
HAL Id: tel-03133391
https://theses.hal.science/tel-03133391v1

Submitted on 6 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Designing and analyzing new early stopping rules for
saving computational resources

Yaroslav Averyanov

To cite this version:
Yaroslav Averyanov. Designing and analyzing new early stopping rules for saving computational
resources. Statistics [math.ST]. Université de Lille; Inria, 2020. English. �NNT : �. �tel-03133391�

https://theses.hal.science/tel-03133391v1
https://hal.archives-ouvertes.fr


THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE LILLE
COMUE LILLE NORD DE FRANCE

ÉCOLE DOCTORALE RÉGIONALE SPI 72

Spécialité : Statistique

THÈSE DE DOCTORAT

Par

Yaroslav AVERYANOV

"Concevoir et analyser de nouvelles règles d’arrêt
prématuré pour économiser les ressources de calcul"

Thèse présentée et soutenue publiquement à Lille, le 15/12/2020
Unité de recherche : équipe-projet MODAL, Inria Lille-Nord Europe

Rapporteurs avant soutenance :

Monsieur Patrice BERTAIL Professeur des universités, Université Paris Nanterre
Monsieur Julien CHIQUET Directeur de recherche, INRAE Paris

Composition du Jury :

Président du jury : Madame Cristina BUTUCEA Professeur des universités, ENSAE Paris
Examinateur : Monsieur Julien MAIRAL Directeur de recherche, Inria Grenoble Rhône-Alpes
Dir. de thèse : Monsieur Cristian PREDA Professeur des universités, Université de Lille
Co-dir. de thèse : Monsieur Alain CELISSE Professeur des universités, Université Paris 1





ABSTRACT

This work develops and analyzes strategies for constructing instances of the so-called early stopping
rules applied to some iterative learning algorithms for estimating the regression function. Such quan-
tities are data-driven rules indicating when to stop the iterative learning process to reach a trade-off
between computational costs and the statistical precision. Unlike a large part of the existing litera-
ture on early stopping, where these rules only depend on the data in a "weak manner", we provide
data-driven solutions for the aforementioned problem without utilizing validation data.

The crucial idea exploited here is that of the minimum discrepancy principle (MDP), which shows
when to stop an iterative learning algorithm. To the best of our knowledge, this idea dates back to
the work of Vladimir A. Morozov in the 1960s-1970s who studied linear ill-posed problems and their
regularization, mostly inspired by mathematical physics problems. Among different applications of
this line of work, the so-called spectral filter estimators such as spectral cut-off, Landweber iterations,
and Tikhonov (ridge) regularization have received quite a lot of attention (e.g., in statistical inverse
problems). It is worth mentioning that the minimum discrepancy principle consists in controlling the
residuals of an estimator (which are iteratively minimized) and properly setting a threshold for them
such that one can achieve some (minimax) optimality.

The first part of this thesis is dedicated to theoretical guarantees of stopping rules based on the
minimum discrepancy principle and applied to gradient descent, and Tikhonov (ridge) regression in the
framework of reproducing kernel Hilbert space (RKHS). There, we show that this principle provides
a minimax optimal functional estimator of the regression function when the rank of the kernel is
finite. However, when one deals with infinite-rank reproducing kernels, the resulting estimator will
be only suboptimal. While looking for a solution, we found the existence of the so-called residuals
polynomial smoothing strategy. This strategy (combined with MDP) has been proved to be optimal
for the spectral cut-off estimator in the linear Gaussian sequence model. We borrow this strategy,
modify the stopping rule accordingly, and prove that the smoothed minimum discrepancy principle
yields a minimax optimal functional estimator over a range of function spaces, which includes the
well-known Sobolev function class.

Our second contribution consists in exploring the theoretical properties of the minimum discrep-
ancy stopping rule applied to the more general family of linear estimators. The main difficulty of this
approach is that, unlike the spectral filter estimators considered earlier, linear estimators do no longer
lead to monotonic quantities (the bias and variance terms). Let us mention that this is also the case for
famous algorithms such as Stochastic Gradient Descent. Motivated by further practical applications,
we work with the widely used k-NN regression estimator as a reliable first example. We prove that
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the aforementioned stopping rule leads to a minimax optimal functional estimator, in particular, over
the class of Lipschitz functions on a bounded domain.

The third contribution consists in illustrating through empirical experiments that for choosing the
tuning parameter in a linear estimator (the k-NN regression, Nadaraya-Watson, and variable selection
estimators), the MDP-based early stopping rule performs comparably well with respect to other widely
used and known model selection criteria.
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RÉSUMÉ

Ce travail développe et analyse des stratégies pour construire des instances de ce que l’on appelle
les règles d’arrêt prématurés appliquées à certains algorithmes d’apprentissage itératif pour estimer
la fonction de régression. Ces quantités sont des règles "data-driven" indiquant quand arrêter le pro-
cessus d’apprentissage itératif pour parvenir à un compromis entre les coûts de calcul et la précision
statistique. Contrairement à une grande partie de la littérature existante sur l’arrêt prématuré, où ces
règles ne dépendent que des données de manière "faible", nous fournissons des solutions data-driven
pour le problème susmentionné sans utiliser les données de validation.

L’idée cruciale exploitée ici est celle du principe d’écart minimal (MDP), qui montre où arrêter un
algorithme d’apprentissage itératif. À notre connaissance, cette idée remonte aux travaux de Vladimir
A. Morozov dans les années 1960-1970 qui a étudié des problèmes linéaires mal posés et leur régular-
isation, principalement inspirés par des problèmes de physique mathématique. Parmi les différentes
applications de cette ligne de travail, les soi-disant estimateurs de filtre spectral tels que le "spec-
tral cut-off", les itérations de Landweber, et la régularisation de Tikhonov (ridge) ont reçu beaucoup
d’attention (par exemple, dans des problèmes statistiques inverses). Il est à noter que le principe d’écart
minimal consiste à contrôler les résidus d’un estimateur (qui sont minimisés de manière itérative) et
à leur fixer correctement un seuil tel que l’on puisse atteindre une certaine optimalité (minimax).

La première partie de cette thèse est consacrée aux garanties théoriques des règles d’arrêt basées
sur le principe d’écart minimal et appliquées à la descente de gradient, et à la régression de Tikhonov
(ridge) dans le cadre de l’espace de Hilbert à noyau reproduisant (RKHS). Là, nous montrons que
ce principe fournit un estimateur fonctionnel optimal minimax de la fonction de régression lorsque
le rang du noyau est fini. Cependant, quand nous traitons des noyaux reproduisants de rang infini,
l’estimateur résultant sera seulement sous-optimal. En recherchant une solution, nous avons trouvé
l’existence de la stratégie dite de lissage polynomial des résidus. Cette stratégie (combinée avec le
MDP) s’est avérée optimale pour l’estimateur "spectral cut-off" dans le modèle de séquence gaussienne
linéaire. Nous empruntons cette stratégie, modifions la règle d’arrêt en conséquence, et prouvons que
le principe d’écart minimal lissé produira un estimateur fonctionnel optimal minimax sur une gamme
d’espaces de fonctions, qui comprend la classe de fonctions Sobolev bien connue.

Notre deuxième contribution consiste à explorer des propriétés théoriques de la règle d’arrêt d’écart
minimal appliquée à la famille plus générale des estimateurs linéaires. La principale difficulté de
cette approche est que, contrairement aux estimateurs de filtre spectral considérés précédemment, les
estimateurs linéaires ne conduisent plus à des quantités monotones (les biais et variance). Mentionnons
que c’est également le cas des algorithmes célèbres tels que la descente de gradient stochastique.
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Motivés par d’autres applications pratiques, nous travaillons avec l’estimateur de régression des k plus
proches voisins largement utilisé, comme un premier exemple fiable. Nous montrons que la règle d’arrêt
susmentionnée conduit à un estimateur fonctionnel optimal minimax, en particulier sur la classe des
fonctions de Lipschitz sur un domaine borné.

La troisième contribution consiste à illustrer au moyen de simulations empiriques que, pour le
choix du paramètre de réglage dans un estimateur linéaire (la méthode des k plus proches voisins, la
régression de Nadaraya-Watson, et l’estimateur de sélection de variables), la règle d’arrêt prématuré
basée sur le MDP se comporte comparativement bien par rapport à d’autres critères de sélection de
modèles, largement utilisés et connus.
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INTRODUCTION

Nonparametric regression estimation has become a crucial question nowadays. Data are becoming
more and more bulky and even more complex. For this reason, making parametric assumptions (e.g.,
Gaussian or Laplace) on the data generating process seems unrealistic and does no longer represent a
reliable alternative. Furthermore, the resulting theoretical guarantees often strongly depend on these
distributional assumptions, which somewhat restricts their validity domain.

In the present thesis, the main focus is given to the nonparametric estimation of the regression
function through iterative learning algorithms. Iterative algorithms have become ubiquitous, for in-
stance, in situations when some regularization is needed, or no closed-form expressions are available
for the estimator. In practice, such iterative algorithms require the knowledge of the best iteration
number at which one should interrupt the learning process. Our final goal is designing and analyzing a
so-called early stopping rule, which aims at avoiding useless computations by interrupting the learning
process "not too late" while outputting an almost optimal estimator of the regression function.

Early stopping can be seen as an (implicit) regularization strategy, which consists in stopping
the learning process before "the convergence" (when applicable). For instance, it is likely the most
commonly used strategy in (deep) neural network learning. This method is popular due to its effec-
tiveness and simplicity. In the present document, we explore the theoretical (statistical) properties
of the aforementioned method in two learning frameworks: with iterative spectral filter algorithms in
reproducing kernel Hilbert space and for choosing the tuning parameter in linear estimators.

The content of the document is as follows.

Chapter 1: We introduce some basic mathematical concepts that will be essential for this work.
There, we successively introduce nonparametric regression, the reproducing kernel Hilbert space
(RKHS), early stopping rules for iterative learning algorithms, and linear estimators, among others.

Chapter 2: As a first contribution of the thesis, we present an early stopping rule for gradient
descent and kernel ridge regression (cast as an iterative algorithm) in the framework of reproducing
kernel Hilbert space. To be precise, we consider a stopping rule based on the minimum discrepancy
principle (MDP) that was initially developed for solving ill-posed inverse problems. The main quantity
MDP relies on is the empirical risk (the residuals) that is minimized and monitored throughout the
iterative learning process. This stopping rule is proven to yield a minimax-rate optimal estimator
of the regression function with finite-rank kernels. It appears that controlling the behavior of the
empirical risk around its expectation is crucial for the analysis of the statistical optimality. Since with
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Introduction

infinite-rank kernels, this control is not tight enough, we develop a new stopping rule for this type
of reproducing kernels. It relies on the so-called polynomial smoothing of the residuals, which allows
reducing the variability of the empirical risk around its expectation. This stopping rule is called the
smoothed discrepancy principle stopping rule. Combining all the assumptions on the eigenvalues of
the normalized kernel matrix, we prove the minimax rate optimality of the resulting estimator based
on the smoothed discrepancy principle stopping rule. It holds true for Sobolev smoothness classes, in
particular.

Chapter 3: The second contribution of the thesis consists in applying the minimum discrepancy
principle (MDP) to the more general class of linear estimators for choosing the tuning parameter.
In this chapter, we choose to work with the well-known k-nearest neighbor regression estimator as
a starting point. We prove that the MDP-based estimator achieves minimax optimality under the
assumption that the regression function is bounded. This holds, in particular, over the class of Lipschitz
functions on a bounded domain. The main goal of applying MDP for choosing k is lowering the
computational time of the model selection procedure.

Chapter 4: The present chapter yields an extensive simulation study for the performance of
the MDP stopping rule for the parameter tuning with several linear estimators such as the k-NN,
Nadaraya-Watson regression estimators, and the variable selection (projection-based) estimator. These
experiments have been carried out utilizing synthetic as well as real datasets. According to the results
collected here, we can conclude that the MDP-based stopping rule performs comparably well to other
considered model selection criteria such as cross-validation, Mallows’ Cp,. . . while saving computational
resources, unlike the former examples.

Conclusion and perspectives: In this chapter, we briefly summarize the main contributions
and extensively discuss future research directions.

Let us finally emphasize that the content of this thesis (namely, Chapters 2–4) is based on the
submissions we list below:

— Chapter 2 is based on the work "Early stopping and polynomial smoothing in regression with
reproducing kernels", Y.Averyanov and A.Celisse, submitted to the Electronic Journal of Statis-
tics.

— Chapter 3 and 4 are based on the work "Minimum discrepancy principle strategy for choosing
k in k-NN regression", Y.Averyanov and A.Celisse, submitted to the Statistica Sinica.
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Chapter 1

OVERVIEW

The main purpose of this chapter is to introduce the framework as well as leading notions the
present work is based on. More precisely, we successively introduce the nonparametric regression
context in Section 1.1, the reproducing kernel Hilbert spaces in Section 1.2 (which turns out to be
crucial in our theoretical analysis of Chapter 2), the model selection problem in Section 1.3, and the
main literature dedicated to the design of early stopping rules with iterative learning algorithms in
Section 1.5. Finally, one can find some aspects of the parameter selection (via model selection) with
linear estimators in Section 1.6.

1.1 Nonparametric regression

1.1.1 Formulation

A regression problem is defined by a set of covariate X ∈ X , and a response Y ∈ Y. In this work, we
focus on the case of real-valued responses Y = R. The goal of the regression is to estimate a function
f : X 7→ Y such that an error Y −f(X) is as small as possible. Assume that both X and Y are random
variables, and p(x, y) is their joint probability distribution, then it is reasonable to measure the error
in terms of the mean-squared error (MSE) as

L(f) := E
[
(Y − f(X))2

]
,

where E denotes the expectation with respect to the joint p(x, y).
The function f∗, which minimizes the criterion L(f), is called the regression function [67, Section

1.1] and defined as
f∗(x) := E [Y | X = x] .

The goal of the regression problem is basically the same as constructing an estimator f̂ of f∗ from
i.i.d. samples (Xi, Yi) ∈ X × R, i = 1, . . . , n. Note that for these samples, one can write

Yi = f∗(Xi) + εi, i = 1, . . . , n, (1.1)

where εi are i.i.d. zero-mean random variables, meaning that E[εi | Xi] = 0, i = 1, . . . , n, usually
(sub-)Gaussian N (0, σ2) [110, Proposition 2.5.2], where σ > 0 is a standard deviation parameter. This
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Part, Chapter 1 – Overview

setting is called the random design setting.
Another common setup is called the fixed design setting, where in Eq. (1.1) Xi, i = 1, . . . , n, are

fixed inputs, thus randomness comes only from the noise {εi}ni=1. In this setting, since the covariates
are not random, we write them as {xi}ni=1 (unless explicitly stated).

It is worth mentioning that in the present nonparametric regression context, we do not assume
any particular parametric form of f∗, neither for the noise {εi}ni=1. However, several parameterizations
have been thoroughly studied. For instance, the linear regression model arises by setting f∗(x) = 〈x, θ〉,
where x ∈ X ⊆ Rd, and θ ∈ Rd is a parameter to estimate. Another possibility is the estimation of
an additive/sparse regression function when one assumes that f∗(x) =

∑p
j=1 βjfj(x), where βj ∈ R is

some coefficient, and {fj}pj=1 are some (basis) functions (see, for instance, [38, 115]).

1.1.2 Quality measure of an estimator

In this section, we explain how to quantify the performance of a functional estimator f̂ of the
regression function f∗ from Eq. (1.1) (see, e.g., the monographs [108, 114] for more details).

Let us define an empirical norm in terms of the training points Xi, i = 1, . . . , n, acting on functions
f : X → R, by

‖f‖2n := 1
n

n∑
i=1

f2(Xi). (1.2)

Notice that in the fixed design case, this quantity is deterministic. In this case, the norm in Eq. (1.2)
is denoted as L2(Pn).

When the covariates {Xi}ni=1 are random, denoting the probability distribution of X as PX , we
define the L2 norm (in terms of PX), acting on functions f : X → R, by

‖f‖22 := ‖f‖L2(PX) =
∫
X
f2(x)dPX(x). (1.3)

In addition to that, we denote (with a slight abuse of notation) the functional space L2(PX) :={
f | ‖f‖22 < +∞

}
and the inner product in L2(PX) as 〈f, g〉L2(PX) :=

∫
X f(x)g(x)dPX for any f, g ∈

L2(PX).
A quantity of interest will be the error of an estimator f̂ of f∗, which can be measured in terms

of:
‖f̂ − f∗‖2n or ‖f̂ − f∗‖22.

In this work, the expectation of either of these two errors will be called the risk (prediction) error.

Another choice to overcome the obstacle that f∗ is unknown could be making a (relatively mild)
assumption that it belongs to some (quite rich) functional space. Introducing an example of this space
is the purpose of the next section.
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1.2. Reproducing kernel Hilbert space

1.2 Reproducing kernel Hilbert space

We now turn to the notion of a reproducing kernel Hilbert space [11], or RKHS for short. These
spaces are particular instances of functional spaces that act from X to R. We start to describe this
notion by defining another notion of a positive semidefinite kernel function [99, 112]. After that, RKHS
can be constructed based on this kernel function.

1.2.1 Positive semidefinite kernel functions

Let us begin with the notion of a positive semidefinite kernel function (reproducing kernel) [98,
112, 114].

Definition 1.2.1. A symmetric bivariate function K : X × X → R is called a positive semidefinite
kernel if for all integers n ≥ 1 and elements {xi ∈ X}ni=1, the n×nmatrix with elementsKij = K(xi, xj)
is positive semidefinite, meaning that one has

α>Kα ≥ 0 for all α ∈ Rn.

Let us mention some well-known examples of positive semidefinite kernels [98, 112, 114].

Example 1 (Linear kernel). Assume that X = Rd and define the linear kernel function as K(w, z) =
〈w, z〉Rd =

∑d
i=1wizi. For any {xi}ni=1 of arbitrary points from X , define the matrix K ∈ Rn×n with

Kij = K(xi, xj), i, j ∈ {1, . . . , n}. Then for any vector α ∈ Rn,

α>Kα =
n∑

i,j=1
αiαj〈xi, xj〉Rd = ‖

n∑
i=1

αixi‖2 ≥ 0.

Thus, the linear kernel is positive semidefinite.

Example 2 (Polynomial kernel). Assume that X = Rd and define the polynomial kernel function as
K(x, z) = 〈x, z〉mRd for some natural number m ≥ 2. Positive semi-definiteness (for m = 2) follows
from

K(x, z) =
(

d∑
i=1

xizi

)2

=
d∑
i=1

x2
i z

2
i + 2

∑
i<j

xixjzizj .

Set D = d+
(d
2
)
and define a map Φ : Rd → RD as

Φ(x) =
{
x2
j , for j ∈ {1, . . . , d},
√

2xixj , for i < j.

Then, one can verify that K(x, z) = 〈Φ(x),Φ(z)〉RD . Finally, recall Example 1.
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Part, Chapter 1 – Overview

Example 3 (Gaussian kernel). Assume that X ⊆ Rd and consider the Gaussian kernel K(x, z) =
exp

(
− 1

2h2 ‖x− z‖2
)
for some parameter h > 0. Importantly, the Gaussian kernel is a very popular

choice in practice [9, 98, 101].

1.2.2 Mercer’s theorem and consequences

Let us now construct an RKHS from a kernel function, as we claimed at the beginning of the section.
More precisely, we turn to a useful representation of a broad class of positive semidefinite kernel
functions in terms of their eigenfunctions. Given a symmetric positive semidefinite kernel function
K : X ×X 7→ R that is continuous (in both arguments), we can define a linear operator Tk : L2(PX) 7→
L2(PX) via

Tk(f)(z) :=
∫
X
K(x, z)f(z)dPX(x). (1.4)

Assume that Tk is bounded on L2(PX), then we can say that Tk is a Hilbert-Schmidt operator. For
instance, the boundness of Tk can be achieved by assuming∫

X×X
K2(x, z)dPX(x)dPX(z) < +∞. (1.5)

It follows from

‖Tk(f)‖2L2(PX) =
∫
X

(∫
X
K(x, y)f(x)dPX(x)

)2
dPX(y)

≤ ‖f‖2L2(PX)

∫
X×X

K2(x, y)dPX(x)dPX(y),

where we used the Cauchy-Schwarz inequality.
Having gained some intuition about the kernel integral operator, we are ready to state Mercer’s

theorem.

Theorem 1.2.1 (Mercer’s theorem; see Theorem 12.20 in [114]). Suppose that X is compact, the
kernel function K is continuous and positive semidefinite and satisfies Ineq. (1.5). Then, there exists
a sequence of eigenfunctions {φj}+∞j=1 that forms an orthonormal basis of L2(PX), and non-negative
eigenvalues {µj}+∞j=1 such that

Tk(φj) = µjφj , for j = 1, 2, . . . (1.6)

Moreover, the following expansion holds

K(x, z) =
+∞∑
j=1

µjφj(x)φj(z), (1.7)

where the convergence of the series holds absolutely and uniformly.
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Given Mercer’s kernel (1.7) and its associated eigenvalues {µj}+∞j=1, one can distinguish two cases: a)
finite-rank kernels (µj = 0 ∀j > r, for some integer r > 1); b) infinite-rank kernels (µ1 ≥ µ2 ≥ . . . > 0).
We list some examples of these kernels below.

— Finite-rank kernels: examples of such kernels include the linear kernel K(x, x′) = 〈x, x′〉Rd ,
which has rank at most r = d; and the kernel K(x, x′) = (1 + xx′)m generating polynomials of
degree m, which has rank at most r = m+ 1.

— Infinite-rank kernels:
— polynomial eigenvalue decay kernels:

cj−β ≤ µj ≤ Cj−β, for all j = 1, 2, . . . (1.8)

where 0 < c ≤ C are universal constants, and β > 1 parametrizes the decay rate. We note
that Eq. (1.8) assumes a trace class operator tr(Tk) =

∑+∞
j=1 µj < +∞. Kernels with poly-

nomial decaying eigenvalues include those that underlie the Sobolev spaces with different
orders of smoothness (see, e.g., [66, 114]) that consist of functions that have weak derivatives
being Lebesgue integrable. More formally, for some fixed integer α ≥ 1, consider the class
Hα[0, 1] of real-valued functions on [0, 1] that are α-times differentiable, with the α-derivative
f (α) being Lebesgue-integrable, and such that f(0) = f (1)(0) = . . . = f (α−1)(0) = 0. Then,
we may define an inner product

〈f, g〉Hα :=
∫ 1

0
f (α)(z)g(α)(z)dz, ∀f, g ∈ Hα[0, 1]. (1.9)

This inner product defines an RKHS and the reproducing kernel

K(x, z) =
∫ 1

0

(x− y)α−1
+

(α− 1)!
(z − y)α−1

+
(α− 1)! dy, (1.10)

where (t)+ = max{0, t}. As an example, the first-order Sobolev kernelK(x, z) = min {x, z} , x, z ∈
[0, 1], generates an RKHS of Lipschitz functions (functions with a bounded derivative) and
gives β = 2. Higher-order Sobolev kernels exhibit the polynomial eigendecay condition (1.8)
with larger values of the parameter β.

— exponential eigenvalue decay kernels:

cexp
(
−c1j

2
)
≤ µj ≤ Cexp

(
−c1j

2
)
, for all j = 1, 2, . . . , (1.11)

for strictly positive constants (c1, c, C). Such classes include the RKHS generated by the
Gaussian kernel K(x, x′) = exp

(
−‖x− x′‖2

)
.

An interesting consequence of Mercer’s theorem 1.2.1 is in giving a relatively explicit characteri-
zation of the RKHS associated with a kernel function.
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Part, Chapter 1 – Overview

Corollary 1.2.2 (Corollary 12.26 in [114]). Consider a kernel function satisfying the conditions of
Mercer’s theorem with its associated eigenfunctions {φj}+∞j=1 and non-negative eigenvalues {µj}+∞j=1.
Then, it induces the following reproducing kernel Hilbert space

H :=

f =
+∞∑
j=1

βjφj | for some {βj}+∞j=1 ∈ `
2(N) with

+∞∑
j=1

β2
j

µj
< +∞

 , (1.12)

along with the inner product:

〈f, g〉H :=
+∞∑
j=1

〈f, φj〉L2(PX)〈g, φj〉L2(PX)
µj

, ∀f, g ∈ H. (1.13)

Thus, the desired RKHS (H, 〈·, ·〉H) is constructed.

1.2.3 Reproducing property

An important fact about the reproducing kernel Hilbert space is the kernel reproducing property
[98, 114], which underlies the power of kernel methods in practice, by providing them great flexibility.
In particular, it says that any positive semidefinite kernel function K, defined on the Cartesian product
space X × X , can be used to construct a Hilbert space of functions on X that we denote (H, 〈·, ·〉H).
This Hilbert space is unique and has the following property: for any x ∈ X , the function K(·, x) ∈ H
and satisfies the relation

〈f,K(·, x)〉H = f(x) for all f ∈ H. (1.14)

Reproducing property (1.14) allows us to think of the kernel as defining a "feature map" x 7→ K(·, x) ∈
H, and an inner product in H is reduced to kernel evaluations, meaning that 〈K(·, x),K(·, z)〉H =
K(x, z) for all x, z ∈ X . We summarize what has been said in the theorem below.

Theorem 1.2.3 (Theorem 12.11 in [114]). Given any positive semidefinite kernel function K, there
is a unique Hilbert space H in which the kernel satisfies the reproducing property (1.14). It is known
as the reproducing kernel Hilbert space associated with K.

1.3 Model selection in regression

Choosing the number of iterations of an iterative learning algorithm could be seen as a model
selection task. We clarify what it means below.

Designing an estimation procedure usually requires some prior knowledge of the unknown distri-
bution of the pair covariate-response (X,Y ). Without this knowledge, choosing a proper model is one
of the main obstacles for the statistician. More precisely, the aim of model selection is to construct
data-driven criteria to select a model among a given list. By designing such criteria, one can consider
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1.3. Model selection in regression

the so-called nonasymptotic approach, meaning that the size of the models is allowed to depend on the
sample size n. In the case of the nonparametric regression, this approach allows to choose the models
(functions) with the best approximation property, from the data. The main theoretical tool that one
uses in model selection is the concentration inequality [36]. The central feature of the concentration
inequalities is the fact that they provide deviation control of a (sum of) random variable for any
sample size n.

Let us describe the standard procedure for model selection in the framework of nonparametric
regression. To do this, we introduce a collection of models S = {St, t ∈ T }, that hereafter will be
called models, indexed by a countable set T . To each t ∈ T , we associate some functional estimator
f t of f∗, relative to St. As an example, let us consider, for instance, the empirical norm ‖f t − f∗‖2n
to quantify the quality of the estimator f t. Besides that, we introduce the risk error of the estimator
f t, which will be equal to Eε‖f t − f∗‖2n (Eε denotes the expectation w.r.t. the noise {εi}ni=1). Then,
the goal will be to choose an (optimal) t̂ with respect to ‖f t− f∗‖2n or Eε‖f t− f∗‖2n. Given the model
selection procedure t̂, one can verify its optimality by utilizing the so-called oracle inequalities [47, 80,
108], meaning that t̂ ∈ T could satisfy one of two (or both simultaneously) inequalities below:

—
‖f t̂ − f∗‖2n ≤ Cn inf

t∈T
Eε‖f t − f∗‖2n + rn, (1.15)

—
Eε‖f t̂ − f∗‖2n ≤ Cn inf

t∈T
Eε‖f t − f∗‖2n + rn, (1.16)

where Ineq. (1.15) holds with high (exponential) probability, e.g., 1 − exp(−
√
n). In both

inequalities, constant Cn should be bounded and does not depend on the regression function
f∗, and, ideally, should be close to 1 (a selection procedure with Cn → 1 as n→ +∞ is called
asymptotically optimal or efficient). Moreover, the right hand side term rn should be negligible
(smaller) compared to inf

t∈T
Eε‖f t−f∗‖2n. In addition to that, notice that Ineq. (1.15) is a stronger

result than Ineq. (1.16) since most often, Ineq. (1.15) could be integrated (over the noise ε),
and Ineq. (1.16) will follow.

Another approach to quantify the theoretical performance of a model selection procedure is by
deriving an upper bound on the risk error that matches the so-called minimax lower bound. More
precisely, assume that there exists a set of functions Θf such that the performance of the estimator
f t, t ∈ T , of f∗ is measured by the maximum risk of this estimator on Θf :

r(f t) := sup
f∈Θf

Eε‖f t − f‖2n.

Then, the minimax lower bound, associated with Θf and the empirical norm L2(Pn), is defined as

R∗n := inf
f̂

[
r(f̂)

]
, (1.17)

19



Part, Chapter 1 – Overview

where f̂ is any measurable of the data functional estimator. Note that the minimax risk R∗n provides
a fundamental lower bound on the performance of any estimator uniformly over the function space
Θf . Thus, if the statistician is able to choose t̂ ∈ T (via some data-driven statistical procedure) such
that

Eε‖f t̂ − f∗‖2n ≤ cuR∗n, (1.18)

where cu > 1 is a constant, then the choice t̂ of the model is called minimax optimal (w.r.t. the
empirical norm L2(Pn)) over the set Θf .

Notice that Ineq. (1.15), (1.16), and (1.18) could be presented in the L2(PX) norm, e.g., ‖f t̂−f∗‖22
and its expectation E‖f t̂ − f∗‖22.

Model selection is used in almost all statistical procedures one can imagine. For instance, it plays
a crucial role in the statistical analysis of cross-validation, penalized estimators, and signal analysis
(see, e.g., [80] for a thorough review of the subject).

1.4 Iterative learning algorithms

This work addresses the problem of estimating a regression function from Eq. (1.1) using iterative
learning algorithms. Iterative learning algorithms are ubiquitous in machine learning, optimization,
and statistics [35, 37]. From the statistical point of view, which is the main focus of this work, the
central question of interest is the statistical performance of these iterative algorithms (see the previous
section). For example, there has been a great interest in boosting-like methods [39, 58, 118, 126]. In its
original and computationally flexible version, boosting seeks to minimize empirically a loss function
in a greedy fashion such that, given a set of weak (base) learners, the final estimator of the regression
function (1.1) is built by iteratively re-weighting a linear combination of them. Besides that, it is
worth to mention different (stochastic) gradient descent methods [35, 65] that are extensively used
nowadays.

Spectral filter algorithms [19, 51, 64] is a subset of the class of iterative learning algorithms. Initially,
these algorithms were introduced in the inverse problem literature (the monograph [60] provides a very
detailed review) for regularization of ill-posed operator (matrix) problems. The main idea of deriving
such algorithms is the fact that there is a variety of estimators that behave similarly to Tikhonov (ridge)
regularization. Moreover, these algorithms belong to the class of linear estimators, meaning that the
estimator (evaluated on a sample) is "proportional" to the vector of the responses Y = [Y1, . . . , Yn]>.
In the present work, we put a particular focus on such linear estimators called spectral filters. One
can enumerate several examples of spectral filters: spectral cut-off, Landweber iterations (corresponds
to gradient descent with a constant step-size), and Tikhonov (ridge) regularization [15, 19, 60, 122].
The precise expressions of the mentioned spectral filter functions (estimators) in the case of linear
Gaussian sequence model will be given in Section 1.5.3. The definition of spectral filter function in
the case of reproducing kernel Hilbert space will be rigorously defined in Chapter 2 (see Eq. (2.9) and
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Definition 2.2.1).

1.5 Early stopping rules

It turns out that one should know the number of iterations when using an iterative learning
algorithm. This question is all the more important for two reasons. First, interrupting the learning
process will provide the user with a lower computational complexity of the algorithm. Second, it has
been already observed empirically [91, 92] that stopping a learning algorithm (usually, a gradient-type
one) will result in a better statistical precision than waiting until some prescribed number of iterations
will be executed. We remark that the latter bad behavior in the statistical learning literature is called
overfitting [70].

1.5.1 Validation based rules

As a motivating example, Prechelt [91] has considered an artificial neural network model and
proposed several empirical strategies for stopping the learning algorithm (stochastic gradient descent)
that relied on splitting the initial data into two parts: one is made for training the model, the other
one – for validation (prediction on this part). This validation procedure is called the Hold-out [8]. The
main motivation of this strategy was its "idealized" empirical performance that we illustrate in Fig.
1.1.

and others [25], or early stopping [17]. See also [8, 20] for an overview and [9] for
an experimental comparison.

Early stopping is widely used because it is simple to understand and imple-
ment and has been reported to be superior to regularization methods in many
cases, e.g. in [9].

2.1.2 The Basic Early Stopping Technique

In most introductory papers on supervised neural network training one can find a
diagram similar to the one shown in Figure 2.1. It is claimed to show the evolution
over time of the per-example error on the training set and on a validation set
not used for training (the training error curve and the validation error curve).
Given this behavior, it is clear how to do early stopping using validation:

Training error
Validation error

Fig. 2.1. Idealized training and validation error curves. Vertical: errors; horizontal:
time

1. Split the training data into a training set and a validation set, e.g. in a 2-to-1
proportion.

2. Train only on the training set and evaluate the per-example error on the
validation set once in a while, e.g. after every fifth epoch.

3. Stop training as soon as the error on the validation set is higher than it was
the last time it was checked.

4. Use the weights the network had in that previous step as the result of the
training run.

This approach uses the validation set to anticipate the behavior in real use (or
on a test set), assuming that the error on both will be similar: The validation
error is used as an estimate of the generalization error.

56 L. Prechelt

Figure 1.1 – "Idealized" training and validation error curves with an artificial neural network. Vertical:
errors; horizontal: time epochs. Taken from [91].

Since for large sample sizes n, the validation error should serve as an approximation to the risk
error (prediction error), as one can see in Figure 1.1, there is some number of ’time epochs’ for which
one achieves the minimum of the validation curve. However, the true (not "idealized") curves for the
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training and validation errors are much more complicated (see Figure 2.2 in [91]), with possible local
minima. In the aforementioned paper, Prechelt developed several stopping criteria and compared them
on real-world data sets. In a few words, the best trade-off between the validation error and training
time was achieved by the criterion based on comparing the validation error at time t and the validation
error at time t− k, for some k ∈ N.

Besides its practical evaluation, the Hold-out strategy has been proved to output minimax optimal
regression function estimators in some contexts (see, e.g., [43, 45] for spectral filter algorithms in
RKHS).

1.5.2 Deterministic rules

First theoretical results for the construction of early stopping rules concerned with the develop-
ment of deterministic stopping rules [17, 39, 71, 123, 126], meaning that they depend mainly on the
number of samples n. For these rules, the main focus was on either the regression function estimation
in a reproducing kernel Hilbert space (RKHS) utilizing gradient descent, or boosting algorithms in
regression or classification frameworks (L2-boosting, AdaBoost, and LogitBoost) in some functional
hypothesis space.

Different boosting methods.

Let us describe the framework of boosting algorithms [39, 118].
Consider a cost function φ : R × R 7→ [0,+∞), when φ(y, θ) denotes the cost associated with

predicting θ while the true response is y. There exist three common cost functions:
— the least-squares loss φ(y, θ) = 0.5(y − θ)2 that yields the L2 boosting algorithm;
— the logistic loss φ(y, θ) = ln(1 + exp(−yθ)) that yields the LogitBoost algorithm;
— the exponential loss φ(y, θ) = exp(−yθ) that yields the AdaBoost algorithm.

Given a loss function φ, one defines the population cost f 7→ Lφ(f) via

Lφ(f) = E [φ(Y, f(X))] , (1.19)

where E is the expectation w.r.t. the joint probability of (X,Y ). Given some functional space F , one
minimizes the population cost, i.e.,

f∗φ = argmin
f∈F

Lφ(f). (1.20)

Notice that for L2 boosting, f∗φ is equal to the conditional expectation x 7→ E[Y | X = x].
Since we do not have access to the distribution of (X,Y ), the computation of f∗φ is impossible.

However, one can use the sample {Xi, Yi}ni=1 and the empirical loss (error):

Lφ,n(f) = 1
n

n∑
i=1

φ(Yi, f(Xi)), (1.21)
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where the population expectation is replaced by the empirical expectation. Then, a broad class of
boosting algorithms generate a sequence {f t}+∞t=0 via the updates

f t+1(·) = f t(·)− ηtgt(·), gt = argmax
d∈F

〈∇Lφ,n(f t), d({Xi}ni=1)〉, (1.22)

where {ηt}+∞t=0 is a real-valued sequence of step-sizes chosen by the user, d({Xi}ni=1) = [d(X1), . . . , d(Xn)]>,
∇Lφ,n(f) ∈ Rn is the gradient taken at the vector [f(X1), . . . , f(Xn)]>, and 〈h, g〉 is the usual Eu-
clidean inner product between h, g ∈ Rn. Running Eq. (1.22) for an infinite number of iterations will
lead to a minimizer of the empirical loss from Eq. (1.21), thus causing overfitting [118, Fig. 1].

Equipped with Eq. (1.22), Zhang et al. [126] proved the following result. Let S be a set of real-
valued functions and define

span(S) =


m∑
j=1

wjfj | fj ∈ S,wj ∈ R, m = 1, 2, . . .

 ,
which forms a linear functional space. For all f ∈ span(S), we can define its 1-norm w.r.t. the basis of
S as:

‖f‖1 = inf

‖w‖1 | f =
m∑
j=1

wjfj ; fj ∈ S, m = 1, 2, . . .

 .
If tn is a sequence of real numbers such that limn→∞tn =∞, then under some additional assumptions
on the step-size, for any t̂(n) ≥ tn such that ‖f t̂(n)‖1 ≤ βn (βn is some carefully chosen sequence),

lim
n→∞

Lφ(f t̂(n)) = inf
f∈span(S)

Lφ(f), (1.23)

where Lφ(f) is the population cost of f associated with the loss function φ, and f t is the output of
a chosen boosting algorithm at the iteration t. Thus, one can conclude that boosting algorithms are
consistent after some number of iterations t̂(n). Therefore, one can stop a chosen algorithm at the
iteration t̂(n) and achieve an (asymptotically) meaningful statistical precision. Obviously, the result
in Eq. (1.23) is only theoretical in nature, and t̂(n) is not computable in practice.

Gradient descent learning.

Yao et al. [123] focused on constructing an early stopping rule that should recover the famous
bias-variance trade-off [70, Section 2.9] of the gradient descent estimator. They assumed the following:
for some s > 0, the regression function f∗ ∈ T sk (BR), where BR = {f ∈ L2(PX) | ‖f‖2 ≤ R} (R > 0),
and Tk : L2(PX) 7→ L2(PX) is the kernel integral operator associated with some reproducing kernel K.
The aforementioned assumption is called a source condition in the statistical learning literature [44,
49, 104] (we use an assumption related to the source condition in Chapter 2 as well). One can claim
that the parameter s controls the smoothness of the regression function (the bigger s – the smoother
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regression function). In more detail, given the data {(xi, Yi)}ni=1, the following empirical error was
minimized over the reproducing kernel Hilbert space H associated with K:

argmin
f∈H

{
1
n

n∑
i=1

(f(xi)− Yi)2
}
. (1.24)

Then by the reproducing property (1.14), the iterations of gradient descent {f t}t∈N ∈ H with the step
size {ηt}+∞t=0 are defined as

f t+1(·) = f t(·)− ηt
n

n∑
i=1

(f t(xi)− Yi)K(·, xi), f0 = 0. (1.25)

Notice that Eq. (1.25) is equivalent to the boosting procedure from Eq. (1.22) with the least-squares
loss (L2 boosting).

Yao et al. [123] proved that, given some parameter θ ∈ [0, 1) and the step-size of gradient descent
ηt � (t+ 1)−θ (� means "up to a constant factor that can depend only on the kernel"), t ∈ N, for the
stopping rule t∗(n) =

⌈
n

1
(2s+2)(1−θ)

⌉
, the following holds:

‖f t∗(n) − f∗‖2 ≤ C(δ,K, θ)n−
s

2s+2 (1.26)

with probability at least 1 − δ, where constant C(δ, θ,K) depends only on δ, θ, and a uniform upper
bound on the kernel. Above, dxe denotes the smallest integer greater than or equal to x ∈ R.

As it was clarified in [123, Remark 2.3], the high probability upper bound from Ineq. (1.26) does
not match the minimax lower bound, under the assumptions made. Nevertheless, when s → ∞ (cor-
responds to very smooth functions), the upper bound matches the well-known (fast) asymptotic rate
O
(
n−1/2

)
, which says that upper bound (1.26) is meaningful in some sense.

1.5.3 Minimum discrepancy principle rule

Contrary to the deterministic early stopping rules that we have considered previously, the focus
of the present work is to give some theoretical (statistically optimal) and practical justifications of a
data-driven approach that is called the minimum discrepancy principle. This approach was originally
developed as Morozov’s discrepancy principle [5, 60, 84] for solving (potentially nonlinear) inverse
ill-posed operator problems. Since this principle is the main research subject in the present work, let
us consider its historical part in more detail.

MDP for linear ill-posed problems.

For inverse ill-posed problems, one considers [60] linear operator equations of the form

Az = y, (1.27)
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1.5. Early stopping rules

where A is a bounded linear operator between some Hilbert spaces Z and Y. It would be too restrictive
to assume that A has its inverse A−1. Nevertheless, one might still be interested in some generalized
solution of Eq. (1.27), i.e., some element that solves it but in an approximate sense. To do that,
minimization of the least squares solution ‖y−Az‖2 is considered, which results in the normal equation
and its best-approximate solution z†:

A∗Az = A∗y, z† := A†y, (1.28)

where A∗ is the adjoint operator of A, and A† is the Moore-Penrose generalized inverse [60, 89] of A.
Most iterative methods for approximating A†y are based on a transformation of the normal equation
(1.28) into equivalent fixed point equations of type

z = z +A∗(y −Az). (1.29)

Usually, y (and z via Eq. (1.27), accordingly) is represented by its corrupted by some deterministic
noise version yσ (zσ, respectively), where σ is the noise parameter. Then, the first natural algorithm
to solve the fixed point equation (1.29) is Landweber iterations [75] (corresponds to gradient descent
with a constant step-size 0 < η ≤ ‖A‖−2). Given yσ and an initial guess zσ0 ∈ Z, Landweber iterations
take the form

zσm = zσm−1 + ηA∗(yσ −Azσm−1), m = 1, 2, . . . (1.30)

We write zm (corresponds to σ = 0) instead of zσm when one iterates with precise data yσ = y. Without
loss of generality, we can say that ‖A‖ ≤ 1, and zσ0 = 0. With Eq. (1.30) at hand, one can obtain the
following result.

Theorem 1.5.1 (Theorem 6.1 in [60]). Define D(A†) as the domain of the operator A†, then, if
y ∈ D(A†), zm → A†y as m→∞. If y /∈ D(A†), then ‖zm‖ → ∞ as m→∞.

Thus, the sequence zm associated with y, converges (in the norm in Z) to the best-approximate
solution z†. However, we cannot provide the same conclusion for the corrupted version zσm.

One is able to notice that, using Eq. (1.30), we can introduce the function

gm(λ) =
m−1∑
j=0

(1− λ)j (1.31)

that yields
zσm = gm(A∗A)A∗yσ.

In the formula above, we call gm(λ) the spectral filter function of Landweber iterations. As another
classical example of spectral filter function, we can mention Tikhonov (ridge) regularization, parame-
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terized by some αm > 0, as

gαm(λ) = 1
αm + λ

, αm → 0 as m→∞. (1.32)

With this choice above, zσαm solving the perturbed normal equation A∗Az+αmz = A∗yσ is equivalent
to

zσαm = (A∗A+ αmI)−1A∗yσ = gαm(A∗A)A∗yσ, (1.33)

where I is the identity operator such that I : Z 7→ Z, Iz = z for any z ∈ Z.
Further, assume that for yσ /∈ D(A†), ‖yσ − y‖ ≤ σ. This will lead to the minimum dicrepancy

(MDP) stopping rule m(σ, yσ, ϑ) (see [60, Section 6.1] for more details) defined as

‖yσ −Azσm(σ,yσ ,ϑ)‖︸ ︷︷ ︸
Residuals

≤ ϑσ, (1.34)

with a fixed parameter ϑ ≥ 1 to choose by the user. We should emphasize here that the stopping rule
m(σ, yσ, ϑ) with a proper tuning of ϑ should provide an appropriate trade-off of the approximation
error z† − zm and the data error zm − zσm, m = 1, 2, . . .

MDP for statistical inverse problems.

Moving back to the statistical learning (specifically, regression) setting, the present work was
inspired by [29], where Blanchard et al. studied the minimum discrepancy principle for a general
spectral filter function in the following linear inverse model:

Y = Aζ + σξ, (1.35)

where the signal ζ ∈ RD, A ∈ Rn×D(D ≤ n);Y, ξ ∈ Rn, ξ is Gaussian stochastic noise. Then, by
projecting Eq. (1.35) onto the space spanned on the eigenvectors (v1, . . . , vD) of (A∗A)1/2, one obtains
the associated linear Gaussian sequence model that takes the form

Yi = λiζi + δεi, i = 1, . . . , D, (1.36)

Yi = δεi, i = D + 1, . . . , n, (1.37)

where λ1 ≥ λ2 ≥ . . . ≥ λD > 0 are the eigenvalues of (A∗A)1/2, ζi = 〈ζ, vi〉/n, Yi = 〈Y,wi〉/n, with
wi =

√
n A∗vi
‖Avi‖ , and {εi}

n
i=1 is independent standard Gaussian noise N (0, σ2), with the "noise level"

parameter δ = σ/
√
n.

The objective was to recover the signal ζ = (ζi)1≤i≤D from the data (Yi)1≤i≤n. To do that, the
following linear spectral filter estimator was considered

ζ̂
(t)
i = γ

(t)
i λ−1

i Yi, i = 1, . . . , D; t ≥ 0, (1.38)
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where (γ(t)
i )i=1,...,D;t≥0 are called spectral filters that should satisfy: a) γ(t)

i ∈ [0, 1], i = 1, . . . , D; b)
γ

(t)
i is a continuous non-decreasing function of t; c) γ(0)

i = 0, and γ(t)
i → 1 as t→∞. Typical spectral

filters include:
— spectral cut-off (equivalent to the truncated singular value decomposition) with γ(t)

i = I (i ≤ t),
— Landweber iterations γ(t)

i = 1− (1− λ2
i )t, corresponding to gradient descent with step-size 1,

— Tikhonov (ridge) regularization γ(t)
i = λ2

i /(λ2
i + αt), where αt → 0 as t→∞.

One can notice that γ(t)
i = λigt(λ), i = 1, . . . , D, for the spectral filter function gt(λ) defined as in Eq.

(1.31) or Eq. (1.32). Two important quantities for the analysis of the estimator (ζ̂(t))t≥0 are its bias
and variance defined as

B2
t,ζ := ‖A

(
Eε
[
ζ̂(t)
]
− ζ

)
‖2 =

D∑
i=1

(1− γ(t)
i )2λ2

i ζ
2
i , (1.39)

Vt,ζ := Eε
[
‖A
(
ζ̂(t) − Eε

[
ζ̂(t)
])
‖2
]

= δ2
D∑
i=1

(
γ

(t)
i

)2
, (1.40)

where we recall that Eε denotes the expectation w.r.t. the noise {εi}ni=1. Due to the monotonicity
of the spectral filter γ(t)

i , i = 1, . . . , D, the bias term is a non-increasing function of t, whereas the
variance term Vt,ζ is a non-decreasing function of t. Then, the risk (prediction) error at time t is equal
to the sum of B2

t,ζ and Vt,ζ .
In the aforementioned work, the authors tried to recover the bias-variance trade-off [70, 108] of the

linear estimator (ζ̂(t))t≥0 (the intersection point of B2
t,ζ and Vt,ζ) through the control of the residuals

(we also call this quantity the "reduced empirical risk" in the future), which is a non-increasing function
of t and are minimized during the learning process:

R̃t := ‖Y −Aζ̂(t)‖2 =
D∑
i=1

(1− γ(t)
i )2Y 2

i , ∀t ≥ 0, (1.41)

as a data fidelity criterion. We illustrate the typical behavior of the quantities B2
t,ζ , Vt,ζ , Bt,ζ + Vt,ζ

(the risk error), and the residuals R̃t w.r.t. time t in Figure 1.2.
It turned out that the expectation (over the noise {εi}ni=1) of the residuals R̃t, t ≥ 0, is equal to

the bias term plus a deviation term related to the filter γ(t)
i , i = 1, . . . , D. This way, the obstacle of not

knowing the bias term (it depends on the estimated signal ζ) can be resolved by properly controlling
EεR̃t. Pushing this logic a bit further, if the residuals are close to its expectation, then it yields the
stopping rule already presented for the inverse problems above:

τ = inf{t ≥ t0 | R̃t ≤ κ}, for some κ > 0 and t0 ≥ 0. (1.42)

It appeared that to mimic the behavior of the bias-variance trade-off, κ in Eq. (1.42) should be equal
to Dδ2. It is worth to mention that the "starting time" t0 was introduced artificially, which is an
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Figure 1.2 – The bias, variance, risk, and residuals ("reduced empirical risk") behavior.

inconvenience of the proposed rule. Apart from that, the stopping rule τ was proved to be optimal (in
terms of an oracle inequality of type (1.16) for the prediction error) under very strong assumptions,
i.e.,

— There exists a constant Cl1,l2 such that for all t ≥ t0, we have

D∑
i=1

γ
(t)
i ≤ Cl1,l2

D∑
i=1

(γ(t)
i )2.

— Define tω ≥ t0 as the iteration of the bias-variance intersection of a spectral filter estimator,
then

√
D .

∑D
i=1(γ(tω)

i )2, where . means an inequality up to a numeric constant.
Notice that these assumptions could be barely checked in practice.

Discussion and contribution of the thesis.

A lot of quite recent papers have studied stopping rules like (1.42) in different contexts. For in-
stance, [32, 34] defined a MDP stopping rule for (kernel) conjugate gradient descent while [30, 51]
considered the spectral cut-off estimator in the linear regression or linear Gaussian sequence models.
In [34], it appeared that when taking into consideration conjugate gradient descent, the usual MDP
stopping rule (1.34) should be modified to achieve optimal rates. That was done by means of weighting
the residuals from Eq. (1.34), by applying the operator (αI + A∗A)−1/2. Moreover, Blanchard et al.
[30] concluded that the stopping rule (1.34) could not produce (without additional strong assump-
tions) statistical optimality over Sobolev-type ellipsoids for the spectral cut-off estimator in the linear
Gaussian sequence model. Stankewitz [105] corrected this sub-optimality by introducing the so-called
polynomial smoothing strategy for the residuals. This strategy consists in weighting the residuals by
utilizing the eigenvalues from Eq. (1.36) as {λθi }Di=1, where θ is called the smoothing parameter. It

28



1.5. Early stopping rules

was shown, via an oracle inequality of type (1.16) that this strategy, for some values of the smoothing
parameter, provides an optimal estimator. Another version of the smoothing strategy for the residuals
involving the notion of effective dimension of the kernel, introduced previously by Zhang in [125], has
been considered in [50].

In Chapter 2, we reexamine the early stopping rule (1.42) (without the t0-assumption) applied
to gradient descent and (Tikhonov) ridge regression (cast as an iterative algorithm) in a reproducing
kernel Hilbert space. We show (via an upper bound of type (1.18) for the L2(PX) norm) that this rule
provides a functional estimator that achieves the minimax-optimal rate for finite-rank kernels. After
that, for infinite-rank reproducing kernels, the polynomial smoothing strategy is discussed and applied.
More precisely, for reproducing kernels associated with Sobolev spaces and some explicit values of the
smoothing parameter, we achieve the minimax-optimal rate of type (1.18) for smoothed MDP-based
early stopped gradient descent and kernel ridge regression, in terms of the L2(Pn) norm.

1.5.4 Other data-driven approaches

Another interesting approach to the problem of constructing an early stopping rule in the frame-
work of Reproducing kernel Hilbert space is proposed in the work [92, 118]. There, the authors consider
gradient descent and different boosting algorithms (L2 boosting, Adaboost, and LogitBoost), respec-
tively, for estimating the unknown regression function f∗. Let us describe their approach more closely
and briefly at the same time.

Early stopping via localized Rademacher complexity and critical radius.
Assume that one is given some reproducing kernel Hilbert space H with its associated reproducing

kernel K : X × X 7→ R. Further, the kernel K will generate the normalized Gram (kernel) matrix
Kn = K(xi, xj)/n, i, j ∈ {1, . . . , n}, where {xi ∈ X}ni=1 are given covariates.

The quantity on which their theoretical analysis relies is called the (empirical) localized Rademacher
complexity [16, 82, 83, 114] of the unit ball in some functional space F defined as BF (1) := {f ∈ F | ‖f‖F ≤ 1}.

Definition 1.5.1. For any ε > 0 and functional space F , consider the empirical localized Rademacher
complexity

R̂n(ε,F) = Er

 sup
f∈F
‖f‖n≤ε

∣∣∣∣∣ 1n
n∑
i=1

rif(xi)
∣∣∣∣∣
 , (1.43)

where {ri}ni=1 are i.i.d. Rademacher variables ({−1,+1}-random variables with equal probability 1
2).

This complexity measure has become a standard tool in the modern empirical process and non-
parametric regression analysis [114, Chapter 5, 13]. For a reproducing kernel Hilbert space H, [82, 83]
proved that R̂n(ε,BH(1)) can be upper and lower bounded (up to constant factors) by the following
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quantity called the kernel complexity function

R̂n(ε,H) =
[

1
n

n∑
i=1

min
{
µ̂i, ε

2
}]1/2

, (1.44)

where (µ̂1, µ̂2, . . . , µ̂n) are the eigenvalues of Kn. It corresponds to a rescaled sum of the empirical
eigenvalues truncated at ε2.

Using this measure R̂n(ε,H), one can introduce the critical empirical radius ε̂n to be the smallest
positive solution to the following inequality

R̂n(ε,H)
ε

≤ ε

2eσ . (1.45)

Eq. (1.45) is called the critical inequality of BH(1). One can verify [114, Lemma 13.6] that the left-hand
side is a non-increasing function of ε, which guarantees that ε̂n exists and is unique. Then, Raskutti
et al. [92] have proved that the stopping rule

T̂RWY = argmin
{
t > 0 | R̂n

( 1√
ηt
,H
)
> (2eσηt)−1

}
, (1.46)

where η is a step-size of gradient descent, tightly estimates the bias-variance trade-off of the gradient
descent estimator (f t)t>0 from Eq. (1.25), meaning that the following holds with probability at least
1− c1 exp

(
−c2nε̂

2
n

)
, where c1 and c2 are some positive constants:

‖f T̂RWY − f∗‖2n ≤ 12ε̂2n. (1.47)

Discussion and contribution of the thesis.

First, notice that T̂RWY only depends on the data through the design. This means that the stopping
rule does not depend on the regression noise {εi}ni=1. One can say (see, e.g., [121, Theorem 1] for the
respective lower bound in expectation) that the result (1.47) provides an upper bound that matches
(up to a constant) the minimax lower bound over BH(1), where H is a reproducing kernel Hilbert space
associated with the class of regular kernels. This class includes the Gaussian, Sobolev, and polynomial
kernels, among others. The work [118] extended the previously mentioned strategy of the stopping rule
T̂RWY to the case of boosting learning algorithms. It was done again by estimating the bias-variance
trade-off with a slightly different complexity measure that is called the localized Gaussian complexity
of BH(1) [114, Chapter 13].

A thoughtful reader would be able to remark that the minimax optimality in both papers [92,
118] is achieved only over the unit ball in H. This assumption was encoded in the definitions of these
stopping rules (see, e.g., Eq. (1.46)). In Chapter 2, we remove such a strong assumption and consider
a ball of an arbitrary radius R in H.
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After that, we prove that, for finite-rank kernels, the minimum discrepancy principle stopping rule
(1.42) yields a minimax optimal function estimator over the ball of radius R in a reproducing kernel
Hilbert space H. Further, we modify the previously mentioned discrepancy principle stopping rule
utilizing the polynomial smoothing strategy [105]. Then for some explicit values of the smoothing
parameter, the modified stopping rule yields a minimax optimal functional estimator over the ball of
radius R in a reproducing kernel Hilbert space H, in particular, associated with infinite-rank Sobolev
spaces.

Thus, one can say that the aforementioned (MDP-based) rules adapt to the unknown radius R,
meaning that the knowledge of the radius of the ball in RKHS is not required for achieving statistical
optimality. Moreover, these rules are design-independent.

1.6 Linear estimators and tuning parameter selection

Chapters 3 and 4 present a data-driven procedure to choose the tuning parameter of a linear esti-
mator. This can be done by considering an iterative procedure (over the unknown tuning parameter)
and stopping it according to some carefully designed criterion.

This section is as follows. First, we define the linear estimator [7, 70, 116] and give some famous
examples of it. Second, we provide several widely-used strategies for tuning the parameter of a linear
estimator. Third, we list the contributions made in the thesis concerning the described framework.

1.6.1 Linear estimators description

Assume that one has a model selection set Λ := {λ1, . . . , λS} for some S ∈ N. A linear estimator
F λ := [fλ(x1), . . . , fλ(xn)]> of the regression function from Eq. (1.1) could be seen as

F λ = AλY, λ ∈ Λ, (1.48)

where Aλ is an n × n matrix and Y = [Y1, . . . , Yn]>, λ is a (smoothing) parameter to choose
(learn/tune).

There are several well-known examples of the linear estimator. Let us enumerate them.
k-nearest neighbor regression [26, 67]. Assume that one is given a similarity measure d :

X × X 7→ R and k is a strictly positive integer, then, from n covariates x1, . . . , xn, one can find k

nearest neighbors of xi, i = 1, . . . , n, e.g., find a set Ji of k points, which are among the k closest to
xi according to d. We can build an n × n matrix Ak of nearest neighbors, which is equal to 1/k for
all pairs (i, j) such that j ∈ Ji for all i ∈ {1, . . . , n}, and equal to zero otherwise. Usually, one chooses
the Euclidean metrics for d.

Nadaraya-Watson regression [85, 116]. Assume that one is given a ’window function’ k :
X×X 7→ R+, and we build the n×nmatrixW of pairwise evaluations. Then, the corresponding matrix
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Ah from Eq. (1.48) is equal to Ah = WD−1, where D = diag (W1) (1 is the n× n unit matrix) is the
diagonal matrix of row sums. Usually, one chooses the matrixW to beWij = exp

(
−‖xi − xj‖2/h

)
, h >

0, where xi and xj , i, j ∈ {1, . . . , n}, are the input data points, and h is the bandwidth to tune.

Variable selection in regression [102]. Consider the standard nonparametric regression model

Yi = f∗(xi) + εi, where X =


x>1
...
x>n

 ∈ Rn×d is a full-rank fixed design matrix with d ≤ n, and

εi ∼ N (0, σ2), i = 1, . . . , n, is i.i.d. Gaussian observation noise. In the variable selection setting, one
would like to select a subset J ⊆ {1, . . . , d} such that non-relevant variables of X will be discarded.
Denote XJ as the matrix of size n× |J | composed of the columns of X indexed by J . Consider then
the linear predictor F J = AJY , where the matrix AJ = XJ(X>J XJ)−1X>J . It is worth to mention that
the tuning parameter here could be the cardinality |J | of the chosen subset J (not the whole subset),
and for the matrix AJ , tr(AJ) = |J |. We consider this estimator in more detail in Chapter 4.

Pinsker filters [90]. In this case, the smoothing matrix from Eq. (1.48) is equal to Aω,k =
diag

{
(1− (kα/ω))+ , k = 1, . . . , n

}
for some parameters α, ω > 0, where x+ = max (x, 0).

The matrix Aλ plays a crucial role in the performance evaluation of the linear estimators described
above. More precisely, one can define the so-called "modal’s degree of freedom" [70, Chapter 7]

df(λ) = tr(Aλ),

which measures the complexity of the learning model (1.48). This way, for most of the cases, the
variance of the linear estimator (1.48) will be a non-decreasing function w.r.t. df(λ) (see Fig 1.3).
In particular, for the k-NN regression estimator, the variance term is proportional to the degree of
freedom (see Chapter 3).
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Figure 1: Bias-variance decomposition of the generalization error, and minimal/optimal penal-
ties.

and from Eq. (5) the expectation of the empirical risk:

E
[
n−1‖F̂λ − Y ‖2

2 − ‖ε‖2
2

]
= n−1 ‖(Aλ − In)F‖2

2 −
(
2 tr(Aλ) − tr(A"

λ Aλ)
)
σ2

n
. (8)

Note that the variance term in Eq. (7) is not proportional to the effective dimensionality
df(λ) = tr(Aλ) but to tr(A"

λ Aλ) . Although several papers argue these terms are of the same
order (for instance, they are equal when Aλ is a projection matrix), this may not hold in general.
If Eq. (1) holds for all matrices A ∈ {Aλ }λ∈Λ , we only have

0 ≤ tr(A"
λ Aλ)

2 − Kdf
≤ tr(Aλ) ≤ 2 tr(Aλ) − tr(A"

λ Aλ)

Kdf
≤ 2 tr(Aλ)

Kdf
. (9)

In order to give a first intuitive interpretation of Eq. (7) and Eq. (8), let us consider the
kernel ridge regression example, where A = K(K + λI)−1, and assume that the risk and the
empirical risk behave as their expectations in Eq. (7) and Eq. (8); see also Fig. 1. Completely
rigorous arguments based upon concentration inequalities are developed in the Appendix and
summarized in Section 4, leading to the same conclusions as the present informal reasoning.

First, as proved by Lemma 2 in Section B.2, the bias n−1 ‖(Aλ − In)F‖2
2 is a non-increasing

function of the dimensionality df(λ) = tr(Aλ) , and the variance tr(A"
λ Aλ)σ2n−1 is an increasing

function of df(λ) , as well as 2 tr(Aλ)−tr(A"
λ Aλ) . Therefore, Eq. (7) shows that the optimal λ re-

alizes the best trade-off between bias (which decreases with df(λ)) and variance (which increases
with df(λ)), which is a classical fact in model selection (see Figure 1).

Second, the expectation of the empirical risk in Eq. (8) can be decomposed into the bias and
a negative variance term which is the opposite of

penmin(λ) := n−1
(

2 tr(Aλ) − tr(A"
λ Aλ)

)
σ2 . (10)

As suggested by the notation penmin , we will show it is a minimal penalty in the following sense.
If

∀D ≥ 0, λ̂min(D) ∈ arg min
λ∈Λ

{
n−1‖F̂λ − Y ‖2

2 + D penmin(λ)
}

,

then, up to concentration inequalities that are detailed in Section 4.4, λ̂min(D) behaves like a
minimizer of

gD(λ) = E
[
n−1‖F̂λ − Y ‖2

2 + D penmin(λ)
]

− σ2 = n−1 ‖(Aλ − In)F‖2
2 + (D − 1) penmin(λ) .

Therefore, two main cases can be distinguished:

7

Figure 1.3 – The bias, variance, empirical risk, and generalization (prediction) error; taken from [6].
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1.6.2 Strategies to tune the parameter

Tuning parameter selection in linear estimators is an old problem. To the best of our knowledge, the
first results for this model selection problem were concerned with the Forward Selection and Backward
Elimination procedures [70, Chapter 3] for variable selection in linear regression. After that, a seminal
breakthrough for this problem was achieved by developing Akaike’s AIC [2] and Mallows’ Cp [79]
criteria.

Mallow’s Cp criterion [70, 76, 79].
For example, Mallows considered the standard linear regression model Y = Xθ + ε ∈ Rn with the

idea to propose an unbiased estimator for the risk error Eε[‖X(θ̂J − θ)‖2] using the empirical error
‖Y −Xθ̂J‖2, where θ̂J is an estimator of θ, based on the variable selection set J ⊆ {1, . . . , d}. This
strategy will result in the following generalized criterion for choosing the parameter λ in any linear
estimator of type AλY (in this case, often called CL):

Cp(λ) = ‖Y −AλY ‖
2

n
+ 2df(λ)

n
σ̂2, λ ∈ Λ, (1.49)

where σ̂2 is an estimator of the noise variance σ2 obtained from a low-bias model. Using this criterion,
we adjust the training error by a factor proportional to the "degree of freedom". In practice, the rule
for selecting the "best" candidate in Λ is the minimization of Cp(λ).

AIC criterion.
The Akaike information criterion [2, 70] is a similar (but a more general) estimate of the risk

error, where a log-likelihood loss function is used. In the case of linear estimators with Gaussian noise,
maximum likelihood and least-squares are the same things. This gives the AIC criterion as

AIC(λ) = 1
nσ̂2

(
‖Y −AλY ‖2 + 2df(λ)σ̂2

)
, λ ∈ Λ, (1.50)

where σ̂2 is the noise variance estimator from Eq. (1.49). Notice that in the mentioned case, AIC(λ)
and Cp(λ) produce the same model selection procedure.

Both Cp and AIC criteria have been criticized in the literature, especially for the constant 2 in
their definitions. This is why some authors proposed corrections to these criteria [100, 103, 120].
Nevertheless, AIC, Cp, and other related penalized model selection procedures have been proved to
satisfy oracle inequalities (1.16) in some frameworks [27] when |Λ| ≤ Cnα, for some constants C,α ≥ 0.
Furthermore, the proposed criteria are still widely used in practice [107].

Data-spltting strategies [8, 63, 117].
Another approach for choosing the tuning parameter is based on a data splitting strategy, meaning

that a part of data (the training sample) is used for training a learning algorithm, and the remaining
part of data (the test sample) is used for the evaluation of the performance of the algorithm. If data
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is distributed in an i.i.d. manner, then the error of the algorithm on the test sample can serve as
an approximation of the true risk. One can enumerate several data-splitting procedures (see [8] for
a thorough review). The most simple one is called the Hold-out validation strategy that relies on a
single split of data. An example of the so-called exhaustive data splitting could be the leave-p-out
strategy, with p ∈ {1, . . . , n− 1} (n is the sample size), where every possible subset of p data points is
hold-out of the sample and used to validate (to estimate the true risk error). Notice that the case p = 1
corresponds to the leave-one-out strategy. Often, considering

(n
p

)
training samples is computationally

exhaustive and only the case p = 1 is implementable in practice.

Generalized cross-validation [42, 53, 70].

A rotation-invariant version of the leave-one-out strategy called the generalized cross-validation
was proposed by [53]. The goal was the same – to estimate the risk of a linear estimator of type AλY
(Aλ is an n× n matrix) as follows.

GCV(λ) = ‖Y −AλY ‖2

n(1− n−1tr(Aλ)) , λ ∈ Λ. (1.51)

The practitioner who wants to apply the GCV strategy should, first, construct a tuning parameter
set Λ and after that choose λ̂ that minimizes the GCV(λ) criterion. The asymptotic optimality of
GCV(λ̂) for several linear estimators, meaning that ‖f λ̂ − f∗‖2n/ inf

λ∈Λ
‖fλ − f∗‖2n → 1 in probability,

is established in [76]. However, there are examples [77] for which GCV is not asymptotically optimal
for ridge (Tikhonov) regularization. In order to get asymptotic optimality, one should have a special
condition on a tail sum of the eigenvalues of the matrix X>X, where X is the design matrix.

V –fold cross-validation.

By far, the most usable model selection procedure (due to its relatively mild computational cost
for small V ) is the so-called V -fold cross-validation [8, 63, 70]. This procedure splits the data into V
roughly equal-sized parts; after that, for each v = 1, . . . , V , for the vth part we fit the model to the
other V − 1 parts of the data and calculate the prediction error of the fitted model on the vth part.
More formally, let κ : {1, . . . , n} 7→ {1, . . . , V } be an indexing function that indicates the partition
to which observation i is allocated by the splitting randomization. Denote fλ−v(x) as the fitted linear
estimator with the tuning parameter λ, computed with the vth part removed, then

CV(λ) = 1
n

n∑
i=1

(Yi − fλ−κ(i)(xi))
2, λ ∈ Λ. (1.52)

Then, one should minimize the criterion from Eq. (1.52) over some grid of values of λ ∈ Λ. Note
that V -fold cross-validation with V = n is equivalent to the leave-one-out procedure. An interesting
question that could be asked is how to choose V ? It is often suggested [70] that V between 5 and 10
is optimal since the statistical performance does not increase a lot for larger values of V , whereas the
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leave-one-out (V = n) could suffer from high variance.

1.6.3 Contribution of the thesis

In all aforementioned model selection procedures, the user should compute a functional estimator
fλ (and one of the selection criteria) over some grid of values of λ ∈ Λ = {λ1, λ2, . . . , λS}. In practice,
it is generally computationally demanding, especially when the cardinality of Λ is large. For this
reason, in this work, we propose applying a special procedure to choose λ without computing all
these estimators. The strategy will rely on the fact that one can arrange the grid Λ such that, by
computing iteratively fλ, the variance term of fλ will not decrease at each iteration. Thus, this term
will stay monotonic as a function of λ. To mention one example of such a situation, consider the
k-NN regression estimator (hence, λ = k). Then, it is known [26, 67] that the variance term for this
estimator is equal to σ2/k, where σ2 is the noise variance in Eq. (1.1). Therefore, decreasing iteratively
the value of k ∈ {1, . . . , n} will result in increasing the variance term. Eventually, one has to stop this
process since, if it is not stopped, the variance term will be large, and there would be no hope to get
optimality.

Keeping in mind the strategy described above, as it was in the case of spectral filter estimators,
the user should control the empirical risk that shows how well fλ fits Y :

Rλ = ‖(In −Aλ)Y ‖2n, λ ∈ Λ. (1.53)

Intuitively, if we iterate a learning algorithm in such a way that the variance term at λ of the estimator
fλ is non-decreasing, then Rλ should be approximately a non-increasing function of λ (see Figure 1.3
for an illustration). However, there is no monotonicity, as it was in the case of spectral filter estimators.
Then, one needs to define a threshold applying to Rλ so that one would stop the iterations if Rλ crosses
this threshold. The most natural way to do it is to detect the first iteration λ̂ at which R

λ̂
≈ σ2,

where σ2 is the noise variance (and ≈ means an approximate equality). The mentioned approach
has been already explored in the statistical (and not only) literature and is called the minimum
discrepancy principle (MDP) (see, e.g., Section 1.5 for a discussion about MDP applied to spectral
filter algorithms). The precise expressions for the threshold parameter with different linear estimators
will be mentioned in Chapter 3 and Chapter 4.

Let us now enumerate our main contributions. In Chapter 3, we prove that the model selection
procedure based on the minimum discrepancy principle provides a minimax optimal estimator (in the
sense of Ineq. (1.18)) for choosing k in the k-NN regression function estimator while reducing the
computational time compared to, for instance, AIC or Mallow’s Cp criteria. It holds over any class of

functions for which the minimax lower bound (1.17) is slower than O
(√

logn
n

)
. This rate is the price

to pay for knowing nothing about the bias term. This result only requires one a mild assumption on the
regression function from Eq. (1.1): it should be bounded. Besides that, in Chapter 4, we provide less
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technical arguments illustrating the optimality of MDP applied to other linear estimators such as the
Nadaraya-Watson regression and variable selection estimators in the nonparametric regression model.
More precisely, we carry out an extensive simulation study of the minimum discrepancy stopping rule
applied to the tuning parameter selection problem with these linear estimators. What we can say is
that, in most of the cases, the proposed strategy performs comparably well to other typically used ones
in practice, among which the Hold-out method described above, Mallows’ Cp (1.49), and generalized
cross-validation (1.51).
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Chapter 2

EARLY STOPPING AND POLYNOMIAL

SMOOTHING

Abstract

In this chapter, we study the problem of early stopping for iterative learning algorithms in re-
producing kernel Hilbert space (RKHS) in the nonparametric regression framework. In particular, we
work with the gradient descent and (iterative) kernel ridge regression algorithms. We present a data-
driven rule to perform early stopping without a validation set that is based on the so-called minimum
discrepancy principle. This method enjoys only one assumption on the regression function: it belongs
to a reproducing kernel Hilbert space (RKHS). The proposed rule is proved to be minimax optimal
over different types of kernel spaces, including finite-rank and Sobolev smoothness classes. The proof
is derived from the fixed-point analysis of the localized Rademacher complexities, which is a standard
technique for obtaining optimal rates in the nonparametric regression literature. In addition to that, we
present simulations results on artificial datasets that show the comparable performance of the designed
rule with respect to other stopping rules such as the one determined by V−fold cross-validation.

2.1 Introduction

The present chapter is concerned with nonparametric regression by means of a reproducing kernel
Hilbert space (RKHS) associated with a reproducing kernel [11, 66, 98, 112]. There is a large amount
of literature on the application of kernel machines in many areas of science and engineering [98, 101,
124], which is out of the main scope here.

A family of linear estimators called spectral filter estimators [15, 19, 60, 122] can be seen as par-
ticular instances of iterative learning algorithms. This family includes two famous examples: gradient
descent and iterative (Tikhonov) ridge regression. In several papers, it was observed empirically and
proved theoretically that these two algorithms are closely related [3, 4, 61, 92, 122]. For example, [3]
showed that in the linear regression model, under the calibration t = 1/λ, where t is the time pa-
rameter in gradient descent and λ the tuning parameter in ridge regression, the risk error of gradient
descent could not be much higher than that of ridge regression. It gives some intuition of why the idea
of implicit regularization could work.
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Early stopping rule (ESR) is a form of regularization that consists in choosing when to stop
an iterative algorithm based on some design criterion. Its main idea is lowering the computational
complexity of an iterative algorithm while preserving statistical optimality. This approach is quite
old and initially was developed for Landweber iterations to solve ill-posed matrix problems in the
1970s [60, 113]. The next wave of interest in this topic was in the 1990s and has been applied to neural
network parameters learning with stochastic gradient descent [46, 91]. For instance, [91] suggested some
heuristics that rely on monitoring the train and validation errors for stopping the learning process, and
gave some consistent simulation findings. Nevertheless, until the 2000s there was a lack of theoretical
understanding of this phenomenon. Recent papers provided some insights for the connection between
early stopping and boosting methods [17, 39, 118, 126], gradient descent, and Tikhonov regularization
in reproducing kernel Hilbert space (RKHS) [19, 92, 122]. For instance, [39] established the first
optimal in-sample convergence rate of L2-boosting with early stopping. Raskutti et al. [92] provided
a result on a stopping rule that achieves the minimax-optimal rate for kernelized gradient descent
and ridge regression over different smoothness classes. This work established an important connection
between the localized Rademacher complexities [16, 72, 114], that characterizes the size of the explored
function space, and early stopping. The main drawback of the result is that one needs to know the
RKHS-norm of the regression function or its tight upper bound to apply this early stopping rule in
practice. Besides that, this rule is design-dependent, which limits its practical application as well. The
subsequent work [118] showed how to control early stopping optimality via the localized Gaussian
complexities in RKHS for different boosting algorithms (L2-boosting, LogitBoost, and AdaBoost).
Another theoretical result for a not data-driven ESR was built by [31], where Blanchard et al. proved
a minimax optimal (in the L2(PX) out-of-sample norm) stopping rule for conjugate gradient descent in
the nonparametric regression setting. Angles et al. [4] proposed a different approach, focusing on both
time/memory computational savings combining early stopping with Nyström subsampling technique.

Some stopping rules that could be applied in practice were provided by [28, 30, 105] and developed
on the so-called minimum discrepancy principle [31, 34, 60, 69]. This principle consists in monitoring
the empirical risk and determining the first iteration at which a given learning algorithm starts to fit
the noise. In the papers mentioned, the authors considered spectral filter estimators such as gradient
descent, Tikhonov (ridge) regularization, and spectral cut-off regression for the linear Gaussian se-
quence model and derived several oracle inequalities for the proposed ESR. The main deficiency of the
works [28, 30, 105] is that the authors dealt only with the linear Gaussian sequence model, and the
minimax optimality result was restricted to the spectral cut-off estimator. It is worth to mention that
[105] introduced the so-called polynomial smoothing strategy to achieve adaptivity of the minimum
discrepancy principle ESR over Sobolev balls for the spectral cut-off estimator. More recently, Celisse
and Wahl [49] studied a minimum discrepancy principle stopping rule and its modified version, where
they provided the range of values of the regression function regularity, for which these stopping rules
are optimal for different spectral filter estimators in RKHS.
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Contribution. Hence, to the best of our knowledge, there is no fully data-driven stopping rule
for gradient descent or ridge regression in RKHS that does not use a validation set, not depend on the
parameters of the model, such as the RKHS-norm of the regression function, and explains why it is
statistically optimal. Here, we combine techniques from [28], [92], and [105] to construct such an ESR.
Our analysis relies on the bias and variance trade-off of an estimator, and we try to catch the iteration
of their intersection by means of the minimum discrepancy principle [28, 34, 49] and the localized
Rademacher complexities [16, 72, 82, 114]. In particular, for the kernels with infinite rank, we propose
using a special technique [34, 105] for the empirical risk to reduce its variance. Further, we introduce
new notions of smoothed empirical Rademacher complexity and smoothed critical radius in order to
achieve minimax optimality bounds for the functional estimator based on the proposed rule. This can
be done by solving the associated fixed-point equation. It implies that the bounds in our analysis
cannot be improved (up to numeric constants). It is important to note that in the present chapter,
we establish an important connection between a smoothed version of the statistical dimension of the
kernel matrix, introduced by [121] for randomized projections in kernel ridge regression, with early
stopping (see Section 2.4.3 for more details). We show also how to estimate the noise variance of the
regression model, specifically, for the class of polynomial eigenvalue decay kernels. In the meanwhile,
we provide experimental results on artificial data indicating the consistent performance of the proposed
rules.

Outline of the chapter. The organization of the chapter is as follows. In Section 2.2, we introduce
the background on the nonparametric regression and reproducing kernel Hilbert space. There, we
explain the updates of two spectral filter iterative algorithms: gradient descent and (iterative) kernel
ridge regression that will be studied. In Section 2.3, we clarify how to compute our first early stopping
rule for finite-rank kernels and provide an oracle-type inequality (Theorem 2.3.1), and an upper bound
for the risk error of this stopping rule with fixed covariates (Corollary 2.3.2). After that, we present
a similar upper bound for the risk error with random covariates (Theorem 2.3.4) that is proven to
be minimax-rate optimal. By contrast, Section 2.4 is devoted to the development of a new stopping
rule for infinite-rank kernels based on the polynomial smoothing [34, 105] strategy. There, Theorem
2.4.1 shows, under some quite general assumptions on the eigenvalues of the kernel matrix, a high
probability upper bound for the performance of this stopping rule measured in the L2(Pn) in-sample
norm. In particular, this upper bound leads to minimax optimality over Sobolev smoothness classes.
In Section 2.5, we compare our stopping rules to other rules, such as methods using hold-out data and
V−fold cross-validation. After that, we propose using a strategy for the estimation of the variance
σ2 of the regression model. Section 2.6 summarizes the content of the chapter and describes some
perspectives. Supplementary and more technical proofs are deferred to Appendix.
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2.2 Nonparametric regression and reproducing kernel framework

2.2.1 Probabilistic model and notation

The context of the present work is that of nonparametric regression, where an i.i.d. sample
{(xi, yi), i = 1, . . . , n} of cardinality n is given, with xi ∈ X (feature space) and yi ∈ R. The
goal is to estimate the regression function f∗ : X → R from the model

yi = f∗(xi) + εi, i = 1, . . . , n, (2.1)

where the error variables εi are i.i.d. zero-mean Gaussian random variables N (0, σ2), with σ > 0. In all
what follows (except for Section 2.5, where results of empirical experiments are reported), the values
of σ2 is assumed to be known, as in [92] and [118].

Along the chapter, calculations are mainly derived in the fixed-design context, where the {xi}ni=1 are
assumed to be fixed, and only the error variables {εi}ni=1 are random. In this context, the performance
of any estimator f̂ of the regression function f∗ is measured in terms of the so-called empirical norm,
that is, the L2(Pn) norm defined by

‖f̂ − f∗‖2n := 1
n

n∑
i=1

[
f̂(xi)− f∗(xi)

]2
,

where ‖h‖n :=
√

1/n
∑n
i=1 h(xi)2 for any bounded function h over X , and 〈·, ·〉n denotes the related

inner-product defined by 〈h1, h2〉n := 1/n
∑n
i=1 h1(xi)h2(xi), for any functions h1 and h2 bounded over

X . In this context, Pε and Eε respectively denote the probability and expectation with respect to the
{εi}ni=1.

By contrast, Section 2.3.1 discusses some extensions of the previous results to the random design
context, where both the covariates {xi}ni=1 and responses {yi}ni=1 are random variables. In this random
design context, the performance of an estimator f̂ of f∗ is measured in terms of the L2(PX)-norm
defined by

‖f̂ − f∗‖22 := EX
[
(f̂(X)− f∗(X))2

]
,

where PX denotes the probability distribution of the {xi}ni=1. In what follows, P and E respectively
state for the probability and expectation with respect to the couples {(xi, yi)}ni=1.

Notation Throughout the chapter, ‖·‖ and 〈·, ·〉 are the usual Euclidean norm and inner product
in Rn. We shall write an . bn whenever an ≤ Cbn for some numeric constant C > 0 for all n ≥ 1.
an & bn whenever an ≥ Cbn for some numeric constant C > 0 and all n ≥ 1. Similarly, an � bn means
an . bn and bn & an. a ∧ b means min{a, b}, and a ∨ b signifies max{a, b}. [M ] ≡ {1, . . . ,M} for any
M ∈ N. For a ≥ 0, we denote by bac the largest natural number that is smaller than or equal to a.
We denote by dae the smallest natural number that is greater than or equal to a. Throughout the
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chapter, we use the notation c, c1, C, c̃, C̃, . . . to show that the numeric constants c, c1, C, c̃, C̃, . . . do
not depend on the parameters considered. The values of the constants may change from line to line.

2.2.2 Statistical model and assumptions

Reproducing Kernel Hilbert Space (RKHS)

Let us start by introducing a reproducing kernel Hilbert space (RKHS) denoted by H [11, 23].
Such an RKHS H is a class of functions associated with a reproducing kernel K : X × X 7→ R and
endowed with an inner-product denoted by 〈·, ·〉H, and satisfying 〈Kx,Ky〉H = K(x, y) for all x, y ∈ X .
Each function within H admits a representation as an element of L2(PX), which justifies the slight
abuse when writing H ⊂ L2(PX) (see [54] and [49, Assumption 3]).

Assuming the RKHS H is separable, Mercer’s theorem [98] guarantees that the kernel can be
expanded as

K(x, x′) =
∞∑
k=1

µkφk(x)φk(x′), ∀x, x′ ∈ X ,

where µ1 ≥ µ2 ≥ ... ≥ 0 and {φk}∞k=1 are, respectively, the eigenvalues and corresponding eigenfunc-
tions of the kernel integral operator Tk given by

Tk(f)(x) =
∫
X
K(x, u)f(u)dPX(u), ∀f ∈ H, x ∈ X . (2.2)

It is then known that the family {φk}∞k=1 is an orthonormal basis of L2(PX), while {√µkφk}∞k=1 is an
orthonormal basis of H. Then, any function f ∈ H ⊂ L2(PX) can be expanded as

f =
∞∑
k=1

√
µkθkφk,

where the coefficients {θk}∞k=1 are given by

θk = 〈f,√µkφk〉H = 1
√
µk
〈f, φk〉L2(PX) =

∫
X

f(x)φk(x)
√
µk

dPX(x). (2.3)

Therefore, each functions f, g ∈ H can be represented by the respective sequences {ak}∞k=1, {bk}∞k=1 ∈
`2(N) such that

f =
+∞∑
k=1

akφk and g =
+∞∑
k=1

bkφk,

with the inner-product in the Hilbert space H given by

〈f, g〉H =
∞∑
k=1

akbk
µk

.
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This leads to the following representation of H as an ellipsoid

H =
{
f =

+∞∑
k=1

akφk,
+∞∑
k=1

a2
k < +∞ and

+∞∑
k=1

a2
k

µk
< +∞

}
.

Main assumptions

From the initial model given by Eq. (2.1), we make the following assumption.

Assumption 1 (Statistical model). Let K(·, ·) denote a reproducing kernel as defined above and H the
induced separable RKHS. Then, there exists a constant R > 0 such that the n-sample (x1, y1), . . . , (xn, yn) ∈
X n × Rn satisfies the statistical model

yi = f∗(xi) + εi, with f∗ ∈ BH(R) = {f ∈ H : ‖f‖H ≤ R}, (2.4)

where the {εi}ni=1 are i.i.d. Gaussian random variables with E[εi | xi] = 0 and V[εi | xi] = σ2.

The model from Assumption 1 can be vectorized as

Y = [y1, ..., yn]> = F ∗ + ε ∈ Rn, (2.5)

where F ∗ = [f∗(x1), . . . , f∗(xn)]> and ε = [ε1, . . . , εn]>, which turns to be useful all along the chapter.
Let us emphasize that Assumption 1 encapsulates a (mild) smoothness assumption about f∗ encoded
by the specification of the reproducing kernel K(·, ·). For instance, this affects the convergence rates
one can achieve [93]. More precisely, from the kernel operator Tk (2.2), that is self-adjoint and trace-
class, the smoothness of f∗ can be quantified by means of a so-called source condition expressed as

f∗ = T sku with u ∈ L2(PX), ‖u‖2 ≤ ρ, (2.6)

where s > 0 and ρ > 0 are constants. For instance, assuming s ≥ 1
2 is equivalent to requiring f∗ ∈ H.

See also [49, Assumption 3] for a deeper discussion about the source condition.
Examples of celebrated reproducing kernels that are used in practice include the Gaussian RBF

kernel [9, Section 3.2], the Sobolev kernel [92], polynomial kernels of degree d [121], . . . For more
examples, see [62, 98, 112].

In the present chapter, we make a boundness assumption on the reproducing kernel K(·, ·).

Assumption 2. Let us assume that the reproducing kernel K(·, ·) is uniformly bounded on its support,
meaning that there exists a constant B > 0 such that

sup
x∈X

[
K(x, x)

]
= sup

x∈X
||Kx||2H ≤ B.

Moreover, in what follows, we assume that B = 1 without loss of generality.
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Assumption 2 holds true for many kernels. On the one hand, it is fulfilled with an unbounded
domain X for a bounded kernel (e.g. the Gaussian, Laplace kernels). On the other hand, it amounts to
assume that the domain X is bounded with an unbounded kernel such as the polynomial or Sobolev
kernels [98]. Let us also mention that Assumptions 1 and 2 (combined with the reproducing property)
imply that f∗ is uniformly bounded since

‖f∗‖∞ = sup
x∈X
|〈f∗,Kx〉H| ≤ ‖f∗‖Hsup

x∈X
‖Kx‖H ≤ R. (2.7)

Considering now the Gram matrix K = {K(xi, xj)}1≤i,j≤n, the related normalized Gram matrix
Kn = {K(xi, xj)/n}1≤i,j≤n turns out to be symmetric and positive semidefinite. This entails the
existence of the empirical eigenvalues µ̂1, . . . , µ̂n (respectively, the eigenvectors û1, . . . , ûn) such that
Knûi = µ̂i · ûi for all i ∈ [n]. Let us further assume that the rank of Kn satisfies rk(Kn) = r ≤ n with

µ̂1 ≥ µ̂2 ≥ . . . ≥ µ̂r > 0 = µ̂r+1 = . . . = µ̂n = 0.

Remark that Assumption 2 implies 0 ≤ max(µ̂1, µ1) ≤ 1.
For technical convenience, it turns out to be useful rephrasing the model (2.5) by using the SVD

of the normalized Gram matrix Kn. This leads to the new (rotated) model

Zi = 〈ûi, Y 〉 = G∗i + εi, i = 1, . . . , n, (2.8)

where G∗i = 〈ûi, F ∗〉, and εi = 〈ûi, ε〉 is a zero-mean Gaussian random variable with variance σ2.

2.2.3 Spectral filter algorithms

Spectral filter algorithms were first introduced for solving ill-posed inverse problems with deter-
ministic noise [60]. Among others, one typical example of such an algorithm is the gradient descent
algorithm (that is named L2-boosting [39] as well). They were more recently brought to the supervised
learning community, for instance, by [19, 43, 64, 122]. For estimating the vector F ∗ from Eq. (2.5) in
the fixed-design context, such a spectral filter algorithm is a linear estimator, which can be expressed
as

F λ :=
(
fλ(x1), . . . , fλ(xn)

)>
= gλ(Kn)KnY, (2.9)

where gλ : [0, 1]→ R is called the spectral filter function and is defined as follows.

Definition 2.2.1 (see, e.g., [64]). λ 7→ gλ is called an admissible spectral filter function if it is
continuous, non-increasing, and obeys the next four conditions:

1. There exists B > 0 such that sup
0<ξ≤1

|gλ(ξ)| ≤ B
λ , ∀λ ∈ [0,+∞).
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2. For all ξ ∈ (0, 1], lim
λ→0

[ξgλ(ξ)] = 1.

3. There exists D > 0 such that sup
0<ξ≤1

|ξgλ(ξ)| ≤ D, ∀λ ∈ [0,+∞).

4. There exists ν̄ > 0 called the qualification of gλ, and a constant Cν > 0 independent of λ such
that

sup
0<ξ≤1

|1− ξgλ(ξ)|ξν ≤ Cνλν , ∀ 0 < ν ≤ ν̄. (2.10)

The choice gλ(ξ) = 1
ξ+λ , which corresponds to the kernel ridge estimator with the regularization

parameter λ > 0, is an admissible spectral filter function with B = D = 1, where qualification Ineq.
(2.10) holds with Cν = 1 for 0 < ν ≤ 1 = ν̄ (see [28, 49] for other possible choices).

From the model expressed in the empirical eigenvectors basis (2.8), the resulting spectral filter
estimator (2.9) can be expressed as

Gλti = 〈ûi, F λt〉 = γ
(t)
i Zi, ∀i = 1, . . . , n, (2.11)

where t 7→ λt > 0 is a decreasing function mapping t to a regularization parameter value at time t,
and t 7→ γ

(t)
i is defined by

γ
(t)
i = µ̂igλt(µ̂i), ∀i = 1, . . . , n.

From Definition 2.2.1, it can be proved that γ(t)
i is a non-decreasing function of t, γ(0)

i = 0, and
lim
t→∞

γ
(t)
i = 1. Moreover, µ̂i = 0 implies γ(t)

i = 0 as it is the case for kernels with a finite rank, that is,
when rk(Kn) = r < n.

Thanks to the remark above, we define the following convenient notations: f t := fλt (for the
functions) and F t := F λt (for the vectors), with a continuous iteration (time) t > 0.

In what follows, we introduce an assumption on γ(t)
i function that will play a crucial role in our

analysis.

Assumption 3.
cmin{1, ηtµ̂i} ≤ γ(t)

i ≤ min{1, ηtµ̂i},

for any i = 1, . . . , n, some positive constants c ∈ (0, 1), and η > 0.

Let us mention two famous examples of spectral filter estimators that satisfy Assumption 3 with
c = 1/2 (see Lemma 2.7.2 in Appendix). These examples will be further studied in the present chapter.

— Gradient descent (GD) with a constant step-size 0 < η ≤ 1/µ̂1:

γ
(t)
i = 1− (1− ηµ̂i)t, ∀t > 0, ∀i = 1, . . . , n. (2.12)

Note that GD satisfies the qualification condition (2.10) with arbitrary ν̄ > 0 (see e.g. [19]
for more discussion on the qualification). The constant step-size η can be replaced by any
non-increasing sequence {ηt}+∞t=0 satisfying [92]
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— (µ̂1)−1 ≥ ηt ≥ ηt+1 ≥ . . . , for t = 0, 1, . . .,
—

∑t−1
s=0 ηs → +∞ as t→ +∞.

— Kernel ridge regression (KRR) with the regularization parameter λt = 1/(ηt) with η > 0:

γ
(t)
i = µ̂i

µ̂i + λt
, ∀t > 0, ∀i = 1, . . . , n. (2.13)

The linear parameterization λ = 1/(ηt) is chosen for theoretical convenience and could be
replaced by any alternative choice, such as the exponential parameterization λ = 1/(eηt − 1).

We refer interested readers, for instance, to [92, Sections 4.1 and 4.4] for the derivation of the γ(t)
i ex-

pressions. The expressions of the two above examples have been derived from F 0 = [f0(x1), . . . , f0(xn)]> =
[0, . . . , 0]> as an initialization condition without loss of generality.

2.2.4 Reference stopping rule and oracle-type inequality

From a set of iterations t ∈ T := {0, . . . , T} for an iterative learning algorithm (like the spectral
filter described in Section 2.2.3), the present goal is to design t̂ = t̂({xi, yi}ni=1) from the data {xi, yi}ni=1
such that the functional estimator f t̂ is as close as possible to the optimal one among T .

Numerous classical model selection procedures for choosing t̂ already exist, e.g. the (generalized)
cross validation [111], AIC and BIC criteria [1, 100], the unbiased risk estimation [47], or Lepski’s bal-
ancing principle [81]. Their main drawback in the present context is that they require the practitioner
to calculate all the estimators {f t, t ∈ T }, in a first step, and then choose the optimal estimator
among the candidates in a second step, which can be high computationally demanding.

By contrast, early stopping is a less time-consuming approach. It is based on observing one esti-
mator at each iteration t ∈ T and deciding to stop the learning process according to some criterion.
Its aim is to reduce the computational cost, induced by this selection procedure while preserving the
statistical optimality properties of the output estimator.

The prediction error (risk) of an estimator f t at iteration t is split into a bias and a variance term
as

R(t) = Eε‖f t − f∗‖2n = ‖Eεf t − f∗‖2n + Eε‖f t − Eεf t‖2n = B2(t) + V (t),

with
B2(t) = 1

n

n∑
i=1

(1− γ(t)
i )2(G∗i )2, V (t) = σ2

n

n∑
i=1

(γ(t)
i )2. (2.14)

From the properties of Definition 2.2.1, the bias term is a non-increasing function of t converging to
zero, while the variance term is a non-decreasing function of t converging to rσ2

n (rk(Kn) = r). Since
minimizing the risk as a function of t cannot be achieved, the empirical risk Rt (that measures the
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size of the residuals) is introduced with the notation of Eq. (2.8).

Rt = 1
n

n∑
i=1

(1− γ(t)
i )2Z2

i = 1
n

r∑
i=1

(1− γ(t)
i )2Z2

i + 1
n

n∑
i=r+1

Z2
i , (2.15)

This is a non-increasing function of t, which measures how well an estimator f t fits the data (or
equivalently, how much information is still contained within the residuals).

An illustration of the typical behavior of the risk, empirical risk, bias, and variance is displayed
by Figure 2.1. The risk achieves its (global) minimum at t ≈ 1000. Making additional iterations will
eventually lead to the waste of the computational resources and worsen the statistical performance,
which empirically justifies the need for a data-driven early stopping rule.
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Risk

Figure 2.1 – The bias, variance, risk, and empirical risk behavior.

Let us now introduce our "reference stopping rule". This stopping rule balances the bias and vari-
ance described above, which is a common strategy for model selection in the nonparametric statistics
literature since it usually yields a minimax optimal estimator (see, e.g. [108]). This reference stopping
rule is defined as the first time the bias term becomes smaller than or equal to the variance term, that
is,

tb = inf{t > 0 | B2(t) ≤ V (t)}. (2.16)

This is a purely theoretical stopping rule since it strongly depends on unknown quantities. However,
its main interest lies in the way it compares with the global optimum performance, that is, with the
oracle performance. This is the purpose of the next lemma.
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2.2. Nonparametric regression and reproducing kernel framework

Lemma 2.2.1. Under the monotonicity of the bias and variance terms,

Eε‖f t
b − f∗‖2n ≤ 2 inf

t>0

[
Eε‖f t − f∗‖2n

]
.

Proof of Lemma 2.2.1. The proof is quite simple and can be deduced from [28, p.8]. For any t > 0,

B2(t) + V (t) ≥ min{B2(tb), V (tb)} = 1
2
[
B2(tb) + V (tb)

]
= 1

2Eε‖f
tb − f∗‖2n.

To finish the proof, it is sufficient to take t = argmin
t>0

[
Eε‖f t − f∗‖2n

]
. �

This lemma provides a fundamental result that guarantees the optimality of tb for an iterative
estimator, for which the bias is a non-increasing function of t, and the variance is a non-decreasing
function of t. It also implies that the risk of any spectral filter estimator computed at tb cannot be
higher than 2 times the risk of the oracle rule. This is the main reason for considering tb as a reference
stopping rule in our analysis. It is also worth mentioning that even if we knew B2(t) for all t ≤ t1 for
some t1 > 0, the bias could still suddenly drop after at time t2 > t1. Stopping at t1 could then result in
a much worse performance than stopping at time t2, where the bias term is zero. This remark suggests
that recovering the oracle performance cannot be achieved in full generality in the present framework,
where one has access to a limited number of "observations" of the risk curve. This is why the balancing
stopping rule tb plays the role of a reference stopping rule – its performance can nevertheless be linked
with the one of the oracle stopping rule.

Our main concern is formulating a data-driven stopping rule (a mapping from the data {(xi, yi)}ni=1
to positive time t̂) so that the prediction errors Eε‖f t̂−f∗‖2n or, equivalently, E‖f t̂−f∗‖22 are as small
as possible. A classical tool commonly used in model selection for quantifying the performance of
a procedure is the oracle-type inequality [47, 72, 108, 114]. In the fixed design context, an oracle
inequality (in expectation) can be formulated as follows

Eε‖f t̂ − f∗‖2n ≤ Cn inf
t∈T

[
Eε‖f t − f∗‖2n

]
+ rn, (2.17)

where the bounded constant Cn ≥ 1 on the right hand side can depend on various parameters of the
problem (except f∗). The main term inf

t∈T

[
Eε‖f t−f∗‖2n

]
is the best possible performance any estimator

among {f t, t ∈ T } can achieve. Ideally, for the oracle inequality to be meaningful, the last term rn

on the right hand side should be negligible compared to the oracle performance.

2.2.5 Localized empirical Rademacher complexity

The analysis of the forthcoming early stopping rules involves the use of a model complexity measure
known as the localized empirical Rademacher complexity [16, 72, 114].
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Part, Chapter 2 – Early stopping and polynomial smoothing

Definition 2.2.2. For any given ε > 0 and function class F , consider the localized empirical Rademacher
complexity

R̂n(ε,F) = Er

 sup
f∈F
‖f‖n≤εR

∣∣∣∣∣ 1n
n∑
i=1

rif(xi)
∣∣∣∣∣
 , (2.18)

where {ri}ni=1 are i.i.d. Rademacher variables ({−1,+1}-random variables with equal probability 1
2).

Usually, the localized empirical Rademacher complexity is defined for R = 1, but due to the scaling
factor of ‖f∗‖H, one needs to consider the radius εR within the supremum.

Along the analysis, more explicit lower and upper bounds on the above localized empirical Rademacher
complexity have to be derived. This is the purpose of introducing the so-called kernel complexity func-
tion [82, 83] that is proved to be of the same size (up to numeric constants) as the localized empirical
Rademacher complexity of F = BH(R), that is,

R̂n(ε,H) = R

 1
n

r∑
j=1

min{ε2, µ̂j}

1/2

. (2.19)

It corresponds to a rescaled sum of the empirical eigenvalues truncated at ε2.
For a given RKHS H and noise level σ, let us finally define the empirical critical radius ε̂n as the

smallest positive value ε such that
R̂n(ε,H)
εR

≤ 2εR
σ
. (2.20)

There is an extensive literature on this empirical critical equation and the related empirical critical
radius [16, 82, 92], and it is out of the scope of the chapter providing an exhaustive review on this
topic. Nevertheless, it has been proved that ε̂n does always exist and is unique. The constant 2 in Ineq.
(2.20) is for theoretical convenience only.

2.3 Data-driven early stopping rule and minimum discrepancy prin-
ciple

Let us start by recalling that the expression of the empirical risk in Eq. (2.15) gives that the
empirical risk is a non-increasing function of t (as illustrated by Fig. 2.1 as well). This is consistent
with the intuition that the amount of available information within the residuals decreases as the
number of iterations grows. If there exists an iteration t such that f t ≈ f∗, then the empirical risk is
approximately equal to σ2 (level of noise), that is,

EεRt = Eε
[
‖F t − Y ‖2n

]
≈ Eε

[
‖F ∗ − Y ‖2n

]
= Eε

[
‖ε‖2n

]
= σ2. (2.21)
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2.3. Data-driven early stopping rule and minimum discrepancy principle

Additional iterations would result in fitting to noise (overfitting). Introducing, moreover, the reduced
empirical risk R̃t, t > 0, and recalling that r denotes the rank of the Gram matrix, it comes

EεRt = Eε
[ 1
n

n∑
i=1

(1− γ(t)
i )2Z2

i

]
= Eε

[ 1
n

r∑
i=1

(1− γ(t)
i )2Z2

i

]
︸ ︷︷ ︸

:=R̃t

+n− r
n

σ2 (i)
≈ σ2, (2.22)

where (i) is due to Eq. (2.21). This heuristic argument gives rise to a first deterministic stopping rule
t∗ involving the reduced empirical risk and given by

t∗ = inf
{
t > 0 | EεR̃t ≤

rσ2

n

}
. (2.23)

Since t∗ is not achievable in practice, an estimator of t∗ is given by the data-driven stopping rule τ
based on the so-called minimum discrepancy principle (MDP)

τ = inf
{
t > 0 | R̃t ≤

rσ2

n

}
. (2.24)

The existing literature considering the MDP stopping rule usually defines τ by the event {Rt ≤ σ2}
[28, 31, 34, 60, 69, 105]. On the one hand, with a full-rank kernel (r = n), the reduced empirical risk R̃t
is equal to the classical empirical risk, leading then to the same stopping rule. On the other hand, with
a finite-rank kernel (r � n), using the reduced empirical risk and the event {R̃t ≤ rσ2

n } rather than the
empirical risk and {Rt ≤ σ2} should lead to a less variable stopping rule. From a practical perspective,
the knowledge of the rank of the Gram matrix (which is exploited by the reduced empirical risk, unlike
the classical empirical risk) avoids estimating the last n − r components of the vector G∗, which are
already known to be zero (see Appendix 2.7 for more details).

Intuitively, if the empirical risk is close to its expectation, then τ should be optimal in some sense.
Therefore, the main theoretical analysis will concern quantifying how close τ and t∗ are to each other.
It appeared in practice that, if the model is quite simple, e.g. the kernel is of finite rank, or the
variance σ2 is low compared to the signal f∗, τ is close to t∗ and τ performs well. As soon as the
model becomes complex, e.g. an infinite-rank kernel, or the variance σ2 is high compared to the signal
f∗, τ , as a random variable, has high variance that should be reduced. Of course, the smoothness of
the regression function should play a role too. This not rigorous statement will be further developed
in Section 2.3.2.
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2.3.1 Finite-rank kernels

Fixed-design framework

Let us start by discussing our results with the case of RKHS of finite-rank kernels with rank
r < n : µ̂i = 0, i > r, and µi = 0, i > r. Examples that include these kernels are the linear kernel
K(x1, x2) = x>1 x2 and the polynomial kernel of degree d ∈ N K(x1, x2) = (1 + x>1 x2)d. It is easy to
show that the polynomial kernel is of finite rank at most d + 1, meaning that the kernel matrix Kn

has at most min{d+ 1, n} nonzero eigenvalues.

The following theorem applies to any functional sequence {f t}∞t=0 generated by (2.11) and ini-
tialized at f0 = 0. The main part of the proof of this result consists of properly upper bounding
Eε|EεR̃t∗ − R̃t∗ | and follows the same trend of [28, Proposition 3.1].

Theorem 2.3.1. Under Assumptions 1 and 2, given the stopping rule (2.24),

Eε‖f τ − f∗‖2n ≤ 2(1 + θ−1)Eε‖f t
∗ − f∗‖2n + 2(

√
3 + θ)

√
rσ2

n
, (2.25)

for any strictly positive θ.

Proof of Theorem 2.3.1. In this proof, we will use the following inequalities: for any a, b ≥ 0 : (a−b)2 ≤
|a2 − b2|, and 2ab ≤ θa2 + 1

θ b
2 for ∀θ > 0.

Let us first proof the subsequent oracle-type inequality for the difference between f τ and f t
∗ .

Consider

‖f t∗ − f τ‖2n = 1
n

r∑
i=1

(
γ

(t∗)
i − γ(τ)

i

)2
Z2
i ≤

1
n

r∑
i=1
|(1− γ(t∗)

i )2 − (1− γ(τ)
i )2|Z2

i

= (R̃t∗ − R̃τ )I {τ ≥ t∗}+ (R̃τ − R̃t∗)I {τ < t∗}

≤ (R̃t∗ − EεR̃t∗)I {τ ≥ t∗}+ (EεR̃t∗ − R̃t∗)I {τ < t∗}

≤ |R̃t∗ − EεR̃t∗ |.

From the definition of R̃t (2.22), one notices that

|R̃t∗ − EεR̃t∗ | =
∣∣∣∣∣
r∑
i=1

(1− γ(t∗)
i )2

[ 1
n

(ε2
i − σ2) + 2

n
εiG

∗
i

]∣∣∣∣∣ .
From Eε|X(ε)| ≤

√
varεX(ε) for X(ε) centered, and

√
a+ b ≤

√
a+
√
b for any a, b ≥ 0, and Eε

(
ε4) ≤
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3σ4, it comes

Eε|R̃t∗ − EεR̃t∗ | ≤

√√√√2σ2

n2

r∑
i=1

(1− γ(t∗)
i )4

[3
2σ

2 + 2(G∗i )2
]

≤

√√√√3σ4

n2

r∑
i=1

(1− γ(t∗)
i )2 +

√√√√4σ2

n2

r∑
i=1

(1− γ(t∗)
i )2(G∗i )2

≤
√

3σ2√r
n

+ θ
σ2

n
+ θ−1B2(t∗)

≤ θ−1B2(t∗) + (
√

3 + θ)
√
rσ2

n
.

Applying the inequalities (a + b)2 ≤ 2a2 + 2b2 for any a, b ≥ 0, and B2(t∗) ≤ Eε‖f t
∗ − f∗‖2n, we

arrive at

Eε‖f τ − f∗‖2n
≤ 2Eε‖f t

∗ − f∗‖2n + 2Eε‖f τ − f t
∗‖2n

≤ 2(1 + θ−1)Eε‖f t
∗ − f∗‖2n + 2(

√
3 + θ)

√
rσ2

n
.

The claim is proved. �

First of all, it is worth noting that the risk of the estimator f t∗ is proved to be optimal for gradient
descent and kernel ridge regression no matter the kernel we use (see Appendix 2.9 for the proof), so it
remains to focus on the remainder term on the right-hand side in Ineq. (2.25). Theorem 2.3.1 applies
to any reproducing kernel, but one remarks that for infinite-rank kernels, r � n and we achieve only
the rate O(1/

√
n). This rate is suboptimal since, for instance, an RKHS with polynomial eigenvalue

decay kernels (will be considered in the next subsection) has the minimax-optimal rate for the risk
error of the order O

(
n
− β
β+1

)
with β > 1. Therefore, the oracle-type inequality (2.25) could be useful

only for finite-rank kernels due to the fast O(
√
r/n) rate of the remainder term.

Notice that to make artificially the term O (
√
r/n) a remainder one (even for the cases correspond-

ing to infinite-rank kernels), [28, 30] introduced in the definitions of their stopping rules a restriction on
the "starting time" t0. However, in the work mentioned, this restriction incurred the price of possibility
to miss the designed time τ . For instance, [28] took t0 as the first time at which the variance becomes
of the order

√
rσ2

n (
√
Dδ2 in their notations). Besides that, [30] developed an additional procedure, built

on standard model selection criteria such as the AIC-criterion, for the spectral cut-off estimator to
recover the "missing" stopping rule and achieve adaptivity over Sobolev-type ellipsoids. In our work,
we removed such a strong assumption.

As a corollary of Theorem 2.3.1, one can prove that f τ provides a minimax estimator of f∗ over
the ball of radius R.
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Corollary 2.3.2. Under Assumptions 1, 2, 3, if a kernel has finite rank r, then

Eε‖f τ − f∗‖2n ≤ cuR2ε̂2n, (2.26)

where constant cu is numeric.

Proof of Corollary 2.3.2. From Theorem 2.3.1 and Lemma 2.9.1 in Appendix,

Eε‖f τ − f∗‖2n ≤ 16(1 + θ−1)R2ε̂2n + 2(
√

3 + θ)
√
rσ2

n
. (2.27)

Further, from Lemma 2.7.4 in Appendix, ε̂2n = c rσ
2

nR2 with a positive numeric constant c, and it implies
that

Eε‖f τ − f∗‖2n ≤
[
16(1 + θ−1) + 2(

√
3 + θ)
c

]
R2ε̂2n. (2.28)

�

Note that the critical radius ε̂n cannot be arbitrary small, since it should satisfy Ineq. (2.20). As
it will be clarified later, the squared empirical critical radius is essentially optimal.

Random-design framework

We would like to transfer the minimax optimality bound for the estimator f τ from the empirical
L2(Pn) norm to the L2(PX) in-sample norm by means of the so-called localized population Rademacher
complexity. This complexity measure became a standard tool in empirical processes and nonparametric
regression [16, 72, 92, 114].

For any kernel function class studied in the chapter, we consider the localized Rademacher com-
plexity that can be seen as a population counterpart of the empirical Rademacher complexity (2.19)
introduced earlier:

Rn(ε,H) = R

[
1
n

∞∑
i=1

min{µi, ε2}
]1/2

. (2.29)

Using the localized population Rademacher complexity, we define its population critical radius
εn > 0 to be the smallest positive solution ε that satisfies the inequality

Rn(ε,H)
εR

≤ 2εR
σ
. (2.30)

In contrast to the empirical critical radius ε̂n, this quantity is not data-dependent since it is specified
by the population eigenvalues of the kernel operator Tk underlying the RKHS.

Recall the definition of the population critical radius (2.30), then the following result provides a
fundamental lemma on the transfer between the L2(Pn) and L2(PX) functional norms. In what follows,
we assume that H is a star-shaped function class, meaning that for any f ∈ H and scalar ω ∈ [0, 1],
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the function ωf belongs to H. The assumption on H being star-shape holds if f is assumed to lie in
the H-norm ball of an arbitrary finite radius.

Lemma 2.3.3. [114, Theorem 14.1] Assume a star-shaped kernel function class H and Assumption 2
of the bounded kernel. Let εn be as in Ineq. (2.30), then for any f ∈ BH(cR), where c > 1 is a numeric
constant, and h ≥ εn, one has ∣∣∣‖f‖2n − ‖f‖22∣∣∣ ≤ 1

2‖f‖
2
2 + c1R

2h2 (2.31)

with probability at least 1− c2e
−c3

nh2R2
σ2 , for some positive numeric constants c1, c2 and c3.

We deduce from Lemma 2.3.3 that, with probability at least 1− c2e
−c3

nh2R2
σ2 ,

1
2‖f‖

2
2 − c1R

2h2 ≤ ‖f‖2n ≤
3
2‖f‖

2
2 + c1R

2h2.

The previous lemma means the following. If we are able to proof that for some t > 0, ‖f t−f∗‖2H ≤
cR with high probability, for a positive numeric constant c, then we can directly change the optimality
result in terms of ‖f t − f∗‖2n to the optimality result in terms of the L2(PX) norm ‖f t − f∗‖22, losing
only c1R

2h2 � R2ε2n by choosing h = εn.
Equipped with the localized Rademacher complexity (2.29), we can state the optimality theorem

for finite-rank kernels and any functional sequence {f t}∞t=0 generated by (2.11) and initialized at
f0 = 0.

Theorem 2.3.4. Under Assumptions 1, 2, and 3, given the stopping rule (2.24), there is a numeric
constant c̃u so that for finite-rank kernels with rank r:

E‖f τ − f∗‖22 ≤ c̃u
rσ2

n
. (2.32)

Proof intuition. The full proof is deferred to Section 2.12. Its main ingredient is Lemma 2.14.2 in
Appendix that states the following: ‖f t‖H ≤

√
7R for any t ≤ tε, where tε = inf

{
t > 0 | B2(t) =

σ2

2n
∑r
i=1 γ

(t)
i

}
, with high probability. With this argument, we can apply the triangular inequality and

Lemma 2.3.3, if τ ≤ tε w.h.p.

Remark. Theorem 2.3.4 provides a rate for the L2(PX) norm that matches up to a constant the
minimax bound (see e.g. [93, Theorem 2(a)] with s = d = 1) when f∗ belongs to the H-norm ball of
a fixed radius R, thus not improvable in general. A similar bound for finite-rank kernels was achieved
in [92, Corollary 4].

We summarize our findings in the following corollary.
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Corollary 2.3.5. Under Assumptions 1, 2, 3, and a finite-rank kernel, early stopping rule τ satisfies

E‖f τ − f∗‖22 � inf
f̂

sup
‖f∗‖H≤R

E‖f̂ − f∗‖22, (2.33)

where the infimum is taken over all measurable functions of the input data.

2.3.2 Practical behavior of τ with infinite-rank kernels

A typical example of RKHS that produces a "smooth" infinite-rank kernel is the kth-order Sobolev
spaces for some fixed integer k ≥ 1 with Lebesgue measure on a bounded domain. We consider Sobolev
spaces that consist of functions that have kth-order weak derivatives f (k) being Lebesgue integrable,
and f (0) = f (1)(0) = . . . = f (k−1)(0) = 0. It is worth to mention that for such classes, the eigenvalues
of the Gram matrix µ̂i � i−β, i ∈ [r]. Another example of kernels with this decay condition for the
eigenvalues is the Laplace kernel K(x1, x2) = e−|x1−x2|, x1, x2 ∈ R (see [98, p.402]).

Firstly, let us now illustrate a practical behavior of ESR (2.24) (its histogram) for gradient descent
(2.11) with step-size η = 1/(1.2µ̂1) for the one dimensional Sobolev kernel K(x1, x2) = min{x1, x2}
that generates the reproducing space

H =
{
f : [0, 1]→ R | f(0) = 0,

∫ 1

0
(f ′(x))2dx <∞

}
. (2.34)

We deal with the model (2.1) with two regression functions: the smooth piece-wise linear f∗(x) =
|x − 1/2| − 1/2 and nonsmooth heavisine f∗(x) = 0.093 [4 sin(4πx) − sign(x − 0.3) − sign(0.72 − x)]
functions. The design points are random xi

i.i.d.∼ U[0, 1]. The number of observations is n = 200. For
both functions, ‖f∗‖n ≈ 0.28, and we set up a middle difficulty noise level σ = 0.15. The number of
repetitions is N = 200.

In panel (a) of Figure 2.2, we detect that our stopping rule τ has high variance. This could be
explained by the variability of τ around its proxy version t∗ or the variability of the empirical risk Rt
around its expectation at t∗. To understand this phenomenon, we move back to Theorem 2.3.1 and
notice that the remainder term there vanishes at the fast rate O(

√
r/n) when the kernel rank is fixed.

If the kernel is not of finite rank, as a consequence, the worst-case rate is O(1/
√
n) and we could

not guarantee that we get a true remainder term at the end. Thus, high variance comes from a large
remainder term. Moreover, it has been shown in [30] that the term O(

√
r/n) is unavoidable for the

spectral cut-off algorithm (in their notation it corresponds to
√
Dδ2, where δ2 = σ2

n ).
If we change the signal f∗ from the smooth to the nonsmooth one, the regression function does

not belong anymore to H defined in (2.34). In this case (panel (b) in Figure 2.2), stopping rule τ
performs much better than for the previous regression function. A conclusion one can make is that for
the smooth functions in H, one needs to reduce the variance of the empirical risk. In order to do that
and to get a stable early stopping rule that will be close to t∗, we propose using a special smoothing
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Figure 2.2 – Histogram of τ vs tb vs t∗ vs tor := argmin
t>0

[
Eε‖f t−f∗‖2n

]
for kernel gradient descent with

the step-size η = 1/(1.2µ̂1) for the piece-wise linear f∗(x) = |x− 1/2| − 1/2 (panel (a)), and heavisine
f∗(x) = 0.093 [4 sin(4πx) − sign(x − 0.3) − sign(0.72 − x)] (panel (b)) regression functions, and the
first-order Sobolev kernel K(x1, x2) = min{x1, x2}.

technique for the empirical risk.

2.4 Polynomial smoothing

As it was mentioned earlier, the main issue of poor behavior of the stopping rule τ for "smooth"
infinite-rank kernels is the variability of the empirical risk around its expectation. We would like to
reduce this variability. To grasp additional intuition of this variability, consider the expectation of the
empirical risk EεRt ≈ 1

n

∑r
i=1(1 − γ(t)

i )2(G∗i )2 and the fact that there exist components i ∈ [r], for
which (G∗i )2 ≤ ε2

i , then one can conclude that there is no hope to apply the early stopping rule τ with
this type of kernels. That would be extremely difficult to recover the part of the regression function
associated with these components since we observe pure noise. Our goal then is to reduce the number
of these components and, by doing that, to reduce the variance of the empirical risk. A solution that
we propose is to smooth the empirical risk utilizing the eigenvalues of the normalized Gram matrix.

2.4.1 Polynomial smoothing and minimum discrepancy principle rule

We start by defining the squared α-norm as ‖f‖2n,α := 〈Kα
nF, F 〉n for all F = [f(x1), . . . , f(xn)]> ∈

Rn, from which we also introduce the smoothed risk, bias, and variance of a spectral filter estimator
as

Rα(t) = Eε‖f t − f∗‖2n,α = ‖Eεf t − f∗‖2n,α + Eε‖f t − Eεf t‖2n,α = B2
α(t) + Vα(t),
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with
B2
α(t) = 1

n

r∑
i=1

µ̂αi (1− γ(t)
i )2(G∗i )2, Vα(t) = σ2

n

r∑
i=1

µ̂αi (γ(t)
i )2. (2.35)

The smoothed empirical risk is

Rα,t = ‖F t − Y ‖2n,α = ‖Gt − Z‖2n,α = 1
n

r∑
i=1

µ̂αi (1− γ(t)
i )2Z2

i , for t > 0. (2.36)

Recall that the kernel is bounded by B = 1, thus µ̂i ≤ 1 for all i = 1, . . . , r, then the smoothed bias
B2
α(t) and smoothed variance Vα(t) are smaller their non-smoothed counterparts.
Analogously to the heuristic derivation leading to the stopping rule (2.24), the new stopping rule

is based on the discrepancy principle applied to the α−smoothed empirical risk, that is,

τα = inf
{
t > 0 | Rα,t ≤ σ2 tr(Kα

n )
n

}
, (2.37)

where σ2tr(Kα
n )/n = σ2∑r

i=1 µ̂
α
i /n is the natural counterpart of rσ2/n in the case of an infinite-rank

kernel and the α−norm.
Since there is no straightforward connection between τα and the former reference stopping rule

tb = inf{t > 0 | B2(t) ≤ V (t)}, we need to introduce a new reference one for the theoretical analysis
of the behavior of τα. We first define a new smoothed reference stopping rule (which balances between
the smoothed bias and variance)

tbα = inf
{
t > 0 | B2

α(t) ≤ Vα(t)
}
, (2.38)

and also the analogue of (2.23) with the α−norm:

t∗α = inf
{
t > 0 | EεRα,t ≤

σ2

n

r∑
i=1

µ̂αi

}
. (2.39)

2.4.2 Related work

The idea of smoothing the empirical risk (the residuals) is not new in the literature. For instance,
[31, 33, 34] discussed various smoothing strategies applied to (kernelized) conjugate gradient descent,
and [49] considered spectral regularization with spectral filter estimators. More closely related to the
present work, [105] studied a statistical performance improvement allowed by polynomial smoothing
of the residuals (as we do here), but restricted to the spectral cut-off estimator.

[33, 34] considered the following statistical inverse problem: z = Ax+σζ, where A is a self-adjoint
operator and ζ is Gaussian noise. In their case, for the purpose of achieving optimal rates, the usual
discrepancy principle rule ‖Axm− z‖ ≤ ϑδ (m is an iteration number, ϑ is a parameter) was modified
and took the form ‖ρλ(A)(Axm − z)‖ ≤ ϑδ, where ρλ(t) = 1√

t+λ and δ is the normalized variance of
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2.4. Polynomial smoothing

Gaussian noise.
In [31], the minimum discrepancy principle was modified as well to the following: each iteration

m of conjugate gradient descent was represented by a vector α̂m = K†nY , K†n is the pseudo-inverse
of the normalized Gram matrix, and the learning process was stopped if ‖Y − Knα̂m‖Kn < Ω, for
some positive Ω, where ‖α‖2Kn = 〈α,Knα〉. Thus, this method corresponds (up to a threshold) to the
stopping rule (2.37) with α = 1.

In the work [105], the authors concentrated on the inverse problem Y = Aξ + δW and its corre-
sponding Gaussian vector observation model Yi = µ̃iξi + δεi, i ∈ [r], where {µ̃i}ri=1 are the singular
values of the linear bounded operator A and {εi}ri=1 are Gaussian noise variables. They recovered
the signal {ξi}ri=1 by a cut-off estimator of the form ξ̂

(t)
i = I{i ≤ t}µ̃−1

i Yi, i ∈ [r]. The minimum
discrepancy principle in this case was ‖(AA>)α/2(Y − Aξ̂(t))‖2 ≤ κ for some positive κ. They found
out that if the smoothing parameter α lies in the interval [ 1

4p ,
1
2p), where p is the polynomial decay of

the singular values {µ̃i}ri=1, then the cut-off estimator is adaptive to Sobolev ellipsoids. Therefore, our
work could be considered as an extension of the work [105] to generalize the polynomial smoothing
strategy to more complex filter estimators such as gradient descent and (Tikhonov) ridge regression
in the reproducing kernel framework.

2.4.3 Optimality result (fixed-design)

To take into account in our analysis the fact that we use the α−norm, we define a modified version
of the localized empirical Rademacher complexity that we call the smoothed empirical Rademacher
complexity. The derivation of the next expression is deferred to Appendix 2.13.

Definition 2.4.1. The smoothed empirical Rademacher complexity of BH(R) is defined as

R̂n,α(ε,H) = R

√√√√ 1
n

r∑
i=1

µ̂αi min{µ̂i, ε2}, (2.40)

where α ∈ [0, 1] and {µ̂i}ri=1 are the eigenvalues of the Gram matrix Kn.

This new definition leads to the next updated smoothed version of the critical inequality and its
related empirical critical radius.

Definition 2.4.2. Define the smoothed empirical critical radius ε̂n,α as the smallest positive solution
ε > 0 to the following fixed-point inequality

R̂n,α(ε,H)
εR

≤ 2R
σ
ε1+α. (2.41)

Appendix 2.14 establishes that the smoothed empirical critical radius ε̂n,α does exist, is unique
and achieves the equality in Ineq. (2.41).
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We pursue the analogy a bit further by defining the smoothed statistical dimension as

dn,α := min
{
j ∈ [r] | µ̂j ≤ ε̂2n,α

}
, (2.42)

and dn,α = r if no such index does exist. Combined with (2.40), this implies that

R̂2
n,α(ε̂n,α,H) ≥

∑dn,α
j=1 µ̂

α
j

n
R2ε̂2n,α, and ε̂2(1+α)

n,α ≥
σ2∑dn,α

j=1 µ̂
α
j

4R2n
, (2.43)

where the second statement results from Ineq. (2.41). Let us emphasize that [121] already introduced
the so-called statistical dimension (corresponds to α = 0 in our notations). It appeared that the
statistical dimension provides an upper bound on the minimax optimal dimension of randomized
projections for kernel ridge regression (see [121, Theorem 2, Corollary 1]).

In our case, dn,α can be seen as a (α-smooth) version of the statistical dimension. One motivation
is that this notion turns out to be useful in the derivation of minimax rates. In particular, this can be
achieved by using the following assumptions that involve this quantity.

Assumption 4. There exists a numeric A > 0 such that for all α ∈ [0, 1],

r∑
i=dn,α+1

µ̂i ≤ Adn,αε̂2n,α. (2.44)

This assumption will further make the transfer from the smooth critical inequality (2.41) to its
non-smooth version (2.20). Indeed, under Assumption 4, if ε satisfies Ineq. (2.41), then it satisfies Ineq.
(2.20) as well, where constant 2 on the right-hand side is replaced by 2

√
1 +A (see Lemma 2.14.3 in

Appendix 2.14). Although there are reproducing kernels for which Assumption 4 does not hold, for
most of them, it holds [121], including all the examples in the present chapter. We detail one of them
below.

Example 4 (β-polynomial eigenvalue decay). Let us assume that the eigenvalues of the normalized
Gram matrix satisfy that there exist numeric constants 0 < c ≤ C such that

ci−β ≤ µ̂i ≤ Ci−β, i = 1, . . . , r, (2.45)

for some β > 1. Instances of kernels in this class are mentioned at the beginning of Section 2.3.2.
Then, Assumption 4 holds true with A = C

c
1

β−1 .

Another key property for the smoothing to yield optimal results is that the value of α has to be
large enough to control the tail sum of the smoothed eigenvalues by the corresponding cumulative
sum, which is the purpose of the assumption below.
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2.4. Polynomial smoothing

Assumption 5. There exists Υ = [α0, 1], α0 ≥ 0, such that, for all α ∈ Υ,

r∑
i=dn,α+1

µ̂2α
i ≤M

dn,α∑
i=1

µ̂2α
i , (2.46)

whereM≥ 1 denotes a numeric constant.

Let us remark that controlling the tail sum of the empirical eigenvalues has been already made,
for example, by [18] (effective rank) and more recently by [49, Assumption 6]. Let us also mention
that Assumption 5 does not imply Assumption 4 holds.

We enumerate several classical examples, for which this assumption holds.

Example 5 (β-polynomial eigenvalue decay kernels (2.45)). For the polynomial eigenvalue-decay ker-
nels, Assumption 5 holds with

M = 2
(C
c

)2
and 1 ≥ α ≥ 1

β + 1 = α0. (2.47)

Example 6 (γ-exponential eigenvalue-decay kernels). Let us assume that the eigenvalues of the nor-
malized Gram matrix satisfy that there exist numeric constants 0 < c ≤ C and a constant γ > 0 such
that

ce−i
γ ≤ µ̂i ≤ Ce−i

γ
.

Instances of kernels within this class include the Gaussian kernel with respect to the Lebesgue measure
on the real line (with γ = 2) or on a compact domain (with γ = 1) (up to log factor in the exponent).
Then, Assumption 5 holds with

M =
(C
c

)2
∫∞

0 e−y
γ
dy∫ 2(2α0)1/γ

(2α0)1/γ e−yγdy
and α ∈ [α0, 1], for α0 > 0.

For any reproducing kernel satisfying the above assumptions, the next theorem provides a high
probability bound on the performance of f τα (measured in terms of the L2(Pn) norm), which depends
on the smoothed empirical critical radius.

Theorem 2.4.1 (Upper bound). Under Assumptions 1, 2, 3, 4, and 5, given the stopping rule (2.37):

‖f τα − f∗‖2n ≤ cuR2ε̂2n,α (2.48)

with probability at least 1 − 5 exp
[
− c1

R2

σ2 nε̂
2(1+α)
n,α

]
, for some positive constants c1 and cu, where c1

depends only onM, cu depends only on A.
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Moreover,

Eε‖f τα − f∗‖2n ≤ CR2ε̂2n,α + 6 max{σ2, R2} exp
[
−c3

R2

σ2 nε̂
2(1+α)
n,α

]
(2.49)

for constant C only depending on A, constant c3 only depending onM.

First of all, Theorem 2.4.1 is established in the fixed-design framework, and Ineq. (2.49) is a direct
consequence of the high probability bound (2.48). The main message is that the final performance of
the estimator f τα is controlled by the smoothed critical radius ε̂n,α. From the existing literature on
the empirical critical radius [92, 93, 114, 121], it is already known that the non-smoothed version ε̂2n
is the typical quantity that leads to minimax rates in the RKHS (see also Theorem 2.4.2 below). In
particular, tight upper bounds on ε̂2n can be computed from a priori information about the RKHS, e.g.,
the decay rate of the empirical/population eigenvalues. However, the behavior of ε̂2n,α with respect to
n is likely to depend on α, as emphasized by the notation. Intuitively, this suggests that there could
exist a range of values of α, for which ε̂2n,α is of the same order as (or faster than) ε̂2n, leading therefore
to optimal rates. But there could also exist ranges of values of α, where this does not hold, leading to
suboptimal rates.

Another striking aspect of Ineq. (2.49) is related to the additional terms involving the exponential
function in Ineq. (2.49). As far as (2.48) is a statement with "high probability", this term is expected
to converge to 0 at a rate depending on nε̂2n,α. Therefore, the final convergence rate as well as the fact
that this term is (or not) negligible will depend on α.

Sketch of proof of Theorem 2.4.1. The complete proof is given in Appendix 2.10 and starts from split-
ting the risk error ‖f τα − f∗‖2n into two parts:

2B2(τα) + 2v(τα), (2.50)

where v(t) := 1
n

∑n
i=1(γ(t)

i )2ε2
i is called the stochastic part of the variance at iteration t.

The key ingredients of the proof are the next two deviation inequalities.

i) Pε (τα > tε,α) ≤ 2 exp
[
−c1

R2

σ2 nε̂
2(1+α)
n,α

]
,

ii) Pε
(
τα < t̃ε,α

)
≤ 2 exp

[
−c2

R2

σ2 nε̂
2(1+α)
n,α

]
,

where tε,α and t̃ε,α are some properly chosen upper and lower bounds of t∗α.
Since it can be shown that ηt̃ε,α � ηtε,α � (ε̂2n,α)−1, these two inequalities show that τα stays of

the optimal order (ε̂2n,α)−1 with high probability. After that, it is sufficient to upper bound each term
in (2.50), and the claim follows.
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�

The purpose of the following result is to give more insight into the understanding of Theorem 2.4.1
regarding the influence of the different terms in the convergence rate.

Theorem 2.4.2 (Lower bound from Theorem 1 in [121]). If Assumption 4 holds true with α = 0,
then for any estimator f̃ of f∗ ∈ BH(R) satisfying the nonparametric model defined in Eq. (2.1), we
get

Eε‖f̃ − f∗‖2n ≥ clR2ε̂2n,

for some numeric constant cl that only depends on A from Assumption 4.

Firstly, Theorem 2.4.2 has been proved in [121] with R = 1, and a simple rescaling argument
provides the above statement, so we do not reproduce the proof here. Secondly, Theorem 2.4.2 applies
to any kernel as long as Assumption 4 is fulfilled with α = 0, which is in particular true for the
reproducing kernels from Theorem 2.4.1. Therefore, the fastest achievable rate by an estimator of f∗

is ε̂2n. As a consequence, as far as there exist values of α such that ε̂2n,α is at most as large as ε̂2n, the
estimator f τα is optimal.

2.4.4 Consequences for β-polynomial eigenvalue-decay kernels

The leading idea in the present section is identifying values of α, for which the bound (2.48) from
Theorem 2.4.1 scales as R2ε̂2n.

Let us recall the definition of a polynomial decay kernel from (2.45):

ci−β ≤ µ̂i ≤ Ci−β, i ∈ [r], for some β > 1 and numeric constants c, C > 0.

One typical example of the reproducing kernel satisfying this condition is the Sobolev kernel on
[0, 1] × [0, 1] given by K(x, x′) = min{x, x′}, with β = 2 [92]. The corresponding RKHS is the first-
order Sobolev class, that is, the class of functions that are almost everywhere differentiable with the
derivative in L2[0, 1].

Lemma 2.4.3. Assume there exists β > 1 such that the β-polynomial decay assumption from (2.45)
holds. Then there exist numeric constants c1, c2 > 0 such that, for α < 1/β, one has

c1ε̂
2
n ≤ ε̂2n,α ≤ c2ε̂

2
n �

[
σ2

2R2n

] β
β+1

.

The proof of Lemma 2.4.3, which can be derived from combining Lemmas 2.7.4 and 2.7.5 from
Appendix 2.7, is not reproduced here.
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Therefore, if αβ < 1, then ε̂2n,α � ε̂2n �
[

σ2

2R2n

] β
β+1 . Let us now recall from (2.47) that Assumption 5

holds true for α ≥ (β + 1)−1. All these arguments lead us to the next result, which establishes the
minimax optimality of τα with any kernel satisfying the β-polynomial eigenvalue-decay assumption,
as long as α ∈ [ 1

β+1 ,
1
β ).

Corollary 2.4.4. Under Assumptions 1, 2, 3, and the β-polynomial eigenvalue decay (2.45), for any
α ∈ [ 1

β+1 ,
1
β ), the early stopping rule τα satisfies

Eε‖f τα − f∗‖2n � inf
f̂

sup
‖f∗‖H≤R

Eε‖f̂ − f∗‖2n, (2.51)

where the infimum is taken over all measurable functions of the input data.

Corollary 2.4.4 establishes an optimality result in the fixed-design framework since, as long as
(β + 1)−1 ≤ α < β−1, the upper bound matches the lower bound up to multiplicative constants.
Moreover, this property holds uniformly with respect to β > 1 provided the value of α is chosen
appropriately. An interesting feature of this bound is that the optimal value of α only depends on the
(polynomial) decay rate of the empirical eigenvalues of the normalized Gram matrix. This suggests
that any effective estimator of the unknown parameter β could be plugged into the above (fixed-design)
result and would lead to an optimal rate. Note that [105] has recently emphasized a similar trade-
off ((β + 1)−1 ≤ α < β−1) for the smoothing parameter α (polynomial smoothing), considering the
spectral cut-off estimator in the Gaussian sequence model. Regarding convergence rates, Corollary 2.4.4
combined with Lemma 2.4.3 suggests that the convergence rate of the expected (fixed-design) risk is
of the order O

(
n
− β
β+1

)
. This is the same as the already known one in nonparametric regression in

the random design framework [92, 106], which is known to be minimax optimal as long as f∗ belongs
to the RKHS H.

2.5 Empirical comparison with existing stopping rules

The present section aims at illustrating the practical behavior of several stopping rules discussed
in the chapter as well as making a comparison with existing alternative stopping rules.

2.5.1 Stopping rules involved

The empirical comparison is carried out between the stopping rules τ (2.24) and τα with α ∈
[ 1
β+1 ,

1
β ) (2.37), and four alternative stopping rules that are briefly described in what follows. For the

sake of comparison, most of them correspond to early stopping rules already considered in [92].
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Hold-out stopping rule

We consider a procedure built on the hold-out idea [8]. The data {(xi, yi)}ni=1 are split into two
parts: the training sample Strain = (xtrain, ytrain) and the test sample Stest = (xtest, ytest) so that the
training sample and test sample represent a half of the whole dataset. We train the learning algorithm
for t = 0, 1, . . . and estimate the risk, for each t, by Rho(f t) = 1

n

∑
i∈Stest((ŷtest)i − yi)2, where (ŷtest)i

denotes the output of the algorithm trained at iteration t on Strain and evaluated at the point xi of
the test sample. The final stopping rule is defined as

T̂HO = argmin
{
t ∈ N | Rho(f t+1) > Rho(f t)

}
− 1. (2.52)

Although it does not completely use the data for training (loss of information), the hold-out strategy
has been proved to output minimax optimal estimators in various contexts (see, for instance, [43, 45]
with Sobolev spaces and β ≤ 2).

V-fold stopping rule

The observations {(xi, yi)}ni=1 are randomly split into V = 4 equal sized blocks. At each round
(among the V ones), V − 1 blocks are devoted to training Strain = (xtrain, ytrain), and the remaining
one serves for the test sample Stest = (xtest, ytest). At each iteration t = 0, 1, . . ., the risk is estimated
by RVFCV(f t) = 1

V−1
∑V−1
j=1

1
n/V

∑
i∈Stest(j)((ŷtest)i − yi)2, where ŷtest was described for the hold-out

stopping rule. The final stopping rule is

T̂VFCV = argmin
{
t ∈ N | RVFCV(f t+1) > RVFCV(f t)

}
− 1. (2.53)

V-fold cross-validation is widely used in practice since, on the one hand, it is more computationally
tractable than other splitting-based methods such as leave-one-out or leave-p-out (see the survey [8]),
and on the other hand, it enjoys better statistical performance than the hold-out (lower variability).

Raskutti-Wainwright-Yu stopping rule (from [92])

The use of this stopping rule heavily relies on the assumption that ‖f∗‖2H is known, which is a
strong requirement in practice. It controls the bias-variance trade-off by using upper bounds on the bias
and variance terms. The latter involves the localized empirical Rademacher complexity R̂n

(
1√
ηt
,H
)
.

Similarly to tb, it stops as soon as (upper bound of) the bias term becomes smaller than (upper bound
on) the variance term, which leads to

T̂RWY = argmin
{
t ∈ N | R̂n

( 1√
ηt
,H
)
> (2eσηt)−1

}
− 1. (2.54)
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Theoretical minimum discrepancy-based stopping rule t∗

The fourth stopping rule is the one introduced in (2.23). It relies on the minimum discrepancy
principle and involves the (theoretical) expected empirical risk EεRt:

t∗ = inf
{
t > 0 | EεRt ≤ σ2

}
.

This stopping rule is introduced for comparison purposes only since it cannot be computed in practice.
This rule is proved to be optimal (see Appendix 2.9) for any bounded reproducing kernel so that it
could serve as a reference in the present empirical comparison.

Oracle stopping rule

The "oracle" stopping rule is defined as the first time the risk curve starts to increase.

tor = argmin
{
t ∈ N | Eε‖f t+1 − f∗‖2n > Eε‖f t − f∗‖2n

}
− 1. (2.55)

In situations where only one global minimum does exist for the risk, this rule coincides with the global
minimum location. Its formulation reflects the realistic constraint that we do not have access to the
whole risk curve (unlike in the classical model selection setup).

2.5.2 Simulation design

Artificial data are generated according to the regression model yj = f∗(xj) + εj , j = 1, . . . , n,
where εj

i.i.d.∼ N (0, σ2), with equidistant xj = j/n, j = 1, . . . , n, and σ = 0.15. The same experiments
have been also carried out with xj ∼ U[0, 1] (not reported here) without any change regarding the
conclusions. The sample size n varies from 40 to 400.

The gradient descent algorithm (2.11) has been used with the step-size η = (1.2 µ̂1)−1 and initial-
ization F 0 = [0, . . . , 0]>.

The present comparison involves two regression functions with the same L2(Pn) norms of the signal
‖f∗‖n ≈ 0.28: (i) a piecewise linear function called "smooth" f∗(x) = |x−1/2|−1/2, and (ii) a "sinus"
function f∗(x) = 0.9 sin(8πx)x2. An illustration of the corresponding curves is displayed in Figure 2.3.

To ease the comparison, the piecewise linear regression function was set up as in [92, Figure 3].
The case of finite-rank kernels is addressed in Section 2.5.3 with the so-called polynomial kernel of

degree 3 defined by K(x1, x2) = (1+x>1 x2)3 on the unit square [0, 1]× [0, 1]. By contrast, Section 2.5.3
tackles the polynomial decay kernels with the first-order Sobolev kernel K(x1, x2) = min{x1, x2} on
the unit square [0, 1]× [0, 1].

The performance of the early stopping rules is measured in terms of the L2(Pn) squared norm
‖f t − f∗‖2n averaged over N = 100 independent trials.
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For our simulations, we use a variance estimation method that is described in Section 2.5.4. This
method is asymptotically unbiased, which is sufficient for our purposes.
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Figure 2.3 – "Smooth" and "sinus" regression functions

2.5.3 Results of the simulation experiments

Finite-rank kernels

Figure 2.4 displays the (averaged) L2(Pn) norm error of the oracle stopping rule (2.55), our stopping
rule τ (2.24), t∗ (2.23), the minimax optimal stopping rule T̂RWY (2.54), and the 4-fold cross validation
stopping rule T̂VFCV (2.53) versus the sample size. Figure 2.4a shows the results for the piece-wise
linear regression function whereas Figure 2.4b corresponds to the "sinus" regression function.

All the curves decrease as n grows. From these graphs, the overall worst performance is achieved by
T̂VFCV, especially with a small sample size, which can be due to the additional randomness induced
by the preliminary random splitting with 4 − FCV . By contrast, the minimum discrepancy-based
stopping rules (τ and t∗) exhibit the best performances compared to the results of T̂VFCV and T̂RWY.
The averaged mean-squared error of τ is getting closer to the one of t∗ as the number of samples n
increases, which was expected from the theory and also intuitively, since τ has been introduced as an
estimator of t∗. From Figure 2.4a, T̂RWY is less accurate for small sample sizes but improves a lot as
n grows up to achieving a performance similar to that of τ . This can result from the fact that T̂RWY

is built from upper bounds on the bias and variance terms, which are likely to be looser with a small
sample size but achieves an optimal convergence rate as n increases. In Figure 2.4b, the reason why τ
exhibits (strongly) better results than T̂RWY owes to the main assumption on the regression function,
namely that ‖f∗‖H ≤ 1. It could be violated for the "sinus" function.
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Figure 2.4 – Kernel gradient descent with the step-size η = 1/(1.2µ̂1) and polynomial kernel
K(x1, x2) = (1 + x>1 x2)3, x1, x2 ∈ [0, 1], for the estimation of two noised regression functions from
Figure 2.3: smooth f∗(x) = |x−1/2|−1/2 for the panel (a) and "sinus" f∗(x) = 0.9 sin(8πx)x2 for the
panel (b), with the equidistant covariates xj = j/n. Each curve corresponds to the L2(Pn) squared
norm error for the stopping rules (2.55), (2.23), (2.54), (2.53), (2.24), averaged over 100 independent
trials, versus the sample size n = {40, 80, 120, 200, 320, 400}.

Polynomial eigenvalue decay kernels

Figure 2.5 displays the resulting (averaged over 100 repetitions) L2(Pn) error of τα (with α =
(β+ 1)−1 = 0.33) (2.37), T̂RWY (2.54), t∗ (2.23), and T̂HO (2.52) versus the sample size n. Figure 2.5a
shows that all stopping rules seem to work equivalently well, although there is a slight advantage for
T̂HO and T̂RWY compared to t∗ and τα. However, as n grows to n = 400, the performances of all
stopping rules become very close to each others. Let us mention that the true value of β is not known
in these experiments. Therefore, the value (β + 1)−1 = 0.33 has been estimated from the decay of
the empirical eigenvalue of the normalized Gram matrix. This can explain why the performance of τα
remains worse than that of T̂RWY.

The story described by Figure 2.5b is somewhat different. The first striking remark is that T̂RWY

completely fails on this example, which still stems from the (unsatisfied) constraint on the H-norm
of f∗. However, the best performance is still achieved by the Hold-out stopping rule, although τα and
t∗ remain very close to the latter. The fact that t∗ remains close to the oracle stopping rule (without
any need for smoothing) supports the idea that the minimum discrepancy is a reliable principle for
designing an effective stopping rule. The deficiency of τ (by contrast to τα) then results from the
variability of the empirical risk, which does not remain close enough to its expectation. This bad
behavior is then balanced by introducing the polynomial smoothing at level α within the definition of
τα, which enjoys close to optimal practical performances.

Let us also mention that T̂HO exhibit some variability, in particular, with small sample sizes as it
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Figure 2.5 – Kernel gradient descent (2.11) with the step-size η = 1/(1.2µ̂1) and Sobolev kernel
K(x1, x2) = min{x1, x2}, x1, x2 ∈ [0, 1], for the estimation of two noised regression functions from
Figure 2.3: smooth f∗(x) = |x−1/2|−1/2 for the panel (a) and "sinus" f∗(x) = 0.9 sin(8πx)x2 for the
panel (b), with the equidistant covariates xj = j/n. Each curve corresponds to the L2(Pn) squared
norm error for the stopping rules (2.55), (2.23), (2.54), (2.52), (2.37) with α = 0.33, averaged over 100
independent trials, versus the sample size n = {40, 80, 120, 200, 320, 400}.

is illustrated by Figures 2.5a and 2.5b.
The overall conclusion is that the smoothed minimum discrepancy-based stopping rule τα leads to

almost optimal performances provided α = (β + 1)−1, where β quantifies the polynomial decay of the
empirical eigenvalues of the normalized Gram matrix.

2.5.4 Estimation of variance and decay rate for polynomial eigenvalue decay ker-
nels

The purpose of the present section is to describe two strategies for estimating: (i) the decay rate
of the empirical eigenvalues of the normalized Gram matrix, and (ii) the variance parameter σ2.

Polynomial decay parameter estimation

From the polynomial decay assumption (2.45), one easily derives upper and lower bounds for β as

log(µ̂i/µ̂i+1)− log(C/c)
log(1 + 1/i) ≤ β ≤ log(µ̂i/µ̂i+1) + log(C/c)

log(1 + 1/i) .

The difference between these upper and lower bounds is equal to 2 log(C/c)
log(1+1/i) , which is minimized for

i = 1. Then, the best precision on the estimated value of β is reached with i = 1, which yields the
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estimator
β̂ = log(µ̂1/µ̂2)

log 2 . (2.56)

Note that this estimator β̂ from (2.56) is not rigorously grounded but only serves as a rough choice in
our simulation experiments (see Section 2.5.3).

Variance parameter estimation

There is a bunch of suggestions for variance estimation with linear smoothers; see, e.g., Section 5.6
in the book [116]. In our simulation experiments, two cases are distinguished: the situation, where the
reproducing kernel has finite rank r, and the situation, where the empirical eigenvalues of the normal-
ized Gram matrix exhibit a polynomial decay. In both cases, an asymptotically unbiased estimator of
σ2 is designed.

Finite-rank kernel. With such a finite-rank kernel, one estimates the noise from the coordinates
{Zi}ni=r+1 corresponding to the situation, where G∗i = 0, i > r (see Lemma 2.7.1 in Appendix 2.7).
Actually, these coordinates (which are pure noise) are exploited to build an easy-to-compute estimator
of σ2, that is,

σ̂2 =
∑n
i=n−r+1 Z

2
i

n− r
. (2.57)

Polynomial decay kernel. If the empirical eigenvalues of Kn satisfy the polynomial eigenvalue
decay assumption (2.45), we suggest overly-smoothing the residuals by choosing α = 1, which intu-
itively results in reducing by a large amount the variability of the corresponding smoothed empirical
risk around its expectation, that is, EεR1,t ≈ R1,t.

Therefore, the smoothed empirical risk can be approximated by R1,t ≈ B2
1(t) + σ2

n

∑r
i=1(1− γ(t)

i )2,
and

σ2 ≈ R1,t −B2
1(t)

1
n

∑r
i=1 µ̂i(1− γ

(t)
i )2

.

Using furthermore that B2
1(t)→ 0 as t increases to +∞, the final choice is

σ̂2 = R1,t
1
n

∑r
i=1 µ̂i(1− γ

(t)
i )2

.

Following the above heuristic argument, let us emphasize that σ̂2 is likely to be an upper bound on
the true variance σ2 since the (non-negative) bias is lower bounded by 0. Nevertheless, the next result
justifies this choice.

Lemma 2.5.1. Under the polynomial eigenvalue decay assumption (2.45), any value of t satisfying
t · ηε̂2n → +∞ as n → +∞ yields that σ̂2 = R1,t

1
n

∑r

i=1 µ̂i(1−γ
(t)
i )2

is an asymptotically unbiased estimator

of σ2.
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2.6. Conclusion

A sketch of the proof of Lemma 4.22 is given in Appendix 2.15. Based on this lemma, we suggest
taking t = T , where T is the maximum number of iterations allowed to execute due to computational
constraints. Notice that as long as we access to closed-form expressions of the estimator, there is
no need to compute all estimators for t between 1 ≤ t ≤ T . The final estimator of σ2 used in the
experiments of Section 2.5.3 is given by

σ̂2 = R1,T
1
n

∑r
i=1 µ̂i(1− γ

(T )
i )2

. (2.58)

2.6 Conclusion

In this chapter, we described spectral filter estimators (gradient descent, kernel ridge regression)
for the nonparametric regression function estimation in RKHS. Two new data-driven early stopping
rules τ (2.24) and τα (2.37) for these iterative algorithms are designed. In more detail, we show that
for the infinite-rank reproducing kernels, τ has high variance due to the variability of the empirical
risk around its expectation, and we proposed a way to reduce this variability by means of smoothing
the empirical L2(Pn) norm (and, as a consequence, the empirical risk) by the eigenvalues of the
normalized kernel matrix. We demonstrate in Corollaries 2.3.5 and 2.4.4 that our stopping rules τ
and τα yield minimax-optimal rates, in particular, for finite-rank kernel classes and Sobolev spaces.
It is worth to mention that computing our stopping rules (for a general reproducing kernel) requires
only the estimation of the variance σ2 and computing (µ̂1, . . . , µ̂r). Theoretical results are confirmed
empirically: τ and τα with the smoothing parameter α = (β + 1)−1, where β is the polynomial decay
rate of the eigenvalues of the normalized Gram matrix, perform favorably in comparison with stopping
rules, based on hold-out data, and 4-fold cross-validation.

There are various open questions that could be tackled after our results. A deficiency of our strategy
is that the construction of τ and τα used the assumption that the regression function belongs to a
known RKHS, which restricts (mildly) the smoothness of the regression function. We would like to
understand how our results could be extended to other loss functions besides the squared loss (for
example, in the classification framework), as it was done in [118]. Another research direction would
be to use early stopping with fast approximation techniques for kernels [4, 96] to avoid calculation of
all eigenvalues of the normalized Gram matrix that can be prohibited for large-scale problems.
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Appendix

First, we provide a plan for Appendix to facilitate the reading.

In Appendix 2.7 we state some results that are repeatedly used all along Appendix. Most of them
are already known in the literature.

Appendix 2.8 establishes an upper bound on the α-smoothed bias term and provides a deviation
inequality for the variance term. These two results will be used throughout Appendix.

In Appendix 2.9 we state an auxiliary lemma of minimax optimality of the stopping rule t∗ from
Eq. (2.23). This lemma is used in the proof of Corollary 2.3.2.

The main goal of Appendix 2.10 is to provide auxiliary results for the proof of Theorem 2.4.1:
— Lemma 2.10.1 −→ decomposition of the risk error ‖f τα − f∗‖2n that involves the following

quantities:
B2(τα) and v(τα),

where v(t) = 1
n

∑n
i=1(γ(τα)

i )2ε2
i is the stochastic part of the variance at time t from Eq. (2.50).

— Lemma 2.10.2 −→ the (right) deviation inequality for the stopping rule τα.
— Lemma 2.10.3 −→ the (left) deviation inequality for the stopping rule τα.
After that, Lemma 2.10.2 and Lemma 2.10.3 will be used in the following.
— Lemma 2.10.4 will use Lemma 2.10.2 to upper bound v(τα) with high probability.
— Lemma 2.10.5 will use Lemma 2.10.3 to upper bound B2(τα) with high probability.
Further, we prove Theorem 2.4.1 in Appendix 2.11 by combining all the results from Appendix

2.10.

In Appendix 2.12, one can find the proof of Theorem 2.3.4. To be precise, in this proof, we are
able to set α = 0 and use the same arguments as in Appendix 2.11. This is the reason why Appendix
2.12 follows Appendix 2.11.

Appendix 2.13 establishes an explicit expression for the smoothed Rademacher compexity R̂n,α(ε,H).

We collect all the remaining auxiliary lemmas in Appendix 2.14. A sketch of the proof of Lemma
2.5.1 is in Appendix 2.15.

2.7 Useful results

In this section, we present several auxiliary lemmas that are repeatedly used along the chapter.
The first one provides a result showing that we have some coordinates of G∗ equal to zero when

we transform the initial model (2.5) to its rotated version (2.8).
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2.7. Useful results

Lemma 2.7.1. [92, Section 4.1.1] If f∗ ∈ H with a bounded kernel K and Gram matrix K =
K(xi, xj), i, j = 1, . . . , n, such that rk(K) = r ≤ n, then

G∗i = 〈ûi, F ∗〉 = 0 when i > r. (2.59)

The following auxiliary lemma plays a crucial role in all the proofs. It provides a sharp control of
the spectral filter function defined in Eq. (2.11).

Lemma 2.7.2. [92, Lemma 8 and Section 4.1.1] For any bounded kernel, with γ(t)
i corresponding to

gradient descent or kernel ridge regression, for every t > 0,

1
2 min{1, ηtµ̂i} ≤ γ(t)

i ≤ min{1, ηtµ̂i}, i = 1, . . . , n; (2.60)

1
n

r∑
i=1

(G∗i )2

µ̂i
≤ R2 and B2(t) ≤ R2

ηt
. (2.61)

Lemma 2.7.3 establishes the magnitude of the population critical radius εn for different kernel
spaces.

Lemma 2.7.3. [92, Section 4.3] Recall the definitions of the localized population Rademacher com-
plexity (2.29) and its population critical radius εn (2.30), then

— for finite-rank kernels with rank r:

ε2n = c1
rσ2

nR2

for a positive numeric constant c1 > 0.
— for polynomial eigenvalue decay kernels µi ≤ Cµi−β, i = 1, 2, . . .:

ε2n �

 σ2

2R2n

[
1 +

√
Cµ
β − 1

]2
β
β+1

. (2.62)

Lemma 2.7.4 establishes the magnitude of the empirical critical radius ε̂n for different kernel spaces.

Lemma 2.7.4. Recall the definitions of the empirical localized Rademacher complexity (2.19) and its
critical radius (2.20). Then,

— for finite-rank kernels with rank r:

ε̂2n = c
σ2r

nR2 for a positive numeric constant c.

— for polynomial eigenvalue decay kernels (2.45) with the eigenvalue decay β > 1:

ε̂2n �
[
1 +

√
C

β − 1

] 2β
β+1

[
σ2

2nR2

] β
β+1

.

71



Part, Chapter 2 – Early stopping and polynomial smoothing

Proof of Lemma 2.7.4. The bounds for finite-rank and polynomial eigendecay kernels could be derived
in the same manner as in the proof of Lemma 2.7.3, using the upper bound on the eigenvalues
µ̂i ≤ Ci−β, i = 1, . . . , r. �

The following result shows the magnitude of the smoothed critical radius, defined in Ineq. (2.41),
for polynomial eigenvalue decay kernels.

Lemma 2.7.5. Under the assumption µ̂i ≤ Ci−β, i ∈ [r], for αβ < 1, one has

ε̂2n,α �
[√

Cα

1− αβ +
√

C1+α

β(1 + α)− 1

] 2β
β+1

[
σ2

2R2n

] β
β+1

.

Proof of Lemma 2.7.5. For every M ∈ (0, r] and αβ < 1, we have

R̂n,α(ε,H) ≤ R
√

1
n

√√√√ r∑
j=1

min{Cj−β, ε2}Cαj−βα

≤ R

√
Cα

n

√√√√√bMc∑
j=1

j−βαε+R

√
C1+α

n

√√√√ n∑
j=dMe

j−β−βα

≤ R

√
Cα

1− αβ
M1−αβ

n
ε+R

√
C1+α

n

√
1

β(1 + α)− 1
1

Mβ(1+α)−1 .

Set M = ε−2/β that implies
√
M1−αβε = ε

1− 1−αβ
β , and

R̂n,α(ε,H) ≤ R
[√

Cα

1− αβ +
√

C1+α

β(1 + α)− 1

]
ε
1− 1−αβ

β
1√
n
.

Therefore, the smoothed critical inequality R̂n,α(ε,H) ≤ 2R2

σ ε2+α is satisfied for

ε̂2n,α �
[√

Cα

1− αβ +
√

C1+α

β(1 + α)− 1

] 2β
β+1

[
σ2

2R2n

] β
β+1

.

�

In order to transfer the L2(Pn) norm into the L2(PX) norm, we need to relate the empirical critical
radius ε̂n with its population counterpart εn. It is achieved by the following result.

Lemma 2.7.6. There are numeric constants c1, c2, c3, c4 > 0 such that c1εn ≤ ε̂n ≤ c2εn with proba-
bility at least 1− c3 exp

(
− c4

R2

σ2 nε
2
n

)
.

Sketch of the proof of Lemma 2.7.6. The claim follows from known results on empirical processes and
RKHS (see, e.g., Theorem 14.1 and the discussion afterwards in [114]). �
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2.8. Handling the smoothed bias and variance

2.8 Handling the smoothed bias and variance

2.8.1 Upper bound on the smoothed bias

The first lemma provides an upper bound on the smoothed bias term.

Lemma 2.8.1. Under Assumptions 1, 2,

B2
α(t) ≤ R2

(ηt)1+α , α ∈ [0, 1]. (2.63)

Proof of Lemma 2.8.1. For any t > 0,

B2
α(t) = 1

n

r∑
i=1

µ̂αi (1− γ(t)
i )2(G∗i )2 ≤ 1

n

r∑
i=1

µ̂αi (1− γ(t)
i )1+α(G∗i )2

(i)
≤ 1
n(ηt)1+α

r∑
i=1

(G∗i )2

µ̂i

(ii)
≤ R2

(ηt)1+α .

(i) is true thanks to the qualification condition (2.10) with ν = 1, (ii) is due to the bounds in (2.61). �

2.8.2 Deviation inequality for the variance term

In this subsection, we recall one concentration result from [92, Section 4.1.2].

For any t > 0, define the matrix Qt := diag{(γ(t)
j )2, j ∈ [r]}, then one concludes that V (t) =

Eε[v(t)] = σ2

n tr[Qt]. After that, since γ(t)
i ≤ min{1, ηtµ̂i} for i ∈ [r],

V (t) = σ2

n
tr[Qt] ≤

σ2

n

r∑
j=1

min{1, ηtµ̂i} = σ2ηt

R2 R̂
2
n

( 1√
ηt
,H
)
. (2.64)

Consider a random variable of the form Q̃n =
∑n
i,j=1 aijZiZj , where {Zi}ni=1 are zero-mean Gaussian

r.v. with parameter σ. Then, [95] proved that

Pε
(
|Q̃n − Eε[Q̃n]| ≥ δ

)
≤ 2 exp

[
−cmin

{
δ

σ2‖A‖op
,

δ2

σ4‖A‖2F

}]
, ∀δ > 0, (2.65)

where ‖A‖op and ‖A‖F are the operator and Frobenius norms of the matrix A = {aij}ni,j=1, respectively.
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Applying Ineq. (2.65) with A = 1
nQt, Zi = εi, i ∈ [r], yields Q̃n = v(t), and

‖A‖op ≤
1
n
,

‖A‖2F = 1
n2 tr[Q

2
t ] ≤

1
n2 tr[Qt] ≤

ηt

nR2 R̂
2
n

( 1√
ηt
,H
)
.

(2.66)

Consequently, for any t > 0 and δ > 0, one gets

Pε
(
|v(t)− V (t)| ≥ δ

)
≤ 2 exp

−cnδ
σ2 min

1, R2δ

σ2ηtR̂2
n( 1√

ηt
,H)


 . (2.67)

Let us first transfer the critical inequality (2.20) from ε to t.

Definition 2.8.1. Set ε = 1√
ηt

in Eq. (2.20) and let us define t̂ε as the largest positive solution to the
following fixed-point equation

σ2ηt

R2 R̂
2
n

( 1√
ηt
,H
)
≤ 4R2

ηt
. (2.68)

Note that in Lemma 2.7.4, the empirical critical radius ε̂n = 1√
ηt̂ε

, and such a point t̂ε exists since

ε̂n exists and is unique [16, 82, 92]. Moreover, t̂ε provides the equality in Ineq. (2.68).

2.9 Auxiliary lemma for finite-rank kernels

Remark that at t = t∗ : B2(t) = 2σ2

n

∑r
i=1 γ

(t)
i −V (t) ≥ σ2

n

∑r
i=1 γ

(t)
i . Thus, due to the construction

of t̂ε ( t̂ε is the point of intersection of an upper bound on the bias and a lower bound on σ2

2n
∑r
i=1 γ

(t)
i )

and monotonicity (in t) of all the terms involved, we get t∗ ≤ t̂ε.

Lemma 2.9.1. Recall the definition of stopping rule t∗ (2.23). Under Assumptions 1, 2, and 3, for
the gradient descent/kernel ridge regression filter, the following holds for any reproducing kernel:

Eε‖f t
∗ − f∗‖2n ≤ 8R2ε̂2n.

Proof of Lemma 2.9.1. Let us define a proxy version of the variance term: Ṽ (t) := σ2

n

∑r
i=1 γ

(t)
i . Fur-

ther, for all t > 0,

EεRt = B2(t) + σ2

n

n∑
i=1

(1− γ(t)
i )2. (2.69)

From the fact that EεRt∗ = σ2,

Eε‖f t
∗ − f∗‖2n = B2(t∗) + V (t∗) = 2Ṽ (t∗). (2.70)
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Therefore, in order to prove the lemma, our goal is to get an upper bound on Ṽ (t∗).
Since the function ηtR̂2

n( 1√
ηt
,H) is monotonic in t (see, for example, Lemma 2.14.1), and t∗ ≤ t̂ε,

we conclude that

Ṽ (t∗) ≤ σ2ηt∗

R2 R̂
2
n

( 1√
ηt∗

,H
)
≤ σ2ηt̂ε

R2 R̂
2
n

 1√
ηt̂ε

,H

 = 4R2ε̂2n.

�

2.10 Proofs for polynomial smoothing

In the proofs, we will need three additional definitions below.

Definition 2.10.1. In Definition 2.4.2, set ε = 1√
ηt
, then the smoothed critical inequality (2.41) is

equivalent to
σ2ηt

4 R̂2
n,α

( 1√
ηt
,H
)
≤ R4

(ηt)1+α . (2.71)

Due to Lemma 2.14.1, the left-hand side of (2.71) is non-decreasing in t, and the right-hand side is
non-increasing in t.

Definition 2.10.2. For any α ∈ [0, 1], define the stopping rule t̂ε,α such that

ε̂2n,α = 1
ηt̂ε,α

, (2.72)

then Ineq. (2.71) becomes the equality at t = t̂ε,α thanks to the monotonicity and continuity of
both terms in the inequality.

Further, we define the stopping rules t̃ε,α and tε,α that will serve as a lower bound and an upper
bound on t∗α for all α ∈ [0, 1].

Definition 2.10.3. Define the smoothed proxy variance Ṽα(t) := σ2

n

∑r
i=1 µ̂

α
i γ

(t)
i and the following

stopping rules

tε,α = inf
{
t > 0 | B2

α(t) = 1
2 Ṽα(t)

}
,

t̃ε,α = inf
{
t > 0 | B2

α(t) = 3Ṽα(t)
}
.

(2.73)

Notice that at t = t̃ε,α:

6R2

(ηt)1+α ≥
R2

(ηt)1+α ≥ B
2
α(t) = 3Ṽα(t) ≥ 3

2
σ2

R2 ηtR̂
2
n,α

( 1√
ηt
,H
)
.
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At t = tε,α:
R2

(ηt)1+α ≥ B
2
α(t) = 1

2 Ṽα(t) ≥ σ2ηt

4R2 R̂
2
n,α

( 1√
ηt
,H
)
.

Thus, t̃ε,α and tε,α satisfy the smoothed critical inequality (2.71). Moreover, t̂ε,α is always greater than
or equal to tε,α and t̃ε,α since t̂ε,α is the largest value satisfying Ineq. (2.71). As a consequence of
Lemma 2.14.1, one has

1
ηt̃ε,α

� 1
ηtε,α

� 1
ηt̂ε,α

= ε̂2n,α.

Assume for simplicity that

ε2n,α := 1
ηtε,α

= c′
1

ηt̂ε,α
= c′ε̂2n,α, and

ε̃2n,α := 1
ηt̃ε,α

= c′′
1

ηt̂ε,α
= c′′ε̂2n,α

for some positive numeric constants c′, c′′ ≥ 1, due to the fact that t̂ε,α ≥ tε,α, and t̂ε,α ≥ t̃ε,α.
The following lemma decomposes the risk error into two parts that will be further analyzed in

subsequent Lemmas 2.10.4, 2.10.5.

Lemma 2.10.1. Recall the definition of τα (2.37), then

‖f τα − f∗‖2n ≤ 2B2(τα) + 2v(τα),

where v(t) = 1
n

∑n
i=1(γ(t)

i )2ε2
i , t > 0, is the stochastic part of the variance.

Proof of Lemma 2.10.1. Recall Definition 2.2.1 of the spectral filter function gλt(ξ) ≡ gt(ξ).
Let us define the noise vector ε := [ε1, ..., εn]> and, for each t > 0, two vectors that correspond to

the bias and variance parts, respectively:

b̃2(t) := (gt(Kn)Kn − I)F ∗,

ṽ(t) := gt(Kn)Knε.

This gives the following expressions for the stochastic part of the variance and bias:

v(t) = 〈ṽ(t), ṽ(t)〉n, B2(t) = 〈b̃2(t), b̃2(t)〉n. (2.74)

General expression for the L2(Pn) norm error at τα takes the form

‖f τα − f∗‖2n = B2(τα) + v(τα) + 2〈b̃2(τα), ṽ(τα)〉n. (2.75)

Therefore, by applying the inequality 2 |〈x, y〉n| ≤ ‖x‖2n+‖y‖2n for any x, y ∈ Rn and (2.74), we obtain
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‖f τα − f∗‖2n ≤ 2B2(τα) + 2v(τα). (2.76)

�

2.10.1 Two deviation inequalities for τα

This is the first deviation inequality for τα that will be further used in Lemma 2.10.4 to control
the variance term.

Lemma 2.10.2. Recall Definition 2.10.3 of tε,α, then under Assumptions 1, 2, 3, 5,

Pε
(
τα > tε,α

)
≤ 2 exp

[
−c1

R2

σ2 nε̂
2(1+α)
n,α

]
,

where positive constant c1 depends only onM.

Proof of Lemma 2.10.2. Set κα := σ2trKα
n/n, then due to the monotonicity of the smoothed empirical

risk, for all t ≥ t∗α:
Pε (τα > t) = Pε (Rα,t − EεRα,t > κα − EεRα,t) .

Consider

Rα,t − EεRα,t = σ2

n

r∑
i=1

µ̂αi (1− γ(t)
i )2

(
ε2
i

σ2 − 1
)

︸ ︷︷ ︸
Σ1

+ 2
n

r∑
i=1

µ̂αi (1− γ(t)
i )2G∗i εi︸ ︷︷ ︸

Σ2

. (2.77)

Define
∆t,α := κα − EεRα,t = −B2

α(t)− Vα(t) + 2Ṽα(t),

where Ṽα(t) = σ2

n

∑r
i=1 µ̂

α
i γ

(t)
i .

Further, set t = tε,α and recall that ηtε,α = ηt̂ε,α
c′ for c′ ≥ 1. This implies

∆tε,α,α
≥ 1

2 Ṽα(tε,α) ≥ σ2

4n

r∑
i=1

µ̂αi min
{

1, ηt̂ε,α
c′

µ̂i

}

= σ2ηt̂ε,α
4nc′

r∑
i=1

µ̂αi min
{

c′

ηt̂ε,α
, µ̂i

}

≥ σ2ηt̂ε,α
4c′R2 R̂

2
n,α

 1√
ηt̂ε,α

,H


= R2

c′
ε̂2(1+α)
n,α .
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Then, by standard concentration results on linear and quadratic sums of Gaussian random variables
(see, e.g., [28, Lemma 6.1]),

Pε

(
Σ1 >

∆tε,α,α

2

)
≤ exp

− ∆2
tε,α,α

16(‖a(tε,α)‖2 +
∆tε,α,α

2 ‖a(tε,α)‖∞)

 , (2.78)

Pε

(
Σ2 >

∆tε,α,α

2

)
≤ exp

− n∆2
tε,α,α

32σ2B2
α(tε,α)

 , (2.79)

where ai(tε,α) = σ2

n µ̂
α
i (1− γ(tε,α)

i )2, i ∈ [r].
In what follows, we simplify the bounds above.
Firstly, recall that B = 1, which implies µ̂1 ≤ 1, ‖a(tε,α)‖∞ = max

i∈[r]
|ai(tε,α)| ≤ σ2

n , and

1
2∆tε,α,α

≤ 3
4 Ṽα(tε,α) ≤ 3

4 Ṽα(t̂ε,α) ≤ 3
4R2σ

2ηt̂ε,αR̂2
n,α

 1√
ηt̂ε,α

,H


= 3R2ε̂2(1+α)

n,α .

Secondly, we will upper bound the Euclidean norm of a(tε,α). Recall Assumption 5, the definition of the

smoothed statistical dimension dn,α = min{j ∈ [r] | µ̂j ≤ ε̂2n,α}, and Ineq. (2.43): ε̂2(1+α)
n,α ≥ σ2

∑dn,α
i=1 µ̂αi

4R2n ,
which implies that

‖a(tε,α)‖2 = σ4

n2

r∑
i=1

µ̂2α
i (1− γ(tε,α)

i )4 ≤ σ4

n2

dn,α∑
i=1

µ̂αi +
r∑

i=dn,α+1
µ̂2α
i


≤ σ4

n2

4nR2ε̂
2(1+α)
n,α

σ2 +M
dn,α∑
i=1

µ̂αi


≤ 4σ2

n
(1 +M)R2ε̂2(1+α)

n,α .

Finally, by using the upper bound B2
α(tε,α) ≤ R2

(ηtε,α)1+α ≤ R2(c′)2ε̂
2(1+α)
n,α for all α ∈ [0, 1], one gets

Pε (τα > tε,α) ≤ 2 exp
[
−c1

R2

σ2 nε̂
2(1+α)
n,α

]
, (2.80)

for some positive numeric c1 > 0 that depends only onM.
�

What follows is the second deviation inequality for τα that will be further used in Lemma 2.10.5
to control the bias term.
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Lemma 2.10.3. Recall Definition 2.10.3 of t̃ε,α, then under Assumptions 1, 2, 3, 5,

Pε
(
τα < t̃ε,α

)
≤ 2 exp

[
−c2

R2

σ2 nε̂
2(1+α)
n,α

]
, (2.81)

for positive constant c2 that depends only onM.

Proof of Lemma 2.10.3. Set κα := σ2trKα
n/n. Note that t̃ε,α ≤ t∗α by construction. Further, for all

t ≤ t∗α, due to the monotonicity of the smoothed empirical risk,

Pε
(
τα < t

)
= Pε

(
Rα,t − EεRα,t ≤ −(EεRα,t − κα)

)
≤ Pε

(
σ2

n

r∑
i=1

µ̂αi (1− γ(t)
i )2

( ε2
i

σ2 − 1
)

︸ ︷︷ ︸
Σ1

≤ −EεRα,t − κα
2

)

+ Pε
( 2
n

r∑
i=1

µ̂αi (1− γ(t)
i )2G∗i εi︸ ︷︷ ︸

Σ2

≤ −EεRα,t − κα
2

)
.

Consider ∆t,α := EεRα,t − κα = B2
α(t) + Vα(t)− 2Ṽα(t). At t = t̃ε,α, we have B2

α(t) = 3Ṽα(t), thus

∆
t̃ε,α,α

≥ Ṽα(t̃ε,α).

Then, by standard concentration results on linear and quadratic sums of Gaussian random variables
(see, e.g., [28, Lemma 6.1]),

Pε

(
Σ1 ≤ −

∆
t̃ε,α,α

2

)
≤ exp

[
− Ṽ 2

α (t̃ε,α)
16‖a(t̃ε,α)‖2

]
,

Pε

(
Σ2 ≤ −

∆
t̃ε,α,α

2

)
≤ exp

[
− −nṼ

2
α (t̃ε,α)

32σ2B2
α(t̃ε,α)

]
,

(2.82)

where ai(t̃ε,α) = σ2

n µ̂
α
i (1− γ (̃tε,α)

i ), i ∈ [r].

In what follows, we simplify the bounds above.

First, we deal with the Euclidean norm of ai(t̃ε,α), i ∈ [r]. By µ̂1 ≤ 1 and Assumption 5 with Ineq.
(2.43), we have

‖a(t̃ε,α)‖2 = σ4

n2

r∑
i=1

µ̂2α
i (1− γ (̃tε,α)

i )4 ≤ σ4

n2

dn,α∑
i=1

µ̂αi +
r∑

i=dn,α+1
µ̂2α
i


≤ 4σ2

n
(1 +M)R2ε̂2(1+α)

n,α .

(2.83)
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Recall that ηt̃ε,α = ηt̂ε,α
c′′ for c′′ ≥ 1. Therefore, it is sufficient to lower bound Ṽα(t̃ε,α) as follows.

Ṽα(t̃ε,α) ≥ σ2

2n

r∑
i=1

µ̂αi min{1, ηt̂ε,α
c′′

µ̂i} = σ2ηt̂ε,α
2nc′′

r∑
i=1

µ̂αi min
{

c′′

ηt̂ε,α
, µ̂i

}

≥ σ2ηt̂ε,α
2R2c′′

R̂2
n,α

 1√
ηt̂ε,α

,H


= 2R2

c′′
ε̂2(1+α)
n,α .

By using the bound B2
α(t̃ε,α) ≤ R2

(ηt̃ε,α)1+α ≤ R2(c′′)2ε̂
2(1+α)
n,α and inserting this expression with (2.83)

into (2.82), it gives

Pε
(
τα < t̃ε,α

)
≤ 2 exp

[
− c2

R2

σ2 nε̂
2(1+α)
n,α

]
, (2.84)

where c2 depends only onM. �

2.10.2 Bounding the stochastic part of variance term at τα

Lemma 2.10.4. Under Assumptions 1, 2, 3, 4, 5, the stochastic part of the variance at τα is bounded
as follows.

v(τα) ≤ 8(1 +A)R2ε̂2n,α

with probability at least 1− 3 exp
[
− c1n

R2

σ2 ε̂
2(1+α)
n,α

]
, where constant c1 depends only onM.

Proof of Lemma 2.10.4. Due to Lemma 2.10.2,

Pε (τα > tε,α) ≤ 2 exp
[
−c1

R2

σ2 nε̂
2(1+α)
n,α

]
. (2.85)

Therefore, thanks to the monotonicity of γ(t)
i in t, with probability at least 1−2 exp

[
−c1

R2

σ2 nε̂
2(1+α)
n,α

]
,

v(τα) ≤ v(tε,α). (2.86)

After that, due to the concentration inequality (2.67),

Pε
(
|v(tε,α)− V (tε,α)| ≥ δ

)
≤ 2 exp

−cnδ
σ2 min

1, R2δ

σ2ηtε,αR̂2
n( 1√

ηtε,α
,H)


 .

Now, by setting δ = σ2ηt̂ε,α
R2 R̂2

n

(
1√
ηt̂ε,α

,H
)
≥ σ2ηt̂ε,α

R2 R̂2
n,α

(
1√
ηt̂ε,α

,H
)
and recalling Lemma 2.14.3, it
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yields

v(tε,α) ≤ V (tε,α) + δ

≤ Ṽ (t̂ε,α) + 4(1 +A)R2ε̂2n,α

≤ σ2ηt̂ε,α
R2 R̂2

n

 1√
ηt̂ε,α

,H

+ 4(1 +A)R2ε̂2n,α

≤ 8(1 +A)R2ε̂2n,α

(2.87)

with probability at least 1− exp
[
− cn4R2

σ2 ε̂
2(1+α)
n,α

]
.

Combining all the pieces, we get

v(τα) ≤ 8(1 +A)R2ε̂2n,α (2.88)

with probability at least 1− 3 exp
[
− c1n

R2

σ2 ε̂
2(1+α)
n,α

]
.

�

2.10.3 Bounding the bias term at τα

Lemma 2.10.5. Under Assumptions 1, 2, 3, 5,

B2(τα) ≤ c′′R2ε̂2n,α (2.89)

with probability at least 1− 2 exp
[
− c2

R2

σ2 nε̂
2(1+α)
n,α

]
, for positive numeric constant c′′ ≥ 1 and constant

c2 that depends only onM.

Proof of Lemma 2.10.5. Due to Lemma 2.10.3,

Pε
(
τα < t̃ε,α

)
≤ 2 exp

[
− c2

R2

σ2 nε̂
2(1+α)
n,α

]
. (2.90)

Therefore, thanks to the monotonicity of the bias term, with probability at least 1 − 2 exp
[
−

c2
R2

σ2 nε̂
2(1+α)
n,α

]
,

B2(τα) ≤ B2(t̃ε,α) ≤ R2

ηt̃ε,α
= c′′R2ε̂2n,α. (2.91)

�
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2.11 Proof of Theorem 2.4.1

From Lemmas 2.10.1, 2.10.4, and 2.10.5, we get

‖f τα − f∗‖2n ≤ 2c′′R2ε̂2n,α + 16(1 +A)R2ε̂2n,α (2.92)

with probability at least 1− 5 exp
[
− c1

R2

σ2 nε̂
2(1+α)
n,α

]
. Therefore,

‖f τα − f∗‖2n ≤ cuR2ε̂2n,α (2.93)

with probability at least 1 − 5 exp
[
− c1

R2

σ2 nε̂
2(1+α)
n,α

]
, where c1 depends only on M, cu is a positive

constant that depends only on A.

Moreover, taking the expectation in Ineq. (2.76) yields

Eε‖f τα − f∗‖2n ≤ 2Eε[B2(τα)] + 2Eε[v(τα)].

Let us upper bound Eε
[
B2(τα)

]
and Eε [v(τα)]. First, define ã := B2(t̃ε,α), thus

Eε
[
B2(τα)

]
= Pε

(
B2(τα) > ã

)
Eε
[
B2(τα) | B2(τα) > ã

]
+ Pε

(
B2(τα) ≤ ã

)
Eε
[
B2(τα) | B2(τα) ≤ ã

]
.

(2.94)

Defining δ1 := 2 exp
[
− c2

R2

σ2 nε̂
2(1+α)
n,α

]
from Lemma 2.10.5 and using the upper bound

B2(t) ≤ ‖f∗‖2n = 1
n

n∑
i=1
|f∗(xi)|2 = 1

n

n∑
i=1
|〈f∗,K(·, xi)〉H|2 ≤ R2

for any t > 0 gives the following.

Eε
[
B2(τα)

]
≤ R2δ1 +B2(t̃ε,α) ≤ R2

(
δ1 + c′′ε̂2n,α

)
. (2.95)

As for Eε [v(τα)],

Eε [v(τα)] = Eε
[
v(τα)I

{
v(τα) ≤ 8(1 +A)R2ε̂2n,α

}]
+ Eε

[
v(τα)I

{
v(τα) > 8(1 +A)R2ε̂2n,α

}]
,

(2.96)
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and due to Lemma 2.10.4 and Cauchy-Schwarz inequality,

Eε [v(τα)] ≤ 8(1 +A)R2ε̂2n,α + Eε
[
v(τα)I

{
v(τα) > 8(1 +A)R2ε̂2n,α

}]
≤ 8(1 +A)R2ε̂2n,α +

√
Eεv2(τα)

√
Eε
[
I
{
v(τα) > 8(1 +A)R2ε̂2n,α

}]
. (2.97)

Notice that v2(τα) ≤ 1
n2

[∑r
i=1 ε

2
i

]2
, and

Eε
[
v2(τα)

]
≤ 1
n2

[ r∑
i=1

Eεε4
i + 2

∑
i<j

Eε
(
ε2
i ε

2
j

)]
≤ 3σ4

n2 r
2 ≤ 3σ4. (2.98)

At the same time, thanks to Lemma 2.10.4,

Eε
[
I
{
v(τα) > 8(1 +A)R2ε̂2n,α

}]
≤ 3 exp

[
− c1n

R2

σ2 ε̂
2(1+α)
n,α

]
.

Thus, inserting the last two inequalities into (2.97) gives

Eε [v(τα)] ≤ 8(1 +A)R2ε̂2n,α + 3σ2 exp
[
− c1n

R2

σ2 ε̂
2(1+α)
n,α

]
.

Finally, summing up all the terms together,

Eε‖f τα − f∗‖2n ≤
[
16(1 +A) + 2c′′

]
R2ε̂2n,α

+ 6 max{σ2, R2} exp
[
−c1n

R2

σ2 ε̂
2(1+α)
n,α

]
,

where constant c1 depends only onM, constant c′′ is numeric.

2.12 Proof of Theorem 2.3.4

Here, we prove Theorem 2.3.4 that shows a minimax optimality result for finite-rank kernels with
rank r.

Let us proof that ‖f τ − f∗‖2H is upper bounded with high probability by a constant depending
only on R. If it is true, we are able to apply Lemma 2.3.3 to transfer the result of Corollary 2.3.2 to
the L2(PX) norm. In order to do that, it is sufficient to upper bound ‖f τ‖2H because ‖f τ − f∗‖2H ≤
‖f τ‖2H +R2.

We will use the definition of τ (2.24) with the threshold κ := rσ2

n so that, due to the monotonicity
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of the "reduced" empirical risk R̃t,

Pε (τ > t) = Pε
(
R̃t − EεR̃t > κ− EεR̃t︸ ︷︷ ︸

∆t

)
,

where
∆t = −B2(t)− V (t) + 2σ2

n

r∑
i=1

γ
(t)
i︸ ︷︷ ︸

2Ṽ (t)

. (2.99)

Assume that ∆t ≥ 0. Remark that

R̃t − EεR̃t = σ2

n

r∑
i=1

(1− γ(t)
i )2

(
ε2
i

σ2 − 1
)

︸ ︷︷ ︸
Σ1

+ 2
n

r∑
i=1

(1− γ(t)
i )2G∗i εi︸ ︷︷ ︸

Σ2

. (2.100)

Applying [28, Lemma 6.3] to Σ1 yields

Pε
(

Σ1 >
∆t

2

)
≤ exp

[
−∆2

t /4
4(‖a(t)‖2 + ∆t

2 ‖a(t)‖∞)

]
, (2.101)

where ai(t) := σ2

n (1− γ(t)
i )2, i ∈ [r].

Standard concentration bound [114, Proposition 2.5] for a sum of Gaussian variables Σ2 gives us

Pε
(

Σ2 >
∆t

2

)
≤ exp

[
− n∆2

t

32σ2B2(t)

]
. (2.102)

First, define the stopping rule tε as follows.

tε := inf{t > 0 : B2(t) = 1
2 Ṽ (t)}. (2.103)

Note that tε serves as an upper bound on t∗ and as a lower bound on t̂ε (2.8.1). Moreover, tε satisfies
the critical inequality (2.68). Therefore due to Lemma 2.14.1, there is a positive numeric constant
c′ ≥ 1 such that 1

ηtε
= c′ 1

ηt̂ε
.

In what follows we simplify two high probability bounds (2.101) and (2.102) at t = tε.

Since from Lemma 2.7.4, ε̂2n = c rσ
2

nR2 , one can bound ‖a(tε)‖2 as follows.

‖a(tε)‖2 = σ4

n2

r∑
i=1

(1− γ(tε)
i )4 ≤ rσ4

n2 = R2σ2ε̂2n
cn

. (2.104)
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Remark that in Eq. (2.101):

‖a(tε)‖∞ = σ2

n
max
i∈[r]

[
(1− γ(tε)

i )
]
≤ σ2

n
,

and
∆tε

2 ≤ 3
4 Ṽ (tε) ≤

3
4 Ṽ (t̂ε) ≤

3
4
σ2

R2 ηt̂εR̂
2
n

 1√
ηt̂ε

,H

 = 3R2ε̂2n.

As for a lower bound on ∆tε
,

∆tε
≥ 1

2 Ṽ (tε) ≥
σ2

4n

r∑
i=1

min
{

1, ηt̂ε
c′
µ̂i

}
= σ2ηt̂ε

4nc′
r∑
i=1

min
{
c′

ηt̂ε
, µ̂i

}

≥ σ2ηt̂ε
4R2c′

R̂2
n

 1√
ηt̂ε

,H


= R2

c′
ε̂2n.

Knowing that B2(tε) ≤ R2

ηtε
= c′R2ε̂2n and summing up bounds (2.101), (2.102) with t = tε yield

the following.

Pε (τ > tε) ≤ 2 exp
[
− CR

2

σ2 nε̂
2
n

]
, (2.105)

where C is a numeric constant.

From Lemma 2.14.2, ‖f tε‖H ≤
√

7R with probability at least 1 − 4 exp
[
− c3

R2

σ2 nε̂
2
n

]
, for some

positive numeric constant c3. Therefore, Ineq. (2.105) allows to say:

‖f τ‖H ≤
√

7R with probability at least 1− 6 exp
[
− c̃3

R2

σ2 nε̂
2
n

]
, for a positive c̃3.

It implies that
‖f τ − f∗‖H ≤ ‖f τ‖H + ‖f∗‖H ≤

(
1 +
√

7
)
R

with the same probability.

Thus, according to Lemma 2.3.3, for some positive numeric constants c1, c̃4, c̃5 :

‖f τ − f∗‖22 ≤ 2‖f τ − f∗‖2n + c1R
2ε2n

with probability (w.r.t. ε) at least 1− 6 exp
[
− c̃3

R2

σ2 nε̂
2
n

]
and with probability (w.r.t. {xi}ni=1) at least

1− c̃4 exp
[
− c̃5

R2

σ2 nε
2
n

]
.

Moreover, by following the same arguments (with α = 0 and without Assumptions 4 and 5) as in
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the proof of Theorem 2.4.1, Lemma 2.7.6 yields

‖f τ − f∗‖2n ≤ cuR2ε̂2n ≤ c̃uR2ε2n (2.106)

with probability at least 1− c1 exp
[
− c2

R2

σ2 nε
2
n

]
.

The last step consists of recalling R2ε2n .
rσ2

n due to Lemma 2.7.4.

2.13 Derivation of the smoothed empirical kernel complexity

In this section, we will show that

Er

 sup
‖f‖H≤R
‖f‖n,α≤Rε

| 1
n

n∑
i=1

µ̂αi rif(xi) |

 ≤ R
√√√√ 2
n

r∑
i=1

µ̂αi min{ε2, µ̂i}, (2.107)

where {ri}ni=1
i.i.d.∼ {−1,+1} with probability 1/2, µ̂1 ≥ µ̂2 ≥ . . . ≥ µ̂r > 0. The derivation of this

result is inspired by [114, Lemma 13.22].

Define auxiliary random variables {r̃i}ni=1
i.i.d.∼ {−µ̂αi , µ̂αi } with probability 1/2 for i ∈ [n].

To start with, we recall that B = 1, thus µ̂1 ≤ 1.

Since f ∈ H, without loss of generality, we are able to restrict ourselves to the functions that take
the form

f(·) = 1√
n

n∑
i=1

θiK(·, xi) (2.108)

for some vector θ ∈ Rn. The condition ‖f‖n,α ≤ εR is equivalent to ‖K1+α
2

n θ‖ ≤ εR. At the same time,
the condition ‖f‖2H ≤ R2 is equivalent to ‖f‖2H = θ>Knθ ≤ R2. Therefore, the smoothed localized
Rademacher complexity could be expressed as

R̂n,α(ε,H) = 1√
n
Er̃

 sup
θ>Knθ≤R2

θ>K2+α
n θ≤ε2R2

| r̃>Knθ |

 . (2.109)

Recall the SVD decomposition Kn = UΛU>, where Λ = diag{µ̂1, . . . , µ̂r, 0, . . . , 0}. Therefore if
β = Knθ, after some algebra Eq. (2.109) is equivalent to

R̂n,α(ε,H) = 1√
n
Er̃

[
sup
β∈D
| r̃>β |

]
,
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where

D :=

β ∈ Rn |
r∑
j=1

µ̂αj β
2
j ≤ ε2R2,

r∑
j=1

β2
j

µ̂j
≤ R2


Define the ellipsoid

E := {β ∈ Rn |
r∑
j=1

ηjβ2
j ≤ 2R2}, where ηj = max

{
µ̂αj
ε2
, µ̂−1

j

}
.

Notice that
max

{
µ̂αi
ε2
, µ̂−1

i

}
≤ µ̂αi

ε2
+ 1
µ̂i
, i ∈ [r]. (2.110)

Thus, D ⊂ E , and by Hölder’s inequality,

R̂n,α(ε,H) ≤ 1√
n
Er̃

[
sup
β∈E
| 〈r̃, β〉 |

]
≤ R

√
2
n
Er̃

√√√√ r∑
i=1

r̃2
i

ηi
. (2.111)

By applying Jensen’s inequality, it gives us

R̂n,α(ε,H) ≤ R
√

2
n

√√√√ r∑
i=1

Er̃[r̃2
i ]

ηi
= R

√
2
n

√√√√ r∑
i=1

µ̂2α
i

ηi
, (2.112)

where 1
ηi

= min{µ̂−αi ε2, µ̂i} ≤ µ̂−αi min{ε2, µ̂i}, which leads to the claim.

2.14 Auxiliary results

Lemma 2.14.1. Under Assumptions 1 and 2, for any α ∈ [0, 1], the function ε 7→ R̂n,α(ε,H)
ε is non-

increasing (as a function of ε) on the interval (0,+∞), and consequently, for any numeric constant
c > 0, the inequality

R̂n,α(ε,H)
ε

≤ cR
2

σ
ε1+α (2.113)

has a smallest positive solution. In addition to that, ε̂n,α (2.41) exists and is unique.

Proof of Lemma 2.14.1. We will prove that ε̂n,α lies in the interval (0,+∞) and is unique. Recall the
definition of ε̂n,α:

ε̂n,α = min
{
ε > 0 |

r∑
i=1

µ̂αi min{1, µ̂iε−2} ≤ 4R4n

σ2 ε2+2α
}
.

Note that f(ε) :=
∑r
i=1 µ̂

α
i min{1, µ̂iε−2} is non-increasing in ε, whereas g(ε) := 4R4n

σ2 ε2+2α is increasing
in ε. For ε → 0: g(ε) = 0 < f(ε), and for ε → ∞: g(ε) > f(ε). It proves that ε̂n,α exists, and due to
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continuity of R̂n,α(ε,H) w.r.t. ε, ε̂n,α is unique and satisfies

1
ε
R̂n,α(ε,H) = 2R2

σ
ε1+α.

�

The following result establishes a condition, under which we can upper bound the H-functional
norm of f t. It implies that the uniform norm of f t is upper bounded, and we are at the point to change
the L2(Pn) and L2(PX) norms, with high probability, due to Lemma 2.3.3. The proof of the lemma
below is inspired by Lemma 9 in [92].

Lemma 2.14.2. Recall Definition 2.10.3 of tε,α and the discussion afterwards. Assume α ∈ [0, 1],
then there exists a universal constant c > 0 such that, for all t ≤ tε,α : ‖f t‖H ≤ 7R2 with probability
at least 1− 4 exp(−cnε̂2n,α), where ε̂n,α is the smoothed empirical critical radius.

Proof of Lemma 2.14.2. For any t > 0, let us write the following: f t lies in H, therefore it can be
decomposed via the eigenvectors {φk}∞k=1 of the kernel integral operator Tk as

f t =
∞∑
k=1

√
µkakφk such that ‖f t‖2H =

∞∑
k=1

a2
k. (2.114)

Consider the linear operator ΦX : `2(N)→ Rn defined via [ΦX ]jk = φj(xk) and the diagonal operator
D : `2(N) → `2(N), with [D]jj = µj and [D]jk = 0 for j 6= k. Since Kn = 1

nΦXDΦ>X and a =
1
nD

1
2 Φ>XK−1

n F t (see [92, Lemma 9] for the derivation), one deduces an explicit expression for the
H-norm of f t

‖f t‖2H = ‖a‖2`2(N) = 1
n

[F t]>K−1
n F t.

Recall the SVD decomposition Kn = UΛU> with Λ = diag(µ̂1, . . . , µ̂r), and U>F t = (I − St)U>Y ,
where I − St = diag{γ(t)

i , i ∈ [r]}. It gives the following:

‖f t‖2H = 1
n
Y >U(I − St)2Λ−1U>Y = 2

n
ε>U(I − St)2Λ−1U>F ∗︸ ︷︷ ︸

At

+ 1
n
ε>U(I − St)2Λ−1U>ε︸ ︷︷ ︸

Bt

+ 1
n

[F ∗]>U(I − St)2Λ−1U>F ∗︸ ︷︷ ︸
Ct

,

where St = diag{1− γ(t)
i , i ∈ [r]}. Firstly, by using Eq. (2.61), Ct ≤ R2 for any t > 0.
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Bounding At. ε = U>ε is a zero-mean Gaussian vector with parameter σ, thus

Pε
(
|At| ≥ R2

)
≤ 2 exp

(
− n

2σ2ν2

)
≤ 2 exp

(
− nR2

8σ2ηtε,α

)
= 2 exp

(
− c′R2

8σ2 nε̂
2
n,α

)
,

where the last inequality comes from

ν2 = 4
nR4 [F ∗]>U(I − St)4Λ−2U>F ∗

(i)
≤ 4
nR4

r∑
i=1

(G∗i )2

µ̂2
i

min{1, ηtµ̂i}

≤ 4ηt
nR4

r∑
i=1

(G∗i )2

µ̂i

(ii)
≤ 4ηt

R2 .

(i) is true since (γ(t)
i )4 ≤ γ

(t)
i ≤ min{1, ηtµ̂i}, i ∈ [r]. The upper bound (ii) was due to the bound

(2.61).

Bounding Bt:

Bt = 1
n

r∑
i=1

(γ(t)
i )2

µ̂i
ε2
i .

Let us define the matrix Qt := diag
{

(γ(t)
i )2

µ̂i
, i ∈ [r]

}
. Now, we will bound the quadratic form Bt by

utilizing the following concentration result [95]: there is a universal constant c > 0 such that

Pε
(
|Bt − EεBt| ≥ R2

)
≤ 2 exp

[
−c min

(
nR2

σ2 ‖UQtU
>‖−1

op ,
n2R4

σ4 ‖UQtU
>‖−2

F

)]
.

In the following, we will bound EεBt, ‖UQtU>‖op, and ‖UQtU>‖F .

Bounding the mean EεBt = σ2

n

∑r
i=1

(γ(t)
i )2

µ̂i
. So, using γ(t)

i ≤ min{1, ηtµ̂i}, we can write the following

EεBt ≤
σ2

n

r∑
i=1

µ̂αi
min2{1, ηtε,αµ̂i}

µ̂1+α
i

≤ σ2(ηtε,α)2+α

n

r∑
i=1

µ̂αi min
{

1
(ηtε,α)(ηtε,αµ̂i)1+α , (ηtε,αµ̂i)

1+αµ̂i

}

≤ σ2

R2 (ηtε,α)2+αR̂2
n,α

( 1√
ηtε,α

,H
)
≤ 4R2.
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Bounding the operator and Frobenius norms. For the normalized operator norm:

1
n
‖UQtU>‖op = 1

n
max
j∈[r]

[(γ(t)
j )2

µ̂j

]
≤ ηtε,α

n
= 1
c′nε̂2n,α

.

As for the normalized Frobenius norm,

1
n
‖UQtU>‖2F = 1

n

r∑
i=1

(γ(t)
i )4

µ̂2
i

≤ 1
n

r∑
i=1

µ̂αi
min4{1, ηtε,αµ̂i}

µ̂2+α
i

≤ 1
n

r∑
i=1

µ̂αi min
{ 1
µ̂2+α
i

, (ηtε,α)4µ̂2−α
i

}
= (ηtε,α)3+α

n

r∑
i=1

µ̂αi min
{ 1

(ηtε,α)(ηtε,αµ̂i)2+α ,

(ηtε,αµ̂i)1−αµ̂i
}

≤ 1
R2 (ηtε,α)3+αR̂2

n,α

( 1√
ηtε,α

,H
)
≤ 4R2

σ2c′ε̂2n,α
.

Finally, we are able to conclude that there exists a numeric constant c > 0 such that it holds

Pε
(
|Bt − EεBt| ≥ R2

)
≤ 2 exp

[
− cR

2

σ2 nε̂
2
n,α

]
.

By combining all the pieces, there exists a numeric constant ˜̃c1 > 0 such that

Pε
(
|Bt| ≥ 5R2 or |At| ≥ R2

)
≤ 2 exp

(
−˜̃c1

R2

σ2 nε̂
2
n,α

)
.

�

The following lemma establishes a connection between the smoothed critical inequality and its
non-smooth version.

Lemma 2.14.3. Under Assumptions 1, 2, 3, 4, t̂ε,α from Definition 2.10.2 satisfies

σ2ηt̂ε,α
4R2 R̂

2
n

 1√
ηt̂ε,α

,H

 ≤ (1 +A)R2

ηt̂ε,α
. (2.115)

Thus, t̂ε,α provides a smallest positive solution to the non-smooth version of the critical inequality.
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Proof of Lemma 2.14.3. On one side, let us start by recalling that

σ2ηt̂ε,α
4R2 R̂

2
n,α

( 1√
ηt̂ε,α

,H
)

= R2ε̂2(1+α)
n,α .

Then for dn,α = min{j ∈ [r] | µ̂j ≤ ε̂2n,α},

σ2ηt̂ε,α
4R2 R̂

2
n,α

 1√
ηt̂ε,α

,H

 = σ2

4nε̂2n,α

r∑
i=1

µ̂αi min{µ̂i, ε̂2n,α}

= σ2

4nε̂2n,α

ε̂2n,α dn,α∑
i=1

µ̂αi +
r∑

i=dn,α+1
µ̂1+α
i


= R2ε̂2(1+α)

n,α .

(2.116)

The last two lines of (2.116) yield

σ2

4nε̂2n,α
= R2ε̂

2(1+α)
n,α

ε̂2n,α
∑dn,α
i=1 µ̂

α
i +

∑r
i=dn,α+1 µ̂

1+α
i

. (2.117)

On the other side, consider the left-hand part of the non-smooth version of the critical inequality
(2.71) at t = t̂ε,α:

σ2ηt̂ε,α
4R2 R̂

2
n

 1√
ηt̂ε,α

,H

 = σ2

4nε̂2n,α

r∑
i=1

min{µ̂i, ε̂2n,α}

= R2
∑dn,α
i=1 ε̂

4+2α
n,α + ε̂

2(1+α)
n,α

∑r
i=dn,α+1 µ̂i

ε̂2n,α
∑dn,α
i=1 µ̂

α
i +

∑r
i=dn,α+1 µ̂

1+α
i

≤ R2
∑dn,α
i=1 ε̂

4+2α
n,α + ε̂

2(1+α)
n,α

∑r
i=dn,α+1 µ̂i

ε̂2n,α
∑dn,α
i=1 µ̂

α
i

.

(2.118)

Notice that µ̂i ≥ ε̂2n,α and µ̂αi ≥ ε̂2αn,α for i ≤ dn,α. This implies
∑dn,α
i=1 ε̂

4+2α
n,α ≤ ε̂4n,α

∑dn,α
i=1 µ̂

α
i , and also

that
∑r
i=dn,α+1 µ̂i ≤ Aε̂

2(1−α)
n,α

∑dn,α
i=1 µ̂

α
i , using Assumption 4. Hence,

ε̂2αn,α

r∑
i=dn,α+1

µ̂i ≤ Aε̂2n,α
dn,α∑
i=1

µ̂αi ,
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which leads to the desired upper bound with ε̂2n,α = (ηt̂ε,α)−1:

σ2ηt̂ε,α
4R2 R̂

2
n

 1√
ηt̂ε,α

,H

 ≤ (1 +A)R2ε̂2n,α.

�

2.15 Proof of Lemma 2.5.1

Let us prove the lemma only for kernel ridge regression. Notice that

Eε

[
R1,t

1/n
∑r
i=1 µ̂i(1− γ

(t)
i )2

]
= σ2 + B2

1(t)
1
n

∑r
i=1 µ̂i(1− γ

(t)
i )2

. (2.119)

From Lemma 2.8.1, B2
1(t) ≤ R2

(ηt)2 . As for the denominator,

1
n

r∑
i=1

µ̂i(1− γ(t)
i )2 ≥ c

n

r∑
i=1

i−β
1

(1 + ηci−βt)2 .

Define an index i0 ∈ [r] such that ηci−βt ≥ 1 if i ≤ i0, and ηci−βt < 1 if i > i0, hence

c

n

r∑
i=1

µ̂i(1− γ(t)
i )2 ≥ 1

4ncη2t2

i0∑
i=1

iβ + c

4n

r∑
i=i0+1

i−β ≥ 1
4ncη2t2

i0∑
i=1

iβ. (2.120)

By lower bounding the last sum in (2.120), we achieve the following

i0∑
i=1

iβ ≥
∫ i0

0
xβdx = iβ+1

0
β + 1 .

Assume that t is large enough, meaning that i0 > (ηct)
1
β − 1 ≥ 1

2(ηct)
1
β , thus we obtain

B2
1(t)

1
n

∑r
i=1 µ̂i(1− γ

(t)
i )2

≤ 2β+3(β + 1)cnR2

(ηct)1+ 1
β

.

In addition to that, one knows (see Lemma 2.7.4) that (ε̂2n)−1 = ηt̂ε � 1[
1+
√

C
β−1

] 2β
β−1

[
2nR2

σ2

] β
β+1 ,

therefore for all t & t̂ε,

B2
1(t)

1
n

∑r
i=1 µ̂i(1− γ

(t)
i )
.

2β+2(β + 1)σ2

c1/β

[
1 +

√
C

β − 1

] 2(β+1)
β−1

. (2.121)
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Chapter 3

MINIMUM DISCREPANCY PRINCIPLE FOR

CHOOSING k IN k-NN REGRESSION

Abstract

This chapter presents a novel data-driven strategy to choose the tuning parameter k in the k-NN
regression estimator. We treat the problem of choosing the tuning parameter as an iterative procedure
(over k) and propose using an easily implemented in practice strategy based on the idea of early
stopping and the minimum discrepancy principle. This estimation strategy is proven to be minimax
optimal, under the fixed-design assumption on covariates, over a range of smoothness function classes,
for instance, the Lipschitz functions class on a bounded domain. The proof relies on careful analysis
of the bias-variance trade-off and standard concentration inequalities for linear/quadratic forms of
Gaussian variables. The novelty of the strategy comes from reducing the computational time of model
selection while preserving the statistical (minimax) optimality. In particular, if one should choose k
among {1, . . . , n}, the strategy reduces the computational time of the generalized cross-validation, AIC
or Mallow’s Cp criteria from O

(
n3) to O (n2(n− k)

)
, where k is the proposed (minimum discrepancy

principle) value of the nearest neighbors.

3.1 Introduction

Nonparametric regression estimation is a fundamental problem in statistics and machine learning.
The k-NN regression estimator [26, 67] is a very simple and popular choice in practice. For this
estimator, the central issue is choosing properly the number of neighbors k.

The theoretical performance of the k-NN regression estimator has been widely studied since the
1970s [24, 25, 26, 52, 55, 56, 73, 128]. For example, in [26, Chapter 12] the uniform consistency of the
k-NN estimator is proved under the condition that k(n)/n→ 0 as n→∞, where n is the sample size.
However, as it was shown in [67], the nearest neighbor estimator (k = 1) is proved to be consistent
only in the noiseless case. Therefore, it is necessary to let k grow with n.

Recently, researchers started to be interested in choosing k optimally from the data [7, 13, 67, 73].
Apparently, the most common (and the simplest) strategy to choose k is to assume some smoothness
assumption on the regression function (e.g., the Lipschitz condition [67]), and to find k that makes an
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upper bound on the bias and the variance of the k-NN regression estimator equal. This method has a
clear lack: one needs to know the smoothness of the regression function (e.g., the Lipschitz constant).
The seminal paper [7] gives a data-driven strategy for choosing a tuning parameter with different
linear estimators (e.g., the k-NN estimator) developed from the idea of minimal penalty, introduced
previously in [27]. The main inconvenience of this strategy is that one needs to compute all estimators
Fn = {fk, k = 1, . . . , n} of the regression function in order to choose the optimal one among them
(by comparing them via a criterion). To list other (similar) strategies, one can think about Akaike’s
AIC [2] or BIC [100] criterion or generalized cross-validation [70, 76] where one has to compute the
empirical risk error plus a penalty term for any k = 1, . . . , n. Often, it is computationally expensive
and restricts the use in practice. This gives rise to the problem of choosing the tuning parameter
"in real-time", meaning that the practitioner should compute iteratively fk ∈ Fn. Eventually, this
iterative process has to be stopped. This problem can be solved by applying the early stopping rule.

Review on early stopping rule

The early stopping rule (ESR) is a regularization method that consists in stopping an iterative
learning algorithm prior to its convergence. The main idea of ESR is preserving statistical optimality
while lowering the computational complexity of a learning algorithm. Early stopping dates back to
the 1970s and was originally proposed for solving ill-posed operator (matrix) problems (see the book
[60] for a thorough review on the subject). After that, there was a great interest in applying early
stopping to train artificial neural networks [91]. The main concern of this heuristics was to show that
during the training phase of learning one can benefit from leaving apart a part of the data called
the validation data. This way, the validation error on this part should give an approximation of the
true risk error. This approach was purely practical, and until the 2000s there were no theoretical
justifications for the ESR at all. Furthermore, until the work [92], all the developed stopping rules
[17, 39, 122, 126] were not data-dependent. Raskutti et al. [92] proposed using the so-called localized
Rademacher complexities [16, 114] to recover the bias-variance trade-off for two learning algorithms:
gradient descent and ridge (Tikhonov) regression in the unit ball of Reproducing kernel Hilbert space
H. The subsequent work [118] extended the previous result to boosting algorithms with the same idea
of controlling the localized Gaussian complexities in RKHS. The main inconvenience was that the
results in [92] and [118] were derived under the assumption that the regression function lies in the unit
ball of H, which restricts the use of these stopping rules in practice.

The first early stopping rule that could be potentially data-driven was proposed by [28, 30, 50]
for spectral filter iterative algorithms (see, e.g. [19, 64] for examples of such algorithms). The idea
behind the construction of this early stopping rule is the so-called minimum discrepancy principle
that is based on finding a first iteration for which a learning algorithm starts to fit the noise. The
key quantity for the analysis of the minimum discrepancy principle is the empirical risk error (the
train error in the terminology of the machine learning community), which is monitored throughout

94



3.2. Statistical model, main assumption and notation

the whole learning process. The process thus is stopped if the empirical risk starts to fit the noise.

Contribution. In the present paper, we propose applying the minimum discrepancy principle
stopping rule for the k-NN regression estimator in order to select k. We prove a non-asymptotic bound
on the performance of the minimum dicrepancy principle stopping rule measured in the empirical
L2(Pn) norm. This bound implies that, under a quite mild assumption on the regression function,
the minimum discrepancy principle stopping rule provides a minimax-optimal functional estimator, in
particular, over the class of Lipschitz functions on a bounded domain.

Outline of the chapter. The organization of the chapter is as follows. Section 3.2 describes the
statistical model, its main assumption, and introduces the notation that will be used in the chapter. In
Section 3.3, we introduce the k-NN estimator and explain how to compute the minimum discrepancy
early stopping rule. Section 3.4 provides the main theoretical result that shows that the proposed rule
achieves statistical optimality over a range of functional classes (e.g., the well-known class of Lipschitz
functions on a bounded domain). Section 3.5 is devoted to the discussion of the obtained results. All
the technical proofs are in Appendix.

3.2 Statistical model, main assumption and notation

In the nonparametric regression setting, we work with a sample (x1, y1), . . . , (xn, yn) ∈ X n × Rn

that satisfies the statistical model

yi = f∗(xi) + εi, i = 1, . . . , n, (3.1)

where f∗ : X 7→ R, X ⊂ Rd, is a measurable function on some set X , and {εi}ni=1 are i.i.d. Gaussian
noise variables N (0, σ2). Assume that the parameter σ2 > 0 is fixed and known (except for Section 4.4
where we consider real-data simulated experiments). One should point out here that the assumption of
known σ2 is quite typical in model selection literature with nonparametric regression setting (see, e.g.,
[42, 76, 77, 119]). In addition to that, we assume that {xi ∈ X}ni=1 are fixed covariates (corresponds
to the so-called fixed design setting), thus we observe noise only in the responses {yi}ni=1. The goal of
the present chapter is to estimate optimally the regression function f∗. The term "optimally" will be
explained in Section 3.3.

In the context of the fixed design setting, the performance of an estimator f̂ of f∗ is measured in
terms of the so-called empirical norm defined as

‖f̂ − f∗‖2n := 1
n

n∑
i=1

[
f̂(xi)− f∗(xi)

]2
, (3.2)

where ‖h‖n :=
√

1/n
∑n
i=1 h(xi)2 for any bounded on X function h. We denote the empirical norm as

L2(Pn). For each bounded over X functions h1, h2, 〈h1, h2〉n denotes the related inner product defined
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as 〈h1, h2〉n := 1/n
∑n
i=1 h1(xi)h2(xi). Further, Pε and Eε denote the probability and expectation with

respect to {εi}ni=1.
Notation. Throughout the chapter, ‖·‖ and 〈·, ·〉 are the usual Euclidean norm and inner product in

Rn. ‖M‖2 and ‖M‖F signify the operator and Frobenius norms of the matrixM ∈ Rn×n, respectively.
We denote the trace of the matrixM by tr(M). In addition to that, I {E} is equal to 1 if the probabilistic
event E holds true, otherwise it is equal to 0. For a ≥ 0, we denote by bac the largest natural number
that is smaller than or equal to a. We denote by dae the smallest natural number that is greater than
or equal to a.

We make the following assumption on the regression function f∗ introduced earlier in Eq. (3.1).

Assumption 6 (Boundness of the r.f.). f∗ is bounded on X , meaning that there exists a constant
M > 0 such that

|f∗(x)| ≤ M for all x ∈ X . (3.3)

Assumption 6 is quite standard in the nonparametric regression literature [67, 128]. In particular,
Assumption 6 holds when the set X is bounded, and the regression function f∗ is L-Lipschitz with
some positive constant L [67].

Along the chapter, we use the notation c, c1, C, c̃, C̃, . . . to show that the numeric constants
c, c1, C, c̃, C̃, . . . can depend only on d, σ, andM. The values of all the constants may change from line
to line or even in the same line.

3.3 k-NN estimator and minimum discrepancy stopping rule

3.3.1 k-NN regression estimator

Let us transform the initial model (3.1) into its vector form

Y = [y1, . . . , yn]> = F ∗ + ε ∈ Rn, (3.4)

where the vectors F ∗ := [f∗(x1), . . . , f∗(xn)]> and ε := [ε1, . . . , εn]>.
Define a k-nearest neighbor estimator fk of f∗ from (3.1) at the point xi, i = 1, . . . , n, as

fk(xi) := F ki = 1
k

∑
j∈Nk(i)

yj , k = 1, . . . , n, (3.5)

where Nk(i) are the indices of the k nearest neighbors of xi among {1, . . . , n} in the usual Euclidean
norm in Rd, where ties are broken at random. In words, in Eq. (3.5), one weights by 1/k the response
yj if xj is a k nearest neighbor of xi, measured in the Euclidean norm. Note that other adaptive
metrics (instead of the Euclidean one) have been also considered in the literature [70, Chap. 14].
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3.3. k-NN estimator and minimum discrepancy stopping rule

One can notice that the k-NN regression estimator (3.5) belongs to the class of linear estimators
[6, 70], meaning that the vector F k ∈ Rn estimates the vector F ∗ as it follows.

F k :=
(
fk(x1), . . . , fk(xn)

)>
= AkY, (3.6)

where Ak ∈ Rn×n is the matrix described below.∀1 ≤ i, j ≤ n, (Ak)ij ∈ {0, 1/k} with k ∈ {1, . . . , n},

∀1 ≤ i ≤ n, (Ak)ii = 1/k and
∑n
j=1 (Ak)ij = 1.

(3.7)

Saying differently, (Ak)ij = 1/k if xj is a k nearest neighbor of xi, otherwise (Ak)ij = 0, i, j ∈

{1, . . . , n}.
Define the mean-squared error (the risk error) of the estimator fk as

MSE(k) := Eε‖fk − f∗‖2n = 1
n
Eε

n∑
i=1

(1
k

∑
j∈Nk(i)

yj − f∗(xi)
)2
. (3.8)

Further, we will introduce the (squared) bias and variance of the functional estimator fk (see, e.g. [6,
Eq. (7)]),

MSE(k) = B2(k) + V (k), (3.9)

where
B2(k) = ‖(In −Ak)F ∗‖2n, V (k) = σ2

n
tr
(
A>k Ak

)
.

Moreover, we are able to simplify a bit the expression for the variance, which shows the lemma below.

Lemma 3.3.1 (Proposition 1 in [6]). For any k ∈ {1, . . . , n},

V (k) = σ2

n
tr(Ak) = σ2

k
.

Proof of Lemma 3.3.1. Notice that

tr
(
A>k Ak

)
= tr

(
AkA

>
k

)
=

n∑
i=1

n∑
j=1

(Ak)2
ij = n

k
. (3.10)

�

Thus, due to Lemma 3.3.1, the variance term σ2/k is a decreasing function of k. Note that B2(1) =
0, V (1) = σ2, and B2(n) = (1 − 1/n)2‖f∗‖2n, V (n) = σ2/n. Importantly, the bias term B2(k) can
have arbitrary behavior on the interval [1, n].

Ideally, we would like to minimize the mean-squared error (3.8) as a function of k. However, since

97



Part, Chapter 3 – MDP for choosing k in k-NN regression

the bias term is not known (it contains the unknown regression function), one should introduce other
quantities that will be related to the bias. In our case, this quantity will be the empirical risk at k:

Rk := ‖(In −Ak)Y ‖2n. (3.11)

Rk measures how well the estimator fk fits Y . Remark that R1 = 0 (corresponds to the "overfitting"
regime) and Rn = (1 − 1/n)2 1

n

∑n
i=1 y

2
i (corresponds to the "underfitting" regime), but there is no

information about the monotonicity of Rk on the interval [1, n].
Furthermore, some information about the bias is contained in the expectation of the empirical risk.

To be precise, since Y = F ∗ + ε and tr
(
A>k Ak

)
= tr (Ak), for any k ∈ {1, . . . , n},

EεRk = σ2 +B2(k)− σ2(2tr(Ak)− tr(A>k Ak))
n

= σ2 +B2(k)− σ2

n
tr(Ak)

= σ2 +B2(k)− V (k).

(3.12)

Let us illustrate all the mentioned quantities in one example in Fig 3.1. We take the regression function
equal to f∗(x) = ‖x− 0.5‖/

√
3− 0.5, the noise variance σ = 0.1. We take n = 50, xi

i.i.d.∼ U[0, 1]3, i =
1, . . . , n, and plot the bias term B2(k), the variance term V (k), the risk error MSE(k), the empirical
risk Rk, and its expectation EεRk versus the number of neighbours k. We start with the maximum
number of neighbours kmax = n/2 and decrease it until k = 1. By doing that, one is able to increase
successively the complexity of the model measured by its "degree of freedom" [7, 70] tr(Ak) = n/k.

Note that among all defined quantities, only the variance term can be proved monotonic (without
an additional assumption on the smoothness of f∗). Importantly, Fig 3.1 indicates that choosing k = 5
will provide the user with the global optimum of the risk (the mean-squared error) curve. Thus, for
instance, it would be meaningless (according to the risk curve) to compute all the estimators fk (3.5)
for k = 1, . . . , 5.

Our main concern is to design a data-driven strategy to choose k̂ ∈ {1, . . . , n}, which can be seen
as a mapping from the data {(xi, yi)}ni=1 to a positive integer number so that the prediction error
(the mean squared error) Eε‖f k̂ − f∗‖2n is as small as possible. To be precise, the goal is to define a
data-driven k̂ such that it satisfies the following upper bound [108, 114]

‖f k̂ − f∗‖2n ≤ CnEε‖fkopt − f∗‖2n + rn, (3.13)

with high (exponential) probability over {εi}ni=1, where fkopt is a minimax optimal estimator of f∗ ∈
F , F is some a priori chosen function space. The leading constant Cn should be bounded and not
depend on the regression function f∗, the remainder term rn is negligible (smaller) with respect to
Eε‖fkopt − f∗‖2n.
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Figure 3.1 – Sq. bias, variance, risk, and (expected) empirical risk behavior.

3.3.2 Related work

The idea of choosing the tuning parameter k ∈ {1, . . . , n} from the data has been already considered
in the literature. For example, the classical procedures such as generalized cross-validation [42, 53, 76],
penalized estimators [7, 10, 76, 79] and different cross-validation methods [8] are popular choices for
linear estimators. Let us consider them in more detail.

Generalized CV [42, 70, 76]. This model selection method has been widely studied in the case of
(kernel) ridge regression [53] and smoothing splines [42]. In particular, [42] proved a non-asymptotic
oracle inequality for the generalized CV estimator when the variance σ2 is known. However, in a
more general case, GCV estimates σ2 implicitly, which is an advantage of the method. In addition
to that, GCV for k-NN regression is proved [76] to be asymptotically optimal under the assumption
‖Ak‖2 ≤ c, ∀k = 1, . . . , n, for some positive constant c. It is worth to mention that generalized cross-
validation provides an approximation to the so-called leave-one-out cross-validation [8, 48], which is
an exhaustive model selection procedure. In this case, if the nearest neighbors’ matrices are precom-
puted, the computational time is reduced to O

(
n3). The GCV strategy will be later considered in our

simulations in Chapter 4.
Penalized estimators date back to the works on the AIC [1] or Mallow’s Cp [79] criteria, where a

penalty proportional to the dimension of the model is added to the least-squares loss (i.e., the empirical
risk in our notation (3.11)) when the noise level σ2 is known. As for GCV strategy, the computational
time of AIC and Mallow’s Cp are O

(
n3). After that, a new approach was developed by [27], where
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Part, Chapter 3 – MDP for choosing k in k-NN regression

the authors introduced the so-called "slope heuristics" for projection matrices. This notion relied on
the introduction of the penalty pen(k) = Ktr(Ak), where tr(Ak) is the "dimension of the model", and
K is a constant that depends on σ2, in particular. It appeared that there exists a constant Kmin such
that 2Kmintr(Ak) yields an asymptotically optimal model selection procedure. This gives rise to some
strategies for the estimation of the constant Kmin from the data, as it was done, for instance, in [6]
for a general linear estimator when σ2 is unknown.

Cross-validation methods [8]. These model selection methods are the most used in practice.
Compared to generalized cross-validation, for instance, V -fold cross-validation method [8, 63] incurs
a large computational cost (with V , which is not too small). To be precise, V -fold cross-validation
requires the model selection procedure to be performed V times for each value of k ∈ {1, . . . , n}.
Another alternative could be the Hold-out method [8, 117], which consists in randomly splitting the
data into two parts for each value k ∈ {1, . . . , n}: one is dedicated to training the estimator (3.5), and
the other one is dedicated to testing.

3.3.3 Minimum discrepancy principle rule

In this section, we present a minimum discrepancy principle stopping rule.
We are at the point to define our first reference rule. Based on the nonparametric statistics literature

[108, 116], the bias-variance trade-off usually provides an optimal functional estimator:

k∗ = inf
{
k ∈ {1, . . . , n} | B2(k) ≥ V (k)

}
. (3.14)

In general, the bias-variance trade-off stopping rule k∗ does not exist due to an arbitrary behaviour
of the bias term B2(k). Thus, if no such k∗ exists, set k∗ = n. If it exists, then k∗ ≥ 2 since V (1) =
σ2 > B2(1) = 0.

Notice that the stopping rule k∗ is not computable in practice since it depends on the unknown
bias. Nevertheless, we can create a data-driven version of k∗ using the empirical risk Rk.

Eq. (3.12) gives us that the event {B2(k) ≥ V (k)} is equivalent to the event {EεRk ≥ σ2}, so we
conclude that k∗ = inf{k ∈ {1, . . . , n} | EεRk ≥ σ2}. It gives rise to an estimator of k∗ that we denote
as kτ . This stopping rule is called the minimum discrepancy principle stopping rule and is defined as

kτ := sup
{
k ∈ {1, . . . , n} | Rk ≤ σ2

}
. (3.15)

Remark. If no such kτ exists, then set kτ = 1. Note that in Eq. (3.15), we introduced a supremum
instead of the infimum from Eq. (3.14). That was done on purpose because there could be several points
of the bias-variance trade-off, and the bias (and the empirical risk) could behave badly in the areas
"in-between". In order to calculate kτ , the user should, first, compute the empirical risk Rk at k = n

(thus, the matrix An of n nearest neighbors). After that, one needs to decrease k until the event
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3.4. Theoretical optimality result

{Rk ≤ σ2} holds. It is worth to mention that it is not necessary to compute explicitly all the matrices
Ak, k = n, n − 1, . . ., since, for instance, the matrix An−1 could be easily derived from the matrix
An (assuming that one has already arranged the neighbors and removed the nth neighbors from the
matrix An), i.e.,

[An−1]ij = n

n− 1[An]ij , ∀i, j ∈ {1, . . . , n}. (3.16)

It is one of the main computational advantages of the proposed rule (3.15). For more details on the
efficient computation of the nearest neighbors, see, e.g., [22, 87]. In addition to all of that, we emphasize
that the definition (3.15) of kτ does not require the knowledge of the constantM from Assumption 6,
and kτ does not require computing the empirical risk Rk for all values k = 1, . . . , n, as it is the case,
for instance, for generalized cross-validation or Mallow’s Cp (see Section 3.3.2). Moreover, we need
to point out that the stopping rule (3.15) depends on the noise level σ2, which should be estimated,
as for AIC or Mallow’s Cp criteria [2, 70, 79]. We provide a consistent estimator of σ2 in Chapter 4.
Regarding the computational time of kτ , if the nearest neighbors’ matrices are already computed, it
is of the order O

(
n2 (n− kτ )

)
, which is less than O

(
n3) for AIC/Mallow’s Cp or GCV.

There is a large amount of literature [19, 28, 30, 50, 60] on the minimum discrepancy principle
for spectral filter algorithms such as gradient descent, ridge (Tikhonov) regularization, and spectral
cut-off regression (e.g., [28, 50] provide a thorough review). We should emphasize that intuitively the
minimum discrepancy principle determines the first iteration (time) at which a learning algorithm
starts to fit noise, which is measured by σ2 in the present context.

Moreover, one is able to notice that if the empirical risk is close to its expectation, kτ should
produce an optimal estimator in some sense. The main question that should be asked is "In which
setting is it possible to quantify this gap between Rk and EεRk that will not be statistically large?".
This question is the main technical obstacle of the present chapter. In what follows, we show that for
a quite large class of functions, kτ is optimal in the sense of Ineq. (3.13).

3.4 Theoretical optimality result

Let us start to describe the main theoretical result of the chapter. The following theorem applies
to the estimator defined in Eq. (3.6).

Theorem 3.4.1. Under Assumption 6, for arbitrary u ≥ 0,

‖fkτ − f∗‖2n ≤ 8V (k∗) + C1

(
u

n
+
√
u√
n

)
+ C2

√
logn
n

(3.17)

with probability at least 1− 16 exp (−u), where positive constants C1, C2 can depend on d, σ, andM.
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Moreover, if k∗ from Eq. (3.14) exists, then for arbitrary u ≥ 0,

‖fkτ − f∗‖2n ≤ 4 MSE(k∗)︸ ︷︷ ︸
Main term

+C1

(
u

n
+
√
u√
n

)
+ C2

√
logn
n︸ ︷︷ ︸

Rem. term

(3.18)

with probability at least 1− 16 exp(−u), where the constants C1, C2 are from Ineq. (3.17).

Sketch of the proof of Theorem 3.4.1. The full proof is deferred to Appendix 3.11. Let us provide a
sketch of the proof here.

The main ingredients of the proof are two deviation inequalities: for any x ≥ 0,

Pε (V (kτ ) > 2V (k∗) + x) ≤ 2 exp
(
−c̃nmin

(
x2, x

))
, (3.19)

and

B2(kτ ) ≤ 2V (k∗) + c1

√
logn
n

+ 2x, (3.20)

where Ineq. (3.20) holds with probability at least 1− 12 exp
(
−cnmin

(
x2, x

))
.

After that, one can split the L2(Pn) error at kτ into two parts:

‖fkτ − f∗‖2n ≤ 2B2(kτ ) + 2‖Akτ ε‖2n. (3.21)

By considering Eq. (3.21), it is sufficient to derive high probability control of sup
k

∣∣‖Akε‖2n − V (k)
∣∣

for k = 1, . . . , n (see Appendix 3.8). That was the reason why the term O
(√

logn
n

)
appeared in Eq.

(3.17).
Finally, one can combine Eq. (3.21), Eq. (3.20), and Eq. (3.19), and apply V (k∗) ≤ 1

2MSE(k∗), if
k∗ exists, and u = cnmin

(
x2, x

)
. The claim follows.

�

In order to gain some intuition of the claim of Theorem 3.4.1, let us make some comments.
First of all, Ineq. (3.18) is non-asymptotic, meaning that it holds true for any n ≥ 1. Second, Ineq.

(3.18) holds with high (exponential) probability, which is a stronger result than in expectation since
[76] there are model selection procedures that are asymptotically optimal with high probability but
not in expectation.

Third, the main term in Ineq. (3.18) is the risk error at the bias-variance trade-off times 4 (this
constant could be improved). Ideally, one should rather introduce the oracle risk inf

k=1,...,n
Eε‖fk − f∗‖2n

and compare ‖fkτ − f∗‖2n with it. However, to the best of our knowledge, a smoothness assumption
is needed to connect the bias-variance trade-off risk and the oracle risk. It was the reason to keep the
main term as it was stated. Fourth, the right hand side term of Ineq. (3.18) is of the order O

(√
logn
n

)
.
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Notice that the same rate for this term was achieved in [13], but in terms of the expectation over the
noise.

A natural question would be to understand if the rate O
(√

logn
n

)
is sufficiently fast. In order to

do that, one should precise the function space F , where f∗ lies in. In what follows, we will mention
one famous example (among others) of a such function space F .

Example 7. Consider the class of functions

FLip(L) :=
{
f : [0, 1]d 7→ R | f(0) = 0, f is L− Lipschitz

}
, (3.22)

where f is L-Lipschitz means that |f(x) − f(x′)| ≤ L‖x − x′‖ for all x, x′ ∈ [0, 1]d. In this case (see,
e.g., [67, Theorem 3.2] with p = 1),

Eε‖f̂ − f∗‖2n ≥ cln
− 2

2+d , (3.23)

for some positive constant cl, for any measurable of the input data f̂ .

Therefore, for the class of L-Lipshitz functions, the rate O
(√

logn/n
)
is faster than the minimax

rate O(n−
2

2+d ) for any d > 2.
As for the main term 8V (k∗) in Ineq. (3.17), it should be of a minimax optimal order since the

common strategy for obtaining optimal rates for the k-NN regression estimator is twofold. First, one
should derive a uniform (over k) upper bound on the bias term (knowing the smoothness of the
regression function), which is a non-decreasing function of k. After that, this upper bound is made
equal to the variance term, which results in the optimal kb/v. Following this argument, one can conclude
that kb/v ≤ k∗, which implies V (k∗) ≤ V (kb/v). We summarize our findings in the theorem and the
corollary below.

Theorem 3.4.2. (e.g., [67, Theorem 3.2]) Under the Lipschitz condition (3.22) on the regression
function f∗, for any k ∈ {1, . . . , n},

MSE(k) ≤ C
(
k

n

)2/d
+ σ2

k
, (3.24)

where constant C may depend on d and L. Thus, Ineq. (3.24) yields kb/v =
⌈(

σ2

C

)d/(2+d)
n

2
2+d

⌉
.

Corollary 3.4.3. Set u = logn in Ineq. (3.17), then under the L-Lipschitz condition (3.22) on the
regression function f∗, the early stopping rule kτ from Eq. (3.15) satisfies

Eε‖fk
τ − f∗‖2n ≤ cun

− 2
2+d , (3.25)

where positive constant cu depends on d, σ, and L; d > 2.
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Proof of Corollary 3.4.3. First, by taking the expectation of Ineq. (3.17), it gives

Eε‖fk
τ − f∗‖2n = Eε

[
‖fkτ − f∗‖2nI

{
‖fkτ − f∗‖2n ≤ 8V (k∗) + C1

√
logn√
n

+ C2
logn
n

}]

+ Eε

[
‖fkτ − f∗‖2nI

{
‖fkτ − f∗‖2n > 8V (k∗) + C1

√
logn√
n

+ C2
logn
n

}]
.

(3.26)

After that, due to Lemma 3.6.4 from Appendix, ‖In−Ak‖2 ≤ c for any k ∈ {1, . . . , n}, and |f∗(xi)| ≤
M for i ∈ {1, . . . , n} due to the Lipschitz condition (3.22), which implies that

‖fkτ − f∗‖2n = ‖(In −Ak)F ∗‖2n + ‖Akε‖2n + 2〈Akε, (In −Ak)F ∗〉n
≤ 2‖(In −Akτ )F ∗‖2n + 2‖Akτ ε‖2n
≤ 2‖In −Akτ ‖22‖f∗‖2n + 2‖Akτ ‖22‖ε‖2n
≤ c1 + c2‖ε‖2n,

where constants c1 and c2 depend only onM and d. Thus,

‖fkτ − f∗‖4n ≤ c1 + c2‖ε‖4n + c3‖ε‖2n. (3.27)

From Ineq. (3.26) and Cauchy-Schwarz inequality, it comes

Eε‖fk
τ − f∗‖2n ≤ 8V (k∗) + C1

√
logn√
n

+ C2
logn
n

+
√
Eε‖fkτ − f∗‖4n

√√√√Pε

(
‖fkτ − f∗‖2n > 8V (k∗) + C1

√
logn√
n

+ C2
logn
n

)
.

Further, by applying Ineq. (3.17) and Ineq. (3.27), we obtain

Eε‖fk
τ − f∗‖2n ≤ 8V (k∗) + C1

√
logn√
n

+ C2
logn
n

+
√
c1 + c3σ4 + c2σ2 4√

n
.

The claim follows from V (k∗) ≤ V (kb/v), for kb/v defined in Theorem 3.4.2. �

Therefore, the function estimator fkτ achieves (up to a constant) the minimax bound presented
in Eq. (3.23), thus non-improvable in general.

3.5 Conclusion

In the present chapter, we tackled the problem of choosing the tuning parameter k in the k-NN
regression estimator. A strategy based on early stopping and the minimum discrepancy principle was
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proposed. In Section 3.4 it was shown that the minimum discrepancy stopping rule kτ (3.15) provides
a minimax optimal estimator, in particular, over the class of Lipschitz functions on a bounded domain.
We remark that in the next chapter, this theoretical result will be confirmed empirically on artificial
and real data sets: the stopping rule has comparable performance to other stopping rules that use, for
instance, hold-out while reducing the computational time. The main inconvenience of the proposed
strategy is that one has to estimate the variance σ2 of the regression model (as it is the case for AIC
or Mallow’s Cp criteria), thus a plug-in estimator is needed. We will construct such an estimator for
simulated experiments with real-world data in the next chapter.
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Appendix

Below, one can find a plan of Appendix.

In Appendix 3.6, we state some already known results that will be used along the other sections
of Appendix.

Appendix 3.7 is devoted to the introduction of the main quantities for the derivation of the proofs.

The main goal of Appendix 3.8 is to provide a concentration inequality for the difference of the
variance V (kτ ) and its stochastic part ‖Akτ ε‖2n as well as a concentration inequality for sup

k∈{1,...,n}
|

Rk − EεRk |.

In Appendix 3.9, we derived a concentration inequality for controlling the variance term.

Appendix 3.10 is devoted to the derivation of a concentration inequality that deals with the devi-
ation of the bias term.

After that, by combining all the results from Appendices 3.8, 3.9, and 3.10, we are able to provide
a proof of Theorem 3.4.1.

3.6 Auxiliary lemmas

The first result is concerned with the derivation of the concentration of a Gaussian linear form
around 0.

Lemma 3.6.1 (Concentration of a linear term). Let ε be a standard Gaussian vector in Rn, α ∈ Rn,
and Z := 〈ε, α〉 =

∑n
j=1 αjεj. Then for every x > 0, one has

Pε (|Z| ≥ x) ≤ 2 exp
[
− x2

2σ2‖α‖2

]
.

Further, we need to recall a concentration result for a quadratic form of Gaussian random variables.

Lemma 3.6.2 (Hanson-Wright’s inequality for Gaussian random variables [95]). If ε = (ε1, . . . , εn)>
i.i.d.∼ N (0, σ2In) and A is a n× n matrix, then for any t > 0,

Pε
(
|ε>Aε− Eε[ε>Aε]| ≥ t

)
≤ 2 exp

[
−cmin

(
t2

σ4‖A‖2F
,

t

σ2‖A‖2

)]
. (3.28)

The next lemma provides us with a result that shows that the number of points among {x1, . . . , xn}
such that xi is one of their k nearest neighbors, is not more than a constant times k.
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Lemma 3.6.3 (Corollary 6.1 in [67]). Assume that (X1, . . . , Xn) ∼ PX for some probability measure
PX on X , and X is an independent copy of Xi, i = 1, . . . , n, then if there are no ties, a.s.

n∑
i=1

I {X is among the kNNs of Xi in the set {X1, . . . , Xi−1, X,Xi+1, . . . , Xn}} ≤ kcd,

where constant cd depends only on d.

After that, the operator norm of the matrix In −Ak is proved to be bounded.

Lemma 3.6.4. Recall that Nk(i) denotes the set of the k nearest neighbors of xi. For any k ∈
{1, . . . , n}, define the matrix Mk ∈ Rn×n as

(Mk)ij =


1− 1/k, if i = j,

0, if j /∈ Nk(i),

−1/k, if j ∈ Nk(i).

Then, ‖Mk‖2 ≤ cd, where positive constant cd depends only on d. Moreover, it implies that for the
matrix Ak = In −Mk : ‖Ak‖2 ≤ 1 + cd.

Proof of Lemma 3.6.4. We will adapt the proof of [13, Lemma 3.3].
Take x ∈ X such that ‖x‖ = 1 and denote (Mk)i· as the ith row of the matrix Mk. Then, the

following holds.

‖Mkx‖2 =
n∑
i=1
〈(Mk)i· , x〉

2

≤ 2
n∑
i=1

(1− 1/k)2x2
i + 2

n∑
i=1

1
k

∑
j∈Nk(i)

xj

2

(i)
≤ 2‖x‖2 + 2

k

n∑
i=1

∑
j∈Nk(i)

x2
j

= 2‖x‖2 + 2
k

n∑
j=1

∑
i:j∈Nk(i)

x2
j

(ii)
≤ cd‖x‖2.

(i) holds due to Jensen’s inequality, and (ii) is due to Lemma 3.6.3. Hence, ‖Mk‖2 ≤ cd. �

Lemma 3.6.5. For any k ∈ {2, . . . , n},

1
2V (k − 1) ≤ V (k) ≤ V (k − 1).
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Proof of Lemma 3.6.5. It is sufficient to notice that

V (k − 1)− V (k) = σ2

k(k − 1) ≤
σ2

k
= V (k).

�

3.7 Main quantities and notations

For more theoretical convenience (the variance will be an increasing function, the empirical risk
will be approximately a decreasing function), define the following notation and stopping rules:

λ[k] := tr(Ak) = n/k ∈ {1, n/(n− 1), n/(n− 2), . . . , n}, (3.29)

and

λ∗1 := inf
{
λ ∈

{
1, n

n− 1 , . . . , n
}
| B2(λ) ≤ V (λ)

}
, λτ1 := inf

{
λ ∈

{
1, n

n− 1 , . . . , n
}
| Rλ ≤ σ2

}
λ∗2 := sup

{
λ ∈

{
1, n

n− 1 , . . . , n
}
| B2(λ) ≥ V (λ)

}
, λτ2 := sup

{
λ ∈

{
1, n

n− 1 , . . . , n
}
| Rλ ≥ σ2

}
.

(3.30)

Notice that there is a one-to-one map between k and λ[k], as it is suggested in Eq. (3.29).
If λ∗1 does not exist, set λ∗1 = n whereas, if λ∗2 does not exists, set λ∗2 = 1. If λτ1 does not exist, set

λτ1 = n; if λτ2 does not exist, set λτ2 = 1.
In Eq. (3.30), we omit for simplicity the notation λ[k]. Moreover, in Eq. (3.30), we used the

notation Aλ[k] (inside the definitions of B2(λ), V (λ), and Rλ) to denote the matrix Ak for k = n/λ

corresponding to λ, i.e., Aλ[k] ≡ Ak.

Note that λ∗1 ≤ λ∗2, and λτ1 ≤ λτ2 . Besides that, the bias, variance, and (expected) empirical risk at
λτ1 are equal to the bias, variance, (expected) empirical risk at kτ , defined in Eq. (3.15), respectively.
The bias, variance, (expected) empirical risk at λ∗2 are equal to the bias, variance, (expected) empirical
risk at k∗, defined in Eq. (3.14), respectively.

The behavior of the bias term, variance, risk error, and (expected) empirical risk w.r.t. the new
notation λ is presented in Fig. 3.2. One can conclude that only the variance term is monotonic w.r.t.
λ.

Denote R̃λ as the tightest non-increasing lower bound on Rλ and Rλ as the tightest non-increasing
upper bound on Rλ. We precise the definitions of the latter quantities below.

Definition 3.7.1. Assume that one has the grid of values Λ = {1, n/(n − 1), n/(n − 2), . . . , n}, and
the empirical risk curve is observed successively, meaning that one starts from λ = 1 (corresponds to

108



3.7. Main quantities and notations

0 10 20 30 40 50

0.000

0.002

0.004

0.006

0.008

Va
lu

e
Sq. bias
Variance
Risk
Exp. Empirical Risk
Empirical Risk

Figure 3.2 – Sq. bias, variance, risk, and (expected) empirical risk behavior in the λ notation.

k = n) and increases λ until the value n (corresponds to k = 1). Then, consider the value of Rλ and
its next increment Rλ+∆ such that λ+ ∆ ∈ Λ. Define R̃1 := R1 and

R̃λ+∆ :=

Rλ+∆, if Rλ+∆ −Rλ ≤ 0,

Rλ, otherwise; in this case, one should wait until R
λ̃
≤ R̃

λ̃
for some λ̃ > λ, λ̃ ∈ Λ.

(3.31)

Definition 3.7.2. Assume that one has the grid of values Λ = {1, n/(n − 1), n/(n − 2), . . . , n}, and
the empirical risk curve is observed successively, meaning that one starts from λ = n (corresponds to
k = 1) and decreases λ until the value 1 (corresponds to k = n). Then, consider the value of Rλ and
its next increment Rλ−∆ such that λ−∆ ∈ Λ. Define Rn := Rn and

Rλ−∆ :=

Rλ−∆, if Rλ−∆ −Rλ ≥ 0,

Rλ, otherwise; in this case, one should wait until R
λ̃
≥ R

λ̃
for some λ̃ < λ, λ̃ ∈ Λ.

(3.32)

The typical behavior of the defined lower and upper bound R̃λ, Rλ is illustrated in Fig. 3.3. Note
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that with these definitions:

λτ1 = inf{λ ∈ {1, . . . , n} | R̃λ ≤ σ2},

λτ2 = sup{λ ∈ {1, . . . , n} | Rλ ≥ σ2}.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150
Upper bound on ER
Lower bound on ER
Empirical risk

Figure 3.3 – Lower and upper bounds on the empirical risk.

Define an additional stopping rule λ?? that will be helpful in the analysis.

λ?? := sup

λ ∈ {1, . . . , n} | B2(λ) ≥ V (λ) + c1

√
logn
n

+ ỹ

 , (3.33)

for some ỹ ≥ 0 and positive constant c1 that will be precised later (Lemma 3.10.2).
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3.8 Control of the stochastic part of the variance / the empirical
risk

3.8.1 Control of the stochastic part of the variance

Consider v(λτ1) = ‖Aλτ1 [k]ε‖2n and V (λτ1) = σ2

n tr
(
Aλτ1 [k]

)
from Section 3.7. Then for any x > 0,

Pε (v(λτ1) > V (λτ1) + x) = Pε
(
{λτ1 [k] < 1}

⋂
{v(λτ1)− V (λτ1) > x}

)
︸ ︷︷ ︸

=0

+ Pε
(
{λτ1 [k] ≥ 1}

⋂
{v(λτ1)− V (λτ1) > x}

)
≤ Pε

(
sup

k∈{1,...,n}

∣∣∣‖Akε‖2n − V (k)
∣∣∣ > x

)
.

(3.34)

In what follows, we will bound Pε

(
sup

k∈{1,...,n}
|‖Akε‖2n − V (k)| > x

)
.

Let us define the set of matrices A := {Ak, k = 1, . . . , n}, then [74, Theorem 3.1]

Pε

(
sup
A∈A

∣∣∣‖Aε‖2 − Eε‖Aε‖2
∣∣∣ ≥ c1E + t

)
≤ 2 exp

(
−c2 min

(
t2

V 2 ,
t

U

))
, (3.35)

where

E = γ2(A, ‖·‖2)
(
γ2(A, ‖·‖2) + sup

A∈A
‖A‖F

)
+ sup

A∈A
‖A‖F sup

A∈A
‖A‖2,

U =
[

sup
A∈A
‖A‖2

]2

,

V = sup
A∈A
‖A‖2

(
γ2(A, ‖·‖2) + sup

A∈A
‖A‖F

)
,

and γ2(A, ‖·‖2) can be bounded via the metric entropy of (A, ‖·‖2) as

γ2(A, ‖·‖2) ≤ c
∫ sup

A∈A
‖A‖2

0

√
logN(A; ‖·‖2; u)du.

First, notice that due to Lemma 3.6.4, for any A ∈ A, one has ‖A‖2 ≤ cd. Moreover, logN(A; ‖·‖2; u) ≤
logn due to the definition of the metric entropy (see, e.g., [114, Chapter 5]). These arguments imply

U ≤ cd, and

γ2(A, ‖·‖2) ≤ cγ,d
√

logn,
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where constants cd and cγ,d depend only on d.

Second, as for the Frobenius norm,

sup
A∈A
‖A‖F ≤

√
n

due to the definition (3.7). Combining all the pieces together, for any t > 0,

Pε

 sup
A∈A

∣∣∣‖Aε‖2n − Eε‖Aε‖2n
∣∣∣ ≥ c1

√
logn
n

+ t

 ≤ 2 exp
(
−c2 min

(
nt2, nt

))
,

where c1 and c2 may depend on d and σ2.

Take x = c1

√
logn
n + t in (3.34), then for any t > 0,

Pε

v(λτ1) > V (λτ1) + c1

√
logn
n

+ t

 ≤ 2 exp
(
−cnmin

(
t2, t

))
.

3.8.2 Control of the empirical risk around its expectation

Define now the set of matricesM := {Mk = In −Ak, k = 1, . . . , n}, then by the same arguments
presented above, for any t > 0,

Pε

 sup
M∈M

| ‖Mε‖2n − Eε‖Mε‖2n |≥ c1

√
logn
n

+ t

 ≤ 2 exp
(
−c2 min(nt2, nt)

)
(3.36)

with c1 and c2 depending only on d and σ2. Further, notice that for any k ∈ {1, . . . , n},

Rk − EεRk = ‖MkY ‖2n − Eε‖MkY ‖2n = ‖Mkε‖2n − σ2
(

1− 1
k

)
+ 2〈F ∗,M>k Mkε〉n.

Ineq. (3.36) implies that for any t > 0,

Pε

 sup
k∈{1,...,n}

| ‖Mkε‖2n − σ2
(

1− 1
k

)
|≥ c1

√
logn
n

+ t

 ≤ 2 exp(−c2 min(nt2, nt)). (3.37)
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Moreover, Lemma 3.6.1 gives us that for any y > 0 and k ∈ {1, . . . , n},

Pε
(
2 | 〈F ∗,M>k Mkε〉n |≥ y

)
≤ 2 exp

[
− n2y2

8σ2‖M>k MkF ∗‖2

]

≤ 2 exp
[
− n2y2

8σ2‖M>k Mk‖22‖F ∗‖2

]

≤ 2 exp
[
− ny2

8cdσ2‖f∗‖2n

]

≤ 2 exp
[
− ny2

8cdσ2M2

]
.

(3.38)

Then, using the union bound for the linear term above with the deviation y = c1

√
logn
n + t and

combining all the pieces together,

Pε

 sup
k∈{1,...,n}

| Rk − EεRk |≥ c1

√
logn
n

+ t

 ≤ 4 exp
[
−c2 min(nt2, nt)

]
(3.39)

for any t > 0.

3.9 Deviation inequality for the variance term

This is the first deviation inequality for λτ1 that will be used to control the variance term.

Lemma 3.9.1. Under Assumption 6, define KV ⊆ {1, . . . , n} such that, for any λ ∈ KV , one has
V (λ) ≥ V (λ[k∗ − 1]) + y for some y ≥ 0. Recall the definition of λτ1 from Eq. (3.30), then for any
λ ∈ KV ,

Pε (λτ1 > λ) ≤ 2 exp
[
−cdnmin

(
y2

σ4 ,
y

σ2

)]
, (3.40)

where constant cd depends only on d.

Proof of Lemma 3.9.1. We start with the following series of inequalities that can be derived from the
definition of λτ1 and lower bound on the empirical risk R̃λ from Eq. (3.31).

Pε (λτ1 > λ) = Pε
(
R̃λ > σ2

)
= Pε

(
R̃λ − EεRλ > σ2 − EεRλ

)
≤ Pε

(
Rλ − EεRλ > σ2 − EεRλ

)
.

Due to Eq. (3.12), one has

σ2 − EεRλ = V (λ)−B2(λ) ≥ V (λ)− V (λ[k∗ − 1]) ≥ y.
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Moreover,

Rλ − EεRλ = ‖(In −Aλ[k])ε‖2n −
σ2

n

(
n− tr(Aλ[k])

)
+ 2〈(In −Aλ[k])F ∗, (In −Aλ[k])ε〉n.

Define for simplicity Mλ[k] := In −Aλ[k], then

Pε (λτ1 > λ) ≤ Pε

(
‖Mλ[k]ε‖2n −

σ2

n

(
n− tr(Aλ[k])

)
≥ y

2

)
+ Pε

(
2〈Mλ[k]F

∗,Mλ[k]ε〉n ≥
y

2

)
.

Further, we will concentrate the quadratic and linear terms as follows.
First term. The linear term 2〈Mλ[k]F

∗,Mλ[k]ε〉n: using Lemma 3.6.1 and Lemma 3.6.4 gives us

Pε
(

2〈Mλ[k]F
∗,Mλ[k]ε〉n ≥

y

2

)
= Pε

(
〈M>λ[k]Mλ[k]F

∗, ε〉 ≥ ny

4

)
≤ exp

[
− n2y2

32σ2‖M>λ[k]Mλ[k]F ∗‖2

]

≤ exp
[
− ny2

32σ2‖M>λ[k]‖
2
2B

2(λ)

]

≤ exp
[
− ny2

32cdσ2V (λ)

]

≤ exp
[
− ny2

32cdσ4

]
.

Second term. Consider the quadratic term ‖Mλ[k]ε‖2n− σ2

n

(
n− trAλ[k]

)
: combining Lemma 3.6.2

and Lemma 3.6.4 gives

Pε

(
‖Mλ[k]ε‖2n −

σ2

n

(
n− trAλ[k]

)
≥ y

2

)
≤ exp

[
−cmin

(
n2y2

4σ4‖M>λ[k]Mλ[k]‖2F
,

ny

2σ2‖M>λ[k]Mλ[k]‖2

)]

≤ exp
[
−cd min

(
ny2

4σ4 ,
ny

2σ2

)]
,

where constant cd depends only on d.
�

Based on Lemma 3.9.1, due to the fact that the variance V (λ) is increasing w.r.t. λ ∈ {1, n/(n−
1), . . . , n}, the following corollary holds.

Corollary 3.9.2. For any y > 0, define 0 ≤ ∆y ≤ y as the distance between V (λ[k∗ − 1]) + y and
V (λ0), where V (λ0) is the closest to V (λ[k∗ − 1]) + y value of V (λ), which is lower than or equal to
V (λ[k∗ − 1]) + y, over the grid of λ ∈ {λ[k∗ − 1], λ[k∗ − 2], . . . , n}. Then due to the monotonicity of
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the variance term,

Pε (V (λτ1) > V (λ[k∗ − 1]) + y −∆y) ≤ 2 exp
[
−cdnmin

(
y −∆y
σ2 ,

(y −∆y)2

σ4

)]
, (3.41)

for constant cd that depends only on d. Moreover, due to the definition of k∗ (3.14) and Lemma 3.6.5,
1
2V (λ[k∗ − 1]) ≤ V (λ∗2) ≤ V (λ[k∗ − 1]), which implies that

Pε (V (λτ1) > 2V (λ∗2) + y −∆y) ≤ 2 exp
[
−cdnmin

(
y −∆y
σ2 ,

(y −∆y)2

σ4

)]
, ∀y > 0.

Thus, one is able to control V (λτ1) via V (λ∗2), which is equal to V (k∗).

3.10 Deviation inequality for the bias term

What follows is the second deviation inequality for λτ1 that will be further used to control the bias
term.

Lemma 3.10.1. Under Assumption 6, define KB ⊆ {1, . . . , n} such that for any λ ∈ KB, one has
B2(λ) ≥ V (λ) + c1

√
logn
n for some positive constant c1. Then if KB is not empty, λτ1 from Eq. (3.30)

satisfies
Pε (λτ1 < λ) ≤ 10 exp

(
−cnmin

(
y2, y

))
, (3.42)

where y = B2(λ)− V (λ)− c1

√
logn
n for any λ ∈ KB, constant c depends only on d, σ, andM.

Proof of Lemma 3.10.1. Consider Ineq. (3.39) and the event

Eer(t) :=

 sup
λ∈{1,...,n}

| Rλ − EεRλ |≥ c1

√
logn
n

+ t


for any t > 0. Take t := B2(λ)− V (λ), λ ∈ KB. One notes from Ineq. (3.39) that

Pε
(
Eer
(
B2(λ)− V (λ)

))
≤ 4 exp

(
−cnmin

([
B2(λ)− V (λ)

]2
, B2(λ)− V (λ)

))
. (3.43)
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Further, recall that λτ1 ≤ λτ2 , and Rλ is the upper bound on Rλ from Section 3.7, which implies that

Pε (λτ1 < λ) = Pε
(
{λτ1 < λ}

⋂
{λ > λτ2}

)
︸ ︷︷ ︸

A

+Pε
(
{λτ1 < λ}

⋂
{λ ≤ λτ2}

)
︸ ︷︷ ︸

B

,

A = Pε
(
Rλ < σ2

)
≤ Pε

(
Rλ < σ2

)
≤ Pε

Rλ ≤ σ2 + c1

√
logn
n

 ,
B = Pε (λ ∈ (λτ1 , λτ2 ]) .

(3.44)

Consider the probability B from (3.44).

B = Pε
(
{λ ∈ (λτ1 , λτ2 ]}

⋂{
Rλ > σ2

})
︸ ︷︷ ︸

C

+Pε
(
{λ ∈ (λτ1 , λτ2 ]}

⋂{
Rλ ≤ σ2

})
︸ ︷︷ ︸

D

.

On the one hand,

D ≤ Pε
(
Rλ ≤ σ2

)
≤ Pε

Rλ ≤ σ2 + c1

√
logn
n

 .
On the other hand, Ineq. (3.43) and the equality EεRλ = σ2 +B2(λ)− V (λ) imply that the event

Rλ ∈

σ2 − c1

√
logn
n

, σ2 + c1

√
logn
n

 for any λ ∈ {1, . . . , n}

holds with probability at least 1− 4 exp
(
−cnmin

([
B2(λ)− V (λ)

]2
, B2(λ)− V (λ)

))
. Let us denote

this event as E . Then,

C = Pε
(
{λ ∈ (λτ1 , λτ2 ]}

⋂{
Rλ > σ2

}⋂{
E
})

︸ ︷︷ ︸
F̃

+Pε
(
{λ ∈ (λτ1 , λτ2 ]}

⋂{
Rλ > σ2

}⋂{
Ec
})

︸ ︷︷ ︸
G

.

First,
G ≤ Pε

(
Ec
)
≤ 4 exp

(
−cnmin

(
[B2(λ)− V (λ)]2, B2(λ)− V (λ)

))
.

Second,

F̃ ≤ Pε

Rλ ∈
σ2, σ2 + c1

√
logn
n

 ≤ Pε

Rλ ≤ σ2 + c1

√
logn
n

 .
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Combining the terms A,B, C,D, F̃ , and G, one gets

Pε (λτ1 < λ) ≤ 3 Pε

Rλ ≤ σ2 + c1

√
logn
n

+ 4 exp
(
−cnmin

([
B2(λ)− V (λ)

]2
, B2(λ)− V (λ)

))

≤ 3 Pε

Rλ ≤ σ2 + c1

√
logn
n


+ 4 exp

−cnmin


B2(λ)− V (λ)− c1

√
logn
n

2

, B2(λ)− V (λ)− c1

√
logn
n


 .

Then, one has

Pε

Rλ ≤ σ2 + c1

√
logn
n

 = Pε

Rλ − EεRλ ≤ σ2 − EεRλ + c1

√
logn
n


= Pε

Rλ − EεRλ ≤ −

EεRλ − σ2 − c1

√
logn
n

 .
(3.45)

Since EεRλ − σ2 − c1

√
logn
n = B2(λ)− V (λ)− c1

√
logn
n =: y for any λ ∈ KB, and

Rλ − EεRλ = ‖(In −Aλ[k])ε‖2n −
σ2

n
(n− tr(Aλ[k])) + 2〈(In −Aλ[k])F ∗, (In −Aλ[k])ε〉n,

we have

Pε (λτ2 < λ) ≤ Pε

(
‖Mλ[k]ε‖2n −

σ2

n
(n− tr(Aλ[k])) ≤ −

y

2

)
+ Pε

(
2〈Mλ[k]F

∗,Mλ[k]ε〉n ≤ −
y

2

)
,

where the matrix Mλ[k] = In −Aλ[k], where Aλ[k] ≡ Ak.

Further, we will concentrate the quadratic and linear terms above as follows.

First term. The linear term 2〈Mλ[k]F
∗,Mλ[k]ε〉n: using Lemma 3.6.1 and Lemma 3.6.4 gives us

Pε
(

2〈Mλ[k]F
∗,Mλ[k]ε〉n ≤ −

y

2

)
= Pε

(
〈M>λ[k]Mλ[k]F

∗, ε〉 ≤ −ny4

)
≤ exp

[
− n2y2

32σ2‖M>λ[k]Mλ[k]F ∗‖2

]

≤ exp
[
− n2y2

32σ2‖M>λ[k]Mλ[k]‖22‖F ∗‖2

]

≤ exp
[
− ny2

32cdσ2‖f∗‖2n

]
.
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Second term. Consider the quadratic term ‖Mλ[k]ε‖2n − σ2

n (n− trAλ[k]): combining Lemma 3.6.2
and Lemma 3.6.4 gives

Pε

(
‖Mλ[k]ε‖2n −

σ2

n
(n− trAλ[k]) ≤ −

y

2

)
≤ exp

[
−cmin

(
n2y2

4σ4‖M>λ[k]Mλ[k]‖2F
,

ny

2σ2‖M>λ[k]Mλ[k]‖2

)]

≤ exp
[
−cd min

(
ny2

4σ4 ,
ny

2σ2

)]
,

where constant cd depends only on d.
Finally, it is sufficient to recall Assumption 6 in order to apply ‖f∗‖2n ≤M2.

�

Lemma 3.10.2. Under Assumption 6, recall the definitions of λτ1 and λ∗2 from Eq. (3.30). Then for
any y > 0 and ∆y from Corollary 3.9.2,

B2(λτ1) ≤ 2V (λ∗2) + c1

√
logn
n

+ 2(y −∆y) (3.46)

with probability at least 1 − 12 exp
(
−cnmin

(
(y −∆y)2, y −∆y

))
, where constants c, c1 depend only

on d, σ, andM.

Proof of Lemma 3.10.2. Consider the event E(λ) from Lemma 3.10.1 for each λ ∈ KB. Then,

Pε (E(λ)) ≤ 10 exp
(
−cnmin

(
x2, x

))
,

for x = B2(λ)− V (λ)− c1

√
logn
n .

In what follows, two cases are distinguished.
Case 1: If λτ1 > λ∗2, then by definition of λ∗2, Corollary 3.9.2, and the monotonicity of the

variance term,
B2(λτ1) < V (λτ1) ≤ 2V (λ∗2) + y −∆y (3.47)

with probability at least 1− 2 exp
(
−cdnmin

(
y−∆y
σ2 , (y−∆y)2

σ4

))
, ∀y > 0.

Case 2: If λτ1 ≤ λ∗2, then take y − ∆y from Ineq. (3.47) and define λ?? ≤ λ∗2 as in Eq. (3.33)
with ỹ = y −∆y.

If no such point λ?? exists, then for any λ ≤ λ∗2, one has B2(λ) < V (λ) + c1

√
logn
n + y −∆y. In

particular, it holds true for λτ1 , which implies that

B2(λτ1) < V (λτ1) + c1

√
logn
n

+ y −∆y ≤ 2V (λ∗2) + c1

√
logn
n

+ 2(y −∆y)

with probability at least 1− 2 exp
(
−cdnmin

(
y−∆y
σ2 , (y−∆y)2

σ4

))
, due to Corollary 3.9.2.
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If λ?? exists, notice that λ?? ∈ KB by its definition. Therefore, due to Lemma 3.10.1, under the
event Ec(λ??), λτ1 ≥ λ??, and

B2(λτ1) < V (λτ1) + c1

√
logn
n

+ y −∆y ≤ 2V (λ∗2) + c1

√
logn
n

+ 2(y −∆y)

with probability at least 1− 10 exp
(
−cnmin

(
(y −∆y)2, y −∆y

))
.

Combining Case 1 and Case 2 together,

B2(λτ1) ≤ 2V (λ∗2) + c1

√
logn
n

+ 2(y −∆y) (3.48)

with probability at least 1− 12 exp
(
−cnmin

(
(y −∆y)2, y −∆y

))
.

The claim is proved.

�

3.11 Proof of Theorem 3.4.1

Define v(λ[k]) := ‖Aλ[k]ε‖2n, where λ[k] = tr(Ak) = n/k (see Section 3.7 for the definitions related
to the notation λ). Then, due to the inequality (a + b)2 ≤ 2a2 + 2b2 for any a, b ≥ 0, Lemma 3.10.2,
Corollary 3.9.2, and the control of the stochastic term in Appendix 3.8 (with t = y −∆y), for λτ1 [k]
and λ∗2[k] from Section 3.7, one obtains

‖fλτ1 [k] − f∗‖2n = ‖(In −Aλτ1 [k])F ∗‖2n + ‖Aλτ1 [k]ε‖2n + 2〈Aλτ1 [k]ε, (In −Aλτ1 [k])F ∗〉n
≤ 2B2(λτ1 [k]) + 2v(λτ1 [k])

≤ 4V (λ∗2[k]) + 6(y −∆y) + 2V (λτ1 [k]) + c1

√
logn
n

≤ 8V (λ∗2[k]) + 8(y −∆y) + c1

√
logn
n

with probability at least 1−16 exp
(
−c2nmin

(
(y −∆y)2, y −∆y

))
, where y > 0 is arbitrary, y−∆y ≥

0.

In addition to that, if λ∗2 from Eq. (3.30) exists, then V (λ∗2[k]) ≤ 1/2MSE(λ∗2[k]), and

‖fλτ1 [k] − f∗‖2n ≤ 4MSE(λ∗2[k]) + 8(y −∆y) + c1

√
logn
n

(3.49)

with the same probability.
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Define u := c2nmin
(
(y −∆y)2, y −∆y

)
, then one concludes that

‖fλτ1 [k] − f∗‖2n ≤ 4MSE(λ∗2[k]) + C

(√
u√
n

+ u

n

)
+ c1

√
logn
n

(3.50)

with probability at least 1− 16 exp(−u), where u ≥ 0 is arbitrary since y−∆y is arbitrary, constants
C and c1 can depend on d, σ, andM.
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Chapter 4

EMPIRICAL EVALUATION OF MDP RULE

FOR LINEAR ESTIMATORS

Abstract

The present chapter aims at comparing the practical behavior of the minimum discrepancy stopping
rule for choosing the tuning parameter in linear estimators, with other existing and the most used
in practice model selection methods. We split the chapter into four parts. Section 4.1 introduces the
linear estimator and provides some examples of this estimator. Section 4.2 defines the competitive
stopping rules and "oracle" stopping rule. Section 4.3 presents experiments on some artificial data
sets, while Section 4.4 presents experiments on some real data sets.

4.1 Introduction

Let us first recall examples of the linear estimator that we take into account. Assume that we have
data {xi, yi}ni=1, where xi ∈ X ⊆ Rd and yi ∈ R, and a model selection set Λ = {λ1, . . . , λS} for some
S ∈ N that can potentially depend on the sample size n. A general linear (functional) estimator fλ

of the regression function from the statistical model yi = f∗(xi) + εi, εi
i.i.d.∼ N (0, σ2), i = 1, . . . , n,

could be defined as
F λ := [fλ(x1), . . . , fλ(xn)]> = AλY, λ ∈ Λ, (4.1)

where Aλ is an n × n matrix, and Y = [y1, . . . , yn]>, λ is the parameter to choose (tune/learn). In
what follows, three linear estimators are considered.

— k-nearest neighbor regression [26, 67]. Theoretical analysis of this estimator has been
carried out in Chapter 3. We recall that for the case of the k-NN regression estimator, λ is the
number of neighbors k to choose; (Ak)ij = 1/k if xi is a k-nearest neighbor of xj (measured in
the Euclidean norm), otherwise (Ak)ij = 0, ∀i, j, k ∈ {1, . . . , n}. Moreover, (Ak)ii = 1/k, and∑n
j=1(Ak)ij = 1, ∀i, k ∈ {1, . . . , n}.

— Nadaraya-Watson regression [85, 116]. For this estimator, the corresponding matrix Ah =
WD−1, where D = diag(W1) (1 is the n× n unit matrix) is the diagonal matrix of row sums
and Wij = exp(−‖xi − xj‖2/(dh)), h > 0 is the smoothing parameter (bandwidth) to learn.
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Part, Chapter 4 – Empirical evaluation of MDP rule for linear estimators

— Variable selection in the regression model [102]. Assume the standard nonparametric

regression model Y = F ∗ + ε, where F ∗ = [f∗(x1), . . . , f∗(xn)]>, X =


x>1
...
x>n

 ∈ Rn×d is a

full-rank fixed design matrix with d ≤ n, ε i.i.d.∼ N (0, σ2In). Given this model, the goal is to
choose a subset J ⊆ {1, . . . , d} such that redundant variables (features) are omitted. Denote
XJ as the matrix of size n × |J | composed of columns of X and indexed by J . Then, the
final linear (functional) estimator is F J = [fJ(x1), . . . , fJ(xn)]> = AJY , with the matrix
AJ = XJ(X>J XJ)−1X>J (also called a projection matrix on the space induced by the columns
J). Moreover, one can show [70, p. 233] that tr(AJ) = |J |, which implies that σ2

n tr(A>J AJ) =
σ2

n tr(AJ) = σ2

n |J |. Thus, as we will see later, two subsets of {1, . . . , d} with the same cardinality
will have the same variance term, and the tuning parameter λ can be chosen equal to the
cardinality of a subset. We will discuss this point in more detail in Section 4.3.

4.2 Description of the stopping rules to compare

In what follows, we will briefly describe five competitive stopping rules as well as the "undefeated"
oracle rule.

Before starting, we should recall [6, Eq. (7)] the expression of the risk error (mean squared error)
of the linear estimator (4.1) that can be split into the bias and variance parts (we recall from Chapter
1 that Eε denotes the expectation w.r.t. the noise {εi}ni=1, and ‖·‖n denotes the usual L2(Pn) empirical
norm):

MSE(λ) := Eε‖fλ − f∗‖2n = B2(λ) + V (λ), where

B2(λ) := ‖(In −Aλ)F ∗‖2n, V (λ) := σ2

n
tr
(
A>λAλ

)
.

(4.2)

Minimum discrepancy principle.

First, mimicking results from Chapter 3, assume that when we iterate over the grid λ ∈ {λ1, . . . , λS},
the variance term V (λ) of the linear estimator AλY decreases. In particular, for the k-NN estimator,
it means that V (k) = σ2/k and {λ1, . . . , λS} = {1, . . . , n}.

Second, notice that for the k-NN and variable selection estimators, we have

tr(A>λAλ) = tr(Aλ), λ ∈ Λ. (4.3)

Thus, from Eq. (4.3), one concludes that given the expressions for the empirical risk

Rλ := ‖Y −AλY ‖2n, (4.4)
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bias term B2(λ), and variance term V (λ) from Eq. (4.2) of the linear estimator AλY , where Y = F ∗+ε,
it comes

EεRλ = σ2 +B2(λ)− σ2

n

(
2tr(Aλ)− tr(A>λAλ)

)
= σ2 +B2(λ)− V (λ).

Therefore, the bias-variance trade-off [70, Chapter 7] leads to the reference stopping rule

λ∗ = inf
{
λ ∈ {λ1, . . . , λS} | B2(λ) ≥ V (λ)

}
, (4.5)

that can be equivalently defined as

λ∗ = inf
{
λ ∈ {λ1, . . . , λS} | EεRλ ≥ σ2

}
. (4.6)

If λ∗ from Eq. (4.5) or Eq. (4.6) does not exists, set λ∗ = λS . Eq. (4.6) is the population justification
of the so-called minimum discrepancy principle rule λτ , which will be an estimator of λ∗:

λτ = sup
{
λ ∈ {λ1, . . . , λS} | Rλ ≤ σ2

}
. (4.7)

If λτ from Eq. (4.7) does not exists, set λτ = λ1. As we have already discussed in Chapter 3, we change
inf to sup in Eq. (4.7) due to an arbitrary and uncontrolled behavior of the empirical risk and bias
term (lack of monotonicity) between these two points. In simple words, we are not able to provide a
tight control of these two quantities "in-between", that is, between the infimum and supremum.

Third, consider now the Nadaraya-Watson regressor with the tuning parameter h to learn, then
tr
(
A>hAh

)
6= tr (Ah), which results in a slightly different formula for the minimum discrepancy prin-

ciple:

hτ = sup
{
h ∈ {h1, h2, . . . , hS} | Rh ≤ σ2 + 2σ2

n

(
tr
(
A>hAh

)
− tr (Ah)

)}
; (4.8)

if hτ does not exists, set hτ = h1.

We recall (see Chapter 3) that the minimum discrepancy principle stopping rule kτ for the k-NN
regression estimator has been proved to output a minimax optimal functional estimator as soon as
the minimax rate of the function class, where the regression function f∗ lies in, is not faster than
O
(√

logn
n

)
. It is true, for instance, with the class of Lipschitz functions on a bounded domain that

can be defined as

FLip(L) =
{
f : [0, 1]d 7→ R | f(0) = 0, f is L-Lipschitz

}
, (4.9)

where f is L-Lipschitz means that |f(x)− f(x′)| ≤ L‖x− x′‖ for all x, x′ ∈ [0, 1]d.
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Part, Chapter 4 – Empirical evaluation of MDP rule for linear estimators

Generalized cross-validation [42, 53, 70].

The generalized (GCV) cross-validation strategy [8, 53] was introduced in least-squares regression
as a rotation-invariant version of the leave-one-out cross-validation procedure. The GCV estimator of
the risk error of the linear estimator AλY, λ ∈ Λ = {λ1, . . . , λS}, is defined as

RGCV (fλ) = n−1‖Y −AλY ‖2

(1− n−1tr(Aλ))2 .

The final generalized cross-validation stopping rule is

λGCV := argmin
λ∈{λ1,...,λS}

{
RGCV (fλ)

}
. (4.10)

Note that for the k-NN regression estimator, we exclude the case k = 1 in Eq. (4.10) because
A1Y = Y . GCV should be close to CL model selection procedure (e.g., Mallows’ Cp generalized to
linear estimators [79]). The efficiency (a.k.a. the asymptotic optimality of a model selection procedure)
of GCV has been proved, for instance, for the k-NN regression estimator in [76]. As its main feature,
in smoothing problems, GCV is able to alleviate the tendency of other cross-validation methods to
undersmooth. Notice that, if the matrices {Aλ}λ∈Λ are already computed, the computational time of
the generalized cross-validation is O

(
n2|Λ|

)
, which is higher than O

(
n2 (|Λ| − kτ )

)
for the minimum

discrepancy principle stopping rule λτ (4.7).

Hold-out cross-validation stopping rule [8, 63, 117].

The Hold-out cross-validation strategy [8, 63] is described as follows. The data {xi, yi}ni=1 are
randomly split into two parts of equal size: the training sample Strain = {xtrain, ytrain} and the test
sample Stest = {xtest, ytest} so that the training and test samples represent a half of the whole data
set. For each λ ∈ Λ = {λ1, . . . , λS}, one trains a linear estimator (4.1) on Strain and evaluates its
performance by RHO(fλ) = 1

n

∑
i∈Stest(f

λ(xi) − yi)2, where fλ(xi) denotes the output of a learning
algorithm trained for λ and evaluated at the point xi ∈ xtest. Then, the Hold-out CV stopping rule is
defined as

λHO := argmin
λ∈{λ1,...,λS}

{
RHO(fλ)

}
. (4.11)

The main inconvenience of this stopping rule is the fact that a part of the data is lost, which increases
the risk error. As a result, the Hold-out strategy is not stable [8], which often requires some aggregation
of it. Nevertheless, [117] derived a non-asymptotic oracle inequality when combining a penalized least-
squares estimator with the hold-out. As it was for GCV, the (asymptotic) computational time of the
Hold-out strategy is O

(
n2|Λ|

)
.
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Mallows’ Cp stopping rule [70, 76, 79].

We will apply Mallows’ Cp stopping rule [79] specifically for the case of variable selection in the
model Y = F ∗+ε

i.i.d.∼ N (F ∗, σ2In), where F ∗ = [f∗(x1), . . . , f∗(xn)]> and the full-rank design matrix

X =


x>1
...
x>n

 ∈ Rn×d, d ≤ n. Assume that one selects a subset of the variables J ⊆ {1, . . . , d} and

construct a matrix XJ based on this subset (the matrix of size n× |J |), then AJ = XJ(X>J XJ)−1X>J ,
and the estimator of the risk of the linear estimator AJY is defined as

RCp(fJ) = n−1‖Y −AJY ‖2 + 2 |J |σ̂
2

n
, (4.12)

where σ̂2 = ‖Y−AY ‖2

n−d , A = X(X>X)−1X> with X = X{1,...,d}, is the noise variance estimation. In Eq.
(4.12), |J | denotes the cardinality of the subset J . Then, the Mallows’ Cp stopping rule is defined as

JCp := argmin
|J |∈{1,...,d}

{
RCp(fJ)

}
. (4.13)

Cp and related model selection procedures have been proved to be efficient (a.k.a. asymptotically
optimal) or to satisfy oracle inequalities in some frameworks (see, e.g., [27] and references therein
for more details). If the matrices {AJ}J⊆{1,...,d} are already computed, the computational time of the
Mallow’s Cp strategy is O

(
n2|J |

)
, which is higher than O

(
n2 (|J | − Jτ )

)
for the minimum discrepancy

principle stopping rule Jτ (4.7).

Notice that the competitive stopping rules (generalized cross-validation, Hold-out, and Mallows’
Cp) involve the computation of the empirical risk ‖Y − AλY ‖2n, as we do when using the minimum
discrepancy principle (4.7). However for MDP, we will not compute the empirical risk for all λ ∈ Λ,
whereas it is the case for the mentioned rules.

Bias-variance trade-off stopping rule.

The third stopping rule is the one introduced in Eq. (4.5). This stopping rule is the classical bias-
variance trade-off stopping rule that provides minimax-optimal rates (see the monographs [108, 116]):

λ∗ = inf
{
λ ∈ {λ1, . . . , λS} | B2(λ) ≥ V (λ)

}
, S ∈ N. (4.14)

This stopping rule is introduced for comparison purposes only because it cannot be computed in
practice (the bias term is unknown). However, it could serve as a reference in the present simulated
experiments.
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Part, Chapter 4 – Empirical evaluation of MDP rule for linear estimators

Oracle stopping rule.

The "oracle" stopping rule is defined as

λor := argmin
λ∈{λ1,...,λS}

{
Eε‖fλ − f∗‖2n

}
(4.15)

and minimizes the risk error. Note that this stopping rule is not computable from the data, since one
has to know the regression function f∗ to compute it. Moreover, we do not have access to the whole
curve of the risk error. Nevertheless, it serves as a convenient lower bound on the risk error for the
simulations with artificial data.

4.3 Artificial data

First, the goal is to perform simulation experiments for making a comparison of all mentioned
stopping rules on artificial data.

4.3.1 Description of the simulation design for k-NN and Nadaraya-Watson regres-
sion

We start with the description of the simulation design for the k-NN and Nadaraya-Watson regres-
sion estimators. In this case, the data is generated according to the regression model yj = f∗(xj) + εj ,
where εj

i.i.d.∼ N (0, σ2), j = 1, . . . , n, is Gaussian noise. We choose the covariates xj
i.i.d.∼ U[0, 1]3

(uniform) or xj
i.i.d.∼ N (0, I3) (standard normal), j = 1, . . . , n, and σ ∈ {0.1, 0.15, 0.4} is assumed

to be known. Consider two regression functions with different smoothness: a "smooth" f∗1 (x) =
1.5 ·

[
‖x− 0.5‖/

√
3− 0.5

]
and a "sinus" f∗2 (x) = 1.5 · sin(‖x‖/

√
3), for x ∈ [0, 1]3 or x ∈ R3. No-

tice that both functions belong to the class of Lipschitz functions (4.9) on [0, 1]3. The sample size n
varies from 50 to 250.

Assume that we have the grids of values k ∈ {1, 2, . . . , n} for the k-NN regression and h ∈
{h1, h2, . . . , hn} (thus, S = n) for the Nadaraya-Watson regression, where h1 = min

i,j∈{1,...,n}
‖xi −

xj‖2, hi = h1 + (hn−h1)(i−1)
n−1 , i = 1, . . . , n, where hn = max

i,j∈{1,...,n}
‖xi − xj‖2/10 for the "smooth"

function; hn = max
i,j∈{1,...,n}

‖xi − xj‖2/30 for the "sinus" function (constants 10 and 30 were calibrated

so that one can observe the oracle rule (4.15) around hbn/2c).
For λ ∈ {k, h}, the k-NN and Nadaraya-Watson learning algorithms (4.1) are trained, first, for

λ = λn, after that we decrease the value of λ until λ = λ1 such that at each step of the iteration
procedure we increase the variance term V (λ). In other words, the model becomes more complex
successively due to the increase of its "degree of freedom" measured by tr(Aλ). We should remark here
that for the Nadaraya-Watson estimator, the variance term V (h) is proportional to tr

(
A>hAh

)
, and
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not to tr (Ah), so the previous statement holds only approximately, meaning tr
(
A>hAh

)
≈ tr (Ah). If

the condition in Eq. (4.7) or Eq. (4.8) is satisfied, the process is stopped and it outputs the stopping
rule λτ . An illustration of the discussed strategy is presented in Figure 4.1 (panel (a)).

The performance of the stopping rules is measured in terms of the empirical L2(Pn) norm ‖fλ−f∗‖2n
averaged over N = 80 repetitions (over the noise {εj}nj=1).

4.3.2 Description of the simulation design for variable selection regression.

The simulation design for the variable selection problem is a bit more involved and needs some
theoretical justifications that we will mention in what follows.

Recall that we consider the regression model

Y = F ∗ + ε ∈ Rn, ε i.i.d.∼ N (0, σ2In), (4.16)

where F ∗ = [f∗(x1), . . . , f∗(xn)]> and X =


x>1
...
x>n

 ∈ Rn×d is a full-rank matrix with the rank r = d ≤

n. Then, [67, Theorem 3.2] a typical minimax optimal lower bound of the risk error in terms of the
L2(Pn) norm is defined as follows.

inf
f̂

sup
f∈FLip(L)

Eε
[
‖f̂ − f∗‖2n

]
≥ cln−

2
2+d , (4.17)

where cl is some positive constant, functional space FLip(L) was defined in Eq. (4.9), and f̂ is any
measurable of the data functional estimator.

At the same time, assume that one has at hand an abstract set of functional estimators Θf =
{f1, . . . , fM} for some M ∈ N, and the goal is to select "the best estimator" f̂ from Θf (the so-
called model selection aggregation setting introduced in [86, 109]). Define fω =

∑M
j=1 ωjfj for any

ω = (ω1, . . . , ωM ) ∈ RM . Assume that the performance of f̂ is assessed via the following oracle
inequality

Eε‖f̂ − f∗‖2n ≤ inf
ω∈ΩM

‖fω − f∗‖2n + ∆n,M , (4.18)

where ∆n,M ≥ 0 is a remainder term independent of f∗ characterizing the price to pay to select an
estimator from Θf , and the set ΩM is the set of all vertices of {ω = (ω1, . . . , ωM ) ∈ RM | ωj ≥
0,
∑M
j=1 ωj ≤ 1}, except the vertex (0, . . . , 0) ∈ RM . Then, [40, Theorem 5.1] proved that under the

uniform boundness assumption of f∗ and {f1, . . . , fM}, the smallest possible (minimax) remainder
term ∆n,M is of the order O

(
logM
n

)
.

Suppose that we have at hand all possible subsets of the set {1, 2, . . . , d} and the estimators
associated with these subsets, then, in total, there are M =

∑d
i=1

(d
i

)
= 2d estimators. The next step
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would be, of course, to compare the rate from Ineq. (4.17) and the rate

O
( logM

n

)
= O

(
d

n

)
. (4.19)

One can conclude that, in the worst case d � n (which is of the main interest for variable selection),
and the best achievable rate from (4.19) is always slower than the minimax rate presented in Eq.
(4.17). Furthermore, it will be computationally infeasible to deal with all subsets of X starting from
d > 20 (approximately). These two obstacles force us to reduce the number of estimators at hand.
Otherwise, there would be only a sub-optimal solution. Notice that this problem was a reason why
Arlot and Bach [6] restricted the cardinality of the model selection set Λ (see Assumption (HΛ)).
Therefore, to overcome these obstacles, we propose the following procedure to choose a subset from
the set {1, 2, . . . , d}.

1: |J | = 0
2: repeat
3: |J | = |J |+ 1
4: Choose randomly |J | variables from {1, . . . , d}
5: Given the full-rank matrix X, construct the matrix XJ from the chosen variables and calculate
AJ = XJ(X>J XJ)−1X>J

6: Calculate the empirical risk RJ = ‖Y −AJY ‖2n
7: until RJ ≤ σ2 or |J | = d

The procedure above will output the minimum discrepancy principle rule Jτ ∈ {1, . . . , d} and linear
estimator F Jτ := [fJτ (x1), . . . , fJτ (xn)]> = AJτY associated with this rule. This model selection
procedure is meaningful, i.e., its statistical performance is comparable to the performance of the bias-
variance trade-off from Eq. (4.5) up to the remainder term O

(√
log d
n

)
= O

(√
log r
n

)
. The latter is

justified by what follows.

Theorem 4.3.1. Under the assumption that, for all x ∈ X , |f∗(x)| ≤ Q for some constant Q > 0,
for arbitrary u ≥ 0,

‖fJτ − f∗‖2n ≤ 8 MSE(J∗)︸ ︷︷ ︸
Main term

+C1

(
u

n
+
√
u√
n

)
+ C2

√
log r
n︸ ︷︷ ︸

Rem. term

(4.20)

with probability at least 1− 16 exp(−u), where positive constants C1 and C2 can depend on σ and Q;
J∗ is the bias-variance trade-off defined in Eq. (4.5).

Proof of Theorem 4.3.1. The proof is a direct adaptation of the proof of Theorem 3.4.1 in Chapter 3.
Let us list the main steps of the proof.

First, we notice that the operator norm of the matrix AJ : ‖AJ‖2 ≤ 1 for any J ∈ {1, . . . , d}. It

128



4.3. Artificial data

0 5 10 15 20 25

0.0

0.1

0.2

0.3

0.4

0.5

V
al

ue

Empirical risk

Empirical Risk
Threshold

(a)

0 5 10 15 20 25 30 35 40

| J |
2.50

2.75

3.00

3.25

3.50

3.75

4.00

4.25

V
al

ue

Empirical risk (Variable selection)

Empirical Risk
Threshold

(b)

Figure 4.1 – The minimum discrepancy principle: k-NN regression for the panel (a); variable selection
for the panel (b). "Threshold" corresponds to the value σ2.

implies that ‖MJ‖2 := ‖In −AJ‖2 ≤ 1. After that,

‖fJτ − f∗‖2n = B2(Jτ ) + ‖AJτ ε‖2n + 2〈AJτ ε, (In −AJτ )F ∗〉n
≤ 2B2(Jτ ) + 2‖AJτ ε‖2n.

Further, it is sufficient to upper bound the bias B2(Jτ ) in the same way as in Lemma 3.10.2 from
Chapter 3 and control ‖AJε‖2n via the variance term V (J) = σ2tr (AJ) /n with high probability, for all
J ∈ {1, . . . , d}. The only difference between the proof of Theorem 3.4.1 in Chapter 3 and the present
one is the remainder term in the oracle-type inequality – it becomes O

(√
log d
n

)
= O

(√
log r
n

)
– since

we have r estimators instead of n, as it was for the k-NN estimator. �

Let us comment the statement of Theorem 4.3.1. The main conclusion we can make is that,
with high probability, the performance (prediction error) of Jτ is close to the performance of the
bias-variance trade-off rule J∗ (constant 8 could be improved) up to the term O

(√
log r/n

)
. This

remainder term should be sufficiently fast (compared to a minimax lower bound), for example, in the
case of L-Lipschitz functions (4.17) when d > 2. Besides that, we should mention that the bias-variance
trade-off J∗, in this case, is random itself, meaning that it depends on the particular choice of chosen
subsets made in Algorithm 0. Nevertheless, for sufficiently smooth regression functions f∗, the bias
term will not fluctuate much, and J∗ should provide a good approximation to the "true bias-variance
trade-off" (when one considers all subsets of X).

We take into account everything what has been said previously, the regression model from Eq.
(4.16), and the covariates xi

i.i.d.∼ U[0, 1]d, i ∈ {1, . . . , n}, with d = 40, σ ∈ {0.15, 0.4}, where n
changes as follows: n ∈ {80, 100, 150, 200, 250, 400}. As usual, we are interested in the estimation of
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two functions: a "smooth" f∗1 (x) = 1.5·
[
‖x− 0.5‖/

√
40− 0.5

]
and a "sinus" f∗2 (x) = 1.5·sin

(
‖x‖/

√
40
)
,

where x ∈ [0, 1]40.
Assume that we have the grid of values |J | ∈ {1, 2, . . . , d} for the variable selection (projection)

estimator. The linear estimator (4.1) is trained first for |J | = 1 (by choosing a random column of X),
further we increase the value of |J | by one until |J | = n (corresponds to taking the whole design matrix
X). However, if the condition in Eq. (4.7) is satisfied, the learning process is stopped, producing Jτ . An
illustration of the discussed strategy is presented in Figure 4.1 (panel (b)). Besides already introduced
rules (4.10), (4.14), (4.15), we consider Mallows Cp criterion from Eq. (4.12), and what we call "the
full-rank model selection criterion" JFR, meaning simply that JFR = {1, . . . , d}, and consequently,

F JFR = A{1,...,d}Y = X(X>X)−1X>Y. (4.21)

The performance of the stopping rules will be measured in terms of the empirical L2(Pn) norm ‖fJ −
f∗‖2n averaged over N = 50 repetitions (over the noise {εj}nj=1).

4.3.3 Results of the simulation experiments for k-NN and Nadaraya-Watson re-
gression.

In this subsection, we explain the results achieved by using the k-NN and Nadaraya-Watson re-
gression estimators. Figure 4.2 and Figure 4.3 display the resulting (averaged over 80 repetitions)
L2(Pn) error of kτ and hτ from Eq. (4.7) and Eq. (4.8), respectively, kor/hor from Eq. (4.15), k∗/h∗

from Eq. (4.14), kHO/hHO from Eq. (4.11), and kGCV /hGCV from Eq. (4.10), versus the sample size
n. In particular, Figure 4.2 shows the results for the k-NN regression estimator, whereas Figure 4.3
provides the results for the Nadaraya-Watson regression estimator.

Let us start to discuss the results from Figure 4.2. At first, from all the graphs, (almost) all
the curves do not increase as the sample size n grows. Without accounting the oracle performance,
one achieves the best performance by either the k∗ or kGCV stopping rules. This good behavior was
expected since k∗ represents the well-known bias-variance trade-off, and kGCV has been proved to be
an asymptotically optimal model selection criterion (see, e.g., [76]).

In more detail, Figure 4.2a (the "smooth" regression function and uniform covariates) indicates
that k∗ achieves the best performance (if we do not take into account the oracle performance). Besides
that, the minimum discrepancy principle rule kτ is almost uniformly better than kHO. Moreover, the
gap between kτ and k∗/kGCV is getting smaller as the sample size increases. This behavior supports
the theoretical part of the present work (see Chapter 3) because kτ should serve as an estimator of k∗.
Since k∗ is the well-known bias-variance trade-off, the minimum discrepancy principle stopping rule
seems a meaningful model selection strategy.

Now, let us move to Figure 4.2b (the "sinus" regression function and uniform covariates), where
the situation is slightly different. In this case, the best performance is achieved again by k∗ (except
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Figure 4.2 – The k-NN estimator (4.1) performance with two noised regression functions: smooth
f∗1 (x) = 1.5 ·

[
‖x− 0.5‖/

√
3− 0.5

]
for the panels (a) and (c), and "sinus" f∗2 (x) = 1.5 · sin(‖x‖/

√
3)

for the panels (b) and (d), with uniform covariates xj
i.i.d.∼ U[0, 1]3 (panels (a) and (b)) or standard

normal covariates xj
i.i.d.∼ N (0, I3) (panels (c) and (d)), j = 1, . . . , n. Each curve corresponds to the

L2(Pn) squared norm error for the stopping rules (4.7), (4.14), (4.15), (4.11), (4.10), averaged over 80
independent trials, versus the sample size n = {50, 80, 100, 160, 200, 250}.
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Figure 4.3 – The Nadaraya-Watson estimator (4.1) performance with two noised regression functions:
smooth f∗1 (x) = 1.5 ·

[
‖x− 0.5‖/

√
3− 0.5

]
for the panels (a) and (c), and "sinus" f∗2 (x) = 1.5 ·

sin(‖x‖/
√

3) for the panels (b) and (d), with uniform covariates xj
i.i.d.∼ U[0, 1]3 (panels (a) and

(b)) or standard normal covariates xj
i.i.d.∼ N (0, I3) (panels (c) and (d)), j = 1, . . . , n. Each curve

corresponds to the L2(Pn) squared norm error for the stopping rules (4.8), (4.14), (4.15), (4.11), (4.10),
averaged over 80 independent trials, versus the sample size n = {50, 80, 100, 160, 200, 250}. Moreover,
SNR = ‖f∗j ‖n/σ ∈ [1, 5], j ∈ {1, 2}.
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Figure 4.4 – The variable selection estimator (4.1) performance in nonparametric regression Yi =
f∗(xi)+εi, εi

i.i.d.∼ N (0, σ2), where xj
i.i.d.∼ U[0, 1]40, j = 1, . . . , n: "smooth" regression function f∗1 (x) =

1.5·
[
‖x− 0.5‖/

√
40− 0.5

]
for the panel (a), and "sinus" regression function f∗2 (x) = 1.5·sin

(
‖x‖/

√
40
)

for the panel (b). Each curve corresponds to the L2(Pn) squared norm error for the stopping rules
(4.7), (4.14), (4.15), (4.11), (4.10), averaged over 50 independent trials, versus the sample size n =
{80, 100, 150, 200, 250, 400}. Moreover, SNR = ‖f∗j ‖n/σ ≈ 2, j ∈ {1, 2}.
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for k = 100): its results are close to the results for the oracle rule. As for the data-driven model
selection methods, the stopping rules kτ and kHO perform almost equivalently. Increasing the number
of repetitions of simulations experiments should reduce the performance gap between kGCV and kτ .

If we consider Figures 4.2c and 4.2d (the "smooth"/"sinus" regression functions and standard nor-
mal covariates), then one can conclude that the MDP-based stopping rule kτ performs favorably in
comparison to the generalized cross-validation stopping rule, which is asymptotically optimal [76].

Further, we move to Figure 4.3, where the Nadaraya-Watson estimator is analyzed. Overall, without
accounting the performance of hor, the winners are (most of the time) the same as for Figure 4.2 – h∗

and hGCV .
More precisely, starting from the panel (a) (the "smooth" regression function and uniform co-

variates), the performances of the hold-out rule hHO and the minimum discrepancy principle hτ are
comparable. However, there is a bizarre behavior of hτ and h∗ for the sample sizes n ≥ 100, which
could be explained by the randomness of the covariates {xi}ni=1. Apart from that, hGCV shows the
best results.

Moving to the panel (b) of Figure 4.3 (the "sinus" regression function and uniform covariates), the
best performance is achieved by the bias-variance trade-off h∗ while the MDP rule hτ is largely better
than the hold-out rule hHO and comparable to hGCV .

If one considers Figures 4.3c and 4.3d (the "smooth"/"sinus" regression functions and standard
normal covariates), then we can conclude that the performance of the MDP-based rule hτ is similar
to that of h∗(the bias-variance trade-off) and hGCV (generalized cross-validation).

It is worth to mention that even though hτ shows comparable performance w.r.t., e.g., hGCV or
hHO, it is still in our best interest to extend the theoretical results achieved in Chapter 3 to the
Nadaraya-Watson regression estimator.

4.3.4 Results of the simulation experiments for variable selection regression

Here, let us explain the results that we obtained in Figure 4.4, where the variable selection estimator
is analyzed. We start with the panel (b), where the results for the "sinus" regression function f∗2 (x)
are demonstrated. Firstly, if we do not consider the oracle rule Jor (4.15), the bias-variance trade-off
(4.14) performs the best, and the results for generalized cross-validation and Mallow’s Cp are (almost)
the same. Secondly, the minimum discrepancy principle Jτ is uniformly better than the full-rank rule
JFR. Moreover, we remark that as the sample size n increases, it becomes more and more statistically
meaningful to use all the variables of the design matrix X. It can be explained as follows: if the sample
size n increases, r/n → 0 (r is the constant rank of X), and the rate in Eq. (4.19) becomes close to
O (1/n), which is the fast rate. Thus, it is more reasonable to consider more subsets of {1, . . . , d} (we
recall that there were only r = d selected subsets in our simulated experiments). Notice that when the
number of variables and sample size are of the same order (n ≤ 150), the performance of Jτ is close
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to that of JCP and JGCV . In addition to that, for n ≥ 300, one can say that the performance of Jτ

is getting close to that of JCP and JGCV as the sample size increases. Panel (a), where we reported
the results for the "smooth" regression function f∗1 (x), provides us with almost the same arguments
regarding the conclusion.

4.4 Real data

Second, we tested the performance of the early stopping rule (4.7) for choosing the parameter k in
the k-NN regression estimator on five different data sets, mostly taken from the UCI repository [57].

4.4.1 Data sets description

Let us start with the description of the data sets.
The wine quality data set (Wine Quality) contains 11-dimensional input points corresponding to

the physico-chemistry of wine samples, the output points are the wine quality.
The housing data set (Boston Housing Prices) concerns the task of predicting housing values in

areas of Boston (USA), the input points are 13-dimensional.
Diabetes data set consists of 10 columns that measure different patient’s characteristics (age, sex,

body mass index, ...), the output is a quantitative measure of disease progression one year after the
baseline.

The Power Plant data set contains 9568 data points collected from a Combined Cycle Power Plant
over 6 years (2006-2011), when the plant was set to work with a full load.

California Houses Prices data set [88] contains information from the 1990 California census. The
input variables are "total bedrooms", "total rooms", etc. The output variable is the median house value
for households within a block (measured in US Dollars).

Notice that for "California Houses Prices" and "Power Plants" data sets, we take the first 3000
samples in order to speed up the calculations.

4.4.2 Description of the simulation design

Assume that we are given one of the data sets described above. Let us rescale each variable (feature)
of this data set x̃ ∈ Rn such that all the components x̃i, i = 1, . . . , n, belong to [0, 1]:

x̃i = x̃i −min(x̃)
max(x̃)−min(x̃) , i = 1, . . . , n,

where min(x̃) and max(x̃) denote the minimum and the maximum components of the vector x̃.
After that, we split the data set into two parts: one is denoted Strain = {xtrain, ytrain} (70 % of

the whole data) and is made for training and model selection (early stopping rules kτ , kGCV , and
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kHO), the other one (30 % of the whole data) is denoted Stest = {xtest, ytest} and made for making a
prediction on it. Then, our experimental design is divided into four parts.

In the beginning, we estimate the noise variance σ2 from the regression model (3.1). There is a large
amount of work on the efficient estimation of σ2 in nonparametric regression [68, 94]. In our simulated
experiments, we take the estimator from [116, Eq. (5.86)], which is a (low-bias model) consistent
estimator of σ2 under an assumption that f∗ is sufficiently smooth. This satisfies our simulation
experiments’ purposes.

σ̂2 = ‖(Intrain −Ak)Y ‖2

ntrain(1− 1/k) , with k = 2 and ntrain = d0.7ne. (4.22)

Further, we compute the MDP stopping rule kτ from Eq. (4.7). To do that, we compute the k-NN
estimator (4.1) and the empirical risk Rk = ‖Y − AkY ‖2n for kmax = bntrain/2c, and at each step of
the iteration process we reduce the value of k by one. Remark that one does not have to calculate
explicitly the neighborhood matrix Ak for each k ∈ {1, . . . , kmax}, since it is sufficient to do only for
kmax. This procedure is repeated until the empirical risk crosses the threshold σ̂2. Fig. 4.5 provides an
illustration of the minimum discrepancy strategy kτ applying to two data sets: "Boston Houses Prices"
and "Diabetes".

After that, the Holdout stopping rule (4.11) and the generalized cross-validation rule kGCV are
calculated. Let us describe how we do that in two steps. We start by defining the grid of values for
k : {1, 2, . . . , bntrain/2c}. Further, one should compute kHO and kGCV from Eq. (4.11) and Eq. (4.10),
respectively, over the mentioned grid.

In the final part, given kτ , kHO, and kGCV , the goal is to make a prediction on the test data set
Stest. This can be done as follows. Assume that x0 ∈ xtest, then the prediction of the k-NN estimator
on x0 can be defined as

fk(x0) = ak(x0)>ytrain, (4.23)

where xtrain =


x>1
...

x>ntrain

 ∈ Rntrain×d, and ak(x0) = [ak(x0, x1), . . . , ak(x0, xntrain)]>, with ak(x0, xi) =

1/k if xi, i ∈ {1, . . . , ntrain}, belongs to the set of indices of the k nearest neighbors of x0, denoted
as Nk(0), otherwise 0. Further, one can choose k to be equal to kτ , kHO, or kGCV that are already
computed. Combining all the steps together, one is able to assess the prediction error by

‖fk − ytest‖ =

√√√√1/ntest

ntest∑
j=1

(fk(xj)− (ytest)j)2
.
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Dataset n d Train Test kHO-error kGCV -error kτ -error
Wine Quality 4898 12 3428 1470 27.39 27.39 26.95
Power Plants 3000 5 2100 900 116.00 115.65 117.00
Boston H. P. 506 13 355 151 53.17 50.60 54.29

California H. P. 3000 8 2100 900 11.73 11.47 11.48
Diabetes 442 10 310 132 632.38 649.31 632.38

Table 4.1 – The prediction error of the k-NN estimator (4.1) for k chosen from the Hold-out strategy
(4.11) and generalized cross-validation (4.10) compared to the minimum discrepancy rule kτ (4.7).

4.4.3 Results of the simulation experiments.

Table 4.1 displays the names of the data sets and the partitions made on the train and test samples.
"Train" measures the number of samples for training and model selection of k (our stopping rule kτ ,
the Hold-out method kHO, and the generalized cross-validation kGCV), whereas "Test" measures the
number of samples taken out to make a prediction. The last three columns show the prediction error
obtained when choosing kHO, kGCV , and kτ , respectively.

According to the last three columns of Table 4.1, one can deduce that kτ achieves comparable
performance w.r.t. kHO or kGCV . In more detail, it performs better or (almost) equally on "Diabetes",
"Wine Quality", and "California Houses Prices" data sets, while the performances on "Power Plants"
and "Boston Houses Prices" are significantly worse. Remark that in our simulated experiments we
estimated the value of σ2, which can (partially) explain why there are data sets, on which kτ performs
worse than its competitors. To support additionally this argument, we move back to Fig. 4.5 (the
bottom one), where one can see the value of σ2 ≈ 3000 that corresponds to an abrupt change in the
behavior of the empirical risk. This point is detected by the estimator of the variance (4.22), and
the prediction error of kτ is equal to that of kHO. Notice that Arlot and Bach [6] observed a similar
presence of a jump around σ2 for the so-called minimal penalty term, and they used this phenomenon
in order to estimate σ2 and plug in it into the final model selection procedure.
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Figure 4.5 – Stopping the learning process based on the rule (4.7) applied to two data sets: "Boston
House Prices" and "Diabetes". "Threshold" line corresponds to the estimated variance from Eq. (4.22).



CONCLUSIONS AND PERSPECTIVES

4.5 Summary of the thesis

In this thesis, we focused on constructing statistically optimal early stopping rules for several iter-
ative learning algorithms. More precisely, we started our analysis with some spectral filter algorithms
(gradient descent, ridge regression) in the framework of reproducing kernel Hilbert space (RKHS) and
further expanded the explored ideas to tuning the parameter in linear estimators.

As our first contribution, we constructed a data-driven early stopping rule for gradient descent
and iterative ridge regression in RKHS by means of the so-called minimum discrepancy principle,
originally coming from the ill-posed inverse problem literature. The crucial quantity on which the rule
is developed is the empirical risk of a functional estimator. It turned out that the original minimum
discrepancy stopping rule provided a minimax optimal functional estimator only in the case of finite-
rank reproducing kernels. If one considers infinite-rank kernels, the initial stopping rule has to be
modified due to a large deviation of the empirical risk around its expectation. For this reason, we
proposed using the so-called polynomial smoothing strategy that consists in proper weighting the
empirical risk utilizing the eigenvalues of the normalized kernel matrix, which is itself a consequence
of weighting the empirical norm. This new strategy, under some (mild) assumptions on the eigenvalues
of the normalized kernel matrix, has been proved to achieve minimax optimality over a range of kernel
classes, in particular, the one that corresponds to Sobolev spaces. The proof of the mentioned result
involved careful analysis of the (smoothed) localized Rademacher complexities and their critical radii.
We should emphasize that, to the best of our knowledge, the idea of weighting the empirical norm and
connecting it with functional complexity measures such as the localized Rademacher complexities, is
novel. Besides that, we established a clear connection between early stopping and kernel approximation
with randomized sketches (projections). This connection may strengthen the intuition that there should
be an equivalence between different statistical procedures (kernel approximation [14, 121], distributed
learning [78, 127], and early stopping [12, 92]) aiming at reducing the computational complexity of a
learning algorithm while preserving its optimality. Simulation results in Chapter 2 verified our theory.

The second contribution consists in extending the minimum discrepancy strategy to the task of
tuning the parameter in linear estimators. In Chapter 3, we focused on the theoretical analysis of the
k-NN regression estimator. We applied the aforementioned strategy for choosing k in order to lower
the computational time of the selection procedure. In the end, it turned out that this choice provided
a minimax optimal estimator, in particular, over the class of Lipschitz functions defined on a bounded
domain. The main reason for the optimality was the fact that the minimax rate of the mentioned class
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is quite slow due to the notorious "curse of dimensionality".

In Chapter 4, we were mainly interested in carrying out simulated experiments on artificial and
real data sets. It turned out that the minimum discrepancy principle had comparable performance to
other model selection procedures (the Hold-out method, generalized cross-validation, Mallows’ Cp) for
the task of choosing the parameter in linear estimators. However, the theoretical investigation of the
performance of, for instance, the Nadaraya-Watson regression estimator should be done in the future
to complete the work.

4.6 Perspectives

There are several possible directions to extend the results of this work.
— As it was already mentioned in the previous section, we are interested in the theoretical perfor-

mance of the Nadaraya-Watson regressor. Apparently, it should be close to the one of the k-NN
regression estimator. The main difficulty should come from the fact that, if Ah is the smooth-
ing matrix of the Nadarya-Watson estimator, tr

(
A>hAh

)
6= tr (Ah). This fact implies that the

expectation of the empirical risk minus the noise variance will not be equal to the difference
between the bias and variance terms. Therefore, there should be another concentration result
that deals with this problem.
Apart from that, the variable selection estimator was defined only for the "well-behaved" de-
sign matrix X ∈ Rn×d, meaning that d ≤ n. On the other hand, there is plenty of practical
applications in biology, medicine, and computer vision when the "high-dimensional" case d > n

is of interest. Thus, one should understand the behavior of the MDP rule in this setting.
It turned out (see, e.g., sumulations results on real datasets in Chapter 4) that the MDP strategy
to choose the tuning parameter for linear estimators is close to the work [6], where Arlot and
Bach explored the idea of minimal penalties. Therefore, we could borrow their strategy to build
a plug-in estimator (with an estimated noise variance σ2).

— We should emphasize that the early stopping rules in this work were estimating the famous
bias-variance trade-off [70, Chapter 7]. However, recently, [20, 21] the bias-variance balanc-
ing paradigm was rethought by discovering some settings (exact fit to the data), for which
a phenomenon of the "double descent" of the risk curve appeared. It would be interesting to
understand if early stopping can work for these settings. The interested reader can look at a
very recent paper [59] and references therein for another reexamination of the paradigm.

— As it was said in the conclusion section of Chapter 2, computing all eigenvalues of the kernel
matrix is prohibitive in large-scale problems. Thus, some kernel approximation techniques [41,
96] could be helpful. Besides that, we are interested in extending the theoretical understanding
of the stopping rules to the classification framework. That can be done by changing the square
loss to the 0/1 loss or the log-loss.
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— Another compelling research direction would be an investigation of the statistical theory of
the minimum discrepancy principle stopping rule for the stochastic gradient descent algorithm.
This could shed some light on the theoretical understanding of early stopping in (deep) artificial
neural networks. A curious reader can take a look at the promising paper [97] to start with the
statistical framework of the problem.
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