
HAL Id: tel-03134905
https://theses.hal.science/tel-03134905

Submitted on 8 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New design approaches for flexible architectures and
in-memory computing based on memristor technologies

Khaled Alhaj Ali

To cite this version:
Khaled Alhaj Ali. New design approaches for flexible architectures and in-memory computing based
on memristor technologies. Electronics. Ecole nationale supérieure Mines-Télécom Atlantique, 2020.
English. �NNT : 2020IMTA0197�. �tel-03134905�

https://theses.hal.science/tel-03134905
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT DE

L’ÉCOLE NATIONALE SUPERIEURE MINES-TELECOM ATLANTIQUE

BRETAGNE PAYS DE LA LOIRE - IMT ATLANTIQUE

ECOLE DOCTORALE N° 601
Mathématiques et Sciences et Technologies
de l'Information et de la Communication
Spécialité : Electronique

New design approaches for flexible architectures and in-memory
computing based on memristor technologies

Thèse présentée et soutenue à Brest, le 13 juillet 2020
Unité de recherche : Lab-STICC, UMR CNRS 6285
Thèse N° : 2020IMTA0197

Par

Khaled ALHAJ ALI

Rapporteurs avant soutenance :

Ian O'Connor Professeur, Ecole Centrale de Lyon

Lorena Anghel Professeur, Grenoble INP

Composition du Jury :

Président : Adnan Harb Professeur, Lebanese International University

Rapporteurs : Ian O'Connor Professeur, Ecole Centrale de Lyon

 Lorena Anghel Professeur, Grenoble INP

Examinateurs : Rouwaida Kanj Associate Professor, American University of Beirut

Encadrants : Mostafa Rizk Assistant Professor, Lebanese International University

 Jean-Philippe Diguet Directeur de recherche CNRS, Lab-STICC

Dir. de thèse : Amer Baghdadi Professeur, IMT Atlantique

Co-dir. de thèse : Jalal Jomaah Professeur, Lebanese University

Invité(s)
 Grégory Di Pendina Ingénieur de recherche, SPINTEC

Contents

Contents I

List of Figures IV

List of Tables VII

Résumé long IX

Introduction 1

1 Memristor: Principals and Applications 7
1.1 Memristor fundamentals . 7

1.1.1 Basic operation . 8
1.1.2 Memristor device modeling . 9

1.2 Memristor as a memory element . 11
1.2.1 Emerging non-volatile memories . 11
1.2.2 Crossbar arrays . 13

1.3 Memristors for reconfigurable interconnects 16
1.4 Memristors for logic design . 18

1.4.1 Memristor-based logic design styles 19
1.4.1.1 IMPLY – Material Implication 20
1.4.1.2 MAGIC – Memristor Aided Logic 20
1.4.1.3 MRL – Memristor Ratioed Logic 21
1.4.1.4 MAD – Memristors-As-Drivers 23
1.4.1.5 MTL – Memristor Threshold Logic 24
1.4.1.6 MAJ – Memristor-based Majority 25

1.4.2 Roadmap for evaluation of memristive logic 27
1.4.2.1 Statefulness . 27
1.4.2.2 Flexibility . 28
1.4.2.3 Crossbar compatibility . 28

I

1.4.2.4 Reliability . 28
1.5 Summary . 29

2 Memristor Based Reconfigurable FFT Architecture 30
2.1 Fast Fourier Transform (FFT) . 31
2.2 Pipelined FFT architecture designs . 32

2.2.1 Classical FFT architectures . 32
2.2.2 Reconfigurable FFT architectures 34

2.3 Proposed mrFFT design . 36
2.3.1 Reconfigurable butterfly: RBF . 36
2.3.2 mrFFT architecture design . 37
2.3.3 Supported mrFFT configurations 38

2.4 Comparison . 40
2.5 Limitations in performance evaluation . 41
2.6 Summary . 42

3 Hybrid Memristor-CMOS Design for Logic Computation 43
3.1 Motivation for hybrid memristor-CMOS design 43
3.2 X-MRL design procedure . 44
3.3 X-MRL based full adder . 45
3.4 Layout . 47
3.5 Simulation and performance analysis . 48

3.5.1 Memristor model fitting . 48
3.5.2 Performance analysis . 49

3.5.2.1 Timing analysis . 49
3.5.2.2 Energy consumption . 50
3.5.2.3 Utilized area . 51

3.6 Comparison . 52
3.7 Summary . 55

4 MOL – Memristor Overwrite Logic for In-Memory Computing 56
4.1 Memristive devices for in-memory computing 57
4.2 Limitations of existing logic design styles 58
4.3 MOL logic design . 59

4.3.1 Digital representation of memristive devices 59
4.3.2 MOL logic procedure . 61
4.3.3 Performing MOL inside memristive crossbars 63

4.4 Realization of MOL in 1M/1T1M crossbars 63

II

4.5 MOL-based Computational memory . 66
4.5.1 Architecture . 67
4.5.2 Performing general arithmetic tasks 68
4.5.3 Towards an efficiency-improved computing 71

4.6 MOL based in memory N-bit full addition 72
4.6.1 Proposed iterative N-bit full addition process dedicated for compu-

tational MOL-memory . 72
4.6.2 In-memory N-bit full addition procedure 73
4.6.3 Space-time analysis of the N-bit addition process 75

4.7 Simulation and performance analysis . 75
4.7.1 Adopted memristive device . 75
4.7.2 Performance analysis . 77

4.7.2.1 Timing analysis . 79
4.7.2.2 Robustness against resistance variability 79
4.7.2.3 Energy estimation . 80

4.8 Comparison . 83
4.8.1 MOL vs IMPLY and MAGIC . 83
4.8.2 MOL vs MAJ and CRS . 84

4.9 Applications of MOL . 86
4.9.1 In-memory CRC computing . 86

4.9.1.1 Cyclic redundancy check 86
4.9.1.2 CRC computation . 87
4.9.1.3 MOL-based in-memory CRC computation 88
4.9.1.4 Simulation results . 89

4.9.2 In-memory DNN computing . 90
4.9.2.1 Optimized multiply & accumulate process inside memory . 91
4.9.2.2 CMEM-based DNN architecture 92

4.10 Summary . 96

Conclusions and future work 98

Bibliography 105

III

List of Figures

1 Memristor: (a) Structure, (b) Boucle d’hystérésis [6], (c) Symbole XII

1.1 Memristor: (a) Structure, (b) Hysteresis loop [6], (c) Symbol 8
1.2 Basic operation of a memristor device . 9
1.3 TiO2 memristor model according to [9] . 9
1.4 Memristive crossbar array: (a) Structure, (b) Sneak path phenomenon . . . 13
1.5 Selector devices: (a) Transistor type, (b) Diode type [31]. 15
1.6 Bias schemes: (a) One-third select method, (b) Half select method. 15
1.7 Conventional FPGA architecture . 17
1.8 Memristor based-programmable routing structure for FPGA proposed in [42] 17
1.9 Memristive switches: (a) 7T SRAM routing switch, (b) 2T1R routing

switch, (c) 2T2R routing switch . 18
1.10 IMPLY gate: (a) schematic of a memristor-based IMPLY gate and its

corresponding truth table, (b) performing IMPLY in a crossbar array . . . 21
1.11 Structure of MAGIC NOR gate [53] . 22
1.12 Schematic of an MRL (a) AND, (b) NAND, (c) OR, (d) NOR 22
1.13 Logical operations performed with MRL AND gate 23
1.14 MAD AND gate implementation . 24
1.15 MAD OR, XOR, NOT, and Copy gates implementation 25
1.16 A 3-input MTL gate which uses the memristors as weights and Ire f as the

threshold [62] . 26
1.17 Majority gate: (a) Structure, (b) Realization in a crossbar array 27

2.1 Flow graph of (a) radix-2 BF, (b) radix-3 BF and (c) radix-5 BF [73]. . . . 32
2.2 Data flow graph of 16-point radix-2 FFT 33
2.3 The conventional SDF-FFT architecture 34
2.4 The block diagram of the reconfigurable FFT 35
2.5 Reconfigurable SDF-FFT based on 6T-RC-PE approach [90] 35
2.6 The architecture design of the proposed Reconfigurable Butterfly (RBF) . 37

IV

2.7 The proposed mrFFT architecture . 39
2.8 The proposed structure of memristive nodes 40
2.9 The architecture of FM block . 40

3.1 Example of an MRL logic function performed using X-MRL 45
3.2 1-bit Full Adder based on the proposed X-MRL structure 46
3.3 Memristor layer at the top of VIAs [95]: (a) a TEM image. (b) a schematic

view. 47
3.4 Proposed layout for the hybrid memristor-CMOS 1-bit full adder based on

X-MRL design technique . 48
3.5 Memristor switching time for Vset = 1.4V and Vreset = −1.4V according to

the device in [40] . 50
3.6 Transient response of the proposed full adder for the input signals A, B

and Cin . 51
3.7 Definition of the rise time Tr and delay Td 52
3.8 Glitches appearance when slowing down the switching speed of the mem-

ristor. Parameters in Table 3.2 are adopted except for Kon = −0.01 m/s

and Ko f f = 0.01 m/s . 52

4.1 Memristor: (a) internal state after applying external bias represented by
A and B; (b) truth table; (c) finite state machine (FSM) 60

4.2 Equivalent latch circuit of memristor with binary resistive ports 60
4.3 Six possible logic cases performed by a memristor 62
4.4 Performing MOL on a vector of bits; (a) writing N-bits into memritsors; (b)

overwrite step to perform MOL-OR; (c) overwrite step to perform MOL-AND 62
4.5 MOL inside memristive crossbar: (a) MOL-OR or/and MOL-AND; (b)

MOL-OR-NOT or/and MOL-AND-NOT 64
4.6 Memory architecture performing MOL: (a) 1M configuration; (b) 1T1M

configuration . 66
4.7 Drivers architectures for the proposed MOL-memory approach 67
4.8 Computational Memory Architecture . 69
4.9 Architecture diagram of MOL-based computational memory with its ded-

icated control unit . 70
4.10 Operations sequence for an in-memory N-bit addition process using MOL-

memory . 74
4.11 Typical MTJ: (a) Core structure, (b) Resistance variation 76
4.12 Switching behavior of MTJ device when fed with square signal 78

V

4.13 Switching delay of an MTJ cell as function of applied voltage level 78
4.14 Transient simulation for the in-memory 8-bit addition process 80
4.15 Cyclic redundancy check . 87
4.16 Example of a cyclic redundancy check generation 88
4.17 Operations sequence for in-memory CRC computation 89
4.18 Cyclic redundancy check at the transmitter side 90
4.19 Cyclic redundancy check at the receiver side 90
4.20 Realization the partial products of inside memristive crossbar array. 92
4.21 MOL memory architecture: (a) 1M model and (b) 1T1M model. 93
4.22 Simplified diagram of the MOL-based computational memory (CMEM) . . 94
4.23 Addition of M operands using tree-like CSA blocks. 95
4.24 Example of a simplified neural network: (a) Network diagram (b) Matrix

form representation. 95
4.25 Proposed design for in-memory DNN computation, illustrated for the sim-

plified neural network of Fig. 4.24. 96

VI

List of Tables

1.1 Comparison of conventional and emerging memory technologies [8] 12
1.2 Preliminary evaluations of memristive logic design styles 29

2.2 Optimized sizes of the required FIFOs . 40
2.1 The 44 FFT configurations supported by mrFFT with N = 2p3q 41
2.3 Analytical comparisons . 41

3.1 Practical memristor devices . 49
3.2 VTEAM fitting parameters for physical device in [40] 49
3.3 Comparison with previous approaches . 54

4.1 Encoding table . 71
4.2 Adopted variables and parameters for PMA MTJ device 77
4.3 Energy consumed by a computational operation 82
4.4 Specifications . 82
4.5 Comparison of different logic families for N-bit addition in terms of area,

latency and energy consumption . 85

VII

VIII

Acknowledgments

I would like to express my gratitude to my supervisors, whom I believe that I was not
able do this work without their guidance and support. On the personal side, I believe that
the stress of research could not be easy without the support of my family, and friends:
First, Thanks to my Parents, whom I believe I owe everything since the first days of my
life. Thanks to them for believing in me. Thank you my brother and sisters. Special
thanks to my Fiancé, for her support. Finally, for those whom I spent most of my time,
for my second family, for my colleagues and friends, thank you for making this journey
nice and easy.

Finally, I have tried my best to represent this thesis dissertation as appropriate as
possible. I am feeling myself fortunate to finish the thesis on such an interesting topic
which is really a great experience.

IX

Résumé long

Le développement récent de nouvelles technologies de mémoires non-volatiles basées
sur le concept de memristor a suscité de nombreux efforts pour explorer leur utilisa-
tion potentielle dans différents domaines d’application. Ce nouveau type d’éléments
nanométriques à deux terminaux présente des propriétés intrinsèques très intéressantes en
termes de vitesse de commutation, de densité et de capacité de stockage non-volatile, ainsi
que de consommation énergétique. Une grande partie des efforts de recherche menés vise à
les exploiter pour établir un système de mémoire unifié et efficace remplaçant les mémoires
flash et CMOS actuelles. D’autre part, leur compatibilité pour une intégration avec les
technologies CMOS conventionnelles permet de nouvelles idées de conception basée sur
une combinaison et une interaction étroite entre mémoire et calcul. Cela introduit de nou-
velles opportunités pour concevoir des architectures novatrices, offrant des niveaux sans
précédent de densité, de reconfigurabilité et d’efficacité énergétique. Concevoir des archi-
tectures qui peuvent s’adapter dynamiquement aux besoins des applications, apporte de
grands avantages en termes d’efficacité énergétique et de performances. Une telle flexibil-
ité est nécessaire au niveau du calcul, des interconnexions et de la mémoire. Elle devient
une condition préalable importante pour les architectures matérielles utilisées dans une
multitude d’applications telles que les communications numériques et le multimédia, où
de nouvelles normes et de multiples services apparaissent en permanence, avec des exi-
gences renforcées en termes de performances et d’efficacité énergétique. Cependant, les
technologies actuelles sont inefficaces pour la mise en œuvre de systèmes hautement auto-
adaptatifs, en raison du coût de la reconfiguration, incluant les délais et la consommation
d’énergie. De plus, les accès à la mémoire, qui deviennent prédominants dans de nom-
breuses applications, constituent un véritable goulot d’étranglement. La nature polyva-
lente des mémoires permet de trouver des solutions novatrices pour contourner le surcoût
d’implémentations matérielles reconfigurables en termes de surface, de temps d’exécution
et de consommation d’énergie. Elle ouvre la voie à de nombreuses applications promet-
teuses à cet égard. Toutefois, pour tirer pleinement parti de cette technologie émergente,
de nouveaux paradigmes architecturaux doivent être inventés. L’existence des memristors
a ouvert une voie de recherche originale sur les technologies de mémoires non-volatiles,
sur les architectures des unités arithmétiques et logiques, ainsi que sur les mémoires et
leurs applications. Les caractéristiques des dispositifs memristifs incitent les chercheurs
et les concepteurs de circuits à explorer une révision profonde des paradigmes existants
de calcul, de stockage et d’accès aux données. En effet, un memristor est un composant
à deux terminaux dont la valeur de résistance commute entre deux états de manière per-
manente (non-volatile) en appliquant une tension avec une polarité, un niveau et une

X

durée spécifiques. Le concept de memristor a été généralisé aux dispositifs memristifs, car
d’autres technologies émergentes de mémoires non-volatiles ont été théoriquement liées
aux memristors.

Concepts fondamentaux

Le memristor a été prédit théoriquement par Leon Chua [1] en 1971. Chua a émis
l’hypothèse que le memristor, qui est le quatrième dispositif passif, devrait exister et
établir une relation entre le flux (φ) et la charge (q). La première fabrication d’un dis-
positif à memristor a été réalisée par le groupe de Williams dans les laboratoires de
Hewlett-Packard (HP) [2] en 2008. La structure du dispositif fabriqué est composée
d’une couche stoechiométrique (TiO2) et d’une couche déficiente en oxygène (TiO2−x), qui
est prise en sandwich entre deux électrodes en platine comme le montre la figure 1(a). Le
dispositif nanométrique à deux extrémités obtenu présente une résistance dynamique qui
est déterminée par l’intégrale du courant circulant dans le dispositif lui-même. La résis-
tance d’un memristor peut varier entre deux états : l’état de faible résistance (LRS : Low
Resistance State) et l’état de haute résistance (HRS : High Resistance State) correspon-
dant respectivement à RON et ROFF . Les états de résistance RON et ROFF représentent le
niveau logique "0" ou "1". Le memristor a la capacité de conserver sa valeur de résistance
même après que la source d’alimentation ait été retirée. La dernière résistance atteinte
est naturellement mémorisée sans l’aide d’une source de rafraîchissement de l’état. Cette
propriété fait du dispositif memristor un bon candidat pour les prochaines générations
de mémoires non-volatiles [3]. En fait, la théorie des memristors est généralisée aux sys-
tèmes memristifs. Williams et Chua ont avancé que tous les dispositifs résistifs dotés de
mémoire sont classés comme des memristors, quels que soient le matériau du dispositif
et les mécanismes physiques de fonctionnement [4][5]. Ils présentent tous une "empreinte
digitale" distinctive, qui se caractérise par une boucle d’hystérésis pincée, comme le mon-
tre la figure 1.1(b). La boucle d’hystérésis est contenue au premier et troisième quadrant
du plan V-I, qui change de forme en fonction de l’amplitude et de la fréquence de la
source périodique sinusoïdale de tension/courant d’entrée [4]. Le symbole utilisé pour les
memristors est représenté sur la figure 1(c).

XI

(a) (b) (c)

A

B
Voltage (V)

C
u

rr
en

t
(m

A
)

© 2015, IEEE

Figure 1: Memristor: (a) Structure, (b) Boucle d’hystérésis [6], (c) Symbole

Objectifs de la thèse et contributions

Dans le contexte mentionné ci-dessus, l’objectif de ce travail de thèse a été d’explorer et
d’introduire de nouvelles conceptions basées sur les memristors qui combinent flexibilité
et efficacité en proposant des architectures originales qui dépassent les limites des archi-
tectures existantes. Notre but est de mener cette exploration et cette étude à différents
niveaux, c’est pourquoi nous nous fixons les trois objectifs principaux suivants:

Au niveau des interconnexions
Explorer l’utilisation de dispositifs memristifs pour permettre un haut degré de
flexibilité basé sur des interconnexions programmables. Les memristors peuvent être
insérés comme des commutateurs reconfigurables au niveau des interconnexions afin
d’établir un routage sur la puce.

Au niveau du calcul
Explorer l’utilisation des dispositifs memristifs et leur intégration avec la technologie
CMOS pour l’implémentation de fonctions de logique combinatoire. Ces architec-
tures hybrides memristor-CMOS devraient exploiter la forte densité d’intégration
des memristors afin d’améliorer les performances des circuits numériques, et en par-
ticulier des unités arithmétiques et logiques.

Au niveau de la mémoire
Explorer de nouvelles approches de calcul en mémoire et d’architectures associées qui
permettent de combiner efficacement le stockage et le traitement afin de contourner
les problèmes liés aux accès mémoire (memory wall) et d’améliorer ainsi l’efficacité

XII

de calcul. De plus, appliquer les techniques et les architectures proposées dans des
études de cas d’application réelle afin d’évaluer leurs performances.

Pour atteindre ces objectifs, plusieurs contributions originales ont été proposées dans
le cadre de cette thèse de doctorat. Ces contributions peuvent être résumées comme suit
:

1. Proposition de la première architecture de transformée de Fourier rapide (FFT)
reconfigurable basée sur des memristors, nommée mrFFT. L’architecture originale
proposée permet un support efficace de toute combinaison de papillons FFT de
radix-2 et radix-3. L’extensibilité est assurée par une topologie de maillage 2D
(mesh 2D). La flexibilité est réalisée au niveau des interconnexions, ce qui permet
une réutilisation optimisée des ressources matérielles grâce à un routage non-volatil
basé sur les memristors.

2. Proposition d’une nouvelle méthodologie de conception pour la mise en œuvre d’une
logique combinatoire hybride memristor-CMOS. L’approche s’appuie sur un style
de conception logique existant, appelé Memristor Ratioed Logic (MRL). Dans ce
contexte, un mapping original de portes logiques MRL sur une structure de crossbar
est proposé. L’architecture proposée, appelée X-MRL, combine les attributs de
densité et d’extensibilité des crossbars memristifs et la possibilité de leur intégration
au-dessus d’une couche de portes logiques CMOS. La conception d’un additionneur
complet 1 bit est détaillée sous la forme d’une étude de cas, ainsi que le layout et les
résultats de simulation du circuit réalisé avec Cadence Virtuoso et une technologie
CMOS 65 nm. La comparaison des résultats avec une implémentation pure CMOS
est prometteuse en terme de surface, mais pas en termes de consommation d’énergie
en raison des faibles valeurs de résistance des modèles de memristor disponibles.

3. Un nouveau style de conception logique, nommé Memristor Overwrite Logic (MOL),
est introduit pour implémenter des opérations logiques sur des structures à base
de memristors. Dans l’approche proposée, le memristor se comporte comme un
accumulateur logique. Les opérations MOL sont indépendantes des paramètres de
la technologie des memristors et tolèrent la variabilité du dispositif memristif. Par
conséquent, il est considéré comme éligible pour des applications de haute fiabilité.
Il est démontré que le style de conception logique proposé est adapté aux réseaux
de crossbars memristifs et peut donc être utilisé pour des applications de calcul en
mémoire.

4. Mise en œuvre d’une architecture de mémoire de calcul basée sur MOL. L’architecture

XIII

originale proposée, basée sur le couplage de deux crossbars conventionnels, est ca-
pable d’effectuer des opérations ET/OU au niveau des bits entre deux mots stockés.
L’architecture mémoire MOL proposée peut être configurée simplement entre les
modes de stockage (mémoire) et de calcul (traitement). L’architecture mémoire
présentée est réalisée en utilisant Cadence Virtuoso avec une technologie CMOS
65nm et un modèle de référence de l’état de l’art pour la technologie STT-MTJ
(Spin Transfer Torque - Magnetic Tunnel Junction). Des simulations sont égale-
ment effectuées pour confirmer l’exactitude du fonctionnement et pour fournir des
analyses détaillées des délais et du temps d’exécution, ainsi que de la consommation
énergétique.

5. Démonstration de la méthodologie de conception MOL proposée et de la mémoire
de calcul associée par le biais de plusieurs études de cas d’application. La première
concerne un additionneur complet de N-bits. La séquence des opérations MOL est
illustrée. L’addition N-bits est analysée et évaluée en termes de nombre d’étapes
de calcul nécessaires et de consommation d’énergie, montrant des améliorations
significatives par rapport aux travaux existants dans la littérature.

La deuxième étude de cas correspond à l’implémentation du calcul du CRC (cyclic
redundancy check), couramment utilisé pour la détection des erreurs, qui peut être
éventuellement utile pour détecter les erreurs provoquées par la mémoire elle-même.
Un CRC de n-bit est effectué dans la mémoire MOL proposée.

La troisième application porte sur le développement d’une nouvelle architecture
dédiée au calcul des réseaux neuronaux profonds (DNN). Cette architecture repose
sur des bancs de mémoire MOL répliqués et interconnectés pour effectuer le proces-
sus d’accumulation pondérée (multiplication et addition) dans les cellules memris-
tives de stockage.

Structure du manuscrit et résumé des chapitres

Le manuscrit de thèse est composé de quatre chapitres, qui sont résumés dans les para-
graphes suivants

Chapitre 1 – Memristor : principes et applications

Ce chapitre présente les fondements scientifiques liés aux contributions développées dans
cette thèse. Un aperçu général sur les principes des memristors est fourni, comprenant les
définitions de base, le mécanisme de fonctionnement des memristors et leur modélisation.

XIV

Le chapitre aborde ensuite l’utilisation des dispositifs memristifs dans trois domaines
principaux : stockage, interconnexion et conception logique. Le memristor est d’abord
présenté comme un élément de mémorisation émergent qui combine vitesse, densité et
non-volatilité. Les avantages par rapport aux mémoires traditionnelles (DRAM, SRAM,
NAND flash, ...) sont mis en évidence. L’opportunité d’utiliser les memristors comme
éléments de routage au niveau des interconnexions est présentée avec les applications
correspondantes dans la littérature. Un grand degré de flexibilité dans les circuits ASIC
et FPGA peut être atteint dans ce contexte. Le chapitre aborde ensuite l’utilisation des
memristors comme un levier pour de nouvelles générations de conception logique. De
nouveaux paradigmes de calcul peuvent être envisagés, comme le calcul en mémoire (in-
memory computing), en rupture avec le modèle traditionnel de von Neumann. Dans ce
contexte, les schémas existants de conception logique à base de dispositifs memristifs sont
passés en revue et une évaluation pour les comparer est proposée à la fin du chapitre.

Chapitre 2 – Architecture FFT reconfigurable basée sur les mem-
ristors

Ce chapitre est consacré à la présentation de la conception proposée pour une architec-
ture FFT reconfigurable (mrFFT). Cette première contribution explore l’utilisation de
dispositifs memristifs pour mettre en œuvre des interconnexions programmables afin de
permettre la conception d’architectures flexibles et une reconfiguration efficace. La FFT
est choisie comme étude de cas avec un besoin important en flexibilité en particulier dans
le domaine des applications de télécommunications et de traitement de signal. L’idée prin-
cipale consiste à proposer une architecture de papillon FFT reconfigurable, nommée RBF
(reconfigurable butterfly) qui peut être configurée en radix-2 et radix-3 pour supporter
des tailles de FFT en puissances de 2 et 3. Plusieurs blocs RBF sont instanciés et disposés
dans une topologie de maillage 2D avec des interconnexions à base de memristors servant
d’éléments de routage. Trois blocs RBF sont nécessaires pour réaliser un papillon de
radix-3 alors qu’un seul est nécessaire pour le radix-2. L’implémentation pipelinée single-
path delay feedback (SDF) de la FFT, qui constitue une référence dans la littérature, est
considérée. Par conséquent, toute taille de FFT pouvant être factorisée en puissances de
2 et 3 peut être supportée en configurant le nombre correspondant d’étages de pipeline
en radix-2 et radix-3 et en connectant de manière appropriée les blocs RBF correspon-
dants. Un exemple d’architecture instanciant 18 blocs RBF est détaillé, avec notamment
l’architecture du réseau de routage et le placement des memristors, des multiplieurs com-
plexes, des FIFO et des LUT. Cette architecture de type mrFFT supporte 44 tailles de
FFT, y compris les 32 modes de fonctionnement qui sont définis dans la norme 3GPP-

XV

LTE. L’architecture proposée a été évaluée par une estimation analytique du nombre et
du pourcentage d’activation des ressources matérielles utilisées. La comparaison avec une
référence récente d’architecture flexible de FFT conçue en CMOS montre une réduction
significative de plus de 25% du nombre de multiplieurs, d’additionneurs, de FIFO et de
multiplexeurs. Elle montre également un meilleur ratio d’activation des multiplieurs et des
additionneurs dans l’architecture mrFFT. Cependant, cela se fait au prix de l’intégration
de 119 memristors et des blocs de sélection correspondants. Afin d’évaluer avec précision
l’efficacité énergétique de l’architecture proposée, des travaux futurs sont proposés afin de
mener des simulations mixtes analogiques/numériques.

Chapitre 3 – Conception hybride memristor-CMOS de fonctions
de logique combinatoire

Ce chapitre présente la deuxième contribution relative à la proposition d’une nouvelle
méthodologie de conception pour l’implémentation d’architectures hybrides memristor-
CMOS. L’objectif ici est d’explorer l’utilisation des memristors et leur haute densité
d’intégration et compatibilité avec les technologies CMOS pour la conception de cir-
cuits combinatoires. L’approche proposée s’appuie sur le schéma de conception logique
Memristor Ratioed Logic (MRL). En effet, ce choix est justifié par le fait que la logique
basée sur MRL adopte la tension comme variable d’état pour représenter les entrées et
les sorties, comme en CMOS. Afin d’exploiter efficacement la densité des memristors qui
peuvent être placés au-dessus d’un circuit CMOS, nous proposons d’utiliser la structure
extensible des crossbars.

L’approche proposée, appelée X-MRL, permet la réalisation de portes logiques ET/OU
à travers des paires de memritors placés d’une manière spécifique, verticalement et hor-
izontalement, sur le crossbar. Le crossbar lui-même est placé au-dessus d’une couche
d’inverseurs CMOS. L’approche est illustrée à travers la conception d’un additionneur
complet 1-bit. L’architecture conçue nécessite 18 memristors et 9 inverseurs CMOS. Le
mapping proposé en suivant l’approche X-MRL ainsi que le layout du circuit réalisé avec
Cadence Virtuoso et une technologie CMOS 65 nm sont détaillés. Le modèle de référence
VTEAM est utilisé pour les memristors avec des paramètres d’ajustement spécifiques.

L’analyse des délais et du temps d’exécution, la consommation énergétique et la surface
sont évaluées et discutées. Comme la surface en X-MRL correspond à celle occupée par
les inverseurs CMOS, une réduction significative d’environ 45% est obtenue par rapport
à une implémentation pure CMOS de l’additionneur complet. Néanmoins, la valeur de la
puissance moyenne consommée est relativement élevée. Cela est dû aux faibles valeurs de
RON et ROFF du modèle de memristors adopté.

XVI

Une comparaison détaillée est présentée à la fin du chapitre par rapport à d’autres
circuits memristifs d’additionneur complet 1-bit existants, basés sur les approches MRL,
MAGIC et IMPLY. La consommation énergétique reste comparable. Toutefois, la com-
paraison illustre l’avantage clé de l’approche X-MRL concernant le nombre réduit d’étapes
de calcul (computational steps). Par conséquent, la combinaison de la consommation
énergétique et du temps de calcul au moyen de la métrique Energy.Delay montre une
amélioration significative (entre ×5.7 et ×31) par rapport à l’état de l’art.

Chapitre 4 – MOL : Memristor Overwrite Logic pour le calcul
en mémoire

Le quatrième chapitre regroupe la présentation de plusieurs contributions liées à l’utilisation
de dispositifs memristifs pour le calcul en mémoire (in-memory computing). La première
contribution majeure est représentée par l’introduction d’une nouvelle architecture de cal-
cul logique en mémoire, appelé Memristor Overwrite Logic (MOL). Dans MOL, le résultat
d’une opération logique de type ET/OU est réécrit dans l’état interne du memristor. Ce
dernier agit soit comme accumulateur logique avec son bit précédemment stocké, soit
comme opérateur logique entre ses deux terminaux. L’idée est dérivée de la représenta-
tion numérique du memristor qui peut être vu comme une expression logique à 3 variables
(deux entrées et un état). MOL ressemble à cet égard au schéma de conception logique
memristor-based majority (MAJ), mais en surmonte les inconvénients. Plusieurs spéci-
ficités marquantes du schéma de conception proposé (MOL) sont illustrées, telles que son
opérabilité avec différents dispositifs memristifs et paramètres technologiques, son adap-
tation à la réalisation d’opérations à l’intérieur de crossbar de memristors, ainsi que la
possibilité d’effectuer ses opérations sur un vecteur de bits. L’intégration du MOL dans
un crossbar conventionnel est détaillée avec les quatre modes supportés (write, overwrite,
read, idle) et les architectures appropriées pour les contrôleurs de périphériques.

La deuxième contribution majeure présentée dans ce chapitre concerne la proposi-
tion d’une architecture de mémoire basée sur l’approche MOL pour le calcul en mémoire
(MOL-based computational memory). L’architecture proposée, est constituée d’une paire
de crossbars memristifs basés sur MOL qui opèrent de manière complémentaire, de leurs
drivers et des séquences de contrôle appropriés. Cette structure permet d’effectuer des
opérations sur les bits de deux mots stockés, plutôt qu’entre un mot stocké et un mot
d’entrée externe, ce qui est une originalité de ce schéma. Le chapitre illustre également
comment toute fonction arithmétique générale peut être exécutée en mémoire en la dé-
composant en une suite d’opérations MOL itératives (micro-instructions).

Pour la validation et l’évaluation des performances, le chapitre présente une étude de

XVII

cas détaillée sur la réalisation d’une addition N-bit en mémoire. La procédure de décom-
position et de mapping de l’opération arithmétique dans la mémoire de calcul MOL est ex-
pliquée, ainsi que la séquence détaillée des opérations. L’implémentation de l’architecture
mémoire proposée, avec une largeur de 8 bits, est réalisée en utilisant Cadence Virtuoso
avec une technologie CMOS 65nm et un modèle de référence de l’état de l’art pour la
technologie STT-MTJ. L’analyse des délais et du temps d’exécution, la robustesse face
à la variabilité de la résistance des dispositifs MTJ et la consommation énergétique sont
évaluées et discutées. Les comparaisons avec les travaux existants dans ce domaine il-
lustrent clairement les atouts de l’approche proposée pour réduire la latence (nombre
réduit d’étapes de calcul) et le nombre de cellules memristives nécessaires. Cependant,
ces réductions s’accompagnent avec une plus grande consommation énergétique. Cela
s’explique par le fait que l’approche proposée réalise les opérations au niveau vecteur
plutôt qu’au niveau bit, ce qui devrait toutefois réduire la complexité de l’unité de con-
trôle. La tolérance à la variabilité de la résistance est confirmée par des simulations (7%
à 21%).

Le chapitre se termine par la présentation de deux autres études de cas d’application
pour le calcul en mémoire basé sur l’approche MOL. La première concerne le calcul du
CRC (cyclic redundancy check), couramment utilisé pour la détection des erreurs, qui
peut être éventuellement utile pour détecter les erreurs provoquées par la mémoire elle-
même. La même architecture de mémoire MOL a été réutilisée. La séquence d’exécution
en termes d’opérations MOL élémentaires, le nombre requis d’étapes de calcul et les
résultats des simulations fonctionnelles sont illustrés et justifiés.

La deuxième étude de cas applicatif porte sur l’utilisation de l’approche MOL de
calcul en mémoire pour l’exécution de réseaux de neurones profonds (DNN). La principale
contribution concerne ici la mise en œuvre d’une opération optimisée de multiplication-
accumulation en mémoire. Afin de réduire le nombre d’étapes de calcul, l’architecture
de la mémoire MOL proposée a été légèrement modifiée. La possibilité de réaliser des
produits partiels a été incorporée en ajoutant un étage de multiplexeurs-inverseurs pour
permettre aux données d’être fournies également au niveau des lignes de la mémoire.
Un mapping d’un réseau de neurones simplifié sur la mémoire de calcul est également
présenté, avec une estimation de la latence de l’opération de convolution associée.

Conclusion et perspectives

Ce travail de thèse a été consacré à l’exploration du potentiel des technologies émer-
gentes des memristors au niveau des interconnexions, au niveau du calcul et au niveau

XVIII

de la mémoire. Dans ce contexte, le but était d’explorer et d’introduire de nouvelles
approches de conception basées sur les memristors pour combiner flexibilité et efficac-
ité en proposant des architectures originales qui dépassent les limites des architectures
existantes. Au niveau des interconnexions, nous avons étudié l’utilisation de dispositifs
memristifs pour permettre une grande flexibilité basée sur des réseaux d’interconnexion
programmables. Cela a permis de proposer la première architecture de transformée de
Fourier rapide reconfigurable basée sur des memristors, nommée mrFFT. Les memris-
tors sont insérés comme des commutateurs reconfigurables au niveau des interconnexions
afin d’établir un routage flexible puce. Au niveau du traitement, nous avons exploré
l’utilisation de dispositifs memristifs et leur intégration avec les technologies CMOS pour
la conception de fonctions logique combinatoire. Ces circuits hybrides memristor-CMOS
exploitent la forte densité d’intégration des memristors afin d’améliorer les performances
des implémentations numériques, et en particulier des unités arithmétiques et logiques.
Au niveau mémoire, une nouvelle approche de calcul en mémoire a été introduite. Dans ce
contexte, un nouveau style de conception logique a été proposé, nommé Memristor Over-
write Logic (MOL), associé à une architecture originale de mémoire de calcul. L’approche
proposée permet de combiner efficacement le stockage et le traitement afin de contourner
les problèmes liés aux accès mémoire et d’améliorer ainsi l’efficacité de calcul. L’approche
proposée a été appliquée dans trois études de cas à des fins de validation et d’évaluation
des performances. Ces travaux ouvrent la voie à de nombreuses pistes de recherche dans
le domaine des architectures de calcul à base de memristors, qui sont détaillées à la fin
du manuscrit.

XIX

XX

Introduction

The recent development of new non-volatile memory technologies based on the mem-
ristor concept has triggered many efforts to explore their potential usage in different

application domains. This novel type of two terminal nano-scale elements presents very
fast switching characteristics, non-volatile dense storage capacity, and low power consump-
tion [7]. Main part of conducted research efforts aims to exploit them for establishing a
unified and efficient memory system replacing current flash and CMOS-based memories
[7][8]. On the other hand, the possibility to integrate memristors on top of CMOS logic
gates allows for new design ideas based on close combination and interaction between
memory and computation. This introduces new opportunities of efficient reconfiguration,
high performance, and low power design.

Designing architectures which can adapt dynamically to application needs, brings great
advantages in terms of energy efficiency and performances. Such flexibility is required at
processing, interconnect, and memory levels. It becomes an important prerequisite for
hardware architectures used in multitude applications such as digital communications and
multimedia where new standards and multiple services are continuously emerging, with
strengthen requirements in terms of performance and energy efficiency. Current technolo-
gies are inefficient for highly self-adaptive systems, due to the cost of reconfiguration,
including delay and power consumption. Furthermore, memory accesses, which become
predominant in many applications, constitute a real bottleneck.

The versatile nature of memristors provides insights for novel solutions to circumvent
the overhead of reconfigurable hardware implementations in terms of implementation
area, execution time, and power consumption. It paves the way for many promising
applications in this regard. However, in order to take full advantages of this emerging
technology, new architectural paradigms must be invented. Indeed, although the existence
of memristor was theoretically predicted by Leon Chua in 1971 [1], its first physical
realization has been only reported in 2008 by a research team at Hewlett-Packard (HP)
[2]. This relatively recent event has triggered an orthogonal research path on non-volatile
memory technologies, memristive arithmetic logic units, and their applications.

The characteristics of memristive devices are motivating researchers and circuit de-

1

Introduction 2

signers to explore profound revision on the existing paradigms of computation, storage,
and access to data. Indeed, a memristor is a two terminal component whose resistance
value switches between two states in a permanent way (non-volatile) by applying a voltage
with a specific polarity, level, and duration. The concept of memristor has been general-
ized to memristive devices, as other emerging technologies of non-volatile memories have
been theoretically linked to memristors [4].

Objectives of the thesis

In the above mentioned context, the goal of this thesis work is to explore and introduce
new memristor-based designs that combine flexibility and efficiency through the proposal
of original architectures that break the limits of the existing ones. Our aim is to conduct
this exploration and study at different levels, therefore we set the following three main
objectives:

At interconnect level
Explore the use of memristive devices to allow high degree of flexibility based on
programmable interconnects. Memristors can be inserted as reconfigurable switches
at the level of interconnects in order to establish on-chip routing.

At processing level
Explore the use of memristive devices and their integration with CMOS technologies
for combinational logic design. Such hybrid memristor-CMOS designs should exploit
the high integration density of memristors in order to improve the performance of
digital designs, and particularly arithmetic logic units.

At memory level
Explore new in-memory computing approaches and computational memory archi-
tectures that allow efficient combination of storage and processing in order to by-
pass the memory wall problem and thus to improve the computational efficiency.
Thereafter, apply the proposed techniques and architectures in real application case
studies for the sake of performance evaluation.

Thesis contributions

Towards these objectives, several original contributions have been proposed in the frame-
work of this PhD thesis. These contributions can be summarized as follows:

Introduction 3

1. Proposal of the first memristor-based reconfigurable fast Fourier transform (FFT)
architecture, namely mrFFT. The proposed original architecture allows an efficient
support of any combination of radix-2 and radix-3 butterflies. Scalability is ensured
through a 2D mesh topology. Flexibility is realized at the level of interconnects,
allowing for optimized hardware reuse through a memristor-based non-volatile rout-
ing.

2. Proposal of new design methodology for implementing hybrid memristor-CMOS
combinational logic. The approach relies on an existing logic design style, called
Memristor Ratioed Logic (MRL). In this context, an original mapping of MRL
gates in a crossbar array is proposed. The structure of the proposed MRL-based
crossbar design, namely X-MRL, combines the density and scalability attributes of
memristive crossbar arrays and the opportunity of their implementation at the top
of CMOS layer. The design of a 1-bit full adder is detailed as a case study, together
with corresponding layout and simulation results using Cadence Virtuoso toolset
and CMOS 65 nm process.

3. A new logic design style, namely Memristor Overwrite Logic (MOL), is introduced
for performing logic operations. In the proposed approach, the memristor behaves as
logic accumulator. MOL operations are independent from the memristor technology
parameters and tolerant against device variability. Therefore, it is considered eligible
for applications of high reliability. The proposed logic design style is shown to be
adapted to crossbar memory arrays, thus can be employed for in-memory computing
applications.

4. Implementation of a MOL-based computational memory architecture. The proposed
original architecture, based on coupling two conventional crossbar arrays, is able
to perform bitwise AND/OR operations between two stored words. The proposed
MOL-memory architecture can be simply configured between storage (memory) and
computation (processing) modes. The presented memory architecture is designed
using a CMOS 65 nm process and an accurate model of Spin Transfer Torque -
Magnetic Tunnel Junction (STT-MTJ) memristive device. Simulations are also
conducted to confirm functional correctness and to provide more concrete analyses
of delay and power.

5. Demonstration of the proposed MOL design methodology and associated compu-
tational memory through several application case studies. The first one concerns
an N-bit full addition. The sequence of MOL operations is illustrated in time and
space. N-bit addition is analysed and evaluated in terms of required number of

Introduction 4

computational steps and energy consumption which show significant improvements
over existing works in the literature. Moreover, the well known cyclic redundancy
check (CRC) code is taken as another case study. CRC is commonly used in digital
data transmission and storage systems to ensure data integrity and detect accidental
changes in raw data. An n-bit CRC is performed inside the proposed MOL-memory.
A possible application of this approach could be in the detection of faults in the
stored raw data inside the memory. Detection can be executed purely inside the
memory. The third application case study considers the development of a novel
architecture dedicated for deep neural networks (DNN) computation. The architec-
ture relies on interconnected replicated MOL-memory banks to perform the weighted
accumulation process (multiplication and addition) within the memory storage cells.

Manuscript Organization

The rest of this manuscript is organized in four chapters as follows:

Chapter 1 introduces the basic concepts related to memristive devices and provides
a scientific background related to the presented PhD contributions. It gives an
overview on memristor fundamentals, including modeling and operation mechanism.
It provides in addition a survey on the related works and applications of memristive
devices at the levels of interconnects, logic design and memory.

Chapter 2 is dedicated to the presentation of the proposed design for a reconfigurable
FFT architecture (mrFFT). This first contribution explores the use of memristive
devices for programmable interconnects. The design is discussed and compared in
terms of resources, hardware reuse ratio and configuration time needed.

Chapter 3 presents our contribution related the use of memristive devices for combi-
national logic design. It introduces our new design methodology for implementing
hybrid memristor-CMOS combinational logic, based on Memristor Ratioed Logic
(MRL) design style. This consists of a scalable MRL-based crossbar design, namely
X-MRL, for the implementation of combinational logic. The design of a full adder
based on X-MRL approach is presented and evaluated in terms of energy, delay, and
area.

Chapter 4 regroups the presentation of the last three contributions cited above, related
to in-memory computing. It starts by presenting the proposed novel logic design
style, namely Memristor Overwrite Logic (MOL), and an original implementation

Introduction 5

of MOL-based computational memory. MOL design style is analyzed and compared
against existing approaches of memristor logic design. Evaluation of the proposed
computational memory is conducted by comparing the performance of executing N-
bit addition with existing designs in the literature targeting in-memory computing.
This chapter also presents the CRC as direct application to the proposed compu-
tational memory. Furthermore, the last part of this chapter presents a new design
architecture for a computational interconnected memory banks dedicated for DNN
applications.

The manuscript ends by summarizing the outcome of this thesis work and by providing
several ideas and proposals for future work and further investigations.

List of publications

The results of this thesis work have been disseminated through the following journal and
international conference publications.

Journal papers

• Khaled Alhaj Ali, Mostafa Rizk, Amer Baghdadi, Jean-Philippe Diguet, Jalal Jo-
maah, Naoya Onizawa, and Takahiro Hanyu “Memristive Computational Memory
Using Memristor Overwrite Logic (MOL)”, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 28, no. 11, pp. 2370-2382, Nov. 2020

• Khaled Alhaj Ali, Mostafa Rizk, Amer Baghdadi, Jean-Philippe Diguet, Jalal Jo-
maah “X-MRL: MRL Crossbar-Based Design for Combinational Logic Implemen-
tation”, IEEE Access (In review).

Conference papers

• Khaled Alhaj Ali, M. Rizk, A. Baghdadi, J.-Ph. Diguet, J. Jomaah “Towards
memristor-based reconfigurable FFT architecture”, in Proceedings of the 29th IEEE
International Conference on Microelectronics (ICM), Dec. 2017.

• Khaled Alhaj Ali, M. Rizk, A. Baghdadi, J.-Ph. Diguet, J. Jomaah “Crossbar
Memory Architecture Performing Memristor Overwrite Logic”, in Proceedings of the
26th IEEE International Conference on Electronics Circuits and Systems (ICECS),
Nov. 2019

Introduction 6

• Khaled Alhaj Ali, M. Rizk, A. Baghdadi, J.-Ph. Diguet, J. Jomaah “MRL Crossbar-
Based Full Adder Design”, in Proceedings of the 26th IEEE International Conference
on Electronics Circuits and Systems (ICECS), Nov. 2019.

• Khaled Alhaj Ali, M. Rizk, A. Baghdadi, J.-Ph. Diguet, J. Jomaah “Memristor
Overwrite Logic (MOL) for Energy-Efficient In-Memory DNN”, in Proceedings of
the IEEE International Symposium on Circuits and Systems (ISCAS), May 2020.

Chapter 1

Memristor: Principals and
Applications

This chapter introduces the basic concepts related to memristive devices and provides a
scientific background related to the presented PhD contributions. The next section

provides an overview on memristor fundamentals. This includes basic definitions, the
mechanism for memristor operation, and memristor device modeling. Section 1.2 presents
a review on emerging non-volatile memory technologies. Section 1.3 discusses the use of
memristors at the level of interconnects. Finally, Section 1.4 gives a brief survey on
existing memristor-based logic design styles.

1.1 Memristor fundamentals

Memristor was predicted theoretically by Leon Chua [1] in 1971. Chua hypothesized that
memristor which is the fourth passive device should exist and hold a relationship be-
tween flux (φ) and charge (q). The first fabrication of a memristor device was realized by
Williams’s group at Hewlett-Packard (HP) labs [2] in 2008. The fabricated device struc-
ture is comprised of a stoichiometric (TiO2) and an oxygen deficient (TiO2−x) layer, which
is sandwiched between two platinum electrodes as depicted in Fig. 1.1(a). The obtained
two-terminal nano-device exhibits a dynamic resistance that is determined by the inte-
gral of current flowing through the device itself. The resistance of a memristor can vary
between two bounds: the low resistance state (LRS) and high resistance state (HRS) cor-
responding for RON and ROFF respectively. The resistance states RON and ROFF represent
the logical level ’0’ or ’1’. A memristor has the ability to retain a resistance value even af-
ter the power source is removed from the device. The last attained resistance is naturally
memorized without the aid of state refreshing source. This property makes the memristor

7

Chapter 1. Memristor: Principals and Applications 8

device a good candidate for the next generations of non-volatile memories (NVM) [3]. In
fact, the theory of memristors is generalized to memristive systems. Williams and Chua
posited that all resistive devices with memory are classified as memristors, regardless of
the device material and physical operating mechanisms [4][5]. They all exhibit a distinc-
tive “fingerprint”, which is characterized by a pinched hysteresis loop as shown in Fig.
1.1(b). The hysteresis loop is confined to the first and the third quadrants of the V-I
plane, which changes its contour shape according to the amplitude and frequency of the
periodic “sinewave-like” input voltage/current source [4]. The corresponding symbol for
memristors is shown in Fig. 1.1(c).

Due to their versatile nature, the use of memristive devices has been investigated at
the levels of memory, logic design, and interconnects.

(a) (b) (c)

A

B
Voltage (V)

C
u

rr
en

t
(m

A
)

© 2015, IEEE

Figure 1.1: Memristor: (a) Structure, (b) Hysteresis loop [6], (c) Symbol

1.1.1 Basic operation

A memristor is a two terminal nano-scale device whose resistance could be modulated
between two bounds, the low resistance state (LRS) and the high resistance state (HRS).
A large voltage or current bias is able to change the resistance of the device [2]. As
illustrated in Fig. 1.2, a positive bias applied on the terminals of the memristor gradually
change its resistance toward the HRS state; whereas, a bias in the opposite direction
causes its resistance to decrease toward the LRS state. A larger bias typically speeds up
the change in the resistance. This change persists after the bias is withdrawn, allowing
the state information to be stored. Several memristive devices have been explored in
the literature. These devices vary significantly in their properties. Normally, devices
with high switching speed, high LRS-HRS margin and high switching endurance are more
preferable.

1.1. Memristor fundamentals 9

R RON

Current flow Current flow

R ROFF

Figure 1.2: Basic operation of a memristor device

1.1.2 Memristor device modeling

HP Labs have described the physical model of memristor as shown in Fig. 1.3. It consists
of two layers of TiO2 sandwiched between platinum contacts [2]. One of the TiO2 layers
has been doped with oxygen vacancies; whereas, the other has been left undoped. As a
result, the doped region behaves as semiconductor while the undoped region behaves as an
insulator. The width of the doped region w(t) varies between zero and memristor’s length

© 2013, IEEE

W
D

A B

Figure 1.3: TiO2 memristor model according to [9]

D according to the amount and the direction of the electric charges q(t) moving across the
memristor. Hence, applying a certain bias to the memristor leads to the flow of current
which in turn changes the value of w(t). Therefore, the virtual boundary separating the
doped and undoped regions moves leading to a variation in the memristor total resistance
RME M , which is expressed in (1.1) [2].

RME M(x) = RON (x) + ROFF(1 − x) (1.1)

where x =
w

D
∈ [0,1] and RON and ROFF are the limiting values of memristor resistance

when w = D and w = 0 respectively. The speed of the boundary movement between the
two ends is called the drift velocity and is represented by the state equation [2]:

dx
dt
= ki(t) f or k = µv

RON

D2 (1.2)

where, µv is the dopant mobility. Equation (1.2) considers that drift velocity is constant
resulting in linear drift model of memristor. However, the experiments which have been

Chapter 1. Memristor: Principals and Applications 10

presented in [10] and [11] have proved that the behavior of the implemented memristors
is non-linear. To manage the issue of nonlinearity, several models have been proposed in
the literature. In [11], the authors have proposed a non-linear dopant drift model as a
relation between the current and voltage (I-V) of the memristor. In [12], the drift velocity
have been expressed using a window function f (w) in order to model the non-linearity as
expressed in (1.3).

dw
dt
= a f (w)V(t)m (1.3)

where a and m are constants, f (w) is the window function and m is an odd integer. The
previous presented models are based on the HP physical representation of memristor. In
[10], Pickett et al. have proposed a more accurate physical model of memristor. A resistor
is connected in series with an electron Simmons tunnel barrier [13] instead of connecting
two resistors in series, as demonstrated in HP’s model. This model exhibits non-linear
and asymmetric switching characteristics. Its state equation is expressed in (1.4) [13]:

dx
dt
=

Co f f sinh

(
i

iof f

)
exp

[
− exp

(
x−aof f
wc
−
|i |
b

)
− x

wc

]
Consinh

(
i

ion

)
exp

[
− exp

(
x−aon
wc
−
|i |
b

)
− x

wc

] (1.4)

where the state variable x represents the width of Simmons tunnel barrier, Co f f , Con,
ao f f , aon, wc and b are the fitting parameters and io f f and ion are current thresholds of
the memristor. Obviously, (1.4) shows that Simmons tunnel barrier model is more compli-
cated; hence, it is computationally inefficient. In order to attain a simplified and general
model, Kvatinsky et al. [14] have presented the TEAM model, which represents in simpler
expressions the same physical model of Simmons tunnel barrier model. Equation (1.5)
expresses the state equation representing the TEAM model:

dx
dt
=

Ko f f

(
i(t)
iof f
− 1

)αof f
fo f f (x), 0 < io f f < i

Kon

(
i(t)
ion
− 1

)αon
fon(x), i < ion < 0

0 otherwise

(1.5)

where ion and io f f are current thresholds of the memristor, Kon, Ko f f , αon and αo f f are
the fitting parameters and fon(x) and fo f f (x) are the corresponding window functions
of the memristor. However, experimental data acquired from several memristive devices
reveals the existence of voltage threshold rather than a current threshold [6]. In [6],
the TEAM model has been extended to VTEAM model. Equation (1.6) describes the
VTEAM model. It is similar to the expression in (1.5) except for the voltage dependence
v(t) and the respective SET and RESET voltage thresholds von and vo f f . Moreover,
the VTEAM model is considered as a general model since it can be fitted to any other

1.2. Memristor as a memory element 11

memristor model [6].

dx
dt
=

Ko f f

(
v(t)
vof f
− 1

)αof f
fo f f (x), 0 < vo f f < v

Kon

(
v(t)
von
− 1

)αon
fon(x), v < von < 0

0 otherwise

(1.6)

Normally, the window function f (x) is added for a memristor model in order to decelerate
the moving boundary of the memristor before reaching its extremities and to guarantee
a zero speed exactly when it reaches one of them. In this thesis, we have adopted the
VTEAM model to describe the simulated memristor as it provides simple and realistic
modeling.

1.2 Memristor as a memory element

1.2.1 Emerging non-volatile memories

Modern systems have to implement additional memory in order to cope with the ever
increasing requirement of massive data storage. At the highest abstraction level, memory
technologies are classified into volatile and non-volatile. The former need power to retain
the stored data; whereas, the latter is capable of retaining it irrespective of the power
supply. Non-volatility is measured in terms of the duration of time that data can be re-
tained. The well known static RAM (SRAM) and dynamic RAM (DRAM) belong to the
volatile memory category. SRAMs are considered as fast (write/erase time: 40.3ns/0.3ns)
compared with DRAMs (write/erase time: < 10ns/< 10ns) [8]. However, the density of
SRAM is very low due to its large unit cell area (six transistors: 140F2), compared with
DRAMs, the unit cell of which is much smaller (one-transistor and one-capacitor: 6F2)
[7]. Hence, DRAM is used as main memory where the capacity is critical for temporary
information storage and processing [15]. SRAMs are usually used in the processors cache
where the access time is critical. On the other hand, Non-volatile memories (NVM) are
explored. Flash memories such as NAND flash and NOR flash are considered nowadays
the most widespread NVM [16]. Flash memories are well optimized, and has a significant
commercial presence. Current memory technology roadmap forecasts NAND Flash mem-
ory will continue to dominate high-density storage in the short and intermediate terms.
However, in long term years, it is expected that NAND flash would face limitations espe-
cially when scaling beyond 40nm [17].

Several non-conventional NVMs are nowadays being investigated as promising candi-
dates to replace the popular flash memories and potentially even the other conventional

Chapter 1. Memristor: Principals and Applications 12

memories such as SRAM and DRAM. For instance, the Spin Transfer Torque Magneto-
static RAM (STT-MRAM) [18], Ferroelectric RAM (FeRAM) [19], phase-change RAM
(PCRAM) [20], and resistive RAM (ReRAM) [21] form the category of so-called emerg-
ing nonvolatile memories. They are based on two terminal resistive switching elements
and belong to the family of memristive devices [4]. These emerging NVMs combine the
speed of static random-access memory (SRAM), the density of dynamic random-access
memory (DRAM), and the non-volatility of flash memory and so become very attractive
as another possibility for future memory hierarchies [8].

Memristive memories are being widely investigated to meet with the requirements of
current storage systems. Table 1.1 compares the features of traditional and emerging
memory technologies. For instance, RRAM shows promising features in terms of cell size
and comparable write time, while it is believed that the low endurance issue of RRAM
will be improved in the near future [22]. Moreover, it is expected that these memories
will be capable of storing up to 1TB of data on a single chip. Thanks to the ability of
“3D-stacking” multiple cells in different configurations in order to save space while still
upping the storage limits [23].

Table 1.1: Comparison of conventional and emerging memory technologies [8]

Type Cell Feature size Write time Endurance

SRAM Latch 140F2 0.3 ns > 3 × 1016

DRAM Stack/trench capacitor 6F2 10 ns > 3 × 1016

NOR-FLASH Floating gate 10F2 1 ms > 105

NAND-FLASH Floating gate 5F2 1 ms > 105

MRAM Magnetoresistance 20F2 10 ns > 3 × 1016

PCRAM Phase change 4.8F2 20 ns 108

FeRAM Polarization change 22F2 10 ns 1014

ReRAM Resistance change 4F2 5 ns > 1010

The promising features of memristive NVMs have triggered the research toward devel-
oping new paradigms for memory systems. Based on the unique properties of memristive
devices, new memory based micro-architectures have been proposed in the literature.
Most of the approaches introduces emerging NVM technologies as enablers to the era of
memory-intensive computing, which brings interesting opportunities for novel architec-
tural applications.

For instance, the RRAM-based multistate pipeline register (MPR) have been presented
in [24]. MPR is different than conventional types of memory, and is used to store multiple
data bits, where only a single bit is active and the remaining data bits are idle. The
active bit is stored within a CMOS flip flop, while the idle bits are stored within an

1.2. Memristor as a memory element 13

RRAM crossbar array co-located with the flip flop. An MPR stores the data of numerous
instructions from different threads in the pipeline during execution. MPRs are used
to reduce the penalty of a thread switch on a Switch-on-Event multithreading (SoE)
processor, enabling a new microarchitecture - Continuous Flow Multithreading (CFMT)
[25].

Memristive NVMs are also employed in Field Programmable Gate Array (FPGA)
systems. While SRAM-based FPGA suffer from long configuration loading time and
excessive leakage power during stand-by, FPGAs using non-volatile memories (NVM)
have emerged as a promising alternative [26]. As stated in [27], NVMs eliminate the
necessity of loading configuration from off-chip storage, for it preserves the configuration
information stored on-chip while powered off. This allows to instantly run the system
upon power-up.

1.2.2 Crossbar arrays

At the architectural level, crossbar cell array structure is considered one of the best ways
to implement memristive devices [7]. A crossbar array consists of two sets of nano-wires
running perpendicular to one another as shown in Fig. 1.4(a). A memristive device
is inserted at the intersection of each set of two perpendicular nano wires. Crossbar
structure is considered as the optimal topology to implement NVMs such as ReRAMs [7].
It offers several benefits including highest possible device density (4F2), manufacturing
simplicity, defect-tolerance [28], scalability and CMOS compatibility. Moreover, crossbars
can provide the possibility of having multiple array-layers stacked on top of each other
to further augment density and bandwidth similar to the Intel 3D XPoint [29]. A target

(a) (b)

Desired path Sneak path

Figure 1.4: Memristive crossbar array: (a) Structure, (b) Sneak path phenomenon

memristive device located at a certain crosspoint is usually configured by biasing its
corresponding row (wordline) and column (bitline). The applied bias affects the state of

Chapter 1. Memristor: Principals and Applications 14

the selected device by shifting its resistance to the LRS or HRS depending on the applied
polarity. However, a typical passive crossbar memory array suffers from large amount of
leakage current that propagate through unselected cells as shown in Fig. 1.4(b). These
paths, which are known as current sneak paths, lead to several downsides:

i) During the write phase, the unselected cells are exposed to a voltage drop causing
a drift in their internal state (state drift phenomena [30]).

ii) During the reading phase, these paths causes a degradation in the sense margin
leading to false estimation of the state of the sensed device.

iii) More power is dissipated in the crossbar.

Many solutions have been proposed in the literature to overcome this problem and are
classified mainly into 4 classes:

Selectors
Selectors such as transistors or diodes [31][32][15] are connected in series with the
memristive cells inside the crossbar. The transistors ensure gating of unselected
cells leading to negligible leakage current; whereas, the diodes are used as rectifying
devices to isolate the cells being written or read. Fig. 1.5(a) depicts the schematic
as well as the structure of transistor type selectors, while Fig. 1.5(b) demonstrates
that of diode type selectors.

Bias schemes
Voltages applied to non-accessed wordlines and bitlines are set to fixed values which
are different than those applied to accessed ones; examples are the use of 1/3 or 1/2
bias schemes [33] which are demonstrated in Fig. 1.6(a) and Fig. 1.6(b) respectively.
Other methods attempts to bypass sneak paths problem using a multistage reading
algorithm as the one introduced by the HP Labs team in [34].

Switching-device modifications
In this technique, memristive devices are modified; examples are serially connecting
two memristors with opposite polarities, resulting into a “complementary resistive
switch-CRS” [35], or employing highly nonlinear memristors to minimize undesired
current paths [36].

Information theoretical techniques
Sneak paths are modeled as random error source. These techniques attempts to
change the distribution of zeros and ones inside the crossbar array or use encoding
schemes and error correcting codes to guarantee sneak-path free readout [37][38].

1.2. Memristor as a memory element 15

This is due the fact that sneak paths level is highly dependent on the instantaneous
data stored in the crossbar array.

Bit Line (BL)

Word Line (WL)

Source Line (SL)

NMOS

S D

Memristor

BL

WL

Vg

MOS
Transistor

Bit Line (BL)

Source Line (SL)

Diode

(a)

(b)

BL

Top electrode

Bottom electrode WL

Memristor

Nanowire Diode

© 2007, IEEE

Figure 1.5: Selector devices: (a) Transistor type, (b) Diode type [31].

2𝑉

3

0

2𝑉

3

𝑉

3
𝑉

𝑉

3

𝑉

3

𝑉

2

0

𝑉

2

𝑉

2
𝑉

𝑉

2

𝑉

2

1/3 Method 1/2 Method

(a) (b)

Figure 1.6: Bias schemes: (a) One-third select method, (b) Half select method.

The above solutions contribute to the reduction or removal of the current sneak-paths,

Chapter 1. Memristor: Principals and Applications 16

though they still suffer from several limitations. For instance, transistors which are the
commonly used selectors, solve sneak paths problem. However, it expands the cell size
and makes it hard to achieve cross-point cell size of 4F2 and consequently reduces the
integration-density. Bias schemes and device modifications normally require complex
reading schemes, thus impact both area and performance. Information theoretical tech-
niques are still at their preliminary stages and should be further extended, as their is a
need for constructing simple codes which takes complexity into consideration.

1.3 Memristors for reconfigurable interconnects

Before the discovery of the HP memristor (ReRAM device), memristive devices such as
MRAM and PcRAM was only employed as storage elements. Since the HP Labs presented
the TiO2 memristor in 2008, rapid progress on the fabrication of high-quality memristors
has been achieved in the past few years [23][39][40]. These memristors are characterized
by huge gap between their Low and High resistance state (ROFF/RON ' 106). This evo-
lution has received significant attention and allowed for employing these devices in new
fields. Non-volatile programmable switches are considered as direct applications of these
memristors. Memristor-based programmable switches are introduced to achieve efficient
and low cost flexibility in application specific integrated circuit (ASIC) designs. Such
flexible designs are reconfigured allowing for efficient reuse of resources for different appli-
cation need. Moreover, memristors are explored by FPGA designers. It is reported that
the routing resources in an FPGA (Fig. 1.7) including switch blocks (SBs), connection
blocks (CBs) and interconnects can account for up to 70% of the total area, delay, and
consumed power [41]. Thus, the improvement of these programmable routing elements in
FPGAs is of importance for research and development. In this context, memristors have
been presented in the literature [42][43][44][45] as potential alternative to the conventional
SRAM-based programmable interconnects in FPGAs.

Generally, memristors are employed to implement non-volatile routing switches by
logically connecting/disconnecting wires during configuration mode. Non-volatile routing
preserves the configuration information stored on-chip while powered off, allowing the
devices to immediately run when it is powered up. On the other hand, leakage power
is minimized during stand-by mode, leading the system to work at extremely low-power.
Moreover, the opportunity to fabricate memristors on the top of transistor layer in the
same die brings significant reduction of the overall area of the system design. These
features are of high interest when targeting multi-mode ASIC designs as well as high-
end FPGAs. For instance, authors of [42] have proposed an FPGA architecture with

1.3. Memristors for reconfigurable interconnects 17

LB LB LB

LB LB LB

LB LB LB

CB CB

CB CB

CB CB

CB CB CB

CB CB CB

SB SB

SBSB

Block
Memory

Block
Memory

Figure 1.7: Conventional FPGA architecture

memristor-based reconfiguration (mrFPGA). The programmable interconnects of mrF-
PGA use only memristors and metal wires so that the interconnects can be fabricated
over logic blocks, resulting in significant reduction of overall area and interconnect de-
lay. As demonstrated in Fig. 1.8, the area of mrFPGA has been reduced to the total
area of the logic blocks only, which takes 10% to 20% of the conventional FPGA area.
Several studies [46][47] have demonstrated the use memristive devices as programmable

© 2011, IEEE

Figure 1.8: Memristor based-programmable routing structure for FPGA proposed in [42]

switches instead of SRAM-based pass transistors in conventional FPGAs. Fig. 1.9(b)
shows the typical CMOS routing switch. It consists of a pass transistor controlled by a
6-transistors-SRAM cell. The first memristive routing switch has been proposed in [47].
The switch is made of two programming transistors and one memristor (2T1R). During
the configuration stage, programming voltages Vp1 and Vp2 are sent through the transis-
tors to set the resistance of the memristor to RON or ROFF . If it is set to RON , nodes

Chapter 1. Memristor: Principals and Applications 18

“A” and “B” are assumed connected during the operational stage. Otherwise, “A” and
“B” are disconnected. During operation stage, pass transistors are isolate programming
voltages. The operational voltage |VAB | should be lower than the switching threshold of
the memristor to prevent any drift in the state of the switch. This type of memristive
switches is simple and can be implemented as junctions in a crossbar structure.

Another memristive switch has been presented in [47]. The switch has the 2T2R
structure as shown in Fig. 1.9(c). One programming transistor with a programming
voltage Vp is used to configure two complementary memristive devices that are supplied
with Vdd and GND. Note that |Vdd − VP | is used to program the upper memristor, while
VP is used for the lower one. That is, when one memristor is in the LRS and the other
should be in the HRS. During the operational stage, the two junctions work as a voltage
divider, with this ratio determining the pass transistor gate voltage. The ratio needs to
be large enough to ensure proper functioning.

(a) (b) (c)

Figure 1.9: Memristive switches: (a) 7T SRAM routing switch, (b) 2T1R routing switch,
(c) 2T2R routing switch

On the other hand, memristive switches are also explored as selectors for memory
cells. The authors in [48] have presented a 4-memristor switch design which can replace
the transistors in the peripheral circuits of NVMs. The proposed design of the switch
is used to implement a 4M1M (four memristors per memristor) memory cell. Significant
improvements have been demonstrated over the memory cell in [49] at the level of read
latency, power dissipation and consecutive correct read number.

1.4 Memristors for logic design

The fast decline of Moore’s law is paving the way to explore new set of emerging technology
devices [50], as it is difficult to overcome the various physical limitations of the traditional
CMOS technology [51]. In this context, the nano-scale size memristor was introduced as
a possible alternative candidate as it offers a lot of advantageous features including the
capability of executing Boolean logic [52][53][54] in addition to the storage role that we

1.4. Memristors for logic design 19

have discussed earlier. The presence of these two attributes combined has given a great
impetus to explore new innovative circuits and systems based on memristors. For instance,
one of the main challenges of modern computers nowadays is the memory wall problem
which is originated from the mismatch in the performance of processor and memory.
There has been a continuous effort to move processing cores closer to where data resides
to address the memory wall problem. A memristor-based logic can integrate processing
and storage role (in-memory computing), an attribute which can be a promising solution
to scale the memory wall. A memristive logic design style is able to compute a certain
primitive logic such as AND, OR, NOR, etc. Based on these simple operations, complex
arithmetic functions can be executed. Section 1.4.1 is a survey on the different memristive
logic design styles introduced in the literature, while section 1.4.2 presents a framework
for evaluation of these design styles.

1.4.1 Memristor-based logic design styles

Several memristor-based logic design styles have emerged in the literature. Each has its
own capabilities and thus is adapted for a specific type of applications. For instance,
Memristor Ratioed Logic (MRL), which has been proposed in [52], integrates memristors
and CMOS transistors to implement combinational functional blocks. These blocks are
relatively dense compared to those implemented with pure CMOS transistors. The Mem-
ristor Threshold Logic has been studied in [55]. The threshold gate has been presented
in the domain of bio-inspired information processing. It is considered simple, but still in
preliminary stages of fabrication. The Material Implication (IMPLY) [56] and the Mem-
ristor Aided logic (MAGIC) [53] are intended for in-memory computing. In these design
styles, a memristor serves as a memory element as well as a part of a computational
gate inside the memory. Memristors-As-Drivers (MAD) gate has been presented in [57].
MAD has been introduced to overcome the long delays of the IMPLY operations as well
as signal degradation and buffering issues in MRL. However, each MAD gate requires a
complex driving circuitry; thus, considered not suitable for integration inside a memris-
tive memory. A memristor-based Majority gate (MAJ) has been proposed in [58]. The
authors demonstrated that a single memristor is capable of performing a 3-variable ma-
jority function. By the aid of additional inversion function (INV), A Boolean expression
is represented using majority-inverter graph (MIG). MIGs are then realized sequentially
in conventional memristive crossbar arrays. The bipolar resistive switches (BRS) as well
as the complementary resistive switches (CRS) logic have been presented in [59]. BRS
and CRS behave absolutely identical in terms of logic operation. BRS/CRS operations
are special cases of MAJ.

Chapter 1. Memristor: Principals and Applications 20

1.4.1.1 IMPLY – Material Implication

In IMPLY, the states of the memristor RON and ROFF represent logic ’0’ and ’1’ re-
spectively. Fig. 1.10(a) shows the implementation of IMPLY gate. It consists of two
memristors holding logical states p and q and a reference resistor RG (RON < RG < ROFF).
The gate is controlled by three voltage levels VSET , VCOND and VCLE AR. The initial states
p and q represent the inputs to the gate. To perform IMPLY, voltage levels VSET and
VCOND (|VCOND | < |VSET |) are applied simultaneously to the ports of the gate. The inter-
action of the two memristors under the aforementioned voltage leads to the execution of
IMPLY according to the truth table shown in Fig. 1.10(a). The value p + q is written as
an output into memristor of state q. However, a separate mechanism to read the result
of the computation and to perform the control the voltages is required. This mechanisms
are usually based on the standard CMOS transistors.

The structure of IMPLY allows its integration in a standard memristive crossbar array
as illustrated in Fig. 1.10(b), where p and q can represent the states of two memristors
located in the same column (or row) within the crossbar. The voltages VSET and VCOND

are applied to the word lines, while the bit line is connected to a grounded resistor RG.
In fact, IMPLY operation is destructive to the values of p and q. Hence, if the data
represented by p is significant, a copy should be performed to reserve a safe version.

This approach is an example of combining memory and logic and thus considered
suitable for in-memory computing [56] [60] [61].

1.4.1.2 MAGIC – Memristor Aided Logic

MAGIC is another type of memristive logic [53] where the resistance values represent the
logic states. Unlike IMPLY, this logic family makes use of separate memristors to store
the input bits (In1 and In2) and an additional memristor is used to store the output bit
(Out). All basic gates (NOT, AND ,OR, NOR, NAND) can be implemented using the
MAGIC design style as illustrated in Fig. 1.11(a). A MAGIC gate operation requires
two sequential steps: (i) Initialize the output memristor to either ’0’ or ’1’ state. Initial-
ization to ’0’ corresponds to non-inverting gates like AND/OR, while for inverting gates
(NOT/NOR/NAND), it is initialized to ’1’. (ii) Apply a suitable voltage V0 the input
port of the gate. The result is written simultaneously into Out.

Though all primitive gates can be implemented using MAGIC design style, only NOR
and NOT can be integrated into crossbar arrays. Fig. 1.11(b) presents the implementation
of MAGIC-NOR inside a crossbar. Larger Boolean functions can be realized by repre-
senting them in terms of NOR and NOT netlists, which are then performed sequentially
inside the crossbar array.

1.4. Memristors for logic design 21

VCOND

VSET

p

q

VCOND VSET

RG

p q

(a) (b)

RG RG RG RG

p q p q

0 0 1

0 1 1

1 0 0

1 1 1

Figure 1.10: IMPLY gate: (a) schematic of a memristor-based IMPLY gate and its cor-
responding truth table, (b) performing IMPLY in a crossbar array

MAGIC design style suffers from three main drawbacks:

• The previously stored bits In1 and In2 are lost,

• The choice of the driving voltage V0 is highly related to the values of ROFF and RON

• The written output may be subjected to state drift which may induce errors [53].

1.4.1.3 MRL – Memristor Ratioed Logic

The memristor ratioed logic (MRL) [52] is a typical hybrid CMOS-memristor logic design
where the programmable resistance of memristors is exploited in the computation of
the Boolean AND and OR functions. MRL opts voltage as the state variable similar
to CMOS-based devices. Hence, the computation is accomplished in one single step.
This criterion eliminates the drawbacks of the sequential process of IMPLY logic devices.
Fig. 1.12 depicts the structures of the MRL AND, NAND, OR, and NOR gates. Both
OR and AND gates consist of two anti-serial memristors (i.e. connected serially with
opposite polarities); whereas, for NOR and NAND a CMOS inverter is added at the
output. Both MRL AND and OR gates react similarly when identical values are set to
their input ports (either both inputs are set to logic ’1’ or ’0’). In this case, no current
flows through the anti-serial memristors leading to the transfer of the input voltage to

Chapter 1. Memristor: Principals and Applications 22

In1

Out

In1 V0

Gateway

Out

V0

Gateway In1

V0

Gateway

Out

V0

Gateway In1

V0

Gateway

In2

Out In1 In1

NOT

AND

NAND

OR

NOR

In1

In1
Out

V0

In1

In2

V0

Out

(a) (b)

Figure 1.11: Structure of MAGIC NOR gate [53]

(a) (b) (c) (d)

AND

A

B

A

B

OR NAND

A

B

A

B

NOR

Figure 1.12: Schematic of an MRL (a) AND, (b) NAND, (c) OR, (d) NOR

the output. In the case where different values are set to the input ports (i.e. first port
is set to ’0’ and the second port is set to ’1’ or vise versa), a current flows from the port
with higher potential (logic ’1’) to the port with lower potential (logic ’0’). The resulting
potential difference changes the internal state of both memristors in an opposite manner.
One memristor tends to attain the RON state while the other tends to attain the ROFF

state. In addition, the connected memristors forms the well-known voltage divider circuit.
Assuming ROFF >> RON , (1.7) and (1.8) present the obtained output values Vout of MRL
OR and AND gates respectively [52].

Vout,OR = (
ROFF

ROFF + RON
) × VCC ≈ VCC (1.7)

Vout,AND = (
RON

RON + ROFF
) × VCC ≈ 0 (1.8)

Note that the output voltage Vout converges to the higher potential (logic ’1’) in the MRL
AND gate and to the lower potential (logic ’0’) in the MRL OR gate. Fig. 1.13 illustrates
the logical operations of the MRL AND gate corresponding to all input combinations.
However, cascading several MRL gates leads to a floating output (between logic ’0’ and

1.4. Memristors for logic design 23

Vout ≈ Vcc

Current flow=0

Vout ≈ Gnd

Current flow=0

R0 ≈ ROFF

R1 ≈ RON

Vout ≈ Gnd

R0 ≈ RON

R1 ≈ ROFF

Vout ≈ Gnd

Vcc

Gnd

Gnd

Vcc

Vcc

Vcc
Gnd

Gnd

R RON

Current flow Current flow

R ROFF

Figure 1.13: Logical operations performed with MRL AND gate

logic ’1’) due to voltage degradation. Since memristors are passive devices, they cannot
amplify signals. Therefore, CMOS inverters can be used as buffers after several stages to
restore the attained logical state [52].

Several recent research works presented in the literature exploit the use of MRL to
design basic building blocks. In [52], a design dedicated for the universal full adder circuit
has been proposed using MRL gates with the aid of CMOS inverters instead of pure
CMOS based gates. Although MRL are expected to realize more compact logic design
circuits, the switching time of the anti-serial memristors in MRL is substantially slower
than the delay of CMOS logic gates (nanoseconds versus picoseconds), MRL gates are
still much slower than CMOS logic.

1.4.1.4 MAD – Memristors-As-Drivers

MAD gates, or Memristors-As-Drivers gates has been proposed in [57]. MAD was in-
troduced to overcome the long delays of the IMPLY operations, signal degradation and
buffering issues in MRL. Fig. 1.14 presents the implementation of MAD gate which can
execute AND operation. The gate is constituted of two input memristors A and B that are
connected in series and a separate output memristor AND. Each of the three memristors
is attached to a single pull-down resistor Rg. As in IMPLY approach, Vcond and Vset are
used as driving voltages. A controlled switch (can be a MOSFET) is connected in series
to the output memristor. It is used to pass or isolate the driving voltage Vset . This switch
is gated with the voltage sensed at node Vt .

In order to perform the AND operation, the two input operands are assumed to be

Chapter 1. Memristor: Principals and Applications 24

initially preloaded into memristors A and B. The output memristor is initialized by logical
’0’. Vcond and Vset are applied simultaneously to the ports of the gate. If the sensed voltage
at node Vt is greater than the threshold voltage (Vapply) of the switch connected to the
output memristor, the switch will close and the voltage Vset turns the output memristor
into logical ’1’, otherwise the state of the memristor remains at logical ’0’. In fact, the
threshold of the switch plays the main role in defining the function of the gate. For the
case of MAD-AND, the gate is configured in such a way that the sensed voltage at node
Vt exceeds the value Vapply only when the two input memristors are in the low resistance
state (i.e. logical ’1’), resulting in the AND operation.

Other Boolean operations such as OR, NOT, COPY and XOR can be also realized
using MAD approach and are presented in Fig. 1.15. In fact, the main challenge in
achieving these circuits is to choose an appropriate value of Vapply corresponding for each
operation. Different value of Vapply requires different MOSFET (and pull down resistor)
specifications. However, the hardware cannot be easily reconfigured dynamically to alter
this value. Moreover, when targeting in-memory computing applications, these gates
requires complex driving circuitry which limits its utility in standard crossbar arrays.

+
-

10K

Vcond

10K 10K

ANDB

A

+
-

Vset

Vt

Figure 1.14: MAD AND gate implementation

1.4.1.5 MTL – Memristor Threshold Logic

MTL gate has been proposed in [62]. The gate was presented in the domain of bio-inspired
information processing. A generic threshold gate with N-input transfer function is defined
as:

Y =

0, if

N∑
i=1

wi xi < T

1, if
N∑

i=1
wi xi ≥ T

(1.9)

1.4. Memristors for logic design 25

+
-

10K

Vcond

10K 10K

ORB

A

+
-

Vset

V

+
-

10K

Vcond

10K 10K

NOTA +
-

Vset

V

+
-

10K

Vcond

10K 10K

CopyA +
-

Vset

V

+
-

10K

Vcond

10K 10K

XORB

A

+
-

Vset

V

Figure 1.15: MAD OR, XOR, NOT, and Copy gates implementation

where xi is a Boolean input variable, wi is an integer weight of the corresponding i-th input,
T is a specified threshold and Y is the overall weighted sum of the inputs. Fig. 1.16 shows
the implementation of a 3-input MTL gate. The gate uses the configurable conductance
of memristors to represent weights at the inputs. The magnitude of the currents flowing
through the respective memristors depends on the value of memristance (weight) at these
inputs. By the aid of PMOS and NMOS current mirrors, these currents are summed and
then compared with a reference current Ire f (threshold). If the total current sum exceeds
Ire f , the output of the MTL gate is the high supply voltage otherwise it is low.

Threshold gates are considered as simple and they do not exhibit the serialization
issues of the IMPLY operation or the signal degradation or CMOS issues of the hybrid-
CMOS approach. However, threshold gates are very sensitive to state drift which can be
a potential problem during operation [62]. MTL is expected to have better performance
with memristors which do not drift at low voltage levels.

1.4.1.6 MAJ – Memristor-based Majority

A memristor based majority gate (MAJ), which is proposed in [63] is based on a single
memristor operation. In fact, a basic majority function takes on the same value as the

Chapter 1. Memristor: Principals and Applications 26

© 2012, IEEE

Figure 1.16: A 3-input MTL gate which uses the memristors as weights and Ire f as the
threshold [62]

majority of its inputs, this is also known as voting logic [58]. A 3-input majority is given
as follows:

M3(A,B,C) = AB + AC + BC (1.10)

A magority function with the aid of inversion (INV), has been proven to be functionally
complete [58]. In other words, magority is capable of constructing other logic operations
(Majority inverter graphs (MIGs)) [58][64]. MIGs has been initially introduced as an
efficient optimization for Boolean functions that are represented by AND, OR and NOT
[58]. Fig. 1.17(a) illustrates how a majority operation is intrinsically realized using a
single memristor. Assuming that a memristor initially stores the logical value Z , the
top and bottom electrodes are supplied by the logical states A and B respectively. The
obtained internal state value is Z′, which is expressed in (1.11).

Z′ = Z A + ZB + AB = M3(A,B, Z) (1.11)

As shown in (1.11), Z′ follows the 3-variable majority relation between A, B and Z . In the
same way, MAJ operations are performed to a crossbar array as shown in Fig. 1.17(b). A

and B are applied to a memristor through its corresponding row and column. The state
of the target memristor changes according to the majority relation. Generally, a Boolean
expression is represented using majority-inverter graphs (MIGs), which are then realized
sequentially in conventional memristive crossbar arrays.

However, it is worth to mention that the concept of MAJ was introduced earlier in
[59]. Authors of [59] have presented the computation with special cases of MAJ that are

1.4. Memristors for logic design 27

realized in bipolar resistive switches (BRS) as well as complementary resistive switches
(CRS). More details are discussed in Section 4.3.2.

(a)

A

B

Z’
𝑍

𝑍′ = 𝑍𝐴 + 𝑍𝐵 + 𝐴𝐵

A

B

(b)

Z’

Figure 1.17: Majority gate: (a) Structure, (b) Realization in a crossbar array

1.4.2 Roadmap for evaluation of memristive logic

This section establishes a roadmap for classifying memristive logic families and discusses
the fundamental differences of these logic families as compared to conventional CMOS
logic systems. Table 1.2 includes some preliminary evaluations for the memristive design
styles which are discussed above.

1.4.2.1 Statefulness

Amemristive logic has fundamental differences when compared to the conventional CMOS
logic. For instance, CMOS logic is based on one state variable (i.e., voltage) to represent
data. Thus, input and output data, throughout all intermediate stages are represented
only as voltage. This flow is disrupted, in memristive logic since the non-volatile resistance
of memristors acts as a primary state variable throughout the execution of the logic. The
interaction between resistive states of the memristors and voltages are used to produce
different dynamic behaviors that enable the circuit to execute the desired logic operation.
This interesting property in memristive logic adds new capabilities and design rules that
was not present in traditional von Neumann architectures.

This fundamental difference has manifested in two different types of memristive logic
families. The first type involves stateful logic [65], where the resistance is the only state
variable for representing inputs, output and intermediate results of computation. In the
second type, voltage and resistance are both used for representing variables through out
the computation. We denote this type as partially stateful.

Chapter 1. Memristor: Principals and Applications 28

The degree of statefulness of a given memristive logic defines its uses and specifically
decribes how much a given logic family brings computing closer to storage. The more a
given memristive logic is close to statefulness, the more it is eligible for computing inside
memory. For instance, IMPLY and MAGIC are examples of stateful memristive logic
families where inputs and outputs are represented by resistance. Crossbar memory arrays
based on IMPLY and MAGIC operations are capable of processing data purely inside
the memory and without the need to export them to the outside. Other logic families
represents all the inputs as voltage while the output is stored as resistance (e.g., MAJ).
In MRL, inputs and outputs are both represented as voltage, which is similar to the
conventional CMOS logic, thus can’t be employed for in-memory computing.

1.4.2.2 Flexibility

Flexibility is another evaluation metrics of memristive logic design style. A given logic
design style is said to be flexible if the same computing elements are used to perform
variety of operations [66]. A CMOS logic design is not considered flexible since it has
specific functionality which is determined prior to the fabrication process (e.g. ASIC
design). IMPLY, MAGIC and MAJ are flexible since the functionality of these design
styles can be dynamically chosen during runtime. On the other hand, MRL and MAD
are non-flexible since each design yield specific logic operations. Different logic operations
requires fundamental change in the circuit design.

1.4.2.3 Crossbar compatibility

The compatibility of memristive logic families with crossbar memory array can also pro-
vide a way for evaluation. A memristive logic is said to be compatible with crossbar
array when it enables logic computation with the minimal modifications in the conven-
tional topology of the crossbar in addition to the peripheral circuitry. Normally, adding
a selector (e.g. MOSFET) to the memristive cell doesn’t disturb the crossbar structure.
As an example, MAD requires fundamental modifications in the peripheral drivers of the
crossbar in order to support logic operations.

1.4.2.4 Reliability

Due to the fact that memristive devices are passive elements, a memristive logic suffers
from several reliability issues as compared to conventional CMOS logic. At some stages
of computation, a memristive logic suffers form a degradation in the state variable (volt-
age/resistance), which in turn induces errors and leads to loosing eligibility. In contrast,
CMOS logic systems are based on active devices that do not exhibit these issues. For

1.5. Summary 29

instance, output memristor in IMPLY, as reported in [67], allows for partial switching
leading to an intermediate resistance state. In contrast, MAJ does not exhibit this phe-
nomenon. Another example is MRL where the voltage state shows degradation after
several cascading stages. State degradation is usually managed by CMOS-based state
refreshing sources. However, this adds overheads (e.g. Area, latency) that should be
reconsidered while evaluating the overall performance of such logic systems.

Table 1.2: Preliminary evaluations of memristive logic design styles

Logic family Degree of statefulness Flexibility Crossbar compatibility Reliability

IMPLY 100% Yes High Medium
MAGIC 100% Yes High Medium
MRL 0% No Medium Medium
MAD 100% No Low High
MTL − Yes High Low
MAJ 33.3% Yes High High

1.5 Summary

In this chapter we have provided a scientific background related to the presented PhD
contributions in subsequent chapters. In the beginning of this chapter, the fundamentals
of memristor basic operation have been presented. Then, a review on the uses of these
devices in three main areas (storage, interconnects and logic design) have been provided.
Memristor is introduced first as an emerging NVM element. The main advantages over
traditional memory elements (DRAM, SRAM, NAND flash, etc.) have been highlighted.
Later, the second potential use of memristor at the level of interconnect has been discussed.
Its ability to allow smooth reconfiguration and flexibility has been illustrated with some
examples of pre-existing approaches in ASIC as well as FPGA applications. At last,
memristor has been introduced as an enabler for the implementation of new generation of
logic designs, allowing for new computing paradigms. Various available memristive logic
design styles have been discussed. At the end, a roadmap for evaluating these design
styles has been proposed.

In summary, memristive devices can prompt new alternative computing architectures
for emerging applications in addition to their use as new generations of non-volatile memo-
ries. However, many challenges remain open for research and investigation of their efficient
use at the level of interconnect, logic design and in-memory computing.

Chapter 2

Memristor Based Reconfigurable
FFT Architecture

The design of flexible architectures, which can adapt dynamically to application needs,
brings great advantages in terms of energy efficiency and performance. Flexibility

is particularly required in digital communication and multimedia applications where new
standards and multiple services are continuously emerging. For instance, a well-suited
physical layer for emerging and future wireless mobile communications should allow several
of its communication parameters to be tuned according to channel conditions instead
of being fixed for the worst-case communication scenario [68]. In order to cope with
these requirements, flexibility should be enabled at several levels including processing,
interconnect, and memory. However, current technologies are still inefficient for such
highly adaptive systems due to the cost of reconfiguration in terms of area, delay, and
power consumption [41][42].

In this context, the integration of memristors at the interconnect level to enable flexible
and efficient configuration of digital architectures is explored. To that end, the Fast
Fourier Transform (FFT) has been chosen as application case study since it is used widely
in the fiels of digital signal processing and telecommunications. Particularly, FFT is
considered recently as an effective tool for spectrum enhancement of orthogonal frequency-
division multiplexing (OFDM)-based waveform, which is a central element in the fifth
generation new radio (5G-NR) developments [69]. Furthermore, the size of FFT block
can vary according to the system parameters and the communication channel conditions.
Thus, there is a real need for highly flexible FFT implementations that support multiple
configurations.

In this chapter, a memristor-based reconfigurable FFT architecture (mrFFT) is pro-
posed. The architecture can be employed in a reuse and systematic way based on a

30

2.1. Fast Fourier Transform (FFT) 31

proposed reconfigurable butterfly (RBF) that can be configured to support radix-2 and
radix-3 kernels. Flexibility is achieved by inserting memristors at the interconnect level
leading to programmable memristive nodes.

The rest of the chapter is organized as follows. Section 2.1 introduces the well known
FFT algorithm. Thereafter, Section 2.2 discusses classical and reconfigurable pipelined
FFT designs. Section 2.3 presents our proposed memristor-based reconfigurable FFT
architecture. Comparison of the mrFFT architecture with a recent flexible implementation
is conducted in Section 2.4. Section 2.5 discusses the encountered issues related to the
mixed-signal simulations. Finally, Section 2.6 concludes the chapter.

2.1 Fast Fourier Transform (FFT)

The Fast Fourier Transform is a reduced form of the Discrete Fourier Transform (DFT).
FFT has been developed by Cooley-Tukey [70] as an efficient method to compute DFT.
The N-point DFT of an input data sequence x[n] is defined as:

X[k] =
N−1∑
n=1

x[n]e− j 2Π
N nk (2.1)

where N is the size of the input data sequence. The term e− j 2Π
N nk is the so called twiddle

factor (TF) and is usually represented as Wnk
N [71]. Computing DFT as represented

in (2.1) requires large number of operations O(N2). However, due to the presence of
symmetries in the calculations, significant simplification can be performed leading to
decreased complexity. The FFT leverages this symmetry by dividing the DFT into smaller
size ones. The results obtained from the shorter DFTs are then combined appropriately.
This can reduce the complexity to O(N log N).

In fact, FFTs are most often designed based on radix-2 kernel. Hence, the size N of
the FFT is chosen to be power of 2 (N = 2p where p is an integer value). In a radix-2
FFT, the DFT is broken down into several DFTs each of size 2 and referred to as butterfly
(BF). Fig. 2.1(a) presents the typical flow graph of radix-2 BF. A BF simply takes two
inputs (x0 and x1) and gives two outputs (X0 and X1) according to the following formula

X0 = x0 + x1

X1 = x0 − x1
(2.2)

The data flow graph (DFG) of a 16-point radix-2 FFT is shown in Fig. 2.2. Several
approaches [72, 73, 74] have explored the possibility of moving beyond the standard
radix-2 in order to support input sizes that are not power of 2. The authors of [73] have

Chapter 2. Memristor Based Reconfigurable FFT Architecture 32

developed the algorithm and the flow graph of radix-3 and radix-5 FFT kernels. Their
corresponding flow graphs are shown in Fig. 2.1(b) and Fig. 2.1(c) respectively.

(a) (b)

Radix 2

(c) Radix 5

Radix 3

© 2011, IEEE

© 2011, IEEE© 2011, IEEE

Figure 2.1: Flow graph of (a) radix-2 BF, (b) radix-3 BF and (c) radix-5 BF [73].

2.2 Pipelined FFT architecture designs

2.2.1 Classical FFT architectures

It is possible to implement a fully-parallel FFT flow graph (e.g. 16-point DFG in Fig. 2.2)
directly in hardware. However, for large FFTs it may be infeasible, since the area usage
would be too large [73]. Hence, FFT implementations are often folded. The throughput

2.2. Pipelined FFT architecture designs 33

𝑊16
0

𝑊16
2

𝑊16
4

𝑊16
6

𝑊16
0

𝑊16
1

𝑊16
2

𝑊16
3

𝑊16
4

𝑊16
5

𝑊16
6

𝑊16
7

𝑊16
0

𝑊16
2

𝑊16
4

𝑊16
6

𝑊16
0

𝑊16
4

𝑊16
0

𝑊16
4

𝑊16
0

𝑊16
4

𝑊16
0

𝑊16
4

Figure 2.2: Data flow graph of 16-point radix-2 FFT

is traded for a smaller area. A common folded structure is the pipeline structure [71].
Particularly, the single-path delay feedback (SDF) [71] structure is considered a popular
design approach to realize a pipelined FFT. Fig. 2.3 presents the architecture of SDF-
FFT, which is based on radix-2 kernel. The architecture is a concatenation of several
stages. Each pipeline stage includes arithmetic elements (adders) for the realization of
the butterfly, First-In-First-Out (FIFO) memory and a complex multiplier. The FIFO at
each pipeline stage has a predetermined length, which varies from one stage to another.
The role of the FIFOs is to ensure the correct order of the input data sequence and
intermediate results.

Each stage of the SDF-FFT works in two rounds. In the first N/2 cycles (first round),
the BF of the first stage is idle. The input data sequence is directly guided into the FIFO
(of size N/2) until it is filled. In the next N/2 cycles (second round), the BF computes
2-point DFT with the incoming data sequence and the data stored in the FIFO. One
of the outputs in this round is streamed to the next stage after being multiplied by the
twiddle factor while the other is sent back to the FIFO to be the output in the next run of
the first round. The size of the FIFOs in the early stages needs to be larger than those at
the end to ensure correct data handling. The first FIFO needs to contain half of the input

Chapter 2. Memristor Based Reconfigurable FFT Architecture 34

data. Thus, its length is N/2. On the other hand, the last unit only requires a single data
to be stored [73]. Furthermore, stages that are closer to the final one use fewer twiddle
factors. In the final stage, all twiddle factors are unity. Hence, the multiplier unit can be
removed. The whole architecture has a single input and a single output data streams and
generates one sample per iteration.

Besides the basic radix-2 approach, various higher radix pipelined SDF-FFT architec-
tures have been proposed over the past several decades. Radix-4 [75, 76] and radix-8 [77]
SDF-FFT have been investigated to expand the design concept. In order to achieve re-
duced computation complexity, radix-22 [78, 79, 80], radix-23 [81, 82] and radix-24 [83, 84]
FFTs have been developed. Note that the radix-2k (k > 1) SDF has a similar DFG to
radix-2 SDF. However, the potential benefit of these different algorithms is that some of
the complex multipliers only need to use simple coefficients (TFs) [85] or that smaller
coefficient memories are required [86]. Furthermore, algorithms are proposed in [73] to
apply radix-3 and radix-5 in order to support diverse FFT sizes that are not limited to
power of 2.

FIFOk-1 FIFOk-2 FIFO1

Butterfly Butterfly Butterfly

Twiddle factor Twiddle factor

Figure 2.3: The conventional SDF-FFT architecture

2.2.2 Reconfigurable FFT architectures

The conventional SDF-FFT design provides only a single-radix manipulation without any
circuit flexibility. Several researches have shown a trend toward multiple-radix processing
[87, 88, 89] in order to support diverse FFT sizes. Accordingly, the design of reconfigurable
FFTs has been emerged in the literature. The works presented in the literature can be
classified into two categories. In the first category, the authors have provided the simplest
form of reconfiguration. As illustrated in Fig. 2.4(a), certain portion of the hardware re-
sources are exploited for one radix while other independent parts are reserved for another
radices. The overall system allows the concatenation/combination of several processing
elements having different radices. However, such approaches usually impose a duplication
of hardware resources. Thus, they are considered inefficient in terms of area and energy.
In the second category, the authors have made use of the same processing elements for

2.2. Pipelined FFT architecture designs 35

Ra Rb

Rc Rd

Ra Rb

Rc Rd

Ra Rb

Rc Rd

Enabled

Disabled

Ra
Rb

Rc
Rd

Ra
Rb

Rc
Rd

Ra
Rb

Rc
Rd

(a)

(b)

FFT
Input

FFT
output

FFT
Input

FFT
output

Figure 2.4: The block diagram of the reconfigurable FFT

realizing different radices. As illustrated in Fig. 2.4(b), the hardware resources, which are
utilized for executing certain radix, can be reused for executing other radices at different
instants of time. These implementations are considered reconfigurable/flexible. Flexibil-
ity is usually evaluated according to the achieved hardware reusability ratio, which have
to be maximized in order to reduce the utilization area. The authors in [90] have proposed
a reconfigurable FFT design that is able to support 48 different configurations with an
FFT size up to 2187. As shown in Fig. 2.5, the design is composed of several reconfig-
urable bricks, which are arbitrarily concatenated to build up a system with reconfigurable
FFT size. At each brick stage, flexibility is achieved through a reconfigurable processing
element (RC-PE) and reconfigurable FIFO (RC FIFO) memory. RC PE is capable of
realizing six types of radices (2, 22, 23, 3, 32 and 2 × 3), which are the combinations of
radix-2 and radix-3. Moreover, the length of RC FIFO at each brick stage can be adapted
according to the target FFT size.

6-Type
RC-PE

R2-FFT
SystemR2-FFT

System

R2-FFT
System

R2-FFT
System

R2-FFT
System

R2-FFT
System

© 2017, IEEE

Figure 2.5: Reconfigurable SDF-FFT based on 6T-RC-PE approach [90]

Chapter 2. Memristor Based Reconfigurable FFT Architecture 36

2.3 Proposed mrFFT design

The attained degree of flexibility in the available implementations dedicated for FFT
is hampered by the high cost of reconfiguration elements, such as multiplexers, SRAM
cells and buffers. These elements constitute the major overhead in terms of area, power
consumption and delay. For the sake of realizing efficient flexible FFT design, we have
investigated the advantage of exploiting memristive devices as routing switches at the
level of interconnects.

As explained in chapter 1, the usage of memristors exceeds storing of configuration
to propagate datapath signals replacing CMOS transmission gates and/or Multiplexers.
When programmed into LRS, a memristor propagates signals within the datapath lead-
ing to the same functionality of transmission gates in ON state. In contrast, when
programmed into HRS, a memristor blocks signals in the datapath corresponding to a
transmission gate in OFF state.

In order to attain a flexible FFT design, which can be manipulated in a reuse and
systematic way, we have proposed a reconfigurable butterfly (RBF), which can be config-
ured to support radix-2 and radix-3 flow graphs based on the algorithms developed in [90].
Based on the RBF design and the flexibility requirements in FFT, a novel memristor-based
reconfigurable FFT architecture has been realized.

2.3.1 Reconfigurable butterfly: RBF

The flow graphs of FFT radices are mainly composed of complex adders and constant
multipliers. The investigation of the structures of these flow graphs reveals that it is pos-
sible to extract similar/common parts. These similarities are exploited toward realizing
efficient re-usability of hardware resources leading to efficient flexible designs. The anal-
ysis of radix-2 and radix-3 flow graphs shows that a radix-3 flow graph can be split into
three similar butterflies and a separate real multiplier (×k) as illustrated in Fig. 2.6(a).
Although the three BFs are not exactly identical, they can be merged into a single recon-
figurable BF, so called RBF, which is shown in Fig. 2.6(b). An RBF can be configured to
execute radix-2 BF or any part of the radix-3 BF. Figure 2.6(c) describes the associated
hardware implementation of RBF. It is worth to mention that the added cost for merging
the similar parts into a single module (i.e, RBF) is almost negligible and corresponds
for two trivial constant multiplications (blocks with orange color in Fig. 2.6(c)). Mul-
tiplication by j is realized by simply swapping the real and imaginary parts followed by
multiplying the new real part by −1. Moreover, multiplication by 0.5 is achieved by 1-bit
shifting to the right, which is simply realized by just discarding the least significant bit

2.3. Proposed mrFFT design 37

(a)

(c)

Radix-2 BF

-1
X1

X0
x0

x1

(b)

Enable

-1

RBF

0.5

Enable

j

x0

x1

X0

X1

-1 (0.5)

-1 j -1

Splitting radix-3 BF

𝑘 = −𝑠𝑖𝑛(2𝜋/3)

X1

X0

X2

x0

x1

x2
𝑘

-0.5

-1

j

-j

Radix-3 BF

X1

X0

X2

x0

x1

x2
𝑘

RBF

Mux

M
u

x

>>-1

C1

j

C0

C2

x0

x1

X1

X0

Enable

Enable

Figure 2.6: The architecture design of the proposed Reconfigurable Butterfly (RBF)

while replicating the most significant bit to fill the vacant position.

2.3.2 mrFFT architecture design

Based on the proposed RBF design, it is possible to implement any flow graph based on
radices 2k , 3k and their combination (e.g, 2, 22, 23, 3, 32 and 2 × 3 which are adopted
in [90]). Generally, in an SDF-FFT system, the FFT size N determines the number and
type (radix) of the pipelined FFT stages to be concatenated. As an example, consider
an N-point FFT, where N is equal to 864 = 2533. In fact, N can be factorized in the
form N864 = (22222)(323). Accordingly, an 864-point FFT requires: two stages of radix-22,
one stage of radix-32, one stage of radix-2 and one stage of radix-3. All these stages

Chapter 2. Memristor Based Reconfigurable FFT Architecture 38

can be implemented by routing appropriately the RBFs while feeding the stages with the
corresponding set of FIFOs and multipliers. However, considering all possible FFT sizes
less than a predefined value NM AX requires a highly flexible design that can freely route
the resources.

In order to attain the desired flexibility degree, we target an FFT architecture (mrFFT)
with FPGA-like resource arrangement. The proposed mrFFT design is presented in Fig.
2.7. In this design, a group of RBFs are arranged in a 2D mesh topology with memristor-
based interconnections serving as routing elements. The corresponding FIFOs and multi-
pliers of mrFFT are well distributed inside the FIFO-Multiplier (FM) block as illustrated
in Fig. 2.9. In this work, we define the term memristive node (MN) as a group of m mem-
ristors allocated on the diagonal of a crossbar that has square shape as illustrated in Fig.
2.8. The crossbar corresponds to the m-bit horizontal and vertical wires of the datapath.
MNs are distributed along the whole design in a regular pattern that is well suited for
the routing scheme. A single MN behaves as m-bit switch that can be programmed to
logically connect/disconnect:

1. Horizontal wires (HW) with vertical wires (VW).

2. HW or VW with an RBF.

3. HW or VW with the block containing FIFOs and multipliers (FM).

The two selection blocks (SBs) are responsible of changing the states of the memristive
nodes during reconfiguration phase. The SBs send the appropriate voltage levels to the
terminals of MNs just as writing into a conventional memristive crossbar array. They set
a ground voltage VG at one end of each MN while supplying V+ or V− at the other end.
A control unit, which is located at the upper right corner of the architecture, control the
SBs. It stores the configuration bits corresponding for each FFT configuration/size in two
separate lookup tables LUTs. One of the LUTs is responsible for driving the horizontal
SB, while the other is simultaneously employed for the vertical SB. On the other hand, the
twiddle factors, which are used in the multiplication operations, are stored in a separate
LUT inside the FM block.

2.3.3 Supported mrFFT configurations

In order to support radix-2 and radix-3, the FFT size N should be prime factorized
Np,q = 2p3q where p and q are integer values and Np,q 6 NM AX . The number of RBFs
needed to support an FFT of size Np,q is Mp,q = p + 3q. This is due to the fact that
three RBFs are needed for each radix-3 flowgraph while only one is needed for radix-2. In

2.3. Proposed mrFFT design 39

LUTs

Controller

RBF RBF RBF RBF RBF RBF

RBF RBF RBF RBF RBF RBF

RBF RBF RBF RBF RBF RBF

FM

SB

SB

FFT-in

FFT-out

Figure 2.7: The proposed mrFFT architecture

order to support an Np,q-point FFT, the values of p and q should satisfy the inequality
p + 3q 6 MM AX where MM AX represents the number of available RBFs in the mrFFT
design. Moreover, the required number and length of FIFOs corresponding to the size
Np,q should be less than or equal to the available ones inside the FM block. Besides, the
number of available multipliers should suffice the Np,q-point FFT that has the maximum
number of concatenated stages.

The mrFFT architecture presented in Fig. 2.7 is designed using 18 RBFs (i.e, MM AX =

18) and supports up to 44 configurations. Table 2.1 lists a set of FFT sizes which have the
form of Np,q within the window p 6 11 and q 6 7. The mrFFT supports the configurations
that are represented in boldface in Table 2.1. On the other hand, the FIFOs reusability
has been analyzed over the 44 supported configurations while considering that two FIFOs
serves in each radix-3 stage. A set of 12 optimized length FIFOs has been selected and
are presented in Table 2.2.

As for the multipliers, it is noticed that at least one complex multiplier is required at
the end of each pipelined FFT stage (except for the last stage) whatever the type of the
used radix [90]. An additional constant multiplier (×k) is utilized in each radix-3 stage.
On the whole, 10 complex multipliers are sufficient for the 44 supported configurations.

In fact, the presented mrFFT design accommodates the 32 operating modes that are
defined in 3GPP-LTE standard [87, 90]. However, mrFFT is scalable in size and can
be extended. Thus, it is able to support other FFT configurations in case of any future

Chapter 2. Memristor Based Reconfigurable FFT Architecture 40

Memristor

m-bit

m-bit

RBF

x0

x1

X0

X1

C2 C0C1

Memristive nodes (MNs)

Control
signals

m-bit

Figure 2.8: The proposed structure of memristive nodes

FIFO

LUT

Complex multiplier

First In First Out memory

Lookup TableLUTs

Figure 2.9: The architecture of FM block

standard changes.

Table 2.2: Optimized sizes of the required FIFOs

FIFO Sizes 1024 512 256 128 64 32 16 9 4 3 1 1

2.4 Comparison

In order to determine the relevancy of our proposed mrFFT design, a comparison has been
conducted with the recent approach presented in [90]. The amount of utilized resources
in our proposed design has been estimated and compared to that in [90]. The comparison
results are presented in Table 2.3. The comparison shows that mrFFT reduces significantly
the number of the utilized adders (25%), multipliers (37%), 2-to-1 multiplexers (59%),

2.5. Limitations in performance evaluation 41

Table 2.1: The 44 FFT configurations supported by mrFFT with N = 2p3q

@
@
@
@

p

q
0 1 2 3 4 5 6 7

0 1 3 9 27 81 243 729 2187
1 2 6 18 54 162 486 1458 4374
2 4 12 36 108 324 972 2916 8748
3 8 24 72 216 648 1944 5832 17496
4 16 48 144 432 1296 3888 11664 34992
5 32 96 288 864 2592 7776 23328 69984
6 64 192 576 1728 5184 15552 46656 139968
7 128 384 1152 3456 10368 31104 93312 279936
8 256 768 2304 6912 20736 62208 186624 559872
9 512 1536 4608 13824 41472 124416 373248 1119744
10 1024 3072 9216 27648 82944 248832 746496 2239488
11 2048 6144 18432 55296 165888 497664 1492992 4478976

3-to-1 multiplexers (100%) and FIFOs (25%). On the other hand, the design in [90] has a
55.5% less number of 1-bit shifters. However, these shifters have a trivial implementation
as discussed in Section 2.3.1. The attained gains in mrFFT comes at the cost of the
adopted routing scheme, which incorporates a set of 119 memristive node in addition to
the corresponding selection blocks. In fact, the implementation cost of the SBs can be
relatively reduced when shared to other designs targeting the same flexibility requirements
(e.g. MN-based routing).

Moreover, the percentage of resource activation has been evaluated in both designs
among all supported configurations. The maximum percentage of activation has been pre-
sented in Table 2.3. The obtained results show better utilization of adders and multipliers
in mrFFT compared to that in [90]. This implies better hardware reusability ratios.

Table 2.3: Analytical comparisons

Complex multipliers Complex adders FIFOs 2MUX1 3MUX1 1-bit shifter Memristive nodes

Elements (mrFFT) 10 36 12 36 0 18 119
Elements ([90]) 16 48 16 88 12 8 0

% Resource activation (mrFFT) 100% 94.44% 100% 94.44% − 27.78% 22.88%
% Resource activation ([90]) 81% 67% − 100% 100% 100% −

2.5 Limitations in performance evaluation

The evaluation of the devised mrFFT architecture was limited to an analytical estimation
of the utilized resources, the percentage of activation and the reusability ratio. Power

Chapter 2. Memristor Based Reconfigurable FFT Architecture 42

consumption and delay analysis could not be evaluated for this first proposed design.
In fact, the digital sub-blocks constituting the proposed mrFFT architecture were

described in VHDL and validated separately in ModelSim (Mentor Graphics). Thereafter,
we attempted to find a way to include a description which could mimic the memristor
device behaviour. These attempts failed as an analog model was mandatory to define the
resistive switching behavior of memristive devices.

Available memristor models in the literature are usually described in SPICE or Verilog-
A and can therefore be supported by tools such as Virtuoso analog design environment
from Cadence. However, these tools can not perform high-level simulation of digital
components such as RBF, FM and the control unit of mrFFT. In fact, analog/digital
mixed-signal simulation environment is required in this case. We investigated the pos-
sibility to use several relevant tools, such as Spectre AMS Designer and Questa ADMS.
However, this was not possible due to availability and setup issues.

Therefore, for the rest of this thesis work we targeted low-level simulations, using
Cadence Virtuoso, rather than system level. The scope of our contributions has been
moved from system to circuit level in order to realize explicit performance evaluation and
avoid the aforementioned limitation.

2.6 Summary

In this chapter, a novel memristor-based reconfigurable FFT architecture is proposed.
mrFFT is fully pipelined and executes one sample per clock cycle as in the conventional
SDF based FFT implementations. mrFFT allows mixing any combination of radix-2
and radix-3 stages based on our proposed reconfigurable butterfly approach. An RBF
is optimized as it can execute radix-2 BF or any part of radix-3 BF with the minimal
added cost. The proposed scalable mrFFT architecture enables the efficient support of
44 configurations with different FFT sizes including the 32 operating modes that are
defined in 3GPP-LTE standard. The RBF blocks are integrated in a 2D mesh topology
with memristor-based interconnections and allow for original and optimized hardware
reusability. Preliminary comparison with the state-of-the-art work indicates significant
reduction in the used resources and improved hardware reusability ratio. In order to
evaluate accurately the corresponding energy savings, future work should consider the
use of mixed-signal simulation tools.

Chapter 3

Hybrid Memristor-CMOS Design for
Logic Computation

Memristor technology have recently triggered many efforts to extend their usage
from memory to computing. Memristor based logic design is an emerging concept

targeting efficient computing systems. Several logic families have evolved, each with differ-
ent attributes. Memristor Ratioed Logic (MRL) has been recently introduced as a hybrid
memristor-CMOS logic family. MRL requires efficient design strategy that take into con-
sideration the implementation phase. This chapter presents a novel MRL-based crossbar
design namely X-MRL. The proposed structure combines the density and scalability at-
tributes of memristive crossbar arrays and the opportunity of their implementation at
the top of CMOS layer. The evaluation of the proposed approach is performed through
the design of X-MRL based full adder. The design is presented with the layout and the
corresponding simulation results using Cadence Virtuoso toolset.

The next section presents our motivation to investigate hybrid memristor-CMOS logic
design based on MRL. Section 3.2 illustrates the proposed X-MRL approach for realizing
Boolean computation. Section 3.3 presents the proposed design for a full adder based
on X-MRL approach. The layout of the obtained X-MRL design is illustrated in Sec-
tion 3.4. Section 3.5 provides the obtained simulation results along with the performance
analysis. Comparison with previous published designs is presented in Section 3.6. Finally,
Section 3.7 concludes the chapter.

3.1 Motivation for hybrid memristor-CMOS design

At the device level, the complexity of further scaling down the conventional CMOS tech-
nology in order to keep pace with the Moore’s prediction has encountered major challenges

43

Chapter 3. Hybrid Memristor-CMOS Design for Logic Computation 44

[91][92]. The advent of memristor-CMOS process that combines CMOS devices with the
nano-scale size memristors have provided new opportunity to reduce the utilization of
silicon area. This paves the way for innovating new circuits that are almost removed from
the more established design domains. However, yet CMOS devices which are considered
active, cannot be totally replaced by the passive memristive devices. Thus, the integra-
tion of CMOS and memristors is essential to the development of memristor technology.
To this end, hybrid configurations have been proposed that make use of the advantages
of CMOS while utilizing the high density of memristors. On the other side, out of the
available memristor-based logic design styles (including the proposed MOL), the Mem-
ristor Ratioed Logic (MRL) is the only design style that meets the conventional CMOS
in terms of the adopted state variable. As discussed in chapter 1, both MRL and CMOS
uses the voltage as the only state variable for representing inputs and outputs throughout
all intermediate stages. Thus, MRL is very qualified for the integration in the current
CMOS designs and even later can dominate.

In fact, MRL is a hybrid memristor-CMOS logic family. The goal behind MRL is
to implement conventional combinational logic circuits which are the building blocks of
digital systems. The main idea is to replace as much as possible transistors with nano-scale
size memristors, while keeping the same role of the intended digital architecture. Several
works have utilized MRL design style to implement various digital architectures [52] [93]
[94]. The integration of memristors and CMOS devices in MRL still lacks a consistent way
for arranging memristors at the top of CMOS layer. The integration should be realized
in such a way that efficiently exploits the promising characteristics of memristive devices
such as density and scalability.

3.2 X-MRL design procedure

It is well known that any Boolean function could be written in the form of the sum of
products (SoP). Accordingly, it can be implemented using MRL-AND and MRL-OR with
the aid of CMOS inverters. In order to clarify easily the proposed method, Fig. 3.1
illustrates the design and implementation of the simple function F = AB + AC. Fig.
3.1(a) shows that the function F is implemented using two MRL-AND and one MRL-OR.
Fig. 3.1(b) depicts the schematic layout, which illustrates the equivalent mapping of the
function onto a crossbar structure that we call X-MRL. The vertical pairs of memristors
corresponding to MRL-AND generate an output which drives the input of the horizontal
pair that represents MRL-OR. Fig. 3.1(c) presents a 3D view of the resulting crossbar
structure. Fig. 3.1(d) is another simplified representation of the obtained crossbar. The

3.3. X-MRL based full adder 45

same procedure could be performed to implement other Boolean functions. Although the
obtained array is a combination of AND and OR gates, the positive poles of the allocated
memristors rely on the same planar side, which is considered as an advantage at the
level of their fabrication. The placement of the crossbar at the top of CMOS inverters is
demonstrated in section 3.4

A

B

C

AB+AC

A

B

C

AB+AC

A

B

AB+AC

C A

B

C

AB+AC

(a) (b)

(d) (c)

Figure 3.1: Example of an MRL logic function performed using X-MRL

3.3 X-MRL based full adder

This section presents as an example the design of the 1-bit full adder using X-MRL design
technique. Equations (4.4) and (4.5) present the expressions of the 1-bit full adder in the
SoP format.

S = A ⊕ B ⊕ Cin = Cin(AB + AB) + Cin(AB + AB) (3.1)

Cout = AB + BCin + ACin (3.2)

where A and B are the inputs, Cin is the input carry, S is the 1-bit adder output and
Cout is the output carry. Fig. 3.2(a) presents the direct form of an MRL based 1-bit
full adder. Fig. 3.2(b) presents the proposed circuit design of the 1-bit full adder using
MRL-based crossbar structure. The design requires 18 memristors, which are distributed

Chapter 3. Hybrid Memristor-CMOS Design for Logic Computation 46

among vertical and horizontal wires, in addition to nine CMOS inverters. In the figure, the
black vertical pairs of memristors represent the AND gates while the gray horizontal pairs
represent the OR gates (as illustrated in Fig. 3.1). The CMOS inverters are responsible
for either inverting (NOT operation) and/or performing signal restoration for the logical
state of the signal after several cascading stages.

(a)

(b)

Cout

S

A
B

Cin

A

B

Cin

Cout

S

Figure 3.2: 1-bit Full Adder based on the proposed X-MRL structure

3.4. Layout 47

© 2007, IEEE

Figure 3.3: Memristor layer at the top of VIAs [95]: (a) a TEM image. (b) a schematic
view.

3.4 Layout

The circuit of the full adder is composed of a memristor crossbar layer in addition to few
inverters. Fig. 3.4 presents the layout of the circuit using Cadence Virtuoso tool. In
this layout, the positions of the allocated memristors are assigned virtually due to the
lack of their definition in Cadence library. The layout is mainly composed of three layers.
The first layer is the polysilicon layer which is dedicated to the connection of the gates
of NMOS and PMOS transistors. This layer is presented in red color in the figure. The
second and third layers, which are so-called Metal1 and Metal2 and presented in the figure
in violet and blue colors respectively, are dedicated to the wiring. In order to attain the
desired crossbar structure, horizontal wires are constructed in the Metal2 layer; whereas
for the vertical wires, the connections, which are already utilized for the implementation of
the required CMOS inverters, are reused to complete the crossbar structure. However, the
hight of the utilized memristors is too short (around 10nm [23]) to allow to link horizontal
and vertical wires through two different layers. Therefore, these links are achieved through
vertical interconnect accesses (VIAs) as demonstrated in [95]. Fig. 3.3 is a schematic
view and cross-sectional transmission electron microscopy (TEM) image of memristor
integrated with CMOS in the same die [95]. The allocated memristors in our proposed
layout are implemented at the top of the VIAs just under Metal2 layer. Accordingly, the
CMOS inverters occupies the total utilized area and the additional Metal2 layer have to

Chapter 3. Hybrid Memristor-CMOS Design for Logic Computation 48

M

M

M M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

A B Cin Cout S

Figure 3.4: Proposed layout for the hybrid memristor-CMOS 1-bit full adder based on
X-MRL design technique

be reserved for memristors. Hence, in such hybrid memristor-CMOS architectures, the
size of implementation area depends on the number of the required inverters.

3.5 Simulation and performance analysis

3.5.1 Memristor model fitting

The VTEAM model is adopted in order to realize a realistic modeling of practical memris-
tors. Table 3.1 provides the experimental data of various available memristors with their
respective properties. Among these memristors, the HfOx memristor which has been re-
ported in [40] has the properties which suit the MRL gates. The device is characterized
by low switching delay 300 ps at low operating voltage 1.4V . These characteristics make
this memristor eligible to be implemented in the same die with the current CMOS devices.
An important work have been done to determine the VTEAM model parameters that fit
with the physical parameters of HfOx, which have been described in [40]. Table 3.2 shows
the determined VTEAM model parameters. The model parameters are chosen to produce
switching delay of 300 ps for a voltage pulse of 1.4V as reported in [40]. Fig. 3.5 shows
the switching behavior of the memristor corresponding for SET and RESET pulses. The
device is assumed to be totally switched when the boundary position w reaches either 1%
or 99% of the total length D of the memristor, corresponding for SET (Vset = 1.4V) and
RESET (Vreset = −1.4V) operations respectively. The boundary conditions of the mem-
ristor is managed by a Biolek window function. The mathematical function of the Biolek
window [96], which is described in (3.3), provides continuous and smooth transition of

3.5. Simulation and performance analysis 49

Table 3.1: Practical memristor devices

Material RON (ohm) ROFF (ohm) ROFF/RON Switching speed Voltage range Reference
TiO2-x - - >300 1 ns -1.5V to +1.5V [23]
FTJ 1.6 × 105 4.6 × 107 >200 10 ns -5.6V to +4.2V [97]
HfO2 1.2 × 102 105 103 <1ns <1.5V [39]
HfOx <10 k >100 k >100 300 ps <1.4V [40]
TMO - 100 k - 10 ns to 100 ns 3V [98]
HfO2 2 × 103 2 × 105 100 - -1.5V to +1V [99]

TiN/TiOx/HfOx/TiN 1 k >1M >1000 5 ns -1.5V to +1.5V [100]

Table 3.2: VTEAM fitting parameters for physical device in [40]

Parameter Value Parameter Value
RON 1 kΩ p 2
ROFF 200 kΩ αon 3

D 3 nm αo f f 3
Kon −0.0162 m/s Von 0.16 V

Ko f f 0.0162 m/s Vo f f −0.16 V

xon 0 nm xo f f 3 nm

boundary when reaching one of the extremities of the memristor.

f (x) = 1 − (x − stp(−i(t)))2p (3.3)

where stp(.) represents a unit step function, and p is a positive integer. Low values of p

lead to smooth transition of the boundary of the memristor when reaching its extremities,
whereas high values lead to sharp transitions.

3.5.2 Performance analysis

Transient simulation has been conducted for the proposed design of the X-MRL-based
full adder in Cadence Virtuoso environment. The CMOS 65 nm technology at standard
1.2V has been adopted. Fig. 3.6 shows all the possible combinations at the inputs A, B

and Cin in addition to the corresponding outputs S and Cout . The performance is analyzed
below for the proposed design.

3.5.2.1 Timing analysis

Fig. 3.7 presents the definition of rising time (Tr) and the time delay (Td). Accordingly,
the conducted simulation of the proposed design shows that these extracted parameters

Chapter 3. Hybrid Memristor-CMOS Design for Logic Computation 50

Doped

Doped

D

D w

w

Figure 3.5: Memristor switching time for Vset = 1.4V and Vreset = −1.4V according to the
device in [40]

(Tr and Td) change among different value combinations of A, B and Cin. The maximum
recorded values are as follows: Tr = 82 ps, Td = 1.2 ns, and T f = 586 ps where T f is the
falling time. These values are considered for the worst case performance. The conducted
simulation shows that the values Tr , T f and Td are affected by the switching speed of
the memristor which in turn can be controlled by Kon and Ko f f . On the other hand,
slowing down the switching speed of the memristors increases the glitches. Fig. 3.8 shows
the glitches appearance when reducing Kon and Ko f f levels to −0.01 m/s and 0.01 m/s

respectively. Particularly, the high resistance state (ROFF) of the memristors has a direct
effect on the value of Td which increases when increasing the value of ROFF . Moreover, it
is noticed that increasing ROFF acts as a filter for the glitches. Therefore, the total delay
is directly affected by the memristor physical properties.

3.5.2.2 Energy consumption

Fig. 3.6(b) shows the total instantaneous power pT (t) consumed by the proposed design
of the full adder. The peak values in pT (t) refer to the dynamic power consumption. The
lower bound in pT (t), which is formed after the end of each transition, corresponds to the
static power. A slight difference appears between the levels of the static power recorded

3.5. Simulation and performance analysis 51

-0.2
0.0

0.4

0.8

1.2

1.6

2.0

2.4

2.8

P
T(

m
W

)

(b)

0.0 25.0 50.0 100.0 125.0 150.0 175.0 20075.0

Time (ns)

A

B

Cin

S

Cout

0.0 25.0 50.0 100.0 125.0 150.0 175.0 20075.0

0.0

1.2

V
(V

)
V

(V
)

V
(V

)
V

(V
)

V
(V

)

0.0

1.2

0.0

1.2

0.0

1.2

0.0

1.2

(a)

Time (ns)

Figure 3.6: Transient response of the proposed full adder for the input signals A, B and
Cin

after each transition. This difference is due to the change in the equivalent resistance
state of the cascaded memristors for a new combination of the input signals A, B and Cin

which in turn leads to a different level of current leakage. The average power consumed
in the proposed design of the full adder is 279.5 µW . This value is evaluated at frequency
f = 200 MHz which is near the max possible frequency at the inputs of the full adder
with hybrid structure. Higher values of ROFF have to be used in order to achieve hybrid
architectures with low power consumption.

3.5.2.3 Utilized area

In fact, a single memristor has an area in the order of 4F2 [23], where F is the minimum
feature size. Hence, memristors are implemented at the top of CMOS due to their nano-

Chapter 3. Hybrid Memristor-CMOS Design for Logic Computation 52

Input Output

50%

90%

10% Tr

Td

t

Figure 3.7: Definition of the rise time Tr and delay Td

S

Cout

glitch

glitch

glitch

0.0 25.0 50.0 100.0 125.0 150.0 175.0 200.0 75.0
time(ns)

V
(V

)
V

(V
)

 0.0

 1.2
 0.0

 1.2

Figure 3.8: Glitches appearance when slowing down the switching speed of the memristor.
Parameters in Table 3.2 are adopted except for Kon = −0.01 m/s and Ko f f = 0.01 m/s

scale and compatibility at the level of fabrication. Thus, the allocated memristors in the
proposed X-MRL design do not add any overhead in terms of implementation area. The
total required area refers to that occupied by CMOS devices only, which depends on the
number of inverters as discussed in Section 3.4. Fig. 3.4 presents the proposed layout.
The total area of the X-MRL design is 8.16 µm2 compared to 14.78 µm2 which is utilized
in the case of pure CMOS implementation, leading to 44.79% area saving.

3.6 Comparison

The proposed hybrid memristor-CMOS based full adder has been compared with previous
published designs, which are dedicated to the 1-bit full adder. Note that related works
in the literature lack an estimation about the utilized area for their proposed designs.
Moreover, in order to achieve a fair comparison in terms of energy consumption, the
energy is evaluated per 1 addition operation. The time period for an addition operation
in our proposed full adder design is set to be the minimum possible time (i.e. max
frequency). This subsection presents the comparison summary which is also shown in
Table 3.3.

In [93] an optimized implementation of an MRL based 1-bit full adder is proposed.
The authors have developed an algorithm which searches for the best form of the boolean

3.6. Comparison 53

functions of the sum (S) and carry (C). The desired form should lead to an implementa-
tion with the minimum possible number of CMOS inverters. The inverters positions are
allocated in such a way that removes signal degradation. The proposed circuit design of
the full adder in [93] has less number of memristors as well as CMOS transistors by 11.1%
and 33.3% respectively compared to our proposed design. However, the obtained logic
function in [93] is not in the form of SoP. Thus, it is not possible to allocate memristors
in a crossbar structure. This leads to more wiring at the fabrication stage which in turn
increases the implementation area dramatically. As for energy consumption, the values
reported in [93] are in the normalized form; hence, they can not be used for comparison.

In [101], a design for a 1-bit full adder has been proposed based on memristor MAGIC-
NOR and NOT gates. A crossbar structure has been adopted and several optimization
techniques have been used to minimize the number of rows and columns of the crossbar
as well as the number of computational steps. It has been shown that a compromise
exists between the size of crossbar and the needed number of steps to perform a full
addition. A minimum size of 3 × 3 crossbar (i.e. 9 memristors) with a total latency of
35 computational steps is achieved. In contrast, our proposed design uses 18 memristors
distributed among crossbar structure in addition to 9 CMOS inverters. The output is
evaluated in 1 computational step. Concerning energy consumption, the proposed design
in [101] consumes 0.3 pJ to achieve a 1-bit full addition process; whereas, our proposed
design consumes 0.69 pJ.

In [102], an N-bit addition has been performed using MAGIC operations (i.e. NOR
and NOT gates). Several approaches are presented by the authors for realizing logic
within crossbars. The best among these approaches in terms of latency corresponds to
10N + 3 computational steps which leads to 13 clock cycle for the case of 1-bit full adder.
However, 13N −3 memristors are reserved (i.e. 10 memristors for N=1) to accomplish the
1-bit addition process. For the purpose of minimizing the number of reserved memristors
inside the crossbar, an area optimized crossbar structure is also proposed in [102]. Only 5
memristors are utilized however 15N (i.e. 15 for N=1) computational steps are required
to achieve the 1-bit full addition. As a result, our proposed design, which requires 1 com-
putational step, outperforms the designs presented in [102] in terms of latency. Regarding
the energy consumption, all the proposed approaches in [102] have almost same energy
dissipation which is about 3.16 pJ for the case of N=1. Hence, the proposed design in
[102] consume 4.5 times more energy than our proposed design.

In [103], an N-bit ripple carry adder (RCA) circuit in a memristor crossbar structure
has been presented. The MAGIC design style has been used to implement the logic
gates. By considering N=1 which is the case of 1-bit addition, the proposed crossbar

Chapter 3. Hybrid Memristor-CMOS Design for Logic Computation 54

Table 3.3: Comparison with previous approaches

Reference #Memristors #CMOS transistors Energy #steps Step delay Energy.Delay

(This work) 18 18 0.69 pJ 1 2.5 ns 1.72 pJ .ns

MRL [93] 16 12 - 1 - -

MAGIC [101] 9 Peripheral drivers 0.3 pJ 35 1.89 ns 19.84 pJ .ns

MAGIC (Optimized #steps) [102] 10 Peripheral drivers 3.16 pJ 13 1.3 ns 53.40 pJ .ns

MAGIC (Area optimized) [102] 5 Peripheral drivers 3.16 pJ 15 1.3 ns 61.62 pJ .ns

MAGIC [103] 15 Peripheral drivers 0.68 pJ 13 1.12 ns 9.94 pJ .ns

MAGIC (Naive mapping) [104] 15 Peripheral drivers 0.68 pJ 12 1.43 ns 11.66 pJ .ns

MAGIC (Compact mapping)[104] 24 Peripheral drivers 0.89 pJ 16 1.43 ns 20.36 pJ .ns

IMPLY [105] 6 Peripheral drivers - 23 5 ns -

MAGIC based design requires 15 memristors and can perform the addition operation in
13 clock cycles. Compared to our proposed design, the adder design in [103] needs 13
times more clock cycles to perform addition operation while it requires 3 less memristors
to be implemented. On the other hand, our design consumes 1.01 times more energy than
the proposed design in [103].

In [104], logic operations has been realized by two methods using MAGIC. The first
method corresponds to a naive mapping. It maps the NOR/NOT netlist into a single row
of the crossbar. For the case of 1-bit full addition, 12 NOT/NOR sequential operations
are required on a total number of 15 memristors. The overall energy consumption is
estimated as 0.68 pJ. The second method corresponds to the compact mapping. In this
method NOR/NOT MAGIC operations are performed on rows and columns of a crossbar
to realize logic functions. A 1-bit full addition process is performed on an 8 × 3 crossbar
structure (i.e. 24 memristors) and requires 16 computational steps. The overall energy
consumption is evaluated as 0.89 pJ. Compared to our design, the naive mapping and
the compact mapping consume 1.01 times less and 1.28 times more energy respectively.

In [105], the authors have proposed a 1-bit full adder, which has been designed using
IMPLY logic. The proposed design needs 23 computational steps to perform the addi-
tion. The 1-bit full adder proposed in [105] requires 6 memristors, which is 33.3% of
the memristors utilized in our design. However, IMPLY logic design approach adopts 3
different voltage levels (VCOND, VSET and VCLE AR). So, an additional circuitry such as
analog multiplexers should be added to drive the allocated memristors. This induces an
overhead in terms of the total utilized area when compared to our proposed design. Note
that the energy consumption is not considered by the authors. Table 3.3 summarizes
the above presented comparison results. The table illustrates the key advantage of the

3.7. Summary 55

proposed approach regarding the reduced number of computational steps with respect to
other existing designs. The energy consumption remains comparable. The Energy.Delay

metric is used for a global direct evaluation. This metric combines both delay and energy
consumption. As shown in the table, our proposed design outperforms all existing related
ones. The improvement in Energy.Delay is between ×5.7 and ×31.

On the other hand, for the works that have adopted MAGIC and IMPLY in [101]
[102] [105] [103] and [104], the initialization and the evaluation of the rows and columns
of the memristive crossbar require a separate CMOS controller. Moreover, a conversion
mechanism is required in these designs. This mechanism includes a sensing amplifier
which converts the resulting stored bits from the resistance state to the voltage state
[52]. These additional peripheral drivers result in additional overheads in area and power
consumption.

3.7 Summary

In this paper, an MRL-based crossbar design namely X-MRL is proposed. X-MRL ap-
proach is dedicated for the implementation of combinational logic. The design method-
ology of X-MRL efficiently integrates memristors with CMOS devices to improve density
and scalability. Using X-MRL, Boolean function are represented using pairs of memristors
mapped efficiently into crossbar structure. The obtained memristive crossbar is stacked
at the top of CMOS layer. For evaluation purposes, we design hybrid memristor-CMOS
full adder based on X-MRL approach. Based on realistic memristor parameters model
and CMOS 65 nm process, the design is simulated in Cadence Virtuoso environment. The
obtained layout of the full adder demonstrates a 44.79% area reduction compared to that
implemented with pure CMOS technology. Moreover, the Energy.Delay metric is used
for comparison. It reveals an improvement between ×5.7 and ×31 with respect to the
available literature.

Chapter 4

MOL – Memristor Overwrite Logic
for In-Memory Computing

This chapter regroups the last three contributions of the thesis related to in-memory
computing. It introduces a novel logic design style, namely Memristor Overwrite

Logic (MOL), associated with an original MOL-based computational memory. MOL com-
bines the simplicity of MAGIC/IMPLY techniques and the accuracy of MAJ. Moreover,
MOL can operate with different memristive device technologies and allows for significant
reduction in the number of required memristors and computational steps.

The chapter is organized as follows. It starts by motivating the need for in-memory
computing paradigm and by reviewing related existing efforts that investigate the use of
memristive devices. Then, Section 4.2 illustrates the limitations that accompanies existing
memristor based logic design styles. Section 4.3 presents our proposed MOL approach.
Section 4.4 discusses the integration of MOL into the conventional memory configura-
tions. Section 4.5 presents our proposed configurable MOL-based computational memory
architecture. The proposed design and its configuration methodology are demonstrated
by a case study of N-bit full addition in Section 4.6. Simulations and performance analysis
are illustrated in Section 4.7. Comparison with relevant implementations in the literature
is presented in Section 4.8. In order to further illustrate the potential of the proposed
approach, two other application case studies are presented in Section 4.9, related to in-
memory computing of CRC and DNN. Finally, Section 4.10 provides a short summary of
the chapter.

56

4.1. Memristive devices for in-memory computing 57

4.1 Memristive devices for in-memory computing

The aggressive growth in the size of processed data in addition to the increasing numbers
of processing cores have lead to intensive data traffic between memory and processing
cores. In-memory computing have been introduced to overcome the memory wall prob-
lem. Instead of sending large amount of data to the processing cores, part of the tasks are
computed inside the memory. This reduces the memory accesses bottleneck and can sig-
nificantly improve performance. Computing within memristive memories are motivated
by the unique properties of memristors and their versatile nature. In this context, sev-
eral recent contributions have been proposed to enable computation within memristive
memory arrays and can be classified in two categories.

The first category involves using the memristor as single-level cell (SLC) [56, 106,
102, 103, 101, 107, 108]. The second category includes work that uses the memristor as
multi-level cell (MLC) or analog cell [109, 110, 111]. MLC-based computing is promis-
ing when targeting applications with intensive multiply-accumulate operations, such as
convolutional neural networks (CNN) [111]. However, a number of challenges remain
in terms of manufacturability and computational accuracy regarding device variability,
pattern-dependent current leakage and the area overhead of peripheral circuits [112].
Major semiconductor foundries have not included MLC technology in their development
roadmaps in the near future [111].

In contrast, SLC cells have a larger readout margin that makes them tolerant against
process variation and resistance drift effects. Based on SLCs, different logic design styles
have been introduced together with different realizations on memristive crossbar arrays.
IMPLY [56] and MAGIC [53] have been introduced to enable in-memory logic operations.
Although promising results are demonstrated, IMPLY and MAGIC techniques still impose
specific technology and design constraints. For instance, in order to attain acceptable
performance in these techniques, the ratio ROFF/RON of the adopted memristive devices
should be relatively high. Moreover, authors of [67] have reported that IMPLY does not
ensure binary resistance switching of memristors in some cases.

More recently, other in-memory computing techniques have emerged as alternatives.
Among these, the memristor-based majority (MAJ) [63] has been introduced to overcome
the aforementioned limitations. However, other downsides arise at the architectural level.
MAJ design style is relatively complex in terms of peripheral circuits as well as excessive
in-out data movement which in turn impacts latency. Detailed analysis of these limitations
is provided in the next section.

Chapter 4. MOL – Memristor Overwrite Logic for In-Memory Computing 58

4.2 Limitations of existing logic design styles

As illustrated in chapter 1, several memristive design styles have been widely explored
in various fields. In this work, our target application concerns in-memory computing.
Therefore, for the rest of this chapter, some logic design styles are excluded such as MRL,
MAD and MTL. The rest design styles including MAGIC, IMPLY, MAJ and CRS are
considered. Limitations that accompanies these design styles are discussed below.

Authors of [102][61, 113, 104, 114] have presented several approaches where logic func-
tions are broken down into several MAGIC or IMPLY operations. These operations are
then performed sequentially inside memristive crossbar arrays. However, these approaches
have several design constraints:

• The analysis in [67] reveals that IMPLY cannot achieve the full resistance switching
of the output memristor in case both input memristors of the IMPLY gate are in
the ROFF resistance state. Hence, the corresponding state of the output memristor
is not fully digital.

• Output memristors in IMPLY and MAGIC may be subjected to state drift [56][102].

• The performance of these design styles is highly dependent on the technology of
the adopted memristive device (e.g. requirement of memristive devices with high
ROFF/RON ratio) [56][102].

• The corresponding basis functions provided by IMPLY and MAGIC are not diverse
enough to allow fast logic mapping with minimum computational cycles.

MAJ-based logic design has been recently explored by several authors [63][107]. MAJ
relies on a digital representation of memristors, so the limitations faced in IMPLY and
MAGIC can be overcome. However, at the architecture level, other downsides arise:

• In-memory computing architectures based on MAJ, which are available in the liter-
ature, require additional load operations, which read data bits outside the memory.
This induces the overheads in terms of total critical path, number of cycles and the
complexity of the dedicated control unit.

• Architectures based on MAJ involve significant modifications in the peripheral cir-
cuitry of the memory. The write operations are performed on bit-lines (BLs) as well
as word-lines (WLs) instead of BLs only.

These limitations hold also for CRS logic design approach [59] as it can be considered as
a special case of MAJ.

4.3. MOL logic design 59

4.3 MOL logic design

In this section we introduce a new memristor-based logic design style namely Memristor
Overwrite Logic (MOL). MOL approach is highly adapted for computing within memris-
tive crossbar arrays and avoids the limitations encountered by pre-existing logic design
styles.

4.3.1 Digital representation of memristive devices

The nonvolatile internal resistance state of memristor could be changed according to
the magnitude and duration of the applied bias across its terminals [23]. However, a
non sufficient magnitude or duration leads to an intermediate resistance state R where
RON < R < ROFF . In this case, the state of the memristor can not be considered as binary,
which in turn leads to more sophisticated modeling of the internal state of memristive
devices in the analog domain. However, in a digital design, we could think about the
memristor as a two-state element where its resistance R ∈ {RON,ROFF} and ignoring any
other intermediate states if we succeed to guarantee a sufficient magnitude and duration
of the bias across its terminals. Based on this understanding, the internal state of a
memristor is defined in the digital domain. Let Qn be the current internal state of a
memristor while Qn+1 is the next state after applying a new external bias represented by
A and B as shown in Fig. 4.1(a). Hence, Qn+1 will a be function of the logical states at
the terminals A and B and the previous internal state Qn. By considering all the possible
combinations of A, B and Qn as shown in Fig. 4.1(b), the state equation of a memristive
device is expressed as follows:

Qn+1 = Qn A +QnB + AB = M3(A,B,Qn) (4.1)

where M3 represents the 3-variable majority function, which is defined in [58]. This ex-
pression demonstrates that a majority function is an intrinsic feature of memristive devices
[63]. Based on the Boolean expression presented in (4.1), the finite state machine (FSM)
of a memristive device is demonstrated in Fig. 4.1(c). Accordingly, the equivalent latch
circuit of a memristive device can be implemented as shown in Fig. 4.2 where Q is the
internal state of the memristor. To translate the Boolean value of Q into a resistance
between the terminals of the memristor, an analog multiplexer is added. It selects either
one of the two resistors, which resistances are RON or ROFF where Q = 0 and Q = 1 are
mapped to RON and ROFF respectively. Note that this schematic is valid and useful from
the digital perspective, so it cannot be used for simulation in the analog domain.

Chapter 4. MOL – Memristor Overwrite Logic for In-Memory Computing 60

𝑸𝒏 𝑨 𝑩 𝑸𝒏 + 𝟏

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

A

B

𝑄𝑛+1 𝑄𝑛

(a) (b)

(c)

𝐴, 𝐵 = (1,0)

𝐴, 𝐵 = (0,1)

𝐴, 𝐵 = (0,0)/(1, 𝑋) 𝐴, 𝐵 = (0,0)/(𝑋, 1) Q=0 Q=1

𝐴

𝐵

𝐴

𝐵

Figure 4.1: Memristor: (a) internal state after applying external bias represented by A
and B; (b) truth table; (c) finite state machine (FSM)

A

B

Ron Roff

Q Equivalent

A

B

Q

Resistive ports Memristor latch

Figure 4.2: Equivalent latch circuit of memristor with binary resistive ports

4.3. MOL logic design 61

4.3.2 MOL logic procedure

The state representation of memristor expressed in (4.1) clarifies its computational ca-
pability and simplifies its integration in the digital domain. Six possible cases can be
derived from (4.1) and are listed in (4.2). Fig. 4.3 is an illustration of these cases. They
are split into two groups. The first group includes the cases from 1 to 4, which correspond
to MOL. In these 4 cases, a memristor acts as logic accumulator. The previously stored
bit Qn is subjected to OR/AND with the new input A/B while the other terminal of the
memristor is set to logic "0" or logic "1" depending on the desired function. The obtained
output is simultaneously saved in the form of new internal state Qn+1. The remaining
cases (i.e. 5 and 6) are achieved by initializing the memristor to a known state (logic "0"
or logic "1"). The inputs A and B are sent to the memristor ports simultaneously. The
output is saved as the new internal state (Qn+1) of the memristor. In fact, these two cases
correspond to CRS logic operations that are explored in the literature [108][63][59].

Although MOL operations are special cases of the 3-variable majority, working with
MOL is much simpler. MOL highly resembles the conventional write operation. One end
of each memristor is reserved for the input operands, while the other end is employed
for selection. In contrast, MAJ employs both terminals of the memristor for the input
operands. This makes MOL more adapted to crossbar memory arrays.

Qn+1 =

Qn + A , B = 0, case : 1 (MOL)

Qn A , B = 1, case : 2 (MOL)

Qn + B , A = 0, case : 3 (MOL)

QnB , A = 1, case : 4 (MOL)

AB , Qn = 0, case : 5 (CRS)

A + B , Qn = 1, case : 6 (CRS)

(4.2)

The same concept applies to a vector of bits. Fig. 4.4 illustrates that two consecutive
steps are enough for achieving MOL operations on an N-bit vector. In step 1, which is
presented in Fig. 4.4(a), the input vector I = [IN−1 IN−2... I1 I0] is written into the N

memristors by mapping logic "0" and logic "1" to the normalized voltage levels −1V and
1V respectively while the common horizontal line is set to 0V . At the end of this step, the
resulting state of a given memristor Mk is Qk = Ik . In step 2, the same N memristors are
overwritten with the input vector A = [AN−1 AN−2... A1 A0]. However, the input voltage
level on the common horizontal line is set to 0V or 1V depending on the desired operation.
For the case of MOL-OR (Fig. 4.4(b)), B is set to 0V and the result, which is stored in
a given memristor Mk , is Q′k = Ak + Ik . For the case of MOL-AND (Fig. 4.4(c)), B is set
to 1V and the result, which is stored in a given memristor Mk , is Q′k = Ak Ik .

Chapter 4. MOL – Memristor Overwrite Logic for In-Memory Computing 62

A=0

B

𝑄𝑛 + 1 = 𝑄𝑛 + ത𝐵

A=1

B

𝑄𝑛 + 1 = 𝑄𝑛
ത𝐵

(3)

(4)

(MOL-OR-NOT)

(MOL-AND-NOT)

A

B

𝑄𝑛 + 1 = 𝐴 ത𝐵
(𝑄𝑛 = 0)

A

B

𝑄𝑛 + 1 = 𝐴 + ത𝐵
(𝑄𝑛 = 1)

(5)

(6)

(AND-NOT)

(OR-NOT)

A

B=0

A

B=1

𝑄𝑛 + 1 = 𝑄𝑛𝐴

(1)

(2)

(MOL-OR)

(MOL-AND)

𝑄𝑛 + 1 = 𝑄𝑛 + 𝐴

Figure 4.3: Six possible logic cases performed by a memristor

Step1:
Write

I0I1I2IN-1

B=0

Ik ∈ {-1v , 1v}
k ∈[0,N-1]

M0M1M2MN-1

(a)

Step2:
Overwrite (Case: OR)

Ak ∈ {0v , 1v}
k ∈[0,N-1]

B=0

A0A1A2AN-1

M0M1M2MN-1

(b)

Step2:
Overwrite (Case: AND)

Ak ∈ {0v , 1v}
k ∈[0,N-1]

A0A1A2AN-1

M0M1M2MN-1

(c)

B=1

Figure 4.4: Performing MOL on a vector of bits; (a) writing N-bits into memritsors; (b)
overwrite step to perform MOL-OR; (c) overwrite step to perform MOL-AND

4.4. Realization of MOL in 1M/1T1M crossbars 63

4.3.3 Performing MOL inside memristive crossbars

The proposed MOL can be performed in memristive crossbar arrays. The input data bits
to the crossbar can be either written or combined logically with the currently stored bits
inside the crossbar. This can be simply achieved by choosing the appropriate normalized
voltage levels for representing the arriving bits (i.e. -1/1 for write and 0/1 for MOL). Fig.
4.5(a) illustrates that a single or multiple rows of the crossbar could be selected for either
MOL-OR or MOL-AND operations with the incoming data bits I = [IN−1 IN−2... I1 I0]

being applied on the columns. Similarly, Fig. 4.5(b) shows that a single or multiple
columns of the crossbar could be selected for either MOL-OR-NOT or MOL-AND-NOT
operations with the incoming data bits of the vector I applied on the rows.

4.4 Realization of MOL in 1M/1T1M crossbars

Crossbars constitute the core element of emerging memristive memories (e.g. RRAMs
and MRAMs). Integrating MOL with crossbar-memory architectures can lead to promis-
ing enhancements and provides additional computational capabilities to these memories.
However, this imposes updating memory peripheral drivers to cope with MOL operations
in addition to its main storage function. Fig. 4.6(a) presents the proposed memory ar-
chitecture which is capable of performing MOL. As illustrated in Section 4.3, write and
overwrite operations could be performed along the rows as well as the columns of the
crossbar. However, in a conventional memory architecture, the flow of the incoming data
bits is along bit-lines only while the word-lines are reserved for addressing. Thus, MOL
operation, which is similar to a write operation, could be only performed along BLs. In
this case, MOL-OR and MOL-AND are the only supported logic operations in the pro-
posed memory architecture. The architecture shown in Fig. 4.6(a) can be configured in
four different modes:

1- Write mode: The input N-bit vector I = [IN−1 IN−2... I1 I0] is first mapped via
bit-line driver (BLD) into the normalized voltage levels of −1V and 1V corresponding for
logic "0" and "1" respectively. Fig. 4.7(a) presents the schematic of BLD at the transistor
level. The respective voltage levels (−1V and 1V) are then provided to the BLs of the
memristive crossbar through the Isolation Block (ISO), which acts in this mode as a
connecting switch. Fig. 4.7(b) illustrates the internal structure of ISO. Simultaneously,
the enabled addressing decoder selects a single WL. The selected WL is supplied with a
voltage VSE L, which is already shared to the input of each transmission gate corresponding
to every WL. The shared voltage VSE L is set to the normalized voltage level of 0V . The
unselected WLs remain floating in the high impedance state (Z).

Chapter 4. MOL – Memristor Overwrite Logic for In-Memory Computing 64

(b)

𝐼0 𝐼1 𝐼2 𝐼𝑁−1

𝐵0 = 0

𝐵1 = 0

(a)

Step 1:
Write

𝐴0 𝐴1 𝐴2 𝐴𝑁−1

MOL-OR

MOL-AND

MOL-AND-NOT

Step 2:
Overwrite

Step 1:
Write

Step 2:
Overwrite

MOL-OR-NOT

𝐼𝑁−1

𝐼2

𝐼1

𝐼0

𝐴𝑁−1

𝐴2

𝐴1

𝐴0

𝐵0 = 0

𝐵1 = 1

𝐵0 = 0 𝐵1 = 0 𝐵0 = 0 𝐵1 = 1

Figure 4.5: MOL inside memristive crossbar: (a) MOL-OR or/and MOL-AND; (b) MOL-
OR-NOT or/and MOL-AND-NOT

2- Overwrite mode: In this mode, the function of the memory is switched to perform
MOL among its memristive crossbar. As stated above, both MOL-OR and MOL-AND
have to be supported. For the case of MOL-OR, the input data bits are mapped to
the normalized voltage levels of 0V and 1V corresponding for logic "0" and logic "1"
respectively. The addressing decoder performs its normal selection function for a single
WL. ISO is kept at the connecting state. The level of VSE L is also set to 0V as in the case

4.4. Realization of MOL in 1M/1T1M crossbars 65

of write mode. The resulting bits of the MOL-OR operation are simultaneously stored
in the selected WL. MOL-AND is performed similarly but VSE L is switched to the high
voltage level (i.e. VSE L = 1V).

3- Read mode: In this mode, a single WL is selected to sense the corresponding states
of its allocated memristors individually. BLD is isolated using the ISO block, which acts
in this case as an open switch. The selection voltage VSE L is set to 0.5V (normalized).
The sensing current generated through each memristor have to guarantee a stability of
its internal state (no state drift). A sensing amplifier (SA) circuitry, whose architecture
is illustrated in Fig. 4.7(c), is used to measure the voltages across the reference resistors
of respective resistances R. R is chosen to be the mid value between RON and ROFF (i.e.
R = (RON +ROFF)/2). By considering RON < ROFF , the voltage across a reference resistor,
which is in series to the sensed memristor, would be either in the neighborhood of 0V

or 0.5V . Depending on the state of the sensed memristor, the three cascaded inverters
magnifies this difference leading to −1V or 1V to the output.

4- Idle mode: In this mode, the memory is not active. The memristive crossbar is
totally isolated to preserve its internal state. The IB block is in the isolation mode.
Hence, all BLs are in the high impedance state (Z). Moreover, the address decoder is
disabled. Thus, none of the WLs is selected, keeping them in the Z state. The architecture
presented in Fig. 4.6(a) adopts the 1-memristor (1M) configuration for the structure of the
crossbar. In other words, each cell consists of one memristor which connects the vertical
and horizontal nano-wires of the crossbar. However, the 1M crossbar configuration suffers
from the sneak paths phenomenon [30]. Sneak paths correspond to current paths through
unselected cells in a memristive array. These undesired paths lead in some cases to a drift
in the state of unselected memristive cells during write or overwrite operations. Moreover,
it gives false estimation about the real logical state of a given selected memristor during
reading mode. This phenomenon degrades the overall memory performance. Several
efforts have been devoted in the literature to overcome sneak path phenomenon [30] [38]
[115]. All proposed methods are limited to a certain crossbar size. Thus, increasing the
size of the memristive crossbar beyond a certain limit will eventually lead to the sneak
paths. A possible solution to stop these paths is to use a selector in series with each
allocated memristive cell. This solution induces overheads in terms of the total utilized
area of the memory which in turn loses the ultra high density attained in the 1M case.
In [116], a transistor is used as a selector. Thus, each cell inside the memory consists
of one transistor in series with one memristive device (1T1M). The obtained crossbar
architecture for the 1T1M configuration is considered as sneak-path free. Fig. 4.6(b)
presents our proposed 1T1M memory architecture with added MOL capabilities. The

Chapter 4. MOL – Memristor Overwrite Logic for In-Memory Computing 66

BLD

SA

VSEL

Write/Overwrite

D
E
C
O
D
E
R

Isolate/Connect ISO

E

I0 I1 I2 IN-1

O0 O1 O2 ON-1

Read Read

BLD

ISO

SA

D
E
C
O
D
E
R

O0 O1 O2 ON-1

I0 I1 I2 IN-1

E

VSEL

Write/Overwrite

Isolate/Connect

(a) (b)

Figure 4.6: Memory architecture performing MOL: (a) 1M configuration; (b) 1T1M con-
figuration

WL transmission gates, that have been used in the 1M case are no longer used in the
case, of 1T1M memory architecture. Normally, each transmission gate is equivalent to
two MOSFETs. Thus, for an N × M memristive crossbar array, additional N M − 2N

MOSFETs are used in the 1T1M architecture compared to that in the 1M case. The
obtained 1T1M architecture has the same four control modes previously introduced for
the 1M case.

4.5 MOL-based Computational memory

In this section, a MOL-based computational memory architecture is introduced. The
architecture is able to perform MOL operations between two stored word lines. The
original architecture, which is formed of two interconnected MOL memory blocks, works
in a complementary manner.

4.5. MOL-based Computational memory 67

(a)

(c)

1

-1

0

(d)

(e)

(b)

0

R R R R

BLD

ISO

SA

INV

BSD

Figure 4.7: Drivers architectures for the proposed MOL-memory approach

4.5.1 Architecture

The proposed MOL-memory architectures, which are presented in section 4.4, act as logic
accumulators for the newly arriving bits. In other words, computation in such memory
is restricted for logic accumulation. Accordingly, performing general Boolean functions

Chapter 4. MOL – Memristor Overwrite Logic for In-Memory Computing 68

in this memory requires an additional process to load the stored data bits outside the
memory. These additional load operations are at odds with the concept of computation
inside the memory. To overcome these load operations, we propose the use of two coupled
MOL memories (MOL-memory-A and MOL-memory-B), that work in complementary
manner. At each time step, one of these memories acts as source of input data-bits
of the second memory. The second memory performs MOL with the previously stored
bits in its memristive crossbar. Fig. 4.8 illustrates our proposed computational-memory
architecture. The architectures of MOL-memory-A and MOL-memory-B are identical. A
controlled inverting driver (INV) is added after the sensing stages of the two memories.
The function of this driver is to achieve a complete logic, as the OR and AND logic
operations supported by the memories are not universal. So, additional NOT operation
is needed to allow the description of any Boolean function. The architecture of INV is
illustrated in Fig. 4.7(d). A 1-bit barrel shift driver (BSD) is added to enable bit-level
operations in addition to vector-level operations. The BSD is responsible for ensuring
switchable connections between the two memory blocks. It can be reconfigured either
to pass the data bits or to shift them on the fly with no need for an additional cycle.
The architecture of the BSD is presented in Fig. 4.7(e). The proposed MOL-memory
architecture presented in Fig. 4.8 is capable of performing numerous operations including
logic computation and storage. Table 4.1 lists the most important (not all) operations
that could be achieved. For each listed operation, a set of appropriate commands are
simultaneously sent to the blocks constituting the architecture. A single operation requires
one computational step. As an example, the case 19 in Table 4.1 corresponds to the
arithmetic operation expressed in (4.3)

MB(n) = MB(n) AND MA(m) (4.3)

where MA(m) and MB(n), are the bit-vectors located at the addresses m and n correspond-
ing for MOL-memory-A and MOL-memory-B respectively. For this case, MOL-memory-A
is set to the read mode. It reads the bit-vector MA(m), which undergoes a bitwise inver-
sion through INV block. The 1-bit shifter is disabled. Simultaneously, MOL-memory-B,
is set to the overwrite mode to perform MOL-AND with the vector MB(n). The result of
the bitwise logic operation replaces the previous vector MB(n). The process is performed
during one computational step.

4.5.2 Performing general arithmetic tasks

Generally, an arithmetic function (e.g. addition, subtraction, compare, etc.) could be
expressed in Boolean form. Accordingly, breaking the Boolean form into several MOL

4.5. MOL-based Computational memory 69

BS

BLD

SA
INV

ISO

D
E
C
O
D
E
R

MOL-memory-B

BLD

SA
INV

ISO

BS

D
E
C
O
D
E
R

I

O

C

m

n

MOL-memory-A

MOL-memory-B

Vw Vr Gnd

Vw Vr Gnd

Figure 4.8: Computational Memory Architecture

operations allows its execution inside the proposed computational memory. Thus, the
execution of an arbitrary Boolean function requires several computational steps so MOL
operations are executed iteratively to finalize the desired arithmetic task. For this pur-

Chapter 4. MOL – Memristor Overwrite Logic for In-Memory Computing 70

MOL-Memory-A

MOL-Memory-B

Write in

Read out

Macro-Instruction

Control Unit
Processing area

Processing area

17 bit

9 bit

N bit

N bit

e.g. Add [MA(m), MB(n)]

8 bit

Micro-Instructions
e.g. MA(m) = MA(m) AND MB(n)

m

n

Figure 4.9: Architecture diagram of MOL-based computational memory with its dedicated
control unit

pose, an external controller, which arranges these iterative operations is needed. Fig.
4.9 shows the block diagram which illustrates the general structure of the memory and
the controller. When the controller receives an instruction from the processor, it decides
the role of the memory whether for storage or computation. Specifically, for the case
of computation, the controller breaks the received macro-instruction into several itera-
tive micro-instructions, which can be performed by the proposed memory. In our case,
micro-instructions correspond to the set of operations listed in Table 4.1. A processing
area should be reserved in each of MOL-memory-A and MOL-memory-B in the proposed
computational memory. The area could be dynamically changed according to the need
(such as the number of required tasks). Moreover, the location of the processing area
could be also changed periodically. The reason for location change is to attain better
endurance for the memristive memory cells that are subjected to continuous stress.

4.5. MOL-based Computational memory 71

Table 4.1: Encoding table

110 AND AND
101 Read Read
011 Write Write
011 OR OR
1 Enable Write Isolate Pass Enable Write Isolate Pass Select-out
0 Disable Overwrite Connect Invert Disable Overwrite Connect Invert Select-in

Operation Binary Micro-Instruction EA BLDA ISOA ModeA INVA BSDA EB BLDB ISOB ModeB INVB BSDB Sel

0 00000 MA(m) = I 1 1 1 0 1 1 1 1 0 x 0 1 1 1 x 1 0
1 00001 MB(n) = I 0 0 1 0 1 1 0 1 1 1 1 0 1 1 1 1 0
2 00010 O = MA(m) 1 x 0 1 0 1 1 1 0 0 1 1 1 1 1 1 x
3 00011 O = MB(m) 0 x 0 1 1 1 x 1 1 x 0 1 0 1 0 1 x
4 00100 O = MA(m) 1 x 0 1 0 1 1 1 0 0 1 1 1 1 0 1 x
5 00101 O = MB(m) 0 x 0 1 1 1 x 1 1 x 0 1 0 1 1 1 x
6 00110 MA(m) = MB(n) 1 1 1 0 1 1 x 1 1 x 0 1 0 1 0 1 1
7 00111 MB(n) = MA(m) 1 x 0 1 0 1 1 1 1 1 1 0 1 1 x 1 x
8 01000 MA(m) = MB(n) 1 1 1 0 1 1 x 1 1 x 0 1 0 1 1 1 1
9 01001 MB(n) = MA(m) 1 x 0 1 0 1 0 1 1 1 1 0 1 1 x 1 x
10 01010 MA(m) = MA(m) AND I 1 0 1 1 1 0 1 1 0 x 0 1 1 1 x 1 0
11 01011 MB(n) = MB(n) AND I 0 0 1 0 1 1 0 1 1 1 1 1 1 0 1 1 0
12 01100 MA(m) = MB(n) OR I 1 0 1 0 1 1 1 1 0 x 0 1 1 1 x 1 0
13 01101 MB(n) = MB(m) OR I 0 0 1 0 1 1 0 1 1 1 1 0 1 1 1 1 0
14 01110 MA(m) = MA(m) AND MB(n) 1 0 1 1 1 0 x 1 1 x 0 1 0 1 0 1 1
15 01111 MB(n) = MB(n) AND MA(n) 1 x 0 1 0 1 1 1 1 0 1 1 1 0 x 1 x
16 10000 MA(m) = MA(n) OR MB(n) 1 0 1 0 1 1 x 1 1 x 0 1 0 1 0 1 1
17 10001 MB(n) = MB(m) OR MA(n) 1 x 0 1 0 1 1 1 1 0 1 0 1 1 x 1 x
18 10010 MA(m) = MA(m) AND MB(n) 1 0 1 1 1 0 x 1 1 x 0 1 0 1 1 1 1
19 10011 MB(n) = MB(n) AND MA(n) 1 x 0 1 0 1 0 1 1 0 1 1 1 0 x 1 x
20 10100 MA(m) = MA(m) OR MB(n) 1 0 1 0 1 1 x 1 1 x 0 1 0 1 1 1 1
21 10101 MB(n) = MB(m) OR MA(n) 1 x 0 1 0 1 0 1 1 0 1 0 1 1 x 1 x
22 10110 MA(m) = MB(n) << 1 1 1 1 0 1 1 x 1 1 x 0 1 0 1 1 0 1
23 10111 MB(n) = MA(m) << 1 1 x 0 1 0 1 1 0 1 1 1 0 1 1 x 1 x
24 11000 MA(m) = MA(m) AND [MB(n) << 1] 1 0 1 1 1 0 x 1 1 x 0 1 0 1 0 0 1
25 11001 MB(n) = MB(n) AND [MA(n) << 1] 1 x 0 1 0 1 1 0 1 0 1 1 1 0 x 1 x
26 11010 MA(m) = MA(n) OR [MB(n) << 1] 1 0 1 0 1 1 x 1 1 x 0 1 0 1 0 0 1
27 11011 MB(n) = MB(m) OR [MA(n) << 1] 1 x 0 1 0 1 1 0 1 0 1 0 1 1 x 1 x
28 11100 MA(m) = MB(n) << 1 1 1 1 0 1 1 x 1 1 x 0 1 0 1 1 0 1
29 11101 MB(n) = MA(m) << 1 1 x 0 1 0 1 0 0 1 1 1 0 1 1 x 1 x

4.5.3 Towards an efficiency-improved computing

Usually, the execution on a processor of a certain arithmetic task, that requires loading
data bits outside the memory, introduces long latency. This is either caused by move-
ment of data between various levels of the memory-hierarchy and the processing unit as
in conventional von Neumann model or even long critical path in the case of more ad-
vanced methods such as near-memory computing. These movements constitute the major
challenge in terms of energy efficiency and computing latency and is usually denoted as
the memory wall. In-memory computing has been developed to overcome the memory
wall by avoiding the long latency originated from these data movements. For our pro-
posed MOL-based computational memory, the execution of an arithmetic task requires
several successive MOL-operations. The high bandwidth of in-memory computing allows
to minimize the step period of each operation. However, when the complexity of arith-
metic tasks scales up, the corresponding number of MOL-operations becomes large which
again causes considerable latency and energy consumption. For these tasks, conventional
computing could be more efficient. Accordingly, in this work we consider that in-memory
computing is a complementary approach to the conventional von Neumann model. In

Chapter 4. MOL – Memristor Overwrite Logic for In-Memory Computing 72

other words, arithmetic tasks should be decided whether to be executed in classical way
(outside memory) or based on MOL in order to improve computational efficiency.

4.6 MOL based in memory N-bit full addition

In this section, an N-bit full addition is considered as a case study to evaluate the func-
tionality of our proposed computational memory architecture.

4.6.1 Proposed iterative N-bit full addition process dedicated
for computational MOL-memory

Generally, full adder is the basic digital building block for several computational opera-
tions (i.e. addition, subtraction and multiplication). Thus, implementing a full addition
process inside the memory is the first step toward in-memory computing. Equations (4.4)
and (4.5) present the well known expressions of the 1-bit full addition.

S = A ⊕ B ⊕ Cin (4.4)

Cout = AB + BCin + ACin (4.5)

where A and B are the inputs, Cin is the input carry value, S is the 1-bit adder output and
Cout is the output carry. The operator ⊕ corresponds to the boolean XOR. Assume that
all the inputs are initially stored in the memory. The boolean functions of S and Cout are
written in the form of sum of products (SoP), so that their expressions could be mapped
into the proposed computational memory using sequential MOL operations. The inputs
of a given MOL operation should be aligned on the same columns (ie. same bit-lines)
in the memory, otherwise, a pre-shifting process is required to align the corresponding
inputs. Accordingly, the number of steps required to achieve the computation of S and
Cout is affected by the relative positions of the input A, B and Cin inside the memory.
In order to minimize the number of computational steps as well as reserve the minimum
possible processing area, a dedicated N-bit addition process is proposed. The process
uses a specific sequence of each operation listed in Table 4.1. Consider the two N-bit
vectors AN and BN . The addition of AN and BN leads to the vector sum SN+1. Normally,
the additional 1-bit in SN+1 is reserved for the expected overflow in the addition process.
We propose to follow the procedure illustrated in Algorithm 1 to achieve a vector level
addition of AN and BN :

• Stage 1: The vector sum S0 which is of length N + 1 is initialized by the bitwise
XOR of AN and BN . Similarly, the vector carry C0 of length N + 1 is initialized by

4.6. MOL based in memory N-bit full addition 73

the bitwise AND of AN and BN . The expressions of S0 and C0 are presented in (4.6)
and (4.7) respectively.

S0 = A ⊕ B (4.6)

C0 = AB (4.7)

• Stage 2: Each time, a new vector sum Si+1 and vector carry Ci+1 are created based
on their previous values Si and Ci respectively. Equation (4.8) and (4.9) demonstrate
the respective expressions of Si+1 and Ci+1. This process is repeated N − 1 times.

Si+1 = Si ⊕ (Ci << 1) (4.8)

Ci+1 = Si (Ci << 1) (4.9)

The operator "<< 1" stands for the 1-bit shift to the left. At the end of this iterative
process, the final obtained vector SN−1 corresponds to the sum of AN and BN while CN−1

will be a zero vector.

Algorithm 1 N-bit addition dedicated for computation inside MOL-memory

1: procedure ADD(A,B) . A and B are N-bit vectors
2: S0 ← A ⊕ B

3: C0 ← AB

4: for i ← 0 to N − 2 do
5: Si+1 ← Si ⊕ (Ci << 1)
6: Ci+1 ← Si(Ci << 1)
7: end for
8: return SN−1 . The sum of A and B

9: end procedure

4.6.2 In-memory N-bit full addition procedure

The proposed iterative N-bit addition process can be mapped into the computational
MOL-memory using the operations listed in Table 4.1. Fig. 4.10 shows a space-time
representation of the N-bit full addition process, which is realized within MOL-memory-
A and MOL-memory-B. For each computational step, the new contents of the memories
are listed in a new single column in Fig. 4.10. Assume the case where the two vectors AN

and BN , that are subjected to addition, are initially stored inside MOL-memory-A at the
addresses m1 and m2 respectively. Additional two word-lines have to be reserved inside
MOL-memory-B to attain the addition of AN and BN . The two stages that are presented
in section 4.6.1 are realized as follows:

Chapter 4. MOL – Memristor Overwrite Logic for In-Memory Computing 74

𝐵 𝐵 𝐵 𝐵 𝐴𝐵 𝐴𝐵 𝐴𝐵 𝐶0 𝐶0 𝐶0 ≪ 1

𝐴 𝐴 𝐴 𝐴 𝐴 𝐴 𝐴 X X X

X X 𝐵 𝐵 𝐵 𝐴 𝐵 𝐴 ⊕ 𝐵 𝑆0 𝑆0 𝑆0

X 𝐴 𝐴 𝐴 𝐴 𝐴 𝐴 X 𝐶0 ≪ 1 𝐶0 ≪ 1

M
O
L-

M
e
m
o
ry
-B

M
O
L-

M
e
m
o
ry
-A

- 0 1 2 3 4 5 - 6 7

- 9 9 8 18 19 17 - 29 8

Step

Operation

𝑆𝑁−1 X

X X

𝐶𝑁−1 𝑆𝑁−1

X X

- 6N

- 8

𝐶0 𝐶0 𝐶0 ≪ 1 𝐶0 ≪ 1 𝑆0(𝐶0 ≪ 1) 𝑆0(𝐶0 ≪ 1) 𝑆0(𝐶0 ≪ 1) 𝐶1

X X X 𝑆0 𝑆0 𝑆0 𝑆0 X

𝑆0 𝑆0 𝑆0 𝑆0 𝑆0 𝑆0 𝑆0 X

X 𝐶0 ≪ 1 𝐶0 ≪ 1 𝐶0 ≪ 1 𝐶0 ≪ 1 𝑆0 𝐶0 ≪ 1 𝑆0⊕ (𝐶0 ≪ 1) 𝑆1

- 6 7 8 9 10 11 -

- 29 8 8 18 19 17 -

Repeat N-1 times

SUM

Figure 4.10: Operations sequence for an in-memory N-bit addition process using MOL-
memory

• Stage 1: Corresponds to the steps between 0 and 5 using the six micro-operations
that have the sequence order shown in Fig. 4.10. At the end of this stage, the
bitwise AND of A and B (i.e. C0 = AB) is stored in MOL-memory-A while the
XNOR of A and B (i.e. S0 = A ⊕ B) is stored in MOL-memory-B.

• Stage 2: In this stage, the steps between 6 and 11 are repeated N-1 times. Their
corresponding micro-instructions have the sequence order shown in Fig. 4.10. Each
time the initial vector Ci is shifted to the left by one bit and the resulting vector
undergoes bitwise AND with the initial vector Si. The obtained result is referred as
Ci+1, which expression is presented in (4.9). Simultaneously, the shifted version of
Ci undergoes bitwise XNOR with the initial vector Si to obtain the new vector sum
Si+1. At the end of this process, the vector SN−1 is stored in MOL-memory-B. Thus,

4.7. Simulation and performance analysis 75

an additional step is required to make a bitwise inversion of the obtained vector.
The resulting vector SN−1, which represents the N-bit addition of the vectors A and
B, is stored in MOL-memory-A.

4.6.3 Space-time analysis of the N-bit addition process

The total number of computational steps required to complete the N-bit addition is 6N+1
steps as shown in Fig. 4.10. The total number of memristors reserved for the execution
of the N-bit addition is 4N memristors corresponding to four rows of the MOL-memory
architecture. These rows include the initial locations of A and B, although the initial bits
of the vectors A and B are lost. However, in some cases, the destruction of the input
vectors is undesired, especially when these inputs are required for another computational
tasks. In order to avoid this case, pre-copy operations of the two input vectors A and
B could be performed to reserve safe versions of these vectors. Thus, two additional
computational steps are required for this case and the new total number of computational
steps becomes 6N + 3. The considered operation sequence in Fig. 4.10 corresponds to
the case where A and B are both located in MOL-memory-A. However, another two
cases should be considered also: (i) If A and B belong to different MOL-memories, one
additional pre-copy operation could be performed to drag the input vector contained in
MOL-memory-B to MOL-memory-A. (ii) If A and B are both contained in MOL-memory-
B, two additional pre-copy operations are needed to drag them to MOL-memory-A. These
pre-copy operations are performed to maintain the same operation sequence, which is
presented in Fig. 4.10. Pre-copy operations can be avoided with different sequences (one
for each case, with common parts).

4.7 Simulation and performance analysis

In this section, we study the performance of the proposed computational memory archi-
tecture which is implemented using a realistic model of Magnetic Tunnel Junction (MTJ)
device and a CMOS 65nm technology node. The study includes timing analysis, energy
consumption and robustness against device variability.

4.7.1 Adopted memristive device

Several memristive devices have been explored in the literature. In fact, MOL tech-
nique could apply to all types of bipolar memristive devices holding two resistance states
RON and ROFF . Among these devices, memristors such as H f Ox [40] and TiO2 [23] ex-

Chapter 4. MOL – Memristor Overwrite Logic for In-Memory Computing 76

hibit promising characteristics with their high switching speed (sub-ns) and their high
ROFF/RON ratio (> 100). However, current memristor technologies suffer from endurance
limitations. Although several efforts have been carried out to enhance endurance [40],
the allowed number of switchings per memristor is still limited in the range of 106 to
1012 for the best case. This value is relatively low for targeting intensive computations
inside memristive crossbars. The Spin Transfer Torque Magnetic Memory (STT-MRAM)
[117], which have been redescribed in terms of memristive systems [118], is considered as
one of the most promising nonvolatile memories (NVM). STT-MRAM is eligible for high
reliability applications [119] due to its high endurance (> 1015) [23]. As illustrated in
Fig. 4.11, an MTJ cell is mainly composed of two ferromagnetic layers sandwiching an
ultra-thin tunnel barrier. The resistance of the MTJ cell depends on the relative orien-
tation of magnetization in the free and reference layers. The low resistance state (logic
’0’) of the MTJ corresponds to the parallel configuration (P) with resistance RP, while its
high resistance state (logic ’1’) is reached in the case of anti-parallel configuration (AP)
with resistance RAP. The magnitude of the applied current I must exceed a critical value
noted as IC0 to allow switching. In contrast to memristors, MTJs are characterized by

AP state

P state

Resistance

Magnetic field

Free layer

Tunnel barrier

Reference layer

I>IC0

I>IC0

(a) (b)

Figure 4.11: Typical MTJ: (a) Core structure, (b) Resistance variation

a relatively low margin between RP and RAP. The corresponding margin is commonly
evaluated as the Tunnel Magnetoresistance (TMR) ratio, whose expression is presented
in (4.10):

T MR =
∆R
RP
=

RAP − RP

RP
(4.10)

However, such a low margin has no effect on switching an MTJ cell but on the corre-
sponding sensing mechanism of the state of this cell. This requires a more complicated
sensing driver to estimate and decide the corresponding state of a given selected row inside
the memory. In this work, we have used MTJs with perpendicular magnetic anisotropy
(PMA). The adopted PMA MTJ is formed of CoFeB/MgO/CoFeB layers. The physical

4.7. Simulation and performance analysis 77

model describing the static, dynamic and stochastic behaviors of the STT PMA MTJ is
presented in [120] and [121]. In order to fit with experimental results in the literature,
the technology parameters corresponding to the material composition are kept at their
default values. Other parameters which depend on the designers’ choice are presented in
Table 4.2 with their corresponding values. Fig. 4.12 shows the switching behavior of an
MTJ device when it is fed with a square signal of amplitude 1.2V . τAP−P and τP−AP corre-
spond to the switching delays from AP to P state and the reverse case respectively. In
fact, switching delay varies according to the applied voltage level. Fig. 4.13 illustrates the
variation of τAP−P and τP−AP with respect to the applied voltage level. The graph indicates
that switching delay decreases with the increase of the voltage while switching from P to
AP state is faster than the reverse operation (i.e. τAP−P < τP−AP).

The choice of the memristive device type is not constrained by a specified MOL re-
quirement. It can be observed from the mechanism of MOL technique that it involves
direct access to the terminals of memristive devices which highly resembles conventional
write operation. During the operation of MOL, the potential difference between the ter-
minals of the memristive device always attains a binary level. Accordingly, MOL can be
implemented in a wide range of memristive memories without specifying particular device
features. In contrast, the structure of pre-existing logic design styles either establishes a
series connection of a resistor (e.g. IMPLY) or series connection of the memristive de-
vices (e.g. MAGIC) for normal operation. This undoubtedly prevents direct access to the
memristive device terminals and consequently imposes specific device constraints, such
as the requirement of sufficient HRS/LRS ratio and/or operated with thresholds type
devices only.

Table 4.2: Adopted variables and parameters for PMA MTJ device

Parameter Value Description

tox 0.85 nm Thickness of oxide barrier
T MR(0) 70% TMR ratio with 0 stress voltage
Area π × 20 nm × 20 nm MTJ surface
tsl 1.3 nm Thickness of free layer

4.7.2 Performance analysis

Transient simulation has been conducted for the proposed design of the MOL-memory
architecture. Based on the adopted STT PMA MTJ device and the CMOS 65nm process,

Chapter 4. MOL – Memristor Overwrite Logic for In-Memory Computing 78

τP-AP τAP-P

V(applied)

I(current)

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

1.2

1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

-1.2

V
(V

)

300

250

200

150

100

50

0.0

-50

-100

-150

-200

-250

-300

-350

350

I(
u

A
)

Time (ns)

Q(internal state)

Figure 4.12: Switching behavior of MTJ device when fed with square signal

0.5

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3

Delay 1 to 0

Delay 0 to 1

Applied voltage (V)

Sw
it

ch
in

g
d

el
ay

 (
n

s)

τP-AP

τAP-P

Figure 4.13: Switching delay of an MTJ cell as function of applied voltage level

simulations have been carried out using Cadence Virtuoso toolset. In order to evaluate
the performance of the architecture, the N-bit addition process described in Section 4.6
is performed. The size of the crossbar is chosen to be 8 × 8 for MOL-memory-A as well
as MOL-memory-B. The size N is chosen to be 8 bits for both numbers A and B. The
corresponding operating voltage is set to 1.2V for logic ’1’ and −1.2V for logic ’0’. Based
on the obtained transient results, total latency is evaluated as well as the total energy
consumption. As an example, Fig. 4.14 presents the corresponding internal states of
the 4 word-lines that are reserved for the 8-bit addition process, which is performed on
the two arbitrary vectors A=[01011011] and B=[00111111]. The control signals of the

4.7. Simulation and performance analysis 79

MOL-memory architecture follow the operation sequence presented in of Fig. 4.10.

4.7.2.1 Timing analysis

The first two steps correspond to the initialization of vectors A and B inside MOL-
memory-A. The corresponding sum S=[10011010] is evaluated after 6N +1 computational
steps which is equal to 49 for N = 8. In fact, the max delay is noticed to be τMax = 1.7 ns

which is greater than the max switching delay of MTJ devices operating at 1.2V . This
is due to the voltage drop noticed along CMOS drivers. The actual voltage supplied to
MTJ devices is 0.9V (could be interpreted from Fig. 4.13). This significant voltage drop
(25%) is due to the adoption of low values of RP and RAP. Moreover, the width W of
MOSFETs has a direct effect on the voltage drop percentage. This voltage drop could be
mitigated by increasing W , but this induces overheads on the total area of CMOS drivers.

Therefore, the duration (T) of each computational step must be greater than τMax. The
variability in τMax due to the stochastic switching behavior of MTJs should also be con-
sidered. Thus, an additional guard interval (τg) is introduced to guarantee the switching
of the MTJs. The resulting step duration for the proposed MOL-memory architecture is
T = τMax+τg = 1.7+τg. We set τg at 100 ps which corresponds to 6% of τMax, so the duration
T is equal to 1.8 ns. The minimum time required for finalizing the addition operation
(neglecting the 2 initialization steps) is evaluated as 49 × 1.8 ns = 88.2 ns.

4.7.2.2 Robustness against resistance variability

Due to the limit of the manufacturing technology, the actual thickness of oxide layer and
free layer of MTJ devices cannot be fixed at a constant value. They typically vary in a
small range, but can lead to a relatively important variation in the values of LRS and HRS
of MTJ. Therefore, we have examined the effect of MTJ resistance variability on the per-
formance of our proposed MOL-based computational memory architecture. Simulations
are conducted by performing the 8-bit addition. The adopted MTJ parameters T MR, tsl

and tox are kept as presented in Table 4.2 while subjecting them to a random process.
The parameters are chosen to follow either uniform or Gaussian distribution. In Gaussian
distribution, no error has been detected even when reaching a variation percentage of 21%
for T MR, tsl and tox. As for uniform distribution, the tolerated variation reaches 7%. This
demonstrates the robustness of the proposed design against the resistance variability of
MTJ devices.

Chapter 4. MOL – Memristor Overwrite Logic for In-Memory Computing 80

M
A
(1

)
M

A
(2

)
M

B
(6

)
M

B
(7

)

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0 130

1
1
1
1
1
1
0
0

1
1
0
1
1
0
1
0

0
1
0
1
1
0
0
1

Time (ns)

Sum

Figure 4.14: Transient simulation for the in-memory 8-bit addition process

4.7.2.3 Energy estimation

Energy consumption differs according to the operation: read, write or performing compu-
tation. In this section we will focus on the energy consumed by the memristive crossbar of
the MOL-memory architecture neglecting the consumed energy by the peripheral drivers.

(i) Write-energy: Consider a single MTJ device located inside MOL-memory archi-
tecture. The energy consumed when a single bit is written into this MTJ device mainly
depends on its previous resistance state (RP or RAP) and its final one. Hence, the 4 cases
for write-energy are considered in (4.11).

Ew0/0 =
Vw

2

R′AP

T

Ew0/1 =
Vw

2

R′AP

τAP−P +
Vw

2

R′P
(T − τAP−P)

Ew1/0 =
Vw

2

R′P
τP−AP +

Vw
2

R′AP

(T − τP−AP)

Ew1/1 =
Vw

2

R′P
T

(4.11)

4.7. Simulation and performance analysis 81

where Ewi/j
corresponds to the write-energy needed to put the MTJ device in state i ∈

{0,1}, after it was in the previous state j ∈ {0,1}; Vw and T are the write voltage and
write duration respectively; R

′

AP and R
′

P represent the resistance states of 1T1M cell.
R
′

AP = RAP + RMOS and R
′

P = RP + RMOS. Generally, the values of i and j are not
deterministic, but the 4 cases presented in (4.11) are considered as equiprobable, since
there is no pre-knowledge about the data bits inside the memory as well as the bits that
would be written. Thus, the average write-energy is estimated as the average sum of the
4 write-energy cases as presented in (4.12).

Ew =
1
4
∑
i,j

Ewi/j
=

Vw
2

R′AP

(
T
2 −
∆τ

4

)
+

Vw
2

R′P

(
T
2 +
∆τ

4

)
(4.12)

where ∆τ = τP−AP − τAP−P. Assuming that the term ∆τ4 is almost negligible compared to T
2 ,

the overall expression in (4.12) is simplified in (4.13).

Ew ≈
Vw

2

2Rw
T with Rw =

R
′

PR
′

AP

R′P + R′AP

(4.13)

Rw represents the equivalent resistance of two MTJs having opposite states and connected
in parallel.

(ii) Read-energy: Reading a single MTJ device requires a sensing voltage Vr and a
reference resistor RRe f connected in series with a MOSFET. The total resistance of this
1T1R cell is R

′

Re f . The corresponding state of the sensed MTJ device is assumed to be
stable. The two possible cases for read-energy are presented in (4.14).

Er0 =
Vr

2

R′AP + R′Re f

T

Er1 =
Vr

2

R′P + R′Re f

T
(4.14)

where Er0 and Er1 represents the required energy consumption for sensing AP and P states
respectively during a period T . The corresponding average read-energy is expressed in
(4.15).

Er =
Vr

2

2Rr
T with Rr =

(R
′

P + R
′

Re f)(R
′

AP + R
′

Re f)

(R′P + R′Re f) + (R
′

AP + R′Re f)
(4.15)

(iii) Computation-energy: Computational operations that are performed inside MOL-
memory architecture are classified into MOL or copy operations. Table 4.3 summarizes
the energy consumed by each type of operation. Using the specifications of the adopted
MTJ which are listed in Table 4.4, the average energy consumed by a MOL operation
could be expressed as EMOL = Ew/2 + Er = 0.196 pj whereas that consumed by a copy
operation is calculated as ECOPY = Ew + Er = 0.333 pj.

Chapter 4. MOL – Memristor Overwrite Logic for In-Memory Computing 82

Normally, computation inside MOL-memory architecture is performed on N bits si-
multaneously. For the N-bit addition process which is performed within 6N +1 cycles, 3N

cycles corresponds to MOL operations while 3N+1 cycles corresponds to copy operations.
Thus, the overall consumed energy (ET) could be expressed as in (4.16).

ET = (3N)(N EMOL) + (3N + 1)(N ECOPY) (4.16)

By substituting the corresponding values of EMOL and ECOPY presented in Table 4.3, the
expression of the total energy becomes ET = 1.587N2 + 0.333N. Specifically, for the 8-bit
addition process, ET is equal to 104.2 pJ. The value of the energy consumption extracted
by simulation is 124.43 pJ.

Table 4.3: Energy consumed by a computational operation

In1 In2 MOL-AND MOL-OR Copy

0 0 Ew0/0 + Er0 Er0 Ew0/0 + Er0

0 1 Er0 Ew1/0 + Er0 Ew1/0 + Er0

1 0 Ew0/1 + Er1 Er1 Ew0/1 + Er1

1 1 Er1 Ew1/1 + Er1 Ew1/1 + Er1

Table 4.4: Specifications

Specification Value

RAP 6 K

RP 3.97 K

RMOS 0.5 K

RRe f 4.8 K

Vw 0.588 V

Vr 0.9 V

τAP−P 1.4 ns

τP−AP 1.7 ns

T 1.8 ns

4.8. Comparison 83

4.8 Comparison

In this section, the proposed MOL-memory architecture has been compared with recently
published relevant designs (listed in Table 4.5) targeting in-memory computing. The
comparison has been carried out based on the performance of N-bit addition in terms of
latency, energy consumption and utilized area. Note that the considered area incorporates
only the memristors involved in the computation regardless of the size of the crossbar.

4.8.1 MOL vs IMPLY and MAGIC

• Except for the parallel approach in [56], our proposed design, which uses only 6N+1
steps to perform addition, outperforms all IMPLY and MAGIC based designs listed
in Table 4.5 in terms of number of computational steps. In fact, [56] uses the parallel
approach which is intended to increase the level of parallelism in computation.
However this approach requires significant modifications in the crossbar structure
by adding connections between its rows. This leads to an increased area compared
to the conventional crossbar structure.

• The step delay in our proposed design is 1.8 ns. Although the designs presented
in [102], [104] and [103] adopt memristive devices that provide better step delay
(1.12 ns to 1.43 ns), the total latency in our proposed design is still the minimum
(10.8N + 1.8 ns). The best case achieved with the competitor designs is recorded in
[102] with 13N + 3.9 ns (i.e. ∼20% more latency).

• In the proposed design, 4N memristors participate in the execution of the N-bit
addition. This number ranges from 11N − 1 to 24N for the majority of the designs
based on MAGIC, so our proposed design exhibits ×1.75 to ×5 area reduction. On
the other hand, the IMPLY based serial approach [56], MAGIC based area optimized
design [102] and the design presented in [106] use a fixed number of memristors to
perform addition operation. In other words, the required number of memristors is
independent of the size N of the addition operation. This area optimization comes
at the cost of high number of computational steps (×2.5 to ×18.8).

• The average energy consumed in pJ for the memristive crossbar in our design is
1.5867N2 + 0.333N. This quadratic expression indicates a significant energy con-
sumption in the order of ×N as compared to the linear energy expressions for the
other designs listed in the table. The reason for this energy gap is that for each
step the same bitwise operation is performed on the whole word-line (size N). How-
ever, the other approaches from the literature perform 1 bit operation in each step.

Chapter 4. MOL – Memristor Overwrite Logic for In-Memory Computing 84

Although our methodology induces overheads on the total energy consumption,
working on the vector level rather than bit level greatly simplifies the corresponding
control unit and reduces its complexity.

4.8.2 MOL vs MAJ and CRS

• Logic representation using MIGs has experimentally shown promising results in logic
optimization [122]. Memristive devices can efficiently execute the intrinsic resistive
MAJ operation. The authors of [63][107] present a programmable in-memory com-
puting system namely Programmable Logic-in-Memory (PLiM). The instruction set
for the PLiM architecture is based on the MAJ operation. As investigated in [107],
the number of required memristors for the addition is ∼ 2N, which is equal to 50%
of that in our approach. However, the execution of an N-bit addition inside PLiM
requires 15N cycles for the best case, which is ×2.5 the number of cycles required
in our proposed design. This high number of computational steps is related to the
repeated read out operations of intermediate results, which impacts in addition the
step delay and energy consumption (not evaluated in [107]).

• The number of computational steps achieved in [108], which uses the CRS approach,
is less than that of our proposed computational memory. However, other parameters
such as the step delay which is not investigated by the authors is expected to be
greater. This is due to the fact that the presented architecture, based on two
separated memory blocks, uses an intermediate control unit which reads data bits
from one memory block and redistribute them along BLs and WLs of the other
memory block. This process increases significantly the overall critical path and
consequently the step delay. The number of memristive cells required in [108] is
also less than that in our proposed design. However, it is clear that based on this
approach, the reserved area corresponds to a fixed location inside the memory, as
the input bits cannot be shared to all WLs especially for large memory sizes. This
affects the endurance of memristive cells participating in the computation which are
subjected to continuous stress.

As explained in Section 4.5.2, the proposed memristive computational memory is able
to perform any general arithmetic function by breaking it into a netlist of iterative MOL
operations. As MOL is based on the primitive AND/OR operations, the ABC tool [123],
which has been employed for existing logic design styles [104][114], could be also leveraged
in order to realize the synthesis task. This will be considered in our future work.

4.8.
C
om

parison
85

Table 4.5: Comparison of different logic families for N-bit addition in terms of area, latency and energy consumption

Reference Method # Steps Step delay Latency (ns) Area (# memristive cells) Energy (pJ)

(This work) MOL 6N + 1 1.8ns 10.8N + 1.8 4N 1.587N2 + 0.333N

[56] IMPLY Serial 29N - - 2 ∼ 9.5N

[56] IMPLY Parallel 5N + 18 - - 6N − 1 ∼ 9.5N

[106] IMPLY 89N - - 4 -
[102] MAGIC Area optimized 15N 1.3ns 19.5N 5 ∼ 3.365N

[102] MAGIC Latency optimized 12N + 1 1.3ns 15.6N + 1.3 11N − 1 ∼ 3.365N

[102] MAGIC Transpose I 15N + 1 1.3ns 19.5N + 1.3 22N − 3 ∼ 6.53N

[102] MAGIC Transpose II 10N + 3 1.3ns 13N + 3.9 13N − 3 ∼ 4.72N

[103] MAGIC 12N + 1 1.12ns 13.44N + 1.12 14N + 1 0.684N

[104] MAGIC (Naive mapping) 12N 1.43ns 17.6N 15N 0.684N

[104] MAGIC (Compact mapping) 16N 1.43ns 22.8N 24N 0.894N

[101] MAGIC 20N + 15 1.89ns 37.8N + 28.35 12 0.3N

[107] MAJ (Naive) ∼ 22N - - ∼ 4N -
[107] MAJ (MIG rewriting) ∼ 16N - - ∼ 3N -
[107] MAJ (Rewriting and compilation) ∼ 15N - - ∼ 2N -
[108] CRS (PC-Adder) 2N + 4 - - 2N + 1 -
[108] CRS (TC-Adder) 4N + 5 - - N + 2 -

Chapter 4. MOL – Memristor Overwrite Logic for In-Memory Computing 86

4.9 Applications of MOL

As discussed earlier in this chapter, MOL is highly eligible for in-memory computing.
Thus, various applications which suffers from the intensive data transfers (read/write)
can employ MOL technique to bypass (or at minimum reduce) the memory wall problem.

In order to further illustrate the potential of the proposed MOL approach, we investi-
gated in this section the possibility of using it in two different application domains. First,
we introduce the implementation of cyclic redundancy check (CRC) algorithm inside our
proposed computational memory. CRC is a well known error-detecting code, commonly
used to ensure data integrity in digital communications and storage devices. Then, we
explore the use of MOL in the field of neural networks. We present an architecture design
that targets deep neural networks (DNN) computation. The design is capable of perform-
ing the weighted accumulation process, which is considered the main cause of data traffic
in DNN systems.

4.9.1 In-memory CRC computing

4.9.1.1 Cyclic redundancy check

Cyclic redundancy check is an error-detecting code based on the theory of cyclic error-
correcting codes [124]. It is commonly used in digital data transmission and storage
systems to ensure data integrity and detect accidental changes in raw data [125].

The use of systematic cyclic codes, which encode messages by adding a fixed-length
check value, for the purpose of error detection, was first proposed by W. Wesley Peterson
in 1961 [124]. Cyclic codes are not only simple to implement but have the benefit of being
particularly well suited for the detection of burst errors.

As illustrated in Figure 4.15, a CRC-enabled device calculates a short, fixed-length
binary sequence, known as the check value or CRC, for each block of data to be sent or
stored. The CRC is equal to the remainder of a polynomial division of a data block. The
calculated CRC is then appended to the data, forming a codeword.

When a codeword is received, the CRC can be checked simply by performing the
polynomial division on the received bit-stream and comparing the remainder (also called
syndrome) with an expected residue constant (usually zero). Specification of a CRC code
requires the definition of a so-called generator polynomial, which becomes to the divisor
of this polynomial division, If the remainder doesn’t match the expected residue, then it
can be considered that the data block contains errors.

In case of detecting an error, the device may take corrective action or requesting that
the data block be sent again. Otherwise, the data is assumed to be error-free (although,

4.9. Applications of MOL 87

with some small probability, it may contain undetected errors).

00...0Data

n bits

n+1 bits

Remainder

Transmitter Receiver

Zeros
padded

n bits

Divisor

CRC

CRCData

CRCData

Divisor

Remainder

Zero: no errors
Non-zero: errors

Figure 4.15: Cyclic redundancy check

4.9.1.2 CRC computation

To compute an n-bit binary CRC code, a polynomial division is performed at the trans-
mitter side using the basic XOR and shift operations. The basic idea is illustrated in
Figure 4.16 through a simple example with a CRC length n= 3 and a generator polyno-
mial (divisor) equal to “1011” (length n+1). The CRC algorithm acts as follows [124]:

1. Align the bits representing the input in a row.

2. The input bits are right padded by zeros of length n bits, which corresponds to the
length of the CRC code.

3. Position the (n+1) bit pattern representing the divisor underneath the left-hand
end of the row.

4. Perform a bitwise XOR of the polynomial divisor with the bits above it.

5. Repeat the process on the remainder of the previous step. However, the divisor is
now shifted one bit to the right. If the leftmost bit of the remainder is zero, the
divisor shifts over to align with the next 1. The process is repeated until the divisor
reaches the right-hand end of the input row.

6. The final result obtained is the n bits at the right-hand end of the row. These n
bits are the remainder of the division, and corresponds to the value of the CRC.

The validity of a received message can easily be verified by performing the above
calculation again, this time with the CRC value right padded instead of zeros. The
remainder should equal zero if there are no detectable errors.

Chapter 4. MOL – Memristor Overwrite Logic for In-Memory Computing 88

3-bit CRC

11010011101100 000
1011
01100011101100 000
1011

00111011101100 000
1011

00010111101100 000
1011

00000001101100 000
1011

00000000110100 000
1011

00000000011000 000
1011

00000000001110 000
1011

00000000000101 000
101 1

00000000000000 100

3 padded
zerosdata to be encoded

divisor (generator polynomial)

divisor moves
over to align
with the next 1
in the dividend

division stops here as
dividend is equal to zero

CRC

CRC generation at transmitter CRC check at receiver

XOR ⊕

codeword

XOR ⊕
11010011101100 100
1011
01100011101100 100

1011
00111011101100 100

1011
00010111101100 100

1011
.
.
.
.
.
.

00000000001110 100
1011

00000000000101 100
101 1

00000000000000 000

no errors
Syndrome

data

Figure 4.16: Example of a cyclic redundancy check generation

4.9.1.3 MOL-based in-memory CRC computation

As discussed earlier, the algorithm for performing CRC is based on iterative bitwise XOR
and shift operations. Hence, CRC computation can be simply achieved inside the memory
as it doesn’t involve complex arithmetic functions. Specifically, our proposed MOL-based
computational memory is highly adapted for such bitwise operations:

1. Resources: In fact, the ability to implement CRC algorithm inside the memory for
some kind of applications can eliminate the need for a dedicated separate logic unit,
as CRC can be trivially realized inside our proposed computational memory.

2. Flexibility: Due to the ability to store variant types of generator polynomials (di-
visor), in-memory CRC computation can simply supports various standards and
specifications (e.g. CRC-16, CRC-32, CRC-64 [124]). The maximum supported
CRC specification depends on the width of the memory.

3. Detection of memory faults: The implementation of error-detection codes such as
CRC purely inside the memory can be of great interest as it can be employed to

4.9. Applications of MOL 89

detect memory errors occurring inside the memory itself. Such errors can even be
caused by defected cells (e.g. at the level of fabrication [126][127]) in the crossbar
array or due to the state drift of cells which becomes significant after a predetermined
period of memory usage (or number of read/write operations).

4.9.1.4 Simulation results

Simulations are carried out on the proposed computational memory architecture to show
the realization of CRC computation inside the memory. The device parameters of the
memory including MTJ and CMOS are kept as they are presented in Section 4.7. The
width of the memory (N) is also kept at 8 bits for simplicity. Out of the available 8-bit
width, 5 bits are reserved for data and the rest (3 bits) are reserved for the generated
CRC.

The memory is initialized by the data bits vector (A) as well as the generator polyno-
mial bits (P). A 4-bit generator polynomial is used in this case. Appropriate sequence of
micro-instructions are sent to the memory. This sequence has been derived from the CRC
computation steps described above. The micro-instructions follow the space-time diagram
presented in Fig. 4.17. It requires 6N − 1 steps to execute the CRC generation. At the
transmitter side, an additional step is required to append the CRC to the initial data
vector. Hence, the final codeword is obtained in 6N steps. Fig. 4.18 shows a transient
simulation of the codeword generation inside the memory. Arbitrary data and generator
polynomial are used in this example.

Figure 4.17: Operations sequence for in-memory CRC computation

Similarly, for the validation of the correctness of the data, the whole codeword is
divided by the generator polynomial using the same sequence of micro-instructions. As
shown in Fig. 4.19, the resulting syndrome is equal to zero, which indicates that the
codeword is error free.

Chapter 4. MOL – Memristor Overwrite Logic for In-Memory Computing 90

AP CInformation bits Codeword

1

1

0

1

1

0

0

0

1

0

1

1

0

0

0

0

1

1

0

1

1

0

0

1

Generator
polynomial

3-bit CRCA= 11011000
P= 10110000
C= 11011001

0

0

1

Figure 4.18: Cyclic redundancy check at the transmitter side

CP S=0Codeword Syndrome

1

1

0

1

1

0

0

1

1

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

C= 11011001
P= 10110000
S= 00000000

Generator
polynomial

Figure 4.19: Cyclic redundancy check at the receiver side

4.9.2 In-memory DNN computing

Emerging and future IoT devices are expected to analyse raw data by running machine
learning algorithms such as neural networks [128] [129]. Acquired data will be typically
sent to the cloud for processing. However, this doesn’t guarantee the required real-time re-
sponse. Edge computing aims to get rid of the network latency by processing data locally.

4.9. Applications of MOL 91

Yet, running an intensive workloads such as deep neural networks on traditional cores
(CPUs and GPUs) results in slow processing speed and high energy consumption. This
is due to the intensive data movement between memory and processing cores. Although
several recent works tried to accelerate processing through dedicated parallel hardware de-
signs, data movement cost is still a critical technical challenge [130]. In this work, we aim
to bypass the memory wall by employing our proposed in-memory computing technique
for DNN computation. In this context, we propose a novel programmable architecture
design for in-memory deep neural networks (DNN). The original architecture allows to
execute in-memory addition and multiplication operations associated with the execution
of a DNN weighted accumulation process.

4.9.2.1 Optimized multiply & accumulate process inside memory

The key operation of neural networks is the multiply-accumulate (MAC), which is respon-
sible for the execution of weighted accumulation process. In fact, it is possible to realize
MAC operations inside our proposed computational memory architecture based on itera-
tive addition operations. However, this is practically inefficient, as it imposes significant
number of computational steps which constitute a bottleneck. This is due the dependency
of the total number of steps on the size N of the added operands (i.e. a single addition
requires 6N + 1 steps) inside memory. In order to realize reasonable MAC operations,
we optimize the multiplication process inside the memory. An in-memory multiplication
is achieved in two consecutive phases: (i) Phase 1 corresponds to the one-step partial
product which is illustrated below and (ii) Phase 2 corresponds to the addition of the
obtained partial product vectors inside the memory.
(i) Partial products: Fig. 4.20(b) illustrates the use of case 5 (demonstrated in section
4.3.2) inside crossbar array in order to realize partial product in two consequtive steps.
The first step corresponds to initializing all the memristive cells in the crossbar to the
logic zero. In the second step, an input vector A and an inverted vector B are fed to
the columns and rows of the crossbar respectively. This combination results in a partial
product of the two input vectors. The result is achieved in a single computational step.

In order to allow our proposed computational memory to perform this product, the
data bits need to access the wordlines of the crossbar array. Therefore, we add an inverting
multiplexer for each sub-array to allow the data to be supplied at the word-lines of the
memory. It is worth to mention that an inverting multiplexer involves less resources
as compared to classical multiplexer. The multiplexer can be configured to either pass
the address or the data bits that would undergo partial product. Fig. 4.21 presents
the modified sub-array designed in the 1M as well as 1T1M configuration model. A

Chapter 4. MOL – Memristor Overwrite Logic for In-Memory Computing 92

diagram of the proposed computational memory (CMEM) is shown in Fig. 4.22. The
diagram illustrates the structure of CMEM which can be configured between storage and
computation including the capability of performing partial products.
(ii) Addition of the partial products: Normally, an N × M multiplication requires
addition of M partial products, each of size N bits, to generate a (N + M)-bit products.
Knowing that each addition operation inside CMEM requires 6N + 1 steps, the total
number of cycles to obtain the final product is (M − 1)(6N + 1).

In order to reduce the required number of steps in the addition of the partial products,
we use the method of carry save adder (CSA) to add multiple numbers together in tree
structure. CSA provides a 3:2 operands reduction, with a fixed latency irrespective of
the size N of the operands. Fig. 4.23 represents a diagram showing the addition of M

operands using tree-like CSA blocks. A single 3:2 addition inside CMEM requires a latency
of 13 steps. The last stage is a classical 2:1 adder and requires 6N + 1 steps. Therefore,
the overall latency required to add M operands is estimated as C = 13(M − 2) + 6N + 1
steps. By including the first two cycles required to obtain the partial products, a N × M

multiplications inside the memory takes C + 2 (i.e. 13M + 6N − 23) steps in total.

B0

B1

B2

BN-1

A0 A1 A2 AN-1

Step 2
Compute

0

0

0

0

-1 -1 -1 -1

Step 1
Initialize

Inverter

Figure 4.20: Realization the partial products of inside memristive crossbar array.

4.9.2.2 CMEM-based DNN architecture

Deep neural network is a popular category of machine learning algorithms. Generally, it
is presented as a network of interconnected neurons, containing an input layer, an output
layer and one or more hidden layers. Fig. 4.24(a) presents an example of neural network

4.9. Applications of MOL 93

BLD

SA

VSEL

Write/Overwrite

Isolate/Connect ISO

I0 I1 I2 IN-1

O0 O1 O2 ON-1

BLD

ISO

SA

O0 O1 O2 ON-1

I0 I1 I2 IN-1

VSEL

Write/Overwrite

Isolate/Connect

(a) (b)

D
E
C
O
D
E
R

E

M
U
X

D
E
C
O
D
E
R

E

M
U
X

Figure 4.21: MOL memory architecture: (a) 1M model and (b) 1T1M model.

with an input layer of M neurons, an output layer of three neurons and no hidden lay-
ers for simplicity. As illustrated in the figure, each output neuron executes a weighted
accumulation of the input vector. Fig. 4.24(b) presents the multiply-accumulate (MAC)
operation in a matrix form. The total number of weighted accumulations is proportional
to the size of the network, i.e. size of input vectors and number of hidden layers. For large
DNN, this represents a major challenge as it implies intensive data movement between
memory and processing cores. In fact, the cost of the multiply-accumulate operation and
read/write memory accesses becomes considerable in terms of time and energy consump-
tion [131]. In order to reduce this cost, we investigated the use of CMEM to perform
in-memory multiply-accumulate operations.

By considering the example of the network presented in Fig. 4.24, a CMEM block
is in charge of computing the output of a single neuron in the network layer. Thus
the number of required CMEM blocks is equal to the number of neurons in that layer.
Fig. 4.25 presents the proposed architecture design for in-memory DNN computation,
illustrated for the simplified neural network of Fig. 4.24. It is composed of interconnected
CMEM blocks that executes in parallel. Parallel execution is possible, since neurons in
the same layer have no dependency to each other. For instance, the convolution of the
input vector [Xi] with the weight matrix [Ai Bi Ci] is performed as follows. The weight

Chapter 4. MOL – Memristor Overwrite Logic for In-Memory Computing 94

Storage
+

MAC

Storage
+

MAC

Data in

Data out

Data in

Data in

Address

Address

Control

Intermediate driver

Figure 4.22: Simplified diagram of the MOL-based computational memory (CMEM)

matrix [Ai Bi Ci] is supplied from the classical write path of the memory blocks while the
input data vector [Xi] is shared to all blocks along their rows. The outputs YA, YB and YC

are executed simultaneously. The estimated total latency for the convolution operation
is equal to (C + 15)K + 6(N + M) + 1 cycles.

For multi-layered networks such as DNN, CMEM blocks that are employed for the
execution of a single layer takes over the execution of other layers. Thus, reusing the
same hardware resources for different layers regardless the depth the network.

Moreover, the interconnected CMEM blocks share the same address decoder, MUX
block and control signals. Therefore, the proposed design efficiently utilizes the peripheral
circuits by sharing them to all sub-memory blocks on one hand, and between storage and
computation operations on the other hand. This implies significant reduction in area
overhead and simplifies the control. In fact, our design is based on binary memristive
devices only.

4.9. Applications of MOL 95

C
S
A

C
S
A

C
S
A

C
S
A

C
S
A

C
S
A

C
S
A

FA

x0
x1
x2
x3
x4
x5
x6

.

xM-1

𝑖=0

𝑀−1

𝑥𝑖

..

13 cycles 13 cycles 13 cycles 13 cycles 13 cycles 13 cycles 6N+1 cycles

C= # Cycles = 13(M-2) +6N+1

Figure 4.23: Addition of M operands using tree-like CSA blocks.

X0

X1

X2

YA

YB

YC

Input layer

Output layer

A0

A1

A2

AK-1

𝑖=0

𝐾−1

𝐴𝑖𝑋𝑖

𝑖=0

𝐾−1

𝐵𝑖𝑋𝑖

𝑖=0

𝐾−1

𝐶𝑖𝑋𝑖

(a)

(b)
XK-1

𝑋0 𝑋1 . . . 𝑋𝐾−1 ∗

𝐴0 𝐵0 𝐶0
𝐴1 𝐵1 𝐶1…
𝐴𝐾−1

…
𝐵𝐾−1

…
𝐶𝐾−1

=
𝑌𝐴 = 𝑋0𝐴0+ 𝑋1𝐴1+⋯𝑋𝐾−1𝐴𝐾−1
𝑌𝐵 = 𝑋0𝐵0+ 𝑋1𝐵1+⋯𝑋𝐾−1𝐵𝐾−1
𝑌𝐶 = 𝑋0𝐶0+ 𝑋1𝐶1+⋯𝑋𝐾−1𝐶𝐾−1

Input Data Neuron Weights Output Equations

Figure 4.24: Example of a simplified neural network: (a) Network diagram (b) Matrix
form representation.

Chapter 4. MOL – Memristor Overwrite Logic for In-Memory Computing 96

Intermediate driver

Data out

Data in

Address

Address

Control

Intermediate driver Intermediate driver

Data out Data out

Storage
+

MAC

Storage
+

MAC

Storage
+

MAC

Storage
+

MAC

Storage
+

MAC

Storage
+

MAC

AK-1

.
A1
A0

.
BK-1

.
B1
B0

.
CK-1

.
C1
C0

.

X0X1.XK-1 . .

Neuron A Neuron B Neuron C

Figure 4.25: Proposed design for in-memory DNN computation, illustrated for the sim-
plified neural network of Fig. 4.24.

4.10 Summary

In this chapter, the MOL design style is introduced together with an original architecture
for MOL-based computational memory. This novel logic design style is inspired from a
digital representation of memristors. Unlike existing approaches, MOL can operate with
different memristor technologies, regardless the LRS-HRS margin and with linear as well
as threshold-type memristive devices. Furthermore, the proposed original computational
memory architecture, with appropriate drivers and control sequences, allows the execution
of numerous logic operations, at bit or vector-level, in one or two computational steps at
most. In order to illustrate the benefits of the proposed approach and to evaluate its
performances, the implementation of an N-bit full addition using the proposed MOL-
based computational memory has been detailed. The design is simulated in Cadence
Virtuoso environment using CMOS 65nm process and realistic model parameters for STT-
PMA-MTJ device. Comparisons with existing recent approaches demonstrate significant
reductions in terms of latency and area.

The last section of the chapter we investigate the use of MOL approach in two ap-
plications. The CRC have been presented as a direct application that can be realized
in our proposed MOL-based computational memory. The benefits of using CRC inside

4.10. Summary 97

memory have been discussed. The second application targets deep neural networks. we
proposed a novel architecture design for realizing DNN in-memory. The architecture is
composed of interconnected computational memory blocks namely CMEMs. An opti-
mized in-memory addition and multiplication operations associated with the execution
of the DNN weighted accumulation process is illustrated as a relevant case study. The
proposed design addresses the inefficiency of moving data between memory and process-
ing cores which is time and energy consuming. The design efficiently utilizes peripheral
driving circuits which are shared between all memory blocks.

Conclusions and future work

Conclusions

This thesis work has been devoted to explore the potential of emerging memristor tech-
nologies for flexible interconnections, logic design, and in-memory computing. The

manuscript started with a comprehensive state-of-the-art review on the basic fundamen-
tals of memristor technology and the recent progress in various fields involving memristor
designs. First, memristors have been introduced as storage elements that combine several
advantageous features including high speed, high density, and non-volatility. Thereafter,
the opportunity of using memristors as routing elements at the interconnect level have
been discussed with the corresponding relevant applications in the literature. Last, we
have illustrated the ability to use memristors to design memristive logic gates which are
considered as enablers for new computational paradigms, such as in-memory computing,
different from the traditional von Neumann models. Several existing memristive logic
design styles have been reviewed in this context, ending with a roadmap for evaluation
purpose. Challenges faced in these fields have been highlighted.

In this context, several original contributions have been proposed and are summarized
below:

1. First, we have explored the feasibility of using memristors for realizing high degree
of flexibility at the level of interconnects. We chose FFT as an application case
study, as it is a popular component in telecommunications. Moreover, the flexi-
bility in FFT is highly desired as the size of FFT block varies according to the
parameters of the communication system. This requires supporting a wide range of
FFT sizes that cannot be manipulated in a single radix FFT. A memristor-based
reconfigurable FFT architecture (mrFFT) is proposed. mrFFT can be manipulated
in a reuse and systematic way based on a proposed reconfigurable butterfly (RBF)
that can be configured to support radix-2 and radix-3 kernels. The proposed design
allows for optimized hardware reuse through a memristor-based non-volatile rout-
ing scheme, which is based on a programmable memristive nodes approach. The

98

Conclusions and future work 99

proposed architecture is scalable and supports 44 configurations with different FFT
sizes including the 32 operating modes that are defined in 3GPP-LTE standard. As
compared to the state-of-the-art, mrFFT significantly reduces the utilized hardware
resources and increases the percentage of active resources during execution.

2. Another contribution is introduced concerning the proposal of new design method-
ology for integrating memristors and CMOS devices in order to realize combina-
tional logic with reduced area. The approach relies on the existing logic design
style namely Memristor Ratioed Logic (MRL). The proposed integration method
(X-MRL) efficiently arranges memristors in crossbar array stacked at the top of the
CMOS layer. X-MRL structure combines the density and scalability attributes of
memristive crossbar arrays. Based on X-MRL, the circuit design of a 1-bit full adder
has been presented together with its corresponding layout. The conducted simula-
tions demonstrate 44.79% area reduction compared to pure CMOS implementation
of full adder. However, a large gap still exists in terms of power consumption due
to the low resistance values of available memristor models. Power consumption is
expected to be improved awaiting newly developed memristors having low leakage
current (high resistance values)

3. Finally, three major contributions have been proposed related to the use of mem-
ristive devices for in-memory computing. An original logic design style, referred to
as Memristor Overwrite Logic, has been introduced. MOL operates with different
memristor technologies in contrast to the pre-existing logic design styles, particularly
MAGIC and IMPLY, that require sufficient HRS/LRS ratio and are operated with
threshold type devices only. In addition, we have shown that MOL is highly eligible
to be integrated inside crossbar arrays, as it is an intrinsic feature of memristive
devices. Based on MOL approach, an original computational memory architecture
has been proposed. The architecture is able to execute bitwise AND/OR opera-
tions within its storage cells and can be simply configured between storage and
computation modes. An N-bit addition is considered a case study for performance
evaluation. The proposed computational memory design is verified with Cadence
Virtuoso toolset based on CMOS 65nm process and accurate model parameters
for STT-PMA-MTJ device. Comparisons with recent relevant contributions in the
literature demonstrate significant improvements in terms of latency and area. More-
over, simulation results indicate that MOL has a relatively high tolerance against
resistance variability (7% to 21%) that usually arises due to defects in fabrication.
This robustness was revealed despite the low TMR value (i.e low HRS/LRS ratio)
of the adopted MTJ device. In order to show the eligibility of the aforementioned

Conclusions and future work 100

approach, we have investigated its suitability in real application use cases. An N-bit
CRC algorithm has been implemented inside the proposed computational memory.
In-memory CRC computation is of great interest as it can be employed to detect ac-
cidental errors caused by the memory itself. This eliminates the need for a dedicated
separate logic unit.

Afterwards, we explored the use of MOL approach for DNN applications. A novel
design for realizing in-memory DNN computation has been developed. The proposed
design involves computing addition and multiplication operations associated with
the execution of the DNN weighted accumulation process. The objective is to bypass
the memory wall issue by performing these operations purely within the storage
cells. The proposed architecture relies on interconnected replicated computational
memory banks referred to as CMEM that share efficiently the driving circuitries.

Future work

In this thesis, novel and efficient memristor-based designs have been developed. The pre-
sented contributions confirm the potential for high flexibility, performance improvement,
and complexity reduction with respect to traditional computing systems. Yet, many other
research efforts could be conducted on this emerging topic. Here we propose several ideas
and proposals for future work and further investigations.

Regarding the use of memristive devices at the level of interconnects to design
flexible architectures, we believe that these devices can bring the desired high degree of
flexibility with minimal added resources. The concept of non-volatile routing scheme is
also promising in terms of energy savings. Future work could consider the use of mixed-
signal simulation environment to integrate both analog and digital parts of the proposed
mrFFT architecture and to conduct the corresponding performance analysis.

Another key point that could be investigated in this context is the drift in memristor
state during the operation phase of the design. A low operation voltage is recommended
in order to avoid such phenomenon. However, the adopted voltage level should be within
the acceptable range of CMOS technology. Moreover, a memristor with relatively high
threshold voltage is highly desirable as it widens the margin between programming and
operation voltage levels. This prevents the drift in memristance during the operation
phase.

Regarding the use of memristive devices for logic design, further research efforts
at the device level are of great importance. Memristive devices are still being actively

Conclusions and future work 101

explored and developed using variety of materials and deposition techniques. Thus, there
is a scope for improving the device characteristics. It is expected to increase the ON-OFF
resistance ratio of memristive devices, while reducing their switching delay and leakage
currents. Accordingly, in addition to the area saving achieved using the proposed X-MRL
technique, adopting such future memristive devices has the potential to greatly reduce
power and delay.

Regarding the use of memristive devices for in-memory computing, the pre-
sented MOL design style offers several benefits over pre-existing ones in terms of time
and area. The structure of the proposed computational memory demonstrates the opti-
mal choice for such logic design. Future work in addition to possible extensions in this
direction could be established at the circuit level, device level, and physical topology.

• First, the controlled intermediate driver is the only gate for all signals that are
exchanged between the two coupled memory blocks during execution. Optimizing
this driver can be of great advantage. For instance, the controlled inversion block
(INV) can be dispensed. Another alternative efficient inversion can be established
during the readout using the SA block just by triggering the read bias (i.e. 1 instead
of 0). This should save area and power, besides reducing the critical path which
impacts the step delay in each MOL operation.

• The effect of lowering the operating voltage level less than 1.2 V deserves investi-
gation. It seems that reducing the voltage level (within the acceptable range of the
technology process) decreases the leakage current in MTJ devices and thus reduces
power consumption. However, it increases the switching delay of these devices which
in turn increases step delay and consequently the total consumed energy. This trade-
off could be explored in order to devise optimal operating point for the proposed
design.

• The HRS and LRS values also affect the energy and delay of each computational
step. Increasing their values should definitely improves power consumption. How-
ever, tuning these values should fit the real physical characteristics specified by
the technology provider. This involves all memristive devices including resistive,
magnetoresistive, and phase change devices.

• The layout implementation of the design is of high importance. A realistic lay-
out model for the STT-PMA-MTJ device should be adopted in order to perform
post-layout simulation. This allows for the estimation of the exact occupied area,
power consumption, and delay. A potential drawback that might arise in the lay-

Conclusions and future work 102

out implementation is the long pathway of the wires that span from an output of
MOL-memory-B to an input of MOL-memory-A (see Fig. 4.8). In fact, these wires
induce significant delay in the datapath, which in turn shrinks the attained large
bandwidth of the in-memory operations and degrades the overall performance. This
problem becomes more critical when scaling the memory for larger sizes. A possible
solution is to fold the two memory arrays at the top of each other based on 3D-
stacking technique [29]. This solution should totally eliminate the need for these
wires and lead to more compact design with improved performance.

• Design of the computational memory controller unit and the associated micro-
operations synthesis tool. The idea is to propose an efficient solution to automate the
generation of MOL micro-operations by mapping sequences of arithmetic operations
on the proposed computational memory. The sequence of these micro-operations
will configure the memory drivers and select the operation modes for in-memory
computation. This allows to map complex arithmetic tasks and simplifies the inte-
gration of MOL-memory architecture in large systems.

As general thoughts, it is currently erroneous to think that memristor technology
would completely replace CMOS. As discussed earlier, memristors are passive elements.
Therefore, CMOS devices are still indispensable for their operation. Hence, investigating
hybrid designs is the only way to leverage their promising characteristics. Furthermore,
in-memory computing techniques should not be considered as complete replacement to
the conventional von Neumann model. In fact, for some tasks, in-memory operations may
have comparatively lower performance. Instead, working on integrating a computational
memory as an accelerator accompanying processor cores would be of great interest. Tasks
should be then decided whether to be executed in conventional processors or directly
computed inside the memory.

Moreover, improved memristor models are highly desirable and critical to broaden their
use. These models should be accurate, available and easy-to-fit with experimental data.
Furthermore, high level simulation tools dedicated for memristor design could be estab-
lished. Such tools should allow for rapid simulation of large-scale systems. This would
allow students, researchers, and industrials to explore memristor behaviors and applica-
tions at a more rapid and progressive rate, leading to further creative ideas and faster
developments of memristor-based designs.

Lastly, the work presented in this dissertation motivates further exploration of full system
memristor implementations. The work described shows that even limited by the current

Conclusions and future work 103

state of memristor technology, these devices yield strong results. Modern architectures
should be re-envisioned from the top level down in order to apply the findings presented
in this thesis. The key outcome from this work can be exploited to design entirely novel
systems that break the limits of traditional von Neuman model.

Bibliography

[1] L. Chua, “Memristor-the missing circuit element,” IEEE Transactions on circuit
theory, vol. 18, no. 5, pp. 507–519, 1971.

[2] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing
memristor found,” Nature, vol. 453, no. 7191, p. 80, 2008.

[3] C. J. Xue, Y. Zhang, Y. Chen, G. Sun, J. J. Yang, and H. Li, “Emerging non-volatile
memories: opportunities and challenges,” in proc. of the seventh IEEE/ACM/IFIP
international conference on Hardware/software codesign and system synthesis, 2011,
pp. 325–334.

[4] L. Chua, “Resistance switching memories are memristors,” Applied Physics A, vol.
102, no. 4, pp. 765–783, 2011.

[5] H. Kim, M. P. Sah, and S. P. Adhikari, “Pinched hysteresis loops is the fingerprint
of memristive devices,” arXiv preprint arXiv:1202.2437, 2012.

[6] S. Kvatinsky, M. Ramadan, E. G. Friedman, and A. Kolodny, “VTEAM: A gen-
eral model for voltage-controlled memristors,” IEEE Transactions on Circuits and
Systems II: Express Briefs, vol. 62, no. 8, pp. 786–790, 2015.

[7] D. S. Jeong, R. Thomas, R. Katiyar, J. Scott, H. Kohlstedt, A. Petraru, and C. S.
Hwang, “Emerging memories: resistive switching mechanisms and current status,”
Reports on progress in physics, vol. 75, no. 7, p. 076502, 2012.

[8] J. S. Meena, S. M. Sze, U. Chand, and T.-Y. Tseng, “Overview of emerging non-
volatile memory technologies,” Nanoscale research letters, vol. 9, no. 1, p. 526, 2014.

[9] S. P. Mohanty, “Memristor: from basics to deployment,” IEEE Potentials, vol. 32,
no. 3, pp. 34–39, 2013.

[10] M. D. Pickett, D. B. Strukov, J. L. Borghetti, J. J. Yang, G. S. Snider, D. R.
Stewart, and R. S. Williams, “Switching dynamics in titanium dioxide memristive
devices,” Journal of Applied Physics, vol. 106, no. 7, pp. 074–508, 2009.

105

[11] J. J. Yang, M. D. Pickett, X. Li, D. A. Ohlberg, D. R. Stewart, and R. S.
Williams, “Memristive switching mechanism for metal/oxide/metal nanodevices,”
Nature Nanotechnology, vol. 3, no. 7, p. 429, 2008.

[12] E. Lehtonen and M. Laiho, “CNN using memristors for neighborhood connections,”
in proc. of the International Workshop on Cellular Nanoscale Networks and their
Applications (CNNA), 2010, pp. 1–4.

[13] J. G. Simmons, “Generalized formula for the electric tunnel effect between similar
electrodes separated by a thin insulating film,” Journal of Applied Physics, vol. 34,
no. 6, pp. 1793–1803, 1963.

[14] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, “TEAM: Threshold
adaptive memristor model,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 60, no. 1, pp. 211–221, 2013.

[15] S. Natarajan, S. Chung, L. Paris, and A. Keshavarzi, “Searching for the dream
embedded memory,” IEEE Solid-state circuits magazine, vol. 1, no. 3, pp. 34–44,
2009.

[16] Y. Nishi and B. Magyari-Kope, Advances in non-volatile memory and storage tech-
nology. Woodhead Publishing, 2019.

[17] K. Kim and J. Choi, “Future outlook of NAND flash technology for 40nm node and
beyond,” in 21st IEEE Non-Volatile Semiconductor Memory Workshop, 2006, pp.
9–11.

[18] Z. Diao, Z. Li, S. Wang, Y. Ding, A. Panchula, E. Chen, L.-C. Wang, and Y. Huai,
“Spin-transfer torque switching in magnetic tunnel junctions and spin-transfer
torque random access memory,” Journal of Physics: Condensed Matter, vol. 19,
no. 16, p. 165209, 2007.

[19] J. F. Scott and C. A. P. De Araujo, “Ferroelectric memories,” Science, vol. 246, no.
4936, pp. 1400–1405, 1989.

[20] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change memory as
a scalable DRAM alternative,” in proc. of the 36th annual international symposium
on Computer architecture, 2009, pp. 2–13.

[21] R. Waser, R. Dittmann, G. Staikov, and K. Szot, “Redox-based resistive switching
memories–nanoionic mechanisms, prospects, and challenges,” Advanced materials,
vol. 21, no. 25-26, pp. 2632–2663, 2009.

[22] J. Nickel, “Memristor materials engineering: From flash replacement towards a uni-
versal memory,” in proc. of the IEEE IEDM Advanced Memory Technology Work-
shop, 2011, pp. 1–3.

[23] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for computing,”
Nature Nanotechnology, vol. 8, no. 1, p. 13, 2013.

[24] R. Patel, S. Kvatinsky, E. G. Friedman, and A. Kolodny, “Multistate register based
on resistive RAM,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 23, no. 9, pp. 1750–1759, 2014.

[25] S. Kvatinsky, Y. H. Nacson, Y. Etsion, E. G. Friedman, A. Kolodny, and U. C.
Weiser, “Memristor-based multithreading,” IEEE Computer Architecture Letters,
vol. 13, no. 1, pp. 41–44, 2013.

[26] K. J. Han, N. Chan, S. Kim, B. Leung, V. Hecht, B. Cronquist, D. Shum, A. Tilke,
L. Pescini, M. Stiftinger et al., “A novel flash-based FPGA technology with deep
trench isolation,” in 22nd IEEE Non-Volatile Semiconductor Memory Workshop,
2007, pp. 32–33.

[27] Y. Chen, J. Zhao, and Y. Xie, “3D-NonFAR: three-dimensional non-volatile FPGA
architecture using phase change memory,” in proc. of the 16th ACM/IEEE interna-
tional symposium on Low power electronics and design, 2010, pp. 55–60.

[28] G. Snider, “Computing with hysteretic resistor crossbars,” Applied Physics A,
vol. 80, no. 6, pp. 1165–1172, 2005.

[29] J. Handy, “Understanding the intel/micron 3d xpoint memory,” Proc. SDC, 2015.

[30] M. A. Zidan, H. A. H. Fahmy, M. M. Hussain, and K. N. Salama, “Memristor-
based memory: The sneak paths problem and solutions,” Microelectronics Journal,
vol. 44, no. 2, pp. 176–183, 2013.

[31] Y. Zhang, S. Kim, J. P. McVittie, H. Jagannathan, J. B. Ratchford, C. E. Chidsey,
Y. Nishi, and H.-S. P. Wong, “An integrated phase change memory cell with ge
nanowire diode for cross-point memory,” in IEEE Symposium on VLSI Technology,
2007, pp. 98–99.

[32] M.-J. Lee, Y. Park, B.-S. Kang, S.-E. Ahn, C. Lee, K. Kim, W. Xianyu, G. Ste-
fanovich, J.-H. Lee, S.-J. Chung et al., “2-stack 1D-1R cross-point structure with
oxide diodes as switch elements for high density resistance RAM applications,” in
IEEE International Electron Devices Meeting, 2007, pp. 771–774.

[33] Y.-C. Chen, C. Chen, C. Chen, J. Yu, S. Wu, S. Lung, R. Liu, and C.-Y. Lu,
“An access-transistor-free (0T/1R) non-volatile resistance random access memory
(RRAM) using a novel threshold switching, self-rectifying chalcogenide device,” in
IEEE International Electron Devices Meeting, 2003, pp. 37–4.

[34] P. O. Vontobel, W. Robinett, P. J. Kuekes, D. R. Stewart, J. Straznicky, and R. S.
Williams, “Writing to and reading from a nano-scale crossbar memory based on
memristors,” Nanotechnology, vol. 20, no. 42, p. 425204, 2009.

[35] E. Linn, R. Rosezin, C. Kügeler, and R. Waser, “Complementary resistive switches
for passive nanocrossbar memories,” Nature materials, vol. 9, no. 5, pp. 403–406,
2010.

[36] Y.-C. Chen, C.-C. Lin, S.-T. Hu, C.-Y. Lin, B. Fowler, and J. Lee, “A novel resistive
switching identification method through relaxation characteristics for sneak-path-
constrained selectorless rram application,” Scientific reports, vol. 9, no. 1, pp. 1–6,
2019.

[37] Y. Cassuto, S. Kvatinsky, and E. Yaakobi, “Information-theoretic sneak-path mit-
igation in memristor crossbar arrays,” IEEE Transactions on Information Theory,
vol. 62, no. 9, pp. 4801–4813, 2016.

[38] Y. Cassuto, S. Kvatinsky et al., “Sneak-path constraints in memristor crossbar ar-
rays,” in proc. of the IEEE International Symposium on Information Theory, 2013,
pp. 156–160.

[39] J. Kang, P. Huang, B. Gao, H. Li, Z. Chen, Y. Zhao, C. Liu, L. Liu, and X. Liu,
“Design and application of oxide-based resistive switching devices for novel com-
puting architectures,” IEEE Journal of the Electron Devices Society, vol. 4, no. 5,
pp. 307–313, 2016.

[40] H. Lee, Y. Chen, P. Chen, P. Gu, Y. Hsu, S. Wang, W. Liu, C. Tsai, S. Sheu,
P. Chiang et al., “Evidence and solution of over-reset problem for HfOx based re-
sistive memory with sub-ns switching speed and high endurance,” in proc. of the
IEEE International Electron Devices Meeting, 2010, pp. 19–7.

[41] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,” IEEE Trans-
actions on computer-aided design of integrated circuits and systems, vol. 26, no. 2,
pp. 203–215, 2007.

[42] J. Cong and B. Xiao, “mrFPGA: A novel FPGA architecture with memristor-based
reconfiguration,” in proc. of the IEEE/ACM International Symposium on Nanoscale
Architectures (NANOARCH), 2011, pp. 1–8.

[43] R. Hasan and T. M. Taha, “Memristor crossbar based programmable interconnects,”
in IEEE Computer Society Annual Symposium on VLSI, 2014, pp. 94–99.

[44] M. Lin, A. El Gamal, Y.-C. Lu, and S. Wong, “Performance benefits of monolith-
ically stacked 3-D FPGA,” IEEE Transactions on computer-aided design of inte-
grated circuits and systems, vol. 26, no. 2, pp. 216–229, 2007.

[45] C. Dong, D. Chen, S. Haruehanroengra, and W. Wang, “3-D nFPGA: A reconfig-
urable architecture for 3-d cmos/nanomaterial hybrid digital circuits,” IEEE Trans-
actions on Circuits and Systems I: Regular Papers, vol. 54, no. 11, pp. 2489–2501,
2007.

[46] P.-E. Gaillardon, M. H. Ben-Jamaa, G. B. Beneventi, F. Clermidy, and L. Perniola,
“Emerging memory technologies for reconfigurable routing in FPGA architecture,”
in 17th IEEE International Conference on Electronics, Circuits and Systems, 2010,
pp. 62–65.

[47] S. Tanachutiwat, M. Liu, and W. Wang, “FPGA based on integration of CMOS
and RRAM,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 19, no. 11, pp. 2023–2032, 2010.

[48] Y. Zhang, Y. Shen, X. Wang, and L. Cao, “A novel design for memristor-based
logic switch and crossbar circuits,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 62, no. 5, pp. 1402–1411, 2015.

[49] P. Junsangsri and F. Lombardi, “Design of a hybrid memory cell using memristance
and ambipolarity,” IEEE Transactions on Nanotechnology, vol. 12, no. 1, pp. 71–80,
2012.

[50] J. M. Shalf and R. Leland, “Computing beyond moore’s law,” Computer, vol. 48,
no. 12, pp. 14–23, 2015.

[51] K. J. Kuhn, “Considerations for ultimate cmos scaling,” IEEE transactions on Elec-
tron Devices, vol. 59, no. 7, pp. 1813–1828, 2012.

[52] S. Kvatinsky, N. Wald, G. Satat, A. Kolodny, U. C. Weiser, and E. G. Friedman,
“MRL–memristor ratioed logic,” in proc. of the International Workshop on Cellular
Nanoscale Networks and their Applications, 2012, pp. 1–6.

[53] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman,
A. Kolodny, and U. C. Weiser, “MAGIC–Memristor-Aided Logic,” IEEE Trans-
actions on Circuits and Systems II: Express Briefs, vol. 61, no. 11, pp. 895–899,
2014.

[54] S. Kvatinsky, A. Kolodny, U. C. Weiser, and E. G. Friedman, “Memristor-based
IMPLY logic design procedure,” in proc. of the IEEE International Conference on
Computer Design (ICCD), 2011, pp. 142–147.

[55] L. Gao, F. Alibart, and D. B. Strukov, “Programmable cmos/memristor threshold
logic,” IEEE Transactions on Nanotechnology, vol. 12, no. 2, pp. 115–119, 2013.

[56] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C.
Weiser, “Memristor-based material implication (IMPLY) logic: Design principles
and methodologies,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 22, no. 10, pp. 2054–2066, 2014.

[57] L. Guckert and E. E. Swartzlander, “MAD gates–memristor logic design using driver
circuitry,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64,
no. 2, pp. 171–175, 2016.

[58] L. Amaru, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter graph: A new
paradigm for logic optimization,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 35, no. 5, pp. 806–819, 2015.

[59] E. Linn, R. Rosezin, S. Tappertzhofen, U. Böttger, and R. Waser, “Beyond von
Neumann–logic operations in passive crossbar arrays alongside memory operations,”
Nanotechnology, vol. 23, no. 30, p. 305205, 2012.

[60] K. Bickerstaff and E. E. Swartzlander, “Memristor-based arithmetic,” in proc. of the
Conference Record of the Asilomar Conference on Signals, Systems and Computers,
2010, pp. 1173–1177.

[61] K. C. Rahman, D. Hammerstrom, Y. Li, H. Castagnaro, and M. A. Perkowski,
“Methodology and design of a massively parallel memristive stateful IMPLY logic-
based reconfigurable architecture,” IEEE Transactions on Nanotechnology, vol. 15,
no. 4, pp. 675–686, 2016.

[62] J. Rajendran, H. Manem, R. Karri, and G. S. Rose, “An energy-efficient memristive
threshold logic circuit,” IEEE Transactions on Computers, vol. 61, no. 4, pp. 474–
487, 2012.

[63] P.-E. Gaillardon, L. Amarú, A. Siemon, E. Linn, R. Waser, A. Chattopadhyay, and
G. De Micheli, “The programmable logic-in-memory (PLiM) computer,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2016, pp.
427–432.

[64] S. Shirinzadeh, M. Soeken, P.-E. Gaillardon, and R. Drechsler, “Fast logic synthesis
for rram-based in-memory computing using majority-inverter graphs,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2016, pp.
948–953.

[65] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and R. S.
Williams, “Memristive switches enable stateful logic operations via material impli-
cation,” Nature, vol. 464, no. 7290, pp. 873–876, 2010.

[66] J. Reuben, R. Ben-Hur, N. Wald, N. Talati, A. H. Ali, P.-E. Gaillardon, and
S. Kvatinsky, “Memristive logic: A framework for evaluation and comparison,” in
27th IEEE International Symposium on Power and Timing Modeling, Optimization
and Simulation (PATMOS), 2017, pp. 1–8.

[67] X. Fang and Y. Tang, “Circuit analysis of the memristive stateful implication gate,”
Electronics Letters, vol. 49, no. 20, pp. 1282–1283, 2013.

[68] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. Soong, and J. C.
Zhang, “What will 5g be?” IEEE Journal on selected areas in communications,
vol. 32, no. 6, pp. 1065–1082, 2014.

[69] J. Yli-Kaakinen, T. Levanen, M. Renfors, M. Valkama, and K. Pajukoski, “FFT-
domain signal processing for spectrally-enhanced CP-OFDM waveforms in 5G new
radio,” in proc. of the 52nd IEEE Asilomar Conference on Signals, Systems, and
Computers, 2018, pp. 1049–1056.

[70] J. W. Cooley and J. W. Tukey, “An algorithm for the machine calculation of complex
fourier series,” Mathematics of computation, vol. 19, no. 90, pp. 297–301, 1965.

[71] S. He and M. Torkelson, “A new approach to pipeline FFT processor,” in proc. of
the 10th International Parallel Processing Symposium (IPPS), 1996, pp. 766–770.

[72] E. Dubois and A. Venetsanopoulos, “A new algorithm for the radix-3 FFT,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 26, no. 3, pp. 222–
225, 1978.

[73] J. Löfgren and P. Nilsson, “On hardware implementation of radix 3 and radix 5
FFT kernels for LTE systems,” in proc. of the NORCHIP, 2011, pp. 1–4.

[74] S. Goedecker, “Fast radix 2, 3, 4, and 5 kernels for fast fourier transformations on
computers with overlapping multiply–add instructions,” SIAM Journal on Scientific
Computing, vol. 18, no. 6, pp. 1605–1611, 1997.

[75] E. E. Swartzlander, W. K. Young, and S. J. Joseph, “A radix 4 delay commutator
for fast fourier transform processor implementation,” IEEE Journal of Solid-State
Circuits, vol. 19, no. 5, pp. 702–709, 1984.

[76] M. Hasan, T. Arslan, and J. S. Thompson, “A novel coefficient ordering based low
power pipelined radix-4 fft processor for wireless lan applications,” IEEE Transac-
tions on Consumer Electronics, vol. 49, no. 1, pp. 128–134, 2003.

[77] Y.-W. Lin, H.-Y. Liu, and C.-Y. Lee, “A dynamic scaling fft processor for dvb-t
applications,” IEEE Journal of solid-state circuits, vol. 39, no. 11, pp. 2005–2013,
2004.

[78] I.-C. Park, W. Son, and J.-H. Kim, “Twiddle factor transformation for pipelined
fft processing,” in proc. of the 25th International Conference on Computer Design,
2007, pp. 1–6.

[79] G. Bi and G. Li, “Pipelined structure based on radix-2 2 fft algorithm,” in proc.
of the 6th IEEE Conference on Industrial Electronics and Applications, 2011, pp.
2530–2533.

[80] N. H. Cuong, N. T. Lam, and N. D. Minh, “Multiplier-less based architecture for
variable-length fft hardware implementation,” in proc. of the Fourth International
Conference on Communications and Electronics (ICCE). IEEE, 2012, pp. 489–494.

[81] S. He and M. Torkelson, “Designing pipeline fft processor for ofdm (de) modula-
tion,” in proc. of the International Symposium on Signals, Systems, and Electronics.
IEEE, 1998, pp. 257–262.

[82] S. Bouguezel, M. O. Ahmad, and M. S. Swamy, “New radix-(2/spl times/2/spl
times/2)/(4/spl times/4/spl times/4) and radix-(2/spl times/2/spl times/2)/(8/spl
times/8/spl times/8) DIF FFT algorithms for 3-D DFT,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 53, no. 2, pp. 306–315, 2006.

[83] M. Shin and H. Lee, “A high-speed four-parallel radix-2 4 FFT/IFFT processor for
UWB applications,” in proc. of the IEEE International Symposium on Circuits and
Systems, 2008, pp. 960–963.

[84] J. Lee and H. Lee, “A high-speed two-parallel radix-24 FFT/IFFT processor for
MB-OFDM UWB systems,” IEICE Transactions on Fundamentals of Electronics,
Communications and Computer Sciences, vol. 91, no. 4, pp. 1206–1211, 2008.

[85] M. Garrido, F. Qureshi, and O. Gustafsson, “Low-complexity multiplierless constant
rotators based on combined coefficient selection and shift-and-add implementation
(CCSSI),” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61,
no. 7, pp. 2002–2012, 2014.

[86] H.-Y. Lee and I.-C. Park, “Balanced binary-tree decomposition for area-efficient
pipelined fft processing,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 54, no. 4, pp. 889–900, 2007.

[87] 3GPP. (2017) Evolved universal terrestrial radio access (E-UTRA); physical
channels and modulation. [Online]. Available: https://www.3gpp.org/

[88] C. Yu and M.-H. Yen, “Area-efficient 128-to 2048/1536-point pipeline FFT processor
for LTE and mobile WiMAX systems,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 23, no. 9, pp. 1793–1800, 2014.

[89] J. Chen, J. Hu, S. Lee, and G. E. Sobelman, “Hardware efficient mixed radix-
25/16/9 FFT for LTE systems,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 23, no. 2, pp. 221–229, 2014.

[90] X.-Y. Shih, Y.-Q. Liu, and H.-R. Chou, “48-Mode Reconfigurable Design of SDF
FFT Hardware Architecture Using Radix-3 2 and Radix-2 3 Design Approaches,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 6, pp.
1456–1467, 2017.

[91] K. Seshan, “Limits and hurdles to continued cmos scaling,” in Handbook of Thin
Film Deposition. Elsevier, 2018, pp. 19–41.

[92] H. Iwai, “Cmos technology after reaching the scale limit,” in proc. of the 8th Inter-
national Workshop on Junction Technology (IWJT’08). IEEE, 2008, pp. 1–2.

[93] B. Liu, Y. Wang, Z. You, Y. Han, and X. Li, “A signal degradation reduction method
for memristor ratioed logic (MRL) gates,” IEICE Electronics Express, vol. 12, no. 8,
pp. 1–6, 2015.

https://www.3gpp.org/

[94] J. Chowdhury, K. Das, and K. Rout, “Implementation of 24T memristor based
adder architecture with improved performance,” International Journal of Electrical,
Electronics and Data Communication, vol. 3, no. 6, 2015.

[95] K. Tsunoda, K. Kinoshita, H. Noshiro, Y. Yamazaki, T. Iizuka, Y. Ito, A. Takahashi,
A. Okano, Y. Sato, T. Fukano et al., “Low power and high speed switching of Ti-
doped NiO ReRAM under the unipolar voltage source of less than 3V,” in proc. of
the IEEE International Electron Devices Meeting (IEDM), 2007, pp. 767–770.

[96] Z. Biolek, D. Biolek, and V. Biolkova, “Spice model of memristor with nonlinear
dopant drift,” Radioengineering, vol. 18, no. 2, 2009.

[97] A. Chanthbouala, V. Garcia, R. O. Cherifi, K. Bouzehouane, S. Fusil, X. Moya,
S. Xavier, H. Yamada, C. Deranlot, N. D. Mathur et al., “A ferroelectric memristor,”
Nature Materials, vol. 11, no. 10, p. 860, 2012.

[98] I. Baek, M. Lee, S. Seo, M. Lee, D. Seo, D.-S. Suh, J. Park, S. Park, H. Kim, I. Yoo
et al., “Highly scalable nonvolatile resistive memory using simple binary oxide driven
by asymmetric unipolar voltage pulses,” in proc. of the IEEE International Electron
Devices Meeting (IEDM), 2004, pp. 587–590.

[99] T. Diokh, E. Le-Roux, S. Jeannot, M. Gros-Jean, P. Candelier, J. Nodin,
V. Jousseaume, L. Perniola, H. Grampeix, T. Cabout et al., “Investigation of the
impact of the oxide thickness and reset conditions on disturb in HfO2-RRAM inte-
grated in a 65nm CMOS technology,” in proc. of the IEEE International Reliability
Physics Symposium (IRPS), 2013, pp. 5E–4.

[100] H. Lee, P. Chen, T. Wu, Y. Chen, C. Wang, P. Tzeng, C. Lin, F. Chen, C. Lien,
and M.-J. Tsai, “Low power and high speed bipolar switching with a thin reactive
Ti buffer layer in robust HfO2 based RRAM,” in proc. of the IEEE International
Electron Devices Meeting (IEDM), 2008, pp. 1–4.

[101] P. L. Thangkhiew, R. Gharpinde, P. V. Chowdhary, K. Datta, and I. Sengupta,
“Area efficient implementation of ripple carry adder using memristor crossbar ar-
rays,” in proc. of the International Design & Test Symposium (IDT), 2016, pp.
142–147.

[102] N. Talati, S. Gupta, P. Mane, and S. Kvatinsky, “Logic design within memristive
memories using memristor-aided logic (MAGIC),” IEEE Transactions on Nanotech-
nology, vol. 15, no. 4, pp. 635–650, 2016.

[103] P. Thangkhiew, R. Gharpinde, D. N. Yadav, K. Datta, and I. Sengupta, “Efficient
implementation of adder circuits in memristive crossbar array,” in proc. of the IEEE
Region 10 Conference (TENCON), 2017, pp. 207–212.

[104] R. Gharpinde, P. L. Thangkhiew, K. Datta, and I. Sengupta, “A scalable in-memory
logic synthesis approach using memristor crossbar,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 26, no. 2, pp. 355–366, 2018.

[105] M. Teimoory, A. Amirsoleimani, J. Shamsi, A. Ahmadi, S. Alirezaee, and M. Ah-
madi, “Optimized implementation of memristor-based full adder by material impli-
cation logic,” in proc. of the IEEE International Conference on Electronics, Circuits
and Systems (ICECS), 2014, pp. 562–565.

[106] E. Lehtonen and M. Laiho, “Stateful implication logic with memristors,” in proc. of
the IEEE International Symposium on Nanoscale Architectures, 2009, pp. 33–36.

[107] S. Shirinzadeh, M. Soeken, P.-E. Gaillardon, and R. Drechsler, Logic Synthesis
for Majority Based In-Memory Computing, Chapter in Advances in memristors,
memristive devices and systems. Springer, 2017.

[108] A. Siemon, S. Menzel, R. Waser, and E. Linn, “A complementary resistive switch-
based crossbar array adder,” IEEE journal on emerging and selected topics in cir-
cuits and systems, vol. 5, no. 1, pp. 64–74, 2015.

[109] C.-X. Xue et al., “A 1Mb multibit ReRAM computing-in-memory macro with 14.6
ns parallel MAC computing time for CNN based AI edge processors,” in proc. of
the IEEE international Solid-State Circuits Conference-(ISSCC), 2019.

[110] W.-H. Chen, W.-J. Lin et al., “A 16Mb dual-mode ReRAM macro with sub-
14ns computing-in-memory and memory functions enabled by self-write termina-
tion scheme,” in proc. of the IEEE international Electron Devices Meeting (IEDM),
2017.

[111] C.-X. Xue et al., “A 22nm 2Mb ReRAM compute-in-memory macro with 121-
28TOPS/W for multibit MAC computing for tiny AI edge devices,” in proc. of
the IEEE international Solid-State Circuits Conference-(ISSCC), 2020.

[112] W.-H. Chen et al., “CMOS-integrated memristive non-volatile computing-in-
memory for AI edge processors,” Nature Electronics, vol. 2, no. 9, pp. 420–428,
2019.

[113] R. B. Hur and S. Kvatinsky, “Memristive memory processing unit (MPU) controller
for in-memory processing,” in proc. of the IEEE International Conference on the
Science of Electrical Engineering (ICSEE), 2016, pp. 1–5.

[114] P. L. Thangkhiew, R. Gharpinde, and K. Datta, “Efficient mapping of Boolean
functions to memristor crossbar using MAGIC NOR gates,” IEEE Transactions on
Circuits and Systems I: Regular Papers, no. 99, pp. 1–11, 2018.

[115] S. Shin, K. Kim, and S.-M. Kang, “Analysis of passive memristive devices array:
Data-dependent statistical model and self-adaptable sense resistance for RRAMs,”
proc. of the IEEE, vol. 100, no. 6, pp. 2021–2032, 2012.

[116] Y. Huai et al., “Spin-transfer torque MRAM (STT-MRAM): Challenges and
prospects,” AAPPS bulletin, vol. 18, no. 6, pp. 33–40, 2008.

[117] S. Ikeda, K. Miura, H. Yamamoto, K. Mizunuma, H. Gan, M. Endo, S. Kanai,
J. Hayakawa, F. Matsukura, and H. Ohno, “A perpendicular-anisotropy CoFeB–
MgO magnetic tunnel junction,” Nature materials, vol. 9, no. 9, p. 721, 2010.

[118] X. Wang, Y. Chen, H. Xi, H. Li, and D. Dimitrov, “Spintronic memristor through
spin-torque-induced magnetization motion,” IEEE electron device letters, vol. 30,
no. 3, pp. 294–297, 2009.

[119] T. Hanyu, T. Endoh, D. Suzuki, H. Koike, Y. Ma, N. Onizawa, M. Natsui, S. Ikeda,
and H. Ohno, “Standby-power-free integrated circuits using MTJ-based VLSI com-
puting,” proc. of the IEEE, vol. 104, no. 10, pp. 1844–1863, 2016.

[120] Y. Wang, Y. Zhang, E. Deng, J.-O. Klein, L. A. Naviner, and W. Zhao, “Compact
model of magnetic tunnel junction with stochastic spin transfer torque switching for
reliability analyses,” Microelectronics Reliability, vol. 54, no. 9-10, pp. 1774–1778,
2014.

[121] Y. Wang, H. Cai, L. A. Naviner, Y. Zhang, J.-O. Klein, and W. Zhao, “Compact
thermal modeling of spin transfer torque magnetic tunnel junction,” Microelectron-
ics Reliability, vol. 55, no. 9-10, pp. 1649–1653, 2015.

[122] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter graph: A novel
data-structure and algorithms for efficient logic optimization,” in proc. of the 51st
ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE, 2014, pp. 1–6.

[123] Berkeley Logic Synthesis and Verification Group. (2005). ABC – a system for
sequential synthesis and verification. [Online]. Available: https://people.eecs.
berkeley.edu/~alanmi/abc/

[124] W. W. Peterson and D. T. Brown, “Cyclic codes for error detection,” proc. of the
IRE, vol. 49, no. 1, pp. 228–235, 1961.

[125] S. Sheng-Ju, “Implementation of cyclic redundancy check in data communication,”
in proc. of the international Conference on Computational Intelligence and Com-
munication Networks (CICN). IEEE, 2015, pp. 529–531.

[126] W. Huangfu, L. Xia, M. Cheng, X. Yin, T. Tang, B. Li, K. Chakrabarty, Y. Xie,
Y. Wang, and H. Yang, “Computation-oriented fault-tolerance schemes for rram
computing systems,” in proc. of the 22nd Asia and South Pacific Design Automation
Conference (ASP-DAC). IEEE, 2017, pp. 794–799.

[127] A. Chaudhuri, B. Yan, Y. Chen, and K. Chakrabarty, “Hardware fault tolerance for
binary rram crossbars,” in proc. of the IEEE International Test Conference (ITC),
2019, pp. 1–10.

[128] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things (iot): A
vision, architectural elements, and future directions,” Future generation computer
systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[129] M. S. Razlighi, M. Imani, F. Koushanfar, and T. Rosing, “Looknn: Neural net-
work with no multiplication,” in proc. of the Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2017, pp. 1775–1780.

[130] R. Balasubramonian, J. Chang, T. Manning, J. H. Moreno, R. Murphy, R. Nair,
and S. Swanson, “Near-data processing: Insights from a micro-46 workshop,” IEEE
Micro, vol. 34, no. 4, pp. 36–42, 2014.

[131] L. Fick and D. Fick, “Introduction to compute-in-memory,” in IEEE Custom Inte-
grated Circuits Conference (CICC). IEEE, 2019, pp. 1–65.

https://people.eecs.berkeley.edu/~alanmi/abc/
https://people.eecs.berkeley.edu/~alanmi/abc/

Titre : Nouvelles approches de conception d'architectures flexibles et de calcul en mémoire basées sur
les technologies des memristors

Mots clés : Memristor; calcul en mémoire; crossbar; conception numérique; mémoire non-volatile

Résumé : Le développement récent de nouvelles

technologies de mémoires non-volatiles basées sur le
concept de memristor a suscité de nombreux efforts
pour explorer leur utilisation potentielle dans différents
domaines d'application. Les propriétés uniques de ces
dispositifs memristifs et leur compatibilité pour une
intégration avec les technologies CMOS
conventionnelles permettent de nouveaux paradigmes
de conception d’architecture, offrant des niveaux sans
précédent de densité, de reconfigurabilité et d’efficacité
énergétique. Dans ce contexte, le but de ce travail de
thèse était d'explorer et d'introduire de nouvelles
approches de conception basées sur les memristors
pour combiner flexibilité et efficacité en proposant des
architectures originales qui dépassent les limites des
architectures existantes. Cette exploration et cette
étude ont été menées à trois niveaux : interconnexion,
traitement et mémoire. Au niveau des interconnexions,
nous avons étudié l'utilisation de dispositifs memristifs
pour permettre une grande flexibilité basée sur des
réseaux d'interconnexion programmables. Cela a
permis de proposer la première architecture de
transformée de Fourier rapide reconfigurable basée sur

des memristors, nommée mrFFT. Les memristors sont
insérés comme des commutateurs reconfigurables au
niveau des interconnexions afin d'établir un routage
flexible puce. Au niveau du traitement, nous avons
exploré l'utilisation de dispositifs memristifs et leur
intégration avec les technologies CMOS pour la
conception de fonctions logique combinatoire. Ces
circuits hybrides memristor-CMOS exploitent la forte
densité d'intégration des memristors afin d'améliorer les
performances des implémentations numériques, et en
particulier des unités arithmétiques et logiques. Au
niveau mémoire, une nouvelle approche de calcul en
mémoire a été introduite. Dans ce contexte, un nouveau
style de conception logique a été proposé, nommé
Memristor Overwrite Logic (MOL), associé à une
architecture originale de mémoire de calcul. L’approche
proposée permet de combiner efficacement le stockage
et le traitement afin de contourner les problèmes liés
aux accès mémoire et d'améliorer ainsi l'efficacité de
calcul. L'approche proposée a été appliquée dans trois
études de cas à des fins de validation et d'évaluation
des performances.

Title: New design approaches for flexible architectures and in-memory computing based on memristor
technologies

Keywords: Memristor; In-memory computation; Crossbar array; Logic design; Non-volatile memory

Abstract: The recent development of new non-volatile

memory technologies based on the memristor concept
has triggered many research efforts to explore their
potential usage in different application domains. The
distinctive features of memristive devices and their
suitability for CMOS integration are expected to lead for
novel architecture design paradigms enabling
unprecedented levels of energy efficiency, density, and
reconfigurability. In this context, the goal of this thesis
work was to explore and introduce new memristor-
based designs that combine flexibility and efficiency
through the proposal of original architectures that break
the limits of the existing ones. This exploration and
study have been conducted at three levels:
interconnect, processing, and memory levels. At
interconnect level, we have explored the use of
memristive devices to allow high degree of flexibility
based on programmable interconnects. This allows to
propose the first memristor-based reconfigurable fast
Fourier transform architecture, namely mrFFT.

Memristors are inserted as reconfigurable switches at
the level of interconnects in order to establish flexible
on-chip routing. At processing level, we have explored
the use of memristive devices and their integration with
CMOS technologies for combinational logic design.
Such hybrid memristor-CMOS designs exploit the high
integration density of memristors in order to improve
the performance of digital designs, and particularly
arithmetic logic units. At memory level, we have
explored new in-memory computing approaches and
proposed a novel logic design style, namely Memristor
Overwrite Logic (MOL), associated with an original
MOL-based computational memory. The proposed
approach allows efficient combination of storage and
processing in order to bypass the memory wall problem
and thus to improve the computational efficiency. The
proposed approach has been applied in three real
application case studies for the sake of validation and
performance evaluation.

	Contents
	List of Figures
	List of Tables
	Résumé long
	Introduction
	Memristor: Principals and Applications
	Memristor fundamentals
	Basic operation
	Memristor device modeling

	Memristor as a memory element
	Emerging non-volatile memories
	Crossbar arrays

	Memristors for reconfigurable interconnects
	Memristors for logic design
	Memristor-based logic design styles
	IMPLY – Material Implication
	MAGIC – Memristor Aided Logic
	MRL – Memristor Ratioed Logic
	MAD – Memristors-As-Drivers
	MTL – Memristor Threshold Logic
	MAJ – Memristor-based Majority

	Roadmap for evaluation of memristive logic
	Statefulness
	Flexibility
	Crossbar compatibility
	Reliability

	Summary

	Memristor Based Reconfigurable FFT Architecture
	Fast Fourier Transform (FFT)
	Pipelined FFT architecture designs
	Classical FFT architectures
	Reconfigurable FFT architectures

	Proposed mrFFT design
	Reconfigurable butterfly: RBF
	mrFFT architecture design
	Supported mrFFT configurations

	Comparison
	Limitations in performance evaluation
	Summary

	Hybrid Memristor-CMOS Design for Logic Computation
	Motivation for hybrid memristor-CMOS design
	X-MRL design procedure
	X-MRL based full adder
	Layout
	Simulation and performance analysis
	Memristor model fitting
	Performance analysis
	Timing analysis
	Energy consumption
	Utilized area

	Comparison
	Summary

	MOL – Memristor Overwrite Logic for In-Memory Computing
	Memristive devices for in-memory computing
	Limitations of existing logic design styles
	MOL logic design
	Digital representation of memristive devices
	MOL logic procedure
	Performing MOL inside memristive crossbars

	Realization of MOL in 1M/1T1M crossbars
	MOL-based Computational memory
	Architecture
	Performing general arithmetic tasks
	Towards an efficiency-improved computing

	MOL based in memory N-bit full addition
	Proposed iterative N-bit full addition process dedicated for computational MOL-memory
	In-memory N-bit full addition procedure
	Space-time analysis of the N-bit addition process

	Simulation and performance analysis
	Adopted memristive device
	Performance analysis
	Timing analysis
	Robustness against resistance variability
	Energy estimation

	Comparison
	MOL vs IMPLY and MAGIC
	MOL vs MAJ and CRS

	Applications of MOL
	In-memory CRC computing
	Cyclic redundancy check
	CRC computation
	MOL-based in-memory CRC computation
	Simulation results

	In-memory DNN computing
	Optimized multiply & accumulate process inside memory
	CMEM-based DNN architecture

	Summary

	Conclusions and future work
	Bibliography

