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Introduction

A Cyber-Physical System (CPS) is a computer-based system or a network interacting

with physical processes. Their potential applications include: intervention (e.g., collision

avoidance); precision (e.g., robotic surgery and nano-technology manufacturing); opera-

tion in dangerous or inaccessible environments (e.g., search and rescue, fire fighting and

abyssal sea exploration); coordination (e.g., air traffic control, war); efficiency (e.g. net

zero energy buildings); and improvement of human capabilities (e.g., health monitoring).

Examples therefore are shown in Fig. 1.

Automated farmingSmart grid

Automated driving
Air traffic control

Surgical robots

NASA

Intuitive surgical

CNH industrialbpifrance.com

Mercedes-Benz

Figure 1 – Examples of different cyber-physical system applications

One application of CPS is the remote monitoring of complex physical and biological

phenomena. This type of application is growing rapidly thanks to recent advances in

Internet-of-Things (IoT) paradigms. There is a lot of interest for IoT nodes; between

2015 and 2025, the number of IoT connected devices installed is expected to increase

by 489% (Fig. 2). Indeed, IoT nodes are capable of collecting and transmitting data

autonomously. The position of these nodes is not necessarily predetermined, and they

can be connected in a mesh network within which they communicate. Thus, IoT nodes
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are becoming more complex in order to meet increasing needs for accurate environmental

observations. Nevertheless, the limited computing, energy and memory resources of the

IoT devices restrict their deployments.
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Figure 2 – IoT connected devices installed base worldwide from 2015 to 2025 (in billions)
(source IHS [1])

An autonomous IoT node is composed of different modules (Fig. 3): a processing

unit, a communication unit, one or more sensors and a battery. A major limitation to

the deployment of these nodes is the limited amount of energy. IoT nodes need to be

small to be used in various environments and the capacity of the battery is limited.

Battery technology improves significantly slower than other electronic parts of a node [2].

Energy harvesting is a promising technique that extends battery lifetime and provides

a satisfactory quality of experience for IoT devices ([3], [4], [5]). The energy harvesting

module enables an IoT device to capture the ambient renewable energy such as solar

radiation, wind power generation, radio-frequency signals, or kinetic human motion to

supply the energy for the IoT consuming tasks (Fig. 4). These tasks include sensing,

processing and communicating.

7

RL-based Energy Management for Autonomous Cyber Physical Systems Yohann Rioual 2020



Battery

Energy
Data/instructions

Communication
unit

Processing
unit

Sensor 1

Sensor n

Figure 3 – Schema of an IoT node

Among all technologies of energy harvesting, the solar panel technology is the most

efficient way to harvest energy (up to 15 mW/cm2) (Table 1). Nevertheless, the harvesting

capability of a solar panel depends on the ageing of the components [6] and the weather

(sun irradiation, sky cover). Therefore, the harvested energy greatly varies over the day,

and increases the uncertainty in the availability of energy resources of such systems.

Harvesting technologies Power density
Solar cell (outdoors at noon) 15 mW/cm2

Wind flow (at 5 m/s) 16.2 µW/cm3

Vibration (Piezoelectric – shoe insert) 330 µW/cm3

Vibration (electromagnetic conversion at 52 Hz) 306 µW/cm3

Thermoelectric (5 ◦C gradient) 40 µW/cm3

Acoustic noise (100dB) 960 nW/cm3

Table 1 – Power density of energy harvesting technologies

Furthermore, the energy consumption of an IoT node is difficult to model, the un-

certainties increase with the complexity of the micro-controller hardware and the use of

an Operating System (OS). Indeed, micro-controllers are more and more powerful; to

achieve such performance, they took advantages of processor hardware evolutions such

as cache memory, branch prediction, instruction pipelining. The improvement in perfor-
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Figure 4 – Energy consuming tasks of a node

mance results in non-deterministic energetic behaviour. It becomes hard to model and to

predict the energy consumption of such architectures. Moreover, some systems have he-

terogeneous computing architecture such as ARM big.LITTLE, which couples relatively

battery-saving and slower processor cores (LITTLE) with relatively more powerful and

power-hungry ones (big) or hardware accelerator along the general processor which makes

their architectures more complex.

In addition to an increasingly complex architecture, many CPS use an OS. This eases

the development of an effective application software, providing a uniform framework for

organizing and accessing the software and hardware resources. With an OS, applications

are organized as a collection of independent threads of execution. The OS decides which

thread should be executing by examining the priority assigned to each thread by the

application designer. When an interrupt occurs, if its priority is higher than the current

task, the OS temporarily interrupts the task without requiring its cooperation to run

another task with a higher priority. To preserve the energy of the system, the OS allows

the processor to spend more time in a low power mode. A wake up signal get the system

out of the low power mode. The occurrence of the wake up signal is unpredictable and

add uncertainty to the energy consumption. A drawback for the use of an OS is that

embedded systems have limited amount of memory and processing capabilities and the

OS uses a part of the available memory and processing time to run.

The OS makes application development more flexible, i.e., it allows the designer to

focus on application development rather than resource management. And at the same

time, it increases the uncertainties on the behaviour of the node making unpredictable

9

RL-based Energy Management for Autonomous Cyber Physical Systems Yohann Rioual 2020



Battery Energy harvesting
module

Energy model

(1) (2)

(3)

(4)(5)
Communication

unit
Processing

unit

Sensor 1

Sensor n

Figure 5 – The design of an energy model for an IoT node faces many hurdles

the energy consumption. Building an energy model for an embedded system is a difficult

task when no OS is involved, but when an OS is added and the node energy relies on

energy harvesting, an accurate energy model becomes infeasible.

The energy management of an IoT node is usually done using an energy model designed

a priori in a laboratory. Nevertheless, the ageing of the components and the uncertainties

further complicates the design of an accurate energy model (Fig. 5). Each module of the

node is ageing and lost in energy efficiency over time. The sensors lose accuracy, wear and

tear of mechanical part increases and their energy consumption increases too. The battery

(2) capacity decreases over time due to different stress factors such as the temperature, the

depth of discharge, the charge current and the discharge current. As the energy harvesting

module ages (3), it harvests less energy due to external atmospheric conditions to which

it is exposed (sun, wind, particles, rain or even snow, etc). The other type of factors

limiting the lifetime of the harvesting module are internal and related to the quality of

the materials used; for a solar panel it includes the quality of the semiconductors on

which are based unit solar cells. In this case too, there are ageing effects which are mainly

related to the influence of external conditions such as temperature. The communication

unit (4) increases its energy consumption with the ageing process [7], moreover the energy

consumption of the radio depends of the communication channel state (the transmission

power is higher in a noisy channel or the transmission must repeated if the data are lost).

Moreover, the energy consumption changes depending to the uncertainties created by the
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architecture or the OS.

Thus, measurements are required to produce optimal and reliable model, highly detai-

led specific material data and information about the different module of the node works,

ages and how they influence each other. Furthermore, their energy consumption evolves

according to environmental conditions that are numerous and so, hard to replicate. Fi-

nally, one can come to the conclusion that the model must be built and adapted on-line,

during the node deployment. In this thesis, we address the problem of energy manage-

ment. Considering the unavailability of an accurate energy model, we proposed a solution

where the IoT node is considered as a black box. It turns the problem into a search of

learning and adaptation method in order to adapt at runtime the node to its environment.

Reinforcement learning is a type of machine learning that can handle uncertainties

and so is a promising candidate method to provide the sensor nodes with the ability to

adapt according to the available energy. Nevertheless, the use of such approaches faces

many challenges. Many approaches exist but only some of them are suitable to be used in

embedded systems. Moreover, reinforcement learning algorithms have many parameters

to tune and rely on expertise from the designer. Thus, the objective of this thesis is to

provide designers with guidelines to help them use reinforcement learning approaches for

the energy management of autonomous cyber-physical systems.

Thesis contributions

The four main contributions of this thesis are the following:

• Proposition of metrics to select the appropriate algorithm depending on a given

application: The selection of the appropriate algorithm for a given application is

challenging. Various algorithms exist and all of them are not suitable for a use in

embedded systems. Indeed, embedded systems have limited memory and proces-

sing capabilities and some algorithms will require more than what the system can

provide. Furthermore, there is a lack of guidelines for designers to select the appro-

priate approach. Thus, the first contribution of this thesis is to compare different

approaches to define metrics to help designers choose the approach according to

their application and system.

• Highlighting of variables and parameters influencing the performance of a reward

function: Once the selection of the appropriate algorithm, the designer needs to

design a reward function which will give the correct behaviour to the node. Ho-
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wever, the literature rarely discusses the choice of the reward function design. We

evaluated different reward functions to identify the most suitable variables to consi-

der when designing such a function for the energy management of a sensor node.

And as the second contribution of this thesis, we have explored how to design an

efficient reward function.

• Proposition of two reward functions adjusting the performance according to the

battery charge level : We use our second contribution to propose as a third contri-

bution to link two opposite objectives in a reward function. Indeed, most applica-

tions of IoT must do a trade-off between a performance criterion and the energy

consumption. Thus, we present two reward functions able to adjust automatically

the performance of a sensor node according to its battery charge level.

• Proposition of a multi-agent reinforcement learning algorithm able to control, inde-

pendently, sensors with different energy consumptions : The use of a single agent to

learn the energy management of a node shows some limitations; to independently

control the different sensors, it is necessary to add the actions in the set of action

of the decision process, which increases the size of the look-up table and makes it

ineffective. So, the fourth contribution of this thesis is the use of multi-agent reinfor-

cement learning and an algorithm able to control independently the measurement

frequency of several sensors according to their respective energy consumption.

Outline

The remaining sections of this thesis are structured in 6 chapters as follows:

• Chapter 1: Theoretical Background: This chapter provides the necessary theo-

retical knowledge required for understanding the reinforcement learning. In this

chapter, the single-agent reinforcement learning approach is described, as well as

the functioning of neural networks.

• Chapter 2: Related Work: This chapter provides an overview of the state of the

art on the use of reinforcement learning approaches for the energy management of

embedded devices.

• Chapter 3: Energy Management with Reinforcement Learning: This chap-

ter presents a comparison of different approaches for the energy management for

a IoT node. Different metrics provide guidelines to a designer to select the appro-

priate approach in function of the application and system capabilities.

12
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• Chapter 4: Reward Function Design: The chapter presents a comparison of

different reward functions to find the most interesting features to use when desi-

gning a reward function. With these results, two reward functions are proposed

and presented. These reward functions adjust the measurement frequency of each

sensor according to the battery charge level.

• Chapter 5: Multi Agent Reinforcement Learning: In Chapter 5, multi-agent

reinforcement learning is used to manage the energy consumption of a sensor node

according to its battery charge level. An algorithm is proposed to control indepen-

dently the different sensors according to their respective energy consumption.

• Conclusion and Perspectives: In the last chapter, we summarize all the works

presented in this thesis and presents perspectives opened by our work.

13

RL-based Energy Management for Autonomous Cyber Physical Systems Yohann Rioual 2020



RL-based Energy Management for Autonomous Cyber Physical Systems Yohann Rioual 2020



Chapter 1

Theoretical Background

Contents

1.1 Introduction to Reinforcement Learning . . . . . . . . . . . . 16

1.2 Markov Decision Processes . . . . . . . . . . . . . . . . . . . . . 17

1.3 Learning a Behaviour Policy . . . . . . . . . . . . . . . . . . . . 17

1.4 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5.1 Description of a formal neuron . . . . . . . . . . . . . . . . . . 21

1.5.2 Artificial neural networks overview . . . . . . . . . . . . . . . . 22

15

RL-based Energy Management for Autonomous Cyber Physical Systems Yohann Rioual 2020



The interest in Reinforcement Learning (RL) has arisen with the success in various

domains such as Atari game [8], robotic control [9], traffic light control [10] or energy

management [11]. Nevertheless, a multitude of reinforcement algorithms exists and not

all of them are suitable for an use on embedded systems such as sensor node. Indeed,

the needs in computation power and memory are high. There are two main approaches

used, the first one which stores the knowledge in a table and the other one which uses

approximators to computes the value of the different possible actions with the previously

learned information. This chapter is an introduction to reinforcement learning and presents

the theory. The neural networks are also introduced since they are used as approximators

in some reinforcement algorithms used in this thesis.

1.1 Introduction to Reinforcement Learning

RL [12] is a formal framework that models the problem of sequential decisions, in

which an agent learns how to take better decisions by interacting with its environment

(Fig. 1.1). When the agent performs an action, it receives as a feedback the new state

of its environment and a reward signal, encoding the information on the quality of the

transition. The agent’s objective is to maximize its reward in the long-term.

Ac�on

Reward

State

Figure 1.1 – Interaction agent-environment

The following sections present the mathematics that explains how an agent is able to

learn to make decisions in a dynamic environment.
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1.2 Markov Decision Processes

Traditional single-agent reinforcement learning is modelled as a discrete-time, finite

Markov Decision Process (MDP). MDPs have been commonly used for solving sequential

decision making problems where the agent also has to take into account the dynamics of

the environment. An MDP is defined as a 4-tuple 〈S,A, T ,R〉 where:

• S is a state space;

• A is a set of actions;

• T : S × A × S → [0, 1[ is a transition function specifying, for each state, action,

and next state, the probability of that next state occurring;

• R is a reward function, specifying, for each state, action, and next state, the ex-

pected immediate reward.

At every time-step t, the agent observes the current state of its environment, st ∈ S, and

chooses a corresponding action, at ∈ A, to perform. After completing its action, the envi-

ronment moves to the next state, st+1 ∈ S, given the transition probability T (st, at, st+1),
and the agent receives the reward signal rt according to the reward function R(s, a).
Figure 1.1, illustrates the explained interaction cycle that establishes the foundation for

reinforcement learning.

In this thesis, MDPs are assumed to be stationary, i.e. the elements of the tuple

〈S,A, T ,R〉 do not change over the time.

1.3 Learning a Behaviour Policy

As the agent experiences these interactions, it gradually learns how to map the states

to the actions, as a form of a behaviour policy π : S → A, such that the largest long-term

pay-off is obtained. The accumulated discounted reward signals that the agent receives

by performing its actions from an arbitrary state s according to a policy π(s) is referred

to as the state-value function of the policy V π(s). Thus, for every policy π, V π(s) can be

calculated as:

V π(s) = Eπ
( ∞∑
t=0

γtrt | st = s

)
(1.1)

17
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The discount factor γ ∈ [0, 1] indicates the importance of the long-term cumulative

rewards over the short-term pay-off of the actions. A discount factor of 0 makes the

agent myopic by considering only the immediate rewards that the agent obtains after

performing every action, whereas a larger factor close to 1 implies more distant rewards. If

the discount factor is close to 1, without a terminal state, or if the agent never reaches one,

all environment histories become infinitely long, and Q-values with additive, undiscounted

rewards generally become infinite.

To satisfy its main objective of maximizing the discounted cumulative reward signals,

the agent must learn the optimal policy π∗(s) such that:

V π(s) 6 V ∗(s),∀π, s (1.2)

If the optimal policy is discovered and both the transition probabilities and reward

values are known, the value of the optimal policy V ∗(s), can be calculated using the

Bellman optimality equation [13].

V ∗(s) = max
a∈A

[
R(s, a) + γ

∑
s′
T (s, a, s′)V ∗(s′)

]
(1.3)

As an alternative to the state-value function V π(s), a state-action value function,

Qπ(s, a), can be used for optimization of the agent’s behavior. Qπ(s, a) specifies the sum

of discounted rewards that the learning agent expects from following the policy π, after

performing action a in state s. Formally referred to as the Q-function, Q(s, a) maps

both the states and the actions that can be performed at those states as a pair to the

corresponding rewards that the agent expects to receive, (Q : S ×A → R). Thus, similar

to the formula shown in 1.1, Qπ(s, a) denotes:

Qπ(s, a) = Eπ
( ∞∑
t=0

γtrt | st = s, at = a

)
(1.4)

As mentioned earlier, the primary goal of the agent is to learn the optimal policy π∗

among with every policy π, that yields the maximum accumulated long-term reward.

Q∗(s, a) = max
π

Qπ(s, a) (1.5)

18
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Similar to equation (1.3), theQ-function of the optimal policyQ∗(s, a) can be described

as Bellman’s optimality equation:

Q∗(s, a) = R(s, a) + γ
∑
s′
T (s, a, s′) max

a′∈A
Q∗(s′, a′) (1.6)

Given the recursive description that Bellman’s optimality equation (1.6) provides, the

agent can utilize techniques such as dynamic programmings (DP) to calculate Q∗(s, a) of

the optimal policy and update the policy accordingly. In equation (1.6), the agent looks

at the Q-value of every action a′ in the next state s′ to find the action that results in the

highest expected Q∗(s′, a′). Once the maximum Q∗(s′, a′) is found, the agent can update

Q∗(s, a) (1.6) and the V ∗(s) (1.7) values accordingly.

V ∗(s) = max
a

Q∗(s, a) (1.7)

Equation (1.8) means that in order to update V ∗(s), the agent must find the action

a that results in the highest discounted total reward Q∗(s, a) in state s. Therefore, upon

updating Q∗(s, a), the agent’s policy also gets updated so that it maps the state s to the

best action a.

π∗ = argmax
a

Q∗(s, a) (1.8)

1.4 Reinforcement Learning

As shown previously, dynamic programming (DP) can recursively calculate the Q-

value of the optimal policy Q∗(s, a), and for problems that have small state-action spaces,

dynamic programming is considered an efficient approach to compute the optimal policy

π∗(s) [14]. However, in order to efficiently use the DP technique, knowing both the tran-

sition function T (s, a, s′) and the reward function R(s, a) are required. This is an issue

for DP, since in most real-world scenarios, the problems are complex and having prior

knowledge of a complete model of the environment and its dynamics that includes both

the transition probability and the associated rewards of every state-action pair, is often

not possible. The complexity of the problem also means that the state-action space may
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be large that would make DP computationally inefficient or even infeasible in case the

state-action space is continuous.

Instead of using dynamic programming, the learning agent can gradually find an opti-

mal policy through interactions with the environment without the requirement of knowing

the dynamic model of the environment beforehand. One of the most well-known algorithms

that is commonly used in reinforcement learning, is called ”Q-learning”. Q-learning is a

”model-free” RL approach that aims at directly finding the optimal policy and learning

the Q-function, as opposed to learning the complete dynamic model. In ”model-based”

reinforcement learning approaches, the agent attempts at learning the complete model by

capturing the transition probabilities and reward function. Similar to the case of dynamic

programming, model-based approaches may become inefficient when the MDPs have large

state-action spaces.

Exploration-exploitation dilemma

A major issue in RL is the dilemma between exploration and exploitation. Exploration

chooses an action randomly in the system to find out the utility of that action. Whereas

exploitation deals with the actions which have been chosen based on the previously learned

relevance of this action. However, acting greedily before the convergence may lead to

sub-optimal policies because the agent would not have had the opportunity to sample

state-actions pair that might lead to higher returns. In order to avoid this, we follow a

method to select an action called ε-greedy policy, where the agent chooses the action that

it believes has the best long-term pay-off with the probability 1−ε. ε is a tuning parameter,

which sometimes changed, either according to a fixed schedule (reduce progressively the

exploration), or adaptively based on heuristics.

The exploration finds new interesting actions to converge to an optimal policy. The

policy is found by the agent using either a table which stores the Q-values or an Artifi-

cial Neural Network (ANN) to compute these values. The following section presents the

functioning of a formal neuron and of ANNs .

1.5 Neural Networks

Artificial Neural Networks (ANNs) are a set of algorithms whose design is inspired

by the functioning of biological neurons and which are nowadays similar to statistical
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methods. They are networks of simple processing elements (called neurons) that are in-

terconnected, calculating on their local data and communicating with the other elements.

Their fields of application are varied: statistics (data analysis, forecasting, classification),

robotics (control and guidance of robots or autonomous vehicles), pattern recognition,

signal processing, learning simulation, . . .

In the biological model, neurons receive signals (electric impulses) from other neurons

by dendrites and send the information by axons. The contacts between two neurons (bet-

ween axon and dendrite) are done through the synapses. The signals do not operate in a

linear way: threshold effect.

1.5.1 Description of a formal neuron

By analogy with the biological neuron, the formal neuron is a model characterized by

an internal state s ∈ S, input signals x1, · · · , xp and an activation function f .

s = h(x1, · · · , xp) = f(α0 +
p∑
j=1

αjxj) (1.9)

The activation function transforms an affine combination of the input signals, α0

being called the neural bias. This affine combination is determined by a weight vector

[α0, · · · , αp] associated with each neuron and whose values are estimated during the lear-

ning phase. They constitute the ”memory” of the network. The different types of neuron

are distinguished by the nature of their activation function f . There are many different

activation functions and the main functions are :

• linear: f is the identity function;

• sigmoid: f(x) = 1
1+ex ;

• rectifier: f(x) = x+ = max(0, x);
• radial: f(x) =

√
1

2πe
−x2

2 ;

• . . .
Linear and sigmoidal models are well adapted to learning algorithms involving gradient

back-propagation because their activation function is differentiable; they are the most

commonly used. The threshold model is probably more in line with biological ”reality”

but poses learning problems. Neurons can be pushed into states in which they become

inactive. In this state, no gradients flow backward through the neuron, and so the neuron
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becomes stuck in a perpetually inactive state and ”dies”. This is a form of the vanishing

gradient problem. In rare cases, large numbers of neurons in a network can become stuck

in dead states, effectively decreasing the model capacity. This problem typically arises

when the learning rate is set too high.

α1

α2

α3

αp

∑
f

Input

values

x1

x2

x3

xp

Weights

Weighted

sum

Activation

function

y

α0

Neuron bias

Figure 1.2 – Model of a Artificial Neuron

1.5.2 Artificial neural networks overview

Artificial neural networks (ANNs) are statistical models directly inspired by, and par-

tially modelled on biological neural networks. They are capable of modelling and proces-

sing non-linear relationships between inputs and outputs in parallel.

ANNs are characterized by containing adaptive weights along paths between neurons

that can be tuned by a learning algorithm that learns from observed data in order to

improve the model. In addition to the learning algorithm itself, one must choose an ap-

propriate cost function. The cost function is used to learn the optimal solution to the

problem being solved. This involves determining the best values for all of the tunable

model parameters, with neuron path adaptive weights being the primary target, along

with algorithm tuning parameters such as the learning rate. Theses optimization are done

by techniques such as gradient descent or stochastic gradient descent. The goal is to make

the ANN solution be as close as possible to the optimal solution, which when successful

means that the ANN is able to solve the intended problem with high performance.
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Architecturally, an artificial neural network is modelled using layers of artificial neu-

rons, or computational units able to receive input and apply an activation function along

with a threshold to determine if messages are passed along. In a simple model, the first

layer is the input layer, followed by one hidden layer, and lastly by an output layer

(Fig. 1.3). Each layer can contain one or several neurons. Models can become increasingly

complex, with increased abstraction and problem solving capabilities by increasing the

hyperparameters. The hyperparameters express ”high-level” properties of the model such

as the number of hidden layers, the number of neurons in any given layer, and/or the

number of paths between neurons. When the model complexity increases, the chance of

overfitting also increases. The overfitting appears when the network extracted some of

the residual variation (i.e. the noise) as if that variation represented underlying model

structure.

Weights between input layer

and hidden layer

Weights between hidden layer

and output layer

Hidden layer

Inputs

Output

Figure 1.3 – Structure example of a multilayer perceptron with a single hidden layer

Model architecture and tuning are therefore major components of ANN techniques, in

addition to the actual learning algorithms themselves. All of these characteristics of an

ANN can have significant impact on the performance of the model. Additionally, models

are characterized and tunable by the activation function used to convert a neuron’s weigh-

ted input to its output activation. There are many different types of transformations that

can be used as the activation function.

The abstraction of the output as a result of the transformations of input data through
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neurons and layers is a form of distributed representation, as contrasted with local repre-

sentation. The meaning represented by a single artificial neuron for example is a form of

local representation. The meaning of the entire network however, is a form of distributed

representation due to the many transformations across neurons and layers.

One thing worth noting is that while ANNs are extremely powerful, they can also

be very complex and are considered as black box algorithms, which means that their

inner-workings are very difficult to understand and explain.

The following chapter presents the work done with the use of reinforcement learning

to improve the energy management of sensor nodes.
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Reinforcement Learning (RL) enables a new paradigm to solve the energy management

problem in embedded systems with harvesting capabilities. Many approaches using RL

were proposed in the last years to address the non trivial challenge of designing efficient

adaptation algorithms. These approaches must be suitable for the limited resources pro-

vided by sensor nodes in terms of memory, computation power, and energy storage. This

chapter exposes a comprehensive overview of the state of the art in energy optimization

approaches with RL.

As stated in Chapter 1, the goal of an agent in RL is to maximize its cumulative

reward by finding the optimal behaviour policy. In some cases, the policy may be a simple

function or look-up table, whereas in others it may involve extensive computation such

as a neural network. Section 2.1 presents different applications where RL approaches are

used in order to optimize the energy consumption. Section 2.2 presents the applications

using a look-up table to store the Q-values. Then, Section 2.3 presents the approaches

using eligibility traces. The Section 2.4 presents approaches with neural networks to find

the best policy. And finally, Section 2.5 presents less common algorithms with different

approaches.

2.1 Application schemes of RL approaches

Reinforcement learning is an universal solution to most problems related to the dy-

namics and uncertainty of the operating environment [12]. Thus, RL has been applied in

various schemes:

• Medium Access Control (MAC) protocols coordinate channel access among multiple

nodes in a single-hop transmission to reduce collisions. Two main functions are

sleep-wake scheduler and transceiver selector:

∗ Sleep-wake scheduler arranges the transmission, reception, idle and sleeping

time duration. During the idle mode, sensor nodes listen for potential packet

transmissions and the energy consumption is almost identical to the receive

mode. To reduce energy consumption, a sleep-wake scheduler schedules sleeping

and waking (i.e. transmission, reception and idle) time duration. Longer waking

time duration (or higher duty cycle) increases bandwidth availability leading to

higher throughput and lower packet latency; however, it also increases energy

consumption. The waking time duration increases with the network traffic load

or QoS requirements. RL has been applied to optimize the energy consumption
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in slot assignment [15] or to adjust the sleeping and waking time durations

depending on the data send by the neighbouring [16].

∗ Transceiver selector selects either a long-range or short-range radio for data and

control packet transmissions. Long-range (short-range) radio uses higher (lower)

transmission power. To reduce energy consumption, a transceiver selector agent

switches between the transceivers based on physical range (e.g. whenever a mo-

bile node moves from one effective transmission range to another) and channel

conditions (e.g. fading, interference, shadowing, and multi-path effects) [17].

• Self learning radio adapts dynamically the power needed for the efficient transmis-

sion of data depending on the quality of the communication channel. The agent

reduces the power consumption of the transmission while respecting the quality

requirements within the network ([18], [19]).

• Cooperative networks where the nodes work together to improve the communication

or the energy consumption of the overall network. The cooperation can occur in

communication to select cooperative forward packets towards sink nodes in order

to reduce the effects of deteriorating channel conditions and changes in network

topology [20]. A cooperative network accomplishes an entire team learning of sleep

scheduling by rotating the role of active node to preserve the network lifetime using

RL in [21].

• Routing enables a sensor node to search for the best route to a sink node. The sink

node collects data from all nodes in the network through single or multiple hops,

and subsequently send them to remote servers. RL has been applied in each sensor

node to learn the best route to the sink node ([22], [23]).

• Rate control adjusts the packet transmission rate of a source node, and hence the

congestion level of intermediate nodes, along a route [24].

• Task scheduling schedules and carries out the right task at different time instant.

For instance, in [25], RL has been applied in each sensor node to learn the usefulness

of each task (i.e. detect targets, track targets, send data about targets, predict

trajectory, intersect trajectory and sleeping) at different time instant in order to

reduce energy consumption.

• Power management adapts the power mode of each node depending on the work-

load in order to reduce the consumption without degrading the performance. For

instance, in [26], the agent selects the appropriate power mode according to the

probability that a wake-up signal occurs reducing the energy consumption more
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efficiently.

As seen in this section, there are various schemes where RL can solve problems related

to uncertainty in the environment. Moreover, there are various RL algorithms which can

be used and the following sections give an overview of the most frequently used approaches

in the literature.

2.2 Storing the knowledge in a look-up table

In a discrete environment with a discrete actions space, only the corresponding Q-

values are needed. In this case, a convenient approach is to store the Q-values in a look-up

table. Moreover, the most popular algorithm in the literature is the Q-learning [27] and

it uses a look-up table. Thus, in this section, we present a overview of the applications of

the look-up table for different applications.

2.2.1 Power management

For the power management problem, different approaches exist to adapt the consump-

tion according to different metrics such as the harvested energy or the workload. Usually,

the nodes are deployed for prolonged period with limited resources. Given this, a goal is

to minimize wasted energy, especially when the node is idle.

In [26], the authors present a model of adaptive power management of an IoT System-

on-Chip (SoC) based on the Q-learning algorithm. The objective is to select the less

consuming power mode when the node is waiting for a wake-up signal. This signal has

1−p probability of occurring. The state space is composed of the different available power

modes and the set of actions (Fig. 2.1) is the possible transition between the system’s

power states (A0: Stay in the same state; A1: Clock switching to 8 MHz; A2: Clock

switching to 32 kHz; A3: Switch from current state to Sleep; A4: Switch from current

state to DeepSleep). The wake-up signal returns to the Idle-16 MHz state and locks the

system until the next suspend sequence. Each action is achieved on a specific number of

system cycles depending on the system implementation. The usual default policy is to

select the action from the state st with the lowest coefficient:

at+1 = argmin
a

Qt(st, a) (2.1)
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Figure 2.1 – Markov Decision Process diagram showing the set of actions and transitions
[26]

The Q-value associated to the selected action is updated as shown in Eq. 2.2 :

Qt+1(st, at) = Qt(st, at) + α(δE + γmin
a
Qt(st+1, a)−Qt(st, at)) (2.2)

where the reward is the energy consumption δE of the system during the state opera-

tion. The agent will select the action with the lowest Q-value to minimize the energy

consumption. The authors conducted several simulations which shows an average gain of

17% compared to static decisions.

The Q-learning algorithm is also used to adjust the performance and the energy

consumption according to the workload. In this way, [28] presents an on-line power ma-

nagement approach. The authors propose to differentiate the energy management of the

peripheral devices and the CPU. Indeed, they have different operating behaviours and per-

formance evaluation. Their proposed power manager does not require any prior knowledge

to adjust the power consumption depending to the workload.

The simulation results for peripheral devices show that for a low latency expert-
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algorithm outperforms Q-learning due to the fact that they are designed for high perfor-

mance. Whereas Q-learning approach allows the device to buffer the requests. Q-learning

outperforms when the performance is relatively less important than the power consump-

tion and it provides wider range of power-performance trade-off. Moreover, in contrast to

the expert based policy, the Q-learning power management algorithm not only learns and

adapts to different workloads, but also adapt to different hardware. When applied to a

microprocessor, the Q-learning based controller can correctly learn the trade-off space and

give effective control policies to respect constraint on CPU temperature, power consump-

tion or performance.

The previous work on microprocessor uses a well-known power management technique

in modern computer architecture: Dynamic Voltage and Frequency Scaling (DVFS), where

the voltage and the frequency of a microprocessor is adjusted on-the-fly, increased or

decreased, depending upon circumstances. A decrease of the voltage or frequency results

in a power saving and decreases the performance.

The authors of [29] propose a Q-learning based strategy applied to manage DVFS on

a SoC in order to reduce the energy consumption. The idea is to adapt the frequency

applied to the workers according to the output buffer filling. The model uses the output

buffer filling bt at given time step t as a state for the agent. The state space size is reduced

by discretizing the level of the buffer filling in N + 1 equal parts. The applied voltage

has the minimum value that supports the frequency ft, hence it is not part of the action

space. The authors consider a set of M + 1 frequencies between fmin typically a hardware

constraint and fmax, leading to a set of actions A = {aj}j=0,M where M is a hardware

constraint.

The reward value is depending of the buffer filling and it is composed by two parts:

one ranging from 0 to the set-point and the other one ranging from the set-point to the

buffer size, as in Eq. 2.3 :

reward(b) =

 p2
1b

2 + r1b+ q1 b ∈ [0, set-point)
p2

2b
2 + r1b+ q2 b ∈ [set-point, B)

(2.3)

The parameters {p, q, r}1,2 are chosen empirically such that the reward is negative when

the buffer filling is lower that 15% from the buffer size or higher that 95% from the

maximum buffer size.

This approach was evaluated on a real test board with an ARM host processor and

a SoC with 16 processing elements. The application is a part of HMAX, an object re-
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cognition application. Two main metrics are used to illustrate the performance of the

DVFS manager: the normalised energy consumed by the application including the energy

overhead of the manager and the number of dropped tokens per second (indicating how

many times the throughput of the application is not respected).

The performances of this approach are compared to the state of the art, a proportional

integral (PI) controller [30] and a non-linear, threshold-based controller [31]. On this

application, it outperforms the state-of-the-art in term of energy consumption. The energy

consumed is 15% lower than with the PI controller and 44% compared to the non-linear

controller. The dropped tokens is 30% lower than with the non-linear controller, but the

PI controller outperforms since it is designed to minimize this performance specifically.

The time overhead of the proposed controller varies from 0.6% to 1.2% depending on the

state space sizes. Instead of modifying the performances, one solution is to change the

duty cycling.

Nodes are tiny sensors which operate with limited power. Once they run out of energy,

they become useless. If too many nodes are out of energy, the WSN cannot work properly.

A solution can be to plan the sleep of nodes. Thus, active nodes operate normally and sleep

nodes recharge their battery using harvesting devices. In [21], a reinforcement learning-

based sleep scheduling for coverage (RLSSC) algorithm is proposed for sustainable time-

slotted operation in rechargeable sensor networks. A part of the nodes enters into sleep

mode to preserve the network lifetime, and the other ensures the desired area coverage.

Each node is an agent and chooses to enter into sleeping or active mode. The state

space is composed of sL, sK , sE which represent the state of the light condition, distance

to energy recharging balancing and the current energy of the nodes, respectively. Each

action is rewarded depending on the battery’s charge:

rhigh = a ·
(

2
1 + exp(−b(sK + ξ) − 1

)
(2.4)

rmoderate = a ·
(

2
1 + exp(−bsK) − 1

)
(2.5)

rlow = a · (1− sL) ·
(

4
(1 + exp(−bsK))(1 + exp(bsK)) − 1

)
+ . . .

a · sL ·
(

2
1 + exp(−bsK) − 1

)
(2.6)
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where rlow, rmoderate and rhigh represent the low, moderate and high-level of sE, respecti-

vely. a and b are tuning parameters and ξ is the distance to the origin.

The proposed method is compared with LEACH algorithm [32] and random selection.

Random selection is the algorithm where the active nodes are selected randomly from

the group members. The results show that RLSSC can not only adapt to the dynamic

environment but also can balance the energy between sensor nodes in real-time. Since the

energy consumption is balanced between the node, the network lifetime increased by 20%
as compared to LEACH. Moreover, the coverage of RLSSC is relatively stable compared

with random and only about 1% less compared with LEACH.

Nodes usually operate in networks thus, a lot of work is being done to optimize the

communications between nodes. Part of the work includes the optimization of the data

routing within networks, which is discussed in what follows.

2.2.2 Routing protocols optimisation

In a WSN, the lifetime of the network is an important issue and the communication

are the most energy consuming task of the nodes. There are different definitions for the

lifetime, (1) the time until the first dead node appears; (2) the time until the first isolated

node appears; and (3) the time until the network cannot accomplish any packet delivery.

An isolated node has energy, but no path to the sink, all the neighbouring nodes have

died. Many works used RL algorithms to adapt the packet routing in the network in order

to prolong its lifetime and to increase the packet delivery.

One of the early approaches using a RL algorithm to solve the routing problem appears

in [33] in the context of a wired network. The algorithm, presented as Q-routing, uses a

distributed approach which gathers estimated delay information from immediate neigh-

bours to make the routing decision. It learns a routing policy which balances minimizing

the number of ”hops” a packet will take with the possibility of congestion along popular

routes. The final objective is to minimize the total delivery time. Simulation results show

that under high network load, this algorithm outperforms the shortest-path algorithm

([22], [34]), it maintains the average delivery time under a network load level twice as

high, and even performs well under changing network topology.

In Underwater Acoustic Networks (UANs), maximizing network lifetime is a key re-

quirement. Accordingly, [35] propose a RL based approach that aims to distribute traffic

among sensors to improve the lifetime of the network. In this work, the system state re-
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lated to a packet is defined as the node that holds the packet. So si denotes the state

of a packet held by node i. The action taken by node i to forward a packet to node j is

denoted as aj. If this action is successful, the transition from state si to state sj with the

probability of P j
ij and stays in the same state si with the probability of P j

ii = 1 − P j
ij, if

it fails. Though these transition probabilities are unknown, the authors argue that this

can be estimated at run-time from the history. Accordingly, the overall reward function

at time step t can be defined as follows,

rt = P j
ijR

j
ij + P j

iiR
j
ii (2.7)

where Rj
ij is the reward when the transmission is successful:

Rj
ij = −c− α1(Ei + Ej) + α2(Di +Dj) (2.8)

where α1 and α2 are tunable weights and c is the constant cost associated with consump-

tion of resource (bandwidth, energy, . . .) when a node chooses to transmit. Ei is the cost

function associated with residual energy (Eres
i ) and initial energy (Eini

i ). The energy’s

cost function penalizes the system when residual energy decreases and is defined as,

Ei = 1− Eres
i

Eini
i

(2.9)

Similarly, Di is defined to measure the energy distribution balance as follows,

Di = 2
π

arctan(Eres
i − Ēi) (2.10)

where Ēi is the average residual energy of the node i and all its direct neighbours. This

parameter increases the chance of neighbours with higher residual energy being preferred.

The reward function for the case where a packet forwarding attempt fails is defined as,

Rj
ii = −c− β1Ei + β2Di (2.11)

where β1 and β2 are again tunable weights. The authors use Q-learning at each node

to enable them to learn about the environment using control packets and take action

to improve network lifetime. The proposed solution is shown to outperform the vector-

based forwarding protocol [36], a geographical routing protocol designed for UANs by
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achieving 20% longer lifetime. The authors claim the proposed solution can be applied for

various UAN applications by tuning the trade-off between latency and energy efficiency

for lifetime.

With a similar approach, [37] proposes a reinforcement-learning-based routing (RLBR)

protocol to increase the number of packet delivery over energy consumption and extend

the network lifetime according to the three aspects (1), (2) and (3) 1. In this work, the

system state related to a packet is defined as the node that holds the packet. So si denotes

the state of a packet held by node i. The action taken by node i to forward a packet to

node j is denoted as aj.

The reward depends on the residual energy of the neighbour node Ej and the hop

count from this neighbour node to the sink hj. Both of these can be obtained from the

neighbour table. The reward function is defined as follows:

R(i, j) = Ej
dn(i, j)× hj

(2.12)

where d(i, j) is the distance between the current node and this neighbour node and can be

computed according to equation 2.13. In addition, n is a constant and its value is shown

in Eq. 2.14.

d(i, j) =
√

(xj − xi)2 + (yj − yi)2 (2.13)

where (xi, yi) and (xj, yj) are the location coordinates of the current node and the neigh-

bour node respectively.

n =

 2 d ≤ d0

4 otherwise
(2.14)

where d0 is a constant of distance threshold.

The proposed algorithm was compared to four different state-of-the-art algorithms,

i.e. energy-aware routing (EAR) [38], balanced energy efficient routing (BEER) [39], Q-

Routing [33], and multi-agent reinforcement learning-based self-configuration and self-

optimization (MRL-SCSO) [40]. The simulation results show an improvement in the net-

work lifetime according to the three aspects. On average, the RLBR protocol improves

the time before the first dead node appears by 200%, 88%, 7% and 400% over EAR,

BEER, MRL-SCSO, and Q-routing, respectively. The time before the first isolated node

appears is increased by 289%, 84%, 13%, and 338% over EAR, BEER, MRL-SCSO, and

1. (1), (2), (3) are the definition of a lifetime presented at the beginning of subsection 2.2.2.

34

RL-based Energy Management for Autonomous Cyber Physical Systems Yohann Rioual 2020



Q-routing, respectively. And the time until the network cannot delivery any packets is

increased by 117%, 85%, 25% and 78% over EAR, BEER, MRL-SCSO, and Q-routing

,respectively; Table 2.1 summarises the results according the lifetime aspect (1) to (3).

Table 2.1 – Performance comparison of RLBR [37] and state-of-the-art according to the
different definitions of a network lifetime

Aspect (1) (2) (3)
EAR 200% 289% 117%

BEER 88% 84% 85%
MRL-SCSO 7% 13% 25%
Q-routing 400% 338% 78%

Moreover, this approach outperforms the state-of-the-art in terms of energy efficiency

(i.e. the number of packets delivery per energy unit). At first, RLBR and MRL-SCSO

deliver less packets than the other approaches due to initial learning. However, through

continuous learning, they find the most appropriate path to transmit the packet and the

difference of packet delivery between RLBR and the other protocols becomes more ob-

vious. The performance of the proposed protocol is due to different factors. First, the

reward is influenced by the distance between the current node and its neighbours. If the

distance is greater than the threshold, the reward decreases more quickly. Thus, the proba-

bility of taking a close node as forwarder is higher. Consequently, the energy consumption

for the current node to send a packet to the next forwarder is lower. Second, the pro-

tocol has a lower overhead since it does not need to build and maintain routing table.

Finally, the scheme of data packet carrying feedback can further save energy. For the pa-

cket delivery, RLBR considers the hop count to the sink to define the reward function to

encourage nodes to select the next forwarder nearer to the sink. Such a way quickens the

packet delivery and decreases packet loss and ultimately achieves an increase of packet

delivery.

In addition to the optimization of the packet routing in WSN, the RL approach has

been also applied to the Media Access Control (MAC) layer to improve the energy effi-

ciency of the communications, as discussed in what follows.

2.2.3 Communications optimisation

Since the communication task consumes a lot of energy, another communication based

strategy tries to improve resources allocations, in particular at the MAC layer.
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With the objective to increase the energy efficiency of communications, [16] proposes

a new RL based protocol called RL-MAC. The objective of this protocol is to maximize

an energy efficiency metric (i.e. the ratio of effective transmit/receive time to the total

reserved active time) and to maximize the data throughput. Moreover, the protocol must

avoid early sleeping phenomenon. An early sleep occurs in scenarii whereby a node go to

sleep when a neighbour still has packets designated for it; as a result, the node will miss

all packets designated for it.

Figure 2.2 – Frame structure employed by the RL-MAC protocol [16]

This protocol employs a frame-based structure (Fig. 2.2). The frame is composed of

two parts: when the node is active and when it sleeps. The frame is itself divided into finer

time slot Ts. In active time, the node listens to the channel and attempts to exchange

packets with its neighbours. At the beginning of each frame, the RL agent dynamically

reserves slots as active time. The set of actions available for the node is the set of reserved

active time, and the state space is the number of packets in the buffer.

The reward is designed as follows:

rk(nb, tr) =



(ns+nr+1) ·Tp

tr−ts − η n
′
b−nb√
B

tr, nb 6= 0, n′b > nb
(ns+nr+1) ·Tp

tr−ts tr, nb 6= 0, n′b ≤ nb

−η n
′
b−nb√
B

tr, nb = 0, n′b 6= nb

1 tr, nb = 0, n′b = 0

(2.15)

where nb is the number of packets in the buffer at the beginning of the frame and n′b at the

end, tr is the active time reserved, B is the size of the buffer, Tp is the packet transmission

time, ns and nr the number of packets sent and received during this frame, respectively,

and η is a weight.
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This protocol is compared to a state-of-the-art protocol, called S-MAC [41], according

to three performance metrics: efficiency, throughput and latency. Simulations for different

WSN topology (star and linear) have been conducted.

In both topology, RL-MAC offers, on average, a better energy efficiency compared to

S-MAC. The energy saving is over 50%. In both algorithm, the energy efficiency increases

when the traffic load increases. Moreover, RL-MAC can achieve a much higher throughput

than S-MAC when the load is heavy. The throughput of RL-MAC is 357% and 246% higher

than the throughput of S-MAC in star and linear topology, respectively. This is due to the

fact that RL-MAC adaptively increases the reserve active time in response to increased

traffic load. RL-MAC achieves a lower latency on average.

The communication channel adds noise when data is transmitted; if the transmission

power is too low, the data cannot be received. Thus, [42] proposes an approach where the

channel state is taken into account. An RL agent chooses the best operating mode (OM)

(Table 2.2) and when the communication is possible, it also chooses the transmission

power and the number of packets transmitted. It uses, as state space, a combination of

the channel state gi ∈ {1, 2, . . . , K} and the buffer state bi ∈ {1, 2, . . . , K}. The state of

the node in time slot i is noted si = gi, bi.

ai =

 (Ami
, Pt,i, ci) mi ∈ {0, 1}

Ami
mi ∈ {2, 3, 4, 5, 6, 7}

(2.16)

where Ami
is the operating mode at time slot i, Pt,i is the transmission power and ci is

the number of packets transmitted.

ci


= 0 Defer

∈ 1, 2, 3, 4 Transmit

∈ Fr(01) ∪ Fr(12) ∪ Fr(23) ∪ Fr(34) Fragment transmit

(2.17)

The action of transmit means that the node sends only one to four complete packets. A

full-sized packet can be broken into n equal-sized frames. Then, the action of fragment

transmit means that the node will send zero to three complete packets plus 1 to n − 1
fragments.

If a non-fragment action ai is taken in the system state si, the cost function is defined

as:

R = Pi × Tp
Ui

+ β1D(bi, ai) + β2S(Ami−1 , Ami
) + ϕ (2.18)
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OM
Unit

Processor Sensing unit Radio

A0 Active On tx, rx
A1 Active Off tx, rx
A2 Idle On rx
A3 Idle Off rx
A4 Sleep On rx
A5 Sleep Off rx
A6 Sleep On Off
A7 Sleep Off Off

Table 2.2 – Different operating mode of the sensor node [42]

where

• Pi : power consumption

• Tp : transmitted packet

• Ui : utility (throughput)

• D(bi, ai) : denotes the average number of packets dropped in time slot i because of

buffer overflow

• S(Ami−1 , Ami
) : the expected energy consumption due to switching from OM Ami−1

to OM Ami

• ϕ : the fragment cost

• β1 and β2 : constant weight

For the fragment transmission scheme, a full-size packet is divided into n equally sized

fragments. This scheme improves the energy efficiency and reduces the frame error rate.

A state clustering approach is also used to reduce the size of the proposed MDP.

Three policies were compared: the first, no packet fragmentation possible; the second,

packet fragmentation possible and the last, always-on policy, the node operates only in

three modes (i.e. A0, A2 and A4). The best performance is obtained with the always on

policy which presents, logically, a higher throughput, 47.3% and 21.7% with a SNR to

1 as compared to the first and second policies, respectively. The difference is only 7.1%
with the others policies when the SNR is 8. Moreover, the always on policy outperforms

in packet loss rate, 22.1% and 13.2 when compared the policy without or with the packet

fragmentation possible, respectively, with a SNR set to 1 and 10% with the SNR is 8.

However, the policy with data fragmentation is the most energy efficient approach. It

outperforms the always on policy by 48.6% and 12.5% with the SNR to 1 or 8, respectively.

The difference with the policy without fragmentation is lower, 6.1% and 2.3%, with the
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SNR set to 1 or 8.

Energy management and communication optimization are not always sufficient to ex-

tend a network lifetime. The addition of harvesting capabilities increases the energetic

resources, but the energy harvested varies over time according to changes in the environ-

ment. Different algorithms try to predict the energy generation and some approaches rely

on RL methods.

2.2.4 RL and energy harvesting

Another application of RL is found in energy harvesting management. Energy har-

vesting capabilities complement the battery to extend the system lifetime. Solar energy

is the most effective environmental energy for harvesting because of its high energy den-

sity, nevertheless it comes from a non-controllable source, the sun. In this context, [43]

presents a prediction algorithm (QL-SEP) of the energy generation from solar harvesters

based on the Q-learning algorithm. Solar energy is a periodic energy source in which the

time domain can be split into equal-length slots repeated daily. Exponentially-Weighted

Moving Average (EWMA) [44] is the most used algorithm and has inspired the develop-

ment of many prediction approaches. The EWMA considers the historical information of

an energy generation profile combining the energy estimated and the energy harvested as

presented in Equation 2.19:

E(d, n) = αE(d− 1, n) + (1− α)H(d− 1, n) (2.19)

where d represents the current day and n is the slot number. 0 < α < 1 is a weighting factor

which balances the importance of the estimated energy E and the last amount of harvested

energy H. EWMA is an efficient way of observing long-term seasonal conditions with no

mechanism for adapting to relatively short-term variations. The proposed approach [44]

updates Equation 2.19 with a new parameter, called the daily ratio (DR):

EQL SEP = EEWMA · (1 +DR) (2.20)

The DR represents the trend in the current solar energy generation, investigating the
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behaviour of the solar energy in the recent slot.

DR =

N∑
i=1

(
H−P
P

)
·Q(i) · i∑
i

(2.21)

where P indicates the prediction energy from QL-SEP, H is the actual harvested energy

in the slot and N is the number of time slot taken into account. The Q-value denotes the

reliability of the prediction.

The Q-value of a slot is updated at the end of the slot in association with the Overall

Prediction Error Ratio (OPER) in 24 slots. A Prediction Error Ratio (PER) in a slot is

compared with OPER. If PER is lower than OPER, the reward is a positive value (+1),

otherwise the reward takes a negative value (-1). The PER for a single slot is calculated

as:

PER =
∣∣∣∣H − PP

∣∣∣∣ (2.22)

The QL-SEP is compared to three state-of the art prediction algorithms: EWMA,

Accurate Solar Energy Allocation (ASEA) [45] and Profile Energy Prediction Model (Pro-

Energy) [46]. The author conducts a simulation over a year. The QL-SEP outperforms

the others approaches with an average PER of only 0.27 (Table 2.3).

Approach Average PER
QL-SEP 0.27
ASEA 0.36

EWMA 0.4
Pro-Energy 0.57

Table 2.3 – Performance comparison of QL-SEP with state-of-the-art

The RL approaches are able to adapt the energy consumption or predict the harvested

energy in a dynamic environment using a lookup table. In this section, we have presented

approaches where the reward is given after each action. In the following section, we present

a different approach using eligibility trace to reward a sequence of actions.

2.3 RL algorithms with traces

When an agent performs an action with Q-learning, it receives an immediate reward

rt that evaluates the efficiency of the action at. However, an agent may receive a reward
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only after performing a sequence of actions, assigning credit to the appropriate state-action

pairs becomes an issue. To solve this, different algorithms introduce a memory variable

for each state-action pair called the eligibility trace. During each epoch, the eligibility

trace, for all state-action pairs, decays by γλ (where λ range between 0 < λ < 1), is a

parameter that allows specifying the strength with which Q-values of early state-action

pairs are updated as a consequence of the final reward.

2.3.1 Energy management with RL based on traces

[47] uses the above approach to propose an on-line power management technique for

peripheral devices. The idea is to adapt the energy consumption according to the work-

load with no prior information. Indeed, devices have different operating behaviours and

performance evaluation. Their technique adjusts on the fly the energy consumption and

takes into account uncertainties that emanate from hardware and application characteris-

tics. Moreover, the authors add a workload prediction based on on-line Bayes network to

improve the performance of their algorithm. In order to maximize a node’s lifetime, the

node is equipped with one or more energy harvesting devices, enabling the nodes to be

entirely powered by the energy harvested in their environment.

Simulations have been done for two different devices: Hard Drive Disk (HDD) and a

wireless adapter card (WLAN). For the HDD, the proposed approach can achieve much

lower power consumption than the references, the maximum power saving with the same

average latency is 18.1%. For the WLAN card, several traces have been used for on-line

video watching, web surfing, on-line chatting and a combination of web surfing, on-line

chatting and server accessing. The correct prediction rate of the on-line Bayes predictor

can be 99.2% for the video trace, 79.8% for the web trace, 82.8% for the combined trace. In

comparison, the correct prediction rate of an exponential predictor [48] for the combined

trace is less than 65%. Moreover, the maximum power saving with the same latency is

16.7%; while the maximum latency saving with the same power consumption is 28.6%.

In [15], the author uses an other RL algorithm, SARSA(λ) [49], to achieve an Energy

Neutral Operation (ENO) power management of a sensor node in a monitoring application.

ENO is a mode of operation where the energy consumption of the node is always at

most the energy than has been harvested from the environment. In order to achieve

energy neutral operation, energy optimisation methods need to fulfill the energy neutrality

constraints while maximising performance.

The node adapts dynamically its power consumption depending on the energy har-
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Figure 2.3 – Reward function [15]

vesting opportunities by varying its duty cycle to ensure ENO. Each day the node re-

ceives weather forecast information. Its set of action, A, is defined as the set of dis-

crete duty cycles that can be chosen. A ∈ [Dmin, Dmax], where Dmin and Dmax are the

minimum and maximum duty cycle of the sensor node. In this work, the authors use

A = {20%, 40%, 60%, 80%, 100%}. The different states in which the agent can exist is given

by combination of the battery charge Sbatt, the distance to ENO Sdist, the energy harves-

ted Seharvest and the weather the agent may expect Sday : (Sbatt, Sdist, Seharvest, Sday) ∈ S.

The reward is depending of the distance between the battery charge and the ENO at the

end of the day (Fig. 2.3).

The authors compare the proposed policy to a power management strategy [44] referred

as Offline policy. Offline policy uses linear programming optimization methods with non-

causal data on energy harvesting opportunities to determine the optimal duty cycles. The

compared policy uses an optimization window of one day (24 hours) to calculate the duty

cycles, and their SARSA(λ) agent is also trained in one-day period. The proposed method

achieves less than 6% root mean square deviation from ENO. Offline policy achieves 3.46%
deviation from ENO and with a Näıve policy (Battery-Centric), more than 23% deviation

occurs. The use of SARSA(λ) results in a highly adaptive behaviour. The node is able

to adapt its energy consumption to the seasonal variation, climatic changes and more

important, changes in device performances (i.e. degradation in the node’s energy efficiency

or in harvesting capabilities) or battery degradation.
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Another domain of application is task scheduling. Thus, [50] uses an algorithm with

eligibility traces in an energy aware task scheduling for a target tracking application. In

such an application, the node needs to perform different actions such as sensing, sleeping,

communicating, etc. Each task has an impact on the overall performance of the applica-

tion, and when the performance increases, the energy consumption increases as well. In

this work, an agent chooses an action with the objective to balance these different aspects.

The set of action available is composed of six actions: target detection, target tracking,

communication with the neighbour, trajectory prediction, trajectory intersects and slee-

ping. The environment is composed of three different states. The idle state occurs when

there is no currently detected target and no object is detected by any neighbour. When

there is no currently detected targets, this is the state of awareness. The sensor nodes

can still receive some trajectory information by which they can decide that the expected

arrival time of at least one target. When there is at least one detected target within the

Field Of View (FOV) of the node, this is the tracking state.

The agent is rewarded with the level of battery charge and the number of tracked

target, as defined in Eq. 2.23 :

r = β
(

Ei
Emax

)
+ (1− β)

(
Pt
P

)
(2.23)

where the parameter β balances the conflicting objectives between Ei and Pt. Ei represents

the residual energy of the node. Pt represents the number of tracked position of the target

inside the FOV of the node. Emax is the maximum energy level of sensor node and P is

the number of all possible detected target’s positions in the FOV.

In that work, a variant of TD(λ), named True Online TD(λ) (TOTD(λ)), is used to

determine the best policy. This algorithm is compared to state-of-the-art algorithm: a

distributed independent reinforcement learning named DIRL[51], a cooperative reinfor-

cement learning named cooperative Q-learning [52], a cooperative reinforcement learning

SARSA(λ) [53] and an adversarial algorithm Exp3 (Exponential-weight algorithm for ex-

ploration and exploitation) [54]. Four different simulations were conducted to find out the

trade-off between tracking quality and energy consumption with different network size,

different randomness of moving targets and an evaluation of the average execution time

and average communication effort.

In term of tracking quality, the proposed approached outperforms all the methods,

while achieving state-of-the-art performances in term of energy consumption. When the
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network size increases, the tracking quality increases and the energy consumption too. Ho-

wever, the proposed approach offers the best trade-off between tracking quality and energy

consumption. When the randomness of the moving targets increases, the TOTD(λ) out-

performs. The DIRL and cooperative Q-learning are resources-aware in term of execution

time and communication effort. Exp3 and TOTD(λ) requires 25% and SARSA(λ) requires

86% longer execution times, respectively.

The algorithm using eligibility traces is not very common in the state-of-the-art of

energy management. This is due to the need in computation capacity. The convergence of

the Q-values is very slow. Indeed, most of the eligibility traces are close to zero. Moreover,

such approaches require to know all information from every time step of the agent’s

sequence of actions and states. Nevertheless, these algorithms are very useful when the

reward is not available immediately at the next time step.

Another popular approach in RL uses Neural Networks to compute the Q-value of the

different action instead of maintaining a table, as presented in what follows.

2.4 Neural network approaches in RL

When the environment becomes too large, the use of a look-up table becomes ineffi-

cient. Instead of storing the values, a more efficient approach is to use neural networks

to approximate the policy function and find the best action to choose. Neural networks

became widely popular with the success of Deep Q-learning on Atari games [8], and even

more since this approach was also used in AlphaGo [55], which has succeeded in beating

the human in the game of Go. And in this way, they have been widely used in energy

optimisation.

2.4.1 Energy management using neural network approaches in

RL

Neural Networks have been applied in task scheduling, particularly. In this way, [56]

proposes an energy-efficient scheduling scheme based on deep Q-learning for periodic

multi-tasks in real-time systems (DQL-EES). The proposed method combines a stacked

auto-encoder and a Deep Q-learning model. The stacked auto-encoder is an unsupervised

learning technique which is used in that work to learn the features of each input system

state. Then, the agent uses the Deep Q-learning model to select the most appropriate
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frequency and voltage. The different state is composed of the system utilization workload

and the dynamic slack. The stacked auto-encoder SAE(Θ) is used to learn the features

of each input system state and the Q-learning aims to compute the value of each action

given the input system state. A memory replay is added to the Deep Q-learning model to

avoid forgetting previous experiences.

The penalty is defined as:

pt(st, at) = En(st, at)
Ethyp

(2.24)

where En(st, at) denotes the total power consumption at the system state st using the

DVFS technique. Ethyp
denotes the sum of the actual execution time of every task in a

hyperperiod (i.e. the time between 2 scheduling decision).

The performance of the proposed algorithm is evaluated by comparing with a Q-

learning-based hybrid scheduling algorithm (QL-HDS) [57] on different simulation task

sets. Results demonstrated that the proposed algorithm can save, on average, 4.2% of

energy compared to QL-HDS. However, the execution time is about 12.5% higher on

average as compared to QL-HDS.

Nodes have a limited computing, memory and energy resources and some applications

need a low latency and large bandwidth. To overcome these issues, a proposition is to

process data as close as possible from the nodes to minimize the transmission, reduce the

latency and optimize the bandwidth utilization. Nevertheless, a problem is to select an

edge device to perform the computation from all the potential devices candidates within

the radio coverage area. Thus, [58] presents a RL-based computation offloading scheme.

The agent selects the proportion of the data offloaded and the edge device which will

performs the computation. The decision is depending on the radio transmission rate, the

harvested energy and the current battery level. The utility of an action is evaluated using

Eq. 2.25 :

U
(k)
i (x) = xC(k) − ψI

(
b(k+1) = 0

)
− βE(k) − µT (k) (2.25)

where x is the proportion of the data offloaded to the edge device, ψ is the task drop loss,

b is the battery level, β and µ are weighting parameters, E(k) is the energy consumption,

T (k) is the computation delay and I($) is the indicator function which equals 1 if $ is

true and 0 otherwise.

That work also uses the DeepQ-learning algorithm [8]. Two optimizations are proposed

to improve the performance of this method. First, several convolutional layers compress
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the state space and accelerate the convergence speed. Second, the authors use a transfer

learning method to accelerate the learning speed; the Q-values are initialized with the

offloading experience in similar environments.

The approach is compared to state-of-the-art algorithms a Q-learning scheme [59] and

DRL [60], but also to a non-offloading scheme. The method proposed in [58] achieves

the optimal computation offloading performance after convergence. Moreover, it outper-

forms the other approaches in term of energy consumption, computation delay and task

drop rate. A version without NN is compared to the Q-learning. It reduces the energy

consumption by 28%, the computation delay by 16.7%, and the task drop rate by 25%.

The computation offloading with Deep learning approach further improves the perfor-

mance, e.g., it reduces the energy consumption by 75.0%, computation delay by 32.6%,

and the task drop rate of the IoT device by 85.6%, compared to the previous scheme. And

when compared to DRL, it reduces the energy consumption by 58.3%, the computation

delay by 26.7%, the task drop rate of the IoT device by 55.5%. The proposed approach im-

proves the computation performance by incorporating more system state and the energy

harvesting technique. Moreover, the method presented uses 345 MB of memory, the policy

selection takes 8.3 ms and it converges in 400 time slot.

NNs are also used in the communication optimisation, to reduce the radio consumption

or for routing packet in a network, which is discussed in what follows.

2.4.2 Communication optimisation

NNs are also used to minimize the energy consumed during the communication. In

this way, [19] presents a method to reduce the energy consumption of the front-end radio

using NNs. The proposed method consists in a real-time channel-adaptive system which

is able to change its power consumption according to the channel state to achieve the

desired level of Quality of Service. The key objective of learning based adaptation is to

determine the optimum tuning knob combinations for the front-end for every channel’s

state on-the-fly.

First, an exploration determines the power consumed and the Error Vector Magnitude

(EVM) for a channel state with particular tuning. Then, during a map phase, done on a

general purpose processor, two neural networks are trained. The first one maps the power

consumption with the tuning and the second one maps the EVM with the channel state

and the tuning. The best tuning which respects the desired QoS and minimized the power
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consumption are memorized in a on-chip LUT. Several iterations are needed, but at the

end of the exploration, a tuning which minimizes the power consumption for a particular

channel state is found. The exploration phase leads to additional power consumption.

Nevertheless, the experiments show up to 2.5 times saving in energy consumption after

the learning as compared to a worst-case design method.

NNs have also been apply on the routing problem in underwater acoustic sensor net-

work (UASN), [23] proposes a protocol based on the Deep Q-learning algorithm, called

Deep Q-Network-Based Energy and Latency-Aware Routing (DQELR), to take routing

decision for packets. In an UASN, source nodes are deployed underwater to send collected

data packets to sink nodes on the surface through relay nodes. Each node in the network

comprises an agent; the current information of the sensor node, such as its residual energy,

depth and neighbouring nodes, comprises the current state; and the forwarding of a packet

from one node to the next node in the current state comprises an action. After the node

sends the packet to one of its neighbours, it receives a reward, with the current state of

each node updating to a new state. The reward is maximum if the packet is send to the

sink.

The reward function can be defined as :

R(si, ai) =

 100 if the packet is transmitted to the sink

c+ αrsen + βrdep otherwise
(2.26)

where α and β are parameters of the residual energy and depth, respectively. c = α + β

which is much less than 100.

rsen = eown
emax

(2.27)

rdep = down
dmax

(2.28)

where eown and down are the residual energy and depth of a neighbour node, respectively,

and emax and dmax are the maximum residual energy and maximum depth of all the

neighbours, respectively.

The proposed method was evaluated in a simulation and compared to a Q-learning-

based adaptive routing (QELAR) protocol [35] and a vector-based forwarding (VBF)

routing protocol [61]. Results show that when the packet generation rate increases, the

packet delivery ratio under each scheme decreases due to the congestion in the network

and the packet collision rate. However, the DQELR achieves a packet delivery ratio and
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an end-to-end latency similar to that of the state-of-the-art. The DQELR outperforms the

other approaches with the energy efficiency and network lifetime. The DQELR improves

the network lifetime by approximately 34− 36% as compared to the QELAR.

The optimization of the consumed energy is even more important in Wireless Body

Area Network (WBAN) where the nodes are small and light to be worn. Thus, [62] pro-

poses a deep reinforcement learning-based sensor access control algorithm (DRSAC) based

on convolutionnal networks. The agent observes the state of the environment composed

of the system’s total Signal-to-Interference plus Noise Ratio (SINR) vector, denoted by τ ;

the transmission priority vector ρ; the battery level vector e; and the transmission delay

vector g. Then, it chooses the transmission power of the selected sensor node.

Its action is rewarded using an utility function (2.29).

U =
M∑
i=1

ρiτi − αxi
li
vi
− βgi (2.29)

where M is the maximum number of sensors, v is the data transmission speed, l is the

length of the data transmitted and xi is the transmission power of the ith sensor. The

coefficients α and β, where α, β > 0, are used to adjust the influence of the energy

consumption and the transmission delay.

The DRSAC is compared to LSE-TPC [63] and Q-learning approach [64]. The simu-

lation shows that the proposed method outperforms. The Bit Error Rate (BER) of the

DRSAC-based strategy is approximately 40.9% lower than the Q-learning-based strategy,

and being approximately 53.6% lower than the LSE-TPC-based strategy. The energy

consumption is 29.6% lower than the Q-learning-based strategy after their respective

convergence, and approximately 34.5% lower than the LSE-TPC-based strategy. This

method shows that the RL-based algorithm achieves an increased in performance while

decreasing the energy consumption, i.e. the system becomes more energy efficient.

Look-up tables and NNs are not the only approaches used in RL; there are less com-

mon approaches to approximate the policy function in the literature, some of them are

introduced in what follows.
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2.5 Others approaches used in RL

Among all the approaches, a promising one is the use of temporal difference learning

with linear function approximation in [65]. In that work, an energy manager called RL-

Man is proposed. RLMan dynamically adapts energy management policy to time-varying

environment. The proposed approach is based on the temporal difference algorithm with

an actor-critic structure. The author successfully applied it to the Pow Wow platform [66],

a wireless sensor node with harvesting capabilities. The algorithm has been tested with

two different sources of energy, indoor light and outdoor wind. RLMan has been compared

to three state-of-the-art energy manager schemes that aim to maximize the throughput:

P-FREEN [67], Fuzzyman[68] and LQ-Tracker [69]. P-FREEN and Fuzzyman require the

tracking of the harvested energy in addition to the residual energy, and were therefore

executed with perfect knowledge of this value. RLMan and LQ-Tracker were only fed with

the value of the residual energy. In indoor and outdoor condition, RLMan and LQ-tracker

achieve 99.9% of energy efficiency. When the energy buffer is reduced, RLMan outper-

forms LQ-tracker in term of throughput. The average throughput is more than 20% higher

compared to LQ-Tracker in the case of indoor light, and almost 70% higher in the case of

outdoor wind.

In [70], a bandit solver Exp3 [54] is used for the adaptive power allocation in device-

to-device (D2D) communication. The action of each agent consists of a set of transmitting

power levels. In this work, only three power levels are considered (low, medium and high).

The state of D2D user u on resource block r at time t is defined as:

Su,rt = γcr ∪GBu ∪Guv (2.30)

γcr is the Signal to Interference plus Noise power Ratio (SINR) of a cellular user on the

rth resource block. GBu is the channel gain between the base station and a user u. Guv is

the channel gain between two users u and v. The reward takes into account the system

average channel capacity (Eq. 2.31).

R =


U∑

u=1
log2(1+SINR(u))

U
if γcr ≤ τ0, GBu ≤ τ1 and Guv ≤ τ2

−1 else

(2.31)

where U denotes the number of the users in the cell, SINR(u) denotes the signal to

interference plus noise power ratio of user u.
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A simulation compares the proposed method with a random allocation and a dis-

tributed reinforcement learning. The proposed approach outperforms the two others; in

particular the D2D throughput increased by 28% as compared with the distributed rein-

forcement learning.

2.6 Performance improvement in embedded systems

thanks to RL

To summarize, RL has been shown to achieve various performance enhancements:

• Higher throughput. Higher throughput indicates higher packet delivery rate, higher

successful packet transmission rate, lower packet loss rate and lower number of

packet re-transmissions.

• Lower end-to-end delay/packet latency. Lower end-to-end delay and packet latency

in single-hop and multi-hop transmissions, respectively, indicate lower number of

packets in the buffer queue.

• Lower energy consumption. Lower energy consumption increases network lifetime.

Since each sensor node operates on battery power, energy consumption is a common

performance metric. Other performance enhancements, such as higher throughput

and lower end-to-end delay, may indicate lower energy consumption due to lower

packet loss rate and number of packet re-transmissions.

• Higher route discovery rate. Higher route discovery rate indicates higher success

rate of finding a favourable route from a source node to a sink node.

• Higher in-contact time. Higher in-contact time indicates greater possibility of a

sensor node to discover the presence of a mobile data collector node, as well as

longer duration for data transmission, in a sleep-wake scheduling scheme.

Conclusion

The RL approaches provide a powerful tool for optimization in general, and more

precisely for the energy consumption of embedded systems and communication between

sensor nodes. It allows systems to adapt effectively their behaviour to changes in the

environment.

Nevertheless, the development of such approaches faces many challenges. The conver-
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gence rate, the minimization of learning cost (learning speed, how much did we waste

before becoming efficient), the scalability of such methods are the main limitations of

their use. Furthermore, the lack of guidelines for designers, non expert in machine lear-

ning, restricts the scope of RL in energy management in spite of the adaptability to a

dynamic environment.

The choice of an algorithm is not trivial and designers need metrics to find the most

suitable approach depending on their application and system. The different approaches

are not appropriate for all applications and a given embedded system, but depend on

memory and processing capacities. The choice of the appropriate approach for a designer

is thus difficult, since there is a lack of metrics to compare the different solutions.

Moreover, the RL algorithms have a lot of parameters to configure: the learning rate,

the discount factor, the initialisation of the learning, the reward function. The configura-

tion is often done empirically using the experience of the designer; and few explanations

are given in the literature making hard for a non-expert to understand the choice. The

reward function defines the behaviour of the agent, it plays an important role in perfor-

mance of RL approach. Nevertheless, the method to design the reward function is often

not presented in the literature.

In this manuscript, in particular Chapters 3, 4 and 5, we present the exploration on

the field of RL done during the thesis work. In the domain of embedded systems, there

are constraints imposed by the system and the application. We try to provide designers

guidelines to select the appropriate algorithm using different metrics. The conception of

the reward function is not obvious and we compare different ones to find the best way to

define a correct reward function. Moreover, we propose a reward function that adapts the

reward depending on the energy available in the battery in order to balance performance

and energy consumption. Finally, we explore a new approach for energy management

using multi-agent approach for a single system.

In the following chapter, we present a comparison of different approaches using imme-

diate reward to provides the guidelines to the designers for the choice of the approach to

design an energy management algorithm for an embedded systems.
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As seen in the previous chapter, there are two main RL approaches for the energy

management: the first one uses a lot of memory, storing information in a look-up table,

and the other one requires a lot of processing, training a network with the information. The

choice of the approach to select when designing an energy management for an application

is not obvious.

In this chapter, we address the question of the approach selection for a given but

classical real case. We compare different versions of the popular Q-learning for the use

case of a marine buoy equipped with solar panels to complement its battery. The versions

chosen exploit either the look-up table approach or the neural network approach.

The case study, a marine buoy for environmental monitoring, is presented in the first

section. The three following sections present the Q-learning algorithm and some variants,

i.e., the Dyna Q-learning and the Deep Q-learning. Each section presents the algorithm

and its performance for our use case. Finally, a comparative study is presented.

3.1 Monitoring marine environment: a case study

The marine environment is complex, and many practical applications need data from

the sea such as wave height, water temperature, atmospheric pressure, wind speed or

the presence of pollutants in water. The most reliable data source is the marine buoy

measurements [71]. Nevertheless, marine buoys are difficult to access once deployed, that

is why one has to be very careful with its energy resources to avoid failure. A solar panel

is often used to complement the battery, but the energy harvested varies a lot (Fig. 3.1)

and, therefore, an adaptive energy management is needed.

In this thesis, we consider a marine buoy (Fig. 3.2) deployed near to the coast com-

municating with a base station. The buoy is equipped with two sensors (Table 3.1), an

3D anemometer and an atmospheric sensor, to monitor environmental conditions. The

sensors have different energetic behaviours and the buoy should be deployed for as long

as possible. To complement the battery, the buoy is equipped with two small solar panels.

To avoid collision with ships, a beacon light flashes for 500 msevery four seconds when

the brightness is low.

Our aim is both to extend the buoy’s lifetime and to maximize the number of measure-

ments done by the sensors. To do so, the buoy should adjust the number of measurements

of its sensors in order to preserve the battery’s energy. Moreover, instead of modelling the

energy consumption of the node in a laboratory, we exploit a RL method to adjust on
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Figure 3.1 – Energy harvested in Lorient, France, by the buoy during a deployment of
21 days

the fly the frequency of the measurements. The node will adapt its behaviour according

to the energy available and to changes in the environment. The choice of the algorithm

is not easy since numerous algorithms exist. The Q-learning algorithm is popular and

converges to optimality under conditions and, furthermore, different versions have been

proposed over the years. The following sections present three versions using different ap-

proaches. Finally, a comparison is performed to find the most suitable version for the

given application.

3.2 Presentation of the selected Markov Decision Pro-

cess

For a fair comparison of the different algorithms, the same MDP was used. We define

the selected MDP as follows: a state space S of 10 states (for each 10% increment of the

battery’s charge level), and a set of actions A for the different operating modes that the

sensors are allowed to choose (i.e. a measurement frequency (Hz) ∈ [0.1, 0.2, · · · , 0.9, 1]).

The reward function indicates what kind of behaviour best serves our objective. In the

proposed RL model, the reward awarded at the end of an episode depends on both the
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Figure 3.2 – Marine buoy

Table 3.1 – Buoy components

Components Device

3D Anemometer WindMaster HS
Atmospheric sensor YOUNG61302L
Processor Cortex-M4 MCU
Radio transceiver CC1000

Energy harvester Power
Solar panels 2× 10W
Battery capacity 5200 mA/h

residual battery energy and the measurement frequency of the sensors during the episode.

We reward the system using a simple function:

η ×N (frequency) + (1− η)×N (battery charge level) (3.1)

where N is the function that normalizes the values and η ∈ [0, 1] is a parameter which

balances the importance given to the battery charge level and the sampling frequency. It

is really important for the reward function to be deterministic and bounded, otherwise

the algorithms may never converge.

56

RL-based Energy Management for Autonomous Cyber Physical Systems Yohann Rioual 2020



3.3 Look-up table approach with Q-learning

The first evaluated algorithm is the Q-learning (Algorithm 1) [27]. At every time-step

t, when the agent is in state st, it selects and performs action at that is derived from

its policy, given its estimation of Q(st, at). Once the agent has transitioned to the next

state st+1, it receives the reward rt for its action, and continues to estimate the Q-value,

max
at+1∈A

Q(st+1, at+1), in the next state. From there, the agent can compute the difference

between its initial expectation of Q(st, at) and the new estimation of the Q-value using:

Q(st, at) = Q(st, at) + α
(
rt + γ max

at+1∈A
Q(st+1, at+1)−Q(st, at)

)
(3.2)

In Equation 3.2, the term rt + γ max
at+1∈A

Q(st+1, at+1)−Q(st, at) corresponds to the dif-

ference between the new and the old estimation of Q(st, a), this is the temporal-difference

error.

Algorithm 1 Q-learning [27]

Initialize Q(s, a) arbitrarily
The agent observes the initial state s0
for each decision epochs do

Choose at from st using policy π derived from Q
Take action at, observe the new state st+1 and the associated reward rt
Q(st, at)← Q(st, at) + α

(
rt + γmaxat+1∈AQ(st+1, at+1)−Q(st, at)

)
)

st ← st+1
end for

Learning rate α : The learning rate α determines how fast the new information will

surpass the old one. A rate of 0 would not teach anything to the agent, whereas a rate of

1 would only teach the agent with the latest information. In our work, we decrease slowly

the learning rate α in such a way that it reflects the degree to which a state-action pair

has been chosen in the recent past. It is calculated as:

α = ζ

visited(s, a) (3.3)

where ζ is a positive constant and visited(s, a) represents the visited state-action pairs

so far [72].

The value of α have an influence on the learning performance. Nevertheless, there is

no method to easily find the best value for a given application. Moreover, depending on
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the algorithm chosen, the influence of this parameter changes. Currently, α or γ and the

others parameters are determined empirically. This is one drawback of this algorithm.

Simulation results for the look-up table approach with Q-learning

A simulation is conducted for a 21 days deployment of our buoy near Lorient, Bre-

tagne, France. Figure 3.3 shows the evolution of the battery charge level and the sampling

frequency of sensors with an iteration step of half an hour. This iteration step has been

chosen to let the battery discharge between two decisions.

At the beginning (1), the agent has no prior knowledge of its environment and takes

random actions to become award of it. After a few iterations (2), a daily variation is

observed in the sampling frequency, it corresponds to the evolution of the harvested energy

during the day. At the end of the simulation (4), the agent still do not know perfectly its

environment but the daily variation are more well-defined. Around day 12 (3), the battery

decreases and the agent still chooses the same action. This is due to fact that the agent

stop to only explore its environment and it starts to exploit its knowledge; the learning

rate has decreased. However, the last time it arrives in these states in day (day 2 to day

6), it learns to select these actions. It will need to more exploration of these states to takes

better actions.
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Figure 3.3 – Evolution of the battery charge level and sampling frequency of the sensors
using the Q-learning algorithm
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The agent succeeds in adapting itself to the daily variation of the harvested energy

without prior knowledge about it. However, one problem with this algorithm is that we

have to store the Q-value of each pair (s, a), and it can only be used for discrete state space

and discrete action space. In addition, its convergence time is difficult to estimate and

makes it unusable for applications with time constraints. The battery may be completely

depleted before the learning process is completed. To improve the convergence’s time of

the Q-learning algorithm, different usable solutions have been proposed in the literature.

In the following section, we present the Dyna Q-learning algorithm and the results of a

simulation with identical parameters as Q-learning. The backbone of Dyna Q-learning

algorithm is the Q-learning to which few adjustments are made. And the one advantage

is the adjustment of its learning process, which makes it possible to adapt the learning

speed according to the available processing power.

3.4 Dyna Q-learning

The Dyna Q-learning (Algorithm 2) [73] is a variant of the Q-learning, which also

uses a look-up table to store the Q-values. One drawback of the Q-learning algorithm is

its slow convergence; the Dyna Q-learning is proposed to accelerate this convergence. To

achieve this, Dyna Q-Learning uses a partial and deterministic model of the environment

to learn faster using the previous experiences. The last transition and the associated

reward are stored in memory for each visited state. The algorithm uses this model to

improve the evaluation function at each episode or even independently during a break in

the decision making process. It selects a state s already visited and chooses an action a

already performed, and then it uses the transition st+1 and the reward r stored in the

memory to update the Q-value Q(s, a). The number of updates per sampling period is

noted N .

We use the same parameters α, γ and time slot as for the Q-learning algorithm.

Increasing the value of N reduces the learning phase up to a certain limit. However,

this increases the number of computations as well, which results in an increase of the

energy consumption. We choose to set N to 10, this value was determined after a series of

experiments to improve the convergence rate; higher values did not accelerate the learning

as much.
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Algorithm 2 Dyna Q-learning [73]

Initialize Q(s, a) arbitrarily
The agent observes the initial state s0
for each decision epochs do

Choose a from s using policy derived from Q
Take action a, observe the new state st+1 and the associated reward r

Q(st, at)← Q(st, at) + α
(
rt + γmax

at+1
Q(st+1, at+1)−Q(st, at)

)
m(st, at)← st+1, rt
for i = 1 to N do
s← random visited state
a← random visited action
st+1, rt ← m(st, at)
Q(st, at)← Q(st, at) + α

(
r + γmax

at+1
Q(st+1, at+1)−Q(st, at)

)
end for

end for

Simulation results for Dyna Q-learning

We simulate the Dyna Q-learning in the same conditions as for the Q-learning during

21 days. Figure 3.4 shows the evolution of the battery charge level and the sampling

frequency of the sensors. At the beginning of the simulation (1), the agent has no prior

information about its environment and takes random actions as can be seen with high

variation in the sampling frequency. Around day 13, the sampling frequency follows the

battery behaviour during the charge and discharge (2). At day 18, the sampling frequency

reached the maximum at 1 Hz while the battery is fully charged (3). We can consider that

the value converges around day 13.

The results show that the Dyna Q-learning algorithm increases the convergence speed

of theQ-value by 17% in this example as compared to theQ-learning simulation. The agent

can take better decision about its sampling frequency to adapt itself in function of the

evolution of the battery load. However, as the convergence of the Q-values is accelerated,

the memory requirement increases. Indeed we need a look-up table (A × S) for the Q-

values and 2 others of the same size to store the transitions and the associated rewards.

The problem is that embedded systems have often small memory capacity. To reduce the

use of memory, another approach consists in computing the different possible Q-values

using a neural network such as Deep Q-learning. The memory only stores the weight of

the neurons, allowing a larger MDP.
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Figure 3.4 – Evolution of the battery charge and sampling frequency of the sensors
using the Dyna Q-learning algorithm

3.5 Neural network approach: Deep Q-learning

Deep Q-learning (Fig. 3.5) [8] uses a neural network to take advantage of their ability

to generalize the learning. Instead of storing the Q-value for each state-action pair in a

look-up table, a neural network takes as an input the state and for each possible action

computes the expected reward (Fig. 3.5). We take the biggest Q-value of this output

to find our best action. Then after the episode, we update the neural network with the

real reward. Equation 3.4 shows how the algorithm adjusts the network’s weights using a

gradient descend algorithm.

∆w︸︷︷︸
Change in

weights

= α[(R + γmax
a′

Q̂(st+1, a
′, w)︸ ︷︷ ︸

Maximum possible

Q-value for the next state

)− Q̂(s, a, w)︸ ︷︷ ︸
Current

predicted

value

] ∇wQ̂(s, a, w)︸ ︷︷ ︸
Gradient of our

current predicted

Q-value

(3.4)

The change in weights depends on the difference between the predicted value for the

current state, the highest value during the next state, and the gradient of the predicted

value, i.e. ∇wQ̂(s, a, w).
Experience replay [74] [75] helps to avoid forgetting previous experiences and reduces
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Algorithm 3 Deep Q-learning with Experience Replay [8] [74]

Initialize replay memory D to capacity N
Initialize action-value function Q with random weights
for each decision epochs do

Initialise sequence s1 = x1 and preprocessed sequenced φ1 = φ(s1)
With probability ε select a random action at
otherwise select at = max

a
Q∗(φ(st), a; θ)

Execute action at and observe reward rt
Set st+1 = st, at, xt+1 and pre-process φt+1 = φ(st+1)
Store transition (φt, at, rt, φt+1) in D
Sample random mini-batch of transitions (φj, aj, rj, φj+1) from D

Set yj =

 rj for terminal φj+1
rj + γmax

at+1
Q(φj+1, at+1; θ) for non-terminal φj+1

Perform a gradient descent step on (yj −Q(φj, aj; θ))2

end for

Figure 3.5 – Deep Q-learning

correlation between the experiences. Because of high correlation between actions and

states, the weights of the network are highly variable. At each interaction with the en-

vironment, we receive a tuple (state, action, reward, new state) and use it to learn the

best action to take. The problem is that this information is obtained sequentially and

the network tends to forget the previous experience since it overwrites them with new

experiences. With the experience replay, we decrease this problem by storing the previous

experiences in a replay memory while interacting with the environment, thus the network

is fed with only a small batch of experiences. Memory size has a non-monotonic effect on

learning rate, too much or too little memory both can slow down learning [76]. Depending

on the MDP used and the application, the size of the memory replay may be larger than

the memory used with a look-up table approach.

The capacity of generalization of ANNs is a major advantage compared to look-up

62

RL-based Energy Management for Autonomous Cyber Physical Systems Yohann Rioual 2020



tables. A neural network does not need to explore all state-action pairs. The network can

find good solution without exploring the states by generalizing its knowledge. However,

Deep Q-learning needs different experiences to avoid overfitting. Overfitting appears when

the network fails to reliably predict future observation.

This algorithm also needs to adjust some parameters as the previous ones. The learning

rate α determines how fast the new experience replaces the old ones, and a neural network

is more sensitive than a look-up table to this parameter evolution since it impacts all the

weights and thus all the computed rewards. So, we set α to 0.1, which is a balance

between network stability and convergence speed. The value of α is determined after

several experiments. The discount factor γ still represents the importance given to the

future reward over the immediate one and we set it to the same value (0.8). We tested

different hyperparameters for our neural network and finally, we selected a neural network

composed of 1 input layer neuron, 1 hidden layer of 20 neurons, and 10 neurons in the

output layer. An overly complex or simple network will not be efficient at all. The chosen

activation function 1 is a rectifier (Fig. 3.6) for all layer except for the output layer, which

uses a linear function. We store in a memory the last 10 experiences in order to use them

as a batch.

x

y

Figure 3.6 – Activation function: linear rectifier (Eq. 3.5) (ReLU [77])

f(x) = x+ = max(0, x) (3.5)

Simulation results for Deep Q-learning

As for the previous algorithms, we simulated the system over a period of 21 days.

Figure 3.7 displays the evolution of the battery load and the sampling frequency of the

1. For more information, the first chapter presents how a neural network works.
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Figure 3.7 – Evolution of the battery charge and sampling frequency of the sensors
using the Deep Q-learning algorithm

sensors. At the beginning (1) the sampling frequency is low and increases after day 17 (2).

Nevertheless, we start to observe the daily variation around day 4. At the end the sampling

frequency increases and the daily variation disappears. The agent loses the information it

learned at the beginning.

The Deep Q-learning algorithm achieves an energy management of the node. However,

it forgets over time the daily variation information. A way to improve the learning is to

store only relevant information in the memory, but the question is how to determine which

information is relevant.

The network employed here is based on the one used in [8]. However, different op-

timisations have been proposed during the last years such as Double Q-learning [78],

Prioritized Double Q-learning [79], etc. [80] compares and combines all the optimisations.

Nevertheless, all these optimisations are not suitable for embedded devices. Double Q-

learning requires a second identical ANN to be trained independently, which increase the

computational and memory needs.

3.6 Comparative results

We conducted simulations on three different reinforcement learning algorithms using

the same decision process. The goal of each algorithm was to manage the energy consump-
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tion of an identical marine buoy equipped with solar panels. The variation in the harves-

ted energy during the day makes the energy management challenging. They all succeed

to adapt the sampling frequency to this daily variation. These algorithms use Q-values

to determine the best action to select and the convergence of the Q-values is difficult to

anticipate. The algorithms have probably not reached the optimal policy but provide good

enough decision to preserve the system’s battery during the deployment.

The choice of the RL algorithm to use is not straightforward and depends on appli-

cation requirements, computational capabilities and available memory. Moreover, there

are numerous different embedded systems and their capacity in memory and processing

vary a lot. Each algorithm has its own advantages and so, the choice of the trade-off will

depend on the context.

In order to provide designers with guidelines, we compare the algorithms using four

criteria : the computational requirement, the memory needs, the learning speed and the

stability of the algorithm. The computational requirement is important for an embedded

system. Indeed, these systems have limited computing capacity and often time constraint

applications. Moreover, they consume energy to compute the Q-value and it would be

counter-productive to consume more energy or to take more processing time for the energy

management algorithm than for the main application. The Q-learning algorithm is the

least processing-hungry algorithm since it computes only a value at each iteration. The

Deep Q-learning computes all the Q-values at each iteration and the training of the neural

network requires processing too.

Memory usage is another parameter to consider since the memory available on a micro-

controller unit is often low (few kB). The neural network approach needs less memory

than a look-up table for large environment since it stores only the weights of the neurons,

whereas the look-up table stores all the Q-values. Moreover, it is possible to further reduce

the memory usage of a neural network by reducing the number of neurons but we decrease

the accuracy of the computed Q-values. For instance, the presented MDP used only 10

states to represent the battery charge level, if we want to increase the number of states

the look-up table size increases, when the NN size stay the same.

The learning speed requirement depends on the application. Reinforcement learning

approaches can only be used when the system can make errors safely and learn. However,

some applications need to take good decisions quickly after the deployment of the node.

Deep Q-learning surpasses other algorithms on the learning speed. In fact, the neural net-

works have the property to generalise the learning, which makes the knowledge obtained

65

RL-based Energy Management for Autonomous Cyber Physical Systems Yohann Rioual 2020



for the Q-values in a particular state impact the Q-values computed in all the different

states. In a large environment, the amount of time required to explore each state to create

the required Q-table would be unrealistic. A intermediate solution to have the benefits of a

good convergence speed while using a look-up table, is to implement the Dyna Q-learning

algorithm and then disable the model of the environment when the learning rate α is low

reducing the memory usage.

The stability depends on the impact that new information can have on the algorithm.

The stability of the neural network approach is lower; indeed, with each network update,

all future Q-values are modified. While a new experience with Q-learning only changes one

Q-value and only once. With the Dyna Q-learning, this Q-value can be modified several

times before repeating the experiment with the use of a partial model. This criterion

becomes important when the learning ends because a bad experience can modify the

agent’s behaviour, which is why the value of α is modified as the exploration progresses,

reducing this risk.

Figure 3.8 – Algorithms comparison in terms of memory and computational require-
ments, learning speed and stability

These different parameters (Fig. 3.8) should give designers the guidelines to choose the

most appropriate algorithm for the energy management of the system they are developing.
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After choosing the algorithm, the designers must determine the correct parameters for

their application either based on experience or empirically.

Conclusion

RL approaches allow a system to adapt dynamically to changes in its environment.

There is a lack of metrics to help designers choose an appropriate approach for a given

application. This chapter presented a classification to help designers to select an appro-

priate solution depending on their system’s constraints. These criteria are learning speed,

stability as well as memory and computational requirements. The comparison shows that

each approach has its own advantages and drawbacks. The choice of the approach depends

on the application and the trade-off between computation and memory used.

However, our decision process does not satisfy completely the Markov propriety. A

stochastic process has the Markov property if the conditional probability distribution of

future states of the process depends only upon the present state, not on the sequence

of events that preceded it. Nevertheless, the energy’s consumption vary with the ageing

of the component and a hardware failure such as a solar panel destruction will influence

greatly the transition probability. That is why we always keep α greater than 0, so the

learning never stops.

Once the choice of the appropriate algorithm is done, another effort must be done to

propose an suitable reward function. There is a lack in the literature on how to design a

good reward function to give the correct behaviour to our agent. In the following chapter,

we will present our proposal for a methodology to help to conceive the reward function.
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Chapter 4

Reward Function Design
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As explained in the conclusion of the previous chapter, RL algorithms have several

parameters that must be configured. The reward function design is an important task

when we use an RL algorithm. Indeed, the choice of an appropriate reward function

is difficult since this function determines the behaviour of the system, choosing it is an

essential task for the system designer. Still, the literature on RL algorithm rarely discusses

the choice or the design of the reward function.

This chapter is organized in three parts. First, we evaluate different reward functions.

The objective of these functions is to manage the energy of a body sensor node for a

cardiac monitoring application. This work’s goal is to identify the most suitable variables

to use in order to design a good reward function for the energy management of a sensor

node. In a second part, we propose a new adaptive reward function that can adjust the

balance between the node’s performance and its energy consumption according to the

battery charge level. Finally, we improve the proposed reward function to reduce the

number of parameters to be determined for the function to be as efficient as possible.

This step makes the reward function more easily applicable.

4.1 Reward Function Evaluation

The work presented in this section was realised during a three-month research visit

in Tallinn University of Technology (TalTech), Thomas Johann Seebeck Department of

Electronics, May-June 2018.

4.1.1 Presentation of the use case

In order to evaluate the performance of different reward functions, we use a simple

application of a Wireless Body Area Network (WBAN): monitoring of the cardiac activity.

The objective is to manage the energy consumption of a sensor node fitted on a human

chest to monitor the cardiac activity for a non-medical application (Fig. 4.1). The heart

beat is measured during 10 seconds. Then, data is sent immediately to a smartphone to be

processed. The smartphone is used as a gateway and communicates with the node using

a Bluetooth Low Energy (BLE) transceiver. The node does not continuously monitor the

cardiac activity; after each measurement it enters in a sleep mode to minimise the energy

consumption. The period of sleep, between two measurements, is variable and lasts from

1 to 60 minutes.
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Sensor node

Gateway
(smartphone)

BLE

Figure 4.1 – Sensor node fitted on a chest to monitor the heart beat

The sensor node is equipped with an optical heart rate detection sensor, a low-power

micro-controller unit (MCU), a BLE transceiver and a battery with a capacity of 100 mAh.

The energy consumption of each component is summarised in Table 4.1. The energy

consumption of the MCU depends on the processor clock frequency; the maximum fre-

quency is 32 MHz, implying a maximum current consumption of 7.2 mA. As can be seen

in Table 4.1, the communication unit in active mode consumes more than the two other

components combined. When the node is in sleep mode, it still consumes energy except

the communication unit that can be fully switched off.

Component Active mode Sleep mode

Heart rate sensor 1.6 mA 0.12 mA
Micro-controller 225 µA/MHz 0.93 µA
BLE transmitter 10.5 mA 0 µA (turned off)

Table 4.1 – Node components and respective current consumptions

A kinetic motion energy harvester is added to the system in order to increase the

amount of energy available and extend the node’s lifetime. This energy harvester converts

the energy of the node’s wearer movements into electrical energy and is presented in [81].

Although the harvested energy is low, it still can extend the node’s lifespan; Table 4.2

shows how much power can be harvested according to the activity of the wearer. These

data are extracted from [81].

We use the dominant frequency of motion, Fm, to identify which activity is performed

by the wearer. We obtain Fm by determining the maximum spectral component of the

Fourier Transform of the acceleration a(t). Since the harvested energy is uncertain and
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Activity Power harvested

relaxing 2.4 µW
walk 180.3 µW
run 678.3 µW

Table 4.2 – Kinetic motion’s power harvested for three different activities

depends on the activity of the wearer, the use of an RL approach is encouraged to manage

the node’s consumption by adjusting its sleep duration and its processor’s clock frequency.

4.1.2 Presentation of the decision process

In this work, we compose a set of actions with different processor frequencies (Fp) and

periods between each measurement (Ps) (Table 4.3). For instance, Action 1 has a processor

frequency of 32 MHz and a measurement every minute, whereas Action 3 has a processor

frequency of 4 MHz and a measurement every 5 minutes. Thus, Action 1 consumes more

current than Action 3. All actions have different energy consumption levels since they

depend on the processor’s frequency in active mode and its consumption in sleep mode

(see the fourth row in Table 4.3).

Action Fp Ps Average current consumption Average energy consumption

1 32 MHz 1 min 0.6278 mA 523 nJ
2 4 MHz 1 min 0.4873 mA 406 nJ
3 4 MHz 5 min 0.2292 mA 191 nJ
4 4 MHz 20 min 0.2044 mA 170 nJ
5 1 MHz 60 min 0.1926 mA 160.5 nJ

Table 4.3 – Set of actions with both different processor frequencies (Fp), periods between
each measurement (Ps), and the associated average current consumption

The state space is divided into three different parts corresponding to the activity of

the wearer (Table 4.2). We use the dominant frequency motion Fm, which is correlated

with the energy the node harvests to consider our state; a high value of Fm corresponds

to more energy being harvested and a low value of Fm corresponds to less energy being

harvested. The current state is identified with the value of Fm and corresponds to an

activity. The activity can be considered high (i.e. running) if Fm > 2 Hz , moderate (i.e.

walking) if 2 Hz ≥ Fm > 1 Hz or low (i.e. relaxing) if Fm ≤ 1 Hz.
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4.1.3 Experimental Results

First of all, it should be noted that the harvesting capabilities of the kinetic motion

harvester are not sufficient to fully recharge the sensor node’s battery. So we seek and

expect to reduce the node’s consumption when the harvested energy is low. We test five

different reward functions to identify which parameters have a significant impact on our

system’s behaviour. To avoid divergence in the Q-values, the values of the different reward

function are bounded to [-1, 1].

There are different constraints when designing the system and most of them are conflic-

ting; for instance maximizing the number of measurements while also reducing energy

consumption. The main purpose of the RL algorithm is to find the equilibrium point to

respect these constraints. To this end, the first and second reward functions use a para-

meter β to balance the equilibrium point according to what is considered most important

between performance and battery level [53].

The first reward function (R1) seeks to balance the conflicting objectives between the

sleep duration Ps and the energy consumption of the sensor node. Br(t) is the residual

energy in the battery’s node at time t.

R = β ∗ min(Ps)
Ps

+ (1− β) ∗ (Br(t)−Br(t− 1)) (R1)

The second reward function (R2) is similar to the first one but instead of using the

energy consumption, it only uses the residual energy of the battery’s node at time t.

R = β ∗ min(Ps)
Ps

+ (1− β) ∗ Br(t)
Bmax

(R2)

The third reward function (R3) does not consider the sleep duration Ps but only the

energy consumption. The objective is to find the less consuming operating mode without

taking care of the performance.

R = Br(t)−Br(t− 1) (R3)

Finding the right setting for β is not trivial, that is why the fourth reward function

(R4) uses the product of the sleep duration Ps and the residual energy Br(t). Indeed, the
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result is maximum when both values are maximum.

R = min(Ps)
Ps

×Br(t) (R4)

The primary goal is to adapt the energy consumption to the activity of the wearer.

So, in the fifth reward function (R5), we use the dominant motion frequency Fm which

determines the activity. The aim is to minimise the difference between the normalised Fm

and the energy consumption; a cosine function restricts the reward to [−1, 1]. The reward

is maximised when the difference is near to 0. Moreover, this reward function eliminates

the β parameter that is not trivial to adjust. N is the rescaling function and consists in

rescaling the range of features to scale the range in [0, 1].

R = cos
(
N (Fm)− (Br(t)−Br(t− 1))

2

)
(R5)

We simulate a week of node’s deployment to observe the evolution of the battery’s

charge level. The activity changes every 30 minutes, and the agent chooses an action

(Table 4.3) every 20 minutes. The activity and the decision change at different times,

thus the energy harvested has changed when the agent chooses an action. Moreover, the

energy harvested fluctuates around 20% the values of Table 4.2. Figure 4.2 shows the

average energy consumption of the node according to the activity identified with the

dominant frequency of motion, Fm. The parameter β is fixed at 0.3 since our primary goal

is to adapt the node’s consumption, i.e. we give more importance to the energy factor.

The results show that the choice of the reward function has a significant impact on the

average current consumption; while some reward functions yield the expected behaviour,

others adapt poorly to the wearer’s activity and others do not yield the correct behaviour

at all, as discussed in what follows.

The expected behaviour of the node is to adjust its energy consumption depending on

the harvested energy. Thus, during a physical effort, when the harvested energy is high,

the node realises more measurements. A second objective is that the node needs to survive

at least a week to reduce the number of human intervention to recharge the node. This

second objective is achieved for all the reward functions.

I Reward function R1 computes the reward using the sleep time and the energy

consumption of the node. This function produces a maximal value when the sleep time and

the energy consumption are low. It successfully adapts the energy consumption according
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Figure 4.2 – Normalised average energy consumption of the node according to 1) the
activity of the wearer and 2) the reward function used within the Q-learning algorithm.
R1, R2 and R5 behave as expected since they allow the node to consume more when more
energy is harvested.

the activity, increasing the node’s consumption when the harvested energy increases. A

drawback may be how to best choose the β parameter value.

I Reward function R2 computes the reward with the sleep time Ps and the battery’s

residual energy. In the same way than the reward function R1, it successfully adapts

the energy consumption according the activity, achieving lowest energy consumption as

the reward function R1 in 2 activities (walking and running). Furthermore, both reward

functions share the same drawback, i.e., the choice of the value of the β parameter.

I Reward function R3 computes the reward only using the node’s consumption. It fails

to adapt the node’s behaviour according to the harvested energy. It does not make any

difference between the activities; however, it succeeds to minimise the energy consumption.

At the end of the simulation, the battery charge is still above 75%. Nevertheless, the

frequency measurements is the same regardless of the activity.

I Reward function R4 computes the reward with the product of Ps and the battery’s

residual energy. This reward function does not have a parameter to tune, and it is easy

to compute. Unfortunately, it fails to adjust the node’s consumption according to the
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harvested energy. The reward function increases the node’s consumption when the wearer

is relaxing (i.e. the energy harvested is low), decreases it when the wearer is walking

and then increases the node’s consumption when the wearer is running (i.e. the energy

harvested is maximal). This is obviously not desired and is due to the fact that reward

function (R4) is more influenced by the sleep time Ps than by the consumption of the

sensor node.

I Reward function R5 computes the reward with the normalised value of the dominant

frequency of motion Fm and the node’s consumption. The reward is maximal when the

difference between the energy consumption and the normalised dominant frequency of

motion is close to 0. The reward function R5 fulfils the different objectives we had set at

the beginning. As there is no parameter to tune, this reward function can be used easily

in this application. Nevertheless, the absence of this parameter makes this function less

appropriate for other applications with different requirements.

Reward function Configurable Energy consumption Compliance with the objectives

R1 FFF FF FFF
R2 FFF FF FFF
R3 – FFF –
R4 – F –
R5 – FF FFF

Table 4.4 – Evaluation of the different reward functions

The overall evaluation of the five reward functions is summarised in Table 4.4. Reward

functions R1 and R2 allow to regulate the importance given to the energy consumption

according to the application requirements by increasing or decreasing the value of β,

whereas reward functions (R3) and (R4) are not relevant to adapt correctly the energy in

a sensor node. The correct behaviour of the node can be obtained by using a β parameter to

balance energy consumption and performance (R1, R2). However, it is necessary to adjust

this parameter. Using the dominant motion frequency in R5 removes this parameter and

still achieves the right behaviour. However, this reward function is less modular. It allows

adapting the energy consumption according to the activity but does not take the sleep

duration into account.

In this section, we have experimented with different reward functions in a series of

simulation to identify the best design. We find out that including a balancing parameter

to adjust the trade-off between performance and energy consumption is a good solution.
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However, this design requires a tuning of its parameter. The best tuning is found by an

expert or empirically. In the following sections, we present two reward functions designed

to adjust the balance between the battery charge level and the performance depending on

the battery charge level.

4.2 Design of a Piecewise Reward Function

As seen in the previous section, the use of a balancing parameter allows a designer to

design a reward function that complies with the objectives. Moreover, the use of a balan-

cing parameter makes the reward function configurable, either to maximize a performance

parameter or to preserve the battery’ energy. In this way, we propose a reward function

in which the configuration changes depending on the battery level (Equation 4.1).

R =



Fs × ρ1 +B × (1− ρ1) B ≥ 75%
Fs × ρ2 +B × (1− ρ2) 75% > B ≥ 50%
Fs × ρ3 +B × (1− ρ3) 50% > B ≥ 25%
Fs × ρ4 +B × (1− ρ4) otherwise

(4.1)

where 1 ≥ ρ1 > ρ2 > ρ3 > ρ4 ≥ 0, Fs the sampling frequency and B is the charge of the

battery.

When the battery is fully charged, it is useless to preserve it and it possible to maximize

the performance. Whereas, when the battery is discharged, it becomes really important

to restrict the energy consumption in order to recharge the battery and extend the node’s

lifetime. A difficulty with this reward function, is its adjustment. In Equation 4.1, the

battery is divided into four equal-sized parts; however, this may be different according to

the application or the node. Moreover, the parameters ρ1,2,3,4 must be selected and a poor

choice will make the reward function less effective or even not effective at all.

To evaluate the proposed reward function, a simulation is conducted for the deploy-

ment of a buoy near Lorient, France, during 21 days. The buoy use case presented in

Chapter 3 is preferred instead of the body sensor node. Indeed, the body sensor node

does not harvest enough energy to recharge the battery, and the reward function in Eq.

4.1 requires to have different battery charge cycles for the agent to converge. The Q-

learning algorithm is applied with the proposed reward function (Eq. 4.1). The value of

the learning rate α is computed using the same equation as previously (Eq. 3.3), and we

set the value of the discount factor γ to 0.8. The agent chooses an new action every 30

77

RL-based Energy Management for Autonomous Cyber Physical Systems Yohann Rioual 2020



minutes to let the battery change.

Several experiments have been conducted to find the most suitable values for the

parameters ρ1,2,3,4. We found out that the best values are: ρ1 = 1, ρ2 = 0.6, ρ3 = 0.3,

ρ4 = 0. Thus, when the battery is more than 75% charged, the reward is computed only

with the frequency of measurements. When the battery level is between 75% and 50%,

the reward is computed with both frequency and battery level, but the frequency has

more importance. It is the opposite when the battery level is between 50% and 25%, the

reward start to preserve the battery’s energy when the energy harvested is not sufficient to

recharge it. If the battery charge level decreases below 25%, the reward is computed only

with the battery level in order to preserve the node’s energy. The results of a simulation

using these values for the reward function are presented in Figure 4.3.
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(1) The learning begins.
The agent has no prior 
information about its 

environment

(2) The agent finds a behaviour for
the adaptation of  energy daily variation

(3) The battery charge level increases,
the agent has not enough informations

to find the correct behaviour
(4) The adaptation of daily variation is lost,
new knowledge has changed the behaviour 

(5) When the battery charge level decreases,
the frequency decreases as well 

Figure 4.3 – Evolution of the battery charge level and frequency measurements of sensors
using the Q-learning algorithm with the reward function of Equation 4.1

At the beginning of the deployment (1), the agent has no prior information about

its environment and takes random actions to explore it. When the battery decreases (2),

the agent adapts the frequency of measurements and finds a behaviour which adjusts the
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frequency according to the daily variation in the battery charge level. When the battery

charge level increases around day 6 (3), the agent has not enough information in the

new state to find a correct behaviour. And when the battery decreases again (4), the

first knowledge learned has been replaced with the new information; the agent lost the

behaviour which adjusts the frequency of measurements according to the daily variation.

Nevertheless, at the end of the simulation (5), the agent’s behaviour adapts correctly the

frequency to the variation, this behaviour receives enough rewards to be reinforced.

The battery does not decrease enough, the agent never explores the environment when

the battery level is critical. So a second experiment is conducted where the battery capacity

is reduced to 3.2 mA/h instead of 5.2 mA/h. The result of this simulation is shown in

Figure 4.4.
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below 50%, the frequency decreases more

Figure 4.4 – Evolution of the battery charge level and measurements frequency of sensors
using the Q-learning algorithm with the reward function 4.1

At the beginning of the simulation (1), the agent has still no prior information about

its environment. Then, it successfully adapts to the daily variations in the battery charge

level (2). And when the battery level decreases below the 50% of charge level (3), the agent
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decreases the frequency of measurements more than during the previous simulation. The

results show that the proposed reward function is suitable to preserve the battery and to

maximize the performance when the battery is recharged.

Nevertheless, a difficulty with this reward function is to determine the values of the ρ

parameters. The adjustment of the parameters is based on the expertise of the designer or

is determined empirically. To obtain the best behaviour with the use case, the parameter ρ

used was determined empirically, but it can be different according to the application and

the prevalence of the performance or the energy. For such an approach to be accepted, it

is important to avoid to add extra-parameters to tune; in such case the reward function

becomes more complex and the behaviour of the agent becomes less predictable. Thus, in

the following section, we present an improvement of the proposed reward function where

the parameters ρ1,2,3,4 are removed and the different levels too. This improvement elimi-

nates the adjustment step, making it easier to use the new reward function. Furthermore,

the performance of the new reward function is similar to that of the previous one.

4.3 Continuous Reward Function to Balance the Per-

formance and the Energy Consumption

The parametrization of the different variables used in a RL approach is time-consuming

and add more complexity. So, the designer needs to reduce the number of parameters to

be tuned in the reward function. The previous reward function is efficient and accelerates

the learning speed compared to the reward function used in Chapter 3 (Eq. 3.1). The

values of the different parameters can be adjusted to correspond perfectly to the desired

behaviour for a given application. Nevertheless, most sensor nodes are used for environ-

mental monitoring applications, and the main objective is to extend the node’s lifetime.

So, in this section, we present a reward function that reinforces the same behaviour as

the previous one, but without any parameter to tune.

Indeed, while experimenting different values for ρ, we observe that this parameter’s

value varies as the battery level. Using this observation, we design a new reward func-

tion without parameter to tune (Eq. 4.2) to balance the battery charge level and the

performance:

R = Fs ×B +B × (1−B) (4.2)

where Fs is the frequency of the measurements and B the battery level. The parameters
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ρ1,2,3,4 have been replaced by the value of the battery charge level.

This reward function is a generalization of the previous one. The reward is computed

mainly with the frequency of measurements when the battery is fully charged, and mainly

with the battery level when the battery level is low. Thus, this proposed reward function

requires no additional parameter to adjust.

We conducted a simulation on the marine buoy use case 1. We simulated the deploy-

ment of the buoy during a period of three weeks near Lorient, France. We applied the

Q-learning algorithm with the same value for α (Eq. 3.3) and γ = 0.8 (as in both Chapter

3 and the previous section).
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the frequency decreases as well 

(4) The maximum frequency decreases
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Figure 4.5 – Evolution of the battery charge level and measurements frequency of sensors
using the Q-learning algorithm with the reward function in Eq. 4.2

The simulation results (Fig. 4.5) show that the agent adapts correctly the measu-

rements frequency to the battery’s behaviour. At the beginning of the deployment, the

battery level decreases quickly and the agent adjusts almost immediately the frequency

of measurements. Then, when the battery level increases due to the harvested energy,

the agent reacts and increases the frequency of measurements as well. The frequency of

1. presented in Chapter 3
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measurements is maximum when the battery is fully charged. Before the end of the simu-

lation, the agent achieves the correct behaviour. The agent is able to adjust the frequency

of measurements to the battery charge in less than three days, when it needs more than

two weeks to adapt in the previous experiments.

The proposed reward function is able to improve greatly the learning speed. Further-

more, it adjusts the balance between the performance and the battery level according to

the battery level without any balancing parameter. A second experiment is done with a

smaller battery in the same way than for the previous reward function. The results of this

experiment are shown in Figure 4.6.
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Figure 4.6 – Evolution of the battery charge level and measurements frequency of sensors
using the Q-learning algorithm with the reward function in Eq. 4.2

At the beginning of the deployment (1), the agent has no prior information about

the environment. However, when the battery charge level decreases (2) the agent cor-

rectly adjusts the frequency of measurements, even if the daily variation are not respected

(3). Then, the battery charge level increases due to the energy harvested and the agent

increases the frequency as well. At the end of the simulation (4), the agent seems to res-
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pect the daily variation in the battery. To confirm the convergence of Q-values with the

proposed reward function, we conducted a slightly longer simulation of 24 days.
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Figure 4.7 – Evolution of the battery charge level and measurements frequency of sensors
using the Q-learning algorithm with the reward function 4.2

The simulation confirms the convergence of the Q-values. Furthermore, the agent ends

up complying with the daily variation. The difference between the two simulations are

due to the exploration of the environment. Indeed, during the exploration, the agent

takes random actions but the agent’s policy converges to the same behaviour.

When compared to the previous reward function, we observe that the new proposed

reward function adapts more efficiently the frequency to the battery charge level. This

reward function improves the performance when the battery charge level is high. Another

important point is that the reward functions in Eq. 4.1 and Eq. 4.2 are both suitable

regardless the battery capacity. The system is seen by the agent as a black box, it does

not need to know the different components.

For our application, the performance parameter is the frequency of measurements,

but it may be different depending on the application. The reward function should work
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regardless of the performance parameter used. Indeed, better performance implies higher

energy consumption.

Conclusion

The comparison of different reward functions shows that the reward function is a

key component in the performance of RL algorithm. The reward function affects greatly

the learning capabilities and the learning speed. Nevertheless, there are too little details

about any design methodology that would provide guidelines of the reward function in

the literature. A non-expert will have difficulties to use a RL approach for an energy

management problem. In this chapter, we compared different reward functions to identify a

efficient way to design it. We found that the use of a parameter to balance the performance

parameter and the battery level works well. And it allows the designer to set more weight

for a performance criterion or to save battery power.

We proposed two reward functions to balance the performance parameter of the node

and the battery charge level. The objective is to preserve more the battery’s energy when

the battery charge level is low and to maximize the performance when the battery is fully

charged. The first proposed reward function uses several functions depending on the bat-

tery charge level. The functions are similar except for the value of the balancing parameter.

The function used in the simulation has four different levels (i.e. different functions). The

results show that the agent is able to adjust the frequency of the measurements according

to the battery charge level. The main drawback of this reward function is the different

parameters to tune. Since there is no existing solution to determine the best values imme-

diately, these parameters’ values are chosen empirically or based on the expertise of the

designer.

The observation of the first reward function experiments highlight the fact that the

balancing parameter decreases when the battery charge level declines. Thus, we proposed a

second reward function where the parameters to tune are removed, which makes it simple

use. And the agent acquires a correct behaviour more quickly than with the previous

reward function. Moreover, when the battery charge level decreases, the agent decreases

more efficiently the frequency of measurements. Since there is no parameter to adjust

in the reward function, it is easier to use the propose function. The main drawback is

that this reward function is less customizable to be suitable for all different applications.

Nevertheless, it complements naturally the first proposed reward function.
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Another important point is that an experiment with a smaller battery capacity shows

the same results; the proposed reward functions work independently of the node’s com-

ponents.

A limitation with the single agent approach in RL is the size of the MDP. Indeed,

it is really hard to train a single agent on a large MDP, one needs a lot of data even if

using NNs. And to control the energy consumption with a finer grain, one needs more

precise actions, which increases the MDP. A solution is to decompose the problem into

smaller problems. A single agent can be decomposed into several agents with smaller

MDP which makes the RL approach more scalable. In the following chapter, we explore

a new approach for the energy management of a sensor node. We apply a multi-agent

reinforcement learning to control independently the different task done by the node. A

sensor node has several sensors with different energy consumption which have an influence

variable on the battery. So, we propose a new algorithm to adjust separately the frequency

of measurements for each sensors according to the energy consumption of each.
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In the previous chapters, we have presented different approaches in RL for energy

management and we proposed a reward function to adjust the performance dynamically

depending on the battery charge level. We have seen in Chapter 1 that single agent

approaches are limited by the size of the MDP. A too large decision process slows the

learning speed and makes its use in embedded systems difficult. A possible solution uses

NNs to overcome this issue, but it needs higher processing capabilities. Another solution

is to divide a complex problem modelled with a large MDP into several smaller problems

modelled with small MDP and to solve independently these problems. A smaller MDP

reduce the time required to explore all actions. Thus, in this chapter, we explore a different

solution as compared to previous chapters, i.e., a Multi-Agent Reinforcement Learning

(MARL).

A sensor node usually has different sensors with different energy consumptions. When

the battery is being discharged, the reduction of the measurement of each sensors have

different impacts on the overall energy consumption of the node. Logically, we want to

control the measurement frequency of each sensor independently, and be able to reduce

sooner the sampling of the most consuming sensors in order to preserve the battery. A

MARL approach is well suited to deal with such an issue, by dividing the whole problem

into smaller ones.

The first section presents multi-agent systems and the decentralized learning. Then,

we present a decentralized energy management approach for a sensor node.

5.1 Introduction to multi-agent systems

Before looking at MARLs, let’s introduce multi-agent systems. A Multi-Agent System

(MAS) is composed of multiple interacting agents in a shared environment (Fig. 5.1).

Each agent owns limited information and problem solving capacities; nevertheless, the

local actions taken by the agents affect the global state of the system environment.

The applications of these systems are varied: supply management, swarm robotics,

network routing, assembly line control, transportation, to even economical and medical

domains. Even complex monolithic systems such as traffic lights controlling system [82]

[83] [84], can be broken down into a MAS that organizes the individual agents, each of

which solves a portion of the problem.

The MAS approach corresponds to a more natural decomposition of the problem and

makes the learning more scalable. In fact, decomposing the actions and observations of a
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Figure 5.1 – Multi-Agent Reinforcement Learning in which three agents share the same
environment. Each agent makes an action and the combination of all actions has an impact
on the state of the environment, and each agent receives a reward depending on the state
of the environment.

single monolithic agent into multiple simpler agents not only reduces the dimensionality of

agent inputs and outputs, but also effectively increases the amount of training data gene-

rated per step of the environment. Moreover, a good decomposition of the problem makes

the knowledge learned more transferable across different variations of an environment,

i.e., in contrast to a single super-agent that may over-fit to a particular environment.

An overview of traditional single-agent RL was provided in the first chapter and des-

cribes how an artificial agent can learn an optimal behaviour policy by interacting with

an unknown environment. The primary challenge in MARL is that the RL agents must

consider the actions of the other participating agents in order to learn their policies and

solve the problem successfully. In the following subsections, we present an overview on

multi-agent learning in RL, and a state-of-the-art MARL algorithm, called hysteretic Q-

learning.
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5.1.1 Multi-agent learning

The generalization of the Markov decision process to the multi-agent case is the sto-

chastic game, also called Markov game. A stochastic game (SG) is a tuple 〈n,S,A, T ,R〉
where:

• n is the number of agent;

• S is a state space of the environment;

• A = ∏Ai is the joint action set, where Ai is the action space of an agent i;

• T : S × A × S → [0, 1[ is a transition function specifying, for each state, action,

and next state, the probability of that next state occurring;

• Ri is a reward function, specifying, for each state, action, and next state, the

expected immediate reward for an agent i.

The joint actions of the agents determine the next state and the rewards received by

each agent. If all agents receive the same rewards, the SG is fully cooperative, and all

the agents have the same goal: to maximize the common return. It is then defined as a

Multi-agent Markov Decision Process (MMDP). The objective of each agent is to find the

optimal policy maximizing the expected sum of the discount rewards in the future.

The straightforward extension of centralized Q-Learning to SG considers joint actions

in the computation of the Q-values. Thus, the update equation in a centralized view is:

Q(st, a1
t , · · · , ant ) = Q(st, a1

t , · · · , ant )+

α

(
rt + γ max

a1
t+1,··· ,a

n
t+1∈A

Q(st, a1
t+1, · · · , ant+1)−Q(st, a1

t , · · · , ant )
)

(5.1)

where st+1 is the new state of the environment, ant is the action of the agent n during the

step t, α is the learning rate and γ is the discount factor.

The Qi-table for the learning agent is smaller than a Q-table for a single-agent. But

each agent has only a local view because it has no access to the actions of the others.

Different algorithms have been proposed to manage the coordination between the lear-

ning agents. Among these different MARL algorithms, we find different variant of the

Q-learning such as the distributed Q-learning [85] or the hysteretic Q-learning [86]. We

describe the latter in what follows.
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5.1.2 Hysteretic Q-Learning

The Hysteretic Q-learning algorithm works in cooperative MAS, where a team of inde-

pendent learning agents try to coordinate their individual behaviour to reach a coherent

joint behaviour. Hysteretic Q-learning assumes that each agent has no information about

its teammates’ actions.

In a MARL, the reinforcement received by an agent relies on actions chosen by the

team. So, an agent can be punished because of a bad choice of the team even if it has

chosen an optimal local action. Then, the agent had better chances to give less importance

to a punishment received after the choice of an action which has been satisfying in the

past. In this way, the Hysteretic Q-learning modifies the Q-value update according to

whether the update is a reward or punishment. The update equation (Eq. 3.2) initially

presented in chapter 3 is modified such that:

δ = r − γ max
at+1∈A

Q(st+1, at+1)−Q(st, at)

Q(st, at) =

 Q(st, at) + αδ if δ ≥ 0
Q(st, at) + βδ otherwise

(5.2)

where β < α.

In the following section, we present, as an application case, a decentralized energy ma-

nagement approach for a sensor node, and we show that the proposed approach influences

the sensing agent’s policy according to the energy’s consumption of the corresponding

sensor.

5.2 Decentralized energy management

A sensor node is composed of different hardware modules: processing unit, sensing

unit, communicating unit, harvesting unit, and so on. Furthermore, the sensing unit often

has several sensors with different energy consumptions. We propose to use a decentralized

learning to manage the different modules that compose a sensor node. Figure 5.2 shows

a decomposition of a sensor node where there are two sensors, a buffer to store the data

before their transmission and a communication module.

We have chosen to have one agent for each module. The communication agent op-

timises the data transmission according to the buffer load, whereas the sensing agents
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Figure 5.2 – Distributed Energy Management of a wireless sensor node. Two sensing
agents control the measurement frequency of the anemometer sensor and the atmospheric
sensor, respectively, according to the battery charge level. The measured data fill a buffer,
and a communication agent controls the data transmission according to the filling of the
data buffer.

adjust their sampling frequency according to the battery charge level. The environment

of the communication agent and the one of the sensing agents are different. Nevertheless,

each sensor has a corresponding agent, which interacts with the same environment. Their

actions need to be coordinated. Reducing the sampling frequency also reduces the data

transmissions, so the node overall consumption. However, the sensors do not have the

same energy consumption.

In addition to use a MAS to control the different modules of the sensor node, the

objective of our approach is to adapt the frequency of the measurements of each sensor

according to their energy consumption, and therefore their impact on the overall energy

consumption. Indeed, it is less essential to reduce the measurement frequency of a sensor

with a low energy consumption than for a sensor that consumes more. Adjusting the

sampling frequency of the sensors independently according to their energy consumption

allows a better QoS to be maintained for a longer period of time when the battery charge

level decreases. Thus, we propose a new version of hysteretic Q-learning where the β

parameter, used when the agent is penalized, is adjusted according to the impact of the

sensor’s energy consumption on the overall consumption of the node.

In the following section, we present our approach and the results obtained on a node

equipped with two sensors.
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5.2.1 Independent Management of Sensors

The proposed approach uses the energy consumption of sensors to adjust the policy

of the corresponding agent. So, we propose to use the following methodology to do it.

The first step is to determine the impact of the energy consumption of each sensor on the

overall consumption of each sensor.

1. The radio and the processor are turned off and energy harvesting is stopped; only

one sensor is on and the measurement frequency is 1 Hz.

2. The variation in the battery charge level is then measured after 30 minutes.

3. Then, this sensor is turned off and we turn on the next one, and this step is repeated

for each sensor.

4. We want to use the variation in the battery charge level for each sensor as a

coefficient to modulate the parameter β. So the variations are rescaled between

[0,1] using Equation 5.3.

Ci = Ci∑
k
Ck

< 1 (5.3)

where Ci is the variation measured in the battery charge level for sensor i. At the

end of this step, the impact of each sensor is a value between [0,1], and the sum of

all the impacts equals 1.

5. Once the previous step of the algorithm realized, we apply the hysteretic Q-learning

on the sensing agents. We modified the parameter β to further penalised the most

energy consuming sensors. So, the value of β is determined with the calibration

value Ci obtained for the sensor i.

The update function is modified as the follow:

Qi(st, at) =

 Qi(st, at) + αδ if δ ≥ 0
Qi(st, at) + Ciβδ otherwise

(5.4)

We test our approach with a simulation using the use case of the marine buoy 1. We

select this use case since the buoy is already equipped with two different sensors with

different energy consumption. The results are presented in the following subsection.

1. The marine buoy case is presented in Chapter 3
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5.2.2 Results of the proposed algorithm with the marine buoy

use case

For the simulation, our system is composed of three agents (Fig. 5.2): one for each

sensor and one for the communication. The data mesured by the sensors are stored in a

data buffer waiting to be transmitted. The communication agent used the RL-MAC algo-

rithm [16] presented in the Chapter 2. The reward function used for the communication

agent is detailed as follows:

rk(nb, tr) =



(ns+nr+1) ·Tp

tr−ts − η n
′
b−nb√
B

tr, nb 6= 0, n′b > nb
(ns+nr+1) ·Tp

tr−ts tr, nb 6= 0, n′b ≤ nb

−η n
′
b−nb√
B

tr, nb = 0, n′b 6= nb

1 tr, nb = 0, n′b = 0

(5.5)

where nb and n′b are the numbers of packets in the buffer at the beginning and the end of

the frame respectively, tr is the reserved time where the radio is active, B is the size of

the buffer, Tp is the packet transmission time, ns and nr the number of packets sent and

received during this frame, respectively, and η is a weight to modulate the penalty when

the data buffer fills up.

Our sensing agents use the same MDP as the one uses for the single agent approach

in the buoy use case. Thus, the state space is composed of the battery charge level by

increment of 10%, and the set of actions is the frequency measurements in a range between

0.1 Hz and 1 Hz in step of 0.1 Hz. We applied the reward function proposed in the previous

chapter (Eq. 4.2), and the value of the learning rate α is computed using the same equation

as previously (Eq. 3.3). β is the learning rate when the agent is penalised, so its value is

lower than that of α. Thus, we keep the same value as in the paper [86], which is 0.1. The

value of the discount factor γ is set to 0.8, as previously.

We analysed the policy of the sensing agents in order to study the efficiency of our

approach. The policy of the agent is observed in the look-up table, it corresponds to the

actions maximizing the reward for each state. These values are circle in red in Figure 5.3

and Figure 5.7.

We conducted a simulation of 70 days deployment near Lorient, Brittany. Since the

battery of the buoy cannot last that long, we recharged the battery entirely without delay.

In this way, we avoid having the node being turned off while the battery is charging, this

reduces the simulation duration. We add a penalty of −1 in the reward when the battery
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is discharged, this avoids the agent to discharge deliberately the battery to receive a good

reward with the immediate recharge. In realistic condition, the agent should still receive a

penalty if the battery is completely discharged. Nevertheless, there will be a delay between

the time the node turns off and the time it restarts because its battery has been recharged.

Our buoy is equipped with two sensors i.e., an atmospheric sensor, which consumes 7

mA, and a 3D anemometer, which consumes 55 mA. The calibration of the proposed algo-

rithm has determined that the weight for the atmospheric sensor is 0.1129 and for the 3D

anemometer, 0.8871. These weights correspond to the impact of the energy consumption

of each sensor on the overall energy consumption. Figure 5.3 corresponds to the Q-table

for the atmospheric sensor and Figure 5.7 corresponds to that of 3D anemometer.
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Figure 5.3 – Q-table of the agent for the atmospheric sensor

In Figure 5.3, we can see the Q-values which are based on the immediate reward,

obtained after the taken action, and the expected reward, depending on the discount

factor γ. The expected reward corresponds to the higher Q-value in the new state. We

can observe that when the battery charge level decreases, the Q-value decreases as well.

Thus, the agent will try to select actions that increase the battery level to increase the

expected reward. The three following figures correspond to different part of Figure 5.3.

In Figure 5.4, when the battery charge level is between 100% and 60% (1), the agent’s
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Figure 5.4 – Q-table of the agent for the atmospheric sensor for battery charge level
between 100% and 60%

policy always select the action that maximises the measurement frequency.
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Figure 5.5 – Q-table of the agent for the atmospheric sensor for battery charge level
between 60% and 20%

Then, between 60% and 20% (2) (Fig. 5.5), the agent chooses the action which fixes

the sampling frequency to 0.9 Hz. The reward gives more importance to the battery than

previously. Except between 40% and 30% (3), the action chosen by the agent is to set the

measurement frequency to 1 Hz, due to the fact that the convergence of the Q-values is

not totally complete.

Between 20% and 10% of battery charge level (4) (Fig. 5.6), the most rewarding action

is to set the sampling frequency to 0.8 Hz. For the last 10% (5), the action selected is to fix

the measurement frequency to 0.2 Hz. As we can see in the evolution of the most rewarding

action in the different states, when the battery charge level decreases, the selected action

decreases the frequency measurements as well , and thus, the energy consumption.

In Figure 5.7, we can observe the same trend of Q-value for the anemometer sensor

depending on the battery charge level as in the Q-table for the atmospheric sensor. The

three following figures correspond to different part of Figure 5.7.
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Figure 5.6 – Q-table of the agent for the atmospheric sensor for battery charge level
between 20% and 0%
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Figure 5.7 – Q-table of agent for the anemometer

In Figure 5.8, when the battery charge level is between 100% and 90% (1), the selected

action fixes the measurement frequency to 0.9 Hz. Then, between 90% and 70% (2), the

preferred action is to set the sampling frequency to 1 Hz.

Between 70% and 50% (3) (Fig. 5.9), the most rewarding action is to set the measure-

ment frequency to 0.9 Hz. And between 50% and 30% (4), the picked action is a sampling

frequency to 0.8 Hz.

The selected action increases the measurement frequency to 1 Hz between 30% and

20% (5) (Fig. 5.10), due to the unfinished convergence of the Q-values. When the battery

charge level is between 20% and 10% (6), the picked action is a sampling frequency to
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Figure 5.8 – Q-table of agent for the anemometer for battery charge level between 100%
and 70%
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Figure 5.9 – Q-table of agent for the anemometer for battery charge level between 70%
and 30%

0.7 Hz. Finally, between 10% and 0% of charge (7), the selected action is to fix the

frequency to 0.4 Hz. As we can see in this figure, when the battery charge level decreases,

the most reward action decreases as well. And as compared to the previous policy, we can

see that it start decreasing sooner and faster.
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Figure 5.10 – Q-table of agent for the anemometer for battery charge level between 30%
and 0%

Both agents decrease the measurement frequency when battery charge level decreases.

This is the behaviour we already observed with the use of a single agent with the same

reward function. Nevertheless, we also observe that the sensor with the higher energy
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consumption start to decrease the measurement frequency sooner than the second sensor.

Furthermore, in addition to a finer control of the energy consumption, the main difference

between this approach and a single agent approach is the memory requirement gains.

In fact, we increase a little the computations but we reduces the size of Q-tables of the

sensing agents. In the single agent approach, the look-up table size is 10 × 10 × 10 to

control both sensors, whereas in the proposed approach the cumulative size of the look-up

tables is 2× 10× 10, which represents a decrease of 80% in memory requirements.

When the difference in energy consumption between the sensors is not significant, then

the algorithm works like the hysteretic Q-learning algorithm. Moreover, if there are too

many sensors, the weight of the energy consumption of a single sensor become insignificant

compared to the overall consumption of all sensors. A possible solution may be to cluster

the sensors with similar energy consumptions in the same agent.

Conclusion

The energy management of an embedded system is a difficult problem. Indeed, a

sensor node is composed of different modules, which impacts the energy consumption of

the overall node. The use of a single agent limits the size of the MDP and makes it difficult

to control each module independently. A MARL approach allows the independent control

of the different modules and to separate the optimization of the frequency measurements

and the optimization of the communication. Instead of immediately transmitting data, we

control the transmission depending on the load of a data buffer with a specific agent. This

is a more energy efficient approach. And it is easier to improve a MAS approach since we

can modify only one agent to increase the energy efficiency of the overall sensor node.

Moreover, a sensor node often has several sensors with different energy consumptions.

As the proposed approach controls independently the different sensors on the node, we can

reduce the measurement frequency of the most consuming sensors in a first step, allowing

us to improve the QoS of the system. Furthermore, the data buffer fills up slower, which

also reduces the energy consumption of the communication module.

In addition, the proposed approach reduces the memory requirements in exchange of a

little increase of the computation in comparison to a single agent approach. A system with

two sensing agents reduces the memory requirement by 80%, whereas the computation

consists on updating two Q-values instead of one.
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Conclusions and Perspectives

Conclusions

Energy management is one of the main challenges in the design of wireless sensor nodes,

especially for applications with a long life-span. Indeed, typical wireless sensor nodes are

battery-powered and batteries can only store a finite amount of energy. A solution is to

enable each node to harvest energy directly from its environment. As such energy sources

are dynamic and uncontrolled, it is required to perform on-line adaptation of the nodes

performance in order to maximize the application performance, while avoiding power

failures. As shown in this PhD thesis, reinforcement learning is a very promising approach

to the energy management of a sensor node. Indeed, reinforcement learning approaches

allow sensor nodes to learn how to take actions under uncertainties in energy sources. It

promotes good decisions to adapt the node’s behaviour to the available energy.

In the first chapter, we provided an introduction on reinforcement learning and pre-

sented the theory behind it. We also introduced the neural networks, explained how they

work since they are used in one of the reinforcement algorithm used in this thesis, namely

deep Q-learning.

In the second chapter, we have seen that the reinforcement learning approach provides

a powerful tool for the optimization of the energy consumption of embedded systems and

that it has gained a certain popularity in the last years. Nevertheless, several challenges

must be addressed before using it in an application. The first one is the selection of the

appropriate algorithm, which is not trivial. Indeed, there is a lack of metric to help a

designer to select the reinforcement learning algorithm depending on a given application.

Then, the designer needs to configure many parameters: the leaning rate, the discount

factor, the reward function. The configuration is typically done empirically or using the

expertise of the designer. The reward function determines the behaviour of the node.

However, the definition of the reward function is often not presented in the literature. In

this thesis, we have compared different reinforcement learning approaches and proposed

different metrics to help a designer to select the appropriate one for its application. We

also compared different reward functions to determine a way to construct them, then we
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proposed two distinct reward functions which adjust the performance according to the

battery charge level. There is another difficulty, i.e., the use of a look-up table in Q-

learning limits the size of the decision process and makes it less scalable for more different

states and actions. To overcome this, we proposed an energy management approach of a

sensor node based on Multi-Agent Reinforcement Learning where each hardware module

is controlled independently by a learning agent with its own decision process.

In the third chapter, we explored the use of different reinforcement learning approaches

for the energy management of a sensor node. We presented the Q-learning algorithm

which uses a look-up table to store the knowledge of the agent. Several variants exist

and we presented two of them: Dyna Q-learning and Deep Q-learning. Dyna Q-learning

also uses a look-up table to store the knowledge, but in addition it builds a model of

the dynamics of the environment to accelerate the learning convergence. Deep Q-learning

is a neural network version of Q-learning. Instead of storing the learning in a look-up

table, at each step, it computes the expected reward for each possible actions and uses

the feedback of the reward to optimize the weights of connections between neurons. We

compared the different versions for the energy management of a marine buoy use case. We

proposed different metrics to select the appropriate approach depending on the capabilities

of the system and the application constraints. We have shown that Q-learning is the less

processing hungry approach, but requires more memory. However, it is the most stable

algorithm, only one value is updated in the look-up table at each action. The Deep Q-

learning algorithm is much more processing hungry since for each decision, it computes

the reward for all the possible actions. Dyna Q-learning requires more memory than the

two other algorithms, but the learning speed is accelerated.

Determining the appropriate approach to use for a given application is not sufficient.

The designer also needs to design a reward function which promotes a behaviour to balance

the performance and the energy consumption in order to keep the sensor node alive. In

this way, in the fourth chapter, we evaluated and compared different reward functions to

identify the parameters to use in order to design an efficient reward function. We found

that the use of a balancing parameter between the performance and the battery charge

level is an efficient approach allowing the designer to give more weight for a performance

criterion or to save battery power. Then, in a second part, we proposed two reward

functions able to balance the performance and the battery charge level. The objective

was to maximize the performance when the battery is full and to preserve it when it

discharges. The first one adapts the balance between the performance and the battery
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level at different level of battery charge. Several parameters must be set i.e., the number

of level, the importance of the different criterion at each level, the limit of the level. This

reward function is parametrizable, but requires more work and expertise from the designer.

This is why we proposed a generalisation of the first proposed reward function, i.e., we use

the battery charge level to balance the performance and the energy consumption. There

is no parameter to tune which makes it easier to apply. It also accelerates the learning

speed compared to the previous reward function.

The single agent approach is limited by the size of the decision process. To have a

finer control on the energy consumption of the system, the agent must have multiple

possible actions but the addition of more actions to the decision process increases its size.

A solution is to divide the complex problem into smaller ones that are easier to solve.

In the last chapter, we proposed to consider each hardware module as an agent and to

apply a multi-agent reinforcement learning approach. Moreover, nodes have several sensors

with different energy consumptions. So, we proposed an algorithm which adjusts the

measurement frequency of the sensors according to their respective energy consumption.

The proposed algorithm does not need to know the energy consumption of the sensor, it

computes a coefficient which correspond to the variation of the battery charge level when

the sensor works alone over the sum of the variations for all the sensors. We applied a

multi-agent reinforcement learning algorithm, which adjusts the penalty when the system

reaction to a joint action is detrimental. Thus, a high consuming sensor has its frequency

measurements reduced sooner than a sensor which consumes less energy which preserves

the QoS of the node. The proposed approach is applied to a marine buoy use case with two

different sensors; it reduces the memory requirement by 80%, whereas the computation

consists of updating two Q-values instead of one.

In this thesis, we explored the use of reinforcement learning approaches for the energy

management of a sensor node. We focused our work on a popular algorithm, Q-learning,

and different variants of it. The selection of the appropriate algorithm for a given ap-

plication depends on the memory and processing capabilities available on the platform

used. Moreover, in simulations the learning could takes several days to complete with a

relatively small decision process. Thus, these approaches are not well suited if the system

must be efficient quickly after its deployment or rapidly adapt to a new evolution of the

environment. We also observe that a good reward function could improve the learning

speed. The use of multi agent reinforcement learning does not accelerate the learning

speed but it allows to use look up table to solve more complex decision process to ease
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their use on real systems.

Perspectives

This section presents perspectives opened by our work and, in our opinion, are wor-

thwhile subjects for future works. In this section, we present three works from the shortest

to the longest term.

Application to a real system The first perspective would be the application of the

work done in simulation during the thesis on a real system. Q-learning is a popular

reinforcement learning algorithm widely used in the literature, we used it in a simulation

environment to manage the energy consumption of a sensor node. However, we would have

liked to test it on a real marine buoy to validate the behaviour observed in simulation.

Indeed, it is challenging to model completely the complexity of the environment and the

system such as the ageing of the components, especially the solar panel whose performance

decreases significantly in a marine environment due to the layers of salts that will cover it.

The approaches developed during the thesis can be implemented quite quickly, the most

time-consuming part would be the actual deployment of the buoy at sea.

Multi-Objective Reinforcement Learning A second perspective would be the use

of multi-objective approaches to design reward functions able to balance more than two

different objectives. Many real-world problems have multiple, possibly conflicting, objec-

tives and the majority of reinforcement learning research and applications still assume

only a single objective. Thus, in this thesis, we proposed two scalar reward functions

which balance a performance criterion and the energy consumption. However, there are

often more than two criteria to balance and the design of efficient reward function, in

this case, is difficult. For instance, in a network routing the criteria may consist of energy

consumption, latency, and channel capacity, which are conflicting objectives. That is why,

recently, there has been growing interest in solving Multi-Objective Reinforcement Lear-

ning (MORL), where the notion of optimality is replaced by Pareto optimality, a concept

for representing compromises among the objectives. A future work may include this ap-

proach to reward several tasks, i.e., maximizing the battery charge level of the node and

the QoS, and minimizing the channel use.
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Transfer learning A third perspective would be to accelerate the learning speed to

make the use of reinforcement learning approach interesting for more challenging appli-

cations where the system needs to be operational fast. An interesting work is the transfer

learning. The main idea of transfer learning is that experience gained in learning to per-

form one task can help improve learning performance in a related, but different, task or

in new conditions. In this way, an agent can learn how to act and then, transfer the know-

ledge among different sensor nodes. For instance, a marine drone can be trained to follow

the border of a polluted area in a simulator where different environmental parameters vary

to learn a more flexible policy. We can add noise in the environment to increase realism

to avoid training a policy that exploits a physically implausible phenomenon of the simu-

lator. Another advantage of transfer learning is the possibility for e.g. a drone to share its

experience with a newly arrived drone in the swarm. This possibility allows to speed up

the learning speed while making the policy more efficient in the real environment.
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CPS Cyber-Physical System

IoT Internet-of-Things

OS Operating System

RL Reinforcement Learning

MDP Markov Decision Process

DP Dynamic Programming

ANN Artificial Neural Network

QoS Quality of Service

WBAN Wireless Body Area Network

BLE Bluetooth Low Energy
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MARL Multi-Agent Reinforcement Learning

MAS Multi-Agent System

SG Stochastic Game
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Summary of Notation

γ Discount factor

α Learning rate

A Action space

S State space

R Reward function

T State transition probability density function

π Policy in reinforcement learning theory

π∗ Optimal policy in reinforcement learning theory

Q∗ Optimal state-action value function in reinforcement learning

Qπ State-action value function in reinforcement learning

V ∗ Optimal state value function in reinforcement learning

V π State value function in reinforcement learning

at Action taken at the step t

st State at the step t

rt Reward received at the step t

λ Decay parameter of the algorithms with eligibility traces
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Résumé : La gestion d'énergie d'un système 
cyber physique est une tâche difficile à cause de 
la complexité des architectures matérielles et 
l'utilisation d'OS. En outre, ces systèmes sont 
déployés dans des environnements qui évoluent 
et où leur capacité de recharge en énergie varie. 
Avec le temps, leur consommation en énergie 
est modifiée du fait du vieillissement des 
composants. Les modèles de consommation 
conçus en laboratoire ne peuvent pas prendre 
en compte tous les scénarios de déploiement 
possible ainsi que le vieillissement du système. 
Une approche qui se développe est l'utilisation 
d'apprentissage par renforcement dans lequel 
nous n'avons plus connaissance du modèle de 
consommation du système ; mais grâce à cette 
approche, ce dernier est capable d'adapter son 
fonctionnement pendant son déploiement en 
fonction de l'évolution de son environnement.  

    Plusieurs approches existent en 
apprentissage par renforcement. La première 
partie de cette thèse est consacrée à la 
proposition de lignes directrices pour aider à la 
sélection de l’approche la plus appropriée pour 
une application et une cible donnée. 
    La deuxième partie se concentre sur la 
conception de la récompense que l’on donne à 
notre système et qui va influencer son 
comportement dans son environnement. Deux 
fonctions de récompense capables d’ajuster la 
performance du système en fonction de 
l’énergie disponible y sont présentées. 
    La troisième et dernière partie explore 
l’utilisation de plusieurs agents pour controler 
independament les différents modules de notre 
système. Cette approche permet un contrôle 
plus précis de la consommation en énergie, 
réduisant l’utilisation de mémoire par rapport à 
une approche avec un agent unique. 
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Abstract:  The energy management of a cyber 

physical system is a difficult task because of the 
complexity of hardware architectures and the 
use of OS. In addition, these systems are 
deployed in changing environments where their 
energy harvesting capacity varies. Over time, 
their energy consumption is modified due to the 
ageing of the components. Consumption models 
designed in the laboratory cannot take into 
account all possible deployment scenarios and 
system aging. One approach that is developing 
is the use of reinforcement learning in which we 
no longer know the system's consumption 
model; but thanks to this approach, the system 
is still able to adapt its operation during its 
deployment according to the evolution of its 
environment. 

    Several approaches exist in reinforcement 
learning. The first part of this thesis is devoted 
to proposing guidelines to help for selecting the 
most appropriate approach for a given 
application and target. 
    The second part of this thesis focuses on the 
design of the reward we give to our system that 
will influence its behaviour in its environment. 
Two reward functions able to adjust the 
system’s performance according to the energy 
available are presented.  
    The third and last part of this thesis explores 
the use of several agents to independently 
control the different modules of our system.  
This approach allows a more precise control of 
energy consumption, reducing memory usage 
compared to a single agent approach. 
 

 

RL-based Energy Management for Autonomous Cyber Physical Systems Yohann Rioual 2020


	Table of Contents
	Introduction
	Chapter 1 Theoretical Background
	1.1 Introduction to Reinforcement Learning
	1.2 Markov Decision Processes
	1.3 Learning a Behaviour Policy
	1.4 Reinforcement Learning
	1.5 Neural Networks

	Chapter 2 Related work
	2.1 Application schemes of RL approaches
	2.2 Storing the knowledge in a look-up table
	2.3 RL algorithms with traces
	2.4 Neural network approaches in RL
	2.5 Others approaches used in RL
	2.6 Performance improvement in embedded systems thanks to RL
	Conclusion

	Chapter 3 Energy Management with Reinforcement Learning
	3.1 Monitoring marine environment: a case study
	3.2 Presentation of the selected Markov Decision Pro-cess
	3.3 Look-up table approach with Q-learning
	3.4 Dyna Q-learning
	3.5 Neural network approach: Deep Q-learning
	3.6 Comparative results
	Conclusion

	Chapter 4 Reward Function Design
	4.1 Reward Function Evaluation
	4.2 Design of a Piecewise Reward Function
	4.3 Continuous Reward Function to Balance the Performance and the Energy Consumption
	Conclusion

	Chapter 5 Multi-agent Reinforcement Learning Approach
	5.1 Introduction to multi-agent systems
	5.2 Decentralized energy management
	Conclusion

	Conclusions and Perspectives
	References
	Abbreviations
	Summary of Notation
	List of Figures
	List of Tables
	Personal Publications
	Résumé
	Abstract



