑗 and 𝑒𝑗 ′ is real analytic

and therefore has finitely many zeroes on �̄� , or 𝑒𝑗 ≡ 𝑒𝑗 ′ on 𝒜. It is no loss of generality to exclude the

second case. There must be at most finitely many points in �̄� where the maximum in (2.48) changes

index. We conclude that 𝑒 is piecewise real analytic.

Proposition 2.6.3 has the following important consequences. Note that Lemma 2.6.2 implies

that the maximum in Proposition 2.6.3 must be achieved for an index 𝑗 corresponding to a local

minimum if 𝛼 is close enough to 0. Thus, using Lemma 2.4.2,

min
𝑗 loc. min.

𝔪𝑗 ≤ lim inf𝜖→0 𝔪𝜖 ≤ lim sup
𝜖→0

𝔪𝜖 ≤ max
𝑗 loc. min.

𝔪𝑗 , (2.51)

where

𝔪𝑗 ∶= −𝐷𝑒𝑗 (𝛼)∣𝛼=0 (2.52)

for indices 𝑗 that correspond to local minima of 𝑉 . The fact that we are not able to generally

strengthen (2.51) by taking the minimum and maximum only over indices corresponding to global

minimisation of 𝑉 as in Example 2.6.1 is a drawback of the freedom of the decomposition men-

tioned in Remark 2.2.1. To see this, consider a potential 𝑉 with its global minimum achieved in two

points 𝑥𝑗 ⋆ and 𝑥𝑗 ⋆⋆ . The changes 𝑉 ↦ 𝑉 +𝛿 𝜂⋆ and 𝑏 ↦ 𝑏 +𝛿∇𝜂⋆ for a small positive number 𝛿 and

a suitable bump function 𝜂⋆ centered at 𝑥𝑗 ⋆ do not change the dynamics nor the validity of the as-

sumptions, but the new potential does not achieve its global minimum in𝑥𝑗 ⋆ . Such a freedom is gone

if we restrict are attention to decompositions where the Freidlin–Wentzell quasipotential [VF70] is

proportional to 𝑉 — as is the case in Example 2.6.1.

Recall that Proposition 2.5.3 gives that 𝔪𝑗 in (2.52) is nonnegative and equals zero if and only

if𝐷𝑏|𝑥𝑗 is symmetric. Therefore, the mean entropy production per unit time 𝔪𝜖 vanishes as 𝜖 → 0
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if 𝑏 behaves like a gradient near each local minimum of 𝑉 . On the other hand, 𝔪𝜖 is bounded away

from 0 as 𝜖 → 0 if there is no local minimum of 𝑉 near which 𝑏 behaves like a gradient. From a

thermodynamical point of view, strict positivity of the mean entropy production per unit time 𝔪𝜖

is a key signature of nonequilibrium.

The nonvanishing of 𝔪𝜖 also ensures that the content of our ldp is nontrivial. Indeed, the

intervals

𝛴 ∶= lim inf𝜖→0 {−𝐷𝑒 𝜖(𝛼) ∶ 𝛼 ∈ 𝒜}

and

𝛴 0 ∶= lim inf𝜖→0 {−𝐷𝑒 𝜖(𝛼) ∶ 𝛼 ∈ 𝛪 0},

are always nonempty, but could a priori be singletons; strict positivity of 𝔪𝜖 in the limit 𝜖 → 0 rules

out this possibility. More generally, degeneracy of these intervals is ruled out whenever there exist a

local minimum of 𝑉 near which 𝑏 does not behvae like a gradient.

Proposition 2.6.4. Suppose that Assumptions (L0), (L1), (RB), (ND) and (IPu) are satisfied. If 𝛦
is a Borel set with cl(𝛦) ⊂ int(𝛴), then

lim𝜖→0 inf
𝑠∈𝛦

𝑒 𝜖∗(𝜍) = inf
𝑠∈𝛦

𝑒∗(𝜍) (2.53)

where

𝑒∗(𝜍) ∶= sup
𝛼∈𝒜

( − 𝛼𝜍 − 𝑒(𝛼))

defines a convex and nonnegative function of 𝜍 ∈ 𝛴 .

Proof. The proposition is vacuously true if 𝛴 has empty interior. Let us now consider that int(𝛴) is

nonempty. Convexity of 𝑒∗ follows from that of 𝑒 . Since cl(𝛦) ⊂ int(𝛴), Proposition 2.6.3 ensures

that we may pick 𝛼1 and 𝛼2 in 𝒜 such that

inf𝛴 < −𝐷𝑒(𝛼1) < inf𝛦 ≤ sup𝛦 < −𝐷𝑒(𝛼2) < sup𝛴

while

lim𝜖→0 −𝐷𝑒
𝜖(𝛼1) = −𝐷𝑒(𝛼1) and lim𝜖→0 −𝐷𝑒

𝜖(𝛼2) = −𝐷𝑒(𝛼2).
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𝜍𝛼
0 1 𝔪3𝔪1−𝔪1

𝑒

0

𝑒 ∗

0

𝔪1

−𝔪3

Figure 2.2: In the case of the function 𝑒 on the left, obtained by taking the maximum of 𝑒1, 𝑒2 and 𝑒3
in Figure 2.1, the jump in the derivative from −𝔪3 to −𝔪1 at the origin causes 𝑒∗ to vanish on the

interval [𝔪1,𝔪3]. The Legendre transform 𝑒∗ is sketched on the right.

Then, for any 𝜍 ∈ 𝛦 and 𝜖 > 0 small enough, we have

−𝐷𝑒 𝜖(𝛼1) < 𝜍 < −𝐷𝑒 𝜖(𝛼2).

Therefore,

𝑒∗(𝜍) = sup
𝛼∈𝒜

( − 𝛼𝜍 − 𝑒(𝛼)) = sup
𝛼∈[𝛼2 ,𝛼1]

( − 𝛼𝜍 − 𝑒(𝛼))

and

𝑒 𝜖∗(𝜍) = sup
𝛼∈𝒜

( − 𝛼𝜍 − 𝑒 𝜖(𝛼)) = sup
𝛼∈[𝛼2 ,𝛼1]

( − 𝛼𝜍 − 𝑒 𝜖(𝛼))

for 𝜖 > 0 sufficiently small. The result thus follows from the uniform convergence of 𝑒 𝜖 to 𝑒 on the

compact interval [𝛼2, 𝛼1] in Proposition 2.6.3.

The interest of Proposition 2.6.4 of course is that it can be used in conjunction with the local

ldp of Proposition 2.4.6 for fixed 𝜖 > 0. The last part of the following theorem is illustrated by an

example sketched in Figure 2.2.

Theorem 2.6.5. If Assumptions (L0), (L1), (RB), (ND) and (IPu) are satisfied and 𝛦 is a Borel set
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with cl(𝛦) ⊂ int(𝛴 0), then

− inf
𝜍∈int(𝛦)

𝑒∗(𝜍) ≤ lim𝜖→0 lim inf𝑡→∞ 𝑡−1 log 𝒫𝜖
𝑡{𝑡−1𝒮𝜖

𝑡 ∈ 𝛦}

≤ lim𝜖→0 lim sup
𝑡→∞

𝑡−1 log 𝒫𝜖
𝑡{𝑡−1𝒮𝜖

𝑡 ∈ 𝛦} ≤ − inf
𝜍∈cl(𝛦)

𝑒∗(𝜍).

and the function 𝑒∗ ∶ 𝛴 0 → [0,∞) is continuous and satisfies the Gallavotti–Cohen symmetry

𝑒∗(𝜍) − 𝑒∗(−𝜍) = −𝜍.

If min𝑗 loc. min. 𝔪𝑗 ≠ max𝑗 loc. min. 𝔪𝑗 , then these two values define a nondegenerate interval in 𝛴 0 on

which 𝑒∗ vanishes.

Remark 2.6.6. Recall that the rate function 𝑒∗ is the Legendre transform of 𝑒 , which is in turn the

pointwise maximumamong the family {𝑒𝑗 }𝑚𝑗=1. Therefore, 𝑒∗ can be computed as the convex hull of the

family {(𝑒𝑗 )∗}𝑚𝑗=1 of Legendre transforms coming from the linearised problems near the critical points

of 𝑉 ; see Theorem 16.5 in [Roc70, Pt. III]

2.7 Convergence in the proof of Proposition 2.6.3

We devote this section to proving the semicalssical result at the core of Proposition 2.6.3, that is the

convergence expressed in (2.50) for 𝑒 𝜖(𝛼) ∶= spb𝛬𝜖,𝛼. Our proof of the lower bound

lim inf𝜖→0 spb(𝛬𝜖,𝛼) ≥ max
𝑗=1,…,𝑚

spb(𝑄𝛼
𝑗 )

uses the Protter–Weinberger characterisation of the spectral bound and follows some ideas bor-

rowed from [BNV94]. The Protter–Weinberger characterisation is a variational principle which

states that

spb𝑄𝛼
𝑗 = inf𝑢≫0 sup

𝑥

(𝑄𝛼
𝑗 𝑢)(𝑥)
𝑢(𝑥) ,

where the infimum is taken over all strictly positive function 𝑢 of class 𝐶 2, and similarly for other

uniformly elliptic operators; see [PW66, DV75, NP92]. Our proof of the upper bound

lim sup
𝜖→0

spb(𝛬𝜖,𝛼) ≤ max
𝑗=1,…,𝑚

spb(𝑄𝛼
𝑗 )
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is inspired by B. Simon’s localisation argument in the self-adjoint case [Sim83], with the Rayleigh–

Ritz principle replaced by the Protter–Weinberger principle.

Let us mention that the selfadjoint case was also covered by B. Helffer and J. Sjöstrand in a se-

ries of papers starting with [HS84] using different methods. In the non-selfadjoint case, a collec-

tion of similar results are available, even beyond the elliptic case, but under some extra smoothness

and growth conditions; see e.g. [HSS05, HPS13]. Under minimal regularity assumptions for the

quadratic expansion to make sense, W. H. Flemming and Sh.-J. Sheu proved a similar result in the

case of a single minimum; see [FS97].

We fix 𝛼 ∈ 𝒜 for the rest of the section and omit the corresponding superscript from the nota-

tion. We show in Appendix 2.A (take 𝑝 = 2 there) that the spectral properties of𝛬𝜖 can be deduced

from those of the operator

𝛢𝜖 ∶= 𝜖Δ + ⟨𝐹 , ∇⟩ − 𝜖−1𝑊0 −𝑊1

on the space L2(𝐑𝛮 , dvol), with domain

D2 ∶= {𝑓 ∈ W2,2(𝐑𝛮 , dvol) ∶ |∇𝑉 |2𝑓 ∈ L2(𝐑𝛮 , dvol)},

with the auxiliary vector field

𝐹 ∶= (1 − 2𝛼)𝑏

and the auxiliary potentials

𝑊0 ∶= 1
4 |∇𝑉 |2 − 1

2 ⟨𝑏 , ∇𝑉 ⟩ + 𝛼(1 − 𝛼)|𝑏|2 and 𝑊1 ∶= −1
2Δ𝑉 + 𝛼 div 𝑏 .

We will use the fact that, 𝐹 ,𝑊0 and𝑊1 are of class𝐶 2,𝐶 3 and𝐶 1 respectively, but these assumptions

can be slightly relaxed if necessary. With

ℓ𝑗 (𝑥) ∶= 𝐷𝐹 |𝑥𝑗 (𝑥 − 𝑥𝑗 ),

𝑞𝑗 (𝑥) ∶= 1
2 ⟨𝑥 − 𝑥𝑗 , 𝐷 2𝑊0|𝑥𝑗 (𝑥 − 𝑥𝑗 )⟩

and

𝑤𝑗 ∶= −1
2 tr𝐷 2𝑉 |𝑥𝑗 + 𝛼 tr𝐷𝑏|𝑥𝑗
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for each index 𝑗 = 1, … ,𝑚, we set

𝑄𝜖
𝑗 ∶= 𝜖Δ + ⟨ℓ𝑗 , ∇⟩ − 𝜖−1𝑞𝑗 − 𝑤𝑗 .

This is the best approximation of 𝛢𝜖 near 𝑥𝑗 which is of the form considered in Section 2.5. Its

leading eigenvalue admits 𝜙 𝜖𝑗 ∶= exp(−(2𝜖)−1 ⟨𝑥 − 𝑥𝑗 , 𝛸𝑗 (𝑥 − 𝑥𝑗 )⟩) as an eigenvector, where 𝛸𝑗 is

positive definite and satisfies the are

𝛸 2
𝑗 − 1

2𝐷𝐹 |T𝑥𝑗𝛸𝑗 −
1
2𝛸𝑗𝐷𝐹 |𝑥𝑗 =

1
2𝐷 2𝑊0|𝑥𝑗 . (2.54)

Note that𝑄𝑗 defined in (2.49) coincides with𝑄1
𝑗 and that the leading eigenvalue spb𝑄𝜖

𝑗 is indepen-

dent of 𝜖.

Lower bound. If Assumptions (L0), (L1), (RB) and (ND) are satisfied, then

lim inf𝜖→0 spb(𝛢𝜖) ≥ max
𝑗=1,…,𝑚

spb(𝑄𝑗 ).

Let 𝑗 ∈ {1, … ,𝑚} and𝛫 ∈ (0, ∞) be arbitrary. Then,

inf𝑢≫0 sup
𝑥∈𝛣(𝑥𝑗 ,𝛫)

(𝑄𝑗𝑢)(𝑥)
𝑢(𝑥) = inf𝑢≫0 sup

𝑥∈𝛣(𝑥𝑗 ,𝜖1/2𝛫)

(𝑄𝜖
𝑗𝑢)(𝑥)
𝑢(𝑥) ,

with the infimum taken over all strictly positive fonctions 𝑢 of class𝐶 2. In view of Lemma 2.A.6, we

may pick a strictly positive eigenfunction 𝜓 𝜖 for the eigenvalue spb(𝛢𝜖) of 𝛢𝜖 which is of class 𝐶 2.

Hence,

inf𝑢≫0 sup
𝑥∈𝛣(𝑥𝑗 ,𝛫)

(𝑄𝑗𝑢)(𝑥)
𝑢(𝑥) ≤ sup

𝑥∈𝛣(𝑥𝑗 ,𝜖1/2𝛫)

(𝑄𝜖
𝑗 (𝜓 𝜖)𝑎)(𝑥)
(𝜓 𝜖(𝑥))𝑎 . (2.55)

Now, by the chain rule and Young’s inequality,

(𝑄𝜖
𝑗 (𝜓 𝜖)𝑎)(𝑥)
(𝜓 𝜖(𝑥))𝑎 − 𝑎(𝛢𝜖𝜓 𝜖)(𝑥)

(𝜓 𝜖(𝑥)) =
𝑎(𝑄𝜖

𝑗𝜓 𝜖)(𝑥)
(𝜓 𝜖(𝑥)) + 𝜖𝑎(𝑎 − 1)|∇𝜓 𝜖(𝑥)|2

(𝜓 𝜖(𝑥))2 − 𝑎(𝛢𝜖𝜓 𝜖)(𝑥)
(𝜓 𝜖(𝑥))

≤ 𝜖−1|𝑊0(𝑥) − 𝑞𝑗 (𝑥)| + |𝑊1(𝑥) − 𝑤𝑗 (𝑥)|

+
|𝐹 (𝑥) − ℓ𝑗 (𝑥)||∇𝜓 𝜖(𝑥)|

𝜓 𝜖(𝑥) − 𝜖𝑎|1 − 𝑎||∇𝜓 𝜖(𝑥)|2
|𝜓 𝜖(𝑥)|2

≤ 𝜖−1|𝑊0(𝑥) − 𝑞𝑗 (𝑥)| + |𝑊1(𝑥) − 𝑤𝑗 (𝑥)| +
|𝐹 (𝑥) − ℓ𝑗 (𝑥)|2

4𝜖𝑎|1 − 𝑎| .
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Using the above in (2.55) and exploiting the regularity of 𝐹 ,𝑊0 and𝑊1, we deduce that

inf𝑢≫0 sup
𝑥∈𝛣(𝑥𝑗 ,𝛫)

(𝑄𝑗𝑢)(𝑥)
𝑢(𝑥) ≤ 𝑎 spb(𝛢𝜖) + 𝐶(𝜖3𝑟 −1 + 𝜖 𝑟 + 1

4𝑎(1 − 𝑎)𝜖
4𝑟 −1).

for some constant 𝐶 which is uniform in 𝑎 and 𝜖. Taking 𝜖 → 0 and then 𝑎 → 1 and using the

Protter–Weinberger principle for the leading eigenvalue, we obtain

spb (𝑄𝑗↾𝛣(𝑥𝑗 ,𝛫) ) ≤ lim inf𝜖→0 spb(𝛬𝜖).

Here, “↾𝛣(𝑥𝑗 ,𝛫)” denotes the restriction to 𝛣(𝑥𝑗 , 𝛫) with Dirichlet boundary condition. Taking

𝛫 → ∞ gives the desired lower bound.

Upper bound. If Assumptions (L0), (L1), (RB) and (ND) are satisfied, then

lim sup
𝜖→0

spb(𝛢𝜖) ≤ max
𝑗=1,…,𝑚

spb(𝑄𝑗 ).

Let 𝜒 ∶ [0, ∞) → [0, 1] be a function of class 𝐶 2 such that 𝜒(𝜌) = 1 for 𝜌 ∈ [0, 1], 𝜒 is strictly

decreasing on (1, 4) and 𝜒(𝜌) = 0 for 𝜌 ∈ [4, ∞). Note that the following quantity defined for

𝛽 ∈ [12 , 1) vanishes as 𝛽 → 1:

𝛾𝛽 ∶= sup
𝜒(𝜌)≥𝛽

|∇𝜒(𝜌)| + |Δ𝜒(𝜌)|.

In order to focus on small neighbourhoods around the minima of𝑊0 , but which yet are large com-

pared to the width of the eigenfunction 𝜙 𝜖𝑗 of𝑄𝜖
𝑗 , we fix some

𝑟 ∈ (13 , 12 )

and set

𝜂𝜖𝑗 (𝑥) ∶= 𝜒(𝜖−2𝑟 ⟨𝑥 − 𝑥𝑗 , 𝛸𝑗 (𝑥 − 𝑥𝑗 )⟩)

for 𝑗 = 1, … ,𝑚, and

𝜂𝜖0 (𝑥) ∶= 1 −
𝑚
∑
𝑗=1

𝜂𝜖𝑗 (𝑥).



72 CHAPTER 2

We consider 𝜖 ∈ (0, 𝜖0) with 𝜖0 > 0 small enough to guarantee supp 𝜂𝜖𝑗 ∩ supp 𝜂𝜖𝑗 ′ = ∅ if 1 ≤ 𝑗 <
𝑗 ′ ≤ 𝑚. We set

𝑓 𝜖𝛽 (𝑥) ∶= 𝜅𝜖𝛽𝜂𝜖0 (𝑥) +
𝑚
∑
𝑗=1

𝜂𝜖𝑗 (𝑥)𝜙 𝜖𝑗 (𝑥),

where

𝜅𝜖𝛽 ∶= e−
1
2 𝜒

−1(𝛽)𝜖2𝑟 −1 .

By the Protter–Weinberger principle,

spb𝛢𝜖 ≤ sup
𝑥∈𝐑𝛮

(𝛢𝜖𝑓 𝜖𝛽 )(𝑥)
𝑓 𝜖𝛽 (𝑥)

= max { sup
𝑥∶𝜂𝜖0 (𝑥)>1−𝛽

(𝛢𝜖𝑓 𝜖𝛽 )(𝑥)
𝑓 𝜖𝛽 (𝑥)

, max
𝑗=1,…,𝑚

{ sup
𝑥∶𝜂𝜖𝑗 (𝑥)≥𝛽

(𝛢𝜖𝑓 𝜖𝛽 )(𝑥)
𝑓 𝜖𝛽 (𝑥)

}}.
(2.56)

Using Lemmas 2.7.2 and 2.7.3 below in (2.56) and taking 𝜖 → 0 yields

lim sup
𝜖→0

spb𝛢𝜖 ≤ max
𝑗=1,…,𝑚

𝛽 spb𝑄𝑗 + (𝛽−1 − 𝛽)|𝑤𝑗 | + 𝐶𝛾𝛽

for some positive constant 𝐶 independent of 𝛽 . Because 𝛽 ∈ [12 , 1) was arbitrary and both 𝛾𝛽 → 0
and 𝛽−1 − 𝛽 → 0 as 𝛽 → 1, we conclude that

lim sup
𝜖→0

spb𝛢𝜖 ≤ max
𝑗=1,…,𝑚

spb𝑄𝑗 .

Before we state and prove Lemmas 2.7.2 and 2.7.3 to conclude the proof of the upper bound, let us

give a collection of bounds which follow from the observation that 𝜂𝜖𝑗 (𝑥) ≥ 𝛽 if and only if 𝜙 𝜖𝑗 (𝑥) ≥
𝜅𝜖𝛽 .

Lemma 2.7.1. There exists a constant 𝐶 with the following property:

i. if 𝜂𝜖0 (𝑥) > 1 − 𝛽 , then 0 < 𝜙 𝜖𝑗 (𝑥)
𝑓 𝜖𝛽 (𝑥)

< 𝜅𝜖𝛽
𝑓 𝜖𝛽 (𝑥)

< 1
1−𝛽 and 𝜖 𝑟 |∇𝜂𝜖𝑗 (𝑥)| + 𝜖2𝑟 |Δ𝜂𝜖𝑗 (𝑥)| ≤ 𝐶 for

each 𝑗 ∈ {1, … ,𝑚};

ii. if 𝜂𝜖𝑗 (𝑥) ≥ 𝛽 , then 0 ≤
𝜅𝜖𝛽

𝑓 𝜖𝛽 (𝑥)
≤ 1 ≤ 𝜙 𝜖𝑗 (𝑥)

𝑓 𝜖𝛽 (𝑥)
≤ 1

𝛽 and 𝜖 𝑟 |∇𝜂𝜖𝑗 (𝑥)| + 𝜖2𝑟 |Δ𝜂𝜖𝑗 (𝑥)| ≤ 𝐶𝛾𝛽 .

Lemma 2.7.2. There exists strictly positive constants 𝐶 and 𝛿 such that

sup
𝑥∶𝜂𝜖0 (𝑥)>1−𝛽

(𝛢𝜖𝑓 𝜖𝛽 )(𝑥)
𝑓 𝜖𝛽 (𝑥)

≤ −(1 − 𝛽)𝛿𝜖2𝑟 −1 + 𝐶

for all 𝜖 ∈ (0, 𝜖0) and all 𝛽 ∈ [12 , 1).
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Proof. Let 𝑥 such that 𝜂𝜖0 (𝑥) > 1−𝛽 be arbitrary. Throughout the proof, the big𝛰 notation refers

to constants that are uniform in 𝑥, 𝜖 and 𝛽 . We compute

∇𝑓 𝜖𝛽 (𝑥) = 𝜅𝜖𝛽∇𝜂𝜖0 (𝑥) +
𝑚
∑
𝑗=1

𝜙 𝜖𝑗 (𝑥)∇𝜂𝜖𝑗 (𝑥) − 𝜖−1𝜂𝜖𝑗 (𝑥)𝜙 𝜖𝑗 (𝑥)𝛸𝑗 (𝑥 − 𝑥𝑗 ), (2.57)

Δ𝑓 𝜖𝛽 (𝑥) = 𝜅𝜖𝛽Δ𝜂𝜖0 (𝑥) +
𝑚
∑
𝑗=1

𝜙 𝜖𝑗 (𝑥)Δ𝜂𝜖𝑗 (𝑥) + 2𝜖−1 ⟨𝜙 𝜖𝑗 (𝑥)𝛸𝑗 (𝑥 − 𝑥𝑗 ), ∇𝜂𝜖𝑗 (𝑥)⟩

− 𝜖−1𝜂𝜖𝑗 (𝑥)𝜙 𝜖𝑗 (𝑥) tr𝛸𝑗 + 𝜖−2𝜂𝜖𝑗 (𝑥)𝜙 𝜖𝑗 (𝑥)|𝛸𝑗 (𝑥 − 𝑥𝑗 )|2.
(2.58)

Hence, using Lemma 2.7.1.i and the fact that |𝐹 (𝑥)| = 𝛰(𝜖 𝑟 ) on supp∇𝜂𝜖0 and supp∇𝜂𝜖𝑗 ,

𝜖Δ𝑓 𝜖𝛽 (𝑥) + ⟨𝐹 (𝑥), ∇𝑓 𝜖𝛽 (𝑥)⟩
𝑓 𝜖𝛽

=
𝑚
∑
𝑗=1

𝜙 𝜖𝑗 (𝑥)𝜂𝜖𝑗 (𝑥)
𝜖𝑓 𝜖𝛽 (𝑥)

⟨𝑥 − 𝑥𝑗 , 𝛸 2
𝑗 (𝑥 − 𝑥𝑗 ) − 𝛸𝑗𝐹 (𝑥)⟩ + 𝛰(1).

Using |𝐹 − ℓ𝑗 | = 𝛰(𝜖2𝑟 ) on supp 𝜂𝜖𝑗 and then the are, we obtain

𝜖Δ𝑓 𝜖𝛽 (𝑥) + ⟨𝐹 (𝑥), ∇𝑓 𝜖𝛽 (𝑥)⟩
𝑓 𝜖𝛽

= 𝜖−1
𝑚
∑
𝑗=1

𝜙 𝜖𝑗 (𝑥)𝜂𝜖𝑗 (𝑥)
𝑓 𝜖𝛽 (𝑥)

𝑞𝑗 (𝑥) + 𝛰(1).

Using Lemma 2.7.1.i again,
𝜖Δ𝑓 𝜖𝛽 (𝑥) + ⟨𝐹 (𝑥), ∇𝑓 𝜖𝛽 (𝑥)⟩

𝑓 𝜖𝛽
≤ 𝜖−1𝛽

𝑚
∑
𝑗=1

𝟏supp 𝜂𝜖𝑗 𝑞𝑗 (𝑥) + 𝛰(1). (2.59)

Substracting

𝜖−1𝑊0 +𝑊1 ≥ 𝜖−1𝛽(
𝑚
∑
𝑗=1

𝟏supp𝜂𝜖𝑗
𝑊0) + (1 − 𝛽)𝑊0 + 𝛰(1)

— we have used (L0) and 𝛼 ∈ 𝒜 to obtain 𝛽𝜖−1(1 − ∑𝑗 𝟏supp 𝜂𝜖𝑗 )𝑊0 + 𝑊1 ≥ 𝛰(1)— from (2.59),

we obtain
(𝛢𝜖𝑓 𝜖𝛽 )(𝑥)
𝑓 𝜖𝛽 (𝑥)

≤ 𝜖−1
𝑚
∑
𝑗=1

𝛽𝟏supp𝜂𝜖𝑗
(𝑥)(𝑞𝑗 (𝑥) − 𝑊0(𝑥)) − 𝜖−1(1 − 𝛽)𝑊0(𝑥) + 𝛰(1).

Now, because |𝑊0 − 𝑞𝑗 | = 𝛰(𝜖3𝑟 ) on supp 𝜂𝜖𝑗 , we have

(𝛢𝜖𝑓 𝜖𝛽 )(𝑥)
𝑓 𝜖𝛽 (𝑥)

≤ 𝜖−1𝛽𝛰(𝜖3𝑟 ) − 𝜖−1(1 − 𝛽)𝑊0(𝑥) + 𝛰(1).

Because𝑊0 ≥ 0 with nondegenerate zeroes precisely in {𝑥𝑗 }𝑚𝑗=1, and because the set {𝑥 ∶ 𝜂𝜖𝑗 (𝑥) < 𝛽}
excludes a ball of radius of order 𝜖 𝑟 around 𝑥𝑗 , there exists a strictly positive constant 𝛿 > 0 such that

𝑊0(𝑥) > 𝛿𝜖2𝑟 for all 𝑥 such that 𝜂𝜖0 (𝑥) > 1 − 𝛽 .
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Lemma 2.7.3. There exists a positive constant 𝐶 such that

sup
{𝜂𝜖𝑗 (𝑥)≥𝛽}

(𝛢𝜖𝑓 𝜖𝛽 )(𝑥)
𝑓 𝜖𝛽 (𝑥)

≤ 𝛽 spb𝑄𝜖
𝑗 + (𝛽−1 − 𝛽)|𝑤𝑗 | + 𝐶(𝛾𝛽(1 + 𝛽−1)(1 + 𝜖1−2𝑟 ) + 𝜖3𝑟 −1 + 𝜖 𝑟 ).

for all 𝜖 ∈ (0, 𝜖0) and all 𝛽 ∈ [12 , 1).

Proof. Let 𝑥 such that 𝜂𝜖𝑗 (𝑥) ≥ 𝛽 be arbitrary. In particular, |𝑥 − 𝑥𝑗 | = 𝛰(𝜖 𝑟 ). Throughout the

proof, the big 𝛰 notation refers to constants that are independent of 𝑥, 𝜖 and 𝛽 . By (2.57), (2.58),

Lemma 2.7.1.ii and the fact that |𝐹 | = 𝛰(𝜖 𝑟 ),

∣
(𝛢𝜖𝑓 𝜖𝛽 )(𝑥)
𝑓 𝜖𝛽 (𝑥)

−
𝜂𝜖𝑗 (𝑥)(𝛢𝜖𝜙 𝜖𝑗 )(𝑥)

𝑓 𝜖𝛽 (𝑥)
∣ ≤ 𝐶𝛾𝛽(1 + 𝛽−1)(𝜖1−2𝑟 + 1). (2.60)

Now, using |𝐹 (𝑥) − ℓ𝑗 (𝑥)| = 𝛰(𝜖2𝑟 ), ∇𝜙 𝜖𝑗 (𝑥)/𝜙 𝜖𝑗 (𝑥) = 𝜖−1𝛰(𝜖 𝑟 ), |𝑊0(𝑥) − 𝑞𝑗 (𝑥)| = 𝛰(𝜖3𝑟 )
and |𝑊1(𝑥) − 𝑤𝑗 (𝑥)| = 𝛰(𝜖 𝑟 ) for 𝑥 ∈ supp 𝜂𝜖𝑗 ,

𝜂𝜖𝑗 (𝑥)(𝛢𝜖𝜙 𝜖𝑗 )(𝑥)
𝑓 𝜖𝛽 (𝑥)

=
𝜂𝜖𝑗 (𝑥)𝜙 𝜖𝑗 (𝑥)
𝑓 𝜖𝛽 (𝑥)

(
([𝑄𝜖

𝑗 − |𝑤𝑗 |]𝜙 𝜖𝑗 )(𝑥)
𝜙 𝜖𝑗 (𝑥)

+ |𝑤𝑗 | + 𝜖−1𝛰(𝜖3𝑟 ) + 𝛰(𝜖 𝑟 )).

Because 𝜙 𝜖𝑗 is an eigenvector of [𝑄𝜖
𝑗 − |𝑤𝑗 |] with eigenvalue spb𝑄𝑗 − |𝑤𝑗 | ≤ 0 and because the

prefactor on the right-hand side lies in the interval [𝛽, 𝛽−1] by Lemma 2.7.1.ii, we have

𝜂𝜖𝑗 (𝑥)(𝛢𝜖𝜙 𝜖𝑗 )(𝑥)
𝑓 𝜖𝛽 (𝑥)

≤ 𝛽 spb𝑄𝑗 + (𝛽−1 − 𝛽)|𝑤𝑗 | + 𝐶(𝜖3𝑟 −1 + 𝜖 𝑟 ). (2.61)

Combining (2.60) and (2.61) and using the fact that 𝜂𝜖𝑗 (𝑥) ≥ 𝛽 implies |𝐹 (𝑥)| = 𝛰(𝜖 𝑟 ), we con-

clude that a bound of the proposed form indeed holds.

2.A Properties of the deformed generators

In this appendix, we collect some results from the theory of semigroups applied to partial differential

equations involving elliptic operators of the form

𝛬𝜖,𝛼 ∶= 𝜖Δ + ⟨−∇𝑉 + (1 − 2𝛼)𝑏 , ∇⟩ − 𝛼(1−𝛼)
𝜖 |𝑏 |2 + 𝛼

𝜖 ⟨𝑏 , ∇𝑉 ⟩ − 𝛼 div 𝑏 (2.62)
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appearing in Sections 2.4, 2.6 and 2.7 of the paper, similarly as in Appendix A of [BDG15] (the

case where 𝑏 is bounded). They are deformations of the infinitesimal generator of the semigroup

associated to (2.5).

We use technical results from the article [MPSR05], Chapter 1 of [Lan97] and Chapters A-

I, C-IV and B-IV of [AGG+86]. Throughout this section, whenever we refer to 𝑉 and 𝑏 , we as-

sume that (L0), (L1) and (RB) hold. Also, we write L𝑝(𝐑𝛮 ) for L𝑝(𝐑𝛮 , dvol), and similarly for

the Sobolev spaces. For the spaces 𝐶(𝐑𝛮 ) of continuous functions and 𝐶 𝑘(𝐑𝛮 ) of 𝑘-times dif-

ferentiable functions, the subscript “0” is used for “vanishing at infinity”, and “c” for “compactly

supported”.

For 𝑝 ∈ (1, ∞), a straightforward computation shows that

e−(𝑝𝜖)
−1𝑉 𝛬𝛼,𝜖(e(𝑝𝜖)−1𝑉 𝑓 ) = 𝜖Δ𝑓 + ⟨𝐹𝑝 , ∇𝑓 ⟩ − 𝛺𝑝𝑓

for all 𝑓 ∈ 𝐶 2
c (𝐑𝛮 ), where

𝐹𝑝 ∶= ( 2𝑝 − 1)∇𝑉 + (1 − 2𝛼)𝑏 ,

𝛺𝑝 ∶= 1
𝜖𝑊0 − 1

𝑝Δ𝑉 + 𝛼 div 𝑏

and

𝑊0 ∶= 1
𝑝 (1 − 1

𝑝 )|∇𝑉 |2 −
1−2𝛼+𝛼𝑝

𝑝 ⟨𝑏 , ∇𝑉 ⟩ + 𝛼(1 − 𝛼)|𝑏|2.

For technical reasons, we need to restrict our attention to a certain 𝛼-dependent set of powers 𝑝 . We

introduce an admissibility condition for the pair (𝛼, 𝑝).

Definition 2.A.1. The pair (𝛼, 𝑝) ∈ 𝐑 × (1, ∞) is said to be admissible if there exists ℓ ∈ (0, 1) such
that

ℓ 1
𝑝 (1 − 1

𝑝 )|∇𝑉 (𝑥)|2 −
1−2𝛼+𝛼𝑝

𝑝 ⟨𝑏 (𝑥), ∇𝑉 (𝑥)⟩ + 𝛼(1 − 𝛼)|𝑏(𝑥)|2 ≥ 0

for all 𝑥 ∈ 𝐑𝛮 .

The next lemma — whose proof follows from straightforward applications of (RB) and the

Cauchy–Schwarz inequality — gives concrete sufficient conditions for admissibility. These condi-

tions are illustrated in Figure 2.3.



76 CHAPTER 2

𝛼0 1 𝛼0 1 𝛼0 1

𝑝

1
𝑘𝑏

1
1−𝑘𝑏

Figure 2.3: The orange region enclosed in the solid contours is the set of values allowed in

Lemma 2.A.2 computed for (𝑘𝑏 , ℎ𝑏 ) = (0.33, 0.7 5), (0.33, 1.5) and (0.49 , 1.5)— from left to right.

Lemma 2.A.2. Let 𝑘𝑏 ∈ [0, 12 ) and ℎ𝑏 ∈ [0, ∞) be as in assumption (RB). If

1 − 2𝛼 + 𝛼𝑝 ≥ 0

and either

i. we have 𝛼(1 − 𝛼) ≥ 0 and 1 − 𝑝−1 − (1 − 2𝛼 + 𝛼𝑝)𝑘𝑏 > 0 or

ii. we have 𝛼(1 − 𝛼) < 0 and 1 − 𝑝−1 − (1 − 2𝛼 + 𝛼𝑝)𝑘𝑏 − 𝑝𝛼(𝛼 − 1)ℎ𝑏 > 0,

then the pair (𝛼, 𝑝) is admissible. In particular, if 𝑝 is fixed in the interval ( 1
1−𝑘𝑏 ,

1
𝑘𝑏 ), then the

pair (𝛼, 𝑝) is admissible for all 𝛼 in an open interval containing [0, 1].

Until further notice, we fix 𝛼, 𝑝 and ℓ as in the admissibility condition. By Assumption (L0)

and the fact that 𝐹 is globally Lipschitz, there exist 𝑐0𝑝 and 𝜃 ∈ (0, 1) such that

| div 𝐹𝑝 | ≤ 𝜃 ((1 − ℓ ) 1𝜖𝑝 (1 − 1
𝑝 )|∇𝑉 |2 + 𝑐0𝑝). (2.63)

Set

𝑈𝑝 ∶= (1 − ℓ ) 1𝜖𝑝 (1 − 1
𝑝 )|∇𝑉 |2 + 𝑐0𝑝 .

Using the same properties again, we may pick 𝜅 such that

|𝐹𝑝 | ≤ 𝜅𝑈
1
2
𝑝 . (2.64)
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Using Assumption (L0) and the admissibility condition, we can pick positive constants 𝑐𝑝 and 𝑐1𝑝
such that

𝑈𝑝 ≤ 𝛺𝑝 + 𝑐𝑝 ≤ 𝑐1𝑝𝑈𝑝 . (2.65)

Lemma 2.A.3. Suppose that the pair (𝛼, 𝑝) is admissible. Then, the operator

𝛢𝑝 ∶= 𝜖Δ + ⟨𝐹𝑝 , ∇⟩ − 𝛺𝑝 − 𝑐𝑝

with domain

D𝑞 ∶= {𝑓 ∈ W2,𝑞(𝐑𝛮 ) ∶ 𝑈𝑝𝑓 ∈ L𝑞(𝐑𝛮 )}

is closedas anunbounded operator onL𝑞(𝐑𝛮 )andgenerates ananalytic, compact, positivity-preserving

semigroup on L𝑞(𝐑𝛮 ) for all 𝑞 ∈ (1, ∞). With domain

D∞ ∶= {𝑓 ∈ 𝐶0(𝐑𝛮 ) ∶ 𝑓 ∈ W2,𝑞
loc for all 𝑞 ∈ (1, ∞) andΔ𝑓 , 𝑈𝑝𝑓 ∈ 𝐶0(𝐑𝛮 )},

it is closed as an unbounded operator on 𝐶0(𝐑𝛮 ) and generates a positivity-preserving semigroup

on 𝐶0(𝐑𝛮 ) which is analytic and compact.

Proof. For any real number 𝑟 > 0, by (L0) and Cauchy’s inequality, there exists 𝐶𝑝,𝑟 > 0 such that

|∇𝑈𝑝 | ≤ 16𝑟 𝑈
3
2
𝑝 + 𝐶𝑝,𝑟 . (2.66)

The bounds (2.63)–(2.66) precisely give hypotheses (H2)–(H5) of [MPSR05]. Therefore, Theo-

rem 3.4 in [MPSR05] gives that (𝛢𝑝 ,D𝑞) generates a holomorphic positivity-preserving semigroup

on L𝑞(𝐑𝛮 ), and Theorem 4.4 in [MPSR05] gives that (𝛢𝑝 ,D∞) generates a holomorphic positivity-

preserving semigroup on 𝐶0(𝐑𝛮 ). Compactness follows from Proposition 6.4 in [MPSR05].

Lemma2.A.4. The semigroups inLemma2.A.3 coincide on the intersection of their spaces of definition

and are all irreducible (positivity improving) on their respective spaces.

Proof. The first part of the lemma is proved as Lemma 4.3 in [MPSR05]. The second part follows

from the strong maximal principle; see Step 6 in the proof of Lemma A.1 in [BDG15].



78 CHAPTER 2

Lemma 2.A.5. Suppose that the pair (𝛼, 𝑝) is admissible and let

𝑠𝑝 ∶= sup{Re 𝑧 ∶ 𝑧 ∈ sp(𝛢𝑝 ,D𝑝)}.

Then, 𝑠𝑝 is a simple isolated eigenvalue and there exist a strictly positive vector �̃�𝑝 ∈ D𝑝 and a strictly

positive functional �̃�𝑝 on L𝑝(𝐑𝛮 ) such that

lim𝑡→∞ ∥e−𝑡𝑠𝑝 e𝑡𝛢𝑝𝑓 − �̃�𝑝(�̃�𝑝 , 𝑓 )∥𝑝 = 0 (2.67)

for all 𝑓 ∈ L𝑝(𝐑𝛮 ).

Proof. The first part of the lemma is a well-established consequence of irreducibility, compactness

and preservation of positivity; see Theorem 2.1 and Remark 2.2(e) in [AGG+86, Ch. C-IV].

Lemma 2.A.6. For all 𝑓 ∈ 𝐶c(𝐑𝛮 ), the convergence expressed in (2.67) holds in the norm ‖ ⋅ ‖𝑞 for
all 𝑞 ∈ (1, ∞]. Moreover, the vector �̃�𝑝 has a representative which is strictly positive, twice continuously
differentiable, vanishes at infinity and belongs to L𝑞(𝐑𝛮 ) for all 𝑞 ∈ (1, ∞]. If (𝛼, 𝑝) and (𝛼, 𝑝 ′) are
both admissible, then 𝑠𝑝 + 𝑐𝑝 conicides with 𝑠𝑝 ′ + 𝑐𝑝 ′ .

Proof. By the same argument giving Lemma 2.A.5, there exist a real number �̄�𝑝,𝑞 , a strictly positive

vector �̄�𝑝,𝑞 ∈ D𝑞 and a strictly positive functional �̄�𝑝,𝑞 on L𝑞(𝐑𝛮 ) or 𝐶0(𝐑𝛮 ) such that

lim𝑡→∞ ∥e−𝑡 �̄�𝑝,𝑞 e𝑡𝛢𝑝𝑓 − �̄�𝑝,𝑞(�̄�𝑝,𝑞 , 𝑓 )∥𝑞 = 0 (2.68)

for all 𝑓 in L𝑞(𝐑𝛮 ) or𝐶0(𝐑𝛮 ); see Corollary 2.2 in [AGG+86, Ch. B-IV] for 𝑞 = ∞. Taking a com-

mon nonnegative 𝑓 ∈ 𝐶c(𝐑𝛮 )\{0} in both (2.67) and (2.68) and using Lemma 2.A.4 gives �̄�𝑝,𝑞 = 𝑠𝑝
and �̄�𝑝,𝑞 ∝ �̃�𝑝 . Because 𝛢𝑝 + 𝑐𝑝 and 𝛢𝑝 ′ + 𝑐𝑝 ′ are related by a conjugation which preserves 𝐶c(𝐑𝛮 ),
a similar argument also yields that e.g. �̄�𝑝,∞ + 𝑐𝑝 coincides with �̄�𝑝 ′,∞ + 𝑐𝑝 ′ .

Note that �̃�2 is in a Hölder space 𝐶 1,𝛽(𝐑𝛮 ) with 𝛽 ∈ (0, 1) by a Sobolev embedding. The

approximation method for inferring that �̃�2 belongs to 𝐶 2,𝛽(𝐑𝛮 ) via classical interior Schauder

estimates and the maximum principle is carried out in [Lan97, §1.8].

It is proved as part of Theorem 7.4 in [MPSR05] that the isometry 𝑓 ↦ e(𝑝𝜖)
−1𝑉 𝑓 between

the Banach spaces L𝑝(𝐑𝛮 ) and L𝑝(𝐑𝛮 , d𝜇𝜖0) used to introduce 𝛢𝑝 maps the domain D𝑝 to the
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space W2,𝑝(𝐑𝛮 , d𝜇𝜖0). Hence, it follows immediately from Lemmas 2.A.3 and 2.A.4 that 𝛬𝛼,𝜖 with

domain W2,𝑝(𝐑𝛮 , d𝜇𝜖0)) is the generator of an analytic semigroup which is compact and irreducible,

provided that (𝛼, 𝑝) is admissible. Also, by Lemmas 2.A.5 and 2.A.6,

𝑒 𝜖(𝛼) ∶= sup{Re 𝑧 ∶ 𝑧 ∈ sp(𝛬𝛼,𝜖 ,W2,𝑝(𝐑𝛮 , d𝜇𝜖0))}

is indeed independent of 𝑝 and admits an eigenvector with the properties stated in the proposition

below.

Proposition 2.A.7. Let the pair (𝛼, 𝑝) be admissible. Then, 𝑒 𝜖(𝛼) is a simple isolated eigenvalue

of (𝛬𝛼,𝜖 ,W2,𝑝(𝐑𝛮 , d𝜇𝜖0)) and there exists a strictly positive associated eigenfunction 𝜓 𝛼,𝜖 ∈ 𝐶 2(𝐑𝛮 )∩
W2,𝑝(𝐑𝛮 , d𝜇𝜖0) and a strictly positive linear functional 𝑢𝛼,𝜖 on L𝑝(𝐑𝛮 , d𝜇𝜖0) such that

lim𝑡→∞ ∥e−𝑡𝑒
𝜖(𝛼)e𝑡𝛬

𝛼,𝜖𝑓 − 𝜓 𝛼,𝜖(𝑢𝛼,𝜖 , 𝑓 )𝜇𝜖0∥L𝑝 (𝐑𝛮 ,d𝜇𝜖0)
= 0

for all 𝑓 ∈ L𝑝(𝐑𝛮 , d𝜇𝜖0).

Lemma 2.A.8. The measure 𝜆𝜖inv is of the form

𝜆𝜖inv(d𝑥) = e−(2𝜖)
−1𝑉 (𝑥)𝜑 𝜖(𝑥) d𝑥

for some strictly positive function 𝜑 𝜖 ∈ 𝐶 2
0 (𝐑𝛮 ) ∩ L2(𝐑𝛮 ).

Proof. Consider the operator (𝛢2,D2) introduced in the case 𝛼 = 1, that is

𝛢2 = 𝜖Δ − ⟨𝑏 , ∇⟩ − 1
4𝜖 |∇𝑉 |2 + 1

2𝜖 ⟨𝑏 , ∇𝑉 ⟩ + 1
2Δ𝑉 − div 𝑏 − 𝑐2.

One can show that its adjoint has domain D2 and is given by the formula

𝛢∗
2 = 𝜖Δ + ⟨𝑏 , ∇⟩ − 1

4𝜖 |∇𝑉 |2 + 1
2𝜖 ⟨𝑏 , ∇𝑉 ⟩ + 1

2Δ𝑉 − 𝑐2.

Note that𝛢∗
2 just as well satisfies (H1)–(H5) in [MPSR05] and thus generates a semigroup with the

same properties. Note that e−(2𝜖)
−1𝑉 is a strictly positive eigenvector of (𝛢∗

2 ,D2)with eigenvalue−𝑐2.

But it is easy to show by contradiction that spb(𝛢∗
2 ,D2) is the only eigenvalue of 𝛢2 admitting a

strictly positive eigenvector. Hence, we have spb(𝛢2,D2) = spb(𝛢∗
2 ,D2) = −𝑐2.
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Therefore, there exists a strictly positive function 𝜙 𝜖 ∈ 𝐶 2
0 (𝐑𝛮 ) ∩ L2(𝐑𝛮 ) such that 𝛢2𝜙 𝜖 =

−𝑐2𝜙 𝜖 . Then, 𝜌𝜖 ∶= e−(2𝜖)
−1𝑉 𝜙 𝜖 satisfies the stationary Fokker–Planck equation

(𝜖Δ + ⟨∇𝑉 − 𝑏 , ∇⟩ + Δ𝑉 − div 𝑏)𝜌𝜖 = 0,

to which the density of 𝜆𝜖inv is — up to normalisation — the unique bounded solution; see for exam-

ple Lemma 4.16 in [Kha11, Ch. 4].

Lemma 2.A.9. For all 𝛽 ∈ (0, 2), (d𝜆𝜖inv/ d𝜇𝜖0)𝛽 ∈ L1(𝐑𝛮 , d𝜇𝜖0).

Proof. Set 𝑟 ∶= 2𝛽−1 and let 𝜑 𝜖 be as in Lemma 2.A.8. Then, by Hölder’s inequality,
ˆ
𝐑𝛮

∣d𝜆𝜖inv
d𝜇𝜖0

∣
𝛽

d𝜇𝜖0 =
ˆ
𝐑𝛮

∣𝜑 𝜖∣𝛽e𝛽(2𝜖)
−1𝑉 e−𝜖

−1𝑉 dvol

≤ (
ˆ
𝐑𝛮

∣𝜑 𝜖∣𝛽𝑟 dvol )
1
𝑟
(
ˆ
𝐑𝛮

e−𝜖
−1(1−𝑟 −1)−1(1− 1

2𝛽)𝑉 dvol )
1− 1

𝑟
.

Since𝛽𝑟 = 2, the first integral is a power of the L2(𝐑𝛮 )-norm of𝜑 𝜖 , which is finite by Lemma 2.A.8.

The second integral is finite because (1 − 𝑟 −1)(1 − 1
2𝛽) is strictly positive and 𝑉 satisfies (L0).
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Abstract We show that elements of control theory, together with an application of Har-

ris’ ergodic theorem, provide an alternate method for showing exponential con-

vergence to a unique stationary measure for certain classes of networks of quasi-

harmonic classical oscillators coupled to heat baths. With the system of oscilla-

tors expressed in the form d𝛸𝑡 = 𝛢𝛸𝑡 d𝑡 + 𝐹 (𝛸𝑡 ) d𝑡 + 𝛣 d𝑊𝑡 in 𝐑𝑑 , where 𝛢
encodes the harmonic part of the force and −𝐹 corresponds to the gradient of

the anharmonic part of the potential, the hypotheses under which we obtain

exponential mixing are the following: 𝛢 is dissipative, the pair (𝛢, 𝛣) satisfies

the Kalman condition, 𝐹 grows sufficiently slowly at infinity (depending on

the dimension 𝑑), and the vector fields in the equation of motion satisfy the

weak Hörmander condition in at least one point of the phase space.
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3.1 Introduction

Thermally driven networks of oscillators play an important role in the investigation of various as-

pects of nonequilibrium statistical mechanics. On a mathematical level, a driven network of clas-

sical harmonic oscillators can be modeled as a 𝑑-dimensional process (𝛸𝑡 )𝑡≥0 described by a linear

stochastic differential equation (sde) of the form

d𝛸𝑡 = 𝛢𝛸𝑡 d𝑡 + 𝛣 d𝛧𝑡 ,

where the linear operators𝛢 and𝛣 satisfy certain structural conditions and where (𝛧𝑡 )𝑡≥0 is a given𝑛-

dimensional stochastic process describing the noise due to thermal fluctuations. The integer 𝑛 ≤ 𝑑
is the number of degrees of freedom of the network that are coupled to heat baths. The noise is

often taken to be a Wiener process, but other types of noise are physically interesting. A particularly

important question regarding such systems and perturbations thereof is that of invariant measures.

In this work, we consider𝛢 and 𝛣 satisfying the Kalman condition, a smooth globally Lipschitz

perturbing vector field 𝑥 ↦ 𝐹 (𝑥) that grows slower than |𝑥|1/2𝑑 at infinity1 and (𝑊𝑡 )𝑡≥0 a Wiener

process, and show with arguments from control theory and an application of Hairer and Mattingly’s

version of Harris’ ergodic theorem that the process described by the sde

d𝛸𝑡 = 𝛢𝛸𝑡 d𝑡 + 𝐹 (𝛸𝑡 ) d𝑡 + 𝛣 d𝑊𝑡

admits a unique stationary measure when 𝛢 is dissipitaive and a weak Hörmander condition on the

vector fields in the sde holds in at least one point 𝑥0 of the phase space. Moreover, the convergence

to this stationary measure then happens exponentially fast. The abstract mathematical setup and

the result are made more precise in Section 3.2. The proof is provided in Section 3.3.

In Section 3.4, we introduce the mathematical description of perturbed networks of harmonic

oscillators in this framework, both in the Langevin regime and in the so-called semi-Markovian

regime, and for geometries that go beyond the 1-dimensional chain. In this context, the matrix 𝛢
1The power 1

2𝑑 is generically not optimal. As we will see, 𝑑 can be replaced by an integer 𝑑∗ appearing in the formu-

lation of the Kalman rank condition. In all cases 𝑑∗ ≤ 𝑑 .
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encodes the friction, kinetic and harmonic terms (both the pinning and the interaction) while the

perturbation 𝐹 corresponds to minus the gradient of the anharmonic part of the potential.

In the case of a 1-dimensional chain of oscillators connected to heat baths at both ends, results of

this type have been established for a very general class of quasi-homogeneous potentials [EPRB99b,

EPRB99a, EH00, RBT02, Car07]. The recent paper [CEHRB18] extends these results to more

complicated networks. Roughly speaking, these results require that the pinning potential grows

as |𝑞|𝑘1 at infinity, that the interaction potential grows as |𝑞|𝑘2 with 𝑘2 ≥ 𝑘1 ≥ 2, and that the

interaction part of the potential has no flat piece or infinitely degenerate points. While our growth

condition is considerably more restrictive than the ones found in these works, the form of local

nondegeneracy that we require is weaker: we only need a weak Hörmander condition to hold at a

single point. Moreover, our setup accommodates a wide variety of geometries and bounded many-

body interaction terms (beyond pinning and two-body interactions).

Such results typically involve carefully studying smoothing properties of the associated Markov

semigroup. The strategy here is different and instead relies on recent developments on the use of

solid controllability in the study of mixing properties of random dynamical systems [AS05, AKSS07,

Shi07, Shi17]. The simplicity of the argument can in itself justify the presentation of such an appli-

cation.

Another advantage is that our general strategy is not based on the Gaussian structure of Brown-

ian motion and can thus be more easily adapted to different types of noise that are physically relevant.

Similar arguments can be used to discuss the analogous problem with compound Poisson processes;

this type of problem will be analyzed in a subsequent work.

The proof can be summarized as follows. For a discrete-time Markov process, Harris’ theorem

states that the existence and uniqueness of an invariant measure, with exponentially fast convergence

in the total variation metric, can be obtained from the existence of a suitable Lyapunov function and

a minorization for the transition probabilities starting from any point in the interior of a suitable

level set of that Lyapunov function. The precise statement we use is the one formulated in [HM11];

also see [Har56] and [MT12]. We then pass from discrete to continuous time.

The function 𝑉 (𝑥) ∶=
´ ∞
0 |e𝑠𝛢𝑥|2 d𝑠 is shown to be a suitable Lyapunov function using dis-
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sipativity of 𝛢, the behaviour of 𝐹 at infinity, and basic Itô calculus. The details are given in Sec-

tion 3.3.1.

In order to prove the lower bound on transitions, we use the Kalman condition on the pair (𝛢, 𝛣)
and again the estimate on the behaviour of 𝐹 at infinity. These hypotheses yield that the point 𝑥0
in which the weak Hörmander condition holds can be approached from {𝑉 ≤ 𝑅} with a uniform

lower bound on the probability. On the other hand, the weak Hörmander condition in 𝑥0 implies

solid controllability from 𝑥0 and we can combine solid controllability and approachability to obtain

the desired lower bound. The details are given in Section 3.3.2.

Different sufficient conditions for the hypotheses of the main theorem to hold are given in more

concrete terms throughout Sections 3.4 and 3.5. In the former, we give criteria for the dissipativity,

Kalman and growth conditions in terms of more physical quantities for networks of oscillators based

on [JPS17]. In the latter, we give a perturbative condition for the weak Hörmander condition to

hold.

3.2 Setup, assumptions and main result

Notation Throughout the paper, we use: ‖ ⋅ ‖ to denote the operator norm of linear maps; {𝑒𝑖}𝑛𝑖=1
for the standard orthonormal basis of𝐑𝑛; | ⋅ | to denote the euclidean norm on𝐑𝑑 (arising from the

standard inner product ⟨ ⋅ , ⋅ ⟩);𝛣(𝑥, 𝑟 ) for the open ball of radius 𝑟 > 0 centered at the point 𝑥 in𝐑𝑑 ;

𝐶 𝑘
0 ([0, 𝛵 ];𝐑𝑛) to denote the space of 𝑘 times continuously differentiable functions 𝜂 ∶ [0, 𝛵 ] →

𝐑𝑛 with 𝜂(0) = 0; Prob(𝐑𝑑) for the space of Borel probability measures on 𝐑𝑑 ; ℒ𝐺 for the Lie

derivative with respect to the vector field 𝐺 ; 𝟏𝑆 to denote the indicator function of the set 𝑆 . The

natural numbers𝚴 start at 1. The underlying probability space is (𝛺,ℱ, 𝚸 ) and we use the letter 𝜔
to denote elementary events there.

Let 𝑑 and 𝑛 be natural numbers with 𝑛 ≤ 𝑑 and let 𝜔 ↦ (𝑊𝑡 (𝜔))𝑡≥0 be a Wiener process

in 𝐑𝑛. We are interested in the 𝑑-dimensional diffusion process 𝜔 ↦ (𝛸𝑡 (𝑥 in, 𝜔))𝑡≥0 governed by
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the equation

𝛸𝑡 (𝑥 in, 𝜔) = 𝑥 in +
ˆ 𝑡

0
𝛢𝛸𝑠(𝑥 in, 𝜔) + 𝐹 (𝛸𝑠(𝑥 in, 𝜔)) d𝑠 + 𝛣𝑊𝑡 (𝜔) (3.1)

where 𝛣 ∶ 𝐑𝑛 → 𝐑𝑑 is a linear map, 𝛢 ∶ 𝐑𝑑 → 𝐑𝑑 is a linear map, 𝐹 is a smooth globally

Lipschitz vector field on 𝐑𝑑 , and 𝑥 in ∈ 𝐑𝑑 is an initial condition. We often omit writing explicitly

the dependence on 𝑥 in or𝜔 and write the equation in differential notation. We assume the following

dissipativity and controllability conditions on the linear maps 𝛢 and 𝛣 .

(D) the eigenvalues of the linear map 𝛢 (considered over𝐂𝑑) each have strictly negative real part.

(K) the pair (𝛢, 𝛣) satisfies theKalman condition, meaning that the columns of𝛣 ,𝛢𝛣 ,𝛢2𝛣 ,𝛢3𝛣
and so forth span𝐑𝑑 .

Then, by the Cayley–Hamilton theorem, there exists 𝑑∗ ≤ 𝑑 such that

span{𝛣𝑒𝑖 , 𝛢𝛣𝑒𝑖 , 𝛢2𝛣𝑒𝑖 , … , 𝛢𝑑∗−1𝛣𝑒𝑖 ∶ 𝑖 = 1, … , 𝑛} = 𝐑𝑑 .

The Kalman condition is commonly used in the basic theory of controllability for linear systems (i.e.

when 𝐹 ≡ 0); it is then equivalent to several notions of controllability [Cor07, §§1.2–1.3].

We further assume that the perturbing vector field 𝐹 satisfies the following growth condition.

(G) there exists a constant 𝑎 ∈ [0, 1
2𝑑∗ ) such that

sup
𝑥∈𝐑𝑑

|𝐹 (𝑥)|
(1 + |𝑥|)𝑎 < ∞. (3.2)

Finally, we suppose the existence of a point 𝑥0 where the weak Hörmander condition on the vector

fields appearing in the stochastic equation (3.1) is satisfied.

(H) there exists a point 𝑥0 ∈ 𝐑𝑑 in which the family

{𝑉0 ,ℒ𝑉2𝑉1,ℒ𝑉3ℒ𝑉2𝑉1, … ∶ 𝑉0 ∈ ℬ and 𝑉1, 𝑉2, 𝑉3 , … ∈ ℬ ∪ {𝛢 + 𝐹 }}

of vector fields spans 𝛵𝑥0𝐑
𝑑 ≅ 𝐑𝑑 , where ℬ = {𝛣𝑒1, … , 𝛣𝑒𝑛}.
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Remark 3.2.1. In the linear case (i.e. when 𝐹 ≡ 0), a straightforward computation shows that the

Kalman condition (K) implies the weak Hörmander condition (H). This suggests that the latter can

be obtained from a perturbative argument in a point 𝑥0 far from the origin if 𝐹 can be neglected at

infinity in a suitable sense; see Section 3.5.

It is convenient to study the properties of such a diffusion process through the corresponding

controlled equation

{
�̇�(𝑡) = 𝛢𝑥(𝑡) + 𝐹 (𝑥(𝑡)) + 𝛣�̇�(𝑡),

𝑥(0) = 𝑥 in,
(3.3)

understood as

𝑥(𝑡) = 𝑥 in +
ˆ 𝑡

0
𝛢𝑥(𝑠) + 𝐹 (𝑥(𝑠)) d𝑠 + 𝛣(𝜂(𝑡) − 𝜂(0))

when 𝜂 is a merely continuous function. We define, for 0 ≤ 𝑡 ≤ 𝛵 ,

𝑆 𝐹𝑡 ∶ 𝐑𝑑 × 𝐶0([0, 𝛵 ];𝐑𝑛) → 𝐑𝑑

(𝑥 in, 𝜂) ↦ 𝑥(𝑡)

giving the solution at time 𝑡 of this problem. We refer to the second argument as the control. The

function 𝑆 𝐹𝑡 is uniformly continuous in each argument. It is also Fréchet differentiable. We will

make use of these regularity properties in Section 3.3.2.

Remark 3.2.2. The law for 𝜂 ∈ 𝐶0([0, 𝛵 ];𝐑𝑛) corresponding to theWiener process𝑊𝑡 (𝜔) restricted
to the interval [0, 𝛵 ] in (3.1), which we denote by ℓ , is decomposable in the following sense.

There exist a sequence (𝐹𝛮 )𝛮∈𝚴 of nested finite-dimensional subspaces and a sequence (𝐹 ′𝛮 )𝛮∈𝚴 of

closed subspaces of the Banach space 𝐶0([0, 𝛵 ];𝐑𝑛) such that

(i) the union⋃𝛮∈𝚴 𝐹𝛮 is dense in 𝐶0([0, 𝛵 ];𝐑𝑛);

(ii) the space𝐶0([0, 𝛵 ];𝐑𝑛) decomposes as the direct sum 𝐹𝛮 ⊕𝐹 ′𝛮 for each𝛮 ∈ 𝚴 , with correspond-

ing (bounded) projections𝛱𝛮 and𝛱 ′
𝛮 , and the measure ℓ decomposes as the product ℓ𝛮 ⊗ ℓ ′𝛮

of its projected measures;
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(iii) the projected measure ℓ𝛮 possesses a smooth positive density 𝜌𝛮 with respect to the Lebesgue mea-

sure on the finite-dimensional space 𝐹𝛮 .

The requirement of [Shi17] that𝛱𝛮 𝜁 → 𝜁 in norm does not hold for all controls 𝜁 ∈ 𝐶0([0, 𝛵 ];𝐑𝑛).
However, the convergencewill hold true onnice enough subsets—which suffices for our endeavour. These

decomposability properties play a central role in the arguments of [Shi07, Shi17] and are discussed here

in Appendix 3.A.

We use 𝛲 𝐹
𝑡 (𝑥 in, ⋅ ) to denote the distribution of the random variable 𝜔 ↦ 𝛸𝑡 (𝑥 in, 𝜔) defined

by (3.1). Then, 𝛲 𝐹
𝑡 satisfies the Chapman–Kolmogorov equation:

𝛲 𝐹
𝛵 (𝑥, 𝛤 ) =

ˆ
𝐑𝑑
𝛲 𝐹
𝛵 −𝑡 (𝑦, 𝛤 )𝛲 𝐹

𝑡 (𝑥, d𝑦)

for all times 0 ≤ 𝑡 ≤ 𝛵 , all 𝑥 ∈ 𝐑𝑑 and all Borel sets 𝛤 ⊆ 𝐑𝑑 . We are interested in the large-time

behaviour of 𝛲 𝐹
𝑡 . Our main result is the following.

Theorem 3.2.3. Suppose that the sde

d𝛸𝑡 = 𝛢𝛸𝑡 d𝑡 + 𝐹 (𝛸𝑡 ) d𝑡 + 𝛣 d𝑊𝑡

satisfies the conditions (D), (K), (G) and (H). Then, it admits a unique invariant measure 𝜇inv ∈
Prob(𝐑𝑑). Moreover, the function 𝑉 ∶ 𝐑𝑑 → [0,∞) defined by

𝑥 ↦
ˆ ∞

0
⟨e𝑠𝛢𝑥, e𝑠𝛢𝑥⟩ d𝑠

is integrable with respect to 𝜇inv and there exist constants 𝑐, 𝐶 > 0 such that

∣
ˆ
𝐑𝑑
𝑓 (𝑦)𝛲 𝐹

𝑡 (𝑥 in, d𝑦) −
ˆ
𝐑𝑑
𝑓 (𝑦)𝜇inv(d𝑦)∣ ≤ 𝐶(1 + 𝑉 (𝑥 in))e−𝑐𝑡 (3.4)

for all 𝑥 in ∈ 𝐑𝑑 , all 𝑡 ≥ 0 and all measurable functions 𝑓 with |𝑓 | ≤ 1 + 𝑉 .

The proof of this theorem is developed throughout Section 3.3. The last key step there is an

application of Hairer and Mattingly’s version of Harris’ ergodic theorem [HM11]. It requires two

hypotheses: the existence of constants 𝛾 ∈ (0, 1) and𝛫 > 0 such that

∣
ˆ
𝐑𝑑
𝑉 (𝑦)𝛲 𝐹

𝑡 (𝑥, d𝑦)∣ ≤ 𝛾 𝑡𝑉 (𝑥) + 𝛫 (3.5)
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for all 𝑥 ∈ 𝐑𝑑 and all 𝑡 ≥ 0, and the existence of a positive measure bounding from below the

probability of reaching a set when starting from the interior of a suitable level set of 𝑉 :

𝛲 𝐹
𝛵 (𝑥, ⋅ ) ≥ 𝜈𝛵 (3.6)

for all 𝑥 ∈ 𝐑𝑑 such that 𝑉 (𝑥) ≤ 1 + 2𝛫(1 − 𝛾 )−1. The first one is dealt with in Section 3.3.1; the

second one, in Section 3.3.2.

3.3 Proof of Theorem 3.2.3

3.3.1 Dissipativity and Lyapunov stability

Condition (D) ensures that the integral defining 𝑉 ∶ 𝑥 ↦
´ ∞
0 |e𝑠𝛢𝑥|2 d𝑠 converges. To this function

𝑉 is naturally associated a positive definite matrix 𝛭 such that 𝑉 (𝑥) = ⟨𝑥,𝛭𝑥⟩. We wish to show

that, under the conditions (D) and (G), this function satisfies the inequality (3.5) for some constants

𝛾 ∈ (0, 1) and𝛫 > 0 that do not depend on 𝑥.

Lemma 3.3.1. Under the conditions (D) and (G), there exist constants𝛫 > 0 and 𝛾 ∈ (0, 1) such that
the function 𝑉 satisfies

∣
ˆ
𝐑𝑑
𝑉 (𝑦)𝛲 𝐹

𝑡 (𝑥, d𝑦)∣ ≤ 𝛾 𝑡𝑉 (𝑥) + 𝛫

for all 𝑥 ∈ 𝐑𝑑 and all 𝑡 ≥ 0.

Proof. Fix an initial condition 𝛸0 ∈ 𝐑𝑑 . First note that we have

⟨𝐷𝑥𝑉 (𝑥), 𝛢𝑥⟩ = 2 ⟨𝑥,𝛭𝛢𝑥⟩ =
ˆ ∞

0

d
d𝑠 ⟨e

𝑠𝛢𝑥, e𝑠𝛢𝑥⟩ d𝑠 = −|𝑥|2.

On the other hand, by assumption (G), there exists 𝑐1 > 0 such that |𝐹 (𝑥)| ≤ 1
8‖𝛭‖|𝑥|+ 𝑐1 and thus

there exists a constant 𝑐2 > 0 depending on 𝑐1 and ‖𝛭‖ such that

⟨𝐷𝑥𝑉 (𝑥), 𝛢𝑥 + 𝐹 (𝑥)⟩ ≤ −1
2 |𝑥2| + 𝑐2.

for all 𝑥 ∈ 𝐑𝑑 .
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By Itô’s lemma applied to the smooth function 𝑉 (with no explicit 𝑡 -dependence),

d𝑉 (𝛸𝑡 ) = ⟨𝐷𝑉 (𝛸𝑡 ), 𝛢𝛸𝑡 + 𝐹 (𝛸𝑡 )⟩ d𝑡 + 2 ⟨𝛭𝛸𝑡 , 𝛣 d𝑊𝑡 ⟩ + tr(𝛭𝛣𝛣∗) d𝑡

and thus

𝚬𝑉 (𝛸𝑡 ) ≤ 𝑉 (𝛸0) +
ˆ 𝑡

0
(−1

2𝚬|𝛸𝑠|2 + 𝑐2) d𝑠 + tr(𝛭𝛣𝛣∗)𝑡 .

Since e𝑠𝛢 is nonsingular for any 𝑠 ∈ [0, 1] by assumption (D), there exists 𝑐3 > 0 depending on the

eigenvalues of 𝛢 such that

𝑉 (𝑥) ≥
ˆ 1

0
|e𝑠𝛢𝑥|2 ≥ 𝑐3|𝑥|2

for all 𝑥 ∈ 𝐑𝑑 . Hence,

𝚬𝑉 (𝛸𝑡 ) ≤ 𝑉 (𝛸0) −
ˆ 𝑡

0

1
2𝑐3𝚬𝑉 (𝛸𝑠) d𝑠 + (𝑐2 + tr(𝛭𝛣𝛣∗))𝑡

By Grönwall’s inequality, we conclude that there exists a constant 𝛫 > 0 (independent of 𝛸0) such

that

𝚬𝑉 (𝛸𝑡 ) ≤ e−
𝑡
2𝑐3 𝑉 (𝛸0) + 𝛫.

3.3.2 Approachability and solid controllability

The goal of this section is to show the existence of a time 𝛵 > 0 and a nontrivial measure 𝜈𝛵 on 𝐑𝑑

such that the bound

𝛲 𝐹
𝛵 (𝑥, ⋅ ) ≥ 𝜈𝛵

holds for all 𝑥 ∈ 𝐑𝑑 such that 𝑉 (𝑥) ≤ 1+2𝛫(1− 𝛾 )−1, where 𝛾 and𝛫 are as in Lemma 3.3.1. This

is done in two steps: we first control the probability of reaching neighbourhoods of 𝑥0 where (H)

holds, and then the probability of reaching an arbitrary set when starting from 𝑥 ′ close enough to 𝑥0 .

Throughout this section, the controlled nonlinear system (3.3) is to be thought of as a perturba-

tion of the controlled linear system

{
�̇�(𝑡) = 𝛢𝑧(𝑡) + 𝛣�̇�(𝑡),

𝑧(0) = 𝑥 in.
(3.7)
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For 𝜂 ∈ 𝐶0([0, 𝛵 ];𝐑𝑛) and 0 ≤ 𝑡 ≤ 𝛵 , 𝑆𝛵 (𝑥 in, 𝜂) is defined as the solution at time 𝑡 of the prob-

lem (3.7).

We set𝑅 ∶= 1 + 2𝛫(1 − 𝛾 )−1. We make extensive use of the compact set {𝑥 ∈ 𝐑𝑑 ∶ 𝑉 (𝑥) ≤ 𝑅},
which we often write as {𝑉 ≤ 𝑅} for short.

We start by showing that the point 𝑥0 in which the weak Hörmander condition (H) holds can

be approximately reached with suitable control when starting from {𝑉 ≤ 𝑅}.2 To do this, we need

a technical lemma on a matrix often referred to as the controllability Gramian, which is used to

construct relevant controls; see e.g. [Cor07, §§1.2–1.3].

Lemma 3.3.2. If 𝛢 and 𝛣 are such that the Kalman condition (K) is satisfied with 𝑑∗, then the sym-

metric positive definite matrix

𝑄𝛵 =
ˆ 𝛵

0
e𝑡𝛢𝛣𝛣∗e𝑡𝛢

∗
d𝑡

has full rank and ‖𝑄−1
𝛵 ‖ = 𝛰(𝛵 1−2𝑑∗) as 𝛵 → 0.

Proof. Because 𝑄𝛵 is symmetric and by real-analyticity of the maps (0, 1) ∋ 𝛵 ↦ ⟨𝑥,𝑄𝛵 𝑥⟩ ∈ 𝐑+,

it suffices to show that for each 𝑥 ∈ 𝐑𝑑 with |𝑥| = 1, there exists 𝑘 ≤ 2𝑑∗ − 1 such that

𝜕𝑘𝛵 ⟨𝑥,𝑄𝛵 𝑥⟩ |𝛵 =0 ≠ 0.

Suppose for contradiction that there exists such 𝑥 with |𝑥| = 1 and 0 = 𝜕𝑘𝛵 ⟨𝑥,𝑄𝛵 𝑥⟩ for each 𝑘 ≤
2𝑑∗ − 1. From the first derivative, we have

𝛣∗𝑥 = 0.

From the third derivative, we have

⟨𝑥, 𝛣𝛣∗(𝛢∗)2𝑥⟩ + 2 ⟨𝑥, 𝛢𝛣𝛣∗𝛢∗𝑥⟩ + ⟨𝑥, 𝛢2𝛣𝛣∗𝑥⟩ = 0,

but then, using again the consequence of the vanishing first derivative, we have

𝛣∗𝛢∗𝑥 = 0.
2This part of the argument actually holds for any 𝑥0 ∈ 𝐑𝑑 , regardless of the Hörmander condition.
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Inductively, from the (2𝑗 + 1)th derivative, we have

𝛣∗(𝛢∗)𝑗𝑥 = 0,

for 𝑗 = 0, 1, … 𝑑∗ − 1. We conclude that

𝑥 ∈
𝑑∗−1
⋂
𝑗=0

ker(𝛣∗(𝛢∗)𝑗 ) =
𝑑∗−1
⋂
𝑗=0

(ran(𝛢𝑗𝛣))⟂,

contradicting the Kalman condition.

Proposition 3.3.3. Fix 𝑥0 ∈ 𝐑𝑑 . If the growth condition (G) and the Kalman condition (K) hold,

then for any 𝑥 ∈ 𝐑𝑑 , 𝛿 > 0 and 𝛵 > 0 there exists a control 𝜂𝑥,𝛿 ,𝛵 ∈ 𝐶 1
0 ([0, 𝛵 ];𝐑𝑛) such that

𝑆 𝐹𝛵 (𝑥, 𝜂𝑥,𝛿 ,𝛵 ) ∈ 𝛣(𝑥0 , 12𝛿 ).

Proof. Let 𝑥 ∈ 𝐑𝑑 and 𝛿 > 0 be arbitrary. Because the Kalman condition (K) holds, for any 𝛵 ∈
(0, 1], the control

𝜁𝑥,𝛵 (𝑡) ∶=
ˆ 𝑡

0
𝛣∗e(𝛵 −𝑠)𝛢

∗𝑄−1
𝛵 (𝑥0 − e−𝛵 𝛢𝑥) d𝑠

is such that 𝑆𝛵 (𝑥, 𝜁𝑥,𝛵 ) = 𝑥0 ; see e.g. [Cor07, §1.2]. We immediately have the bound

|�̇�𝑥,𝛵 (𝑡)| ≤ ‖𝛣‖e𝛵 ‖𝛢‖‖𝑄−1
𝛵 ‖(|𝑥0| + e𝛵 ‖𝛢‖|𝑥|)

and the hypotheses yield through Lemma 3.3.2 the existence of a constant 𝐶 > 0 depending on 𝛢
and 𝛣 such that

|�̇�𝑥,𝛵 (𝑡)| ≤ 𝐶(|𝑥| + |𝑥0|)𝛵 −𝑚

for all 𝛵 ∈ (0, 1], where𝑚 ∶= 2𝑑∗ − 1.

With 𝑧𝛵 (𝑡) ∶= 𝑆𝑡 (𝑥, 𝜁𝑥,𝛵 ), 𝑥𝛵 (𝑡) ∶= 𝑆 𝐹𝑡 (𝑥, 𝜁𝑥,𝛵 ) and 𝑦𝛵 (𝑡) ∶= 𝑥𝛵 (𝑡) − 𝑧𝛵 (𝑡), we have

�̇�𝛵 (𝑡) = 𝛢𝑦𝛵 (𝑡) + 𝐹 (𝑥𝛵 (𝑡)),

𝑦𝛵 (0) = 0.

Then, for 𝑡 ∈ [0, 𝛵 ],

𝑦𝛵 (𝑡) =
ˆ 𝑡

0
e(𝑡−𝑠)𝛢𝐹 (𝑥𝛵 (𝑠)) d𝑠 =

ˆ 𝑡

0
e(𝑡−𝑠)𝛢𝐹 (𝑦𝛵 (𝑠) + 𝑧𝛵 (𝑠)) d𝑠.
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By (G), there exists 𝐶 ′ > 0 depending on 𝛢 and 𝐹 only such that

|𝑦𝛵 (𝑡)| ≤ 𝐶 ′
ˆ 𝑡

0
1 + |𝑦𝛵 (𝑠)|𝑎 + |𝑧𝛵 (𝑠)|𝑎 d𝑠.

On the other hand,

|𝑧𝛵 (𝑡)| ≤ |e𝑡𝛢𝑥| +
ˆ 𝑡

0
|e(𝑡−𝑠)𝛢𝛣�̇�𝑥,𝛵 (𝑠)| d𝑠

≤ 𝐶 ′|𝑥| + 𝑡𝐶 e𝛵 ‖𝛢‖‖𝛣‖(|𝑥| + |𝑥0|)𝛵 −𝑚 .

Combining these two inequalities, there exists a constant 𝐶 ″ > 0 such that

|𝑦𝛵 (𝑡)| ≤ 𝐶 ″
ˆ 𝑡

0
|𝑦𝛵 (𝑠)| d𝑠 + 𝑡𝐶 ″(1 + |𝑥| + |𝑥0|)(1 + 𝛵 𝑎(1−𝑚))

Recall that 0 ≤ 𝑎 < 1
2𝑑∗ and𝑚 = 2𝑑∗ + 1. Hence,

𝑎(1 − 𝑚) + 1 > 0

and, by Grönwall’s inequality, there exists 𝛵𝑥,𝛿 ∈ (0, 1] small enough, depending continuously on 𝑥
and 𝛿 , such that |𝑆 𝐹𝛵 (𝑥, 𝜁𝑥,𝛵 ) − 𝑥0| = |𝑦𝛵 (𝛵 )| < 1

4𝛿 for all 0 < 𝛵 ≤ 𝛵𝑥,𝛿 .

If 𝛵 ≤ 𝛵𝑥,𝛿 , pick 𝜂𝑥,𝛿 ,𝛵 = 𝜁𝑥,𝛵 . If 𝛵 > 𝛵𝑥,𝛿 , let

𝑟𝛵 ∶= sup
0≤𝑡≤𝛵

|𝑆𝑡 (𝑥, 0)| and 𝑠𝛵 = min{12𝛵 , inf
|𝑦|≤𝑟𝑥,𝛵

𝛵𝑦,𝛿 }.

Then, |𝑆𝛵 −𝑠𝛵 (𝑥, 0)| < 𝑟𝛵 and by the above 𝜁𝑆𝛵 −𝑠𝛵 (𝑥,0),𝑠𝛵 is such that

𝑆𝑠𝛵 (𝑆𝛵 −𝑠𝛵 (𝑥, 0), 𝜁𝑆𝛵 −𝑠𝛵 (𝑥,0),𝑠𝛵 ) ∈ 𝛣(𝑥0 ,
1
4𝛿 ).

This corresponds to the control

�̃�𝑥,𝛿 ,𝛵 (𝑡) ∶= 𝟏[𝛵 −𝑠𝛵 ,𝛵 ](𝑡)𝜁𝑆𝛵 −𝑠𝛵 (𝑥,0),𝑠𝛵 (𝑡 − (𝛵 − 𝑠𝛵 ))

defined on [0, 𝛵 ]. A 𝐶 1
0 ([0, 𝛵 ];𝐑𝑛) regularisation 𝜂𝑥,𝛿 ,𝛵 of �̃�𝑥,𝛿 ,𝛵 will then satisfy 𝑆𝛵 (𝑥, 𝜂𝑥,𝛿 ,𝛵 ) ∈

𝛣(𝑥0 , 12𝛿 ).

Proposition 3.3.4. Fix 𝑥0 ∈ 𝐑𝑑 and 𝛿 > 0 and suppose that the conditions (G) and (K) hold. Then,

the function

(𝑥, 𝛵 ) ↦ 𝛲 𝐹
𝛵 (𝑥, 𝛣(𝑥0 , 𝛿 ))

is positive and jointly lower semicontinuous.
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Proof. For any 𝑥 ∈ 𝐑𝑑 and 𝛵 > 0, there exists 𝜂𝑥,𝛿 ,𝛵 ∈ 𝐶 1
0 ([0, 𝛵 ];𝐑𝑛) such that 𝑆 𝐹𝛵 (𝑥, 𝜂𝑥,𝛿 ,𝛵 ) ∈

𝛣(𝑥0 , 12𝛿 ). By the Stroock–Varadhan support theorem,3 the support of the distribution of paths

[0, 𝛵 ] ∋ 𝑡 ↦ 𝛸𝑡 (𝑥, 𝜔) contains the closure of {[0, 𝛵 ] ∋ 𝑡 ↦ 𝑆 𝐹𝑡 (𝑥, 𝜂) ∶ 𝜂 ∈ 𝐶 1
0 ([0, 𝛵 ];𝐑𝑛)} with

respect to the supremum norm on 𝐶0([0, 𝛵 ];𝐑𝑑). In particular, 𝛲 𝐹
𝛵 (𝑥, 𝛣(𝑥0 , 𝛿 )) > 0.

For 𝚸 -almost every 𝜔 ∈ 𝛺, the path 𝑡 ↦ 𝑊𝑡 (𝜔) is continuous. Since 𝛸𝑡 satisfies the integral

equation

𝛸𝑡 (𝑥, 𝜔) = 𝑥 +
ˆ 𝑡

0
𝛢𝛸𝑠(𝑥, 𝜔) + 𝐹 (𝛸𝑠(𝑥, 𝜔)) d𝑠 + 𝛣𝑊𝑡 (𝜔)

with 𝑦 ↦ 𝛢𝑦 + 𝐹 (𝑦) globally Lipschitz and 𝑡 ↦ 𝛣𝑊𝑡 (𝜔) continuous, a standard argument shows

that the map (𝑥, 𝛵 ) ↦ 𝛸𝛵 (𝑥, 𝜔) is jointly continuous. Therefore, the function

(𝑥, 𝛵 ) ↦ 𝟏{𝜔 ′∈𝛺 ∶ 𝛸𝛵 (𝑥,𝜔 ′)∈𝛣(𝑥0 ,𝛿 )}(𝜔)

is jointly lower semicontinuous for 𝚸 -almost all 𝜔 ∈ 𝛺. Then, so is the map

(𝑥, 𝛵 ) ↦
ˆ
𝛺
𝟏{𝜔 ′∈𝛺 ∶ 𝛸𝛵 (𝑥,𝜔 ′)∈𝛣(𝑥0 ,𝛿 )}(𝜔) d𝚸 (𝜔)

by Fatou’s lemma.

Now that we have established that, starting from {𝑉 ≤ 𝑅}, any neighbourhood of 𝑥0 can be

suitably reached, we seek a minorization for transitions from points close to 𝑥0 to arbitrary points

of the space. In [Shi17]’s study of sdes on compact manifolds, the notions of decomposability and

solid controllability are used to show that the weak Hörmander condition (H) in 𝑥0 is sufficient to

provide appropriate control of the transition probabilities from points 𝑥 ′ close enough to 𝑥0 .

(sC) a system 𝑆 ∶ 𝐑𝑑 × 𝛦 → 𝐑𝑑 , where 𝛦 is a Banach space, is said to be solidly controllable

from 𝑥0 , with compact 𝑄 ⋐ 𝛦 , if there is a ball 𝐺 in 𝐑𝑑 and a number 𝜖 > 0 such that if a

continuous map 𝛷 ∶ 𝑄 → 𝐑𝑑 satisfies

sup
𝜁∈𝑄

|𝛷 (𝜁 ) − 𝑆(𝑥0 , 𝜁 )| ≤ 𝜖,

then 𝛷 (𝑄) ⊇ 𝐺 .
3In the case of an additive noise, the Stroock–Varadhan support theorem can be given a direct proof by continuity

arguments even if the vector field is unbounded, as long as the solutions are defined globally in time.
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Most of the ideas for the next three results are present in different parts of [Shi17]; also see [Shi07].

We retrieve the key steps and repiece them in a way that is suitable for our endeavour.

Lemma 3.3.5. If there exists a closed ball𝐷 ⋐ 𝐑𝑑 and a continuous function 𝑓 ∶ 𝐷 → 𝛦 such that

𝑆(𝑥0 , 𝑓 (𝑥)) = 𝑥 for all 𝑥 ∈ 𝐷 , then 𝑆 satisfies the solid controllability condition (sC) from 𝑥0 , with
𝑄 = 𝑓 (𝐷).

Proof. Take 𝜖 < 1
4 diam(𝐷) and set 𝐺 ∶= {𝑥 ∈ 𝐷 ∶ 𝑑(𝑥, 𝜕𝐷) ≥ 𝜖}. Let 𝛷 be a continuous map

on 𝑓 (𝐷) such that

sup
𝜁∈𝑓 (𝐷)

|𝛷 (𝜁 ) − 𝑆(𝑥0 , 𝜁 )| ≤ 𝜖.

Then, for any 𝑥 ′ ∈ 𝐺 , the continuous function 𝛹𝑥 ′ defined on𝐷 by

𝛹𝑥 ′(𝑥) = 𝑥 ′ − 𝛷 (𝑓 (𝑥)) + 𝑥

maps𝐷 to itself. Indeed,

|𝑥 ′ − 𝛹𝑥 ′(𝑥)| = |𝑥 ′ − (𝑥 ′ − 𝛷 (𝑓 (𝑥)) + 𝑥)|

= |𝛷 (𝑓 (𝑥)) − 𝑆(𝑥0 , 𝑓 (𝑥))| ≤ sup
𝜁∈𝑓 (𝐷)

|𝛷 (𝜁 ) − 𝑆(𝑥0 , 𝜁 )| ≤ 𝜖.

Hence, by the Brouwer fixed point theorem, there exists 𝑥 ∈ 𝐷 such that 𝑥 = 𝛹𝑥 ′(𝑥), i.e. such

that 𝑥 ′ = 𝛷 (𝑓 (𝑥)). We conclude 𝐺 ⊆ 𝛷 (𝑓 (𝐷)).

We will use this for 𝑆 𝐹1 defined in Section 3.2. In this case, the Banach space 𝛦 of controls

is 𝐶0([0, 1];𝐑𝑛) equipped with the supremum norm.

Proposition 3.3.6. If the weak Hörmander condition (H) is satisfied in 𝑥0 , then 𝑆 𝐹1 is solidly con-

trollable from 𝑥0 , with a set𝑄 consisting of functions that are all Lipschitz with a common Lipschitz

constant 𝜅.

Proof. By the previous lemma, to show solid controllability, it suffices to provide a ball𝐷 ⋐ 𝐑𝑑 and

a continuous function 𝑓 ∶ 𝐷 → 𝐶0([0, 1];𝐑𝑛) such that 𝑆 𝐹1 (𝑥0 , 𝑓 (𝑥∗)) = 𝑥∗ for all 𝑥∗ ∈ 𝐷 .
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As part of Theorem 2.1 in [Shi17, §2.2], it is shown in a similar setting that the Hörmander

condition implies the existence of a ball𝐷 ⋐ 𝐑𝑑 and a continuous function ̃𝑓 ∶ 𝐷 → 𝐿2([0, 1];𝐑𝑛)
such that the solution of

{
�̇� = 𝛢𝑥 + 𝐹 (𝑥) + 𝛣 ̃𝑓 (𝑥∗)

𝑥(0) = 𝑥0

satisfies 𝑥(1) = 𝑥∗. Moreover, 𝜅 ∶= sup𝑥∗∈𝐷 ‖
̃𝑓 (𝑥∗)‖𝐶0 < ∞.The construction of𝐷 and ̃𝑓 uses local

arguments and can be directly translated to our setup.

The idea behind the proof is the following. Consider the following extended problem for 𝑦(𝑡) =
(𝑥(𝑡), 𝑠(𝑡 )) in𝐑𝑑 × 𝐑:

{
�̇� = (𝛢𝑥 + 𝐹 (𝑥), 1) + (𝛣𝜉 , 0)

𝑦(0) = (𝑥0 , 0)
, (3.8)

where the control 𝜉 is taken in 𝐿2([0, 1];𝐑𝑛). The Hörmander condition implies that the Lie algebra

generated by the family {�̃�𝜂(𝑥, 𝑠) = (𝛢𝑥 + 𝐹 (𝑥), 1) + (𝛣𝜂, 0) ∶ 𝜂 ∈ 𝐑𝑛} of vector fields has full rank

at the point (𝑥0 , 0). Hence, one can show using ideas from the proof of Krener’s theorem that there

exists a choice of small intervals (𝑎𝑙 , 𝑏𝑙 ) ⊂ [0, 1] and vectors 𝜂𝑙 ∈ 𝐑𝑛 for 𝑙 = 0, 1, … , 𝑑 such that the

parallelepiped

�̃� = {𝛼 = (𝛼0 , 𝛼1, … , 𝛼𝑑) ∈ 𝐑𝑑+1 ∶ 𝛼𝑙 ∈ (𝑎𝑙 , 𝑏𝑙 )}

embeds into 𝐑𝑑 × 𝐑 via the map

𝜙 ∶ �̃� → 𝐑𝑑 × 𝐑

𝛼 ↦ (e𝛼𝑑 �̃�𝜂𝑑 ∘ ⋯ ∘ e𝛼0 �̃�𝜂0 )(𝑥0 , 0).

In other words, 𝜙 takes 𝛼 to the solution 𝑦 at time 𝛵𝛼 ∶= 𝛼0+𝛼1+⋯+𝛼𝑑 of the extended problem (3.8)

with the control

𝜉𝛼(𝑡) = 𝟏[0,𝛼0)(𝑡)𝜂0 +
𝑑
∑
𝑙=1

𝟏[𝛼0+⋯+𝛼𝑙−1,𝛼0+⋯+𝛼𝑙−1+𝛼𝑙 )(𝑡)𝜂𝑙 . (3.9)

Fixing an �̂� ∈ �̃� with corresponding 𝛵�̂� ∈ (0, 1], one finds that the solutions at time 𝛵�̂� of the problem

{
�̇� = 𝛢𝑥 + 𝐹 (𝑥) + 𝛣𝜉𝛼

𝑥(0) = 𝑥0
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provide a diffeomorphsim between a neighbourhood of �̂� in {𝛼 ∈ �̃� ∶ 𝛵𝛼 = 𝛵�̂�} and an open

set 𝛰 ⊂ 𝐑𝑑 . Inverting this diffeomorphism, one finds a function that associates to each point 𝑥∗ ∈ 𝛰
a control 𝜉𝛼(𝑥∗) ∈ 𝐿

2([0, 𝛵�̂�];𝐑𝑛) of the form (3.9). By construction,

𝑆 𝐹𝛵�̂�(𝑥0 ,
ˆ ⋅

0
𝜉𝛼(𝑥∗)(𝑠) d𝑠) = 𝑥∗

for all 𝑥∗ ∈ 𝛰 . A standard argument then allows to find a closed ball 𝐷 ⋐ 𝐑𝑑 and a continuous

function ̃𝑓 ∶ 𝐷 → 𝐿2([0, 1];𝐑𝑛) such that

𝑆 𝐹1 (𝑥0 ,
ˆ ⋅

0
( ̃𝑓 (𝑥∗))(𝑠) d𝑠) = 𝑥∗

for all 𝑥∗ ∈ 𝐷 . The supremum 𝜅 is bounded by the sum of the |𝜂𝑙 | used in the construction of the

embedding 𝜙 .

Let 𝑓 ∶ 𝐷 → 𝐶0([0, 1];𝐑𝑛) be defined by 𝑓 (𝑥∗) ∶=
´ ⋅
0 ( ̃𝑓 (𝑥∗))(𝑠) d𝑠 . Then,

‖𝑓 (𝑥∗) − 𝑓 (𝑥∗∗)‖𝐶0 = sup
𝑡∈[0,1]

∣
ˆ 𝑡

0
( ̃𝑓 (𝑥∗))(𝑠) d𝑠 −

ˆ 𝑡

0
( ̃𝑓 (𝑥∗∗))(𝑠) d𝑠∣

≤ ‖ ̃𝑓 (𝑥∗) − ̃𝑓 (𝑥∗∗)‖𝐿2

so that 𝑓 is continuous. We conclude that 𝑆 𝐹1 is solidly controllable from 𝑥0 , with 𝑄 = 𝑓 (𝐷). The

constant 𝜅 is a common Lipschitz constant for all functions in𝑄.

Proposition 3.3.7. If the weak Hörmander condition (H) is satisfied in 𝑥0 , then there exist 𝛿0 > 0
and a nonzero Borel measure �̃� on𝐑𝑑 such that

𝛲 𝐹
1 (𝑥 ′, ⋅ ) ≥ �̃�

for all 𝑥 ′ ∈ 𝛣(𝑥0 , 𝛿0).

Proof. By the previous proposition, we have solid controllability of the system 𝑆 𝐹1 from the point 𝑥0 ,

with a set 𝑄 consisting of Lipschitz functions. Then, the strategy of [Shi17, §1.2] (also see [Shi07,

§2.1]) yields the desired measure. We outline the argument for completeness and to emphasize that

we do not need the full strength of the decomposability assumption made there.
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Let 𝛱𝛮 be as in Remark 3.2.2 and Appendix 3.A. Because all controls in 𝑄 have a common

Lipschitz constant 𝜅, we have

lim
𝛮→∞

sup
𝜁∈𝑄

‖𝜁 − 𝛱𝛮 𝜁 ‖𝐶0 = 0

by Lemma 3.A.1. Then, because 𝑆 𝐹1 (𝑥0 , ⋅ ) ∶ 𝐶0([0, 1];𝐑𝑛) → 𝐑𝑑 is uniformly continuous, there

exists𝛮 ∈ 𝚴 large enough that

sup
𝜁∈𝑄

|𝑆 𝐹1 (𝑥0 , 𝛱𝛮 𝜁 ) − 𝑆 𝐹1 (𝑥0 , 𝜁 )| < 𝜖,

for the 𝜖 in (sC). Taking𝛷 = 𝑆 𝐹1 (𝑥0 , 𝛱𝛮 ⋅ ) there,𝛷 (𝑄) contains a ball (which has positive measure).

By Sard’s theorem, there exists a point 𝜁0 ∈ 𝑄 in which𝐷𝛷 has full rank. Because𝛷 ∘𝛱𝛮 = 𝛷 ,

this property still holds true if we restrict 𝛷 to 𝐹𝛮 = ran𝛱𝛮 . There then exists a 𝑑-dimensional

subspace 𝐹 1𝛮 ⊆ 𝐹𝛮 such that𝐷𝛷 |𝜁0 (𝐹
1
𝛮 ) = 𝐑𝑑 . Let 𝐹 2𝛮 be such that 𝐹 1𝛮 ⊕ 𝐹 2𝛮 = 𝐹𝛮 . We will write

𝜁 ∈ 𝐹𝛮 as (𝜁 1, 𝜁 2) according to this decomposition. More generally, we will write a generic element

of 𝐶0 as (𝜁 1, 𝜁 2, 𝜁 ′) with 𝜁 ′ ∈ 𝐹 ′𝛮 . The Jacobian of the map 𝑆 𝐹1 (𝑥0 , ( ⋅ , 𝜁 20 , 0)) ∶ 𝐹 1𝛮 → 𝐑𝑑 at the

point 𝜁 10 is a linear isomorphism between 𝐹 1𝛮 and𝐑𝑑 .

By the implicit function theorem, there exist neighbourhoods 𝑉 1 of 𝜁 10 , 𝑉 2 of 𝜁 20 , 𝑉 ′ of 0, 𝑊
of 𝑥0 ,𝑈 of𝑆 𝐹1 (𝑥0 , (𝜁 10 , 𝜁 20 , 0)); and a continuously differentiable function 𝑔 ∶ 𝑊 ×𝑈 ×𝑉 2×𝑉 ′ → 𝑉 1

such that, for points in the appropriate open sets, 𝑆 𝐹1 (𝑥 ′, (𝜁 1, 𝜁 2, 𝜁 ′)) = 𝑥∗ is equivalent to 𝜁 1 =
𝑔(𝑥 ′, 𝑥∗, 𝜁 2, 𝜁 ′).

Recall that ℓ equals the product measure ℓ𝛮 ×ℓ ′𝛮 with ℓ𝛮 possessing a continuous and positive

density 𝜌𝛮 on 𝐹𝛮 . Let 𝜒 ∶ 𝐑𝑑 × 𝐶0 → [0, 1] be continuous, supported in 𝑊 × 𝑉 1 × 𝑉 2 × 𝑉 ′, and

equal to 1 at (𝑥0 , 𝜁 10 , 𝜁 20 , 0). Then, for any Borel set 𝛤 ⊆ 𝐑𝑑 ,

𝛲 𝐹
1 (𝑥 ′, 𝛤 )

≥
˚

𝑆 𝐹1 (𝑥 ′,⋅ )−1(𝛤 )
𝜒(𝑥 ′, 𝜁 1, 𝜁 2, 𝜁 ′)𝜌𝛮 (𝜁 1, 𝜁 2) d𝜁 1 d𝜁 2ℓ ′𝛮 (d𝜁 ′)

=
¨

𝑉 2×𝑉 ′

ˆ
𝛤

𝜒(𝑥 ′, 𝑔(𝑥 ′, 𝑥∗, 𝜁 2, 𝜁 ′), 𝜁 2, 𝜁 ′)𝜌𝛮 (𝑔(𝑥 ′, 𝑥∗, 𝜁 2, 𝜁 ′), 𝜁 2)
det[𝐷𝑆 𝐹1 (𝑥 ′, ( ⋅ , 𝜁 2, 𝜁 ′))|𝑔(𝑥 ′,𝑥∗,𝜁 2 ,𝜁 ′)]

d𝑥∗

d𝜁 2ℓ ′𝛮 (d𝜁 ′)
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for all 𝑥 ′ ∈ 𝑊 .

By continuity, there exist numbers 𝛿0 > 0 and 𝛼 > 0 such that

𝛲 𝐹
1 (𝑥 ′, 𝛤 ) ≥ 𝛼 vol(𝛤 ∩ 𝛣(𝑆 𝐹1 (𝑥0 , 𝜁0), 𝛿0))

for all 𝑥 ′ ∈ 𝛣(𝑥0 , 𝛿0) and all Borel sets 𝛤 ⊆ 𝐑𝑑 .

Then, by the Chapman–Kolmogorov equation,

𝛲 𝐹
𝛵 +1(𝑥, 𝛤 ) ≥

ˆ
𝑥 ′∈𝛣(𝑥0 ,𝛿0)

𝛲 𝐹
𝛵 (𝑥, d𝑥 ′)𝛲 𝐹

1 (𝑥 ′, 𝛤 )

≥
ˆ
𝑥 ′∈𝛣(𝑥0 ,𝛿0)

𝛲 𝐹
𝛵 (𝑥, d𝑥 ′)�̃� (𝛤 ) = 𝛲 𝐹

𝛵 (𝑥, 𝛣(𝑥0 , 𝛿0))�̃� (𝛤 )

for any Borel set 𝛤 ⊆ 𝐑𝑑 and any 𝛵 > 0. We conclude that for any 𝛵 > 1 the nontrivial measure

𝜈𝛵 ∶= ( inf
𝑥∈{𝑉 ≤𝑅}

𝛲 𝐹
𝛵 −1(𝑥, 𝛣(𝑥0 , 𝛿0)))�̃�

is such that

𝛲 𝐹
𝛵 (𝑥, ⋅ ) ≥ 𝜈𝛵

for all 𝑥 ∈ 𝐑𝑑 such that 𝑉 (𝑥) ≤ 𝑅. The infimum in the definition of 𝜈𝛵 is positive by Proposi-

tion 3.3.4.

3.3.3 Application of Harris’ ergodic theorem

Recall that, by Lemma 3.3.1, the conditions (D) and (G) ensure the existence of constants 𝛫 > 0
and 𝛾 ∈ (0, 1) such that the function 𝑉 satisfies

∣
ˆ
𝐑𝑑
𝑉 (𝑦)𝛲 𝐹

𝑡 (𝑥, d𝑦)∣ ≤ 𝛾 𝑡𝑉 (𝑥) + 𝛫 (3.10)

for all 𝑥 ∈ 𝐑𝑑 and all 𝑡 > 0. Using the conditions (G) and (K), we also showed in Proposition 3.3.4

that, for any 𝛿 > 0, (𝑥, 𝛵 ) ↦ 𝛲 𝐹
𝛵 (𝑥, 𝛣(𝑥0 , 𝛿 )) is positive and jointly lower semicontinuous. Then,

we concluded from this, hypothesis (H) and the arguments of [Shi17] that, for any 𝛵 > 1, there is a

nontrivial measure 𝜈𝛵 such that

𝛲 𝐹
𝛵 (𝑥, ⋅ ) ≥ 𝜈𝛵 (3.11)
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for all 𝑥 ∈ 𝐑𝑑 such that 𝑉 (𝑥) ≤ 𝑅.

The existence of a function 𝑉 satisfying the condition (3.10) and a nontrivial measure 𝜈𝛵 satisfy-

ing (3.11) are precisely the hypotheses we need to apply Harris’ theorem.

Indeed, considering the 𝛵 -skeleton of our diffusion process4 for 𝛵 = 2, Theorem 1.2 in [HM11]

yields constants 𝑐, 𝐶 > 0 and a stationary measure 𝜇inv ∈ Prob(𝐑𝑑) against which 𝑉 is integrable

and such that

sup
|𝑓 |≤1+𝑉

∣
ˆ
𝐑𝑑
𝑓 (𝑦)[𝛲 𝐹

2𝑚(𝑥, d𝑦) − 𝜇inv(d𝑦)]∣ ≤ 𝐶 e−𝑐(2𝑚+2)(1 + 𝑉 (𝑥)) (3.12)

for all 𝑥 ∈ 𝐑𝑑 and all𝑚 ∈ 𝚴 ∪ {0}.
The measure 𝜇inv is the unique stationary probability measure for the 2-skeleton, but it could

a priori depend on our choice of 𝛵 -skeleton. However, we can show that this measure is actually

stationary, not only for the 2-skeleton, but also for the continuous-time process.

Note that with 𝑓 = 𝟏𝛤 the characteristic function of any Borel set 𝛤 ⊆ 𝐑𝑑 , integrating (3.12)

in the variable 𝑥 yields that

∣
ˆ
𝐑𝑑
𝛲 𝐹
2𝑚(𝑥, 𝛤 )𝜆(d𝑥) − 𝜇inv(𝛤 )∣ ≤ 𝐶 e−𝑐(2𝑚+2)(1 +

ˆ
𝐑𝑑
𝑉 (𝑥)𝜆(d𝑥)) (3.13)

for any measure 𝜆 ∈ Prob(𝐑𝑑).
Putting 𝜆 defined by 𝜆(𝛤 ) =

´
𝛲 𝐹
𝑠 (𝑥, 𝛤 )𝜇inv(d𝑥) in (3.13) for some 𝑠 ≥ 0, we have by the

Chapman–Kolmogrov equation that

∣
ˆ
𝐑𝑑
𝛲 𝐹
2𝑚+𝑠(𝑥, 𝛤 )𝜇inv(d𝑥) − 𝜇inv(𝛤 )∣

≤ 𝐶 e−𝑐(2𝑚+2)(1 +
ˆ
𝐑𝑑

ˆ
𝐑𝑑
𝑉 (𝑦)𝛲 𝐹

𝑠 (𝑥, d𝑦)𝜇inv(d𝑥)).

Using (3.10),

∣
ˆ
𝐑𝑑
𝛲 𝐹
2𝑚+𝑠(𝑥, 𝛤 )𝜇inv(d𝑥) − 𝜇inv(𝛤 )∣

≤ 𝐶 e−𝑐(2𝑚+2)(1 + 𝛫 +
ˆ
𝐑𝑑
𝑉 (𝑥)𝜇inv(d𝑥)).

4By 𝛵 -skeleton of a (continuous time) stochastic process, we mean the restriction to times in the countable set 𝛵𝚴 .
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But the left-hand side does not depend on 𝑚 ∈ 𝚴 because 𝜇inv is invariant for the 2-skeleton. We

therefore have
´
𝛲 𝐹
𝑠 (𝑥, ⋅ )𝜇inv(d𝑥) = 𝜇inv for all 𝑠 ≥ 0, i.e. that 𝜇inv is stationary for the orginial

continuous-time process.

Now, for any |𝑓 | ≤ 1 + 𝑉 , 𝑠 ∈ [0, 2) and𝑚 ∈ 𝚴 ∪ {0},

∣
ˆ
𝐑𝑑
𝑓 (𝑦)[𝛲 𝐹

2𝑚+𝑠(𝑥, d𝑦) − 𝜇inv(d𝑦)]∣

= ∣
ˆ
𝐑𝑑

ˆ
𝐑𝑑
𝑓 (𝑦)𝛲 𝐹

2𝑚(𝑥, d𝑧)𝛲 𝐹
𝑠 (𝑧, d𝑦) − 𝑓 (𝑦)𝛲 𝐹

𝑠 (𝑧, d𝑦)𝜇inv(d𝑧)∣

= ∣
ˆ
𝐑𝑑
(
ˆ
𝐑𝑑
𝑓 (𝑦)𝛲 𝐹

𝑠 (𝑧, d𝑦))[𝛲 𝐹
2𝑚(𝑥, d𝑧) − 𝜇inv(d𝑧)]∣.

Since |𝑓 | ≤ 1 + 𝑉 , we have by (3.10) that

∣
ˆ
𝐑𝑑
𝑓 (𝑦)𝛲 𝐹

𝑠 (𝑧, d𝑦)∣ ≤
ˆ
𝐑𝑑
(1 + 𝑉 (𝑦))𝛲 𝐹

𝑠 (𝑧, d𝑦) ≤ (𝛫 + 1)(1 + 𝑉 (𝑧)).

Therefore, we may apply (3.12) with 𝑓 replaced by 1
𝛫+1
´
𝑓 (𝑦)𝛲 𝐹

𝑠 (⋅ , d𝑦) to get

∣
ˆ
𝐑𝑑
𝑓 (𝑦)[𝛲 𝐹

2𝑚+𝑠(𝑥, d𝑦) − 𝜇inv(d𝑦)]∣ ≤ (𝛫 + 1)𝐶 e−𝑐(2𝑚+2)(1 + 𝑉 (𝑥)).

Because any time 𝑡 > 0 can be written as 2𝑚 + 𝑠 with 𝑠 ∈ [0, 2), this is — up to a relabeling of the

constants — the assertion of Theorem 3.2.3.

3.4 Networks of oscillators

We introduce the mathematical description of important physical systems that our main result cov-

ers, from the simplest to the most intricate. Based on [JPS17], we also discuss the assumptions (K), (D)

and (G) of our main result in this context. Discussion of the weak Hörmander condition (H) is post-

poned to the next section.

3.4.1 The linear chain coupled to Langevin thermostats

Consider 𝐿 unit masses, each labelled by an index in {1, 2, … , 𝐿 − 1, 𝐿} and whose position is re-

stricted to a line. For 𝑖 = 1, 2, … , 𝐿 − 1, the 𝑖 th mass is attached to the (𝑖 + 1)th mass by a spring of



106 CHAPTER 3

𝜃𝐿𝜃1

𝑞2
1 2 ⋯ 𝐿 − 1 𝐿

𝜅

𝑘

Figure 3.1: Depiction of the linear harmonic chain where the 1st and 𝐿th oscillator are connected

to heat baths at temperatures 𝜃1 and 𝜃𝐿 respectively.

spring constant 𝑘 > 0. Each mass is also pinned by a spring of spring constant 𝜅 ≥ 0. The position

coordinate 𝑞𝑖 of the 𝑖 th mass is measured relative to a rest position 𝑞 eq
𝑖 ; see Figure 1. Perturbations

of this system are described by Hamiltonians of the form

ℎ ∶ 𝐑𝐿 ⊕𝐑𝐿 →𝐑

(𝑝, 𝑞) ↦ 1
2

𝐿
∑
𝑖=1

𝑝2𝑖 +
1
2

𝐿
∑
𝑖=1

𝜅𝑞2𝑖 +
1
2
𝐿−1
∑
𝑖=1

𝑘(𝑞𝑖+1 − 𝑞𝑖 )2 + 𝑈 (𝑞)

where 𝑈 ∈ 𝐶∞(𝐑𝐿; 𝐑) is a perturbing potential.

Coupling the 1st and 𝐿th oscillator to Langevin heat baths at positive temperatures 𝜃1 and 𝜃𝐿
with positive coupling constants 𝛾1 and 𝛾𝐿 yields the equations of motion

d𝑞𝑖 = 𝑝𝑖 d𝑡 , 1 ≤ 𝑖 ≤ 𝐿,

d𝑝𝑖 = −[𝜅𝑞𝑖 + 𝑘(𝑞𝑖 − 𝑞𝑖−1) − 𝑘(𝑞𝑖+1 − 𝑞𝑖 ) + 𝜕𝑖𝑈 (𝑞)] d𝑡 , 1 < 𝑖 < 𝐿,

d𝑝1 = −[𝜅𝑞1 − 𝑘(𝑞2 − 𝑞1) + 𝜕1𝑈 (𝑞)] d𝑡 − 𝛾1𝑝1 d𝑡 + √2𝛾1𝜃1 d𝑊1,𝑡 ,

d𝑝𝐿 = −[𝜅𝑞𝐿 + 𝑘(𝑞𝐿 − 𝑞𝐿−1) + 𝜕𝐿𝑈 (𝑞)] d𝑡 − 𝛾𝐿𝑝𝐿 d𝑡 + √2𝛾𝐿𝜃𝐿 d𝑊𝐿,𝑡 ,

where (𝑊1,𝑡 )𝑡≥0 and (𝑊𝐿,𝑡 )𝑡≥0 are independent 1-dimensional Wiener processes.

This system can be put into the form (3.1) with 𝑑 = 2𝐿 and 𝑛 = 2 by setting

𝛸 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎝

𝑝

𝑞

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎠

, 𝛢 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎝

−𝛾1 0
0 0
0 0

⋱
0 0
0 0
0 −𝛾𝐿

−𝑘−𝜅 𝑘
𝑘 −2𝑘−𝜅
0 𝑘

⋱
𝑘 0

−2𝑘−𝜅 𝑘
𝑘 −𝑘−𝜅

𝟏 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎠

,
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𝛣 =
⎛⎜⎜⎜⎜⎜⎜⎜

⎝

√2𝛾1𝜃1 0
0 0
⋮ ⋮
0 0
0 √2𝛾𝐿𝜃𝐿

0

⎞⎟⎟⎟⎟⎟⎟⎟

⎠

and 𝐹 (𝛸) = 𝐹 (𝑝, 𝑞) = −∇𝑞𝑈 (𝑞).

The Kalman condition (K) is met for the pair (𝛢, 𝛣) (with 𝑑∗ ≤ 𝐿) as soon as 𝑘 > 0 and the

eigenvalues of 𝛢 then have strictly negative real part (condition (D) holds) [JPS17].

The growth condition (G) on the vector field 𝐹 in the general setting is to be imposed on the

gradient∇𝑞𝑈 of the perturbing potential𝑈 for the chain of oscillators: we require that it is Lipschitz

and that there exists 𝑎 ∈ [0, 1
2𝑑∗ ) such that |∇𝑞𝑈 (𝑞)| = 𝛰(1 + |𝑞|)𝑎 as |𝑞| → ∞. This potential

is not restricted to one-body (pinning) or two-body interaction terms; it can for example include a

sum of bounded three-body interaction terms.

3.4.2 More general geometries in the Langevin regime

Let 𝛪 be a finite set and distinguish a nonempty subset 𝐽 ⊂ 𝛪 of the sites, where the thermal noise

will act. Fix a temperature 𝜃𝑗 > 0 for the bath associated to each site 𝑗 ∈ 𝐽 . We can then generalize

the above model to different geometries and different spring constants by considering

𝛸 = (
𝑝
𝜔𝑞
) , 𝛢 = (

−1
2 𝜄𝜄∗ −𝜔∗

𝜔 0
) , 𝛣 = (

𝜄
0
) 𝜗 1/2, (3.14)

and 𝐹 (𝑝, 𝜔𝑞) = −∇𝑞𝑈 (𝑞), where

𝜔 ∶ 𝐑𝛪 →𝐑𝛪 ,
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is a nonsingular linear map5 and where 𝜗 and 𝜄 are of the form

𝜗 ∶ 𝐑𝐽 →𝐑𝐽

(𝑢𝑗 )𝑗∈𝐽 ↦ (𝜃𝑗𝑢𝑗 )𝑗∈𝐽 ,

and

𝜄 ∶ 𝐑𝐽 →𝐑𝛪

(𝑢𝑗 )𝑗∈𝐽 ↦ (√2𝛾𝑗𝑢𝑗 )𝑗∈𝐽 ⊕ 0𝛪 \𝐽 .

Again, 𝛾𝑗 is the coupling constant for the 𝑗 th oscillator of the boundary. More explicitly, the equa-

tions of motion then take the familiar form

d𝑞 = 𝑝 d𝑡 ,

d𝑝 = −𝜔∗𝜔𝑞 d𝑡 − ∇𝑞𝑈 (𝑞) d𝑡 − 1
2 𝜄𝜄∗𝑝 d𝑡 + 𝜄𝜗 1/2 d𝑊𝑡 .

Lemma 4.1 in [JPS17] states that if the pair (𝜔∗𝜔, 𝜄) satisfies the Kalman condition (K), then the

pair (𝛢, 𝛣) defined by (3.14) also satisfies the Kalman condition. By Theorem 5.1(2) there, it then

immediately implies the dissipativity condition (D). In Section 4.1 there, the case of the triangular

network is treated and explicit sufficient conditions for the Kalman condition are given in terms of

the spring constants. Again, the growth condition (G) is to be imposed on the gradient ∇𝑞𝑈 of the

pertrubing potential 𝑈 .

As mentioned in the introduction, the recent work [CEHRB18] of Cuneo, Eckmann, Hairer

and Rey-Bellet provides a result of existence, uniqueness and exponentially fast convergence in a

similar setup. Their conditions C3–C5 on the behaviour of the potential at infinity are significantly

less restrictive than our conditions (D) and (G), allowing for strong anharmonicity. However, their

nondegeneracy condition C2 is needed in all points of the phase space while our Hörmander con-

dition (H) is only needed in one point. Their controllability condition C1 on the topology of the

graph plays a role similar to that of our Kalman condition (K).
5We use the symbol𝜔 for the linear map encoding the frequencies of the system in order to ease the comparison with

other works to which we refer. Unfortunately, 𝜔 is also standard notation for elements of the underlying probability

space. We trust that the meaning of the symbol is clear from the context.
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3.4.3 Coupling through additional degrees of freedom

As pointed out e.g. in [JPS17], models where the noise acts through auxiliary degrees of freedom

enjoy the same structural properties, and are thus also suitable for our framework. We refer the

reader to [FKM65, Tro77, EPRB99b] for discussions of the physical interpretation and derivation

of such models. Because of these auxiliary degrees of freedom, the model is sometimes said to be

semi-Markovian.

Let 𝛪 and 𝐽 be finite sets as above and consider 𝛸 = (𝑟 , 𝑝, 𝜔𝑞) ∈ 𝐑𝐽 ⊕ 𝐑𝛪 ⊕ 𝐑𝛪 for some

nonsingular linear map 𝜔 ∶ 𝐑𝛪 → 𝐑𝛪 . In addition, let 𝛬 ∶ 𝐑𝐽 → 𝐑𝛪 be a linear injection and let

𝜄 ∶ 𝐑𝐽 →𝐑𝐽 and 𝜗 ∶ 𝐑𝐽 →𝐑𝐽 be linear bijections. We set

𝛢 = (
−1
2 𝜄𝜄∗ −𝛬∗ 0
𝛬 0 −𝜔∗

0 𝜔 0
) and 𝛣 = (

𝜄
0
0
) 𝜗 1/2; (3.15)

the important structural constraints are

𝜗 > 0, 𝛣∗𝛣 > 0, (3.16)

ker(𝛢 − 𝛢∗) ∩ ker𝛣∗ = {0}, 𝛢 + 𝛢∗ = −𝛣𝜗 −1𝛣∗. (3.17)

The perturbation 𝐹 is taken to be of the form

𝐹 ∶ 𝛸 = (𝑟 , 𝑝, 𝜔𝑞) ↦ −∇𝑞𝑈 (𝑞)

for some smooth potential𝑈 ∶ 𝐑𝛪 →𝐑 encoding the anharmonic part of both the interaction and

the pinning potential. More explicitly, the equations of motion then read

d𝑞 = 𝑝 d𝑡 ,

d𝑝 = −𝜔∗𝜔𝑞 d𝑡 − ∇𝑞𝑈 (𝑞) d𝑡 + 𝛬𝑟 (𝑡) d𝑡 ,

d𝑟 = −1
2 𝜄∗𝜄𝑟 d𝑡 − 𝛬∗𝑝 d𝑡 − 𝜄𝜗 1/2 d𝑊𝑡 .

Proposition 3.4.1. If the pair (𝜔∗𝜔, 𝛬) satisfies the Kalman condition, then the pair (𝛢, 𝛣) also
satisfies the Kalman condition (K).
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Proof. Let ( ̂𝑟 , �̂� , 𝜔�̂�) be a target for the system in time 𝛵 > 0. If (𝜔∗𝜔, 𝛬) satisfies the Kalman

condition, there exists 𝜂1 ∈ 𝐶 1
0 ([0, 𝛵 ];𝐑𝑛) such that the solution (𝑝1(𝑡), 𝑞1(𝑡)) of

�̇�1 = −𝜔∗𝜔𝑞1 + 𝛬�̇�1, 𝑝1(0) = 0,

�̇�1 = 𝑝1, 𝑞1(0) = 0,

satisfies (𝑝1(𝛵 ), 𝑞1(𝛵 )) = (�̂� , �̂�). Note that ( 𝑡𝛵 ̂𝑟 , 𝑝1(𝑡), 𝑞1(𝑡)) is then a solution of the system

̇𝑟2 = −1
2 𝜄𝜄∗(𝑟2 + �̇�2) − 𝛬∗𝑝2 + 𝜄𝜗 1/2�̇�2, 𝑟2(0) = 0,

�̇�2 = −𝜔∗𝜔𝑞2 + 𝛬(𝑟2 + �̇�2), 𝑝2(0) = 0,

�̇�2 = 𝑝2 𝑞2(0) = 0,

for the choices of control

𝜂2(𝑡) = 𝜂1(𝑡) −
ˆ 𝑡

0

𝑠
𝛵 ̂𝑟 d𝑠,

𝜁2(𝑡) = (𝜄𝜗 1/2)−1
ˆ 𝑡

0

1
𝛵 ̂𝑟 + 1

2 𝜄𝜄∗�̇�1(𝑠) + 𝛬∗𝑝1(𝑠) d𝑠,

hitting the prescribed target at time 𝑡 = 𝛵 .

Finally, note that with �̃� a smooth approximation of �̇�2 that is 0 at times 𝑡 = 0 and 𝑡 = 𝛵 ,

(𝑟2(𝑡) + �̃�(𝑡), 𝑝2(𝑡), 𝑞2(𝑡)) is an approximate solution of

̇𝑟 = −1
2 𝜄𝜄∗𝑟 − 𝛬∗𝑝 + 𝜄𝜗 1/2�̇� , 𝑟 (0) = 0,

�̇� = −𝜔∗𝜔𝑞 + 𝛬𝑟 , 𝑝(0) = 0,

�̇� = 𝑝, 𝑞(0) = 0,

for the choice of control

𝜁 (𝑡) = 𝜁2(𝑡) + (𝜄𝜗 1/2)−1�̃�(𝑡 ).

Therefore, the original system is approximately controllable from 0. Because the system is linear, we

conclude that the pair (𝛢, 𝛣) satisfies the Kalman condition.
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Then, Theorem 5.1(2) of [JPS17] states that, in this setup, the Kalman condition (K) implies

that all the eigenvalues of 𝛢 have strictly negative real part, i.e. condition (D).

In particular, for 𝛢 and 𝛣 arising from a pair (𝜔∗𝜔, 𝛬) satisfying the Kalman condition (K), as

long as |∇𝑞𝑈 (𝑞)| = 𝛰(1 + |𝑞|)𝑎 as |𝑞| → ∞, and as long as there exists a point where the weak

Hörmander condition holds, the field 𝑞 ↦ 𝜔∗𝜔𝑞 + ∇𝑞𝑈 (𝑞) is allowed to be degenerate in non-

negligible regions of the position space. This is to be compared the nondegeneracy hypothesis H2)

in [EPRB99b, RBT02, Car07] and C2 in [CEHRB18] that are needed everywhere.

3.5 The weak Hörmander condition

As a starting point, we note that under the assumption (K), the condition (H) is automatically satis-

fied for any 𝐹 with compact support or any 𝐹 whose derivatives up to order 𝑑 − 1 vanish at a point.

Also note that a standard perturbative argument shows that if the conditions (D), (K) and (G) are

satisfied, then there exists 𝜆0 > 0 such that the system

d𝛸𝑡 = 𝛢𝛸𝑡 d𝑡 + 𝜆𝐹 (𝛸𝑡 ) d𝑡 + 𝛣 d𝑊𝑡

admits a unique invariant measure satisfying (3.4) as soon as 0 < 𝜆 < 𝜆0 .

A more subtle perturbative argument is presented in Proposition 3.5.1. We then give an example

of a physically motivated potential to which this proposition applies in the context of networks of

oscillators.

In view of the definition of the weak Hörmander condition, we are interested in the part of

the tangent space spanned by Lie derivatives. The Lie derivatives ℒ𝐺𝑏 , ℒ2
𝐺𝑏 , … , ℒ𝑑∗−1

𝐺 𝑏 with

𝐺 ∶ 𝑥 ↦ 𝛢𝑥 + 𝐹 (𝑥) and 𝑏 a constant vector field will play a particularly important role. A direct

computation shows

ℒ𝐺𝑏 = −𝐷𝐺[𝑏],

ℒ2
𝐺𝑏 = +𝐷𝐺 2[𝑏 ] − 𝐷 2𝐺[𝑏 , 𝐺],

ℒ3
𝐺𝑏 = −𝐷𝐺 3[𝑏 ] + 2𝐷𝐺[𝐷 2𝐺[𝑏 , 𝐺]]

+ 𝐷 2𝐺[𝐷𝐺[𝑏], 𝐺] − 𝐷 3𝐺[𝑏 , 𝐺, 𝐺] − 𝐷 2𝐺[𝑏 ,𝐷𝐺[𝐺]],
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and so forth. Here, the point of the space at which the vectors fields are taken is implicit and we use

𝐷 𝑗𝐺[⋅ , ⋅ , … , ⋅ ] ∶ 𝐑𝑑 × 𝐑𝑑 × ⋯ × 𝐑𝑑⏟⏟⏟⏟⏟⏟⏟
𝑗 times

→𝐑𝑑

for the 𝑗 th Fréchet derivative of the map𝐺 ∶ 𝐑𝑑 →𝐑𝑑 at this point. The above pattern generalises

in the following way.

Claim. The difference between ℒ𝑘
𝐺𝑏 and (−1)𝑘𝐷𝐺𝑘[𝑏 ] is a linear combination over 𝚭 of com-

positions of Fréchet derivatives of𝐺 with 𝑏 . In each term, 𝑏 appears once,𝐺 appears𝛮0 times,𝐷𝐺
appears𝛮1 times, … ,𝐷 𝑘𝐺 appears𝛮𝑘 times, with 𝛮1 ≠ 𝑘 and

𝑘
∑
𝑗=0

𝛮𝑗 =
𝑘
∑
𝑗=0

𝑗𝛮𝑗 = 𝑘. (3.18)

Proof. We proceed by induction on 𝑘. For 𝑘 = 1we have

ℒ𝐺𝑏 = −𝐷𝐺[𝑏],

which satisfies the claim. Assume now that the result holds for some 𝑘 ∈ 𝚴 so that ℒ𝑘
𝐺𝑏 −

(−1)𝑘𝐷𝐺𝑘[𝑏 ] is a sum of terms satisfying (3.18). Since

ℒ𝑘+1
𝐺 𝑏 = −𝐷𝐺[ℒ𝑘

𝐺𝑏] + 𝐷(ℒ𝑘
𝐺𝑏)[𝐺],

the first term yields−(−1)𝑘𝐷𝐺[𝐷𝐺𝑘[𝑏 ]] and terms with the same form as those of ℒ𝑘
𝐺𝑏 , but with

the changes 𝑘 ↦ 𝑘 + 1 (adding𝛮𝑘+1 = 0) and𝛮1 ↦ 𝛮1 + 1. It indeed satisfies the right condition

on the 𝛮 ’s if ℒ𝑘
𝐺𝑏 does. As for the second term, by the product rule, each term in ℒ𝑘

𝐺𝑏 yields a

sum of terms undergoing𝛮0 ↦ 𝛮0 + 1 and𝛮𝑗 ↦ 𝛮𝑗 − 1 and𝛮𝑗+1 ↦ 𝛮𝑗+1 + 1 for one and only

one 𝑗 ∈ {1, … , 𝑘}.

Proposition 3.5.1. Suppose that the pair (𝛢, 𝛣) satisfies the Kalman condition (K) and that there

exists a sequence (𝑦 (𝑛))𝑛∈𝚴 in𝐑𝑑 that is bounded away from 0 and such that

lim𝑛→∞ |𝑦
(𝑛)|𝑘−1‖𝐷 𝑘𝐹 (𝑦 (𝑛))‖ = 0

for each 𝑘 = 1, 2, … , 𝑑∗ − 1. Then, there exists a point 𝑥0 ∈ 𝐑𝑑 where the weak Hörmander condi-

tion (H) is satisfied.
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Proof. Let 𝐺 denote 𝑦 ↦ 𝛢𝑦 + 𝐹 (𝑦) and let 𝑏 stand for a column of 𝛣 . By our previous claim, we

have the bound

|(ℒ𝑘
𝐺𝑏)(𝑦) − (−1)𝑘(𝐷𝐺(𝑦))𝑘[𝑏 ]|

≤ ∑
𝛮∈𝒜

|𝐶𝛮 ||𝑏 ||𝐺(𝑦)|𝛮0‖𝐷𝐺(𝑦)‖𝛮1‖𝐷 2𝐺(𝑦)‖𝛮2 ⋯ ‖𝐷 𝑘𝐺(𝑦)‖𝛮𝑘

≤ ∑
𝛮∈𝒜

|𝐶𝛮 ||𝑏 |(‖𝛢‖|𝑦| + 1
8 ‖𝛭‖−1|𝑦| + 𝑐1)𝛮0

‖𝐷𝐺(𝑦)‖𝛮1‖𝐷 2𝐺(𝑦)‖𝛮2 ⋯ ‖𝐷 𝑘𝐺(𝑦)‖𝛮𝑘

where 𝒜 ∶= {𝛮 = (𝛮0 , 𝛮1, … ,𝛮𝑘) ∈ (𝚴 ∪ {0})𝑘 satisfying (3.18) and 𝛮1 ≠ 𝑘} and 𝐶𝛮 is a

combinatorial factor in𝚭.

By condition (3.18),

|𝑦|𝛮0‖𝐷𝐺(𝑦)‖𝛮1‖𝐷 2𝐺(𝑦)‖𝛮2 ⋯ ‖𝐷 𝑘𝐺(𝑦)‖𝛮𝑘

= |𝑦|∑
𝑘
𝑗 ′=2(𝑗

′−1)𝛮𝑗 ′
𝑘
∏
𝑗=1

‖𝐷 𝑗𝐺(𝑦)‖𝛮𝑗

= ‖𝐷𝐺(𝑦)‖𝛮1
𝑘
∏
𝑗=2

|𝑦|(𝑗−1)𝛮𝑗 ‖𝐷 𝑗𝐺(𝑦)‖𝛮𝑗 .

Along the subsequence (𝑦 (𝑛))𝑛∈𝚴 in the hypothesis, for each 𝑗 ≥ 2,

lim𝑛→∞ |𝑦
(𝑛)|𝑗−1‖𝐷 𝑗𝐺(𝑦 (𝑛))‖ = lim𝑛→∞ |𝑦

(𝑛)|𝑗−1‖𝐷 𝑗𝐹 (𝑦 (𝑛))‖ = 0.

In the case 𝑗 = 1, we have

lim sup
𝑛→∞

‖𝐷𝐺(𝑦 (𝑛))‖ ≤ ‖𝛢‖ + lim sup
𝑛→∞

‖𝐷𝐹 (𝑦 (𝑛))‖ = ‖𝛢‖.

Therefore,

lim𝑛→∞ |(ℒ
𝑘
𝐺𝑏)(𝑦 (𝑛)) − (−1)𝑘(𝐷𝐺(𝑦 (𝑛)))𝑘[𝑏 ]| = 0

for 𝑘 = 1, 2, … , 𝑑∗ − 1, and for 𝑛 large enough,

span{𝑏 ,ℒ𝐺𝑏 , … ,ℒ𝑑∗−1
𝐺 𝑏}𝑦=𝑦 (𝑛) = span{𝑏 , 𝐷𝐺(𝑦)𝑏 , … , (𝐷𝐺(𝑦))𝑑∗−1𝑏}𝑦=𝑦 (𝑛) .
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Finally note that

lim𝑛→∞ ‖(𝐷𝐺(𝑦
(𝑛)))𝑘𝑏 − 𝛢𝑘𝑏‖ ≤ lim sup

𝑛→∞

𝑘
∑
𝑗=1

(𝑘𝑗 )‖𝛢‖
𝑘−𝑗 ‖𝐷𝐹 (𝑦 (𝑛))‖𝑗 = 0.

We conclude from the Kalman condition that for𝛮 ∈ 𝚴 large enough

span{𝑏 , 𝐷𝐺(𝑦)𝑏 , … , (𝐷𝐺(𝑦))𝑑∗−1𝑏 ∶ 𝑏 ∈ ran𝛣}𝑦=𝑦 (𝛮 )

coincides with

ran{𝛣, 𝛢𝛣, … , 𝛢𝑑∗−1𝛣} = 𝐑𝑑 .

The results holds with 𝑥0 = 𝑦 (𝛮 ).

Example 3.5.2. Consider that the masses in the models of Section 3.4, although restricted to a single

spatial degree of freedom, live in 3-dimensional space and each hold an electric charge of Gaussian

density

𝜌𝑖 ( ⋅ ) =
𝑄

(2𝜋)3/2𝜎 3 exp ( − | ⋅ − (𝑞𝑖 + 𝑞
eq
𝑖 )|2

2𝜎 2 )

where 𝜎 is a parameter with dimension of length and𝑄 is the electric charge of each mass. In view of

Poisson’s equation in𝐑3 , this gives rise to the term

𝑈 (𝑞) = ∑
𝑖∈𝛪

∑
𝑖 ′∈𝛪
𝑖 ′≠𝑖

𝑄2

4𝜋𝜖0|(𝑞𝑖 + 𝑞
eq
𝑖 ) − (𝑞𝑖 ′ + 𝑞

eq
𝑖 ′ )|

2
√𝜋

ˆ |(𝑞𝑖 +𝑞
eq
𝑖 )−(𝑞𝑖′ +𝑞

eq
𝑖 ′ )|

√2𝜎

0
e−𝑠

2
d𝑠

in the Hamiltonian. This potential satisfies the condition of the previous proposition: take for example

a sequence with 𝑞 (𝑛)𝑖 = 𝑖𝑛𝜎 .
For the sake ofmatching exactly the setup of [EPRB99b,RBT02,Car07], consider that 𝛪 = {1, … , 𝐿}

and 𝐽 = {1, 𝐿} and that only nearest neighbours interact through the Coulomb force. Let us use the

shorthand �̃�𝑖 ∶= 𝑞𝑖 + 𝑞
eq
𝑖 . Then, the corresponding perturbing potential

𝑈 n.n.(𝑞) =
𝐿−1
∑
𝑖=1

𝑄2

4𝜋𝜖0|�̃�𝑖 − �̃�𝑖+1|
2
√𝜋

ˆ |�̃�𝑖 −�̃�𝑖+1|
√2𝜎

0
e−𝑠

2
d𝑠

also satisfies the hypotheses of our previous proposition. However, note that

𝜕𝑞2𝜕𝑞3𝑈
n.n.(𝑞) = 𝑄2

4𝜋 3
2 𝜖0𝜎 3

( − 4
´ |�̃�2−�̃�3 |

√2𝜎
0 e−𝑠

2
d𝑠

|�̃�2 − �̃�3|3/𝜎 3
+ 2√2𝑒−

|�̃�2−�̃�3 |2

2𝜎 2

|�̃�2 − �̃�3|2/𝜎 2
+ √2e−

|�̃�2−�̃�3 |2

2𝜎 2 )
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does not have a definite sign. Hence, for large values of𝑄2𝜎 −3 (very concentrated charge distribution),
the uniform condition H2) in [EPRB99b, EPRB99a, RBT02, Car07] is not satisfied.

3.A Decomposability properties

We devote this appendix to the decomposability properties of ℓ in Remark 3.2.2. We consider the

case 𝛵 = 1 and 𝑛 = 1 but the argument can be easily adapted to the general case. Although we

use results from the theory of Gaussian measures to show the decomposability properties, these

properties are not specific to Gaussian processes and can be proved for other types of noises.

The Wiener process restricted to the interval [0, 1] is a nondegenerate Gaussian measure on the

Banach space 𝐶0([0, 1];𝐑). It has as its Cameron–Martin space the space𝑊 1,2
0 ([0, 1];𝐑) equipped

with the inner product

⟨𝜂, 𝜁 ⟩𝑊 1,2
0
=
ˆ 1

0
�̇�(𝑠)�̇� (𝑠) d𝑠.

This Hilbert space has orthonormal basis {𝜓𝑚}𝑚∈𝚴 where

𝜓𝑚(𝑡) =
ˆ 𝑡

0
𝜙𝑚(𝑠) d𝑠

and where {𝜙𝑚}𝑚∈𝚴 is a Fourier basis for 𝐿2([0, 1];𝐑). It is dense as a subspace of 𝐶0([0, 1];𝐑)
equipped with the supremum norm.

Let 𝐹𝛮 ∶= span{𝜓𝑚 ∶ 𝑚 ≤ 𝛮} and let 𝐹 ′𝛮 be the closure in 𝐶0([0, 1];𝐑) of the linear span of

{𝜓𝑚 ∶ 𝑚 > 𝛮}. These sequences of subspaces satisfy (i) and provide a decomposition 𝐹𝛮 ⊕𝐹 ′𝛮 : any

𝜂 ∈ 𝐶0([0, 1];𝐑) can be written in a unique way as 𝜂𝛮 + 𝜂 ′𝛮 with 𝜂𝛮 ∈ 𝐹𝛮 and 𝜂 ′𝛮 ∈ 𝐹 ′𝛮 . To this

decomposition are associated the projectors𝛱𝛮 and𝛱 ′
𝛮 .

By the general theory of Gaussian measures (see e.g. [Bog98, §3.5]), Brownian motion can be

represented as the almost surely convergent sum

𝑊𝑡 (𝜔) = ∑
𝑚≤𝛮

𝛯𝑚(𝜔)𝜓𝑚(𝑡) + ∑
𝑚>𝛮

𝛯𝑚(𝜔)𝜓𝑚(𝑡),

where (𝛯𝑚)𝑚∈𝚴 is a sequence of independent scalar standard normal random variables. The two

sums are independent and provide the decomposition (ii) of ℓ as the product of the projected laws.

Property (iii) clearly holds.
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These abstract results from the theory of Gaussian measures do not provide strong convergence

of𝛱𝛮 to the identity operator on the Banach space𝐶0([0, 1];𝐑) as𝛮 → ∞ (or boundedness of the

set of norms {‖𝛱𝛮 ‖ ∶ 𝛮 ∈ 𝚴}, which is used in [Shi17]). However, we have the following weaker

convergence result for regular enough sets of functions.

Lemma 3.A.1. If 𝑄 is a subset of 𝐶0([0, 1];𝐑) that is bounded in the norm induced by the inner

product ⟨ ⋅ , ⋅ ⟩𝑊 1,2
0
, then

lim
𝛮→∞

sup
𝜂∈𝑄

‖𝜂 − 𝛱𝛮 𝜂‖𝐶0 = 0.

Proof. First note that by construction of the basis,

∑
𝑚∈𝚴

‖𝜓𝑚‖2𝐶0 < ∞.

For 𝜂 ∈ 𝑊 1,2
0 ([0, 1];𝐑), the decomposition into the two subspaces can be made explicit:

𝜂(𝑡) = ∑
𝑚≤𝛮

𝜓𝑚(𝑡)
ˆ 1

0
𝜙𝑚(𝑠)�̇�(𝑠) d𝑠 + ∑

𝑚>𝛮
𝜓𝑚(𝑡)

ˆ 1

0
𝜙𝑚(𝑠)�̇�(𝑠) d𝑠

and by the Cauchy–Schwarz inequality

‖𝜂 − 𝛱𝛮 𝜂‖𝐶0 ≤ ( ∑
𝑚>𝛮

‖𝜓𝑚‖2𝐶0)
1
2 ( ∑

𝑚>𝛮
∣
ˆ 1

0
𝜙𝑚(𝑠)�̇�(𝑠) d𝑠∣

2
)
1
2

≤ ( ∑
𝑚>𝛮

‖𝜓𝑚‖2𝐶0)
1
2 ‖𝜂‖𝑊 1,2

0
.

The convergence thus follows from the hypothesis sup𝜂∈𝑄 ‖𝜂‖𝑊 1,2
0
< ∞.
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Abstract We prove existence and uniqueness of the invariant measure and exponential

mixing in the total-variation norm for a class of stochastic differential equations

driven by degenerate compound Poisson processes. In addition to mild assump-

tions on the distribution of the jumps for the driving process, the hypotheses

for our main result are that the corresponding control system is dissipative, ap-

proximately controllable and solidly controllable. The solid controllability as-

sumption is weaker than the well-known parabolic Hörmander condition and

is only required from a single point to which the system is approximately con-

trollable. Our analysis applies to Galerkin projections of stochastically forced

parabolic partial differential equations with asymptotically polynomial nonlin-

earities and to networks of quasi-harmonic oscillators connected to different

Poissonian baths.
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4.1 Introduction

Motivated by applications to thermally driven harmonic networks and to Galerkin approximations

of partial differential equations (pdes) randomly forced by degenerate noise, we consider a stochastic

differential equation (sde) of the form

d𝛸𝑡 = 𝑓 (𝛸𝑡 ) d𝑡 + 𝛣 d𝑌𝑡 , (4.1)

where 𝑓 ∶ 𝐑𝑑 → 𝐑𝑑 is a smooth vector field, 𝛣 ∶ 𝐑𝑛 → 𝐑𝑑 is a linear map, and (𝑌𝑡 )𝑡≥0 is an 𝑛-

dimensional compound Poisson process of the form

𝑌𝑡 =
∞
∑
𝑘=1

𝜂𝑘𝟏[𝜏𝑘 ,∞)(𝑡). (4.2)

Throughout the paper, the jump displacements {𝜂𝑘}𝑘∈𝚴 are independent and identically distributed

random variables with law ℓ and the waiting times separating the jumps, defined as 𝑡1 = 𝜏1 and 𝑡𝑘 =
𝜏𝑘 −𝜏𝑘−1 for 𝑘 ≥ 2, form a sequence {𝑡𝑘}𝑘∈𝚴 of independent exponentially distributed random vari-

ables with common rate parameter 𝜆 > 0. Moreover, the sequences {𝜂𝑘}𝑘∈𝚴 and {𝑡𝑘}𝑘∈𝚴 are inde-

pendent from one another. We are interested in the noise-degenerate case, that is when rank(𝛣) < 𝑑.

The aim of this paper is to establish exponential mixing for the sde (4.1) under some mild dissi-

pativity and controllability conditions. The precise hypotheses are the following.

(C1) There are numbers 𝛼 > 0 and 𝛽 > 0 such that

⟨𝑓 (𝑦), 𝑦⟩ ≤ −𝛼‖𝑦‖2 + 𝛽 (4.3)

for all 𝑦 ∈ 𝐑𝑑 , where ⟨ ⋅ , ⋅ ⟩ and ‖ ⋅ ‖ are a scalar product and the associated norm in 𝐑𝑑 .

Combined with the regularity of 𝑓 and the fact that ∑∞
𝑘=1 𝑡𝑘 = +∞ with probability 1, it ensures

the global well-posedness of the sde (4.1). It also strongly suggests the norm squared as a candidate

Lyapunov function. The other two conditions are related to the controllability of the system: we

ask that there exists a point �̂� ∈ 𝐑𝑑 such that the system is both approximately controllable to �̂�
and solidly controllable form �̂�. To formulate these conditions more precisely, we introduce the
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following (deterministic) mapping. For 𝛵 > 0 a given time,

𝑆𝛵 ∶ 𝐑𝑑 × 𝐶([0, 𝛵 ];𝐑𝑛) → 𝐑𝑑 ,

(𝑥, 𝜁 ) ↦ 𝑦𝛵 ,
(4.4)

where (𝑦𝑡 )𝑡∈[0,𝛵 ] is the solution of the controlled problem

{
�̇�𝑡 = 𝑓 (𝑦𝑡 ) + 𝛣𝜁𝑡 ,

𝑦0 = 𝑥.
(4.5)

Accordingly, we will refer to the first argument of 𝑆𝛵 ( ⋅ , ⋅ ) as an initial condition and to the second

one as a control.

(C2) The system is approximately controllable to �̂� ∈ 𝐑𝑑 : for any number 𝜖 > 0 and any radius

𝑅 > 0, we can find a time 𝛵 > 0 such that for any initial point 𝑥 ∈ 𝐑𝑑 with ‖𝑥‖ ≤ 𝑅, there

exists a control 𝜁 ∈ 𝐶([0, 𝛵 ];𝐑𝑛) verifying

‖𝑆𝛵 (𝑥, 𝜁 ) − �̂�‖ < 𝜖. (4.6)

(C3) The system is solidly controllable from �̂�: there is a number 𝜖0 > 0, a time 𝛵0 > 0, a compact

set 𝒦 in 𝐶([0, 𝛵0];𝐑𝑛) and a non-degenerate ball 𝐺 in 𝐑𝑛 such that, for any continuous

function 𝛷 ∶ 𝒦 →𝐑𝑑 satisfying the relation

sup
𝜁 ∈𝒦

‖𝛷 (𝜁 ) − 𝑆𝛵0 (�̂�, 𝜁 )‖ ≤ 𝜖0 ,

we have 𝐺 ⊂ 𝛷 (𝒦).

Condition (C2) is a well-known controllability property, and (C3) is an accessibility property that

is weaker than the weak Hörmander condition at the point �̂� (see Section 4.4.1 for a discussion).

We denote by (𝛸𝑡 ,𝚸𝑥) the Markov family associated with the sde (4.1) parametrised by the

time 𝑡 ≥ 0 and the initial condition 𝑥 ∈ 𝐑𝑑 , by 𝛲𝑡 (𝑥, ⋅ ) the corresponding transition function,

and by 𝔓𝑡 and 𝔓∗
𝑡 the Markov semigroups

𝔓𝑡𝑔(𝑥) =
ˆ
𝐑𝑑
𝑔(𝑦) 𝛲𝑡 (𝑥, d𝑦) and 𝔓∗

𝑡 𝜇(𝛤 ) =
ˆ
𝐑𝑑
𝛲𝑡 (𝑦, 𝛤 ) 𝜇(d𝑦),
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where 𝑔 ∈ 𝐿∞(𝐑𝑑) and 𝜇 ∈ 𝒫(𝐑𝑑). Recall that a measure 𝜇inv ∈ 𝒫(𝐑𝑑) is said to be invariant

if 𝔓∗
𝑡 𝜇inv = 𝜇inv for all 𝑡 ≥ 0.

Main Theorem. Assume that Conditions (C1)–(C3) are satisfied and that the law of 𝜂𝑘 has finite
variance and possesses a continuous positive density with respect to the Lebesgue measure on𝐑𝑛 . Then,

the semigroup (𝔓∗
𝑡 )𝑡≥0 admits a unique invariant measure 𝜇inv ∈ 𝒫(𝐑𝑑). Moreover, there exist

constants 𝐶 > 0 and 𝑐 > 0 such that

‖𝔓∗
𝑡 𝜇 − 𝜇inv‖var ≤ 𝐶 e−𝑐𝑡 (1 +

ˆ
𝐑𝑑
‖𝑥‖ 𝜇(d𝑥)) (4.7)

for any 𝜇 ∈ 𝒫(𝐑𝑑) and 𝑡 ≥ 0.

In the literature, the problem of ergodicity for sdes driven by a degenerate noise is mostly con-

sidered when the perturbation is a Brownian motion, the system admits a Lyapunov function, and

the Hörmander condition is satisfied at all the points of the state space. Under these assumptions,

the transition function of the underlying Markov process has a smooth density with respect to

Lebesgue measure which is almost surely positive. This implies that the process is strong Feller and

irreducible, so it has a unique invariant measure by Doob’s theorem (see Theorem 4.2.1 in [DPZ96]

and [MT93, Kha12] for related results).

Even with the assumption that the noise is Gaussian, there are only few papers that consider

the problem of ergodicity for an sde without the Hörmander condition being satisfied everywhere.

In [AK87], the uniqueness property for invariant measures is proved for degenerate diffusions, un-

der the assumption that the Hörmander condition holds at one point and that the process is irre-

ducible. The proof relies heavily on the Gaussian nature of the noise. In the paper [Shi17], an ap-

proach based on controllability and a coupling argument is given for a study of dynamical systems

on compact metric spaces subject to a more general degenerate noise: under the controllability as-

sumptions (C2) and (C3) and a decomposability assumption on the noise, exponential mixing in the

total-variation metric is established. This approach can be carried to problems on a non-compact

space, provided a dissipativity of the type of (C1) holds; see [Raq19] for a study of networks of quasi-

harmonic oscillators. The class of decomposable noises includes — but is not limited to — Gaussian

measures.
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The present paper falls under the continuity of the study carried out in these references. The

main difficulty in our case comes from the fact that the Poisson noise we consider, in addition to be-

ing degenerate, does not have a decomposability structure; also see [Ner08], where polynomial mix-

ing is proved for the complex Ginzburg–Landau equation driven by a non-degenerate compound

Poisson process. Yet, the methods we use still stem from a control and coupling approach, which

we outline in the following paragraphs; also see the beginning of Section 4.3. Indeed, the combina-

tion of coupling and controllability arguments has the advantage of yielding rather simple proofs of

otherwise very technical results and also accommodates a wide variety of (non-Gaussian) noises for

which other methods fail.

We hope that treating a relatively tractable problem in an essentially self-contained way will

help interested readers in making their way to understanding technically more difficult problems

for which methods of the same flavour are used.

For a discrete-time Markov family on a compact state space 𝒳, existence of an invariant measure

can be obtained from a Bogolyubov–Krylov argument and it is typical to derive uniqueness and

mixing from a uniform upper bound on the total-variation distance between the transition func-

tions from different points. One way to prove uniqueness using such a uniform squeezing estimate

is through a so-called Doeblin coupling argument, where one constructs a Markov family on 𝒳×𝒳
whose projections to each copy of 𝒳 have the same distribution as the original Markov family, and

with the property that it hits the diagonal {(𝑥, 𝑥) ∶ 𝑥 ∈ 𝒳} soon enough, often enough. We re-

fer the interested reader to the paper [Gri75] and to Chapter 3 of the monograph [KS12] for an

introduction to these ideas, which go back to Doeblin, Harris, and Vaserstein.

When the state space 𝒳 is not compact, existence of an invariant measure requires additional

arguments and one can rarely hope to prove squeezing estimates which hold uniformly on the whole

state space. The Bogolyubov–Krylov argument for existence can be adapted provided that one has a

suitable Lyapunov structure. As for uniqueness and mixing, the coupling argument will go through

with a squeezing estimate which only holds for points in a small ball, provided that one can obtain

good enough estimates on the hitting time of that ball. Over the past years, it has become evident

that control theory provides a good framework for formulating conditions that are sufficient for this



124 CHAPTER 4

endeavor when the noise is degenerate.
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Notation

For (𝒳, 𝑑) a Polish space, we shall use the following notation throughout the paper:

• 𝛣𝒳(𝑥, 𝜖) for the closed ball in 𝒳 of radius 𝜖 centered at 𝑥 (we shall simply write 𝛣(𝑥, 𝜖) in the

special case 𝒳 = 𝐑𝑑);

• ℬ(𝒳) for its Borel 𝜎 -algebra;

• 𝐿∞(𝒳) for the space of all bounded Borel-measurable functions 𝑔 ∶ 𝒳 → 𝐑, endowed with

the norm ‖𝑔‖∞ = sup𝑦∈𝒳 |𝑔(𝑦)|;

• 𝒫(𝒳) for the set of Borel probability measures on 𝒳, endowed with the total variation norm:

for 𝜇1, 𝜇2 ∈ 𝒫(𝒳),

‖𝜇1 − 𝜇2‖var ∶=
1
2 sup
‖𝑔‖∞≤1

|⟨𝑔, 𝜇1⟩ − ⟨𝑔, 𝜇2⟩|

= sup
𝛤 ∈ℬ(𝒳)

|𝜇1(𝛤 ) − 𝜇2(𝛤 )|,

where ⟨𝑔, 𝜇⟩ =
´

𝒳 𝑔(𝑦) 𝜇(d𝑦) for 𝑔 ∈ 𝐿∞(𝒳) and 𝜇 ∈ 𝒫(𝒳).

Let (𝒴, 𝑑 ′)be another Polish space. The image of a measure𝜇 ∈ 𝒫(𝒳)under a Borel-measurable

mapping 𝐹 ∶ 𝒳 → 𝒴 is denoted by 𝐹∗𝜇 ∈ 𝒫(𝒴).
On any space, 𝟏𝛤 stands for the indicator function of the set 𝛤 .
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We use𝚭 for the set of integers and𝚴 for the set of natural numbers (without 0). For any𝑚 ∈ 𝚴 ,

we set

𝚴𝑚 ∶= {𝑛 ⋅ 𝑚 ∶ 𝑛 ∈ 𝚴} and 𝚴0
𝑚 ∶= 𝚴𝑚 ∪ {0}. (4.8)

We use 𝑎 ∨ 𝑏 [resp. 𝑎 ∧ 𝑏 ] for the maximum [resp. minimum] of the numbers 𝑎, 𝑏 ∈ 𝐑.

4.2 Preliminaries and existence of an invariant measure

The sde (4.1) has a unique càdlàg solution satisfying the initial condition 𝛸0 = 𝑥. It is given by

𝛸𝑡 = {
𝑆𝑡−𝜏𝑘(𝛸𝜏𝑘) if 𝑡 ∈ [𝜏𝑘 , 𝜏𝑘+1),

𝑆𝑡𝑘+1(𝛸𝜏𝑘) + 𝛣𝜂𝑘+1 if 𝑡 = 𝜏𝑘+1,
(4.9)

where 𝜏0 = 0 and 𝑆𝑡 (𝑥) = 𝑆𝑡 (𝑥, 0) is the solution of the undriven equation. Relation (4.9) will

allow us to reduce the study of the ergodicity of the full process (𝛸𝑡 )𝑡≥0 to that of the embedded

process (𝛸𝜏𝑘)𝑘∈𝚴 obtained by considering its values at jump times 𝜏𝑘 . The strong Markov property

implies that the latter is a Markov process with respect to the filtration generated by the random

variables {𝑡𝑗 , 𝜂𝑗 }𝑘𝑗=1. We denote by �̂�𝑘 the corresponding transition function: for 𝑥 ∈ 𝐑𝑑 and 𝛤 ∈
ℬ(𝐑𝑑),

�̂�𝑘(𝑥, 𝛤 ) ∶= 𝚸𝑥 {𝛸𝜏𝑘 ∈ 𝛤 } . (4.10)

The key consequences of the dissipativity Condition (C1) are the moment estimates of the following

lemma. They imply, in particular, existence of a suitable Lyapunov structure given by the norm

squared.

Lemma 4.2.1. Under Condition (C1), we have the following bounds:

(i) for any 𝜖 > 0, there exists a constant 𝐶𝜖 > 0 such that

‖𝛸𝜏𝑘‖
2 ≤ (1 + 𝜖)𝑘e−2𝛼𝜏𝑘‖𝛸0‖2 + 𝐶𝜖

𝑘
∑
𝑗=1

e−2𝛼(𝜏𝑘−𝜏𝑗 )(1 + 𝜖)𝑘−𝑗 (1 + ‖𝜂𝑗 ‖2) (4.11)

for all 𝑥 ∈ 𝐑𝑑 and 𝑘 ∈ 𝚴 ;
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(ii) there are numbers 𝛾 ∈ (0, 1) and 𝐶 > 0 such that

𝚬𝑥‖𝛸𝜏𝑘‖
2 ≤ 𝛾 𝑘‖𝑥‖2 + 𝐶(1 + 𝛬), (4.12)

𝚬𝑥‖𝛸𝑡‖2 ≤ (1 − 𝛾 )−1‖𝑥‖2 + 𝐶(1 + 𝛬) (4.13)

for all 𝑥 ∈ 𝐑𝑑 , 𝑘 ∈ 𝚴, and 𝑡 ≥ 0, where 𝛬 ∶= 𝚬‖𝜂1‖2 and 𝚬𝑥 is the expectation with re-

spect to 𝚸𝑥 .

Proof. First note that Condition (C1) implies the following estimate for the solution to the undriven

equation:

‖𝑆𝑡 (𝑥)‖2 ≤ e−2𝛼𝑡‖𝑥‖2 + 𝛽𝛼−1 (4.14)

for all 𝑥 ∈ 𝐑𝑑 and 𝑡 ≥ 0. Let 𝜖 > 0 be arbitrary. Combining (4.9) and (4.14), we find a positive

constant 𝐶𝜖 such that

‖𝛸𝜏𝑘‖
2 ≤ (1 + 𝜖)e−2𝛼𝑡𝑘‖𝛸𝜏𝑘−1‖

2 + 𝐶𝜖(1 + ‖𝜂𝑘‖2).

Iterating this inequality, we get (4.11). Taking expectation in (4.11) and using the independence of

the sequences {𝜂𝑘} and {𝜏𝑘}, we obtain

𝚬𝑥‖𝛸𝜏𝑘‖
2 ≤ (1 + 𝜖)𝑘 ( 𝜆

𝜆 + 2𝛼)
𝑘
‖𝑥‖2 + 𝐶𝜖

𝑘
∑
𝑗=1

( 𝜆
𝜆 + 2𝛼)

𝑘−𝑗
(1 + 𝜖)𝑘−𝑗 (1 + 𝛬).

Choosing 𝜖 > 0 so small that 𝛾 ∶= (1 + 𝜖) 𝜆
𝜆+2𝛼 ∈ (0, 1) yields (4.12). To prove (4.13), we introduce

the random variable

𝒩𝑡 ∶= max{𝑘 ≥ 0 ∶ 𝜏𝑘 ≤ 𝑡}

and use (4.14):

𝚬𝑥‖𝛸𝑡‖2 ≤ 𝚬𝑥‖𝛸𝜏𝒩𝑡
‖2 + 𝛽𝛼−1 =

∞
∑
𝑘=0

𝚬𝑥 (𝟏{𝒩𝑡=𝑘}‖𝛸𝜏𝑘‖
2) + 𝛽𝛼−1. (4.15)

Inequality (4.11) and the independence of {𝜂𝑘} and {𝜏𝑘} imply

𝚬𝑥 (𝟏{𝒩𝑡=𝑘}‖𝛸𝜏𝑘‖
2) ≤ 𝛾 𝑘‖𝑥‖2 + 𝐶𝜖(1 + 𝛬)

𝑘
∑
𝑗=1
(1 + 𝜖)𝑘−𝑗𝚬 (𝟏{𝒩𝑡=𝑘}e

−2𝛼(𝜏𝑘−𝜏𝑗 )) (4.16)
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and

∞
∑
𝑘=1

𝑘
∑
𝑗=1
(1 + 𝜖)𝑘−𝑗𝚬 (𝟏{𝒩𝑡=𝑘}e

−2𝛼(𝜏𝑘−𝜏𝑗 )) =
∞
∑
𝑘=0
(1 + 𝜖)𝑘𝚬 (e−2𝛼𝜏𝑘) =

∞
∑
𝑘=0
(1 + 𝜖)𝑘 ( 𝜆

𝜆 + 2𝛼)
𝑘
,

which is finite by our choice of 𝜖. Combining this with (4.15) and (4.16), we get (4.13) and complete

the proof of the lemma.

As mentioned in the introduction, the dissipativity Condition (C1) guarantees the existence of

an invariant measure. Indeed, the last lemma, combined with a Bogolyubov–Krylov argument and

Fatou’s lemma yields the following result. We refer the reader to [KS12, §2.5.2] for more details.

Lemma 4.2.2. Under Condition (C1), the semigroup (𝔓∗
𝑡 )𝑡≥0 admits at least one invariant mea-

sure 𝜇inv ∈ 𝒫(𝐑𝑑). Moreover, any invariant measure 𝜇 ∈ 𝒫(𝐑𝑑) has a finite second moment, that

is ˆ
𝐑𝑑
‖𝑦‖2 𝜇(d𝑦) < ∞. (4.17)

We now turn to an important consequence of the solid controllability Condition (C3). The

main ideas in its proof are borrowed from [Shi17, §1] (also see the earlier works [AKSS07, §2] and

[KS12, Ch. 3]). Such results are sometimes referred to as squeezing estimates, a concept to which

we have referred in the introduction. This lemma is used to prove a key property of the coupling

constructed in the next section.

We consider the family of maps 𝐹𝑘 ∶ 𝐑𝑑 × (𝐑+)𝚴 × (𝐑𝑛)𝚴 →𝐑𝑑 defined by

{
𝐹0(𝑥, 𝐬, 𝛏) = 𝑥,

𝐹𝑘(𝑥, 𝐬, 𝛏) = 𝑆𝑠𝑘(𝐹𝑘−1(𝑥, 𝐬, 𝛏)) + 𝛣𝜉𝑘
(4.18)

for 𝑘 ∈ 𝚴 , 𝑥 ∈ 𝐑𝑑 , 𝐬 = (𝑠𝑗 )𝑗∈𝚴 ∈ (𝐑+)𝚴 , and 𝛏 = (𝜉𝑗 )𝑗∈𝚴 ∈ (𝐑𝑛)𝚴 ; see Figure 4.1. Because 𝐹𝑘
does not depend on {𝑠𝑗 , 𝜉𝑗 }𝑗≥𝑘+1, i.e. the times and displacements for kicks that happen later than

the 𝑘-th kick, we will often consider the domain of 𝐹𝑘 to be𝐑𝑑 × (𝐑+)𝑚 × (𝐑𝑛)𝑚 for some natural

number𝑚 ≥ 𝑘.
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𝑥

𝐹4(𝑥, 𝐬, 𝛏)

𝑓

𝑆𝑠1(𝑥)

𝜉4

𝜉1

Figure 4.1: The map 𝐹𝑘 takes as an input a point 𝑥, a sequence 𝐬 of times and a sequence 𝛏 of

displacement vectors and outputs the final position of a test particle which starts at 𝑥, follows the

integral curves of 𝑓 for a time 𝑠1, is immediately displaced by 𝜉1, follows the integral curves of 𝑓 for a

time 𝑠2, is immediately displaced by 𝜉2, and so on until it is finally displaced by 𝜉𝑘 . We have sketched

this for 𝑘 = 4.

Lemma 4.2.3. Suppose that �̂� is as in Condition (C3). Then, there exist numbers𝑚 ∈ 𝚴 , 𝑟 > 0, and
𝑝 ∈ (0, 1) and a non-degenerate ball 1 𝛴 in [0, 𝛵0]𝑚 such that

∥𝐹𝑚(𝑥, 𝐬, ⋅ )∗(ℓ𝑚) − 𝐹𝑚(𝑥 ′, 𝐬, ⋅ )∗(ℓ𝑚)∥var ≤ 𝑝 (4.19)

for all 𝐬 ∈ 𝛴 and 𝑥, 𝑥 ′ ∈ 𝛣(�̂�, 𝑟 ), where 𝐹𝑚(𝑥, 𝐬, ⋅ )∗(ℓ𝑚) is the image of ℓ𝑚 (the𝑚-fold product of the

law ℓ with itself) under the mapping 𝐹𝑚(𝑥, 𝐬, ⋅ ) ∶ (𝐑𝑛)𝑚 →𝐑𝑑 .

Proof. Let us fix 𝜖0 , 𝒦, and 𝐺 as in Condition (C3). To simplify the presentation, we assume that

𝛵0 = 1. For any𝑚 ∈ 𝚴 and 𝜁 ∈ 𝐶([0, 1];𝐑𝑛), let 𝜄𝑚(𝜁 ) ∶ [0, 1] → 𝐑𝑛 be the step function

𝜄𝑚(𝜁 ) =
𝑚−1
∑
𝑗=0

𝟏[ 𝑗𝑚 , 𝑗+1𝑚 )

ˆ 𝑗
𝑚

0
𝜁 (𝑠) d𝑠,

and let 𝒦𝑚 be the set 𝜄𝑚(𝒦). If 𝜁 is a continuous function which allows the system to be controlled

from �̂� to some target in time 1, then 𝜄𝑚(𝜁 ) is a discretization in time of the antiderivative of 𝜁 and

we expect that feeding its jump discontinuities to 𝐹𝑚 would result in a final position which is close
1Here [0, 𝛵0]𝑚 is endowed with the metric inherited from 𝐑𝑚 .
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to the target if 𝑚 is large enough. With this in mind, we often identify the function 𝜄𝑚(𝜁 ) with the

𝑚-tuple of vectors in 𝐑𝑛 consisting of its jumps at the times 1
𝑚 , 2𝑚 , … , 𝑚𝑚 .

We proceed in three steps. First, we show that Condition (C3) implies that the set 𝐹𝑚(�̂�, �̂�,𝒦𝑚)
contains a ball in 𝐑𝑑 . Then, combining this with Sard’s theorem and some properties of images of

measures under regular mappings, we show a uniform lower bound on 𝐹𝑚(𝑥, 𝐬, ⋅ )∗(ℓ𝑚) for (𝑥, 𝐬)
close enough to (�̂�, �̂�) where �̂� ∶= ( 1𝑚 , … , 1𝑚 ) ∈ [0, 1]𝑚. Finally, from this uniform lower bound we

derive the desired estimate in total variation.

Step 1: Solid controllability. Let 𝑆𝛵 be the mapping defined by (4.4). By the compactness of 𝒦, for

any 𝜖 > 0, there exists𝑚0(𝜖) ∈ 𝚴 such that

sup
𝜁 ∈𝒦

∥𝜄𝑚𝜁 −
ˆ ⋅

0
𝜁 (𝑠) d𝑠∥

𝐿∞([0,1],𝐑𝑛)
≤ 𝜖

whenever𝑚 ≥ 𝑚0(𝜖). Hence, taking𝑚 ≥ 𝑚0(𝜖) for sufficiently small 𝜖, we have

sup
𝜁∈𝒦

‖𝐹𝑚(�̂�, �̂�, 𝜄𝑚𝜁 ) − 𝑆1(�̂�, 𝜁 )‖ ≤ 𝜖0 ,

where we use the aforementioned identification of functions in 𝒦𝑚 with𝑚-tuples of displacement

vectors in 𝐑𝑛. Using the continuity of 𝐹𝑚(�̂�, �̂�, 𝜄𝑚⋅) ∶ 𝒦 → 𝐑𝑑 and Condition (C3), we conclude

that 𝐹𝑚(�̂�, �̂�,𝒦𝑚) contains a ball in 𝐑𝑑 . Until the end of the proof, we fix 𝑚 ≥ 𝑚0(𝜖) for such a

small 𝜖.

Step 2: Uniform lower bound. We want to apply Lemma 4.C.2 with 𝒳 = 𝛣(�̂�, 1)×[0, 1]𝑚, 𝒴 = 𝐑𝑑 ,

and 𝒰 = (𝐑𝑛)𝑚 and the map 𝐹𝑚 ∶ 𝒳 ×𝒰 → 𝒴 as before. As 𝐹𝑚(�̂�, �̂�,𝒦𝑚) contains a ball in𝐑𝑑 ,

Sard’s theorem yields the existence of a point �̂� ∈ 𝒦𝑚 ⊂ 𝒰 in which the derivative 𝐷𝛏𝐹𝑚(�̂�, �̂�, ⋅ )
has full rank. Hence, by Lemma 4.C.2, there exists a continuous function 𝜓 ∶ 𝒳 ×𝒴 →𝐑+ and a

radius 𝑟𝑚 > 0 such that

𝜓 ((�̂�, �̂�), 𝐹𝑚(�̂�, �̂�, �̂�)) > 0

and

(𝐹𝑚(𝑥, 𝐬, ⋅ )∗(ℓ𝑚)) (d𝑦) ≥ 𝜓 ((𝑥, 𝐬), 𝑦) d𝑦

(as measures, with 𝑦 ranging over𝐑𝑑) whenever 𝑥 ∈ 𝛣(�̂�, 𝑟𝑚) and 𝐬 ∈ 𝛣𝐑𝑚(�̂�, 𝑟𝑚).
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Step 3: Estimate in total variation. Shrinking 𝑟𝑚 if necessary, Step 2 yields positive numbers 𝜖𝑚,1
and 𝜖𝑚,2 and a non-degenerate ball 𝛴 ⊂ [0, 1]𝑚 such that

𝐹𝑚(𝑥, 𝐬, ⋅ )∗(ℓ𝑚) ∧ 𝐹𝑚(𝑥 ′, 𝐬, ⋅ )∗(ℓ𝑚) ≥ 𝜖𝑚,1 Vol𝐑𝑑 ( ⋅ ∩ 𝛣(𝐹𝑚(�̂�, �̂�, �̂�), 𝜖𝑚,2))

whenever 𝑥, 𝑥 ′ ∈ 𝛣(�̂�, 𝑟𝑚) and 𝐬 ∈ 𝛴 . Therefore,

‖𝐹𝑚(𝑥, 𝐬, ⋅ )∗(ℓ𝑚) − 𝐹𝑚(𝑥 ′, 𝐬, ⋅ )∗(ℓ𝑚)‖var ≤ 1 − 𝜖𝑚,1𝜖𝑑𝑚,2
𝜋 𝑑

2

𝛤 (𝑑2 + 1)
=∶ 𝑝𝑚

whenever 𝑥, 𝑥 ′ ∈ 𝛣(�̂�, 𝑟𝑚) and 𝐬 ∈ 𝛴 . This proves (4.19) with 𝑟 = 𝑟𝑚 and 𝑝 = 𝑝𝑚.

4.3 Coupling argument and exponential mixing

In this section, we shall always assume that Conditions (C1)–(C3) are satisfied. The Main Theorem

is established by using the coupling method, which consists in proving uniqueness and convergence

to an invariant measure for a Markov family by using the inequality

‖𝛲𝑡 (𝑥, ⋅ ) − 𝛲𝑡 (𝑥 ′, ⋅ )‖var ≤ 𝚸 {𝒯 > 𝑡},

where 𝒯 is a random time given by

𝒯 ∶= inf {𝑠 ≥ 0 ∶ 𝛧𝑢 = 𝛧 ′
𝑢 for all 𝑢 ≥ 𝑠} (4.20)

and (𝛧𝑡 , 𝛧 ′
𝑡 )𝑡≥0 is any (𝐑𝑑 × 𝐑𝑑)-valued random process defined on a space (𝛺,ℱ,𝚸(𝑥,𝑥 ′)) with

𝚸(𝑥,𝑥 ′)(𝛧𝑡 ∈ 𝛤 ) = 𝛲𝑡 (𝑥, 𝛤 ) and 𝚸(𝑥,𝑥 ′)(𝛧 ′
𝑡 ∈ 𝛤 ) = 𝛲𝑡 (𝑥 ′, 𝛤 ) for all 𝑡 ≥ 0 and all measurable 𝛤 ⊆ 𝐑𝑑 .

This inequality is of course most useful when the process (𝛧𝑡 , 𝛧 ′
𝑡 )𝑡≥0 , called a coupling, is constructed

in a such a way that 𝚸 {𝒯 > 𝑡} decays as fast as possible as 𝑡 → ∞, with a reasonable dependence

on 𝑥 and 𝑥 ′. To do so, one usually uses at some point a general result of the type of Lemma 4.C.1

on the existence of so-called maximal couplings (see [KS12, Chapter 3]).

We first proceed to construct a coupling of two embedded discrete-time processes as introduced

at the beginning of Section 4.2, but with different initial conditions: given 𝑥 and 𝑥 ′ in𝐑𝑑 , we define

a sequence (𝑧𝑘 , 𝑧′𝑘)𝑘∈𝚴 of (𝐑𝑑 ×𝐑𝑑)-valued random variables on a probability space (𝛺,ℱ,𝚸(𝑥,𝑥 ′))
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with 𝚸(𝑥,𝑥 ′)(𝑧𝑘 ∈ 𝛤 ) = �̂�𝑘(𝑥, 𝛤 ) and 𝚸(𝑥,𝑥 ′)(𝑧′𝑘 ∈ 𝛤 ) = �̂�𝑘(𝑥 ′, 𝛤 ) for all 𝑘 ∈ 𝚴 and measur-

able 𝛤 ⊆ 𝐑𝑑 . In this context, we call (𝑧𝑘)𝑘∈𝚴 [resp. (𝑧𝑘)𝑘∈𝚴] the first [resp. second] component

of the coupling (𝑧𝑘 , 𝑧′𝑘)𝑘∈𝚴 . The structure of the waiting times and the relation (4.9) then allow

us to recover estimates for the original continuous-time process. The construction of this coupling

is inductive and relies on the numbers 𝑚 ∈ 𝚴 and 𝑟 > 0 in Lemma 4.2.3 and correlates the two

components in a different way according to three cases: for 𝑗 ∈ 𝚴0
𝑚,

• if 𝑧𝑗 = 𝑧′𝑗 , then 𝑧𝑘 = 𝑧′𝑘 for all 𝑘 ∈ 𝚴 with 𝑘 ≥ 𝑗 ;

• if 𝑧𝑗 and 𝑧′𝑗 are different but both in𝛣(�̂�, 𝑟 ), then the next𝑚 jumps are synchronous and, given

the times of these jumps, 𝑧𝑗+𝑚 and 𝑧′𝑗+𝑚 are maximally coupled in the sense of Lemma 4.C.1;

• if 𝑧𝑗 and 𝑧′𝑗 are different and not both in𝛣(�̂�, 𝑟 ), then the next𝑚 jumps are synchronous, but

the respective jump displacements are independent.

In essence, the worst-case scenario is when the initial conditions 𝑥 and 𝑥 ′ are different and very far

from the origin, but the number

𝛪 ∶= min{𝑖 ∈ 𝚴0
𝑚 ∶ (𝑧𝑖 , 𝑧′𝑖 ) ∈ 𝛣(0, 𝑅) × 𝛣(0, 𝑅)} (4.21)

of jumps needed for both components to enter a large2 compact set around the origin is controlled

by the Lyapunov structure inherited from (C1). Then, the approximate controllability assump-

tion (C2) allows us to prove an estimate for an exponential moment of the number

𝐽 ∶= min{𝑗 ∈ 𝚴0
𝑚 ∶ (𝑧𝑗 , 𝑧′𝑗 ) ∈ 𝛣(�̂�, 𝑟 ) × 𝛣(�̂�, 𝑟 )} (4.22)

of jumps needed for both components to simultaneously enter𝛣(�̂�, 𝑟 ). Finally, combining this with

the solid controllability assumption (C3), we control the probability distribution of the number

𝛫 ∶= min{𝑘 ∈ 𝚴0
𝑚 ∶ 𝑧𝑘 = 𝑧′𝑘}

= min{𝑘 ∈ 𝚴0
𝑚 ∶ 𝑧ℓ = 𝑧′ℓ for all ℓ ∈ 𝚴 with ℓ ≥ 𝑘}

(4.23)

of jumps after which the two components coincide.
2The radius𝑅 of this compact set will be chosen to suitably fit the Lyapunov structure; cf. Corollary 4.A.2.
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Alternatively, in a language which avoids the particularities of the coupling method, one could

rephrase the above strategy by saying that combining (C2) and the consequence of (C3) expressed

in Lemma 4.2.3 gives a localDoeblin condition in𝛣(0, 𝑅)which, when combined with the Lyapunov

structured conferred by (C1), yields exponential mixing by Meyn–Tweedie-type arguments [MT12].

4.3.1 Coupling for the embedded discrete-time process

In this section, we construct a coupling (𝑧𝑘 , 𝑧′𝑘)𝑘∈𝚴 for the embedded discrete-time process in such

a way that the random time after which the two components coincide has an exponential moment

which we can estimate in terms of the initial conditions (see Proposition 4.3.2).

Let us fix the numbers 𝑚, 𝑟 , and 𝑝 as in Lemma 4.2.3. The coupling is constructed by blocks

of𝑚 steps as follows. Let 𝒳 = 𝐑𝑑 ×(𝐑+)𝑚×(𝐑𝑛)𝑚, 𝒴 = 𝐑𝑑 , and 𝒰 = 𝐑𝑑 ×𝐑𝑑 ×(𝐑+)𝑚. Recall

that the functions 𝐹𝑖 ∶ 𝒳 → 𝒴 are defined by (4.18) for 𝑖 = 1, … ,𝑚. We consider two random

probability measures 𝑢 ∈ 𝒰 ↦ 𝜇(𝑢, ⋅ ), 𝜇′(𝑢, ⋅ ) on 𝒳 given by

𝜇(𝑢, ⋅ ) ∶= 𝛿𝑧 × 𝛿𝐬 × ℓ𝑚 and 𝜇′(𝑢, ⋅ ) ∶= 𝛿𝑧′ × 𝛿𝐬 × ℓ𝑚

for 𝑢 = (𝑧, 𝑧′, 𝐬) ∈ 𝒰, where 𝛿𝑧 is the Dirac measure at 𝑧 ∈ 𝐑𝑑 and 𝛿𝐬 is the Dirac measure at 𝐬 ∈
(𝐑+)𝑚. By Lemma 4.C.1 applied to 𝐹𝑚, there exist a probability space (�̃�, ℱ̃, �̃� ) and measurable

mappings 𝜉 , 𝜉 ′ ∶ 𝒰 × �̃� → 𝒳 such that

𝜉 (𝑢, ⋅ )∗�̃� = 𝛿𝑧 × 𝛿𝐬 × ℓ𝑚 , 𝜉 ′(𝑢, ⋅ )∗�̃� = 𝛿𝑧′ × 𝛿𝐬 × ℓ𝑚 ,

and

�̃� {�̃� ∶ 𝐹𝑚(𝜉 (𝑢, �̃�)) ≠ 𝐹𝑚(𝜉 ′(𝑢, �̃�))} = ∥𝐹𝑚(𝑧, 𝐬, ⋅ )∗(ℓ𝑚) − 𝐹𝑚(𝑧′, 𝐬, ⋅ )∗(ℓ𝑚)∥var (4.24)

for each 𝑢 = (𝑧, 𝑧′, 𝐬) ∈ 𝒰. Replacing �̃� with a bigger space (still referred to as �̃�) if necessary,

we may find a third measurable mapping 𝜉 ″ ∶ 𝒰 × �̃� → 𝒳 with the same distribution as 𝜉 ′, but
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independent from 𝜉 .3 We set

ℛ𝑖 (𝑧, 𝑧′, 𝐬, �̃�) ∶= 𝐹𝑖 (𝜉 (𝑧, 𝑧′, 𝐬, �̃�))

and

ℛ′
𝑖 (𝑧, 𝑧′, 𝐬, �̃�) ∶=

⎧

⎨
⎩

𝐹𝑖 (𝜉 (𝑧, 𝑧′, 𝐬, �̃�)) if 𝑧 = 𝑧′,

𝐹𝑖 (𝜉 ′(𝑧, 𝑧′, 𝐬, �̃�)) if 𝑧 ≠ 𝑧′ both in 𝛣(�̂�, 𝑟 ),

𝐹𝑖 (𝜉 ″(𝑧, 𝑧′, 𝐬, �̃�)) if 𝑧 ≠ 𝑧′ not both in 𝛣(�̂�, 𝑟 )

for each (𝑧, 𝑧′, 𝐬, �̃�) ∈ 𝐑𝑑 × 𝐑𝑑 × (𝐑+)𝑚 × �̃� and 𝑖 = 1, … ,𝑚. Now, let ℰ𝑚
𝜆 be the 𝑚-fold direct

product of exponential laws with rate parameter 𝜆. We denote by (𝛺,ℱ,𝚸(𝑥,𝑥 ′)) the direct product

of the probability space (𝐑𝑑 × 𝐑𝑑 ,ℬ(𝐑𝑑) × ℬ(𝐑𝑑), 𝛿𝑥 × 𝛿𝑥 ′) with countably many copies of the

probability space

((𝐑+)𝑚 × �̃�,ℬ((𝐑+)𝑚) × ℱ̃,ℰ𝑚
𝜆 × �̃� ),

and define the process (𝑧𝑘(𝜔), 𝑧′𝑘(𝜔))𝑘∈𝚴 inductively. First, set (𝑧0(𝜔), 𝑧′0(𝜔)) = (𝑦, 𝑦 ′) where 𝜔 =
(𝑦, 𝑦 ′, 𝜔0 , 𝜔1, … ) ∈ 𝛺 with 𝜔𝑗 = (𝐬𝑗 , �̃�𝑗 ) ∈ (𝐑+)𝑚 × �̃�, 𝑗 = 0, 1, 2, … , and 𝑖 = 1, … ,𝑚. Then,

𝑧𝑗𝑚+𝑖 (𝜔) ∶= ℛ𝑖 (𝑧𝑗𝑚(𝜔), 𝑧′𝑗𝑚(𝜔), 𝐬𝑗 , �̃�𝑗 ),

𝑧′𝑗𝑚+𝑖 (𝜔) ∶= ℛ′
𝑖 (𝑧𝑗𝑚(𝜔), 𝑧′𝑗𝑚(𝜔), 𝐬𝑗 , �̃�𝑗 ).

By construction, the pair (𝑧𝑘 , 𝑧′𝑘), 𝑘 ∈ 𝚴 is a coupling for the embedded process:

𝚸(𝑥,𝑥 ′){𝜔 ∈ 𝛺 ∶ 𝑧𝑘 ∈ 𝛤 } = �̂� (𝑥, 𝛤 ) and 𝚸(𝑥,𝑥 ′){𝜔 ∈ 𝛺 ∶ 𝑧′𝑘 ∈ 𝛤 } = �̂� (𝑥 ′, 𝛤 ) (4.25)

for all measurable 𝛤 ⊆ 𝐑𝑑 .

We now state and prove two important properties of the constructed coupling. The first one re-

lies on (C3) and elucidates the choice of a construction by blocks of𝑚 steps with𝑚 as in Lemma 4.2.3.

The second combines this first property and some technical consequences of Condition (C1) and
3For example, one can take as a new (�̃�, ℱ̃, �̃� ) the product of the old (�̃�, ℱ̃, �̃� )with itself and set 𝜉new(𝑢, �̃�1, �̃�2) =

𝜉old(𝑢, �̃�1), 𝜉 ′new(𝑢, �̃�1, �̃�2) = 𝜉 ′old(𝑢, �̃�1) and 𝜉 ″new(𝑢, �̃�1, �̃�2) = 𝜉 ′old(𝑢, �̃�2) where (�̃�1, �̃�2) is a generic element of the

product of the old space with itself.
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Condition (C2) proved in Appendix 4.A to establish an estimate on the time𝛫 needed for the cou-

pling to hit the diagaonal, i.e. for the two coupled components to coincide; see (4.23). This will be

crucial in the proof of the Main Theorem.

Proposition 4.3.1. There is a number �̂� ∈ (0, 1) such that

𝚸(𝑥,𝑥 ′) {𝑧𝑚 ≠ 𝑧′𝑚} < �̂� (4.26)

for all 𝑥, 𝑥 ′ ∈ 𝛣(�̂�, 𝑟 ).

Proof. With 𝛴 as in and Lemma 4.2.3, the equality (4.24) gives

(ℰ𝑚
𝜆 × �̃� ) {(𝐬, �̃�) ∶ 𝐹𝑚(𝜉 (𝑥, 𝑥 ′, 𝐬, �̃�)) ≠ 𝐹𝑚(𝜉 ′(𝑥, 𝑥 ′, 𝐬, �̃�))}

≤ ℰ𝑚
𝜆 (𝛴) sup

𝐬∈𝛴
�̃� {�̃� ∶ 𝐹𝑚(𝜉 (𝑥, 𝑥 ′, 𝐬, �̃�)) ≠ 𝐹𝑚(𝜉 ′(𝑥, 𝑥 ′, 𝐬, �̃�))} + (1 −ℰ𝑚

𝜆 (𝛴))

= ℰ𝑚
𝜆 (𝛴) sup

𝐬∈𝛴
‖𝐹𝑚(𝑥, 𝐬, ⋅ )∗(ℓ𝑚) − 𝐹𝑚(𝑥 ′, 𝐬, ⋅ )∗(ℓ𝑚)‖var + (1 −ℰ𝑚

𝜆 (𝛴))

whenever 𝑥 and 𝑥 ′ are in the ball 𝛣(�̂�, 𝑟 ). Therefore,

𝚸(𝑥,𝑥 ′) {𝑧𝑚 ≠ 𝑧′𝑚} ≤ 1 −ℰ𝑚
𝜆 (𝛴)(1 − 𝑝) =∶ �̂�

by Lemma 4.2.3.

Proposition 4.3.2. There are positive constants 𝜃1 and 𝛢1 such that

𝚬(𝑥,𝑥 ′)e𝜃1𝛫 ≤ 𝛢1 (1 + ‖𝑥‖ + ‖𝑥 ′‖) (4.27)

for all 𝑥, 𝑥 ′ ∈ 𝐑𝑑 .

Proof. Under Condition (C1), (𝑥, 𝑥 ′) ↦ 1 + ‖𝑥‖2 + ‖𝑥 ′‖2 is a Lyapunov function for the cou-

pling (𝑧𝑘 , 𝑧′𝑘)𝑘∈𝚴 . As a consequence of this, we control an exponential moment of the number 𝛪
of jumps needed to enter a ball of large radius 𝑅 around the origin (see Corollary 4.A.2). On the

other hand, Condition (C2) guarantees the existence of a number𝛭 ∈ 𝚴𝑚 of jumps in which tran-

sition probabilities from points in 𝛣(0, 𝑅) to the ball 𝛣(�̂�, 𝑟 ) are uniformly bounded from below

(see Lemma 4.A.5).
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Combining these results, we get the following bound on an exponential moment of the first

simultaneous hitting time of the ball 𝛣(�̂�, 𝑟 ): there exist positive constants 𝜃2 and 𝛢2 such that

𝚬(𝑥,𝑥 ′)e𝜃2𝐽 ≤ 𝛢2 (1 + ‖𝑥‖2 + ‖𝑥 ′‖2) . (4.28)

This is stated and proved as Proposition 4.A.6 in the first appendix. Then, we introduce a sequence

of random times defined inductively by 𝐽0 ∶= 0 and

𝐽𝑖 ∶= min {𝑗 ∈ 𝚴𝑚 ∶ 𝑧𝑗 , 𝑧′𝑗 ∈ 𝛣(�̂�, 𝑟 ) and 𝑗 > 𝐽𝑖−1}

for 𝑖 ≥ 1. Using the strong Markov property and applying the inequality (4.28) repeatedly gives

𝚬(𝑥,𝑥 ′)e𝜃2𝐽𝑖 ≤ 𝚬 (e𝜃2𝐽𝑖−1𝚬(𝑧𝐽𝑖−1 ,𝑧
′
𝐽𝑖−1

)e𝜃2𝐽1) ≤ �̂� 𝑖 (1 + ‖𝑥‖2 + ‖𝑥 ′‖2) (4.29)

for some positive constant �̂� .

Note that Proposition 4.3.1 implies that 𝛫 is almost surely finite for all 𝑥, 𝑥 ′ ∈ 𝐑𝑑 . Indeed,

𝚸(𝑥,𝑥 ′){𝛫 > 𝐽𝑖} ≤ 𝚸(𝑥,𝑥 ′) {𝑧𝐽𝑖+𝑚 ≠ 𝑧′𝐽𝑖+𝑚}

= 𝚸(𝑥,𝑥 ′) ({𝑧𝐽𝑖+𝑚 ≠ 𝑧′𝐽𝑖+𝑚} ∣ {𝑧𝐽𝑖 ≠ 𝑧
′
𝐽𝑖 })𝚸(𝑥,𝑥 ′) {𝑧𝐽𝑖 ≠ 𝑧

′
𝐽𝑖 }

≤ �̂� 𝚸(𝑥,𝑥 ′) {𝑧𝐽𝑖 ≠ 𝑧
′
𝐽𝑖 }

≤ �̂� 𝚸(𝑥,𝑥 ′) {𝑧𝐽𝑖−1+𝑚 ≠ 𝑧′𝐽𝑖−1+𝑚}

≤ �̂� 𝑖 (4.30)

and almost-sure finiteness follows from the Borel–Cantelli lemma. Now, by Hölder’s inequality,

𝚬(𝑥,𝑥 ′)e𝜃1𝛫 ≤ 1 +
∞
∑
𝑖=0

𝚬(𝑥,𝑥 ′) (𝟏{𝐽𝑖<𝛫≤𝐽𝑖+1}e
𝜃1𝐽𝑖+1)

≤ 1 +
∞
∑
𝑖=0

(𝚸(𝑥,𝑥 ′){𝛫 > 𝐽𝑖})
1− 1

𝑞 (𝚬(𝑥,𝑥 ′)e𝑞𝜃1𝐽𝑖+1)
1
𝑞

for any 𝑞 ≥ 1. In each summand, the first term is controlled by the inequality (4.30) and the second

one by (4.29), provided that 𝜃1 ≤ 𝜃2/𝑞 :

𝚬(𝑥,𝑥 ′)e𝜃1𝛫 ≤ 1 + �̂� 1
𝑞 �̂� 1

𝑞 −1 (1 + ‖𝑥‖2 + ‖𝑥 ′‖2)
1
𝑞

∞
∑
𝑖=0

(�̂� 1
𝑞 �̂�1− 1

𝑞 )
𝑖
.

The proposition follows by taking 𝑞 ≥ 2 large enough that �̂� 1
𝑞 �̂�1− 1

𝑞 < 1.
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4.3.2 Coupling for the original continuous-time process

Let the probability space (𝛺,ℱ,𝚸(𝑥,𝑥 ′)) and the process (𝑧𝑘 , 𝑧′𝑘)be as in the previous subsection. Re-

call that an element 𝜔 of 𝛺 consists in an initial condition in 𝐑𝑑 × 𝐑𝑑 and a sequence (𝐬𝑗 , �̃�𝑗 )𝑗∈𝚴
of elements in (𝐑+)𝑚 ×�̃� for some other probability space �̃� we have constructed. Let 𝜏𝑗𝑚+𝑖 (𝜔) be

the positive real obtained by summing all the entries of 𝐬1, 𝐬2, … , 𝐬𝑗 and the first 𝑖 entries of 𝐬𝑗+1.

Then, it follows from the construction of 𝚸(𝑥,𝑥 ′) that the sequence (𝜏𝑘)𝑘∈𝚴 of random variables

on (𝛺,ℱ,𝚸(𝑥,𝑥 ′)) has independent increments distributed according to an exponential distribution

with rate parameter 𝜆.

We define

𝛧𝑡 (𝜔) ∶= {
𝑧𝑘(𝜔) if 𝑡 = 𝜏𝑘(𝜔),

𝑆𝑡−𝜏𝑘(𝜔)(𝑧𝑘(𝜔)) if 𝑡 ∈ (𝜏𝑘(𝜔), 𝜏𝑘+1(𝜔))

and

𝛧 ′
𝑡 (𝜔) ∶= {

𝑧′𝑘(𝜔) if 𝑡 = 𝜏𝑘(𝜔),

𝑆𝑡−𝜏𝑘(𝜔)(𝑧
′
𝑘(𝜔)) if 𝑡 ∈ (𝜏𝑘(𝜔), 𝜏𝑘+1(𝜔)).

Then, (4.9), (4.10) and (4.25) imply that (𝛧𝑡 , 𝛧 ′
𝑡 ) is a coupling of 𝛸𝑡 and 𝛸 ′

𝑡 .

Proposition 4.3.3. Under Conditions (C1)–(C3), there exist positive constants 𝐶 and 𝑐 such that

𝚸(𝑥,𝑥 ′){𝒯 > 𝑡} ≤ 𝐶(1 + ‖𝑥‖ + ‖𝑥 ′‖)e−𝑐𝑡 (4.31)

for any 𝑥, 𝑥 ′ ∈ 𝐑𝑑 and 𝑡 ≥ 0.

Proof. Let 𝛫 be defined by (4.23). As 𝜏𝑘 is a sum of 𝑘 independent exponentially distributed ran-

dom variables with parameter𝜆, the expectation of e2𝑐𝜏𝑘 can be computed explicitly for 𝑐 in the inter-

val (0, 12𝜆), and 𝜏𝛫 is also almost-surely finite. For such a number 𝑐 , the Cauchy–Schwarz inequality

yields

𝚬(𝑥,𝑥 ′)e𝑐𝜏𝛫 =
∞
∑
𝑘=0

𝚬(𝑥,𝑥 ′) (e𝑐𝜏𝑘𝟏{𝛫=𝑘}) ≤
∞
∑
𝑘=0

(𝚬(𝑥,𝑥 ′)e2𝑐𝜏𝑘)
1
2 (𝚸(𝑥,𝑥 ′){𝛫 = 𝑘})

1
2 .
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On the other hand, we control 𝚸(𝑥,𝑥 ′){𝛫 ≥ 𝑘} by Proposition 4.3.2 and Chebyshev’s inequality.

Therefore,

𝚬(𝑥,𝑥 ′)e𝑐𝜏𝛫 ≤
∞
∑
𝑘=0

( 𝜆
𝜆 − 2𝑐 )

𝑘
2
(e−𝜃1𝑘𝛢1(1 + ‖𝑥‖ + ‖𝑥 ′‖))

1
2

≤ 𝛢
1
2
1 (1 + ‖𝑥‖ + ‖𝑥 ′‖)

∞
∑
𝑘=0

( 𝜆e−𝜃1
𝜆 − 2𝑐 )

𝑘
2

,

where 𝜃1 and𝛢1 are as in Proposition 4.3.2. The series will converge for 𝑐 > 0 small enough; fix such

a value of 𝑐 . By Chebyshev’s inequality, we find 𝐶 > 0 such that

𝚸(𝑥,𝑥 ′){𝜏𝛫 > 𝑡} ≤ 𝐶(1 + ‖𝑥‖ + ‖𝑥 ′‖)e−𝑐𝑡

for all 𝑥, 𝑥 ′ ∈ 𝐑𝑑 . By construction, we have 𝒯 ≤ 𝜏𝛫 almost surely and therefore

𝚸(𝑥,𝑥 ′){𝒯 > 𝑡} ≤ 𝐶(1 + ‖𝑥‖ + ‖𝑥 ′‖)e−𝑐𝑡 .

This completes the proof of the proposition.

4.3.3 Concluding the proof of the Main Theorem

In view of Lemma 4.2.2, if we can find constants 𝐶 > 0 and 𝑐 > 0 such that

‖𝔓∗
𝑡 𝛿𝑥 −𝔓∗

𝑡 𝛿𝑥 ′‖var ≤ 𝐶(1 + ‖𝑥‖ + ‖𝑥 ′‖)e−𝑐𝑡

for all 𝑥, 𝑥 ′ ∈ 𝐑𝑑 and all 𝑡 ≥ 0, then integrating in 𝑥 against 𝜇 and in 𝑥 ′ against 𝜇inv gives the desired

bound (4.7) with a different constant 𝐶 . By construction of the coupling (𝛧𝑡 , 𝛧 ′
𝑡 )𝑡≥0 , we have

(𝔓𝑡𝑔)(𝑥) − (𝔓𝑡𝑔)(𝑥 ′) = 𝚬(𝑥,𝑥 ′) (𝑔(𝛧𝑡 ) − 𝑔(𝛧 ′
𝑡 ))

for all 𝑔 ∈ 𝐿∞(𝐑𝑑). Therefore,

‖𝔓∗
𝑡 𝛿𝑥 −𝔓∗

𝑡 𝛿𝑥 ′‖var =
1
2 sup
‖𝑔‖∞≤1

|(𝔓𝑡𝑔)(𝑥) − (𝔓𝑡𝑔)(𝑥 ′)|

≤ 1
2 sup
‖𝑔‖∞≤1

𝚬(𝑥,𝑥 ′)|𝑔(𝛧𝑡 ) − 𝑔(𝛧 ′
𝑡 )|

= 1
2 sup
‖𝑔‖∞≤1

𝚬(𝑥,𝑥 ′) {𝟏{𝛧𝑡≠𝛧 ′
𝑡 }|𝑔(𝛧𝑡 ) − 𝑔(𝛧

′
𝑡 )|}

≤ 𝚸(𝑥,𝑥 ′){𝛧𝑡 ≠ 𝛧 ′
𝑡} ≤ 𝚸(𝑥,𝑥 ′){𝒯 > 𝑡}
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for all 𝑥, 𝑥 ′ ∈ 𝐑𝑑 and 𝑡 ≥ 0, and the result follows from Proposition 4.3.3.

4.4 Applications

In this section, we apply the Main Theorem to the Galerkin approximations of pdes and to stochasti-

cally driven quasi-harmonic networks. For the Galerkin approximations we give a detailed derivation

of the controllability conditions and in the case of the networks we appeal to the results obtained

in [Raq19]. Before we do so, we briefly discuss the solid controllability assumption (C3).

4.4.1 Criteria for solid controllability

The notion of solid controllability was introduced by Agrachev and Sarychev in [AS05] (see also the

survey [AS08]) in the context of the controllability of the 2D Navier–Stokes and Euler systems. It

has been used in [AKSS07] to prove the existence of density for finite-dimensional projections of the

laws of the solutions of randomly forced pdes. In [Shi17], solid controllability is used to establish

exponential mixing for some random dynamical systems in a compact space, and in [Raq19], for

some classes of quasi-harmonic networks of oscillators driven by a degenerate Brownian motion. It

is the degeneracy allowed by this condition which sets our work apart from previous works on sdes

driven by compound Poisson processes (that are too numerous to be cited here).

We compare it to two related well-known properties, which might be more straightforward to

check in some applications.

(C3′) Continuous exact controllability from �̂�: there exists a nondegenerate closed ball 𝐷 ⊂ 𝐑𝑑 , a

time 𝛵0 > 0, and a continuous function 𝛹 ∶ 𝐷 → 𝐶([0, 𝛵0];𝐑𝑛) such that 𝑆𝛵0 (�̂�, 𝛹 (𝑥)) = 𝑥
for all 𝑥 ∈ 𝐷 .

(C3″) Weak Hörmander condition at �̂�: the vector space spanned by the family of vector fields

{𝑉0 , [𝑉1, 𝑉2], [𝑉1, [𝑉2, 𝑉3]], … ∶ 𝑉0 ∈ 𝚩, 𝑉1, 𝑉2, … ∈ 𝚩 ∪ {𝑓 }} (4.32)

at the point �̂� coincides with 𝐑𝑑 , where 𝚩 is the set of constant vector fields formed by the

columns of the matrix 𝛣 and [𝑈 , 𝑉 ](𝑥) is the Lie bracket of the vector fields 𝑈 and 𝑉 in the
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point 𝑥:

[𝑈 , 𝑉 ](𝑥) = 𝐷𝑉 (𝑥)𝑈 (𝑥) − 𝐷𝑈 (𝑥)𝑉 (𝑥).

Here,𝐷𝑈 (𝑥) is the Jacobian matrix of 𝑈 at 𝑥.

It is shown in [Shi17, §2.2] that (C3″) implies (C3′) with arbitrary 𝛵0 , and that (C3′) in turn im-

plies (C3) with the same 𝛵0 ; see also [Raq19, §3.2]. The first implication appeals to some ideas from

geometric control theory. The second implication can be seen from a degree theory argument (or

alternatively from an application of Brouwer’s fixed point theorem).

The weak Hörmander condition, also known as the parabolic Hörmander condition, has many

important applications both in control theory (e.g., see [Jur97, Ch. 5]) and stochastic analysis (e.g.,

see [Nua06, §2.3 in Ch. 2] and [Hai11]). It is often assumed to hold in all points of the state space.

For finite-dimensional control systems, it ensures the global exact controllability; for Itô diffusions,

it guarantees existence and smoothness of the density of solutions with respect to the Lebesgue mea-

sure — a major step towards proving important ergodic properties. We emphasize that we bypass

the study of smoothing properties of the transition function of our Markov process and that the

conditions stated need only hold in one point of the state space (where Condition (C2) is also satis-

fied).

Recall that a pair of matrices,𝛢 ∶ 𝐑𝑑 →𝐑𝑑 and𝛣 ∶ 𝐑𝑛 →𝐑𝑑 , is said to satisfy the Kalman con-

dition if any 𝑥 ∈ 𝐑𝑑 can be written as 𝑥 = 𝛣𝑦0 +𝛢𝛣𝑦1+⋯+𝛢𝑑−1𝛣𝑦𝑑−1 for some 𝑦0 , … , 𝑦𝑑−1 ∈ 𝐑𝑛.

For a linear control system of the form �̇� = 𝛢𝛸 + 𝛣𝜁 , the Kalman condition implies (C3″) in

all points through a straightforward computation of the Lie brackets; see [Cor07, §1.2–1.3] for

other well-known implications. When 𝑓 is a linear vector field 𝑥 ↦ 𝛢𝑥 plus a perturbation, Condi-

tion (C3″) can be deduced at a point �̂� far from the origin by perturbing the Kalman condition on

the pair (𝛢, 𝛣), provided that one has good control on the decay of derivatives of the perturbation

along a sequence of points [Raq19, §5].
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4.4.2 Galerkin approximations of randomly forced PDEs

In this section, we apply the Main Theorem to the Galerkin approximations of the following parabolic

pde on the torus 𝚻𝐷 ∶= 𝐑𝐷/2𝜋𝚭𝐷 :

𝜕𝑡𝑢(𝑡 , 𝑥) − 𝜈Δ𝑥𝑢(𝑡 , 𝑥) + 𝐹 (𝑢(𝑡 , 𝑥)) = ℎ(𝑥) + 𝜁 (𝑡 , 𝑥), 𝑥 ∈ 𝚻𝐷 , (4.33)

where 𝜈 > 0 is a constant, ℎ ∶ 𝚻𝐷 → 𝐑 is a given smooth function, and 𝐹 ∶ 𝐑 → 𝐑 is a function

of the form

𝐹 (𝑢) = 𝑎𝑢𝑝 + 𝑔(𝑢). (4.34)

We assume that 𝑎 > 0 is an arbitrary constant, 𝑝 ≥ 3 is an odd integer, and 𝑔 ∶ 𝐑 → 𝐑 is a smooth

function satisfying the following two conditions4:

(i) there is a constant 𝐶 > 0 such that

|𝑔(𝑢)| ≤ 𝐶(1 + |𝑢|)𝑝−1

for all 𝑢 ∈ 𝐑.

(ii) with 𝑔 (𝑝) the 𝑝 -th derivative of 𝑔 , the following limit holds

lim𝑢→±∞ 𝑔
(𝑝)(𝑢) = 0.

For any𝛮 ∈ 𝚴 , consider the following finite-dimensional subspace of 𝐿2(𝚻𝐷 ):

𝛨𝛮 ∶= span{𝑠𝑘 , 𝑐𝑘 ∶ 𝑘 ∈ 𝚭𝐷 , |𝑘| ≤ 𝛮},

where 𝑠𝑘(𝑥) ∶= sin⟨𝑥, 𝑘⟩, 𝑐𝑘(𝑥) ∶= cos⟨𝑥, 𝑘⟩, ⟨𝑥, 𝑘⟩ ∶= 𝑥1𝑘1 + … + 𝑥𝐷𝑘𝐷 and |𝑘| ∶= |𝑘1| + … +
|𝑘𝐷 | for any multi-index 𝑘 = (𝑘1, … , 𝑘𝐷 ) ∈ 𝚭𝐷 and any vector 𝑥 ∈ 𝚻𝐷 . In particular, 𝑐0 is the

constant function 1. This subspace is endowed with the scalar product ⟨⋅, ⋅⟩𝐿2 and the norm ‖ ⋅ ‖𝐿2
inherited from 𝐿2(𝚻𝐷 ). Let P𝛮 be the orthogonal projection onto 𝛨𝛮 in 𝐿2(𝚻𝐷 ). The Galerkin

approximations of (4.33) are given by

�̇�(𝑡 ) − 𝜈Δ𝑢(𝑡) + P𝛮𝐹 (𝑢(𝑡)) = ℎ + 𝜁 (𝑡), (4.35)
4The results of this subsection remain true under weaker assumptions on the function 𝑔 . This setting is chosen for

the simplicity of presentation.
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where𝑢 is an unknown𝛨𝛮 -valued function,ℎ is an arbitrary vector in𝛨𝛮 and 𝜁 is a continuous𝛨1-

valued function.

Let us emphasize that the space 𝛨1 for the driving 𝜁 is the same for any level 𝛮 ≥ 1 of approxi-

mation, any value of the constant 𝜈 and any function 𝑔 satisfying (i) and (ii).

The main interest of the example considered in this section is that the perturbation term 𝑔
in (4.34) is quite general. In particular, we may have 𝐹 (𝑢) = 0 in a large ball, so that the weak

Hörmander condition is not necessarily satisfied at all the points of the state space.

Theorem 4.4.1. Suppose that (i) and (ii) hold. Let (𝑌𝑡 )𝑡≥0 be an𝛨1-valued compound Poisson with

jump distribution ℓ of finite variance and possessing a positive continuous density with respect to the

Lebesgue measure on𝛨1. Then, the semigroup (𝔓∗
𝑡 )𝑡≥0 for the sde

d𝑢 − 𝜈Δ𝑢 d𝑡 + P𝛮𝐹 (𝑢) d𝑡 = ℎ d𝑡 + d𝑌

in𝛨𝛮 admits a unique invariant measure 𝜇inv ∈ 𝒫(𝛨𝛮 ). Moreover, it is exponentially mixing in

the sense that (4.7) holds for some constants 𝐶 > 0 and 𝑐 > 0, any measure 𝜇 ∈ 𝒫(𝛨𝛮 ), and any

time 𝑡 ≥ 0.

Proof. The sde under consideration is of the form (4.1) with 𝑑 = dim𝛨𝛮 , 𝑛 = dim𝛨1 = 2𝐷 + 1,

a smooth function 𝑓𝛮 ∶ 𝛨𝛮 → 𝛨𝛮 given by

𝑓𝛮 (𝑢) = 𝜈Δ𝑢 − P𝛮𝐹 (𝑢) + ℎ, (4.36)

and 𝛣 ∶ 𝛨1 → 𝛨𝛮 the natural embedding operator. Let us show that Conditions (C1)–(C3) are

verified. Using the assumption (i), the fact that 𝑠𝑘 and 𝑐𝑘 are eigenfunctions of the Laplacian, and

the Cauchy–Schwarz inequality, we get

⟨𝑓 (𝑢), 𝑢⟩𝐿2 = ⟨𝜈Δ𝑢 − P𝛮𝐹 (𝑢) + ℎ, 𝑢⟩𝐿2

≤ −𝜈
ˆ
𝚻𝐷
|𝑢(𝑥)|2 d𝑥 − 𝐶1

ˆ
𝚻𝐷
|𝑢(𝑥)|𝑝+1 d𝑥 + 𝐶2

≤ −𝜈 ‖𝑢‖2𝐿2 + 𝐶2,

where 𝐶1 > 0 and 𝐶2 > 0 are some constants and 𝑢 ∈ 𝛨𝛮 is arbitrary. This implies Condition (C1).



142 CHAPTER 4

Condition (C2) (to all points) is a consequence of the global approximate controllability prop-

erty of Proposition 4.4.2 below, whose proof is given in Appendix 4.B. Since it is proved in [Shi17,

§2.2] that the weak Hörmander condition implies solid controllability, Proposition 4.4.3 below

yields Condition (C3).

Thus, Conditions (C1)–(C3) are satisfied and the proof of Theorem 4.4.1 is completed by ap-

plying our Main Theorem.

Proposition4.4.2. Equation (4.35) is approximately controllable: for anynumber 𝜖 > 0, any time𝛵 >
0, any initial condition 𝑢0 ∈ 𝛨𝛮 , and any target �̂� ∈ 𝛨𝛮 , there exists a control 𝜁 ∈ 𝐶([0, 𝛵 ];𝛨1)
such that the solution 𝑢 of (4.35) with 𝑢(0) = 𝑢0 satisfies

‖𝑢(𝛵 ) − �̂�‖𝐿2 < 𝜖.

Proposition 4.4.3. There is a number 𝑅 > 0 such that the weak Hörmander Condition (C3″) is

satisfied for equation (4.35) at any point �̂� ∈ 𝛨𝛮 with ‖�̂�‖𝐿2 ≥ 𝑅.

Proof of Proposition 4.4.3. In view of the weak Hörmander condition, we are interested in the nested

subspaces {𝒱𝑖}𝑖≥0 of𝛨𝛮 defined by 𝒱0 = 𝛨1 and

𝒱𝑖+1(�̂�) ∶= span(𝒱𝑖 ∪ {[𝑉 , 𝑓𝛮 ](�̂�) ∶ 𝑉 ∈ 𝒱𝑖 (�̂�)}),

where we at times identify the vector 𝑉 ∈ 𝒱𝑖 (�̂�) with the corresponding constant vector field

on 𝛨𝛮 . Clearly, showing that 𝒱𝑖 (�̂�) = 𝛨𝛮 for some 𝑖 large enough shows that the weak Hör-

mander condition (C3″) holds in �̂�. We show in two steps that, indeed, 𝒱(𝛮−1)𝑝(�̂�) = 𝛨𝛮 if ‖�̂�‖𝐿2
is sufficiently large.

Step 1: Polynomial nonlinearity. In this step, we assume that 𝑔 ≡ 0, so that

𝑓𝛮 (𝑢) = 𝜈Δ𝑢 − 𝑎P𝛮 (𝑢𝑝) + ℎ. (4.37)

In this case, Lie brackets with constant vector fields are especially straightforward to compute be-

causeΔ is a linear operator and ℎ is a constant vector. In particular, for any constant vector fields 𝑉1,

… , 𝑉𝑝−2, 𝑉𝑝−1 and 𝑉𝑝 ,

[𝑉1, … [𝑉𝑝−2, [𝑉𝑝−1, [𝑉𝑝 , 𝑓𝛮 ]]] … ](�̂�) = −𝑎 𝑝!P𝛮 (𝑉1 ⋯𝑉𝑝−2𝑉𝑝−1𝑉𝑝), (4.38)
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where the product 𝑉1 ⋯𝑉𝑝−2𝑉𝑝−1𝑉𝑝 is understood as a pointwise multiplication of functions.

We claim that, for each multi-index𝑚with 0 < |𝑚| ≤ 𝛮 , the vectors 𝑐𝑚 and 𝑠𝑚 are in 𝒱(|𝑚|−1)𝑝(�̂�)
for all �̂� ∈ 𝛨𝛮 . To start, note thatif |𝑙| ≤ 1, then 𝑐𝑙 and 𝑠𝑙 are in𝛨1 and thus in 𝒱𝑖 (�̂�) for each 𝑖 .

Suppose now that 𝑐𝑚 and 𝑠𝑚 are in 𝒱(|𝑚|−1)𝑝(�̂�). As noted above, for all multi-indices 𝑙 with |𝑙| ≤
1, the vectors 𝑐𝑙 and 𝑠𝑙 are also in 𝒱(|𝑚|−1)𝑝(�̂�). Therefore, combining the computation (4.38) with

trigonometric identities yields that

P𝛮 𝑐𝑚±𝑙 = P𝛮 (1 ⋯ 1 𝑐𝑙 𝑐𝑚) ∓ P𝛮 (1 ⋯ 1 𝑠𝑙 𝑠𝑚) (4.39)

= −1
𝑎 𝑝![𝑐0 , … [𝑐0 , [𝑐𝑙 , [𝑐𝑚 , 𝑓𝛮 ]]] … ](�̂�) ± 1

𝑎 𝑝![𝑐0 , … [𝑐0 , [𝑠𝑙 , [𝑠𝑚 , 𝑓𝛮 ]]] … ](�̂�)

and

P𝛮 𝑠𝑚±𝑙 = P𝛮 (1 ⋯ 1 𝑠𝑙 𝑐𝑚) ± P𝛮 (1 ⋯ 1 𝑐𝑙 𝑠𝑚) (4.40)

= −1
𝑎 𝑝![𝑐0 , … [𝑐0 , [𝑠𝑙 , [𝑐𝑚 , 𝑓𝛮 ]]] … ](�̂�) ± −1

𝑎 𝑝![𝑐0 , … [𝑐0 , [𝑐𝑙 , [𝑠𝑚 , 𝑓𝛮 ]]] … ](�̂�)

are in 𝒱(|𝑚|−1)𝑝+𝑝(�̂�). The result thus holds by induction on |𝑚|.

Step 2: The General case. Let ̃𝑓𝛮 be the vector field given by (4.37). If we consider the same Lie

brackets as in Step 1, but now for the sum ̃𝑓𝛮 + P𝛮 𝑔 , the contribution of P𝛮 𝑔 will vanish as �̂� →
∞, thanks to assumption (ii). Therefore, 𝒱(|𝛮 |−1)𝑝(�̂�) = 𝛨𝛮 , provided that ‖�̂�‖𝐿2 is sufficiently

large.

4.4.3 Stochastically driven networks of quasi-harmonic oscillators

Stochastically driven networks of oscillators play an important role in the investigation of various

aspects of nonequilibrium statistical mechanics. In its simplest form, the setup can be described as

follows. Consider 𝐿 unit masses, each labelled by an index 𝑖 ∈ {1, … , 𝐿} restricted to move in one

dimension. Each of them is pinned by a spring of unit spring constant and, for 𝑖 ≠ 𝐿, the 𝑖 th mass

is connected to the (𝑖 + 1)th mass by a spring of unit spring constant. The equations of motion for
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the positions and momenta, (𝑞𝑖 , 𝑝𝑖 )𝐿𝑖=1, are the Hamilton equations

⎧

⎨
⎩

d𝑞𝑖 = 𝑝𝑖 d𝑡 , d𝑝𝑖 = −(3𝑞𝑖 − 𝑞𝑖−1 − 𝑞𝑖+1) d𝑡 , 1 < 𝑖 < 𝐿,

d𝑞1 = 𝑝1 d𝑡 , d𝑝1 = −(2𝑞1 − 𝑞2) d𝑡 ,

d𝑞𝐿 = 𝑝𝐿 d𝑡 , d𝑝𝐿 = −(2𝑞𝐿 − 𝑞𝐿−1) d𝑡 .

Coupling the1st [resp. the𝐿th] oscillator to a fluctuating bath with dissipation constant 𝛾1 [resp. 𝛾𝐿]

leads to the sde

⎧

⎨
⎩

d𝑞𝑖 = 𝑝𝑖 d𝑡 , d𝑝𝑖 = −(3𝑞𝑖 − 𝑞𝑖−1 − 𝑞𝑖+1) d𝑡 , 1 < 𝑖 < 𝐿,

d𝑞1 = 𝑝1 d𝑡 , d𝑝1 = −(2𝑞1 − 𝑞2) d𝑡 − 𝛾1𝑝 d𝑡 + d𝛧1,𝑡 ,

d𝑞𝐿 = 𝑝𝐿 d𝑡 , d𝑝𝐿 = −(2𝑞𝐿 − 𝑞𝐿−1) d𝑡 − 𝛾𝐿𝑝 d𝑡 + d𝛧𝐿,𝑡 ,

(4.41)

or variants thereof, where𝛧1 and𝛧2 are independent one-dimensional stochastic processes describ-

ing the fluctuations in the baths.

In the mathematical physics literature, many authors have considered nonlinear variants of this

model where the thermal fluctuations — either acting on the momenta (the Langevin regime, as

above) or on auxiliary degrees of freedom — are described by white noise, 𝛧𝑗 ,𝑡 = √2𝛾𝑗𝜃𝑗𝑊𝑗 ,𝑡 , with

𝑊𝑗 ,𝑡 a standard Wiener process. We refer the interested reader to [FKM65, Tro77] for introductions

to these models and discussions of their ergodic properties at thermal equilibrium; also see [JP97,

JP98] for a generalization to non-Markovian models. The existence and uniqueness of the invari-

ant measure is much more problematic out of equilibrium; see [SL77, EPRB99b, EPRB99a, EH00,

RBT02, CEHRB18]. However, interesting phenomena pointed out in the physics literature for a

single particle in a non-Gaussian bath [BC09, TC09, MQSP11, MG12] motivate a rigorous study

of the mixing properties of corresponding networks. While the methods used for most of the pre-

viously cited existence and uniqueness results are not suitable to deal with compound Poisson pro-

cesses, most of the ideas of [Shi17, Raq19] are. We develop the strategy to be followed in the present

section.

Allowing for different spring constants and different ways of connecting the masses while staying

in the Langevin regime leads us to considering the following generalization of (4.41). Let 𝛪 be a
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finite set and distinguish a nonempty subset 𝐽 ⊂ 𝛪 , where masses will be coupled to fluctuating

baths. We use {𝛿𝑖}𝑖∈𝛪 [resp. {𝛿𝑗 }𝑗∈𝐽 ] as the standard basis for 𝐑𝛪 [resp. 𝐑𝐽 ]. Let 𝜔 ∶ 𝐑𝛪 → 𝐑𝛪 be

a nonsingular linear map and let 𝜄𝑗 ∶ 𝐑𝐽 → 𝐑𝛪 be the rank-one map 𝛿𝑗 ⟨𝛿𝑗 , ⋅ ⟩ for each 𝑗 ∈ 𝐽 ⊂ 𝛪 .

The sde

d(
𝑝
𝜔𝑞

) = (
−∑𝑗∈𝐽 𝛾𝑗 𝜄𝑗 𝜄∗𝑗 −𝜔∗

𝜔 0
) (

𝑝
𝜔𝑞
) d𝑡 +∑

𝑗∈𝐽
(
𝜄𝑗
0
) d𝛧𝑗

in 𝐑2|𝛪 | then describes the positions 𝑞 and momenta 𝑝 of |𝛪 | masses connected to each other and

pinned according to the matrix 𝜔 , with the 𝑗 th oscillator being coupled to a Langevin bath with

dissipation controlled by the constant 𝛾𝑗 > 0 and fluctuations described by the process 𝛧𝑗 .

In Proposition 4.4.4 and Corollary 4.4.5, we consider a nonlinear version of this sde where

the quadratic potential resulting form the springs is now perturbed by a potential 𝑈 ∶ 𝐑𝑑 → 𝐑.

Their proofs are omitted since they are essentially the same as those of Proposition 4.4.6 and Corol-

lary 4.4.7 respectively. We start with dissipativity and controllability properties of the control sys-

tem.

Proposition 4.4.4. Let 𝛪 , 𝐽 , 𝜔 and (𝛾𝑗 )𝑗∈𝐽 be as above. Then, the conditions

(K) the pair (𝜔∗𝜔,∑𝑗∈𝐽 𝜄𝑗 𝜄∗𝑗 ) satisfies the Kalman condition;

(G) the gradient of 𝑈 is a smooth globally Lipschitz vector field growing strictly slower than 𝑞 ↦
1 + |𝑞|

1
4|𝛪 | ;

(pH) there exists a sequence {𝑞 (𝑛)}𝑛∈𝚴 of points in𝐑𝛪 , bounded away from 0, such that

lim𝑛→∞ |𝑞
(𝑛)|𝑘‖𝐷 𝑘+1𝑈 (𝑞 (𝑛))‖ = 0

for each 𝑘 = 0, 1, … , 𝑑 − 1;

imply that the control system

(
�̇�
𝜔�̇�
) = (

−∑𝑗∈𝐽 𝛾𝑗 𝜄𝑗 𝜄∗𝑗 −𝜔∗

𝜔 0
) (

𝑝
𝜔𝑞

) − (
∇𝑈 (𝑞)
0

) +∑
𝑗∈𝐽

(
𝜄𝑗
0
) 𝜁

satisfies the conditions (C1), (C2) and (C3).
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The exponent in the formulation of the growth condition is typically not optimal; see [Raq19]

for a formulation in terms of a power related to the Kalman condition. The following mixing result

for the corresponding sde with Poissonian noise essentially follows from our Main Theorem (see

the proof of Corollary 4.4.7).

Corollary 4.4.5. Under the sameassumptions, if (𝛮𝑗 )𝑗∈𝐽 is a collection of |𝐽 | independent one-dimen-

sional compound Poisson processes with jump distributions with finite variance and continuous positive

densities with respect to the Lebesgue measure on𝐑, then the sde

d(
𝑝
𝜔𝑞

) = (
−∑𝑗∈𝐽 𝛾𝑗 𝜄𝑗 𝜄∗𝑗 −𝜔∗

𝜔 0
) (

𝑝
𝜔𝑞
) d𝑡 − (

∇𝑈 (𝑞)
0

) d𝑡 +∑
𝑗∈𝐽

(
𝜄𝑗
0
) 𝛿𝑗 d𝛮𝑗

admits a unique stationarymeasure 𝜇inv ∈ 𝒫(𝐑𝛪 ⊕𝐑𝛪 ). Moreover, it is exponentially mixing in the

sense that (4.7) holds for some constants 𝐶 > 0 and 𝑐 > 0, any measure 𝜇 ∈ 𝒫(𝐑𝛪 ⊕𝐑𝛪 ), and any
time 𝑡 ≥ 0.

In addition to the notation used so far, let (𝜆𝑗 )𝑗∈𝐽 be small positive numbers and let us use the

shorthand 𝛾 𝜄𝜄∗ for∑𝑗 𝛾𝑗 𝜄𝑗 𝜄∗𝑗 , the shorthand 𝜆𝜄∗𝜄 for∑𝑗 𝜆𝑗 𝜄∗𝑗 𝜄𝑗 , and so on. The sde

d(
𝑟
𝑝
�̃�𝑞
) = (

−𝛾 𝜄𝜄∗ 𝜆𝜄𝜄∗ 0
−𝜆𝜄∗𝜄 0 −�̃�∗

0 �̃� 0
) (

𝑟
𝑝
�̃�𝑞
) d𝑡 + (

√2𝛾 𝜃 𝜄∗𝜄
0
0

) d𝑊

can be derived as the effective equation for the positions 𝑞 and momenta𝑝 of a network of |𝛪 |masses

connected to each other and pinned according to the matrix𝜔 , with the 𝑗 th oscillator being coupled

to a classical Gaussian field at temperature 𝜃𝑗 under some particular conditions on the coupling;

see [EPRB99b]. The |𝐽 | auxiliary degrees of freedom 𝑟 ∈ 𝐑𝐽 are introduced to make the process

Markovian. The parameters 𝜆𝑗 and 𝛾𝑗 describe the coupling and dissipation for the 𝑗 th bath. Here,

the matrix �̃� encodes an effective quadratic potential and is such that �̃�∗�̃� = 𝜔∗𝜔−𝜆2𝜄𝜄∗ (𝜆 is small),

where 𝜔 encodes the original quadratic potential.
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Proposition 4.4.6. Let 𝛪 , 𝐽 , 𝜔 and (𝛾𝑗 )𝑗∈𝐽 be as above. Then, for (𝜆𝑗 )𝑗∈𝐽 small enough, the condi-

tions (K), (G) and (pH) as in the previous proposition imply that the the control system

(
̇𝑟
�̇�
�̃��̇�
) = (

−𝛾 𝜄𝜄∗ 𝜆𝜄𝜄∗ 0
−𝜆𝜄∗𝜄 0 −�̃�∗

0 �̃� 0
) (

𝑟
𝑝
�̃�𝑞
) − (

0
∇𝑈 (𝑞)
0

) + (
𝟏
0
0
) 𝜁

satisfies the conditions (C1), (C2) and (C3).

Proof. If 𝜆 is small enough, the Kalman condition on the pair (𝜔∗𝜔, 𝜄𝜄∗) implies the Kalman condi-

tion on the pair (�̃�∗�̃�, 𝜄𝜄∗). This in turn implies that the pair

(𝛢, 𝛣) ∶= ((
−𝛾 𝜄𝜄∗ 𝜆𝜄𝜄∗ 0
−𝜆𝜄∗𝜄 0 −�̃�∗

0 �̃� 0
) , (

𝟏
0
0
))

also satisfies the Kalman condition; see Proposition 4.1 in [Raq19]. It follows by Lemma 5.1(2)

in [JPS17] that the eigenvalues of𝛢 then have strictly negative real part. Combined with the growth

assumption (G), the negativity of the eigenvalues implies (C1) for a suitable inner product; see

Lemma 3.1 in [Raq19]. Proposition 3.3 in [Raq19] says that the Kalman condition on (𝛢, 𝛣)
and the growth condition (G) on ∇𝑈 give (C2) everywhere. The fact that the Kalman condition

on (𝛢, 𝛣) and assumption (pH) give the weak Hörmander condition (C3”) in one point is the con-

tent of Proposition 5.1 in [Raq19]. But, as previously mentioned, the weak Hörmander condition

implies solid controllability.

Concerning the corresponding sde with Poissonian noise, we have the following mixing re-

sult — which again parallels that of [Raq19] — as a corollary of the controllability properties.

Corollary 4.4.7. Under the sameassumptions, if (𝛮𝑗 )𝑗∈𝐽 is a collection of |𝐽 | independent one-dimen-

sional compoundPoisson processes with jumpdistributions with finite variances and continuous positive

densities with respect to the Lebesgue measure on𝐑, then the sde

d(
𝑟
𝑝
�̃�𝑞
) = (

−𝛾 𝜄𝜄∗ 𝜆𝜄𝜄∗ 0
−𝜆𝜄∗𝜄 0 −�̃�∗

0 �̃� 0
) (

𝑟
𝑝
�̃�𝑞
) d𝑡 − (

0
∇𝑈 (𝑞)
0

) d𝑡 + (
𝟏
0
0
)∑
𝑗∈𝐽

𝛿𝑗 d𝛮𝑗 .
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admits a unique stationarymeasure 𝜇inv ∈ 𝒫(𝐑𝐽 ⊕𝐑𝛪 ⊕𝐑𝛪 ). Moreover, it is exponentially mixing

in the sense that (4.7) holds for some constants 𝐶 > 0 and 𝑐 > 0, any 𝜇 ∈ 𝒫(𝐑𝐽 ⊕ 𝐑𝛪 ⊕ 𝐑𝛪 ), and
any time 𝑡 ≥ 0.

Proof sketch. If the noise ∑𝑗∈𝐽 𝛿𝑗𝛮𝑗 were replaced by a single compound Poisson process whose

jump distribution possesses a finite second moment and a positive continuous density with respect

to the Lebesgue measure on𝐑𝐽 , then our Main Theorem would apply.

Although the probability that jumps in the different baths occur simultaneously is zero by inde-

pendence, there is a positive probability that they occur arbitrarily close to simultaneity. Since an

independent sum of a jump from each distribution gives a random variable with a finite variance and

a positive continuous density with respect to the Lebesgue measure on 𝐑𝐽 , our control arguments

can be adapted by continuity.

4.A Exponential estimates on hitting times

In this appendix, we present results on hitting times for the coupling (𝑧𝑘 , 𝑧′𝑘) constructed in Sub-

section 4.3.1. Loosely speaking, estimates on the hitting times of a small ball near �̂� are obtained by

combining a lower bound on the hitting time of a (large) compact around the origin and a lower

bound on the probability of making a transition from the aforementioned compact to the small

ball. We shall assume that Conditions (C1)–(C3) are satisfied and fix the parameters 𝑚, 𝑟 , and 𝑝 as

in Lemma 4.2.3.

We provide an estimate for the first simultaneous hitting time 𝛪 of a ball of large radius𝑅 around

the origin. To do this, we use the preliminary estimates of Lemma 4.2.1 to exhibit the existence of a

suitable Lyapunov structure and conclude with a standard argument.

Lemma 4.A.1. The function 𝑉 defined by 𝑉 (𝑦, 𝑦 ′) ∶= 1+ ‖𝑦‖2 + ‖𝑦 ′‖2 is a Lyapunov function in the
sense that there exist positive constants𝑅 and 𝐶∗ and a constant 0 < 𝑎 < 1 such that

𝚬(𝑥,𝑥 ′)𝑉 (𝑧𝑚 , 𝑧′𝑚) ≤ 𝑎 𝑉 (𝑥, 𝑥 ′) for ‖𝑥‖ ∨ ‖𝑥 ′‖ ≥ 𝑅, (4.42)

𝚬(𝑥,𝑥 ′)𝑉 (𝑧𝑘 , 𝑧′𝑘) ≤ 𝐶∗ for ‖𝑥‖ ∨ ‖𝑥 ′‖ < 𝑅, 𝑘 ≥ 0. (4.43)
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Proof. By Lemma 4.2.1, there is 𝛾 ∈ (0, 1) such that

𝚬(𝑥,𝑥 ′)(1 + ‖𝑧𝑘‖2 + ‖𝑧′𝑘‖2) = 1 + 𝚬𝑥‖𝛸𝜏𝑘‖
2 + 𝚬𝑥 ′‖𝛸𝜏𝑘‖

2

≤ 1 + 𝛾 𝑘(‖𝑥‖2 + ‖𝑥 ′‖2) + 2𝐶(1 + 𝛬) (4.44)

for all 𝑘 ∈ 𝚴 and 𝑥, 𝑥 ′ ∈ 𝐑𝑑 . Taking 𝑘 = 𝑚, any 𝑎 ∈ (0, 𝛾𝑚), and any 𝑥, 𝑥 ′ ∈ 𝐑𝑑 such that

‖𝑥‖ ∨ ‖𝑥 ′‖ ≥ (𝑎 − 𝛾𝑚)−1/2(1 − 𝑎 + 2𝐶(1 + 𝛬))1/2 =∶ 𝑅,

we get

𝚬(𝑥,𝑥 ′) (1 + ‖𝑧𝑚‖2 + ‖𝑧′𝑚‖2) ≤ 𝑎 (1 + ‖𝑥‖2 + ‖𝑥 ′‖2) .

Thus, (4.42) holds. In the case ‖𝑥‖ ∨ ‖𝑥 ′‖ ≤ 𝑅, by (4.44), we have

𝚬(𝑥,𝑥 ′)(1 + ‖𝑧𝑘‖2 + ‖𝑧′𝑘‖2) ≤ 1 + 2𝑅2 + 2𝐶(1 + 𝛬) =∶ 𝐶∗.

This gives (4.43) and completes the proof of the lemma.

It is well known that the Lyapunov structure of the previous lemma implies a bound on an ex-

ponential moment for the time needed to reach a large enough level set of the Lyapunov function 𝑉 .

While arguments for this implication can be found in [MT12], we give a brief proof sketch and refer

the reader to Proposition 3.1 in [Shi08] for a statement and complete proof which more precisely

reflects our approach.

Corollary 4.A.2. There exist positive constants𝑅, 𝑐1, and 𝐶1 such that

𝚬(𝑥,𝑥 ′)e𝑐1𝛪 ≤ 𝐶1(1 + ‖𝑥‖2 + ‖𝑥 ′‖2)

for all 𝑥, 𝑥 ′ ∈ 𝐑𝑑 , where

𝛪 ∶= min{𝑗 ∈ 𝚴0
𝑚 ∶ 𝑧𝑗 , 𝑧′𝑗 ∈ 𝛣(0, 𝑅)}

Proof sketch. One can show using the Markov property and (4.42) repeatedly that

𝚬(𝑥,𝑥 ′)[𝟏{𝛪>𝑛𝑚}𝑉 (𝑧𝑛𝑚 , 𝑧′𝑛𝑚)] ≤ 𝑎𝑛𝑉 (𝑥, 𝑥 ′)
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and deduce using 𝑉 ≥ 1 that

𝚸(𝑥,𝑥 ′)[𝛪 > 𝑛𝑚] ≤ 𝑎𝑛𝑉 (𝑥, 𝑥 ′). (4.45)

By (4.45) and the Borel–Cantelli lemma, 𝛪 is almost surely finite. Therefore, one can use

𝚬(𝑥,𝑥 ′)e𝑐1𝛪 ≤ 1 +
∞
∑
𝑛=1

𝚬(𝑥,𝑥 ′)[𝟏{𝛪=𝑛𝑚}e𝑐1𝛪 ]

and, for 𝑐1 small enough, the right-hand side can be bounded using (4.45) in terms of 𝑉 (𝑥, 𝑥 ′) and

a convergent geometric series.

In what follows 𝑅, 𝑐1 and 𝐶1 will be as in Corollary 4.A.2. We continue with another estimate

on an exponential moment.

Lemma 4.A.3. For any𝛭 ∈ 𝚴 , there is a constant 𝐶2 > 0 such that

𝚬(𝑥,𝑥 ′)e𝑐1𝛪𝑖 ≤ 𝐶 𝑖
2 (1 + ‖𝑥‖2 + ‖𝑥 ′‖2) (4.46)

for all 𝑥, 𝑥 ′ ∈ 𝐑𝑑 and 𝑖 ∈ 𝚴 , where 𝛪0 ∶= 0 and

𝛪𝑖 ∶= min {𝑗 ∈ 𝚴𝑚 ∶ 𝑗 ≥ 𝛪𝑖−1 +𝛭 and 𝑧𝑗 , 𝑧′𝑗 ∈ 𝛣(0, 𝑅)} .

Remark 4.A.4. The stopping time 𝛪𝑖 depends on both𝛭 and 𝑅. The value of 𝑅 was already fixed

in Corollary 4.A.2 and, in our application,𝛭 will be as in Lemma 4.A.5. It is important that the

constant 𝐶2 does not depend on 𝑥 and 𝑥 ′.

Proof. By our last corollary, the Markov property, and (4.12) in Lemma 4.2.1, we have

𝚬(𝑥,𝑥 ′)e𝑐1𝛪1 = e𝑐1𝛭𝚬(𝑥,𝑥 ′) (𝚬(𝑧𝛭 ,𝑧′𝛭 )e
𝑐1𝛪 )

≤ 𝐶1e𝑐1𝛭𝚬(𝑥,𝑥 ′)(1 + ‖𝑧𝛭 ‖2 + ‖𝑧′𝛭 ‖2)

≤ 𝐶1e𝑐1𝛭 (1 + 𝛾𝛭 ‖𝑥‖2 + 𝛾𝛭 ‖𝑥 ′‖2 + 2𝐶(1 + 𝛬))

≤ �̃�1(1 + ‖𝑥‖2 + ‖𝑥 ′‖2) (4.47)

for �̃�1 a combination of 𝐶 , 𝐶1 and 𝛬. In particular, for any 𝑥, 𝑥 ′ ∈ 𝛣(0, 𝑅),

𝚬(𝑥,𝑥 ′)e𝑐1𝛪1 ≤ �̃�1(1 + 𝑅2 + 𝑅2) =∶ 𝐶2.
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Then 𝑧𝛪𝑖−1 , 𝑧
′
𝛪𝑖−1 ∈ 𝛣(0, 𝑅) for any 𝑖 > 1, and therefore

𝚬(𝑥,𝑥 ′)e𝑐1𝛪𝑖 = 𝚬(𝑥,𝑥 ′) (e𝑐1𝛪𝑖−1𝚬(𝑧𝛪𝑖−1 ,𝑧
′
𝛪𝑖−1

)e𝑐1𝛪1) ≤ 𝐶2𝚬(𝑥,𝑥 ′)e𝑐1𝛪𝑖−1 ≤ 𝐶 𝑖−1
2 𝚬(𝑥,𝑥 ′)e𝑐1𝛪1 .

Finally, using (4.47), we obtain (4.46).

Lemma 4.A.5. Consider the random variable

𝐽 ∶= min {𝑗 ∈ 𝚴0
𝑚 ∶ 𝑧𝑗 , 𝑧′𝑗 ∈ 𝛣(�̂�, 𝑟 )} ,

where �̂� is as in Condition (C2). There exists𝛭 ∈ 𝚴𝑚 such that

0 < 𝑞 ∶= inf
𝑥,𝑥 ′∈𝛣(0,𝑅)

𝚸(𝑥,𝑥 ′) {𝐽 ≤ 𝛭} . (4.48)

Proof. Let 𝛵 be the time in Condition (C2) for 𝜖 = 𝑟
2 and radius 𝑅. To simplify the presentation,

we assume that 𝛵 = 1.

Step 1: controlling a single trajectory of the sde (4.1). First, let us show an inequality like (4.48) for a

single trajectory of the sde (4.1). Take an initial condition 𝑥 ∈ 𝛣(0, 𝑅). By Condition (C2), there

exists a control 𝜁𝑥 ∈ 𝐶([0, 1];𝐑𝑛) such that

‖𝑆(𝑥, 𝜁𝑥) − �̂�‖ <
𝑟
2 . (4.49)

By a standard continuity and compactness argument, we can find a finite set

𝛧 ∶= {𝜁𝑖 ∶ 𝑖 ∈ 𝛪 } ⊂ 𝐶([0, 1];𝐑𝑛)

such that the control 𝜁𝑥 in (4.49) can be chosen from𝛧 for any 𝑥 ∈ 𝛣(0, 𝑅). For any integer𝛭 ≥ 1,

let the mapping 𝐹𝛭 ∶ 𝐑𝑑×(𝐑+)𝛭×(𝐑𝑛)𝛭 →𝐑𝑑 be defined by (4.18), let 𝜄𝛭 be as in Lemma 4.2.3,

and consider the sets

𝛥 ∶= {𝐬 = (𝑠𝑗 )𝛭𝑗=1 ∈ (𝐑+)𝛭 ∶ 𝑠𝑗 ∈ (
1 − 𝛿
𝛭 , 1𝛭 ) , 𝑗 = 1, … ,𝛭} ,

𝛯𝑥 ∶= {𝛏 = (𝜉𝑗 )𝛭𝑗=1 ∈ (𝐑𝑛)𝛭 ∶ ‖𝜄𝛭 (𝜁𝑥) − 𝛏‖(𝐑𝑛)𝛭 < 𝛿 , 𝑗 = 1, … ,𝛭}

for any 𝛿 > 0. Again by a continuity and compactness argument, it is not hard to see that

𝛥 × 𝛯𝑥 ⊂ {𝐬 ∈ (𝐑+)𝛭 , 𝛏 ∈ (𝐑𝑛)𝛭 ∶ ‖𝐹𝛭 (𝑥, 𝐬, 𝛏) − �̂�‖ < 𝑟 }
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for sufficiently large 𝛭 ∈ 𝚴𝑚, small 𝛿 > 0, and any 𝑥 ∈ 𝛣(0, 𝑅). Note that 𝐹𝛭 (𝑥, 𝐬, 𝛏) = 𝛸𝜏𝛭
when 𝐬 = (𝑡𝑗 )𝛭𝑗=1 and 𝛏 = (𝜂𝑗 )𝛭𝑗=1. By our assumptions on the laws of 𝑡𝑗 and 𝜂𝑗 , it is clear that5

ℰ𝛭
𝜆 (𝛥) =

𝛭
∏
𝑗=1

(𝑒−𝜆 1−𝛿
𝛭 − 𝑒−𝜆 1

𝛭 ) > 0,

inf
𝑥∈𝛣(0,𝑅)

ℓ𝛭 (𝛯𝑥) > 0,

since there is only a finite number of sets 𝛯𝑥 for 𝑥 in 𝛣(0, 𝑅). We conclude that

0 < inf
𝑥∈𝛣(0,𝑅)

𝚸𝑥 {‖𝛸𝜏𝛭 − �̂�‖ < 𝑟 } . (4.50)

Step 2: case of coupling trajectories. We consider three cases.

• If 𝑥 = 𝑥 ′, then the trajectories 𝑧𝑗 and 𝑧′𝑗 coincide for all 𝑗 and the result follows immediately

from (4.50).

• If 𝑥 ≠ 𝑥 ′ with 𝑥, 𝑥 ′ ∈ 𝛣(�̂�, 𝑟 ), then

𝚸(𝑥,𝑥 ′) {𝐽 = 0} = 1.

• If 𝑥 ≠ 𝑥 ′ not both in 𝛣(�̂�, 𝑟 ), consider 𝐬 ∈ 𝛥 , 𝛏 ∈ 𝛯𝑥 , and 𝛏′ ∈ 𝛯𝑥 ′ . By construction,

both 𝐹𝛭 (𝑥, 𝐬, 𝛏) and 𝐹𝛭 (𝑥 ′, 𝐬, 𝛏) lie in 𝛣(�̂�, 𝑟 ). Then, there exists a minimal 𝑘 ∈ 𝚴𝑚 such that

both 𝐹𝑘(𝑥, 𝐬, 𝛏) and 𝐹𝑘(𝑥 ′, 𝐬, 𝛏) lie in 𝛣(�̂�, 𝑟 ). Necessarily, 𝑘 satisfies 𝑘 ≤ 𝛭 . Therefore, the con-

struction of the coupling 6 implies that 𝑧𝑘 , 𝑧′𝑘 are guaranteed to be in 𝛣(�̂�, 𝑟 ) for some 𝑘 ≤ 𝛭
for all 𝜔 = (𝑥, 𝑥 ′, (𝐬𝑗 , �̃�𝑗 )𝑗∈𝚴) such that (𝐬𝑗 )𝛭/𝑚

𝑗=1 lies in 𝛥 and such that (𝜉 (𝑥, 𝑥 ′, 𝐬𝑗 , �̃�𝑗 ))𝛭/𝑚
𝑗=1 and

(𝜉 ″(𝑥, 𝑥 ′, 𝐬𝑗 , �̃�𝑗 ))𝛭/𝑚
𝑗=1 lie respectively in 𝛯𝑥 and 𝛯𝑥 ′ . By construction,

�̃� {�̃�𝑗 ∶ 𝜉 (𝑥, 𝑥 ′, 𝐬𝑗 , �̃�𝑗 ) ∈ 𝛯𝑥} = ℓ𝛭 (𝛯𝑥),

�̃� {�̃�𝑗 ∶ 𝜉 ″(𝑥, 𝑥 ′, 𝐬𝑗 , �̃�𝑗 ) ∈ 𝛯𝑥 ′} = ℓ𝛭 (𝛯𝑥 ′),

5Recall that ℰ𝛭
𝜆 and ℓ𝛭 sand for the 𝛭 -fold products of the exponential distribution and ℓ , respectively.

6When the coupling starts with 𝑥 ≠ 𝑥 ′ not both in 𝛣(�̂�, 𝑟 ), the first 𝑚 jumps are independent. The probability of

𝑧𝑚 = 𝑧′𝑚 is zero by our assumptions on ℓ . Thus going by blocks of𝑚 steps, we see that the jumps are independent until

both trajectories simultaneously hit 𝛣(�̂�, 𝑟 ) at a time which is a multiple of𝑚.



CHAPTER 4 153

and

ℰ𝛭
𝜆 (𝛥) =

𝛭
∏
𝑗=1

(𝑒−𝜆 1−𝛿
𝛭 − 𝑒−𝜆 1

𝛭 ) .

Then, independence gives

𝚸(𝑥,𝑥 ′) {𝐽 ≤ 𝛭} ≥ ℓ𝛭 (𝛯𝑥) ℓ𝛭 (𝛯𝑥 ′)
𝛭
∏
𝑗=1

(𝑒−𝜆 1−𝛿
𝛭 − 𝑒−𝜆 1

𝛭 ) > 0.

The uniformity in 𝑥 and 𝑥 ′ follows from the fact that there is only a finite number of sets𝛯𝑥 and𝛯𝑥 ′
to consider as 𝑥 and 𝑥 ′ range over the set 𝛣(0, 𝑅).

The main result of this appendix is the following exponential-moment bound on the random

variable 𝐽 . The argument used to deduce the proposition from the previous lemmas is well known

and sis for example discussed in depth in Section 3.3.2 in [KS12].

Proposition 4.A.6. There are constants 𝜃2 > 0 and 𝛢2 > 0 such that

𝚬(𝑥,𝑥 ′)𝑒𝜃2𝐽 ≤ 𝛢2 (1 + ‖𝑥‖2 + ‖𝑥 ′‖2) (4.51)

for all 𝑥, 𝑥 ′ ∈ 𝐑𝑑 .

Proof. Let 𝛪𝑖 be defined as in Lemma 4.A.3 with constant𝛭 ∈ 𝚴𝑚 as in Lemma 4.A.5. Then

𝚸(𝑥,𝑥 ′) {𝐽 > 𝑘} ≤ 𝚸(𝑥,𝑥 ′){𝛪𝑖 < 𝐽 } + 𝚸(𝑥,𝑥 ′){𝛪𝑖 ≥ 𝑘}

for any choice of integers 𝑖 , 𝑘 ≥ 1. To control the first term, note that the Markov property and

Lemma 4.A.5 imply

𝚸(𝑥,𝑥 ′) {𝛪𝑖 < 𝐽 } ≤ (1 − 𝑞)𝚸(𝑥,𝑥 ′) {𝛪𝑖−1 < 𝐽 } ≤ (1 − 𝑞)𝑖−1.

For the second term, we have the bound

𝚸(𝑥,𝑥 ′){𝛪𝑖 ≥ 𝑘} ≤ 𝐶 𝑖
2 e−𝑐1𝑘(1 + ‖𝑥‖2 + ‖𝑥 ′‖2)

by Chebyshev’s inequality and Lemma 4.A.3. In particular, taking 𝑖 scaling like 𝜖𝑘 for 𝜖 small

enough, we find

𝚸(𝑥,𝑥 ′) {𝐽 > 𝑘} ≤ (1 − 𝑞)𝜖𝑘−1 + 𝐶 𝜖𝑘
2 e−𝑐1𝑘(1 + ‖𝑥‖2 + ‖𝑥 ′‖2)

≤ 𝑎𝑘(1 + ‖𝑥‖2 + ‖𝑥 ′‖2)
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for some 𝑎 ∈ (0, 1). This exponential decay of the probability yields the proposition for 𝜃2 small

enough and 𝛢2 large enough.

4.B Controllability of ODEs with polynomially growing non-

linearities

When the perturbation term 𝑔 in (4.34) is a polynomial, this result follows from [JK85, Thm. 3]

or [Jur97, Thm. 11 in Ch. 5] and the system is even exactly controllable. In the general case, when 𝑔
is an arbitrary smooth function satisfying (i) and (ii), these results cannot be applied since the Hör-

mander condition is not necessarily satisfied at all the points. We adapt an argument used in [Ner20,

Thm. 2.5] which is particularly simple in the case of ordinary differential equations. Let us consider

the equation

�̇�(𝑡 ) − 𝜈Δ(𝑢(𝑡) + 𝜉 (𝑡)) + P𝛮𝐹 (𝑢(𝑡) + 𝜉 (𝑡)) = ℎ + 𝜁 (𝑡), (4.52)

with two controls 𝜉 and 𝜁 in 𝐶([0, 𝛵 ]; 𝛨𝛮 ).7 We denote by 𝑆𝑡 (𝑢0 , 𝜉 , 𝜁 ) the solution of (4.52) sat-

isfying the initial condition 𝑢(0) = 𝑢0 . To simplify the presentation, we shall assume that 𝑎 = 1
in (4.34). Let us define a sequence {ℋ𝑖}𝑖≥1 of subspaces of 𝛨𝛮 as follows: ℋ1 = 𝛨1 and

ℋ𝑖 = span {P𝛮 (𝜑1 ⋅ … ⋅ 𝜑𝑝) ∶ 𝜑𝑗 ∈ ℋ𝑖−1, 𝑗 = 0, … , 𝑝}

for 𝑖 ≥ 2. The trigonometric identities (4.39) and (4.40) give that 𝑠𝑙±𝑚 , 𝑐𝑙±𝑚 ∈ ℋ𝑖 , provided that

𝑠𝑙 , 𝑠𝑚 , 𝑐𝑙 , 𝑐𝑚 ∈ ℋ𝑖−1. Recalling the definition of𝛨1, it is easy to infer that

ℋ𝑖 = 𝛨𝛮 for sufficiently large 𝑖 ≥ 1. (4.53)

We will also use another form of these subspaces:

ℋ𝑖 = span {𝜑0 , P𝛮𝜑𝑝 ∶ 𝜑0 , 𝜑 ∈ ℋ𝑖−1} (4.54)

for 𝑖 ≥ 2, which can be verified as in Lemma 4.2 in [Ner20].
7The idea of introducing the second control 𝜉 comes from [AS05] and is nowadays extensively used in the control

theory of PDEs with finite-dimensional controls (see the surveys [AS08, Shi18]).
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The following lemma will play an important role in the proof of Proposition 4.4.2. It is estab-

lished at the end of this subsection.

Lemma 4.B.1. Under the conditions of Theorem 4.4.1, for any vectors 𝑢0 , 𝜑 , 𝜓 ∈ 𝛨𝛮 , we have

𝑆𝛿 (𝑢0 , 𝛿−1/𝑝𝜑, 𝛿−1𝜓 ) → 𝑢0 + 𝜓 − P𝛮𝜑𝑝 in𝛨𝛮 as 𝛿 → 0. (4.55)

Proof of Proposition 4.4.2. By a general argument (see for example Step 4 in the proof of Theorem 2.3

in [Ner20]) approximate controllability in any fixed time 𝛵 > 0 can be obtained from controllability

in arbitrarily small time.

Lemma 4.B.1 gives that for all 𝑢0 ∈ 𝛨𝛮 , 𝜓 ∈ 𝛨1 = ℋ1, 𝜖 > 0, and 𝛵 > 0, there exists 𝜁 ∈
𝐶([0, 𝛿 ]; 𝛨1)with 0 < 𝛿 < 𝛵 such that

‖𝑆𝛿 (𝑢0 , 𝜁 ) − (𝑢0 + 𝜓 )‖𝐿2 < 𝜖. (4.56)

Because 𝛨𝛮 = ℋ𝑖 for some 𝑖 , we may proceed by induction on 𝑖 : let us suppose that for

all 𝑢0 ∈ 𝛨𝛮 , 𝜓 ∈ ℋ𝑖−1, 𝜖 > 0, and 𝛵 > 0, there exists 𝜁 ∈ 𝐶([0, 𝛿 ]; 𝛨1) with 0 < 𝛿 < 𝛵
such that (4.56) holds; we will show that this property then also holds for 𝑖 , and the proof of the

proposition will be complete.

Fix 𝑢0 ∈ 𝛨𝛮 . By (4.54), any 𝜓 ∈ ℋ𝑖 can be written as a linear combination of elements of the

form P𝛮𝜑𝑝 with 𝜑 ∈ ℋ𝑖−1, plus a vector in ℋ𝑖−1. Hence, by an iteration argument, it suffices to

consider vectors 𝜓 of the form −P𝛮𝜑𝑝 for some 𝜑 ∈ ℋ𝑖−1. Let 𝜖 > 0 and 𝛵 > 0 be arbitrary. By

Lemma 4.B.1, there exists 𝛿2 ∈ (0, 13𝛵 ) such that

‖𝑆𝛿2(𝑢0 , 𝛿
−1/𝑝
2 𝜑, 0) − (𝑢0 − P𝛮𝜑𝑝)‖𝐿2 < 1

4 𝜖.

On the other hand, a change of vairiable shows

𝑆𝛿2(𝑢0 , 𝛿
−1/𝑝
2 𝜑, 0) = 𝑆𝛿2(𝑢0 + 𝛿

−1/𝑝
2 𝜑, 0) − 𝛿−1/𝑝2 𝜑

so that

‖𝑆𝛿2(𝑢0 + 𝛿
−1/𝑝
2 𝜑, 0) − (𝑢0 − P𝛮𝜑𝑝 + 𝛿

−1/𝑝
2 𝜑)‖𝐿2 < 1

4 𝜖.
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By continuity, there exists a radius 𝜌 > 0 such that

‖𝑆𝛿2(𝑢, 0) − (𝑢0 − P𝛮𝜑𝑝 + 𝛿
−1/𝑝
2 𝜑)‖𝐿2 < 1

2 𝜖

for all 𝑢 with

‖𝑢 − (𝑢0 + 𝛿
−1/𝑝
2 𝜑)‖𝐿2 < 𝜌.

By the induction hypothesis, there exists �̃�1 ∈ 𝐶([0, 𝛿1]; 𝛨1)with 0 < 𝛿1 < 1
3𝛵 such that ‖𝑆𝛿1(𝑢0 , �̃�1)−

(𝑢0 + 𝛿
−1/𝑝
2 𝜑)‖𝐿2 < 𝜌, and therefore such that

‖𝑆𝛿2(𝑆𝛿1(𝑢0 , �̃�1), 0) − (𝑢0 − P𝛮𝜑𝑝 + 𝛿
−1/𝑝
2 𝜑)‖𝐿2 < 1

2 𝜖.

Yet again by the induction hypothesis, there exists �̃�3 ∈ 𝐶([0, 𝛿3]; 𝛨1)with 0 < 𝛿3 < 1
3𝛵 such that

‖𝑆𝛿3(𝑆𝛿2(𝑆𝛿1(𝑢0 , �̃�1), 0), �̃�3) − (𝑆𝛿2(𝑆𝛿1(𝑢0 , �̃�1), 0) − 𝛿
−1/𝑝
2 𝜑)‖𝐿2 < 1

4 𝜖.

Therefore, by the triangle inequality,

‖𝑆𝛿3(𝑆𝛿2(𝑆𝛿1(𝑢0 , �̃�1), 0), �̃�3) − (𝑢0 − P𝛮𝜑𝑝)‖𝐿2 < 3
4 𝜖.

We conclude that (4.56) holds with 𝜁 ∈ 𝐶([0, 𝛿1 + 𝛿2 + 𝛿3]; 𝛨1) a good enough continuous approx-

imation of the function 𝟏[0,𝛿1)�̃�1 + 𝟏[𝛿1+𝛿2 ,𝛿1+𝛿2+𝛿3]�̃�3( ⋅ − (𝛿1 + 𝛿2)). Note that 0 < 𝛿1 + 𝛿2 + 𝛿3 < 𝛵
by construction.

Proof of Lemma 4.B.1. Fix𝜑, 𝜓 ∈ 𝛨𝛮 and let𝑢(𝑡) = 𝑆𝑡 (𝑢0 , 𝜉 , 𝜁 )with the constant controls 𝜉 (𝑡) ≡
𝜑 and 𝜁 (𝑡) ≡ 𝜓 . Also let

𝑤(𝑡) ∶= 𝑢0 + 𝑡(𝜓 − P𝛮𝜑𝑝) and 𝑣(𝑡) ∶= 𝑢(𝛿 𝑡) − 𝑤(𝑡).

Clearly, the fact that 𝑢 solves (4.52) with 𝑢(0) = 𝑢0 implies that 𝑣 sloves

�̇� (𝑡 ) − 𝜈 𝛿Δ(𝑣(𝑡) + 𝑤(𝑡) + 𝛿−1/𝑝𝜑) + 𝛿P𝛮𝐹 (𝑣(𝑡) + 𝑤(𝑡) + 𝛿−1/𝑝𝜑) − P𝛮𝜑𝑝 = 𝛿ℎ

with 𝑣(0) = 0. Taking the scalar product in 𝐿2 of this equation with 𝑣(𝑡), applying the Cauchy–

Schwarz inequality, and dropping the arguments (𝑡) for notational simplicity, we get
1
2

d
d𝑡 ‖𝑣‖

2
𝐿2 ≤ (𝜈 𝛿‖Δ𝑤‖𝐿2 + 𝜈 𝛿 1−1/𝑝‖Δ𝜑‖𝐿2 + 𝛿‖ℎ‖𝐿2 (4.57)

+ ‖𝛿P𝛮𝐹 (𝑣 + 𝑤 + 𝛿−1/𝑝𝜑) − P𝛮𝜑𝑝‖𝐿2)‖𝑣‖𝐿2

≤ 𝐶1 (𝛿 1−1/𝑝 + ‖𝛿P𝛮𝐹 (𝑣 + 𝑤 + 𝛿−1/𝑝𝜑) − P𝛮𝜑𝑝‖𝐿2) ‖𝑣‖𝐿2 (4.58)
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for any 𝑡 ≤ 1 and 𝛿 ≤ 1. Using the assumption (i) and the Young inequality, we obtain

‖𝛿P𝛮𝐹 (𝑣 + 𝑤 + 𝛿−1/𝑝𝜑) − P𝛮𝜑𝑝‖𝐿2 ≤ 𝐶2𝛿 (‖𝑣‖
𝑝
𝐿2 + ‖𝑤‖

𝑝
𝐿2 + 𝛿

−(𝑝−1)/𝑝‖𝜑‖𝑝−1𝐿2 + 1)

≤ 𝐶3𝛿 (‖𝑣‖
𝑝
𝐿2 + 𝛿

−(𝑝−1)/𝑝 + 1) . (4.59)

Combining (4.58) and (4.59), we see that

d
d𝑡 ‖𝑣(𝑡)‖

2
𝐿2 ≤ 𝐶4𝛿 1/𝑝 (‖𝑣(𝑡)‖

𝑝+1
𝐿2 + 1) . (4.60)

Let us set 𝛢𝛿 ∶= 𝐶4𝛿 1/𝑝 and

𝛷 (𝑡) ∶= 𝛢𝛿 + 𝛢𝛿
ˆ 𝑡

0
‖𝑣(𝑠)‖𝑝+1𝐿2 d𝑠. (4.61)

Then, (4.60) is equivalent to

(�̇� )2/(𝑝+1) ≤ 𝛢2/(𝑝+1)
𝛿 𝛷 ,

and
�̇�

𝛷 (𝑝+1)/2 ≤ 𝛢𝛿 .

Integrating this inequality, we derive

𝛷 (𝑡) ≤ 𝛢𝛿 (1 −
𝑝 − 1
2 𝛢(𝑝+1)/2

𝛿 𝑡)
−2/(𝑝−1)

for all 0 ≤ 𝑡 < 1 ∧ 𝛵∗(𝛿 ), where

𝛵∗(𝛿 ) ∶= (
𝑝 − 1
2 𝛢(𝑝+1)/2

𝛿 )
−1
.

Because 𝛵∗(𝛿 ) ↑ ∞monotonically as 𝛿 ↓ 0, there exists 𝛿0 > 0 small enough that

𝛷 (𝑡) ≤ 2𝛢𝛿 (4.62)

for all 0 ≤ 𝑡 ≤ 1, whenever 0 < 𝛿 ≤ 𝛿0 . Then, combining (4.60)–(4.62), we obtain

‖𝑣(1)‖2𝐿2 ≤ 𝐶5𝛿 1/𝑝

for some constant 𝐶5 independent of 𝛿 . Thus 𝑣(1) → 0 as 𝛿 → 0, which implies (4.55).
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4.C Some results from measure theory

4.C.1 Maximal couplings

Let 𝒳,𝒴, and 𝒰 be Polish spaces endowed with their Borel 𝜎 -algebras, 𝑢 ∈ 𝒰 ↦ 𝜇(𝑢, ⋅ ), 𝜇′(𝑢, ⋅ )
be two random probability measures on 𝒳, and 𝐹 ∶ 𝒳 → 𝒴 be a measurable mapping. We denote

by 𝐹∗𝜇(𝑢, ⋅ ) the image of 𝜇(𝑢, ⋅ ) under 𝐹 (similarly for 𝜇′). The following lemma on the existence

of maximal couplings is a particular case of Exercise 1.2.30.ii in [KS12] (see the last section of the

book for a proof).

Lemma4.C.1. There is a probability space (𝛺,ℱ,𝚸 )andmeasurablemappings𝜉 , 𝜉 ′ ∶ 𝒰×𝛺 → 𝒳
such that the following two properties are satisfied:

• for all 𝑢 ∈ 𝒰, (𝜉 (𝑢, ⋅ ), 𝜉 ′(𝑢, ⋅ )) is a coupling of 𝜇(𝑢, ⋅ ) and 𝜇′(𝑢, ⋅ ) in the sense that

𝜉 (𝑢, ⋅ )∗𝚸 = 𝜇(𝑢, ⋅ ) and 𝜉 ′(𝑢, ⋅ )∗𝚸 = 𝜇′(𝑢, ⋅ ); (4.63)

• for all 𝑢 ∈ 𝒰, (𝐹 (𝜉 (𝑢, ⋅ )), 𝐹 (𝜉 ′(𝑢, ⋅ ))) is a maximal coupling of 𝐹∗𝜇(𝑢, ⋅ ) and 𝐹∗𝜇′(𝑢, ⋅ ) in
the sense that

𝚸 ({𝜔 ∈ 𝛺 ∶ 𝐹 (𝜉 (𝑢, 𝜔)) ≠ 𝐹 (𝜉 ′(𝑢, 𝜔))}) = ‖𝐹∗𝜇(𝑢, ⋅ ) − 𝐹∗𝜇′(𝑢, ⋅ )‖var (4.64)

and the random variables 𝐹 (𝜉 (𝑢, ⋅ )) and 𝐹 (𝜉 ′(𝑢, ⋅ )) conditioned on the event

{𝜔 ∈ 𝛺 ∶ 𝐹 (𝜉 (𝑢, 𝜔)) ≠ 𝐹 (𝜉 ′(𝑢, 𝜔))}

are independent.

4.C.2 Images of measures under regular mappings

Let 𝒳 be a compact metric space, 𝒴 and 𝒰 be finite-dimensional spaces, and 𝐹 ∶ 𝒳 × 𝒰 → 𝒴
be a continuous mapping. The following is a consequence of a more general result proved in Theo-

rem 2.4 in [Shi07] (see also Chapter 9 of [Bog10]). In this simplified context in finite dimension, it

can be proven directly from the implicit function theorem and a change of variable.
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Lemma 4.C.2. Assume that the mapping 𝐹 (𝑥, ⋅ ) ∶ 𝒰 → 𝒴 is differentiable for any 𝑥 ∈ 𝒳, the

derivative 𝐷𝑢𝐹 is continuous on 𝒳 × 𝒰, the image of the linear operator (𝐷𝑢𝐹 )(�̂�, �̂�) has full rank
for some (�̂�, �̂�) ∈ 𝒳 × 𝒰, and 𝜚 ∈ 𝒫(𝒰) is a measure possessing a positive continuous density with

respect to the Lebesgue measure on 𝒰. Then there is a continuous function 𝜓 ∶ 𝒳 × 𝒴 → 𝐑+ and a

number 𝑟 > 0 such that

𝜓 (�̂�, 𝐹 (�̂�, �̂�)) > 0,

and

(𝐹∗(𝑥, ⋅ )𝜚)(d𝑦) ≥ 𝜓 (𝑥, 𝑦) d𝑦

(as measures on 𝒴) for all 𝑥 ∈ 𝛣𝒳(�̂�, 𝑟 ).
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Abstract We study the large-time behaviour of a sample 𝒮 consisting of an ensemble of

fermionic walkers on a graph interacting with a structured infinite reservoir of fermions

ℰ through an exchange of particles in preferred states. We describe the asymptotic state

of 𝒮 in terms the initial state of ℰ, with especially simple formulae in the limit of small

coupling strength. We also study the particle fluxes into the different parts of the reser-

voir.
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5.1 Introduction

At times arising as successful approximations of continuous-time quantum evolutions that are of interest to

experimental and theoretical physicists, at times arising as natural quantum counterparts of classical discrete-

time processes in different sciences, discrete-time quantum evolutions have become an extensively studied

topics in mathematical physics. Examples of the first kind appear in the effective description of quantum

systems that repeatedly interact with probes [KM00, BJM14], quantum systems that undergo time-periodic

driving [How74, Yaj77] or models related to the quantum Hall effect, where strong perpendicular magnetic

fields are involved [CC88, KOK05]; examples of the second kind can be found in quantum information

science [Mey96, Wat01].

Discrete-time quantum evolutions where the dynamics for a single time step only couples neighbouring

sites of a (possibly infinite) graph are often referred to as quantum walks and have been studied extensively

in the last twenty years; see for example [AAKV01, Kem03, VA12, Por13]. Most works on the subject con-

sider a single particle, called a quantum walker. However, interesting phenomena arise when two walkers are

coupled [AAM+12, SBP+17] and natural questions concerning the collective behaviour of a variable number

of walkers arise, especially by analogy with phenomena of Hamiltonian quantum statistical mechanics such

as return to equilibrium, existence of nonequilibrium steady states, entropy production, et cetera. This was

initiated by Hamza and Joye in the work [HJ17], where they prove a form of return to equilibrium for en-

sembles of walkers interacting with a chain of auxiliary fermions in two special cases of the model considered

here.

The main model under consideration concerns a finite graph on which a variable number of noninter-

acting fermions may hop to a neighbouring vertex at discrete times. We call this component of the system

the sample 𝒮. The free dynamics in Fock space is given by the second quantization of a one-particle unitary

matrix 𝑊 . To model the interaction with an environment, we introduce an auxiliary bi-infinite chain ℰ of

sites where fermions are forced to hop to their left at discrete times. The free dynamics there is thus described

by the second quantization of a shift operator 𝑆 . These two components of the system then interact through

a term which allows the exchange of particles in preferred states. The intensity of this exchange is controlled

by a coupling constant 𝛼. They undergo a step of free evolution, a step of interaction evolution, a step of free

evolution, and so on.

We consider the case in which the environment ℰ is in an initial state which is translational-invariant,
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gauge-invariant (gi) and quasi-free (qf), described at the one-particle level by a function 𝐹 of the shift oper-

ator 𝑆 . Most notably, we show that the asymptotic state in the sample 𝒮 is then also giqf and completely

described by its own dynamics 𝑊 and the same function 𝐹 , up to an interaction-dependent deformation

which vanishes in the limit 𝛼 → 0. This deformation is explicit. This is a generalization of the results of

Hamza and Joye in [HJ17]: they had covered the cases where the sites in the environment ℰ are uncorrelated

or where the free hopping in the sample 𝒮 is a uni-directional shift on a ring.

We further generalize to more complicated structured environments by considering 𝑚 ≥ 1 internal de-

grees of freedom at each site of the bi-infinite chain and a dynamics determined at the one-particle level by

𝑆 ⊗ 𝑈 for some unitary𝑚-by-𝑚 matrix 𝑈 with simple eigenvalues. Invariance of the state under the dynam-

ics and under translations along the chain yield a set (𝜋𝑖 )𝑚𝑖=1 of rank-one projections such that the symbol

describing the initial state of the environment ℰ is∑𝑚
𝑖=1(2Re 𝐹𝑖 (𝑆 ∗ ⊗𝑈 ∗))(𝟏 ⊗ 𝜋𝑖 ) for some family (𝐹𝑖 )𝑚𝑖=1

of functions. In this generalized version of the model, the asymptotic state in the sample 𝒮 is again giqf and

completely described by its own dynamics𝑊 and the functions (𝐹𝑖 )𝑚𝑖=1 — again up to an explicit𝛼-dependent

correction — ; see Theorem 5.4.3. We can also study the flux of particles into the different parts (ℰ𝑖 )𝑚𝑖=1 of

the environment ℰ and determine — for small enough couplings — the signs by comparing the values of the

functions (𝐹𝑖 )𝑚𝑖=1 at the point 1.

In Section 5.2, we introduce more precisely the description of the spaces, observables and dynamics; we

leave some comments on the choice of quantum statistics and interaction for Appendix 5.A. We devote Sec-

tion 5.3 to a discussion of the initial state of the system. This is where we introduce the decomposition of

the translation-invariant environment ℰ into different parts (ℰ𝑖 )𝑚𝑖=1, to each of which is associated a scalar

function 𝐹𝑖 . In Section 5.4, we state our main results on the asymptotic state in the sample and asymptotic

fluxes out of the different parts of the environment. We present more concrete examples with 𝑚 = 1 in Sec-

tion 5.5. For a model on a ring, we get an explicit expression for the profile of the particle density as a function

of the node of the graph and for the corresponding correlations between the occupation of two nodes. We

also study the role of disorder and of the essential range of the function 𝐹 in the limit of an infinitely large

sample.
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5.2 The system and its dynamics

5.2.1 A quantum walk in a sample

In this subsection, we introduce the description of the sample, which is the small system of interest interacting

with an environment. We start by considering a single walker for two classes of graphs, and then introduce

our general assumptions and the passage to a variable number of fermionic walkers.

The coined walk on a cycle

We first wish to start by describing the motion of a spin- 12 quantum walker on a cycle of 𝑛 vertices. Let

{𝛿0 , 𝛿1, … , 𝛿𝑛−1} be an orthonormal basis for 𝐂𝑛 , the Hilbert space for the position, and let {𝑒−1, 𝑒+1} be an

orthonormal basis for𝐂2, the Hilbert space for the spin. The unitary

𝑊1 ∶=
𝑛−1
∑
𝜈 =0

∑
𝜏=±1

𝛿𝜈 +𝜏 ⊗ 𝑒𝜏 ⟨𝛿𝜈 ⊗ 𝑒𝜏 , ⋅ ⟩ ,

on 𝐂𝑛 ⊗ 𝐂2, with the arithmetics on the index 𝜈 understood modulo 𝑛, can be interpreted as follows. If a

walker is located on the site 𝜈 with its spin up [resp. down], it moves clockwise [resp. counter-clockwise] and

its spin variable is unchanged. A second unitary

𝑊2 ∶=
𝑛−1
∑
𝜈 =0

𝛿𝜈 ⟨𝛿𝜈 , ⋅ ⟩ ⊗ 𝐶𝜈 ,

where each 𝐶𝜈 is a 2-by-2 unitary called a coin matrix, is used to locally change the spin variable. The so-called

Hadamard coin 1
√2 (

1 1
−1 1 ) is most often considered in the literature.

The product

𝑊 ∶= 𝑊1𝑊2,

a unitary on the finite dimensional Hilbert space ℋ𝒮 = 𝐂𝑛 ⊗ 𝐂2, gives a dynamics for a single time step

where a quantum coin is shuffled, and the walker hops to a neighbouring site or the other depending on the

outcome of the coin.

If each coin matrix 𝐶𝜈 is such that ⟨𝑒+1, 𝐶𝜈 𝑒+1⟩ ⟨𝑒+1, 𝐶𝜈 𝑒−1⟩ ≠ 0, then the vector 𝜓∗ = 𝛿0 ⊗ 𝑒−1 is cyclic

for𝑊 . Such a preferred state will be used later to introduce exchange of particles with the environment, and

cyclicity will ensure good propagation of the interaction.



CHAPTER 5 167

Coined walks on some more general graphs

We now treat a second class of graphs, called class-1 regular graphs in [Por13], for which we can give a precise

description of the dynamics without introducing too much machinery from graph theory.

Let𝐺 be a finite 𝑟 -regular graph with𝑛 vertices whose edges can be coloured with 𝑟 colours, 𝑎 = 0, … , 𝑟 −1,

and consider the unitary

𝑊1 ∶=
𝑛−1
∑
𝜈 =0

𝑟 −1
∑
𝑎=0

𝛿𝜈 ′(𝜈 ,𝑎) ⊗ 𝑒𝑎 ⟨𝛿𝜈 ⊗ 𝑒𝑎, ⋅ ⟩

on 𝐂𝑛 ⊗𝐂𝑟 , where 𝜈 ′(𝜈 , 𝑎) is the unique vertex such that (𝜈 , 𝜈 ′) is an edge of colour 𝑎. By a standard result,

the colouring property forces 𝑛 to be even. The action of 𝑊1 is interpreted as follows. If a walker is at the

node 𝜈 , looking along the edge of color 𝑎, after one time step, it will go to the node 𝜈 ′ at the other end of this

edge, now facing where it came from.

We also introduce a unitary coin matrix 𝐶𝜈 at each node 𝜈 and the unitary

𝑊2 ∶=
𝑛−1
∑
𝜈 =0

𝛿𝜈 ⟨𝛿𝜈 , ⋅ ⟩ ⊗ 𝐶𝜈 .

on 𝐂𝑛 ⊗ 𝐂𝑟 . The role of the coin matrix is to change the direction in which the walker is looking into a

normalized superposition of directions.

Finally, we set

𝑊 ∶= 𝑊1𝑊2.

This unitary matrix 𝑊 on the finite-dimensional Hilbert space ℋ𝒮 = 𝐂𝑛 ⊗ 𝐂𝑟 of dimension 𝑑 = 𝑛𝑟
describes the discrete-time dynamics for a single walker on the graph 𝐺 . Under generic assumptions on the

coin matrices, the matrix𝑊 will admit a cyclic vector 𝜓∗.

General formulation and second quantization

Quantum walks on more general classes of finite graphs can be given a similar description using slightly heavier

machinery from graph theory; see for example Chapter 7 in [Por13]. Any description of a quantum walk on

a (directed) graph 𝐺 = (𝑉 , 𝛦) should involve a unitary 𝑊 on a space of the form 𝐂|𝑉 | ⊗ 𝐂𝑟 whose matrix

elements ⟨𝛿𝜈 ′ ⊗ 𝑤,𝑊 (𝛿𝜈 ⊗ 𝑤)⟩ vanish unless (𝜈 , 𝜈 ′) is in the set 𝛦 of (directed) edges of 𝐺 .

The specific structure of 𝑊 inherited from the graph is irrelevant for most of our computations and re-

sults and will only be used in the interpretation of some asymptotic results, especially in Section 5.5. Hence,
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for the rest of the paper we will consider that the one-particle dynamics 𝑊 on a 𝑑-dimensional Hilbert

space ℋ𝒮 and the unit vector 𝜓∗ ∈ ℋ𝒮 are admissible whenever𝑊 is unitary and 𝜓∗ is cyclic for𝑊 .

A variable number of non-interacting fermionic walkers are then described on the algebra CAR(ℋ𝒮)
of canonical anti-commutation relations, which we represent on the fermionic Fock space Γ−(ℋ𝒮), with

the creation [resp. annihilation] operator associated to the one-particle state 𝜓 ∈ ℋ𝒮 denoted by 𝑎∗(𝜓 )
[resp. 𝑎(𝜓 )]. We have the usual norm identity ‖𝑎#(𝜓 )‖ = ‖𝜓 ‖ for each𝜓 ∈ ℋ𝒮. Here and in what follows, 𝑎#

is used as a placeholder for either 𝑎∗ or 𝑎.

The discrete-time dynamics there is given by

𝑎#(𝜓 ) ↦ 𝑎#(𝑊 ∗𝜓 )

for all 𝜓 ∈ ℋ𝒮, extended by linearity to CAR(ℋ𝒮). We refer to this as the free dynamics in the sample 𝒮.

5.2.2 Interaction with an environment

To model interaction of the sample 𝒮 with an environment ℰ, we introduce the Hilbert space ℋℰ ∶=
ℓ 2(𝚭) ⊗ 𝐂𝑚 and the one-particle dynamics 𝑆 ⊗ 𝑈 there, where 𝑆 is the shift 𝛿ℓ ↦ 𝛿ℓ−1 on ℓ 2(𝚭) =
{∑ℓ ∈𝚭 𝑎ℓ 𝛿ℓ ∶ {𝑎ℓ ∶ ℓ ∈ 𝚭} ⊂ 𝐂,∑ℓ ∈𝚭 |𝑎ℓ |2 < ∞} and 𝑈 is an arbitrary unitary on 𝐂𝑚 with simple

eigenvalues.

A variable number of walkers in this environment are then described on the algebra CAR(ℋℰ) with

discrete-time dynamics given by

𝑏 #(𝜑) ↦ 𝑏 #((𝑆 ∗ ⊗ 𝑈 ∗)𝜑)

for all 𝜑 ∈ ℋℰ, extended by linearity to CAR(ℋℰ).1 We refer to this as the free dynamics in the environ-

ment ℰ.

Recall that we assume that the unitary 𝑊 used to describe the free dynamics in the sample 𝒮 admits a

cyclic vector 𝜓∗ ∈ ℋ𝒮. We use this vector to construct the interaction unitary

𝛫𝛼 ∶= exp[−i𝛼(𝑏 ∗(𝛿0 ⊗ 𝑣) ⊗ 𝑎(𝜓∗) + 𝑏(𝛿0 ⊗ 𝑣) ⊗ 𝑎∗(𝜓∗))]

on CAR(ℋℰ) ⊗ CAR(ℋ𝒮), where 𝑣 ∈ 𝐂𝑚 is a unit vector and where 𝛼 ∈ 𝐑\𝜋𝚭 is a coupling con-

stant. The environment and the interaction remain simple enough to yield one of the rare analytical results
1We represent the CAR in the environment ℰ on Γ−(ℋℰ) and use 𝑏 ∗(𝜑) [resp. 𝑏(𝜑)] for the creation [resp. anni-

hilation] operator associated to the vector 𝜑 ∈ ℋℰ. We use 𝑏 # as a placeholder for either 𝑏 ∗ or 𝑏 .
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on such systems, yet possess enough parameters to allow an investigation of interesting phenomena which

should arise similarly in more complex systems. By considering the algebra CAR(ℋℰ)⊗CAR(ℋ𝒮), we are

specifying that the fermions in the sample and in the environment are distinguishable. Folklore suggests that

such details of the description of the environment should not influence the asymptotics in the sample 𝒮; see

Appendix 5.A for a further discussion. We will often omit tensored identities and tensor products between

𝑎#s and 𝑏 #s.

To the unitary 𝛫𝛼 is closely related the rank-one operator

𝜄 ∶ ℋ𝒮 → ℋℰ

𝜓 ↦ 𝛿0 ⊗ 𝑣 ⟨𝜓∗, 𝜓 ⟩

and its adjoint 𝜄∗. We introduce the shorthands 𝛲 for the projector 𝜄∗𝜄 on ℋ𝒮 and 𝑄 for the projector 𝜄𝜄∗

on ℋℰ.

We consider the following coupled discrete-time Heisenberg dynamics:

𝜏 (𝛸) ∶= 𝛫∗
𝛼 (𝛤 (𝑆 ∗ ⊗ 𝑈 ∗) ⊗ 𝛤 (𝑊 ∗))𝛸(𝛤 (𝑆 ⊗ 𝑈 ) ⊗ 𝛤 (𝑊 ))𝛫𝛼

for all observables 𝛸 in CAR(ℋℰ) ⊗ CAR(ℋ𝒮). This describes a dynamics where both the sample and

the environment first evolve independently, and then are allowed to interact through a term which exchanges

particles in the state 𝜓∗ ∈ ℋ𝒮 and the state 𝛿0 ⊗ 𝑣 ∈ ℋℰ. This dynamics preserves the total number of

fermions and the strength of the interaction is controlled by the coupling constant 𝛼.

The joint dynamics is given by a product of unitaries which cannot be written as the exponential of a sum

of physically significant free Hamiltonians and an interaction potential. For this reason, many of the tools and

definitions from Hamiltonian quantum statistical mechanics — most notably the notion of temperature —

are not available.

We have the following lemmas, which will serve as building blocks for our computation of the evolution

of observables of interest. As can be seen from the formulae, the case 𝛼 ∈ 𝜋𝚭 is in some sense trivial and we

later exclude it from our analysis.

Lemma 5.2.1. For all 𝜓 ∈ ℋ𝒮

𝛫𝛼𝑎#(𝜓 )𝛫𝛼 = 𝑎#((𝟏 + (cos𝛼 − 1)𝛲 )𝜓 ) − i sin 𝛼 𝑏 #(𝜄𝜓 ), (5.1)

and for all 𝜑 ∈ ℋℰ

𝛫𝛼𝑏 #(𝜑)𝛫𝛼 = 𝑏 #((𝟏 + (cos𝛼 − 1)𝑄)𝜑) − i sin 𝛼 𝑎#(𝜄∗𝜑). (5.2)
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Proof. The functions 𝛼 ↦ 𝛫𝛼𝑏 #(𝜑)𝛫𝛼 and 𝛼 ↦ 𝛫𝛼𝑎#(𝜓 )𝛫𝛼 are real-analytic and hence completely deter-

mined by their derivatives in𝛼 = 0. Both formulae in the lemma are obtained by differentiating and exploiting

the canonincal anticommutation relations {𝑎∗(𝜓1), 𝑎(𝜓2)} ∶= 𝑎∗(𝜓1)𝑎(𝜓2) + 𝑎(𝜓2)𝑎∗(𝜓1) = ⟨𝜓2, 𝜓1⟩ 𝟏 and

{𝑎(𝜓1), 𝑎(𝜓2)} = 0 and the commutation relation 𝑏 #1(𝜑1)𝑎#2(𝜓2) = 𝑎#2(𝜓2)𝑏 #1(𝜑1) for all 𝜓1, 𝜓 ∈ ℋ𝒮

and 𝜑1 ∈ ℋℰ. We omit the subscript 𝛼 to lighten the notation.

Indeed, differentiating,

d
d𝛼𝛫𝑎

∗(𝜓 )𝛫 = −i𝛫{𝑏(𝛿0 ⊗ 𝑣)𝑎∗(𝜓∗) + 𝑏 ∗(𝛿0 ⊗ 𝑣)𝑎(𝜓∗), 𝑎∗(𝜓 )}𝛫

= −i𝛫 ⟨𝜓∗, 𝜓 ⟩ 𝑏 ∗(𝛿0 ⊗ 𝑣)𝛫

= −i𝛫𝑏 ∗(𝜄𝜓 )𝛫.

Similarly,
d

d𝛼𝛫𝑏
∗(𝜑)𝛫 = −i𝛫𝑎∗(𝜄∗𝜑)𝛫.

As a consequence of the definition of 𝛲 = 𝜄∗𝜄 and the identity 𝜄𝜄∗𝜄 = 𝜄, for all 𝑛 ≥ 0,

d2𝑛+1

d𝛼2𝑛+1𝛫𝑎
∗(𝜓 )𝛫 = (−i)2𝑛+1𝛫𝑏 ∗(𝜄𝜓 )𝛫,

d2𝑛+2

d𝛼2𝑛+2𝛫𝑎
∗(𝜓 )𝛫 = (−i)2𝑛+2𝛫𝑎∗(𝛲 𝜓 )𝛫

so that

𝛫𝑎∗(𝜓 )𝛫 = 𝑎∗(𝜓 ) +∑
𝑛≥0

(−i𝛼)2𝑛+1
(2𝑛 + 1)! 𝑏

∗(𝜄𝜓 ) + (−i𝛼)2𝑛+2
(2𝑛 + 2)! 𝑎

∗(𝛲 𝜓 ).

The other formula is obtained similarly.

Lemma 5.2.2. For all 𝜓1, 𝜓2 ∈ ℋ𝒮

𝜏 (𝑎#1(𝜓1)𝑎#2(𝜓2))

= 𝑎#1((𝟏 + (cos𝛼 − 1)𝛲 )𝑊 ∗𝜓1)𝑎#2((𝟏 + (cos𝛼 − 1)𝛲 )𝑊 ∗𝜓2)

+ i sin 𝛼 𝑎#1((𝟏 + (cos𝛼 − 1)𝛲 )𝑊 ∗𝜓1)𝑏 #2(𝜄𝑊 ∗𝜓2)

− i sin 𝛼 𝑏 #1(𝜄𝑊 ∗𝜓1)𝑎#2((𝟏 + (cos𝛼 − 1)𝛲 )𝑊 ∗𝜓2)

+ sin2 𝛼 𝑏 #1(𝜄𝑊 ∗𝜓1)𝑏 #2(𝜄𝑊 ∗𝜓2)

(5.3)



CHAPTER 5 171

and, for all 𝜑1, 𝜑2 ∈ ℋℰ,

𝜏 (𝑏 #1(𝜑1)𝑏 #2(𝜑2))

= 𝑏 #1((𝟏 + (cos𝛼 − 1)𝑄)𝑆 ∗𝑈 ∗𝜑1)𝑏 #2((𝟏 + (cos𝛼 − 1)𝑄)𝑆 ∗𝑈 ∗𝜑2)

− i sin 𝛼 𝑎#1(𝜄∗𝑆 ∗𝑈 ∗𝜑1)𝑏 #2((𝟏 + (cos𝛼 − 1)𝑄)𝑆 ∗𝑈 ∗𝜑2)

+ i sin 𝛼 𝑏 #1((𝟏 + (cos𝛼 − 1)𝑄)𝑆 ∗𝑈 ∗𝜑1)𝑎#2(𝜄∗𝑆 ∗𝑈 ∗𝜑2)

+ sin2 𝛼 𝑎#1(𝜄∗𝑆 ∗𝑈 ∗𝜑1)𝑎#2(𝜄∗𝑆 ∗𝑈 ∗𝜑2).

Moreover, for all 𝜓1 ∈ ℋ𝒮 and 𝜑2 ∈ ℋℰ,

𝜏 (𝑏 #1(𝜑1)𝑎#2(𝜓2))

= 𝑏 #1((𝟏 + (cos𝛼 − 1)𝑄)𝑆 ∗𝑈 ∗𝜑1)𝑎#2((𝟏 + (cos𝛼 − 1)𝛲 )𝑊 ∗𝜓2)

+ i sin 𝛼 𝑎#1(𝜄∗𝑆 ∗𝑈 ∗𝜑1)𝑎#2((𝟏 + (cos𝛼 − 1)𝛲 )𝑊 ∗𝜓2)

− i sin 𝛼 𝑏 #1((𝟏 + (cos𝛼 − 1)𝑄)𝑆 ∗𝑈 ∗𝜑1)𝑏 #2(𝜄𝑊 ∗𝜓2)

+ sin2 𝛼 𝑎#1(𝜄∗𝑆 ∗𝑈 ∗𝜑1)𝑏 #2(𝜄𝑊 ∗𝜓2).

Proof. Because

(𝛤 (𝑆 ∗ ⊗ 𝑈 ∗) ⊗ 𝛤 (𝑊 ∗))𝑎#(𝜓 )(𝛤 (𝑆 ⊗ 𝑈 ) ⊗ 𝛤 (𝑊 )) = 𝑎#(𝑊 ∗𝜓 )

and

(𝛤 (𝑆 ∗ ⊗ 𝑈 ∗) ⊗ 𝛤 (𝑊 ∗))𝑏 #(𝜑)(𝛤 (𝑆 ⊗ 𝑈 ) ⊗ 𝛤 (𝑊 )) = 𝑏 #((𝑆 ∗ ⊗ 𝑈 ∗)𝜑),

the formulae follow from the previous lemma and the fact that 𝜏 is a morphism.

5.3 The initial state

The initial state of the compound system is taken to be a tensor product of an arbitrary even state 𝜌 on the

algebra CAR(ℋ𝒮) with a giqf state 𝜔𝛴 on CAR(ℋℰ) with symbol 𝛴 in ℬ(ℋℰ). In other words, the

state 𝜌 vanishes on all monomials of odd degree,

𝜌(𝑎#1(𝜓1)𝑎#2(𝜓2) ⋯ 𝑎#2𝛮+1(𝜓2𝛮+1)) = 0,

and there exists 𝛴 ∈ ℬ(ℋℰ), called the density or symbol of the state 𝜔𝛴 , such that

𝜔𝛴 (𝑏 ∗(𝜑1) ⋯ 𝑏 ∗(𝜑𝛮 )𝑏(𝜑 ′𝛮 ′) ⋯ 𝑏(𝜑 ′1)) = 𝛿𝛮𝛮 ′ det[⟨𝜑𝜇, 𝛴𝜑 ′𝜇′⟩]𝛮𝜇,𝜇′=1.
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In addition to the usual requirement that 0 ≤ 𝛴 ≤ 𝟏, we require that the symbol is translation invariant, in

the sense that

[𝛴 , 𝑆 ⊗ 𝟏] = 0, (5.4)

and invariant under the one-particle free dynamics in the environment, i.e.

[𝛴 , 𝑆 ⊗ 𝑈 ] = 0. (5.5)

Finally, we assume that

∑
ℓ ∈𝚭

| ⟨𝛿−ℓ ⊗ 𝑤, 𝛴(𝛿0 ⊗ 𝑤 ′)⟩ | < ∞ (5.6)

for all 𝑤, 𝑤 ′ ∈ 𝐂𝑚 . This is a technical assumption that will ensure absolute convergence of important series.

It can be interpreted as a decay of spatial correlations in the environment.

Remark 5.3.1. The case 𝑚 = 1 (and 𝑈 = 1) is the one considered in [HJ17]. They proved a special case of

Theorem 5.4.3 below in two situations: when the symbol 𝛴 is proportional to the identity or when𝑊 is a shift

on ℋ𝒮.

Allowing 𝛴 to have off-diagonal terms allows us to study the effect of correlations in the structured environ-

ment ℰ (absent in repeated interaction systems) on the asymptotics of the sample 𝒮, and considering𝑚 > 1 is a
first step towards studying non-equilibrium situations.

Recall that we assumed𝑈 to have simple eigenvalues: its spectral projectors 𝜋𝑖 , for 𝑖 = 1, … ,𝑚, have rank

one and each of them corresponds to a unit eigenvector 𝑥𝑖 for a distinct eigenvalue. Then, for any indices

𝑘 ∈ 𝚭 and 𝑖 ∈ {1, … ,𝑚}, we have

𝛴(𝛿𝑘 ⊗ 𝑥𝑖 ) = ∑
ℓ ∈𝚭

𝑚
∑
𝑗=1

𝛿ℓ+𝑘 ⊗ 𝑥𝑗 ⟨𝛿ℓ+𝑘 ⊗ 𝑥𝑗 , 𝛴 (𝛿𝑘 ⊗ 𝑥𝑖 )⟩

= ∑
ℓ ∈𝚭

𝛿ℓ+𝑘 ⊗ 𝑥𝑖 ⟨𝛿ℓ+𝑘 ⊗ 𝑥𝑖 , 𝛴 (𝛿𝑘 ⊗ 𝑥𝑖 )⟩

= ∑
ℓ ∈𝚭

⟨𝛿0 ⊗ 𝑥𝑖 , 𝛴 (𝑆 ⊗ 𝑈 )ℓ (𝛿0 ⊗ 𝑥𝑖 )⟩ (𝑆 ∗ ⊗ 𝑈 ∗)ℓ (𝛿𝑘 ⊗ 𝑥𝑖 )

= 2Re (12 ⟨𝛿0 ⊗ 𝑥𝑖 , 𝛴 (𝛿0 ⊗ 𝑥𝑖 )⟩

+
∞
∑
ℓ =1

⟨𝛿0 ⊗ 𝑥𝑖 , 𝛴 (𝑆 ⊗ 𝑈 )ℓ (𝛿0 ⊗ 𝑥𝑖 )⟩ (𝑆 ∗ ⊗ 𝑈 ∗)ℓ )(𝛿𝑘 ⊗ 𝑥𝑖 ).

The coefficients in the sum on the right-hand side define analytic functions in the unit disk,

𝐹𝑖 (𝜁 ) ∶=
1
2 ⟨𝛿0 ⊗ 𝑥𝑖 , 𝛴 (𝛿0 ⊗ 𝑥𝑖 )⟩ +

∞
∑
ℓ=1

⟨𝛿0 ⊗ 𝑥𝑖 , 𝛴 (𝑆 ⊗ 𝑈 )ℓ (𝛿0 ⊗ 𝑥𝑖 )⟩ 𝜁 ℓ , (5.7)
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which extend continuously up to the boundary. In particular, the real number

2𝐹𝑖 (0) = ⟨𝛿0 ⊗ 𝑥𝑖 , 𝛴 (𝛿0 ⊗ 𝑥𝑖 )⟩

is the translation-invariant particle density in the 𝑖 th subspace of the reservoir.

Note that the one-particle operator 𝛴 specifying the initial state of the environment ℰ is a sum of func-

tions of the dynamics 𝑆 ∗ ⊗ 𝑈 ∗:

𝛴 =
𝑚
∑
𝑖=1
(2Re 𝐹𝑖 (𝑆 ∗ ⊗ 𝑈 ∗))(𝟏 ⊗ 𝜋𝑖 ). (5.8)

One of the main results of this paper is that the asymptotic state in the sample is a giqf state whose density

can be expressed as a sum of those same functions, but now of a matrix describing the dynamics in the sample.

As discussed in Appendix 5.A, this state remains the same when one considers some variants of this model.

Remark 5.3.2. The meaning of 𝐹𝑖 (𝛣) for a linear operator 𝛣 with ‖𝛣‖ ≤ 1 is given through the power se-

ries (5.7). Convergence in norm holds by our assumption (5.6) on the decay of correlations. The real part of

𝐹𝑖 (𝛣) is simply the self-adjoint operator 1
2 (𝐹𝑖 (𝛣) + (𝐹𝑖 (𝛣))∗).

If the function extends analytically to a disk of radius 𝑟 > spr(𝛣), then we have the integral formula

𝐹𝑖 (𝛣) =
1
2𝜋 i

‰
𝑟 𝐒1

𝐹𝑖 (𝜁 )𝑅(𝜁 , 𝛣) d𝜁 (5.9)

by the residue theorem and theNeumann series𝑅(𝜁 , 𝛣) = 1
𝜁 ∑

∞
ℓ=0 𝜁 −ℓ𝛣 ℓ for the resolvent of𝛣 for |𝜁 | > spr𝛣 .

5.4 Asymptotics

We are interested in the behaviour of the system in the limit 𝑡 → ∞ along 𝚴 . In particular, we study the

behaviour of the state in the sample 𝒮 and flux observables.

Throughout the section, we will use the following hypotheses: with𝑊 a unitary on𝐂𝑑 ,𝛴 a non-negative

definite bounded operator on ℓ 2(𝚭) ⊗ 𝐂𝑚 , 𝑈 a simple unitary on 𝐂𝑚 and 𝛼 the coupling constant for the

interaction,

(i) the initial state for the compound system is the tensor product of the giqf state 𝜔𝛴 on the algebra

CAR(ℓ 2(𝚭)⊗𝐂𝑚), where𝛴 satisfies [𝛴 , 𝑆 ⊗𝑈 ] = [𝛴 , 𝑆 ⊗𝟏] = 0, with an even state 𝜌 on CAR(𝐂𝑑);

(ii) the decay condition (5.6) on 𝛴 holds;



174 CHAPTER 5

(iii) the vector 𝜓∗ used to define the interaction is cyclic for𝑊 ;

(iv) the coupling constant 𝛼 is not an integer multiple of 𝜋 .

5.4.1 The state in the sample

In what follows, we use

𝛭 ∶= 𝑊 (𝟏 + (cos𝛼 − 1)𝛲 )

for the matrix appearing in the formulae from Section 5.2 for time-evolved creation and annihilation opera-

tors. The dependence on the coupling constant 𝛼 is not apparent in this notation but should be kept in mind.

Consequently, we will write statements such as 𝛭 → 𝑊 as 𝛼 → 0, referring to the initial dependence of 𝛭
on 𝛼.

Since 𝑊 is a unitary and 𝛲 = 𝜄∗𝜄 is an orthogonal projector, the operator norm of the matrix 𝛭 is

necessarily bounded by 1. We have the following stronger property, which is proved in [HJ17].

Lemma 5.4.1 (Lemma 4.11 in [HJ17]). Under assumptions (iii) and (iv),

spr𝛭 < 1.

In particular ‖𝛭 𝑡 ‖ converges exponentially fast to 0 as 𝑡 → ∞ along𝚴 .

We also introduce the shorthand ℋ+
ℰ for the closure of the linear span of vectors of the form 𝛿ℓ ⊗ 𝑤

for ℓ ≥ 0 and arbitrary 𝑤 ∈ 𝐂𝑚 . It corresponds to one side of the bi-infinite environment. Combining

Lemmas 5.2.2 and 5.4.1, we have the following proposition on the long-time evolution of pairs of creation

and annihilation operators.

Proposition 5.4.2. For all 𝑡 ∈ 𝚴 , under assumptions (ii)–(iv), we have:

1. for all 𝜓1, 𝜓2 ∈ ℋ𝒮,

𝜏 𝑡 (𝑎#1(𝜓1)𝑎#2(𝜓2))

= sin2 𝛼
𝑡
∑
𝑠 ′,𝑡 ′=1

𝑏 #1((𝑆 ⊗ 𝑈 )𝑠 ′−𝑡 𝜄𝑊 ∗𝛭 ∗𝑠 ′−1𝜓1)𝑏 #2((𝑆 ⊗ 𝑈 )𝑡 ′−𝑡 𝜄𝑊 ∗𝛭 ∗𝑡 ′−1𝜓2) + 𝛰(𝑡‖𝛭 𝑡 ‖);

2. for all 𝜑1 ∈ ℋ+
ℰ and 𝜓2 ∈ ℋ𝒮,

𝜏 𝑡 (𝑏 #1(𝜑1)𝑎#2(𝜓2)) = −i sin 𝛼
𝑡
∑
𝑡 ′=1

𝑏 #1((𝑆 ⊗ 𝑈 )−𝑡𝜑1)𝑏 #2((𝑆 ⊗ 𝑈 )𝑡 ′−𝑡 𝜄𝑊 ∗𝛭 ∗𝑡 ′−1𝜓2) + 𝛰(𝑡‖𝛭 𝑡 ‖);
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3. for all 𝜑1, 𝜑2 ∈ ℋ+
ℰ,

𝜏 𝑡 (𝑏 #1(𝜑1)𝑏 #2(𝜑2)) = 𝑏 #1((𝑆 ⊗ 𝑈 )−𝑡𝜑1)𝑏 #2((𝑆 ⊗ 𝑈 )−𝑡𝜑2).

Thenotation𝛰(𝑡‖𝛭 𝑡 ‖) stands for error termswhich are bounded innormby 𝑡‖𝛭 𝑡 ‖ times anumerical constant

that is independent of the vectors under consideration, as long as they are normalized.

Proof. In the second and third part of the proposition, we are considering 𝜑𝑖 ∈ ℋ+
ℰ because those are the

ones that appear in the time evolution of pairs of creation and annihilation operators in the sample (see

Lemma 5.2.2). They have the property that 𝜄∗𝑆 ∗𝑈 ∗𝜑𝑖 = 0, which makes the computations more tractable.

We prove the claims in a different order.

3. The formula follows directly from applying the formula in Proposition 5.2.2 and the identity

𝜄∗𝑆 ∗𝑈 ∗𝜑𝑖 = 0.

2. Using 𝜄∗𝑆 ∗𝑈 ∗𝜑1 = 0, Proposition 5.2.2 yields

𝜏 (𝑏 #1(𝜑1)𝑎#2(𝜓2)) = 𝑏 #1(𝑆 ∗𝑈 ∗𝜑1)𝑎#2(𝛭 ∗𝜓2) − i sin 𝛼 𝑏 #1(𝑆 ∗𝑈 ∗𝜑1)𝑏 #2(𝜄𝑊 ∗𝜓2),

and again 𝑆 ∗𝑈 ∗𝜑1 ∈ ℋ+
ℰ. Hence, for any 𝑡 ∈ 𝚴 ,

𝜏 𝑡 (𝑏 #1(𝜑1)𝑎#2(𝜓2)) = 𝑏 #1((𝑆 ∗𝑈 ∗)𝑡𝜑1)𝑎#2((𝛭 ∗)𝑡𝜓2)

−
𝑡
∑
𝑡 ′=1

i sin 𝛼 𝑏 #1((𝑆 ∗𝑈 ∗)𝑡𝜑1)𝑏 #2((𝑆 ∗𝑈 ∗)𝑡−𝑡 ′ 𝜄𝑊 ∗𝛭 ∗𝑡 ′−1𝜓2).

Because ‖𝑎#(𝜓 )‖ = ‖𝜓 ‖ for any 𝜓 ∈ ℋ𝒮 and similarly for 𝑏 #, we have the bound

‖𝑏 #1((𝑆 ∗𝑈 ∗)𝑡𝜑1)𝑎#2((𝛭 ∗)𝑡𝜓2)‖ ≤ ‖(𝑆 ∗𝑈 ∗)𝑡𝜑1‖‖(𝛭 ∗)𝑡𝜓2‖ ≤ ‖𝛭 𝑡 ‖.

1. Again by Proposition 5.2.2,

𝜏 (𝑎#1(𝜓1)𝑎#2(𝜓2)) = 𝑎#1(𝛭 ∗𝜓1)𝑎#2(𝛭 ∗𝜓2) + i sin 𝛼 𝑎#1(𝛭 ∗𝜓1)𝑏 #2(𝜄𝑊 ∗𝜓2)

− i sin 𝛼 𝑏 #1(𝜄𝑊 ∗𝜓1)𝑎#2(𝛭 ∗𝜓2) + sin2 𝛼 𝑏 #1(𝜄𝑊 ∗𝜓1)𝑏 #2(𝜄𝑊 ∗𝜓2),
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with 𝜄𝑊 ∗𝜓1, 𝜄𝑊 ∗𝜓2 ∈ ℋ+
ℰ. Hence, for any 𝑡 ∈ 𝚴 ,

𝜏 (𝑎#1(𝜓1)𝑎#2(𝜓2))

= 𝑎#1(𝛭 ∗𝑡𝜓1)𝑎#2(𝛭 ∗𝑡𝜓2)

+
𝑡
∑
𝑡 ′=1

i sin 𝛼 𝑎#1(𝛭 ∗𝑡𝜓1)𝑏 #2((𝑆 ∗𝑈 ∗)𝑡−𝑡 ′ 𝜄𝑊 ∗𝛭 ∗𝑡 ′−1𝜓2)

−
𝑡
∑
𝑠 ′=1

i sin 𝛼 𝑏 #1((𝑆 ∗𝑈 ∗)𝑡−𝑠 ′ 𝜄𝑊 ∗𝛭 ∗𝑠 ′−1𝜓1)𝑎#2(𝛭 ∗𝑡𝜓2)

+
𝑡
∑
𝑠 ′=1

𝑡
∑
𝑡 ′=1

sin2 𝛼 𝑏 #1((𝑆 ∗𝑈 ∗)𝑡−𝑠 ′ 𝜄𝑊 ∗(𝛭 ∗)𝑠 ′−1𝜓1)

𝑏 #2((𝑆 ∗𝑈 ∗)𝑡−𝑡 ′ 𝜄𝑊 ∗(𝛭 ∗)𝑡 ′−1𝜓2).

The norm estimates are obtained with similar bounds as in the previous part.

The main result of this section is the following theorem. It states that, under our ongoing assumptions,

the limiting state of the sample 𝒮 is giqf and completely described by its own dynamics 𝑊 and the same

scalar functions (𝐹𝑖 )𝑚𝑖=1, up to an interaction-dependent deformation which vanishes in the limit 𝛼 → 0.

Theorem 5.4.3. Under hypotheses (i)–(iv) stated at the beginning of the section, the limit

𝜌∞(𝛢) ∶= lim𝑡→∞(𝜔𝛴 ⊗ 𝜌)(𝜏 𝑡 (𝟏 ⊗ 𝛢))

exists for all 𝛢 ∈ CAR(ℋ𝒮) and 𝜌∞ defines a giqf state on 𝒮 with symbol

𝛥 ∶=
𝑚
∑
𝑖=1

‖𝜋𝑖 𝑣‖22Re 𝐹𝑖 (𝛭 ∗), (5.10)

where 𝛭 = 𝑊 (𝟏 + (1 − cos𝛼)𝛲 ). Moreover, the convergence trCAR(ℋℰ)((𝜔𝛴 ⊗ 𝜌) ∘ 𝜏 𝑡 ) → 𝜌∞ happens

exponentially fast in norm.

Before we proceed with the proof, let us make a few comments on the result. The fact that the asymptotic

density𝛥 in the sample 𝒮 can be rewritten in terms of the functions𝐹𝑖 defined by (5.7) (also see Remark 5.3.2)

is to be compared with the formula

𝛴 =
𝑚
∑
𝑖=1

2Re 𝐹𝑖 (𝑆 ∗ ⊗ 𝑈 ∗)(𝟏 ⊗ 𝜋𝑖 )

for the symbol for the initial state 𝜔𝛴 of the environment ℰ.
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Note that 𝛥 depends on the coupling constant 𝛼 through the matrix 𝛭 . In the small coupling limit

𝛼 → 0, we have𝛭 ∗ →𝑊 ∗ and thus

𝛥 →
𝑚
∑
𝑖=1

‖𝜋𝑖 𝑣‖22Re 𝐹𝑖 (𝑊 ∗).

In this regime, the asymptotic of the sample is completely determined by its free dynamics, the functions

defining the initial state of the environment, and the ratios between the coupling with the different parts of

the environment. This state is of course invariant under the free dynamics in the sample 𝒮.

Typically, for 𝜓1, 𝜓2 ∈ ℋ𝒮,

(𝜔𝛴 ⊗ 𝜌∞)(𝜏 (𝑎∗(𝜓1)𝑎(𝜓2))) ≠ 𝜌∞(𝑎∗(𝜓1)𝑎(𝜓2)). (5.11)

This is not surprising since it can be seen from the formula (5.3) that the reduced dynamics corresponding to

one step of time evolution with a fresh environment only sees the first coefficient in the expansion for the state

of the environment. However, equality holds for all 𝜓1, 𝜓2 ∈ ℋ𝒮 when the functions 𝐹𝑖 are constant — that

is when there are no correlations in the environment ℰ. Also, in any case, both sides converge to the same

quantity in the limit 𝛼 → 0.

Proof of Theorem 5.4.3. It is sufficient to prove the result for observables 𝛢 which are monomials in creation

and annihilation operators in the sample 𝒮. The convergence in norm will then be immediate from the con-

vergence of the matrix elements because we are working on a CAR for a finite number of degrees of freedom.

We proceed in four steps. First, we show that the fact that the initial state is a tensor product of two even

states implies that 𝛢 ↦ (𝜔𝛴 ⊗ 𝜌)(𝜏 𝑡 (𝟏 ⊗ 𝛢)) is an even state on CAR(ℋ𝒮) for all 𝑡 ≥ 0. Then, we need

only consider the asymptotic evolution of monomials of even degree in 𝑎 and 𝑎∗. We simplify the formula at

the last step.

Throughout the proof, whenever a product∏𝑖 𝑎#𝑖 (𝑒𝑘𝑖 ) appears in a formula, it is ordered with the term

for 𝑖 + 1 to the right of the term for 𝑖 .

Step 1: the asymptotic state is even. Since the dynamics (𝜏 𝑡 )𝑡∈𝚴 preserves the total number of particles,

𝜏 maps monomials of odd degree in 𝑎 and 𝑎∗ to a linear combination of monomials of odd degree

in 𝑎, 𝑎∗, 𝑏 and 𝑏 ∗. Then, each monomial is either of odd degree in 𝑎 and 𝑎∗ or of odd degree in 𝑏
and 𝑏 ∗. Since both 𝜌 and 𝜔𝛴 are even states, this implies

(𝜔𝛴 ⊗ 𝜌)(𝜏 𝑡 (
2𝛮+1
∏
𝑖=1

𝑎#𝑖 (𝜓𝑖 ))) = 0.
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and thus

𝜌∞(
2𝛮+1
∏
𝑖=1

𝑎#𝑖 (𝜓𝑖 )) = lim𝑡→∞(𝜔𝛴 ⊗ 𝜌)(𝜏 𝑡 (
2𝛮+1
∏
𝑖=1

𝑎#𝑖 (𝜓𝑖 ))) = 0. (5.12)

for any𝑚 ∈ 𝚴 and any choices of 𝜓1, … , 𝜓2𝛮+1 ∈ ℋ𝒮.

Step 2: the asymptotic time evolution of monomials of even degree. Using the appropriate formula from

Proposition 5.4.2 and the fact that 𝜏 𝑡 is a morphism, we have

𝜏 𝑡 (
2𝛮
∏
𝑖=1

𝑎#𝑖 (𝜓𝑖 )) =
2𝛮
∏
𝑖=1

(
𝑡
∑
𝑡𝑖=1

sin𝛼 𝑏 #𝑖 ((𝑆 ⊗ 𝑈 )𝑡𝑖−𝑡 𝜄𝑊 ∗𝛭 ∗𝑡𝑖−1𝜓𝑖 ) + 𝛰(𝑡‖𝛭 𝑡 ‖)). (5.13)

Step 3: the asymptotic state is a gauge-invariant quasi-free state. From the previous step, we have

𝜌∞(
2𝛮
∏
𝑖=1

𝑎#𝑖 (𝜓𝑖 )) = lim𝑡→∞(𝜔𝛴 ⊗ 𝜌)(𝜏 𝑡 (
2𝛮
∏
𝑖=1

𝑎#𝑖 (𝜓𝑖 )))

= lim𝑡→∞𝜔𝛴 (
2𝛮
∏
𝑖=1

𝑡
∑
𝑡𝑖=1

sin𝛼 𝑏 #𝑖 ((𝑆 ⊗ 𝑈 )𝑡𝑖−𝑡 𝜄𝑊 ∗𝛭 ∗𝑡𝑖−1𝜓𝑖 )).

Using the definition of 𝜔𝛴 as a gauge-invariant quasi-free state with density 𝛴 ,

𝜌∞(𝑎∗(𝜓1) ⋯ 𝑎∗(𝜓𝛮 )𝑎(𝜓 ′
𝛮 ) ⋯ 𝑎(𝜓 ′

1))

= lim𝑡→∞ det [
𝑡
∑
𝑠 ′,𝑡 ′=1

sin2 𝛼 ⟨(𝑆 ⊗ 𝑈 )𝑡 ′−𝑡 𝜄𝑊 ∗𝛭 ∗𝑡 ′−1𝜓 ′
𝜈 , 𝛴 (𝑆 ⊗ 𝑈 )𝑠 ′−𝑡 𝜄𝑊 ∗𝛭 ∗𝑠 ′−1𝜓𝜇⟩]

𝛮

𝜇,𝜈=1
.

Using [𝛴 , 𝑆 ∗ ⊗ 𝑈 ∗] = 0, and omitting the details of the indexation of the matrix considered for the

determinant,

𝜌∞(𝑎∗(𝜓1) ⋯ 𝑎∗(𝜓𝛮 )𝑎(𝜓 ′
𝛮 ) ⋯ 𝑎(𝜓 ′

1))

= lim𝑡→∞det[
𝑡
∑
𝑠 ′,𝑡 ′=1

sin2 𝛼 ⟨𝜓 ′
𝜈 ,𝛭 𝑡 ′−1𝑊 𝜄∗𝛴(𝑆 ⊗ 𝑈 )𝑠 ′−𝑡 ′ 𝜄𝑊 ∗𝛭 ∗𝑠 ′−1𝜓𝜇⟩]𝜇,𝜈

= det [⟨𝜓 ′
𝜈 ,

∞
∑
𝑠 ′,𝑡 ′=1

sin2 𝛼 ⟨𝛿0 ⊗ 𝑣, 𝛴(𝑆 𝑠 ′−𝑡 ′𝛿0 ⊗ 𝑈 𝑠 ′−𝑡 ′𝑣)⟩𝛭 𝑡 ′−1𝑊 𝜄∗𝜄𝑊 ∗𝛭 ∗𝑠 ′−1𝜓𝜇⟩]𝜇,𝜈 .

The fact that

𝜌∞(𝑎∗(𝜓1) ⋯ 𝑎∗(𝜓𝛮 )𝑎(𝜓 ′
𝛮 ′) ⋯ 𝑎(𝜓 ′

1)) = 0

whenever 𝛮 ≠ 𝛮 ′ follows from (5.12) of Step 1 if 𝛮 + 𝛮 ′ is odd, and from (5.13) of Step 2 and

the fact that 𝜔𝛴 is a gauge-invariant quasi-free state if 𝛮 + 𝛮 ′ is even. We conclude that 𝜌∞ ∶ 𝛢 ↦
lim𝑡→∞(𝜔𝛴 ⊗ 𝜌)(𝜏 𝑡 (𝟏 ⊗ 𝛢)) is a gauge-invariant quasi-free state with density

∞
∑
𝑠 ′,𝑡 ′=1

⟨𝛿0 ⊗ 𝑣, 𝛴(𝑆 𝑠 ′−𝑡 ′𝛿0 ⊗ 𝑈 𝑠 ′−𝑡 ′𝑣)⟩𝛭 𝑡 ′−1 sin2 𝛼𝑊 𝛲𝑊 ∗𝛭 ∗𝑠 ′−1.
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Step 4: the alternate formula. By definition, 𝛭 = 𝑊 (𝟏 + (cos𝛼 − 1)𝛲 ). Using the fact that 𝑊 is unitary

and basic trigonometry, we find the identity

sin2 𝛼𝑊 𝛲𝑊 ∗ = 𝟏 −𝛭𝛭 ∗.

The formula (5.10) for 𝛥 given in the statement of the proposition then follows from a telescoping

and reindexing of the summation.

This knowledge of the asymptotic state in the sample 𝒮 allows us to investigate the number of particles

there. We give more details on the particle number at each node 𝜈 of the graph in a more concrete example in

Section 5.5.

Corollary 5.4.4. Under assumptions (i)–(iv), in the limit 𝑡 → ∞, the number of particles in the sample is

distributed as a sum of 𝑑 independent Bernoulli random variables with parameters 𝜆0 , … , 𝜆𝑑−1 ∈ (0, 1) that
are the eigenvalues of the self-adjoint matrix 𝛥 .

Proof. By a standard continuity argument (see e.g. [DFP08, §IV.A]), we need only consider the case 0 < 𝛥 <
𝟏.

By standard results on giqf states (see e.g. [JOPP11, §4.7.3] or [DFP08, §IV.A]), the quasi-free state is

associated to the density matrix

𝜌∞ = det(𝟏 − 𝛥)
𝑑
⨁
𝑝=0

( 𝛥
𝟏 − 𝛥 )

∧𝑝
.

Therefore, the probability of observing 𝑝 particles in the sample is given by

𝚸 (𝑝) = det(𝟏 − 𝛥) tr (( 𝛥
𝟏 − 𝛥 )

∧𝑝
).

Diagonalizing 𝛥 , labeling its eigenvalues 𝜆0 , … , 𝜆𝑑−1 and using cyclicity of the trace yields

𝚸 (𝑝) = (1 − 𝜆0) ⋯ (1 − 𝜆𝑑−1) ∑
𝑘1<⋯<𝑘𝑝

𝜆𝑘1 ⋯𝜆𝑘𝑑
(1 − 𝜆𝑘1) ⋯ (1 − 𝜆𝑘𝑑 )

= ∑
𝑘1<⋯<𝑘𝑝

𝜆𝑘1 ⋯𝜆𝑘𝑑 ∏
𝑗∉{𝑘𝑛}

𝑝
𝑚=1

(1 − 𝜆𝑗 ).

This probability mass function is precisely that of a sum of𝑑 independent Bernoulli random variables (𝛸𝑖 )𝑑𝑖=1
where 𝛸𝑖 ∼ Ber(𝜆𝑖 ), also known as Poisson binomial distribution of parameter (𝜆0 , … , 𝜆𝑑−1).
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5.4.2 Flux observables

Recall that 𝑈 is a unitary on 𝐂𝑚 and {𝜋𝑖}𝑚𝑖=1 is its set of spectral rank-one projectors associated to distinct

eigenvalues {ei𝛾𝑖 }𝑚𝑖=1. The commutation relation

[𝛴 , 𝟏 ⊗ 𝜋𝑖 ] = 0

for each 𝑖 suggest a decomposition of the Hilbert space ℋℰ into𝑚 infinite-dimensional subspaces, in which

we can formally count the number of particles. Lemma 5.2.2 allows us to formally compute the difference

∑
ℓ ∈𝚭

𝜏 (𝑏 ∗(𝛿ℓ ⊗ 𝑥𝑖 )𝑏(𝛿ℓ ⊗ 𝑥𝑖 )) − 𝑏 ∗(𝛿ℓ ⊗ 𝑥𝑖 )𝑏(𝛿ℓ ⊗ 𝑥𝑖 )

in the number of particles in those subspaces between two time steps. The result of this computation yields

a bona fide bounded self-adjoint operator and we define

𝛷𝑖 ∶= (cos𝛼 − 1)2‖𝜋𝑖 𝑣‖2𝑏 ∗(𝛿0 ⊗ 𝑣)𝑏(𝛿0 ⊗ 𝑣)

+ (cos𝛼 − 1)𝑏 ∗(𝛿0 ⊗ 𝜋𝑖 𝑣)𝑏(𝛿0 ⊗ 𝑣) + (cos𝛼 − 1)𝑏 ∗(𝛿0 ⊗ 𝑣)𝑏(𝛿0 ⊗ 𝜋𝑖 𝑣)

+ i sin 𝛼 (cos𝛼 − 1)‖𝜋𝑖 𝑣‖2(𝑏(𝛿0 ⊗ 𝑣)𝑎∗(𝜓∗) − 𝑏 ∗(𝛿0 ⊗ 𝑣)𝑎(𝜓∗))

+ i sin 𝛼 (𝑏(𝛿0 ⊗ 𝜋𝑖 𝑣)𝑎∗(𝜓∗) − 𝑏 ∗(𝛿0 ⊗ 𝜋𝑖 𝑣)𝑎(𝜓∗))

+ sin2 𝛼 ‖𝜋𝑖 𝑣‖2𝑎∗(𝜓∗)𝑎(𝜓∗),

the flux observable into the 𝑖 th subreservoir, ℰ𝑖 , accordingly. Summing over the indices 𝑖 = 1, 2, … ,𝑚, we

get the observable

𝛷ℰ ∶= (cos2 𝛼 − 1)𝑏 ∗(𝛿0 ⊗ 𝑣)𝑏(𝛿0 ⊗ 𝑣) + sin2 𝛼 𝑎∗(𝜓∗)𝑎(𝜓∗)

+ i sin 𝛼 cos𝛼 (𝑏(𝛿0 ⊗ 𝑣)𝑎∗(𝜓∗) − 𝑏 ∗(𝛿0 ⊗ 𝑣)𝑎(𝜓∗)),

for the flux into the whole environment. This is in agreement2 with formula (28) in [HJ17] and with a similar

computation that can be done for the flux out of the sample. Of course, lim𝑡→∞(𝜔𝛴 ⊗ 𝜌)𝜏 𝑡 (𝛷ℰ) = 0.

In order to compute the limiting expectation of the flux operators 𝛷1, … , 𝛷𝑚 , we need the long-time

evolution of the quadratic monomials appearing in the defining formula. The following result follows directly

from Proposition 5.4.2 and the definition of 𝜔𝛴 .

Corollary 5.4.5. Under assumptions (i)–(iv), we have
2up to a change of sign of the coupling constant 𝛼
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1. for all 𝜓1, 𝜓2 ∈ ℋ𝒮,

lim𝑡→∞(𝜔𝛴 ⊗ 𝜌)𝜏 𝑡 (𝑎∗(𝜓1)𝑎(𝜓2))

=
∞
∑
𝑠 ′,𝑡 ′=1

sin2 𝛼 ⟨𝑆 𝑡 ′𝛿0 ⊗ 𝑈 𝑡 ′𝑣 , 𝛴 (𝑆 𝑠 ′𝛿0 ⊗ 𝑈 𝑠 ′𝑣)⟩ ⟨𝜓2,𝛭 𝑡 ′−1𝑊 𝛲𝑊 ∗𝛭 ∗𝑠 ′−1𝜓1⟩ ;

2. for all 𝜑1 ∈ ℋ+
ℰ and 𝜓2 ∈ ℋ𝒮,

lim𝑡→∞(𝜔𝛴 ⊗ 𝜌)𝜏 𝑡 (𝑏 ∗(𝜑1)𝑎(𝜓2)) = −i sin 𝛼
∞
∑
𝑡 ′=1

⟨𝑆 𝑡 ′𝛿0 ⊗ 𝑈 𝑡 ′ , 𝛴𝜑1⟩ ⟨𝜓∗, 𝑊 ∗𝛭 ∗𝑡 ′−1𝜓2⟩;

3. for all 𝜑1, 𝜑2 ∈ ℋ+
ℰ,

lim𝑡→∞(𝜔𝛴 ⊗ 𝜌)𝜏 𝑡 (𝑏 ∗(𝜑1)𝑏(𝜑2)) = ⟨𝜑2, 𝛴𝜑1⟩ .

We may then compute the asymptotics of the flux𝛷𝑖 into the 𝑖 th part of the environment. If the coupling

constant 𝛼 is small enough, we may then determine the sign of this flux by comparing 𝐹𝑖 (1)with the different

𝐹𝑗 (1), 𝑗 ≠ 𝑖 , weighted by the appropriate scalar products; see the remark below.

Proposition 5.4.6. Under assumptions (i)–(iv), we have

lim𝑡→∞(𝜔𝛴 ⊗ 𝜌)𝜏 𝑡 (𝛷𝑖 ) = (2 − 2 cos𝛼)(‖𝜋𝑖 𝑣‖2 ⟨𝛿0 ⊗ 𝑣, 𝛴(𝛿0 ⊗ 𝑣)⟩ − ⟨𝛿0 ⊗ 𝜋𝑖 𝑣 , 𝛴 (𝛿0 ⊗ 𝜋𝑖 𝑣)⟩ )

+ 2Re sin2 𝛼
∞
∑
𝑡 ′=1

⟨𝜓∗,𝛭 𝑡 ′−1𝑊 𝜓∗⟩

(‖𝜋𝑖 𝑣‖2 ⟨𝑆 𝑡
′𝛿0 ⊗ 𝑈 𝑡 ′𝑣 , 𝛴 (𝛿0 ⊗ 𝑣)⟩ − ⟨𝑆 𝑡 ′𝛿0 ⊗ 𝑈 𝑡 ′𝜋𝑖 𝑣 , 𝛴 (𝛿0 ⊗ 𝜋𝑖 𝑣)⟩ ).

Remark 5.4.7. For 𝛼 ≪ 1, we have 2 − 2 cos𝛼 = 𝛼2 + 𝛰(𝛼3) and hence

lim𝛼→0 lim𝑡→∞
(𝜔𝛴 ⊗ 𝜌)𝜏 𝑡 (𝛷𝑖 )

𝛼2 = ‖𝜋𝑖 𝑣‖2(1 − ‖𝜋𝑖 𝑣‖2)2Re ((∑
𝑗≠𝑖

‖𝜋𝑗 𝑣‖2
1−‖𝜋𝑖 𝑣‖2

𝐹𝑗 (1)) − 𝐹𝑖 (1)),

assuming 𝑣 ≠ 𝜋𝑖 𝑣 for each 𝑖 . Therefore, for small enough coupling, the sign of the flux into the 𝑖 th subreservoir
is given by that of

(∑
𝑗≠𝑖

‖𝜋𝑗 𝑣‖2
1−‖𝜋𝑖 𝑣‖2

Re 𝐹𝑗 (1)) − Re 𝐹𝑖 (1),

which is simply the sign of Re 𝐹𝑗 (1) − Re 𝐹𝑖 (1) in the case of two subreservoirs. This gives interpretation of the

number 2Re 𝐹𝑖 (1). Recall that 2𝐹𝑖 (0) is the average particle density in the 𝑖 th sub reservoir.
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Proof of Proposition 5.4.6. From the definition of 𝛷𝑖

lim𝑡→∞(𝜔𝛴 ⊗ 𝜌)𝜏 𝑡 (𝛷𝑖 ) = (cos𝛼 − 1)2‖𝜋𝑖 𝑣‖2 lim𝑡→∞(𝜔𝛴 ⊗ 𝜌)𝜏 𝑡 (𝑏 ∗(𝛿0 ⊗ 𝑣)𝑏(𝛿0 ⊗ 𝑣))

+ (cos𝛼 − 1) lim𝑡→∞(𝜔𝛴 ⊗ 𝜌)𝜏 𝑡 (𝑏 ∗(𝛿0 ⊗ 𝜋𝑖 𝑣)𝑏(𝛿0 ⊗ 𝑣))

+ (cos𝛼 − 1) lim𝑡→∞(𝜔𝛴 ⊗ 𝜌)𝜏 𝑡 (𝑏 ∗(𝛿0 ⊗ 𝑣)𝑏(𝛿0 ⊗ 𝜋𝑖 𝑣))

+ i sin 𝛼 (cos𝛼 − 1)‖𝜋𝑖 𝑣‖2 lim𝑡→∞(𝜔𝛴 ⊗ 𝜌)𝜏 𝑡 (𝑏(𝛿0 ⊗ 𝑣)𝑎∗(𝜓∗))

− i sin 𝛼 (cos𝛼 − 1)‖𝜋𝑖 𝑣‖2 lim𝑡→∞(𝜔𝛴 ⊗ 𝜌)𝜏 𝑡 (𝑏 ∗(𝛿0 ⊗ 𝑣)𝑎(𝜓∗))

+ i sin 𝛼 lim𝑡→∞(𝜔𝛴 ⊗ 𝜌)𝜏 𝑡 (𝑏(𝛿0 ⊗ 𝜋𝑖 𝑣)𝑎∗(𝜓∗))

− i sin 𝛼 lim𝑡→∞(𝜔𝛴 ⊗ 𝜌)𝜏 𝑡 (𝑏 ∗(𝛿0 ⊗ 𝜋𝑖 𝑣)𝑎(𝜓∗))

+ sin2 𝛼 ‖𝜋𝑖 𝑣‖2 lim𝑡→∞(𝜔𝛴 ⊗ 𝜌)𝜏 𝑡 (𝑎∗(𝜓∗)𝑎(𝜓∗)).

Using Corollary 5.4.5 for each term gives

lim𝑡→∞(𝜔𝛴 ⊗ 𝜌)𝜏 𝑡 (𝛷𝑖 )

= (cos𝛼 − 1)2‖𝜋𝑖 𝑣‖2 ⟨𝛿0 ⊗ 𝑣, 𝛴(𝛿0 ⊗ 𝑣)⟩ + 2(cos𝛼 − 1)Re ⟨𝛿0 ⊗ 𝑣, 𝛴(𝛿0 ⊗ 𝜋𝑖 𝑣)⟩

− 2 sin2 𝛼 (cos𝛼 − 1)‖𝜋𝑖 𝑣‖2 Re
∞
∑
𝑡 ′=1

⟨𝜓∗, 𝑊 ∗𝛭 ∗𝑡 ′−1𝜓∗⟩ ⟨𝑆 𝑡
′𝛿0 ⊗ 𝑈 𝑡 ′𝑣 , 𝛴 (𝛿0 ⊗ 𝑣)⟩

− 2 sin2 𝛼 Re
∞
∑
𝑡 ′=1

⟨𝜓∗, 𝑊 ∗𝛭 ∗𝑡 ′−1𝜓∗⟩ ⟨𝑆 𝑡
′𝛿0 ⊗ 𝑈 𝑡 ′𝑣 , 𝛴 (𝛿0 ⊗ 𝜋𝑖 𝑣)⟩

+ sin4 𝛼 ‖𝜋𝑖 𝑣‖2
∞
∑
𝑠 ′,𝑡 ′=1

⟨𝛿0 ⊗ 𝑣, 𝛴(𝑆 𝑠 ′−𝑡 ′𝛿0 ⊗ 𝑈 𝑠 ′−𝑡 ′𝑣)⟩ ⟨𝜓∗,𝛭 𝑡 ′−1𝑊 𝜄∗𝜄𝑊 ∗𝛭 ∗𝑠 ′−1𝜓∗⟩ .

Using the commutation relation [𝛴 , 𝟏 ⊗ 𝜋𝑖 ] = 0, we have

lim𝑡→∞(𝜔𝛴 ⊗ 𝜌)𝜏 𝑡 (𝛷𝑖 )

= (cos𝛼 − 1)2‖𝜋𝑖 𝑣‖2 ⟨𝛿0 ⊗ 𝑣, 𝛴(𝛿0 ⊗ 𝑣)⟩ + 2(cos𝛼 − 1) ⟨𝛿0 ⊗ 𝜋𝑖 𝑣 , 𝛴 (𝛿0 ⊗ 𝜋𝑖 𝑣)⟩

− 2 sin2 𝛼 (cos𝛼 − 1)‖𝜋𝑖 𝑣‖2 Re
∞
∑
𝑡 ′=1

⟨𝜓∗,𝛭 𝑡 ′−1𝑊 𝜓∗⟩ ⟨𝑆 𝑡
′𝛿0 ⊗ 𝑈 𝑡 ′𝑣 , 𝛴 (𝛿0 ⊗ 𝑣)⟩

− 2 sin2 𝛼 Re
∞
∑
𝑡 ′=1

⟨𝜓∗,𝛭 𝑡 ′−1𝑊 𝜓∗⟩ ⟨𝑆 𝑡
′𝛿0 ⊗ 𝑈 𝑡 ′𝜋𝑖 𝑣 , 𝛴 (𝛿0 ⊗ 𝜋𝑖 𝑣)⟩

+ sin4 𝛼 ‖𝜋𝑖 𝑣‖2
∞
∑
𝑠 ′,𝑡 ′=1

⟨𝛿0 ⊗ 𝑣, 𝛴(𝑆 𝑠 ′−𝑡 ′𝛿0 ⊗ 𝑈 𝑠 ′−𝑡 ′𝑣)⟩ ⟨𝜓∗,𝛭 𝑡 ′−1𝑊 𝛲𝑊 ∗𝛭 ∗𝑠 ′−1𝜓∗⟩ .
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The identity sin2 𝛼𝑊 𝛲𝑊 ∗ = 𝟏 −𝛭𝛭 ∗ then implies

lim𝑡→∞(𝜔𝛴 ⊗ 𝜌)𝜏 𝑡 (𝛷𝑖 )

= (cos𝛼 − 1)2‖𝜋𝑖 𝑣‖2 ⟨𝛿0 ⊗ 𝑣, 𝛴(𝛿0 ⊗ 𝑣)⟩ + 2(cos𝛼 − 1) ⟨𝛿0 ⊗ 𝜋𝑖 𝑣 , 𝛴 (𝛿0 ⊗ 𝜋𝑖 𝑣)⟩

− 2 sin2 𝛼 (cos𝛼 − 1)‖𝜋𝑖 𝑣‖2 Re
∞
∑
𝑡 ′=1

⟨𝜓∗,𝛭 𝑡 ′−1𝑊 𝜓∗⟩ ⟨𝑆 𝑡
′𝛿0 ⊗ 𝑈 𝑡 ′𝑣 , 𝛴 (𝛿0 ⊗ 𝑣)⟩

− 2 sin2 𝛼 Re
∞
∑
𝑡 ′=1

⟨𝜓∗,𝛭 𝑡 ′−1𝑊 𝜓∗⟩ ⟨𝑆 𝑡
′𝛿0 ⊗ 𝑈 𝑡 ′𝜋𝑖 𝑣 , 𝛴 (𝛿0 ⊗ 𝜋𝑖 𝑣)⟩

+ sin2 𝛼 ‖𝜋𝑖 𝑣‖2 ⟨𝛿0 ⊗ 𝑣, 𝛴𝛿0 ⊗ 𝑣)⟩

+ 2 sin2 𝛼 ‖𝜋𝑖 𝑣‖2 Re
∞
∑
𝑡 ′=1

⟨𝑆 𝑡 ′𝛿0 ⊗ 𝑈 𝑡 ′𝑣 , 𝛴 (𝛿0 ⊗ 𝑣)⟩ ⟨𝜓∗,𝛭 𝑡 ′𝜓∗⟩ .

Using the identities sin2 𝛼 + (cos𝛼 − 1)2 = 2 − 2 cos𝛼 and cos𝛼𝑊 𝜓∗ = 𝛭𝜓∗,we conclude

lim𝑡→∞(𝜔𝛴 ⊗ 𝜌)𝜏 𝑡 (𝛷𝑖 )

= −2(cos𝛼 − 1)‖𝜋𝑖 𝑣‖2 ⟨𝛿0 ⊗ 𝑣, 𝛴(𝛿0 ⊗ 𝑣)⟩

+ 2(cos𝛼 − 1) ⟨𝛿0 ⊗ 𝜋𝑖 𝑣 , 𝛴 (𝛿0 ⊗ 𝜋𝑖 𝑣)⟩

+ 2 sin2 𝛼 ‖𝜋𝑖 𝑣‖2 Re
∞
∑
𝑡 ′=1

⟨𝜓∗,𝛭 𝑡 ′−1𝑊 𝜓∗⟩ ⟨𝑆 𝑡
′𝛿0 ⊗ 𝑈 𝑡 ′𝑣 , 𝛴 (𝛿0 ⊗ 𝑣)⟩

− 2 sin2 𝛼 Re
∞
∑
𝑡 ′=1

⟨𝜓∗,𝛭 𝑡 ′−1𝑊 𝜓∗⟩ ⟨𝑆 𝑡
′𝛿0 ⊗ 𝑈 𝑡 ′𝜋𝑖 𝑣 , 𝛴 (𝛿0 ⊗ 𝜋𝑖 𝑣)⟩ .

5.5 Examples

To give more detailed information on the profile of the particle density on the graph and to give further inter-

pretation of other related quantities, we restrict our attention to simple models in which𝑚 = 1.

5.5.1 Quantum walks on a ring

Consider the first example, the case of spin- 12 quantum walkers on a cycle of 𝑛 vertices. We use the short-

hands 𝑒𝜈 ,± for the vector 𝛿𝜈 ⊗ 𝑒±1 and 𝑛𝜈 for the observable 𝑎∗(𝑒𝜈 ,+)𝑎(𝑒𝜈 ,+) + 𝑎∗(𝑒𝜈 ,−)𝑎(𝑒𝜈 ,−). Under the

hypotheses of our results, the particle density at the vertex 𝜈 ,

𝑝𝑡 (𝜈 ) ∶= (𝜔𝛴 ⊗ 𝜌)𝜏 𝑡 (𝑛𝜈 ),
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converges to

𝜌∞(𝑛𝜈 ) = ⟨𝑒𝜈 ,+, 𝛥𝑒𝜈 ,+⟩ + ⟨𝑒𝜈 ,−, 𝛥𝑒𝜈 ,−⟩

as 𝑡 → ∞. We refer to the function of the node 𝜈 defined by this limit as the profile 𝑝 .

Note that the block structure of 𝛭 implies ⟨𝑒𝜈 ,±,𝛭 2𝑗+1𝑒𝜈 ,±⟩ = 0 for each natural number 𝑗 . Therefore,

the asymptotic profile 𝑝 of the particle density in the sample is independent of the odd coefficients in the

series (5.7) describing the symbol 𝛴 (the initial state in the reservoir) via (5.8).

We can also consider the position correlations

𝐶𝑡 (𝜈 , 𝜐) = (𝜔𝛴 ⊗ 𝜌)(𝜏 𝑡 (𝑛𝜈𝑛𝜐 )) − (𝜔𝛴 ⊗ 𝜌)(𝜏 𝑡 (𝑛𝜈 ))(𝜔𝛴 ⊗ 𝜌)(𝜏 𝑡 (𝑛𝜐 )).

In the large time limit, a standard computation shows

lim𝑡→∞𝐶𝑡 (𝜈 , 𝜐) = 𝜌∞(𝑛𝜈𝑛𝜐 ) − 𝜌∞(𝑛𝜈 )𝜌∞(𝑛𝜐 )

= − ∑
𝜏𝜈 ,𝜏𝜐∈{+,−}

| ⟨𝑒𝜈 ,𝜏𝜈 , 𝛥𝑒𝜐 ,𝜏𝜐 ⟩ |
2

for 𝜈 ≠ 𝜐 . Note the definite sign.

Example 5.5.1. Consider the case where each coin unitary is a rotation matrix of angle 𝜃𝜈 ∉ 𝜋
2𝚭, i.e. 𝐶𝜈 =

( cos 𝜃𝜈 − sin 𝜃𝜈
sin 𝜃𝜈 cos 𝜃𝜈 ). If the series (5.7) terminates after the quadratic term (ℓ = 2), we can compute explicitly

𝑝(𝜈 ) =
⎧

⎨
⎩

2𝐹 (0) − Re 𝐹 (2)(0)(cos𝛼 sin 𝜃𝑛 sin 𝜃1 + sin 𝜃1 sin 𝜃2) 1 = 𝜈

2𝐹 (0) − Re 𝐹 (2)(0)(sin 𝜃𝜈 −1 sin 𝜃𝜈 + sin 𝜃𝜈 sin 𝜃𝜈 +1) 1 < 𝜈 < 𝑛

2𝐹 (0) − Re 𝐹 (2)(0)(sin 𝜃𝑛−1 sin 𝜃𝑛 + cos𝛼 sin 𝜃𝑛 sin 𝜃1) 𝜈 = 𝑛

.

In the limit 𝛼 → 0, we simply get

lim𝛼→0 𝑝(𝜈 ) = 2𝐹 (0) − (Re 𝐹 (2)(0))(sin 𝜃𝜈 −1 sin 𝜃𝜈 + sin 𝜃𝜈 sin 𝜃𝜈 +1).

5.5.2 A Large sample with disorder

We wish to consider a large ring with the coin matrix 𝐶𝜈 at each vertex 𝜈 independently sampled from a com-

mon distribution. To this end, we consider a probability measure 𝜇 on [0, 2𝜋] and introduce the product

measure (𝜇 × 𝜇)×𝚭 on the product space 𝛺 ∶= ([0, 2𝜋] × [0, 2𝜋])𝚭. We denote elements 𝜔 of 𝛺 in the

form (𝜔+𝜈 , 𝜔−𝜈 )𝜈 ∈𝚭. We also fix real numbers 𝑡 and 𝑟 with 𝑡 𝑟 ≠ 0 and 𝑡 2 + 𝑟 2 = 1.
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Then, according to a random element 𝜔 we set

𝐶𝜈 (𝜔) = (
e−i𝜔+𝜈 𝑡 −e−i𝜔+𝜈 𝑟
e−i𝜔−𝜈 𝑟 e−i𝜔−𝜈 𝑡

)

and the unitary

𝒲(𝜔) = ∑
𝜈 ∈𝚭

∑
𝜏=±1

𝛿𝜈 +𝜏 ⟨𝛿𝜈 , ⋅ ⟩ ⊗ 𝑒𝜏 ⟨𝑒𝜏 , 𝐶𝜈 (𝜔) ⋅ ⟩ .

on ℓ 2(𝚭)⊗𝐂2. This is the form of quantum walk discussed in [JM10] (also see [Joy04, ASW11]); it arises as

the general form (up to unitary equivalence) of a disordered quantum walk on 𝚭 where the quantum ampli-

tudes of the transitions the right and to the left are independent random variables and the quantum transition

probabilities between neighbouring sites are deterministic and independent of the site.

Note that

(𝑆𝒮 ⊗ 𝟏)𝒲(𝜔)(𝑆 ∗𝒮 ⊗ 𝟏) = 𝒲(𝜙𝜔) (5.14)

where 𝜙 is the shift (𝜔+𝜈 , 𝜔−𝜈 )𝜈 ∈𝚭 ↦ (𝜔+𝜈+1, 𝜔−𝜈+1)𝜈 ∈𝚭 on𝛺 and 𝑆 ∗𝒮 is the periodic shift on 𝐂𝑛 .

The corresponding walk on a ring of 𝑛 sites has one-particle dynamics prescribed by the unitary

𝑊 (𝑛)(𝜔) = 𝛿𝑛−1 ⟨𝛿0 , ⋅ ⟩ 𝑒−1 ⟨𝑒−1, 𝐶0(𝜔) ⋅ ⟩ + 𝛿1 ⟨𝛿0 , ⋅ ⟩ 𝑒+1 ⟨𝑒+1, 𝐶0(𝜔) ⋅ ⟩

+
𝑛−2
∑
𝜈 =1

∑
𝜏=±1

𝛿𝜈 +𝜏 ⟨𝛿𝜈 , ⋅ ⟩ ⊗ 𝑒𝜏 ⟨𝑒𝜏 , 𝐶𝜈 (𝜔) ⋅ ⟩

+ 𝛿𝑛−2 ⟨𝛿𝑛−1, ⋅ ⟩ 𝑒−1 ⟨𝑒−1, 𝐶𝑛−1(𝜔) ⋅ ⟩

+ 𝛿0 ⟨𝛿𝑛−1, ⋅ ⟩ 𝑒+1 ⟨𝑒+1, 𝐶𝑛−1(𝜔) ⋅ ⟩ .

on ℓ 2({0, 1, … , 𝑛 − 1}) ⊗ 𝐂2. If we chose the state 𝜓∗ = 𝛿0 ⊗ 𝑒−1 for the coupling with the environ-

ment ℰ, we have to consider the random contraction 𝛭 (𝑛)(𝜔) defined by 𝛭 (𝑛) = (𝟏 + (cos𝛼 − 1)(𝛿0 ⊗
𝑒−1) ⟨𝛿0 ⊗ 𝑒−1, ⋅ ⟩)𝑊 (𝑛).

Let us suppose for simplicity that the support of 𝜇 is a small nondegenerate interval. Let us also sup-

pose that the series (5.7) terminates after finitely many terms. Adapting slightly the arguments of [Joy04]

and [ASW11], we see that since 𝒲 is a band unitary matrix satisfying (5.14) and since 𝛭 (𝑛) is a rank-six

perturbation of (𝟏[0,𝑛−1] ⊗ 𝟏)𝒲(𝟏[0,𝑛−1] ⊗ 𝟏), it follows from Birkhoff’s ergodic theorem that

lim𝑛→∞
1
2𝑛 tr(𝑓 (𝛭 (𝑛)(𝜔))) = lim𝑛→∞

1
2𝑛 tr((𝟏[0,𝑛−1] ⊗ 𝟏)𝑓 (𝒲(𝜔))(𝟏[0,𝑛−1] ⊗ 𝟏))
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for any polynomial 𝑓 and for 𝜇×𝚭-almost all 𝜔 ∈ 𝛺. The right-hand side is usually written as the integral
ˆ
𝐒1
𝑓 (ei𝜃 ) d𝑘(𝜃 )

of 𝑓 against the density of state 𝑘 for 𝒲, defined through the Riesz–Markov representation theorem and

which is an almost sure quantity in the sense that it is the same for 𝜇×𝚭-almost all 𝜔 ∈ 𝛺. In particular, this

gives us, for large 𝑛, an approximation of the asymptotic (in time) averaged (over the vertices of the graph)

particle number density:

lim𝑡→∞
1
𝑛
𝑛−1
∑
𝜈 =0

𝑝𝑡 (𝜈 ) =
1
𝑛 tr(2Re 𝐹 (𝛭 (𝑛))) = 2

ˆ
𝐒1
2Re 𝐹 (ei𝜃 ) d𝑘(𝜃 ) + 𝑜(1)

as 𝑛 → ∞.

The techniques of [Joy04, ABJ15] give us detailed information on the support of the density of states 𝑘
for 𝒲. Indeed, the spectrum of the operator for 𝜔 identically 0 is made of the two bands

𝛬± = {𝑥 ± i√1 − 𝑥2 ∶ 𝑥 ∈ [−|𝑡|, |𝑡 |]}.

Hence, a standard perturbation argument yields that for 𝜇 supported on a small enough interval,

sp(𝒲(𝜔)) ⊆ ( ⋃
𝜃∈supp𝜇

ei𝜃𝛬+) ∪ ( ⋃
𝜃∈supp𝜇

ei𝜃𝛬−)

almost surely.

Therefore, by tuning 𝑡 and 𝜇 and taking 𝑛 large enough, one can bring the asymptotic average density

lim𝑡→∞
1
𝑛 ∑𝑛−1

𝜈=0 𝑝𝑡 (𝜈 ) arbitrarily close to any value in the essential range of the function𝐒1 ∋ 𝑧 ↦ 2Re 𝐹 (𝑧) ∈
𝐑.

5.A Comments on the statistics

Following [HJ17], we have made the choice of considering different species of fermions for the sample 𝒮 and

the environment ℰ. Considering the same species for both components of the system would have amounted

to imposing the anticommutation relation {𝑎#(𝜓 ), �̃� (𝜑)} = 0 for all 𝜓 ∈ ℋ𝒮 and 𝜑 ∈ ℋℰ instead of

the commutation relation [𝑎#(𝜓 ), 𝑏 (𝜑)] = 0. This is realized on the Fock space Γ−(ℋℰ) ⊗ Γ−(ℋ𝒮) by

setting �̃� (𝜑) ∶= 𝑏(𝜑) ⊗ (−1)dΓ(𝟏). In this case, one finds with the same techniques formulae such as

�̃�∗
𝛼𝑎∗(𝜓 )�̃�𝛼 = 𝑎∗((𝟏 + (cos𝛼 − 1)𝛲 )𝜓 ) + i sin 𝛼 �̃� ∗(𝜄𝜓 ),
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leading to the same formulae as in Lemma 5.2.2. Therefore, the asymptotics of the state in the sample 𝒮 and

the fluxes are the same.

With this choice of statistics, one may alternatively view �̃�𝛼 as arising from the second quantization of a

one-body operator on ℋℰ ⊕ℋ𝒮:

�̃�𝛼 = 𝒰𝛤 (𝟏 + (cos𝛼 − 1)(𝜄∗𝜄 + 𝜄𝜄∗) − i sin 𝛼 (𝜄∗ + 𝜄))𝒰∗,

where 𝒰 ∶ Γ−(ℋℰ ⊕ ℋ𝒮) → Γ−(ℋℰ) ⊗ Γ−(ℋ𝒮) is the usual fermionic exponential map; see for ex-

ample [AJPP06, §5.1]. The dynamics implemented by the unitary Γ ((𝑆 ⊗ 𝑈 ⊕ 𝑊 )e−i𝛼(𝜄+𝜄∗)) gives rise to a

quasi-free dynamics and the corresponding one-particle Møller operator

𝛺+ = s-lim𝑡→∞ (𝑆 ⊗ 𝑈 ⊕𝑊 )𝑡 ((𝑆 ⊗ 𝑈 ⊕𝑊 )e−i𝛼(𝜄+𝜄∗))−𝑡

exists and satisfies

𝛺+(0 ⊕ 𝟏) = i sin 𝛼
∞
∑
𝑡 ′=0

(𝑆 ⊗ 𝑈 )𝑡 ′+1𝜄𝑊 ∗((𝟏 + (cos𝛼 − 1)𝜄∗𝜄𝑊 ∗)𝑡 ′ .

In particular, one quickly recovers

(0 ⊕ 𝟏)𝛺∗
+(𝛴 ⊕ 𝛯)𝛺+(0 ⊕ 𝟏) = 0 ⊕ 𝛥

for all𝛯 ∈ ℬ(ℋ𝒮), showing that — at least when the initial state in the sample is a giqf state associated to a

density 𝛯 invariant for the free dynamics — the limiting state is the same as in the case previously considered.

This reduction to a one-body problem also suggests the same behaviour for Bose statistics.
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Abstract We consider a discrete-time non-Hamiltonian dynamics of a quantum system consisting

of a finite sample locally coupled to several bi-infinite reservoirs of fermions with a transla-

tion symmetry. In this setup, we compute the asymptotic state, mean fluxes of fermions

into the different reservoirs, as well as the mean entropy production rate of the dynamics.

The direction of the mean fluxes is sensitive to the details of the internal dynamics of the

sample.
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6.1 Introduction

6.1.1 Motivation

The mathematical description of the long time dynamics of many-body quantum systems coupled to sev-

eral infinite reservoirs, and of the transport properties of non-equilibrium steady states they give rise to, is

a long standing problem in quantum statistical mechanics, see e.g. [AJP06], [JOPP11]. To achieve a better

understanding of those important conceptual issues, many efforts have been devoted to the construction and

analysis of models in various contexts and regimes. Following Jakšić and Pillet [JP01, JP02], the main objec-

tives for these models considered in the framework of open quantum systems are to establish the validity of

the laws of thermodynamics, to derive the positivity of the entropy production rate and to analyse its fluc-

tuations. It is desirable too to grasp model dependent salient features of the corresponding non-equilibrium

steady states and currents they induce between the reservoirs. See the following papers for a non exhaustive list

of works dedicated to those questions in different contexts and regimes: [Spo78, SL78, DdRM08, JPW14],

[AJPP06, AJPP07, JOPP11], [Rue00, Rue01, AP03, JLP13], [BJM06, BJM14, HJPR17, HJPR18, BJPP18,

And20, BB20], [MMS07b, MMS07a],... In these works, the quantum dynamics of these systems derives from

their Hamiltonians.

The last two decades have seen the emergence of a class of non-Hamiltonian models that proves efficient

in modelling the quantum dynamics of complex systems, namely quantum walks. A quantum walk (QW

for short) arises as a unitary operator defined on a Hilbert space with basis elements associated to the vertices

of an infinite graph, matrix elements coupling vertices of the graph a finite distance away from each other

only. The QW discrete time dynamics implemented by iteration of the unitary operator has finite speed of

propagation, and yields a dynamical system easily amenable to numerical investigation. By contrast to the

models mentioned above, there is no Hamiltonian with natural physical meaning attached to a QW. It was

demonstrated over the years that QW provide useful approximations in various physical contexts and regimes,

see e.g. [CC88, KFC+09, SVA+13, ZKG+10, SAM+19, WM13, TMT20]. Furthermore, QW play an impor-

tant role in quantum computing [AAKV01, Kem03, San08, Por13], and they are also considered a quantum

counterparts of classical random walks [Gud08, Kon08, APSS12]; see also the reviews [VA12, ABJ15].

Given the versatility of QW and the wide range of physical situations they model and claims regarding dif-

ferent notions of quantum transport [KAG12, MNŠJ20], it is natural to investigate their collective dynamical

behaviour within the framework of open quantum systems when considered as indistinguishable quantum
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particles (quantum walkers) interacting with reservoirs. The first steps in this direction were performed in

the work [HJ17] and its generalisation [Raq20]. They analyse the discrete time dynamics of an ensemble of

fermionic QW on a finite sample, exchanging particles with an infinite reservoir of quasifree QW, and estab-

lish a form of return to equilibrium of the system. From a different perspective, these efforts can be viewed

as an extension to discrete-time dynamics of a program which has mainly been carried out in Hamiltonian

continuous-time settings.

Building on [HJ17, Raq20], our aim is twofold. First we generalize the framework to the genuinely out of

equilibrium situation in which the fermionic QW on the finite sample interact with several different quasifree

QW reservoirs. Second, we analyse the onset of a non-equilibrium steady state in the sample and reservoirs,

the development of related particle currents between the reservoirs, and establish strict positivity of the en-

tropy production rate, in keeping with the program above. This closely parallels the work [AJPP07] on a

Hamiltonian continuous-time model called the “electronic black box”.

More precisely, each reservoir consists in noninteracting fermionic QW on a bi-infinite chain, forced to

hop to their left at discrete times. Hence the reservoirs free dynamics is the second quantization of a shift

operator𝑆 , while the free dynamics on the finite sample is the second quantization of an arbitrary one-particle

unitary matrix𝑊 . The interaction between the sample and each reservoir is given at the one-particle level by

a unitary operator exchanging particles at specific sites of the sample and the reservoir, whose intensity is

monitored by some coupling constant 𝛼. The overall discrete dynamics is defined by one step of interaction,

one step of free evolution, one step of interaction, one step of free evolution and so on. Considering an initial

state 𝜌(0) given by a product of quasifree states in each reservoir defined by a translation invariant symbol 𝛵
(two-point function), and an arbitrary (even) state 𝜌S(0) in the sample, we determine the evolved state 𝜌(𝑡)
for all time 𝑡 ∈ 𝚴 .

Under mild assumptions, we prove that 𝜌(𝑡) converges as 𝑡 → ∞ to a quasifree state, irrespective of the

initial state in the sample, which allows us to determine the reduced asymptotic states in the sample and in the

reservoirs. We extend the results of [HJ17, Raq20] to our multi-reservoir setup by showing that the reduced

asymptotic states in the sample is also a quasifree non-equilibrium state whose symbol𝛥∞ is fully parametrized

by 𝛵 , 𝑊 and the coupling terms. Then, we turn to the flux into the different reservoirs and determine the

steady state quantum mechanical expectation value of the flux observables, or QW currents. We establish the

validity of the first law of thermodynamics under very general conditions, and describe the conditions on the

initial state𝜌(0) that induce nontrivial currents between the reservoirs. Assuming𝜌S(0) is quasifree as well and
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considering the entropy production rate 𝜎 (𝑡)defined in terms the relative entropy between the symbols for the

quasifree states at time 0 and 𝑡 , we prove that the asymptotic entropy production rate 𝜎 + = lim𝑡→∞ 𝜎 (𝑡) exists

and we characterize its strict positivity as a function of the initial state 𝛵 of the reservoirs, the dynamics𝑊 in

the sample and the couplings. Finally, we express the asymptotic entropy production rate 𝜎 + in terms of the

asymptotic currents between the reservoirs through the sample.

6.1.2 Illustration

For concreteness, let us illustrate our main results in the case of an environment composed of two reservoirs.

We consider that the Hilbert space of the environment is the fermionic second quantization of the space

ℓ 2(𝚭) ⊗ 𝐂2 with a basis {𝛿𝑙 ∶ 𝑙 ∈ 𝚭} of ℓ 2(𝚭) and a basis {𝜓L, 𝜓R} for 𝐂2. Heuristically ℓ 2(𝚭) ⊗ {𝜓L}
supports the one-particle space a reservoir situated to the left of the sample and ℓ 2(𝚭)⊗{𝜓R} the one-particle

space a reservoir situated to the right of the sample. The Hilbert space of the sample is the fermionic second

quantization of ℋS, a finite-dimensional space, so that the full one-particle space representing the sample and

the environment is ℋtot = ℓ 2(𝚭) ⊗ 𝐂2 ⊕ ℋS. The free evolution of the sample is defined by a fixed one-

particle unitary operator𝑊 on ℋS, while that of the reservoirs is described by the one-particle shift operator

on ℓ 2(𝚭):
𝑆𝛿𝑙 = 𝛿𝑙−1.

To make the sample interact with the environment, we fix two orthonormal vectors 𝜙L and 𝜙R of ℋS, repre-

senting the position of the sample which are in contact respectively with the left and the right reservoir, and

we suppose that walkers in the sample which are in the state 𝜙L [resp. 𝜙R] can jump to the left reservoir [resp.

the right reservoir], at the position indexed by zero in the environment. For a given coupling strength 𝛼, we

describe the interaction by the one-particle unitary operator

ei𝛼((𝛿0⊗𝜓L)𝜙∗L+(𝛿0⊗𝜓R)𝜙∗R+h.c.),

where

(𝛿0 ⊗ 𝜓L)𝜙∗L ∶ 𝜂 ⊗ 𝜓 ⊕ 𝜑 ↦ ⟨𝜙L, 𝜑⟩ 𝛿0 ⊗ 𝜓L ⊕ 0

for all 𝜂 ∈ ℓ 2(𝚭), 𝜓 ∈ 𝐂2, 𝜑 ∈ ℋS, and similarly for the index𝑅. Here “h.c.” stands for hermitian conjugate,

i.e. adjoint. Eventually, each step of the overall evolution is represented by the fermionic second quantization

of the unitary operator

𝔘 = ((𝑆 ⊗ 𝟏) ⊕𝑊 )ei𝛼((𝛿0⊗𝜓L)𝜙∗L+(𝛿0⊗𝜓R)𝜙∗R+h.c.) .
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𝑙 = 0

𝑙 = −1

𝑙 = 1

𝑙 = 2

𝒮

𝐽L

Figure 6.1: The setup we are using to illustrate our results: walkers in a sample 𝒮 consisting of a

cycle with 8 vertices can hop to and from two environments, one on the left and one on the right.

Walkers at sites with a positive index 𝑙 in the environment cannot have interacted with the sample

yet.

Suppose that, at the level of Fock spaces, the left [resp. right] reservoir is initially a quasifree state with transla-

tion invariant symbol that has sufficiently regular Fourier transform 𝑓L [resp. 𝑓R] defined on [0, 2𝜋] and the

sample is initially in an arbitrary even state. Then, under some generic assumptions on 𝑊 , the total system

relaxes to a quasifree state whose zeroth order approximation in 𝛼 depends only on 𝑊 , 𝑓L and 𝑓R and not

on the initial state on the sample. Moreover, a steady current of particles settles across the sample. Assuming

that𝑊 has only simple eigenvalues𝜆1, ..., 𝜆𝑛 with normalized eigenvectors 𝜒1, ..., 𝜒𝑛 we can express the current

into the right reservoir in the limit 𝛼 → 0 as

𝐽R = 𝛼2
𝑛
∑
𝑖=1

| ⟨𝜒𝑖 , 𝜙R⟩ |2| ⟨𝜒𝑖 , 𝜙L⟩ |2
| ⟨𝜒𝑖 , 𝜙R⟩ |2 + | ⟨𝜒𝑖 , 𝜙L⟩ |2

(𝑓L(log𝜆𝑖 ) − 𝑓R(log𝜆𝑖 )) + 𝛰(𝛼3),

while the current 𝐽L into the right reservoir is such that 𝐽L + 𝐽R = 0. If 𝑓L (𝜃 ) > 𝑓R (𝜃 ) for all 𝜃 ∈ 𝐑 then

the current is necessarily directed from the left to the right. However, if the function 𝑓R and 𝑓L cannot be

compared on the unit circle, then we may choose the sign of the current 𝐽R by tuning the eigenvalues of 𝑊 .

This last property occurs when considering for example the one-particle free dynamics 𝑊 of a coined spin- 12
quantum walk on the sample provided by a cycle with an even number 𝑛 of vertices sketched in Figure 6.1.

With a basis {𝑥𝜈 ⊗ 𝑒𝜏 ∶ 𝜈 = 0, 1, … , 𝑛 − 1; 𝜏 = −1, +1} of ℋS = ℓ 2({0, 1, … , 𝑛 − 1}) ⊗𝐂2, an oft-studied
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model for the one-particle dynamics is given by the unitary

𝑊 ∶= 𝑊1𝑊2

where

𝑊1 ∶=
𝑛−1
∑
𝜈 =0

∑
𝜏=±1

𝑥𝜈 +𝜏 ⊗ 𝑒𝜏 ⟨𝑥𝜈 ⊗ 𝑒𝜏 , ⋅ ⟩

is a spin-dependent shift and

𝑊2 ∶=
𝑛−1
∑
𝜈 =0

𝑥𝜈 𝑥∗𝜈 ⊗ 𝐶𝜈

encodes the rotation of a possibly position-dependent coin. In the special case where

𝐶𝜈 = (
ei𝛽 cos𝜑 sin𝜑
− sin𝜑 e−i𝛽 cos𝜑

)

for some real parameters 𝛽, 𝜑 ∈ (0, 12𝜋) independent of 𝜈 , the spectrum of𝑊 is easily shown to be contained

in {ei𝑢 ∶ 𝜑 ≤ ±𝑢 ≤ 𝜋 − 𝜑} and is simple if 𝛽 ∉ (2𝜋/𝑛)𝚭.

Before each step of the free walk, spin-up walkers located at sites 0 or 1
2𝑛 of the ring can be exchanged

with those of the left or the right reservoirs. That means the interaction term above has

𝜙L = 𝑥0 ⊗ 𝑒+1, 𝜙R = 𝑥𝑛/2 ⊗ 𝑒+1.

Moreover, the eigenvectors of𝑊 being explicitly computable, the current into the right reservoir eventu-

ally takes the form

𝐽R = 𝛼2 ∑
𝜆𝑖∈sp𝑊

sin2(2𝜑)| sin𝜑 − 1 + 𝜆𝑖 2|2
4 (𝑓L(log𝜆𝑖 ) − 𝑓R(log𝜆𝑖 )) + 𝛰(𝛼3).

Therefore, if 𝑓L > 𝑓R holds on open neighbourhoods of 𝜋/2 and −𝜋/2, while 𝑓L < 𝑓R on open neighbour-

hoods of 0 and 𝜋 , choosing the parameter 𝜑 small enough, one gets that 𝐽R > 0, while considering i𝑊 instead

of𝑊 yields 𝐽R < 0, for the same reservoirs, at small coupling; see Figure 6.2.

6.1.3 Structure of the paper

The paper is organized as follows: The next section is devoted to the description of our quantum dynamical

system in a fairly general abstract framework. The long time asymptotic state is determined in Section 3,

together with its restrictions to the sample and the reservoirs. Section 4 analyses the properties of the steady
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𝜑

𝐑

1i𝐑

𝜃

𝑓R(𝜃 )

𝑓L(𝜃 )

sp𝑊

Figure 6.2: Still in the setup of Figure 6.1, with 𝜑 = 1
3𝜋 and 𝛽 = 0.1, the spectrum of 𝑊 (on the

left, in red) lies in closed cones of opening 𝜋 − 2𝜑 about the imaginary axis. The corresponding

arguments are values of 𝜃 for which 𝑓L(𝜃 ) > 𝑓R(𝜃 ) (on the right). Multiplying 𝑊 by a phase of i

amounts to a rotation by quarter turn of the spectrum on the left and to a horizontal shift for the

arguments on the right, leading to the opposite inequality.

state currents of particles across the sample, while the study of the entropy production rate is conducted in

Section 5. Eventually, the small coupling regime is analyzed in Section 6, and the paper closes with the proofs

of certain results.

6.2 The setup

6.2.1 The spaces and one-particle dynamics

Let ℋS be a finite-dimensional Hilbert space. Throughout the paper, our terminology implicitly relies on

the assumption that ℋS is the appropriate Hilbert space for the description of a quantum walker on a finite

graph, sometimes referred to as a sample. An evolution for a quantum walker on a slight extension of this

sample could be encoded in a unitary operator 𝛧 on a Hilbert space of the form ℋB ⊕ ℋS where ℋB is the
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Hilbert space associated the extension. With respect to this direct sum decomposition, the blocks of 𝛧 , say

𝛧 = (
𝐶 𝛧BS

𝛧SB 𝛭
) , (6.1)

should satisfy

{
𝐶 ∗𝐶 + 𝛧∗

SB𝛧SB = 𝟏, 𝐶 ∗𝛧BS + 𝛧∗
BS𝛭 = 0,

𝛧∗
BS𝐶 +𝛭 ∗𝛧SB = 0, 𝛧∗

BS𝛧BS +𝛭 ∗𝛭 = 𝟏,
(6.2)

for the identity 𝛧∗𝛧 = 𝟏 to hold (and similarly for 𝛧𝛧∗ = 𝟏). The off-diagonal blocks 𝛧BS and 𝛧SB describe

the coupling between the sample and its extension and the bock𝛭 is thought of as an effective perturbation

of a unitary𝑊 on ℋS.

The Hilbert space

ℋtot ∶= (ℓ 2(𝚭) ⊗ℋB) ⊕ℋS

for some finite-dimensional Hilbert space ℋB is instead suitable for the description of situations where the

sample is interacting with an infinite environment which has a certain translation-invariant structure. Let us

construct a single-particle unitary operator 𝔘 on ℋtot such that powers of 𝔘 can be interpreted as successive

interactions of the type encoded in 𝛧 with different blocks of this infinite environment.

Let (𝛿𝑙 )𝑙∈𝚭 be the canonical basis of ℓ 2(𝚭) and let

𝑆 ∶ ℓ 2(𝚭) → ℓ 2(𝚭)

𝛿𝑙 ↦ 𝛿𝑙−1

be the shift operator and 𝑈 ∶ ℋB → ℋB be an arbitrary unitary operator. We set

𝔘 ∶= (
(𝑆 ⊗ 𝑈 )(𝛲 ⟂0 ⊗ 𝟏 + 𝛲0 ⊗ 𝐶) 𝑆𝛿0 ⊗ 𝑈𝛧BS

𝛿 ∗0 ⊗ 𝛧SB 𝛭
) , (6.3)

on ℋtot where 𝛲0 ∶ ℓ 2(𝚭) → ℓ 2(𝚭) is the orthogonal projector on the span of 𝛿0 and 𝛲 ⟂0 ∶= 𝟏 − 𝛲 ⟂0 . Here,

𝛿0 ∈ ℓ 2(𝚭) is identified with a linear operator from𝐂 to ℓ 2(𝚭), so that e.g. 𝛿0⊗𝛧BS can indeed be considered

as an operator from ℋS ≃ 𝐂 ⊗ ℋS to ℓ 2(𝚭) ⊗ ℋB. The unitary operator 𝔘 is quite natural to consider:

it acts as the unitary operator 𝛧 on the space {𝛿0} ⊗ ℋB ⊕ ℋS ≃ ℋB ⊕ ℋS and then as the free evolution

𝑆 ⊗ 𝑈 on ℓ 2(𝚭) ⊗ℋB; see Section 6.6 for the discussion of the explicit link with the Introduction.

We make the following assumptions on the effective dynamics in the sample which was previously dis-

cussed in [HJ17, Raq20] in important examples.

Assumption (Sp) The spectrum of𝛭 is contained in the interior of the unit disk.
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6.2.2 The initial state in Fock space

To describe the evolution of a varying number of fermionic walkers in the system we consider observables in

the canonical anticommutation algebra CAR(ℋtot) represented on the fermionic Fock space Γ−(ℋtot).
The fermionic Fock space space Γ−(ℋtot) is unitarily equivalent to the tensor product Γ−(ℓ 2(𝚭)⊗ℋB)⊗

Γ−(ℋS) of Fock spaces through a map E such that

E𝑎∗(𝑣 ⊕ 𝑤)E−1 = 𝑎∗(𝑣) ⊗ 𝟏 + (−1)dΓ(𝟏) ⊗ 𝑎∗(𝑤)

for all 𝑣 ∈ ℓ 2(𝚭) ⊗ ℋB and 𝑤 ∈ ℋS. This map associates quasifree states on CAR(ℋtot) with a symbol of

the form 𝛵 ⊕ 𝛥 for some suitable 𝛵 ∶ ℓ 2(𝚭)⊗ℋB → ℓ 2(𝚭)⊗ℋB and 𝛥 ∶ ℋS → ℋS with the product of

the corresponding quasifree states on CAR(ℓ 2(𝚭) ⊗ ℋB) and CAR(ℋS) respectively. We refer the reader

to [AJPP06, §5.1,6.3] for a more thorough discussion.

We recall that 𝜔𝛵 is a gauge-invariant quasifree state on CAR(ℓ 2(𝚭) ⊗ℋB)with symbol 0 ≤ 𝛵 ≤ 𝟏 if

𝜔𝛵 [𝑎∗(𝑣𝑛) ⋯ 𝑎∗(𝑣1)𝑎(𝑢1) ⋯ 𝑎(𝑢𝑚)] = 𝛿𝑛,𝑚 det[⟨𝑢𝑖 , 𝛵 𝑣𝑗 ⟩]

for all choices of 𝑣1, … , 𝑣𝑛 , 𝑢1, … , 𝑣𝑚 ∈ ℓ 2(𝚭) ⊗ ℋB, where 𝑎∗ and 𝑎 are the usual Fock space creation and

annihilation operators — and similarly for other spaces. We refer the reader to [DFP08] for the basic theory

of such states.

We will always make either of the following two assumptions on the initial state of the system, the second

being technically more convenient and allowing simpler expressions for quantities of interest:

Assumption (IC) The initial state of the joint system is of the form

𝜌(0) = E−1(𝜔𝛵 ⊗ 𝜌S)E

where 𝜌S is an even state on the algebra CAR(ℋS) and 𝜔𝛵 is a gauge-invariant quasifree state on the

algebra CAR(ℓ 2(𝚭) ⊗ℋB)with symbol 𝛵 ∶ ℓ 2(𝚭) ⊗ ℋB → ℓ 2(𝚭) ⊗ ℋB, 0 ≤ 𝛵 ≤ 𝟏 such that

[𝛵 , 𝑆 ⊗ 𝑈 ] = 0.

In addition, we assume that

∑
𝑙∈𝚭

|𝑙|‖(𝛿 ∗0 ⊗ 𝟏)𝛵 (𝛿𝑙 ⊗ 𝟏)‖ < ∞.
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Assumption (IC+) The initial state of the joint system is as in (IC) with 𝜌S also quasifree, with a symbol 𝛥 ∶
ℋS → ℋS; equivalently, the initial state is a quasifree state with a density of the form 𝛵 ⊕𝛥 . Moreover,

it is bounded away from 0 and 𝟏 in the sense that there exists 𝜖 > 0 such that 𝜖𝟏 ≤ 𝛵 ≤ (1 − 𝜖)𝟏.

We also suppose that

Assumption (Bl) There exists a family {𝛱𝑘}
𝑛B
𝑘=1 of orthogonal projections summing to the identity on ℋB

such that

[𝑈 ,𝛱𝑘] = 0,

and

[𝛵 , 𝟏 ⊗ 𝛱𝑘] = 0

for each 𝑘 = 1, … , 𝑛B.

Note that Assumption (Bl) technically always holds with 𝑛B = 1 and𝛱1 = 𝟏, but is thought of as a separation

of the environment into 𝑛B different bi-infinite reservoirs of fermions, with their own dynamics, which only

interact through the sample.

In terms of the linear operators

𝛵𝑛,𝑚 ∶= (𝛿 ∗𝑛 ⊗ 𝟏)𝛵 (𝛿𝑚 ⊗ 𝟏) (6.4)

on ℋB, referred to as blocks, the commutation assumption in (IC) becomes the requirement that

𝛵𝑛,𝑚 = 𝑈 −𝑛𝛵0,𝑚−𝑛𝑈 𝑛 . (6.5)

for all 𝑛,𝑚 ∈ 𝚭.

6.2.3 Relation to repeated interaction systems

To clarify the place of our model in the zoo of discrete-time quantum dynamics, we comment on its relation

to repeated interaction systems (ris). This subsection can be skipped on a first reading. Consider the effective

one-step dynamics in the sample

𝛬1(𝜌) ∶= trΓ−(ℓ 2(𝚭)⊗ℋB)[𝛤 (𝔘
∗)(𝜔𝛵 ⊗ 𝜌)𝛤 (𝔘)],
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starting with an initial state as in Assumption (IC+). A straightforward computation making use of the Bo-

golyubov relation shows that 𝛬1(𝜌) is a quasifree state with symbol

𝛥1 = 𝛭𝛥𝛭 ∗ + 𝛧SB𝛵0,0𝛧∗
SB.

Repeatedly applying the map 𝛬1, say 𝑡 times to obtain a quasifree state with symbol

𝛥 𝑡RIS = 𝛭 𝑡𝛥(𝛭 ∗)𝑡 +
𝑡−1
∑
𝑚=0

𝛭𝑚𝛧SB𝛵0,0𝛧∗
SB(𝛭 ∗)𝑚 ,

is an instance of a ris, as noted in the single reservoir setups of [HJ17, Raq20]. One can show that this ris

picture coincides precisely with what happens at the level of the sample in the setup of Subsections 6.2.1

and 6.2.2 if 𝛵𝑛,𝑚 = 0 whenever 𝑛 ≠ 𝑚. For example, compare our setup with 𝛧 = exp[−i𝜏 (𝑘E ⊕ 𝑘S + 𝜆𝑣)]
for some one-particle selfadjoints operators 𝑘E, 𝑘S and 𝑣 and compare the resulting dynamics on Fock space

to the content of Section II of [BJM14] using the exponential law for fermions.

However, in general, the effective dynamics in the sample

𝛬𝑡 (𝜌) ∶= trΓ−(ℓ 2(𝚭)⊗ℋB)[𝛤 (𝔘
∗)𝑡 (𝜔𝛵 ⊗ 𝜌)𝛤 (𝔘)𝑡 ]

need not enjoy the semigroup property𝛬𝑡+𝑡 ′ = 𝛬𝑡 ∘𝛬𝑡 ′ . Indeed, we will see in Remark 6.3.5 below that, under

Assumption (IC+), 𝛬𝑡 (𝜌) is a quasifree state with density

𝛥 𝑡 = 𝛭 𝑡𝛥(𝛭 ∗)𝑡 +
𝑡−1
∑
𝑚=0

𝑡−1
∑
𝑛=0

𝛭𝑚𝛧SB𝛵0,𝑚−𝑛𝑈 𝑛−𝑚𝛧∗
SB(𝛭 ∗)𝑛 .

The difference between𝛥 𝑡RIS obtained in the ris scenario and our general𝛥 𝑡 amounts to the terms with𝑛 ≠ 𝑚
in the latter, which generically do not cancel out. More generally, tracing out at steps that are multiples of a

number 𝜏 ≥ 2 for which 𝛵0,𝑚 = 0 for𝑚 > 𝜏 , a similar computation shows that the dynamics differs from the

original one by terms with no particular structure for cancellation.

On the other hand, the fact that we obtain our dynamics from the second quantization of a one-body

operator imposes a conservation law which rules out certain ris scenarios where nontrivial entropy pro-

duction rates arise from interaction with a single reservoir; see e.g. the discussions surrounding Lemma 6.5

in [HJPR17] and Section 3.4 in [BB20].

6.3 Mixing

We present several results on the large-time behaviour of the system. While explicit formulae using the canon-

ical relations in Fock space have proved to be useful in [HJ17, Raq20], we here focus on a scattering approach
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to the problem. We set

𝑌0 ∶= 𝐶 (6.6)

and

𝑌𝑚 ∶= 𝛧BS𝛭𝑚−1𝛧SB (6.7)

for𝑚 ≥ 1 . Heuristically, 𝑌𝑚 encodes what happens to the wave function of a fermion from a reservoir which

enters the sample, spends𝑚 − 1more time steps there and then exits the sample.

6.3.1 Scattering and the asymptotic state

It is straightforward to check by induction that

𝔘𝑡 − ∑
𝑛≠0,…,𝑡−1

𝛿𝑛−𝑡𝛿 ∗𝑛 ⊗ 𝑈 𝑡 ⊕ 0

= (
∑𝑡−1

𝑙=0∑
𝑡−𝑙−1
𝑚=0 𝛿𝑙−𝑡+𝑚𝛿 ∗𝑙 ⊗ 𝑈 𝑡−𝑙−𝑚𝑌𝑚𝑈 𝑙 ∑𝑡−1

𝑚=0 𝛿−𝑡+𝑚 ⊗ 𝑈 𝑡−𝑚𝛧BS𝛭𝑚

∑𝑡−1
𝑚=0 𝛿 ∗𝑡−𝑚−1 ⊗𝛭𝑚𝛧SB𝑈 𝑡−𝑚−1 𝛭 𝑡

) . (6.8)

for all 𝑡 ≥ 0. As is customary, we investigate the behaviour of 𝔘𝑡 for large 𝑡 through Møller-like operators.

Multiplying (6.8) by (𝑆 ⊗ 𝑈 ⊕ 𝟏)−𝑡 on the right and performing a reindexation to eliminate explicit occur-

rences of 𝑡 in the summand for the double sum, we find

𝔘𝑡 (𝑆 ⊗ 𝑈 ⊕ 𝟏)−𝑡 − ∑
𝑛≠−𝑡 ,…,−1

𝛿𝑛𝛿 ∗𝑛 ⊗ 𝟏 ⊕ 0

= (
∑𝑡−1

𝑚=0∑
𝑡−𝑚
𝑙=1 𝛿−𝑙𝛿 ∗−𝑚−𝑙 ⊗ 𝑈 𝑙𝑌𝑚𝑈 −𝑚−𝑙 ∑𝑡−1

𝑚=0 𝛿−𝑡+𝑚 ⊗ 𝑈 𝑡−𝑚𝛧BS𝛭𝑚

∑𝑡−1
𝑚=0 𝛿 ∗−𝑚−1 ⊗𝛭𝑚𝛧SB𝑈 −𝑚−1 𝛭 𝑡

) (6.9)

for 𝑡 ≥ 0. Multiplying the adjoint of (6.8) by (𝑆 ⊗ 𝑈 ⊕ 𝟏)𝑡 on the right and performing a reindexation, we

find a similar formula for 𝔘−𝑡 (𝑆 ⊗ 𝑈 ⊕ 𝟏)𝑡 with 𝑡 ≥ 0.

Under Assumption (Sp), it is thus easy to see from the matrix elements that the limits

𝛺±
𝑈 ∶= w-lim𝑡→∓∞ 𝔘𝑡 (𝑆 ⊗ 𝑈 ⊕ 𝟏)−𝑡 (6.10)

exist and are given by the explicit expressions

𝛺−
𝑈 = (

∑𝑛≥0 𝛿𝑛𝛿 ∗𝑛 ⊗ 𝟏 0
0 0

) + ∑
𝑚≥0

(
∑𝑙≥1 𝛿−𝑙𝛿 ∗−𝑚−𝑙 ⊗ 𝑈 𝑙𝑌𝑚𝑈 −𝑚−𝑙 0

𝛿 ∗−𝑚−1 ⊗𝛭𝑚𝛧SB𝑈 −𝑚−1 0
) (6.11)
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and

𝛺+
𝑈 = (

∑𝑛′≤−1 𝛿𝑛′𝛿 ∗𝑛′ ⊗ 𝟏 0
0 0

) + ∑
𝑚′≥0

(
∑𝑙 ′≥𝑚′ 𝛿𝑙 ′−𝑚′𝛿 ∗𝑙 ′ ⊗ 𝑈 𝑚′−𝑙 ′𝑌 ∗𝑚′𝑈 𝑙 ′ 0

𝛿 ∗𝑚′ ⊗ (𝛭 ∗)𝑚′𝛧∗
BS𝑈 𝑚′ 0

) . (6.12)

Note that we have not yet projected onto ℓ 2(𝚭) ⊗ ℋB, i.e. the subspace associated to the absolutely contin-

uous spectrum of (𝑆 ⊗ 𝑈 ⊕ 𝟏), but have used the weak operator topology. As expected, strong convergence

holds on the appropriate subspace; the proof of the following proposition concerning 𝛺−
𝑈 is postponed to

Section 6.7. While not needed in what follows, an analogue result holds for𝛺+
𝑈 .

Proposition 6.3.1. Suppose that Assumption (Sp) holds. Then, both

s-lim𝑡→∞ 𝔘𝑡 (𝑆 ⊗ 𝑈 ⊕ 𝟏)−𝑡 (𝟏 ⊗ 𝟏 ⊕ 0) = 𝛺−
𝑈 (𝟏 ⊗ 𝟏 ⊕ 0)

and

s-lim𝑡→∞ (𝔘
𝑡 (𝑆 ⊗ 𝑈 ⊕ 𝟏)−𝑡 )∗ = (𝛺−

𝑈 )∗.

The scattering matrix

𝔜𝑈 ∶= (𝟏 ⊗ 𝟏 ⊕ 0)(𝛺+
𝑈 )∗𝛺−

𝑈 (𝟏 ⊗ 𝟏 ⊕ 0)

on ℓ 2(𝚭) ⊗ ℋB will also frequently appear in the sequel. The following lemma makes its structure more

explicit. A direct proof that 𝔜𝑈 is unitary is given in the next section.

Lemma 6.3.2. Under Assumption (Sp),

𝔜𝑈 = ∑
𝑚≥0

∑
𝑙∈𝚭

𝛿𝑙𝛿 ∗𝑙−𝑚 ⊗ 𝑈 −𝑙𝑌𝑚𝑈 𝑙−𝑚 . (6.13)

Proof. We expand

(𝟏 ⊗ 𝟏 ⊕ 0)(𝛺+
𝑈 )∗𝛺−

𝑈 (𝟏 ⊗ 𝟏 ⊕ 0)

= ∑
𝑚≥0

∑
𝑙≥1

𝛿−𝑙𝛿 ∗−𝑚−𝑙 ⊗ 𝑈 𝑙𝑌𝑚𝑈 −𝑚−𝑙 + ∑
𝑚′≥0

∑
𝑙 ′≥𝑚′

𝛿𝑙 ′𝛿 ∗𝑙 ′−𝑚′ ⊗ 𝑈 −𝑙 ′𝑌𝑚′𝑈 −𝑚′+𝑙 ′

+ ∑
𝑚′≥0

∑
𝑚≥0

𝛿𝑚′𝛿 ∗−𝑚−1 ⊗ 𝑈 −𝑚′𝛧BS𝛭𝑚′𝛭𝑚𝛧SB𝑈 −𝑚−1.

Rewriting the double sum on the last line in terms of 𝑌𝑚″ with𝑚″ = 𝑚 +𝑚′ yields the desired formula.
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We use a subscript 𝑈 on some of the objects introduced in this section because it is at times convenient

to factor out the contribution from the unitary 𝑈 and then consider the special case 𝑈 = 𝟏. For example,

𝛺−
𝑈 = ( ∑

𝑚∈𝚭
𝛲𝑚 ⊗ 𝑈 𝑚 ⊕ 𝟏)

∗
𝛺−
𝟏 (∑

𝑛∈𝚭
𝛲𝑛 ⊗ 𝑈 𝑛 ⊕ 𝟏)

and

𝔜𝑈 = ( ∑
𝑚∈𝚭

𝛲𝑚 ⊗ 𝑈 𝑚)
∗
𝔜𝟏(∑

𝑛∈𝚭
𝛲𝑛 ⊗ 𝑈 𝑛). (6.14)

In view of this factorization, we introduce a modification of 𝛵 which absorbs part of the free dynamics in the

environment:

𝛯 ∶= (∑
𝑛∈𝚭

𝛲𝑛 ⊗ 𝑈 𝑛)𝛵 ( ∑
𝑚∈𝚭

𝛲𝑚 ⊗ 𝑈 𝑚)
∗
, (6.15)

so that

𝛯 = ∑
𝑛,𝑚∈𝚭

𝛿𝑛𝛿 ∗𝑚 ⊗ 𝛯𝑚−𝑛 ,

where

𝛯𝑛 ∶= 𝛵0,𝑛𝑈 −𝑛 .

Note that 𝛯 is selfadjoint and commutes with 𝑆 ⊗ 𝟏 and 𝟏 ⊗ 𝛱𝑘 , 𝑘 = 1, … , 𝑛𝛣 .

Proposition 6.3.3. Under Assumptions (IC) and (Sp), the limit

𝜌(∞)[𝛢] ∶= lim𝑡→∞ 𝜌(0)[𝛤 (𝔘)
−𝑡𝛢𝛤 (𝔘)𝑡 ] (6.16)

exists for all 𝛢 ∈ CAR(ℋtot) and defines a quasifree state with symbol

𝛵 ∞tot ∶= 𝛺−
𝑈 (𝛵 ⊕ 0)(𝛺−

𝑈 )∗. (6.17)

Proof. To prove the proposition it suffices to show that

lim𝑡→∞ 𝜌(0) [𝛤 (𝔘
∗)𝑡 (

𝛮
∏
ℎ=1

𝑎(𝑉ℎ ))
∗
(
𝛮 ′

∏
ℎ ′=1

𝑎(𝑉 ′
ℎ ′))𝛤 (𝔘)𝑡 ] = 𝛿𝛮,𝛮 ′ det[⟨𝑉 ′

ℎ ′ , 𝛵 ∞tot𝑉ℎ ⟩]𝛮ℎ,ℎ ′=1

for an arbitrary choice of𝛮,𝛮 ′ ≥ 0 and 𝑉1, … , 𝑉𝛮 , 𝑉 ′
1 , … , 𝑉 ′

𝛮 ′ ∈ ℋtot. Because 𝛵 commutes with 𝑆 ⊗𝑈 , we

have

𝜌(0)[𝛢] = 𝜌(0)[𝛤 (𝑆 ⊗ 𝑈 ⊕ 𝟏)𝑡𝛢𝛤 (𝑆 ∗ ⊗ 𝑈 ∗ ⊕ 𝟏)𝑡 ]

for all 𝛢 ∈ CAR(ℋtot) and the Bogolyubov relation gives that the identity to be shown is equivalent to

lim𝑡→∞ 𝜌(0) [(
𝛮
∏
ℎ=1

𝑎((𝛺(𝑡 )
𝑈 )∗𝑉ℎ ))

∗ 𝛮 ′

∏
ℎ ′=1

𝑎((𝛺(𝑡 )
𝑈 )∗𝑉 ′

ℎ ′)] = 𝛿𝛮,𝛮 ′ det[⟨𝑉 ′
ℎ ′ , 𝛵 ∞tot𝑉ℎ ⟩]𝛮ℎ,ℎ ′=1, (6.18)
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where

𝛺(𝑡 )
𝑈 ∶= 𝔘𝑡 (𝑆 ⊗ 𝑈 ⊕ 𝟏)−𝑡 .

First note that

lim𝑡→∞ ‖(𝛺
(𝑡 )
𝑈 )∗𝑉ℎ − (𝟏 ⊗ 𝟏 ⊕ 0)(𝛺(𝑡 )

𝑈 )∗𝑉ℎ‖ = 0

for each ℎ = 1, … ,𝛮 by Proposition 6.3.1, and similarly with primes. Hence, by continuity of the fermionic

creation and annihilation operators as functions from (ℋtot, ‖ ⋅ ‖) to (ℬ(Γ−(ℋtot)), ‖ ⋅ ‖), the limit in (6.18)

will exist if and only if the limit

lim𝑡→∞𝜔𝛵 [(
𝛮
∏
ℎ=1

𝑎((𝟏 ⊗ 𝟏 ⊕ 0)(𝛺(𝑡 )
𝑈 )∗𝑉ℎ ))

∗ 𝛮 ′

∏
ℎ ′=1

𝑎((𝟏 ⊗ 𝟏 ⊕ 0)(𝛺(𝑡 )
𝑈 )∗𝑉 ′

ℎ ′)]

exists, in which case they will coincide. In particular, we may as well assume that the initial state 𝜌S(0) is

quasifree with vanishing symbol.

Under this extra assumption, the state 𝜌(𝑡) is quasifree for all 𝑡 ∈ 𝚴 and has symbol 𝛵tot(𝑡):

𝜌(0) [(
𝛮
∏
ℎ=1

𝑎((𝛺(𝑡 )
𝑈 )∗𝑉ℎ ))

∗ 𝛮 ′

∏
ℎ ′=1

𝑎((𝛺(𝑡 )
𝑈 )∗𝑉 ′

ℎ ′)] = 𝛿𝛮,𝛮 ′ det[⟨𝑉 ′
ℎ ′ , 𝛵tot(𝑡)𝑉ℎ ⟩]𝛮ℎ,ℎ ′=1,

where

𝛵tot(𝑡) = 𝛺(𝑡 )
𝑈 (𝛵 ⊕ 0)(𝛺(𝑡 )

𝑈 )∗.

Therefore, we will be done if we can show that 𝛵tot(𝑡) converges weakly to the proposed limit 𝛵 ∞tot. But this is

easily deduced from Proposition 6.3.1.

We are now in a position to get the symbol of the restriction of the state to the sample, i.e.

𝛥∞ ∶= (0 ⊕ 𝟏)𝛵 ∞tot(0 ⊕ 𝟏). (6.19)

Proposition 6.3.4. Suppose that Assumption (Sp) holds and let

𝛹 (𝛸) ∶=
∞
∑
𝑘=0

𝛭𝑘𝛸(𝛭 ∗)𝑘

for 𝛸 ∶ ℋS → ℋS. Then,

𝛥∞ = 𝛹 (𝐺 + 𝐺∗),

where

𝐺 ∶= 1
2𝛧SB𝛯0𝛧∗

SB +
∞
∑
𝑙=1

𝛭 𝑙𝛧SB𝛯𝑙𝛧∗
SB.
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Proof. Since,

(0 ⊕ 𝟏)𝛺−
𝑈 (𝟏 ⊕ 0) =

∞
∑
𝑚=0

𝛿 ∗−𝑚−1 ⊕𝛭𝑚𝛧SB𝑈 −𝑚−1

by Proposition 6.3.1, (6.19) gives

𝛥∞ =
∞
∑
𝑚,𝑛=0

𝛭𝑚𝛧SB𝑈 −𝑚−1𝛵−𝑚−1,−𝑛−1𝑈 𝑛+1𝛧∗
SB(𝛭 ∗)𝑛

=
∞
∑
𝑚,𝑛=0

𝛭𝑚𝛧SB𝛯𝑚−𝑛𝛧∗
SB(𝛭 ∗)𝑛

using 𝛵−𝑚−1,−𝑛−1 = 𝑈 𝑚+1𝛯𝑚−𝑛𝑈 −𝑛−1. Splitting the contributions with𝑚−𝑛 > 0,𝑚−𝑛 = 0 and𝑚−𝑛 < 0
and reindexing with 𝑙 = |𝑚 − 𝑛| gives the proposed formula.

Remark 6.3.5. If Assumption (IC+) holds, the symbol of the restriction to the sample at time 𝑡 reads

𝛥 𝑡 = 𝛭 𝑡𝛥(𝛭 ∗)𝑡 +
𝑡−1
∑
𝑚=0

𝑡−1
∑
𝑛=0

𝛭𝑚𝛧SB𝛵0,𝑚−𝑛𝑈 𝑛−𝑚𝛧∗
SB(𝛭 ∗)𝑛 .

We now turn our attention to the block

𝛵 ∞E ∶= (𝟏 ⊗ 𝟏 ⊕ 0)𝛵 ∞tot(𝟏 ⊗ 𝟏 ⊕ 0)

of 𝛵tot corresponding to the environment. As a direct consequence of Proposition 6.3.1, we have the following

corollary.

Corollary 6.3.6. Suppose that Assumption (Sp) holds and let 𝜌(0) be an initial state on Γ−(ℋtot) as in As-

sumption (IC). Then,

𝛿 ∗𝑛 𝛵 ∞E 𝛿𝑚 =
⎧

⎨
⎩

𝑈 −𝑛 (∑𝑙 ,𝑙 ′≥0 𝑌𝑙𝛯𝑙−𝑙 ′+𝑚−𝑛𝑌 ∗𝑙 ′ ) 𝑈 𝑚 𝑛 < 0,𝑚 < 0,

𝑈 −𝑛 (∑𝑙≥0 𝑌𝑙𝛯𝑙+𝑚−𝑛) 𝑈 𝑚 𝑛 < 0,𝑚 ≥ 0,

𝑈 −𝑛𝛯𝑚−𝑛𝑈 𝑚 𝑛 ≥ 0,𝑚 ≥ 0.

(6.20)

In particular, 𝛿 ∗𝑛 𝛵 ∞E 𝛿𝑚 = 𝛿 ∗𝑛 𝛵 𝛿𝑚 for 𝑛,𝑚 ≥ 0.

Note that the asymptotic symbol 𝛵 ∞E needs not commute with 𝑆 ⊗𝑈 ; blocks corresponding to positions

having already interacted (negative indices) are given a different expression than those corresponding to po-

sition which have not yet interacted. This is inherent to our choice of dynamics in the environment, which

prevents the effects of the interaction taking place at the site zero to affect the state at locations that have not

yet been in contact with the sample. We will come back to this point in the next subsection.



206 CHAPTER 6

6.3.2 Fourier representation

Many of the expressions call for a representation in Fourier space that we will take advantage of in what follows.

We introduce the unitary map ℱ ∶ ℓ 2(𝚭) ⊗ ℋB → 𝐿2([0, 2𝜋];ℋB) as follows: for 𝜓 = ∑𝑙∈𝚭 𝛿𝑙 ⊗ 𝜓𝑙 with

∑𝑙∈𝚭 ‖𝜓𝑙‖2 < ∞ and 𝜃 ∈ [0, 2𝜋], we set

(ℱ𝜓 )(𝜃 ) ∶= ∑
𝑙∈𝚭

ei𝑙𝜃𝜓𝑙 .

In practice, we will more often use the notation

�̂� ∶= ℱ𝜓 .

Let𝑅 ∶ ℓ 2(𝚭) ⊗ℋB → ℓ 2(𝚭) ⊗ℋB have the form

𝑅 = ∑
𝑛,𝑚∈𝚭

𝛿𝑛𝛿 ∗𝑚 ⊗𝑅𝑛−𝑚 (6.21)

for some norm-summable sequence (𝑅𝑙 )𝑙∈𝚭 of operators on ℋB — hereafter referred to as Fourier coeffi-

cients —, so that ‖𝑅‖ ≤ ∑𝑙∈𝚭 ‖𝑅𝑙‖. Then,

(ℱ𝑅𝜓 )(𝜃 ) = ((ℱ𝑅ℱ−1)(ℱ𝜓 ))(𝜃 ) = �̂�(𝜃 )�̂� (𝜃 ),

where �̂� ∶ 𝐿2([0, 2𝜋];ℋB) → 𝐿2([0, 2𝜋];ℋB) is the multiplication operator by

�̂�(𝜃 ) ∶= ∑
𝑙∈𝚭

e−i𝑙𝜃𝑅𝑙 .

Also note that 𝑅 is selfadjoint if and only if 𝑅−𝑙 = 𝑅∗
𝑙 for each 𝑙 ∈ 𝚭, in which case �̂�(𝜃 ) is real for all 𝜃 ∈

[0, 2𝜋].
We will make use of this representation for 𝛯 :

�̂� (𝜃 ) = ∑
𝑙∈𝚭

ei𝑙𝜃𝛯𝑙 .

Recall That 𝛯 is of the form (6.21) by construction (under Assumption (IC)), with blocks

𝛯𝑚−𝑛 = 𝑈 𝑛𝛵𝑛,𝑚𝑈 −𝑚 . (6.22)

Then, with

�̂�(𝜃 ) ∶= ∑
𝑙≥0

e−i𝑙𝜃 𝑌𝑙
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(note the sign of i𝑙𝜃 ), we set

�̂�∞(𝜃 ) ∶= �̂�(𝜃 )�̂� (𝜃 )�̂�(𝜃 )∗.

Equivalently, �̂�∞(𝜃 ) is the Fourier representation of an operator 𝛯∞ of the form (6.21) with blocks

𝛯∞
𝑚 = ∑

𝑙 ,𝑙 ′≥0
𝑌𝑙𝛯𝑙−𝑙 ′+𝑚𝑌 ∗𝑙 ′ (6.23)

for all𝑚 ∈ 𝚭. To see this, integrate �̂�(𝜃 )�̂� (𝜃 )�̂�(𝜃 )∗ against 1
2𝜋 e−i𝑚𝜃 to find the 𝑚-th block.

Note that combining (6.20) and (6.23) gives

𝛯∞
𝑚−𝑛 = 𝑈 𝑛𝛿 ∗𝑛 𝛵 ∞E 𝛿𝑚𝑈 −𝑚 (6.24)

if 𝑛 < 0 and 𝑚 < 0. In other words, 𝛯∞ is translation invariant, but as far as blocks that have been affected

by the interaction with the sample, 𝛯∞ is to 𝛵 ∞E as 𝛯 is to 𝛵 ; compare (6.24) to (6.22). Note that 𝛵 ∞E = 𝛵
implies 𝛯∞ = 𝛯 ; the converse implication fails.

Lemma 6.3.7. The operator 𝔜𝑈 is unitary.

Proof. In view of (6.14) and (6.15), it suffices to prove the lemma with 𝑈 = 𝟏. Let

�̂�(𝜃 ) ∶= ∑
𝑙≥0

e−i𝑙𝜃 𝑌𝑙

be as in the previous lemma; it is clear that it suffices to show that �̂�(𝜃 ) for all 𝜃 ∈ 𝐑.

Given the definitions 𝑌0 ∶= 𝐶 and 𝑌𝑙 ∶= 𝛧BS𝛭 𝑙−1𝛧SB for 𝑙 ≥ 1, the operator �̂�(𝜃 ) can be expressed in

terms of resolvents of𝛭 :

�̂�(𝜃 ) = 𝐶 +∑
𝑙≥0

e−i𝜃 e−i𝑙𝜃𝛧BS𝛭 𝑙𝛧SB = 𝐶 − 𝛧BS(𝛭 − ei𝜃 )−1𝛧SB (6.25)

an expression which is well defined for all 𝜃 ∈ 𝐑 under Assumption (Sp). The operators involved correspond

to the block representation (6.1) of the unitary operator𝛧 . Unitarity of �̂� is given by the next lemma and the

present lemma follows.

Lemma 6.3.8. Let 𝛧 be a unitary operator with block decomposition 𝛧 = ( 𝑎 𝑏
𝑐 𝑑 ) with respect to an orthogonal

direct sum decomposition of a finite-dimensional Hilbert space. Then, for all 𝜂 ∈ 𝐑, the bounded operator

𝑠(𝜂) ∶= 𝑎 − 𝑏(𝑑 − ei𝜂)−1𝑐 is a unitary operator on the first subspace in the decomposition.

Proof. Simply expand the expression 𝑠(𝜂)𝑠(𝜂)∗ and make use of the relation satisfied by 𝑎, 𝑏 , 𝑐 and 𝑑 as a

consequence of unitarity of 𝛧 as well as of the identity 𝑑(𝑑 − ei𝜂)−1 = 𝟏 + ei𝜂(𝑑 − ei𝛼)−1.
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6.4 Fluxes of particles

We associate to a bounded selfadjoint operator 𝛸 ∶ ℋB → ℋB the flux

𝛷𝛸 = dΓ(𝔘∗(𝟏 ⊗ 𝛸 ⊕ 0)𝔘 − 𝟏 ⊗ 𝛸 ⊕ 0).

Using the block form of 𝔘, one can check that

𝔘∗(𝟏 ⊗ 𝛸 ⊕ 0)𝔘 − 𝟏 ⊗ 𝛸 ⊕ 0 = (
𝛲0 ⊗ 𝛸 + 𝛲0 ⊗ 𝐶 ∗𝛸𝐶 𝛿0 ⊗ 𝐶 ∗𝛸𝛧BS

𝛿 ∗0 ⊗ 𝛧∗
BS𝛸𝐶 𝛧∗

BS𝛸𝛧BS

)

is trace class. The interest of such quantities is best seen through the case of particle fluxes between the differ-

ent parts of the environment, hereafter referred to as reservoirs, whose definition requires the structure in As-

sumption (Bl). Such a structure is evidently present in the special case discussed in the introduction. Formally,

the (infinite) number of fermions in the reservoir ℓ 2(𝚭)⊗𝛱𝑘ℋB is given by the observable dΓ(𝟏⊗𝛱𝑘 ⊕0),
and the number of fermions that enter this reservoir in one time step is given by the observable

𝛷𝑘 ≡ 𝛷𝛱𝑘
= 𝛤 (𝔘∗) dΓ(𝟏 ⊗ 𝛱𝑘 ⊕ 0)𝛤 (𝔘) − dΓ(𝟏 ⊗ 𝛱𝑘 ⊕ 0)

on Γ−(ℋtot).
Back to the general observable𝛸 , we know from Section 6.3.1 that the asymptotic state of the full system,

denoted 𝜌(∞), is quasifree with symbol 𝛵 ∞tot = 𝛺−
𝑈 (𝛵 ⊕ 0)(𝛺−

𝑈 )∗ if 𝜌(0) satisfies Assumption (IC). Hence,

the steady-state expectation value of the flux 𝛷𝛸 , or current, is given by

𝐽𝛸 ∶= 𝜌(∞)[𝛷𝛸 ]

= trℋtot
[𝛵 ∞tot{𝔘∗(𝟏 ⊗ 𝛸 ⊕ 0)𝔘 − 𝟏 ⊗ 𝛸 ⊕ 0}].

(6.26)

Using the decomposition

𝛵 ∞tot = (
𝛵 ∞E 𝛵 ∞ES

𝛵 ∞SE 𝛥∞
) , (6.27)

we get

𝐽𝛸 = trℓ 2(𝚭)⊗ℋB
(𝛵 ∞E (𝛲0 ⊗ (𝐶𝛸𝐶 ∗ − 𝛸)) + 𝛵 ∞ES(𝛿 ∗0 ⊗ 𝛧∗

BS)𝛸𝐶)

+ trℋS
(𝛵 ∞SE)(𝛿0 ⊗ 𝐶 ∗𝛸𝛧BS + 𝛥∞𝛧∗

BS𝛸𝛧BS).
(6.28)

This expression serves as a basis for obtaining more transparent expressions.
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Proposition 6.4.1. Under Assumptions (IC) and (Sp), if 𝛸 ∶ ℋB → ℋB is a bounded observable, then

𝐽𝛸 = tr [𝛸
ˆ 2𝜋

0
(�̂�(𝜃 )�̂� (𝜃 )�̂�∗(𝜃 ) − �̂� (𝜃 ))d𝜃

2𝜋 ].

Proof sketch. We consider the case𝑈 = 𝟏 to lighten the notation. Use cyclicity of the trace to rewrite the trace

over ℋS as a trace over ℓ 2(𝚭)⊗ℋB. Then, expand the formulae for 𝛵 ∞E , 𝛵 ∞ES, 𝛵 ∞SE and 𝛥∞. The part on ℓ 2(𝚭)
is restricted to the span of 𝛿0 and we are left with a trace on ℋB. Rewrite this trace gathering all occurrences

of 𝑌𝑚 defined by (6.6)–(6.7):

𝐽𝛸 = trℋB
[𝛸( ∑

𝑛,𝑚≥0
𝑌𝑛𝛯𝑛−𝑚𝑌 ∗𝑚 − 𝛯0)]. (6.29)

Conclude using the identity (6.23).

For the currents 𝐽𝑘 ≡ 𝐽𝛱𝑘
associated to the projectors 𝛱𝑘 , 𝑘 = 1, … , 𝑛B, we immediately get the two

following consequences.

Corollary 6.4.2. Under Assumptions (IC), (Sp) and (Bl), we have

𝑛B

∑
𝑘=1

𝐽𝑘 = 0.

More precisely, for each 𝑘 = 1, … , 𝑛B,

𝐽𝑘 = ∑
𝑘′≠𝑘

ˆ
tr[�̂�∗(𝜃 )𝛱𝑘�̂�(𝜃 )𝛱𝑘′�̂� (𝜃 )] − tr[�̂�∗(𝜃 )𝛱𝑘′�̂�(𝜃 )𝛱𝑘�̂� (𝜃 )]

d𝜃
2𝜋

and, with the additional assumption that each {𝛱𝑘}
𝑛B
𝑘=1 has rank one,

𝐽𝑘 =
ˆ

∑
𝑘′≠𝑘

𝐶𝑘,𝑘′(𝜃 )(𝑓𝑘′(𝜃 ) − 𝑓𝑘(𝜃 ))
d𝜃
2𝜋 , (6.30)

where 𝑓𝑘(𝜃 ) ∶= tr[𝛱𝑘�̂� (𝜃 )] and 𝐶𝑘,𝑘′(𝜃 ) ∶= tr[�̂�∗(𝜃 )𝛱𝑘�̂�(𝜃 )𝛱𝑘′] are nonnegative, and satisfy

𝑛B

∑
𝑘′=1

𝐶𝑘,𝑘′(𝜃 ) =
𝑛B

∑
𝑘=1

𝐶𝑘,𝑘′(𝜃 ) = 1.

Remark 6.4.3. Formula (6.30) in the case where each𝛱𝑘 has rank one implies in particular that if one of the

functions 𝑓𝑘 ∶ 𝜃 ↦ tr[𝛱𝑘�̂� (𝜃 )] satisfies 𝑓𝑘(𝜃 ) ≥ 𝑓𝑘′(𝜃 ) for all 𝑘′ ≠ 𝑘, then the flux of particles is necessarily
going out of the 𝑘-th reservoir (i.e. 𝐽𝑘 ≤ 0).
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Remark 6.4.4. Wemay think of the𝐶𝑘′,𝑘(𝜃 ) as some effective conductance at frequency 𝜃 . This is similar to the

Landauer–Büttiker formula presented in [AJPP07] (Corollary 4.2), with the following differences: the context

in [AJPP07] is in continuous time and not in discrete time, and the free dynamics on the reservoir number 𝑘 is

generated by someHamiltonian ℎ𝑘 instead of the shift𝑆 . The flux of some observable 𝑞 is then expressed as a sum
of integrals over spac(ℎ𝑘)∩spac(ℎ𝑘′), where spac(ℎ𝑘′) is the absolutely continuous spectrumof theHamiltonianℎ𝑘′
of another reservoir, while in our expression we integrate over the spectrum of 𝑆 , i.e. the unit circle.

Proof of Corollary 6.4.2. We have 𝐽𝑘 = 𝐽𝛱𝑘
, which by Proposition 6.4.1 gives

𝐽𝑘 =
ˆ 2𝜋

0
tr [𝛱𝑘�̂�(𝜃 )�̂� (𝜃 )�̂�∗(𝜃 ) − 𝛱𝑘�̂� (𝜃 )]

d𝜃
2𝜋 .

Since ∑𝑛𝛣
𝑘′=1𝛱𝑘 = 𝟏 and �̂�(𝜃 ) is unitary for all 𝜃 , we have ∑𝑛𝛣

𝑘=1 𝐽𝑘 = 0. Now by assumption (Bl) we have

𝛯 = ∑𝑛𝛣
𝑘′=1𝛱𝑘′𝛯𝛱𝑘′ = ∑

𝑛𝛣
𝑘′=1𝛱𝑘′𝛯 hence

𝐽𝑘 =
ˆ 2𝜋

0

𝑛𝛣
∑
𝑘′=1

tr [𝛱𝑘�̂�(𝜃 )𝛱𝑘′�̂� (𝜃 )�̂�∗(𝜃 ) − 𝛱𝑘�̂� (𝜃 )]
d𝜃
2𝜋

and by the properties of𝛱𝑘 and �̂�(𝜃 ) we have

tr [𝛱𝑘�̂� (𝜃 )] =
𝑛𝛣
∑
𝑘′=1

tr [�̂�∗(𝜃 )𝛱𝑘′�̂�(𝜃 )𝛱𝑘�̂� (𝜃 )].

This proves that 𝐽𝑘 = ∑𝑘′≠𝑘 𝛢𝑘,𝑘′ − 𝛢𝑘′,𝑘 for 𝛢𝑘′,𝑘 = tr[�̂�∗(𝜃 )𝛱𝑘�̂�(𝜃 )𝛱𝑘′�̂� (𝜃 )]. Moreover, in the case

where the𝛱𝑘 are of rank one, we have

𝛱𝑘�̂� (𝜃 ) = 𝛱𝑘�̂� (𝜃 )𝛱𝑘 = tr[𝛱𝑘�̂� (𝜃 )]𝛱𝑘

and, restoring the summation to all indices,

∑
𝑘′

tr [�̂�∗(𝜃 )𝛱𝑘′�̂�(𝜃 )𝛱𝑘] = tr[𝛱𝑘] = ∑
𝑘′

tr [�̂�(𝜃 )𝛱𝑘′�̂�∗(𝜃 )𝛱𝑘],

which gives the second formula for 𝐽𝑘 and the summation property of 𝐶𝑘,𝑘′(𝜃 ).

6.5 Entropy production

Since nontrivial asymptotic currents can develop between the reservoirs of the system at hand, we expect that

the total system genuinely settles into a nonequilibrium steady state. Another key signature of such states is
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the nontrivial entropy production rate they give rise to. We prove here the existence and strict positivity of

the asymptotic entropy production rate related to the convergence towards the nonequilibrium steady state.

More precisely, we work under Assumption (IC+) and provide a convergence result for the quantity

𝜎 (𝑡) ∶= 𝑡−1(𝑆 [𝛵tot(𝑡)|𝛵tot(0)] + 𝑆[𝟏 − 𝛵tot(𝑡)|𝟏 − 𝛵tot(0)]), (6.31)

where 𝛵tot(𝑡) ∶= 𝛺(𝑡 )
𝑈 (𝛵 ⊕ 𝛥)(𝛺(𝑡 )

𝑈 )∗ and

𝑆[𝛸|𝑌 ] ∶= tr[𝛸(log𝛸 − log 𝑌 )]

for any trace-class operators 𝛸 and 𝑌 with 𝜖 ≤ 𝛸, 𝑌 ≤ 𝟏 − 𝜖 on some common Hilbert space. This definition

is motivated by a formula for the relative entropy between quasifree states which is well established for finite-

dimensional systems [DFP08, §IV.B] and the observation that𝛺(𝑡 )
𝑈 is a finite-rank perturbation of the identity.

It will also be a posteriori justified by the relation to fluxes established in Corollary 6.5.3.

The following theorem states that the entropy production rate converges to the integral of the relative en-

tropies of matrices related to the initial and asymptotic states of the environment introduced in Section 6.3.2.

Its proof is postponed to Section 6.8.

Theorem 6.5.1. Under Assumption (IC+), 𝛵tot(𝑡) − 𝛵tot(0) has finite rank and 𝜎 (𝑡) in (6.31) is well defined

for all 𝑡 ∈ 𝚴 . If, in addition, Assumption (Sp) holds, then the limit

𝜎 + ∶= lim𝑡→∞ 𝜎 (𝑡)

exists and is given by

𝜎 + =
ˆ 2𝜋

0
𝑆[�̂�(𝜃 )�̂� (𝜃 )�̂�∗(𝜃 )∣�̂� (𝜃 )] d𝜃

2𝜋 +
ˆ 2𝜋

0
𝑆[𝟏 − �̂�(𝜃 )�̂� (𝜃 )�̂�∗(𝜃 )∣𝟏 − �̂� (𝜃 )] d𝜃

2𝜋 . (6.32)

Moreover, 𝜎 + ≥ 0 with equality if and only if �̂� (𝜃 ) = �̂�(𝜃 )�̂� (𝜃 )�̂�∗(𝜃 ) for Lebesgue-almost all 𝜃 ∈ [0, 2𝜋].

Remark 6.5.2. Recall that 𝜃 ↦ �̂�(𝜃 )�̂� (𝜃 )�̂�∗(𝜃 ) is the Fourier transform of a translation-invariant opera-

tor 𝛯∞ which, up to the transformation which relates 𝛯 to 𝛵 , shares its blocks with 𝛵 ∞E .

The following reformulation of the result is closer to typical formulations in terms of currents and ther-

modynamic potentials (see for example Equation (17) in [JPW14]), albeit frequency-wise. It can be compared

to Corollary 4.3 of [AJPP07]; see also Remark 6.4.3.
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Corollary 6.5.3. Suppose that Assumptions (IC+), (Sp) and (Bl) hold with the projectors 𝛱1, … ,𝛱𝑛B
having

rank one. Then we have the identity

𝜎 + =
𝑛B

∑
𝑘=1

ˆ 2𝜋

0
𝜇𝑘(𝜃 )�̂�𝑘(𝜃 )

d𝜃
2𝜋 , (6.33)

where

𝜇𝑘(𝜃 ) ∶= log
1 − 𝑓𝑘(𝜃 )
𝑓𝑘(𝜃 )

and �̂�𝑘(𝜃 ) denotes the integrand of the expression (6.30) for the 𝑘-th flux of particles.

Remark 6.5.4. In the case where each 𝑓𝑘 is constant in 𝜃 , the formula simplifies to

𝜎+ =
𝑛B

∑
𝑘=1

𝑛B

∑
𝑘′=1

𝜇𝑘(𝑓𝑘′ − 𝑓𝑘)
ˆ
𝐶𝑘,𝑘′(𝜃 )

d𝜃
2𝜋

=
𝑛B

∑
𝑘=1

𝑛B

∑
𝑘′=1

𝜇𝑘(𝑓𝑘′ − 𝑓𝑘)∑
𝑙≥0

tr[𝑌 ∗𝑙 𝛱𝑘𝑌𝑙𝛱𝑘′].

At this stage, the picture of entropy production is still short of a study of the statistical fluctuations in mea-

surement processes of physical observable properly related to the “information-theoretical” notion of entropy

production; see e.g. [JOPP11, §4.4.5].

6.6 Discussion for small coupling strength

In order to investigate the regime where the interaction between the sample and its environment is weak, we

will consider a special case where the unitary operator 𝛧 on ℋB ⊕ℋS is of the form

𝛧 = (
𝟏 0
0 𝑊

) exp [−i𝛼 (
0 𝛢∗

𝛢 0
)]

for some unitary operator𝑊 ∶ ℋS → ℋS which represents the free evolution on the sample, some bounded

operator 𝛢 ∶ ℋB → ℋS which couples sites of the sample and sites of the environment, and some coupling

strength 𝛼 ∈ 𝐑. Computing the exponential, we obtain

𝐶 = cos(𝛼√𝛢∗𝛢) 𝛧BS = −i𝛢∗ sin(𝛼√𝛢𝛢∗)
√𝛢𝛢∗

𝛧SB = −i𝑊 sin(𝛼√𝛢𝛢∗)
√𝛢𝛢∗

𝛢 𝛭 = 𝑊 cos(𝛼√𝛢𝛢∗).

In this particular setup, we can give a more tractable condition for the Assumption (Sp) to hold true as well

as more explicit formulas as the coupling strength 𝛼 tends to 0.
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Proposition 6.6.1. Let us consider𝛭(𝛼) ∶= 𝑊 cos(𝛼√𝛢𝛢∗) for 𝛼 ∈ 𝐑, and write 𝒱 ⊆ ℋS the range of 𝛢.
Then, there exists 𝛼𝛢 > 0 depending on 𝛢 only such that the following properties are equivalent:

1. The spectrum of𝛭(𝛼) is contained in the interior of the unit disc for all 𝛼 ∈ (−𝛼𝛢 , 𝛼𝛢),

2. The subspace 𝒱 is contained in no strict subspace of ℋS which is stable by𝑊 ,

3. We have

span
𝑖=0,…,dim ℋS

𝑊 𝑖𝒱 = ℋS,

The equivalence between the second and third property is well known and only included because of its

relation to linear control theory, where it is called the Kalman condition.

Proof. Let {𝜇𝑖}𝑖≥0 be the (nonnegative) eigenvalues of √𝛢𝛢∗ and let {𝑝𝑖}𝑖≥0 be the corresponding spectral

projectors. We include 0 as 𝜇0 , possibly at the cost of having 𝑝0 = 0. Choose 𝛼𝛢 > 0 small enough that

|𝛼𝜇𝑖 | < 𝜋 whenever |𝛼| < 𝛼𝛢. Then, with 𝜈𝑖 ∶= cos(𝛼𝜇𝑖 ), we have

cos(𝛼√𝛢𝛢∗) = 𝑝0 +
𝑙
∑
𝑖=1

𝜈𝑖𝑝𝑖 .

Note that 𝑝0 is the orthogonal projection onto the kernel of √𝛢𝛢∗, which coincides with the orthogonal

complement of 𝒱.

If the first property is not satisfied, then there exists a normalized eigenvector𝜙 of𝛭(𝛼)with eigenvalue𝜆
with |𝜆| ≥ 1 for some 𝛼 ∈ (−𝛼𝛢 , 𝛼𝛢). Then,

|𝜆|2 = ⟨𝛭(𝛼)𝜙,𝛭(𝛼)𝜙⟩ = ⟨𝜙, 𝑝0𝜙⟩ +∑
𝑖≥1

𝜈 2𝑖 ⟨𝜙, 𝑝𝑖𝜙⟩

and since ∑𝑖≥0 ⟨𝜙, 𝑝𝑖𝜙⟩ = 1 this implies that |𝜆|2 = 1, 𝑝0𝜙 = 𝜙 and ∑𝑖≥1 𝑝𝑖𝜙 = 0. Then, 𝜙 is in the

orthogonal complement of 𝒱 and is also an eigenvector of𝑊 since

𝜆𝜙 = 𝛭(𝛼)𝜙 = 𝑊 (𝑝0 +∑
𝑖≥1

𝜈𝑖𝑝𝑖)𝜙 = 𝑊 𝜙.

We conclude that 𝒱 is contained in the orthogonal complement of the span of𝜙 , which is stable by𝑊 since𝜙
is an eigenvector of𝑊 . Thus the second property is not satisfied.

Conversely, if the second property is not satisfied, then there exists an eigenvector 𝜙 of𝑊 in the orthogo-

nal complement of 𝒱. Then, 𝜙 is clearly an eigenvector of 𝛭(𝛼) with eigenvalue on the unit circle for all 𝛼,

which implies in particular that the first property is not satisfied.



214 CHAPTER 6

In order to carry some usual procedures from perturbation theory, we will need a semisimplicity and

regularity assumption on the spectral decompostion of the family of operators𝛭(𝛼) analytic in the coupling

strength 𝛼.

Assumption ( 12Sim) There exists a punctured neighbourhood𝛺 of 0 in𝐂 such that the eigenvalues of𝛭(𝛼)
are semisimple for all 𝛼 ∈ 𝛺 and there is a decomposition

𝛭(𝛼) = ∑
𝑗∈𝛪

𝜆𝑗 (𝛼)𝑄𝑗 (𝛼) (6.34)

with scalar functions 𝜆𝑗 ∶ 𝛺 ↦ 𝐂 and projection-valued functions 𝑄𝑗 ∶ 𝛺 → ℬ(ℋS) which

are analytic for each 𝑗 in a finite set 𝛪 . Moreover, we assume that 0 is a removable singularity of all

functions𝑄𝑗 and 𝜆𝑗 .

Note that 𝑄𝑗 (𝛼) need not be selfadjoint. Also note that 𝑊 = 𝛭(0) may have degenerate eigenvalues

which split as𝛼moves away from 0. With𝜆1, … , 𝜆𝑟 the distinct eigenvalues of𝑊 and 𝑄1, … ,𝑄𝑟 the associated

orthogonal projectors, we may write 𝛪 = ⋃𝑟
𝑖=1 𝛪𝑖 with 𝜆𝑗 (0) = 𝜆𝑖 if and only if 𝑗 ∈ 𝛪𝑖 . Then, 𝑄𝑖 =

∑𝑗∈𝛪𝑖 𝑄𝑗 (0) and {𝜆𝑗 }𝑗∈𝛪𝑖 is called the 𝜆𝑖 -group in the terminology of Kato. The Assumption ( 12Sim) is more

general than the following simplicity assumption, which is already rather generic from a topological point of

view and sometimes easier to verify.

Assumption (Sim) Each eigenvalue 𝜆𝑖 of 𝑊 is simple in the sense that the associated spectral projector 𝑄𝑖

is of the form 𝜒𝑖𝜒∗𝑖 for some unit vector 𝜒𝑖 ∈ ℋS.

One interesting advantage of Assumption ( 12Sim) over (Sim) is that it can be inferred from a simple con-

dition on 𝛢𝛢∗, thanks to the following lemma.

Lemma 6.6.2. If 𝜅−1𝛢𝛢∗ is an orthogonal projection for some nonzero 𝜅 ∈ 𝐑, then Assumption ( 12Sim) is

satisfied.

Proof. Analytically extend 𝛭(𝛼) to the complex plane and consider the set 𝒞 ∶= {𝛼 ∈ 𝐂 ∶ | cos(𝛼𝜅)| = 1}.
Then, 𝛭(𝛼) is unitary for 𝛼 ∈ 𝒞. It can be shown that 𝒞 contains nontrivial curves and hence has at least

one accumulation point. The lemma thus follows from Theorem 1.1 in [Kat95, §II.1.6].

Now that we have clarified our assumptions, we can proceed to give the limiting behaviour of the formula

for the reduced asymptotic symbol in the sample in Proposition 6.3.4 and for the asymptotic currents in

Corollary 6.4.2 as 𝛼 → 0.
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Theorem 6.6.3. Suppose that Assumption (Sp) holds for all 𝛼 ∈ 𝛺 ∩ 𝐑, that Assumptions (IC) and ( 12Sim)

hold. Then, the symbol 𝛥∞𝛼 in Proposition 6.3.4, which depends on the coupling strength 𝛼, admits an expansion

𝛥∞𝛼 =
𝑟
∑
𝑖=1

∑
𝑗 ,𝑗 ′∈𝛪𝑖

2
𝑐𝑗 + 𝑐𝑗 ′

𝑄𝑗 (0)𝛢�̂� (log𝜆𝑖 )𝛢∗𝑄𝑗 ′(0) + 𝛰(𝛼)

where

𝑐𝑗 ∶= tr[𝑄𝑗 (0)𝛢𝛢∗] > 0.

Before we proceed with the proof, let us remark that the appearance of a logarithm is due to the fact that

we have defined our Fourier representation on the interval rather than on the unit circle. By periodicity of �̂�
and the fact that 𝜆𝑖 is on the unit circle, the choice of logarithm is irrelevant.

Proof of Theorem 6.6.3. By Proposition 6.6.1, Assumption (Sp) implies that the image of 𝛢𝛢∗ is contained

in no nontrivial subspace which is stable by 𝑊 . Hence, 𝑐𝑗 ∶= tr[𝑄𝑗 (0)𝛢𝛢∗] > 0 for each 𝑗 . Since, 𝛭(𝛼) =
𝑊 (𝟏 − 1

2𝛼2𝛢𝛢∗) + 𝛰(𝛼4), standard perturbation theory gives

𝑗 ∈ 𝛪𝑖 ⇒ 𝜆𝑗 (𝛼) = 𝜆𝑖 (1 − 1
2𝛼2𝑐𝑗 ) + 𝛰(𝛼4). (6.35)

Claim. The map 𝛹 introduced in Proposition 6.3.4 is such that

lim𝛼→0 𝛼
2𝛹 (𝛸) =

𝑟
∑
𝑖=1

∑
𝑗 ,𝑗 ′∈𝛪𝑖

2
𝑐𝑗 + 𝑐 ′𝑗

𝑄𝑗 (0)𝛸𝑄𝑗 ′(0)

for any linear map 𝛸 on ℋS.

Accepting this claim, we need only note that

𝛧SB = −i𝑊 sin(𝛼√𝛢𝛢∗)
√𝛢𝛢∗

𝛢 = −i𝛼𝑊 𝛢 + 𝛰(𝛼3)

and the summability condition in Assumption (IC) imply that the map𝐺 appearing in Proposition 6.3.4 has

the expansion

𝐺 = 𝛼2(12𝑊 𝛢𝛯0𝛢∗𝑊 ∗ +
∞
∑
𝑘=1

𝑊 𝑘+1𝛢𝛯𝑘𝛢∗𝑊 ∗) + 𝛰(𝛼4)

to conclude the proof.

Proof of Claim. Inserting the spectral decomposition (6.34) of 𝛭 in Assumption ( 12Sim) in the definition

of 𝛹 (𝛸) ∶= ∑∞
𝑚=0𝛭𝑚𝛸(𝛭 ∗)𝑚 yields

𝛹 (𝛸) = ∑
𝑗 ,𝑗 ′∈𝛪

∞
∑
𝑚=0

𝜆𝑗 (𝛼)𝑚𝜆𝑗 ′(𝛼)
𝑚𝑄𝑗 (𝛼)𝛸𝑄𝑗 ′(𝛼)∗

= ∑
𝑗 ,𝑗 ′∈𝛪

1
1 − 𝜆𝑗 (𝛼)𝜆𝑗 ′(𝛼)

𝑄𝑗 (𝛼)𝛸𝑄𝑗 ′(𝛼)∗.
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Since 𝑊 is unitary we have 𝑄𝑗 (0)∗ = 𝑄𝑗 (0) and 𝜆𝑗 ′(0) = 𝜆𝑗 ′(0)−1. If 𝜆𝑗 (0) ≠ 𝜆𝑗 ′(0), the expan-

sion (6.35) gives
1

1 − 𝜆𝑗 (𝛼)𝜆𝑗 ′(𝛼)
= 1
1 − 𝜆𝑗 (0)𝜆𝑗 ′(0)−1

+ 𝛰(𝛼2)

which, multiplied by 𝛼2, vanishes as 𝛼 → 0. This leaves the terms for which 𝜆𝑗 (0) = 𝜆𝑗 ′(0) (i.e.

𝑗 , 𝑗 ′ ∈ 𝛪𝑖 for some 𝑖 ), for which we have

𝜆𝑗 (𝛼)𝜆𝑗 ′(𝛼) = 1 − 1
2𝛼2(𝑐𝑗 + 𝑐𝑗 ′) + 𝛰(𝛼4).

by (6.35). Hence,
𝛼2

1 − 𝜆𝑗 (𝛼)𝜆𝑗 ′(𝛼)
= 1
𝑐𝑗 + 𝑐𝑗 ′

+ 𝛰(𝛼2)

whenever 𝑗 , 𝑗 ′ ∈ 𝛪𝑖 for some common 𝑖 .

And the Claim yields the Proposition.

Proposition 6.6.4. Suppose that Assumption (Sp) for all 𝛼 ∈ 𝛺 ∩ 𝐑 and that Assumptions (IC) and ( 12Sim)

hold. Then, with 𝐽𝑘 as in Corollary 6.4.2 depending on 𝛼, we have

𝐽𝑘 = 𝛼2 tr(𝛱𝑘𝐷) + 𝛰(𝛼3), (6.36)

as𝛺 ∋ 𝛼 → 0, where

𝐷 =
𝑟
∑
ℎ=1

( − 𝛢∗𝑄ℎ𝛢�̂� (log𝜆ℎ ) + ∑
𝑗 ,𝑗 ′∈𝛪ℎ

2
𝑐𝑗 + 𝑐𝑗 ′

𝛢∗𝑄𝑗 (0)𝛢�̂� (log𝜆ℎ )𝛢∗𝑄𝑗 ′(0)𝛢).

Proof. The starting point is the expression (6.29) for 𝐽𝑘 .

𝑌0 = 𝐶 = cos(𝛼√𝛢∗𝛢) = 𝛪 − 𝛼2
2 𝛢

∗𝛢 + 𝛰(𝛼4)

𝑌𝑙 = 𝛧BS𝛭 𝑙−1𝛧SB = −𝛼2𝛢∗𝛭 𝑙−1𝑊 𝛢 + 𝛰(𝛼3‖𝛭 𝑙−1‖),

where 𝛭 𝑙−1 = 𝛭(𝛼)𝑙−1 is such that ‖𝛭(𝛼)𝑙−1‖ is uniformly bounded in 𝑙 > 0 and 𝛼 ∈ 𝛺. Thus, using

Equation (6.29) we have

𝐽𝑘 = trℋB
[𝛱𝑘( −

𝛼2
2 (𝛢

∗𝛢𝛯0 + 𝛯0𝛢∗𝛢)

+
+∞
∑
𝑙=1

𝑌𝑙𝛯𝑙𝐶 + 𝐶
+∞
∑
𝑙=1

𝛯−𝑙𝑌 ∗𝑙 + ∑
𝑙 ,𝑙 ′>0

𝑌𝑙𝛯𝑙−𝑙 ′𝑌 ∗𝑙 ′ )] + 𝛰(𝛼4).
(6.37)
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Let us estimate the first sum, making use of Assumptions (IC) and ( 12Sim)

+∞
∑
𝑙=1

𝑌𝑙𝛯𝑙𝐶 = −𝛼2
+∞
∑
𝑙=1

∑
𝑗∈𝛪

𝛢∗𝑄𝑗 (𝛼)𝑊 𝛢𝜆𝑗 (𝛼)𝑙−1𝛯𝑙 + 𝛰(𝛼3)

= −𝛼2∑
𝑗∈𝛪

1
𝜆𝑗 (𝛼)

𝛢∗𝑄𝑗 (𝛼)𝑊 𝛢 (
+∞
∑
𝑙=1

𝜆𝑗 (𝛼)𝑙𝛯𝑙) + 𝛰(𝛼3) .

Thanks to 𝛯 ∗
𝑙 = 𝛯−𝑙 , we have �̂� (𝜃 ) = 𝐹 (𝜃 ) + 𝐹 (𝜃 )∗ = 2Re(𝐹 (𝜃 )), where

𝐹 (𝜃 ) = 1
2𝛯0 +∑𝑙≥1

ei𝑙𝜃𝛯𝑙 .

Now, 1
𝜆𝑗 (𝛼)𝑄𝑗 (𝛼)𝑊 = 𝑄𝑗 (0)+𝛰(𝛼), and 𝐹 is differentiable (since∑𝑘∈𝚭 |𝑘|‖𝛯𝑘‖ < +∞) so 𝐹 (log𝜆𝑗 (𝛼)) =

𝐹 (log𝜆ℎ ) + 𝛰(𝛼) where ℎ is such that 𝑗 ∈ 𝛪ℎ . Taking into account the identity ∑𝑗∈𝛪 𝑄𝑗 (0) = 𝟏, and

repeating the argument for the second sum, we get

𝛼2
2 (𝛢𝛢

∗𝛯0 + 𝛯0𝛢𝛢∗) −
+∞
∑
𝑙=1

𝑌𝑘𝛯𝑘𝐶 − 𝐶
+∞
∑
𝑙=1

𝛯−𝑘𝑌 ∗𝑘

= 𝛼2
𝑟
∑
ℎ=1

2Re(𝛢∗𝑄ℎ𝛢𝐹 (log𝜆ℎ )) + 𝛰(𝛼3).

The only thing left is the double sum. We consider the cases where 𝑙 = 𝑙 ′, 𝑙 < 𝑙 ′ and 𝑙 > 𝑙 ′ separately to

write

∑
𝑙 ,𝑙 ′>0

𝑌𝑙𝛯𝑙−𝑙 ′𝑌 ∗𝑙 ′ =
+∞
∑
𝑙=1

𝑌𝑙𝛯0𝑌 ∗𝑙 + 2Re (∑
𝑑>0

∑
𝑙>0

𝑌𝑙+𝑑𝛯𝑑𝑌 ∗𝑙 ) .

Writing𝛭 = ∑𝑗∈𝛪 𝜆𝑗 (𝛼)𝑄𝑗 (𝛼) and performing the summations as in the proof of Theorem 6.6.3, we obtain

+∞
∑
𝑙=1

𝑌𝑙𝛯0𝑌 ∗𝑙 = ∑
𝑗 ,𝑗 ′∈𝛪

1
𝜆𝑗 (𝛼)𝜆𝑗 ′(𝛼)

1
1 − 𝜆𝑗 (𝛼)𝜆𝑗 ′(𝛼)

𝛧BS𝑄𝑗 (𝛼)𝛧SB𝛯0𝛧∗
SB𝑄𝑗 ′(𝛼)∗𝛧∗

BS .

We also saw in the proof of Theorem 6.6.3 that as 𝛼 → 0

𝛼2

1 − 𝜆𝑗 (𝛼)𝜆𝑗 ′(𝛼)
= {

2
(𝑐𝑗+𝑐𝑗 ′ )

+ 𝛰(𝛼2) if 𝜆𝑗 (0) = 𝜆𝑗 ′(0)

𝛰(𝛼2) if 𝜆𝑗 (0) ≠ 𝜆𝑗 ′(0)

and since 𝛧SB = −𝑖𝛼𝑊 𝛢 + 𝛰(𝛼3) and 𝛧BS = −𝑖𝛼𝛢∗ + 𝛰(𝛼3)we obtain

+∞
∑
𝑙=1

𝑌𝑙𝛯0𝑌 ∗𝑙 = 𝛼2
𝑟
∑
ℎ=1

∑
𝑗 ,𝑗 ′∈𝛪ℎ

2
𝑐𝑗 + 𝑐𝑗 ′

𝛢∗𝑄𝑗 (0)𝛢𝛯0𝛢∗𝑄𝑗 ′(0)𝛢 + 𝛰(𝛼3) .
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Similarly, using the differentiability of 𝑧 ↦ ∑𝑑>0 𝑧𝑑𝛯𝑑 we have

∑
𝑑>0

∑
𝑙>0

𝑌𝑙+𝑑𝛯𝑑𝑌 ∗𝑙 = 𝛼2
𝑟
∑
ℎ=1

∑
𝑗 ,𝑗 ′∈𝛪ℎ

2
𝑐𝑗 + 𝑐𝑗 ′

𝛢∗𝑄𝑗 (0)𝛢 (∑
𝑑>0

𝜆𝑑ℎ𝛯𝑑)𝛢∗𝑄𝑗 ′(0)𝛢 + 𝛰(𝛼3) .

Adding up all the previous estimates we get for the order-𝛼2 term in parentheses in (6.37)
𝑟
∑
ℎ=1

2Re { − 𝛢∗𝑄ℎ𝛢𝐹 (log𝜆ℎ ) + ∑
𝑗 ,𝑗 ′∈𝛪ℎ

2
𝑐𝑗 + 𝑐𝑗 ′

𝛢∗𝑄𝑗 (0)𝛢𝐹 (log𝜆ℎ )𝛢∗𝑄𝑗 ′(0)𝛢}.

Finally, the relation [𝛱𝑘 , 𝐹 (𝜃 )] = 0 and the cyclicity of the trace in the definition of the current proves the

proposition.

For the remainder of the section, we fix

𝛢 =
𝑛B

∑
𝑘=1

𝜙𝑘𝜓 ∗
𝑘 (6.38)

for an orthonormal basis (𝜓𝑘)
𝑛B
𝑘=1 of ℋB and an orthonormal family (𝜙𝑘)

𝑛B
𝑘=1 in ℋS, and assume that

�̂� (𝜃 ) =
𝑛B

∑
𝑘=1

𝑓𝑘(𝜃 )𝜓𝑘𝜓 ∗
𝑘

for some scalar functions 𝑓𝑘 ∶ [0, 2𝜋] → [0, 1]. This corresponds to the situation from the introduction.

Note that 𝛢𝛢∗ being an orthogonal projector on ℋS, Lemma 6.6.2 applies.

The following proposition expresses, to leading order in the coupling parameter 𝛼, the currents as a sum

of the contributions from channels corresponding to the eigenvalues {𝜆𝑖}𝑖∈𝛪 associated to normalized eigen-

vectors {𝜒𝑖}𝑖∈𝛪 of𝑊 , each expressed in terms of a simple star-shaped linear circuit.

Proposition 6.6.5. Suppose thatAssumption (Sp)holds for all𝛼 ∈ 𝛺∩𝐑and thatAssumptions (IC)and (Sim)

are satisfied in the setup described above. Then the symbol 𝛥∞𝛼 admits an expansion

𝛥∞𝛼 =
𝑟
∑
𝑖=1

𝑛B

∑
𝑘=1

| ⟨𝜒𝑖 , 𝜙𝑘⟩ |2
∑𝑛B

𝑘′=1 | ⟨𝜒𝑖 , 𝜙𝑘′⟩ |2
𝑓𝑘(log𝜆𝑖 )𝜒𝑖𝜒∗𝑖 + 𝛰(𝛼)

and the 𝑘-th current admits an expansion

𝐽𝑘 = 𝛼2∑
𝑖∈𝛪

𝐽 (2)𝑘,𝑖 + 𝛰(𝛼
3)

where

𝐽 (2)𝑘,𝑖 =∑
𝑘′

| ⟨𝜙𝑘 , 𝜒𝑖 ⟩ |2| ⟨𝜙𝑘′ , 𝜒𝑖 ⟩ |2
∑𝑛B

𝑘″=1 | ⟨𝜙𝑘″ , 𝜒𝑖 ⟩ |2
(𝑓𝑘′(log𝜆𝑖 ) − 𝑓𝑘(log𝜆𝑖 )). (6.39)

Equivalently, the last equation states that the currents {𝐽 (2)𝑘,𝑖 }
𝑛𝑏
𝑘=1 are the solutions to the classical Kirchhoff prob-

lem in Figure 6.3 with voltage sources {𝑓𝑘(log𝜆𝑖 )}
𝑛B
𝑘=1 and resistors {| ⟨𝜙𝑘 , 𝜒𝑖 ⟩ |

−2}𝑛B
𝑘=1.
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−
+𝑓1(log𝜆𝑖 )

𝐽 (2)1,𝑖

| ⟨𝜙1, 𝜒𝑖 ⟩ |−2

−
+𝑓2(log𝜆𝑖 )

𝐽 (2)2,𝑖

| ⟨𝜙2, 𝜒𝑖 ⟩ |−2

−
+𝑓3(log𝜆𝑖 )

𝐽 (2)3,𝑖

| ⟨𝜙3 , 𝜒𝑖 ⟩ |−2

−
+𝑓𝑛B

(log𝜆𝑖 )

𝐽 (2)𝑛B,𝑖

| ⟨𝜙𝑛B
, 𝜒𝑖 ⟩ |−2

…

…

Figure 6.3: The currents (𝐽 (2)𝑘,𝑖 )
𝑛𝑏
𝑘=1 in Proposition 6.6.5 are the steady-state solutions to a linear cir-

cuit with voltage sources (𝑓𝑘(log𝜆𝑖 ))𝑛𝑏𝑘=1 and resistors (| ⟨𝜙𝑘 , 𝜒𝑖 ⟩ |−2)𝑛B
𝑘=1. Such a circuit is associated

to each eigenvalue 𝜆𝑖 of𝑊 .

The sign of the currents is not completely determined by the properties of the initial state of the different

reservoirs. In keeping with the illustration of the introduction, consider ℋB = 𝐂2, with orthonormal basis

{𝜓1, 𝜓2} and note that if the functions 𝑓1 and 𝑓2 in the decomposition

�̂� (𝜃 ) = 𝑓1(𝜃 )𝜓1𝜓 ∗
1 + 𝑓2(𝜃 )𝜓2𝜓 ∗

2

of 𝛵 ∶ ℓ 2(𝚭) ×𝐂2 → ℓ 2(𝚭) ×𝐂2 are such that neither 𝑓1 ≥ 𝑓2 or 𝑓1 ≤ 𝑓2 everywhere, then we can construct

a unitary one-particle dynamics𝑊→ ∶ ℋS → ℋS in the sample and a bounded operator 𝛢→ ∶ 𝐂2 → ℋS of

the form (6.38) such that 𝐽1 > 0 for all nonzero 𝛼 ∈ 𝛺 sufficiently small, as well as a unitary dynamics 𝑊← ∶
ℋS → ℋS in the sample and a bounded operator 𝛢← ∶ 𝐂2 → ℋS of the form (6.38) such that 𝐽1 < 0
for all nonzero 𝛼 ∈ 𝛺 sufficiently small. Indeed, we can choose 𝑊 to have simple eigenvalues associated

to eigenvectors (𝜒𝑖 )𝑖∈𝛪 such that ⟨𝜒𝑖 , 𝜙𝑘⟩ ≠ 0 for both 𝑘 = 1 and 𝑘 = 2. Then, by (6.39), choosing the

eigenvalues in {𝑧 ∈ 𝐒1 ∶ 𝑓1(log 𝑧) < 𝑓2(log 𝑧)} [resp. 𝑓1(log 𝑧) > 𝑓2(log 𝑧)] gives 𝐽1 > 0 [resp. 𝐽1 < 0] for 𝛼
small enough.

Remark 6.6.6. In case 𝑓𝑘(𝜃 ) ≡ 𝑓𝑘 for all 𝑘, Proposition 6.6.5 and Corollary 6.5.3 provide the following small

coupling expression of the entropy production rate

𝜎+ = 𝛼2
𝑛B

∑
𝑘=1

𝑛B

∑
𝑘′=1

𝜇𝑘(𝑓𝑘′ − 𝑓𝑘)∑
𝑖∈𝛪

| ⟨𝜙𝑘 , 𝜒𝑖 ⟩ |2| ⟨𝜙𝑘′ , 𝜒𝑖 ⟩ |2
∑𝑛B

𝑘″=1 | ⟨𝜙𝑘″ , 𝜒𝑖 ⟩ |2
+ 𝛰(𝛼3)



220 CHAPTER 6

Setting 𝐶 (2)
𝑘,𝑘′ ∶= ∑𝑖∈𝛪

|⟨𝜙𝑘 ,𝜒𝑖 ⟩|2|⟨𝜙𝑘′ ,𝜒𝑖 ⟩|2

∑𝑛B
𝑘″=1 |⟨𝜙𝑘″ ,𝜒𝑖 ⟩|

2 > 0, we have 𝐶 (2)
𝑘,𝑘′ = 𝐶

(2)
𝑘′,𝑘 ,∑𝑘 𝐶

(2)
𝑘,𝑘′ = 1 and

𝜎+ =
𝛼2
2 ∑

𝑘≠𝑘′
(𝜇𝑘 − 𝜇′𝑘)(𝑓𝑘′ − 𝑓𝑘)𝐶

(2)
𝑘,𝑘′ + 𝛰(𝛼

3).

where the leading term is zero if and only if the summand vanishes for all pairs 𝑘 ≠ 𝑘′. Because 𝐶 (2)
𝑘,𝑘′ > 0 and

because the function (0, 1) ∋ 𝑓 ↦ log((1 − 𝑓 )/𝑓 ) defining 𝜇 is strictly decreasing, this is in turn equivalent to

𝑓𝑘 = 𝑓𝑘′ for each pair (𝑘, 𝑘′).

6.7 Proof of Proposition 6.3.1

The following lemma is straightforward, but we give a proof for lack of convenient reference. It can alterna-

tively be shown to be a consequence of the Riemann–Lebesgue lemma.

Lemma 6.7.1. Let 𝐱 = (𝑥𝑛)𝑛≥1 and 𝐲 = (𝑦𝑛)𝑛≥1 be two square-summable sequences. Then,

lim𝑡→∞

𝑡
∑
𝑛=1

|𝑥𝑛𝑦𝑡−𝑛| = 0.

Proof. Clearly, it is sufficient to show that the limit vanishes along the subsequence with even values of 𝑡 .

Now, for 𝑡 even, we have

𝑡
∑
𝑛=1

|𝑥𝑛𝑦𝑡−𝑛| ≤
𝑡/2
∑
𝑑=0

|𝑥𝑡/2+𝑑𝑦𝑡/2−𝑑| +
𝑡/2
∑
𝑑=1

|𝑥𝑡/2−𝑑𝑦𝑡/2+𝑑|

≤ (
𝑡/2
∑
𝑑=0

|𝑥𝑡/2+𝑑|2)
1
2
(
𝑡/2
∑
𝑑=0

|𝑦𝑡/2−𝑑|2)
1
2
+ (

𝑡/2−1
∑
𝑑=1

|𝑥𝑡/2−𝑑|2)
1
2
(
𝑡/2
∑
𝑑=1

|𝑦𝑡/2+𝑑|2)
1
2

≤ ( ∑
𝑚≥12 𝑡

|𝑥𝑚|2)
1
2
‖𝐲 ‖ℓ 2 + ‖𝐱‖ℓ 2( ∑

𝑚>12 𝑡

|𝑦𝑚|2)
1
2
.

Hence, the result follows from square summability.

Proof of Proposition 6.3.1. The selfadjoint term being subtracted on the left-hand side of (6.9) obviously con-

verges strongly to∑𝑛≥0 𝛿𝑛𝛿 ∗𝑛⊗𝟏⊕0 as 𝑡 → ∞. The only explicit 𝑡 -dependence in summands on the right-hand

side of (6.9) is in the upper-right block, but the adjoint of this contribution vanishes strongly as 𝑡 → ∞. To

see this, combine Lemma 6.7.1 with the estimate

∥
𝑡−1
∑
𝑚=0

(𝛿 ∗−𝑡+𝑚 ⊗ (𝛭 ∗)𝑚𝛧∗
BS𝑈 𝑚−𝑡 )𝑣∥ ≤

𝑡
∑
𝑛=1

‖𝛭 𝑡−𝑛‖‖(𝛿−𝑛 ⊗ 𝟏)𝑣‖
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keeping in mind that the facts that 𝑣 ∈ ℓ 2(𝚭) ⊗ℋB and that Assumption (Sp) holds imply respectively that

∑𝑚≥0 ‖𝛭𝑚‖2 < ∞ and∑𝑛≥0 ‖(𝛿 ∗−𝑛 ⊗ 𝟏)𝑣‖2 < ∞.

Thus, in order to prove the proposition, it is sufficient to show the uniform convergences

lim𝑡→∞

𝑡−1
∑
𝑚=0

𝑡−𝑚
∑
𝑙=1

ULB−
𝑚,𝑙 = ∑

𝑚≥0
∑
𝑙≥1

ULB−
𝑚,𝑙 , lim𝑡→∞

𝑡−1
∑
𝑚=0

LLB−
𝑚 = ∑

𝑚≥0
∑
𝑙≥1

LLB−
𝑚 ,

where ULB−
𝑚,𝑙 and LLB−

𝑚 are respectively the summands in the upper-left and lower left-block on the right-

hand side of (6.9).

For the upper-left block, we will make use of the shorthand

𝚻𝑡 ∶= {(𝑚, 𝑙) ∶ 0 ≤ 𝑚 ≤ 𝑡 − 1; 1 ≤ 𝑙 ≤ 𝑡 − 𝑚}.

We want to show that the sequence of partial sums is Cauchy for the uniform operator topology. For 0 < 𝑡 <
𝑢, we have

∥ ∑
𝑚,𝑙∈𝚻𝑢

ULB−
𝑚,𝑙 − ∑

𝑚,𝑙∈𝚻𝑡
ULB−

𝑚,𝑙∥

= sup
∑𝑛,𝑗 |𝑎𝑛,𝑗 |

2=1
∑𝑛′,𝑗 ′ |𝑐𝑛′,𝑗 ′ |

2=1

∣⟨∑
𝑛,𝑗

𝑎𝑛,𝑗 𝛿𝑛 ⊗ 𝜙𝑗 , ∑
𝑚,𝑙∈𝚻𝑢\𝚻𝑡

ULB−
𝑚,𝑙 ∑

𝑛′,𝑗 ′
𝑐𝑛′,𝑗 ′𝛿𝑛′ ⊗ 𝜙𝑗 ′⟩∣.

where 𝑛 and 𝑛′ are understood to range over 𝚭; 𝑗 and 𝑗 ′, to range over the index set for the orthonormal

basis {𝜙𝑗 }𝑗 of ℋB. Because of 𝛿 ∗−𝑚−𝑙 and 𝛿−𝑙 in the expression for ULB−
𝑚,𝑙 for fixed𝑚 and 𝑙 , we have

⟨∑
𝑛,𝑗

𝑎𝑛,𝑗 𝛿𝑛 ⊗ 𝜙𝑗 ,ULB−
𝑚,𝑙 ∑

𝑛′,𝑗 ′
𝑐𝑛′,𝑗 ′𝛿𝑛′ ⊗ 𝜙𝑗 ′⟩ ≤ ∑

𝑗
|𝑐−𝑚−𝑙,𝑗 |‖𝑌𝑚‖∑

𝑗 ′
|𝑎−𝑙,𝑗 ′|

and thus

∥ ∑
𝑚,𝑙∈𝚻𝑢

ULB−
𝑚,𝑙 − ∑

𝑚,𝑙∈𝚻𝑡
ULB−

𝑚,𝑙∥ ≤ sup
∑𝑛,𝑗 |𝑎𝑛,𝑗 |

2=1
∑𝑛′,𝑗 ′ |𝑐𝑛′,𝑗 ′ |

2=1

∑
𝑚≥𝑡

1≤𝑚+𝑙≤∞

∑
𝑗 ,𝑗 ′

|𝑎−𝑙,𝑗 |‖𝑌𝑚‖|𝑐−𝑚−𝑙,𝑗 ′|

≤ sup
∑𝑛,𝑗 |𝑐𝑛,𝑗 |

2=1
∑𝑛′,𝑗 ′ |𝑎𝑛′,𝑗 ′ |

2=1

∑
𝑚≥𝑡

‖𝑌𝑚‖∑
𝑑≥1

∑
𝑗 ,𝑗 ′

|𝑎𝑚−𝑑,𝑗 ||𝑐𝑑,𝑗 ′|

≤ (dim ℋB)∑
𝑚≥𝑡

‖𝑌𝑚‖,

thanks to the Cauchy–Schwarz inequality and the fact that

∑
𝑗
(∑

𝑑
|𝑎𝑑,𝑗 |2)

1/2
≤ (∑

𝑑,𝑗
|𝑎𝑑,𝑗 |2)

1/2
(∑

𝑗
1)
1/2
.
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Hence, the Cauchy property of the sequence of double sums, follows from the fact that the sequence (‖𝑌𝑚‖)𝑚≥1,

like (‖𝛭𝑚‖)𝑚≥1, is summable.

For the lower left-block, note that, for 0 < 𝑡 < 𝑢,

∥
𝑢−1
∑
𝑚=0

LLB−
𝑚 −

𝑡−1
∑
𝑚=0

LLB−
𝑚∥ ≤

∞
∑
𝑚=𝑡

‖LLB−
𝑚‖,

with

‖LLB−
𝑚‖ = ‖𝛿 ∗−𝑚−1 ⊗𝛭𝑚𝛧SB𝑈 −𝑚−1‖ ≤ ‖𝛭𝑚‖.

Again because the sequence (‖𝑌𝑚‖)𝑚≥1 is summable, the sequence of partial sums is Cauchy in the uniform

operator topology.

6.8 Proof of Theorem 6.5.1

We will make use of the following technical lemma.

Lemma 6.8.1. If 𝜖 ≤ 𝛵 ≤ (1 − 𝜖)𝟏 for some 𝜖 > 0 and𝛺 is a unitary operator such that𝛺 − 𝟏 is trace class,
then

tr[𝛺𝛵𝛺∗(log(𝛺𝛵𝛺∗) − log 𝛵 )] = tr[(𝛵 − 𝛺𝛵𝛺∗) log 𝛵 ] < ∞.

Proof. Let 𝛩 be the trace-class operator such that𝛺 = 𝟏 + 𝛩 . Then,

𝛺𝛵𝛺∗(log(𝛺𝛵𝛺∗) − log 𝛵 ) = (𝟏 + 𝛩)𝛵 log 𝛵 (𝟏 + 𝛩 ∗) − (1 + 𝛩)𝛵 (𝟏 + 𝛩 ∗) log 𝛵

= 𝛩𝛵 log 𝛵 + 𝛵 log 𝛵 𝛩 ∗ + 𝛩𝛵 log 𝛵 𝛩 ∗

− 𝛩𝛵 log 𝛵 − 𝛵 𝛩 ∗ log 𝛵 − 𝛩𝛵 𝛩 ∗ log 𝛵 .

On the other hand,

(𝛵 − 𝛺𝛵𝛺∗) log 𝛵 = (𝟏 + 𝛩 ∗)(𝟏 + 𝛩)𝛵 log 𝛵 − (𝟏 + 𝛩 ∗)𝛵 (𝟏 + 𝛩) log 𝛵

= 𝛩 ∗𝛵 log 𝛵 + 𝛩𝛵 log 𝛵 + 𝛩 ∗𝛩𝛵 log 𝛵

− 𝛩𝛵 log 𝛵 − 𝛵 𝛩 ∗ log 𝛵 − 𝛩𝛵 𝛩 ∗ log 𝛵 .

All terms are trace class in each right-hand side since 𝛵 and log 𝛵 are bounded. Hence, using linearity and

cyclicity of the trace and the fact that [𝛵 , log 𝛵 ] = 0, we get

tr[𝛺𝛵𝛺∗(log(𝛺𝛵𝛺∗) − log 𝛵 )] = tr[(𝛩 ∗𝛩𝛵 − 𝛩𝛵 𝛩 ∗) log 𝛵 ]

= tr[(𝛵 − 𝛺𝛵𝛺∗) log 𝛵 ].
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Let us recall that we are looking at the relative entropy between the quasifree states associated to the sym-

bols 𝛵tot and 𝛵tot(𝑡) = 𝛺(𝑡)𝛵tot𝛺∗(𝑡)— we have dropped some indices for readability — assuming that 𝛵tot

has the block diagonal form

𝛵tot = (
𝛵E 0
0 𝛵S

) .

We also decompose the unitary

𝛺(𝑡) = (
𝛺E(𝑡) 𝛺ES(𝑡)
𝛺SE(𝑡) 𝛺S(𝑡)

) .

It easy to see from Proposition 6.3.1 that 𝛺ES(𝑡), 𝛺SE(𝑡) and 𝛺S(𝑡) have their rank bounded by dim ℋS,

uniformly in 𝑡 ≥ 0.

Let us introduce

𝔜𝑡 ∶=
𝑡−1
∑
𝑙=0

𝑡−𝑙
∑
𝑚=1

𝛿−𝑚𝛿 ∗−𝑚−𝑙 ⊗ 𝑌𝑙 . (6.40)

Then, rk 𝔜𝑡 ≤ 𝑡 dim ℋS and Proposition 6.3.1 gives𝛺E(𝑡) − 𝟏E = −𝛲[−𝑡 ,−1]⊗𝟏+𝔜𝑡 . Hence, Lemma 6.8.1

applies and

𝜎 (𝑡) = 𝑡−1 tr[(𝛵tot −𝛺(𝑡)𝛵tot𝛺∗(𝑡)) log 𝛵tot] + [𝛵tot ↦ 𝟏 − 𝛵tot], (6.41)

where “+ [𝛵tot ↦ 𝟏−𝛵tot]” means to we add the same term with 𝟏−𝛵tot instead of 𝛵tot. We will show how to

deal with the first of the two traces, the other one being similar. The term log 𝛵tot being bounded, we consider

the following representation of its multiplier

𝛵tot −𝛺(𝑡)𝛵tot𝛺∗(𝑡)

= (
𝛺E(𝑡)𝛵E𝛺∗

E(𝑡) + 𝛺ES𝛵S𝛺∗
ES(𝑡) − 𝛵E 𝛺E(𝑡)𝛵E𝛺∗

SE(𝑡) + 𝛺ES(𝑡)𝛵S𝛺∗
S (𝑡)

𝛺SE(𝑡)𝛵E𝛺∗
E(𝑡) + 𝛺S(𝑡)𝛵S𝛺∗

ES(𝑡) 𝛺SE(𝑡)𝛵E𝛺∗
SE(𝑡) + 𝛺S(𝑡)𝛵S𝛺∗

S (𝑡) − 𝛵S

) .

Note that the rank of the lower-right block is bounded by dim ℋS and hence cannot contribute to the limit

of (6.41). The same is true for each term in which 𝛵S appears. Hence, provided that the limit exists, we must

have

𝜎 + = lim𝑡→∞ 𝑡
−1 tr[(𝛵E −𝛺(𝑡)𝛵E𝛺∗(𝑡)) log 𝛵E] + [𝛵E ↦ 𝟏 − 𝛵E]. (6.42)

Proposition 6.3.1 yields

𝛺E(𝑡)𝛵E𝛺∗
E(𝑡) − 𝛵E = (𝛲 ⟂[−𝑡 ,−1] ⊗ 𝟏)𝛵E(𝛲 ⟂[−𝑡 ,−1] ⊗ 𝟏) − 𝛵E

+𝔜𝑡𝛵E(𝟏E − 𝛲[−𝑡 ,−1] ⊗ 𝟏) + (𝟏E − 𝛲[−𝑡 ,−1] ⊗ 𝟏)𝛵E𝔜∗
𝑡 +𝔜𝑡𝛵E𝔜∗

𝑡 ,
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where the operator on the second line has finite rank since 𝔜𝑡 does. The first line of the right hand side above

writes

(𝛲 ⟂[−𝑡 ,−1] ⊗ 𝟏)𝛵E(𝛲 ⟂[−𝑡 ,−1] ⊗ 𝟏) − 𝛵E = (𝛲[−𝑡 ,−1] ⊗ 𝟏)𝛵E(𝛲[−𝑡 ,−1] ⊗ 𝟏)

− 𝛵E(𝛲[−𝑡 ,−1] ⊗ 𝟏) − (𝛲[−𝑡 ,−1] ⊗ 𝟏)𝛵E, (6.43)

where 𝛲[−𝑡 ,−1] has rank 𝑡 , so that altogether, each term in this composition of𝛺(𝑡)𝛵E𝛺∗ − 𝛵E has finite rank

of order 𝑡 .

Let us now spell out what is left of the (first) trace in (6.42) dropping the tensored identities for readability:

tr[𝛵E𝛲[−𝑡 ,−1] log(𝛵E)] + tr[𝛲[−𝑡 ,−1]𝛵E𝛲 ⟂[−𝑡 ,−1] log(𝛵E)]

− tr[𝔜𝑡𝛵E𝛲 ⟂[−𝑡 ,−1] log(𝛵E) + h.c.] − tr[𝔜𝑡𝛵E𝔜∗
𝑡 log(𝛵E)].

We have used yet again cyclicity of the trace, as well as the identity

𝔜𝑡 = 𝛲[−𝑡 ,−1]𝔜𝑡𝛲[−𝑡 ,−1]

following immediately from the definition.

Lemma 6.8.2. Under the ongoing hypotheses,

lim𝑡→∞ 𝑡
−1 tr[𝛲[−𝑡 ,−1]𝛵E log(𝛵E)] =

ˆ 2𝜋

0
tr[�̂� (𝜃 ) log �̂� (𝜃 )] d𝜃

2𝜋

with �̂� the Fourier of transform of 𝛯 according to the conventions of Section 6.3.2.

Proof. Because 𝛵E is invariant under translations, it has a decomposition of the form

𝛵E =∑
𝑘
𝛯 (𝑘) ⊗ 𝜓𝑘𝜓 ∗

𝑘

with {𝜓𝑘}𝑘 an orthonormal basis of ℋB and𝛯 (𝑘) an operator on ℓ 2(𝚭)whose representation in Fourier space

is a multiplication operator. Then,

𝛵E log 𝛵E =∑
𝑘
𝛯 (𝑘) log𝛯 (𝑘) ⊗ 𝜓𝑘𝜓 ∗

𝑘 (6.44)

with log𝛯 (𝑘) also a multiplication operator in Fourier representation; the matrix elements for the summands

satisfy

𝛿 ∗𝑛𝛯 (𝑘) log(𝛯 (𝑘))𝛿𝑚 = 𝛿 ∗0 𝛯 (𝑘) log(𝛯 (𝑘))𝛿𝑚−𝑛 =∶ 𝐺𝑘
0 (𝑚 − 𝑛) (6.45)
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for𝑚, 𝑛 ∈ 𝚭. Hence, taking the trace using the basis {𝛿𝑚 ⊗ 𝜓𝑘}𝑚,𝑘

𝑡−1 tr[𝛲[−𝑡 ,−1]𝛵E log(𝛵E)] = 𝑡−1∑
𝑘

𝑡
∑
𝑚=1

𝐺𝑘
0 (0) = ∑

𝑘
𝐺𝑘
0 (0).

Lemma 6.8.3. Under the ongoing hypotheses,

lim𝑡→∞ 𝑡
−1 tr[𝛲[−𝑡 ,−1]𝛵E𝛲 ⟂[−𝑡 ,−1] log(𝛵E)] = 0.

Proof. In view of Lemma 6.8.2 and the definition of 𝛲 ⟂[−𝑡 ,−1], the claim will be proved if we can show that

lim𝑡→∞ 𝑡
−1 tr[𝛲[−𝑡 ,−1]𝛵E𝛲[−𝑡 ,−1] log(𝛵E)] =

ˆ 2𝜋

0
tr[�̂� (𝜃 ) log �̂� (𝜃 )] d𝜃

2𝜋 .

What was said about the function 𝐺0(𝑥) ↦ 𝑥 log 𝑥 in (6.44)–(6.45) equally holds for 𝐺1 ∶ 𝑥 ↦ 𝑥 and 𝐺2 ∶
𝑥 ↦ log 𝑥. In this language,

tr[𝛲[−𝑡 ,−1]𝛵E𝛲[−𝑡 ,−1] log(𝛵E)] = ∑
𝑘

𝑡
∑
𝑛=1

𝑡
∑
𝑚=1

𝐺𝑘
1 (𝑛 − 𝑚)𝐺𝑘

2 (𝑚 − 𝑛)

and reindexing the sum in𝑚 with 𝑙 = 𝑛 − 𝑚 yields

𝑡
∑
𝑛=1

𝑡
∑
𝑚=1

𝐺𝑘
1 (𝑛 − 𝑚)𝐺𝑘

2 (𝑚 − 𝑛) =
𝑡
∑
𝑛=1

𝑛−1
∑
𝑙=𝑛−𝑡

𝐺𝑘
1 (𝑙)𝐺𝑘

2 (−𝑙)

=
𝑡−1
∑
𝑙=0
(𝑡 − 𝑙)𝐺𝑘

1 (𝑙)𝐺𝑘
2 (−𝑙) +

−1
∑
𝑙=1−𝑡

(𝑡 + 𝑙)𝐺𝑘
1 (𝑙)𝐺𝑘

2 (−𝑙)

=
𝑡−1
∑
𝑙=1−𝑡

𝑡𝐺𝑘
1 (𝑙)𝐺𝑘

2 (−𝑙) + 𝛰(∑
𝑙∈𝚭

|𝑙||𝐺𝑘
1 (𝑙)||𝐺𝑘

2 (−𝑙)|).

Now, the second sum is absolutely convergent if |𝐺𝑘
1 (𝑙)| decays fast enough in 𝑙 , in which case it cannot

contribute to the limit of interest. Hence, the lemma follows from the relation

∑
𝑙∈𝚭

𝐺𝑘
1 (𝑙)𝐺𝑘

2 (𝑚 − 𝑙) = (𝐺𝑘
1 𝐺𝑘

2 )(𝑚) = 𝐺𝑘
0 (𝑚) (6.46)

for discrete convolutions.

Lemma 6.8.4. Under the ongoing hypotheses,

lim𝑡→∞ 𝑡
−1 tr[𝔜𝑡𝛵E𝛲 ⟂[−𝑡 ,−1] log(𝛵E)] = 0.
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Proof. Keeping with the notation used in the proof of the previous lemma, splitting the projector 𝛲 ⟂[−𝑡 ,−1] as

𝟏 −∑𝑡
𝑛=1 𝛿−𝑛𝛿 ∗−𝑛 ,

tr[𝔜𝑡𝛵E𝛲 ⟂[−𝑡 ,−1] log(𝛵E)] = ∑
𝑘

𝑡−1
∑
𝑙=0

𝑡−𝑙
∑
𝑚=1

𝑌 𝑘𝑙 𝐺
𝑘
0 ((−𝑚) − (−𝑚 − 𝑙))

+∑
𝑘

𝑡−1
∑
𝑙=0

𝑡−𝑙
∑
𝑚=1

𝑡
∑
𝑛=1

𝑌 𝑘𝑙 𝐺
𝑘
1 ((−𝑛) − (−𝑚 − 𝑙))𝐺𝑘

2 (−𝑚 − (−𝑛))
(6.47)

The first term on the right-hand side in (6.47) simplifies to

𝑡−1
∑
𝑙=0

𝑡−𝑙
∑
𝑚=1

𝑌 𝑘𝑙 𝐺
𝑘
0 ((−𝑚) − (−𝑚 − 𝑙)) =

𝑡−1
∑
𝑙=0

𝑡𝑌 𝑘𝑙 𝐺
𝑘
0 (𝑙) + 𝛰(

𝑡−1
∑
𝑙=0

|𝑙||𝑌 𝑘𝑙 ||𝐺
𝑘
0 (𝑙)|)

with |𝑌 𝑘𝑙 | decaying exponentially fast in 𝑙 thanks to Assumption (Sp).

Reindexing the second term in (6.47), we obtain a term which — thanks again to (6.46) — cancels the first

term of (6.47) up to an error term which can be shown to not contribute in the limit with similar arguments.

Lemma 6.8.5. Under the ongoing hypotheses,

lim𝑡→∞ 𝑡
−1 tr[𝔜𝑡𝛵E𝔜∗

𝑡 log(𝛵E)] =
ˆ 2𝜋

0
tr[�̂�(𝜃 )�̂� (𝜃 )�̂�∗(𝜃 ) log(�̂� ∗(𝜃 ))] d𝜃

2𝜋 .

Proof. Keeping with the notation used in the proof of the previous lemmata,

tr[𝔜𝑡𝛵E𝔜∗
𝑡 log(𝛵E)] = ∑

𝑘,𝑘′

𝑡−1
∑
𝑙 ,𝑙 ′=0

𝑡−𝑙
∑
𝑚=0

𝑡−𝑙 ′
∑
𝑚′=0

𝑌 𝑘,𝑘′𝑙 𝐺𝑘′
1 (𝑙 + 𝑚 − (𝑙 ′ + 𝑚′))𝑌 ∗𝑙 ′

𝑘′,𝑘𝐺𝑘
2 (𝑚′ − 𝑚).

Performing a reindexation similar to that of the previous lemma, we find

∑
𝑘,𝑘′

𝑡−1
∑
𝑙 ,𝑙 ′=0

𝑡−𝑙
∑
𝑚=0

𝑡−𝑙 ′
∑
𝑚′=0

𝑌 𝑘,𝑘′𝑙 𝐺𝑘′
1 (𝑙 + 𝑚 − (𝑙 ′ + 𝑚′))𝑌 ∗𝑙 ′

𝑘′,𝑘𝐺𝑘
2 (𝑚′ − 𝑚)

= ∑
𝑘,𝑘′

𝑡−1
∑
𝑙 ,𝑙 ′=0

𝑡−1−𝑙 ′
∑

ℎ=𝑙−(𝑡−1)
𝑡𝑌 𝑘,𝑘′𝑙 𝐺𝑘′

1 (ℎ)𝑌 ∗𝑙 ′
𝑘′,𝑘𝐺𝑘

2 (𝑙 − 𝑙 ′ − ℎ)

+ 𝛰( ∑
𝑙 ,𝑙 ′∈𝚴

∑
ℎ∈𝚭

(dim ℋB)2(𝑙 + 𝑙 ′ + |ℎ|)‖𝑌𝑙‖‖𝑌𝑙 ′‖ sup
𝑘,𝑘′

|𝐺𝑘′
1 (ℎ)||𝐺𝑘

2 (𝑙 − 𝑙 ′ − ℎ)|).

Note that the first sum on the left-hand side is, up to truncation and multiplication by 𝑡 , a sum of products of

Fourier coefficients whose indices sum to 0, which coincides with the integral in the statement of the lemma.

Once divided by 𝑡 , the error due to truncation and the second sum on the right-hand side both vanish as 𝑡 → ∞
thanks to the decay of ‖𝑌𝑙‖ in 𝑙 , ‖𝑌 ∗𝑙 ′ ‖ in 𝑙 ′ and |𝐺𝑘′

1 (ℎ)| in ℎ .
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Chapter 7

Discussion and conclusion

We have focused our attention on effective finite-dimensional descriptions of classical systems and on a very

particular case of a truly infinite-dimensional quantum system. For stochastic systems with a nondegenerate

Brownian noise, we have ben able to perform a detailed analysis of the fluctuations of entropy production and

study the vanishing-noise limit whereas we only reached an understanding of the basic ergodicity properties

when the noise is degenerate — save the linear case [JPS17]. For ensembles of fermionic walkers, we have

tackled the basic ergodicity properties as well as mean properties of entropy production and their relations to

currents of particles.

While the general mathematical structure of the relations between the different notions of entropy pro-

duction and the fluctuation theorems for extended classical systems is relatively well understood [JPRB11],

this is far from being the case for quantum systems. This is partly due to the impressive amount of preliminary

notions from the theory of von Neumann algebras that is needed to even frame the discussion. Meanwhile,

the study of toy models such as the electronic black box model [AJPP06, AJPP07, JOPP11], the XY spin

chain [JLP13], repeated interaction systems [BJM14, HJPR17, HJPR18, BB20] and the model of Chapters 5

and 6 remains important: they provide explicit cases where the assumptions in the abstract theory holds —

when it exists — and allow for the analysis of model-dependent physical phenomena.

On the more concrete side, as far as the precise class of models in Chapters 5 and 6 are concerned, there

is much left to be understood. Most notably, one should investigate whether the information-theoretical

notion of entropy production can be related to the statistics of a physically relevant measurement process.

Also, the infinite-volume limit of the sample should be considered — with and without disorder — and the
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links between spectral and transport properties should be studied.

Perhaps the most obvious technical open problem related to Chapters 2 and 3 is to study the vanishing-

noise limit of the rate function for entropy production in degenerate diffusions enjoying good controllability

properties. Another interesting problem related to Chapter 2 is that the sde at the heart of the paper is

physically relevant as a small-mass limit of a Langevin equation which is itself obtained from an open system

through yet another limiting procedure: the interchangeably of those limits with the vanishing-noise limit

poses important technical difficulties. This could clarify the relevance of the stochastic model when in the

appropriate regime.
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